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PREFACE 

The present book is intended as a textbook and a reference work on 
the three topics in the title. Together with a volume in progress on 
“Groups and Geometric Analysis” it supersedes my “Differential 
Geometry and Symmetric Spaces,” published in 1962. Since that time 
several branches of the subject, particularly the function theory on 
symmetric spaces, have developed substantially. I felt that an expanded 
treatment might now be useful. 

This first volume is an extensive revision of a part of “Differential 
Geometry and Symmetric Spaces.” Apart from numerous minor 
changes the following material has been added: 

Chapter I, $15; Chapter 11, 57-98; Chapter 111, $8; Chapter VII, 
$$7, 10, 11 and most of $2 and of $8; Chapter VIII, part of 57; 
all of Chapter IX and most of Chapter X. Many new exercises 
have been added, and solutions to the old and new exercises are 
now included and placed toward the end of the book. 

The book begins with a general self-contained exposition of dt@rential 
and Riemannian geometry, discussing affine connections, exponential 
mapping, geodesics, and curvature. Chapter I1 develops the basic 
theory of Lie groups and Lie algebras, homogeneous spaces, the adjoint 
group, etc. The Lie groups that are locally isomorphic to products of 
simple groups are called semisimple. These Lie groups have an extremely 
rich structure theory which at an early stage led to their complete 
classification, and which presumably accounts for their pervasive 
influence on present-day mathematics. Chapter I11 deals with their 
preliminary structure theory with emphasis on compact real forms. 

Chapter IV is an introductory geometric study of symmetric spaces. 
According to its original definition, a symmetric space is a Riemannian 
manifold whose curvature tensor is invariant under all parallel transla- 
tions. The theory of symmetric spaces was initiated by a. Cartan in 
1926 and was vigorously developed by him in the late 1920s. By their 
definition, symmetric spaces form a special topic in Riemannian geom- 

ix 
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etry; their theory, however, has merged with the theory of semisimple 
Lie groups. This circumstance is the source of very detailed and 
extensive information about these spaces. They can therefore often 
serve as examples on the basis of which general conjectures in differential 
geometry can be made and tested. 

The definition above does not immediately suggest the special nature 
of symmetric spaces (especially if one recalls that all Riemannian 
manifolds and all Kahler manifolds possess tensor fields invariant under 
parallelism). However, the theory leads to the remarkable fact that 
symmetric spaces are locally just the Riemannian manifolds of the form 
Rn x GIK where Rn is a Euclidean n-space, G is a semisimple Lie 
group that has an involutive automorphism whose fixed point set is the 
(essentially) compact group K, and GIK is provided with a G-invariant 
Riemannian structure. I?. Cartan’s classification of all real simple Lie 
algebras now led him quickly to an explicit classification of symmetric 
spaces in terms of the classical and exceptional simple Lie groups. On 
the other hand, the semisimple Lie group G (or rather the local iso- 
morphism class of G) above is completely arbitrary; in this way valuable 
geometric tools become available to the theory of semisimple Lie groups. 
In addition, the theory of symmetric spaces helps to unify and explain 
in a general way various phenomena in classical geometries. Thus the 
isomorphisms that occur among the classical groups of low dimensions 
are geometrically interpreted by means of isometries ; the analogy 
between the spherical geometries and the hyperbolic geometries is a 
special case of a general duality for symmetric spaces. 

In  Chapter V we give the local decomposition of a symmetric space 
into Rn and the two main types of symmetric spaces, the compact type 
and the noncompact type. These dual types are already distinguished 
by the sign of their sectional curvature. In Chapter VI we study the 
symmetric spaces of noncompact type. Since these spaces are completely 
determined by their isometry group, this chapter is primarily a global 
study of noncompact semisimple Lie groups. In  Chapter IX this study 
is carried quite a bit further in the form of Cartan, Iwasawa, Bruhat, and 
Jordan decompositions. 

In  Chapter VII we derive topological and differential geometric 
properties of the compact symmetric space UIK by studying the isotropy 
action of K on UIK and on its tangent space at the origin. Chapter VIII 
deals with Hermitian symmetric spaces ; we are primarily concerned 
with the noncompact ones and the Cartan-Harish-Chandra representa- 
tion of these as bounded domains. 

The book concludes with a classification of symmetric spaces by 
means of the Killing-Cartan classification of simple Lie algebras over C 
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and Cartan’s classification of simple Lie algebras over R.  The latter is 
carried out by means of Ka?s classification of finite-order automorphisms 
of simple Lie algebras over C. 

Each chapter begins with a short summary and ends with references 
to source material. Given the enormity of the subject, I am aware that 
the result is at best an approximation as regards completeness and 
accuracy. Nevertheless, I hope that the notes will help the serious 
student gain a historical perspective, particularly as regards Cartan’s 
magnificent papers on Lie groups and symmetric spaces, which are 
found in the two first volumes of his collected works. For example, he 
can witness Cartan’s rather informal arguments in his climactic paper 
[lo], written at the age of 58, leading him to a global classification of 
symmetric spaces; an example of a different kind is Cartan’s paper in 
Leipziger Berichte (1893) where he indicates models of the exceptional 
groups as contact transformations or as invariance groups of Pfaffian 
equations and which, to my knowledge, have never been verified in 
print. Being the first such models, they have distinct historical interest 
although simpler models are now known. 

In addition to papers and books utilized in the text, the bibliography 
lists many items on topics that are at best only briefly discussed in the 
text, but are nevertheless closely related, for example, pseudo- 
Riemannian symmetric spaces, trisymmetric spaces, reflexion spaces, 
homogeneous domains, discrete isometry groups, cohomology and 
Betti numbers of locally symmetric spaces. This part of the bibliography 
is selective, and no completeness is intended; in particular, papers on 
analysis and representation theory related to the topics of “Groups and 
Geometric Analysis” are not listed unless used in the present volume. 

This book grew out of lectures given at the University of Chicago in 
1958, at Columbia University in 1959-1960, and at various times at 
MIT since then. At Columbia I had the privilege of many long and 
informative discussions with Harish-Chandra, to whom I am deeply 
grateful. I am also indebted to A. Korhyi,  K. de Leeuw, E. Luft, 
H. Federer, I. Namioka, and M. Flensted-Jensen, who read parts of 
the manuscript and suggested several improvements. I want also to 
thank H.-C. Wang for putting the material in Exercise A.9, Chapter VI 
at my disposal. Finally, I am most grateful to my friend and colleague 
Victor Kai: who provided me with an account of his method for classifying 
automorphisms of finite order (95, Chapter X) of which only a short 
sketch was available in print. 

With the sequel to this book in mind I will be grateful to readers who 
take the trouble of bringing errors in the text to my attention. 
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Since this book is intended for readers with varied backgrounds, we 
give some suggestions for its use. 

Introductory Differential Geometry. Chapter I, Chapter IV, $1, and 
Chapter VIII, $1-93 can be read independently of the rest of the book. 
These 120-odd pages, including the offered exercises, have on occasion 
served as the text for a one-term course on differential geometry, with 
only advanced calculus and some point set topology as prerequisites. 

Introduction to Lie Groups. Chapter I, §1-$6, Chapter 11, and 
Chapter I11 could similarly be used for a one-term course on Lie groups, 
assuming some familiarity with topological groups. 

The chapters are rather independent after the fourth one and could 
for the most part be read in any order. 

Exercises. Each chapter ends with a few exercises. Some of these 
furnish examples illuminating the theory developed in the text, while 
others produce extensions and ramifications of the theory. With a few 
possible exceptions (indicated with a star) the exercises can be worked 
out with methods from the text. Since the exercises present additional 
material and since some exercise groups furnish suitable topics for 
student seminars, I felt that leaving out the solutions would be counter- 
productive and might turn the exercises into unnecessary obstacles. 
Accordingly, solutions are provided at the end of the book which each 
reader can use to the extent he wishes. 

S. Helgason 

... 
X l l l  
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CHAPTER I 

ELEMENTARY DIFFERENTIAL GEOMETRY 

This introductory chapter divides in a natural way into three parts: $1 -93 which 
deal with tensor fields on manifolds, 54-38 which treat general properties of 
affine connections, and $9-914 which give an introduction to Riemannian geometry 
with some emphasis on topics needed for the later treatment of symmetric spaces. 

91-93. When a Euclidean space is stripped of its vector space structure and 
only its differentiable structure retained, there are many ways of piecing together 
domains of it in a smooth manner, thereby obtaining a so-called differentiable 
manifold. Local concepts like a differentiable function and a tangent vector can 
still be given a meaning whereby the manifold can be viewed “tangentially,” that 
is, through its family of tangent spaces as a curve in the plane is, roughly 
speaking, determined by its family of tangents. This viewpoint leads to the 
study of tensor fields, which are important tools in local and global differential 
geometry. They form an algebra D(M), the mixed tensor algebra over the 
manifold M. The alternate covariant tensor fields (the differential forms) form 
a submodule %(M) of D(M) which inherits a ‘multiplication from D(M), the 
exterior multiplication. The resulting algebra is called the Grassmann algebra 
of M. Through the work of 8. Cartan the Grassmann algebra with the exterior 
differentiation d has become an indispensable tool for dealing with submanifolds, 
these being analytically described by the zeros of differential forms. Moreover, 
the pair (%(M), d) determines the cohomology of III via de Rham’s theorem, 
which however will not be dealt with here. 

84-98. The concept of an affine connection was first defined by Levi-Civita 
for Riemannian manifolds, generalizing significantly the notion of parallelism for 
Euclidean spaces. On a manifold with a countable basis an affine connection always 
exists (see the exercises following this chapter). Given an affine connection on 
a manifold M there is to each curve y ( t )  in M associated an isomorphism between 
any two tangent spaces A&fvct,, and Thus, an affine connection makes it 
possible to relate tangent spaces at distant points of the manifold. If the tangent 
vectors of the curve y ( t )  all correspond under these isomorphisms we have the 
analog of a straight line, the so-called geodesic. The theory of affine connections 
mainly amounts to a study of the mappings Exp, : M ,  + M under which straight 
lines (or segments of them) through the origin in the tangent space M ,  correspond 
to geodesics through p in M. Each mapping Exp, is a diffeomorphism of a neigh- 
borhood of 0 in M, into M, giving the so-called normal coordinates at p. Some 
other local properties of Exp, are given in 96, the existence of convex neigh- 
borhoods and a formula for the differential of Exp,. 

An affine connection gives rise to two important tensor fields, the curvature 
tensor field and the torsion tensor field which in turn describe the affine connec- 
tion through 8. Cartan’s structural equations [(6) and (7), 98)]. 

1 



2 ELEMENTARY DIFFERENTIAL GEOMETRY [Ch. I 

59-814. A particularly interesting tensor field on a manifold is the so-called 
Riemannian structure. This gives rise to a metric on the manifold in a canonical 
fashion. It also determines an affine connection on the manifold, the Riemannian 
connection; this affine connection has the property that the geodesic forms the 
shortest curve between any two (not too distant) points. The relation between the 
metric and geodesics is further developed in $9-510. The treatment is mainly 
based on the structural equations of E. Cartan and is independent of the Calculus 
of Variations. 

The higher-dimensional analog of the Gaussian curvature of a surface was 
discovered by Riemann. Riemann introduced a tensor field which for any pair 
of tangent vectors at a point measures the corresponding sectional curvature, 
that is, the Gaussian curvature of the surface generated by the geodesics tangent 
to the plane spanned by the two vectors. Of particular interest are Riemannian 
manifolds for which the sectional curvature always has the same sign. The irreduci- 
ble symmetric spaces are of this type. Riemannian manifolds of negative curvature 
are considered in $13 owing to their importance in the theory of symmetric spaces. 
Much progress has been made recently in the study of Riemannian manifolds 
whose sectional curvature is bounded from below by a constant > 0. However, 
no discussion of these is given since it is not needed in later chapters. The  next 
section deals with totally geodesic submanifolds which are characterized by the 
condition that a geodesic tangent to the submanifold at a point lies entirely in it. 
In contrast to the situation for general Riemannian manifolds, totally geodesic 
submanifolds are a common occurrence for symmetric spaces. 

$1. Manifolds 

Let Rm and Rn denote two Euclidean spaces of m and n dimensions, 
respectively. Let 0 and 0’ be open subsets, 0 C Rm, 0’ C Rn and 
suppose q.~ is a mapping of 0 into 0’. The  mapping T is called dareren- 
tiable if the coordinates y j ( ~ ( p ) )  of p)(p) are differentiable (that is, inde- 
finitely differentiable) functions of the coordinates x&), p E 0. The  
mapping is called analytic if for each point p E 0 there exists a neigh- 
borhood U of p and n power series Pi (1 < j < n) in m variables such 
that for 
q E U. A differentiable mapping T : 0 + 0’ is called a daJeomorphism of 
0 onto 0’ if ~ ( 0 )  = 0’, T is one-to-one, and the inverse mapping q~-l 
is differentiable. In  the case when n = 1 it is customary to replace the 
term “mapping” by the term “function.” 

An analytic function on Rm which vanishes on an open set is identically 
0. For differentiable functions the situation is completely different. In  
fact, if A and B are disjoint subsets of Rm, A compact and B closed, 
then there exists a differentiable function q~ which is identically 1 on A 
and identically 0 on B. T h e  standard procedure for constructing such 
a function q is as follows: 

Y j ( d d )  = pj (x l (q)  - X l ( P ) ,  “ ‘ 2  xn,(q) - Xm(P))  (1 < j d n)  
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Let 0 < a < b and consider the function f on R defined by 

( 0  otherwise. 

Then f is differentiable and the same holds for the function 

which has value 1 for x < a and 0 for x 3 b. The  function t+h on Rm 
given by 

4(x1, ...) X m )  = F(x;  + ... + X:,) 
is differentiable and has values 1 for x: 4- ... + x:~ < a and 0 for 
.Y: + ... + x$ 3 b. Let S and S' be two concentric spheres in Rm, 
S' lying inside S. Starting from $ we can by means of a linear trans- 
formation of RJT1 construct a differentiable function on Rm with value 1 
in the interior of S' and value 0 outside S. Turning now to the sets A 
and B we can, owing to the compactness of A,  find finitely many spheres 
Si (1 < i < fz), such that the corresponding open balls Bi ( 1  < i < n), 
form a covering of A (that is, A C U:!l RJ and such that the closed 
balls Bi (1 < i < n) do not intersect B. Each sphere Si can be shrunk 
to a concentric sphere Si such that the corresponding open balls Bi 
still form a covering of A. Let t+hi be a differentiable function on Rm 
which is identically 1 on B; and identically 0 in the complement of Bi. 
Then the function 

(P = 1 - ( 1  - #l) (1 - #d . * a  (1 - +??I 

is a differentiable function on Rm which is identically 1 on A and iden- 
tically 0 on B. 

Let M be a topological space. We assume that M satisfies the Hausdorff 
separation axiom which states that any two different points in M can be 
separated by disjoint open sets. An open chart on M is a pair ( U ,  p') 

where U is an open subset of M and (P is a homeomorphism of U onto 
an open subset of Rm. 

Let M be a HausdorfT space. A difJerentiable structure 
on M of dimension m is a collection of open charts (Urn, qJcrsA on M 
where (P,( U,) is an open subset of Rm such that the following conditions 
are satisfied: 

Definition. 

(Ml) M = u urn. 
,€A 
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(M,)  For each pair a, /? E A the mapping vs o qll is a differentiable 
mapping of y,(U, n Up)  onto yp(U, n U,). 

(M3)  The collection (U,, T,),~~ is a maximal family of open charts 
for which (Ml) and (M,) hold. 

A diyerentiable manifold (or C“ manifold or simply manifold) of 
dimension m is a HausdorfT space with a differentiable structure of 
dimension m. If M is a manifold, a local chart on M (or a local coordinate 
system on M) is by definition a pair (U,, v,) where a E A. If p E U,  
and va(p) = (xl(p) ,  ..., x,(p)), the set U,  is called a coordinate neighbor- 
hood of p and the numbers xi(p) are called local coordinates of p .  The 
mapping p), : q -+ (xl(q),  ..., xm(q)), q E U,, is often denoted {xl, ..., xm}. 

Condition (M3)  will often be cumbersome to check in 
specific instances. It is therefore important to note that the condition 
(M3)  is not essential in the definition of a manifold. In fact, if only 
( M l )  and (M, )  are satisfied, the family (U,, T,),~~ can be extended in a 
unique way to a larger family of open charts such that (Ml), (M,), 
and ( M 3 )  are all fulfilled. This is easily seen by defining 91 as the set 
of all open charts (V, v) on M satisfying: (1) y( V )  is an open set in Rm; 
(2) for each 01 E A, va o v-l is a diffeomorphism of p’( V n U,) onto 

If we let Rm mean a single point for m = 0, the preceding 
definition applies. The manifolds of dimension 0 are then the discrete 
topological spaces. 

Remark 3. A manifold is connected if and only if it is pathwise 
connected. The proof is left to the reader. 

An analytic structure of dimension m is defined in a similar fashion. 
In (M, )  we just replace “differentiable” by “analytic.” In this case M 
is called an analytic manifold. 

In order to define a complex manifold of dimension m we replace Rm 
in the definition of differentiable manifold by the m-dimensional complex 
space C m .  The condition (M,) is replaced by the condition that the m 
coordinates of tpp o cp;’(p) should be holomorphic functions of the 
coordinates of p .  Here a function f(zl, ..., zln) of m complex variables 
is called holomorphic if at each point (z:, ..., z t )  there exists a power 
series 

Remark 1. 

va(V n G a l *  

Remark 2. 

C a,,l...n, (zl - ZW ... (zm - ~ O m ) ~ m ,  

which converges absolutely to f(zl, ..., z,,J in a neighborhood of the 
point. 

The manifolds dealt with in the later chapters of this book (mostly 
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Lie groups and their coset spaces) are analytic manifolds. From 
Remark 1 it is clear that we can always regard an analytic manifold as 
a differentiable manifold. It is often convenient to  do so because, as 
pointed out before for Rm, the class of differentiable functions is much 
richer than the class of analytic functions. 

Let f be a real-valued function on a C" manifold M. The function f 
is called diflerentiuble at a point f E M if there exists a local chart 
(U,, y,) with p E U, such that the composite function f o yil  is a 
differentiable function on va( U,). The function .f is called dzfferentiable 
if it is differentiable at each point p E M. If M is analytic, the function f 
is said to be analytic at p E M if there exists a local chart (U,, ym) with 
p E U, such that .f o v;' is an analytic function on the set pa( U,). 

Let M be a differentiable manifold of dimension m and let 5 denote 
the set of all differentiable functions on 11.1. The set 5 has the following 
properties: 

(5') Let cp,, ..., vr E 5 and let u be a differentiable function on Rr. 
Then u(p1, ..., yr) E 5. 

(52) Let f be a real function on M such that for each p E M there 
exists a function g E 5 which coincides with f in some neighborhood 
of p. Then f E 5. 

(Z3) For each p E M there exist m functions yl, ..., pm E 5 and an 
open neighborhood U of p such that the mapping q -+ (cpl(q), ..., ynr(q)) 
( q  E U )  is a homeomorphism of U onto an open subset of Rm. The set U 
and the functions vl, ..., vm can be chosen in such a way that each 
f E 5 coincides on U with a function of the form u(vl, ..., p,) where u 
is a differentiable function on Rm. 

The properties (51) and (g2) are obvious. T o  establish (g3) we pick 
a local chart (U,, pa) such tha tp  E U, and write pa(q) = (x l (q) ,  ..., xnL(q)) 
E Rm for q E U,. Let S be a compact neighborhood of v,(p) in Rm such 
that S is contained in the open set pa( U,). Then as shown earlier, there 
exists a differentiable function $ on Rm such that t,b has compact support+ 
contained in ya(U,) and such that #(s) = 1 for all s E S. Let U = rp;'(S) 
where $ is the interior of S and define the function vi (1 < i < m) on 
M bv 

Then the set U and the functions vl, ..., pm have the property stated 
in (S3). In fact, i f f  E 5, then the function f ocp;l is differentiable on 
the set va( U,). 

t The supporf of a function is the closure of the set where the function is different 
from 0. 
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Proposition 1.1. Suppose M is a Hausdotiff space and m an integer 
> 0. Assume 5 is a collection of real-valued functions on M with the 
properties S1, iJ2, and S3. Then there exists a unique collection (U,, q ~ , ) , ~ ~  
of open charts on M such that (Ml), (M,) ,  and (M3)  are satisjied and such 
that the dzrerentiable functions on the resulting manifold are precisely the 
members of 5. 

For the proof we select for each p E M the functions vl, ..., tp?,, and 
the neighborhood U of p given by 53. Putting U, = U and va(q) = 

(ql(q),  ..., vm(q)) (q E U )  we obtain a collection (U,, Y,),~~ of open 
charts on M satisfying (Ml). The condition (M,)  is also satisfied in 
virtue of 53. As remarked earlier, the collection (U,, ~ p , ) , ~ ~  can then be 
extended to a collection (U,, vJaGA: which satisfies (&Il), (M,), and 
(M3).  This induces a differentiable structure on M and each g E 5 is 
obviously a differentiable function. On the other hand, suppose that f 
is a differentiable function on the constructed manifold. If p E M ,  there 
exists a local chart (U,, v,) where 01 E A* such that p E U,  and such that 
f o v;' is a differentiable function on an open neighborhood of tp,(p). 
Owing to (M,) we may assume that 01 E A. There exists a differentiable 
function u on Rm such that f o v;'(x) = u(xl, ..., xm) for all points 
x = (x l ,  ..., xm) in some open neighborhood of qa(p). This means (in 
terms of the 'pi above) that 

f = u(%, " ' J  TVl) 

in some neighborhood of p .  Since p E M is arbitrary we conclude from 
8, and that f E 8. Finally, let (Vp, t,hp)pEB be another collection df 

open charts satisfying (Ml ) ,  (M,), and (M3) and giving rise to the same 
5. Writing f o v;1 = f o t,b;' o ( I$~  o y;') for f E 5 we see that t,bp o v;' 
is differentiable on va( U,  n Vp), so by the maximality (M3),  (U,, y,) E 

( Vs, #a)seB and the uniqueness follows. 
We shall often write C"(M) instead of 5 and will sometimes denote 

by C"(p) the set of functions on M which are differentiable at p .  The 
set P ( M )  is an algebra over R, the operations being 

( W ( P )  = h f ( P ) ,  

(f + 6) (PI = f ( P )  + S(PL 

(fg) (PI = f ( P )  AP) 
for h E R, p E M ,  f ,  g E Cm(M). 

Lemma 1.2. Let C be a compact subset of a manifold M and let V 
be an open subset of M containing C. Then there exists a function t,b E Cm(M) 
which is identically 1 on C, identically 0 outside V.  
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This lemma has already been established in the case M = Rm. We 
shall now show that the general case presents no additional difficulties. 

Let (U,, y,) be a local chart on M and S a compact subset of U,. 
There exists a differentiable function f on q,(U,) such that f is 
identically 1 on y,(S) and has compact support contained in ya( U,). 
The  function F on M given by 

i f  q E U,, 
otherwise 

is a differentiable function on M which is identically 1 on S and iden- 
tically 0 outside U,. Since C is compact and V open, there exist finitely 
many coordinate neighborhoods U,, ..., U, and compact sets S,, ..., S, 
such that 

As shown previously, there exists a function Fi E C"(M) which is 
identically 1 on Si and identically 0 outside Ui. The  function 

$ = 1 - ( 1  -F1)(1 -F*)...(l - F n )  

belongs to Cm(M),  is identically 1 on C and identically 0 outside V.  
Let M be a C" manifold and (U,, qa)acA a collection satisfying ( M I ) ,  

(M2) ,  and (&I3). If U is an open subset of M ,  U can be given a differen- 
tiable structure by means of the open charts (V,, $ J a E A  where V,  = 
U n U,  and +, is the restriction of F, to V,. With this structure, U is 
called an open submanijold of M .  In  particular, since M is locally con- 
nected, each connected component of M is an open submanifold of M .  

Let M and N be two manifolds of dimension m and n,  respectively. 
I,et (U,, and (V,, +a)aeBbe collections of open charts on M arid -N, 
respectively, such that the conditions (M,), ( M 2 ) ,  and ( M J  are satisfied. 

of the product set U, x V ,  into Itrn+". Then the collection ( U ,  x V,, 
ya x $p) ,EA,pEB of open charts on the product space M x N satisfies 
(M,) and (M,) so by Remark I ,  M x N can be turned into a manifold 
the product of M and N .  

An immediate consequence of Lemma 1.2 is the following fact which 
will often be used: Let V be an open submanifold of M ,  f a function 
in Cm(V), and p a point in V .  Then there exists a function 3 E C"(M) 
and an open neighborhood N ,  p E N C V such that f andf agree on N .  

For 01 E A, P E B, let qa x 4, denote the mapping ( p ,  q) - ( d P ) , & ( q ) )  
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Definition. Let M be a topological space and V C  M. A covering 
of V is a collection of open subsets of M whose union contains V. 
A covering {U,},,, of M is said to be locally Jinite if each p E M has a 
neighborhood which intersects only finitely many of the sets U,. 

A Hausdorff space M is called paracompact if for each 
covering { Ua}aEA of M there exists a locally finite covering { Ve)sCB which 
is a refinement of {U,},,A (that is, each VB is contained in some U,). 

A topological space is called normal if for any two disjoint 
closed subsets A and B there exist disjoint open subsets U and V such 
that A C U ,  B C V. 

It is known that a locally compact HausdorfT space which has a count- 
able base is paracompact and that every paracompact space is normal 
(see Propositions 15.1 and 15.2). 

Theorem 1.3. (partition of unity). Let M be a normal manifold and 
{U,}uEA a locally finite covering of M .  Assume that each 0, is compact. 
Then there exists a system {F,},~~ of dz#erentiable functions on M such 
that 

(i) Each q~, has compact support contained in U,. 

We shall make use of the following fact (see Proposition 15.3): 
Let {U,},EA be a locally finite covering of a normal space M. Then 

each set U, can be shrunk to a set V,, such that 0, C U, and { Va}aEA is 
still a covering of M. 

T o  prove Theorem 1.3 we first shrink the U, as indicated and thus 
get a new covering {V,},sA. Owing to Lemma 1.2 there exists a function 
I#, E C"(M) of compact support contained in U, such that I#, is iden- 
tically 1 on V, and +, >, 0 on M. Owing to the local finiteness the sum 
ZaeA $J, = ZJ exists. Moreover, I# E C"(M) and +(p)  > 0 for eachp E M. 
The functions P), = +,/$ have the desired properties (i) and (ii). 

The system { P ) ~ } , ~ ~  is called a partition of unity subordinate to the 
covering 

Definition. 

Definition. 

(ii) F, >, 0, L E A  yo: = 1. 

For a variation of Theorem 1.3 see Exercise A.6. 

§ 2. Tensor Fields 

1. Vector Fields and I-Forms 

Let A be an algebra over a field K. A derivation of A is a mapping 

(9 D(af + P d  = + PDg for a, /3 E K, f , g  E A ;  
D : A + A such that 

(ii) DVg) = f ( W  + ( D n g  for f, g E A. 
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Definition. A vector field X on a C" manifold is a derivation of  the 
algebra Cm(M). 

Let a1 (or al (M))  denote the set of all vector fields on M. I f f  E Cm(M) 
and X ,  Y E W ( M ) ,  then f X  and X + Y denote the vector fields 

f X  : g + f(W, g E C r n ( W ,  

X + Y : g + X g + Y c ,  g E C"(M). 

This turns W ( M )  into a module over the ring 5 = C"(M). If X ,  
Y E W ( M ) ,  then X Y  - Y X  is also a derivation of  Cm(M) and is denoted 
by the bracket [ X ,  y3. As is customary we shall often write B(X) Y = 
[ X ,  yl. The  operator e ( X )  is called the Lie derivative with respect to X .  
The bracket satisfies the Jucobi identity [ X ,  [Y,  Z ] ]  + [Y ,  [Z ,  X I ]  + 
[Z ,  [ X ,  y13 = 0 or, otherwise written B ( X )  ( [ Y ,  Z]) = [O(X) Y ,  Z ]  + 

It is immediate from (ii) that iff is constant and X E a', then X f  = 0. 
Suppose now that a function g E P ( M )  vanishes on an open subset 
V c M. Let p be an arbitrary point in V.  According to Lemma 1.2 
there exists a function f E C"(M) such that f ( p )  = 0, and f = 1 
outside V. Then g = fg so 

[Y,  qx) 21. 

xg = f ( X g )  +g(X f ) ,  

which shows that Xg vanishes at p .  Since p was arbitrary, Xg = 0 
on V. We can now define Xf  on V for every function f E Cm(V). If 
p E V,  select 3. Cm(M) such that f a n d 3  coincide in a neighborhood 
of p and put ( X f ) ( p )  = ( X f ) ( p ) .  The consideration above shows that 
this is a valid definition, that is, independent of the choice of 3. This 
shows that a vector field on a manifold induces a vector field on any 
open submanifold. 

On the other hand, let 2 be a vector field on an open submanifold 
V c M and p a point in V. Then there exists a vector field 2 on M 
and an open neighborhood N ,  p E N C V such that 2 and Z induce 
the same vector field on N .  In fact, let C be any compact neighborhood 
of p contained in V and let N be the interior of C. Choose ~JJ E Cm(M) 
of compact support contained in V such that $ = 1 on C .  For any 
g E Cm(M), let g ,  denote its restriction to V and define 2g by 

Then g -+ i?'g is the desired vector field on M .  
Now, let ( U ,  9)) be a local chart on M ,  X a vector field on U ,  and let 

p be an arbitrary point in U.  We put ~ ( q )  = (xl(q), ..., x,(q)) ( q  E U) ,  
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(Here fj* denotes the partial derivative o f f *  with respect to the j t h  
argument.) Transferring this relation back to M we obtain 

where g ,  E C"(V) ( 1  < i < m), and 

It follows that 

The  mapping f +. (i?f*/ax,) o y (f E Cm( (1)) is a vector field on U and 
is denoted alax,. We write af/axi instead of a/ax , ( f ) .  Now, by (2) 

Thus, a/ax, ( 1  < i < m) is a basis of the module W ( U ) .  
For p E M and X E W, let X ,  denote the linear mapping X,: 

f -* (Xfl ( p )  of C"(p) into R. The  set {X, : X E D1(M)} is called the 
tangent space to M at p ; it will be denoted by W ( p )  or M,, and its elements 
are called the tangent vectors to M at p .  Relation (2) shows that M, is 
a vector space over R spanned by the rn linearly independent vectors 

This tangent vector ei will often be denoted by (alax,),. A linear mapping 
L : Cm(p) --t R is a tangent vector to M at p if and only if the condition 
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L( fg) = f ( p )  L(g)  + g ( p )  L( f) is satisfied for all f, g E Cm(p).  In  fact, 
the necessity of the condition is obvious and the sufficiency is a simple 
consequence of ( 1 ) .  Thus, a vector field X on M can be identified with 
a collection X,,(p E M )  of tangent vectors to M with the property that 
for each f E Cm(M) the function p -+ X,f is differentiable. 

Suppose the manifold M is analytic. The  vector field X on M is 
then called analytic at p if Xf is analytic at p wheneverf is analytic at p .  

Remark. Let V be a finite-dimensional vector space over R.  If 
X,, ,.., X ,  is any basis of V ,  the mapping Zy=l xiXi -+ (x,, ..., xn) is an 
open chart valid on the entire V.  The  resulting differentiable structure 
is independent of the choice of basis. If X E V ,  the tangent space V,  
is identified with V itself by the formula 

which to each Y E V assigns a tangent vector to V at X .  
Let A be a commutative ring with identity element, E a module over 

A. Let E* denote the set of all A-linear mappings of E into A. Then  
E* is an A-module in an obvious fashion. I t  is called the dual of E. 

Let M be a C" manifold and put 5 = Cm(M). Let 
%,(&I) denote the dual of the 8-module W ( M ) .  The  elements of %,(M) 
are called the dzflerential 2-forms on M (or just I-forms on M ) .  

Let X E W ( M ) ,  w E %,(&I). Suppose that X vanishes on an open 
set V.  Then the function w ( X )  vanishes on V. In  fact, if p E V ,  there 
exists a function f E C"(M) such that f = 0 in a compact neighborhood 
of p and f = 1 outside V.  Then fX = X and since w is &linear, 
w ( X )  = fw(X). Hence (w(X))  ( p )  = 0. This shows also that a 1-form 
on M induces a I-form on any open submanifold of M. Using (3) we 
obtain the following lemma. 

Definition. 

Lemma 2.1. Let X E W ( M )  and w E al(M).  If X,, = 0 for  some 
p E M ,  then the function w ( X )  vanishes at p .  

This lemma shows that given w E %,(M), we can define the linear 
function w, on MI, by putting w,(X,,) = ( w ( X ) )  ( p )  for X E nl(M). 
The set D l ( p )  = {oJ,, : w E 'Dl(M)} is a vector space over R.  

We have seen that a 1-form on M induces a 1-form on any open 
submanifold. On the other hand, suppose 6' is a 1-form on an open 
submanifold V of M and p a point in V. Then there exists a I-form g 
on M ,  and an open neighborhood N of p ,  p E N C V ,  such that 0 and 0 
induce the same I-form on N .  In  fact, let C be a compact neighborhood 
of p contained in V and let N be the interior of C .  Select + E Cm(M) of 
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compact support contained in P' such that + = 1 on C. Then a 1-form 
0 with the desired property can be defined by 

o(X)  = +O(X,) on V ,  b ( X )  = 0 outside I/, 

where X E D1(M) and X ,  denotes the vector field on V induced by X. 

Lemma 2.2. 
We already know that Bl(p) C M,*. Now let {xl, ..., xm> be a system 

of coordinates valid on an open neighborhood U of p. Owing to (3), 
there exist 1-forms wi on U such that* wi(a/axi) = tiii (1 < i, j < m). 
Let L E M,*, 1, = L((a/axi),)  and 0 = EZl Zpf. Then there exists a 
1-form 0 on M and an open neighborhood N of p (N C U) such 
that 0 and B induce the same form on N. Then (d), = I, and the 
lemma is proved. 

Each X E W ( M )  induces an &-linear mapping w -+ w(X) of Dl(M) 
into 5. If X ,  # X,, the induced mappings are different (due to 
Lemma 2.2). Thus, W ( M )  can be regarded as a subset of (B,(M))*. 

The module W( M )  coincides with the dual of the module 

Let F E Dl(M)*. Then F( fw) = fF(w) for all f E P(M) 
and all w E BX(M).  This shows that if w vanishes on an open set V, 
F(w) also vanishes on V. Let p E M and (xl, ..., xm} a system of local 
coordinates valid on an open neighborhood U of p. Each 1-form on U 
can be written Zzl fiwi where fi E Cm( U )  and wi has the same meaning 
as above. It follows easily that F(w) vanishes at p whenever wp = 0; 
consequently, the mapping w p  -+ (F(w))  ( p )  is a well-defined linear 
function on a,@). By Lemma 2.2 there exists a unique vector X p  E M p  
such that (F(w)) (p) = wp(Xp)  for all w E %,(M). Thus, F gives rise 
to a family X ,  (p E M) of tangent vectors to &I. For each q E U we 
can write 

The space Dl(p) coincides with M:, the dual of Mp.  

Lemma 2.3. 
W O  

Proof. 

where ai(q) E R. For each i (1 < i < m) there exists a 1-form Gi on M 
which coincides with wi in an open neighborhood N p  of p ,  (N,, C U) .  
Then (F(Gi)) (q) = 66(Xq) == ai(q) for q E Np. This shows that the func- 
tions a, are differentiable. If f E C"(M) and we denote the function 
q --f X,f (q E M) by Xf, then the mapping f -+ Xf is a vector field on 
M which satisfies w ( X )  = F(w) for all w E D1(M). This proves the 
lemma. 

f As usual, 6, j  = 0 if i f  j ,  Sij = 1 if i = j .  
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2. The Tensor Algebra 

Let A be a commutative ring with identity element. Let I be a set 
and suppose that for each i E I there is given an A-module E,. T h e  
product set H i e l  Ei can be turned into an A-module as follows: If 
e = {ei}, e' = {e;} are any two elements in n E i  (where e,, el  E E,), and 
a E A, then e + e' and ae are given by 

( e  + e'), = e,  + e:, (ae), = ae, for i E I. 

The  module H E i  is called the direct product of the modules Ei. The  
direct sum Xicl Ei is defined as the submodule of HEi consisting of 
those elements e = (ei} for which all ei = 0 except for finitely many i. 

Suppose now the set I is finite, say I == {i,  ..., s}. A mapping 
f :  El x ... x E,  --t F where F is an A-module is said to be A-multi- 
linear if it is A-linear in each argument. The  set of all A-multilinear 
mappings of El x ... x E ,  into F is again an A-module as follows: 

(f +f') (el, ..., e,)  = f ( e l ,  ..., e,) +f'(el, ...l e . 4  

(4) (el ,  a * * ,  e,) = 4m,, * ' * 9  e,N. 

Suppose that all the factors Ei coincide. T h e  A-multilinear mapping f 
is called alterncite if f (X , ,  ..., X,) = 0 whenever at least two Xi coincide. 

Now, let M be a C" manifold and as usual we put 8 = Cm(&Z). If 
s is an integer, s 2 1, we consider the 8-module 

Dl x 31 x ... x 3' 

and let as denote the &module of all &multilinear mappings of 
W x ... x D1 into 3. Similarly 3'' denotes the &module of all &multi- 
linear mappings of 

(s times) 

a, x a, x ... x a, ( Y  times) 

into 8. This notation is permissible since we have seen that the modules 
and al are duals of each other. More generally, let 3; denote the 

&-module of all %-multilinear mappings of 

a, x ... x a, x a1 x ... x a1 (a, Y times, a1 s times) 

into 5. We often write %;(M) instead of 3:. We have = D?, 3; = as 
and we put 3; = 8. 

A tensor field T on M of type ( r ,  s) is by definition an element of 
D'JM). This tensor field T is said to be contravariant of degree Y ,  
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cooariant of degree s. In particular, the tensor fields of type (O,O), 
(1, 0), and (0, 1) on M are just the differentiable functions on M ,  the 
vector fields on M and the 1-forms on M ,  respectively. 

If p is a point in M ,  we define Di(p) as the set of all R-multilinear 
mappings of 

M; x ... x M," x M9 x ... x M ,  (M," r times, M,  s times) 

into R. The set D:(p) is a vector space over R and is nothing but the 
tensor product 

M ,  @ ... @ Mv 0 M,* @ ... @ M,* (M,  Y times, M,* s times) 

or otherwise written 
rO:(p) = 0 @ "MZ. 

We also put D,,O(p) = R. Consider now an element T E DL(A4). We have 

q.he1, * a * *  g,e,,fJ,, ..., f . J . 9  ) = g, *.. g v f ,  ... f v q 4 ,  * a * ,  Or, z,, * a * ,  Z.9) 

for f i ,  gi E Cm(M), Zi E D1(M), B j  E Fl(M). It follows from Lemma 1.2 
that if some 0, or some Zi vanishes on an open set V ,  then the function 
T(8,, ..., O,, Z,, ..., 2,) vanishes on V. Let {xl, ..., xm> be a system of 
coordinates valid on an open neighborhood U of p .  Then there exist 
vector fields Xi ( 1  < i < m) and 1-forms oi (1 < j  < m) on A4 and 
an open neighborhood N of p ,  p E N C U such that on N 

On N ,  Zi and 8, can be written 

where fik, gj, E C"(N), and by the remark above we have for Q E N ,  

T(4, a ' . .  e v ,  Zl, . * . I  2,) (4) 

= 2 gill . * *  g r l , . f l k l  "'fsk,T(wZ1, wl,, x k l ,  x k l )  (q ) .  
Z,=l.ki=l 

This shows that T(Bl, ..., B,, Z,, ..., 2,) ( p )  = 0 if some 0, or some Zi 
vanishes at p .  We can therefore define an element TP E Bl(p) by the 
condition 

G((G)~, ..., (a,, (ZA, ..., ( zS)~ )  = w,, ..., ev, zl, ..., z,) (PI. 
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T h e  tensor field T thus gives rise to a family T,, p E M ,  where T, E D!Jp). 
I t  is clear that if T, = 0 for all p ,  then T = 0. The  element T, E D:(p) 
depends differentiably on p in the sense that if N is a coordinate neigh- 
borhood of p and T, (for q E N )  is expressed as above in terms of bases 
for Dl(N) and al(N), then the coefficients are differentiable functions 
on N .  On the other hand, if there is a rule p -+ T(p)  which to each 
p E M assigns a member T(p)  of %:(p) in a differentiable manner (as 
described above), then.there exists a tensor field T of type ( Y ,  s) such 
that T,.= T(p)  for all) E M .  In  the case when M is analytic it is clear 
how to define analytkity of a tensor field T,  generalizing the notion 
of an analytic vector field. 

and Di(p) are dual to each other under the 
nondegenerate bilinear form ( , ) on 3 : ( p )  x D",(p) defined by the 
formula 

The  vector spaces 

where ei ,  e; are members of a basis of M,,, fj, f; are members of a dual 
basis of h2;. It is then obvious that the formula holds if e;, e; are arbitrary 
elements of M ,  and fj, fi are arbitrary elements of Mp*. In  particular, 
the form ( , ) is independent of the choice of basis used in the definition. 

Each T E D;(M) induces an &linear mapping of DT(M) into 8 given 
by the formula 

( T ( S ) )  (P) = V P ?  S,) for S E 'D:(M). 

If T(S)  = 0 for ail S E n;(M),  then T,  = 0 for all p E M ,  so T = 0. 
Consequently, can be regarded as a subset of (a:(M))*. We have 
now the following generalization of Lemma 2.3. 

Lemma 2.3'. The module D:(M) is the dual of D:(M) (r ,  s >, 0). 
Except for a change in notation the proof is the same as that of 

Lemma 2.3. T o  emphasize the duality we sometimes write (T, S> 
instead of T(S) ,  ( T  E D:, S E D;). 

Let D (or a ( M ) )  denote the direct sum of the 8-modules D:(M), 

1'. s=o 

Similarly, if p E M we consider the direct sum 
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The vector space D ( p )  can be turned into an associative algebra over 
R as follows: Let a = el €3 ... @ e, 8 fl 8 ... €3 fs, b = e; 8 ... @ e i  
@ f; ... fi, where ei, e; are members of a basis for M,, fs, fi are 
members of a dual basis for Mp*. Then a @ b is defined by the formula 

a @ b  = e , O  ...O e 7 0 e ~ 0  ...O ebOfiO . . . O f r O f ; O . . . O f ~ .  

We put a €3 1 = a, 1 @ b = b and extend the operation (a ,  b)  -+ a €3 b 
to a bilinear mapping of D ( p )  x D(p) into D@). Then D ( p )  is an asso- 
ciative algebra over R. The formula for a €3 b now holds for arbitrary 
elements ei, e; E M, and fj, fi E Mp*. Consequently, the multiplication 
in a@) is independent of the choice of basis. 

The  tensor product 8 in D is now defined as the &bilinear mapping 
( S ,  T )  -+ S 8 T of D x 3 into D such that 

( S  0 T), = s, 0 T,, S E Di, T E D',,p E M .  

This turns the &-module 2, into a ring satisfying 

f ( S  0 T )  = f S  @ T = S @ f l '  

for f E 5, S ,  T E 3. In other words, D is an associative algebra over 
the ring 5. The algebras 3 and a(p) are called the mixed tensor algebras 
over M and M,, respectively. The  submodules 

are subalgebras of D (also denoted D*(M) and D*(M)) and the subspaces 

m 

D*(P) = 2 W)? D*(P) = 2 W) 
r=O s=o 

are subalgebras of a@). 
Now let Y, s be two integers >, 1, and let i, j be integers such that 

1 < i < Y, 1 < j < s. Consider the R-linear mapping Cij: D!(p) 3 

%;:i(p) defined by 

cij(e, 0 ... 0 e,  ofi 0 ... ofs) = <ej,f9>(e, 0 ... gi ... 0 e,  ofi 0 ...jj ...ofs), 
where el, ..., e, are members of a basis of M,,,f,,  ..., f, are members of 
the dual basis of M,*. (The symbol A over a letter means that the letter 
is missing.) Now that the existence of Cij is established, we note that 
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the formula for Cij holds for arbitrary elements el,  ..., e ,  E M,, fi, ..., 
f, E M,*. In  particular, Cii is independent of the choice of basis. 

There exists now a unique &linear mapping Ci,: D:(M) -+ D:::(M) 
such that 

( C t J ( q p  = Ct5(Tp) 

for all T E D;(M) and all p E M .  This mapping satisfies the relation 

Cij(X1 @ ... @ x, @ w1 @ ... @ w,)  

= ( X i ,  Wj) (X, 0 ... Zi ... @ x, 0 w1 @ ... bj ... 0 w,) 

for all X,, ..., X ,  E D1, wl, ..., w ,  E 3,. T h e  mapping Cii is called the 
contraction of the ith contravariant index and the j t h  covariant index. 

3.  The Grassmann Algebra 

As before, M denotes a C" manifold and 3 = C*(M). If s is an 
integer 2 1, let 'us (or 4I,(M)) denote the set of alternate 3-multilinear 
mappings of D1 x ... x D1 (s times) into 3. Then 'us is a submodule 
of 3,. We put 'u, = 8 and let 'u (or %(M))  denote the direct sum 
'u = 2:=,%, of the &-modules a,. The  elements of % ( M )  are called 
exterior dzfferential forms on M .  The  elements of 'us are called differential 
s-forms (or just s-forms). 

Let G, denote the group of permutations of the set (1 ,  2, ..., s}. Each 
u E 6, induces an 3-linear mapping of D1 x ... x D1 onto itself given by 

(Xl, XJ - (Xo-l,lb ..., Xo-'(sJ ( X i  E 91). 

This mapping will also be denoted by 0. Since each d E Ds is a multi- 
linear map of D1 x ... x D1 into 8, the mapping d o 0-l is well defined. 
NIoreover, the mapping d -+ d o u-l is a one-to-one 3-linear mapping 
of 3, onto itself. If we write u . d = d o u-l we have UT . d = u ' (T . d) .  
Let E ( U )  = 1 or - 1 according to whether u is an even or an odd 
permutation. Consider the linear transformation A,: D , 4  3, given by 

If s = 0, we put A,(d,) = d,. We extend A ,  to an 3-linear mapping 
A: 3, -+ D, by putting A(d)  = x:=, A,(d,) if d = &=,, d,, d, E 3,. 

m 
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If T E G,, we have 

1 1 .  7As(d,) = - 2 ~ ( u )  T . (u . d,) = -- 2 ~ ( u )  (7.) . d ,  
s ! aeC, ! U€C, 

Hence, 7 . (A,s(ds)) = C ( T )  A,(d,). This shows that A,(%,) C 'us and 
A(%,) c 'u. On the other hand, if d,  E then u . d,  = ~(0) d,  for each 
u E 6,. Since E(u)~ = 1 ,  we find that 

AS(4J = n.< if d,  E 91,. 

I t  follows that A2 = A and A(%,) = 'u; in other words, A is a projec- 
tion of 9, onto %. The  mapping A is called alternation. 

Let N denote the kernel of A. Obviously N is a submodule of 3,. 

Lemma 2 L t  
I t  suffices to show that if n, E N n %,, d,  E D,, then A,+,(n, 63 d,) = 

The module N is a two-sided ideal in 3,. 

A,+,(d, @ n,) = 0. Let l ~ , + , ~  = ATt,(nr @ d J ;  then 

(T + s)! b,+, = 2 4.) 0 . (n, 0 4, 
a€=,+ s 

where 

u . (nr 0 dq) ..., XT+s) = nr(Xa( l )*  Xu(,,) d,(Xa(r+I), * * * ,  Xu(r+n))* 

The  elements in GIts which leave each number r + 1 ,  ..., r + s fixed 
constitute a subgroup G of G,,,, isomorphic to 6,. Let S be a subset 
of 6,+, containing exactly one element from each left coset o,G of 
6,, ,. Then, since E(u,u,) = €(a,) €(a2), 

2 44 u . (n, 0 4) = 2 4%) 2 4.) (DOT) . (n, 0 4). 
=C,+s aoeS 7 e G  

Let Xi E D' ( I  < i < r + s), (Y,, ..., Y,+,J = &(XI, ..., X,+J. Then 

Z € G  

This shows that b,+, = 0. Similarly one proves A,+,(d, 63 n,) = 0. 

t Chevalley [2], p. 142. 



5 21 Tensor Fields 19 

For any two 8, w E 'u we can now define the exterior product 

This turns the 5-module '11 into an associative algebra, isomorphic to 
DJN. The  module %(M)  of alternate 8-multilinear functions with the 
exterior multiplication is called the Grassmann algebra of the manifold M. 

We can also for each p E M define the Grassmann algebra.%(p) of the 
tangent space Mp. The  elements of %(p) are the alternate, R-multilinear, 
real-valued functions on M,, and the product (also denoted /?) satisfies 

ev A WTJ = (0 A w)p, e, E 9[. 

This turns %(p)  into an associative algebra containing the dual space 
M:. If 8, w E M,*, we have 6 A w = - w A 8; as a consequence one 
derives easily the following rule: 

E M,* and let w i  = Z:=, a,,@, 1 < i, j < I ,  (aij E R).  
Then 

Let 8', ..., 

A ... A w 1  = det (uJ O1 A ... A Bz. 

For convenience we write down the exterior multiplication explicitly. 
Let f, g E C"(M), 6 E a7, w E as, Xi E W .  Then 

f A R = fg, 

(f A 0) (xl, ..., x,) = ~ x , ,  ..., XJ, 

(w  A g) (XI, . * . I  X , )  = R 4x1, *.*, XJ, 

(0 A w )  (XI, * a * ,  XI,,) (4) 

We also have the relation 

4. Exterior Differentiation 

Let M be a C" manifold, % ( M )  the Grassmann algebra over M .  The  
operator d, the exterior differentiation, is described in the following 
theorem. 
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Theorem 2.5. There exists a unique R-linear mapping d:  % ( M )  +(u(M) 
with the following properties: 

(i) d a ,  C 
(ii) I f f  E 210 (= C"(M)), then df is the 1-form given by df(X)  = X f ,  

(iii) d o  d = 0. 
(iv) d(w, Am2) = d w l A w ,  + (- I)? w l A  d o ,  ifw, EB?, w2 E%(M). 

for each s 3 0. 

x E 91(M). 

Proof. Assuming the existence of d for M as well as for open sub- 
manifolds of M ,  we first prove a formula for d ((9) below) which then 
has the uniqueness as a corollary. L e t p  E M and (xl, ..., xm} a coordinate 
system valid on an open neighborhood U of p .  Let V be an open subset 
of U such that P is compact and p E V ,  P C U. From (ii) we see that 
the forms dx, (1 < i < m) on U satisfy dx,(2/axj) = 6 ,  on U. Hence 
dx, (1 < i < m) is a basis of the Cm( U)-module D1( U )  ; thus each element 
in a,( U )  can be expressed in the form 

It follows that if 8 E %(M)  and if 9, denotes the form induced by 9 
on U ,  then 8, can be written 

This is called an expression of 8, on U. We shall prove the formula 

W,) = ( d e b  

Owing to Lemma 1.2 there exist functions t,hi1,..,, E C""(M), q, E C"(M) 
(1 < i < m) such that 

4 .  I1...?? . = f .  21...Ir? . q1 = xl, ..., q,," = x, on V. 

We consider the form 

on M .  We have obviously wv = B V .  Moreover, since d ( f ( 9  - w ) )  = 
df A (0 -. w )  + fd(0 - W )  for each f E C"(M), we can, choosing f 
identically 0 outside V ,  identically 1 on an open subset of V ,  deduce 
that (d), = (do) , .  
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Since 

owing to (iii) and (iv), and since d ( f v )  = (d f lV  for each f E C“(M), 
we conclude that 

This proves the relation 

On M itself we have the formula 

+ 2 (- l ) i ”w( [X ,  X,], XI, ...) xi, ...) xj, ..., X,,,) (9) 
i < I  

for w E X,,(M) ( p  > I ) ,  Xi E al(M). In fact, it suffices to prove it in 
a coordinate neighborhood of each point; in that case it is a simple 
consequence of (8). The  uniqueness of d is now obvious. 

On the other hand, to prove the existence of d,  we dejine d by (9) 
and (ii). Using the relation [ X ,  fY] = f [ X ,  Y ]  + (Xfl Y (f E 8 ;  X ,  
Y E W), it follows quickly that the right-hand side of (9) is 8-linear 
in each variable Xi and vanishes whenever two variables coincide. 
Hence dw E 2$,+, if w E 91,. If X E W ,  let X ,  denote the vector field 
induced on V. Then [ X ,  Y ] ,  = [X, ,  Y,] and therefore the relation 
(do), = d(0,) follows from (9). Next we observe that (8) follows from (9) 
and (ii). Also 

4 f i )  = f a g  + gdf (10) 

as a consequence of (ii). T o  show that (iii) and (iv) hold, it suffices to 
show that they hold in a coordinate neighborhood of each point of M. 
But on V ,  (iv) is a simple consequence of (10) and (8). Moreover, 
(8) and (ii) imply d(dxi) = 0; consequently (using (iv)), 

for each f E Cm( U).  The  relation (iii) now follows from (8) and (iv). 
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$3 .  Mappings 

1. The Interpretation of the jacobian 

Let M and N be C" manifolds and @ a mapping of M into N .  Let 
p E M .  The  mapping @ is called dzfferentiable at p if g o @ E C'"(p) for 
each g E C"(@(p)).  The  mapping 0 is called dzfferentiable if it is differen- 
tiable at each p E M .  Similarly analytic mappings are defined. Let 
#: q + (x l (q) ,  ..., x&)) be a system of coordinates on a neighborhood 
U of p E M and +': r + (y1(y), ...,yn( Y ) )  a system of coordinates on a 
neighborhood U' of @(p)  in N .  Assume @(U)  C U'. The  mapping 
#' c @ c a,-' of #( U )  into #'( U')  is given by a system of n functions 

y j  = ?3(.2"1, *.*> xm> (1 <.j < 4, (1) 

which we call the expression of @ in coordinates. The  mapping Q, is 
differentiable at p if and only if the functions rpi have partial derivatives 
of all orders in some fixed neighborhood of (x l (p) ,  ..., xwt(p)).  

The  mapping @ is called a diffeomorphism of M onto N if @ is a 
one-to-one differentiable mapping of M onto N and @-I is differen- 
tiable. If in addition M ,  N ,  0, and @-I are analytic, @ is called an 
analytic dzffeomorphism. 

If @ is differentiable at p E M and A E M,, then the linear mapping 
B : C"(@(p)) +- R given by B(g) = A(g o 0) for g E C"(@(p)) is a 
tangent vector to N at @(p) .  The  mapping A + B of M ,  into NQ(p) is 
denoted d@# (or just @#) and is called the diflerential of @ at p .  We have 
seen that the vectors 

(1 < i < m), ,f* = f o 9-1, 

form a basis of M ,  and N@(#) ,  respectively. Then 

Rut 
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This shows that if we use the bases ei (1 < i < m), Fj (1 < j < n) to 
express the linear transformation dsPp in matrix form, then the matrix 
we obtain is just the Jacobian of the system (1). From a standard theorem 
on the Jacobian (the inverse function theorem), we can conclude: 

Proposition 3.1. If dsPp is an isomorphism of M p  onto No(,), then 
there exist open submanifolds U C M and V C N such that p E U and 
sP is a dtzeomorphism of U onto V.  

If N = R, No,,, is identified with R (Remark, $2) and 
thus dQP becomes a linear function on M,. This is the same linear 
function as we obtain by considering dsP as a differential form on M. 
In  fact, if X E M,, the tangent vector dSB,(X) and the tangent vector 

Remark. 

both assign to f the numberf(@(p)) (XsP). 

Definition. 

Let M and N be differentiable (or analytic) manifolds. 
(a) A mapping 0 : M -+ N is called regular at p E M if sP is differen- 

tiable (analytic) at p E M and dQP is a one-to-one mapping of M p  
into No(,). 

(b) M is called a submanifold of N if (1) M C  N (set theoretically); 
(2) the identity mapping I of M into N is regular at each point of M .  

For example, the sphere x: + xg + xi = 1 is a submanifold of R3 
and a topological subspace as well. However, a submanifold M of a 
manifold N is not necessarily a topological subspace of N .  For example, 
let N be a torus and let M be a curve on N without double points, 
dense in N (Chapter 11, $2). Proposition 3.1 shows that a submanifold 
M of a manifold N is an open submanifold of N if and only if dim M 
= dim N .  

Let M be n submanifold of a manifold N and let 
p E M .  Then there exists a Coordinate system {xl ,  ..., xn} valid on an open 
neighborhood V of p in N such that q ( p )  = ... = x,(p) = 0 and such 
that the set 

U = ( q ~ V : x ~ ( q ) = O f o r m + l  < j < n >  

together with the restrictions of (xl ,  ..., xnJ to U form a local chart on M 
containing p .  

Let {yl ,  ..., ym} and {zl, ..., zn} be coordinate systems valid 
on open neighborhoods of p in M and N ,  respectively, such that 
y,(p) = q ( p )  = 0, (1 < i < m, I < j  < n). The  expression of the 

Proposition 3.2. 

Proof. 
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identity mapping I : M -+ N is (near p) given by a system of functions 
zj = tpj(yl, ..., y,J, 1 < j' < n. The Jacobian matrix (a(p,/ay,) of this 
system has rank m at p since I is regular at p .  Without loss of generality 
we may assume that the square matrix (ayi/ay,)lGi,jSm has determinant 
# 0 at p .  In  a neighborhood of (0, ..., 0) we have therefore yi = 
a,hi(zl, ..., z,J, 1 < i < m, where each a,h, is a differentiable function. 
If we now put 

X I  = za, I < i < m ,  

Xi = xi - Cpi(+1(z1, .'., %), +&I, .**, %I), m + l < i < n ,  

it is clear that 

det ($) # 0, det (3) # 0. 
azn I < i .k<n  1 1 S i .  I d m  

Therefore {xl, ..., xn} gives the desired coordinate system. 
A generalization is given by Theorem 15.5. 

2. Transformation of Vector Fields 

Let M and N be C" manifolds and @ a differentiable mapping of M 
into N. Let X and Y be vector fields on M and N, respectively; X and 
Y are called @-related if 

d@,(X,) = Y,(,, for all p E M .  (3) 

(4) 

It is easy to see that (3) is equivalent to 

(Yf) osp = xu0 sp) for all f E Cm(N). 

It is convenient to write d@ . X = Y or X@ = Y instead of (3 ) .  

Proposition 3.3. 
(i) Suppose d@ . X i  = Yi (i  = 1, 2). Then 

d@ * [Xi ,  Xz] = [Yi ,  Y J .  

(ii) Suppose @ is a diffeomorphism of M onto itself and put f @ = f o @-l 

for f E Cm(M). Then if X E W ( M ) ,  

( f X ) @  = f @ X @ ,  (Xf)" = X@f@. 

Proof. From (4) we have (Yl (Yzf ) )  o @ = X l ( y 2 f  0 @) = 
Xl(Xz ( f  o @)), so (i) follows. The last relation in (ii) is also an immediate 
consequence of (4). As to the first one, we have for g E Cm(lM) 

((fX)@d 0 @ = ( f X )  k 0 @I = f ( (X@g> 0 @I9 
so 
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Since X"f = (Xf"-')" it is natural to make the following 
definition. Let @ be a diffeomorphism of M onto M and A a mapping 
of Cm(M) into itself. The mapping A" is defined by A"f = (A-f-')" 
for f E @"(M). We also write [Afl ( p )  for the value of the function Af 
at p E M .  If @ and Y are twodiffeomorphismsof M ,  then f"' = (f')" 
and A@'" = (A')". 

Remark. 

3. Effect on Differential Forms 

Let M and N be C" manifolds and @ : M -+ N a differentiable 
mapping. Let w be an r-form on N. Then we can define an r-form 
@*w on M which satisfies 

@*"(X,, ..., X,) = "(Y,, ..., Y,) 0 @ 

whenever the vector fields Xi and Yi (1 < i < r )  are @-related. It 
suffices to put 

(@*"),(A,, ..., 4.1 = ""hlLd@,(4), ** .% d @ * ( 4 ) )  

for each p E M ,  and A* E M,. I f f  E C"(N), we put @*f = f o @ and 
by linearity @*O is defined for each 8 E %(M). Then the following 
formulas hold: 

@*(OJ, A "2) = @*(4 A @*(%A "1, "2 E %(MI; ( 5 )  

d ( @ * o )  = @*(dw). ( 6 )  

In  fact, (5 )  follows from (4), $2, and (6) is proved below. I n  the same 
way we can define @*T for an arbitrary covariant tensor field T E a*(M).  
If M = Nand @ is a diffeomorphism of M onto itself such that @*T = T,  
we say that T is invariant under @. 

The computation of @*a in coordinates is very simple. Suppose U 
and V are open sets in M and N, respectively, where the coordinate 
systems 

E: q - (Xl(P)> -.*, %n(d), 7: r - (Ydr)?  . * * I  Yn(r)) 

are valid. Assume @(U) c V. On U, CP has a coordinate expression 

Yi = Vj(X1, -.*, ~ m )  (1 < j < n). 

If w E %(N), the form wv has an expression 

W V  = C gi, ... is d ~ j ,  A ..- A dyi. (7) 

wheregjl ... i, E C"(V). The form @*w induces the form ( @ * w ) ~  on U, 
which has an expression 
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This expression is obtained just by substituting 

into (7). This  follows from ( 5 )  if we observe that (2) implies 

This proves (6) if w is a function, hence, by (7), in general. 

9 4. Affine Connections 

Definition. An afine connection on a manifold M is a rule v which 
assigns to each X E D1(M) a linear mapping vx of the vector space 
D1(M) into itself satisfying the following two conditions: 

(V1) V f X 9 Y  =fVx f R v Y ;  

(Vz) 

for f, g E C"(M), X ,  Y E  W ( M ) .  T h e  operator v x  is called covnriant 
differentiation with respect to X .  For a motivation see Exercises F.l-F.3. 

Suppose M has the afine connection X + vx and let 
U be an open submanifold of M. Let X ,  Y E D1(M). If X or Y vanishes 
identically on U ,  then so does vx( Y ) .  

Suppose Y vanishes on U. Let p E U and g E C"(M). T o  
prove that ( Vx( Y )  g) ( p )  = 0, we select f E C"(M) such that f(p) = 0 
and .f = 1 outside U (Lemma I .2). Then f Y = Y and 

V x ( . f Y )  = f Vx( Y )  + (W) y 

Lemma 4.1. 

Proof. 

Bx( Y )  R = V x ( f Y )  g = ( X f )  ( Yg) + f( O x ( Y )  g) 

which vanishes at p .  The  statement about X follows similarly. 
An affine connection v on M induces an a g n e  connection V u  on 

an arbitrary open submanifold U of M. In  fact, let X ,  Y be two vector 
fields on U.  For each p E U there exist vector fields X ' ,  Y' on M which 
agree with X and Y in an open neighborhood V of p .  We then put 
(( vu)x( Y)) ,  = ( dx,( Y')), for q E V.  By Lemma 4.1, the right-hand 
side of this equation is independent of the choice of X ' ,  Y'. It follows 
immediately that the rule vu: X -+ ( vu)x ( X  E D1( U ) )  is an affine 
connection on U. 

In  particular, suppose U is a coordinate neighborhood where a 



5 41 AfFine Connections 27 

coordinate system q~ : q -+ (x l (q) ,  ..., x,(q)) is valid. For simplicity, we 
write V i  instead :f (vv)a,az,. We define the functions rijk on U by 

For simplicity of notation we write also rdjk for the function r i j k  o q~-1 .  

If {yl, . . . ,ym) is another coordinate system valid on U ,  we get another 
set of functions r i B Y  by 

v.m (7-) a = c r:sy a 
Ya Y 

Using the axioms V1 and Vz we find easily 

On the other hand, suppose there is given a covering of a manifold M 
by open coordinate neighborhoods U and in each neighborhood a 
system of functions rijk such that (2) holds whenever two of these 
neighborhoods overlap. Then we can define vi by (1) and thus we 
get an atfine connection vu in each coordinate neighborhood U. We 
finally define an affine connection 9 on M as follows: Let X ,  Y E W ( M )  
and p E M .  If U is a coordinate neighborhood containing p ,  let 

( w%l = ((VU)X,(Yl)), 

if Xl and Yl are the vector fields on U induced by X and Y ,  respectively. 
Then 9 is an affine connection on M which on each coordinate neigh- 
borhood U induces the connection vv. 

Lemma 4.2. Let X ,  Y E %l(M). If X vanishes a t  a point p in M ,  
then so does Vx( Y).  

Let {xl, ..., xm} be a coordinate system valid on an open neighborhood 
U of p .  On the set U we have X = Zi f i (a /ax i )  where fi E Cm( U )  and 

f i (p)  = 0, (1 < i < m). Using Lemma 4.1 we find ( Vx(Y)),) = 

&fi(P)  ( Oi(Y))p = 0. 
Remark. 

Definition. 

Thus  if o E M,, V,(Y) is a well-defined vector in M,. 

Suppose V is an affine connection on M and that @ is 
a diffeomorphism of M .  A new affine connection v‘ can be defined on 
M by 

Vi(Y> = ( V X V  0 >> 0-1 ! x, YE ayM). 

That V’ is indeed an affine connection on M is best seen from Prop. 3.3. 
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T h e  affine connection is called invariant under @ if v' = v. In  
this case Q, is called an afine transformation of M .  Similarly one can 
define an affine transformation of one manifold onto' another. 

5. Parallelism 

Let M be a C" manifold. A curve in M is a regular mapping of an 
open interval I C R into M .  T h e  restriction of a curve to a closed sub- 
interval is called a curve segment. T h e  curve segment is called finite if 
the interval is finite. 

Let y : t -+ y ( t )  ( t  E I )  be a curve in M. Differentiation with respect 
to the parameter will often be denoted by a dot (.). In  particular, + ( t )  
stands for the tangent vector dy(d /d t ) , .  Suppose now that to each t E I 
is associated a vector Y ( t )  E Assuming Y ( t )  to vary differentiably 
with t ,  we shall now define what it means for the family Y ( t )  to be 
parallel with respect to y. Let J be a compact subinterval of I such that 
the finite curve segment yJ : t ---t y ( t )  ( t  E J )  has no double points and 
such that y( J )  is contained in a coordinate neighborhood U. Owing to 
the regularity of y each point of I is contained in such an interval J 
with nonempty interior. Let {x l ,  ..., xm} be a coordinate system on U.  

Let g ( t )  be a differentiable function on an open interval Lemma 5.1. 
containing J.  Then there exists a function G E C"(M) such that 

G(y(t))  = dt) ( t  E J ) .  
Proof. Fix to G J .  There exists an index i such that the mapping 

t -+ x,(y(t))  has nonzero derivative when t = to. Thus there exists a 
function 7, of one variable, differentiable in a neighborhood of x,(y(t,)), 
such that t = qi(xi(y(t)))  for all t in an interval around to. The  function 
q -+ g(Ti(xi(q))) is defined and differentiable for all q E U sufficiently 
near y( to) .  Select G* E Cm( U )  such that G*(q) = g(Ti(xi(q))) for all q 
in some neighborhood of y(t,).  Then 

G*(r(t)) = g(t) 

for all t in some interval around to. Owing to the compactness of J 
there exist finitely many relatively compact open subsets U,, ..., U,  of 
U covering y( J )  and functions Gi E Cm( U )  such that Gi(y( t ) )  = g ( t )  if 
y ( t )  E U, (1 < i < n) .  Since U has a countable base it is paracompact 
and the sequence U,, ..., U ,  can be completed to a locally finite covering 
{Ua}acA of U. We may assume that each U, is relatively compact and 
that U ,  n y ( J )  = 9, if 01 is none of the numbers 1, ..., n.  Let {ya}reA 
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be a partition of unity subordinate to this covering. Then the function 
G' = Zp=l G,vi belongs to C""(U) and G'(y(t)) = g ( t )  for each t E J. 
Finally, let t,b be a function in Cm(M) of compact support contained in 
U such that t,b = 1 on y(J) .  The function G given by G(q) = +(q) G'(q) 
if q E U and G(q) = 0 if q 4 U then has the required properties. 

We put X( t )  = +(t) (t €1). Using Lemma 5.1 it is easy to see that 
there exist vector fields X, Y E W ( M )  such that (Y(t)  being as before) 

X,(t, = X ( t ) ,  y,,,, = y(ti ( t  E J). 
Given an affine connection v on M ,  the family Y(t)  (t E J )  is said to be 
parallel with respect to yJ (or parallel along yJ) if 

VX(Y),,t, = 0 for all t E J.  (1) 

T o  show that this definition is independent of the choice of X and Y, 
we express (1) in the coordinates {xl, ..., xm}. There exist functions 
Xi, Yj (1 < i, j < m) on U such that 

For simplicity we put xi ( t )  = x,(y(t)),  Xi(t)  = Xi (y(t)), and Yi(t) = 

Yi(y( t ) )  (t E J )  (1 < i < m). Then Xi(t)  = 3i,(t) and since 

we obtain 

This equation involves X and Y only through their values on the curve. 
Consequently, condition (1) for parallelisni is independent of the choice 
of X and Y. It is now obvious how to define parallelism with respect 
to any finite curve segment yJ and finally with respect to the entire 
curve y. 

Definition. Let y :  t -+ y( t )  (t €1) be a curve in M. The curve y 
is called a geodesic if the family of tangent vectors q(t) is parallel with 
respect to y. A geodesic y is called maximal if it is not a proper restriction 
of any geodesic. 

Suppose yJ is a finite geodesic segment without double points con- 
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tained in a coordinate neighborhood U where the coordinates {xl, ..., xm} 
are valid. Then (2) implies 

If we change the parameter on the geodesic and put t =f(s), 
( f ' ( s )  f 0), then we get a new curve s 4 yJ( f (s)) .  This curve is a geodesic 
if and only iff is a linear function, as (3) shows. 

Proposition 5.2. Let p ,  q be two points in M and y a curve segment 
from p to q. The parallelism r with respect to y induces an isomorphism 
of M ,  onto M,. 

Without loss of generality we may assume that y has no 
double points and lies in a coordinate neighborhood U. Let {xl, ..., xrn> 
be a system of coordinates on U. Suppose the curve segment y is given 
by the mapping t + y( t )  (a < t < b) such that y(a) = p ,  y(b) = q. 
As before we put xi(t) = x,(y(t)) (a < t < b) (1 < i < m). 

Consider the system (2). From the theory of systems of ordinary, 
linear differential equations of first order we can conclude: 

There exist m functions rp,(t, y l ,  ..., ym)  (1 < i < m) defined and 
differentiablet for a < t < b, - 00 < yi < w such that 

(i) For each m-tuple (yl, ..., ym), the functions Yi(t)  = rpi(t, y l ,  ..., ym)  
satisfy the system (2). 

(ii) ~ i ( a ,  y1, ..., ~ m )  =z y i  

Proof. 

(1 < i < m). 

The functions rpi are uniquely determined by these properties. 
The  properties (i) and (ii) show that the family of vectors Y ( t )  = 

Xi Yi(t) (a/&,) (a < t < b)  is parallel with respect to y and that 
Y(n) = E, y,(i3/&,),. The mapping Y ( a )  -+ Y(b)  is a linear mapping 
of M2, into M, since the functions rpi are linear in the variables yl,. ..., ym. 
This mapping is one-to-one owing to the uniqueness of the functions rpi. 
Consequently, it is an isomorphism. 

Proposition 5.3. Let M be a dzfferentiable manifold with an afine 
connection. Let p be any point in M and let X # 0 in M p .  Then there 
exists a unique maximal geodesic t ---t y( t )  in M such that 

Y(0 )  = PI p(0) = x. (4) 

t A function on a closed interval I is called differentiable on I if it is extendable 
to a differentiable function on some open interval containing I. 
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Proof. Let F : q + (xl(q),  ..., x,(q)) be a system of coordinates on 
a neighborhood U of p such that F( U )  is a cube {(xl, ..., x,,) : 1 xi I < c} 
and y (p )  = 0. Then X can be written X = Xi a,(a/ax,), where a, E R. 
We consider the system of differential equations 

-- dzk - - 3 r j i k  ( x l ,  ..., x,) zizi 
i.3=1 dt (5 ' )  

with the initial conditions 

(XI, ..., x,,, 21, ..., z,)t=o = (0, ..., 0, ..., a,). 
Let cl, K satisfy 0 < c1 < c, 0 < K < co. In the interval I xi j < c,, 

I zi I < K (1 < i < m), the right-hand sides of the foregoing equations 
satisfy a Lipschitz condition. 

From the existence and uniqueness theorem (see, e.g., Miller and 
Murray [I], p. 42) for a system of ordinary differential equations we 
conclude: 

There exists 'a constant b,  > 0 and differentiable functions xi( t ) ,  
zi(t) ( I  < i < m) in the interval I t j < b, such that 

(1 d < 4, -- dzk(t) - - $ r,,k(Xl(t), ..., XW'(t)) z , ( t )  z 3 ( t )  
t . 3 = 1  

dt 

I t1  < b 1 ;  

(ii) (xl( t ) ,  ..., x,(t), zl(t), ..., ~ , ( t ) ) ~ = ~  = (0, ..., 0, al, ..., a,); 
(i i i)  I x, ( t )  I < c1, I zdt) I < K (1 < i < m ) ,  J t l  < b l ;  

(iv) x,(t), z , ( t )  (1 < i < rn) is the only set of functions satisfying 
the conditions (i), (ii), and (iii). 

This shows that there exists a geodesic t + y( t )  in M satisfying (4) 
and that two such geodesics coincide in some interval around t = 0. 
Moreover, we can conclude from (iv) that if two geodesics t -+ yl( t )  
( t  E 11), t -+ y2( t )  ( t  E I,)  coincide in some open interval, then they 
coincide for all t E I, n 12. Proposition 5.3 now follows immediately. 

The geodesic with the properties in Prop. 5.3 will be 
denoted yx. If X = 0, we put y x ( t )  = p for all t E R. 

Definition. 
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§ 6. The Exponential Mapping 

Suppose again M is a C" manifold with an affine connection. Let 
p E M. We use the notation from the proof of Prop. 5.3. We shall now 
study the solutions of ( 5 )  and (5') and their dependence on the initial 
values. From the existence and uniqueness theorem (see, e.g., Miller 
and Murray [l], p. 64) for the system (5 ) ,  (S), we can conclude: 

There exists a constant b (0 < b < c) and differentiable functions 
d t ,  tl, ..., tm, 11, ..., lm) for I t I < 2 4  I ti I < b, I l j  I < b (1 < i,i < 4 
such that: 

(i) For each fixed set (f1, ..., tm, tl, ..., 5,) the functions 

satisfy ( 5 )  and (5') and I xi(t) I < cl, I q ( t )  I < K .  

(ii) (x l ( t ) ,  ..., x,(t), z l ( t ) ,  ..., zm(t))r=o = ((1, ..., tm, 51, 

(iii) The  functions qi are uniquely determined by the above properties. 
5,)- 

Theorem 6.1. Let M be a manifold with an afine connection. Let p 
be any point in M .  Then there exists an open neighborhood No of 0 in M ,  
and an open neighborhood N ,  of p in M such that the mapping X -+ yx( 1) 
is a diffeomorphism of No onto N,. 

Proof. Using the notation above, we put 

for 1 < i < m, 1 t 1 < 2b, 1 Ci 1 < b. Then 

Since yx(st) = ysx(t), the uniqueness (iii) implies 
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with respect to the ith argument; from ( I )  we get by differentiating 
with respect to s, 

111 

t[Dl$i] (s t ,  51 ,  -.., 1,) = t k [ D k + l # i l  ( t ,  s 6 1 ,  **.) s5m) ,  
k=l 

This shows that the mapping 

?P : ( 5 1 ,  *** ,  5,) + (#l(b, 511 . * a ,  c,J, *.*> $?n(b, 51, ..., 5,)) 

has Jacobian at the origin equal to bm. The  mapping Y is just the mapping 
X -+ yx(b )  expressed in coordinates (5 3, No. I ) .  Since ’ybx(l) = yx(b),  
the theorem follows. 

The  mapping X -+ yx(l) described in Theorem 6.1 is 
called the Exponential mapping at p and will be denoted by Exp (or 

Let M be a manifold with an affine connection and p 
a point in M .  An open neighborhood No of the origin in M p  is said to 
be normal if: (1) the mapping Exp is a diffeomorphism of No onto an 
open neighborhood N ,  of p in M ;  (2) if X E No, and 0 < t < 1, then 

The  last condition means that No is “star-shaped.” A neighborhood 
N, of p in M is called a normal neighborhood of p if N ,  = Exp No 
where No is a normal neighborhood of 0 in Mp. Assuming this to be 
the case, and letting X,,  ..., X,, denote some basis of Mp, the inverse 
mapping+ 

Definition. 

EXP,). 

Definition. 

tX  E No. 

E X P ~  (~1x1 + + a m x m )  + (a17 .**, am) 

of N ,  into Rm is called a system of normal coordinates at p .  
We shall now prove a useful refinement of Theorem 6.1. 

t Here and sometimes in the sequel we allow ourselves to denote the inverse of a 
one-to-one mapping X-+ + ( X )  by 4 ( X )  --+ X .  



34 ELEMENTARY DIFFERENTIAL GEOMETRY [Ch. I 

Theorem 6.2. Let M be a C" manifold with an affine connection. 
Then each point p E M has R normal neighborhood N ,  which is a normal 
neighborhood of each of its points. (In particular, two arbitrary points in 
N,, can be joined by exactly one* geodesic segment contained in Np.) 

We shall use the notation from the proof of Prop. 5.3 and consider 
again the functions vi(t, El, ..., En,, cl, ..., 5,) above. If q E U and 
0 < 6 < c - maxi [ xi(q) 1, then the subset of U given by 

will be called a spherical neighborhood of q with radius 6. 
Now consider an m-tuple (f1, ..., 4,) where [ & 1 < b, 1 < i < m. 

Let q E U be determined by xt(q) = ti (1 \< i < m).  By the proof 
above, the mapping 

@ : (51, . ' .9 5,) - (P,(b, 51, *.., t,, 51, *..? 5m), * . a ,  Y m @ ,  51, *-., tm, 5 1 ,  . . a ,  5,)) 

has Jacobian b" at the origin (cl, ..., 5,) = (0, ..., 0). Hence p-l o 0 is 
a diffeomorphism of a neighborhood <: + ... + 5: < r2 (r  < b)  of the 
origin in Rm onto an open neighborhood N ,  of qin M .  We can suppose 
r taken as large as possible with this property. For reasons of continuity 
there exists a 6, > 0 such that, if .$; + ... + fk  < a:, then the corres- 
ponding N ,  all have a spherical neighborhood of p in common. By 
taking 6, small enough we may assume that this spherical neighborhood 
is Vh60(p). Since N, is normal, this proves: 

There exists a number 6, > 0 such that for each q E Va,(p), 
the spherical neighborhood V2,0(q) is contained in a normal neighborhood 

The neighborhood V60(p) therefore has the following property: For 
each pair of points ql, q2 E Vao(p) there exists at most one geodesic 
segment contained in V&), joining q1 and qz. A neighborhood with 
this property will be called simple. It is obvious that if 0 < 6 < a,, 
then V&) is also simple. We shall now show that for all sufficiently 
small 6, V,(p)  is also convex, that is, two arbitrary points in V&) can 
be joined by a geodesic segment contained in V6(p).  

Lemma 6.3. 

of 4. 

Let 8* be a number satisfying the following two conditions: 
(i) 0 < 6" < 6,; 
(ii) The  matrix (aij  - C., x,  T i t )  is strictly positive definite for 

Zk x; < ( S * ) 2 .  (Here aij = I if i = j ,  0 otherwise.) 

t Except for a linear change of parameter on the geodesic. 
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It is obvious that such a number 6* does exist. Theorem 6.2 is con- 
tained in the following lemma. 

Lemma 6.4. If 0 < 6 < 6*, the neighborhood Vd(p) is a normal 
neighborhood of each of its points. In particular, V6(p) is simple and convex. 

Proof. The boundary D of Vs(p) is a submanifold of V60(p). We first 
prove that if a geodesic y : t + y(t) is tangent to D at a point qo = y(to), 
then for all t # to sufficiently close to to, the point y(t )  lies outside 
D. As before, we put xk(t) = Xk(y(t)) (1 < k < m). Then the functions 
xk(t)  satisfy (3), 5 5 ,  in a neighborhood of t,. In  Taylor's formula 

q t o  + d t )  = q t 0 )  + dt@(t0) + 4 ( ~ t y  ;(to) + 0(dt)3 

for the function ~ ( t )  = Zr=l (Xk(t))2 - 62, we have 

k-1 

Using (ii), it follows that F(to + A t )  > 0 provided A t  is sufficiently 
small and # 0. This proves the statement concerning y. 

For a pair P, Q E V6(p) we have therefore only two possibilities: 
1) There is no geodesic segment inside V&) which joins P and Q. 

In this case, the unique geodesic segment inside N p  which joins P and 
Q will contain points outside the boundary D. 

2) There exists a geodesic segment inside V&) which joins P and Q. 
In this case P and Q are said to be mutually visible inside V&). 

Let S denote the subset of V@) x Vd(p) consisting of all point- 
pairs which are mutually visible inside V&). The set S is nonempty 
and we shall now show that S is open and closed in the relative topology 
of V6(p) x Vd(p). In view of the connectedness of Vd(p), this will prove 
Lemma 6.4. 

I. S is closed. Let (p,, q,) be a sequence in S which converges to 
(p* ,  q*) E Vd(p) x V&). We join p ,  and qn by a geodesic segment 
t + y,(t) in V&) such that y,(O) = p,, y,(b) = q,. Similarly, p* and 
q* are joined by a geodesic segment y*(t) (0 ,< t < b) inside Np* . 
Consider the mapping @ above for ((in), ..., (g') = (x1(p,), ..., xm(pn)). 



36 ELEMENTARY DIFFERENTIAL GEOMJlTRY [Ch. I 

Under this mapping the point qn corresponds to a certain m-tuple 
((ln-’, ..., (2’). Since these m-tuples are bounded (I ti I < b), we can, 
passing to a subsequence if necessary, assume that (5in),  ..., 5;’) con- 
verges to a limit (C:, ..., (:) as n --+ 00. Then for 1 < i < m and 0 \< t < b 
the sequence 

converges to 
cpf(t, g’, ..., t:), p ,  ..., c:)) 

V i ( 4  X , ( P * ) ,  ... 9 X,(P*), q, ..., 52) 

which represents a geodesic inside V,,o(p*) joining p*  to q*. Owing 
to the uniqueness, it follows that 

x,(y*(t)) = Vi(t ,  .,(P*), ... , xm(p*), s:, ‘ * ’ Y  t;> 

for 0 < t < b, 1 < i < m ;  in other words yn(t) -+ y * ( t )  for 0 < t < b. 
Since y,(t)  E V&) (0 \< t < b) it follows that y* contains no points 
outside the boundary D. Owing to 1) above, we have (p*,  q*) E S; 
hence S is closed. 

11. S is open. In fact, the same argument as in I shows that the 
complement (V&) x V@)) - S is closed. 

Definition. Let M be a manifold with an affine connection. Let p 
be a point in M and N ,  a normal neighborhood of p .  Let X E M ,  and 
for each q E N p  put (X*) ,  = T ~ , X  where T~~ is the parallel translation 
along the unique geodesic segment in N, which joins p and q. It is 
clear from (2), $ 5 ,  that (X*) ,  depends differentiably on q. The vector 
field X* on N,, thus defined, is said to be adapted to the tangent vector X .  
As before, let O(X*) denote the Lie derivative with respect to X*. 

An affine connection v on an analytic manifold M is 
called analytic if for each p E M ,  vx( Y) is analytic at p whenever the 
vector fields X and Y are analytic at p .  

Let M be an analytic manifold with an analytic affne 
connection v. Let p E M and X # 0 in M p .  Then there exists an E > 0 
such that the dzyerential of Exp (= Ex$,) is given by 

Definition. 

Theorem 6.5. 

f0Y 1 t I < E. 
Here (1 - e-A)/A stands for Er (- A)m/(m + I)! and as usual 

(Remark, $2,  No. 1 )  M, is identified with its tangent space at each 
point. 
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Proof. The mapping Exp is analytic at the origin in M,. Let f be 
an anlytic function at p .  Then there exists a star-shaped neighborhood 
Uo of 0 in Mp such that 

f(EXP 2) = P(Z1, * * - ,  Zm), 2-E uo, 
where P is an absolutely convergent power series and zl, ..., x, are 
the coordinates of 2 with respect to some basis of M,. It follows that 
for fixed 2 E Uo 

“ I  
n! 

f(Exp t 2 )  = P(tz l ,  ..., tXm) = 2 - antn (an E 4 

for 0 < t < 1. If t is sufficiently small 

d d 
[Z*f] (Exp t 2 )  = -f(Exp ( t  + u)  2))  = -f(Exp t 2 )  1 du L O  dt 

and by induction 
dn 
dt 

[(Z*).f] (Exp t2) = -f(Exp t2). 

On putting t = 0 we find that [(Z*)nfl  (p) = a,; hence 

Now suppose Y E M,. Then 
d 

dExptX(Y)f = Y,,(fo Exp) = /~i;;f(Exp (tx + uy))’ . 
!u=o 

If t and u are sufficiently small we get from (2) 

“ 1  t w n  
f(EXP ( tX+uY>> = c J- “tX* +UY*>’fl (P) =c (. + t % . m f l  (PI (3) 

0 ?n,n>O 

where Sn,tn is the coefficient to tnum in (tX* 4- uY*)~+ , .  In particular, 

sn,l = (X*)” Y* + (X*)n-1 Y*X* + ... + Y*(X*)n. 

We differentiate the expansion (3) with respect to u and put u = 0. 
We obtain 

[((X*).Y* + ... + Y*(X*y>f l  ( p ) .  
” t n  

dEXPtX(Y)f = Z ( m  
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Let N p  be a normal neighborhood ofp. Let D(Np) denote the algebra 
of operators on Cm(Np)  generated by the vector fields Z*, as Z varies 
through M,. Let L,, and Rx* denote the linear transformations of 
D(N,) given by L,, : A + X * A  and R,, : A --t A X * .  Since O(X*) Y *  = 
X*Y* - Y * X * ,  we put O(X*) A = X * A  - A X *  for each A E D(N,). 
Then O(X*) = L,, - R,* so O(X*) and Lx* commute; hence we have 

On using the relation 

we find 

p=0 k=O 

so 

For sufficiently small t, the right-hand side can be rewritten by the 
formula 

(4) 
( tX*)n-k  (O( - tX*))k 2 [$,I (n - k)! (K + l)! 

r=o m=O 

In order to justify (4) we first prove the statements (i) and (ii) below. 
(i) There exists an interval : - 6 < t < 6 and an open neighbor- 

hood U of p such that the series 
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converges absolutely and represents an analytic function for ( t ,  q) E I ,  x U ,  
and such that the operator X* can be applied to the series ( 5 )  term by 
term. 

(ii) There exists a subinterval Id1.: - 6, < t < 6 ,  of 1, such that 
the series 

converges uniformly for t E Id,. 
In  order to prove (i) and (ii) we can assume that in a suitable coordi- 

nate system {x,, ..., xm) valid near p we have x , ( p )  = ... = x,(p) = 0 
and X* = a/&, (see Exercise A.7 in this chapter). We may also assume 
that Y* = ga/ax, where g is analytic. Then 

a m g  a 
O(X*)rn(Y*) = - -- 

ax? ax, 

and the series ( 5 )  reduces to 

Since g is analytic its derivatives of sth order are bounded by Cs! 
(C = constant) uniformly in a neighborhood of the origin. Hence (i) 
follows. For (ii) we expand G(t, q) in a power series 

Let p > 0 be a number such that the series for G(t, q) converges for 
( t ,  x,, ..., x,J = (p, p, ..., p). Then there exists a constant K such that 

< Kp-(io +...+ i m l .  I aioi I .. 
It follows that 

m 

1 [(X*)'G] ( t ,  p )  I < Kp-'r! 2 ( t / p ) i  < 2Kp-'r! 
i=O 

provided I t 1 < -$p.  Statement (ii) is now obvious. 
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We put now 

Then from (i) and (ii) we know that there exists a disk D around 0 in 
the complex plane such that the series 

converge absolutely and uniformly for t E D. By Weierstrass' theorem 
on double series we can interchange the summation so that we have 

This, however, is precisely the relation (4). In  view of (2), we have 
proved: There exists a number E~ > 0 such that 

for I t I < ef. Using this relation on the coordinate functions f = 
xl, ..., f = xm, the theorem follows with E = min (ex., ..., E~,). 

5 7. Covariant Differentiation 

In $5 ,  parallelism was defined by means of the covariant differentia- 
tion vx. Theorem 7.1 below shows that it is also possible to go the 
other way and describe the covariant derivative by means of parallel 
translation. This makes it possible to define the covariant derivative of 
other objects. 

Definition. Let X be a vector field on a manifold M. A curve s +- p(s) 
(s €1) is called an integral curve of X if 

9x4 = Xv(s)r s E I. (1) 

Assuming 0 E I, let p = cp(0) and let {xl, ..., x,]~} be a system of 
coordinates valid in a neighborhood U of p .  There exist functions 
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Xi E C““( U )  such that X = Xi Xi a/ax, on U. For simplicity let xi(s) 
= x,(cp(s)) and write Xi instead of (Xi)* ( f 3  2, No. 1). Then (1) is 
equivalent to 

d,xi(s) 
ds (1 < i < m). (2) -- 

- X i ( X 1 ( S ) ,  . * * 9  X&)) 

Therefore if X ,  # 0 there exists an integral curve of X through p .  

Let M be a manifold with an aflne connection. Let 
p E M and let X ,  Y be two vector fields on M .  Assume X ,  # 0. Let 
s ---+ cp(s) be an integral curve of X through p = ~ ( 0 )  and T, the parallel 
translation from p to v ( t )  with respect to the curve y .  Then 

Theorem 7.1. 

1 
( V X ( Y ) ) P  = lj2; (T;lY,(s) - Y,)* 

Proof. We shall use the notation introduced above. Consider a fixed 
s > 0 and the family Z,, t ,  (0 < t < s) which is parallel with respect 
to the curve T such that Z,,,, = 7;’ Yq,8). We can write 

and have the relations 

Z y S )  = Y”S) (1 4 K < m). 
By the mean value theorem 

Z k ( S )  = ZyO)  + sZ”(t*) 

for a suitable number t* between 0 and s. Hence the kth component 
of (l/s) (T;’ Y,,,, - Y,) is 

1 I 
- (Zk(0) - Yk(0)) = -(Z”(S) - s2k(t*) - Yk(0)) 
S 

1 
= c Ti,k(Ip(t*)) *&*) Zi(t*) + - (Yk(s) - Yk(0)). 

S i.i 

As s -+ 0 this expression has the limit 

dYk dxi 
- + C r i j k  ds yj. 

ds i.i 
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Let this last expression be denoted by A,. It was shown earlier that 

This proves the theorem. 
By using Theorem 7.1 it is now possible to define covariant deriva- 

tives of arbitrary tensor fields. Let p and q be two points in M and y 
a curve segment in M from p to q. Let T denote the parallel translation 
along y. If F E M,* we define 7 . F E M,* by the formula (T . F ) ( A )  = 
F(T-' . A) for each A E Mp. If T is a tensor field on M of type (r, s) 
where r + s > 0, we define 7 . T, E ai(q) by 

(T . I",) (Fl,  ..., F,, A,, ..., A,) = T , ( T - ~ F ~ ,  ..., 7-lF7, 7-'A1, ..., 7-lAS) 

for Ai E M,, Fi E M,*. Now, let X E W ( M )  and let p be any point 
in M where X, # 0. With the notation of Theorem 7.1 we put 

(3) 
1 

( V x T ) ,  = lim - (T;lTq(,, - T D ) .  
s-0 s 

For each point q E M where X, = 0 we put ( VxT) ,  = 0 in accordance 
with Lemma 4.2. For a function f E Cm(M) we put 

if X ,  # 0, otherwise we put ( Oxf>, = 0. Then we have OaYf = Xf. 
Finally Vx is extended to a linear mapping of D into a. 

Proposition 7.2. The operator vx has the following properties: 

(i) vx is a derivation of the mixed tensor algebra D(M) (considered as 

(ii) vx preserves type of tensors. 

(iii) vx commutes with all contractions Cii. 

The verification of these properties is quite straightforward. For a 

an algebra over R) .  

simple application, let X, Y E D1(M), w E D,(M). Then by (i) 

V x ( Y  0 w )  = VX(Y) 0 w + y 0 Ox% (4) 

so (iii) implies 

(VXW) ( Y )  = x . 4 Y )  - w(Vx(Y))- ( 5 )  
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The  tensor field Y 0 w can be regarded as an 8-linear mapping of D1 
into itself given by 

Y 0 w : Z +  w ( 2 )  Y ( Z  E 31). 

If A, B are two mappings of D1 into itself we put [A, B] = AB - BA. 
Then 

In  fact, 
[ V X ,  y 0 wl = V,(Y 0 w).  (6) 

[Vx, y $3 W I  (2) = V X ( W ( Z ) Y )  - (Y 0 w )  ( V X Z )  

= w ( 2 )  VX.( Y )  + (X . w ( Z ) )  Y - w( V X Z )  Y. 

On the other hand, (4) and (5) imply 

VdY 0 w )  (2) = 42) VX(Y) + (VXW) (-4 y 

= W(Z) Vx( Y )  f ( X  . W ( 2 ) )  y - 4 V,(Z)) y, 

proving (6). We have therefore 

[Vx,  BI = V x  . B 

if B is a tensor field of type (1,l). On the left-hand side, B is to be 
considered as the linear mapping of 

(7) 

into 3' given by 

2 + C1,(Z 0 B),  

where C', is the contraction of the first contravariant and first covariant 
index. 

$8. The Structural Equations 

Let M be a manifold with an affine connection V. We put 

T ( X  Y) = VX(Y) - V Y ( X )  - [ X ?  YI, 

R(X, Y )  = V X V Y  - V Y V X  - V [ X . Y l  

for all X ,  Y E @. Note that T ( X ,  Y )  = - T(Y, X )  and R(X,  Y )  = 
- R(Y, X). It is easy to verify that T(fX,gY) = fgT(X, Y )  and 
R(fX,gY) . hZ = fghR(X, Y )  . Z for allf,g, h E Cm(M), X ,  Y ,  2 E 91. 

The mapping 

(w,  x, Y )  - w ( T ( X ,  Y)) 
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is an &multilinear mapping of D, x D1 x D1 into 5 and therefore is 
an element of %i(M).  This element is called the torsion tensor jieZd and 
is also denoted by T. Similarly, the mapping 

is an %-multilinear mapping of 3, x D1 x D1 x D1 into 5 and therefore 
is an element of Df(M). This element is called the curvature tensorfield 
and is also denoted by R. The tensor fields T and R have type (1,2) 
and (1, 3), respectively. 

Let p E M and suppose X,, ..., X,, is a basis €or the vector fields in 
some open neighborhood N p  of p, that is, each vector field X on N p  
can be written.X = Xi fixi where fi E Cm(N,). We define the functions 
riik, Tkij, Rklii on N p  by the formulas 

vXi(xj) = 2 rijkxk, 
k 

Let wi, oii (1 < i, j < m) be the I-forms on N ,  determined by 

W i ( X j )  = 6ij, wii = xrk,w. 
k 

It is clear that the forms wii determine the functions r k i i  on N p  and 
thereby the connectionv. On the other hand, as the next theorem 
shows, the forms oii are described by the torsion and curvature tensor 
fields. 

(the structural equations of Cartan). Theorem 8.1 

Both sides of (1) represent a 2-form on N,. We apply both sides of 
that equation to (Xi, X,) and evaluate by means of the rules (4) and (9) 
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in 5 2. If we define the functions Cijk by [xj, xk] = xi cij,, xi, the 
left-hand side of (1) is 

dWi(xj, x k )  = ${xi ' wi((xk) - xk ' w'(xj)  - w i ( [ x j ,  xk])} 

As for the right-hand side we have first 

furthermore, 

= $(rkji - riki), 

-I r , i - r  i - c i .  
- 2 (  3k k i  3 . ~ ) )  

so (1) follows immediately; in the same way (2) follows if we use 
formula (4). 

Suppose Y,, ..., Y,, is a basis for the tangent space M,. Let No be a 
normal neighborhood of the origin in M p  and let N p  denote the normal 
neighborhood Exp No of p in M. Let Y:, ..., Y z  be the vector fields 
on N p  that are adapted to the tangent vectors Yl ,  ..., Y,. Then 
Y:, ..., Y: is a basis for the vector fields on Np,  due to Prop. 5.2. Suppose 
wi, oil, riik, Rklii, and Tkii are defined by means of this basis. Let V 
be the set of points (t ,  a,, ..., a,) E R x Rm for which ta,Y, + ... + 
ta,YTn E No. We consider now the mapping @ : V + N, given by 

( 5 )  0 : ( t ,  a,, ..., a,) -+ Exp (talYl + ... + ta,Ym). 
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We shall then prove that the dual forms @*mi and @*mil are given by 
the formulas 

@*mi = aidt + Oi, @*miz = Oil, (5 ’ )  

where ciii and Gil  are 1-forms in du,, ..., dam (and do not contain dt). 
In  fact, we can write 

@*mi = fi(t, al, ..., a,) dt + W’, 
@*mi, = Ril ( t ,  a,, ..., a,) dt + 6”. 

For a fixed point (ul,  ..., a,) E Rm we consider the mapping 

T : t --t Exp (talY, + ... f ta,Y,), 

which maps an open subset of R into M. It is easy to see that 

?*mi =fi(t, a,, ..., a,) df, T*Wil  = gii(t, a,, ..., a,) dt, 

This last sum, however, vanishes, because Y* = Cj ajY? is thetangent 
vector field to the geodesic t -+ Exp (talYl + ... + tuWlYm) and con- 
sequently the expression 

vanishes along that geodesic. This proves (5’).  

in V. Then 
T h e  forms 6i vanish for t = 0. I n  fact, let A be the point (0, a,, ..., a,) 

a a 
(F) = (d@A (%))* 

and i f f  is differentiable in a neighborhood of p 

Similarly, the forms Oil vanish for t = 0. 
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For the exterior derivatives of the forms (5 ' )  we have 

&ji 
@*(dwZ) = d(@*wi) = dai A dt + dt A - + ... 

@"(dwi,) = d(@*wiJ = dt A - f ..a, 

at 

a&, 
at 

where the terms which are not written do not contain d t .  On the other 
hand, since @* is a homomorphism with respect to exterior products 
( ( 5 ) ,  $ 3 ) ,  we can evaluate @*(dwi) and @*(dwi l )  by means of the struc- 
tural equations. Equating the coefficients to dt ,  we obtain the system 
of differential equations on V: 

which will be useful later. In  the derivation of (6) and (7) the anti- 
symmetry of R and T in the two last indices was used. Note that in 
(6) and (7) we have written for simplicity Tiik and RiUk in place of 
(Tiik o @) and (R i l jk  o @). These equations, which represent the 
structural equations in "polar coordinates," are particularly important 
in I? Cartan's treatment of Riemannian geometry (E. Cartan [22]). A 
simple application is given in Exercise C.3. 

$ 9 .  The Riemannian Connection 

Definition. 

(a) g ( X ,  Y )  = g(Y, X )  for all X ,  Y E W ( M ) .  
(b)  For each p E M ,  gP is a nondegenerate bilinear form on M, x M,. 
A pseudo-Riemannian manifold is a connected C"-manifold with a 

pseudo-Riemannian structure. If (and only if) g, is positive definite 
for each p E M ,  we drop the prefix "pseudo" and speak of a Riemannian 
structure and Riemannian manifold. A Riemannian structure on a 
manifold induces in an obvious manner a Riemannian structure on 
any submanifold. T h e  analogous statement does not hold for a general 
pseudo-Riemannian structure. 

Let M be a C"-manifold. A pseudo-Riemannian structure 
on M is a tensor field g of type (0, 2) which satisfies 
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Theorem 9.1. 

(i) The torsion tensor T is 0. 
(ii) The parallel displacement preserves the inner product on the tangent 

On a pseudo-Riemannian manifold there exists one and 
only one affine connection satisfring the following two conditions: 

spaces. 

Proof. Conditions (i) and (ii) can be written: 

(i’) vxy - VYX = [ X ,  q, x, YE D1; 
(ii’) Vz g = 0, z E Dl. 

We apply the derivation V z  to the tensor field X 0 Y @ g  and use 
the fact that V z  commutes with contractions. In view of (ii’) we obtain 

In (1) we permute the letters cyclically and eliminate vx and v y  
from the obtained relations. This gives 

and this relation shows (g  being nondegenerate) that there can be at 
most one affine connection satisfying (i) and (ii). On the other hand, 
we can define VzY by (2) and a routine computation shows that the 
axioms V, and O2 for an affine connection are satisfied. Moreover, 
carrying out the computations above in reverse order, one verifies (i’) 
and (ii’) on the basis of (2). 

The  connection v given by (2) is called the pseudo-Riemannian (or 
Riemannian) connection. If M is analytic and the tensor field g is analytic, 
M is called an analytic pseudo-Riemannian manifold. In this case, the 
pseudo-Riemannian connection is analytic. 

Suppose now M is a Riemannian manifold. Then gp is positive definite 
for each p E M .  If X E M,, we sometimes write ( 1  X ( 1  instead of 
g,,(X, X)lI2. There exists a basis Y,,  ..., Y,, of M such that g,( Yi, Yi) = 
6, (1 < i ,  j < m). Let No denote a normal nelghborhood of 0 in M p  
and let N p  = Exp No. We shall now apply (6)  and (7) in 3 8 to the adapted 
basis Y,”, ..., Y: of vector fields on the normal neighborhood N,. Since 
g is invariant under parallelism, we have 

? 

g(YT, YT, = g(Yi, Yj) = s i j  
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on N,. Since wi(Yj*) = Sij, we have 

where the symmetric product a/3 of two I-forms is given by a/3 = 

Let S denote the unit sphere ( 1  X ( 1  = 1 in M,, and let U denote 
the set of all pairs ( t ,  X )  E R x S for which t X  E No. Then U is open 
in R x S. Let Y denote the mapping Y = @ o I where @ is the 
mapping (9, $ 8, and I is the identity mapping of U into R x Mp,  M p  
being identified with Rm by means of the basis Yl,  ..., Y,. Thus 
Y ( t ,  X )  = Exp t X  if ( t ,  X )  E U. Then Y*g ( 5  3, No. 3) is an element 
of D;(U) and we have 

+(a OP + P 0 a).  

Lemma 9.2. The tensor field Y*g on U is given by 

m 

Y * g  = (dt)2 + 2 ( 6 i ) Z .  
i=l 

Proof. For the Riemannian connection we have wli = - w i ,  so 
(by (5’), 5 8) Wil = - GZi. In  fact, this is an immediate consequence 
of the relation 

R(VYi*(Y:j*), Y,*) +g(Y,*, Oyi.(Yk*)) = Y,*g(Yj*, Y,*) = 0. 

Using (5’), $ 8, we have 

From (6), $8,  we obtain 

due to the skew symmetry of 6 i k .  Moreover, I*( Xi aidad) = 0. Now, 
No is star-shaped. Therefore, if X E S,  the set of t E R such that 
( t ,  X )  E U is an interval containing t = 0. Inasmuch as Wi = 0 for 
t = 0, we obtain I*( X i  a@i) = 0. Moreover 

1* (%a:) = 1, 
1 

so, using Y* = I* o @* the lemma follows. 
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We shall now introduce the Riemannian metric on the Riemannian 
manifold M. Let t -+ y ( t )  (a. < t < /3) be a curve segment in M. 
The arc length of y is defined by 

B 
L(Y)  = {g,ctr(i(t>, i,(t>)>1’2 d** (3) 

It is clear from (3) that two curve segments which are the same except 
for a change of parameter have the same arc length. 

For a Riemannian manifold, we write for simplicity “geodesic” instead 
of “geodesic segment.” It will also be convenient not always to distin- 
guish between two curves which coincide after a change of parameter. 

Lemma 9.3. Let M be a Riemannian manifold and p any point in M. 
Let No be any normal neighborhood of 0 in M p  and put N p  = Exp No. 
For each q E N,, let ypq denote the unique geodesic in N, joining p to q. 
Then 

W,,) < 4 r )  

for each curve segment y # ypq in N ,  which joins p to q. If, in particular, 
the normal mghborhood No is an open ball 0 < 1 )  X 1 1  < 6 in M,, the 
inequality L(ypq) < L(y)  holds for each curve segment y # ypq in M 
which joins p to q. 

Let s -+ y(s) (0 < s < 1) be any curve segment in N p  
joining p to q. For the purpose of proving the inequality above, we can 
assume that y(s) # p for s # 0. We can then write y = Y o  yo where 
yo is a curve segment in R X S, 

Proof. 

Yo : s --+ (W, X(s)) (0 < s d I), 

such that t ( s )  > 0 for 0 < s f 1. The curve segment yo is contained 
in the set U of Lemma 9.2. We have 
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If the equality signs hold we have &?(X(S)) = 0 for all i and all s .  In 
view of ( 5 3  5 8, this is equivalent to k(s) = 0 or X(s) = constant, 
which means that y = ypn (up to change of parameter). 

Finally, let us consider the case when No is an open ball 0 < 11 X 1 I < 6 
in Mp. Let s -+ y(s) be a curve segment in M joining p to q such that 
y does not lie in Np. Let XI be the element in No such that Exp X ,  = q 
and suppose 6* satisfies the inequalities 1 1  X ,  1 1  < S* < 6. Put 

N* = {Exp X : X E M,,, 1 1  X 1 1  < a*}. 

Let so be the infimum of the set of parameter values s for which y(s) 4 N*. 
Then the point qo = y(so) lies on the boundary of N* and, by the first 
part of the proof, the length of y from p to qo is 2 6*. Since 
L(yp,) = 1 )  X I  11, it follows that 

UY) > ~(Y,, ,) .  

This proves the lemma. 
The Riemannian manifold M can now be turned into a metric space. 

Since M is connected, each pair of points p ,  q E M can be joined by a 
curve segment. The distance of p and q is defined by 

where y runs over all curve segments joining p and q. Then we have 

(a) 4P, 4) = 4 4  PI, 
(b) 4P, < d(P, y )  + d(r, 41, 
(c) d(p, q) = 0 if and only if p = q. 

The two first are obvious and the last one is a direct consequence of 
Lemma 9.3. Thus d is a metric on the set M. For p E M we put 

&(P) = (4 E M : 4P9 4) < 4, 
%P) = (4 E M : 4P, 4) = y>, 

O < r < - ,  

O , ( r < - ;  

B,(p) is called the open ball around p with radius Y and S,.(p) is called 
the sphere around p with radius r. 

Proposition 9.4. Suppose that the open ball 

Vr(0) = ( X E M , , : O <  l lXl l  <I) 

is a normal neighborhood of 0 in Mp.  Then 

Br@) = EXP Vr(0). 
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Proof. It is obvious that Exp V,(O) C B,(p). On the other hand, 
if q were a point in Br(p), not belonging to Exp V,(O), then each curve 
segment joiningp to q must intersect the boundary of each set Exp V,(p) 
(p  < r) .  Lemma 9.3 then implies that d(p, q) >, p for each p < r .  
Hence d(p,  q) >, r .  This contradiction shows that B,(p) = Exp V,(O). 

Corollary 9.5. The topology of M given by the metric d coincides 
with the original topology of M .  

In fact, the sets B,(p) (r > 0), form a fundamental system of neighbor- 
hoods of p in the metric topology of M. On the other hand, Theorem 6.1 
shows that in the original topology of M, the sets Exp Vr(0) (r  > 0) 
form a fundamental system of neighborhoods of the point p. 

Every Riemannian manifold is separable. Proposition 9.6. 
This proposition is just a special case of Theorem 15.4 in the Appendix: 

A connected, locally compact metric space is separable. 

Definition. Under the assumption of Prop. 9.4, the neighborhoods 
B,(p) and V,(O) are called spherical normal neighborhoods of p in M 
and of 0 in M,, respectively. 

Suppose V is a connected submanifold of a Riemannian manifold M .  
The Riemannian structure on M induces a Riemannian structure on V. 
Let dM and d ,  be the distances in M and V given by the Riemannian 
structures. Then d,(p, q)  2 dM@, 4) for each pair p ,  q E V. Examples 
show that in general we do not have equality sign; however, in the 
case when V is an open submanifold of M and p E V, the equality 
sign holds, owing to Prop. 9.4, if q is sufficiently close to p. 

Suppose €I&) is a spherical normal neighborhood of p; if r < S,  
then S,.(p) is the image of the sphere 1 1  X 1 1  = r in M, under the 
diffeomorphism Exp,. Thus S,(p) is a submanifold of M. 

Lemma 9.7. Let r < 6. Then each geodesic y emanating from p is 
perpendicular to S,(p) at the first point of intersection. 

Proof. Assuming the geodesic y parametrized by its arc length 
measured from p ,  let X denote its tangent vector at p .  Then I I X 1 1  = 1 
and the segment of y from p to the first point of intersection with S,(p) 
is y(s) = Exp sX (0 f s f Y). Let Y be any tangent vector to S,(p)  at 
the point y(r) .  Then there exists a unique tangent vector Yo to S at X 
such that (dY) , , ,x ,  (0, Yo) = Y. Then 

owing to Lemma 9.2. 
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Remark. In general the geodesic y will intersect S&) ( r  < 6) more 
than once. The intersection does not always take place at a right angle. 
An example is provided by an everywhere dense geodesic on a flat 
two-dimensional torus. (For the definition of "flat" see Chapter V, 5 6.) 

Let M be a Riemannian manifold with metric d given 
by (6).  Let p and q be two points in M and ypq a curve segment joining p 
and q. If L(y,,) = d(p,  q), then ypq is a geodesic. 

There exists a finite sequence of points yo,  r l ,  ..., r,  (where 
ro = p ,  r,  = q) on ypq such that each segment yriri+* lies in a spherical 
normal neighborhood R6,(ri) (see Theorem 6.2). Then 

Lemma 9.8. 

Proof. 

and d(ri, Y ~ + ~ )  < L(yriri+l). Assuming now L(y,,) = d(p,  Q) it follows that 

&i! Ti+,) = W T ' , , , , ) .  

By Lemma 9.3, yriri+l is a geodesic and the lemma follows. 

assumed piecewise differentiable. 

be useful. 

Remark. The conclusion of the lemma holds even if ypq is only 

The following result which combines Lemmas 6.4 and 9.3 will often 

Theorem 9.9. Let M be a Riemannian manifold with metric d. To 
each p E M corresponds a number r ( p )  > 0 such that ;f 0 < p < r(p),  
then B,(p) has the properties: 

(A) B,(p) is  a normal neighborhood of each of its points. 
( B )  Let a ,  b E B,(p) and let Y a b  be the unique geodesic in B,(p) joining a 

and b. Then Yab is the only curve segment in M of length d(a, b )  whickjoins 
a and b. 

Proof. Let X,, ..., X,, be an orthonormal basis of M p  and let x l ,  ..., x, 
be normal coordinates at p with respect to this basis, valid on a neighbor- 
hood U of p .  If 6 > 0 is sufficiently small we have 

Using Lemma 6.4 we conclude that there exists a number 6*  > 0 
such that for 0 < 6 < 6*, Bd(p) is a normal neighborhood of each of 
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its points. We put r (p)  = Q a*. If 0 < p < r(p) ,  then the neighborhood 
B,(p) clearly has property (A). It has also property (B). In fact, since 
Bd@) is a normal neighborhood of a, yab is the only shortest curve 
segment in Bar@) which joins a and b. On the other hand, a curve segment 
which joins a and b but does not lie entirely in Bd*(p) has obviously length 
> 3p. Since L(yab) < d(a ,p )  + d(p,  b) < 2p, property (B) is also 
verified. 

A ball B,(p) which is a normal neighborhood of each of 
its points will be called a convex normal ball. It will be called minimizing 
if it also has the property (B) above. 

Definition. 

Remark. It is easy to show by examples that a convex normal ball 
is not necessarily minimizing. 

Proposition 9.10. In the notation of Theorem 9.9 let A and B be 
the unique points in M p  satisfying the relations 

Exp, A = a, EXP, B = b, I I A I I < O), ) I  B II < Y(P). 
Then 

- IIA--BII  - 1  
4% 4 

as (a, b) - ( p ,  P.). 
Proof. We may assume that the straight line segment joining A 

and B does not pass through the origin. Consider now Eqs. (6) and (7) 
in 4 8. The forms wi - tdai and wit and their first derivatives with 
respect to r all vanish for t = 0. Using Taylor’s formula with remainder 
we conclude that 

wi = tdui + mi, wit  = t20i 1 

where Bi and 8i, are 1-forms. Now let r :  s -+ r(s) (0 < s < 1) be 
any curve segment in BT(p)(p) joining a and b and not passing through p. 
Let To be the curve segment in the ball 1 1  X 1 1  < r (p)  in M p  joining A 
and B such that r = Exp o ro. Then T0(s) can be written 

Tds) = t ( s )  X( s )  (0 < s < l), 

where t(s)  > 0 for all s and s -+ X(s) is a curve segment on S. Then 
we have as before 

m 

g(;.(s), ;.(s)) = i(s)* + 2 (G*(X(s)))Z 
1=l 
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and 
1 

0 i 

qr) = I t (s )2  + t(s)J [da,(X(s)) + t(s) Oi(X(s))12 rjZ ds. (7) 

For the Riemannian manifold M p  we have R = 0 and Wi = tda,. Hence 

If To is the straight line joining A and B, then t(s)  + 0 uniformly in 
s as (a ,  b)  + ( p ,  p ) .  It follows from (7) and (8) that 

This relation holds for the same reason for yab, the unique geodesic 
in BT(p)(p) joining a and b, and yAB, the corresponding curve segment 
in the ball 1 1  X 1 1  < r(p) .  In other words, 

Since L(I‘,) = ( 1  A - B ( 1  and L(yab) = d(a, b),  the proposition follows 
from (9) and (10). 

Remark. The hyperbolic plane (Exercise G) is an illuminating 
example of all the notions we shall develop for Riemannian manifolds. 

$10. Complete Riemannian Manifolds 

Definition. A Riemannian manifold M is said to be complete if every 
Cauchy sequence in M is convergent. 

Lemma 10.1. For each point p ,  in a Riemannian manifold M there 
exists a convex normal ball B,(p,) around p ,  with the following property: 
Let p and q be two points in B,(p,), y the unique geodesic in B,(p,) joining 
p and q. Let L (y )  denote the length of y.  Let Y and Z denote the unit 
tangent vectors to y at p and q, respectively. 
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Then: 

(i) I f  (p’ ,  Y‘) is suficiently close to ( p ,  Y )  and Y’ is a unit vector in 
M,,,, there exists a geodesic in Bp(p,) of length L (y ) ,  starting at p‘ with 
tangent vector Y’. 

(ii) The pair ( q , Z )  depends dzrerentiably on p ,  Y and L (y ) .  
This lemma follows directly from the existence and uniqueness 

theorem stated in the beginning of $6.  

Lemma 10.2. Let p be a point in a Riemannian manifold M and 
y,(t) ( t  E I J  a sequence of geodesics emanating f rom p ,  t being the arc 
length measured from p .  Let X, be a tangent vector to y ,  at  p and suppose 
the sequence (X , )  converges to X E M,). Let yx ( t )  ( t  E I )  be the maximal 
geodesic tangent to X such that yx(0)  = p .  Assume t* E I is a limit 
t* = lim t ,  where t ,  E I,. Then yx(t*) = limn y,(t,). 

In  fact, the segment yx ( t ) ,  0 < t < t*, can be broken into finitely 
many segments each of which lies in a convex normal ball Bi with the 
property of Lemma 10.1. The  first part of Lemma 10.1 implies that 
for sufficiently large n, all y,(t), 0 < t < t,, lie in the union of the balls 
Bi.  Now Lemma 10.2 follows by repeated application of the second part 
of Lemma 10.1. 

The  following two theorems show clearly the importance of the 
completeness condition. 

Theorem 10.3. Let M be a Riemannian manifold. The following 
conditions are equivalent. 

(i) !M is complete. 
(ii) Each bounded closed subset of M is compact. 
(iii) Each maximal geodesic in M has the form yx( t ) ,  - 03 < t < co 

Theorem 10.4. In a complete Riemannian manifold M with metric d 

These two theorems will be proved simultaneously. 
(i) => (iii). Let yx( t )  ( t  E I )  be a maximal geodesic in M ,  1 t 1 being the 

arc length measured from the point of origin of X .  If to were a boundary 
point of the (open) interval I, say on the right, select a sequence (tn) C I 
converging to to- Then (yx(t,)) is a Cauchy sequence in M ,  hence 
converges to a limit p E M, which is clearly independent of the choice 
of (tn). Let B,(p) be a convex normal ball around p and let {xl, ..., x,,J 
be a system of normal coordinates at p valid on B,(p). Let J = {t E I : 

knowing that this limit exists. 

(“has zkjnite length”). 

each pair p ,  q E M can be joined by a geodesic of length d(p,  q). 

y x ( t )  E BP(P)), put %(t) = Zi(YX(t))  ( t  E J )  and %(to)  = liml4” xd t ) ,  
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for t E J. The  functions i i ( t )  are bounded (Z t  3;'i(t)2 = 1) and the differen- 
tial equation shows that each Zi(t) is bounded. In  particular, Gi(t) is 
uniformly continuous near to and thus has a limit as t + to. From the 
mean value theorem we have 

(xz(t> - xt( to)) / ( t  - t o )  = %(to  + e(t - t o ) )  ( o < e < 1 )  

which implies for the left derivative i i ( tO) ,  

$(to) = Iim k,(t)  ( I  < i < m). (2) 
t h t ,  

From the differential equation (1) follows the existence of the limit 
liml_tlo Zi(t); the mean value theorem again implies for the left derivative 

(3) $,(to) = lim t+to ai(t). 

The  vector 2 = (3,(to), ..., i.m(to)) in the tangent space M ,  has length 1 
and we can form the geodesic yz(t)  for to t < to + p. The  mapping 
t -+ r(t) where 

Y X ( t ) ,  t € 1 ,  
r(t) = ! Y Z ( t ) ,  to  < t < t" + P ,  

satisfies (1) for t E J and for to < t < to + p. Moreover, (1) is satisfied 
for the right derivatives at t = to. Equations (2) and (3) show that ( 1 )  
is also satisfied for the left derivatives at t = to. Thus, r(t) is a geodesic, 
contradicting the maximality of yx( t ) ,  t E I .  

(i). Let (xn)  be a Cauchy sequence in M .  The  closure of the 
set (xn)  is bounded, hence compact by (ii). Thus  a subsequence of (xn)  
is convergent; being a Cauchy sequence, the sequence ( x n )  itself is 
convergent. 

Using a procedure of de Rham [l] we next prove that if the condition 
(iii) is satisfied, then each pair p ,  q E M can be joined by a geodesic 
of length d(p, q). For each I >, 0 let 8, denote the closure of the open 
ball B,(p) and let E, denote the set of points x in 8, which can be 
joined to p by a geodesic of length d(p ,  x). It suffices to prove 

(ii) 

E ,  = 8, (4) 

for each r >, 0. In  view of Lemma 10.2, (iii) implies separability of M 
and compactness of E,. The  relation (4) is valid for T = 0, and if it is 
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valid for r = Y, > 0, it is obviously valid for Y < r,. On the other hand, 
if (4) holds for Y < yo,  it is also valid for r = Y,; in fact, each x E Br0 
is a limit of a sequence of points x, each of which has distance f r o m p  
less than r,. Thus, x ,  E Ero and x E ErO, the set Ero being closed. Thus, 
it suffices to prove that if (4) holds for r = R, it holds also for some larger 
value Y = R + p. For this we may assume BR # M. 

By compactness of E R  = 8, there exist finitely many points xl ,  ..., 
xN E E R  and positive numbers pl, ..., p N  such that the balls BPI(xi) 
(1 < i < N )  cover ER and such that each BPp,(xi) is a relatively compact, 
minimizing convex normal ball. Since the set Ugl BPl(xi)  is relatively 
compact there exists a point in its complement at shortest distance fromp. 
Since this distance is > R, there exists a number p such that 0 < p < 
min (pl, ..., pN) and such that BR+, C UEl Bpjxi). 

Suppose now y is a point in M such that R < d(p,  y )  < R + p. 
Let x be a point on the (compact) sphere SR(p) at smallest distance 
from y .  Since every curve segment joining p and y must intersect 
S&), it follows that 

4 P ,  .) + 4.9 Y )  = 4 P ,  Y) .  

Consequently, d(x, y )  = d(p ,  y )  - d(p,  x) < R + p - R = p so y and 
x lie in the same ball BBP,(xi). Combining the shortest curve joining x 
and y with a curve of shortest length joining p and x ,  we obtain a curve 
of length d(p,  y) joining p and y .  By Lemma 9.8 this curve is a geodesic 
so (4) is proved for all r 

(iii) * (ii). Let S be a bounded closed subset of M. Let (qn) be a 
sequence of points in S, a n d p  any fixed point in M. We know now that 
M is separable and that there exists a geodesic y, of length d(p,  4,) 
joining p and q,. Passing to a subsequence if necessary, we can assume 
that the unit tangent vectors to y, at p form a convergent sequence 
and that the sequence (d(p, 4,)) converges. Lemma 10.2 now shows 
that (iii) => (ii). This concludes the proof of Theorems 10.3 and 10.4. 

Call a Riemannian manifold M complete at a point p E M 
if Exp, is defined on the entire M,. Then the proof above shows that 
completeness at a single point p E M implies completeness of M. 

For each point p in a complete Riemannian manifold 
M the Exponential mapping Exp, is a differentiable mapping of M, 
onto M .  If M is analytic, then Exp, is analytic. 

Lemma 10.2 expresses the continuity of Exp,. The differen- 
tiability is proved in the same way (applying Lemma 10.1) since we 
now know that Exp, is defined on the entire Mp.  If M is analytic we 

0. 

Remark. 

Proposition 10.5. 

Proof. 
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first observe that the existence and uniqueness theorem in 5 6 also 
holds for the analytic case giving analytic solutions. Thus we can replace 
“differentiably” in Lemma 10.1 by “analytically” and proceed as before. 

Let M be a complete Riemannian manifold, p a point 
in M and Exp the Exponential mapping at p. Let C(p) denote the set 
of vectors X E M ,  for which the linear mapping d Exp, is singular. 
A point in M (or in MI,) is said to be conjugate to p if it lies in Exp C(p) 

In  view of Prop. 10.5 the set C(p)  is a closed subset of M,. It plays 
an important role in global differential geometry. In  general, Exp C(p) 
is not a submanifold of M. For the sphere 9, the set Exp C(p)  consists 
of two antipodal points. In  Chapter VII we shall prove the inequality 

dim (Exp C(p))  < dim M - 2 

for a symmetric space of the compact type, dim denoting topological 
dimension. However, this inequality fails to hold for general Riemannian 
manifolds. 

Let M and N be connected and locally connected spaces and rr: 
M +- N a continuous mapping. The  pair (M, T )  is called a covering space 
of N if each point n E N has an open neighborhood U such that each 
component of rr-S(iU) is homeomorphic to U under rr. 

Suppose N is a differentiable manifold and that (M, rr) is a covering 
space of N. Then there is a unique differentiable structure on M such 
that the mapping rr is regular. If M is given this differentiable structure, 
we say that (M, T )  is a covering manifold of N .  

We shall require the following standard theorem from the theory of 
covering spaces. We state it only for manifolds although it holds under 
suitable local connectedness hypotheses. 

Let (M, T )  be a covering manifold of N and let r: [a ,  b] -+ N be a 
path in N .  If  m is any point in M such that rr(m) = r ( a ) ,  there exists a 
unique path r* : [a ,  b] -+ M such that r * ( a )  = m and rr o r* = r. 

Definition. 

(or C(P)). 

T h e  path r* is called the lift of I’ through m. 

Proposition 10.6. Let N be a Riemannian manifold with a Riemannian 
structure g .  Let ( M ,  n) be a covering manifold of N .  Then rr*g is a Rieman- 
nian structure on M .  Moreover, M is complete if and only i f  N is complete. 

The  mapping rr is regular, so obviously rr*g is a Riemannian 
structure on M. If y is a curve segment in M, then rro y is a curve 
segment in N. Using the characterization of geodesics by means of 
differential equations (3), ( 4  5) ,  it is clear that y is a geodesic if and only 
if rr o y is a geodesic. But completeness is equivalent to the infiniteness 
of each maximal geodesic. T h e  proposition follows immediately. 

Proof. 
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Remark. Let N be a Riemannian manifold, ( M ,  r) a covering manifold 
of N ,  M taken with Riemannian structure induced by rr. Given a point 
a E N ,  there exists a convex, minimizing normal ball B,(a) such that 
each component B of wl(B, (a) )  is diffeomorphic to B,(a) under T. 
Since the geodesics correspond under rr, it follows that rr is a distance- 
preserving mapping of B onto B,(a). 

A geodesic y ( t ) ,  0 < t < 03, in a Riemannian manifold 
is called a ray if it realizes the shortest distance between any two of 
its points. The  point y(0) is called the initialpoint of the ray. 

Proposition 10.7. Let o be a point in a complete, noncompact Rieman- 
nian manifold M .  Then M contains a ray with initial point 0. 

I t  follows from Theorem 10.3 that M is not bounded. Let (p,)  be a 
sequence in M such that d(o, p,)  -+ 03. Let y, be a geodesic of length 
d(o,p,)  joining o and p,. We parametrize y, by arc length measured 
from 0. Let X ,  be the unit tangent vector to y, at 0. We can assume 
that the sequence (X,) converges to a limit X E Mo. Then t -+ y x ( t )  
(0 < t < 03) is a ray. In  fact, let to > 0. There exists an integer N 
such that d(o,p,)  > to for n > N .  We have from Lemma 10.2 

Definition. 

lim yn(to) ==  to), 
n>N.n+m 

and consequently 

On the other hand, to = d(o, yn( to) )  for n 3 N .  The  last relation there- 
fore shows that to = d(o, yx(to)) .  This implies that d(yX( t l ) ,  yx(t,)) = 
to - t ,  for 0 < t ,  < to, proving the proposition. 

11. lsometries 

Definition. Let M and N be two C" manifolds with pseudo-Rieman- 
nian structures g and h, respectively. Let g, be a mapping of M into N .  

(i) g, is called an isometry if g, is a diffeomorphism of M onto N and 
g,*h = g. 

(ii) g, is called a local isometry if for each p E M there exist open 
neighborhoods U of p and V of g,(p) such that g, is an isometry of U 
onto V.  

It is obvious that if g, is an isometry of a Riemannian manifold M 
onto itself, then g, preserves distances, i. e., d(g,(p), q(q))  = d(p,  q) for 
p ,  q E M .  On the other hand, we have: 
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Theorem 11.1. Let M be a Riemannian manifold and cp a distance- 

Let p be an arbitrary point in M and put q = cp(p). Let 
B,(p) and B,(q) be spherical normal neighborhoods of p E M and 
q E AI, respectively. Then v gives a one-to-one mapping of B,(p) onto 
B,(q). For each X E M p  we consider the geodesic Exp t X  (- r/lI X 1 1  
< t < r/ll X 1 1 ) .  T h e  image r ( t )  = v (Exp t X )  lies in B,(q) and has 
the property that d ( r ( t ) ,  r ( t ’ ) >  = [ t - t’ I 1 1  X 1 1  for all t ,  t‘ in the 
interval of definition. To see that r is a geodesic we consider the point 
q = r(0) and an arbitrary point Q on r. They can be joined by a 
unique geodesic y of  length d(q,Q).  Let BR(Q) be a spherical normal 
neighborhood of Q and let m be any point of r between q and Q such 
that m E BR(Q). Then d(q, m) + d(m, Q )  = d(q, Q) .  If we join q and m 
by the shortest geodesic, and then join m and Q by the shortest geodesic, 
we get a broken curve of length d(q,Q) joining q and Q. This curve 
must coincide with y due to Lemma 9.8 (and the subsequent remark). 
Since Q was arbitrary on r, this proves that r is a geodesic; in particular, 
r is differentiable. Let X denote the tangent vector to r at the point q. 
We have obtained a mapping X + X’  of M, into M,. Denoting this 
mapping by cp‘ we have 1 1  X I j  = I /  cp’(X) I [  and cp’(01X) = 01cp’(X) for 
01 E R, X E M,. Let A, B E M, and select p such that 1 1  p A  / I  and 
1 1  pB [ I  are both less than r.  Let a ,  = Exp tA, b ,  = Exp t B  for 0 9 t < p. 
Then Prop. 9.10 shows that 

preserving mapping of M onto h e y .  Then cp is an isometry. 

Proof. 

4% bd2  
- lim - I1 A IIP + I1 B 1 1 2  - 

II A I I  I! B I 1  t-o II tA I I  I I  tB I I  * 

Since the right-hand side is preserved by the mapping cp, it follows that 

g,(A, B )  = g,(v’A, V’B). 

But A + B is determined by the quantities I I  A /I, I /  B I I ,  and g,(A, B),  
all of which are preserved by cp’. It follows that ?’(A + B )  = cp’A + cp‘B 
which together with the previous properties of y‘ shows that it is a 
diffeomorphism of M ,  onto M,. On B,(p) we have 

v = Exp, o p’ o Expi’ (1) 

and the theorem follows. 



62 ELEMENTARY DIFFERENTIAL GEOMETRY [Ch. I 

Lemma 11.2. Let M be a Riemannian manifold, p7 and # two iso- 
metries of M onto itsev. Suppose there exists a point p E M for which 
~ ( p )  = $(p)  and dcpP = d$p. Then p7 = $: 

Considering v o $-l it is clear that we may assume that 
~ ( p )  = p and that dv1, is the identity mapping. It is then obvious that 
all points in an arbitrary normal neighborhood of p are left fixed by p7. 

Since M is connected, each point q E M can be connected to.p by a 
chain of overlapping normal neighborhoods. It follows that v(q) = q. 

Let M and N be Riemannian manifolds, Ui a domain in M (i = 1,2), 
and q ~ ,  an isometry of U, onto a domain in N (i  = 1,2). It follows from 
Lemma 11.2 that if (dvJP = (d~)$)~ and y l ( p )  = q2(p)  for some point 
p E U, n U,, then p7, and y2 coincide on the component of p in U,  n U,. 
The isometries v1 and cp, are called immediate continuations if U, n U ,  # 8 
and v1 = p7, on U, n U,. 

Let p7 be an isomctry of a domain U C M onto a domain in N .  Let 
y ( t ) ,  0 < t < 1, be a continuous curve in M such that y(0) E U. The 
isometry p7 is said to be extendable along y if for each t (0 < t < 1) 
there exists an isometry v 1  of a domain U ,  containing y( t )  onto an open 
subset of N such that vo = rp and Uo = U and such that 'pf  and y,' 
are immediate continuations whenever I t - t' I is sufficiently small. 
The family y f ,  0 < t < I ,  is called a continuation of p7 along y. It follows 
that the differential (dy l ) ,c l ,  as well as q f ( y ( t ) )  depends continuously 
on t .  Suppose now #,, 0 < t < 1 ,  is another continuation of p7 along 
y and V ,  the domain of definition of #!. From the foregoing remarks 
it follows that the set of t for which q l ( y ( t ) )  = + f ( y ( t ) )  and (dp7f)y(f) = 

(d#f ) , , ( f )  is an open and closed subset of the unit interval and contains 
t = 0. Thus, for each t ,  y1  and coincide in the component of y ( t )  
in U ,  n V,. Roughly speaking, we can therefore say in analogy with 
analytic continuation of holomorphic functions: the continuation of an 
isometry along a curve is unique whenever possible. 

Proof. 

Proposition 11.3. Let M and N be analytic and complete Riemannian 
manifolds, v an isometry of a domain U C M onto a domain in N .  Let 
y ( t ) ,  0 < t < 1, be a continuous curve in M such that y(0) E U. Then 
cp is extendable along y .  

Let p E M ,  Q E N ,  and suppose B,(p)  and B,(q) are spherical 
normal neighborhoods of p and q, respectively. Suppose r < p and 
suppose $ is an isometry of B,(p) into N such that $(p) = q. Then $ 
can be extended uniquely to an isometry (G' of B,(p) onto B,(q). T o  see 
this, we note first that the expression of # in normal coordinates at p 
and #(p)  is a linear mapping which we can use to define qY. If g and h 

Proof. 
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denote the metric tensors on M and N ,  respectively, and if X and Y 
are analytic vector fields on B,(p),  then h(Xv', Y v ' )  o i,b' = g ( X ,  Y )  on 
B,(p) by the assumption; this relation also holds on B,(p) due to the 
analyticity of 4' (see Lemma 4.3, Chapter VI). Hence i,b' is an isometry. 

Without restriction of generality we can assume y(t) differentiable. 
Let s* be the supremum of the parameter values s such that a continua- 
tion 'pt  of 'p exists along the curve y( t ) ,  0 < t < s. We put p ,  = y ( t )  
for 0 < t < 1, and q, = y t ( p t )  for 0 < t < s*. It is clear from the 
completeness assumption that the limit q* = lim,,,, vt(pt) exists. We 
select p > 0 such that B3,(pS*) and B,,(q*) are convex normal balls. 
Select s' < s* such that 

P t  E BP(PF*), 4 t  E B,(z*) for s' < t < s*. 

Then BzP(pS,)  and Bzp(qs,) are normal neighborhoods of p, ,  and q,,, 
respectively. As shown above, T,, can be extended to an isometry of 
BPp(ps,)  onto B2,(qs,). Since p *  E Bzp(ps,) ,  this shows that s* = 1 and 
that q~ has a continuation along y .  

Let the assumptions be as in Prop. 11.3 and suppose 
6 ( t ) ,  0 < t < 1, is a continuous curve in M ,  homotopic to y .  Let vr and 
y!Jt (0 < t < 1) be continuations of q~ along y and 6, respectively. Then 
'pl and y!J1 coincide in a neighborhood of y ( 1 )  = 6(1). 

Since y and 6 are homotopic, there exists a continuous mapping 
a of the closed unit square into M such that 

Proposition 11.4. 

Proof. 

40, t )  = Y ( t ) ,  O < t < l ,  

4 1 7 4  = w, O < t < l ;  

4 9 0 )  = A O ) ,  +, 1) = Y ( 1 )  for all 0 < s < 1 .  

For a fixed s, let as denote the continuous curve t ---t a(s, t )  (0 < t < l) ,  
and let p: (0 < t < 1 )  denote the continuation of rp along as. Let u 
denote the supremum of the values s* such that for each s satisfying 
0 < s < s*, T: coincides with q1 in a neighborhood of y (1 ) .  Consider 
now the continuous curve a'. The  mapping t -+ v,Xa"(t)) is also a 
continuous curve. Hence there exists a number r > 0 such that for 
each t ,  0 < t < 1 ,  the balls BZ7(au(t)) and Bzr(qI;(au(t))) are normal 
neighborhoods of their centers. Now, there exists an E > 0 such that 
d(a"(t), as( t ) )  < Y for 0 < t < 1, and I u - s I < E .  For such s, the 
family r,~: gives a continuation of T along as, Now as remarked before, 
the continuation of an isometry along a given curve is unique. It follows 
that if 1 s - u < E, the isometries cpp and cpf coincide in a neighborhood 
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of ~ ( 1 ) .  This shows firstly that u = 1 and secondly that if 0 < s < 1, 
then qi and C& coincide in a neighborhood of ~ ( 1 ) .  This proves the 
proposition. 

5 12. Sectional Curvature 

In  this section we shall exhibit the classical geometric significance 
of the curvature tensor for a Riemannian manifold. 

Let F be a Riemannian manifold of dimension 2 and let p be a point 
in F. Let V,(O) denote the open ball in the tangent plane F, with center 0 
and radius Y .  Suppose r is so small that Exp, is a diffeomorphism of V,(O) 
onto the open ball B,(p). Let A,(r) and A(r) denote the (two-dimensional) 
areas of Vr(0) and B,(p), respectively. 

Definition. The  curvature+ of F at p is defined as the limit 

The  existence of this limit is contained in the following lemma, 
which at the same time facilitates the computation of K .  

Lemma 12.1. Let f denote the “Radon-Nikodym derivative’’ of Exp, 
on V,(O). Then 

3 
K = - 3 [41(0) 

where A is the Laplacian on the metric space F,, that is, A = Plax? + 
a21axi, x1 and x2 being coordinates with respect to some orthonormal basis. 

The definition of f ( X )  is expressed in the formula Exp; (dq) 
= f dX if dq and dX denote the surface elements (Chapter VIII, 
92) of B,(p) and Vr(0), respectively. Hence 

Proof. 

A(r)  = f(X)dX. Lo, 
The  differentiable function f ( X )  can be expanded in a finite Taylor 
series around the point X = 0. If this series is integrated over the disk 
V,(O) one finds 

4 r )  = AO(9 (f(0) + QrZ“Ofl(0) + 0(r3)h 

The  lemma now follows immediately, f (0)  being equal to 1. 

t It is known from the differential geometry of surfaces that if F is a surface, then K is 
equal to the Gaussian curvature of F at p ,  but we shall not need this fact. 
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Let M be a Riemannian manifold and p a point in M. Let No be a 
normal neighborhood of 0 in M,  and let N ,  = ExpN,. Let S be a 
two-dimensional vector subspace of M,. Then Exp (No n S) is a 
connected submanifold of M of dimension 2 and has a Riemannian 
structure induced by that of M .  The  curvature of Exp ( N o  n S) at p 
is called the sectional curvature of M at p along the plane section S.  

Theorem 12.2. Let M be a Riemannian manifold with curvature 
tensor jield R and Riemannian structure g .  Let p be a point in M and S 
a two-dimensional vector subspace of the tangent space M,. The sectional 
curvature of M at p along the section S is then 

Here Y and Z are any linearly independent vectors in S ;  Y v Z denotes 
the parallelogram spanned by these vectors and 1 Y V Z I the area. 

We shall first assume that M and g are analytic in order to 
apply Theorem 6.5. We also assume temporarily that Y and Z are 
orthonormal vectors in S. Let X,, ..., X ,  be an orthonormal basis of 
M ,  such that X, = Y and X 2  = Z. Then each X E S can be written 
X = xlX, + x2X2,  x,, x2 E R. T h e  Laplacian A on S is 

Proof. 

Let No be a normal neighborhood of 0 in M, and put N, = Exp No. 
A curve in the manifold M s  = Exp ( S  n No) has the same length 
regardless whether it is measured by means of the Riemannian structure 
on M o r  by means of the induced structure on M,. If q E M,, the geodesic 
in N p  from p to q is the shortest curve in M s  joining p and q. It follows 
that the Exponential mappings at  p for M and M,, respectively, coincide 
on S n No. Let X f ,  ..., X;, X*  denote the vector fields on N, adapted 
to the tangent vectors X I ,  ..., X,, X .  If X E S n No, we put 

v, = d Expx (X,), ~ 1 2  = d Expx ( X J ,  

and define the functions ckij  by 

[X*, Xi*] = 2 C k i j X , . .  

k 

The  mapping Exp (xlX, + xzX2) --f (xl, x2) is a system of coordinates 
on the manifold M ,  = Exp ( S  n No) and vl and v2 are tangent vectors 
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to M,. If a and b are two vectors in a metric vector space, we denote 
by a V b the parallelogram spanned by a and b and by I a V b I the 
area. Let f denote the ratio of the surface elements in M s  and S (at the 
points Exp X and X). In other words, 

The vectors w1 and v2 can be expressed 

where f i  and gi are analytic functions of (xl, x,). These functions are 
determined by Theorem 6.5 for small (x,, x2). In fact, we have 

(2)  

(2') 

D, = x,. - Q [X" ,  X,*] + Q [ .X*, [X" ,  X,.]] - ... 

v2 = x; - 9 [ X * ,  x:] + Q [X" ,  [X*,  X,"]] - .... 

The vectors (X$)Expx (1 < i < m) form an orthonormal basis of 
MExpx (Theorem 9.1 (ii)). The projection of o1 V o2 into the 2-plane 
spanned by the vectors and has area I f i g j  - gifi I. 
It follows that 

(3) I V1 v v2 l 2  = 2 ( f &  -fjgd2* 
i <i 

We denote this quantity by F. The relation f = F112 implies 

We have to evaluate this expression for (x,, x,) = (0, 0). Since the 
torsion T vanishes, we have 

[q, XTI = vx,+qq - vx;(x:) 
and consequently. the functions ckij vanish at p ;  in other words, the 
restrictions of c k . .  to M s  vanish for (xl, x2) = (0,O). From (2) and (2') 
we obtain expansions for f i ,  gi: 

%? 

X X1% X2 f. = 6 - >Cia, + -(XT ' CiZl) + + ( X $  ' tip,) + ..., 
6 7 l i  2 

X x1xg X i  
gj = - + CjIZ + 6 (X,. ' Cj12) + - (X,* . Cj12) + ...( 6 
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where the terms which are not written vanish for (xl, xz) = (0,O) of 
higher than second order. It follows easily that aF/ax, and aFlax, 
vanish for (x l ,  x2) = (0,O) and 

2[41(0) = P I  (0) = [ 4 f l g 2 ) 2 1  (0). 

Omitting again terms of higher than 2nd order we have 

(f1gJ2 
X2 X2 

- - 1 - x1c212 - xzc121 + 5 (X,*C",,) + f (x;c121) + (x:cl*l + x;c212). 

Since 

X,C21, = [x,*c"zI (0) = [& c q  (01, etc., 

we obtain 
4 

2 [ 4  (0) = - 3 (X1C21$ + XzC12,), 

and by Lemma 12.1 

K(S)  = x1 . g([X,*, x;1, x;, + X ,  . g([X,", x:1, x,*>. (4) 

On the other hand, using [Xi., Xi*], = 0 and the formulas from 
Theorem 9.1, we get 

-g,(R,(Y, 2) y ,  2) = gr(Vx,*Vx; . x:, x;> - gp(Vx;Vx; . x:, x;, 
= x2 * g( vx; . x:, x:> - x1 * R( vx; . x:, x,*> 
- g,(V,: . x:, vx: . x:) + g,(Vx; . x;, vx; . x:>. 

The two last terms vanish since in general (vx: Xi*), = 0. For the 
two other terms we use (2), 5 9. Since g(Xj*, X,*) is constant we obtain 

- R,(R,(Y 2) y ,  2) = X2 ' g([X,*, X,*I, X,.) + Xl . g<[X,*, x;1, x;,. 
In view of (4) this proves Theorem 12.2 in the analytic case for 

Y, 2 orthonormal. If Y, 2 are linearly independent but not necessarily 
orthonormal, we can write A = y lY + xlZ, B = yzY  + zzZ where 
A, B are orthonormal vectors in S. Anticipating the first and third 
relations of Lemma 12.5 we find 

W) = - R,(R,(A, B )  A, B )  

= - g,(R,(YlY + %Z, YZY + Z n Z )  . (Y lY  + Z 1 - q  Y,Y + Z 2 - q  

= - (YPZ - Y2Z1)25P(R,(Y, Z )  y ,  2) 

- _ -  g,(R,(Y* 2) y, 2) 
( Y V Z I ~  * 
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Finally we drop the analyticity assumption. Let {xl, ..., xm} be a system 
of coordinates valid on an open neighborhood U of p ,  such that (apx,), = 
Y,  (a/axz), = 2. Consider the function gii defined by 

Then for each q E U,  the matrix (gij), is symmetric and strictly positive 
definite. There exist analytic functions yij = yji on an open set V(p E V C  U )  
whose derivatives of order 0 < k < 3 approximate those of gii as well 
as we please. For sufficiently good approximation the matrix (y i j )p will 
be symmetric and strictly positive definite for each q E V ;  we get an 
analytic Riemannian structure y on V by requiring 

The  sectional curvature and the curvature tensor field for y approximate 
the corresponding sectional curvature and the curvature tensor field 
for g.  Since Theorem 12.2 holds for the Riemannian manifold induced 
by the Riemannian structure y on V ,  the theorem holds also for g. 

The  next proposition shows, that in a certain sense, the sectional 
curvature determines the curvature tensor. 

Proposition 12.3. Let M be a Riemannian manifold, p a point in M .  
Let g and g' be two Riemannian structures on M ,  R and R' the corres- 
ponding curvature tensors, and K( S)  and K'(S) the corresponding sectional 
curvatures at  p along a plane section S C M,. 

Suppose that g, = gh. If K ( S )  = K'(S)  for all plane sections S C M,, 
then R, = RL. 

We first prove two simple lemmas. 

Lemma 12.4. Let A be a ring with identity element e such that 
6a  $. 0 for a # 0 in A. Let E be a module over A. Suppose a mapping 
B : E x E x E x E ---t A is quadrilinear and satisjies the identities 

(a) B(X,  Y,Z, T) = - B ( Y , X , Z ,  T) .  

(b) B(X,  Y ,  2, T) = - B(X ,  Y ,  T ,  2). 

(c) B(X,  Y,  z, T) + B(Y, z, x, T )  + B(Z, X, y ,  T) = 0. 
Then 

(d) B(X,  Y,  2, T) = B(Z, T, X ,  Y).  

If, in addition to (a) ,  (b),  and (c), B satisjies 

then B = 0. 
( e )  B(X ,  Y, X ,  Y )  = 0 for all X ,  Y E E, 
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Proof. First we interchange T in ( c )  with X ,  Y ,  2, respectively, 
and add the four obtained relations. Using (a) and (b) one obtains 

(f) B(T,  X, y,  2) + B(T, y, 2, X) + B(T,  2, x, Y )  = 0. 

From (c) and (a) it follows that 

B(2, X ,  T ,  Y )  = + B(T,  X ,  Z,  Y )  - B(T,  2, X ,  Y ) .  

On substituting in (f ), relation (d) follows. In  particular, B ( X ,  Y ,  X ,  T )  
is symmetric in Y and T. Thus ( e )  implies B ( X ,  Y ,  X, T )  s 0. In  
view of (a) and (b) this implies that B is alternate; then (c) shows at 
once that B E 0. 

Lemma 12.5. Let M be a manifold with an a@ne connection V. Let 
R and T denote the curvature tensor and torsion tensor, respectively. Then 
R satisfies the following identities 

R(X ,  Y )  = - R(Y, X ) .  

If T = 0, then 

R ( X ,  Y )  . Z + H(Y, Z )  . X + R(Z, X )  . Y = 0 (Biunchi’s identity). 

If g is a pseudo-Riemannian structure on M and V is the corresponding 
pseudo-Riemannian connection, then 

R(R(X9 Y )  2, V )  = - g(R(X,  Y )  v, Z) ,  

g(R(X, Y )  2, V )  = g(R(Z, V )  x, Y ) .  

Proof. The first identity R ( X ,  Y )  = - R( Y ,  X )  is obvious. For the 
second, we use T = 0 and obtain 

by the Jacobi identity for vector fields ($2, No. 1). For the third identity 
we can assume the vector fields X ,  Y ,  2, V are adapted to their values 
at some point p .  From (2), $9, we find in this case 

R(VxZ, 2) = 0. 
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For an arbitrary vector field W we have 

from $9; also ( v w ( Z ) ) ,  = 0 since Z is adapted to 2,. Hence 

g,(R,(X, Y )  %, Z )  = g,( vx VYK Z) - g,( v Y vxz, Z )  

= X,g(VyZ, Z) - YPg(VxZ, Z )  = 0. 

This proves the third identity above. The last follows from Lemma 12.4. 
Returning now to Prop. 12.3, we use Lemma 12.4 on the quadrilinear 

function on M p  x M p  x M p  x M, given by 

Since g, = gk the parallelogram X v Y has the same area whether 
measured by means of g or g’. Now K ( S )  = K’(S) implies B(X, Y, X, Y )  
= 0 for all X, Y E M, so by Lemma 12.4, B 3 0. But gp is nondegene- 
rate so R, = Rb. 

$13. Riemannian Manifolds of Negative Curvature 

The local Riemannian geometry developed in $9 was mostly based 
on properties of the forms (Exp)* wi, which are 1-forms in a normal 
neighborhood in the tangent space to the manifold at some fixed point. 
The forms wi are only defined locally and the same is therefore the case 
with the forms (Exp)* wi. However, we shall now see that these last 
forms (in contrast to the wi) can be extended to the entire tangent space 
or at any rate to the part of the tangent space where Exp is defined 
and regular. No assumption will be made about the curvature for the 
time being. 

Let M be a Riemannian manifold, p a point in M, M, the tangent 
space at p. Let Exp stand for the mapping Exp,. Let No be any open 
subset of M p  star-shaped with respect to 0 such that Exp is a regular 
mapping of No into M. Note that No is not assumed to be a normal 
neighborhood of 0. Let Yl,  ..., Y,  be any orthonormal basis of M,. 
If X E No, there exists an open neighborhood Nx of X in No which 
Exp maps diffeomorphically onto an open neighborhood B of Exp X 
in M. For each Y E Nx let ( Y&xp denote the tangent vector at Exp Y 
which is obtained by parallel translating Yi along the geodesic Exp tY 
(0 < t < 1). Then YF, ..., Y; is a basis for the vector fields on B. 
Let rijk, Rktij be the corresponding functions on B as defined in $8 
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and let the I-forms mi, m i l  (1 < i, I < rn) on B be determined by 
oi(Y.j+) = Si i ,  oil = Zk r k , i  wk. Let V,  be the set of points ( t ,  a,, ..., a,) 
E R x Rm for which ta,Y, + ... + tamYm E N,. Consider the mapping 
@ : V, -+ B given by @ : ( t ,  a,, ..., a,) -+ Exp (talYl + ... + ta,Y,,). 
Just as in $8 one proves that the 1 -forms @*(mi )  and @*(mi are given by 

@*(wi) = u,dt + wi, @*(mi,) = Wi,, 

where ~2 and Wit are l-forms on Vx not containing dt. If X’ is another 
point in No we can as above construct 1-forms Wi and WiI on Vx,. It is 
clear from the definition that these forms agree on Vx n Vx, with the 
ones previously constructed. Thus, if V denotes the set of points 
( t ,  a,, ..., a,) in R x Rm such that talY, + ... + ta,nYm E No, it follows 
that the forms W i  and Wil can be defined on the entire set V. They 
satisfy the differential equations 

Gi,(t,  aj ;  flak),=, = 0, 

in each Vx where Riljk stands for Rilik o @; hence (1) and (2) hold in 
the entire set V. Combining (1) and (2) we obtain the system 

on V. This system is a generalization of the so-called Jacobi equation 
for surfaces. 

Let S denote the unit sphere ( 1  X I (  = 1 in M,  and let U denote 
the set of all pairs ( t ,  X )  E R x S such that tX  E No. Consider the 
mapping Y :  ( t ,  X )  -+ Exp tX  of U into M .  If we identify M,  and 
Rm by means of the basis Yl,  ..., Y,, the sphere S is identified with the 
submanifold a: + ... + a; = 1 of R m .  Thus the forms L;ii and G i I  
induce I-forms on U which we denote by the same symbol. Using the 
fact that No is star-shaped, one finds that Lemma 9.2, stating that 

m 

Y*g = (dt)2 + c (Gi)2, on U ,  (4) 
i=l 

is still valid. If 6 denotes the mapping ( t ,  X )  4 t X  of U into No, then 
Y = Exp o 8. We can use (4) in the special case when M = M,. 
Here R = 0, Wi = tdai and Y = 8. 
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rn 

Let A be any fixed vector field on the sphere a: + ... + a2, = 1 in Rm 
and put 

ai = &(A), yi = da*(A) (1 < i < m). 
T h e  functions ori = ai(t, a,, ..., a,) are defined on the set U and satisfy 
the equation 

We assume now that the sectional curvature of M is < 0 along each 
plane section at each point of M .  For simplicity we express this condition 
by saying that M has negative curvature. 

Consider now a $xed point ( t ,  a,, ..., a,) E U and the corresponding 
numbers al, ..., a,. Now the point X = t(a,Yl + ... + a,Y,,) lies in 
No and the neighborhood N ,  above is diffeomorphic to B. Let q = Exp X ,  
Y = Z& aiYf, Z = ZTLl aiYf. Then q E B and Y and Z are vector 
fields on B .  It is clear that 

ga(Ro(Yo, ~ Q I  yo, zu> = I: Riziliazaiaial; 
t , i , k , l  

so (6) implies 

(7) 
a Z a i  

z a i w w  on U ,  
i 

due to the curvature assumption. 
Again fix a point (al ,  ..., a,) E S.  We put h(t)  = ( Ei a;)lI2 for all 

t 0 for which ( t ,  a,, ..., awL) E U. We assume temporarily that A 
does not vanish at the point (a,, ..., a,). Then h(0) = 0 and h(t)  > 0 
for t > 0. Since 

aGi 
(r) t-0 = da,, (2) t=o = yi, 

it follows that h‘(0) = ( Ei From (7) and the identity 

aa. 
h(t)3 h”(t)  = h(t)Z 2 ai 2 + (2 a; 2 (*) - (x a2 $Y) 

i I I t 
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it follows that 

Consequently, h(t) 3 th’(O), so 

,,L m 

2 (Cz(A))Z 3 t 2  c (da,(A))Z 
1=I t= l  

at the point (a l ,  ..., a,,,). If A vanishes at the point (a l ,  ..., a,,,) E S, 
( 8 )  holds trivially. Hence (8) holds for an arbitrary vector field A on S 
and for all points in U for which t > 0. Using now (4), ( 5 ) ,  and the 
fact that Y = Exp o [, Y* = (* c Exp*, we obtain 

I1 dEXPX(Y)ll 3 I I  YII! 

if X is any point in No and Y is any tangent vector to No at X .  This 
proves the following theorem. 

Theorem 13.1. Let M be a Riemannian manifold of negative curvature 
and p any point in M.  Let No be any open subset of M,, star-shaped with 
respect to 0 such that Exp (the Exponential mapping at p )  is a regular 
mapping of No into M.  Then 

I I  dEXPX(Y) I I  > / I  YII! 

