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Foreword 
The area of mathematics surveyed by the present report might be 

described as a little too broad to be treated in an encyclopedic manner 
in a reasonable space and yet not sufficiently developed in all its parts 
to warrant several distinct reports. Group theory and lattice theory 
are both regarded as outside the scope of the report. Subject to this 
restriction, the area surveyed is the algebraic theory of systems with 
a single binary operation. The operation is understood to be single
valued except in the case of multigroups and allied systems. Since 
quasigroups, for example, can be studied either in terms of a single 
binary operation or in terms of three, a little of the theory of general 
algebras enters quite naturally. A diagram indicating the interrelations 
of the various systemswill be found at the end of Chapter li. 

The more highly developed parts of the subject have been treated in 
detail. Here the emphasis is on theorems and proofs; the work of several 
mathematicians has been fused into a single whole with only a mild 
attempt to indicate their several contributions. This is the case, for 
example, with the main body of the theory of loops and with the theory 
of ideals in semigroups. At other points, significant theorems have been 
stated without proof but with precise references to the literature. The 
author is weil aware that many special topics, for example in the theory 
of semigroups and quasigroups, have not been specifically mentioned 
in the text. The bibliography should partly make up for such omissions. 

I wish to acknowledge with thanks research grants from the J ohn 
Sirnon Guggenheim Foundation for the year 1946--47 and from the 
University of Wisconsin Research Committee for the fall of 1946 and 
the summers of 1952, 1954 and 1955- grants which were used partly 
to expand the subject matter and partly to delineate it. 

I am indebted to many persons for aid in the present task: to my 
wife, HELEN; to the many authors (above all, to R. BAER and B. H. NEu
MANN) whose papers and letters have strongly influenced my work; to my 
student, DoNALD W. MILLER, now of the University of Nebraska, for a 
painstaking survey of the literature of semigroups which I used freely 
and according to my own judgement in connection with Chapter li ; to 
MILLER, to A. H. CLIFFORD and to others for contributions to Part D 
of the Bibliography; to BAER for a detailed and helpful criticism of 
the manuscript; to R. ARTZY for preparation of the Index; and, less 
specifically but no less sincerely, to the various students in my seminars 
who have helped to shape or correct much of the present text. 

March 13, 1958 R. H. BRUCK 

Madison, Wisconsin 
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Note on the Bibliography 

For the convenience of the reader, the bibliography has been divided 
and subdivided. Books are specified in the text by author and title or, 
occasionally, merely by author; precise references are given in Part A. 
Part B contains a few necessary papers on subjects outside the scope of 
the text; references to these take the form: Author [Bn], where n is an 
integer. Part C, the main body of the bibliography, is divided according 
to subjects, authors being listed alphabetically under each heading; Part D 
is a supplement to Part C. Papersare numbered consecutively throughout 
Parts C and D; references take the form: Author [ n]. No paper appears 
under two headings; the narrower classification has generally been 
preferred (e. g., semigroups as against groupoids) but there are exceptions 
to the rule in doubtful cases. The papers listed are those reviewed in the 
first seventeen volumes of Mathematical Reviews together with a few 
earlier or more recent papers. Wherever possible a reference has been 
appended in form [M R v, p], v being the volume nurober and p, the page, 
of the review in Mathematical Reviews. The criterion for selection was 
a vague one; completeness seemed desirable but was clearly beyond 
reach or even definition. 

Note on Symbols 

We define here certain symbols used consistently throughout the text. 
The symbols = and =f= denote equality and inequality respectively. 
E denotes membership in a set or system: "a E B" means that a is an 
element (or member) of (the set or system) B. 1 denotes lack of member
ship: "a ~ B" means that aisnot an element of B. C and ) describe 
the subset relation: each of "A C B", "B ) A" means that every member 
of A is a member of B. The relations "A C B, B) A", taken together, 
and the relation "A = B", each mean that A and B have the same 
elements. n denotes intersection or meet or common part; v denotes 
union or join or logical sum: if A, Bare sets, A n Bis the set of elements 
common to A and B, whereas A v Bis the set of elements belonging to 
A or B or both. -+ is used for two distinct purposes. The most frequent 
use is for informal specification of a (single-valued) mapping: "the 
mapping x-+ x2 of the group G" specifies the mapping of G which maps 
each element of G upon its square. -+ and - are used (very sparingly) 
as symbols of logical implication: "a = b -+ a2 = b2" means that if 
a = b, then a2 = b2 ; and "x E A n B - x E A and x E B" means that 
x E A n B if and only if x E A and also x E B . .E sometimes is used as 
the sign of summation and sometimes to denote a set; both uses are rare 
and easily distinguished. Jl occurs only in connection with free products. 



I. Systems and their Generation 

1. Groupoids 

In this and the next two sections we adopt the viewpoint of BATES [63] 
with modifications suggested independently by PEREMANS [98] and 
EVANS [81]. 

A single-valued mapping a: of a set G into a set His a correspondence 
which assigns to each g in G a unique element g a: in H. If a:, {J are single
valued mappings of G into H then a: = {J on G if and only if ga: = g {J for 
every g in G. We allow the possibility that G may be the empty set. 
If G, H are non-empty sets, the logical product G x His the set of all 
ordered pairs (a, b), a in G, b in H, where (a, b) = (c, d) if and only if 
a = c, b = d. By a (single-valued) binary operation a: on the (non-empty) 
set G we mean a single-valued mapping a: from some subset R(a:) of 
G x G into G. Here R (a:) is the range of a:; we allow the possibility that 
R(a:) may be empty. Two binary operations a:, {J on Gare equal (a: = {J) 
if and only if R(a:) = R({J) and a: = ß on R(a:). We make the following 
conventions in connection with a binary operation a: on G: (1) If (a, b) 
is in R ( a:), we usually write the "product" ab instead of (a, b) a:. (2) The 
statement "ab is defined in G" means that (a, b) is in R(a:). (3) The 
statement "ab = c in G" means (a, b) is in R (a:), c is in G and (a, b) a: = c. 
lt will be obvious from the context what operations are in question. 

A halfgroupoid G is a system consisting of a non-empty set G and a 
binary operation on G. A (proper or improper) subset H of the half
groupoid G is a subhalfgroupoid of G provided H is a halfgroupoid such 
that ab= c in G whenever ab= c in H. A groupoid Gis a halfgroupoid G 
suchthat ab is defined in G for all a, bin G. A subgroupoid Hof a half
groupoid Gis a groupoid H which is a subhalfgroupoid of G. 

The order of a halfgroupoid G is the cardinal nurober of the set G. 
Let A be any (non-empty) index set and let { H"'; a: E A} be a collection 

of halfgroupoids H"'. The collection will be termed compatible if ab= c 
in H"', ab= d in Hp implies c = d. The collection will be termed disjoint 
if a EH"'' a EH ß implies a: = {J. Every disjoint collection of halfgroupoids 
is of course compatible. A compatible collection of halfgroupoids 
{H"'; a: E A} determines uniquely a halfgroupoid S = v H"', its union, 
defined as follows: (i) a E S - a E H"' for at least one a: E A. (ii) ab = c 
in S- ab= c in H"' for at least one a: E A. In particular, each H"' is a 
subhalfgroupoid of S. For special cases of A we use notations such as 

00 

H v K or U H;. A compatible collection of halfgroupoids {Ha.; a: E A} 
i~O 
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will be termed intersecting if there exists an element a such that a E H"' 
for every cx in A. Such a collection determines a unique halfgroupoid 
M = nH"', its intersection, defined as follows: (i) a E M ..... a E Hex for 
every cx E A. (ii) ab= c in M- ab= c in Hex for every cx E A. In 
particular, M is a subhalfgroupoid of each Hex. The meanings of H n K, 

00 

n H; should be clear. 
;~o 

Let G be a subhalfgroupoid of the halfgroupoid E. We say that Gis 
closed in E if a, b E G, ab= c in E implies ab= c in G. We say that E 
is an extension of G if (i) ab= c in E implies a, b E G; (ii) c E E, c ~ G 
implies c = ab in E for at least one pair a, bin G. An extension E of G 
is complete if ab is defined in E for all a, bin G; in particular, E could 
be a complete extension of G and consist of the same elements as G. 
An extension E of Gis open if (iii) ab = c in E, c E G implies ab = c in G; 
(iv) c ~ E, c ~ G, ab= a'b' = c in E implies a = a', b = b'. Every half
groupoid G is an open extension of itself, but is a complete extension 
of itself only if it is a groupoid. If Gis a halfgroupoid but not a groupoid 
then, as is obvious from the definitions, G has extensions, distinct from 
itself, which are complete or open or both. To construct a complete open 
extension, let E be the set consisting of G and those elements (a, b) of 
G X G for which ab is not defined in G and, for all a, b in G, define 
ab= c or ab= (a, b) in E according as ab= c in G or ab is not defined 
in G. 

A collection {L 1; i = 0, 1, 2, ... } of halfgroupoids L; is called an 
extension chain if Li+l is an extension of L; for each i; and is open (or 
complete) if L;+1 is an open (or complete) extension of L; for each i. 
If Gis a subhalfgroupoid of the halfgroupoid H, the maximal extension 
chain of G in H is defined as follows: G0 = G and, for each nonnegative 
integer i, (a) G; is a subhalfgroupoid of H; (b) G;+l is an extension of G;; 
(c) if x, y E G; and if xy = z in H, then xy = z in Gi+l· The halfgroupoid 

00 

K = U G; may be characterized as follows: (i) G is a subhalfgroupoid 
i=O 

of K; (ii) K is a closed subhalfgroupoid of H; (iii) if Gis a subhalfgroup-
oid of the closed subhalfgroupoid L of H, then K is. a subhalfgroupoid 
of L. We call K the subhalfgroupoid of H generated by G. In particular, 
G generates H if K = H. The following criterion is convenient: G 
generates H if ( and only if) the only closed subhalfgroupoid of H containing 
G as a subhalfgroupoid is H itself. W e shall use this cri terion as a defini tion. 

Lemma 1.1. lf G is a generating subhalfgroupoid of H and H is a 
generating subhalfgroupoid of a halfgroupoid K, then G generates K. 

Proof. Let G be a subhalfgroupoid of a closed subhalfgroupoid C of 
K. Let D = H n C. Then G, D aresubhalfgroupoids of D, H respectively. 
If a, b E D and ab= c in H then (since a, b E C and ab= c in K) ab= c 
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in C. Consequently, ab= c in D. That is, Dis closed in H. Then, since 
G generates H, D = H; in other words, H is a subhalfgroupoid of C. 
Thus, finally, C = K, and the proof of Lemma 1.1 is complete. 

A homomorphism () of a halfgroupoid G into (upon) a halfgroupoid K 
is a single-valued mapping of G into (upon) K such that ab= c in G 
implies (a()) (b()) = c() in K. An isomorphism () of G upon K is a one-to
one homomorphism () of G upon K suchthat ()-1 is a homomorphism of K 
upon G. An endomorphism (automorphism) of G is a homomorphism 
of G into (isomorphism of G upon) G. If G is a subhalfgroupoid of a 
halfgroupoid Hand if (), q; are homomorphisms of G, H respectively into 
the same halfgroupoid K, we say that q; extends () to H (or that q; induces 
() on G) provided g() = gq; for each ginG. 

Lemma 1.2. I f G is a generating subhalfgroupoid of a halfgroupoid H 
and if () is a homomorphism of G into a halfgroupoid K, then () can be 
extended in at most one way (and, possibly, in none) to a homomorphism 
of H into K. 

Proof. Let q;, "P be homomorphisms of H into K which induce () on G. 
Let S be the set of all s in H suchthat sq; = S'ljl. Define ab= c in S 
if and only if a, b, c E S and ab= c in H. Then S is a subhalfgroupoid 
of HandGis a subhalfgroupoid of S. If a, b ES and ab= d in H, then 
d q; = (a q;) (b q;) = (a"P) (b'IJl) = d "P in K, so d E 5. Hence S is closed 
in H, S = H, q; = "P· 

We say that a halfgroupoid H is free over its subhalfgroupoid G if, 
for every groupoid K and homomorphism () of G into K, () can be extended 
to a homomorphism of H into K. And H is freely generated by G if H is 
both free over and generated by G. 

Lemma 1.3. Let the halfgroupoid H be an extension of the halfgroupoidG. 
Then His free over G if and only if His an open extension of G. 

Proof. (I) Let H be an open extension of G and let () be a homo
morphism of G into a groupoid K. Define aq; = a() for each a in G. If 
a EH and a ~ G then a = bc in H for a unique ordered pair b, c in H; 
and b, c E G. In this case, define aq; = (b()) (c8). Then q; is a homo
morphism of H into K which induces () on G. · 

(II) Let H be an extension of G which is not open. At least one of 
the following must hold: (i) There exist a, b, c in G such that ab = c 
in H but abisnot defined in G. (ii) There exist a, b, c, d in G, ein H 
suchthat ab= cd =ein H, abisnot defined in G and either a=l= c or 
b =1= d. If (i) is true, let K be the set obtained by adjoining one new 
element, say x, to G. Define multiplication in K as follows: for all u, v 
in G, uv = w or uv = x in K according as uv = w in G or uv is not 
defined in G; for all u in G, ux = xu = xx = x in K. Then K i~ a 
groupoid. The identity mapping I 0 of Gis a homomorphism of G into K. 
If q; extends I 0 to H then, since ab= c in H, ab= c in K; however, 
abisnot defined in G so ab= x in K, a contradiction. Hence His not 
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free over G. If (1) is false then (ii) is true (with e not in G). We suppose 
for definiteness that a =t= c. This time let K be the same set as G with 
multiplication as follows: for all u, v in G, uv = w or uv = u in K 
according as uv = w in Gor uv is not defined in G. Then K is a groupoid 
and I 0 is a homomorphism of G upon K. If cp extends I 0 to H then 
ecp = (ab) cp = a in K and (since cd cannot be defined in G) e cp = (cd) cp= c 
in K, whereas a =t= c, a contradiction. Hence H is not free over G. This 
completes the proof of Lemma 1.3. 

Theorem 1.1. (Existence and Uniqueness.) Every halfgroupoid G 
freely generates at least one groupoid H. If G freely generates two groupoids 
H, H' there exists an isomorphism () of H upon H' which induces the 
identity mapping on G. 

Proof. (I) There exists a complete open extension chain {L;} with 
()() 

G = L0• Let H = U L;. Completeness ensures that H is a groupoid. 
i~O 

G is a subhalfgroupoid of H and {L;} is the maximal extension chain 
of G in H; hence G generat es H. Let cp (0) be a homomorphism of G into 
a groupoid K. By Lemma 1.3, openness ensures the existence of a set 
{ cp (i)} such that, for each nonnegative integer i, cp (i) is a homomorphism 
of L; into K and cp(i + 1) extends cp(i). Let cp be the mapping of H 
which induces cp (i) on L; for each i. Then cp is an extension of cp (0) to 
a homomorphism of H into K. Hence His free over G. 

(II) Let H, H' be groupoids freely generated by G. The identity 
mapping I 0 of G, regarded as a homomorphism of G into H', can be 
extended (uniquely, by Lemma 1.2) to a homomorphism () of H into H'. 
Likewise, I 0 can be extended to a homomorphism ()' of H' into H. Since 
() ()' and I H bothextend I 0 to an endomorphism of H, () ()' = I H· Similarly, 
()' () = I H'· Hence () is an isomorphism of H upon H' and ()' = ()-1. This 
completes the proof of Theorem 1.1. 

If a = bc in a halfgroupoid H we say that b and c divide a in H. 
An element of H is prime in H if it has no divisors in H. A (finite or 
infinite) sequence {a;} of elements a1, a2, ••• of His a divisor chain of H 
if each member ai+l divides the preceding member a; in H. A divisor 
chain {a;} of His finite over a subhalfgroupoid G of H if ak and all sub
sequent terms are in G for some integer k; the chain has length n over G 
if n is the least such integer k. 

Lemma 1.4. The following conditions are necessary and sufficient in 
orderthat a halfgroupoid H be freely generated by a given subhalfgroupoid G: 
(i) If a is Prime in G, then a is Prime in H. (ii) If a EH, a ~ G, then a = bc 
in H for one and only one ordered pair b, c E H. (iii) Evcry divisor chain 
of H is either finite or finite over G. 

Proof. (I) Let H be freely generated by G. By Theorem 1.1 and its 
proof, if {L;} is the maximal extension chain of G in H then {L;} is a 
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00 

complete open extension chain and H = U L;. Openness ensures that 
i=O 

if a E L; and a = bc in Li+1, then a = bc in L;. Since a = bc in H if and 
only if a = bc in some L;, we deduce (i) by finite descent to G = L0• 

Again, openness tagether with finite descent ensures that if a = bc = xy 
in Hand if either b=F x or c=F y, then a = bc = xy in G. Moreover if 
a EH and a ~ G, then a E Ln+!• a ~Ln for some n ~ 0 and so a = bc 
in Ln+! for some (unique) ordered pair b, c E Ln. This proves (ii). Finally, 
let {a;} be a divisor chain of H and let n (i) be the least integer k such 
that a; E Lk. If ai+1 is a member of the chain and if n (i) > 0, then 
a; = bc in H for a unique ordered pair b, c EH (by (ii)), where in fact 
b, c E Lm, m = n(i) -1. Thus ai+l is one of b, c, so n(i + 1) is at most 
n(i) -1. Hence we see readily that the chain has length at most n(1) + 1 
over G. This proves (iii) and also shows that the elements of Ln are 
those which are first terms of no divisor chains of length exceeding n + 1 
over G. 

(II) Let G, H satisfy (i)-(iii) and let L; be the set of all elements 
of H which are first terms of no divisors chains of H of length exceeding 
i + 1 over G. In particular, L0 = G. Define ab= c in L;+l if and only 
if a, b E L; and ab= c in H. It is then easy to see that {L;} is the maximal 

00 

extension chain of G in H, that H = U L;, and that Li+1 is an open 
i=O 

extension of L; for each i. Thence, by Lemma 1.1, 1.2, 1.3, H is freely 
generated by G. This proves Lemma 1.4. 

A non-empty set B may be regarded as a halfgroupoid with no 
products defined. By Theorem 1.1, B freely generates a groupoid G, 
unique to within an isomorphism. A non-empty subset B of a half
groupoid H is called a free basis of H if B freely generates H. And a 
halfgroupoid is free if it has a free basis. Existence of free groupoids is 
ensured. Two of the most significant properties of free systems are 
indicated in the next two theorems. 

Theorem 1.2. (Free Representation Theorem.) Every groupoid G is 
the homomorphic image of at least one free groupoid F. 

Proof. Let B be a generating subset of G; for example, the set G 
itself. Let F be the free groupoid with free basis B. The identity mapping 
of B may be extended to a homomorphism () of F into G. Let H be the 
image of Funder () and define ab= c in H if and only if a, b, c EH and 
ab= c in G. Since Fis a groupoid, His a subgroupoid of G and hence 
H is closed in G. But B is a subhalfgroupoid of H and B generates G. 
Hence H = G, () is upon G, and the proof is complete. 

Theorem 1.3. I f () is a homomorphism of the groupoid G upon the free 
groupoid F, then there exists an isomorphism q; of F upon a subgroupoid 
Hof G suchthat q;fJ = lp. 
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Proof. Let B be a free basis of F. By the Axiom of Choice, there 
exists at least one single-valued mapping fP (0) of B into G such that 
fP (0) () = I B· Then fP (0) can be extended to a homomorphism fP of F 
into G. And fP is a homomorphism upon some subgroupoid H of G. 
Since fP () is an endomorphism of F extending fP (0) () = I B• necessarily 
fl!() = IF. Let() induce ()' on H, so that ff!()' = IF. If h EH then h = ffl! 
for at least one f in Fand h()' = f. Hence fP is one-to-one and ()' = fP-1. 

This completes the proof. 
The following lemma is obvious from Lemma 1.4: 
Lemma 1.5. The foltowing conditions are necessary and stttficient in 

orderthat a halfgroupoid H be free: (i) If a EH and if aisnot primein H, 
then a = bc in H for one and only one ordered pair b, c EH. (ii) Every 
divisor chain in H is finite. M oreover, if H is free then. H has one and 
only one free basis, namely the set of alt primes in H. 

The rank of a free halfgroupoid is the cardinal number of its (unique) 
free basis. W e ha ve as corollaries of Lemma 1.5: 

Theorem 1.4. Every subhalfgroupoid of a free halfgroupoid is free. 
Lemma 1.6. If a non-empty subset B1 of a free halfgroupoid H generates 

a closed subhalfgroupoid H1 of H and if no proper subset of B1 generates H1 , 

then B1 is a free basis of H1. 

Theorem 1.5. Every free groupoid H contains a free subgroupoid of 
countable rank. 

Proof of Theorem 1.5. Choose any a EH, let B1 be the countable 
sequence {a;; i = 0, 1, 2, ... }, where a0 = aa, a;+1 = aa;; let H1 be the 
subgroupoid of H generated by B1 ; and apply Lemma 1.6. 

Let {Hrz; rx E A} be any compatible collection of halfgroupoids and 
let S = u H rz be its union. By Theorem 1.1, S freely generat es a group
oid G, unique to within an isomorphism. If the collection is disjoint, 
G is called the free product of the H rz and is denoted by ll* H rz· If the 
collection is not assumed to be disjoint, G is called the generalized free 
product of the Hrz and is denoted by 1l ~ Hrz. For two compatible half
groupoids H, K we write H * K or H !. K for their free or generalized 
free product, and similarly for any finite number. The proof of the next 
theorem is Straightforward if we consider the "trees" formed by the 
divisor chains beginning with the variou~ elements. 

Theorem 1.6. A groupoid G is free if and only if it is a free product 
of free groupoids of rank 1. 

Theorem 1.7. Let the groupoid G be freely generated by a subhalf
groupoid S and let H be a subgroupoid of G. If Pis the set of alt primes 
of H which arenot in Sn H (the latter beingeither the empty set or a sub
halfgroupoid of G) then one of the following possibilities must occur: 
(i) P is empty, Sn H is not empty and H is freely generated by Sn H. 
(ii) Sn H is empty, P is not empty and P is a free basis of H. (iii) N either 
P nor S n H is empty and H = F * K where F is a free subr;roupoid of H 
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witk free basis P and K is a subgroupoid of H wkick is freely generated 
by S r1H. 

Proof. Let {a;} be a divisor chain of H. Then {a;}, as a divisor chain 
of G, is either finite or finite over S. In the latter case, a,. E S r1 H for 
some integer n, so S r1 H is not empty. On the other hand, if S r1 H is 
empty every divisor chain of H must be finite, so P cannot be empty .. 
Hence the set W = P v ( S r1 H) is never empty. We introduce multi
plication in W by the requirement that ab= c in W if and only if a, b, 
c E Wand ab= c in H. Every divisor chain of His finite or finite over W. 
If a EH and a ~ W then aisnot a primein Hand a ~ S. Then a = bc 
in H for at least one pair b, c EH and also a = bc in G for exactly one 
ordered pair b, c E G. Therefore H is freely generated by W. This 
disposes of cases (i), (ii). In case (iii) we have proved that H = P• (S r1 H). 
NowletF, KbethesubgroupoidsofHgenerated by P, S r1Hrespectively. 
Since P, S r1 H are disjoint and P v ( S r1 H) freely generat es F v K, 
we see that F, K must be disjoint. Clearly F v K freely generates H; 
hence H = F * K. This completes the proof of Theorem 1.7. We note 
that (i), (ii), (iii) can be incorporated into the single statement that 
H = F * K, provided that we make the convention that an empty 
factor is to be deteted. 

Theorem 1.7 allows a refinement theorem for free ~ecomposition. 
Suppose that the groupoid G has subgroupoids P, Q, R, S suchthat 

G=P•Q=R•S. 

Since P, Q are disjoint, (P v Q) r1 R = (P v R) r1 (Q r1 R) and P r1 R, 
Q r1 Raredisjoint (possibly empty). Thus the groupoid freely generated 
by ( P v Q) r1 R is ( P r1 R) * ( Q r1 R), with the previously mentioned 
convention as to empty factors. Application of Theorem 1.7 therefore 
gives 

P = F1 * (P r1 R) * (P r1 S), Q = F 2 * (Q r1 R) * (Q r1 S) , 

R = F 3 * (P r1 R) * (Q r1 R), S = F 4 * (P r1 S) * (Q r1 S) , 

where each F is either empty or a free groupoid. Thus, if P, R are 
distinct but not disjoint, they have a common free-decomposition factor 
P r1 R. These remarks have obvious generalizations. 

A halfgroupoid Gis said to be imbeddable in a halfgroupoid H if there 
exists an isomorphism () of G upon a subhalfgroupoid of H; then () will 
be called an imbedding of G in H. Much of what has gone before can be 
rephrased in terms of imbedding. 

Theorem 1.8. A finite or countable kalfgroupoid G can be imbedded in 
at least one groupoid H witk a single generator. (Cf. EvANS [6], [7].) 

Proof. Let {gi; i = 0, 1, 2, ... } be the set of all elements of Gin some 
arbitrary ordering. Let K be obtained by adjoining one new element 
a to G. Define multiplication in K as follows: (i) if uv = w in G, then 
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uv = winK; (ii) aa = g0 in K; (iii) if g;, g;+1 are in G, then ag; = g;+ 1 

in K; (iv) no other products are defined in K. Then K is a halfgroupoid 
generated by a and I G is an imbedding of G in K. It suffices, therefore, 
to take for H a groupoid freely generated by K. This completes the 
proof of Theorem 1.8. If we assume merely that G has a well-ordering 
of ordinal type r we may show in similar fashion that G is imbeddable 
in a groupoid H with a generator corresponding to each non-successor 
ordinal a(a ~ r). 

W e close the section with a discussion of generalized free products with 
amalgamated subgroupoids. Let {Ha.; a E A} be a disjoint collection of 
groupoids. Suppose that, for each ordered pair a, ß E A, with a =I= ß, 
K(a, ß) is a subgroupoid of Ha. and K(a, ß), K(ß, a) are isomorphic. 
Suppose further that it is possible to define a compatible collection 
{Ka.; a E A} of groupoids and a set {q;(a); a E A} suchthat q;(a) is an 
isomorphism of Ha. upon Ka. which maps K(a, ß) upon Ka.r\Kp for each 
ß =!= a. Then Jl ~Ka. is called the generalized free product of the Ha. with 
amalgamated subgroupoids K (a, ß). Clearly, if 0 (a, ß) is the mapping 
induced by q; (a) q; (ß)-1 on K (a, ß): 

(i) O(a, ß) is an isomorphism of K(a, ß) upon K(ß, a); 

(ii) 0 (a, ß)-1 = 0 (ß, a); 

(iii) if x E K (a, ß) and xO (a, ß) E K (ß, y), then x E K (a, y) and 
xO(a, y) = xO(a, ß)O(ß, y). 

Conversely, if we are given a set of mappings 0 (cx, ß) which satisfy 
(i)-(iii), we may replace equality (=) in S = v Ha. by (==). defined as 
follows: a == b in S if and only if either a = b in S or, for some pair 
a, ß E A, IX=!= ß, wehavea E K{a, ß), b E K(ß, cx) andaO(a, ß) = b. Then 
we may redefine multiplication in S as follows: x y == z in S if and only 
if x'y' = z' in S for some x', y', z' with x' == x, y' == y, z' == z. The 
groupoid freely generated by the modified S is (isomorphic to) the 
generalized free product of the Ha. with amalgamated subgroupoids 
K(a, ß). 

2. Quasigroups 

The following laws (L), (R), which may or may not hold in a given 
halfgroupoid G, will be known as the left- and right-cancellation laws, 
respectively: 

(L) If ab= ac in G, then b = c. (R) If ba = ca in G, then b = c. 
Clearly (L) could be rephrased as follows: 

(L') If a, d E G, there is at most one x sur.h that a x = d in G. 
It should be observed that if a halfgroupoid G satisfies (L) (or (R)) then 
so does every subhalfgroupoid of G and also every open extension of G. 
Given a left-cancellation halfgroupoid G (one satisfying (L)) we define 
the operation of left-division (\) in G as follows: a\b = c if and only if 
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ac = b. Denoting the operation of multiplication by ·, we note that if 
(G, ·) is a left-cancellation halfgroupoid, so is (G, \); moreover, · is the 
left-division operation of (G, \). We now must distinguish between the 
halfgroupoids (G, ·), (G, \) and the (special) halfalgebra (G, ·, \) with 
two binary operations. Although most of what we have to say is valid 
(with obvious simplications) for left-cancellation halfgroupoids, weshall 
use the pair of laws (L), (R) henceforth. 

A halfquasigroup (or cancellation halfgroupoid) G is a halfgroupoid G 
which satisfies both cancellation laws. A quasigroup G is a groupoid G 
such that, for each ordered pair a, b E G, there is one and only one x such 
that ax =bin G and one and only one y suchthat ya =bin G. In. a 
halfquasigroup G, left-division (\) and right-division (!) are defined by the 
requirement that the equations ab= c, a\c = b, cjb = a are equivalent; 
all hold or none hold. More symmetrically, a halfquasigroup G is a half
algebra (G, ·, \, /), forming a halfgroupoid with respect to each of the 
three binary operations, such that, in the halfalgebra: 

(i) If a · bis defined, then a\(a · b) = b and (a · b)/b = a. 

(ii) If a\b is defined, then a · (a\b) = b and b/(a\b) = a. 

(iii) If ajb is defined, then (a/b) · b = a and (ajb)\a = b. 

Here we follow EvANS [81]. In these terms, a quasigroup Gis a half
quasigroup suchthat each of (G, ·), (G, \), (G, /) is a groupoid. 

A non-empty subset H of a halfquasigroup G is a subhalfquasigroup 
of G if H is a halfquasigroup which is a subhalfgroupoid of G with 
respect to each operation. And His closed in G if His closed as a sub
halfgroupoid with respect to each operation. The latter statement means 
that if ab= c in G and if two of a, b, c are in H, the third is in H and 
ab= c in H. The term "generate" takes on the corresponding strong 
meaning. Again, a halfquasigroup Gis free over a subhalfquasigroup H 
if every homomorphism of H into a quasigroup K can be extended to 
a homomorphism of G into K. We proceed to parallel the theorems 
of § 1, indicating necessary changes in the proofs. 

Theorem 2.1. A halfquasigroup G freely generates at least one quasi
group H. If G freely generates two quasigroups H, H', there exists an iso
morphism (J of H upon H' which induces the identity mapping on G. 

Proof. We think in terms of the three operations (·, \. /). The half
groupoid (G, ·) freely generates a groupoid (Hv ·). Since (G, ·) is a 
cancellation halfgroupoid and since the cancellation properties are 
preserved under open extensions and under unions, (Hv ·) is a cancellation 
groupoid. Introducing the operations \, /, we make H1 into a (three
operation) halfquasigroup with G as a generating subhalfquasigroup. 
Similarly, H1 generates a halfquasigroup H 2 such that (H2, \) is a 
groupoid freely generated by (Hv \). Singling out in cyclic order the 
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three operations, we may define a chain {H;; i = 0, 1, .. . } of half
quasigroups such that, for each i: (a) H 0 = G; (b) H; is a subhalf
quasigroup of H;+ 1 ; (c) (Hai+v ·) is a groupoid freely generated by 
(Ha;, ·); (d) (Hai+ 2, \) is a groupoid freely generated by (Hai+v \); 
(e) (Hai+a' /) is a groupoid freely generated by (Hai+ 2, /). Finally we set 

00 

H = U H;, with the obvious definition of the three operations, and 
i=O 

verify that His a quasigroup and that G generates H. 
Let 0 be a homomorphism of (G, ·) into (K, ·), where K is a quasigroup. 

We readily verify that (;l is also a homomorphism of (G, \) into (K, \) and 
of (G,!) into (K, /). Indeed, owing to the fact that K is a quasigroup, 
each of the three "homomorphism" conditions Oll (;l implies the other two. 
Moreover, 0 can be extended uniquely to a homomorphism !J?(l) of 
(Hv ·) into (K, ·); and !J?(l) is a three-operation homomorphism of H1 

into K. Proceeding in this way, we see finally that 0 can be extended 
uniquely to a homomorphism of H into K. This proves the first half 
of Theorem 2.1. The second half depends on the appropriate analogue 
of Lemma 1.2, which holds with the present strong meaning of "generate". 

In the above construction, some simplification results if the chain 
{H;} is replaced by a chain {L;} satisfying conditions obtained from 
(a)-(e) by replacing "groupoid freely generated by" in (c), (d), (e) by 
"complete open extension of". The chain {L;} was used by BATES [63]. 

A non-empty subset B of a halfquasigroup G may be regarded a sub
halfquasigroup with no operations defined. We say that B is a free set 9/ 
generators of G if B freely generates G. We say that Gis free if G has a 
free set of generators. Observe that a free quasigroup G is not a free 
groupoid with respect to any of its operations; for example, every 
element of (G, ·) is a product. 

Theorem 2.2. Let (G, ·) be a groupoid. lf (and only if) a · G = G · a =G 
for every a in G then there exists a free quasigroup H such that the groupoid 
(H, ·) possesses a homomorphism upon (G, ·) (BATES and KIOKEMEISTER 

[65], EVANS [81]). 
Corollary. Every quasigroup G is a homomorphic image of at least one 

free quasigroup. 
Remark. If Gis the set of allnonnegative integers under the product 

operation a · b = ja- bj, then a · G = G · a = G for every a but G is 
not a quasigroup. 

Proof. If H is a quasigroup then x · H = H · x = H for every x in H 
and hence a similar condition must hold for every homomorphic image 
of (H, ·). Conversely, let (G, ·) satisfy a · G = G · a = G for every a in G. 
We may avoid the explicit use of extension chains as follows. There 
exists a free quasigroup H with a free basis B and a singlevalued mapping 
lfJ of B upon G. (For example, let B consist of the elements of G and 
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let tp = Ia.) We consider the set of all pairs {K, 0} where K is a sub
halfquasigroup of H containing B such that the complete extension 
of (K, ·) in (H, ·) is open and 0 is a homomorphism of (K, ·) upon (G, ·) 
which extends tp. We partially order the pairs by defining {K,O} C {L, <p} 
if and only if K is a subhalfquasigroup of Land <p extends 0. By ZoRN's 
Lemma, there exists a maximal pair, say {K, 0}. We prove that K = H 
by showing that K is closed in H. Let ab= c in H. If a, bare in K but 
c is not, let L be obtained from K by adjoining the element c and the 
equation ab = c; let <p be the mapping which induces 0 on K and satisfies 
c<p = (aO) (bO). Then {L, <p} is a pair, contradicting the maximality 
of {K, 0}. If a, c are in K but b is not, let L be similarly obtained by 
adjoining b and ab = c; let x be an arbitrarily chosen element of G such 
that (aO) x = bO and let <p induce 0 and satisfy b<p = x. Again we get 
a contradiction; similarly, we get a contradiction if b, c are in K but not a. 
Therefore K is closed in H and the proof of Theorem 2.2 is complete. 

It is customary, and usually convenient, to consider a quasigroup 
in terms of a single binary operation. But then, as is clear from the 
remark following Theorem 2.2, it is usually essential to specify of a 
homomorphism whether it is into a quasigroup or merely a groupoid. 
For cases where this is unnecessary see [65] and also Chapter VII. 

Let G be a free quasigroup with a free basis A. We define the rank 
of G tobe lAI. where lAI denotes the cardinal nurober of A. If !Al> 1, 
let a, b be two distinct elements of A and let A' be the subset of G 
obtained from A by replacing the selected element a by a' where a' is 
some one of ab, ba, a\b, b\a, ajb, bja. It is easy to see that A' is a free 
basis of G; consequently, G has infinitely many free bases. The question 
as to whether one can get from any free basis A to any other free basis B 
by iteration of transformations of the type just described remains open. 
(Fora positive answer to a like question for monogenic loops see EVANS 
[83].) However, the notion of rank is justified by the following theorem, 
for which we give a proof which seems instructive: 

Theorem 2.3. I f A, B are two free sets of generators of the free quasi
group G, there exists an automorphism 0 of G suchthat A 0 = B. 

Proof. We shall show that lAI = IBI. and this will ensure the 
existence of 0. Let R be the additive group of rational integers and 
let ~ be the set of all homomorphisms of G into R. F or each a E A, let 
D (a) be the unique member of ~ which maps a upon 1 and every other 
element of A upon 0. We define x = y, for x, y in G, if and only if 
x <p = y <p for every <p in ~- Clearly, = is an equivalence relation. 
Moreover, a, a' E A, a+ a' implies a $ a', since aD(a) = l, a'D(a) = 0. 
We denote by x* the equivalence dass of the element x and verify 
readily that the mapping x-+x* is a homomorphism of G upon an 
additive abelian group G* (a subdirect sum of copies of R) where 
x* + y* = ( x y) * in G*. We prove as follows that G* is a free abelian 
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group with A * as free basis: First we note that each gJ in .ß determines a 
homomorphism gJ* of G* into R by the requirement that x* gJ* = x f{J 

for each x. Next, if an element x of G has a "finite representation" 
x*= n1a1*+ n2a2*+ · · · + nkak*• where the n; are integers and the a; 
are distinct elements of A, then the represention is unique since, for 
a in A, xD (a) = n; if a = a; and xD (a) = 0 if a is distinct from av 
a2, ••• , ak. The set of all elements with "finite representations" is a 
closed subhalfquasigroup of G containing A and hence coincides with G. 
Therefore A * is a free basis of G*. F or like reasons, B* is a free basis 
of G*.By a wellknown result, IA*I= IB*I· Therefore\AI= IA*I= IB*I=IBI 
completing the proof of Theorem 2.3. 

A collection of halfquasigroups is compatible if it is compatible as 
a collection of halfgroupoids for each of the three operations. With this 
understood the definitions of a union, intersection, free product or 
generalized free product of a collection of halfquasigroups should be 
clear. 

Theorem 2.4. Let G be a quasigroup freely generated by a subhalf
quasigrou,p S and let H be a subquasigroup of G. Then there is a subset 
B of H, depending only on S and H, such that one of the following possi
bilities must occur: (i) B is empty, Sn H is not empty and Sn H freely 
generates H. (ii) Sn H is empty, B is not empty and B is a free basis 
of H. (iii) Neither B nor S nH is empty and H = F * K where F, Kare 
subquasigroups of H, B is a free basis of F and Sn H freely generates K. 

Corollary. Every subquasigroup of a free quasigroup is free. 
Proof. For each nonnegative integer i, let 0; denote the operation 

·, \, or I according as i is congruent modulo 3 to 0, 1 or 2. Then (compare 
00 

the proof of Theorem 2.1) we may assume that G = U Gi for subhalf-
i=O 

quasigroups G; such that G0 = S and (Gi+l• Oi) is a groupoid freely 
generated by (G;, Oi)· We define L;= H n G;. Then, trivially, L0 =H n S 
is freely generated by Sn H. We define B0 tobe the empty set. Consider
ing some nonnegative integer n, we suppose inductively that, for 
0 ~ i ~ n, an increasing sequence of subsets B; has been defined such 
that B;, Sn H are disjoint and L; is either empty or freely generated 
(as a halfquasigroup) by B; v (Sn H). If L,.+1 is empty, let B,.+l be the 
empty set. Otherwise (L,.+I, 0,.) is a subgroupoid of (G,.+v 0,.). In this 
case, let P n+l be the set of all primes of (L,.+l, 0,.) which are not in 
L,.+l n G,. = L,.. By Theorem 1.7, since (G,.+l, 0,.) is freely generated by 
(G,., 0,.), (Ln+l• 0,.) is freely generated by (P,.+1 V L,., 0,.). Consequently, 
P,.+I v B,. v (S nH) freely generates L,.+I. Clearly P,.+1 , B,., S nH 
are disjoint. We define B,.+I = B,. v P,.+v completing the inductive 
definition, and then define 

00 00 

B= U B;= UP;. 
i=O i=O 
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Clearly B and Sn H are disjoint and, since H is the union of the L;, 
B v (Sn H) freely generates H. This suffices for the proof of Theorem2.4; 
we merely proceed as in the proof of Theorem 1.7. 

Theorem 2.4 allows a refinement theorem for free decomposition 
of quasigroups; see the remarks following the proof of Theorem 1.7. 

Instead of paralleling the proof of Theorem 1.5 we shall first consider 
the commutator-associator subquasigroup, G', of a quasigroup G. For 
arbitrary elements x, y, z of G the commutator, (x, y), and associator, 
(x, y, z), are defined by 

xy = (yx) (x, y). (xy) z = [x(yz)] (x, y, z). (2.1) 

And G' is the subquasigroup of G generated by all commutators and 
associators. In view of this definition, 

X y E G' - y X E G'; 

(xy) z E G'- x(yz) E G'. 

Thus (xy) z E G' - x (y z) E G' - (yz) x E G', so 

(xy) z E G'- (yz) x E G'. 

(2.2) 

(2.3) 

(2.4) 

Now write k = (x, y), so that k E G' and xy = (yx) k. Then (xy) z E G' 
- [(yx) k] z E G'- [z(yx)] k E G'- z(yx) E G'- (yx) z E G', or 

(xy) z E G'- (yx) z E G'. (2.5) 

We note that (2.4), (2.5) imply that (xy) z E G' if and only if (uv) w E G' 
where u, v, w are x, y, z in some order. If x is a given element of G the 
equation xa = bx sets up a one-to-one mapping a-+b of G upon G. 
Choose any x' suchthat x' x E G'. Then x'(xa) E: G'- (x' x) a E G'- a E G' 
and, similarly, x'(bx) E G'- b E G'. Since xa = bx, we see that a, b 
are both or neither in G'. Thus, 

xG'= G'x (2.6) 

for every x in G. Next, for any fixed x, y in G, write p = a(xy) = (bx)y 
= x(cy) and choose any w such that w(xy) E G'. Then x(yw) E G', 
y(xw) E G'. Moreover,pw E G'- [a(xy)]w E G'- [w(xy)]a E G'-a E G', 
and, similarly, pw E G'- b E G' and pw t G'- c E G'. From this we 
deduce that 

G'(xy) = (G'x)y = x(G'y) (2.7) 

for all x, y in G. It now follows rapidly from (2.6), (2.7) and (2.1) that 
the mapping x-+G' x is a homomorphism of G upon an abelian group 
GjG' in which muUiptication is defined by (G'x) (G'y) = G'(xy). Thus, 
in particular, 

x\x E G' and xjx E G' (2.8) 
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for every x in G. From the equations (2.1) we may verify readily that 
every homomorphism of G upon an additive abelian group maps G' 
into 0. In particular, in view of the proof of Theorem 2.3: if Gis a free 
quasigroup, then GjG' is a free abelian group of the same rank. 

Theorem 2.5. The commutator-associator subquasigroup, G', of a free 
quasigroup G has infinite rank. Moreover, rank G' ~rank G. 

Corollary. Every free quasigroup contains a subquasigroup of infinite 
rank. 

Proof. Denote G' by Handlet S be a free basis of G; then we may 
use the proof of Theorem 2.4 without change of notation. Hence 
B u (S 1\ H) is a free basis of H. Foreachs inS, let D(s) be the endo
morphism of G into the additive group of integers which maps s upon 1 
and the remaining elements of S upon 0. Note that an element x of 
Gis in H = G' if and only if x is mapped into 0 by each D (s). We first 
prove that L;= H 1\ G; is empty for 1 = 0, 1. Indeed, since (Gv ·) is a 
free groupoid with free basis S, a straighttorward mathematical induction 
shows that for each x in G1 there is at least one s in S such that xD (s) 
is positive. In particular; L 0 = S 1\ His empty, 

00 

B= U B; 
i=2 

is a free basis of Hand B2 = P 2 is the set of all primes of (L2,\). We 
complete the proof by showing that P 2 is infinite and that IP21 ~ ISI. 
We choose some s in S and define positive right and left powers s", "s 
inductively by s1 = 1s = s and s"+I=s"· s, n+Is = s·"s. Then we define 
s(n) = "s\s" for each positive integer n; in particular, s(3) = (s, s, s). 
For each positive integer n, s" and "s are in G1 and hence not in H; 
but s(n) is in H and hence in L2• If s(n) = y\z in (G2,\), then, sirice 
s (n) is not in G1, the ordered pair is unique and hence z = s", y = "s. 
Consequently, s (1), s (2), ... are infinitely many distinct elements 
of P 2 for each s inS. Moreover, as s ranges over S, the element s(n) 
ranges over distinct elements of P 2 for each positive integer n. This 
completes the proof of Theorem 2.5 and Corollary. Note that the proof 
readily furnishes information about the ranks of important subquasi
groups of G'; for example, any subquasigroup containing the elements 
s(l) = s\s or the elements s(3) = (s, s, s). Moreover, if S contains two 
distinct elements s, t, the elements (sm, t"), where m, n range over the 
positive integers, are distinct elements of P 2• 

The proofs of the following theorems will be omitted: 
Theorem 2.6. A quasigroup G is free if and only if G is a free product 

of free quasigroups of rank I. 
Theorem 2.7. If () is a homomorphism of the quasigroup G upon the free 

quasigroup F, there exists an isomorphism cp of F upon a subquasigroup 
of G such that cp () = I F· 
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Theorem 2.8. Every finite or countable quasigroup G can be imbedded 
in a quasigroup H generated by a single element. 

The proofs should be sufficiently clear from the foregoing; but see 
also BATES [63], [64] and EVANS [82], [83], [5], [6], [7]. 

The notion of a generalized free product of quasigroups with amal
gamated subquasigroups carries over from groupoids with obvious 
modifications. 

3. Loops 

The element e of the groupoid (G, ·) is a left identity of (G, ·) if e · x = x 
for every x in G. Similarly for right identities and (two-sided) identities. 
A groupoid may have many left identities; Iet G be any non-empty set 
and define x · y = y for all x, y in G. But if e is a left and I is a right 
identity of a groupoid then I= e ·I= e. Hence a groupoid can have 
at most one identity. If the identity exists it will usually be denoted 
by 1. A halfloop is a halfquasigroup with an identity; a loop is a quasi
group with an identity. Thus a halfloop Gis a halfquasigroup such that 

x · 1 = 1 · x = x and x\x = xjx = 1, 1\x = x/1 = x (3.1) 

for every x in G; here 1 is an identity for (G, ·), a left identity for (G, \), 
a right identity for (G, /). 

Because of the cancellation laws, a subhalfloop G of a halfloop H 
automatically has the same identity element as H. The identity element 
plays an exceptional röle throughout. For example, a collection of 
halfloops is said to be compatible if it is compatible as a collection of 
halfquasigroups and if the halfloops of the collection have the same 
identity element. And such a collection is called disjoint if it is disjoint 
aside from the identity element. In dealing with extensions we auto
matically assert (3.1) for each new element x. For example, if G is a 
halfloop, we say that (H, ·) is an open extension of (G, ·) if (H, ·) has the 
same identity 1 as G and moreover: (i) if a · b = c in (H, ·) and if a · b 
is not defined in ( G, ·), then c is not in G; (ii) if c is in H but not in G 
then c = a · b in (H, ·) for exactly one ordered pair a, b of elements 
of H satisfying the inequalities a=!= 1, b=!= 1; and a, bare in G. Similar, 
but slightly different, modifications are made for each of the division 
operations. 

For convenience in carrying over the material of § 2 to loops we 
restriet attention to generating halfloops (and hence, in particular, to 
generating subsets) containing the identity element. The loop consisting 
only of the identity element is said to be free of rank 0. More generally, 
the rank of a free loop with free basis A is defined to be the cardinal 
nurober of the set obtained from A by deleting the identity element. 
With minor exceptions, Theorem 2.i and its proof give rise to a valid 
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Theorem 3.i and proof if "quasigroup" is everywhere replaced by "loop". 
We will note a few necessary changes or improvements: 

Theorem 3.2. Let (G, ·) be a groupoid. lf (and only if) (G, ·) has an 
identity element and a · G = G · a = G for every a in G then there exists 
a free loop H such that the groupoid (H, ·) possesses a homomorphism 
upon (G, ·). 

Corollary. Every loop is a homomorphic image of at least one free loop. 
Theorem 3.4. Let G be a loop freely generated by a subhalfloop 5 and 

let H be a subloop of G. Then H = F•K where F, Kare subloops of H, F 
is free and K is freely generated by 5 n H. 

Corollary 1. Every subloop of a free loop is free. 
Corollary 2. lf G = P * Q = R * 5 where P, Q, R, 5 are subloops of 

the loop G, then 

P = F1• (P n R) * (P n 5) , Q = F 2• (Q n R) * (Q n 5) , 

R = F 3•(P nR) * (Q nR), 5 = F 4•(P n 5) * (Q n 5), 

where the F; are free loops. 
Theorem 3.5. lf G is a free loop of positive rank, the commutator

associator subloop, G', has infinite rank. Moreover, rank G' ~rank G. 
Corollary. Every free loop of positive rank contains a subloop of 

infinite rank. 
In most of the proofs we have to deal with cancellation groupoids 

with a one-sided or two-sided identity element; the definition of a 
prime must be modified according to the case. Again, in the proof 
of Theorem 3.5, the elements s(l), s(2), ... will not be distinct if s = 1. 

Now Iet us turn to other concepts of freeness. We first introduce 
the concept of identical relations on a loop. Let F n be the free loop of 
rank n freely generated by X1 , X 2, ••• , Xn (together with the identity 
element.) Let L be any loop and a1, a2 , ••• , an be any elements of L. 
The mapping X1 -*a1, X 2 -*a2, ••• , Xn"'*an can be extended uniquely 
to a homomorphism () of F n into L. Foreachelement W n of F n we denote 
the image Wn() by Wn(a1, a2, ••• , an)· This defillitioll has the effect of 
turnillg each elemellt W n of F n illto a fullctioll defilled Oll every loop. 
In particular, Wn= Wn(Xv X 2, ••• , Xn); collsequelltly, the definitioll 
is esselltially a substitution prillciple. From the presellt point of view 
we shall call each elemellt of F n a loop word. It is important to llote 
that if q; is a homomorphism of thc above-mentiolled loop L illto a loop 
then Wn(av a2, •• • , an) q; = Wn(a1q;, a2q;, .. . , anq;), sillce fJq; maps X; 
Oll a;q;. Weshall say that the loop L satisfies the identical relation wn 
provided W n(a1, a2, ••• , an) = 1 for all a; in L. 

Now Iet ~ be ally set of loop words. For example, ~ might be empty 
or might contaill the commutator word (X1 , X 2) and the associator word 
(X1, X 2, X 3). Thell a loop may be called a ~-loop provided it satisfies 
all the identical relatiolls of ~- Consider an arbitrary free loop F and 
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let () be a mapping of F subject to the following conditions: (i) () is a 
homomorphism of F upon a loop F ((!. (ii) If W n is in ~ and if a1, a2, ••• , an 
are in F, then W n(av a2 , ••• , an) () = 1. (iii) If x is in F, then x () = 1 
only as required by (i) and (ii). (The existence of () may be established 
most concretely in terms of normal subloops; see Chapter IV.) The 
loop F () is a ~-loop and is called a free ~-loop. A subset of F () is called 
a free basis of F () if it has the form B () where B is a free basis of F. 
It follows immediately that free ~-loops have the characteristic property: 
I f ({! is a single-valued mapping of a free basis of a free ~-loop F () into a 
~-loop L such that 1 ({! = 1, then ({! may be extended uniqucly to a homo
morphism of F() into L. In particular, F() is uniquely defined, aside 
from an isomorphism, by F and ~. 

The theory of free ~-loops cannot be expected to parallel the theory 
of free loops or free groups too closely except for judicious choices of ~. 
As one example (details of which will be found in Chapter VIII) every 
free commutative MouFANG loop of positive rank is infinite but, if its 
rank exceeds 2, contains subloops with exactly 3 elements. Hence 
subloops of free ~-loops need not be free. We may note that if ~ contains 
only the associator word, ~-loops are simply groups, whereas if ~ 
contains additional words which restriet the dass, ~-loops are "reduced" 
groups. (See, e. g., HALL [B 15] and the references therein.) Thus free 
~-loops are somewhat vague objects. 

The concept of a free ~-product of ~-loops, is readily defined and 
always exists but amalgamation of subloops can give trouble. The 
approach by which one defines "half" ~-loops and extends them to 
~-loops can also give trouble. In both cases, consider the theory of 
groups. 

4. Loops, nets and projective planes 

We shall touch briefly on certain aspects of geometry which are 
relevant to the present survey. The theory of free planes herein 
discussed was originally due to MARSHALL HALL in 1943 and both 
preceded and strongly influenced the theory of free loops (BATES [63]). 
Fora detailed alternative treatment as well as an extensive bibliography, 
see G. PICKERT, Projektive Ebenen. 

A partial plane Gis a system consisting of a non-empty set G partitioned 
into two disjoint subsets (one of which may be empty), namely the 
point-set and the line-set (the elements of which are called points and lines, 
respectively), together with a binary relation, called incidence, such 
that: (i) (Disjuncture) if x is incident with y in G then one of x, y is a 
line of G and the other is a point; (ii) (Symmetry) if x is incident with y 
in G then y is incident with x in G; (iii) if x, y are distinct elements 
of G there is at most one z in G such that x and y are both incident with 
z in G. 
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A projective plane G is a partial plane G such that: (iv) if x and y are 

distinct points or distinct lines of G, there exists a z in G such that x 

and y are both incident with z in G; (v) there exists at least one set of 
four distinct points of G no three of which are incident in G with 
the same element. - It is easy to show that, in the presence of (i)-(iv), 
postulate (v) is equivalent to: (vi) there exists at least one set of 
four distinct lines of G no three of which are incident in G with the 
same element. 

A degenerate projective plane G is a partial plane G which satisfies (iv) 
but not (v). For purposes of contrast, a projective plane is often termed 
nondegenerate. 

A partial plane G may be turned into a halfgroupoid by defining 
xy = z in G if and only if x, y are distinct elements of G and are incident 
in G with the element z of G. This definition does not turn projective 
planes into groupoids but it can be used as a guide for a theory of 
"freeness". There is, moreover, no particular difficulty in writing down 
a set of axioms (with or without mention of incidence) which characterizes 
partial planes and projective planes among halfgroupoids. Nevertheless, 
a few cautionary remarks are appropriate in connection with free 
projective planes, free products of projective lanes and generalized free 
products. First of all, we want elements to retain their "sex". For 
example, a sub-partial plane Gof a partial plane His a subhalfgroupoid 
(relative to the operation defined above) suc.h that an element of G is a 
point or line of G according as it is a point or line of H. A similar condition 
must be imposed in connection with homomorphisms and with the 
concept of compatibility of a collection of partial planes. Secondly, 
freeness is best defined in terms of openness of extension chains rather 
than in terms of the possibility of extending homomorphisms. For if 
the element z of the partial plane H is incident in H with exactly two 
distinct elements x, y of H, both of which are in a sub-partial plane G 
which does not contain z, and if () is a homomorphism of G into a projective 

plane K suchthat x() = y(), an extension rp of () to H may perhaps exist 
but there is not enough information to determine zrp uniquely. (Never
theless, every projective plane is a homomorphic image of at least one 
free projective plane.) And, finally, although a partial plane Gis always 

contained in at least one projective plane, G will only freely generate 

a projective plane if (v) holds at some finite stage of the construction. 
Equivalently, G must be nondegenerate in the sense that G contains one 

of the following partial planes as a sub-partial plane whose complete 
extension in G is open: (1) four distinct points, no lines; (2) three 
distinct points and a line incident with none of these; (3) three distinct 
points, two distinct lines, both lines incident with just one of the points 
but not with the same point; and the dual partial planes obtained 
from (1)-(3) by interchanging "point" and "line". Here "openness" 
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ensures that the incidences in the sub-partial plane will not change when 
viewed from G. 

A projective plane G is called free if it is freely generated by a sub
partial plane H consisting of four or more points and a single line incident 
in H with all but two of the points. A partial plane K is called confined 
provided K is finite and every element of K is incident in K with three 
or more distinct elements of K. It turns out that the free projective 
planes are precisely those without any confined sub-partial planes; 
this was proved by M. HALL for finitely generated · planes and by 
L. KoPEIKINA for infinitely generated planes. In particular, if a projective 
plane G is freely generated by a (nondegenerate) sub-partial plane B 
and if B has no confined sub-partial planes, then Gis free. If, in addition, 
Bis finite, then G may be assigned a rank, namely 2b- i where bis the 
nurober of elements (points and lines) of B and where i is the nurober 
of incidences of B, defined as the nurober of ordered pairs (x, y) such 
that the point x is incident with the line y in B. The rank is an invariant: 
if G has rank r then r ;:;; 8 and G can be freely generated by a sub-partial 
plane H consisting of r- 4 distinct points and a single line incident in H 
with exactly r- 6 of the points. Moreover, finitely generated free planes 
are isomorphic if and only if they have the same rank; every subplane 
of a free plane is free; and every free plane contains subplanes of every 
finite rank. 

Free projective planes, since they contain no confined sub-partial 
planes, violate in the strongest possible sense all the dassical postulates 
of projective geometry: Pappus' Theorem, Desargues' Theorem and 
so on. We may also note (EVANS [6]) that every countable projective 
plane is imbeddable in a projective plane generated by four points. 

Let k be a cardinal nurober not less than 3. A k-net N is a partial 
plane N whose line-set has been partitioned into k disjoint dasses such 
that: (a) N has at least one point; (b) each point of N is incident in N 
with exactly one line of each dass; (c) every two lines of distinct dasses 
in N are both incident in N with exactly one point. The definition of 
a half-k-net will be omitted. Free 3-nets are studied in BATES [63] and 
the results may be extended to k-nets. If some line of a k-net N is 
incident with exactly n distinct points in N, so is every line of N; 
moreover, every line dass of N contains exactly n lines and either 
n = I or n + I ;:;; k. The cardinal nurober n is called the order of N. 

Since a net isapartial plane, every net may be imbedded in at least 
one projective plane. Every projective plane contains nets and, of these, 
two types have special significance. First consider some definite line L 
of a projective plane P and let S be a set of k distinct points of P all 
incident with L, k;:;; 3. Let the points of N be the points of P not 
incident with L in P; let each line-dass of N consist of the lines of P 
incident in P with exactly one point of S, with a dass for each point 
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of S; and let elements a, b of N be incident in N if and only if they are 
incident in P. Then N is a k-net. If S contains every point incident 
with L in P, N is called an afline plane. If k = 3, N is called an additive 
net of P. Not every k-net can be obtained from a projective plane in 
this manner but, as is easily seen, every k-net is a sub-k-net of one so 
obtained; we first adjoin Sand L, throw in additional points if necessary 
in order to make the resultant partial plane nondegenerate, and then 
freely generate a plane. Our second type is a 3-net N, a multiplicative net 
of a projective f>lane P. We select three distinct points A, B, C of P 
which form a triangle; that is, the lines AB, B C, CA are distinct. The 
points of N are the points of P not incident in P with AB, BC or CA; 
the lines of N are the lines incident in P with exactly one of A, B, C; 
and elements a, b of N are incident in N if and only if they are incident 
in P. Again, not every 3-net is a multiplicative net of some projective 
plane but every 3-net is a sub-3-net of such a multiplicative net. 

Every 3-net N of order n gives rise to a class of quasigroups of order 
n as follows: First, in any fixed one of six possible ways, we designate 
the line-classes of N as the classes of 1-lines, 2-lines and 3-lines. Next 
we choose a set Q of n distinct elements and, for i = 1, 2, 3, a one-to-one 
mapping 0 (i) of Q upon the class of i-lines of N. For x in Q, the i-line 
xO (i) is assigned the coordinates (i, x); the unique point of N which is 
incident with both (1, x) and (2, y) is assigned the coordinates [x, y]. 
The operation o is defined on Q by the requirement that the line (3, xoy) 
be incident in N with the point [x, y]. Then (Q, o) is a quasigroup. 
Conversely, any quasigroup (Q, o) defines a net whose lines and points 
are given by coordinates as stated, suchthat the point [x, y] is incident 
with and only with the lines (1, x), (2, y), (3, xoy). 

Two quasigroups obtainable from the same 3-net N by different 
choices of the set Q or of the mappings 0 (i) are said to be isotopic. For 
any Q, the O(i) can always be chosen so that (Q,o) is a loop with a 
prescribed element e of Q as identity element or, more generally, with 
a prescribed point E of N as the point [e, e]. To do this, Iet Lv L2 be the 
1-line and 2-line, respectively, incident with E and Iet q; be a one-to-one 
mapping of Q upon the points incident with Lv such that eq; = E. 
Define 0 (2), 0 (3) so that x q; is incident with x 0 (2) and x 0 (3); in parti
cular, L2 = e0(2). Then define 0(1) so that x0(1), L2 and x0(3) are 
incident with the same point; in particular, L1 = e0(1). A pictorial 
representation is illuminating; see PICKERT p. 43 and the various 
references there given. 

If the 3-net N is an additive (or multiplicative) net of a projective 
plane P, each loop defined by N is called an additive (or multiplicative) 
loop of P. An important open question is this: What loops are additive 
( or multiplicative) loops of profeelive planes? At present we have in
formation mainly about the finite case and even the possible finite 
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orders of such loops are only partly known. See PICKERT, Chapter 12. 
HuGHES [352] has answered the question for countably infinite loops. 

By a construction similar to the above, a k-net N may be used to 
define in many ways a system Q which is a quasigroup with respect to 
k- 2 distinct but interrelated operations. When N and hence k is 
finite, the multiplication tables of these quasigroups form a set of k- 2 
mutually orthogonallatin squares. 

5. General algebras 

Let G, A be non-empty sets, let GA be the set of all single-valued 
mappings of A into G and let lA I be the cardinal nurober of A. By an 
operation of cardinal lA I on G we mean a single-valued mapping of a 
subset of GA into G. The operation is completely defined on G if it is a 
mapping of the whole of GA into G. Properly speaking, our definition 
should depend not on A but oniy on lAI. The case that A has been 
well-ordered is sometimes of interest. If lA I is finite the operation is 
called finitary; otherwise, infinitary. If lA I = n, where n is a positive 
integer, the operation is called n-ary; in this case it is customary to 
represent GA as the set of all ordered n-tuples (x1, x2 , ••• , Xn) where the 
X; range over G. A unary operation (n = I) is then a mapping of a subset 
of G into G. Binary and ternary operations correspond to n = 2, n = 3 
respectively. 

