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1.1 Comments to the Reader – Why These Notes?

I was the first graduate student of Prof. Katsumi Nomizu back in
1961. He and Prof. Soshichi Kobayashi had just finished their wonderful
book: Foundations of Differential Geometry and for my thesis I was im-
mersed in Connection Theory. My career over the next 35 years, however,
was essentially a career in undergraduate teaching . And my love for mathe-
matics grew more and more over these years. Besides the book of Kobayashi
and Nomizu I was constantly referring to the remarkable book of Helgason:
Differential Geometry, Lie Groups and Symmetric Spaces. When I reached
70 years, I knew my days of teaching undergraduates were coming to an end.
Back in 1981 I took a sabbatical at the Vatican Observatory, and I remained
in contact with that remarkable group of observational and theoretical as-
tronomers. Thus, when I retired from teaching it was natural to become one
of the staff at the Vatican Observatory. That was 16 years ago, and in that
period I began to write about Lie Algebras.

When I was in the first year of graduate studies, I can remember my
attempts to read some standard treatments of certain areas of mathematics.
The word “read”, of course, took on a completely different significance. I
can remember spending hours trying to understand just one page. Too much
background was presumed by the author [which of course he/she had a perfect
right to assume in the context in which he/she was writing] which background
I simply did not yet have. I suppose one can say that this has been the story
of my mathematical career — filling in backgrounds in many areas. However
I had an ideal in mind: could not I fill in the background for the reader
as I developed this area of mathematics? Mathematics is exciting, full of
pleasure, and very satisfying. Indeed it is one of the most truly satisfying
experiences of our human condition. And I wanted to expose in this manner
this beautiful episode that the title describes.

Of course, I cannot start from the “beginning ”, wherever and what-
ever that elusive concept may mean. And the scourge of verbosity is always
lurking around ominously. Indeed Ruelle [R] identifies parsimony as one of
the necessary traits of a mathematician. But there are many layers in that
word “mathematician”, and I do hope that the layer on which I am focusing
I will be generous with my parsimony for my reader.

I basically studied three books: Jacobson [J], Fulton and Harris
[F&H], and Knapp [K] — giant and classical treatises and textbooks on Lie
Algebras. (I also dipped a little into Bourbaki [B]). While immersing myself
in these books, I began to write the following notes. My main purpose was
to be as explicit as I could be. This led to a verbosity which is intolerable in
advanced level mathematics textbooks. Phrases such as: “it is easily shown”



or “this result follows easily from” masked many difficult statements. And
thus I started “filling in these gaps” in order better to understand Lie Al-
gebras, and for me it was the only way I was to understand the material.
Thus if anyone who already understands this material should start reading
these notes, he/she can easily skip them. But maybe many students would
appreciate these expanded explanations and analyses. Certainly they were
very helpful to me.

And thus these notes for a good while just remained as something
very personal to me. But along came the internet and it was suggested by
my colleagues at the Vatican Observatory that I make them available on
that medium. Of course, no editor or reviewer would tolerate such verbosity.
However I asked a mathematician friend of mine, Jack Lutts, to join me
in this project. His career was very similar to mine. He taught all his
professional life at a not a very high level institution, where many students
were adults holding down jobs. And he did a good degree at the University
of Pennsylvania under C.T. Yang. His primary jobs in our collaboration have
been to be a proof reader and an editor. Thus he has relentlessly checked
the accuracy of my mathematics, making corrections where needed, and often
suggesting rewordings when my phraseology was not clear or was too verbose
or ungrammatical. Lutts adds that he has been a learner as well, rising to
frequent challenges to review what he once knew better than he does now
and discovering relationships that he never had a chance to learn during his
math teaching career.

Now with our endeavors on the Web Page of the Vatican Observatory the
whole world can access them [but not change them] and where struggling
young mathematicians might prosper with the verbosity of the exposition
of these notes. Also we are certain that any mistakes or ambiguities in our
exposition and any gaps or errorts in any proofs would be eagerly pointed out.
and we welcome any suggestions from our readers. In a sense we are putting
out these notes for anyone who wishes to review and suggest clarifications
and emendations.

But our hope is that we can lead a reader to savor a rather substantial
piece of mathematics with the same pleasure that we had while thinking
through and writing this exposition. And we hope that assuming a substan-
tial course in undergraduate Linear Algebra will not be too onerous for our
readers. [Of course, we will make explicit just what facts and results we will
be using from Linear Algebra, but we will not attempt to verify or justify
them. We do, however, give some brief explanations of the terms we use in
several appendices located at the end of this work.]
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Thus we welcome our readers to many hours of pleasurable mathematics.

