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Lie’s theory in its current formulation is linear, local and canonical. As such, it is not applicable to 
a growing number of non-linear, non-local and non-canonical systems which have recently emerged in 
particle physics, superconductivity, astrophysics and other fields. In this paper, which is written by 
a physicist for mathematicians, we review and develop a generalization of Lie’s theory proposed by the 
Italian-American physicist R. M. Santilli back in 1978 when at the Department of Mathematics of Harvard 
University and today called Lie-Santilli isotheory. The latter theory is based on the so-called isotopies 
which are non-linear, non-local and non-canonical maps of any given linear, local and canonical theory 
capable of reconstructing linearity, locality and canonicity in certain generalized spaces and fields. The 
emerging Lie-Santilli isotheory is remarkable because it preserves the abstract axioms of Lie’s theory while 
being applicable to non-linear, non-local and non-canonical systems. After reviewing the foundations of the 
Lie-Santilli isoalgebras and isogroups, and introducing seemingly novel advances in their interconnections, 
we show that the Lie-Santilli isotheory provides the invariance of all infinitely possible (well-behaved), 
non-linear, non-local and non-canonical deformations of conventional Euclidean, Minkowskian or 
Riemannian invariants. We also show that the non-linear, non-local and non-canonical symmetry trans- 
formations of deformed invariants are easily computable from the linear, local and canonical symmetry 
transforms of the original invariants and the given deformation. We then briefly indicate a number of 
applications of the isotheory in various fields. Numerous rather fundamental and intriguing, open math- 
ematical and physical problems are indicated during the course of our analysis. 

1. Introduction 

1.1. Limitations of Lie’s theory 

As it is well-known, Lie’s theory has permitted outstanding achievements in various 
disciplines. Nevertheless, in its current conception [30] and realization (see, e.g., [ 131 
for a physical treatment and [lS] for a mathematical presentation), Lie’s theory is 
linear, local-diferential and canonical-Hamiltonian. As such, it possesses clear limita- 
tions. 

An illustration is provided by the historical distinction introduced by Lagrange 
[29], Hamilton [14] and others between the exterior dynamical problems in vacuum 
and the interior dynamical problems within physical media. Exterior problems consist 
of particles which can be effectively approximated as being point-like while moving 
within the homogeneous and isotropic vacuum under action-at-a-distance interac- 
tions (such as a space-ship in a stationary orbit around Earth). The point-like 
character of particles permits the exact validity of conventional local-differential 
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topologies (e.g., the Zeeman topology in special relativity); the homogeneity and 
isotropy of space then allow the exact validity of the geometries underlying Lie’s 
theory (such as the Riemannian geometry); and the action-at-a-distance interactions 
assures their representation via a potential with consequential canonical character. 

Interior problems consists of extended, and therefore deformable particles moving 
within inhomogeneous and anisotropic physical media, with action-at-a-distance as 
well as contact-resistive interactions (such as a space-ship during re-entry in Earth’s 
atmosphere). In the latter case the forces are of local-differential type (e.g., potential 
forces acting on the centre-of-mass of the particle) as well as of non-local-integral type 
(e.g., requiring an integral over the surface of the body), thus rendering inapplicable 
conventional local-differential topologies; the inhomogeneity and anisotropy of the 
medium imply the inapplicability of conventional geometries for their quantitative 
treatment; while contact-resistive interactions violate Helmholtz’s conditions for the 
existence of a potential (the conditions of variational selfadjointness [49]), thus imply- 
ing the non-canonical character of interior systems. 

We can therefore say that Lie’s theory in its conventional linear, local and canonical 
formulation is exactly valid for all exterior dynamical problems, while it is inapplicable 
(and not ‘violated’) for the more general interior dynamical problems on topological, 
geometrical, analytic and other grounds. 

1.2. The need for a suitable generalization of Lie’s theory 

Lie’s theory is currently applied to non-linear, non-local and non-canonical systems 
via their simplification into more treatable forms, e.g., via the expansion of non-local- 
integral terms into power series in the velocities and then the transformation of the 
system into a co-ordinate frame in which it admits a Hamiltonian via the 
Lie-Koening Theorem or, equivalently, via a Darboux map [49]. 

However, assuming that a given non-local-integral interior system admits a 
local-differential non-Hamiltonian approximation, the transformations of a non- 
Hamiltonian system into a Hamiltonian form are necessarily (non-canonical and) 
non-linear. This implies the known fact that the Darboux chart is not realizable in 
actual experiment and, if used, it implies the necessary abandonment of conventional 
relativities, evidently because the transformed frames are highly non-inertial (see [49] 
for technical details). This establishes the need for a suitable generalization of Lie’s 
theory which is applicable to local-differential non-Hamiltonian systems in the co- 
ordinates of their experimental veriJcation. Only after achieving such a theory the use 
of co-ordinate transformations may acquire practical significance. 

Moreover, non-linear, non-local and non-Hamiltonian interior systems cannot be, 
in general, consistently reduced or transformed into linear, local and Hamiltonian 
ones. An illustration exists in gravitation. The distinction between exterior and 
interior gravitational problems was in full use in the early part of this century (see, e.g., 
Schwarzschild’s two papers, the first celebrated paper [74] on the exterior problem and 
the second little known paper [75] on the interior problem). The distinction was then 
kept in early well-written treatises in the field (see, e.g., [4,38]). The distinction was then 
progressively abandoned up to the current treatment of all gravitational problems, 
whether interior or exterior, via the same local-differential Riemannian geometry. 

The above trend was based on the belief that interior dynamical problems within 
physical media can be effectively reduced to a collection of exterior problems in 
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vacuum (e.g., the reduction of a space-ship during re-entry in our atmosphere to its 
elementary constituents moving in vacuum). 

It is important for this paper to know that the above reduction is mathematically 
impossible. For instance, the so-called No-Reduction Theorems [54] prohibit the 
reduction of a macroscopic interior system (such as satellite during re-entry) with 
a monotonically decreasing angular momentum, to a finite collection of elementary 
particles each one with a conserved angular momentum, and vice versa. 

On geometrical grounds, gravitational collapse and other interior gravitational 
problems are not composed of ideal points, but instead of a large number of extended 
and hyperdense particles (such as protons, neutrons and other particles) in conditions 
of total mutual penetration, as well as of compression in large numbers into small 
regions of space. This implies the emergence of a structure which is arbitrarily 
non-linear (in co-ordinates and velocities), non-local-integral (in various quantities) 
and non-Hamiltonian (variationally non-self-adjoint). 

Additional insufficiencies of the current formulation of Lie’s theory and of its 
underlying geometries exist for the characterization of antimatter, e.g., because of the 
lack of a suitable (e.g., antiautomorphic) map which permits the characterization of 
antimatter, first, at the classical-astrophysical level, and then at the level of its 
elementary constituents. 

Similar occurrences have recently emerged in astrophysics, superconductivity, 
theoretical biology and other disciplines. These occurrences establish the need for 
a generalization of the conventional Lie theory which is directly applicable (i.e., applic- 
able without approximation or transformations) to non-linear, integro-diflerential and 
variationally non-self-adjoint systems for the characterization of matter. The theory 
should then possess a suitable antiautomorphic map for the effective characterization 
of antimatter. 

1.3. Santilli’s isotopies and isodualities of Lie’s theory 

In a seminal memoir [47] written in 1978 when at the Department of Mathematics 
of Harvard University under support from the US.  Department of Energy, the 
Italian-American scholar Ruggero Maria Santilli proposed a step-by-step generaliz- 
ation of the conventional Lie theory specifically conceived for non-linear, integro- 
differential and non-canonical equations. The generalized theory was subsequently 
studied by Santilli in Refs. [48-721, as well as by a number of mathematicians and 
theoreticians, and it is today called Lie-Santilli isotopic theory or isotheory (see papers 
[l, 2,6, 11, 12,16-23,25,32,33,35-37,40-431, monographs [3,24,31,76] and addi- 
tional references quoted therein). 

A main characteristic of the Lie-Santilli isotheory, which distinguishes it from 
all other possible generalizations, is its ‘isotopic’ character intended (from the 
Greek meaning of the word) as the capability of preserving the original Lie axioms. 
More specifically, Santilli’s isotopies are maps of any given linear, local and 
canonical structure into its most general possible non-linear, non-local and 
non-canonical forms which are capable of reconstructing linearity, locality and 
canonicity in generalized isospaces and isofields within a fixed system of local 
co-ordinates. 

The latter property is remarkable, mathematically and physically, inasmuch as it 
permits the preservation of the abstract Lie theory and the transition from exterior to 
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interior problems via a more general realization of the same theory within the fixed 
frame of the experimenter. 

Another main characteristic of the Lie-Santilli isotheory is that of admitting a novel 
antiautomorphic map, called isoduality, which has resulted to be equivalent to charge 
conjugation, thus being effective for the first characterization on record of antimatter 
at the classical level with a consequential operator image. 

It should be indicated that Santilli [47] submitted his isotopic theory as a particular 
case of a yet more general theory today called Santilli’s Lie-admissible theory or 
Lie-Santilli genotopic theory, where the term genotopic is used (in its Greek meaning) 
to ‘induce configuration’, and interpreted in the sense of violating the original Lie 
axioms, yet inducing covering Lie-admissible axioms. 

More recently, the Lie-Santilli isotopic and genotopic theories have resulted to be 
particular cases of yet more general formulations of hyperstructural type with a unit 
[73], thus resulting in a hierarchy of methods of increasing complexity for the 
representation of physical or biological systems with progressively more complex 
structures [61]. 

Finally, Santilli [52,53,59,61] has shown that all preceding theories admit a novel 
anti-automorphic map he called isoduality particularly suited for the characterization 
of antimatter, which cannot be formulated in conventional mathematics because it 
requires a generalization of the basic unit. 

This paper, written by a theoretical physicist, is devoted to the Lie-Santilli iso- 
theory. A study of the broader Lie-Santilli geno- and hypertheories are contemplated 
as future works. 

In section 2 we outline the methodological foundations of the theory. The 
istopies of Lie’s theory are presented in section 3 jointly with new developments, 
such as a study of the transition form the Lie-Santilli isogroups to the corresponding 
isoalgebras. As an illustration of the capabilities of the isotheory, we prove its 
‘direct universality’ in gravitation, that is, the achievement of the symmetries 
of all possible gravitational metrics (universality), directly in the frame of the 
experimenter (direct universality). A number of fundamental open mathematical 
problems will be identified during the course of our analysis. 

A comprehensive mathematical presentation of the Lie-Santilli isotheory up to 
1992 is available in monograph [76]. A historical perspective is available in mono- 
graph [31]. Recent mathematical studies on isomanifolds (today called Tsagas-Sour- 
las isornanifolds) have been conducted in Ref. [77] which also provides a topological 
complement of the algebraic studies of this paper. 

2. Isotopies and isodualities of numbers, fields, differential calculus, metric spaces, 
differential geometries, functional analysis, classical and quantum mechanics 

Lie’s theory is the embodiment of the virtual entirety of contemporary mathematics 
by encompassing: the theory of numbers; differential and exterior calculus; vector and 
metric spaces; geometry, algebra and topology; functional analysis; and other disci- 
plines. Santilli’s isotopies of Lie’s theory require the isotopic lifting of all these math- 
ematical methods. In this section we shall identify the basic isotopies and isodualities 
which are necessary for a correct formulation of the Lie-Santilli isotheory, by referring 
to the quoted literature for more detailed treatments. 
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2.1. Isotopies and isodualities of the unit 

Santilli’s fundamental step from which all generalized formulations can be uniquely 
derived is the generalization of the unit I of the current formulation of Lie’s theory 
into a quantity f of the same dimension of I ,  but with unrestricted functional 
dependence of its elements in the local co-ordinates x, their derivatives of arbitrary 
order with respect to an independent variable t ,  1, x, ... as well as any needed 
additional quantity [47,49b, 61a], 

A -  

I -+ z = I ( x ,  1, x, . .. ). (2.1) 
The isotopies [47] occur when I^ preserves all the topological characteristics of I ,  

such as nowhere-degeneracy, Hermiticity and positive-definiteness. The genotopies 
[47] occurs when I^ is non-Hermitean (e.g., real-valued but non-symmetric), while the 
hyperstructures [73] occur when f is a finite or infinite (and ordered or non-ordered) 
set of generally non-Hermitean quantities. 

In conventional Lie’s theory, the systems are identified via the sole knowledge of the 
Hamiltonian H .  In the Lie-Santilli isotheory, the identification of the systems requires 
the knowledge of two generally different quantities, the Hamiltonian H and the 
generalized unit 7. 

Isotopic methods have resulted to be effective for the direct representation of 
closed-isolated systems of particles with conventional interactions represented with 
H plus internal non-local and non-Hamiltonian interactions represented with f and 
time-reversal invariant centre-of-mass trajectories (from the property I^ = ft  ). The 
genotopic methods apply for the direct representation of open-non-conservative, 
non-local and non-Hamiltonian systems in irreversible conditions (from the property 
7 # It). The hyperstructural methods are significant for quantitative representations 
of the more complex biological systems. 

Once the unit is generalized, there is the natural emergence of the map [52,53,59], 
A 

f - + I d =  -1 ,  (2.2) 
called isoduality which provides an antiautomorphic image of all formulations based 
on f. When properly formulated within the context of Hilbert spaces, the above map 
has resulted to be equivalent to charge conjugation [61b], thus permitting a repres- 
entation of systems of antiparticles beginning at the classical level, the first known to 
this author, which then persists under quantization. 

The above liftings were preliminarily classified by this author [22] into: 

Class 1. (generalized units that are smooth, bounded, non-degenerate, Hermitean 

Class 1 I .  (the same as Class I although I^ is negative-definite, characterizing isodual- 

Class IZI.  (the union of classes I and 11); 
Class IT/. (Class I11 plus singular isounits); and 
Class V .  (Class IV plus unrestricted generalized units, e.g., realized via discontinu- 

ous functions, distributions, lattices, etc.). 
All isotopic structures identified below also admit the same classification which will 

be omitted for brevity. In this paper we shall generally study isotopies of Classes I and 
11, at  times treated in a unified way via those of Class 111 whenever no ambiguity 
arises. Santilli’s isotopies of Classes IV and V are vastly unexplored at this writing. 

and positive definite, characterizing the isotopies properly speaking); 

ities); 
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2.2. Isotopies and isodualities of je lds  

Lie's theory is constructed over ordinary fields F (a, +, x ) hereon assumed to be of 
characteristic zero (the fields of real % complex C and quaternionic numbers Q)  with 
generic elements a, addition al + a2,  multiplication a, a2 : = a, x a2,  additive unit 0, 
a + 0 = 0 + a = a, and multiplicative unit I ,  a x I = I x a = a, Va,  a,, az E F. 

The Lie-Santilli isotheory is based on a generalization of the very notion of 
numbers and, consequently of fields first introduced by Santilli at the Conference on 
Diferential Geometric Methods in Mathematical Physics held in Clausthal, Germany, 
in 1980. A first rudimentary treatment appeared in Santilli's joint paper with the 
(mathematician) H.C. Myung [39] of 1982. Comprehensive studies were then conduc- 
ted by Santilli in the following years (see paper [59] for a mathematical presentation 
and monographs [61] for extensive physical applications). 

Consider a Class I lifting of the unit I of F ,  I -+ Î , with I  ̂being outside the original 
set, I^$F. In order for r^ to be the left and right unit of the new theory, it is necessary to 
lift the conventional associative multiplication ab into, the so-called isomultiplication 
C471 

ab : = a x b => a * b : = a x p x a = a p b ,  p = fixed, (2.3) 

where the quantity $= is called the isotopic element. Whenever I  ̂= f - ', I^ is the correct 
left and right unit of the theory, I^* a = a * I^ = a, V a  E F ,  in which case (only) I^ is 
called the isounit. In turn, the liftings I + I^ and x -+ *, imply the generalization of 
fields into the Class I structures 

A A 1  PI = { (d ,  + , * ) l a  = a x  r^; a = n, c, q E F ;  x -+ * = x T x  ; I  = T - ' } ,  (2.4) 

called isojelds, with elements a  ̂ E fi called isonumbers [59]. It is instructive to verify 
that the above isofields satisfy all conventional axioms of ordinary fields as necessary 
for the lifting F + PI to be an isotopy (see [59]  for details). 