A halfalgebra (or partial algebra) G is a system consisting of a non
empty set G tagether with a specified non-empty set of operations on G 
and a (possibly empty) set of specified relations connecting the operations. 
An algebra G is a halfalgebra G each of whose operations is completely 
defined on G. These definitions obviously take us very far afield from 
binary systems and little space can be devoted to algebras. We shall 
limit discussion (here and later) to a few topics closely connected with 
binary systems. Two general references are BIRKHOFF, Lattice Theory 
and (in J apanese) SHÖDA, General Algebra. A few recent papers on the 
subject are listed in Part C, I of the bibliography; linear algebras, rings, 
lattices have largely been excluded. 

In §§ 2, 3, it was convenient to consider quasigroups as algebras with 
three binary operations. Similarly, groups can be considered as algebras 
with a binary operation (multiplication) and a unary operation (the 
inverse operation). Again, groups have been defined by various authors 
as algebras with a single ternary operation satisfying a specified identity. 
An allied subject is the theory of polyadic groups; see DöRNTE [333], 
PosT [26], TVERMOES [31] and also TcHOUNKINE [28]. 

Aside from the various theories of convergence of sequences in 
analysis or topology, the Iiterature of infinitary operations is very sparse; 
see, for example, LYAPIN [20], [21] and a few remarks in ]ÖNSSON and 
TARSKI [15]. Weshall assume henceforth that all operations in question 
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are finitary and speak in terms of an n-ary operation f written as a 
function I ( x1, x2, ••• , x,.). 

Let~ be a binary relation on a non-empty set G and write x- y(~). 

for x, y in G, if and only if x is in the relation ~ to y. Then ~ is an 
equivalence (or equivalence relation) on G provided that, for all x, y in G: 
(i) if x = ythen x- y(~); (ii) if x- y(~) then y- x(~); (iii) if x- y(~) 

and y- z(~) then x- z(~). The equivalence class of x mod ~ is the set 
[x] of all y suchthat y- x(~); if y E [x] then [y] = [x]. And Gj~ is the 
set of all equivalence classes mod ~. Two equivalences ~. ß on G are 
said to commute provided that, if x- y(~) and y- z(ß) for some x, y, z 
in G, then there exists a w in G such that x- w (ß) and w- y (cx). If G 
is an algebra, an equivalence ~ on G is said to be a congruence provided 
that, for each operation I of the algebra, if x1, y, E G and X;- Y;(cx) for 
i = 1, 2, ... , n, then l(xv x2, ••• , Xn)- l(y1, y2, ••• , y,.) (cx). In this 
case Gj~ may be turned into an algebra with the "same" operations as G 
by defining l([x1], ••• , [x,.]) = [f(xv .. . , x")] for each operation I of G 
and all X; in G. The mapping () defined by x() = [x] is a homomorphism 
of G upon G/cx; conversely, each homomorphism of G upon an algebra 
of the same type as G uniquely determines a congruence. A satisfactory 
theory of homomorphisms or congruences has been developed for those 
algebras which have the property that every two congruences commute. 
This is along lattice-theoretic lines (see BIRKHOFF, loc. cit.). If we define 
a primitive class of algebras to be the set of all algebras with a prescribed 
set of (finitary) operations and identical relations, MALCEV [24] has given 
a necessary and sufficient condition that all congruences should commute 
for every algebra of a primitive dass: There must exist a polynomial 
P(x, y, z) (a function defined by iteration of the operations) such that 
P (x, x, y) = y, P (x, y, y) = x are identities lor each ol the algebras. Note 
that if P exists and if x- y (cx), y- z (ß), then, since w = P(x, y, z) 
is built up from x, y, z by iteration of the operations, we have 
x- P(x, y, y) - w (ß) and w- P(x, x, z) - z (cx). As an illustration, 
consider the set of all three-operation quasigroups (G, ·, /, \) and define 
P(x, y, z) = {(x · y)jx}\(x · z); then P(x, x, y) = {(x · x)jx}\(x · y) 
= x\(x · y) = y and, if k = x · y, P(x, y, y) = (k/x)\k = x. Thus all 
congruences on a three-operation quasigroup commute. Malcev's result 
implies that the lree groupoid of rank 3 (and hence any free groupoid of 
higher rank) has non-commuting congruences. For if the contrary were 
true then P(x, y, z) would exist with the stated properties and hence all 
congruences on an arbitrary groupoid would commute. It is known 
however that this is false. Specifically, the lree quasigroup of rank 4 (and 
hence any free quasigroup of higher rank) has non-commuting "multi
plicative" congruences (THURSTON [112], TREVISAN [115]). Malcev's 
result does not apply to multiplicative quasigroups and the facts for 
free quasigroups of rank 1, 2 or 3 seem to be unknown; similarly for 
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free loops of arbitrary positive rank. (But see CowELL [349].) Another 
question is whether a congruence on an algebra is uniquely determined 
by a single congruence dass; the answer is no in general (MALCEV [23], 
jABUKIK [14]) but MALCEV [24] gives conditions forapositive answer.
It is easily seen from first principles that the answer is yes for groups 
and three-operation quasigroups. 

LYNDON [22] exhibits a finite algebra G (a groupoid) such that no 
finite set of identical relations of G implies every identical relation of 
G. In a different direction, EvANS and NEUMANN [43] show that no 
finite set of identical relations in a single variable will ensure that a 
groupoid is power-associative; using this fact they prove that the 
nurober of varieties of groupoids (or loops) of countable order has the 
power of the continuum. 

EvANS [5] studies a dass of algebras (with finitary operations) 
subject to the requirement that every halfalgebra of the type considered 
is imbeddable in an algebra. Thus the dass can be the dass of groupoids 
or (three-operation) quasigroups or loops, but not the dass of groups. 
The methods are general. He takes as given a finite set of generators 
and a finite set of relations between the generators, expressed in terms 
of the operations of the algebras. He constructs "words" inductively 
by asserting that each generator is a word and that, if f is an operation 
and wl> ... , wn are words, then /( wl> ... , wn) is a word. The elements 
of the corresponding algebra are the dasses of equivalent words, two 
words being equivalent only on the basis of specified rules involving 
the relations between the generators. He shows the existence of an 
algorithm by which the equivalence or nonequivalence of two words 
can be decided in finitely many steps. Thus the ward problem for the 
class of algebras is recursively solvable. In the case of groupoids, quasi
groups and loops, these methods form an alternative to those of §§ 1-3; 
they are carried further in EVANS [82], [83]. 

EvANS [7] complements the preceding result by proving that the 
word problern is recursively solvable for every finitely generated and 
finitely related algebra of a primitive dass Qt if and only if the following 
imbedding problern is recursively solvable: To decide whether a finite 
halfalgebra can be imbedded in an algebra belanging to Qt. 

II. The Associative Law 
1. Semigroups 

A semigroup S is an associative groupoid; that is, a groupoid such 
that the associative law 

(xy)z = x(yz) (1.1) 

holds for all x, y, z in 5. [Many authors, induding most of those 
writing in French, use the term "demigroup" for an associative groupoid; 
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these authors reserve "semigroup" for what weshall call a cancellation 
semigroup. Other terms are "monoid" (BouRBAKI) and "associative sy
stem" (Russian authors). The present terminology is standard in English 
and German.] 

Fortheröle of semigroups in analysis see RILLE, Functional Analysis 
and Semigroups. Aside from this reference, the Iiterature on the applica
tion of semigroups to analysis or topology has been omitted from the 
bibliography. Likewise, papers applying semigroup theory to arithmetic 
(unique factorization) and lattice theory have largely been omitted. 

The homomorphism theory of semigroups has been studied rather 
thoroughly without many interesting results. If 0 is a homomorphism 
of a semigroup S into a groupoid, the image S 0 = S' is also a semigroup. 
lf s' is an element of S', Iet K = s'0- 1 be the inverse image of s'; that is, 
K is the set of all s in S suchthat sO= s'. Clearly K has the following 
properties: (i) if k E K, x ES and xk E K, then xK C K; (ii) if k E K, 
x ES and kx E K, then K x C K; (iii) if k E K, x, y E S and x k y E K, then 
xK y C K. [Here, for example, xK y is the set of all elements xk'y,k' E K.] 
A non-empty subset K of S with properties (i), (ii), (iii) is called anormal 
subset. To a given normal subset K of S there may correspond two 
(or more) distinct homomorphisms of S with K as an inverse image; 
herein resides, perhaps, the relative poverty of the theory. Lv APIN [217], 
[218], [219] associates with each normal subset K of S a "weakest" 
homomorphism 0 of S as follows: He defines a binary relation R on S 
by the requirement that aRb, for a, b in 5, if and only if either a = b 
or a, b E K. He shows that R may be extended to a congruence relation 
(==) on 5 with the property that, for k E K, x == k if and only if x E K. 
The mapping x~[x] of S into the corresponding set of congruence 
classes [x] is a homomorphism 0 of 5 into a semigroup SO suchthat K is 
the inverse image of some element of SO. Defining a semigroup 5 tobe 
simple if every homomorphism of S is either an isomorphism or a 
homomorphism upon a semigroup with one element, LY APIN shows that 
the only commutative simple semigroups are the group of order one and 
the cyclic groups of prime order. 

Various authors, both before and after LYAPIN, have investigated 
special types of normal subsets. Suppose, for example, that 0 is a 
homomorphism of S upon a semigroup S 0 with identity element 1 and 
let K be the inverse image of 1. Then K is a subsemigroup of S. Such a 
normal subsemigroup may be characterized by the following properties: 
(a) if k E K, x ES and either kx E Kor xk E K, then x E K; (b) if k E K 
and x, y ES and if one of xky, xy is in K, then so is the other. lf SO 
is to have further properties; for example, if SO is tobe a group, then 
further restrictions must be placed on K. See, for example, LEVI [213], 
[214], DUBREIL [185], [187], [188], LYAPIN [217], EILENBERG and 
MACLANE [79], STOLL [266]. Again, suppose that SO= 5' has a zero 
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element; that is, an element 0 such that 0 S' = S'O = 0; and Iet K be 
the inverse image of 0. Then K is an ideal of S, namely a non-empty 
subset of S suchthat SK C K, K SC K. Ideals have been studied, from 
more than one point of view, by SusKEVIC [267], [269], BAER and 
LEVI [160], KAWADA and KONDO [205], REES [247], [248], [249], 
CLIFFORD [168]-[172], CLIFFORD and MILLER [174], SCHWARZ [253] to 
[256], RICH [251], COTLAR and ZARONTONELLO [176], GREEN [197], 
TEISSIER [289], VOROBEV [320], ANDERSEN [154], lSEKI [202], AUBERT 
[157], [158], HASHIMOTO [200] and others. Some of the more interesting 
theorems on ideals are developed in § 8 below. Since normal subsets of a 
semigroup S are equivalence classes of S with respect to congruences, 
the theory of normal subsets and the theory of congruences may reason
ably be lumped together; further references are: DUBREIL and DuBREIL
jACOTIN [189], VOROBEV [319], SIVERCEVA [261], THURSTON [312], 
CHAMBERLIN and WOLFE [162], CROISOT [179], THIERRIN [302]-[306] 
and [308], [309], PIERCE [239], lVAN [203]. 

Free semigroups are studied by LEVI [213], BAER [159]. 
Let S be a semigroup given in termsofafinite set of generators and 

a finite set of relations between the generators. Then the elements 
of S are classes of equivalent words in the generators, the rules for 
equivalence being explicitly set up in terms of the relations between 
the generators. The word problem for S consists in describing an algorithm 
which will show in a finite nurober of steps whether two (arbitrarily 
chosen) words are equivalent. PosT [240] constructed a semigroup 
for which the word problern is recursively unsolvable; another example 
with two generators was later given by HALL [199]. MARKOV [227], 
[228] developed a method of showing the recursive insolvability of a 
nurober of allied problems; for example, the problern of deciding whether 
two semigroups (given by generators and relations) are isomorphic. 
The word problern for free semigroups and free commutative semigroups 
on a finite nurober of generators is always solvable. 

Many authors have studied semigroups subject to one or more 
conditions generalizing weil known properties of groups. The most 
interesting of these topics will be deferred to subsequent sections; 
many others will be omitted. Here we shall outline the main concepts 
in the theory of inverse semigroups; relevant or closely allied papers are: 
CLIFFORD [164], [166], MANN [226], PRACHAR (390], FUCHS [194], 
THIERRIN [295]- (298] and [310], VAGNER (314], CROISOT (181], [183], 
PRESTON [241]-[243], LIBER [216], MUNN and PENROSE (230]. An 
element e of a semigroup S is called idempotent if e2 = e. An element 
x of S is called regular if x E x S x; idempotent elements are regular. 
If elements x, x' of S satisfy x = x x' x, x' = x' x x', then each is called a 
relative inverse of the other. Now let x be a regular element of S and 
Iet A be the set of all a inS suchthat x = xax; clearly Ais non-empty. 
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We observe that (ax) (bx) = ax for all a, b in A. Hence: (i) A x is a 
subsemigroup; (ii) every element of A x is idempotent; (iii) A x is commut
ative if and only if A x consists of a single element. Similar remarks 
hold for xA. Since x(A xA) x = xA x = x, then A xA CA. If a, b E A, 
then (axb)x(axb) = axb; hence every element of AxA isarelative 
inverse of x. If x' is a relative inverse of x then x' E A and x' = x' x x' E A xA. 
Hence A xA is the set of all relative inverses of x. If A x, xA are both 
commutative, then, for each a in A, A x = a x, x A = x a and A x A = axA 
= a x a; hence x has a unique relative inverse. If x has a unique relative 
inverse x', then, for all a, bin A, axb = x', x' x = axbx = ax, x x' = xaxb 
= xb; thus A x = x'x, xA = xx', whence A x, xA are both commutative. 
That is, x has a unique relative inverse if and only if A x, xA are both 
commutative. Next Iet e, f beidempotent elements of 5 suchthat ef has 
auniquerelativeinversep. Since(e/) (pe) (ef) = efand(pe) (e{) (pe)=pe, 
then p = pe. Similarly, p = fp. Hence P2 = (pe) (fp) = p. Then 
ppp =~ p, so p and ef arerelative inverses of p. If p also has a unique 
relative inverse, then p = ef and p = jpe = (/e) 2• If, in addition, je 
has a unique relative inverse q and q has a unique relative inverse, then 
q =je= q2 and p = (fe) 2 = q2 = q. That is, ef =je. We may draw the 
following conclusion: I f the regular elements of 5 form a subsemigroup 
R and if each element of R has a unique relative inverse in 5, then every 
two idempotent elements of 5 commute. Finally, let us assume that the 
set R of regular elements of 5 is non-empty and that every two idempotent 
clements of 5 commute. If x, y ER then (by the earlier discussion) 
x, y have unique relative inverses x', y' (in 5) respectively. Since the 
idempotents yy', x'xcommute, then (xy) (y'x') (xy) = (xx'x) (yy'y)=xy 
and (y'x') (xy) (y'x') = (y'yy') (x'xx') = y'x'. Hence xy ER and 
( x y)' = y' x'. Thus: I f the set R of regular elements of 5 is non-empty 
and if every two idempotent elements of 5 commute, then R is a subsemigroup 
of 5, each element x of R has a unique relative inverse x' in 5, and the 
mapping x -+x' is an ( involutary) anti-automorphism of R. A semigroup 
R is called an inverse semigroup provided R is regular (that is, each 
element of R is regular in R) and R satisfies one of the equivalent condi
tions: (I) each x in R has a unique relative inverse in R; (II) every two 
idempotent elements of R commute. For further details see the papers 
cited. 

2. Cancellation semigroups 

A cancellation semigroup is a semigroup satisfying the two cancellation 
laws (I § 2). [In most French writing, "semigroup" means "cancellation 
semigroup".] We may note that every free semigroup is a cancellation 
semigroup (LEVI [213]). 

Every subsemigroup of a group is a cancellation semigroup. Every 
commutative cancellation semigroup can be imbedded in a group just 
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as the multiplicative semigroup of positive integers is imbedded in the 
multiplicative group of positive integers; for a slight generalization see 
VANDIVER [316]. An example due to MALCEV shows that not every 
cancellation semigroup can be imbedded in a group; CHEHATA [163] 
proves (as does VINOGRADOV [420]) that MALCEV's example can be 
simply ordered. MALCEV [224] gives an infinite set of conditions which 
are necessary and sufficient that a cancellation semigroup be imbeddable 
in a group and shows that no finite set of conditions can be necessary 
and sufficient. LAMBEK [211] gives an equivalent set of necessary and 
sufficient conditions in geometric language. Doss [184] gives a clear 
discussion of the necessary and sufficient conditions of M.UCEV and 
uses these conditions to establish the sufficiency of a condition which 
we now describe: Let 5 be a cancellation semigroup. Call an element 
a of 5 regular on the left if, for every b E 5, a and b have a common left 
multiple in 5; that is, 5 a r\ 5 b is nun-empty. Call 5 quasi-regular on 
the left if, whenever two elements a, b of 5 have a common left multiple, 
there exist elements c, d in 5 such that ca = db and at least one of c, d 
is regular on the left. Doss shows that a cancellation semigroup which 
is quasi-regular on the left can be imbedded in a group. This result contains 
as a special case an earlier one of DuBREIL [186] which uses the Öre 
condition: every element of 5 is regular on the right. Additional liter
atme: PTAK [244], [245], DUBREIL-jACOTIN [190], KüNTOROVIC [209]. 

LEVI [214] shows that every groupoid has a unique "maximal" 
homomorphic image which is a semigroup; MALCEV [224] shows that 
a semigroup which can be imbedded in a group can be imbedded in one 
which is "absolutely minimal"; for precise statements and proofs of 
comparable theorems see § 4 below. BAER [159] studies a generalization 
of a semigroup called an add; the work is intimately connected with the 
imbedding problem. The paper of TAMARI [280] is related both to 
MALCEV [224] and to BAER [159]. 

TuRING [239] gives an example of a cancellation semigroup with an 
unsolvable word problern (compare the discussion in § 1). In bis (un
published) University of Wisconsin thesis (1954) ADDISON uses TuRING's 
example together with an imbedding theorem of EvANS [193] to carry 
over the n;ethods of MARKOV [228] to cancellation semigroups. In 
particular, ADDISON shows that the isomorphism problern and the 
imbedding problern are recursively unsolvable. The work of ADDISON 
is almost identical with independent work of K. A. BooNE; a joint paper 
is planned but has not yet been written. 

One further topic seems worthy of note. Let n, k be positive integers. 
Let 5 (n, k) denote the semigroup with n generators which satisfies the 
identical relation xk+I= x but is otherwise free; and let B(n, k) be the 
(BuRNSIDE) group with n generators which satisfies the identical re
lation xk= I but is otherwise free. GREEN and REES [198] prove that, for 



28 II. The Associative Law 

each k, a necessary and suffiCient condition that S (n, k) be finite for 
every n isthat B (n, k) be finite for every n. Thus, by known results on 
BuRNSIDE groups, S(n, 1), S(n,2), S(n,3) arefinite for every n. The 
authors determine the order of S(n, 1); seealso McLEAN [223]. 

3. Groups 

Although the theory of groups is outside the scope of this report, 
we wish to relate groups to other types of system. It seems desirable 
to begin with two familiar results. 

Weshall define a group as an associative quasigroup. If Gis a group 
and if a, b E G, elements e, f of Gare uniquely defined by ae = a, fb = b. 
Then (ae)b =ab= a(fb) = (af)b, so ae = af, e = f. Hence a group 
G has a unique identity element. That is: a group is an associative loop. 
The identity of G will be denoted by 1. If a E G, elements a', a" of G 
are uniquely defined by aa'= 1, a"a = 1. Then a"= a"1 = a"(aa') 
= (a" a) a' = 1 a' = a'. The element a" = a' is called the inverse of a and 
denoted by a-1. As is easily verified, (a-1)-1= a and (ab)-1 = b-1a-t. 

Theorem 3.1. Let G be a semigroup with a right identity elementesuch 
that to each a E G there corresponds at least one element a' E G satisfying 
aa' = e. Then ( and only then) G is a group wt'th identity e. 

Proof. Consider any a E G, any a' E G such that aa' = e and any 
a"E G such that a'a"= e. Then a = ae = a(a'a") = (aa')a"= ea". 
Hence a = ea" and therefore ea = e(ea") = (ee)a"= ea"= a. That is, 
e is an identity element for G. In particular, a = ea" = a". Hence 
aa' = e implies a'a = e. If also aa1 = e then a' = a'e = a'(aa1) = (a'a)~ 
= e~ = ~· Thus a' is uniquely defined by a and we write a' = a-1• 

If a,bEG,a(a-1b)=(aa-1)b=eb=b. Hence the equation ax=b 
has at least one solution x in G. Conversely, if a x = b, then a-1b = a-1(ax) 
= (a-1a) x == e x = x, so the solution is unique. Similarly, the equation 
ya = b has one and only one solution in G, namely y = ba-1• Therefore 
G is an associative loop; that is, a group. 

Theorem 3.2. Let G be a semigroup such that aG = Ga = G for 
every a in G. Then ( and only then) Gis a group. (Cf. HuNTINGTON [201].) 

Proof. If a, b E G there exist e, f, .x, y in G suchthat ae = a, fb = b, 
xa=f, by=e. Then fe=(xa)e=x(ae)=xa=f and fe=f(by) 
= (fb) y = by = e. Hence e = f. Therefore G has an identity e = f, 
which we denote by 1. Since, for each b in G, by = 1 has a solution 
y in G, Gis a group by Theorem 3.1. 

A subsemigroup G of a groupoid (5, ·) is called a subgroup of S if 
(G, ·) is a group. 

Theorem 3.3. Let A be a non-empty subset of the semigroup S such that 
(i) aEA=?aEa2SnSa2 ; (ii) aEA=?A caSnSa. Thenthereexists 
a unique subgroup Gof S, maximal in the property that A C G. Specific
ally, if a E A, the set a S contains exactly one element e such that a e = a; 
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and G consists ol alt elements ol eS e which have inverses in eS e with 
respect to e. 

Proof. By (ii) dearly we have: (iii) a E A, u ES, au = a ~ bu = b, 
all b E A and: (iv) a E A, v ES, va = a ~ vb = b, all b E A. 

Let b, c E A. Since b E b2S, c E Sc2 , we have b(bs) =band (s'c)c = c 
for at least one choice of s, s' in S. Then, by (iii), (s'c) (bs) = s'[c (bs)] = s'c 
and, by (iv), (s'c) (bs) = [(s'c)b]s = bs. Hence s'c = bs = e, say, where 
(v) e = e2, (vi) ea = ae = a for all a E A and (vii) e E aS n Sa for all 
a EA. 

Now set T = eSe. Then, by (v), T is a subsemigroup with identity e 
and, by (vi), T contains A = eAe. Since, by (v), (vii), e = ee E aSe 
= aeSe = a T, e = at for some t E T. Since e = ee E eSa =Ta, e = t'a 
for some t'ET. Then t'=t'e=t'(at)=(t'a)t=et=t so t'=t is the 
unique inverse a-1 of a in T, relative to e. Finally, let G be the set of a11 
g E T such that g has an inverse g-1 in T relative to e. If g, h E G we 
verify that (gh)-1 = h-1g-1, and if g E G we verifythat (g-1)-1 = g. More
over, e-1 = e. Hence, by Theorem 3.1, Gis a subgroup of S containing A. 

If His a subgroup of S containing A, let I be the identity of H. If 
a E A, then al = a and I is in aS, so I= e. Hence e is the identity 
element of H, so H C eSe = T and consequently H C G. 

Corollary 1. II the subset A ol Theorem 3.3 is maximal in the properties 
(i), (ii), then A is a subgroup ol S. 

Corollary 2. (J. A. GREEN [197]). A necessary and sulficient condition 
that the element a ol the semigroup S be contained in a subgroup ol S is 
that a E S a2 n a2S. 

Various authors have shown that the dass of all groups can be 
defined as the dass of all groupoids (in terms of one of the group division 
operations) satisfying a small number of identical relations. HIGMAN 
and NEUMANN [45] have reduced the number of identical relations to 
one. And they have gone further, by showing that the subdass of all 
groups which satisfy any specified finite set of identical relations can 
also be characterized as the dass of all groupoids satisfying a single 
identity. Some preparation is needed. Suppose W (Xv ... , Xm) is an 
(associative) word, expressed in terms of the group operation, the 
symbols X1, ... , Xm, and the inverses X-1 of these. In particular, then, 
the group of order one satisfies W = 1. Let W' ( Yv ... , Y ,.) be another 
such word. The dass of all groups satisfying both W = 1 and W' = 1 
is identical with the dass of all groups satisfying 

W(Xv .. . , Xm)W'(Yv .. . , Y,.) = 1, (3.1) 

where the Xi and Yi are allowed to range independently over the elements 
ofsuch a group. For, by putting Y1 = Y2 = · · · = Y,.= 1 in (3.1), w~ get 
W(X1, ••• , Xm) = 1. Similarly, the dass of all groups satisfying any 
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finite set of identical relations is identical with the dass of all groups 
satisfying a single suitably chosen one. 

Next, let G = (G, ·) be a group and define (G, o) by xoy = xy-I where 
y-I is the inverse of y in G. Then xo x = 1 for all x and 1 o y = y-I or 
y-I= (zoz)oy for all z, y. Hence also xy = xoy-I= xo[(zoz)oy]. 
Therefore any associative word W (XI, ... , Xn) can be transformed 
into a "groupoid" word involving perhaps morevariables but no inverses 
and only the single groupoid operation (here the operation (o)). In 
particular, if G satisfies W (X1, ••. , Xn) = 1, the transformed word W 
appears as a fixed element of (G, o) for all values of the variables. To 
avoid the "empty" word we can use X X-I in connection with G and 
X oX in connection with (G, o). 

For the group G, define mappings e (x), ). (x) of G into G by Ye (x) = y x, 
yJ.(x) = xy for all x, y of G. Here e(x) is the right multiplication by x 
and ). (x) the left multiplication by x. They are permutations of G; 
that is, one-to-one mappings of G upon G. In particular, since z e (x y) 
= z(xy) = (zx)y = ze(x) e(y), then e(xy) = e(x) e(Y) for all X, y. Thus 
the mapping x -+ e (x) is an isomorphism of G upon a group of per
mutations. Alsodefine the permutation J of G by x] = x- 1• For the 
groupoid (G, o) define right and left mappings R (x), L (x) by y R (x) = yox, 
yL(x)=xoy. Then R(x)=e(x- 1)=e(x)-I and L(x)=]A(x). If G 
satisfies w = 1 where w = W (X1 , ... , Xn), then 

L ((xo x) ow) R (z) R ([(xo x) o x] oz) L (x) = L (I) R (z) R (x- 1 oz) L (x) 

= Je(z- 1)e(zx)]A(x) = Je(x)]J.(x) =I, 

where I is the identity mapping, since y Je (x) JA (x) = X (y- 1 x)- 1 

= xx- 1 y = y. We interchange the roles of (-) and (o) and embody the 
converse of this result in the following theorem. 

Theorem 3.4. Let w = W(XI, ... , Xn) be a "groupoid" word and 
let G = (G, ·) be a groupoid satisfying the identical relation 

x([{((xx)w)y}z] [((xx)x)z]) = y (3.2) 

for alt x, y, z, XI, ... , Xn in G. Then G is a quasigroup and (G, /) is 
a group satisfying the identical relation corresponding to w = 1, where I is 
the identity of ( G, /). M oreover, as ( G, ·) rang es over the class of alt groupoids 
satisfying (3.2), (G, /) ranges over the class of alt groups satisfying w = 1. 

Proof. In terms of the right and left multiplications R (x), L (x) of G, 
regarded as operating on y, (3.2) becomes 

L(xx · w) R(z) R((xx · x)z) L(x) =I, (3.3) 

where, to save parentheses, we have written, for example, x x · w instead 
of (x x) w. If 5, T are two single-valued mappings of G suchthat S T = P, 
where P is a permutation of G, then T is upon G and S is one-to-one. 
Applying this principle to (3.3), we see that L (x) is upon G for all x 
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and that L (x x · w) is one-to-one. Then L (x x · w) is a one-to-one 
mapping of G upon G; that is, a permutation. Hence it has an inverse 
and (3.3) becomes 

R(z) R((xx · x)z) L(x) = L(xx · w)- 1 • (3.4) 

Therefore R(z) is one-to-one for all z. If, for some y, we take x=yy·w 
in (3.4), then L (x) = L (yy · w) is also a permutation and thus R((xx· x)z) 
is a permutation. Hence, finally, R (z) is a permutation for all z. But 
then, from (3.4), with x again arbitrary, L (x) is a permutation for all x. 
Therefore, in an equation ab= c, a, b, c E G, each two of a, b, c uniquely 
determine the third. That is, Gis a quasigroup. 

Comparing (3.4) with the corresponding equation m which z is 
replaced by y, we deduce that 

R(z) R((xx · x)z) = R(y) R((xx · x)y) (3.5) 

for all x, y, z. For fixed x, we set a = x x · x in (3.5) and operate with 
both sides on a. Then (az) (az) = (a y) (a y) for all y, z. Since G is a 
quasigroup, this means that pp has a fixed value, say e, for all p in G. 
Thus 

xx=ee=e (3.6) 

for all x. From (3.6) in (3.5), R(z) R(ex · z) = R(y) R(ex · y), whencP, 
if x is chosen so that e x = y, 

R(z) R(yz) = R(y) R(e) (3.7) 
for all y, z. 

In (3.3) we take x = z -= e, apply both sides to ew, and use (3.6), 
getting e = ew. Thus ew = ee, so 

w = e. (3.8) 

Via (3.8), (3.6), now (3.3) becomes L(e) R(z) R(ex · z) L(x) =I; we 
operate on x and get x [(ex · z) (ex · z)] = x or, by (3.6), xe = x. That is, 

R(e) =I. (3.9) 

From (3.7) with y = e, R(z) R(ez) = R(e) R(e) =~I. We replace z by ez 
in (3.7) and get R(y · ez)-1 = R(y)- 1 R(ez) = R(y)- 1 R(z)- 1• Thus, if the 
operation (o) is defined by 

xoy = x(ey), (3.10) 

we have R(yoz)-1 = R(y)- 1R(z)- 1. That is: the mapping x-+ R(x)- 1 

is an isomorphism of the groupoid (G, o) upon a group of Permutations of G. 
Consequently, (G, o) is a group with, by (3.9), identity element e. 

Moreover, (G, o) satisfies the identity w = e, by (3.8). Let x-1 denote the 
inverse of x in (G, o). Then e = x-1 ox = x-1(ex), whence, by (3.6), 
x-1= ex. In particular, e(ex) = (x-1)-1= x. Hence xy = x[e(ey)] 
=xo(ey)=xoy-1• Also, if xjy=z, where (/) is defined, as in 1.2, 
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relative to G = (G, ·), then x = zy = zoy-1 , so xoy = (zoy-1) oy = 
zo (y-1 oy) = zoe = z. That is: 

xy = xoy-- 1, xoy = xjy. (3.11) 

And (3.11) completes the proof of Theorem 3.4. 
An identical relation singling out the abelian groups is given by (3.2) 

with w = [p(pp · q)] [q(qq · p)] for arbitrary p, q E G: a relation involv

ing 5 distinct variables and 17 variables including repetitions. However, 

as HIGMAN and NEUMANNshow by a proof similar tothat of Theorem 3.4, 
the simpler identical relation 

x[(yz) (yx)] = z, or L(y)R(yx)L(x) =I, 

does equally weil. 

4. Homomorphic imbedding 

By I, § 2, a necessary and sufficient condition that a groupoid G be 

imbeddable in a quasigroup is that G satisfy the two cancellation laws. 

As shown by MALCEV [224] there exist cancellation semigroups which 

cannot be imbedded in any group. Thus, if G is a groupoid which does 

not satisfy the cancellation laws or a cancellation semigroup which is 

not imbeddable in a group, the best we can expect is the existence of 

a homomorphic image of G which is in some sense maximal in the 
properties with which we are concerned. This is provided by the following 

theorems: 
Theorem 4.1. Let G be a groupoid. There exists one and (to within an 

isomorphism) only one cancellation groupoid ( semigroup, cancellation 
semigroup) H with the following properties: (i) G Possesses a homomorphism 
() upon H; (ii) i/ rp is a homomorphism of G upon a cancellation groupoid 
( semigroup, cancellation semigroup) K, there exists a homomorphism 
cx of H uPon K such that rp = () cx. 

Theorem 4.2. Let G be a groupoid. There exists one and (to within an 
isomorphism) only one quasigroup ( loop, group) Q with the following 
properlies: (i) G possesses a homomorphism () into Q such that G () generates 
Q; (ii) i/ rp is a homomorphism of G into a quasigroup (loop, group) K, 
there e xists a homomorphism cx of G () into K such that (a) rp = () cx and 

(b) cx can be extended to a homomorphism ß of Q into K. 
Proof of Theorem 4.1. (I) Uniqueness. Let H, H' have the pro

perties (i), (ii) of Theorem 4.1, ()' being the homomorphism of G upon H'. 
Then ()' = () cx, () = ()' ß where cx is a homomorphism of H upon H', ß is a 

homomorphism of H' upon H. Hence () = () cx ß, ()' = ()' ß cx. lf x is in 

H, x = afJ for at least one a in G. Then xcxß = afJcxß = a() = x, so 

cx ß = I H· Similarly, ß cx = I H'· Consequently cx and ß are one-to-one 
upon. Therefore cx is an isomorphism of H upon H'. 

(II) Existence. We give two conceptually different proofs for the 
case of homomorphisms upon cancellation groupoids. Similar proofs 
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hold for homomorphisms upon semigroups or upon cancellation semi
groups. 

The first proof requires us to accept the existence of the dass (/> of 
all homomorphisms of G upon cancellation groupoids. Since G possesses 
a homomorphism upon a group of order one, (/> is non-empty. Foreach 
x in G we define a "function" I"' on (/> by I x( cp) = x cp, all cp E (/>. Let H be 
the set of all functions lx. x E G, and define multiplication in H by 
Uxl11) (cp) = lx(cp)l11(cp). Then lxl11 = lx11 for all x, y E G. Clearly His a 
cancellation groupoid. The mapping (): x -+I"'' is a homomorphism of G 
upon H. If cp is a homomorphism of G upon a cancellation groupoid 
K then cp E (/> and hence cp = () cx where cx: I"'-+ x cp, is a homomorphism 
of H upon K. 

The second proof uses intemal properties of G. We define a congru
ence relation ( ==) on G by means of the following rules: 

(E1) If a = b in G then a == b. 

(E2) If a == b then b == a. 

(E3) If a == b and b == c then a == c. 

(C1) If a == band if c E G then ac == bc. 

(C2) If a ==band if c E G then ca == cb. 

(SI) If ac == bc then a == b. 

(S2) If ca == cb then a == b. 

(L) If a, b E G then a == b only as required by (E), (C), (S). 

Here the rules (E) are the properties of an equivalence relation; the 
rules (E), (C) are the properties of a congruence relation. The special 
rules (S) and the limiting rule (L) specify a particular congruence 
relation. (In discussing homomorphisms of G upon semigroups we 
delete (SI), (S2) and use only (S3): if a, b, c E G then (ab) c == a (bc); 
in discussing homomorphisms of G upon cancellation semigroups, we 
use (S;) for i = I, 2, 3.) 

Foreach a E G let [a] denote the congruence dass of a; that is, the 
set of all b E G such that b == a. The rules (E) ensure that b is in [a] 
if and only if [b] = [a]. The rules (C) ensure that the set Hofall dasses 
[a] is a groupoid under the product operation [a] [b] = [ab], and the 
rules (S) ensure that His a cancellation groupoid. Moreover, the mapping 
0: aO = [a], is a homomorphism of G upon H. Now let cp be any homo
morphism of G upon a cancellation groupoid G cp. Suppose we have 
shown ( *) if a == b then a cp == b cp. Then the mapping cx defined by [ a] cx = 

acp is a homomorphism of H upon Gcp suchthat cp = Ocx. To prove (*) 
we use a course-of-values induction over the height of the "proof scheme", 
(involving finitely many applications of (E), (C), (S),) which demonstrates 
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that a == b. (See KLEENE, Metamathematics). This completes the 
proof of Theorem 4.1. 

Proof ofTheorem 4.2. (I) Uniqueness. Let Q,Q' have the properties (i), 
(ii) of Theorem 4.2, ()' being the homomorphism of G into Q'. Then, by 
Theorem 4.1, G() is isomorphic to GO'. Therefore, without loss of 
generality, we may assume that ()' = (), G() = H. Then the identity 
mapping I H of H can be extended to a homomorphism ß of Q into Q' 
and to a homomorphism y of Q' into Q. Thus ß y is an extension of I H 

to an endomorphism of Q. However H generates Q, so ß y = I Q· Simil
arly, y ß =I Q'· Consequently, ß is an isomorphism of Q upon Q'. 

(II) Existence. Consider first the case of homomorphisms of G into 
quasigroups. There exists a cancellation groupoid H0 with the properties 
of Theorem 4.1, and H0 freely generates a quasigroup Q0• Let 00 be the 
homomorphism of G upon H0• If q; is a homomorphism of G into a 
quasigroup K then G q; is a cancellation groupoid. Therefore q; = 00rx. 
where rx. is a homomorphism of H0 upon G q;. Since rx. is a homomorphism 
of H 0 into the quasigroup K, then rx. can be extended (uniquely) to a 
homomorphism ß of Q0 into K. Therefore we may take Q = Q0 , () = 00• 

For the case of homomorphisms into loops we first establish the 
existence of a "maximal" homomorphic image Q001 of Q0 which is a loop. 
This is done along the lines of the proof of Theorem 4.1. Then we set 
Q = Q001 , () = 0001• Similarly for the case of groups. This completes 
the proof of Theorem 4.2. 

There is no analogue of Theorem 4.1 for homomorphisms of groupoids 
upon quasigroups or of semigroups upon groups. For example, if Gis the 
additive semigroup of positive integers, the quasigroup images of G are 
the groups of prime order. 

5. Brandt groupoids. Mixed groups 

A BRANDT groupoid G is a halfgroupoid (See I.l) subject to the 
following postulates: 

(i) To each a in G there corresponds one and only one ordered pair e, 
I of elements of G suchthat ea = Ia = a. 

(ii) If ea = a or ae = a for some a, ein G, then ee = e. 

(iii) If a, b are in G, then ab is defined in G if and only if ae = a, 
e b = b for some e in G. 

(iv) If a, b, c are in G and if ab, bc are defined in G, then (ab)c and 
a(bc) are defined and (ab)c = a(bc). 

(v) If ea = a, af = a for a, e, f in G, there exists b in G such that 

ab=eandba=l. 
(vi) If ee = e and II =I in G, there exists a in G suchthat ea = a, 

al = 1. 
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Let P be any non-empty set, H be any group, and define products in 
P X H X Pas follows: 

(p, h, q) (q, h', r) = (p, hh', r) (5.1) 

for all p, q, r in P, h, h' in H, and (p, h, q) (r, h', s) is not defined if q =!= r. 
The resulting halfgroupoid is a BRANDT groupoid. 

An element satisfying ee = e is called an idempotent. Let P be the 
set of all idempotents of the BRANDT groupoid G and, for a fixed element 
e of P, Iet H be the subset of G consisting of all a suchthat ea = ae = a. 
By (vi), His non-empty. By (iii), (iv), (v), His a group. For arbitrary 
p, q in P, Iet G(p, q) be the set of all a in G suchthat pa = aq = a. By 
(vi), G(p, q) is not empty. Foreach p, select an element a(p) in G(p, e). 
By (v), there exists an element b (p) in G (e, p) such that a (p) b (p) = p, 
b(p)a(p) = e. By (iii), (iv), (v), the mapping h-+a(p) hb(q) can 
be shown tobe a one-to-one mapping of H upon G (p, q). Furthermore, 
a(p) hb(q) · a(q) h'b(r) = a(p) hh'b(r), and no other products are defined. 
Hence every BRANDT groupoid is isomorphic to one offarm (5.1). 

The Iiterature of BRANDT groupoids may be found by beginning 
with BRANDT [36]. See also ]ACOBSON, Theory of Rings; in particular, 
Chapter 6, §§ 11-14. 

CLIFFORD [167] notes that a BRANDT groupoid G can be imbedded 
in a semigroup S with a single additional zero element, 0, such that 
aO = Oa = 00 = 0 for all a in G and ab= 0 in S if a, bare in G and ab 
is not defined in G. The semigroup S belongs to the dass of completely 
simple semigroups to be considered in § 8 below. 

A mixed groupMis a halfgroupoid M containing a non-empty subset 
K (the kernet of M) such that: 

(a) If x, y E M, then xy is.defined in M if and only if x E K. 

(b) If k, k'E K and x E M, then (kk')x = k(k'x) in M. 

(c) If k E K, then K C kK nKk in M. 

(d) If k E K, x E M and kx = x in M, then ky = y in M for every y 
inM. 

The original postulates of LüEWY [329], although slightly different, 
are equivalent to (a)-(d). 

Weshall give three examples of mixed groups. (I) Let K be any group, 
E be any non-empty set and Iet 1 be a distinguished element of E. Define 
multiplication in M = K x E as follows: (k, 1) (k', e') = (kk', e') for all 
k, k' E K, e' E E; and (k, e) (k', e') is not defined if e =!= 1. (II) Let G 
be a group and K be a subgroup of G. Let M consist of the elements 
of G with multiplication defined as follows: x y = z in M if and only if 
x E K ;~nd xy = z in G. (III) Let G be a group, let H be any subgroup 
of G and Iet K be the normalizer of H in G. That is, K consists of all 
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k E G such that k H = H k. Let M con$ist of the elements of G with 
muliplication defined as follows: x y = z in M if and only if (H x) (H y) 
=Hz in G and xy = z in G. 

In each of the examples, M is a mixed group with kernel K. Example 
(I) is equivalent to the special case of (II) in which Gis the direct product 
of K and a group E. And (III) is also a special case of {II). 

Now let M be a mixed group with kernel K. Consider K as a closed 
subhalfgroupoid of M {see I.l). By (a), (b), K is a semigroup; by (c), 
K is a group. Let 1 be the identity element of K. By (d), since 1.1 = 1, 
then 1 x = x for every x in M. If k, k' E K and x E M and kx = k'x, then 
we see readily that (k-1 k') x = x. Hence, by { d) with y = 1, k-1 k' = 1, 
so that k = k'. Again, if k E K and x, y E M and kx = ky, then 
x = k-1 (kx) = k-1 (ky) = y. At this stage we see that there mustexist 
at least one non-empty subset E of M (which we may and do assume to 
contain the identity 1 of K) such that each x in M has a unique represen
tation x = ke in M. where k E K, e E E. It is now clear that M has a 
representation of type (I) and therefore a representation of type (II). 

We shall leave aside the more difficult problern of determining all 
representations of type (II) (and hence all of type (III).) For thii--see 
BAER [325], [326]. 

6. Polyadic groups. Flocks 

Let n ~ 2 be a positive integer, G be a non-empty set and I= ln be 
an n-ary operation completely defined on G, so that (G, I) is an algebra 
in the sense of I.S. The algebra (G, I) is called a polyadic group, or, more 
specifically, an n-group, provided the following axioms are satisfied: 

{I) If Xn+l and any n- 1 of the symbols x1 , x2, ••• , Xn are specified 
as elements of G, the equation 

I (xv X2, • • ·, Xn) = Xn+l 

has at least one solution in G for the remaining symbol. 
(II) I is associative. That is, 

I (f (xv · · ·' Xn). Xn+l• • · ·' X2n-1l (6.1) 

for i = 1, 2, ... , n-1 and for all Xv .. • , x2n-t in G.· 
It will be clear later that an n-group satisfies (I) in the stronger 

form with "at least one solution" replaced by "exactly one solution". 
An important concept in the theory of polyadic groups is that if 

a covering group. An (ordinary) group K = (K, ·) is said tobe a covering 
group of an n-group (G, I) provided K has the following properties: 

(i) The set G is a generating subset of K. 
(ii) I (x1, .•. , Xn) = x1 x2 • •• Xn in K for all X; in G. 
First let us assume that the n-group (G, I) has a covering group K. 

Let G0 = Gn-t be the subset of K consisting of all products of n- 1 
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elements of G. We shall show that G0 is a normal subgroup of K, G is a 
coset of K modulo G0, and KjG11 is a finite cyclic group whose order divides 
n- 1. By (ii) and the fact that the values of I are in G, we see that 
G0G0 C G0• If x, y are in G, then, by (I), there exist elements x2, ••• , Xn 

in G such that I (x, x2, ••• , Xn) = y. Moreover, if x, x2, ••• , Xn are 
arbitrarily given elements of G, the same equation determines a y in G. 
Considered in K, the equation is equivalent to x2 ••• Xn = x-1 y. There
fore G0 is also the set of all elements x-1 y where x, y range over G. 
Since (x-1 y)-1 = y-1 x, we conclude that G0 is a subgroup of K. If 
x is in G and p is in G0, then p = y2 •••• Yn is a product of n- 1 
elements of G; thus x-1px = (x-1 y2) (y3 ••• YnX) is the product of two 
elements of G0 and hence is in G0• That is, x-1G0 x C G0• Similarly, we 
may show first that G0 contains all elements y x-1 with x, y in G and 
thence that xG0 x-1 C G0 for every x in G. Now it clear from (i) that 
k-1 G0 k = G0 for every k in K. This means (See IV.1 or any book on 
group theory) that G0 isanormal subgroup of K. Consequently we can 
form the quotient group KjG0• In addition, G = xG0 for every x in G; 
showing that G is a coset and hence a single element of K/G0• Since the 
elements of G generate K, the group KjG0 is cyclic. And since xn-1 is 
in G0 for each x in G, the order of KjG0 is a divisor of n - 1. 

The above discussion suggests how to define a dass of n-groups. 
We select any group K which possesses anormal subgroup G0 suchthat 
K/G0 is a finite cyclic group of order dividing n- 1. We choose some 
element x of K such that the coset xG0 generates KjG0• Then we use 
(ii) to define the n-ary operation I on the coset G = xG0• This makes 
(G, f) into an n-group with K as a covering group. 

DöRNTE [333] was the first to study polyadic groups as abstract 
algebras. The theory was later developed at great length by PosT [26]. 
Futher references and a broad range of topics will be found in PosT [26]. 
We shall be content to prove PosT's Coset Theorem (loc. cit., p. 218). 
This may be stated as follows: 

Theorem 6.1. (Post's Coset Theorem.) Every polyadic ~roup has a 
covering group. 

Outline of proof. We suppose given an n-group (G, f). If n = 2, 
(G, f) is an ordinary group and hence is its own covering group. Therefore 
we shall assume n > 2. 

We work in terms of the free semigroup 5 on the elements of Gas 
free generators. The elements of 5 are the ordered sequences 

(at> a2, ••• , ai) 

of elements at> a2, ••• , ai of G, every finite length i being permitted. 
Multiplication is performed by juxtaposition: 

(at> a2, ••• , a) (b1 , b2, ••• , b1) = (at> ... , ai, bt> ... , bJ . (6.2) 



38 Il. The Associative Law 

In particular, S is a cancellation semigroup. Whenever convenient, we 
adjoin the empty sequence, ( ), of length 0, as an identity element of S. 

We must define a congruence relation () on S (see I.S for notation) 
such that: 

(i) Sj() is a group, which weshall call G*. 
(ii) If x, y are in G and if (x) - (y) mod (), then x = y in G. 
(iii) (/(x1, x2, ••• , x"})- (x1) (x2) ••• (x") rnod () for all x1 in G. 
Once () has been constructed with properties (i)-(iii), we identify 

each element x of G with the equivalence dass of (x} rnod 0, and we 
replace equivalence rnod () by equality. Then the group G* has the 
properties of a covering group for (G, /). 

Proof. In what follows, any Greek Ietter (other than 0) denotes a 
sequence or, to be more precise, an elernent of the free sernigroup S 
defined above. 

We call such a sequence IX compatible (with /) provided IX has length 
k (n- I) + I for sorne positive integer k. If IX is in S, there exists ß 
inS suchthat IX ß is cornpatible; and then ß IX is cornpatible also. We need 
to define I (IX} for every compatible IX. We do this inductively as follows: 
If 

has length n, we define 

/(IX)= /(x1, x2, ••• , x,.). 

If IX is compatible, if /(IX} has been defined, and if ß has length n- 1, 

we define 
/(IX ß) = /((/(1X)) ß) . (6.3) 

This cornpletes the definition. 
In addition, we need the following generalized associative law: 

/(Ä1Xp) = /(Ä(/(1X)}p) (6.4) 

provided IX and ÄIXf.l are both compatible. (Here we allow one of Ä, p 
tobe ernpty.) For the case that IX and ÄIXf.l have lengths n and 2n- I 
respectively, (6.4) is equivalent to (6.1}. The general case cornes frorn 
(6.1} by an inductive argument. 

We rnay observe that if m = k (n- 1) + 1 for some positive integer k 
and if we define Im so that /m(1X) =/(IX) for every IX of length m, then 
(G, Im) is an m-group (a so-called extension of (G, /)). We need the 
following instances of this fact: 

(A) lf x is in G, IX is in S and (x) IX is compatible, there exist y, z in G 
suchthat x = /((Y)1X) = /(1X(z)). 

(B) I/ x, y are in G, there exist IX, ß in S such that (y) IX, ß (y) are 
compatible and x = I((Y}1X} = f(ß(y)). 

Next we must prove the following: 
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(C) Il the sequence oc is suchthat either l(oc(y)) = y lor some y in G 
or l((z)oc) = z lor some z in G, then 

lor every x in G; and 
l(oc(x)) = x = l((x)oc) 

l(i.ocp) = l(i.p) 

lor every two sequences i., p suchthat i.p is compatible. 

(6.5) 

(6.6) 

Weshall prove (C) on the hypothesis that I (oc (y)) = y for some y in G. 
(Note, by (B), that at least one oc satisfying this hypothesis exists for 
each yin G.) By (B), thereexistsforeach xin Ga 1psuch that x=l((y) 1p). 
Let i., p be any sequences suchthat i.oc (x) p is compatible. Then 

l(i.oc(x)p) = l(i.oc(f((y) 1p})p) = l(i.(l(oc(y)) !pp) 

= l(i.(y) !pp). 

Since l((y) 1p} = x, we first assume that i., p are empty and deduce that 
l(oc(x)) = x. Next we assume that i.(x)p is compatible and deduce that 
l(i.oc(x)p) = l(i.(x)p}, thus proving (6.6) for the case that p is not 
empty. In particular, for any z in G, l((z)ococ) = l((z)oc). Hence, since 
x = l((z) oc) for some z, l((x) oc) = x; which completes the proof of (6.5). 
And, finally, if i. (x) is compatible, I (i. (x) oc) = I (i. (f ((x) oc)) = I (i. (x)); 
whence (6.6) holds when p is empty. This proves (C) on the hypothesis 
that l(oc(y)) = y for some y; the proof on the other hypothesis is quite 
similar. 

A sequence oc which satisfies the hypothesis of (C) is called an identity. 
Note that the length of an identity is k (n- 1) for some positive integer k. 

Our final proposition is the following: 
(D) If at, at' are sequences suchthat 

(6.7) 

holds lor some pair ol sequences Ä., p, then (6.7) holds lor every pair of 
sequences Ä., p suchthat i.ocp and Ä.oc' p are both compatible. 

To see this, suppose (6.7) holds for some pair i., p. By (B), (C), 
there exist Ä.', p' such that Ä.' Ä., p p' are identities. Hence, if ß oc y, ß oc' y 
are compatible, (6.6), (6.7) give 

l(ßoc y) = l(ßi.' Äocpp' y) = l(ßi.' (l(i.ocp))p' y) 

= I (ß i.' (I (i. oc' p}) p' y) = I (ß i.' i. oc' p p' y) 

= l(ßoc' y) · 

Now we define the relation () as follows: 

oc - oc' mod 0 (6.8) 

if and only if (6.7) holds for some i., p. In view of (D), () is certainly 
an equivalence relation. Moreover, if oc- oc' and ß- ß', then I(Aocßp) 
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= f(l..oc' ßf.l) = /(l..oc' ß'f.l); whence ocß- oc' ß'. Again, if oc- oc' and 

oc ß- oc' ß', then /(l..oc ßf.l) = f(l..oc' ß' f.l) = /(l..oc ß' f.l); so ß- ß'. Similar

ly, if ß - ß' and oc ß - oc' ß', then oc - oc'. This is enough to show that () 
is a congruence relation on 5 and that 5/0 is a cancellation semigroup. 

In addition, by (C), the identities form an equivalence class which 

contains the empty sequence. Moreover, for every oc, there is a ß such 

that oc ß is an identity. Consequently, 5/0 is a group. This proves (i) 

of the outline. 
Next suppose that (x) - (y) for some x, y in G. Then, if oc is an 

identity, x = /(oc(x)) = /(oc(y)) = y. This proves (ii). 

Finally, let oc have length n and set oc' = (f (oc)). Then, if oc ß is com

patible and ß non-empty, /(ocß) = /((/(oc)) ß) = /(oc' ß). Hence oc- oc'. 
This proves (iii) and completes the proof of Theorem 6.1. 

It is easy to prove that G* is the free covering group. That is: if 

K is a covering group, there exists a homomorphism of G* upon K which 

induces the identity mapping on G. 

Although the Coset Theorem by no means exhausts the subject of 

polyadic groups, it seems a proper stopping point in a survey of binary 

systems. For many interesting topics, see the references cited above. 

BAER [328] has investigated a connection linking Brandt groupoids 

and mixed groups with the flocks of PRÜFER [332]. We shall briefly 

describe the latter. A /lock ( German: Schar; also called an imperfect 
brigade or an abstract coset) may be defined as a ternary algebra (G,!) 

subject to the identities 

f(f(u, v, w), x, y) = f(u, v, f(w, x, y)), 

f(x, y, y) = x = f(y, y, x). 

(6.9) 

(6.10) 

For various other systems of axioms and a study of their independence, 

see CERTAINE [329]. CERTAINE (loc. cit.) also applies flocks to affine 

geometry, as does BAER in his book Linear Algebra and Projective 

Geometry. 
The theory of flocks is essentially a theory of groups in which the 

role of the identity element has been minimized. Indeed (BAER [328], 

CERTAINE [329]), to each element e of a flock (G, /) there corresponds 

a group G (e) consisting of the elements of G under the multiplication 

xy=f(x,e,y). Theinverse of x in G(e) is given by x-1 =/(e,x,e). 
Moreover, 

f(x, y, z) = xy- 1z (6.11) 

for all x, y, z in G. In addition, the groups G(e), as e ranges over G, 

are all isomorphic. Conversely, if f is defined on a multiplicative group 

by (6.11), then (G, /) is a flock. In this case, (H, /) is a subflock of (G, /) 

if and only if His a coset of (some subgroup of) G- whence the alter

native name "abstract coset". BAER [328] shows that the automorphism 
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group of (G, /) is the so-called holamorph of the group G; he also 
investigates allied groups of permutations of G. 

When is a flock (G, /) a (ternary) polyadic group? Since f can be 
defined by (6.11) in terms of a group operation, axiom (I) for 3-groups 
is automatically satisfied. However, (6.11) implies the identity 

f(f(u, v, w), x, y) = f(u, /(x, w, v), y) = f(u, v, f(w, x, y)), (6.12) 

which differs from the associative law (II) for 3-groups in that f (x, w, v) 
should be f(v, w, x). Hence: A flock (G, /) is a 3-group if and only if it 
satisfies the commutative law 

I (x, y, z) =I (z, y, x) . (6.13) 

On the other hand, the commutative 3-groups (in the sense of (6.13)) 
are precisely those whose covering groups are commutative. A com
mutative 3-group is a flock if and only if it satisfies the neutrallaw 

I (x, x, x) = x . (6.14) 

Finally we must observe that no collection of identities which are 
"homogeneous" in the sense of (6.9), (6.12) or (6.13) can characterize 
a dass of ternary algebras all of whose members are flocks or 3-groups. 
For let G be a set consisting of a distinguished element e and at least 
one other element. If we define f(x, y, z) = e for all x, y, z in G, then 
f will satisfy every "homogeneous" identity but (G, /) will be neither 
a 3-group nor a flock. 

7. Multigroups, hypergroups, etc. 

Let us understand by a multigroupoid M a system consisting of a 
non-empty set M together with a binary operation (multiplication) 
which is a mapping of M x M not into M but into the set of non-empty 
subsets of M. That is, for each ordered pair a, b of elements of M, 
a · b is a non-empty subset of A1. By a homomorphism () of a multi
groupoid M upon a multigroupoid M' we mean a single-valued mapping 
of M upon M', extended in the natural way to a mapping of the non
empty subsets of M upon the non-empty subsets of M', such that 
(ab)()= (a()) (b()) for all a, bin M. An element e of M is a left identity 
element of M if a E e a for every a in M; similarly for right identity 
elements. The associative law has two forms: (A1) (ab)c C a(bc) for all 
a, b, c in M; (A 2) a (bc) C (ab) c for all a, b, c in M. Similarly, the com
mutative law has two forms. If e is a left or right or two-sided identity 
element of M and if a, b are elements of M such that e E ab, then bis 
a right inverse of a with respect to e and a is a left inverse of b with respect 
to e. A multigroup or hypergroup (the terms seem to be synonomous) 
is a multigroupoid endowed with one or both associative laws, an 
identity element and inverses for each element. A cogroup is a multigroup 
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obeying a stricter set of axioms which are satisfied by (but do not 
characterize) the set of all right cosets of a group G with respect to a 
fixed subgroup H, the operation being that induced by the operation of G. 

The rather extensive Iiterature on multigroups and hypergroups (see 
the bibliography) has not progressed much beyond an analysis of the 
axioms required to give an elementary theory of homomorphisms or of 
congruences. It appears to the author that those multigroupoids which 
arise naturally can best be studied from other points of view. This seems 
to be born out by the following facts, which we feel impelled to discuss 
in detail: 

(I) Every multigroupoid determines and is determined by a partially 
ordered groupoid of special type and can be studied entirely in terms of the 
groupoid. 

(II) M any multigroupoids are naturally endowed with a multiplicity 
function which states how often the element c occurs in the product ab. lf the 
multiplicity function is of interest, the multigroupoid can best be studied 
in terms of a ring. 

In connection with (I), if M is a multigroupoid, let G be the set of 
all non-empty subsets of M, let (~) be the relation of inclusion (as 
subsets of M) among the elements of G and, for each ordered pair (x, y) 
of elements of G, let xy be the element of G consisting of all elements c 
in M for which there exist elements a, b in M with a in x, b in y and 
c in ab. We note that multiplication in G is single-valued, so that G is 
a groupoid. Moreover, for x, x', y, y' in G, if x ~ x', y ~ y' then 
xy ~ x' y'. Hence G is a partially ordered groupoid. As a partially 
ordered set, G may be characterized abstractly as a complete atomic 
lattice; the postulates merely ensure the existence of a set M suchthat G 
possesses a one-to-one order-preserving mapping upon the set of all 
subsets of M {for present purposes, we exclude the null subset of M). 
From this point of view, we may call G a lattice-ordered complete 
atomic groupoid. If such a groupoid G is given, let us suppose for 
convenience that Gis the set of all non-empty subsets of a set M. Then 
we turn M into a multigroupoid by defining the ordered product ab of 
two elements a, b of M as the element (a) (b) of G considered as a subset 
of M. Hence there is a one-to-one correspondence between multi
groupoids M and lattice-ordered complete atomic groupoids G. It is 
easy to see that the associative law (A1) for M becomes the law 
(xy)z ~ x(yz) for G; that homomorphisms of M correspond to order
homomorphisms of G; and so on. This completes the discussion of (I). 
Fora similar discussion see CROISOT [121]. The fact that single-valued 
multiplication could be restored to a multigroupoid was earlier noted by 
GRIFFITHS [127], KuNTZMAN [140]. 

In connection with (II) we wish merely to underline a well-known fact. 
As weshall show, there exist many multigroupoids M with multiplicity, 
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in the following sense: (i) The subset ab is finite for all a, b in M. 
(ii) To each ordered triple a, b, c of elements of M there corresponds a 
non-negative integer n (a, b, c) (the multiplicity function) such that 
n (a, b, c) is positive if and only if c is in ab. When (i), (ii) hold we may 
imbed M in a ring F as follows: Let F be the additive free abelian group 
with the elements of M as free basis. Define multiplication in M by the 
distributive laws (of multiplication with respect to addition) together 
with the definition 

ab=}; n(a, b, c)c (7.1) 

for all a, b, c in M. (In general, F will not be associative.) Conversely, 
if F is a ring such that (F, +) is a free abelian group and if M is a free 
basis of (F, +)such that (7.1) holds for non-negative integers n(a, b, c), 
not all zero, we make M into a multigroupoid by defining ab to be the 
subset of M consisting of all c in M for which n (a, b, c) > 0. 

For example, let R be the ring defined as above from a quasigroup G. 
Certain subrings of R give rise quite naturally to multigroupoids with 
multiplicity functions. The left nucleus, N;., of R is the associative 
subring consisting of all k in R suchthat (kx)y = k(xy) for x, y in R. 
It is easily seen that if N;. is nonzero (as for example, when G is finite 
or a loop) one basis of N;. consists of what might be called right-conjugate 
class sums. We define a non-empty subset S of G to be right-invariant if 
(S a) b = S (ab) for all a, b in G and to be a right-conjugate class if no 
proper subset of S is right-invariant. Then, foreachfinite right-conjugate 
class of S, the sum of the elements of S is one of the basis elements for N;.. 
If G is not a group, the finite right-conjugate classes clearly yield a 
multigroup with multiplicity. The condition that (k x) y = k (x y) for 
all x, y in R may be replaced by any one of a variety of such conditions 
which yield a subring of R with similar properties. In particular we may 
use the condition that kx = xk and k(xy) = (kx) y = x(ky) for all 
x, y in R; this defines the cen~re of R and brings in the conjugate classes 
of G. As another example, if A is a finite subgroup of G contained in the 
left nucleus of R, the cosets Ab, b in G, give rise in a similar fashion to 
a basis of a subring of R and hence to a multigroupoid with multiplicity. 
When Gis a group, the latter is a so-called cogroup. 