2.1 Our starting point: What is a Lie algebra?

The Structure of a Lie Algebra.

The structure of a Lie algebra gives a set ĝ three operations:

(1) A binary operation of addition:

ĝ × ĝ −→ ĝ
(a, b) 7−→ a+ b

with the properties that give ĝ the structure of an abelian
group. [The identity of the group is, of course, written as 0.]

(2) A binary multiplication operation called a bracket product:

ĝ × ĝ −→ ĝ
(a, b) 7−→ [a, b]

that is anticommutative

[b, a] = −[a, b]

and satisfies the Jacobi identity:

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

[Thus a Lie algebra is non-associative.]

(3) A scalar multiplication operation:

lF× ĝ −→ ĝ
(α, c) 7−→ αc

where lF is a field.

Now, these three operations are tied into one another in the following
manner. Bracket multiplication distributes over addition on the left and on
the right [i.e., it is bilinear with respect to addition], giving us the structure
of a non-commutative, non-associative ring. Thus
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[a, b+ c] = [a, b] + [a, c] and [a+ b, c] = [a, c] + [b, c]

Scalar multiplication combines with addition to give the structure of a
linear space over lF. [Several things should be pointed out here. First, the
only fields of scalars that we are interested in will be the real numbers and
the complex numbers. Second, it should be noted out that we are interested
in only finite dimensional linear spaces over these fields.. These limiting
conditions are very important and our readers, we hope, will forgive us if
we often remind them of these points.] Scalar multiplication is bilinear with
respect to bracket multiplication, giving to the entire structure that of an
algebra. Thus

α[a, b] = [αa, b] = [a, αb]

The structure that we will be primarily interested in is that of a semisim-
ple real Lie algebra. However the concept of “semisimple” does not depend
on the field of scalars. Thus for real Lie algebras and complex Lie algebras
we have the same definition. It depends on the concept of the solvable radical
of a Lie algebra. Thus we are led to the notion of a solvable Lie algebra, and
along with this notion, to that of a nilpotent Lie algebra. These depend on
two natural series of subspaces of any Lie algebra — the derived series and
the lower central series. All these terms will be defined and exemplified in
what follows.

2.2 The Derived Series and the Lower Central Series

2.2.1 Ideals. Before we identify these objects, however, we need to de-
fine some other important objects of a Lie algebra. The symbol [ŝ, t̂] means
the linear space generated by taking all possible bracket products [a, b], a ∈ ŝ
and b ∈ t̂, where ŝ and t̂ are subspaces of ĝ. A subalgebra is a subspace ŝ in
which the brackets close, i.e., where [ŝ, ŝ] ⊂ ŝ. If ŝ is a subspace of ĝ, then ŝ
is an ideal if [ŝ, ĝ]⊂ ŝ. [Thus every ideal is also a subalgebra.] A Lie algebra
is abelian if [ĝ, ĝ] = 0, that is, if all brackets in ĝ are 0. The center ẑ of a Lie
algebra ĝ is the subspace ẑ such that [ẑ,ĝ] = 0. Since 0 ∈ ẑ, this means that
the center is an ideal. We remark that every Lie algebra ĝ has two ideals,
which are called improper ideals: ĝ itself (since [ĝ, ĝ]⊂ ĝ), and the subspace
0 [since [0, ĝ] = 0, as is true in any ring].

Now given a Lie algebra ĝ, we define the derived series as:

D0ĝ := ĝ
D1ĝ := [ĝ, ĝ]

D2ĝ := [D1ĝ, D1ĝ]
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D3ĝ := [D2ĝ, D2ĝ]
. . .

Dk+1ĝ := [Dkĝ, Dkĝ]
. . .

We define the lower central series as

C0ĝ := ĝ
C1ĝ := [ĝ, ĝ] = D1ĝ
C2ĝ := [C1ĝ, ĝ]
C3ĝ := [C2ĝ, ĝ]

. . .
Ck+1ĝ := [Ckĝ, ĝ]

. . .