;f X is any point in No and Y is any tangent vector to No at X .  I n  particular, 

L( E x p  o T) > L(T) 

for any curve segment r in No, L denoting arc length. 

Corollary 13.2. Suppose M is a Riemannian manifold of negative 
curvature and V a minimizing convex normal ball in M .  Let ABC be a 
triangle inside V whose angles are A ,  B, C and whose sides are geodesics 
of lengths a ,  b, and c. Then 

(i)  a2 + b2 - 2ab cos C < c 2 ;  

(ii) A + B + C < 7r. 
In  fact, let us use Theorem 13.1 on Exp,. Let I‘,, r,, and r, denote 

the geodesics forming the sides of the triangle and let ya, yb, and yc 

denote the corresponding curve segments in the tangent space M ,  
(Expc(ya) = r,, etc.). Let yo denote the straight line in M ,  joining 
the end points of yc, and put ro = Exp, (yo) .  
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since the angle between ya and yb is C. 
Suppose now that the sectional curvature is everywhere < 0. Then 

L(yc) < L( I',) and (i) follows. For (ii) we first observe that c = d ( A ,  B),  
etc., and consequently each length a,  b, or c is majorized by the sum of 
the two others. We can therefore find an ordinary plane triangle with 
sides a ,  b, c. Denoting its angles by A', B', C' we have by (i): A < A', 
B < B', C < C'. Since A' + B' + C' = T ,  relation (ii) follows. 

Theorem 13.3. 

(i) Let M be a complete Riemannian manifold of negative curvature 
and p any point in M .  Then M contains no points conjugate to p .  

(ii) Let M be a complete Riemannian manifold and suppose there exists 
a point p E M such that M contains no point conjugate to p .  Then the pair 
( M p ,  Exp,) is a covering manifold of M .  In particular, if M is simply 
connected, Exp, is a diffeomorphism of M p  onto M .  

(i) As before, we write Exp instead of Exp, and denote by 
C(p) the (closed) set of points in M, which are conjugate to p .  If C(p) 
were not empty, let X be a point in C(p) at minimum distance from the 
origin. Then there exists a vector Y # 0 in M p  such that d Exp, (Y) = 0. 
On the other hand, Theorem 13.1 implies that I I d Exp,, (Y) I I 3 I I l' I I 
for 0 < t < 1. B y  continuity, i I  d Exp,(Y) I (  3 1 1  Y 1 1 ,  which is a 
contradiction. Thus C(p) = Ca. 

In  order to prove the latter statement of the theorem we follow a 
suggestion of I. Singer and consider the tensor field g* = Exp*g on 
M,, g denoting the Riemannian structure on M .  Owing to the regularity 
of Exp, g* is a Riemannian structure on M,. The  space M p  with the 
Riemannian structure g* is complete; in fact, the geodesics through the 
origin in M ,  are straight lines. Thus M,  is complete at p (in the sense 
of the remark following Theorem 10.4), hence complete. Theorem 13.3 
now follows from the next lemma. 

Proof. 

Lemma 13.4.t Let V and W be Riemannian manifolds, V complete, 
and p' a differentiable mapping of V onto W. Assume that dp,, is an 
isometry for  each v E V. Then (V,  p') is a covering space of W. 

t Ambrose [I], p. 360. 
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Proof (Due to Palais, from Hicks [l]). Let w E W, let No be a 
normal neighborhood of 0 in W, of the form I /  X 1 1  < 7 ,  and put 
N ,  = Exp, No.  Let v be any point in rp-l(w). Let #I denote the inverse 
of the mapping Exp,: No -+ N,. Since V is complete, the mapping 
f = Exp, o ( d y V ) - l o  #I is a well-defined mapping of N ,  onto a subset 
N ,  of V and it is obvious that rp o f is the identity mapping of N, 
onto itself. Similarly, f o cp is the identity mapping of N,  onto itself. 
Since (drp,)-l(N0) is the ball 1 1  X I /  < 7 in V,, it is clear that N, is 
contained in the open ball B,(v) .  On the other hand, B,(v) C N, 
due to Theorem 10.4. Thus N,  = B,(v)  and q is a diffeomorphism of 
N ,  onto N,. Now suppose vl,  v2 E rp-l(w), vl f v2. Then the balls 
B,(v,) and B,(v,) are disjoint because otherwise there would be a point 
v* E B,(v,) n B,(v,) such that w and rp(v*) are joined by geodesics 
of different length lying inside N,. Moreover, 

because each point in y- l (NW) can be joined to a point in y - l ( w )  by 
means of a geodesic of length < 7 .  This proves that (V ,  y )  is a covering 
manifold of W. 

The next theorem, due to E. Cartan, has an important application 
to Lie groups (see Chapter VI); in fact, it leads to the only known proof 
of the conjugacy of maximal compact subgroups of a semisimple Lie 
group. 

Let M be a complete simply connected Riemannian 
manifold of negative curvature. Let K be a compact Lie transformation 
groupt of M whose elements are isometries of M .  Then the members of K 
have a common $xed point. 

Theorem 13.5. 

Proof. Let d denote the distance function on M and let dk denote 
the Haar measure on K ,  normalized by sK dk = 1. Select a point p E M 
and consider the real function J on M given by 

Then J is a nonnegative continuous function on M .  Since the orbit 
of p is compact, there exists a ball B,(p) such that J(q) > J(p)  for 
q $ B,(p).  The closure of B,(p) is compact, and contains therefore a 
minimum point qo for J. Then qo is also a minimum for J on M .  I t  is 

t See the definition in Chapter 11, § 3. 
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clear that J(k . 4,) = J(qo) for k E K, so in order to prove the existence 
of the fixed point, it suffices to prove that 

J(s) > J k o )  if q # 40. (9) 

Now, due to Theorem 13.3, any two points’ in M can be joined by a 
unique geodesic and its length is the distance between the points. Thus, 
due to Cor. 13.2, the cosine inequality 

a2 + b 2  - 2ab cos c < c2 

is valid for an arbitrary geodesic triangle in M. Suppose now q # qo 
and let t --t qt (0 < t < d(q,, 4)) denote the geodesic joining qo to q. 
If k . p # qf ,  let q(k) denote the angle between the geodesics (q t ,  q) 
and (K . p ,  qf) .  In  view of Lemma 13.6 we have 

We shall now prove that the function 

d 
F(4  4 = t d2(q,, k ’ P )  (0 < t d d(q,,q), k E K ) ,  

is continuous at each point (0, K), K E K. Then F is clearly continuous 
everywhere. Let Kl denote the (closed) set of elements k in K such that 
K . p = qo; let K, denote the complement K - K,. Now, the mapping 
K -+ K . p of K into M is differentiable; using Lemma 10.1 successively, 
it follows quickly that the function (t, k) .+ cos or,(k) is continuous at 
(0, k,) if KO E K,. Next, let KO E K,  and suppose the sequence (t,, K,) 
converges to (0, k,). By (10) we have 

I F(t ,  4 I < W q t ,  k . P ) ,  

and since d(qtn, K, . p )  4 d(q,, KO . p) = 0, it follows that F(t,, K,J -+ 

F(0, ko). This proves the continuity of F. Thus the function t -+ J(qJ 
is differentiable and its derivative can be obtained by differentiating 
under the integral sign. Since the minimum occurs for t = 0, we obtain 
from (10) 

d(q,, k . p )  cos a,(k) dk = 0. 
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for k E K,. By integration we obtain 

The  similar inequality for K ,  is trivial; adding these inequalities we get 

.1(d 2 J ( Q 0 )  + J%O, 41, 

which proves the theorem. 

Lemma 13.6. Let M be as in Theorem 13.5 and let p E M .  Let 
y : t -+ ql (0 < t < L)  be a curve segment not containing p ,  t being the 
arc parameter. Then 

where a denotes the angle between the segment y and the geodesic (pq,,) a t  
qo (see Fig. 1). 

FIG. I 

Proof. Let Exp stand for Exp, and determine Q, E M p  such that 
ExpQ, = q,. Let the distance in M ,  also be denoted by d .  Then 

J Y Q t ,  P )  - J W o ,  P) = J2(G?o, 91) + 24909 P) 4 Q m  Q t )  cos A t ,  

where A ,  is the angle between the straight lines (pQo) and(Qo?,). Since 
Exp is a diffeomorphism, the mapping t + Ql (0 < t < L )  is a curve 
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segment. Let Y denote its tangent vector at Qo, L ,  its arc length measured 
from Qo to Qt ,  and A the angle between Y and (PQ,). Then 

It follows at once that ( l l t )  (d2(&,, Q J )  3 0 as t -+ 0. Consequently, 

Now Y = Yo + Y, where Yo has the direction of (pQo)  and Y,  is 
perpendicular to that direction. In  view of Lemma 9.7, d Expp, (Y,) 
is perpendicular to the geodesic (pqo).  Since 1 1  d Expo, Yo 1 1  = 1 1  Yo 1 1  
we have 

1 1  Y I (  cos -4 = ( 1  d ExpQ, ( Y )  I (  cos OL = cos C%, 

and the lemma is proved. 

$14. Totally Geodesic Submanifolds 

Let M be a differentiable manifold, S a submanifold. Let m = dim M, 
s = dim S. A curve in S is of course a curve in M, but a curve in M 
contained in S is not necessarily a curve in S,  because it may not even 
be continuous. However, we have: 

Let q~ be a differentiable mapping of a manifold V into 
the manifold M such that p'( V )  is contained in the submanifold S. If the 
mapping q~ : V -+ S is continuous i t  is also diflerentiable. 

Let p E V. In view of Prop. 3.2, there exists a coordinate system 
{xl, ..., xrn} valid on an open neighborhood N of ~ ( p )  in M such that 
the set 

N s = ( r ~ N : x i ( r )  = O f o r s  < j < m }  

together with the restrictions of (x,, ..., x,) to Ns form a local chart 
on S containing ~ ( p ) .  By the continuity of q~ there exists a local chart 
(W, 4) around p such that v(W) C Ns. The  coordinates xj(y(q)) 
(1 < j  < m) depend differentiably on the coordinates of q E W. In  
particular, this holds for the coordinates xj(~(4)) (1 < j  < s) so the 
mapping 

As an immediate consequence of this lemma we have the following 
statement: Suppose that V and S are submanifolds of M and V C S. 
If S has the relative topology of M, then V is a submanifold of S. 

Lemma 14.1. 

: V -+ S is differentiable. 
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In  the remainder of this section we shall assume that M is a Rieman- 
nian manifold and S a connected submanifold. T h e  Riemannian structure 
on M induces a Riemannian structure on S. Let dM and d, denote the 
distance functions in M and S, respectively. It is obvious that 

4 d P 3  4) G dS(P9 s) 
for p ,  q E S. In  order to  distinguish between geodesics in M and S we 
shall call them M-geodesics and S-geodesics, respectively. 

Let y be a curve in S, and suppose y is an M-geodesic. 
Then y is an S-geodesic. 

Let o and p be any points on y,  say o = y(ro) and p = y ( r ) ;  
let N o  be a spherical normal neighborhood of o in M .  If r is sufficiently 
close to ro the geodesic segment 

Lemma 14.2. 

Proof. 

YOP : t - l t - r n l  < I r - rn I ,  

is contained in No. In  view of Lemma 9.3, the length of yop satisfies 

W o p )  = 4v.40, P )  < dS(0, P )  < W O P h  

Consequently L(yop)  = d,(o, p ) ;  thus yOp is a curve of shortest length 
in S joining o and p ,  hence an S-geodesic. 

Definition. Let M be a Riemannian manifold and S a connected 
submanifold of M .  Let p E S. The  submanifold S is said to be geodesic 
at p if each M-geodesic which is tangent to S at p is a curve in S. T h e  
submanifold S is called totally geodesic if it is geodesic at each of its 
points. 

Suppose S is a submanifold of M ,  geodesic at a point 
p E S. If y is an S-geodesic through p ,  then y is also an M-geodesic. If M 
is complete, then S is complete. 

Let r be the maximal M-geodesic tangent to y at p .  Then 
r C S so by Lemma 14.2, r is an S-geodesic. Hence y C T. Now suppose 
M is complete and let Exp, and Exp, denote the Exponential mapping 
at p for M and S,  respectively. By assumption Exp, is defined on the 
entire M p .  Since S is geodesic at p ,  Exp, is the restriction of Exp, 
to S,, in particular, S is complete at p in the sense of the remark following 
Theorem 10.4. By that remark, S is complete. 

Suppose S is a totally geodesic submanifold of M ,  
and let I denote the identity mapping of S into M .  For each p E S there 
exists an open neighborhood Up of p in S on which I is distance preserving, 

Lemma 14.3. 

Proof. 

Proposition 14.4. 

that is, 
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Proof. Let B,(p) be a minimizing convex normal ball around p in M .  
Since I is continuous, the intersection B,(p) n S is an open subset of S. 
Let U,) be a minimizing convex normal ball around p in S such that 
U, c B,(p).  Let q, r be arbitrary points in Up and yq7 the S-geodesic 
inside U 'oining q and r .  Then d,(q, r )  = L(yqr).  Consider the maximal 
M-geodesic r such that r and yqr have the same tangent vector at q. 
Since S is totally geodesic, PC S ;  from Lemma 14.2 follows that 
yQr C r, so yqr is an M-geodesic. Since ypr  C B,(p) it follows that 
d,(q, r )  = L(y,,). This proves the proposition. 

Examples are easily constructed (e.g., geodesics on a cone) 
which show that relation ( 1 )  does not in general hold for all ql, q2 E S. 

Let M be a Riemannian manifold and S a connected, 
complete submanifold of M. Then S is totally geodesic ;f and only ;f 
M-parallel translation along curves in S always transports tangents to 
S into tangents to S. 

p ?  

Remark. 

Theorem 14.5. 

Proof. Let s = dim S,  m = dim M and let o be an arbitrary point 
in S .  In  view of Prop. 3.2 there exists an open neighborhood N of o 
in M on which a coordinate system (xl, ..., qrL} is valid such that the set 

U = r q ~ N : x ~ ( q ) = O  for s + l  < j < m >  

is a normal neighborhood of o in S and such that the restrictions of 
(xl, ..., xs) to U form a coordinate system on U .  

Let p E U and let y : t -+ y ( t )  be a curve in U such that p = y(0). 
Let Y ( t )  be a family of tangent vectors to M which is M-parallel along 
the curve y and such that Y(0) E S,,. Writing Y ( t )  = ZT=l Y"(t) ajax, 
the coefficients Y"(t) satisfy the equations 

Yqo) = 0 ,  x , ( t )  = 0, s < a < m .  

Let x : t --f x ( t )  be an M-geodesic tangent to S at p ,  t being the arc 
parameter measured from p .  If t is sufficiently small and we write xa( t )  
for X U ( 4 t ) h  

TI1 

ji.,(t) + 2 IT(,ca k b ( t )  &( t )  = 0, 1 < a ,  b,  c ,  < m, (3) 
b ,c= l  

k"(0) = 0, s < a < m .  
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In the computations below we adopt the following range of indices: 

1 < i , j ,  k < s, 

s + 1 < % A  y < m. 
Suppose now S is totally geodesic. Then the M-geodesic r above is 

a curve in S ,  hence an S-geodesic. For small t ,  n(t) lies in U so x,(t) = 0. 
Since every S-geodesic is now an M-geodesic, (3) implies 

r j P a ( P )  = 0, p E u. (4) 

For the curve y above we have i J t )  = 0. In  view of (4) we obtain 

i.P 

Now, Y(0) E S, so Yp(0) = 0. Owing to the uniqueness theorem for 
the system ( 5 )  of linear differential equations we have Y'(t) = 0. 
Consequently, the family Y(t)  is tangent to S. Finally, let j? : t --+ P( t )  
( t  E J )  be an arbitrary curve in S and let Z ( t )  be an M-parallel family 
along j? such that Z(to) E SB([,) for some to E J .  The  set of t E J such 
that Z(t)  E Spcl)  is clearly closed in J.  The  argument above shows that 
this set is open in J .  Thus Z(t)  E S,,,, for all t E J and the first half 
of the theorem is proved. 

To  prove the converse, suppose that for each curve as above, the 
relation Y(0) E S, implies Y(t)  E Sy(,)  for each t. In  (2) we have therefore 

Y"(t) 3 0 k J t )  3 0 

and (4) follows. Now substitute (4) into (3). Since Tbca = rcb" (torsion 
is 0), we obtain 

Since iJ0) = 0 we conclude from the uniqueness theorem for the non- 
linear system (6) that x,(t) is constant, that is, x,(t) = 0 for all t in a 
certain interval around 0. The  functions x i ( t )  are differentiable; con- 
sequently, a piece T' of r containing p is a curve in U ,  hence a curve in 
S. Let r* be the maximal S-geodesic tangent to r at p ,  parametrized 
by the arc length t* measured from p .  Since S is complete, t* runs 
from - 03 to 03. Now r*(t) = r(t) if t is sufficiently small; moreover, 
the set of t-values for which r ( t )  = r*(t) is open and closed. Thus 
r C r*, r is a curve in S and the theorem is proved. 
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Let M be a simply connected, complete Riemannian 
manifold of negative curvature. Let S be a closed totally geodesic sub- 
manifold of M .  For each p E S, the geodesics in M which are perpendicular 
to S at p make up a submanifold S1 ( p )  of M and M is the disjoint union: 

Theorem 14.6. 

Proof. Let Exp, denote the Exponential mapping of M p  into M 
and let T, denote the orthogonal complement of the tangent space S, 
in M,. Since S is complete and since S-geodesics are M-geodesics, it 
follows that 

Moreover, we have by definition 

S = Exp, (Sv). 

S"(P) = EXP, V,). 
Since Exp, is a diffeomorphism (Theorem 13.3), S l ( p )  is a submanifold 
of M .  

Now, let q be an arbitrary point in M lying outside S ;  S being closed 
there exists a point p ,  E S at shortest distance from q. The unique 
geodesic r from q to p ,  is perpendicular to S.  In fact, if u : t -+ s t  is a 
curve in S, the derivative (d /d t )  d(sl, q) equals cos at where at is the 
angle between 0 and the geodesic from q to s1 (Lemma 13.6). On the 
other hand, if a geodesic connecting q to S is perpendicular to S, then 
this geodesic must coincide with r since the sum of the angles in a 
geodesic triangle in M is < rr. This shows that each point q E M lies 
in exactly one of the manifolds S l ( p )  and the theorem is proved. 

15. Appendix 

In  this section we collect some tools which have been used in this 
chapter and prove some supplemental results mentioned in the text. 

1. Topology 

Proposition 15.1. Let M be a locally compact Hausdog  space which 
has a countable basis for the open sets. Then M is paracompact. 

Proof. Let U,, U,, ... be a countable base for the open subsets of M .  
Since M is locally compact, we may assume that the U, are relatively 
compact. Now define inductively 

v, = u,, v, = u, v ... v u,,, and v,,, = u, v ... v Ui, 
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where i, = 1, and ik the smallest integer >ikp1 such that 

83 

i=l 

Then 
m 

= u V k ,  pk Vk+l .  
1 

Now suppose (Ua)aeA is an arbitrary covering of M .  By the compactness 
of each 0, we can choose finite subcoverings of the coverings 

The members of these subcoverings constitute a locally finite covering 
of M which clearly is a refinement of {Ua}aEA. 

Proposition 15.2. Every paracompact space M is normal. 

Proof. Let A and B be two closed disjoint subsets of M .  Fix p E A. 
We first show that p and B can be separated by disjoint open sets, U ( p )  
and V ( p )  with p E U ( p ) ,  B c V ( p ) .  For each q E B there exist, by the 
Hausdorff axiom, two disjoint open sets U, and V, with p E U,, q E V,. 
The sets M -. B and V ,  ( q  E B )  constitute a covering of M which, by 
paracompactness, has a locally finite refinement {WE>. Then the set 

is an open set containing B. By the local finiteness, p has an open neigh- 
borhood N which intersects only finitely many W, in ( I ) ,  say W,, ..., W,. 
For each of these Wi choose qi such that Wi C Vqi; then the set 

and V ( p )  above have the desired property. 

ment (NB}. The set 
The  covering M - A, U( p )  ( p  E A)  of M has a locally finite refine- 
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is an open set containing A. Each q E B is contained in an open neigh- 
borhood B, which intersects only finitely many N8 in (2), say Ni,  ..., Ni .  
Each of these N; is contained in some U( p), say U( pi). The intersection 

then is an open neighborhood of q disjoint from U.  The union V of 
these neighborhoods as q runs through B has the desired property. 

Proposition 15.3. Let M be a normal topological space and (U,}asA 
a locally Jinite covering of M .  Then the sets U ,  can be shrunk to sets V ,  
such that V ,  C U,  for each 01 E A and such that {V,},,, is still a covering 
of M .  

Proof. 
satisfying 

Let @ denote the set of all functions q on the index set A 

(i) ?(a) = U,  or 

q(a) = open set V ,  satisfying V ,  c U,; 

(ii) {?(a)},,, is a covering of M. 

We give @ a partial ordering: y < q' means that q(a) = ~ ' ( a )  whenever 
~ ( a )  = V,. Let Y c @ be a totally ordered subset and put 

+*(a) = n w. 
*LEY 

Then we claim #* E @. In fact, since Y is totally ordered, the family 
(+(a) : # E Y} consists of at most two members, so (i) is obvious; for 
(ii) let p E M and U,,, ..., U,. theJinitely many members of the covering 
{U,),,, which contain p .  Define $Jp(a) = $*(a) for a = al, ..., a,; 
otherwise &(a) = U,. Then {+p(a)},e,, is obtained from {U,],,, by 
shrinking at most finitely many U,, each shrinking leading to a new 
covering. Thus #p E @, so in particular, (ii) holds for +*, that is, $* E @. 
The definition of $J* shows +* = sup Y. Thus we can apply Zorn's 
lemma and conclude that @ has a maximal element q*. 

It remains to prove that q*(a) = V ,  for every a. But if q*(p) = 
U,( # OR) for some /3 E A, we consider the subset 
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Then M, is a closed subset of U, (since v* satisfies (ii)), so by normality 
there exists an open set V, such that M,  C V, C r, C U,. But then vo 
defined by 

%(4 = v*(4, VO(@ = v, 
would contradict the maximality of v*. 

Theorem 15.4. A connected, locally compact metric space M is 
separable. 

Proof. Consider the open balls B,(p)  in M. For each p E M ,  B , ( p )  
is relatively compact if Y is sufficiently small; let Y( p )  be the supremum 
of r E R for which B,( p )  is relatively compact. If r( p )  = co for some p ,  
there is nothing to prove since a compact metric space is clearly separable. 

Suppose therefore r (po)  < co for all po  E M. Then r ( p )  depends 
continuously on p ;  in fact 

T o  see this, suppose to the contrary that r(q) = r ( p )  + d ( p ,  q)  + 2~ 
for some p ,  q E M and E > 0. Then by the triangle inequality, 

BdB)+€(P) c fhd-€(q)* 

contradicting the maximality of r ( p ) .  Consider now the closed balls 

and put 

co = V(PO), cn+, = u W),  1z = 0, 1, .... 
V E  C, 

Then the union C = Ug, C,  is obviously open in M ;  it is also closed as 
a consequence of (3); in fact if (p,)  is a sequence in C converging to 
q E M ,  we have d(p,,  q) < Qr(q) for K sufficiently large, whence by (3), 
q E V(p,). Thus q E Cnk+, if p ,  E Cnk. By the connectedness of M,  
the family {Cn}nez therefore has union M. 

T o  conclude the proof of the theorem it suffices to prove that each C, 
is compact. This is so for K = 0 and assuming it true for Iz ,< n we 
shall prove C,,, compact. So let (p , )  be a sequence in C,,,. Then we 
choose qi E C,  such that pi E V(q,). Passing to a subsequence if necessary 
we may, by the compactness of C,, assume (qi) converges to a limit 
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q E C,. Then r(qi) converges to r(q) and since pi E V(qi) we conclude that 
if 3 < p < 1, then pi belongs to the closed ball 

for i sufficiently large. This last ball being compact, ( p i )  has a convergent 
subsequence, so the theorem is proved. 

2. Mappings of Constant Rank 

Theorem 15.5. Let M and N be C" mantyolds and CP : M -+ N 
a dtfferentiable mapping. Let p E M and suppose the linear transformation 
d@, : Mq -+ N,(,, has constant rank k for all q in a ne$hborhood of p .  
Then there exists a coordinate system 6 = {xl, ..., xm} near p E M and 
a coordinate system 7 = {yl, ..., y,} near @ ( p )  E N such that [ ( p )  = 0, 
q(@(p))  = 0, and the expression of @, that is, the map 7 o @ o f - l ,  is 
given by 

7 0 @ 0 (-1 : ( x l ,  ..., x,) + ( x l ,  ..., Xk, 0, ..., 0). 

Proof. Let p = {ul, ..., u,} be coordinates near p and v = {vl, ..., vn} 
coordinates near @ ( p )  such that p ( p )  = 0, v ( @ ( p ) )  = 0. If u o CP o p-l 
is given by 

vi = 94% --a, u,) (1 < i < 4, 

we can assume the indexing done such that 

Thus, introducing the functions 

x ,  = 0, 0 @, l < o r < k ,  (4) 

we have x,(q) = rp,(ul(q), ..., u,(q)) ( 1  < a < k )  so the mapping 
(ul,  ..., urn) --f ( x l ,  ..., x,) has a nonsingular Jacobian at the origin. Thus 
the mapping 4 : q -+ (xl(q), ..., x,(q)) is a local coordinate system near 
p E M .  Writing now 
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each z,hi is a C" function of (xl, ..., xm) and because of (4), $a = x, 
(1 < 01 < k), so the Jacobian has the form 

0 \ 

where Ik is the unit matrix of order k and Dj  = a/axj (1 < j < m). 
Since the matrix (6) has rank k ,  the lower right-hand block must vanish, 
that is, each I,!J~ ( k  < i < n) is given by a function 

# i  = 4 i h ,  * * a 9  (k < i < n), 
which is independent of xj ( j  > k). Finally, we introduce the functions 

Y a  = vci, 1 < c i < k ,  

y .  z = u .  2 - #.( z v19 * - * ,  V k ) ,  k < i < n ,  

and let 7 denote the mapping r 4 ( y1(r), ..., yn(r) ) .  Then 

7 0 v-'(vl, ..., vn) = (vl, **., vkr v k + l  - #k+l(%, . . . I  vk)> ...% vn - # I L ( ~ ~ ,  vk))? 

whence 

and the proof is finished. 

mersion if it is a submersion at each point. 
If d@,(M,) = ATQ(,), 6, is called a submersion at q ;  it is called a sub- 

Corollary 15.6. With the notation of Theorem 15.5 suppose dDq has 
rank k for all q E M .  Let r E 6,(M). Then the closed subset @-I(r) C M with 
the topology induced by that of M has a unique dzflerentiable structure with 
which it is a submanifold of M of dimension m - k .  

For this let S = @-I(Y), p E S,  and consider the coordinate systems 5 
and q above. Then  the mapping u : q 4 ( ~ ~ + ~ ( q ) ,  ..., x,(q)) is an open 
chart on a neighborhood of p in S. If p' is another point in S and f ' ,  
u' the associated charts, then U' o u-l is differentiable, being a restriction 
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of 5' o 5-1 to an open set in IP-k .  Hence S is a manifold; and since the 
identity map I : S + M has the expression 

4 0 1 0 0-l : (xk+l, ..., x,) --f (0, ..., 0, XK+1, ..., xm), 

S is a submanifold of M. The  uniqueness is immediate from Lemma 14.1. 

EXERCISES AND FURTHER RESULTS 

A. Manifolds 

1. Let M be a paracompact manifold, A and B disjoint closed subsets 
of M .  Then there exists a function f E C m ( M )  such that f = 1 on A, 
f = O o n B .  

2. Let M be a connected manifold and p ,  q two points in M .  Then 
there exists a diffeomorphism @ of M onto itself such that @ ( p )  = q. 

3. Let M be a Hausdorff space and let 6 and 6' be two differentiable 
structures on M .  Let 8 and 5' denote the corresponding sets of C" 
functions. Then 6 = 6' if and only if 8 = 8'. 

Deduce that the real line R with its ordinary topology has infinitely 
many different differentiable structures. 

4. Let @ be a differentiable mapping of a manifold M onto a manifold 
N. A vector field X on M is called projectable (Koszul [l]) if there exists 
a vector field Y on N such that d@ X = Y.  

(i) Show that X is projectable if and only if X g ,  c B0 where 5o = 

(ii) A necessary condition for X to be projectable is that 

(f 0 @ : f E CW(N)). 

d@,(X,) = d@Cw*) (1) 

whenever @ ( p )  = @(q). If, in addition, d@,(M,) = No(p)  for each 
p E M ,  this condition is also sufficient. 

(iii) Let M = R with the usual differentiable structure and let N 
be the topological space R with the differentiable structure obtained 
by requiring the homeomorphism $ : x -+ x1I3 of M onto N to be a 
diffeomorphism. I n  this case the identity mapping @ : x --f x is a 
differentiable mapping of M onto N .  The vector field X = a,ax on M 
is not projectable although (1) is satisfied. 

5. Deduce from $3.1 that diffeomorphic manifolds have the same 
dimension. 
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6. Using Exercise A.l prove the following variation of Theorem 1.3. 
Let M be a paracompact manifold and { a locally finite covering 
of M. Then there exists a system { P ) ~ ) ~ ~ ~  of differentiable functions 
on M such that: (i) Each ( P ~  has support contained in U,; (ii) 2 0, 

7. Let M be a manifold, p E M ,  and X a vector field on M such that 
X p  # 0. Then there exists a local chart {xl, ..., x,> on a neighborhood 
U of p such that X = a, ax, on U. Deduce that the differential equation 
Xu = f ( f ~  Cm(M))  has a solution u in a neighborhood of p .  

8. Let M be a manifold and X, Y two vector fields both f O  at a 
point o E M. For p close to o and s, t E R sufficiently small let q S ( p )  
and denote the integral curves through p of X and Y ,  respectively. 
Let 

Prove that 

L A  (Par = 1. 

= ~ - ~ ~ ( ~ - ~ ~ ( ~ ~ ~ ( ~ ~ ~ ( o ) ) ) ) .  

[ X ,  Yl0 = lim+(t) 
t-0 

(Hint: The  curves t + cpt(rpS(p)) and t + ~ ) ~ + ~ ( p )  must coincide; deduce 
( X n f  )(PI = W f  (Vt . P)lt=o)* 

8. The Lie Derivative and the Interior Product 

1. Let M be a manifold, X a vector field on M .  The Lie derivative 
O(X) : Y -+ [ X ,  Y ]  which maps al(M) into itself can be extended 
uniquely to a mapping of a ( M )  into itself such that: 

(i) O(X)f = Xf for f E Cm(M). 
(ii) O(X) is a derivation of D(M) preserving type of tensors. 

(iii) O(X) commutes with contractions. 
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2. Let 0 be a diffeomorphism of a manifold M onto itself. Then 0 
induces a unique type-preserving automorphism T ---t di * T of the 
tensor algebra % ( M )  such that: 

(i) 
(ii) 

The automorphism commutes with contractions. 
0 . X = X@, ( X  E W ( M ) ) ,  di o f  = f @ ,  ( f ~  Cm(M)) .  

Prove that 0 * w = (@-l)* w for w E %.+(A!?). 
3. Let g, be a one-parameter Lie transformation group of M and 

denote by X the vector field on M induced by g, (Chapter 11, $3). Then 

1 
O(X)T = lim - ( T  - g, * T )  

t-0 t 

for each tensor field T on M (8 ,  * T is defined in Exercise 2). 

properties: 
4. The Lie derivative e ( X )  on a manifold M has the following 

(i) e([x, Y I )  = e(x) e(Y) - e(y) qx), x, Y E  q~). 
(ii) B(X) commutes with the alternation A : %,(M) ---f X(M) and 

(iii) e ( X )  d = de(X),  that is, e ( X )  commutes with exterior differen- 

5. For X E %l(M) there is a unique linear mapping i ( X )  : %(M) -+ 

therefore induces a derivation of the Grassmann algebra of M .  

tiation. 

X(M), the interior product, satisfying: 

(i) i ( X ) f  = 0 for f~ C"(M).  
(ii) i ( X ) w  = w ( X )  for w E%~(M) .  

(iii) i ( X )  : X,(M) -+ X,-,(M) and 

if w1 E %,(M), w2 E %(M).  
6. (cf. H. Cartan [I]). Prove that if X ,  Y E W(M), wl, ..., wr E al(M),  
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C. Affine Connections 

1. Let M be a connected manifold with a countable basis. Using 
partition of unity show that M has a Riemannian structure. On the 
other hand, a Riemannian manifold has a countable basis (Prop. 9.6). 

2. Let v be the affine connection on Rn determined by vx(Y) = 0 
for X = i3,'axi, Y = a/ax,, 1 < i, j < n. Find the corresponding 
affine transformations. 

3. Let M be a manifold with an affine connection v satisfying 
R = 0, T = 0. Deduce from $8 that for each p E M ,  Exp, induces an 
affine transformation of a normal neighborhood of 0 in M ,  onto a normal 
neighborhood of p in M .  

4. Let M be a manifold with a torsion-free affine connection v. 
Suppose XI, ..., X ,  is a basis for the vector fields on an open subset 
U of M .  Let the forms ~ 1 ,  ..., W" on U be determined by wi(Xj)  = aij. 
Prove the formula 

for each differential form 8 on U. 

5. In  Prop. 10.7 it was proved that a complete noncompact Riemannian 
manifold M always contains a ray. Does M always contain a straight 
line, that is, a geodesic y(t) (-00 < t < co) which realizes the shortest 
distance between any two of its points? 

6. Let M and N be analytic, complete, simply connected Riemannian 
manifolds. Suppose that an open subset of M is isometric to an open 
subset of N .  Using results from $11 show that M and N are isometric 
(Myers-Rinow). 

D. Submanifolds 

1. Let M and N be differentiable manifolds and 0 a differentiable 
mapping of M into N. Consider the mapping 9) : m 4 (m, @(m)) (m E M )  
and the graph 

G, = {(m, @(m)) : m E M }  

of 0 with the topology induced by the product space M x N .  Then 
is a homeomorphism of M onto G, and if the differentiable structure 
of M is transferred to G, by q ~ ,  the graph G ,  becomes a closed sub- 
manifold of M x N.  

2. Let N be a manifold and M a topological space, M C N (as sets). 
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Show that there exists at most one differentiable structure on the 
topological space M such that M is a submanifold of N .  

3. Using the figure 8 as a subset of R2 show that 
(i) A closed connected submanifold of a connected manifold does 

not necessarily carry the relative topology. 
(ii) A subset M of a connected manifold N may have two different 

topologies and differentiable structures such that in both cases 1M is a 
submanifold of N. 

4. Let M be a submanifold of a manifold N and suppose M = N 
(as sets). Assuming M to have a countable basis for the open sets, prove 
that M = N (as manifolds). (Use Prop. 3.2 and Lemma 3.1, Chapter 11.) 

5. Let N be a manifold with a countable basis and M a closed sub- 
manifold of N. Then each g E C"(M) can be extended to a G E C"(N). 
It is assumed that M has the relative topology of N. 

6. Let M be a Riemannian manifold and S a connected, complete 
submanifold of M. Show that S is totally geodesic if and only if 
M-parallel translation of tangent vectors to S along curves in S always 
coincides with the S-parallel translation (see (2), Chapter V, 96). 

E. Curvature 

1. Let M be a Riemannian manifold of dimension 2, p a point in 
M, r(q) the distance d( p, q). Show that the curvature K of M at p satisfies 

K = - 3 lirn A (log r )  
r+O 

where d is the Laplace-Beltrami operator on M 

where 

2. Let M be a manifold with an afine connection 7. Let p E M and 
2 E M,. Fix linearly independent vectors X,, Yp E M,. Let {xl, ..., xn} 
be a coordinate system near p such that 
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Let y, denote the “counter clockwise” boundary of the “square” 
0 < x1 < E ,  0 < x2 < E ,  xi = 0 (i > 2) in 1M and let 2, E M p  denote 
the vector obtained by parallel translating 2 around ye. Prove that the 
curvature tensor R satisfies 

1 
E + O  €2  

R,(X,, Y,)Z = lim - (2 - 2,). 

Thus R measures the dependence of parallelism on the path and is 
closely related to the holonomy group described in the introduction to 
Chapter IV. 

F. Surfaces 

1. Let S be a surface in R3, X and Y two vector fields on S. Let s E S, 
X, # 0 and t + y( t )  a curve on S through s such that +(t)  = Xv( t ) ,  
y(0) = s. Viewing Yy(t)  as a vector in R3 and letting mS : R3 + S,  denote 
the orthogonal projection put 

1 
W Y ) ,  = dljzt ( Y Y W  - YS)). 

Prove that this defines an affine connection on S. 
2. (Minding) Let S be an orientable surface in R3, oriented by means 

of a continuous family of unit normal vectors fs(s E S). Let t + ys(t) 
be a curve in S,  t being the arc-parameter. The triple vector product 
(t x p, . ys) (s) is called the geodesic curvature of ys at s. Show that the 
geodesic curvature can be expressed in terms of p,, ji,, the Riemannian 
structure of S,  and its derivatives with respect to local coordinates. 
Deduce that the geodesic curvature is invariant under orientation- 
preserving isometries. 

3*. (Levi-Civita) Suppose a surface S in R3 rolls without slipping on 
a plane rr. Let the point of contact run through a curve ys on S and 
a curve yn on T. Using the result of Exercise F.2 show that the Euclidean 
parallelism along ym corresponds to the parallelism along ys in the sense 
of the Riemannian connection on S. 

G. The Hyperbolic Plane 

structure but given the Riemannian structure 
1. Let D be the open disk j z I < 1 in R2 with the usual differentiable 

( , ) denoting the usual inner product on R2. 
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(i) Show that the angle between u and v in the Riemannian structure g 

(ii) Show that the Riemannian structure can be written 
coincides with the Euclidean angle. 

(iii) Show that the arc length L satisfies 

-4%) G L(Y) 

if y is any curve joining the origin 0 and x (0 < x < 1) and yo( t )  = t x  
(0 < t < I). 

(iv) Show that the transformation 

is an isometry of D. 

arcs perpendicular to the boundary I z 1 = I .  
(v) Deduce from (iii) and (iv) that the geodesics in D are the circular 

(vi) Prove from (iii) that 

d(0, Z) = - log l + l z l  ( Z E D )  2 l - l z l  

and using (iv) that 

with b, and b, as in the figure. 
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(vii) Show that the maps rp in (iv) together with the complex con- 

(viii) Show that in geodesic polar coordinates (cf. Exercise E.1) 
jugation z -+ 5 generate the group of all isometries of D. 

g = dr2 + t sinh2(2r) do2. 

Deduce from this and Lemma 12.1 that D has constant curvature 
K = -4. 

(ix) The Cayley transform 

z + i  

is an isometry of D onto the upper half plane v > 0 with the metric 

w = u + iv. du2 + dv2 
4v2 ’ h =  

NOTES 

51-93. The treatment of differentiable manifolds M given here is similar to 
Chevalley’s development of analytic manifolds in [2]. In particular, a tangent vector 
(and hence a vector field and forms) is defined in terms of the function algebra 
C“(M) rather than as an equivalence class of curves. Since we have not given any 
motivation of Cartan’s exterior derivative d, it is of interest to recall Palais’ charac- 
terization [4] of d as the only linear operator (up to a constant factor) from p-forms 
to ( p  + 1)-forms which commutes with mappings in the sense of (6), 93. Partition 
of unity (Theorem 1.3) which is a standard tool in reducing global problems to 
local ones, seems to be an outgrowth of work of S. Bochner, J. DieudonnC and 
W. Hurewicz. 

Levi-Civita’s concept of parallelism with respect to a curve on a 
surface is explained in Exercises F.l-3 ; this concept lies behind the definition of 
an affine connection. There are several ways of formulating this definition. 
Classically, an affine connection is defined in terms of the Christoffel symbols 
Ffj as indicated in 94. Cartan’s “method of moving frames” uses the “connection 
forms” w: and the structural equations ( I ) ,  (2), $8 instead. Koszul replaced the 
conditions for Ftj by axioms V l  and VZ in 44 (cf. Nomizu [2]) and Ehresmann [2] 
defined a’ connection on M in terms of the frame bundle over M. For the equiv- 
alence of these two last definitions see Nomizu [4], Chapter 111, 44. Useful as 
the frame bundle definition is in global differential geometry, we have nevertheless 
preferred the vector field definition because the spaces with which we are mainly 
concerned are coset spaces G/K and for these the natural bundle to consider is 
the group G itself; the frame bundle would only be extra baggage. 

Theorem 6.2 is due to Whitehead [2]. The proof in the text is a slight 
simplification of Whitehead’s proof using stronger differentiability hypotheses. 
Theorem 6.5 was proved by the author [4]. 

The treatment of local Riemannian geometry given here is partly 
based on E. Cartan [22], Chapter X. The equivalence of the completeness condi- 

94-45. 

96. 

$9-$lO. 
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tions (Theorem 10.3) for a two-dimensional Riemannian manifold is due to 
Hopf-Rinow [l]. A simplified proof was given by de Rham [l]. See also Myers [l] 
and Whitehead [3]. 

Theorem 11.1 is due to Myers-Steenrod [l]. Their proof was simplified 
by Palais [l]. The remaining results in $11 which deal with continuations of local 
isometries and are useful in Chapter IV are based on de Rham’s paper [l]. See 
also Rinow [l]. 

Going back to Riemann’s original lecture [l], the formula of Theorem 12.2 
is the customary definition of sectional curvature. We have used instead an 
intrinsic definition in terms of areas. Lemma 12.1 and the ensuing proof of 
Theorem 12.2 are from Helgason [4]. 

The treatment of Riemannian manifolds of negative curvature is 
based on e. Cartan’s book [22], Note 111. In the two-dimensional case, Theorem 
13.3 is due to Hadamard [l]. The concept of a totally geodesic submanifold is 
due to Hadamard [2]. Theorem 14.5 is proved in Cartan [22], p. 115. Cartan also 
proves, [22], p. 232, that if every submanifold of dimension s 2 which is 
geodesic at  a point is also totally geodesic then the manifold has constant sectional 
curvature. Theorem 14.6 can be regarded as a generalization of a decomposition 
theorem due to Mostow for a semisimple Lie group (Theorem 1.4, Chapter VI). 

$15. The notion of paracompactness and Propositions 15.1-15.3 are from 
DieudonnC [l]. Theorem 15.4 is from Alexandroff [l]; cf. also Pfluger [l]. In the 
proof of the rank theorem (Theorem 15.5) we have used Spivak [l]. 

$1 1. 

512. 

$13-914. 



CHAPTER II 

LIE GROUPS AND LIE ALGEBRAS 

A Lie group is, roughly speaking, an analytic manifold with a group structure 
such that the group operations are analytic. Lie groups arise in a natural way as 
transformation groups of geometric objects. For example, the group of all affine 
transformations of a connected manifold with an affine connection and the group 
of all isometries of a pseudo-Riemannian manifold are known to be Lie groups 
in the compact open topology. However, the group of all diffeomorphisms of 
a manifold is too big to form a Lie group in any reasonable topology. 

The tangent space g at the identity element of a Lie group G has a rule of 
composition (X, Y) ---f [X, Y] derived from the bracket operation on the left 
invariant vector fields on G. The vector space g with this rule of composition is 
called the Lie algebra of G. The structures of g and G are related by the exponen- 
tial mapping exp: g ---f G which sends straight lines through the origin in g onto 
one-paramater subgroups of G. Several properties of this mapping are developed 
already in $1 because they can be derived as special cases of properties of the 
Exponential mapping for a suitable affine connection on G. Although the structure 
of g is determined by an arbitrary neighborhood of the identity element of G, 
the exponential mapping sets up a far-reaching relationship between g and the 
group G in the large. We shall for example see in Chapter VII that the center of 
a compact simply connected Lie group G is explicitly determined by the Lie 
algebra g. In 92 the correspondence (induced by exp) between subalgebras and 
subgroups is developed. This correspondence is of basic importance in the theory 
in spite of its weakness that the subalgebra does not in general decide whether the 
corresponding subgroup will be closed or not, an important distinction when 
coset spaces are considered. 

In $4 we investigate the relationship between homogeneous spaces and coset 
spaces. It is shown that if a manifold M has a separable transitive Lie transforma- 
tion group G acting on it, then M can be identified with a coset space GIH 
(H closed) and therefore falls inside the realm of Lie group theory. Thus, one can, 
for example, conclude that if H is compact, then M has a G-invariant Riemannian 
structure. 

Let G be a connected Lie group with Lie algebra g. If u E G, the inner auto- 
morphism g + ago-' induces an automorphism Ad ( u )  of Q and the mapping 
u -+ Ad ( 0 )  is an analytic homomorphism of G onto an analytic subgroup Ad (G) 
of GL( g), the adjoint group. The group Ad (G) can be defined by Q alone and since 
its Lie algebra is isomorphic to g/3 (3 = center of g), one can, for example, con- 
clude that a semisimple Lie algebra over R is isomorphic to the Lie algebra of 
a Lie group. This fact holds for arbitrary Lie algebras over R but will not be 
needed in this book in that generality. 

Section 6 deals with some preliminary results about semisimple Lie groups. 
The main result is Weyl's theorem stating that the universal covering group of 
a compact semisimple Lie group is compact. In  $7 we discuss invariant forms on 
G and their determination from the structure of g. 

97 
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5 1. The Exponential Mapping 

1. The Lie Algebra of a Lie Group 

Definition. A Lie group is a group G which is also an analytic 
manifold such that the mapping (a, T )  ---t a7-I of the product manifold 
G x G into G is analytic. 

1. Let G be the group of all isometries of the Euclidean 
plane R2 which preserve the orientation. If a E G, let (x(a), y(a)) denote 
the coordinates of the point a * 0 (0 = origin of R2) and let e(a) denote 
the angle between the x-axis 1 and the image of 1 under u. Then the 
mapping cp : a --+ (x(a), y(a), O(a)) maps G in a one-to-one fashion onto 
the product manifold R2 x S1 (Sl = R mod 2 ~ ) .  We can turn G into 
an analytic manifold by requiring cp to be an analytic diffeomorphism. 
An elementary computation shows that €or u, T E G 

Examples. 

x(m-1) = X(U) - X(T) cos ( O ( 0 )  - O ( 7 ) )  + Y(T) sin (O(0)  - O ( 7 ) ) ;  
y(w-l)  = y(a) - X ( T )  sin (O(u) - O(T)) - y(7) cos ( O ( 0 )  - O ( 7 ) ) ;  
O(m-l) = O ( 0 )  - O(T) (mod 24 .  

Since the functions sin and cos are analytic, it follows that G is a Lie 
group. 

2. Let G be the group of all isometries of R2. If s is the symmetry 
of R2 with respect to a line, then G = G u sG (disjoint union). We 
can turn sG into an analytic manifold by requiring the mapping a + su 

(a E G) to be an analytic diffeomorphism of G onto sG. This makes 
G a Lie group. 

On the other hand, if GI and G, are two components of a Lie group 
G and x, E G,, x, E G,, then the mapping g + Xfii'g is an analytic 
diffeomorphism of G, onto G,. 

A Lie group is always paracompact. In fact, let G be a 
topological group which is locally Euclidean, that is, has a neighborhood 
of the identity e, homeomorphic to a Euclidean space. Let Go denote 
the identity component of G (that is, the component of G containing e).  
Then Go is a connected topological group and as such it is generated 
by any neighborhood of the identity. It follows that Go has a countable 
base, in particular Go is paracompact. The same statement follows for 
G by the definition of paracompactness. 

Let G be a connected topological group. A covering group of G is a 
pair (G, T) where G is a topological group and T is a homomorphism 
of G into G such that (e, T) is a covering space of G. In the case when 
G is a Lie group, then has clearly an analytic structure such that e 
is a Lie group, 71- analytic and (c, 71-) a covering manifold of G. 

Remark. 
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Definition. A homomorphism of a Lie group into another which is 
also an analytic mapping is called an analytic homomorphism. An iso- 
morphism of one Lie group onto another which is also an analytic 
diffeomorphism is called an analytic isomorphism. 

Let G be a Lie group. If p E G, the left translation L, : g 4 pg of G 
onto itself is an analytic diffeomorphism. A vector field Z on G is called 
left invariant if dL,Z = Z for all p E G. Given a tangent vector X E G, 
there exists exactly one left invariant vector field x on G such that 
x, = X and this x is analytic. In  fact, x can be defined by 

if f E C"(G), p E G, and y ( t )  is any curve in G with tangent vector X 
for t = 0. If X, Y E G,, then the vector field [x, is left invariant 
due to Prop. 3.3, Chapter I. The  tangent vector [x, me is denoted by 
[X, Y ] .  The  vector space G,, with the rule of composition ( X ,  Y )  4 [ X , Y ]  
we denote by g (or i?(G)) and call the Lie algebra of G. 

More generally, let a be a vector space over a field K (of characteristic 
0). The  set a is called a Lie algebra over K if there is given a rule of 
composition ( X ,  Y )  -+ [ X ,  Y ]  in a which is bilinear and satisfies 

= 0 for all X ,  Y, 2 E a. The  identity (b) is called the Jacobi identity. 
The Lie algebra of G above is clearly a Lie algebra over R .  
If a is a Lie algebra over K and X E a, the linear transformation 

Y -+ [X, Y ]  of a is denoted by adX (or ad,X when a confusion 
would otherwise be possible). Let b and c be two vector subspaces of a. 
Then [b, c ]  denotes the vector subspace of a generated by the set of 
elements [X, Y ]  where X E b, Y E c. A vector subspace b of a is called 
a subalgebra of a if [b, b] C b and an ideal in a if [b, a] C b. If b is an ideal 
in a then the factor space a/b is a Lie algebra with the bracket operation 
inherited from a. Let a and b be two Lie algebras over the same field K 
and u a linear mapping of a into b. The  mapping u is called a homomorphism 
if u([X,  Y]) = [OX,  oY] for all X ,  Y E a. If (T is a homomorphism then 
.(a) is a subalgebra of b and the kernel u-l{O} is an ideal in a. If u-l{O} = 
{0}, then o is called an isomorphism of a into b. An isomorphism of a Lie 
algebra onto itself is called an automorphism. If a is a Lie algebra and 
b, c subsets of a, the centralizer of b in c is (X E c : [x, b] = O}. IflbiC a 
is a subalgebra, its normalizer in a is n = {XE a : [ X ,  b] C 6); b is an 
ideal in n. 

Let V be a vector space over a field K and let gl( V )  denote the vector 
space of all endomorphisms of V with the bracket operation [A, B] = 

A B  - BA. Then gI( V )  is a Lie algebra over K. Let a be a Lie algebra 

(a) [ X ,  XI = 0 for all X E a ;  (b) [ X ,  [Y,  Z ] ]  + [Y,  [z, XI] + [z, [ X ,  Y13 
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over K. A homomorphism of a into gI( V) is called a representation of a 
on V. In particular, since ad ([X, Y]) = ad X ad Y - ad Y ad X, the 
linear mapping X + ad X (X E a) is a representation of a on a. It is 
called the adjoint representation of a and is denoted ad (or ad, when a 
confusion would otherwise be possible). The kernel of ad, is called the 
center of a. If the center of a equals a, a is said to be abelian. Thus a is 
abelian if and only if [a, a] = {O}. 

Let a and b be two Lie algebras over the same field K. The vector 
space a x b becomes a Lie algebra over K if we define 

[ (X ,  Y ) ,  ( X ,  V l  = ( [ X ,  XI,  [Y, 

This Lie algebra is called the Lie algebra product of a and b. The sets 
{(x, 0) : x E a}, ((0, Y )  : Y E b} are ideals in a x b and a x b is the 
direct sum of these ideals. 

In  the following a Lie algebra shall always mean a finite-dimensional 
Lie algebra unless the contrary is stated. 

2. The Universal Enveloping Algebra 

Let a be a Lie algebra over a field K. The rule of composition (X, Y) -+ 
[X, y3 is rarely associative; we shall now assign to a an associative 
algebra with unit, the universal enveloping algebra of a, denoted U(a). 
This algebra is defined as the factor algebra T(a)/J where T(a) is the 
tensor algebra over a (considered as a vector space) and J is the two- 
sided ideal in T(a) generated by the set of all elements of the form 
X 0 Y - Y 0 X - [ X ,  Y] where X ,  Y E a. If X E a, let X* denote 
the image of X under the canonical mapping 7r of T(a) onto U(a). The 
identity element in U(a) will be denoted by 1. Then 1 # 0 if a # (0). 
Proposition 1.9 (b) motivates the consideration of U(a). 

Let V be a vector space o v e ~  K .  There is a natural 
one-to-one correspondence between the set of all representations of a on V 
and the set of all representations of U(a) on V. If p is a representation of a 
on V and p* is the corresponding representation of U(a) on V ,  then 

Proposition 1.1. 

p ( X )  = p*(X*) for x E n. (1) 

Proof. Let p be a representation of a on V .  Then there exists a unique 
representation p of T(a) on V satisfying p(X)  = p(X)  for all X E a. 
The mapping p vanishes on the ideal J because 

p(x 0 y - y 0 x - [X,  YI) = p(X) P(Y) - P(Y) P(X) - P([X, YI) = 0. 

Thus we can define a representation p*  of U(a) on V by the condition 
p* o 7r = p'. Then (1) is satisfied and determines p* uniquely. On the 
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other hand, suppose u is a representation of U(a) on V .  If X E a we 
put p(X) = u(X*). Then the mapping X + p ( X )  is linear and in fact 
a representation of a on V ,  because 

p([X,  Y ] )  = o( [X ,  Y ] * )  = a(7r(X 0 Y - Y @ X ) )  

= o(X*Y* - Y*X*) = p ( X ) p ( Y )  - p ( Y ) p ( X )  

for X, Y E a. This proves the proposition. 
Let X,, ..., X, be a basis of a and put X*(t)  = XT-, t iX: ( t i  E K ) .  

Let M = (m,, ..., m,) be an ordered set of integers mi 2 0. We shall 
call M a positive integral n-tuple. We put I M I = m, + ... + m,, 
tM = t;"l ... t?. Considering t,, ..., t ,  as indeterminates the various tM 
are linearly independent over K and for I M I > 0 we can define X*(M)  E 
U(a) as the coefficient of tM in the expansion of (I M l!)-l(X*(t))lM1. 
Put X*(M)  = 1 if 1 M I = 0. 

The smallest vector subspace of U(a) containing all 
the elements X*(M) (where M is a positive integral n-tuple) is U(a) 
itseF. 

It suffices to prove that each element Xi*,Xi*, ... Xi*, (1 9 i,, 
..., ip 9 n) can be expressed as a finite sum XIMlhp a,X*(M) where 
aA4 E K. Consider the element 

Proposition 1.2. 

Proof. 

where u runs over all permutations of the set (1, 2, . . . , p } .  It is clear 
that up = cX*(M),  where c E K and M is a suitable positive integral 
n-tuple. Using the relation XTXi - X$X? = [Xi, X,]* we see that 

xt*, ... x; - x* ... xi. 
9 '4) a0) 

is a linear combination (with coefficients in K) of elements of the form 
X z  ... Xi* (1 <jl...jp-, < n)whereeachXi,(l < q < p -  1)belongs 
to the suh2lgebra of a generated by Xi,, ..., Xi,. The formula 

XFX; ... X?, = 2 UMX*(M) 
lMl<p 

now follows by induction on p. 
Let b be a subalgebra of a. Suppose b has dimension 

n - r and let the basis X,,  ..., X ,  of a be chosen in such a way that the 
Corollary 1.3. 
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n - r last elements lie in b. Let 23 denote the vector subspace of U(a) 
spanned by all elements X*(M)  where M varies over all positive integral 
n-tuples of the form (0, ..., 0, m,,,, ..., m,). Then B is a subalgebra of U(a). 

In  fact, the proof above shows that the product XiT, ... Xi*, (r < i,, 
..., ip < n)  can be written as a linear combination of elements X * ( M )  
for which m, = ... = m, = 0. 

3. Left Invariant Affine Connections 

Let G be a Lie group, and Q an affine connection on G; V is said 
to be left invariant if each L,, (u E G) is an affine transformation of G. 
Let X,, ..., X ,  be a basis of the Lie algebra g of G and let XI, ..., 2, 
denote the corresponding left invariant vector fields on G. Then if v 
is left invariant, the vector fields Va,(xj) (1 < i , j  < n)  are obviously 
left invariant. On the other hand we can define an affine connection 
D on G by requiring the to be any left invariant vector fields. 
Let 2,Z’ be arbitrary vector fields in W .  Then Z = Xi fixi, 2’ = Z j g j x ,  
where fi,gj E Cm(G). Using the axioms v1 and vz and Prop. 3.3 in 
Chapter I we find easily that VdL .(dL,,Z’) = d L , V z ( Z )  for each 
u E G so D is left invariant. 

There is a one-to-one correspondence between the set 
of left invariant afine connections v on G and the set of bilinear functions 
a: on g x g with values in g given by 

Proposition 1.4. 

.(X, Y )  = (Va(P)),. 

Let X E g. The following statements are then equivalent: 

(i) a(X,  X) = 0; 
(ii) The geodesic t + yx ( t )  is an analytic homomorphism of R into G. 

Proof. Given a bilinear mapping ~1 : g x g-+ g, we define the 
affine connection V by the requirement 

on,(%) = a(&, X , )  - (1 < i, j < n). 

By the remark above, V is left invariant, and the correspondence 
follows. Also, v is analytic. 

Next let X E g and let 8 be the corresponding left invariant vector 
field on G. Locally there exist integral curves to the vector field 8 
(Chapter I, 97). In  other words, there exists a number E > 0 and a 
curve segment r : t -+ T ( t )  (0 < t < c) in G such that 

r(0) = e, P(s) = (2) 
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for 0 < s < E .  Using induction we define T(t) €or all t > 0 by the 
requirement 

r(t) = r ( n c )  r(t - nc),  if nE < t < ( n  + 1)  6, 

n being a nonnegative integer. On the interval n~ < t < ( n  + 1) E 

we have r o LmnE = Lr(nE)-l o I'. We use both sides of this equation 
on the tangent vector (dldt) ,  (ne < t \< (n + 1) c). From (2) we obtain 

= dLr(nd * Xi?t-nd 

= xr(t). 

Thus (2) holds for all s 2 0 (including the points nE). 
Assume now a ( X ,  X )  = 0. Then, due to the left invariance of the 

corresponding affine connection v, we have vx(x) = 0. Hence the 
curve segment r(t) (t  > 0) is a geodesic segment, and by the uniqueness 
of such, we have r(t) = yx( t )  for all t 2 0. For any affine connection, 
~ - ~ ( t )  = yx(- t).  Since a(- X ,  - X )  = 0, it follows that y x ( t )  is 
defined for all t E R.  Now let s 2 0. Then the curves t --f y x ( s  + t )  
and t -+ yx(s) yx( t )  are both geodesics in G (since V is left invariant) 
passing through yx(s).  These geodesics have tangent vectors px(s)  and 
dL,x(s) . X ,  respectively, at the point yx(s). These are equal since (2) 
holds for all s 2 0. We conclude that 

yx( s  + t )  = Yx(4 y x ( t )  (3) 

0 and all t. Using again ~ - ~ ( t )  = yx(- t ) ,  we see that (3) holds 

Suppose now 8 is any analytic homomorphism of R into G such that 

for s 
for all s and t .  This  proves that (i) => (ii). 

e(0) = X .  Then from O(s + t )  = O(s) O(t), ( t ,  s E R),  follows that 

O(0) = e, d(4 = XBW for all s E R. (4) 

In  particular, if yx is an analytic homomorphism, we have O x ( 2 )  == 0 
on the curve yx; hence a(X,  X )  = ( V X ( ~ ) ) ~  = 0.  

Corollary 1.5. Let X E Q. There exists a unique analytic homo- 
morphism 8 of R into G such that e(0) = X .  

Proof. Let V be any affine connection on G for which a(X,  X )  = 0. 
Then 8 = yx is a homomorphism with the required properties. For the 
uniqueness we observe that (4), in connection with a(X,  X )  = 0, 
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shows, that any homomorphism 8 with the required properties must be 
a geodesic; by the uniqueness of geodesics (Prop. 5.3, Chapter I), 
8 = yx. 

For each X E g, we put exp X = 8(l) if 8 is the homo- 
morphism of Cor. 1.5. The  mapping X + exp X of g into G is called 
the exponential mapping. 

We have the formula 

Definition. 

exp (t + s) X = exp tX exp sX 

for all s, t E R and all X E g. This follows immediately from the fact 
that if a(X,  X )  = 0, then 8(t)  = yx( t )  = ytx(l) = exp t X .  

Definition. A one-parameter subgroup of a Lie group G is an analytic 
homomorphism of R into G. 

We have seen above that the one-parameter subgroups are the 
mappings t --t exp t X  where X is an element of the Lie algebra. 

We see from Prop. 1.4 and the corollary that the exponential mapping 
agrees with the mapping Exp, (from Chapter I) for all left invariant 
affine connections on G satisfying a(X, X )  = 0 for all X E g. The 
classical examples (Cartan. and Schouten [l]) are 01 = 0 (the (-)- 
connection), a(X, Y) = + [ X ,  yl (the (0)-connection) and a(X, Y) = 
[X, yl (the (+)-connection). 

From Theorem 6.1, Chapter I, we deduce the following statement. 

Proposition 1.6. There exists an open neighborhood No of 0 in g and 
an open neighborhood N ,  of e in G such that exp is an analytic dtffeo- 
morphism of No onto N,. 

Let X I ,  ..., X ,  be a basis of g. The mapping 

exp (xlXl + ... + x,X,) - (xl, ..., x,) 

of N ,  onto No is a coordinate system on N,, called a system of canonical 
coordinates with respect to X,, ..., X,. The set N ,  is called a canonical 
coordinate neighborhood. Note that No is not required to be star-shaped. 

4. Taylor’s Formula and the Differential of the Exponential Mapping 

Let G be a Lie group with Lie algebra g. Let X E g, g E G, and 
f E Cm(G). Since the homomorphism 8( t )  = exp t X  satisfies d(0) = X 
we obtain 
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It follows that the value of x’ at g exp UX is 
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and by induction 

Suppose now that f is analytic at g. Then there exists a star-shaped 
neighborhood No of 0 in g such that 

where P denotes an absolutely convergent power series and (x l ,  ..., xn) 
are the coordinates of X with respect to a fixed basis of g. Then we 
have for a fixed X E No 

for 0 < t < 1. It follows that each coefficient a,  equals the mth deriva- 
tive of f(g exp t X )  for t = 0; consequently 

am = [XmfJ @)* 

This proves the “Taylor formula” ; 

for X E No. 

Theorem 1.7. Let G be a Lie group with Lie algebra g. The exponential 
mapping of the mangold g into G has the diflerential 

As usual, g is here identiJed with the tangent space gx. 

We consider the left invariant atfine connection on G given 
by a(X,  Y) = 0 for all X ,  Y E g (Prop. 1.4). Then the left invariant 

Proof. 
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vector field V7g( 

field X* adapted 
of e in G. From 

P) vanishes identically on G. It follows that the vector 
to X (Chapter I, 96) coincides with in a neighborhood 
Theorem 6.5, Chapter I we conclude that the equation 

holds for all t in some interval I t 1 < 6 .  Both sides of this equation 
are analytic functions on R with values in g. Since they agree for I t 1 < 6, 
they must agree for all t E R ;  this proves the theorem. 

The  following result will be needed later. 

Lemma 1.8. Let G be a Liegroup with Lie algebra g, and let exp be 
the exponential mapping of g into G. Then, if  X ,  Y E g, 

52 

2 
(i) exp t~ exp t Y  = exp {t(X + Y) + - [x, Y] + 0(t3)), 

(ii) exp (- tX) exp (- tY) exp tXexp t Y  = exp {t2[X, Y ]  + o(t3)), 

(iii) exp tXexp tY exp (-- t X )  = exp {tY + tz[X, Y] + o(t3)). 

In each case O(t3)  denotes a vector in g with the property: there exists 

We first prove (i). Let f be analytic at e. Then using the formula 
an E > 0 such that (l/t3) O(t3)  is bounded and analytic for I t I < E .  

dn 
[ml(&! exp tX> = ---f(g dtlk exp tx) 

twice we obtain 

Therefore, the Taylor series for f(exp t X  exp sY) is 

for sufficiently small t and s. On the other hand, 

exp tX exp tY = exp Z(t) 

for sufficiently small t where Z ( t )  is a function with values in g, analytic 
at t = 0. We have Z ( t )  = tZl + t2Zz + O(t3)  where 2, and 2, are 
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fixed vectors in g. Then iff is any of the canonical coordinate functions 
exp (xlX, + ... + xJ,) -+ xi we have 

f(exp z(t)) = f(exp (tz, + t2z2)) + O(t3) 

r n .  

If we compare (7) for t = s and (8) we find 2, = X + Y, iz: + 2, = 
1 3 2  2 + 33 + +Pz, Consequently 

z, = x + Y ,  z, = + [ X ,  Y ] ,  

which proves (i). The  relation (ii) is obtained by applying (i) twice. 
To prove (iii), let again f be analytic at e ;  then for small t 

and 
exp t X  exp tY exp (- t X )  = exp S(t)  

where S(t) = tS,  + t2S, + O(t3) and S,, S ,  E g. Iff  is any canonical 
coordinate function, then 

f(exp S(t))  = f(exp (tSl + t2Ss,)) + O(t3) 

and we find by comparing coefficients in (9) and (lo), S, = Y, S ,  = 
[X, Y], which proves (iii). 

The  relation (ii) gives a geometric interpretation of the 
bracket [ X ,  Y ] ;  in fact, it shows that [X, Y ]  is the tangent vector at e 

to the C1 curve segment 

Remark. 

Note also that this is a special case of Exercise A.8, Chapter I. 

Let D(G) denote the algebra of operators on Cm(G) generated by all 
the left invariant vector fields on G and I (the identity operator on 
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C“(G)). If X E g we shall also denote the corresponding left invariant 
vector field on G by X. Similarly the operator xl . 2, ... x,,. ( X ,  E g) 
will be denoted by Xl . X ,  ... X ,  for simplicity. Let Xl, ..., X ,  be any 
basis of g and put X ( t )  = Z:Z”=, tixi. Let M = (ml, ..., m,) be a positive 
integral n-tuple, let tM = t p  -.. t 3  and let X ( M )  denote the coeffi- 
cient of tM in the expansion of (I M l!)-l(X(t))lM1. If I M I = 0 put 
X ( M )  = I. It is clear that X ( M )  E D(G). 

Proposition 1.9. 

(a) As M varies through all positive integral n-tuples the elements X ( M )  

(b) The universal enveloping algebra U(g) is isomorphic to D(G).  

Proof. 

form a basis of D(G) (considered as a vector space over R). 

Let f be an analytic function at g E G; we have by (6) 

if the ti are sufficiently small. If we compare this formula with the 
ordinary Taylor formula for the function F defined by F(tl, ..., tn) = 
f ( g  exp X( t ) ) ,  we obtain 

It follows immediately that the various X ( M )  are linearly independent. 
The Lie algebra g has a representation p on Cm(G) if we associate to 
each X E g the corresponding left invariant vector field. The representa- 
tion p* from Prop. 1.1 gives a homomorphism of U(g) into D(G) such 
that p*(X*)  = p(X)  for X E g. The mapping p* sends the element 
Xi*, ... X t ,  E U(g) into Xi ,  ... Xi,  E D(G);  thus p*(U(g)) = D(G).  More- 
over, p* sends the element X * ( M )  E U(g) into X ( M )  E D(G). Since the 
elements X ( M )  are linearly independent, the proposition follows from 
Prop. 1.2. 

Corollary 1.10. With the notation above, the elements Xzl ... X 2  
(ei 

Since XiXj - XjXi  = [Xi, Xi]  it is clear that each X(M) can be 
written as a real linear combination of elements X p  ... X$ where 
el + ... + en < I M I. On the other hand, as noted in the proof of 
Prop. 1.2, each X p  ... X 2  can be written as a real linear combination 
of elements X ( M )  for which I M I < el + ... + e7&. Since the number 
of elements X(M) ,  I M 1 < el + ... + en equals the number of elements 

0)  form a basis of D(G). 
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Xfl ... XLn (fl + ... + fn < el + ... + en), the corollary follows from 
Prop. 1.9. 

This corollary shows quickly that D(G) has no divisors of 0. 

Definition. Let G and G' be two Lie groups with identity elements e 
and e'. These groups are said to be isomorphic if there exists an analytic 
isomorphism of G onto G'. The groups G and G' are said to be locally 
isomorphic if there exist open neighborhoods U and U' of e and e', 
respectively, and an analytic diffeomorphism f of U onto U' satisfying: 

(a) If x ,  Y ,  x y  E u, then f (V)  = f ( X ) f ( Y ) .  
(h) If x', y',  x'y' E U', then f - l (x'y')  = j - l ( x ' ) f - l ( y ' ) .  

Theorem 1.11. Two Lie groups are locally isomorphic if and only .;f 
their Lie algebras are isomorphic. 

Let G be a Lie group with Lie algebra g. Let Xl, ..., X ,  be 
a basis of g. Owing to Prop. 1.9 we can legitimately write X ( M )  instead 
of X * ( M ) ;  there exist uniquely determined constants C p M N  E R such 
that 

X ( M )  X ( N )  = c P M N  ~ ( p ) ,  

Proof. 

P 

M, N, and P denoting positive integral n-tuples. Owing to Prop. 1.9, 
the constants CpA,, depend only on the Lie algebra g. If N ,  is a canonical 
coordinate neighborhood of e E G and g E N, let g,, ...,g, denote the 
canonical coordinates of g .  Then if x ,  y, x y  E N,,  we have 

x = exp (xlX, + ... + x,X,), y = exp (YlX, -1- ... 3- -Y?IX?I)> 

XY = exp ((~~11x1 + * a *  + (XY)nXn)* 
We also put 

y M  = yy1 ... J',".. %M = m s1 1 ... x 2 ,  

Using (7) on the function f : x -+ xk we find for sufficiently small xi ,  y j  

From (12) it follows that 

Putting [k] = (S,,:, ..., Snk), relation (13) becomes 

(xy)k = C [ k ' M N  X M r N ,  
M,N 
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if xi,  yI (1 < i ,  j < n) are sufficiently small. This last formula shows 
that the group law is determined in a neighborhood of e by the Lie 
algebra. In particular, Lie groups with isomorphic Lie algebras are 
locally isomorphic. Before proving the converse of Theorem 1.1 1 we 
prove a general lemma about homomorphisms. 

Let H and K be Liegroups with Lie algebras b and f, 
respectively. Let 'p be an analytic homomorphism of H into K .  Then dq, 
is a homomorphism of fi  into f and 

Lemma 1.12. 

dexp  X )  = exp d%W) ( X  b). (15) 

Proof. Let X E b. The mapping t -+ q(exp t X )  is an analytic 
homomorphism of R into K. If we put X'  = dtpe(X), Cor. 1.5 implies 
that 'p (exp t X )  = exp tX' for all t E R.  Since 'p is a homomorphism, 
we have q o L, = LPl(,) o tp for u E H .  It follows that 

(dy,) o dLa . X = dLp,,,) . X' .  

This means that the left invariant vector fields and 2' are prelated. 
Hence, by Prop. 3.3, Chapter I, dq, is a homomorphism and the lemma 
is proved. 

T o  finish the proof of Theorem 1.11, we suppose now that the Lie 
groups G and G' are locally isomorphic. Let g and g' denote their 
respective Lie algebras. There is no restriction of generality in assuming 
G and G' connected. Let (G, r) and (G', r') be the universal covering 
groups of G and G', respectively. I t  follows from Lemma 1.12 that the 
mappings d r e  and dn; are Lie algebra isomorphisms. From the first 
part of the proof it follows that r and n' are local isomorphisms. The 
given local isomorphism between G and G' therefore induces a local 
isomorphism 9 between G and G'. Now is simply connected. Owing 
to a well-known theorem on topological groups, see e.g. Chevalley [2], 
p. 49, there exists a continuous homomorphism 4 of G into G' which 
coincides with 0 in a neighborhood of the identity; in particular, 4 is 
analytic. On interchanging G and e' we see that 0 is an isomorphism 
of G onto G'. From Lemma 1.12 it follows that doe is an isomorphism 
between the corresponding Lie algebras. This in turn gives the desired 
isomorphism of the Lie algebras g and 9'. 

Let GL(n,  R)  denote the group of all real nonsingular 
n x n matrices and let gI(n, R) denote the Lie algebra of all real n x n 
matrices, the bracket being [A, B] = AB - BA, A, B E gl(n, R) .  If 
we consider the matrix u = (xii(u)) E GL(n,  R)  as the set of coordi- 
nates of a point in Rn2 then GL(n,  R )  can be regarded as an open sub- 
manifold of Rne. With this analytic structure GL(n,  R )  is a Lie group; 

Example. 
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this is obvious by considering the expression of xij@-l) (7, u E GL(n, R ) )  
in terms of xkl (o) ,  xPq(7), given by matrix multiplication. 

Let X be an element of i?(GL(n, R ) )  and let x denote the left invariant 
vector field on GL(n, R )  such that x, = X .  Let (u f j (X) )  denote the 
matrix (-vexij). We shall prove that the mapping p : X 3 (ui j (X))  is an 
isomorphism of I?(GL(n, R ) )  onto gI(n, R) .  T h e  mapping p is linear 
and one-to-one; in fact, the relation (u i j (X))  = 0 implies xef = 0 for 
all differentiable functions f, hence 2 = 0. Considering the dimensions 
of the Lie algebras we see that the range of y is gI(n, R ) .  Next we consider 
[ x x i j ]  (0) = (dL,X) x i j  = X(xij  o L,). If 7 E GL(n, R) ,  then 

n 

(Xij 0 Lo) (7) = Xij(U.) = 2 X i k ( U )  x&). 
k = l  

Hence 

It follows that 

= [dX>, dY)l i j*  
Consequently, the Lie algebra of GL(n, R )  can be identified with 
gI(n, R )  so we now write Xi j  instead of ui j (X)  above. Using the general 
formula 

d 
(exp 2x1 = --f(exp t X )  

dt 

for a differentiable function f, we obtain from (16) and (17) 

d 
- xii(exp tx) = C xik(exp tx) x,+. 
d't 

n 

k=l  

Thus the matrix function Y(t)  = exp t X  satisfies the differential 
equation 

-- dY( t )  - Y ( t ) X ,  Y(0) = I .  
dt 

Since this equation is also satisfied by the matrix exponential function 

t2X2 

2! 
Y(t )  = e tx  = I + t X  + - + ..., 

we conclude that exp X = eX for all X E gI(n, R) .  
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Let- V be an n-dimensional vector space over R. Let gI( V) be the Lie 
algebra of all endomorphisms of I' and let GL(V) be the group of 
invertible endomorphisms of V. Fix a basis el, ..., en of V. T o  each 
u E gI( V) we associate the matrix (xii(u)) given by 

uej = 2 xii(u) ei. 
i-1 

The mapping Je : u + (xii(u)) is an isomorphism of gI( V) onto gI(n, R) 
whose restriction to GL( V )  is an isomorphism of GL( V )  onto GL(n, R). 
This isomorphism turns GL(I')  into a Lie group with Lie algebra 
isomorphic to gI(V). If fl, ...,.f, is another basis of V,  we get another 
isomorphism J,  : gI( V )  ---t gI(n, R). If A E GL( V) is determined by 
Aei = fi (1 f i < n), then Jr and Je are connected by the equation 
Je(u) =J,(A)J,(u)J,(A-l). Since the mapping g +J,(A)gJ,(A-') is an 
analytic isomorphism of GL(n,R) onto itself, we conclude: (1) The 
analytic structure of GL(V)  is independent of the choice of basis. 
(2) There is an isomorphism of i?(GL( V)) onto gI( V) (namely, Je-l o dJ,) 
which is independent of the choice of basis of V. 

$2.  Lie Subgroups and Subalgebras 

Definition. 

(i) H is a subgroup of the (abstract) group G; 
(ii) H is a topological group. 
A Lie subgroup is itself a Lie group; in order to see this, consider 

the analytic mapping 01 : (x, y) -+ xy-l of G x G into G. Let 0 1 ~  denote 
the restriction of 01 to H x H. Then the mapping 0 1 ~ :  H x H + G is 
analytic, and by (ii) the mapping 0 1 ~ :  H x H 4  H is continuous. In 
view of Lemma 14.1, Chapter I, the mapping 0 1 ~  is an analytic mapping 
of H x H into H so H is a Lie group. 

Let G be a Lie group. A submanifold H of G is called 
a Lie subgroup if 

A connected Lie subgroup is often called an analytic subgroup. 

Theorem 2.1. Let G be a Lie group. If H is a Lie subgroup of G, 
then the Lie algebra t, of H is a subalgebra of g, the Lie algebra of G.  
Each subalgebra of g is the Lie algebra of exactly one connected Lie subgroup 
of G.  

If I denotes the identity mapping of H into G, then by 
Lemma 1.12 dIe is a homomorphism of t, into g. Since H is a submanifold 
of G, dI,  is one-to-one. Thus t, can be regarded as a subalgebra of g. 

Proof. 
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Let expb and exp,, respectively, denote the exponential mappings 
of t j  into H and of g into G. From Cor. 1.5 we get immediately 

exPb (XI = exp, ( X ) ,  XE t j .  (1) 

We can therefore drop the subscripts and write exp instead of expb 
and exp,. If X E b, then the mapping t -+ exp t X  (t E R )  is a curve 
in H. On the other hand, suppose X E g such that the mapping t -+ exp t X  
is a path in H, that is, a continuous curve in H. By Lemma 14.1, Chapter I, 
the mapping t + exp t X  is an analytic mapping of R into H. Thus X E b, 
so we have 

(2) 

T o  prove the second statement of Theorem 2.1, suppose t, is any 
subalgebra of g. Let N be the smallest subgroup of G containing exp b. 
Let ( X I ,  ..., X,) be a basis of g such that ( X i )  (r  < i < n) is a basis of t j .  
Then we know from Cor. 1.3 (and Prop. 1.9) that all real linear combina- 
tions of elements X ( M ) ,  where the n-tuple M has the form (0, ..., 0, 
m,,,, ..., m,), actually form a subalgebra of U(g). Let I X I = (x: + ... 
+ xk)1/2 if X = xlXl + ... + xnX, (x i  E R) .  Choose 6 > 0 such that 
exp is a diffeomorphism of the open ball B8 = { X  : I X I < a} onto an 
open neighborhood N ,  of e in G and such that (14), $1, holds for 
x ,  y ,  xy E N,. Denote the subset exp (t, n B8) of N, by V. The mapping 

t, = { X  E g : the map t --f exp t X  is a path in H } .  

exp (%+I x,,, + .*. +- XnX,,) + (&+I, ..., x,) 

is a coordinate system on V with respect to which V is a connected 
manifold. Since t j  n B8 is a submanifold of B8, V is a submanifold of N,;  
hence V is a submanifold of G. Now suppose x , y  E V, xy E N,, and 
consider the canonical coordinates of xy as given by (14), $1. '3' ince 
xk = y k  = 0, if 1 < k ,< Y, we find (using the remark above about 
X ( M ) )  that ( X Y ) ~  = 0 if 1 < k < Y. Thus we have 

V V n  N,C V.  (3) 

Let V denote the family of subsets of H containing a neighborhood of e 
in V. Let us verify that Y satisfies the following six axioms for a topo- 
logical group (Chevalley [2], Chapter 11, $11). 

I. The intersection of any two sets of V lies in V. 
11. The intersection of all sets of Y is {e}. 

111. Any subset of H containing a set i n V  lies i n V .  
IV. If U EV, there exists a set U, EV such that UIUl C U. 

VI. If U EV and h E H, then hUh-l EV. 
V. If U EV, then U-l EV. 
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Of these axioms, I, 11, 111, and V are obvious and IV  follows from (3). 
For VI, let U E V- and h E H. Let log denote the inverse of the mapping 
exp : B, + N,. Then log maps V onto t, n Ba. If X E g, there exists 
a unique vector x' E g such that h exp tX  h-' = exp t X  for all t E R. 
The mapping X + X is an automorphism of g (Lemma 1,12); it maps 
t, into itself as is easily seen from (3) by using a decomposition 
h = exp 2, ... exp Zp where each Zj belongs to Ba n t,. Consequently, 
we can select 6, (0 < 6, < 6) such that the open ball Bal satisfies 

h exp (Bd, n 5) h-1C V ,  

h (exp Bd,) h-l C N,. 

The mapping X --+ log (h  exp Xh-l) of B8, n t, into Ba n t, is regular 
so the image of Ba, n t, is a neighborhood of 0 in t,. Applying the mapping 
exp we see that h exp (BBl n t,) h-l is a neighborhood of e in V.  This 
shows that huh-, EV. Axioms I-VI are therefore satisfied. Hence 
there exists a topology on H such that H is a topological group and such 
that V- is the family of neighborhoods of e in H. In particular V is a 
neighborhood of e in H. 

For each x E G, consider the mapping 

which maps zN,  onto B8. Let vz denote the restriction of QZ to zV. 
If z E H then vz maps the neighborhood zV (of x in H) onto the open 
subset Ba n t, in Euclidean space Rn-l. Moreover, if zl, z2 E H the 
mapping vzl o v;: is the restriction of QZl o eS1 to an open subset 
of 9, hence analytic. The space H with the collection of maps P)~, z E H ,  
is therefore an analytic manifold. 

Now V is a submanifold of G. Since left translations are diffeomor- 
phisms of H it follows that H is a submanifold of G. Hence H is a Lie 
subgroup of G. 

We know that dim H = dim t,. For i > Y the mapping t --t exp tXj  
is a curve in H. This in view of (2) proves that H has Lie algebra 6. 
Moreover, H is connected since it is generated by expE) which is a 
connected neighborhood of e in H. 

Finally, in order. to prove uniqueness, suppose H,  is any connected 
Lie subgroup of G with (H,),  = 6. From (1) we see that H = Hl (set 
theoretically). Since exp is an analytic diffeomorphism of a neighborhood 
of 0 in t, onto a neighborhood of e in H and H,, it is clear that the Lie 
groups H and Hl coincide. 
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Suppose H I  and H ,  are two Lie subgroups of a Lie 
group G such that H ,  = H ,  (as topological groups). Then H ,  = H ,  
(as Lie groups). 

Relation (2) shows, in fact, that H ,  and H ,  have the  same Lie algebra. 
By Theorem 2.1, their identity components coincide as Lie groups. 
Since left translations on HI  and H ,  are analytic, it follows at once that 
the Lie groups H ,  and H ,  coincide. 

Corollary 2.2. 

Theorem 2.3. Let G be a Lie group with Lie algebra g and H an 
(abstract) subgroup of G. Suppose H is a closed subset of G. Then there 
exists a unique analytic structure on H such that H is a topological Lie 
subgroup of G. 

We begin by proving a simple lemma. 

Lemma 2.4. Suppose g is a direct sum g = m + n where m and n 
are two vector subspaces of g. Then there exist bounded, open, connected 
neighborhoods U,,, and U, of 0 in m and n, respectively, such that the 
mapping @ : ( A ,  B )  -+ exp A exp B is a dtfleomorphism of U ,  x U,, onto 
an open neighborhood of e in G. 

Let XI, ..., X ,  be a basis of g such that Xi E m for 1 < i < r ,  
Xi E n for r < j < n. Let {tl, ..., t,} denote the canonical coordinates 
of the element exp (x lX,  + ... + x7X,) exp (X,+~X,.+, + ... + xnX,) 
with respect to this basis. Then  t j  = vj(xl, ..., x,), 1 < j < n, where 
the functions cpj are analytic at (0, ..., 0). If xi = Siis, then ti = S..s 21 

and the Jacobian determinant a(q,, ..., v,)/a(x,, ..., x,) equals 1 for 
X I  = ... = x ,  = 0. This proves the lemma (Prop. 3.1, Chapter I). 

Remark. The lemma generalizes immediately to an arbitrary direct 
decomposition g = in, + ... + m, of g into subspaces. 

Turning now to the proof of Theorem 2.3, let $ denote the subset 
of g given by 

Proof. 

t, = { X  : exp t X  E H for all t E R } .  

We shall prove that tJ is a subalgebra of g. First we note that X E 9, 
s E R implies sX E b. Next, suppose X ,  Y E $. By Lemma 1.8 we have 
for a given t E R, 
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The left-hand sides of these equations belong to H; since H is closed, 
the limit as n --t m also belongs to H. Thus t ( X  + Y) E b and 
t 2 [ X ,  Y] E lj as desired. 

Let H* denote the connected Lie subgroup of G with Lie algebra b. 
Then H* C H. We shall now prove, that if H is given the relative 
topology of G, and H ,  is the identity component of H, then H* = H ,  
(as topologicaIgroups). For this we nowprove that if N is a neighborhood 
of e in H*, then N is a neighborhood of e in H. If N were not a neighbor- 
hood of e in H, there would exist a sequence (ck) C H - N such that 
ck --t e (in the topology of G). Using Lemma 2.4 for b = n and m any 
complementary subspace we can assume that Ck = exp A, exp B, 
where A ,  E Urn, Bk E U,, and exp B, E N .  Then 

A ,  # 0, 

Since A ,  # 0, there exists an integer rk > 0 such that 

lim A ,  = 0. 

Y1:Ak E Un,. ( y k  + 1) A k  $ uni- 

Now, Un, is bounded, so we can assume, passing to a subsequence if 
necessary, that the sequence ( Y k A k )  converges to a limit A E m. Since 
(Y, + 1) A ,  $ U,, and A ,  --t 0, we see that A lies on the boundary of 
Utl,; in particular A # 0. 

Let p ,  q be any integers (q  > 0). Then we can write prk = qsk + t ,  
where sk, t ,  are integers and 0 < t ,  < q. Then lim ( tk/q)  A, = 0, so 

P P Y  

‘I (1 
exp - A = lim exp -k A ,  = lirn (exp 

k k 

which belongs to H. By continuity, exp t A  E H for each t E R, so 
A E b. This contradicts the fact that A f 0 and A E m. 

We have therefore proved: (1) H, is open in H (taking N = H*);  
(2) H ,  (and therefore H) has an analytic structure compatible with the 
relative topology of G in which it is a submanifold of G, hence a Lie 
subgroup of G. The uniqueness statement of Theorem 2.3 is immediate 
from Cor. 2.2. 

Remark. 

Lemma 2.5. 

The subgroup H above is discrete if and only if b = 0. 

Let G be a Lie group and H a Lie subgroup. Let g and b 
denote the corresponding Lie algebras. Suppose H is a topological subgroup 
of G.  Then there exists an open neighborhood V of 0 in g such that: 

(i) exp maps V dzyeomorphically onto an open nekhborhood of e in G. 
(ii) exp (V n b) = (exp V )  n H .  
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Proof. First select a neighborhood W, of 0 in g such that exp is 
one-to-one on W,. Then select an open neighborhood No of 0 in fi 
such that No C W, and such that exp is a diffeomorphism of No onto 
an open neighborhood N ,  of e in H. Now, since H is a topological 
subspace of G there exists a neighborhood U, of e in G such that 
U ,  n H = N,. Finally select an open neighborhood V of 0 in g such 
that V C W,, V n C No and such that exp is a diffeomorphism of V 
onto an open subset of G contained in U,. Then V satisfies (i). Condition 
(ii) is also satisfied. In fact, let X E V such that exp X E H. Since 
exp X E U,  n H = N ,  there exists a vector X ,  E No such that exp X ,  = 
exp X. Since X, X ,  E W, we have X = X ,  so exp X E exp ( V  n t,). 
This proves (exp V )  n H C exp ( V  n lj). The converse inclusion being 
obvious the lemma is proved. 

Let G and H be Lie groups and y a continuous homo- 
morphism of G into H. Then v is analytic. 

Let the Lie algebras of G and H be denoted by g and lj, 
respectively. The product manifold G x H is a Lie group whose Lie 
algebra is the product g x t, as defined in $1, No. 1. The  graph of cp 
is the subset of G x H given by K = {(g, y(g)) : g E G}. It is obvious 
that K is a closed subgroup of G x H. As a result of Theorem 2.3, 
K has a unique analytic structure under which it is a topological Lie 
subgroup of G x H. Its Lie algebra is given by 

(4) 

Let No be an open neighborhood of 0 in t, such that exp maps No 
diffeomorphically onto an open neighborhood N ,  of e in H. Let M,, 
and Me be chosen similarly for G. We may assume that v(M,) c N,. 
In view of Lemma 2.5 we can also assume that exp is a diffeomorphism 
of ( M ,  x No) n f onto (Me  x N,) n K. We shall now show that for 
a given X E g there exists a unique Y E lj such that (X, Y) E f .  The 
uniqueness is obvious from (4); in fact, if (X, Y,) and ( X ,  Y2)  belong 
to f ,  then (0, Y,  - Yz) E f so by (4), (e,  exp t ( Y l  - Y2)) E K for all 
t E R. By the definition of K, exp t ( Y l  - Y2) = p)(e) = e for t E R 
so Yl - Y2 = 0. In order to prove the existence of Y ,  select an integer 
r > 0 such that the vector X, = (1 / r )  X lies in M,. Since v(exp X,) E N,, 
there exists a unique vector Y,  E No such that exp Y,  = p)(exp X,)  
and a unique 2, E ( M ,  x No) n f such that 

Theorem 2.6. 

Proof. 

f = { ( X ,  Y )  E g x t, : (exp t X ,  exp t Y )  E K for t E R}. 

exp 2, = (exp X,, exp Y,). 

Now exp is one-to-one on M ,  x No so this relation implies 2, = (X,, Y,) 
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and we can put Y = rY,. The  mapping 6 : X -+ Y thus obtained is 
clearly a homomorphism of g into b. Relation (4) shows that 

dexp t x )  =: exp t $ ( W  x E g. ( 5 )  

Let X I ,  ..., X ,  be a basis of g. Then by ( 5 )  

d b P  Gi> (exp t z w  *.* (exp tnXn>) 

= (exp tl$v,>> (exp tz#(X*)) (exp tn+(Xn)). (6) 

The  remark following Lemma 2.4 shows that the mapping (exp t l X l )  ... 
(exp t,X,J -+ ( t l ,  ..., tn)  is a coordinate system on a neighborhood of e 
in G. But then by (6) ,  q~ is analytic at e, hence everywhere on G. 

We shall now see that a simple countability assumption makes it 
possible to sharpen relation (2) and Cor. 2.2 substantially. 

Proposition 2.7. Let G be a Lie group and H a  Lie subgroup.Let g and 
b denote the corresponding Lie algebras. Assume that the Lie group H has 
at most countably many components. Then 

= { X  E 9: exp tX E H for all t E R } .  

Proof. We use Lemma 2.4 for n = b and m any complementary 
subspace to b in g. Let V denote the set exp U,, exp U, (from Lemma 2.4) 
with the relative topology of G and put 

a = { A  E U,,,: exp A E H } .  
Then 

H n  V =  U exp A exp Lr, 
A€ll 

and this is a disjoint union due to Lemma 2.4. Each member of this 
union is a neighborhood in H. Since H has a countable basis the set a 
must be countable. Consider now the mapping TT of V onto U,,, given 
by r(exp X exp Y )  = X ( X  E U,,, Y E  U,J. This mapping is continuous 
and maps H n V onto a. The  component of e in H n V (in the topo- 
logy of V )  is mapped by 7~ onto a connected countable subset of U,,, 
hence the single point 0. Since ~ ~ ( 0 )  = exp U, we conclude that 
exp U,  is the component of e in H n V (in the topology of V) .  

Now let X E g such that exp tX  E H for all t E R.  The  mapping 
y : t -+ exp t X  of R into G is continuous. Hence there exists a connected 
neighborhood U of 0 in R such that QI( U )  C V ,  Then QI( U )  C H n V 
and since p'( U )  is connected, y ( U )  C exp U,. But exp U, is an arbi- 
trarily small neighborhood of e in H so the mapping QI is a continuous 
mapping of R into H. By (2) we have X E b and the proposition is 
proved. 
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Remark. The  countability assumption is essential in Prop. 2.7 as is 
easily seen by considering a Lie subgroup with the discrete topology. 

Corollary 2.8. Let G be a Lie group and let H l  and H ,  be two Lie sub- 
groups each having countably many components. Suppose that Hl = H, 
(set theoretically). Then H l  = H ,  (as Lie groups). 

In  fact, Prop. 2.7 shows that H ,  and H ,  have the same Lie algebra. 

Corollary 2.9. Let G be a Lie group and let K and H be two analytic 
subgroups of G. Assume K C H.  Then the Lie group K is an analytic 
subgroup of the Lie group H .  

by 
Prop. 2.7. Let K* denote the analytic subgroup of H with Lie algebra f. 
Then the analytic subgroups K and K* of G have the same Lie algebra. 
By Theorem 2.1 the Lie groups K and K* coincide. 

Let S1 denote the unit circle and T the group S1 x S1. Let t ---t y ( t )  
( t  E R)  be a continuous one-to-one homomorphism of R into T. If we 
carry the analytic structure of R over by the homomorphism we obtain 
a Lie subgroup I' = y ( R )  of T.  This Lie subgroup is neither closed in 
T nor a topological subgroup of T.  We shall now see that these anomalies 
go together. 

Theorem 2.10. Let G be a Lie group and H a Lie subgroup of G. 

(i) If H is a topological subgroup of G then H is closed in G. 
(ii) If H has at most countably many components and is closed in G 

Part (i) is contained in a more general result. 

Proposition 2.11. Let G be a topological group and H a subgroup 
which in the relative topology is locally compact. Then H is closed in G. 
In particular, if H ,  in the relative topology, is discrete, then it is closed. 

We first construct, without using the group structure, an open 
set V C G whose intersection with the closure Z? is H. Let h E H,  let V,  
be a compact neighborhood of h in H,  and V,  a neighborhood of  h in G 
such that V,  n H = U,. Let e, be the interior of  V,. I f  g E e, n R 
and N g  is any neighborhood of g in G, then Ng intersects the closed set 
V,  n H ( N ,  n (V ,  n H )  3 ( N ,  n fi,) no H # 0), whence g E V, n H. 
Thus fi, n R C  V,  n H so fi, n R = V,  n H. Taking V = UhsH V,, 
we have H = 

Let b E H and W be a neighborhood of e in G such that bWC V. I f  
a E R, aW-1 n H contains an element c; hence bc-la C b W c  V. Also 
bc-l E H ,  so bc-la E R. Thus bc-la E V n R = H, so a E H. Q.E.D. 

Let f and denote the Lie algebras of K and H. Then f C 

then H is a topological subgroup of G. 

Proof. 

n V. 
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(ii) H being closed in G it has by Theorem 2.3 an analytic structure 
in which it is a topological Lie subgroup of G. Let H' denote this Lie 
subgroup. Then the identity mapping I : H -+ H' is continuous. Each 
component of H lies in a component of H .  Since H has countably 
many components the same holds for H'. Now (ii) follows from Cor. 2.8. 

$3. Lie Transformation Groups 

Let M be a Hausdorff space and G a topological group such that to 
each g E G is associated a homeomorphism p + g . p of M onto itself 
such that 

(1)  g1g2 . P = g1 . (g2 . P )  for P E M ,  g1,g ,  E G; 
(2) the mapping (g ,  p )  -+ g . p is a continuous mapping of the product 

space G x M onto M. 

The  group G is then called a topological transformation group of M. 
From (1) follows that e . p = p for all p E M. If e is the only element 
of G which leaves each p E M fixed then G is called effective and is 
said to act effectively on M. 

Suppose A is a topological group and F a closed subgroup 
of A. The  system of left cosets aF, a E A is denoted AIF; let rr denote 
the natural mapping of A onto A/F. The  set AJF can be given a topology, 
the natural topology, which is uniquely determined by the condition that 
rr is a continuous and open mapping. This makes AIF a Hausdorff 
space and it is not difficult to see that if to each a E A we assign the 
mapping .(a) : bF -+ abF, then A is a topological transformation group 
of AIF. The group A is effective if and only if F contains no normal 
subgroup of A. The  coset space AIF is a homogeneous space, that is, 
has a transitive group of homeomorphisms, namely T(A). Theorem 3.2 
below deals with the converse question, namely that of representing a 
homogeneous space by means of a coset space. 

Example. 

Lemma 3.1 (the category theorem). If a locally compact space M 
is a countable union 

W 

M =  U JMn, 
n-1 

where each M ,  is a closed subset, then at least one M ,  contains an open 
subset of M .  

Suppose no M,, contains an open subset of M. Let U,  be 
an open subset of M whose closure 0, is compact. Select successively 

Proof. 
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a, E Ul - M I  and a neighborhood U, of a,  such that 0, c U, 

a,  E U,  - M,  and a neighborhood U, of a,  such that D3 C U, 

and 0, n M,  = 0; 

and 0, n M ,  = 0, etc. 

Then O,, o,, ... is a decreasing sequence of compact sets # 0.. Thus 
there is a point b E M in common to all 0,. But this implies b 4 M ,  
for each n which is a contradiction. 

Theorem 3.2. Let G be a locally compact group with a countable 
base. Suppose G is a transitive topological transformation group of a 
locally compact Hausdorff space M .  Let p be any point in M and H the 
subgroup of G which leaves p jixed. Then H is closed and the mapping 

K H - S ' P  

is a homeomorphism of G I H  onto M.  

Proof. Since the mapping y ; g + g  . p o f  G onto M is continuous, 
it follows that H = ~ - ' ( p )  is closed in G. The  natural mapping 
T ; G 3 G I H  is open and continuous. Thus, in order to prove Theo- 
rem 3.2, it suffices to prove that y is open. Let V be an open subset 
of G and g a point in V. Select a compact neighborhood U of e in G 
such that U = U-1, gU2 c V. There exists a sequence (g,) C G such 
that G = U,g,U. The  group G being transitive, this implies M = 
U, g n u  . p .  Each summand is compact, hence a closed subset of M. 
By the lemma above, some summand, and therefore U . p ,  contains an 
inner point u . p .  Then p is an inner point of u-lU . p C U2 . p and 
consequentlyg . p is an inner point o f  V . p .  This shows that the mapping 
rp is open. 

Definition. T h e  group H is called the isotropy group at p (or the 

Let G and X be two locally compact groups. Assume G 
has a countable base. Then every continuous homomorphism $ of G onto 
X i s  open. 

In  fact, if we associate to  each g E G the homeomorphism x -+ $(g) x 
of X onto itself, then G becomes a transitive topological transformation 
group of X .  I f f  denotes the identity element of X ,  the proof above 
shows that the mapping g 3 $(g) f of G onto X is open. 

Let G be a Lie group and M a differentiable manifold. Suppose G 
is a topological transformation group of M ;  G is said to  be a Lie trans- 
formation group of M if the mapping (g, p )  -+ g . p is a differentiable 
mapping of G x M onto M. It follows that for each g E G the mapping 
p -+ g . p is a diffeomorphism of M onto itself. 

isotropy subgroup of G at p) .  

Corollary 3.3. 
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Let G be a Lie transformation group of M. T o  each X in g, the Lie 
algebra of G, we can associate a vector field X +  on M by the formula 

for f E Cm(M), p E M. The existence of X +  follows from the fact that 
the mapping ( g , p )  -+g . p is a differentiable mapping of G x M onto 
M. It is also easy to check that X +  is a derivation of C"(M). It is called 
the vector field on M induced by the one-parameter subgroup exp t X ,  
t E R. 

Theorem 3.4. Let G be a Lie transformation group of M. Let X ,  Y 
be in g, the Lie algebra of G, and let X+, Y+ be the vector fields on M 
induced by exp tX  and exp tY (t E R). Thent 

[X+, Y'] = - [X ,  Y]'. (1) 

We first prove a lemma which also shows what would have happened 
had we used right translation R, : g -+ gp instead of left translation in 
the definition of the Lie algebra. 

and P denote the right invariant vectorJields on G 
such that a, = X ,  P, = Y. Then 

Lemma 3.5. Let 

[X, PI = - [X,  Y]-. 

Proof. I n  analogy with (5 ) ,  $1 we have 

for f E Cm(G). Then if J denotes the diffeomorphism g ---f g-l of G, 

Thus d J ( X )  = -8, SO (2) follows from Prop. 3.3, Chapter I. 

F o r ( l ) f i x p E M a n d t h e m a p @ : g E G + g . p E M .  Then 

Thus d d i ( a )  = X+, so d d i ( [ x ,  q) = [X+, Y+] and (2) implies (1). 

t See $8 for an application. 
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$4. Coset Spaces and Homogeneous Spaces 

Let G be a Lie group and H a closed subgroup. The  group H will 
always be given the analytic structure from Theorem 2.3. Let g and rj 
denote the Lie algebras of G and H, respectively, and let m denote 
some vector subspace of g such that g = m + Q (direct sum). Let T 
be the natural mapping of G onto the space GIH of left cosets gH, 
g E G. As usual we give GIH the natural topology determined by the 
requirement that rr should be continuous and open. We put p ,  = T(e)  
and let $ denote the restriction of exp to m. 

There exists a neighborhood U of 0 in m which is mapped 
homeomorphically under # and such that rr maps #( U )  homeomorphically 
onto a neighborhood of p ,  in GIH. 

Let U,,, U, have the property described in Lemma 2.4 for 
t, = n. Then since H has the relative topology of G, we can select a 
neighborhood V of e in G such that V n H = exp U,. Let U be a 
compact neighborhood of 0 in U ,  such that exp (- U )  exp U c V .  
Then $ is a homeomorphism of U onto #( U) .  Moreover, rr is one-to-one 
on #(U)  because if X ,  X" E U satisfy rr(exp X ' )  = rr(exp X"), then 
exp (- X') exp X'  C V n H so exp X'  = exp X" exp 2 where Z E U,. 
From Lemma 2.4 we can conclude that X = X",  2 = 0; consequently, 
n- is one-to-one on $(U), hence a homeomorphism. Finally, U x U, is 
a neighborhood of (0,O) in Urn x U,; hence exp U exp U, is a neigh- 
borhood of e in G and since rr is an open mapping, the set rr(exp U 
exp U,) = rr(#(U)) is a neighborhood of p ,  in GIH. This proves the 
lemma. The  set #( U )  will be referred to as a local cross section. 

Let No denote the interior of the set T($( U ) )  and let X I ,  ..., X ,  be a 
basis of m. If g E G, then the mapping 

Lemma 4.1. 

Proof. 

4 g  exp (%XI + ... + X,.Xr))  - (XI, *.., x,) 

is a homeomorphism of the open set g . No onto an open subset of R+. 
It is easy to see+ that with these charts, GIH is an analytic manifold. 
Moreover, if x E G, the mapping T ( X )  : y H  -+ x y H  is an analytic diffeo- 
morphism of GIH. 

Theorem 4.2. Let G be a Lie group, H a closed subgroup of G,  GIH 
the space of left cosets g H  with the natural topology. Then GIH has a 
unique analytic structure with the property that G is a Lie transformation 
group of GJH. 

We use the notation above and let B = I+!( 0) where 6 is the interior 
of U. Remembering that the mapping @ in Lemma 2.4 is a diffeo- 

t See Exercise (2.4. 
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morphism, the set B is a submanifold of G. The mappings in the 
diagram 

_ _  
g E G, x E B ;  

G x No GIH 

Then the mapping (g,  x H )  +gxH of G x No onto G/H can be written 
7r o @ o (I x 7r)-l which is analytic. Thus G is a Lie transformation 
group of G/H. The uniqueness results from the following proposition 
which should be compared with Theorem 3.2. 

Let G be a transitive Lie transformation group of a 
C" manifold M. Let pa  be a point in M and let GPO denote the subgroup 
of G that leaves pa jixed. Then GPO is closed. Let a denote the mapping 
gGpO +g . pa of GIGpO onto M. 

(a) If  a is a homeomorphism, then it is a digeomorphism (GIGpo having 
the analytic structure deJined abooe). 

(b) Suppose a is a homeomorphism and that M is connected. Then Go, 
the identity component of G, is transitive on M. 

Proof. (a) We put H = GPO and use Lemma 4.1. Let B and No 
have the same meaning as above. Then B is a submanifold of G, diffeo- 

morphic to No under T. Let i denote the identity map- 

of G onto M. By assumption, aNo, the restriction of a 
to No, is a homeomorphism of No onto an open subset 
of M. The mapping a is differentiable since olNo = /? o i o 
m-I .  T o  show that a-1 is differentiable, we begin by 

showing that the Jacobian of /3 at g = e has rank rs equal to dim M. 
The mapping dpe is a linear mapping of g into Mpo. Suppose X is in 

the kernel of dpe. Then i f f  E C"(M), we have 

Proposition 4.3. 

B 1 G ping of B into G and let /3 denote the mapping g --t g 3 pa 

ri 18 
N ,  LM 

(1) 
d 

0 = (d8eX)f = X ( f 0  B) = /-&f(exP tX . Po) 1 - 
t=o 

Lets E R; we use (1) on the function f*(q)  = f(exp sX . q), q E M. Then 

which shows that f (exp sX . pa)  is constant in s. Since f is arbitrary, 
we have exp SX . p a  = p ,  for all s so X E b. On the other hand, it is 
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obvious that dPe vanishes on b so b = kernel (da,). Hence r, = dim g - 
dimb. But a! is a homeomorphism, so the topological invariance of 
dimension implies dim G/H = dim M .  Thus  r, = dim M ,  01-1 is 
differentiable at p and, by translation, on M .  This proves (a). 

(b) If a is a homeomorphism, /I above is an open mapping. There 
exists a subset {x, : y E I }  of G such that G = UYEI GoxY. Each orbit 
G,x, . p ,  is an open subset of M ;  two orbits Goxy . p ,  and G,x,, . po 
are either disjoint or equal. Therefore, since M is connected, all orbits 
must coincide and (b) follows. 

In  the sequel the coset space GIH (G a Lie group, 
H a closed subgroup) will always be taken with the analytic structure 
described in Theorem 4.2. If x E G, the diffeomorphism y H  -+ xyH 
of G/H onto itself will be denoted by 7(x). The  group H is called the 
isotropy group. T h e  group H* of linear transformations ( d 7 ( I ~ ) ) * ( ~ ) ,  ( h  E H ) ,  
is called the linear isotropy group. 

Let N be a Lie subgroup of G. Then the subset N n H is closed in 
N and the coset space N / N  n H is in one-to-one correspondence with 
the orbit of T(e)  in G/H under N .  If n and $, denote the Lie algebras 
of N and N n H ,  respectively, then 0, = $ n n by (2), 92, and 
Theorem 2.3. 

Definition. 

Proposition 4.4. 

(a) The orbit N / N  n H is a submanifold of GIH. 
(b) If N is a topological subgroup of G, and if H is compact, then the 

Proof. 

submanifold NIN n H is a closed topological subspace of GIH. 

(a) We consider the commutative diagram 

N A G  

where nl and T are the natural mappings of N onto N / N  n H and 
of G onto GIH, respectively. T h e  identity mapping of N into G is 
denoted by i and I denotes the mapping n(N n H )  -+ i(n)H of N / N  n H 
into GIH. Let n1 be a complementary subspace of $, in n and g1 a com- 
plementary subspace of b + n, in g. We use Lemma4.1 on the decom- 
positions n = b1 + n, and g = + (n, + 9,). We can then get sub- 
manifolds BN C N , .  BG C G through e which 7rl and r map diffeo- 
morphically onto open neighborhoods of n,(e) in N / N  n H and of a(e )  
in GIH, respectively. Here we can take BN as a submanifold of B,. 
Put V,  = r1(BN) ,  V = 7r(BG). The  restriction of I to V,, say I,, can 
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be written Ivl = 7c o i o n - ~ l .  The  Jacobian of Iv, at r l ( e )  therefore 
has rank equal to dim (NIN n H ) .  Hence I is regular, proving (a). 

(b) Since N is now a topological subgroup of G, the diagram above 
shows that I is a homeomorphism of NIN n H into GIH. In  order to 
show that N / N  n H is closed, let ( p k )  be a sequence in NIN n H con- 
verging to a point q E GIH. Select g E G such that n(g) = q. We may 
assume that all p ,  belong to the neighborhood g . V of q. Hence there 
is a unique element gk E gB, such that n(gk) = pk.  Since 7c is a homeo- 
morphism of gB, onto g . V ,  we have lim g, = g. 

On the other hand, for each index k there exists an element nk E N 
such that Wl(?zk)  = p k .  Thus there exists an element h, E H such that 
#k = nkh,. Since H is compact we may assume that (hk)  is a convergent 
sequence. I t  follows that the sequence (nk) is convergent; the limit n* 
lies in N since N is closed in G .  Consequently, 7cl(n*) = q so the orbit 
N / N  n H is closed. 

Prop. 4.4 holds in greater generality; see Exercise C.5 
following this chapter and Exercise A S ,  Chapter IV. 

Remark. 

$5. The Adjoint Group 

Let a be a Lie algebra over R.  Let GL(a) as usual denote the group 
of all nonsingular endomorphisms of a. We recall that an endomorphism 
of a vector space V (in particular of a Lie algebra) simply means a 
linear mapping of V into itself. The  Lie algebra gr(a) of GL(a) consists 
of the vector space of all endomorphisms of a with the bracket operation 
[A, B] = AB - BA. The  mapping X +  ad X ,  X E a is a homo- 
morphism of a onto a subalgebra ad (a) of gr(a). Let Int (a) denote the 
analytic subgroup of CL(a) whose Lie algebra is ad (a); Int (a) is called 
the adjoint group of a. 

The  group Aut(a) of all automorphisms of a is a closed subgroup 
of GL(a). Thus Aut (a) has a unique analytic structure in which it is a 
topological Lie subgroup of CL(a). Let a(a) denote the Lie algebra of 
Aut (a). From 92 we know that a(a) consists of all endomorphisms D 
of a such that etD E Aut (a) for each t E R. Let X ,  Y E a. The  relation 
e'D[X, Y] = [e'DX, e t D Y ]  for all t E R implies 

D [ X ,  Y ]  = [DX,  Y ]  + [ X ,  D Y ] .  (1) 

An endomorphism D of a satisfying (1) for all X ,  Y E a is called a 
derivation of a. By induction we get from (1 )  

(2) 
k! 

Dk[X, Y] = [nix, DjY] ,  i > O , j > O ,  
l + j = k  t !J!  
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where Do means the identity mapping of a. From (2) follows that 
e'"[X, Y ]  = [e'DX, e "yl and thus a(a) consists of all derivations of a. 
Using the Jacobi identity we see that ad (a) C a(a) and therefore Int (a) C 
Aut (a). The  elements of ad (a) and Int (a), respectively, are called the 
inner derivations and inner autornorphisms of a. Since Aut (a) is a topo- 
logical subgroup of CL(a) the identity mapping of Int (a) into Aut (a) 
is continuous. In  view of Lemma 14.1, Chapter I, Int (a) is a Lie sub- 
group of Aut (a). We shall now prove that Int (a) is a normal subgroup 
of Aut (a). Let s E Aut (a). Then the mapping a : g + sgs-l is an auto- 
morphism of Aut (a), and ( d ~ ) ~  is an automorphism of a(a). If A, B are 
endomorphisms of a vector space and A-l exists, then AeBA-' = eABA-'. 
Considering Lemma 1.12 we have 

(du),D = sDs-1 for D E a(a). 

If X E a, we have s a d  Xs- l  = ad (s . X ) ,  so 

( d ~ ) ~  ad X = ad (s . X ) ,  

and consequently 

. @d X = @ ( S e x )  ( X  E a). 

Now, the group Int (a) is connected, so it is generated by the elements 
X , X E a. It follows that Int (a) is a normal subgroup of Aut (a) and 

the automorphism s of a induces the analytic isomorphism g -+ sgs-l of 
Int (a) onto itself. 

More generally, if s is an isomorphism of a Lie algebra a onto a Lie 
algebra b (both Lie algebras over R )  then the mapping g + sgs-l is an 
isomorphism of Aut (a) onto Aut (b) which maps Int (a) onto Int (b). 

Let G be a Lie group. If a E G, the mapping I(a) : g -+ ag0-l is an 
analytic isomorphism of G onto itself. We put Ad (u) = d l ( ~ ) ~ .  Some- 
times we write Ad,(a) instead of Ad(a) when a misunderstanding might 
otherwise arise. The  mapping Ad (a) is an automorphism of g, the Lie 
algebra of G. We have by Lemma 1.12 

exp Ad (u) X = u exp X u-l for u E G, X E g. (3) 

The  mapping a 3 Ad (0) is a homomorphism of G into GL(g). This 
homomorphism is called the adjoint representation of G .  Let us prove 
that this homomorphism is analytic. For this it suffices to prove that 
for each X E g and each linear function w on g the function a -+ 

w(Ad (a) X )  (a E G), is analytic at a = e. Select f E C"(G) such that 
f is analytic at a = e and such that Yf = w(Y) for all Y E g. 
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Then, using (3), we obtain 
d 

w(Ad (u) X) == (Ad (u) X) j = 

which is clearly analytic at u = e. 

we have 
Next, let X and Y be arbitrary vectors in g. From Lemma 1.8 (iii) 

exp (Ad (exp t X )  t Y )  = exp (tY + P[X, Y ]  + O(t3)). 

It follows that 
Ad (exp t X )  Y = Y + t [ X ,  Y ]  + O(tz). (4) 

The  differential d Ad, is a homomorphism of g into gI(g) and due to 
(4) we have 

d Ad,(X) = ad X, 

Applying the exponential mapping on both sides we obtain (Lemma I .  12) 

Ad (exp X )  = e a x ,  x E g. ( 5 )  

Let G be a connected Lie group and H an analytic subgroup. Let g 
and II denote the corresponding Lie algebras. Relations (3) and ( 5 )  
show that H is a normal subgroup of G if and only if 0 is an ideal in g .  

Lemma 5.1. Let G be a connected Lie group with Lie algebra g and 
let y be an analytic homomorphism of G into a Lie group X with Lie 
algebra x. Then: 

(i) The kernel y-'(e) is a topological Lie subgroup of G. Its Lie algebra 
is the kernel of d y  (=dye ) .  

(ii) The image y(G) is a Lie subgroup of X with Lie algebra dy(g) c x .  

(iii) The factor group G/y - l ( e )  with its natural analytic structure is  a 
Lie group and the mapping gy-l(e) -+ y ( g )  is an analytic isomorphism of 
G/y- l (e)  onto y(G). In particular, the mapping q~ : G .+ y(G) is analytic. 

(i) According to Theorem 2.3, y-l(e) has a unique analytic 
structure with which it is a topological Lie subgroup of G. Moreover, 
its Lie algebra contains a vector 2 E g if and only if y(exp t 2 )  = e for 
all t E R. Since y(exp t 2 )  = exp tdy(Z), the condition is equivalent to 
d y ( 2 )  = 0. 

(ii) Let X ,  denote the analytic subgroup of X with Lie algebra 
dy(g). The  group y(G) is generated by the elements y(exp Z), 2 E g. 
The  group X ,  is generated by the elements exp ( d y ( Z ) ) ,  Z E g. Since 
y(exp 2) = exp d y ( 2 )  it follows that y(G) = XI. 

Proof. 
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(iii) Let H be any closed normal subgroup of G. Then H is a topo- 
logical Lie subgroup and the factor group GIH has a unique analytic 
structure such that the mapping ( g ,  x H )  -+ g x H  is an analytic mapping 
of G x GIH onto GIH. In  order to see that GIH is a Lie group in this 
analytic structure we use the local cross section $( U )  from Lemma 4.1. 
Let B = +( 6) where 0 is the interior of U.  In  the commutative diagram 

!#J 
G x GIH +G/H 

G / H  x G,!H 

the symbols @, n. x I ,  and a denote the mappings: 

@ : (g, x H )  -+ %y-'xH, X,R E G ;  

x x I : (g ,  x H )  -+ (gH, x H ) ,  X ,  g E G ;  
x ,  g E G. OL : (gH,  x H )  -+ g-lxH, 

The mapping a is well defined since H is a normal subgroup of G .  
Let go, xo be arbitrary two points in G. The  restriction of n. x I to 
(goB) x ( G I H )  is an analytic diffeomorphism of (go@ x (GIH) onto a 
neighborhood N of (goH,  x ,H)  in G/H x G / H .  On N we have 01 = 
@ o (n. x I)-1 which shows that 01 is analytic. Hence GIH is a Lie group. 

Now choose for H the group T-l(e) and let 6 denote the Lie algebra 
of H .  Then b = dT-l(O) so t, is an ideal in g. By (ii) the Lie algebra 
of GIH is d r ( g )  which is isomorphic to the algebra 916. On the other 
hand, the mapping Z+ b+ dT(Z)  is an isomorphism of g/t, onto dT(g). The  
corresponding local isomorphism between GIN and q(G) coincides 
with the (algebraic) isomorphism g H  -+ q ( g )  on some neighborhood 
of the identity. I t  follows that this last isomorphism is analytic at e,  
hence everywhere. 

Corollary 5.2. Let G be a connected Lie group with Lie algebra g. 

Let Z denote the center of G. Then: 

(i) Ad, is an analytic homomorphism of G onto Int (9) with kernel 2. 

(ii) The mapping g Z +  Ad,(g) is an analytic isomorphism of G/Z 

In  fact Ad, (G) = Int (9) due to ( 5 )  and AdE1(e) = Z due to (3). 

Corollary 5.3. Let g be a Lie algebra over R with center (0). Then 

onto Int (9). 

The  remaining statements are contained in Lemma 5.1. 

the center of Int (9) consists of the identity element alone. 
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In fact, let G' = Int (9) and let Z denote the center of G'. Let ad 
denote the adjoint representation of g and let Ad' and ad' denote the 
adjoint representation of G' and ad (g), respectively. The mapping 

6, : gZ --+ Ad' (g), !? E G', 

is an isomorphism of G'/Z onto Int (ad (9)). On the other hand, the 
mapping s : X ---t ad X ( X  E g) is an isomorphism of g onto ad (9) and 
consequently the mapping S : g --t s o g o s-l ( g  E G') is an isomorphism 
of G' onto Int (ad (9)). Moreover, if X E g, we obtain from ( 5 )  

S ( @ X )  = s 0 @XO s-1 = e("d'(dx)) = Ad' ( e u x ) ,  

ad (9) being the Lie algebra of G'. It follows that S-l o 8 is an iso- 
morphism of G'/Z onto G', mapping g Z  onto g ( g  E G'). Obviously 2 
must consist of the identity element alone. 

The  conclusion of Cor. 5.3 does not hold in general, if g 
has nontrivial center. Let, for example, g be the three-dimensional Lie 
algebra g = RX, + RX, + RX, with the bracket defined by: [X,,X,] = 
X,, [X, ,  X,] = [X,, X,] = 0. Here g is nonabelian, whereas Int (9) is 
abelian and has dimension 2. 

Let g be a Lie algebra over R. Let f be a subalgebra of g 
and K* the analytic subgroup of Int (9) which corresponds to the 
subalgebra ad,(€) of ad&). The  subalgebra f is called a compactly 
imbedded subalgebra of g if K* is compact. The Lie algebra g is said 
to be compact if it is compactly imbedded in itself or equivalently if 
Int (9) is compact. 

It should be observed that the topology of K* might a priori differ 
from the relative topology of the group Int (9) which again might differ 
from the relative topology of GL(g). The next proposition clarifies this 
situation. 

Proposition 5.4. Let I? denote the abstract group K* with the relative 
topology of GL(g). Then K* is compact i f  and only i f  l? is compact. 

The identity mapping of K* into GL(g) is analytic, in particular, 
continuous. Thus I? is compact if K* is compact. On the other hand, 
if R is compact, then it is closed in CL(g); by Theorem 2.10, K* and R 
are homeomorphic. 

Suppose G is any connected Lie group with Lie algebra g. 

Let K be the analytic subgroup of G with Lie algebra f .  Then the 
group K* above coincides with Ad,(K); in fact, both groups are 
generated by Ad, (exp x), x E f. 

Remark. 

Definition. 

Remark. 
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$6. Semisimple Lie Groups 

Let g be a Lie algebra over a field of characteristic 0. Denoting by 
T r  the trace of a vector space endomorphism we consider the bilinear 
form B(X, Y )  = T r  (ad X ad Y )  on g x g. The form B is called the 
KilZing form of g .  It  is clearly symmetric. 

For a subspace a C  g let a I  = { X E ~  : B(X, a) = 0). The map 
X .--t X* of g gA (dual of g) given by X*( Y )  = B(X, Y )  has kernel 
91, so by dim a* = dim g - dim a*, 

dim a + dim aL = dim g + dim(a n gl). (1) 

If u is an automorphism of g, then ad(uX) = 0 o ad X o u-l so by 
Tr(AB) = Tr(BA), we have 

B(UX, OY) = B(X, Y ) ,  

B(X,  [Y, 21) = B(Y, [Z, XI) = B(Z, [X, Yl), 
E Aut (91, 

x, Y,  Z E  9. (2) 

Suppose a is an ideal in g. Then it is easily verified that the Killing form 
of a coincides with the restriction of B to a x a. 

A Lie algebra g over a field of characteristic 0 is called 
semisimple if the Killing B of g is nondegenerate. We shall call a Lie 
algebra g # {0} simpler if it is semisimple and has no ideals except (0) 
and g. A Lie group is called semisimple (simple) if its Lie algebra is 
semisimple (simple). 

Proposition 6.1. Let g be a semisimple Lie algebra, a an ideal in g .  
Let ai denote the set of elements X E g which are orthogonal to a with 
respect to B. Then a is semisimple, ai is an ideal and 

Definition. 

g = a + a 1  (direct sum). 

Proof. The fact that a 1  is an ideal is obvious from (2). Since B is 
nondegenerate, ( I )  implies dim a + dim a 1  = dim g. If 2 E g and 
X ,  Y E a n aL, we have B(2, [ X ,  Y ] )  = B([Z,  XI, Y )  = 0 SO [ X ,  Y ]  = 0. 
Hence a n a L  is an abelian ideal in g. Let b be any subspace of g com- 
plementary to a n aL.  If 2 E g and T E a n ai, then the endomorphism 
ad Tad  2 maps a n aL into {O}, and b into a n a'-. In particular, 
Tr  (ad Tad  2) = 0. It follows that a n a'- = (0) and we get the direct 
decomposition g = a + a'-, Since the Killing form of a is the restriction 
of B ta a x a, the semisimplicity of a is obvious. 

f This definition of a simple Lie algebra is convenient for our purposes but is formally 
different from the usual one: A Lie algebra g is simple if it is nonabelian and has no 
ideals except (0) and 8 .  However, the two definitions are equivalent, cf. Exercise B.8, 
Chapter 111. 
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Corollary 6.2. 

Corollary 6.3. 

A semisimple Lie algebra has center (O}. 

A semisimple Lie algebra g is the direct sum 

9 = 91 + *.. + 97, 
where gi (1 < i < I )  are all the simple ideals in g. Each ideal a of g is the 
direct sum of certain gi. 

In fact, Prop. 6.1 implies that g can be written as a direct sum of 
simple ideals gi (1 < i < s )  such that a is the direct sum of certain of 
these gin If b were a simple ideal which does not occur among the ideals 
gi (1 < i < s), then [g i ,  b] C gi n b = {0} for 1 < i < s. This contra- 
dicts Cor. 6.2. 

Proposition 6.4. If g is semisimple, then ad (9) = a(g), that is, every 

Proof. The algebra ad (9) is isomorphic to g, hence semisimple. If 
D is a derivation of g then ad (DX) = [D,  ad XI for X E g, hence 
ad (9) is an ideal in a(g ) .  Its orthogonal complement, say a, is also an 
ideal in a(g). Then a n ad (9) is orthogonal to ad (9) also with respect 
to the Killing form of ad (g ) ,  hence a n ad (9) = (0). Consequently 
D E a implies [D,  ad XI E a n ad (9) = {O}. Thus ad (DX) = 0 for 
each X G g, hence D = 0. Thus, a = (0) so, by ( I ) ,  ad (9) = a(g) .  

derivation is an inner derivation. 

Corollary 6.5. For a semisimple Lie algebra g over R, the adjoint 
group Int (9) is the identity component of Aut (9). In  particular, Int (9) 
is a closed topological subgroup of Aut  (9). 

Remark. If g is not semisimple, the group Int (a) is not necessarily 
closed in Aut (9) (see Exercise D.3 for this chapter). 

Proposition 6.6. 

( i )  Let g be a semisimple Lie algebra over R. Then g is compact if and 
only if the Killing form of g is strictly negative definite. 

(ii) Every compact Lie algebra g is the direct sum g = 3 + [g ,  g] where 
3 is the center of g and the ideal [g, g] is semisimple and compact. 

Proof. Suppose g is a Lie algebra over R whose Killing form is 
strictly negative definite. Let O(B) denote the group of all linear trans- 
formations of g which leave B invariant. Then O(B)  is compact in the 
relative topology of GL(g). We have Aut (9) C O(B), so by Cor. 6.5, 
Int (9) is compact. 

Suppose now g is an arbitrary compact Lie algebra. The Lie subgroup 
Int (9) of GL(g) is compact; hence it carries the relative topology of 
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GL(g). There exists a strictly positive definite quadratic form Q on g 

invariant under the action of the compact linear group Int (9). There 
exists a basis X I ,  ..., X ,  of g such that Q(X) = ZF=l x; if X = Z:=, xixi. 
By means of this basis, each u E Int (9) is represented by an orthogonal 
matrix and each ad X, (X E g), by a skew symmetric matrix, say (a t j (X)) .  
Now the center 3 of g is invariant under Int (g), that is u . 3 C 3 for each 
u E Int (9). The orthogonal complement g’ of 3 in g with respect to Q 
is also invariant under Int (9) and under ad (9). Hence g’ is an ideal in g. 
This being so, the Killing form B‘ of g’ is the restriction to g‘ x g’ of 
the Killing form B of g. Now, if X E g 

B(X,  X )  = Tr (ad X ad X )  = 2 a f j ( X )  a i , (X)  = - R ~ ~ ( X ) ~  < 0. 
i . i  i.i 

The equality sign holds if and only if ad X = 0, that is, if and only 
if X E 3. This proves that g’ is semisimple and compact. The decom- 
position in Cor. 6.3 shows that [g’, g’] = 9’. Hence g’ = [g, g] and the 
proposition is proved. 

Corollary 6.7. A Lie algebra g over R is compact if and only if there 

For this corollary one just has to remark that every abelian Lie 
exists a compact Lie group G with Liialgebra isomorphic to g. 

algebra is isomorphic to the Lie algebra of a torus S1 x ... x S1. 

Proposition 6.8. Let g be a Lie algebra over R and let 3 denote the 
center of g. Suppose f is a compactly imbedded subalgebra of g. I f f  n 3 = {0} 
then the Killing form of g is strictly negative definite on f. 

Let B denote the Killing form of g, and let K denote the 
analytic subgroup of the adjoint group Int (9) with Lie algebra ad, (f). 
Owing to our assumptions, K is a compact Lie subgroup of GL(g); 
hence it carries the relative topology of GL(g). There exists a strictly 
positive definite quadratic form Q on g invariant under K. There exists 
a basis of g such that each endomorphism ad, (2“ )  ( T  E f )  is expressed 
by means of a skew symmetric matrix, say (aij( T)). Then 

Proof. 

B(T,  T )  = 2 aij(T) ajz(T) = - 2 u ~ , ( T ) ~  < 0, 
i.5 i.i 

and equality sign holds only if T E 3 n f = (0). 

Theorem 6.9. Let G be a compact, connected semisimple Lie group. 
Then the universal covering group G* of G is compact. 

Proof. Let g denote the Lie algebra of G (and G*), and let B be the 
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Killing form of g. There exists unique left invariant Riemannian structures 
Q and Q* on G and G*, respectively, such that Qe = QZ* = - B. Here 
e and e* denote the identity elements in G and G*, respectively. Since 

B(Ad (g) X ,  Adk) Y )  = B(X, Y ) ,  x, y E 8, p E G ,  

it follows that Q and Q* are also invariant under right translations on G 
and G*. Let n denote the covering mapping of G* onto G. Then 
Q* = rr*Q and since G is complete, the covering manifold G* is also 
complete (Prop. 10.6, Chapter I). From (2) we have 

where fi, p, and 2 are the left invariant vector fields on G* which 
have values X, Y ,  2 at e. Let D denote the Riemannian connection 
on G* induced by Q* (Theorem 9.1, Chapter I). Then we see from (2), 
$9, Chapter I, that Vz(X) = 0 for all X E g. From Prop. 1.4 we deduce 
that the geodesics in G* through e* are the one-parameter subgroups. 
This implies again that G* is complete. 

Suppose now the theorem were false for G. Then, due to Prop. 10.7, 
Chapter I, G* contains a ray emanating from e*. Let y be the one- 
parameter subgroup containing this ray. Then y is a “straight line’’ in 
G*, that is, it realizes the shortest distance in G* between any two of its 
points. In  fact, any pair of points on y can be moved by a left translation 
on a pair of points on the ray. We parametrize y by arc length t measured 
from the point e* = y(0). The set ~ ( y )  is a one-parameter subgroup 
of G; its closure in G is a compact, abelian, connected subgroup, hence 
a torus. By the classical theorem of Kronecker, there exists a sequence 
( tn) C R such that t, -+ and rr(y(t,)) -+ e. We can assume that all 
~ ( y ( t , ) )  lie in a minimizing convex normal ball B,(e) and that each 
component C of &(B,.(e)) is diffeomorphic to B,(e) under rr, Then 
the mapping rr : C + B,.(e) is distance-preserving; hence there exists 
an element z, E G* such that 

+&) = e ,  (3) 

4% r(tnN = 4 e ,  .rr(Y(trn)). 

Here d denotes the distance in G as well as in G*. Since (G*, T )  is a 
covering group of G, the kernel of 7~ is contained in the center 2 of G*. 
Hence by (3), we have z,  E 2. We intend to show y C 2. 

Now for a given element a E G*, consider the one-parameter sub- 
group 6 : t -+ ay(t)a-l ( t  E R). Since left and right translations on G* 
are isometries, 6 is a “straight line” and I t [ is the arc parameter measured 
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from e*. Since z, E 2 we have d(S(t,), z,) = d(y(t,),  z,) and this shows 
that 

(4) 

Suppose now S ( t )  # y( t )  for some t # 0. Then the angle between the 
vectors y(0) and s(0) is different from 0 (possibly 180”). In  any case, 
we have from Lemma 9.8, Chapter I and subsequent remark 

44- 11, a(+ 1)) < 4 e r ,  Y(- 1)) + +*, W)) = 2. 

lim n-m d(Y(t,), W,)) = 0. 

From (4) we can determine an integer N such that 

t N  > 1, d(y(tN), a(2N) )  < 2 - d(r(- I>, 1)). 

We consider now the following broken geodesic 5 : from y(- 1) to 
6(+ I )  along a shortest geodesic, from 6(+ I )  to S ( t N )  on 6, from 6( tN)  
to y( tN)  along a shortest geodesic. The  curve 5 joins y(- 1)  to y( tN)  and 
has length 

4A- I), 6(+ 1)) + - 1) + d(qt’v)! Y ( t X ) ) ?  

which is strictly smaller than tN + 1 = d(y(- l), y( tN)) .  Th‘  is contra- 
dicts the property of y being a straight line. 

It follows that 6( t )  = y ( t )  for all t E R.  Since a E G* was arbitrary 
it follows that y c 2. But then 3,  the Lie algebra of 2, is # (0}, and this 
contradicts the semisimplicity of g. 

Proposition 6.10. Let G be a connected Lie group with compact Lie 
algebra g. Then the mapping exp : g -+ G is surjective. 

The proof is contained in the first part of the proof of Theorem 6.9. 
I n  fact, Ad(G) being compact, there exists a strictly positive definite 
quadratic form on g invariant under Ad(G). In the corresponding left 
and right invariant Riemannian metric on G the geodesics through e 
are the one-parameter subgroups. Thus G is complete and the result 
follows from Theorem 10.4, Chapter I. 

7. Invariant Differential Forms 

Let G be a Lie group with Lie algebra g. A differential form w on G 
is called left invariant if L(x)* w = w for all x E G, L(x)  denoting the 
left translation g 4 xg on G. Similarly we define right invariant differen- 
tial forms on G. A form is called bi-invariant if it is both left and right 
invariant. 



136 LIE GROUPS AND LIE ALGEBRAS [Ch. I1 

Let w be a left invariant p-form on G. Then if X,, ..., X,,, E g are 
arbitrary, xi the corresponding left invariant vector fields on G, we 
have by (9), Chapter I, $2, 

(P + 1) d 4 f 1 ,  a * * ,  %+,) 

=c, (-l)”+i fa([& &], x,, ..., xe, ..., xj, ..., X,,). (1) 
i < i  

Lemma 7.1. Let w be a left invariant form on G. If w is right invariant 
then w is closed, that is, dw = 0. 

Proof. Let w be a left invariant p-form and let X E g. We have 

(Xf(exp “x’)e = Ad(exp(--tX))(&), 

so by the formula ((4), 95) 

= a d X  d Ad(exp tX) 

the right invariance of w implies 

2 uJ(Xl, ...) [X, Xi] ,  &+,, ..., XP) = 0, 
1 

so by (I) ,  and some manipulation, or by Exercise E.l, dw = 0. 

Even for G connected, a closed left invariant form is not 
necessarily right invariant. The  group G of the mappings Ta,b : x -+ 
ax + b (x E R )  where a and b are real numbers, a > 0, has a Lie algebra 
g = Re, + Re, where [e,, e,] = e 2 .  Let w # 0 be an arbitrary left 
invariant 2-form on G. Then dw = 0, whereas if w were right invariant, 
(2) would imply w ( e l ,  e,) = 0 contradicting w # 0. 

Let V be a finite-dimensional vector space and Z,, ..., 2, a basis of V. 
In  order that a bilinear map (X, Y) -+ [X, yl of V x V into V turn V 
into a Lie algebra it is necessary and sufficient that the structural constants 
yijk given by 

Remark. 

satisfy the conditions 

Yij, + Yikj = 0 
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Proposition 7.2. Let X I ,  ..., X ,  be a basis of - 
1-forms on G determined by w i (X j )  = Sij. Then 

137 

g and wl, ..., wn the 

if cijk are the structural constants given by 

n 

[ X j ,  X,] = 2 CijkXi. 
i=l 

Equations (3) are known as the Maurer-Cartan equations. They 
follow immediately from (1). They also follow from Theorem 8.1, 
Chapter I if we give G the left invariant afine connection for which 01 

in Prop. 1.4 is identically 0. Note that the Jacobi identity for g is reflected 
in the relation d2 = 0. 

Consider as in $1 the general linear group GL(n, R )  with 
the usual coordinates CJ -+ (xij(u)). Writing X = (xii), dX = (dxij), the 
matrix 

Example. 

Q = X - l d X ,  

whose entries are I-forms on G, is invariant under left translations 
X -+ aX on G. Writing 

dX = XQ, 

we can derive 

0 = ( d X )  A Q + X A dQ, 

where A denote the obvious wedge product of matrices. Multiplying 
by X-l ,  we obtain 

dD + D r\ l2 = 0, (4) 

which is an equivalent form of (3). 
More generally, consider for each x in the Lie group G the mapping 

dL(x-l), : G, --f g 

and let l2 denote the family of these maps. In  other words, 

Qx(v) = dL(x-')(v) if v E G,. 

Then SZ is a 1-form on G with values in g. Moreover, if x, y E G, then 
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so Q is left invariant. Thus Q, = C7=l (Oi), Xi  in terms of the basis 
XI, ..., X ,  in Prop. 7.2, el, ..., On being left invariant 1-forms on G. But 
applying 9, to the vectors (xi)z it is clear that Oi = uj (1 < j < n). 
Hence we write 

i=l i=l 

If 8 is any g-valued 1-form on a manifold X, we can define [O, O] as 
the 2-form with values in g given by 

Then Prop. 7.2 can be reformulated as follows. 

Proposition 7.3. Let 52 denote the unique left invariant g-valued 1-form 
on G such that Qe is the identity mapping of G, into g .  Then 

dQ + +[in, Q] = 0. 

In  fact, since cijk is skew in ( j, k) 

We shall now determine the Maurer-Cartan forms wi explicitly in 
terms of the structural constants cljk. Since exp is a C" map from g into 
G, the forms exp* wi can be expressed in terms of the Cartesian coordi- 
nates (xl, ..., xn)  of g with respect to the basis X I ,  ..., X,, 

(exP*(wi))x (Xj) = A i j h  - ** ,  xn), ( 5 )  

where X = Xi xiXi and Aij E Cm(Rn). Now let No be an open star- 
shaped neighborhood of 0 in g which exp maps diffeomorphically onto 
an open neighborhood N, of e in G. Then (xl, ..., x,) are canonical 
coordinates of x = exp X (X E No) with respect to the basis X I ,  ..., X,. 
Then, iff E C"(G), 
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whence 
a 

ax, d expx(Xj) = ~. 

Consequently, 

so 

(wJ2 = 2 Aij(x,, ..., x,) dxj. 
3=1 

Thus by Theorem 1.7 and the left invariance of mi, 

Summarizing, we have proved the following result. 

Theorem 7.4. Let X I ,  ..., X ,  be a basis of g and the left-invariant 
1-forms w i  determined by w i ( x j )  = aij. Then the functions A ,  in ( 5 )  and (6 )  
are given by the structural constants as follows. For X = Xi xiXi in g 
let A ( X )  be defined by 

A(X)(X,) = 2 A&,, ..., x,) xi (1 < j < n). 
2 

Then 
1 - e-ad X 

ad X 
A ( X )  = (7) 

Theorem 7.5. (the third theorem of Lie) Let cijk E R be constants 
(1 < i, j ,  K < n) satisfying the relations 

Cijk + Cikj = 0 (8) 

$ (Cij1Cikrn + CijnZCilk + CiikCjrnl) = 0. (9) 
i= 1 
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Then there exist an open neighborhood N of 0 in Rn and a basis Yl,  ..., Y,  
of al(N) over Cm(N) satisfying the relations 

Proof. We shall find a basis wl, ..., w, of %,(N) over Cm(N) satisfying 
the relations 

Then the Y,, ..., Y ,  can be chosen as the basis dual to wl, ..., w, 
(Lemma 2.3, Chapter I), and (10) follows from (1 1). 

A natural method would be to define Aij by (7) and to define wi by 
(6). Then (1 1) amounts to the following “integrability condition”: 

Since (9) would have to enter into its verification, we adopt a simpler 
method, motivated by $8, Chapter I. Since the structural equation (1) 
there becomes formula (11) above for a special left invariant affine 
connection on a Lie group (a = 0 in Prop. 1.4) and since (1) a (6) in 
$8, Chapter I, we start by dejning 1-forms 

n 

ei = e,(t,  a,, ..., = z f i j ( t ,  a,, ..., an) daj 
j=1 

as solutions to the differential equations 

(13) 

This amounts to a linear inhomogeneous constant coefficient system 
of differential equations for the functions fii, so these functions are 
uniquely determined for ( t ,  a,, ..., a,) E Rn+l. Using (13) we get 

30i - = dui - C cijkuiOk, 
at 

ei(o, a,, ..., = 0. 
j , k  

We write this formula 
d0i = ai A dt + pi, 
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where the ai and ,Bi are 1-forms and 2-forms, respectively, which do not 
contain dt. Next we put 

(Ti = pi + g 2 cijkej A ek 
j . k  

and since we would by $8, Chapter I expect the forms Bi(t, a,, ..., u , ) ~ , ~  
to satisfy (1 1) we now try to prove that ui = 0. Using (8), and writing - 0 .  

for terms which do not contain dt, we have 

dui = dpi + 2 C i j k d e j  A e k  

j , k  

- - -dt A dai - dt A cijkaj 8 ,  + ... 
j , k  

Using the expression for ai and (14), this becomes 

-dt A 2 ci jk(daj  A 6 k  + .jPk + OLj A 6,) + * * *  

j , k  

= -dt A 2 C i j k  (2 C j 9 q U & .  A e k  + U j P k )  + ... 
i , k  YP 

But since 8, A 8, = -8, A O,, we have 

2 C i j k c j e p 6 q  A 6 k  = 4 2 ( c i j k c i p q  - CijpC’ek)flq A e k ,  

i . k . 9  j , k &  

which by (8) and (9) equals 

-4 cijVciqkOa A Or.  
j , k . Q  

This proves 

so 

doi = dt A 2 c i j k a k a j  + ... . 
j k  

This amounts to 
a U  . 
2 = 2 c i j k a k u i  

at j k  

which, since the ui all vanish for t = 0, implies that each ui vanishes 



142 LIE GROUPS AND LIE ALGEBRAS [Ch. I1 

identically. Thus we see from (14) that the forms wi = 8% (1, a,, ..., a,) 
will satisfy (1 1). Finally, (1 3) implies that 

Bi(t, 0, ..., 0)  = t dai, 

so the forms wi are linearly independent at  (u,, ..., u,) = (0, ..., 0), 
hence also in a suitable neighborhood of the origin. This concludes the 
proof. 

Now let G be a compact connected Lie group. Let dg denote the 
Haar measure on G normalized by JG dg = 1, let Q be a fixed positive 
definite quadratic form on 9 invariant under Ad(G), and fix a basis 
X,, ..., X ,  of g orthonormal with respect to Q. Let wl, ..., w, be the left 
invariant 1-forms on G given by w i ( x j )  = 6 . .  and put 0 = w1 A - a -  A w,. 

Then 8 is left invariant and also right invariant because det Ad(g) = 1 
by the compactness of G. Also each n-form w on G can be written 
w = f8 where f E C"(G) is unique, so we can define 

a? 

Lemma 7.6. Let w be an (n - l)-form on G. Then 

J,aw = 0. 

This is a special case of Stokes's theorem and can be proved quickly 
as follows. We have dw = he where h E Cm(G). By (16) and the bi- 
invariance of dg and 8, we have, since d commutes with mappings and 
integration with respect to another variable, 

the last equality following from Lemma 7.1. 
Next we recall the * operator which maps %(G) onto itself, %JG) onto 

%,-,(G) (0 < p < n). Let ul, ..., u, be the basis of the dual space g*, 

dual to (Xi),%(e) the Grassmann algebra of g = G,, and * : %(e) -+ X ( e )  
the mapping determined by linearity and the condition 

*(oil A ... A uip) = fuj, A 0 . .  A uj,,-p, (17) 

where {il, ..., ip, j,, ..., jnPp} is a permutation of {I, ..., n), the sign being 
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+ or - depending on whether the permutation is even or odd. We shall 
use the following simple fact from linear algebra (for proofs, see e.g. 
Flanders [ 13, Chapter 2): 

(i) If ( X i )  is replaced by another orthonormal basis ( X i )  where 
X i  = ET=l gijXi with det ( g i j )  = 1,  then the definition of * does not 
change. 

(ii) If i, < -.* < ip, then 

From (i) we have since det Ad(g) = I ,  Ad(g)* = *Ad(g) ( g E  G). 
Thus we can define * : %(g) -+ %(g) as the map L(g-')* * L(g)* or as 
the map R(g-l)* * R(g)* .  Finally, the mapping * : %(G) -+ %(G) is 
defined by the condition 

(*w)s = *(w,), W E % ( G ) ,  g E G .  

Then * commutes with L(x)* and R(y)*  for all x, y E G. 

p-forms into ( p  - 1)-forms according to the formula 
Next we define the linear operator 6 : %(G) --f %(G) which maps 

6w = (- l)np+n+l * d * w ,  w E %,(G). 

We then introduce an inner product ( , > on %(G) by 

( w ,  7) = 0 if w E'%(G), r ]  E%,(G) (P f q) ,  

( w , 7 )  = w A *7 if W ,  r]  E %,(G) 
G 

and the requirement of bilinearity. This inner product is strictly positive 
definite; in fact we can write 

w = 2 ai l...ipwil A ... A wi, 
#l<. . .<i, 

and then 

w A *w = ( azl...ip) 0 
i,<.. .<i9 

so the statement follows. Moreover d and 6 are adjoint operators, that is, 

(dw,  7) = ( w ,  $>, w,  7 6 'U(G). (18) 
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It suffices to verify this when w E %p-l(G), q E sP(G).  But then 

d(w A *7) = dw A "7 + (-1)P-l~ A d t 7 = dw A "7 - w A th, 

since ** = (-l)p(n-p) on %,(G). Integrating this over G and using 
Lemma 7.6, we derive (18). We consider now the operator d = 
-d8 - 8d on %(G) which maps each %JG) into itself. A form w satis- 
fying d w  = 0 is called a harmonic form. 

Lemma 7.7. 

I n  fact, 

A form w on G is harmonic if and only i f  dw = 0 and 
6w = 0. 

- (Am,  w )  = (Sw, Sw) + (dw, dw)  

so the result follows. 

Theorem 7.8. (Hodge) The harmonic forms on a compact connected 
Lie group G are precisely the bi-invariant forms. 

A bi-invariant form w satisfies dw = 0 (Lemma 7.1); and since * 
commutes with left and right translations, 6w = 0. Conversely, suppose 
d w  = 0, so by Lemma 7.7, dw = SW = 0. Let X E g and let denote 
the left invariant vector field on G such that xe = X .  By Exercise B.6, 
Chapter I we have 6 ( 2 ) ~  = i ( a )  dw + di(r?)w = d i ( x ) w .  Then 

(e(R)w, H(X)w) = ( M ( X ) w ,  i (X)w> = 0 ,  

since 6 ( 2 ) w  is harmonic. Hence 6 ( 2 ) w  = 0, so w is right invariant 
(Exercise B.3, Chapter I). Left invariance follows in the same way. 

Q.E.D. 

§ 8. Perspectives 

This section contains some informal comments whose purpose it is 
to put some of the topics of this chapter in better perspective. 

First we explain how Theorem 3.4 is connected with the original 
foundation of Lie group theory. Inspired by Galois' theory for algebraic 
equations, Lie raised the following question in his paper [2]: How can 
the knowledge of a stability group for a dtrerential equation be utilized 
toward its integration ? (A point transformation is said to leave a differen- 
tial equation stable if it permutes the solutions.) Lie proved in [2] that 
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a one-parameter transformation group vt of R2 with induced vector field 

leaves a differential equation dy dx = Y ( x ,  y) X ( x ,  y )  stable if and only 
if the vector field Z X a ax + Y a ay satisfies [@, Z ]  = XZ where X 
is a function; in this case (Xq - Yf)- l  is an integrating factor for the 
equation X dy - Y dx = 0. 

Example. 

dv - y + x(x2 + Y 2 )  
dx x - y(x2 + y2) . 

This equation can be written 

and since the left-hand side is tan a where a is the angle between the 
integral curve through (x,y) and the radius vector, it is clear that the 
integral curves intersect each circle around (0, 0) under a fixed angle. 
Thus the rotation group 

pl t  : (x, y )  -+ (x cos t - y sin t ,  x sin t + y cos t ) ,  

for which @ = -y a, ax + x slay, leaves the equation stable and Lie's 
theorem gives the solution y = x tan($(x2 + y z )  + C), C a constant. 

Generalizing (yt) above, Lie considered transformations (xl, .,,, xn) -+ 

(xl, ..., xk) given by 

T : xi = f t ( x 1 ,  ..., x,; t,, ..., tr )  (1) 

depending effectively on r parameters t,, i.e., thef. are C" functions and 
the matrix (af, at,) has rank Y. We assume that the identity transforma- 
tion is given by t ,  = * - -  = t ,  = 0 and that if a transformation S 
corresponds to the parameters (s,, ..., s,.) then TS-I is for sufficiently 
small ti, sj given by 

TS-l : X; = fi(xl, ..., x,,; u,, ..., u,) (2) 

where the uk are analytic functions of the ti and si. Generalizing 0 
above, Lie introduced the vector fields 



146 LIE GROUPS AND LIE ALGEBRAS [Ch. I1 

and, as a result of the group property (2), proved the fundamental 
formula 

where the cpk l  are constants satisfying 

C P k l  = - c P , k ,  i; (czkqcqcm + cPmqcqk, + cPIqcqmk) = 0. (4) 
4=1 

Independently of Lie, Killing had through geometric investigations been 
led to concepts close to Tk and relations (3) and he attacked the algebraic 
problem of classifying all solutions to (4). See notes to Chapter X. 

We shall now show how (3) follows from Theorem 3.4. So the ( x i )  
are coordinates on M and the (t,) coordinates near e in G. We first 
assume that the ( t k )  are “canonical coordinates of the second kind,” 
i.e., for a suitable basis X,, ..., X, of g, 

exp(tlXl) ... exp(t,X,) . (x,, ..., x,) 

=f&, ..’, x,; t , ,  a * * ,  t,), ..., f,(% a*-, x,; t,, ..., t,). 

Such coordinates exist by the remark following Lemma 2.4. Then 
X, = (a,&,), ( 1  < k < r )  and 

It follows that X: = T,, so Theorem 3.4 implies (3) for this coordinate 
system { t l ,  ..., t,). But if {sl, ..., s,) is another coordinate system on a 
neighborhood of e in G, with sl(e) = = s,(e) = 0, then 

fi(X1, ..., x,; s,, ..., s,) =f:r(.,, ’.., x,; tl, ..., t ,) 

where the fi are obtained by changing to 
( t l ,  ..., t,) of the second kind. Then 

the canonical coordinates 
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so the (aji/t3sk)s=o are certain constant linear combinations of the T,;  
thus (3) holds in general. 

A major problem in the early theory of Lie groups was to establish 
the existence of a “local Lie group” with a given Lie algebra. This was 
solved by “Lie’s three theorems” which were proved by means of 
differential equations. T h e  third of these is Theorem 7.5. T h e  second 
theorem is equivalent to the integrability conditions (12), 97. The  first 
theorem then amounts to, that when the vector fields Y,, ..., Y ,  of 
Theorem 7.5 are integrated to give local one-parameter transformation 
groups, these generate a local group for which the Yi are left invariant 
vector fields. 

Nowadays the existence of a (global) Lie group with a given Lie 
algebra can be proved without recourse to differential equations, as we 
shall indicate below. Besides semisimple Lie groups whose theory is 
intertwined with the theory of symmetric spaces, solvable Lie groups 
(cf. Chapter 111, $2) are the other fundamental class of Lie groups. 
They include the abelian Lie groups and the nilpotent Lie groups. Each 
Lie algebra g has a “Levi decomposition” g = r + 5 where r is a solvable 
ideal, 5 a semisimple subalgebra and r n 5 = (0). These properties 
determine r uniquely and determine 5 up to conjugacy. From this 
decomposition it is easy to prove the existence of a Lie group with Lie 
algebra g. (In fact, the existence of a Lie group R with Lie algebra r 
follows by induction on the dimension, the group S = Int(5) has Lie 
algebra 5 and the desired group G can be taken as a semidirect product 
R*S*, * denoting the universal covering group.) 

The  analog of Prop. 6.10 fails to hold for semisimple Lie groups in 
general (cf. Exercise B.1) and fails to hold for solvable Lie groups in 
general (cf. Exercise B.4). However it does hold for nilpotent Lie groups 
as will be proved in Chapter VI. 

EXERCISES AND FURTHER RESULTS 

A. O n  the Geometry of Lie Groups 

1. Let G be a Lie group, L(x) and R(x),  respectively the left translation 
g -+ xg, and the right translation g -+ gx .  Prove: 

(i) Ad(x) = ~ R ( X - ~ ) ~  o dL(x), = dL(x),-I o dR(x-l),. 

(ii) If J is the map g -+ g-l then 

dJ* = -dL(..-’)e 0 dR(x-l), = -dR(x-’)e 0 dL(..-l)=. 
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(iii) If 0 is the mapping (g,  h) + gh of G x G into G, then if X E G,, 
Y E  Gh, 

d@(g ,h ) (x ,  y >  = d L k ) h  ( y )  + dR(h>g 

2. Let y ( t )  ( ~ E R )  be a one-parameter subgroup of a Lie group. 
Assume that y intersects itself. Then y is a “closed” one-parameter sub- 
group, that is, there exists a number L > 0 such that y(t + L )  = y( t )  
for all t E R. 

3. Let y( t ) ,  S ( t )  ( t  E R )  be two one-parameter subgroups of a Lie 
group. If y (L)  = S(L) for some L > 0, then the curve o(t) = y(t) S ( - t )  
(0 < t < L )  is smooth at e, that is, u(e) = &(L) (Goto and Jakobsen [l]). 

4. Let G be a locally compact group, H a closed subgroup. Prove that 
the space G;’W is complete in any G-invariant metric. 

5 .  Let G be a connected Lie group with Lie algebra 9. Let B be a 
nondegenerate symmetric bilinear form on g x g. Then there exists a 
unique left invariant pseudo-Riemannian structure Q on G such that 
Q, = B. Show, using Prop. 1.4 and (2), $9, Chapter I,  that the following 
conditions are equivalent: 

(i) The geodesics through e are the one-parameter subgroups. 

(ii) B ( X ,  [X, Y ] )  = 0, for all X, Y E  g. 

(iii) B ( X ,  [Y ,  21) = B([X,  y1, 2) for all X, Y,  2 E Q. 

(iv) Q is invariant under all right translations on G. 
(v) Q is invariant under the mapping g -+ g-l of G onto itself. 
6.  Let G be a connected Lie group with Lie algebra g. Then there 

exists a unique affine connection v on G invariant under all left and 
right translations and under the map J : g -+ g-l .  Let X, Y E  g. Prove 
that: 

(i) The parallel translate of X along the curve y( t )  = exp tY  
(0 < t < I )  is given by 

dl(exp t Y )  dR(exp tY)X.  

(ii) v-p(Yj = $[8, P] where 

(iii) The geodesics are the translates of one-parameter subgroups. 
(iv) The  torsion T and curvature R of v are given by 

and are the left invariant vector 
fields with X ,  = X ,  8, = Y. 

T = 0, R(X, Y )  = -$ ad([X, Y]) .  
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B. The Exponential Mapping 

1. Let SL(2, R )  denote the group of all real 2 x 2 matrices with 
determinant 1. Its Lie algebra sI(2, R )  consists of all real 2 x 2 matrices 
of trace 0. 