Weshall not discuss in detail the papers on multigroupoids which are 
listed in the bibliography. It is interesting to observe, however, that 
a long series of notes by KRASNER on class-field theory at first makes 
systematic use of multigroups but ends by removing all trace of multi
groups from the theory. (KRASNER [128]-[133].) 

For cogroups see EATON [125], UTUMI [150]. 
For ultragroups see VIKHROV [151]. 
For geometry in terms of multigroups see PRENOWITZ [145]-[148]. 
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8. Ideal structure of semigroups 

A non-empty subset A of the semigroup S is called a left ideal if 
SACA, a right ideal if ASCA and an ideal of S if SACA, AScA. 
If S contains a one-element ideal (z) then x z = z x = z for every x in S 
and hence (z) is contained in every left, right or two-sided ideal of S. 
Such an element z is called a zero of S and is usually denoted by 0. 
A semigroup can have at most one zero. If a semigroup S has no zero 
we may adjoin a zero, 0, and make S' = S 1_; 0 into a semigroup by 
defining xO = Ox = 00 = 0 for every x inS. If the semigroup S has an 
ideal A we may define, following REES [247], a quotient semigroup SjA 
as follows: We replace equality (=)inS by (==) where a == b if and only 
if either a, b E A or a, b ~ A and a = b. Then SjA isS with (=) replaced 
by (==). Equivalently, we collapse the elements of A into a single 
element, A. Then SjA is a semigroup with A as zero. 

The following definitions are stated for semigroups with zero. To 
obtain the analogue for a semigroup S without zero, first adjoin a zero 
and then interpret the definition in terms of S. 

An element e of the semigroup S is called idempotent if e2 = e and 
nilpotent if en = 0 for some positive integer n. An idempotent e of S is 
called primitive if e =I= 0 and if the only idempotents f of S such that 
ef =je= f are f = e and f = 0. A non-empty subset T of S is called a 
nil subset if every element of T is nilpotent and is called nilpotent if 
Tn = 0 for some positive integer n; that is, if t1 t2 ••• tn = 0 for all t; in T. 

A semigroup S is called simple (left simple, right simple) if (i) the 
only ideals (left ideals, right ideals) of S are S itself and the zero ideal 
and (ii) 5 2 =1= 0. A semigroup S is called completely simple if (a) S is 
simple; (b) every nonzero idempotent of S is primitive; (c) to each x 
in S there corresponds at least one pair of nonzero idempotents e, f of S 
such that ex = xf = x. 

A left (right, two-sided) ideal A of the semigroup S is called minimal 
if A =I= 0 and if the only left (right, two-sided) ideals of S contained in A 
are A itself and the zero ideal. 

A semigroup S with zero is called a group with zero if the nonzero 
elements of S form a subgroup. 

Lemma 8.1. LetS be a semigroup with zero. Then every nil (nilpotent) 
left or right ideal of S is contained in a nil ( nilpotent) ideal of S. 

Proof. If A is a left ideal of S then B = A v A S is an ideal of S. 
If A is nil and a E A, s ES then sa E A; so (sa)n= 0 for some positive 
integer n and hence (as)n+l= a(sa)ns = aOs = 0. Therefore B is nil. 
For any left ideal A, ßn CA n 1\ AnS for every positive integer n. If A is 
nilpotent, An= 0 and hence ßn= 0 for some positive integer n. Similarly 
for right ideals. This completes the proof. 
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The nil radical N = N ( 5) is the set of all properly nilpotent elements 
of 5. An element a of 5 is properly nilpotent if a5 is a nil subset. Since 
a2 E a5, a itself is nilpotent. Since every nilpotent subset of 5 is a nil 
subset, we see from Lemma 8.1 that N contains every nil or nilpotent 
left or right or two-sided ideal. Moreover N is itself a nil ideal and hence 
is the (unique) maximalnilideal of 5. 

The semigroup 5 is said to satisfy the minimal condition for left 
ideals if every non-empty set .E of left ideals of 5 contains a minimal 
element, say M, in the sense that M is in .E and, if L is in .E and L C M, 
then M = L. Similarly for right ideals, ideals, etc. The descending chain 
condition may be regarded as identical with the minimal condition. 

Theorem 8.1. (Hopkins-Brauer.) Let 5 be a semigroup with zero 
which satisfies the minimal condition for nil ideals. Then the nil radical, N, 
of 5 is nilpotent. 

Proof. The set {Nn; n =I, 2, ... } consists of nil ideals and hence 
has a minimal element, say A. Since Nn+I C Nn for n =I, 2, ... , then 
A =Nm= Nm +I=···, for some integer m. In particular, A 2 = A. 
Assurne that A =+= 0, and consider the set .E of all ideals B of 5 such that 
B C A and A BA =+= 0. Since A A A = A and A =+= 0 by assumption, 
A E .E. Hence .E has a' minimal element, say C. Since AC A =+= 0 then 
AcA =+= 0 for some c in C. Then A (AcA)A = AcA =+= 0, so AcA E J:. 
And A cA C C, whence, by the minimality of C, C = A cA. Therefore 
c=acb for some a,b in A, and hence c=ancbn for n=I,2, .... 
Since A is a nil ideal, we conclude that c = 0, contradicting Ac A =+= 0. 
Therefore Nm= A = 0 and the proof of Theorem 8.I is complete. 

MoRSE and HEDLUND [229] have indicated the existence of a semi
group 5 with three generators such that x2 = 0 for every x in S but S 
is not nilpotent. 

If A is an ideal of a semigroup 5, an element x of 5 is called A-nil
potent if xn E A for some positive integer n. Equivalently either x 
is in A or x is a nilpotent element of 5 I A. Thus Lemma 8.I and Theo
rem 8.I have obvious generalizations to A-nil and A-nilpotent ideals. 
Lemma 8.I and Theorem 8.I are a little better than their analogues for 
(associative) rings. On the other band, in a ring satisfying the minimal 
condition for left ideals, every non-nilpotent left ideal contains a nonzero 
idempotent, whereas a like result is false for semigroups. Indeed, BAER 
and LEVI [I60] have constructed a left-simple semigroup which contains 
no idempotents whatever. 

Theorem 8.2. (SuscHKEwiTz-REES-CLIFFORD.) Let M be a nonzero 
ideal of the semigroup 5 with zero. Then the following statements are 
equivalent: 

(i) M is a completely simple semigroup. 
(ii) M is simple and contains a primitive idempotent of 5. 
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(iii) M contains a minimallelt ideal L ol S and a minimal right ideal 
R ol S suchthat LR = M and RL =1= 0. 

(iv) M 2 =!= 0, M is a minimal ideal ol S and M is both a union ol 
minimalleil ideals ol Sand a union ol minimal right ideals ol S. 

Proof. First assume (i). By definition, M contains an idempotent e, 
primitive relative to M. If I is an idempotent of S such that I e = e I = 1. 
then I is in M. Hence (i) implies (ii). 

Now assume (ii) and let e = e2 =!= 0 be a primitive idempotent of S 
contained in M. Set L = M e, R = eM. Then L (R) is a left (right) ideal 
of S contained in M and containing e2 = e =1= 0. Also M 2 and LR = M eM 
are ideals of M contained in M and containing e = e2 = e3=1= 0, so, by the 
simplicity of M, M = M 2= LR. Also RL contains e, so RL =1= 0. Let A 
be the set of all a in M suchthat M aM = 0. Then Ais an ideal of M and 
M AM = 0 =I= M M M, so A = 0. Therefore if a is a nonzero element 
of M, M aM is a nonzero ideal of M, so M = M aM. Suppose a is a 
nonzero element of R = eM. Since e is in eM e = e (M aM) e, e = bac 
for some (nonzero) bin eM e, c in M e. Now set I= acb. Since bl = bacb 
= eb = b, then I =I= 0. Since 12 = acbl = acb =I and el = le =I and e 
is primitive, l=e. Thus R=eM=acbMCaSCR, so R=aS. 
Therefore R is a minimal right ideal of S and, similarly, L is a minimal 
left ideal of S. Hence (ii) implies (iii). 

Next assume (iii). Let A be the set of all elements a of L such that 
S a = 0. Then A is a left ideal of S contained in L. Since R L =1= 0, then 
A =1= L, and since L is minimal, A = 0. Thus, and similarly, 

aEL,a+O=;.Sa=L; bER,b=I=O=?R=bS. (8.1) 

Now let c be any nonzero element of M. Since M = LR, c =ab where 
aEL, bER and a=!=O, b=!=O. Thus ScS=(Sa)(bS)=LR=M. 
Hence M is a minimal ideal of S. Moreover, c = ab =1= 0 is contained 
in L b. Any left ideal of S contained in L b must be of form Nb where N 
is a left ideal of S contained in L. If Nb contains c =1= 0, then N =1= 0 and 
hence N = L, Nb= Lb. Therefore Lb is a minimal left ideal of S 
contained in M and containing c. Similarly, aR is a minimalieft ideal 
of S contained in M and containing c. Hence (iii) implies (iv). 

Finally, assume (iv) and Iet x be any nonzero element of M. Since M 
is a union of minimal left ideals of S, x E L where L is a minimal left 
ideal of S contained in M. Since M 2 and L v L S are nonzero ideals of S 
contained in M, and since M is minimal, M = M 2 = L v L S. Thus 
M = M 2 ( L2 v L25, so M = L2 v L25. This implies L2=!= 0. Therefore, 
by the minimality of L, L2= L. Hence LM is a nonzero ideal of S 
contained in M, so LM = M. Since M is a union of minimal right 
ideals and since LM =I= 0, there exists a minimal right ideal R of S 
contained in M such that L R =1= 0. Then L R is a nonzero ideal of S 
contained in M, so L R = M. Since M L contains L2 = L and is contained 
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in L, then L (RL) = M L = L. Hence RL + 0 and also (RL) 2 = RL. 
Now (iii) holds, so we may apply (8.1). Let A be the set of nonzero 
elements of RL. Since AcRnL, (8.1) implies L=Sa, R=aS for 
every a in A. Then M = LR = Sa2S, so a2+ 0. Hence a2 E A and 
AC aS n Sa for every a in A. Therefore, by Theorem 3.3, there exists 
a unique nonzero idempotent e and a subgroup G of S, consisting of all 
elements of eS e which have inverses relative to e, such that A C G. If 
the element a of A has inverse a-1 in G, then L = S a contains a-1a = e. 
Hence, and similarly, 

L = Se , R = eS , M = L R = SeS . (8.2) 

Clearly L n R = eS e. Since S L contains e + 0, S L = L and therefore 
RL=eSL=eL=eSe. Thus RL=OvACOvGceSe=RL, so 

RL = L nR = eSe is a group with zero. (8.3) 

If I is an idempotent of S such that e I = I e = I. then I is in eS e. Hence 

either I = e or I = 0. Thus 

e is primitive. (8.4) 

We now recall that L was a minimal left ideal of S containing the 
preassigned nonzero element x of M. Since L = Se, we have xe = x 
for a nonzero idempotent e of M. Similarly, by starting with a minimal 
right ideal containing x, we deduce the existence of a nonzero idempotent 

e' in M such that ex' = x. Then, also, M xM contaiil'S e' xe= x + 0, 
so M = M xM. Consequently, M is simple. Finally, let g be a nonzero 

idempotent contained in M. Then g is contained in L, Rand LR where 
L, Rare suitable minimalieft and right ideals, respectively, of S contain
ed in M. Since LR + 0, we have (8.2), (8.3), (8.4) for a suitable 
idempotent e. Since g is in L n R = eS e and since g + 0, then g = e. 
Thus (iv) implies (i), and the proof of Theorem 8.2 is complete. 

RICH [251] contributed to the proof of Theorem 8.2 and also showed 
the independence of the postulates LR + 0, RL + 0 by exhibiting (a) 
a semigroup S of order four in which LR + 0 for one pair L, R but 
RL = 0 for all pairs L, R and (b) a semigroup S of order five in which 
RL + 0 for one pair L, R but LR = 0 for all pairs L, R- where in each 

case, L, R denote minimalieft and right ideals, respectively, of S. 
The case M = S of Theorem 8.2 (when the proof is considered) 

determines the structure of completely simple semigroups except for 
the following point: 

Lemma 8.2. (REES.) II e, I are nonzero idempotents ol the simple semi
group S (with zero) then e =ab lor a in eS I, bin I Se. The mapping 
x -+ b x a induces an isomorphism ol eS e into I S 1. 

Corollary. II S is completely simple, f = ba and the subsemigroups 
eS e, f SI are isomorphic groups with zero. 
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Proof. Since S is simple and I =+= 0, then S = SI S (Compare the proof 
that (ii) of Theorem 8.2 implies (iii).) Hence e is in eSe =(eS!) (!Se), 
so e =ab for a in eS I, bin I Se. Thus bSaCISI. If x, y are in eSe then 
(bxa) (bya) = bxeya = b(xy)a and a(bxa)b = exe = x. Hence the 
mapping x -+b x a induces an isomorphism of eS e into I S 1. In particular, 
bea = ba is a nonzero idempotent of I SI. Hence, if I is primitive, 
ba =I and the mapping is upon. Then, by (8.3), eSe, I SI are isomorphic 
groups with zero. This completes the proof. 

REES has explicitly constructed all completely simple semigroups, 
essentially as follows: Let A, B be non-empty sets and G a group with 
zero. Let [b, a] be a function from B X A to G such that each b E B and 
each a E A occurs in at least one pair b, a with [b, a] =+= 0. Turn A x G x B 
into a semigroup S by the definition (a, x, b) (a', x', b') = (a, x [b,a'] x',b'). 
The set K of all elements (a, 0, b) of S is the unique minimal ideal of S, 
and SjK is a completely simple semigroup. Moreover, each completely 
simple semigroup has such a representation. - If we replace G by a 
group, S itself is the model of a completely simple semigroup without 
zero. Thus, obviously, any group can be imbedded in a completely simple 
semigroup (with or without zero). 

It is an easy consequence of Theorem 8.2 that a simple semigroup is 
completely simple il and only il it satislies tke minimum conditions lor 
both right and lelt ideals. The example of BAER and LEVI shows that 
neither of these minimum conditions implies the other. The following 
theorem indicates a complex situation: 

Theorem 8.3. A ny semigroup S can be imbedded in a simple semigroup 
( witk or witkout zero) possessing an identity element. 

Proof. If S has no identity element we first adjoin one, thus 
imbedding S in a semigroup S'. Hence assume that S has identity 
element 1. We now construct a semigroup T (without zero) generated 
by S and two additional elements a, b, subject only to the relations 
ab= 1, as = a, sb = b for every s in S. Then every element of T has 
form bmsan for non-negative integers m, n, provided b0 and a0 are deleted 
when they occur. The construction may be given concretely as follows: 

Let N be the set of allnon-negative rational integers. Turn N X S X N 
into a groupoid T according to the definition 

(m, s, n) (m', s', n') = (m+ [m'-n], l(n-m'; s, s'), n'+ [n-m']), (8.6) 

where, for every rational integer x, 

[X J = X if X ~ 0; [X] = 0 if X < 0; {8. 7) 

l(x; s, s') = s, ss' or s' according as x > 0, x = 0, x < 0. (8.8) 

We first verify the identities 
[x] + [y- [- x]J = [x + [y]], (8.9) 

l(x + [y]; l(y; s, s'), s") = l(y- [- x]; s, l(x; s', s")) (8.10) 
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and then prove easily that T is associative. From (8.6), for each n in N, 
the mapping s___..(n, s, n) is an isomorphism of Sinto T. Moreover, (0, I, 0) 
is the identity of T. Finally, if p = (m, s, n), q = (m', s', n') are arbitrary 
elements of T, then q = (m', s', m +I) p (n + 1, 1, n'). Hence T is 
simple. This completes the proof of Theorem 8.3. - The semigroup T 
(for a suitable choice of 5) must occur as a subsemigroup of every 
simple semigroup containing a nonzero, nonprimitive idempotent. The 
construction can be generalized (a) by iteration and (b) by replacing N 
by the non-negative elements of any simply ordered abelian group. 
T will still be simple if S has no idempotents but is simple; then T will 
have no idempotents either. 

If the semigroup S with zero satisfies the minimal conditions for left 
and right ideals it is easily deduced from Theorems 8.I, 8.2 that S has an 
ascendingchain of ideals S;such that 5 0 = 0 and, fori = 0, I, 2, ... , 5 2i+1/52i 

is the (nilpotent) nil radical of 5/52; and 52i+~S2;+1 is the union of the 
completely simple ideals of Sj52i+ 1• To make the chain finite we may 
impose a maximal condition on ideals. - Nothing in the Iiterature 
suggests a structure theory comparable to that for rings. 

GREEN [I97] attacks the structure problern in terms of principalleft, 
right and two-sided ideals. If x is an element of the semigroup 5, (xh 
denotes the smallest left ideal of S containing x. A left ideal L of S is 
called principal if and only if L = (xh for some x in 5. Similarly for 
principal right ideals (x)R and principal ideals (x)F· If S has an identity 
element, I, S u I= S; if S has no identity element, S can be imbedded 
in a semigroup S u I with a single additional identity element I. In 
either case, 

(xh=(Sui)x, (x)R=x(Sul), (xh=(Sul)x(Sul) 
for each x in 5. 

We set up in S the following equivalence relation f' 
X~ y (/) +4 (x)F= (yh. 

(8.11) 

(8.I2) 

If Fis an f-equivalence class of 5, the ideal I= (x)F is (by definition) 
the same for each x in F. We call I the principal ideal of F. Let K =I -F 
be the complement of F in I; (i. e., K consists of the elements of I which 
are not in F.) If S has a zero and if F =1= 0, then K is certainly non-empty; 
but K is empty if F = 0. If S has no zero then K may also be empty. 
Assurne K not empty. Then, for k in K, (k)F isaproper subset of I and 
k S u S k ( (k) F· Hence K is an ideal of S contained in I, and I j K is an ideal 
of 5/K. We call K the complementary ideal of I and IjK the principal 
factor of S corresponding to the /-class F (or to any element x of 5.). 
Even when K is empty we preserve the terminology, interpreting If K 
and SjK as I and S respectively. 

Lemma 8.3. (GREEN.) Let F be an f-class of the semigroup S, with 
principal ideal I, complementary ideal K. Then ( except when Fis the zero 
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ideal of 5) the principal factor I I K is a minimal ideal of 5 I K and either 
F 2 C I 2 C K or I I K is simple. In the latter case, F CF xF for each x in F. 

Corollary. If Fis a subsemigroup of 5 and IjK is simple, then Fis a 
simple subsemigroup (without zero) of 5. 

Proof. Let A be an ideal of 5 such that I ) A ) K and A =!= K. Then A 
contains an element x of I- K = F, so I= (x)p CA and hence A =I. 
Since every ideal of 51K has the form AlK where A is an ideal of S 
containing K, weseethat IIK isaminimal ideal of 51K. Firstlet us assume 
that K is non-empty, so that K is the zero of SIK. Then, as shown 
previously, either (IIK) 2 = 0 or (IIK} 2 = (IIK); and, in the latter case, 
IIK is simple. Now IIK is essentially a semigroup F v K, where \Ve 
set xy =Kif x, y are in Fand xy E Kin S, and regard K as the zero 
of FvK. Hence (IIK) 2 =0 means PCK (inS); and (IIK) 2 =l1K 
means that F C P (in 5). In the latter case, the semigroup F v K is a 
simplesemigroupwith zeroK,andhence,foreachxinF,F v K =FxF v K. 
Thus F C F xF in S. In this case, if F is a subsemigroup, F xF CF and 
hence F = F xF, so that Fis ~imple. On the other hand, if K is empty 
and F is not the zero ideal of S, then 5 has no zero. Then the same 
arguments show that F = I is a minimal and hence a simple ideal of S. 
This completes the proof of Lemma 8.3 and Corollary. 

We are now ready to prove three theorems on semigroups without 
zero. With slight modifications, each holds for semigroups without 
nonzero nilpotent elements, but REES' construction for completely 
simple semigroups readily affords counterexamples in case there are 

nonzero nilpotent elements. An idempotent semigroup is one whose 
elements are all idempotents. 

Theorem 8.4. (CROISOT-ANDERSEN.} A necessary and sufficient 
condition that a sem1'group S without zero should be a union of simple 
subsemigroups without zeroisthat x E S x2S for each x inS. If the condition 
holds, the f-equivalence class F x of x is a simple subsemigroup of S for 
each x in S and the mapping X->-F" is a homomorphism of 5 upon a 
commutative idempotent semigroup. 

Proof. Necessity. If the element x is contained in a simple subsemi
group T without zero, then x2 E T and hence x E T = T x2T C S x2S. 

5ufficiency. Let x E 5 x25 for each x in 5. Then x E 5 x 5, and hence 

(x)p=5xS. {8.13) 

Since x2 E (x)p in all cases, and x E {x2)p by hypothesis, we have 
(x)p= (x2)p. Then, if y E 5, (xy)p= (xyxy)p C (yx)p and hence, by 
symmetry, (xy)p= (yx)p. Thus 

X ~ x2 (/) , X y ~ y X (/) , (8.14) 

If sES, (xsy)p= (sy x)p C (y x)p= (xy)p. Hence (x)p(y)p= S x S2y 5 C (xy)p 
= (xyxy)p= Sxy · xySCSx5 · SyS = (x)p(y)p, or 

(x)p(y)p= (xy)p. (8.15) 
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By (8.15), if x ~ x' (!) and y ~ y'(f) then (xy)p= (x)p(y)p= (x')p(y')p 
= (x'y')p. Hence xy ~ x'y' (f). That is 

f is a congruence relation. (8.16) 

By (8.16), if F" is the congruence dass of x, the mapping x-+F" is a 
homomorphism of 5 upon a semigroup 5'. By (8.14), 5' is commutative 
and every element of 5' is idempotent. Aga in, by (8.15), if y, z E F x 

then yz ~ x2 (/), whence, by (8.14), yz ~ x (!). That is, F" is a subsemi
group of 5. Now the Corollary to Lemma 8.3 shows that F" is simple. 
This completes the proof of Theorem 8.4 and Corollary. 

Theorem 8.4 has been proved by McLEAN [223] for the case that 5 
is idempotent; in this case the condition x E 5 x25 is automatically 
satisfied. 

Theorem 8.5. (CLIFFORD.) Let 5 be a semigroup without zero. Then the 
following stat ements are equivalent: 

(i) 5 is a union of completely simple subsemigroups without zero. 
(ii) 5 is a union of subgroups. 

(iii) x is in 5 x2 n x25 for every x in 5. 
I f (iii) holds, each f-equivalence class of 5 is a completely simple sub
semigroup of 5. 

Proof. Assurne (i). Then each element of 5 is contained in at least one 
completely simple subsemigroup without zero. By REEs's construction, 
the latter can be represented as (A, G, B) where G is a group and 
(a, x, b) (a', x', b') = (a, x [b, a'] x', b'). Thus for fixed a, b, the mapping 
(a, x, b) -+X [b, a] is an isomorphism of (a, G, b) upon the group G. Hence 
each element of 5 is contained in a subgroup of 5. Thus (i) implies (ii). 

Assurne (ii).Then the element x of 5 is contained in a subgroup G of 
S, so x2 is in G and x E G x2 n x2G C S x2 n x2S. Thus (ii) implies (iii). 

Assurne (iii). By Theorem 3.3, where A is taken to consist of a single 
element x, the element x uniqtiely determines an idempotent e of S such 
that the maximal subgroup, G (e), of 5 with e as identity element, 
contains x. Specifically, e is the unique element of x S suchthat x = xe. 
N ow let e be an idempotent of S and suppose that e = ab for a, b in eS e. 
Since a = ae and e E a5 we condude that a E G(e). If a- 1 is the inverse 
of a in G(e), then a-1 = a- 1e = a- 1ab = eb = b. Hence (iii) ensures 
that G (e) consists of all elements of e 5 e which have one-sided inverses 
(left or right) with respect to e. Since 5 is a union of subgroups and 
since groups are simple semigroups, by Theorem 8.4 each /-dass F is a 
simple subsemigroup. Moreover, F contains idempotents. If the idem
potent e is in F, and if x is an element of Fe, then e E eF xF e, so e = a x b 
where ax E e5e, eb E e5e. Since e = (ax) (eb), then e = (eb) (ax) EFx. 
Hence Fe is a minimal left ideal of F. Similarly, eF is a minimal right 
ideal of F and hence, by Theorem 8.2, F is completely simple. Thus (iii) 
implies (i). 
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m view of Theorems 8.4, 8.5, we give a simplified form to the next 

theorem. 

Theorem 8.6. (CROISOT-CLIFFORD.) LetS be a semigroup without zero. 
N ecessary and sufficient conditions that each f-equivalence class of S be 
a group are. (i) x E S x~ 1\ x2S for each x of -" and (ii) the idempotents 
of S commute. 

Proof. Sulficiency. If (i) holds, each /-dass F of S is a completely 

simple subsemigroup, by Theorem 8.5. If (ii) holds for the idempotents 

of F, we verify from REEs' construction that Fis a group. 
N ecessitv. Let each F., be a group. Then (i) holds, by Theorem 8.5, 

and the mapping x-+F., is a homomorph1sm of S upon a commutative 

idempotent semigroup, by Theorem 8.4. If e, f are idempotents of S then 

e f, f e, e f e, f e f must lie in the same group F = F h• where h is the identity 

element of F. If a is the inverse of ef in F then efa = aef = h. Hence 

eh= hf = h. Similarly, by using fe, we see that he = fh = h. Then, 

since h = efa and h = efh = (ef) 2a, we conclude that ef = (e/) 2• Since h 
is the only idempotent of F, e I= h. Similarly, fe = h, whence (ii) holds 

and the proof of Theorem 8.6 is complete. 

Further theorems allied to the last three will be found in CLIFFORD 

[1721. The essential character of the principal factors is shown by the 

following theorem, which implies a Jo'RDAN-HÖLDER theorem for 

"principal" series: 

Theorem 8.7. (GREEN.) Let A, B be ideals of the semigroup S such 
that A ( B, A =\= B and no ideal T of S satisfies AC TC B. Ti= A, B. 

Then, for each x of B- A, the identity mapping of S induces an iso
morphism of BI A upon the principalfactor of S corresponding to x. 

Proof. Let F be the /-equivalence dass of x and set I= (x)p, 

K =I -F. Then I v A =Band In AC K. If K =\=In A thenK v A =\=A 
so K v A = Band I= In B = (In K) v (In A) = K, a contradiction. 

Hence I 1\ A = K. Thus the identity mapping of S induces an iso

morphism of B/A = (IvA)/A upon Ij(I nA) = 1/K. This completes 

the proof. 
GREEN calls a semigroup (nonzero semigroup with zero) semisimple if 

the principal factor corresponding to every (nonzero) element is simple. 

An element a of S is regular if a x a = a for some x in S; equivalently, 

(a)L= (e)L (or (a)n=U)n) for an idempotent e (or f) of 5. A semigroup 

is regular if every element is regular. He notes that every simple semi
group is semisimple, that every regular semigroup is semisimple, and 

proves that every semisimple semigroup which satisfies the descending 
chain conditions for principal right and principal left ideals is regular. 
He notes (as do many others) that if an element x of a semigroup gener

ates a finite subsemigroup then some power of x is idempotent and, 

a fortiori, x is regular; hence a semigroup with minimum condition for 
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one-generator subsemigroups is regular. He also proves that in a semi
group S satislying the descending chain condition lor principal ideals, 
some power x", n = n(x), ol every non-nilpotent element has a simple 
1-class. 

Some of these results depend on the equivalences l, r, l 1\ 1 and 
d on S, defined as follows : 

x- y (l) ~ (xh= (yh; x- y (r) ~ (x)n= (Y)n; 
x - y (l 1\ r) ~ x - y (l) and x - y (r) ; 

x- y (d) ~ x- z (l) and z- y (r) for some z in 5. 

(8.17) 
(8.I8) 

(8.19) 

The equivalences l, r are permutable- that is, the right side of (8.I9) 
implies that x - w (r) and w - y (l) for some w in S-and consequently d 
is an equivalence as asserted. Indeed, if x = pz, z = q x = yr, y = z s 
for p, q, r, s inS v I, then x = wr, w = xs = py, y = qw. Since also 
x = pyr, y = qxs, we see that dCI in thesensethat x- y(d) implies 
x- y (/). GREEN shows that d *I in the free semigroup on six symbols 
and he examines the interrelations of r, l, d, I in the presence of various 
minimum conditions. He also gives the following form of Theorem 4.3. 
Corollary 2: if x - x2 (l 1\ r), the l 1\ r-class ol x is a group. 

Let S be a semigroup with identity 1. If P, Q are the r-class and 
l-class respecti vely of I in S, then the d-class oi I is Q P Moreover: (I) P 
has an identity; (2) if xz = y z for x, y, z in P, then x = y. CLIFFORD [I7I] 
calls S d-simple if and only if S = Q P. Necessary and sufficient condi
tions that S be d-simple and that every two idempotents of S commute 
are that P satisfy (1), (2) and also: (3) the intersection of any two 
principalleft ideals of Pis a principal left ideal of P. When (3) holds, 
P possesses an antiisomorphism P-+P-1 upon Q. CLIFFORD gives an 
invariant construction leading from any semigroup P, subject to (I), 
(2), (3), to a "quotient" d-simple semigroup P-1o P with identity I, in 
which P is the r-class of I. 

If S is any semigroup with identity, consider the simple semigroup 
T = (N, S, N) constructed in (8.6), (8.7), (8.8). It may be verified 
that T is d-simple precisely when S is and that the idempotents of T 
commute precisely when those of S do. The first of these facts, taken 
with Lemrr.a 8.2, suggests that a d-simple semigroup with identity can 
be peeled like an onion. 

The reader should perhaps be reminded at this point that we have 
purposely omitted certain aspects of ideal theory: analytic or topological 
theory, arithmetic theory and also the analogue of the NoETHER theory 
of representation of an ideal as an intersection of primary ideals. 

9. Multiplication semigroups 
With each element x of a groupoid G are associated single-valued 

mappings of G into G, the lelt-multiplication L (x) and the right multiplica-
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tion R(x), defined by 
yL(x) = xy, yR(x) = yx (9.1) 

for all y in G. Each of the identical relations 
L(x) L(y) = L(yx), L(x) R(y) = R(y) L(x), R(x) R(y) = R(xy) 

is, in itself, necessary and sufficient that G be a semigroup. 
The set of all R (x), x in G, generates (under multiplication of 

mappings) a semigroup ESe= ESe(G), called the right multiplication semi
group of G. Similarly, the set of all L (x), x in G, generates the left 
multiplication semigroup ES,t=ES,,(G); and the set of all L(x), R(x), 
x in G, generates the multiplication semigroup ES =ES (G). 

An element x of G is called right nonsingular (left nonsingular) if 
R (x) (if L (x)) is one-to-one upon G. And x is called nonsingular if x is 
both right and left nonsingular. A necessary and sufficient condition 
that G be a quasigroup isthat every element of G be nonsingular. If Gis 
a quasigroup, the R (x) and their inverses R (x)- 1 generate the right 
multiplication group m1e= m1e(G) of G. The left multiplication group 
m1.t = m1.t (G) and the multiplication group m1 = m1 (G) are similarly 
defined. 

T. EvANS [83] pointed out that, if G is a free loop, m1e and m1, are 
free groups. The converse is false. 

In an early paper SuSKEVIc [110] studied quasigroups whose right 
multiplications R (x) form a group. Such a quasigroup is isomorphic to a 
quasigroup (G, o) obtained from a group (G, ·) by the definition 
xo y = [(x0- 1) y J 8 where 8 is an arbitrary but fixed permutation of G. 
If both the right multiplications and the left multiplications of a quasi
group form groups, the quasigroup is a group. More recently 
GARDASCHNJKOFF [196] has studied groupoids whose right multiplications 
form a semigroup. 
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111. Isotopy 

1. Isotopy of groupoids 

Let (G, ·) and (H, o) be two groupoids. An ordered triple (cx, ß, y) 
of one-to-one mappings cx, ß, y of G upon H is called an isotopism of 
(G, ·) upon (H, o), and (G, ·) is said tobe isotopic to or an isotope of (H, o), 
provided 

(xcx)o(y ß) = (x · y) y {1.1) 

for all x, y in G. Isotopy of groupoids is clearly an equivalence relation. 
Moreover, given the groupoid (G, ·) and one-to-one mappings cx, ß, y 
of G upon a set H, (1.1) defines a groupoid (H, o) isotopic to (G, ·). 
The element y is right nonsingular (Chapter II, § 9) in (G, ·) if and 
only if y ß is right nonsingular in (H, o); and similarly for left non
singularity. In particular, every isotope of a quasigroup is a quasigroup. 

The concept of isotopy seems very old. In the study of latin squares 
(which were known to BACHET and certainly predate Euler's problern of 
the 36 officers) the concept is so natural as to creep in unnoticed; and 
latin squares are simply the multiplication tables of finite quasigroups. 
lt was consciously applied by ScHÖNHART [108], BAER [348], and 
independently by ALBERT [54]. ALBERT earlier bad borrowed the 
concept from topology for application to linear algebras; in the latter 
theory it has virtually been forgotten except for applications to the 
theory of projective planes. 

An isotopism (cx, ß, IG) of (G, ·) upon (G, *) is called a principal 
isotopism, and (G, *) is called a principal isotope of (G, ·). Principal 
isotopy is also an equivalence relation. Given (1.1), define (G, *) by 
(x ycx- 1) • (y y ß-1) = x * y. Then (G, *) is a principal isotope of (G, ·) 
and, by (1.1) with x, y replaced by x ycx-1, y y ß-1 respectively, 
(x y) o (y y) = (x * y) y. Thus every isotope of a groupoid is isomorphic 
to a principal isotope of the groupoid. 

Let a be a left nonsingular and b be a right nonsingular element of 
(G, ·). Then the principal isotope (G, o) of (G, ·), defined in either of the 
following ways (for notation see II.9, 1.2): 

xoy = xR(b)-1 · yL(a)-1, xoy = (xjb) · (a\y), (1.2) 

has identity element a · b. Conversely, if (G, o) is a principal isotope 
defined by xoy = (xcx) · (y ß) and if (G, o) has identity element e, set 
a = ecx, b = e ß. Since x = xoe = (xcx) · b for all x in G, bis right non
singular in (G, ·) and cx = R (b)-1 ; similarly, a is left nonsingular in 
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(G, ·) and ß = L (a)-1• Hence necessary and sufficient conditions that 
a groupoid possess an isotope with an identity element are that the groupoid 
have a right nonsingular element and a left nonsingular element. In parti
cular, every quasigroup is isotopic to a loop. 

2. Invariants of principal isotopy 

We list without formal proof some invariants of principal isotopy: 
(i) lf (G, o) is an isotope with identity of the semigroup (G, ·), then (G, o) 

is isomorphic to (G, ·). (Assuming (1.2), the mapping L(a) R(b): 
x --+ a · x · b, is an isomorphism of (G, ·) upon (G, o).) 

(ii) Every isotope of a quasigroup is a quasigroup. (Previously noted.) 
(iii) lf the loop (G, o) is isotopic to the loop (G, ·), the left, right and 

two-sided multiplication groups of (G, o) are respectively isomorphic. 
(They are respectively identical for principal isotopes; as a containing 
relation in one direction, (1.2) gives R0 (y) = R(b)-1 R(a\y), L 0 (x) 
= L (a)- 1 L (xjb).) 

The above are in ALBERT [54]. The following definitions, with 
"associator" instead of "nucleus", are in BRUCK [70]: If (G, ·) is a loop, 
the left nucleus, N;., of (G, ·) is the set of all a in G such that (a · x) · y 
= a · (x · y) for all x, y of G. The middle nucleus, N,_.. of (G, ·) is similarly 
defined in terms of (x · a) · y = x · (a · y); and the right nucleus, Ne• 
in terms of (x · y) · a = x · (y · a). The nucleus, N, is defined by 
N = N;. n N 1J\ NQ. The centre, Z, of (G, ·), is the set of all a in N such 
that a · x = x · a for all x in G. The four nuclei are subgroups of (G, ·) 
and the centre is an abelian subgroup. 

(iv) If the loop (G, o) is isotopic to the loop (G, ·), the left, middle and 
right nuclei of (G, ·) are respectively isomorphic to those of (G, o) and the 
centre of (G, ·) is isomorphic to that of (G, o). (Assuming (1.2), the first 
three isomorphisms are induced respectively by R(a) R(b), L(a) R(b), 
L (b) L (a); they coincide on the centre of (G, ·).) 

(v) lf the loop (G, o) is isotopic to the loop (G, ·) and if 0 is a homo
morphism of (G, ·) upon a loop (H, ·), then 0 induces a homomorphism of 
(G, o) upon a loop (H, o). (Assuming (1.2), define (H, o) by (xO)o(yO) 
= (xO) R(b0)-1. (yO) L(a0)-1.) 

An unsolved problern is this: Find necessary and sufficient conditions 
upon the loop G in order that every loop isotopic to G be isomorphic to G. 
Associativity is sufficient, by (i), but is not necessary, since the multiplica
tive loop of any alternativedivisionring has the property. 

In another direction, certain properties (P) are known such that 
isotopic loops with property (P) are isomorphic; although, in some cases, 
not every loop-isotope of a loop with property (P) has property (P). 
Associativity (by (i)) and the property of the preceding paragraph are 
examples. As another: 
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(vi) I satapic free loaps are isamarphic. (EvANS [83]; this follows 
from (v) and (i), which show that the ranks must be equal.) 

A loop is called Maufang if it satisfies the identity (xy) (z x) = (x (yz))x. 
(vii) I satapic cammutative Maufang laaps are isamarphic. (This can 

be deduced from Chapter VII, § 5.) 
A loop is called tatally symmetric if it is commutative and satisfies 

the identity x(xy) = y. (Such loops are essentially Steiner triple 
systems.) 

(viii) Isatapic tatally symmetric laaps are isamarphic. (BRUCK [67].) 
The last two items are illuminated by the following: 

(ix) A necessary and sufficient canditian that every laap isatapic ta the 
laap G be cammutative is that G be an abelian graup. (BAER [348], 
ALBERT [54].) 

(x) Every laap isatapic ta a Maufang laap is Maufang. (Implicit in 
BoL [66]; proved in BRUCK [67], [70]; see also Chapter VII.) 

3. Non-invariants of principal isotopy 

Certain non-invariants of principal isotopy may be illustratcd in 
terms of the following loops (G, ·), (G, a), where G consists of the first 
six natural numbers: 

~~ ~~ 
1 1 2 3 4 5 6 21234561 
2 2 1 6 3 4 5 3,326415 
3345261 4,462153 
4 4 5 1 6 2 3 5,541236 

5 5 6 4 1 3 2 6:615324 
6 6 3 2 5 1 4 1 1 5 3 6 4 2 

In terms of the multiplications of (G, ·), xay = xR(3)-1. yL(6)-1 

for all x, y of G. Hence (G, ·), (G, a) are principal isotopes of each other. 
(i) Cammutativity. (G, a) is commutative; (G, ·) is not. 
(ii) Number af generatars. (G, ·) can be generated by any one of 

3, 4, 5, 6. No single element generates (G, a), but any two of 3, 4, 5, 6, 1 
will generate (G, a). 

(iii) Autamarphism graup. The automorphism group of (G, ·) has 
order 4 and is generated by the permutation (3456). That of (G, a) has 
order 20 and is generated by (34561) and (3465). 

(iv) Freeness. (EvANS [83].) Let (F, ·) be a free loop of rank 1, 
with free generator a. Set b = a · (a · a) and define (F, a) by xay 
= xR(a)-1. yL(b)- 1• Since (G, ·) is generated by 3, there is a unique 
homomorphism (} of (F, ·) upon (G, ·) such that a(} = 3. Since b(} = 6, 
() induces a homomorphism of (F, a) upon (G, a). If (F, a) were free it 
would be isomorphic to (F, ·). But then (G, o) could be generated by a 
single element, a contradiction. Hence (F, a) is not free. Now let (K, ·) 
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be any free loop of positive rank. Without loss of generality we may 
assume that (F, ·) is a subloop of (K, ·). Then the isotope (K, o) of (K;) 
defined by xoy = xR(a)-1. yL(b)- 1 has the non-free loop (F, o) as a 
subloop and therefore is not free. Thus every free loop of positive rank 
possesses a no·n-free loop-isotope. Since no loop is a free quasigroup and 
every quasigroup is isotopic to a loop, a like result holds for quasigroups. 

Other examples, which we omit, show the following, in contrast to 
(iv) of § 2: 

(v) There exist isotopic loops (G, ·), (G, o) suchthat the nucleus of one 
is not isomorphic tothat of the other. 

(vi) There exist a loop (G, ·), a principal loop-isotope (G, o} and a 
homomorphism () of (G, ·) upon a loop such that the kernet of () in (G, ·) 
is not isotopic to the kernet of the homomorphism induced by ()in (G, o). 

Since the contrary to (vi) is stated in ALBERT [54], we should point 
out that (vi) may be deduced from the proof of Theorem SH (ii), p. 311 
of BRUCK [70]. For example, one kernel can be a noncommutative group 
and the other a commutative Moufang loop. 

There seems tobe no example of (v) in the literature. However, the 
following remarks are easily verified: There exists one and (to within 
an isomorphism) only one loop G of order six whose centre has order one 
and whose nucleus has order two. Among the isotopes of G there are 
four non-isomorphic loops with a nucleus of order one. 

4. Isotopy and geometry 

It may be verified that the concept of isotopy introduced in I.4 with 
respect to the quasigroups and loops defined by a 3-net is identical with 
the present concept. Hence a property holding for a complete dass of 
isotopic loops can be expressed as a geometric property of a 3-net and 
conversely. We shall mention some of the best known examples. For 
more details see BLASCHKE und BoL, Geometrie der Gewebe and 
G. PICKERT, Projektive Ebenen. 

Let G be a loop and N be the 3-net defined by G. The requirement 
that G (and hence all its loop-isotopes) be associative corresponds in N 
to the closure of a "parallelogram" known as the Reidemeister figure. 
The requirement that G and all its loop-isotopes be commutative (or, 
equivalently, that G be an abelian group) corresponds in N to the 
closure of a "double-triangle" known as the Thomsen triangle. The 
requirement that every loop (H, o) isotopic to G should satisfy the 
identity (xox)ox = xo(xox) is equivalent in N to the closure of a 
certain "hexagon"; the corresponding nets are called hexagonal (in 
German: Sechseckgcwebe). A net N is hexagonal if and only if each 
of its loops is power-associative in the sense that every element of the 
loop generates an abelian subgroup. The requirement that G and all its 
loop-isotopes have the inverse property or, equivalently, that G and all 
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its loop-isotopes be di-associative or, equivalently, that G be Moufang 
(for definitions of these terms, see VII) corresponds in N to the closure 
of three Moufang figures. In each case one gets a pretty diagram by 
representing the three line-classes of the net as the parallels to three 
sides of a plane triangle, using the geometric definition of the loop 
operation which is indicated in I.4 and imposing the algebraic condition 
in question. 

In the theory of projective planes it is of interest to know under 
what circumstances all coordinate rings of a projective plane are iso
morphic. As a closely allied question: Under what circumstances are 
alt the loops of a 3-net isomorphic? The latter is equivalent to a question 
previously raised: What loops have the property that all their loop
isotopes are isomor.phic ? 

Since PICKERT's book is so recent, we have largely excluded geometric 
Iiterature from the bibliography. A few related papers are: MouFANG [91 ], 
BOL [66], BAER [348], BATES [63], PAIGE [96], HUGHES [352]. Many 
others will be found in PICKERT. 

IV. Homomorphism Theory of Loops 

1. Normal subloops 

The kernet, H, of a homomorphism 0 of a loop G upon a loop K with 
identity element 1, is the set of allhin G such tha~ hO = 1. If x, y are 
in G, there exist unique elements a, b of G suchthat y = xa = bx. Then 
yO = (xO) (aO) = (bO) (xO), so the equations yO = xO, aO = 1, bO = 1 
are equivalent. The case xO = 1 shows that H is a subloop of G. 
Moreover xH = H x for all x in G. If x, y, zarein G, there exist unique 
elements p, q, r, s of G suchthat z = (px)y = q(xy) = x(yr) = (xy)s; 
and z 0 = [(p 0) (x 0)] (y 0) = (q 0) [(x 0) (y 0)] = (x 0) [(y 0) (r 0)] 
= [(x 0) (y 0)] (s 0). Therefore the equations zO = (xO) (yO), pO = 1, 
qO=l, rO=l, sO=l, are equivalent. That is, (Hx)y=H(xy) 
= x(Hy) = (xy)H for all x, y of G, and we have 

xH=Hx, (Hx)y=H(xy), y(xH)=(yx)H (1.1) 

for all x, y of G. A subloop HofGwhich satisfies (1.1} is called anormal 
subloop of G. From (1.1}, (xH)y = (H x)y = H(xy) = (xy)H = x(yH) 
= x(Hy), so (1.1) implies 

x~~=~~y n~ 

forall x, y of G. If cis acentreelement of G, then cx = xc, (cx)y=c(xy), 
y(xc) = (yx)c for all x, y of G. This gives: 

Lemma 1.1. Any subgroup of the centre of a loop G is a normal sub
loop of G. 
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Now Iet H be any normal subloop of a loop G with identity element 1. 
Since 1 EH, x EH x for every x. If y EH x, then y = hx for some hin H 
and hence Hy = H(hx) = (Hh)x = Hx. That is: 

yEHx<-->Hy=Hx. (1.3) 

Consequently, the right cosets H x of G modulo H partition G. By (1.2), 
(l.l),forallx, yinG, (Hx) (Hy) = [(Hx)H]y = [H(Hx)]y = [(HH)x]y 
= (H x)y = H(xy), or 

(Hx) (Hy) = H(xy). (1.4) 

By (1.3), the mapping q; of G, defined by xq; = H x, is a single-valued 
mapping of G upon the set G/H of right cosets which maps each right 
coset into itself. By (1.4), q; is a homomorphism of G upon a groupoid 
GjH. The identity element of GjH is the coset H. If H (xy) = H (xz), 
then x(Hy) = x(yH) = (xy)H = H(xy) = H(xz) = x(Hz) and hence 
Hy =Hz. If H(yx) = H(zx) then (Hy)x = H(yx) = H(zx) = (Hz)x 
and hence H y =Hz. Therefore G/H is a cancellation groupoid. The 
equations (Ha) (H x) = H b, (H y) (Ha) = H b have the (necessarily 
unique) solutions Hx, Hy defined by ax = b, ya = b. Therefore G!H 
is a loop, called the quotient loop of G modulo H. If H is the kernel of a 
homomorphism 0 of G upon a loop GO, the mapping 'IJl of GjH, defined by 
(H x)'IJl = xO, is an isomorphism (induced by 0) of GjH .upon GO. To 
sum up: 

Theorem 1.1. If His a normal subloop of the loop G, then H defines a 
natural homomorphism x--+H x of G upon the quotient loop GjH. If His 
the kernet of a homomorphism 0 of G upon a loop G 0, then 0 induces a 
natural isomorphism H x--+xO of G/H upon GO. 

Denote by <:m = <:m (G) the multiplication group of the loop G. The 
inner mapping group S = S (G) of G is the subgroup of M generated by 
the mappings R (x, y), L (x, y), T (x), for all x, y of G, where 

R(x, y) = R(x) R(y) R(xy)-1, L(x, y) = L(x) L(y) L(yx)-1, (1.5) 
T(x) = R(x) L(x)-1. 

In view of (1.1) we see that a subloop Hof Gis normal in G if and only 
if H'O = H. As an immediate consequence: 

Theorem 1.2. The intersection of any non-empty set of normal subloops 
of the loop Gisanormal subloop of G. 

The inner wapping group has the following characterization: 
Lemma 1.2. The inner mapping group S of the loop G is the set of alt 

cx in the multiplication group m = m (G) such that 1 cx = 1. 
Proof. Since each generator ß of S satisfies 1 ß = I, then I S = 1. 

Let ~ be the set of all cx in m such that cx E SR (I cx). Since 
'OR(x) = 'OT(x) L(x) = 'OL(x), cx is in~ if and only if cx E SL(1cx). 
If cx is in ~. write 1 cx = t. Then cx = 0 R (t) for 0 in S. Let x be 
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any element of G. Since lcxR(x) = tx and cxR(x) = OR(t, x) R(tx) E 6R(tx), 
then ocR (x) E ~- Since 1 ocR (x)-1 = s, where s x = t, and since 

cxR(x)-1= OR(t) R(x)-1R(s)-1R(s) = OR(s,x)-1R(s) E 6R(s), thenocR(x)-1 E ~

Since 1 ocL (x) = xt and ocL(x) = OR(t) L(x) = OT(t) L(t, x) L(xt) E 6L(xt) 
then ocL (x) E ~- Since 1 ocL (x)-1 = u where t = xu, and since 

ocL(x)-1= OR(t) L(x)-1= OT(t) L(t) L(x)-1 L(u)-1 L(u) = OT(t)L(u,x)-1L(u) E 

E 6L(u), then ocL(x)-1E ~- Therefore ~911(~ and hence ~ = 911. 

Consequently 1 oc = 1, for oc in 911, if and only if oc E 6 R (1 oc) = 6. 

Lemma 1.3. Let 0 be a homomorphism, with kernet H, of the loop G 
upon the loop GO. Then 0 induces a homomorphism f{J of 911(G) upon 911 (GO) 

suchthat ocO = O(ocf{J) for alt oc in 911(G). In particular, if H• is the set 
of alt ocin911=911(G) suchthat H(xoc) = H x forevery x in G, then 911(GjH) 
is isomorphic to 911(G)!H• and 6(G!H) is t:somorphic to 6 (G)/(H• 1\6 (G)). 

Proof. lf xy = z in G then (xO) (yO) = zO in GO. Hence R(y)O 
= OR(yO), R(y)-10 = OR(y0)-1, L(x)O = OL(xO), L(x)-10 = OL(x0)-1• 

Therefore, if oc= P(x1) P(x2) •.. P(x,), where P(x;) is one of R(x,)±1, 

L(x1)±1 for each i, ~.0 = OP(x10) P(x20) ... P(x,O). If, further, oc = Ia. 
then y 0 = y oc 0 = y 0 P ( x1 0) . . . P ( x,O) for each y in G and hence 

P ( x1 0) . . . P ( x,O) = I ao· Therefore there is a well-defined homomorphism 

f{J of 911 = 911 (G) upon 911 (GO) suchthat R (x) f{J = R (xO), L (x) f{J = L (xO) 
for all x in G and ocO = O(ocf{J) for all oc in 911(G). The kernel of f{J is the 

set of all oc in 911 suchthat ocO = 0; that is, (xoc)O = x(} for every x in G. 
In case 0 is the natural homomorphism of G upon G/H, the kernel 

of f{J is the H* of Lemma 1.3, and the kernel of the homomorphism 

induced by f{J on 6 = 6 ( G) is 6 1\ H*. In view of Theorem 1.1, this 

completes the proof of Lemma 1.3. 

ALBERT [54] sets up a correspondence between the normal subloops 

of a loop G and certain normal subgroups of 911 = 911(G). On the one 

band, to a normal subloop H of G he makes correspond the normal 

subgroup H* of 911, defined in Lemma 1.3. On the other band, if m is 

any normal subgroup of 911, the sets xm, x E G, partition G and(xm) (ym) 

= (xm) R(ym) = [xR(ym)]m = (x · ym)m = ymL(x)m = yL(x)mm 
= (xy)m. Hence the mapping (} defined by xO = xm is a homomorphism 

of G upon a groupoid, say Gjm. If (xy)m = (xz)m, then x(ym) = ymL (x) 

= yL(x)m = (xy)m = (xz)m = x(zm), so ym = zm. Similarly, if 

(y x)m = (z x)m then ym = xm. Hence Gjm is a loop and the kernel, 

1m, of 0, is a normal subloop of G. Thus every normal subgroup m of 911 

determines a normal subloop 1m of G. If 1m = H then H X = 1 mR (x) 

= 1R(x)m = xm and H(xm) = H(H x) = H x for every x in G, so 

m c H*. Therefore we may define a closure Operation (*) on the normal 

subgroups of 911, by the definition m*= (Im)*. ALBERT develops 

normality theory for G entirely in terms of 911. He makes one slip, in 

dealing with isotopy, which is sufficiently indicated by III.3 (vi). 
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The rest of this section, and the next two, combine B.-\ER [57], 
BRUCK [70]. 

A non-empty subset S of a loop G is called self-conjugate in G if 
S SC S (and hence S S = 5) where S = S (G) is the inner mapping 
group. Each element x of G determines a self-conjugate subset xS, 
called the conjugate class of x in G. 

Lemma 1.4. I/His a subloop of the loop G, let K be the set of all k in H 
such that kS C H. Then K is the Zargest normal subloop of G contained 
in H. 

Corollary. Every self-conjugate subset of G generates a normal sub
loop of G. 

Proof. Since I E K and (KS) SC H, K is a self-conjugate subset of G. 
Let k E K, cx ES. Then R(k) cx E SR(kcx), so (Kk) cx = KR(k) cx C KSR(kcx) C 
H · kcx = H. Therefore KKCK. If IR(k)-1cx = s then R(k)-1cx = ßR(s) 
for ß ES. Hence cx = R(k) ßR(s) and I= Icx = (kß) · s E Hs, so s EH. 
Therefore [KR(k)-1]cx=Kß·s(H. Hence KR(k)-1 CK. Similarly 
K L (k)-1 C K, so K is a subloop of G. Since K SC K, K is also normal. 
lf N isanormal subloop of G contained in H, NSCNCH, so Ne K. 
lf H is generated by a self-conjugate subset S of G, then SB C SC H, 
so 5 ( K and hence K = H. This completes the proof of Lemma I.4 
and Corollary. 

Theorem 1.3. I f H is a subloop generated by a non-empty set of normal 
subloops of the loop G then His a normal subloop of G, called the union 
of the given normal subloops. 

Proof. The set-union of the given normal subloops is self-conjugate 
and generates H. 

Lemma 1.5. The set of alt self-conjugate subsets of a loop G is a 
commutative semigroup under the product operation AB. 

Proof. Let A, B, C be self-conjugate subsets of G. If a E A, bEB, 
then ab= b[aT(b)] E bA. Hence ABC BA CA B, AB= BA. If also 
cEC, then (ab)c=[aR(b,c)](bc)EA(bc). Hence (AB)CCA(BC). 
Similarly, A (BC) C (AB) C, so (AB) C = A (BC). Finally, (AB) S 
= AR(B)SC A SR(BS) CA B. 

If 0 is a homomorphism of the loop G upon the loop G' and if 5 is a 
non-empty subset of G', the inverse image, S 0-1, of S is the set of all 
X in G such that xe E 5. In particular, I 0-1 is the kerne! of e. 

Lemma 1.6. Let 0 be a homomorphism, with kernet K, of a loop G 
upon a loop G'. Then: 

(i) If S is a non-empty subset of G, (50)0-1 = SK = KS. 
(ii) If H' is a (normal) subloop of G', H'0-1 is a (normal) subloop 

of G. 
(iii) If His a (normal) subloop of G, HO is a (normal) subloop of G' 

and HK= KH is a (normal) subloop of G. 
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Proof. (i) x() = s() if and only if x E sK = K s. 

(ii) Write H = H'0-1• If xy = z in G and two of x, y, zarein H then 

(xO) (yO) = z() in G' and two, hence all, of xO, y(), z() are in H'. Thus 

all of x, y, zarein H. Since 1 E 1 ()-1 C H'0-1= H, His a subloop of G. 

If H' is normal in G', H'ö(G)() = H''ö(G')CH', so H'ö(G)CH, His 

normal in G. · 

(iii) Write H' = H 0. If x' y' = z' in G' and two of x', y', z' are in H' 

we pick the corresponding two of x, y, z in H to satisfy the appropriate 

equations from (*) xO = x', y() = y', z(} = z', and define the third by 

xy = z. Then all three of (*) hold. Since H' contains 1 () = 1, H' is a 

subloop of G'. If His normalin G, then H''ö (G') = (H'ö (G))OC HO= H', 

so H' is normal in G'. Moreover, H'()-1 = (H 0) ()-1 = HK = K H, by 

(i), and the concluding statement follows by (ii). 

Theorem 1.4. The set of all normal subloops of the loop G is a com

mutative semigroup under the product operation AB. 

Proof. By Lemmas 1.5, 1.6 (iii). 

Theorem 1.5. Let H, K be subloops of the loop G such that K is normal 

in the subloop {H, K} generated by Hand K. Then: 

(i) {H, K} =HK= KH. 

(ii) H 1\ K is a normal subloop of H. 

(iii) The identity mapping of H induces an isomorphism of H KjK 

upon H/(H nK). 
Proof. Let() be a homomorphism with kernel K of {H,K} upon a loop. 

Then (H0)0-1 = HK= KH is a subloop of {H, K} containing Hand K, 

so {H, K} =HK. Moreover, (HK)()= HO, so the idet\tity mapping 

induces the isomorphism hK -hO, h EH, of (H K)/K upon HO. Also () 

induces a homomorphism, with kernel H 1\ K, of H upon HO, and the 

identity mapping induces the isomorphism h (H 1\ K)-h () of H j(H n K) 

upon HO. Hence the mapping hK _,. h(H 1\ K) is an isomorphism of 

HK!K upon H!H n K. 

The inner mapping group tJ (G) of a loop G has some of the functions 

of the inner automorphism group of a group - and reduces to the latter 

when G is a group. This suggests the definition: an inner automorphism 

of a loop Gis an automorphism contained in tJ (G). The question remains 

open as to when tJ (G) consists entirely of automorphisms. A necessary 

condition isthat G be power-associative; i.e., that each elementgenerate 

an abelian subgroup. Forthis and other results see BRUCK and PAIGE 

[76]; also Chapter VII below. Marshall ÜSBORN (Pb. D. thesis, Uni

versity of Chicago, 1957; not yet published) has given one of the results 

of ßRUCK and PAIGE (loc. cit.) its definitive form by proving the follow

ing: lf G is a commutative and di-associative loop and if tJ (G) consists 

of automorphisms, then Gis Moufang. 
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2. Loops with operators 

By an operator-loop (G, D) we mean a pair consisting of a loop G 
and a set Q (possibly empty) of endomorphisms of G. An D-subloop H 
of the operator-loop (G, Q) is a subloop suchthat H Qc H. 

A "universe" ll of operator-loops (G, Q) may be defined recursively 
as follows. W e start from a loop M and a set Q of endomorphisms of M 
and assert the following: 

(i) (M, Q) is in ll. 
(ii) If (G, Q) is in ll and if H is an D-subloop of G, each w in Q 

induces an endomorphism of H which we also denote by w. Then 
(H, Q) is in ll. 

(iii) If (G, Q) is in ll and if N isanormal D-subloop of G, each w in 
Q induces an endomorphism N x-+N(xw) of G/N which we also denote 
by w: (Nx)w = N(xw). Then (G/N, Q) is in ll. 

(iv) (G, Q) is in ll only on the basis of (i), (ii), (iii). 

An D-homomorphism 0 of the operator loop (G, Q) upon the operator
loop (H, Q) is a homomorphism of G upon H such that Ow =wO for 
each winD. That is, xOw = xwO for all x in G, winD. 

Lemma 2.1. Let 0 be an D-homomorphism with kernet K, of the operator 
loop (G, D) upon the operator loop (G', D). Then: 

(i) If H' is an ( a normal) D-subloop of G', H'0-1 is an ( a normal} 
D-subloop of G. 

(ii) I f H is an ( a normal) D-subloop of G, H 0 is an ( a normal) 
Q-subloop of G' and HK is an ( a normal) D-subloop of G. 

Proof. (i) If H = H'0-1 then (HQ) 0 = (HO) Q = H' Q C H', so 
HDCH. 

(ii) (H 0) Q = (H Q) 0 C H 0. In view of Lemma 1.6, this completes 
the proof of Lemma 2.1. 

Lemma 2.2. (Dedekind's Law). If A, B, C are subloops of the loop G 
with A C B, then A ( B n C) = B n A C. 

Proof. If x E BnAC then x=b=ac for a,b,c in A,B,C respectively. 
Since AC B, we deduce that c E B. Thus c E B n C and x = ac E A (B n C). 
Hence B n AC CA (B n C) CA B n AC C B n AC, proving Lemma 2.2. 

Lemma 2.3. Let 0 be an D-homomorphism, with kernet K, of the 
operator loop (G, Q) upon the operator loop (GO, D). Let A be a normal 
D-subloop of the D-subloop B of G. Then: 

(i) A 0 is a normal D-subloop of B 0. 
(ii) A (K n B) isanormal D-subloop of B. 
(iii) 0 induces an D-isomorphism of B/(A (K n B)) upon BO/A 0. 
(iv) K A is a normal D-subloop of the D-subloop K B. 
(v) 0 induces an D-isomorphism of (K B)/(K A) upon B 0/ A 0. 
(vi) (K B)/(KA) is D-isomorphic to B/(A (K n B)). 
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Proof. (i) By Lemma 2.1 (i) with G replaced by B. (ii) Define the 
mapping q; of B by b q; = (bO) (A 0). Then q; is an .Q-homomorphism 
of B upon BO/A 0 and 1 q;-1 = B n (A 0) 0-1 = B n A K. By Lemma 2.2, 
B n A K = A (B n K). Hence A (B n K) is a normal .Q-subloop of B 
(by Lemma 2.1 (i)). (iii) The natural isomorphism oc: (b (A (B n K)) oc 
= b q; = (bO) (A 0), is an .Q-isomorphism of Bj(A (B n K)) upon BOi A 0. 
(iv) By Lemma 2.1 (i), (A 0) 0-1 = K A is a normal .Q-subloop of ( B 0) 0-1 

= K B. (v) Define 1fJ on K B by X1fJ = (xO) ((K A) 0) = (xO) (A 0). 
Then 1p is an .Q-homomorphism of K B upon B 0 I A 0 with kernel K A, 
and ß: (b (K A)) ß = (bO) (A 0), is an .Q-isomorphism of (K B)j(K A) 
upon (BO)/A 0. (vi) oc-1 is an .Q-isomorphism. Hence ßoc-1 is an .Q-iso
morphism of (K B)j(K A) upon Bj(A (K n B)). 