2.2.2 The Lower Central Series. We should make some remarks
at this point. The lower central series is just the process of repeating the
bracket multiplication in ĝ. Thus C3ĝ = [C2ĝ, ĝ] = [[[ĝ, ĝ], ĝ], ĝ] means
that we are just taking all expressions generated by three products from ĝ:
[[[a0, a1], a2], a3] for a0, a1, a2, a3 in ĝ. We emphasize that, because of a lack
of associativity, we have chosen to perform these multiplications by multi-
plying the next element always on the right. We remark that we can define
an analogous series of multiplications in any associative algebra. However, as
we shall see, the non-associativity of a Lie algebra gives in the derived series
special information which is not part of an analogous concept in associative
algebras. More about this later.

Also, it does not matter if we would define the lower central series by
bracketing ĝ on the right (as above) or by bracketing ĝ on the left in the
following manner:

C0ĝ := ĝ
C1ĝ := [ĝ, ĝ] = D1ĝ
C2ĝ := [ĝ, C1ĝ]
C3ĝ := [ĝ, C2ĝ]

. . .
Ck+1ĝ := [ĝ, Ckĝ]

. . .

Since we have anticommutativity in a Lie algebra, i.e., since [b, a] = −[a, b],
and since we are constructing linear spaces, which means that every element
and its negative must appear in the linear space, both sets of products given
above give the same elements when all the elements generated are collected
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into a set. Thus there is no ambiguity in the definition of the symbol Ck+1ĝ =
[Ckĝ, ĝ] = [ĝ, Ckĝ].

It is immediate from induction that Ckĝ is an ideal for all k >= 0. We
have C0ĝ = ĝ, and we know that ĝ is an ideal. Let us assume that Ck−1ĝ
is an ideal. Then [Ckĝ, ĝ] = [[Ck−1ĝ, ĝ], ĝ]. But by assumption Ck−1ĝ is
an ideal. Thus [[Ck−1ĝ, ĝ], ĝ] ⊂ [Ck−1ĝ, ĝ] = Ckĝ. We can conclude that
[Ckĝ, ĝ] ⊂ Ckĝ, which says that Ckĝ is an ideal. We observe that this also
means that Ckĝ ⊂ Ck−1ĝ.

2.2.3 The Derived Series. It is also immediate that D1ĝ is an ideal
since D1ĝ = C1ĝ. We also can assert that Dkĝ is an ideal for all k >= 0, but
we need the Jacobi identity to prove this. (This indicates that the concept
of the derived series is deeper and more fundamental than the concept of the
lower central series. We shall see this theme develop in the following pages.)
In fact we can prove that if ŝ is an ideal, then [ŝ, ŝ] is also an ideal. Thus
we need to show that [[ŝ, ŝ], ĝ] ⊂ [ŝ, ŝ]. Now let a1, a2 ∈ ŝ and c ∈ ĝ. We
have [[ŝ, ŝ], ĝ] generated by elements of the form [[a1, a2], c]. Using the Jacobi
identity, we have [[a1, a2], c] = [[a1, c], a2]+[[c, a2], a1]. But ŝ is an ideal. Thus
[a1, c] ∈ ŝ and [c, a2] ∈ ŝ. Thus [[a1, c], a2] ∈ [ŝ, ŝ] and [[c, a2], a1] ∈ [ŝ, ŝ].
Since [ŝ, ŝ] is a subspace, the sum of two elements in [ŝ, ŝ] is also in [ŝ, ŝ].
We thus have [[a1, a2], c] ∈ [ŝ, ŝ]. We conclude that [[ŝ, ŝ], ĝ] ⊂ [ŝ, ŝ], which
says that [ŝ, ŝ] is an ideal. Now let us assume that Dk−1ĝ is an ideal. But
Dkĝ = [Dk−1ĝ, Dk−1ĝ]. By induction it is now immediate that Dkĝ is an
ideal. We also observe that since every ideal is also a subalgebra, we have
that Dkĝ ⊂ Dk−1ĝ.

2.2.4 Solvable Lie Algebras. Nilpotent Lie Algebras. Now we
can define a solvable Lie algebra and a nilpotent Lie algebra. A solvable Lie
algebra ŝ is one such that for some k >= 0, Dkŝ = 0. Trivially 0 is a solvable
Lie algebra since D00 = 0. A nilpotent Lie algebra n̂ is one such that for some
k >= 0, Ckn̂ = 0. Trivially 0 is also a nilpotent Lie algebra since C00 = 0.