(i) Let X E sI(2, R),  I = unit matrix. Show that 

X if det X < 0 
sinh( -det X)l12 

(- det X)1/2 
ex = cosh(-det X)l12 I + 

X 
sin(det X)l12 

ex = cos(det X)l12 Z + __-_ 
(det X)l12 

if det X > 0 

e X = I + X  if det X = 0. 

(ii) Let us consider one-parameter subgroups the same if they have 
proportional tangent vectors at e.  Then the matrix 

lies on exactly one one-parameter subgroup if h > 0, on infinitely many 
one-parameter subgroups if h = - 1 and one no one-parameter subgroup 
i f h < O , h # - 1 .  

2. Show that the group SL(2, R )  admits a bi-invariant pseudo- 
Riemannian structure. This pseudo-Riemannian manifold is complete in 
the sense that the geodesics are indefinitely extendable (Exercise A.5). 
Show that: 

(i) Two points in SL(2, R )  can not in general be joined by a geodesic. 

(ii) Two points in SL(2, R )  can always be joined by a singly broken 
geodesic. 

(iii) On any connected manifold M with an affine connection an 
arbitrary pair of points can always be joined by a finitely broken geodesic. 
The  number of breaks necessary may be unbounded even if M is 
complete (Hicks [2] ) .  

3. The Lie group GL(n, C )  has Lie algebra gl(n, C )  and the mapping 

exp : gI(n, C )  + GL(n, C )  

is surjective. (Use the Jordan canonical form (Prop. 1.1, Chapter 111 and 
Lemma 4.5, Chapter VI.) 
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4. Let G denote the subgroup of GL(n, R )  given by 

Describe its Lie algebra g C gI(n, R), show that g is solvable, but that the 
mapping exp : g -+ G is neither injective nor surjective. 

5. Using the exponential mapping show that each Lie group G 
contains a neighborhood of e containing no subgroup #(e}. (“A Lie 
group has no small subgroups.”) 

C. Subgroups and Transformation Groups 

1. Verify the description of the Lie algebras of the various subgroups 
of GL(n, C )  listed in Chapter X, 92. 

2. Show that a commutative connected Lie group is isomorphic to 
a product group of the form R” x Tm where Tm is an m-dimensional 
torus. Deduce that a one-parameter subgroup y of a Lie group H is 
either closed or has compact closure. 

3. Let H C G be connected Lie groups. Suppose the identity mapping 
I : H ---t G is continuous. Then H is a Lie subgroup of G. 

4. (The analytic structure of GIH) With the notation prior to Theorem 
4.2 let g, g’ E G and consider the two homeomorphisms 

Prove that the mapping o 4;’ is an analytic mapping of 

onto 

5. Let G be a Lie transformation group of a manifold M .  Then 
each orbit G - p is a submanifold of M ,  diffeomorphic to GIG,. (Proceed 
as in the proof of Prop. 4.3.) 

6. Let G be a locally connected topological group. Suppose the identity 
component Go has an analytic structure compatible with the topology 
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in which it is a Lie group. Show that G has the same property. (Hint: 
Use Theorem 2.6.) 

This shows that the definition of a Lie group adopted here is equi- 
valent to that of Chevalley [2]. 

7*. Suppose an abstract subgroup H of a connected Lie group G has 
a manifold structure in which it is a submanifold of G with at most 
countably many components. Then H is a Lie subgroup of G. (cf. 
Freudenthal [4]; see also Kobayashi and Nomizu [I], I, p. 275 or 
F. Warner [l], p. 95, and Chevalley [2], p. 96). 

8. Let G be a connected Lie group, H c G a closed subgroup. The 
action of G on the manifold M = G/H is called imprimitive if there 
exists a connected submanifold N of M (0 < dim N < dim M )  such 
that for each g E G either g * N = N or g - N n N = 0. Show that this 
is equivalent to the existence of a Lie subgroup L,  H C L C G, such that 
dim H < dim L < dim G. 
9*. Let G be a Lie transformation group of a manifold M ,  M / G  the 

orbit space topologized by the finest topology for which the natural 
mapping 7t : M -+ M/G is continuous. Let 

D = { ( p , q ) ~ M  x M : p  =g.qforsomegEG}. 

Prove that: 

(i) M/G is a HausdorfT space if and only if the subset D C M x M 
is closed. 

(ii) There exists a differentiable structure on the topological space 
Mi G such that m= : M + M/G is a submersion if and only if the topo- 
logical subspace D C M x M is a closed submanifold. 

In  this case the differentiable structure is unique and all the G-orbits 
in M have the same dimension (see, e.g., DieudonnC [2], Chapitre XVI). 

D. Closed Subgroups 

1. Let r be a discrete subgroup of R2 such that R 2 / r  is compact. 
Show that an analytic subgroup of R2 is always closed but that its 
image in R 2 / r  under the natural mapping is not necessarily closed. 

2. Let g be a Lie algebra such that Int(g) has compact closure in GL(g). 
Then Int(g) is compact. (Hint: Repeat the proof of Prop. 6.6 and use 
Prop. 6.6(i).) 

3. Let G denote the five-dimensional manifold C x C x R with 
multiplication defined as follows (van Est [l], Hochschild [I]): 

(cl, cg, Y)(C;, 4, Y’) = (cl + eZnirc;, c2 + ezrihrci, r + r’), 
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where h is a fixed irrational number and cI, c2, ci, C; E C, I, I’ E R. 
Then G is a Lie group. 

(i) Let s, t E R and define the mapping : G -+ G by as,f(cl, c2, I) = 

(ii) If t = hs + hn where 1z is an integer, then as,t coincides with the 

(e2nis 1, e2nif c,, I). Show that a,,t is an analytic isomorphism. 

inner automorphism 

(C1r c,, .) - ( O , O ,  s + w,, c2, T) (O,  0, s + v. 
(iii) Let g denote the Lie algebra of G and let As,f  denote the auto- 

morphism dag,f of g. If s, + so, t ,  + to then As*,ts + 

(iv) Show that Ao,l,3 4 Int (9). Deduce from (iii) that Int (9) is not 
closed in Aut (9). 

4*. Let G be a connected Lie group and H an analytic subgroup. 
Let g and t, denote the corresponding Lie algebras. 

(i) Assume G simply connected. If b is an ideal in g then H is closed 
in G (Chevalley [2], p. 127). 

(ii) Assume G simply connected. I f 6  is semisimple then H is closed 
in G (Mostow [2], p. 615). 

(iii) Assume G compact. If b is semisimple then H is closed in G 
(Mostow [2], p. 615). 

(iv) Assume G = GL(n, C). If 6 is semisimple then H is closed 
in G (Goto [l], Yosida [I]). 

(v) Suppose H is not closed in G. Then there exists a one-parameter 
subgroup y of H whose closure (in G) is not contained in H (Goto [I]). 

(vi) H is closed if exp t, is closed. This follows from (v). 
(vii) Assume G solvable and simply connected. Then H is closed and 

simply connected (Chevalley [S]). 
(viii) Suppose G = SO(n) and that H acts irreducibly on P. Then H 

is closed in G (Bore1 and Lichntxowicz [2], Kobayashi and Nomizu [l], 
I, p. 277). 

in Aut (9). 

E. Invariant Differential Forms 

1. Let G be a connected Lie group with Lie algebra g. Let (Xi)lsicn 
be a basis of g, xi (1 < i < n) the corresponding left invariant vector 
fields, and wj (1 < j  < n) the dual forms given by wi(&) = 6,. From 
(I) ,  97 or Exercise C4, Chapter I deduce the formula (cf. Koszul [4]) 

n 

2 dW = w k  A e ( 3 k ) w  (w left invariant) 
k = l  
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where O(xk) is the Lie derivative (Exercise B.l, Chapter I). Show that 
if w = mi, this formula reduces to the Maurer-Cartan equations (3), $7. 

2. Prove that for the orthogonal group O(n) the matrix of I-forms 
Q = g-l dg (g E O(n)) satisfies 

tA denoting the transpose of a matrix A. Generalize these relations to 
U(n) and Sp(n). 

3. Using the method of Exercise E2 show that the group of matrices 

g=[ a (x ,  y ,  z E R) 

has a basis of left invariant 1-forms given by 

w1 = dx, w2 = dy, wg = dx - x dy 

and that the Maurer-Cartan equations are 

dw, = 0, dw, = 0, dw, = -wl r\ w2. 

NOTES 

In the early days of Lie group theory, the late nineteenth century, the notion 
of a Lie group had, in the hands of S. Lie, W. Killing, and E. Cartan, a primarily 
local character. For information about this early period see for example Lie [l], 
Vol. 111, Mostow [7], Bourbaki [2], Chapters 11-111 and Helgason [lo]. Global Lie 
groups were not emphasized until during the 1920's through the work of H. Weyl, 
E. Cartan, and 0. Schreier. These two viewpoints, the infiniJesima1 method and 
the integral method, were not completely coordinated until E. Cartan proved in 
1930 ([16], [20]) that every Lie algebra over R is the Lie algebra of a Lie group. 
The book of Chevalley [2] gives a systematic exposition of Lie group theory from 
the global point of view. 

No generality is gained by replacing the analyticity requirement in the 
definition of a Lie group by differentiability. This was stated without proof in 
Lie [3]; it was proved by F. Schur [l-31 along with Theorem 7.4 where the func- 
tions A j f  automatically turn out to be analytic functions (cf. Pontrjagin [l], $56, 
Satz 88). Even the differentiability assumption is not essential; a locally Euclidean 
topological group has an analytic structure (actually unique) in which the group 
operations are analytic. This theorem, which after many partial steps was proved 
by A. Gleason, D. Montgomery, and L. Zippin in 1952, constitutes an affirmative 
solution to a problem posed by Hilbert in 1900 (see Montgomery and Zippin [l]). 
In addition it was proved by Gleason [l] for finite-dimensional groups and by 
Yamabe [2] in general that a locally compact group without small subgroups is 
a Lie group. 

51-93. 
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The universal enveloping algebra was defined by PoincarC [ 11, Birkhoff [ 11, and 
Witt [l]; starting with Harish-Chandra’s work [3] it plays an important role in 
infinite-dimensional representation theory of Lie groups. See Dixmier [l] for a 
wide-ranging exposition. The isomorphism U(g) w D(G) in Prop. 1.9 is proved 
in Harish-Chandra [7] and is attributed to L. Schwartz in Godement [l]. The 
injectivity of the mapping X -+ X* of g into U(g) (the PoincarC-Birkhoff-Witt 
theorem) is an obvious consequence. 

Various invariant a&e connections on a Lie group were introduced by Cartan 
and Schouten [l] ; Prop. 1.4 is proved by Nomizu [2]. The formula in Theorem 1.7 
for the differential of the exponential mapping was proved in Helgason [2]; it 
also gives a proof of Theorem 7.4, originally proved by F. Schur [l-31. 

The treatment of Lie subgroups and subalgebras in $2 is primarily based on 
Chevalley [2]. Several simplifications have been possible since the exponential 
mapping is available. 111 particular, the proofs of the basic Theorems 1.1 1 ,  2.1 and 
2.3 are from Bruhat [2]. The proof of Theorem 2.6 also occurs there (although 
oversimplified) and in Freudenthal-deVries [l], $11. The use of the graph of a 
homomorphism also occurs in another context in Chevalley [2], p. 112. Theorem 
2.3 on closed subgroups wa,s originally proved by von Neumann [l] for matrix 
groups and generalized by E. Cartan [16] to arbitrary Lie groups. Theorem 3.2 
was proved by h e n s  [l], but Cor. 3.3 is older (see Pontrjagin [l]). 

The adjoint group goes back to Lie. The existence of a positive definite 
quadratic form invariant under a given compact linear group is one of H. Weyl’s 
important applications of the invariant measure. The fundamental Theorem 6.9 
is also due to Weyl [l], Kap IV, Satz 2. For a fuller exposition of Weyl’s proof see 
Pontrjagin [l], $64. The proof given in the text is due to Samelson [l]. Cartan’s 
proof is contained in Theorem 6.1, Chapter VII. For other proofs see Harish- 
Chandra [2], Chevalley-Eilenberg [l], SCminaire Sophus Lie [l] (also in Serre [2], 
Varadarajan [ l]), and Seifert [ 13. 

$7-$8. In [l] Maurer proves integrability conditions (12), $7 which are 
equivalent to the Maurer-Cartan equations (3). Theorem 7.5 is proved in Lie [l], 
Vol. 2, Chapter XVII (cf. Pontrjagin [l], $56). The proof in the text is Cartan’s 
[25, 261; we have followed the exposition in Flanders [l], Chapter VII. For a 
more explicit construction of the local group from the forms wi  see Chevalley [2], 
Chapter V. Theorem 7.8 is proved in Hodge [l], 556.2, by essentially the same 
method. 

$5-$6. 



CHAPTER 111 

STRUCTURE OF SEMISIMPLE LIE ALGEBRAS 

As will become clear in Chapter V, the study of symmetric spaces leads quickly 
and rather surprisingly to semisimple Lie algebras. This chapter is devoted to a 
preliminary study of these Lie algebras. The central result is Theorem 6.3, assert- 
ing that any complex semisimple Lie algebra has a compact real form. The proof 
is based on the root space decomposition of a complex semisimple Lie algebra 
with respect to a Cartan subalgebra. However, the existence of a Cartan subalgebra 
is not a trivial matter. It is based on Lie’s theorem on solvable Lie algebras, proved 
in 52. In the lasr section we determine the Cartan subalgebras, and the root pattern 
for the complex classical Lie algebras an, b,, c,, and b,. 

$1. Preliminaries 

Let K be a field and V a finite-dimensional vector space over K .  
We shall recall some facts concerning endomorphisms of V. Let 
Hom ( V ,  V )  denote the ring of all endomorphisms of V. Let el, ..., en 
be a basis of V.  To each A E Hom (V,  V )  we associate the matrix 

all a12 ’.. “In 

a21 a22 * . a  azn 
... ... I an1 an2 *.f a n n  

(a,j> = 

which is determined by the condition Aej = Ezl aijei (1 \ c j  < n).  
We shall call the matrix (aii) the expression of A in terms of the basis 
el, ..., en. The mapping A 3 (aii) is an isomorphism of Hom (V ,  V )  
onto the ring M,(K)  of all n x n matrices with entries in K. If fl, ..., fn 
is a basis dual to el, ..., en, then the endomorphism ‘A : V* -+ V* has 
matrix expression (aji), the transpose of (aij). A matrix (aii) for which 
aij  = 0 if i > j  is called an upper triangular matrix, a matrix (&) for 
which Pii = 0 if i < j is called a lower triangular matrix. A matrix 
which is both upper and lower triangular is called a diagonal matrix. 

If h E K ,  let VA denote the set of elements e E V such that Ae = he. 
If V,  # {0}, then h is called an eigenvalue of A and V,  is called the 
eigenspace of A for the eigenvalue A. A vector v # 0 in V which belongs 
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to some eigenspace of A is called an eigenvector of A. The equation 
in A, 

det ( X I  - A) = 0 ( I  = identity endomorphism) 

is called the characteristic equation of A .  Those solutions of this equation 
which lie in K coincide with the eigenvalues of A. The left-hand side 
of the equation is called the characteristic polynomial of A. 

An endomorphism N E Hom (V, V) is called nilpotent if Nk = 0 
for some integer K > 0. If V # (O} and if N E Hom ( V ,  V) is nilpotent, 
then N has exactly one eigenvalue, namely 0. Let el # 0 be a vector 
in V such that Ne, = 0. If El denotes the one-dimensional subspace 
of V spanned by el, N induces an endomorphism Nl of the factor space 
V/El.  This endomorphism Nl is again nilpotent and if dim V/El # 0, 
we can select e2 # 0 in V such that the vector (ez + El)  E V/E1 is an 
eigenvector of Nl.  By a continuation of this process we obtain a basis 
el, ..., e, of V such that 

Ne, = 0, Ne, = 0 mod (el, ..., ep--l), 2 < p < n. 
Here (el, ..., e,,) denotes the subspace of V spanned by the vectors 
el, ..., ep-l. The matrix (nu) expressing N in terms of the basis el, ..., e, 
has 0 on and below the diagonal. On the other hand, let (n i j )  be an 
n x n matrix with 0 on and below the diagonal. If jl, ..., fn is any 
basis of V, the endomorphism N given by Nfj = Zy-l niifi is nilpotent. 

Thus N is nilpotent if and only if it has a matrix expression with 0 
on and below the diagonal. 

Consider now a subset 6 c Hom (V, V). A subspace W of V is 
called invariant (under 6) if SWC W for each S E G. The space V 
is called irreducible if its only invariant subspaces are {0} and V. The 
set G is called semisimple if each invariant subspace (under G) has a 
complementary invariant subspace. In this case V can be written as a 
direct sum V = Xi Vi where the spaces Vi are invariant and irreducible 
(under G). If 6 is a commutative family of endomorphisms, then 6 is 
semisimple if and only if each S E 6 is semisimple. 

Each A E Hom ( V ,  V) can be uniquely decomposed: 

A = S + N ,  S semisimple, N nilpotent, SN = NS. (1) 

In this decomposition, S and N are polynomials in A, and are called 
the semisimple part and nilpotent part of A respectively. Suppose h 
is an eigenvalue of A. Select a vector e # 0 such that Ae = he. Since 
N is a polynomial in A, but has 0 as the only eigenvalue, it follows that 
Ne = 0 and Se = he. On the other hand, let X be an eigenvalue of S 
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and let Va be the eigenspace of S for the eigenvalue A. Since AS = SA, 
we have AVA C Va and the restriction of A - A I  to Va is nilpotent. 
In particular, A is an eigenvalue of A. Thus, A and S have the same 
eigenvalues, say A,, ..., A?. 

Suppose now that K is algebraically closed. Let 6 be a semisimple 
commutative family of endomorphisms of V. Then each nonzero in- 
variant irreducible subspace (under 6) is one-dimensional, so V has a 
basis in terms of which all S E G are expressed by diagonal matrices. 
In  particular, this is the case when 6 consists of the single endomorphism 
S above. Thus V can be written as a direct sum 

v = 2 vi, 
i=l 

where Vi is the eigenspace of S for the eigenvalue 4. Let v # 0 be a 
vector in V and A E K such that 

( A  - Azyv = 0 

for some integer k. Taking k as small as possible, we see that h is an 
eigenvalue of A, let us say h = A,. We can write v = Xi vi where 
vi E Vi, and since V, is invariant under A, we obtain 

( A  - All)%i = 0 for 1 < i < r .  

Now, the endomorphism Ni = A - &I is nilpotent on Vi, whereas 
the equation 

(Ni + (Ai  - A,)I)%i = 0 

shows that if vi # 0, Ni has the eigenvalue A, - hi on V,. It follows 
that vi = 0 if i > 1 ; hence v E V,. Summarizing, we get: 

Proposition 1.1. Let V be a finite-dimensional vector space over an 
algebraically closed field K .  Let A E Horn (V,  V) ,  and let A,, ..., A, E K 
be the different eigenvalues of A. Put 

Vi = {v E V : ( A  - hJ)% = 0 for K sufficiently large}. 

Then 

(9 V = 2 Vi (direct sum). 
i=l 

(ii) Each Vi is invariant under A. 



158 STRUCTURE OF SEMISIMPLE LIE ALGEBRAS [Ch. I11 

(iii) The semisimple part of A is given by 

s (2 Vi) = 2 X2Vi (Vi E VJ. 
1=1 t=l 

(iv) The characteristic polynomial of A is 

det ( X I  - A) = (A - hJd1 ... ( A  - hr)dr, 

where dt = dim V ,  (1 < i < r).  

2. Theorems of Lie and Engel 

Throughout this section, K denotes a field of characteristic 0 and R 
its algebraic closure. Let g be a Lie algebra over K. The vector space 
spanned by all elements [X, Y], X, Y E g, is an ideal in g ,  called the 
derived algebra of g. The derived algebra will be denoted Dg and the 
nth derived algebra Dng of g is defined inductively by Dog = g and 
%"g = D(Dn-lg). Each Dng is an ideal in g. 

The Lie algebra g is called solvable if there exists an 
integer n 2 0 such that Dng = {O}. A Lie group is called solvable if its 
Lie algebra is solvable. 

Let g be a solvable Lie algebra # {O} and let n be the smallest integer 
for which Dng = {O}. Then Dn-lg is a nonzero abelian ideal in g. 
Hence g is not semisimple (Prop. 6.1, Chapter 11). 

A Lie algebra g is said to satisfy the chain condition if 
for each ideal b # (0) in g there exists an ideal bl of b of codimension 1. 

Lemma 2.1. A Lie algebra g is solvable if and only if it satisfies the 
chain condition. 

Proof. If g is solvable and # {0}, then Dg # g. Hence there exists 
a subspace of g of codimension 1, containing Dg. Then 9 is an ideal 
in g. Each ideal (even each subalgebra) of a solvable Lie algebra is 
solvable; consequently, g satisfies the chain condition. On the other 
hand, suppose g is a Lie algebra satisfying the chain condition. Then 
there exists a sequence 

Definition. 

Definition. 

g = go 3 91 3 '.* 3 ga-1 3 sr. = (01, 

where g,. is an ideal in grP1 of codimension I (1 < r < n), and thus 
D(gr-l) C g,.. By induction, g is solvable. 
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Theorem 2.2. (Lie) Let g be a solvable Lie algebra over K.  Let 
V # {0} be afinite-dimensional vector space over K, the algebraic closure 
of K. Let n be a homomorphism of g into gl( V) .  Then there exists a vector 
v # 0 in V which is  an eigenvector of all the members of n ( g ) .  

We shall prove the theorem by induction on dim g. If dim g = 1, 
the theorem is a consequence of Prop. 1 .I  ; we assume now that the 
theorem holds for all solvable Lie algebras over K of dimension < dim g. 

Let t, be an ideal in g of codimension 1. Then t, is solvable, so by assump- 
tion there exists a vector e, # 0 in V and a linear function A :  t, -+ R 

Proof. 

such that 
r ( H )  P" = A(H) e,  for all H E t,. 

Select X E g such that X 4 t, and put 

epl = 0, e,  = T ( X ) ~  e,, p = 1,2, ... . 
The subspace W of V spanned by all e,, ( p  
We shall now prove by induction that 

0) is invariant under .rr(X). 

r ( H )  e, = A(H) ep  mod (e,, ..., epPl) for all H E b, p 3 0. ( I )  

In  fact, (1) holds for p = 0, and, assuming it for p ,  we have 

T ( H )  epL1 = V ( H )  44 e ,  = 4 [H ,  XI) e, + T ( X )  n ( H )  p ,  

= A([H, XI) e p  + n ( X )  A(H) e,  mod (e,, ..., en-,, ?r(X) e,, ..., v ( X )  ep.-l) 

so 
4 H )  %+I = X(H) ep+1  mod (e,,e, ... e,) for H E t,. 

It follows that W is invariant under n ( g )  and Tr, n ( H )  = h(H)  dim W. 
Now n([H,  X I )  = n ( H )  x ( X )  - v ( X )  r ( H )  so Tr,n([H, X I )  = 0. Since 
dim W > 0 we obtain h([H,  X I )  = 0. Now, we have 

.rr(H) enc1 = 4 [ H ,  XI) e p  + 7d-q d H )  e p  

and the relation 

v ( H )  e, = A(H) e ,  ( H  E t,, a l l p  z 0) 

follows by induction on p .  This shows that for H E t,, n ( H )  = A(H) I 
on W. Since .-(X) leaves W invariant it has an eigenvector v # 0 in W. 
This vector has the properties stated in the theorem. 

Let g be a solvable Lie algebra over afield K and 7-r 
a representation of Q on afinite-dimensional vector space V # (0) over R, 

Corollary 2.3. 
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the algebraic closure of K. Then there exists a basis el, ..., en of V,  in 
terms of which all the endomorphisms n(X) ,  X E g, are expressed by upper 
triangular matrices. 

In fact, we can apply Theorem 2.2. Let el f 0 be a common eigen- 
vector of all a(X) ,  X E g, and consider the subspace El of V spanned 
by el. The representation n induces a representation nl of g on the 
factor space V/E,, so if dim V/El # 0 we can select e2 E V such that 
the vector (e, + El)  E VIE, is an eigenvector for all nl(X).  Continuing 
in this manner we find a basis el, ..., en of V such that for each X E g 

n ( X )  e, = 0 mod (el, e2 ... e,). 

This means that the matrix representing n ( X )  has zeros below the 
main diagonal. 

Definition. A Lie algebra g over K is said to be nilpotent if for each 
2 E g, ad, 2 is a nilpotent endomorphism of g. A Lie group is called 
nilpotent if its Lie algebra is nilpotent. 

Theorem 2.4. (Engel) Let V be a nonzero jinite-dimensional vector 
space over K ,  and let g be a subalgebra of gI(V) consisting of nilpotent 
elements. Then 

(i) g is niyotent. 
(ii) There exists a vector v # 0 in V such that Zv = 0 for all Z E g. 

(iii) There exists a basis el, ..., en of V in terms of which all the endo- 
morphisms X E g are expressed by matrices with zeros on and below the 
diagonal. 

Proof. (i) For Z E gI(V) consider the endomorphisms Lz and RZ 
on gI(V) given by L,X = Z X ,  RzX = X Z  (X E g1(V)). Then Lz and 
Rz commute and if ad denotes the adjoint representation of gI( V), we 
have ad Z = Lz - RZ. It follows that for X E g and any integer p 0 

(ad 2). ( X )  = 2 (- l>i ( f ) 2.-i XZ*. 
i-0 

Suppose Z E g. Then Z is nilpotent and by relation (2) ad Z is nilpotent 
on QI( V ) .  Since ad, Z is the restriction of ad Z to g, it follows that ad, 2 
is nilpotent. 

For the second part of the theorem let r = dimg. We shall use 
induction on r. If r = 1, (ii) is trivial. Assume now that (ii) holds for 
algebras of dimension < r.  Let 2J be a proper subalgebra of g of maximum 
dimension. If H E b, then by (i), ad, H i s  a nilpotent endomorphism of g 
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and maps t, into itself, hence ad, H induces a nilpotent endomorphism H* 
on the vector space g/b. The set {H* : H E 6) is a subalgebra of gI(g/t)) having 
dimension < Y and consisting of nilpotent elements. Using the induction 
hypothesis we conclude that there exists an element X E g, X 4 6, 
such that ad, H ( X )  E 6 for all H E b. The  subspace 6 + K X  of g is 
therefore a subalgebra of g which, due to the maximality ef 6, must 
coincide with g. Thus 9 is an ideal in g. 

Now let W denote the subspace of V given by 

W = { e  E V : He = 0 for all H E b}. 

Owing to the induction hypothesis, W # {O}. Moreover, if e E W we 
have 

H X e  = [ H ,  XI e + X H e  = 0 

so X . W C W. The restriction of X to W is nilpotent and t h e y  exists 
a vector z, # 0 in W such that X v  = 0. This vector z, has the property 
required in (ii). 

T o  prove (iii) let e, be any vector in V such that el # 0 and Ze, = 0 
for all Z E g. Let El be the subspace of V spanned by el.  Then each 
Z E g induces a nilpotent endomorphism Z* of the vector space VIE,. 
If VIE, # (0) we can select e2 E V ,  e2 4 El such that e2 + El E V/El  
is annihilated by all Z* (2 E 9). Continuing in this manner we find a 
basis e l ,  ..., e ,  of V such that for each Z E g 

ZeL = 0, Ze, E 0 mod (el. ..., e d ,  2 < i < n.  ( 3 )  

The matrix expressing 2 in terms of the basis el, ..., en has zeros on 
and below the diagonal. 

Corollary 2.5. In the notation of Theorem 2.4 we have 

x,x, ... x, = 0 

i f s  2 dim V and Xi ~g (1  \< i < s). 

In fact, this is an immediate consequence of (3). 

Corollary 2.6. A nilpotent Lie algebra g is solvable. 

In  fact, the algebra ad,(g) is a subalgebra of gI(g) and consists of 
nilpotent endomorphisms of g. The  product of s such endomorphisms 
is 0 if s 3 dim g (Cor. 2.5). In  particular, g is solvable. 

Definition. For a Lie algebra I, we define 

%OOI = I, %?P+lI = [I,VPI], p = 0, 1, .... 
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The series 
%PI 3 V'I 3 $ P I  3 ... 

is called the central decending series of I. 

Vrnl = {0} for m > dim I. 

and deduce %?"I = {0} if m > dim I .  The converse is trivial. 

Corollary 2.7. A Lie algebra I over K is nilpotent if and only i f  

In fact, if I is nilpotent we can use Cor. 2.5 on the Lie algebra g = ad (I) 

Corollary 2.8. 

In fact, if VmI = (0) then qrn-ll lies in the center of I. 

A nilpotent Lie algebra 1 # {0} has nonzero center. 

5 3. Cartan Subalgebras 

In this section g denotes an arbitrary fixed semisimple Lie algebra 
over the complex numbers C. The adjoint representation of g will be 
denoted ad. 

Definition. A Cartan subalgebra of g is a subalgebra I, of Q satisfying 

(i) b is a maximal abelian subalgebra of g. 
(ii) For each H E b, the endomorphism ad H of g is semisimple. 
In this section we shall prove that every semisimple Lie algebra g 

over C has a Cartan subalgebra. Later on we shall see that for any 
two Cartan subalgebras bl and b2 of g, there exists an automorphism 
u of g such that o.b1 = bz. 

Let H be any element in g and let 0 = A,, A,, ..., A, be the different 
eigenvalues of ad H. For each A E C we consider the subspace 

the following conditions: 

g(H, A) = ( X  E g : (ad H - xl)kX = 0 for some K}. 

Then, according to Prop. 1.1 we have g(H, A) = 0 unless A = hi for 
some i ;  also 

r 

g = 2 g(H,  Xi) (direct sum). 
i=O 

Definition. The element H E g is called regular if 

dim g(H,  0) = min (dim g(X, 0)). 
Xa 

We shall now prove the following theorem, which ensures the exis- 
tence of Cartan subalgebras. 
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Theorem 3.1. Let H, be a regular element in g .  Then g(H,, 0 )  is a 

This will be proved by means of the theorems of Lie and Engel. 
Cartan subalgebra of g .  

We put t, = g(H,, 0) .  

cular, t, is a subalgebra of 9. 
Lemma 3.2. If 2 E g ,  then [g(Z, A), g(2, p)] C g(2, h + p). In  parti- 

Let X, E g(2, A), X,, E g(2, p). Then 

(ad Z - (A + P )  1) [X,, 4,l = [(ad Z - XI) X A ,  X,I + [x,, (ad z - PI) XJ, 

and by induction 

(ad Z - ( A  + p)I)n [X,, X,,] = 2 ( ) [(ad Z - AI)ixi, (ad Z - pl)n-aT,]. 
i=O 

T h e  lemma follows immediately. 

Lemma 3.3. 

Let 0 = A,, A,, ..., A, be the different eigenvalues of ad H, and let 
g’ denote the subspace g(H,, A,) of g. Then [t,, g’] C g’ due to 
Lemma 3.2. For each H E t, let H‘ denote the restriction of ad H to a’. 
Let d ( H )  = det H‘. Then the function H + d ( H )  is a polynomial 
function on t, and since Hh has only nonzero eigenvalues we have 
d(H,) # 0. Now if a polynomial function vanishes on an open set it 
must vanish identically. We conclude that the subset S of t, consisting 
of all points H E t, for which d ( H )  # 0 is a dense subset of b. If H is 
any element in S,  the endomorphism H’ of g’ has all its eigenvalues 
# 0 ;  it follows that g(H, 0) C b. Since H, is regular we conclude that 
g(H, 0) = t,. This means that the restriction of ad H to b is nilpotent. 
This restriction is adb H,  so if 1 = dim t, we have 

(adb = 0 for each H E S. ( 1 )  

The algebra b is nilpotent. 

Since S is dense in t,, relation (1) follows by continuity for all H E t,; 
thus t, is nilpotent. 

The  definition of a regular element and the proof of Lemma 3.3 
holds for any complex Lie algebra g. In  the next lemma, however, we 
make use of the semisimplicity of g. 

Lemma 3.4. The algebra b is  abelian and in fact a maximal abelian 
subalgebra of g. 

A s  usual, let B denote the Killing form of g. If X E g(H,, A) and 
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H E 5,  then ad X ad H maps the subspace g(H,, p) into g(H,,, A + p) ;  
choosing a basis of g composed of bases of the spaces g(Ho, X i )  we see that 

T r  (ad X ad H )  = B(X,  H )  = 0 if H E b, X E g'. (2) 

Now 6, being nilpotent, is solvable (Cor. 2.6) so, by Cor. 2.3, there 
exists a basis of g with respect to which all the endomorphisms ad H 
( H  E 8) are expressed by upper triangular matrices. If A,  B,  C are upper 
triangular matrices, then ABC and BAC have the same diagonal ele- 
ments; hence T r  (ABC) = T r  (BAC). In  particular we have 

'I'r (ad [ H I ,  H.4 ad H )  = 0 if H I ,  H,, H E b. 

Combining this with (2) we see that [H,, H,] is orthogonal to g (with 
respect to B). Making now use of the semisimplicity of g we conclude 
that 5 is abelian. The  maximality is immediate from the definition of b, 

Passing now to the proof of Theorem 3.1, let A be one of the nonzero 
eigenvalues A,, ..., A, of ad H,. Each endomorphism ad H ( H  E 6) 
leaves g(H,, A) invariant, so if ad, H denotes the restriction of ad H 
to g(H,, A), the mapping ad, : H -+ ad, H is a representation of b on 
a(H,, A). Since the family adA(b) is commutative there exists a basis 
el, ..., e,  of s(H,, A) such that each adj.(H) is upper triangular and has the 
diagonal for its semisimple part. The  diagonal elements a l ( H ) ,  ..., a d H )  
are linear functions on b and arl(Ho) = ... = a,(H,) = A. Let f i  be any 
linear function on b such that fi(H,) = A. Let V,  be the subspace of 
a(H,, A) spanned by the basis vectors ei for which a j ( H )  = fi(H) for 
all H E b. Then V,  is the set of vectors X E g(H,, A) such that 

(ad H - ,9(H)Z)k X = 0 (3) 

for all H E 6 and some fixed k (independent of H).  On the other hand, 
since /3(Ho) = A, no vector X E g which does not lie in g(H,, A) could 
satisfy (3). I t  follows that 

V ,  = { X  E : (ad H - ,9(H)Z)" X = 0 for all H E b and some fixed k}. (4) 

Given any linear function fl on b we can define a subset V,  of g by (4). 
Then V ,  is a subspace of g and V,  = f ~ .  Moreover, the relation 

[Vm Vpl c Va+P ( 5 )  

is proved just as Lemma 3.2. 
It has been shown above that g is a direct sum of certain of the spaces 
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Then, if H ,  H‘ E b we have 

165 

B(H, H ’ )  = Tr (ad H ad H ’ )  = 2 Pi(H)  &(H’) dim Vp,. (6)  
i 

The endomorphism ad H can be decomposed 

a d H = S + N ,  

where S is semisimple, N is nilpotent, and S N  = N S .  Since S is a 
polynomial in a d H ,  S leaves each V ,  invariant and (4) shows that 
SX = B(H) X for all X E V,. From (5) it now follows quickly that S is a 
derivation of g. From Prop. 6.4, Chapter I1 we know that every derivation 
of g is inner; in other words, there exists an element 2 E g such that 
S = ad Z .  Now S ,  being a polynomial in ad H, commutes with all 
elements of ad b. Since b is maximal abelian in g, this implies 2 E 5. 
Now, a d Z ( X ) = P ( H ) X  for X E V,, so by the definition of V,  we 
conclude that B(H) = B ( 2 )  for every linear function B on I, for which 
V,  # {O}. But then (6) and (2) show that 2 - H is orthogonal to g 
(with respect to B).  Consequently, 2 = H so ad H is semisimple. 
This concludes the proof of Theorem 3.1. 

$4. Root Space Decomposition 

The structure theory of semisimple Lie algebras is based on the 

Theorem 4.1. Every semisimple Lie algebra over C contains a Cartan 

In $4 and $5 let g be an arbitrary semisimple Lie algebra over C and 

Let a be a linear function on the complex vector space 6. Let ga 

following theorem of which a proof was given in $3.  

subalgebra. 

let t, denote an arbitrary $xed Cartan subalgebra. 

denote the linear subspace of g given by 

ga = {X E g : [H, XI = m(H) X for all H E Q}, 

The linear function 01 is called a root (of g with respect to I)) if ga # (0). 
In  that case, ga is called a root subspace. Since t j  is a maximal abelian 
subalgebra of g we have go = I). From the Jacobi identity we obtain 
easily the relation 

[Vx, sfll c ga+B (1) 

for any pair a) j? of C-linear functions on t j .  
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Let d denote the set of all nonzero roots and as before let B denote 
the Killing form on g x g. 

Theorem 4.2. 
(i) g = t j  + XaEA g* (direct sum). 
(ii) dim ga = 1 for each a E d. 
(iii) Let a, f i  be two roots such that a + f i  # 0.  Then ga and gs are 

(iv) The restriction of B to lJ x lJ is nondegenerate. For each linear form a 
orthogonal under B.  

on lj there exists a unique element H ,  E lJ such that 

B(H, Ha) = a(H) for all H E J ~ .  

W e  put (A, P )  = B(Hh K) .  
(v) If a E A ,  then - a E d and 

[ S a ,  ~~1 = CH,, 4 ~ 0 )  # 0. 

Proof. (i) We prove first that the sum is direct. If this were not so 
we would have a relation 

where H* E b, Xa,  # 0 in ga* where the roots ai are different and not 0. 
Then we can select H E t j  such that the numbers a,(H) are all different 
and not zero. I n  fact, the subset N of t j  where all ayi are different and 
nonzero is the complement of the union of finitely many hyperplanes. 
In  particular N is not empty. Then H* and the vectors Xa,  lie in different 
eigenspaces of ad H and are therefore linearly independent. On the other 
hand, since the set ad,(tj) is semisimple, we can write g = X i  g2 (direct 
sum), where each gi is a one-dimensional subspace of g, invariant under 
ad, (b). This means that gi c ga for a suitable root a, and (i) follows. 
As a consequence of (i) we have 

If a(H,) = 0 for each a E A ,  then H ,  = 0. (4 

In  fact, (i) shows that [H,, x] = 0 for all X E g; hence H ,  = 0, the 
center of g being {O}. I n  order to prove (iii), select any X E ga, Y E gp. 
Then ad X ad Y maps g y  into gyfa'b; since a + f i  # 0, it is clear that 
g y  n gyfa+P = {O}. Therefore, if the endomorphism ad X ad Y is 
expressed by means of a basis, each of whose elements lies in a root 
subspace g y ,  it is obvious that T r  (ad X ad Y) = 0. We next prove (iv). 
If H ,  E t j  satisfies B(Ho, H) = 0 for all H E b, then by (iii), B(Ho, X) = 0 
for all X E g. Thus H ,  = 0. The  latter part of (iv) is a consequence of the 
first. T o  prove (v) let a E A .  If g-a were {0}, then by (iii) each X ,  E g" 
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would satisfy B(X,, X )  = 0 for all X E g which is impossible. Let 
H ,  X,, X - ,  be arbitrary elements in f ~ ,  ga, a", respectively. Then 

Using (iv) we obtain therefore 

Next consider any element E-, # 0 in g-,. Since B induces a non- 
degenerate bilinear form on g" x g-", there exists a vector 23, E g" such 
that 

B(Ea, E-,) = + 1. 

Let be any root and put g* = E=ncNgfl+na where N is the set of all 
integers n for which f i  + na is a root. Owing to (l), the subspace g* 
is invariant under ad E-,, ad E,, ad Ha. We compute the trace of ad H ,  
in two ways. Since [E,, E-,I = Ha it follows that 

Trn* ad Ha = - 'I'r * ad E-, ad Ea + Trg* ad E, ad E-, = 0. n 

On the other hand, ad Ha leaves each space g8+na invariant, so 

Tr,* ad Ha = 2 (,6 + nar) (Ha) dim gfl+na. 
neN 

Thus we have the relation 

,6(H,) 2 dim = - ar(Ha) 2 n dim gfl+na (4) 
neN noN 

for each a E A and each root ,6. 
Since dim gs > 0 we deduce from (2) and (4) that a(H,) # 0. This 

proves (v). T o  prove (ii), suppose dim ga were > 1. Then (E,  and 
E ,  being as above), there exists a vector 0, # 0 in ga such that 

B(D,, E-.J = 0. 

We put D-, = 0, D, = (ad E,)% D,, n = 0, 1, 2, .... Then 

( 5 )  n(n + @fa) Dn-*, n = 0, 1, 2 .... 2 [E-2, on1 = - 
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For n = 0 this is clear from (3). Assuming ( 5 )  true for n, we have 

[E-,, Dn+J = [E-,, [Em, o n ] ]  = - [Ea, [Dn, E-all - [Dn, [E-a, Eall 

where we have used the fact that D, E g(n+l)a. Since Do # 0, ( 5 )  shows 
that all D, # 0, n = 0,  1 ,  2 ... which is impossible. This proves (ii) so 
Theorem 4.2 is proved. 

Let a E A and let p be any root. The  or-series containing /3 is by 
definition the set of all roots of the form p + na where n is an integer. 

Theorem 4.3. 
(i) The a-series containing p has the form /3 + nor ( p  < n < (I) (the 

Let p be a root, and a E A .  

%-series is an uninterrupted string). Also 

(ii) Let X a  E ga, X-,  E g-,, X ,  E gB where p # 0.  Then 

(iii) The only roots proportional to a are - a,  0, or. 
(iv) Suppose 01 + p # 0.  Then [g", g8] = ga+@. 

Proof. Let E-,, Ex be any elements in g-a and g" respectively satisfying 

B(Ea, E-,) = 1. 

To prove (i), let r ,  s be two integers such that p + na is a root for 
Y < n < s but neither for n = Y - 1 nor n = s + 1.  Such a s e t p  + na, 
( Y  < n < s), we shall call a maximal string. The  subspace 

n=r 

is invariant under ad E-,, ad E,, ad H,. Since H ,  = [E,, E-,] we have 

Tr,* (ad H,) = 0. 
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On the other hand, 

and since a(Ha) # 0 we obtain 

The a-series containing ,!3 is of course a union of maximal strings /3 + na, 
ri < n < si. Since (6)  holds for each maximal string, the a-series can 
only consist of one such string. This proves (i). For (iii) let na ( p  < n < q) 
be the a-series containing 0. The subspace 

n=-1 

is then invariant under ad EPa, ad E,, and ad Ha. We find as before 

0 = Tr, ad H ,  = 2 nor(Ha), 
n=-1 

which implies q = 1 .  Using Theorem 4.2 (v), we see that p = - 1. 
Now suppose there were a complex number c which is not an integer 
such that ca is a root. Using (i) on the root p = ca we see that t = n + i 
where n is an integer. The a-series containing /3 will also contain 
- (n + +)a, and since this series consists of just one string it must 
contain - * a  and 8.1. But since (Y = 2 ( i a ) ,  this contradicts the 
first part of the proof. We next prove (iv). We have [g", g8] C gafS so 
(iv) is obvious if (Y + is not a root. Suppose a + /3 is a root and /3 + na, 
p < n < Q, is the a-series containing p. Then Q >, 1. If [sa, go] were 
{0}, then the subspace 

n=p 

would be invariant under ad E,, ad E-a, ad Ha. We find as before 

0 = Tr, ad Ha = 5 (/I + nor) (Ha)  

or - 2,!3(Ha) = a(Ha)p. Then (i) implies that q = 0 which is a contra- 
diction. Finally we prove (ii). First observe that /3 + pa # 0. Select 

n=p 
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a vector Ep # 0 in g5+pa, and put En = (ad Ea)n-PEp for n 2 p .  Then 
En = 0 for n > q ;  if p < n < q, then E, # 0 as a consequence of 
(iv) and Theorem 4.2 (v). We shall now prove 

(n 2 P). (7) (4  - n) (1 - P + n) o r ( f f a )  En 
2 [E-,x, [Em, En11 = 

Since X ,  is a scalar multiple of E,,, (7) would imply (ii). We prove (7) 
by induction and consider first the case n = p .  By the Jacobi identity 

[E-a, [Em BPI1 = - [Eav [Ew E-JI - [ED, [E-a, 'a11 

= 0 + [Ev, Ha1 = - (B + P.) (Ha) Ep, 

which by (i) equals 4 (q  - p )  ct(H,) Ep.  Now assume (7); we have 

[E-a, [Ea, En+lll = - [Ew [~?n+l, E-a11 - [&+I, [E-a, Eall. (8) 

The  first term on the right is [E,, [E-,, [Ea, En]] which by induction 
hypothesis equals 

T h e  last term on the right-hand side of (8) is - ( p  + (n  + 1) a) 
since EIL+l E g5+(n+1)a. Using (i) we find that these two terms add up to 
1 
PU(Ha) En+, { ( q  - n) (1 - P + n) + P + 4 - 2n - 2 )  

This proves (7), and Theorem 4.3 is proved. 

Theorem 4.4. Let = EmEd RH, . Then 

(i) 
(ii) 

Proof. 

B is real and strictly positive definite on $R x t,R. 
t, = f i R  + ibR (direct sum). 

We have for H ,  H' E t, 

B(H, H ' )  = Tr (ad H a d  H ' )  = 2 j3(H) /3(H'). 
P E A  

From Theorem 4.3 (i) we know that 

2B(Ha) = - 4 H a )  (PO., + Q p , m ) *  P,,a, 48,a integers, 

so 

(9) 
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Since a(H,) f 0 this shows that a(H,) is real (and positive) and P(H) 
is real for each  HE^,^. Using (2) and (9), part (i) follows. Moreover, 
(i) shows that bR n ibR = (0). Finally, the spaces t, and Zasd CH, 
must coincide; in fact, suppose the contrary were the case. Then there 
exists a linear function h on $ which is not identically 0 but vanishes 
on the subspace Eaod CH,. There exists a unique element HA E t, such 
that B(H, Ha) = h(H)  for all H E $. In particular, or(Ha) = 0 for all 
a E A ,  so by (2), Ha = 0 and h = 0. This contradiction proves (ii). 

5 51 

$5. Significance of the Root Pattern 

T o  a semisimple Lie algebra 9 and a Cartan subalgebra $ we have 
associated a system of vectors Ha, a E A .  We shall now see that this 
system determines g up to isomorphism. 

Let S be any subset of A .  The hull of S, denoted s, is by definition 
the set of all roots in d of the form f a, f (a  + 8) where a, /3 run 
through S.  For each pair a, - 01 E we select vectors Em E ga, E-, E g-a 
such that 

B(Ea,E-,)  = I for a, - a E S. (1) 

Let a, /3 be any elements in S such that a + /3 # 0 and such that either 
a + /3 E S or a + /3 $ A .  We define the number NaS0 by 

[Ea, “03 = Na,s Ea+p if a + B E S, 

Na.6 = 0 i f a + B $ d .  

Thus is defined under the conditions: 

(a) a,@ E 3; (b) a + B  # 0; (c )  a + B E  3. or a + B $ A .  

We have obviously N=,, = - N,,=. 

Lemma 5.1. Suppose a, p, y E s and a + p + y = 0. Then 

NZ.0 = No., = Ny., (all N are defined). 

Proof. We use the Jacobi identity on the vectors E,, E,, E,. In view 
of (3), 94, we obtain 

No.yHa + Ny.aHp + Na,,&y = 0. 

On the other hand, - H,, = Ha + H, and p is not proportional to a. 
The lemma follows. 
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Lemma 5.2. Suppose a, p E S, a + /3 E A .  Let p + na ( p  < n < q) 
denote the a-series containing /I. Then 

Proof. Since - a + (a  + 18) = /?, N-asa+B is defined; using Theorem 
4.3 (ii), we have 

From Lemma 5.1 we have 

N-zx.or+p = Na+p.-p = N-b.-a 

and Lemma 5.2 follows. 

Lemma 5.3. Suppose a, 18, y, S are four roots in S (not necessarily 
distinct), no two of which have sum 0. If 

a + p + r + s = o ,  
then 

Na, p N y .  6 + N ,  yNa,  6 + Ny, nN,d = 0 (all N are dejined). 

Suppose first that /3 + y is a root. Then ,I3 + y E Proof. and 
since a + (/3 + y )  = - 6,  Na,B+y is defined. In  this case, we have 

l E p ,  E y l I  = Np,yNa,i3+yE-6* 

Applying Lemma 5.1 to a, /3 + y, 6, we have Na,p+y = N6,a and therefore 

(2) 

This relation holds also if /3 + y is not a root because then both sides 
are 0. In  (2) we permute the letters a, /3, y cyclically and use Jacobi's 
identity. Since Eb8 # 0, Lemma 5.3 follows. 

A set M is said to be ordered (or totally ordered) by means of a relation 
< if to any two elements a,  b in the set exactly one of the following 
relations holds: a < b, b < a or a = b. Moreover, it is assumed that 
whenever a < b and b < c,  then a < c .  The relation a > b is to mean 
the same as b < a.  If the relation a < b (or a > b) is defined only 
for certain pairs in M ,  the set M is called partially ordered. 

Let V be a finite-dimensional vector space over R ;  V is said to be 
an ordered vector space if it is an ordered set and the ordering relation 
< satisfies the conditions: (1) X > 0, Y > 0 implies X + Y > 0. 

[En, [El?, Eyll = - No.yNz.6E-6' 
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(2) If X > 0 and a is a positive real number, then aX > 0. Note that 
(1) implies: X > 0 if and only if - X < 0. If X,, ..., X ,  is a basis of 
V then V can be turned into an ordered vector space as follows: Let 
X ,  Y E V. We say X > Y if X - Y = Zy=l aiXi and the first nonzero 
number in the sequence a,, a2, ..., a, is > 0. It is readily verified that 
V is an ordered vector space with this ordering, which is called the 
lexicographic ordering of V with respect to the basis XI, ..., X,. Let 
V A  denote the dual space of V. Let A, p E V". We say h > p if the 
first nonzero number in the sequence h(X,) - p ( X l ) ,  ..., X(X,) - p(X,) 
is positive. This ordering of V" is called the lexicographic ordering 
with respect to the basis X,, ..., X ,  of V(= (V")"). The  element h E V A  
is called positive if h > 0. 

Let V and W be two vector spaces over R and V A  and W" their 
duals. If 97 is a linear mapping of V into W then 6y  shall denote the 
dual mapping of W" into V A  which is determined by 

( F )  (4 = F(cp(v)) if v E V ,  F E W". 

The  following important theorem shows that a semisimple Lie 
algebra over C is determined (up to isomorphism) by means of a Cartan 
subalgebra and the corresponding pattern of roots. 

Let g and g' be two semisimple Lie algebras, b and Ij' 
Cartan subalgebras of g and g', respectively. Let A and A' denote the 
corresponding sets of nonzero roots and as usual let 

Theorem 5.4. 

Then A and A' can be considered as subsets of the dual space of IjR and 
~jk, respectively, since each /3 E A (/3' E A')  is real on bR (6;). 

Suppose y is a one-to-one R-linear mapping of bR onto bk such that 
ty maps A' onto A. Then cp can be extended to an isomorphism 8 of g onto g'. 

Proof. The  Killing forms B and B' induce positive definite metrics 
on qR and 9;. We shall first prove that 

B(H1, H,)  = W @ 1 9  VHZ) 

is an isometry, that is, 

for H,, H ,  E ljR. 

I t  suffices to prove that 

BW,, Hp) = B'W,,, Hp.1 

for all a, /3 E A ,  where 01 = 4p . a', /3 = #y  * 8'. Using Theorem 4.3 (i), 
we obtain 

-- B(HJ P(Kz,) 
a w e )  a'(&) 



1 74 STRUCTURE OF SEMISIMPLE LIE ALGEBRAS [Ch. I11 

for all a, j3 E A. We write this relation as 

B(Ha) = caB’(Ha,)- 

Interchanging a and p, we find ca = c, independent of a. Since 

B(Ha, ~ 0 )  = 2 y(Ha) y ( ~ p )  = ~2 2 Y‘(Ha*)  ~ ‘ ( H P )  = c2B(Ha,, H P )  
YEA Y’EA’ 

we see that c2 = c so c = 1 as stated. 
Now given any basis in bR we can introduce a lexicographic ordering 

in the dual space of OR. Thus A becomes an ordered set and we shall 
prove Theorem 5.4 by induction with respect to this ordering. We 
select for each a E A an element E, E Q, such that (1) holds for all 
01 E A. The numbers Nu,@ are then defined for all a, /? E A for which 
a + / ? # O .  

We shall show that to each a‘ E A’ there exists an element E,, E 

such that 

B’(Ea., Ka,) = 1, a € A ,  (3) 
and such that 

[Ea,, Es.1 = Na.pEa*+p’ if a, p, a + /? E A .  (4) 

Let p E A be a positive root and let A, denote the set of roots a E A 
satisfying - p < a < p. If there exists a root greater than p, then p* 
will denote the smallest such root. 

The induction hypothesis is that for each a E A,, the vector E,, 
can be chosen in g’(,’) in such a way that (3) is satisfied for all a E A, 
and (4) is satisfied if a,& a + f l  ELI,. We shall then define E,. and 
E-,,, in such a way that (3) is satisfied for all 01 E A,,  and (4) is satisfied 
if 01, /?, a + /? E A,*. If p* does not exist, A,, is to mean A itself. 

If p has no decomposition p = a + /3 with a, /3 E A, then we just 
have to take for E,, an arbitrary nonzero element in ~ ‘ ( f “ )  and then 
fix E-,, by the relation 

B’(E,., E-,,) = 1. ( 5 )  

If p has a decomposition p = a + 8, a, /? E A, we select the particular 
decomposition for which a is as small as possible and define Efi. by 
means of the equation 

[ E , ,  E r ]  = N,,pEp*. (6) 

Then E,, # 0 and we can again define E-,, by (5).  In order to prove 
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that (4) holds for all a, B, a + /? E A,*, we define the numbers My,d by 
means of the relation 

[Ey' ,  = My,dEy' td'  if y, 6, y + S E A,*. (7) 

We also put My,6 = 0 if y, 6 satisfy the conditions y ,  6 E A p l ,  y + 6 # 0, 
y + 6 q! A .  We shall prove that Ny,d = M,,,d whenever y, 6, y + 6 E A,*. 
We have to consider various possibilities: 

1. y, 6, y + 6 E A,. Then NYsd = MY,d by the induction hypothesis. 

2. y + 6 = p. Then y, 6 E A,. We can assume that the decomposition 
p = y + 6 differs from the decomposition p = a + B. Then the roots 
a, #I, - y ,  - 6 satisfy the relation a + B + (- y )  + (- 6) = 0 and no 
two of these roots have sum 0. We can apply Lemmas 5.2 and 5.3 to 
g for S = A. We obtain 

Na,pN-y,-d = - Np.-yNa.-d - N-yoaNp.-d, (8) 

if 6 + ny (k < n < I )  is the y-series containing 6. We can also apply 
Lemmas 5.2 and 5.3 to g' by taking for S the set of roots a', p, - y', - 6'. 
To see that the lemmas can be applied, we note that $(S) C A,, so 
E,. is defined for each p' E S; also M p S y  is defined under the required 
conditions (a) p', u' E S, (b)  p' + u' # 0, (c)  p' + u' E S or p' + u' 4 A'. 

because - 6 + n(- y), (k < n < I), is the (- y)-series 
- 6. From 1 we know that the right-hand sides of (9) and 

(9) 

(9') 

containing 
(8) are the 

same. From (6) and (7) we have Ma,@ = # 0. It follows that 
N - , , - d  = M-,,.-d. By the first part of the proof, y(Hy)  = y'(Hy,) so 
by (8') and (9'), Ny,d = MY,d as we wished to prove. 

3. y + 6 = - p. Then (- y )  + (- 6) = p, (- y) ,  (- 6) E A,. By 
2, we have Ny,d = My,+ 

4. One of the roots y, 6 equals f p. Suppose, for example, y = - p. 
Then 6 # ;t p and p = 6 + (- y - 6) where 6, - y - 6 E A,. Using 
2 we have Nd,-y-a = M d , - y - d .  We apply Lemma 5.1 to g for S = A, 
and get 
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Applying Lemma 5.1 to gf  for S = {a’, - yf  - 6‘, y’}  we obtain (since 
‘Cp(S) = A,*> 

Md,-y-d = M - y - 8 , y  = M y . d  

and Ny,8  = My,d follows. This proves relations (3) and (4). 
Consider now the linear mapping @ : g ---t g’ determined by 

P ( f f a )  = d f f a )  = Ha’, 

= Ea,, ~ E A .  

Relations (3) and (4) then show that p is an isomorphism of g onto 9’. 

Remark 1. The extension p is not in general unique; in fact, if 
H E 5, then ead ’is an automorphism of g whose restriction to b is the 
identity mapping. 

In the proof above the ordering of A was introduced in 
order to carry out an induction process. However, the ordering of A 
plays an important role in other contexts which will come up later. 
Therefore, it should be borne in mind that “ordering of A” shall always 
mean the ordering of the set A induced by some vector space ordering 
of the dual space of bR. 

Theorem 5.5. 
that for all a, p E A 

Remark 2. 

For each a E A a vector X ,  E ga can be chosen such 

[Xa, X-a] = Ha, 

[Xa, Xpl = Na.pXa+p i f . + P E A ,  

[ H ,  Xa] = a ( H )  Xa for  H E b;  

[Xa, Xpl = 0 i f .  +,!? # Oanda +,!?$ A ;  

where the constants Na,p satisfy 

Na,p = - 

For any such choice 

where jl + na (p’ < n < q) is the a-series containing p. 
Proof. Let q~ denote the mapping H + - H of bR onto itself. Then 
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($)(A) = - A for each real linear form h on t jR .  In  particular, t~ maps 
the set A onto itself so from Theorem 5.4 we know that v can be extended 
to an automorphism @ of g. For each a E d we select E, E g" such that 

B(E,,E- , )  = 1 for all a E A .  

Since @(Ex)  E g-= and dim g-" = 1 there exists a complex number c-, 
such that @(I?,) = c-,E-,. Since B is invariant under #j we have c,c-, = 1. 
For each a E d one can select a number a, such that 

a2 = - c,, 

a,a-, = + 1 
for a E A .  

We put now 
X a  = aaE,, ~ E A .  

BY (3)) 949 

[Xu, X-,I = B(Xa, X - J  Ha = aaa-aB(Em E-a) Ha = Ha. 

@(Xu) = a,@(E,) = aac-aE-a = - a-,E-, = - x-,. 
Also, 

If a,  /3,a + /3 E d we define by [Xu, X,] = N,,pXa+p. Then 

- 'y~r ,px-a-p = @(Na,BXa+p) = @[Xu, Xp] = [- X-a, - x - ~ l  = N-a.-&-z-p, 

so Na,@ = - N-a,-p. The last relation of the theorem now follows 
from Lemma 5.2. 

Definition. A root ci > 0 is called simple if it cannot be written as 
a sum = /3 f y where /3 and y are positive roots. 

Lemma 5.6. Let a, /3 be simple roots, a # 8. Then - a is not a 
root and B(H,, H p )  < 0. 

Proof. If /3 - a were a root, say y ,  then y E A .  Writing /3 = ci + y 
if y > 0 and ci = /3 - y if y < 0 we get a contradiction to the simplicity 
of a and 8. I n  the notation of Theorem 4.3, we have p = 0, q 2 0. 
Since 

- 2B(H,, Ha) = B(H,, Ha) (P + Q) 
the lemma follows. 
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Theorem 5.7. Let aI, ..., a, be the set of all simple roots. Then 
nisi where the ni are Y = dim bH and each /3 E A has the form /3 = 

integers which are either all positive or all negative. 

Proof. The simple roots are linearly independent. Otherwise there 
would be a relation (each ai # each aj) 

with nonnegative real numbers ai,  bj ,  not all zero. If y = Z a p i  and 
H ,  E by( is determined by B(H, H,) = y ( H )  (H E I)), then 

BW,, H,) = z: a,b,B(Hzp K)- 
i . J  

The left-hand side is 2 0 but the right-hand side is < 0 due to the 
lemma. Hence y = 0 which is a contradiction. 

Now let /3 be a root > 0. If ,3 is not simple it can be written /3 = y + 6 
where y, 6 are roots > 0. It follows by induction that /3 = niai 
where each ni is an integer 0. It is now obvious that Y = dim G R  
and the theorem is proved. 

The  simple roots and their analogs for graded Lie algebras will be 
very useful in Chapter X. 

$6. Real Forms 

Let V be a vector space over R of finite dimension. A complex structure 
on V is an R-linear endomorphism J of V such that J2  = - I, where I 
is the identity mapping of V. A vector space V over R with a complex 
structure J can be turned into a vector space P over C by putting 

(a + ib) x = a x  + b]X, 

X E  V ,  a, bER.  

In fact, J2  = - I implies a@X) = (a/?) X for a, /? E C and X E V. 
We have clearly dim, P = $dim, V and consequently V must be 
even-dimensional. We call P the complex vector space associated to V. 
Note that V and Y agree set theoretically. 

On the other hand, if E is a vector space over C we can consider E 
as a vector space ER over R. The multiplication by i on E then becomes 
a complex structure J on ER and it is clear that E = (ER)". 
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A Lie algebra u over R is said to have a complex structure J if J is 

(1) 

Condition (1) means (ad X )  o J = J o  ad X for all X E u, or equi- 
valently, ad ( J X )  = J o ad X for all X E u. It follows from (1) that 

[ J X ,  PI = - [ X ,  YI. 

a complex structure on the vector space u and in addition 

[ X ,  JYI = J [ X ,  YI, for X, Y E u. 

The  complex vector space G becomes a Lie algebra over C with the 
bracket operation inherited from u. In  fact 

[(a + ib) x, ( c  + id )  Y ]  = [ax + b]X,  CY + d]Y] 

= ac[X, Y ]  + bcJ[X, Y ]  + adJ[X, Y ]  - bd[X, Y ]  
so 

[ (a + ib) x, (c  + id) Y ]  = (a + ib) (c  + id) [ X ,  Y] .  

On the other hand, suppose e is a Lie algebra over C. The  vector space 
e R  has a complex structure J given by multiplication by i on e. With the 
bracket operation inherited from e, e R  becomes a Lie algebra over R 
with the complex structure J .  

Now suppose W i s  an arbitrary finite-dimensional vector space over R. 
The  product W x W is again a vector space over R and the endo- 
morphism J : (X, Y )  +- (- Y ,  X )  is a complex structure on W x W. 
T h e  complex vector space ( W  x W')- is called the complexijication of 
W and will be denoted Wc. We have of course dim,  Wc = dim, W. 
The  elements of Wc are the pairs ( X ,  Y) where X ,  Y E W and since 
( X ,  Y) = ( X ,  0) + i(Y, 0) we write X + iY instead of (X, Y). Then 
since 

(a + b l )  ( X ,  Y )  = a(X,  Y )  + b(-  Y ,  X )  = (ax - bY, aY + b X )  

(a + in) ( X  + iY )  = ax - bY + i (aY  + bX). 
we have 

On the other hand, each finite-dimensional vector space E over C 
is isomorphic to Wc for a suitable vector space W over R ;  in fact, 
if (Zi) is any basis of E, one can take W a s  the set of all vectors of the 
form &a&, ai E R. 

Let 1, be a Lie algebra over R; owing to  the conventions above, the 
complex vector space I = (I,)c consists of all symbols X + iY, where 
X ,  Y E I,. We define the bracket operation in 1 by 

[X + iY, + il'] = [ X ,  Z] - [Y ,  l'] + i([Y, 21 + [ X ,  TI), 
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and this bracket operation is bilinear over C. It is clear that I = (1,)' 
is a Lie algebra over C; it is called the complexifiation of the Lie algebra I,. 
The Lie algebra l R  is a Lie algebra over R with a complex structure J 
derived from multiplication by i on I. 

Let KO, K ,  and K R  denote the Killing fm of the Lie 
algebras I,, I, and IR. Then 

KO(-% Y )  = K ( X ,  Y )  

Lemma 6.1. 

for x, Y E I,, 

K R ( X ,  Y) = 2 Re (K(X ,  Y)) for X ,  Y E  IR  (Re = realpart). 

The first relation is obvious. For the second, suppose Xi (1 ,< i ,< n)  
is any basis of I ;  let B + iC  denote the matrix of ad X ad Y with respect 
to this basis, B and C being real. Then X I ,  ..., X,, JX,, ..., J X ,  is a 
basis of IR and since the linear transformation ad X ad Y of IR commutes 
with J, it has the matrix expression 

(: -3 
and the second relation above follows. 

IR  are all semisimple if and only if one of them is. 

algebra go of the real Lie algebra g R  such that 

As a consequence of Lemma 6.1 we note that the algebras I,, I, and 

Definition. Let g be a Lie algebra over C. A real form of g is a sub- 

g R  = 90 + 190 (direct sum of vector spaces). 

In this case, each 2 E g can be uniquely written 

x, y E 9,. 2 = x + iY, 
Thus g is isomorphic to the complexification of go. The mapping u of 
g onto itself given by (T : X + iY + X - iY ( X ,  Y E go) is called the 
conjugation of g with respect to go. The mapping CT has the properties 

.(.(X)> = x, U(X + Y )  = .(XI + (T(Y), 

u[X, Y] = [UX, UY], u(&) = &o(X), 

for X, Y E g, cz E C. Thus u is not an automorphism of g, but it is an 
automorphism of the real algebra g R .  On the other hand, let u be a 
mapping of g onto itself with the properties above. Then the set 90 of 
fixed points of u is a real form of 8 and (T is the conjugation of 9 with 
respect to go. In fact, Jg, is the eigenspace of (T for the eigenvalue - 1 
and consequently g R  = go + Jg,. If B is the Killing form on g x g, it 
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is easy to see from Lemma 6.1 that B(uX, uY) is the complex conjugate 
of B ( X ,  Y). Another useful remark in this connection is the following: 
Let g1 and g2 be two real forms of g and u1 and uz the mrresponding 
conjugations. Then u1 leaves g2 invariant if and only if u1 and uz com- 
mute; in this case we have the direct decompositions 

91 = 91 n 9, + 91 n (isn), 
92 = 91 n 92 + 92 n (kl). 

Suppose g is a semisimple Lie algebra over C, go a real 
form of g, and u 5he conjugation of g with respect to go. ;Let ad denote the 
adjoint representation of g R  and Int (gR) the adjoint group of gR. If Go 
denotes the analytic subgroup of Int (gR) whose Lie algebra is ad (go), then 
Go is a closed subgroup of Int (gR) and analytically isomorphic to Int (go). 

Every automorphism s of g R  gives rise to an automorphism 
8 of Int (gR) satisfying 8(eadX) = ead(s.X) ( X  E gR). In  particular there 
exists an automorphism 6 of Int (98) such that (d6)e (ad X) = ad (u * X) for 
X E gR. Since ad is an isomorphism, this proves that ad(g,) is the set 
of fixed points of ( d e ) , ;  thus Go is the identity component of the set 
of fixed points of 5,  Now, let ad, denote the adjoint representation of go 
and for each endomorphism A of g R  leaving go invariant, let A, denote 
its restriction to Q ~ .  Then if X E go, we have (ad X), = ad, X and the 
mapping A -+ A, maps Go onto Int (9,). This mapping is an isomorphism 
of Go onto Int  (go). I n  fact, suppose A E Go such that A, is the identity. 
Since A commutes with the complex structure J, it follows that A is 
the identity. Finally since the isomorphism is regular at the identity 
it is an analytic isomorphism. 

The following theorem is of fundamental importance in the theory 
of semisimple Lie algebras and symmetric spaces. 

Theorem 6.3. Every semisimple Lie algebra g over C has a real form 
et&h is compact. 

As always, let B denote the Killing form on g x g. k t  0 be 
a Cartan subalgebra of g, and d the corresponding set of nonzero roots. 
For each OL E d we select X ,  E ga with the properties of Theorem 5.5. 
T h e  first relation [X,, X-,] = Ha implies B(X,, X-,J = 1 by (3), 94, 
and consequently 

Lemma 6.2. 

Proof. 

Proof. 

B(X, - Xya ,  x, - X - J  = - 2, 
B(i(X, + X,), i (X,  + X-,)) = - 2, 

B(X, - x-,, Z(X, + X,)) = 0, 

B(iH,, iH,) = - or(H,) < 0, 
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the last relation following from Theorem 4.4. Since B(Xa, X,) = 0 if 
OL + # 0, it follows that B is strictly negative definite on the R-linear 
subspace 

(2) 

Moreover, g = gk + ig, (direct vector space sum). Using now (for the 
first time) the relation N,,B = -N-a,-.B (which in view of Lemma 5.2 
implies that each Na,B is real), we see that X, Y E gk implies [X, Y] E gk. 

Thus gk is a real form of g. The Killing form of gk is strictly negative 
definite, being the restriction of B to g, x gk. Thus g, is compact and 
the theorem is proved. 

gr = 2 R(iH,) -+ 2 R(X, - X-a) + W X ,  + x-J). 
a€ A a€ A aeA 

$7. Cartan Decompositions 

Theorem 7.1. Let go be a semisimple Lie algebra over R, g its com- 
plexijication, and u any compact real form of g. Let cr and r denote the 
conjugations of g with respect to go and u, respectively. Then there exists 
an automorphism cp of g such that the compact real form q . u is invariant 
under u. 

Proof. The Hermitian form B, on g x g given by 

BT(X, Y )  = - R(X, TY), x, y E Q, 

is strictly positive definite since u is compact. The linear transformation 
N = or is an automorphism of the complex algebra g and hence leaves 
the Killing form invariant. Using u2 = -r2 = I, we obtain 

or 
B(NX,  TY) =:- B(X,  N-'TY) = B(X,  T N Y )  

B,(NX, Y )  = B,(X, N Y ) .  

This shows that N is self-adjoint with respect to B,. Let X I ,  ..., X ,  be 
a basis of g with respect to which N is represented by a diagonal matrix. 
Then the endomorphism P = N 2  is represented by a diagonal matrix 
with positive diagonal elements A,, ..., A,. For each t E R,  let Pf denote 
the linear transformation of g represented by the diagonal matrix with 
diagonal elements (AJr > 0. Then each P' commutes with N. Let 
cku denote the constants determined by 

[ X i ,  Xj] = 2 C k J k  
k = l  
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for 1 < i, j < n. Since P is an automorphism, we have 

A,A3Ck, ,  = AACktl (1 < i , j ,  k < n). 
This equation implies 

Ck*3 = ( A k Y  Ck*l  ( t  E R) ,  

183 

which shows that each P' is an automorphism of g. 
Consider now the mapping T~ = Pt7P-l of g into itself. The  subspace 

Pf tl is a compact real form of g and T~ is the conjugation of g with respect 
to this form. Moreover we have ~ N 7 - l  = N-I so ~P7-l  = P-l. By a 
simple matrix computation the relation TP = P - ~ T  implies i-P1 = P-% 
for all t E R. Consequently, 

0 7 ~  = aPt7P-t = o ~ P - ' ~  = Np-", 

710 z ( c ~ ~ ) - l  = p2 tN-1  = N-lpZt .  

If t = $, then U T ~  = T ~ U .  Thus the automorphism v = P1j4 has the 
desired properties. 

The  proof has shown that the automorphism 9) can be 
chosen as P1!4 where PI ( t  E R )  is a one-parameter group of semisimple, 
positive definite (for B,) automorphisms of g satisfying P1 = ( u T ) ~ .  

Remark. 

Definition. Let go be a semisimple Lie algebra over R ,  8 its com- 
plexification, u the conjugation of g with respect to go. A direct decom- 
position go = f, + po of go into a subalgebra f, and a vector subspace 
p o  is called a Cartan decomposition if there exists a compact real form 
gk of g such that 

' g k  c g k ,  f, = 9, n gkr Pa go n (i~n-). (1) 

It is an immediate consequence of Theorems 6.3 and 7.1 that each semi- 
simple Lie algebra go over R has a Cartan decomposition. The  following 
theorem shows that any two Cartan decompositions are conjugate under 
an inner automorphism. 

Theorem 7.2. Let go be a semisimple Lie algebra over R.  Suppose 

go = fi + pi, 90 = €2 + Pz 
are two Cartan decompositions of go. Then there exists an element a,h E Int (go) 
such that * . f, = f,, * * P1 = Pz. 
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Proof. Let g be the complexification of go, u the conjugation of g 
with respect to go. Then there exist compact real forms u1 and u2 of 9 
such that 

u * uj c llj, rj = go n uj, pj = 90 (iui) ( j  = I ,  2). 

Let T,  and T~ denote the conjugations of g with respect to u1 and u2, 
respectively. Then from Theorem 7.1 and the subsequent remark 
there exists a one-parameter group P' of positive definite semisimple 
automorphisms of g such that PI = ( 7 , ~ ~ ) ~  and . u2 is a compact 
real form of g invariant under 7,. It follows that P1/4 . u2 is the direct 
sum of its intersections with u1 and iu,. Now B, the Killing form of g, 
is strictly positive definite on the subspace iul, and strictly negative 
definite on the compact form P1/4 u2. Consequently, the intersection 
P1l4u2 n iu, reduces to {0}, so 
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u2. u1 = p1/4 . 

Since uui C uj, we have U T ~  = T ~ U  ( J  = 1,2) and consequently u com- 
mutes with PI. Now Pi is the unique positive definite tth power of P l ;  
hence u commutes with each Pt so P' leaves go invariant. The restriction 
of the linear transformation P' to go gives rise to a one-parameter sub- 
group {exp tx> of Aut (go). As a result of €or. 6.5, Chapter 11, we have 
{exp t X }  C Int (90). The theorem follows if we take $ = exp X .  

The proof has the following 

Corollary 7.3. I f  u1 and u2 are any compact real forms of a semisimple 
Lie algebra g over C then there exists a one-parameter subgroup yY ( t  E R) 
of automorphisms of g such that $'ul = u2. 

Let go be a semisimple Lie algebra over R which is  
the direct sum go = fo + p o  where f, is a subalgebra and p o  a vector sub- 
space. The following conditions are equivalent. 

Proposition 7.4. 

(i) go = fo + po is a Cartan decomposition of go. 

(3) T h e m a P P i n g s o : T + X + T - X ( T ~ € o ,  X E P J  i s a n a u t o -  
morphism of 90 and the symmetric bilinear form 

B,(X, Y )  = -B(X, SOY) 

is strictly positive &finite (that is, B < 0 on t, B > 0 on po) .  

suba&ebra of 90. 
If these conditions are satisjkd, +, is a maximal compactly imbedded 
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Definition. An involutive automorphism 8 of a semisimple Lie algebra 
go is called a Cartan involution if the bilinear form B,(X, Y) = -B(X, 8Y) 
is strictly positive definite. 

(ii) - (i). Let g denote the complexification of go, and let 
g R  denote the Lie algebra g when considered as a Lie algebra over R.  
Since so is an automorphism, we have B(f,, p,) = 0, [f,, pol C p,, and 
[p,, pol C f,. It follows that the subspace gk = To + i p ,  of g R  is a sub- 
algebra and in fact a compact real form of g, satisfying the relations (1). 
On the other hand, relations (1) show that (i) 3 (ii). We know from 
Lemma 6.2 that the groups Int (go) and Int (gk) can be regarded as 
closed subgroups of Int (gR). Now Int (gk) is compact and the same is 
true of Int (go) n Int (&). This last group is a Lie subgroup of Int (go) 
and has Lie algebra go n gk = I,. Thus f, is compactly imbedded in go. 
If f, were not maximal let f, be a compactly imbedded subalgebra of go ,  
properly containing f,. Then there exists an element X # 0 in t, n p,. 
Let 7 denote the conjugation of g with respect to gk. Then 79, C go and 
the bilinear form B, on go x go defined by 

Proof. 

is symmetric and strictly positive definite. Since 

Thus a d X  has all its eigenvalues real, and not all zero. But then the 
powers en adX can not lie in a compact matrix group. This contradicts 
the fact that f, is a compactly imbedded subalgebra of go. 

Corollary 7.5. Let g be a semisimple Lie algebra over C and let II be 
any compact real form of g. Let g R  denote the Lie algebra g considered as a 
real Lie algebra and let J denote the complex structure of gR  which corres- 
ponds to the multiplication by i on g. Then 

g R  = u +  JU 

is a Cartan decomposition of gR. 

In  fact, let BR, B, and BC denote the Killing forms on gR, g, and 
(gR)C. Then by Lemma 3.1 BC = BR = 2 Re B on g R  x gR. Since B 
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is strictly negative definite on u x LL and strictly positive definite on 
Ju x Ju, the same holds for BC. Using Prop. 7.4 -the corollary follows. 

5 8. Examples. The Complex Classical Lie Algebras 

The complex classical Lie algebras are: 

a, = sI(n + 1, C )  

6, = m(2n + 1, c) 

cn = ~ ( n ,  C )  

(the complex (n + 1) x (n + I) matrices of 
trace 0). 
(the complex skew symmetric matrices of 
order 2n + I). 
(the matrices 

Zi complex n x n matrices 
2, and 2, symmetric). (2 -?2) 

b, = r j o ( h ,  c) (the complex skew symmetric matrices of 

These are Lie algebras of certain matrix groups described in Chapter X. 
The groups corresponding to b, and b, are counterparts to the groups 
corresponding to t,; while the former are invariance groups for a sym- 
metric nondegenerate bilinear form, the latter is the invariance group 
for a skew bilinear form (which can only be nondegenerate in even 
dimensions). 

Here we shall determine the Killing forms of these algebras, verify 
their semisimplicity, and determine their root pattern. Let ESj denote 
a square matrix with entry 1 where the ith row and thejth column meet, 
all other entries being 0. Then EiiiiEkl = 8j&, so 

order 2n). 

[Eij, Ekt]  = SjlCEit - 6ZiEkj* (1) 

The algebra a, = sI(n + 1, C). Putting 

we have the direct decomposition 

and t, consists of the diagonal matrices of trace 0. If H E $  and e,(H) 
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( I  < i < (n + 1)) are the diagonal elements, we have 

Examples. The Complex Classical Lie Algebras 

[ H ,  Ei j ]  = ( e i ( H )  - e j ( H ) )  Ei j .  

Hence the Killing form B satisfies 

187 

(4) 

B(H, H )  = Tr((ad H ) 2 )  = 2 ( e i ( H )  - e j (H))z  
i,j 

= 2(n + 1) Tr(H2) - 2 Tr(H)2 = 2(n + 1) Tr(H2). 

Each X E sI(n + 1, C )  with all eigenvalues different can be diagonalized, 
so there exists a nonsingular matrix g such that gXg-l E b. By the 
invariance of B and Tr ,  B(X,  X) = 2(n + 1) Tr(X2) and by continuity 
this holds for all X E 5I(n + 1, C ) .  By polarization 

B ( X ,  Y) = 2(n + 1) Tr(XY), X ,  YEa,. ( 5 )  

This implies that sI(n + 1 ,  C )  is semisimple; then (3) and (4) show that 
$ is a Cartan subalgebra and that the roots are 

ei - ei (1 < i, j < n + 1). (6) 

The algebra b, = 50(2n, C ) .  Here we put 

From (1) we deduce 
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if ei is the linear form on 9 given by 

Furthermore we have the direct decomposition 

For n = 2 these matrices are 

0 1 0 0  0 0 1  
- 1 0 0 0  

0 0 0 0  - 2  - 1  0 0 

0 0 0 0  0 0 1  

0 0 0 1  
0 0 - 1  0 - 2 1 0 0  

0 0 -1 0 0 -1 

( 0  0 0 o), G;, = ( 0  -1 --i 0 A) 0 0 ' 
H ,  = 

( - - i 1 0 0  :-;I), GT1=( --i -1 0 0 '1 0 

Gll = 
1 - 2  0 0 

The Killing form B satisfies 

B(H, H) = Tr((ad H ) 2 )  

= 2 ( e j ( H )  - e k ( H ) ) 2  + (e i (H) + e k ( H ) ) 2  
i#k  

n 

= (4n - 4) e,(H),  = (2% - 2) T r ( H 2 ) .  
i=l 

Each skew symmetric matrix is conjugate to some element in 9, so we 
deduce again B(X,  X) = (2n - 2) Tr(X2) (X E b,) and by polarization 

B(X, Y )  = (212 - 2) Tr(XY) ( X ,  Y E  bn)* (11) 

Again this implies that b, is semisimple (for n > I), that 9 is a Cartan 
subalgebra, and that the roots are given by 

ei - ej (1 < i , j  < n), i ( e j  + ek) (1 < j  < < .)* (12) 
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The algebra b, = so(2n + 1, C ) .  Again let t, be defined by (7) and 
ej by (9). Then the vectors 

* 
D. = F .  23-1.2nfl f iFzi.Zn+l (1 <.i < n) 

and we have the direct decomposition 

b, = t, i- zCG&--I  ZCG; + $CD:+ $CD;- (14) 
3+k 3fk 3=1 J=s 

Using the computation for b,, the Killing form B now satisfies 

n n 

B[H, H )  = (4n - 4) 2 e,(H)% + 2 c c ( w  = (2. - 1) Tr(Hz), 
e=1 e=l 

so as before 

B(X, Y )  = (h - 1) Tr(XY) (X, y E 6 3 .  (15) 

Thus (1 1) and (15) are unified in the formula 

B(X, Y )  = (n - 2) Tr(XY), x, YE SO[& c). (16) 

Again (15) implies that bn is semisimple (for n 2 I); then (8), (13), and 
(14) imply that I) is a Cartan subalgebra and that the roots are 

e, -e j  ( 1  < i , j < n ) ,  
(17) 

f e ,  (1 < i < n), 
&(ei + ej) (1 < i < j < n). 

The algebra c, = sp(n, C). Here we let 
n 

Hi = EL, - En+i,n+i (1 < i < n), t, = C CH,, (18) 
i=l 

and let ei be the linear form on 6 given by 

e,(H,) = &. (19) 

Then we have the direct decomposition 
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and 

[H,  En+i,j + En+j,il = - (e i (H) + e d W ) ( E n + i , j  + En+j,i) 

[H, Ei,n+j + Ej.n+il = (ei(H) + ei(W)(Ei,n+i + Ei.n+i) 
[H,  Eij - En+j,n+i] = (e i (H)  - ej(H))(Eij - En+j,n+i) 

(i < j ) i  

(i < j )  
(i # j ) .  

These relations show that c, has center (0). Consider now the Lie 
algebra ep(n) of matrices 

u v  
(-- P 0) 

U skew Hermitian n x n matrix, 
v symmetric n x n matrix. 

While 5p(n,  C) is the Lie algebra of the group of matrices leaving 
invariant the exterior form 

~1 A Zn+l+ ~2 A Zn+2 + *.. + zn A Zzn, 

sp(n) is the Lie algebra of the group of unitary matrices leaving (20) 
invariant (cf. Chapter X). Moreover 5p(n) is a real form of 5p(n, C). Thus 
Prop. 6.6 (ii), Chapter 11, implies that 5p(n, C) is semisimple. Then the 
relations above show that 8 is a Cartan subalgebra and that the nonzero 
roots are (f signs read independently) 

(20) 

*2ei (1 < i < n), fe,  f ej (1 < i < j < n). (21) 

The Killing form B satisfies 

B(H, H) = Tr(ad Had H) = 2 2 ( e , (H)  + e j (H) )2  + 2 (e , (H) - ej(H))2 
i<j i A  

= (472 + 4) ei(H)2 = (2n + 2) Tr(HH). 
i 

Anticipating Cor. 6.6 in Chapter V, we have B(X,X)  = (2n + 2) Tr(XX) 
€or X E c, regular, hence by continuity for all X E c,, whence by 
polarization 

B(X, Y) = (2n + 2) Tr(XY) ( X ,  Y E  4. (22) 

Because of the complexity of the root space decompositions (10) and (14) 
for b, and b,, one frequently uses a different description of these algebras 
(cf. Exercises B.5 and B.6) which at the same time brings out the analogy 
between c, and b,. 
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Finally we refer to Chapter X for many examples of Cartan decom- 
positions and the associated Cartan involutions. 

EXERCISES AND FURTHER RESULTS 

A. Solvable and Nilpotent Lie Algebras 

1. A solvable Lie algebra has no semisimple subalgebra # {O}. 
2. Let t(n) denote the subalgebra of gI(n, R )  formed by all upper 

triangular n x n matrices and let n(n) denote the subalgebra of matrices 
in t(n) having all diagonal elements 0. Prove that: 

(i) t(n) is solvable, n(n) is nilpotent and coincides with the derived 
algebra of t(n).  

(ii) The Lie algebras t(n) and n(n) both have centers of dimension 1. 
(iii) Let B denote the Killing form of t(n). Then B(t(n), n(n)) = 0. 
3*. Let g be a Lie algebra. Then g is solvable o [g, g] is nilpotent o 

B(g, [g, g]) = 0 (l?. Cartan [l], p. 47; except for the second e this is a 
simple consequence of the text). 

4. Let G denote the group of all mappings Tush : x -+ ax + b (x E R), 
where a and b are real numbers, a > 0. Let G have the analytic structure 
determined by the condition that the mapping (a, b) + Tu,b is an analytic 
diffeomorphism. Show that G is a solvable Lie group and that its Lie 
algebra is the only noncommutative Lie algebra over R of dimension 2 
(up to isomorphism). 

5. Let g be a solvable Lie algebra over C and let a be a minimal 
proper ideal in g. Then a has dimension 1. Formulate and prove an 
analogous result for solvable Lie algebras over R. 

B. Semisimple Lie Algebras 

1. (i) Let g be a semisimple Lie algebra over C, @ a Cartan subalgebra. 
Let A denote the set of nonzero roots of g with respect to @. Let r be 
a subset of d satisfying the conditions: If y ET, then - Y E  r; if 
y ,  6 E I' and y + 6 E A ,  then y + S E r. Let gr be the smallest sub- 
algebra of g containing all the root subspaces gy,  y ~ r .  Then gr is 
semisimple and $ n gr is a Cartan subalgebra of gr. 

(ii) Deduce from (i) that if H E $ ,  its centralizer 3 H  in g is the direct 
sum 3H = c + go where the ideals c and go are abelian and semisimple, 
respectively. 

2. Let g be a Lie algebra of dimension n. For X E ~  we write the 
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characteristic polynomial of ad X ,  in the form 

det(X1- ad X) = An + a,-,(X) X n - l  + u,-,(X) An-' + ... + %(X) .  

Prove that: 

(i) U , - ~ ( X )  = -Tr(ad X). 
(ii) LZ,-~(X) = i[(Tr(ad X))2 - Tr((ad X)2)] .  
(iii) u,(X) = 0. 
(iv) If g is semisimple, then u,-~ = 0 so U , - ~ ( X )  = -4 B(X,  X). 
(v) Let g be semisimple over C and write 

det(XI - ad X) = A" + ... + q ( X )  Xz (a,  + 0). 
Then X is regular if and only if ul (X)  # 0. Also if b C g is any Cartan 
subalgebra, 

az(W = IT 4ff) (ff E b) 
a€ A 

(vi) Let g = 4 2 ,  C). Then X E g is regular if and only if det X # 0. 
(vii) Let g = d(n,  C) .  Then X E g is regular if and only if the eigen- 

values of X are all different. 
3. A representation p of a Lie algebra g (resp. a group G) on a finite- 

dimensional vector space V is called semisimple (or completely reducible) 
if each subspace of V invariant under p ( g )  (resp. p(G)) has a comple- 
mentary invariant subspace. 

(i) Any finite-dimensional representation of a compact topological 
group on a real or complex vector space V is semisimple. 

(ii) (Weyl's unitary trick) Using a compact real form prove that any 
finite-dimensional representation r of a real semisimple Lie algebra g on 
a real or complex vector space V is semisimple. 

4. Let B be a Cartan involution of a semisimple Lie algebra g over R 
and u an arbitrary involutive automorphism of g. Then there exists an 
automorphism g~ of g such that the Cartan involution g~0rp-l commutes 
with u. (Hint: Repeat the proof of Theorem 7.1.) 

5. Let b, denote the Lie algebra of the subgroup of GL(2n, C) leaving 
invariant the quadratic form 
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Then b, is isomorphic to 50(2n, C ) .  Let Eij, Fij be as in $8. Prove that: 
(i) b, consists of the matrices 

Zi complex n x n matrices, 
Z,, 2, skew symmetric. (2 -?Z) 

(ii) The diagonal matrices in b, form a Cartan subalgebra a, and 
if e, is the linear form on a given by 

then for H E  a 

so the roots are given by 

6. Let b, denote the Lie algebra of the subgroup of GL(2n + 1, C )  
which leaves invariant the quadratic form 

Then b, is isomorphic to eo(2n + 1, C ) .  Let Eij ,  Fii be as in 98. Prove 
that: 

(i) b, consists of the matrices 

u, ZI 1 x n complex matrices, 
Zi complex n x n matrices, 
Z,, 2, skew symmetric. - tU 

(ii) The  diagonal matrices in (i) form a Cartan subalgebra a, the 
bracket relations in Exercise B.5 (ii) extend to 6, and in addition we 
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have the relations 

[H, El,i+l - ~ n + , + i , 1 1  = - ei(H)(El.i+l - -%+l+C.l) 

[H, El.W+l+i - El+i,11 = ei(H)(El*n+l+i - -4+,,1) 

(1 < i < n) 
( 1  < i < 4, 

and the roots are given by 

f e i  (1 < i < 4, (ei - ej) (1 < i, j < 4, 
*(ei + ej) (1 < i < j < n). 

7. Let V be a finite-dimensional vector space over C and G a semi- 
simple analytic subgroup of GL( V). Then: 

(i) G has finite center (Cartan [12], p. 12). 
(ii) G is closed in GL(V) (Yosida [l]). 
(iii) Every continuous homomorphism p of G onto itself is an analytic 

isomorphism (Harish-Chandra [2]). 
(iv) The semisimplicity assumption for G can be dropped neither in 

(i), (ii) nor in (iii). 

8. Using the criterion that a derivation D of a finite-dimensional 
algebra A is nilpotent if Tr(DE) = 0 for every derivation E of A 
prove that a Lie algebra g over R of dimension > 1, with no ideals 
except 0 and g, is semisimple (cf. $6, Chapter 11). The criterion is 
a special case of Theorem 17 in Chevalley [6], Vol. 11, p. 182; 
cf. Varadarajan [I], p. 163. 

C. Geometric Properties of the Root Pattern 

1. Let g be a semisimple Lie algebra and a Cartan subalgebra. 
Let A be the system of nonzero roots and put QR = Z,,,RH,. The 
system {HB : /3 E A }  is invariant under the reflections 

in the hyperplanes a ( H )  = 0 (Theorem 4.3 (i)). 

2. Let a and 

(i) (a, /3) > 0 
(ii) 
3. Let 01 E A and let /3 be any root. The a-series containing /3 contains 

at most four elements. Moreover the integer uB,, = 2(/3, a)/(a,  a) 

be nonproportional roots. Then: 
a - /3 is a root. 

(a, /3) < 0 a a + /3 is a root. 
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satisfies 

I %ri I < 3. 

4. Putting (a, 8) = B(H,, HB), formula (9) in $4 implies 

<a, 8) = 2 <a, Y X Y ,  B>* 
Y E A  

The matrix M with entries (a, p )  (a, 8 E A) therefore satisfies M 2  = M 
and is symmetric. Deduce the formula 

2 (a ,  a) = dim f~ 
U E  A 

(cf. G. Brown [I]). 

Let 8 (0 < 8 < T) be the angle between H ,  and HB. Then 
5. Let a and 8 be roots which are neither proportional nor orthogonal. 

cos 9 = +&flm where m = 1 , 2 , 3  

and if (8, 8) b ( a ,  a ) ,  

<B, B> = 4% a>. 

6. Let a, E A and + na ( p  < n < q) be the a-series containg 8. 
Assume /3 + a E A .  Then 

<B+a,B+.> - - - p + 1  
(B, B> !l 

(Hint: Treat separately the cases (a, a) < (8, p ) ,  (a ,  a) 3 (8, 8) and 
use Exercises C.2, C.3, and C.5.) 

7. Let H,, X ,  (a E A )  be as in Theorem 5.5, and put 

Using Exercise C.6 prove that the coefficients Nj,o determined by 

[Xi ,  xi1 = N:,BX:,B (a, B, a + B E 4 
satisfy 

I N : * B I  = 1 - P  

if /3 + na ( p  < n < q) is the a-series containing p. Thus g has a basis 
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for which the structural constants are integers (Chevalley [ 5 ] ,  
T h C o r h e  1). 

+ qa be the a-series containing 8, 
a + p‘@, ..., OL + q*/3 the @cries containing m. Prove that 

8. Let a, @ E d and let @ + pa, .-., 

NOTES 

92. Lie’s theorem is proved in Lie [l], III, p. 678. The name “solvable” 
(“integrable” in Lie’s terminology) is derived from the analogous concept for 
finite groups. In the theory of Picard-Vessiot extensions of differential fields sol- 
vable Lie groups play a role analogous to the role of solvable finite groups in 
Galois theory (Kolchin 111). Concerning Engel’s theorem, see E. Cartan [I], p. 4.6. 

The root space decomposition is basic in the Killing-Cartan structure 
theory of simple Lie algebras over C (Killing [ I ] ,  Cartan 111). The roots are there 
introduced as zeros of the characteristic polynomial det(h1 - ad X).  Killing 
discovered some remarkable properties which the roots have under addition, for 
example Theorems 4.3 and 5.7. In Weyl [l, 21 the Cartan subalgebra is brought 
more to the foreground, the roots become linear functions, and many methods 
and simplifications are introduced. Among these is the ordering of the roots 
which is basic in Weyl’s proof of Theorem 6.3 (existence of compact real forms 
([l], 111, Satz 6)). Exercise B.3 gives a significant application. Theorem 6.3 was 
known (but its full significance not realized) from Cartan’s classification [2] of all 
real forms of simple Lie algebras over C. The method of proof of Theorem 6.3 
gives the general Theorem 5.4 (van der Waerden [l], Weyl [2], Chapter 2) which 
shows how g is determined by the roots. This had been taken for granted by 
Killing and proved case-by-case by Cartan. 

Later (in 1121, p. 23) Cartan proposed the following method for proving 
Theorem 6.3: Let 3 be the set of all bases (el, ..., e,) of g such that B(Z,  Z) : 
--C; zt if Z = Xy z,e. and let 4, be the corresponding structure constants. Let f 
denote the function on 7j defined byf(e,, ..., e,) = X t , , . k  I c:, 1%. A simple argument 
(cf. Helgason [12], p. 28) shows that u = Xy Re, is a compact real form of g if 
and only iff has a minimum which is reached for ct, real. A proof of the existence 
of u along these lines was accomplished by Richardson [l]. As a corollary one has 
the existence of a Cartan subalgebra l) (without the theorems of Lie and Engel). 
In fact one can take 8 = t + it wh5re t C u is any maximal abelian subalgebra. 

Theorem 7.1 is proved by E. Cartan [12] and simplified by Mostow [l]. 
The proof in the text is modeled after Samelson (cf. [4]). Theorem 7.2 is also 
proved in Cartan [12]; the proof in the text is simpler, but possibly less instructive. 

33-56. 

97. 



In this chapter we return to Riemannian geometry and begin a study of the 
Riemannian locally symmetric spaces. These are definsd as Rietnanniani m i f o l d s  
for which the curvature tensor is invariant under all parallel t r d a t k .  & Cartan 
set himself the problem of giving a complete classification of these spaces. In an 
ingeneous manner he gave the problem two different group-theoretic formulations 
[6] .  One of these is particularly effective and strikingly enough reduces the problem 
to the classification of simple Lie algebras over R, a problem which Cartan him- 
self had solved already in 1914. 

Cartan’s first method was based on the so-called holonomy group. If o is a point 
in a Riemannian manifold M, then the holonomy group of M is the group of all 
linear transformations of the tangent space M .  obtained by padfd tramlation 
along closed curves starting at 0.  I t  is readily seen that dibkmn~ pkmtts ~6 M give 
isomorphic holonomy groups. Of course each element of tEe holonomy group 
leaves the Riemannian structure g o  invariant; if M is locally symmetric the cur- 
vature tensor R. is also left invariant. Hence it follows from the structural equa- 
tions (6) and (7), $8, Chapter I, that each element of the holonomy g r o w  induces 
an isometry of a neighborhood of o in M onto itself leaving o fixed.. Tlhk leads to 
algebraic relations between the Lie algebra f of the identity co- of the 
holonomy group and the tensors g o  and R,, namely, 

A E f ,  X , Y  E M , ;  
A E f ,  X , Y  E M,; 

x, Y E M,, 

proved here in $5. Cartan now showed ( [ 6 ] ,  p. 225) that if for a given f a tensor 
R,  of type (1,3) satisfies these formulas and in addition fulfills the general sym- 
metry conditions for a curvature tensor (Lemma 12.5, Chapter I), t h e m  theme exists 
a locally symmetric space for which it is the curvature tensor at 0, In  our treatment 
this proof is used in $5 to construct a globally symmetric space from a locally 
symmetric one. Since a symmetric space is determined localljr from R,, and go 
(Lemma 1.2), the problem is reduced to two others: 1. Classify aE possiWe holo- 
nomy groups of symmetric spaces. 2. Determine (up to a constant factor) the 
curvature tensor of a symmetric space by means of the holonomy group. For the 
second problem see Theorem 5.1 1, Chapter IX, and Cartan [6] ,  pp. 221-224.For the 
first problem Cartan used his earlier work on finite-dimensional representations of 
Lie algebras, but the necessarily extensive calculations were nrr6: c m  out in 
all details in [6] since a simpler method became available. 

This second method of Cartan [7] (and the one which we shalt follkw) brings 
the problem of classifying locally symmetric spaces more directly into the realm 
of group theory. I t  is based on the fact that the invariance of the curvature tensor 

197 

g,(AXY) + g,(X,AY) = 0, 

R,(X,Y)  E f ,  

[A,R,(X, Y)l = &(AX, Y )  + &(X,A Y ) ,  
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under parallelism is equivalent to the condition that the geodesic symmetry with 
respect to each point be a local isometry. (This explains the term “locally sym- 
metric.”) The consequences of this fact are more conveniently expressed for 
Riemannian globally symmetric spaces for which the geodesic symmetry by defini- 
tion always extends to a global isometry. Such spaces have a transitive group of 
isometries and can be represented as coset spaces G/K where G is a connected 
Lie group with an involutive automorphism u whose fixed point set is (essentially) 
K. The group G becomes semisimple after dividing out a direct factor which is 
a motion group of a Euclidean space. In this way the problem is reduced to the 
study of certain involutive automorphisms of semisimple Lie algebras. 

In $1 the two definitions of locally symmetric spaces are considered and shown 
equivalent. The group of isometries of a Riemannian manifold is studied in 92; 
in 93 the results are applied to Riemannian globally symmetric spaces which then 
are represented as coset spaces of a special kind. The curvature tensor of a Rieman- 
nian globally symmetric space is computed in 94. The result is used in $5 for 
constructing a Riemannian globally symmetric space, a piece of which is isometric 
to a piece of a given locally symmetric space. In the last section it is shown how 
totally geodesic subspaces of a symmetric space are connected with Lie triple 
systems of the Lie algebra of the group of isometries. 

$1. Affine Locally Symmetric Spaces 

Let A4 be a C“ manifold with an affine connection v. Let p be a 
point in M and let No be a normal neighborhood of the origin 0 in M,, 
symmetric with respect to 0. As usual, put N p  = Exp, No. For each 
q E N,, consider the geodesic t + y ( t )  within N p  passing through p 
and q such that y(0) = p, y( 1) = q. We put q’ = y( - 1). The  mapping 
q ---f q’ of N ,  onto itself is called the geodesic symmetry with respect to 
p and will be denoted by s,,. In-normal coordinates {xl, ..., xnJ at p ,  
s,, has the expression (xl, ..., x,) ---f (- xl, ..., - xm).  In  particular, 
sI, is a diffeomorphism of N ,  onto itself and (ds,), = - I  where I 
denotes the identity mapping. 

Let M be a manifold with an affine connection v which 
has torsion tensor T and curvature tensor R; M is called .fine locally 
symmetric if each point m E M has an open neighborhood N ,  on which 
the geodesic symmetry s,, is an affine transformation. 

A manifold M is afine locally symmetric i f  and only 
i f  T = 0 and v z R  = 0 for all Z E W ( M ) .  

T o  begin with let M be any manifold with an affine connec- 
tion v and let 9 be a diffeomorphism of M onto itself. We define the 
connection V’ on M by 

Definition. 

Theorem 1.1. 

Proof. 
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If we denote the mapping X 4 X” ( X  E al) by y ,  we have 0; = 9-l o 
VPx o y on W. Let T‘ and R‘ denote the corresponding torsion and 
curvature tensors. It is trivial to verify 

for X ,  Y E W. We shall now prove the relation 

(ViR’)  ( X ,  Y )  = v-lo (( o , z 4  (9x9 vY)) 0 v (4) 

for X ,  Y ,  Z E 91. From relation (7) in Chapter I, $7, we have 

[Vz, R(X Y)1 = Vz(R(K Y ) ) .  ( 5 )  

We now apply vz to the tensor field X 0 Y @ R. Using ( 5 )  and the 
fact that V z  commutes with contractions we obtain 

If we combine this with the similar formula for (VHR’) ( X ,  Y) ,  rela- 
tion (4) follows easily. 

Let m be an arbitrary point in M and let N ,  be a normal neighborhood 
of m invariant under swl. Suppose first that M is affine locally symmetric. 
Let Z E W ( M )  and y a geodesic in N,,, passing through m with tangent 
vector Z,,, at m. Let p and q be two points on y ,  symmetric with respect 
to m. Let T and T ,  denote the parallel translation (along y) from p to q 
and m, respectively. Consider a vector L E M p .  The  vectors L and rWlL 
are parallel with respect to the geodesic (mp). Since s, is an affine trans- 
formation, the vectors dS,L and dsr11T2nL are parallel with respect to the 
geodesic (mq). Since ds,T,L = - rrnL it follows that 

dS,(L) = - TL. (6)  

Using (2) and (3) for s, = y ,  R‘ = R, T’ = T,  we obtain ($7, Chapter I )  

rRD = R,, TT,, = - 1’ a-  (7) 

Using the definition of ( V z R ) ,  (97, Chapter I) we deduce from (7) that 
( VZR) ,  = 0. Moreover, putting p = q = m, it follows from (7) that 
T ,  = 0. 

Next we prove the converse. The  diffeomorphism s, of N,, defines 
a new connection on N ,  by (1). Since T and V z R  vanish we find from 
(2) and (4) that T‘ = 0 and VLR’ = 0. Finally we have RL = R,,, 
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as a consequence of (ds,),, = - 1. The theorem will thus follow from: 

Let M and M' be two manifolds with afine connections 
v and v'. Assume that 

Lemma 1.2. 

VzT = O ,  VzR = 0 for all Z E D1(1V), 

V' Z .T' = 0, Vk.R' = 0 for all 2' E D1(M). 

Let p E M ,  p' E M' and let A be a linear one-to-one mapping of M,, 
onto Mk,. Let A denote the unique type-preserving isomorphism of the 
mixed tensor algebra D ( p )  onto a(#') extending A such that 2 coincides 
with (LA)-1 on the dual (M,)^. Assume now that A . R, = Rj., 
A T,, = Tk,. Then there exists an open neighborhood Up of p in M 
and an affine transformation q of Up onto an open neighborhood Up,  of 
p' in M' such that.q(p) = p' and dqfl = A. 

Let No and Ni be normal neighborhoods of the origin in 
M, and ML,, respectively, and put N p  = Exp No, N i ,  = Exp Ni .  Let 
Yl, ..., Ym be a basis of M p  and let Tijk  and Rilik be the coefficients of 
T and R in terms of the adapted vector field basis YT, ..., Y:. These 
coefficients are then constants in Np,  due to the assumption. Now we 
express T' and R' in terms of the vector field basis on Ni,,  adapted 
to the basis AY,, ..., AY, of MA,. Then the coefficients Tlijk and 
RIiljk are the same constants as Tijk and Riljk. 

Let V (respectively, V')  denote the set of points ( t ,  a,, ..., a,) E 

R x Rm for which ta,Y, + ... + tam,%Ym E No, (ta,(AY,) + ... + tam 
(AY,) E N;). The differential equations (6) and (7) in Chapter I, $8, 
are exactly the same for both connections D and V'. For V they 
hold on V and for V' they hold on V .  Since the equations are linear, 
the uniqueness of their solutions holds globally. Consequently, the 
solutions of the two sets of equations agree on V n V'. Let 

Proof. 

U p  = {Exp, (t(a,Yl + ... + a,Y,)) : ( t ,  a,, ..., a,) E V n  V'j; 

Up,  = {Exp,. (t(a,AY, + ... -/- a,AY,)) : ( t ,  a,, ..., a,) E V n V'}. 

Then Up and Up,  are normal neighborhoods of p E M and p' E M ' ,  
respectively. If q E Up and q' E Up.  have the same normal coordinates 
with respect to (Yi) and (AY,), respectively, the mapping q : q + q' is 
an affine transformation of Up onto Up, such that ~ ( p )  = p' and dv, = A. 

Definition. A Riemannian manifold M is called a Riemannian 
locally symmetric space if for each p E M there exists a normal neighbor- 
hood of p on which the geodesic symmetry with respect to p is an 
isometry. 
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Theorem 1.3. Let M be a Riemannian manifold. Then M is a 
Riemannian locally symmetric space i f  and only if the sectional curvature 
is invariant under all parallel translations. 

If M is locally symmetric, then the Riemannian structure g and the 
curvature tensor R are both invariant under all parallel translations. 
The invariance of the sectional curvature follows from Theorem 12.2, 
Chapter I. On the other hand, suppose the sectional curvatures invariant 
under all parallel translations. Let p ,  q E M ,  y a curve segment joining 
p to q, and T the parallel translation from p to q along y. Then if X, 
Y E Mp,  we have 

gn(R,(X, Y )  x, Y )  = g,(R,(7X, TY) TX,  TY), 

rn(z$&T Y )  x, Y )  = g,(T(RpW, Y )  XI,  TY). 

The quadrilinear form B given by 

B(X, Y ,  Z, 1') = g,(R,(TdY, TY) TZ, TT) - g,(T(R,(X, y) z), TT) 

for X, Y, 2, T E Mp,  satisfies the conditions of Lemma 12.4, Chapter I. 
Consequently, B = 0 so 

T(R,(X, Y )  Z )  = R,(TX, T Y )  TZ,  that is, T - R ,  = H,, 

which shows that V u R  = 0 for each U E W .  Since the geodesic sym- 
metry s, induces an isometry of M,, the theorem now follows from 
Theorem 1.1 and: 

Let q~ be an a$ne transformation of a pseudo-Riemannian 
manifold M .  Suppose that for some point q E M ,  the mapping dyq: 
Mq -+ Mq,q) is an isometry. Then q~ is an isometry of M onto itself. 

Let p E M and X, Y E M,. We join p to q by a curve y and 
let T denote the parallel translation from p to q along y. Then 

Lemma 1.4. 

Proof. 

g,(X, Y )  = gu(.X TY) = g,(u,(dP,TX, d%,TY). 

This last quantity equals g,(,) (dq,X, dvpY) because q ~ ,  being an affine 
transformation, transforms vectors that are parallel along y into vectors 
that are parallel along q~ . y. This proves the lemma. 

$2. Groups of lsometries 

Let M be a Riemannian manifold and I (M)  the set of all isometries 
of M. Let g,, g ,  E I(M). The composite mapping g,  o g ,  is again an 
isometry. If we put glg, = g, o g,, I (M) becomes a group. We shall 
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always consider I ( M )  with the compact open topology. This is defined 
as follows: Let C and U, respectively, be a compact and an open subset 
of M ,  and put 

W(C, U )  = {g E Z(M) : g . cc U ) .  

The compact open topology on I (M)  is defined as the smallest topology 
on I ( M )  for which all the sets W(C, U )  are open. It is obvious that 
I ( M )  is a Hausdorff space. The  identity component of I ( M )  will be 
denoted lo (M) .  

Lemma 2.1. The space I ( M )  has a countable base. 

Proof. Since M is a separable metric space (Chapter I, 99) there 
exists a countable baais 0,, ..., Oi, ... for the open subsets of M. Since 
M is locally compact, we can assume that the closure oi is compact 
for each i. Let C C M be compact, U C M open, and f any element 
of W(C, U) .  For each p E C there exists an index i and an index j 
such that p E Oi, f ( 0 , )  c Oj c U .  We can find coverings Oil ... Oi, 
of C and Oil ... OiN of f ( C )  such that 

m,>c oj,c u (1 < < N ) .  

It follows that 
N 

k = l  
f E n WOi,, Oj,) C w(C, u). 

This shows that the set 52 of all finite intersections of sets of the form 
W(o,, Oi) forms a basis of the open sets of I ( M ) .  Since 52 is countable, 
the lemma follows. 

Theorem 2.2. Let M be a Riemannian manifold and (f,) a sequence 
in I (M) .  Suppose there exists a point o E M such that the sequence (f, . 0) 
is convergent. Then there exists an element f E I ( M )  and a subsequence 
( f n , )  of ( f,) which converges to f in the compact open topology. 

We first prove a lemma. 

Lemma 2.3. Assume that a sequence (f,) in I ( M )  converges pointwise 
on a set A C M .  Then (f,) also converges pointwise on A (the closure of A). 

Let p E A and choose r > 0 such that the open ball B,(p) 
has compact closure. Let E be given, 0 < E < r. We first select a point 
p1 E A such that d(p,  p,) < €13, then an integer N such that 

Proof. 

4 f n  . P d m  . P I )  < 4 3  for n, m > N.  
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I t  follows that 
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4 f n  * P , f m  * P )  G 4 f n  * P , f n  * P J  + 4 f n  P1,Jm * Pi) + d(fm . P i , f m  p )  < E 

(1) 

if m, n 3 N .  Therefore, all f n  . p ( n  > N )  lie inside the ball B,(fN . p )  
which has compact closure as well as B,(p). We can thus select a sub- 
sequence of (f, * p )  which converges to a limit, say p * .  From (1) we 
conclude that 

4 f n  . P ,  P*) < 
for n > N and the lemma is proved. 

T o  prove Theorem 2.2, let S denote the set of points q E M for which 
the sequence (fn q) has compact closure. If (p i )  is a sequence in S and 
(f,*) a subsequence of (fa) we can, using a diagonal process, find a 
subsequence of (f,*) which converges at each p i .  By Lemma 2.3 S is 
closed. We shall now prove that S is open. Since o E S and M is 
connected, this will prove that S = M. 

Let p *  E S and choose I > 0 such that the ball B,(p*) has compact 
closure. Let p E B,,,(p*) and let cf,* ‘ p )  be any subsequence of the 
sequence (f, - p ) .  There exists a subsequence (f, ) of (&*) such that 
the sequence (jnP . p * )  converges to a limit q* and”such that the entire 
sequence (f, * p * )  is contained in the ball B,,,(q*). Then the sequence 
(f., . p )  is lontained in the ball B,,,(q*) which has compact closure 
since it is contained in each of the balls f, - I?,@*). Hence cf,* -9)  
has a convergent subsequence. This proves That S = M. 

Now M has a dense sequence of points, and using a diagonal process 
we can find a subsequence (vY) of (f,) which converges at all these 
points and by Lemma 2.3 on the entire M .  The following lemma 
completes the proof of the theorem. 

Let (p),,) be a sequence in I ( M )  which converges pointwise 
on M to a mapping f : M -+ M .  Then f E I ( M )  and lim p),, = f in the 
compact open topology. 

Let C be a compact subset of M and k > 0. We select points 
p,,  ..., pn such that each p E C has distance less than €13 from some pi .  
We can choose an integer N such that 

d(VW * P , , f .  P I )  < €13 

Lemma 2.4. 

Proof. 

for 1 < i < n, Y > N .  

If p E C,  we select p j  such that d ( p , p j )  < €13. Then, since f preserves 
distances, we have for v > N 

49)” . P, f . P )  < 4% . P, V“ . P,) + 4% . P,, f * P , )  + 4 f  . P, ,  f * P )  < E -  
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We finally prove that f . M = M. Let q E f .  M and determine 
q’ E M byf(q’) = q. Then 

0 = lim d(q, rp“ . q‘) = lim d(rpV-l . 4, 4’). 

Thus the sequence p)yl . q converges to q’. We know from what is 
already proved, that there exists a subsequence (+/,) of (v”) such that 
(t,h;l . p )  converges for each p E M. Let p‘ = lim (+;l . p ) .  Then 

iim d(#,, p’ ,  p )  = lim d(p’, +;l . p )  = 0. 

It follows that 

p = lima,b/,p’ = f . p’ .  

Sincep E Mis arbitrary, we mndude that fM = M. From Theorem 11 . I ,  
Chaptea I, we know thatfis a Weomorphism. Thus the lemma is proved. 

(b) Let p E M and let R denote the subgroup of I(&?) wf ih  kames p 
&red. Then K is compact. 

Proof. Let (fJ be a sequence in l ( M )  which converges to an element 
f i~ I(4w). Then for each p E M, 

4f;l * PPf -l . P> = dtP,fnf-’ . PI = d ( f .  (f-l . PI, f n  - f - l  . PI, 

which converges to 0 as n -+ m. It follows from Lemma 2.4 that 
limf;’ = f-’ in the compact open topology. Thus the inverse operation 
f -  f-l is continuous on I (M) .  The continuity of the multiplication is 
proved similarly. Hence I(M) is a topological group. Next, let limf, = f 
(fa E I(M)) and limp, = p (p, E M). Let E > 0 be given and select 
an integer N such that d(p,, p) < E for n >, N. The sequence piv, pN+’, ... 
together withp form a compact set C. If U = B,(f . p), thenf E W(C, v). 
Let Nl be an integer such that fn E W(C, U )  for n >, Nl. Then 
d( fn . pn, f . p) < B €or tt >, NIN so I(M) is a topological transforrna- 
tion group of M. To show that l ( M )  is locally compact and k compact, 
let U be an open relatively compact neighborhood of p. Then R is a 
closed subset of W((p}, U) and due to Theorem 2.2, W((p), U) has com- 
pact closure. This finishes the proof. 
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§ 3. Riemannian Globally Symmetric Spaces 

Let M be a Riemannian manifold with Riemannian structure Q;  
we recall that M is called an analytic Riemannian manifold if M and Q 
are both analytic. A mapping is called involutive if its square, but not 
the mapping itself, is the identity. 

Definition. Let M be an analytict Riemannian manifold; M is 
called Riemannian globally symmetric if each p E M is an isolated fixed 
point of an involutive isometry sp of M. 

Remark. It is obvious from the next lemma and Lemma 11.2, 
Chapter I, that there is only one such sp.  

Lemma 3.1. Let M be Riemannian globally symmetric. For each 
p E M there exists a normal neighborhood N p  of p E M such that s, is 
the geodesic symmetry on N,. 

Let A = (dsJP. Then AM, C M p  and A2 = I. Writing 

X = + ( X  - A X )  + * ( X  + A X )  

we see that M p  = V- + V+ (direct sum), where V* = {X: A X  = f X}. 
Suppose X # 0 belongs to V+ and consider a geodesic y tangent to 
X. Then sP will leave y pointwise fixed. This contradicts the assumption 
that p is an isolated fixed point. Thus A = - I and the lemma follows. 

Let M be a Riemannian globally symmetric space. Let y be any 
geodesic in M. If p E y, sp . y gives an extension of y, so that each 
maximal geodesic in M has infinite length. Thus M is complete and 
any two points p, q E M can be joined by a geodesic of length d(p ,  q). 
If m is the midpoint of this geodesic then s, interchanges p and q. 
In particular, the group I ( M )  acts transitively on M. Owing to the 
theorems of 92, I ( M )  has a countable base in the compact open topology 
and is a transitive, locally compact topological transformation group 
of M. Let I? be the subgroup of I (M)  which leaves some point p ,  of 
M fixed. Then R is compact and due to Theorem 3.2 of Chapter 11, 
I ( M ) / a  is homeomorphic to M under the mapping g R + g  . P o ,  
g E 4 M ) .  

Lemma 3.2. Let M be a Riemannian globally symmetric space. Then 

t This analyticity assumptim is convenient; no loss of generality results from it as 
Prop. 5.5 shows. 
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I ( M )  has an analytic structure compatible with the compact open 
topology in which it is a Lie transformation group of M .  

The properties of I ( M )  stated characterize its analytic 
structure uniquely. In fact, a topological group has at most one analytic 
structure compatible with its topology with respect to which it is a 
Lie group (Theorem 2.6, Chapter 11). 

Proof. Using the notation above, we consider the mapping 
u : k -+ of I? into the orthogonal group O(Mpo).  Let X,, ..., X ,  be 
an orthonormal basis of Mp,, {x,, ..., xm} the normal coordinate system 
with respect to this basis, valid on a convex normal ball B,(p,). The 
expression of the mapping k in coordinates (x,, ..., xlrJ is the same as 
the expression of (dk),, in terms of the Cartesian coordinates on M,,. 
Thus u is continuous. Owing to Lemma 1 I .2, Chapter I, u is one-to-one, 
hence a homeomorphism. The linear isotropy group K* = .(a) is a 
compact subgroup of O(Mpo) and has therefore a unique differentiable 
structure compatible with the topology induced by O(MF0) in which it 
is a Lie subgroup of O(M,,). If we carry this differentiable structure 
over by u-l, k becomes a compact Lie group. 

Let rr be the natural mapping g -+ g . p ,  of I ( M )  onto M .  We shall 
now construct a subset B of I ( M )  (a certain local cross section), which 
rr maps homeomorphically onto B,(p,). Let t + p i  be a geodesic in 
B,(p,) starting at p,.  For simplicity we put spt = s t .  The mapping 
T ,  = S ~ / ~ S ,  is an isometry of M and sendsp, into p , .  Owing to relation (6), 
$1, it is clear that (dTJPo is the parallel translation from p ,  to p ,  along 
the geodesic. Consider now the mapping + : B,(p,) -+ I ( M )  given by 
$(p,) = T,. The  mapping $ is of course one-to-one. In order to prove 
that I) is continuous it suffices to prove that if a sequence (q,J C M 
converges to q E M, then the corresponding symmetries sq, converge 
to sq in I (M).  Ifp is sufficiently close to q then it is obvious that (sqn . p )  
converges to sq ' p .  Since an isometry is determined by its action on any 
open set it suffices, due to Lemma 2.4, to prove that the sequence (sq, . p )  
is convergent for each p E M. Let S denote the set of pointsp E M for 
which (sq, . p) is convergent. The set S is open (Lemma 10.1, Chapter I) 
and not empty. It is also closed (Lemma 2.3), so S = M and the con- 
tinuity of $ is established. 

Let B = $(B,(p,)). The mapping rr is one-to-one on B and T o + = I. 
Hence x is a homeomorphism of B onto B,(p,). The set BI? = {bk :  
b E B, K E k) is the inverse image ~ - ~ ( l ? , ( p , ) ) ,  and is therefore an 
open subset of I(&'). Let g E B R .  Then g = bk ( b  E B, k E R). It 
follows that b = +(n(g)) so the mapping (b ,  k )  -f bk is a homeomorphism 
of B x rif onto BR. Hence if U is an open subset of R, the set BU 

Remark. 



5 31 Riemannian Globally Symmetric Spaces 207 

is open in BR, hence open in I (M) .  In  particular, let U be an open 
neighborhood of e in R on which a system {y,, ...,y,} of coordinates 
is valid. The  mapping 

v e  : bu + ( a ~ l ( r ( b ) ) ,  *.., xwt(4b)),y1(u), ...? ~ r ( u ) )  

is a homeomorphism of BU onto an open subset of Rmtr.  For each 
x E I ( M ) ,  the mapping vZ = y e  o LZ-, is a homeomorphism of xBU 
onto an open subset of R m f r .  In  order that this should give an analytic 
structure on I (M) ,  it suffices to verify that vZ o v;l is analytic on 
rp,(BU n xBU).  This, and the fact that I ( M )  is a Lie group, will follow 
if we can prove the following statement: 

If b,, b, E B, u,, u, E U such that 

b,u,b,u, = bu. 

where b E B, u E U ,  then the coordinates ym(u), xi(.rr(b)) are analytic 
functions of the coordinates xj(n(b1)),  xk(.rr(bz)), yB(ul), yr(u2), 1 < i, j ,  
k < m, 1 < %P,Y < 7.. 

Let k E R. Then the isometries ks,k-l and so leave p ,  fixed and 
induce the same mapping of Mp,.  By Lemma 11.2, Chapter I, we have 
ks,k-l = so. In  particular, if q is the midpoint of the geodesic from 
Po to b, * Po, 

u,b,u;' = ulsqsozl;l = 2(1squ;~so = sp*so 

if q* = ul . q. Hence u,b,uil is an element b* of B and the coordinates 
of b* depend analytically on the coordinates of u1 and b,. We have now 

b,b*u,u, = bu 

and 
%(rn(blb*)) = %(d4), 1 < i < r n .  

Now, the point b,b* . p, is determined from b, . p ,  and b* ' p ,  as 
follows: Let y1 and y* be the geodesics in B,(p,) from p ,  to b, . p ,  and 
from p ,  to b* . p,.  Let Y,  and Y* denote their unit tangent vectors at 
p,. Let Y3 be the parallel translate of Y* along y1 and consider the 
geodesic y3 emanating from b, ' p ,  with tangent vector Y3 and arc 
length L(y*).  The  end point of y 3  is b,b* . p,. This  construction shows 
the analytic dependence of xi(.rr(b,b*)) on xj(.rr(bl)) and x,(.rr(b*)), 
1 < i, j ,  k < m. Moreover, the coordinates of the tangent vector 
d ( ~ ( u , u , ) - ~ )  . X ,  = d(b-%,b*) . Xi with respect to X,, ..., X,, depend 
analytically on the coordinates of b,,b*. Therefore, R being a Lie 
group, it follows that the coordinates of u depend analytically on the 
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coordinates of ul, u2, b,, b*. This shows that Z(M) is a Lie group. The  
argument above shows also that the mapping ( g , p )  -+ g - p  is an analytic 
mapping of BU x B,(po) into M .  Hence I (M)  is a Lie transformation 
group of M .  

Theorem 3.3. 

(i) Let M be a Riemannian globally symmetric space and pa any point 
in M .  Zf  G = Z,(M), and K is the subgroup of G which leaves p ,  fixed, 
then K is a compact subgroup of the connected group G and GIK is ana- 
lytically dtjfeomorphic to M under the mapping g K  --+ g . p,, g E 6. 

(ii) The mapping u : g ---t s,,,,gs,,o is an involutive automorphism of G 
such that K lies between the closed group K, of all fixed points of u and 
the identity component of KO. The group K contains no normal subgroup 
of G other than {e}. 

(iii) Let g and f denote the Lie algebras of G and K ,  respectively. Then 
f = { X  E g : (du),X = X }  and if p = { X  E g : (da),X = -- X }  we have 
g = f + p (direct sum). Let x denote the natural mapping g --+ g . p o  of 
G onto M .  Then (dn-), maps f into (0) and p isomorphically onto M,),,. 
Zf  X E p ,  then the geodesic emanating from p ,  with tangent vector ( d x ) e X  
is given by 

Moreover, if Y E M,,,, then ( d  exp tX),)n(Y) is the parallel translate of Y 
along the geodesic. 

T h e  first part (i) follows from Prop. 4.3 in Chapter 11. For 
(ii) and (iii) put so = si,,. It is obvious that u is an involutive auto- 
morphism of Z(M) and consequently maps the identity component G 
onto itself. If k E K, the mappings k and sokso are isometries which 
induce the same mapping of M,,o. From Lemma 11.2, Chapter I,  we 
have soks, = k for all k E K. It follows that the automorphism (do) ,  
of g is identity on f. On the other hand, if X E g is left fixed by (do),, 
then so exp t X s ,  = exp t X  for each t E R. This implies that exp tX  . p ,  
is a fixed point of so; since p ,  is an isolated fixed point of so it follows 
that exp t X  . p ,  = pa for all t so X E f .  Since Z(M) and G act effectively 
on G/K, K contains no normal subgroup # (e} of G. This proves (ii). 

The  direct decomposition g = t + p follows from the identity 
X = 4 ( X  + du . X )  + $ ( X  - do . X ) .  In  the proof of Prop. 4.3, 
Chapter 11, it is shown that ( d r ) ,  is a linear mapping of g onto M,,, 
with kernel f .  

Finally, let X E p ;  put p ,  = ~ ~ = . ~ ( t )  and set as before s 1  = sp , ,  
T ,  = si /2so.  We have seen that ( d T &  is the parallel translation along 
the geodesic from p ,  to p i .  Moreover, s,sos, = s , + ~  because both sides 

Ydn.X( t )  = exp tX . Po (dn = ( d n ) J .  

Proof. 
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of the equation are isometries which leave the point pr+,  fixed and 
induce the same mapping in the tangent space Mp,+,. It follows that 
T2r+21 = T2,T21 for all 7,  t E R. If t is sufficiently small, T ,  lies in the 
local cross section B used in the proof of Lemma 3.2. Now T is an analytic 
diffeomorphism of B onto the normal neighborhood B,(po) and T T ,  = p,. 
Since the mapping t -+ p ,  is analytic, it follows that t -+ T ,  is a one9 
parameter subgroup. Hence T ,  = exp tZ where Z E g, t E R. Now 

p l  so drrZ = drrX. Consequently, X = Z and the theorem is proved 

The  isometries .r(exp t X )  are called transvections. They 
“slide” M along the geodesic ydn.x and realize the parallelism along this 
geodesic. 

Let G be a connected Lie group and H a closed subgroup. 
The  pair (G, H )  is called a symmetric pair if there exists an involutive 
analytic automorphism u of G such that (H,,)o C H C H,,, where H,  is 
the set of fixed points of u and (H,,)o is the identity component of Ha. 

If, in addition, the groupt Ad, ( H )  is compact, (G, H )  is said to be 
a Riemannian symmetric pair. 

As usual, we consider G as a Lie transformation group of the coset 
space G / H  where each g E G gives rise to the diffeomorphism .(g) : 
x H  + gxH of GIH onto itself. 

Let (G, K )  be a Riemannian symmetric pair. Let T 
denote the natural mapping of G onto GIK and put o = T(e>. Let u be 
any analytic, involutive automorphism of G such that (Ku)o c K C K,,. 
In each G-invariant Riemannian structure Q on G/K (such Q exist) the 
manifold GIK is a Riemannian globally symmetric space. The geodesic 
symmetry so satisjies 

UTi = S O S ~ / ~  = S-1:2So = T-1. Thus duZ = - Z SO Z E p. But rrTl = 

Remark. 

Definition. 

Proposition 3.4. 

S o 0 7 - r = 7 - r O ~ ,  T(O(R)) = s o a  so ,  g e G ;  

in particular, so is independent of the choice of Q. 

We shall see later, that the Riemannian connection on 
GIK is independent of the choice of Q. 

Let u be an arbitrary analytic involutive automorphism of G 
such that (KJ0 C K C KO. For simplicity we shall write du and d r  
instead of (do), and ( d ~ ) , .  Let g and f denote the Lie algebras of G 
and K,  respectively, and put p = { X  E g : d u x  = - 9. Then g = f + p 
(direct sum). If X E p and k E K ,  then u(exp Ad ( k )  t X )  = K exp ( - tX)k- l  

Remark 1. 

Proof. 

t Here A d c  ( H )  means the Lie subgroup of A d c  (G) which is the image of H under 
Adc.  As in Prop. 5.4, Chapter 11, we see that if AdG ( H )  is compact, then it is compact 
in the ordinary matrix topology. 
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so do Ad (k) X = - Ad (k) X .  Thus p is invariant under Ad, (K) .  
The mapping dn maps g onto To, the tangent space to GIK at o, and the 
kernel of d?r is f .  The  resulting isomorphism of p onto To commutes 
with the action of K,  that is, 

d7r . Ad (k) X = &(k) . d r ( X ) ,  k E K,  X E p. (1) 

In  fact, this formula is an immediate consequence of the relation 

7r(exp Ad (k) t X )  = n(k exp tXk-') = ~ ( k )  n(exp t X ) .  

Since Ad, ( K )  is a compact group in the relative topology of GL(g), there 
exists a strictly positive definite quadratic form B on p invariant under 
Ad, ( K ) .  Then the form Q,, = B o on T,, is invariant under all 
the mappings d~(k), k E K. Let the corresponding symmetric bilinear 
form on To x To also be denoted by Qo. For each p E G/K we define 
the bilinear form Qp on (G/K), x (G/K),, by 

Q,(dM xo, 4 7 )  Yo) = G?o(Xo, Yo), xo, yo E To, 

where g E G is chosen such that g . o = p .  The  invariance of B under 
Ad, ( K )  guarantees that Qp is well defined. Since each T(g), g E G, is 
an analytic diifeomorphism of G / K  it follows that p -+ Qp is an analytic 
Riemannian structure on G/K, invariant under the action of G. On the 
other hand, each G-invariant Riemannian structure on GIK arises in 
this fashion from an invariant quadratic form on p.  

We now define a mapping so of GIK onto itself by the condition 
s,) .J n = 7t o u. Then so is an involutive diffeomorphism of G/K onto 
itself and (ds,,), = - I. T o  see that s,, is an isometry, letg E G, p = T(g) . 0, 
and X ,  Y E (GIK),. Then the vectors X o  = dT(g-') X ,  Yo = dT(g-') Y 
belong to To. The  formula so o 7~ = 7~ o CJ implies for each x E G, 

So 0 T(g) (xK) = .(EX) K = "(8) U(X) K = (T(U(g)) 0 so)  (xK), 

so s,, 3 T(g) = T(U(g)) o so. Hence 

Q(ds,, X, dS, Y )  = Q(4 d ~ ( g )  Xo, d+(g) Yo) 

= Q(d% Xo, ds, Yo) = Q(X0, Yo) = Q ( X ,  Y). 

Thus so is an isometry and near o it must coincide with the geodesic 
symmetry. For an arbitrary point p = T(g) . o in G/K, the geodesic 
symmetry is given by 

S, = T(.q) 0 So 0 T(g-'). 

This being an isometry, the space G/K is a Riemannian globally sym- 
metric space. This finishes the proof. 
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The formula so o rr = rr o CT shows that the geodesic symmetry on 
G/K is the same for all G-invariant metrics. 

We shall now derive some further properties of the Riemannian 
symmetric pair (G, K) .  Let 2 denote the center of G and let N denote 
the set of n E G for which ~ ( n )  is the identity mapping of G/K. Then 
Z and N are closed normal subgroups of G and N C K. Due to Lemma 
5.1, Chapter 11, the group K / K  n 2 and the linear group Ad, ( K )  are 
analytically isomorphic. Hence K / K  n Z is compact and since K n Z C N ,  
KIN is compact. Let I(G/K) denote the group of all isometries of G/K 
(with the Riemannian structure Q), and let If denote the subgroup of 
I (G/K) which leaves o fixed. Then, by Lemma '3.2 and Theorem 2.5, 
I (G/K) and R are Lie groups, R compact. 

Consider now the (algebraic) isomorphism /3 : gN -+ T ( g )  of GIN 
into I(G/K).  If a sequence (g,N) converges to gN in GIN, then (g,xN) 
converges to gxN for each x E G and therefore g,xK converges to gxK 
in G/K. In view of Lemma 2.4 this proves the continuity of /3. The 
restriction of /3 to K / N  is a homeomorphism. 

Remark 2. 
In fact, let K,  = /3(K/N) and G, = P(G/N). Then K,  is a compact 

topological subgroup of R and if the analytic structure of GIN is 
carried over on G, by /3, G, is a Lie transformation group of G/K. Let 
(g,) be a sequence in G, which converges in I (G/K)  to an element 
g E I(G/K). The sequence (g ,  . 0 )  converges to the point p = g . o in 
G/K. Select g* E G, such that g* . o = p .  There exists a local cross 
section in G, through g*, that is a submanifold B* of G, containing 
g* such that the natural mapping x -+ x . o of G, onto G/K is a diffeo- 
morphism of B* onto an open neighborhood of p in GIK. If n is sufi- 
ciently large, there exists an element k, E K ,  such that g,k, E B*. It 
is clear that the sequence (gRklL) in B* converges to g*, and since K,  
is compact we may assume that the sequence (k,) is convergent in K,. 
The imbeddings B* + G, and K,  --f G, being continuous the sequences 
(g&,) and (k,) converge in G,. It follows that (g,) converges in G,. 
Finally, since the imbedding G, c I (G/K)  is continuous, g E G,, SO 

G, is closed. 
Now it follows from Theorem 2.3, Chapter 11, that G, has a unique 

analytic structure in which it is a topological Lie subgroup G, of I( G/K).  
The identity mapping G, + G, is continuous, hence a homeomorphism 
(Cor. 3.3, Chapter 11), hence an analytic isomorphism (Theorem 2.6, 
Chapter 11). This means that /3 is an analytic isomorphism of GIN 
onto a closed, topological Lie subgroup of I(G/K).  

Let fi and t denote the Lie algebras of I (G/K)  and K, respectively. 

The group /3(G/N) is a closed subgroup of I (G/K).  
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From Theorem 3.3 we obtain a subspace @ C fi such that 6 = t + 8 
(direct sum) and 

ii(exp X )  = Exp dii(X), X E 8 r  (2)  

7j denoting the natural mapping g + g ’ o of I(G/K) onto GIK. Let d 
denote the involutive automorphisrn g -+ sags, of I ( G / K )  and let r1 
denote the natural mapping of G onto GIN. Then /? o r, = r and by 
Prop. 3.4 

B(rrl(&))) = 7(4?)) = 5(7W (g E GI! 
so 

d/3 o drr, o do = d5 o dr. 

Consequently, the mapping d/? o d r l  maps p onto 8. Since ii o /? o r1 = r 
we get from (2) for X E p 

rr(exp X) = .ii@(rrl(exp X)) = ii(exp d/?(drr,(X)) 

= Exp (dfi(dP(drr,(X)) 
so 

a(exp X) = Exp (drr(X)), X E p .  (3) 

Thus the geodesics in G/K are still orbits of suitable one-parameter 
subgroups in G. 

We shall now prove that under very general conditions, the auto- 
morphism a is completely determined by its fixed points. 

Proposition 3.5. Let (G, K )  be a Riemannian symmetric pair. Let 
f denote the Lie algebra of K and let 3 denote the Lie algebra of the center 
of G.  Assume that f n j = {O}. Then there exists exactly one involutive, 
analytic automorphism u of G such that (KJ0 C K C K,. 

Proof. Let al, u, be two automorphisms with the described proper- 
ties. Then the Lie algebra g of G has direct decompositions g = f + pi 
where pi is the eigenspace for the eigenvalue - 1 of the automorphism 
doi ( i  = I ,  2). Since the Killing form B of 9 is invariant under oi, 
it follows that f is orthogonal to pi with respect to B ( i  = 1, 2) .  Let 
X, E pl. Then there exists an element X, E p, such that X ,  = T + X ,  
where T E: f .  It follows that T is orthogonal to f. Since f n 3 = {O}, 
B is strictly negative definite on f (Prop. 6.8, Chapter 11). Thus T = 0 
and p1 = pz. 

For further study of symmetric spaces it is important to express the 
symmetry conditions in terms of Lie algebras rather than in terms of 
the groups. In Theorem 3.3 we have seen that a Riemannian globally 
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symmetric space gives rise to a pair (9, s) where: 

(i) g is a Lie algebra over R.  

(ii) s is an involutive automorphism of g. 

(iii) f ,  the set of fixed points of s, is a compactly imbedded subalgebra 

(iv) f n j = {0} if j denotes the center of g. 

Definition. 

of g. 

A pair (9, s) with the properties (i), (ii), (iii) is called an 
orthogonal symmetric Lie algebra. It is said to be effective if, in addition, 
(iv) holds. A pair (G, K ) ,  where G is a connected Lie group with Lie 
algebra g, and K is a Lie subgroup of G with Lie algebra f ,  is said to be 
associated with the orthogonal symmetric Lie algebra (9, s). 

If f is a compactly imbedded subalgebra of a Lie algebra g 

with center j and f n j = {0}, then by the proof of Prop. 3.5 tliere exists 
at most one involutive automorphism of g whose fixed point set is f .  

It is important to distinguish between a symmetric pair 
as defined earlier (before Prop. 3.4) and a pair associated with an 
orthogonal symmetric Lie algebra. 

Let (9, s )  be an orthogonal symmetric Lie algebra, 
f the set of $xed points of s. Let (G, K )  and (G, I?) be two pairs associated 
with (9, s). Suppose K and I? are connected and G simply connected. Then 
I? is closed and (G, R) is a Riemannian symmetric pair. If K is closed 
in G (this is the case i f  the center of g is {0}), then GIK is Riemannian 
locally symmetric? for each G-invariant metric (such exist) and GjI? is the 
universal covering manifold of G / K .  

Since z( is simply connected, there exists an analytic homo- 
morphism u : G + e for which (do) ,  = s. Since s is an involutive auto- 
morphism the same is true of u. The  group R is the identity component 
of the group of fixed points of u. In particular R is closed in c. T h e  
space G/R is simply connected. In  fact, let y ( t ) ,  0 < t < 1, be a conti- 
nuous closed curve in G/a. Without loss of generality we can assume 
that y(0) = y(1) = e (e )  (+ being the natural mapping of G onto G/a).  
Using local cross sections in G (Lemma 4.1, Chapter 11), it is easy to 
find a continuous curve f ( t ) ,  0 < t < 1, in such that i ; ( f ( t ) )  = y ( t )  
for 0 < t < 1. Then f(0) and f(1) belong to R and can be joined by 
a continuous curve, R being connected. The  closed curve in e, so 
obtained, is homotopic to a point in G. It follows that the projection 
y ( t )  is also homotopic to a point in G/R. 

Remark 1. 

Remark 2. 

Proposition 3.6. 

Proof. 

t For an improvement, see Theorem 1.1,  Chapter VI, and Exercise 10, Chapter VII. 
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The groups Ad,(K) and AdG(R) coincide because they are both 
analytic subgroups of Int (9) and have the same Lie algebra. They are 
compact (and thus carry the relative topology of GL(g)) since f is com- 
pactly imbedded in g. The space p = { X  E g : s . X = - X }  is in- 
variant under Ad, (K) and has a strictly positive definte quadratic form B 
invariant under AdG (K). As before, this form gives rise to a e-invariant 
Riemannian structure on G'/R, and, if K is closed, to a G-invariant 
Riemannian structure on GIK. Let g, be the homomorphism of G' 
onto G such that (dF)e is the identity mapping of g. Let KO denote the 
inverse image +(K). Then K is the identity component of K Q  and 
G/R is a covering space (see Chevalley [2], p. 58) of G'/KQ. If 4 denotes 
the mapping g x  + g,(g) K of (?/I? onto GIK, then the pair (ell?, $) 
is the simply connected covering manifold of GIK (Lemma 13.4, 
Chapter I). Moreover, I,4 is a local isometry. Since G/R is globally 
symmetric, GIK is locally symmetric. 

Let T denote the natural mapping of G onto GIK. Since one-parameter 
subgroups in G and G correspond under g, and since geodesic in G'/R 
and GIK correspond under I,4, we obtain from (3), 

r(exp X )  = Exp d r X  for X E p, (4) 

exp and Exp referring to G and G/K, respectively. Relation (1) also 
holds here and allows us to identify p and (G/K)z(el whenever this is 
convenient. 

Finally, let K *  denote the complete inverse image Ado1 (Ad, (K)) .  
Since Ad, ( K )  is closed in Int (g), K* is closed in G. If €* denotes the 
Lie algebra of K* we have ad, (€*) = ad, (f). If g has center {0}, it follows 
that f *  = f ;  consequently K is the identity component of K*, hence 
closed. 

$4. The Exponential Mapping and the Curvature 

The notation in this section will be as follows: Let ((1, s) be an ortho- 
gonal symmetric Lie algebra, f the set of fixed points of s, and p the 
subspace { X  E g : sX = - X } .  For X E p, let T, denote the restriction 
of (ad X ) 2  to p. Then Txp C p. Suppose the pair (G, K )  is associated 
with (9, s) and suppose that K is connected and closed in G. Let r 
be the natural mapping of G onto GIK and put o = r (e) .  For g E G, 
let T(g) denote the mapping xK -+ gxK of GIK onto itself. The subspace 
p will be identified with the tangent space (GIK), by means of the 
mapping d r .  Let Q be any G-invariant Riemannian structure on GIK. 
Then GIK is complete and locally symmetric. 
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We shall now describe the geometric concepts Exponential mapping 

Theorem 4.1. The Exponential mapping of p into GIK is independent 

and curvature for GIK in group theoretic terms. 

of the choice of Q. Its differential is given by 

d Expx = dT(exp X ) ,  o - ( T X Y  X E p .  
n=O (2n + l)! ’ 

Here p is considered as a manifold in the usual way and whose tangent 
space at each point is identiJied with p itsey. 

Proof. Let X ,  Y E p .  From (4)) 93, we have n-(exp X )  = Exp X so 
from Theorem 1.7, Chapter 11, we obtain 

1 - e-adX 

ad X d Expx ( Y )  = dn o d expx (Y) = dn o dfJexp x o ( Y )  

From the relations [f, p ]  C p, [ p ,  p ]  C f it follows that d7r (ad X ) m ( Y )  is 
equal to Tg ( Y )  if m = 2n and 0 if m is odd. This proves the theorem. 

Let R denote the curvature tensor of the space G / K  
corresponding to the Riemannian structure Q. Then, at the point o E GIK, 

Theorem 4.2. 

R,(X, Y) 2 = - “ X ,  YI, 21 for X ,  Y, 2 E p .  

Proof. First we evaluate the sectional curvature directly and then 
use results from $12, Chapter I, to find the curvature tensor. 

Assuming of course that dim p > 1, let S be a two-dimensional 
subspace of p and let X,, X,, ..., X , ,  be an orthonormal basis of p such 
that Xl and X ,  belong to S. Each X E S can be written X = xlXl + 
x2X, where xl, x2 E R and the Laplacian A on S is given by 

a 2  a 2  

axf+aJc:. 
We also put 

If a and b are two vectors in a metric vector space, we denote by a v 6 
the parallelogram spanned by a and 6 and by 1 a v 6 I the area. 



216 SYMMETRIC SPACES [Ch. IV 

Let No be a normal neighborhood of 0 in the tangent space p. The 
submanifold M ,  = Exp (S n No) of M = G/K has a Riemannian 
structure induced by Q; a curve in M ,  has the same arc length whether 
it is considered as a curve in Ms or M. If p E M,, the unique geodesic 
in Exp No from o to p is the shortest curve in M ,  joining o and p .  
It follows that the Exponential mappings at 0 ,  for Ms and M, respectively, 
coincide on S n No. Thus, if X E S n No, the vectors dT(exp X) . vl 
and dT(exp X) . v2 are tangent vectors to M ,  at Exp X ;  the ratio of 
the surface elements in M ,  and S n No is therefore given by 

since .r(exp X) is an isometry of GjK. According to Lemma 12.1, 
Chapter I, the sectional curvature of M along the plane section S is 

Let (Aii) be the matrix expressing A, in terms of the basis X,, ..., X ,  
of p, AxXi = Xi A,X,. Then 

f (X) = 1 (A,iX1+ **. + AmlXm) V ( A i J i  + * a *  + AmzXm) I 
112 

= l ( ~ 1 l ~ z z  - A, ,A~J~  + Z: ( ~ ~ 9 2  - A,lAjz)Z! 
I < a i j j m  

since I AilAiz - Ai,Ai2 I is the area of the projection of vl V v2 on 
the ( X i ,  Xj)-plane. In computing [dfl(O) from the expression for f ( X ) ,  
we only have to consider terms of second order in x1 or x2. If i # j ,  
Aij only contains terms of second order and higher. Hence 

[Of1 (0) = EdA,,A*,I (0). 

Now the matrix elements Tij of Tx = (ad (xlXl + X ~ X , ) ) ~  are of 
second order in x1 and x2. It follows that (writing Q for Q,) 

1 1 
[dfl (0) = 3 [A(Tl, + 7'22)1(0) = 3 {Q(TxX~, XJ + O(TxX2, X2)>1(0) 

1 
= 3 {Q(Tx1X,l, XI) + Q(Tx~X~P XI) + & ( T x ~ X ~  XA + Q ( T x J ~ ~ } *  

In this expression the first and the last terms vanish. The two other 
terms are equal because of the invariance 

QAAd (k) X ,  Ad (k) Y )  = Qo(X, Y ) ,  X ,  Y E P ,  
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which implies 

We have thus proved 

To prove the formula for R we consider the quadrilinear form 

In  view of Theorem 12.2, Chapter I, we know then that 

if X,, X ,  are orthonormal vectors in Q. We also have 

B(X,  Y ,  2, T )  = - B(Y, x,  z, T ) ,  

B(X ,  Y ,  2, T )  = - B ( X ,  Y ,  T ,  Z ) ,  

B(X,  Y, 2, T )  + B(Y, 2, x, T )  + B(2, x, Y ,  T )  = 0. 

(3) 

(4) 

( 5 )  

Here we have used the Jacobi identity and Lemma 12.5, Chapter I. 
Now if X, Y are arbitrary vectors in Q, there exist orthonormal vectors 
Xl,X, in p such that 

x = XlX1 + XzX,, y = YlXl +Y2& XI9 x2, Y1, yz E R .  

Then, using (3) and (4) we get 

H(X, Y ,  x, Y )  = (XlYZ - X,Y,)2 B(X,, x,, XI, X,) 

so 

B(X,  Y, x, Y )  = 0 for X ,  Y E  Q .  

From Lemma 12.4, Chapter I we can conclude that B = 0 and this 
proves Theorem 4.2. 

The result shows that the curvature tensor is independent of the 
G-invariant Riemannian structure Q. In  view of Lemma 1.2 we get 
the following: 

Corollary 4.3. The Riemannian connection on GIK is the same for 
all G-invariant Riemannian structures Q on G/K. 
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$5. Locally and Globally Symmetric Spaces 

Let M be a Riemannian manifold, p a point in M. In general it is 
impossible to find any neighborhood N of p which can be extended to 
a complete Riemannian manifold a. However, if M is locally symmetric 
then this turns out to be possible and can be taken globally symmetric. 
We shall also establish another relation between locally and globally 
symmetric spaces, namely that the universal covering manifold of a 
complete Riemannian locally symmetric space is globally symmetric. 

Let M be a Riemannian locally symmetric space and p 
a point in M.  There exists a Riemannian globally symmetric space i@, 
an open neighborhood N p  of p in M and an isometry 9 of N p  onto an open 
neighborhood of ~ ( p )  in i@. 

Theorem 5.1. 

The proof below is broken up into a few lemmas. Let the Riemannian 
structure of M be denoted by Q and let R denote the curvature tensor. 
Let p denote the tangent space Mp.  If A is an endomorphism of p ,  
then A can be uniquely extended 'to the mixed tensor algebra a(p) 
over p as a derivation, preserving type of tensors and commuting with 
contractions. Denoting this extension again by A we 
w EM,*, 

A(w @ X) = Aw @ x + w @ A X .  

Applying contractions and noting that A annihilates 

(Aw) ( X )  = - w(AX) .  

It follows easily that 

have, if X i  Mp,  

scalars, we get 

( A  . QA ( X ,  Y )  = - Q,(AX, Y )  - QAX,  AY) ,  

( A  . RP) ( X ,  Y )  = [A, R,(X, Y)1 - R,(AX, Y )  - &AX, AY)  

(1) 

(2) 

for X, Y E p. Here the bracket [E,  F ]  of two endomorphisms denotes 
the endomorphism EF - FE. 

Lemma 5.2. Let f denote the set of all endomorphisms of p ,  which, 
when extended to the mixed tensor algebra D ( p )  as above, annihilate Qp 
and R,. Then f is a Lie algebra with the bracket [A, B] = AB - BA; 
further, R p ( X ,  Y) E f for any X ,  Y E p .  

Proof. By (1) and (2) above, A E f if and only if 

Q,(AX,  Y )  + C?,(X, A Y )  = 0, 

[A,  R,(X, Y)1 = R,(AX, Y )  + R,(X, AY)  

(3) 

(4) 



5 51 Locally and Globally Symmetric Spaces 219 

for all X, Y E p .  We express (3) by saying that A is skew symmetric 
with respect to Qp. Now, suppose A, B E f ;  then 

Q,((AB - BA) X ,  Y )  + Qp(X,.(AB - BA) Y )  

= - Q,(BX, A Y )  + Q,(AX, B Y )  - Q,(AX, B Y )  + Q,(BX, A Y )  = 0, 

Similarly, by (4) and the Jacobi identity 

“4 BI, RAX,  Y)1 = - “B, R,(X, Y) l ,  A1 - “R,(X, Y ) ,  4, BI 

= [A, R,(BX, Y )  + R,(X, B Y ) ]  - [B, %(AX, Y )  + R,(X, AY)1 

= R,(ABX, Y )  + R,(BX, A Y )  + R,(AX, B Y )  + R,(X, A B Y )  

- Rp(BAX, Y )  - R,(AX, B Y )  - R,(BX, A Y )  - R,(X, B A Y ) ,  

[[A, BI, R,(X, Y ) ]  = %([A, B] . x, Y )  + %(X, [A, BI * Y ) .  
so 

Now, if X, Y E p, the endomorphism Rp(X,  Y )  of p is skew symmetric 
with respect to Qp (Lemma 12.5, Chapter I). Let X* and Y* be any 
vector fields on M such that Xp* = X, Y,* = Y. In general, if D,, D, 
are derivations of an algebra the same is true of D,D, - D,D,. Thus 
the endomorphism 

R(X*,  Y*)  1 Vx*Vy* - VY* Vx* - V[x*.y*l  

is a derivation of the mixed tensor algebra %(&I), preserving type of 
tensors and commuting with contractions. In  addition, R( fX* ,  gY*) . 
hZ = fgh R(X*, Y*) . 2 for f, g ,  h E Cm(M) and 2 E W ( M ) .  This 
implies that 

(R(X*,  Y*) T) ,  

for a tensor field T only depends on the values Rp(X,  Y) and Tp. We 
can therefore put 

R,(X, Y )  . T,  = ( R  (X*,  Y * )  T),.  

The  mapping Tp -+ Rp(X,  Y )  . Tp is the unique extension of the 
endomorphism R J X ,  Y )  of p to a derivation of the mixed tensor algebra 
%(p) commuting with contractions. Since M is locally symmetric, we have 

R,(X, Y )  . R, = ((Vx*Vy* - VY*VX* - V[X*,Y*I) % = 0, 

and this shows that Rp(X,  Y) E f, proving the lemma. 
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Consider now the direct sum g = f + p;  we introduce a bracket 
operation in g as follows: 

For X I ,  X ,  E o, 

For X E o, T E t, 

[ X I ,  X,] = - R(Xl,  X2) .  

[ T ,  XI = - [ X ,  TI = T . X ( T  operating on X ) .  

For T I ,  T2 E f ,  [TI, TZI = TIT?, - T J l .  

The definition of the bracket [X,, X,] is of coqrse motivated by Theo- 
rem 4.2. 

The bracket operation above turns g into a Lie algebra. 

Since the bracket operation is skew symmetric, only the 

(5 )  

Lemma 5.3. 

Proof. 
Jacobi identity 

rz1, [ZZ, z 3 1 1  + P - 2 ,  rz3, z111 + [G, [Zl, z 2 1 1  = 0 

has to be verified. If all 2, belong to f ,  (5) is just the Jacobi identity 
for €. If Z,, 2, E €, 2, E p, ( 5 )  is immediate from the definition of the 
bracket. If Z,, 2, E p, 2, E f ,  then (5) reduces to (4). Finally, if all 2, 
belong to p, the Jacobi identity is the Bianchi identity (Lemma 12.5, 
Chapter I). 

Now we have the relations 

[f, €1 c f ,  [f, PI c Q, [P, PIC f ,  

which show that the mapping s : T + X -+ T - X ( T  E f ,  X E p) is 
an involutive automorphism of g. The set of fixed points of s coincides 
with f ,  

The pair (9, s )  is an effective orthogonal symmetric Lie 
algebra. 

Proof. Suppose n is an ideal of g contained in t. Then if T E n, X E p 
we have 

Lemma 5.4. 

[T ,  XI E p n n = (0) 

so T . X = 0; hence T = 0 and n = (0). In particular, if 3 denotes 
the center of g, then € n 3 = {O}. 

The adjoint group Int (9) has Lie algebra ad, (9). Let K denote the 
analytic subgroup of Int (g) whose Lie algebra is ad, (1). Each member 
of K leaves p and f invariant, so K is a Lie subgroup of the product 
group GL(p) x GI+(€). The mappings of GL(p) x GL(t) onto GL(p) 
and of GL(p) x GL(€) onto GL(f),  obtained by restriction to p and f,  
respectively, are analytic homomorphisms. The images K p  and Kf 
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of K under these mappings are analytic subgroups of GL(p) and GL(f), 
respectively. Their Lie algebras are obtained by restricting the endo- 
morphisms in ad, (t) to p and f, respectively. We see then that the Lie 
algebra of Kp is exactly € and the Lie algebra of Kt is adf (t). Thus 
Kf = Int (f) (as Lie groups). 

Now, each automorphism A of p can be extended uniquely to a type 
preserving automorphism 2 of the mixed tensor algebra n(p) over p 
such that A coincides with ("A)-' on the dual space pn. Those auto- 
morphisms A of p for which A" leaves invariant Qp and Rp, form a 
compact Lie subgroup of GL(p) with Lie algebra f. The identity com- 
ponent of this group must therefore coincide with K p ;  thus the group 
K p  is compact and so is its homomorphic image Kt. 

Let (K,) be a sequence in K. There exists a subsequence (Ay) of (k,) 
such that the corresponding sequences of restrictions to p and f are 
convergent; it follows that (kv )  is convergent (in the relative topology 
of GL(g)) to an element K E K. In particular, K is a closed subset of 
GL(g); owing to Theorem 2.10, Chapter 11, the Lie group K carries 
the relative topology of GL(g). Thus K is a compact Lie group. This 
shows that € is compactly imbedded in g and the lemma is proved. 