Theorem 2.1. (Zassenhaus' Lemma.) Let (G, .Q) be an operator loop. 
Let K be a normal .Q-subloop of the .Q-subloop U of G and let L be a normal 
.Q-subloop of the .Q-subloop V of G. Then 

(K(Un V))/(K(UnL)) and (L(Un V))!(L(VnK)) 

are .Q-isomorphic .Q-loops. 

Proof. Clearly A = U n L, B = U n V are .Q-subloops of U. The 
natural homomorphism of V upon V jL induces a homomorphism of B 
with kerne! B nL = A. Therefore Ais normal in B. Hence, by Lem
ma 2.3 (vi) with G replaced by U, (K B)j(KA) is .Q-isomorphic to 
B/(A (K n B)). However, K n B = K nUn V= V n K. Hence 

(i) (K B)j(K (U n L)) and Bj((U n L) (V n K)) are .Q-isomorphic. 
Interchanging U and V, K and L in (i), we get 

(ii) (L B)j(L (V n K)) and Bj(( U n L) (V n K)) are .Q-isomorphic. 

Since the second terms in (i), (ii) are the same, the first are .Q-iso
morphic. Since B = U n V, this completes the proof of Theorem 2.1. 

The set <f of all endomorphisms of a loop G is a semigroup. <f has an 
identity I (the identity automorphism) and a zero, 0, defined by xO = 1 
for all x in G. The centralizer, <r, of a subset .Q of <f, is the set of all 
.Q-endomorphisms of G. If oc, ß E <r, w E .Q, then (ocß)w = ocßw = ocwß 
= wocß = w(ocß), so <r is a subsemigroup of <f, containing I and 0 . 
.Q is said to be irreducible if the only .Q-subloops of G are G and 1. We 
now may state a famous lemma: 

Schur's Lemma. Ij.Q is an irreducible set of endomorphisms of a loop 
G, then the centralizer, <r, of .Q in the semigroup of all endomorphisms of G, 
is a group with zero. 

Proof. Let oc E ~. oc =!= 0. Since 1 oc-1 is an .Q-sub1oop of G distinct 
from G, 1 oc-1 = 1. Hence oc is one-to-one. Since G oc is an .Q-.subloop of G 
distinct from 1, then G oc = G. Therefore oc is an automorphism of G, 
and <r is a group with zero. 
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3. The refinement theorem 
By an .Q-chain 

(3.1) 

of an operator-loop (G, .Q) we mean a finite sequence of .Q-subloops 
G; of G such that G0= G; G, is a normal subloop of G;-1 fori = 1, 2, ... , r, 
and Gr= 1. The integer r is called the length of the chain. The chain is 
called a chiej.Q-chain if each G; is normal in G itself. The .Q-chain 

G = H0 )H1 ) • • • )H,= 1 (3.2) 

is a refinement of the .Q-chain (3.1) provided there exists a one-to-one 
mapping i -+i' of the integers 0, 1, 2, ... , r into the integers 0, 1, 2, ... , s 
such that G; = H;· for i = 0, 1, ... , r. The .Q-chains (3.1), (3.2) are 
isomorphic if r = s and there exists a permutation i-+i' of the integers 
0, 1, 2, ... , r such that the quotient loops G;/Gi+1 and Hi'/H;·+1 are 
.Q-isomorphic for i = 0, ... , r- 1. 

Theorem 3.1. (Schreier Refinement Theorem.) Any two (chief) 
D-chains of the operator-loop (G, .Q) have isomorphic (chief) refinements. 

Proof. Given the chains (3.1), (3.2), define 

G;, 0 = G,_1 , G;.; = G; (G;-1 1\ H1) , 

H0.; = G;-1 , H;.; = H1 (H;- 1 1\ G;) 

for i = 1, 2, ... , r; i = 1, 2, ... , s. Then G;, 8 = G;= Gi+ 1 , 0, Hr.; = HJ 
= H0 ,i+1 and Gr,s= Hr, 8 = 1. Also, by Theorem 2.1 with U = G;-1, 

V= H;-v K = G;, L = H1 ; G;,;-1/G;,; and H;- 1,;/H,,; are .Q-iso
morphic operator loops. Therefore 

G = G1,0) G1,1) • • •) GI,s) G2,1 )" • ·) G2,s (3.3) 

)G3,1)· · ·)Gr,s= 1 
and 

G = H 0,1 )H1,1) · · · )Hr,I )H1,2) · · · )Hr,2 (3.4) 

)H1,3) • · • )Hr,s= 1 

are isomorphic refinements of (3.1}, (3.2) respectively. If (3.1), (3.2) are 
chief, then, by Theorems 1.2, 1.4, so are (3.3}, (3.4). 

A strictly decreasing (chief) .Q-chain which has no strictly decreasing 
(chief) refinement aside from itself is called a (chief) .Q-composition series. 
Every refinement of such a chain may be made into an isomorphic chain 
by suitable deletions. Hence we have, as an immediate consequence of 
Theorem 3.1: 

Theorem 3.2. (Jordan-Hölder Theorem.) lf the operator loop (G, .Q) 
possesses a ( chief) D-composition series, every two ( chief) .Q-composition 
series of (G, .Q) are isomorphic. 

The theory of (descending or ascending) transfinite chains - and, 
more generally, of normal systems-will be deferred until Chapter VI. 
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Theorems 3.1, 3.2 can be carried over to ascending transfinite chains, 
the proofs being essentially unchanged. (See KuRos, Theory of Groups.) 

4. Normal endomorphisms 

The set €5 of all single-valued mappings of the loop G into itself is a 
semigroup under multiplication and a loop under the operation ( +) 
defined by x(O + rp) = (xO) (xrp) for all x in G. The multiplicative 
identity, 1, is the identity mapping of G. The additive identity, 0, 
defined by xO = 1 for all x in G, is the zero endomorphism of G. Wehave 
O(rp + VJ) = Orp + OVJ for all 0, rp, 'P of €5 and (rp + VJ)O = rpO + VJO 
when 0 is an endomorphism of G. We call 0, rp orthogonal if 0 rp = rp 0 = 0. 
We call rp the orthogonal complement of 0 provided 0 + rp = 1, 0 rp = rp 0 = 0 ; 
this implies that 0 = 0 · 1 = 02+ 0 rp = 02• Thus a necessary (but not 
snfficient~ condition that 0 have an orthogonal complement is that 0 
be idempotent. lf 0 is an idempotent endomorphism and if 0 + rp = 1, 
then 0 = 0 · 1 = 0 + 0 rp and 0 = 1 · 0 = 0 + rp 0, so rp is the orthogonal 
complement of 0. Moreover, rp = rp · 1 = rpO + rp2 = rp2, but rp may not 
be an endomorphism. However, if rp is also an endomorphism and if 
'P + 0 = 1, then 'P 0 = 0 and 'P rp = (VJ + 0) rp = rp, so 'P = 'P (0 + rp) = rp. 
Thus: i/ an endomorphism 0 has an orthogonal complement rp which is an 
endomorphism, then 0 is the orthogonal complement of rp. An element cx of €5 
will be called centralizing if Gcx is contained in the centre Z of G. 

A loop word W,. = W,. (X1, ••• , X,.) is an element of the free loop L,. 
with free generators X1 , •.. , X,.. (Compare 1.3.) A loop word W,. will be 
called purely non-abelian if, in each loop G, W,.(c1 x1, c2 x2, ••• , c,.x,.) 
= Wn (xv x2, ••• , x,.) for all X; in G and C; in the centre of G. And W,. 
will be called normalized if W,. = 1 in each case that an X; is replaced by 1. 
An endomorphism 0 of a loop G will be called a normal endomorphism 
of G provided 

W,.(xvx2, ••• ,x,.)O = W,.(x1 0,x2, ••• ,x,.) = W,.(x1,x2 0, ... ,x,.) (4.1) 

= ··· = W,.(xvx2, ••• ,x,.O) 

for each choice of a positive integer n, a normalized purely non-abelian 
word W,., and elements x1, x2, ••• , x,. of G. [lf W,. is normalized purely 
non-abelian and if F,. (Xv ... , X,.) = W,. (X1·, ••• , Xn·) for a permutation 
i ~ i' of 1, 2, ... , n, then F,. is also normalized purely non-abelian. 
Hence (4.1) can be replaced by W,. (xv ... , x,.) 0 = W,. (x1 0, ... , x").] 
By a projection of G we mean an idempotent normal endomorphism of G. 

As a direct consequence of the definition, every centralizing endo
morphism of a loop G is normal. 

Lemma 4.1. Let m be the set of allnormal endomorphisms of a loop G 
with commutator-associator subloop G'. Then m is a multiplicative semi
group containing 0 and l. M oreover: 

(i) I/ 0 is in m and 0-1 exists, then 0-1 is in m. 
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(ii) Each ()in m maps normal subloops of G upon normal subloops of G 
and centre elements upon centre elements. Indeed, each () commutes with 
every inner mapping of G. 

(iii) The restriction of m to G' is a commutative semigroup. That is, 
m maps G' into itself and 

a() q; = a q;() 

far every a in G' and all (), q; in m. M oreover, 

a()a= a() 

for every a in G', () in m. 
(iv) . A necessary and sul/icient condition that the element () of m be 

centralizing is that G' () = I. 
(v) Let () be in m and let () + A. = flfor single-valued mappings A., fl of G 

into G such that A,() is centralizing. Then: 

(a) () + A. = A. + () 
(b) Both or neither of A., fl is an endomorphism of G. 

(c) Both or neither of A., fl is in m. 
(vi) Let () be in m and let A., fl be single-valued mappings of G into G 

such that A.() or fl() is centralizing. Then (() + A.) + fl = () + (A. + fl), 
(A. + ()) + fl = A. + (() + fl), (A. + /-l) + () = A. + (fl + ()). 

(vii) A necessary and sul/icient condition that the endomorphism () of 
G have an orthogonal complement which is an endomorphism of G is that () 
be a projection of G. 

Corollary 1. The normal automorphisms of the loop G form a multi
plicative group. 

Corollary 2. The centralizing endomorphisms of the loop G form an 
ideal in the multiplicative semigroup m of all normal endomorphisms of G 
and form an additive abelian group which is part of the centre of the additive 
loop of all single-valued mappings of G into G. They also form a ring. 

Proof. Corollary I is a consequence of (i); Corollary 2. of (ii)-(vii). 
We examine each of (i)-(vii) in turn. 

(i) If W,. is normalized purely non-abelian and () is a normal auto
morphism of G, 

W,. (x1 ()- 1, x2, ••• , x,.) = W,. (x1 ()- 1, x2, ••• , x,.) ()()- 1 

= W,.(x1()-1(), x2, ... , x,.)()-1 

= W,. (x1, x2, ••• , x,.) ()-1 

for all xi in G. This is enough to establish (4.I) for ()-1• 

(ii) The loop words A2, Ba, Ca, defined by 

XY= Y[X·A 2 (X, Y)], 

(XY)Z = [X·Ba(X, Y,Z)] (YZ), Z(YX) = (ZY) [X·Ca(X, Y,Z)], 
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are normalized and purely non-abelian. Moreover, if T (y), R (y, z), 
L (y, z) .are the generators, defined by {1.5), of the inner mapping group 
8 = 8 (G), then 

xT(y) = x · A 2 (x, y), 

xR(y, z) = x · B3 (x, y, z), xL(y, z) = x · C3 (x, y, z) 

for all X, y,z in G. If 0 is in m, X T (y) 0= [x· A2 (x, y)] 0= (xO) [A2(x, y) 0] 
= (xO) · A2(x0, y) = xOT(y). Hence T(y)O = OT(y) for every y in G. 
Similarly, ocO = Ooc for each generator oc of 8 and hence for every element 
oc of 8. In particular, if Hisanormal subloop of G, (H 0) 8 = (H 8) 0 C H 0, 
showing that the subloop H 0 is normal in G. If c is in the centre of G, 
(cO) 8 = (eS) 0 = cO, so cO is in the centre also. 

(iii) The commutator-associator subloop G' of G (cf. 1.2) is generated 
by the commutators (x, y) and associators (x, y, z), defined by 

xy = (yx) (x, y), (xy)z = [x(yz)] (x, y, z), (4.2) 

for all x, y, z of G. Since (X, Y) and (X, Y, Z) are normalized purely 
non-abelian words, each 0 in m satisfies ' 

(x, y) 0 = (xO, y) = (x, yO) , (4.3) 

(x, y, z) 0 = (xO, y, z) = (x, y~, z) = (x, y, zO) (4.4) 

for all X, y, z in G. If 0, q; are in m, (x, y) 0 q; = (xO, y) q; = (xO, y q;) 
=(x,yq;)O=(x,y)q;O and, similarly, (x,y,z)Oq;=(xO,yq;,z)=(x,y,z)q;O. 
Moreover, (x, y)() = (xO, yO), since () is an endomorphism, and (x(), y()) 
= (x, y) 02, since 0 is normal. Hence (x, y) 0 = (x, y) 02 = (x, y) 03 and, 
similarly, (x, y, z)O = (xO, yO, zO) = (x, y, z)03. Since the commutators 
and associators generate G', we have a 0 q; = a q; 0 and a 0 = a 03 for 
every a in G'. 

(iv) We note that an element c of Gis in Z if and only if (c, x) = (c, x, y) 
= (x, c, y) = (x, y, c) = 1 for all x, y in G. Therefore, by (4.3), (4.4), 
the element 0 of m is centralizing if and only if (x, y) 0 = (x, y, z) 0 = 1 
for all x, y, z of G; that is, if and only if G'O = 1. 

(v) (a) Since 0 is in m and A.O is centralizing, (xO, xA.) = (x, xA.O) = 1 
for all x in G. Then x(O + A.) = xO · xA. = (xJ. · xO) (xO, xA.) = xA. · xO 
= x(A. + 0) for every X in G, so 0 + ;. =;. + 0. 

(v) (b) For arbitrary X, y in G, set z = (x 0 . y 0) (xA.. y A.). Since 
(xO, yO, xA. · yA.) = (x, yO, xA.O · y.i.O) = 1, z = xO · [yO · (xA. · yA.)]. 
Since (yO, xA., yÄ) = (y, xA.O, yA.) = 1, z = xO · [(yO · xA.) · yÄ]. Since 
(yO, xA.) = (y, xA.O) = 1, z = xO · [(xÄ · yO) · yA.]. Since (xA., yO, yA.) 
= (xÄ, y, yA.O) = 1, z = xO · [xA. · (yO · yÄ)]. Since (xO, xA., yO · yA.) 
= (x, xA.O, yO · yA.) = 1, z = (xO · xÄ) (yO · yA.). Comparing the first 
and last expressions for z, we have 

(xy)O · (xA. · yA.) = xp, · yp, (4.5) 
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where !-' = 0 + Äo lf Ä is an endomorphism of G, the left band side of 
(4o5) becomes (xy)O · (xy)Ä = (xy}p, and we deduce that !-' is an endo
morphism. lf !-' is an endomorphism of G, the right band side of (4o5) 
becomes (xy) !-' = (xy) 0 · (xy) Ä, and we deduce that Ä is an endo
morphism. 

(v) (c) Assurne that Ä, !-' are endomorphisms. lf W,. is a normalized 
purely non-abelian word, there exists a normalized purely non-abelian 
word F = F n+1 such that 

Wn(xy, z2, ••• , z,.) 

= [W,.(x, z2, ••• , z,.) · W,. (y, z2, ••• , z,.)] · F(x, y, z2, ••• , z,.) 

for all x, y,z2, ••• ,z,. of G. Since F (xO, xÄ,z2,.o.,z,.) = F(x, xÄO,z2, •• o,z,.) =I, 
we replace x, y by xO, xÄ and deduce that 

W,.(xp,z2, ••• ,z11) = W,.(xO,z2, ••• ,z,.) · W,.(xÄ,z2, ••• ,z,.). 

If one of Ä, !-' is normal and we write v for the other, then, since 0 is 
normal, we see, just as with (4o5), that W,. (x,z2, •• • ,z,.) v= W11(xv,z2, •• • ,z,.) 
for all x, z2, ••• , z,.. Hence v is normal. That is, both or neither of Ä, !-' 
is in m. 

(vi) Since one of ÄO, pO is centralizing, (xO, xÄ, xp} = (x, xlO, xp) 
= (x, xÄ, xpO) =I and thence x[(O + l) + p] = (xO · xÄ) · xp 
= xO · (xÄ • xp} = x[O + (Ä + p}] for all x in G. Therefore (0 + Ä) + !-' 
= 0 + (Ä + p}. Similarly for the other equations of (vi). 

(vii) First Iet 0, q; be endomorphisms of G such that 0 + q; = I, 
Oq; = q;O = 0 and hence 02 = 0, q;2 = q;. If W,. is any normalized purely 
non-abelian word, 

W,.(x1 0, X 2 , ••• , x,.) = W,.(x1 0, x2 , 0 •• , x,.)O · W,.(x1 0, x2 , ••• , x,.)tp 

= W,.(x1 0, x2 0, .. . , x,.O) · W,.(I, x2 tp,. o ., x,.q;) 

= W,.(xv x2,., ., x,.)O. 

Hence 0 is normal as well as idempotent, and therefore is a projection 
of G. Next Iet 0 be a projection of G and q; a mapping defined by 
0 + tp = 1. Since tpO = 0, tp is in m by (v). This completes the proof of 
Lemma4.1. 

The following Lemmasare easy consequences of Lemma 4.I: 
Lemma 4.2. lf 01, 02, ••• , 0,. are normal endomorphisms of a loop G 

suchthat the Product OtOi is centralizing for all i,f= I,2, .. . ,n,i=t=f, 
then their sum is a normal endomorphism of G and is independent of 
ordering or bracketing. 

Lemma 4.3. I f 0, q; are normal endomorphisms of a loop G such that 
0 q; is centralizing and 0 q; = q; 0, then, for every positive integer n, the 
binomial theorem is valid for the expansion of the normal endomorphism 
(0 + tp}". 



72 IV. Homomorphism Theory of Loops 

An automorphism () of the loop G will be called a centre automorphism 
provided that x() = x mod Z for each x in G, where Z is the centre of G. 
Equivalently, () = 1 + .A. where .A. is a centralizing endomorphism of G and 
() is a one-to-one mapping of G upon G. In view of Lemma 4.1 (v), 
centre automorphisms are automatically normal. 

The author will amplify the theory of normal endomorphisms in a 
papertobe published separately. Some of the results may be indicated 
briefly: (1) The present definition is equivalent to the usual one in the 
.case of groups: an endomorphism () of a group G is normal in the present 
sense if and only if () commutes with every inner automorphism of G. 
(2) If () is a normal endomorphism of a loop G, there exists a normal 
endomorphism 9? of G suchthat () + 9? = 9? + () = 1. (3) Specht's Lemma 
(WILHELM SPECHT, Gruppentheorie, p. 227, Satz 7) is valid for loops and 
has the following generalization: If a., ß are normal endomorphisms 
of a loop G such that x a. = x ß for every x in the commutator-associator 
subloop G', there exists a centralizing endomorphism y of G such that 
a. = ß + y. (4) Necessary and sufticient conditions (much more concrete 
than our definition) are derived for normality of an endomorphism. 
(5) Other (inequivalent) definitions of a normal endomorphism are 
explored and interrelated. -,-- It is inconvenient to give further details 
concerning (4) and (5), since the theory of commutative Moufang loops 
(See Chapter VIII) plays a prominent röle in the paper. In any case, 
the results just described will not be used in what follows. 

5. Direct decomposition 

The outer direct product (H, Q) of a finite set of operator loops 
(H;, Q), i = 1, 2, ... , n, is defined as follows: H is the set of all ordered 
n-tuples (hv h2, ••• , hn), h; E H ;, with equality and multiplication 
defined componentwise and with (h1 , h2, ••• , hn) w = (h1 w, h2 w, ... , hnw) 
for all h; in H;. w in Q. Jhus (H, Q) is an operator loop. If the H; are 
.Q-subloops of an operator loop (G, .Q) we say that (G, .Q) is a direct 
product of the H; and we write 

G=H1®H2®···®Hn, (5.1) 

pro:vided there exists an .Q-isomorphism a. of (G, .Q) upon the outer 
direct product (H, .Q) of the H; such that h;a. = ( 1, 1, ... , h;. ... , 1) 
for each i = 1, 2, ... , n and each h; in H;. If a. exists, define the map
pings 0; of G upon H;as follows: xO;= h; if xa. = (h1, h2, ••• , hn)· Then 
Ov 02, ••• , On are idempotent .Q-endomorphisms of G and 0;0; = 0 
for all t·, j (i =l= j). Moreover, 

(5.2) 

the order and association on the right of (5.2) being immaterial. Con
sequently, each Oi is an .Q-projection of G. Conversely, given a set of 
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tt pairwise orthogonal .Q-projections 011 02, ••• , On of G which satisfy 
(5.2) in some (and hence in every) order and association, we define oc by 
xoc = (x01, x02, ••• , xOn) and see at once that (G, .Q) is the direct 
product of .Q-subloops H;= GO;. By Lemma4.1 (ii), the H; arenormal 
subloops of G. The following Iemma is easily proved: 

Lemma 5.1. N ecessary and sul/icient conditions that the operator loop 
(G, .Q) be a direct product of a set of .Q-subloops H11 H 2, ••• , Hn are: 
(a) H; is normal in G for i= 1,2, .. . ,n; (b) H1H2 •• • H,nHi+l= 1 
for i = 1, 2, ... , n-1; (c) G = H 1H 2 ••• Hn. 

In particular, Gis a direct product of its .Q-subloops H, Kif and only 
if H, K are normal in G, H fl K = 1 and G =HK. This fact is often 
used to give a generalized definition in the following form. Let { H;; i EI} 
be a set of ..Q-subloops of a loop G, I being an arbitrary index set (finite 
or infinite.) For each i in I, let K; be the subloop generated by the 
H;, f =!= i. Then we say that G is a direct product of the subloops H;, 
i E /, if and only if, for each i in/, H; and K; arenormal in G and satisfy 
H;fiK; = 1, G = H;K;. Equivalently, the following conditions are 
tobe met: 

(a') H; is normal in G for each i E /. 

(b') H; t1 K;= 1 for each i E /. 

(c') Gisgenerated by the set of subloops H;, i E /. 

Conditions (a'), (c') are of course direct generalizations of (a), (c) of 
Lemma 5.1. On the other band, (b') appears stronger than (b), as well as 
being more symmetric. Nevertheless, if I is finite and consists of the 
first n natural numbers, it is easily seen that (a'), (b'}, (c') are equivalent 
to (a), (b), (c). 

In what follows we restriet attention to the theory of direct decompo
sition into finitely many factors. The material has been selected largely 
from BAER [58], [60, [61]. The present definition of normal endo
morphisms (§ 4) allows some simplification in the proofs and also a 
closer parallel with classical group theory. 

In the study of the direct decompositions of an operator loop (G, .Q) 
the centre .Q-automorphisms, and hence the centralizing .Q-endomor
phisms, play an important role. If Ais a centralizing .Q-endomorphism, 
GA is an .Q-subloop of the centre Z = Z (G). Forthis reason, the centre Z 
is displaced by the .Q-centre Zn, namely the set-union of all .Q-subloops 
of Gwhichare contained in Z. We note that Zn isanormal .Q-subloop 
of G identical with the union of all .Q-subloops contained in Z. With 
this definition, an .Q-automorphism 0 of G is a centre automorphism 
if and only if xO = x mod Zn for every x in G. It will be convenient to 
note that the commutator-associator subloop, G', of an operator loop 
(G, .Q), is an .Q-subloop; indeed, more generally, (x, y)O = (xO, yO) and 
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(x, y, z)8 = (x8, y8, z8) for all x, y, z of G and for every homomorphism 
() of G upon a loop. 

Lemma 5.2. Let (G, Q) be an operator loop with commutator-associator 
subloop G', D-centre Za, suchthat either G = G' or Za= 1. Then: (i) the 
zero endomorphism is the only centralizing D-endomorphism of G; (ii) the 
identity mapping is the only centre D-automorphism of G. 

Proof. (i) Let A. be a centralizing D-endomorphism of G. lf G = G', 
then GA.= G'A. = 1. If Za= 1, then GA.= 1. In either case, A. = 0. 
(ii) Let 8 be a centre D-automorphism of G. Then 8 = 1 + A. for a 
centralizing D-endomorphism A. of G. By (i), A. = 0. Hence 8 = 1. 

lf we assume the conclusion of Lemma 5.2 (ii), the theory of direct 
decomposition is particularly simple: 

Lemma 5.3. Let (G, Q) be an operator loop whose only centre D-auto
morphism is the identity mapping. Then: (a) every two D-projections of G 
commute; (b) if G = H1 ®· · · ®Hm= K1 ®· · · ®K,. for D-subloops H;, K 1, 

and if L (i, j) = H; n K;. then H; = L (i, 1) ® ... ® L (i, n), K; = 

L (1,j) ® ... ®L(m,j) for i = 1, 2, ... , m; j = 1, 2, ... , n. AlsoGis the 
direct product of the mn D-subloops L (i, j). 

Proof. (a) Let 8, cp be Q-projections of G with orthogonal com

plements 8', cp' respectively. Thus 1 = 8 + 8' = 8' + 8 = cp+ cp'= cp' + cp 
and 88'= ()'8 = cpcp'= cp'cp = 0. Set A. = 8cp8', p, = 8cp'8'. Then 
),p, = fl A. = 0, A. + fl = () ( cp + cp') 8' = 8 ()' = 0. Moreover A., p, are cen
tralizing since, for example, G'A. = G'()cp()' = G'()()'cp = 1. Finally, 
(1 + I.) (1 + f.l-) = (1 + 1.) + p, = 1 + (I. + p,) = 1 and, similarly, (1 + p,) 
(1 + .A.) = 1. Thus 1 + A. is a centre .Q-automorphism, 1 + A. = 1, 
A. = 0, () cp()' = 0. Hence 8 cp = 8 cp(8 + 8') = 8 cp8. Similarly, 8' cp8 = 0 
and hence cp8 = (8 + 8') cp8 ="' 8 cp8 = 8 cp. 

(b) We can assume that 1 = 81 + · · · + ()m = cp1 + · · · + cp,. where 
the 8; are pairwise orthogonal!l-projections suchthat H;= GO; and the 
cp1 are pairwise orthogonal.Q-projections suchthat K;= Gcp;. By (a), the 
mn D-endomorphisms 'lj);;= 8;cp1= cp18; are pairwise orthogonal idem
potents; moreover 1 = (L' 8;) (L' cp;) = L' 'lj); 1, so each 'lj),; is an D-pro

jection. Since G'tjJ;;= H;cp;= K;O;, we have G'tjJ;;CK;nH;= L(i,j). On 
the other band, if x EL (i, i) then X'tjJ;;= (xO;) cp; = x cp; = x, so G'tjJ;;= L(i,j). 
This is enough to prove (b). 

Two D-subloops A, B of an operator loop (G, Q) are called centre 
Q-isomorphic if there exists a centre D-automorphism 8 of G such that 
A () = B. This notion allows us to prove a weak form of "cancellation 

law" for direct decomposition: 

Lemma 5.4. If G = H ® A = H ® B for D-subloops H, A, B of the 
operator loop (G, Q), there exists a centre D-automorphism () of G which 
induces the identity automorphism on Hand maps A on B. In particular, 
A and B are centre Q-isomorphic. 
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Proof. Let 1 = ot + ot' = ß' + ß for .Q-projections ot, ot', ß, ß' of G 
such that A = Got, B = G ß, H = Got' = G ß'. We shall show that 
() = otß + ot'ß' has the properties stated. To begin with, otot'= ot'ot 
= {J ß' = ß'{J = 0. Since Got' {J = H {J = G{J' {J = 1, then ot' {J = 0. Simil
arly, {J'ot = 0. We now verify readily that ot{J = {J, {Jot= ot, ot'{J'= ot', 
{J' ot' = {J'. In particular, () = {J + ot'. Since ot' ß = 0 and {J, ot' are normal, 
we see that () is a normal .Q-endomorphism. Similarly, cp = ot + {J' is a 
normal .0-endomorphism. Moreover, () cp = {Jot + ot' {J' = ot + ot' = 1 
and, similarly, cpO = 1, so () is an .0-automorphism. Again, ot'O = 
ot' ({J + ot') = ot', so () induces the identity mapping on H = G ot'; and 
otO = ot ({J + ot') = ß, so () maps A upon B. Since G' {Jot'= G' ot' {J = I, 
the normal .Q-endomorphism {Jot' is centralizing. Also, () = {J + ot' = ß + 
+ ({J + ß') ot' = {J + ({Jot'+ {J') = ({J + {J') +{Jot'= 1 + {Jot', which shows 
that () is a centre .0-automorphism. This completes the proof of 
Lemma 5.4. 

The next two lemmas can be generalized to wide classes of algebras 
{JÖNSSON and TARSKI [15]): 

Lemma 5.5. lf G = A ® B for .Q-subloops A, B of the operator loop 
(G, .Q) and if S is an .Q-subloop of G containing A, then S = A ®(B n S). 

Proof. Let 1 = ot + {J for .0-projections ot, {J such that A = G ot, 
B = G{J. Since A = AoteSoteA, then A = Sot. lf s is in S, then 
s = (sot} (s {J) andsot E S,sos{J ES. Hence S {Je B n S = (B n S) {Je S {J, 
so B n S = S {J. Thus, by Lemma 5.1, S = A ®(B n S). 

Lemma 5.6. Let the operator loop (G, .Q) have direct decompositions 
G = H ®A = H ®B1 ®· · · ®B,. into .0-subloops. Set A;= An (H ®B;). 
Then A=A1 ®···®An and H®B;=H®A; for i=I,2, ... ,n. 
Moreover, A; is centre .Q-isomorphic to B; for i = 1, 2, ... , n. 

Proof. Foreach i = I, 2, ... , n, set K; = H ® B; and let L; be the 
direct product of the Bi, i + i. Since G = H ®A and since K, is an 
.0-subloop of G containing H, Lemma 5.5 implies that K;= H ®(A nK;) 
= H ®A,. Therefore G = K; ®L,= (H ®L;) ®B;= (H ®L;) ®A;. Hence, 
by Lemma 5.4, there exists, for each i, a centre .0-automorphism 0; of G 
which maps B, on A, and induces the identity mapping on H ®L;. 
Thus O, induces the identity mapping on Ki= H ®Bi= H ®Ai for each 
1' + i. Consequently, the centre .0-automorphism () = 0102 ••• (),. maps 
G=H®B1 ®·· ·®B,. upon G=H®A1 ®· ··®A,.. Hence G=H®C 
where C = A1 ®· · · ®A,.. Since C is part of A, Lemma 5.5 yields 
A = C ® (A n H) ; since G = H ®A, A n H = 1 and therefore A = C 
= A1 ® · · · ®A,.. This completes the proof of Lemma 5.6. 

Consider two decompositions 

(H): G = H1 ® ••• ®Hm, (K): G = K1 ® .•. ®Kn 

of the operator loop (G, .Q) into finitely many .0-subloops. The decompos
ition (K) is a re/inement of the decomposition (H) if each H, is a direct 
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product of (one or more of) the Ki. The decomposition (H) is Centre
isomorphie to the decomposition (K) if m = n and if there exist a centre 
.Q-automorphism 0 of G and a permutation i -+i* of the integers 1, 2, ... , n 
such that 0 maps H; on K;• for i = 1, 2, ... , n. Centre-isomorphism 
of direct decompositions is clearly an equivalence relation. The de
composition (H) is said to be exchange-isomorphic to the decomposition 
(K) if m = n and if there exists a permutation i -ri* of the integers 
1, 2, ... , n such that 

G = Hl ®· · · ®H;-I ®K;• ®H;+l ®· · · ®Hn (5.3) 

for i = 1, 2, ... , n. In this case we say that the permutation i -+i* sets 
up an exchange-isomorphism of (H) upon (K). Exchange-isomorphism 
must be used with care, as the following examples show: (1) Let G be the 
(multiplicative) free abelian group without operators on three free 
generators u, v, w. Let Hv H 2, Ha be the subgroups generated by 
u, v, w respectively; K 1, K 2, Ka be the subgroups generated by uvw, uv, 
uw respectively; Lv L 2, La be the subgroups H 2, Ha, H1 respectively 
Then Gis a direct product (H) of the H;, (K) of the K; and (L) of the L;. 
The identity mapping of 1, 2, 3 induces an exchange-isomorphism of (H) 

upon (K) and of (K) upon (L) but (since Ha C K1 ®K2 and La C H1 ®H2) 

neither of (K) upon (H) nor of (H) upon (L.). Thus neither the symmetric 
nor transitive laws of exchange-isomorphism are valid in their simplest 
forms. (2) Let G be the (multiplicative) free abelian group on two free 
generators u, v and let A, B, C, D be the subgroups generated by u, v, 
uv, u2va respectively. Then G = A ®B = A ®C = B ®C = D ®C, so each 
two successive direct decompositions are exchange i~omorphic. However, 
since D ®A =l= G and D ®B =t= G, neither of G = A ®B, G = D ®C is 
exchange-isomorphic to the other. Thus there is no sense in which 
exchange-isomorphism is transitive for all loops. On the other band, 
exchange-isomorphism always implies centre-isomorphism: 

Lemma 5.7. Let (H): G = H 1 ® · · ·® Hn and (K): G = K 1 ® ... ® Kn 
be two direct decompositions of the operator loop (G, .Q) into n .Q-subloops. 
The decomposition (H) will be exchange-isomorphic to the decomposition (K) 
if ( and only if) there exist a Permutation i -+i* of the integers 1, 2, ... , n 
and n centre !2-automorphisms 01, 02, ••• , On of G such that 0; maps 
H; on K;• and induces the identity mapping on Hi for i =t= i. If the condi
tions are satisfied there exists a unique centre !2-automorphism of G which 
induces 0; on H; for i = 1, 2, ... , n. In particular, exchange isomorphism 
implies centre-isomorphism. 

Proof. If (H) is exchange-isomorphic to (K), so that (5.3) holds for 
each i, Lemma 5.4 ensures the existence of centre .Q-automorphisms (}i 

with the properties stated. Conversely, if 0; exists with the properties 
stated, then Oi maps the direct decomposition (H) upon the direct 
decomposition (5.3). Now assume that the conditions are satisfied. 
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In view of (H), each x in H has a unique representation x=h1h2 ... hn, 
h; E H;, in which the ordering and bracketing of factors is immaterial. 

If there exists an endomorphism 0 which induces 0; on H; for each i, 
then, necessarily, xO = (h1 0,.) (h2 02) ... (hnOn)· Considering 0 to be a 

mapping defined by the last equation we note, in view of (H), (K), that 0 
is an .0-automorphism of G. Moreover, since h;O; == h; mod Zn for each i, 
we have xO == h1h2 ... hn ==X mod Zn. Hence e is a centre .0-auto
morphism and the proof of Lemma 5. 7 is complete. 

It is our purpose to examine hypotheses sufficient to ensure the 
truth of the following Refinement Theorem: Every two direct decomposi
tions (H), (K) of the operator loop (G, .Q) into finitely many direct .0-factors 
possess refinements (H'), (K') respectively such that (H') is exchange
isomorphic to (K'). Lemma 5.3 and the refinement theorem for .0-chains 

(Theorem 3.1) both suggest conditions such as the following for all 
positive integers m, n: 

<f (m, n). Let (H): G = H1 ®· · · ®Hm and (K): G = K1 ® · · · ®K,. 
be two direct decompositions of the operator loop (G, .Q) into .0-subloops. 
Then there exist .0-subloops H (i, j), K (j, i) of G suchthat 

H; = H (i, I)® ... ® H (i, n) , Ki = K (j, I)® ... ® K (j, m) 

for i = 1, 2, ... , m; j = 1, 2, ... , n and such that, for each i = 1, 2, ... , m, 

and for each subset J of the integers 1, 2, ... , n, G is the direct product of 
the H~c for k =I= i, the H (i, j) for j in] and the K (j, i) for j not in]. 

More simply, we would be content to insist that, for each ordered pair 

(i,j), i = 1, 2, ... , m; j = 1, 2, ... , n, G was the direct product of the 

H~c for k=!=i, the H(i,p) for P=l=j, and K(j,i). However, the stronger 
form is easier to handle and turns out to hold under weak conditions. 
That some conditions are certainly necessary has been demonstrated 
as follows: There exists an abelian group G (without operators) possessing 
direct decompositions without isomorphic refinements (BAER [BI]). 
There exists an abelian operator group (G, .Q) satisfying the ascending 
chain condition on .0-subgroups but possessing two non-isomorphic 
decompositions into direct-indecomposable .0-subgroups (KRULL [B 7]). 
There exist<; a nonabelian group satisfying the ascending chain condition 

on arbitrary subgroups but possessing non-isomorphic decompositions 

into two direct-indecomposable factors (KuRos [B 8]). 
It is an interesting open question as towhether <f (2, 2) implies <f (m, n) 

for allpositive integers m, n. We shall now show that <f (m, n) is implied 

by a suitable use of the following strengthened form of <f (2, 2) introduced 
by BAER [61]: 

SB. If G = A ®B = D ®E are two direct decompositions of the operator 
loop (G, .Q) into two .0-factors, then 

A = A1 ®A 2, B = B1 ®B2, D = D1 ®D2, E = E1 ®E2 
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for direct D-factors such that the members of the pairs (Av Dt), (B1, E1). 

(A 2, E 2), (B2, D2) are interchangeable in the following strict sense: G = G1 ®G2 

where 
G1 = A1 ®B1 = D1 ®B1 = A1 ®E1 = D1 ®E1 , 

G2 = A2 ®B2 = E 2 ®B2 = A2 ®D2 = E 2 ®D2 • 

(5.4) 

In SB, Gi may be regarded as defined by any one of the products to 
which it is equated. To compareS8 with ~(2, 2), take H1 = A, H 2 = B, 
K1= D, K 2 = E, H(I, I)= A1, H(2, 2) = B1, K(I, I)= Dv K(2, 2) = E1, 

and so on. ThusSB asserts, in particular, that G can be written in I6 ways 
as a direct product of 4 factors consisting of one factor from each of 
the 4 pairs H (i, j), K (j, i). 

Theorem 5.1. (Refinement Theorem.) I/ every direct Q-factor of an 
operator loop (G, Q) satisfies SB, then (G, Q) ( and every direct Q-factor of 
(G, Q)) satisfies ~ (m, n) for all positive integers m, n. 

Proof. Webegin by noting that ~(I, n) and ~ (m, I) are trivial. Next 
we consider certain implications which do not involve the use of SB. 

(i) I/ m >I, ~(m, n) implies ~(m-I, n). To see this, assume 
Hm= I in the statement of ~(m, n). Then certainly H(m, j) =I for 
all j. Since ~ (m, n) implies an exchange-isomorphism, we see from 
Lemma 5.7 that K (j, m) = I for all1·· Thus we delete the trivial direct 
factors Hm, H(m,j), K(j, m) and get ~(m-I, n). 

A more difficult step is to prove a converse to (i) for m > 2: 
(ii) I/ m > 2, ~(m-1, n) implies G:(m, n). Strictly speaking, we 

assume <f (m- I, n) for every direct Q-factor of G. Ry (i), since m-I ~ 2, 
G:(m --1, n) implies <f(2, n). Let G = H1 ®· · · ®Hm= K1 ®· · · ®K,. for 
D-subloops H;, K;, and define L1 = H1 ®· · · ®Hm-l• L2 = Hm. Applying 
<f(2, n) to the direct decompositions G = L1 ®L2 = K1 ®· · · ®K,., we 
deduce the existence of direct D-decompositions L;= L (i, I)®···® 
L(i,n), K;=M(j,I)®M(1',2) for i=I,2;j=I,2, ... ,n such that: 

(a) F or i = I or 2 and for each subset ] of the integers I, 2, ... , n, G 
is the direct product of the Lk with k =f= i, the L (i, j) for j in] and the M (j, i) 
for j not in]. 

Quoting (a) for i = I and for J the empty set, we get 

G = L2 ®M(I, I)®··· ®M(n, I). (5.5) 

Since also G = L 2 ®Lv we deduce from (5.5) and Lemma 5.6 that 
L1 = P1 ®· · ·®P,. and that L 2 ®P;=L2 ®M(j, I) for j = 1, 2, ... , n, 
where P;= [L 2 ®M(J·, 1)] nL1• SinceL1 isadirect D-factor of G we may 
apply <f (m- I, n) to the direct .Q-decompositions L 1 = H1 ® · · · ® Hm-l = 
= P1 ®· · · ®Pn. Thus there exist direct D-decompositions H;= 
H(i, I)®··· ®H (i, n), P;= P(j, 1) ®" · ®P(j,m-I) iur i = 1, 2, ... ,m-1; 
j = 1, 2, ... , n suchthat 
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(b) Fot each i = 1, 2, ... , m-1 and for each subset J of the integers 
1, 2, ... , n, L1 is the direct product of the Kk with k =I= i, k < m, the H (i, j) 
with j in J and the P (j, i) with j not in]. 

Since L 2 ® M(i, 1) = L2 ® P;= L2® P(j, 1) ® · · · ® P(f, m -1), we 
deduce from Lemma 5.6 that M (j, 1) = K (f, 1) ® · · · ® K (f, m- 1) and 
that L 2 ® P (i, i) = L 2 ® K (f, i) for i = 1, 2, ... , m- 1 ; f = I, 2, ... , n, 
where K(i,i) = [L2 ® P(f,i)] n M(j, I). Finally, wedefineK{i,m) =M(f,2) 
and H(m,f)=L(2,f) for j=I,2, ... ,n. Then H;=H(i,I)®···®H(i,n), 
K;= K(f, I)®···® K(f, m) for i =I, 2, ... , m; i = 1, 2, ... , n, and 
we wish to prove: 

(c) For each i = I, 2, ... , m and for each subset J of the integers 
I, 2, ... , n, Gis the direct product of the Hk with k =I= i, the H(i,f) with 
i in J and the K (i, i) with i not in]. 

In proving (c) we may assume without loss of generality that J 
consists of the integers 1, 2, ... , k for some k ~ n. Moreover we may 
restriet attention to the cases i = I, i = m. 

Case 1. i =I. Set T = H 2® · · · ® Hm-I• so that L1 = HI® T. 
Since G = L2 ® Lv we apply (b) with i = I and get 

G = L2® T ® H(I, 1) ® · · · ® H(I, k) ® P(k + 1, I)®···® P(n, I). 
Since L2® P(j, I)= L2® K(i, 1), we may replace each P(j, I) by a 
K (f, 1). And since L 2 = H m• L 2 ® T is the direct product of the H 'D for 
p =1= I. Thus we have (c) for i = I. 

Case 2. i = m. Applying (a) with i = 2, we get 

G =LI® L(2, 1) ® · · · ® L(2, k) ® M(k + 1, 2) ® · · · ® M(n, 2). 
Since LI is the product of the H 'D with p =I= m and since L (2, j) = H (m, j), 
M (i, 2) = K (j, m) for each f, we have proved (c) for i = m. 

This completes the proof that ~ (m, n) holds for G. Since direct 
.Q-factors of direct .Q-factors of G are thenselves direct .Q-factors of G, 
<f(m, n) holds for every direct .Q-factor of G. Hence we have proved (ii). 

Now we come to the crucial use of~. 
(iii) lfn> I,~and<f(2,n-1)imply<f(2,n). Asin(ii),weassume 

~ and <f(2, n- I) for each direct .Q-factorof G. Suppose that G= HI ®H2 

= KI ® · · · ® Kn for .Q-subloops H;, K; of G and set A = KI ® · · · ® Kn-I• 
B = Kn, D = Hv E = H 2. Applying ~ to the direct decompositions 
G = A ® B = D ® E, wededucetheexistenceofdirect .Q-decompositions 
G = GI® G2, A = Al® A2, B = BI® B2, D = DI ® D2, E = EI® E2 
suchthat (5.4) holds. Since A = A1 ® A 2 = K1 ® · · · ® Kn-l is a direct 
.Q-factor of G, we apply <f (2, n- 1) and get direct .Q-decompositions 
A;= A (i, 1) ® · · · ® A (i, n -1), K;= K(j, 1) ® K(j, 2), for i = 1, 2; 
i = 1, 2, ... , n-1, such that: 

(a) F or i = 1 or 2 and for each subset J of the integers 1, 2, ... , n- 1, 
A is the direct product of the Ak with k =1= i, the A (i, j) with j in J and the 
K (i, i) with i not in] (i < n). 
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Since G1 = E 1 ® D1 = E 1 ® A1 = E 1 ® A (1, 1) ® · · · ® A (1, n- 1), we 
see from Lemma 5.6 that D1 = H (1, 1) ® · · · ® H (1, n- 1) and that 
E 1 ®H(1,j)=E1 ®A(1,j) for j<n, where H(1,j)=[E1 ®A(1,j)]nD1. 

Similarly, since G2=D2®E2=D2®A 2=D2®A (2, 1) ® ... ®A (2, n- 1), 

we have E 2=H(2,1)®···®H(2,n-1) and D 2®H(2,j)=D2®A(2,f) 

for j < n, where H (2, j) = [D2 ® A (2, f)] n E 2• In addition, we define 
H(1, n) = D 2, H(2, n) = E 1, K(n, 1) = B 2, K(n, 2) = B1. Then 

H;= H(i, 1) ® · · · ® H(i, n), Ki= K(f, 1) ® K(f, 2) for i = 1, 2; 

j = 1, 2, ... , n and we are to prove: 
(b) F or i = 1 or 2 and for each subset J of the integers 1, 2, ... , n, 

G is the direct product of the H k with k =!= i, the H (i, f) with j in J and the 
K (j, i) with j not in]. 

Clearly it will suffice to prove (b) for i = 1. We note that H 2 = E. 

We may assume without loss of generality that J = ]' or J = ]' v n 
where ]' consists of 1, 2, ... , k for some integer k with k < n. Since 

G = G1 ® G2= A1 ® E 1 ® G2 and since, by (a) with J replaced by ]', 

Al® G2= Al® A2® B2 

= B 2® A 2® A (1, 1) ® · · · ® A (1,k) ® K (k+ 1, 1) ® · · · ® K (n-1, 1), 
we have 
G = G2® E 1 ® A (1, 1) ® · · · ® A (1,k) ® K (k+ 1, 1) ® · · · ® K (n-1, 1) . 
In the last equation, since EI® A (1, j) =EI® H (1, j) for j < n, each 
A (1, j) can be replaced by H ( 1, j). Moreover, if P = B 2 or D 2, we have 
G2® EI= E 2® P ®EI= E ® P = H 2 ® P. Hence 
G = H 2® P ® H(1, 1) ® · · · ® H(1,k) ® K(k+ 1, 1) ® · · · ® K(n-1, 1). 
If ]=]' we take P=B2 =K(n,1); if ]=]'vn we take P=D2 

= H (1, n). This completes the proof of (b). Consequently, E (2, n) holds 
for G and, as in the proof of (ii), for every direct .Q-factor of G. The 

proof of (iii) is complete. 
Now the proof of Theorem 5.1 follows easily: Assuming SB, we infer 

from (iii) that Ci (2, n) holds for all n; thence we infer from (ii) that 

Ci (m, n) holds for all m, n. 
In view of Theorem 5.1 it becomes of interest to study conditions 

und er which SB is valid. First we need a lemma: 
Lemma 5.8. Let G = S ® T for .Q-subloops of the operator loop (G, .Q). 

Then: (i) G'= 5'® T'; (ii) ZD(G) = Zn(S) ® ZD(T). 
Proof. Let 1 = IX+ ß, S = GIX, T = G ß for .Q-projections IX, ß of G. 

Clearly G' IX= S', G' ß = T'. Hence G' = S' ® T', proving (i). Again, 
from the definition of centre, Z (G) = Z (S) ® Z (T). In particular, 

ZD(S) CZ(S) CZ(G), so ZD(S) is an .Q-subloop of Z(G) and hence 
ZD (S) czD (G). Similarly, ZD (T) czD (G). On the other hand, ZD (G) IX 

is an .Q-subloop of G contained in z (G) (\ s = z (S), so Zn (G) IX cz!/ (S). 

Similarly, Zn (G) ß czD (T). Thus ZD (G) czD (S)ZD (T) czD (G), so 
Zn (G) = ZD (S)ZD (T) = ZD (S) ® ZD (T). This proves (ii). 
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Theorem 5.2. Let (G, Q) be an operator loop with tl-centre Z 0 . Then 
the following statements are equivalent: 

(i) Every direct tl-factor of G satisfies ~. 
(ii) For every direct tl-factor S of G, the tl-factor Z 0 (S) of Z0 satisfies ~. 
Corollary. I f every direct tl-factor of Z 0 satisfies ~. then every direct 

tl-factor of G satisfies ~. 
Proof. That (i) implies (ii) is a direct consequence of Lemma 5.8 (ii). 

In view of Lemma 5.8, if we assume that Z0 = Z0 (G) satisfies ~ and 
prove that G satisfies ~. the proof that (ii) implies (i) will be complete. 
Henceforth we assume that Z 0 satisfies ~. Let A = Goc, B = G ß, 
D = Gb, E =Ge for !l-projections oc, ß, b, e of G such that I = oc + ß 
= b + e. By Lemma 5.8, Z 0 = Z 0 (A) ® Z 0 (B) = Z 0 (D) ® Z 0 (E). Since 
Z 0 satisfies ~. 

Z 0 (A) = A*® A**, Z 0 (B) = B*® B**, (5.6) 

Z 0 (D) = D*® D**, Z0 (E) = E*® E** 

and Z 11 = Z* ® Z** for !l-subloops such that 

Z*= A*® B*= D*® B*= A*® E*= D*® E*, (5.7) 

Z**= A**® B**= E**® B**= A**® D**= E**® D**. 

Since Z*a. = A*= D*a., we see that oc maps D* upon A*. If d*a. = 1 
for d* in D*, then d*= d* (oc + ß) = d* ß E D* nZ* ß = D* n B*= 1. 
Hence, and similarly: 

a. induces isomorphisms of D* upon A * and E** upon A ** , 

ß induces isomorphisms of E* upon B* and D** upon B** , (5.8) 

b induces isomorphisms of A * upon D* and B** upon D** , 

e induces isomorphisms of B* upon E* and A ** upon E** . 

Now we define the following !l-subloops of G: 

A1 = A n (D ® E*) , 

B1 = B n (E ® D*) , 

D1 = D n (A ® B*) , 

E1 =En(B®A*), 

A2 = An (E ® D**) , 

B 2 = B n (D ® E**) , 

D 2 = D n (B ® A **) , 

E 2 = E n (A ® B**) . 

(5.9) 

If a is in A1 n A2 then a = (ab) (ae) is in E* ® D**. Since aß= 1 and 
since, by (5.8), ß induces an isomorphism of E* ® D**, then a = 1. 
Hence and similarly, 

A 1 nA 2 = B1 nB2 = D1 nD2 = E1 nE2 = 1. (5.10) 

Since G'ocbß = G'a.ßb = 1, ocbß is centralizing. Consequently, if a is 
in A, then ab ß= aocb ß is in B nZ0 =Zo. (B) = B* ® B** = (E* ® D**) ß. 
Hence ab= a1 (e*d**) for unique av e*, d** in A, E*, D** respectively. 
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Then 1 = a{Je = (flte)e*, so fltE is in E• and flt= (fltl5) (flte) 1s m 
Ar\ (D ® E*) = A1• If a = fltaz then a1 is in A and fltb · a1 15 =ab 
= (a 15) 15 = [flt (e• d**)] 15 = (flt 15) d**. Hence a1 b = d** and a2 = (a1 15)(a1e) 
is in Ar. (E ® D**) = A 2• Thus A CA1A 2 CA so A = A1A1 = A1 ® A 2• 

Similarly 

A=A1®A1 , B=B1®B2 , D=D1®D2 , E=E1®E2 • (5.11) 

By (5.7), (5.8), we have A • CA r. (A • D) CA r. (Z• D) CA r. [(D* ® E*)D] 
=Ar\ (D ® E*) = A1. If flt is in A1 then a1 = de* for d in D, e• in E•. 
Since 1 = flt ß = (d ß) (e• ß) and since e• ß is in B•, then d ß is in B• and 
d = (dot) (d ß) is in D r. (A ® B*) = D1. Therefore a1 is in D1 ® E•. 
Similarly, 

A*CA1 CD1® E*CD1Z*, A**CAaCE2 ® D**CE2Z .. , 

B*CB1CE1® D*CE1Z*, B**CB2 CD2 ® E**CD2Z .. , (5.12) 

D*CD1CA1® B*CA1Z*, D**CDz(Bz® A**CB2Z .. , 

E• CE1 C B1 ® A*C B1Z*, E** C E 2 CA 2 ® B•• CA 2Z ... 

Since A1 r. B1 CA r. B = 1, then A1 r. B1 = 1. Similarly, D1 r. E 1 = 1. 
By (5.12), D1 r. B1 = [D1 r. (A1 ® B*)] r. [B1 r. (E1 ® D*)] = 

[B1 r. (A1 ® B*)] r. [D1 r. (E1 ® D*)] = B• r. D• = 1. Similarly, 
A1r.E1= 1. Then, by (5.12) again, A1® B1CD1Z*B1CD1® B1C 
C A1Z• B1 C A1 ® B1 C A1E1Z• C A1® El C D1Z*E1 C D1® E1 C 
C A1Z* B1Z* C A1 ® B1• Thus, and similarly, 

A1 ® B1 = D1 ® B1 = A1 ® E1 = D1 ® E1, (5.13) 

A 2 ® B2 = E2 ® B2 = A 2 ® D2 = E 2 ® D 2 • 

In view of (5.13), G satisfies ~. And, with this, the proof of Theo
rem 5.2 is complete. 

Theorems 5.1, 5.2 suggest that our next concern should be with the 
validity of m in abelian operator groups. Actually we proceed with a 
little more generality. As before, K (0) denotes the kernel of the endo
morphism 0 of the operator loop (G, Q). The radical, R(O), of 0, is 
defined to be the union of the kernels K ( Oi), i = 1, 2, . . .. Clearly R ( 0) 
isanormal subloop ~ G. If 0 is an D-endomorphism, then R(O) is an 
.Q-subloop of G. In what follows we impose ascending and descending 
chain conditions on the Q-subloops of the abelian group G/G'. 

Lemma 5.9. (Fitting's Lemma.) Let (G, Q) be an operator loop with 
commutator-associator subloop G', suchthat GjG' satisfies the ascending and 
descending chain conditions for D-subloops. I/ 0 is a normal Q-endo
morphism of G, there exists a unique normal Q-subloop, C (0), of G such 
that 0 induces an automorphism of C (0) and 

G = C(O) ® R(O). (5.14) 
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Proof. By Lemma 4.1 (iii), a 0 = a 03 forevery ainG'. Ifa E G' 1\ R (0), 
then aO = a0(02)i= 1 for a suitable positive integer i. Hence 

G' nR(O) = G' nK(O). (5.15) 

If a E G' and a02 = ab, then b E G' and aO = a03 = (ab)O = aO · b(J, so 
bO =I, b E G' nK(O). Thus G'02 • K(O) = G'· K(O). If i, i arepositive 
integers, with i < 2j, then G' K (0)) G' Oi. K (0)) G' 02i. K (0) = G' 02 • K (0) 
= G' · K (0). Hence 

G' Oi · K (0) = G' K (0) ) G' (5.I6) 

for every positive integer i. By (5.I6), the descending chain 

(D) GK(O) )GO· K(O) )G02 • K(O) )' · · 

of !J-subloops is essentially a chain for G/G' and therefore eventually 
becomes constant. However, if GO•· K(O) = GOs+l. K(O), then G0~+ 1 

= G0~+ 2• That is, the chain G)G0)G02 )· • ·, eventually becomes 
constant. Again, the chain 

(A) G' C G' K (0) C G' K {02) C G' K (03) C · · · 

eventually becomes constant. However, if G' K(01) = G' K(0 1+1) for 
positive t, then, by (5.15), K (01+ 1) = K (01) [G' 1\ K (01+1)] 
=K(01) [G' nK(O)]=K(01). That is,the chain K(O) CK(02) CK(03) C ... , 
eventually becomes constant. Consequently there exists a positive 
integer n such that P =GOn= Gon~ 1 = · · · and R(O) =~(On) 
= K (On+l) = · · ·. Clearly PO= P and P 1\ K (0) C P 1\ R (0). If p is in 
PnR(O) then p = xOn for x in G suchthat x02n= I. Hence x E R(O) 
= K (On), so p = x on = I. Therefore P 1\ R ( 0) = 1 and 0 induces an 
automorphism of P. If y is in G then yOn E P = POn, so yOn= pon 
for p in P and y = pz where zOn= 1, z is in R(O). Thus G = PR(O), 
PnR(O) =I, so G = P ® R(O). If (5.14) holds, where 0 induces an 
automorphism of C{O), then P =GOn= C(O).On= C(O), showing the 
uniqueness of C (0). This proves Lemma 5.9. 

Lemma 5.10. Let (G, Q) be an operator loop with commutator-associator 
subloop G' such that GjG' satisfies the ascending and descending chain 
conditions on !J-subloops. lf G = S ® T for !J-subloops S, T and if the 
normal !J-endomorphism rp of G induces an isomorphism of S into S, then rp 
induces an automorphism of S. 

Proof. LetS = G IX, T = G ß for !J-projections IX, ß suchthat I= IX + ß. 
The normal !J-endomorphism 0 = IX rp maps G into S and coincides with 
rp on S. In particular, since rp is one-to-one on S, S nR(O) =I. By 
Lemma 5.9, G = C (0) ® R (0) where 0 induces an automorphism of C (0). 
Since C{O) = C(O)OCGOCS, S = C(O) ® [R(O)nS] = C(O) by 
Lemma 5.5. Therefore rp, with 0, induces an automorphism of S. 

Lemma 5.11. 1/IX, ß, <5, e are !J-projections of the operator loop (G, .Q) 
suchthat 1 =IX+ ß= <5+e, and if the direct Q-decompositions GIX=A1 ® A 2, 
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oc. induces an isomorphism of D1 upon A1 and of E 2 upon A2 , 

ß induces an isomorphism of E1 upon B1 and of A2 upon B2 , (5.17) 

!5 induces an isomorphism of A1 upon D1 and of B2 upon D2 , 

e induces an isomorphism of B1 upon E1 and of A2 upon E 2 , 

then 
Goc. ® B1 = Goc. ® E1 , 

G ß ® A1 = G ß ® D1 , 

G<5 ® E1 = G<5 ® B1 , 

Ge ® D1 = Ge ® A1 , 

Goc. ® B 2 = Goc. ® D 2 , 

G ß ® A 2 = G ß ® E 2 , 

G<5 ® E2 = G<5 ® A 2 , 

Ge ® D 2 =Ge ® B 2 • 

(5.18) 

Proof. Set P = G oc. ® B1. Since E 1 oc. C G oc. and E 1 ß C Bv then 
E1 C P. If x E E1 1\ Goc., then x ß = 1, whence, since ß induces an iso
morphism of E 1, x = 1. Therefore Q = G oc ® E1 exists, and Q C P. 
Since G' ß e oc. = G' ß oc.e = 1, ß e oc. is centralizing and - ß e oc. exists. Since 
ße = ßeoc. + ße ß, then ße ß = (- ßeoc.) + ße. Inasmuch as B1 ße ß= Bv 
B1 (-ßeoc.)CGoc.and B1 ße=Ev we see that B1 CQ. Hence PCQCP, 
so P = Q. This proves the first of equations (5.18). The others are 
proved similarly. 

Theorem 5.3. Let (G, Q) be an operator loop with commutator
associator subloop G' suchthat GjG' satisfies the ascending and descending 
chain conditions for !1-subloops. Then every direct !J-factor of G satisfies ~ 
and hence satisjies <f (m, n) for allpositive integers m, n. 

Proof. If G = S ® T for !J-subloops S, T, then, by Lemma 5.8 (i), 
G' = S' ® T'. The mapping H -+K = H ® T' is one-to-one from the 
!J-subloops H of S which contain S' into the !J-subloops K of G which 
contain G'. Consequently, the chain conditions for GjG' imply those for 
SjS'. Accordingly, we need merely prove that Gsatisfies~. Let G = A ® B 
= D ® E and A = Goc., B = G ß, D = G<5, E =Ge for !J-projections 
oc., ß, 15, e such that 1 = oc. + ß = !5 + e. By Lemma 5.9 with 0 = oc.!5oc., 
G = C (0) ® R (0) where 0 induces an automorphism of C (0). Since 
GO CA, we have, by Lemma 5.5, 

A = A1 ® A2, A1 = C (oc.!5oc.), A2 = A 1\ R (oc.!5oc.). (5.19) 

If rp = oc.eoc. then :. = oc.(!5 + e) oc. = 0 + rp. Also oc.O = Ooc. = 0 and hence 
0rp=rp0. Consequently, R(O)rpCR(O). Since, also Arp(A, we see 
that A2rpCA 2• If a E A 2 1\R(rp) = A 1\R(O) nR(rp) then aO•= arp1= 1 
for positive integers s, t. Since G'(J rp = G' !5 e oc. = 1, 0 rp = rp 0 is centraliz
ing and, consequently, the binomial theorem is applicable to (0 + rp)n. 
Taking n = s + t, we deduce that a = a (0 + rp)n = 1. Hence rp induces 
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an isomorphism of A 2 into A 2 and thus, by Lemma 5.IO, an auto
morphism of A 2• Therefore 

a. c5a., a.e a. induce automorphisms of Av A 2 respectively. (5.20) 

Similarly, we get 

D=D1 ®D2, D1 =C(c5a.c5), D2 =DnR(~a.~) (5.2I) 
where 

~a.c5, c5 ß~ induce automorphisms of D1 , D2 respectively. (5.22) 

By the chain conditions A1 = G(a.c5a.)n for a suitable integer n. 
Then D1a.=D1(c5a.~)na.=D1~(a.c5a.)nCA 1 • Similarly A 1~CD1 and 
therefore D1 = D1c5a.c5 = (D1a.) ~ C A1~ C D1. Thus D1 = A1c5, A1 = D1a., 
and 

a., ~ induce isomorphisms of D1 upon A1, A1 upon D1, respectively. (5.23) 

N ext we define 
B2= D2ß, E2= A2e. (5.24) 

Since c5 ß ~ induces an automorphism of D2, and similarly, 

ß, ~ induce isomorphisms of D 2 upon B 2 , B 2 upon D 2, respectively. (5.25) 
e, (1. induce isomorphisms of A 2 upon E 2 , E 2 upon A 2 , respectively. 