All conventional operations among numbers are evidently generalized in the 
transition from numbers to isonumbers. In fact, we have: 

a + b-+h + 6 = (a + b) I ,  

u-' +Ci- i  = u-' XI^, 

a x  b -+Ci*6 = Cix F x ~  = ( a x b ) x r ^ =  (ab)I^, 
^ ^  A A  

alb = c + a* / b  = t, 2 = c x I = e l ,  

&2 -+ 6% = a1/21^1/2 , 

etc. Thus, conventional squares a'-= a x a = aa have no meaning under isotopy and 
must be lifted into the isosquare 2' = Ci * Ci = a21^. The isonorm is 

f C i f = ( a X a ) ' ~ 2 x P = ~ a ~ x I ^ = ~ a ~ x I ^ E P ,  (2.5) 

where u denotes the conventional conjugation in F and Jal is the conventional norm. 
Note that the isonorm is positive-dejnite (for isofields of Class I), as a necessary 
condition for isotopies. 

The isotopic character of the lifting 1 -+ I^ is confirmed by the fact that the isounit 
Î  verifies all axioms of 1, 

A A A A A  A 

f*f* - - -  * I  = I, I / I ,  = I ,  P = I^, etc. 
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The isodual isojields [59] are the antihomomorphic image of P(h, + , *) induced by 
the map I^ + Id = - I  ̂and are given by the Class I1 structures 

F$ = {(hd, +, ed) I a^d = E x  Id; a = n, c, q E F ;  * + * d 

(2.6) = x p x  p = - p , p  = -I}, 
in which the elements hd = E x Id are called isodual isonumbers. For real numbers we 
have nd = - n, for complex numbers we have cd = - C, where C is the ordinary 
complex conjugate, and for quaternions in matrix representation we have qd = - qt, 
where t is the Hermitean conjugate. Note that the conjugation of a complex number is 
(n + i x m ) d  = nd + i d x m d  = - n + (  - i)( - x ) (  -m) = - n + im. The isodual isosum 
is given by hd + bd = ( E  + 6) x Id, while the isodual isomultiplication is given by [59] 

&d*dbd = hdX p x  b d  = - B d X  T x p = ( 2 x 6 )  x I d  

An important property is that the norm of isodual isojields is negatiue-dejinite 
because it is characterized by [59] 

(2.7) pdp = 1 El  x I d  = - 147. 

The latter property has non-trivial implications. For instance, it implies that physical 
quantities dejined on an isodual isojield, such as time, energy, etc., are negatiue-dejinite. 
For these reasons isodual theories provide a novel and intriguing characterization of 
antimatter [61]. 

Note also that, as a necessary condition for isotopies (isodualities) all isojields 
PI(&, +, *) (isodual isojields E:(hd, +, *d)) are isomorphic (antiisomorphic) to the original 
jield F (a, +, *). The reader should be aware that the distinction between real, complex 
and quaternionic numbers is lost under isotopies because all possible numbers are 
unified by the isoreals owing to the freedom in the generalized unit [26]. 

Recall that the set of imaginary numbers does not constitute a field, evidently 
because not closed under the multiplication. On the contrary, Santilli’s isofields 
E(h, + , *) with h = n x i ,  isounit I^ = i and n real do indeed verify the axioms for a field 
as one can readily verify. Note that the imaginary unit i is isoselfdual, i.e., invariant 
under isoduality, id = - T= i .  

We also recall [59] that the lifting a -+a^ = a x r^ is necessary for PI($, +, *) to 
preserve the axioms of F (a, +, *) whenever the isounit I^ is not an element of the 
original field. On the contrary, when r^ E F(a,  +, *) there is no need to lift the numbers 
and we shall write fl(a, +, *). In physical applications, the isounit is generally outside 
the original field and actually possesses a non-linear as well as integral dependence on 
the local variables and their derivatives. This implies that the ‘numbers’ used in the 
Lie-Santilli isotheory generally have an integral structure. 

As an example, the isounit used by Animalu [l] for the representation of the 
Cooper pair in superconductivity is given by 

where t represents time, N is a constant, and t,bl and $? are the wave functions of 
the two electrons of the Cooper pair in singlet coupling of their spin. Animalu’s 
isounit (2.8) therefore represents the non-local-integral contributions due to the wave 
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overlapping of the two electrons in the Cooper pairs. Such contributions, since they 
are of contact type, are variationally non-self-adjoint and, therefore, they should be 
represented with anything possible, except the Hamiltonian. In Santilli’s isotopies 
there are therefore represented with the isounit. 

In particular, Animalu has shown that the lifting of the conventional Coulomb 
interactions characterized by isounit (2.8) produces an attraction among the identical 
electrons of the Cooper pair, as experimentally established in superconductivity. Note 
that when the overlapping of the wavepackets is no longer appreciable (e.g., at large 
mutual distances), the integral in the exponent of (2.8) is null and the isounit I^ recovers 
the conventional unit I .  Conventional fields F ( a ,  +, x )  are used for large distances 
among the electrons, while isofields @(a^, +,*) with isounit (2.8) are used when the 
wave-overlapping of the electrons is appreciable. Other examples of isounits will be 
provided later on. 

We also recall Santilli’s [59] more general genofields, which are characterized first 
by an isotopy of conventional fields, and then by an ordering of the isomultiplications, 
one to the right â  >h = a^xR^xb  and one to the left â  <b = a^xs^xh ,  # s  ̂which 
are different among themselves, yet they are commutative when the original field is 
commutative, â  > 6  = 6 >a^, â  >b = b >a^, â  >b # ii <6. In this case we have 
a genounit to the right, r^> = R^- ‘, and a genounit to the Left, ‘r̂  = 3-l which are 
usually interconnected via a conjugation, e.g., 1’ = (I>)+. The important property is 
that all abstract axioms of a field are verified per each ordered isomultiplication, thus 
yielding a genojield to the right @’(a^>, +, >) and a genojield to the left ‘E(<a^, +, <) 
which are at the foundation of Santilli’s Lie-admissible theory [61]. The hyperfields to 
the right and to the left emerge when R  ̂ and ŝ  are sets of generally non-Hermitean 
quantities [73]. 

We finally recall Santilli’s [59] still more general liftings characterized by the 
generalization of the sum + and related additive unit 0, e.g., + -+ ? = + I? + , 
0 = I? # 0, K E F (a ? b = a + K + b)  called pseudo-isotopies, which do not preserve 
the axioms of a field (in fact, closure under the distributive law is not verified under the 
conventional x or isotopic * multiplication and the addition ?). Thus, pseudo-iso- 
fields are not j e l d s .  For these and other reasons (e.g., the general divergence of the 
exponentiation), applications in physics and biology are restricted to iso-, geno- and 
hyper-fields, while the pseudoiso- and pseudogeno- and pseudohyper-fields have 
a mere mathematical interest at this writing. 

The care needed in inspecting and appraising the Lie-Santilli isotheory can be 
pointed out from these introductory lines. In fact, familiar statements such as ‘two 
multiplied by two equals four’ are correct for the conventional Lie theory, but they 
have no mathematical meaning for the Lie-Santilli isotheory because they lack the 
identification of the assumed unit and multiplication. In fact, for r^ = 3, 2 * 2 = 12. 
Similarly, care must be expressed before claiming that a number is prime or not. In 
fact, Santilli [59] has shown that non-prime numbers can become prime under 
a proper selection of the unit. 

Our current knowledge of Santilli’s theory of isonumbers includes the lifting of all 
conventional numbers (real, complex and quaternionic numbers, plus the isotopies of 
octonions [59]) into the following four classes used in this paper: (A) ordinary numbers 
with unit 1; (B) isonumbers with isounits of Class I, 7 >O; (C) isodual numbers with 
isodual unit Id = - 1; (D) isodual isonumbers with isodual isounits of Class 11, Id < O .  
In this paper we shall therefore have four different types of real numbers, complex 
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numbers and quaternions, at times unified in the isonumbers of Class 111, excluding 
generalizations of Classes IV and V. 

Despite the above advances, studies on the isonumber theory are their initiation 
and so much remains to be done. To begin, the entire conventional number theory 
(including all familiar theorems on factorization, primes, etc.) can be subjected to an 
isotopies of Classes I, I1 or 111. Moreover, we have the birth of new numbers without 
counterpart in the current number theory, such as the isonumbers of Class IV (with 
singular isounits) and Class V (with distributions or discontinuous functions as 
isounits). The above liftings then admit antiautomorphic images under isoduality 
which are also absent in the conventional number theory. In turn, all the preceding 
generalizations can be subjected to further enlargements via the differentiation of the 
multiplications to the right and to the left, and then yet more general formulations via 
the multivalued hyperstructures. 

One can begin to understand the vastity of the Lie-Santilli isotheory as compared 
to the conventional formulation of Lie's theory by nothing that the above hierarchy of 
fields implies a corresponding hierarchy of Lie-isotopic theories. 

2.3. Isotopies and isodualities of the diferential calculus. 

The next important mathematical discovery by Santilli is an axiom-preserving 
integro-differential generalization of the conventional local-differential calculus called 
isodiferential calculus, first presented in a systematic way in the recent papers [71] 
although it is implicit in preceding works (e.g., [SS, 611). 

Consider a set of functions f(x), g(x), . .. , on an N-dimensional space S(x, 93) with 
local chart x = {xk}, k = 1,2, ... ,N,  over the reals %(n, + , x).  Let dxk and 
ak = a/axk be the conventional differential and derivative on S, respectively. 

Consider now the set of functions f(x), g(x), ... , this time, on an N-dimensional 
isospace $(x, @), x = { x k } ,  k = 1,2, ... , N ,  defined over the Class I isofield &(A, + , *) 
(where we shall drop hereon the subscript I for simplicity), with N-diensional positive- 
definite isounit f = I^+ = (Ti) = (c) = - 

- - ( T;)-' = (T$' > O  whose elements 
possess a generally non-linear-integral dependence on all local quantities and their 
derivatives with respect to an independent variable t ,  f(x, i, x, . . . ). Santilli's isodif- 
ferential calculus is characterized by the isodiferential 

axk  = f fdx ' ,  (2.9) 
with corresponding isoderivative 

(2.10) 

under the condition that all conventional operations and properties of the ordinary 
differential calculus are lifted into their axiom-preserving isotopic form, e.g., 

a f ( x ) = 8 k f X & k =  $kaiff:dxj, a i ~ k = a x d ^ ~ k = f ~ I ^ ~ d x i d x j ,  
A .  A '  82 = 8 k  x 8 k  = T; T:aiaj, etc., 

where there is no sum over the repeated k-index. 
A hidden condition is that, starting with a set of functions over an isofield '$I@, +, *) 

with isounit f, the operations of isodifferentiation and isoderivatives must preserve 
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the original unit for consistency. This condition remains generally unidentified in the 
conventional calculus because the preservation of the unit follows from its constancy, 
ak l  = 0. For the case of a generalized unit with the same functional dependence as that 
of the functions, the condition of preservation of the unit must be added to the 
calculus to prevent the transition from the original set of functions defined with 
respect to r^ to a new set of functions defined over a new unit p. 

As an example, the definition of the isodifferential 

Jxk = d (If xi) = (d If) xi + f f  dx’ = f’f dx‘, tk = (a, 1;) xm + 1: 
would imply the alteration of the isounit 1. In turn, the occurrence would have serious 
drawbacks in applications, such as lack of invariance of perturbative series. 

Santilli’s isodifferential calculus does verify the condition of preserving the basic 
isounit, although the question whether realizations (2.9) and (2.10) are unique has not 
been explored until now. Note also the mutual compatibility of isoforms (2.9) and 

The lifting of the integral calculus follows quite simply from the above isodifferen- 
tial forms. We here limit ourselves to indicate that an indefinite isointegral defined as 
the operation inverse of the isodifferential is given by 

(2.10). 

d x =  T I d x =  d x = x ,  i.e., f=jT f^ S A *  s (2.1 1) 

Note that the isodifferential calculus is one of the simplest possible forms of integro- 
differential calculus, in the sense that each operation has a differential contribution 
characterized by d or a and an integral component characterized by T or 1, respectively. 

Despite its simplicity, the isodifferential calculus has far reaching mathematical and 
physical implications. Mathematically, it permits a step-by-step generalization of 
conventional local-differential geometries into covering integro-differential geomet- 
ries. Physically, the isocalculus permits a generalization of classical and quantum 
mechanics as well as of their interconnecting map (quantization), as outlined below. 

The isodual isodifferential calculus is the antiautomorphic image of the preceding 
one characterized by the isodual isotopic element .fd = - ? < O  or isodual isounit 
Id = - r^ < O  and it is defined on the isodual isospace s^d(2, $id) defined over the Class 
I1 isodual isofield $id (where, again, the subscript I1 has been dropped for simplicity). 
Note that the isodifferential calculus and its isodual can be unified into that of 
Class 111. 

The genodifferential calculus [61] occurs when the Hermiticity condition on the 
isounit is relaxed, r^ # r^t. As such, the operation of differentiation itself acquires 
a structural ordering, namely, we have two different genoderivatives 8 ’ f ( x )  andf(x) 9 
defined for the corresponding units 1’ = r^ and ‘f = If which are naturally set to 
represents the ‘arrow of time’. This indicates that the genodifferential calculus is 
significant to represent irreversible processes. The hyperdifferential calculus has not 
been explored at this writing, to our best knowledge. 

2.4. Isospaces, isogeometries and their isoduals 

Santilli’s third important discovery presented for the first time in paper [Sl] of 1983 
(see also the recent paper [71] and the comprehensive treatment [61]) is the isotopic 
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lifting of conventional, N-dimensional, metric (or pseudo-metric) spaces and related 
geometries. Consider a metric space S(x ,  g ,  9) with local co-ordinates x = {x”) and 
(nowhere singular, real valued and symmetric) metric g = ( g i j )  over the reals 
%(n, +, x). Its infinite class of isotopic images over the isoreals, called isospaces 
(hereon assumed for simplicity to be of Class I) is given by structures [51] 

s^(R,$, 9): ŝ  = P g ,  7 = T-1, Ri = ( 2 $ 2 ) r ^ E  %((A, +,*), 

2 = { a k }  { X k } , X * &  = {$, i  ii} # xk ,  (2.12) 

where $ = Tg is called the isometric. The above liftings are necessary for compatibility 
with the isotopies of the unit I -+ r̂ , of the product x -+ * and of the field % + 9. 
From hereon we shall adopt Santilli’s convention [71] of using symbols with a ‘hat’ to 
represent quantities computed in isospaces while ordinary symbols represent quantit- 
ies computed in the original spaces. 

Despite their simplicity, isospaces have far reaching implications. In fact, they imply 
that the same abstract axioms of conventional spaces (such as the Euclidean, Minkow- 
skian or Riemannian spaces) admit unrestricted functional dependence of the metric. As 
an illustration, the conventional metric g ( x )  of a Riemannian space R ( x ,  g ,  %) is 
believed to be restricted to the sole dependence on the local co-ordinates x. Santilli has 
shown that the same Riemannian axioms permit an unrestricted functional depend- 
ence of the metric $(x ,  i, x, ...). While Riemannian spaces R ( x ,  $, %) are ideally 
suited for exterior gravitational problems, the Riemann-Santilli isospaces 9 (x, 6, &) 
are ideally suited for the treatment of interior gravitational problems with a non- 
linearity in the velocities, integral structure and variationally non-self-adjoint charac- 
ter (section 1). 

This remarkable result is due to the construction of the isospaces via the deforma- 
tion of the metric g -+ $ = Tg while jointly lifting the original unit in the inverse 
amount, I + r^ = p-’,  under which isospaces S(R, 6, 9)  (isodual isospaces 
gd (2, gd, kd)) are locally isomorphic (antiisomorphic) to the original spaces S (x ,  g ,  %). 

Additional salient properties of isospaces are the preservation of the original dimen- 
sionality and of the original basis (except for renormalization factors) [61a]. 

Via the use of the isotopies of fields, differential calculus and vector spaces, Santilli’s 
has constructed step-by-step, non-local-integral isotopies and isodualities of conven- 
tional geometries on metric (or pseudo-metric) spaces. Their most salient application 
is the geometrization of interior physical media, that is, the geometrization of the 
departures from empty space caused by matter. 