The center j of g is invariant under s; hence j = (f n j) + (p n 3). 
Now, t n j = {0} so j C p. Let p' denote the orthogonal complement 
of j in p (with respect to Qp). Then [f, p'] C p' so f + p' is an ideal of g, 
isomorphic to ad, (9). Let c = dim j. Then the product group 

G = Int (9) x Rc 

has Lie algebra ad, (9) x j; the Lie group K is a compact Lie subgroup 
of G with Lie algebra ad, (f). The automorphism s of g induces an auto- 
morphism u of Int (9) such that 

9 X E ! 3  (T . X = ead(s.X) 

(Chapter 11, 55). We extend u to an automorphism of G, also denoted u, 
by putting u . a = a-1 for a E Re. Then K is the identity component 
of the set of fixed points of u. Thus (G, K) is a Riemannian symmetric 
pair. 

If X E g, let X, denote the component of X in j according to the 
direct decomposition g = ( f  + p') + j. Then the mapping X +  (ad X,X,) 
is an isomorphism of g onto ad, (9) x j, carrying f onto ad, (f )  and such 
that the automorphisms s and (du), correspond. Thus we can regard 
Ad, (K) as a group of automorphisms of g; this group leaves invariant 
p and the quadratic form Qp on p. Identifying Q with (GIK), we see 
that there exists a unique G-invariant Riemannian structure on G/K 
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such that Qp = Qp. With this Riemannian structure, GIK is globally 
symmetric (Prop. 3.4) and this is the desired space i@. In fact, the 
curvature tensor of GIK is given by Theorem 4.2, 

R@(X, Y )  . = - “ X ,  YI, 4 ,  x, Y ,  E P I  

and by the definition of the bracket in g, 

- [ [X ,  Y ] ,  Z ]  = - [- R,(X, Y ) ,  Z]  = Rp(X, Y )  . Z. 

Hence 
RD = R,, &, = Qpr 

and the theorem now follows from Lemma 1.2 and Lemma 1.4. 

In the proof above, the group G was constructed by means 
of the adjoint group Int (9). A minor shortcut could be taken by making 
use of the theorem, that for every Lie algebra a over R there exists a 
Lie group A whose Lie algebra is isomorphic to a. However, this 
theorem is neither proved nor used in this book (cf. $8, Chapter 11). 

Proposition 5.5. A Riemannian locally symmetric space M is an 
analytic Riemannian manifold. 

Proof. In view of Theorem 5.1, there exists a covering {BaIaeA of M 
with open balls B ,  = B,(,,(p,) such that for each a, B3p(a)(pa) is a 
normal neighborhood of pa,  isometric to an open set in a Riemannian 
globally symmetric space. We have to show that for any a, /3 E A, the 
normal coordinates at pa  and p ,  are analytically related on B ,  n B,. 
We may assume for the radii, that p(a) 2 p(/3). Then if B ,  n B,  # 0, 
the ball Bsp(,)(pa) contains B,. Since the Riemannian structure on M 
is analytic on Bgp(,)(Pa), the normal coordinates at pa andp, are analytically 
related on B,, in particular on B, n B,. 

As a consequence we note that the analyticity assumption in the 
definition of a Riemannian globally symmetric space can be dropped. 

We shall now establish another connection between locally and 
globally symmetric Riemannian spaces. 

Let M be a complete, simply connected Riemannian 
locally symmetric space. Then M is Riemannian globally symmetric. 

Let p E M and let B p @ )  be a spherical normal neighborhood 
such that the geodesic symmetry sp is an isometry of B,(p) onto itself. 
We define a mapping @ of M into M as follows. Let q E M and let 
y( t ) ,  0 f t < I ,  be a continuous curve joining p and q. Let y1 be a 
continuation of sp along y as defined in $1 1, Chapter I, and put @(q) = 

Remark. 

Theorem 5.6. 

Proof. 
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vl(q). Since M is simply connected it follows from Prop. 11.4 that 
@(q) does not depend on the choice of y. For the same reason @ coincides 
withy,, in a neighborhood of q. Hence @ is a differentiable mapping 
of M into M such that for each q E M ,  d@* is an isometry. Since @ 
reverses the direction of each geodesic starting at p ,  it is clear that 
@ ( M )  = M and @ o @ is the identity mapping. Being involutive, 
@ must be one-to-one and the theorem is proved. 

Let M be a complete Riemannian localty symmetric 
space. Let g denote the Riemannian structure on M and let (M*,  T )  be 
the universal covering manifold of M. Then M*, with the Riemannian 
structure T*g, is a Riemannian globally symmetric space. 

In  fact, M* satisfies the hypothesis of Theorem 5.6. 

Corollary 5.7. 

5 6. Compact Lie Groups 

A compact connected Lie group G can always be regarded as a 
Riemannian globally symmetric space. The  mapping u : (g, ,  g z )  + (gz ,  g , )  
is an involutive automorphism of the product group G x G. The  fixed 
points of u constitute the diagonal G* of G x G ;  the pair (G x G, G*) 
is a Riemannian symmetric pair and the coset space G x G/G* is 
diffeomorphic to the group G under the mapping 

(R1, gz> G* - g d .  

A Riemannian structure on G x G/G* is G x G-invariant if and only 
if the corresponding Riemannian structure on G is invariant under 
right and left translations. Thus by Prop. 3.4, G is a Riemannian globally 
symmetric space in each bi-invariant Riemannian structure. The  natural 
mapping of G x G onto G x GIG* now becomes the mapping T :  

G x G + G given by m(gl, gz) = g,gi1. Recalling that the geodesic 
symmetry s, is given by s, o T = T o u, we see that s,(g) = g-1 for 
g E G. More generally, s,(g) = xg-lx. 

Let g denote the Lie algebra of G. Then the product algebra g x g 

is the Lie algebra of G x G and the identity 

( X ,  Y )  = ( $ ( X  + Y ) ,  * ( X  + Y ) )  + (+(X  - Y ) ,  - * ( X  - Y ) )  

gives the decomposition of g x g into the two eigenspaces of du. Since 
n-(gl,gz) = g l g i l ,  it follows that 

d7T(X, Y) = x - Y, x, YEQ. 
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We now denote, 

exp* : the exponential mapping of g x g into G x G; 

exp : the exponential mapping of g into G; 
Exp : the Exponential mapping of g into G (G being con- 

sidered as a Riemannian globally symmetric space). 

Formula (3) in 43 then implies 

w(exp* ( X ,  - X ) )  = Exp (d?r(X, - X ) )  ( X  E 43). 

Hence exp X . (exp (- X))-l = Exp 2X, so we have 

exp X = Exp X ,  x E g. 

The geodesics in G through e are therefore just the one-parameter 
subgroups. This fact could also have been verified by using (2) $9, 
Chapter I, as was done in the special case considered in Theorem 6.9 
in Chapter 11. 

The orthogonal symmetric Lie algebra associated with (G x G, G*) 
is (g x g, T )  where 7 is the automorphism (X, Y) + (Y, X) of g x g. 

5 7. Totally Geodesic Submanifolds. Lie Triple Systems 

In contrast to general Riemannian manifolds, globally symmetric 
spaces contain plenty of totally geodesic submanifolds. We shall now 
describe these in Lie algebra terms. 

Let M be a Riemannian manifold and S a totally 
geodesic submanifold of M .  If 1M is locally symmetric, the same holds 

The proof is straightforward because each geodesic symmetry on S 
is obtained from a geodesic symmetry of M by restriction. 

Definition. Let g be a Lie algebra over R and let m be a subspace 
of g; m is called a Lie triple system if X ,  Y ,  2 E m implies [X, [Y, z ] ]  E m. 

Let M be a Riemannian globally symmetric space and 
let the notation be as in Theorem 3.3. Identafring as usual the tangent 
space Mp,  with the subspace p of the Lie algebra of I (M) ,  let s be a Lie 
triple system contained in p .  Put S = Exp5. Then S has a natural 
daywentiable structure in which it is a totally geodesic submanifold of 
M satisfring Sp0 = 5 .  

Proposition 7.1. 

for s. 

Theorem 7.2. 
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On the other hand, if S is a totally geodesic submanifold of M and 
p ,  E S, then the subspace 5 = Sp, of p is a Lie triple-system. 

Proof. Suppose first that S is a totally geodesic submanifold and 
let X, Y be two vectors in the tangent space 5 = Sp,. For each t tz R, 
the vector A = d Exply(X) is a tangent vector to S at Exp (tY). 
As we have seen earlier, the vector dT(exp (- tY)) - A is M-parallel to 
A along the curve exp tY (t E R). Using Theorem 14.5, Chapter I, we 
conclude that dT(exp (- tY))  . A E 5. In view of Theorem 4.1, this 
means that 

00 

?(Zn (TtY)" + I)!  ( X ) E S  

for all t E R. This.implies that T y ( X )  E s. Now, 

TY+Z = TY + Tz + ad Y a d Z  + adZad Y. 

Combining this with the Jacobi identity, we obtain 

w ,  [ Z ,  XI1 + [ X ,  [Y, 211 E 5 for X, Y, 2 E 5. (1) 

Interchange of X, Y gives the equation 

which, added to ( I ) ,  shows that [X, [Y, z ] ]  E s. 
On the other hand, suppose 5 is a Lie triple system. Still using the 

notation of Theorem 3.3, we have [s, 51 C [ p ,  p ]  C f. Moreover, the 
subspace [5 ,  51 is a subalgebra of f ;  this follows from the identity 

" X ,  YI, [ U ,  VII + [ U ,  [ K  [Z y111 + [V,  " X ,  YI, Ull = 0 

combined with the fact that s is a Lie triple system. I t  follows immediately 
that the subspace g' = 5 + [s, 51 is a subalgebra of g. Let G' denote the 
analytic subgroup of G with Lie algebra g', let M' denote the orbit 
G' . p ,  and let K' denote the subgroup of G' leaving the point p ,  fixed. 
Since the identity mapping of G' into G is continuous, K' is a closed 
subgroup of G'. Since M' is in one-to-one correspondence g * po--+gK' 
with G'IK' we can carry the topology and differentiable structure of 
G'IK' over on M';  by Prop. 4.4, Chapter 11, M' is then a submanifold 
of M. Furthermore, (M')po = 5. The M-geodesics through p ,  have the 
form exp t X  1 p ,  <'t E R) where X is a general vector in p. This geodesic 
is tangent to M' at p ,  if and only if X E s; it follows that the submanifold 
M of M is geodesic at p,. Since G' is a group of isometries of M and 
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M', and acts transitively on M', it follows that M' is geodesic at each 
of its points, hence totally geodesic. Obviously M' = Exp 5, and the 
theorem is proved. 

Remark. 'The automorphism u : g -+ sp,gs,, has differential du which 
leaves g' invariant and has fixed point set f n g' which is the Lie algebra 
of K'. Thus (G', K ' )  is a symmetric pair and the manifold M' = Exp 5 
is a Riemannian globally symmetric space. 

EXERCISES AND FURTHER RESULTS 

A. Geometry of Homogeneous Spaces 

1. Let (G,  H )  be a symmetric pair ($3) with respect to an involutive 
automorphism u of G. Let so denote the diffeomorphism gH +- u(g)H 
of G/H onto itself. Then (cf. Nomizu [2]): 

(i) G/H has a unique affine connection V invariant under so and 
under the action of G. 

(ii) Let g = 8 + m be the decomposition of g into the (+ 1)-eigen- 
space and (-1)-eigenspace of du. We identify m and (GIH), by means 
of the differential dn of the natural map n : G -+ G/H. The geodesics 
through the origin o = { H )  are the curves 

y x :  t-+exptX.o (X E m). 

(iii) If X ,  Y E  m, the parallel translate of Y along yx is (dT(exp tX)),( Y) .  
(iv) The torsion and curvature tensor of G/H are given by 

T = 0, R,(X, Y)(Z)  = -[[X,  Y ] ,  21, X ,  Y ,  2 E m. 

Moreover 

O"(R) = 0 for all V E  W ( G / H ) .  

2. Let G be a compact connected Lie group and H C G a closed 
subgroup. Let $ c g denote the Lie algebras, let Qo be an Ad(G)- 
invariant positive definite symmetric bilinear form on g and let m be 
the orthogonal complement of 8 in g. Let Q be the corresponding G- 
invariant Riemannian structure on G/H. Then: 

(i) The geodesics in G/H through o = { H }  are y x ( t )  = exp tX - o 
( X  ~ m )  (cf. Nomizu [2], Samelson [3]). 
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(ii) If X ,  Y E m are orthonormal, the corresponding sectional curvature 
of GIH is given by 

where (2 E g, 2, E m, 2, E @) 
(cf. Helgason [2]). 

3. A compact semisimple Lie group G has a bi-invariant Riemannian 
structure Q such that Qe is the negative of the Killing form of the Lie 
algebra g of G. If G is considered as a symmetric space (G x G) G* as 
in $6, it acquires a bi-invariant Riemannian structure Q* from the 
Killing form of g x g. Show that Q = 2Q*. 

4. Show that any two complete simply connected Riemannian mani- 
folds M I ,  M ,  of the same dimension and of the same constant sectional 
curvature are isometric. 

5. Let M be a connected locally compact metric space and I ( M )  the 
group of distance-preserving mappings of M onto itself, topologized by 
the compact open topology. Let H C I ( M )  be a closed subgroup. Then 
for each p E M ,  the orbit H . p is closed. 

6. Let M be a simply connected Riemannian globally symmetric 
space, o E M any point. Suppose A : M ,  -+ M ,  is a linear transformation 
leaving the metric tensor go and the curvature tensor R, invariant. Then 
there exists an isometry of M onto M such that ~ ( o )  = o and dv, = A. 

1 1  2 l j 2  = Qo(Z, 2) and 2 = 2, + Z ,  

B. Cohomology of Symmetric Spaces 

1. Let M be a Riemannian globally symmetric space, w a differential 
form on M invariant under each member of I,,(M). Then w is closed, 
that is, dw = 0. 

2. Let (G, K )  be a symmetric pair, G and K compact and connected. 
Define the * operator on %(G/K) and harmonic form on G , K  as in 47, 
Chapter 11. Prove that the harmonic forms on GIK are precisely the 
G-invariant forms. 

NOTES 

$1. The material here is due to 8. Cartan ( [6]  and [22], Chapter XI) for the 
Riemannian case. Concerning the affine case see Whitehead [ 11 for the local theory, 
Nomizu [2], Fedenko [l], Rozenfeld [2] and Berger [2] for the global theory. 
Riemannian manifolds for which the curvature is preserved by parallelism had 
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independently been considered by H. Levy [l] without giving solutions beyond 
the spaces of constant curvature. 

The results of 92 (which actually apply to all (separable) connected, locally 
compact metric spaces M) are due to van Dantzig and van der Waerden [I], see 
also Arens [l]. 

Lemma 3.2 was proved by E. Cartan [6], p. 230, by the use of differential 
equations. It was extended by Myers and Steenrod [l] to all Riemannian manifolds. 
For a modern approach, using Palais [5 ] ,  see Chu and Kobayashi [l]. In [16] 
8. Cartan points out the fact that the geodesics in M are orbits of one-parameter 
subgroups from I(M). This property is further examined in Nomizu [2]. 

The formula in Theorem 4.2 for the curvature tensor of a symmetric space 
is due to J? Cartan [6] and extended by Nomizu [2] to all reductive homogeneous 
spaces. The proof in the text is from Helgason [2] where the formula for the 
differential of Exp (Theorem 4.1) is also given. 

The :elation between locally and globally symmetric spaces is not altogether 
clear from E. Cartan’s work although his extensive paper [lo] gives a global 
classification. Theorem 5.1 is a special case of a theorem of Nomizu [2j on reductive 
homogeneous spaces. The idea of the proof was already used by E. Cartan [6], 
p. 225, for the similar problem of constructing a locally symmetric space whose 
curvature tensor satisfies certain necessary conditions involving the holonomy 
group (see the introduction to this chapter). Theorem 5.6 is due to Bore1 and 
Lichnerowicz [ 13 ; they outlined a proof based on results of Ehresmann [l] applied 
to the local group of local isometries of a Riemannian locally symmetric space. 
Ambrose has in [l] stated and proved an extension of Theorem 5.6 to arbitrary 
Riemannian manifolds. 

The connection between totally geodesic submanifolds and Lie triple 
systems is pointed out inE. Cartan [7], p. 133; see also Mostow [3]. 

93. 

94. 

95. 

97. 



CHAPTER V 

DECOMPOSITION OF SYMMETRIC SPACES 

In the previous chapter we have seen that a Riemannian globally symmetric 
space M gives rise to a pair (1,s) where I is the Lie algebra of the group of isometries 
of I ( M )  and s is an involutive automorphism of I having a compactly imbedded 
subalgebra for the set of fixed points. This chapter is devoted to the study of 
such pairs. It is shown in $1 that they fall into three different categories, the 
compact type, the noncompact type, and the Euclidean type. An arbitrary pair 
(1,s) can be decomposed into three parts each of which is from the types .above. 
Since the Euclidean type is uninteresting we are left with two types of pairs (I,s), 
the compact type and the noncompact type, both of which have I semisimple. The  
symmetric spaces corresponding to these have positive sectional curvature and 
negative sectional curvature, respectively. There is a remarkable duality (92) 
between the two types which for example provides two viewpoints of the classifica- 
tion problem and incidentally explains the formal analogy between spherical 
trigonometry and hyperbolic trigonometry. 

The rank of a symmetric space M is an important invariant; it is defined as the 
maximum dimension of any flat totally geodesic subspace A of M. It  is shown in 
96 that each geodesic in M can be moved into A by an isometry of M. This means 
that for any two points in M one can speak of their complex distance; this is an 
I-tuple (rl, ..., Y J  of real numbers (I = rank of M) and has the property that 
two point-pairs in M are congruent under an isometry of M if and only if their 
complex distance is the same. Just as ordinary Euclidean distance is > 0, the 
I-tuple ( r I ,  ..., r l )  is restricted to the fundamental domain of a certain discontinuous 
group. (For the noncompact type this is the Weyl group W (Chapter VII, $2); 
for the compact type the group is larger (Chapter VII, 99.) 

5 1. Orthogonal Symmetric Lie Algebras 

We recall that an orthogonal symmetric Lie algebra is a pair (I ,  s) 

(i) I is a Lie algebra over R. 

(ii) s is an involutivet automorphism of I. 

(iii) u, the set of fixed points of s, is a compactly imbedded subalgebra 

where 

of I.  

t That is, s # I and sz = I. 

229 
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If, in addition, u n 3 = {0), where 3 denotes the center of I, then (I, s) 
is called eflectiwe. Two orthogonal symmetric Lie algebras (Il, sl) and 
(I2, s2) are called isomorphic if there exists an isomorphism 'p of 1, onto 
I, such that 'p o s1 = s2 o 'p. 

Examples. 

(a) Let I be a compact semisimple Lie algebra and s any involutive 
automorphism of I. Then (I, s) is an effective orthogonal symmetric 
Lie algebra. 

(b) Let I be a noncompact semisimple Lie algebra and let 1 = u + e 
be any Cartan decomposition of 1 (where u is the subalgebra). Let s 
denote the automorphism of I given by s(T + X) = T - X ( T  E u, 
X E e). Then (I, s) is an effective orthogonal symmetric Lie algebra 
(Prop. 7.4, Chapter 111). 

(c) Let e be a finite-dimensional vector space over R and let u be the 
Lie algebra of a compact Lie subgroup of GL(e). Let 1 denote the direct 
sum I = u + e ;  1 can be turned into a Lie algebra by defining 

[XI, X2l = 0 

[T ,  XI = - [X ,  T] = T . X 

[TI, 7'21 = TIT, - TZTI 

if X,, X ,  E e ,  

if I' E u, X E e, 

if T,, T2 E u. 

(Tacting on X )  

Then 1 is a Lie algebra containing u as a subalgebra. Assuming e # {0}, 
the mapping s : T + X -+ T - X ,  ( T  E u, X E e), is an involutive 
automorphism of I. The pair (I, s) is an effective orthogonal symmetric 
Lie algebra. The proof of this statement is the same as that of Lemma 5.4, 
Chapter IV. 

Definition. Let (I, s) be an effective orthogonal symmetric Lie 
algebra. Let I = u + e be the decomposition of 1 into the eigenspaces 
of s for the eigenvalue + 1 and - 1, respectively. 

(a) If 1 is compact and semisimple, (I, s) is said to be of the compact 
type. 

(b) If 1 is noncompact and semisimple and 1 = u + e is a Cartan 
decomposition of 1, then (I, s) is said to be of the noncompact type. 

(c) If e is an abelian ideal in I, then (I, s) is said to be of the Euclidean 
type. 

Definition. Let (I, s) be an orthogonal symmetric Lie algebra and 
suppose the pair (L,  U )  is associated? with (I, s). The pair (15, U )  is 

* See definition preceding Prop. 3.6, Chapter IV. 
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said to be of the compact type, noncompact type, or Euclidean type 
according to the type of (I, s). 

The  next theorem shows that every effective orthogonal symmetric 
Lie algebra can be decomposed into three others, which are of the 
compact type, noncompact type, and Euclidean type, respectively. 

Theorem 1.1. Let ( I ,  s )  be an effective, orthogonal symmetric Lie 
algebra. Then there exist ideals I,, I-, and I ,  in I with the following 
properties: 

1. I = I, + 1- + I, 
2. I,, 1- and I, are invariant under s and orthogonal with respect to the 

Killing fo rm of I .  

3. Let so, s-, and s, denote the restrictions of s to I,, I-, and I,, respectively. 
The pairs (I , ,  so), (I-, s-), and (I,, s,), are effective orthogonal symmetric 
Lie algebras of the Euclidean type, compact type, and noncompact type, 
respectively. 

The proof of this theorem will be broken up into a sequence of lemmas. 
Let u and e denote the eigenspaces of s for the eigenvalues + 1 and - I ,  
respectively. Then we have 

(direct sum). 

I = u + e (direct sum), [II, u] C u, [u, e ]  C e ,  [e, el  C 11. (1) 

Let B denote the Killing form of I. Since B is invariant under each 
automorphism of I, in particular under s, it follows that the subspaces u 
and e are orthogonal with respect to B. 

Lemma 1.2. 

This lemma is a special case of Prop. 6.8, Chapter 11. 
Now let U denote the analytic subgroup of the adjoint group Int  (I) 

with Lie algebra adI (u). As a result of our assumptions, U is a compact 
Lie subgroup of GL(1); thus it carries the relative topology of GL(1). 
Since U is connected, relations (1) imply 

The Killing fo rm B is strictly negative dejnite on u. 

u . u c u ,  u . e C e  for u E U. 

Being a compact linear group, U leaves invariant a strictly positive definite, 
symmetric bilinear form Q on e x e. There exists a basis XI, ..., X, of e 
and real numbers PI, ..., Pn such that 

Q(X,  X )  = X: + ... + xi, 
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if X = Zys1 x,X,. Let 

Then e is the direct sum of the subspaces e,, e-, e+;  moreover, these 
subspaces are orthogonal with respect to Q and B and each one is 
invariant under s. If we define the endomorphism b of e by bX, = pix, 

for X, Y E e. Since B and Q are invariant under U, the endomorphism b 
commutes with the restriction of each u E U to e. It follows that the 
spaces e,, e-, and e+ are invariant under U and under ad, (u). 

Lemma 1.3. 
(i) e, = {X E 1 : B(X ,  Y )  = 0 for  all Y E 1). 

(ii) [e,, el  = {0} and e, is an abelian ideal in I. 

(iii) [e-, e,] = (O}. 

Proof. 

The subspaces e,, e-, and e, satisfy the following relations: 

Let n denote the set on the right-hand side in (i). Then n 
is invariant under s, so n = n n u + n n e (direct sum). Now n n u = {0} 
due to Lemma 1.2 so n C e. But n n e- = n n e, = (0) so n C e,. On 
the other hand, if X E e,, then B(X,  Y) = 0 for all Y E eo, hence for 
all Y E 1. This proves (i). As a result of (i), e, is an ideal in I, but [e,, e] C u 
by (1). This proves (ii). In order to prove (iii) we observe that [e-, e,] C u, 
so, owing to Lemma 1.2, it suffices to prove 

B(u, [e-, e,]) = 0. 

But if T E u, X* E e*, then 

B(T, [X- ,  X,]) = B([T,  x-1, X,) = 0 

and the lemma is proved. 
We define now u+ = [e,, e,], u- = [e-, e-] and let u, denote the 

orthogonal complement (with respect to B) of the subspace of u spanned 
by u+ and u-. 

Lemma 1.4. The subspaces u,, u+, and u- are ideals in u, orthogonal 
with respect to B, and u = u, + u- + u+ (direct sum). 

Since [u,e,] C e , ,  we have by the Jacobi identity [u+,u] = 
[[e,, e,], u] c u+. Similarly [u-, u] C u-. Now, let X* E e i ,  Y* E e*. Then 

Proof. 

N X , ,  Y+l, [X-, y-1) = B(X+, [Y,, 1x4 y-11) = 0 
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due to the Jacobi identity and Lemma 1.3 (iii). Hence u+ and u- are 
orthogonal and the sum II- + u+ is an ideal in u. The orthogonal com- 
plement uo is also an ideal and the lemma now follows from Lemma 1.2. 

Lemma 1.5. 

6 )  [uo, e-I = [uo, e,] = {O}. 
(ii) [u-, e,] = [u-, e,] = {O}. 

(iii) [u+, e,] = [u+, e-] = (0). 

Proof. 

The following commutation relations hold: 

(i) Let T E u,, X ,  Y E e,. Then 

H([T, XI, Y )  = B(T,  [X, Y ] )  = 0. 

Thus [u,, e,] is orthogonal to e+.  Since B is strictly positive definite 
on e, and since [u,, e,] C e,, it follows that [u,, e+] = {O}. Similarly 
[u,, e-] = {O}. For (ii) we have [u-, e,] = [[e-, e-1, e,] = (0) by 
Lemma 1.3 (ii). Moreover, [u-, e,] = [[e-, e-1, e,] = {0} by Lemma 1.3 
(iii). The last part (iii) follows in the same way. 

In order to prove Theorem 1.1, we have to distinguish between two 
cases: eo = (0) and e, # {O}. Suppose first e, f (0). Then we put 

I, = uo + e,, 1.- = u... + e-, 

Then I is the direct sum of the subspaces I,, I-, I + ;  these subspaces are 
invariant under s and orthogonal with respect to B. Using the lemmas 
above, we have 

1, = u+ + e,. 

“0,  11 = [u,, I] + [e,, I1 

= [uo, ul + [uo, eo1 + [11,, e+l + [uol e-I + [to, 11 

c 11, + e, + {O} + PI  + Po 

so [I,, I] C I,. Secondly 

[I,,  11 = [Ut, 11 + [e+, 11 

= [It+, UI -i- [u+, e,l + [u+, e-I + [u+, e+1 + It+, u1 + [e+, Pol + [e,, e-I + te,, e+I 

c u+ + (0) + (0) + eL + e +  + (0) + (0) + u, 

so [I,, I] c I,. Similarly [I-, 11 c I- so the subspaces I,, I-, 1, are ideals 
in I. This being so, their Killing forms are obtained from B by restric- 
tion. Since B is strictly negative on I-, it follows (Prop. 6.6, Chapter 11) 
that 1- is a semisimple compact Lie algebra. Since B is strictly negative 
definite on u+, and strictly positive definite on e,, I, is semisimple and 
it follows (Prop. 7.4, Chapter 111) that the decomposition I+ = u+ + e, 
is a Cartan decomposition of I,. Finally we consider I,. Since the center 
3, of I, coincides with the center 3 of I we have uo n 3,, C u n 3 = (0). 
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In order to show that uo is compactly imbedded in I,, we make use of 
the following lemma which was communicated to the author by J. Hano. 

Let Go be a Lie group and go its Lie algebra. Suppose go 
is the direct sum of two ideals g1 and g,. Let f i  be a subalgebra of gi (i  = 1,2), 
and put f, = f ,  + f,. Then i, is a compactly imbedded subalgebra of go, 
i f  and only if  f, and f, are compactly imbedded in g1 and g,, respectively. 

Proof. Without loss of generality, we can assume that Go is 
simply connected and is the direct product Go = G, x G, where G$ is a 
simply connected Lie group with Lie algebra gi (i = 1, 2). Let Ki 
denote the analytic subgroup of Gi with Lie algebra f, (i = 0, 1, 2). 
Then KO = K ,  x K,. If Zi denotes the center of Gi ( i  = 0, 1,2), then 
Z,  = 2, x 2,. The mapping (k,(K, n Z,), k,(K, n 2,)) + k,k,(K, n 2,) 
is a topological isomorphism of the product group 

Lemma 1.6. 

(KJK,  n Zl) x (K,/K2 n Z,) onto K,,/K, n 2,. 

In view of Lemma 5.1, Chapter 11, the Lie group KJK,  n 2, is analytic- 
ally isomorphic to the Lie subgroup AdGi (K, )  of Int (gi) (i  = 0, 1, 2). 
The lemma now follows immediately. 

Returning now to Theorem 1.1, we first note that there exists a Lie 
group L whose Lie algebraisisomorphic to I. In fact, if c = dim 3 ,  then 
the product group L = Int (I) x RC has for Lie algebra the product 
ad, (I) x 3. T o  see that this Lie algebra is isomorphic to 1, we observe 
that 3 C e and denote by e' the orthogonal complement (with respect 
to Q) of j in e. Then [u, e'] C e' and [e', e'] C u so the subspace u + e' 
is an ideal in I, isomorphic to ad, (I). 

From Lemma 1.6 it now follows that u, is compactly imbedded in I,. 
Moreover, e, is an abelian ideal in I, so (I,, so) is an orthogonal symmetric 
Lie algebra of the Euclidean type. 

It remains to consider the case e, = {O}. In this case uo is an ideal 
in 1. Hence its Killing form is strictly negative definite so u, is compact 
and semisimple. We put 

1, = (01, 
1" = (01, 

In each case, Theorem 1.1 follows easily. 

Corollary 1.7. Suppose X E e commutes elementwise with u. Then 
X E e,. 

In fact, we can write X = X ,  + X -  + X+ where X ,  E e,, X -  E e-, 
and X, E e,. Then the hypothesis implies that ad, (X,) and adI ( X - )  

I- = ua + u- + e-, 

1- = (01, 

I+ = u+ + e, 
1, = u, + u+ + e, 

if e- # (0); 
if e- = (0). 
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map u into (0). Thus (ad, (X+)), = (ad, (X- ) ) ,  = 0 and therefore 
B(X+, X,)  = B(X-,  X-) = 0. Hence X ,  = X -  = 0 and X E e,. 

A further decomposition of orthogonal symmetric Lie algebras into 
"irreducible" ones will be given later (cf. Chapter VIII, $5). 

$2. The Duality 

There is a remarkable and important duality between the compact 
type and the noncompact type. Let (I, s) be an orthogonal symmetric 
Lie algebra and put I = u + e as in (l), $1. Let I* denote the subset 
u + ie  of the complexification 1' of I. With the bracket operation 
inherited from Ic, I* is a Lie algebra over R.  The mapping s* : T + iX 
--t T - iX ( T  E u, X E e) is an involutive automorphism of I*. As will 
be verified presently, (I*, s*) is an orthogonal symmetric Lie algebra, 
called the dual of (I, s). Then (I, s) is the dual of (I*, s*). 

Let (I, s) be an orthogonal symmetric Lie algebra. 
Then: 

Proposition 2.1. 

(i) The pair (I*, s*) is an orthogonal symmetric Lie algebra. 
(ii) If (I, s) is of the compact type, then (I*, s*) is of the noncompact 

(iii) If (Il, sl) is isomorphic to (I,, s,), then (I:, sl*) is isomorphic to 

Proof. (i) Let (IC)R denote the Lie algebra I' when considered as a 
Lie algebra over R.  Then the Lie algebra (IC)" has a complex structure 
J given by the multiplication by i on 1'. Each endomorphism A of I 
or I* extends uniquely to a linear transformation of (1')" commuting 
with J .  In  this way the Lie groups GL(1) and GL(I*) become closed 
Lie subgroups of GL((IC)"). Consequently, the adjoint groups Int (I) 
and Int (I*) are Lie subgroups of GL((1')"). Let U denote the analytic 
subgroup of Int (I) with Lie algebra ad, (u). Now U is compact, so by Cor. 
2.9, Chapter 11, u is compactly imbedded in I*. For (ii) one just has to 
observe that I and I* are real forms of 1' so their Killing forms are 
obtained from the Killing form of 1' by restriction. For (iii) suppose 
rp is an isomorphism of I, onto I, such that rp o s1 = s, o rp. Then rp 
extends uniquely to an isomorphism p of 1: onto 1:. The restriction 
of p to 1: then sets up the required isomorphism between (I:, s:) and 

Let g be a semisimple Lie algebra over C. If 1 runs through all 
compact real forms of g and s runs through all involutive automorphisms 
of I, then I* runs through all noncompact real forms of g. 

type and conversely. 

(I?, %*). 

o;, 
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Let 1 be a compact semisimple Lie algebra. Let s1 and 
s, be two involutive automorphisms of 1 and let 1: and I,* denote the corres- 
ponding real forms of Ic. Then s, and s, are conjugate within the group 
Aut (I) if  and only if 1: and 1; are conjugate under an automorphism of 
1'. 

Proof. Suppose first that there exists a cr E Aut ( 1 ) .  such that 
s, = c r ~ , c r - ~ .  Let 1 = u1 + el ,  I = u2 + e ,  be the direct decompositions 
of 1 into eigenspaces of s, and s,, respectively. Then al = 11, and 
me, = e2. Let Z denote the unique extension of cr to a (complex) auto- 
morphism of 1'. Since 1; = u, + ie,, I,* = u, + ie,, it is obvious that 

For the converse (and nontrivial) part of Prop. 2.2 we shall use 
Theorem 7.2, Chapter 111, stating that two Cartan decompositions of a 
semisimple Lie algebra are necessarily conjugate under an inner auto- 
morphism. Suppose then that there exists an automorphism .Z of I' 
such that Z .  1; = 1;. Then the two Cartan decompositions I,* = 
u2 + ie,  and I,* = Z u, + iZ * el are conjugate under an inner auto- 
morphism y of 1;. Let r denote the unique extension of y to an auto- 
morphism of 1'. Then the automorphism r o Z leaves I invariant and 
its restriction to I sets up the desired conjugacy of s, and s,. 

As shown in Chapter IV, any compact Lie group can be given the 
structure of a Riemannian globally symmetric space. We shall now see 
that the subclass of orthogonal symmetric Lie algebras of compact 
type, so obtained, corresponds, under the duality, to the class of ortho- 
gonal symmetric Lie algebras (I, s) of noncompact type, where 1 has 
complex structure and s is a conjugation. 

Let I,, be a compact semisimple Lie algebra and let s 
denote the automorphism ( X ,  Y) -+ (Y ,  X )  oftheproduct algebra I = I ,  x 1,. 
Then ( I ,  s )  is an orthogonal symmetric Lie algebra of the compact type. I f  
(I*, s*) denotes the dual of ( I ,  s), then I* is isomorphic (as a real Lie algebra) 
to a complex subalgebra a of 1' in such a way that s* corresponds to the 
conjugation of a with respect to a compact real form of a. 

Let u = { ( X ,  X )  : X E I,) and e = {(X, - X )  : X E I,). Then 
the direct decomposition I = u + e is the usual decomposition of 1 into 
eigenspaces of s. We have I* = u + i e  and 1' = I + i l .  The algebra 
a = u + iu is a (complex) subalgebra of 1' and the mapping 

Proposition 2.2. 

z . 1: = 1;. 

Proposition 2.3. 

Proof. 

9 : ( X ,  X )  + z(Y, - Y )  - ( X ,  X )  + i(Y, Y ) ,  X , Y E 6 ,  

is an isomorphism of I* onto a (considered as real Lie algebras). More- 
over, if p denotes the conjugation of a with respect to u, then q o s* = 
p o 9. Since u is a compact real form of a, the proposition is proved. 
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Theorem 2.4. Let (I, s )  be an orthogonal symmetric Lie algebra of the 
compact type and (I*, s*) its dual. Then the Lie algebra I *  has a complex 
structure if and only if I can be written as a direct sum 1 = 1, + I,, where 
I, and I, are ideals in 1, which are interchanged by s .  

Suppose first, that I* has a complex structure, which will be 
denoted by J in order to avoid confusion with the complex structure 
of 1'. Then J satisfies the relation [ X ,  Jy l  = J [ X ,  yl for X ,  Y E I*. 
Since I* can be considered as a semisimple Lie algebra over C (by means 
of J ) ,  it has a compact real form f. We have then the direct decomposition 

I* = f + I€ ,  
which is a Cartan decomposition of I*. On the other hand, we have the 
decompositions 

I = u + e ,  I * = u + i e  

into eigenspaces of s and s*, respectively. Since all Cartan decompositions 
of I* are conjugate under an inner automorphism of I* there exists an 
element CT E Int (I*) such that u . f = u, u . (Jf) = i e .  Consider now 
the following mappings: 

Proof. 

2 a-1 
e - ie - ~ t - / -  t ~ u  

and put y ( X )  = - u]u-'iX for X E e. Then y is a one-to-one linear 
mapping of e onto LI and has the following properties: 

(4 [Y(X),  Y ( V 1  = [ X ,  YI; 

(b) [ X ,  Y(Y)I = [Y(X),  YJ; 

(4 Y ( [ Y ( X ) ,  YI) = IX, YI 

for X ,  Y E e. The last property is verified as follows: 

y [ y X ,  Y ]  = aJu-li( [uju-lix,  Y ] )  = uja-l( [ u J u - ~ ~ X ,  iYJ) 
= oJ[ja-'iX, a-'iY] = - o[u-'iX, u-liY] = [ X ,  Y] .  

Property (a) is proved in the same way and (b) follows from (c ) .  We 
define now the subsets I, and I, of I by 

I, = { X  + Y ( X )  : x E e), 1, = { X  - y ( X )  : X E e}. 

Then the following statements hold: 

(i) I, n 1, = {O}. 
(ii) s interchanges I ,  and t2. 

(iii) I, and I, are ideals in I. 
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The first statement is obvious because the relation X + y ( X )  = Y - y( Y )  
implies y(X + Y) = Y - X E e n u = {O}. The  second statement is 
obvious since s(X + y ( X ) )  = - X + y ( X ) .  Finally, properties (a), (b), 
and (c) above show that 1, and 1, are subalgebras of I and [I,, l,] = {0}, 
proving (iii). This proves the first half of the theorem. 

Remark. The mapping X + y ( X )  -+ 2y(X)  is an isomorphism of I, 
onto u. 

In order to prove the second half of the theorem, we consider a Lie 
algebra 1, isomorphic to both 1, and I,. Let li denote an isomorphism 
of Ii onto I, (i = 1, 2). In the following let X denote an arbitrary element 
in I, and Y an arbitrary element in I,. Let I denote the product algebra 
I, x I, and let S, so denote the automorphisms of i given by 

s . (Z1X, Z2Y) = (Z,sY, I g X ) ,  

so . (IIX,  12Y) = (12Y, ZJ). 

Then we have the isomorphisms 

where 
Io(X + Y )  = (W, la), 
U(I1X, 12Y) = (LIX, I,sY). 

Let (T*, S* )  denote the dual of (7, 5)  and let (9, s$) denote the dual of 
(7, so). Then, as a result of Prop. 2.1, the orthogonal symmetric Lie 
algebras 

(I*, s*), (I*, s*), (9, s,*) 

are all isomorphic. But due to Prop. 2.3, g has a complex structure. 
Using Prop. 2.2 it follows that i*, and therefore I*, has a complex 
structure. This concludes the proof of the theorem. 

Example I .  The coset spaces SO(p + q)/SO(p) x SO(q) and SO,@, q)/ 

Let SO@, q) denote the group of real quadratic matrices of deter- 
W P )  x SO(q). 

minant 1, leaving invariant the quadratic form 

- x i  - ... - .x i  + + ... + ( p  + q > 2). 

Let I ,  denote the unit matrix of order n and put 
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Denoting by LA the transpose of a matrix A, we see that a matrix g 
of determinant 1 belongs to SO@, q)  if and only if %Zp,*g = IP.?. Thus 
SO(p, q) is a closed subgroup of GL(p + q, R),  hence a topological Lie 
subgroup. Its Lie algebra, denoted eo(p,  q), is a subalgebra of g l ( p  + q, R). 
According to formula (2) in Chapter 11, 92 we have 

X E so(p,q) if and only if erx E SO(p,q) for all s E R. 

Now ex E SO@, q)  if and only if l(ex) = Ip,Q eLXIr,,*; since '(ex) = e f x ,  
it follows that 

X E so@, q) if and only if tXI,,, + I,,,X = 0. 

Thus so@, q)  is the set of matrices 

where XI and X ,  are skew symmetric matrices of order p and q, respect- 
ively, and X ,  is an arbitraryp x q matrix. In  particular, the Lie algebra 
so(n) of the group SO(n) (= SO(n, 0)) consists of all n x n skew sym- 
metric matrices. 

Now let I = so@ + q) and let s denote the restriction to I of the 
automorphism up,* : X -+ Zp,qXIp*q of gI(p + q, C). Then (I, s) is an 
orthogonal symmetric Lie algebra of the compact type. If I = u + e is 
the usual decomposition into eigenspaces of s, it is easily seen that 

I1 = 

e =  

x q skew symmetric matrix I ' x p skew symmetric matrix 

"') 1 X2 : p x q arbitrary matrix 

The  pair (SO(p + q), SO@) x SO(q)) is therefore associated with (I, s). 
Let (I*, s*) denote the dual of (I, s). Then I* is the subalgebra of gI(p+q,C) 
given by I* = u + ie and s* is again the restriction of oP,* to I*. Now 
it is easy to verify that the mapping 

is an isomorphism of I* onto 5o(p, q). Under this isomorphism, the 
automorphism s*  corresponds again to the automorphism X -+ Ip,pXZp,Q 
of q). Let SO&, q)  denote the identity component of SO@, q). 
Then the pair (SO&, q), SO(p) x SO(q)) is associated with the ortho- 
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gonal symmetric Lie algebra (so(p, q), a,,,,), which is isomorphic tb  
the dual of (so(p + q), s). 

Example II. 
Let Q denote the algebra of quaternions, Q ,  the subspace of pure 

quaternions, and G the multiplicative group of quaternions of norm 1. 
To each pair x, y from G we associate the endomorphism 

The case p = 1, q = 3. 

T z v v  : u + xuy-l, u E Q 

of Q onto itself. Since Tr,y  is norm preserving, it belongs to the group 
of rotations of Q; since G is connected it follows that all Tz,v  belong 
to a connected part of the group of rotations. Hence TXpy E SO(4). 
Each endomorphism Tx,z leaves the subspace Q ,  invariant; let T~ 

denote the restriction of TX,= to Q,. Then rX E SO(3). The following 
statements hold. 

(a) The mapping x + rX is an analytic homomorphism of G onto SO(3) 
and the kernel consists of e and - e ,  e denoting the identity element in Q. 

(b) The mapping (x, y )  -+ TXmv is an analytic homomorphism of the 
product G x G onto SO(4) and the kernel consists of (e ,  e)  and (- e, - e) .  

The verification of (a) and (b) will be left to the reader. Passing to 
the Lie algebras we obtain an isomorphism cp of eo(3) x so(3) onto eo(4). 
Let so denote the automorphism (X, Y) -+ (Y ,  X )  of so(3) x eo(3). An 
elementary quaternion computation shows that ( T ~ , ~ (  TZ,,) = Tv,x(~, y E G). 
Hence we obtain 

(c) The orthogonal symmetric Lie algebras 

are isomorphic under v. 
Now by Prop. 2.1 (iii), the duals of these pairs are isomorphic. In view of 

Theorem 2.4 we can conclude that the Lie algebra so( 1, 3) has a complex 
structure. Since this Lie algebra has dimension 6, it is isomorphic to 
a semisimple, three dimensional complex Lie algebra (considered as a 
real Lie algebra). Such an algebra must have a Cartan subalgebra of 
dimension 1 and two nonzero roots 01, - 01. In view of Theorem 5.4, 
Chapter 111, there is therefore at most one three-dimensional complex 
semisimple Lie algebra. On the other hand, the Lie algebra d(2, C) of 
all complex 2 x 2 matrices of trace 0 is such an algebra. We can there- 
fore conclude that 5O(l ,  3) is isomorphic to sI(2, C)". 
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§ 3. Sectional Curvature of Symmetric Spaces 

The three classes of symmetric spaces can be distinguished by means 
of their curvature as shown in the following theorem. 

Theorem 3.1. Let ( I ,  5) be an orthogonal symmetric Lie algebra and 
suppose that the pair (L ,  U )  i s  associated with (I, s). W e  assume that U 
is connected and closed.+ Let Q be an arbitrary L-invariant Riemannian 
structure on L/ U (such a Q exists). 

(i) If (L ,  U )  is of the compact type, then L IU has sectional curvature 
eeerywhere >, 0. 

(ii) If (L ,  U )  is of the noncompact type, then Ll U has sectional curvature 
everywhere < 0. 

(iii) If (L ,  U )  is of the Euclidean type, then L I U  has sectional curvature 
everywhere = 0. 

Proof. The  tangent space to L/U at the point o = { U }  can, as usual, 
be identified with e, the eigenspace of s for the eigenvalue - 1. Let S 
be a two-dimensional subspace of e, and let X ,  Y be an orthonormal 
basis of S. Then, according to Theorem 4.2, Chapter IV, the curvature 
of L, U along the section S is given by 

K ( S )  = - Q,,(R(X, Y) X ,  Y )  = + Q o ( [ E x ,  YI, XI, Y). 

Part (iii) is now obvious, so we can assume that I is semisimple. As in 
$1, let b denote the endomorphism of e given by 

Q,o(bX, Y )  = Wf, Y), X ,  Y E e, 

B denoting the Killing form of I. Since Q,(bX, Y )  = Q J X ,  b y ) ,  the 
eigenvalues /I1, ..., /I,, of b are real. Let e,, ..., e n  be the corresponding 
eigenspaces of b. Then, if i # j ,  the spaces ei and e j  are orthogonal 
with respect to B as well as Qo. We shall prove that rei, ei] = (0). Let u 
denote the Lie algebra o f  U .  Then b commutes with each member of 
ad, (11). Hence [I!, ei] C ei for each i. Now let Xi E ei, Xi E ej, T E u. 
Then [Xi, X j ]  E u and 

B(T, [X , ,  X,])  = B ( [ T  X,] ,  X,)  = 0. 

Owing to Lemma 1.2, B is strictly negative definite on u ;  consequently 
[ti, e j ]  = {O}. 

+ For the noncompact type this hypothesis is always satisfied (see Chapter VI). For 
the compact type, U is always closed but not necessarily connected (see Chapter VII). 
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so 

and 

(1) 
" 1  

W) = 2 -& B([X,, Yil, [Xi, Yil). 
i=l 

Since Pi < 0 in case (i), pi > 0 in case (ii), the theorem follows. 

Remark 1. I n  case we take Q = EB, where E = -1 for the compact 
type, E = +1 for the noncompact type, we have by ( I )  

4 s )  = W X ,  YI, [ X ,  Yl). (2) 

Remark 2. Suppose (1, s) is one of the types (i), (ii), or (iii). Then the 
curvature K(S)  along the section S is 0 if and' only if S is an abelian 
subspace of e. 

Example. As a special case of Example I, $2, we consider the spaces 
SO(p + l ) /SO(p)  and SO&, l)/SO(p) which correspond to each other 
under the duality. Here the linear isotropy group at a point p acts 
transitively on the set of two-dimensional subspaces of the tangent 
space at p. Hence these spaces have constant sectional curvature. In  
particular, for p = 2, the spaces are the two-dimensional sphere and 
the two-dimensional non-Euclidean space of Lobatschevsky. 

For the sphere SO(3)/SO(2) the formulas 

sin c 
- 

sin a sin b 
sin A sin B sin C ' 
___ - 

cos a = cos b cos c + sin b sin c cos A 

hold for a geodesic triangle with angles A,  B, C and sides of length 
a, b, c. For the two-dimensional Lobatschevsky space SO,(2, 1)/SO(2) 
the formulas are 

sinha sinh b s inhc  
sin A sin B sin C ' 

cosh a = cosh b cosh c - sinh b sinh c cos A. 

- __- - 

Since sinh iz = i sin z and cosh iz = cos z, the two sets of formulas 
correspond under the substitution a +ia, b -+ ib, c -+ ic. The  duality 
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for symmetric spaces gives a general explanation of this formal analogy 
between spherical trigonometry and non-Euclidean trigonometry. 

5 4. Symmetric Spaces with Semisimple Groups of lsometries 

Theorem 4.1. Let (G,  K )  be a Riemannian symmetric pair.  Suppose 
that G is semisimple and acts effectively on ”the coset space M = GjK. 
Let Q be any G-invariant Riemannian structure on M and let R denote 
the corresponding curvature tensor. Then: 

(i) G = I,(M) (as Lie groups). 
(ii) The linear isotropy subgroup of G at  o = { K }  is a Lie subgroup 

K* of CL(Mo),  isomorphic to K .  Its Lie algebra f *  consists of all endo- 
morphisms of M ,  which, when extended to the mixed tensor algebra over 
M,, as derivations commuting with contractions, annihilate Qo and R,. 

(iii) f *  is spanned by the set { R , ( X ,  Y )  : X ,  Y E M,}. 

Proof. According to Prop. 3.5, Chapter IV, there exists a unique 
analytic involutive automorphism (J of G such that (KO),  c K c KO. 
Here KO denotes the set of fixed points of u and (KO), is the identity 
component of KO. Let so denote the geodesic symmetry of GIK with 
respect to 0. Then, as proved in Chapter IV (Prop. 3.4), 

4g) = S o P o r  g E G. (1) 

Let g = f + p be the direct decomposition of the Lie algebra g of G 
into the eigenspaces of (do)e for the eigenvalues + 1 and - 1, respect- 
ively. Let Z denote the center of G. According to Lemma 5.1, Chapter 11, 
the group Ad, ( K )  is analytically isomorphic to KIK n Z which equals 
K ,  G being effective. Thus K is compact and isomorphic to the linear 
isotropy group K*. Let G‘ = I,(M) and let K’ denote the (compact) 
subgroup of G’ leaving the point o fixed. Owing to Remark 2 following 
Prop. 3.4, Chapter IV, the group G is a closed subgroup of G’. Hence g 
is a subalgebra of the Lie algebra g’ of G‘. Let L? denote the automor- 
phism g + sags, of G’ and let 

g’ = t’ + p’ 

be the decomposition of g’ into the eigenspaces of (de) , ,  f’ being the 
Lie algebra of K’.  Here f C f ‘ ,  p = p’. We now apply Theorem 1.1 
and the terminology introduced there to the pair (g‘, (dL?),) which is an 
effective orthogonal symmetric Lie algebra. The  subspace (p’), is an 
abelian ideal in g’ and g (Lemma 1.3). Since g is semisimple, (p’), = (0). 
Hence (f’), is an ideal of g’ contained in f’; thus (f’), = (0) and [p’, p’] = f’. 
Since p = p’ and [p,  p] C f ,  it follows that f ’  = f = [p, p] and g = g’, 
proving (i). Moreover, the relation [p, p] = f is equivalent to (iii), in 
view of the formula for the curvature tensor (Theorem 4.2, Chapter IV). 
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Finally, in order to prove (ii), let t denote the Lie algebra of all endo- 
morphisms of M, which, when extended to the mixed tensor algebra 
over M, as derivations commuting with contractions, annihilate Qo and 
R,. Then f C t and the space 2 = f + p is a Lie algebra if the bracket 
[T ,  XI for T E 1, X E p is defined as T . X ( T  operating on X ) .  As in 
the proof of [p, p] = t' we see that [p, p] = t so f = 1 and (ii) follows. 

Let M be a Riemannian globally symmetric space; M is 
said to be of the compact type or the noncompact type according to the 
type of the Riemannian symmetric pair (I,( M), K), K being the isotropy 
subgroup of I,(M) at some point in M. If (9, 6) is the corresponding 
orthogonal involutive Lie algebra, M is said to be associated with (9, 6 ) .  

Let M be a simply connected Riemannian globally 
symmetric space. Then M is a product 

Definition. 

Proposition 4.2. 

M = Mo x M- x M+, 

where M ,  is a Euclidean space, M -  and M ,  are Riemannian globally 
symmetric of the compact and noncompact type, respectively. 

Let G = I,(&') and let K denote the isotropy subgroup at 
some point o in M. Then M = G / K .  Let (G, v) denote the universal 
covering group of G and let K denote the identity component of v-I(K).  
Then if a,h denotes the mapping g R  + q ( g )  K of ell? onto GIK, the 
pair (ell?, +) is a covering manifold of GIK. Since M is simply connected, 
M = G/K.  

Let s denote the involutive automorphism of g, the Lie algebra of G 
(and e), which corresponds to the automorphism g -+ sogso of G. Then 
(9, s) is an effective orthogonal symmetric Lie algebra. We decompose g 

according to Theorem 1.1 and let = Go x G- x G ,  be the corres- 
ponding decomposition of e. If R = KO x K -  x K ,  is the decomposi- 
tion induced on R, the spaces M ,  = G,/K,, M -  = G - / K -  and 
M+ = G+/K+ have the required properties. 

Proof. 

$5. Notational Conventions 

I n  order to avoid repeated explanation of notation we shall now make 
some notational conventions which, with minor modifications, will be 
in force through Chapters VI, VII, and VIII. 

The  symbol go shall denote an arbitrary semisimple Lie algebra over 
R, and g its complexification. Let go = f, + po be any Cartan decom- 
position of go (f, the algebra), and let u denote the compact real form 
f, + ipo of g. Let B denote the Killing form of g. Its restrictions to 
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go x go and u x u are the Killing forms of go and u, respectively. Let u 
and T denote the conjugations of g with respect to go and u, respectively, 
and put t? = UT = TU. Then t? is an involutive automorphism of g. 

Subspaces of go will usually be denoted by the subscript 0; the corres- 
ponding subspace of g will then be denoted by the same letter but 
without the subscript. According to this convention, f and p denote the 
eigenspaces of the automorphism 0. If e, is a subspace of po, the subspace 
i e ,  of i p ,  will often be denoted by e , .  

The  adjoint groups Int (go), Int  (u) are groups of endomorphisms of 
go and u, which, however, can be extended to endomorphisms of g. The  
Lie algebras of Int (go) and Int (u) will be identified with the subalgebras 
go and u of g R .  The  analytic subgroup of Int (go) whose Lie algebra is 
to will be denoted by K*. Then K* is compact and a Lie subgroup of 
Int (u). We shall see in the following chapter that K* = Int (go) n Int (u). 
All the groups K*, Int (go), Int (u) are closed, topological Lie subgroups 

Let (G, Kl) and ( U ,  K,) be Riemannian symmetric pairs associated 
with the orthogonal symmetric Lie algebras (go, 6) and (u, e), respectively. 
In  general, the space G/Kl ,  (and similarly U/K2),  will have many 
G-invariant Riemannian structures which are not propoTtiona1. How- 
ever, the Riemannian connection is the same for all of these. Accordingly, 
we shall always (unless the contrary is specified) give G/Kl  the unique 
G-invariant Riemannian structure induced by the restriction of the 
Killing form B to p o  x po. Similarly, the space U/K2 will be given the 
unique U-invariant Riemannian structure induced by the restriction 
of - B to ipo x ip,. 

of GL(gR). 

$6. Rank of Symmetric Spaces 

Definition. A Riemannian manifold is said to be flat  if its curvature 
tensor vanishes identically. 

Definition. Let M be a Riemannian globally symmetric space. The  
rank of M is the maximal dimension of a flat, totally geodesic sub- 
manifold of M .  

Let M be a Riemannian globally symmetric space of 
the compact type or the noncompact type. Let o be any point in M and as 
usual identify the tangent space M ,  with the subspace po (or i p , )  of the 
Lie algebra of I ( M ) .  Let 50 be a Lie triple system contained in M,. Then 
the totally geodesic submanijold S = Exp 5, (with the dtHeerentiable 
structure from Theorem 1.2, Chapter I V )  is f lat  if and only if 50 is abelian. 

Proposition 6.1. 
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Proof. As we have seen in 97, Chapter IV, the manifold S is globally 
symmetric and can be written S = G'/K' where G' is an analytic 
subgroup of I (M) ,  invariant under the automorphism g + s,gs, of I ( M ) .  
The proof of Theorem 7.2, Chapter IV, shows that the geodesics 
through o in S are exp t X  - o ( X  E so), that is, (3), $3, Chapter IV, and 
therefore also Theorems 4.1 and 4.2, Chapter IV, are valid for G'IK' 
(although we neither claim K' connected nor its Lie algebra compactly 
imbedded in the Lie algebra of G'). The proposition now follows 
immediately from (l) ,  $3. 

Let M be a Riemannian globally symmetric space of 
the compact type or the noncompact type. Let I denote the rank of M and 
let A and A' denote two Jut,  totally geodesic submanifolds of M of dimen- 
sion 1. 

(i) Let q E A,  q' E A'. Then there exists an element x E Io(M) such 
that x . A = A', x . q = 4'. 

(ii) Let X E Mq. Then there exists an element k E Io(M) such that 
k . q = q and d k ( X )  E A,. 

(iii) The manifolds A and A' are closed topological subspaces of M. 
In order to prove this theorem we begin with some general remarks 

about totally geodesic submanifolds. Let M be any manifold, S a 
connected submanifold. Let X and Y be vector fields on M such that 
X,,  Y, E S, for each s E S. Then it follows easily from Prop. 3.2, 
Chapter I, that the families s -+ X ,  ( s  E S) and s -+ Y ,  ( s  E S )  are 
vector fields on S. We denote these vector fields by a and 7. It follows 
from Prop. 3.3, Chapter I, that [X, Y ] ,  E S ,  for each s E S and 
[X ,  Y]-  = [X, PJ. 

Now suppose the manifold M is connected and has a Riemannian 
structure g .  Let g denote the induced Riemannian structure on S. 
Let V and P denote the corresponding Riemannian connections. Let 
X ,  Y, Z be any vector fields on M for which X,,  Y, ,  Z,  E S ,  for each 
s E S. Then we conclude from (2), $9, Chapter I, that 

Theorem 6.2. 

g ( K  VZ(Y))(S) = f ( X  F m ) ( S )  (s E S ) .  (1) 

Suppose now that S is totally geodesic. Then Vz(Y)s E S, ( s  E S) by 
Theorem 14.5, Chapter I. Equation (1) therefore implies 

(2) 
- 
W F )  = (Vz(YN- 

Let R and R denote the curvature tensors of M and S ,  respectively. 
Then by (2) 

k(8, P) * 2 -- (R(X ,  Y )  * Z)-  (3) 
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and the sectional curvature along a two-dimensional subspace of S, is 
the same for M and S. 

After these preliminary remarks let us turn to the proof of Theorem 6.2. 
Let q be any point in the flat totally geodesic subspace A of M .  As 
usual we identify the tangent space M ,  with a subspace of the Lie 
algebra 1 of I ( M ) .  Let X and Y be two vectors in the tangent space A,. 
By the preceding remarks the sectional curvature of M at q along the 
plane section spanned by X and Y is 0. Using (l), 93, it follows that 
[ X ,  Y ]  = 0, the bracket being that of the Lie algebra I. Then by 
Prop. 6.1 A, is a maximal abelian subspace of Mq. Let G' denote the 
analytic subgroup of Z(M) corresponding to the subalgebra A, of I. 
Let K' denote the subgroup of G' leaving q fixed. The  totally geodesic 
submanifold Exp, (A,) from Prop. 6.1 is the orbit G' q with differen- 
tiable structure derived from G'IK'. Consider the automorphism 
D : g + s,gs, of Z(M), s, denoting the symmetry of M with respect to q. 
Then M ,  = ( X  E I : d u ( X )  = - X }  so u(g) = gP1 for g E G'. This 
relation also holds for the closure of G' which therefore has an abelian 
Lie algebra contained in M,. On the other hand this Lie algebra contains 

,: A, since G' is a Lie subgroup of its closure. Ry the maximality of A 
G' is closed and thus carries the relative tbpology of I (M) .  The group K 
is therefore a closed subgroup of the isotropy subgroup of Z(M) at q, 
hence compact. Using now Prop. 4.4, Chapter 11, we deduce that the 
submanifold Exp, (A,) is a closed topological subspace of M .  The 
identity mapping of A into this submanifold is therefore continuous 
and, by Lemma 14.1, Chapter I, differentiable. We can therefore state 
that Exp, (A,) and A coincide as submanifolds of M .  This proves (iii) 
and reduces (i) and (ii) to the following lemma (see 95 for notation). 

Let a, and a; be two maximal abelian subspaces of p*. 
Then: 

Lemma 6.3. 

(i) There exists an element H E a, whose centralizer in p, is a,. 
(ii) There exists an element k E K* such that k . a, = ah. 

(iii) p* = UkeK* k . a * .  

Proof. Let P, = exp p*.  Then Int (u) = P,K* since the geodesics 
Exp t X  ( t  E R )  cover the manifold Int (u)iK* as X varies through p * .  
Let 67 denote the involutive automorphism of Int (11) which corresponds 
to the restriction of 0 to II. Then 

so 

Consequently, P* is compact and closed in In t  (u). 
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Let A, denote the closure of exp a, in Int (u). Then A, is a torus, 
contained in P,.  Since O(a) = a-1 for each a E A,, the Lie algebra 
of A, is contained in p, ; being abelian this Lie algebra must coincide 
with a,. Select H E a, such that the one-parameter subgroup exp t H  
( t  E R) is dense in A,. Then the centralizer of H in p, is a,. 

In  order to prove (iii) let X be an arbitrary element in p * .  The  
function k -+ B(H, k . X )  is a continuous function on the compact 
group K,, and takes a minimum for k = k,, say. If T E f, we have 
therefore 

'L H ( H ,  (exp t T )  k, . X ) '  = 0. 
I dt it=, 

B(H, [T, k" . X I )  = 0. 

This can be written 

Consequently, B([ko . X ,  HI,  T )  = 0 for all T E f,. Since [k, . X ,  HI E f, 
it follows that [k, . X ,  HI = 0 and by (i), k, . X E a,. This proves (iii). 

Finally, using (iii) on a;, there exists a k E K* such that H E k . a;. 
Each element in k . a; commutes with H ;  since a, is the centralizer of 
H in p ,  it follows that k . a; c a,. This finishes the proof of the lemma. 

Let G be a connected, compact Lie group. Let g denote 
the Lie algebra of G and let t and t' denote two maximal abelian subalgebras 
of g. Then 

We shall now give two other applications of Lemma 6.3. 

Theorem 6.4. 

(i) There exists an element H E i whose centralizer in g is t. 
(ii) There exists an element g E G such that A d  ( g )  t = t'. 

Proof. 

(iii) g = U OEG Ad ( g )  t. 

The group G can be written G x GIG* where G* is the 
diagonal in G x G. If G is semisimple, the pair (G x G, G*) is a 
Riemannian symmetric pair of the compact type with the involutive 
automorphism (T : (x, y )  -+ ( y ,  x) of G x G. In  this case Theorem 6.4 
is a special instance of Lemma 6.3. If however, G is not semisimple a 
slight extension of Lemma 6.3 is necessary. In  the proof of Lemma 6.3 
the semisimplicity of fo + p* was never used and the form B could be 
replaced by any strictly negative definite bilinear form Q on u x u 
satisfying the invariance condition 

Q V ,  [Y ,  Zl) = Q([X YIP 2) 

for all X ,  Y ,  2 E u. In  the case of the Riemannian symmetric pair 
(G x G, G*)  such a bilinear form Q exists due to the compactness of G. 
Hence Theorem 6.4 holds for any connected compact Lie group G. 
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Theorem 6.5. Let g be a semisimple Lie algebra over C, 6, and 0, 
two Cartan subalgebras of g. Then there exists an automorphism u of g 
such that ub, = b,. 

Each Cartan subalgebra b of g determines a compact real 
form u of g such that ibR C u (Theorem 6.3, Chapter 111). Let u1 and u2 
denote two compact real forms of g arising in this manner from b1 
and b,, respectively. Then there exists an automorphism of g carrying 
u1 onto 11,. Hence we may assume u1 = 11, without loss of generality. 
The subspaces ibl,R and ib2,R are then maximal abelian subalgebras of u,. 
By Theorem 6.4 these subalgebras are conjugate under an element 
u E Int (u,). But u extends uniquely to an automorphism of g and bl 
and b, are conjugate under this automorphism. 

Corollary 6.6. Let g be a semisimple Lie algebra over C, 0 C g a Cartan 
subalgebra, and X E g regular. Then uX E b for some automorphism u of g. 

In  fact, X is by Theorem 3.1, Chapter 111, contained in a Cartan 
subalgebra of g which by Theorem 6.5 is conjugate to b. 

We now write out the group-theoretic version of Theorem 6.2. 
Refinements of this result will be given later (Theorem 8.6, Chapter VII 
and Theorem 1.1, Chapter IX). 

Theorem 6.7. Let go be a semisimple Lie algebra, go = €, + po a 
Cartan decomposition, and (go, 8), (u, 0) the corresponding dual orthogonal 
symmetric Lie algebras, where u = f, + ipo .  Let (G, K,) and ( U ,  K,) be 
any Riemannian symmetric pairs associated with (go, 8)  and (u, O),  respec- 
tively. Let a, c p o  be any maximal abelian subspace and A, C G, A, C U 
the analytic subgroups corresponding to a, C go, ia, C u. Then 

Proof. 

G = KIAIKl and U = K2A2K2. 

Proof. If (Kl)o is the identity component of K, we have by the 
completeness, G (K1),  = Exp(p,). Using Lemma 6.3, we obtain for 
each g E G elements H E  p, ,  k E Kl such that g(K1), = Exp Ad(k)H. 
Using now (4), $3, Chapter IV, this implies g = k exp H V k ,  for some 
k, E K,, so the first relation above is proved. The same proof gives the 
second relation. 

EXERCISES AND FURTHER RESULTS 

1. If X E 5 4 3 )  (that is, a 3 x 3 skew symmetric matrix) show that 

x2, sin p 1 - cosp 

P P2 
e X = I + - X +  
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where I is the identity matrix and p2 = -+ Tr(XX). 

an explicit isomorphism. 

Then: 

2. In  92 it was shown that SO(1, 3) is isomorphic to d(2, C)". Exhibit 

3. Let (I, s) be an orthogonal symmetric Lie algebra, 1 semisimple. 

(i) u equals its normalizer in 1. 
(ii) If u contains no ideal in I, then [e, e l  = u. 

4. Let G be a connected Lie group which contains a compact subgroup 
of dimension >, 1 but has center {e}. Show that G has a subgroup H 
such that (G, H )  is a symmetric pair. 

5. Let M be a Riemannian globally symmetric space, I ( M )  its group 
of isometries. Prove that (i) M is of the compact type if and only if I ( M )  
is semisimple and compact; (ii) M is of the noncompact type if and only 
if the Lie algebra of I ( M )  is semisimple and has no compact ideal # (0). 

6. Let M be a manifold with a pseudo-Riemannian structure g and 
curvature tensor R.  Let p E M ,  S a two-dimensional subspace in M, 
such that g, is nondegenerate on S. Let 

X and Y being any linearly independent vectors in S. 
Prove that the denominator is #0, that K ( S )  is independent of the 

choice of X and Y ,  and that it coincides with the sectional curvature in 
the case when g is positive definite. 

7*. (The pseudo-Riemannian manifolds of constant sectional cur- 
vature) Consider the quadric Qe in Rp+q+l given by 

B,(X) = x: + ... + xz - x:+~ - x;+,, - ... + ex2,+,+1 = e 

with the pseudo-Riemannian structure ge induced by Be. Show that 
(cf. Helgason [3], [4]): 

(i) Q-l O( p ,  q + 1) O( p ,  q) (diffeomorphism), the pseudo- 
Riemannian structure g-, has signature ( p ,  q) and constant curvature - 1. 

(ii) Q+l O( p + 1,  q) O( p ,  q) (diffeomorphism), the pseudo- 
Riemannian structure g, has signature ( p ,  q) and constant curvature + 1. 

(iii) Up to local isometry Q-l and Qtl exhaust the class of pseudo- 
Riemannian manifolds of constant curvature - 1 and + 1, respectively. 

(iv) QPl and Qtl are dual symmetric spaces (in the sense of a general- 
ization of 92). 

(e  = f l ) .  
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8. Interpret the relation [ p ,  p ]  = t (Theorem 4.1) for the sphere 
SO(n) SO(n - 1) = Sn-l in the following geometric fashion: Let 
el, ..., en be the canonical basis of Rn and SO(n - 1) the subgroup of 
SO(n) leaving en fixed. The  rotations in the (ei, en)-plane, that is, the 
group exp R(Ein - Eni) induces the group of transvections along the 
geodesic t + Exp,,(t(Ein - Eni)); we have 

[Ei,  - E,i, Ejn - Enj] = Eji - Eij (1 < i < j  < n) 

and exp t(Eji - Eii) is a rotation in the tangent space (Sn-l)e,. 

NOTES 

The results of 91-94 are, for the most part, due to E. Cartan [16]. 
The conjugacy of maximal tori (or more precisely Theorem 6.4 (iii)) was first 

proved by Weyl [ 11, Kap. IV, Satz 1 .  The simple proof given here is due to Hunt 
[2] and this proof applies equally well to Lemma 6.3 first proved by E. Cartan in 
[lo]. The conjugacy statement for Cartan subalgebras (Theorem 6.5) has been 
extended and sharpened by Chevalley [6], Chapter VI, 94, ThCorhme 4. 



CHAPTER VI 

SYMMETRIC SPACES 
OF THE NONCOMPACT TYPE 

Having in the last chapter dealt with analogies and common properties of 
the two types of symmetric spaces we shall now study the two types separately 
and start with the noncompact type. 

In $ 1  it is shown that for a given noncompact simple Lie algebra go over 
R there exists a unique Riemannian globally symmetric space M of the non- 
compact type such that I(A4) has Lie algebra go. This M is diffeomorphic to a 
Euclidean space. Section 2 contains a proof of E. Cartan’s conjugacy theorem for 
maximal compact subgroups. The relationship between go and the geometry of M 
is further developed in the exercises. The subsequent sections deal with topics 
connected with the Iwasawa decomposition G = KAN of a semisimple connected 
Lie group G into an (essentially) maximal compact subgroup K, an abelian group A, 
and a nilpotent group AT. 

$1. Decomposition of a Semisimple Lie Group 

Let go be a noncompact semisimple Lie algebra over R and let 
go = f, + p o  be a Cartan decomposition of go. The  mapping 0 : T + X 
-+ T - X ( T  E f,, X E p o )  is an involutive automorphism of go and 
the pair (go, 8) is an orthogonal symmetric Lie algebra of the noncompact 
type. We recall that a pair (G, K )  is said to be associated with (go, 0) 
if G is a connected Lie group with Lie algebra go and K is a Lie sub- 
group of G with Lie algebra f,. Such a pair is said to be of the noncompact 
type. This pair is said to be a Riemannian symmetric pair if K is closed, 
Ad, ( K )  compact and there exists an analytic involutive automorphism 
0 of G such that (Kg)o C K C Kg. Such a 0 is necessarily unique and 
do = 8 (Prop. 3.5, Chapter IV). Finally, a Riemannian globally sym- 
metric space M is said to be of the noncompact type if the pair ( lo(M) ,  H )  
is of the noncompact type, H being the isotropy subgroup of lo(&?) at 
some point o E M .  

Theorem 1.1. With  the notation above, suppose (G, K )  is any pair 
associated with (go, 0). Then: 

(i) K is connected, closed, and contains the center Z of G.  Moreover, 

252 
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K is compact if and only if Z is finite. In this case, K is a maximal compact 
subgroup of G. 

(ii) There exists an involutive, analytic automorphism 8 of G whose 
fixed point set is K and whose daferential at e is 8 ;  the pair (G, K )  is a 
Riemannian symmetric pair. 

: ( X ,  k) + (exp X)k is a difleomorphism of p o  x K 
onto the group G and the mapping Exp is a difeomorphism of po onto the 
globally symmetric space GIK. 

Let Ad and ad denote the adjoint representations of G and go, res- 
pectively. Before starting on Theorem 1.1 we prove a simple lemma. 

Lemma 1.2. With respect to the positive definite symmetric bilinear 
form 

(iii) The mapping 

B,(Y, z) = -B(Y, ez) (Y ,  z E go) 

each ad X ( X  E p o )  is symmetric and each ad T ( T  E f,) is skew symmetric. 
Also Ad(k)B = 8 Ad(k) (k E K )  so Ad(k) is orthogonal. 

Proof. We have 

The  proof of the skew symmetry of ad T is similar. 

Passing now to the proof of Theorem 1.1, let KO denote the identity 
component of K.  Then owing to Prop. 3.6, Chapter IV, KO is closed 
in G, the coset space GIK, is Riemannian locally symmetric and 
n(exp X)  = Exp X for X E p o  if n denotes the natural mapping of G 
onto G/Ko. Thus G/Ko is complete and consequently Exp maps po 
onto G/Ko. It follows that is 
one-to-one on p o  x K,  suppose that XI, X ,  E p o ,  k,, k, E K such that 

maps p o  x KO onto G. To see that 

(exp XI> k, = (exp X,) k,. (1) 

Applying Ad to this relation we obtain 

The  decomposition m = PO of a nonsingular matrix m, where p is 
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symmetric and positive definite and o is orthogonal, is unique. Thus 
by (2) 

= eadXz, 

Ad (K,) = Ad (It2). 

The exponential mapping is one-to-one on the set of symmetric ma- 
trices; hence, ad X ,  = ad X ,  and X, .=  X ,  since g, has center (0). 
It follows from (1) that k, = k, so v is one-to-one on po x K. Since 
we have proved that v(po x KO) = ~ ( p ,  x K) ,  we conclude that 
KO = K. Now let as usual K* denote the analytic subgroup of Int (go) 
with Lie algebra f,. Then the pair (G, Ad-l(K*)) is associated with 
(go, 0); from what is already proved, the group Ad-l(K*) is connected. 
Having Lie algebra equal to f,, it must coincide with K. Hence Z C K. 
Since K* = K/Z  is compact, and 2 is discrete (42, Chapter 11), it 
follows that K is compact if and only if 2 is finite. 

Let Kl be a compact subgroup of G containing K. Then its Lie 
algebra is compactly imbedded in go so by the maximality off, (Prop. 7.4, 
Chapter 111) Kl and K have the same Lie algebra. By the proof above, 
K = K,, so K is maximal. 

The automorphism 0 of go induces an automorphism 0 of the universal 
covering group z! of G such that dO = 8. The fixed points of 0 form 
a subgroup R, which, by the above, must contain the center 2 of z!. 
The kernel of the covering mapping of z! onto G is a discrete normal 
subgroup N of z! and must therefore belong to 2. The automorphism 
0 of G = z!/N induced by 0 then turns (G, K )  into a Riemannian 
symmetric pair. Using (i) we see that the fixed point set of 0 coincides 
with K. 

Since the mapping v is one-to-one, the mapping Exp is a one-to-one 
differentiable mapping of po onto GIK. In order to prove that it is 
regular (and thus a diffeomorphism) it suffices, due to the formula for 
d Exp, (Theorem 4.1, Chapter IV), to prove that 

m 

for X E po. (3) 

The relations 

B(TxY, 2) = B(Y,  T$), 

B(TxY,  Y )  = - W X ,  Y ] ,  [ X ,  Y])>O, 

valid for X ,  Y, 2 E p,, show that Tx is symmetric and positive definite 
with respect to B. The validity of (3) is therefore obvious. 
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I t  remains only to prove that cp is everywhere regular. A general 
tangent vector to p0 x K at the point (X, K) has the form ( Y ,  d L ,  . T )  
where Y E po and T E f,, L, denoting left translation by the group 
element x. 

Since 

v ( X  + tY,  k) = exp ( X  + t Y )  k = K exp (Ad (k - l )  ( X  + tY ) )  

v ( X ,  k exp t T )  = (exp X )  k(exp tl’) 
and 

it follows from Theorem 1.7, Chapter 11, that 

where X = Ad ( K - l )  X ,  Y‘ = Ad (k - l )  Y.  The  po-component of the 
vector (1 - e-adx’) (ad X’)-l (Y’) is 

m 
(TX)” (y’) ,  

(2n + l)! 

which, due to (3), vanishes only if Y‘ = 0. Consequently the right-hand 
side of (4) is # 0 unless T = Y = 0. This shows that y is regular and 
completes the proof of Theorem 1.1. 

Let M and M’ be two Riemannian globally symmetric 
spaces of the noncompact type such that the groups I ( M )  and I (M‘)  have 
the same Lie algebra go. As usual, (Chapter V, $9, suppose the Riemannian 
structures on M and M’ arise from the Killing form of go. Then M and M’ 
are isometric. 

In  fact, the spaces M and M‘ arise from two Cartan decompositions 
of go. If these Cartan decompositions coincide, the corollary follows 
from Theorem 1.1. Now, any two Cartan decompositions of go are 
conjugate under an inner automorphism u of go. It is easy to set up an 
isometry between M and M‘ by means of u. 

If the Lie algebra go is simple then by the irreducibility (Chapter VIII, 
$5) the space M = Int  (go)/K* is, except for a multiplication of the 
metric by a constant factor, the unique Riemannian globally symmetric 
space for which I ( M )  has Lie algebra go. For compact semisimple Lie 
algebras the situation is quite different as we shall see in the next chapter. 

Let so be a Lie triple system contained in p o .  Then, according to 
Theorem 7.2, Chapter IV, and Theorem 1.1, Exp 50 is a closed totally 
geodesic submanifold of GIK. We can therefore apply Theorem 14.6, 
Chapter I, and get the following extension of Theorem 1.1. 

Corollary 1.3. 
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Theorem 1.4. In  the notation of Theorem 1.1, let so be a Lie triple 
system contained in p o  and let to denote the orthogonal complement of so 
in po.  Let So = exp so and To = exp to be given the relative topology of G. 
Then G decomposes topologically 

G = So . To . K. 

Proof. In view of Theorem 14.6, Chapter I, the mapping (X, Y) + 
.r(exp X) . Exp Y, (X E so, Y E to), is a continuous one-to-one mapping 
of so x to onto GIK. Each bounded set in M is the image of a bounded 
set in so x to (Cor. 13.2 (i), Chapter I). Hence the mapping is a homeo- 
morphism. If we state this fact in terms of G and make use of Theorem 1.1, 
the present theorem follows. 

2. Maximal Compact Subgroups and Their Conjugacy 

The symbols go, f,, p o ,  G, and K have the same meaning as in $1. 
It was proved in Chapter I11 that all Cartan decompositions of a 

semisimple Lie algebra over R are conjugate under an inner auto- 
morphism. Using differential geometric results, we shall now prove a 
stronger theorem, namely, that all maximal compactly imbedded sub- 
algebras of a semisimple Lie algebra over R are conjugate under an 
inner automorphism. Consequently, each maximal compactly imbedded 
subalgebra u of a semisimple Lie algebra 1 is a part of a Cartan decom- 
position and its orthogonal complement e with respect to the Killing 
form of I satisfies [e, e l  C u. 

Let (G,  K )  be a Riemannian symmetric pair of the 
noncompact type. Let K ,  be any compact subgroup of G. Then there exists 
an element x E G such that x-l K,x C K. 

The relation x-lK,x C K means that x K  is a fixed point 
under the action of the group Kl on the coset space GIK. Since the 
space GIK is a simply connected Riemannian manifold of negative 
curvature, the existence of the fixed point is assured by Theorem 13.5, 
Chapter I. 

Theorem 2.1. 

Proof. 

Theorem 2.2. 

( i )  Let (G, K )  be a Riemannian symmetric pair of the noncompact type. 
Then K has a unique maximal compact subgroup K' and this group is 
maximal compact in G. 

(ii) All maximal compact subgroups of a connected semisimple Lie 
group G are connected and conjugate under an inner automorphism of G.  
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(iii) Let K' be any maximal compact subgroup of a connected semisimple 
Lie group G. Then there exists a submanifold E of G, difeomorphic to a 
Euclidean space such that the mapping (e ,  k )  -+ ek is a dzfleomorphism of 
E x K' onto G. 

Proof. The group Ad, ( K )  is compact and has Lie algebra f,. Thus 
f, is a compact Lie algebra. According to Prop. 6.6, Chapter 11, f, can 
be written as a direct sum f, = f ,  + fa where the ideals f ,  and fa are 
semisimple and abelian, respectively. Let K ,  and 'K, denote the corres- 
ponding analytic subgroups of K. The group Ka is a direct product 
K, = T x V of analytic subgroups T ,  V of G, where T is a torus and 
V is analytically isomorphic to Euclidean space. Now we put 

K' = K,sT = (k t  : k E K,, t E T } .  

As a result of Theorem 6.9, Chapter 11, the group K,, and therefore the 
group K', is compact. The  groups K' and V commute elementwise; 
the group K' n V is a compact subgroup of the Euclidean group V,  
hence K' n V = {e}.  It follows that K = K' x V (direct product) 
and K' is the unique maximal compact subgroup of K. Combining 
this with Theorem 2.1, we see that each compact subgroup of G is 
conjugate to a subgroup of K'. This proves (i) and (ii). 

Consider now the set 

E = {(exp X )  v : X E p, ,  v E V } .  

Since po x V is a submanifold of p o  x K,  it follows from Theorem 1.1, 
that E is a submanifold of G, diffeomorphic to Euclidean space. Finally, 
the mappings 

((exp X )  v,  k) + (exp X ,  vk)  + exp X kv, 

E x K' + (exp p o )  x K + G 

yield the desired diffeomorphism of E x K' onto G. 

§ 3. The lwasawa Decomposition 

We now combine the Cartan decomposition of a semisimple Lie 
algebra and the root space decomposition of its complexification. Among 
other things, this gives the so-called Iwasawa decomposition for which 
a more direct proof is given at the end of the section. 

Lemma 3.1. Let g be a complex semisimple Lie algebra, gk any compact 
real form of g, and let 7 denote the conjugation of g with respect to gk. Let 
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$ be a Cartan subalgebra of g which is invariant under 7. Let A denote the 
set of nonzero roots of g with respect to $ and let bR = ZaOd RH,. Then: 

(i) b R  igk. 
(ii) There exists a vector E, E ga such that for all a E A 

( E ,  - La), i (E,  + E-a) E gk, 

[Em GI = (2 /4Ha) )  Ha. 

Proof. The Killing form B of g is strictly negative definite on 
gk x gk, and moreover 

B(X ,  rlX) < 0 for X # 0 in g. 

For each a E A we can define the complex linear function af) on b by 

the bar denoting complex conjugation. Then if Y E g", H E b, we find 

[rlH, 7y1 = ?[H,  YI = a 0  rly = 4rlW 7y, 

which shows that af) E A. Also, if H E b we have 

-~ -- 
B(?H,, H )  = B(H,, $3) = or(7H) = d ( H )  = B(H,v, H )  

so 
7 H ,  = H,v. 

This shows that bR is invariant under 7. Since H = (H + q H )  + 
4 (H - 7 H )  we have the direct decomposition bR = $+ + $- where 
v ( H )  = f H for H E $*. Here $+ = (0); in fact if H # 0 in $+ then 
B(H,  H )  = B(H,  7 H )  < 0 which contradicts the fact that B is strictly 
positive definite on bR x bR (Theorem 4.4, Chapter 111). 'I'his proves 

T o  prove (ii) we turn the dual space of bR into an ordered vector 
space. Since each ~ E A  is real valued on bR, A has now become an 
ordered set. Let A +  denote the set of positive roots. Since a(H,) > 0 
we can to each a E A +  select E, E ga such that 

(i) and aq = - a. 

Since a7 = - a it is easy to see that v E ,  E g-a for 01 E A+. We put 
E-, = - qE, for 01 E A+. Then qE, = - E-, for all 01 E A and conse- 
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quently the elements ( E ,  - E-,) and i(Ea + E-,) belong to gk for each 
01 E A .  Finally 

2 4 4  B(H,  [E,, E - a ] )  = B([H, Ex], E-3) = ~ 

f f (H,)  

and since [E,, E-,] is a scalar multiple of Ha (Theorem 4.2, Chapter 111), 
it follows that [E,, E-,] = (2/01(H,)) H,. 

Suppose now go is a semisimple Lie algebra over R and that g9 = to + po 
is a Cartan decomposition of go as usual. Let g be the complexification of 
go, put u = to + i p o  and let u and T denote the conjugations of g with 
respect to go and u, respectively. The  automorphism UT of g will be 
denoted by 8. Let ad denote the adjoint representation of g. 

Let bpo denote any maximal abelian subspace of po. Let Ij0 be any 
maximal abelian subalgebra of go containing bpo. The existence of bo 
is obvious from. Zorn’s lemma. If X E bo and Y E bp0 we have 

[x - ex, Y ]  = [x, Y I  - e[x, e ~ l =  E X ,  Y ]  + e[x, Y I  = o + 0. 

Since X - OX E p o  it follows, in view of the maximality of Q p o ,  that 
X - 8X E bp,. Thus 8b0C so we have the direct decomposition 
bo = b, n f, + 6, n p,. Obviously bDO = bo n p o .  We put $to = bo n f,. 
Let 6, bp ,  Q ~ ,  f ,  and p denote the subspaces of g generated by bo, bpo, 
bfo, I, and p,, respectively. 

Lemma 3.2. The algebra b is a Cartan subalgebra of g and 

I t  is obvious that b is a maximal abelian subalgebra of g. Now, the 
Hermitian form B,(X, Y )  = - B(X ,  TY) on g x g is strictly positive 
definite and if 2 E u we have 

b R  = bp,, + ibfo* 

B,([z, XI, y )  + B,(x, rz Y I )  = 0. 

If ad Z leaves a subspace V of Q invariant then the orthogonal complement 
V L  (with respect toB,) is alsoinvariant and g = V + V L  (direct sum). 
Hence ad 2 is semisimple. Thus ad H is semisimple if H E bt u b p .  
Since ad Hl and ad H ,  commute if HI  E bt, H ,  E bp, it follows that 
ad (Hl  + H,) is semisimple and b is a Cartan subalgebra. 

As a result of its definition, b is invariant under u and 8. Thus it is 
also invariant under T. By Lemma 3.1 we have bR C lJ n (iu). But 
e9 c f) implies t~ n (iu) = t, n if, + t, n po = z$t0 + Q p O .  Since dim bR 
= dim b,, the lemma follows. 

Let V be a finite-dimensional vector space over R, W a subspace 
of V. Let V A  and U’̂ denote their duals and suppose that V^ and WA 
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have been turned into ordered vector spaces. The orderings are said 
to be compatible (Harish-Chandra [ t i ] ,  p. 195) if X E VA is positive 
whenever its restriction A to W is positive. Compatible orderings can 
for example be constructed as follows: Let XI, ..., X,, be a basis of V 
such that X I ,  ..., X,,, is a basis of W. Then the lexicographic orderings 
of W A  and VA with respect to these bases are compatible. 

Now select compatible orderings in the dual spaces of b,, and bR, 
respectively. Since each root a E A is real valued on bR we get in this 
way an ordering of A .  Let A +  denote the set of positive roots. Now for 
each a E A the linear functions a', a", and a' defined by 

are again members of A .  The root a vanishes identically on bpo if and 
only if a = ole. Let A ,  denote the set of roots which do not vanish 
identically on t),,. We divide the positive roots in two classes as follows: 

P+ = {a  : a E A + ,  a # a'}, P- = {a : a E A + ,  (Y = a'). 

Lemma 3.3. 

(i) I f a  E P,, then - a' E P,, a" E P,, at = - a. 

(ii) If 8 E P-, then p 8  = 8, p = - 8, 8' = - 8, and gs + 
Proof. 

E t. 

The restrictions to b,,, of a and a' have sum 0. By the com- 
patibility of the orderings, we have a' < 0. Since a" and a agree on 
bl,, we have a' E P,. The relations a' = - a, 8' = -- /3 were established 
during the proof of Lemma 3.1. The relation = ,!3 implies HB E f n b* 
= ibfo so p = - 8. Since 8gB = gB, O2 = 1 and dim (g5) = 1, it is 
clear that 8 2  = - 2 or 82 = 2 for each 2 E gs. If 8 2  = - 2, then 
2 E p.  For H E b, we have [ H ,  = P(H) 2 = 0 and since b, is a 
maximal abelian subspace of p it follows that 2 = 0 and go E t. Similarly 

Let n = &eP+ gm, no = go n n, 40 = b,, + no. Then 

g-fl E f .  

Theorem 3.4. 
n and no are nilpotent Lie algebras, so is a solvable Lie algebra, and 

go = f, + h,, + no (direct vector space sum). 

Proof. Let a, E P,. If a + /3 E A ,  then a + E P ,  and n is a 
subalgebra of g which obviously is nilpotent. Hence no is a nilpotent 
subalgebra of go. From the relation [no + b,,, no + I),,] C no we see 
that bpo + no is a solvable Lie algebra. To see that the sum f, + b,, + no 
is direct, suppose T E f,, H E b,, and X E no such that T + H + X = 0. 
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Applying 8 we find that T - H + OX = 0 SO 2H + X - 8X = 0. 
Now by Lemma 3.3 

and since the sum b + ZaEA ga = g is direct we conclude that H = 0 
and X - OX = 0. But f, n no = (O} SO X = T = 0. 

Now let X E go. Since X = 6 (X + O X )  it follows that X can be 
written 

x = H +z (Xu +.Xu), 
aEA 

where H E $,, X u  E ga for each a E A .  If a or - LY belongs to P-,  then 
Xu + crX, E f, due to Lemma 3.3. If LY E P, then X ,  + OX, E no by 
the same lemma. Finally, if - a E P ,  then .(Xu + uX,) E g-, + gae C n 
by Lemma 3.3. Consequently 

Xu + OX, = {(Xu + ax,) + ~(xa + .Xz)} - T(X ,  + .Xu) E u n go + n n 90 

so Xu + OX, E to + no. This proves the theorem. 

representing ad (9) have the following properties: 
Lemma 3.5. There exists a basis (Xi) of g such that the matrices 

(i) The matrices adu  are skew Hermitian. 
(ii) The matrices ad n are lower triangular with zeros in the diagonal. 

(iii) The matrices ad bro are diagonal matrices with a real diagonal. 

Proof. Let a, < a2 < ... be the roots in A +  in increasing order. 
Let H,, ..., H I  be any basis of bR, orthonormal with respect to B,. 
Select Eai E gn* such that B,(Eai, E,,) = 1 (i = 1, 2,  ...). Since TEai E spat, 
the vectors ... rEaZ, rEal, H I ,  ..., H,,  Eal, EaP, ... form an orthonormal 
basis of g. This basis has the properties (i), (ii), and (iii). 

Let m, denote the centralizer of bp, in f,. Let 1, and q,, respectively, 
denote the orthogonal complements of m, in fo and of bp0 in p , .  Here 
“orthogonal” refers to the positive definite form B,. Let m, 1, and q 
denote the subspaces of g generated by m,, lo, and q,, respectively. 

Lemma 3.6. The direct decompositions 

90 = 1, + m, + bp, + qo, 

9 = 1 + m + bp + q 
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w e  orthogonal with respect to B, and invariant under 8. Moreover, if 
Xu # 0 is arbitrary in ga (a E A ) ,  

Proof. Each X E g can be written 

Hence 

for each H E b. Thus X commutes with H E if and only if c,cu(H) = 0 
for all a E A .  It follows that b + ZaeP- (ga + g-,) is the centralizer of 
bp in g. Since m is the centralizer of bP in I, the expression for m follows. 

T o  prove the formula for I let H E of, a E P,, and B E P- or - B E P-. 
Then, using Theorem 4.2, Chapter 111, 

--,(xu + ex,, H )  = B(x,, T ~ )  + qex,, 7 ~ )  = 0, 

- B z ( X a  + OX,, X,) = B(X,, 7x0) + B(eXa, .Xp) = 0, 

since TX,  E g-0, OX, E gae, and a' + /3 $. 0. This proves that 

c CW, + ex,) c 1 

2 C!Xa - ex,) c q 

is proved in exactly the same way. Now let a be a fixed element in P, 
and let c E C be determined by OX-, = cX-,e. Then 

asp+ 

and the inclusion 

asp+ 

X ,  = $(xu +ex,) + &(Xa - exa) E 1 + q; 

x-, = *(ex-, + e(ex-,)) + &(e(ex-,) - ex-,) 
- - 2  ~ C ( X - ~ O  + ex-,e) - &c(X-,e - ex-,#) E I + q. 

Consequently the element X above belongs to m + 6, + Zaep+C(X, + 
OX,) + Zaep+ C(X, - OX,) and the lemma is proved. 
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The following corollary is an immediate consequence of (I) .  

Corollary 3.7. If H €6, and a(W) # 0 for all 01 E P+, then the 
centralizer of H in g is bP + m. 

We now give a more direct proof of Theorem 3.4 without invoking 
the complexifications. Let go be a semisimple Lie algebra over R ,  8 a 
Cartan involution, and go = f, + po the corresponding Cartan decom- 
position. Let f jpoCp0 be any maximal abelian subspace. Because of 
Lemma 1.2, each ad X (X E p0) can be diagonalized by means of a basis 
of go, so the commutative family ad H ( H E  bpJ  can be simultaneously 
diagonalized. For each real linear form X on bp0 let 

go,A = {XE go : [H,  XI = X(H)X for all  HE^),,}, 

Then 

‘(g0.A) = % - A ,  b O . A ,  90,uI go,A+o, (2) 

the latter relation following from the Jacobi identity. If X # 0 and 
go,n # {0}, then X is called a root of go with respect to b,,. If Z denotes the 
set of all roots, the simultaneous diagonalization is expressed by 

90 = 90.0 + 2 90.1 (direct sum). (3) 
A S 2  

Now let the dual of Q P ,  be ordered in some way and let Z+ be the corre- 
sponding set of positive roots. Then by (2) the space nh = EA>o go,A is a 
subalgebra of go. Since bP0 is &invariant and maximal abelian in po we 
have 

90.0 = kl0,O n €0) + bp, = mo + $Po’ (4) 

Writing for X E Z,,, go,A, 

x = x + ex - ex, 
we see that X E fo  + nh, so using (4) we obtain 

90 = fo  + bpo + n;. ( 5 )  

Applying 0 we conclude the directness of ( 5 )  from that of (3). Comparing 
this proof with that of Theorem 3.4 we conclude: 

(i) Z is the set of restrictions of A ,  to b,,; and if this latter ordering of 
the dual of bPo is compatible with the above ordering of the dual of QR, 
then Z+ is the set of restrictions of P, and n], = no. 
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(ii) If h E Z, then, denoting restriction by a bar, 

dim go,A = number of OL E A ,  such that ol = A. (6) 

Because of (i), the elements of 2 are also called restricted roots; and 
because of (ii), the number m, = dim go,, is called the multiplicity of A. 

$4. Nilpotent Lie Groups 

T o  begin with we establish certain facts concerning the exponential 
mapping of a nilpotent Lie group. We apply these to a more detailed 
study of the nilpotent Lie algebra which arises in the Iwasawa decom- 
position. 

Let L be a Lie group with Lie algebra I. Let T(1) denote the tensor 
algebra over I considered as a vector space. Let X 4 x denote the 
identity mapping of 1 into T(1) (this makes it unnecessary to denote the 
multiplication in T(1) by a separate symbol). Similarly, if M = ( m  l...,m,) 
is a positive integral n-tuple we denote by x ( M )  the coefficient to 
tp  ... t? in the product ( 1  M I !)-l(t1Xl + ... + t,X,) I'i, where X,, ..., X ,  
is a basis of 1 and 1 M 1 = ml + ... + m,. An element of the form 
C. i%?p ... x2 will be called a canonical polynomial. As before, 
let J denote the two-sided ideal in T(1) generated by the set of all elements 
of the form 37 - 7x - ( [ X ,  Y])-, X ,  Y E  I. The factor algebra 
T(I)/J is the universal enveloping algebra U(1) of I. Let X ( M )  be the 
image of x ( M )  under the canonical mapping of T(1) onto U(1). As 
proved earlier, the elements X ( M )  form a basis of U(1). From Cor. 1.10, 
Chapter 11, we obtain the following statement: T o  each x ( M )  corre- 
sponds a unique canonical polynomial R M  such that 

X ( M )  R M  mod J .  

Suppose now I is nilpotent. In  the central decending series V01 2 % P I  3 ... 
let %?-lI denote the last nonzero term. The basis X,, ..., X, of 1 is 
said to be compatible with the central descending series if there exist 
integers ro = 1 < rl < ... < rm = n + 1 such that XT,,  Xr,+l, ..., XTz+l-l 
is a basis of a complementary subspace of %?+l1 in WI(0 < i < m - 1). 
We put 

if Xi lies in VP-lI but not in % P I .  In  particular, w ( x i )  = m if Xi  E %?-'I. 
We also put 

W ( X i )  = p  
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c being any real number # 0. We shall call w the weight and d the degree. 
The terms in x ( M )  all have the same weight, denoted w(M) .  

Lemma 4.1. Let L be a nilpotent Lie group with Lie algebra I. Let 
X I ,  ..., X ,  be a basis of 1 compatible with the central descending series 

g o 1  3 g11 3 ... 3 %?T = {O}, gm-11 # {O}, 

of I. Let the constants CP,, be determined by 

X ( M )  X ( N )  = 2 CP,,X(P). 

chi = 0 for each k ,  l < k < n  

P 

Let [k] denote the n-tuple (A,,, ..., 8,J. Then 

provided 1 M I + 1 N I > m. 

Proof. Consider the structural constants ckii defined by 

n 

Using [I, %'q-lI] = and the Jacobi identity, we have 

[%-I, %?:"I] c [ P I ,  %*--11 + [I, [W-ll, %?:"-'I]]. 

[vP-~I, v9-111 c g*+*-11 

The inclusion 

thus follows by induction on q. Hence if p = w(Xi) ,  q = w ( x j ) ,  we 
have by the choice of basis, X ,  E %P+q-lI if ckij # 0, whence 

w(Xk)  >, w(&) + w ( X j )  if c k i j  # 0. (1) 

Now let M and N be any two positive integral n-tuples. Then, writing 
x p  = 8 p 1  ... Xp, we have with some constants up ,  

X ( M )  X ( N )  = 2 a p F  (mod 1) (2) 
P 

X ( M )  X ( N )  = 2 CZNX(Q) (mod I>* 
0 

The expression on the right in (2) can be obtained by finitely many 
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replacements 

which by (1) do not decrease the weight. Consequently, 

Next, we claim that 

I n  fact, let k = min(w(Q) : CZN # O] and let us write = for congruence 
mod J .  Then 

For the first sum we have by the above 

For the second sum, let r = maxi I Qi 1 and let this maximum be reached 
at exactly Qil, ..., Qi,. Since X(Qi) = kor + E'Ipl<r aP,$Xp,  we see that 

Combining these congruences, we deduce 

111 

X ( M ) x ( N )  = c p x p  + 2 Cz;ifo'a+ 2 d p x p  

and since . I ( s Q i s )  = k ,  I Qis  I = r, the middle sum must occur on the 
right-hand side in (2). Thus by (9, K 3 w ( M )  + w(N),  so (4) is 
proved. 

Now suppose I M j + I N I > m. Then w ( M )  + w(N)  > m. If 
CE,!, were # 0, then xk would have weight >, w(M)  + w(N)  > m. 
Since = (0} this is impossible and the lemma is proved. 

w ( R P b k  S=l W ( X P ) > k ,  IP(<V 

Definition. Let V and W be two finite dimensional vector spaces 
over a field K. A polynomial function P on V is a function which can 
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be put in the form P = p(fl, ..., fn) where each fi is a linear function 
on V with values in K and p is a polynomial (with coefficients in K ) .  
A mapping y : V ---t W is said to be a polynomial mapping if P o y is a 
polynomial function on V whenever P is a polynomial function on W. 

Suppose we have chosen bases for V and W. Then the mapping 
y : V +  W is a polynomial mapping if and only if the coordinates of 
y ( X )  E W are polynomials pi in the coordinates of X E V.  The highest 
degree of the polynomials pi is a number, independent of the choice 
of bases. We shall call this number the degree of the polynomial mapping q~. 

Let L be a Lie group with Lie algebra 1. A necessary 
and suflcient condition for I to be nilpotent is the existence of a polynomial 
mapping P : 1 x 1 + 1 such that 

Theorem 4.2. 

exp X exp Y = exp P(X,  Y )  for  X .  Y E I. ( 5 )  

In  this case P has degree < dim I .  

Assume first that L is nilpotent and let X,, ..., X, be a 
basis of I compatible with the central descending series. Combining 
Lemma 4.1 with Cor. 2.7, Chapter 111, we see that CEh = 0 for all 
K = 1, ..., n provided I M I + I N I > dim I. Denoting canonical coor- 
dinates with subscripts we have relation (14) in Chapter 11, 51: 

Proof. 

where = xyl ... x p ,  etc. We can therefore state: There exist n 
polynomials Pi(xl, ..., xn,yl ,  ..., y,), 1 < i < n, of degree < n and a 
number a > 0 such that 

exp (xlX, + ... + x,Xn) exp (ylXl + ... + ynX,) = exp (P1Xl + ... + PnXn) 

(6)  

for I xi I < a, I yi I < a, 1 < i < n. However, making use of the 
following lemma we conclude that (6) holds for all xi and all yi. Hence 
the condition of the theorem is necessary. 

Lemma 4.3. Let M and N be analytic manifolds, M connected. Let 
y and $ be two analytic mappings of M into N.  Suppose y ( p )  = $(p)  
for all p in an open subset of M. Then y (p )  = #(p )  for all p E M .  

Proof. Let q E M .  Let us say that y and $ have the same partial 
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derivatives at q if (1) y(q) = t,h(q). (2) If {xl, ..., xm} and {yl, ...,yn} are 
coordinate systems valid near q and p)(q), respectively, then the expres- 
sions of p) and 4 in these coordinates have the same partial derivatives 
(of all orders) at the point (x,(q), ..., xm(q)). Let M' be the subset of M 
consisting of all the points q E M such that and + have the same partial 
derivatives at q. Then M' is obviously closed in M. But M' is also open 
in M because the partial derivatives of an analytic function at a point 
determine the power series expansion of the function. Due to the 
connectedness of M we have M' = M as desired. 

T o  prove the second half of Theorem 4.2 suppose ( 5 )  holds for some 
polynomial mapping P: 1 x 1 + 1. Let No be a star-shaped open neigh- 
borhood of 0 in I such that the mapping exp is a diffeomorphism 
of No onto a neighborhood N ,  of e in L, Let {xl, ..., x,} be a system 
of canonical coordinates on N,. Let X, Y E 1 and assume X E No. Then 

(7) exp X exp tY = exp (X + tZ , )  ( t  E m, 
where 2, = 2, + tZl + t2Z2 + ..., each Zi being of the form Zi = 
Qi(X, Y) where Qi is a polynomial mapping of 1 x 1 into 1. Since 

x + tZ t  - ( X  + tZo) = O(P) 

it follows that 

whenever f is one of the coordinate functions xi. Using (7), we conclude 

On the other hand, we know from Theorem 1.7, Chapter 11, that 

Since 2, = Qo(X, Y) we get from these two equations 

if X is sufficiently small, Y arbitrary. Now if I x 1 < 27r we have an 
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absolutely convergent series Z; a,xn satisfying 

and infinitely many a,  are # 0.  Equation (8) simply amounts to an 
infinite set of equations for the coefficients a,. If  X is sufficiently small, 
the series Ez a,(ad X ) ,  andZr  (- l),--l/n! (ad X),-l converge absolutelyt 
and can be multiplied together, term by term. Thus relation (8) remains 
true if we replace x by ad X .  It follows that 

2 a,(ad X)” ( Y )  = &(X, Y) .  
u 

Since infinitely many coefficients a,  are # 0, we conclude that ad X 
is nilpotent, hence I is nilpotent. 

Corollary 4.4. Let L be a connected nilpotent Lie group with Lie 
algebra I. Then the exponential mapping is a regular mapping of I onto L. 

If X E I, then ad X is nilpotent so there exists a basis of 1 such that 
the corresponding matrix expression for ad X has zeros on and below 
the diagonal. Consequently 

det ( - e - M x )  # 0. 
ad X 

In view of Theorem 1.7, Chapter 11, this means that exp is regular 
everywhere on I. On the other hand, Theorem 4.2 shows that exp (I) is 
a subgroup of L, which, due to the regularity of exp, is an open sub- 
group. An open subgroup is always closed and due to the connectedness 
of L we find exp (I) = L .  

This corollary can also be proved more directly and without 
using Theorem 4.2. If I # {0} the center c of I is not zero and the factor 
algebra I/c is again nilpotent and has dimension less than dim 1. Corollary 
4.4 can now be proved by induction. The details are left to the reader. 

Let N be a nilpotent endomorphism of a finite-dimensional vector 
space V over R. We put log (1 + N) = (- l),-l N n / n  (finite 
series). It is clear that log (1 + N) and eN - 1 are also nilpotent. 

Remark. 

t Let I 1 be some norm on a finite-dimensional vector space V over R. If A is an endo- 
morphism of V, put / I  A 1 1  = sup (I Ax I / /  xi). If A, (n = 0,1, ...) is an endomorphism 
of V,  the series C:A, is said to be absolutely convergent if ZF / I  A, I /  is convergent. 
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Proof. 
mined by 

Let x be a real number and let the coefficients be deter- 

If I exp x - 1 I < 1, then 

n=l I 

Owing to Weierstrass’ theorem on double series, the summations can 
be interchanged so 

x = 2 (2 (- l)”-’/n am.n) xm. (10) 
m=l n=l 

If A is any endomorphism of V ,  the series 2; (l /r!)  A’ is absolutely 
convergent. Relation (9) remains true if we replace x by A. Consequently, 

m m “ 1  m 

2 (- 1)”-’/n (2 N’)” = 2 (- m=1 2 U ~ , ~ N ~ .  
n=l r=1 n=l 

Since N is nilpotent, the series are actually finite and .the summations 
can of course be interchanged. Considering (10) it follows that 

l o g e N  = N. 

The second relation can be proved in the same way. 

5 5. Global Decompositions 

Theorem 5.1. Let go = f, + Q,, + no be an Iwa zwa decomposition 
of a semisimple Lie algebra go over R.  Let G be any connected Lie group 
with Lie algebra go and let K ,  A,, N be the analytic subgroups of G with 
Lie algebras f,, Q,,, and no, respectively. Then the mapping 

@ : (K, a,  n) + kun ( K  E K ,  a E A,, n E N), 
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is an analytic difleomorphism of the product manifold K x A, x N onto G. 
The groups A,  and N are simply connected. 

We begin by proving a general lemma (Harish-Chandra [4], p. 213), 

Lemma 5.2. Let U be a Lie group with Lie algebra u. Suppose u is a 
direct sum u = m + f) where m and 9 are subalgebras of u (not necessarily 
ideals). Let M and H be the analytic subgroups of U with Lie algebras m 
and b, respectively. Then the mapping a : (m, h) 4 mh ( m  E M ,  h E H )  
of M x H into U is everywhere regular. 

As usual we denote by L,  the left translation by a group 
element x. The tangent vector to the curve x exp t X  at x is dL,(X). 
We identify H and M ,  respectively, with the subgroups (e, H )  and 
( M ,  e )  of the product group M x H.  Also, the tangent space ( M  x H),,,,, 
is identified with the direct sum Mtt, + Hh (m E M ,  h E H ) .  

( ~ ( m  exp tY,  h )  = mh exp ( t  Ad (h-l) Y ) ,  t E R ,  

a(m, h exp t Z )  = mh exp tZ. 

which will also be useful later. 

Proof. 

Let Y E m, 2 E b. Then 

I t  follows that 

d~r(,,, ,(dL,Y, dL,Z) = dL,?,(Ad (h-') Y + 2). (1) 

Now suppose Ad (h-l)  Y + 2 = 0; then Y + Ad (h)  2 = 0 and since 
Ad (h )  2 E b we have Y = 2 = 0. This proves the lemma. 

Let Go be the adjoint group of go. As usual we identify ad (go) and go. 
Let KO, A,, No, and So denote the analytic subgroups of Go with Lie 
algebras f,, bP,, no, and 5, = f)"" + no, respectively. We shall begin by 
proving Theorem 5.1 for the group Go. The  elements of Go are endo- 
morphisms of go which we extend to the complex algebra g. I n  terms 
of the basis (Xi) of g from Lemma 3.5, the elements of KO are represented 
by unitary matrices, the group A, consists of positive diagonal matrices 
and the elements of No are represented by lower triangular matrices 
with diagonal elements equal to 1. Now if a triangular matrix with 
positive diagonal elements is unitary, it must be the unit matrix. It 
follows that the mapping 

( k ,  a, n)  -+ kan, k E KO, a E A,, n E No, 

of KO x A, x No into Go is one-to-one. The  group A, is obviously 
a simply connected closed subgroup of Go. From Cor. 4.4 and Lemma 4.5 
it follows immediately that the exponential mapping for matrices is an 
analytic diffeomorphism of the Lie algebra of all lower triangular matrices 
with zeros in the diagonal onto the Lie group of all lower triangular 
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matrices with all diagonal elements equal to 1.  This being so, it follows 
that No is a closed, simply connected subgroup of Go. The set A,N, = 
{an : a E A,, n E No} is a subgroup of Go. Since a represents the diagonal 
in the matrix an, and since A, is closed in Go, it is obvious that the 
group A,N, is a closed subgroup of Go, hence an analytic subgroup of Go. 
Now, by Lemma 5.2, the mapping (a ,  n) --t an is a diffeomorphism of 
A, x No onto A,N,; hence dim A,N, = dim So. But obviously 
A,N, C So; hence A,N, = So. 

Consider now the Riemannian globally symmetric space M = Go/K,. 
Let R be the subgroup consisting of those elements in Go which leave 
every point of Mfixed. Then we know (Remark 2, Prop. 3.4, Chapter IV) 
that the factor group G,/R is a closed subgroup of the group I ( M )  of all 
isometries of M .  The natural mapping of Go onto G,/R maps So onto 
a subgroup S,  of G,/R. Since So is closed in Go and R compact, it 
follows that S, is closed in G,/R, hence a closed subgroup of I (M) .  
Let p denote the point in M given by the coset {KO). It is clear that 
dim S, = dim M so the orbit S, . p is an open subset of M due to 
Lemma 4.1, Chapter 11. But being the orbit of a closed subgroup of 
I (M) ,  S,  ’ p  is a closed subset of M (Theorem 2.2, Chapter IV).t 
Hence S, . p = M .  In terms of Go, this result means that each g E Go 
can be written g = sk, where s E So, k E KO. Taking inverses it follows 
that each g ,  E Go can be written g, = klsl (k ,  E KO, s1 E So). The 
mapping (k ,  a ,  n)  --+ kan of KO x A, x No into Go is therefore one- 
to-one, onto and regular, hence a diffeomorphism. 

T o  prove Theorem 5.1 in full generality, let T denote the natural 
mapping of G onto Go. The kernel of T is the center 2 of G .  Since 2 
is discrete, (G, n-) is a covering group of Go. The identity component 
of the groups “-,(A,) and T-~(N,) coincides with A, and N ,  respectively. 
The  groups A, and No are simply connected and have covering groups 
(A,, T )  and ( N ,  T). Hence A,  n 2 = N n 2 = {el and A, and N are 
simply connected. If we put R = T-1 (KO) we have evidently G = EA,N 
and each g can be written uniquely g = kan (k  E I??, a E A,, n E N ) .  
Here a and n depend continuously on g, because T is a homeomorphism 
of A, onto A, and of N onto No. Hence k depends continuously on g ;  
hence A,N and KA,N are closed in G. The regularity of @ follows 
by applying Lemma 5.2 twice: first on the subgroups A, and N of 
ApN, next on the subgroups K and A,N of G. Thus KA,N is open 
and closed in G so G = KA,N; this finishes the proof of Theorem 5.1. 

Proposition 5.3. In the notation of Theorem 5.1, let S = ApN, 
P = exp p,. Then S is a closed solvable subgroup of G, P is a closed 

t Or by Prop. 4.4, Chapter 11. 
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submanijold of G. Let 0 denote the automorphism of G for  which dB = 9. 
Then the mapping * : s + O(s) s-1, s E s, 
is a difleomorphism of S onto P. 

Only the last statement has not been proved already. Each 
g E G can be written g = p k ,  p E P, k E K.  Then e(g) = p - l k  so 
B(g)g-l = p-2  E P. In  particular, $(S)  C P. The  mapping is one-to- 
one. In  fact, if B(s,) s ~ l  == B(s,)s;l, (sl, s2 E S) ,  then B(s;ls,) = s;lsl; 
hence s;lsl E K n S = {e} so s1 = s2. Furthermore, $(S) = P; in fact, 
given p E P there exists a unique X E pa such that p = exp X .  By 
Theorem 5.1 there exist unique elements K E K and s E S such that 
exp $- X = ks-l. Then p = 0(s) s-l as desired. This mapping $-l : p --t s 
is differentiable because it is composed of the mappings 

Proof. 

X X 
P exp-l* x-+ T - exp T - s* 

§ 6. The Complex Case 

I t  will be convenient later to have the Iwasawa decomposition 
(Theorems 3.4 and 5.1) restated for the case when the semisimple Lie 
algebra in question has a complex structure. 

Suppose go is a semisimple Lie algebra over R with complex structure J .  
This simply means (Chapter 111, 96) that there exists an endomorphism 
J of go such that 

J A  = - I ,  

(adgo X) J = J adgo x, x E 90. 

As shown in 96, Chapter 111, the set go can be regarded as a Lie algebra 
go over C. T h e  Lie algebra go is obtained from go by restricting the scalars 
to R, in other words = go. Let c be any compact real form of the 
semisimple Lie algebra do. Then 

90 = c + J c  

is a Cartan decomposition of go (Cor. 7.5, Chapter 111). We can therefore 
carry through the construction in 93 for fa = c and pa = J c .  The maximal 
abelian subspace has the form Ja, where a, is a maximal abelian sub- 
algebra of c. Then 0, = a, + ]ao is a maximal abelian subalgebra of 
go. Since Jbo C b,, the Lie algebra b0 has a complex structure inherited 
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from go. The corresponding Lie algebra 5, over C is a Cartan subalgebra 
of 6,. Let d” denote the set of nonzero roots of 6, with respect to 6,. 
In accordance with previous terminology we put 

Owing to Lemma 3.1 we have (5,)” = Ja,. Suppose now that the dual 
of the (real) vector space Ja, has been turned into an ordered vector 
space. Let (A)+ denote the set of positive roots in 0” according to this 
ordering. We put 

ti, = 2 6: and n, = (fi+)R. 
as(d”)+ 

Let g = go + ig, be the complexification of the real Lie algebra go 
and extend J to a (C-linear) endomorphism of g. The algebra f~ = bo + ibo 
is a Cartan subalgebra of g (Lemma 3.2). Let A denote the set of nonzero 
roots of g with respect to b and as before we put 

b~ = 2 RH,. 
a E A  

Then according to Lemma 3.2 we have bR = ]a, + ia,. It is obviously 
possible to turn the dual space of bR into an ordered vector space such 
that the orderings in the duals of and OR are compatible. T,et A +  
denote the set of positive roots in A with respect to this ordering. In  
93 we have divided the set A +  into two subsets P- and P+, P- containing 
exactly those roots in A +  which vanish identically on bp0. 

Lemma 6.1. 

Proof. 

In  the present case, A +  = P ,  so P- is empty. 

The equation J [ X ,  Y ]  = [ J X ,  y] holds for all X, Y €go, 
hence for all X ,  Y E g ,  J being C-linear. Now let a be a nonzero root 
of g with respect to b and select a nonzero vector Xu E ga. Let H E b. 
The equation [H, Xu] = a(H)  X u  implies [H, JX,] = a(H)  JX,. Hence 
J X ,  = cX,  where c is a complex number. On the other hand, J ~ J  c b 
and a(JH) Xu = [JH, Xu] = [ H ,  JX,] = ca(H) Xu. Hence a(JH)  = 
ca(H) for all H E b. From this equation it is obvious that a cannot 
vanish identically on the space ]ao (which plays the role of 9,). This 
proves the lemma. 

Let n = ZaEd+ ga. Then n n Q~ = n,. 

Let y E (a)+ and Z,, # 0 in 6;. Then [H, Z,,] = y ( H )  2, for 
all H E b,. If we extend y to a C-linear function y* on b then [H,  Z,] = 

Lemma 6.2. 

Proof. 
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y*(H)  2, for all H E b. Thus y* E d and due to the compatibility of the 
orderings we have y* E A+. Hence 2, E n n go and n+ c n n go. On 
the other hand, the number of elements in A +  is twice the number of 
elements in (o”)+. It  follows that 

dimR n, = dim, n = dim, n n go. 

This proves the lemma. Theorems 3.4 and 3.1 can now be restated 
(in simplified notation). 

Let g be a semisimple Lie algebra over C, g R  the Lie 
algebra g considered as a Lie algebra over R. Let J be the complex structure 
on g R  which corresponds to multiplication by i on g. Let u be any compact 
real form of g and let a be any maximal abelian subalgebra of u. Then 
the algebra b = a + i a  is a Cartan subalgebra of g. Let A be the set of 
roots of g with respect to b and let A+ be the set of positive roots with respect 
to some ordering of A .  I f  n+ denotes the space ZaGd+ ga considered as a real 
subspace of gR the following direct decomposition is valid 

g R  = u + l a  + n+. 

Let G, be any connected Lie group with Lie algebra g R  and let U ,  A*, and 
N +  denote the analytic subgroups of G, with Lie algebras u ,  Ja ,  and n+, 
respectively. Then the mapping 

Theorem 6.3. 

(u, a,  n) + uan, u E U ,  a E -4*, n E N+, 

is an analytic diSfeomorphism of U x A* x N+ onto G,. The groups 
A* and N ,  are simply connected. 

EXERCISES AND FURTHER RESULTS 

A. Geometric Features of the Cartan Decomposition 

1. Let G be connected semisimple Lie group whose Lie algebra 
has a complex structure. Show that G has finite center. 

2. (See Chapter V, $2 for the notation.) The group SO(p) x SO(2) 
is a maximal compact subgroup of SO&, 2). Deduce from Theorem 1.1 
that the universal covering group of SO&, 2) has infinite center ( p  3 1). 

3. Let G, go, 0 and K be as in Theorem 1.1. 
(i) Prove that K equals its normalizer in G. 
(ii) Prove that Ad(G) is invariant under the transpose g -+ with 

respect to BB, and that ‘g = Og-lo. 



276 SYMMETRIC SPACES OF THE NONCOMPACT TYPE [Ch. VI 

(iii) Assuming G simple, prove that K is a maximal closed proper 

(iv) Assuming G simple, prove that K is a maximal proper subgroup 
subgroup of G. (Use Prop. 5.1, Chapter VIII.) 

of G (cf. Brauer [l], Brun [l]). 
4. Let A be a set of isometries of a complete simply connected 

Riemannian manifold M of negative curvature. Then 

(i) If not empty, the set of fixed points under A forms a connected 
totally geodesic submanifold of M .  

(ii) Suppose M is a Riemannian globally symmetric space of the non- 
compact type, M = G/K (G = Io(M)) ,  and that A is a closed connected 
subgroup of K with Lie algebra a. Show that the fixed point set of A 
is Exp b where 

b = { X  E po : Adc (exp (- X ) )  a c f,,). 
(iii) Show that the set b in (ii) can be written 

b = { X  E p,, : [ R X ,  a] = (O} } .  

5. Let M be a Riemannian globally symmetric space of the non- 
compact type, o any point in M .  Let u denote the automorphismg -+ sogso 
of Zo(M). Let Io(M) be given the pseudo-Riemannian structure induced 
by the Killing form. Then the mapping 

P - gdg-’) (,q ’ 0 = Ply 

is a diffeomorphism of M onto a closed totally geodesic submanifold S 
of Io(M).  Under this mapping the action of an element x’ E Io (M)  on M 
corresponds to the diffeomorphism s + xsu(x-I) of S. 

6. Let go be a semisimple Lie algebra, K c Int(go) a fixed maximal 
compact subgroup, and M = Int(go)/K the associated symmetric space. 
The  mapping 

p = g K  -+ gKg-’ (= isotropy group K,, at p )  

is a bijection of M onto the set of all maximal compact subgroups of 
Int(g,). Using the fact that Kp n K, is the group of “rotations” of M 
around the geodesic ypq, deduce that Kp and Kq are conjugate under a 
g E Int(gO) commuting elementwise with Kp n K,. 

7. Let go be a semisimple Lie algebra, u any automorphism of go. 

(i) Show that there is a unique automorphism 2 of Int(go) such that 

(ii) Z permutes the maximal compact subgroups of Int(g,). Show 
dZ = U. Prove that Z(g) = ugu-l for g E Int(gO). 
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that the corresponding mapping I,, of M = Int(g,),/K (cf. Exercise A.6) 
is an isometry. 

(iii) Suppose go has no compact ideals. Then the mapping (T +I, ,  
is an isomorphism of Aut(g,) onto I ( M ) .  

8. (i) Let go be a semisimple Lie algebra over R and M a compact 
group of automorphisms of go leaving invariant a compactly imbedded 
subalgebra 5, C go. Then M leaves invariant a Cartan decomposition 
go = f, + p o  such that 5, c f,. (Use the method of Theorem 2.1; cf. 
Bore1 [9] . )  

In particular, an automorphism of finite order always leaves some 
Cartan decomposition invariant (compare Exercise B.4, Chapter 111). 

(ii) If gh c go is a semisimple subalgebra and 96 = fi + p i  any Cartan 
decomposition, then there exists a Cartan decomposition go = f, + p o  
such that C f,, p h  C p o  (Mostow [3]; compare Lemma 2.2 in Chapter IX). 
(Hint: Use (i) on the conjugation (T of g with respect to go.) 

9. Let G be a connected semisimple Lie group, go = f, + p o  a Cartan 
decomposition of its Lie algebra, and B the corresponding Cartan 
involution. Consider the left invariant Riemannian structure given by 
the positive definite bilinear form B, on go x go and let V denote the 
corresponding affine connection. Then V and its geodesics have the 
following properties (H. C. Wang [2], and personal communication). 

(i) If Y ,  2 E go, then the left invariant vector fields P, 2 satisfy 

2Vp(Z) = [P, Z ]  + [OF, 21 + [O2, PI. 
(ii) Le ts  -+ y(s) be a geodesic in G, y(0) = e,  and s the arc parameter. 

For each s E R fix T(s) E f,, X(s)  E p o  such that 

i.(4 = (T(4 + X ( S ) ) Y ; S ) .  

f Y ( S )  = f4?(i’(s), ~,(d 

-- dfY - --B,([T(~), X ( ~ ) I ,  Y - eu). 

Then given Y E  go the function 

satisfies 

ds 

(iii) Deduce from (ii) that 

so that, writing To for T(O), X ,  for X(O), 
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(iv) Deduce from (iii) that the geodesic y is given by 

y(s) = exp(s(Xo - To)) exp 2sTo. 

(v) Deduce from Exercise A.3, Chapter I1 that a geodesic in G which 
intersects itself is a closed geodesic. 

lo*. Let M be a Riemannian globally symmetric space of the non- 
compact type and L a (not necessarily connected) effective Lie transfor- 
mation group of M .  If L310(M),  then I ( M ) 3 L  (cf. Ochiai [l]). For the 
compact M an entirely different situation prevails, cf. SL(2, C )  acting on 
S2. For a general study, see Nagano [2]. 

B. The lwasawa Decomposition 

1. Using the Gram-Schmidt orthonormalization process, prove 

2. With the notation of Theorem 5.1 prove that (cf. Helgason [6],  [7]): 

(i) K n (N(0N))  = {e}. 
(ii) N(0N)  n M A ,  = {e}. 
(iii) The orbits A, o and N - o are perpendicular at 0, the origin 

in GjK. 
(iv) The distance function d on G/K satisfies 

directly the Iwasawa decomposition for SL(n, R) .  

d(o, a . 0 )  < d(o, an * 0 )  for U E A ,  n # e in N .  

be such that a ( H )  > 0 for all a E P,. Then (v) Let H E 

N = {z E G : lim exp(-tH) z exp tH = e}. 
t++m 

3. Give explicit Iwasawa decompositions for d ( n ,  C) ,  so(n, C) ,  and 

4. Show that if g is a semisimple Lie algebra over C, then the real Lie 

5. With the notation of $3, assume f contains no ideal # 0 in g. 

v ( n ,  C) .  

algebra gR has all its restricted roots of multiplicity 2. 

Then (cf. Helgason [9], p. 50) 

m + b, = [cia, ra1. 
a € P +  

C. The Displacement Function 

of M the displacement function 6, is defined by 
Let M be a metric space with distance function d.  Iff is an isometry 

Mx)  = d ( x , f ( x N  (x E M ) .  
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The isometry f is called a ClzfSord- Wolf isometry if 6, is constant on M .  
l*. A Riemannian globally symmetric space M of the noncompact 

type has no isometry f # I with 8, bounded; in particular M has no 
Clifford-Wolf isometry (cf. Freudenthal [ 5 ] ,  Tits [2]). 

2*. Let M be a simply connected complete Riemannian manifold 
with sectional curvature K < 0, and Crit(f) the set of critical points of 
the function 6; (that is, where d(6;) = 0). Then (cf. Ozols [l]): 

(i) Crit(f) is a totally geodesic submanifold. 
(ii) x E Crit(f) if and only f preserves the unique geodesic joining x 

to f (x) and induces a translation along this geodesic. 
(iii) If K < 0 and f is without fixed points, then either Crit(f) = 0 

or consists of a single geodesic. 

3*. Let M be a Riemannian globally symmetric space of the non- 
compact type, and g E I ( M ) .  Then we have the following results 
(Mostow [6]):  

(i) Let S c M be a totally geodesic submanifold invariant under g. 
Then 

int S,(m) = inf S,(s). 
m s M  SE s 

(Let for m E M ,  s be the foot of the perpendicular from m to S; use 
Cor. 13.2, Chapter I, on the triangles (s, m, g * m) and (s, g * m, g s) to 
deduce Sf(s) < sf(rn).) 

(ii) The infmEMSg(m) is reached if and only if g is semisimple. The  
points where the minimum is reached form a totally geodesic sub- 
manifold of M on which the centralizer of g in I ( M )  acts transitively. 

4*. Let M be a complete locally symmetric space and M* its universal 
covering (cf. Theorem 5.6, Chapter IV), and r C I(&!*) the corresponding 
group of covering transformations of M* such that M = M * / r .  Then 
the following conditions are equivalent (cf. Wolf [2]): 

r consists of Clifford-Wolf isometries; 
Z(F) ,  the centralizer of r in I (M*),  is transitive on M*. 

(i) M is homogeneous; 

(ii) 
(iii) 

NOTES 

91-92. Most of the results here are due to 8. Cartan [lo]; see also Mostow 
[I ,  31. Theorem 1.4 was first proved by Mostow in [3]; his proof differs somewhat 
from that of the text and as several results of the same paper it is based on the 
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imbedding 9: g K  -+ Adc(gp(g-1)) of GIK into the space P of positive definite 
symmetric matrices. This imbedding is also used in Mostow’s profound study [6] 
of rigidity where he proves that a compact irreducible locally symmetric space of 
nonpositive curvature and dimension >2 is uniquely determined up to isometry 
(and a normalizing factor) by its fundamental group. (This fails for dimension 2: 
compact Riemann surfaces of the same genus need not be conformally equivalent.) 
Theorem 1.4 is applied to pseudo-Riemannian symmetric spaces by Flensted- 
Jensen [l ,  21. For further studies of these see, e.g., Koh [l], Loos [l], 
Shapiro [ 13, Rossmann [ 11, Oshima and Sekiguchi [ 13, in addition to the references 
to Chapter IV. 

Other imbeddings of symmetric spaces and resulting compactifications have 
been studied by Satake [3], Furstenberg [l], Moore [l], KarpeleviE [l], Oshima [l]. 
Cartan’s conjugacy theorem (Theorem 2.1) has been extended by Iwasawa [l] to 
all connected locally compact groups. 

Theorem 3.4 and its global analog Theorem 5.1 are from Iwasawa [l] 
(the results were extended from complex groups to real groups by Chevalley). In 
these theorems the Cartan subalgebra $ of Q is chosen such that lj n p has maximum 
dimension. The theorems have been extended by Harish-Chandra [S], p. 212 to 
other Cartan subalgebras; see also Satake [3], $3. Concerning Theorem 4.2 see 
Chen [l]. The proof of Lemma 4.1 incorporates Namioka’s correction of the 
earlier version in [13]. 

$3-$5. 



CHAPTER VII 

SYMMETRIC SPACES OF THE COMPACT TYPE 

In contrast to the situation for the noncompact type there may be several 
Riemannian globally symmetric spaces U / K  associated with the same orthogonal 
symmetric Lie algebra (u,B) of the compact type. These spaces are finite in number 
and have the same universal covering space. They can all be described by means 
of the center of the universal covering group of U (Theorem 9.1). 

The entire chapter centers around the maximal abelian subspace br, together 
with the root system A , .  These define the diagram D( U,K)  in which certain infor- 
mation about the space U / K  is contained, for example, the location of its conjugate 
points and position of its closed geodesics. Elementary properties of the Weyl 
group W(U, K) and the diagram are developed in $2 and $3, and some of these 
are extended to the afline Weyl group rx in $8. For the isotropy action we prove 
the following identification of the orbit spaces: K\p, = W(U, K)\Ijp, = closed 
Weyl chamber; K\U/K = I'=\IjP* = closed polyhedron in IjP* determined by 
D(U, K). In the course of describing all the spaces U/K associated with (u, 0)  we 
determine the fundamental group of U, the unit lattice, and the center of the 
universal covering group 0 in terms of the diagram D(U). Here the singular 
set in U interferes, and a rigorous proof of the fact that it has no influence on the 
fundamental group of U requires some tools from dimension theory, collected in 

In $1 1 we prove that for U/K simply connected, all closed geodesics of minimal 
length are conjugate; so are all maximally curved totally geodesic submanifolds 
of the same dimension. 

912. 

$ 1 .  The Contrast between the Compact Type and 
the Noncompact Type 

Let u be a compact semisimple Lie algebra and B an involutive auto- 
morphism of 11. Then 0 extends uniquely to a (complex) involutive 
automorphism of 9, the complexification of u. We denote this extension 
also by 0. Let (go, s) denote the orthogonal symmetric Lie algebra which 
is dual to (u, 0). Then go is a real form of g and s is just the restriction 
of B to go. As usual we adopt the notational conventions in 55, Chapter V. 
We have then the direct decompositions 

'1 = €0 + P*, 

into eigenspaces for 0. We recall that a pair ( C ,  K )  is said to be associated 
with (u, 0) if Lr is a connected Lie group with Lie algebra II and K is a 

90 = f o  + Po 

28 1 
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Lie subgroup of U with Lie algebra f,. Such a pair is said to be of the 
compact type. This pair is said to be a Riemannian symmetric pair if 
K is closed, Ad, (K) compact and if there exists an analytic involutive 
automorphism 0 of U such that (Kg), C K C Kg. Such a 0 is necessarily 
unique and do = 0. Finally, a Riemannian globally symmetric space M 
is said to be of the compact type if the pair (Io(M), H) is of the compact 
type, H being the isotropy subgroup of I,(M) at some point o E M. 

Proposition 1.1. Let (u, 0 )  be an orthogonal symmetric Lie algebra of 
the compact type. Let ( U ,  K )  be an arbitrary pair associated with (u, 0). 
Then K is compact and Ad ,  ( K )  p* C p*. The restriction of - B to 
p* x p* gives rise to a U-invariant Riemannian structure on U/K,  
which turns UlK into a Riemannian locally symmetric space. 

Proof. Let KO denote the identity component of K and N(Ko) the 
normalizer of KO in U ,  that is, the set of u E U such that uK0u-l C KO 
The  group KO is a closed subgroup of U (Prop. 3.6, Chapter IV); 
hence N(K,) is closed in U .  The  group U is compact (Theorem 6.9, 
Chapter 11)) so N(K,) is compact. T h e  Lie algebra of N(Ko) is the 
normalizer n(to) of to in u, that is, the set of elements X E u such that 
[RX, to] C f,. If X E n(fo) n p*, then [RX, to] C f, n p* = (0). Using 
Corollary 1.7, Chapter V, it follows that X = 0 so n(fo) = fo. The  
group N(K,) has finitely many components and the same is true of K 
since K C N(K,). Hence K is compact. The  group Ad, (K) leaves to, 
and therefore its orthogonal complement, p* , invariant. The  local 
symmetry of U / K  is clear from Prop. 3.6, Chapter IV (even if K is not 
connected). 

The  question is now: When is U/K Riemannian globally symmetric ? 
The  answer will be given in the present chapter (Theorem 9.1). It is 
more complicated than the answer to the analogous question for the 
noncompact type, where G/K is always globally symmetric (Theorem 1.1, 
Chapter VI). T o  begin with we establish a negative result which indicates 
what kind of complications the compact type presents. 

Proposition 1.2. Let (u, 0)  be an orthogonal symmetric Lie algebra of 
the compact type. Let ( U ,  K )  be an arbitrary pair associated with (u, 8). 
Then 

(i) The center of U does not in general belong to K.  
(ii) Even if U / K  is Riemannianglobally symmetric, K is not necessarily 

(iii) Even if UlK is  Riemannian globally symmetric, the automorphism 
connected. 

8 does not necessarily correspond to an automorphism of U. 
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An example for (i) is given by+ U = SU(n) (n 2 3), K = SO(n) 
with the involutive automorphism u -+ C (complex conjugation) of U. 
For (ii) we consider the two-dimensional real projective space P2, that 
is, S2 with all antipodal points identified. Then P2 = U/K where U = SO(3) 
and K is the subgroup of U leaving a line I through 0 invariant. The  
group K is generated by the rotations around I and the reflection in 
a line through 0, perpendicular to 1. Here U/K is Riemannian globally 
symmetric and K has two components. For (iii) let 0 = SU(2) x SU(2) 
and let 0 denote the automorphism (g,, g2)  --t (g2, g,)  of 0. The sub- 
group R of fixed points is isomorphic to SU(2). The center of SU(2) 
is a cyclic group of order 2; let z be the generator and let S denote the 
subgroup of the center 2 of a consisting of the two elements (e, e) ,  
(e, z). Let U = o / S  and let K = rr(R), rr denoting the natural mapping 
of 0 onto U .  The pair ( U ,  K )  is associated with (u, 0) where u is the 
Lie algebra of 0 and 0 is the automorphism of u induced by 8. The 
homomorphism Ad, has a kernel consisting of two elements (since 2 
has four elements). These elements are S and ( x ,  z) S both of which 
belong to K. Hence U/K = Ad,(U)/Ad,(K) and this last space is 
globally symmetric since the automorphism 0 induces an automorphism 
of Int (u) = Ad, ( U ) .  On the other hand, since o(S) $ S, the following 
lemma shows that 0 does not correspond to an automorphism of U. 

Proof. 

Lemma 1.3.9 Let L be a connected Liegroup and lot (L*,  rr) denote 
the universal covering group of L .  Let Z* denote the kernel of rr. Let u 
be any analytic automorphism of L * and du the corresponding automorphism 
of I, the Lie algebra of L. Then du corresponds to an analytic automorphism 
of L if and only ;f u(Z*) C Z*. 

If u(Z*) C Z*,  then u induces the desired automorphism of 
L*/Z* = L .  On the other hand, suppose h is an automorphism of L 
such that dh = du. Consider the mappings F = rr o u and $ = X o rr 
of L* onto L .  Then q and $ are homomorphism and dq = d$. Con- 
sequently = +. Since Z* is the kernel of rr it follows that u(Z*) C Z* 
and the lemma is proved, 

Proof. 

$2. The Weyl Group and the Restricted Roots 

Let (u, 0) be an orthogonal symmetric Lie algebra of the compact 
type and let ( U ,  K )  be any pair associated with (u, 0). The notation 

t For the notation SU(n) see Chapter X, 92. 
5 See Berger [2], p. 162. 
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of $1 will be preserved but for simplicity we shall now write Ad instead 
of Ad,. For each X E p*, let Tx denote the restriction of (ad X ) 2  to p* . 

Let b,, denote an arbitrary maximal abelian subspace of p*. Then 
the space bpo = iopt is a maximal abelian subspace of po. Let $, be any 
maximal abelian subalgebra of go containing bDo and let b denote the 
subalgebra of g generated by to. Then b is a Cartan subalgebra of g 
(Lemma 3.2, Chapter VI), and as in 93, Chapter VI, we can form the 
subspaces btl, bfo, bf, and bR. Let A denote the set of nonzero roots 
of g with respect to $. Let A, denote the set of roots in A which do not 
vanish identically on b,. As in Chapter VI, 93, let A +  denote the subset 
of A formed by the positive roots with respect to an ordering of A 
given by any compatible orderings in the dual spaces of bp0 and b R ,  
respectively. Let P+ = A +  n A,. Finally, m, shall denote the centralizer 

Let M and M', respectively, denote the centralizer and normalizer 
of bpo (or bp,) in €0. 

of bp, in K. In other words, 

M = {k E K : Ad (k) H = H for each H E bp,),  

M' = (k E K : Ad (k) b,, C Qp,}. 

It is clear that M is a normal subgroup of M'. 

Proposition 2.1. 

Proof. 

The groups M and M' are compact and have the 
same Lie akebra, namely mo. 

The groups M and M' are closed subgroups of K, hence 
compact. It is obvious that M has Lie algebra m,. On the other hand, 
let Y belong to f!(M'), the Lie algebra of M'. Then [Y, HI E bPt for 
each H E b,* so 

B (ad H( Y), ad H( Y)) = - B((ad H)2 Y, Y) = 0. 

Hence [H,  yl = 0 for each H E bp,  so Y E m,. 

Definition. The factor group M'IM is called the Weyl group of the 
pair (U, K). It is denoted by W ( U ,  K) (or simply W ) .  

It is clear from Prop. 2.1 that W( U ,  K) is a finite group. 
The  mapping k + Ad (k) (k E M') induces an isomorphism of W( U,  K) 
into GL(@,*). We can therefore regard W( U ,  K) as a group of (complex) 
linear transformations of 6,. It will be shown later that for a fixed b p t ,  
W(U,  K) only depends on (u, 0). On the other hand, it is clear from 

Remark. 
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Lemma 6.3, Chapter V, that different choices of t),* lead to isomorphic 
Weyl groups. 

Let a be a subset of bp, and suppose k is an element 
of K such that A d  ( k )  a C br*. Then there exists an element s E W(U, K )  
such that s * A = A d  ( k )  A for each A E a. 

The  centralizer 2, of a in U is a closed subgroup of U. Its 
Lie algebra is sa, the centralizer of a in u. Since 3" is invariant under 0 
we have the direct decomposition 

Proposition 2.2. 

Proof. 

sa = 3a n €0 + 3a n P** 

The spaces bp* and Ad(k-l) bp* are maximal abelian subspaces of 
3" n p*. In  view of Lemma 6.3, Chapter V, there exists an element 
H E bpf whose centralizer in p* coincides with bc&. Let X be any fixed 
element in 3a n p * .  The  function z -+ B ( H ,  Ad ( z )  X )  (z  E 2, n K )  
is real and attains its minimum, the group 2, n K being compact. 
If zo is a minimum point, we have 

d 
B(H, Ad (exp t T )  Ad (z,) X )  ' = 0 I t=0 

for each T E 3a n f,. It follows that 

B(H, [T ,  Ad ( ~ 0 )  XI) = - B([H,  Ad ( ~ 0 )  XI, T )  = 0 (1) 

for each T E 3a n f,. Since [H, Ad (z,) XI E 3a n f, we conclude from 
(1) that [ H ,  Ad (2,) XI = 0, so, due to the choice of H ,  Ad (zo) X E b,,. 
In  particular, let X = H' where H' is an element in Ad (k- l )  bp,  whose 
centralizer in p* is Ad (k - l )  bp* .  Then from the above follows that 
H' E Ad (z;') bp,  so 

Ad (~i') bp, = Ad (k-') h,,. 

Consequently kz;' E M'. Since zo E 2, n K ,  the restriction of Ad (kz;') 
to t),, is the desired element s E W( U ,  K ) .  

The Killing form B is nondegenerate on bp x 0,. For each 01 E A ,  
there exists a unique vector A, E b, such that B(H, A,) = a(H)  for all 
H E 5,. Since CY. is real on bpo it follows that A ,  E bPo. 

Lemma 2.3. For each 01 E A ,  there exist nonzero vectors Y ,  E p,, 
2, E to such that 

[H,  Ya1 = 4 H )  za, [ff, 221 = 4 H )  y, 

for all H E 9,. 
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Proof. There exists a vector X ,  # 0 in Q such that [H, X,] = a(H)  X ,  
for all H E b. Writing X ,  = X, + iX, where XI, X ,  E go, and noting 
that 01 is real on bPa, we obtain [H, Xi] = a(H)  Xi for H E t),, i = 1, 2. 
At least one of the vectors Xi is nonzero and can be decomposed Y, + 2, 
where Y, E po,  2, E to. Equating the components in p o  and f,, respectively, 
we get 

[H,  Y a l  = 4 H ) Z a  

[ H ,  zal = a(H)  Y a  

for H E b,. At least one of the vectors Y,, 2, is # 0; it follows that both 
are # 0, since a does not vanish identically on b,. 

The form - B induces a positive definite quadratic form on U p , .  
For each 01 E A,, let s, denote the reflection of bp* in the hyperplane 
a(H)  = 0 of bp*. Then s, extends uniquely to a complex linear trans- 
formation of bp and 

Lemma 2.4. 

Proof. 

Let 01 E A,.  Then s, E W( U, K ) .  

Consider the vectors Y,, 2, from Lemma 2.3. We can assume, 
changing Y, + 2, by a real factor if necessary, that B(Z,, 2,) = - 1. 
Then, if H E bu, 

The last relation implies that [Z,, Yo;] E b, and the first then shows 
that [Z,, Y,] = A,. It follows that 

Since cx(A,) = B(A,, A,) > 0, there exists a number to E R such that 
to 1/01(A,) = m. Putting KO = exp tOZ, we obtain 

-~ 

Ad (KO) A, = -A,. 
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Moreover, since [Z,, HI = 0 if a(H)  = 0, the hyperplane a(H)  = 0 
in $,, is left pointwise fixed by Ad (k,). Hence s, is the restriction of 
Ad (k,) to bP*.  This proves the lemma. 

Now we need some facts about toral subgroups (i.e., compact, abelian, 
connected subgroups) of compact Lie groups. 

Theorem 2.5. Let S be a compact covanected Lie group and T a toral 
subgroup of S. Suppose a i s  a n  element in S which commutes with each 
member of T. Then there exists a torus T' C S such that T C T' and a E T'. 

For the proof we need a lemma concerning monothetic groups. A 
topological group S is called monothetic if there exists an element x E S 
such that the sequence e, x ,  x2,  ..., is dense in S. In  this case, the 
element x is called a generator. Any torus is monothetic due to the 
classical theorem of Kronecker. 

Lemma 2.6. Let A be a compact abelian Lie group such that AIA, 
is cyclic, A, denoting the identity component of A. Then A is monothetic. 

The  group A, is a torus, hence monothetic. Let a, bea  gene- 
rator for A, and let N denote the number a f  elements in AIA,. Select 
a generator B for A/A, and an element b in the coset B. Then b" E A, 
and there exists an element c E A, such that bNc" = a,. Then bc is a 
generator of A. 

In  order to prove Theorem 2.5, let A denote the closed subgroup 
of S generated by T and a. The  identity component A, of A is a torus 
containing T and the group UnsZAOan  equals A. Since A is compact, 
some positive power of a lies in A,. If N is the smallest such power of a ,  
the group A/A, is cyclic of order N .  By Lemma 2.6, A is monothetic. 
If b is a generator of A, let exp tX  ( t  E R) be a one-parameter subgroup 
y of S passing through b. The closure of y in S is a torus containing 
a and T. 

Proof. 

Corollary 2.7. A maximal torus in a compact, connected Lie group is 
a maximal abelian subgroup. 

Corollary 2.8. 

In  fact, it is the union of the tori containing T. 
Each root 01 E A ,  defines a hyperplane a(H)  = 0 in the vector space 

$,,. These hyperplanes divide the space bp, into finitely many connected 
components, called the Weyl  chambers. These are open, convex subsets 

Let T be a toral subgroup of a compact connected Lie 
group S. The centralizer of T in S is connected. 

of $p*. 
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Lemma 2.9. Let H E b,,. Then the eigenvalues of T H  are: (1) 0 with 
multiplicity dim bp*; (2) the numbers 01(H)2 as OL runs through P, (with 
the right multiplicity). 

As proved in Chapter VI (Lemma 3.6), the space p has a 
direct decomposition 

Proof. 

p = b , + q  where q = 2 C ( X ,  - ex,). 
asp+ 

NOW [H, x,] = 0 1 ( ~ )  x,, [ H ,  exj = - 0 1 ( ~ )  ex,, so 

(ad H)2 ( X ,  - OX,) = o ~ ( H ) ~  ( X ,  - OX,). 

Let V be the eigenspace of (ad H ) 2  in p for the eigenvalue o ~ ( H ) ~ .  Since 
O L ( H ) ~  is real, we have V = V n p o  + V n p* and the complex dimen- 
sion of V equals the real dimension of V n p*. The lemma now follows 
immediately. Lemma 2.3 gives another proof. 

The  maximal abelian subspace 0, of p can in general be extended 
to a Cartan subalgebra 6 of g in many different ways. However, the 
restrictions of the roots to t), do not depend on the choice of b, as 
Lemma 2.9 shows. More precisely, we have 

Let h be a real linear function on bPu. Then h is the 
restriction of a root (of g with respect to b) if and only $ there exists a vector 
X # 0 in po such that 

Corollary 2.10. 

(ad H ) 2  X = h(H)2 X for H E bP,. 

As an immediate consequence, we obtain 

Let k E M' and for each real linear function h op1 tJvo ,  
put hk(H) = X(Ad(k-l)  H ) ,  H E Then X is the restriction of a root 
(of g with respect to b) if and only if Xk is the restriction of a root. 

Each s E W( U ,  K )  permutes the Weyl chambers. The 
Weyl group is simply transitive on the set of Weyl chambers in b,, . 

Select k E M' such that s coincides with the restriction of 
Ad (k) to b,,. It follows from Cor. 2.1 1 that if some root in A ,  vanishes 
at a point H E bP* then some root in A ,  vanishes at Ad (k) H. Conse- 
quently, s permutes the Weyl chambers. Next we show that W ( U ,  K) 
is transitive. Let W' denote the subgroup of W ( U ,  K) generated by 
all s,, 01 E A,. Let C, and C,  be two arbitrary Weyl chambers and select 

HI E C,, H ,  E C,. If the segment H,Hz intersects a hyperplane a(H)  = 0, 
then it is clear that 

Corollary 2.11. 

Theorem 2.12. 

Proof. 

_3 

I HI - H2 I > I HI - s,. H2 I, 
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the norm in $,* being denoted by 1 1. As s varies over the finite group 
W', the distance I H ,  - s . H ,  I reaches a minimum, say for s = so. 
Then the segment from HI  to so . H ,  intersects no hyperplane a ( H )  = 0 
and Hl and so H ,  lie in the same Weyl chamber. Hence C,  = soC, 
so the group W',  and therefore W ( U ,  K )  is transitive. 

Suppose now that an element s E W(U, K )  maps a chamber C into 
itself. Select any H ,  E C and let H = N-'(H0 + sH, + ... + sN-lH0), 
where N is the order of s. Then sH = H and, since C is convex, H E C .  
In  view of Cor. 3.7, Chapter VI, the centralizer 3 8  of H in u coincides 
with the centralizer of b,, in u. Moreover, the centralizer 2, in U of 
the one-parameter subgroup y = {exp tH : t E R} has Lie algebra 3 8 .  
The closure of y in U is a torus, so by Cor. 2.8, 2, is connected. Select 
k E K such that s coincides with the restriction of Ad ( k )  to bp*. Then 
Ad (k) tH = t H  for all t E R so k E 2,. Since 2, is generated by exp (3H), 
it follows that the restriction of Ad (k) to bp*, that is, s, is the identity. 
This proves that W( U,  K )  is simply transitive. 

Corollary 2.13. The Weyl  group is generated by the rejlections s,, 

In  view of this corollary we shall often refer to W( U ,  K )  as the Weyl 

01 E A,,. Thus, for  a fixed I),,+, W( U ,  K )  depends only on (u, 8). 

group of (u, 8) and denote it by W(u, 8). 

Let a be a subspace of @,,* and let Pa denote the set of 
roots in P ,  which vanish identically on a. Let 6 denote the subset of $,, 
consisting of the points where all the roots in Po vanish. Then the centralizers 
2, and 2, of a and a in U coincide, i.e., 

2" = za. 

These centralizers are connected, due to Cor. 2.8. Therefore 
we only have to prove that their Lie algebras are the same. Each element 
X E g can be written 

Lemma 2.14. 

Proof. 

x = H , + C a , X ,  (a ,  E Ch 
aeA 

where X ,  E g'*, H ,  E 5. Then X commutes with each element in a if 
and only if a,or(H) = 0 for each H E a and each 01 E A .  Since a vanishes 
on a if and only if it vanishes on 8, it follows that a and ?I have the same 
centralizers in g and also in u. This proves the lemma. 

Let a be a subspace of bP* and let W, denote the group 
of elements in W(u, 0)  which leave a pointwise fixed. Then W, is generated 
by those reflections s, (01 E A,,) for which 01 vanishes identically on a. 

Theorem 2.15. 
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Proof. Each element in W, leaves the set ii from Lemma 2.14 point- 
wise fixed. We can therefore assume, without restriction of generality, 
that a = 8. Let 3a and 2, denote the centralizers of a in u and U ,  respect- 
ively. Then 3a is a compact Lie algebra invariant under 8 so 3a = 

f, n 3,, + p* n 3,. Let c denote the center of 3a. Then c n p* = a. Let 
f, and p1 denote the orthogonal complements of f, n c in f, n 3, and 
of a in p* n 3a. We put u1 = f, + p1 and let a, denote the orthogonal 
complement of a in bp*.  Since 

= a, + P* n 2 C(Xa - OX,), 
&Pa 

a, is a maximal abelian subspace of p , .  Also, the pair (u,, 8) is an ortho- 
gonal symmetric Lie algebra of the compact type. Its Weyl group is 
generated by the reflections s, of a,, if 6 denotes the restriction of 01 E Pa 
to a,. If s, is extended to QP* by defining it to be the identity mapping 
on a, then we obtain a member of W,. It remains to be proved that the 
elements in W, thus obtained generate the whole of W,. 

Let 2 denote the universal covering group of 2,. If k E 2, n M' 
and h is an element in 2 over k, then Ad (k) and Adz (&) agree on a,. 
The  group 2 decomposes according to the direct decomposition 
5, = c + u, 

z = c x  u,, 
where the groups C and U, have Lie algebras c and ul, respectively. 
If 4 decomposes accordingly, & = (c, kl), then Adz (4) and Adul (k,) 
agree on a,. Since k E K n Z,, k, lies in a Lie subgroup of U,  with 
Lie algebra f,. Thus AdUl (k,) restricted to a, coincides with an element 
of the Weyl group of (u,, 8). The  same is therefore true of Ad (k) if 
k E 2, n M'. This proves the theorem. 

For each linear form p on bv let A, E bV be determined by p ( H )  = 

B(A,, H) for all  HE$^ and put (p,  A )  = B(A,, A,) for any two such 
linear forms p and A. We now prove for the set .Z of restricted roots the 
analog of the integrality condition in Theorem 4.3, Chapter 111. 

Theorem 2.16. For any p, h E 2, 

Proof. Let h # p. We may assume h - p 4 .Z because otherwise we 
replace h by h - ( p  - 1)p where p is the first integer >, 0 such that 
h - p p $ . Z .  Select nonzero vectors X ,  and X, in the restricted root 
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spaces go,, and go,A, respectively. Then [Xu,  OX,] E go,o n p o  = Vp,, and 
taking inner product with H E bp, we see that 

Put X = cX, where c > 0 is determined by -B(X, ex) = 2(p, p)-l; 
put Y = -OX and H = 2(p, p)-l A,. Then 

[H,  XI = 2 x ,  [H,  Y ]  = -2Y, [ X ,  Yl = H ,  

so R X  + RY + R H  is a three-dimensional Lie algebra b and Z +- ad Z 
is a representation of b on g. Moreover, since h - p $ Z, 

Put en = (ad X)n(XA),  n 3 0, e-, = 0. Then we obtain by induction 
and the Jacobi identity 

If k is the last integer such that ek # 0, then [Y,  ek+,] = 0;  so 
h(H)  + k = 0 and the lemma follows. We also obtain the following 
consequence (compare with Theorem 4.3, Chapter 111). 

Corollary 2.17. Suppose A, p E Z are proportional, p = CX (c E C).  
Then c = *$, & I ,  42.  

As in Chapter VI, 93, let Z+ denote the set of positive restricted roots 
(that is, the restrictions of the members of P+ to bp). A h E Zf is called 
simple if it cannot be written h = a + with a, E Z+. 

Lemma 2.18. Let A, p E Z. 

(i) If ( A ,  p )  > 0, then h - p E Z (or h = p). 

(ii) If ( A ,  p )  < 0, then h + p E Z (or h = -p). 

(iii) If h and p are simple, then h - p $ Z. 

Proof. If X - p $2, the proof of Theorem 2.16 shows (A, p)  < 0, 
proving (i) and (ii). Part (iii) is obvious. 
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Theorem 2.19. Let al, ..., a ,  be the set of all simple restricted roots. 
Then 1 = dim bpo and each /3 E Z+ has the form /3 = Ei=l niai where each 
n, E Z+. 

The proof is almost identical to that of Theorem 5.7, Chapter 111; 
we just have to use (a,, aj) < 0 for i # j ,  a property we just proved. 

There is a simple connection between the Weyl chambers and the 
ordering of the restricted roots. A Weyl chamber in bp0 is by definition a 
component of the set $,, of elements in bp0 where all the members of .Z 
are # 0. These elements are said to be regular. 

Lemma 2.20. 