If x is in B 2 r\ (D1 ® E), then x~ is in B2~ r\ D1 = D2 r\ D1 = I. Since 
x is in B 2 and x ~ = I, then x = I. Therefore B 2 ® lJ1 ® E exists. Since 
c5ß=~ß~+c5ße and ~ße is centralizing, c5ßc5=c5ß+(-c5ße). 
Therefore D2 = D2c5 ßb C (D2c5 ß) [D2 (-~ ße)] C B2E = B 2 ® E. Hence 
G = D ® E = D1 ® D2 ®E = D1 ® B2 ® E. Similarly, G = A1 ®E2 ®B. 
Consequently, by Lemma 5.5, 

(5.26) 
where 

BI= B (\ (DI ® E), EI= E (\(AI® B). (5.27) 

If b is in Bv then, by (5.27}, (5.23), b ba. is in A1. Since I = b a. = b ( c5 + e) a. 
= b ~a. · b ea., b ea. is also in A1. Then be = b ea. · b e ß is in Er\ (A 1®B) 
= E1. Hence B1e C E1 , and, similarly, E1 ß C B1. If bis in B1 , and be = I, 
then b = bc5 is in D1 and I = ba. = (bc5) a.. Therefore, by (5.23), b~ = I 
and hence b = I. Thus, and similarly, e, ß induce isomorphisms of B1, E1 

respectively. Hence e ß induces an isomorphism of B1 into B1 

and thence, by Lemma 5.10, an automorphism of B1• Since 
B1 = B1e ß C E1ß C B1, then B1 = E1ß. We now may state: 

e, ß induce isomorphisms of B1 upon E1, E1 upon Bv respectively. (5.28) 

Since (5.23), (5.25), (5.28) imply (5.I7), we may use (5.I8). In part-
icular, 
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Since P n Q n B = Q n B = B n (D1 ® E) = B1 and P n Q n E = P n E 

= E n (A1 ® B) = E1, we deduce by several uses of Lemma 5.4 that 

P n Q = A1 ® B1 = D1 ® B1 = A1 ® E 1 = D1 ®E1 = G1• (5.29) 

Similarly, if 

Da= D n (A 2 ® B), Ba= B n (E2 ® D), (5.30) 

the equations 

S = B ® A2 = B ® E 2, T = D ® E2 = D ® A2 

yield 
Sn T = A 2 ® Ba= E 2 ® Ba= A2 ® Da= E 2 ® Da= G2• (5.31) 

In particular, 
(5.32) 

By (5.31), DactCG2ctCA 2• If d E Da. d(~ct~)"+l= (dct) (ct~ct)"~ for every 

positive integer n. By (5.19), A2 C R (ct~ct). Therefore Da CD n R (~ct~) 

= D2 by (5.21). Since G = A ® B = G1 ® A2 ® B2 = D1 ® A 2 ® B, then, 

by Lemma 5.5, D = D1 ® [D n (A 2 ® B)] = D1 ®Da. Again, since 

DaCD2 CD, D2 = Da® (D2 nD1) =Da. Therefore Da= D2 and, by 

(5.32), (5.24), Ba= Daß= D2ß = B 2• With this, the proof of Theorem5.3 

is complete. In view of Theorem 5.2 we may add: 
Corollary. lf (G, .Q) is an operator loop whose .Q-centre satisfies the 

ascending and descending chain conditions on .Q-subloops, then every 

direct .Q-factor of G satisfies m and hence satisfies ~ (m, n) for all positive 

integers m, n. 
For an application of ~ (under the name of "weak refinability") to 

the theory of direct decomposition into infinitely many factors, see 

BAER [B 2]. 
It should be clear from the foregoing treatment that the open 

questions in the theory of direct decomposition of operator loops are 

mainly open questions conceming abelian operator groups. The situation 

remains unchanged when we consider direct decomposition into infinitely 

many factors. For many topics not covered here and for other points 

of view (notably, that of lattice theory) see KUROS; Theory of Groups, 

SPECHT, Gruppentheorie and the papers of BAER (cited above). 

For significant and broad results in the theory of direct decomposition 

of general algebras see JÖNSSON and TARSKI [15] (whose theory, however, 

does not say much for abelian groups) and GoLDIE [10]. 

6. Characteristic free factors 

A ~bloop Hof a loop Gis called a characteristic subloop of G provided 

that HOCH for every automorphism (} of G. If the inner mapping 

group 3(G) consists entirely of automorphisms (e. g., when Gis a group), 
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cbaracteristic subloops are normal. However, tbere exist loops with 
non-normal characteristic subloops (BRUCK [69], [70], BATES [64].) 
This fact is particularly well illustrated by the following results of 
BATES [64] on free decomposition: 

Theorem 6.1. No nontrivialfree factor of a loop Gis normal in G. 
Theorem 6.2. If G = A * B for nontrivial subloops A, B of a loop G, 

then A is a characteristic free factor of G if and only if the following condi
tions are satisfied: (a) No nontrivialfree factor of A is a free loop. (b) No 
nontrivialfree factor of A is isomorphic to a free factor of B. 

Theorem 6.3. Every two free decompositions, G = IbH (v), G=Il*K(w) 
of a loop G into characteristic subloops H (v), K (w), have a common re
finement, G = II*(H (v) n K (w)), where the free factors H (v) n K (w) are 
also characteristic. 

Theorem 6.4. If a loop G is a free product ofloops H(v), then there 
exists one and only one free decomposition of G into free factors K (w) such 
that (i) each K (w) is a characteristic subloop of G and is a free product of 
one or more of the H (v); (ii) no proper refinement of the free decomposition 
G = II*K(w) has property (i). 

The proofs of tbese tbeorems will be omitted. A free factor A of the 
loop Gis called nontrivial if A =!= I and A =!= G. In view of Theorem 6.2, 
we see tbat if Gis the free product (in the sense of loops) of any collection 
of non-isomorphic simple groups, each free factor is a characteristic 
subloop of G. 

7. Hamiltonian loops 

A loop is called hamiltonian if every subloop is normal. According 
to this definition, in cantrast to the more usual one, abelian groups are 
included among the hamiltonian groups. D. A. NoRTON [95] found that 
hamiltonian loops can bave complicated structures. In order to get 
sharp tbeorems be imposed additional hypotbeses. A loop is power
associative ( di-associative) if every element generat es ( every two elements 
generate) a subgroup. A power-associative loop is a p-loop (p a prime) 
if every element bas p-power order. NoRTON's main results may be 
stated as follows: 

Theorem 7.1. A power-associative hamiltonian loop in which every 
element has finite order is a direct product of hamiltonian p-loops. 

Theorem 7 .2. A di-associative hamiltonian loop G is either an abelian 
group or a direct product G = A ® T ® H where A is an abelian group 
whose elements have finite odd order, T is an abelian group of exponent 2 
and H is a non-commutative loop with the following properties: 

(i) The centre Z = Z (H) has order two, elements I, e where e =!= I, e2 = I. 
( ii) I f x is a non-central element of H, x2 = e. 
(iii) I f x, y are in H and (x, y) =1= I, then (x, y) = e and x, y generate 

a quaternion group. 
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(iv) lf x, y, zarein Hand (x, y, z) =!:I, then (x, y, z) = e. 
NoR.TON showed conversely that if A, T, H are as specified in 

Theorem 7.2, A ® T ® His a di-associative hamiltonian loop. Further
more, if H satisfies the additional hypothesis that any three elements 
x, y, z for which (x, y, z) = I are contained in a subgroup, then H is 
either a quaternion group or a Cayley loop. The latter is a di-assoc
iative loop of order I6 with three generators av a2, a3 such that 

a4; =I, a2; = a2; =!: 1, a;a;= a3;a; 

(a;a;)ak= a3;(a;ak), 

(i + j), 
i, f, k distinct. 

8. Loops with transitive automorphism groups 

It will be convenient in this section to talk of additive loops instead 
of multiplicative loops; then the identity element, 1, is replaced by the 
zero element, 0, and direct products by direct sums. Let G be an additive 
loop, and let ~(G) denote the group of all automorphisms of G. Clearly 
O~(G) = 0. We say that G has a transitive automorphism group if ~(G) 
is transitive on the nonzero elements of G; that is, to every two nonzero 
elements a, b of G there corresponds at least one (J in ~ (G) such that 
a (J = b. In this case, ~ ( G) is clearly an irreducible set of endomorphisms 
of G. Hence, by ScHuR's Lemma, the centralizer, <r, of ~(G) in the 
semigroup of all endomorphisms of G, consists of the zero endomorphism 
and a group (t* of automorphisms of G; in particular, <t* must be the 
centre of ~ (G) and is, therefore, an abelian group. If, further, G is an 
abelian group, <r (as is weil known) is an abelian group under addition 
and hence is a field. This proves one half of the following: 

Theorem 8.1. Let G be an additive abelian group. A necessary and 
sufficient condition that G have a transitive automorphism group is that G be 
tke additive group of a vector space over a field. 

Proof. Necessity has been proved above, so let G be the additive 
group of a vector space over a field F of right operators. If a is a non
zero element of G, aF is a minimal F-subgroup and ~(G) is clearly 
transitive on aF. If the element b of G is not in aF we observe that 
5 = aF + bF = aF Cf) bF. By use of Zorn's Lemma we deduce the 
existence of an F-subgroup M of G such that G = 5 (f) M. Then it is 
clear that there exists a unique F-automorphism of Gwhich interchanges 
a, b and induces the identity mapping on M. - The details concerning 
ZoRN's Lemma will be indicated in the proof of the next theorem. 

Theorem 8.2. Let G be an additive loop which is not an abelian group 
and which has a transitive automorphism group. Then the following 
statements are equivalent: (i) G satisfies the ascending chain condition on 
normal subloops. (ii) G contains a normal subloop N which is minimal in 
the property that N =!: 0. (iii) The only normal subloops of G are G and 0; 
that is, G is simple. 
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Proof. Foreach nonzero element a of G, Iet N (a) denote the smallest 
normal subloop of G which contains a. First assume (i) and Iet K be a 
nonzero G-normal subloop of N (a). Then K contains a nonzero element 
b and N (b) C K C N (a). There exists an automorphism () of G such that 
b() = a. Hence N(b)() = N(b()) = N(a) and we have an ascending 
chain, N (b) C N (b) 0 C N (b) ()2 C ... , of normal subloops of G. By (i), 
there exists a non-negative integer n such that N (b) ()n = N (b) ()n+l; 

hence, since () is an automorphism, N (b) = N (b) () = N (a). Thereforc 
K = N (a), showing that N (a) is a minimal nonzero normal subloop 
of G. Thus (i) implies (ii). 

Next assume (ii) and Iet b be a nonzero element of N. By the minimal
ity of N, N (b) = N. If a is a nonzero element of G and () is an auto
morphism mapping b on a, then N (a) = N (b) () = N (), Hence N (a) is 
a minimal nonzeronormal subloop of G for each nonzero a. By ZoRN's 
Lemma, there exists at least one normal subloop M of Gwhich is maximal 
in the property that N (a) n M = 0. Hence L = N (a) + M = N (a) e M 
isanormal subloop of G. If there exists an element c in G but not in L, 
then Ln N (c) =f= N (c) and hence, by the minimality of N(c), Ln N(c) = 0. 
But then L + N(c) = L e N(c) = N(a) e [M e N(c)], whence 
M =f= M e N(c) and N(a) n [M e N(c)] = 0, a contradiction. Therefore 
G = N (a) e M. If M =f= 0, there exists a nonzero element m in M. The 
element s = a + m is neither in N (a) nor in M, so N (s) n N (a) 
= N (s) n M = 0. Moreover, G = N (s) e K for at least one normal 
subloop K. Since the centre Z = Z (G) is characteristic and since G =f= Z, 
then Z = Z21,(G) = 0. Hence by Lemma 5.3, 

N(s) = [N(s) nN(a)] e [N(s) nM] = 0, 

a contradiction. Therefore M = 0, G = N (a). Thus (ii) implies (iii). 
Since (iii) obviously implies (i), the proof of Theorem 8.2 is complete. 

Weaker forms of Theorems 8.1, 8.2 are proved in BRUCK [73]. 
Examples of loops with transitive automorphism groups are given in 
PAIGE [96], BRUCK [73], ARTZY [56], BRUCK [75], HUGHES [353]. If a 
group G with transitive automorphism group has a nonzero element 
of finite order p, then p is a prime and every nonzero element has order p. 
If, in addition, G is not an abelian group, then G must coincide with its 
commutator subgroup and hence cannot be finite. This may mean- in 
case BuRNSIDE's conjecture is true- that G cannot be finitely generated 
either. For groups without nonzero elements of finite order the situation 
is better known: 

Theorem 8.3. lf Gis an addttive group in which every nonzero element 
has infinite order, then G can be imbe.dded in an additive group G* ( of 
countable order if G is countable) such that every two nonzero elements of 
G* are conjugate in G*. 
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Proof. See NEUMANN [B 12]; in particular, p. 539, corollaries 19.7, 

19.8. 

9. Homomorphism theory of quasigroups 

The homomorphism theory of quasigroups was studied for the finite 

case by GARRISON [84], [85] and in general by KIOKEMEISTER [89]. 

(See also SrK [357].) Another approach was used by T. EVANS [5] and 

others (see I, § 5), imbedding the theory in a theory of general algebras. 

We shall use the notation of KIOKEMEISTER. 

Each homomorphism (J of a quasigroup G upon a quasigroup G (J 

uniquely determines a normal equivalence relation IX on G by the require

ment that, for all a, bin G, aiXb if and only if aO = bfJ. An equivalence 

relation IX on Gis normal if and only if: (i) caiXcb implies aiXb; (ii) aciXbc 
implies aiXb; (iii) aiXb and CIXd imply aciXbd. The equivalence dass 

R (a, IX) of the element a with respect to the normal relation IX is the 

set of all x in G such that x IX a. The equivalence classes R (a, IX), a E G, 
form a quasigroup G/IX with multiplication defined by R (a, IX) R (b, IX) 

= R (ab, 1X). If the homomorphism (J of G upon a quasigroup G () deter

mines the normal relation IX as above, then the mapping R (a, IX) -+a (J is an 

isomorphism of G/IX upon GO. The intersection, IX n ß, and union, IX v ß, 
of two normal relations IX, ß are defined as usual: a (IX n ß) b if and only 

if a IX b and aß b; a (IX v ß) b if and only if there exist elements a0 , a1 , ... ,a2n 

of G suchthat a0= a, a2,. =band a 2;1Xa2;+v a2; 11 ß a2i+2 fori = 0, I, ... , n-1. 
The system (L, n, v) consisting of the set L = L (G) of all normal 

relations IX on Gunder the defined operations n, v is a modular lattice. 

In particular, R(a, IXr\ ß) = R(a, IX) nR(a, ß) and R(ab, lXV ß) 
= R (a, IX) R (b, ß) for all a, bin G, IX, ß in L. 

A subquasigroup H of the quasigroup G is called a normal divisor 

of G if and only if H = R (a, IX) for some a in G, IX in L; when this occurs, 

IX is unique. For each a in G, the subset La of L consisting of all IX in L 
suchthat R (a, IX) isanormal divisor is either empty or a modular lattice. 

In particular, R (a, IX v ß) = R (a, IX) R (a, ß) for all IX, ß in La and there 

exists a Jordan-Hölder Theorem for series of normal divisors contain

ing a. If e = e2 is an idempotent element of G, L.= L. The stronger 

type of joRDAN-HöLDER Theorem for composition series, in which each 

term is a maximal normal divisor of the preceding term (but not neces

sarily of G), is established by GARRISON [85] for finite quasigroups and 

series containing a specified idempotent e; but, as GARRISON shows, 

a change of idempotent can effect even the length of a composition 

senes. 
BRUCK [67] showed the existence of non-trivial quasigroups H, K 

such that the only subquasigroup of the direct product G = H ® K is G 
itself. KIOKEMEISTER [89] began a theory of direct products limited 

to quasigroups containing idempotents. A much more complete theory 
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of this sort, for general algebras containing neutral elements, has bccn 
given by }ÖNSSON and TARSKI [15]. 

10. Homomorphism theory of other systems 

SMILEY [109] used lattice-theoretic methods, based upon a 
fundamental lemma of ÜRE, to develop the homomorphism theory for 
loops. Later KIOKEMEISTER [89] applied similar methods to quasi
groups (§ 9). 

SMILEY [51] extended bis methods to left division systems with left 
identity elements. A groupoid G is a left division system according to 
SMILEY, if, for each ordered pair a, b of elements of G, there is one and 
only one x in G such that xa = b. Attention is restricted to homo
morphisms of left division systems with left identity elements (here 
called systems) upon like systems and to the kernels of such homo
morphisms. A kernel is called a normal subsystem and is characterized 
internally. The basic lemma is the following analogue of Zassenhaus' 
Lemma (§ 2): If A, B, A1 and B1 are subsystems of G, if Av B1 are 
normal subsystems of A, B respectively, then A1 (A 1\ B1) is a normal 
subsystem of A1 (A 1\ B), B1 (B 1\ A1) isanormal subsystem of B1 (B 1\ A) 
and the identity mapping of G induces an isomorphism of 
A1 (Ar~B)/A1 (A1 r~B) upon B1 (Br~A)/B1 (B1 r~A). 

In bis University of Wisconsin thesis (1954), WAYNE CowELL defined 
a loop image M to be a groupoid with identity element such that 
aM = M a = M for every a in M. By a theorem of BATES and KIOKE
MEISTER (cf. I, Theorem 3.2) a groupoid M is a loop image if and only 
if there exists a loop G and a multiplicative homomorphism of G upon M. 
Let G be a loop, let the subloop K of G be the kernel of a multiplicative 
homomorphism () of G upon a loop image and Iet K* be the semigroup 
generated (under multiplication only) by the right and left mappings 
R (k), L (k) of G as k ranges over K. Then K is called a quasinormal 
kernel if, for each x in G, xK* is the set of all y in G suchthat y() = xO. 
Equivalently, K is a subloop of G suchthat (xK*) (yK*) C (xy)K* for 
all x, y in G. The set Q of all quasinormal kernels is a commutative 
semigroup under the operation P(H, K) defined by P(H, K) = 1 H* K* 
for all quasinormal kernels H, K. More generally, the congruence set 
up by a quasinormal kernel of G permutes with every multiplicative 
congruence of G. An example is given to show that the intersection of 
two quasinormal subloops need not be quasinormaL I t is shown by 
construction that to each loop image M there corresponds at least one 
loop G with quasinormal kerne! K suchthat G/K is isomorphic to M and 
xK* = K (K x) for all x in G. Moreover, if M contains elements a, e, f, 
distinct from each other and the identity element, suchthat ea = a = af, 
there exists a loop H and a homomorphism () of H upon M such that the 
kerne! of () in H is not quasinormaL These two constructions make plain 
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the fact that loop images cannot be characterized by hypotheses on 
kernels alone. Two unsolved problems suggest themselves: (i) What 
loops G have the property that every image of G under a multiplicative 
homomorphism is also a loop? (ii) What loops G have the property that 
each multiplicative homomorphism of G has a quasinormal kernet? - Some 
classes of loops with property (i) are discussed in VII. 

(Since the preceding paragraph was written, CoWELL [349] has 
published some of his results and added others.) 

V. Lagrange's Thebrem for Loops 

1. Coset expansion 

Several authors (HAUSMANN and ÜRE [87], GRIFFIN [86], MuR
DOCH [92], [93] and others) have discussed coset expansion for quasi
groups. We shall treat only loops. The loop G is said to have a right 
coset expansion modulo its subloop H provided the right cosets H x 
partition G. Since each x of G lies in at least one right coset, namely H x, 
the condition for a right coset expansion is: If y E H x, then H y = H x. 
Equivalently, 

H(hx) = Hx (1.1) 

for every hin H, x in G. Similarly for left coset expansion. The usual 
proof of Lagrange's Theorem for groups gives: 

Lemma 1.1. If the finite loop G has a right (or left) coset expansion 
with respect to the subloop H, then the order of H divides the order of G. 
In particular, the order of every normal subloop of G divides the order of G. 

If His a subloop of the left or middle nucleus of G, then (1.1) holds. 
If His a subloop of the right nucleus of G, the left-right dual of (1.1) 
holds. Hence: 

Theorem 1.1. If Gis a finite loop and if His a subloop of any one of 
the nuclei of G, then the order of H divides the order of G. 

If G is a di-associative loop and if His a cyclic subgroup of G, then 
(1.1) holds. Hence: 

Theorem 1.2. I f G is a finite di-associative loop, the order of every 
element of G divides the order of G. (Applies to Moufang loops.) 

Lagrange's theorem fails for loops; for example, there exists a loop 
of order 5 with subloops of order 2. On the other hand, there exists 
a finite loop G with a subloop H of order dividing that of G such that G 
has neither a right nor a left coset expansion modulo H. For various 
examples see BRUCK [67], [69], [70]. 

2. Lagrange theorems 

Consider the following properties ~. ~· of the loop G: 
~- The order of every subloop of the finite loop G divides the order of G. 
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.5!'. lf His a subloop of a subloop K of the finite loop G, the order of H 
divides the order of K. In other words, every subloop of G has property .5!. 

Property .5! is weaker than property .5!' (BRUCK [70]). Lagrange's 
theorem for groups becomes: Every finite group has property .5!'. We 
note that .5!, .5!' are preserved under homomorphisms into loops and 
that .5!' is inherited by subloops. 

Lemma 2.1. Let H be anormal subloop of the subloop K of the loop G. 
(i) lf Hand K/H have property .5!, so has K. (ii) lf Hand KjH have 
property .5!', so has K. 

Proof. Let 5 be a subloop of K. Then 51\ H is a normal subloop of 
5 and the loops 5/(5 n H), 5 H/H are isomorphic. 

(i) Let the common order of 5/(5 nH), 5HjH be n. Since 5H/H 
is a subloop of K/H and the latter has property .5!, the order of K/H is np 
for some integer p. Let 5 r H have order q, so that 5 has order nq. 
Since 5 1\ H is a subloop of H and since H has property .5!, the order of 
H is qr for some integer r. Since K/H and H have orders np and qr 
respectively, the order of K is npqr. Hence the order, nq, of 5 divides 
the order, npqr, of K. Thus K has property .5!. 

(ii) Since H has property .5!', 5 1\ H has property .5!. Since Kj H has 
property .5!', 5 H!H and 5/(5 1\ H) have property .5!. By (i), since 51\ H 
and 5/(5 n H) have property .5!, then 5 has property .5!. Thus K has 
property .5!'. 

Theorem 2.1. Each finite loop G has a normal subloop N uniquely 
characterized by the conditions: (a) N has property .5!'. (b) I/ K isanormal 
subloop of G with property .5!', then K C N. 

Proof. Let N, K be normal subloops of G with property .5!', N being 
maximal with respect to .5!'. Since K, N /(N 1\ K), N K/ K have property 
~·, then, by Lemma2.1 (ii), so has NK. Therefore NK=N, KCN. 
If K is also maximal with respect to .5!', then N C K so N = K. 

Theorem 2.2. A necessary and sutficient condition that a finite loop G 
have property ~· is that G possess a normal chain 

(2.1) 

suchthat G;-dG; has property ~· for i = 1, 2, ... , n. 
Corollary. lf (2.1) holds and each G;_1/G; is either a group or a loop 

without proper subloops, then G has property .5!'. (Applies to loops satisfy
ing certain nilpotency conditions.) 

Proof. Necessity is obvious. As for sufficiency, Iet i be the least 
nonnegative integer such that G, has property .5!'. If i > 0, we deduce 
from Lemma 2.1 that G;-1 has property .5!', a contradiction. Hence 
G = G0 has property ~·. The Corollary is immediate. 

It is natural to enquire whether Sylow's First Theorem (for finite 
groups) has an analogue for finite loops with property .5!'. However, 
GRIFFIN [86] has constructed finite loops of arbitrary odd order 



94 VI. Nilpotency of Loops 

exceeding 5 without proper subloops. (For a correction to Griffin's 
construction see BRUCK [69].) 

VI. Nilpotency of Loops 

1. A general theory of nilpotency 

BRUCK [70] contains a theory of nilpotency of loops which embodies 
some of the basic features of nilpotency for groups. We shall sketch a 
less general approach which seems conceptually simpler. Let ~ be any 
dass of loops such that: 

(a) Every subloop of a member of ~ is in ~. 
(b) Every loop which is a homomorphic image of a member of ~ is in~. 

For example, ~ may consist of all loops or of all loops satisfying a 
prescribed set of identities. By a nilpotency function, f, for ~ we mean 
a function f with the following properties: 

(i) lf Gis in~. /(G) is a uniquely defined subloop of G. 
(ii) lf Gis in~ and if His a subloop of G, then H nf(G) C f(H). 
(iii) lf G is in ~ and if () is a homomorphism of G upon a loop, then 

f(G) () C f(G()). 
(iv) lf G is in~. if N is a normal subloop of G and if A is the inter

section of all normal subloops K of G such that N KjK is a subloop of 
f(G!K), then NA/Ais a subloop of f(G/A). 

When ~ is the dass of all loops, the most important example of a 
nilpotency function is obtained by defining f (G) to be the centre of G; 
this Ieads to the notion of centrat nilpotency. For nuclear nilpotency 
we define f ( G) to be the nudeus of G. Similarly, we could take f ( G) 
tobe the left, middle or right nudeus of G. Again, if f(G) is the Maufang 
centre of G; that is, the set of all a in G such that (aa) (x y) = (a x) (a y) 
for all x, y in G, then (i) holds for every loop G. The proof of (i) is tricky 
but (ii)-(iv) give no trouble. 

If ~ is the set of allloops with the inverse property (see VII) we may 
define f ( G) to be the M oufang nucleus of G; that is, the set of all a in G 
suchthat a [(xy)a] = (ax) (ya) for all x, y in G. 

If ~ is the set of all Moufang loops (see VII) we ma y define f ( G) to be 
the set of all a in G such that ax = xa for every x in G; then f(G) 
coincides with the Moufang centre of G. 

If ~ is the dass of all commutative Moufang loops (see VIII) we may 
take f(G) tobe the distributor of G, namely the set of all a in G suchthat 
(xy, z, a) = (x, z, a) (y, z, a) for all x, y, z in G. 

If ~ is the dass of all groups, we may take f (G) to be the n-centre 
of G (BAER [B 14]). 

These examples suggest another approach. Let <r be a non-empty 
set of loop words W,. suchthat W,.(l, X 2, ••• , X,.)= 1; e. g., a set of 
loop words which are normalized purely non-abelian in the sense of 
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IV.4. For every loop G, let I(G) be the set of all a in G such that 
w n (a, x2, ... ' x)n = 1 for all x2, ... ' Xn in G and each w n in er. Finally, 
define ~ to be the dass of allloops G for which I (G) is a subloop. Then 
~ satisfies (a), (b) and I is a nilpotency function for ~. 

Now let ~ be a dass of loops subject to (a), (b) and let I be any 
nilpotency function for ~. For G in ~ we define the 1-centre, Z1 (G), 
tobe the union of allnormal subloops of Gwhichare contained in I(G). 
For any normal subloop N of G, we define (N, G) 1 tobe the subloop A 
whose existence is guaranteed in (iv). Clearly Z1 (G) and (N, G)1 are 
normal subloops of G; moreover, (N, G)1 is a subloop of N. The (trans
finite) lower 1-series, {G "'}, of Gis defined inductively as follows: (i) G0 = G; 
(ii) for any ordinal IX, G"'+l = (G"', G)1 ; (iii) if IX is a Iimit ordinal, G"' is 
the intersection of all Gp with ß < IX. Clearly G"' isanormal subloop of G 
for every IX; and, if IX< y, G" is a subloop of G"'. Moreover, if IX, ß are 
ordinals such that IX< ß and G"'= G0t+1• then G"'= Gp. Consequently 
there exists a least ordinal a such that Ga= GT for every ordinal T with 
a < T. The loop G is translinitely 1-nilpotent of dass a if Ga= 1 and is 
1-nilpotent if, in addition, a is a finite ordinal. The (transfinite) upper 
1-series, {Z"'}, of Gis defined inductively as follows: (i) Z0 = I; (ii) for 
any ordinal IX, Z"'+l is the unique subloop of G containing Z"' such that 
Z"'+ 1/Z"' is the 1-centre, Z1 (G/Z"'), of G/Z"'; (iii) if IX is a Iimit ordinal, 
z"' is the union of all Zp with ß <IX. Again, z"' isanormal subloop of G 
for each IX, butthistime z"' is a subloop of z" for IX< y. As before, there 
exists a least ordinal A. such that ZA = z,. for every ordinal f-l such that 
A. < f-l· The loop G is called translinitely upper-1-nilpotent of dass ;, if 
Z} = G and upper-1-nilpotent if, in addition, A. is finite. 

In the rest of this section it is to be understood that we are dealing 
with loops of a dass ~ satisfying (a), (b) and with nilpotency functions 
for ~. 

Lemma 1.1. Let G be a loop with lower I -series { G "'}. ( i) I I H is a subloop 
ol G, then H"' C G"' lor every ordinal IX. (ii) 11 () is a homomorphism ol G 
upon a loop K, then (G"') () C K"' lor every ordinal IX and (G .. ) () = Kn lor 
every non-negative integer n. 

Proof. (i) Certainly Ho= H cG =Go. Let IX be an ordinal and 
assume inductively that H fJ C G fJ for every ß < IX. If IX = y + 1 for some 
y <IX, then H"C G", so H"GdG"' is a subloop of G"!G"' and hence of 
I(G!G"'). Therefore, by property (ii) of 1. H"GdG"' is a subloop of 
I(HGdG"'). The natural isomorphism of HGdG"' upon H/(H n G"') 
maps H"GdG"' upon Hy(H n G"'}/(H n G"'). Hence, by properties (iii), 
(ii) of 1. H y (H n G "'}/(H n G "') is contained in I (H /(H n G "')). Conse
quently H"'= Hy+l is contained in H n G"' and hence in G"'. If IX is a 
Iimit ordinal, H"' is the intersection of the H fJ with ß < IX and hence is 
contained in the intersection of the Gp with ß < IX, that is, in G"'. This 
proves (i). 
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It will be convenient to note at this point that if q; is an isomorphism 
of a member M of ~. property (ii) of f yields /(M) q; = f(M q;). 

(ii) Certainly (G0) (J = K 0• Let ct be an ordinal and assume inductively 
that (G11) (J C Kp for every ß < ct. If ct is a limit ordinal it follows at once 
tbat (G,..) (J C Ka.. If ct = y + 1 for some ordinal y < ct, let H = (Ka.) (J-l 
be the inverse image of Ka.. Then (J induces a natural isomorphism, say q;, 
of G/H upon K!Ka.. Since (GyH) (J = (Gy) (J C Ky, by our inductive 
hypothesis, and since K/Ka. lies in f(K!Ka.), then GyH/H lies in 
f(K/Ka.) q;-1 = f(G/H). Therefore Ga.= Gy+l is contained in H and 
(Ga.)(} is contained in HO== Ka.. This proves the first part of (ii). In 
particular, (G,.) (J C K.,. for every positive integer n. Next we consider 
a positive integer n and assume inductively that (G,._1) (J = K,._ 1• 

Certainly (J induces a natural homomorphism, say 'I'· of G/G,. upon 
Kj(G,.) 0. Since G ... - 1/G,. is in f(G/G,.), then K,._1j(G,.) (J = (G,._tfG,.)"P 
is in f(G/G,.)"P and hence, by property (iii) of /,in f(Kj(G,.)O). Thus 
K,. C (G,.) (J and consequently (G,.) (J = K,.. This proves (ii) and completes 
the proof of Lemma 1.1. 

Theorem 1.1. /f a loop G is transfinitely f-nilpotent of class a, then 
every subloop H of G is transfinitely f-nilpotent of class at most a. /f, 
further, a is finite, every homomorphic loop-image of G is f-nilpotent of 
class at most a. 

Proof. This is a corollary of Lemma 1.1. 
Lemma 1.2. Let the loop G have upper and lower f-series {Za.}, {Ga.} and 

assume that GfJ+l CZy+ 1 for some ordinals ß, y. Then Gp+2CZ7 and 
GpCZy+2· 

Proof. Since Gp+1Zy/Zy is contained in Zy+1/Zy = Z1 (G/Zy) and the 
latter is part of f(G/Zy), then Zy contains (GfJ+l• G)1 = GtJ+2· Since 
(Gp. G) 1= GfJ+l is contained inZy+t• then, byproperty (iii) of /, GpZy+l/Zy+l 
is contained in f(G/Zy+l) and hence, being normal, in Z1 (G/Zy+l) 
= Zy+,}Zy+t· Therefore Gp is contained in Zy+2· This proves Lemma 1.2. 

Theorem 1.2. A necessary and sulficient condition that the loop G be 
f-nilpotent of (finite) class n is that G be upper-f-nilpotent of class n. 

Proof. By the arguments of Lemma 1.2, the inequalities G,. C Z0 and 
G0 C Z,. are equivalent. - Known facts about. nilpotency of groups show 
that the theorem fails for the transfinite case. 

The following lemma suggests an order relation among nilpotency 
functions: 

Lemma 1.3. Let f, h be nilpotency functions for a class ~ such that 
f(G) Ch(G) for every Gin~. Then, for allnormal subloops of amember, 
G, of~. 

i/ KCL then(K, G)"CL, G)1 • (1.1) 

Proof. If K CL then K(L, G)1f(L, G)1 CL/(L, G)1 Cf(Gf(L, G)1) C 
C h(G/(L, G)1) and therefore (L, G)1 contains (K, G)". 
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Theorem 1.3. Under the hypothesis of Lemma 1.3, if G is transfinitely 
f-nilpotent of class a then G is transfinitely h-nilpotent of class at most a. 

Proof. lf {Ga(fl}, {Ga<M} are the lower series corresponding to /, h 
respectively, we verify that Ga(h) C Ga<t> for every ordinal oc by transfinite 
induction based on (1.1). Consequently, Ga<h>= 1. 

Among the many unanswered questions in connection with nilpotency, 
we will mention only the following: I s every free loop transfinitely 
centrally nilpotent ? 

2. The Frattini subloop 

lf 5, T, .. . , are subsets or elements of a loop G, let {5, T, .. . } 
denote the subloop of G generated by 5, T, ... . An element x of a 
loop G is a non-generator of G (NEUMANN [B 11], BRUCK [70]) if, for 
every subset 5 of G, { x, 5} = G implies { 5} = G. It is easy to see that 
the non-generators of G form a subloop, cp(G), of G. This is the Frattini 
subloop. 

Lemma 2.1. If 0 is a homomorphism of the loop G upon a loop, then 
cp(G)O C cp(GO). 

Proof. Let a be an element of cp (G) and let 5 be a subset of G 0 such 
that {aO, 5} =GO. If T = 50-1, then H = {a, T} is a subloop of G 
containing the kemel of 0. Since, also, H 0 = GO, then H = G. Thereforc 
{T} = G and hence {5} = {T}O =GO, showing that aO is in cp(GO). 

Theorem 2.1. Let G be any loop. If G has at least one maximal proper 
subloop, then cp (G) is the intersection of all maximal proper subloops of G. 
In the contrary case, cp(G) = G. 

Proof. lf G has maximal proper subloops, let H be the intersection 
of allsuch subloops; in the contrary case, let H = G. First assume H =j= G 
and let x be in G but not in H. Then there exists a maximal proper 
subloop M of G which does not contain x. Hence {x, M} = G but 
{M}=M=J=G, so xisnot in cp(G). Therefore cp(G)CH; and this is 
also true when H = G. Next assume cp(G) =j= G and let y be in G but 
not in cp(G). Then there exists a subset 5 of G suchthat {y, 5} = G but 
{5} =j= G. By Zom's Lemma, the set of all subloops of Gwhich contain 
{ 5} but not y has at least one maximal element, say K. If L is a subloop 
of G containing K properly, then L contains both y and 5, so L = G. 
Therefore K isamaximal proper subloop of G, so H C K and, in particular, 
y is not in H. Hence H C cp (G); and this is also true when cp (G) = G. 
Consequently cp(G) = H, proving Theorem 2.1. NEUMANN has pointed 
out (correcting a misstatement in BRUCK [70]) that cp (G) = G if G is the 
additive group of rationals but cp (G) =j= G if Gis finitely generated. 

By Lemma 2.1, cp(G) is a characteristic subloop of G for every loop 
G. Thus cp (G) is normal in G if G is a group but (see BRUCK [69] for 
examples) there exist loops with non-normal Frattini subloops. 
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Theorem 2.2. Let the loop G be transfinitely upper centrally nilpotent. 
Then rp(G) is normal in G and Gjrp(G) is an abelian group. Hence either 
rp(G) =Gor Gjrp(G) is a subdirect product of cyclic groups of prime order. 

Proof. We need only consider the case that rp(G) =!= G. Then G has at 
least one maximal proper subloop M and rp (G) is the intersection of all 
such subloops. First suppose that M Z = G where Z is the centre of G; 
then it is easy to see that M is normal in G. We note that, for central 
nilpotency, I (G) is the centre (a normal subloop) of G. Hence, if {Z"'} 
is the upper central series of G, Zcx+IiZ"' is the centre of GjZ"' for every 
ordinal oc. By hypothesis, Za= G for some ordinal a. Thus the set of 
all ordinals oc such that M Z"' = G is non-empty and therefore contains 
a least ordinal, say A. Then M z, = G. Since M Z 0 = M =1= G, Ais positive. 
If ß < A then M Z p=l= G and hence, by the maximality of M, Z fJ C M. 
If A is a Iimit ordinal we deduce that z, C M, a contradiction. Hence 
A = fl + 1 for an ordinal fl and Z'" C M nz.- Then (M/Z,,) (Z.JZ) = GjZ1, 

and z,;z'" is the centre of G!Zw Therefore, by the special case considered 
above, MjZ'" is normal in GfZw Hence M is normal in G. Since G = MZ;., 
GjM is isomorphic to Z,./(M nZ,). Since M nZ;. contains Z'"' GjM is 
a homomorphic image of the abelian group Z;./Zw Therefore M contains 
the commutator-associator subloop G' of G. Consequently, rp(G) is a 
normal subloop of G containing G'; and Gjrp(G) is an abelian group, 
say A. Since A is an abelian group such that rp(A) = I, then A is a 
subdirect product of cyclic groups of prime order. This completes the 
proof of Theorem 2.2. 

A nontrivial abelian group G is (centrally) nilpotent of class I. If G 
is the additive group of rationals, rp(G) = G, whereas, if Gis a subdirect 
product of cyclic grou ps of prime order, rp ( G) = I. Hence we can 
expect little more from the hypothesis of Theorem 2.2. Moreover 
(BRUCK [70]) if n is a positive integer and if A1 , A 2 , ••• , An are non
trivial abelian groups such that An has at least three elements, there 
exists a loop G with upper central series I = Z 0 C Z1 C ... C Zn = G 
suchthat Z;/Z;_1 is isomorphic to A; for i =I, 2, ... , n. Again, there 
exist finite, centrally nilpotent loops which are not direct products of 
loops of prime-power order and there exist finite loops of prime-power 
order which are not centrally nilpotent. 

Lemma 2.2. Let G be a finite loop with multiplication group 'm (G) and 
let p be a prime. Then the following statements are equivalent: (i) G is 
centrally nilpotent and has order a power of p. (ii) 'm (G) has order a 
power of p. 

Proof. We use the easily proved fact that the mapping z -+ R (z) is 
an isomorphism of the centreZ of G upon the centreß of 'm (G). According 
to ALBERT (see IV.I) 'm (G/Z) is isomorphic to 'm (G)jZ* where Z* is 
the set of all ()in 'm(G) suchthat (x())Z = xZ for every x in G. First 
assume (ii). Then 3. and hence Z, isanontrivial group of orderapower 
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of p. If {Za} is the upper central series of G, we deduce that the groups 
Zn!Zn_1, n = I, 2, ... , have p-power order and are nontrivial for all n 
with G =1= Zn_1• Hence (ii) implies (i). Next assume (i). If (J is in Z*, 
the function /, defined by x (j = x f ( x) for all x in G, has values in Z. If tp is 
in Z* and xtp = xg(x), then x(Otp) = xR(f(x)) tp = xtpR(f(x)) 
= x[/(x)g(x)]. Hence Z* is isomorphic to a multiplicative group of 
single-valued mappings of G into Z. Since Z, as a normal subloop of G, 
has p-power order, then Z* has p-power order also. If G has central 
class c > 0, then GjZ has central class c- I. Hence we assume induct
ively that ml (G)/Z* has p-power order and deduce that ml (G) has 
p-power order. Thus (i) implies (ii) and the proof of Lemma 2.2 is 
complete. 

Theorem 2.3. Let G be a finite centrally nilpotent loop of primepower 
order pn, n > 0. Then: (i) Every subloop of G has p-power order. (ii) 
G j tp ( G) is an abelian group of order pd > I and exponent p. (iii) The 
elements x1, x2, ••• , xt of G form a minimal set of generators of G if and only 
if t = d and x1tp(G), x2tp(G), ... , xdtp(G) generate Gjtp(G). (iv) The group 
of alt automorphisms of G has order dividing pk(pd- I) (pd-1- I) · · · (p- I) 
where 2k = d (2n-I- d). 

Proof. The lower central series of G satisfies the condition of V, 
Theorem 2.2. Hence (i) holds. Since G is finite, tp (G) =I= G; hence (ii) 
follows from Theorem 2.2. The rest of the proof is the same as for 
p-groups (PHILIP HALL [B 6].) However, in cantrast with the case for 
p-groups, G can have a single generator (d = I) without being a cyclic 
group (BRUCK [70].) 

3. Hall's enumeration principle 

PHILIP HALL [B 6] seems to have been the first to apply to group 
theory in a systematic fashion the well known MöBIUS forrnulas from 
nurober theory. We shall give our own interpretation of the principles 
involved. (See also Birkhoff's Lattice Theory and the references 
cited therein.) 

Let L be a finite partially ordered set consisting of a non-ernpty set L 
tagether with a binary relation (<) such that, for all elements a, b, c 
of L: (i) If a < b and b < c, then a < c; (ii) At rnost one of the follo wing 
holds: a < b, a = b, b < a; (iii) L has a unique (maximal) element e such 
that a ~ e for each a in L. Let F be the vector space of all single-valued 
functions a-+f(a) from L to the ring of rational integers, where we 
define (/ + g) (a) = f(a) + g(a), (nf) (a) = n · f(a) for all /, g in F and 
all integers n. With each a in L associate the following function 
ha: ha(b) = I if a ~ b and ha(c) = 0 if a ~ c. We first show that the ha 
form a basis for F over the integers. To see this, we observe that if m is a 
minimal element of L (an elementsuchthat a ~ m implies a = m) then 
a =I= m implies ha(m) = 0. If f is in F, the function g, defined by g(a) 
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= l(a)- l(m)hm(a), has the property that g(m) = 0. Hence g and the ha 
for a =I= m may be thought of as defined for the subsystem L' obtained 
from L by deleting m. Therefore we may assume inductively that g is a 
unique linear combination with integer coefficients of the ha for a =1= m; 
and then we see that I is a like linear combination of the ha, a E L. If L 
has n elements we enumerate the elements of L in some arbitrary fashion 
as a(1), a(2), ... , a(n) and form a matrix H suchthat the element of H 
in the ith row, ith column is the nurober ha(i) (a(j)). Since the ha form a 
basis of F, H is nonsingular. In particular, the submatrix of n- 1 
rows, n columns, obtained from H by deleting the row corresponding 
to h,, has rank n- 1. Equivalently, there is, aside from a rational 
multiple, exactly one nonzero rational-valued function q; on L such that 

E q;(a) l(a) = 0 (3.1) 

if and only if the element I of F is a linear combination of the ha for 
a =I= e. We normalize q; by the requirement that q;(e) = 1. Then, by 
substitutinginturn for I each ha with a =F e, we get the following complete 
description of q;: 

q;(e) = 1; q;(a) =- }; q;(b) if a < e. (3.2) 
a<b 

As a familiar example of the above, Iet e be a fixed positive integer, 
e ;;;:;; 2, and let L be the set of all positive integral divisors of e, where 
a ~ b in L means that a is a divisor of b. Then q; (a) = 11 (eja) for each 
a in L, where 11 is the familiar Möbius function of nurober theory. 

Next suppose that the partially ordered set L consists of finitely 
many non-empty subsets of a set G, including G itself, where a < b 
means that a isaproper subset of b. Here e = Gis the unique maximal 
element of L. Now consider some finite collection S of non-empty 
subsets s of G. For each s in S define an incidence function 1. on L as 
follows: l.(a) = 1 or 0 according as s is or is not a subset of a. Further
more, let I= ls be the sum of the 1. for s in 5. Since I, along with each 1., 
is an element of F, then I is a linear combination of the ha. We are 
interested in the case that I is a linear combination of the ha for a =I= e, 
so that I satisfies (3.1). With this in mind, we note that l.(a) = 1, a < b 
implies l.(b) = 1. Hence the simplest non-trivial hypothesis is that to 
each s inS there corresponds an a in L, a < e, suchthat 1.= ha. Equival
ently, for each s in S: (I) There exists at least one a in L such that 
s ( a, a < e. (II) There exists a unique a in L which is minimal in the 
property that s Ca. 

Now we come to the case by PHILIP HALL for the enumeration 
theory of finite p-groups. Let G be a finite centrally nilpotent loop of 
p-power order, where p is a prime, and let L be the set of all subloops 
M of Gwhich contain the FRATTINI subloop D = q;(G). Here, if D has 
index p11 , L is essentially the lattice of all subgroups ot the elementary 
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abelian group GjD of order pa. Consequently, as HALL shows, the 
function cp of (3.1), (3.2) is given by cp(M) = (-1)ipi(i-1)/2ifthe element 
M of L is a subloop of index p; in G. If we consider a collection S of 
non-empty subsets s of G such that each s is contained in at least one 
maximal proper subloop of G, then (I) of the preceding paragraph is 
satisfied. Moreover, (II) holds since L is closed under intersection. 
Therefore, if f = f 8 , (3.1) becomes 

d 
E (- 1)i pi<i-1)/2 E f(M;) = o (3.3) 

i= 0 

where the inner sum is over all subloops M; of G which contain D and 
have index p; in G. The simplest application of (3.3) is as follows: 

Theorem 3.1. Let G be a centrally nilpotent loop of finite primepower 
order pn. Then, for each integer m in the range 0 ~ m ~ n, the number 
of subloops of G of order pm is congruent to 1 modulo p. 

Proof. If m = n, the nurober in question is one, so we assume 
0:;;::;; m < n. Let S be the set of all subloops of G of order pm. Then, if 
f = f8 , f(M) is the nurober of such subloops contained in M; and the 
total number is /(G). Certainly every member of S is contained in a 
maximal proper subloop of G. Hence we may use (3.3) and, by taking 
congruences modulo p, we get f (G) ==}; f (M1) mod p. Each M1 has 
order pn-1 , so we assume inductively that /(M1) == 1 mod p. Then 
f (G) == t mod p where t is the number of maximal proper subloops of G. 
Equivalently, t is. the number of subgroups of order pa- 1 in an elementary 
abelian p-group of order pa. By direct computation or otherwise, t == 1 
mod p. This completes the proof of Theorem 3.1. 

Aside from trivialities, the above proof is that of HALL for p-groups. 
Similarly: 

Theorem 3.2. Let G be a di-associative, non-cyclic, centrally nilpotent 
loop of odd prime-power order pn. Then: 

(a) For 0 < m < n, the number of subloops of G of order pm is con
gruent to 1 + p modulo p2 (KuLAKOFF). 

(b) For 1 < m < n, the number of cyclic subloops of G of order pm is 
congruent to 0 modulo p (MILLER). 

Proof. See P. HALL [B 5], Theorems 1.52, 1.53. Note that, for (a), 
the case that D = cp(G) has index p2 is critical. Here the hypothesis 
of di-associativity saves us by ensuring that Gis a group. 

Anticipating some of the material of later chapters, we may remark 
that the hypotheses of Theorem 3.2 are fairly natural for Moufang 
loops. By MouFANG's Theorem (VII. 4) every Moufang loop is di
associative. By VIII, Theorem 10.1, every finite (or finitely generated) 
commutative Moufang loop is centrally nilpotent. From this it is an 
easy exercise to deduce that every finite commutative MauFANG loop 
is a direct product of an abelian group of order prime to 3 and a centrally 
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nilpotent commutative Moufang loop G of order a power of 3. And 
Theorem 3.2 applies to G. 

4. Local properfies 

If X is a non-empty subset of a loop G, let N (X; G) derrote the 
smallest normal subloop of G containing X. If Xis empty, let N (X; G) =I. 
If XC Y, clearly N (X; G) C N (Y; G). If H, K are subloops of G such 
that XC H C K, then H n N (X; K) is a normal subloop of H containing 
X, so N (X; H) C N (X; K). Combining these facts, we see that 

HCK ---+N(X nH; H)CN(X nK; K) (4.1) 

for all subloops H, K, not necessarily containing the subset X. 
Lemma 4.1. Let X be a subset of a loop G. Then N (X; G) is the set 

union of the subloops N (X n H; H) where H rang es over all finitely 
generated subloops of G. 

Proof. We may assume that X is non-empty, since otherwise the 
proof is trivial. Let M be the set union described in the Iemma. If H, K 
are finitely generated subloops of G, there exists a finitely generated 
subloop L of G containing both Hand K. Therefore, by (4.1), N (X n L ;L) 
contains both N(X nH; H) and N(X nK; K). Consequently, M is a 
subloop of G. By (4.1) again, N(X nH; H) C N (X; G) foreachsubloopH, 
so M C N (X; G). On the other hand, N (X; G) is generated by the set 
of all elements x() where x ranges over X a'nd () ranges over the inner 
mapping group, 3 (G), of G. Consider a fixed pair x, 8. By the definition 
of 3 (G), there exists at least one finite subset S of G such that 8 lies in 
the subgroup of 3(G) generated by inner mappings of form R(s, t), 
L (s, t), T (s), where s, t range over S. Let H be the subloop of G generated 
by the finite set Sand the element x of G. Since S is in H, 8 induces an 
inner mapping of H. Hence 8 maps the normal subloop N (X n H; H) 
of H into itself. Since x is in X nH, x8 is in N(X nH; H) and hence 
in M. Therefore M contains a set of generators of N (X; G), so 
M=N(X;G). 

If (P) is a property of loops, a loop G is said to have property (P) 
locally if every finitely generated subloop of G has property (P). And 
(P) is a local property of loops if every loop which has (P) locally also 
has (P). In the discussion of properties of loops, questions of separation 
(the element a is or is not in the subloop B) sometimes arise. Some of 
these questions can be handled by use of Lemma 4.1. Weshall now give 
a fairly general example. 

Let <r be a given non-empty set of loop words Wn. Let~ be a given 
dass of loops containing the subloops of each of its members. For each 
loop G in ~ and each non-empty subset X of G, Iet (X; G; <r) be the 
subloop of G constructed as follows: (X; G; <r) = N (Y; G), Y being the 
set of all elements W n (p, z2 , ••• , Zn) where W n ranges over the words 
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in <r, p over the elements of N (X; G) and z2, ••• , z" over the elements 
of G. Here <r may be finite or infinite. 

Lemma 4.2. I f a finite subset S of the loop G is contained in (X; G; <f), 
then there exists a finitely generated subloop H 0 of G such that S is contained 
in (X r\ H; H; <r) for every finitely generated subloop H which contains H 0 • 

Proof. Let Y be the set mentioned in the definition of (X; G; <r). By 
Lemma 4.1, each element of S is in some N(Y r\K; K) where K is 
finitely generated. Since S is finite, S is in some N ( Y r\ L; L) where L 
is finitely generated. Hence there exists a finite subset T of Y r\ L such 
that S is in N(T; L). Each t in T has the form W"(p, z2, ••• , z,.) for 
some W" in <r, p in N(X; G) and z2, ••• , Zn in G. Thus there exists a 
finite subset P of N (X; G) and a finite subset Z of G such that each t 
in T has form w" (p; z2, •.. ' z,.) for some w" in <r, p in P, z2, .•. ' Zn in z. 
Since P is a finite subset of N (X, G), then, by Lemma 4.1, P is in 
N (X r\ H; H) for any suitably large finitely generated subloop H. If we 
choose H to contain Z and the finitely generated subloop L we will have 
SC N (T; L) C N (T; H) C (X r\ H; H, <r). This proves Lemma 4.2. 

Next let ~ be a dass of loops satisfying (a), (b) of § 1. A nilpotency 
function f for ~will be said to have word type if there exists at least one 
non-empty set <r of loop words such that, for Gin~. f(G) is characterized 
as follows: The element a of G is in /( G) if and only if W n ( a, x2, x3, ••• , x") = 1 
for every W,. in <r and all x2, x3, ••• , x" in G. It is readily verified that 
every nilpotency function discussed in § 1 has word type. For example, 
a suitable set of words for central nilpotency consists of U2, V3 , W3 

where U2 is the commutator word and V3, W3 are two forms of the 
associatorword: U2 (X11 X 2) = (X1 , X 2); V2 (X1, X 2, X 3) = (X11 X 2, X 3); 

W3 (X1, X 2, X 3) = (X3 , X 2 , X1). If I has word type and if K isanormal 
subloop of the loop G in ~. then the natural homomorphism x -+ xK 
maps f (G) into a subloop of f (G/K); consequently, the set of all elements 
of form W"(k, x2, ••• , x"), where W" is in <r, k is in K and x2, ••• , x,. 
are in G, must be a subset of K. Considering next the homomorphism 
x -+ x(K, G)1, we see that the smallest normal subloop of G containing 
the set of elements just described must be (K, G)1. 

Thus the following lemma is a corollary of Lemma 4.2: 
Lemma 4.3. Let f be a nilpotency function of word type for a class ~ 

satisfying (a), (b) of § 1. If Gis in~. if Xis a non-empty subset of G and 
if S is a finite subset of (N (X; G), G) 1, then there exists a finitely generated 
subloop H 0 of G such that SC (N (X r\ H; H), H) 1 for every finitely 
generated subloop H which contains H 0• 

In order to make effective use of Lemma 4.3 we need the concept 
of a linear system e of a loop G (KuRos, Theory of Groups, vol. 2). 
First let e be a non-empty set whose elements are subloops of G and 
which is simply (or linearly) ordered by inclusion: if H, K E e then 
either H C KorK C H. An extension, ~. of e is a set of subloops of G, 
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simply ordered by inclusion, such that 6 C <!'; and T isaproper extension 
of 6 if 6 =!= <!'. By ZüRN's Lemma, applied to all the extensions of 6, 
6 must have at least one maximal extension, say m1. That is, m1 is an 
extension of 6 such that m1 has no proper extension. Among the pro
cesses which yield extensions of a simply ordered set 6, we are interested 
in the following: (1) If Gis not an element of 6, adjoin G to 6. (2) If the 
identity subloop, 1, is not an element of 6, adjoin 1 to 6. (3) Consider 
some non-empty subset <!' of 6 and let H be the intersection of all 
subloops of Gwhichare elements of <!'. Then His a subloop. If <!'' is the 
set consisting of all elements K of 6 such that H ( K, then <!' C <!'' and 
hence His the intersection of the elements of <!''. In particular, if L is an 
element of 6 which is not in <!'', then L C K for every K in <!'' and hence 
L C H. Therefore H may be adjoined to 6. We note that if the elements 
of 6 are normal subloops of G, then His normal in G. Similarly, if, for 
some set, Q, of endomorphisms of G, all elements of 6 are Q-subloops, 
then so is H. (4) Consider some non-empty subset <!' of 6 and let H be the 
union (i. e., the set of elements of G contained in one or more) of the 
elements of <!'. Since <!', like 6, is simply ordered, H is a subloop of G. 
If <!'' is the set of all elements K of 6 such that K C H, then <!' C <!'' and 
hence H is the union of the elements of <!''. In particular, if L is an 
element of 6 which is not in <!'', then K CL for every K in <!'' and hence 
H CL. Therefore H may be adjoined to 6. As before, H is a normal 
subloop or an il-subloop if the same is true for each element of 6. We 
note that processes (1)-(4) may be combined as follows: We partition e 
into an upper section ll and a lower section ~. one of which may be empty. 
That is, each element of e is in exactly one of ~. ll, and AC B for every 
A in ~. B in ll. If ~ is e!hpty, define H 1 = 1; otherwise let H1 be the 
union of the elements of ~. If ll is empty, define H 2 = G; otherwise 
let H 2 be the intersection of the elements of ll. Then AC H 1 C H 2 C B for 
every A in~. B in ll. If H1 =!= H 2 then H 1 is either a (unique) maximal 
element of ~ or not in 6; similarly, H 2 is either a (unique) minimal 
element of ll or not in e. Moreover, if Xis an element of H2 which is not 
in Hr then H2 is the intersection of all elements of e containing X and Hl 
is the union of all elements of e not containing X. If Hl = H2= H, then 
H is either a (unique) maximal element of ~ or a (unique) minimal 
element of ll or not an element of e. And in any case, Hv H 2 can be 
adjoined to e if they are not in e. 

By a linear system e of a loop G we mean a (non-empty) set of 
subloops of G, simply ordered by inclusion, such that none of the above 
processes yields a proper extension of 0. That is: (i) 0 contains 1 and G. 
(ii) The intersection of any non-empty set of elements of e is an element 
of 6. (iii) The union of any non-empty set of elements of e is an element 
of 6. By a jump of a linear system 6 of G we mean an ordered pair H, K 
of elements of 6 such that H C K, H =!= K and such that there exists 
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no element M of e satisfying H C M ( K, M =1= H, M =1= K. If x is an 
element of K which is not in H, so that, in particular, x =I= 1, then K is 
the minimal element of e which contains X and H is the maximal 
element of e which does not contain X. Conversely, each element X =I= 1 
determines a unique jump H, K of €5 in just this manner. A linear 
system e is called a chiel (or principal) system of G if each element of 
€5 is normal in G; and €5 is called an .Q-system of G if each element of 
€5 is an .Q-subloop of G. Again, e is called a normal system if, for each 
jump H, K of €5, H is normal in K. A composition chiel system is a 
chief system which has no proper chief refinement. By Zorn's Lemma, 
every chief system can be refined to a composition chief system. Simil
arly for composition normal systems, composition chief .Q-systems 
and so on. Weshall not di~cuss the problems connected with analogues 
of the JoRDAN-HÖLDER Theorem or the ScHREIER-ZASSENHAUS Refine
ment Theorem (IV.3); for these see KuRos, loc. cit. supra. 

A linear system €5 of G is called descending ( ascending) if every 
non-empty subset of S has a maximal (minimal) element. These two 
types were considered in § 1 in connection with transfinitely 1-nilpotent 
loops and transfinitely upper 1-nilpotent loops respectively. 

Now Jet ~ be any dass of loops satisfying (a), (b) of § 1 and Iet I 
be any nilpotency function for ~. By an I-system, e, of a loop Gin~ we 
mean a chief system of G such that, for each jump H, K of€5, H) (K, G)1• 

Equivalently, KjH CZ1(GjH). A loop Gin~ will be called a Z,-loop if it 
has at least one I-system. In particular, when I(G) is the centre of G 
for each G in ~. we speak of centrat systems and of Z-loops. MALCEV 
(see KuRos, loc. cit.) has proved a local theorem for Z-groups. In order 
to generalize this to Z,-loops we shall assume that I is of word type. 

Theorem 4.1. Let f be a nilpotency function of word type. Then every 
local Z ,-loop is a Z ,-loop. 

Proof. Let G be a local Z,-loop. That is, every finitely generated 
subloop of G is a Z,-loop. We begin with the following proposition: 

(a) I I F =I= 1 is a linitely generated subloop ol G and il F* is the smallest 
normal subloop ol G containing F, then F is not contained in (F*, G)1• 

By hypothesis, there exists a finite subset X of G which generates F. 
Since F =1= 1, we may assume without loss of generality that X does not 
contain 1. In our previous notation, F* = N (F; G) = N (X; G). Suppose, 
in contradiction to (a), that F C (F*, G)1. Then; in particular, 
XC(F*, G)1 = (N(X; G), G)1. By Lemma4.3, since Xis finite, there 
exists a finitely generated subloop H of G, containing X, such that 
XC (N (X; H), H) 1• We select some I-system e of H; one exists by 
hypothesis. Since X does not contain the identity element, each x in X 
uniquely determines a jump Pa:, Qa: of e suchthat x is in Qz but not in 
Pa:. By the definition of an I-system, (Qz, H)1 C Pz for each x. Since X 
is finite and e is linearly ordered, X c Qz for some X in X. Therefore 
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N(X; H) C Q., and hence XC (N(X; H), H),c (Q.,, H),C P.,, contradict
ing the. fact that x is in X but not in P .,. Therefore (a) must be true. 

Before proceeding, we note that (a) implies that alt minimal normal 
subloops ol a local Z,-loop are contained in the 1-centre. Consequently, 
il a loop G has the property that every quotient loop ol Gis a local Z,-loop 
then every composition chiel system ol G is an I-system. The present 
weaker hypotheses require a Ionger argument; the fact that free groups 
areZ-groups but have quotients which are notZ-groups shows that we 
must single out, in some way, an I-system for G. We use a method of 
MALCEV to prove the following: 

(b) With each x ol G there may be associated a normal subloop H (x) 
ol G suchthat (i) H(I) =I; (ii) il x =!=I then H(x) contains (N(x; G), G)1 

but not x; (iii) the set ol alt subloops H (x), x E G, is linearly ordered by 
inclusion. 