The isogeometries most important for physical applications are (see [61a, b] for 
details): 

(A) Santilli’s isoeuclidean geometry of Class I on three-dimensional isospaces 
B ( i ,  & @), 8 = pS = (pfSkj) ,  6 = (Sij) = diag. (1, 1, l), over the isoreals %(fi, +,*) 
with a 3 x 3-dimensional isounit which, being positive-definite, can always be diag- 
onalized into the form 

r^ = diag. ( b T 2 , b i 2 , b ; ’ )  >O, bk = b k ( x , i , x ,  ...) >O, k = 1,2, 3. (2.14) 

In this case the isometric 8 has an arbitrary functional dependence on local co- 
ordinates and their derivatives, 8(x, i, x, ... ). Yet the geometry is isojlat, that is, i t  
verifies the axioms of flatness in isospace while its projection in the originaI space 
E (x ,  6, ’$2) is evidently curved. An intriguing novel notion of the isoeuclidean geometry 
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is the isosphere of Class I G 2  = ( G t 8 G ) f  = r^ which is a perfect sphere in isoeuclidean 
space. Nevertheless, its projection in the original Euclidean space is given by all 
infinitely possible ellipsoids x b f  x + y,b; + zb: z = 1 (where, according to the con- 
vention assumed earlier, P is computed in I? and x in E). In fact, in isospace the 
original sphere with radius 1 is subjected to the deformations of its axes 1k + b: while 
the corresponding units are deformed in the inverse amounts, 1k + b; ’, thus preserv- 
ing the perfectly spherical character. The isosphere of Class I I I  unifies all compact and 
noncompact curves f xb: x k y ,  b2 y f zb: z # 0 in isospace. The isosphere of Class 
IV unifies all compact and non-compact surfaces plus all cones f xb:x f 
y ,  b 2 y  & zb: z = 0. The isosphere of Class V is an additional novel notion of a sphere 
with arbitrary unit (e.g., a lattice). 

(B) Santilli’s isominkowskian geometry of Class I on isospace f i ( x ,  ij, @), 
f i  = ‘Tq, q = diag. (1, 1, 1, - 1) over the isoreals with 4 x 4-dimensional isounit reduc- 
ible to the diagonal form 

f = diag. (b;’, b y 2 ,  b;’, bT2)  >O, b, = b,(x,  i ,x ,  ... ) >O, p = 1,2,3,4,  
(2.15) 

which represents locally varying speeds of light c = co b4 = cO/n4 where co is the speed 
of light in vacuum and n4 is the local index of refraction. As such, the isominkowskian 
geometry is particularly suited for the representation of light propagating within 
inhomogeneous and anisotropic physical media such as our atmosphere. An impor- 
tant notion of the isominkowskian geometry is the isolight cone of Class I [which is 
a perfect cone in isominkowski space but, when projected in the conventional 
Minkowski space, represents all infinitely possible deformed light cones 
xn;’x + y ,  n P 2 y  + zn;’z - tco n i 2  t = 0. In fact, each axis of the original light 
cone is deformed l,, +a;’, while the corresponding units are deformed of the 
inverse amount, 1, + n i ,  thus preserving the original perfect cone. The axiom- 
preserving character of the isotopies is such that the maximal causal speeds of the 
Minkowski and isominkowski spaces coincide and are given by the speed of light in 
vacuum co. 

(c) Santilli’s isoriemannian geometry on isospaces I? (2, G, %I, 3 = Tg over isounit 
(2.14), which coincides with the conventional geometry at the abstract level. This 
implies that, unlike the isoeuclidean and isominkowskian geometries, the isorieman- 
nian geometry is isocurved, that is, curved in isospace. As such, it permits the 
representation of interior gravitational problems with locally varying speeds of light, 
such as the bending of light within a physical medium with local speed c = co/n4 <co,  
the contribution to cosmological redshift due to the decrease of the speed of light 
within astrophysical chromospheres, and other novel insights. An intriguing novel 
notion is that of isogeodesics of Class I which coincide in isospace with the geodesics in 
vacuum, but when projected in the original Riemannian space represents the actual 
non-geodesic trajectory of extended particles within physical media, such as that of 
a leaf in free fall in our atmosphere. 

An isogeometry particularly important for the study of the Lie-Santilli theory is the 
isosymplectic geometry first presented in Ref. [57] (see also the more recent study 
[71]). Consider the conventional symplectic geometry (see, e.g. [34]) in canonical 
realization on the cotangent bundle T* E(x, 6, %), 6 = diag. (1,  1, l), with local chart 
a = (a,> = (xk ,  p k ,  k = 1,2,3, ,u = 1,2,3,4,5,  6. As well-known, the above geometry 



is characterized by the canonical one-form 

8 = P k  d X k ,  
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(2.16) 

with nowhere-degenerate, canonical, symplectic two-form 

w = dpk A dxk = io, ,daP A daV, (cop,,) = ( 
I )  - I  0 ’  

(2.17) 

which is exact, o = do, and therefore closed, d o  = d(d0) = 0 (Poincark Lemma [34]). 
Corresponding higher-order forms are constructed accordingly. 

Santilli’s isosymplectic geometry [71] is defined on the isocotangent bundle 
T *  g(a, 8, @) with the local chart 6 = {h”} = {a’, f i k } ,  ak X k ,  f i k  P k ,  but now 
referred to the six-dimensional isounit given by the Kronecker product 1, = I  ̂x p, 
resulting in the isodifferential forms dak = 1; dxi, d f i k  = Pkdpi, a/8ak = 
Pi a/axi,  8/afik = Î ; a/afii ,  etc. We then have the one isoform 

(2.18) 8 = @k dak = Pkf; ( X ,  p ,  . . . ) dx‘, 

and the two-isoform 

63 = dfik A dak = 3 w,,&” A ahv = T ; ( X , ~ ,  ... )dp, A f ; ( x , p ,  ... )dx” O ,  

(2.19) 

which is also nowhere degenerate as well as isoexact, 63 = d8, and therefore isoclosed 
in the isocotangent bundle (but not necessarily so in its projection on the original 
cotangent bundle), &B = d(d8)  = 0 (this is the isotopic Poincark Lemma [57,71]). 
Isoform (2.19) is then called isosymplectic;. Higher-dimensional isoforms are then 
constructed accordingly. 

An important geometric discovery which is permitted by the isosymplectic 
geometry is the following alternative of the Darboux theorem. 

Theorem 2.1 (Santilli [61a, 711). Let X ( a )  be a vector-field on a conventional tangent 
bundle and suppose that it is non-Hamiltonian in the point a, i.e., there exist no function 
H(a)  such that on a suitable neighborhood D of the chart a the following identities hold 
oflv X v ( a )  da” = dH(a). Then, there always exists an isotopy within thejxed local chart 
a under which the same vector j e l d  becomes Hamiltonian, i.e., the following identities 
hold in a neighbourhood D of a 

,. ̂A  

63,,,Xv(a)da” = &(a) 

in which case the vector-jeld is called isohamiltonian. 

Recall from section 1.2 that a Darboux’s transformation a + a’ = a’(a) = 
(r’(r ,  p ) ,  p ’ ( r ,  p ) )  under which a vector-field becomes Hamiltonian cannot be generally 
used in physical applications because the transformed frame is highly nonlinear in the 
original co-ordinates, thus not realizable in actual experiment as well as highly 
non-inertial, thus incompatible with established relativities. 

Santilli’s motivation for the construction of the isosymplectic geometry is precisely 
to resolve these problematic aspects, by permitting a non-Hamiltonian vector- 
field to become Hamiltonian under the preservation of the j x e d  a-frame of the 
experimenter and merely changing instead the basic unit (thus the basic diferentials) of 
the geometry. 
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Note that &I = o under the assumed conditions of fik = P k  (see later on for 
differences) and this shows the ‘hidden’ character of the isotopies in the very structure 
of the conventional symplectic geometry. This also confirms that the symplectic 
and isosymplectic geometries coincide at the abstract, realization-free level, as 
established by the abstract identity of forms (2.15) and (2.18), or (2.17) and (2.19). Such 
an abstract identity is such that one can represent the isosymplectic geometry with 
the same symbols used for the co-ordinate free formulation of the symplectic 
geometry. 

However, the two geometries admit inequivalent realizations. In fact, the symplectic 
geometry is strictly local-differential, does not admit nonlinearities in the velocities 
and it possesses a canonical structure. On the contrary, the isosymplectic geometry 
has an integro-differential structure (in the sense indicated earlier) and it is arbitrarily 
non-linear in the velocities. 

All isogeometries indicated in this section admit intriguing isodual forms which can 
be easily identified by the reader via the rules of isodualities identified earlier. 
Regrettably, we have to refer the interested reader to monographs [61,72] for details 
(see also paper [75] for topological aspects on isomanifolds). 

At this writing, the isogeometries are minimally well-known for physical applica- 
tions. Nevertheless, their mathematical study has yet to be initiated and a number of 
fundamental aspects remain open at this writing. 

2.5. Isotopies and isodualities of functional analysis 

As indicated earlier, the isotopies imply non-trivial generalizations of all mathemat- 
ical structures of Lie’s theory, inevitably leading to a generalization of functional 
analysis called by this author functional isoanalysis [22]. 

The generalized discipline begins with the isotopy of continuity (whose knowledge 
is assumed when dealing with the technical aspects of section 3), and includes the 
isotopies of conventional square-integrable, Banach and Hilbert spaces, as well as the 
isotopies of all operations on them. 

In particular, functional isoanalysis includes a generalization of conventional 
special functions, distributions and transforms. For instance, the conventional Dirac 
delta distribution has no meaning under isotopy, mathematically, because of the loss 
of applicability of the conventional exponentiation and, physically, because particles 
are no longer point-like. The isodirac distribution is the reconstruction of the conven- 
tional distribution for an unrestricted unit permitting a direct treatment of the 
extended character of particles. The Fourier transform, Legendre polynomials, etc., 
also admit simple yet unique and unambiguous isotopies with important applications 
in various disciplines. 

Regrettably, we are unable to review the above isotopies to prevent a prohibi- 
tive length of this paper, and refer the interested reader to [61a]. We shall 
merely identify in the next section only those isospecial functions which are neces- 
sary for an understanding of the Lie-Santilli isotheory. One should be aware that 
the elaboration of the Lie-Santilli isotheory via conventional functional analysis 
(e.g., the use of conventional trigonometry, logarithms, exponentiations, etc.) 
leads to inconsistencies which often remain undetected by the non-initiated 
reader. 
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2.6. Isotopies and isodualities of classical mechanics 

As it is well-known (see, e.g., [13]), Lie's theory admits two fundamental realiz- 
ations, one in classical and one in quantum mechanics, with interconnecting map 
given by the naive or symplectic quantization. 

The preceding isotopies of fields, differential calculus, metric spaces, geometries, 
and functional analysis were used by Santilli for the construction of step-by- 
step isotopic generalizations of classical [72] and quantum [61] mechanics and 
their interconnecting maps. The new mechanics have been specifically conceived 
for the most general possible, non-linear, non-local and non-canonical, interior 
dynamical problems, as well as the fundamental classical and operator realizations 
of the Lie-Santilli isotheory. As a matter of fact, Santilli proposed the isotopies 
of Lie's theory precisely for quantitative treatment of the above generalized 
mechanics. 

It is important to review at least the essential structural elements of the isotopic 
classical and operator mechanics because they provide the realizations of the 
Lie-Santilli isotheory most important for applications. 

To conduct our outline, we shall keep using Santilli's notation of putting a 'hat' on 
all quantities belonging to isotopic formulations, while conventional symbols are used 
for quantities belonging to conventional formulations (see [71] for details). As it is 
well-known, conventional classical mechanics is formulated in the configuration space 
via the seven-dimensional space E(t, 6,%) x E(x, 6, %) x E(v ,  a,%) where t is time, 
x = {xk) represents the space co-ordinates and u = { v k ]  represents the velocities, the 
latter being independent from the former. 

The isotopies of classical mechanics in configuration space require their formula- 
tion in the isospace ŝ (;, 2, I?) = E(t, d, %)) x E(2, a, @) x I?(fi,6, @) characterized by 
the total isounit ftOt = It x I^ x 7, where: ft = T;' is the (one-dimensional) isounit of 
time and 7 = $- is the (three-dimensional) isounit of space. By assuming that the 
isotime is contravariant we have i z t, while for the space components we have the 
general rules 

A A -  +. 

The isodifferential calculus on ŝ (;, x*,fi) is then based on the following space and time 
isodiferentials and isoderiuatiues, 

6; = It dt, dak = 7: dx', dRk = pi d i i ,  afik = I^: do', 6fik = pi dfik, 

(2.20a) 

;ild̂ t̂  = $,d/dt, 8/8ak = a/aX', 8/8& = f: a/&&, 

8 1 8 6 ~  = T':a/avi, 8 / 8 f i k  = 7: apfi,, (2.20b) 

with basic properties 
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We then have the following isotopies of classical mechanics: 

(1) Isonewtonian mechanics. Newton’s equations of motion mdU,/dt + aV/axk - 
FYSA = 0 on S ( t ,  x, u) over %(n, +, x ) are lifted into the Newton-Santilli equations on 
the isospace ŝ (;, 2, C) first introduced in [71] 

(2.22) 

which, when projected in the original space S(t, x, u), assume the explicit form 

A d[pk(t, x, u ,  ... )u i ]  a V(X) + T:(t, x, u ,  ... ) ___ & I ,  d t  axi 

= $:[mdui/dt + aV(x)/axi + m?~(d?i,”/dt)v,] = 0, (2.23) 

where &It = m, and 6 = m pt is called the isomass. 
As one can see, the Newton-Santilli equations permit the direct representation (i.e., 

representation in the fixed x-frame of the observer) oE (a) the actual, extended, 
non-spherical and deformable shape of the body considered; (b) non-local-integral 
interactions as permitted by the underlying integro-differential topology of s(;, 2,6) 
[77]; and (c) the representation of all possible non-potential forces 
FYsA = - mff(dp/dt)u, via the isogeometry itself, (i.e., via the covariant form 
6 k  = $:ui) in such a way that all forces FNSA ‘disappear’ in expression (2.22) in 
isospace. 

As a specific example, consider an originally spherical body of mass m which moves 
along the x-axis within a resistive medium (say, gas or liquid) by acquiring the 
ellipsoidical shape o with semiaxes (a2, b2, c’). By ignoring potential forces for 
simplicity, suppose that the body experiences only a non-local-integral resistive force 
of the type FTSA = - y u : J d  do % (a, . . . ), where y > 0 and 9 is a suitable kernel. The 
above systems can be directly represented in isoconfiguration space $(;, $6) via the 
Newton-Santilli equation 

&dU*,/dt̂ = 0, i.e., md(f,”v,)/dt = $,X[mdv,/dt + m?:(d $~/dt)u,]  = 0, 

& = m, = 1, 1: = diag. (a-’, b-’, c- ’ )  exp { -ytv,  d o F ( o ,  ... )}. (2.24) J0 
The interested reader can then construct a virtually endless number of other 

examples. Note that, by comparison, the conventional Newton’s equations can only 
represent point-like particles under local-diflerentiaz interactions. By recalling that the 
terms ‘Newtonian mechanics’ are referred to point-particles under local-differential 
interactions, the emerging new mechanics for extended-deformable particles under 
integro-differential interactions shall be referred to as the Newton-Santilli 
isomechanics. 