(i) The set 
c+ = { H E  bpo : a ( H )  > O j O Y  all a E Z+} 

is a Weyl chamber and its boundary is contained in the union of the hyper- 
planes a1 = 0, ..., at = 0. 

(ii) 

z+ = { a E z :  a > O o n  C+}. 

(iii) If H = Ei=l aiAai lies in C+, then a, 3 0 for each i. 
(iv) If H ,  H' E C+, then B(H,  H ' )  > 0 (that is, H and H' form an 

Because of Theorem 2.19, C+ coincides with the set 

acute angle). 

Proof. 

{ H E  bpo : %(H) > 0, * * a ,  % ( H )  > 01, 

whose boundary has the described property. But then C+ is #B, so by 
its definition it is a maximal connected subset of Qb0, hence a Weyl 
chamber. This proves (i). Part (ii) is immediate from Theorem 2.19. 
For (iii) we put ei = Am, (1 < i < I )  e l+,  = -H, alil = 1. Then by 
Lemma 2.18 and the assumption H E  C+ we have B(e,, ej) < 0 
(1 < i # j < l + l ) s o  

Thus the relation Xi+' aiei = 0 implies Xi+' I a, I ei = 0, whence 
a, = 1 ai I (1 < i < I), proving (iii). Part (iv) is now immediate since 
B(H, H') = Zl  aiai(H') > 0. 

Given a Weyl chamber C one can (by Theorem 2.12) 
order the dual of bp0 in such a way that the positive roots are the roots 
positive on C. The  most canonical way of doing this is to use as a basis 
of the dual of bpo the linear forms which form the walls of C. 

Remark. 



5 31 Conjugate Points. Singular Points. The Diagram 293 

An element s E W(u, 6 )  acts on the dual of $ P o  by (sA)(H) = A(s-lH). 
Thus sh = As ($3, Chapter I). Also 

Lemma 2.21. Let ai be a simple root. Then sai permutes the elements 
in Z+ which are not proportional to af. 

Proof. If a E Z+, we have a = Ct njai (nj E Z+). Then 

sap = a - mi = (ni - n) ai + 2 n p j ,  

where n = 2(a, ai)/(ai, ai), which by Theorem 2.16 is an integer. 
Since s a i c x ~ Z  the coefficients in this linear combination all have the 
same sign (Theorem 2.19). Thus ni 2-n unless a is a multiple of ai. 

Now we prove that the closure C+ is a fundamental domain for 
W(u, 0) acting on bP0. 

j # i  

Theorem 2.22. Each orbit of W(u, 0) on bPo intersects the closed 
chamber c+ in exactly one point H,. The corresponding linear form 
A, : H + B(H,, H )  on bPo is maximal among its Weyl group transforms. 

- Proof, By the proof of Theorem 2.12 each Weyl group orbit intersects 
Cf. For the uniqueness let H,, H ,  E C+. The cited proof showed that the 
distance 1 H I  - sH, I (s E W(u, 8)) is smallest if s = e. Consequently, 

B(%, H2) 2 B(sH1, H,), 

and this relation remains valid for H,, H ,  E C f .  If s,H, E F, we can in 
this relation exchange HI and s,H, and deduce B(H, - s,Hl, H,) = 0, 
whence s,H, = H,, proving the uniqueness. 

If p is maximal in the orbit W(u, 0) - A,, we have p 2 s,p for all 
a E Z+, so (p, a) 2 0 (a E Z+), whence A, E w. But then by the first 
part of the proof, A, = H ,  so p = A,. 

0 3. Conjugate Points. Singular Points. The Diagram 

Again, let (u, 8) be an orthogonal symmetric Lie algebra of the 
compact type and let ( U ,  K) be any pair associated with (u, 8). The 
notation of the preceding section will be preserved. 

The manifold U / K  is a Riemannian locally symmetric space whose 
tangent space at o (the point K in U / K )  is identified with p*. Let X E p*. 
The formula for d Exp, (Theorem 4.1, Chapter IV) is clearly valid 
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here, even if K is not necessarily connected. By this formula, X is 
conjugate to o if and only if 

According to Lemma 6.3, Chapter V, each X E Q* can be expressed 
X = Ad (k) H where k E K, H E  I),,. Since TAd(k)H = Ad (k)o THoAd(k-’), 
we obtain from Lemma 2.9, 

From this formula follows: 

Proposition 3.1. The point X = Ad (k) H is conjugate to o if and 

Consider now the coset space KIM, where M as before denotes the 

only if a(H)  E ri(2 - 0) for some a E A,. 

centralizer of b,* in K. The mapping 

@ : (kM,  H )  --f E x p  Ad ( k )  H ,  k E K ,  H E bv*, 

is a differentiable mapping of KIM x bv* onto U/K.  The mapping @ 
can be decomposed @ = Exp o t9 where t!3 is the mapping of KIM x Q,, 
onto P* given by 

/I : (AM, H )  --f Ad ( k )  H ,  k E K ,  H E  bv,. 

As usual T ( X )  (x E K )  denotes the mapping kM + xkM of KIM onto 
itself. As in Chapter VI, let 1, denote the orthogonal complement of 
m, in f,. According to Lemma 3.6, Chapter VI, the subspace I of g 
generated by I, is given by 

I = C c(xa + ex,). 
aoP+ 

(3) 

The natural mapping of K onto KIM induces an isomorphism of I, onto 
the tangent space to KIM at {M}. We shall therefore denote this tangent 
space also by I,. As usual (Remark in 92, No. 1, Chapter I), a finite- 
dimensional vector space will be identified with its tangent space at each 
point. 

Let (k,M, H,) be an arbitrary point in KIM x Qp*. If L runs through 
1, and H runs through Q p * ,  then ( d ~ ( k , )  - L, H) runs through the tangent 
space to KIM x Q,, at (k,M, H,). Since 

p(k0 (exp tL)  M, Ho) = Ad (k,) Ad (exp tL) H,, 

/I(&, Ho + t H )  = Ad (KO) (Ho + t H ) ,  
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it is clear that the right-hand side of (4) vanishes if and only if [L, H,] = 

H = 0. Using (3) we may write 

L = C l a ( X a  + OX,), la E C,  
aoP+ 

so 

Consequently, the mapping f l  is regular at (k,M, H,) if and only if 
a(H,) # 0 for all a E A,. Combining this result with Prop. 3.1, we 
can state: 

Proposition 3.2. The mapping 6 is regular at the point (k,M, H,) 
;f and only ;f a(iHo)/n is not an integer for any a E A,. 

Definition. The  set 

{ H  E b,* : a ( H )  E niZ for some 01 E A,) 

is called the diagram of the pair ( U ,  K) .  I t  will be denoted by D( U ,  K )  

The diagram is therefore the union of finitely many families of 
equispaced hyperplanes. The  complement f+,, - D(U, K )  will be 
denoted by ($,*)?. It is obvious from Prop. 3.2 that D( U ,  K )  is invariant 
under each s E W ( U ,  K) .  

or D(u, 0). 

Definition. The  set S,,, = @ ( K / M  x D(U,  K ) )  is called the 
singular set in UlK. The complement UIK - S , ,  will be denoted 

The  topological dimension (see 912 in this chapter) of a subset S of 
a separable metric space will be denoted by dim S. This notation is 
permissible since the dimension of a separable C" manifold coincides 
with its topological dimension (see Hurewicz-Wallman [l], Chapter IV). 

( u / m *  

For each a E A ,  we put 

Ija = { H  E I&*: a ( H )  E niZ),  

Ma = {k E K : Exp Ad (k) H = Exp H for all H E b=j. 
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I t  is obvious that M ,  is a closed subgroup of U containing M. We shall 
now prove the following stronger statement: 

dim M ,  > dim M. 

In  fact, consider the vector 2, E f, from Lemma 2.3. This lemma 
implies that 

( 5 )  

Ad (exp H) Z, = cos C Y ( ~ H )  Z, - z sin cy(iH) Y ,  for H E bt, *. 

This implies that 

exp Ad (exp tZ,) H = exp H, if cos cy(iH) = + 1, 

exp Ad (exp tZ,) H = exp H exp (- 2tZ,) ,  if cos a( iH)  = - I 

for all t E R. In  any case, we have 

Exp Ad (exp tZ , )  H = Exp H 

for all t E R, if H E 6,. This means that exp tZa E M ,  for all t so 2, 
belongs to the Lie algebra of Ma. Since 2, 4 ni,, relation ( 5 )  follows. 

Let (U, K) be any pair associated with (u, 0). Then 
the singular set is closed and 

Theorem 3.3. 

dim SUIK < dim U / K  - 2. 

The same statement holds for the set of points in U / K  which are conjugate 
to 0 .  

Let OL E A,. Consider the mapping Qa of KIMa x ba into Proof. 
UjK given by 

Then 

Da(kMZ, H) = Exp Ad (K) H. 

@a(K/Ma x ba)  = @ ( K / M  X ba) .  (6 )  

Using Lemma 3.6, Chapter VI and relation (5 )  above we find 

dim KIM = dim p* - dim $,*, 

dim (KIM, x 6,) < dim p* - dim bp, - 1 + (dim 

= dim p* - 2. 

- 1) 

Using (6) and Lemma 12.3 in the Appendix we conclude 

dim @(KIM x 6,) < dim U / K  - 2. 
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Let (f)& denote the set of H E f),, for which exp H = e. As noted in 
the proof of Lemma 6.3, Chapter V, the subset exp bp* of U is compact; 
it follows that the factor space $+,/(I$,,)~ is compact. Using this fact, 
it is easily seen that @(K/M x ba) is closed in UjK. From the sum 
theorem in dimension theory (Appendix, Theorem 12.2), it follows that 

dim @(KIM x U ( U ,  K ) )  < dim U/K - 2. 

Remark. For the example S2 = S0(3) /S0(2)  the set of points 
conjugate to o consists of two points, namely, the antipodal point to o 
and o.  Thus  the inequality in Theorem 3.3 is the best possible. On the 
other hand, the equality sign does not in general hold in Theorem 3.3. 
This is seen from the example S3 = S0(4)/S0(3), the group of unit 
quaternions (Theorem 4.7). 

$4. Applications to Compact Groups 

As pointed out in 96, Chapter IV, a compact, connected Lie group 
is a Riemannian globally symmetric space when provided with a bi- 
invariant Riemannian structure. 

Let U be a compact, connected semisimple Lie group. Let u denote 
the Lie algebra of U. Let U* denote the subgroup {(u, u )  : u E U }  of 
the product group U x U. Then ( U  x U ,  U*)  is a Riemannian 
symmetric pair of the compact type associated with the orthogonal 
symmetric Lie algebra (u x u, du) where do is the differential of the 
automorphism u : (ul ,  u2) + (u2, ul)  of U x U. The  coset space 
U x UjU* is diffeomorphic to U under the mapping 

(241, ug) u* - u1u,1 (u1, ug E U ) .  

Under this correspondence, the natural mapping of U x U onto 
U x U/U* corresponds to the mapping 

77 : (241, UJ - u& 

& : ( X , Y ) 4 X -  Y ,  x, Y E U .  

of U x U onto U ,  whose differential is 

The  Lie algebra u x u decomposes into the eigenspaces of du for the 
eigenvalues + 1 and - I :  

u x u = u* + D*, 
where u* equals { ( X ,  X )  : X E u), the Lie algebra of U*, and u* = 
{ ( X ,  - X )  : X E u}. 
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Let T be a maximal torus in U and let to denote the Lie algebra of T .  
Then the space 

t *  = { (H,  - H )  : .H E to} 

is a maximal abelian subspace of u*. Let g be the complex‘fication of u 
and let t denote the subalgebra of g generated by to. We shall now 
investigate the Weyl group of the symmetric pair ( U  x U ,  U*) defined 
by means of the maximal abelian subspace f *  of u*. The  spaces u*, 
u*, t*, and t x t, respectively, play the role of the spaces To, p*, Qp,, 

and b from $2. In  particular, t x t is a Cartan subalgebra of g x g, the 
complexification of u x u. 

Let A *  denote the set of nonzero roots of g with respect to t. Let 
01 E A * .  Then the linear functions 01‘ and 01“ on t x t given by 

a’ (Hl, 4) = OL(Hl), 

u”(H1, Hz)  = u(HZ), H,, H2 E t, 

are roots of g x g with respect to t x t. I n  fact, if the vector X ,  E g 

satisfies [H, X J  = a(H)  X ,  for all H E t, then 

for all HI, H2 E t. By counting, it is clear that each nonzero root of 
g x g with respect to t x t arises in this manner from a member of A*. 
The  roots a‘ and a’’ cannot vanish identically on t*, moreover, their 
values on t *  are purely imaginary. 

Let X E u. As in 92 we consider now the operator T(x9-x,,  which is 
the restriction of (ad (X, - X))O to u*. From Lemma 2.9 we know 
that if H E to, the operator T ( H , - H )  has eigenvalues 0 (with multiplicity 
dim to) and the numbers o ~ ( H ) ~  as 01 runs through d*. 

The  manifold U has a bi-invariant Riemannian structure (for example, 
the one induced by the negative of the Killing form of u). The  corres- 
ponding a!Kne connection is always the same and Exp X = exp X 
for X E u. According to Theorem 6.4, Chapter V, each X E u can be 
written X = Ad (u) H where u E U and H E to. 

The point X = A d  (u) H is conjugate to e i f  and 
only if  a (H)  E 2 4 2  - 0 )  for  some 01 E A *. 

From the formula for d exp, (Theorem 1.7, Chapter 11), it 
follows that X is conjugate to e if and only if 

Proposition 4.1. 

Proof. 

det, ( - e - d x )  = 0. 
ad X 
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Since ad X = Ad (u) o ad H o Ad (u-l) ,  we have 

The endomorphism (1 - e-OdH)/ad H of g has obviously determinant 

n 1 ;(;;H’ (1) 
aEA * . 

The restriction to u has the same determinant so the proposition follows 
immediately. 

Remark. Proposition 4.1 above is of course a special case of Prop. 3.1. 
The reason for the appearance of the factor 2 in Prop. 4.1 is that 
dn(X/2, - X / 2 )  = X so X is conjugate to e if and only if 

This determinant, however, equals 

and Prop. 4.1 follows again. Expressions (1) and (2)  both give the 
determinant of d Exp, (evaluated by orthonormal basis). It follows that 
these expressions are equal (as is easily seen anyway). 

Consider now the diagram D(U x U ,  U*)  C f*. Let D(U)  denote 
the image of D(U x U ,  U*) under dn. Since dn(H, - H) = 2H, 
(H E to)  and a’(H, - H) = - a”(H, - H )  = a(H), (a E A*) ,  it follows 
that 

] I (  U )  = { H  E to : a ( H )  E 2 ~ i Z  for some a E A *}. 

The set D(U)  is a union of a finite number of families of equispaced 
hyperplanes of to. It will be called the diagram of U. Under the mapping 
dn : t *  -+ to the Weyl group W(U x U ,  U*) corresponds to a 
group W(U) of endomorphisms of to. Since W(U x U ,  U*) leaves 
D(U x U ,  U*) invariant, it is clear that W ( U )  leaves D(U)  invariant. 
Moreover, W(U) is generated by the reflexions in the hyperplanes of 
D ( U )  which pass through 0. On the other hand, the centralizer of 
t *  in U* is T* = {(t, t )  : t E T} and the normalizer of t *  in U* is 
{(n, n) : n E NT) where NT denotes the normalizer of T in U .  It follows 
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that the group NT/T, considered as a group of linear transformations of 
to, coincides with W(U).  The Weyl chambers in to are the components 
of the open subset of to where all 01 E A * are # 0. From Theorem 2.12 
follows immediately that W( U )  is simply transitive on the set of Weyl 
chambers. Since W( U )  and D( U )  depend only on u, they will sometimes 
be denoted by W(u) and D(u), respectively. 

In 93 we considered a mapping Q, of KIM x b,, onto U/K. In the 
present situation this is a mapping of U*/T* x t *  onto U x U/U*. 
We compare Q, with the mapping Y : (uT ,  H )  -+ exp Ad (u) H which 
maps ( U / T  x to) onto U and consider the diagram 

U*/T* x t *  + U x  UlU* 
0 

where the mappings f and g are given by 

The  diagram is then commutative. Since f and g are diffeomorphisms, 
we conclude from Prop. 3.2: 

Let uo E U ,  H ,  E to. The mapping Y : (uT ,  H )  -+ 

exp Ad  (u) H which maps U / T  x to onto U is regular at (uoT, H,) if 
and only if or(iHo)/2n is not an integer for any 01 E A * .  

In analogy with the notations in 93 we make now the following 
definition. 

Definition. The set S = Y ( U / T  x D(U))  will be called the singular 
set in U and its elements will be called the singular elements. The 
complement U - S will be denoted by U,, and its elements will be 
called the regular elements. Finally t, shall denote the complement 
to - D( U).  It is obvious from Prop. 4.4 below that Y( U / T  x t,) = U,. 

Let H E to and put t = exp H.  Let 2, denote the centva- 
lizer of t in U .  Then 

Proposition 4.2. 

Lemma 4.3. 

dim Z ,  = dim T + n, 
where n denotes the number of roots a E A* for which a (H)  E 2niZ. 

The Cartan subalgebra t of g is invariant under the conjuga- 
tion of g with respect to u. Using Lemma 3.1, Chapter VI, we can for 

Proof. 
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each a E A* select a vector X ,  # 0 in g such that [ H ,  XJ = a ( H )  X ,  
for all H E t and such that the vectors E, = X ,  - X-,, Fa = i (X,  +X-,) 
belong to u. Let A* be ordered in some way and let (A*)+ be the set 
of positive roots with respect to this ordering. Then E,, F, (a E (A*)+) 
is a basis of u (mod to) and 

[H,  E,] = - &(H) F,, 

[ H ,  Fa] = ia(H) E ,  

for all H E to. It follows that 

Ad ( t )  E ,  = cos (ia(H)) E ,  - sin ( i a ( H ) )  F,, 

Ad ( t )  F ,  = sin (ia(H)) E, + cos (ia(H)) Fa. 

The Lie algebra Q(2,) of 2, is given by 

!i?(Z,) = { X  E u : (exp s X )  t = t exp sX for all s E R). 

Since t exp s X t - l  = exp s Ad ( t )  X ,  we find 

i?(Zt)  = { X  E u : Ad ( t )  X = X } .  

(4) 

( 5 )  

Consequently, dim 2, equals the dimension of the eigenspace of Ad ( t )  
for the eigenvalue 1. From ( 5 )  we see that this eigenspace has dimension 
dim to + twice the number of a E (A*)+ for which a(H)  E 27riZ. 

Proposition 4.4. Let x E U and let 2, denote the centralizer of x 
in U.  Then x is singular (regular) if and only if dim 2, > dim T 
(dim 2, = dim T).  

The element x can be written x = utu-' where u E U, t E T .  Then 
dim 2, = dim 2, and the proposition follows from Lemma 4.3. 

For each a E A*,  put 

t, = { H  E to : a ( H )  E 2?TiZ}, 

T ,  = {u E U : exp Ad (u)  H = exp H for each H E t,}. 

Then T, is a closed subgroup of U containing T. Let denote 
the hyperplane a(H)  = 0 in to. 

Lemma 4.5. 

Proof. 

The group T,  is connected and dim T,  = dim T + 2. 

It follows from ( 5 )  that if H E t,, 

Ad (exp H) sE, = sE,, Ad (exp H) sF, = sF, (6) 
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for all s E R. Now, (6) implies that 

exp Ad (exp sEJ H = exp H ,  exp Ad (exp sF,) H = exp H 

for all H E t, and all s E R. It follows that E, and Fa lie in the Lie 
algebra of T, so dim T ,  3 dim T + 2. On the other hand, T, C (Ta)o 
if ( T,), denotes the centralizer of (tJo in U. Then ( T,), is the centralizer 
in U of the closure of exp (t,),. By Cor. 2.8, ( T,), is connected. Further- 
more, (t,), contains an element H such that j3(H) $ 277iZ for all j3 E A * 
different from f a. By Lemma 4.3, dim (T,), < dim T + 2 and 
Lemma 4.5 follows. 

Let (t,), denote the subset of t, given by 

(tJ, = { H  E t, : P ( H )  4 2 7 2  for /? E d* - {a u - a}}  

and consider the mapping 

Y, : (UT,, H )  + exp Ad (u) H 

of UIT, x t, into U .  

The mapping Y, is regular on the subset UlT, x (t,), 
of U / T ,  x t,. 

Consider the subspace u, of u spanned by all the vectors 
EB, F# as ,f? varies through the positive roots in A* - {a u - a}. The 
natural mapping of U onto U / T ,  has a differential which identifies u, 
with the tangent space to U/T,  at {T,}. If u E U,  then as usual, T ( U )  

shall denote the mapping xT,  -+ uxT, of U / T ,  onto itself. The  tangent 
space to the product U{T, x t, can be identified with the subspace 
11, + (t,), of u, the subspaces u, and (t,), of u being orthogonal. Now 
let u, E U, H,  E (t,),, X E u,. Then 

Lemma 4.6. 

Proof. 

Y,(u,,(exp t X )  T,, Ho) = exp (Ad (u,, exp t X )  H,) 

= u, exp ( H ,  + t [ X ,  H,] + O(t2)) u;'. 

Using Theorem 1.7, Chapter 11, we obtain 
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Combining (7) and (8) we get 
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Since (Ad (exp (- H,)) - 1) X E u,, the right-hand side of this 
formula can vanish only if H = 0 and Ad (exp H,) X = X .  In  
view of (5), this would either require X = 0 or /3(H,) E 2niZ for some 
/3 E A* - (a u - a}. But this last possibility is excluded bv the 
assumption that H ,  E (t&. This proves the lemma. 

Let S denote the singular set in U and let conj ( U )  
denote the set of points in U which are conjugate to e. Then 

Theorem 4.7. 

dim S = dim conj ( U )  = dim U - 3. 

Proof. Let a E A*.  It is obvious that 

Y,(U/T, x t,) = Y ( U / T  x t,). 

Using Lemmas 4.5 and 4.6 we find 

dim Y,(U/T, x (t&) 2 dim U / T ,  + dim t, 

= dim U - (dim T + 2) + dim T - 1 = dim U - 3. 

Using Lemma 12.3 and Prop. 12.1 in the Appendix we have 

dim Ya(U/Ta  x (tJ,.) < dim Y',(U/T, x t,) < dim U - 3 

so 

dim Y('(U/T x t,) = dim U - 3. 

Since 
s = U*Y(U/T x t,) 

ae A 

and since Y( U / T  x t,) is closed in U ,  it follows from the sum theorem 
(Appendix, Theorem 12.2) that dim S = dim U - 3. T h e  statement 
about conj( U )  is proved in the same manner. 

$5. Control over the Singular Set 

We recall that an element x E U is regular or singular according to 
whether dim 2, is equal or larger than dim T. In view of Lemma 4.3 
we can make the following definition. 
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Definition. An element x E U is called singular of order 4 2  if 
dim 2, = dim T + n and n > 0. 

Let k be an integer > 0, and let S, denote the set of singular elements 
in u of order k. Then = U k > O  s,. 

Consider now a fixed element xo E and select u E U ,  Ho E to such 
that xo = exp Ad (u) H,. Then there exist exactly k positive roots in 
A * ,  say ax, ..., ak, for which aj(H0) E 2772.2 (1 < j < k). Consider the 
group 

Ta,...ak = {u E U : exp Ad (u)H = exp H for each H c tal n ... n t.3. 

Lemma 5.1. 

dim Tal...ak = dim T + 2k. 

Proof. We imitate the proof of Lemma 4.5. Just as there it can be 
verified that the vectors E,,, Fa, (1 < j < k) belong to the Lie algebra 
of T,,. . .ak. Consequently, 

dim Tal...ak dim T + 2k. 
On the other hand, 

dim ZexpHo = dim T + 2k 
according to Lemma 4.3. Since Ta,...ak C ZexpHo, the lemma is proved. 

Consider now the subset (tal...ak)T of t, n ... n taK consisting of all 
points H such that P(H) qk2m.Z unless /3 is among the roots f aj 
(1 < j < k). Then (tal...ak)T is an open subset of tal n ... n tax containing 
H,. Consider the mapping 

y a l . . . a k  : (uTap..ak* H )  -+ ~ X P  Ad (u) H 

of ( U/Tal. . .ak) x (tal n ... n tak) into U .  

Lemma 5.2. The mapping ?Pal...,, is regular on the subset 

(u /Ta l...aJ x (fa1 ... a&. 

The proof is an immediate extension of that of Lemma 4.6 and can 

Definition. Let N be a subset of a manifold M; N is called a quasi- 
submandfold of M if there exists a connected manifold N* and a regular 
differentiable mapping f : N* + M such that f(N*) = N. 

be omitted. 
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If 5 is a connected component of (tm,...ak)r, then the image 

Y U I T  x 5) = ~ m l . . . m ~ ( ( ~ / ~ m l . . . m ~ )  x 5) 

is a quasisubmanifold of U due to Lemma 5.2.  

t, = { H  E t, : exp H = e} .  
Now let 

The  set t, is called the unit lattice in to. Then clearly a(H)  E 2.rri.Z for 
all H E t, and all 01 E A * .  Therefore, if we consider t, as a group of 
translations of to, it leaves the diagram D(U)  invariant. Moreover, 
each transformation from t, maps (tm,.. onto itself and therefore 
permutes the various components 5 of (tml,..mk)r. 

There are only jinitely many components of (tm,,.,ak)r 
which are incongruent modulo t,. 

The factor space to/t, can be identified with T so the group 
t, has a bounded fundamental domain in to. Now on each component 5 
of (tml...mk),. the roots al, ..., cik are constants and the other positive roots 
vary through an interval of 2n-i. I t  follows that the components 5 are 
uniformly bounded. Consequently, there exists a closed ball b in to 
such that for each component s of (tml...z& there exists a vector H E t, 
such that the translate of 5 by - H ,  that is, s - H ,  lies in b. Since each 
root 01 E A* is bounded on b there can only be finitely many such sets 
s - H in b. This proves the lemma. 

The  roots al, ..., 0 1 ~  were obtained by means of an arbitrary point 
H ,  E t,. which lies on exactly k hyperplanes in the diagram. As Ho varies 
through all such points we get finitely many systems (a1, ..., 0 1 ~ )  of k 
positive roots. Let Ski ( i  = 1, 2,  ...) denote the images Y ( U / T  x 5) as 
5 varies through the components of (t+, for the various systems 

Lemma 5.3. 

Proof. 

(011, * * * ,  4. 
Lemma 5.4. The set of singular points of order k is a finite union 

sh = u ShE> 

where each Ski is a quasisubmanifold of U .  If Ski is given the relative 
topology of U ,  its boundary is contained in U p , k  Si,. 

The finiteness statement is a consequence of Lemma 5.3 
since the components of (txl,,,mk),. which are congruent mod t, give 
rise to the same set Ski. The  last statement follows from the fact that 
the boundary points of (txl,.,mk)r lie on more than k hyperplanes of the 
diagram. 

Proof. 
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Proposition 5.5. Let y ( t )  and y'(t)  (0 < t < 1) be two continuous 
curves in U,. Then y is homotopic to y' in U ,  if and only if they are homo- 
topic in U .  

Proof. We may assume that y and y' are homotopic in U. Let p 
and q, respectively, denote the beginning and end of y. Let f denote 
the mapping of the unit square 0 (0 < s < 1, 0 < t < I) into U 
which sets up the assumed homotopy y - y'. In other words, f (0, t> = 
y( t ) ,  f (1 ,  t )  = y'(t)  for 0 < t < 1 and f($, 0) = p ,  f ( s ,  1) = q for 
0 < s < 1. We have to deform f (0) into U ,  in such a way that the 
points p and q remain fixed. The  deformations considered below are 
always understood to take place with p and q kept fixed. 

Let 2m denote the number of elements in A*.  Then S,, is the center 
of U and S, is empty if p > m. Since S,, is finite and dim U 2 3, 
we can, using Prop. 12.6 (Appendix), deformf( 0) such that the resulting 
deformation, say fl( O), satisfies 

Here fl denotes a new homotopy between y and y'. It follows that 
there exists a compact neighborhood iVl of fl( (7) such that 

N ,  n Sm = 8. 

Suppose now that we have found deformations fi( O),  ..., fnl-k( 0) of 
f (0) and compact neighborhoods N,,  ..., Nm-k of fl( 0), ..., fnrPk( O),  
respectively, such that 

N ,  3 ... 3 Nm+ 

N ,  n S, = ... = NmPk n Sk+l = @. 

We shall then show that there exists a deformationjm-,+,( 0) off,,-,( 0) 
and a compact neighborhood NmPk+l of fnL-k+l( 0) such that (1)  holds 
with k replaced by k - 1. Then the validity of (1) for k = m - 1 
implies its validity for k = 0, proving the proposition. 

Starting now from (l), we consider the set Nm-k A Ski where Ski is 
one of the sets from Lemma 5.4. The last statement of that lemma, 
together with ( l ) ,  implies that NffL-k n ski is compact. For a suitable 
system (a1, ..., ak) of positive roots, the set Nm+ A Ski is the image, 
under ?Px,...xk, of a compact subset of CrlT,l...ak x 5 .  This compact 
set can be covered by finitely many sets Ui x bi (j E J ) ,  where the Uj  
are open subsets of U/T,i . . .xk and the bj are open balls whose closure 
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is contained in z, such that for each j E J ,  
borhood of oj X 6i in a one-to-one manner into s k i .  We put now 

maps some neigh- 

and turn Bj into a manifold diffeomorphic to Uj x bi. Then: 
(a) Each Bi is a submanifold and a topological subspace of U. 
(b) Bi C s k i  for each j E J.  
(C) N n l - k  n (uj,~ Bj) = N , n - k  n s k i .  

Consider now a fixed Bi. Using Props. 12.4 and 12.6 in the Appendix 
we can deform fn&( 0) in the interior of Nm-k such that the resulting 
deformation, say gm+( n), is disjoint from the closure of Bj.  Hence we 
can surround gnl-k( 0) with a compact neighborhood v m - k  C Nm-k 
disjoint from Bj .  We treat the (finitely many) Bj  ( j  E J )  successively 
in the same manner. The  resulting deformation G m - k ( 0 )  is then en- 
closed in a compact neighborhood W,n-k which is contained in Nm-k 
and is disjoint from UjEJ Bj. It follows from (c) that Wm.+ n S k i  = 0. 
The preceding process can be applied to the sets Skl,  Sk2, ... successively. 
Since these are only finite in number, the result is a deformationfnl-,+,( 0) 
enclosed in a compact neighborhood Nma,+, C Nm-, such that 

Nm--k+l n Sk = 0. 

This concludes the proof. 

$6. The Fundamental Group and t h e  Center 

Consider now the open set t, = to - D(U) .  Let Po denote a com- 
ponent of t, whose closure Po contains the origin. The polyhedron Po 
is an intersection of half-spaces in to, hence Po is an open, convex set. 
Since a(H)  E 27riZ for all a E A* and all H E t,, it is clear that each 
point in t, n Po is a vertex of Po. 

The number of points in t, n Po equals the order of 
the fundamental group 7rl( U )  of U .  

Theorem 6.1. 

The proof will require a few lemmas. 

Lemma 6.2. 

Proof. 

The coset space U / T  is simply connected. 

Let (0, y )  denote the simply connected covering group of U 
and put T = y - l ( T ) .  Then 0 is compact and the Lie algebra of T is 
a maximal abelian subalgebra of the Lie algebra of 0. Since the cen- 



308 SYMMETRIC SPACES OF THE COMPACT TYPE [Ch. VII 

tralizer of a torus is connected, p is a maximal torus in 0. The space 
01 is simply connected and homeomorphic to U /  T under the mapping 
U P  -+ y(u) T,  (U E 0). 

Let Z,4 denote the restriction of Y to U / T  x Po. Then 
( U / T  x Po, 4) is the universal covering space of U,.. 

The connectedness of U,. is clear from Cor. 12.5 in the 
Appendix. Since Po is convex, it is simply connected. Hence U/T x Po 
is simply connected. Let P, be an arbitrary component of t,.. If the 
images Y ( U / T  x Po) and Y(U/T x P,) are not disjoint there exist 
elements H, E Po, H ,  E P,, x E -U such that x exp H,x-l  = exp H,. 
It follows that the automorphism u -+ xux-l (u E U )  maps the cen- 
tralizer Z,,,, onto the centralizer Z,,,,. Owing to Lemma 4.3, T is 
the identity component of these centralizers. Consequently xTx-l = T 
and there exists an element s E W( U) which coincides with the restric- 
tion Ad (x) to t,. Hence exp sHo = exp H I ,  sH, E t, and there exists 
a vector A E t, such that H, = sH, + A. Since the groups W ( U )  and 
t, leave the diagram invariant it follows that the transformation 
H ---t sH + A of to maps Po onto P,. Consequently Y ( U / T .  x Po) = 

Y ( U / T  x P,). The connectedness of U,. now implies that a,$ maps 
U / T  x Po onto U,.. 

Let y E U,. and suppose #(u,T, H,) = Z,4(u2T, H,) = y. Then 
u1 exp H,ucl = 24, exp H,U;', so by the above the element x = u;%, 
belongs to the normalizer N ,  of T in U ;  if s denotes the corre- 
sponding Weyl group element, then for a suitable A E  t, the transfor- 
mation H --f sH + A maps Po onto itself and maps H ,  onto H,. Thus 
the transformation t --f xtx-l leaves exp Po invariant and maps exp H ,  
onto exp H,. Since exp is one-to-one on Po, this shows that the preimage 
#-l( y) is in one-to-one correspondance with the subgroup of NTIT 
which maps exp Po into itself, in particular a,$-,( y) is finite and its 
cardinality independent of y. Since in addition + is a local homeo- 
morphism (by Prop. 4.2), the lemma is proved. 

Lemma 6.3. 

Proof. 

Lemma 6.4. The number of points in t, n Po equals the number of 
elements in rrl( U,.), the fundamental group of U,.. 

Proof. Consider a neighborhood 

v = { X  E u : - B ( X ,  X )  < pZ} 

of 0 in u. We can select p > 0 so small that: 
(a) 1 a ( H )  1 < 2~ for  H E V n to and or E A*.  
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(b) exp is one-to-one on 2V. 
(c) exp (V n to) = (exp V )  n T .  

It is trivial to satisfy (a) and (b). For (c) one just has to make use of the 
fact that T is a topological subgroup of U (Lemma 2.5, Chapter 11). 

Fix an element x E U,. n (exp V )  and consider the inverse image 

$-W = { ( U l T ,  q, .*., ( u J ,  Hr)} .  

For each i, 1 < i < r ,  we have 

exp Hi E u;' (exp V )  uiC exp V 

From (c) and (b) it follows that there exists a unique vector Ai E t, 
such that Hi - Ai E V .  

On the other hand, since 

ui exp Hi u;1 = uj exp H j  u;', I < i , j  < r ,  

it follows as in the last lemma, that uTu-l = T if u = u;lui. Let sij 
denote the restriction of Ad (u)  to to. Then there exists a vector A.. E t, 
such that Hi = siiHj + Aij. Since sii leaves t, invariant, there exists a 
vector A* E t, such that sijA* = Ai - Aii. Then Hi - Ai = sij(Hi - A*) 
so Hi - A* E V. By the uniqueness above. A* = Aj so 

%? 

Hi - Ai = ~ij(23.j - Aj) (1 < i, j < r).  (1) 

We shall now draw some consequences of this relation. 

In  fact, if for example H ,  = H,, then A, = A,. But W(U) is simply 
transitive on the set of Weyl chambers so (1) implies that s12 = I .  
Hence u,T = u,T, which is a contradiction. 

(e) The points A,, ..., A,. are all dzflerent. 
Suppose to the contrary that for example A, = A,. The  segment 1 
joining H ,  and H ,  lies in Po. I t  follows that the translated segment 
I - A,  lies in t,; in particular H ,  - A, and H ,  - A, lie in the same 
Weyl chamber. On the other hand, (1) implies H I  - A, = sl2(H, - A,) 
so again by the simple transitivity s,, = I which is a contradiction. 

In  fact, if Ai $ Po, then the interior of the segment from Hi to Ai 
intersects the boundary of Po. Therefore, there exists a root a E A* 
such that 1 &(Hi - Ai) I > 2~r. In  view of (a), this contradicts Hi - Ai€ V. 

(d) The points H,, ..., H ,  are all dtrerent. 

(f) The points A,, ..., A,  belong to Po. 

(g) t, n Po consists of precisely the points A,, ...) A,.. 
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Suppose to the contrary, that there were a point A E t, n Po which 
does not occur among A,, ..., A,. Let C denote the Weyl chamber in 
to with the property that Po is contained in .the translated set C + A. 
There exists a unique element s E W ( U )  such that s(H, - A,) E C. 
Then A + s(H, - A,) E C + A. Moreover, due to (a), the open 
segment from 0 to s (H,  - A,) lies in t,; the same is true of the translated 
segment from A to A + s(H, - A,). Consequently the point 

H A  = A + s(H,  - A,) 

lies in Po. Let u be an element in U such that Ad (u )  and s-l coincide 
on to; then 

+(u,uT, HA)  = ulu exp ( A  + s(H1 - A,)) u-lu;’ 

= u1 exp ( H ,  - A,) u;l = +(u1T, H , )  = x. 

On the other hand, HA # Hi for i = 1, ..., r because the relation 
HA = Hi implies I Hi - A I = I H ,  - A, I which equals I Hi - Ai I 
due to (1). But I Hi - A I = I Hi - Ai I implies A - A i  E 2V which 
contradicts (b). 

This finishes the proof of Lemma 6.4. 
Now let uo be a point in U ,  and y a curve in U beginning and ending 

at uo. Due to Prop. 12.4 in the Appendix, y is homotopic to a curve 
y’ C U,. Hence it follows from Prop. 5.5 that r l ( U )  and r l ( U r )  are 
isomorphic. This concludes the proof of Theorem 6.1. 

Let (M*,  r) be a simply connected covering space of a topological 
space M .  A homeomorphism y of M* such that r o y = r is called a 
covering transformation of M*.  These homeomorphisms form a group 
which is isomorphic with the fundamental group r l ( M )  of M .  

What are the covering transformations corresponding to the covering 
space ( U / T  x Po, $) of U,? In terms of the notation of Lemma 6.4, 
the transformation 

(VT, H )  4 (vu;1u2T, A, + s,,(H - A,)) 

is a covering transformation of U / T  x Po. In  fact, due to (1) we have 

A2 + S d H  - A,) E Po for H E Po 
and 

$(v~;lu,T, A, + s,,(H - A,)) = +(uT, H )  

for E-I E Po, z, E U .  These covering transformations, rl( U )  in number, 
are all different because the images Hi = At + sil(H, - A,) are all 



§ 61 The Fundamental Group and the Center 31 1 

different as shown above. The  group r l ( U )  is isomorphic with the 
group of transformations 

p i  : H -+ Ai + sil(H - A,)  

of to, each of which maps Po into itself. The  orbit of A, under this 
group is t, n Po. 

Lemma 6.5. Let Z denote the center of U and let t(u) denote the set 
of points H E to for  which exp H E 2. Then 

t(u) = ( H  E to : a ( H )  E 27riZ for each 01 E A * } .  

Proof. It is obvious that t(u) is the set of H E to for which 
Ad (exp H )  = I. The  lemma now follows from relations (9, $4. The  
notation t(u) is to indicate that the set in question is the same for all 
groups that have Lie algebra u. 

Corollary 6.6. Let T f  denote the universal covering group of U and 
let 2 denote the center of 0. The number of points in t(u) n Po (in 
geometric terms: the number of vertices of Po in t(u)) equals the order of 2. 

This corollary results from using Theorem 6.1 on the group 
Ad (u) = u/z. For this group, the unit lattice t, coincides with t(u) 
and the fundamental group r,(Ad (0)) is isomorphic to 2. 

Let U = SU(n),  the group of unitary n x n matrices of 
determinant one. The  Lie algebra u = 5u(n) consists of all n x n skew 
Hermitian matrices of trace 0, and the complexification g is the Lie 
algebra 51(n, C )  of all n x n matrices of trace 0. The  subset to of u 
consisting of all n x n purely imaginary diagonal matrices of trace 0 
is a maximal abelian subalgebra of u. The  subspace t of g generated by 
to is a Cartan subalgebra of g and consists of all diagonal matrices of 
trace 0. Let Eij denote the matrix ( ~ a i s b j ) l ~ r c ~ l l . , l ~ b j n ,  and for each 
H E t let e i (H)  denote the ith diagonal element in H. Then 

Proof. 

Example. 

so the linear function aij : H --+ e,(H) - e j ( H )  is a root of g with respect 
to t. In  this manner we obtain n(n - 1) nonzero roots; on the other 
hand, the set A *  of all nonzero roots (of g with respect to t) contains 
dim g - dim t = n2 - 1 - (n  - 1) = n2 - n elements. Consequently 

A* = {aii : 1 < i # j < n}. 
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If H ,  H’ E t, then (2) implies that 

R(H, H’) = Tr  (ad H ad H ’ )  = 2 ( e i ( H )  - e i (H))  (e , (H’)  - ej(H’)) 
l < i , i s n  

so 

B(H,  H ’ )  = 2n T r  (HH‘) .  (3) 

Now given a matrix X E 5u(n), there exists an element u E SU(n) such 
that uXu-1 E to. This well-known fact about matrices is a special case 
of Theorem 6.4, Chapter V. Since the mapping X -+ uXu-l is an auto- 
morphism of su(n) it follows that 

B ( X ,  Y )  = 2n Tr  ( X U )  

for all X, Y E eu(n), hence for all X, Y E eI(n, C ) .  Let Hii denote the 
vector in t determined by 

B(Hij, H )  = aij (H),   HE^. 

Then 

The case n = 3. Here dim f, = 2 and the roots in A* are given 
aI3, f aZ3. The angle 6 between the vectors Hij  and by & q2, 

H,, is given by 

Frc. 2 
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The lines (t12 = 0, a13 = 0, a23 = 0 in to are therefore situated as in 
Fig. 2. For the polyhedron Po we can select the triangle formed by the 
lines a12 = 0, a13 = 0 and a23 = 2ni. The  vectices of this triangle are 
the origin and the points 

27r 
H’ = i - ( E  3 11 + E,, - 2%) 

.2r 
3 

H“ = 2 -(- + 2Et2 - Ess). 

If follows from Cor. 6.6 that the center 2 of 0 has order 3 in this case. 
Moreover, since exp H‘ # e and exp H” # e, we see that t, n Po 
consists of the origin alone. I n  view of Theorem 6.1, the group SU(3) 
is simply connected. The  same argument shows SU(n)  simply connected 

Corollary 6.6 shows, that the order of 2 (in E. Cartan’s terminology 
“indice de connexion”) can be determined from the root pattern of II 
as is done above in a very simple case. In Cartan’s paper “La gComCtrie 
des groupes simples,” Annuli d i  M a t .  4 (1927), this method is used to 
determine the order of 2 corresponding to all simple compact Lie 
algebras. The  result will be obtained in a different way in Chapter X. 

A simple complement to Theorem 6.1 and Corollary 6.6 shows that 
the group nl( U )  itself and not just its order, can be read off from the 
diagram and t,. 

( n  2 2). 

Theorem 6.7. Let f, denote the unit lattice for the group 0. Considering 
I,, t, and t(u) as groups of translations of to, the following isomorphisms hold: 

T ( U )  M t,/f,, 2 % t(ll)/ie. 

Proof. Let denote the analytic subgroup of 0 with Lie algebra to. 
Then the mapping exp : u -P D induces a homomorphism a of to onto 
p. Then c.(t(u)) = 2, f, = a-l(e) and a(te) = 2, where 2, is the sub- 
group of 2 such that U = O/Zl. Since r l (  U )  M 2, the theorem follows 
immediately. 

Corollary 6.8. The diagram D(u) and the unit lattice t, determine the 
group U up to isomorphism. 

In  fact, the Lie algebra u is determined by to and D(u) up to iso- 
morphism (Theorem 5.4, Cor. 7.3, Chapter 111). The  group 0 is 
determined by u up to isomorphism and U = O/a(te) in the notation 
above. 
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$7. The AfFine Weyl Group 

Keeping the notation of 94-6, let t A C  to denote the set of integral 
linear combinations of the vectors 

4ai 
H a  (a  E A*) .  

<% a> 

Here the vector H ,  E t is determined by B(H,  H,) = a(H)  (HE t). Let 
r A  denote the group of linear transformations of to generated by the 
reflections in all the hyperplanes in the diagram D(u). This group is 
called the afine Weyl group. A component of t, will be called a cell. 

Lemma 7.1. Viewing t A  as a group of translations of to we have 

r, = t, . w(u) (semidirect product; td normal). 

In particular, r A  leaves the diagram invariant. 
Each element in r, has the form H -+ A ( H )  + B where A is 

a linear transformation and B a vector. If this is given by a composition 
of reflections in certain planes, then H --f A ( H )  is the corresponding 
composition of reflections in parallel planes through 0. Thus we have a 
homomorphism of I‘, onto W(u), and the kernel consists of the trans- 
lations in r,. Those are given by the image r A  - 0, and it remains to 
prove that this equals t A .  The reflection u , , ~  in the hyperplane a(H)  = 
27rin (n E 2) can be written 

Proof. 

2ain 2ai 
u,,,(H) = s,(H) - s, (---Ha) + -- H ,  . n 

<a, a> <a, a> 

so if /3 E A*, m e  2, 

where k is the integer n - 2m(a, P) / (P ,  @>. An obvious induction 
shows that 

r A  ’ 0 c 

The converse being trivial, the lemma is proved. 
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Proposition 7.2. The group r A  is generated by the rejections in the 
walls of Po. 

Proof. Let r' C denote the subgroup generated by the reflections 
in the walls of Po. Let Q be any cell and let X ,  E Po, Y E Q. Let so realize 
the minimum of the functions -+ I X ,  - sY I on r'. Then Yo = s o y  E Po 
because otherwise the vector X , Y ,  intersects a wall of Po and 1 X,Y' I < 
I X Y I if Y' is the reflection of  Y o  in this wall. Since so leaves the diagram 
invariant, soQ = Po. 

a ( H )  = 27rin. 
This hyperplane bounds a cell in the diagram, say Q. By the above, 
SQ = Po for some s E r'. Let u be the reflection in the hyperplane  ST^,^. 
Clearly bounds Po and u ~ , ~  = s-lus. Thus a,,n E r' and the result is 
proved. 

Now let 7rl, ..., rn be the walls of Po and sl, ..., s, the corresponding 
reflections. For each u E r A  let Z(U) be the smallest number r such that u 
is the product of r of the si. An expression u = sil ... sir is called reduced 
if Y = l(u), and Z(U) is called the lengthfunction. 

O . o  

Next let uaSn denote the reflection in the hyperplane 

Lemma 7.3. Let u E r A .  Then Z(u) is the number of hyperplanes in the 
diagram separating Po and UP, (that is, the number of hyperplanes intersected 
by a segment XoYo ( X ,  E Po, Yo E .Po)). 

Proof. Let 7r be a wall of Po and s the reflection in 7r.  We now make 

(a) If 7r' is a hyperplane of the diagram and T' # T, then Po and sP, 

(b) Assume Po and UP, are on the same side of 7r.  Then (because of (a)) 

(i) 7r itself; 
(ii) the hyperplanes s7r' where 7rf separates Po and UP,. 

Let u = sil ... si, be a reduced expression. We shall prove by induction 

two simple observations: 

are on the same side of T I .  

the hyperplanes of D(u) separating Po and SUP, are precisely: 

on r that the hyperplanes of D(u) separating Po and UP, are precisely 

Sil %J%J Si, ... %-2(fli,-l)? *..> Sz,(nzJ, nt, 

and that these are all different. 
This is so, by (a), if r = 1 .  Let u' = si2 ... sir. This is a reduced expres- 

sion and u = si1u'. We shall prove that Po ando'P, are on the same side 
of 7ril, so using (b) the first part of our claim follows by the induction 
hypothesis. If Po and u'P, were on different sides of nil, then by the 
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induction hypothesis 

so 
u = si2 ... simsi,+z ... si,, 

contradicting the minimal property of r .  
Finally, the induction hypothesis asserts that the hyperplanes 

si2 ... si,-l(Tri,), ..., Tr’ 22’ 

are all different; their images under sil are of course different, and are also 
different from nil. I n  fact, if T. = sil ... s. (7ri ) (m >, l),  then (1) 
follows and again we have a contradiction. 

21 2rn m+l 

Corollary 7.4. 

We know from Lemma 7.1 that 

The group F A  permutes the cells in t, simply transitively. 

permutes the cells, and the tran- 
sitivity is contained in the proof of Prop. 7.2. The simple transitivity is 
obvious from Lemma 7.3.  

Theorem 7.5. Let C, C to be any Wey l  chamber. 

(i) Each orbit of W ( u )  in to intersects the closure co in exactly one point. 
(ii) Each orbit of r A  in to intersects the closure Po in exactly one point. 

Proof. Part (i)  is a special case of Theorem 2.22. For (ii) it susces by 
Cor. 7.4 to prove that if H ,  H’ E Po, 0 E To, and H = uH’, then H = H’. 
We shall prove this by induction on the length r of u. The case r = 0 
being obvious let u = s i t i ,  ... si, be a reduced expression. We write 
u = si u’, so Z(a) > Z(u‘). We know from the proof of Lemma 7.3 
that T;, separates Po and UP,. Thus if S is the closed half-space with 
boundary nil containing Po, we have Po n upo c S n upo c vi1. Thus 
H‘ C ri1, so H‘ = silH‘ = siluH = u’H and the induction assumption 
implies H = H‘.  

Remark. Comparing the proofs of Prop. 7.2 and Theorem 2.12, 
we see that W(u) is generated by the reflections in the walls of Co and 
that the length function has an obvious analog for W(u) .  Lemma 7.3 
would have an analog for C,, and the proof of (ii) above would give 
another proof of (i). 
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We shall now apply these Euclidean results about r A  to derive some 
global results for the group U and its unit lattice t,. 

Lemma 7.6. W e  have 

47ri 
(a  6 A *), 

that is, t A  C t,. 

Proof. As shown in the proof of Lemma 4.5, T, coincides with the 
centralizer in U of the hyperplane a(H)  = 0. I n  particular, T, contains 
an element u such that Ad(u) restricted to to is the reflection s, in this 
hyperplane. But then the definition of T ,  implies 

and this proves the lemma. 
Considering the unit lattice t, as a group of translations of to, let re 

denote the group generated by W(u) and t,. Again re leaves the diagram 
invariant. Also re = t, . W(u), t, being a normal subgroup of re. Also r A  

is a normal subgroup of re since s,H - H E  td for H E  t,. 

Theorem 7.7. The subgroup Q of re leaving Po invariant is isomorphic 
to t e , ' tA ,  and its order is the cardinality oft, n Po. 

Proof. Given y E re, there exists a unique u,, E such that yPo = 
u,,Po, that is, u;'y E Q. Since r A  C re is a normal subgroup, the map 
y -+ u;'y is a homomorphism of I', into Q. The image is Q and the 
kernel is F A ,  so 0 m re/rA = feltA. 

Next, given Y E  t, n Po, the cell Po - Y has 0 in its closure; so for a 
unique w E W(u), Po - Y and wPo lie in the same Weyl chamber and 
contain 0 in their closures. Hence Po - Y = wPo, so the mapping 
X --t wX + Y belongs to Q. Conversley, if a mapping X -+ w,X + Y ,  
(w,  E W(u), Yl E t,) belongs to Q, then w, * 0 = Y,  E t, n Po. This gives 
the desired bijection of t, n Po onto Q. 

Considering Theorems 6.1 and 6.7, we conclude the following result. 

Corollary 7.8. W e  have t A  = i,, so 
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In particular, for a compact, semisimple, simply connected Lie group the 
unit lattice is the lattice spanned by the vectors 

We can now state the conjugacy theorem (Theorem 6.4, Chapter V) 
in a sharper form. 

Theorem 7.9. Let  U be a compact connected semisimple Lie group. Let 
C, c to denote the Wey l  chamber containing Po and (?, its closure. 

(i) Each X E u is Ad( U)-conjugate to a unique element H E C0. 
(ii) Assume U simply connected. Let u E U .  Then there exists a unique 

H E Po such that u is conjugate to exp H .  

Proof. (i) By Theorem 2.12 and Chapter V, Theorem 6.4, X is 
Ad(U)-conjugate to some H E  c,. If H‘ E (?, is another such element, 
then by Prop. 2.2, H’ = sH for some S E  W ( u ) ,  so by Theorem 7.5, 

For (ii) we first prove a global analog of Prop. 2.2. Recall that in a 
group I(u) denotes the automorphism g -+ ugu-l. 

Lemma 7.10. Let S C  T be a subset and suppose U E  U satisjies 
I(u)(S)  C T. Then there exists an element n E N ,  (the normalixer of T 
in U )  such that 

H = H’. 

I(n)  1 S = I(u) I S (I = restriction). 

Proof. The groups T and uTu-l are maximal tori in the centralizer 
Z,,,-,. Hence there exists an element v E Z,,-, such that vTv-l = 
uTu-l. Then n = v-lu has the desired property. 

In  order to conclude the proof of Theorem 7.9 we first observe from 
Lemma 6.3 that each u E U is conjugate to some t E exp Po. If t’ E exp Po 
is another such element, then by Lemma 7.10 t’ = ntn-l for some 
n E N,.  Writing t’ = exp H’, t = exp H ( H ,  H‘ E Po) and w for the 
restriction of Ad(n) to to, we deduce H’ = wH + A where A E t,. I n  
other words, H‘ and H are conjugate under re. By the simple con- 
nectedness, FA = re; so Theorem 7.5 implies H = H‘ as desired. 

8. Application to the Symmetric Space U/K 

We return now to the situation in 51-93 where (u, 0) is an arbitrary 
orthogonal symmetric Lie algebra of the compact type. T o  simplify the 
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notation we now write a, = bp,. We know that exp maps u onto U 
and Exp maps pa  onto UjK. 

The unit lattice in a, is defined as the set 

a ,={HEa , : expH=e} .  

If H belongs to this set then Ad(exp H )  is the identity mapping of 
u so or(H)~2.rriZ for each root a ~ d .  Hence if we consider a, as a 
group of translations of a,, each element in this group leaves the diagram 
D( U ,  K )  invariant and permutes the components of a, = a, - D( U,  K) .  
The  mapping 

@ : (kM,  H )  -+ Exp Ad(k) H 

maps KIM x a, onto UIK. We recall that the singular set in U / K  is 
defined as the image 

SUIK = @(u/K x D ( u ,  K ) )  

and the regular set is defined as the complement 

Lemma 8.1. Suppose the pair ( U ,  K )  associated with (u, 0) is a 
symmetric pair. Then the mapping Q1 maps the subset KIM x a, regularly 
onto ( UjK),. 

Proof. Since the regularity is already established (Prop. 3.2), we 
only have to prove that if H, E D( U ,  K )  and H, E a,, then the relation 

Exp Ad(k,) H, = Exp Ad(k,) H, (1) 

is impossible for k,, k,  E K. Relation (1) implies for k = k$k, that 

k exp H,k, = exp H,. (2) 

for a suitable k, E K. Applying the automorphism of U which corre- 
sponds to 0 we obtain 

k exp 2H,k-l = exp 2HT. 

The  centralizers of the elements exp 2H, and exp 2Hs in U are therefore 
isomorphic. This contradicts Lemma 4.3 because a(2H,) E 2.rriZ when- 
ever a(2Hr) E 2riZ but not conversely. 

The  lemma shows that @ is a local homeomorphism of KIM x a, 
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onto (UIK),. It follows easily that if p( t ) ,  0 < t < 1, is a continuous 
curve in (UjK),  and if the point qo E K / M  x a, satisfies @(qo) = p(0) 
then there exists a unique continuous curve q(t), 0 < t < 1, in 
K / M  x a,. such that @(q(t))  = p ( t )  for all t and q(0) = 9,. In analogy 
with the terminology of covering spaces, q(t)  is called a Zzjt of p( t ) .  

Theorem 8.2. Let u be an analytic involutive automorphism of a 
compact simply connected Lie group. Then the set of $xed points of 0 is 
connected. 

Proof. A compact simply connected Lie group is necessarily semi- 
simple (Prop. 6.6, Chapter 11). In terms of the notation of Lemma 7.1, 
it suffices therefore to prove that U / K  is simply connected if U is simply 
connected as we now assume. 

Let Q, denote a component of a, whose closure contains the origin. 
Let (k*M, H*) be a fixed point in K,'M x Qo and putp* = @(k*M, H*). 
Let yo(t)  (0 < t < 1) be a continuous curve in UjK which begins 
and ends at the point o = {K} .  Due to Prop. 12.4 in the Appendix, yo is 
homotopic to a path y ( t )  (0 < t < 1) which lies in ( U / K ) ,  except 
for the point o = y(0) = y(1). Since (UjK),  is connected (Cor. 12.5), 
we may assume that y(+) = p* .  Now let 0 < E < + and consider the 
path ye given by y,( t )  = y( t ) ,  ( E  < t < 1 - E).  Let T E ( t )  be the lift 
of y. to K,IM x a, such that re(+) = (k*M,  H*). Put r E ( t )  = (k ,M,H,)  
for E < t < 1 - E .  Then, since re is connected, H ,  €Q0 for E < t < 1 - E .  

Let 0 < < e2 < 4. By the uniqueness of the lift we have 

r,,(t> = r€#) 
Consequently we can define a continuous curve 

for c2 < t < 1 - c2. 

r(4 = ( K t M  Ht), O < t < l ,  

in K / M  x Qo such that @ ( r ( t ) )  = y( t ) .  The set Q, is bounded since 
all roots are bounded on it. Let H ,  be any limit point of {H,} as t -+ 0. 
Then there exists a sequence t ,  --t 0 such that kin -+ K,EK and 
Htn -+ H,. It follows that 

r(tn) = EXP Ad(Kt,) Ht, - EXP(AW0)) Ha. 

On the other hand, y(t,) -+ o so 

Exp Ad(Ko) Ho = 0, whence exp H ,  E K .  

Consequently exp 2H0 = e, i.e., 2H0 E a,. 
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We shall now apply Theorem 6.1 for to = fjfo + a,. Since Ho lies 
in the closure of Qo each root 01 E d* has its values in the closed interval 
[0, 2r i ]  on the segment joining 0 and 2H0. It follows that this segment 
is contained in a closed polyhedron Po, if Po is a suitably chosen com- 
ponent of t,. Since a(2H0) E 2niz for all 01 E A*,  2H0 is a vertex of Po. 
The group U being simply connected, Theorem 6.1 implies that 
Ho = 0. Consequently lim,,,Ht = 0. In the same way we find that 
the limit H ,  = limt+l H ,  exists and H ,  = 0. The curve H ,  (0 < t < 1) 
is therefore a closed curve in Qo. The mapping 

U ( S ,  t )  = sH,, O < S < l ,  O < t < l ,  

is a homotopy of this curve and 0. The mapping /3 given by 

B(s, 4 = EXP(Ad(K,) SH,), O < s < l ,  O < t < l ,  
B(s, 0) = B(s, 1 )  = 0, O < S < l ,  

is then a homotopy of y and 0. This proves the theorem. 

Remark. Theorem 8.2 does not hold if the assumption of simple 
connectedness is dropped. As an example let 

- 1  0 0 
s o = (  8 -; ;j 

and let (T denote the involutive automorphism u +- sowo of SO(3). The 
set K of fixed points consists of two components. 

Now generalizing the situation in 97, let ar denote the lattice in a, 
spanned by the vectors (92) 

and r, the group of linear transformations of a, generated by the reflec- 
tions in all the hyperplanes in the diagram D(u, 0). Again the components 
of a, are called cells and r, the afine Weylgroup. Because of Theorem 
2.16, we can imitate the proof of Lemma 7.1, whereas 7.2-7.5 require 
no change. We can therefore state the following result. 

Theorem 8.3. Let Qo be a component of a, whose closure contains the 

(i) r, = a, * W(u,  0) (semidirect product). 

(ii) The group r, is generated by the rejections in the walls of Qo. 

origin. Viewing ar as a group of translations of a,, we have: 
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(iii) The group I’, permutes the cells simply transitively. 

(iv) Let C ,  C a, be any Weyl chamber. Then each orbit of W(u, 0)  in a, 

(v) Each orbit of r, in a, intersects the closure go in exactly one point. 

We would now like to determine the unit lattic a, more explicitly, 
generalizing Cor. 7.8. For this we need some additional information 
about the restricted roots. 

intersects the closure C, in exactly one point. 

Lemma 8.4. Let a E A,. Then its restriction E to $, satisfies 

where m = 1, 2, or 4. (a ,  a )  = m(G, E )  

If m = 1, then H,  = A,; and i f m  = 4, then ~ E E Z .  

Proof. With the notation of $3, Chapter VI, we have A, = 
*(He - H,e). If a = -ae, then m = 1, so let us assume a + ae # 0. 
If a + ae were a root, then ga+ae C f whereas [X,, OX,] C p for each 
X ,  E 9,. Because of Theorem 4.3, Chapter 111, this is a contradiction; 
thus a + ae is not a root, so by the theorem quoted, 2(a, ae)/(a, a) is an 
integer 2 0 ,  hence 0, 1, or 2. Since 5 # 0, the value 2 is excluded, so by 
((Y, .I) = +(( a, a )  - (a, a!)) we find m = 2 or 4. If m = 4, then 
(a, d )  > 0, so a - 010 is a root and therefore 22 E Z. This proves the 
lemma. 

Theorem 8.5. Let UjK be a symmetric space of the compact type, 
U simply connected, and K connected. Let aK denote the lattice 

Then 

Proof. First we note that exp H E K o exp H = exp(-H) by 
Theorem 8.2, proving the first relation in (3). Next, let p E: Z and select 
a E A, such that 6 = p. Since a - G = $(a + ae), we have iH,  - iA, E f, 
so Lemmas 7.6 and 8.4 imply 

in other words, ap c aK. 

generated by W(u, 0) and a,. Since a ( H )  E Ti2 for H E  
Considering aK as a group of translations of a,, let r K  denote the group 

and a E A, 
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r, leaves D(u, 0) invariant and permutes the cells. Also W(u,  8) leaves aK 
invariant because of (4). Thus r K  = is a normal subgroup 
of r K  and r, is a normal subgroup of r K  since s,H - H E  ax for H E  aK.  

Since a, coincides with the set ( H E  a, : Exp H = o}, the group rK 
is the natural generalization of the group re. Repeating the argument of 
Theorem 7.7, we conclude that the group aK/ar has order equal to the 
cardinality of n Q,. But if H ,  E a, n Q,, then 2H, E a,; so as in the 
proof of Theorem 8.2, H,  = 0, so aK = a,, and 

W(u,  0) ,  

r, = r,. ( 5 )  

This proves Theorem 8.5. 

Theorem 6.7, Chapter V. 
We can now prove a generalization of Theorem 7.9, sharpening 

Theorem 8.6. With UjK as in Theorem 8.5 let C,Ca, be any 
Weyl chamber; e, its closure. Let Q, be any component of a, whose closure 
contains 0. 

(i) Each X E p* is Ad,(K)-conjugate to a unique element H E e,; 
(ii) U = K exp QoK 

and each u E U can be written u = k,  exp H k,  (k,, k, E K )  with H E  go 
unique. 

Proof. Considering Theorem 8.3, the proof of (i) is the same as in 
Theorem 7.9. For part (ii) we need the following analog of Lemma 7.10, 
where, as before, M' denotes the normalizer of a, in K .  

Lemma 8.7. Let S be a subset of A ,  = exp a, and suppose k E K 
such that kSk-l C A,.  Then there exists an element m E M' such that 

msm-1 = ksk-l for  S E  S.  

Proof. The centralizer Zksk-' of kSk-l in U is invariant under the 
involutive automorphism 8, so its Lie algebra u1 has a direct decom- 
position u1 = f, + p1 where f, = u1 n f, and p1 = u1 n p , .  Let 
P, = exp p,. Then A ,  C P,, kA,k-l  C Zksk-1;  but since d8 = - 1 on 
Ad(k) a,, we have Ad(F2) a, C u1 n p,  = pl, so ki4,k-l C P,. The con- 
jugacy arguments of 96, Chapter V, show that there exists an element 
1 E exp f, such that lA,l-l = kA,k- l .  Then the element m = I-lk 
has the desired property. 

T o  conclude the proof of Theorem 8.6 let u E U. Then u = k ,  exp H k ,  
(k,, k ,  E K ,  H E  a*). Because of  ( 5 )  and Theorem 8.3 (iii), we may assume 
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H E go. If u = 1, exp H'I, (11, l2 E K,  H' E &,) is another such expression, 
we obtain 

u(Ou)-l = k,  exp(2H) k;' = I, exp(2H') Z;l; 

so by Lemma 8.7, m exp(2H) m-l = exp(2H') for some m E M'. Thus 
by (3) and (9, H and H' are conjugate under the group r,, so Theorem 
8.3 (v) implies H = H'. 

We conclude this section establishing some useful connections between 
the Weyl groups W(u) and W(u, 0). 

Proposition 8.8. With UjK as in Theorem 8.5 let P ,  = exp p ,  

(i) 
(ii) 

and M' the normalizer of a, in K. Then: 

A ,  equals its centralizer in P,. 
M ' A ,  equals the normalizer of a, in U. 

Proof. (i) Let b C a, be a subspace and suppose p E P ,  commutes 
elementwise with the group B = exp b. Let C' denote the subgroup of U 
generated b y p  and B and let C denote the closure of C' in U. Clearly C' 
consists of all products 6pn (6 E B, n E 2). Now 6 = d2 (d E B), p = q2 

{ue(u-') : u E U }  and is therefore closed in U,  we deduce C' C P, and 
C C P,. The identity component C ,  of C contains some power of p ;  
if N is the smallest such power, then ClC, is cyclic of order N .  By 
Lemma 2.6 there exists an element c E C such that the sequence e,  
c, c2, ... is dense in C. Select X E p*  such that c : exp X .  Then the 
closure of the one-parameter subgroup exp RX is a torus, contained in 
P,, containing both p and B. Taking b = a,, (i) follows since a, is 
maximal abelian in p + .  

(ii) Let b C a, be a subspace and suppose u E U such that Ad(u)b C a,. 
Then u = kp ( k  E K ,  p = exp X ,  X E p * ) ,  so eadX(b) C p * .  Hence 
6(eadX(H))  = - e a d X ( H )  for  HE^, so ezadxH = H for  HE^. This 
means that p 2  commutes elementwise with exp b. By the proof of (i) 
there exists a torus T C P ,  containing p 2  and exp b. Let t denote its 
Lie algebra, write p 2  = exp 2 (2 E i), and put p ,  = exp $2. Then 
8( p ,p - l )  = p;'p = p,,p-l ,  so by Theorem 8.2, p = k ,p ,  where 
k, E K. Thus u = kk,p, = k'p, (k' E K )  and 

(4 E P,), SO bp" = d2pn = dp"d = d q q n d = dqn8((dqn)-l). Since P ,  = 

Ad(u)H = Ad(k')H ( H E  b). (6 )  

Taking b = a,, we deduce from (i) that p2 E exp b and T = A,, so 
p ,  E A,. Now (6) implies k' E M', so u E M'A,  as desired. 
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Corollary 8.9. Let W(u) and W(u, 6 )  be the Weylgroups acting on the 
complex spaces b and bp C b, respectively. Then ;f two elements H ,  H’ E bp 
are conjugate under W(u), they are conjugate under W(u, 6). 

Let u E N ,  (normalizer of T )  such that Ad(u) H = H‘. Writing 
H = H I  + iH,, H‘ = H i  + iHi ( H I ,  H,, Hi,  Hi  E a,), we obtain 
Ad(u) Hi = Hi ( j  = 1,2), so Ad(u) maps the subspace b = RH, + RH, 
into a,. By (6) and by Proposition 2.2 there exists an s E W(u, 6) such 
that s = Ad(u) on b. Then sH = H’ as we vanted to prove. 

We consider now two interesting subgroups of the Weyl group W(u). 
Let W, denote the subgroup of W(u) leaving V p  invariant and W(m,) the 
subgroup of W(u) leaving bp pointwise fixed. According to Theorem 2.15 
for the group U, W(mo) is generated by the symmetries s, of b for 01 E P- 
(notation of 93, Chapter VI). The Lie algebra m is a direct sum of an 
abelian Lie algebra and a semisimple Lie algebra; bf C m is a maximal 
abelian subalgebra, and the decomposition 

(cf. Lemma 3.6, Chapter VI) can be viewed as a “root space decom- 
position” of m. This justifies calling W(m,) the Weyl group of the Lie 
algebra m,. 

Proposition 8.10. The restriction s -P s I bp is a homomorphism of We 
onto W(u, 0) with kerne2 W(m,). 

Let G E We and select a representative u E N ,  for G .  Then u 
normalizes a,, so by Proposition 8.8, u I a, E W(u, 8). For the surjectivity 
let s E W(u, 6) and k E M‘ be a representative for s. Then bfo and Ad(k) tjf, 
are two maximal abelian subalgebras of m,, so by Theorem 6.4, Chapter V 
there exists an element m E M such that Ad(k) bf, = Ad(m) bf,. Then 
m-lk normalizes T and the corresponding element u E W(u) belongs to 
W, and u 1 bP = s. 

Proof. 

f 9. Classification of Locally Isometric Spacest 

Let (u, 6) be an orthogonal symmetric Lie algebra of the compact 
type. We recall that a Riemannian globally symmetric space M is said 
to be associated with (u, 6) if the Riemannian symmetric pair (I,(M), K )  
is associated with (u, 6), K being the isotropy subgroup of Io (M)  at 

t See also Exercises C, Chapter X and Exercise 10 in this chapter. 
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some point in M .  We shall now return to the problem stated in $1, 
namely, to find all M associated with the given (u, 8). For this purpose 
we shall use Theorem 8.2. 

Theorem 9.1. Let (u,  8) be an orthogonal symmetric Lie algebra of the 
compact type and suppose that i,, the fixed point set of 8, contains no ideal 
# {!> in u. Let 0 denote the simply connected Lie group with Lie algebra u, 
let 8 denote the automorphism of 0 such that do = 8 and let R denote 
the set of fixed points cf 8. Let 2 denote the center of 0. 

Let S be any subgroup of 2 and put 

Ks = {U E D : u - ~ ~ ( u )  E S}.  

The Riemannian globally symmetric spaces M associated with (u, 8) are 
exactly the spaces M = UjK with any U-invariant metric, where 

u = o/s, K = K*/S.  (1 1 

Here S varies through all &invariant subgroups of 2 and K* varies through 
all &invariant subgroups of 0 such that I?S C K* C K,. 

Proof. Consider first a pair (U,  K )  given by (1).  Because of Lemma 1.3 
0 induces an involutive automorphism u of U such that q8 = uq if 
q: 8-t U denotes the natural projection. But then the group q(Ks), 
and therefore K ,  is left pointwise fixed by (T. This proves that the 
manifold U / K  is globally symmetric. Furthermore, the set of elements 
in U which induce the identity mapping of UjK is a closed subgroup D 
of K whose Lie algebra is 0, being an ideal of u contained in f,. It follows 
that U / D  is a semisimple subgroup of the isometry group I (U/K) ,  
so by Theorem 4.1, Chapter V, U / D  = I,(U/K). In  particular, I ( U / K )  
has Lie algebra u, so the space UjK is associated with (u, 8). 

On the other hand, suppose M is a Riemannian globally symmetric 
space associated with (u, 8). This means that there exists a point o E M 
such that the automorphism u : u 4 souso of I,(M) has differential 
du = 8. If U = I,(M) and K denotes the isotropy subgroup of I , (M)  
at 0, then the pair ( U ,  K )  is a Riemannian symmetric pair 
associated with (u, 8). There exists a subgroup S of 2 such that U = 01s. 
Let q denote the natural mapping u-+ U and put K* = q-'(K). 
Then K = K*/S, 8K* C K*. Since a o q = q o 8, we find for k E K*, 

q(0k) = oq(k)  = q(k) .  

Consequently, k-ld(k) E S so K* c Ks. On the other hand, R c  K* 
since R is connected. This finishes the proof since S is &invariant. 
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While Theorem 9.1 describes in terms of 2 the Riemannian globally 
symmetric spacesMassociated with(u, 8) it is more delicate to decide which 
of these are actually different. For this problem see Exercises C, Chapter X. 
We can however conclude two illuminating corollaries of Theorem 9.1. 

Corollary 9.2. If 2 consists of the identity element alone,+ then OjR 
is the only Riemannian globally symmetric space M associated with (u,  8). 

The automorphism 8 of u induces an automorphism of Int(u), also 
denoted 8; let Int(u), denote the subgroup of fixed points. We call the 
globally symmetric space Int(u), Int(u), the adjoint space of (u ,  8 )  because 
it generalizes the adjoint group. 

Corollary 9.3. The adjoint space satisjies 

Int(u)/Int(u), = OjKz. 

All the globally symmetric spaces UIK = ojK* associated with (u,  8 )  
cover the adjoint space and are covered by OijR: 

o / R  -+ D/K* -+ D/Kg. 

Here K* varies through the groups in Theorem 9.1. 

$10. Geometry of U/K. Symmetric Spaces of Rank One 

This chapter has, so far, dealt with group-theoretic properties of the 
compact symmetric space UjK. We shall now examine some of its 
geometric properties, and start with some remarks on closed geodesics 
in compact symmetric spaces. 

Let y ( t ) ,  -00 < t < GO be a geodesic in a Riemannian 
manifold M. The geodesic is called closed if there exists a number 
L > 0 such that y ( t  + L )  = y ( t )  for all t. The geodesic is said to be 
simply closed if in addition y ( t J  # y(t,) for 0 < t ,  < t ,  < L. I f  I t I is 
the arc parameter, L is called the length of the simply closed geodesic. 

Definition. 

Proposition 10.1. Let M be a Riemannian globally symmetric space 
and y ( t )  (- 00 < t < co) a geodesic in M which intersects itsev. Then it 
is a simply closed geodesic. 

* This is the case for the exceptional algebras e,, f4, and g2, 
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Proof. Let p ,  be some point where the geodesic intersects itself. 
We may assume that the parameter t is such that y(0) = y(1) = Po 
and y ( t l )  # y(t,) for 0 < t ,  < t ,  < 1. Using now the notation of 
Theorem 3.3, Chapter IV, we have M = GIK. There is a unique 
vector X E p such that d r  - X = y(0). Then Exp d r X  = y(1) = p ,  so 
exp X E  K. If Y E  Mpo, then by the theorem quoted, the vector 
( d  exp X)po( Y )  is the parallel translate of Y along the curve segment 
y ( t ) ,  0 < t < 1. Using (1) in Chapter IV, 93, we obtain 

(d  exp X ) 9 0 ( d ~ X )  = dr(Ad(exp X ) X )  = drX.  

This shows that f(0) is the parallel translate of y(0) along y( t )  (0 < t < 1). 
Hence y ( t  + 1) = y ( t )  (0 < t < 1 )  and the proposition follows. 

Proposition 10.2. Let M be a compact Riemannian globally symmetric 
space. Then M has a simply closed geodesic. If M is of rank one then all 
the geodesics in M are simply closed and have the same length. 

Proof. We follow again the notation of Theorem 3.3,  Chapter IV. 
Then since M and the group K are compact, G is compact. Let a be a 
maximal abelian subspace of p and put A = exp a. The closure A of A 
in G is a torus whose Lie algebra is contained in p .  Using the maximality 
of a, it follows that A = A. Being a torus, A contains a one-parameter 
subgroup exp t H  ( t  E R, H E  a) which intersects itself. The geodesic 
r(exp t H )  (t E R) in G/K is simply closed by Prop. 10.1. If M has rank 
one, then all geodesics (parametrized by arc length) are congruent 
under an isometry of M (Theorem 6.2, Chapter V). This proves the 
proposition. 

Definition. Let M be a compact Riemannian manifold and p a 
point in M. The set of points in M of maximum distance from p will 
be called the antipodal set associated to p .  I t  will be denoted by A,. 

If M is a compact Riemannian globally symmetric space of rank one 
and p E M ,  then the isotropy subgroup of I,,(M) at p acts transitively 
on A,. In  view of Prop. 4.4, Chapter 11, A, is a compact submanifold 
of M .  It is obvious that dim A, < dim M .  

Theorem 10.3. Let M be a compact Riemannian globally symmetric 
space of rank one. Let 2 L  denote the common length of the geodesics in M. 
Let p be any point in M .  Then Expp is a dtfleomorphism of the open ball 
11 X I/ < L in M p  onto the complement M - A,. 
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Proof. We first assert that A, coincides with the set of midpoints of 
the geodesics y(s) (0 < s < 2L), starting at p ,  s denoting the arc length 
measured from p .  In  fact, consider one of these geodesics y.  The point 
y(L) is clearly left fixed by the symmetry s,. If r is a curve segment of 
length d ( p ,  y(L)) joining p and y(L) then s, . r also has these properties. 
The curves s, r and r are geodesics with opposite tangent vectors 
at  p .  Using Prop. 10.1 we see that r followed by s, - r (in opposite 
direction) forms a closed geodesic. Hence L = d( p ,  y(L)) ,  so y realizes 
the shortest distance between any two of its points. Next, let q E A,. 
Then d ( p ,  q)  3 L. We join p to q by a geodesic r' of shortest length. 
The closed geodesic in M tangent to r' at p must contain r'. Since this 
closed geodesic has length 2L we conclude that d ( p ,  q) < L, hence 
d( p ,  q) = L. This proves the assertion above. 

Next, let yl(s) and y2(s) (0 < s < 2L) be two geodesics in M starting 
at p ,  s being arc length measured from p .  Suppose they intersect at a 
point p' different from p and y2(L) .  Consider the curve y formed by the 
shortest part of y1 joining p and p' together with the shortest part of 
y 2  joining p' and y2(L).  Then y is a curve of length L joining p and y2(L) 
and must be a geodesic due to Lemma 9.8, Chapter I. But this obviously 
implies that either yl(s) = y2(s) or yl(s) = y2(2L - s). 

I t  has now been proved that Exp, (= Exp) is a one-to-one differen- 
tiable mapping of the open ball 1 1  X / I  < L onto M - A,. It remains 
to be proved that Exp is regular at X E M ,  provided 0 < I/ X / I  < L. 
For this purpose let Y be a tangent vector to M, at X for which 
( d  Exp), ( Y )  = 0. Let Q denote the Riemannian structure of M and 
consider the function q(t) = QExp t,(d Exptx(X), d ExptX(Y)) ( t  E R). 
Here Y is considered as a tangent vector to M, at t X .  If we decompose 
Y = y X  + Yl where Yl is perpendicular to X we see from Lemma 9.7, 
Chapter I, that for small t ,  

Since q(t) is an analytic function we conclude that it is a constant. 
But q(l)  = 0 so y = 0 and Y is perpendicular to X .  

Let K,  denote the isotropy subgroup of G = I,(&?) at p .  We may 
assume that dim M > 1 .  Then I,,(M) is semisimple and K,  acts transi- 
tively on each sphere S,.(p) in M .  In  particular, the linear isotropy 
group K,* acts transitively on the sphere S around the origin in M, 
through X .  The group K,* is a compact linear group and is a Lie trans- 
formation group of S.  In  view of Prop. 4.3, Chapter 11, there exists a 
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vector Yo in the Lie algebra i?(Kp*) = i?(K,) such that+ 

d 1 dt 
Y = -d~(exp  tYo) . X  

Then, iff is a differentiable function on M, 

d 1 dt 
- - -f(exptY,.ExpX) 

where we have used relations (1) and (3) in Chapter IV, 93. Let s E R 
and let us use the last formula on the function f * ( q )  = f(exp sYo - q) ,  
q E M. Then 

which shows thatf(exp sYo Exp X) is constant in s. Sincefis arbitrary, 
this shows that the one-parameter subgroup exp sYo (s E R) leaves the 
point Exp X fixed. The unique geodesic of shortest length joining p 
and Exp X is therefore left fixed by each expsYo. Consequently, 
di(exp $Yo) X = X for s E R so Y = 0 by (1). Thus, Exp is regular 
and the theorem is proved. 

For the remainder of this section we assume M is a compact Rieman- 
nian globally symmetric space of rank one and of dimension greater 
than one. Fix o E M, write Exp for Exp,, let U denote the compact 
semisimple group Io(M) and u its Lie algebra. Let u = f + p*  be the 
decomposition of u into the eigenspaces of the involutive automorphism 
of u which corresponds to the automorphism u -+ sous, of I (M).  Here f 
is the Lie algebra of the isotropy subgroup of U at 0. Changing the 
distance function d on M by a constant factor, we may, since u is semi- 
simple, assume that the differential of the mapping u -+ u * o of I ( M )  
onto M gives an isometry of p * (with the metric of --B) onto the tangent 
space M,. 

Proposition 10.4. For each p E M, the antipodal manifold A,, with 
the Riemannian structure induced by that of M ,  is a Riemannian globally 
symmetric space of rank one, and a totally geodesic submanifold of M. 

t Here exp is the exponential mapping for G and T ( X )  is the mapping gK, + xgK, of 
GIK, onto itself. 
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Proof. Let q E A,. Considering a geodesic in M through p and q, 
we see that p is fixed under the geodesic symmetry s,; hence s,(A,) = A,. 
If u, denotes the restriction of s, to A,, then 0, is an involutive 
isometry of A, with q as isolated fixed point. As the image of the 
sphere S,(O) in M ,  under the continuous mapping Exp, A, is also 
connected. Thus A, is globally symmetric and u, is the geodesic 
symmetry with respect to q. Let t -+ y ( t )  ( t  E R )  be a geodesic in the 
Riemannian manifold A,. We shall prove that y is a geodesic in M .  
Consider the isometry S, , (~ )S , , (~ )  and a vector X in the tangent space 
Let T~ : My(o) + denote the parallel translation in M along the 
curve y(p) (0 < p < r). Then the parallel field 7,. - X (0 < r < t )  
along the curve r -+ y(r)  (0 < r < t )  is mapped by s,,(~) onto a parallel 
field along the image curve r + sy( t )y(r)  = u,,(t)y(r) = y(2 t  - r )  
(0 < r < t ) .  Since s,,(ptX = - T ~ X ,  we deduce that S , , ( ~ ) S ~ ( ~ ) X  = 
-s,,(gX = T ~ ~ X .  In  particular, the parallel transport in M along y maps 
tangent vectors to y into tangent vectors to y. Hence y is a geodesic 
in M .  Consequently, A, is a totally geodesic submanifold of M ,  and 
by the definition of rank, A, has rank one. 

The argument above proves a more general result. 

Corollary 10.5. Let Q be a Riemannian globally symmetric space, 
N a connected submanifold of Q such that for  each n E N ,  N is invariant 
under the geodesic symmetry of Q with respect to n. Then N ,  with the 
Riemannian structure induced by that of Q, is a Riemannian globally 
symmetric space, totally geodesic in Q. 

Now select a vector H E p ,  of length L,  the diameter of M .  Then 
a, = RH is a maximal abelian subspace of p * .  Select a restricted root 
01 E Z such that a(H)  > 0 and such that $01 is the only other possible 
restricted root, positive on H (cf. Cor. 2.17). This means (cf. Lemma 3.6, 
Chapter VI) that the eigenvalues of (ad H ) 2  on u are 0, O I ( H ) ~ ,  and 
possibly ( + o I ( H ) ) ~  with multiplicities dim m + 1, 2ma, and 2mt,. Let 

f = f, + f, + ft,, 
be the corresponding decompositions of II, f ,  and p *  into eigenspaces. 
We have the following commutation relations: 

u = u, + u a  + U&,, P ,  = a, + P a  + P&u 

(i) 
(ii) 

fa = m, the centralizer of H in f ;  

ad H exchanges fu and pa, fta and P+,; 

(iii) [Pa, Pal c fo, [fu, Pu1 c a,, [f,, Pal = Pa- 
The first relation follows from B([H,  TI, [H,  TI) = --B(T, (ad H ) 2  T) 
( H  E a,, T E f). Part (ii) is obvious. Part (iii) comes from observing that 
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by Lemma 3.6, Chapter VI, (ad H)2 has eigenvalues 0, 0, and a(H)2 on 
the spaces [P,, P,], [f,, P,], and [fo, P,], respectively. 

Proposition 10.6. Let S C  K be the subgroup leaving the point 

(i) 5 = f, + t, if H is conjugate to 0, 

(ii) 5 = f, if H is not conjugatet to 0, 

(iii) If +a is a restricted root, then H is conjugate to 0. 

Proof. 

Exp H E Mfixed and let 5 denote its Lie algebra. Then: 

We first prove (iii). Consider the sphere in the tangent 
space M ,  with center 0 and radius 2L. The mapping Exp maps this 
sphere onto the point 0 ,  so the differential (dExp),, = 0. But then 
Theorem 4.1, Chapter IV, implies 

m mn 

If &a is a restricted root, this implies sinh( 4 4 2 H ) )  = 0, so a(H)  E T i 2  
and (iii) follows from Prop. 3.1. 

(i) and (ii). A vector T E t belongs to 5 if and only if 

exp(--H) exp(tT) exp H E  K for all t E R. 

Thus T E 5 o Ad(exp H) T E t, which is equivalent to 

sinh(ad H)T = 0. (2)  

I n  particular, 5 is the sum of its intersections with f,, f,, and If T + 0 
in f, @ = 0, a, +x) condition (2 )  amounts to sinh /3(H) = 0 or equiv- 
alently, P(H)  E mZ. 

Now, if H is not conjugate to 0, then +a $ ,Z by (iii) and a(H)  $ T i 2  by 
Prop. 3.1, so 5 = f,, proving (ii). For (i) suppose H conjugate to 0. 

Whether or not +a is a restricted root, we have by the cited result 
a(H)  E TiZ, so fa C 5. Finally 5 n ft, = 0 because otherwise +a(H) E r i Z  
which would imply that +H is conjugate to 0, contradicting Theorem 10.3 
This concludes the proof. 

cation M,  = a, + p ,  + P+,. Then: 
Theorem 10.7. Suppose H is conjugate to 0, and recall the identifi- 

(i) Exp(a, + p,), with the Riemannian structure induced by that of M ,  

t According to the list in Exercise G.2, Chapter X, this happens only for the real 
projective spaces. 



3 101 Geometry of U/K.  Symmetric Spaces of Rank One 333 

is a sphere, totally geodesic in M ,  having o and Exp H as antipodal points, 
and having curvature r2/L2. 

(ii) Exp(pta) equals the antipodal set AExpH, which is also totally 
geodesic in M. 

Proof. (i) Let So denote the identity component of S. Since 
[s, a, + p, ]  C a, + p,, the orbit Ad,(So)H lies in a, + p ,  and its 
tangent space is [5, R H ]  = p, .  Thus Ad(So)H is a sphere in a, + p ,  
of radius L and center 0. Moreover, if s E S, then the geodesic t + 
s * Exp tH = Exp(Ad(s) t H )  passes through Exp H. The commutation 
relations (i)-(iii) above show that a, + pa is a Lie triple system. Thus 
by Theorem 7.2, Chapter IV, and the subsequent remark, the manifold 
M ,  = Exp(a, + p a )  is a globally symmetric space, totally geodesic in M 
and hence of rank one. If 2 E p ,  is a unit vector, the curvature of M, 
along the plane section spanned by H and 2 is by Chapter V, 93, given 
by 

--L-ZB([H, 21, [H,  21) = -L%(H)2 = (7r/L)Z. 

Since M ,  has rank one, every plane section is congruent to one containing 
H ;  hence M, has constant curvature. Finally, M ,  - {Exp H} is the 
diffeomorphic image of an open ball, hence simply connected. Since 
dim M ,  > 1, it follows that M ,  is simply connected too, hence a 
sphere (Exercise A.4, Chapter IV). This proves part (i). 

For part (ii) we first note that the geodesics from o to Exp H intersect 
A, under a right angle in Exp H .  In fact, the sphere S,,(o) in M equals 
K Exp tH = Exp Ad(K) tH ( t  < 1) and by Lemma 9.7, Chapter I, 

Q ~ x p  t ~ ( d  E X P ~ H ( W ~  d Ex~tu(Ad(K) ( tW))  = 0 (0 < t < l), 

so the statement follows letting t --f 1 because the tangent space (Ao)Exp 
equals d Exp,(Ad(K) H) (Chapter 11, $4). Reversing o and Exp H,  
it follows that the geodesics from Exp H to o intersect AExp in o under 
a right angle. From part (i) we therefore deduce that AExpH = Exp(p+,) 
and the theorem is proved. 

Proposition 10.8. If H is not conjugate to 0, then &a is not a restricted 
root and 

H = Exp(p,)* 

Proof. The first statement was already proved. The second is a 
consequence of the following facts: (1) By Prop. 10.6, dim A,,, ,, = 

dim A, = dim K - dim S = dim f, = dim p , ;  (2) the geodesic t + 
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Exp(tH) is perpendicular to AExp 
totally geodesic and connected. 

between points and antipodal manifolds. 

in 0; (3) AExp and Exp(p,) are both 

We conclude this section exhibiting a kind of projective duality 

Proposition 10.9. Let p ,  q E M. Then: 

(i) p # q implies A, # A,; 
(ii) p E A, if and only if q E A,. 

Proof. If r E A,, then the geodesics which meet A, in r under a right 
angle all pass through a point r* at distance L from r (Theorem 10.7 
and Prop. 10.8); among these are the geodesics joining p and r. Thus 
p = r* and the result follows. 

$11. Shortest Geodesics and Minimal Totally Geodesic Spheres 

Let M be a compact irreducible (cf. Chapter VIII, $5) Riemannian 
globally symmetric space with the Riemannian structure induced by 
the negative of the Killing form of the Lie algebra of Io(M). Let K be the 
maximum of the sectional curvatures of M whose values are then 
restricted to the interval [0, K ]  (cf. Chapter V, 93). By Theorem 6.2, 
Chapter V, the maximum-dimensional, flat, totally geodesic sub- 
manifolds of M are all conjugate under Io(M).  This section is devoted to 
a proof of a counterpart of this result for the maximal curvature K .  

Exercise 5 provides an illustration of the general concepts used. 

Theorem 11 .l. The space M contains totally geodesic submanifolds 
of constant curvature K .  Any two such submanifolds of the same dimension 
are conjugate under Io(M).  The maximum dimension of such submanifolds 
is 1 + mg where me is the multiplicity of the highest restricted root 8. Also 

During the proof of this theorem we establish also the following result. 

K == (8, 8). 

Theorem 11.2. Assume the space M above is simply connected. 
Then the closed geodesics in M of minimal length are permuted transitively 
by Io(M). The minimum length is 277/ll 8 /I, I/ 1 1  denoting the norm ( , )lI2. 

The assumption “simply connected” cannot be omitted as Exercise 6 
shows. 
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We start with a few algebraic preliminaries. Let u be a compact 
semisimple Lie algebra over R, 8 an involutive automorphism of u. 
Let u" denote the complexification of u, g the real form of u" corre- 
sponding to (u, 0), that is, g = f + p, u = f + p, where f and p, are the 
eigenspaces of O for + 1 and - 1, respectively, and p = ip*. Let a, C p, 
be a maximal abelian subspace, put a = ia,, and extend a, to a maximal 
abelian subalgebra t of u. Then the complexification IJ = t" is a Cartan 
subalgebra of uc. Let as before A denote the corresponding system of 
nonzero roots, A ,  the set of roots which do not vanish identically on 
a" (the complexification of a in u"). Let Z denote the corresponding set 
of restricted roots, and for each h E Z let m, denote its multiplicity. 
Putting tt = f n t, tf, = itf, we know that each root in A takes real 
values on QR = a + tf,. Select compatible orderings in the dual spaces 
of a + tf, and of a and let A+ and Z+ denote the sets of positive elements 
in d and Z, respectively. I f f  is a function on tC its restriction to a" is 
denoted by f. 

For each linear form h on a" put 

f, = { T  E f : (ad H ) 2  T = A(H)z T for H E a*}, 

p, = { X  E p* : (ad H)2  X = A(H)z X for H E  a*}. 

Then f, = f-,, p, = P-,, po = a,, and f, equals m, the centralizer of a, 
in f .  

Lemma 11.3. The following decompositions are direct: 

f = m +  2 f,, P* = a *  + 2 PA* 
A E H +  ,EX+ 

In fact, the endomorphisms (ad H ) 2  ( H  E a*) commute, are symmetric 
with respect to the Killing form B of uc, leave f and p* invariant, and 
have eigenvalues 0 and h(H)2 (A E Z+); cf. 92. 

Lemma 11.4. Let A, p E Z U (0). Then 



336 SYMMETRIC SPACES OF THE COMPACT TYPE [Ch. VII 

Proof. For each a E A select X ,  # 0 in uc such that [ H ,  Xu] = a(H)  X, 
for H E tC. Extending 0 to an automorphism of IF, also denoted 8, let 

n+(.) = C(X,  + ex,), u-(a) = qx, - ex,). 
Then by Lemma 3.6, Chapter VI, if h E Z, 

I t  follows that 

= f n 2 Uf(a), 

€0 = tf + € n 2 cx,, 

PA = P* n 2 u-(4 
8=A ,=A 

and by the quoted lemma, 

Po = a*- 

= p. Then 

if ae + /3 # 0, 

if ae + B = 0, 

8=0 

Let A, p E Zf and a, /3 E A such that L? = A, 

[Uf(ol>, u-(B)I c .-(a + B) + u-(aB + B) 
b+(a>, u-(B>l c u-(a + B) + C(H,  - eH,> 

so the first relation of the lemma follows from (2). The others follow 
similarly; and if h or p = 0, the relations are clear from (3). 

With A, as in 92 let a, denote the subspace RiAA of a, ( A  E Z). Then if 
a E A we have H, - A, E tt* and A, = $ ( H ,  - Hue). Then we have by 
(3)-(5), 

Lemma 11.5. Let A E 2. Then 

[ € A ,  PA1 P2A + aA' 

Let (cf. Lemma 2.20) C C bR be the Weyl chamber where all a E A+ 
take positive values and let C, c a be the Weyl chamber where all h E Z+ 
take positive values. By the compatibility of the orderings, C,  C c 
(the closure of C). 

Lemma 11.6. Let 6 E A+ denote the highest root. Then 8 E Z+ is the 
h&hest restricted root and H6 E c, A6 E c,. 

Proof. That Ha E t? is clear from Theorem 2.22. Since 6 - a >, 0 
for all a E A ,  we have by the compatibility of the orderings 8 - A 2 0 
for all h E Z, so the remaining statements follow in the same way as the 
first. 
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Definition. The restricted root system Z is called irreducible if there 
exists no partition Z = Zl u Z, into disjoint, nonempty, orthogonal 
subsets Zl and Z,. 

We now relate this concept to the irreducibility of (u, 8) as defined 
in the following chapter, $5. 

Lemma 11.7. Assume f contains no nonzero ideal in u. Then (u, 8) is 
irreducible if and only i f  Z is irreducible. 

If Z is not irreducible, let 2 = Z, v Z, be the associated 
partition. Then h E Z,, p E Z, implies h f p $ Z, u Z2. Hence by 
Lemmas 11.3-11.5, Z,,zl (f, + p A )  and ZAG, (fA + PJ would generate 
ideals u, and u, in u invariant under 8, and this shows (u, 8) not irreducible. 
Conversely, if (u, 8) is not irreducible, then Prop. 5.2, Chapter VIII, 
shows that Z is not irreducible. 

Proof. 

Lemma 11.8. Suppose Z is irreducible, let a,, ..., a ,  be the simple 
restricted roots and 8 = Xi diai the highest restricted root where (by 
Theorem 2.19) d,, ..., d ,  E Z+. Then: 

(i) di 3 1 for each i. 
(ii) If 01 EZ+ and we write a = Xizl aiai (ai  E Z+), then 

a, < d,, ..., a ,  < d,.  

Remark. Part (ii) shows that 8 depends only on the Weyl chamber C, 
(which determines the subset Z+cZ) but not on the ordering of Z 
chosen. 

Proof. Let Z’ = {a E Z :  4.6 Z) be the set of “indivisible” roots. 
The irreducibility of Z implies that the set {a,, ..., a,} has no partition 
S,  u S, into orthogonal, disjoint, nonempty subsets S, and S,. In 
fact, let Zi = W(u, 8) Si(i = 1, 2). Since, by Theorem 2.12 and 
Lemma 2.20 each a E 2’ is W(u, 8)-conjugate to a simple root, we would 
have Z’ = 2; v 2;. Also W(u,8) is generated by the reflections 
sml, ..., sat (cf. remark following Theorem 7.5) and s,X = X if h E S,, 
p E S,. The formula for sai therefore shows that W(u, 8) S,  remains in 
the subspace spanned by S,, so the union Z‘ = Z; u Z; is an orthogonal 
partition, contradicting the irreducibility of Z. 

Now let < denote the following partial ordering of Z: X < p means 
that 0 # p - X = Ei=, ciai (ci 2 0). Let p = Ei=l miai be a maximal 
element in this ordering. We shall prove mi > 0 for each i. Otherwise 
we have a nontrivial partition {a,, ..., a,} = S, v S, where mi > 0 for 

S,, mi = 0 for ai E S,. Then (p ,  ai) < 0 for all S, 
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(Lemma 2.18), whereas by the indecomposability shown above, some 
aj E S, is not orthogonal to all members of S,, and therefore satisfies 
(p ,  aj) < 0. But then Lemma 2.18 implies p + 0 1 ~  E Z, contradicting 
the maximality of p. Thus p = C: miai where mi > 0 for each i. The 
argument also proves (p, A) >, 0 for each h E Z+ and therefore, by 
nondegeneracy, (p ,  A) > 0 for some h E Z+. If y is another maximal root 
in the ordering <, then by the above y = E;cioli where each ci > 0 
and ( y ,  mi) 0 for all i. Thus ( y ,  p )  > 0, so p - y E Z, so either 
p > y or y > p, which is impossible. Thus y cannot exist. This 
uniqueness of p shows that if ~ E Z +  is arbitrary and we write a = 

Eq aimi, then a, < m,, ..., a,  < m,. Finally, by Lemma 11.6, (8, p)  > 0, 
so again 8 - p is a restricted root a. But 01 > 0 contradicts the maximality 
of p for the ordering <, and 01 < 0 contradicts 8 being the highest 
restricted root. Thus 01 = 0, 8 = p, and the lemma is proved. 

Suppose now the Lie algebra u is simple. Let U be simply connected 
Lie group with Lie algebra u, “extend” 8 to an automorphism of U ,  
and let K be the group of fixed points of 8. Then we know that U is 
compact and K connected. Let Exp denote the Exponential mapping 
of p ,  onto U/K.  Let [ I denote the norm in $, and its dual, [ [  1 1  the norm 
in a and its dual. 

Proposition 11.9. The shortest, periodic, one-parameter subgroups in a 
simple simply connected, compact Lie group U have length 4n-11 6 I and they 
are all conjugate in U. 

Proof. Let C ,  = iC C t and consider the polyhedron P ,  given by 

4 H )  P ,  = H E  t : 0 < --- < 1 for I 2772 

This is a cell in t,. Since u is simple and A therefore irreducible, we have 
by Lemma 11.8, P, = {H E C ,  : (2ni)-l S(H)  < 1). Since U is simply 
connected, we have by Theorem 6.1 

t, n P, = (0). (6 )  

From Lemma 7.6 we have for each 01 E d 

exp2H(oI) = e, (7) 

where H(a)  = 2niH,// 01 l 2  is the projection of 0 onto the hyperplane 
a = 2 r i  in t. For the closed one-parameter subgroup T : t -+ exp(2tH(S)) 
let to > 0 be the first value such that exp(2toH(S)) = e. Then S(2t0H(S)) E 
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2 d Z  (Lemma 6.5), so 2t0 E Z.  But (6) implies to # 4, so (7) implies 
t o  = 1 and the length of T is 2 ( H(S)I = 4n-jl 6 I. Now let t -+ exp tX  
be any periodic one-parameter subgroup of U of length 6 2  I H(6)1, the 
parameter being fixed such that exp tX  # e for 0 < t < 1 and 
exp X = e. Then for some u E U ,  Hl = Ad(u)X lies in e,; and since 
exp H I  = e, S(Hl) = n2n-i (n E Z+).  Since Hl # 0, we have n # 0. 
Also n # 1 by (6). Thus Hl belongs to the union of the hyperplanes 
6 = n27ri (n 2 2) and by our assumption on X ,  we have 1 Hl I < 
2 I H(S)I. But the point 2H(6) is the only point which minimizes the 
distance from 0 to the union of the hyperplanes 6 = n2ri (n 3 2). Thus 
Hl = 2H(6) and the proposition is proved. 

We can now prove Theorem 11.2. According to Theorems 5.3 and 5.4, 
Chapter VIII, there are two cases to consider, namely M = UjK and 
M = ( U  x U)/U*,  where U* is the diagonal in U x U. For the first 
case M = UjK we first recall that if H E  a,, then Exp H = o if and 
only if exp2H = e .  Let A(&) = 7riAJl (..ELI,). Then we have 
by (41, 989 

Exp(2A(cY)) = 0. (8) 

In particular 4 4 8 )  E t,; and since S(4A(8)) = 4ri and 4 4 8 )  E e,, 
we have by (6) ,  4tA(8) $ t, for 0 < t < 1. Consequently, the geodesic 

t -+ Exp(2tA(8)) (9) 

is simply closed and has length 2 1 1  A(8)ll = 2r/(l 8 1 ) .  Now let t -+ Exp t X  
be a geodesic in M such that Exp X = 0, Exp t,X # o for 0 < to < 1. 
Then by Prop. 10.1 it is a simply closed geodesic of length ( 1  X ( I .  Assume 
this length is <27r/j/ 8 11. Select K E K such that H = Ad,(lz)X E c,, 
where C,, = iC,. Then 2 H  E t,, so S(H)  = mri, m E Z+. But H # 0, 
so m # 0 and m # 1 because of (6). But 1 1  HI1 < 2njll8 11, whereas the 
point 2 4 8 )  is the only point which minimizes the distance from 0 to 
the union of the hyperplanes 8 = miri ( m  2 2) in a,. Thus H = 2 4 8 )  
and Theorem 11.2 is proved for the space UjK. 

Next we prove Theorem 11.2 for M = ( U  x U)/U* ,  with the 
Riemannian structure Q* defined by the Killing form B* of u x u, 
the identification of M with U being made via the mapping 
T : (ul, ug) U* -+ ulu;l. In  the context of 94 the highest restricted root, 
say 6, is given by 8(H, - H )  = S(H)  ( H  E t); and since 

B*((X, -X) ,  (Y ,  -Y ) )  = 2B(X, Y )  (X, Y 6 u), 
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Moreover, dT,,(X, -X) = 2 X ,  so for each tangent vector Z to 
( U  x U ) / U *  we have 

2Q*(z, z> = Q ( W %  d G ) )  (1 1) 

if Q is the Riemannian structure on U defined by -B. Thus in the 
Riemannian structure Q* the one-parameter subgroups from Prop. 1 1.9 
have length 2n- d/z/I 6 I which by (10) equals 2n-/ll 8 11. This and Prop. 11.9 
concludes the proof of Theorem 11.2. 

We note some simple consequences of the proof. First (7) and (8) 
imply the following result. 

Corollary 11.10. For u simple we have 

l o l l  < I S 1  and 110111 < I l 6 l l  for OrEd. 

We can also deduce the following results. 

Corollary 11.11. Let u be simple. Suppose a E A+ and 01 # 6. Then 

In  fact, 6(A(6)) = n-i and by (8) a(A(8)) = inin where ~ E Z + .  
But 6 - 01 is (by Lemma 11.8 for u and A) a positive integral linear 
combination of the simple roots in A+. Thus (6 - 01)(A(6)) = &rim 
where m E Z+. Thus n = 0, 1, or 2.  But if n = 2,  then (01,s) = 1 1  6 / I 2 ,  
so Cor. 1 1.10 implies 01 = 6. This proves Cor. 11.1 1. 

From Cor. 11.11 we can now deduce the fact that when the double 
of a restricted root is a restricted root, then it either is on the line R6 
or is perpendicular to it. 

Corollary 11.12. Let II be simple. Suppose /3 E A+ and 2 p  E Z+ - {8}. 

In fact, select 01 E A +  such that 01 = 2p. Since 2p E Z+ - {6}, we have 

Then B and 8 are orthogonal. 

also p E Z+ - {6}. Thus Cor. 11.1 1 applies to both 01 and p, so 

whence (p, 6) = 0. 

Definition. Let M be a compact, irreducible simply connected 
Riemannian globally symmetric space. For p E M let A, denote the set 
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of midpoints of closed geodesics of minimal length passing through p ;  
A, is called the midpoint locus associated with p .  

From Theorem 11.2 and Cor. 10.5 we have the following consequence. 

Corollary 11.13. For each p E M  the midpoint locus A, is a totally 
geodesic submanifold and is an orbit of the isotropy subgroup of I ,(M) at p .  

For E = 0, 4, 1 put 

Then by Cor. 11.11 we have f(1) = fa, p(1) = and 

P* = a* + P(0) + P(8 + P8. f = m + f(O) + f(+) + €8,  

Theorem 11.14. Let S denote the centralizer of exp 2A(8) in K. 
Then : 

(i) The Lie algebra 5 of S equals 

5 = m + f(0) + €8. 

(ii) I n  UlK we have for the midpoint loci 

A, = K/S,  AExp A(8)  = Exp P(+)*  

Proof. For (i) we note first that T E 5 if and only if ed(2a(B))T = T. 
Putting c = 42/48)) for h E Z+ we have 

sinh c 
@d(2A(8))T = CoshcT + - [2A(8), TI, € A ,  

C 

so (i) follows. 
For (ii) we note that k E K commutes with exp 2A(8) if and only if 

exp(-A(8))k exp A(8) is fixed by 0, that is, belongs to K. But 
exp( -A(S))k exp A(8) E K if and only if k leaves the point Exp A(8) fixed. 
Thus A,, = K/S.  Next we observe that since exp 2A(8) E K, we have 

exp(-A(g)) * Ao = exp A(8)Ao = AExpA(8) 

so by Cor. 11.13 

AEXpA(8) = exp(-A(8)) K exp A(8) . 0. (12) 

If T E f ,  it is clear that 

Ad u(exp( -A@))) T z - sinh(ad(A (8))) T (mod f ) ,  
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so the curve 
t --+ exp(-A(8)) exp tT exp A(8) . o 

has tangent vector -sinh ad(A(8))T at t = 0. But using (2) we deduce 

sinh(ad(A(8)))f = p ( i ) ,  

which by (12) finishes the proof since we know in advance that ABxpA(a) 
is totally geodesic in UjK. 

After these preparations we can give a prcof of Theorem 11.1. We 
first compute the maximal sectional curvature K of UjK. For this it 
suffices to consider plane sections in p *  spanned by orthonormal vectors 
H E  C,, and X E P * .  The corresponding curvature is by Chapter V, 93, 
given by 

B((ad X, X). ( 1 3 )  

Decomposing X according to Lemma 11.3 

x = x o +  2 x, 
A€Z+ 

we have 

B((ad X ,  X )  = 2 h(H)2 B(X,, X,) < -S(H)2 
AEZ+ 

because, by Lemma 11.8, 6 - X has positive values on C,. This last 
inequality implies K < 1 1  8 [I2. But choosing X E ~ g ,  H E ag, we see that 
the equality sign actually holds. 

Now since 26 is not a restricted root, it is easily seen from Lemmas 
11.4-11.5 that the subspace ag + pg C p *  is a Lie triple system. Also 
Cor. 1 1 . 1  1 implies that if X E Zf is orthogonal to 8, then neither 8 + X 
nor 6 - h is a restricted root. Hence the Lie algebra 5 satisfies 

15, a d  = Pa, [5 ,  ag + PSI = a6 + PS. 
Since a6 is a maximal abelian subspace of a6 + p6, the totally geodesic sub- 
space M6 = Exp(a6 + p a )  has rank one, and by the computation above, 
constant curvature 1 1  8 l12. Let So denote the identity component of S. 
Then the tangent space to the orbit Ad,(So) A(6) C as + is 
[5, A(8)] = p a ,  so this orbit is the sphere in as + pg with center 0, 
passing through A(8). Since all s E So leave Exp A(6) fixed, all geodesics 
in M6 through o pass through 0’ = Exp A(6). Hence M6 - 0’ is the 
diffeomorphic image of a ball (Theorem 10.3), so M6 is simply con- 
nected, hence a sphere. 
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Now the geodesic symmetry sol of U / K  leaves o fixed. If y is a geodesic 
segment of minimum length joining o and o’, then y and so,y will by 
Prop. 10.1 form a simply closed geodesic, and by Theorem 11.2 it has 
length 2n-ill8 I /  (since the length of y by assumption is <I\  A(8)lj). The  
closed geodesics of this length starting at o and passing through 0‘ are 
permuted transitively by S, hence form finitely many spheres .Ci of 
dimension 1 + ms, namely the images of Ma under S. Let ui denote the 
unit sphere in the tangent space (Zi),. Each ui is an orbit of Ad,(S,), 
so any two different ui are disjoint. Now let Z be any totally geodesic 
sphere in UjK of curvature I( 8 / I 2 .  Using an isometry u E U,  we may 
assume that Z passes through o and 0‘. Then the unit sphere u in the 
tangent space (Z), is contaihed in the union of the ui. But u is connected 
(since dim Z > l), so it is contained in a single mi. Hence there exists an 
element s E S such that s * 2 c Ma. 

Next we consider the subgroup U, = {u E U : U M ,  C Ma). Then 
So c U, and the restriction mapping y : u -+ ujM, is a homomorphism 
of U, into the isometry group I(Ma). If X E  a8 + pa (viewed in the 
Lie algebra of Ua), then y(exp t X )  is a one-parameter group of trans- 
vections of Ma along the geodesic Exp t X ;  in particular, dy  is one-to-one 
on aa + pa. Thus we identify (M,),, = as + p a  with a subspace of the 
Lie algebra e(l(Ma)) and have by Chapter V, $4, 

The first term on the right is a subalgebra f’ C 5 C f ,  and ad,(€’) restricted 
to a8 + pa is the Lie algebra so(a8 + p ~ )  (cf. Exercise 8, Chapter V). 
Hence we have the inclusion 

so that any two subspaces of (Ma),, of the same dimension are conjugate 
under Ad,(S,). Thus any two totally geodesic spheres of the same 
dimension contained in Ma are conjugate under a member of U ;  to 
finish the proof of Theorem 11.1 for the space U / K  it remains to verify 
that any totally geodesic submanifold N of UjK of constant curvature 
I j  8 / I 2  is a sphere. But if N were not a sphere, it is clear, passing to the 
universal covering of N ,  that N would contain a simply closed geodesic 
of length < 2n-111 8 I (  which is impossible. 

If M is any compact Riemannian globally symmetric space such that 
Io (M)  is simple, then Theorem 11.1 can be applied to the universal 
covering space of M and the theorem follows for M .  

Next we prove Theorem 11.1 for the case M = U .  Suppose U has 



344 SYMMETRIC SPACES OF THE COMPACT TYPE [Ch. VII 

the bi-invariant Riemannian structure given by --B on II. Then if 
X, Y E u are orthonormal, the corresponding sectional curvature is 

!@((ad x)z y ,  Y )  

(cf. Exercise A.6, Chapter 11). The maximum is f 16 l 2  as we see by 
taking X proportional to H6 and Y in the corresponding root space. 
However, with the conventions of Theorem 11.1 we must view U as 
( U  x U)/U*  whereby the Riemannian structure is multiplied by 
4 (cf. (1 1)). Accordingly all sectional curvatures are multiplied by 2 so the 
maximal curvature hecomes K = 2 . 4  I 6 1 2 ,  which, as we saw before, equals 
I (  8 (I2. Moreover rns = 2. The remaining statements of Theorem 1 1.1 are 
proved for U and any compact group covered by U just as for the 
space UjK. By Chapter X, $1, the simple compact Lie groups and the 
globally symmetric spaces covered by U / K  exhaust all compact 
irreducible Riemannian globally symmetric spaces, so Theorem 1 1.1 is 
now completely proved. 

5 12. Appendix. Results from Dimension Theory 

In this section we collect some results from dimension theory which 
have been used earlier in this chapter. The dimension concept is here 
the topological dimension of Brouwer, Menger, and Urysohn, defined 
for all separable metric spaces. This definition assigns to the empty 
set dimension -1 and by induction the dimension of an arbitrary 
separable metric space M is defined as the smallest integer n for which 
each point p E M has arbitrarily small neighborhoods with boundaries 
of dimension less than n. Whenever possible, we refer to the book of 
Hurewicz and Wallman [l] for proofs of the results below. All  spaces 
considered are assumed to be separable metric spaces. An n-dimensional 
manifold has topological dimension n (Hurewicz and Wallman [l], p. 46). 

Proposition 12.1. If M is a subspace of N then 

dim M < dim N. 

For the proof, see Hurewicz and Wallman [l], p. 26. 

Theorem 12.2. Suppose a space M is a countable union M = U,M, of 
closed subspaces M,. Then 

dim M < sup M,,. 
n 

For the proof, see Hurewicz and Wallman [l], p. 30. 
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Lemma 12.3.t Let M and N be dzjferentiable manifolds and f a 
dtfferentiable mapping of M into N .  Then 

dimf(Q) < dimQ 

for  each submanifold Q c M .  

Let m and n denote the dimensions of M and N ,  respectively. 
Let p E M and (B ,  p) a local chart around p .  The set B is called an open 
ball if y can be chosen such that p(B) is an open ball in Rm with center 
p( p ) .  Since f is continuous there exists a countable family B,, B,, ... 
of open balls in M such that M = UiBi and for each i ,  f (Bi) is contained 
in an open ball B; in N .  NowQ = Ui(Q n Bi) andf(Q) = Ui( f (Q) n B;) 
so due to Theorem 12.2 we may assume that M = Rm and N = Rn 
and that Q is a bounded subset in Rm. If I I denotes the norm in Rm 
(and Rn) we have 

Proof. 

If(x>-f(r)l  < c l x - - Y I  (1) 

for all x, y in some cube containing Q, c being a constant. Let q = dim Q. 
Then the (q + 1)-dimensional HausdorfT measure of Q is 0 (Hurewicz 
and Wallman [l], p. 105). From (1) follows that the (q + 1)-dimensional 
HausdoriT measure off(Q) is 0 and therefore dimf(Q) < q. 

Proposition 12At t  Let M be a connected manifold and let S be a closed 
submanifold of M ,  dim S < dim M - 2. Let y(t),  0 < t < 1, be a 
continuous curve in M. Then y is homotopic to a continuous curve 
y’(t),  0 < t < 1, such that y’(t) E M  - S for 0 < t < 1. 

Let B be an open ball in M and let a ,  b be two points in 
B - S. We shall first show that a and b can be joined by means of a 
continuous curve, not intersecting S. Let B‘ be an open ball, “concentric” 
to B such that a, b E B’ and 8’ C B. The “central projection” with 
respect to b gives a differentiable mapping of B onto the boundary of B‘. 
The image of B n S under this mapping contains no open subset of 
the boundary of B’ (Lemma 12.3). Therefore, if Nu is a neighborhood of 
a in B such that Nu n S = 0, there exists a point a‘ E N ,  such that 
the segment from b to a‘ is disjoint from S. Combining this with the 
segment aa’ we obtain the desired path between a and b. 

Suppose now that the end points y(0) and y(1) do not belong to S. 
Then there exists a positive number E = 1/(2n) ( n  = integer) such that 
each segment y ( t ) ,  I t - to I < E is contained in an open ball B(t,)  

Proof. 

t Harish-Chandra [5], p. 615. 
tt Compare Pontrjagin [l], p. 263, Teil 2. 
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( 1  to I < 1). Let 0 < j < n. Then the point y(2j.s) belongs to the 
intersection B((2j - 1 ) ~ )  n B((2j + 1)~) .  We replace y(2je) by another 
point y ’ ( 2 j ~ )  in this intersection, not belonging to S. Finally we put 
y’(0) = y(0) and y’( 1) = y(1). From the first part of the proof follows 
that the points y’(2jr) and y’((2j + 2 ) ~ )  can be connected by a path 
in B((2j + 1)e), not intersecting S. The desired path y’ is obtained 
by combining these small paths. Then y is homotopic to y’,  since each 
ball is simply connected. 

Finally suppose that at least one of the points y(O), y( 1) belongs to S. 
Suppose for example that y(0) E S, y(1) 4 S. Then there exists a 
sequence xl, x2, ... in M - S, converging to y(0). Select N so large 
that all x, ( n  N )  and all y ( t )  (0 < t < l/N) belong to a ball B around 
y(0). Combining the part of y from y(l/N) to y(1) with a curve from 
x, to y( 1 / N )  we obtain a curve 6 from xN to y( 1) whose end points do 
not lie in S. In  view of the result proved there exists a curve 6‘ in 
M - S homotopic to 6. If we combine 6’ with a sequence of suitable 
paths in B - S joining x, and x,+, ( n  3 N ) ,  we obtain the desired 
path y’. 

Corollary 12.5. Under the assumptions of Prop. 12.4, the set M - S 

By Hurewicz-Wallman [l], p. 48, Cor. 12.5 holds if S is any closed 
subset of M ,  dim S < dim M - 2. Thus Prop. 12.4 holds for any such S.  

is connected. 

Proposition 12.6. Let M be a connected manifold and S a connected 
submanifold of M .  W e  assume that dim S < dim M - 3 and that S is 
a topological subspace of M .  Let y(t) and y ’ ( t )  (0 < t < 1) be two con- 
tinuous curves in the complement M - s. Then i f  y and y’ are homotopic 
in M they are also homotopic in M - S. 

Proof. The homotopy y - y‘ can be broken up into a sequence of 
homotopies 

y = r,, - r, ... - rn-, - r,, = /, 

where, for each i, the curves r i P l ( t )  and T i ( t )  coincide except on a 
subinterval Ii of 0 < t < 1 for which Ti-,(Ii) and Ti(Ii) lie in the 
same open ball (compare Seifert and Threlfall [l], 944). This means, 
roughly speaking, that every deformation is a finite sequence of small 
deformations. We can therefore assume that y lies in an open ball V 
and that y‘ reduces to a point. Since S is a topological subspace of M 
we may also assume (Prop. 3.2, Chapter I), that V and the coordinates 
{xl, ..., xm> on V are such that S n V is the submanifold of V given 
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by x1 = x2 = x3 = 0. Thus it can be assumed that M = Rm and that 
S is the subspace given by x1 = 0, x2 = 0, x3 = 0. If I I denotes the 
norm in M let C ( S )  denote the set of points in M whose distance from 
S equals I y(0)I. Then C ( S )  is homeomorphic to S2 x Pp3, in parti- 
cular, C(S)  is simply connected. Now M - S can be mapped onto C(S)  
by “central projection” rp from S. This mapping is defined as follows: 
if p E M - S let s( p) denote the unique point in S at shortest distance 
from p. The ray from s ( p )  through p intersects C(S)  at a point which 
we call ~ ( p ) .  The image of y under rp is homotopic in M - S to y and 
since C(S)  is simply connected, rp * y is homotopic in C(S)  C M - S 
to the point y(0). This finishes the proof. 

EXERCISES AND FURTHER RESULTS 

1. Find the centralizer m,, and the Weyl group W(U,  K) for the 
Riemannian symmetric pair ( U ,  K) where U = SU(n), K = SO(n). 

2. Let CT be an involutive automorphism of a compact connected 
Lie group U. Let H denote the set of fixed points. Let U be given 
any two-sided invariant Riemannian structure. The mapping 

uH + ua(u-l) 

is a diffeomorphism of U / H  onto a closed totally geodesic submanifold 
of U. This submanifold is Riemannian globally symmetric with respect 
to the induced Riemannian structure (8. Cartan [ 161). 

3. Let M be a compact symmetric space of rank one, K~ and K~ the 
infimum and supremum, respectviely, of the sectional curvature. 
Show that K J K ~  = 1 or $. 

4. Show, in analogy with Prop. 7.2, that W(u, 8) is generated by the 
reflections in the walls of any fixed Weyl chamber. 

5. Let 0 < p < q be integers and u = su(p + q) the Lie algebra 
of the simply connected group U = S U ( p  + q). With Ip,q as in 
Chapter X, 92 let 8 denote the involutive automorphism OX = Ip,qXlp,q 
of u. We now illustrate some of the concepts of this chapter by means of 
this example. 

(i) Show that 

Tr(A +B)  = 0 1 ‘ AEU(P), BEU(Q) 

1 0 2  Z p x q complex matrix 
p*  = I L Z  0) I 
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(ii) A maximal abelian subspace a, C p *  is given by the matrices 

H ,  = 

and a Cartan subalgebra E, of uC is given by the matrices 

H =  

tl 

t V  

4 

tl 

(iii) The set A of nonzero roots of (uc, 8) is given by 

where 

hj E iR, 

hj E C, 
t j  E c, 
TrH = 0. 
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The set C of restricted roots is given by (f signs read independently) 

z.={&tfi ,f2fi ,&fi*fj:l  < i < j < p )  

with multiplicities 2(q - p ) ,  1, and 2,  respectively. Here 

hW*) = 4, 1 < j < p .  

fl >f2  > * * -  > f v  > 0, 

(iv) The set 

is a Weyl chamber C ,  C a and 

a1 =f1 -f2, a 2  = f 2  -fa, ..*, a,-1 = f,-1 - f,, 01, = f, 
(a, = 2f, if p = q )  

is the corresponding set of simple restricted roots. The highest restricted 
root is 

(v) The shortest closed geodesic in U / K  has length 2749 + q) .  

6. Show that the adjoint group of SU(3) has two nonconjugate closed 
one-parameter subgroups of minimum length. (Thus the assumption of 
simple connectedness cannot be dropped in Theorem 1 1.2.) 

7*. Let M be a compact irreducible Riemannian globally symmetric 
space. Assume M is not a real projective space. Then the maximum 
dimensional totally geodesic submanifolds of maximum sectional 
curvature K (cf. Theorem 11.1) are spheres (Helgason [ S ] ) .  

8. Show that the midpoint locus for SU(n) is given by 

A,, = SU(n)jS(U, x Un-,) 

in terms of the notation of Chapter X, 92. 
9. With the notation of 98 suppose HI ,  H2 E a, are Ad( U)-conjugate. 

Show that they are conjugate under W(u, 0). 

10. Let (u, 0) be an orthogonal symmetric Lie algebra of the compact 
type, f the fixed point set of 0. Let (U,  K) be any pair associated with 
(II, 0) (that is, U is a connected Lie group with Lie algebra u, and K C U 
is a Lie subgroup with Lie algebra f). Assume K is connected. Then 
U/K is not just locally symmetric (Prop. 3.6, Chapter IV) but globally 
symmetric (Helgason [13], p. 275). 
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NOTES 

The Weyl group W(u) has an interesting history. In his paper [3], Cartan 
determines the Galois group of the characteristic polynomial p(h)  = det(M--ad X ) ;  
for example, if u is the exceptional algebra e,, then the Galois group is the direct 
product of 2, and the group of the 27 lines on a cubic surface. In [4] Cartan 
identifies the Galois group with Aut(A), the group of automorphisms of the root 
system A (cf. Chapter IX, $5) and for each simple u determines the normal sub- 
group W C Aut(A) induced by Int(u) and proves Aut(u)/Int(u) M Aut(d)/W 
(Theorem 5.4, Chapter IX). At about the same time, Weyl ([l], Kap.111, $4) 
introduced W(u) as the group generated by the s, (a E A) and used it in the 
determination of the characters of irreducible representations of U. The identity 
W = W(U) now being clear, Cartan (in [9]) determined the fundamental domain 
of W(U) and of r, (Theorem 7.3,  the fundamental group nl(U) (Theorem 6.1), 
the classification of locally isomorphic compact simple Lie groups (Exercise C. 1 ,  
Chapter X) the highest root (Theorem 3.28, Chapter X). In Cartan [lo] these 
results are generalized to the group W(u, 0) and the compact, irreducible, globally 
symmetric spaces are classified (cf. Exercises C.2-4, Chapter X; also Takeuchi [l]). 
The connection between the Weyl groups and abstract transformation groups of 
R" generated by reflections was determined by Coxeter [l] and Witt [2]. 

In recent years extensive literature has appeared on reflection groups, their 
geometric properties and invariant theory. As a sample we mention Chevalley [7], 
Steinberg [l], Iwahori and Matsumoto [l], Harish-Chandra [9, I, $31, Solomon 
[l], Bourbaki [2, Chapter IV-VI], Carter [l], Tits [5], Vinberg [4, 5, q. 

Lemmas 2.3, 2.4 and Cor. 2.13 are given in Cartan [lo], $7-$10. Theorem 
2.5 goes back to Hopf [l]. Theorem 2.15 is used without proof by Harish-Chandra 
[9] (where it is attributed to Chevalley) and by Kostant [l]. Theorem 2.16 and 
Cor. 2.17 were known to Cartan ([lo], $98); our proof is like that of Lemma 4 in 
Harish-Chandra [8], p. 196 based on the representation theory of sI(2, C). An 
abstract generalization is given by Araki [l], Prop. 2.1. 

The results are mostly Cartan's ([lo], $4-§6); see also Harish-Chandra [5], 

The dimension of the singular set S (dim S = dim U - 3) is determine-d 
in Weyl [l], Kap. IV, $1. This equality was extensively used by H. Weyl and E. 
Cartan. Weyl used it to prove the conjugacy theorem (Theorem 6.4(iii), Chapter V) 
and the compactness of the universal covering group (Theorem 6.9, Chapter 11). 
For these applications it would be sufficient to know that S is closed and has 
dimension < dim U - 2 because only Prop. 12.4 is needed (see Pontrjagin [l], 
$64). Cartan, on the other hand, used the relation dim d = dim U - 3 to prove 
the more delicate Theorem 6.1, ([9], pp. 217-218), and Theorem 8.2, ([lo], 
p. 430), which rely on the equality ml(U) = m , ( U  - S). Here Cartan used Prop. 
12.6, but did not enter into the difficulties which stem from the fact that S is not 
a manifold. That these difficulties are present can be seen from the fact (mentioned 
to the author by G. W. Whitehead) that Prop. 12.6 does not hold for a suitable 
0-dimensiona! subset (Antoine's necklace) of R3. The reasoning actually gives 
m z ( U )  = 0, (E. Cartan [20], cf. Bore1 [l]). It is also known that if U is simple then 
m3( U) = Z (Bott [l]), and n4( U) can be read off from the diagram D( U )  and the 
unit lattice t. (Bott and Samelson [l]). The result is that m 4 ( U )  has two elements 
if the plane p(H)  = 2m' in to contains no member of t., p being the highest root 
with respect to a lexicographic ordering; otherwise m4(U)  = 0. In Bott and 

$2. 

$3. 

$4-96. 
VI, $12. 
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Samelson [l], Theorem 8.2 is reduced to Theorem 6.1 in a different way. Bott 
has also (unpublished) extended Theorem 8.2 to all automorphisms, involutive 
or not. Proofs (based on Theorem 6.1) are given in Bore1 [8] and, with a generaliza- 
tion, in RaHevski [3]. Bott has also used the behavior of the geodesics in the 
symmetric space U / K  to prove a remarkable periodicity theorem for the stable 
homotopy of the classical groups [2]. 

The affine Weyl group goes back to Cartan [9]; see also Stiefel [2]. 
Our treatment, in particular the proof of Theorem 7.5, is based on Iwahori and 
Matsumoto [l]. The proof of Theorem 7.7 follows Loos [2], 11. Lemma 8.4 is 
contained in Araki [l], and Theorem 8.5 probably in Cartan [lo]. Proposition 8.8 
is proved in the author’s paper [l 11 and its consequence Cor. 8.9 was pointed out 
by S. Rallis. Proposition 8.10 was proved by Satake [3] and Harish-Chandra 
(unpublished). A generalization was given by Hirai [ 11. An independent exposition 
of many results in 96-97 was given by Dynkin and OniHEik [l]. See also Wallach [I], 
Chapter 4. 

§lO-§ll. Apart from Theorem 10.3 (Cartan [lo], p. 437) and Lemma 11.8 
(Cartan [9], p. 257) the results of $10 and $11 on antipodal manifolds, shortest 
geodesics, minimal totally geodesic spheres and midpoint loci are from Helgason 
[8]. A generalization of Prop. 10.1 is given in Kostant [2], p. 260. 

Compact symmetric spaces of rank one play a central role in the theory of 
Riemannian manifolds of positive curvature (see, e.g., Berger [3], Klingenberg [l], 
Rauch [4], or Cheeger and Ebin [l]). 

97-98. 



CHAPTER Vlll 

HERMITIAN SYMMETRIC SPACES 

A Hermitian symmetric space is a Riemannian globally symmetric space which 
has a complex structure invariant under each geodesic symmetry. Examples are 
provided by all simply connected two-dimensional Riemannian globally symmetric 
spaces. We shall mostly be concerned with Hermitian symmetric spaces of the 
compact type and the noncompact type. These are always simply connected and 
have the characteristic property that their isotropy groups are not semisimple 
and therefore have nondiscrete centers. In 57 it is shown that the Hermitian sym- 
metric spaces G,/K,, of the noncompact type are exactly the bounded symmetric 
domains in the space of several complex variables. Moreover, the space G,,/Ko 
can always be imbedded to the compact dual UlK, as an open subset. The simplest 
instance of this imbedding is the unit disk 1 z 1 < 1 situated in the extended 
complex plane. 

The three first sections deal with some basic facts concerning complex manifolds. 
The main notions treated are Hermitian and Kahlerian structures, Ricci curvature, 
and the Bergman kernel function. 

§ 1. Almost Complex Manifolds 

Definition. Let M be a C" manifold. An almost complex structure 
on M is a tensor field J of type (1, 1) such that J ( J X )  = - X for each 
vector field X on M. 

An almost complex structure on M thus amounts to a rule which in a 
differentiable fashion assigns to each p E M an endomorphism 
J,, : M ,  -+ M ,  such that ( J,)2 = - I for each p E M. An almost 
complex manifold is a pair (M, J) where M is a C" manifold and J is 
an almost complex structure on M. 

For reasons given in Example I1 below it is important to consider 
the mapping S : W ( M )  x Bl(A4) + W ( M )  given by 

w, Y )  = [X, YI + I [ / X ,  Yl + A X ,  I Y I  - [ J X ,  I Y I  (1) 

for X ,  Y E W ( M ) .  Using the relation 

[fX, gY1 = f W 9  YI + f(%) y - g ( Y f )  x 
for f, g E Cm(M) it follows easily that S( fX, gY) = fgS(X,  Y). AS 
customary, we identify S with the multilinear mapping (w, X, Y) --t 

352 
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w(S(X ,  Y)) of Dl x D1 x D1 into Cm(M). Thus S is a tensor field of 
type (1, 2), called the torsion tensor of the almost complex structure J.  
Obviously S is skew symmetric, that is, S(X,  Y )  = - S(Y, X ) .  If 
S = 0, the almost complex structure is said to be integrable. 

Example I .  Let M = R2, considered as a manifold with local 
coordinates the ordinary Cartesian coordinates (x, y ) .  For each p E M 
the endomorphism of M ,  given by 

for a ,  b E R, has square - I. The  tensor field p -+ J,, p E M is an 
almost complex structure on M .  This almost complex structure is 
integrable, since S(a/ax, a/ay) = 0. 

Example II. Let M be a complex manifold of dimension m as defined 
in Chapter I ,  $1. There exists a covering M = UaeA U, of M by open 
subsets U, each of which is homeomorphic to an open subset of Cm 
under a mapping va such that for each pair 01, /3 E A, vp o yil is a 
holomorphic mapping+ of q~,( U, n Up)  onto va( U,  n Up). As remarked 
in Chapter I, $1, we can always assume that the system (U,, ya)acA is 
maximal with this property. In  that case, the system is said to be a 
complex structure on the underlying topological space M .  

Let p E M and let a be an index in A such that p E U,. If q E U,  
then va(q) = (zl(q), ..., xnl(q)) where each zj(q) is a complex number 
xj(q) + iyj(q). The mapping 

dfia : 4 - (%(4)1 rds), *.., x7,,(4), e , ( 4 ) ) ,  4 E u a ;  

is a homeomorphism of U ,  onto an open subset of R2m. The collection 
of open charts (Ua,  $a)aeA on M turns M into an analytic manifold 
whose analytic structure is said to be underlying the complex structure 
above. Thus a complex structure has a definite underlying analytic 
structure. On the other hand, it can happen that two different complex 
structures have the same underlying analytic structure. 

The  tangent space M,, of the analytic manifold M has a basis given 
by the vectors 

t If 0 and 0' are open subsets in Cm and C", respectively, then a mapping$ 0 .--+ 0' is 
called holomorphic if the coordinates off(z,, ..., z,,J are holomorphic functions of zl. ,.., z,. 
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The  endomorphism J" : M ,  -+ M p  given by 

for 1 < i < m satisfies ( J" ) z  = - I. Suppose now /3 is another index 
in A such that p E Up.  For q E U, we denote the complex coordinates 

If we consider (ul, v l ,  ..., u,, v,) as local coordinates on the analytic 
manifold M, the vectors 

o f d q )  by (wl(q), . * * >  w m ( q ) )  and put wj(q) = uj(q) + ivj(q) (1 <.i < m). 

form a basis of the tangent space M,, The endomorphism JB : M p  -, M p  
given by 

a a a a 
P (KID = (%Ig; JB (%Jp = - 

for 1 < i < m satisfies ( J p ) z  = - I .  

Lemma 1.1. 

Proof. 

The endomorphisms J" and J B  are identical. 

Since the mapping v, o qil is a holomorphic mapping of 
cp,( U,  n Up)  onto yo( U, n Up),  each function wi(zl, ..., z,), 1 < i < m, 
is a holomorphic function in a neighborhood of ~ , ( p ) .  This being so, 
the corresponding real functions uz(xl, yl, ..., x,, ym), vi(xl,  yl, ..., xm, y,) 
satisfy the Cauchy-Riemann equations 

It follows that 

and consequently 

which proves the lemma. 
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In  view of this lemma the endomorphism J ,  = = J P  is inde- 
pendent of the choice of local coordinates around p. The  tensor field 
J : p -+ J p  is an almost complex structure on M ,  which we call the 
canonical almost complex structure associated to the complex structure 
on M .  

Let ( M ,  J )  and (M ' ,  J ' )  be almost complex manifolds and Q, a differen- 
tiable mapping of M into M ;  the mapping Q, is called almost complex if 

(2) 

Suppose now M and M' are complex manifolds and J and J' their 
corresponding almost complex structures. A mapping of M into M' is 
called holomorphic if its expression in terms of complex local coordinates 
is given by holomorphic functions. It is obvious from the Cauchy- 
Riemann equations that a holomorphic mapping is almost complex. 
On the other hand, suppose a mapping Q, : M - t  M' satisfies (2). 
Let {zl, ..., x,} and {w,, ..., wn} be complex local coordinates in a 
neighborhood ofp  in M and of @(p) in M'. Put xi = xi + iyi (1 < j < m), 

d@v 0 J p  = J h n ,  0 d@D for p E M .  

wk = uk + iVk (1 < k < n). Then 

U k  = % ( X I ,  y1, ..., XTn, Y m ) ,  

v k  = $k(&Vl ,  y1, " ' I  xm, Y m ) ,  

where q k  and & are differentiable functions (1 < k < n). Condition (2) 
implies that 

a% - a*!i 
aYj ax, ' 

8% - a?h 
axj ay? 

which shows that wk is a holomorphic function of each variable xi, and 
therefore, by a classical theorem on holomorphic functions (see, e.g., 
Bochner and Martin [I], p. 33) wk is a holomorphic function of (z,, ..., x,,,). 
This shows that an almost complex mapping of a complex manifold 
into another is holomorphic. 

Let M be a complex manifold and let J be the associated canonical 
almost complex structure. The  tensor field J satisfies the integrability 
condition 

S ( X ,  Y )  = 0, x, Y E  W ( M ) ,  (3) 

where S is defined by (1). In  fact, since S is C"(M)-bilinear it suffices 
to check that (3) is satisfied in each coordinate neighborhood and there 
it obviously holds for the vector fields a/&,, ajay,. Thus the canonical 
almost complex structure associated with a complex structure is inte- 
grable. The  converse is contained in the following theorem, first proved 
in full generality by Newlander and Nirenberg [l]. 
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Theorem 1.2. Let ( M ,  J )  be an almost complex manifold which 
satisfies the integrability condition ( 3 ) .  Then there exists a unique complex 
structure on M such that J is the associated almost complex structure. 

For the proof of this theorem which is too long to be given here, 
we refer to the cited article. However, we shall only use Theorem 1.2 
in the case when M and J are assumed analytic.+ Here much simpler 
proofs are available, see, e.g., Frolicher [l]. 

$2. Complex Tensor Fields. The Ricci Curvature 

Let M be a C" manifold. The set C"(M) + iC"(M) of all complex- 
valued differentiable functions on M is an algebra over C, denoted @,. 
A complex vectorfield on M is, by definition, a derivation of the algebra @,. 
Let denote the set of complex vector fields on M .  Then @l is a module 
over @,; also El is closed under the bracket operation [ X ,  Y ]  = X Y  - Y X ,  
( X ,  Y E el). If s is an integer, s 2 1, we consider the a, module 

@1 x ... x a1 (s times) 

and let @, denote the @,-module of all @,-multilinear mappings of 
E1 x ... x E1 into e,. The elements of El are called complex 1-forms 
on M .  It  follows from Lemma 2.3, Chapter I, that and are dual 
modules. In  analogy with Chapter I, the @,-multilinear mappings of 
the module 

El x ... x a, x 0 1  x ... x (21 (El Y times, @l s times) 

into go, are called complex tensor fields, ccntravariant of degree r ,  co- 
variant of degree s. The set of these is denoted by g; (or @;(M)).  

The operation of conjugation in (F, induces a similar operation in 
each @:. If Z E el, the complex vector field z is defined by zf = (Zf)- 
for all f E @,. If w E El, the complex 1-form 6 is defined by w(Z) = 
(w(Z)) - .  Finally, if i2 E @:, the tensor field 0 is defined by 

q w , ,  ..., w r ,  z,, ..., 2,) = (sZ(O1, ..., w,, z,, ..., Zs))- 
for wi E El, Zi E El. Each X E Dl can be regarded as a complex vector 
field on M by defining 

t Strictly speaking, Theorem 1.2 is not even necessary for our purposes. It  will only 
be used to prove Prop. 4.2 of which an alternative proof is indicated in an exercise follow- 
ing Chapter VIII. 
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Similarly, D, can be regarded as a subset of El and more generally, 
we shall regard the members of 3: as complex tensor fields on M 
whenever this is called for by the context. 

Let p E M and let M," denote the complexification of the tangent 
space M,. According to Chapter 111, 96, M," is a vector space over C 
consisting of all symbols X + iY where X ,  Y E M, with the vector 
space operations 

(Xl + iY1) + ( X ,  + iY,) = (XI + X,)  + i(Y1 + YZ), 
(U + ib) ( X  + iY) = UX - bY + i(bX + uY), a, b E R. 

The elements of M," are called complex tangent vectors at p .  Each X + 
iY E M," defines a complex linear function on Eo given by 

( X  + iY) (f + $1 = Xf - yg + i(Xg + Yf) 
for f , g  E Cm(M). Then 

Z(FG) = F ( p )  ZG + G(p) ZF 

for Z EM," and F,  G € g o .  If Z is a complex vector field then the 
linear function F + (ZF)  ( p )  on (5, arises in this way from a complex 
tangent vector 2, E M,". Thus, a complex vector field Z on M can be 
identified with a collection 2, ( p  E M) of complex tangent vectors to M 
varying differentiably with p .  The elements of (5; can be described 
similarly. 

Suppose now J is an almost complex structure on M. For each p E M, 
the endomorphism J,  can be extended uniquely to a complex linear 
mapping of M," onto itself. The extension, also denoted by Jp ,  then 
satisfies ( Jp ) z  = - I. Now, since J E a: C %:, JZ is a complex vector 
field for each 2 E @. It is clear that (JZ), = J,Z, for each p E M. 

Let ( M ,  J) be an almost complex manifold and let 2 be 
a complex vector field on M. Then Z is said to be of type (1,O) if JZ = iZ 
and of type (0, 1) if JZ = - iZ. 

Every complex vector field Z on an almost complex manifold can be 
written as a sum 

Definition. 

= Zl.0 + ~0.1, 
where Zl,o and Z0,, are complex vector fields of type (1,O) and (0, l) ,  
respectively. In  fact, it suffices to put Zl,o = + (2 - iJZ), Zo,l = 
Q (2 + iJ2). In Example I in $1, the vector fields a/ax - ia/ay and 
a/ax + ialay are of type (1,O) and (0, l), respectively. They are usually 
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denoted by 2a/az and 2i3/a5 because, iff (z)  = F(x, y )  is a holomorphic 
function, then 

af(z) aF(s,y) . ~ F ( x , Y )  
az ax ?Y 

2 - =  - a  

due to the Cauchy-Riemann equations. 

Let M be a connected manifold with almost complex 
structure J. A Riemannian structure g on M is said to be a Hermitian 
structure if 

Definition. 

g ( J X  JY)  = g(X* Y )  for X, Y E D1 (1) 

and a Kahlerian structure if in addition 

O x ' J = O  for X E W. (2) 

In other words, the Hermitian condition means that J p  is an isometry 
of M p  for each p E M. The Kahlerian condition means that in addition 
the tensor field J is invariant under parallelism. 

Let g be any Riemannian structure on a connected manifold M. 
Let X -+ Vx, (X E W), be the corresponding Riemannian connection. 
Regarding now g as a complex tensor field, the covariant derivative 
O, can be defined by relation (2) in Chapter I, $9, for all 2 E (El. Then 

R(X,  Y )  = VXVY - VYVX - V[X.Ylr x, Y E (El, 

because both sides arc (E0-bilinear and coincide for X, Y E ID1. 

Lemma 2.1. Let M be a connected manifold with almost complex 

( i )  If g is Hermitian, then g(X,  Y )  = 0 if X and Y are both of trpe 

(ii) If g is Kuhlerian and R denotes the curvature tensor, then R(X ,  Y )  = 0 

Proof. Let X and Y be complex vector fields of type (1,O). Then, 

structure J and Riemannian structure g .  

(1, 0) (or both of type (0, 1)). 

if X and Y are both of type (1,O) (or both of type (0, 1)). 

if g is Hermitian, 

g(X,  Y )  = g ( / X ,  / Y )  = g(iX, i y )  = - g(X,  Y )  

so g ( X ,  Y) = 0. Now let 2, T be arbitrary complex vector fields on M. 
The Kahlerian condition (2) implies O,(JX) = JOz(X).  It follows 
that R(2, T) X is of type (1, 0) as well as X. Hence by (i) 

g(R(2, T ) X ,  Y )  = 0. (3) 
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The quadrilinear formg(R(2, T) U, V) on E1 x E1 x @ x E l  satisfies 
conditions (a), (b), (c) of Lemma 12.4, Chapter I. Owing to this lemma 
we have 

g(R(U, V )  2, T )  = g(R(Z,  T )  u, V )  

and (3) implies g(R (X, Y) 2, T) = 0. Since 2 and T are arbitrary and 
g, is nondegenerate for each p E M, the lemma follows. 

Let M be a connected complex manifold of dimension m. Let p be 
a point in M and {zl, ..., zm} local coordinates in an open neighborhood 
U of p. A complex-valued function f on M is said to be holomorphic 
at p if there exists a neighborhood of p where f is given by a convergent 
power series in the local coordinates z1 - z l (p) ,  ..., z,, - z,(p). I f f  is 
holomorphic at each point of a set V, then f is said to be holomorphic 
on V. If we write xi = +(xi + Zi), yi = 1/(2i) (xi - Zi), then 
{xl, yl, ..., x,,,, y,> is a coordinate system on the underlying analytic 
manifold U. The vector fields given by 

a a a 
-- - - (- - i-), a -=!( +i-) 

a i a  
az, 2 axi aYi azi 2 a31;. aYi 

(1 < j < m) are complex vector fields on U of type (1,O) and (0, l), 
respectively. A function f which is holomofphic on U satisfies 

a a 
- f = O ,  a .zi azi 

-f= 0. 

The differential forms 

dzi = dx, + idyi ,  

are complex 1-forms on 

dZj = dxj  - i dyi (1  < j  < m) 
U. It is easily seen that 

for 1 < i, j < m. Let T be a complex tensor field on M of type (1, 2). 
The coefficients Tkii, Tk*,,, etc., are defined by 
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and similarly for tensor fields of other types. We also write for simplicity 
Zi = Zj* = a/a5*,. If g is a Hermitian structure on M we have 
from Lemma 2.1 

(4) g.. =.g.*.* = 0 

AmBij = Ragi*j* = 0, 

13 I 3 

and if g is Kahlerian, we have by the same lemma 

( 5 )  

where a, 
connection on M, the functions risk, r$eik, ..., rz.j.k* are defined by 

are arbitrary indices, starred or not. If X -+ Ox is an affine 

and the similar equations for vz,*(Zj), Oz,(Zj*) and Oz,,(Zj*). 

is Kahlerian if and only if 
Lemma 2.2. A Hermitian structure g on a connected complex manifold 

rjkl* = r 3*kl = rjk*l* = r3*k*l = o ( 6 )  

in each coordinate neighborhood. 

r j k ' *  = 0 and conversely. The other relations are proved similarly. 

tensor R. Let p E M and X ,  Y E W ( M ) .  The mapping 

Proof. If g is Kahlerian, then JOz,(Zj) = O,,(JZ,) = i O z i ( Z j )  so 

Let M be a manifold with an affine connection having curvature 

L - R,(Y,, L)  . x,, L E M,, 

is an endomorphism of M, whose trace will be denoted by r,(X,, Up) .  
The tensor field r given by 

(r(X,  Y)) (PI = YD(XP, Y,) 

is called the Ricci curvature of the affine connection. 

Lemma 2.3. On a Riemannian manifold M the Ricci curvature is a 
symmetric tensor, that is, 

.(X, Y) = r(Y,  X ) ,  x ,  Y E  D'(M). 

Proof. Let p E M and let X, ,  ..., X ,  be a basis of the vector fields 
on an open neighborhood U of p such that g(Xi ,  X i )  = Sij on U,  g being 
the Riemannian structure. Then 

R(X,, Xj)  * Xl = 2 Rk,ij xk 
K 
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so 

On the other hand, if X ,  Y ,  S, T are any vector fields on M ,  

g ( W ,  Y )  s, T )  = g ( W ,  T )  x, Y )  
so 

Rmlii = RjiIm 

and r(Xl ,  Xi) = r(Xi,  X , )  follows. 
If M is a complex manifold, we consider r as a complex tensor field 

on M with coefficients yij, ri*3, rij*, Y , * ~ *  defined as above. 
We recall that a manifold M is said to be orientable if there exists a 

collection (U,, of local charts such that { Ua}aeA is a covering of M 
and such that for any ci, p E A, the mapping +p o t,h;l has strictly 
positive Jacobian determinant in its domain of definition $,( U, n Up).  
The manifold M is said to be oriented if such a collection (U,, $a)aEA 

has been chosen. 
Let M be a complex manifold of dimension m. Let (V,, rpJaoA be a 

collection of local charts covering M such that yp o rp;l is holomorphic 
for each pair a, p E A. Let 

= ( ~ 1 ,  .*-, Z m ) ,  P&4) = ( W l ,  * * . 9  WTIJ 

for p E V,, q E V, and let zj  = xj + iyj, wj = uj + izj (1 < j < m). 
From the Cauchy-Riemann equations follows easily by induction 

then M ,  with the local charts (V,, +a)aEA, is an oriented manifold. 
Let M be an oriented manifold with a Riemannian structure g. Let 

{xl, ..., xm} be a coordinate system valid on an open subset U of M. Let 

Then > 0 and we can consider the m-form 

G d x ,  A ... A dx, 
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on U .  If (r,, ..., ynt} is another coordinate system on U then it is easy 
to see that 

f(yl, ...,ym)'12 4yl A ... A dym = g(xl, ..., xm)'12 h1 A ... A dx,, 

since the Jacobian determinant (ay,/ax4) is positive. It follows that there 
exists an m-form w on M, which on an arbitrary coordinate neighborhood 
has the expression (8). This form w is called the volume element corres- 
ponding to the Riemannian structure g on the oriented manifold M. 

Proposition 2.4. 
manifold M .  Then 

for each vector field X on M .  

Let p E M and let {x,, ..., x,} be a coordinate system valid 
in a neighborhood of p such that the tangent vectors (a/ax,), form an 
orthonormal basis of M,. Let X,, ..., X ,  be the vector fields on a 
normal neighborhood N ,  of p adapted to this basis and let the forms 
w l ,  ..., urn on N, be determined by wi(X,) = Sip Then 

Let w be the volume element on an oriented Riemannian 

v x w  = 0 

Proof. 

w = w1 A ... A om 

and since Vxwi = 0 at p ,  the relation v x w  = 0 holds at p. The point p 
being arbitrary, the proposition follows. 

Proposition 2.5. Let M be a connected complex manifold and g a 
Riemannian structure on M .  Let w denote the corresponding volume element. 
Zn a local coordinate system {z,, ..., z,}, w has an expression 

w = G d z ,  A df, A ... A dz, A dZm, 

where the function G is given by 

(- 29" G = E(X1, y1 * * - >  x7n, Ym)l'z. 

Zf g is Kahlerian, the Ricci curvature satisjks 

I..* 13 = Z,Zj* log I G 1, r t j  = = 0. 

Proof. The expression €or w is obvious since 

dzj A dZj = (- 2i) dxj A dyj. 

Now assume g Kahlerian. The curvature tensor R satisfies 

g(R(%,, Zj*) . z,, 2,) = g(R(Z, ,  Z,) . za, Zj*) (9) 
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and this expression vanishes due to Lemma 2.1, Since g, is nondegenerate 
for p E M, it follows that 

Now the vector fields Z,, Z j .  make up a basis of the complex tangent 
space at each point. The trace of an endomorphism of a vector space 
is the same as the trace of the extension of the endomorphism to the 
complexified vector space. Therefore Y(&, Z,*) equals the trace of the 
complex endomorphism given by 

2, -+ R(Zj*, 2,) . Zi, 

z,* + R(Zj*, Z,*) . Zf. 

r 11 ..* = 2 piprn. 

It follows that 

m 

Similarly, we find rii = rieit = 0. Now, from Lemma 2.2 and the 
fact that covariant differentiation commutes with contractions, it follows 
that 

Vz,(dzi) = - I) rlji dzj ,  Qz,(d.Z,) = 0. 
i 

Combining these equations with 

one finds that 

On the other hand, we have from Lemma 2.2 

Comparing with (10) we find 
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Since = rIk8 we find from (12)-(14) 

and since G is a constant multiple of I G I the desired expression for 
Y i j .  follows. 

Q 3. Bounded Domains. The Kernel Function 

In,this chapter, a bounded domain shall mean a bounded, open connected 
subset of the product C", N being an integer > 0. 

Let D be a bounded domain in CN. Let L2(D) denote the Hilbert 
space of complex functions on D for which JD I f  l2 dp < m, the measure 
dp denoting the Lebesgue measure on R2N. The inner product on 
L2(D) is 

(f, g) = j f ( l m  dCL(Sh 
D 

and as usual the norm is defined by 1 1  f 1 1  = ( f , f ) ' I 2 .  Functions which 
coincide except on a set of measure 0 are considered as the same member 
of L2(D).  Let $(D) denote the set of functions in L2(D) which are 
holomorphic in D. 

Proposition 3.1. 
a number N A  such that 

Let A be a compact subset of D. Then there exists 

N A l l f  1 1  
for all z E A and all f E B(D). 

Proof. Let 5 = (cl, ..., C N )  E A and let C(5, c) be any polycylinder 
I z1 - c1 I < cl, ..., I zN - tN I < cN contained in D. Then the power 
series expansion for f, 

f(z,, -, z N )  = 2 ar l...rN(zl - ~i)'1.-- ( zN - ~ N ) r f i  

r&O 

is absolutely convergent in C(5, c) (cf. Bochner and Martin [l], p. 33). 
Now the terms in the series are mutually orthogonal with respect to 
the inner product 
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Consequently 

Since A is compact, there exists a number e > 0 such that for each 
(C1, ..., lN) E A, the polycylinder I z, - 5, I < E (1 < i < N )  belongs 
to D. If the volume of this polycylinder is denoted by (1/NA)2, Prop. 3.1 
follows from (2). 

Corollary 3.2. The set $(D) is a closed linear subspace of L2(D), 

In fact, let (f,) be a sequence in 8(D) which converges to an element 

(3) 

for all 5 E A. It follows that there exists a function g on D such that 
f ,  -+ g uniformly on each compact subset of D. Hence g is holomorphic 
on D. By (3) we have for 5 E A 

(4) 

hence a Hilbert space w-th the inner product J D f  (z) (g(z))- dp(z). 

f E L2(D). Then by Prop. 3.1 

Ifn(r) -fm({) I G N A  llfm - f n  1 1  

l f n ( 5 )  -g(O I < NA t l f n  -f 1 1 .  

Given A, there exists an integer K such that the right-hand side of (4) 
is < 1 for n 2 K and such that l l f K  I (  < 1 1  f I I  + 1. Then 

< P ( w ’ 2  + l l f l l  + 1. 

Hence g E 5(D) .  Finally, since 

lim J” I fn(4 - f(4 l2 dP = 0, lim J” I f ( 4  - g ( 4  l 2  dP = 0 

it follows that f = g almost everywhere. 

Theorem 3.3. Let q0, ql, ... be any orthonormal basis of the Hilbert 
space S(D). Then the series 
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converges uniformly on each compact subset of D x D. The sum, denoted 
K(z,  C), is independent of the choice of orthonormal basis and 

F ( 4  = SDK(.. 5 )  FC4) 4 4 4 )  

for each F E 5j(D). 

Let z E D. In view of Prop. 3.1, the linear functional F -+ F(z)  
on %(D) is continuous. Now every continuous linear functional on a 
Hilbert space is representable as the inner product with some fixed 
vector in the space. Hence there exists a function K, E %(D) such that 

Proof. 