Suppose (b) has been proved, and let ES be the linear system of G 
obtained from the set of all H (x) by forming unions and intersections 
and, if necessary, adjoining G. Let A, B be a jump of ES. If x is in B 
but not in A, then x =!= I ; whence, by (ii), H (x) CA. Therefore A 
contains (N(x; G), G)1 for every x of B which is not in A and hence, 
in fact, for every X of B. Consequently, (B, G)f c A. This shows that e 
is an I-system. 

In order to prove (b), we consider the set of all finitely generated 
subloops of G; F will be a generic notation for such a subloop. In each 
F we select a fixed I-system for F. If x =!= I is in F, let F., denote the 
largest element of the I-system for F which does not contain x. In 
addition, define F 1 = I. For any fixed F, the subloops F.,, x E F, are 
simply ordered. We wish to associate with every finite non-empty 
set X of elements of G a set, ~(X), of finitely generated subloops of G 
such that: (I) for each F in ~(X), X is a subset of F and the subloops 
F., of F, x EX, have a fixed ordering by inclusion, independent of F; 
(II) foreachfinite subset Y of G, there is an F in~ (X) which contains Y; 
(111) ~(X v Y) C ~(X) n ~ (Y) for allfinite non-empty subsets X, Y of G. 
In order to show that this can be done, we strengthen our requirements 
as follows: (I) If X consists of a single element x, ~(X)= ~(x) shall 
consist of all F containing x; for such an X, requirements (I), (II) are 
clearly met. (2) If X consists of n elements, n > I, then, for some one 
fixed enumeration (out of n! possible ones) of the elements of X, say 
x(I), x(2), .. . , x(n), ~(X) shall consist of all F which contain X and 
satisfy the inequalities F zü) CF .,(2) C · · ·CF z(n)· Here equalities are 
not excluded. Thus, with a set X of n elements we can associate n! 
sets ~(X), each of which (although possibly empty) satisfies (1). When 
we speak of a set ~(X), we shall have such a set in mind. Then (111) 
simply means that the ordering in X v Y is to be consistent with those 
in X and Y. Now consider a pair (M, 0) where M is a non-empty 
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(possibly infinite) subset of G and () is a single-valued mapping which 
assigns, to each finite non-empty subset X of M, a set X()= ~(X) 
such that (I), (II), (III) hold for all finite non-empty subsets X, Y of 
M. Order such pairs as follows: (M, 0) C (N, q;) if M C N and q; induces 
() on M. By (1). there exists a pair (M, 0) where M consists of a single 
element x. Therefore, by Zom's Lemma, there exists a maximal pair 
(M, 0); one such that (M, 0) C (N, q;) implies M = N. We shall show 
that M = G. Suppose, on the contrary, that there exists an element p 
of G which is not in M. Consider some subset X of M, with n ~ 1 
elements, and let x(1), x(2). ... , x(n) be the elements of X arranged so 
that F.,(1)CF.,(2)C · · ·CF.,(n) for each F in X()= ~(X). For every F 
in ~(X) containing p, F ", must fit into this ordering in some one of 
n + 1 possible positions, which we can indicate by inserting p in the 
ordered set x(1), x(2), ... , x(n). We wish to show that (Xv p) q; 
=~(X v p) can be defined in at least one of the n + 1 ways so as to 
satisfy (II). If not, then for each of these ways there mustexist a finite 
set S such that no F in L (X) can contain p, S and satisfy the ordering. 
Let T be the union of n + 1 "contradictory" sets so chosen. By (II), 
there exists an F in ~(X) which contains T and p; but by construction, 
none of the n + 1 orderings is satisfied for F. This is a contradiction. 
Thus, for every finite X, there is at least one way of defining ~(X v p) 
so that (II) holds; and there are at most n + 1 ways if X has n elements. 
Next assume, for a fixed X with n elements, that for every way of 
defining ~(X v p) so that (II) holds, there exists a finite non-empty 
subset Y of M so that no choice of ~(Xvpv Y) andjor L(Yvp) 
can be made to satisfy (II). Choose such a Y for each of the (at most) 
n + 1 ways and let Z be the union of X and all the Y's. Then, by 
construction, there is no way of choosing L (Z v p) to satisfy (II). 
But, since Z is finite, this coatradicts our earlier conclusion. Conse
quently, a pair (M v p, q;) can be defined, and this contradicts the 
maximality of (M, 0). Therefore there exists at least one collection of 
sets ~(X) satisfying (I), (II), (III). 

N ow we assume a fixed choice of the sets ~(X) ; and we define H ( x), 
for each x in G, as follows: An element p of G is in H ( x) if and only if 
there exist finite non-empty subsets Y, Z of G such that p E F., for 
every F of ~ (Y) which contains Z. Here we may always assume that Z 
contains x, p. If p is in H(x), according to a pair Y,Z, and if () is an 
inner mapping of G, there exists a finite subset W of G such that () 
induces an inner mapping of every F which contains W. There exists 
anFin ~(Y) containingZ, W; and, sinceF.,is normal inF, pOE(F.,) ()CF., 
for every such F. Thus H (x) is a self-conjugate subset of G. If q is in 
H(x) according to Y' and Z', then for every F in ~(Yv Y') which 
contains ZvZ', p, q will both be in F.,. Hence H(x) is a subloop. In 
particular, since F1 = 1 for each F, H(1) =I. If x =+=I and if Y is a 
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finite subset of (N(x; G), G)1 then, for every F containing a certain F', 
as in the proof of (a) above, we will have Y C (N(x; F), F)1 CFx. Taking 
for Z a generating set of F', we deduce in particular that Y CF x for 
every F in ~ (Y) which contains Z. Thus Y C H (x). In other words, 
(N(x; G), G)1 CH(x). At the same time, since x =+= 1 is never in Fx,H(x) 
does not contain x. Next consider a pair x, y and suppose that the order 
in-~{xv y) gives FxCF11 for every F in ~(xv y). If p is in H(x) then, 
for some finite sets S, T, p E F x for every F in ~ ( S) which contains T. 
Then, for every F in ~ (x v y v S) which contains T, p E F x CF 11• Thus 
p EH(y), showing that H(x)CH(y). This completes the proof of (b) 
and hence the proof of Theorem 4.I. 

For any nilpotency function f of a class ~ of loops, we define a loop 
G to be an S Nrloop if it has at least one normal system such that, at 
each jump H, K of the system, (K, K)1 C H. A similar definition may be 
given for S Irloops in terms of a chief system. The local theorem for 
Sirloops holds for f of word type. With some simplification of the work, 
we alter Lemma 4.3 as follows: I f S is a finite subset of (N (X; H), 
N(X;H)) 1 then SC(N(XnH;H), N(XnH;H)) 1 for every finitely 
generated subloop H containing some H 0• The pattern of Theorem 4.I 
requires little modification. It is not clear whether the local theorem 
holds for SNrloops; compare the proof of MALCEV for SN-groups 
(KuRos, loc. cit.) A loop may be called an SDrloop if it has a descending 
normalsystemsuch that, at each jump H, K, (K, K)1 C H. The following 
theorem is almost immediate: 

Theorem 4.2. I f f is any nilpotency function (not necessanly of word 
type) for the class of alt loops, such that f (G) always contains the centre 
of G, then every free loop is an S Drloop. 

Proof. Let G be a free loop and define the f-derived series {G"} of 
G inductively: G0 = G; G"+1 = (G", G")1 ; if IX isalimit ordinal, Ga is the 
intersection of the Gß for all ß < IX. Let F be the ultimate term of this 
series. If F =+= I, then F is a free loop of positive rank. Hence, if F' is 
the commutator-associator subloop of F, F jF' is a free abelian group of 
positive rank. In particular, f(F/F')=F/F', so (F,F)1 CF'=tF. 
This is a contradiction, so F = 1. We also note from this proofthat the 
f-derived series of a free loop must terminate at a limit ordinal. 

The f-derived series, although characteristic, need not be chief. Thus 
SDrloops may not always be Sirloops, although they are SNrloops. 

5. Ordered loops 

A (multiplicative) loop G is said to be simply ordered by a binary 
relation (<) provided that, for all a, b, c in G: (i) exactly one of the 
following holds: a < b, a = b, b < a; (ii) if a <band b < c, then a < c; 
(iii) if a < b then ac < bc and ca < cb. The relation a >bis interpreted, 
as usual, to mean b < a. If I is the identity element of G, an element a is 
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called positive if a > I, negative if a < I. A loop of order one can be 
simply ordered in a trivial manner. If G =F I and G is simply ordered, 
and if the elements a, b of G satisfy ab= I, a =F I, we see from (iii) that 
exactly one of a, b is positive. 

Lemma 5.1. A loop G =F I can be simply ordered if and only if G 
contains two non-empty subsets P, N such that (a) i/ x E G then exactly 
one of the following holds: x =I, x E P, x E N; (b) P PCP and N N C N; 
(c) P ( and hence N) is a self-conjugate subset of G. (Compare NEUMANN 

[B I3].) 
Proof. (I) Let G be simply ordered and Iet P, N consist of the 

positive and negative elements of G respectively. Then (a), (b) follow 
immediately. If a, b, x E G and if a < b then aR(x) < bR(x), 
aL(x) < bL(x) by (iii); from this we deduce readily that aO < b() for 
every ()in the multiplication group !m (G) of G. In particular, the inner 
mapping group of G maps P into P, N into N. This proves (c). 

(li) Let G be a loop with non-empty subsets P, N satisfying 
(a), (b), (c). From the fact that N is self-conjugate in G we deduce 
readily that N x = xN, N (xy) = (N x) y = x (Ny) for all x, y in G. 
We define x < y if and only if x E yN. If x < y and y < z, then 
x E yN C (zN)N C z(N N) C zN, so x < z; that is, (ii) holds. If x = yz, 
then z is uniquely determined by x, y. Hence, by (a), exactly one of 
z E N, z = I, z E P must be true. If z E P and if y = xw then w =F I. 
If w is also in P then x=yz=(xw)zE(xP)P=x(PP)CxP, so 
x E x P and hence I E P, a contradiction. Hence x E y P if and only if 
y E xN. This proves (i). Finally, suppose x E yN. Then, for any 
z, xz E (yN)z = (yz)N and zx E z(yN) = (zy)N. This proves (iii) and 
completes the proof of Lemma 4.1. 

A subloop Hof a simply ordered loop Gis called convex (or isolated) 
provided H is normal in G and contains every element x of G such that 
h < x < h' for some elements h, h' of H. If His a convex subloop of G, 
the quotient group GjH can be simply ordered by defining xH ~ yH 
if and only if there exist elements a, b of G such that a E x H, b E y H 
and a ~ b. This order of GjH is said to be induced by the order of G. 
The kernel of an order-preserving homomorphism of G upon a loop is 
necessarily convex. 

Theorem 5.1. If Gis a Z-loop with a centrat system 6 such that, for 
each jump H, K of6, KjH is simply ordered, then G can be simply ordered 
so as to preserve the ordering in each KjH. (Compare NEUMANN [B 13].) 

Proof. We need only determine the P, N of Lemma 5.1. If x =F I, 
Iet H, K be the jump determined by x. We assign x toP or N according 
as the coset xH is positive or negative in K/H. Since K/H is part of the 
centre of GjH, each inner mapping of G induces the identity mapping 
on KjH. Hence P, N are self-conjugate subsets of G. If y is in H, then 
xy""" yx""" x mod H, so xy, yx, x are all in P or all in N. If y is not 
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in K, then the röles of x, y are simply interchanged. If y is in K but not 
in H, and if x, y are both in P, then so is xy. Hence P PCP, and, 
similarly, N N C N. This completes the proof. Note that, for each 
jump H, K, the homomorphism x-+xH of G upon GjH is order-preserv
ing. Hence the "lower term" H of every jump H, K is convex in the 
ordering of G. 

If Gis a free group, it is known that Gw= 1 (where w is the first 
limit ordinal) and that GaJGa.+l is a free abelian group. Thus Theorem 5.1 
gives one way (indeed, the original way) of proving that every free 
group may be simply ordered. The comparable factsarenot available for 
free loops. Nevertheless, it is possible to show, by a tedious induction 
over the extension chains of Chapter I, that every free loop F can be 
simply ordered. The method yields no information about convex 
subloops and it is conceivable that F may be simply ordered so that it is 
order-simple. Here we define a simply ordered loop G to be order-simple 
if the only convex subloops of G are G and 1. The following theorem 
is due to ZELINSKY: 

Theorem 5.2. I I G is a simply ordered loop whose centre Z has finite 
index, then G is centrally ni/potent. If some subgroup of Z is order-simple 
and has finite index in G, then G possesses an order-preserving isomorphism 
into the additive group of real numbers. 

For the proof of Theorem 5.2, see ZELINSKY [116]. ZELINSKY also 
shows how to construct simply ordered loops with centre of finite 
index which are centrally nilpotent of arbitrary dass. His paper deals 
as weil with topologicalloops; for a more recent study of the latter, see 
MALCEV [90]. 

We shall not attempt to discuss the literature of ordered groups. 
See the bibliographies of the papers cited; also BIRKHOFF, Lattice 
Theory. 

VII. Moufang Loops 

1. Groupoids with the inverse property 

We saw in Chapter I that there exist quasigroups (for example, the 
free quasigrcups) possessing (multiplicative) homomorphisms upon 
systems which are not quasigroups - and similarily for loops. In order 
to avoid this possibility it is of interest (see 1.5, IV. 10) to consider a 
dass, dosed under homomorphism, of groupoids all of which are quasi
groups. We may define such a dass of groupoids Gas follows. Let G be 
any groupoid with multiplication semigroup e such that for each x in G 
there exist (), cp in e with R(x)() =I, L(x) cp =I. Clearly every homo
morphic image of such a groupoid has the same property. Since e is 
generated by the set of all R (x)' L ( x) for X in G' every IX in e has aß in e 
such that IX ß = I; consequently, e is a group of permutations of G. 
Therefore G is a quasigroup. 



l. Groupoids with the inverse property lll 

We may single out a subdass in terms of the inverse property. A 
groupoid G is said to have the left inverse property if for each x in G 
there is at least one a in G such that (i) a(xy) = y for every y in G. 
That is: L (x) L(a) = I. Consequently, the semigroup generated by the 
left multiplications of G is a group and, for given x, y in G, there is 
one and only one z in G such that xz = y. But G need not be a quasi
group, as witness the case that xy = y for all x, y in G. Similarly, G 
has the right inverse property if, for each x in G, there is at least one 
bin G suchthat (ii) (y x) b = y for every y in G. When (i), (ii) both hold, 
G is said to have the inverse property. In this case, G is a quasigroup, 
and there exist one-to-one mappings .Ä., f-t of G upon G such that 

L(x)-1= L(xA.), R(x)-1= R(xJ-t) 

for all x in G. We note from (1.1) that 

;,2= f-t2= 1. 

Clearly (1.1) can be restated as 

(d) (xy) = y = (yx) (xJ-t) 

(1.1) 

(1.2) 

(1.3) 

for all x, y in G. If xy = z, then, by (1.3}, (x).)z = y, y(zJ-t) = d, 
(y ).) (x ).) = z f-t· Thus, and similarly, 

(xy)J-t = (y).) (x).), (xy)). = (YJ-t) (xf-t) (1.4) 

for all x, y in G. Examples may be given (cf. BRUCK [67]) to show that 
the mappings )., f-t are more or less independent of each other. Moreover, 
there exists an inverse property quasigroup G such that no loop isotopic 
to G has the inverse property. 

In the case of a loop with the inverse property the situation is simpler. 
For, if G has identity element 1, equations (1.2), (1.3) give x(x).) = 

(xA.2) (xA. · 1) = 1 = (1 · x) (xJ-t) = x(xJ-t) for each x, whence ). = f-l· 
Defining x-1= x)., we may now replace the above equations by 

L(x)-1= L(x-1), R(x)-1= R(x-1), 

(x-1)-1= X, 

x-1(xy) = y = (yx)x-1, 

(xy)-1= y-1x-1, 

holding for all x, y of G. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Another special dass deserves mention: the crossed-inverse groupoids 
(ARTZY [56], BRUCK [75]). Here we assume that to each x in G there 
correspond a, b in G such that (x y) a = y = b (y x) for every y in G. 
Thus L (x) R (a) = I= R (x) L (b). Ägain G is a quasigroup and there 
exists a one-to-one mapping x of G upon G suchthat 

(1.9) 
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for all x in G. Equivalently, 

(xy) (xx) = y = (xx-1) (yx) (1.10) 

for all x, y in G. By (1.10), the equation xy = z implies z(xx) = y, 
y(zx) = xx, (xx) (yx) = zx. Thus x is an automorphism of G: 

(xy)x = (xx) (yx) (1.11) 

for all x, y of G. As ARTZY shows, x may have finite or infinite order. 
CROSSED-inverse loops deserve further study, but we shall say no more 
about them here. 

Alsosee BAER [348, li] and CowELL [349]. 

2. Monfang elements 

Let (G, ·) be any loop and consider the principal isotope (G, o) 
defined by 

xoy = xR(v)-1. yL(u)-1 (2.I) 

for all x, y in G. A necessary and sufficient condition that (G, ·) be 
isomorphic to (G, o) is that there exist a permutation W of G such that 
x Wo y W = (x y) W for all x, y of G. Equivalently, 

xU·yV=(xy)W (2.2) 

for all x, y of G, where the permutations U, V are defined by U = W R(v)-1, 

V= W L(u)-1• An ordered triple (U, V, W) of permutations of a loop G 
is called an autotopism of G if (2.2) holds for all x, y. The autotopisms 
of G form a group under componentwise multiplication: 
(U, V, W) (U', V', W') = (UU', VV', WW'). If (U, V, W) is an auto
topism of G and if 

U=IU, V=IV, W=IW, 

then, from (2.2) with y = I, x = I in turn, we get 

UR(v)=VL(u)=W, uv=w. 

(2.3) 

(2.4) 

Consequently there is a one-to-one correspondence between autotopisms 
of G and isomorphisms of G upon principal isotopes. 

Henceforth let G be an inverse property loop and let J be the inverse 
mapping of G, defined by 

x] = x-1. (2.5) 
By (1.6), (1.8), (1.5) we have 

]2=1, ]L(x)]=R(x-1)=R(x)-1 , ]R(x)]=L(x-1)=L(x)-1. (2.6) 

Lemma 2.1. If (U, V, W) is an autotopism of the inverse property loop 
G, then (W, ]V], U) and (] U ], W, V) are autotopisms of G. Moreover, 
if tt = 1 U, v =I V, then (U, V, W) = (S, SR(c), SR(c)) (L(u), R(u), 
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L (u) R (u)) where S is a Permutation of G and c = vu- 1 is an eiertunt of G 
suchthat 

(xS) (yS · c) = (xy)S · c (2.7) 

for alt x, y of G, and where u is an element of G suchthat 

(ux) (yu) = [u(xy)]u (2.8) 
for alt x, y of G. 

Proof. From (2.2), xU=(xy)W·(yV)- 1 =(xy)W·yVJ. Re
placing x by xy, y by y-1= y ], we get (xy) U = xW · y] V] for all 
x, y. Hence (W,]V ], U) is an autotopism. From(2.2}, yV = xU J · (xy)W. 
Replacing y by xy, x by x], we get (xy) V= x] U J · yW for all x, y. 
Hence (]U ], W, V) is anautotopism. Therefore, by (2.3),if P-1 = U-1]U ], 
we see that G has the autotopism ( U, V, W)- 1 (] U ], W, V) 
= (P-1 , L(u), L(u)- 1} and hence, by (2.6), the autotopism 
(L (u)-1, J L (u) ], P-1)-1 = (L (u), R (u), P). Then x P = (x · 1) P 
= (xL (u)) (1 R (u)) = (xL (u)) u = xL (u) R (u) for all x, so P = L (u) R (u). 
Hence we have (2.8). Moreover, G has the autotopism (U, V, W) 
(L(u), R(u), P)-1 = (S, C, D), say, where S = U L(u)-1, so 1 S = 1. 
Since x S · yC = (xy) D for all x, y, and since 1 S = 1, we deduce that 
SR (c) = C = D where c = 1 C. Thus we have (2.7). Since C = V R (u)-1 , 

c = vu- 1• This completes the proof of Lemma 2.1. 
A permutation S of a loop G is called a pseudo-automorphism of G 

provided there exists at least one element c of G, called a companion of S, 
such that (2.7) holds for all x, y of G. The pseudo-automorphisms form 
a group under composition. From (2.7) with x = 1 we deduce that 

1 s = 1. (2.9) 
Furthermore, by (2.7), 

[x(yx)]S · c = xS · [(yx)S · c] = xS · [(yS)(xS · c)] (2.10) 

for all x, y of G. If G has the inverse property, we set y = x- 1 = x] 
in (2.7) and get xS · (x] S · c) = 1 S · c = c, whence x] S · c = (xS)-1. c 
= xS] · c for all x and thus 

S] =] S. (2.11) 

An element u of an inverse property loop G is called a M oufang 
element of G provided (2.8) holds for all x, y of G. By Lemma 2.1, if 
(U, V, W) is an autotopism of G, each of the elements u = 1 U, v = 1 V, 

w = 1 W is Moufang. In particular, the companion c of the pseudo
automorphism S of G is Mouiang. 

Lemma 2.2. The set M of alt Moufang elements of the inverse property 
loop Gis a subloop of G. lf p, q are in M then: (i) R (p, q) = L (p-1, q-1) 

is a pseudo-automorphism with companion (p, q). (ii) T(p) is a pseudo
automorphism with companion p- 3• 
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Proof. Define A (p) = (L(p), R(p), L(p)R(p)) for each p in M. Since 
A (p)-1 is an autotopism, 1 L (p)-1 = p - 1 is in M. If q is also in 
M, A (q) A (p) is an autotopism, so 1 L(q) L(p) = pq is in M. Hence M is 
a subloop of G. If p, q are in M, A (p-1)A (q-1)A(q-1p-1)-1 = (S, T, X) 
is an autotopism where, in particular, 

S = L(p-1) L(q-1) L(q-1p-1)-1 = L(p-1, q-1) 

and T=R(p-1)R(q-1)R(q-1p-1)-1. Since 15=1, we have T=X 
= SR(c) where c = 1 T = (p-1q-1) (pq). Since (qp)c = pq, then c= (p,q). 
Thus S is a pseudo-automorphism with companion (p, q). By (2.11), 
S =] S]. Hence, by (2.6), S = R(p)R(q)R(pq)-1= R(p, q). This 
proves (i). SinceA (p) isanautotopism, sois B(p) = (JL(p)], L(p) R(p), R(p)) 
and hence so is B(p)-1A (p)-1 = (T(p), U, V). Here U = R(p)-1 L(p)-1 R(p)-1, 
V= R(p)-2 L(p)-1. Since 1 T(p) = 1, then U = Vand T(p) is a pseudo
automorphism with companion k where k = 1 U = (p-1)2p-1 and k = 1 V 
= p-1 (p-1)2. Thus k = (p-1)3 = p-3. 

Theorem 2.1. lf Gis an inverse property loop, the nuclei N1, N,_., N~ 
of G coincide with the nucleus N of G. Every pseudo-automorphism of G 
induces an automorphism of N; in particular, N is a characteristic normal 
subloop of the subloop M of Maufangelements of G. 

Proof. The element a of Gis in N 1 if and only if 

(ax)y = a(xy) (2.12) 

for all x, y of G. If (2.12) holds, we take inverses of both sides and see 
that a-1 (and hence a) is in NP. By symmetry, N 1 =NP. From (2.12) 
again, y = (ax)-1 [a(xy)] for all x, y. Setting x = a-1p-1= (pa)-1, 
y = (pa)q, we find that (pa)q = p(aq) for all p, q. The converse also 
holds, so NP= N1 = NJ.<= N. By (2.12), (L(a), I, L(a)) is an autotopism, 
so a is Moufang. Thus N C M. Let S be a pseudo-automorphism with 
companion c, and let w denote the equal elements in (2.12). Since 
w=(ax)y, wS·c=(ax)S·(yS·c). Since w=a(xy), wS·c 
= a S · [ x S · (y S · c)]. Comparing the two results, and replacing y S · c 
by y, we get 

(a x) S · y = a S · (x S · y) 

for all x, y in G. From (2.13) with y = 1, 

(ax)S = aS · xS 

(2.13) 

(2.14) 

for all x in G. By (2.14) in (2.13), aS is in N. Similarly, aS-1 is in N. 
Therefore, by (2.14), S induces an automorphism of N. By Lemma 2.2, 
every inner mapping of M is induced by a pseudo-automorphism of G. 
Consequently, N is normal in M. This completes the proof of Theo
rem 2.1. 
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Theorem 2.2. lf G is a commutative inverse property loop, the nuclei 
of G all coincide with the centre Z of G. Moreover, every pseudo-attto
morphism of G is an automorphism of G. 

Proof. The first statement follows from Theorem 2.1. From (2.7) 
with x, y interchanged, xS · (yS · c) = yS · (xS · c) for all x, y and, 
consequently, x (c y) = (xc) y for all x, y of G. Hence c is in Z and 
therefore may be deleted from both sides of (2.7). This completes the 
proof of Theorem 2.2. 

Theorem 2.3. Let G be an inverse property loop and let (G, o) be the 
principal isotope defined by xoy = xR(v)-1. yL(u)-1• A necessary and 
sulficient condition that (G, o) have the left (right) inverse property is 
that u (that v) be a Maufangelement of G. lf u, v areMaufang elements 
of G, a necessary and sulficient condition that (G, o) be isomorphic to G 
isthat G possess a pseudo-automorphism with companion vu-1• 

Proof. Since (G, o) is a loop, (G, o) can have the left inverse property 
if and only if there exists a permutation A. of G suchthat xA.o(xoy) = y 
for all x, y. Equivalently, (xoy)L(u)-1 = xA.R(v)-1 ] • y. Replacing 
x, y by xR(v), yL(u) respectively and setting P = R(v)A.R(v)-1], we 
see that (G, o) has the left inverse property if and only if G has an auto
topism of form (P, L(u), L(u)-1). By Lemma 2.1, this will be true if 
and only if u is Moufang. Similarly for the right inverse property. 
By the discussion at the beginning of this section, G will be isomorphic 
to (G, o) if (and only if) G has an autotopism (U, V, W) with 1 U == u, 
1 V= v. Thus u, v must be Moufang; moreover, by Lemma 2.1, G must 
have a pseudo-automorphism S with companion c = vu-1• Conversely, 
if u is Monfang and if G has a pseudo-automorphism S with companion 
c = vu-1, set U = SL(u), V= SR(c)R(u), W = SR(c)L(u)R(u); then 
(U, V, W) is an autotopism with 1 U = u, 1 V= cu = v. This completes 
the proof of Theorem 2.3. 

3. Moufang Ioops 
We begin with a lemma. 
Lemma 3.1. lf the loop G satisfies any one of the following (Moufang) 

identities, then G has the inverse property and satisfies all three: 

(xy) (zx) = [x(yz)]x, 

[(xy)z]y = x[y(zy)], 

x[y(xz)] = [(xy)x]z. 

M oreover, G satisfies the identities 

(3.1) 

(3.2) 

(3.3) 

(xx)y = x(xy), (xy)x = x(yx), (yx)x = y(xx). (3.4) 

Proof. lf (3.1} holds, define x-1 by x-1 x =I. From {3.1) with x = y-1, 

z x = (y-1 (y z)) x or z = y-1 (y z). Hence G has the left inverse property 
In particular, y-1 = y-1 (yy-1), so yy-1 = 1, and thus (x-1)-1 = x. From 
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(3.1) with y = 1, x(zx) = (xz) x. Hence, from (3.1) with z = x-1, 

xy = [x(yx-1)]x = x[(yx-1)x] or y = (yx-1)x, so G has the inverse 

property. Then, since (L(x), R(x), L(x)R(x)) is an autotopism of G, 

so is (JL(x)J,L(x)R(x),R(x)). Thus, for all x,y,z of G, y(xzx) 

= (yx)JL(x)J · zL(x)R(x) = (yx · z)R(x) = [(yx)z]x. Interchanging y 

and x, we get (3.2). 
If (3.2) holds, define x-1 as before and set z = y-1• Then 

[(xy)y-1]y = xy, so G has the right inverse property and moreover 

x x-1 = 1. N ow set x = y-1 in (3.2) to get z y = y-1 [y (z y) J. Taking 

z = p y-1 we get p = y-1(yp). Hence G has the inverse property. Taking 

inverses of both sides of (3.2) we get an identity equivalent to (3.3). 

Similarly, (3.3) implies (3.2). From (3.2) with x replaced by xy-1, 

(xz)R(y) = xR(y-1) · zL(y)R(y). Hence y = 1R(y) is a Moufang 

element for all y, so (3.1) must hold. From (3.3) with y = 1, (x x)z = x (xz). 

Similarly, (3.2) and (3.1) yield the other identities of (3.4). This completes 

the proof of Lemma 3.1. 
A loop satisfying (3.1) is called a Moufang loop. Such loops were 

first studied by RUTH MauFANG [91] under the name of "quasigroup". 

MoUFANG assumed (3.1), (3.2). BoL [66] showed that (3.2) implies (3.1), 

and BRUCK [70] showed the converse. BoL pointed out the existence of 

loops which satisfy the identity [(xy)z]y = x[(yz)y] but fail to satisfy 

(3.2); such loops have the right inverse property but not the left inverse 

property. 
A single-valued mapping () of the Moufang loop G into itself will be 

called a semi-endomorphism of G provided that 

(xyx)() = (x8) (y()) (x8) (3.5) 

for all x, y of G and, moreover, 
1 () = 1 . (3.6) 

From (3.5) with y = x-1 , x() = (x()) (x-1()) (x()) and hence 

x-1()= (x())-1 (3.7) 

for all x in G. We note as follows that (3.5) does not imply (3.6), thus 

correcting BRUCK [74]: First of all, in an abelian group A of exponent 2, 

every single-valued mapping of A into itself satisfies (3.5). In the 

general case, if () satisfies (3.5) and if t is any element of G such that 

t2 = 1 and t ( x 8) = ( x ()) t for every x in G, define q; by x q; = ( x ()) t and set 

X= x(), Y = y(). Then, by (3.1), (3.4), (3.2), (xq;) (yq;) (xq;) 

= (tX) (Yt) (tX) = [(tX) Y] [t(tX)] = [(tX) Y] (t2X) = [(tX) Y]X 

=t(XYX)=t(x8·y8·x8)=t[(xyx)8]=(xyx)q;. Hence q; also 

satisfies (3.5). The element 1 () has the properties of t; therefore every 

mapping () which satisfies (3.5) can be "normalized" to the semi-endo

morphism x-+ ( x ()) ( 1 8). - The meaning of the term semi-automorphism 

should be clear. 
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Lemma 3.2. lf Gis a Maufang loop, every inner mapping of Gis a 
pseudo-automorphism of G and every pseudo-automorphism of G is a 
semi-automorphism of G. 

Proof. The first statement follows from Lemma 2.2; the second, 
from (2.9), (2.1 0) and (3.3). 

Lemma 3.3. I/Gis a commutative Maufang loop, every inner mapping 
and every pseudo-automorphism of Gis an automorphism of G. Moreover, 
for every semi-endomorphism () of G: (i) the mapping x-+(x0) 2 is an 
endomorphism of G; (ii) if G has no elements of order 2, () is an endo
morphism of G. 

Proof. The first statement follows from Lemma 3.2 and Theorem 2.2. 
From (3.5) with y = 1, by (3.6), x2() = (x0) 2• Moreover, xyx = x(yx) 
= x(xy) = x2y and (xy) 2 = (xy) (yx) = xy2x = x2y2• Hence (3.5), 
with y replaced by y2 , gives [(xy)0] 2 = (x0) 2 (y0) 2• This proves (i). ~ow 
define z by (xy)() = [(xO) (yO)]z and set a = (xy)O, b = (xO) (yO). 
Then a2 = b2 by (i) and, also, a2 = (bz) 2 = b2z2 ; so z2 = 1. Hence, if G has 
no elements of order 2, z = 1 and we have (ii). The case of the abelian 
groups of exponent 2 shows that (ii) requires some restriction on elements 
of order 2. Another suitable hypothesis would be that every element 
of G was a square. 

Lemma 3.4. Let G be a Moufang loop, e be a non-empty set of semi
endomorphisms of G, F be the set of all elements of G left fixed by every 
element of e and M be the set of all elements m of G such that mF CF. 
Then (i) 1 E M CF; (ii) F-1 = F and f F f = F for every f in F; (iii) .~[ is 
a subloop of G. 

Corollary. lf Gis commutative andel consists of pseudo-automorphisms, 
M=F. 

Proof. (i) Certainly 1 is in M. By (3.6), 1 is in F and hence 
M = M · 1 CF. (ii) This follows by (3.5), (3, 7). (iii) Let m, m' be in M, f be 
in F. Then, by (ii), F contains m [m'(mf-1)-1]m = (mm') [(fm-1)m] 
= (mm')f. Therefore M M C M. Again, F contains f(mf)-1/ = f(f-1m-1)f 
~~ (! j-1) (m-1/) = m-1j. Therefore M-1 C M. Now we see that M is a 
subloop of G. The Corollary follows directly from the first sentence 
of Lemma 3.3. 

4. Moufang's Theorem 

Weshall prove in generalized form the following theorem: 

Moufang's Theorem. Every Maufang loop G is di-associative. 1~lore 

generally, if a, b, c are elements of a Maufang loop G such that(ab)c=a(bc), 
then a, b, c generate an associative subloop. 

Since (3.4) holds identically in every Maufang loop, the second 
statement of the theorem implies the first. The theorem was proved 
by MouFANG [91] simultaneously for Maufang loops and alternative 
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division rings, using mathematical induction. The present methods are 
those of BRUCK [72,] [74]. 

Lemma 4.1. In a Maufang laap G, the equatian (a, b, c) = 1 implies 
each af the equatians abtained by permuting a, b, c ar replacing any af 
these elements by their inverses. 

Proof. Assurne (*) (a, b, c) = 1; that is, (ab) c = a (bc). Clearly (*) is 
equivalent to each of a U = a, b V = b, c W = c for suitable inner map
pings U, V, W; for example, U = R(b, c). Since a-1U=(aU)-1= a-1, (*) 
implies (a-1, b, c) = 1; similarly, (*) implies (a, b-1 , c) = (a, b, c-1) = 1. 
Taking inverses in(*), we get (c-1b-1)a-1 = c-1(b-1a-1). Thus (*) implies 
(c-1, b-1, a-1) = 1 = (c, b, a). Again, (*) implies (bc)a-1= a-1[a(bc)]a-1 
= a-1[(ab)c]a-1= b(ca-1) or (b, c, a-1) = 1 = (b, c, a). This completes 
the proof of Lemma 4.1. 

Lemma 4.2. Let a, b, c, d be faur elements af the Maufang laap G each 
three af which assaciate (satisfy (x, y, z) = I). Then the fallawing equatians 
are equivalent: (i) (ab, c, d) = 1; (ii) ((ab) 2 , c, d) = 1; (iii) ((a, b), c, d) = 1; 
(iv) (cd, a, b) = 1; (v) (bc, d, a) = 1. H ence (i) is equivalent ta each af the 
equatians abtained by permuting the elements a, b, c, d and replacing any 
af these elements by their inverses. 

Proof. The equation (x, c, d) = 1 is equivalent to x U = x for an 
inner mapping U of G. By Lemma 3.2, we may apply Lemma 3.4. 
First, (i) implies (ii). Moreover, if p = (a, b), we have ab= (ba)p, aba 
= ((ba)p)a = b(apa) and b(apa)b = (aba) (a-1 . ab)= (ab) (aa-1) (ab) 
= (ab) 2• Hence (ii) implies (iii). Again, the equation (x, a, b) = I is 
equivalent to x V= x where V= R (a, b). By Lemma 2.2, Visa pseudo
automorphism with companion (a, b) = p, so (cd) V· p = c V· (dV · p) 
= c(dp). By (iii) and Lemma 4.1, c(dp) = (cd)p, so (iii) implies (iv). 
In particular, (i) implies (iv), whence, by symmetry, (iv) implies (i). 
Together, (i) and (iv) imply [a(bc)]d = [(ab)c]d =(ab) (cd) = a[b(cd)] 
= a [(bc) d], or (v). Thus (i) implies (v) and, by repetition, (v) implies (i). 
In view of Lemma 4.1, the proof of Lemma 4.2 is now complete. 

A (non-empty) subset A of a Moufang loop G is called assaciative if 
(a, b, c) = 1 for all a, b, c in A. By (3.4) and Lemma 4.1, a subset consist
ing of three elements a, b, c is associative if and only if (ab) c = a (bc). 
An associative subset (subloop) A of G is called a maximal associative 
subset (subloop) of G if A is contained in no associative subset (subloop) 
distinct from A. By Zorn's Lemma, every associative subset (subloop) 
is contained in a maximal associative subset (subloop). 

Theorem 4.1. If Gis a Maufang laap with nucleus N suchthat GjN is 
commutative, every maximal assaciative subset A af G is a sublaap af G. 

Proof. The hypothesis on GjN simply means that every commutator 
of G is in N. Thus G satisfies the identity ((w, x), y, z) = 1. If the 
element x of G satisfies (x, a, b) = 1 for all a, bin A, then, by (3.4) and 
Lemma 4.1, x is in A. In particular, A-1 = A. Moreover, since (iii) of 



4. Moufang's Theorem 119 

Lemma 4.2 is true, (i) also holds for all a, b, c, d in A; so A AC A. 
Therefore A is a subloop of G. 

We note that Theorem 4.1 proves Moufang's Theoremfora class of 
Moufang loops containing the commutative ones. However, according 
to a private communication from M. F. SMILEY, there exist Moufang 
loops for which the conclusion of Theorem 4.1 is false. 

If A, B, C are subsets of G, AB denotes the set of all products ab, a 
in A, bin Band, for the purposes of this section alone, (A, B, C) denotes 
the set of all associators (a, b, c), a in A, b in B, c in C. The adfoint of 
A in Gis the subset, A', consisting of all x in G suchthat (A, x, G) = 1. 
The closure af A in G is the subset A * = (A ') '. 

Lemma 4.3. The adfaint A' and clasure A * af a nan-empty subset A af 
a Maufang laap G are sublaaps af G. Moreaver, (A, A, G) = 1 implies 
(A*, A*, G) = 1. 

Proof. Let B = A'. By Lemma 4.1, B-1 = B. Fora in A, b, b' in B, x 
in G we have, by three uses of the definition and two uses of (3.2), 
[(a · b'b)x]b = [(ab'· b)x]b = (ab') (bxb) = a(b'· bxb) = a[(b'b · x)b] 
= [a(b'b · x)]b. Therefore (a · b'b)x= a(b'b · x), (A, BB, G) = 1, BBC B. 
Thus Bis a subloop. Hence A * = B' is also a subloop. If (A, A, G) = 1, 
AC A'. Hence (A, A*, G) = 1, A* CA'. Thus finally, (A*,A*, G) =I. 

Theorem 4.2. Let A, B, C be nan-empty subsets af the Maufang laap G 
such that (A, A, G) = (B, B, G) = (C, C, G) = (A, B, C) = 1. Then the 
sttbset D = A v B v C is cantained in an assaciative sublaap H af G. 

Proof. Let F be the set of all elements x in G such that (D, D, x) 
~= (AB, C, x) = 1, and let M be the set of all elements m in G such 
that m F CF. By Lemma 3.4, M is a subloop of G and M CF. In view of 
Lemmas 4.1, 4.2, A, B, C play symmetrical roles in the definition of F. 
Since (A, A, G) = 1, then (A, A, D) = (A, A, F) = (A, A, DF) = 1 and 
hence, by Lemmas 4.1, 4.2, (AA, D, F) = (AD, A, F) =(DA, A, F) =I. 
From this and (AB, C, F) = 1, by symmetry, (DD, D, F) =I. In 
particular, (DD, A, F) = 1. Similarly, since (D, D, D) = (D, D, F) 
= (DD, D, F) = 1, then (D, D, DF) = 1. In particular, (D, D, AF) 
= (D, A, AF) = 1. Since (A, A, DD) = (A, A, F) = (DD, A, F) 
= (A, A, (DD)F) = 1, then (DD, A, AF) = 1. And, since (D, D, A) 
= (D, D, AF) = (D, A, AF) = (DD, A, AF) = 1, also (AD, D, AF) = 1. 
In particular, (AB, C, AF) = I. Thus (D, D, AF) = (AB, C, AF) = 1, 
A (M. By symmetry, DeM and, since (D, D, M) = 1, we may take H 
tobe the closure of D in M. The special case A = a, B = b, C = c gives 
Moufang' s Theorem as a corollary. 

For a similar proof of the following theorem, see BRUCK [74]: 
Theorem 4.3. Let A be an assaciative sublaap af the Maufang laap G 

and let B be a nan-empty subset of G suchthat (A, A, B) = (B, B, G) = I. 
Then the subset A v B is cantained in an associative sublaap af G. 
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Corollary. Every maximal assaciative sublaap af a Maufang laap Gis 
a maximal assaciative subset af G. 

Since Moufang loops are power-associative, we deduce from (3.5), 
{3.6) that 

(4.1) 

for every semi-endomorphism (} of the Moufang loop G, each x in G and 
every integer n. 

5. The core 

By Theorem 2.3, a necessary and sufficient condition that every 
loop isotopic to an inverse property loop G be an inverse property loop 
is that G be Moufang. As a consequence, every laap isatapic ta a M mtfang 
laap is M aufang. It is therefore of interest to discover invariants of 
classes of isotopic Moufang loops. Such an invariant is the core. The 
care of a Moufang loop Gis the groupoid (G, +) consisting of the elements 
of G und er the operation ( +) defined by 

x + y = xy-1x (5.1) 

where y-1 is the inverse of y in G. From (5.1), xz + yz = (xz) (z-1y-1) (xz) 
=(xzz-1) (y-I. xz) = x(y-1. xz) = (xy-1 x)z = (x + y)z. Thus, and simil
arly, 

(x + y)z = xz + yz, z(x + y) = zx + zy, (x + y)-1 = x-1 + y-1 (5.2) 

for all x, y, z of G. It may be verified that (G, +) is associative if and 
only if Gis an abelian group of exponent 2. 

The dcfinition (5.1) can be given a simple geometric interpretation. 
Let G be an arbitrary loop (not necessarily Moufang) defining a 3-net 
N (cf. 1.4, III.4). If L, M are 1-lines of N and if Pis a point of M, we 
define the reflection, L + M, of M in L relative to P, as follows: Let the 
2-line and 3-line through P meet L in points Q, R respectively. Let the 
3-line through Q and the 2-line through R meet in a point P'. Then 
L + M is the 1-line through P'. The geometric condition that, for 
all 1-lines L, M, the line L + M shall be independent of the choice of 
P on M, is one of the three Moufang configurations (for which see 
BOL 166]) ; the other two correspond to the like conditions for reflection 
of 2-lines and 3-lines. Therefore, by BoL [66], the net N will satisfy 
all three reflection conditions if and only if Gis Moufang. If Gis Moufang 
and if L, M have equations x = a, x = b respectively, it is easily verified 
that L + M has equation x = a + b where a + bis given by (5.1). 

Theorem 5.1. Let G = (G, ·) be a Maufang laap with multiplicatian 
graup 'm, care (G, +). Then 

(i) 'm is a graup af autamarphisms af (G, +). 
(ii) The semi-endamarphisms af G are the endamarphisms af ( G, +) 

which leave the identity element af G fixed. 
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(iii) (G, +) is isomorphic to three subgroupoids of (~1, +); indeed 

L(xyx) = L(x) L(y) L(x), R(xyx) = R(x) R(y) R(x), (5.3) 

P(xyx) = P(x) P(y) P(x), 
where 

P(x) = L(x) R(x) o= R(x) L(x). (5.4) 

(iv) lf His a principal isotope of G, the identitv mapping of Gis an 
isomorphism of (G, +) ttpon (H, +). 

Proof. (i) follows trom (5.2). If () is a semi-endomorphism of G, then, 
by (3.5), (3.7), (5.1), () is an endomorphism of (G, +). If () is an endo
morphism of (G, +)such that I()= 1, then y-1() = (1 + y)() =I+ y() 
= (y0)-1 and hence (xy x) () = (x + y-1) () = x() + (y0)-1 = (xO) (y()) (xO). 
Hence () satisfies (3.5), (3.6); so () is a semi-endomorphism of G. This 
proves (ii). Since (xy)x = x(yx), we see that the definition (5.4) makes 
sense. From (3.1), L(x) L(y) L(x) = L(xyx) and, similarly, 
R(x) R(y) R(x) = R(xyx). Since A (x) = (L(x), R(x), P(x)) is an auto
topism of G for each x, and since A (x) A (y) A (x) = (L(xyx), R(xyx), 
P(x) P(y) P(x)), then P(x) P(y) P(x) = L(xyx) R(xyx) = P(xyx). 
This proves (5.3). Since L (y-1) = L (y)-1, we have L (x + y) = L (x) +L(y) 
in terms of the "core" addition of mappings. Similarly with "L replaced 
by R or P. This proves (iii). Now let H = (G, o) be defined by 
xoy = xR(v)-1. yL(u)-1 = (xa) (by) where a = v-1, b = u-1. If y<-1>= p 
is the inverse of y in H, then, for all x, y of G, xoy<-1lox = (xop)ox 
= {[(xa) (bp)]a} (bx) = {x[a(bp)a]} (bx) = xqx where q = [a(bp)a]b 
is independent of x. To determine q, we set x = y and get y = yqy or 
q = y-1. This proves (iv) and completes the proof of Theorem 5.1. 

Although, by Theorem 5.1, isotopic Maufang loops have isomorphic 
cores, subsequent theorems will show that the converse is false. 

Theorem 5.2. lf G is a Maufang loop, a necessary and sufficient 
condition that the core ( G, +) be a quasigroup ts that the mapping x ...... x2 

be a Permutation of G. When the condition holds, (G, +) is isotopic to 
a loop G(l/2) with the same elements as G and with operation (•) defined by 

x•y = xR+(I)-1+ yL+(l)-1= x'l•yx'l.. (5.5) 

The loop G(1/ 2) is an isotopic invariant, is a power-associative loop with 
the same identity element as G and satisfies 

x-1•(x•y) = y' (x•y)-1= x-1•y-1, (5.6) 

x• [y•(x•z)] = [x•(y•x)]•z (5.7) 

for alt x, y, z of G, where x-+x-1 is the inverse mapping of G. The endo
morphisms of G(l/2) are the semi-endomorphisms of G. 

Proof. A necessary and sufficient condition that (G, +) be a quasi
group is that the mappings R+(a), L+(a), defined by xR+(a) = x + a, 
xL+(a) = a + x, be permutations of G. In view of Theorem 5.1 (i), only 
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the element a = I need be considered. Since x R+ (I) = x 2 and x L +(I) 
-= x-1, (G, +) will be a quasigroup if and only if the mapping x --+ x2 is 
a permutation of G. When the condition is satisfied, we may write 
xR+(I)-1 = x112, and this gives (5.5). Now assume that His a Moufang 
loop (for example, a principal isotope of G), such that the identity 
mapping of Gis an isomorphism of (G, +) upon (H, + ). If (H, +) = (G, +) 
is a quasigroup and if H has identity element e, H (1/2) will be a loop with 
operation (n) defined by x n y = xR+(e)-1+ yL+ (e)-1• However, since by 
(5.2), R(e) is an automorphism of (G, +), (x * y)R(e) = [xR+(I)-1 + 
+ yU(I)-1]R(e) = xR(e)R+(e)-1 + yR(e)L+ (e)-1 = [x R (e)] n[yR (e)]. 

Hence the mapping x --+ xe is an isomorphism of G (1/ 2) upon H (1/ 2). If H 
is a non-principal isotope of G, G(l/2) and H(1/ 2) will still be isomorphic. 
By Moufang's Theorem, G is di-associative. For every integer n, 
[(x'f,)n]2 = xn = [(xn)'/•]2, so (x'f,)n = (xn)'l •. Hence, for all integers m, n, 
xm * xn= (x'f,)m(x'f,) 2n(x'f,)m= xm+n, showing that G (1/2) is power

associative. The identities (5.6) follow immediately from (5.5). Finally, 
from (5.5), (5.4), (5.3), we get, for all x, y, z of G, x * [y * (x * z)] 
= z P (x'f•) P (y'l•) P (x'l•) = z P (a) = a2 * z where a = x'f, y'l, x'l, is in

dependent of z. Taking z = 1, we find x * (y * x) = a2• This proves (5.7) 
and completes the proof of Theorem 5.2, aside from the obvious final 
statement. 

Theorem 5.3. lf G is a Maufang laap, a necessary and sufficient 
canditian that the core ( G, +) be isatapic ta a Maufang laap is that the 
mapping x --+ x2 be a semi-autamarphism of G. When the condition holds, 
the laap G(l/2) defined by (5.5) is a cammutative Maufang laop, call it H, 
and the identity mapping af Gis an isamarphism af (G, +) upan (H, +). 

Proof. In view of Theorem 5.2, we shall assume that x --+ x2 is a 
permutation of G. Consider the following statements: (a) G(1/ 2) is 
Moufang; {b) G (1/2) has the inverse property; (c) G (1/2) is commutative. 
Since every loop-isotope of a Moufang loop is Moufang, we see that (G, +) 
is isotopic to a Moufang loop if and only if (a) holds. If (a) holds, so 
does (b). If (b) holds, then, in view of (5.6), (x * y)-1 = (y * x)-1 for all 
x, y, so (c) holds. If (c) holds, then x * (y * x) = (x * y) * x and (5.7) 
can be turned into the Moufang identity corresponding to (3.3), so (a) 
holds. Therefore (a), (b), (c) are equivalent. Moreover, (c) is equivalent 
to the identity x(y2 * x2)x= x(x2 • y2)x or (xyx) 2 = x2 y2 x2, which 
states that the permutation x --+ x2 is a semi-automorphism of G. 

Finally, (c) implies that x * y-1 * x = (x * x) * y-1= x2 * y-1= xy-1 x. 
This completes the proof of Theorem 5.3. Theorem 5.3 focuses attention 
on identity (i) of the following Iemma. 

Lemma 5.1. A di-assaciative loap G satisfies all ar nane af the fallawing 
identities: (i) (xyx) 2 = x2y2x2 ; (ii) x(y-1xy)=(y-1xy)x; (iii) ((x,y),x)=l; 
(iv) (xn,y) = (x, y)n far all integers n; (v) (xy)n= xnyn(x, y)-n<n-1)/2 
far all integers n; ( vi) ( x y x)n = xn yn xn far alt integers n. 
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Proof. By definition, xy = (yx) (x, y), whence 

(x, y) = x-ty-1xy = (y, x)-1 
and 

y-1xy = x(x, y). 

For all integers n, by (5.9), x"(x", y) = y-1xny = (y-1xy)", or 

123 

(5.8) 

(5.9) 

(5.10) 

If (i) holds, xyx2 yx = x2 y2 x2 or (yx) (xy) = (xy) (yx), whence, with x 
replaced by y-1x, we get (ii). If (ii) holds, (5.9) yields x2(x,y)=x(x,y)x 
or (iii). If (iii) holds, (5.10) gives (iv). If (iv) holds with n = 2 or n = -1, 
(5.10) yields (iii). From (iii), (iv) and (5.8) we get (v) by a straighttorward 
mathematical induction. Conversely, (v) for n = 2 yields (iii). We note 
that (xy, x) = (x, y)-1 in any di-associative loop. Hence, by (iii), (v), 
with k = n(n-1)/2, (xyx)"= (xy)"x"(xy, x)-k= x"y"(x, y)-kx"(x,y)k 
= x"y"x". This is (vi), and (vi) with n = 2 is (i). This completes the 
proof of Lemma 5.1. 

Groups satisfying (ii) of Lemma 5.1 have been studied by BuRN
SIDE [B 3], [B 4], LEVI and VAN DER WAERDEN [B 10], BRUCK [70], 
LEVI [B 9]. The connection between BuRNSIDE's two papers may be 
given as follows: 

Lemma 5.2. Let G be a di-associative loop and let n be an integer. lf 
a, bare elements of G suchthat (ab)"= a"b", then (ba)"-1= a"-1bn-1 and 
(ba)1-"= b1-"a1-n. As a consequence, if the mapping x-+ x" is an endo
morphism of G, then the mapping x -+ x1-n is also an endomorphism of G 
and the mapping x ->- xn-1 is a semi-endomorphism of G. (BAER [B 14].) 

Proof. (ba)n-1= [a-1(ab)a]"-1= a-1(ab)n-1a a-1(ab)"b-1 
= a-1a"b"b-1= a"-1 b"-1 ; whence, by taking inverses, (bap-n 
= b1-nal-n. The second sentence of the Iemma should then be clear. 
Taking n = 3, we see that if x -+ x3 is an endomorphism, then x -+ x2 
is a semi-endomorphism. 

A function f (x1, ••• , xn) from a di-associative loop G to G is called 
skew-symmetric if interchange of any two of Xv ••• , xn replaces it by its 
inverse. For example, the commutator (x, y) is skew-symmetric. 

Lemma 5.3. Let G be a group. Then the identities of Lemma 5.1 are 
equivalent to (vii) ((x, y), z) = ((z, y), x)-1 and imply (viii) ((x,y),z) 3 = I 
and (ix) (((w, x), y), z) = ((w, x), (y, z)) = I. Hence if the mapping x -+ x2 
is a semi-endomorphism of G. then G is nilpotent of class at most 3. 
(LEVI [B 8].) 

Proof. From (vii) with z = y we get (iii) of Lemma 5.1. From (5.9) 
we get the identity 

(xy, z) = (x, z) ((x, z), y) (y, z) , (5.11) 
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valid in any group. Now we use (i)-(vi) of Lemma 5.1. By (iv) and (5.11) 
we get (xy, z) = (y-1x-1, z)-1= (x-1, z)-1((y-1, z), x-1)-1(y-1, z)-1 

= (x, z) ((y, z), x)-1(y, z). Comparison with (5.11) gives ((x, z), y) 
= ((y, z), x)- 1• Interchange of y, z gives (vii). By (iv) and (vii), ((x, y),z) 
is skew-symmetric. Hence ((w, x), (y, z)) = (((y, z), x), w)-1 is skew
symmetric in w, x and in y, z, x and thus in w, x, y, z. The even per

mutation (wy) (xz) must leave ((w, x), (y, z)) fixed, yet replaces it by 
((y, z), (w, x)) = ((w, x), (y, z))-1• Therefore 

(((w, x), y), z) 2 = ((w, x), (y, z))2= I . (5.12) 

By (iii), (x, y) lies in the centre of the subgroup generated by x, y. By 
this and (vii), ((x, y), z) lies in the centre of the subgroup generated by 
x, y, z. Moreover, ((x, y), (x, z)) = ((x, (x, z)), y)- 1 = I. Hence, from 
(5.11), (xy, z) 2 = (x, z) 2 (y, z) 2 ((x, y), z)- 2• On the other hand, by (v), 
(xy) 2 = x2 y2 (y, x) and hence, by (iv), (5.11), (vii), (xy,z) 2 = (x2 y2 (y,x),z) 
= (x2 y2 , z) ((x2 y2 , (y, x)), z)- 1 ((y, x), z) = (x2,z) (rx2, z), y2) (y 2,z) ((y,x),z) 
= (x, z) 2 (y, z) 2 ((x, y), z)-5• Comparison gives tviii). And (ix) follows 
from (viii), (5.12). The concluding statement of Lemma 5.3 is a direct 
consequence of (ix). This completes the proof. 

Example 1. Let G be the free Burnside group of prime exponent p, 
p > 3, and with two or more generators. Clearly x -+ x2 is a permutation 
of G. It is known that G is not nilpotent of dass 3 or less; hence, by 
Lemma 5.3, x -+ x2 is not a semi-automorphism of G. Therefore, by 
Theorem 5.2, 5.3, the loop G (1/ 2) exists, has the left inverse property 
- satisfies, indeed, the almost-Moufang identity (5.7), - but is not a 
Moufang loop. 

In the rest of this section we determine the structure of Moufang loops 
G for which the mapping x ->- x2 is a semi-automorphism. The case 
that G is associative is covered by Lemma 5.3. For the non-associative 
case weshall need some additional machfnery. 

Lemma 5.4. Every Maufang loop satisfies the following identities: 

R(x-1, y-1) = L(x, y) = L(y, x)-1 ; 

L(x, y) = L(xy, y) = L(x, yx) ; 

L(x-1, y-1)L(x-1, y) = L((x, y), y); 

xL(z, y) = x(x, y, z)-1; 

(x, y, z) = (x, yz, z) = (x, y, zy) ; 

(x, y, z) = (xy, z, y)-1 ; 

(x, y, z) = (x, y, zx); 

y [x(x, y, z)-1] = (yx) (y, x, z). 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Proof. R(x-1,y-1)=L(x,y) by Lemma2.2. Set w=zL(x,y). 
Then w = (x-1 y-1) [y (xz)], yw = [y (x-1 y-I) y] (xz) = (y x-1) (xz). Hence 
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w = zL (x, y x-1), so L (x, y) = L (x, y x-1). Again, x(yw) = [x(y x-1) x]z 
= (xy)z. Thus z = wL(y, x), so L(x, y) = L(y, x)-1. This is enough to 
prove (5.13), (5.14). By definition, (xy)z = [x(yz)] (x, y, z). Hence 
(x, y,z)-1 = [z-1 (y-1 x-1)] [x (y z)] and x (x, y,z)-1 = {x [z-1 (y-1 x-1)] x}(yz) 
= [(xz-1)y-1] (yz) = xR(z-1, y-1) = xL(z, y). Thisproves (5.16),which, 
with (5.14), implies (5.17). Next compute p = [(xy)z]y in two ways. 
On the one hand, p = [(xy) (zy)] (xy, z, y). On the other hand, 
p = x(yzy) = [(xy) (zy)] (x,y,zy)- 1. Since,by(5.17), (x,y,zy)=(x,y,z), 
comparison gives (5.18). If q = (x, y, z)-1, then, by (5.16), xq=xL(z,y) 
= (z-1y-1) [y(p)] and hence y(xq) = [y(z-1y-1)y] (zx) = (yz-1) (zx) 
= (yx) (y, z-1, zx). By (5.17), (y, z-1, zx) = (y, x, zx) = (y, x, z). Hence 
we have (5.20). Replacing zby zxin (5.20) and using (5.17), we get(5.19). 
By (5.18), (5.19), (y, x, z) = (yx, z, x)-1= (yx, z, y-1)-1. By this and 
(5.16), we see that (5.20) can be rewritten as y [xL (z, y)] = (y x)L (y-I,z). 
By Lemma 2.2, () = L (y-1, z) is a pseudo-automorphism with companion 
c = (y, z-1). Hence{y[xL(z, y)]}c = [(yx)O]c = (yO) [(xO)c]. However, 
y() = y. Therefore, if we replace x by x0-1= xL(z, y-1), we get 
xL(z, y-1)L(z, y) = y-1{ [y(xc)]c-1} = xs-1, where, by (5.18), (5.19), 
s = (y-1, y(x c), c-1) = (x c, c-1, y(xc))-1= (x c, c-1, y)-1= (x, y, c-1). 
Therefore, by (5.16), xs-1= x(x, y, c-1)-1= xL(c-1, y). Hence 
L(z, y-1)L(z, y) = L((z-1, y), y). This proves (5.15) and completes the 
proof of Lemma 5.4. 

Lemma 5.5. Let G be a Maufang loop. Then G satisfies all or none of 
the following identities: (i) ((x, y, z), x) = 1; (ii) (x, y, (y, z)) = 1; 
(iii) (x, y, z)-1= (x-1, y, z); (iv) (x, y, z)-1= (x-1, y-1, z-1); (v) (x, y, z) 
= (x, zy, z); (vi) (x, y, z) = (x, z, y-1); (vii) (x, y, z) = (x, xy, z). When 
these identities hold, the associator (x, y, z) lies in the centre of the subloop 
generated by x, y, z; and the following identities hold for alt integers n: 

(x, y, z) = (y, z, x) = (y, x, z)-1 (5.21) 
(xn, y, z) = (x, y, z)n (5.22) 

(xy, z) = (x, z) ((x, z), y) (y, z) (x, y, z)3. (5.23) 

Proof. Since L (z, y) is a pseudo-automorphism of G, (5.16) and (4.1) 
yield xn(xn,y, z)-1= [x(x, y, z)-1Jn for any integers n. Taking n = -1, 
we see that (i), (iii) are equivalent; moreover, (i) implies (5.22). Hy 
(5.16), (5.15), (5.14), we see that (ii) is equivalent to the identity 
L(y-1, z-1) = L(z, y-1) or L(z, y) = L(y-1, z). Hence, by (5.16), (ii) is 
equivalent to (vi). For the remaining equivalence proofs we use (5.17), 
(5.18), (5.19) without mention. By (iii), (x, y, z) ~ (xy, z, y)-1 
= (y-1x-1, z, y) = (y-1x-1, z, x-1) = (y-1, x-1, z)-1. Consequently, (x,y,z) 
= (xy, z, y)-1 = (z-1, y-1 x-1, y) = (z-1, y-1 x-1, x-1) = (z-1, y-1, x-1) 
= (y, z, x-1)-1. From this, by repetition, (x, y, z) = (y, z, x-1)':....1 
= (z, x-1, y-1) = (x-1, y-1, z-1)-1, which gives (iv). By (iv), (x, zy, z) 
= (x-1, y-1z-I, z-1)-1= (x-1, y-1, z-1)-1= (x, y, z), whence we have (v). 
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By (v), (x, z, y-1) = (x, yz, y-1) = (x, yz, z) = (x, y, z), which is (vi). 
By (vi), (x, xy, z) = (x, z, y-1x-1) = (x, z, y-1) = (x, y, z), giving (vii). 
By (vii), (x, y, z) = (x, x-1 y, z) = (y, z, x-1y)-1= (y, z, x-1)-1, whence, 
by repetition, we get (iv) and therefore (vi). By (iv), (vi) (x, y, z)-1 

= (x-1, y-1, z-1) = (x-1, z-1, y) = (x-1, y, z), which is (iii). Therefore 
the seven identities are equivalent and imply (5.22). 