(2) Isolagrangian mechanics. A conventional first-order Lagrangian L (x, u )  = 
+muk + V(X) on configuration space S(t, x, u)  acquires the form 
L(;,t?) = 6 k  + ?(a) in isospace $(i, 2,;). The isotopies of conventional varia- 
tional principle of the isoaction A^ = ff:L((a,C)d^;(see [71] for details) then lead to the 
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Lagrange-Santilli equations on isospace S(t, 2 , ~ )  

8 g k  = 0 ,  
d 8e(a,G) 8@(2,$) 
-cI-- 

dt  aGk 
(2.25) 

which, under arbitrary but well behaved isolagrangians e (i, 2, $), are directly universal 
for all possible isoequations (2.22). In fact, the above equations can be explicitly 
written on S(t, x, u) 

(2.26) 

by therefore coinciding with Equations (2.22). Note that the isolagrangian mechanics 
also permits the direct representation of extended, non-spherical and deformable 
bodies under conventional as well as non-local-integral nonpotential interactions 
with evident advances over the conventional formulation 

invertible rules on a domain B of the local variables [61b, 711, 
(3) Isohamiltonian mechanics. The isolegendre transform is characterized by the 

(2.27) 

which are formulated on seven-dimensional isophase space ŝ (;, 2, j) with total isounit 
ltot = x 7 x r ^ ,  yielding the isocanonical action 

(2.28) 

with isohamiltonian fi = jkjk/2m + P(x). The use again of the isovariations then 
yields the Hamilton-Santilli equations [61b, 711, 

(2.29) 

The Hamiiton-Jacobi equations are lifted into the Hamilton-Jacobi-Santilli equa- 
tions 

8 f A  + fi = 0, 8Ai/8Rk - j k  = 0, 8dl8ck 0 .  (2.30) 

The conventional Poisson brackets, which are the realization in classical mechanics 
(CM) of the Lie product, are lifted into the isopoisson brackets first introduced in Ref. 
[47] (see also [71] for the explicit form below) 

(2.3 1) 

which provide the desired classical realization of the Lie-Santilli brackets. In fact, it is 
easy to prove that the above brackets satisfy on isospace s^(f,x*,j) (but not in the 
original space) the Lie algebra axioms (see Refs. [61,72] for a proof via the isotopies of 
the PoincarC Lemma of the symplectic geometry). 
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The exponentiated form of Hamilton's equation is a realization of a one-parameter 
Lie transformation group on S(t ,  x, p) .  The exponentiated form of Eqs. (2.29) is 

2 = {az )  = {ak, a>,  z a  = {eropvi3,R9, ) &", CI, p, v = 1,2,  . .. , 6 ,  (2.32) 

which when properly written in an isotopic form (see next subsection), provide 
a realization of a one-dimensional Lie-Santilli transformation group on ŝ (;, 2, f ) .  

The emerging new mechanics is called Hamilton-Santilli isomechanics. Some of the 
advantages over the conventional Hamiltonian mechanics are now evident. To  begin, 
the Hamilton-Santilli equations preserve all essential features of the Newton- 
Santilli equations, thus permitting the representation, beginning at the classical 
level, of extended-deformable bodies with local-differential-potential as well as 
non-local-integral-nonpotential interactions. As we shall see in the next section, 
these features are mainly the classical foundations for corresponding operator 
formulations. 

An important analytic discovery is given by the following. 

Theorem 2.2 (Santilli [61b, 711). The Hamilton-Santilli equations (2.29) are 'direct 
universal' in the Newton-Santilli mechanics, that is, they can represent all infinitely 
possible, analytic and regular, integro-differential, variationally non-self-adjoint first- 
order systems in a star-shaped region of their variables (universality), directly in the 
frame of the experimenter (direct universality). 

The above property (which is the analytic counterpart of Theorem 2.1) can easily be 
proved by noting that a well-behaved action of arbitrary order always admit an 
identical first-order isotopic reformulation (2.28). The theorem can be equivalently 
established via the proof of the direct universality of equations (2.29) for all possible 
Hamiltonians I?(;, 8, $) and isounits i(;, 2, p*, . . . ). By comparison, the conventional 
Hamiltonian mechanics can directly represent only a rather small number of conser- 
vative Newtonian systems, and the more general Birkhoffian mechanics [49b] is 
directly universal only for (well-behaved) local-differential systems. 

To understand this paper, the reader should keep in mind the above direct 
universality because it establishes the corresponding direct universality of the 
Lie-Santilli isotheory in classical mechanics with a corresponding direct universality 
for operator formulations indicated in the next subsection. 

All formulations of this section admit isodual images on isospaces ŝ '(;, 2, t?) and 
Sd(;, 2, f i )  over isodual isoreals %d(n^d, +, *d) which have produced the first classical 
representation of antimatter [71] known to this author. In particular, the representa- 
tion occurs via particles with negative-dejnite mass moving backward in time, although 
defined with respect to negative-dejinite units, thus resulting to be equivalent (although 
antiautomorphic) to particles with positive-definite mass moving forward in time 
when defined with respect to positive-definite units. As an example, the isodual 
Newton-Santilli equations are given by [71] 

$j &$/d &d + 8 P"(a)/d 8 j p  = 0 

and characterize an antiparticle with mass md = - m and time id = - t. A similar 
situation occurs for the isodual Lagrange-Santilli equations as well as for the isodual 
Hamilton-Santilli equations and the isodual Hamilton-Jacobi-Santilli equations which 
all represent antiparticles in isodual isospaces on isodual isofields. 
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2.7. Isotopies and isodualities of quantum mechanics 

We now outline the operator realization of the Lie-Santilli isotheory first identified 
in Ref. [48] and then studied in numerous subsequent papers (see Refs. [61b, 711 for 
the most recent accounts). 

The isotopies of quantum mechanics were originally proposed by Santilli [48] 
under the name of hadronic mechanics, namely, a mechanics specifically built for 
strongly interacting particles called hadrons. Recall that quantum mechanics is 
strictly local and differential and has resulted to be exactly valid for electromagnetic 
and weak interactions, although there are historical doubts whether the same disci- 
pline can also be exact for the strong interactions, with the understanding that its 
approximate validity is unquestionable. 

In fact, the charge radius of hadrons is of the same order of magnitude of the range 
of the strong interactions. Also, hadrons are some of the densest objects measured 
in laboratory until now. Therefore, the activation of the strong interactions 
requires the mutual penetration of these hyperdense particles, resulting in the 
historical expectation of non-linear, non-local-integral and non-Hamiltonian contri- 
butions whose quantitative treatment requires a suitable generalization of quantum 
mechanics. 

Santilli [48] proposed the construction of the isotopies of quantum mechanics 
precisely for the treatment of the latter contributions in a form which preserves the 
original quantum mechanical axioms. 

be the enveloping associative operator algebra of quantum mechanics with 
elements A ,  B ,  . . . ,unit I and conventional associative product A x B = AB, and let 
# be a conventional Hilbert space with states I +), I4), ... and inner product 
(+ 14) = Sd3x+' ( t ,  x)(b(t ,  x )  over the field complex numbers C(c, +, x ). 

By keeping the notation according to which quantities with a 'hat' are computed on 
isospaces over isofields while those without are computed on conventional spaces 
over conventional fields, hadronic mechanics is based on the following structures: 

(1) the Class I lifting of the (space) unit I + I = T > O  with consequential 
isofields of real '&(ii, +, *) and complex isonumbers c(fi, +, *) (section 2.2); 

(2) The corresponding lifting of the quantum mechanical representation spaces, 
such as the Euclidean E ( x ,  6, (32) or Minkowskian spaces M ( x ,  q, (32) into their isotopic 
form l?(2,8, @) and @(a, 4, '&) (section 2.3) 

(3) The lifting of the enveloping operator algebras < into the enveloping isoas- 
sociative algebra with the same original elements A  ̂ = A,  B = B ,  ... now equipped 
with the isounit 1 and the isoassociative product A  ̂ * B = A T B ,  as well as the lifting of 
the Hilbert space 2 into the isohilbert space 2 with isostates l$),l$), ... and 
isoinner product 

2: (&J) = ( $ 1  T @ ) I & t ,  +, *) .  (2.33) 

The fundamental dynamical equations of hadronic mechanics can be uniquely and 
unambiguously derived from the Hamilton-Santilli isomechanics via the isotopies of 
conventional or symplectic quantization. Recall that the naive quantization can be 
expressed via the mapping 

Let 

A -  

- A -  
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Such a mapping is now inapplicable to isoaction (2.28) because A  ̂ # A. But the basic 
unit of quantum mechanics h = 1 is replaced under isotopies by the (space) isounit 1. 
The consistent application of the isotopies then yields the generalized mapping 
identified by Animalu and Santilli here presented for simplicity for the isounit 
independent from the local time and co-ordinates (but dependent on the velocities as 
essential for contact resistive forces, see [61b] for the general case and references) 

~ = j , ' ; [ f i ~ a x * - ~ i i i l - +  - i f L n $ ( t , i ) ,  (2.35) 

The above mapping is the naive isoquantization of the Hamilton-JacobSantilii 
equations (2.30) into the following fundamental dynamical equations of hadronic 
mechanics (see also Ref. [61b] for all references and details): the isoschrodinger 
equations for the linear momentum 

(2.36) 
A -  A 

-i 8 k  $ (t: i) = - i T:  & $ (t ,  I )  = f l k  * $(t ,  X )  = f i k  T $( t, i )  , 
with the related fundamental isocommutation rules 

(2.37) 

(where we have used properties (2.21)), first identified by Santilli; the isoscrodinger 
equation for the energy 

[ P i , X J ]  A L A .  = fli*iJ - iJ - i j*f l i  = - h i ,  [fii;jj] = [x A i A  JJ]  A ' 0 

^ - *  A A -  

i a, $(t ,  i) = i ?, a, $(t ,  x) = 8 * I$( t: 2) = H T $( i, a )  = B * I$(?, 2) = E I$(!, a) ,  
B = M ,  B=~Ie%(r i ,+ ,* ) ,  E E % ( ~ , + ,  x), (2.38) 

first identified by Myung and Santilli and, independently, by Mignani, with the 
conventional differential calculus, and finalized by Santilli with the isoderivatives; and 
the Heisenberg-Santilli equation 

idQ/d^t= [ Q , * H ]  = Q * H - H * Q = Q T H - H T Q  (2.39) 
A A A  A A A  

with integrated form 
Q(q  = eiriTt Q(o)e- i tTr i  2 (2.40) 

first identified by Santilli in the original proposal to build hadronic mechanics [48]. 
It should be recalled for subsequent need that the condition ef isohermiticity on 

an isohilbert space coincides with the conventional Hermiticity, 8' = Ht .  As a conse- 
quence, all operators which are Hermitean-observable in quantum mechanics remain so 
in hadronic mechanics. Also, unitary transforms on 2, UUt = U' = I ,  are lifted under 
isotopies into the isounitary transformations 

(2.41) 

As a matter of fact, any conventionally non-unitary operator U ,  U U t  = 1 # I ,  
on % always admits an identical isounitary form on 2 via the simple rule 

For the isotopies of the quantum mechanical axioms, isotopic laws and all other 
aspects we refer for brevity the interested reader to monograph [61b]. We here merely 
indicate that, from the positive-definiteness of the basic isounit f, all distinctions 
between quantum and hadronic mechanics cease to exist at the abstract, realization- 
free level for which % = %, C = c, ( = ?, E = l?, % = 2, etc. This ultimate abstract 

0 * 0' = O f *  u = 1, 

lJ = O$"2. 
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unity assures the correct axiomatic structure of hadronic mechanics to such an extent 
that criticisms on its structure may eventually result to be criticisms on quantum 
mechanics. 

The fundamental operator realization of the Lie-Santilli isoproduct is then given by 
c481 

[A$] = A * B  - B * A  = A T B  - BTA, (2.42) 

which, as one can easily verify, satisfy the Lie axioms in both isospace and in 
conventional spaces. The fundamental operator realization of the isogroups is then 
given by equation (2.40) which, as we shall see in the next section, can be identically 
rewritten in terms of the isounitary transforms. 

Note that the naive (or symplectic) isoquantization apply for all possible isoaction 
(2.28). By recalling the direct universality of the Hamilton-Santilli isomechanics, we 
can therefore see that hadronic mechanics is also directly universal for all possible 
(well-behaved), integro-differential, operator systems which are non-linear in the wave 
function and its derivatives [61b]. This property is remarkable inasmuch as it 
establishes the direct universality of the Lie-Santilli isotheory in its operator realiz- 
ation. 

The advantages of hadronic over quantum mechanics are similar to those of the 
Hamilton-Santilli over the Hamiltonian mechanics. In fact, quantum mechanics can 
only represent (in first quantization) point-like particles under action-at-a-distance 
interactions. By comparison, hadronic mechanics can represent (in first isoquantiz- 
ation) the actual non-spherical shape of hadrons, their deformations as well as 
non-local-integral interactions due to mutual penetrations of the hadrons. The possi- 
bilities for broader applications in various disciplines are then evident. 

The isodual Hamilton-Santilli isomechanics is mapped via naive isoquantization 
into the isodual hadronic mechanics which is based on: (1) the isodual isofields of 
isoreals '%'(Ad, +, *d) or isocomplex numbers Cd(Ld, +, *d) (section 2.2); (2) the isodual 
envelope td with isodual isounit Id = - 1, isodual elements Ad = - A, Bd = - B, etc., 
and isodual product ad *dBd = - A T B ;  the isodual isohilbert space $d with isodual 
isostates 1 $)d = - (6 1, etc, and isodual isoinner product ($1 f d  1 $>Id over Cd. 

In particular, at this operator level, the isodual map has resulted to be equivalent to 
charge conjugation (see [61b] for brevity), although with a number of differences. For 
instance, charge conjugation maps a particle into an antiparticle in the same carrier 
space over the samefield, while isoduality maps a particles in a given carrier space over 
a given field into a diflerent carrier space over a dlgerentfield (the isodual ones); charge 
conjugation changes the sign of the charge but preserves the sign of energy and time, 
while isoduality changes the signs of all physical characteristics, although they are 
now defined over a field of negative-definite norm; etc. 

A A . .  

As an example, the isodual Heisenberg-Santilli equation is given by 
ia&dfaid = Q d T d f i d  - f i d T d Q d  , 

where we have used the isoselfduality of the imaginary quantity i (section 2.2). 

2.8. lsolinearity, isolocality and isocanonicity 

In section 1 we pointed out that the primary limitations of the contemporary 
formulation of Lie's theory are those of being linear, local and canonical. The classical 
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realizations identified earlier indicate rather clearly that the Lie-Santilli isotheory is 
non-linear, non-local and non-canonical, as desired. 

It is important to understand that such non-linearity, non-locality and non-canoni- 
city occur only when the theory is projected in the original space over the original 
fields because the theory reconstructs linearity, locality and canonicity in isospace (see 
[61] for all details and references). 

Let S(x ,  F )  be a conventional vector space with local co-ordinates x over a field F ,  
and let x' = A(w)x  be a linear, local and canonical transformation on S(x, F ) ,  w E F.  
The lifting S(x, F )  -+ g(2, P) requires a corresponding necessary isotopy of the trans- 
formations [47] 

i ' = a < 6 ) * 2 = a ( G ) P i ,  Pf ixed , iEg( i , f ' ) ,  $ =  w f ~ ' % , f =  T - ' ,  
(2.43) 

called isotransforms, with isodual isotransforms 2' = Ad($;" * di = - a($) * 2 ,  

It is easy to see that the above isotransforms satisfy the condition of linearity in 

a * ( 6 * 2 + h * $ ) = L i * ( a * i ) + 6 * ( a * $ ) ,  'V'~,$ES(~,P), 8 , 6 ~ p ,  (2.44) 

although their projection in the original space S (x, F )  are non-linear because 

Theorem 2.3 (Santilli [sla]). All possible (well-behaved) non-linear, classical or-oper- 
ator systems of equations or of transformations always admit an identical isolinear form. 

The above property illustrates the primary mechanisms according to which the 
Lie-Santilli isotheory applies to non-linear systems. In fact, as we shall see shortly, the 
latter theory is isolinear and, as such, it is capable of turning conventionally non- 
linear systems into identical forms which do verify the axioms of linearity in isospace, 
with evident advantages. 

Isotransforms (2.39) are also isolocal in the sense that the theory formally deals with 
the local variables x while all non-local terms are embedded in the isounit, namely, all 
non-local-integral terms disappear at the abstract, realization-free level. Nevertheless, 
the theory is non-local when projected in the original space. Similarly, isotopic 
theories are isocanonical because they are derivable from the isoaction (2.28) which 
coincides at the abstract level with the canonical action. 

isospaces, called isolinearity 

x ' = A T ( x , i ,  ...) x .  

3. Isotopies and isodualities of enveloping algebras, Lie algebras, Lie groups, 
symmetries, representation theory and their applications 

As recalled in section 1, Lie's theory (see, e.g., [13, 151) is centrally dependent on the 
basic n-dimensional unit I = diag. (1, 1, ... , 1) in all its major branches, such as 
enveloping algebras, Lie algebras, Lie groups, representation theory, etc. The main 
idea of the Lie-Santilli isotheory [47,49,61,72] is the reformulation of the entire 
conventional theory with respect to the most general possible, integro-differential 
isounit l ( x ,  i, x, ... ). 