More observations can be made. If â 6= 0 is an abelian Lie algebra, then
â is a nilpotent Lie algebra, since C1â = [â, â] = 0; but also â is solvable
since D1â = C1â = 0. If Ckĝ = 0 but Ck−1ĝ 6= 0, then ĝ has non zero center,
for [Ck−1ĝ, ĝ] = Ckĝ = 0 means that Ck−1ĝ ⊂ ẑ, where ẑ is the center of ĝ.
Thus every nonzero nilpotent Lie algebra has a nonzero center. Also if ŝ 6= 0
is a solvable Lie algebra, then for some k > 0, Dkŝ = 0 and Dk−1ŝ 6= 0. But
Dkŝ = [Dk−1ŝ, Dk−1ŝ] = 0 says that every nonzero solvable Lie algebra has
an nonzero abelian ideal, which is nilpotent.

2.3 The Radical of a Lie Algebra We now want to prove a most
important observation, that every Lie algebra ĝ has a maximal solvable ideal
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r̂ in the sense that any other solvable ideal in ĝ must be contained in r̂.[Recall
that we are treating only finite dimensional Lie algebras.] We begin this proof
by letting r̂ be a solvable ideal of maximum dimensionality, and by letting
ŝ be any other solvable ideal. We are then led to consider the linear space
r̂ + ŝ.

2.3.1 The Sum and Intersection of Ideals are Ideals. Thus we
consider two linear subspaces r̂ and ŝ of a Lie algebra ĝ, and their sum r̂+ ŝ.
This, of course, means that we are taking the sum of every two elements a
and b, a in r̂ and b in ŝ. But also we want to take the bracket product of all
these sums and generate a Lie subalgebra. This means that if a1 and a2 are
in r̂ and b1 and b2 are in ŝ, then [a1 + b1, a2 + b2] is in [r̂, r̂] + [ŝ, ŝ] + [r̂, ŝ].
Now if r̂ and ŝ are subalgebras, then we can affirm that [a1 + b1, a2 + b2] is in
r̂+ ŝ+[r̂, ŝ]. Only if either r̂ or ŝ is an ideal can we affirm that [a1+b1, a2+b2]
is in r̂ + ŝ, which means that [r̂ + ŝ, r̂ + ŝ] ⊂ r̂ + ŝ, and thus under these
conditions is r̂ + ŝ a subalgebra.

But we can assert more, namely that if r̂ and ŝ are ideals, then this linear
space r̂ + ŝ is an ideal in ĝ. For let a be in r̂; b be in ŝ; and c be in ĝ. Now
[a+ b, c] = [a, c] + [b, c]. But since r̂ and ŝ are ideals, [a, c] ∈ r̂ and [b, c] ∈ ŝ,
and thus [a, c] + [b, c] ∈ r̂ + ŝ, from which we can conclude that r̂ + ŝ is an
ideal. As a corollary, we can also assert that r̂ and ŝ are ideals in r̂ + ŝ, for
[r̂, r̂+ ŝ] ⊂ [r̂, ĝ] ⊂ r̂ since r̂ is an ideal in ĝ; and likewise [ŝ, r̂+ ŝ] ⊂ [ŝ, ĝ] ⊂ ŝ
since ŝ is an ideal in ĝ.

Now we want to show that r̂ ∩ ŝ is also an ideal in ĝ if r̂ and ŝ are ideals
in ĝ. It is obviously a subspace. For let a be in r̂ ∩ ŝ. Thus a is in r̂ and a
is in ŝ. Now let c be in ĝ. Then [a, c] is in [r̂ ∩ ŝ, ĝ]. But [a, c] is in [r̂, ĝ],
and [a, c] is in [ŝ, ĝ]. We conclude that [a, c] ∈ [r̂, ĝ] ∩ [ŝ, ĝ]. But because
r̂ and ŝ are ideals, then [a, c] ∈ r̂ ∩ ŝ. We conclude that [r̂ ∩ ŝ, ĝ] ⊂ r̂ ∩ ŝ,
and thus that r̂ ∩ ŝ is an ideal in ĝ. As a corollary we conclude also that
[r̂ ∩ ŝ, r̂] ⊂ [r̂ ∩ ŝ, ĝ] ⊂ r̂ ∩ ŝ, and [r̂ ∩ ŝ, ŝ] ⊂ [r̂ ∩ ŝ, ĝ] ⊂ r̂ ∩ ŝ, which means
that r̂ ∩ ŝ is an ideal in r̂ and r̂ ∩ ŝ is an ideal in ŝ.