__ 
We now put K(z,  %) = K,(<) for z, 5 E D. The vector K, can be 
expressed by means of the basis v,,, q1, ..., 

where the series converges in the L,-norm and 

(n = 0, 1, ...). 

In view of Prop. 3.1, the series (6) converges uniformly on each compact 
subset of D. From ( 5 )  we have a, = y",(z) and therefore 

__ 

This shows that K(4, 2) = K(z,  [); consequently, for a given 5, the 
function z --)r K(z,  [) belongs to %(D). In order to prove that the series 
(7) converges uniformly on each compact subset of D x D, it suffices, 
due to the inequality 

- 
2 1 v n ( 4  vn(5) I G I v n ( 4  l 2  + I F&) 12, 

to prove that the series Z: I vn(z) l 2  converges to K(z,  a), uniformly 
on each compact subset A of D. Let B > 0. There exists a number 
6 > 0 such that for each (tl, ..., tN)  E A the closed polycylinder 
I z1 - t1 I < 6, ..., I zN - C N  1 < 6 belongs to D. Let Ad denote the 
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union of these polycylinders. Then by (1) there exists a constant M8 
such that 

1 %  d i l" ldJA8! f (2 ; )  lBdP 

for all z E A and all f E $(D). Since 

there exists an integer P such that 

for all x E A. This concludes the proof. 

Definition. 
Let (zl, ..., zN)  denote the components of z E CN and consider the 

The  function K is called the kernel function for D. 

complex tensor field H on D given by 

H = 2 ZiZjr: log K(x,  Z) dz, @ d<. 
l < i . i < N  

Here dzi @ d q  denotes the complex tensor field 

( X ,  Y )  -+ dz,(X) dg( Y ) ,  x, Y E @(D), 

which is covariant of degree 2. Let g denote the real part of the restric- 
tion of H to W ( D )  x D'(D). 

Proposition 3.4. 
which is Kahlerian. 

The tensor field g is a Riemannian structure on D 

Proof. I f f  is a holomorphic function on D, then 

l < i < N ,  zi3 = z,* f = 0, 

due to the Cauchy-Riemann equations. We use this on the series 
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which by Theorem 3.3 can be differentiated term by term. We obtain 

1 zi* log K(Z,  5 )  = 2 vn(x). (zj*CJ (5) 
n 

and writing log K for log K(z,  5 )  we obtain, since 

H ( X ,  Y )  = 2 (Z,Z,* log K )  &qj = H ( Y ,  x)-. (10) 

For X ,  Y E W ( D )  this implies that g(X,  X )  2 0 and 2g(X, Y )  = 

Suppose now that g(X,  X) = 0 at some point p E D. Then, by (8), we 
have at the point p 

(11) 

3.3. 

H ( X ,  Y )  + H(x,) = H ( X ,  Y )  + H ( Y ,  X )  so g ( X ,  Y )  = g(Y,  X ) .  

C ti(vn(ztqrn) - vrn(ZiFn)) = 0 

for all n, m. Now, since D is bounded, the functions 1, xl, ..., zN all 
belong to $(D). We can choose the system v0, T ~ ,  .... in such a way 
that the functions yo, q ~ ~ ,  ..., F~ are obtained from 1, xl, ..., z,, by the 
usual orthonormalization process. Then the matrix (bij) given by 

6ij = Ztqi (1 ,< i,i < N )  

is an upper triangular matrix whose diagonal elements are constants 
# 0. Hence det (b,) # 0. On the other hand, (11) implies, vo being 
constant, that 

2 ti(zivj) = 0, 1 G i d N ,  
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at the point p .  I t  follows that all vanish at p ,  so X ,  = 0. It has now 
been shown that g is a Riemannian structure on D.  The  relations 
dzi(JX) = i dz,(X) and dZi(JY)  = - i dZi(Y) imply that g ( J X ,  JY)= 
g(X ,  Y )  so g is Hermitian. Now suppose g is extended to a complex 
tensor field. Then we have 

2 g K  Y )  = WX, Y) + W Y ,  XI, x, Y E  @(D), 

because both sides of this equation are complex tensor fields which 
coincide for X ,  Y E W ( D ) .  It follows from (9) and (10) that 

(12) 

If a, /3, y, 6 are any indices, starred or not, we have from formula (2), 
Chapter I, 99, 

(13) 

g . .  23 =g.*.* a 3 Zz.7 0, gij* = &ZiZj* log K .  

2 2 .fa8 rp: = z&?ay f zpgq'l - z d y P .  
8 

Using the fact that g is nondegenerate one derives from (12) and (13) 

(14) rJkl* - - r3*,<l = rJ,,*l* = r& = 0. 

By Lemma 2.2, g is Kahlerian. 

called the Bergman metric on D. 

onto a bounded domain D' C C N ;  expressed in coordinates, we have 

Definition. The  metric induced by the Riemannian structure g is 

Let y be a holomorphic diffeomorphism of a bounded domain D C CN 

Y(% .**, Z N )  = @l(% ... 1 Z N ) ,  *a*, w,v(z1, * a * ,  m>). 

Then the Jacobian determinant 

is a holomorphic function on D .  For the real coordinates given by 
zi = xi + iyi, wi = ui + ivi (1 < j < N ) ,  we have 

as noted earlier. Let p and p' denote the Euclidean measures on D 
and D', respectively; then 

P'(Y(M)) = S,l J ,  I*  dP 
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for each Bore1 
is an isometry 
K and K' are 

subset M of D. Consequently, the mapping f + ( f  o v) Jq 
of $(D') onto $(D). It  follows that the kernel functions 
related by 

w, = K ' ( v ( 4 ,  vF)) I Jp: l2 (2  E D).  (16) 

Proposition 3.5. Let D and D' be bounded domains in CN and let g 
and g' denote the Riemannian structures on D and D' induced by the kernel 
functions. Then each holomorphic difleomorphisrn tp of D onto D' is an 
isometry. 

Proof. Using the notation above, we have 

dwj = duj + idvj, dzZj = duj - idv, 

Furthermore, 

and similarly for tp*(dvj). Since 

dwj(ds, . X )  = q*(du,) ( X )  + iv*(dzij) ( X ) ,  x E W ( D ) ,  

it follows from the Cauchy-Riemann equations that 

dwj(dp * X )  = I: 3 dzk(X),  

dZj(dp, * X )  = 2 (a) &(X). 

k a2k 

aw, - 

k zk 

Hence 

g'(dp . X ,  dp . X )  = 2 aB log K' dwi(ds,X) d&(d~pX) 
i.j awaac 

where we have used (16) and the relation 
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which is valid for an arbitrary holomorphic function f in D without 
zeros. In fact, we have in a neighborhood of each point in D 

log I f  12 = logf + logf = logf + (1ogf)- 

so 

Let M be a complex manifold and let q~ and # be holomorphic diffeo- 
morphisms of M onto M. Then the diffeomorphisms q o #  and q ~ - l  

are almost complex, hence holomorphic. Consequently, the set of 
holomorphic diffeomorphisms of M onto itself forms a group, denoted 
H(M) ,  the group operation being composition of mappings. If H ( M )  
is transitive on M, M is said to be homogeneous. 

Let D be a bounded domain with Riemannian structure given by the 
kernel function. According to Prop. 3.5 we have 

H(D)C I (D) .  

If, as usual, I (D)  is taken with the compact open topology (Chapter IV, 
92), it is clear that H(D) is a closed subgroup of I(D).  

Proposition 3.6. Let D be a bounded domain with Riemannian structure 
g given by the kernel function K .  If D is homogeneous, then 

K(z, z) = c , f ( X l ,  'y1, .*., XN, YN)1'2 (c  = constant) (17) 

and 

r = 2g, 

r being the Ricci curvature. 

Proof. Let q~ E H(D).  Then (16) implies 

Furthermore, relation (15) shows that 

j ( x 1 ,  y1, --, XN, Y N )  = ~ ( ~ 1 8  ~ 1 ,  - 9  U N ~  v N )  I J ,  14. 

Formula (17) now follows from the homogeneity assumption; the 
formula r = 2g follows from (12) and Prop. 2.5. 
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$4. Hermitian Symmetric Spaces of the Compact Type 
and the Noncompact Type 

Let M be a connected complex manifold with a Hermitian structure. 
The  set of holomorphic isometries of M forms a group, denoted A ( M ) ,  
the group operation being composition of mappings. We have obviously 

A ( M )  = H ( M )  n T(M). 

Definition. Let M be a connected complex manifold with a Hermitian 
structure; M is said to be a Hermitian symmetric space if each point 
p E M is an isolated fixed point of an involutive holomorphic isometry 
sp of M. 

A Hermitian symmetric space M is of course a Riemannian symmetric 
space of even dimension. Hence the group I ( M )  has a Lie group structure 
compatible with the compact open topology (Chapter IV, Lemma 3.2) 
and is a Lie transformation group of M. The group A ( M )  is a closed 
subgroup of I ( M )  and is therefore also a Lie transformation group of M. 
It is transitive on M since it contains all the symmetries. The identity 
component A,(M) of A(M) is also transitive on M (Chapter 11, 
Prop. 4.3(b)). Let o E M and let K be the subgroup of G = A,(M) 
leaving o fixed. With the automorphism g + sags, of G, the pair (G, K) 
is a Riemannian symmetric pair and M is diffeomorphic to GIK. 

Let X E M, and let yx( t )  ( t  E R )  denote the geodesic in M having 
tangent vector X for t = 0. Let s, denote the geodesic symmetry 
(extended to M) with respect to the point yx(t) .  We have seen(Chapter IV, 
93) that if T ,  = S , , ~ S ~  then t + T ,  is a one-parameter subgroup of G, 
T ,  . o = yx( t )  and (dT,), is the parallel translation along 'yx. Since the 
elements of G by definition leave the complex structure of M invariant, 
the same is true of the parallel translation (dT,), .  This proves 

Proposition 4.1. The Hermitian structure of a Hermitian symmetric 
space is Kahlerian. 

Next we consider the problem of constructing a complex structure 
on a given coset space. Let G be a connected Lie group, H a closed 
subgroup of G. Suppose J is an almost complex structure on the coset 
space M = G/H,  invariant under the action of G. Let o denote the 
point { H }  in GIH. Then J ,  is an endomorphism of the tangent space 
M ,  satisfying the following conditions: 

(i) J: = - I. 
(ii) J ,  commutes with each element in the linear isotropy group H*. 



3 41 Hermetian Symmetric Spaces of Compact and Noncompact Type 373 

On the other hand, if J ,  is an endomorphism of M, satisfying (i) 
and (ii), then the coset space M = G/H has a unique almost complex 
structure which coincides with J, at o and is invariant under the action 
of G. 

Let (G ,  K )  be a Riemannian symmetric pair. Let 
rr denote the natural mapping of G onto M = G/K and put o = rr(e). 
Let Q be any G-invariant Riemannian structure on M. Suppose A is an 
endomorphism of the tangent space M ,  such that: 

(a) A2 = -I. 
(b) Q,(AX, A Y )  =r Qo(X, Y )  for X, Y E M,. 
(c) A commutes with each element of the linear isotropy group K'. 
Then M has a unique G-invariant almost complex structure J such 

that J, = A. The structure Q is Hermitian, J is integrable, and with the 
corresponding? complex structure, M is  a Hermitian symmetric space. 

The existence and uniqueness of J is already mentioned above. 
That Q is Hermitian is clear from (b)&nce Q and J are G-invariant. 
We shall now verify that J is invariant under the symmetry so (and 
therefore under each symmetry sp,  p E M).  Let u be any involutive 
analytic automorphism of G such that (KJ0 C K C K,. Then, according 
to Prop. 3.4, Chapter IV, so o T = rr o u. Let p E M and 2 E M,. 
Select g E G such that .(g) * o = p and put 2, = dT(g-l) 2. Then 
using the invariance of Junder G and the relations so o T(g) = .(u(g))os,, 
ds, J, = J, ds, it follows that 

Proposition 4.2. 

Proof. 

dso(1,Z) = dvwg) J O G  = d+(g)) 0 JO(d~OZ0) 

= J,.,(ds"dT(g) Z O )  = Jso.,(dSOZ); 

hence J is invariant under so. Next we verify that J satisfies the inte- 
grability condition 

[ X ,  YI + J [ / X ,  Yl + / [ X ,  JYI - [ / X ,  JYI = 0 (1) 

for arbitrary vector fields X, Y on M. Owing to the homogeneity of M 
it suffices to verify (1) at the point 0. Moreover, since the left-hand side 
of (1) is C"(M)-bilinear, we can assume that the vector fields X, Y 
are (in a neighborhood of 0 )  adapted to their values X,, Yo at 0. Since 
J is invariant under G, in particular under parallelism, it follows that 
the vector fields J X ,  JY are adapted to their values at 0. But since the 
torsion is 0 we have 

[UP Vlo = (VU(V))O - (VV(U))o = 0 

t See Theorem 1.2. 
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for any vector fields U ,  V adapted to their values at 0 ,  so (1) follows. 
T h e  complex structure on M corresponding to J (Theorem 1.2) is, 
due to its uniqueness, invariant under each sp, so M is a Hermitian 
symmetric space. 

The  proof above uses the deep Theorem 1.2 which is 
unproved in this book. In  an exercise following this chapter we outline 
a direct proof of Prop. 4.2 (under a mild restriction), which does not 
make use of Theorem 1.2. 

The  example C2 shows that sometimes the groups A,(M) and I,(M) 
are different. This however, is somewhat exceptional as the following 
lemma shows. 

Lemma 4.3. Let M be a Hermitian symmetric space. Then I,(M) is 
semisimple if and only if A,(M) is semisimple. In this case A,(M) = Io(M).  

Let G = Io (M)  and let g denote the Lie algebra of G. Let 
s denote the automorphism of g which corresponds to the automorphism 
g 4 sags, of  G and let p denote the set of vectors X E g such that 
S X  = - X .  Since A ( M )  contains the symmetries with respect to all 
points in M ,  it is clear that A(M) contains all one-parameter subgroups 
exp t X ,  X E P. Thus the Lie algebra of A ( M )  contains P and [ p ,  p ] .  
If I ( M )  is semisimple, then [ p ,  p] + p = g so A,(M) = Io(M). On the 
other hand, if A,(M) is semisimple, then A,(M) = I,(M) by Theorem 4.1, 
Chapter V. 

Let M be a Hermitian symmetric space; M is said to be 
of the compact type or the noncompact type according to the type of the 
Riemannian symmetric pair (A,(M), K ) ,  K being the isotropy subgroup 
of Ao(M) at some point o E M .  

Let M be a simply connected Hermitian symmetric 
space. Then M is a product 

Remark. 

Proof. 

Definition. 

Proposition 4.4. 

M = M,  x M- x M+, 

where all the factors are simply connected Hermitian symmetric spaces 
and M ,  = C x ... x C, M- and M ,  are of the compact type and 
noncompact type, respectively. 

Let G = A,(M), let o be a point in M and let K denote the 
isotropy subgroup of G at 0. Let (G, q) be the universal covering group 
of G and let R denote the identity component of y-'(K). Then, if y5 
denotes the mapping gK --t v(g) K of G/R onto GIK, the pair (GiR, 4) 
is a covering space of G / K  (Lemma 13.4, Chapter I); consequently 
M = GjR. Let Q denote the Lie algebra of G and let s denote the auto- 

Proof. 
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morphism of g which corresponds to the automorphism g -+ sags, of 
G. Then the pair (8, s) is an effective orthogonal symmetric Lie algebra. 
We can decompose g and f, the Lie algebra of I?, according to Theo- 
rem 1.1, Chapter V, 

9 = 90 + 8- + 9+, f = f, + f- + f,. 
The  groups e and R decompose accordingly 

G = Go x G- x G+, Z? = KO x K- x K +  

and the spaces Ma = Go/Ko, M- = G J K - ,  M +  = G J K ,  are simply 
connected Riemannian globally symmetric spaces whose product is M .  
Let p ,  pa, p - ,  p+  denote the eigenspaces for the eigenvalue - 1 of s. 
As usual, these can be identified with tangent spaces to M ,  Ma, M-, 
M ,  and 

P = P o  + P- + P+. (2) 

Let J and Q denote the almost complex structure and Riemannian 
structure, respectively, on M .  Since p is identified with the tangent space 
to M at 0, Qo is a bilinear form on p x p and J, is an endomorphism 
of p .  Let Yo E pa. Then JOYo can be decomposed according to (2), 

Let Ad denote the adjoint representation of e. Then 

Ad (k) 2, = 2, for k E K- x K,, 2 0  5 Po,  (4) 

by Lemma 1.5, Chapter V. Since Ad (k) and J, commute, (3) and (4) 
imply 

Ad (k) ( X -  + X,)  = X -  + X+ for k E.K-  x K+. 

This last relation, however, holds for all k E I? since for KO E KO, 
Ad (KO) keeps every vector in p -  + p +  fixed. From Cor. 1.7, Chapter V, 
we deduce therefore that X -  + X ,  = 0 so Jopo C p o .  Since Jo leaves 
Qo invariant, it is clear that J,(p- + p + )  c p -  + p + .  Repeating the 
argument above, we find that p- and p+ are invariant under J,. Now 
Prop. 4.2 implies that M- and M+ are Hermitian symmetric. 

Theorem 4.5. Let M be a Hermitian symmetric space for which Ao(M) 
is semisimple. Let o E M and let K denote thc isotropy subgroup of Ao(M) 
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at 0. The corresponding linear isotropy group and its Lie algebra are 
denoted by K* and f* ,  respectively. Then: 

(i) The complex structure Jo of Mo belongs to the center c of f*.  
(ii) The symmetry so is contained in the identity component of the 

center ZK of K .  

Proof. Let Q and R, respectively, denote the Riemannian structure 
and curvature tensor of M .  Then, according to Theorem 4.1, Chapter V, 
the Lie algebra €* consists of those endomorphisms of M, which, when 
extended to the mixed tensor algebra over Mo as derivations commuting 
with contractions, annihilate Qo and R,. Now, if X ,  Y E M ,  we have 
by (1) and (2), Chapter IV, 95, 

( 5 )  

(6)  

( J o  . Q o )  ( X ,  Y )  = - Q d X ,  JOY) - Qu(JJ, Y ) .  

( J o  &) (x, Y )  = [In, &(X, Y ) ]  - &(JJ, Y )  - RO(X, JOY). 

The  right-hand side of (5) vanishes since Q is Hermitian. The  first 
term on the right-hand side of (6) vanishes since Jo commutes element- 
wise with K* and R,(X, Y )  E €*. Finally, considering R as a complex 
tensor field we have by Lemma 2.1, 

R,(X - iJoX, Y - iJoY) = 0. (7) 

Considering the imaginary part in (7) we find that the right-hand side 
of (6) vanishes. Hence Jo  E f *  and therefore _Io E c. Identifying the 
Lie algebras f and f *  we have 

exp ( t / ~ )  E zK for each t E R. (8) 

But on the space M ,  (= p) we have 

p J 0  = - I ,  

so exp (.rJo) = so. This finishes the proof. 
A compact semisimple Lie group U is a Riemannian globally symmetric 

space in each two-sided invariant Riemannian structure. However, this 
can never make U Hermitian symmetric as Theorem 4.5 shows. 

Let M be a Hermitian symmetric space of the compact 
type or the noncompact type. Then M is simply connected. 

Proof. Since every Riemannian globally symmetric space of the 
noncompact type is simply connected we can assume that M is of the 
compact type. Let U = Io(M) (= Ao(M)) ;  in the notation of Theorem 4.5 
we have M = U / K .  The  Lie algebra u of U decomposes u = to + p* 

Theorem 4.6. 
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where f, is the Lie algebra of K and p* is the orthogonal complement 
of f, in u with respect to the Killing form of u. Since we can consider 
to as the Lie algebra of the linear isotropy group, corresponding to K,  
we have by Prop. 4.5, J ,  E f,. Let S denote the closure in K of the 
one-parameter subgroup exp tJo, ( t  E R). Since J ,  annihilates no vector 
in p * ,  it follows that f, is the centralizer of J ,  in u. The  centralizer 2, 
of S in U therefore has Lie algebra to. From (8) we conclude K c 2,. 
Being the centralizer of a torus, 2, is connected so K is connected. 

Let (0,~) be the universal covering group of U .  The mapping 
u : u -+ sous, is an automorphism of U. Let 6 denote the automorphism 
of fi such that d6 = do. Let a denote the set of fixed points of 6. 
By Theorem 7.2, Chapter VII, the group R is connected. Hence 
v(R) = K and there exists by Theorem 4.5 an element z E R such that 
q(z) = so. The automorphism E : u -+ zuz-l of fi satisfies v o E = u o y 
so d E  = do. It follows that 6 = E and R is the centralizer of z in 0. 
In particular R contains the center of 0 so R = v-l(K). Consequently, 
UIK = o / R  which is simply connected. 

It will be proved later in the chapter that the class of 
symmetric bounded domains coincides with the class of Hermitian 
symmetric spaces of the noncompact type. 

It is possible for two Riemannian globally symmetric spaces 
Ml and M ,  to be associated with the same orthogonal symmetric Lie 
algebra such that Ml is Hermitian symmetric while M ,  is not. As an 
example take M I  = S2 (two-dimensional sphere) and M2 = P2 (two- 
dimensional projective space). Both are Riemannian globally symmetric 
(Chapter VII, Prop. 1.2) and S2 is Hermitian symmetric. However, 
P2 is not Hermitian symmetric since it is not even orientable. 

Remark. 

Example. 

5 5. Irreducible Orthogonal Symmetric Lie Algebras 

It is now convenient to make a further decomposition of the orthogonal 
symmetric Lie algebras of compact type and noncompact type. 

Definition. Let (I, s) be an orthogonal symmetric Lie algebra, u and 
e the eigenspaces of s for the eigenvalues + 1 and - 1, respectively; 
(1, s) is said to be irreducible if the two following conditions are satisfied: 

(i) 1 is semisimple and u contains no ideal # (0) of I. 
(ii) The algebra adI (u) acts irreducibly on e. 

Let (L,  U )  be a pair associated with (I, s); then (L ,  U )  is said to be 
irreducible if (I, .s) is irreducible. A Riemannian globally symmetric 
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space M is called irreducible if the pair (Io(M),  K) is irreducible, K 
being the isotropy subgroup of Io(M) at some point in M. 

Let (L, U) be an irreducible Riemannian symmetric pair. Then all 
L-invariant Riemannian structures on Ll U coincide except for a constant 
factor. In  fact, Ad, (U) is a compact linear group acting irreducibly 
on e and the endomorphism b : e -+ e (from the proof of Lemma 1.2,  
Chapter V) commutes with each element of Ad, (U). Hence b can only 
have one eigenvalue so the forms Q(X,  X )  and B(X, X )  in the cited 
lemma are proportional. Thus L/ U has an essentially unique L-invariant 
Riemannian structure. We can therefore always assume that this 
Riemannian structure is induced by f B where B is the Killing form 
of I. 

It is obvious that (I, s) is irreducible if and only if the dual (I*, s*) 
is irreducible. 

The condition (ii) above can be described in different terms. 

Proposition 5.1. 

Proof. 

In the notations above suppose that the condition (z] 
is satisfied. Then (iz] holds if and only i fu  is a maximalproper subalgebra of I. 

Assume first that (ii) holds. If u were not maximal, there would 
exist a subalgebra u* of I satisfying the proper inclusions u C u* C I. 
Put e *  = u* n e. Then [u, e*] C u* n e = e *  so, due to the irreducibility, 
e *  = {0} or e *  = e. Now the identity e* = e implies u* = I which is 
impossible. The identity e* = {0} is also impossible because if 2 E u*, 
2 $ u, then 2 = T + X ,  where T E u, X E e, X # 0. It follows that 
X = 2 - T E u* n e = e*,  which is a contradiction. The converse is 
trivial because if e' were a proper invariant subspace of e ,  then u + e' 
would be a proper subalgebra of I, properly containing u. 

Let (I, s )  be an orthogonal symmetric Lie algebra. 
Let I = u + e be the decomposition of I into the eigenspaces of s for  the 
ezgenvalue + 1 and - 1,  respectively. Assume 1 is semisimple and that u 
contains no ideal # (0) of 1. Then there exists ideals I, in I such that: 

Proposition 5.2. 

(a) I = Z, I ,  (direct sum). 
(b) The ideals I, are mutually orthogonal with respect to the Killing 

form B of 1 and they are invariant under s. 
(c) Denoting by s, the restriction of s to I,, each ( I , ,  s,) is an irreducible 

orthogonal symmetric Lie algebra. 

Proof. The proof proceeds along the same lines as that of Theo- 
rem 1.1,  Chapter V. Let Q and b be as in Lemma 1.2, Chapter V. Then 
b is an endomorphism of e which is symmetric with respect to Q, i.e., 

Q(bX, Y )  = Q(X, b y ) ,  X ,  Y E e .  
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Let 

be the decomposition of e into the eigenspaces of b. The spaces f j  are 
mutually orthogonal with respect to Q and B. Each f j  is invariant under 
ad, ( u )  and can be decomposed into irreducible subspaces which are 
mutually orthogonal with respect to Q and B. Thus we get a direct 
decomposition 

e = 2 e,, 

orthogonal with respect to Q and B, where the spaces ei are invariant 
and irreducible under ad, (u). We put ui = [ei, ei] and = ui + ei. It 
can be proved just as in Chapter V, $1, that the spaces I, have the proper- 
ties of Prop. 5.2. 

The next theorems give an important description of the irreducible 
orthogonal symmetric Lie algebras. 

i 

Theorem 5.3. The irreducible orthogonal symmetric Lie algebras of the 
compact type are: 

I .  (I, s)  where 1 is a compact simple Lie algebra and s any involutive 
automorphism of I .  

11. (I, s )  where the compact algebra I is the direct sum I = I ,  + I ,  of 
simple ideals which are interchanged by an involutive automorphism s of I. 

Theorem 5.4. The irreducible, orthogonal symmetric Lie algebras of 
the noncompact type are 

111. (I, s) where I is a simple, noncompact Lie algebra over R, the com- 
plexifcation Ic is a simple Lie algebra over C and s is an involutive auto- 
morphism of I such that the fixed points form a compactly imbedded sub- 
algebra. 

IV. (1, s) where I = gR, g being a simple Lie algebra over C. Here s is 
the conjugation of I with respect to a maximal compactly imbedded sub- 
algebra. 

Furthermore, if (I*, s*) denotes the dual of ( I ,  s ) ,  

(I, s )  is of type I11 - (I*, s*) i s  of type I ,  

( I ,  s) is of type IV c=> (I*, s*) is of type 11. 

Proof of Theorem 5.3. It is obvious from Prop. 5.2 that each(& s) of 
type I is irreducible. Next, let (I, s) be of type 11. Then according to 
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Cor. 6.3, Chapter 11, the only ideals in 1 are {0}, I,, I,, and I. Again, 
Prop. 5.2 shows that (I, s) is irreducible. 

On the other hand, suppose (I, s) is irreducible and I = u + e compact. 
Let 

I = a, + ... + a, 

be the decomposition into the simple ideals of I ,  (Cor. 6.3, Chapter 11). 
Then s permutes the ideals ai. If sai = ai, put 1, = ai. If sai # ai, put 
1, = ai + sai. We have then a direct decomposition 

where each I i  is an ideal in I, invariant under s, and can therefore be 
decomposed into eigenspaces, I i  = ui + e i .  Since u = Xi ui, the 
irreducibility of (I, s) implies that all ei vanish except one, say el. But 
then condition (i) for irreducibility shows that ui = {0} for i # 1. 
Thus Ii  = {0} for i # 1, and this proves the theorem. 

Let (I, s) be an orthogonal symmetric Lie 
algebra and (I*, s*) its dual. Since irreducibility is preserved under the 
duality, it suffices to prove the last two statements of the theorem. 
Suppose first that (I*, s*) is of type I. Then the decomposition I = u + e 
into eigenspaces of s is a Cartan decomposition of I. If I were not simple 
we would have I = a, + a, where a, and a, are nonzero ideals. Let 
a, = f, + p , ,  a2 = f, + p ,  be Cartan decompositions of a, and a,. (If 
a, or a, is compact, then p1 or p ,  is {O}.) Since the Cartan decompositions 
I = u + e and 1 = (f ,  + f,) + (pl + p , )  are conjugate we may assume 
f, + f, = u, p1 + p a  = e. But then (t, + ip,) + (f, + ip,) is a decom- 
position of I* into nonzero ideals. Hence I must be simple. The complex 
algebra IC is also simple because otherwise IC is a direct sum Ic = n, + n2 
where n,, n, are nonzero ideals. These being semisimple, let f,, f, be 
compact real forms of n, and n,, respectively. Then I* is isomorphic 
to f, + f, which is not simple. Thus (I, s) is of type 111. On the other 
hand, let (I, s) be of type 111. Then (I, s) and therefore (I*, s*) is irre- 
ducible. If (I*,  s*) were of type 11, the complexification (I*)' = 1' 
would not be simple. Hence (I*, s*) is of type I. Next, suppose (I*, s*) 
is of type 11. Then I*  = 1: + where 1: and I,* are simple ideals 
interchanged by s*. Then we know from Theorem 2.4, Chapter V, 
and the subsequent remark that I has a complex structure 1, and if 
1 = f + Jf is a Cartan decomposition of I, then f and 1; are isomorphic. 
Hence f is simple and 1 is simple (as a Lie algebra over C). Thus (I, s) 
is of type IV. Reversing these arguments and using Theorem 2.4, 

Proof of Theorem 5.4. 
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Chapter V, again we find that if (1, s) is of type IV then (I*, s*) is of 
type 11. 

Let M be a simply connected Riemannian globally 
symmetric space of the compact type or the noncompact type. Then M is 
a product 

Proposition 5.5. 

M = M ,  x ... x M , ,  

where the factors Mi are irreducible. If M is Hermitian, then each Mi is 
Hermitian. 

Proof. As in the proof of Prop. 4.2, Chapter V, let G = Io(M) and 
let K denote the isotropy subgroup of G at some point o in M .  If (c, p') 

is the universal covering group of G and R is the identity component 
of y - l ( K ) ,  then ill = e /R.  Using Prop. 5.2 we get a decomposition 

G' = G, x ... x G,, 

R = K ,  x ... x K,, 

where each pair (Gi, K i )  is irreducible. If we put Mi = Gi/Ki we have 

M = M I  x ... x M,. 

Moreover, Gi is semisimple and the Lie algebra of Ki contains no ideal 
f (0) of the Lie algebra of Gi. In view of Theorem 4.1, Chapter V, 
Gi and I (Mi)  have the same Lie algebra. Thus Mi is irreducible. Finally 
suppose M is Hermitian symmetric and let J denote the corresponding 
almost complex structure on M .  As proved in 94, the groups Ao(M) 
and Io(M) coincide and J ,  lies in the center of the Lie algebra of K .  
According to ( I ) ,  J ,  is decomposed J,, = J1 x ... x J,. where each Ji 
is an endomorphism of square - I of the tangent space to Mi at {Ki} 
and Ji lies in the center of the Lie algebra of Ki.  Since each Ki is 
connected, the group AdGz (Ki) commutes elementwise with Ji. Proposi- 
tion 4.2 now shows that Mi is Hermitian. 

$6. Irreducible Hermitian Symmetric Spaces 

Theorem 6.1. 

(i) The noncompact irreducible Hermitian symmetric spaces are exactly 
the manifolds GIK where G is a connected noncompact simple Lie group 
with center {el and K has nondiscrete center and is a maximal compact 
subgroup of G. 
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(ii) The compact irreducible Hermitian symmetric spaces are exactly 
the manifolds U/K where U is a connected compact simple Lie group 
with center {e} and K has nondiscrete center and is a maximal connected 
proper subgroup of U .  

Let M be an irreducible Hermitian symmetric space. Then 
M = e/a where G is the simply connected covering group of Io(M) 
and is connected and contains the center of G, (Theorem 1.1, 
Chapter VI, and Theorem 4.6). Hence M = Ad (G)/Ad (Q, where 
Ad = AdG. This representation of M has the properties stated in (i) 
and (ii) as a glance at Theorems 4.5, 5.3, and 5.4 and Prop. 5.1 shows. 

On the other hand, buppose U and K have the properties in (ii). 
Then the center of K contains an eleme of order 4. Let s = j 2 ,  

so K coincides with the identity component of 2,. The automorphism 
u : u - SUS-~ (u E U )  turns (U, K) into a Riemannian symmetric pair. 
Let p* denote the eigenspace for the eigenvalue - 1 of the automorphism 
do, and let J denote the restriction of Ad, (j) to p * .  Then J2 = - I 
so J gives rise to a U-invariant almost complex structure on U/K and, 
according to Prop. 4.2, U/K is Hermitian symmetric. The statement (i) 
now follows by use of duality. 

Proposition 6.2. The center 2, of the group K in Theorem 6.1 (i) 
and (ii) is analytically isomorphic to the circle group. 

Consider for example case (i). The action of Ad,(K) on p o  is irreducible 
and so is the action of AdG(K) on the complex vector space g o  (Chapter 
111, 96), an action which is C-linear since AdG(K) commutes elementwise 
with Jo. For C E  2, let c* denote the restriction AdG(c) I $5,. From 
Schur’s lemma (see e.g. Chevalley [2], p. 183) c* is a scalar multiple of 
the identity. Since 2, is nondiscrete, the image 2;C is the whole circle S1. 
But if Ad,(c) I p o  = 1, then since AdG(c) I f, = 1 we have c E 

center(G) = {e}. Thus 2, is isomorphic to B. 

Proof. 

and let 2, denote the centralizer of s in U. 3 e s # e, we have 2, # U 

3 7. Bounded Symmetric Domains 

Definition. A bounded domain D is called symmetric if each p E D 
is an isolated fixed point of an involutive holomorphic diffeomorphism 
of D onto itself. 

Theorem 7.1. 

(i) Each bounded symmetric domain D ‘is,  when equipped with the 
Bergman metric, a Hermitian symmetric space of the noncompact type. 
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In particular, a bounded symmetric domain is necessarily simply connected. 
(ii) Let M be a Hermitian symmetric space of the noncompact type. 

Then there exists a bounded symmetric domain D and a holomorphic 
dayeomorphism of M onto D. 

Let D be a bounded symmetric domain. Let Q be the 
Riemannian structure on D corresponding to the Bergman metric. 
Prop. 3.5 shows that D is a Hermitian symmetric space. Let o be a 
fixed point in D, let (T denote the automorphism g + sogso of A,(D) 
and let 1 denote the Lie algebra of A,(D). If we put s = do, then (1, s) 
is an effective orthogonal symmetric Lie algebra. From Theorem 1.1. 
Chapter V we have the direct decompositions 

Proof of (i). 

I = u + e ,  e = e ,  + e- + e,, 

and in order to prove (i) above, it suffices to show that e ,  = e -  = {O}. 
Let X E e.  As before, let T ,  denote the restriction of (ad, X ) 2  to e .  
Then the curvature tensor R of D satisfies 

R,(X, Y ) X  = T,Y, X ,  Y E  e ,  (1) 

so by Prop. 3.6 
2Q,(X, X )  = Trace ( Tx). 

Now [e,, e ]  = (0) by Lemma 1.3, Chapter V, so (2) implies that eo = (0). 
Next, suppose X E e - .  Then Txe+ = {0}, Tx e -  C e -  and 

for Y E e - ,  since the curvature along two-dimensional subspaces of e -  
is > 0. Thus (2) implies that X = 0, so e -  = (0). This proves (i). 

Proof of Theorem 7.1 (ii) (Algebraic part). In view of Theorem 4.6 
and Prop. 5.5 it can be assumed that M is irreducible. Then by Theo- 
rem 6.1, the group l o ( M )  is simple. Let go denote its Lie algebra, let B 
denote the involutive automorphism of go  which arises from the symmetry 
with respect to some point in M and let go = f, + po be the decom- 
position of go into eigenspaces of B for the eigenvalues + 1 and - 1, 
respectively. Let c,. be the center of to and let bo be some maximal 
abelian subalgebra of f,. Then c, C bo and bo is a maximal abelian sub- 
algebra of go. In fact, the centralizer of c, in go contains to but differs 
from go so by Prop. 5.1, it must coincide with f,. 

This maximality of tj,, carries with it important relationship between 
the Cartan decomposition go = f, + p ,  and the root space decomposi- 
tion of the complexification g of go .  Let c, b, f ,  p be the subspaces of g 
spanned by co, b,, to, p,. Then u = f, + ip, is a compact real form of g. 



384 HERMITIAN SYMMETRIC SPACES [Ch. VIII 

Let u and T denote the conjugations of g with respect to go and tl, 

respectively, and let B denote the Killing form of g. The Hermitian 
form B, on g x g given by B,(X, Y) = - B(X, T Y )  is strictly positive 
definite and 

B*([Z, XI, Y) + B,(X, rz, YI) = 0 

for 2 E II, X, Y E g. It follows that the endomorphism ad H of g is 
semisimple for each H E ljo u ilj,. Since all ad H(H E lj) commute, 
they are semisimple endomorphisms of g so t, is a Cartan subalgebra 
of g. Let A denote the set of nonzero roots of g with respect to b. Let 
a E d. Since [lj, €1 C f and [lj, Q] C Q, it is clear that either g" C € or g" C Q. 

In the first case the root a is called compact, in the second case noncompact 
and we have the direct decompositions 

where a runs over all the compact roots, and f i  runs over all the non- 
compact roots. Let d, denote the set of roots in d which do not vanish 
identically on c. In view of Lemma 3.1, Chapter VI, each root a is real 
valued on ibo. We introduce compatible orderings in the duals of the 
real vector spaces ib, and ic,. This gives an ordering of d which will 
be used in the rest of the proof. Let A +  denote the set of positive roots 
in d, put Q+ = A +  n d, and 

Proposition 7.2. The spaces Q +  and Q -  are abelian subalgebras of g and 

[f, P-1 = P-, [k P+1 c P+, 

Let a E A be compact. Then [c, gal = (0) so OL vanishes iden- 
tically on t. Consequently P-  + Q +  c Q. Using in addition the compa- 
tibility of the orderings we have [g", Q + ]  C p + ,  [ga, Q - ]  C Q - .  The relations 
[b, Q - ]  c Q - ,  [b, Q + ]  c Q +  being obvious, we derive [a, P-] c Q - ,  [t, Q + ]  C Q +  
from (3). 

Next, let B, y E Q+. Then [g', g y ]  c g'+y and if j? + y is a root, then 
/3 + y E Q+. But on the other hand [ Q + ,  Q + ]  C f ,  so [p+, Q + ]  = {O}. Also 
p- is abelian because T . gd = g-a for any 6 E A (Lemma 3.1, Chapter VI). 

Finally, in order to prove Q = p- + Q + ,  let q denote the orthogonal 
complement of Q -  + Q +  in Q with respect to B, and put 

P = P- + PL. 
Proof. 

9+ = Q+ + Q -  + [ Q + ,  Q-1. 
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We shall prove that g+ is an ideal in g;  for this purpose it suffices to 
prove that 

(4) 

Let T E f ,  X E p + ,  Y E q. Since 7 . T E f ,  and 7 . [ X ,  7 * TI E P- we 
have 

[P+, 91 = [P-, 91 = COI. 

B,([X, Y ] ,  T )  = - B([X,  Y ] ,  7 ' T )  = - B,(Y, 7 ' [x, 7 * T ] )  = 0 

so [P+, q] = (0) and similarly [P-, q] = (0). Now, the orthogonal 
symmetric Lie algebra (go, 0) is of type I11 so by Theorem 5.4, g is 
simple. We have therefore either g+ = {0} or g+ = g. The first case 
implies that all the roots in A vanish identically on c which is impossible. 
Thus g+ = g, so p = p -  + p +  and the proposition is proved. 

Corollary 7.3. A root a E A is compact i f  and only i f  it vanishes 
identically on c .  

In  Chapters VI and VII much use was made of maximal abelian sub- 
spaces a, of p , .  Whereas all of these are conjugate under the linear 
isotropy group it is possible in the special situation here to select a, 
with particular reference to A .  For each a ELI we select a nonzero 
vector X,E~, .  Two roots ~ , P E  A are called strongly orthogonal if 
a & /? $ A .  Let s = dim a,. 

There exists a subset yl ,  ..., ys of Q+ consisting of 
strongly orthogonal roots. Thus the subspace: 

Proposition 7.4. 

is a maximal abelian subspace of p .  

The proof requires some preparation. If Q is any subset of Q+, let 

PQ = 2 ( g y  + g-'>. 
FQ 

Let /3 be the lowest root in Q and let Q(B) denote the set of all y E Q  
such that y # /3 and neither y +-/3 nor y - /3 is a root. Then the 
centralizer of g-8 + gs in pQ coincides with pQ(p) .  

Lemma 7.5. The centralizer of X ,  + X-,  in pQ is C(X, + X+) + 

Let X E pQ and let Q' denote the complement of {/3} in,Q. 

P Q W  

Proof. 
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where the coefficients are complex numbers. Now g = 
the component of [X, X ,  + X-,] in 
X and X ,  + X-, commute. We have then c, = c - ~  and the vector 

+ Xu,, gu and 
is (c, - c-,) [X,, X-,I. Suppose 

Y = 2 (c,X, + C - T - , )  

[Y,  x, + X,] = 2 (C,[X,, X-,I + c - p - , ,  X,l) = 0. 

YSQ’ 

commutes with X ,  + X-,. Since p.+ and p -  are abelian we obtain 

YEQ’ 

Here 

qx,, x-,I = C-,,[X-,, X,] = 0 (6)  

for each y E Q‘. Otherwise, suppose, for example, c,[X,,, X,] # 0. 
Then gY-, and g5-Y are # (0) and there exists a 8 EQ’ such that 

cr[X,, X , I  + C-d[X-d, X,I = 0. 

This implies that 01 = y - /3 = - 6 + /3 is a root # 0 but the relations 
y = a + /I, 6 = /I - 01 contradict the fact that /3 is the lowest root in Q. 
It follows from (6) that Y E 

Proof of Proposition 7.4. We define a sequence-of spaces p = p1 3 
p 2  3 ... 3 P ~ + ~  = (O}, each of which has the form pi = poi, (Qi C Q+), 
as follows: Let Q1 = Q+ and let y1 be the lowest positive root in Ql. 
Let p a  denote the centralizer of 9-71 + g’l in p1 = pQl; then p z  = pa, 
where Q2 = Ql(yl). Denoting by y2 the lowest positive root in Q2, let 
pI denote the centralizer of g-Ye + gY2 in p 2  etc. Then the roots yl, ..., ys 
are all different and form the desired subset of Q+. In fact, it is clear 
from the construction that the space a in (5 )  is abelian. Moreover, 
suppose X E p commutes with each element in a. We wish to prove 
X E a. Suppose this were false. Then there exists an integer Y (1 < Y < s), 
such that X E pr + a but X $ pI+l + a. Let X = Y + 2 (Y  E p+ ,  2 E a). 
Since X and 2 commute with X,,, + X-,, the same is true of Y. Thus 
Lemma 7.5 implies that 

and the lemma is proved. 

y = C(X,,, + x,) + Yl, 

where Yl E P,+~ and c E C. Now, 2, = 2 + c(Xv, + x-,,,) lies in a 
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and therefore 

x = y, + Zl E Pr+1 + a, 

which contradicts the definition of r. This proves Prop. 7.4. 

387 

Corollary 7.6. In accordance with Lemma 3.1, Chapter VI,  let the 
vectors Xu  E ga be chosen such that for  each ci E d 

(Xu - X-a), i(Xa + X-a) E u, 

[Xu, X-a1 = (2 /4Ha) )  Ha. 

Then the space 

equals a n po and is therefore a maximal abelian subspace of po. 

In fact, owing to the choice of A’a we have X y i  + X-,( E iu n p = p o  
so a. c a n p o .  On the other hand, if 

then r . X = - X so ci E R. 

Lemma 7.7. Let I be the three-dimensional Lie algebra over C given 
by the vector space CH + CX + CY with the bracket de$ned by 

[ X ,  YI = H ,  [H,  XI = 2 x ,  [ H ,  Y] = - 2Y. 

I f  L is any Lie group with Lie algebra IR, then 
exp t ( X  + Y) = exp (tanh t)Y exp (log(cosh t ) )H exp (tanh t ) X  (7) 

for  t E R. 

Proof. Consider the group SL(2, C) of all complex 2 x 2 matrices 
of determinant 1. The Lie algebra d(2, C) of this group consists of all 
complex 2 x 2 matrices of trace 0. It is isomorphic to I under the 
mapping 

0 0  
(l 0 - 1  O ) - H ,  (; ; ) - K  (1 0) - y* 

The group SL(2, C) contains SU(2) as a maximal compact subgroup. 
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This group consists of all matrices 

of determinant 1. Thus SU(2) is homeomorphic to the three dimensional 
sphere S3, in particular SU(2) is simply connected. In view of Theo- 
rem 2.2, Chapter VI, the group SL(2, C) is also simply connected. It 
suffices therefore to prove (7) for the group L = SL(2, C). This can 
be done by a direct computation, which is left to the reader. 

Proof of Theorem 7.1 (ii) (Geometric part). The Lie algebra g is 
the (vector space) direct sum of the Lie algebras f ,  P-, and P+. We shall 
now study the corresponding global situation. 

Let G denote the simply connected Lie group with Lie algebra gR.  
Let U,  K, P-, P,, A* denote the analytic subgroups of G corresponding 
to the subalgebras u, t, p - ,  p + ,  and ibo, respectively, considered as real 
subalgebras of gR. As in Chapter VI, 96, let 

considered as real subalgebras of gR and let N+,  N- ,  Go, KO denote the 
analytic subgroups of G corresponding to n+, n-, go, and f,, respectively. 
Let exp denote the usual exponential mapping of gR into G, and let 
ad and Ad denote the adjoint representations of gR and G, respectively. 
Let 8, (T, r denote the automorphisms of G which correspond to the 
automorphisms 8, u, T of gR.  

Lemma 7.8. The mapping exp induces a difleomorphism of p -  onto 
P-  and of p +  onto P+. 

Proof. According to Lemma 3.5, Chapter VI, there exists a basis of g 
with respect to which the matrices expressing ad (n+) are lower triangular 
with zeros in the diagonal. In view of Cor. 4.4 and Lemma 4.5, 
Chapter VI, the mapping ad X + eadX = Ad (exp X) is a diffeomor- 
phism of ad (n+) onto Ad (N+).  Since ad is one-to-one and Ad is one- 
to-one on N+,  the mapping exp : n+ + N +  is a diffeomorphism of n+ 
onto N+.  Using the fact that P+ C n+ and T . p +  = P-, the lemma follows. 

Lemma 7.9. The mapping (9,  k , p )  + qkp is dzgeomorphism of 

Proof. We prove first that P-K n P ,  = {e}. Suppose to the contrary 

P- x K x P ,  onto an open submanifold of G,  containing Go. 
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that y E P-K n P,, y # e. Select Y E p+ such that exp Y = y. Since 
[t, p-] C p- we have Ad (y) p- C p-. Writing Y = EaEo+ caXa (ca E C), 
let /3 denote the lowest root in $I+ such that c, # 0. Then [Y, X,] = 
cp[X,, X-,] (mod n+) and it follows that 

Reading this relation mod (n- + n+), we find that Ad (y) X - ,  $ p- 
which contradicts Ad (y) p- c p-. This shows that P-K n P, = (e}. 
Applying the mapping x -+ T ( X - 1 )  (x E G), it follows that P- n KP, = {e}. 
In order to prove that the mapping in the lemma is one-to-one suppose 
qlklp, = q2k,pz. This implies 

(k2'42'41k2) k,'kl = P A  ' 9 

which shows that p ,  = p,, q1 = q,, kl = k,. The regularity of the 
mapping follows by using Lemma 5.2, Chapter VI, twice, first on the 
algebra p- + f and then on the algebra (p- + t) + p+. The image is 
therefore a submanifold of G of dimension 

dim, p- + dimR f + dim, pi = dim g R  

and is therefore an open submanifold of G. Finally, we know from Theo- 
rem 1.1, Chapter VI, that Go = PoKo = KoPo where Po = exp po. 
Let X E po and p = exp * X .  From Theorem 6.3, Chapter VI, 

p = uan, U E  U , ~ E A * , ~ E N +  

and applying T 

~ ( p )  = p-' = ua-%(n), 

so 

exp X = p 2  = T(n-l) a2n E N-A*N+. 

Moreover, n+ + b C p+ + f ,  n- C p -  + t so 

N-A*N, c P-KP+, 

and the lemma follows. 

In general P X P +  # G as can be seen by considering the 
example G = SL(2, C) ,  Go = SL(2, R), KO = SO(2). Here K = S0(2,C), 
the group of complex orthogonal 2 x 2 matrices of determinant 1. 

Remark. 
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As a result of Theorem 1.1, Chapter VI, each complex orthogonal 
matrix can be written uniquely as aeip where a is a rea! orthogonal 
matrix and f l  is a real skew symmetric matrix. Hence K = KO x R 
topologically. Thus P-KP, has fundamental group 2 whereas G is 
simply connected. 

Lemma 7.10. 

Proof. 

The set G,KP, is open in P-KP, and Go n KP, = KO. 

Suppose p E Po has the form p = kp,  where k E K and 
p ,  E P+. Applying the automorphism 8 = ur we get p-l  = k(p+)-l so 
p 2  = (p+)2. Applying T we get P - ~  E T(P+) C P-, so p t  E P-. Hence 
p = k = p ,  = e. Since Go = KoPo this shows that Go n KP+ = KO. 

Consider now the group KP,. The group P,  is closed in N+,  hence 
closed in G. The group K is closed in G since it is the identity com- 
ponent of the set of fixed points of 8. Let (k,p,) be a sequence in KP,  
which converges in G. Applying 8 we see that the sequence (p : )  and 
therefore the sequences (A,) and (p , )  are convergent. Thus KP, is 
closed in G and due to Lemma 7.9, its Lie algebra is f + P+. Consider 
the mapping a,h : (g, x) ---t gx of Go x (KP,) into G. Let Y E go, 2 E f + p+. 
Then 

#(g exp t Y, x) = gx exp ( t  Ad (x-l) Y ) ,  

+(g, x exp tZ )  = gx exp tZ 

and consequently 

* b . X , ( % Y ,  dLxq = dJ&(Ad (x-l) y + Z) .  

It follows that 

d#({Go x (Kf'+)l(g,z)) = d L g x  0 Ad (x-') (90 + Ad (x) (f + P+)) 

= d L g x  0 Ad (x-') (go + f + P+), 

and this image under d$ covers the whole tangent space G,, due to 
the fact that 

9 = Po + f + P+ = 90 + f + P+. 

The lemma now follows from Lemma 7.9. 

Lemma 7.11. Let Z E a,, i.e., 

e 

z = 2 ti(X,, + X,,), ti  E R. 
i=l 

Then 
exp Z = exp Y exp H exp X, 
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This follows from Lemma 7.7, combined with the fact that XYi and 
X-,, commute if i # j .  

The complex vector space g becomes a finite-dimensional Hilbert 
space under the inner product B,. Let I I X I I = B,(X, X)'I2 for X E g. 

According to Lemma 7.8, exp induces a one-to-one mapping of p- 
onto P-.  Let log denote the inverse mapping. For x E Go, let [(x) 
denote the unique element in P- such that x E [(x) KP, (Lemma 7.9). 

The norm 1 1  Zog t;(x) ( 1  is bounded as x varies through Go. 

Since [f ,  p-] C p-, we have [(kxk') = k [ ( x )  k-l for x E Go, 
k, k' E KO. From Lemma 6.3, Chapter V, and Go = K,P,, it follows 
that Go = KoApKo where A, is the analytic subgroup of Go with Lie 
algebra a,. Writing an arbitrary x E Go as x = kak' (k, k' E KO, a E A,), 
we get ((x) = k[(a)  k-l and 

Lemma 7.12. 

Proof. 

I I  1% 5(4 II = II  Ad (4 1% {(a) II = II 1% ((4 II. 

Now a = exp 2 where 2 has the form (8), and from Lemma 7.11 
follows that 

log ( (a) = 2 (tanh ti) X-,*, 
i=l 

and since I tanh t I < 1 for t E R, 

IIlog5(4Il <211x-yill i=l 

for all x E Go, which proves the lemma. 

Completion of the proof. The Hermitian manifold M is diffeo- 
morphic to Go/Ko (Theorem 1.1, Chapter VI) and the complex structure 
on A4 corresponds to an endomorphism J ,  on p, which commutes with 
all Ad (A) (k E KO) and satisfies Jt = - I. 

For any coset space X / Y  let ~ ( x )  as usual denote the mapping 
$Y --f x f Y  of X I Y  onto itself. 
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As remarked earlier, the group KP,  is closed in G and the coset 
space GIKP, contains P-KP,/KP, as an open subset which in turn 
contains G,KP,/KP, as an open subset. Let these imbeddings be 

4 I2 
GoKP,/KP+ - P-KP,/KP, - G/KP, 

denoted by I, and I,, respectively (see diagram). In this diagram (bo, +,, 
and 4, denote the mappings 

The mapping a,hl is a diffeomorphism of GoKP,/KP, onto Go/Ko 
(Lemma 7.10). The mapping a,h, is a diffeomorphism of P-KP,/KP, 
onto P- (Lemma 7.9). Thus it follows from Lemma 7.10 that a,ho is a 
diffeomorphism of Go/Ko onto an open subset of P-. Combining this 
with Lemma 7.12 it is clear that the mapping a,h = log o a,ho is a diffeo- 
morphism of Go/Ko onto a bounded domain D in the complex vector 
space P - .  Moreover a,h(xKo) = log [(x), so for k E KO, a,h o ~ ( k )  = 

Ad(k) o a,h and d,b(Ad(k) X) = Ad(k) da,h(X) for X E p o .  Let J* denote 
the endomorphism of p. defined by 

44JOX) = J* 4 4 X )  ( X E  Po). (9) 

Then J* commutes with all Ad(k), ( k  E KO). Since Ad(Ko) is irreducible 
on p - ,  Schur's lemma implies J* = cI (c E C), so since (J*)2  = -I, 
c = f i .  Replacing Jo by -Jo if necessary, we have J* = i1. The 
mapping I, o : gKo --t 
gKP, of Go/Ko into GIKP,, so it commutes with the action of Go. 
The groups G, K ,  and P+ are complex Lie groups, that is, they have a 
complex structure in which the group operations are holomorphic, 
and the coset space G/KP+ has a complex structure invariant under the 
action of G. Combining (9), the Go-commutation of I, o a,hcl o $r0, and 
the fact that I, o #yl is holomorphic, we conclude that I, o a,h;l o a,ho, 
and therefore a,ho and a,h, are holomorphic. Thus Theorem 7.1 is proved. 

o a,ho = I ,  o I, o +i' is just the mapping 
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Corollary 7.13. The complex structure Jo is given by Jo = adgO(H,) 
where Ho E c, is determined by 

or(H,) = --i for  CLEQ+. 

Moreover, the mapping + : Go/K, -+ p -  has dtyerential d$ : p o  + p -  
given by 

d+(X) = g(x - i j 0X)  ( X  E Po) .  

In fact, with the decomposition X = X -  + X +  ( X ,  E p, )  we have 
d$(X)  = X-. By Theorem 4.5, Jo = ad H, for some H, E co. But then 
the relation d$( JoX)  = i d+(X) (that is, (9)) implies 

[Ho, XI + [H,,, X,] = [H,, XI = j oX  E iX- (mod p+) 

so a(H,) = -i (a E Q+). Thus JoX = iX_ - iX+ so X - iJoX = 
2X- = 2 d+(X). 

The complex structure on M = Go/Ko which is determined by the 
endomorphism Jo : po --f po gives rise to a U-invariant complex structure 
on U,’K, which at the tangent space (UjK,), = p *  = i p ,  is the map 
i X  + iJoX ( X  E p,). 

Proposition 7.14. In the notation above, the mapping f : uK, 3 uKP+ 
is a holomorphic diffeomorphism of UIK, onto GIKP,. Thus the compact 
Hermitian symmetric space U/Ko contains the dual Go/Ko as an open 
submanifold. 

Proof. Let u E U n KP,. It is clear that u-lO(u) E P+. Applying T 

we find that O(u) = u. Since U is simply connected, it follows from 
Theorem 7.2, Chapter VII, that u E KO. Thus U n KP+ = KO and 
consequently the mapping f is one-to-one. Since f is regular and 
dim UiK, = dim G KP+, the image f ( U/Ko) is an open submanifold 
of G, KP+. Being compact this submanifold must coincide with GIKP,. 
The complex structures on the tangent spaces (UjK), and (GIKP,), = 

(Go/K0), correspond under (df),, in fact, if X E p,, then df,(iX) = i d#(X),  

dfo(ijo(X)) = i d$h(j0X) = -d+(X) = -i(dfo(iX)). 
so 

Moreover, f commutes with the action of U ,  hence is almost complex, 
hence holomorphic ($1).  
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Corollary 7.15. Each mapping T(g), ( g  E Go) of Go/Ko extends to a 
holomorphic dtzeomorphism of UlK,. 

Example. We can now illustrate the general concepts by means of 
the group SL(2, C). For this example we add a superscript * to the 
general notation. Thus 

Here 

G* = SL(2, C) ,  K* = SO(2, C) ,  u* = SU(2) 

and 
O b  

p*  = o) : b, ctC1. 

The group G* acts on the Riemann sphere C u {a} by the maps 

and the isotropy subgroup at the origin 0 is 

K * P ; = / ( ,  a 0  

The imbedding y : G,*/K,* --f G*IK*Pr is the imbedding of the orbit 
G$ - 0 (which is the open unit disk) into the Riemann sphere. The 
mapping f :  U*/K,* .+ G*/K*PT is the mapping 

and PT = C is dense in G*IK*P*+. 
Keturning to the general case, let o and 0, denote the identity cosets 

in Go/Ko and GIKP,, respectively, and let (( Y) = exp Y - 0, ( Y  E p - ) .  
Denoting by M* the Hermitian symmetric space dual to M, we have 
the diagram, 

5 p -  - GIKP, = UjKo = M* 

I E l 
D + G o .  0, = Go/Ko = M 
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and will now describe D and ( more explicitly. Let r denote the set 
{yl, ..., ys} of strongly orthogonal roots from Prop. 7.4. 

Theorem 7.16. In  the diagram (10) the mapping 

4 :  Y - + e x p Y - o ,  

is a holomorphic dtfleomorphism of p -  onto an open dense subset of M*. 

The only statement not already proved is that ( ( p - )  is dense in M*. 
As in Chapter VII let a, = ia,, A ,  = exp a, so that since U = K,A*K,, 
we have M* = K,A, - 0,. But by Lemma 7.1 1 and the fact that the 
group operations in G are holomorphic, we have for t ,  E R and cos t, # 0 
(Y E n  

a = exp (2 it,,(x, + X-,,I) a . 0, = exp (2 i tan t , ~ - , )  . 0,. 

ysr +r 

T h e  mapping di,b : p o  .+ p -  commutes with the action of Ad,(K,) and 
maps a, onto the space 

Using Prop. 6.2, we therefore deduce, 

p -  = U Ad(k) a- = U Ad(k)(ia-). 
koK,, k s K o  

Thus the image ( ( p - )  fills up M* except possibly for the set of points 
ka * 0, where k E KO and a has some of the “coordinates” t ,  satisfying 
cos t, = 0. This proves the theorem. 

We conclude this section with two direct corollaries of Lemma 7.11 
which give a somewhat better picture of the domain D c p - .  

Corollary 7.17. The cube 0 = { &- x,X-, : I x, I < 1) in a- gener- 
ates the bounded domain D C p -  in the sense that 

D = A&(&)(O). 

In fact Go = KoAoKo where A, = exp a, and by Lemma 7.11 

A, . 0, = A, . 4(0) = E ( 0 )  

so 
((D) = Go . 0, = KoAo * 0, = KO . ((0). 
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Hence 

D = AdG(KO)(0)* 

Finally, we show that the geodesics in D starting at 0 have very special 
limit points on the boundary of D, in fact these limit points constitute 
the Ad,(K,)-orbits of the vertices of 0. 

Corollary 7.18. Let k E KO, H E a,, and 

y( t )  = &l(k exp tH . oc) ( t  E R) .  

Then 
lim y( t )  = Ad#) 2 E~X-, , ,  

vEr 
t++m 

whereEy = 0 or f l .  

In fact suppose H = XyEj-ty(Xy + X-,,). Then 

so the result is immediate. 

Remark. The proof shows that all geodesics y( t )  = f-l(exp tH 0,) 

with H in the “octant” t ,  > 0 (y E F )  converge to the same point 
c y G r  X-y. 

EXERCISES AND FURTHER RESULTS 

A. Complex Structures 

( M ,  J ) .  Show that the tensor field w given by 
1. Let g be a Hermitian structure on an arbitrary complex manifold 

w(X,  Y )  = g(X,  JY ) ,  x, y E wq,  
is a 2-form on M .  Show that the following conditions are equivalent: 

(i) g is Kahlerian. 

(ii) v x ( w )  = 0 for X E al(M). 
(iii) dw = 0. 
2. Let G be a Lie group with Lie algebra g. Suppose the Lie algebra g 

has a complex structure. Show that G has a complex structure in which 

t See also Exercises D, Chapter X. 
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it is a complex Lie group. (Hint: The  complex strucutre on g induces 
a left invariant almost complex structure on G. As a result of Theorem 1.7 
Chapter 11, exp is an almost complex mapping of g into G.) 

3. Show that the Riemannian structure corresponding to the kernel 
function for the unit disk I z I < 1 turns the disk into a Riemannian 
manifold of constant negative curvature. 

B. Bounded Symmetric Domains 

1. Let D be a bounded symmetric domain. Representing D as 
H(D)  K ( H ( D )  as in 93, K compact), D acquires a natural metric in 
two different ways: Firstly from the kernel function for D and secondly 
from the Killing form B of the Lie algebra of H(D).  Show that these 
two metrics coincide. (In view of (2), 97, it suffices to prove B(X ,  X )  
= 2 Trace (T,) for X E e . )  

2. With the notation as in 97 let y E I' and consider the 
three-dimensional simple algebra 

S(Y) = CH, + gy + 9-y c 9 

and the real forms 

9,(Y) = 90 n S(Y), w = lJ n d Y ) .  

Let G(y) C G, G,(y) C Go, and U ( y )  C U be the corresponding analytic 
subgroups. Prove that the isomorphism u : d(2, C) 4 g(y) which sends 

induces a holomorphic diffeomorphism of: 

(i) 
(ii) 

(iii) 
3. With the notation of 97 consider the action of Go on GIKP,. Prove 

that the subgroup A, = exp(a,) C Go leaves the subset &a_) invariant 
(Korinyi-Wolf [ 11). 

Riemann sphere onto G(y)  * 0, = U(y)  * 0,; 

complex plane onto exp(g-Y) . 0,; 
unit disk onto G,,(y) * 0,. 

Hint: Use the matrix identity 

with 

es = x sinh y + cosh y ,  x1 = e-s(x cosh y + sinh y ) ,  y1 = ecS sinh y, 
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and strong orthogonality (as in Lemma 7.1 1) to prove 

if 

4. Let M = G,/K, be an irreducible bounded symmetric domain, 
I ( M )  its group of isometries, and H C I ( M )  the subgroup fixing the 
origin o E M. Prove that if h E H, then the complex structure J, on p o  
satisfies 

A ~ I ( M ) ( ~ )  0 J o  = z t  10 0 A ~ I ( M ) ( ~ ) .  

Deduce that each isometry of M is either holomorphic or antiholo- 
morphic. 

C. Siegel’s Generalized Upper Half-Plane 

Let I denote the n x n unit matrix and let 

I = (  O I ) ,  z=-( 1 1 1  ). 
-I 0 .\/z -I I 

Let Sp(n, R) denote the group of all real 2n x 2n matrices g satisfying 

‘gJg = 1. 

1. Show that the group G = Sp(n, R) is semisimple, and that the 
group K = Sp(n, R) n SO(2n) is a maximal compact subgroup. 

2. Let go = f, + p o  be a Cartan decomposition of the Lie algebra 
go of G, f, denoting the Lie algebra of K. Then Ad,(J) restricted to p o  
is - 1 ; also z2 = +J and z lies in the center of K. 

3. The restriction of Ad,(z) to p o  gives rise to an invariant complex 
structure on the space 

M = Sp(n, R)/(S0(2n) n Sp(n, R))  

turning M into a Hermitian symmetric space of the noncompact type. 
4. The mapping p -+gu(g-l) from Exercise A.5, Chapter VI, is a 

diffeomorphism of M onto the submanifold S of Sp(n, R) formed by 
the matrices in Sp(n, R) which are symmetric and strictly positive 
definite. 
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5. In the complex manifold of n x n complex symmetric matrices 
consider the open submanifold 9, of complex symmetric matrices 
2 = X + iY where X and Y are real and Y is strictly positive definite. 
Each g E Sp(n, R )  gives rise to a holomorphic diffeomorphism 

T, : 2 --+ ( A 2  + B)(CZ + D)-' 

of 9',, the matrix g being written 

Prove that the mapping gK -+ TB (iI) is a well-defined holomorphic 
diffeomorphism of IM onto 9,. 

6. Prove that the mapping 

2 + (I + iZ)(I  - z-1 

is a holomorphic diffeomorphism of 9, onto the bounded domain in 
Ckn(n+l) consisting of all complex symmetric n x n matrices W for 
which I - WW is strictly positive definite (the generalized unit disk). 

D. An Alternative Proof of Prop. 4.2 

Let the assumptions be as in Prop. 4.2 but suppose in addition that 
the identity component KO of K leaves no X # 0 in M ,  fixed. Show 
through the following stepst that M = G / K  is a Hermitian symmetric 
space. 

1. Let go = f, + po be the decomposition of the Lie algebra of G 
into eigenspaces of do. Complexify go, f,, p o  to g, f ,  and p, respectively. 
Then g = f + p and Jo extends to an endomorphism of p of square 
- 1. Let p = p+ + p- be the decomposition of p into the eigenspaces 
of Jo for the eigenvalues + i and - i, respectively. As in Chapter IV, 
$5,  show that there exists a simply connected Lie group Gc with Lie 
algebra g. 

2. Let L denote the analytic subgroup of Gc with Lie algebra f + p-. 
Then L is closed in Gc (consider the normalizer of f + p- in G"). 

3. The Lie groups L and Gc being complex (Exercise A.2 above), 
show that Gc L has a complex structure invariant under the action of Gc. 

4. The identity mapping go --+ g induces a mapping g 4 y(g) of a 
neighborhood of e in G into Gc. Let + denote the induced mapping 

t This approach follows a suggestion of I. Singer, cf. Frolicher [l], 520. 
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gK --+ y(g)L of a neighborhood of { K }  in G I K  into Gc,L. Show that 
$ is regular at { K }  and thus is a diffeomorphism of a neighborhood of 
{ K }  in GIK onto a neighborhood of {L) in Gc,L. 

5. Show that 

for all g in a suitable neighborhood of e in G. Deduce that the mapping # 
is almost complex and therefore GjK has a complex structure corre- 
sponding to J .  

NOTES 

91-53. The torsion tensor S was introduced by Eckmann and Frolicher, see 
Frolicher [ 11. The equivalence of “complex structure” and “integrable almost 
complex structure” was first proved by Newlander and Nirenberg [l]. The 
analytic case had been settled by several authors, see Libermann [l]. In [l] Kahler 
first studied the class of Hermitian structures named after him. Lemma 2.1 and 
Prop. 2.5 are proved in Bochner [l]. The kernel function was introduced by 
Bergman [l] and Bochner [3]. 

The decomposition of a symmetric space into irreducible ones is due to 
8. Cartan [16]. Theorem 5.3 is also given there. 

Theorems 4.5,4.6, and 6.1 are proved in Borel and Li+nerowicz [l]. 
The theory of bounded symmetric domains was developed by E. Cartan [19]. 
He proved Theorem 7.1 (i), namely, that a bounded symmetric domain is a sym- 
metric space of the noncompact type. His proof uses the Liouville theorem that 
a bounded holomorphic function f ( z )  in I z I < a, is constant; the proof differs 
from the one given here. The second part of Theorem 7.1 states that the bounded 
symmetric domains exhaust the class of Hermitian symmetric spaces of the non- 
compact type. This fact was verified in E. Cartan [19] by means of an explicit 
construction for the irreducible Hermitian symmetric spaces for which A,(M) is 
a classical group. This leaves out two exceptional Hermitian symmetric spaces for 
which Cartan stated the result without proof ([19], p. 151). The first a priori 
proof was given by Harish-Chandra [5], p. 591 ; this proof is reproduced here in 
the text. In [19] Cartan raised the question whether a bounded homogeneous 
domain is necessarily symmetric. He answered it affirmatively for dimensions 1 ,  2 
and 3;  for dimension 3 he did not publish the proof, considering its length, for 
the time being, out of proportion to the interest of the result. This situation has 
now changed since Pyatetzki-Shapiro [ l ,  21 answered the question negatively for 
dimensions 4 and 5. The imbedding in Proposition 7.14 was shown by Borel [2, 31. 
Theorem 7.16 and Cor. 7.17 are from Korlnyi and Wolf [l] pp. 268, 269,286, and 
Cor. 7.1 8 was mentioned to the author by Korlnyi. For further studies of Hermitian 
symmetric spaces see, e.g., Chow [l], Wolf [3], .Wolf and Korlnyi [l], Koecher [3], 
and a generalization by Shapiro [l]. 

95. 

94, 96, 97. 



CHAPTER IX 

STRUCTURE OF SEMISIMPLE LIE GROUPS 

This chapter, which deals with noncompact semisimple Lie groups, is a con- 
tinuation of Chapter VI, but now we take the theory of the Weyl group and of the 
restricted roots from Chapter VII into account. This leads to a sharpening of the 
Cartan decomposition from Chapter V, to a conjugacy of all Iwasawa decom- 
positions, and to the Bruhat decomposition. In 57 we relate the Iwasawa decom- 
position to the Jordan decomposition of a matrix. In 92 and 93 we imbed a family 
of rank-one spaces into the given space GIK, and in a rank-one space we imbed a 
complex two-dimensional ball. These imbeddings are very useful in analysis 
on GIK. Sections 4 and 6 deal with some simple facts concerning general Cartan 
subalgebras and multiplicities, while $5 establishes the existence and uniqueness 
of the normal form of a semisimple Lie algebra over C. We also give a criterion for 0 
to be an inner automorphism of g and for the geodesic symmetry to lie in the 
identity component of the isometry group. 

9 1. Cartan, Iwasawa, and Bruhat Decompositions 

Since we are now primarily concerned with noncompact semisimple 
Lie groups, we will simplify a bit the notational conventions made in 
$5, Chapter V. 

Let g be an arbitrary semisimple Lie algebra over R, B its Killing 
form, 8 any Cartan involution of g, and g = f + p the corresponding 
Cartan decomposition of g (f the fixed point set of 8). Let a C p  be any 
maximal abelian subspace (all such subspaces have the same dimension), 
and let m denote the centralizer of a in f. For each h in the dual space 
a* of a let 

g,) = { X E ~ :  [ H , X ]  =A(H)XforHEa}. 

Then h is called a root of (9, a) (or a restricted root) if A # 0 and gA # 0. 
The simultaneous diagonalization of the ad,(a) gives the decomposition 

= 90 + gA, go = a + m, (1) 
AEP 

where Z is the set of restricted roots. The spaces gA are called root 
subspaces. A point H E  a is called regular if X(H) # 0 for all A E Z, 
otherwise singular. The subset a’ C a of regular elements consists of the 

40 1 
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complement of finitely many hyperplanes, and its components are 
called Weyl chambers. Fix a Weyl chamber a+ and call a root A positive 
(A > 0)  if h has positive values on a+. A root A > 0 is called simple 
if it is not the sum of two positive roots. Then a+ is given by 

a+ = {HE a : a,(H) > 0, ..., a,(H) > 0}, (2) 

where {a,, ..., all is the set of simple roots. Let the dual space a* be 
ordered lexicographically with respect to this basis, {a,, ..., at}. 

Let G be any connected Lie group with Lie algebra Q and K C G 
any Lie subgroup with Lie algebra f .  We know from Chapter VI that 
K is connected and closed and that Ad,(K) is compact. Let M and M',  
respectively, denote the centralizer and normalizer of a in K. The factor 
group M'jM is the Weyl group W = W(g, 0) (which in Chapter VII 
was denoted by W(u, 0)). Let A = exp a, A+ = exp a+, and A+ the 
closure of A+ in G. The dimension dima is called the real rank of g 
and of G. We have now the fo:lowing refinement of Theorem 6.7, 
Chapter V, which we refer to as the Cartan decomposition of G. 

Theorem 1 .l . Let G be any connected semisimple Lie group with Lie 
algebra g. Then 

G = K F K ,  

that - is, each g E  G can be written g = k,ak, where k,, k, E K and 
a E A+. Moreover, IZ = a+(g) is unique. 

Because of Theorem 6.7, Chapter V, and Theorem 2.12, Chapter VII, 
only the uniqueness remains to be proved. But supposeg = k exp Hk' = 
exp H' with Hand H' in the closed Weyl chamber 3. The automorphism 
0 "extends" to an automorphism of G, also denoted 8, and we derive 
k exp( - H)k' = exp( - H'). Eliminating k', we get exp(Ad(k)( -2H))  = 
exp(-2H'); and since Ad(k)HEp and exp is one-to-one on p, we find 
Ad(k)H = H'. Because of Prop. 2.2 Chapter VII, Hand H' are conjugate 
under the Weyl group W(g, O), so H = H' by Theorem 2.22, Chapter 
VII. This proves the theorem. 

We write a+(g) = exp A+(g)  where A+(g)  E a+. 
As a consequence we get a kind of a polar coordinate decomposition of 

the symmetric space X = G/K. Let A' = exp a', G' = KA'K and 
X' = G' - o where o is the identity coset. 

Corollary 4.2. W e  have X = K;?7 * o and 

X '  = ( K / M )  x (A+ . 0 )  

in the sense that (kM, a )  --t ka  - o is a bijection of ( K I M )  x A+ onto X '  
(thus a difeomorphism by middle of page 295). 
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Since a’ = W(g, 0) * a+, the relations X = KZ+ * o and X’ = KA+ - o 
are obvious. If k, exp H ,  - o = k,  exp H ,  * o (H,,  H2 E a+), then 
k = k;lk, satisfies k exp H,k’ = exp H ,  for k’ E K. Applying 8, we get 
as before Ad(k)H, = H,, so considering the centralizers of H ,  and H ,  
in p we deduce k E M ’ ;  by Theorem 2.12, Chapter VII, k E M as desired. 

Next we restate the Iwasawa decomposition in our present notation. 
Let Z+ denote the set of positive elements in Z, n the subalgebra 

n = Z g ,  
AEP+ 

of g and N the corresponding analytic subgroup of G. 

algebra g. Then 
Theorem 1.3. Let G be any connected semisimple Lie group with Lie 

g = f + a + n  (direct vector space sum) 

G = KAN, 

that is, the mapping (k, a, n) -+ kan is a dijfeomorphism of K x A x N 
onto G.  

If g E G we write the decomposition 

Since Ad,(m) ( m E M )  leaves a pointwise fixed, it maps each root 
subspace g,, into itself. Hence B = M A N  is a group, and in fact a closed 
subgroup of G. We shall now give the explicit decomposition of G into 
the double cosets of B, the Bruhat decomposition of G. For s in the 
Weyl group W fix a representative m, E M’. 

Theorem 1.4. Let G be any noncompact semisimple Lie group. Then 

G = U Bm,B (disjoint union). 
SE w 

We begin with a lemma about N .  

Lemma 1.5. Let H E  a’. Then the mapping v : n + Ad(n)H - H is 
a diffeomorphism of N onto n. 

Let X E n. Then Ad(exp X)H - H = e*d XH - H E n since 
[a, n] Cn. Since exp maps n onto N (Cor. 4.4, Chapter VI), it is clear 
that v ( N )  C n. Next we prove that v is one-to-one. Suppose n,, n2 E N 
such that Ad(n,)H - H = Ad(n,)H - H. Then if X E n is chosen such 

Proof. 
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that exp X = n&, we have ead XH = H .  But then Lemma 4.5, 
Chapter VI, implies ad X ( H )  = 0 or equivalently, ad H ( X )  = 0, so 
since H is regular, X = 0 and n2 = n,. 

Next we prove 9 ( N )  = n. If this were not the case, let Z E  n - q(N) .  
Then Z = zAez+ c,Z, (cA E R, 2, # 0 in gh).  Let f l  be the lowest root 
in Z+ for which c, # 0. We can assume Z chosen in n - v ( N )  such 
that this f l  is as high as possible. Since ad H is nonsingular on n, there 
exists an element 2, E n such that [H, Z,] = 2. Putting n, = exp Z,, 
we have 

Ad(n,)(H + 2) - H = [Z,, HI + Z = 0 (mod 2 9,) 
A X 3  

so by the choice of Z there exists an element n‘ E N such that 

Ad(n’)H - H = Ad(n,)(H + 2) - H .  

Then Ad(n,ln’)H - H = 2. This contradiction shows that 9 ( N )  = n. 
is regular we compute its differential at an 

arbitrary point n EN. Each tangent vector in N ,  has the form dL,(X) 
(X E n). Since 

Finally, to show that 

p)(n exp t X )  = Ad(n) eadtxH - H 

t 2  
= Ad(n)H - H + Ad(n) ( t [X ,  HI + y EX, [X ,  HI1 + .-), 

it follows that 

dy~,(dL,(X)) = -Ad(n) ad H ( X ) .  

Thus q~ is regular and the lemma is proved. 
Now let b denote the Lie algebra of B which by (1) is given by b = 

zA2,, g,+ Let gc denote the complexification of g and if c C g is any 
subalgebra let cc denote the complex subalgebra of gc, generated by c. 

Lemma 1.6. 

(i) n is the set of Z E b such that ad,(Z) is nilpotent. 
(ii) a + n is the set of elements Z E b such that adoc(Z) has all its ezgen- 

values real. 

Proof. Let Z E  b be written Z = T + H + X ,  T ~ m ,  H ~ a ,  X E ~ .  
Extend R T  to a maximal abelian subalgebra t of m. Then 0 = t + a is 
a maximal abelian subalgebra of g and bc is a Cartan subalgebra of gc 
(Lemma 3.2, Chapter VI). Let d denote the corresponding system of 
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roots, let QR C QC be the subset where all a E A are real and consider an 
ordering of the dual of b8 compatible with our ordering of a*. Then 
we know from $3, Chapter VI, that X E &,,, (gc)a. Expressing adoc(Z) 
in matrix form corresponding to the decomposition 

we obtain a triangular matrix with diagonal elements a( T + H) (a E A) 
and 0. Since a(H)  is real and a( T) purely imaginary, the lemma follows. 

Lemma 1.7. For each x E G put b, = b n Ad(x)b. Then 

b = b , + n  (x E G). 

The inclusion 3 being obvious, it suffices to prove 

dim(b, + n) = dim 6. 

By Theorem 1.3 we may assume x = K E K. Let 1 denote orthogonal 
complementation in g with respect to the positive definite form 
B,(X, Y) = -B(X, OY). Then since Ogh = g-,+, we have b l  = On and 

Proof. 

(b + Ad(k)b)l = On n Ad(k) &t = e(n n Ad(k)n). (4) 

But using Lemma 1.6 (i) we have 

n n Ad(k)n = n n b,, 

so using (4) 

2 dim b - dim b, = dim(b + Ad(K)b) 

= dim g - dim(n n b,) 

= dim g + dim(b, + n) - dim n - dim be. 

This proves dim(bk + n) = dim b and the lemma. 
We can now prove Theorem 1.4. Let x E G. Pick H E a‘. By Lemma 1.7, 

there exists an X E n such that H + X E b, and therefore by Lemma 1.5 
an n, E N such that Ad(n,)H E b,. Thus the element Z = Ad(x-ln,)H E b. 
The eigenvalues of ad 2 being the same as those of ad H, we have by 
Lemma 1.6, 2 = H’ + X‘ (H’ E a, X‘ E n). But ad H and ad H’ have 
the same eigenvalues, so H‘ €a’. Hence by Lemma 1.5 there exists an 
n2 E N  such that H’ = Ad(n,)Z = Ad(n,x-ln,)H. But m + a is the 
centralizer of H and of H’ in g, so we conclude Ad(n,x-ln,)(m + a) = 
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m + a. But a is the set of elements A E m + a such that ad,c(A) has 
all eigenvalues real. Thus 

Ad(n+x-k,)a = a, 

so n2x-lnl E AM'. This proves the theorem except for disjointness. So 
suppose s # t in W such that 

msb2 = b,m, (bl, b, E B).  ( 5 )  

Select H E  Ad(mt')a+ and apply both sides of (5) to it. Then if H ,  = 

Ad(m,)H, 
Ad(m,) Ad(6,)H = Ad(6,) Ht 

and Ad(b,)H = H + X,, Ad(b,)H, = H, + X I  where X,, X ,  ~ n .  
Since Ad(m,) permutes the spaces gn (AEZ), we conclude from (6) ,  
Ad(m,)H = H,. Thus Ad(m,myl)H, = H,, so msmy' E M and s = t. 
This contradiction concludes the proof. 

For a better understanding of the decomposition in Theorem 1.4 we 
write it in the form 

(6)  

G = U MA(NN8)ms, 

where N s  = mJVm;'; here we used the fact that m, normalizes MA and 
that MA normalizes N .  The Lie algebra ns of N" is given by 

SE w 

Thus the group N n N S  has Lie algebra 

2 g" 
">O.a~- l>O 

which is 0 exactly if s is the Weyl group element s* which maps a+ into 
-a+. Then AT,' = ON which we also denote by m. Consider now the 
mapping T : G + G/MAN given by r(g) = g - 0, where o is the identity 
coset. The tangent space (GIMAN), = dr(g) = g/(m + a + n), so the 
tangent space (N o), fills up all of dr(g), in other words the orbit A' o 
is an open submanifold of GIMAN. The inverse image ~- l ( f l .  0 )  

equals RMAN which is therefore an open submanifold of G. Thus 
Bm,,B is an open submanifold of G. If s # s*, then n n ns # (0) SO 

the orbit Ns - o is a submanifold of GIMAN of lower dimension; since 
T is a submersion, we deduce from Theorem 15.5, Chapter I, that the 
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inverse image rr-l(N8 * 0)  which equals N"MAN is also a submanifold of 
G. Summarizing, we have the following consequence. 

Corollary 1.8. In the decomposition 

G = U BmJ = U MANNSms 

the term Bm8,B is an open submanifold of G, and the other terms are 
submanifolds of lower dimension. 

The mapping k M  --t KMAN is a bijection of KIM onto GIMAN 
which is regular at the origin, hence everywhere, so is a diffeomorphism. 
As a consequence of Exercise B.2, Chapter VI, the components of an 
element g E mMAN are uniquely determined by g. We write 

S E  w SE w 

g = fw m(g) exp B(g) nB(d 

where C(g) E N, m(g) E M ,  B(g)  E a, and nB(g) E N. 

-+ k(fi)M is a dt#eomorphism of m 
onto an open submanifold of KIM whose complement consists of finitely 
many disjoint manifolds of lower dimension. 

We conclude this section with two useful bracket relations. For 
A E a* let A, E a be determined by B(H,  A,) = A(H) ( H E  a). If 01 E 2 
and X ,  E g,, X-, E g-,, then [X,, OX,] E P n go = a, [X,, X-,I E a + m; 
so we deduce 

(7) 

(8) 

Corollary 1.9. The mapping 

[X,, OX,] = B(X,, OX,) A,, 

[X,, x-,I - B(X,, X,) A, E m. 

82. The Rank-One Reduction 

In this section we construct for the symmetric space GIK a family 
of rank-one spaces Ga/Km totally geodesic in G/K. Let g be a semisimple 
Lie algebra over R, and 0, f, p ,  a, n, m, Z, Z+ as in $1. Recalling Cor. 2.17, 
Chapter VII, a root a? E Z is called indivisible if ca? E 2 5 c = &l, &2. 
Let Zo denote the set of indivisible roots and put Zg' = Zo n 2 3 .  

Proposition 2.1. Let a? E 2: and let ga denote the subalgebra of g 
generated by g, and g-,. Then g" is semisimple, has a Cartan decomposition 

g" = fu + pa, where f" = f n g", p a  = p n ga, (1) 

and RA, is a maximal abelian subspace am of p' (so gm has real rank one). 
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We start with a general lemma about Cartan decompositions (cf. 
Exercise A.8 (ii), Chapter VI). 

Lemma 2.2. Let 5 c g be a semisimple subalgebra invariant under the 
Cartan involution I9 of g. Then the restriction I9 I 5 is a Cartan involution 

Consider the adjoint group Int(g) with Lie algebra ad3(g) and 
the analytic subgroups, K*, S c Int(g) with Lie algebra adQ(€) and adQ(5), 
respectively. Then K* is compact, S is a closed subgroup (Exercise 
B.7, Chapter 111), K* n S is compact and so is the group of restrictions 
(K* n S) I 5. Thus f n 5 is a compactly imbedded subalgebra of 5 .  It 
is also maximal with this property because otherwise there would exist 
X # 0 in p n 5 such that the powers en addx) lie in a compact matrix 
group. This contradicts the fact that ad5(X) is symmetric with respect 
to the positive definite quadratic form B ,  1 B and thus has real eigenvalues, 
not all 0. Since f n 5 and p n 5 are orthogonal with respect to the 
Killing form of 5,  this proves the lemma. 

Turning now to the proof of Prop. 2.1, let ac denote the complexifica- 
tion of g and extend a to a Cartan subalgebra Qc of gc as in Chapter VI. 
Then 

of 5. 

Proof. 

where /3 is a root of (gc, Qc) and fl  denotes the restriction /3 I a. The 
subalgebra g of gc generated by (gc)B is semisimple (Theorem 4.3 
(iv), Chapter 111, and Exercise B.l ,  Chapter 111) and so is its real form 
g" = g n g. Hence by Lemma 2.2 decomposition (1) is a Cartan decom- 
position. 

Next we note that [g,, g,] = g2,. In fact, if not, let X # 0 in gz, 
satisfy 

Thus the element X-2, = OX E g-2, satisfies 

B(@c rg,, gal) = 0. 

B([X-,,, gal, &I-,> = 0, 

so [X-$,, go;] = 0. Combining this with [XV2,, g-,I = 0, we get by the 
Jacobi identity for all X ,  E go! 

"x,, @a X 2 , l  = 0 

and now (7), $1 gives a contradiction. Using the Jacobi identity we 
therefore have [g2,, g-2a] C [g,, g-J so, putting 

ma = [g,, 9-,I n m, g; = RA, + m" 
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we conclude from (8), $1 the decomposition 

This shows RA, maximal abelian in p a ,  so Prop. 2.1 is proved. 
We note that (3) is the root space decomposition (l), $1 for the Lie 

algebra ga. The half-line a: = { t A ,  : t > 0) is a Weyl chamber in aa, 
and the corresponding algebra n" equals g, + g,,. Let Ga, Ka, A" ,  and N a  
denote the analytic subgroups of G with Lie algebras 9", f", a,, and ma, 
respectively, and let M a  denote the centralizer of AN in Ka. The following 
lemma shows that the three decomposition of $1 can be made compatible 
for Go and G. 

Lemma 2.3. With the notation above, 

K= = Ga n K ,  

N" = GanN, 

Aa = Ga n A, 

Ma = Gun M. 

Proof. The first relation follows from Theorem 1.1, Chapter VI, 
and the two next relations follow from G' = KaAaNa and A" C Gm n A, 
N a  C G a  n N. Finally, Ga n M C Ma is obvious; also M a  C Go n M 
follows from the fact that if m E Ma, then not only do we have 
m exp tA,m-l = exp tA, ( t  E R), but in addition, if H E  a, a(H) = 0, 
then by (3), Gm commutes elementwise with exp H. Thus M u  c M. 

The mapping g K a  + g K  imbeds Ga/KDi in GIK as 
a totally geodesic submanifold. 

Corollary 2.4. 

This is immediate from Lemma 2.3 and Theorem 7.2, Chapter IV. 

$3.  The SU(2, 1) Reduction 

The three decompositions in pl are basic tools in analysis on the group 
G. We shall now prove a result which for G of real rank one reduces 
their explicit computation to mhtrix calculations in the group SU(2, 1). 

Let g be a demisimple Lie algebra of real rank one, 
0 a Cartan involution of g, ahd g = f + Q the corresponding Cartan 
decomposition. Let a c p be a m b i m a l  abelian subspace and assume 01 and 
201 are roots of (9, a). Select X ,  E g,, X,, E g,,, both #O. Then the sub- 
algebra g* C g generated by X,, X,,, OX,, OX,, is isomorphic to 5 4 2 ,  l), 
the Lie algebra of SU(2, 1). 

This is a consequence of a fqw lemmas. We put Y ,  = [OX,, X,,]. 

Theorem 3.1. 
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Lemma 3.2. [X,, Y,] = cX,, where c = 2 4 4  B(X,, OX,) 

Proof. By the Jacobi identity 

The middle term is 0 (since 3a $ Z), so the lemma follows from (7), $1. 

Lemma 3.3. 

Proof. 

The vector [X,, OY,] is #O and lies in m. 

We have [X,, OY,] E go = m + a; also if H E  a, 

Thus [X,, OY,] em. T o  see that this vector is #O consider the vector 
[[X,,  OY,], X,]. By the first part of the proof it equals 

[[ex,, Yo;], Xal = -[[Yw, Xml9 BXal - [[Xct, exal, Yal 

= C[XZ,, ex,] - B(X,, ex,) 4%) y,, 
so by Lemma 3.2 

[[Xm eyml, Xal = -34Aa)  B(Xa, ex,) Ya + 0. (1) 

Lemma 3.4. The linear transformation adQ([X,,  OY,]) leaves the 

Proof. We have 

plane RX,  + R Y ,  invariant. 

which together with (1 )  proves the lemma. 
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Proof. Putting T = [X,,  OY,], we have seen above that [T, X,] E 

RY,, [T,  Y,] C RX,, so [T, [X,, Y,]] = 0. Now use Lemma 3.2. 

Lemma 3.6. 

[y,, ex2,i = 2 a ( ~ , )  ~(x, , ,  ex,,) ex,. 
In  fact, 

[Y,, ex2,1 = “ex,, X,,l, ex2,1 

-“X2,, ex2,1, ex,] - “ex,,, ex,], X,,l - - 

= 4AzJ B(X2,, 0x2,) ex,. 
These lemmas show that 

g* = (R[X,, eY,l + RA,) + (RX ,  + RY,) 

+ RXz, + (Rex ,  + ROY,) + Rex,,, 

and that this is a decomposition into the eigenspaces of ad A,. 
I t  will now be convenient to give all general Lie algebra concepts 

connected with g* the superscript *. (Dual spaces will not be considered, 
so no confusion with our customary use of * should result.) 

Although we do not yet know that g* is semisimple, we have for 
H E  R A ,  

B*(H, H) = Tr(adg,(H) adR.(H)) = 4or(H), + 2(2o1(H))~ = 12a(H)2, 

so let us define 

x,* = c,x,, 

y,* = [OX,*, x a  

1 
12<% .> A,* = A,, 

x; = C2aXza, 

where the constants c, and cz, are determined by 

c : a ( ~ , )  B(x,, ex,) = -2, 4,4A,) B(X2,, ex,,) = -2. (4) 

Then Lemmas 3.3-3.5 hold for the starred vectors in g*, and we find 
the relations 

[x:, Y:] = -4x,*,, [X:, [X:, OY,*]] = -6Y: 

[Y:, ex,*,] = -4ex:, [Y:, ev:] = - 9 6 ~ :  

[[xu*, e ~ : ] ,  Y,*I = --24x,* 

from Lemma 3.2, (l), Lemma 3.6, (2) and (3), respectively. 
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Next we consider the Lie algebra eu(2, 1) and add the subscript 0 
to all general Lie algebra concepts connected with it. Since su(2, 1) is 
a real form of eI(3, C), its Killing form is by (3), 98, Chapter 111, and 
Lemma 6.1, Chapter 111, given by 

B,(X, Y )  = 6 Tr(XY) 

and the automorphism X + 12,1X12,1 of 4 2 ,  1) where 

is a Cartan involution 8, of 5u(2, 1) (cf. Chapter X). Here f, consists of 
the matrices 

and p o  of the matrices 

For a, and a t  we can take a, = RHO, a: = { tH,  : t > 0} where 

Then KO and M, are defined by the convention above. The restricted 
roots are a,, 2a0, -ao, -201, where 

%W,) = 1, so A,,, = H0,112. 

Also po = 201~ and m, = RT, where 

i 0 0  
T o =  0 -2i 0 .  

(0 0 i) 
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The root spaces g,, and g-,, are given by the set of matrices (-: -I --:I for g-,,, 

where z E C. The root spaces gzoro and gPzao are given by the set of matrices 

it 0 -it 

-it 0 -it 

where t E R.  Consider now the linear mapping T : g* ---t m(2, 1)  given by 

0 -i 

0 -i 

i 0  

-i 0 -2 

i 0  

i 0 0  
Ex:, eu:] + -4 -; 9) .  

The commutation relations in g* show quickly that T is an isomorphism, 
whereby Prop. 3.1 is proved. Note that the vector A,* satisfies 

B*(H, A,*) = a(H) ,   HE^. 

Now let G be any connected Lie group with Lie algebra g and let K ,  
A, N ,  m, G*, K*, A*, N*, and m* be the analytic subgroups corre- 
sponding to f ,  a, n, ii = On, g*, f*, a*, n*, and fi*, respectively. Here 
n* = RX, + R Y ,  and ii* = en*. As usual, let M be the centralizer of 
A in K and M* the centralizer of A* in K*. The following lemma 
ensures compatibility of the three decompositions in $1 for the groups 
G* and G. 

Lemma 3.7. With the notation above 

K* = G* n K ,  A* = G* n A, 

N* = G * n N ,  M* = G* n M. 
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The first three follow as in the proof of Lemma 2.3. Since m* = 

R[X,, OY,], it is clear that m* = g* n m and of course G* n M C  M*. 
On the other hand, the symmetric space G*/K* has rank one, so 
K*/M* is a 3-sphere (Lemma 6.3, Chapter V), hence simply connected, 
so M* is connected. Thus M* C G* n M and the lemma is proved. 

We recall now the Cartan, Iwasawa, and Bruhat decompositions 

g = kl exp A+(g) k2, g = 4 g )  exp fa) w, 
( 5 )  

g = m(g) exp B ( g )  n B ( g ) ,  

where A+(g) E 7 and H(g), B(g) E a. The importance of Theorem 3.1 
is that ifg lies in a group G*, then, by Lemma 3.7, all the components ofg 
above can be found by matrix computation within the elementary group 

Select m* E K such that AdG(m*) interchanges the Weyl chambers 
a+ and -a+. If ti + e, then m*ii $ m*MAN, so m*A E mMAN. 

Theorem 3.8. Let G be a semisimple Lie group of real rank one and 
put I 2 l 2  = -B(Z, OZ) for Z E g. If A E 20 and we write A = exp(X + Y) 

SU(2, 1). 

( X  E g-=, Y E g-z,), then 

2 cash 24A+(fi)) = 1 + 2~ I X 1' + (1 + c I X 1'))" + 4C I Y 12,  

Here mar and mZu are the multiplicities of the roots a and 2a and c-l = 

We begin with the case SU(2, 1) and will follow the notational con- 
ventions (subscript 0) made for this group above. Let m* be chosen 
as the element 

m * =  ( 8 -; ;). 

4(% + 4mz,). 

-1 0 0 

Lemma 3.9. In the group Go = SU(2, 1) let ti f. e in no and write 
(according to the formula for  g-,, and g-zoro) 

it z 

-it -z -it 



5 31 The SU(2, 1) Reduction 415 

Furthermore 

and writing 
ir 5 -ir 

we have 
-Z - t  

(1 + I z 12))" + 4t2 - r =  
I z 1 2 - 2 i t + l  ' I =  

Proof. We write out (5) for g = m*ii, 

coshr 0 sinh r 

sinh r 0 coshr 
expB(m*g) = ( 0 1 

iu' w' -iu' 

iu' w' - i d  
-5' 0 6'). 

We have also by exponentiation 

Now the last equation in (5) represents nine equations in the variables 
u, w,  a, r, u', and w', which can be solved in a routine fashion. Denoting 
the matrix m*ii by (aii), we find 
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From (6) and (8) we derive 

and invoking (9), 

eioer = (I w - 2iu)-l. 

But (5) can also be written 

m*fi(m*fi) = fim(m*fi)-l exp(--B(m*fi)) n' (n' E N ) ,  

so (6) and (12) give by symmetry 

Now (12) and (13) give the formulas for w and u. Secondly, po = 

2(2010 1 + 201,) = 201, so 

I 14 + 4t2. e ~ o ( B ( m * I ) )  - - e ~ r  = 

Next we have ii = k(fi)  exp H(ii) n(fi)  which implies 

f3(fi)-1 f i  = O(n(fi))-l exp 2H(fi) n(fi). (14) 

Let s = ao(H(fi)) so H(fi)  = sH,. Denoting the matrix (14) by (bij), we 
obtain 

b,, = 1 + 2 I z 1, = 1 + 2 15 12e2s, 

b,, = 2it2 - z I z 12 = -c + cezs(1 + 2i7 - I 5 I,), 
b,, = -22 - 2itz - z I z 1, = 5 + [ezs(l + 2i7 + 15 1,). 

(15 )  

(16) 

(17) 

We conjugate (17) and add to (16); this gives 

-Z(I - 2it + I z 12) = ce2s. (18) 

Conjugating (16) and subtracting from (17) gives 

-z = 5 + 5e2s(2i7 + I 5 1,). (19) 

From (18) and (15) we deduce the desired formula for e m ( H ( f i ) ) .  Then 
(18) and (19) give the formulas for 5 and T. 
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Finally, fi  = k, exp A+(fi) k,, so (b,) = O(f i ) -% = k;l exp(2A+(fi)k2. 
Letting w = ao(A+(fi)) so A+(fi) = vH,, we get 

Trace(btj) = 2 cosh 2v + 1 = 2 cosh(po(A+(fi))) + 1. 

But 

so using (15), the formula for A+(fi) follows. 
We turn now to the proof of Theorem 3.8. Assume first both g-, 

and g-,, are +O; take X = OX,, Y = OX,, in Theorem 3.1 and construct 
g*, etc. For the Killing forms we have 

B(H, H) = Tr(ad H ad H) = 2m,o1(H)~ + 2%,(2ar(H)), = 2(m, + 4%,) or(H), 

B*(H, H )  = 12a(H)2 

B*(x, ex) = I 1, B*(ex,*, x:) = -24 I z 12, 

B*(Y, eu) = tzB*(ex:, x:) = -24t2, 

so by (20) and (21) 

I x l 2  = 4(% + 'ha) I z 1 2 ,  I Y 12 = 4(m, + 4m2,) t 2 .  

But by Lemma 3.9, eQ(H(E)) = (1 + I z 
formula for e D ( H ( ' ) ) .  

+ 4t2, so (22) gives the 



41 8 STRUCTURE OF SEMISIMPLE LIE GROUPS [Ch. IX 

Next we note that B(m*fi) is independent of the choice of m*. In 
particular we take m* in the group K*. Then B(m*fi) is the same in 
g* and in g, so the formula for it follows from Lemma 3.9. The formula 
for A+(ii) is obtained in the same way. 

This proves Theorem 3.8 for the case 201 E Z. If g2, = 0, the proof is 
much easier by just considering the subalgebra (isomorphic to eu(1, 1)) 
generated by X ,  and OX,. 

8 4. Cartan Subalgebras 

The structure theory of our real semisimple Lie algebra g has been 
founded on the study of the family ad,(a) in analogy with the study in 
Chapter I11 of the family ad,c(€f), being a Cartan subalgebra of 
the complex semisimple Lie algebra gc. 

Definition. Let g be a semisimple Lie algebra over R and gc its 
complexification. A subalgebra b C g is called a Cartan subalgebra if its 
complexification 

Considering now the definition in 53, Chapter 111, a Cartan subalgebra 
$ C g is characterized by the two conditions: (1) Q is a maximal abelian 
subalgebra of g; (2) for each H E b, ade(H) is semisimple. (We recall that 
an endomorphism of a real vector space V is called semisimple if its 
extension to the complexification Vc is in a suitable basis of Vc expressed 
by means of a diagonal matrix.) We are now going to relate these Cartan 
subalgebras to the Cartan involution 8 of g and the associated Cartan 
decomposition g = t + p. We saw already in Chapter VI, 93 that any 
maximal abelian subalgebra of g containing a is a Cartan subalgebra. 

It is clear that all Cartan subalgebras of g have the same dimension. 
This is called the rank of g (and of G). We note also that if g has a complex 
structure J and fj C g is a Cartan subalgebra, then the complex subalgebra 
5 C g (96, Chapter 111) is a Cartan subalgebra in the sense of Chapter 111, 

Lemma 4.1. Let Q C g be a Cartan subalgebra and If C gc the complexi- 

= $ + ib  in gc is a Cartan subalgebra of gc. 

93. 

fications. Then there exists a compact real form D of gc such that: 

(i) 

(ii) 

Proof. 

00 c D 
bC n D is maximal abelian in u. 

(a = conjugation of gc with respect to 9). 

Let gk be the compact real form of gc constructed in the proof 
of Theorem 6.3, Chapter 111, and let T denote the conjugation of gc 
with respect to gk. According to Theorem 7.1, Chapter 111, and its proof, 
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the automorphism v = ( u T ) ~ ) *  of gc maps gk into a compact real form u 
satisfying (i). Since u and T both leave bC invariant, so does v; thus (ii) 
follows from the fact that bC n gk is maximal abelian in gk (cf. (2), $6, 
Chapter 111). 

Corollary 4.2. Each Cartan subalgebra lJ C g is conjugate under 
Int(g) to one which is 8-invariant. 

Property (i) in Lemma 4.1 means that u commutes with the conjuga- 
tion 7 of gc with respect to D. By (ii) bC = bc n o + bc n (b), so lJc 
is 7-invariant as well as a-invariant. Thus b is invariant under the Cartan 
involution 7 I g of g, so the corollary follows from Theorem 7.2, Chapter 
111. 

We shall now prove that g has at most finitely many nonconjugate 
Cartan subalgebras. 

Lemma 4.3. Let b,, lJ2 C g be two Cartan subalgebras such that 
bi n p C a, et,i C bi ( i  = 1, 2). Let 

z;. = E z : a($;. n p )  = 0) (i = 1, 2). 

Then ifZl = Z2, there exists a k E K such that b2 = Ad(k)b,. 

The zeros in bl n p  of the members of 2-  Z, constitute 
finitely many hyperplanes, so we can select H ,  E 6, n p such that 
a(H,) # 0 for all 01 E Z - Z,. Let a, c a be the common nullspace of the 
members of Z,. Of course a, 3 b1 n p. We shall now prove a, = b, n p. 
Let m, denote the centralizer of H ,  in f. Of course m, C go + Za+ g,, 
so [m,, a,] = 0. But 8, n f C m,, so a, + bl n f is abelian. Since 

Proof. 

the maximality of $, implies a, = $, n p .  
It follows that if 2, = Z2, then 9, n p = b2 n p. The centralizer Ml 

of H ,  in Ad,(K) is compact and has Lie algebra m,. Also b, n f is a 
maximal abelian subalgebra of m,; since b2 n f c m,, we conclude by 
dimensionality that b2 n f = Ad(K)(Q, n f) for some k in the identity 
component of M,. But then Ad(K)($, n p) = $, n p ,  so b2 = Ad(k)b,. 

Corollary 4.4. A semisimple Lie algebra g over R has at most Fnitet'y 
many nonconjugate Cartan subalgebras. 

In fact any such subalgebra is conjugate to a Cartan subalgebra 6 
satisfying et, C f~ and b n p C a (Cor. 4.2 and Lemma 6.3, Chapter V). 
Since Z is finite, the corollary follows from Lemma 4.3. 



[Ch. IX 420 STRUCTURE OF SEMISIMPLE LIE GROUPS 

Proposition 4.5. Let b,, Q2 C g be two Cartan subalgebras invariant 
under 8. Then they are conjugate under Int(g) if and only if their “vector 
parts” b, n p and b2 n p are conjugate. 

Proof. Suppose n p and b2 n p are conjugate. Usirig suitable 
elements from Ad,(K) (which necessarily commute with 8), we may 
assume that the vector parts a, = 6, n p and a2 = b2 n p both lie in a. 
Now if gal = a2, ( g  ~Int(g)) ,  we write g = k exp X (k EA~,(K) ,  
X E p )  and deduce Ad(exp X)al C p .  Applying 8, we derive 

Ad(exp 2X) I a, = I .  

But ad X is semisimple with real eigenvalues, so we conclude [X, a,] = 0 
and consequently ka, = a2. Thus we may assume bl n P = b2 n P .  By 
Lemma 4.3, b1 and b2 are conjugate. 

On the other hand, suppose b2 = Ad(g)b, and @i Cbi  ( i  = 1, 2) .  
Since 

fji n p = {HE bi : ad H has real eigenvalues} 

it follows that b2 n p = Ad(g)($, n p ) .  

elements can now be characterized. 

Q.E.D. 

We recall that X E g is called semisimple if adg(X) is semisimple. These 

Proposition 4.6. Let g be a semisimple Lie algebra over R,  g s  the set 
of semisimple elements in g. Then 

g s =  u E, 
@€CS 

CS denoting the set of Cartan subalgebras of g .  

We have to prove that each semisimple element H in g lies 
in a Cartan subalgebra. Considering the centralizer 3H of H in the com- 
plexification gc  and putting (gC)” = [gc ,  HI, we have the vector space 
isomorphism gc/3H But by the semisimplicity of H ,  ad H and 
(ad H ) 2  have the same null space, so gc = 3H @ ( g C ) H .  The mapping 
T : 3H x (gC)H -+ gc given by 

(1) 

Proof. 

T(X, Y) = @Y(X + H )  

has differential at (0, 0) given by dT(o,o)(X, Y) = X + [Y, K ] .  Thus 
d ~ ( ~ , ~ )  is one-to-one, so the image T ( ~ H  x ( g C ) H )  contains a neighborhood 
N of 0 in gc .  Let al  denote the polynomial from Exercise B.2, Chapter 111, 
whose zeros (in g c )  consist of the nonregular elements. Clearly N will 
contain a regular element and so will 3H by (1) and the invariance of az. 
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But then at  is not identically 0 on 3H n g, so 3 H  r\ g contains an element 
Z which is regular in gc. But then 3 z  is a Cartan subalgebra of gc, and 
ZE g implies 3 z  = 3 z  n g + i(3z n 9). Thus 3 z  n g is a Cartan sub- 
algebra of g containing H. This proves the proposition. 

8 5. Automorphisms 

We saw in Chapter V, 92 how noncompact real semisimple Lie 
algebras g correspond to pairs (u, s) where u is a compact semisimple Lie 
algebra and s an involutive automorphism of u. In  this section we consider 
the group Aut(u) of all automorphisms of u which is a closed subgroup 
of the group GL(u) of all invertible endomorphisms of u. Each member 
of Aut(u) leaves the Killing form of u invariant. It follows that Aut(u) 
is compact. The adjoint group Int(u) is the identity component of Aut(u). 
Let t be a maximal abelian subalgebra of u and let tC denote the sub- 
algebra generated by t in the complexification uc of u. Then tC is a Cartan 
subalgebra and we can use the results of Chapter 111. An endomorphism 

o f t  will be called an automorphism of A if it maps the set of vectors 
iH,(a E A )  onto itself. Each element in the Weyl group W = W(u) of u 
is an automorphism of A .  Let Aut(A) denote the group of all auto- 
morphisms of A .  

Let u be a compact, semisimple Lie algebra, t a maximal 
abelian subalgebra, uc the complexification of u and tC the subalgebra of 
uc generated by t. A Weyl basis of uc mod tC with respect to u is a basis 
{ X ,  : a E A }  of uc mod tC with the following properties. 

(i) X ,  E (u")" and [X,, X-,I = H, for each a E A .  
(ii) [X,, X,] = N,,,xa+O if a, ,8, a + f l  E A where the constants N,,B 

(iii) 

Definition. 

satisfy N,,0 = -N-,,-p 
X ,  - X- ,  E u, i (X ,  + X-,) E u for each 01 E A .  

The existence of such a basis is clear from Cor. 7.3, Chapter I11 and 
the proof of Theorem 6.3, Chapter 111. Let T denote the conjugation of uc 
with respect to u. Then T(X,) = -X-,(OL E A ) .  

Theorem 5.1. Let A be an automorphism of u leaving t invariant. 
Then the restriction of A to t is an automorphism of A .  On the other hand, 
each automorphism of A can be extended to an automorphism of u. 

It is clear that A extends uniquely to an automorphism of uc. 
Denoting this extension by A, we have AtC c tC. For each OL E A the linear 

Proof. 
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function a-4 on tC given by d ( H )  = a(A-lH) is a root. Since A - H, = 

H,A, the restriction of A to t lies in Aut(A). On the other hand, suppose 
cp E Aut(d). The extension of ‘p to an endomorphism of tC will also be 
denoted cp. Let a‘ E A be defined by H,. = cpH,. Then we have from 
Theorem 4.3, Chapter 111, 

As shown in the proof of Theorem 5.4, Chapter 111, relation (1)  implies 
that 

B(pH, pH’) = B(H, H’ )  for H ,  H E tC. (2) 

From (2) it is easily seen that 4p * a‘ = a(a E A )  in the sense of 
Theorem 5.4, Chapter 111. Hence cp can be extended to an automorphism 
A of uc. We shall now replace A by an automorphism which leaves u 
invariant and coincides with A on tC. Let {Xu : a E A} be a Weyl basis 
of uc mod tC with respect to u. For each OL E A, let a, be determined by 
AXa = a,X,*. Since [Xu, X-,] = Ha it follows that 

aaa-, = 1. (3) 

The numbers Nu,, determined by [X,, X,] = N,,,X,+, satisfy (Theorem 
5 . 9 ,  Chapter 111) 

R , B  = *ff(HoL) Q(1 - P) 

and this number is determined by the root pattern. It follows that 

(4) 

Let H’ E tC. Then the automorphism B = @dcH’) of uc leaves tC pointwise 
fixed and 

BX, = &H’)Xu, U € A .  

Let al, ..., a,, be the system of simple roots. Since a, # 0, it is clear 
that H‘ E tC can be chosen such that 

NU.0 = f N , f . , *  so 

= *%Y+B if a, 6, a + B E A .  

Then it follows from (4) by induction that 
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if a = n p i .  This implies by (3) that 

ABX, = E,X,, (E, = Q-, = &l) and ABX,, = X,; ( 5 )  

for 1 < i < r .  Since u is spanned by it and X ,  - X-,, i(X, + X-,) 
(a E A), it is clear that AB leaves u invariant and therefore gives the 
desired extension of y .  

Corollary 5.2. Let A be an automorphism of u leaving t invariant. 
Then the extension of A to uc satisfies 

where a,a-, = 1 and I a, I = 1. 

Since T X ,  = -X-=, this implies a_, = 5, so I an I = 1. 

and only i f  it has the form 

In fact, a,a-, = 1 as before, but now we have in addition AT = TA. 

Proposition 5.3. A n  automorphism A of u leaves t pointwise $xed i f  

A = @ d H  

for a suitable element H E t. 

Let the extension of A to uc also be denoted by A. In the 
notation above we have a = a'. Hence (4) and (5) take the form 
a,aB = and ABX, = + X ,  so AB is the identity. Thus A = ead 
for some H E  tC. The eigenvalues of A are 1 and ea(H)(a E A). Since the 
powers of A form a bounded set, a(H)  must be purely imaginary for 
each a E A. Hence H E  t and the proposition is proved. 

Theorem 5.4. The factor group Aut(u)/lnt(u) is isomorphic to 
A u t ( d ) / W ,  W denoting the Weyl group, Aut(d) denoting the group of all 
automorphisms of A. 

Let E E Aut(u). Then Et  is a maximal abelian subalgebra 
of u so there exists a B , ~ I n t ( u )  such that B,Et = t. Consequently, 
each element in Aut(u)!'Int(u) contains an automorphism leaving t 
invariant. On the other hand, W consists of the automorphisms of A 
induced by members of Int(u) leaving t invariant. Since W is generated 
by the reflections in the planes a ( H )  = 0, it is easy to see that W is a 
normal subgroup of Aut(A). We obtain now a well-defined mapping S 
of Aut(u) Int(u) into Aut(A)/W as follows: In each class of Aut(u) 
mod Int(u) select an element A leaving t invariant; let At denote the 
restriction of A to t and let 

Proof. 

Proof. 

S : A +  AtW. 
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Since W is a normal subgroup of Aut(d), S is a homomorphism. It is clear 
from the above that S is one-to-one and Theorem 5.1 shows that S is 
onto. 

Corollary 5.5. The factor group Aut(u)/lnt(u) is isomorphic to the 
group Wc(A) of automorphisms of A leaving a given Weyl chamber C C t 
invariant. 

In  fact, each automorphism of A permutes the Weyl chambers; thus 
if t ~ A u t ( d ) ,  there exists by Theorem 2.12, Chapter VII, a unique 
s = s(t) E W such that s-9 maps C into itself. Thus we get a mapping + : t 4 s-lt of Aut(A) onto Wc(A). This mapping is a homomorphism: 
Let t,, t ,  E Aut(d), s, s,, s2 E W such that 

and since W is normal in Aut(A), select s* E W such that s*t,t, = 

sTlt,s;lt,. But then sC and (s*)-lC are the same Weyl chamber t,t2C, 
so s* = s-1, proving that $ is a homomorphism. The kernel of $ is clearly 
W, so W,(A) is isomorphic to the factor group Aut(A)/W. Now apply 
Theorem 5.4. 

The rank of a compact Lie algebra u is defined as the dimension r 
of any maximal abelian subalgebra. This is, by definition, also the rank 
of the complexification uc. 

Theorem 5.6. Let 8 be an involutive automorphism of a compact 
semisimple Lie algebra u. Let f denote the set of $xed points of 8. Then 
8 E Int(u) if and only if rank u = rank €. 

Let U be any connected Lie group with Lie algebra u. 
Suppose first BEInt(u). Then 8 = Ad(u) for some U E  U.  Now u 
lies in a maximal torus T of U and 8 leaves the Lie algebra t of T pointwise 
fixed. Hence t C f  so rankf = ranku. On the other hand, if f and u 
have the same rank, there exists a subalgebra t C f which is maximal 
abelian in u. Proposition 5.3 shows at once that 8 E Int(u). 

Proof. 

Theorem 5.7. Let (Q, 8) be an orthogonal symmetric Lie algebra of the 
noncompact type and let f denote the set of $xed points of 8. Then 8 E Int(g) 
if and only if contains a maximal abelian subalgebra of Q. 

Let as usual Q = f + p and let u denote the subspace f + i p  of the 
complexification gc of g. Then 8 extends to an involutive automorphism 
of gc, also denoted 8, leaving the compact real form u invariant. Suppose 
t is a maximal abelian subalgebra of Q contained in f .  Then t is also 
maximal abelian in u so 0 = ead H where H E  t. On the other hand, 
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suppose 8 E Int(g). Since 8 E Aut(u) we see that 0 lies in the Lie subgroup 
Int(g) n Aut(u) of Int(g) which has Lie algebra g n u = f. It follows from 
Theorem 1.1, Chapter VI, that Int(g) n Aut(u) = Int(g) n Int(u). 
Hence 8 E Int(u) and Theorem 5.7 follows from Theorem 5.6. 

Corollary 5.8. Let M = Io (M) /K  be a Riemannianglobally symmetric 
space of the noncompact type, K being the isotropy subgroup of Io(M) at 
some point o E M .  Let Io(M)  and K have Lie algebras g and f, respectively. 
Then the geodesic symmetry so belongs to Io(M) ;f and only ;f f contains 
a maximal abelian subalgebra of g. 

In  fact, if so E Io(M) and if Ad denotes the adjoint representation of 
Io(M) then 8 = Ad(so) ~Int(g) .  On the other hand, if 8 ~In t (g) ,  then 
8 E Int(g) n Aut(u) = Ad(K) by Theorem 1.1, Chapter VI. Let s E K 
such that Ad($) = 8. Then (ds), = -I so s = so. 

Let 8, and O2 be two involutive automorphisms of u leaving a maximal 
abelian subalgebra t invariant, such that 8, and 0, are identical on t. 
In general 8, and 8, are not conjugate+ in Aut(u). However, we have 

Theorem 5.9. Let 8, and O2 be two involutive automorphisms of u 
such that 0,(H) = 8,(H) = --H for# H E  t. Then there exists a u ~ I n t ( u )  
such that O2 = d9,O-l. 

Let {Xu : a E A} be a Weyl basis of uc mod tC with respect 
to u. Then for each a E A 

Proof. 

6,Xu = a.X-,, (6) 

where the number a, satisfies 

a,u-, = 1, l a u l  = 1, = -au+6, 

if a, /3, 01 + /3 E A. Suppose now A ordered in some way; let A +  denote 
the set of positive roots, a,, ..., ar the simple roots. There exists a vector 
-Hl E tC such that 

(7) 

and since each au has modulus 1, we have -Hl E t. Now (-au)(-aB) = 
(-a,+6) so we obtain from (7) by induction 

(1 < j < y ) ,  
e 4 H d  auj = - 

U a € A .  --a = p(EI') 

+ An example is given by the spaces A III in 8. Cartan's list of Riemannian globally 

8 Such automorphisms exist as a result of Theorem 5.1. 
symmetric spaces. 
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Thus we have for all 01 E A 

(8) 
ea(H ) e 1 x a -  - -ea(H1)x-,, e,x, = - =x-,, 

where H ,  and H ,  are certain fixed vectors in t. Consider now the auto- 
morphism 

+ad4Hl-Hz) u = e  

of uc. This automorphism leaves u invariant and keeps t pointwise fixed. 
Since 

x, = -eQ(~1+H2'X eZax, = 6,eQa(H1-Hz) -,3 

ae x - -e~(H~)ux-, = - e f . ( H ~ + H ~ ) ~  
1 ( Y -  -a9 

the automorphism u has the required properties. 

Let I be a semisimple Lie algebra over C. A real form 
g of I is called normal if in each Cartan decomposition g = f + p the 
space p contains a maximal abelian subalgebra of g. 

Each semisimple Lie algebra gc over C has a normal real 
form and this is unique up to isomorphism. 

Let uo be a compact real form of gc, to a maximal abelian 
subalgebra of uo, and tg the subspace of gc generated by to. Let {X, : 01 E A} 
be a Weyl basis of gc mod to" with respect to uo. Then the subspace 

Definition. 

Theorem 5.10. 

Proof. 

go = 2 RH, + RX, 
a€ A UE A 

is a real form of gc. The conjugation r of gc with respect to uo leaves go 

invariant and if f,, = go n uo, pa = go n (ha), then 

90 = fo + Po 

is a Cartan decomposition of go. Moreover, pa contains the subspace 
X,ELI RH, which is a maximal abelian subalgebra of go. Hence go is a 
normal real form. On the other hand, let g, be another normal real 
form of gc, and g, = f, + p ,  any Cartan decomposition of 9,. Then 
u, = f, + i p l  is a compact real form of gc. The mapping Bi : T + X -+ 

T - X ( T  E fi, X E i p i )  is an involutive automorphism of ui(i = 0, 1) .  
There exists a maximal abelian subalgebra ti of ui such that B,(H) = - H  
for H E  t, (i  = 0, 1). Here to is the same as that above. Owing to previous 
conjugacy theorems, there exists an automorphism A of gc mapping 
u, onto uo such that At, = to. According to Theorem 5.9, the auto- 
morphisms A6,A-l and 8, of uo are conjugate within Int(uo). If ga 



3 51 Automorphisms 427 

denotes the real form of gc which corresponds to the involution A8,A-1 
of uo, then Prop. 2.2, Chapter V, shows that g A  and go are isomorphic. 
On the other hand, A induces (by restriction) an isomorphism of g1 onto 
g A  and consequently go and g1 are isomorphic. 

Let M = Io(M)/K be an irreducible Riemannian globally symmetric 
space of the noncompact type. The list of such spaces given in the 
next chapter shows that the Lie group K by itself does not determine M, 
not even locally. Nevertheless, the next theorem shows that the linear 
isotropy group K* determines the curvature tensor of M at (K} and 
therefore (M being simply connected) determines the space M. It is 
known that for an irreducible Riemannian globally symmetric space 
the holonomy group and the linear isotropy group have the same identity 
component. Therefore, the theorem below shows that problem 2 
stated in the introduction to Chapter IV has an affirmative solution 
(after decomposition into irreducible factors). 

Theorem 5.11. Let g1 = f, + Q,,  g, = f, + p 2  be Cartan decomposi- 
tions of two semisimple Lie algebras g1 and g2 over R. Assume that ad&) 
acts irreducibly on pi (i  = 1, 2) .  Let v be a one-to-one linear mapptng 
of g1 onto 92 such that: 

(i) ?(Pi) = Q 2 .  

(ii) The restriction of cp to f l  is an isomorphism off, onto f,. 

(iii) ?([ T, x]) = [v( T ) ,  v(x)] for T E €1, x E PI. 

Then g, and g2 are isomorphic. 

Proof. 

Then 

Let B,, B,, Ql, and Q, denote the Killing forms of g,, g,, 
f,, and f,, respectively. 

BAT, T )  = QdT, TI + Trpi(adBi(T) adg,(T)) (TE € 6 )  

for i = 1, 2. Consider the bilinear form Q on Q ,  x Q ,  given by 

Q(X, Y )  = &(dX), dy)), x, E Pi. 

By (iii) Q is invariant under the action off, on p , ,  that is, 

Q([Z XI, Y )  + Q ( X  [T, YI) = 0, x, y E Pi,  T E f,. 

Since the action of f, on Q ,  is irreducible, Q is proportional to the 
restriction of B, to p1 x Q,;  hence 

B,(rp(X), Cp(YN = w x ,  Yh x, Y E P I ,  (9) 
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where d is a constant, d > 0. On the other hand, let us compare 

B2([dX),  V(Y)l* dT)) and B2(cp([X Yl), 

for X, Y E P ~ ,  T€fl .  We have 

&(V([X, Yl), d T ) )  = Q2(d[X,  YI, d T ) )  + TrpJad(~([X, Y)l) ad(dT))) 

= Ql([X, YI, T) + Tr&d([X, YI) ad(T)), 

where we have used (ii) and the relation 

ad T ( X )  = (v-’ o ad(rp(T)) o cp)(X). 

This proves that 

BZ(d[X, Yl), 907) = B,([X, y 1 9  T). (10) 

On the other hand, using (iii) and (9) we have 

B,([v(X), d Y ) I ,  v(T)) = B2(V(X)> M Y ) ,  P(T)1) = ~Z(YJ(X), d [ Y ,  TI) 

= dBl(X, [K TI) = W [ X ,  YI, T) 

B,([(P(X), 9091,  dT)) = dB,(d[X,  Ylh P(T)). 

so by (10) 

(1 1) 

Since B, is strictly negative definite on f,, (1 1) implies 

d[X, YI) = d - l [ d X ) ,  v(Y)I, x, Y E  P1. 

The desired isomorphism of g1 onto g2 is now obtained by defining 

$(TI = d T )  ( T E  fl)? $ ( X )  = d-l’ZCp(X) ( X  E PI). 

Remark. We shall prove later (Chapter X, 96) with considerably 
more effort that two real forms of a simple Lie algebra over C are iso- 
morphic if their maximal compactly imbedded subalgebras are iso- 
morphic. 

5 6. The Multiplicities 

The multiplicities of the restricted roots are important invariants 
of the noncompact Lie algebra g (or the associated symmetric space 
GIK). I n  fact, Cartan’s classification shows that the triple (a, Z, m), 
where m is the multiplicity function, determines g up to isomorphism 
(cf. Chapter X, Exercise F9). 
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Theorem 6.1. The following properties of the symmetric space GIK 
are equivalent 1 

(i) 

(ii) 

All Cartan subalgebras of g are conjugate under Int(g). 

GIK has split rank, that is, 

rank(G) = rank(K) + rank(G/K). 

(iii) 

Let a C p be maximal abelian and b C g a Cartan subalgebra containing 
a. Let A be the set of roots of (gc, bC) and Z the set of restrictions Cl 
as a E A. The mapping H 4 -OH of bc -+ bC induces a permutation 
of A,  also denoted by -0. We first prove a simple lemma. 

All restricted roots have even multiplicity. 

Lemma 6.2. Let # E Z and A ,  = {a E A : ol = $}. Then A ,  contains 
an element a such that d = -a if and only if the multiplicity m, is odd. 

In fact, the map -0 permutes the elements of A,. Identifying an 
element of Z with a linear function on bc vanishing on b n f, we have 
a: = +(a - a@). If a E A,, then -a@ = a if and only if a = #; so -0 
permutes the set A, - (4) without fixed points. Thus # E A ,  if and 
only if the cardinality of A, is odd. 

Passing now to the proof of Theorem 6.1, assume (i). Extend b n f 
to a maximal abelian subalgebra t of f and extend this to a maximal 
abelian subalgebra f of g. If H E t, 2 E f ,  then 2 + 02 E f and 

whence 01 C f .  Therefore 

I = f n r + f n p  = t + f n p .  

The elements of ad,(t) and of ad,(f n p) are semisimple; since they all 
commute, the elements of ad,@) are semisimple, so i is a Cartan sub- 
algebra. But assuming (i), $ and f are conjugate, so by Prop. 4.5, t = $ n f. 
This proves (ii). 

Now assume (ii). If (iii) were false, select 4 E 2 such that m, is odd. 
Then by Lemma 6.2 there exists an a E A such that a(@ n t) = 0 and 
5 = 4. Select X ,  # 0 in gc such that [H, X,] = a(H)X,   HE^). 
Writing X ,  = 2, + iZ, (Z,, 2, E g), we deduce [H,  Z,] = a(H)Z, 
(i  = 1 ,  2 )  since a I lj is real. Assuming, say, 2, # 0, we write 2, = 
T + X T E ~ ,  X E ~ .  Then both T and X are f O  and [H, T] = 0 for 
Ij n f. This contradicts (ii). 
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Finally assume (iii). For each a E d let H, E bC as in Theorem 4.2, 
Chapter 111. Then by Lemma 6.2, H ,  6 a for all a E A which do not 
vanish identically on a, hence for all a E d. With X ,  as above we have 

fc = (t, n f ) ~  + C(X, + ex,). 
U S A  

But then H ,  $ a (a E A )  implies that (t, n f)C is maximal abelian in fC, 
so t, n f is maximal abelian in f. If (i) were false, there would by Prop. 4.5 
exist a Cartan subalgebra b1 C g such that 8b1 C bl and bl n p C a (proper 
inclusion). But then dim@, n f) > dim@ n f )  which is a contradiction. 
This proves the theorem. 

Remark. Property (ii) can also be stated: t, n f is maximal abelian in t 
for any 0-invariant Cartan subalgebra t, of g. 

Proposition 6.3. A semisimple Lie algebra g which is a normal real 
form of its complexijication has all its restricted roots of multiplicity 1 .  
The converse holds $f  contains no ideal #(O) of g. 

If g is a normal real form, the complexification ac is a Cartan 
subalgebra of gc and (gc)a n g = g, (a E Z), so each multiplicity is 1. 
On the other hand, suppose m, = 1 for each h E C. Then dim pA = 1 
for each h E Z+ ($1 1, Chapter VII). Now [ p ,  p] = f since the orthogonal 
complement of [p, p] in f would be an ideal in g. By Lemma 11.3, 
Chapter VII, this implies f, = CAE,+ [ p A ,  pA] = 0, that is, m = 0, so a 
is maximal abelian in g. 

Proof. 

5 7. Jordan Decompositions 

We recall that an element X E gl(n, R )  is called semisimple if as an 
element in gI(n, C) it is conjugate to a diagonal matrix. We call such 
an X real semisimple if the eigenvalues are all real. A matrix u is called 
unipotent if u - 1 is nilpotent. A semisimple matrix g E GL(n, R)  is 
called elliptic (respectively, hyperbolic) if all its (complex) eigenvalues 
have modulus 1 (respectively, are >O). 

Lemma 7.1. Each g E GL(n, R)  can be uniquely written 

g = ehu (1) 

where e, h, u E GL(n, R )  are ell+tic, hyperbolic, and unipotent, respectively, 
and all three commute. 
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Proof. By (I), $1, Chapter 111, we have the additive Jordan decomposi- 
tiong = s + n, ( s  semisimple, n, nilpotent, sn, = nls). Putting n = s-ln,, 
u = 1 + s-ln, we have the multiplicative Jordan decomposition g = su, 
where u is unipotent and su = us. Uniqueness is clear. Now s is conjugate 
to a diagonal matrix so can be written s = eh where e is elliptic, h 
hyperbolic, and eh = he. Here e and h are uniquely determined because 
the decomposition of a nonsingular matrix into a product of a unitary 
and a positive definite matrix is unique. Since 

ehu = g = ugu-l = ueu-4hu-1u, 

the uniqueness of s, u, e, and h implies ue = eu, uh = hu. Finally, 
since g is fixed under complex conjugation, the uniqueness of e, h, u 
in (1) implies that e, h, u all belong to GL(n, R )  and the lemma is proved. 

The decomposition in Lemma 7.1 is called the complete multiplicative 
Jordan decomposition. 

We now characterize elliptic, hyperbolic, and unipotent elements in 
terms of the Iwasawa decomposition. 

Theorem 7.1. Let g be a semisimple Lie algebra over R and G the 
adjoint group Int(g). Let G = KAN be any Iwasawa decomposition of G. 
Then : 

(i) g E G is elliptic i f  and on& i f  it is conjugate to an element in K. 
(ii) g E G is hyperbolic if and only if it is conjugate to an element in A. 
(iii) g E G is unipotent ;f and only if it is conjugate to an element in N .  

We identify the Lie algebra of G with g and start with a lemma. 

Lemma 7.3. Let G be as in Theorem 7.2. 

(i) Each hyperbolic element in G lies on a one-parameter subgroup of G. 
(ii) Each unipotent element in G lies on a one-parameter subgroup of G. 

Proof. 
with respect to the positive definite bilinear form B, on g leaves Aut(g) 
invariant; in fact = 0g-l0 as is easily seen by direct computation. 
Also Aut(g) is a pseudoalgebraic subgroup of GL(g) (as defined in Chapter 
X); in fact the condition x ~ A u t ( g )  is expressed in terms of a basis 
of g by a system {P} of second degree polynomials P in the matrix 
entries of x with coefficients formed by the structure constants of g. 
Let h E G be hyperbolic. Then h = eH where H is real semisimple. 
The proof of Lemma 2.3, Chapter X, shows that etHEAut(g) for all 
t E R. Since G is the identity component of Aut(g), this means H E  g, 
proving (i). 

(i) Let 0 be a Cartan involution on g. The transpose g + 
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Part (ii) is proved in a similar fashion. For this, let u E G be a unipotent 
element. By Lemma 4.5, Chapter VI, we have u = clog 

Then 

where 

l o g u = N - & V 2 + 4 N 3 -  ... ( N = u - I ) .  

etlogu = I + t (N - gNz + ...) + &tz(N - t N z  + ...)z + ... 
where by the nilpotency of N ,  these series are finite, so each matrix 
entry (et  log u)ii is a polynomial qij(t). Let P(xij) be one of the polyno- 
mials from the system {P} above definining Aut(g). Then 

U" E Aut(g), TZ E 2 => P(qij(t)) = 0 ( t  E Z ) ;  

so since P(qij(t))  is a polynomial in t ,  it must vanish identically in t .  
This means e f  l o g u  E Aut(g), so as before, log u E g, proving (ii). 

The elliptic elements of course lie on one-parameter sub- 
groups as well (cf. Prop. 6.10. Chapter 11). 

(i) By the compactness of K each k E K is 
is elliptic. Conversely, each elliptic element lies in a compact subgroup 
of G, so by Theorem 2.1, Chapter VI, it is conjugate to an element of K. 

For (ii) we note first that the root space decomposition ((l), $1) 
shows that each element in A is hyperbolic. On the other hand, suppose 
hE G hyperbolic. By Lemma 7.3, h = eH   HE^), and by Prop. 4.6, 
H lies in a Cartan subalgebra of g. Having real eigenvalues, H lies in 
a vector part of a Cartan subalgebra, so by Cor. 4.2 ( and Lemma 6.3, 
Chapter V) H is conjugate to an element of a. 

For part (iii) we need the following result which provides useful 
information about the nilpotent elements. 

Theorem 7.4. Let g be semisimple and suppose X # 0 in g such that 
ad,(X) is nilpotent. Then there exist elements H ,  Y E  g such that 

Remark. 

Proof of Theorem 7.2. 

[ H ,  XI = 2 x ,  [H,  Y ]  = -2Y, [ X ,  Y ]  = H .  (2)  

(Hence the subalgebra 1 = RH + R X  + R Y  is isomorphic to sI(2, R )  
under the linear map given by 

This is based on two simple lemmas. 

Lemma 7.5. Let A and B be linear transformations of a Jinite- 
dimensional real vector space V .  Assume A nilpotent and [A, [A, B]]  = 0. 
Then [A,  B ]  and A B  are both nilpotent. 
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Proof. Putting C = [A, B], we have [A, C] = 0, SO for p E Z+, 

[A, BC'] = [A, B] C' = C'+'. 

Thus Trace (C*) = 0 for p 2 1, so using (I), $1, Chapter 111, we see 
that C is nilpotent. Now since D + [B, D] is a derivation and since 
[[B,  A],  A] = 0, we have [B, A*] = p[B, A1Ap-l ( p  2 1). Let h E C 
be an eigenvalue of AB on the complexification Vc and x # 0 a corre- 
sponding eigenvector, ABx = Ax. Let T be the smallest integer such 
that A'x = 0. Then 

hAr-lx = A7-'ABx = BA"'x - [B, A'] x = - y [ B ,  A]  A'-'x. 

Since [B, A] is nilpotent and Ar-lx # 0, we conclude h = 0. Thus AB 
has all eigenvalues 0, hence is nilpotent. 

Lemma 7.6. Let H ,  X E g be nonzero elements such that 

[H,  XI = 2x, H E  [X ,  93. 

Then there exists an element Y E g such that (2)  is satis$ed. 

Proof. Let g' denote the solvable Lie algebra RH + R X  and consider 
the representation 2 -+ ad(2) of g' on the complexification gc. Using 
Cor. 2.3, Chapter 111, we see that 2adg(X) = [ad H,  ad is nilpotent. 
Its kernel, say c, satisfies [H,  c] C c. By assumption there exists a 2 E g 
such that H = [Z, XI. By induction, we have 

[ad 2, (ad X)"] = n(ad H - n + l)(ad X)"-'. 

Thus if gn = (ad X).g ( n  0), we have for T E gn-l 

n(ad H - n + 1) T E ad 2 ad X ( T )  + gn, 

whence by [H, c] c c 

(ad H - n + l)(c n gna1) C c n gn. (3) 

Suppose a ~ c  is an eigenvector of adH,  ad H(v)  = ca ( C E  R) .  Since 
gn = 0 for n sufficiently large, there exists a K 2 1 such that a E gkp1 ,  
z, 4 gk. Then (3) implies c = K - 1. In  particular, ad H + 2 is non- 
singular on c. But by the Jacobi identity [X, [ H ,  z ]  + 2 4  = 0, that is, 
[H,  ZJ + 2 2  E c, so there exists a Z' E c satisfying (ad H + 2)(Z') = 

[H, 21 + 22. Then the element Y = 2' - 2 has the desired properties 
and the lemma is proved. 
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Turning now to the proof of Theorem 7.4, let 2 belong to the kernel b 
of (ad X ) 2 .  Then Lemma 7.5 implies a d X o  a d 2  nilpotent, so in 
particular Tr(ad X ad 2) = 0, that is, B(X,  b) = 0. But since 

B(ad X)2  Y ,  Y’)  = B(Y, (ad X)2  Y’ )  

for all Y, Y’ E g and since B is nondegenerate, the image (ad X)2g is the 
set of elements orthogonal to b. Thus X = (ad X)2(Y‘ )  for a suitable 
Y’ E g. Then the element H = -2[X,  Y’] satisfies [ H ,  x] = 2X,  so the 
theorem follows from Lemma 7.6. 

We can now finish the proof of Theorem 7.2. Let u E G be a unipotent 
element. By Lemma 7.3, u = ex where X E g is nilpotent. By Theorem 
7.4, X can be imbedded in a three-dimensional algebra I such that (2) 
is satisfied. Considering the isomorphism of I with eI(2, R), we see that 
the linear map do determined by (H, X ,  Y) +- ( - H ,  -Y,  - X )  is a 
Cartan involution of I. We extend this to a Cartan involution 8 of g 
(Exercise A.8 (ii), Chapter VI). Since OH = -H, Lemma 1.2, Chapter VI, 
shows that H is real semisimple. Thus, by (ii), we can conjugate H 
and X such that H lands in the closed Weyl chamber a+. But the relation 
[H, X] = 2X and (l), $1 then shows that X lands in n. Thus u = ex is 
conjugate to an element in N and Theorem 7.2 is proved. 

EXERCISES AND FURTHER RESULTS 

A. The Decompositions 

1. Write out the Bruhat decomposition for G = SL(2, R), G = 

2. By direct matrix computation prove the following case of Theorem 
1.4 for G = SL(K, R) with N and R, respectively, the groups of uni- 
potent uppertriangular (resp. lower-triangular) matrices and MA the 
group of diagonal matrices of determinant 1. 

SL(2, C ) .  

(i) Each g E SL(K, R) can be written in the form 

where n,, n2 E N and s is a matrix which in each row and in each column 
has only one nonzero entry (Gelfand and Naimark [I], 518) 

(ii) Let g = (gl,) and A&) = det((glm)lGr,mGi). Then (cf. Godement 
C21)9 

RMAN = {g E G : d,(g) # 0 for 1 < i < k}, 
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and the diagonal matrix d(g) = m(g) exp B(g)  has entries 

d(g),, = 4 W i - d g ) .  

(iii) Prove the relation “gg = tn exp 2H(g)n ( k  = transpose, n E N) 
from which H(g)  is computable. 

3. With the notation of $1 suppose GC is a connected Lie group with 
Lie algebra gc (the complexification of g) and assume G taken as the 
analytic subgroup of GC with Lie algebra g. Then (cf. Satake [3]) 

M = Mo(exp(ia) n K )  

if MO denotes the identity component of M .  (Hint: Use Theorem 2.5, 
Chapter VII, on the compact analytic subgroup U E GC with Lie 
algebra u = f + ip.) 

4. Show that if HI ,  H2 E a are Ad(G)-conjugate, then they are W(g, 6)- 
conjugate (compare Exercise 9, Chapter VII). 

5. Deduce from Theorem 7.2, Chapter 111, Lemma 6.3, Chapter V, 
and Theorem 2.12, Chapter VII that all Iwasawa decompositions of a 
connected semisimple Lie group are conjugate. 

6.* Let g be a semisimple Lie algebra over R. For X E g and.g E Int(Q) 
let ad X = S + N, g = su, g = ehu, respectively, be the additive, 
multiplicative and complete multiplicative Jordan decompositions. Then 

(i) S, N E  ad(g). 
(ii) e, h, u E Int(g) 

(cf. Chevalley [6], Vol. 11, 814, Mostow [5], Varadarajan [I], Chapter 3.) 
7.* For a E A  let C ( a ) C a  denote the convex hull of the points 

s(log a) (s E w). Then 

C(a) = {H(ak) : K E K }  

and as a consequence, G = KNK (cf. Kostant [S]). 

B. The Rank-One Case 

1. If g is noncompact, semisimple of real rank 1 ,  and not isomorphic 

2. For an indivisible positive root 01 let ga C g denote the semisimple 

(i) ga is simple. 

(ii) 

to d(2, R), then M is connected (cf. the proof of Lemma 3.7). 

subalgebra constructed in Prop. 2.1. Prove that: 

If g has complex structure, gcL M 81(2, C)R. 
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3. With the notation of Theorem 3.8 show that the components 
A+(g), H ( g ) ,  and B(g)  of the Cartan, Iwasawa, and Bruhat decompositions 
satisfy the relations: 

(i) 2 e 2 4 H ( A ) )  - @u(B(m*@) = 2 cash 2a(A+(ff)) ( f i  # e). 

(ii) Given ff E N, let ff, E N denote the unique element such that 

m*K(fi,) M = K ( f i ) - l  m*M. 
Then 

(cf. Helgason [l], p. 465). 

A+(fi,) = A+@), H(fi,) = H(fi) .  

4. 

(i) The mapping gK*-+gK imbeds G*/K* in G/K as a totally 

(ii) G*/K* is the ball zlZl + z2Z2 < 1 with the action of SZT(2, 1) 

With the notation of 93 show that: 

geodesic submanifold. 

given by 

if 
2 = (:) ---f g . Z = (A2  + B)(CZ + D)-l 

g = ( C  A D )  ESU(2,l). 

C. Cartan Subalgebras 

1. In d(2, R) consider the subalgebras 

Show that they are maximal abelian in 4 2 ,  R), the first is not a Cartan 
subalgebra, and the last two are nonconjugate Cartan subalgebras. 

2. Let G be a connected semisimple Lie group whose Lie algebra g 
has all Cartan subalgebras conjugate. Then K is semisimple (hence 
compact). 

3. Let g be a semisimple Lie algebra over C and $ a Cartan subalgebra. 
An automorphism u of g leaves b pointwise fixed if and only if it has the 
the form cr = ead H for some H E $. 

NOTES 

$1. For Theorems 1.2, 1.3, see Notes to Chapter VI-VII. The Bruhat decom- 
position (Theorem 1.4) was proved by Gelfand and Naimark [l], $18 for SL(n, C) ,  
for SO(n, C), Sp(n, C )  by Bruhat (cf. [l], p. 187). It was generalized in Chevalley’s 
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paper [5] (to “Chevalley groups”) and by Harish-Chandra [q to all semisimple 
Lie groups. We have followed Harish-Chandra’s proof and the customary termino- 
logy “Bruhat decomposition.” 

The rank-one reduction was used by Gindikin and KarpeleviE [l] to prove 
a product formula for Harish-Chandra’s c-function [9], I. I t  is also used in Araki’s 
classification method [l]. 

This section is from Helgason [9], Chapter 111, $1. Another computation 
of the components H(ii), B(m*fi) is given in Schihann [l], p. 24. 

The proof of finiteness (Lemma 4.3 and Cor. 4.4) and Prop. 4.5 follows 
Harish-Chandra [7], 92. These results were also found by Kostant [l] and A. Borel. 
A relationship between the conjugacy classes of Cartan subalgebras of g and the 
connected components of the subset of regular semisimple elements in g is estab- 
lished in Rothschild [l]. A classification of the Cartan subalgebras was carried out 
by Kostant (unpublished, cf. [l]) and Sugiura [l]. 

This section is mostly based on Gantmacher [l]. As mentioned in the 
Notes to Chapter VII, Theorem 5.4 goes back to Cartan [4], p. 366. In Cartan [lo] 
the number of components of I (M)  is determined for each noncompact irreducible 
M and Cor. 5.8 is verified in each case. The existence and uniqueness of the 
normal real form (Theorem 5.10) is also established by a case-by-case verification 
in E. Cartan [2]. This verification is particularly cumbersome for the exceptional 
Lie algebras. The present proof, as well as that of Theorem 5.9, is apparently new. 
The proof of Theorem 5.11 was worked out jointly with M. Berger. It has also 
been proved by Kostant, see Simons [l]. Theorem 6.1 is proved in Araki [2]. 

For Lemma 7.1 and Theorem 7.2 see Mostow [5],  [6], $2 and Kostant [8]. 
Theorem 7.4 was stated by Morozov [l] and given a complete proof by Jacobson 
[2]. We have followed the presentation in Kostant [4], $3, and Bourbaki [2], 
Chapter VIII, $1 1.  

$2. 

93. 

$4. 

$5-§6. 

97. 



CHAPTER X 

THE CLASSIFICATION OF SIMPLE 
LIE ALGEBRAS AND O F  SYMMETRIC SPACES 

In his papers from the years 1926 and 1927 8. Cartan accomplished a complete 
classification of irreducible Riemannian globally symmetric spaces. Locally, the 
question amounts to a classification of all simple Lie algebras over R, a problem 
which E. Cartan had solved already in 1914; this classification is a significant 
refinement of the Killing-Cartan classification of simple Lie algebras over C. Both 
classifications are carried out in this chapter, and some special properties of the 
corresponding spaces developed. 

In $1 the classification is reduced to Lie algebra problems. In 92 we describe 
in some detail the symmetric spaces associated with the classical groups. Section 3 
deals with the theory of abstract root systems and their classification by means of 
Dynkin diagrams. As an application, the centers of the simple simply connected 
compact Lie groups are determined. In §4 the construction and classification of 
the simple Lie algebras over C is given and their finite-order automorphisms are 
described in $5. Section 6 is a synthesis of the previous ones, giving the symmetric 
space classification. 

5 1 .  Reduction of t h e  Problem 

We recall that two orthogonal symmetric Lie algebras (I,, s,) and 
(I2, s2) are called isomorphic if there exists an isomorphism 'p of 1, 
onto I, such that 'p o s1 = s2 o 'p. 

The next lemma shows that the classification of simply connected, 
irreducible Riemannian globally symmetric spaces up to isometry is 
equivalent to the classification of irreducible orthogonal symmetric Lie 
algebras up to isomorphism. Here it is assumed as usual that the 
Riemannian structure is that induced by the Killing form. 

Lemma 1.1. 

(i) Let M ,  and M ,  be two irreducible Riemannian globally symmetric 
spaces and Q, an isometry of M,  onto M,. Let p ,  E M,, p ,  E M, such 
that O(pl) = p,. Let oi denote the automorphism of Io(Mi) given by 
ui(g) = spi o g o spi ( i  = 1, 2). Let si denote the corresponding auto- 
morphism of the Lie algebra Ii of Io(Mi). Then the orthogonal symmetric 

438 
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Lie algebras (Il, sl) and (I,, s,) are isomorphic under the daJferentia1 of 
the isomorphism g ---t Qi o g o Qi-l of Io(Ml) onto Io(M2). 

(ii) Let (Il, s,) and (I,, s,) be two irreducible orthogonal symmetric Lie 
algebras. Let (L,, Ul) and (L,, U,) be the corresponding Riemannian 
symmetric pairs, L, and L, simply connected, Ul and U, connected. Let 
y be an isomorphism of (l,, sl) onto (I,, s,). Then there exists an isometry Qi 
of Ll /Ul  onto L21U2 such that q is the dzj'ferential of the isomorphism 
g -+ @ o g o @-l of Io(Ll/Ul) onto Io(L2/U2). 

The proof, which is quite canonical, can be omitted. 
We have seen that given an irreducible orthogonal symmetric Lie 

algebra of the noncompact type, there is a associated with it exactly 
one Riemannian globally symmetric space and this space is simply 
connected. Owing to the duality for symmetric spaces (Chapter V, §1), 
it suffices therefore to classify the irreducible compact Riemannian 
symmetric spaces. 

Let (t, s) be an irreducible orthogonal symmetric Lie 
algebra and let M be a Riemannian globally symmetric space associated 
with (1, s). The space M is said to be of type i (i = I ,  11, ILL, IV) if 
(I, s) is of type i in the notation of Theorems 5.3 and 5.4 in Chapter VIII. 

As mentioned above it suffices to consider the types I and 11. Let us 
first consider type 11. 

Proposition 1.2. The Riemannian globally symmetric spaces of type 11 
are precisely the compact, connected simple Lie groups provided with a 
Riemannian structure invariant under left and right translations. 

It is clear from 96, Chapter IV, that a compact, connected, 
simple Lie group with a bi-invariant Riemannian structure is a Rieman- 
nian globally symmetric space of type 11. 

On the other hand, let (I, s) be an orthogonal symmetric Lie algebra 
of type 11. Then I = 1, + (direct sum) where the ideals 1, and 1, are 
interchanged by s. Let &, be a Lie algebra isomorphic to both I, and I, 
and let Ii denote the isomorphism of 1, onto I,,, (i = 1, 2). Then the 
mapping 

Definition. 

Proof. 

I, : x + Y --t (I,X, I,Y), x E I,, Y E  I,, 

is an isomorphism of I onto the product algebra 1 = I,, x b. Consider 
the automorphisms ? and u of 1 given by 
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for X E I,, Y E b. Then (I, s) and (7, 5)  are isomorphic under the mapping 
u o I, : I -+ 1. Let (L, H )  and (E, R) be corresponding Riemannian sym- 
metric pairs, L and z simply connected, H and connected. Then L is 
the product Lo x Lo where Lo is a simply connected Lie group with Lie 
algebra I, and be the Riemannian 
structures on L/H and z/R, respectively, and let i,4 : L/H +E/R be 
the isometry from Lemma 1.1, induced by the isomorphism u o I,, : I ---t 1. 
Now L / f i  is a group G with the multiplication 

= {(x, x) : x E Lo). Let Q and 

(x1, x2) * (Yl, Y2) = (xlG1Y1Y2, 4 R 

(96, Chapter IV). Note that R is not a normal subgroup of L. The 
Riemannian structure is invariant under left and right translations 
on G. The mapping i,4 turns L/H into a group G isomorphic to G and 
Q is invariant under left and right translations on G. 

In order to conclude the proof of Prop. 1.2 we need a simple lemma. 

Lemma 1.3. Let N be a subgroup of L such that H is a normal subgroup 
of N .  The the product in LIH satisjies 

(xH)(nH)  = xnH, x EL,  n E N .  

In particular, the factor group N/H is a subgroup of LIH (note that H 
is not normal in L).  

denote the subgroup of 1 which corresponds to N 
under the isomorphism u o I ,  : I -+ I. Then R is a normal subgroup 
of R and it suffices to prove the lemma for n, E ,  and E f  instead of N, 
L, and H. Consider two arbitrary elements (n,, n,)R E iv/R and 
(x,, x2) E L/R. Since (nl, n2) (x, x) (n,, n2)-l E R for each x E Lo, it 
follows that nr1n2 and (therefore) n,nT1 belong to the center of Lo. 
Hence the product in G = 

Proof. Let 

is 

(xl, x2) R(nl ,  nz> R = ( x , x ~ k , n ; l ,  e) R = (xln1n,lx;l, e) R 

= (Xl% x2nd R 

and the lemma is proved. 
Turning now to Prop. 1.2, let M be an arbitrary Riemannian globally 

symmetric space associated with (I, s). Then there exists a symmetric 
pair (L1, H,) associated with (I, s) such that L, = I,(M) and M = L,/H,. 
Let r denote the homomorphism of L onto L ,  such that d r  is the 
identity mapping I -+ 1. Then r ( H )  C H,. Let q denote the mapping 
xH --t n(x)Hl of the group G = L/H onto the manifold M = L,/Hl 
(see diagram). Then (G, v) is a covering manifold of M (Lemma 13.4, 
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Chapter I), and if o = q(e), the geodesic symmetries s, and so of G 
and M, respectively, are related by v o se = so o 9). Consider the closed 
subset r = T-'(O) of G. We shall prove that I' is a normal subgroup 
of G. The set fl = n--l(H1) is a closed subgroup of L ;  its identity 
component is H and r = f l / H  (as subsets of G). Since H is a normal 
subgroup of 1?, Lemma 1.3 shows that q(gy)  = q(g )  for g E G, y E r. 
Thus r is a subgroup of G and we can define a mapping f i  : g r  + q ( g )  
of the coset space G / r  onto M. 

G = L/H 

If v (x ,H)  = q(x2H) ,  then x;lxl = h E f l  so (x,H) (hH) = x,H. This 
shows that f i  is one-to-one. Finally consider the mapping 7 : G / r  -+ G / r  
which corresponds to so under /I. Then since s,(g) = g-l and q o s, = 
so o q, we find that 7 ( g r )  = g - l r ,  ( g  E G).  This requires that 
( g y ) - l r  = g - l r  for each g E G, y E r, so r is a normal subgroup of G 
and we can turn M = /I(G/r) into a group by requiring f i  to be an 
isomorphism. Finally since f i  is an isometry, the metric on M is invariant 
under left and right translations. This finishes the proof of Prop. 1.2. 

We turn now to the type I. In view of Lemma 1.1, Theorem 5.3, 
Chapter VIII, and Theorem 9.1, Chapter VII, the classification problem 
for type I reduces to the following three problems: 

A. Find all compact simple Lie algebras, isomorphic Lie algebras not 
distinguished. 

B .  For each compact simple Lie algebra u, jind all involutive auto- 
morphisms of u, not distinguishing automorphisms which are conjugate 
within the group Aut(u). 

C. Find the centers of all compact, simple, simply connected Lie groups. 
Now every complex semisimple Lie algebra g has a compact real 

form u which is unique up to an inner automorphism (Cor. 7.3, Chapter 
111). It is clear that g is simple if and only if u is simple. Problem A 
is therefore equivalent to 

A'. Find all simple Lie algebras over C, isomorphic Lie algebras not 
distinguished. 

If u runs through all compact real forms of a complex semisimple 
Lie algebra Q, and s runs through all involutive automorphisms of u, 
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then go, in the dual (go, s*) to (u, s), runs through all noncompact real 
forms of g. We have also seen (Prop. 2.2, Chapter V) that conjugate 
automorphisms s correspond to isomorphic real forms go. Hence, 
problem B is equivalent to: 

B‘. For each simple Lie algebra g over C, find all noncompact real forms 
of g up to isomorphism. 

Another problem equivalent to problem B is the following: 

B”. For each simple Lie algebra g over C find all involutive automor- 
phisms of g ,  not distinguishing automorphisms which are conjugate within 

T o  see the equivalence, let u be a compact real form of g. Let Inv(u) 
denote the set of involutive automorphisms of u and Inv(u)/Aut(u) the 
set of conjugacy classes in Aut(u) of the elements in Inv(u). We define 
Inv(g)/Aut(g) similarly. Each s E In.(.) extends uniquely to SC E Inv(g); 
and if sl, s, are conjugate within Aut(u), then si and sg are conjugate 
within Aut(g). The following converse gives the equivalence of problems 
B and B”. 

Aut(g). 