For the rest of the proof we assume (i)-(vii). Using (iii), we get 
(x, y, z) = (x-1, y, z)-1 = (x-1 y, z, y) = (y-1 x, z, y)-1 = (y-1x, z, x)-1 

= (y-1, x, z) = (y, x, z)-1; this, applied to (vi), gives (x, y, z) = (x, z, y-1) 
= (z, x, y-1)-1= (z, y, x)-1= (y, z, x). Therefore we have (5.21). Now 
(5.20) can be rewritten as y[x(x, y, z)-1] = (yx) (x, y, z)-1, which, by 
Moufang's Theorem, is equivalent to 

(x, y, (x, y, z)) = I . (5.24) 

Set a = (x, y, z). Let H be the subloop generated by x, y, z. By (i), 
(a, x) = 1. Hence, by Lemma 2.2, R (a, x) is an automorphism of G and 
the set S, of all s in H such that (s, a, x) = I, is a subloop of H. By 
(5.24) and (5.21), S contains x, y, z, so S = H. By this and symmetry, 
(h, a, x) = (h, a, y) = (h, a, z) = I for every h in H. Next let P be the 
set of all p in H suchthat (p, a) = I and let F be the set of all I in H such 
that I PCP. ByLemma3.4, Fe FandFis a subloop of H. ByLemma2.2, 
T (a) is a pseudo-automorphism of G with companion a-3• For any 
p in P, since x-L xT(a) =I= (x, p, a-3), we have [(xp) T(a)]a-3 

= (xT(a)) [(pT(a))a-3 ] = (xp)a-3• Hence xp is in P, x is in F. By (i) 
and (5.21), y, z are also in F, so F = H. Hence (h, a) = I for every 
h in H. Now, since (x, a, h) = (y, a, h) = (z, a, h) = (a, h) = 1, we 
conclude as before that (h', a, h) = I for all h, h' in H. Therefore a is in 
the centre of H. 

Since () = T (z) is a pseudo-automorphism with companion 
z-3, (xy) (xy, z) = (xy)fJ = {(xfJ) [(yfJ)z-3]}z3 = [(xfJ) (yfJ)]w where 
w = (xfJ, (yfJ)z-3, z3) = (z-1xz, z-1yz-2, z)3 = (x, y, z)3. Therefore, since 
a = (x, y, z) is in the centre of H, 

(xy) [(xy, z) (x, y, z)-3] = (xfJ) (yfJ) = [x(x, z)] [y(y, z)]. (5.25) 

By several uses of (ii), the right hand side of (5.25) becomes 
x {(x, z) [y (y, z)]} = x { [(x, z) y] (y, z)} = x {y [(x, z) T (y) · (y, z)]}. By 
this and (5.24), (5.25) may be written 

(xy, z) (x, y, z)-3 = [(x, z) T(y) · (y, z)]p-1 (5.26) 

where, by several uses of (ii), (vii) and (5.21), p = (x, y, (x, z) T(y) · (y,z)) 
= (x,y,(y·(x,z)T(y))(y,z)) = (x,y,(x,z)y(y,z))=(x,y,[x(x,z)][y(y,z)]) 
= (x, y, (xfJ) (yfJ)). Since (x, y, z) is in the centre of H, we use (5.25) to 
get p = (x, y, (xy) (xy, z)) = (x, xy, (xy) (xy, z)) = (x, xy, (xy, z)) =I, 
by (ii). Setting p =I and (x, z) T(y) = (x, z) ((x, z),y) in (5.26), we get 
(5.23). This completes the proof of Lemma 5.5. 
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Lemma 5.6. Let the mapping x -+ x2 be a permutation of the M oufang 
loop G. Then the following conditions are necessary and sulficient in order 
that G(l/2) be an abelian group: (a) every commutator (x, y) lies in the 
nucleus N of G; (b) every associator (x, y, z) lies in the centre Z of G; 
(c) ((x, y),z) = (x, y, z)2 for alt x, y, z of G. 

Proof. The loop G(l/2), defined by (5.5), has operation (*) where 
X*Y = x'l•yx'l•= yP(x'l•). lt is easily verified that G(l/2) is an abelian 
group if and only if Y*(X*z) = x*(Y*Z) for all x, y, z of G. Since x-+x2 
is a permutation of G, an equivalent condition is 

P(~P(~ = P(~ P(~ (5.27) 
for all x, y of G. 

Sulficiency. Assurne (a), (b), (c). Since (a) implies (ii) of Lemma 5.5, 
all the identities of Lemma 5.5 are available. From (c) with 
z = y, ((x, y), y) = 1 and hence xy2x = yx2y for all x, y of G. From (c) 
with z in N, and from (a), each commutator is in the centre of N. Thus 
zP(x) P(y) = y(xzx)y = y[(x2z) (z, x)]y = [y(x2z)] [(z, x)y] 

= [y(x2z)y] (z, x) ((z, x), y) = {y[(x2z)y]} (z, x) (x, y, z)2 

= {y [x2(zy)]} (x2, z, y) (z, x) (x, y, z) 2 

= {y [x2(yz)]} (z, y) (z, x) 

= [(yx2y)z] (z, y) (z, x). 

The last expression is symmetric in x, y, proving (5.27). 
Necessity. Assurne (5.27). Since (L (x), R(x), P(x)) is an autotopism 

of Gfor all x, so, by Lemma 2.1, is A (x) = (P(x), L (x)-1, L (x)). Hence the 
commutator-triple (A (y), A (x)) = (I, (L (y-1), L (x-1)), (L (y), L (x))) is 
also an autotopism of G. We deduce that (L(y-1), L(x-1)) = (L(y), L(x)) 
= R (c) where c = 1 (L (y-1), L (x-1)) = (x, y) is in the nucleus N of G. 
This proves (a). In addition, 

x-1(y-1(x(yz))) = z(x, y) (5.28) 

for all x, y, z. When z is in N, (5.28) reduces to (x, y)z = z(x, y). Thus 
every commutator is in the centre C of N. Since (x, y) is in N, (5.28) 
can be rew:ritten as x(yz) = [y(xz)] (x, y); and this, when z is replaced 
by xz, becomes 

(xyx)z = [y(x2z)] (x, y). (5.29) 

Now compute (y x2) z in two ways. On the one hand, since (a) implies 
(5.21), (5.22), we get (yx2)z = [y(x2z)] (y, x2, z) = [y(x2z)] (y, x, z)2. 
On the other hand, since, by Theorem 5.3, ((x, y), x) = 1, we find 
from (a) and (5.29) that (yx2)z = [xyx(y, x)]z = (xyx) [(y, x)z] 
= [(xyx)z] (y, x) ((y, x), z) = [y(x2z)] ((y, x), z). Comparison gives 
(y, x, z) 2= ((y, x), z), or (c). Since (p2, q) = (p, q) 2= 1 implies (p,q) = 1 
and, similarly, (p2, q, r) = 1 implies (p, q, r) = 1, we see as weil that all 



128 VII. Moufang Loops 

associators lie in C. Since (5.22) holds, we can rewrite (5.I6) as 

xO=x(x,y,z) where 0=L(z-1,y). By Lemma2.2 and (a), () 

is an automorphism of G. Thus (wx) (wx, y, z) = (wx)() =(wO) (xO) 
[w(w, y, z)] [x(x, y, z)] = (wx) [(w, y, z) (Iw, y, z), x) (x, y, z)] or 

(wx, y, z) = ((w, y, z), x) (w, y, z) (x, y, z) (5.30) 

for all w, x, y, z of G. In particular, if a is in N, (ax, y, z) = (xa, y, z) 

= (x, y, z) for all x, y, z. Thus, since w x = xw (u•, x) and (w, x) is in N, 

(wx, y, z) = (x<c, y, z). Consequently, 

((w, y, z), x) = ((x, y, z), w) (5.3I) 

for all w, x, y, z. By (5.31), ((w, y, z), x) is symmetric in w, x. By 

(5.3I) and (5.22), ((w, y, z), x) is skew-symmetric in w, y, z and in 

x, y, z and hence in w, x. Therefore, since p2 = I implies p = I, ((w,y,z) ,x) 

= ((w, y, z), x}-1 = I. This completes the proof of (b) and of Lemma 5.6. 

Example 2. Let G be a nilpotent group of dass 2 all of whose elements 

have finite odd order. Then x....,.x2 is a permutation of G and G satisfies 

(a), (b), (c), of Lemma 5.6, so G(1/ 2) is an abelian group. Since G is a 

non-commutative group, G and G (1/ 2) are not isomorphic and hence not 

isotopic, even though both have the same core. 
Example 3. We may construct as follows a Moufang loop G such 

that G(1/ 2} is an abelian group but Gis not associative. Let F be a field 

of characteristic not two and let R be an associative algebra over F 

containing a vector space A over F such that (i) ab=- ba for all a, b 
in A; (ii) abc =1= 0 for some a, b, c in A. For each positive integer n. 
let Rn denote the vector space over F spanned by all products of n 

or more factors from A. Let G be the set of all ordered triples (a, p, x), a 
in A, p in R2, x in R3, with equality componentwise and with multiplica

tion defined by (a, p, x) (b, q, y) = (a + b, p + q +ab, x + y + pb). Then, 

as tedious calculation would show, G is a Moufang loop satisfying the 

requirements that G (1/2) exist and be an abelian group. The commutators 

are the elements (0, 2 ab, pb- qa) and the associators are the elements 

(0, 0, abc), with a, b, c in A, p, q in R2• Note that, if F has characteristic 

zero, no element of G has finite order except the identity element. 

Lemma 5.7. If Gis a commutative Maufang loop, then: (i) the mapping 
x-+x3 is a centralizing endomorphism of G; (ii) x3 = I for every x in 
the ( commutator-) associator subloop G . 

Proof. By Moufang's Theorem and commutativity, (xy) 3 = x3y3 for 

all x, y of G. Foreach x in G, by commutativity, T (x) = R (x) L (x)-1 =I 
and, by Lemma 2.2, T (x) is a pseudo-automorphism with companion x-3• 

Hence x3 lies in the nucleus, which coincides with the centre, of G. 

This proves (i). The kernel of the endomorphism x....,. x3 must contain G', 

whir.h proves (ii). 



5. The core 129 

Theorem 5.4. Let the mapping x-+ x2 be a semi-automorphism of the 
Maufang loop G. Then: (i) The set T, consisting of alt t in G such that 
t3 = I, isanormal subloop of G and (G/T) (1/ 2) is an abelian group. (ii) 
I f N is the nucleus of G, the mapping x N -+ x3 N is a centralizing endo
morphism of GjN. 

Proof. By Theorem 2.1, N is normal in G. Since ((x, y), x) =I, we 
have (xy)3= x3y3(x, y)-3 and (x, y)3= (x3, y) = (x, y3) for all x, y 
of G. This is enough to show that T is a subloop of G. If (J is an inner 
mapping of G, (x0) 3 = x3(J for all x in G, whence T is normal in G. If 
x2 = y2t for t in T, then x6 = (y2t)3 = y6t3(x2, t)-3 = y6 , so x3 = y3 and 
(xy-1)3= x3y-3(x, y-1)-3= (x, y3) = 1. Thus x2== y2 mod T implies 
x == y mod T. Consequently, the mapping x T-+ x2 T is a semi-auto
morphism of GjT. Thus (GjT) (1/2) exists and is a homomorphic image 
of G(1/ 2). By Theorem 5.3 and Lemma 5.7 (ii), T contains the associator 
subloop of G(1/ 2), so (G/T) (1/ 2) is an abelian group. This proves (i). 
We now apply Lemma 5.6 to GjT. As a first consequence, if c is any 
commutator and a any associator of G, 

(c, x, y) == (a, x, y) == (a, x) == I mod T (5.32) 

for all x, y of G. If (J = L (z, y), a = (x, y, z), then (5.15) gives x3(x3,y,z)-1 

= x3 (J = (x0)3= (xa-1)3= x3a-3(x, a)3. By (5.32), (x, a) 3= I, so 

(x3 , y, z) = (x, y, z) 3 (5.33) 

for all x, y, z. By (5.33), (5.32), if a is any associator, (a3 , x, y) 
= (a, x, y) 3 = I for all x, y; showing that a3 is in the nucleus N of G. 
Thence, by (5.33), (x3, y, z) ==I mod N for all x, y, z, so x3N is in the 
nucleus of GjN for all x. If c is any commutator of G, (5.33), (5.32) 
yield (c3, x, y) = (c, x, y) 3 = I for all x, y; thus c3 is in N. In particular, 
(x3 , y) = (x, y) 3 == I mod N, so x3N is in the centre of GjN for all x. 
And, finally, (xy)3= x3y3(x, y)-3== x~y3 mod N, so the mapping xN -+x3N 
is a centralizing endomorphism of GjN. This completes the proof of 
Theorem 5.4. 

Theorem 5.4 will now be interpreted in another way in terms of 
commutative Moufang loops. 

Lemma 5.8. Every loop isotopic to a M oufang loop G is isomorphic to 
a principal isotope (G, o) with operation (o) given by xoy = (xf) (f-1y) 
for some fixed element f of G. 

Proof. We need only consider a principal isotope H with operation 
(x) given by xxy= xR(v)-1. yL(u)-1• The identity element of His 
e = uv. Hence, if we define (G, o) by (xoy)e = (xe) x (ye), (G, o) is 
isomorphic to Hand has the same identity element, I, as G. Since (pq) e-1 

= (pe) (e-1qe-1) for all p, q of G, we have xo y = [(x e) R (v)-1. (ye)L(u)-1]e-l 
= (xO) (yq;) for all x, y, where 0, q; are suitable permutations of G. lf 
I (J = f, then y = I o y = f (y q;), so y q; = f-1y for all y. In particular, 
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1 rp = j-1 and hence x = xo1 = (xO)j-1, x() = xf for all x. Thus xoy 
= (xf) (f-1y) for all X, y. This completes the proof of Lemma 5.8. 

Theorem 5.5. A necessary and sufficient condition that the M oufang 
loop G have the property that x --+ x3 is a centralizing endomorphzsm of 
G is that G be either an isotope of a commutative M oufang loop or a normal 
subloop of index 3 in such a loop-isotope. 

Proof. Let P denote the property described in the theorem. If G has 
P, consider the isotope (G, o) defined by xoy = (xf) (f-1y). For all 
integers m, n, and all x in G, x"'o xn = xmlf-1 xn = xm+n; hence powers 
are the same in G and (G, o). Again, x3oy = x3jj-1y = x3y and yox3 

=yff-1x3= yx3. Also (x3oy)oz = (x3y)oz = [(x3y)j](f-1z)=x3[(y/)(f-1z)] 
= x3(yoz) = x3o(yoz). Hence x3 is in the centre of (G, o) for all x. 
Since (xoy) 3 = (x/)3(!-1y)3= x3f3f-3y3= x3y3, we see that (G, o) has 
property P. Therefore, by Lemma 5.8, P is an isotopic invariant. In 
particular, by Lemma 5.7, every loop-isotope of a commutative Moufang 
loop has P. Consequently, every subloop of such an isotope also has P. 
Note, however, that the non-commutative groups with P arenot isotopic 
to any commutative loop. The rest of the proof will merely be sketched; 
for details see BRUCK [70], Chapter II, § 8. Let G be any Moufang loop 
with property P and Iet A be the additive group of integers mod 3. Let E 
be the set of all couples (x, p), x in G, p in A, with equality componentwise 
and with multiplication defined by 

(x, P) (y, q) = ('f!a-v(x, Y), P + q). (5.34) 

where, for each p in A, 'Pv is the function from G X G to G defined by 

(5.35) 

Tedious calculations show that E is a commutative Moufang loop. 
Accepting this, consider the isotope (E, o) defined by 

(x, p) o(y, q) = [(x, p) (1, 1)] [(1, 2) (y, q)J = (rpq-v+1(x, y), P + q). (5.36) 

Since (x, o) o (y, o) = (xy, o) for all x, y, the homomorphism (x, P) --+P 
of (E, o) upon A has kernal isomorphic to G. Thus G has been embedded 
as a normal subloop of index 3 in an isotope of a commutative Moufang 
loop. This completes the proof of Theorem 5.5. 

VIII. Commutative Moufang Loops 

1. Examples 

BoL [66] was the first to construct a commutative Moufang loop 
which is not an abelian group. Each of Bol's examples is centrally nil
potent of dass 2. BRUCK f70] showed how to construct examples which 
are centrally nilpotent of dass 3. In his University of Wisconsin thesis 
(1953), T. SLABY formulated the following theorem: Every commutative 



1. Examples 131 

Maufang loop which can be generated by n elements (n > I} is centrally 
nilpotent of class at most n- I. In collaboration with the author, SLA.BY 
proved this theorem for n = 4, 5 as well as for the previously known cases 
n = 2, 3. 

The present chapter will reobtain Slaby's results and go on to prove 
the theorem for every positive integer n. Moreover, it will appear that 
the dass, k(n), of the free commutative Maufang loop on n generators 
satisfies the inequalities 

c(n) ~ k(n) ~ n-I for n ~ 3 (1.1} 
where 

c(n) =I+ [n/2]. (1.2) 

It seems worth remarking here on an interesting situation for n = 5 
whirh will not be mentioned later. From (1.1) with n = 5 we get 
3 ~ k (5) ~ 4. The exact value of k (5) is still uncertain. I t can be shown, 
however, that if k(5) = 3 then k(n) = c(n) for every n ~ 3. Indeed, a 
simple proofthat k (5) = 3 would greatly shorten the present chapter, but 
in the absence of such proof I have come to believe that k (5) = 4. 

Once the existence of k (n) is known, the inequality k (n) ~ c (n) may 
be deduced from the following construction, which shows the existence 
of an (infinitely generated) commutative Maufang loop H containing, 
for every positive integer n, a subloop generated by n elements which is 
centrally nilpotent of dass c(n). lt also turns out that H is trans
finitely centrally nilpotent of dasswand that the centre of H has order I. 

Let K be the field of three elements. Let E be any infinite set of 
positive ordinalso For the sake of simplicity we may take E to be the 
set of all positive integers, but this is not essential. Let F be the set of 
all finite subsets of I, including the null set. Denote the null set by 0 
and, for each element n of E, denote the one-element subset (n) by no 
Construct a symbol e(5) for each member 5 of Fandlet R be the vector 
space over K consisting of all finite linear combinations of the e ( 5), 
5 in F, with coefficients in K, equality being componentwise. Define 
multiplication in R by the distributive laws and the following rules: 

(i} If 5, TE Fand 5 n T =t= 0, then e(5) e(T) = 0, the zero vectoro 
(ii) If 5, TE F and 51\ T = 0, then e(5) e(T) = (-I)Pe(5v T) 

where p is the number of pairs (s, t), s in 5, t in T, with t < So 
It is easily verified that R is an associative algebra over K - a type 

of "exterior" algebra of characteristic 3- with e (0) as the multiplicative 
identity elemento lf the member 5 of F consists of the ordinals 
n1, o o o' n1, with n1 < n2 < o o o < n1, then e(5) = e(n1)e(n2) o o o e(n1)o 
We denote by A the vector subspace with the elements e(n), n in E, as 
basiso And, for each positive integer k, we denote by RA k the vector 
subspace consisting of all finite linear combinations of products of form 
x~a2 o 0 0 ak where x is in R and ~. 0 0 0, ak are in Ao Furthermore we 
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define RA0 tobe R. The following significant facts are readily verified: 

(I) ab=- ba, all a, bin A . 

(II) To each nonzero x in R there corresponds a unique "degree" n, 
a non-negative integer suchthat x is in RAn but not in RAn+I. 

Let H be the set of all ordered couples (a, x), a in A, x in R, with 
equality componentwise and with multiplication defined by 

(a, x) (b, y) = (a + b, x + y + (x- y)ab). (1.3) 

In view of (1), multiplication in H is commutative. A more extended 
calculation shows that H is a Moufang loop. In particular, the identity 
element is (0, 0), the inverse of (a, x) is (a, x)-1 = (-a, -x) and the 
associator of three elements (a, x), (b, y), (c, z) is 

((a, x), (b, y), (c, z)) = (0, xbc + yca + zab). (1.4) 

Let {Ha.} denote the lower central series of H, so that H0 = Hand H1 = H' 
is the associator subloop of H. From (1.4), (1.3) we see that H' is an 
abelian group. Indeed, from (1.4) with y = z = 0, H' contains (O:xbc) 
for all x in R, b, c in A. By taking products of such elements we deduce 
that H1 = H' = (0, RA 2). More generally, Hn = (0, RA 2n) for every 
positive integer n. Since Eis infinite, Hn =fo 1 for every positive integer n. 

00 

On the other band, by (li), Hw = n Hn = 1. Therefore His transfinitely 
centrally nilpotent of dass w. n = 0 

Using (1.4) we may verify that the element (a, x) lies in the centre 
Z(H) of H if and only if both xbc = 0 for all b, c in A and yca = 0 for 
all y in R, c in A. Since Eis infinite, these requirements force x = a = 0. 
Therefore Z (H) = 1. 

Finally, for any preassigned integer n ~ 3, we Iet G be a subloop of H 
generated by n elements of form (e(i), e(O)) where i ranges over n distinct 
elements of E. A straighttorward calculation, which we omit, shows 
that Giscentrally nilpotent of dass c (n). This completes our discussion 
of the construction. 

In what follows we develop identities u1 stages, proving Slaby's 
theorem successively for n = 2, 3, 4, 5 and then going on to the general 
case. 

2. Two and three generators 

Henceforth let G be a commutative Moufang loop. We begin by 
adapting some material from Chapter VII. The identity VII, (3.1) 
becomes 

x2 (yz) = (xy) (xz). (2.1) 

By VII, Lemma 3.3, every inner mapping or pseudo-automorphism of G 
is an automorphism of G. By VII, Lemma 5.6, since R(x) = L(x) for 
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all x, we have 
xL(y, z) = xR(y, z) = x(x, y, z), (2.2) 

(x, y, z) = (x, xy, z) = (y, x, z)-1= (y, z, x), (2.3) 

(xm, y", zP) = (X, y, z)mnp' (x, y, z)3 = 1 , (2.4) 

for all x, y, z in G and all integers m, n, p. Moreover, Moufang's Theorem 
and VII, Lemma 5.5 imply the following: 

Theorem 2.1. I/ n = 2 or 3, every commutative Moufang loop Gwhich 
can be generated by n elements is centrally nilpotent of class at most n - 1. 

As a consequence of {2.1)-{2.4) and the theorem just stated, 

R(x, y) = R(y, x)-1 = R(x, xy), R(x", y) = R(x, y") = R(x, y)" (2.5) 

for all x, y in G and all integers n. Another consequence is the validity 
of the equations 

(xy)z = [x(yz)] (x, y, z) = [x(x, y, z)] (yz) (2.6) 

= x {[y(x, y, z)]z} = x {y[(x, y, z)z]}. 

3. Four generators 

We begin with an awkward form of an important Iemma. A more 
convenient form will be obtained in Lemma 4.6. 

Lemma 3.1. I/ w, x, a, b are elements of a commutative Moufang 
loop G, then (wa) (xb) = (wx)c where c = pq-1 and 

p = [aR(w, x)] [bR(x, w)] = [a(a, w, x)] [b(b, x, w)], (3.1) 

q = (w-1 x, aR(w, x), bR(x, w)). (3.2) 

Proof. We multiply the equation (wx)c= (wa) (xb) by w-2 and use(2.1) 
toget x(w-1c) = a [w-1(xb)]. IfO = R(w,x)then, by(2.5),R(w-1,x)=0-1, 
R(x,w-1) = 0. Hence x(w-1c) = (xw-1) (c0-1) and w-1(xb) = (w-1x)(b0), 
so our equation becomes (w-1x) (c0-1) = a[(w-1 x) (bO)]. By (2.2}, (2.4), 
oa= I and 02 = 0-1. Moreover, by (2.2), 0 leaves wand x fixed. Hence 
(w-1x)c = [(w-1x) (c0-1)]0 = {a[(w-1x) (bO)]}O = (aO) [(w-1x) (b0-1)] 
= [(w-1 x) {b0-1)] (aO). Now applying (2.6), we get (w-1x)c 
= (w-1 x) {[(b0-1) (aO)] (w-1 x, b0-1, aO)}, whence c = [(aO) (b0-1)] X 
x (w-1x, a{J, b0-1)-1• Since 0 = R(w, x), 0-1= R(x, w), the proof is 
complete. 

Our first application of Lemma 3.1 is to an expansion formula for 
(wx, y, z). By (2.2), since q; = R(y, z) is an automorphism, (wx)(wx,y,z) 
= (wx) q; = (wq;) (xq;) = [w(w, y, z)] [x(x, y, z)]. We apply Lemma 3.1 
with a = (w, y, z), b = (x, y, z), c = (wx, y, z). In this case, replacement 
of v by y-1 replaces a, b, c, p by their inverses but leaves q fixed. Hence 
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we have both c = pq-1 and c-1 = p-1 q-1• By multiplication, 1 = q-2• 

However, qs= 1 by (2.4), so q = 1. Therefore c = p, 1 = q; that is, 

(wx, y, z) = [(w, y, z) R(w, x)] [(x, y, z) R(x, w)] (3.3) 

= [(w, y, z) ((w, y, z), w, x)] [(x, y, z) ((x, y, z), x, w)], 

1 = (w-1x, (w, y, z) R(w, x), (x, y, z) R(x, w)). {3.4) 

We consider (3.4), taking a = (w, y, z), b = (x, y, z), 0 = R(w, x). 
First we replace xbywxin (3.4). Since R(w, wx) = 0 and R(wx, w) = 0-1, 

(3.4) yields 1 = (x,aO,(wx,y,z)0-1), whence 1 = 10-1 = (x,a,(wx,y,z)O). 
By (3.3), (w x, y,z) 0 = [(a 0) (b0-1)] 0 = (a0-1) b. Therefore 1 = (x, a, (a 0-1) b) 
= ((a0-1)b, x, a). Setting 1p = R(a0-1,b) and applying {3.3), we get 
1 = [(a0-1, x, a)1p] [(b, x, a)1Jl-1]. However, by Theorem 2.1, (a, x, w) 
lies in the centre of the subloop generated by a, x, w; consequently, 
(a0-1, x, a) = (a (a, x, w), x, a) = (a, x, a) = 1. This leaves 1 = (b, x, a) 1p-1, 

whence 1 = 11p = (b, x, a) = (a, b, x). In detail, we have the identity 

((w, y, z), (x, y, z), x) = 1 . (3.5) 

Since (xz, y, z) = (x, y, z), we may replace x by xz in (3.5) without 
altering a, b. Thus 1 = (a, b, xz) = (xz, a, b), whence by (3.3), (3.5), 
1 = [(x, a, b)R(x, z)] [(z, a, b)R(z, x)] = (z, a, b)R(z, x). Therefore 
1 = (z, a, b) = (a, b, z); that is, 

((w, y, z), (x, y, z), z) = 1 . {3.6) 

Lemma 3.2. I I the commutative M oufang loop G is generated by a set S 
consisting offour elements, then 

((S, S, S), (S, S, S), G) = 1 . (3.7) 

Proof. Lets; (i = 1, 2, ... , 7) denote elements of S. Set U= (s1,s2,s3), 

v = (s4, s5, se) and consider w = (u, v, s7). If two of Sv s2, s3 are equal, 
u = 1 and w = 1. Similarly, if two of s4, s5, Se are equal, v = w = 1. 
If Sv s2, s3 are distinct and s4, s5, s6 are Sv s2, s3 in some order, then v = u 
or u-1 and w = 1. In the remaining case, by skew-symmetry of the 
associator, we may assume that Sv s2, s3, s4 are the four distinct elements 
of S and that s5 = s2, Se= s3• Then, if s7 = Sv w = I by (3.5) and, if 
s7 = s2 or s3, w = 1 by (3.6). Hence w = 1 in all cases. Since R (u, v) 
is an automorphism, the set H of all h in G such that (u, v, h) = 1 is a 
subloop of G. Since H contains S, then H = G. This completes the 
proof of Lemma 3.2. 

~ow set a = (w, y, z), b = (x, y, z), c = (a, w, x), d = (b, x, w). 
By (3.3) and Lemma 3.1, (wx, y, z) = (ac) (bd) =(ab) (pq-1) where 
p = [cR(a, b)] [dR(b, a)] and q = (a-1b, cR(a, b), dR(b, a)). By 
Lemma 3.2, (a, b, h) = 1 for all h in the subloop generated by w, x, y, z. 
In particular, R(a, b) = R (b,a)-1 leaves c, d fixed, so P= cd, q= (a-1b,c,d). 
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By Lemma 3.2 again, (c, d, k) = I for all k in the subloop generated by 
a, b, w, x; in particular, q = (a-1 b, c, d) = 1. Thus (3.3) can be replaced 
by the identity 

(wx, y, z) = [(w, y, z) (x, y, z)] [((w, y, z), w, x) ((x, y, z), x, w)]. (3.8) 

We define the function h on the loop G by 

(wx) (yz) = [(wy) (xz)]h(w, x, y, z). (3.9) 

Lemma 3.3. Far any cammutative Maufang laap G, the functian h is 
skew-symmetric in its faur arguments. In particular, if a, b, c, d are 
elements af G such that (ab) (cd) = (ac) (bd), then (ab) (cd) = (ad) (bc). 

Proof. We note from (3.9) that interchange of wand z replaces h by 
its inverse. Now we consider the result of replacing x, y, z in (3.9) by wx 
wy, wz respectively. By (2.I), [w(wx)] [(wy) (wz)] = (w2 x) [w2(yz)] 
= w4 [x(yz)] and similarly for the coefficient of h. Hence h(w, wx, wy,wz) 
= {[x(yz)]w4} {w-4 [y(zx)]-1} = pq where p = [x(yz)] [y(zx)]-1 and 
q = (x(yz), w4, w-4 [y(zx)]-1). Since x(yz) = (yz)x = [y(zx)] (y,z,x),p 
= (x, y, z). Also q = (x(yz), w, y(zx))-4 = (x(yz), w, [x(zy)] (x, z, y))-1 

= (x(yz), w, (x, y, z)). Both p and q are now seentobe skew-symmetric 
in x, y, z. Hence h(w, wx, wy, wz) and, therefore, h = h(w, x, y, z), is 
skew-symmetric in x, y, z. Since h is skew-symmetric in w, z and in 
x, y, z, then h is skew-symmetric in w, x, y, z. If (ab) (cd) = (ac) (bd) 
then h(a, b, c, d) = 1; hence h(a, b, d, c) = I. so (ab) (cd) =(ab) (dc) 
= (ad) (bc). This completes the proof of Lemma 3.3. 

A comparison of (3.3), (3.8) yields our simplest application of Lemma 
3.3: 

Lemma 3.4. lf G is a cammutative Maufang laap, the identity (3.8) 
remains true wken tke faur assaciatars an tke right hand side are permuted 
arbitrarily. 

The next two Iemmas give important methods of generating new 
identities. 

Lemma 3.5. Let G be a cammutative Maufang laap cantaining a sublaap 
K and elements a, b such that (x, a, b) is in K far each element x in G. 
Tken tke elemmts ((a, b, x1). x1, x2), (((a, b, x1), x1, x2), x2, xa}. ... , are inK 
far all elements x1, x2, x3, ••• in G. 

Proof. Set p = ((w, a, b), w, x), q = ((x, a, b), x, w). Then, by (3.8), 
K contains (wx, a, b) = [(w, a, b) (x, a, b)] (pq), and hence pq, for all 
w, x in G. Replacing x by x-1, we see that K contains p-1q. Hence K 
contains (pq)-1 (p-1q) = p-2 = p = ((a, b, w), w, x) for all w, x in K. 
Thus K contains ((a, b, x1). x1, x2) for all x1, x2 in K. Now we can repeat 
the process, for any fixed xv with a, b replaced by (a, b, x1) and x1 

respectively. Hence, by iteration, we get the full conclusion of Lemma 3.5. 
Lemma 3.6. lf a, b, c, d are elements af tke cammutative Maufang 

laap such tkat ((x, a, b), c, d) = I far every element x af G, tken 
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1 = (((a, b, x1), x1, x2), c, d) = ((((a, b, x1), Xv x2), x2, x3), c, d) = ... , for 
all elements x1, x2, x3, ••• , of G. 

Proof. The set K of all elements k in G such that (k, c, d) = 1 is a 
subloop of G which satisfies the hypotheses of Lemma 3.5. 

Let {G;} and {Z;} denote the lower and upper centrat series, respect
ively, of G. Moreover, let G'(= G1) and Z(= Z1) denote the associator 
subloop and centre, respectively, of G. 

Lemma 3.7. Let G be a commutative Moufang loop generated by a 
subset S and let n be a positive integer. A necessary and sufficient condition 
that the element a of G should be in Z,. is that 

(( ... ((a, Sv s2), s3 , s,), ... ) , s2,.-1 , s2.,) = 1 (3.10) 

for alt s1, s2, ••• , s2,. in S. 
Proof. The necessity of the condition follows from the definition of 

the upper centrat series. The case n = 1 of (3.10) may be written 
(a, s, s') = 1 for all s, s' in S; we now assume this special case of (3.10). 
The set HofallhinG suchthat (a, S, h) = 1 is a subloop of G containing 
S, so H = G. Therefore the set K of all k in G such that (a, k, G) = 1 
is a subloop containing S, so K = G. Hence (a, G, G) = 1, a E Z = Z1• 

Therefore Lemma 3.7 is true for n = 1. Now assume inductively that 
Lemma 3.7 is true for n and let a be an element which satisfies (3.10) 
when n is replaced by n + 1. Equivalently, if w denote the left band 
side of (3.10), (w, s, s') = 1 for all s, s' in S. Hence, by the case n = I, 
w is in Z. That is, (3.10) holds modulo the centre Z for all s; in S. Con
sequently, aZ is in Z,.(G/Z) = Z.,+1/Z, so a is in Z,.+l. This completes 
the proof of Lemma 3.7. 

Lemma 3.8. Let G be a commutative M oufang loop generated by a 
subset Sandlet n be a positive integer. A necessary and sulficient condition 
that G., = 1 is that 

(( ... ((s0, s1, s2), s3, s,), ... ), s2n-l• s2,.) = 1 

for all s0, s1, s2, ••• , s2,. in S. 
Proof. By Lemma 3.7, the condition is necessary and sufficient in 

order that SC Z,.. By Lemma 1.2 of Chapter IV, G,. = 1 if and only if 
G = z... However, G = Z,. if and only if SC Z,.. This completes the 
proof of Lemma 3.8. 

Theorem 3.1. Every commutative Moufang loop generated by four 
elements is centrally nilpotent of class at most 3. 

Proof. In view of Lemma 3.8, an analysis along the lines of the proof 
of Lemma 3.2 shows that we need only prove that the following identities 
hold in every commutative Moufang loop G: 

(a) (((w, x, y), w, z), x, y) = 1. 

(b) (((w, x, y), w, z),w, x) = 1. 

(c) (((w, x, y), w, z), x, z) = 1. 
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Proof of (a). By Theorem 2.I, ((w, x, y), x, y) = I for all w in G. 
Hence, by Lemma 3.6, (((w, x, y), w, z), x, y) = I for all w, z in G. 

Proof of (b). Set a = (w, x, y), b = (z, w, x), p = (a, w, z), 0 = R (w, x). 
Certainly wO= w and, by Theorem 2.I, aO = a. Therefore p(p, w, x) 
= pO = (a, w, z)O = (aO,wO,zO) = (a,w,zb) = (zb,a,w). Expanding the 
last associator by (3.3), we have p(p,w,x) = [(z,a;w)R(z,b)] [(b,a,w)R(b,z}]. 
However, by Lemma 3.2, (b, a, w) = ((z, w, x), (w, x, y), w) = I. There
fore p(p, w, x) = (z, a, w)R(z, b) = p(p, z, b) and (p, w, x) = (p, z, b). By 
Lemma3.2again, (p,z,b) = ((a,w,z),z, (z,w,x)) =I. Thatis, (p,w,x) = 1, 
which proves (b}. I 

Proof of (c). With a, b, p as before, define q = (a, x, z), rp = R(x, z). 
Then arp = aq, wrp = wb, zrp = z, so p(p, x, z) = pq; = (a, w, z) rp 
= (arp, wrp, zrp) = (aq, wb, z} Expanding the latter associator by three 
applications of (3.3), we get 

p(p, x, z) = [(a, wb, z).A.] [(q, wb, z}.A.-1] 

= {[(a, w, z),u] [(a, b, z),u-1]}.A. · {[(q, w, z),u] [(q, b, z),u-1]}.A,-1 

= {(p,u.A.) [(a, b, z),u-1.A.]} {[(q, w, z),u.A.-1] [(q, b, z),u-1.A.-1]} 

where A = R(a, q), ,u = R(w, b). By Lemma 3.2, (a, b, z) = ((w, x, y). 
(z, w, x), z) = I and (q, b, z) = ((a, x, z}, (w, x, z), z) = I. By the same 
authority, P,u = p(p, w, b) = p((a, w, z). w, (z, w, x)) = p and hence 
p,u.A. = p.A. = p(p, a, q) = p((a, w, z), a, (a, x, z)) = p. Similarly, (q, w, z),u 
= (q, w, z) ((q, w, z), w, (z, w, x)) = (q, w, z) and hence (q, w, z) ,u.A.-1 
= (q, w, z) .A.-1 = (q, w, z) ((q, w, z), q, a). Therefore p (p, x, z) = p [(q, w,z) 
((q, w, z}, q, a)] or 

(p, x, z) = (q, w, z) ((q, w, z), q, a) . (3.11 

Replacement of x by x-1 replaces a, p by their inverses and leaves q 
fixed. Hence from (3.11) we get 

(p, x, z) = (q, w, z) ((q, w, z), q, a)-1. 

And now the device of multiplying corresponding members of the two 
equations gives 

(p, x, z) = (q, w, z) = k, say. (3.I2) 

Next we compute E = ((a, wx, z), wx, z) in two ways. On the one band, 
by Theorem 2.1, E =I. Since, by (3.3), (a,wx,z) = [pR(w,x)][qR(x,w)] 
and, by (b), (p, w, x) = (q, x,w) =I, we have (a,wx,z) = pq,E = (pq,wx,z). 
Expanding the last associator by three applications of (3.3), we get 
E = { [(p, w, z) ß] [(q, w, z) p-1]} IX· { [(p, x, z) ß] [(q, x, z} p-1]} IX-1 where 
IX= R(w, x), ß = R(p, q). ByTheorem2.1, (p, w, Z) = ((a, w, z}, w,z) =I 
and, similarly, (q, x, z) = I. By (3.12), {P, x, z) = (q, w, z) = k; moreover, 
by Lemma3.2, kß=k(k,p,q)=k((q,w,z), (a,w,z),q)=k. Therefore 
I = E = (k1X) (k1X-1) = (k(k, w, x)) (k (k, w, x)-1) = k2 and hence k= k-2= 1. 
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By this and (3.12), (p, x, z) = 1, proving (c). And now the proof of 
Theorem 3.1 is complete. 

Theorem 3.1 allows us to derive two very useful Iemmas. 
Lemma 3.9. In any cammutative Maufang laap the assaciatar 

((x, y, w), w, z) ts skew-symmetric in x, y, z. Equivalently, G satisfies 
the identity 

((x, y, w), w, z) = ((y, z, w), w, x) . (3.13) 

Proof. We work entirely within the subloop H generated 
by the four elements w, x, y, z. By Theorem :u, Ha= 1. If h, h' are 
in H and k, k' are in H1, consider the identity (3.8): (kk', h, h') 
= [(k, h. h') (k', h, h')] [{(k, h, h'), k, k') ((k', h, h'), k', k)]. The last two 
factors are in Ha= 1, so (kk', h, h') = (k, h, h') (k', h, h'). If, further, 
k' is in H 2, then (k', h, h') is in Ha= 1 and we can drop still another 
factor. We apply these remarks as follows: By Theorem 2.1, 
((w, h, y), w, h) = 1 for every h in H; we use this fact with h = xz, x 
and z. By (3.8), (w, xz, y) = (ab)c where a = (w, x, y), b = (w, z, y) are in 
H1 and c = (a, x, z) (b, z, x) is in H 9• Hence 1 = ((w, xz, y), w, xz) 
= ((ab)c, w, xz) = (ab, w, xz) = (a, w, xz) (b, w, xz). Since (a, w, x) 
= ((u•, x, y), w, x) = 1 and ((a, w, z), z, x) is in Ha= 1, (3.8) gives 
(a, w, xz) = (a, w, z) = ((w, x, y), w, z) = ((x, y, w), w, z). Similarly, 
(b, w, xz) = (b, w, x) = ((w, z, y), w. x) = ((y, z, w), w, x)-1• Hence 
1 = ((x, y, w), w, z) ((y, z, w), w, x)-1 . proving (3.13). 

Lemma 3.10. Every cammutative Maufang laap G satisfies the identity 

(p, (p, w, x), (p, y, z)) = 1 . (3.14) 

Proof. For any fixed element p, denote the left hand side of (3.14) 
by F(w, x, y, z). Clearly F is skew-symmetric in y, z. By Lemm::t 3.9, 
F(w, x, y, z) = (p, z, (p, y, (p, w, x))-1 ; hence, by Lemma 3.9, Fis skew
symmetric in w, x, y. Consequently F is skew-symmetric in w, x, y, z 
and, since the permutation (wy) (xz) is even, F(w, x, y, z) = F(y, z, w, x). 
On the other hand, F(y, z. w. x) = (p, (p, y, z), (p, w, x)) = F(w,x,y,z)-1• 

Hence P= 1, F = 1, proving Lemma 3.10. 

4. A calcu1us of associator subloops 

At this point we are able to introduce a calculus of associator subloops 
of a commutative Moufang loop which bears striking resemblance to 
P. Hall's calculus of commutator subgroups of a group. 

If A, B, C are normal subloops of a commutative Moufang loop we 
define the assaciatar sublaap af A, B, C, which we denote by (A, B, C), 
to be the subloop generated by all associators (a, b, c) with a, b, c in 
A, B, C respectively. By (2.3), 

(A, B, C) = (B, A, C) = (C, B, A). (4.1) 
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Lemma 4.1. If the normal subloops A, B, C of the commutative 
Maufang loop G are generated by the self-confugate subsets U, V, W 
respectively, then their associator subloop (A, B, C) is generated by the 
set of all (u, v, w) with u, v, w in U, V, W respectively. In particular, 
(A, B, C) is normal in G. 

Proof. Let H be the subloop generated by the set P consisting of all 
associators (u, v, w), u, v, w in U, V, W respectively. Since U, V, W 
are self-conjugate and since every inner mapping of Gis an automorphism 
of G, Pis self-conjugate also. Therefore, by the Corollary to Lemma 1.4 
of Chapter IV, His normal in G. Since GjH is a commutative Moufang 
loop, the set X of all x in G suchthat (x, V, W) == 1 mod His a subloop 
of G. Since X contains U, then X contains A. Therefore (A, V, W) == 1 
mod H. In similar fashion we deduce that (A, B, W) == 1 mod H and 
then that (A, B, C) == 1 mod H. Therefore (A, B, C) C H C (A, B, C), 
so (A, B, C) = H. This completes the proof of Lemma 4.1. 

Lemma 4.2. 1/ A, B, C, X, Y arenormal subloops of the commutative 
Maufang loop G, then 

((A,B,C),X,Y) C ((A,X,Y),B,C) ((B,X,Y),C,A) ((C,X,Y),A,B). (4.2) 

Proof. By Lemma 4.1, ((A, B, C), X, Y) is generated by the set of all 
elements ((a, b, c), x, y) with a, b, c, x, y in A, B, C, X, Y respectively. 
If a is in A and p, q are in G, then (a, p, q) is in A. By (3.8) and (3.14), 
(a(a, x, y), b, c) = [(a, b, c) ((a, x, y), b, c)]p where p = (((a, x, y), b, c), 
(a, x, y), a). Therefore (a(a, x, y), b, c) == (a, h, c) mod ((A, X, Y), B, C). 
If P denotes the right band side of (4.2), we thus have 

(a (a, x, y), b, c) == (a, b, c) mod P (4.3) 

and similarly for any permutation of a, b, c. If () = R (x, y), then 
(a,b,c) ((a,b,c),x,y) = (a,b,c)() = (a(),b(),c()) = (a(a,x,y), b(b,x,y),c(c,x,y)). 
Therefore, by three uses of (4.3), (a, b, c) ((a, b, c), x, y) == (a, b(b, x, y), 
c (c, x, y)) == (a, b, c (c, x, y)) == (a, b, c) mod P. THUS ((a, b, c), x, y) == 1 
mod P. This completes the proof of Lemma 4.2. 

In terms of associator subloops, the lower central series {G"} of a 
commutative Moufang loop G may be defined by 

G0 = G, Gi+1 = (G;, G, G), 
00 

G.,= n G; 
i=O 

i=0,1,2, ... ; (4.4) 

(4.5) 

where w is the first Iimit ordinal, and so on. If {Z"} is the upper central 
series of G we shall need to define Z; = Z 0 = 1 for all negative integers i. 
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The derived series {G<n>} of G may be defined as follows: 

G<0>= G, G<i+I)= (G(i>)'= (G<i>,G<i>,G(i>), i = 0, 1, 2, 0 0 0, (4o6) 

00 

i=O 
and so ono 

Lemma 4o3o If Gis a commutative Maufang loop, 

G<t) C Gca1-1)/2 

for alt non-negative integers i, j, ko 
Proofo The identity 

(407) 

(4o8) 

(4o9) 

(4o10) 

(4011) 

holds for all non-negative integers i when j = Oo If (4.11) holds for 

some j and all i, then, by (402), (G;, Gi+l, G) = ((G;, G, G), G;, G) C 
C ((G;, G;, G), G, G) ((G, G;, G), G1, G) C (Gi+i+v G, G) (Gi+1, G;, G) C G;+;+ 2o 

Therefore (4.11) holds for all non-negative integers i, jo Consequently, 

(408) holds for all i, j when k = Oo Now we establish (408) for all i, j, k 
by a similar use of (4o2)o Next we observe that (4010) holrls for t = 0 
and establish it for all i ~ 0 by induction and (4o8)o Finally, we note, 
from the definition of the upper central series, that (409) holds for all 
k if i = j = 0; then we establish (4o9) for allnon-negative i, j by (402) and 
inductiono 

We are now in a position to strengthen some of the results of § 30 
Instead of Lemma 302 we have: 

Lemma 4.40 I f the commutative M oufang loop G can be generated by 
4 elements, then (G, G', G') = I. In particular, the associator subloop G' 
is an abelian groupo 

Proofo (G, G', G') = (G0, Gv G1) C G3 = 1 by (408) and Theorem 3ol. 
By using (308), Theorem 301 and Lemmas 309, 4.4 we may obtaiu 

the following: 
Lemma 4o5o The function h of Lemma 303 satisfies 

h(w, x, y, z) = (w, x, y)-1 (x, y, z) (y, z, w)-1 (z, w, x) 0 (4o12) 

Lemma 4o6o For alt w, x, a, b of a commutative M oufang loop G we have 

(wa) (xb) = (wx) {(ab)[(w,a,b) (x,b,a) ((w,x,a),a,b) ((x,w,b),b,a) l} 
(a,w,x) (b,x,w) ((a,b,w),w,x)-1((b,a,x),x,w)-1 

0 

Note that for (4o13), we need merely evaluate the p, q of Lemma 301. 
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5. The distributor 

Weshall need the following: 

141 

Lemma 5.1. Every commutative Maufang loop G satisfies the identity 

((u, X, y), (v, x, y), (w, X, y)) = I . (5.1) 

Proof. Define the mapping () = ()(x, y) of G by u() = (u, x, y), all u 
in G. Then uR(x,y)=u(u()), u()R(x,y)=u(), u()2 =1. Set a=(u(),v,w), 
b = (u(), v(), w), c = (u(), v, w()), d = (u(), v(), w()). If H is the subloop 
generated by u, v, x, y, then, by Lemma4.3, (u(), v, v()) is in (H1, H,H1) C Ha 
and, by Theorem 3.I, Ha= I. Consequently, (u(), v, v()) = I. (Hence
forth, weshall refer tothistype of argument as a class argument.) Since 
(u(), v, v()) = 1, then, by Lemma 3.9, (a, v, v()) = ((u(), v, w), v, v()) 
= ((u(), v, v()), v, w)- 1 = I and (b, v(), v) = ((u(), v(), w), v(), v) 
= ((u(), v(), v), v(), w)- 1 = I. Therefore, by (3.8), (u(), v(v()), w) 
=(ab) [(a, v, v()) (b, v(), v)] =ab. Similarly, (u(), v, w(w())) = ac, 
(u(), v(v()), w()) = cd, (u(), v(), w(w())) = bd. Since a = (u(), v, w), then 
a(a()) = aR(x, y) = (u(), v(v()), w(w())). Expanding the latter associator 
in two ways we get, on the one band, a (a()) = (u(), v, w (w())) (u(), v(), w (w())) 
= (ac) (bd) and, on the other hand, a (a ()) = (u (), v (v ()), w) (u (), v (v ()), w ()) 
= (ab) (cd). Thus, by Lemma 3.3, 

a (a()) = (ab) (cd) = (ac) (bd) = (ad) (bc). (5.2) 

Replacement of x by x-1 replaces a, d by their inverses but leaves a(), b. c 
fixed. In particular, we ha ve both a ( a ()) = ( a d) ( b c) and a-1 ( a ()) 
= (ad)-1 (bc), whence a2 = [a(a())] [a-1 (a())]-1 = [(ad) (bc)j [(ad)-1(bc)]-1 

= (ad) 2 = a2 d2• This gives d2 = I, d = d-2 = I. However, d = I is 
equivalent to (5.1). The proof of Lemma 5.I is now complete. We note 
for future reference the identity a (a 0) = a (bc) or a 0 = bc or 

(((u, X, y), V, w), X, y) (5.3) 

= ((u, x, y), (v, x, y), w) ((u, x, y), v, (w, x, y)) . 

The distributor, D = D (G), of a commutative Moufang loop G, is the 
set of all elements d of G which satisfy the equivalent equations (i)-(vi) 
of the next Iemma. The name comes from (i). 

Lemma 5.2. I/ the element d of the commutative Maufang loop G 
satisfies one of the following equations for all w, x, y, z in G, then d satisfies 
all of them: (i) (xy,z,d) = (x,z,d)(y,z,d); (ii) (xd,y,z) = (x,y,z)(d,y,z); 
(iii) ((w, x, y), z, d) = I; (iv) ((d, w, x), y, z) = ((d, y, x), w, z)-1 ; 

(v) ((x, y, z), x, d) =I; (vi) ((d, x, y), x, z) =I. The set D = D(G) of 
all d in G which satisfy (iii) is a characteristic normal subloop of G, called 
the distributor of G. 

Proof. When we say that d satisfies (i) we mean that (i) holds for the 
given element d of G and for all x, y, z in G. Similarly for (ii)-(vi). 
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We note that (v), (vi) are equivalent by Lemma 3.9. If d satisfies (i), 

then, for any fixed z, the mapping x -+ (x, z, d) is an endomorphism of G 

and, in particular, ((w, x, y), z, d) = ((w, z, d), (x, z, d), (y, z, d)). 
Therefore, by Lemma 5.1, ((w, x, y), z, d) = I. That is, (i) implies (iii). 
lf d satisfies (iii), then d satisfies (v) and hence (vi). If d satisfies (v), (vi), 

then, by (3.8), dsatisfies both (i) and (ii). If d satisfies (ii), set p = ((x,y,z),x,d). 
q = ((d,y,z),d,x). Then, by (3.8), pq = 1 for all x, y, z in G. Replacing 

x by x-1, we get pq-1 = 1. Thus p = p-2 = (pq)-1 (pq-1)-1 = 1, so d 
satisfies (v). Hence (i), (ii), (iii), (v), (vi) are equivalent. The set D of 

all d in G which satisfy (iii) is clearly a characteristic (hence normal) 

subloop of G. If d is in D, so are d' = (d, w, x), d" = (d, y, x) and the 
product d' d". Then, by (v) followed by two uses of (i) and two of (ii), 

1 = ((d, wy, x), wy, z) = (d' d", wy, z) = (d' d", w, z) (d' d", y, z) 
= [(d',w,z) (d",w,z)] [(d',y,z) (d",y,z)]. By (vi), (d',w,z) = (d",y,z) =I. 
Therefore 1 = (d", w, z) (d', y, z), whence d satisfies (iv). Finally, if d 
satisfies (iv) then ((d, x, y), x, z) = ((d, x, x), y, z)-1 = 1, so d satisfies(vi). 
This completes the proof of Lemma 5.2. 

If ~ is the dass of all commutative Moufang loops and if I (G) = D (G) 
for each G in ~. then I is a nilpotency function for ~ in the sense of 

Chapter IV, § I. Hence we may define the lower distributor series {L"'} 

and the upper distributor senes {D,J for any commutative Moufang loop 
G. By (iii) of Lemma 5.2, 

L0 =G, Li+1 =(L;,G,G'), i=0,1,2, ... , (5.4) 

where G' = G1 is the associator subloop of G. In particular, L1 = (G, G, G1) 

= G2• If L; C G2; for some non-negative integer i, then L;+1 C (G2;, G, G1) C 
C G2;+2 by Lemma 4.3. Therefore 

i = 0, 1, 2, ... , (5.5) 
and 

(5.6) 

For any positive integer n let c(n) denote the least positive integer k 
suchthat 2k exceeds n. Equivalentlv. 

c(n) = 1 + [n/2]. (5.7) 

Lemma 5.3. Let G be a commutative M oulang loop and n be a positive 
integer. Then: (a) Z2 C D. (b) II G has n generators, D CZc<n> and G2+ic(nl C 
CL;+1 Ior i = 0, 1, 2, .... (c) Il Gis linitely generated, Gw= Lw where 
w is the lirst limit ordinal. 

Proof. (a) If d is in z2 then (d, X, y) is in the centre z = z1 of G and 
hence d satisfies (vi) of Lemma 5.2. Therefore Z2 CD. 

(b) Let S be a set of n elements which generate G and set t = c(n). 
If Sv s2, ••• , s21 are elements of 5, some two must be equal. Since D 
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is normal in G we see from (iv) of Lemma 5.2 that, for d in D, the 
associator 

( ( ... ( (d, s1, s2), s3 , s4), .•. ) , s21-1, S21) 

is skew-symmetric in the s; and hence equal to 1. Therefore, by Lemma 
3.7, DCZc(nl· By (5.5), G2 (L1• Now assume inductively that G2+ic(nlC 
CL; +I for some non-negative integer i. If L;+2 = 1 then G2+ ; 0 (,.) C L;+l C 
CD C Zc<nl and hence G2+;c<nl +c<nl = 1. Therefore, in general, G2+<; +rlc<nl C 
C L;+2 • This proves (b). 

(c) By (b), G./ Lw. Hence, by (5.6), Gw= Lw. This proves (c) and 
completes the proof of Lemma 5.3. 

At this point it is interesting to consider the construction in § 1. 
We readily check that the loop H satisfies (H, H', H') = 1. Moreover 
H 2 = L1 (H) =P 1 but L 2 (H) = 1. Hence H is distributor-nilpotent of 
dass 2 but (as previously shown) is transfinitely centrally nilpotent of 
dass w. We also observe that D2 (H) = H whereas 1 = Z1 (H) 
= Z 2 (H) = · · · . This is enough to show that central nilpotence and 
distributor nilpotence are not too dosely linked. We note further that, 
for each integer n ~ 3, H has an n-generator subloop G with central 
dass c (n), distributor dass 2. As a matter of fact the construction in § I 
arose from the concept of the distributor and, in particular, from the 
following Iemma: 

Lemma 5.4. Let G be a commutative M oufang loop ze·ith n ~ 3 generators 
such that (G, G', G') =· I. Then G clnl = I. M oreover, for a suitable choice 
of G, Gk=P 1 i/ k < c(n). 

Proof. Let G be generated by a set S of n elements. Set t •·• c (n) and 
consider the associator 

a = (( ... ((s1 , s2 , s3). s4 , s5), ••• ), s2u s21+1) 

where the s; are in S. Since (G, G', G') = 1 we see by (iii) of Lemma 5.2 
that (s1, s2, s3) is in D. Hence a is skew-symmetric in s4 , ••• , s21 ... 1 and 
therefore a = 1 unless s4 , ••• , s21 +I are distinct. Also a = 1 unless 
Sv s2, s3 are distinct. Since 2t + 1 ~ n + 2 we may assume that s4 = s2, 

s5 = s3 ; but then a = 1 by Theorem 2.1. Hence a = 1 in all cases. There
fore, by Lemma 3.8, G1 = 1. That is, Gc<nl = 1. The conduding statement 
of Lemma 5.4 can be verified in terms of the loop G defined in § 1. 

It is natural to inquire whether there exists an analogue of the 
distributor in the theory of groups. One might define the distributor D 
of a group G as the set of all elements d in G such that ( x y, d) = ( x, d) (y, d) 
for all x, y in G. But then one sees easily that D = Z 2• In view of this 
fact, distributor series for a group offer little in the way of novelty. 

6. Five generators 

Our only 5-element identities sofarare (3.14), (5.1), (5.3) and those 
which can be obtained from Lemma 3.6 with the help of Theorems 2.1, 3.1. 
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Lemma 6.1. Let G be a commutative M oufang loop generated by five 
elements u, v, w, x, y. Then the element p = ((u, v, w), u, x) is in Z2• 

Proof. If S is the subset consisting of u, v, w, x, y, we must show 
that (p, s, s') E Z for all s, s' E S. If s, s' are chosen from u, v, w, x then 
(p, s, s') = 1 by Theorem 3.1. Hence we need only prove that (p,s,y) E Z 
for each s in S. The cases s = v, s = w are equivalent, by the form of p, 
and the case s = y is immediate by Theorem 2.1. Hence it will be enough 
to prove the following: 

(a) (p, u, y) E Z . 

(b) (p, v, y) E Z . 

(c) (p, x, y) E Z . 

Proof of (a). By Lemmas 3.9, 3.10, (p, u, y) = (((u, v, w), u, x), u, y) 
= ((y, u, x), u, (u, v, w))-1 = 1. Hence (p, u, y) E Z. 

Proof of (b). If k, k' are chosen from u, u•, x, Theorem 3.1 implies 
that (((u, x, w), u, v), k, k') = 1. Taking a = (u, x, w), b = u, c = h, 
d = k', we have ((a, b, v), c, d) ~= 1 for all v in any commutative Monfang 
loop. Hence, by Lemma 3.6, (((a, b, v), v, t), c, d) = 1 for all v, t; and 
we take t =' y so that ((a, b, v), v, t) = (((u, x, w), u, v), v, y) 
= (((u, v, w), u, x), v, y)-1 = (p, v, y)-1. Therefore 

((p, V, y), k, k') = 1, k, k'= U, W, X. (6.1) 

In particular, ((p, v, y), u, s) = 1 for s = u, w, x. Again, ((p, v, y), u, v) 
= ((p, v, u), y, v)-1 and ((p, v, y), u, y) = ((p, u, y), v, y)-1 by Lemma3.9. 
Since (p, v, u) = 1 by Theorem 3.1 and (p, u, y) E Z by (a), we have 

((p, V, y), u, S) = 1 0 (6.2) 

Again, ((p, v, y), v, y) = 1 trivially; and, for s = u, v, w, x, ((p, v, y), v, s) 
= ((p, v, s), v, y)-1 = 1 by Lemma 6.9 and Theorem 3.1. Hence 

((p, V, y), V, S) = 1 0 {6.2') 

By Lemma 4.4, every commutative Moufang loop satisfies the identity 
((u,v,w), (w,v,y), y) = 1. Hence, by Lemma 3.6, 1 = (((u,v,w),u,x), (w,v,y), y) 
= (p,(w,v,y),y) and thence, by Lemma3.9, 1 = ((p, v, y), w, y). More
over, ((p, v, y), w, t) = 1 fort= u, w, x by (6.1) and fort= v by {6.2'). 
Hence 

((p, V, y), U', S) = 1 0 (6.3) 

In view of Lemma 3.9, interchange of wand x replaces p by p-1• Hence 
(6.3) implies ((p, v, y), x, S) = 1. By this, tagether with (6.1), {6.2), (6.2'), 
(6.3), we have ((p, v, y), S, S) = 1. The proof of (b) is now complete. 

Proof of (c). For t,t' = u,v,w, Theorem3.1 implies (((u,v,w),u,x),t,t') = 1 
for all x and thence Lemma 3.6 implies ((((u, v, w), u, x), x, y), t, t') = 1 
for all x, y. Thus 

((p, X, y), t, t') = 1, t, t'= U, 1!, W. (6.4) 
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If t = u, v, w we note the following: ((p, x, y), t, x) = ((p, x, t), y, x)-1 = 1 
by Lemma 3.9, Theorem 3.1; ((p, x, y), t, y) = ((p, t, y), x, y)-1 = 1 by 
Lemma 3.9 followed by (a) (if t = u) or by (b) (if t = v) or by (b) with v, w 
interchanged (if t = w). By this and (6.4), ((p, x, y), t, S) = 1 fort= u, v,w. 
Since ((p, x, y), x, y) = 1 trivially, we have ((p, x, y), S, S) = 1. This 
proves (c) and completes the proof of Lemma 6.1. 