One can therefore see from the outset the richness and novelty of the isotopic 
theory. In fact, it can be classified into five main classes as occurring for isofields, 
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isospaces, etc., and admits novel realizations and applications, e.g., in the construction 
of the symmetries of deformed line elements of metric spaces. 

In this section we shall continue to use the notation according to which quantities 
with a 'hat' are computed on isospaces over isofields while conventional quantities are 
computed on conventional spaces over conventional fields. 

3.1. lsotopies and isodualities of universal enveloping associative algebras 

Let 5 be a universal enveloping associative algebra [lS] over a field F (of character- 
istic zero) with generic elements A,  B,  C, .. . , trivial associative product A B  and unit 1. 
Their isotopes were first introduced in [47] under the name of universal isoas- 
sociative enveloping algebras. They coincide with 4: as vector spaces (ie., A  ̂E A,  B = B, 
etc.) but are equipped with the isoproduct so as to admit f as the correct (right and left) 
unit 

A A A  l: A * B = A T B ,  Tfixed, f * A = A * f = A = A  V A e t ,  f = F ' - ' .  
(3.1) 

Let 4: = < ( L )  be the universal enveloping algebra of an N-dimensional Lie algebra 
L with ordered basis {X , } ,  k = 1,2, ... , N, [4:(L)]- z L  over F ,  and let the infinite- 
dimensional basis of t ( L )  be given by the Poincare-Birkhoff-Witt theorem [15]. An 
important result achieved by Santilli in the original proposal [47] (see also [59, Vol. 
11, pp. 154-1631) is the following. 

Theorem 3.1. The cosets of f and the standard, isotopically mapped monomials 

f , g k  g i * 8 , ( i  <j) ,  8i*8j*8, ( i  < j  G k ) ,  ... (3.2) 

form a basis of the universal enveloping isoassociative algebra [ ( L )  of a Lie algebra L. 

The above theorem is fundamental for the entire analysis of this paper. A first 
consequence is given by the following isotopies of the conventional exponentiation, 
called isoexponentiation, here expressed for G = wf E P,  8 = X ,  

epX = f + ( i ~ * 8 ) / 1 !  + ( i ~ * g ) * ( i ~ * 8 ) / 2 !  + ... =f(eiwTX} 

= {eiXTw} f. 
(3.3) 

In turn, the notion of isoexponentiation permits the correct formulation of the 
isotransformations via expressions of the type a' = { expi (iG * 2)) * a = 
{exp,:(iwTX)} r^$a = {expr(iwTX)}a. The quantity 8 can first be a vector-field 
on an isomanifold with local chart a, thus providing a classical realization of 
the isotheory. The quantity 8 can also be a Hermitean operator on an isohilbert 
space, thus providing an operator realization of the isotheory. In fact, it is easy to 
prove that, for 8 = X', the quantity 0 = expc(i6*8)  is an isounitary operator 
satisfying (2.4). 

The implications of Theorem 3.1 also emerge at the level of functional isoanalysis 
because all structures defined via the conventional exponentiation must be suitably 
lifted into a form compatible with Theorem 3.1. As an example, Fourier transforms 
are structurally dependent on the conventional exponentiation. As a result, they must 
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be lifted under isotopies into the expressions [23] 
+a0 

f(x) = (1/274 g(k)*er"dk, g(k) = (1/2n)S f(x)*ei ik"dx,  (3.4) K: - m  

with similar liftings for Laplace transforms, Dirac-delta distribution, etc., not reviewed 
here for brevity. 

On physical grounds, Theorem 3.1 implies that the isotransform of a Gaussian in 
functional isoanalysis is given by [23] 

As a result, the widths are of the type Ax x a$ Ak z a -  $ - ljZ . It then follows 
that the isotopies imply the loss of the conventional uncertainties Ax Ak z 1 in favor 
of the local-interior isouncertainties [6  1 b] 

Ax Ak z I^,  (3.6) 

although the isoexpectation values recover the conventional value, 
( I ^ )  = (I ? I^? /)/(I p I) = 1 which allows to recover in full conventional uncertainties 
for the exterior, centre-of-mass behaviour of hadrons [61b]. 

The isodual isoenvelopes Zd are characterized by the isodual basis X i  = - Xk 
defined with respect to the isodual isounits Id = - I^ and isodual isotopic element 
Fd = - over the isodual isofields Ed. The isodual isoexponentiation is then given by 

(3.7) e c ~ d ~ d X d  - I d  {eiwTX) = - iwX - e-  rd r 
and plays an important role for the characterization of antiparticles via isodual 
isosymmetries, with negative-definite energy and moving backward in time. 

It is easy to see that Theorem 3.1 holds, as originally formulated [47], for Her- 
mitean isounit of undefined signature now called of Class 111, thus unifying isoen- 
velopes and their isoduals gd. In fact, the theorem was conceived to unify with one 
single envelope simple compact and non-compact algebras of the same dimension N. 
A first illustration was provided in [47] for the case of the Lie algebra so(3) of the 
rotational group SO(3) with generators xk,  k = 1,2, 3, in their fundamental three- 
dimensional representation, according to which [g(so(3))]- % so(3) for I^ = I = diag. 
(1, 1, l), [t(so(3))]- x so(2.1) for I^ = diag. (1, 1, - 1) with more general realizations 
for more general forms of the isounits (see section 3.5 for more details). In 
the subsequent paper [Sl] Santilli illustrated how the isoenvelope Z(so(4)) unifies 
all possible simple, compact and noncompact six-dimensional Lie algebras, so(4), 
so(3.1), s0(2.2), as well as all their infinitely possible isotopes (see section 3.6 
for more details). The possibility whether the preceding unifications holds for all 
possible simple Lie algebras of the same dimension was formulated by Santilli as 
a conjecture [61b], Appendix 8.A) which has remained unexplored until now to our 
knowledge. 

Note that the isotopy 5 -, 4  ̂ is not a conventional map because the local co- 
ordinates x,  the infinitesimal generators Xk and the parameters w k  are not changed by 
assumption. Only the underlying unit and related associative product are changed. 

The non-triviality of the isotheory is first illustrated by the emergence of the 
non-linear-non-local isotopic element 7 directly in the exponent of isoexponentiation 
(3.3), thus ensuring the desired generalization. Also, in their operator realizations, the 
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general transformation of the Lie into the Lie-Santilli isotheory is given by a non- 
unitary transformations for which 

I -+ 1 = u I ~ t ,  A B  -, U A B U ~  = A’TB’, U ( A B  - B A ) U ~  = AT B’ - B T A’ ,  
(3.8a) 

U U L I I # I ,  p’=(uut)-’ ,  I = $ - ’ ,  &f’, p = p ,  
A’ = UAU‘, B’ = UBU‘,  (3.8b) 

where one should note not only the emergence of the correct isotopic structure, but 
even that with the correct Hermiticity of I  ̂ and p. Once an isotopic structure is 
reached via non-unitary transforms, it remains form-invariant under the isounitary 
realization of non-unitary transforms [61b]. In fact, under a further non-unitary- 
isounitary transforms we have the invariance rules 

O * f *  Ot = 1, O * A * B *  Of = $ * B ,  

0 *(A * B - B *  A)* Of = A’*P - @*At, 
which establishes the form-invariance, first, of the fundamental isounit, and then of the 
isotheory. 

The lack of equivalence of the two theories is further illustrated by the in- 
equivalence between conventional eigenvalue equations, H 1 b )  = E \ b ) ,  H = Ht, 
E E %(n, +, x), and their isotopic form in the same Hamiltonian 

A -  A A * I 6) = H T I b )  = B * 1 6 )  = E ’ I  b ) ,  B = H = ~ t ,  E’ + E ,  

with consequential diferent eigenvalues for the same operator H (see section 3.5 for an 
example). From the above occurrences it is easy to see that the weights of the  Lie 
and Lie-Santilli theories are diferent, thus confirming the inequivalence of the two 
theories. 

3.2. Isotopies and isodualities of Lie algebras 

A (finite-dimensional) isospace e over the isofield E of isoreal ’%($, +, *) or 
isocomplex numbers e(t, +, *) with isotopic element and isounit 1 = p- ’ is called 
a Lie-Santilli isoalgebra over E (see [47,49,61,72] for original studies and mono- 
graphs [3,24,31,76] with quoted papers for independent studies), when there is 
a composition [A:B] in L, called isocommutator, which is isolinear (i.e., satisfies 
condition (2.44)) and such that for all A, B, c E t 

[A:B] = - [ B : A ] ,  [AI:[B:Q] + [B:[e:A]] + [C:[A:BII = 0 ,  

[A * B:e] = A * [B:Q + [A:e] * B .  
(3.9a) 

(3.9b) 

The isoalgebras are said to be: isoreal (isocomplex) when E = % ( P  = c), and 
isoabelian when [A,&] = 0, \J A, B E e. A subset Lo of L is said to be an isosubalgebra 
of L when [EO:LO] c Lo and an isoideal when [e:L,] c Lo. A maximal isoideal 
which verifies the property [E,to] = 0 is called the isocenter of e. For the isotopies of 
conventional notions, theorems and properties of Lie algebras, one may see mono- 
graph [76]. 



1374 J. V. Kadeisvili 

We recall the isotopic generalizations of the celebrated Lie’s First, Second and Third 
Theorems introduced in the original proposal [47], but which we do not review here 
for brevity (see [49b, 61b, 761). For instance, the Lie-Santilli second theorem reads 

A A A  [Xi, X,] = si * 8, - sj * 2Zi = 8, Qi, . . . ) 8j - g j  ?(a, . . . ) si 
= C f j ( i ,  ...)* Zk, (3.10) 

where the p s  are vector-fields on an isomanifold with local chart i ,  or operators on 
a isohilbert spaces, and the c’s are called the structure functions because they generally 
have an explicit dependence on the local co-ordinates (see the example of section 3.5) 
restricted by certain conditions of the Lie-Santilli Third Theorem. 

Let L be an N-dimensional Lie algebra with conventional commutation rules and 
structure constants C f ,  on a space S(x ,  F )  with local co-ordinates x over a field F ,  and 
let L be (homomorphic to) the antisymmetric algebra [ ( (L)] -  attached to the 
associative envelope g(L). Then e can be equivalently defined as (homomorphic to) 
the antisymmetric algebra [ t (L)]  - attached to the isoassociative envelope ( L )  
[47,49,76]. In this way, an infinite number of isoalgebras E, depending on all possible 
isounits r, can be constructed via the isotopies of one single Lie algebra L. It is easy to 
prove the following result. 

Theorem 3.2 [61a]. The isotopies L -+ e of an N-dimensional Lie algebra L preserve 
the original dimensionality. 

In fact, the basis e,, k = 1,2, . . . , N of a Lie algebra L is not changed under isotopy, 
except for renormalization factors denoted &. Let the commutation rules of L be given 
by [ e i ,  ej] = C f j  ek. The isocommutation rules of the isotopes f, are then given by 

[e^.*6.] 1 )  J = 6 i T e * . - e ^ . T 6 i = C f j ( x ,  J J  ...) zkk, e=cT .  (3.11) 

One can then see in this way the necessity of lifting the structure (constants) into 
structure (functions), as correctly predicted by the Lie-Santilli Second Theorem [47]. 

The structure theory of the above isoalgebras is still unexplored to a considerable 
extent. In the following we shall show that the main lines of the conventional structure 
of Lie theory do indeed admit a consistent isotopic lifting. To begin, we here introduce 
the general isolinear and isocomplex Lie-Santilli algebras denoted G e ( n ,  c) as the 
vector isospaces of all n x n complex matrices over e. It is easy to see that they are 
closed under isocommutators as in the conventional case. The isocenter of G e ( n ,  e) is 
then given by a  ̂ * 1, Va  ̂E @. The subset of all complex n x n matrices with null trace is 
also closed under isocommutators. We shall call it the special, complex, isolinear 
isoalgebra and denote it with Sf , (n ,  c). The subset of all antisymmetric n x n real 
matrices X ,  X‘ = - X,,  is also closed under isocommutators, it is called the isoortho- 
gonal algebra, and it is denoted with d ( n ) .  

By proceeding along similar lines, we classify all classical, non-exceptional, 
Lie-Santilli algebras over an isofield of characteristic zero into the isotopes of the 
conventional forms, denoted with a,, B,, c, and b, each one admitting realizations of 
Classes I-V (of which only Classes 1-111 are studied herein). In fact, 2,- = Sf , (n ,  c); 
B, = d ( 2 n  + 1, c); c, = SP(n, e); and d, = d ( 2 n ,  e). One can begin to see in this 
way the richness of the isotopic theory as compared to the conventional theory. 

The notions of homomorphism, automorphism and isomorphism of two isoalgebras 
E and J!,’, as well as of simplicity and semisimplicity are the conventional ones. 

A - 
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Similarly, all properties of Lie algebras based on the addition, such as the direct and 
semidirect sums, carry over to the isotopic context unchanged (because of the preserva- 
tion of the additive unit 0). 

An isoderioation b of an isoalgebra 2 is an isolinear mapping of t into itself 
satisfying the property 

(3.12) 

If two maps bl and b, are isoderivations, then B * b,  + 6 * b, is also an isoderiva- 
tion, and the isocommutators of b, and b, is also an isoderivation. Thus, the set of all 
isoderivations forms a Lie-Santilli isoalgebra as in the conventional case. 

&[A, B]) = [ B ( A ) y ]  + [ A 3 ( B ) ]  V A ,  B E t. 

The isolinear map ad@) of e into itself defined by 

aJA(B)  = [a:B], V A ,  B E t (3.13) 

is called the isoadjoint map. It is an isoderivation, as one can prove via the iso-Jacobi 
identity. The set of all aJ(2) is therefore an isolinear isoalgebra, called isoadjoint 
algebra and denoted L,. It also results to be an isoideal of the algebra of all 
isoderivations as in the conventional case. 

Let LC0) = e. Then L(I) = [,!,(0)',t(O)], L(') = [t('), L(')], etc., are also isoideals of 
L. ,? is then called isosoluable if, for some positive integer n, e(") = 0. Consider also the 
sequence 

I,,,) = L ,  L,,, = [L,O,:L], L,,) = [L( , ) , t ] ,  etc., 

Then L is said to be isonilpotent if, for some positive integer n, e,,) = 0. One can then 
see that, as in the conventional case, an isonilpotent algebra is also isosolvable, but the 
converse is not necessariIy true. 

Let the isotrace of a matrix be given by the element of the isofield [61] 

T i A  = (TrA) j  E fi, (3.14) 

where Tr A is the conventional trace. Then 

T ~ A  * B) = (T? 2) * (T? B), T?(B A B- l )  = T? A .  
Thus, the Ti A^ preserves the axioms of Tr  A, by therefore being a correct isotopy. 
Then the isoscalar product 

(A:@ = Ti[(~dA)*(adB)] (3.15) 

is here called the isokillingform. It is easy to see that (a:@ is symmetric, bilinear, and 
verifies the property ( a d z ( P ) , Z )  + @:Ad r?(2)) = 0, thus being a correct, axiom- 
preserving isotopy of the conventional Killing form. 

to 
the basis of L. Generic elements in I? can then be written in terms of local co-ordinates 
i, j ,  f, a = Rig i  and B = j ? j g j ,  and c = f k  gk = [a,B] = a i j j  [gi:gj] = ii i j  cfjgkk. 
Thus, 

Let ek, k = 1,2, ... , N ,  be the basis of L with one-to-one invertible map ek + 

[adA(B) ]k  = [ A , B ] k  = Cfja'RJ. 

= g i j i i j ? j  yielding 

(jij(2, ...) = Ck LP Cp J k .  

(3.16) 

We now introduce the isocartan tensor iij of an isoalgebra e via the definition 

(3.17) 
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Note that the isocartan tensor has the general dependence of the isometric tensor of 
section 3, thus confirming the inner consistency among the various branches of the 
isotopic theory. In particular, the isocartan tensor is generally non-linear, non-local 
and non-canonical in all local variables as well as their derivatives with respect to an 
independent variable. This clarifies that the isotopic generalization of the Riemannian 
spaces R(x ,  g, %) -+ l?@, & @), 8 = &x, u,  ...) [61a, 711, has its origin in the very 
structure of the Lie-isotopic theory. 