Proposition 1.4. The mapping 

T : Inv(u)/Aut(u) + Inv(g)/Aut(g) 

induced by s + sc is a bijection. 

If u ~Inv(g) ,  then Chapter 111, Exercise B.4 implies that a 
leaves invariant a compact real form, which by Chapter 111, Cor. 7.3, 
we can write tpu where cp E Aut(g). If s denotes the restriction a I qu, 
then v-ls? E Inv(u) and (~-lsrp)~ = q l s c q  = v-lav. Hence a is con- 
jugate to a u‘ E Inv(g) leaving u invariant; thus T is surjective. Finally, 
to prove T is one-to-one suppose al, a, E Inv(g) are conjugate in Aut(g), 
u, = gqg-l, and leave u invariant. To  see that the restrictions s1 = a1 I u 
and s, = a, I u are conjugate in Aut(u) we write the compact real form 
gu as gou, where go E Int(g) (Cor. 7.3, Chapter 111). Using Theorem 1.1, 
Chapter VI, on go, we have g = pu where p E exp( Ju), u E 0. Here J 
is the complex structure of g and 0 the normalizer of u in Aut(gR). 
Thus p u ~ ~ u - ~ p - ~  = a2 and al, a, E 0. If 8 is the Cartan involution 
of gR with respect to u, we apply the corresponding automorphism of 
Aut(gR) to this last equation, deriving p - l ~ a ~ u - ~ p  = a,; hence p 2  
commutes with U U ~ U - ~ .  But since exp is one-to-one on Ju, this implies 
that p itself commutes with ualu-l, so ualu-l = a,, and sl, s, are con- 
jugate within Aut(u) as stated. 

Proof. 
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The solutions to problems A, B, and C will be given later in the 
chapter. We conclude this section with a description of the simple Lie 
algebras in the spirit of Theorems 5.3 and 5.4, Chapter VIII. 

Proposition 1.5. Let g be a simple Lie  algebra over C. Then gR is 
simple and (gR)C is not simple. The simple Lie algebras over R fa l l  into two 
disjoint classes: 

A. The simple Lie algebras over C, considered as real Lie algebras. 

B. The real forms of simple Lie algebras over C. 

A real simple Lie algebra I belongs to class A if 1' is not simple, and to 
class B if Ic is simple. In the jirst case Ic is the direct sum of two simple 
isomorphic ideals. 

Let a c gR be an ideal. Then if J is the complex structure of Proof. 

SR, 
a 3 [a, gRl 3 [a, Jal = J[a, a1 = Ja, 

so a is invariant under J and thus an ideal in the complex algebra g. 
But g is simple, so a = 0 or g; thus gR is simple. If 6' is a Cartan involution 
of gR, the dual to (gR, 6') is of type I1 (Theorem 5.4, Chapter VIII), so 
(gR)C is the direct sum of two simple isomorphic ideals. Thus A and B 
are disjoint classes of simple Lie algebras. 

Finally, let I be a real simple Lie algebra, Ic = Cy-, 1, the decomposi- 
tion of Ic into its simple ideals, u the conjugation of IC with respect to I. 
Since u ( a 2 )  = i a ( Z ) ( a  E C, 2 E 1') each uI, is a simple ideal in Ic and if 
a, is any conjugation of 1, then Z -+ auiZ is an isomorphism of 1, onto 
01,. Since u must permute the 1, we may number them such that 

where 01, = 1, (2K + 1 < i < n). Superscript u denoting fixed points 
of u we get 

and each term is an ideal in I. By simplicity, either k = 0 (n = 1) or 
K = 1 (n = 2). In the first case I belongs to class A; in the second case 
Ic = I, 0 01, and the mapping X + X + OX is an isomorphism of 
1; onto I. Thus I belongs to class B. 
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$2. The Classical Groups and Their Cartan Involutions 

1. Some Matrix Groups and Their Lie Algebras 

In  order to describe the real and complex classical groups, we adopt 
the following (mostly standard) notation. Let (x,, ..., x,) and (zl, ..., zn) 
be variable points in Rn and Cn, respectively. A matrix A = ( ~ ~ ~ ) ~ ~ i , j G ~  

operates on Cn by the rule 

As before, E$i denotes the matrix (8ai8bj)l<a,b<n. The transpose and 
conjugate of a matrix A are denoted by tA and A, respectively; A is 
called skew symmetric if A + 'A = 0, Hermitian if tA = .A,  skew 
Hermitian if 1A + A = 0. 

If I, denotes the unit matrix of order n, we put 

- I ,  0 0 0 
O I , O O  

The multiplicative group of complex numbers of modulus 1 will be 
denoted by T. 

GL(n, C), (GL(n, R)): The group of complex (real) n x n matrices of 
determinant # 0. 

SL(n, C), (SL(n, R)): The group of complex (real) n x n matrices of 
determinant 1. 

V ( p ,  q): The group of matrices g in GL(p + q, C) which leave invariant 
the Hermitian form 

--z,f, - ... - zf, + Z,+&+l + .-. + z,+,z,+ata, i.e., tgI,,,g = I,,T 

We put U(n) = U(0, n) = U(n, 0) and SU(p,  q) = U ( p ,  q) n S L ( p  + q, C),  
SV(n) = U(n) n SL(n, C). Moreover, let S(U, x Up) denote the set 
of matrices 

where g, E U(p),  g, E U(q) and det g, det g, = 1. 
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SU*(2n): The group of matrices in SL(2n, C) which commute with the 
transformation t+h of C2" given by 

( ~ 1 ,  * * * ?  zn ,  zn+1, .-*, z2n) -+ (2n+1, ..*? 22n, - 21,  ***,  - 2n)*  

SO(n, C): The group of matrices g in SL(n, C) which leave invariant the 

z; + ... + z:, i.e., tgg = In. 

SO(p, q): The group of matrices g in SL(p + q, R) which leave invariant 

quadratic form 

the quadratic form 
2 2 - X I  - ... - x i  + XD+l + ... + xi- ,  i.e.9 tgl,,qg = I D , q .  

We put SO(n) = SO(0, n) = SO(n, 0). 

skew Hermitian form 
SO*(2n): The group of matrices in SO(2n, C) which leave invariant the 

- z l 2 n + l +  zn+121- z22n+2 + zn+252 - - ~ n 2 2 n  + zzn2n. 

Thus g E SO*(2n) e 
Sp(n, C): The group of matrices g in GL(2n, C) which leave invariant the 

J,,g = J,, "gg = 12%. 

exterior form 

z 1  A z2 A zn+2 i- + Zn A z2nr i-e.9 k J n g  = Jn-  

Sp(n, R):  The group of matrices g in GL(2n, R) which leave invariant the 
exterior form 

XI  A Xn+1+ x2 A xn+2 + + Xn A x2n, i.e-9 tgJng = Jn. 

Sp(p, q): The group of matrices g in Sp(p + q, C) which leave invariant 
the Hermitian form 

t Z ~ , . J >  i.e., tgKD.qf = KD,q. 

We put Sp(n) = Sp(0, n) = Sp(n, 0). It  is clear that Sp(n) = 
Sp(n, C) n U(2n). 

The groups listed above are all topological Lie subgroups of a general 
linear group. The Lie algebra of the general linear group GL(n, C) can 
(as in Chapter 11, $1) be identified with the Lie algebra gI(n, C) of all 
complex n x n matrices, the bracket operation being [A, B] = AB-BA. 
The Lie algebra for each of the groups above is then canonically 
identified with a subalgebra of gI(n, C), considered as a real Lie algebra. 
These Lie algebras will be denoted by the corresponding small German 
letters, d(n,  R), ~ ( p ,  q), etc. 
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Now, if G is a Lie group with Lie algebra g, then the Lie algebra b 
of a topological Lie subgroup H of G is given by 

b = { X E  g : exp ~ X E  H for t E R}. (1) 

Using this fact (Chapter 11, $2) we can describe the Lie algebras of the 
groups above more explicitly. Since the computation is fairly similar 
for all the groups we shall give the details only in the cases SU*(2n) 
and Sp(n, C). Case SO(p, q) was done in Chapter V, 92. 

gI(n, C) ,  (gI(n, R)) : (all n x n complex (real) matrices}, 

eI(n, c), (eI(n, R)) : (all n X n complex (real) matrices of trace o}, 
Z,, 2, skew Hermitian of order p and q, 

u(p' *) : /ct2 2, 
2) I respectively, 2, arbitrary 

Z,, 2, skew Hermitian, of order p and q, 
respectively, T r  2, + T r  2, = 0, 2, arbitrary 

Z,, 2, n x n complex matrices 
T r Z l +  TrZ,  = 0 

SO@, C) : {all n x n skew symmetric complex matrices}, 

All Xi real, X,, X 3  skew symmetric of order 
p and q, respectively, X ,  arbitrary 

Z,, 2, n x n complex matrices, 
Zl skew, 2, Hermitian 

Zi complex n x n matrices, 
2, and 2, symmetric 

X,, X,, X3 real n x n matrices, 
X,, X ,  symmetric 

Zi, complex matrix; Z,, and Z13 of 
order p ,  Z,, and Z,, p x q matrices, 
Zll and Z,, are skew Hermitian, 
Z,, and Z,, are symmetric 

Proof for SU*(2n). By the definition of this group, we haveg E SU*(2n) 
if and only if g+ = +g and de tg  = 1. This shows that A E su*(2n) if 
and only if A# = +A and Tr A = 0. Writing A in the form 
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where A, are n x n complex matrices we see that if U and V are n x 1 
matrices, then 

It follows that A3 = -A2, A, = A4 as desired. 

Proof for Sp(n, C). Writing symbolically 

 XI A zn+1 + .*. + zn A zzn) = ( Z I ,  *.*, zzn) A Jmt(zl, **., ZZn) 

it is clear that g E Sp(n, C )  if and only if 

t gJng = Jn.  

Using this for g = exp tZ ( t  E R),  we find since A exp ZA-I = 
exp(AZA-l), l(exp 2) = exp tZ, 

so Z E ep(n, C )  if an only if 

‘ZJn + JnZ = 0. 
Writing Z in the form 

where Zi is a complex n x n matrix, condition (2 )  is equivalent to 
tZ, + 2, = 0, 2, = ‘Z2, 2, = lZ3. 

2. Connectivity Properties 

Having described the Lie algebras, we shall now discuss the con- 

Lemma 2.1. Let w denote topological isomorphism, and N a homeo- 

nectivity of the groups defined. 

morphism. We then have 

(a) SO(2n) n Sp(n) M U(n). 

(c) Sp(n, R )  n U(2n) M U(n). 
(b) SP(P9 4) n W P  + 2!d = SPCP) x SP(d. 
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(d) SO*(2n) n U(2n) m U(n). 

(e) SU(p, 4) n U ( p  + 4) = S(U, x U,) - SU(P) x T x S W .  
(f) SU*(2n) n U(2n) = Sp(n). 

Proof. (a) Each g E Sp(n) has determinant 1 so g E SO(2n) n Sp(n) 
is equivalent to “gg = I,,, tgJng = Jn, “gg = 12n. Writing 

g =  (: 3 
these last relations amount tog real, A = D, B = -C, A‘B - B‘A = 0, 
AIA + B‘B =In. But the last two formulas express simply A + iB E U(n). 
For part (b), let 

V = {g E GL(2p + 24, C )  : % ! G q g  = G q 1 .  
Then 

g E U(2p + 24) %f = 12p+2Q, t g K D , . P f  = K9.a- 

But the last two relations are equivalent to 

Xll 0 XI3 0 4 3 )  E U(2p) 
(x31 x33 (3) 

Thus, g in (3) belongs to Sp(p, q) n U(2p + 2q) if and only if “g JP+,g = 
J,,, or equivalently 

and 

This proves (b). For (c) we only have to note that 

Sp(n, R)  n U(2n) = Sp(n) n SO(2n), 
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which by (a) is isomorphic to U(n). Part (d) is also easy; in fact, g E SO*(2n) 
by definition if and only if “gg = I,, and “g,g = J,. 

Thus 

SO*(2n) n U(2n) = SO(2n) n Sp(n, C )  = SO(2n) n Sp(n) m U(n). 

Part (e). We have 

where g, E U ( p ) ,  g, E U(q) and det g ,  det g ,  = 1. Such a matrix can be 
written 

where y, E SU(p), y, E SU(q). We have therefore a mapping 

g - (r1* detg,, Yz)  

of SU(p,  q) n U ( p  + q) into SU(p)  x T x SU(q). This mapping is 
not in general a homomorphism but it is continuous, one-to-one and 
onto; hence SU( p ,  q) n U( p + q) is homeomorphic to SU( p )  x T x SU(q). 
Finally, g E SU*(2n) if and only if 2 Jn = Jng and det g = 1. Hence 
g E SU*(2n) n U(2n) if and only if 2 J ,  = Jng, “gg = I,,, det g = 1. 
However, these conditions are equivalent to “gJ,g = J,, “gg = IZn 
or g E Sp(n). This finishes the proof of the lemma. 

The following lemma is well known, see, e.g., Chevalley [2]. 

Lemma 2.2. 

(a) The groups GL(n, C) ,  SL(n, C) ,  SL(n, R) ,  SO(n, C) ,  SO(n), SU(n), 

(b) The group GL(n, R)  has two connected components. 

In order to determine the connectivity of the remaining groups we 

Definition. Let G be a subgroup of the general linear group GL(n, C). 
Let zij(u) (1 < i, j < n) denote the matrix elements of an arbitrary 
(T E GL(n, C), and let xii(u) and yij(a) be the real and imaginary part of 
zij(a). The group G is called a pseudoalgebraic subgroup of GL(n, C) 

U(n),  Sp(n, C) ,  Sp(n) are all connected. 

need another lemma. 
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if there exists a set of polynomials P, in 2n2 arguments such that u E G 
if and only if Po( ... xij(cr), yij(u), ...) = 0 for all P,. 

A pseudoalgebraic subgroup of GL(n, C) is a closed subgroup, hence 
a topological Lie subgroup. 

Lemma 2.3.t Let G be a pseudoalgebraic subgroup of GL(n, C )  such 
that the condition g E G implies “g E G. Then there exists an integer d >, 0 
such that G is homeomorphic to the topological product of G n U(n) and Rd. 

We first remark that if an exponential polynomial Q ( t )  = 

ZTCl cjebjt (bi E R, cj E C )  vanishes whenever t is an integer then 
Q ( t )  = 0 for all t E R.  Let $(n) denote the vector space of all Hermitian 
n x n matrices. Then exp maps $(n) homeomorphically onto the 
space P(n) of all positive definite Hermitian n x n matrices (see 
Chevalley [2] ,  Prop. 5 ,  SIV, Chapter I). Let H E b(n). We shall prove 

Proof. 

If exp H E  G n P(n), then exp tH E G n P(n) for t E R. (4) 

There exists a matrix u E U(n) such that uHu-l is a diagonal matrix. 
Since the group uGu-l is pseudoalgebraic as well as G, we may assume 
that H in (4) is a diagonal matrix. Let h,, ..., h, be the (real) diagonal 
elements of H. The condition exp H E G n P(n) means that the numbers 
&a, ..., ehn satisfy a certain set of algebraic equations. Since exp K H E  
G n P(n) for each integer k ,  the numbers ekhl, ..., ekhn also satisfy these 
algebraic equations and by the remark above the same is the case if k 
is any real number. This proves (4). 

Each g E G L ( ~ ,  C) can be decomposed uniquely g = up where 
u E U(n),  p E P(n).  Here u and p depend continuously on g .  If g E G, 
then “gg = p 2  E G n P ( n )  so by (4) p E G n P(n) and u E G n U(n).  
The mapping g -+ (u, p )  is a one-to-one mapping of G onto the product 
(G n U(n))  x (G n P(n))  and since G carries the relative topology of 
GL(n, C), this mapping is a homeomorphism. 

The Lie algebra gI(n, C) is a direct sum 

d(n, C )  = 4.1 + $(4. 
Since the Lie algebra g of G is invariant under the involutive auto- 
morphism X -+ -lX of gI(n, C) we have 

9 = 9 n 4.) + 9 n b ( 4 .  

It is obvious that exp(g n $ ( n ) ) c  G n P ( n ) .  On the other hand, each 
p E G n P(n) can be written uniquely p = exp H where H E  $(n); by 

t Compare Chevalley [ 2 ] ,  p. 201. 
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(4), H E  $(n) n g, so exp induces a homeomorphism of g n b(n) onto 
G n P(n). This proves the lemma. 

Lemma 2.4. 

(a) The groups S V ( p ,  q), SU*(2n), SO*(2n), Sp(n, R),  and Sp(p,  q) are 

(b) Thegroup SO(p, q) (0 < p < p + q) has two connected components. 

Proof. All these groups are pseudoalgebraic subgroups of the 
corresponding general linear group and have the property that 
g E G 5 E G. Part (a) is therefore an immediate consequence of 
Lemma 2.3 and Lemma 2.1. For (b) we consider the intersection 
SO(p,  q) n U ( p  + q) = SO(p, q)  n SO(p + 4). This consists of all 
matrices of the form 

all connected. 

(,” 3 
where A and B are orthogonal matrices of order p and q respectively 
satisfying det A det B = 1. It follows again from Lemma 2.3 that SO(p, q)  
has two components. 

3. The lnvolutive Automorphisrns of the Classical Compact Lie Algebras 

Let u be a compact simple Lie algebra, 8 an involutive automorphism 
of u; let u = f, + p* be the decomposition of u into eigenspaces of 8 
and let go =.to + po (where po = ip*). Then go is a real form of the 
complexification g = uc. We list below the “classical” u, that is, zIu(n), 
5o(n), and 5p(n) and for each give various 8; later these will be shown to 
exhaust all possibilities for B up to conjugacy. Then go runs through all 
noncompact real forms of g up to isomorphism. The simply connected 
Riemannian globally symmetric spaces corresponding to (u, 0) and go 
are also listed (for u classical). As earlier, bp, and bp0 denote maximal 
abelian subspaces of p* and po, respectively. 

Type A I u = 5u(n); 8(X) = x. 
Here f, = so(n) and p* consists of all symmetric purely imaginary 

n x n matrices of trace 0. Thus go. = f, + p o  = 51(n, R) .  The corre- 
sponding simply connected symmetric spaces are 

SUn, R)ISO(n), S~(4lSO(n)  (n > 1). 

The diagonal matrices in p* form a maximal abelian subspace. Hence 
the rank is n - 1. Since Q = a,-,, the algebra go is a normal real form 
of g. 
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Type A I1 u = su(2n); O(X) = J,XJ;'. 
Here f, = 5p(n) and 

Hence go = To + p o  = su*(2n). The corresponding simply connected 
symmetric spaces are 

SU*(2n)/Wn), W 2 4 / S P ( 4  (n > 1). 

The diagonal matrices in p* form a maximal abelian subspace of p * .  
Hence the rank is n - 1. 

Type A I l l  u = 5u(p + 4); e(X)  = Ip,qXlp,g. 
Here 

Tr(A + B) = 0 1 ' A E U ( P ) ,  B E 4 4 )  

1 0 2  
p*  = o) I z p x q complex matrix I 

The decomposition 

(," 3 
0 

1 
A - - (Tr A ) I ,  0) + f (Tr A ) I p  

1 
4 

P 
0 0 0 -(TrB)Iq 

shows that f, is isomorphic to the product 

5 4 P )  x c0 x 5 w 9  

where co is the center of To. Also go = fo + p o  = su(p, Q) .  The corre- 
sponding simply connected symmetric spaces are 

SU(P, Q)/W, x Vq), SU(P + q)/S(Up x Uq) (P 2 194 2 L P  2 4). 

A maximal abelian subspace of p* is given by 

u 

b p ,  = 2 R(Et p+i  - E,,i i). ( 5 )  
i=l 

Consequently, the rank is q. The spaces are Hermitian symmetric. For 
q = 1, these spaces are the so-called Hermitian hyperbolic space and the 
complex projective space. 
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As shown in Chapter V, 92, the mapping 

is an isomorphism of go = f, + po onto ~ o ( p ,  q). The simply connected 
symmetric spaces associated with 5 o ( p ,  q) and (u, 0) are 

Here SOo(p, q)  denotes the identity component of SO(p ,  q). The compact 
space is the manifold of oriented p-planes of ( p  + q)-space, which is 
known (see, e.g., Steenrod [I], p. 134) to be simply connected. A maximal 
abelian subspace of p* is again given by ( 5 ) ,  so the rank is q. If p + q  
is even then go is a normal real form of g if and only if p = q. If p + q is 
odd then go is a normal real form of g if and only if p = q + 1. 

For q = 1, the spaces are the real hyperbolic space and the sphere. 
These are the simply connected Riemannian manifolds of constant 
sectional curvature #O and dimension 2 3 .  Those of dimension 3 
are SL(2, C)jSU(2)  and SU(2),  i.e., a, for n = 1. 

If q = 2, then f, has nonzero center and the spaces are Hermitian 
symmetric. 

Type D Ill u = so(2n); e ( X )  = JnXJ;'. 
Here fo = 50(2n) n sp(n) which by Lemma 2.1 is isomorphic to 

u(n). Moreover, 

Hence go = f, + po = 50*(2n). The symmetric spaces are 

SO *(2n)/  W),  W 2 n ) / U ( n )  (n > 2). 

Here the imbedding of U(n) into S0(2n),  (and S0*(2n)), is given by 
the mapping 
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XI1 0 x13 0 

0 YlZ 0 y14 

O 'Y14 

where A + iB E U(n),  A, B real. The spaces are Hermitian symmetric 
since f, has nonzero center. In  view of Theorem 4.6, Chapter VIII, 
they are simply connected. A maximal abelian subspace of p *  is spanned 
by the matrices 

X13 p x p symmetric 
Xll E 4 P > I  x22 E u(q) 

X,, q x q symmetric 

complexp x q matrices 
Y12 and Y14 arbitrary 

Consequently, the rank is [n/2] .  

Type C I u = 5p(n); O(X) = (=J,XJ;'). 
Here f, = sp(n) n so(2n) which is isomorphic to u(n). 

2, E ~(n), purely imaginary 
2, symmetric, purely imaginary P* = 

Hence go = f, + p o  = sp(n, R). The corresponding simply connected 
symmetric spaces are 

Here the imbedding of U(n) into Sp(n) (and Sp(n, R)) is given by (6). 
The diagonal matrices in p *  form a maximal abelian subspace. Thus the 
spaces have rank n and go is a normal real form of g. The spaces are 
Hermitian symmetric. 

Type c 11 11 = 5 p ( p  + q); O(X) = K p , , x ~ p * , .  
Here 

It is clear that f, is isomorphic to the direct product sp(p) x e ~ ( q ) .  
Moreover, go =. €, + p o  = 5 p ( p ,  q). The corresponding simply con- 
nected symmetric spaces are 



4 31 Root Systems 

Here the imbedding of Sp(p )  x Sp(q) into 
given by the mapping 

A maximal abelian subspace of p *  is obtained by taking Y14 = 0 and 
letting YI2 run through the space RE,, + RE,, + + REgp. Conse- 
quently, the rank is q. For q = 1, the spaces are the so-called quaternian 
hyperbolic spaces and the quaternian projective spaces. 

This will be shown to exhaust all involutive automorphisms of the 
compact classical simple Lie algebras. The restriction on the indices is 
made in order that the algebras should be simple, the spaces of dimension 
>0, and the condition p 2 q is required in order to avoid repetition 
within the same class. 

$3.  Root Systems 

1. Generalities 

Let V be a finite-dimensional vector space over R and a E V, a # 0. 
A reJEection along a is any linear transformations of V satisfying the two 
conditions: 

(i) sa = -a; 

(ii) The fixed points of s constitute a hyperplane in V. 

A reflection s along a is determined by its fixed point set and satisfies 
sp = /3 + cBa(cD E R).  It has order 2. 

Lemma 3.1. Let R C V be a jinite subset which generates V. Let 
a # 0 in V .  Then there exists at most one rejlection along a leaving R 
invariant. 

Proof. If s and s’ are two such reflections, the linear transformation 
u = ss‘ satisfies: (a) u(R) = R; (b) ua = a; (c) (T induces the identity 
map of V/Ra  (since s and s’ both do). Thus there is a linear function f 
on V such that 

44 = x +f(4 01, X E  v 
and by (ii), f ( a )  = 0. By iteration we get unx = x + nf(x)ol ( n  E Z+). 
But R is finite, so (a) implies that u has finite order; hence f = 0. 
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Definition. Let V be a real finite-dimensional vector space and 
R C  V a finite set of nonzero vectors; R is called a root system in v 
(and its members called roots) if: 

(i) R generates V. 
(ii) For each a E R there exists a reflection s, along a leaving R 

(iii) For all a, /3 E R the number ao,, determined by 
invariant (by Lemma 3.1, s, is unique). 

SaB = B - ao.,ff 

is an integer, that is, aB., E Z. 

Remark. If a, /3 E R are proportional, /3 = ma (m E R),  then 

m = -+8, fl, f2. (1) 

In  fact, the numbers a,.,, = 2/m and am,,, = 2m are both integers. 
A root system R is said to be reduced if a, E R, /3 = ma implies 
m = f l .  A root a E R is called indivisible if &a $ R, and unmultipliable 
if 201 $ R. 

(i) The set d = d(g, 6) of roots of a semisimple Lie 
algebra g over C with respect to a Cartan subalgebra b is a reduced root 
system (Chapter 111, Theorem 4.3 and Exercise C.1). 

(ii) The set Z of restricted roots is a root system which in general 
is not reduced (Chapter VII, Theorem 2.16 and Exercise 5) .  

Lemma 3.2. Let R be a root system in V and put 

Examples. 

R = {a E R : 4 2  $ R}, R" = ( a ~ R : 2 a $ R } .  

Then R' and R" are reduced root systems in V .  

It is obvious that R' and R" are root systems in V. If a, 2a E R, then 
4 2 ,  4 a $ R ,  so a~ R', 2 a $  R' and a $  R", 2 a ~ R " .  In particular, R' 
and R" are reduced. 

Given a root system R in V let Aut(R) denote the (finite) group of 
linear transformations of V leaving R invariant. The subgroup W(R) 
(or simply W )  of Aut(R) generated by the reflections s, (a E R) is called 
the Weyl group of R. 

Lemma 3.3. Let ( , ) denote any positive de$nite scalar product on V ,  
invariant under Aut(R) (such ( , > exist). Then 

ao,, = 2 - <B, ff> OL,bER. 
<ff, ff> ' 
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In fact, by the s,-invariance of ( , ), 

so (a ,  sup + /3) = 0, proving the lemma. 
The scalar product ( , ) will be fixed for the time being. Because 

of Lemma 3.3, the sign of (a, /3) (and, in particular, “orthogonality” 
of a, /3 E R) is independent of the choice of ( , ). 

Lemma 3.4. Let a, /3 E R be linearly independent. Then: 

(i) 
(ii) 

(iii) 
Proof. 

0 < aa.BaB.a < 3; 
> 0 e a - /3 E R; 

u , , ~  < 0 * a + /3 E R. 

Part (i) is obvious from Schwarz’ inequality. If > 0, 
then by (i) at least one of the integers a4,, equals 1. In the first case 
s p  = a - a,,$ = a - /3 E R; in the second case s,/3 = /3 - ag,,a = 

/3 - 01 E R, so a - /3 E R. This proves (ii); part (iii) follows by replacing 

We can now deduce an analog of Theorem 4.3(i), Chapter 111, for 

Corollary 3.5. Let a and /3 be nonproportional roots. The set of roots 

B by -B- 

the present abstract situation. 

of the form /3 + na (n  = integer) is an uninterupted string 

In fact, let p < q be the extremal values of n with /3 + na E R. If 
there were a gap, that is, an interval r < n < s such that 

then Lemma 3.4 implies 

contradicting r < s. 
Finally, sa(/3 + nor) = j? - (ag, ,  + n)a, so s, maps the string onto 

itself. Thus the map n -+ -n - as,= is a mapping of the integer interval 
[ p ,  q] onto itself. I t  must map p onto q, that is, -p  - u ~ , ~  = q, as 
desired. 
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Definition. 
basis of R if: 

Let R be a root system in V. A subset B C R is called a 

(i) 
(ii) 

B is a basis of V.  
Each /3 E R can be written 

B = 2 naa, 
a d  

where the n, are integers of the same sign. 

Theorem 3.6. 

(i) Each root system has a basis. 

(ii) Any two bases are conjugate under a unique Weyl group element. 

(iii) aB,a < 0 for any two dzflerent elements a, /3 in the same basis. 

Proof. An element y E V is called regular if (a ,  y )  # 0 for all 
O L E  R. For y E V regular, let R+(y) = {a E R : (a ,  y )  > 0} and call 
a root a E R+(y) simple if it cannot be written as a sum of two members 
of R+(y). If a, /3 are simple, then a - /3 $ R, so by Lemma 3.4, 
(a, /3) < 0. Now the proof of Theorem 5.7, Chapter 111, shows that 
the simple roots in R+(y) form a basis, say B(y). 

Suppose B’ = {al, ..., al} is another basis. Then the element y’ = 

Xi=, y,, where (y,, aj) = Sij satisfies (a,, 7’) > 0 for all i. Moreover, 
B’ is the set B(y‘) of simple roots in R+(y’). 

For a E R let T~ denote the hyperplane {y : ( a ,  y )  = 0} in V .  The 
components of V - UaPR ma are called Weyl chambers. Each regular 
element y lies in a unique Weyl chamber C(y). The equality C(y)  = C(y‘) 
amounts to y and y’ being on the same side of each T=, that is, R+(y) = 
R+(y’) or equivalently B(y )  = B(y’). Since W(R) acts simply transitively 
on the set of Weyl chambers (cf. proofs of Theorem 2.12 and Cor. 7.4, 
Chapter VII), the theorem is proved. 

A root system R is called irreducible if it cannot be decomposed into 
two disjoint nonempty orthogonal subsets. 

Proposition 3.7. A root system R in V decomposes uniquely as the 
union of irreducible root systems Ri (in subspaces Vi C V )  and V = & V, 
(orthogonal direct sum). 

Proof. If R is not irreducible, R = R, u R, where R, and R, are 
nonempty, disjoint, and orthogonal. If V, is the span of R,, then 
V = V ,  @ V,  and R, is a root system in V,. Now the result follows by 
iteration. 
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2. Reduced Root Systems 

Let R be a reduced root system in V and B = {a1, ..., az} any basis 
of R.  The matrix (aij)16i,jGz where azj = aai,,, is called the Curtan 
matrix of R.  From Lemma 3.3 it is clear that the Cartan matrix is 
nonsingular. The next result shows that the Cartan matrix of R deter- 
mines R .  

Proposition 3.8. Let R’C V‘ be a reduced root system with basis 
B‘ = {a;, ..., a;}, and put aij = a,,,,’. If aij = aij (1 < i, j < l ) ,  then 
the mapping ai + a; of B onto B’ extends uniquely to a linear bijection 
cp : V -+ V’ mapping R onto R’. 

i I  

Moreover, 

a d a ) , w W  = %,B for all a, /3 E R. (2) 

We need a simple lemma on the passage from B to R.  

Lemma 3.9. W ( R )  is generated by the simple reflections s, (a  E B), 

Let w’ denote the subgroup of W(R) generated by the simple 
reflections. These are the reflections in the walls of the chamber 
{y : av,ar > 0 for a E B}, so the proof of Theorem 2.12, Chapter VII, 
shows that W’ permutes the set of Weyl chambers (and therefore the 
set of bases) transitively. 

Now if a E R ,  we can select y E r, such that y $ rrB for /3 E R,  /3 $ Ra. 
Choosing y‘ close to y, we can ensure (a, y ’ )  = E > 0 and I(/3, y ’ )  I > E 

for /3 # fa.  Then a belongs to the base B(y’), so by the above, a = “(ai) 
for some u E w’, and some i. But then s, = US,~U-~, proving W ( R )  = W’ 
and the lemma. 

Turning now to Prop. 3.8, let cp : V -+ V’ be the unique linear 
bijection sending ai to (1 < i < 1). The assumption aij = aij then 
implies 

s,; 0 p = p 0 smi; (3) 

using Lemma 3.9, we deduce that u -+ cp o u o q-l is an isomorphism of 
W ( R )  onto W(R’) .  But then 

and W(R)(B)  = R.  

Proof. 

and sm(,) o cp = q o s, (a E R )  proving (2) and Prop. 3.8. 
While Prop. 3.8 reduces the classification of R to that of the Cartan 

matrices, it is of interest to have results showing how R is in a more 
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constructive fashion determined by (aii). Note that R is a disjoint 
union R = R+ v (-R+) where 

Lemma 3.10. (i) Let ~ E R +  - B. Then for some P E  B, a - 8 

(ii) Each 8 E R+ can be written 

is a root. 

B = 81 + .** + B k  

where all flj belong to B (not necessarily distinct) such that each partial 
sum Pl + ... + fli is u root. 

(i) If a - 8 6 R for all f i  E B, then by Lemma 3.4 (a, 8) < 0 
for all P E B. It follows that (a, a) < 0, which is a contradiction. 
Part (ii) follows from (i) by iteration. 

Proof. 

Construction of R from 6 and (aij) 

Given a E R+, a = Ci nisi, the sum Xi n, is called the height of a. 
The roots of height one are the simple roots. Since ai - ai 6 R, the 
ai-series through ai is 

aj, aj + ai, ..., aj + qai (4 = -4 (4) 

This process gives in particular all roots a = ak + a, of height 2 
as well as Then the aperies through a 

a + - - * )  a + qaj 

is determined because p = - 1 or 0 depending on whether j E {k, m} 
or not, so q is determined by p + q = Lemma 3.10 guarantees 
that all 8 E R+ are obtained by repetition of this process. 

Suppose the Cartan matrix is Example. 

( - 2  -9 2 
that is, 
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The strings (4) take the form 

a19 a1 + 012, 

%, 012 + 011, a 2  + 2%. 

The only a E R+ of height 2 is a1 + a,; and since a1 + 201, is not a root, 
the only positive root of height 3 is a2 + 201~. Since 2a1 + 201, = 2(a1 + a,) 
is not a root, there are no roots of height 4, so by Lemma 3.10 all the four 
positive roots have been enumerated. 

Lemma 3.11. Let p = 6 XmsR+ a and let ai E B.  Then: 

(i) s,i(R+ - {ai}) = R+ - {ai}. 
(ii) 2(p, ai)/(ai, ai) = 1. 

Proof. If a E R+ is written a = Zj njaj (nj E Z+), we have 

s a = a -  
m i  

All the coefficients on the right must have the same sign; this sign is 
negative only if nj = 0 f o r j  # i, that is, if a = ai. This proves (i) and 
implies s,,p = p - mi, from which (ii) follows. 
. .  

3. Classification of Reduced Root Systems. 
Coxeter Graphs and Dynkin Diagrams 

Let R be a reduced root system in V with basis B = {a1, ..., a,), 
R f  the corresponding set of positive roots. From Lemma 3.4 we know 
that if a, f i  E R+ are distinct, the integer U , , ~ U ~ , ~  equals 0, 1, 2, or 3. The 
Coxeter graph of R is the graph in V with 1 vertices Pl, ..., P,, the ith 
joined to thejth by aijaji nonintersecting lines (aii = u,~,,,). 

The root system R is irreducible if and only if B cannot be decomposed 
into two nonempty disjoint orthogonal subsets (cf. the proof of Lemma 
1 I .8, Chapter VII). This is equivalent to the (set-theoretic) connectivity 
of the Coxeter graph. 

Suppose now R is irreducible. Then the Weyl group W(R) acts 
irreducibly on V ;  in fact otherwise V is the orthogonal direct sum 
V = V,  + V2 of nonzero subspaces, both invariant under each s, 
(a E R). Considering the (-1)-eigenspace of s,, that is Ra, we see that 
either a E V ,  or a E V,, contrary to the irreducibility of R. Because of 
this irreducibility of W(R), the invariant inner product ( , ) is unique 
up to a constant factor. Giving the ith vertex Pi in the Coxeter graph 
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a weight proportional to (ai, at), the resulting figure is called the 
Dynkin diagram. The Dynkin diagram determines the Cartan matrix, 
hence determines R. 

We now write down the Dynkin diagrams for the classical complex 
Lie algebras, using the description of the roots from Chapter 111, $8, 
and Exercises B.5 and B.6. The scalar product is now given by the 
Killing form. 

The algebra al (I >, 1). Here 

R = {e, - ej : 1 f i # j  f Z +  l} 

and the vector space V spanned by R is the hyperplane 

in the vector space 2::; Re,. The roots 

a, = ei - ei+l (1 Q i < 1 )  

form a basis B of R. Using (5 ) ,  $8, Chapter 111, we get 

<ai, ai) = (1 + 1)-1 (1 Q i < 1) 

and the Cartan matrix is 

2 -1 7 a l :  ( . . . . 

2 -1 0 ... 
-1 2 -1 0 ... 
0 -1 2 -1 0 ... 

0 0 0 0 ... -1 2 

The Coxeter graph is connected, hence al is simple and the Dynkin 
diagram is 

1 1  1 1  

a1 a 2  012-1 a1 
0-0 0-0- ... - 

The algebra b, (I 2 1). Here 

R = { f e i  (1 Q i < Z), fei  f ej (1 Q i # j Q 1, f independent)} 



4 31 Root Systems 463 

in the vector space V = Xicl Re,. The roots 

form a basis B of R; in fact 

ei = ai + ... + at, 1 < i < z ,  

1 < i < j < l .  ei - ej = ai + ... + 0 1 ~ - ~ ,  

Using Chapter 111, (15), $8 and the root description in Exercise B.6, 
we find 

(21 - 1)-1, 1 < i < I - 1 t 3(21- 1)-1, i = 1 <ai, 01,) = 

and the Cartan matrix is 

... 

... -1  2 -2 
0 -1 2 

2 -1  0 
-1 2 -1 0 ... 

0 -1 2 -1 ... 

0 0 0  
0 0 0  

The Coxeter graph is connected, hence 6, is simple and the Dynkin 
diagram is 

Note that for the case 1 = 2 the graph is o=o. 

The algebra c l  ( I  > 1). Here 

R = { f 2 e i  (1  < i < Z), f e ,  f ej (1 < i # j < I, f independent)} 

in the vector space V = XiEl Re,. The roots 

old = ei - e,+l (1 < i < I - l), a, = 2e, 

form a basis B of R; in fact 

2ei = 201, + ... + 201,-~ + a,, 1 G i G l - 1 ,  

1 < i < j < Z .  e, - ej = ai + ... + aj-l, 
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Using (22) $8, Chapter 111, we find 

+( l+  1)-1, 1 < i < 1 - 1, 
i = 1, <ffi, mi> = l ( l +  1)-1, 

and the Cartan matrix is 

2 -1 0 ... 
-1 2 -1 ... 

0 -1 2 -1  ... 
0 0 0  
0 0 0  

. . . -  1 2 - 1  
0 -2 2 

The Coxeter graph is connected, hence c, is simple and the Dynkin 
diagram is 

1 1  1 2  

a1 a 2  011-1 ffl 

0-0- ... - o r 0  

For I = 2 the graph is o=o. 

The algebra b, (I 2). Here 

R = { fe i  f e, ( 1  < i # j < 1, f independent)} 

in the vector space V = Xi=, Rei. The roots 

ai = e, - ei+l (1 < i < Z - I), a1 = e l 4  + el 

form a basis B of R; in fact 

ei - e, = at + ... + 
ei + e5 = (a5 + ... + q - - 2 )  + (q + ... + 4, 1 < i < j < Z ,  

l < i < j < l .  

Using Chapter 111, (ll), 58 and the root description in Exercise B.5, 
we find 

(Cri, mi) = *(1 - 1)-1, l < i < l ,  

and the Cartan matrix is 

2 - 1  o . . .  
-1 2 - 1  ... 

0 - 1  2 . . .  

bl:l - 0 0 0  * * -1 2 -1 -1 O 1  
0 0 0 ... 2 -1 0 

0 0 o . . .  0 - 1  o - l  0 OJ 2 I 0 0 0  
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The Coxeter graph is connected except for 1 = 2. Thus b ,  is simple 
( 1  2 3) and b, is a direct sum of two simple Lie algebras (cf. Example 11, 
$2, Chapter V). The Dynkin diagram is 

1 

1 1  
p 

ff1 a2  
%-\ 0 1 

0-0- ... __ 

011 

For 1 = 3 this is 
1 1 1  

aa ffi 4 
0-0-0 

For 1 = 2 the Coxeter graph is o 0 .  

a1 a 2  

Looking now at the Cartan matrices (or equivalently, the Dynkin 
diagrams), we can conclude the following result from Prop. 3.8 and 
Theorem 5.4, Chapter 111. 

Theorem 3.12. The following are the only isomorphisms which hold 
between the complex Lie algebras a,, b,, c l  ( 1  3 1) and b ,  ( 1  3 2): 

a, M b, M ti, 6, w c2, a, w b,, b, = a1 x a,. 

We now proceed to determine all possibilities for Dynkin diagrams. 
Let V be a real vector space with positive definite scalar product ( , ) 
and associated norm I I. A diagram is a subset B C V with the following 
properties: 

(i) The elements of B (called vertices) are linearly independent. 
(ii) If a, p E B, 01 # /I, then 

(so by Schwarz’ inequality, 0 < 

distinct vertices a, /? E B are joined by ua,BaB,or lines. 

< 3). 
(iii) Each vertex a E B is given weight proportional to <a, a> and two 

The collection of lines in (iii) is called the graph of B. In the respective 
cases aa,OaB,a = 0, 1, 2, or 3, the pair {a, p)  is said to be unconnected, 
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a simple, double, or a triple link. A subset of a diagram is also a diagram 
(called a subdiagram). A diagram is connected if for each pair a, ,6 E B 
there exist a0, ..., ak E B such that a. = a, ak = p and each pair (ai, 

is a link. A subset {a1, ..., ak} C B is called a cycle if k > 1 and the pairs 
{a1, a2}, {a2, as}, ..., {ak-l, 013, {ak, al} are all links. A subdiagram 
{a1, ..., ak} C B is called a chain if its only links are {ai, 

(1 < i < k - 1). 

Lemma 3.13. Let 1 denote the number of elements in a diagram B.  
The number of links in B is < 1 -  1. 

Proof. If B = {al, ..., al} put a = Zicl 2 ei, where ei = I ai I-' ai. 
Then by (i) a # 0 and 

0 < (a ,  a> = 1 + 2 2 (Ef, E j ) .  ( 5 )  
i d  

If {ai, ai} is a link, then aa,,aiaa ,aI = 4(ei, E ~ ) ~  = 1, 2, or 3 so 
2( ei, ej) < - 1. Now (5) gives the {emma. 

Corollary 3.14. 

In fact, a cycle would be a subdiagram with at least as many links as 

B contains no cycles. 

vertices, contrary to Lemma 3.13. 

Lemma 3.15. The number of lines originating at a given vertex is 

Let a E B, pl, ..., f i k  E B such that each {a, Pi} is a link and all & 
distinct. By Cor. 3.14, (p i ,  pi> = 0 for i # j. Let a' be the orthogonal 
projection of a on the span of {Pl, ..., pk} and put Po = a - a'. Then 
all pi (0 < i < k )  are orthogonal and (a, Po) # 0. Writing a = Ztc0 cip0 
we derive 2ci = aa,6i and 2 = Xi"=,, cia6i,ar. Hence 

at most 3. 

proving the lemma. 

Corollary 3.16. If a connected subdiagram B' contains a tr;Ple link, 
then B' = 6=6. (This diagram is denoted Q~.) 

Clear from Lemma 3.15. 
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Lemma 3.17. Let C = {a1, ..., ak) be a chain all of whose links are 
simple and let a = a1 + ... + ak. Then: 

( i)  (a ,  a )  = (ai, mi) (1 < i < K). 
(ii) The set ( B  - C )  u {a) is a diagram and its graph is obtained from 

the graph of B by replacing C by the vertex a and joining each /3 E B - C 
to a by p lines i f p  is the number of lines joining /3 to a vertex ai of C (by 
Cor. 3.14 there is at most one such vertex). 

Proof. By assumption, 

au*.ai = 

2 if i = j ,  
-1 if l i - j  

0 otherwise. 
= 1, (6) 

This implies (i). For (ii) we observe (/3, a) = (/3, ai) and uB,uau,B = 

a6,uiaai,B = P- 

Lemma 3.18. B contains no chain with more than one double link. 

Proof. In fact such a chain would contain a subdiagram {a,,, ..., ak+l} 
whose graph has the form 

where (a1, ..., ak) is a chain all of whose links are simple. Using Lemma 
3.17 on this last chain, we get a contradiction to Lemma 3.15. 

Corollary 3.19. Let B be a connected diagram. 

(i) If B contains a double link {a, /3}, it cannot contain a vertex y # 01, 

from which three lines originate ( a  triple vertex) 

(ii) B cannot contain two triple vertices. 

The proof is the same as that of Lemma 3.18. 
We have now proved that the graph of a connected diagram is one 

of the following four types: 
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1 1 1 
0- ... - 0- 0 

1 
0 1 :  0- 

011 OLa %-1 011 

I 
0 Yr-1 
I 

0- 0- ... - o-o- 0- ... - 0- 0 

011 a 2  %-1 8 BQ-1  B z  81 

It remains to determine the possibilities for p ,  q, and r and the weights 
for the second and third type. For the second type put a = xf-l ia,, 
/3 = Xy-l j&. Then (a, /3) = pq(ap, pq). Also (6) implies 

<% a> = M P  + 1K% %>, <B, B> = 34(4 + 1 ) < B Q 9  BQ>. (8 )  

Furthermore, 

and (a,, ap)/<,9q, pq> = 4 or 2;  so we can assume (a,, a,) = 2(,9,, pq>. 
But then, since 

aup.6,a6,.ap = 2, 

it follows that (a,, /I,) = -(rS,, 8,). Using Schwarz’ inequality on the 
linearly independent vectors a, /3 (cf. (i)) we obtain 2pq < ( p  + l ) (q  + l ) ,  
that is, ( p  - l ) (q  - 1 )  < 2. Since p and q are integers 2 1 ,  we get the 
possibilities 

This proves 
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Lemma 3.20. A diagram of the second type in (7) is one of the fol- 
lowing: 

2 2  2 1  

ff1 ff2 011-1 ffl 

1 1  1 2  
cz : 0-0- ... -0-0 

f f 1  ff2 ffl-1 f f z  

2 2 1 1  
f a :  0-o=o-0 

a1 ff2 05 a 4  

bl : 0-0- ..._ - 0-0 

Passing now to the third type in (7), we put 

v-1 Q-1 7-1 

a =  iai, f i  = 2 jfij, y = C; bk. 
i=1 i=1 k=l 

Since all links occurring are simple, all vertices have the same weight, 
say 

c = I ffi 12 = I pi 12 = I y k  12 = I s 12. 

The vectors 01, 8, y are mutually orthogonal and 6 is not spanned by 
them. Thus, by the proof of Lemma 3.15, the angles O,, O,, and Or 
between 6 and a, p, and y, respectively, satisfy 

But (cf. (8)), (a, a) = *p(p - 1)c and 

<a, 8) = ( p  - l)(ffDPl, S) = -I( 2 P- 1)c, 

so 

Now (9) implies the crucial formula 

1 1 1  
P 9  
- + - + ; > l .  

Here we can take p 3 q 3 r 2 2 because if one of them equals 1 ,  we 
have the first type in (7). Then p-l < q-l < r-l, so by (10) 3r-1 > 1. 
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Hence r = 2, and (10) implies p-l + 4-l > 8. This gives quickly the 
possibilities 

r = q = 2 ,  p >, 2, arbitrary 

r = 2 ,  q = 3 ,  p = 3 , 4 , 5 .  

Thus we have proved the following result. 

Theorem 3.21. Each connected diagram of rank 1 is one of the following: 

1 1 1 
0- 1.. - 0- 0 

1 
0- 
ff1 ff2 012-1 ffz 

2 2 1 2 

ff1 a 2  012-1 (112 

0- ... -0-- 0 0- 

1 1 2 1 

ff1 ff2 012-1 f f z  
0 0- ... - 0- 0-- 

1 

c, ( I  z 3) 

e6 ( I  = 6 )  

1 1 
o-o- 0 e, ( I  = 7) 

1 1 1 
0- 0- 0- 
ff7 ff6 a 5  Czq(1) CS ff1 

1 1 1 1 I 1 1 
o e8 ( I  = 8) 
a1 

o-o- 0- 0- 0- 0- 
ff8 ff7 % a 5  a 4 U )  4 

2 2 1 1 

ff1 OLZ 4 ff4 

1 3 

ff1 czz 

0- o-o- 0 

0-0 
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We shall now verify that all these possibilities do indeed occur as 
Dynkin diagrams of reduced root systems. This will complete the 
classification of irreducible reduced root systems. This verification is 
already done for the “classical” diagrams a,, b,, c,, and b,, so it remains 
to consider the “exceptional” ones, e6, e,, e8, f4, and g 2 .  

Consider the Euclidean space E = Rn with its standard basis (el, ..., e,) 
and scalar product ( , ). We consider subgroups Vn-,, Lo, L,, L,, L, 
of E defined as follows: 

Lo = Ze, + ... + Zen, 

Proposition 3.22. 

(i) The root system for b ,  is given by the sphere 

{a EL, C R ’  : (a, a) = 2). 

(ii) The root system for 6 ,  is given by 

( ~ E L , C R ~  : (a, a) = 1 0 ~ 2 ) .  

(iii) The mapping a --f 2a/(a, a) (which always maps a root system 

(iv) The root system for a, is given by 
onto a root system) maps b, onto c l .  

{a E Lo C R’+l : (a, a) = 2)  n Vz .  

The proof is immediate from the description of the classical root 
systems already given. We shall now construct the exceptional root 
systems in a similar spirit. 

1. The root system g 2 .  Let 

R = { ~ E L , C R ~ : ( ~ , O L )  = 2 0 r 6 ) n V 2 .  
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The system R is indeed a root system (in V,); in fact a direct verification 
gives the integrality condition as,, E Z for a, /3 E R, so Lo is invariant 
under each s, (a E R) and so is V,  and ( , >. 

a1 = el - e,, 

The roots 

a2 = -2e1 + e, + e, 
form a basis B of R and 

Thus the Dynkin diagram of R is g2, and R has cardinality 12. 

2. The root system f4. Let 

R = ( ~ E L , C R ~ : < ~ , ~ ) =  1or2). 

The elements of R are then given by 

f e i ,  f e i  f ej (i <i), *(&el f e2 f e, f e,), 

where the f signs are taken independently. T o  see this observe that 
a vector a E R can only have coordinates 0, &l, f+ (not f8). T o  see 
that R is a root system it suffices to verify as,, E Z for a, /3 E R (because 
then L, is invariant under each s, (a E R)). This verification is trivial. 
For a basis of R we can take the roots 

a1 = e2 - e,, a2 = e, - e,, % = e,, a, = &(el - e, - e, - e,), 

and the Dynkin diagram is fa. The cardinality of R is 2 - 4 + ( t )  - 4 + 
24 = 48. 

3. The root system e,. Let 

R = +.EL,C RE : (a, = 2). 

Then R consists of the vectors 
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where the signs are taken independently. In fact, these vectors 
clearly belong to R; conversely, if a E R, its coordinates have values 0, 
6 4 ,  f 1, and the form (1 1) is easily verified. Since (a, p )  E Z for all 
a, /3 E R, the integrality condition u ~ , ~  E Z holds, so R is a root system. 
The roots 

011 = He1 + 4 - He2 + e3 + e4 + e, + e, + e7) 

a 2  = el + e2, 01, = e2 - el, a4 = e, - e2, 

= e, - e4, a7 = e, - e,, a, = e7 - e, 

4 = e4 - e, 

form a basis of R. Instead of verifying this directly one can proceed as 
follows: The vector p = (0, 1, 2, 3, 4, 5, 6, 23) ERE is regular and 
R+(p) consists of the roots 

We have (a ,  p) E Z+ for each a E R+(y) and (ai, p) = 1 for 1 < i < 8. 
It  follows that the al, ..., a, are simple roots in R+(y), and being also 
linearly independent will form a basis of R (cf. proof of Theorem 3.6). 
Finally, we have 

<a4r = <a5, = <016, .7> = <a7, = <014, .2> = ’%> = <% = -1 

and (ai, ai) = 0 for the other ( i , j ) .  The Dynkin diagram is therefore 
of type e,. The cardinality of R is (:) * 4 + 27 = 240. 

Let F7 be the subspace of R8 spanned by 
the simple roots al, a2, ..., a7 in the construction of the root system R, 
of type e,. Let R = R, n F7. Then R is a root system in F7 with basis 
al, ..., a,, and the Dynkin diagram is of type e,. More specifically, since 
F7 has normal e7 + e,, R is given by 

fe,  f ej (1 < i < j  < 6),  

4. The root system e,. 

h(e7 - el319 

The cardinality of R is (3 * 4 + 2 + 26 = 126. 

Let F6 be the subspace of R8 spanned by 
the simple roots al, ..., ag in the construction of the root system R, of e,. 
Let R = R, n F6. Then R is a root system in F6 with basis (a1, ..., a,), 

5. The root system e,. 
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and the Dynkin diagram is of type e,. Since F6 is the set of x E F7 per- 
pendicular to e, + e,, R consists of the vectors, 

f e d  f e, (1 < i < j  < 5) ,  

The cardinality of R is (3 * 4 + 24 * 2 = 72. 
Since an irreducible root system is uniquely determined by the Dynkin 

diagram, we have proved the following result. 

Theorem 3.23. The root systems at  ( I  >, l), b, ( I  >, 2), c ,  ( I  >, 3), 
b, ( 1  >, 4), e,, e,, e,, f4, and g2 exhaust all irreducible reduced root systems. 

For completeness we write down the Cartan matrices for these root 
systems. As remarked earlier, the Dynkin diagram determines the Cartan 
matrix uniquely. For a,, b,, c,, and b, the Cartan matrices were already 
given, so we just have to consider the exceptional ones. From the 
description in Theorem 3.21 we have the Cartan matrices 

/ 2 -1 0 o\ 

e8 : 

\ 0 0 -1 2/ 

- 2  0 - 1  0 0 0 0 0 
0 2 0 - 1  0 0 0 0 

-1 0 2 - 1  0 0 0 0 
0 - 1 - 1  2 - 1  0 0 0 
0 0 0 - 1  2 - 1  0 0 
0 0 0 0 - 1  2 - 1  0 
0 0 0 0 0 - 1  2 - 1  
0 0 0 0 0 0 - 1  2 

e7 : Remove last row and last column from e,. 

e, : Remove the last two rows and last two columns from e,. 

4. The Nonreduced Root Systems 

It is now easy to determine all the irreducible nonreduced root 
systems. Let R be one such and as in 93, no. 1 let R' # R be the set of 
indivisible roots in R; then by Lemma 3.2, R' is a reduced root system. 
Let B be a basis of R' (and R). 
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Lemma 3.24. 

Proof. 

2 B  n R consists of one element. 

Since each a E R' is Weyl group conjugate to an element in 
B (Theorem 3.6), the assumption R' # R implies 2 B  n R # 0. Let 
a E B, 201 E R and let /3 E B - {a} be arbitrary such that (a, 8) # 0. 
Then aO,a = 2as,z, and 0 < a&&,,@ < 3. Hence {a, 8) is a double link 
in the Dynkin diagram and aO,, = -2, amP0 = -1 ,  so 2(a, a )  = (8, p). 
Thus a has a double link with any 8 E B to which it is connected and 
(a, a) = +(/I, 8). It follows from Theorem 3.21 that R' is of type 
6, (1 > 1). Now Lemma 3.18, and the fact that 2 8 ~  R would imply 
a,,B = 2a,,zs E 2 2 ,  shows that 2 B  n R consists of just one element. 

Now we know that there exists an orthonormal basis (el, ..., el)  of the 
span of R such that 

R' = {fei (1 < i < Z), f e ,  f e, (1 < i < j  < 1))  

and B = {a,, ..., a,} where 

01. t - - e .  t - e .  r + l  (1 < i < I -  I), a, = eL. 

Then, as proved above, 201, = 2e, E R. But the reflection sei.-el sends 
el to e,, so 2e, E R for 1 < i < 1. On the other hand, the inclusion 
2 ( f e ,  f ei) E R would violate the integrality condition aa,O E 2 for 
01 = ei, /3 = 2 ( f e i  f ej). 

The irreducible nonreduced root systems are precisely 
the root systems 

Theorem 3.25. 

(bc), = { h e i  f ej : 1 < i < j  < I ,  f e i ( l  < z' < z), f2ei(1 < i < 2)) 

for 1 >/ 1, and a basis is given by 

01.  z = e .  I - e .  *+I (1 < i < I -  I), 

In fact the above discussion shows that there are no other possibilities. 
On the other hand, (bc), is a root system (direct verification or Exercise 
5 ,  Chapter VII). 

a, = e,. 

5. The Highest Root 

Proposition 3.26. Let R be an irreducible root system, B = (a,, ..., a,) 
any basis of R. Then there exists a unique root 6 = 2; diai in R such that 
for any root a = 

In fact, the proof of Lemma 11.8,  Chapter VII, is valid in the present 
abstract context because of Lemma 3.9. The root 8 is called the highest 

aiai in R we have a, < d,, ..., al < d,. 
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root (for B)  or the maximal root. The following lemma is useful for 
determining the highest root. 

Lemma 3.27. Let R be an irreducible root system in V. Let  B = 
(a1, ..., a,) be a basis of R and ( f l ,  ..., f , )  any basis of V such that each a( 
is positive f o r  the lexicographic ordering of V given by ( f l ,  ..., f i ) .  Then 
the highest root f o r  this lexicographic ordering coincides with the highest 

b p i  where bi 2 0 for each i, 

The irreducible root systems R have the highest roots 

root ( f o r  B). 

Proof. In  fact if a E R, then 6 - a = 
so 6 - a is positive for the lexicographic ordering. 

given as follows: 

a, : 6 = el - el+, = al + ... + a1 
b, : 6 = el + e2 = a1 + 2a, + ... + 2a1 
cl : 6 = 2e1 = 2a1 + 2a2 + ... + 2a1-1 + a1 

b, : 6 = el + e2 = a1 + 2a, + ... + 2a1-, + al-l + a1 

e6 : 6 = He1 + e, + e3 + e4 + e5 - e6 - e7 + e,) 
e7 : 6 = e, - e7 = 201, + 201, + 3 4  + 4a4 + 3a5 + 2a6 + a7 
e, : 6 = e7 + e, = 2a1 + 3a, + 4% + 6a4 + 5a5 + 
f4 : 6 = el + e, = 201, + 3% + 4.s + 2a4 

9,: 6 = -  el - e2 + 2e3 = 3a, + 2a, 
(bc), : 6 = 2e1 = 2a1 + 2a, + ... + 2al. 

use of Lemma 3.27. 

Theorem 3.28. 

= OL1 f 2a2 + 20r, + 3a4 + 2015 + a6 

+ 3a7 + 2a8 

Proof. 

For g2 we use the basis 

For a,, b,, c,, b,, (bc)l this is obvious. For the others we make 

fl = e3 - el, f a  = el - e2 
of the space spanned by R. Then a1 = f,, a, = f l  - f i ,  and these roots 
are positive for the lexicographic ordering given by ( f l ,  f a ) .  But 
2e3 - el - e2 is clearly the highest of the roots with respect to this 
lexicographic ordering; thus by Lemma 3.27 it coincides with 6. 

For f4 we use the basis 

f1 = el, f2 = e,, f3 = e3, f4 = e4. 

The elements al, a,, a3, a4 are positive for the corresponding lexico- 
graphic ordering so 6 = el + e2 follows from Lemma 3.27. 

For e8 we use the basis (e8, e,, ..., el). Then each a( is positive for the 
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corresponding lexicographic ordering, and for this ordering the highest 
root is clearly e, + e7. Hence 6 = e, + e,. 

For e,  we first note that the space F7 spanned by the roots is the 
hyperplane in RB with normal e7 + e,. We can take 

eg - e7, e~3, e5, e4, e3, ea, ei 

for a basis of F7. The roots al, ..., a, are positive for the corresponding 
lexicographic ordering, and for this ordering the highest root is e, - e,. 
Hence 6 = e, - e,. 

Finally, for e, we use the basis 

e8 - e7 - e6, e5, e,, e3, e2, el 

of F6. The roots al, ..., a, are positive in the corresponding lexicographic 
ordering, and for this ordering the highest root is half the sum of the 
basis elements. 

We now rewrite the Dynkin diagrams omitting the weights of the 
vertices but instead putting an arrow pointing toward the shorter root 
in case two roots of unequal length are joined. Now we furnish each 
vertex with the coefficient it has in the formula for the highest root. 

DYNKIN DIAGRAMS WITH THE COEFFICIENTS OF THE HIGHEST ROOT 

1 1 
0- 0 1 o-...- 1 

0- 
a1 OLa ma-1 a1 

2 2 
0-0 2 o-...- 1 

0- 
a1 aa ar-1 at 

2 1 
0-0 2 0- ... - 2 

0- 
a1 a8 ma-1 a1 

1 

as 2 
0 

1 
0 o-o- 

1 2 
0- 0- 
all a5 a4 a3 a1 

13 2 

ab2 

3 1 4 3  2 
0- o-o- 0- 

1 
0- 
a7 a 6  a6 a4 a 3  a1 

2 
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a2 3 
0 

3 4 5 16 4 2 
0 o-o-o- 0- 0- 

2 
0- 
ff8 a 7  ff6 % a4 as a1 

3 2 
0-0- 

2 
0- 
a1 =a as a 4  

2 

ffl a8 

f 4  

An automorphism of the Dynkin diagram is a permutation u of the 
vertices preserving both the weights and the multiplicity of the links. 
Equivalently, an automorphism of the Dynkin diagram is a permutation 
u of the vertices preserving the graph (including the arrows). 

6. Outer Automorphisms and the Covering Index 

Let R be an irreducible, reduced root system in V and ( , ) any 
positive definite scalar product on V invariant under Aut(R) (unique 
up to a constant factor). The Weyl group W(R) is a normal subgroup 
of Aut(R). 

Theorem 3.29. The factor group Aut(R)/W(R) is isomorphic to the 
group of automorphisms of the Dynkin diagram. It is given as follows: 

(i) For a,, b,, CI, e7, e,, fa, g2: 2, 

(ii) For a, (I 2 2), b ,  ( I  > 4), eg: za, 
(iii) For b,: G- 

where Z ,  is the cyclic group of order m and B, is the permutation group 
on three letters. 

In fact, since W(R) permutes the bases of R simply transitively, 
Aut(R)/W(R) is (cf. proof of Cor. 5.5, Chapter IX) isomorphic to the 
subgroup of u E Aut(R) leaving a basis of R (or equivalently, a Weyl 
chamber) invariant. But this amounts to u permuting the vertices of 
the Dynkin diagram, preserving both the weights of the vertices as 
well as the multiplicity of the links. The diagrams for b,, c,, e,, e8, f4, 

and g, admit no such permutation, so part (i) follows. For a, and e ,  we 
have a symmetry of the diagram with respect to a vertical axis, and for 
b ,  a symmetry with respect to a horizontal axis. This gives (ii). If I = 4, 
b,  has additional symmetries, resulting in (iii). 
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Now let T ( R )  be the subgroup of V generated by the vectors in R 
and let 

We shall now relate T(R) C T(R) to some concepts from Chapter 
VII. Let u be a simple compact Lie algebra, to a maximal abelian sub- 
algebra. Let g and t denote the respective complexifications and A* the 
set of nonzero roots of g with respect to t. As in §§6, 7, Chapter VII, 
consider the lattices 

t(u) = { H E  to : a(H) E 2m.Z for all a E d *} 

td = integral linear combinations of - I 
where of course td C t(u). We recall (Cor. 7.8, Chapter VII) the iso- 
morphism 

2 M f(U)/td, (12) 

where 2 denotes the center of the simply connected Lie group 0 with 
Lie algebra u. Because of the isomorphism rl (Int(u)) M 2, we call the 
order of 2 the covering index (I? Cartan’s terminology in [9] is indice de 
connexion). 

Lemma 3.30. The pairing 

(x + T(d*) ,  H + tA) + 

turns the groups T(d*)/T(A*) and t(u)/td into character groups of each 
other; in particular, they are isomorphic. 

This lemma is contained in the general duality theory for locally 
compact abelian groups, which we summarize below, following Weil [l], 
$28. (The case dealt with in the lemma could be verified much more 
directly.) 

The locally compact abelian groups come in pairs G and e, each 
being the character group of the other. If (x, 2) is the function on 
G x e which defines the characters of G and of e, there is a one-to-one 
correspondance g + y between the closed subgroups g C G and the 
closed subgroups y c e satisfying 

y = {a E G : (x, 9) = I for x E g}, 

g = {x E G : (x, 9) = 1 for 9 E y}. 
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If g 3 g’, we have y C y’ and the groups g/g’ and y’/y are character 
groups of each other; in particular 

g = m)^, Y = (G/g)^- 

Lemma 3.30 follows by taking 

G = 2 Ra, e = to 
a e A *  

g = fv*), y‘ = t(u) 

g’ = T(d*) ,  y = t A .  

Now let R be any irreducible, reduced root system. Because of 
Lemma 3.30, the order of the factor group F(R)/T(R) is called the 
covering index. 

Proposition 3.31. The covering index equals the determinant of the 
Cartan matrix, that is, 

I mwv)I = det((aii)l<i,i<d. 

Proof. Let B = (a1, ..., al) be any basis of R. Then T(R) = Z:-l Zai. 
Put a” = 2a/(a, a) for a E R. The lattice ZjE1 Za; is invariant under 
each sak, hence under W(R) (Lemma 3.9). Since W(R)(B) = R, we 
conclude that 

F(R) = ( X E  v : <x, a,’) EZ, 1 < i < I } .  

Let wl, ..., w l  be the “dual basis” given by (wj, a;) = 6,. Then 

1 1 

T(R) = czwj and ai = c uijw,. 
j=1 i=l 

Thus the lattice T(R)  is the image of P(R) under the linear transforma- 
tion given by the Cartan matrix. Now the result follows from volume 
considerations since the determinant is always found to be positive. 

Theorem 3.32. The factor group P(R)/T(R) is given as follows: 

(i) For g,, f4, eg: Zl, 
(ii) For b,, c l ,  e,: Z,, 

(iii) For eg: z3, 

(iv) For b,k+l: z*, 
(v) For bzk: z, x z,, 
(vi) For a,: z1+1- 
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Proof. For (i), (ii), and (iii) this is clear from Prop. 3.31 by com- 
putation of the determinant. For the others we write down the groups 
T ( R )  and T(R). 

For al, T(R) consists of the integral linear combinations X;+l n,e, 
(Xi ni = 0), and T(R) consists of the vectors 

a a=1 i i=l 

z+1 z+1 

lx = 2 xiei : 2 xi = 0, 2 nixi E 2 whenever 2 ni = 0 

Thus 

so (vi) follows. 
For b,  we note that T ( R )  consists of the lattice of integral linear 

combinations Xtc1 niei with Xi ni E 2 2  and that T(R)  consists of the 
vectors 

2 1 x = 7 xiei : 2 nixi E 2 whenever 2 ni E 221. 
a i 

Thus 

so T(R)/T(R) has order at most 4. If I is odd, the element (+Zj ei) + T(R) 
has order 4 in T(R)/T(R);  however if I is even, T(R)/T(R) is generated 
by the two second order elements 

This proves the theorem. 

$4. The Classification of Simple Lie Algebras over C 

We have seen that to each simple Lie algebra g over C is associated 
an irreducible, reduced root system R which determines g up to iso- 
morphism. We shall now prove that to each such R corresponds a g; 

thus Theorem 3.23 gives all simple Lie algebras over C. In order to 
motivate the proof we construct for a given semisimple Lie algebra g 
over C a specific system of generators. 
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Let $ C g be a Cartan subalgebra, R the set of nonzero roots of g with 
respect to $, and B = {a1, ..., a,} any basis of R. Now we denote the 
Killing form of g by ( , ); it induces a bilinear form (also denoted ( , )) 
on the dual space of $. Let Hi E $ be determined by 

where Ha, is given by Theorem 4.2, Chapter 111. Fix elements Xi, Yi in 
the one-dimensional spaces gut, g-": such that [Xi, Yi] = Hi (1 < i < 1). 
As in $3, we write for simplicity aii = u , ~ , , ~  for the entries in the Cartan 
matrix. Since ai - ai $ R, the ai-series containing aj is given by 

Proposition 4.1. The semisimple Lie algebra g is generated by the 
above vectors 

A&, Yi, Hi (1 < i < Z )  

and these generators satisfy the following relations: 

(i) [Hi,  Hi] = 0, 

(ii) 

(iii) 
(iv) (ad Xi)l-aji(Xi) = 0 (i  # j ) .  
(v) (ad Yi)l-ajd(Yj) = 0 (i  # j ) .  

The relations being clear from the above remarks, we just have to 
verify that Xi,  Yi, Hi do indeed generate g. This however is obvious 
from Lemma 3.10 and Theorem 4.3 (iv), Chapter 111. The vectors Xi, 
Yi, Hi (1 < i < 1) are called the canonicalgenerators. 

We shall now prove a converse to this result. Let R be any reduced 
root system, R = {&, ..., P I }  any basis of R, and (aij)lGi,iG, the associated 
Cartan matrix (aij = aoi,oJ. We shall now construct a semisimple Lie 
algebra and a basis for its root system whose Cartan matrix is (ai3). 
Roughly speaking, this Lie algebra will be the one defined by 31 gene- 
rators and the relations (i)-(v). 

We consider first the free Lie algebra ? on 31 generators ti, qi, Ci 
(1 < i < I ) .  This is defined as follows. The tensor algebra T(E),  where 
E is the vector space over C having ti, T ~ ,  ti (1 < i < 1) as basis, is 
a Lie algebra with bracket [a, b] = a 0 b - b @ a and ? is defined 

[Xi ,  Yi]  = Hi,  [Xi,  Y j ]  = 0 if i # j ,  
[Hi,  Xi] = ajiXj,  [Hi,  Yi] = -aiiYj,  
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as the Lie subalgebra generated by E. Let f denote the ideal in 7 generated 
by the elements 

[ti, t i 1 9  [ti, %I - &ti, [ti, 6jI - ajitj, [L, 7j] + ~ji7j.  

Put I = 714 and let xi, yi, hi denote the images in I of the generators 
ti, rli, C i ,  respectively. Then xi, y i ,  and hi satisfy the relations (i)<iii). 

The next result describes the structure of I, which in general is 
infinite-dimensional. 

Theorem 4.2. The elements xi, y i ,  hi (1 < i < 1 )  are linearly 
independent and the Lie algebra I is given by 

I = X + $ + Y  (direct vector space sum) 

where X ,  b, and Y a r e  the subalgebras generated by (x i ) lG iGl ,  (hi)lGiGz, and 
( yi) lGiG, ,  respectively. Moreover, b is abelian and has dimension 1. 

For later purposes we remark that although the matrix 
(ai j ) ,  as a Cartan matrix for a root system, is nonsingular, the proof we 
give of Theorem 4.2 is valid for an arbitrary matrix (ai j ) .  

For the proof we construct a family of representations of 7 on the tensor 
algebra T over a complex vector space with basis t,, ..., t , ,  viewing T 
as a vector space with basis 

Remark. 

1, ti (1 < i < I), t i ,  @ ti, (1 < il, iz < Z), .... 

For simplicity we write til ... tip instead of ti, 0 ... @ ti8 (which for 
r = 0 is to mean 1). For A,, ..., A, E C arbitrary consider the representa- 
tion of 7 on T where the action on the basis of T is given by 

7)j * 1 = t j ,  

t j  . 1 = xi ,  
t j - l  = o ,  

7) j  - ti, ... ti? = tjtil ... ti,, 
t j  . ti, ... ti, = (A j  - aili - ... - U i j )  til ... ti,, 
ti * ti, ... ti? = ti& . ti, ... ti,) + . ti, ... ti,. 

This in fact gives a representation of the Lie algebra T ( E )  on T ,  and, 
by restriction, a homomorphism Q : 1 4 gI( T ) .  

Lemma 4.3. 

Proof. 

The kernel €@ of Q contains f .  

clearly [&, tj] E f@. Next we consider the action of qj. We have 
The specified basis of T diagonalizes the action of Ci, so 

([ti, qj] + ujdqj) . 1 = titj - qjxi + ujitj = ( x i  - uji) t j  - Xitj + ajitj = 0 
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and 

so [&, 4 + uiivi E f@. Next [ti, 7J - 6,,.& E €@ because 

([ti, 715] - S&) - 1 = &hi - Si5Xi = 0 

([ti, T ) j ]  - S&) . ti, ... tiI = ti(& * t i ,  ... ti,) + S& * ti, ... ti? 

- tj& * t i ,  ... tir - 8ijl.i * t i ,  ... tir = 0. 

Finally, we must show [&, ti] - +,ti E €@. This amounts to proving 
the identity 

(1) 

For this we observe that the left multiplication t +. t,t on T (1 ,< k < I )  
satisfies 

(2) 

The relation (1) is obvious for r = 1; and assuming it for products of 
length r - 1, we have, using (2), 

ti * f 5  . t i ,  ... tiv = (Xi + aji - Uili - ... - a,,,) Sj * t .  *, ... ti,. 

[j ' tkt - tk45 * t = -akjtkt. 

ti * 6, * t i ,  ... tir 

= ti * ti,(& * t i ,  ... ti,) + [ p i J j  * ti* ... tir 

= t&S* . t i ,  ... tir - Uiliti1fj * ti* ... tir + 6ilj[ i[ i  * t i ,  ... tir 

= (hi + aji - ai,i - ... - ai,i) ttl(tj * ti, * * *  ti,) 

+ (hi - aiai - ... - ad,*) 8& . ti, ... ti,, 
which reduces to the right-hand side of (1) (both for i1 = j and for 
il # j ) .  This proves the lemma. 

The elements xi, yo h, (1 < i < I )  are linearly in- 
dependent. 

It suffices to prove that the vector space E spanned by &, 76, 54 
(1 < i < 1) satisfies 

Lemma 4.4. 

E n t = O .  (3) 

But if & (a& + bivi + tit;,) E f ( a ,  b,, ci E C), then by Lemma 4.3 
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Applying the left-hand side to 1 E T ,  we obtain 

2 (biti + C i X i )  = 0. 
i 

Since the A, are arbitrary, we deduce bi = ci = 0 for all i. Thus 
& a&(&) = 0, and applying this to ti E T ,  we obtain aj  = 0. This 
proves the lemma. 

The elements h,, ..., h,  commute and since they are linearly in- 
dependent, we can define the linear functions a(i on b by a(i(hi) = ajr 
(1  < i, j < I ) .  

Lemma 4.5. 

(i) The algebra X is spanned by the elements 

[xil, ..., xiJ = ad xil ... ad xir-Jxi,) (ad = adt) 

(1 < i,, ..., i, < 1 )  which satisfy for h E tj 

ad h[xil, ..., xiJ = (mtl(h) + ... + ab(h))[xil, ..., xiJ .  

(ii) The algebra Y is spanned by the elements 

[Yil, .* . , rJ  = adYil -.. adYi,-,(Yi,) 

(1 < i,, ..., i, < 1 )  which satisfy for h E b 

ad h[Yil, *-., YiJ = -(atl(h) + ... + atl(h))[y,,, ..., YJ. 

Proof. Let X C X be the span of the elements (4), [xi,] meaning 4,. 
Define Y' similarly and let I' = X' + i~ + Y'. We now prove by the 
method of Lemma 4.4 that this sum is direct. Suppose x' + h + y' = 0, 
so that corresponding representatives in 1, 

satisfy .$' + 5 + 9' E f and therefore, by Lemma 4.3, t(f') + @(() + 
@ ( T I )  = 0. Applying the left-hand side to 1 E T ,  we obtain 

But 9 is arbitrary, so we deduce 5 = 0 and then the resulting relation in 
the tensor algebra T implies the same relation in T(E) ,  that is, r]' = 0. 
Hence y' = 0 and XI = 0. 
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The following steps now show that I' C I is a subalgebra: 

(a) Formulas (5) and (7) follow from (iii) by induction. 

(b) [xi ,  X I  = adx,(X) C X and ad[xil, ..., xi,] is a polynomial in 
the ad xi, so X' is a subalgebra of I, hence X' = X. Similarly, Y' = Y, 
so Lemma 4.5 is proved. 

(c) The relations 

ad yj[xil, ..., xiJ C X 

ad xj[yil, ..., y J  C Y' 

(r >, 2) 

( r  2 2)  

follow from (ii) and (iii) by induction. 

Since the subalgebra I' contains the generators xi, y i ,  hi of I, we have 
I' = I and Theorem 4.2 is proved. 

So far, relations (iv)-(v) have not been taken into account. But now 
they motivate the construction of a factor algebra of 1 which will be 
semisimple and will have Cartan matrix (aij). For i # j we put 

remembering that aii < 0. 

Lemma 4.6. The elements xij and yi j  satisfy 

ad xk(yij) = ad yk(xij)  = 0 (1 < k < Z , i f j ) .  

Proof. Suppose first k .f i. Then by (ii), ad xk and ad y i  commute. 

(8) 

Thus 

ad xk( y i j )  = (ad yi)'-'ji ad xk( yj), 

which vanishes for k + j .  If k = j ,  expression (8) equals (ad yi)l-afi(hj), 
which by (iii) vanishes both if aii = 0 and if aji # 0 (remembering 

Finally, suppose k = i and consider the algebra Cx, + Cyi + Chi 
i # j ) .  

which by (ii)-(iii) has the bracket relations 

The vector y j  satisfies (since i # j )  the relation 
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Put e, = (adyi)"(yi), n >, 0, e-, = 0. Then we get by induction and 
the Jacobi identity (cf. the proof of Theorem 2.16, Chapter VII) 

[hi, en] = (-aji - 2n) en 

[Yi, en1 = e n f l  

[xi, e,] = n(-aji - n + 1) 

This last expression is 0 for n = 1 - aii, so the lemma is proved. 
Now define 

f: The ideal in 1 generated by all xii, yii ( i  # j ) .  
X,: The ideal in X generated by all xii (i  # j ) .  
Yo: The ideal in Y generated by all yii (i # j ) .  

Lemma 4.7. 

Proof. 

X ,  and Yo are ideals in I and € = X ,  + Yo. 

Clearly Yo is spanned by elements of the form 

adYil adYi,(Yid. 

Hence ad $(Yo) C Yo. Since ad x k  ad yi = ad y j  ad x k  + ad h (h  E b), 
Lemma 4.6 implies ad xk(  Yo) C Yo. Thus ad I( Yo) C Yo and similarly 
ad [(X,) C X,. Since f 3 X ,  + Yo and since Xo + Yo is an ideal in I, 

From Lemma 4.7 and the directness in Theorem 4.2 we deduce the 

b n t = O .  (9) 

f = x, + Yo. 

crucial relation 

Let Xi, Yi, and Hi denote the images of xi ,  yi, and hi, respectively, 
under the canonical mapping T : I -+ g, g denoting the factor algebra 

The elements Xi ,  Yi, Hi (1 < i < I )  in g are linearly 
independent. They satisfy relations (i)-(v). 

By (9) the Hi are linearly independent. The matrix (aii) being non- 
singular, the a: are linearly independent and we can select h, E such 
that the numbers &ol(i(h,) (1 < j < I )  are all different and #O. Then 
a vector E ciHi and Xi, Yi (1 < j < I )  are eigenvectors of ad h, with 
distinct eigenvalues so are linearly independent. This proves the lemma. 

We are now going to prove that the Lie algebra g gives the desired 
realization of the root system R. We put 

I/€. 

Lemma 4.8. 

1 

bR = 2 RH,, n+ = n(x), n- = n(Y) 
i=l 
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and write t, for ~ ( t ) )  because of (9). By Theorem 4.2, 

g = n+ + t, + n-. (10) 

Defining aj €9; (the dual space of bR) by ai(H,) = aii (1 < i ,  j < I), 
we have from (5) and (7) 

n+ = 2 QA, t, = go, n- = 2 
A 2 0  -A  >o 

where for each X E t,; we put 

gA = { Z  E g : ad H ( Z )  = h(H)Z for H E  t,R) 

and the notation X > 0 means that X # 0 and is a positive integral linear 
combination of a$ (1 < i < I ) .  Because of (1 l), the sum in (10) is direct. 
By ( 5 )  and (7) each gA ( A  # 0) is finite-dimensional and by (10) is 0 if 
neither X > 0 nor - A  > 0. 

The endomorphisms ad Xi and ad Yi (1 < i < I )  of g 
are locally nilpotent (that is, each 2 E g is annihilated by some power of 
them). 

For a fixed i let mi denote the space of 2 E g annihilated by 
some power of ad&. By the proof of Lemma 3.2, Chapter 111, mi is 
a subalgebra of g. But relations (ii)-(iv) imply that mi contains the gene- 
rators Xi, Yi, Hi (1 < i < l ) ,  so mi = g as desired. 

This lemma implies that, although we have not yet proved that 
dim g < co, e&d X i  is a well-defined automorphism of g. 

The linear mapping of RP, onto X t l  Rori = b; given by Pi -+ 01, 

sends R into a root system (which we denote by A )  in b; with basis 
{a1, ..., al} and corresponding Cartan matrix The reflection 
sai (1 < i < I )  is then given by 

Lemma 4.9. 

Proof. 

saix = x - X(HJ ai, x E t,;. (12) 

These reflections generate the Weyl group W(d) of d. 

Lemma 4.10. The automorphism 

,gi = eM xie-&d yi  eadXi 

leaves bR invariant and sai coincides with the transpose of the restriction 
e$ I b R -  

Proof. We have by (i)-(iii) 

O,(H.) 3 -  - eadx*e-adYi(Hi - a,Xi) = eadxi(Hi - aijXi - aiiHi) 

= H j  - aziX, - aiiHt - aijXi + 2aiiXi 
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so 
ei(Hj)  = Hi - aijHi, 

proving the first statement. Also by (12) 

X(Oi(Hj)) = h(Hj) - X(Hi) aij = swi(X)(Hj), 

proving the second statement. 

Corollary 4.11. Suppose A, p E bA are conjugate under W(A). Then 
there exists an automorphism of g mapping gA onto gu. 

In fact we may assume p = s,> and then 0;gA C gu is immediate. But 
st%< = sai -l 9 so 0, actually interchanges gA and 9'. 

Lemma 4.12. Suppose A # 0 in 6; such that cX q! A for all c E R. 
Then there exists a a E W(A) such that neither UX > 0 nor -ah > 0. 

Since A is finite, we can select H, E OR such that a(H,,) # 0 
for all a E A but X(H,) = 0. By Theorem 3.6 there exists a E W(d) 
which, identified with (b--l, satisfies ai(aHo) > 0 (1  < i < 1) .  Writing 
ah = Z:=l aiai, we have 

Proof. 

1 

0 = h(H,) = ah(&,) = 2 aiai(uHo), 
i=l 

so the lemma follows. 

Lemma 4.13. Let X # 0 in f~;. If X E A, then dimgA = 1.  If h q! A, 
then gA = 0. 

Proof. We have dimgA = 1 if X = mi by (5 ) ,  hence for all X E  A 
by Cor. 4.11 because X is W(d)-conjugate to some ai. 

We know from Lemma 4.5 that n+ is spanned by the elements 
[Xi,, ..., XiJ. Consequently, if c # 0, &l,  then gem = 0 for 01 = at, 
hence by Cor. 4.1 1 for a E A. Hence if h q! A but cX = a E A for some 
c E R, then gA = g"Ic = 0 since c-l # 0, k-1. 

Finally, if h is not proportional to a root, then by Cor. 4.11 and 
Lemma 4.12, gA = 0. 

Lemma 4.14. The Lie algebra g is jinite-dimensional, semisimple, and 

g = b + gA (direct sum). 
A€ A 

By Lemma 4.13 and (10) we just have to prove the semisimplicity, 
that is, that the Killing form ( , > is nondegenerate. Let 3 = 
(2 E g : (2, g) = O}. Then since ad b leaves the ideal 3 invariant, 
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But ( 3  n $, bR) = 0 implies 

Writing H = Hl + iH2 (Hl ,  H2  E $ ~ ) ,  we deduce X(H) = 0 for 
H E  3 n $, X E A ,  so 3 n $ = 0. If 3 n gA # 0, then [g-A, 3 n gA] is a 
nonzero subspace of 3 n $ ((ii) and Cor. 4.11) which is impossible. 
Thus, by (13), 3 = 0, so g is semisimple. 

Summarizing, we have proved the following result. 

Theorem 4.15. Let R be a reduced root system in a vector space V ,  
B = {&, ..., S2} any basis, and (aij)lGi,jG2 the associated Cartan matrix. 
Let g be the complex Lie algebra generated by 31 elements Xi, Y,, Hi 
(1 < i < I )  subject to the relations (i)-(v). Then Q is jinite-dimensional, 
semisimple, has $ = ZtE1 CH,  as a Cartan subalgebra, and the linear 
mapping r of V onto the dual dejined by r(&)(Hj) = au gives a bijection 
of R onto the set A(g, Ij) of roots of g with respect to b. 

$5. Automorphisms of Finite Order of 
Semisimple Lie Algebrast 

Let g be a Lie algebra over C. If A is an abelian group, an A-gradation 
of g is, by definition, a direct decomposition 

g = @ g i  such that rsi, %I c %+j. (1) 
& A  

For example, if 1 = u + e is a Cartan decomposition of a semisimple 
Lie algebra (Chapter V), then the decomposition Ic = uc + ec is a 
2, = Z12Z-gradation of the complexification Ic. 

An ideal 5 C Q is called an A-graded ideal if 5 = OcA 5 n g i .  It is clear 
that in (1) go is a subalgebra of g; writing X(Y,) = [X, Y,] for 
X E go, Yi E go we have a representation of go on gi. 

Now suppose g has finite dimension and let u be an automorphism 
of g satisfying urn = e. Fix a primitive mth root E of unity. Then each 
eigenvalue of u has the form (i E 2, = Z j m Z )  and since u is necessarily 
semisimple (it leaves invariant a positive definite Hermitian form), we 
have the direct decomposition 

+ This section is an edition of written and oral expositions by Victor KaE to the author, 
covering the results of the announcement KaE [l]. 
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where gi is the eigenspace of u for the eigenvalue ei. Clearly (2a) is a 
2,-gradation of g. Conversely, if a 2,-gradation (2a) of g is given, the 
linear transformation of g given by multiplying the vectors in gi by ci 
is an automorphism u of g satisfying um = e. 

Let C[x, x-'1 denote the algebra of Laurent polynomials in the in- 
determinate x (that is, all finite sums ZjEz c#, ci E C). Considering g 

and C[x, x-'1 as vector spaces over C, we can form the tensor product 

C[x, x-'1 @ g = @ xis. 
3oz 

With the bracket operation [dY, xkz]  = x ~ + ~ [ Y ,  z ]  (2b) becomes a 
Z-graded Lie algebra over C of infinite dimension. With the automor- 
phism u of g and gi as in (2a) we associate a subalgebra L(g, u) of (2b): 

L(% = @ x'gj mod m. 
j o Z  

This will be called a covering Lie algebra of g and the homomorphism 
q~ : L(g, a) -+ g defined by v(xkY) = Y ( Y E  gk mod m) will be called 
a covering homomorphism. The algebra (2b) is L(g, e)  (e = identity 
autornorphism). By studying the 2-graded algebras L(g, u) (g simple) 
we shall obtain a description of all 2,-gradations of simple Lie algebras. 
The plan is to develop the weight theory for L(g, u), that is, the analog 
of the root theory for g. Thereby we establish an isomorphism L(g, u) M 
L(g, v), where v is an automorphism of a very special type, namely 
induced by an automorphism of the Dynkin diagram. This results in 
an explicit description of u in terms of v (Theorem 5.15). 

Assume now g is a semisimple Lie algebra over C and u an auto- 
morphism of g of order m. Let B denote the Killing form of g. 

Lemma 5.1. 

(i) B(gi, gj) = 0 for i, j E Z,, i + j # 0. 
(ii) For each X # 0 in gi there exists a Y E  g-$ such that B(X,  Y )  # 0. 

Proof. 

In particular, the restriction of B to go x go is nondegenerate. 

Let X E go Y E  gj. By the invariance of B, 

B(X, Y) = B(uX, UY) = €i+'B(X, Y) .  

This gives (i); part (ii) follows from (i) since B is nondegenerate. 
Because of Exercise A.8, Chapter VI, we have the following result. 

Lemma 5.2. There exists a compact real form u of g invariant under u. 

As a consequence, (2a) gives a Z,-gradation u = Oi ui, where 
ui = u n gi and gi = (ui)". Being the fixed point set of u on the compact 
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semisimple Lie algebra u, the subalgebra uo is compact. By Prop. 6.6, 
Chapter 11, we get the direct decompositions into semisimple and abelian 
ideals, 

(3) uo = [uo, Uol 0 3%, go = [go, go1 0 3% 

the latter terms denoting the centers. Taking a maximal abelian sub- 
algebra ti of [uo, uo], the algebra to = (, + s", is maximal abelian in uo 
and its complexification t, = t$ is maximal abelian in go. 

The centralizer 3(b) oft, in g is a Cartan subalgebra of g .  
In particular, go # 0. 

Clearly 3(b) is the complexification of the centralizer 3(t0) of to 
in u. Thus we have to prove only that 3(5) is abelian. For this we use the 
analogs of (3) for 3(to) and 3(t,); thus 3(t,) = fj 0 5 where 5 is abelian and 
contains t, and 5 = [3(t,), 3(t))] is semisimple. Now u leaves 6, 3(b), and 
5 invariant; and since ij is maximal abelian in go, the action of u on 5 has 
no nonzero fixed point. From this we shall draw the desired conclusion 
5 = 0. 

Consider the 2,-gradation 5 = Oi si induced by (2a). Numbering 
the elements of 2, by the corresponding integers in the set N ,  = 
(0, 1, ..., m - 1) and defining 5, = 5,, if v E N,, u = 'u (mod m), we 
shall prove 5k = 0 by induction on k. 

We know 50 = 0;  let k > 0 and X E 5k.  Then (ad Xp(5si) C 5k++i 

(i  E N,). Select r E Z+ such that k(r - 1) < m - i < kr. Then kr + i = 
m + t (0 < t < k) ,  so by the inductive assumption, B ~ , . + ~  .= 5 t  = 0. 
Thus ad X I 5 is nilpotent. Similarly, ad Y I 5 is nilpotent if Y E  s - ~ .  
But [sk, ~ l - ~ ]  C 80 = 0, so ad X and ad Y commute on 5 and by the 
nilpotency, Tr,(ad X ad Y) = 0. Now Lemma 5.1 (ii) implies g k  = 0, 
so the lemma is proved. 

Let a E 9" (dual of 9) and i E 2,. A pair 6 = (a, i) will be called a root 
(of g with respect to t,) if the joint eigenspace 

Lemma 5.3. 

Proof. 

g" = { X E  gi : [H,  x] = a(H)Xfor  HE^,} 

is #O. We add pairs by (a, i )  + (a', i') = (a + a', i + i'). Note that 
[g', g8] c B"+~. Let d denote the set of nonzero roots and do the set of 
roots of the form (0, i ) ,  i E 2,. Then we have the direct decompositions 

and 
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Using Lemmas 5.1 and 5.3 and the proofs from $4, Chapter 111, we 
obtain the following analogs to Theorems 4.2-4.4 of Chapter 111. 

Lemma 5.4. 

(i) dim g' = 1 for each 6 E d - do. 
(ii) The restriction of B to 0 x 0 is nondegenerate. For each ,!I E bA there 

exists a unique element H ,  E b such that 

B(H, H6) = B ( H )  ( H E  b). 

w e  Put ( B ,  r> = B(HB, HJ' 
(iii) I f  6 E d - do, then --(YE d - do and 

[g", g-"'] = CHa, @&) # 0. 

Lemma 5.5. Let f l  be a root and 6 E d - do. 
(i) The set of all roots of the form f i  + n6 (n E 2) has the form fi  + n6 

(P \< \< 4). Alb 

(ii) The only roots proportional to 6 are -&, 0, and 6. 
(iii) If 8 , 6  + B E a, then there exist X E g', Y E  gB for  which [ X ,  y] # 0. 

In particular, 
[g"', gq = g"+B if 6 + f l  $60. 

Lemma 5.6. Let bR = &sd-do RH,. Then: 

(i) B is real and strictly positive definite on bR x bR. 
(ii) b = bR + ibR (direct sum). 

We consider now the covering 2-graded Lie algebra L(g, u) = 

BieZ Lj where Li = xisj mod m. We identify Lo with go and give defini- 
tions for L(g, U) analogous to those for g. For a E b", j E 2, a pair 
B = (a, j )  is called a root (of L(g, u) with respect to b) if the space 

L ~ = { X E L ~ : [ H , X ]  =c@)XforHEb} 

is #O. We put (a, j )  + (f', j r )  = (a + ar, j + j '). Let d denote the 
set of all nonzero roots, do the set of roots of the form (0, j ) ,  j E Z. 
We have [La, Lq C and the direct decomposition 



494 CLASSIFICATIONS [Ch. X 

because, for each H E I), the restriction (ad H) I L, is semisimple (Lemma 
5.3). Note that if (a, j) is a root a n d j  3 j '  (mod m), then (a, j') is a root; 
moreover, the map 

d = (a,j) -+ (a,jmod M) = (II 

maps the set of roots of L(Q, u) with respect to IJ onto the set of roots of a 
with respect to 8 and Lff = xjg". This connection between d, do and d', 
d ' O  gives the following lemmas for L(Q, u) and d'. 

Lemma 5.4.  

(i) dim Lff = 1 for each d E d - d"0. 

(ii) If d E d' - do, then -d E d' - do and 

[Lff,L4] = CH,. 

This is immediate from Lemma 5.4 and the above remarks. 

Lemma 5.5'. Let p be a root and d E d - d'o. 
(i) The set of all roots of the form p +  nd (n  E 2) has the form p +  nd 

( p  < n < p). Also 

Moreover, if e, # 0 in Lff, 

(ad e&P(U+@) # 0. 

(ii) The only roots proportional to d are -5, 0, d. 

(iii) I fp ,  d + p E a, then there exist e, E La, es E Ls for  which [e,, es] # 0. 
In particular, 

[LE, LO] = L$+B i f  d + /9 4 2 0 .  

Proof. Part (iii) is immediate from Lemma 5.5 (iii) above. Part (ii) 
and the first statement in (i) follow just like the analogous statements 
in Theorem 4.3, Chapter 111. Now put h = 2(a, a)-lH, and select 
e, EL', ea EL" such that 

[eat, e-al = h, [h, eel = 2% [h, e4] = -2e,. 

and consider the adjoint representation of Ce, + Ce, + Ch on 
@pGnGqLB+nff. Fix  Z f. 0 in Ls+pe and put en = (ad e#(Z), n 2 0,. 
e-, = 0. Since [h, z ]  = ( p  - q)Z and [e-@, = 0, the proof of 
Theorem 2.16, Chapter VII, gives 

re,, en] = -.(p - q + 12 - 1) en-1. 
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If K is the last integer such that ek # 0, then we deduce K = q - p ,  
proving (i). 

Now choose a basis of the root system do of [Lo, Lo] with respect to 
i j  n [Lo, Lo] and let d,f denote the corresponding set of positive roots. 
Defining each 01 E do to be =O on the center of Lo, it can be considered 
a linear function on 8, We identify a with the root (a, 0) and observe 
that all roots of the form (/3, 0) are obtained in this way. The set 

d+=o,+u{(a,j)EJ:j>o0) 

will be called the set of positive roots in 0". A root 8 E 0"+ will be called 
simple if it is not a sum of two members of o?. Let n = {(ao, so), 
(a1, sl), ...} be the set of simple roots and put 17 = {a,,, al, ...). Part (iv) 
in the lemma below shows that all the ai are different; in particular I7 
and n are finite sets. Let N be their cardinality. 

Lemma 5.7. 

(i) Each 8 E 0" can be written in the form 8 = & Xi kiZi where k ,  E Z+, 

(ii) ~ T c  0" - 20. 
(iii) The system 17 is a linearly dependent system of vectors which 

(iv) For i # j we have 

8, E n. 

spans ij". 

in particular, mi # ai. 
(v) If 8 E 0"+ is not simple, then 8 - Zi E 2 for some Zi E fT. 
Proof. 

For (v) we first prove (for 8 not simple): 

If 2 ~ n ?  - Lo, then B - 

(i) If 8 E d+ is not simple, then 8 = p + 7 (p, 7 E d?). Using 
this on /?, 7, etc., we derive (i). 

E afar some 8.a - Jo. 

In  fact, otherwise Lemma 5.5' (i) implies (a, /3) < 0 for all such /?; 
since (a, /I) = 0 for /? E Lo, part (i) and Lemma 5.6(i) gives the contra- 
diction a = 0. This being proved, Lemma 5.5' (iii) and Lemma 5.4' 
(i) imply because of (7): 

L(g, u) is generated by La, L-B, Lp (/3 E fT - d o ,  7 E 2 0 ) .  

Secondly: 

If Z E ~ " ,  then 8 - P E d f o r  some p e n - -  do. 
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In fact, otherwise Lemma 5.5' (i) implies d + f l  $ d for all f l  E I7 - do 
( p  = q = 0). Thus [La, L*T = 0; and since [La, Lp] = 0 for j j  E do, 
we have by the above [L', L(g, u)] = 0, which amounts to [g", g] = 0, 
contradicting the semisimplicity of g. This proves (v). 

n d"O. By simplicity, d - p $ d u {0} 
for all f l  E fl - Lo, so by Lemma 5.5' (i), i? + $ d" u {0} for all such 
p. Again we get the contradiction [La, L(g, a)] = 0; this proves (ii). 

Since (0, m) E lo n o"+, part (i) implies that the vectors ao, al, ... are 
linearly dependent and by (ii) they are all nonzero. They span $^ because 
of (i) and Lemma 5.6 (ii). This proves (iii). Finally, (iv) follows from 
Lemma 5.5' (i). 

For 0 < i < N - 1 we put now hi = 2(ai, ai)-l Ha, and, by virtue 
of Lemma 5.4' (ii), choose vectors e, E Lad, f i  E Ldi such that [ei, f,] = hi. 
Then we have the relations 

[hi, hi] = 0, [ei,fi] = Sijhi, [hi, ei] = ajiej, [hi , f j]  = -ajifj .  ( 8 )  

The matrix A = (aij),,Gi,jGN-l is called the Cartan matrix of the Lie 
algebraL(g, a). If M denotes the abelian group generated by Go, ..., BN- l ,  
the decomposition (7) is an M-gradation of L(g, a), 

For part (ii) suppose d E 

-%I, 4 = @ L', 
a m  

where Lo = 6,  La = 0 if d I$ d". 
Lemma 5.8. 

(i) The elements ei, f i ,  hi (0 < i < N - 1) f o rm a system of generators 

(ii) The M-graded Lie algebra L(g, u) has no nonzero M-graded ideals I 
(that is, I = ( I  n La)) for which I n Ci Cei = 0. 

(iii) If u is an  indecomposable automorphism (that is, g cannot be decom- 
posed into a direct sum of a-invariant ideals), then 17 is indecomposable 
(as a union of two disjoint orthogonal nonempty subsets). 

(i) Let L' be the subalgebra of L(g, a)  generated by ei, fi, hi 
(i = 0, ..., N - 1). We claim 

of L(g, 4. 

Proof. 

LE c L' for d e i i -  o"~. 
It suffices to consider E d"+ - 20.  By Lemma 5.7 (v), if & is not simple, 
B - di E A+ for some i. If d - di 4 do, then we write La = [ e ,  La"$] 
by Lemma 5.5' (iii); if d - di E 1 0 ,  then p + q = -2 in Lemma 5.5' 
(i), so (a - a,) - di E A+ - d"O and by Lemma 5.5' (i) 

I 

- 
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By iteration, we find that La is generated by the e,; this proves La CL' 
(d E 2 - d"o), so of course [La, L'] C L'. Also if d E zo, we have by (7) 
and the commutativity of Z 9 E ~ o  L' (Lemma 5.3)  that 

[L&,L'] c 0 + [La, 2 L"] c 2 LS CL'. 
fiEd-dO BEd-dO 

Thus L' is an ideal in L(g, u); and since each element in L' is a linear 
combination of multiple brackets of e,, fi, we have L' = OaeM (La n L'), 
that is, L' is a graded ideal. 

Now we define an invariant bilinear form P on L(g, a) X L(g, u) 
by putting 

B(x'"Y, X l Z )  = B(Y,  Z), Y ,  ZE g .  

Let L" denote the orthogonal complement of L' in L(g, u) with respect 
to B.  Then L" C Z e o ~ o  L'. Hence if Z E L(g, u) and we write according 
to (7) 

z = zo -+ Z', ZO€ 2 La, Z ' E  LB, 

[L", 21 = [L", Z'] c 2 La, 

a d 0  ,&--do 
we have 

ed-do 

so, L" being an ideal, [L", Z] = 0, whence L" C center (L(g, a)). But 
center (9 )  = 0, therefore L(g, u) has center 0, so L" = 0; since L' is a 
graded ideal, this proves (i). 

For (ii) suppose I were a nonzero M-graded ideq,, of L(g, u) such that 
I n Z Cei = 0. Being M-graded, I will for some d E d" contain a nonzero 
vector e, E La. If d E J0, then for some i E (0, ..., N - 1) either [ e , ,  e,] # 0 
or [ee,fi] # 0 because otherwise part (i) would imply that ee is in the 
center of L(g, 0). Thus it suffices to consider the case I 3  e, # 0, where 

E 0" - 2 0 .  But then by Lemma 5.4' (ii), CH, C [La, L-"1 CI. Since 
oli(H,) # 0 for some i, we obtain La* = [L'i, H,] C I, which is a contra- 
diction. 

(iii) Let Fi, fi, hi be the images in g of the elements e,, fi, hi 
(0 < i < N - 1) under the covering mapping of L(g, a) onto g. Suppose 
17 were decomposable: Il = 17, v I12. We obtain a corresponding 
decomposition 6 = @be where 

Qs = 2 Chi (s = 1,2). 
% E n ;  

If o l i ~ L l l ,  ai ~17,, then a,(hj) = 0, so by Lemma 5.5' (i), [F4, Fi] = 

[A, A] = 0. It follows that if 98 (s = 1, 2) denotes the subalgebra of g 
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generated by those Fi, f i ,  Li for which a, E 17,, then by (i) we obtain 
a decomposition of g into a direct sum of the u-invariant ideals g1 and 92. 

This proves the lemma. 
From now on, u denotes an indecomposable automorphism of g of 

finite order. Let E = Z{-l Rai, put l7 = {ao, ..., aN-J and let n = dim E. 
The inner product ( , ) is, by Lemma 5.6, positive definite on E, and 
we have the following properties: 

(U1) aij = 2(ai, +/(aj, aj) E -Z+ for i # j .  
(17,) 17 is an indecomposable system of vectors. 
(17,) 17 is a linearly dependent system of vectors generating E. In  

We shall classify all such systems of vectors. 

Lemma 5.9. 

(i) Every proper subsystem of 17 is a linearly independent system of 

(ii) The system ff is independent over Z, that is, if Zt” cisi, = 0 

Proof. (i) If the first statement were false, there would be a relation 

particular, det(au) = 0. 

vectors. Moreover, N = n + 1. 

(c, E Z ) ,  then c; = 0. 

where 17‘ u l7” C 17 (proper inclusion), 17‘ # 0, 17‘ n 17” = 0, and 
a, > 0, a, > 0. Then by (U1) 

so Z a,a = 0. But if /3 E 17 - n’, we have (6, a> = 0 (a E L!’) because 
otherwise 0 = (Z a,a, p)  = C, a,(ol, /3) < 0. Thus the decomposition 
17 = 17’ u (17 - n‘) contradicts (l7.J. The statement N = n + 1 now 
follows from (n3). 

For part (ii) we observe that if m is the order of a, then (0, m) E 
d”O n A+, so (0, m) = 2:gN-I a@, where a, E Z+. But by part (i) the relations 
0 = 2:-l upi  and Z0N-l ciai = 0 must be proportional, that is, ai = cc, 
( c E R ) .  But then m = 0 which is a contradiction. 

Lemma 5.10. Let for theLie algebrasL(g, u) andL(g’, a’) the maximal 
abelian subalgebras $ C go, $‘ C g6 and corresponding sets of simple roots 

I7 = (so, ..., Zn), ff‘ = (&, ..., a;.) 
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begiven. Assume n = n' and that under the mapping d,  -+ di (0 < i < n), 
which by Lemma 5.9 (ii) gives a bijection T : M --+ M', the Cartan matrices 
A and A' coincide. Then: 

( i )  There exists an isomorphism 

g : w, 0') - q g ,  4, 

under which the M-gradation and the MI-gradation correspond, that 
is, $((L')'(e)) = L', where L' = L(g', 0'). 

(ii) Let I$ be any isomorphism satisfying (i). I f  g and g' are simple, there 
exists an isomorphism z,b : g' --+ g and a constant c E C - (0) for  which the 
following diagram is commutative: 

where 9) and cp' are the covering homomorphisms and pe is the automorphism 
of L(g, a) which corresponds to changing x to cx. 

(i) We consider the Lie algebra E(A) with generators I?$, f,, f.la 
(0 < i < n) and defining relations (8). (The algebra E(A) is the analog 
of I in $4; it is the free Lie algebra E(A) on 3(n + 1) generators &,, f,, hi 
modulo the ideal defined by relations (8).) By Lemma 5.9, each d E M 
can be written d = Z:o" kidr where the ki E Z are unique. We write 
d > 0 if d # 0 and k, >, 0 for all i. If d > 0 (respectively -d  > 0), we 
denote by La the linear span of all commutators 

Proof. 

[gi1, ..., &tJ = ad ... ad gi,Jgi,) 

for which ds1 + ... + dir = d (respectively, all commutators 

[Al, ..-, Ji-I = adzi ,  - * *  adjiJfiJ 

for which tiil + ... + djr = -C). For all other d # 0 in M we put 
E' = 0 and we define Lo = ZE C?& By Theorem 4.2, the subsequent 
remark, and Lemma 4.5, we have the direct decomposition E(A) = 

E+ + Eo + E-, where 
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These sums are direct; suppose for example we have &,o ua@ = 0. 
(a, E C) where 

@ =  2 c(i)[gil, * * * )  g i ~  €La, C ( i )  E c. 
tiil+. . .+Eli,& 

Then by the method of proof of Lemma 4.5, (where y' = 0 implied 
r)' = 0) we derive the relation 

Z,b=O 

b = 2 C(t)[L?fl, ..., "J &(A). 

a>o 

for the representatives 

(i) 

But if t? is written as a sum of different monomials in the tensor algebra 
with nonzero coefficients, then for B # p, 8 and 8 have no terms in 
common. Hence a, = 0 for all B, so we have the direct decomposition 

E(A) = @ La. 
b € M  

This turns L(A) into an M-graded Lie algebra. In fact [La, Lq CI!?+~ 

as a consequence of the relations [La, gi] CLa*i and [La, fi] C La-',, 
which follow from (8) by induction. 

The algebra E(A) contains a unique maximal M-graded ideal I (A)  
with the property I(A) n Zi Ci?< = 0, namely the subspace of &A) 
spanned by all M-graded ideals Jy with this property. In fact, zy Jy 
is an ideal and using the fact that it, and each Jy, is M-graded, one 
derives readily that (&, Jy) n Z Cgi = 0. 

Taking brackets with thefj, it is clear that the elements ei (0 < i < n) 
in L(g, a) are linearly independent. The homomorphism of L(A) onto 
L(g, u) given by hi -+ hi, +- ei, fi +fi has a kernel which is an 
M-graded ideal which, by the linear independence of the ei, has 0 
intersection with Xi Czi, and by Lemma 5.8 (ii) it is maximal with this 
property. Thus L(g, u) = L(A)/l(A), proving (i). 

(ii) We recall that the centroid of a Lie algebra I is the set of linear 
transformations A of I which commute with each ad X (X E I). It is 
well known (cf. Jacobson [l], p. 290) that if I = [I, I], then the centroid 
is commutative. In  fact, 

AlA,[Xl, X2l = A,[&, -42x21 = --A,[A,X,, Xll = -L42X2, AlXJ 
A,A,[Xl, X2l = -A,A,[X,, Xl] = -A2[X,, AlXII = CAlXl, A2X21, 

so A,& - A,A, annihilates [I, 11 = I. 
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We now fix an isomorphism $ satisfying (i). The orders of u and a' 
being m and m', respectively, consider the linear transformations A of 
L = L(g, a), A' of L' = L(g', 0') given by 

Ag = xmg, A'g = xmg. 

Clearly, A and A' belong to the respdctive centroids. By the definition 
of the covering map the kernel of v' equals I' = {g - A'g : g EL'}. 
We put I = $(I,). Then I = {g - Ag : g E L }  where A = $A'$-l, 
which belongs to the centroid of L(g, a). Now A'("'') c (L')''+?' where 
7' = (0, m') E ( 6 1 ) O  n (d"')+. It follows that A(L') C L'+? where 7 = 
(y, t) E z+ satisfies ~ ( 7 )  = 7'. Now g is simple, so by Lemma 5.8, 17 is 
indecomposable. Thus, given any two indices 0 < i < j < n, there 
exist i = k,, k,, ..., k, = j such that all akuku+, # 0. Hence by (8), 
e,, f,, hi E [L, L] so [L, L] = L. Therefore, by the above, A and A commute. 
Hence A leaves the kernel I = (1 - A) L(g, u) of v invariant and 
induces on g = L(g, a)/I an element d from the centroid of g .  But g is 
a simple Lie algebra over C, so by Schur's lemma, E is a scalar. Choosing 
a basis vector es in each La (f! E n" - Lo), we have for d E a - ao, 

= (a ,  j ) ,  

where the c are constants and lE E CpE~o Ly. If a + y = 0, this implies 

But this equation is impossible because the sum is finite and xmea # 0. 
Thus a + y # 0, and we have Aeb( = (c  # 0), so the equation 
above implies 1, = 0 and 

tea+? = Eea + (1 - xm) C q a e f i .  

This equation implies 7 = (0, dm), d E Z+, so A and A d  are proportional 
on each L'. In  particular ( A  - aAd)el = 0 for some a E C, whence 
(A - aAd)(L) = ( A  - uAd)([L, e,]) = 0 since A and Ad belong to the 
centroid of L. Thus aAd = A = $A'$-l. Applying this to the iso- 
morphism $-l, we get = $-lA$ where d' EZ+ and a' EC. 
Hence Am' = aoA (ao E C )  which implies d = d' = 1, whence Ag = 

axmg, I = (1 - axm) L(g, a), and (iii) follows by putting c = &Irn. 
I n  analogy with the procedure in 93 we associate with each matrix 

A = (aii) a diagram as follows. We take n + 1 vertices, we join the ith 

B E d - b o  
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and j th  vertices by aijaj, lines; and if I aii I < I a$, I, these lines have 
an arrow, pointing toward the ith vertex (the shorter root). 

Any diagram S(A) belongs to one of the Tables 1-3 
below. The numerical labels on the vertices are coeficients of the linear 
dependence between the corresponding rows of the matrix A. 

From Lemma 5.9 and Theorem 3.21 we have: 

Lemma 5.11. 

Moreover, S(A) determines the Cartan matrix A. 

Proof. 

(a) Every proper subdiagram of S(A) is the disconnected union of 

We also have here: 
(b) S(A) is connected; 
(c) det(A) = 0. 

Every subdiagram of S(A) consisting of 1 vertices satisfies 

Dynkin diagrams of type ai ,  br, cr, bl, e6, e7, e,, f4, G ~ .  

(This is (5 ) ,  93, except that now 01 could be 0.) Taking into account (a) 
and Cor. 3.14, we have: 

(d) The only cycle which could occur in a diagram is a “simple” 
cycle of N vertices (akl) in Table 1). If S(A) # a:), then S(A) does not 
contain any cycles. 

Inequality (9) now implies: 
(e) If S(A) contains a triple link, then all other links are simple 

(f) S(A) cannot contain more than two double links (3 - 2+ > 4). 
Property (c) implies: 
(g) S(A) is not a Dynkin diagram from (a). 

(h) For N = 2, S(A) is either ail) or af) in the tables (quadruple link 
because of (g)).  

We shall now prove that if S(A) satisfies (a) (b), (d)-(h), then S(A) 
belongs to Tables 1-3. Because of (d) we may assume S(A) contains 
no cycles. We claim now that there is a vertex p E S(A), for which 
S(A) - {p}  is a connected diagram (and thus from the list in (a)). TO 
see this we fix a point on S(A) and move along S(A) by the following 
rule: each time we move to a vertex where we have not been before. If 
{a,, can serve 
as p. In  fact, any vertex in S(A) - {p} linked to p must have been visited 
before, in other words, it is connected to 04. within S(A) - {p). Hence 

(3s + 2* > 3). 

is the last link on our path, then the “dead end” 
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Tables of Diagrams S(A) 

TABLE 1 TABLE 2 

TABLE 3 
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S(A) - (p} is connected. Thus we just have to consider the possibilities 
of adding a vertex p to a Dynkin diagram such that p is connected to 
only one vertex of this diagram (since we have ruled out cycles). 

Consider for example f4 in 93, no. 5.  We cannot add a vertex by 
connecting it to an interior point (with the coefficients 3 and 4) without 
violating (a). Thus the only potential possibilities are fi') and ei2) in the 
tables. Similar arguments with the other Dynkin diagrams leave us with 
Tables 1-3 as the only potential possibilities. That S(A) determines A 
is clear since uSjaji = 0, 1, 2, 3, 4 and the configurations 

0 0 ,  0-0 0-0 O€O 0==+30 0 ~ 0  
ffi aj ffi ffj ffi ffj ai aj cii ayi ai cij 

imply 

I t  remains to verify that the possibilities in Tables 1-3 do occur and we 
must also verify the numerical labels. 

Example 1. Let g be simple and u the identity automorphism e, so 
m = 1 and L(g, e) = EjEz d g .  Let al, ..., am be the simple roots in 
d(g, b) with respect to some ordering and 6 the highest root. Then each 
(aj, 0) is a simple root of L(g, e) with respect to 6; (-8, I )  is also a 
simple root (otherwise (-S, 1) = (/3, 1) + (a, 0), a, /3 E d(g, b), a > 0 
which is impossible). Thus 

I7 = I(-& 11, (011, O), a * . ,  (an, ON. 

We claim now that = { - - S ,  al, ..., an} realizes the diagrams Xkl) in 
Table 1. For this we note the following consequence of Theorem 3.28: 

= a, aal . -6a-6.al  = 49 

1; 
I aal.-6 1 = I a--6.al 1; 

if i = l o r i = n  
if 1 < i < n; g = a, (n > 1 )  aai.-@-6.ai = 

9 = b, (n 2 2 )  aag.-6a-6.ai = 6i2; 

9 = c, (n 2 3 )  aai.--Sa-6.ai = 2% 

9 = b, (n z 4) aai.-6a-6.ui = 6i2* 

For g exceptional we use (d) above, which guarantees that is #O 
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for exactly one i. Hence we find easily from the description of these root 
systems and Theorem 3.28: 

9 = e ~ ,  aai.-6a-8.ai = a i Z ;  

9 = e7, 

9 = e,, 

9 = f,, 

9 = 92, 

aai.--6a--6.ari = ai l ;  

aai,-@--6,a* = a i s ;  

aai.-fl--6,ai = ai l ;  

aai.--6a--6,ai = a i 2 .  

Thus we obtain precisely the diagrams in Table I; the numerical labels 
come from Theorem 3.28. The diagrams in Table I are known in the 
literature as the extended Dynkin diagrams. 

Consider for the simple Lie algebra g the canonical 
generators Xi, Yi, Hi (1 < i < I )  from Proposition 4.1. Let i; be an 
automorphism of the corresponding Dynkin diagram of order 12 > 1 
and let v denote the automorphism of g given by 

Example 2. 

.(Xi) = Xdi), 4Yi)  = Ydi), 4%) = f h i )  

for 1 < i < I. The existence and uniqueness of v is clear from Theorem 
4.15. Because of Theorem 3.29, k = 2 or 3. We shall now verify that 
by varying i; the diagrams in Tables 2 and 3 are realized as S(A) for 
the algebras L(g, v). We refer to v as an automorphism of g induced by an 
automorphism of the Dynkin diagram. According to Theorem 3.29 only 
at, b,, and e6 have such automorphisms. We shall now list g and go for 
them. 

Case 1 g = aZn, k = 2;  .(i) = 2n - i+ 1. 

We put 

Ri = Hi + H2n4+l 

xi = xi + X2n--i+l 

Yi = Yi + Y2n-i+l 

(1 < i < - l), 
(1 < i < n - l), 
(1 < i < n - l), 

Rn = 2(Hn + f f n + l ) ,  

x n  = Xn + Xn+l, 

Fn = 2(Y72 + Yn+1)- 

TABLE I 

THE ORDER k OF Y AND THE ALGEBRA go 
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Since interchanges the ith and the (2n - i + 1)th simple root, the 
elements Xi, I?,, and R, (1 < i < n) belong to go. They satisfy the 
commutation relations 

[Xi, Yj] = 6,,Ri, [Ri, X,] = UjiXj,  [ITi, Fj] = -u,,Y,, 

where (aii) is the Cartan matrix of b, (direct computation). The sub- 
algebra 9 = X?=, CI?, is the set of fixed points of v in the Cartan sub- 
algebra X::, CH, of g. Since 0 contains a regular element of this Cartan 
subalgebra (for example, the element H,, which by Lemma 3.11 is 
regular), it is clear that X& CHi is the centralizer 3(b) of 9 in g; in 
particular, 9 is a maximal abelian subalgebra of go. The center co of go 

therefore belongs to b. But if X c,I?, commutes with all Xi, we deduce 
Xi ciaji = 0 for all j ;  so since the matrix (aii) is nondegenerate, all 
c, = 0. Thus co = 0, go is semisimple, and 9 c go is a Cartan subalgebra. 
The space CXi is a corresponding root subspace; we denote by Gi the 
corresponding root, so Gi(Ri) = aii. The elements G,, ..., ti, are linearly 
independent (since (aii) is nonsingular), and we can order the dual of 
EF-, RI?$ lexicographically with respect to the basis El, ..., G.n. We have 
the direct decomposition 

where n+ (resp. n-) is the subalgebra spanned by the root spaces for the 
positive (resp. negative) members of O(g, 3(9)). According to Lemma 
3.10, n+ is spanned by the X ,  and arbitrary r-fold commutators 
[Xi,, ..., XiJ of the Xi (r > 1). Since v permutes the positive roots, 
we derive the direct decomposition 

90 = (n- n 90) + b + (nf rl go), 

and n+ n go is spanned by the x, and arbitrary elements 

&i) = [Xi,, ..*, xi,] + .[Xi,, --.> xi,], r > 1. 

If al, ..., a,,-are the simple roots in d(g, 3(t))) corresponding to X,, ..., X,,, 
the vector X(i)  is a joint eigenvector of the family ad(b) with eigenvalues 
(ail + ... + a,,)(H), H E 9. But the restriction ai I 9 coincides with 6, 
(i = j or i = 6( j ) ) ,  so we deduce x(i) E g: where is the sum of r terms 
from G,, ..., G,. We conclude that the Gi are simple roots (in d(go, 9)); 
and since n = dim b, they constitute all the simple roots. Hence go = b,. 

Similar arguments apply to the other cases. We list below the necessary 
information. 
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Case 2 g = a2n-1(n > 2), k = 2; .(i) = 2n - i. 

We put 

Ri = Hi + H2,,-+ (1 < i < n - l), fTn = H,,, 

xi = xi + xznpi (1 < i < n - l), 

Ti = Yi + Y ,,4 (1 < i < n - l) ,  

x,, = x,, 
F,, = Y,. 

Case 3 g = bnfl (n > l), k = 2; 

c(i) = i (1 < i < n - I), +(n) = n + 1, V(n + 1) = 12. 

We put 

R i = H i  (1 < i < n - l ) ,  Rn = Hn + Hn+l> 

Xi = X i  x n  = Xn + Xn+lr 

Y i  = Fi Y n  = Yn + Y n + l -  

(1 < i < n - 11, 

(1 < i < n - l), 

V(4) = 4, 

- 

Case 4 g = e6, k = 2; V interchanges 1 and 6, 3 and 5, 

iq2) = 2. 

We put 

R1 = + H69 Rz = H3 + H5, R3 = H4, R4 = H2, 

XI = X l  + x,, x, = x3 + x,, x4 = x,, 
F1 = y 1  + F2 = Y3 + Y,, T3 = Y,, T4 = Y,. 

Case 5 g = b,, k = 3; C(1) = 4, V(4) = 3, V(3) = 1. 

x3 = x4, 

We put 
II, = Hi + H3 + H4, R2 = H2, 

x1 = Xl + x, + x4, 
7 1  = Yl + Y ,  + Y4, 

x2 = x,, 
T2 = Y,. 

We fix the Z,-gradation g = oiSz, gi corresponding to the primitive 
cube root q, = ef2ni of 1. Then 

H4 + coHl + €3, E al, ffl + E O H B  + 4 f f 3  E 92. 

Nothing new is added by considering the automorphism v2 instead of v. 
In  fact, v and v2 are conjugate under the automorphism of b, defined 
under case (3). 
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Table I for go is now readily verified for cases (1)-(5). Note that the 
fixed points of v in the associated Cartan subalgebra of g form a Cartan 
subalgebra of go and that a basis of the roots for go is obtained by restric- 
tion of a basis of the roots for g. 

Now we compute the diagram S(A) for these cases. Now that we 
know that go is semisimple (even simple) in all these cases, we can state 
that if a E d(go, b) is a simple root, then (a, 0) is a simple root of L(g, v) 
with respect to 5. Hence we conclude from Lemma 5.9 (i) that for a 
suitable po E S(A) the complement S(A) - {Po} is the Dynkin diagram 
of go. (The Cartan matrix and the Dynkin diagram of go can by Lemma 
5.1 and the simplicity of go be computed by means of B.) Since S(A) 
determines A, Lemma 5.10 implies that if g and g' are simple and 
L(g, u) andL(g', 0') have the same diagram S(A), then g g g'. We know 
also that the diagrams of Table 1 cannot occur for the present cases 
of g because for them the diagram of L(g, e) is simply linked, whereas 
the Dynkin diagrams of go in Table I have multiple links. 

Consider now case (1) above. As remarked, ( E l ,  0), ..., (En, 0) are 
simple roots of L(g, v) with respect to 5. Let 6 E O(g, 3(1j)) be the highest 
root and 6" the restriction 6 I b. Then (-6*, 1) is a root of L(g, v) with 
respect to b. In fact, since each segment ai + ... + aj is a root in d(g, 3(1j)) 
and 6 = a1 + ... + aZn, the vector 

is a nonzero vector in g-8 and it clearly belongs to gl. But xg-8 n g1 C 
L(g, v)(-**?l), so by the dimensionality, 

The vectors pi (1 < i < n) all commute with the left-hand side; and 
since the Ei (1 < i < n) constitute all the simple roots in d(go, 6 )  the pi 
generate go n n-. We conclude via Lemma 5.5' (iii) that (-a*, 1) - 
(y, 0) $ ii+ for all (y, 0)  E A$, so (-a*, 1) is simple. 

Since the highest root 8 of b, is given by El + 2G2 + ... + 2E,, we 
have because of the connection between aj I 6 and Eii, that 6* = El + 8. 
Also ( E l ,  8) = 0, so (-a*, El) # 0 which implies that S(A) is obtained 
by joining 6*  to El of b,; since, in addition, I 6* I > I El I, S(A) has to be 
a C .  I t  follows that case (3 )  gives S(A) = bhyl. Case ( 5 )  must give 
S(A) = bi3); case (4) must have S(A) = e',2); and now it is clear that 
case (2) gives S(A) = 

It remains to verify the numerical labels in Tables 2-3. For this we 
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use the explicit determination of the matrix A from S(A) explained 
above. For example, if S(A) = bL3), we get 

2 -3 
A =  (-1 

2 -11, 0 -1 

and the numerical labels are quickly verified. 
We can now summarize the treatment of Examples 1 and 2 as follows. 

Lemma 5.12. Let g be a simple Lie algebra over C, v a n  automorphism 
of g of order k induced by an automorphism of the Dynkin diagram. Then 
k = 1 ,  2, or 3 and the diagrams S(A)  of the various L(g, v) exhaust all 
the diagrams in Tables 1, 2, and 3. 

In this lemma and in the rest of this section “an auto- 
morphism v of g induced by an automorphism of the Dynkin diagram” 
means the specific choice made in Examples 1 and 2. 

Let L(g, v) and K be as in Lemma 5.11. Since k = 1, 2, or 3, the 
eigenspace g1 is #O. We recall that go is simple. If /3 E d(g,, $) is simple, 
then p = (/3, 0) is a simple root of L(g, v) with respect to Ij. Let E0 be the 
lowest root of the form (ao, 1) (such exist since the action of ad$  on 
g1 can be diagonalized). Since no decomposition (ao, 1) = (/3, 1) + (7, 0) 
into elements in J+ is possible, E0 is simple. Thus the simple elements 
in J+ are 

go, ..., En, where a, = (ao, l), Zi = (ai, 0 )  (1 < i < n). 
Now let so, ..., s, be a sequence of nonnegative integers, not all 0. 

We define a new Z-gradation L(g, v) = @iFzLi as follows. Writing 
a root 2 = Zg kiEi (where by Lemma 5.9 (11) the k ,  E Z are unique), 
let deg = Xi kis, and put L(g, v ) ~  = Lj = Edegff+ L@. This gradation 
is called a gradation of type (so, ..., s,). 

Let g be a simple Lie algebra over C and u an auto- 
morphism of Jinite order. Then there exists a n  automorphism v of g induced 
by an automorphism of the Dynkin diagram and a Z-gradation of L(g, v) 
of type (so, ..., s,) in which L(g, v) is isomorphic to the Z-graded Lie algebra 
L(g, u) by a n  isomorphism under which the two Z-gradations correspond. 

Because of Lemma 5.12, we can choose v such that if p = 
(Po, so), ..., p, = (& s,) are the simple roots of L(g, 0) (in a suitable 
order), then under the bijection pi -+ Z, (0 < i < n) the Cartan matrices 
of L(g, u) and of L(g, v) coincide. We have by (7) 

ieZ B 

Remark. 

Theorem 5.13. 

Proof. 

L(g, 0) = @ &I, 4, J%, 4 = 0 4 3 ,  a)B, (10) 
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where j? runs over all the roots C; kipi for which 2; kis, = j. Also, 

L(g, .) = @ L(g, 4, L(9, U)j  = @ L(g, .I8. (11) 
j E Z  deg d=j 

The isomorphism $ : L(g, a) -+ L(g, u )  from Lemma 5.10 (i) maps 
L(g, o)B onto L(g, v)E, provided f! = E: kip,, Z = 2; k,&, and the 
2-gradations (10) and (1 1) therefore correspond under $. 

Lemma 5.14. Let g, u, and k be as in Lemma 5.12, and let a,, ..., a, 
be the numerical labels in Table k corresponding to the simple roots a,, ..., &, 
dejined above. Let L(g, u )  be equipped with a gradation of type (so, ..., s,). 
Then 

n 

xkLj CLj+,,,, where m = k z aisi. 
0 

Proof. By definition of the labels a, we have C; aiaq = 0. We note 

La = {xjX : X E g j m o d k ,  [H, XI = a(H)X for H E S } ,  

also that in all cases in the tables, a, = 1. For all roots Z = (a, j ) ,  

so xkL" c La+(Oyk). Since the root (0, k) can be written 

n 

(0, k) = k 2 a& 
0 

we deduce deg(0, k) = k C: aisi and the lemma follows. 
Now we state the main theorem of this section. 

Theorem 5.15. Let g be a simple Lie algebra over C, v a fixed auto- 
morphism of g of order k (k = 1, 2, 3) induced by an automorphism of 
the Dynkin diagram for a Cartan subalgebra 5 of g. Let g = 0, g; be 
the corresponding 2,-gradation. The fixed point set I,Y of u in 5 is a Cartan 
subalgebra of the (simple) Lie algebra 9:. Fix canonical generators Xi, Y,, Hi 
(1 < i < n) of 9'0 corresponding to the simple roots a,, ..., 01, in d(gy0, by). 
Let 8, be the lowest root of L(g, u )  of the form (a,, 1 )  and fix X ,  # 0 in 
g i  such that xX,  E L(g,, u)%. Let (so, ..., s,) be integers >O without nontrivial 
common factor, put rn = k C;.a,si where the a, are the labels from the 
diagram of L(Q, v) correspondtng to the simple roots go, Z, = (a,, 0), 
(1 < i < n). Let E be a fixed rn-th root of unity. Then: 

(i) The vectors X,, X,, ..., X ,  generate g and the relations 

.(Xi) = €"i& (0 < i < n) 

dejine uniquely an automorphism of g of order m. It will be called an auto- 
morphism of type (so, ..., s,; k). 
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(ii) Let il, ..., i, be all the indices for which sil = ... = sit = 0. Then 
go (that is, 9:) is the direct sum of an (n  - 2)-dimensional center and a 
semisimple Lie algebra whose Dynkin diagram is the subdiagram of the 
diagram g ( k )  in Table k consisting of the vertices il, ..., it. 

(iii) Except for conjugation, the automorphisms u exhaust all m-th 
order automorphisms of g .  

Remark. Note that if m > 1, then m > si (0 < i < n )  because if 
si = m for some i, then si = 0 ( j  # i), so m is a nontrivial common 
factor. 

(i) T o  see that the Xi generate g consider the covering mapping 
v : L(g, V) + g and let P= ZFZl xjgjmodk. Then y(P)  = g. By the proof 
of Lemma 5.10 (i) the elements e, = xX,, el = XI, ..., en = X ,  
generate the subalgebra L(g, v)+ = @,,, L(g, v),. But L(g, v)+ r) P so 
v(L(g, v)+) = g and X,, Xl ,..., X ,  generate g. 

Now let 6 be the well-defined and unique automorphism of L(g, v) 
determined by 

Proof. 

n 

6(e,) = E c k . s .  'e, if Z = 2 ki&, e, cL(g, u),. 
0 

If L(g, v) = OiezLj is the 2-gradation of type (so, ..., s,), then Li 
belongs to the eigenspace of 6 with eigenvalue cj. But by Lemma 5.14, 
xkLj = Lj+, which belongs to the same eigenspace of 6, so the ideal 
(1 - xk) L(g, v) is &invariant. Hence 6 induces an automorphisms u 
of the quotient algebra g with the stated property. Note that since 
u( Y J  = P j Y j ,  the Cartan subalgebra 5" is left pointwise fixed by u. 

For part (ii) we consider the Zm-gradation g = @iEz, gi defined by u. 
By the above we have for each r E Z 

Y(Li+rm) = Y(X""Li) = v(J% 

so v(Lj) = gj modm. Also Lj n ( 1  - xk) L(g, v )  = 0, so 
morphism of L, onto gi mod m. In particular, 

gives an iso- 

90 R3 0 J%, 4". 
deg &=a 

But deg C? = 0 if and only if B = X;=, kilZir. As noted during the proof 
of Lemma 5.10, if B > 0, then L(g, v)" is spanned by the commutators 
[ejl, ..., ej;l satisfying Gjl + ... + Bj8 = a. Hence the algebra 

0 m, 4" 
deg &=a 
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is generated by Hi, eil, fir (1 < i < n, 1 < r < t ) .  Putting Yi = v(fj), 
the vectors XiT, Yi, (1 < r < t )  generate the semisimple part of go; 
its Cartan matrix is the submatrix (aikiz)lGk,lGt of the Cartan matrix 
(aii) of L(g, v). The center of go is spanned by the vectors 

t 

Hj - 2 CjkHir 
k= l  

( j  f ;1, ...) it) 

where the cjk are (by Lemma 5.9(i)) determined by 

t 

cjkai,ir = aizi. 
k=l  

This proves (ii). 
Finally, for part (iii) let T be an automorphism of g of order m. With 

the given primitive mth root E, T gives a 2,-gradation g = Oi gi. Let 
cp‘ : L(g, T )  + g by the covering map, which of course satisfies 
cp’(L(g, T ) ~ )  = gi mod m. Consider now L(g, v) with the 2-gradation of 
type (so, ..., sn) from Theorem 5.13 with the resulting isomorphism 
between L(g, T )  and L(g, v). From Lemma 5.10 (ii) (noting that the 
automorphism pe : L(g, v) +L(g, v) preserves each L(g, v)”), we then 
deduce that for a suitable automorphism + of g 

ICI(P‘(L(S, 4)) = P ( 0 L(g, @). 
deg a=j 

Thus + maps the d-eigenspace of T onto the cj-eigenspace of u of type 
(so, ..., s,; K )  constructed in (i). Hence +T+F = u. Finally, the si have 
no common factor a > 1 because (0, m) being a root of L(g, T ) ,  m is an 
integral linear combination of the si, so a would divide m. This would 
contradict u being of order m. This concludes the proof. 

With the notation of Theorem 5.15 let u be an auto- 
morphism of type (so, ..., s,; k ) .  Then: 

Theorem 5.16. 

(i) u is an inner automorphism i f  and only i f  k = 1. 
(ii) If u‘ is an automorphism of type (sh, ..., s;; k’),  then u and u‘ are 

conjugate within Aut(g) i f  and only i f  k = k’ and the sequence (so, ..., sn) 
can be transformed into the sequence (sh, ..., sk) by an automorphism 1G0 
of the diagram g(k). 

(i) If k = 1, then v = I, so u leaves pointwise fixed the 
Cartan subalgebra 6” of g. By Exercise C.3, Chapter IX, u is inner. 
On the other hand, if K > 1, then rank(gG) = dim $’ < rank(g), whereas 
if (T E Int(g), then u leaves elementwise fixed a Cartan subalgebra of g. 
(For example, by Theorem 2.1, Chapter VI, u lies in a maximal compact 

Proof. 
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subgroup U of Int(g), so ij can be taken as the complexification of the Lie 
algebra of a maximal torus of U, containing u.) 

For part (ii) suppose first k = k’ and that (so, ..., sn) and (s;, ..., s6) 
correspond under a,ho. By Lemma 5.10, a,ho induces an automorphism i,$ 

of L(g, v) satisfying $$-I = 5‘. But the automorphisms pLc of L(g, v) 
and a,h of g from Lemma 5.10 (ii) satisfy q o pc o $ = i,b o cp and pc6’ = 

ZpC. Since v o 6 = u o v, v o 6‘ = u’ o y ,  we deduce 

*-1u’*lp = *-la‘P)p& = *-1qX?’pc$ 

= *-11ppc$5 = lp5 = alp, 

so u’ = i,buz,kl as claimed. 
For the converse we need a lemma. 

Lemma 5.17. Let V be the automorphism given by Theorem 5.13 for 

Proof. We know that rank(&) = dimv,  so dim b” = dim$’. But 

Turning to Theorem 5.16 suppose u and u’ are conjugate. By Lemma 

(a’ having been defined by means of v’). Hence L(g, v) and L(g, v‘) have 
the same diagram, so k = k’ and v = v‘. Suppose T ( T T - ~  = u‘ (T E Aut(g)) 
and let g = Oi g i ,  g = Oi g; be the 2,-gradations given by u and u‘, 
respectively. Then Tgi  = 9;. The algebra $ = $” = $”’ is maximal 
abelian in go and gi ,  and $ and ~ ( b )  are conjugate under a member of 
Int(g;) C Int(g). Thus, replacing T by T ~ T  where T~ is suitably chosen in 
Int(gi) (and thus commutes with u’), we may assume that T ( $ )  = b 
and that the positive roots in A([go, go], 6 n [go, go]) and in A([& 9 3 ,  
$ n [gh, gh]) correspond under T .  The extension ? of T to L(g, u) given by 
~ ( x j Y )  = xG( Y )  maps L(g, u)(aJ onto L(g, u‘)(a‘?j) (with the same j since 
TQj = 91; we have written aT for %-la). Thus the simple roots 
(ao, so), ..., (anr sn) of L(g, a) and the simple roots (ah, si), ..., (a;, s;) of 
L(g, 0‘) correspond under T.  Hence the sequences (so, ..., sm) and 
(s;, ..., s;) correspond under an automorphism of the diagram g ( k )  of 
L(g, U) -L(g, u). This concludes the proof of Theorem 5.16. 

We now illustrate Theorem 5.15 by a classification of all the auto- 
morphisms of order 2 up to conjugacy (problem B” in $1). 

The equation m = k ZTc0 aisi = 2 has the following solutions: 

(A,) K = 1, a .  = 2, sio = 1, si = 0 for i # i,. 

(A,) K = 2, aio = 1 ,  sio = 1, si = 0 for i # i,,. 

which L(g, u) and L(g, F) have the same diagram S(A). Then 5 = v. 

then Table I (for Example 2) shows that v = V .  

5.17 we have the isomorphisms L(g, a) - L(g, v), L(g, a’) -L(g, v‘) 

20 

(B) K = 1, a .  = a .  = 1, s. = s. = 1, si = 0 for i # io, i l .  
20 21 20 21 
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In cases A,, A,, go is semisimple, whereas in case B, go has a one- 
dimensional center. Note that (so, ..., s,) = (2, 0, ..., 0) does not qualify 
as a solution because the si must not have any common factor. 

Now we use Theorem 5.15 (ii) to write down go for each case by 
means of the diagrams for S(A). 

We look for the label aio = 2 in Table I. For a:) there is 
no such label; for b;'' there are n - 1 choices giving the possibilities 
b, 0 bndP (2 < p < n) for go. For c p )  there are again n - 1 possibilities; 
however this diagram has an automorphism of order 2, so by Theorem 
5.16 the possibilities (so, ..., s,) = (0, 1, ..., 0) and (so, ..., sn) = 

(0, 0, ..., 1, 0) give conjugate automorphisms, etc. Thus the possibilities 
for go are restricted to cP @ c,-, (1 < p < [in]). Similar considerations 
apply to b:); eil) has three labels equal to 2, but by symmetry the 
corresponding automorphisms are all conjugate. Similarly for e;'). 

For ah? there is only one possibility; for a& there are 

Case A,. 

Case A,. 
three but the two for which go = c, give conjugate automorphisms. 

TABLE I1 

(go SEMISIMPLE) 

k = l  k = 2  

a go 9 go 
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Case B. For c;'), and e ,  the choice is unique. Because a;') has 
rotational as well as axial symmetries only the listed possibilities for 
go give nonconjugate automorphisms. All three possibilities for ei') 
give conjugate automorphisms. For bk') (n > 4) there are two non- 
conjugate possibilities, but for n = 4 they coincide by virtue of Theorem 
5.16. 

We have now arrived at Tables 11, 111. 

Remark. Our discussion showed that all the automorphisms giving 
rise to the same entry (9, go) in Tables 11, I11 are conjugate. 

TABLE I11 

(dim(center(gJ) = 1) 

56. The Classifications 

We can now give the solutions to the classification problems A, A', B, 
B', B", and C stated in $1. We start with A, A', and C. Table IV  below 
follows from Theorem 3.23, 4.15, 3.32, Lemma 3.30 and (12), 93, as 
well the computation of the Lie algebras of SU(n),  SO(n), and Sp(n) 
in $2. 

1. The Simple Lie Algebras over C and Their Compact Real Forms. The 
Irreducible Riemannian Globally Symmetric Spaces of Type II and Type IV 

In Table IV g runs over all simple Lie algebras over C, the subscript 
denotes the rank of g, that is, the dimension of a Cartan subalgebra. 
Moreover, G stands for a connected Lie group with Lie algebra gR, 
U is an analytic subgroup of G whose Lie algebra is a compact real 
form of g. By Chapter VI, 92, U is a maximal compact subgroup of G. 
Let 8 denote the universal covering group of U,  Z( 8) the center of 8, 
and 2, a cyclic group of order p .  The dimension of U is also listed. 
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The five last are called the exceptional structures. The first four 
classes a,, b,, c,, b, (the classical structures) are of course defined for all 
n >, 1, but then the following isomorphisms occur (see Theorem 3.12) 
and b, is not semisimple. 

a, = b, = c,, bz = ~ 2 ,  a3 = b3, b, = a, x a,. (1) 

With the restriction on the indices in the table each simple Lie algebra g 
over C occurs exactly once. 

TABLE IV 

LIE GROUPS FOR THE SIMPLE LIE ALGEBRAS OVER C AND THEIR COMPACT REAL FORMS 

SL(n + 1, C )  

SO(2n + 1,  C) 

SPb, C )  
S0(2n, C) 

SU(n + 1) 

SO(2n + 1) 

S P ( 4  

SO(2n) 

Zn+,  

za 
2, 

Z4 if n = odd 

Za + Z, if n = even 

z, 
za 
Zl 

Zl 

Zl 

78 

133 

248 

52 

1 4  

Using now Theorem 5.4, Chapter VIII, and Theorem 1.1, Chapter VI, 
we have: 

The Riemannian globally symmetric spaces of type IV are the spaces 
G/U where G is a connected Lie group whose Lie algebra is gR w k e  g 
is a simple Lie algebra over C, and U is a maximal compact subgroup of G. 
The metric on GIU is G-invariant and is uniquely determined (up to a 

factor) by this condition. 

Secondly, in view of Prop. 1.2: 

The Riemannian globally symmetric spaces of type 11 are the simple, 
compact, connected Lie groups TJ. The metric on U is two-sided invariant 
and is uniquely determined (up to a factor) by this condition. 
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2. The Real Forms of Simple Lie Algebras over C. Irreducible Riemannian 
Globally Symmetric Spaces of Type I and Type IV 

We now give the solutions to problems B, B’, and B” in $1, the last 
of which is solved by Tables I1 and I11 at the end of $5. We state the 
result in Table V in terms of the classical groups discussed in $2. 

Looking at Tables I1 and I11 we notice that in spite of the isomor- 
phisms (1) the same pair (9, go) does not occur twice. Taking the 
remark at the end of $5 into account we therefore deduce 

Two involutive automorphisms of a simple Lie algebra g 

over C are conjugate in Aut(g) if and only i f  their $xed point algebras are 
isomorphic. 

Passing to the real forms, we can now prove the following result, 
already mentioned in Chapter IX, $5. 

Theorem 6.2. Suppose g1 and g2 are real forms of the same simple Lie 
algebra g over C. Let g1 = f, + p1 and g2 = f, + p, be any Cartan 
decompositions. Then iff, and f, are isomorphic, g1 and g2 are isomorphic. 

Consider the compact real forms u1 = f, + i p , ,  u, = f, + i p , .  
Let 7 be an automorphism of g such that TU,  = u1 and put g; = Tg,, 
f; = ~ f , .  Let s1 and s; denote the involutions of u1 with fixed points 
f, and ti, respectively. Because of Theorem 6.1 and Prop. 1.4, s1 and s; 
are conjugate in Aut(u,); hence by Prop. 2.2, Chapter V, g1 and g;, and 
therefore g1 and g,, are isomorphic. 

Let I be a semisimple Lie algebra over C, 1, a real form of I. The  
character of I, is defined as 6 = dim p0 - dim E,, 1,. = E, + p0 being a 
Cartan decomposition of lo. The character reaches its minimum value 
6 = -dim, 1 if I, is a compact real form and its maximum value 
6 = rank I if I, is a normal real form of I. For these extreme values of 
the character, the corresponding real forms are unique up to isomorphism 
(Cor. 7.3, Chapter 111, and Theorem 5.10, Chapter IX). In contrast, the 
examples 50*(18) and 50(12,6) which are real forms of so(18, C) with 
character -9 show that two nonisomorphic real forms of a simple Lie 
algebra I over C may have the same character. However, Tables I1 
and I11 in $5 show that this cannot happen for the exceptional structures+ 
so we label the real forms of the exceptional complex algebras by means 
of their character. Thus e6(8) denotes the real form of e8 with character 6. 
The rank and dimension is also listed, although the rank was determined 
in $2 only for the classical spaces. 

Theorem 6.1. 

Proof. 

t In fact only for certain b, and certain a, (e.g., BU* (14) and BU (93)). 
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TABLE V 

IRREDUCIBLE RIEMANNIAN GLOBALLY SYMMETRIC SPACIS OF TYPE I AND TYPE I11 

Noncompact Compact Rank Dimension 

A I  
A II 
A III 
BD I 
D III 
C I  
c II 
E I  
E N  
E III 
E I V  
E V  
E VI 

3. Irreducible Hermitian Symmetric Spaces 

In  view of Theorem 6.1, Chapter VIII, it can be decided immediately 
which of the spaces in Table V are Hermitian symmetric. They are 

A ZZZ, D ZZZ, BD Z(q = 2), C Z, E ZZZ, E VIZ. 

This exhausts the list of irreducible Hermitian symmetric spaces 
because the spaces of type I1 and IV cannot be Hermitian. According 
to Theorem 7.1, Chapter VIII, the noncompact spaces can be regarded 
as bounded domains in Euclidean space. In  I? Cartan [19] such domains 
are constructed for the four large classes A ZZZ, D ZZZ, BD Z (q  = 2), 
C Z (cf. Exercise D.l below). 

4. Coincidences between Different Classes. Special Isomorphisms 

Because of the isomorphism (1) there are some overlaps in Table V 
for small n. Using Theorem 6.2 we therefore derive the following 
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isomorphisms (i)-(viii) already proved by Cartan in [2], pp. 352-355. 
His method was based on an analysis of the character of the real forms. 

(i) A Z (n  = 2 )  = A Z Z Z  ( p  = p = 1) 
= BDZ ( p  = 2, 4 = 1) = C Z ( n  = 1) 

Corresponding isomorphisms: 

S U ( ~ )  M 50(3) = sp(1) 
sI(2, R )  M su(1, 1) w so@, 1) M sp(1, R). 

(ii) BD Z(p = 3, q = 2) = C Z(n = 2). 
Corresponding isomorphisms: 

so(5) M ~ ( 2 ) ~  
so@, 2) M sp(2, R) .  

(iii) BD Z(p = 4, q = 1) = C ZZ(p = q = 1). 
Corresponding isomorphisms: 

s O ( 5 )  W sp(2),  
eo(4, 1) M ep(1, 1). 

sO(4) M sp(1) X 5 P ( 1 ) ,  

(iv) A Z(n = 4) = BD Z(p = p = 3). 
Corresponding isomorphisms: 

su(4) M eo(6), 
d(4, R)  M eo(3, 3). 

rjo(4) M eO(3) X s0(3), 

(v) A ZZ(n = 2 )  = BD Z(p = 5 ,  Q = 1). 
Corresponding isomorphisms: 

su(4) M s0(6), 
5u*(4) M so($ 1). 

(vi) A Z Z Z ( p  = q = 2)  = BD Z( f  = 4, p = 2). 

sp(2) M 50(5), 

Corresponding isomorphisms: 

544) M 50(6), 

(vii) A Z Z Z ( p  = 3, p = 1) = D IZZ(n = 3). 

544) M 50(6), 

5 4 3 ,  1) w 50*(6). 

r j ~ ( 2 ,  2 )  W SO(4, 2).  

Corresponding isomorphisms: 

(viii) BD Z(p = 6 ,  q = 2) = D IZZ(n = 4). 
Corresponding isomorphisms: 

544) M 50(6), 

so*(8) M so(6, 2). 
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The last isomorphism does not occur in Cartan's paper cited above. 
However, the isometry of the space BD Z(p = 6, q = 2) and D ZZZ(n = 4) 
is shown in Cartan [lo], p. 459. The fact that they even coincide as 
Hermitian symmetric spaces (cf. Exercise D.2 below) is, however, not 
observed in Cartan [19], p. 152. 

The spaces BD Z(p + q = 4) and D ZZZ(n = 2) can of course be 
defined although eo(4) is not simple. The isomorphism b, = a, x a, 
then yields additional isomorphisms corresponding to the three involu- 
tive automorphisms of a, x a, given by: (X, Y) +- ( Y ,  X ) ;  ( X ,  Y )  +- 

(X 7);  ( X ,  Y )  - ( X ,  7). 

(ix) BD Z(p = 3, q = 1) = a,(n = 1). 
Corresponding isomorphisms: 

eo(4) M su(2) X eu(2), 

so(3, 1) M eI(2, c). 
(x) BD Z(p = 2, q = 2) = A Z(n = 2) X A Z(n = 2). 

Corresponding isomorphisms: 

so(4) M 542) X B U ( ~ ) ,  

eo(2, 2) w eI(2, R)  X eI(2, R). 

(xi) D ZZZ(n = 2) and A Z(n = 2). 

eo(4) M eu(2) X eu(2), 

so*(4) M su(2) X sI(2, R).  

EXERCISES AND FURTHER RESULTS 

A. Special Isomorphisms 

In  Theorem 3.12 and 96, no. 4, we have general existence proofs of 
the isomorphisms which occur between different classes of simple Lie 
algebras. In Exercises 1-4 below it is indicated how some of these can be 
verified by ad hoc methods. 

1. Exhibit the following local isomorphisms directly: 

SL(2, C) M SO(3, C) w Sp(1, C) 

SL(4, C)  w SO(6, C) 
SO(5, C) w Sp(2, C) 

SO(4, C) w SL(2, C) x SL(2, C) 
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(Hint: Identifying Sp(1) with the group of unit quaternions, the iso- 
morphism SU(2) tw Sp(1) is immediate, so (1) and (4) follow from 
Example I1 in Chapter V, $2; for (3) consider the canonical bases 
el, ..., e4 of C4, fl, ..., f6 of C6 and the linear bijection of A2C4 onto C6 
given by the map 

(el A e29 e2 A ‘33, ‘4 A e4, el A e3, e2 A e4, el A e4) -+ (fi, ***,f6)* ( 5 )  

If the vectors x, y E A2C4 correspond to .$ = Zi xi fi, q = Z! yi fi, then 

’ A Y = (‘lY3 f ’3Y1 + ’2y6 + ‘6Y2 - x4Y5 - x5y4)e1 A ‘2 A e3 A ‘4. 

Each g E SL(C4) extends to an automorphism J of the Grassmann algebra 
of C4, whereby A4C4 is left pointwise fixed; thus the linear transformation 
which J (via (5)) induces on C6 belongs to SO(6, C). This gives (3); for 
(2) restrict the isomorphism (3) to a suitable subgroup). 

2. The local isomorphism 

SO(3, 2) = Sp(2, R) ,  (6) 

observed in $6, no. 4, can also be proved more directly as follows 
(Siegel [I], $56): Consider the quadratic form 

Q(W) = wlw2 - w,” - w4w5 = ‘WQW, wj E c 

x+ iY = z = w;lw, m=gw, 2 = i7gW 

and let g = (vkl)  be a real linear transformation leaving Q invariant. Let 

so 

2 = (8 v,,Z,)-1gz (a, = z, = 1). 

This transformation leaves invariant the surface Q(2) = zlz2 - zt - 
z4 = 0; since Q(Y) = yly2 - y: (by z5 = l), we deduce that the 
fractional linear transformation T, given by 

where z5 = 1, z4 = zlz2 - z:, maps the set 

(k = 1, 2, 3) 

into itself. Since y1 # 0, the set (7) decomposes into the parts with 
y1 > 0 and y1 < 0, which are either permuted or left invariant by T,; 
the first part being the Siegel upper half-plane Y2, the mapping g -+ TB 
gives (6). 
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3. Exhibit local isomorphisms 

SL(2, C)R w SO(3, 1) 

SL(4, R) w SO(3, 3) 

SU(2, 2) w SO(2, 4) 

(Hint: For (8) see Exercise 2, Chapter V; for (9) consider the bijection 
of A2R4 onto R6 given by ( 5 )  and proceed as for (3); for (10) consider 
the bijectionofR6 = {xl, ..., x6} into so(4, C) = {A = (aij): iA + A = 

0}, with image E, given by 

a12 = x1 + ix,, a13 = x3 + ix,, u14 = x5 + ix, 
a2, = x5 - zx,, - a2, = x, - zx4, - a,., = x1 - zx2 

(compare D2 below) whereby 

$ Tr(AZ,,2AZ2,,) = -x 1 2 - xp2 + x32 + x42 + x52 + X62. ( 1  1)  

If g E SU(2, 2) the map A +gA'g maps E into itself leaves (11) 
invariant and so induces the desired element of O(2, 4). 

4. Deduce a local isomorphism 

SO(2, 6 )  w S0*(8) 

from Exercises D.l and D.2 below. 

with respect to go and u, respectively. Show that 
5. The  notation being as in 92, let u and T denote the conjugation of g 

For A f  u ( X )  = x, T ( X )  = -tx 
A Zf u(X)  = Jn8J;l, .(A') = -t8 
A I f f  a ( X )  = -zv,atxzp,q, .(X) = -tx 
B DZ u ( X )  = Iv,JZVsq, T (X)  = x 
DZff  u ( X )  = JnXJil, T(X)  = 8 
C f  a ( X )  = x T(X) = Jnx]il 
cfz U(X)  = -KB.QtxKv.a, T(X) = ]p+ax]&. 

B. Root Systems and the Weyl Group 

the system of vectors 
1. Let R be a reduced root system and suppose a, /3, a -+ /3 E R. Then 

(Za + ZP) n R 

is a root system of type a2, b,, or g,. 
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2. Let R be an irreducible reduced root system, (a1, ..., a,) a basis, 
(wl, ..., w l )  the “dual” basis given by 2(wj, ai) = &(ai, ai), and 
p = Za,o a. Then 

w1 + ... + wz = p. a1 + ... + at E R ,  

3. Let R be irreducible and reduced. Then: 

(i) W(R) acts transitively on each subset of roots in R of the same 
length. 

(ii) Only if R = b,, Ci, f4, g2 does the closed positive Weyl chamber c+ 
contain a root different from 6. This root is unique and is given by 

b, : 011 + ... + 011 

Cz : a1 + 201, + ... + 2c9-1 + 
f 4  : 011 + 2% + 3% + 2% 
92 : 2% + 012. 

4. In  the notation before Theorem 5.13 let al, ..., a, be the simple 
roots in d(go, b) and Go = (ao, 1) the additional simple root in o“+. Then 
a. E d(go, b) except for the case a;: (in the S(A) table) in which case 

5. Deduce from Cor. 6.6, Chapter VII, that for a simple compact 
Lie group the covering index equals 1 + the number of ones in the 
representation 6 = dlal + ... + d p , .  (Note that for u simple, the 
polyhedron Po is given by ( 2 n i - l  ai > 0, (2.rri)-l6 < 1.) 