Lemma 6.2. Every commutative Moufang loop G satisfies the identities 

((u, x, y), (v, x, y), w) = ((v, x, y), (w, x, y), u), (6.5) 

(((u, x, y), v, w), x, y) = ((u, x, y), (v, x, y), w)-1, (6.6) 

((((u, X, y), V, w), X, y), V, w) = 1. (6.7) 

Proof. By Lemma 4.4, G satisfies the 4-element identity 

((u, x, y), (v, x, y), v) = 1. (6.8) 

If () is defined as in the proof of Lemma 5.1, (6.8) becomes (u(), v(), v) = 1. 
Replacing v by vw and using (3.8), we get 1 = (u(), (vw) 0, vw) = (uO,st,vw) 
where s = (vO) (wO), t = (vO, v, w) (wO, w, v). If His the subloop of G 
generated by u, v, w, x, y, Lemma 6.1, with u, v, w, x, y suitably permu
ted, shows that (vO, v, w) is in Z2 (H). Similarly, (wO, w, v) is in Z2 (H) 
and hence t is in Z2 (H). By Lemma 5.3 (a), Z2 (H) CD (H). Consequently, 
by (ii) and (iii) of Lemma 5.2, 1 = (uO, st, vw) = (uO, s, vw) (uO, t, vw) 
= (uO, s, vw). Since s = (vO) (wO) and since, by (6.8), (uO, vO, v) 
= (uO, wO, w) = 1, three uses of (3.3) give 

1 = [(uO, wO, v) p-1 (XJ [(uO, vO, w) p(X-1] (6.9) 

where (X= R(v, w), ß = R(vO, wO). Since ((uO, wO, v), wO, vO) 
= ((uO, wO, vO), wO, v)-1 = (1, wO, v}-1 = 1 by Lemmas 3.9, 5.1, the 
automorphism p-1 may be omitted from the left band bracket in (6.9). 
Similarly, ß may be omitted from the right hand bracket. Hence, 
after operating on (6.9) by (X-1, we get I = "(u(), w(), v) [(u(), v(), w) (X] 
and thence 

(u(), wO, v)-1 (u0, vO, w)-1 = ((u(), vO, w), v, w). (6.10) 

Replacement of v by v-1 replaces the left band side of (6.9) 
by its inverse and leaves the right band side fixed. Therefore 
(uO, wO, v) (uO, vO, w) = 1. This is equivalent to the skew-symmetry of 
(uO, vO, w) in u, v, wand hence to (6.5). Moreover, (5.3), (6.5) and (2.4) 
imply (6.6). Since the right hand side of (6.10) is the identity by (6.5}, we 
use (6.6) to get (((uO, v, w), x, y), v, w) = ((uO, vO, w), v, w)-1 = 1. This 
proves (6.7) and completes the proof of Lemma 6.2. 

Theorem 6.1. Every commutative Moufang loop G generated by five 
elements is centrally nilpotent of class at most 4. 

Proof. Let G be generated by a subset S consisting of the five 
elements u, v, w, x, y. By Lemma 3.8 and symmetry, we need only prove 
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that Z2 contains the elements p = ((u, v, w), u, x) and q = ((u, v, w), x, y). 
However, p E z2 by Lemma 6.1. Since q is skew-symmetric in 1l-, V, wand 
in x, y, then q will be in Z2 provided (q, x, y), (q, u, x) and (q, v, w) are 
in Z. However, (q, x, y) = (((u, v, w), x, y), x, y) = 1 and (q, u, x) 
= (((u, v, w), x, u), y, x)-1 = (p, y, x) are in Z, so we are left with (q, v, w). 
On interchanging v with x, w with y in Lemma 6.2, we see that (q, v, w) 
= (((u, v, w), x, y), v, w) is skew-symmetric in u, x, y and satisfies 
((q, v, w), x, y) = 1. Moreover, (q, v, w) is symmetric in v, w and, 
obviously, ((q, v, w), v, w) = 1. Since, further, ((q, v, w), v, x) = ((q,v,x,) v,w)-1 

and (q, v, x) = (((u, v, w), x, y), v, x) = (((u, v, w), x, v,), v, y)-1 and 
((u, v, w), x, v) is in Z 2 by Lemma 6.1, we have ((q, v, w), v, x) = 1. 
Therefore ((q, v, w), S, 5) = 1, so (q, v, w) E Z and, consequently, q E Z2• 

This completes the proof of Theorem 6.1. 
With the help of Theorem 6.1 we may obtain many new identities. 
Lemma 6.3. I f the commutative M oufang loop G can be generated by 

five elements then (G', G', G') = (G, G', G2) = 1. In particular, the assoc
iator subloop G' is an abelian group. 

Proof. By Lemma 4.3, (G', G', G') = (G1 , Gv G1) C G4 and (G, G', G2) 

= (G0 , Gv G2) C G4• By Theorem 6.1, G4 = 1. This completes the proof 
of Lemma 6.3. 

Lemma 6.4. Every commutative Maufang loop G satisfies the identities 

((u, v, w), x, y) = ((u, x, y), v, w) ((v, x, y), w, u) ((w, x, y), u, v), (6.11) 

((u, v, w), x, y) = ((x, v, w), u, y) ((u, x, w), v, y) ((u, v, x), w, y). (6.12) 

Proof. We work within the subloop H generated by u, v, w, x, y. By 
Lemma 6.3, H' is an abelian group and (H, H 1 , H 2) = 1. In particular, 
the right hand sides of (6.11), (6.12) are unambiguous. Define the 
mapping 0 = 0 (x, y) by uO = (u, x, y) for all u and set a = (u, v, w), b1 = 
(uO,v,w),b2 = (vO,w,u),b3 = (wO,w,u). By (6.5), (uO,vO,w) = (vO,wO,u) 
=(wO, uO, v) = c, say. By (3.8), (u(uO), v, w) = ab1 (a, u, uO) (b1, uO, u). 
However, (a, u, uO) = ((u, v, w), u, (u, x, y)) = 1 by Lemma 3.10, and 
(bv uO, u) E (H2, H', H) = 1. Hence (u(uO), v, w) = ab1 ; and similarly 
with u, v, w permuted. A like argument gives (u (u 0), v 0, w) = b c; and simi
larly with u, v, w permuted. From the identity (u(uO), v, w) = abv on re
placement of v by v (v 0), we get (u (u 0), v (v 0), w) = (u, v (v 0, w) (u 0, v (v 0), w) 
= (ab 2) (b1c) = ab1b2c. From the identity (u(uO), v(vO), w) = ab1b2c, 
on replacement of w by w(wO), we get, in a similar way, (u(uO), v(vO), 
w (wO))= (ab3) (b1c) (b2c) c = ab1b2b3c3 = a b1b2b3• However, a (a 0) = aR (x, y) 
= (uR(x, y), vR(x, y), wR(x, y)) = -{u(uO), v(vO), w(wO)). Hence 
aO = b1b2b3, and this is (6.11). By (6.11), ((y, u, x), v, w) = ((y, v, w),u, x) 
((u, v, w), x, y) ((x, v, w), y, u), whence, after rearrangement, 

((y,u,x),v,w) ((y,v,w),u,x)-1 = ((u,v,w), x,y) ((x, v,w),u,y)-1• (6.13) 
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We apply the pennutation (uv) (xw) to (6.13), take inverses, and get 

((y,u,x),v,w) ((y,v,w),u,x)-1 = ((u,v, x),w,y) ((u,x,w), v,v). (6.14) 

Since the left hand sides of (6.13), (6.14) are equal, the right hand sides 
arealso equal, whence we get (6.12). This completes the proof of Lemma 
6.4. 

Lemma 6.5. In every commutative Maufang loop G, the associator 
(((x, y, a), a, b), b, z) is symmetric in a, b and skew-symmetric in x, y, z. 
Equivalently, G satis/ies the identity 

(((x, y, a), a, b), b, z) = (((z, x, b), b, a), a, y). (6.15) 

Proof. We evaluate the associator E = ((x, y, a), a, bz) in two ways. 
On the one hand, by (3.8), 

E = ((x, y, a), a, b) ((x, y, a), a, z) (6.16) 

(((x, y, a), a, b), b, z) (((x, y, a), a, z), z, b). 

On the other hand, by Lemma 3.9, E = ((bz, x, a), a, y). In evaluating 
the latter associator we note that we may work within the subloop H 
generated by the five elements b, z, x, a, y. By Lemma 6.3, H' is an 
abelian group. Consequently, if s, t, are arbitrary elements of 
H', ((s, a, y), s, t) =I. From this and (3.8), (st, a, y) = (s, a, y) (t, a, y) 
for all s, t in H'. Therefore, since, by (3.8) and Lemma 3.9, (bz, x, a) 
= (b,x,a) (z,x,a) ((b,x,a),b,z) ((z,x,a),z,b) = (b,x,a) (z,x,a) ((z,x,b),b,a) 
((b, x, z), z, a), we see that 

E = ((b, x, a), a, y) ((z, x, a), a, y) 

(((z, x, b), b, a), a, y) (((b, x, z), z, a), a, y) . 
By Lemma 3.9, ((b, x, a), a, y) = ((x, y, a), a, b) and ((z, x, a), a, y) 
= ((x, y, a), a, z). Hence, by comparison with (6.16), 

(((x, y, a), a, b), b, z) (((x, y, a), a, z), z, b) (6.17) 

= (((z, x, b), b, a), a, y) (((b, x, z), z, a), a, y). 

When z is replaced by z-1 in (6.17) the first factors on left and right are 
replaced by their inverses and the other two factors are left unchanged. 
Therefore, Dy multiplication, we split (6.17) into two identities, one of 
which is (6.15). Since the left hand side of (6.15) is skew-symmetric 
in x, y and the right hand side is skew-symmetric in x, z, we see that 
both sides are skew-symmetric in x, y, z. In particular, the right hand 
side is equal to (((x, y, b), b, a), a, z); and thus we see that the left hand 
side is symmetric in a, b. 

Lemma 6.6. Every commutative M oufang loop G satisfies the identity 
((x, y, ab), ab, z) = ((x, y, a), a, z) ((x, y, b), b, z) (6.18) 
(((x, y, a), a, b), b, z) ((x, y, a), b, z) ((x, y, b), a, z) . 
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Proof. We expand the left band side of (6.18) by (3.8), working 

entirely within the subloop H generated by x, y, z, a, b. Since (st, ab, z) 
= (s, ab, z) (t, ab, z) for all s, t in H', we get a product of four factors 

(s,ab,z) where s ranges over (x,y,a), (x,y,b), ((x,y,a),a,b), ((x,y,b),b,a). 
Expanding each of the terms (s, ab, z) by (3.8), using Lemmas 3.9, 6.5 

and identities such as 

(((x, y, a) a, b), a, z) = ((z, a, b), a, (x, y, a))-1 

together with (3.14), we finally get (6.18). 

7. The functions f; 

Foreach non-negative integer i we define a function /; on the commut

ative Moufang loop G by 

/ 0 (x, y, z) = (x, y, z), 

fi+l(x,y,z; a1,a2 , ••• ,a;,u) = (/;(x,y,u;a1, ••. ,a;),u,z), 

(7.1) 

i ~ 0. (7.2) 

The following lemma assures us of a certain amount of associativity. 

Lemma 7.1. For each fixed pair p, q of elements of the commutative 
M oufang loop G, let K (p, q) be the subloop of G generated by the set of 
alt associators (p, q, z), z in G. Then K (p, q) is an abelian group con
taining /; (p, q, z; av ... , a;) for each non-negative integer i and all 
z, av a2, •• , a; in G. 

Proof. That K(p, q) contains f;(p, q, z; a1, ... , a;) is the content 

of Lemma 3.5. That K (p, q) is associative follows from Lemma 5.1 and 

the fact that every associative subset of a commutative Moufang loop 

is contained in an associative subloop. 
Lemma 7.2. In any commutative Maufang loop G the function 

/;= /;(x, y, z; a1 , ... , a;) has the following properties: (I) /; is skew
symmetric in x, y, z. (II) For i ~ 2, /; is symmetric in a1, a2, ••• , a;. 
(III) For i ~ 1, /; satisfies (/;, aP, G) = 1 for p = 1, 2, ... , i. (IV) /;lies 
in the centre of the subloop generated by its arguments, namely x, y, z if 
i = 0 and x, y, z, a1, ... , a; if i ~ I. (V) G satisfies the identities 

f ;(w, x, y z; a1, ..• , a;) = /;(w, x, y; a1, •.. , a;) /;(w, x, z; ~ •... , a;) (7.3) 

/i+1 (x, y, z; a1, ... , a;, uv) = /;+1 (x, y, z; av ... , a;, u) (7.4) 

((f;(x, y, u; av .. . , a;), v, z) ((f;(x, y, v; a1, •.• , a;), u, z). 

Remark. It will appear from the proof that the five factors on the 

right of (7.4) lie in an associative subloop. 
Proof. We begin with (V). For i = 0, (7.3) is a variant of (3.8). If 

i = j + 1 where j is non-negative, then, by (7.2), /;(w, x, yz; a1, ••. , a;) 
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= (p, a;, yz) where p = f1 (x, y, a;; a1 , ... , a1). Hence application of 
(3.8) gives (7.3). Next we prove (7.4). Keeping the integer i and the 
elements x, y, z, a1, •.. , a; fixed, we define a function F (u) by F (u) 
= /i+1 (x, y, z; av .. . , a;, u). Then F(u) = ((p, q, u), u, z) where p, q 
are defined as follows: If i = 0, then p = x, q = y. If i = j + 1 for 
j ~ 0, then p = /; (x, y, a;; a1, ... , a1), q = a;. We observe that p, q, z 
are independent of u. Evaluating F(uv) by Lemma 6.6, we get 

F(uv) = F(u) F(v) (((p, q,u),u, v),v,z) ((p,q,u),v,z) ((p,q,v),u,z). (7.5) 

And (7.5) may be translated into (7.4). This proves (V). In particular, 
the six associators displayed in (7.5) alllie in the abelian group H' where 
His the subloop generated by p, q, u, v, z. Noting that F(u-1) = F(u), 
we use equation (7.5) to obtain 

F(uv) F(u-1v) F(u) F(v) = ((p, q, u), u, v), v, z)-1 (7.6) 

= /i+2 (x, y, z; av ... , a;, u, v)-1• 

In view of (7 .6), if (I) holds for i + 1, then (I) also holds for i + 2. Since, 
moreover, /0 (x, y, z) = (x, y, z) and /1 (x, y, z; a1) = ((x, y, a1), a1 , z), so 
that (I) holds for i = 0, 1, we deduce that (I) holds for every non-negative 
integer i. By Lemma 6.5, /2 = (((x, y, a1), a1 , a2), a2 , z) is symmetric in 
a1, a2. By (7.6) and Lemma 6.5, /i+ 2 (x, y, z; a1, ••• , a;, u, v) is symmetric 
in u, v for i ~ 0. Consequently, by (7.2), for each i ~ 2, /;(x,y,z;av . .. ,a;) 
is symmetric in each adjacent pair in the sequence a1 , a2 , •.• , a;; and 
this is enough to prove (II). To prove (III) we suppose i = j + 1, j ~ 0, 
and note that /;= ((s,t,a;),a;,z) where s = x, t = y or s = /1-dx, y, a1 ; 

a1, •.• , a;-1), t = a1 according as j = 0 or j ~ I. Then, by Lemmas 3.9, 
3.10, for any w in G, 

(/;, a;, w) = (((s, t, a;), a;, z), a;, w) = ((w, a;,_ z), a;, (s, t, a;))-1 = 1. 

Thus (III) holds for p = i. Therefore, by (II), we see that (III) holds 
for p = 1, 2, ... , i. To prove (IV), we must show that (/;, k, k') = 1 for 
all choices of k, k' from the arguments of /;.In view of (III), we need 
only consider the case that k, k' are chosen from x, y, z. In view of (I), 
we are reduced to the case that k = x, k' = y. Since, by Theorem 2.1, 
G satisfies the identity ((x, y, z), x, y) = 1, then, by Lemma 3.6, G 
satisfies the identity (/;(x, y, z; av .. . , a;), x, y) = 1 for each non
negative integer i. Thus (/;, x, y) = 1, completing the proof of (IV) and 
the proof of Lemma 7.2. 

8. Two Iemmas 

The importance of the next two lemmas stems from their connection 
with (III) of Lemma 7.2. 
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Lemma 8.1. Let k be a non-negative integer and let c, s be elements 
of the cqmmutative M oufang loop G such that (G. c, s) C Zk. Then 

(G;, c, s) C Zk-i (8.1) 

for every non-negative integer i. 
Proof. (8.1) holds for i = 0 by hypothesis. If (8.1) holds for some i, 

then, by (6.11) and Lemma 4.3, 

(G;+v c, s) = ((G;, G, G), c, s) C ((G;, c, s), G, G) ((G, c, s), G, G;) C 

C (Zk-i• G, G) (Zk, G, G;) (Zk-i-1· 

This completes the proof of Lemma 8.1. 
Lemma 8.2. Let k be a non-negative integer and let c, s, s' be elements 

of the commutative Maufang loop G such that (G, c, s) czk, (G, c, s') czk. 

Then 
((G;, G1, c), s, s') czk-i-i-1 (8.2) 

for alt non-negative integers i, j. 
Proof. By (6.12) and Lemmas 4.3, 8.1, 

((G;, G1, c), s, s') C ((s, G1, c), G;, s') ((G;, s, c), G;, s') ((G;, G1, s), c, s') C 

C (Zk-i• G;, G) (Zk-i• G1, G) (Gi+i+I• c, s') czk-i-1- 1. 

9. The sets ~(n) 

Our proof of Slaby's theorem (see § 1) for the general case of n 
generators will proceed by induction over the elements of a certain 
finite simply ordered set ~ (n) which we now define and explain. 

Let~ be the (infinite) set consisting of all ordered sets (Pv P2, ••• , Pk) 
of non-negative integers Pv ... , pk, where k is to take on all positive 
integral values. Equality in ~ is to be componentwise: (Pv ... , pk) 
= (qv .. . , q1) if and only if k = t and P;= q; for i = 1, 2, ... , k. We 
introduce an ordering on ~ as follows: 

(9.1) 
if and only if 

either (I) There exists an integer w, with 1 ~ w ~ Min (k, t), such 
that 

P;=q;if 1 ~i~w-1 butPw>qw, 

or (II) P; = q; for i = 1, 2, ... , Min (k, t) but k > t. 
We may verify that ~ is now simply ordered. In fact, if A., f-l, v denote 

elements of ~. we have: (i) Exactly one of the relation A. > f-l, A. = f-l, f-l > A. 
holds. (ii) If A. > f-l and f-l > v, then A. > v. 

The set ~ can be used to define a set of functions /1 , ;. E ~. on the 
commutative Moufang loop G, such that /<;) is the function /; of § 7. 
If A. = (P1, ••. , pk, q), f-l = (Pv .. . , Pk), then /1 has the form 
fq(/w x, y; z1, ..• , zq) where the q + 2 arguments x, y, Zv .. . , Zq are 
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elements of G tobe chosen independently of the arguments of /,_,. Thus, if 
v(A) denotes the nurober of arguments of fA, we have v(A.) = v(,u)+q+2. 
Since t ( i) = v ( ( i)) = i + 3, a simple induction gi ves 

v(pl, P2, ... , h) =Pt+ P2+ · · · +Pk+ 2k + 1. (9.2) 

In proving the n-generator theorem we shall be concerned, in essence, 
with those functions lA which have n or less arguments. Forthis reason, 
we define ~ (n) to be the subset of ~ consisting of all A. in ~ such that 
v (A.) ~ n. We order ~ (n) according to the ordering induced by the 
ordering (9.1) of ~. It is easily verified that ~(n) is finite for each 
positive integer n. The size of ~ (n) increases rapidly with n, as the first 
few cases show: ' 

~(3): (0). ~(4): (1) > (0). ~(5): (~ > (I)> (0, 0) > (0). 

~(6): (3) > (2) > (I, 0) > (I) > (0, I) > (0, 0) > (0). 
~(7): (4) > (3) > (2, 0) > (2) >(I, I)> (1, 0) >(I)> (0, 2) > (0, I)> 

> (0~ 0, 0) > (0, 0) > (0). 

The length of a detailed (non-inductive) proof of the n-generator 
theorem seems roughly proportional to the nurober of elements of ~(n). 
Hence the necessity for a proof by induction. A clear idea of the nature 
of the latter may be obtained by considering the proof for the case 
n = 20. The greatest and lowest elements of ~ (20) are (17) and (0) 
respectively and, for example, the complete chain leading from (11) to 
(10) in~ (20) is as follows: 

(II) > (10, 5) > (10, 4) > (10, 3, 0) > (10, 3) > (IO, 2, 1) > (10, 2, 0) > 
> (10, 2) > (IO, I, 2) > (IO, 1, 1) > (10, 1, 0, 0) > (10, 1, 0) > 
> (10, 1) > (IO, 0, 3) > (10, 0, 2) > (10, 0, I, 0) > (IO, 0, I) > 
> (10, 0, 0, I) > (10, 0, 0, 0) > (IO, 0, 0) > (10, 0) > (10) . 

We state a certain proposition ~ (A.) for each A. in ~ (20); ~ (17) is easily 
seentobe true and our object is to establish ~(0). Suppose we assume 
inductively that ~(A.) is true for each A. > (10, 2, I). We wish to establish 
~(10, 2, I); we do this by first establishing two other propositions . . Sl3 (A.), Q (A.) for A. = (10, 2, I). For example, to estabhsh 'l3 (10, 2, I) we 
must first rieseend further and establish 'l3 (A.) by working up along the 
inverted chain 

(10) < (10, 0) < (10, 1) < (10, 2) < (10, 2, 0) < (10, 2, 1). 

To sum up, we have the main "downward" induction for ~(A.) and, at 
each stage, two subsidiary "upward" inductions for 'l3 (A.), Q (A.). 

10. The main theorem 

Let n be a positive integer and Iet G be a commutative Moufang Ioop 
which can be generated by n distinct elements. Each such set of n 
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generators gives rise to n! ordered sets of n generators and, for present 
purposes, we shall consider only ordered sets of. n generators. Let 5 be 
the generating set consisting of the n distinct elements 

(10.1) 

ordered from left to right. We need to observe that each of the following 
operations leads from an ordered set of n generators to an ordered set 
of n generators: 

(I) Perform any permutation of the ordered set (10.1) of generators. 
(II) For some i, j, with 1 ~ i ~ n, 1 ~ j ~ n, i + j, replace the jth 

generator s1 by S;s1 and leave the remaining generators sk (k + j) unchanged. 
If 5 is a given ordered set of n generators of G, we define, inductively, 

for each A. in~ (n), an associator A (A.) = A 8 (A.) as follows: 
(i) II (P) E ~(n), A (p) = lv(s1 , S2, s3 ; s4 , ••• , Sv+a). 

(ii) II A. = (p1, P2, ... , Pk> q) and fl = (Pv ... , pk) are in ~ (n) and 
ij v (!l) = t, then 

A (A.) = lq(A (f.-l), st+I• st+2; st+3 , ••• , st+q+2) . 

In particular, A (A.) is formed from the v (A.) elements s1, s2, ... , svcü; 

these we call the arguments of A (A.). The v (A.) arguments of A (A.) are 
partitioned into two sets, the set of skew arguments of A (A.) and the set 
of symmetric arguments of A (A.). This is done inductively as follows: 

(iii) Let(p) E~(n). Theskewargumentso1A(p)ares1,s2,s3• IIP=O, 
then A (p) has no symmetric arguments. If p > 0, the s'ymmetric arguments 
ol A (p) are s4, ... , sv+a· 

(iv) Let A. = (Pv ... , pk, q) and fl = (p1, ••. , pk) be in ~ (n) and let 
t = v (Jl). The skew arguments ol A (A.) are St+I• st+2 tagether with the skew 
arguments ol A (f.-l). If q = 0, the symmetric arguments ol A (A.) are the 
symmetric arguments of A (f.-l). II q > 0, the symmetric arguments ol A (A.) 
are St+a• ... , St+q+ 2 tagether with the symmetric arguments ol A (Jl). 

We wish to establish the following propositions for each A. in ~ (n): 
c.p (A.). II A. = (p1 , •.. , pk), then lor each ordered set 5 ol n generators 

ol the commutativeMoulang loop G, A (A.) is skew-symmetric mod Zk+n-v<;.l 
in its skew arguments. 

Q (A.). I I A. = (p1, .•. , pk), then. lor each ordered set 5 ol n generators 
ol the commutative M oulang loop G and lor each symmetric argument 
s ol A (A.), (A (A.), s, G) CZk+n-1-vW· 
~ (A.). I I A. = (p1, •.• , pk), then, lor each ordered set 5 of n generators 

of the commutative Maufang loop G, A (A.) E Zk+n-v(;)· 
Some comment is necessary. First, if A (A.) has no symmetric argum

ents, we make the convention that Q (A.) is true. Secondly, $ (A.) is to be 
interpreted as follows. Let () be any permutation of the skew arguments 
of A (A.), let sgn(fJ) be 1 or -1 according as () is even or odd, let 5() be 
the ordered set obtained from 5 by applying () and let A'(A.) be the 
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"canonical" associator corresponding to S 0. Then 'l3 (..1.) means that 

A (,) = (A'(,))•gn(O) mod Z II. II. k +n- rlA) • 

In what follows we shall assume n ~ 5. 
Lemma 10.1. <;)\(..1.) implies both'l'(..1.) and 0(..1.). 
Proof. Obvious. 
Lemma 10.2. <;)\(n-3) is true. 
Proof. If ..1. = (n-3) then v(..1.) = n and k = 1, so k + n-v(..1.) = 1. 

Also A (n- 3) = /"-3(s1, s2, s3; s4, .•• , sn) is in Z(G) = Z1 hy Lemma 7.2 
(IV) and the hypothesis that S generates G. 

Lemma 10.3. <;)\ (n- 4) is true. 
Proof. Here ..1. = ( n- 4), v (..1.) = n- 1, k = 1 and k + n- v (..1.) = 2. 

We are to show that A (..1.) = /"-4 (s1, s2, s3; s4 , ••• , s"_1) is in Z 2• To do so, 
we must verify that (A (..1.), s;, si) E Z1 for i, f = 1, 2, ... , n. However, 
by Lemma 7.2, A (..1.) is skew-symmetric in sv s2, s3, is symmetric in 
s4, ••• , s"_1 , satisfies (A (..1.), s2, s3) = 1 and (A (..1.), s"-v G) = 1, and does 
not have s"as an argument. Hence we need onlyprove that (A (..1.),s3,s") EZ1 • 

However, by (7.2), (A (..1.), S3, s") = /"-3(sv s2, s"; s4 , .•• , s"-1 , s3). The 
latter is a "canonical" associator A ' ( n- 3) for the ordered set of gener
ators obtained from S by interchanging s3, sn. Hence, by Lemma 10.2, 
(A (..1.), s3, s") E Z1 • This completes the proof of Lemma 10.3. 

Lemma 10.4. If ..1. = (p) E ~(n) and if<;)\(fl) is true for each fl in ~(n) 
such that fl > ..1., then <;)\ (..1.) is true. 

Proof. Here ..1. = (p), v(..1.) = p + 3, k = 1 and k + n-v(..1.) = n- p-2. 
Hence we are to prove that A (..1.) E Zn-v- 2• In view of Lemmas 10.2, 
I0.3, we may assume that p < n- 4. Thus p + 5 ~ n. We must verify 
that (A (..1.), s;, si) E Zn-v-3 for i, j = 1, 2, ... , n. However, A (..1.) 
= f '/) (sv s2, s3 ; s4 , ••• , sv+al is skew-symmetric in s1 , s2, s3, satisfies 
(A (..1.), s2, s3) =I, and, for p > 0, is symmetric in s4, ... , sv+3 and 
satisfies (A (..1.), s'/)+3, G) = I. Furthermore, A (..1.) is independent of 
sv+4• sv+s• ... , s,.. Hence it will be enough to show that both of 
(A (..1.), s3, Sv+4), (A (..1.), s'P+4> s'J)+5) are in z"_'J)-3' Now (A (..1.), s3, Sv+4) 
= fv+I(sv s2, s'/)+4; s4, ... , Svt3, s3) is a "canonical" associator A'(fl), 
where fl = (p + 1), for a suitable permutation of S. We note that 
v(.u) = p + 4 < n,sothatflisindeedin~(n). Moreover,sincefl > ..1.,<;)\(fl) 
is true byhypotheses. Since fl = (p + 1) and I+ n- [p + 4] = n-p-3, 
<;)\ (!l) implies that (A (..1.), s3, sv t- 4) = A '(!l) is in Zn-v-3• Again, (A (..1.), 
Sv+4, Sv+s) = / 0 (A (..1.), sv+4• sv+s) = A (!l') where fl 1 = (p, 0). Here v(!l') 
= p + 5 ~ n and ll' > ..1. and 2 + n- v (!l') = n- p- 3, so, by our 
hypothesis, A (!l') E Zn-v-a· This completes the proof of Lemma 10.4. 

Lemma 10.5. I I ..1. E ~ (n) and if <;)\ (!l) is true for each fl in ~ (n) such 
that fl > ..1., then 'l3 (..1.) is true. 

Proof. In view of Lemmas 10.4, 10.1, we may assume that Ä= (Pv ... ,pk) 
where k >I. In view of Lemmas 10.2, 10.3 we may assume that (n-4)>..1. 
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Our method of establishing<p (Ä) involves an induction over the ascending 
chain 

(Ptl < (Pv 0) <· · · < CPt· P2) < CPt• P2. O) < · · · < (Pv · · ·• Pk-t• O) 

< · · · < (Pv · · · • Pk) · 
First we note that 'P (Pt) is trivial since f ~'• is skew-symmetric in its first 
three arguments. Next wc consider some integer t with 1 ;;:;; t;;:;; k- 1 
and assume inductively that 'P (Pt• ... , p1) is true. Webegin by proving 
'P (Pv ...• Pt· 0). 

First we note that v(Pt• .. . , Pt. 0) "·0 Pt+···+ Pt+ 2 (t + 1} + 1;;:;; 
:;;; Pt+···+ Pk+ 2k + 1 = v(Ä) ;Sn, so that (Pv .. . , Pt. 0) is in ~(n). 
For conveniencc we set oc. = (Pv ... , Pt-1) with the understanding that, in 
case t = 1, so that oc. is meaningless, the definitions A (oc.) = st, v (oc.) = 1 
shall be used and A (oc.) shall have no skew arguments. Then v (oc.) 
.o~ P1 + · · · + Pt-t + 2 {t-1} + 1 in all cases. We define w = v (oc.),q =Pt. 
so that v (Pt• ... , p,) = w + q + 2 ~· m, say. Then 

A (Pt• · · · • Pt. 0) = (A (Pv · · · • Pt), Sm+l• Sm~ 2) 

== (/q(A (oc.), Sw+l• Su·+2; Sw~3• .• . , Sm), Sm+V Sm+2). 

Since thc skew arguments of A (Pt• ... , p1, 0) are sm+l• Smt2 and those 
of A (Pv ... , Pt); since S10 t 2 is a skew argument of A (Pv ... , Pt); since 
'P (Pt• ... , Pt) holds and t + n -- v (Pv ... , Pt) is greater by one than 
t + 1 + n- v(p1, ••• , P1• 0) ~· t + n -- m- 1; we may establish 
'P (P1 •.•• , Pt. 0) by proving the congruencc 

(/q(A (oc.), Sw+l• Sw~2; Sw+3• · · ·• Sm}. SmH• Sm+2) 

== (/q(A (oc.), Sw+v S11dt; Sw+3• • · • • sm}. s",+2• Sm+2)-l 

mod Zt+n-m-l. 

{10.2) 

To prove {10.2) we proceed as follows: If 1-' = (Pv .. . , Pt-v 1 +Pt). 
then, certainly, 1-' is in~ and 1-' > Ä. Moreover, in our preceding notation 
v (#) = v (Pv ... , Pt) + 1 ~ m + 1 < n, so 1-' is in ~ (n). Consequently, 
~ (#) is true by hypothesis. Moreover, t + n- v (#) = t + n- m- 1, 
so A (#) is in Zt+n-m-l for each ordered set S of n generators. Finally, 
A (#) == fq+l (A {oc.), Sw+l> Sw+ 2; Sw+a• ••• , Smt1). We alter S by replacing 
sw+a by s",+2 and sm+l by the product Sw+asm+l; this can be done by 
performing two admissible operations on S. Therefore, by ~ (#) and 
(7.4), zt+n-m-1 contains the left band side of 

fq+l (A (oc.), Sw+v S.m+2; Sw+a• • • • • s"., Swt2 Sm+l) 

= fq+l (A (oc.), Sw+v Smt2; Swt3• • • • • Sm, Sw+a) 

j q+l (A (lX)' Sw+l• S"&-~-2; Sw+3• • • •' Sm, Sm +1) 

fqt2(A {oc.), Sw+V Smu; Swt3• • • ·• Sm, Swl·2• Sm+l) 

{fq(A (oc.), Sw+v Sw+2; Sw+3• • · •• Sm), Sm+l• Sm+2) 

{fq(A (oc.), Sw+l• Smtl; Swt3• ··.,Sm), Sw+2• Smt2) 

(10.3) 
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Moreover, Zt+n-m-t contains the first two terms on the right of (I0.3) by 
~(,u) and contains the third by ~(,u), (7.2) and the fact that Zt+n-m-1 
is a normal subloop. Therefore (I0.3) yields a congruence equivalent 
to (I0.2). 

N ow that P (p1 , ••• , Pt, 0) is established, we must prove P (p1, ••• , Pt, i) 
for 0 ~ i ~ Pt+t· We need only consider the case that i > 0. Then, in 
our previous notation, by (7.2), 

A (pl, · • ·, Pt, i) = /; (A (Pv · · ·, Pt), Sm, Sm+l; Sln+2• · · ·, Sm+l+i) 

= (. · · ((A (Pv ··.,Pt), Sm, Sm+~),··.)· 

Clearly A (pl, ..• 'Pt, i) is skew-symmetric 'in Sm, sm+l· Moreover, by 
R (p1, ••• , Pt, 0), ( (A (Pv ... , Pt), Sm, Sm+2) is (in particular) skew
symmetric mod Z t+n-m-I in sm and the skew arguments of A (p1 , ••• , Pt). 
Consequently, if x = t + n- m- I - i, A (Pv ... , Pt, i) is skew-sym
metric mod Zx in Sm, sm+l; andin sm together with the skew arguments 
of A (Pv ... , Pt); and hence in the skew arguments of A (p1 , ••• , Pt,i). 
Since t + 1 + n- v (p1 , ••• , Pt, i) = t + 1 + n- m- i- 2 = t + n
-m -1- i = x, we have proved $ (p1, ••• , Pt, i) for 0 ~ i ~ Pt+t· 
Therefore $(Pr, ... , Pt), for 1 ~ t ~ k- 1, implies $ (Pv ... , Pt+1). 

Now we can assert sp (.!.). And this completes the proof of Lemma 10.5. 
Lemma 10.6. If A E ~(n) and if ~(,u) is true for each ,u in ~(n) such 

that ,u > A, then Q (.I.) is true. If, in addition, v (.I.) = n, then ~(.I.) is true. 
Proof. We assume that A = (p1, ... , pk). We note that Q (P1) is true, 

either by default, because p1 = 0, or by (III) of Lemma 7.2. Hence we 
need only treat the case that k > I. We consider some t, with 1 ~ t ~ k-1, 
and assume inductively that Q (Pv ... , Pt) is true. We wish to establish 
Q (Pv ... , Pt+1). If s is a symmetric argument of A (p1, ••• , Pt+t) but not 
of A (Pv ... , Pt), then (A (p1, ••• , Pt +I), s, G) = 1 by (III) of Lemma 7.2. 
Hence we need only prove Q (p1, ••• , Pt+1) under the assumption that 
s is a symmetric argument of A (p1 , ••• , Pt)· 

Case I. v (p1 , ••• , Pt+1) ~ n- I. 

We consider ,u = (Pv ... , Pt, I + Pt+r) and note that v (,u) = 1 + 
+ v (Pv ... , Pt+1) ~ n. Hence ,u is in~ (n). Moreover, since A = (Pv ... ,pt, 
Pt+v ... , pk), ,u > A. Therefore ~ (,u) is true by hypothesis. Now we set 
c = A (P1, •• • , Pt), w = v(p1, •• • , Pt), q = Pt+l• m = w + q + 2, so that 

A (Pv · · ·' Pt+l) = fq (c, Sw+l• Sw+2; Sw+3• • • ·' Sm); 

A (Pv · · ·' Pt, 1 + Pt+!) = fq+l (c, Sw+l• Sw+2; Sw+3• • · ·, Sm, Sm+!) · 

Where s is a symmetric argument of c, we replace sm+1 by the product 
sm+t s, use ~ (,u) with (7.4) and deduce that Zt+n-m contains the left hand 
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IQ+1 (c, Sw+l> Sw+2; Sw+3> ..• , Sm, s) 

I Q+2 (c, Sw+l> Sw+2; Sw+3> ... ' Sm, Sm+l> s) 

((/q (c, Sw+l/Sm+l; Sw+3> •.• , Sm), S, Sw+2) 

((/q (c, Sw+l> S; Sw+3> ... , Sm), Sm+1> Sw+2) . 

(10.4) 

The first factor on the right of (10.4) is in Zt+n-m by ~ (fl). Each of the 
second, third and fifth factors can be written in the form 

( .... ((c, s, x), y1, z1), ..• ,), Yn z,) (10.5) 

for suitable x, y1, Zv ... , y,, z, in G, where r = q + I in two instances 
and r = q + 2 in the remaining instance. Since, by our inductive 
assumption, (c, s, G) is in Zt+n-1-w, then the associator (I0.5) is in 
Zt+n-m· Therefore the second last factor on the right of (I0.4) is in 
Zt+n-m; whence, by interchanging sm+l> Sw+2, we see that 

(I0.6) 

We complete the argument for Case I as follows. Let H be the set of 
all h in G such that (A (Pv . .. , Pt+1), s, h) E Zt+n-m· Clearly H is a 
subloop of G. By (10.6), H contains sm+1. Moreover, since sm+1 is not 
one of the arguments of A (p1, •.. , Pt+1), (10.6) will still hold with sm+l 

replaced by the product s;sm+1 for any choice of i = I, 2, ... , n. Thus H 
contains S;Sm+l along with sm+1, so H contains S;. That is, H = G. This 
completes the proof of Q (Pv ... , Pt+l) in Case I. 

Case II. v (Pv ... , Pt+1) = n. 
Webegin by showing that t + I = k. Suppose on the contrary that 

t + I ~ k- I. Then n = v (Pv ... , Pt+1) = P1 +···+Pt +I+ 2 (t + I) + I ~ 
~ P1 + · · · +Pk + 2 (k- I) + I < v (A.) ~ n, a contradiction. Therefore 
t + I = k and we are treating the case v (A.) = n. Consequently, if 
v (A.) < n, Case II cannot occur, the inductive step is complete, and we 
can assert Q (A.). 

We continue with the assumption that t + 1 = k, v (A.) = n. By 
Lemma I0.1, ~(A.) implies Q(A.), so we merely prove ~(A.). As in Case I, 
we set 'l!J = v (p1, ••. , Pt), q = Pt+l = pk, c = A (p1, . . . , Pt). Here, how
ever, w + q + 2 = n and we are to prove that A (A.) = IQ(c,sw+l> Sw+2 ; 

Sw+a' ••• , sn) is in Zk. Moreover, by our inductive assumption, since 
t+n-1-w=k+n-2-w=k+q, we have (c,s,G)CZk+q for 
every symmetric argument s of c. Our proof will consist in showing that 
(A (A.), s;, s1) E Z k-1 for all i, j = 1, 2, ... , n. By the properties of I q, A (A.) 
lies in the centre of the subloop generated by c, Sw+l> Sw+ 2, ••• , Sn. In 
particular, (A (A.), Sw+l> Sw+2) = I. Since Sw+l> Sw+ 2 are two of the skew 
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arguments of A (.A.) and since, in view of Lemma 1005, '.P(.A.) is true, we 
have (A (.A.), s;, si) E Zk-1 for every two skew-arguments s;, si of A (.A.)o 
Again, if q > 0, A (.A.) is symmetric in sw+a• ... , sn and satisfies (A (.A.), 
Sn, G) = 1. It remains only to show that, if s, s' denote symmetric argu
ments ofA (.A.), then (A (.A.),sw+2, s) and (A (.A.),s,s') are inZk-1 0 Now, by (7.2), 

(A (A), Sw+2, s) = fa+1 (c, Sw+l> S; Sw+a• ... , Sn, Sw+2) , 

whence, since (c, s, G) C Zk+«• we easily see that (A (.A.), Sw+2, s) E zk_1. 
Finally, 

A (.A.) = / q (sw+1• Sw+2• C; Sw+3• ... ' Sn) 

= Ua-1• s", c) E (Ga, G, c) 

and therefore, by Lemma 8.2, since (c, s, G) czk+a• (c, s', G) C Gk+q• we 
have (A (.A.), s, s') E Zk-t· This disposes of Case li and completes the 
proof of Lemma 10.6. 

Lemma 10.7. If .A. E ~ (n) and if ~ (,u) is true for each ,u in~ (n) such 
that ,u > A., then ~ (A.) is true. 

Proof. In view of the second sentence of Lemma 10.6, we may assume 
v (A.) = m < n. By Lemmas 10.5, 10.6, we may assumec.p (A.), Q (A.). Without 
loss of generality we may assume that A (A.)=fa(c,sw+l•sw+2;sw+a•· .. ,sm) 
for integers q, w, where w > 0. Here A. = (p1, ••• , Pk-1 , q) for some non
negative integer k and we must prove that (A (A.), s;, si) E Zk+n-m-1 for all 
i, j = 1, 2, . 0 • , n. If one or both of s;, si is a symmetnc argument ot A (A.), 
this follows by Q (A.). If s;, si are skew arguments of A (A.), it follows by 
c.p (A.) and (A (A.), Sw+t• sw+2) = 1. If one of S;, S; is a skew argument of 
A (A.) and the other is not an argument, it follows by c.p (A) and the fact 
that (A (A.), Sw+2, Sm+l) = f q+l (c, Sw+l> Sm+l; Sw+a• . o . , Sm, Sw+2) = A '(,u), 
where ,u = (p1, ••• , Pa-I• q + 1) > A., v (,u) = v (A.) + 1. If neither of S;, si 
is an argument of A (A.), and if i =!= j, it follows by symmetry and the fact, 
that m ~ n- 2 and (A (A.), sm+l> Sm+2) = A'(,u) where ,u = (p1, ... ,pk-1,q,O), 
k + 1- v (,u) = k- v (A.)- 1. This completes the proof of Lemma 10.7 

Now we areready for the proof of Slaby's theorem: 
Theorem 10.1. Let n be a positive integer, n ~ 30 Then every commutat

ive M oufang loop G which can be generated by n elements is centrally 
nilpotent of class at most n- 1. 

Proof. W!thout loss of generality we may assume that Gisgenerated 
by an ordered set S of n distinct elementso Since the greatest element of 
~(n) is (n- 3), we see from Lemmas 10.2, 10.7 that ~(0) holds. That is, 
A (0) = (sv s2, s3) is contained in Zn_2. As a consequence, (5, S, S) C Zn_2. 
Therefore, by Lemma 3.7, G = Zn_1• This completes the proof of The
orem 10.1. 

11. Local properlies 

Theorem 10.1 implies that every commutative Maufang loop is locally 
centrally nilpotent and hence is a local Z-loop. 
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Theorem 11.1. Every chief composition system of a commutative 
M oufang loop is a centrat system. In particular, every nontrivial simple 
commutative M oufang loop is a cyclic group of prime order. 

Proof. By the above remark and Theorem 4.1 of Chapter VI. 
Theorem 11.2. If Gis a finitely generated commutative Maufang loop, 

then the associator subloop G' is finite. 
Proof. By Theorem I 0.1, G is centrally nilpotent, say of dass c. The 

lemma is trivial for c = 0 or 1, so we consider the case that c = k + I, 
k ~ 1, and assume the lemma for commutative Moufang loops of dass 
at most k. The loop H = GjGk has dass k. Hence, by our inductive 
assumption, H' = G'jGk is finite. We now must show that Gk is finite. 
If k > I, then Gk_1jGk is a subloop of H' and therefore is finite. If k = 1, 
then Gk-IfGk= GjGk is finitely generated. In either case, there exists a 
finite non-empty subset T of G such that T and Gk generate Gk_1. 

Moreover, Gisgenerated by a finite subset 5. Let F be the subloop of Gk 
generated by the finite set (T, 5, 5). Since Gk is part of thc centre, 
Z(G), of G, Fis normal in G. Moreover, Fis a finitely generated abelian 
group of exponent 3, and hence is finite. Since (T, 5, 5) == 1 mod Fand 
since 5 generates G, we readily deduce that (T, G, G) == I mod F. 
Since (Gk, G, G) = Gk+1 = 1 and since T, Gk generate Gk-1> then Gk 
= (Gk_1 , G, G) CF C Gk. Therefore Gk = F is finite and the proof is 
complete. 

Theorem 11.3. Every commutative Maufang loop G without elements 
of infinite order is locally finite. 

Proof. lf H is a finitely generated subloop of G, then H/H' is a 
finitely generated abelian group without elements of infinite order and 
hence is finite. By Theorem I1.2, H' is finite also. Therefore H is finite. 

If Gis a commutative Moufang loop, let 'm = 'm(G) and 8 = \J(G) 
derrote the multiplication group and inner mapping group, respectively, 
of G. Let {8;}, {'m;}, {Z; (8)}, {Z; ('m)} derrote the respective lower and 
upper central series of these groups. By Lemma 1.2 of IV, each element 
of 'm has the form eR (x) where e is in 8 and X is in G. The following 
commutator relations are well known from group theory: 

80 = 8; 8i+1 = (8;, 8), 

(8;, \Jj) c \Ji+i+1• 

i = 0, 1; 2, ... ; 

i,j = 0, 1, 2, ... . 

(Il.l) 

(11.2) 

It will prove convenient to define an additional series {8 (i)} as follows: 
foreachnon-negative integer i, 8 (i) is the subset of 8 consisting of every 
ein 8 which induces an identity automorphism on each of the quotient 
loops Gk/Gk+i+I• where k ranges over the non-negative integers. Since 
GkfGk+I lies in the centre of GjGk+l for each k, we see that 

8(0) = 8 = 8'0 • ( 11.3) 

And, in general, it is dear that 8 (i) is a subgroup of 8. 
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Lemma 11.1. For all non-negative integers i, j and for every commut
ative M oufang loop G with inner mapping group S: 

(S(i), S(j))CS(i -H +I), 

() E S(i) -:- 03 E S(2i +I). 

Hence S;C S(i) and, for every ()in 3, ()t(i)E S(g(i)) where 

f(i) ~ 3i, g(i) ·~ z;_ I . 

(l1.4) 

(Il.5) 

( 11.6) 

Proof. For arbitrary non-negative integers i, j, k, Iet () E S(i), rpES(j), 
x E Gk. By definition, xO == x mod Gk+iTJ· Thus and similarly, x() = xy, 
xrp = xz where y E Gk+i+l• z E Gk+J+l· Write H = Gk+i+i+2• Then y qJ == y 
mod H. Moreover, (x, y,z) E G11 where p = k + (k + i + 1) + (k + j + 1) + 
+I > k + i + j + 2; consequently, (x, y, z) == 1 mod H. Thereforc 
xOrp = (xy)rp = (xrp) (yrp) == (xz)y == (xy)z == (xO)z mod H. Again, 
z()-1== z mod H, so xOrp0-1== (x00-1) (z0-1) == xz == xrp mod Hand 
xOrp()-lrp-1 == x mod H. We deduce that Orp0-1rp-1 is in S(i + j +I); 
and this is enough to prove (l1.4). With x, 0, y as before, define 
K = Gk+2i+2• Then y () == y mod K, so x 02 = (x y) () = (x 0) (y 0) == (x y)y== xy2 

mod K and x03== (xO)y 2== xy3 mod K. However, since k + i + 1 ~ 1, 
y E G' and hence y3 = 1. Therefore x03== x mod K, proving (11.5). If 
S;CS(i) for some i, then, by (11.1), (11.3), (l1.4), Si+1 = (8;, S)C 
C (S (i), S (0)) C S (i +I). If ()t(iJ ES (g(i)) for some i, then, by (I1.6), (11.5), 
(Il.6), ()t(i+I>= (()l(i>) 3 E S(2g(i) + 1) = S(g(i +I)). Since 8 0 ( S(O) 
and ()t< 0>E S(g(O)), the proof of Lemma Il.l is complete. 

Lemma 11.2. Let G be a commutative lffoufang loop and let i, p be 
integers with 0 ~ i ~ 2p. Then, for each ()in S (i) and x in G11 , 

[OR(x)J3= O'R(x')R(xa) ( 11. 7) 

where 0' is in 8(2i + 1) and x' is in Gp+2i+ 2• 

Proof. Since () is an automorphism of G, the left-hand side of (11.7) 
is equal to 03R(x02) R(xO) R(x) = fPrp1pR(c) where rp = R(x02 , xO), 
1p =R((x02) (xO), x), c = [(xfJ2) (xO)]x. By (11.5), 03 E S (2i + 1). Since 
0 E S(i) and x E G11 , then xO = xy where y E Gv+i+l· Hence y() == y mod 
G11 + 2i+ 2, so x02==(xO)y == xy2 mod Gp+2;+ 2• In particular, x02 = (xO)a 
where a is in G11+iH· Thus, for each non-negative integer k and every w 
in Gk, (w, x02 , xO) = (w, (xO) a, xO) = (ur, a, xO) E (Gk> Gv+i+v G11) C Gq 
where q = k + (p + i + 1) + p + 1 ~ k + 2p + i + 2 ~ k + 2i + 2. 
Therefore w rp == w mod Gk+2i+ 2, whence we see that rp is in S (2 i + 1). 
Moreover, (x02) (xO) == (xy2) (xy) == x2y3 == x2 mod G11+2i+ 2, so (x02) (xO) 
= x2 b for some bin G11+2;+2• Then, with <i' as before, (w, (x02) (xO), x) 
= (w, x2b, x) = (w, b, x) E Gk+ 2 ;+ 2• Hence 1p is in S(2i + 1). 
Therefore [OR(x)] 3 = O'R(c) wheJ:e ()' = 03rp1.p is in S(2i + 1). 
Finally, c = [(x02) (xO)]x == x2x == x3 mod G11+2i+ 2, so c = x'x3 for some 
x' in G11+2i+2• Since x3 is in the cPntre, Z(G), of G, then, for every z in 



160 VIII. Commutative Moufang Loops 

G, z (x' x3 ) (z x') x3. Hence R (c) = R(x') R(x3). This completes the 

proof of Lemma II.2. 
For the next lemma we need the functions f, g defined by (I 1.6). 

Lemma 11.3. Let G be a commutative Maufang loop. Then, for each 
() in 6, each x in G and each non-negative integer k, 

(II.8) 

where ()k is in 6 (g(k)) and xk is in G2~<k>· 
Proof. If we define 00= 0, x0 = I, then ( Il.8) holds trivially for 

k = 0. Again, by Lemma Il.2 with i = p ~ 0, ( I1.8) holds for k = 1. 

Now we assume inductively that (I1.8) holds for some k ~ 1. We note 

that R (xt<kJ) lies in the centre of m1 = m1 (G) and that R (xf(kJ) 3 =R(xt<k+IJ). 

Moreover, xk is in G' and hence xk3= I. Therefore, on cubing both sides 

of (I1.8), applying Lemma I1.2 to [OkR(xk)j3 with t=g(k),P=2g(k), 

and observing that 2i +I =, g(k +I), p + 2i + 2 = 2g(k +I), we derive 

(1I.8) with k replaced by I< + I. This completes the proof of Lemma II.3. 

Lemma 11.4. If Gis a commutative Maufang loop with multiplication 

group m1 = !m(G), then !m(G/Z) is isomorphic to m1/Z2(m1). 

Proof. We know that !m(G/Z) is isomorphic to m;m where m is the 

set of all oc in m1 such that xoc ==== x mod Z for all x in G. Clearly 

'l3 = Ql r\ S(G) is the set of all () in 6 = 'J(G} such that x() == x mod Z 
for all x in G; that is, 'l3 is the intersection of 6 with the group of centre 

automorphisms of G. If () is in 'l3 and x is in G, then x() = xz for some 

z in Z and hence R(x)O = 8R(xz) = OR(x) R(z). Since Z(!m) is the 

set of all R(z) with z in Z, we see that R (x) (} == (} R(x) mod Z(m1} for 

every X in G. This provcs that 'l3 c Z2(QU). If oc is in m, then I oc == I 

modZ, so Ioc = z E Z. If 0 = ocR(z)-1, then () is in$ and hence oc = OR(z) 
is in 'lJZ('m). Therefore ?lC$Z2(m1) CZ2(m1). Now assume, conversely, 

that oc is in Z2(m1). Then oc = OR(k) for some ()inS, k in G. For any 

x in G, () R (x 0) R (k) = R (x)O R (k) = R ( x) oc == ocR(x) == OR(k)R(x) mod 

Z(9U) and hence R(xO) = R(k)R(x)R(k)-1R(z) for some z in Z. Thus 

x 0 = IR (x 0) = (k x)k-1z ~-- xz. In particular, x() == x mod Z for each 

x in G, so () is in $. Moreover, R(xO) = R(xz) = R(x) R(z) and 

therefore R(k) R(x) R(k)-1 = R(x). Hence R(x) R(k) = R(k) R(x) for 

all x in G; and this implies that R(k) is in Z(m1). Hence k is in Z and 

therefore xoc = (xO)k == x mod Z for every x in G. This proves that 

Z2(m1) C m. Hence m = Z2(m1), completing the proof of Lemma I1.4. 

Lemma 11.5. Let G be a commutative Maufang loop which can be 

generated by n elements, n ~ 2. Let e be the least positive integer such that 
g(e) = 2•- I ~ n- I. Then: (i) The inner mapping group 6(G) of G 
is a 3-group of exponent dividing f(e) = 3• and is nilpotent of class at 

most n- 2. (ii) The mapping oc_".oct<•> is a centralizing endomorphism 

of tke multiplication group 92l(G) of G; moreover, oc1<•>= R((Ioc)'<•>) for 

eack oc in !m(G). (iii) !m(G) is nilpotent of class at most 2n- 3. 
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Proof. If a. is in 911(G), set x = 1 cx.. Then a. = OR(x) for some 
0 in 8 (G); moreover, a. is in 8 (G) if and only if x = 1. By Theorem 10.1, 
G is centrally nilpotent of dass at most n- 1. Hence, by definition, 
8 (n- 2) induces the identity mapping on GofG.,-1 = G. Therefore, in 
particular, by Lemma 11.1, 8.,_2 = 1, showing that 8 is nilpotent of 
dass at most n- 2. By Lemma 11.3, cx.1<•> = O,R(x,) R (x'<•>) where 0, is in 
8 (g(e)) C 8 (n-1) = 1 and x, is in G2a<•> C G.,+1 = 1. Hence a.1<•> = R (x1<•>). 
In particular, 8 has exponent dividing f(e); this completes the proof 
of (i). If {J is in 911 (G) and y = 1 {J, then {J = q;R (y) for q; in 8. As before, 
pt<•> = R(yt<•>). Moreover, a.{J = Oq;'ljJR(z) where "''= R(xq;, y) and 
z = (xq;)y. Hence (a.{J)'<•>= R(zt<•>). In addition, since 3 divides 
f (e), xt<•> is inZ. Therefore (x q;)t<•> = (x'<•>) q; = xt<•> and zt<•>= (x q;)'<•>yt<•> 
= x'<•>yt<•>. Finally, since R(xt<•>) is in the centre of 911(G), R(z'<•>) 
= R(xt<•>) R(yt<•>) = a.t<•> pt<•>. This completes the proof of (ii). For 
(iii) we use Lemma 11.4. By a Straightforward induction, 911(G/Z;) is 
isomorphic to 911/Z2; (911). lf G has dass c ~ 1 and if i = c- 1, then 
G/Z; isanon-trivial abelian group. Also 911/Z2;(911) is isomorphic to G/Z; 
and therefore 911 is nilpotent of dass 2 i + 1 = 2 c - 1. Since c ~ n - 1, 
then 2c- 1 ~ 2n- 3. If G has dass 0 then so does 911 (G). In either 
case, we have (iii). This completes the proof of Lemma 11.5. 

Theorem 11.4. Let G be a commutative Moufang loop with associator 
subloop G', centre Z = Z ( G), multiplication group 911 = 911 ( G). inner 
mapping group 8 = 8 (G). Then: (i) G' and GjZ are locally finite loops 
of exponent 3 and arefinite if Gis finitely generated. (ii) 8, 911/Z (911) and 
911' = (911, 911) are locally finite 3-groups and are finite if G is finitely 
generated. 

Proof. (i). Since the mapping x~x3 is an endomorphism of G into 
Z, the loops G' and GjZ have exponent 3. The rest of the proof follows 
from Theorem 11.2, 11.3. 

(ii) Let ~ be a subgroup of 911 which is generated by a finite non
empty subset T. Each element of T can be expressed as a product of 
finitely many right multiplications R (x) of G. Hence there exists a 
finite non-empty subset S of G such that ~ is contained in the subgroup 
of 911 generated by the right multiplications R (s) of G, where s ranges 
over S. Let n- 1 be the nurober of elements of S. For each x in G, 
Iet H(x) be the subloop of G generated by xv S. Then ~ maps H(x) 
into itself. The restriction of ~ to H (x) is a homomorphism of ~ upon 
a subgroup ~ of the multiplication group of H (x) which maps ~; upon ~; 
for each non-negative integer i. Since H (x) is generated by n elements, 
we may apply Lemma 11.5 to H(x). By Lemma 3.5 (iii), ~c= 1 where 
c = 2n- 3. Hence ~c induces the identity mapping on H (x). In 
particular, ~c maps x upon x; and since this is true for each x in G, 
~c= 1. By the same device, using Lemma3.5 (ii), x(a.{J)'<•>= xa.t<•>pt<•> 
and xa.t<•>= xR((1a.)'<•>) for all xin G, a., {Jin ~- Hence a.t<•>= R((l cx.)'<•>) 
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for alloc in~' and the mapping oc--+oc1<•J is an endomorphism of ~ into 
~ f\ Z (221). N ow we know that ~/(~ f\ Z (221)) is a finitely generated 
nilpotent group of exponent dividing f (e); from this we deduce readily 
(compare the proofs of Theorems 1.2, 1.3) that ~/(~ nZ (221)) is finite. 

If ~ C S, then ~ itself has exponent dividing f (e) and hence is finite. 
Thus S is locally finite. 

Any finitely generated subgroup of 221/Z (221) has form ~Z (221)/Z (ml) 
where ~ is a finitely generated subgroup of 221. Then ~Z (221)/Z (221) is 
isomorphic to the finite group ~/(~ n Z (221)). Hence 221/Z (221) is locally 
finite. 

If Sl3 is a finitely generated subgroup of 221' = (221, 221), there exists at 
least one finitely generated subgroup ~ of 221 such that ~' = (~, ~) 
contains Sl}. Since ~ is nilpotent, so is 'lJ. Moreover, ocf(el = 1 for all oc 
in ~', so sp is a 3-group. Therefore Sl3 is finite. Hence 221' is locally finite. 

Finally, let G be generated by a finite set 5. Since S is a group of 
automorphisms of G, there is at most one element () of S for which the 
elements s-1 (s0), s in 5, have preassigned values. Since s-1 (s0) is in G' 
for each s and since 5 and G' are finite, then S is finite. Every element 
of 221 has form () R (x) where () is in S and x is in G. If z is in Z, then 
OR(xz) Z(221) = ()R(x) Z(221). Since Sand GjZ are finite, we see that 
Z (221) has finite index in 221. That is, 221/Z (221) is finite. Then 221' is 
finitely generated and hence finite. This completes the proof of Theorem 
11.4. 

Lemma 11.6. Jf Gis a commutative Maufang loop with inner mapping 
group S = S(G), then S(G/Z) is isomorphic to S/Z(S). 

Proof. S (G/Z) is isomorphic to S/Sl} where, as noted in the proof of 
Lemma 11.4, sp is the intersection of S with the group of centre auto
morphisms of G. Since centre automorphisms commute with inner 
mappings, Sl3 C Z (S). Conversely, let () be in Z (S). Then, for all x, y, z 
in G, (xO)(xO,y,z)= xOR(y,z) = xR(y,z) 0= [x(x,y,z)]() = (xO)[(x,y,z)O]. 
Hence 

(xO, y, z) = (x, y, z) () (11.9) 

for all x, y, z in G. By (11.9) and skew-symmetry, (x, y, z) () = (xO, y(), z()) 
= (x, y, z)()3 ; hence (x, y, z) = (x, y, z)02• Therefore ()2 induces the 
identity mapping on G'. However, by Theorem 11.4, () has odd order 
(a power of 3); therefore () itself induces the identity mapping on G'. 
Consequently {11.9) implies the identity 

(xO, y, z) = (x, y, z) . (11.10) 

N ow we fix x and define the element a by x () = xa. F rom ( 11.1 0), in view 
of (3.8), (x,y,z) = (xa,y,z) = (x,y,z) (a,y,z) ((x,y,z),x,a) ((a,y,z),a,x). 
Thus 

(a, y, z) = (a, x, (x, y, z)) (a, x, (a, y, z))-1 {11.11) 
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for all y, z in G. From (11.11) with y = x, z = w, we deduce that 
(a, x, w) = 1 for every w in G. In particular, both factors on the right 
hand side of (11.11) are equal to 1. Therefore a E Z. That is, x () == x 
mod Z for every x in G. Hence Z (5) C'-13, so '.13 = Z (5). This completes 
the proof of Lemma 11.6. 

Theorem 11.5. Let n be a positive integer and let G be a commutative 
Maufang loop with inner mapping gror-P 5, multiplication group !Jn. 
Then the following statements are equiva!ent: (i) G is centrally nilpotent 
of class n. (ii) 5 is nilpotent of class n- 1. (iii) IJ2l is nilpotent of class 
2n-1. 

Proof. For the equivalence of (i) and (ii), we use Lemma 11.6; for 
that of (i) and (iii), we use Lemma 11.4. 

Let us now consider the infinitely generated commutative Moufang 
loop H constructed in § 1. It was noted in § 1 that His not nilpotent. 
Hence 5 = 5 (H) and 211 = IJ2l (H) are not nilpotent either. However, 
Hw= 1. If () is in 5w, then, by Lemma 11.1, () is in 5iC5(i) for every 
non-negative integer i. Hence, for each x in H, x-1(x0) is in Hi+l for 
every i and therefore x-1 (x0) E Hw= 1. Thus 5w= 1. Again, Z(H) = 1, 
and Z (5) consists of centre automorphisms, so Z (5) = 1. 
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