The isocartan tensor also clarifies another fundamental point of section 1, that the 
isotopies naturally lead to an arbitrary dependence in the velocities and accelerations, 
exactly as needed for realistic treatments of the problems studied in this paper, and 
that their restriction to the non-linear dependence on the co-ordinates x only, as 
generally needed for the exterior (e.g., gravitational) problem, would be manifestly 
unnecessary. 

The isotopies of the remaining aspects of the structure theory of Lie algebras can be 
completed by the interested reader. Here we limit ourselves to recall that when the 
isocartan form is positive- (or negative-)definite, L is compact, otherwise it is non- 
compact. Then it is easy to prove the following. 

Theorem 3.3. The Class I11 liftings L of a compact (noncompact) Lie algebra L are not 
necessarily compact (noncompact). 

The identification of the remaining properties which are not preserved under liftings 
of Class 111 is an instructive task for the interested reader. For instance, if the original 
structure is irreducible, its isotopic image is not necessarily so even for Class I, 
trivially, because the isounit itself can be reducible, thus yielding a reducible isotopic 
structure. 

Let L be an isoalgebra with generators 8, and isounit r^ = p-' >O. From equa- 
tions (3.7) we then see that the isodual Lie-Santilli algebras Ld of L is characterized by 
the isocommutators 

(3.18) 

E and ed are then (anti) isomorphic. Note that the isoalgebras of Class I11 contain 
all Class I isoalgebras L and all their isoduals Ed. The above remarks therefore 
show that the Lie-Santilli isotheory can be naturally formulated for Class 111, as 
implicitly done in the original proposal [47]. The formulation of the same theory for 
Class IV or V is however considerably involved on technical grounds thus requiring 
specific studies. 

The notion of isoduality applies also to conventional Lie algebras L,  by permitting 
the identification of the isodual Lie algebras Ld via the rule [52,53], 

Note the necessity of the isotopies for the very construction of the isodual of 
conventional Lie algebras. In fact, they require the non-trivial lift of the unit 
I -+ Id = ( -I), with consequential necessary generalization of the Lie product 
AB - BA into the isotopic form ATB - BTA.  

The following property is mathematically trivial, yet carries important physical 
applications. 
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Theorem 3.4. All injinitely possible, Class I isotopes of a (finite-dimensional) Lie 
algebra L are locally isomorphic to L, and all infinitely possible, Class I1 isodual isotopes 
ed of L are anti-isomorphic to L. 

As indicated in section 2.6, the classical realization of the formulation of this section 
is provided by functions (or vector-fields) xi, 8,, ... on the isotangent bundle 
T * E(x, 8, @), 8 = $6, with local chart â  = {ak, j k }  and isoalgebra 

Wi 82, axi ax, A 

a s p  a 2  a x m  aPn 
[xi:xj] = 7 wflv- = - T:(x,p,  ...)- = c . .  i: Tkm x* . (3.19) 

where ~ f l v  = wPv is the conventional, canonical-Lie tensor. As outlined in section 2.7, 
the operator realization is given by operators Xk on an isohilbert space with a given 
isounit 1 = $-'  and isoalgebra 

The unique and unambiguous map interconnection realizations (3.19) and (3.20) is the 
isoquantization of section 2.7. 

3.3. Isotopies and isodualities of Lie groups 

A right Lie-Santilli transformation isogroup G (see [47,49,61, 721 for original 
studies and monographs [3,24,31,76] with quoted papers for independent studies) 
on an isospace $(a, P)  over an isofield P,r^ = T- '  (of isoreal @ or isocomplex 
numbers c), is a group which maps each element a~S(R,f l ' )  into a new element 
2 E ,!?(a, E )  via the isotransformations 2 = 0 * R = O$R, $ fixed, such that: (1) The 
map (0,R) -, 0 * R of G x $(a, P) onto $(a, p) is isodifferentiable; (2) 
1*8= O * 1 =  0, V O E ~ ;  and (3) ~ l * ( ~ ~ * R ) = ( ~ l * ~ ~ ) * R , V R ~ ~ ( R , ~ )  and ol, o2 E G. A lefi transformation isogroup is defined accordingly. 

The notions of connected or simply connected transformation groups carry over to 
the isogroups in their entirety. We consider hereon the connected isotransformation 
groups. Right or left isogroups are characterized by the following laws [47]: 

O(0) = 1, O($) * O($) = O(6q * O(6) = O(6 + $), 

O(6) * O( - 6)  = 1, $ E E. (3.21) 

The most direct realization of the transformation isogroups is that via isoexponenti- 
ation (3.3), 

where the X s  and w's are the infinitesimal generator and parameters, respectively, of 
the original algebra L.  Equations (3.22) hold for some open neighbourhood of N of the 
isoorigin of and, in this way, characterize some open neighbourhood of the isounit 
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of e. Then the isotransformations can be reduced to an ordinary transform for 
computational convenience, 

(3.23) 

with the understanding that, on rigorous mathematical grounds, only the isotrans- 
form is correct. 

Still another important result obtained in [47] is the proof that conventional group 
composition laws admit a consistent isotopic lifting, resulting in the following isotopy 
of the Baker-Campbell-Hausdorff Theorem 

{e f>  * {ef} = e p ,  x3 = 2, + Z2 + [X, :Z2]/2 

+ [(2, - 22):[21:22]]/12 + *.. (3.24) 

Note the crucial appearance of the isotopic element $(a, 6, ... ) in the exponent of the 
isogroup. This ensures a structural generalization of Lie's theory of the desired 
non-linear, non-local and non-canonical form. For details see [49,74]. 

The structure theory of isogroups is also vastly unexplored at this writing. In the 
following we shall point out that the conventional structure theory of Lie groups does 
indeed admit a consistent isotopic lifting. The isotopies of the notions of weak and 
strong continuity of [22] are a necessary pre-requisite. Let t be a (finite-dimensional) 
Lie-Santilli isoalgebra with (ordered) basis {Tk], k = 1,2 , .  . . , N .  For a sufficiently 
small neighborhood N of the isoorigin of E ,  a generic element of 6 can be written 

O(S) = 2 

&=1,2 ,  ... .N 
(3.25) 

which characterizes some open neighbourhood M of the isounit 7 of G. The map 

&)0,(O2) = o1 * 02. l y ,  (3.26) 

for a fixed 0, E G, characterizes an inner isoautomorphism of G onto G. The corres- 
ponding isoautomorphism of the algebra E can be readily computed by considering 
the above expression in the neighbourhood of the isounit 1. In fact, we have 

~~=01*o ,*8 ; '~O~+Q1*Q; ,* [x2 ,  X,] +o'2'. (3.27) 

The reduction of the isogroups to isoalgebras requires the isodifferentials dD = IdQ 
and isoderivatives a/& = $d/dQ, under which we have the following expression in 
one dimension: 

A - A  

(3.28) 

Thus, to every inner isoautomorphism of G, there corresponds an inner isoautomor- 
phism o f t  which can be expressed in the form: 

(3.29) 

The isogroup 6, of all inner isoautomorphism of G is called the isoadjoint group. It is 
possible to prove that the Lie-Santilli algebra of G, is the isoadjoint algebra I!,, of E .  
This establishes that the connections between algebras and groups carry over in their 
entirety under isotopies. 

@){ = C i i  * Q k .  
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We mentioned before that the direct sum of isoalgebras is the conventional 
operation because the addition is not lifted under isotopies (otherwise there will be the 
loss of distributivity, see [59]). The corresponding operation for groups is the 
semidirect product which, as such, demands care in its formulation. 

Let G be an isogroup and G, the group of all its inner isoautomorphisms. Let G: be 
a subgroup of G,, and let A($) be the image of $EG under G:. The semidirect 
isoproduct G 

(9*,f)*(g' ,A) =(9**A($'),A*A'), (3.30) 

with total isounit given by (1, f ~ )  and inverse (6,  A)-f = (k'($-'), Apt). The above 
notion plays an important role in the isotopies of the inhomogeneous space-time 
symmetries outlined later on. 

Let G I  and G, be two isogroups with respective isounits f, and f2. The direct 
isoproduct G, 6 6, of G l  and G, is the isogroup of all ordered pairs (d17 Sz), 
4, E G,, 4, E Gz, with isomultiplication 

G: of 6 and e: is the isogroup of all ordered pairs 

(3.31) 

total isounit (TI, 1,) and inverse (g;', 6;'). The isotopies of the remaining aspects of 
the structure theory of Lie groups can then be investigated by the interested reader. 

Let G be an N-dimensional isotransformation group of Class I with infinitesimal 
generators Z k 7  k = 1 ,2 ,  ... , N. The isodual Lie-Santilli group Gd of G [52,53] is the 
N-dimensional isogroup with generators 2; = - r?k constructed with respect to the 
isodual isounit fd = - f over the isodual isofield Ed. By recalling that 
9 E E -+ dd E fid, Gd = - 8, a generic element of Gd in a suitable neighbourhood of fd 
is therefore given by 

O(&). (3.32) O d  (@) = e:d 5 ~ 

The above antiautomorphic conjugation can also be defined for conventional Lie 
group, yielding the isodual Lie group Gd of G with generic elements Ud(wd) = eiYdx 

The symmetries significant for this paper are the following ones: the conventional 
form G, its isodual Gd, the isotopic form G and the isodual isotopic form Gd. These 
different forms are useful for the respective characterization of particles and antipar- 
ticles in vacuum (exterior problem) or within physical media (interior problem). 

It is hoped that the reader can see from the above elements that the conventional 
Lie's theory does indeed admit a consistent and non-trivial lifting into the covering 
Lie-Santilli formulation. Particularly important are the isotopies of the conventional 
representation theory, known as the isorepresentation theory, which naturally yields 
the most general known, non-linear, non-local and non-canonical representations of 
Lie groups. Studies along these latter lines were initiated by Santilli with the isorep- 
resentations of SO(2) and of SO(3) [61], by Klimyk and Santilli Klimyk [27], and 
others. 

As received in section 2.6, a classical realization of the formulation of this section is 
formulated on the isotangent bundle T * ,!?(a, 8, $I), 8 = $6, with local chart 
d = {d"}  = {ak, b k } ,  p = 1 , 2 ,  ... ,6,  k = 1,2,  3, and isounit f2 = f x I  ̂ in terms of 
a vector-field x ( d )  (where t* = t )  

1 w . f d  - iw*9 = - - -ee 

- - -e?. 

= {.pi} * 6(0) = {eXT1) 8(0) (3.33) 
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As recalled in section 2.7, an operator realization of the Lie-Santilli isogroups is given 
by isounitary transforms R' = 0 * R on an isohilbert space 2, equation (2.41), with 
realization in terms of an isohermitean operator fi 

a($ = 8 * ~ ( 0 )  = {ep'} * 8(0) = {eiHTt} h(0). (3.34) 

The above classical and operator realizations are also interconnected in a unique and 
unambiguous way by the isoquantization (section 2.7). 

3.4. Santilli's fundamental theorem on isosymmetries 

We are now equipped to review without proof the following important result first 
formulated in [52] and then studied in detail in [61-721: 

Theorem 3.5. Let G be an N-dimensional Lie group of isometries of an m-dimensional 
metric or pseudo-metric space S(x, g ,  F )  over a j e l d  F 

G: ~ ' = A ( ~ ) x , ( x ' - y ' ) ~ A ~ g A ( x - y ) r ( ~  - ~ ) ~ g ( x - y ) ,  

A f g A  = A g A t  = 9.  (3.35) 

Then the injnitely possible isotopies G of G of Class I11 characterized by the same 
generators and parameters of G and new isounits 1 (isotopic elements f), automatically 
leave invariant the isocomposition on the isospaces s (̂i, 8, E ) , i  = Tg, r^ = $-', 

G: 2 = A($) * x̂ , (2 - j ')+ * A +  82 *(a - j ? )  

(3.36) 

The 'direct universal' of the resulting isosymmetries for all infinitely possible Class 111 
isotopies g + 8 is then evident owing to the completely unrestricted functional 
dependence of the isotopic element in the isometric 8 = $9. One should also note 
the insufficiency of the so-called trivial isotopy 

A t A  A = (R - y )  g(x - j?), AIQA = A J A t  = 1g1. 

w k  + 2; = 8 k 1 ,  (3.37) 

for the achievement of the desired form-invariance. In fact, under the above mapping 
the isoexponentiation becomes 

(3.38) 

namely, we have the disappearance precisely of the isotopic element T in the exponent 
which provides the invariance of the isoseparation. 

,p; * W k  = {eit;Tw,} 1 = {eiXkwk } 1, 

3.5. Isotopies and isodualities of the rotational symmetry 

We now illustrate the Lie-Santilli isotheory with the first mathematically and 
physically significant case, the isotopies of the rotational symmetry, also called isorota- 
tional symmetry. They were first studied in [53] and then treated in detail in 
[61b, 72b], including the isotopies of SU(2), their isorepresentations, the iso- 
Clebsh-Gordon coefficients, etc. 

Consider the lifting of the perfect sphere in Euclidean space E(r,  6, %) with local 
co-ordinates r = (x, y,  z), and metric 6 = diag. (1, 1, 1) over the reals 93, 

rz = rr6r = xx + y y  + z z  (3.39) 
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into the most general possible ellipsoid of Class 111 on isospace I?"'(t, 8, a), 8 = 
" 6 ,  = diag. (gll ,  g22,g33), Î  = p - ' .  

ri = r t$r  = xgll  y + y g Z 2 y  + z ~ ~ ~ z ,  6' = 8, g k k  = g k k ( t ,  r, i, F, ...I z 0,(3.40) 

The invariance of the original separation r2 is the conventional rotational symmetry 
O(3). The Lie-Santilli isotheory then permit the construction, in the needed explicit 
and finite form, of the isosymmetries b(3) of all infinitely possible generalized 
invariants ri via the following steps: (1) Identification of the basic isotopic element 
p in the lifting 6 -, 8 = p6 which, in this particular case, is given by the new metric 
8 itself, f' = 8, and identification of the fundamental unit of the theory, I^ = p - '; (2) 
Consequently lifting of the basic field %(n, +, x ) -+ %(;, +, *); (3) Identification of the 
isospace in which the generalized metric 8 is defined, which is given by the three- 
dimensional isoeuclidean spaces I?(+, 8, '%)7 8 = T6,  I^ = p- ' ;  (4) Construction of the 
d(3)  symmetry via the use of the original parameters of O(3) (the Euler's angles %k, 
k = 1, 2, 3), although in their isotopic form 8, = &I, the original generators (the 
angular momentum components although computed in isospace h, = Ekijrhifij)j and 
the new metric 8; and (5) Classification, interpretation and application of the results. 

The explicit construction of d (3) is straightforward. According to the Lie-Santilli 
isotheory, the connected component Sb(3) of b(3) is given by [53] 

i k = 1 , 2 , 3  

* 
Sb(3): ? = ff(e)* i, ff((e) = n ei&k*ok = n eiMkTek]r, (3.41) 

while the discrete component is given by the isoinversions [53] t' = 2 * i = nr  = - r, 
where n is the conventional inversion. 

Under the assumed conditions on the isotopic element p, the convergence of 
isoexponentiations is ensured by the original convergence, thus permitting the explicit 
construction of the isorotations for the case of the adjoint representation of M,. An 
example around the third axis, z' = z ,  is given by [53] 

k = 1 . 2 , 3  

= c0s[83 (gl1 g22)1/21 + Y g 2 2  (911 g22)-'/' sin re3 (gl1 g22)1/2] 7 (3*42a) 

(3.42b) Y' = - xgl l (g l l  g22)-1/2sin[g3(g11g22)1'21 + Ycos[gll g22)1/21, 

(see [61b] for general isorotations). One should note that the argument of the 
trigonometric functions as derived via the above isoexponentiation coincides with the 
isoangle of the isotrigonometry in I?($, 8, %) (see paper [60]) thus confirming the 
remarkable compatibility and interconnections of the various branches of the isotopic 
theory: 

The computation of the operator isoalgebras 6(3) of d(3) is then straightforward 
[53]. The linear momentum operator has the isotopic form (2.36). The fundamental 
isocommutation rules are then given by (2.37). The operator isoalgebra 6(3) with 
generators f i k  = Eki j rh i$ j  is then given by 

A A A  A A A  - 
6(3): [ M i , M j ]  = M i T k f j - f i j p h i = i i ? $ * & i k ,  e/ j= E i j k z ,  (3.43) 

namely the product of the algebra is generalized, but the structure constants are the 
conventional ones. The above results illustrates again the abstract identity of quantum 
and hadronic mechanics, this time in one of its most fundamental symmetries. The 
classical realization of so(3) is formally identical to the above operator one with 
a unique interconnecting map (see [61b] for details). 
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The isocenter of sb(3) is characterized by the isocasimir invariants 

C'O' = 1, C'2' = fii = fi * fi = 1 f i k f f i k .  
k = 1 , 2 . 3  

(3.44) 

Note the non-linear-non-local-non-canonical character of isotransformations (3.42) 
owing to the unrestricted functional dependence of the diagonal elements g k k .  Note 
also the simplicity of the final results. In fact, the explicit symmetry transformations of 
separation (3.40)'are provided by just plotting the given g k k  values into transforma- 
tions (3.42) without any need of any additional computation. 