6. Let R be irreducible and reduced. Show that - 1 $ W(R)  if and only 
if R = at  ( 1  > I), b2k+l or e6. (Hint: deduce from Prop. 5.3, Chapter IX, 
that Aut(u)’Int(u) acts faithfully on 2 so, equivalently, Aut(R)’ W(R) 
acts faithfully on F(R)/T(R),  so -1 E W(R) if and only if T(R) 3 2F(R).) 

7. Let R be a reduced root sustem in V. Show that V has a unique 
positive definite inner product ( , ), invariant under W(R), satisfying 

E d(g,, b). 

0 9  CL) = 2 0, a)(% PI, A, p E v. 
OLE R 

Because of (9), Chapter 111, 94, we call ( , ) the Killing form. The form 
( , ) used in the construction of the exceptional root systems in Theorem 
3.23 is given by (A, p)  = y(A, p) (y E R) and the formula 

4(8, P1-l = 2 4 . m  P E R  
sER 

implies 
y = 24, 18, 24, 36, 60 

for the cases g2, f4, e,, e,, e,, respectively. 
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8.* Let R be an irreducible and reduced root system in V, B a basis 
of R, 6 the highest root. Let V,  be the hyperplane in V perpendicular 
to 6 and put R' = V ,  n R, B' = V, n B (cf. Carles [l]). 

(i) Show that R' is a root system with basis B' and determine its 
Dynkin diagram by means of the extended Dynkin diagram for R 
(Table 1 for the diagram S(A) in $5). 

(ii) Show that if L is the maximal length in R (for the Killing form), 
then 

card R' = card R + 6 - 4L-2, 

2p' = 2p - (L-2 - 1)s. 

Here 2 p  denotes the sum of the positive roots. 
9. Let u be a simple compact Lie algebra and as in Chapter VII let 

r A  be the affine Weyl group, t A  C rA the subgroup of translations, Po 
the fundamental polyhedron, S = Ei djaj the highest root. Put Zj = 

hj/<CXj, OLj) and define wk by<wk, &j) = 6jk. Put 

ej = 4m*(ai, aj)-l Huj ,  fj = h i ( o l j ,  mi)-' HEj ( 1  < j  < I ) .  

Prove in steps (i), (ii), (iii) (cf. Weyl [2], Bourbaki [2], Chapter VI) that 
the order of W is given by 

I W I = l !  * dld, ... d,  * U ,  

where a is the covering index: 

Thus, by elementary geometry, the parallelotope 
(i) Show that Po is the polyhedron with vertices 0, dyle,, ..., dyle,. 

1 P = 12 xjej : 0 < x1 < 1 ,  ..., 0 < xz < 1 

satisfies 
vol(P)/vol(P~) = I! * dl ... di. 

(ii) Let Q denote the parallelotope 

Q = l$yjfi: 0 <yl  < 1, ..., 0 < y L  < 11. 
i=l 

Since p,, and Q are fundamental domains for FA and t A ,  respectively, 
deduce 

vol(Q)/vol(Po) = (r, : tA) = I W 1. 
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(iii) As in the proof of Prop. 3.31 show that 

so, by Lemma 3.30 and Proposition 3.31, 

vol(Q)/vol(P) = covering index. 

10. Let g be an arbitrary semisimple Lie algebra over R, Z its system 
of restricted roots, and Z" and Z", respectively, the sets of indivisible 
and unmultipliable elements in Z. Construct semisimple subalgebras 
g', 9'' c g which are normal real forms and have Z" and Z", respectively, 
as their restricted root systems. 

(Hint: if p runs through a basis of 2" (resp. Z"'), take g" (resp. g") as 
the subalgebra generated by the elements H, X, Y in the proof of 
Theorem 2.16, Chapter VII.) 

Example from Exercise 5, Chapter VII: if g = 4 9 ,  q) (0 < p < q), 
then g' = " ( p ,  p + l), g" = 5 p ( p ,  R). 

C. The Classification of Compact, Locally Isometric, 
Globally Symmetric Spaces 

1. Let 0 be a simple, simply connected compact Lie group and 2 
its center. Let S,, S, be two subgroups of 2. Then o / S ,  and ojS, are 
isomorphic if and only if there is an automorphism u of 0 such that 
US, = S, (cf. Theorem 1.11, Chapter 11). 

Deduce from (12), 93, and Theorem 3.32 that the number of non- 
isomorphic connected Lie groups with Lie algebra u is 

1 if = 92, f4, e8 

2 if u = b,, c l ,  e6, e, 

3 if u = b,,,, or b, 

4 if u = b,, (K 2 3) 

d(Z+ 1) if u = a,, 

where d(n) is the number of divisors in n (cf. Cartan [9], $29, our 
Proposition 1.2, and Goto and Kobayashi [l]), 

2*. Let 8 be an involutive automorphism of the simple Lie algebra u. 
In the notation of Chapter VII, 99 the globally symmetric spaces 
associated with (u, 8) are B/K* and the maps 

o/& + O/K* -+ O/& = Int(u)/Int(u), (adjoint space) 
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are coverings. Let Z+ denote the set of positive restricted roots, pl, ..., pz 
the simple ones and 8 = Zi=l dtpi the highest one (Lemma 11.8, 
Chapter VII). In  analogy with the group case, we define: 

Covering index of (u, 8) = order of .rrl(Int(u)/Int(u)e). A proof analogous 
to that of Exercise B.5 gives 

Covering index of (u, 8) = 1 + Card{i: di = l} (cf. Takeuchi [l]). 
3. Using 2, deduce from Exercise 5 in Chapter VII that the space 

SV(p  + q)/S(U, x U,) is for p < q the only globally symmetric space 
in its local isometry class, while for p = q it is the simply connected 
double covering of its adjoint space. 

4. Using 2, Table VI below, and Theorem 3.28, prove the following 
formulas for the covering index a of (u, 0) (cf. Cartan [lo], Ch. 111): 

(a) For A ZZZ (21 < rank u), A ZV, C ZZ (21 < rank(u)), D ZZZ (rank u 
odd), E ZZ, E ZZZ, E VZ, E VZZZ, E ZX, F Z, F ZZ, G, 

a = 1. 

(b) For A ZZZ (21 = rank u + I), B Z, B ZZ, C Z, C ZZ (21 = rank u), 
D Z (I < rank(u)), D ZZ, D ZZZ (rank u even), E V, E VIZ, 

a = 2. 

a = 3. 

a = 4. 

(c) For E Z and E ZV, 

(d) For D Z (1 = rank u), 

(.rr,(Int(u)/Int(u),) M 2, if I is odd, w Z 2  x 2, if 1 is even. 
(e) For A Z and A ZZ, 

(.rri(Int(U)/Int(u)e) M Zt+i-) 

For the case (a) all globally symmetric spaces associated with (u, 0) 
coincide; for (b), (c), and (e), 1 + 1 prime there are exactly two different 
globally symmetric spaces associated with (u, 0). 

a = I +  1. 

D. Bounded Symmetric Domains 

1. Verify the following realizations of the classical noncompact 
Hermitian symmetric spaces as bounded domains. Let M,,,(K) denote 
the set ofp x q matrices with coefficients in the field K = R or C and 
let A < B signify that B - A is positive definite, that is, “(B - A)Z > 0 
for 2 # 0. 



Exercises 527 

A zzz: (2 E Mp,*(C): i2.z < I*). 

Action of SU(p,  q) by 
if g = (  A B  ) 

C D '  
T,  : Z -+ ( A 2  + B)(CZ + D)-l 

D ZZZ: {Z  E M,,,(C): '2 = -2, I2.Z < In}. 
Action of SO*(2n) by 

i f , = (  A B  ) 
-3 A '  T ,  : Z -+ (A2  + B)(-BZ + 

Here SO*(2n) is viewed as the invariance group of the forms 

-W1?z1 - ... - wnwn + Wn+lEn+l + ... + WZnWZn 

wlwn+1 + + wnw2n. 

c I: (2 E M,,,(C) : '2 = 2, 22 < In). 
Action of Sp(n, C) n SU(n, n) by 

T,  : Z -+ ( A 2  + B)(BZ + A)-1 

{ X  E M2,,(R) : X'X  < 12}. 

Action of S00(2, q) by 

A B  
if g = ( B  A).  

BD 

i f , = (  A B  ) 
C D '  

T,  : X -+ ( A X  + B)(CX + D)-l 

The complex structure is given by 

(See Cartan [19], Siege1 [2], Hua [2] ,  [3]; the exceptional domains E ZZZ 
and E VZZ are represented similarly by the 3 x 3 Hermitian matrices 
over the Cayley numbers by Hirzebruch [3]; together with D.2 below, 
these descriptions give another proof of Theorem 7.1, Chapter VIII.) 

2*. (a) Show that the mapping 

z - + x = 2  

is a holomorphic diffeomorphism of the domain 

BD Z(9=2) = { Z  E M,,@(C) : 1 ZtZ l2 + 1 - 2Z'Z > 0, I ZtZ I < l} 

onto the bounded domain BD Z(p=2) in Exercise 1 (cf. Hua [3]). 
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(b) Show that the mapping 

zl + iz, z, + iz, z5 + iza 
z5 - iz6 -z, + iz, 

-z, - az, -z5 + iz, 0 z1 - iz, 
-z5 - iz, z, - iz, -zl + iz, 0 

is a holomorphic diffeomorphism of BD Z(p=2,q=6) onto D ZZZ (n = 4) 
(Morita [l]). 

3. In the notation of $7, Chapter VIII (Cor. 7.6) let v denote the 
automorphism of g defined by 

7r 
v = exp - ad (c (X,, - X-)).  

4 Y E r  

Prove that 

SO v(ao) = RH,,. 
2 

.(X, + x-,) = - 
<%Y) Hy Y E r  

4*. In  this exercise we summarize the determination in Harish- 
Chandra [5],  pp. 585-588 and in Moore [2], pp. 359-363 of the restricted 
root system 2 for an irreducible noncompact Hermitian symmetric 
space Go/Ko. Following the notation of Chapter VIII, $7, the idea is to 
investigate the root system d(g, b) via its division into compact and 
noncompact roots and then use the “Cayley transform” v in Exercise 3 
above to relate d(g, $) and Z. 

CH,* 
(and write y, for 7,). Then there are two possibilities for d(g, I))-: 

(a) Let X + 1 denote the restriction from b to the subspace 

(i) 4, b)- = {&*r, f 4rj (1  < i < j  f 4, f r ,  (1 < i < 4) 
(4 4, @)- = {z!AY, f 8rj(1 < i  < j  <s), &&gyi, &:ri(l < i  G s ) } .  

Moreover, all yi have the same length. 

(b) If corresponds to +yi via v, then (Al, ..., As) is an orthogonal 
basis of the dual a$ and the set 2 = Z(g0, ao) of restricted roots is 

(i) 2 = {fh, & Xi (1 < i < j  < s), *2Ai (1 < i < s)} = c, 

(ii) 
According to Korhnyi and Wolf [l], the first possibility happens if 

and only if G,,/Ko is of tube type, that is, holomorphically equivalent 
to the tube over a self-dual cone. These cases are A ZZZ(p = q), 
D ZZZ (n even), C Z, BD Z ( p  = 2), E VZZ. 

5. Consider the Hermitian form B, on g x g ($7, Chapter VIII) and 
let 1 1  1 1  denote the corresponding operator norm. Let +: Go/Ko -+ D C p- 

= {&A, f hi ( 1  < i < j < s), +&, fa, (1 < i < s)) = (bc)s. 
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be Harish-Chandra’s holomorphic diffeomorphism of Go/Ko with a 
bounded domain D; under the differential d#: p o  --f p -  let D C p o  be 
the domain which corresponds to D C p - .  Using the description of 
Z in Exercise 4, prove that 

D = { X  E p o  : 11 ad X 1 1  < 2). 

6. Let M be an irreducible bounded symmetric domain and in the 
notation of Chapter VIII, $7, let Aut,(d(g, 6)) C Aut(d(g, b)), 
W,(d(g, $)) C W(d(g, $)) denote the subgroups leaving the set of compact 
roots invariant. Then 

4W/IO(W = Aut(go)/Int(go) = A U t k ( 4 ,  b))/ W k ( 4 , b ) )  

(cf. Exercise A.7, Chapter VI, and Theorem 5.4, Chapter IX). 

7. (continuation) Recalling that Io(M) = Ho(M), a component of 
I ( M )  corresponding to an element t E Autk(d(g, $)) consists of holo- 
morphic maps if and only if t I c = 1. 

8*. (continuation) Using Exercise 7 it can be proved that if M is an 
irreducible bounded symmetric domain, then H ( M )  is connected except 
for the cases A ZZZ (p  = q 2 2) and BD Z ( p  = 2, q even) in which 
case it has two components (Cartan [19], Takeuchi [l]; in this statement 
we consider D ZZZ for n > 4 only, which, in view of the coincidences 
in $6, no. 4, is sufficient). 

E. Automorphisms 

1. Let an automorphism u of finite order be called regular if its fixed 
points set go is abelian. Show that the minimal order of a regular auto- 
morphism is Xt ai and that such automorphisms are inner and all 
conjugate. 

2. Determine all automorphisms of order 3 of a simple Lie algebra 
over C. Show that two such are conjugate if the fixed point algebras are 
isomorphic. 

3*. For u compact and simple the factor group Aut(n)/Int(u) is 
determined by Theorem 5.4, Chapter IX, and Theorem 3.29, Chapter X. 
For go simple and noncompact the factor group Aut(g,)/Int(g,) (which 
by Exercise A.7, Chapter VI equals I ( M )  I,,(M)) can also be determined 
in terms of the root structure (Cartan [lo], Takeuchi [l], Murakami [l], 
[2], Matsumoto [2]), generalizing Exercise D.6 above. 

4. Let u be an automorphism of finite order of a complex semisimple 
Lie algebra g. Deduce from Lemma 5.3 and (4) 95 that: 
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(a) u leaves invariant a Cartan subalgebra of g. 

(b) u leaves fixed a regular element X E g. 

(These results hold even if u is just: assumed semisimple, cf. Bore1 and 
Mostow [l]). 

5. Construct two nonconjugate automorphisms of order 5 of the 
complex Lie algebra g = b, such that in both cases the fixed point 
algebra is isomorphic to a2 @ C2. 

6. Show that the complex algebra g = b, has automorphisms of order 
2 and 3, respectively, such that in both cases the fixed point algebra is 
isomorphic to a, 0 C. 

F. Restricted Roots and Multiplicities 

Let g be a simple noncompact Lie algebra over R and let 8, f, p, a, 
6, Z, d, etc. be as in Chapter IX, 96. For a,h E Z let m, denote its multi- 
plicity and put A ,  = {a E d : Ol = a)}. We now summarize some results 
from Araki’s paper [l] which contains not only the classification of all 
simple Lie algebras over R but also determines .Z and the multiplicity 
function for each case. 

1. (a) The space 0, = RH, satisfies 

and B is strictly positive definite on it. 
(b) The restriction a + & from 6, to a coincides with the orthogonal 

projection a + *(a - ae) of the dual $, onto the dual 8. Thus we can 
consider .Z as a subset of 6,. 

2. If a E A, then a! + ae .$ A ,  so <a, ae) >, 0. 
3. Let $ E  2. Then a , h ~  A, if and only if m, is odd. In this case, 

4. (a) If a,h E Z and m, is odd, then 2$ $ .Z. 
(b) If 4, 24 E Z and m, is even, then m,, is odd. 

5. Let 4 E Z, m, even. Then: 

(a) 2a,h E Z if and only if there exists an a E d, such that (a, ae) > 0; 

<a, me) = 0 for all OLE d, - (16). 

in this case 
</3, Pe) > 0 for all B E A,. 

(b) 2 $ $ 2  if an only if there exists an element a ~ d ,  such that 
(a, d )  = 0; in this case (p,  $) = 0 for all /3 E A,. 
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6. The  normal form, split rank, and complex structure can be 

(a) m, = 1 for all a,b E 2 if and only if g is the normal real form of gc. 
(b) md is even for each i,h E Z if and only if rank(G) = rank(K) + 

rank(G/K), or equivalently, if and only if all Cartan subalgebras of g 

are conjugate. 

characterized as follows: 

(c) md = 2 for all a,b E 2 if and only if g has a complex structure. 

7. Let 2 and d have compatible orderings and put A, = {a E A : 
& = O}. Let B = B(A) be a basis of d, put B, = B n A, and let B c Z 
be the set of restrictions of B - B, to a. Then: 

(a) A, is a root system with basis B,. 
(b) 8 is a basis of the root system Z. 

8. (continuation) Let 

r = Card B = dim bR, ro = CardB,, 1 = dim a, 

and define the Satake diagram of (B, 0) as follows. Every root of B, is 
denoted by a black circle 0 and every root of B - B, by a white circle 0. 

If a, /3 E B - B, are such that ti = 8, then a and /3 are joined by a 
curved arrow 0. In  Table VI we list for each simple non-complex 
Lie algebra over R: 

(i) the Satake diagram of (B, 0); 
(ii) the Dynkin diagram of 8; 

(iii) the multiplicities m,,, m2,, for X E 8. 
The  table is reproduced from Araki [l]; for the classical spaces the root 
system 2 and the multiplicities were given by Cartan [lo]; for the 
exceptional spaces he stated the result without proof. I n  the table we 
follow the notation of Table V with the following refinements (Cartan 
ClOl): 

A ZV for eu(p, l), p > 1. 

BZ for 5o(p ,  q )  p + q odd, p B q > 1. 

DZ for so(p,  q)  p + q even, p 2 q > 1. 

BZZ for so(p, 1) p even. 

DZZ for eo(p,  1) p odd. 

The  Dynkin diagrams for B with the same numbering as in $3, no. 5, 
occur in the second column; in the third column we list the restrictions 
A, = OL, forming the basis 8. 
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TABLE VI 

SATAKE DIAGRAMS, RFSTRICTED ROOT SYSTEMS, AND MULTIPLICITIES 

g Satake diagram of (B ,  0) Dynkin diagram of B mA* %A. 

A 1  

A II 

A III 

A IV 

B I  

B II 

C I  

-* 
I 

i 
I 
0 
I -* 

C I I  { 

0 
A1 

r 

Y 
0- 0-. . .- O t O  
A 1  A2 A, 
( 1  = r) 

1 0 

4 0 

2 0 I (i = 1 )  1 

(i  < 1 )  

2(r - 21 + 1) 

2 0 

( i Q 1 - 1 )  

(i = 1 )  

2(r - 1) 1 

1 0 
(i < 1 )  

2(r - 1 )  + 1 0 
(i = 1 )  

2r-1 0 

1 0 

1 0 i 
I 

4 0 

(i # 21) 
4(r - 21) 3 
(i = 21) 

4 0 

3 0 
(i # 21) 

(i = 21) 

Table continued 
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TABLE VI (continued) 

a Satake diagram of ( B ,  0) Dynkin diagram of B mA. %A- 

D I  

D I1 

D III 

1 0 
(i < 1 )  

2 ( Y  - 1 )  0 
(i = 1 )  

A, 
(2 < I < Y - 2)  
A1 A2 

O-O I 0-0 -...- 
0-0 -..._ 0-e _...- i 
“1 a 2  “1 

“ l+ l  

“2 

a,-1 
A 

1 0 
(i < 1 )  

(i = 1 )  
2 0 

1 0 

2 ( Y  - 1) 0 

4 0 

( i  # 21) 

(i = 21) 
1 0 

4 0 

4 1 
(i # U) 

(i = 21) 

Table continued 
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TABLE VI (continued) 

[Ch. X 

9 Satake diagram of (B,  0 )  Dynkin diagram of B mA* mzA. 

0 

1 0 P o-o-o-o-o I o-o-o-o-o 

@a 
0 

E I  

E I I  

E III 

E I V  

E V  

E VI 

E V l l  

E VIIl 

[ (i = 1, 3) 

a a  
0 

8 1 

6 0 
(i = 1) 

(i = 2) 

a1 
0-0-0-0-0 
a, 

i 
0-0 

A 1  A6 

0 

8 0 

i o-o-o-o-o-o 1 
I o-o-o-o-o-o 0 

0 I '  (i = 1, 3) I 
0-0-0-0-0-0 
a7 @6 as a 4  a3 a1 14 (i = 6 ,  4) 

0 

0 

0 i 
8 

(i = 1, 6 )  
1 

(i = 7) 
0-0-0-0-m-0 
017 a6 015 014 a3 a1 

0 0 

I o-o-o-o-o-o-o 

a a  
0 

I o-o-o-o-o-o-o 1 0 

8 
(i = 6 ,  1) 

1 
(i = 7, 8) 

o-o==+o-o 1 

0 8 
A4 

0 

7 

G 03330 0 3 0  1 0 
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9. Verify the following statements on the basis of the table above: 

(a) A simple Lie algebra g over R is determined up to isomorphism 
by its Satake diagram. 

(b) A simple Lie algebra g over R is determined by the triple (a, Z, m )  
where .Z is the restricted root system and m is the multiplicity function. 

G. Two-Point Homogeneous Spaces 

A Riemannian manifold M with distance function d is called two-point 
homogeneous if for any two pairs p ,  q E M ,  p', q' E M ,  satisfying d( p ,  q) = 

d( p',  q') there exists an element g E I ( M ) ,  the group of isometries of M ,  
such that g * p = p',  g - q = q'. A Riemannian manifold M is called 
isotropic if for each p E M the linear isotropy group d(l(M),)  acts 
transitively on the unit sphere in the tangent space M,. 

1. A Riemannian manifold is two-point homogeneous if and only 
if it is isotropic. 

2*. A Riemannian manifold is isotropic if and only if it is either a 
Euclidean space or a Riemannian globally symmetric space of rank one. 

This result is a consequence of Wang's classification [l] of compact 
two-point homogeneous spaces and Tits' classification [ 13 of isotropic 
homogeneous manifolds (Riemannian or not). For the noncompact case 
an a priori proof is given in Nagano [l], Helgason [3], p. 252; for the 
compact case alternatives to Wang's proof can be found in Varma [l], 
Freudenthal [6] ,  Wolf [4], Matsumoto [l], the last proof using no classi- 
fication. 

The two-point homogeneous spaces are therefore R", the simply 
connected compact and noncompact spaces 

A ZZZ(q = l), BD Z(q = I ) ,  CZZ(q = l), FZZ, 

and, in accordance with Exercise C4, the real projective spaces 
SO(n + l),'O(n). 

NOTES 

$1-$4. Lie's theorem about the differential equation dyldy = Y / X  quoted in 
Chapter 11, $8 and its various generalizations suggested to him the problem of 
classifying all local transformation groups of R". Only for small n (n < 6) did 
this turn out to be a manageable problem (Lie [l], Page [l]). Killing realized that 
the problem could be split in two; first to classify the underlying abstract groups 
and then their representations as transformation groups. So Killing set himself 
the algebraic problem of finding all possible ways, up to isomorphism, in which 
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an r-dimensional vector space can be turned into a Lie algebra. On 18 October 
1887 he wrote to Engel that he had found a complete classification of the simple 
Lie algebras over C. The exceptional Lie algebras e,, e,, e,, fa, ga are Killing’s most 
remarkable discovery, although the indication in his second paper, p. 48, can 
hardly be considered a proof of their existence (except for g2). The principal 
result of his papers is that these algebras, together with the classical ones a,, bt,cr, 
and br, exhaust the class of all simple Lie algebras over C. Killing’s method was 
founded on a detailed analysis of the solutions of the characteristic equation 
det(M - ad X) = 0 and a classification of all possibilities for the matrix (air) in 
93, no. 2. (For i # j, -air is the largest integer q for which mi + qmf is a root.) 

In his thesis, Cartan [l] gives genuine proofs of the classification results stated 
by Killing, having pointed out a number of significant errors and gaps in Killing’s 
papers. Generously he does not list the lack of existence proofs for the exceptional 
algebras among these gaps; however, in a paper in Leipziger Berichte 1893, 
published before his thesis, he indicates specific transformation groups in spaces 
of dimensions 16, 27, 57, 15 and 5, respectively, realizing the exceptional Lie 
algebras (for ga this was done simultaneously by Engel [l]) and states that such 
groups cannot exist in spaces of lower dimension. Some others were less charitable 
in their comments on Killing’s papers: “C’Ctait 11 un resultat d’une trks haute 
importance ; malheureusement toutes les dkmonstrations Ctaient fausses ; il ne 
restait que des aperps dCnuCs de toute force probant” (Poincark [2]); similar 
opinions are expressed by Lie [l], Vol. 111. 

Simplified treatments of the classification over C (not the construction of the 
algebras) based on Theorem 5.4, Chapter I11 were given by van der Waerden [l] 
and Dynkin [l]; see also Freudenthal [3]. While a basis for the root system was 
already used by Killing, the concept of a simple root seems to have originated 
with Dynkin El]. Coxeter (in [l] and in Weyl [2]) and later Witt [2] classified all 
finite groups generated by reflections and applied the result to the classification 
problem. 

The construction of the simple Lie algebras is a more difficult problem. One 
way of stating it is as follows: Let (atr) be a nonsingular I x I matrix such that 
(1) ai, = 2, aif < 0 (i # j) and air = 0 whenever a,* = 0 ;  (2) the group W 
generated by the linear transformations si : xr  -+ xi - ajixi  is finite. Show that 
there exists a semisimple Lie algebra g over C whose Cartan matrix is (air). A result 
of this type was proved geometrically by Witt [Z], assuming it holds for 1 < 4. 
A general algebraic proof without this proviso is due to Chevalley [9] and Harish- 
Chandra [3]. Using similar tools, Serre [l], Chapter VI proved the existence with 
conditions (1) and (2) replaced by the axioms of a root system. This is a sub- 
stantial simplification since (2) is cumbersome to verify for the exceptional Lie 
algebras. Tits [q gives yet another method. 

In $1 the classification problem is broken up into more specialized problems. 
Proposition 1.2 shows how the global symmetry of a space of type I1 forces on it a 
group structure. Prop. 1.5 goes back to Cartan [2], p. 267. In 92 we describe the 
customary group theoretic models of the classical symmetric spaces; a more 
unified description by means of positive involutions of semisimple associative 
algebras is given by Weil [3]. 

In 93 we give the now standard classification of root systems. We use the 
definition of Dynkin 113, Araki [l], Serre [l], and Bourbaki [2], Chapitre VI, and 
classify the possible Coxeter graphs by the method of Dynkin [l]. The next step is 
the construction of a reduced root system for each diagram (cf. Pontragin [l], 966, 
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Serre [l], Chapter V, Bourbaki [2], Chapter VI), giving Theorem 3.23. The factor 
group Aut(R)/W(R) (in Theorem 3.29) was determined by Cartan [4], and in [9] he 
determines and the corresponding classification of compact simple Lie groups 
(cf. Exercise C.l). A detailed treatment was given by Dynkin and OniHEik[l]. 
In [lo] he generalizes this method to give a global classification of the compact 
irreducible symmetric spaces (cf. Exercises C.2-4). The proof of Theorem 3.32 
follows Bourbaki [2], Chapter VI. The method of presentation in $4 of the con- 
structive part of the classification is due to Chevalley [9], Harish-Chandra [3], 
Part I and Serre [l], Chapter VI. 

In his paper [2] Cartan classifies the simple Lie algebras over R. His 
method, which required formidable computations, used the signature of the 
Killing form although it often happens that two nonisomorphic real forms of the 
same complex algebra have the same signature. Cartan’s statement ([2], p. 263): 
“Les groupes rCels d‘ordre Y qui correspondent B une m&me type complexe d’ordre 
Y se classent en gCn6ral complktement d’aprks leur curucbre,” is therefore not 
to be taken literally; cf. Lardy ([l], p. 195). After noticing the equivalence of 
problems B and B’ ($1) Cartan (in [12]) simplified his original treatment (see also 
Lardy [l]). Following his general theory [l] of automorphism of complex simple 
Lie groups, Gantmacher [2] gave a simplified treatment of the real classification. 
For further developments of this method see Murakami [3], Wallach [2], and 
Freudenthal and de Vries [l]. While Gantmacher used a Cartan subalgebra IJ of 
whose “toral part” 0 n f is maximal abelian in f ,  Araki develops in [l] a new 
method using a Cartan subalgebra IJ C g whose “vector part” 0 n p is maximal 
abelian in p. In addition to a solution to problem B’ ($1) this method gives valuable 
information about the restricted roots and their multiplicities (cf. Exercises F). 
A modification is given by Sugiura [2]. In the present work we use the method of 
KaE [l] which at the same time gives a rather explicit description of the auto- 
morphism u of finite order. The method amounts to a development of the weight 
theory for the natural representations of g on the infinite-dimensional algebras 
L(g, u). In a much more general situation the algebras of this type (“KaE-Moody 
algebras”) have been studied by KaE [4] and independently by Moody [l, 21. The 
graphs in the diagrams S(A) occur already in Coxeter [l]. 

$5. 



SOLUTIONS TO EXERCISES 

CHAPTER I 

A. Manifolds 

A.l. First take a covering {V,},E, of A by open relatively compact 
sets V,  disjoint from B. Then take a covering {VB}BEJ of the closed set 
M - UaEl V ,  by open relatively compact sets V,  disjoint from A. 
The covering { V,},el, { V,),. of M has a locally finite refinement { Wv)yEr. 
If { Q ) , , } ~ ~ ~  is a partition of unity subordinate to this covering, put f = 

A.2. If p ,  , p ,  E M  are sufficiently close within a coordinate neigh- 
borhood U ,  there exists a diffeomorphism mapping p ,  to p, and leaving 
M - U pointwise fixed. Now consider a curve segment y( t )  (0 < t < 1) 
in M joining p to q. Let t* be the supremum of those t for which there 
exists a diffeomorphism of M mapping p on y(t). The initial remark 
shows first that t* > 0, next that t* = 1, and finally that t* is reached 
as a maximum. 

A.3. The "only if" is obvious and "if" follows from the uniqueness 
in Prop. 1.1. Now let 5 = Cm(R) where R is given the ordinary differen- 
tiable structure. If n is an odd integer, let 3" denote the set of functions 
x +- f (x") on R, f E 3 being arbitrary. Then 8" satisfies gl, Z2, &. 
Since 5" # 5" for n # m, the corresponding 6" are all different. 

A.4. (i) If d@ - X = Y and f E Cm(N),  then X ( f  o @) = 

(Yf) o @ E &,. On the other hand, suppose XS0 C 30. If F E 30, then 
F = g o @ where g E Cm(N)  is unique. If f E Cm(N), then X (  f o @) = 
g o @ (g E Cm(N)  unique), and f +- g is a derivation, giving Y. 

(ii) If d@ - X = Y, then Y,(,) = d@JX,), so necessity follows. 
Suppose d@,(M,) = No(p) for each p E M. Define for r E N, Y, = 
d@,(X,) if r = a@). In order to show that Y : r +- Y, is differentiable 
we use (by virtue of Theorem 15.5) coordinates around p and around 
r = O(p)  such that @ has the expression (x,, ..., x,) -+ (x,, ..., x"). 
Writing 

&v,na+d Q)Y. 

a In 

x = 2 a,(x,, ..., x,) - , 
1 ax,  

538 



Exercises, Chapter I 539 

we have for q sufficiently near p 

so condition (1) implies that for 1 < i < n, ai is constant in the last 
m - n arguments. Hence 

(iii) f~ C"(N) if and only if f o # E  C"(R). If f(x)  = x3, then 
f o +(x) = x, (f' o +)(x) = 3x*, so f E Cm(N), f' 4 Cm(N). Hence 
f o @ E 50, but X( f o @) $ go;  so by (i), X is not projectable. 

A.5. Obvious. 
A.6. Use Props. 15.2 and 15.3 to shrink the given covering to a new 

one; then use the result of Exercise A.l to imitate the proof of Theorem 
1.3. 

A.7. We can assume M = Rm, p = 0, and that Xo = (ajat,), in 
terms of the standard coordinate system {tl, ..., t,} on Rm. Consider the 
integral curve ~ ~ ( 0 ,  c2, ..., c,) of X through (0, c2, ..., c,). Then the 
mapping + : (cl, ..., c,) --t ~,,(0, c2, ..., c,) is C" for small ci, 

$(O, c2, "'9 cm) = (0, c2, * * a ,  c,), so 

Also 

a a 
d#o (F)o = (*) (0) = xo = (at) 1 0  - 

Thus t,/~ can be inverted near 0, so {cl, ..., cm) is a local coordinate system. 
Finally, if c = (cl, ..., c,), 
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A.8. Let f E Cm(M). Writing - below when in an equality we omit 
terms of higher order in s or t ,  we have 

f(~-t(v-s(~t(vs(o>)))) - f ( o )  
= f (~-t(v-s(~t(vs(o)))))  - f(v-s(+t(vs(o" 

+ f(v-s(4t(vs(o>))) - f ( M ? J s ( o ) ) )  

+ f(#t(vs(o)>> - f(vs(0)) + f(vs(0)) - f(4 - -t(Yf)(v-s(~t(vs(o)))) + St"Y"f>(v-s(~t(vs(o)))) 
- 4v) (h (vs (o ) ) )  + 3z(~zf)(+t(vs(o)))  

+ t(Yf)(h(vs(o))) - tt"Yzf)>(+t(vs(o))) 
+ @im40)) - B~2(x2f)(vs(o)) - st(xyf)(h(vs(o))) - w x n ( + t ( v s ( o ) ) ) *  

This last expression is obtained by pairing off the 1st and 5th term, the 
3rd and 7th, the 2nd and 6th, and the 4th and 8th. Hence 

f(r(t") -fW = t " F ,  Ylf)(o) + W3)- 
A similar proof is given in Faber [l]. 

B. The Lie Derivative and the Interior Product 

B.l. If the desired extension of O(X) exists and if C : B;(M) -+ Cm(M) 
is the contraction, then (i), (ii), (iii) imply 

(w+)(Y)  = X ( 4 Y ) )  - w([X, Yl), x, Y E  TS(M). 

Thus we define O(X) on a , (M)  by this relation and note that 

If U is a coordinate neighborhood with coordinates {xl, ..., xm>, O(X) 
induces an endomorphism of Cm( U), D1( U), and a,( U). Putting Xi = 
a/axi, wi = dxj, each T E DD,I(U) can be written 

(W+)(fY) = f(O(X)(w))(Y) (f. Crn(M)), so O W )  al(W = al(M). 

T = 2 T(<),(j)Xi,  @ ... @ Xi, @ wj,  @ ... @ wj,  

with unique coefficients T(i),o) E Cm( U ) .  Now O(X) is uniquely extended 
to D( U )  satisfying (i) and (ii). Property (iii) is then verified by induction 
on r and s. Finally, O(X) is defined on D(M) by the condition 
O(X)T I U = O(X)(T I U) (vertical bar denoting restriction) because as 
in the proof of Theorem 2.5 this condition is forced by the requirement 
that O(X) should be a derivation. 

B.2. The first part being obvious, we just verify @ * w = (@-l)*w. 
We may assume w E Dl(M). If X E 31(M) and C is the contraction 
X @ w -+ w(X) ,  then @ o C = C o 0 implies (@ - w ) ( X )  = 
@(w(XO-l)) = ((@-l)*u)(X). 



Exercises, Chapter I 541 

B.3. The formula is obvious if T = f E Cm(M). Next let T = 

Y E  D1(M). Iff6 Cm(M) and q E M ,  we put F(t, q) = f ( g t  q) and have 

8F w, 4) -F(O, 4) = t 1 (T) (54 4) d5 = t w, 41, 

where h E C"(R x M )  and h(0, q) = (Xf)(q). Then 

(gt  . Y ) ,  f = (Y(f 0 gt))(gt' * P) = ( Y f ) ( g 2  * P) + t ( W ( t ,  g;l . P) 
so 

1 vz ; (Y - gt . Y)Df = (XYf)(P)  - (YXf)(P) ,  

so the formula holds for T E W ( M ) .  But the endomorphism T -+ 
limt+,, t-l(T - g, - T )  has properties (i), (ii), and (iii) of Exercise B.l; 
it coincides with O(X) on Cm(M) and on W ( M ) ,  hence on all of D(M) 
by the uniqueness in Exercise B. 1. 

8.4. For (i) we note that both sides are derivations of D(M) commuting 
with contractions, preserving type, and having the same effect on D1(M) 
and on CP(M). The argument of Exercise B.l shows that they coincide 
on D(M). 

(ii) If o E D,(M), Yl, ..., Y, E W ( M ) ,  then by B.l, 

(e(x)w)(yl, ..., Y,) = x(w(yl, ..., Y J )  - 2 w ( y l ,  ..., [x, yil, ..., y,) 
I 

so O(X) commutes with A. 
(iii) Since O ( x )  is a derivation of W(M) and d is a skew-derivation 

(that is, satisfies (iv) in Theorem 2.5), the commutator O(X)d - dO(X) 
is also a skew-derivation. Since it vanishes on f and df ( f E C"(M)), it 
vanishes identically (cf. Exercise B.l). For B.1-B.4, cf. Palais [3]. 

8.5. This is done by the same method as in Exercise B.l. 
B.6. For (i) we note that by (iii) in Exercise B.5, i(X)2 is a derivation. 

Since it vanishes on Cm(M) and nl(M), it vanishes identically; (ii) follows 
by induction; (iii) follows since both sides are skew-derivations which 
coincide on Cm(M) and on a1(M); (iv) follows because both sides are 
derivations which coincide on C"(M) and on Sl(M). 

C. Affine Connections 

C.1. M has a locally finite covering {Uu}uEA by coordinate neighbor- 
hoods U,. On U, we construct an arbitrary Riemannian structure g,. 
If 1 = C, cp, is a partition of unity subordinate to the covering, then 
C, Tug, gives the desired Riemannian structure on M. 
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C.2. If @ is an affine transformation and we write d@(a/axi) = 
Zi aii ajax,, then conditions v1 and vz imply that each aij is a constant. 
If A is the linear transformation (aii), then @ o A-l has differential I ,  
hence is a translation B, so @ ( X )  = A X  + B. The converse is obvious. 

C.3. We have @*wj = Zk (I'& o @) @*uk, so by (5 ' ) ,  (6),  (7) in $8 

@*a! = 2 (Ti9 0 @)(ak dt + t dak) = 0. 
k 

This implies that I-'& = 0 in normal coordinates, which is equivalent 
to the result stated in the exercise. 

C.4. A direct verification shows that the mapping 6 : 8 -+ 

Z;" wi A ox,(8) is a skew-derivation of 'U(M)and that it coincides with 
d on C"(M). Next let 8 E %,(M), X ,  Y E  W ( M ) .  Then, using (5),  $7, 

= V X ( w 7  - V Y ( W )  

= x ' V) - O(Vx(Y)) - y * qx) + e(oY(x)), 
which since the torsion is 0 equals 

xqy) - Y - e(x) - e([x, YI) = 2 dqx, Y). 

Thus 6 = d on S1(M),  hence by the above on all of S(M).  

C.5. No; an example is given by a circular cone with the vertex 
rounded off. 

C.6. Using Props. 11.3 and 11.4 we obtain a mapping v : M -+ N 
such that drpp is an isometry for each p E M. Thus rp(M) C N is an open 
subset. Each geodesic in the manifold y ( M )  is indefinitely extendable, 
so v ( M )  is complete, whence rp maps M onto N. Now Lemma 13.4 
implies that (M, rp) is a covering space of N ,  so M and N are isometric. 

D. Submanifolds 

D.l. Let I : G, -+ M x N denote the identity mapping and 
rr : M x N -+ M the projection onto the first factor. Let m E M and 
2 E (Go)(m,Q(m)) such that dl , (Z)  = 0. Then 2 = ( ~ F ) ~ ( X )  where 
X E Mm. Thus dn- o dI o drp(X) = 0. But since n- o I o rp is the identity 
mapping, this implies X = 0, so 2 = 0 and I is regular. 

D.2. Immediate from Lemma 14.1. 
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D.3. Consider the figure 8 given by the formula 

y(t)  = (sin 2t, sin t) (0 < t < 2 4 .  

Let f ( s )  be an increasing function on R such that 

lim f ( s )  = 0, f ( 0 )  = 7r, lim f ( s )  = 27r. 
s+-w 8++m 

Then the map s + y ( f ( s ) )  is a bijection of R onto the figure 8. Carrying 
the manifold structure of R over, we get a submanifold of R2 which is 
closed, yet does not carry the induced topology. Replacing y by 6 given 
by S(t)  = (-sin 2t, sint t), we get another manifold structure on the 
figure. 

D.4. Suppose dim M < dim N. Using the notation of Prop. 3.2, 
let W be a compact neighborhood of p in M and W c U.  By the counta- 
bility assumption, countably many such W cover M. Thus by Lemma 3.1, 
Chapter 11, for N, some such W contains an open set in N; contradiction. 

D.5. For each m E M there exists by Prop. 3.2 an open neighborhood 
V,  of m in N and an extension of g from V, n M to a C” function G, 
on V,. The covering {V,),,,, N - M of N has a countable locally 
finite refinement V,, V,, ... . Let v,, qz, ... be the corresponding partition 
of unity. Let vil, rpi2, ... be the subsequence of the (vj) whose supports 
intersect M, and for each viU choose mp E M such that supp(yi,) C V,,. 
Then Ep G,, viu is the desired function G. 

D.6. The “if” part is contained in Theorem 14.5 and the “only if” 
part is immediate from (2) ,  Chapter V, 96. 

E. Curvature 

E.1. If (r, 0) are polar coordinates of a vector X in the tangent space 
M,, the inverse of the map (r, 0) + Exp, X gives the “geodesic polar 
coordinates” around p. Since the geodesics from p intersect sufficiently 
small circles around p orthogonally (Lemma 9.7), the Riemannian 
structure has the form g = dr2 + ~ ( r ,  0 ) z  d02. In these coordinates the 
Riemannian measure f+ Jf 42 dx, ... dx, and the Laplace-Beltrami 
operator are, respectively, given by 

and 
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On the other hand, if ( x ,  y )  are the normal coordinates of Exp, X such 
that 

Y r2  = x2 + y2, 

then, since r dr = x dx + y dy, r2 dB = x dy - y dx, 

tan 6 = - , 
X 

g = r -4 [ (~2r2  + y2p2) dx2 + 2xy(r2 - v2) dx dy + (y2r2 + x2’p2) dy2] 

so since the coefficients are smooth near (x, y )  = (0, 0) cp2 has the form 

v2 = r2 + cr4 + ..., 
where c = c(p)  is a constant. But then 

lim d(1og r )  = c(p) .  
r+O 

On the other hand, 

A(r) = jl s”” p(t, 6) dt d6, 
0 

so using the definition in $12 we find K = -3c(p) as stated. 

sign). 

of x, Y, -x, -Y. 

This result is stated in Klein [l], p. 219, without proof (with opposite 

E.2. Let X = ajax, and Y = ajax, so y E  is formed by integral curves 

tl 

and 7i3 the parallel transport from pj to p i  along yE. Let T be any vector 
field on M, and write Ti = Tpi.  Then 

T03T32T21T10T0 - TO 

= (T03T32T21T10T0 - T03T32T21T1) + (T03T32T21T1 - T03T32T2) 

+ (T03T32T2 - 703T3) + (T03T3 - ‘0). 
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Combining now the 1st and 5th term, 2nd and 6th term, etc., this 
expression reduces to 

- E 2 T 0 3 . 3 2 ( 0 Y ( 0 X ( T ) ) ) 2  - E 2 T 0 3 ( V X ( V  dT))Q 

which, since [X, yl = 0, reduces to 

This proof is a simplification of that of Faber [I]. See Laugwitz [l], 
$10 for another version of the result. For curvature and holonomy 
groups, see e.g. Ambrose and Singer [2]. 

F. Surfaces 

F.l. Let 2 be a vector field on S and x, p, 2 vector fields on a neigh- 
borhood of s in R3 extending X, Y, and 2, respectively. The inner 
product ( , ) on R3 induces a Riemannian structure g on S. If 0" and v 
denote the corresponding affine connections on R3 and S, respectively, 
we deduce from (2), $9 

<ZS, V'X(P),> = g v s ,  VX(Y)S). 

VX(P)S = 1;s t (YAd - Ysh 

But 
N 1 

so we obtain v = v'; in particular 0' is an affine connection on S. 
F.2. Let s(u, a) -+ (u, v )  be local coordinates on S and if g denotes 

the Riemannian structure on S, put 
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Let Y(U, v )  denote the vector from 0 to the point s(u, v). Subscripts 
denoting partial derivatives, Y, and rV span the tangent space at s(u, w ) ,  
and we may take the orientation such that 

x denoting the cross product. We have 

qS = ruu + r,v 

y s  = ruuu2 + 2ru,u6 + ru,d2 + r,ii + r,v, 

and 

r,  - r,, = E, r,  * r, = F, r, . r ,  = G, 

whence 

From this it is clear that the geodesic curvature can be expressed in 
terms of zi,  d, ii, 6, E, F, G, and their derivatives, and therefore has the 
invariance property stated. 

F.3. We first recall that under the orthogonal projection P of R3 on 
the tangent space S,,J~) the curve P o  ys has curvature in ys(t) equal 
to the geodesic curvature of ys at ys(t). So in order to avoid discussing 
developable surfaces we define the rolling in the problem as follows. 
Let n- = Sy,(t,) and let t + y,,(t) be the curve in 7r such that 

m(to> = ys(tll), %r.n(to) = 3S(tO)  

( t  - to is the arc-parameter measured from y,,(to)) and such that the 
curvature of yV at y,,(t) is the geodesic curvature of ys at ys(t). The rolling 
is understood as the family of isometries S,,J~) + n - , , ~ ~ )  of the tangent 
planes such that the vector j , ( t )  is mapped onto +,,(t). Under these maps 
a Euclidean parallel family of unit vectors along y,, corresponds to a 
family Y(t)  E Sy,(t). We must show that this family is parallel in the 
sense of (l), 95. Let T denote the angle between+s(t) and Y(t). Then 

i ( t )  = -curvature of y,, at m ( t )  
- - -geodesic curvature of ys at ys(t) 

= 4 5  x 3 s  * $jS)(t). 
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We can choose the coordinates (u, v )  near ys(to) such that for t close to to 

a a  
u(ys(t>) = t 9  o(ys(t)) = const., &&) (a, 9 z) = 0. 

(For example, let r ---t S,(r) be a geodesic in S starting at ys(t) perpen- 
dicular to ys;  small pieces of these geodesics fill up (disjointly) a neigbor- 
hood of ys(to); the mapping S,(r) --t (t, r )  is a coordinate system with 
the desired properties.) Writing Y(t) = Y1(t) ru + Yz((t)r,, (using 
notation from previous exercise), we have 

y'(t) = COS T ( t ) ,  Yz(t) = G-l12 sin ~ ( t )  (1) 

and shall now verify (2), $5. By (2), $9 we have 

On the curve ys we have E = 1, F 3 0, so 

Thus we must verify 

. E  Gu y2 - 2 y1+ - y2 = 0. 1 
2 2G 2G 

Y 1  + - E,Y2 = 0, 
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But using formulas from Exercise F.2 we find 

and now equations (2) follow directly from (1). 

G. The Hyperbolic Plane 

1. (i) and (ii) are obvious. (iii) is clear since 

X ‘ ( t ) 2  X ‘ ( t > 2  + y’(tI2 
(1 - X ( t ) 2 ) 2  (1 - X ( t ) 2  - y(t)2)2 

where y ( t )  = (x(t) ,  y(t)). For (iv) let x E D, U E D , ,  and let x( t )  be a 
curve with x(0) = z, z’(t) = u. Then 

and g(dv(u), dq(u)) = g(u, u)  now follows by direct computation. Now 
(v) follows since v is conformal and maps lines into circles. The first 
relation in (vi) is immediate; and writing the expression for d(0, x) as a 
cross ratio of the points -1, 0, x, 1, the expression for d(z,, x2)  follows 
since y in (iv) preserves cross ratio. For (vii) let T be any isometry of D. 
Then there exists a 9 as in (iv) such that 97-l leaves the x-axis pointwise 
fixed. But then y7-l is either the identity or the complex conjugation 
z + 1. For (viii) we note that if r = d(0, z), then I z I = tanh r; 
so the formula for g follows from (ii). Part (ix) follows from 

dz 
(2 + i ) 2  * 

dtZ = -2 
1 - l z l2  dz 

v =  dw = -2 
(z- - i12 ’ (z - i ) 2  ’ 

CHAPTER II 

A. On the Geometry of Lie Groups 

A.1. (i) follows from exp Ad(x)tX = x exp tXx-l= L(x) R(x-l) exp t X  
for X E g, t E R. For (ii) we note J (x  exp t X )  = exp(-tX) x-l, so 
dJ,(dL(x)$) = - d R ( ~ - ~ ) , x .  For (iii) we observe for X,, Yo E g 

@(g exp tXo, h exp sY,) = g exp tX,h exp sY, 

= gh exp t Ad(h-l) X ,  exp sYo, 
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so 
d@(dL(g)Xo, dL(h)Yo) = dL(gh)(Ad(h-l)X0 + Yo). 

Putting X = dL(g)Xo, Y = dL(h)Yo, the result follows from (i). 

A.2. Suppose y( t , )  = y(tJ so y(t, - t l )  = e. Let L > 0 be the 
smallest number such that y(L)  = e. Then y(t + L) = y( t )  y(L)  = y(t). 
If T~ denotes the translation t --+ t + L, we have y o T~ = y, so 

A.3. The curve u satisfies u(t + L) = u(t), so as in A.2, u(0) = &(I,). 
A.4. Let (p,) be a Cauchy sequence in GIH. Then if d denotes the 

distance, d(p,, pm) -+ 0 if m, n -+ co. Let B,(o) be a relatively compact 
ball of radius E > 0 around the origin o = { H )  in G/H. Select N such 
that d(pN, pm) < & for m >/ N and select g E G such that g * p ,  = 0. 

Then ( g  *p , )  is a Cauchy sequence inside the compact ball B,(o)-, 
hence it, together with the original sequence, is convergent. 

A.5. For X ~g let R denote the corresponding left invariant vector 
field on G. From Prop. 1.4 we know that (i) is equivalent to vz(L?) = 0 
for all 2 E g. But by (2), $9 in Chapter I this condition reduces to 

g(Z, [X  21) = 0 ( X ,  E 9) 

which is clearly equivalent to (ii). Next (iii) follows from (ii) by replacing 
X by X + 2. But (iii) is equivalent to Ad(G)-invariance of B so Q is 
right invariant. Finally, the map J : x -+ x-l  satisfies J = R(g-1) o 
J o L(g-l), so dJg = dR(g-l), o dJe o dL(g-l),. Since dJe is auto- 
matically an isometry, (v) follows. 

A.6. Assuming first the existence of v,  consider the affine trans- 
formation u : g -+ exp +Yg-l exp +Y of G which fixes the point exp +Y 
and maps y l ,  the first half of y, onto the second half, yz. Since 

u = L(exp 8Y) o J o L(exp -BY), 

we have doexp t u  - - --I. Let X*( t )  E Gexp 1y (0 < t < 1) be the family 

of vectors parallel with respect to y such that X*(O) = X. Then u maps 
X*(s) along y1  into a parallel field along yz which must be the field 
-X*(t)  because du(X*(+)) = -X*(4). Thus the map a o J = 
L(exp &Y) R(exp +Y) sends X into X*(l), as stated in part (i). Part (ii) 
now follows from Theorem 7.1, Chapter I, and part (iii) from Prop. 1.4. 
Now (iv) follows from (ii) and the definition of T and R. 
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e 

Finally, we prove the existence of V. As remarked before Prop. 1.4, 
the equation vp(P) = $[8, P] ( X ,  Y E  g) defines uniquely a left 
invariant affine connection v on G. Since x R ( g )  = (Ad(g-l)X)-, we get 

V ~ Q R W ( P ~ ( ’ ) )  = &Ad(g-l)[X, Y]}- = (VX(P))~(’); 

this we generalize to any vector fields 2, 2’ by writing them in terms of 
xi (1 < i < n). Next 

V J Z ( J P )  = J(VR(P)). (1) 

Since both sides are right invariant vector fields, it suffices to verify 
the equation at e. Now J X  = -x where is right invariant, so the 
problem is to prove 

(VX(YNe = --w, YI. 

For a basis X,, ..., X ,  of g we write Ad(g-l)Y = C,fi(g)Xi. Since 
Fg = dR(g)Y = dL(g) Ad(g-l)Y, it follows that F = &fixi, so 
using v2 and Lemma 4.2 from Chapter I, $4, 

(VX(P))e = (VAP))e = C ( ~ t ) e  xi + 4 Cfi(e)[x, x i l e  
a i 

Since (Xfi)(e) = {(d/dt)  fi(exp tX)},=, and since 

the expression on the right reduces to - [X, Y ]  + *[X,  Y ] ,  so (1) follows. 
As before, (1) generalizes to any vector fields 2,Z’. 

The connection v is the 0-connection of Cartan-Schouten [l]. 

B. The Exponential Mapping 

B.l. At the end of $1 it was shown that GL(2, R) has Lie algebra 
aI(2, R), the Lie algebra of all 2 x 2 real matrices. Since det(etx) = 
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et = r ( X ) ,  Prop. 2.7 shows that d(2, R) consists of all 2 x 2 real matrices 
of trace 0. Writing 

a direct computation gives for the Killing form 

B(X, X) = 8(a2 + bc) = 4 Tr(XX), 

whence B(X, Y) = 4 Tr(XY), and semisimplicity follows quickly. 
Part (i) is obtained by direct computation. For (ii) we consider the 
equation 

A 0  
ex = (o A-l) 

P E R ,  A # 1). 

Case 1: h > 0. Then det X < 0. In  fact det X = 0 implies 

so b = c = 0, so a = 0, contradicting h # 1. If det X > 0, we deduce 
quickly from (i) that b = c = 0, so det X = -a2, which is a contra- 
diction. Thus det X < 0 and using (i) again we find the only solution 

Case 2: h = -1. For det X > 0 put p = (det X)1/2. Then using (i) 
the equation amounts to 

cos p + (p-l sin p)a = -1, 

cos p - (p-l sin p)a = -1, 

(p-l sin p)b = 0, 

(p-l sin p)c = 0. 

These equations are satisfied for 

p = (2n + l ) w  (n E Z ) ,  det X = -a2 - bc = (2n + 1)2 w2. 

This gives infinitely many choices for X as claimed. 

Case 3: h < 0, h # -1. If det X = 0, then (i) shows b = c = 0, so 
a = 0; impossible. If det X > 0 and we put p = (det X)ll2, (i) implies 

cos p + (p-l sin p)a = A, 

cos p - (p-l sin p)a = A-l, 

(p-l sin p)b  = 0, 

(p-l sin p)c = 0. 
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Since h # X-l, we have sin p # 0. Thus b = c = 0, so det X = -a2, 
which is impossible. If det X < 0 and we put p = (-det X)lI2, we get 
from (i) the equations above with sin and cos replaced by sinh and cosh. 
Again b = c = 0, so det X = -a2 = -p2; thus a = fp, so 

cosh p f sinh p = A, cosh p sinh p = A-l, 

contradicting h < 0. Thus there is no solution in this case, as stated. 
8.2. The Killing form on sI(2, R) provides a bi-invariant pseudo- 

Riemannian structure with the properties of Exercise AS.  Thus (i) 
follows from Exercise B.l. Each g E SL(2, R )  can be written g = kp 
where k E SO(2) and p is positive definite, Clearly k = exp T where 
T E sI(2, R); and using diagonalization, p = exp X where X E sI(2, R) .  
The formula g = exp T exp X proves (ii). 

8.3. Follow the hint. 
8.4. Considering one-parameter subgroups it is clear that g consists 

of the matrices 
/ O c O a \  

(a, b, c E R). O O b  

0 0 0 0  

Then [X(a, b, c), X ( q ,  b,, cl)] = X(cb, - clb, cla - ca,, 0), so g is 
readily seen to be solvable. A direct computation gives 

1. i 0 0 0  1 

cos c sin c 0 c-'(u sin c - b cos c + b) 
exp X(a, b, c) = -sin c cos c 0 c+(b sin c + a cos c - a) 

0 0 1  C 

Thus exp X(a, b, 27r) is the same point in G for all a, b E R, so exp 
is not injective. Similarly, the points in G with y = n27r (n  E Z )  
a2 + p2 > 0 are not in the range of exp. This example occurs in 
Auslander and MacKenzie [l]; the exponential mapping for a solvable 
group is systematically investigated in Dixmier [2]. 

8.5. Let No be a bounded star-shaped open neighborhood of 0 E g 
which exp maps diffeomorphically onto an open neighborhood N, of e 
in G. Let N* = exp(+No). Suppose S is a subgroup of G contained in 
N*, and let s # e in S. Then s = exp X ( X  E +No). Let k E Z+ be 
such that X, 2X, ..., kX E +No but (k + l)X $ +No. Since No is star- 
shaped, (k + ~ ) X E  No; but since sk+l E N*, we have sk+l = exp Y, 
Y E  &No. Since exp is one-to-one on No, (k + l ) X  = Y E  +No, which 
is a contradiction. 
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C. Subgroups and Transformation Groups 

C.l. The proofs given in Chapter X for SU*(2n) and Sp(n, C)  
generalize easily to the other subgroups. 

C.2. Let G be a commutative connected Lie group, (G, r) its universal 
covering group. By facts stated during the proof of Theorem 1.11, e is 
topologically isomorphic to a Euclidean group Rp. Thus G is topologi- 
cally isomorphic to a factor group of Rp and by a well-known theorem on 
topological groups (e.g. Bourbaki [l], Chap. VII) this factor group is 
topologically isomorphic to Rn x Tm. Thus by Theorem 2.6, G is 
analytically isomorphic to Rn x Tm. 

For the last statement let 7 be the closure of y in H. By the first 
statement and Theorem 2.3, j j  = Rn x Tm for some n, m E Z+. But y 
is dense in j j ,  so either 7t = 1 and m = 0 (y closed) or n = 0 (7 compact). 
C.3. By Theorem 2.6, I is analytic and by Lemma 1.12, dI is injective. 

Q.E.D. 

C.4. The mapping I+5g turns g No into a manifold which we denote 
by (g No)%. Similarly, I+5gt turns g' - No into a manifold (g' * No)v. Thus 
we have two manifolds (g - No n g' * No)z and (g - No n g' No)y and 
must show that the identity map from one to the other is analytic. 
Consider the analytic section maps 

ug : (g . Nola! - G, ug' : (g' - No)v -+ G 

defined by 

ug(g exp(xlXl + ... + x,X,.) . p a )  = g exp(x1Xl + ... + x,X,), 

v (g '  exp(ylXl + ... + yrXr) * PO) = g' exp(ylXl+ -.. + yrXr>, 

and the analytic map 

J g  : 7fYg * No) - (g * NO)% x H 

given by 

l g ( 4  = (44, [%7(+))l-l4* 

Furthermore, let P : (g - No)z x H -+ (g * No)% denote the projection 
on the first component. Then the identity mapping 

I : (g  . No ng' . No)v -+ (g . No ng '  . No)a! 

can be factored: 
P 

(g"ong'.No)v +(g * No) J,, (g . Nola! x H - (g . Nola!. 
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In fact, if p ~g - No n g’ * No, we have 

p = g exp(xlXl + ... + x,X,) * p o  = g’ exp(ylXl + ... + yrXJ *Po, 

so for some h E H ,  

Thus I is composed of analytic maps so is analytic, as desired. 
C.5. The subgroup H = Gp of G leaving p fixed is closed, so GIH 

is a manifold. The map I : G / H  4 M given by I ( g H )  = g - p  gives 
a bijection of G / H  onto the orbit G * p .  Carrying the differentiable 
structure over on G * p by means of I ,  it remains to prove that 
I : G / H  -+ M is everywhere regular. Consider the maps on the diagram 

G 

* M  
GIH I 

where r ( g )  = g H ,  P(g) = g - p so P = I o T. If we restrict TI to a local 
cross section, we can write I = o T - ~  on a neighborhood of the origin 
in GIH. Thus I is C“ near the origin, hence everywhere. Moreover, 
the map dPe : Q -+ M p  has kernel b, the Lie algebra of H (cf. proof of 
Prop. 4.3). Since dwe maps g onto ( G / H ) ,  with kernel and since dpe = 
dIH o dTe, wee that dIH is one-to-one. Finally, if T ( g )  denotes the 
diffeomorphism m 4 g - m of M ,  we have I = T ( g )  o I o .(g-’), 
whence 

dl,, = dT(g)p 0 dlH 0 d T ( g l ) g H ,  

so I is everywhere regular. 
C.6. By local connectedness each component of G is open. It acquires 

an analytic structure from that of Go by left translation. In order to show 
the map v : (x, y) xy-1 analytic at a point (xo, yo) E G x G let GI and 
G, denote the components of G containing xo and yo,  respectively. If 
vo = 9) I Go x Go and z,b = ‘p I G, x G,, then 

* = &lY,’) 0 4 Y o )  0 9Jo 0 J W 1 9  Y a  
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where I( yo)(%) = yOxy;’ (x E Go). Now I( yo) is a continuous auto- 
morphism of the Lie group Go, hence by Theorem 2.6, analytic; so the 
expression for 9 shows that it is analytic. 

C.8. If N with the indicated properties exists we may, by translation, 
assume it passes through the origin o = {H} in M. Let L be the subgroup 
{g  E G : g - N = N } .  If g E G maps o into N ,  then gN n N # 0; so 
by assumption, gN = N. Thus L = &(N) where T : G +- G/H is 
the natural map. Using Theorem 15.5, Chapter I we see that L can be 
given the structure of a submanifold of G with a countable basis and 
by the transitivity of G on M, L * o = N .  By C.7, L has the desired 
property. For the converse, define N = L * o and use Prop. 4.4 or 
Exercise C.5. Clearly, if gN n N # 0, then g EL,  so gN = N .  

For more information on the primitivity notion which goes back to 
Lie see e.g. Golubitsky [l]. 

D. Closed Subgroups 

D.l. R 2 / r  is a torus (Exercise C.2), so it suffices to take a line through 
0 in R2 whose image in the torus is dense. 

D.2. g has an Int(g)-invariant positive definite quadratic form Q. 
The proof of Prop. 6.6 now shows g = 3 + g’ ( 3  = center of g, g’ = [g, g] 
compact and semisimple). The groups Int(g) and Int(g’) are analytic 
subgroups of GL(g) with the same Lie algebra so coincide. 

D.3. We have 

( Y ~ ~ ~ ( c ~ ,  c2, s) = (cl, e2ni13c2, s) 

(a19 a29 r)(c1, c 2 ,  s)(a,, a29 r1-l 
= (al(l - e 2 9  + c e2ni7, %(I - e2nih3) + c e2nihr 1 2 9 s> 

so cio,& is not an inner automorphism, and Ao,+ 4 Int(g). Now let s, +- 0 
and let t, = hs, + hn. Select a sequence ( n k )  c Z such that hnk 4 Q 
(mod 1) (Kronecker’s theorem), and let rk be the unique point in [0, 1) 
such that tnk - Tk E Z. Putting sk = snk, t k  = tnk, we have 

ffSk.tk = %k.7k + (Yo,** 

Note: G is a subgroup of H x H where H = (i :), c E C, I (Y I = 1. 

E. Invariant Differential Forms 

E .1. The affine connection on G given by v*( P) = &[x, 
free; and by (5),  $7, Chapter I, if w is a left invariant 1-form, 

is torsion 

V*(W)(P) = -w(Va(P)) = -&J(W(P)) = 4(@%J)(P)> 
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so Vg(o) = &)(x)(w) for all left invariant forms w. Now use Exercise 
C.4 in Chapter I. 

E.2. The first relation is proved as (4), 97. For the other we have 
g k  = I, so (dg)'g + gt(dg) = 0. Hence (g-l dg) + t(dg)(k)-l = 0 and 
SZ + 'SZ = 0. 

For U(n) we find similarly for SZ = g-l dg, 

dQ + 0 A 52 = 0, 52 + t i2  = 0. 

For Sp(n) C U(2n) we recall that g E Sp(n) if and only if 

gt.j = g J n k  = J n  

(cf. Chapter X). Then the form 52 = g-l dg satisfies 

d52 f 52 A Q = 0, 0 + 92 = 0, QJn + J2Q = 0. 

E.3. A direct computation gives 

0 dx dZ - x dy 
g ' d g =  0 0 

(0 0 0 
and the result follows. 

CHAPTER Ill 

A. Solvable and Nilpotent Lie Algebras 

A.1. Consider the derived algebra and observe, as a consequence of 
Cor. 6.3, Chapter I1 that a semisimple Lie algebra equals its derived 
algebra. 

A.2. A direct computation shows [t(n), t(n)] = n(n) and also that 
center (t(n)) = R(E,, + ... + E,,) and center (n(n)) = RE,,. By 
Theorem 2.4 (i), n(n) is nilpotent, thus by Cor. 2.6 solvable, whence t(n) 
is solvable. Thus (i) and (ii) are proved. For (iii) we have 

B(X, [Y, 21) = Tr(ad X ad Y ad 2 - ad X ad 2 ad Y) = 0 

because ad X, ad Y, and ad Z can, on the complexification, be expressed 
by upper triangular matrices and thereby the two matrix products on 
the right have the same diagonal elements. 

A.3. We indicate a proof of this except for the second implication e, 
for which see e.g. Bourbaki [2] ,  I, 95. If n g  is nilpotent, then it is solvable 
(Cor. 2.6); so, by definition, g is solvable. Conversely, if g is solvable, 
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we extend the action of ad X (X E g) to the algebraic closure extension 
of g, whereby they can be viewed in upper triangular form. Hence, if 
X E Dg, then by Exercise A.2, ad X is nilpotent, whence Dg is nilpotent 
(Theorem 2.4). That g solvable + B(g, [g, g]) = 0 is seen just as in 
Exercise A.2. 

A.4. G is analytically isomorphic to the closed subgroup of GL(2, R )  
consisting of the matrices (0“ :), a > 0, b E R, whose Lie algebra g is 
identified with the subalgebra {(g 0”) : x, y E R} of gI(2, R), which by 
A.2 is solvable. If 5 is a noncommutative Lie algebra over R of dimension 
2, then there exists a basis U ,  V E B such that [U,  = V. The map 
01u + PV -+ aEll + BE,, is the desired isomorphism. 

A.5. The map p : X E  g ---t ad X I a (I denoting restriction) is a 
representation of g on a. An invariant subspace is an ideal in g contained 
in a. Thus by the minimality p is irreducible, so by Lie’s theorem 
dima = 1. 

The analog for a solvable Lie algebra go over R is as follows: Let 
a, C go be a minimal proper ideal. Then dim a, < 2. In fact, let a C g 
denote the complexifications. Applying Lie’s theorem to the representa- 
tion X ---t ad X I a, we find a vector H # 0 in a and a linear form y on go 
such that [ X ,  HI = y (X)H for X E go. Decompose H = H ,  + iH, and 
y = a + $3 where H,, H,, a, /3 are real, giving the relations [ X ,  H,] = 

a ( X ) H ,  - P(X)H,, [ X ,  H2] = a(X)H,  + P(X)Hl (X E go), which show 
that RH, + RH, is an ideal in go, contained in a,. Thus dim a, < 2 
(cf. Mostow [5]). 

B. Semisimple Lie Algebras 

B.1. (i) Let B and Br denote the Killing forms of g and gr, respectively. 
Following the notation of Theorem 5.5 for g let X ,  = Hi + Zmer afXa 
(i = 1, 2) where Hi = Zasr b;H, (i = 1, 2). Then since Br(X,, x,) = 
TrOr(ad Xa ad x,) = 0 if a, /I E I‘, 01 + fl # 0, we have 
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Suppose Br(X1, X,) = 0 for all X, E Q ~ .  Then Br(X1, H,) = 0, SO 

Br(H1, H,) = 0 for all H2 E Cuer RH,. Hence a(H,) = 0 for each 
a E r, that is, B(Hl, H,) = 0 for all a E r, so Hl = 0 (Theorem 4.4 (i)). 
Now X ,  = 0 fol!ows using Br(X,, X-,) > 0. (This proof occurs in 
Bruhat [l], p. 200.) 

(ii) We have 3H = $ + Zr g, where r = {a E d : a(H)  = O}. By 
Theorem 4.2 (v) t, n g r  = CyEr CH,; so if c is the joint nullspace of the r 
in $, 3 H  = c + g r  is the desired decomposition. 

8.2. (i) and (iii) are obvious; and if ad X = (ati), then it is clear from 
the determinant expansion that u,-,(X) = & ( ( y i p i i  - aijaii), so 
(ii) follows; (iv) is clear from g = [g, g]. For (v) consider for X E g the 
characteristic polynomial 

det(XI - ad X) = hdl(X)(Xn--dl(X) + + b(X))  

where dl(X) = dim g(X, 0), b(X) # 0 (cf. Prop. 1.1). We have also 

det(hl - ad X) = hl(h"-' + * * *  + @l(X)) 

so d,(X) >, I with equality holding if and only if al(X) # 0. This proves 
(v). Finally (vii) (and therefore (vi)) are contained in the discussion of 
a, in $8. 

B.3. (i) Suppose first V is real. Since a compact group of linear trans- 
formations of V leaves invariant a positive definite quadratic form, this 
part follows (as Prop. 6.6 in Chapter 11) by orthogonal complementation. 
If V is complex, we use a positive definite Hermitian form instead. 

For (ii) we suppose first V is complex. Then rr extends to a representa- 
tion of the complexification gc on V. Let u be a compact real form of g", 
U the (compact) simply connected Lie group with Lie algebra u, and 
extend n- to a representation of U on V, also denoted rr. If W c  V is 
n(g)-invariant, it is also rr(g")- and n( U)-invariant and a n( U)-invariant 
complementary subspace will also be n-(g")-invariant. Finally, we consider 
the case when V is real using a trick from Freudenthal and de Vries [l], 
935. We view rr as a representation of g on the complexification Vc of V 
and then each member of m(g) commutes with the conjugation u of Vc 
with respect to V. Let WC V be a n-(g)-invariant subspace. Then the 
complexification Wc = W + iW is a rr(g)-invariant subspace of Vc, 
so by the first case Wc has a rr(g)-invariant complement Z'c Vc. Let 
2 = (1 + u)(z' n (1 - u)-l(iW)). Since o( 1 + u) = u + 1 and n-(X)o = 
urr(X) ( X  E g), we have 2 c V ,  n-(g)Z C 2. Also 2 n W = {O}. In  fact, 
if z E 2 n W, there exists a z' E Z' such that (1 - u)z' E iW, 
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(1 + u)z’ = z. Hence x’ = Q( 1 - u)z’ + &(l + u)z‘ E We, so x’ = 0 
and z = 0. Finally, W + 2 = V. In fact, if w E V,  then w = w’ + z’ 
(w’ E We, x’ E zl). Then w’ + z’ = w = uw = uw‘ + ux’, so (1 - u)x’ = 
(1 - a)(-w’) E iW, so z’ E 2’ n (1 - u)-l(iW) and (1 + O)Z‘ E 2. 
Hence w = Q(l + u)w’ + Q(1 + u)z‘ E W + 2. 

(This “theorem of complete reducibility” was first proved by H. Weyl 
[l], I, $5 by a similar method; algebraic proofs were later found by 
Casimir and van der Waerden [l] and by Whitehead [4].) 

B.4. The automorphism N = 00 of g is symmetric with respect to 
the positive definite bilinear form B,. Put P = N2.  Then y = Pi has 
the desired property. (The result, with a different proof, occurs in 
Berger [2], p. 100, based on results of Murakami [l].) 

B.5. Similar to Exercise B.6. 

8.6. The quadratic form is given by the matrix 

Il 0 0 

0 I, 0 
s = (0 0 I,) 

and X E b, if and only if 

$(exp tX)s exp tX  = s for all t~ R. 

This condition is equivalent to lX = -sXs-l; and writing out 
SX + ‘Xs = 0 with X in block form corresponding to that of s, we 
derive (i). We already know b, is semisimple, so (ii) amounts to verifying 
the bracket relations which is straightforward. 

B.7. Because of Exercise B.3 (ii), V is a direct sum V = X i  V, 
where each V, is G-invariant and irreducible under G. Let r i (g)  denote 
the restriction g I Vi. If z is in the center of G, r i (z)  is in the center of 
r,(G) and by Schur’s lemma (cf. Chevalley [2], p. 183) a scalar. The 
closed subgroup G’ of G generated by the commutators xyx-ly-l 
( x ,  y E G )  has Lie algebra containing [g, g] (cf. Lemma 1.8, Chapter 11) 
which however equals g (by Cor. 6.3, Chapter 11), so G’ = G. Conse- 
quently, det r,(g) = 1 for g E G. Thus there are only finitely many 
possibilities for z. This proves (i). 

For (ii) consider the closure C: of G in GL(V) and its Lie algebra 
g C g1(V). Since Ad(G)g C g, we have Ad(@ C g, so g is an ideal in 3. 
Applying Exercise B.3 (ii) to g acting on ij, we get a subspace g‘ C ij such 
that g = g + g’ (direct sum), [g, g’] C g‘, whence [g, g’] = 0. By con- 
tinuity, each g E C: leaves each V, invariant and the restriction r,(g) = 

g I V, satisfies det r,(g) = 1. Thus each X E g’ has trace 0 on each V,. 
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But (by [g, g'] = 0) this action commutes with the irreducible action 
of G on Vi; so again by Schur's lemma, X I V, is a scalar. Hence X = 0, 
so g = g and G is closed. 

For (iii) consider the composite Ad o p. Because of Theorem 2.6, 
Lemma 1.12, and Cor. 6.2, Chapter 11, p is analytic and the differential 
d(Ad o p) = ad o dp is an isomorphism. Thus the kernel of Ad o p is 
a discrete normal subgroup of G and is therefore contained in the center 
2 of G; in other words, the inverse image p-'(Z) satisfies p-'(Z) C 2. 
Since p is surjective, this implies Z C p ( 2 )  and, p being in addition a 
homomorphism, p ( 2 )  C 2. Since by (i) 2 is finite, p ( 2 )  = 2 implies p 
injective on 2; so by p-'(e) C 2, p is injective on G. For (iv) consider 
p : x -+ x2 on the circle group as an example concerning (i) and (iii). 

8.8. Let n = (2, E g : B(Zo, g) = O}. Suppose g were not semisimple. 
Then n is a nonzero ideal in g, so n = g and B(g, g) = 0. Let X E g. 

Since [g, g] is an ideal in g and since g is non-abelian, we have [g, g] = g, 
so we write X = [Si, Ti] for Si, Ti E g. If D : g + g is any deriva- 
tion, we have ad(DX) = [D,  ad x] and by a direct computation 

k 

Tr(ad XD) = 2 B(Ti,  DSi) = 0, 
i=l 

so by the criterion, ad X is nilpotent. This shows g nilpotent, and 
Cor. 2.8 gives a contradiction. 

C. Geometric Properties of the Root Pattern 

Thus 13 + ( p  + q)a is in the a-series containing p, hence in A. 
C.l. If p E A ,  then s,(HO) = H0 + (p  + q)H, and p < p + q < q. 

C.2. Immediate from Theorem 4.3 (i). 
C.3. By the Schwartz' inequality I uo,arua,B 1 < 4, and the equality 

sign holds only if and a are proportional. In  that case p = fa or 0 
and the inequality obvious. Since the a-series containing can be written 
/3 + pa + ma (0 < m < q - p ) ,  we can conclude from the first part 
and from Theorem 4.3 (i) that 0 < q - p < 3, so the a-series has at 
most four members. 

C.4. Since M is a projection, Trace M = rank M. 
C.5. Since I I < 4, the assumptions imply ua,OuO,. = 4 cos2 B 

1, I u ~ , ~  I is an integer m = 1, 2, 3, and the smallest of the integers I 
is 1. But then if ( / 3 , p )  >, (a, a), 

1 = u : . ~  = 4 cos2 e+, +(p, p)-' 

so (13, B> = 4% a>* 
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C.6. Cases: (a) (a ,  B> = 0 ;  (b) (a, B> # 0, (a ,  .I> 3 (B ,  B>; (c) 
(a ,  B> # 0, <B, B> > <a, a>. 

(a): Here p + q = 0, so by a + E d and Exercise C.3 the a-series 
- a, 8, /3 + a. Now a and /? - a are nonproportional, containing ,kI is 

so 

0 < aa.~-aa~-a.a < 4. 

Since u ~ . - ~ , ~  = -2,  we conclude aa,B-a = -1, whence @, /3) = (a, a). 

Thus (/3 + a, B + a)/(/3, j3) = 2 which equals (-p + l)/q. 
For (b) and (c) we use the identity (Steinberg [2]) 

which is a direct consequence of --aBsa = p + q. We write P and Q 
for the two factors on the right and have to prove that P or Q is 0. 

= -1 
or 1. In the first case P = 0. In the second case, /I - a is a root (Exercise 
C.2),  and so is /3 + a. Since p + q < 0, we conclude from Exercise C.3 
that p = -2 ,  q = 1. Thus aB-za,a = - 4 = -3 ,  whence 

= -1. This implies 2(a ,  /3) = (B, B), which together with 
%a - - 1 gives (a, a) = (B, B), so Q = 0. 

-1 or +l. If uaPB = 1, then 
/3 - a is a root (Exercise C.2)  and since u ~ , ~  > 0 we have p + q < 0. 
Thus by Exercise C.3 the a-series containing /I is B - 201, /3 - a, 8, 
/3 + a. But then = 1, so m = aa,B~B,u = 1, contradicting (/3, B)  > 
(a, a). Hence aa,B = -1. Thus aB,m < 0 andp + q > 0. If = -1, 
then P = 0. If aB,= = -2, then /3 + 201 E d, j3 + 3 a $ d ,  so q = 2, 
p = 0. By Exercise (2.3 aa,BaB,a = 2, so @, p> = 2<a, a) and Q = 0. 
Finally, if -aB,= = -3 ,  then by Exercise C.5 (B, /3) = 3<a, a), whereas 
by Exercise C.3, q = 3 so Q = 0. 

(b): We know aa,BaB,u = 1, 2,  or 3, so in the present case 

(c): As in case (b) we have 

C.7. It is clear that 

which by Lemma 5.2 and Exercise C.6 equals (1 - p)z. 

C.8. Use Theorem 4.3 (i) and (ii) and Theorem 5.5. 
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CHAPTER IV 

A. Geometry of Homogeneous Spaces 

A.l. Assuming first the existence of V consider for X E m the affine 
transformation .r(exp X) o so of G/H, which fixes the point (exp QX)H, 
and has differential --I at this point because .r(exp X)so = .r(exp QX) o 
so o .r(exp(-&X)). Then (iii) follows as (i) in Exercise A.6, Chapter 11. 
Since d-r(exp tX) , (X)  = dy,((d/dt),), (ii) follows. For the existence of v 
let U C m, No C G/H be as in $4, Chapter 11. For X E m, let X* E D1(No) 
be defined by X,*,, y.o  = d.r(exp Y),(X) if Y E  U. If X,, ..., X ,  is a basis 
of m, then is a basis of the module D1(No) and we can define 
a unique affine connection Vo on No by the requirements 

(a) V",(Xi*), = 0; 
(b) V;T(X?)~ . ,  = x * (v:-l.x;(x-l - Xj.)), , x = exp X, X E  U. 

Since for h e H ,  d ~ ( h ) ( X * )  = (Ad(h)X)* on a neighborhood of o, it is 
clear that 

W ) o  (VW)), = (o:,(h)z(w)y>)o 

for 2 = X f ,  Y = Xj .  and therefore, by Prop. 3.3 (V,) and (V2), 94 
in Chapter I, for all 2, Y E W(N0) .  Thus we can define for 
2, Y E  D1(G/H), g E G, 

(V Z(Y>),., = 4 g ) o  ~(o~,C,-l,z(~~(g-'>y))o~, 

and then V is a G-invariant affine connection. Replacing G by T(G) u so 
we see that v is invariant under so. The uniqueness in (i) is clear 
since condition (a) above is forced by the invariance under so and since 
(b) and the definition of v are forced by the G-invariance. Now (ii) 
shows that so is the geodesic symmetry at 0, so the geodesic symmetry ssH 
equals T(g)  o so o T(g-'). This being an affine transformation, T = 0 and 
D,R = 0 (Theorem 1.1). For the formula for R, let X+, Y*, Z+ be 
the vector fields on G/H defined in 93, Chapter I. Then X,+ = X, etc., 
and by Theorem 3.4, Chapter 11, and the relation [m, m] C b we have 
[X+,  Y+l0 = 0. Also by (iii) above, Theorem 7.1 and Exercise B.3, 
Chapter I, we have (Ox+( V)),  = (O(X+)Y), for Y E  D'(G/H). Also the 
relation 

vd7(eXP tx,,+(dT(exP W V >  = dT(exP tx>(o.+(V)> 

o[x+*y+I + V y + @ ( X + )  = @(X+)Vy+. 

gives by differentiation. 
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Thus 

so, since [X+, Y+], = 0, we obtain 

Thus by Theorem 3.4, Chapter 11, 

A.2. (i) The tangent spaces G, and (G/H),, are given by Gg = 
dL(g)g, (G/H),, = dT(g)m; and if X E g, the natural map n-: G -+ G/H 
satisfies dn- dL(g)X = dT(g) dnX. Thus the vector X, = dL(g)X satisfies 
1 1  Xo 1 1  3 1 1  dr(X,)[l, the equality sign holding only if X E m. Hence the 
lengths of a curve y* C G and of its projection y = n- o y* satisfy 
L(y*) L(y) ,  with equality holding only if +*(t)  1 ( Y * ( ~ ) H ) ~ * ( ~ )  for all t .  
Such a curve is said to be transversal. Given a curve y in GIH, there exists 
a transversal curve 7 in G such that ny = y. By the local minimizing 
property of geodesics 7 is a transversal geodesic in G (and therefore 
of the form y ( t )  = exp t X  ( X  ~ m ) )  if and only if y is a geodesic in 
G/H. This proves (i). 

For (ii) let S C m be the subspace spanned by X and Y and K ( S )  and 
K ( S )  the corresponding sectional curvatures of G/H and G, respectively. 
Let f and F denote the Radon-Nikodym derivatives of the restrictions 
of exp and Exp, respectively, to S. Then if Z E S and we put B,  = 

Z; (-ad Z)m/(m + l)!, we have with the notation of 94 

Let (xk) be an orthonormal basis of m such that X ,  = X, X ,  = Y, and 
(X,) an orthonormal basis of 9. We write 2 = x,X, + z2X2, [Xi, Xi] = 
& ck$jxk + 2, cDiiXD. When computing (Af )(O) and (AF)(O), we can 
cancel terms of order 3 2  in z1 and x,. Writing (+) for such terms we 
have 

B d X 1 )  = ( l  + + PZx2 + *’* + 2 P O x ,  

0 

Bz(X2) = q l X 1  + (l f q2)x2 + ”’ + 2 q p x D  (+), 
I) 

where the pi, qi are linear in z1 and z2 and p, = -+cD,,z~, qD = -+cQ,~z,. 
The expressions for dnB,(X,) and dn-B,(X,) are obtained by cancelling 
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the X p  from the expressions above. Comparing with the proof of Theorem 
4.2, we find 

But K(S) = -$(dF)(O), K(S) = -#(df)(O), so the result follows since 
we know K(S) = $l\[X, y1112 both from Exercise A.6 (iv), Chapter 11, 
and from Theorem 4.2 in the present chapter (cf. $6). 

A.3. In the notation of $6 the map d7-r maps the (- 1)-eigenspace of da 
onto g as follows: d7-r(X, -X) = 2X. But it is easy to verify 

2Bgxg((X, --a ( X  -XI)  = B,(2X, 2x1, 

and this is equivalent to 2Q* = Q. 

A.4. Lemma 1.2 gives an isometry between two normal neighbor- 
hoods. The method of proof of Theorem 5.6 gives a local isometry of MI 
onto M,. Now use Lemma 13.4, Chapter I. 

A.5. We know from Theorem 15.4, Chapter I that M is separable. 
The results of $2 remain valid for M because the Riemannian structure 
only enters in the proofs through the associated metric. In particular, 
Theorem 2.2 holds, so the orbit H p is obviously closed. 

A.6. Immediate from Lemma 1.2 and Exercise C.6, Chapter I. 

B. Cohomology of Symmetric Spaces 

B.l. If w is invariant, so is s,w for each m E M (Prop. 3.4). But if w is 
a p-form s,w = (-l)pw ((6), $1). Thus 

dw = ( - l ) P  d(s,w) = ( - l ) P  s,(dw) = (-l)'P+l dw, SO dw = 0. 

Another proof comes from ExerciseC.4, Chapter I (cf. Cartan [14], p. 191). 
B.2. The * operator commutes with the action of G on U(G/K), so 

by Exercise B.1 a G-invariant form on GjK is harmonic. The converse 
follows as Theorem 7.8, Chapter 11, except that we replace the left 
invariant vector fields by the induced vector field X+ on GIK (X E 9). 

CHAPTER V 

1. By Theorem 6.4 for the group G = SO(3) we may take X E t where 
Then the formula t by $8, Chapter I11 can be chosen as R(E,, - 

follows trivially. 
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2. Let H denote the space of all 2 x 2 skew-Hermitian matrices 
which we write 

Then SL(2, C) acts on H as follows. If g E SL(2, C), the transformation 
ug : h + g h 9  maps H into itself preserving det h = -x: + xz + x i  + xj. 
Thus, since SL(2, C) is connected, g -+ ug is a continuous homo- 
morphism of SL(2, C) into SOo(l, 3). The kernel consists of {-I, I}; 
and using Lemma 5.1 Chapter 11, we get the analytic isomorphism 

A more geometric realization is as follows: Consider the cone 
x: - x i  - x i  - x i  = 0 (xl > 0) and intersect it with the hyperplane 
x1 = +, obtaining the sphere x i  + x i  + x i  = $ in this hyperplane. 
Each g E SOo(l, 3) permutes the rays from the origin lying on the cone, 
thereby permuting their intersections with the hyperplane x1 = 4 and 
hence g induces a transformation T~ of the sphere, which via a stereo- 
graphic projection corresponds to a member of SL(2, C) /Z ,  (since g 
maps planes into planes, T~ maps circles into circles). 

3. If X E e is in the normalizer of u, then [X, u] C u n e = 0, so by 
Cor. 1.7, X = 0. For (ii) note that e, = 0, so uo is an ideal in I, hence 
uo = 0. Thus [e, el = [e-, e-] + [e,, e,] = u- + u+ = u. 

4. A compact subgroup of dimension > 1 contains a torus (compact 
connected abelian subgroup # e) hence an element x # e such that 
x2 = e. Let H be the fixed point set of the involution g -+ xgx-l. 

5. If M has compact type, then I,(M) is semisimple and compact. 
In particular M is compact and so is I (M) .  Conversely, if I ( M )  is semi- 
simple and compact and p E M, the map 9 : g + spgs, is an auto- 
morphism of I,(M) whose fixed point set has the same Lie algebra as 
the isotropy subgroup at p. 

If M is of the noncompact type, let go = f, + p o  be a Cartan decom- 
position of the Lie algebra go of I (M) .  If u # 0 is a compact ideal in go 
it would be semisimple (Prop. 6.1, Chapter 11) hence compactly imbedded 
in go. Decomposing go = u + g1 + ... + gg where the gi are simple 
ideals, we get a Cartan decomposition of go where u is contained in the 
compact part. By conjugacy of all Cartan decompositions f, would 
contain a compact ideal # 0 in go. This is impossible since Io(M) is 
effective. The converse is clear from Theorem 1.1 

6. The first statement is easy since the restriction g, I S has the form 
x i  f xz in a suitable basis. The remaining statements follow from Lemma 
12.5 and Theorem 12.2 in Chapter I. 

SL(2, C)/Z,  SOo(l, 3). 
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7. (sketch)(i). The group O(p,  q + 1) acts transitively on QPl and 
the subgroup fixing p ,  = (0, ..., 0, I )  is isomorphic to O(p, q). If so 
denotes the linear transformation 

then the mapping u : g + sags, is an involutive automorphism of 
O(p,  q + 1) whose differential du has fixed point set o(p ,  q). The (-1)- 
eigenspace of da, say m, is spanned by 

The Killing form B on o(p, q + 1) is by (16), $8 and Lemma 6.1 in 
Chapter I11 given by B(X,  Y) = ( p  + q - I )  Tr(XY), so we find 

B(Z,, 2,) = -B(Zj, Z j )  = 2( p + 4 - 1). 

Using Exercise A.l (iv) in Chapter IV, we find by a direct computation 
that O(p ,  q + l)/O(p, q), with the invariant pseudo-Riemannian 
structure induced by the restriction of B/2(p + q - 1) to m, has 
constant sectional curvature - 1. 

On the other hand, the mapping $ : gO(p,  4) + g - p ,  has a differential 
d$ which maps m onto the tangent plane xp+n+l = 1 to Q-l at p,, and 
d$(X) = X - p ,  (X E m). Thus 

so B-l(d$(X)) = B(X,  X)/2( p + q - 1) for X E m; hence $ is an 
isometry. This proves (i) and (ii). Part (iii) follows from Lemmas 1.2 
and 1.4 in Chapter IV. 

For (iv) we note the following decompositions into the eigenspaces of 
du 

O ( P ,  4 + 1) = 0, Q) + m, O ( P  + 1, Q) = O ( P ,  Q) + n 

where n is spanned by the matrices 
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As in Example I in the text we see that the isomorphism 

maps the dual algebra o(p, q) + im onto o ( p  + 1, q) fixing o(p, q), 
sending im onto n. This proves (iv). 

CHAPTER VI 

A. Geometric Features of the Cartan Decomposition 

A.l. Obvious from Theorem 6.9, Chapter 11, and Theorem 1.1. 
A.2. Clear from Theorem 1.1. 
A.3. Let N ( K )  be the normalizer of K in G. If (g,)CN(K) is a 

sequence converging to g E G, then Ad.(g,)f C f ,  so Ad,(g)f C f, so 
g E N ( K )  and N ( K )  is closed. The Lie algebra of N ( K )  is the normalizer 
of f, in go, which by Chapter V, Exercise 3, equals to. Now (i) follows 
from Theorem 1.1. Next, Lemma 1.2 implies (ii). Also (iii) follows from 
Theorem 2.3, Chapter 11, Prop. 5.1, 5.2, Chapter VIII, and Theorem 1.1. 
For (iv) suppose H c  G a subgroup, properly containing K .  By (iii) 

= G. The vector subspace f'  generated by Ad,(H)f is invariant under 
Ad,(I?), so f' = Q. Thus g = Zy Ad(@ for a suitable subset h,, ..., h, 
of H. But then the mapping ( K , ,  ..., K,) -+ IIL, hik,hil of Km into G 
has differential at e given by (Tl ,  ..., T,) -+ Xi Ad(hi)Ti, where Ti E f ,  
and therefore is a submersion at e. Hence H contains a neighborhood of e 
in G, so H is open, hence closed, so we have a contradiction. 

A.4. (i) If p and q are fixed points, the unique geodesic joining them 
is left pointwise fixed. Let S C M denote the set of fixed points. Fix 
p E S and let 

5 = { X E M ~ :  daX = Xfor all ~ E A } .  

Then is a linear subspace of Mp, and by Theorem 13.3, Chapter I, 
T = Exp, z1 is a submanifold of M ,  and T C S. On the other hand, 
if s E S, then the unique geodesic S joining p to s lies in S and 8, E 5. 

Thus s E T, so S = T.  If an M-geodesic y is tangent to S at p consider 
the S-geodesic r tangent to y at p .  Then r is left pointwise fixed by 
A so i., E 5 and y E S as desired. (For a generalization of (i) see Kobayashi 

For (ii) let X E p o .  Then a(exp X ) K  = (exp X ) K  for all a E A if and 
only if exp( -X)A  exp X E K which by connectedness is equivalent to 

[314 
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AdG(exp(-X))a C f,. For (iii) take T E a, X E b. Taking the p,-component 
in the relation esd x( 7') E f,, we obtain 

sinh(ad(X))T = 0. 

Now ad X can be put in real diagonal form, so this implies easily 
ad X( T) = 0, proving (iii). 

A.5. In terms of the notation of Theorem 1.1 the mapping in question 
is Exp X + exp 2X (X E p,). Because of Theorem 1.1 it just remains 
to prove that S is totally geodesic. Since the one-parameter subgroups 
are geodesics in I,(M) (Exercise AS, Chapter 11), the submanifold S is 
geodesic at e. Since the maps 

T ,  : g + xgu(x-') 

are isometries of I,(M), map S = { g - b ( g )  : g E G} into S, form a 
transitive group of isometries of S, S is geodesic at each of its points, 
that is, totally geodesic. 

A.6. The first part is clear from Theorems 1.1 and 2.1, and Exercise 
A.3 (i) (which shows that the mapping is one-to-one). Next, note that if 
t = exp X is a transvection along ypq and k E Kp n K,, then ktk-l = 
exp Ad(k)X = exp X = t. 

A.7. Part (i) is already proved in Chapter 11, $5. In order to prove (ii) 
invoke the group Aut(g,) which by conjugation permutes the maximal 
compact subgroups of Int(gO), hence acts transitively on Int(go)/K and 
we have the identification 

Aut(Go)/K = Int(Qo)/K, (1) 

where I? is the normalizer of K in Aut(g,). In  terms of this identification 
the action of ,Z on Int(g,)/K is (cf. Exercise A.6) given by 

I,  : g K  + ugK. (2) 

But Ad,,,(B,,(R) maps f,, the Lie algebra of K (and R) into itself, hence 
maps the orthogonal complement po into itself, and leaves the restriction 
of the Killing form to p o  invariant. This gives rise to an invariant metric 
on Aut(s,)/R, and (1) holds as an isometry. The mapping (2) being an 
isometry, (ii) is proved. 

(iii) Assuming 9, without compact ideals, the mapping u + I ,  is 
one-to-one. In fact, I, = e implies ugR = gK for all g so u E R  and 
e a x R  = ueaXu-1R = ead(ox)R, so UX = X and u = e. On the other 
hand, let 7 E I ( M ) .  The Lie algebra i?(I(M)) is isomorphic to go, SO 

u = Ad(T) belongs to Ant(g,). Also Ad(1,) = u so the isometry p = I o ~ - l  
satisfies Ad(p) = e. Then p commutes with each g EI,(M), the identity 
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component of I(1M). If 0 is the fixed point of K then k - p * 0 = pk * 0 = 
p - 0 so p * 0 = 0. Hence pg * 0 = gp 0 = g - 0 so p = e. Thus I,, = T, 
so (iii) is proved. 

A.8. (i) According to Exercise A.7, M induces a compact group of 
isometries of Int(g,)/ U ,  U being any maximal compact subgroup. 
Let ScInt(g,) be the analytic subgroup with Lie algebra B ~ .  Then S 
fixes a point p in the symmetric space if and only if S normalizes the 
corresponding isotropy group K,, that is, if and only if S C K, (Exercise 
A.3). The fixed points of S form a simply connected totally geodesic 
submanifold (Exercise A.4), which M leaves invariant. Thus M has 
a fixed point in this manifold (Theorem 13.5, Chapter I), proving (i). 

(ii) By (i) the compact real form u’ = t; + ip; of g’ extends to a 
u-invariant compact real form u of g. Then go = u n go + (iu) n go, and 
this is the desired decomposition go = fo + p o .  

A.9. Part (i) follows from (2), $9, Chapter I, and Lemma 1.2. For (ii) 
we note that by (ii’), $9, Chapter I, 

-- dfy(s) - Be(v;(s)j(s) ,  P) + -~o( i ’ ( s ) ,  V;(S)P). 

ds 
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Thus 

S(s) = 2(T0)8(s) + (e-” ad ‘0 (XO - To))&), 

which by (iii) shows y(s) 3 6(s). 

B. The lwasawa Decomposition 

B.l. Let el, ..., en be the standard orthonormal basis of Rn and let 
g E SL(n, R) .  We orthonormalize the vectors u, = g - ei (1 < i < n) by 
w1 = ul/l u1 I, w, = (ug - cuJl u2 - cu, I (c = u1 * uz/l u1 I,), etc., so 
w, = ZiGj sipi. Then determine k E O(n) by ke, = w,. If g and k have 
the expression g = (gkl) ,  k = (kpp), we have Zig,,si, = k,. This 
shows g = kan where a has positive diagonal and n is supertriangular 
with 1 on the diagonal. But then we conclude det k det a = 1, so 
det k = det a = 1. Thus we have K = SO(n), A, = set of diagonal 
matrices with determinant one and positive diagonal and N consists of all 
unipotent supertriangular matrices. 

B.2. (i). Suppose n18(n,) = k for some n,, n2 E N ,  k E K. In terms of 
the basis ( X i )  from Lemma 3.5 Ad(n,8(n,))ij = k,. The matrix Ad(n,) 
(resp. Ad(8n2)) is lower (resp. upper) triangular with 1 in diagonal. 
Hence k,, = 1 so k,, = k,, = 0 f o r j  > 1, (k,) being unitary. This in 
turn implies Ad(Bn,),j = 0 ( j  > 1) whence k,, = 1 and k, = 0 for 
j # 2. By induction Ad(k) = e so Ad(&,) = Ad(nyl), whence 
Ad(n,) = e. Thus n1 = n2 = e. 

For (ii) suppose n18(n,) = ma. Applying 0 and using ma = am, we get 

e(nl) n,n,e(n2) = m2. 

Since mfI(N)m-l = 8(N), we conclude from (i) that m2 = e and n1n2 = e. 
Then ma = n18(nT1) E P so m = e. Thus Ad(nl) Ad(&,,) is a diagonal 
matrix; so using the above matrix representations of Ad(n,) and Ad(6ni1), 
we conclude n, = e. 

For (v) let NH denote the right-hand side of the relation. Then 
N C N H .  Suppose ka  E NH (k E K,  a E Ap). Then by assumption 

Ad(exp(-tH)k exp(tH)) --+ Ad(u-l), 

whereas 

Ad(exp(-tH)k exp(tH))ij = et(nrAd)(H)k ii, 

where A, < A, < ... are the roots of g with respect to b in increasing order, 
the root 0 counted with multiplicity dim 0. These relations imply kij = 0 
for i < j and k, > 0 for all i. But (k,) is unitary, so we deduce Ad(k) = e 
so K E 2 and a = e. But N H  n 2 = (e} so (v) follows. 
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For (iii) let e, denote the subspace of +I, which drr maps onto the tangent 
space (N - o), which of course equals dr(no). Let Y E  e,. Then there 
exists an X E ~ ,  such that d r ( Y )  = dr (X) ,  that is, Y - X E ~ , .  But 
then if H E  bpo = (A - o ) ~ ,  we have B(Y, H) = B(X,  H) = 0, proving 
(iii). 

For (iv) let n* be the element in N such that the point an* o mini- 
mizes the distance from o to the manifold aN - o. Then the geodesic 
in GIK joining o to an* - o is perpendicular to this manifold at an* - o 
(Lemma 13.6, Chapter I). The manifold A * o contains all the geodesics 
intersecting N * o orthogonally at o (by (iii)). Hence the manifold an*A - o 
contains all the geodesics intersecting the horocycle aN * o orthogonally 
at an* * 0. In particular, there exists a b E A such that an*b * o = O. 

Hence n* = e, proving (iv). 

6.3. Here we use $8, Chapter 111, with the same notation. 

(i) The algebra a, = 4% + 1, C). From the formula for the Killing 
form it is immediately seen that 

u = 5u(n + 1) 

is a compact real form. Then lj n u consists of the purely imaginary 
diagonal matrices of trace 0. Thus we can take 

bp0 = {real diagonal matrices of trace O}. 

Taking lexicographic ordering with respect to the basis e4 - ei+l 
(1 < i < n) of the dual of bp0, we see that 

n+ = CE,,., 
i < i  

so consists of the upper triangular matrices with 0 in the diagonal. 

(iii) The algebra c, = 4 7 2 ,  C). As already explained the algebra 

u = 5p(n) = 

is a compact real form, and as a maximal abelian subspace of p ,  we can 
take the set of matrices 

X 
bvo = I(0 ) : X real diagonal matrix 

-X  
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Taking lexicographic ordering with respect to the basis e, - ei+l 
(1 < i < n - l), en of the dual of bR we see that A+ consists of the roots 
e, + ei (i < j) and e, - ej (i < j ) .  Consequently 

Thus 

2, symmetric, 2, upper triangular, 

(iii) The algebra b, w 50(2n, C). Here we use the model b, from 
Exercise B.5, Chapter 111. The transformation 

satisfies 

so the mapping A -+ S-lAS maps so(2n, C) onto our present model b,. 
The compact real form so(2n) c so(2n, C) (consisting of the real skew 
symmetric matrices) is mapped onto the space of matrices 

X and 2 skew, Y symmetric, 

which therefore is a compact real form of b,. Clearly the purely imaginary 
diagonal matrices in u form a maximal abelian subalgebra. Thus we can 
take 

bp0 = I(: :x) : X real diagonal matrix . 1 
As in (ii) we can take 

Thus 

Z, skew symmetric, 2, upper triangular, 
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(iv) The algebra b, M 50(2n + 1, C). We use the model 6, from 
Exercise B.6, Chapter 111, and can proceed as in (iii). Then we find: 

X, 2 skew, Y symmetric, 
--Lzo X f i Y  : X and Y real 
-tZo 2 X Z, any complex, 1 x n matrix 

X real diagonal, 

2, 1 x n matrix, 2, skew symmetric, 

4. Immediate from the proof of Lemma 6.2. 

CHAPTER VII 

1. Here P* consists of all symmetric purely imaginary n x n matrices 
of trace 0, and t),,, is the diagonal in P*.  Thus m, = {O}. The group M is 
given by the diagonal matrices with diagonal {el, ..., en} such that each 
E( = f 1 and el ... en = 1. The group M' consists of the signed permuta- 
tion matrices, that is, the matrices where each row and each column has 
all entries 0 except one which is f 1. The signs are subject only to the 
condition that the determinant is 1. Thus W( U ,  K) = M'/M consists 
of the group of all permutations on n letters. 

2. The mapping @ is clearly one-to-one and differentiable. Now let 
u = b + m be the decomposition of the Lie algebra II of U into the 
eigenspaces of da, t) denoting the Lie algebra of H. Let rr:  U -+ U / H  be 
the natural map; and if u E U ,  let T(U)  denote the translation xH -+ uxH. 
If X, Y E  m, then 

@(exp X exp tY) = exp 2X exp(-X) exp 2tY exp X, 

so 

dQEXp x(dT(exp X) d?r(Y)) = dl(exp 2X) Ad(exp(-X))(2Y), 

proving the regularity of @. Let M denote the image @( U / H )  and consider 
the subset 

m*={(X,--X)Euxu:XEm}. 

Then m* is a Lie triple system contained in u x u so by Theorem 7.2, 
Chapter IV, Exp m* is a totally geodesic submanifold of ( U  x U)/  U*. 
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Under the identification of ( U  x U)/U* with U ,  Exp m* becomes 
exp m which clearly equals M. 

3. Immediate from (13), $11 for the curvature. 
4. Modify the proof of Theorem 2.12 replacing W' by the group W" 

generated by the reflections in the walls of a fixed Weyl chamber C, 
and showing, as before, that W" is transitive. 

5. (i) is immediate and so is the maximality of a,. The Lie algebra 8 
is the image of the algebra of diagonal matrices under the automorphism 
X --t AXA-l of sl(p + q, C) where A = Ip+q - Zf(Edp+i - Ep+i J. 
Under this automorphism the diagonal elements correspond to the forms 
ei. Thus 8 is a Cartan subalgebra and d is as described (cf. $8, Chapter 
111). The description of 2 is now immediate; for the multiplicities note 
for example that *ji is the restriction -J-(Zi - E j )  (2p + 1 < j < p + q) 
and also the restriction F(.E?{+~ - Zj) (2p + 1 \< j \< p + q), so +Jd 

has multiplicity 2(q - p). (iv) is immediate. For (v) note that 2f1 = 

el - ep+1 4 so by (31, $6, II 2fl II = 2 ( P  + q)((2(p + w2 - 2) = 
(P + q1-l. 

6. The points H' and H" in 96 exponentiate to the identity element 
in the adjoint group (Lemma 6.5); and since they are not Weyl group 
equivalent (Theorem 2.22), the one-parameter subgroups exp tH' and 
exp tH" are not conjugate (Prop. 2.2). 

8. We have A, = SU(n)/S where S is the centralizer in SU(n) of the 
element exp H(S). But S = el - en, so we find 

exp H(6)  = 

-1 
0 

0 
-1 

, 

so the description of S follows easily. 
9. Clear from Prop. 2.2 and Cor. 8.9. 
10. In  the notation of Theorem 9.1 we have a subgroup So C 2 

(perhaps not &invariant) such that U = UjS,,. Let q ~ :  0 4 U be the 
natural projection and put N = ~ I ( K  n z), U' = UjN, K' = KIN. 
We shall construct an involutive automorphism 9' of U' such that 
d9' = 8 and 8' leaves K' pointwise fixed. Since UIK = U'/K', this will 
prove that U/K is globally symmetric. Let +: U --f U/N be the natural 
projection. 

Let u' E U'; choose ii E 0 such that +q~ i i  = u' and put 9'u' = +q16ii. 
To show that this is a valid definition suppose GI, 2, E such that 
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+qG1 == +qGZ = u'. Then y(Sl) = cp(U",)-~(k) where k E I? n 2 so 
S1 = @.r, where s E So. It follows that +tp822, = (+q.dSZ)(+p%) so we just 
have to prove 

~ ' J s  E V(R n 2). 

But ~ ( s )  = e and d(s) E I?. n 2 so ~6 = q(s&) E v(I?. n 2). Thus 8' 
is an involutive automorphism and do' = de = 8. Finally let k E K'. 
Then there exists an element & E R such that k' = +p&; also el(k') = 

#y& = = k', as claimed. 

CHAPTER Vlll 
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A.2. The complex structure J of g commutes with each ad X (X E 9); 
so, as indicated, exp is an almost complex mapping of g into G. Hence 
the left invariant complex structure on G is integrable and exp a holo- 
morphic mapping. 

A.3. The Riemannian structure will be invariant under SU(1, 1) so 
will be a constant multiple of the standard one (Exercise G.1, Chapter I). 

B. Bounded Symmetric Domains 

B.l. In order to verify the relation B(X, X) = 2 Tr(T,) we may 
assume X = H E  a,. But then by Lemma 3.6, Chapter VI, both sides 
are equal to 2 ZaEp+ O I ( H ) ~ .  

B.2. Clearly G(y) n KP, has Lie algebra CH, + gy,  so 

dimc G ( y )  . 0, = 1. 

Since U n KP, = KO, the group U(y) n KP, equals U(y)  n KO and 
has Lie algebra R(iH,,) (each root is real on iQ0). Thus U(y)  - o, = 

U(y) /U(y)  n KO is a compact open submanifold of G(y) * o,, so 

But U(y)  is &invariant, so (U(y), U(y) n KO) is a Riemannian symmetric 
pair; the relation above shows that U(y)/(  U(y)  n KO) has a U(y)-invariant 
complex structure, so by Prop. 4.2 and Thearem 4.6 it is simply con- 
nected. The group G* = SL(2, C) being also simply connected, u 
induces a holomorphic diffeomorphism of the Riemann sphere G*/K*PT 
onto G(y)/G(y) n KP, which maps the orbits of 0 under P? and G,* 
into exp(gy) - o, and Go(y) - o,, respectively. 

For a generalization, see “Polydisk theorem” in Wolf [3]. 
8.3. Putting Y,, = X,, + X-,,, the matrix identity implies (cf. Lemma 

7.7)s 

exp(yY,,) exp(xX-,,) = exP(x1X-Y) exp(s[X,,, X - d  exp(y,X,,). 

Thus 

exp(yY,) . t(xX-,,) = E(xlX-,), 

and the formula for a - g(X) follows by taking products over all y E r 
and using the strong orthogonality. 

8.4. From Cor. 7.13 we have Jo = ad H,. Also 

ad Ho 0 = A d d h )  0 ad(Ad~c~W)ffd ;  
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and since H ,  spans to, Ad,(,,(h-l)H, = &H,. Each g E I ( M )  can be 
written g = exp X h  ( X  E P,, h E H )  and since exp X is holomorphic 
(Lemma 4.3) the result follows. 

C. Siegel’s Generalized Upper Half-Plane 

C.l-C.2. go is a real form of 5472 ,  C), hence semisimple ($8, Chapter 
111); the map 0 : X + JXJ-’ is a Cartan involution. In  fact writing 
(cf. Chapter X) 

X I ,  X,, X ,  real n x n matrices, 
X = ( Z  -Ti) : x,, x, symmetric, 

we find 
--B(X, OX) = (2n + 2) Tr(2XiX1 + X,” + X:). 

The fixed points under 0 are given by X ,  = -lX1, X ,  = -Xz,  so f, = 
ep(n, R )  n so(2n). 

C.3. Obvious. 
C.4. po consists of the matrices X above for which X ,  = lX1, X ,  = X,, 

so po is the set of symmetric matrices in ep(n, R ) .  Now use Prop. 5.3. 
Chapter VI. 

C.5. {g E G : Tg(il) = iI> is given by A = D, B = -C,  so this 
group is Sp(n, R )  n SO(2n). For the surjectivity, see Exercise 6. 

C.6. The matrix I - iZ (2 E Yn) is clearly nonsingular, so W = 

( I  + iZ)(I - iZ)-l = ( I  - iZ)-I(I + iZ) exists and 

I - ww = ( I  + iZ)-l[(I + iZ)(I - 2.2) - ( I  - iZ)(I + iZ)](I  - iZ)-l 

= 4AYA where A = (I + iZ)-l. 

Thus I - mW is positive definite. That the map 2 + W is surjective 
is seen in the same way, using the inverse map 2 -+ i(1- W)(I + W)-l. 

The group Sp(n, C )  n SU(n, n )  acts on { W> by 

Given W,, let C be any matrix such that e(I- roW,) tC = I ,  
and then the transformation W -+ C(W - W,)(I - e-l 
maps W, to 0; thus the domain is homogeneous. (For more details, 
see Siege1 [l], 11.) 

D. An Alternative Proof of Prop. 4.2 

D.l. We may assume G acting effectively on M .  Thus the center 30 
of 9, satisfies 3, n f, = 0. But 3, n po = 0 by the assumed absence of 
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KO-fixed vectors in Mo. Thus Q is centerless, so we can take Gc as the 
universal covering group of its adjoint group. 

D.2. Using our assumption we see that f + p -  is its own normalizer 
in g, so L is the identity component of the normalizer of f + p -  in Gc, 
hence closed. 

D.3-D.5. Clear. 

CHAPTER IX 

A. The Decompositions 

A.l. Let B = (g = (giJ E G : g,, = O), m* = (-! A). Then G = 
B v Bm*B. 

A.2. (i) Let t,, t ,  be upper triangular matrices. The operation g --f t,g 
amounts to multiplying the kth row in g by a number, replacing the 
(k - 1)st row ing  by a linear combination of the kth and (k - 1)th row, 
etc. The operation g -+ gt, has the same effect on the columns. Thus 
the desired form of s can be reached. 

(ii) Given g = (gPJ E G we want n = (nij) E N such that gn E NMA,  
that is, z g,,n,j = 0 for i < j .  

P 

We write this as 

gij + 2 giDnvj == 0 for i < j .  
P < i  

If all d,(g) are #O, n certainly exists. On the other hand, if g = Ed(g)n, 
then a direct computation shows d,(g) = d,(d(g)) = IIj=l d(g)jj. 

(iii) Immediate since B(g) = (“g--l. 
A.3. Given m E M there exists a maximal torus T C U containing m 

and exp(ia). Its Lie algebra t is &invariant because if Z E t, then 
Z - BZ E ip and commutes with ia; so Z - 8Z E ia whence BZ E t. Thus 
t = t n f + ia and m E exp t c exp(t n t) exp(ia) C M o  exp(ia). 

A.4. Suppose Ad(g)H, = H,. Writingg = kan, we have Ad(an)H, = 

H ,  + X ( X  E n), so Ad(k-’)H2 - H ,  = X. Since p n n = 0, this 
implies X = 0, whence Ad(k)H, = H,. Now use Prop. 2.2, Chapter V. 

B. The Rank-One Case 

B.1. If g is not isomorphic to sI(2, R), then dim p > 2 (if dim p = 2, 
G/K has constant curvature) KIM is sphere of dimension >2, hence 
simply connected. 
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B.2. (i) In  view of Theorem 5.4, Chapter VIII, it suffices to prove that 
f" contains no nonzero ideal c in g". This c would satisfy [ c ,  p a ]  = 0, 
so in particular c C ma. But then [ c ,  g,]  C [ma, g,]  C 9,. Hence if X E g ,  
so X - OX E p a ,  the relation [c, X - ex] = 0 implies [c, XI = 0. 
Thus c lies in the center of g", so c = 0. 

(ii) If J denotes the complex structure of g, then if HE a, X E g,, 
[H,  Jx] = J [ H ,  XI = a ( H ) J X  so J g , c g a .  Hence g" has a complex 
structure and by Theorem 6.3, Chapter VI, aoL + Jam is a Cartan sub- 
algebra of g" considered as a Lie algebra over C. Now (ii) follows, for 
example from Theorem 5.4, Chapter 111. 

B.3. (i) Immediate from Theorem 3.8. For (ii) we imbed fi  in a group 
locally isomorphic to SU(2, 1) and note that it suffices to prove it for 
SU(2, 1) itself. As in Lemma 3.9 we take m* = Then if fi  = 

K ( f i )  exp H(fi)  n(fi), we have, since O(g) = m*gm*, 

k(fi)-lm* = m*m*K(fi)-lm* = m* exp(--H(fi)) O(n(fi)) O ( f i F  

= m*k[exp(--H(fi)) O(n(fi)) exp(H(fi))], 

so 
fi, = exp(--H(fi)) O(n(fi)) exp(H(fi)). 

Writing 

it, z, 

-it, -zo -it, 

we obtain from Lemma 3.9 

to = -t, 

z, = -x(l + I z 12 - 2it)-l((l + I x 12))" + 4t2)1'2. 

In  particular, I to I = I t I, I x, I = I x 1, so (ii) follows. 

no. 3) 
8.4. Obvious by computing isotropy group of 0 (cf. Chapter X, $2, 

C. Cartan Subalgebras 

C.l. Denote the algebras by R X ,  RH, and RT,  respectively. They are 
easily seen to be maximal abelian subalgebras. Also ad X has all eigen- 
values 0, ad H is real semisimple (with eigenvalues &&), and ad T is 
semisimple (with eigenvalues f ii), so the statements made follow. 
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C.2. We know fromTheorem 6.1 that if I, is a &invariant Cartan 
subalgebra such that 6 = b n f + a (a C p maximal abelian), then 
b n f is maximal abelian in f .  In  particular it contains the center c of f. 
But then Lemma 3.6, Chapter VI, shows that all the roots of gc with 
respect to bC vanish identically on c, so c = {0}, t is semisimple, and K 
compact (Wallach [l], Ch. 7, 59). 

C.3. The result follows from the proofs of Theorem 5.1 and Proposi- 
tion 5.3. 

CHAPTER X 

B. Root Systems and the Weyl  Group 

B.l. The system defined is in fact an irreducible root system. 

B.2. The second relation follows from Lemma 3.1 1; the first is imme- 
diate by classification. 

B.3. (i) Assume a, /3 E R such that I a 1 = I /3 I. By the irreducibility 
(a, sp) < 0 for some s E W(R). Thus we can assume (a, 18) < 0. It 
follows that 

(ii) The first statement is clear from (i) and the fact that except for 
the R listed all a E R have the same length. The uniqueness is clear from 
Theorem 2.22, Chapter VII, and the formulas are readily verified by 
means of the root description in 53, no. 3. 

B.4. For Table 1 for S(A) this is obvious because -ao = the highest 
root. For Tables 2 and 3 we see that -ao (resp. -+ao) is precisely the 
root given in Exercise B.3. 

B.7. By decomposing V and R into irreducible components we may 
assume R irreducible. Let { , ) be any W(R)-invariant inner product on 
V and consider the new inner product 

= u ~ , ~  = - 1, so S,S@ = 6. 

{A, I.> = as 0, a><% I.) 
which is W(R)-invariant and therefore by irreducibility {A, p} = 
c(A, p), where c is a constant > 0. Put (A, p) = c-l(A, p). 

To compute y, say for g2, take = al, so 

(a1, 4-l = (a1, a 1 Y  c <a, 
a 

= 4-1 * 2(1 + 1 + 4 + 9 + 9 + 0)  = 12 = %<a,, &'-'. 

For the others see, e.g., Bourbaki [2], Chapter VI. 
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6.10. Let al, ..., al be the simple roots in Z and for p = ai (1 < i < I )  
denote the vectors H ,  X ,  Y from Theorem 2.16, Chapter VII by Hi, 
Xi, Yi. By the quoted proof we have, if aji = 2(aj, +(ai, ai)-l, 

[Hi, 4 1  = 0, 

[Hi, X,] = U j , X j ,  

[Xi ,  Y j ]  = SijH, 

[Hi, Yj] = -aj,yj 

(ad Xi)'-=jd ( X j )  = (ad Yi)'-a5f (Yi) = 0. 

Let g' be the subalgebra of g generated by Hi, Xi, Yi (1 < i < I). Using 
Theorem 4.15, we see that g' has the desired property (cf. Bore1 and 
Tits [l], p. 117; Kostant and Rallis [l], p. 792). 

D. Bounded Symmetric Domains 

D.l. The descriptions can be verified by means of the following 
steps: (i) determine the dimension of the matrix space in question; 
(ii) determine the isotropy group at the origin (point il for C Z )  and 
verify that dim G,/K, equals the dimension of the matrix space. The 
transitivity can be proved by the method of Exercises C.5 and C.6 in 
Chapter VIII. 

D.3. As in Lemma 7.11, it suffices to verify this for g = d(2, C),  
in which case it follows by straightforward computation. (cf. Harish- 
Chandra [5], p. 584). 

D.5. Since d+ commutes with Ad(k) (k € K O ) ,  since 11 1 1  is Ad(K,)- 
invariant, and since po = Ad(K,)a,, a = Ad(Ko)(a n a,), it suffices 
to show that 

9 n a, = { H  E a, : 11 ad H I /  < 2). 

But by Cor. 7.13 and Cor. 7.17, Chapter VIII, 

l/l(%na,) = D n a -  = lzx,l/l(~,+~-,): I ~ , I  < 11, 
Y E r  

so 

But by Exercise 3 the eigenvalues of ad(X, + X-,) are those of 2(y, y)-l 
ad H,, which by Exercise 4b are 0, & l ,  f2. Since 1 1  ad H 1 1  equals the 
maximum of the absolute value of the eigenvalues, the description of 
a n a,, follows. (The result was proved by R. Hermann (unpublished); 
cf. Moore [2], p. 371; also Langlands [l], Lemma 2.) 
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D.6. The proof is analogous to that of Theorem 5.4, Chapter IX, 
using in addition the conjugacy of the Cartan decompositions of go. 

D.7. Let k be an element in said component leaving the origin fixed. 
It is holomorphic if and only if Ad,(,)(k) commutes with I,,. But by 
solution to Exercise B.4 in Chapter VIII this is equivalent to 
Ad,(,)(k) 1 c = 1. Since k could be taken such that Ad,(M)(k) maps b 
into itself, we obtain the condition t I c = 1 (cf. Takeuchi [l]). 

E. Automorphisms 

is maximal abelian in go, so 
each si is >O for u regular. The minimal order is reached for so = ... = 
sn = k = 1, so by Theorem 5.16 such automorphisms are inner and 
all conjugate. (This corollary of Theorems 5.15 and 5.16, observed by 
V. KaE, had been proved by Kostant [4], p. 1027 for the case when u is 
assumed inner.) 

E.2. We must discuss the solutions of the equation 3 = k 2; aisi; 
we use part (iii) of Theorem 5.15 to determine go. The solutions are: 

E.1. In  the notation of Theorem 5.15, 

(a) k = 3, a.  = sz, = 1, si = 0 for i #io. 
20 

(b) R = 1, aio = 1 ,  S. = 2, S. = 1, ail = 1, si = 0 
20 2 1  

for i # io, il. 

for i # io, il, iz. 

for i # i,, i,. 

(c) k = 1, aio = ail = aiz = si, = Si, = Sie = 1, si = 0 

(d) R = 1, aio = 2, a.  = 1, S. = S. = 1, si = 0 
$1 20 21 

. .  
(e) R = 1, a,, = 3, s. = 1, si = 0 for z # zo. 

20 

For case (a) we get using S(A) - Table 3, 

9 = b,, 90 = Sa or Q~ = a,. 

For case (e) we get using S(A) - Table 1, 
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For the other cases the possibilities for go are determined by the same 
method. We combine all cases in the following table. Here a, = b, = 

c0 = b, means 0. The table confirms the classification in Wolf and Gray 
[I], obtained by different methods. 

That go determines cr up to conjugacy can be verified by the argument 
of Theorem 6.1. 

TABLE VII 

AUTOMORPHISMS OF ORDER 3 OF SIMPLE LIE ALGEBRAS 

9 go 

a,, n 2 1 
b,, n > 2 
c,, n > 2 
b,, n z 5 

b4 

e6 
e, 
es 
f 4  

ga C 0 a,, a, 

C 0 an-n, 0 a*-, (1 G P < n, C2 0 a,,-* 0 an,+, 0 
C 0 a,-* 0 b,-l (1 < P Q n) 
C 0 a,-* 0 c,-, (1 < p < n) 
C 0 a*-,, 0 bp-l (1 Q p Q n), C2 0 a,,-a 
C 0 a3, C2 0 a,, C 0 a, 0 a, 0 a,, a,, ga 
C 0 as, C 0 b,, C 0 al 0 a4, Ce 0 b4, a, 0 a, 0 az 
C 0 e,, C 0 be, C 0 a,, C 0 a, 0 b,, a, 0 a, 
C 0 e, ,  C 0 b,, az 0 e,, a, 
C 0 c3, C 0 bO, a, 0 aa 

(1 G 4 < P Q 4 

E.4. With the notation of Lemma 5.3 and (4), $5, let H ,  € 9  be an 
element such that if a root (01, i) €2 satisfies a(H,) = 0, then 01 = 0. 
Writing an element Z E g according to (4), Z = 2, + & Z,, we see that 
[Z, H,] = 0 9 [Z,  b] = 0. Hence the centralizer of Ho in g coincides 
with the Cartan subalgebra 3(t)), so H,, is regular. 

E.5. Consider the diagram with the vertices enumerated, 

(a,, a,, a29 4, 4 = (1, 2, 1, 2, 2). 
'P 10-0-0 

0 0  1 3 4  
Consider the automorphisms by types: 

u = (1, 0, 0, 1, 1; l), u' = (2, 0,  1, 0, 1; 1). 

They have the stated properties. 
E.6. Clear from Table 111 and the solution to Exercise E.2. 
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F. Restricted Roots and Multiplicities 

F.l. See Chapter VI, 93. 
F.2. If a + ao E A, then (gc)("+ue) E fC (Lemma 3.3, Chapter VI) while 

(gc)(=+ae) = C[X,, X,el C pc. 

F.3. The map a -+ -ao permutes A, and has a fixed point if and only 
if +ELI,. This proves the first statement. If a ELI, - {#} such that 
(a, ae) # 0, then by Exercise 2 and Lemma 3.4 ,6 = CY - ao E A ,  so 
2# E Z and ( f i ,  /I) >, (2#, 24). On the other hand, ( f i ,  #) = (2+, #) > 0, 
so since + E L I , ,  we conclude from Exercise C.5, Chapter 111, that 
(/I, IS)/(#, +) = 1, 2, or 3, a contradiction. 
F.4. (a) This was proved (taking f i  E A,,) in the solution to Exercise 3. 
(b) If m,, were even, select (by Exercise 3) f i  E A,, ,B # -fie, and 

a E A,, a # -ao. By Exercise 2, (8, f ie )  >, 0. If ( f i ,  Po) > 0, then 
A 3 /? - fie = 4+, which is impossible. Thus (/?, Po) = 0, whence 
(/I, f i )  = 8(+, +). On the other hand, m,, even implies by Exercises 3 
that 214 = a - ao $ A. Hence <a, me)  = 0 and (a, a) = 2(#, #). Thus 
(/I, /I) = 4(a, a), which is a contradiction. 

E Z, m, even, then for any a E A,, 2$ = a - ae E A. 
If (a, m e )  = 0, then A 3 a - ae - s,(a - a@) = 2a, which is impossible. 
Thus (a, ao) > 0. Conversely, this relation implies 2# = a - ao E A,, 
so 24 E Z. This proves (a) and (b) as well. 
F.6. Parts (a) and (b) are proved in Chapter IX, 96. For (c) we see 

from Exercises 4b and 5b that for each # E Z, A, consists of two elements 
a, f i , f i  = -ae, (a ,  ,6) = 0. Let y E A such that 7 = 0. Then if 
( a , y ) < O ,  w e h a v e a + y E A  a n d G + j j = + , s o a + y = f i . T h u s  
/3 - a E A, so by (a, 8) = 0, A 3 /3 + a: = 24, which is a contradiction. 
Similarly (a, y )  > 0 is impossible, so ( a ,  y )  = 0. This shows that 
A = (A - A,) u A ,  is an orthogonal decomposition of A. The ideal in gc 
generated by the root spaces from A - A, is contained in fC (Lemma 3.3, 
Chapter VI), so is 0; hence A = A,. 

Now introduce compatible orderings in A and Z and let B be a basis 
of A of simple roots. Then a E B implies -ae E B. We must show gc 
not simple, that is, B decomposable, Suppose B is indecomposable. 
Let a E B;  then -ao E B and we can find a chain (93) {a1, ..., ak) in B 
such that a: = al, -ao = ak. Take the smallest i 3 2 such that --a: = 
aj E {a1, ..., ak}. Then { 0 1 ~ + ~ ,  ..., ak, -at, ..., -a:} is a cycle in B, so by 
Corollary 3.14, i = 2, j = k - 1; that is, -a: = ak-l. Iterating, we 
end up with a root f i  such that -fie = f i  or -pe = 6 with (8, 6 )  # 0. 
This is a contradiction. (This proof was given by Loos [2], Chapter VI.) 

F.5. (a) If +, 
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F.7. (a) Obvious. (b) Following Satake [3], we show the members of B 
are linearly independent by proving that if h E B, then there exists an 
H E  a such that h(H)  = 1, p ( H )  = 0 if p # A, p E B. Let r = dim $, 
ro = Card B,, I = dim a, and let 

B 1 (011, ..., ar-ro, a7-ro+i) a,>, 

where B, = { ( Y ~ - ~ ~ + ~ ,  ..., ar}, Let 

where c y )  E Z+. Applying a+ -ae to this identity and substituting, we 
find cy)  = 0 for all j E [l,  - r,] except one, say j = i’. Thus 

and i + i‘ is a permutation of [l ,  r - r,] of order 2. We can therefore 
assume the ai ordered such that i‘ = i ( I  < i < p, )  i’ = i + p 2  

r - r,). Now fix i E [I ,  r - r,] such that c?$ = X and select H E bR such 
that oli(H) = q ( H )  = 1, a,(H) = 0 for k E [l,  r ] ,  k # i, i’. Then 
OH = -H, so H E  a as desired. That B is a basis of Z is now obvious 
since the members of ,Z are the restrictions of d to a. 

( P l  + 1 < i < Pl  + p2) i’ = i - p2 (Pl  + p2 + 1 < i d Pl + 2p2 = 

G. Two-Point Homogeneous Spaces 

G.l. Let M be two-point homogeneous, let p E M and No and N ,  be 
spherical normal neighborhoods of 0 in M p  and p E M. Using Lemma 9.3 
Chapter I, we see that M is isotropic. 

Conversely, suppose M is isotropic. Given any points p ,  q E M ,  we can 
join them by a broken geodesic each part of which lies in a spherical, 
convex, normal neighborhood. Combining the isometries which reverse 
each of these segments, we find a g E M such that gp = q. Thus I ( M )  is 
transitive on M, and by Theorem 3.2, Chapter I1 and Theorem 2.5, 
Chapter IV, I (M) / I (M)p  is homeomorphic to M. Hence by Exercise 
A.4 in Chapter 11, M is complete, so any q E M can be joined to a fixed 
p E M by a geodesic of length d ( p ,  q). Now the isotropy of M implies 
that the isotropy group I (M) ,  is transitive on each sphere S,( p ) ,  whence 
the two-point homogeneity. 
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LIST OF NOTATIONAL CONVENTIONS 

1. Set theory. Let A and B be sets. The  symbol A C B means that 
A is a subset of B. If A C B and A # B, theh A is called a proper 
subset of B. The empty set is denoted by 8. The  set A - B is the set 
of elements in A not in B. The  symbols n,u, respectively, denote inter- 
section and union of sets. The  symbol x E A (x $ A)  means that x is 
(x is not) an element of the set A. The  subset of A consisting of x 
alone is denoted {x}. If M and N are sets the symbol$ M -+ N means 
a mapping of M into N .  If M C N and f ( m )  = m for all m E M ,  f is 
called the identity mapping of M into N and is denoted by I or 1. If 
f :  M + N and g :  N -+ P,  then the mapping which assigns to every 
m E M the element g( f (m) )  E P is denoted g o f .  If f :  M + N and 
A C N ,  then f - l ( A )  denotes the set of elements m E M  for which 
f ( m )  E A. If B is a property and M a set then {x E M :  x has property 9} 
denotes the set of x E M with property 9. Thus f - l ( A )  = {m E M :  
f ( m )  E A}. The sign a means “implies.” In order to save parentheses, 
the image f ( m )  of m under a mapping f will sometimes be denoted 
f ‘ m. A mapping f :  M +  N is said to be one-to-one if m, # m2 => 

f (mJ  # f(m,).  If f ( M )  = N ,  f is said to map M onto N (“f is onto”). 

The  identity element of a group will usually be denoted 
by e. If K is a subgroup of a group G, the symbol GjK denotes the set 
of left cosets g K ,  g E G. When K is considered as an element in GIK 
it will sometimes be denoted by { K } .  If x E G ,  the mapping g K  -+ xgK 
of GIK onto itself will be denoted by T ( x ) .  

Ry aJield we shall always mean a commutative field of characteristic 0. 
Let V be a vector space over a field K .  The dual space, consisting of 
all linear mappings of V into K,  is denoted by V* or V A .  The dimension 
of the vector space V is denoted by dim V or dim, V.  If dim V < 00, 

thea (V*)* can be identified with V. If el, ..., en is a basis of V and 
f l ,  ..., f n  are linear mappings of V into K such that f i (e i )  = Sii (Kronecker 
symbol), then f , ,  ..., fn is called the basis of V* dual to el,  ..., en. Let 
W be a subspace of V.  A basis of V (mod W )  is a set of elements in V 
which together with a basis of W constitute a basis of V.  The  number 
of elements in a basis of V (mod W )  is called the codimension of W. 
If A and B are subspaces of a vector space such that each z, E V can 
be written v = a + b where a E A, b E B ,  then we write V = A + B. 
If, in addition A n B = {0}, V is called the direct sum of A and B 
and the subspace B is said to be complementary to A. If V and W are 
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vector spaces over the same field K, then the product of V and W, 
denoted V x W, is the set of all pairs (v, w )  where v E V, w E W, 
turned into a vector space over K by the rules 

The  subsets {(v, 0): v E V }  and ((0, w):  w E W}are subspaces of V x W, 
isomorphic to V and W, respectively, and V x W is the direct sum 
of those subspaces. 

If v E V, v* E V*, then the value v*(v) will sometimes be denoted 
by (v, v*). Let A be a linear mapping of a vector space V into a vector 
space W over the same field. The  transpose of A (the dual of A), denoted 
fA,  is the linear map W* -+ V* determined by (Av,  w * )  = (v, “Aw*). 
A linear map A .- V -+ V will often be called endomorphism of V. If V 
has finite dimension, the determinant and trace of A will be denoted by 
det(A) and Tr (A), respectively. 

Let V and W be vector spaces over the same field K. A bilinear form 
on V x W is a mapping B : V x W-+ K such that for each v E V, 
the mapping B,: w -+ B(v,  w )  belongs to W* and such that for each 
w E W, the mapping B”:  v -+ B(v, w) belongs to V*. Thus a bilinear 
form on V x W gives rise to linear mappings V -+ W* and W-, V*. 
T h e  bilinear form B is called nondegenerate if v # 0 implies B, + 0 and 
if w # 0 implies B” + 0. The  set of all bilinear forms on V x W is a 
vector space over K whose dual is denoted V @ W and called the tensor 
product of V and W. Each element (v, w) E V x W gives rise to an 
element v @ w i n  V 0 Wdetermined by (v @ w )  (B)  = B(v,  w) .  T h e  direct 
sum K + V + V 0 V + V @ V 0 V + ... is an associative algebra, 
the tensor algebra T( V )  over V,  the multiplication being 0. 

Let R and C, respectively, denote the fields of real and complex 
numbers. Let Z denote the ring of integers. Let V be a vector space 
over R. A bilinear form B on V x V is called symmetric if B(v, 2)’) = 
B(o’, v) for v, w’ E V ,  positive definite if B(v,  v) 2 0 for v E V ,  strictly 
positive definite if B(v, v) > 0 for v # 0 in V. Let W be a vector space 
over C. A mapping B : W x W -+ C is called a Hermitian form if for 
each w, E W the mapping w -+ B(w, w,) is linear and if for each pair 
(w‘, w”) E W x W the numbers B(w‘, w”) and B(w”, w‘ )  are conjugate 
complex numbers. 

By a ring we shall always mean a commutative ring with an identity 
element. Let A be a ring. A commutative group M is called a module 
over A (or an A-module) if for each a E A and m E M an element am 
is defined such that 

(v, w )  + (v’, w’) = (v + v’, w + w’),  a(v, w )  = (av, aw), a E K .  

a(ml + mz) = am, + am2, (al + a2)m = a1m + a2m, 
(alaz)m = a,(a,m), l m  = m. 
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A subset N C M such that n,, n2 E N implies n, + n2 E N ,  (in, E N 
for each a E A is called a submodule of M .  

A vector space I' over a field K is called an (associative) algebra 
(over K )  if there exists a multiplication in V with the properties: 

vlv2 + v1zi3, (zlI + v2)v3 = vlv3 + v2v3 for cy. E K,  v, ZI,, v2, v3 E V .  Let 
A be in algebra (with identity 1) over a field K and V a vector space 
over K.  A representation of A on V is a homomorphism p of A into 
the algebra of all endomorphisms of V such that p(1) = I. 

cy(v1v2) = (cUv1)v2 = v1(av2), l v  = v, (v1v2)v3 = v1(v2v3), .;(v2 + v3)  == 

111. Topology. A topological space shall always mean a topological 
space in which the Hausdorff separation axiom holds. Let M be a topo- 
logical space. A collection { U,}, (a E A)  of open subsets of M is called a 
basis for the open sets if each open set can be written as a union of some 
U,. If p E M ,  a neighborhood of p is a subset of M containing an open 
subset of M containing p .  A fundamental system of neighborhoods of p 
is a system {N,},EA of neighborhoods of p such that each neighborhood 
of p contains some N,. A topological space is called separable if it 
has a countable dense subset. For metric spaces, separability is equivalent 
to the existence of a countable basis for the open sets. A topological 
space is called compact if each open covering has a finite subcovering. 
A subset of a topological space is called relatively compact if its closure 
is compact. A mapping f: M-+ N of a topological space ll.I onto a 
topological space N is called a local homeomorphism of M onto N if 
each point m E M  has an open neighborhood which f maps homeo- 
morphically onto an open neighborhood of f ( m )  in N .  A domain in a 
topological space is an open connected subset. A path  (or a continuous 
curve) in a topological space is a continuous mapping of a closed interval 
[a ,  b] into the space, A space is called pathwise connected if any two 
points in the space can be joined by means of a path. A topological 
space is said to be locally connected (locally pathwise connected) if each 
neighborhood of any point p in the space contains a connected (pathwise 
connected) neighborhood of p .  



SYMBOLS FREQUENTLY USED 

In addition to the preceding conventions the list below contains many of the symbols 
whose meaning is usually fixed throughout the book. The symbols from Chapter V, 
55 have not been relisted. 

a, a* : maximal abelian subspaces, 385, 401, 319 
a.: unit lattice, 319 
a K  , ac: lattices for K and for 8: 322, 321 
aA: line RiAn , 336 
a,: complement a, - D(U, K), 319 
qrr: Killing-Cartan integer, 456 
a+: positive Weyl chamber, 402 
A+(g):  component in Cartan decomposition, 402 
al: classical Lie algebra, 186 
ad: adjoint representation of a Lie algebra, 99 
Ad: adjoint representation of a Lie group, 127 
A(M),  Ao(M): group of holomorphic isometries, and its identity component, 372 
Aut(a): group of automorphisms of a, 126 
Aut(A): group of automorphisms of a root system A ,  421 
%(M): Grassmann algebra, 17 
%,(M): set of s-forms on M, 17 
B,(p): open ball with center p ,  radius r, 51 
B(X,  Y): Killing form, 131 
Be: modified Killing form, 253 
B(g): component in Bruhat decomposition, 407 
bl: classical Lie algebra, 186 
C": complex n-space, 4 
C": indefinitely differentiable, 4, 6 
C"(M), CT(M):  set of differentiable functions, set of differentiable functions of compact 

Qog 3 Q'g 3 Q2g 3 '-': central descending series, 161 
cik: structural constants, 137 
cl:  classical Lie algebra, 186 
Card: cardinality, 531 
yx:  maximal geodesic determined by X, 31 
d, 8: exterior differentiation and its adjoint, 20, 143 
D(G): algebra generated by g, 107 
d@-: differential of 9 at p, 22 
D( U,  K), D(u, 0):  diagram of (U, K), 295 
D(U),  D(u): diagram of U ,  299, 300 
Q: derived algebra of g, 158 
D'(M), D,(M): set of vector fields (1-forms), 9, 11 
%(MI, D(p), D*(M), D*(p), D*(M), D&): tensor algebras, 15, 16 
D:(M): set of tensor fields of type (2, s), 13 
A = A(g, f j ) :  set of nonzero roots of g with respect to $, 166 
A+, Apiset of positive roots; set of roots nonzero on f j p ,  260 
6, do, A, do, d+: sets of roots, 492, 493 

support, 6 
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bl: classical Lie algebra, 186 
Exp: Exponential mapping for an affine connection, 33 
exp: exponential mapping of a Lie group, 104 
ER: complex vector space with scalars restricted to R, 178 
En: set of complex-valued differentiable functions on M, 356 
EI(M): set of complex tensor fields of type (Y, s), 356 
e, , e, , e,: exceptional Lie algebras, 472, 473, 490 
0: Cartan involution, 252 
B(X): Lie derivative, 9, 89 
5: set of real-valued differentiable functions, 5 
f4: exceptional Lie algebra, 472, 490 
G / H :  space of left cosets gH, g E G ,  120 
GL(n, R): group of nonsingular n x n real matrices, 110 
gI(n, R): Lie algebra of all n x n real matrices, 110 
gl(V): Lie algebra of all endomorphisms of V ,  99 
9": root subspace, 165 
gc: complexification of a real Lie algebra g, 179 
gR: a complex Lie algebra g considered as a Lie algebra over R, 179 
gz: exceptional Lie algebra, 471, 490 
r, and r,: affine Weyl groups, 314, 321 
re and r,: lattice extensions of Weyl groups, 317, 322 
H,: root vector, 166 
$, , I), bp0 , I)p , bP,: maximal abelian subalgebras, 165, 259, 284 
t ) ~ :  real space spanned by the root vectors, 170 
H ( M )  Ho(M):  group of holomorphic diffomorphisms and its identity component, 371,529 
H(g) :  component in Iwasawa decomposition, 403 
i (X):  interior product, 90 
Int(a): adjoint group of a, 126 
Z(M), Zo(M): group of isometries and its identity component, 201, 202 
J :  almost complex structure, 352 
K(z,  5): kernel function, 366 
K(g): component in Iwasawa decomposition, 403 
€A:  eigenspace of (ad H)*, ( H E  a) in €, 335 
L, , L(p): left translation by p ,  99, 135 
e ( G ) :  Lie algebra of G, 99 
L(g, u):  covering Lie algebra, 491 
L(g, u)': root subspace, 493 
m, , I,: centralizer of bet and its orthogonal complement in f, , 261 
M, M': centralizer and normalizer of Q p *  , 284 
M,: tangent space at p, 10 
mA: multiplicity of the restricted root A, 264 
n(g) ,  ne(g),  ii(g), m(g): components in the Iwasawa and Bruhat decompositions, 403, 407 
n, no: nilpotent Lie algebras, 260 
v : affine connection, 26, 41 
vx: covariant differentiation, 26 
P, , P-: sets of positive roots, 260 
PA: eigenspace of (ad H ) a  ( H E  a) in p, 335 
r 1 ( X ) :  fundamental group of X, 310 
n-: natural projection of G onto GIH, 123 
X @ ,  A@: transform of a vector field X (operator A), 24, 25 
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@*T. transform of a covariant tensor field T, 25 
R: curvature tensor, 43 
R": Euclidean n-space, 2 
R,, , R(p): right translation by p ,  122, 135 
S,(p): sphere with center p, radius I, 51 
s,: geodesic symmetry with respect to p ,  198 
s,: the reflection in the plane a = 0, 194 
X(X+): the set of (positive) restricted roots, 263 
*: the star operator, 142 
Tr: trace, 131 
to , t: maximal abelian subalgebras, 298 
t, , T,: the set a-l(2?riZ) and its centralizer, 301 
td C t, C t(u): the A-lattice, the unit lattice and the central lattice, 314, 305, 311 
t,: the complement to - D( U), 307 
Tx: restriction of (ad X ) e ,  214 
T(V): tensor algebra over V, 100 
~ ( x ) :  mapping g H -+ xg H ,  120 
U(g): universal enveloping algebra of g, 100 
0, 2: compact, simply connected semisimple Lie group and its center, 326 
W(U),  W(u), W(U,  K ) ,  W(u, O), W(g, 0): Weyl groups, 284, 289, 299, 300, 402 
We: complexification of W, 179 
2,8: left and right invariant vector fields induced by X, 99, 122 
X+, X*: vector field induced by X, vector field adapted to X, 122, 36 
Z, Z,, , Z+: the integers, the integers mod p, the nonnegative integers 
Z,: centralizer of x, 301 
[ , 3: bracket, 9, 99 
A : exterior multiplication, 19 
< , >: scalar (inner) product, 166 
I1 11: length of a vector, norm, 48, 338 
'A: transpose of a matrix A, 444 
0: direct sum 
f I S: restriction off to S 
>: special ordering, 337 
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A 

Abelian Lie algebra, 100 
Adapted vector field, 36 
Adjoint 

group, 126 
operator, 143 
representation, 100, 127 

connection, 26 
locally symmetric space, 198 
transformation, 28 
Weyl group, 314 

Almost complex 
manifold, 352 
mapping, 355 
structure, 352 

Alpha-series, 168 
Alternate, 13 
Alternation, 18 
Analytic 

Affine 

affine connection, 36 
diffeomorphism, 22 
function, 5 
homomorphism, 99 
isomorphism, 99 
manifold, 4 
mapping, 2 
pseudo-Riemannian manifold, 48 
Riemannian manifold, 205 
structure, 4 
subgroup, 1 12 
vector field, 11 

Antipodal set, 328 
Automorphism 

of Dynkin diagram, 478, 505 
inner, 127 
outer, 421, 478 
of root system, 421, 456 
of type (so ,..., s, ; k), 510 

B 

Ball, 51 
Basis 

compatible, 264 
of a root system, 458 
of vector fields, 10, 44 

Bergman metric, 369 
Bianchi identity, 69 
Bi-invariant, 135 
Bounded domain, 364 
Bounded symmetric domain, 382 
Bruhat decomposition, 403 

C 

Canonical 
almost complex structure, 355 
coordinates, 104 
coordinates of the second kind, 146 
generators, 482 
polynomial, 264 

Cartan decomposition, 183 
Cartan involution, 184 
Cartan matrix, 459. 496 
Cartan subalgebra, 162 
Category theorem, 120 
Cauchy sequence, 55 
Cayley transform, 95, 531 
Cell, 314, 321 
Center, 100, 31 1 
Centralizer, 99, 284 
Centroid, 500 
Chain, 466 
Chain condition, 158 
Character of a real form, 517 
Characteristic 

equation, 156 
polynomial, 156 

Christoffel symbols, 95 
Clifford-Wolf isometry, 279 
Closed form, 136 
Compact Lie algebra, 130 
Compact open topology, 202 
Compact type, 230, 231 
Compactly imbedded subalgebra, 130 
Complete Riemannian manifold, 55 
Complete affine connection, 149 
Completely reducible, 192 

623 



624 INDEX 

Completeness at a point, 58 
Complex 

1-form, 356 
Lie group, 392 
manifold, 4 
structure on a Lie algebra, 179 
structure on a topological space, 353 
structure on a vector space, 178 
tangent vectors, 357 
tensor field, 356 
vector field, 356 
vector field, type of, 357 

of a Lie algebra, 180 
of a vector space, 179 

Complexification 

Conjugacy, 183 
Conjugate point, 59. 294, 303 
Conjugation, 180 
Connected, 466 
Continuation of an isometry, 62 
Contraction, 17 
Contravariant, 13 
Convex 

neighborhood, 34 
normal ball, 54 

Coordinate neighborhood, 4 
Covariant 

derivative, 42 
differentiation, 26 
type, 14 

group, 98 
homomorphism, 491 
index, 479 
Lie algebra, 491 
of a space, 8 
manifold, 59 
space, 59 
transformation, 310 

Covering 

Critical point, 279 
Curvature, 64 
Curvature tensor field, 44 
Curve, 28 
Curve segment, 28 
Cycle, 466 

D 

Decomposable, 496 
Degree of a polynomial mapping, 267 
De Rham’s theorem, 1 

Derivation, 8 

Derived algebra, 158 
Diagonal matrix, 155 
Diagram 

inner, 127 

of a compact group, 299 
of a symmetric space, 295 

Diffeomorphism, 2, 22 
Differentiable 

function, 5, 30 
manifold, 4 
mapping, 2, 22 
structure, 3 

Differential, 22 
Differential form, 11 

bi-invariant, 135 
left invariant, 135 
right invariant, 135 

product, 13 
sum, 13 

Displacement function, 278 
Dual, 11, 235 
Dynkin diagram, 462 

Direct 

extended, 505 

E 

Effective transformation group, 120 
Eigenspace, 155 
Eigenvalue, 155 
Eigenvector, 156 
Elliptic, 430 
Engel’s theorem, 160 
Exponential mapping, 33, 104 
Expression 

of a form, 20 
of a mapping, 22 

Extendable isometry, 62 
Exterior 

differential forms, 17 
differentiation, 19 
product, 19 

F 

Flat 
Riemannian manifold, 245 
totally geodesic submanifold, 245 

Free Lie algebra, 482 
Fundamental group, 307, 310 
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G 

Geodesic, 29 
closed. 
curvature, 93 
manifold, 79 
polar coordinates, 95 
simply closed, 327 
symmetry, 198 

of type (so ,..., s,,), 509 

of a root system, 461 
of a mapping, 91 

Grassmann algebra, 19 

Gradation, 490 

Graph 

H 

Harmonic fora ,  144, 227 
Height, 460 
Hermitian 

matrix, 444 
structure, 358 
symmetric space, 372 

Holomorphic, 4 
function, 4 
mapping, 353 

Holonomy group, 197, 93 
Homogeneous 

complex manifold, 371 
space, 120 

Homomorphism 
analytic, 99 
of a Lie algebra, 99 

Hyperbolic 
element, 430 
plane, 93 

Hyperbolic space 
Hermitian, 452 
quaternian, 455 
real, 453 

I 

Ideal, 99 

Identity component, 98 
Immediate continuation, 62 
Imprimitive, 151 
Indecomposable, 496 
Indivisible, 456 

graded, 490 

Integrable, 353 
Integral curve, 40 
Interior product, 40 
Invariant 

affine connection, 28 
subspace, 156 
tensor field, 25 

Involution, 205, 229 
Irreducible 

orthogonal symmetric Lie algebra, 377, 
379 

pair, 377 
Riemannian globally symmetric space, 

root system, 458 
subspace, 156 

378 

Isometry, 60 
Isomorphic, 109, 230, 438 
Isomorphism, 99 
Isotropic manifold, 535 
Isotropy 

group, 121, 125 
subgroup, 121 

403, 435 
Iwasawa decomposition, 260,263,270,273, 

J 
Jacobi 

equation, 71 
identity, 9 

additive, 431 
multiplicative, 431 
complete multiplicative, 431 

Jordan decomposition, 43 1 

K 

Kahlerian structure, 358 
Kernel function, 367 
Killing form, 13 1 

of a root system, 523 

L 

Laplace-Beltrami operator, 92 
Left invariant 

f i n e  connection, 102 
differential form, 135 
vector field, 99 

Length function, 315 
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Lexicographic ordering, 173 
Lie 

algebra over a field, 99 
algebra of a Lie group, 99 
algebra product, 100 
derivative, 9, 89 
group, 98 
subgroup, 1 12 
theorem, 159 
transformation group, 121 
triple system, 224 

Lift, 59, 320 
Linear isotropy group, 125 
Link, 466 

double, 466 
simple, 466 
triple, 466 

chart, 4 
coordinates, 4 
cross section, 123 
isometry, 60 

Euclidean, 98 
finite, 8 
isomorphic, 109 
nilpotent, 488 

Local 

Locally 

Lower triangular, 155 

M 

Manifold, 4 
Matrix exponential function, 11 1 
Maurer-Cartan equations, 137 
Maximal compact subgroups, 256 
Midpoint locus, 341 
Minimizing ball, 54 
Mixed tensor algebra, 16 
Monothetic, 287 
Multilinear, 13 
Multiplicity, 264, 428 

N 

Natural topology, 120 
Negative curvature, 72 
Nilpotent endomorphism, 156 

Noncompact type, 230, 231, 252 
Normal coordinates, 33 

Lie algebra, 160 

neighborhood, 33 
real form, 426 
topological space, 8 

Normalizer, 99, 282, 284 

0 

One-parameter subgroup, 104 
Open chart, 3 

submanifold, 7 
Ordered set, 172 

vector space, 172 
Orderings compatible, 260 
Orientable, 361 
Oriented, 361 
Orthogonal symmetric Lie algebra, 213 

compact type, 230 
decomposition of, 231, 378 
duality for, 235 
effective, 230 
isomorphism of, 230 
noncompact type, 230 
a pair associated with, 213 

P 

Pair, 213 
Paracompact, 8, 82 
Parallel, 29 
Partition of unity, 8 
Phi-related, 24 
Polar coordinate decomposition, 402 
Polynomial function, 267 

mapping, 267 
mapping, degree of, 267 

Positive definite, 526 
Primitive, 151 
Product manifold, 7 
Projectable, 88 
Projective space, real, 243, 535 

complex, 452 
quaternian, 455 

Pseudoalgebraic subgroup, 450 
Pseudo-Riemannian connection, 48 

manifold, 47 
manifold of constant curvature, 250 
structure, 47 

Q 
Quasi-submanifold, 304 
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R 

Rank 
of a compact Lie algebra, 424 
of a complex semisimple Lie algebra, 424 
real, 402 
split, 429 
of a symmetric space, 245 

Ray, 60 
Real form, 180 
Reduced root system, 456, 459 
Reflection, 455 
Regular 

automorphism, 529 
element, 162, 257 
mapping, 23 

Representation 
adjoint, 100, 127 
of a Lie algebra, 100 

Restricted root, 264 
Ricci curvature, 360 
Riemannian 

connection, 48 
locally symmetric space, 200 
manifold, 47 
sphere, 394 
structure, 47 

Riemannian globally symmetric space, 205 
associated with an orthogonal symmetric 

Lie algebra, 244 
compact type, 244 
noncompact type, 244 

Rolling, 93 
Root, 165 

compact, 384 
of the covering Lie algebra, 493 
highest, 475 
maximal, 476 
noncompact, 384 
restricted, 264 
simple, 177, 291, 495 
subspace, 165 
system, 456 

S 

Satake diagram, 531 
Schur’s lemma, 382 
Sectional curvature, 65 

Semisimple, 121 
of symmetric spaces, 241 

element, 418, 420, 430 
real, 430 
representation, 192 
set of h e a r  transformations, 156 

Lie algebra, 131 
Lie group, 13 1 
neighborhood, 34 
restricted root, 291 
root, 177, 458, 495 

Simple 

Simply closed, 327 
Singular 

elements, 300 
point, order of, 304 
set, 295 

derivation, 541 
Hermitian matrix, 444 
symmetric matrix, 444 

Skew 

Small subgroup, 150 
Solvable, 158 
Sphere, 51 
Spherical, 

neighborhood, 34 
normal neighborhood, 52 

Stable, 144 
Star-shaped, 33 
Strongly orthogonal, 385 
Structural equations, 44 
Structure constants, 137 
Subalgebra, 99 
Subdiagram, 466 
Submanifold, 23 
Submersion, 87 
Subordinate (to a covering), 8 
Support, 5 
Symmetric pair, 209 

T 

Tangent 
space, 10 
vector, 10 

Taylor formula, 105 
Tensor field, 13 
Topological transformation group, 120 
Torsion tensor field, 44 

tensor of an almost complex structure, 

Totally geodesic submanifold, 79, 224, 334 
353 
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Transitive, 120 
simply, 288 

Transvection, 209 
Two-point homogeneous space, 535 
Type I, 11,111, IV of a symmetric space, 439 

U 

Unconnected, 465 
Underlying analytic structure, 353 
Unipotent, 430 
Unit lattice, 305, 319 
Universal enveloping algebra, 100 
Unmultipliable, 456 
Upper triangular, 155 

V 

Vector field, 9 
Vector part, 420 
Vertex, 461, 465 
Volume element, 362 

W 

Wall, 293 
Weyl basis, 421 

chamber, 287, 458 
group, 284, 456 
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