Despite this simplicity, the implications of the above results are nontrivial. First, the 
Lie-isotopic theory permits the identification for the first time on record to our 
knowledge of the universal symmetry for the space-component of all infinitely pos- 
sible Riemannian metrics, such as the space component of the Schwarzschild line 
element 

dr2 = (1 - M / r ) -  dr2 + r2 do2 + r2 sin2 6 d 4 ,  (3.45) 

which results to be isomorphic to the rotational symmetry and which will be extended 
in the next section to the full space-time metrics. 

Moreover, the isounit r^ >O permits a direct representation of the non-spherical 
shapes, as well as all their deformations. By recalling that 0(3) is a theory ofrigid 
bodies, d(3)  results to be a theory of deformable bodies [53] with fundamentally novel 
physical applications in the classical mechanics, nuclear physics, particle physics, 
crystallography, and other fields [61,72]. 

On mathematical grounds, we have equally intriguing novel insights. First, the 
Lie-Santilli isotheory disproves the rather popular belief that the rotational symmetry 
is broken for the ellipsoidical deformations of the sphere. In fact, the symmetry of the 
latter merely results to be a more general realization 6(3) of the rotational symmetry 
O(3), 6(3) % O(3). 

In addition, the rotational symmetry also results to be the symmetry of paraboloids. 
To see this occurrence, one must first understand the background isogeometry 
8,,,(t, 8, @) which unifies all possible conics in E ( t ,  6,%) [61a], as mentioned in 
section 2.3. In fact, the geometric differences between (oblate or prolate) ellipsoids and 
(elliptic or hyperbolic) paraboloids have mathematical sense when projected in the 
conventional Euclidean space E (r, 6, %). However, all these surfaces are geometrically 
unified with the perfect isosphere in 8(?, 8, @). 

These occurrences permit the geometric and algebraic unification of 0(3) and 
O(2.1), as well as of all their infinitely possible isotopes. In fact, the classification of all 
possible isosymmetries 6 (3), achieved in the original derivation [53], includes: 

(1) The compact 0(3) symmetry evidently for 8 = 6 = diag. (1, 1, 1); 
(2) The noncompact O(2.1) symmetry for 8 = diag. (1, 1, -1); 
(3) The isodual Od(3) of 0(3)  holding for 8 = diag. ( - 1, - 1, - 1); 
(4) The isodual Od(2.1) of O(2.1) holding for 8 = diag. ( - 1, - 1, 1); 
(5) The infinite family of compact isotopes 6(3) z 0(3)  for 6 = diag. (b: ,  b;,  b:), 

(6) The infinite family of non-compact isotopes d(2.1) % O(2.1) for 6 = diag. 
b k  >@ 

(b?, b i ,  -%); 
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(7) The infinite family of compact isodual isotopes dd(3) z Od(3) for 8 = diag. 

(8) The infinite family of isodual isotopes Od(2.1) z Od(2.1) for 8 = diag. 
( -b:, - b:, -bi);  

( 4:, -bi ,  b i ) .  

Even greater differences between the Lie and Lie-Santilli theories occur in their 
representations because of the change in the eigenvalue equations due to the non- 
unitarity of the map indicated in section 3.2, from the familiar form H $  = Eo$, to the 
isotopic form H * $ = I? * $ E E $ ,  Eo # E), thus implying generalized weights, gener- 
alized Cartan tensors and other structures studied earlier. The first differences emerge 
in the spectrum of eigenvalues of 6(2) and O(2). In fact, the o(2) algebra on a conven- 
tional Hilbert space solely admits the spectrum M = 0, 1,2, 3 (as a necessary condi- 
tion of unitarity). For the covering 6(2) isoalgebra on an isohilbert space with isotopic 
element T = Diag. (gl 1, gZ2), the spectrum is instead given by M = g;,”’ g;;l2 M 
and, as such, it can acquire continuous values in a way fully consistent with the 
condition, this time, of isounitarity. For the genera1 6(3) case see also the detailed 
studies of refs [61b]. 

Similar structural differences exist between the spectrum of eigenvalues of su(2) and 
sC(2). In fact, the unitary irreducible representations of su(2) characterize the familiar 
discrete spectrum 

J 3 $ = M + ,  J ’ $ = J ( J + l ) + ,  M = J , J - l )  . . . )  - J ,  J = O , i , l ,  ... 
(3.46) 

Three classes of irreducible isorepresentation of sii(2) were identified in [62] which, for 
the adjoint case, are given by the following generalizations of Pauli’s matrices: 

(1) Regular isopauli matrices 

(3.47a) 

[Ci, oj] = C i  T 6 j  - 6 j  T ci = i 2A”’ eijk Ck. (3.47b) 
A -  A,. 

A = det T = g l l  g22 > O .  (3.47c) 

(2) Irregular isopaufi matrices 

(3.48a) 

[6;:6;] = 2i6;, [Z2:Z3] = 2iAZ1, [Z3,0;] = 2iAY2, (3.48b) 

T=diag.(gll ,g2’) >O, Z 3 * 1 6 )  = i -Al6) ,  6’*16)=A(A+2)1b).  
(3.48~) 
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(3) Standard isopauli matrices 

= diag. (1, A-'), 1 # 0, A = det T = 1, [8.:l,&;] = i ei jk8; ,  (3.49b) 

??''*IF) = f IF), Y i * l F )  = 3 ) F ) .  (3.49c) 

The primary differences in the above isorepresentations are the following. For the 
case of the regular isorepresentations, the isotopic contributions can be factorized 
with respect to the conventional Lie spectrum, as expected from the nonunitary 
character of the map su(2) -+ sii(2). For the irregular case this is no longer possible. 
Finally, for the standard case we have conventional spectra of eigenvalues under 
a generalized structure of the matrix representations, as indicated by the appearance 
of a completely unrestricted, integro-differential function 1. 

The regular and irregular representations of b(3) and sii(2) are applied to the 
angular momentum and spin of particles under extreme physical conditions, such as 
an electron in the core of a collapsing star. The standard isorepresentations are 
applied to conventional particles evidently because of the preservation of conven- 
tional quantum numbers. The appearance of the isotopic degrees of freedom then 
permit novel physical applications, that is, applications beyond the capacity of 
Lie's theory even for the simpler case of preservation of conventional spectra (see 
Section 3.7). 

The spectrum-preserving map from the conventional representations Jy of a Lie- 
algebra L with metric tensor g to the covering isorepresentations & of the Lie-Santilli 
isoalgebra e with isometric y  ̂ = $9 and isounit I^ = ?-'  is important for physical 
application. It is called the Klimyk rule [27]  and it is given by 

G = J y P ,  P = N I ^ ,  N E ~ ,  (3.50) 

under which Lie algebras are turned into Lie-Santilli isoalgebras 
A , .  

J .J .  I J  - J .J .  J I  = C k . J k  V (4.4 - f i * f i ) N -  ' ? = C j j k 3 k N - l  $, (3.5 1) 

that is, 

(3.52) 

thus showing the preservation of the original structure constants. 
However, by no means, the Klimyk rule can produce all Lie-Santilli isoalgebras, 

because the latter are generally characterized by non-unitary transforms of conven- 
tional algebras, with a general variation of the structure constants. 

Nevertheless, the Klimyk rule is sufficient for a number of physical applications 
whenever the preservation of conventional quantum numbers is important, because 
the rule permits the identification of one specific and explicit form of standard 
isorepresentations with 'hidden' degrees of freedom represented by the isotopic 
element ? available for basically novel applications. For instance, the standard 
isopauli matrices permit; the reconstruction of the exact isospin symmetry in nuclear 
physics under electromagnetic and weak interactions [62] ;  the construction of the 
isoquark theory with all conventional quantum numbers, yet an exact conjinement 
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(with an identically null probability of tunnel effects for free quarks because of the 
incoherence between the interior and exterior Hilbert spaces) [68]; the proof that the 
Bell’s inequality and von neumann Theorem do  not hold for the isotopic representa- 
tion of su(2), thus permitting a ‘completion’ of quantum mechanics precisely of 
isotopic character [61b]; and other novel applications. 

3.6. Isotopies and isodualities of the Lorentz and Poincark symmetries 

Consider the line element x2 = xw qavxv, p ,  v = 1,2,3,4,  in Minkowski space 
M ( x ,  q, %) with local co-ordinates x = { x q }  = {XI, x2, x3, x4}, x4 = cot  (co being the 
speed of light in vacuum), and metric q = diag. (1, 1, 1, - 1) over the reals %(n, +, x ). 
Its simple invariance group of linear transformations is the six-dimensional group 
L(3.1) first identified by Lorentz in 1905 [34], which is characterized by the (ordered 
sets of) parameters given by the Euler’s angles and speed parameter, w = ( w k )  = 
{ 8, u}, k = 1,2,  . . . ,6, and of generators X = { X,}  = {MwV = x, p v  - x, P p } ,  in their 
known fundamental representation (see, e.g., [31,32]). The most general possible 
symmetry group of linear transformations leaving invariant the separation 

(x - yIw qwv (x - YY,  q = (qpv) = diag. (1 ,L 1, - I), x, Y ,  E M ( x ,  ul, %) (3.53) 

is the ten-dimensional group P(3.1) = L(3.1) x T(3.1) first identified by Poincare [45] 
in 1905, where T(3.1) is the group of translations with parameters a = {aw} .  

In three of his most important papers, Santilli [S l ,  64,671 introduced a step-by-step 
generalization of the historical papers by Lorentz and Poincare, by achieving the 
universal symmetry of the most general possible, integro-differential, space-time 
separation with an arbitrarily non-linear dependence on the co-ordinates x, velocities 
1, accelerations x and any other needed interior quantity, such as density p ,  temper- 
ature z, index of refraction n, etc., 

x i = x w f i q v ( x , l ,  %, p ,  z, n ,  ...) xv, det 4 # 0, f i  = fit, (3.54) 

which, for the case sig f i  = sig q, resulted to be locally isomorphic to the conventional 
PoincarC symmetry. 

More specifically, in the first paper [Sl]  Santilli introduced for the first time the 
isotopies L(3.1) of the Lorentz symmetry L(3.1, today called the Lorentz-Santilli 
isosymmetry, and identified the consequential isotopies of the special relativity for 
interior dynamical problems, today called Santilli’s isospecial relatiuity. In the second 
paper [64] Santilli provided a detailed study of the isotopies B(3.1) of the Poincare- 
symmetry P(3.1), today called the Poincarh-Santilli isosymmetry, and presented 
a number of preliminary experimental verifications. In the third paper [67] Santilli 
constructed the isotopies P(3.1) = Se(2.c) 2 p(3.1) of the spinorial covering 
Y(3.1) = SL(2.C)x T(3.1) of the Poincare symmetry P(3.1) = L(3.1)XT(3.1) and 
their isoduals, applied the new theory to a novel understanding of the synthesis of 
neutrons from protons and electrons as occurring in the core of stars, and predicted 
a new form of subnuclear energy he called hadronic energy. Comprehensive operator 
studies were then presented in monographs [61] and their classical counterpart in 
monographs [62]. It should be finally indicated that Santilli is the sole author of 
published contributions at this writing, to our best knowledge, on the isotopies of the 
Minkowski space, the rotational, Lorentz and Poincark symmetry and the special 
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relativity. All other contributions which have appeared in the published literature deal 
with applications of the preceding basic isotopies. 

Needless to say, to avoid a prohibitive length, in this section we can only indicate 
the most salient aspects of Santilli's space-time isosymmetries, and merely list in the 
following subsection some of the important references on applications. 

Suppose that a well-behaved and diagonal but otherwise arbitrary deformation 
fi(x,i,  ...) of the Minkowski metric q is assigned. The explicit form of the simple, 
six-dimensional non-linear invariance of generalized line element xP ijPv (x, i, . . . ) xv 
can be constructed by following the space-time version of Steps 1-5 of the preceding 
subsection. 

Step 1 is the identification of the fundamental isotopic element '? via the factoriz- 
ation of the Minkowski in the deformed metric, f i  = T q  and the assumption of 
I^ = p- '  as the fundamental new unit of the theory. 

Step 2 is the lifting of the conventional numbers into the isonumbers via the 
isofields @(h, +, *), h = nf ,  where f is the same generalized unit of Step 1 (which is 
different than that of 6(3) because of the different dimension of the isounit). 

Step 3 is the construction of the isospaces in which the isometric f i  is properly 
defined, which are given by the isominkowski spaces of Class 111 (section 2.3) 

hTII,(i,fi,@):fi= 'f(x,i,x, . . . )q ,  ' f=diag.(g11,g22,g33,g44) , '?='?t ,  

det T # 0. (3.55a) 

2=(i@ij(x,i,X, ...) X V ) f E @ ,  a = { ? }  ={xP}, 

iP = fiP"X A v  = P V .  (3.55b) 

Note that all possible (3 + 1)-dimensional Riemannian metrics g (x) are particular 
cases of the much more general isominkowskian metric $(x, i, 2, p, z, n ,  ...). How- 
ever, the Riemannian spaces R(x, g(x), %) are not particular cases of the isominkow- 
skian ones Q(i, fi ,  @) because the units of the two spaces are different (and also 
because the former is curved) with respect to the trivial unit I while the latter is isoflat 
with respect to the isounit f). 

Step 4 is the construction of the Lorentz-Snntilli isosymrnetry E(3.1) [Sl], which can 
be characterized by the isotransformations 

O(3.1): x '̂ = A(&) * i = A(w)?, K = A f (3.56) 

verifying the properties 

Ktf i j i  = AfiAt = Ifif, or At f iA  = AfiAt = 6 ,  (3.57a) 

DEtK=[De t ( f fp ) ] f=  kf. (3.57 b) 

It is easy to see that E(3.1) preserves the original connectivity properties of L(3.1) 
(see [61b] for a detailed study). The connected component SO(3.1) of t(3.1) is 
characterized by DEt = + I^ and has the isogroup structure [Sl] 

Sd(3.1): A(&) = fi eP**.  = { k = l ~ , , , , 6 e i x k T w k ) f ,  (3.58) 

where 8 = wk f and the w's are the conventional parameters, 8, = Xk are the conven- 
tional generators in their fundamental representation and the isotopic element 'f is 

k = 1 , 2 ,  ... ,6 
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that identified in Step 1. The discrete part of L(3.1) is characterized by D&t A = - 1, 
and it is given by the space-time isoinuersions [Sl] 

(3.59) 4 L A  n * x = n x = ( - r , x  ), t * x ^ = z x = ( r , - x 4 ) .  

Again, under the assumed conditions for $, the convergence of infinite series (3.58) 
is ensured by the original convergence, thus permitting the explicit calculation of the 
symmetry transformations in the needed explicit, finite form. Their space components 
have been given in the preceding section 3.5. The additional Lorentz-Santilli isoboosts 
can also be explicitly computed, yielding the expression for all possible isometrics 

$1 = XI, x’2 = x2, (3.60a) 

f i  c511 

i3 = x3 cash EU(933 944)1/21 - x4944(933 g44)1’2sinh c4933 944)”21 

(3.60b) -112 112 .. 
= 9(x3 - 933 944 Px4), 

= - x3933(933 944)-1/2SinhCu(g33 944)1’21 + x4cosh CU(933 944)1’21 

= ?(x4 - 9:/3” 944 P X 3 L  (3.60~) -112 - 
where 

x4 = CO t ,  P = u/cO, P2 = uk g k k  Uk/CO 944 CO 

cosh [v(g3, g44)1/2] = 9 = (1 - 82)-1/2, sinh [ ~ ( g ~ ~  g44)1/2] = ? f .  

(3.6 1 a) 

(3.61b) 

Again, one should note: (A) the unrestricted character of the functional dependence of 
the isometric f i ;  (B) the remarkable simplicity of the final results whereby the explicit 
symmetry transformations are merely given by plotting the values g,,, in equa- 
tions (3.60); and (C) the generally non-linear-non-local-non-canonical character of 
the isotransforms originating from the unrestricted functional dependence of the 
quantities grr.  

The isocommutation rules of the Lorentz-Santilfi isoalgebra sô  (3.1) when the 
generators fipv are in their regular representation can also be readily computed and 
are given by [Sl] 

(3.62) o^(3.1): [ ~ f i , v : A a p ~  = fiva f i p p  - $pa f i p v  - fivp f i = p  + f ipp a a v  

with isocasimirs 

= 1, = + M P V $ f i P  = M * f i  - fl*& (3.63a) 

(3.63 b) 

(3.63~) 

The classification of all possible isotopes SO(3.1) was also done in the original 

(3.64) 

e(3L+E,vPaM PV $fi P a  = -fi*jQ, A = {fi127 fi23, M31}, 

fl = { f i O l ,  M 0 2 ,  f i 0 3 ) -  

construction [Sl] via the realizations of the isotopic element 

$ = diag.( f b : ,  f b:, & b:, f bi),  b, >O, p = 1,2,3,4,  

where the b’s are the characteristic functions of the interior medium, resulting in: 

(1) The conventional orthogonal symmetry SO(4) for 7’ = diag. (1, 1,1, - 1); 
(2) The conventional Lorentz symmetry SO(3.1) for T = diag. (1, 1, 1, 1); 
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(3) the conventional de Sitter symmetry SO(2.2) for T = diag. (1,1, - 1, 1); 
(4) the isodual SO”(4) for T = diag. ( - 1, - 1, - 1, 1); 
(5) the isodual O“(3.1) for T = - diag. (1, 1, 1, 1); 
(6) the isodual SOd(2.2) for T = diag. ( - 1, - 1, 1, - 1); 
(7) the infinite family of isotopes Sb(4) z SO(4) for p = diag. ( b f ,  b i ,  b:, - bf ) ;  
(8) the infinite family of isotopes Sb(3.1) % SO(3.1) for 7 = diag. ( b f ,  b i ,  b:, b f ) ;  
(9) the infinite family of isotopes So(2.2) z SO(2.2) for ? = diag. ( - b f ,  b i ,  b;, bi);  
(10) the infinite family of isoduals Sb’(4) z SO”(4) for p = diag. ( - b:, b i ,  b i ,  bi);  
(11) the infinite family ofisoduals Sod(3.1) zSO(3.1) for p = - diag. ( b f ,  b:, bi, bf);  
(12) the infinite family of isoduals Sb”(2.2) z SO“(2.2) for T = diag. ( - b f ,  - 

b i ,  - b:, - b f ) .  

On the basis of the above results, Santilli [61] submitted the conjecture indicated in 
section 3.1 according to which all simple Lie algebra of the same dimension over a$eld 
of characteristic zero in Cartan classijication can be unijied into one single abstract 
isotopic algebra of the same dimension. This conjecture has remained unexplored 
beyond the cases N = 3 and 6. 

In the above presentation we have shown that the lifting of the Lorentz symmetry 
can be naturally formulated for Class 111. In fact, Santilli constructed in [Sl] the 
isotopies Sb(4) of the orthogonal group SO(4) of which So(3.1) is a particular case. 
Nevertheless, whenever dealing with physical applications, the isotopic element is 
restricted to be positive-definite, = + diag. (b f  , b;, b:, b:) >O, for the description of 
matter and negative-definite, p = - diag. (b;, b:, bg, b f )  <O, for the description of 
antimatter, thus restricting the isotopies to Sb(3.1) z SO(3.1) and Sb”(3.1) x 
SOd(3.1), respectively. 

The operator realization of the Lorentz-Santilli isoalgebra is the following. The 
linear four-momentum admits the isotopic realization (section 2.7) 

f i , * ~ $ ) =  - i t $ [$ )=  -iT;a,l$), 8 , = 8 / 8 ~ ,  (3.65) 

Also, one can show that 8,av = ylpv.  The fundamental relativistic isocommutation 
rules are then given by [61,63] 

cX ,̂;P̂ ,1 = ifi,,, ca,;avl = CpI,;fiv1 = 0, (3.66) 

The isocommutation rules for the generators ap fi ,  - P fi, are then given by 

(3.67) 

(where fipy_is the isoMinkowski metric), thus confirming not only the local isomor- 
phism SO(3.1) z SO(3.1) for all positive-definite p, but also their identity 
SG(3.1) = SO(3.1) at the abstract, realization-free level. 

One should note that the use of the generators At = aPfi, - a’$, with rules 
[ap ;@,I = i ~ 5 %  would imply the conventional structure constants in the isocommutation 
rules. 

The Poincark-Santilli isosymmetry p(3.1) = e(3 .1)  x p(3.1) and its isodual 
pd(3.1) = e”(3.1) x “ p(3.1) have been constructed in their classical [72] and operator 
[61, 641 forms as well as in their isospinorial forms P(3.1) = S e ( 2 . c )  x p(3.1) [67] .  
We here limit ourselves to a brief outline of the nonspinorial case mainly to illustrate 
the advances in the structure of isoalgebras and isogroups studied in this paper. 
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A generic element of p(3.1) can be written Â  = (A, h), ff E d(3.1), 12 E p(3.1) with 

(3.68) 

The realization important for physical applications is that via conventional gener- 
ators in their adjoint representation for a system of n particles of non-null mass ma 

isocomposition 

A/* R = (A!, a*') *(A, 12) = (A * &, a* + A! * a*'), 

X = [xk} = {fipv = C ( 2 a p  i 4 v  - R a v  B 4 p } 7  p p  = C f l u p } ,  k = 192, 7 10, 
a 4 

(3.69) 

and conventional parameters w = (wk} = (0, u, a}, where 0 represents the Euler's 
angles, u represents the Lorentz parameters, and a characterizes conventional 
space-time translations. 

The connected component of the Poincar&Santilli isogroup is given by 

(3.70) 

where the isotopic element and the Lorentz generators Mpv_have the same realiz- 
ation as for d(3.1). The primary different with isosymmetries Oq((3.1) is the appear- 
ance of the isotranslations 

$ ( 3 . 1 ) ~ 2 =  { e ~ a } * 2 = e ~ B 4 } * 2 = 2 + a ~ ,  p(3.1)*p^rO, (3.7 1) 

where the quantities Â ,, are given by 
- A  ,.A A -  

A r = g p @  + a U [ g , , , p a ] / 1 !  +aaapCCgpp,puI,ppI/2! + 4 . .  (3.72) 

The general Poincark-Santilli isotransformations are then given by [61, 72, 641, 

2 = A * a  Lorentz-Santilli isotransforms, (3.7 3a) 

2' = 2 + a R (x, i, x, . . . ), (3.73b) isotranslations, 

2' = A, * 2 = ( - r,  2"), space isoinversions, 

time isoinversions. 

(3.73c) 

(3.73d) 

The isocommutation rules of p(3.1) in the operator realizations indicated earlier are 

(3.74a) 

2 = fit * 2 = (t, - 24), 

[ f i p v : f i K p ~  = i ( i i v u  f i p p  - i l pa  f i pv  - i i v p  fiap + i ipp f iav)  9 

A * A  

[ f ipv;pa]  = i ( Q p a  p v  - i i v u  pp), [pp 9 pvI = 0, P, V, a, B = 1,2,3,4, (3.74b) 

where, again, the use of the generators C4(R:p^v - 2:apap) would yield isocommuta- 
tion rules in terms of the conventional structure constants. 

The isocenter is characterized by the isocasimirs 

C ' O L f ,  ~ " ' = p i = p p p p ~ r i c . ~ p * p v ,  (3.75a) 

CC2, = @i = @ wv, w p  = E p a p p  P * P O .  (3.75b) 

The restricted Poincark-Santilli isotransformations occur when the isotopic element 
f is a diagonal matrix with positive constant elements. 

The isodual PoincarSantil l i  isosymmetry pd(3. 1) is characterized by the isodual 
generators 2; = - gk, the isodual parameters +,d = - +k, and the isodual isotopic 
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element Td = - T,  resulting in the change of sign of isotransforms. This implies a novel 
law of universal invariant under isoduality which essentially state that any system which 
is invariant under a given symmetry is automatically invariant under its isodual. In 
turn, this law apparently permits novel advances in the study of antiparticles [61]. 

The main result outlined in this section can therefore be summarized via the 
following. 

Theorem 3.6 (Santilli [Sl, 641): The Poincart-Santilli isosymmetry p(3.1) constructed 
with respect to the Class I I I  isounit f = $-' is the universal symmetry for all possible, 
non-linear, non-local and non-canical separations 

( x  - y)" 4"" (x ,  i, x,  . . . ) ( x  - y)", 4 = Tq  , (3.76) 

As a first application, p(3.1) is the universal symmetry for all possible exterior (3 + 2)- 
dimensional gravitational models for matter with isounit f = [ f B r ( x ) ] -  ', where f,, 
originates from the factorization of the Riemannian metric g ( x )  = f g r ( x ) q ,  and for 
antimatter with the isounit fir = - fgr. In fact, as indicated earlier, all possible 
Riemannian metrics g ( x )  for matter are a particular case of the isominkowskian metric 
r ( x ,  i, x, ...), while the isodual Riemannian metrics for antimatter g d ( x )  = - g(x) 
yield the isodual isounit Tir [61b]. Note that the above results cannot be obtained on 
curved Riemannian spaces and require their necessary reformulation as isominkow- 
skian spaces which are isojlat with respect to TBr. 

Theorem 3.6 is however much broader than that inasmuch as it implies that p(3.1) 
is the universal symmetry for all possible interior gravitational models of matter and 
antimatter with Class I11 isometrics g (̂x, 1, x, . . . ) now computed with respect to the 
isounit 1 = [ T g r ( x ,  i, 2 ,  ...)I-', where TBr originates from the broader factorization 

The simplicity of this universal invariance should be kept in mind and compared 
with the known complexity of other approaches to nonlinear (let alone integro- 
differential) symmetries. In fact, the symmetry is merely given by plotting the TflP 
elements in isotransforms (3.60) or (3.70) without any need to verify anything, because 
the invariance of general separation (3.76) is ensured by Theorem 3.6. For numerous 
examples, see [61, 721. 

The verification of total conservation laws (for a system assumed as isolated from 
the result of the universe), is intrinsic in the very structure of the isosymmetry p(3.1). 
In fact, the generators are the conventional ones and, since they are invariant under 
the action of the group, they characterize conventional total conservation laws. The 
simplicity of reading off the total conservation laws from the generators of the 
isosymmetry should be compared with other rather complex proofs, e.g., those for 
conventional gravitational theories. 

The attentive reader has certainly noted that we have reviewed in this section the 
PoincarbSantilli isosymmetry for gravitation in its operator form. As a result, the 
Lie-Santilli isotheory has permitted a novel (not necessarily unique) resolution of the 
historical problem of quantization of gravity via the unijication of gravitation and 
relativistic quantum mechanics. As Santilli puts it [61b, Section 9.5.5, 'a consistent 
quantum gravity already exists. It did creep in unnoticed because it is embedded in the 
unit of conventional relativistic quantum mechanics'. 

In conclusion, the Lie-Santilli isotheory permits the remarkable unification in one, 
single isosymmetry p(3.1 of all possible linear or non-linear, local or non-local, 

$ ? j ( X , i , X ,  ...)= T g r ( X , i , X ,  . . . )q.  
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Hamiltonian or non-Hamiltonian, relativistic or gravitational, exterior or interior and 
classical or operator systems [664]. 

3.7. Mathematical and physical applications 

Lie’s theory is known to be at the foundation of virtually all branches of mathemat- 
ics. The emergence of intriguing and novel mathematical profiles from the Lie-Santilli 
theory is then unquestionable. 

With the understanding that mathematical studies are at their first infancy, the 
isotopies have already identified new branches of mathematics, such as: the new 
branch of number theory dealing with isonumbers; the new branch of functional 
isoanalysis dealing with p-operator special isofunctions, isotransforms and isodis- 
tribution; the new branch of topology dealing with the peculiar integro-differential 
topology of the Newton-Santilli mechanics; the new branch of the theory of manifold 
dealing with isomanifolds and their intriguing properties; the new branch of algebras, 
groups and their representations dealing with the Lie-Santilli isotheory; and so on. It 
is hoped that interested mathematicians will contribute to these novel mathematical 
advances which have been mainly identified and developed until now by physicists. 

Lie’s theory in its traditional linear-local-canonical formulation is also known to be 
at the foundation of all branches of contemporary physics. Profound physical implica- 
tions due to the covering, non-linear-non-local-non-canonical Lie-Santilli isotheory 
cannot therefore be dismissed in a credible way. 

With the understanding that these latter applications too are at the beginning and 
so much remains to be done, we here recall the following applications of the 
Poincare = - Santilli isosymmetry p(3.1) (see [61, 721 for details): 

(1) The universal invariance of all possible conventional gravitation outlined in the 

(2) The geometric unification of the special and general relativities. 
(3) The universal invariance for all possible interior extensions of relativistic and 

gravitational theories. 
(4) The reconstruction at the isotopic level of the exact SU(2)-isospin symmetry 

under electromagnetic and weak interactions via the use of the standard isopauli 
matrices (3.52) with 1’ = m,/m,; 

(5) An exact-numerical representation of Rauch’s interferometric measures on the 
4n-spinorial symmetry via the isotopies of Dirac’s equation invariant under 80 .1) ;  

(6) The first numerical representation of the total magnetic moment of few-body 
nuclei via the S6(3) symmetry and its representation of the deformation of the 
charge distribution of nucleons with consequential alteration of their intrinsic 
magnetic moments [69]; 

(7) Nonlocal representation of the Bose-Einstein correlation from first isotopic 
principles via the isominkowskian geometrization of the p - p  fireball in full 
agreement with the data from the UA1 experiments, while permitting a causal 
description of nonlocal interactions and the reconstruction of their exact Poin- 
care symmetry at the isotopic level [58, 81; 

(8) A quantitative representation of the attraction among the identical electrons of 
the electron pairing in superconductivity as originating from non-local-non- 
potential effects in outstanding agreement with experimental data [ 11; 

preceding subsection. 
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An exact-numerical representation of the behaviour of the meanlives of unstable 
hadrons with speed (which, as well known, are anomalous between 30 and 
100 GeV and conventional between 100 and 350 GeV for the KO-system) via the 
isominkowskian geometrization of the physical medium in their interior [7,8] ; 
Application to quarks theories via Klimyk rule on the standard isorepresenta- 
tions of S 8  (3) with conventional quantum numbers, exact confinement of 
quarks (permitted by the incoherence of the interior isohilbert and exterior 
Hilbert spaces), and other intriguing possibilities, such as the regaining of 
convergent perturbative series for strong interactions (which is possible when- 
ever I T I < 1) [ 6 8 ] ;  
A numerical representation of Arp’s measures on quasars redshift as being 
partly due to the decrease of speed of light in their chromospheres under 
isominkowskian geometrization [37]; 
A numerical representation of the joint redshift and blueshifts of pairs of 
quasars, particularly when proved via gamma spectroscopy to be physically 
connected to the associated galaxies, and prediction of a measurable isomin- 
kowskian redshift for sunlight at sunset [ 7 0 ] ;  
Application to local realism via the proof that Bell’s inequality, von Neumann’s 
theorem and all that are inapplicable (rather than ‘violated’) under isotopies 
(evidently because of the non-unitary structure of the lifting), thus permitting an 
isotopic completion of quantum mechanics much along the celebrated E-P-R 
argument [ 6 5 ] ;  
Application to q-deformations, discrete time theories and other ongoing studies 
via their axiomatization into a form invariant under their own time evolution 

Novel possibilities in theoretical biology, such as a quantitative representation 
of the growth of sea shells which, according to computer simulations, crack 
during their growth if subjected to the conventional Minkowskian geometry, 
while admitting a normal growth under the covering isominkowskian geometry 
of Class I11 (the latter one being needed to represent bifurcations which require 
inversions of time) [60]. 
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