2.3.2 Homomorphisms of Lie Algebras and Quotient Lie Algebras.

We also need to examine homomorphisms between Lie algebras ĝ and ĥ. Let
φ : ĝ −→ ĥ be a linear map between ĝ and ĥ. This map φ is also a homomor-
phism of Lie algebras ĝ and ĥ if for every a and b in ĝ, φ[a, b] = [φ(a), φ(b)],
i.e., φ preserves brackets. The properties of the map φ — being a surjective
map, an injective map, a bijective map — carry over to the usual terms of
surjective homomorphism, injective homomorphism, and isomorphism. If the
target space ĥ is equal to the domain space ĝ, the vocabulary changes from
homomorphism to endomorphism, and from isomorphism to automorphism.
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Obviously the homomorphic image of a Lie algebra is a Lie subalge-
bra of the target Lie algebra. Equally obvious is that subalgebras map to
subalgebras, and ideals of surjective homomorphisms map to ideals. If we
have a homomorphism, then the kernel of the map is an ideal in the do-
main Lie algebra. It would be good to see this proved. Our map again is
φ : ĝ −→ ĥ. Now ker(φ) = {c ∈ ĝ|φ(c) = 0}. The kernel of a linear map
is always a subspace. Let c be in ker(φ) and a be any element in ĝ. Then
φ[c, a] = [φ(c), φ(a)] = [0, φ(a)] = 0. Thus [c, a] is in ker(φ), which says that
[ker(φ), ĝ] ⊂ ker(φ), and thus ker(φ) is an ideal in ĝ.

Now let us consider a Lie algebra ĝ and an ideal ŝ in ĝ. We can form the
quotient linear space ĝ/ŝ. We assert that we can define a Lie bracket in this
quotient space if ŝ is an ideal. We define this bracket as follows. Let a + ŝ
and b + ŝ be two elements in ĝ/ŝ. Then [a + ŝ, b + ŝ] := [a, b] + ŝ. To verify
the validity of this definition we choose arbitrary elements s1 and s2 in ŝ and
calculate [a+ s1, b+ s2] = [a, b] + [a, s2] + [s1, b] + [s1, s2]. Since ŝ is an ideal,
we know that [a, s2] is in ŝ, [s1, b] is in ŝ, and, of course, [s1, s2] is in ŝ. Thus
[a+ s1, b+ s2] is in the coset [a, b] + ŝ. It is immediate that all the properties
of a Lie algebra are valid in ĝ/ŝ using this definition of bracket product in
ĝ/ŝ.

Applying this definition to a surjective homomorphism φ : ĝ −→ ĥ of Lie
algebras, we know that ĝ/ker(φ) is a Lie algebra, and indeed is isomorphic
to φ(ĝ) = ĥ. This latter statement reflects at the level of Lie algebras the
crucial dimension theorem of linear algebra:

dim(ĝ) = dim(kerφ) + dim(image(φ))

or

dim(ĝ)− dim(kerφ) = dim(image(φ))

giving immediately the isomorphism of the Lie algebras

ĝ/ker(φ) ∼= image(φ) = ĥ,

where we are, of course, assuming φ to be a surjective homomorphism.

We can also assert that the homomorphic image of a solvable Lie algebra
ĝ is also solvable. This means that if we have the homomorphism φ : ĝ −→
image(φ), we can assert that the image(φ) is solvable when ĝ is solvable.
Since ĝ is solvable, we have a k such that Dkĝ 6= 0 and [Dkĝ, Dkĝ] = Dk+1ĝ =
0.

Since φ is a homomorphism, a simple induction shows that for all l,
φ(Dlĝ) = Dl(φ(ĝ)). Thus φ(Dk+1ĝ) = Dk+1(φ(ĝ)) = 0 for some k >= 0.
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We remark that if Dkĝ is in the kernel of φ, this k may not be the smallest
positive integer with the property that Dk(φ(ĝ)) 6= 0 and Dk+1(φ(ĝ)) = 0.
But we do know that the derived series for φ(ĝ) does arrive at 0, which is
enough to affirm that φ(ĝ) is solvable.

We now can return to the proof that every Lie algebra ĝ has a maxi-
mal solvable ideal. [Recall that we are only treating finite dimensional Lie
algebras.] It will be done in stages. We begin this proof by letting r̂ be
a solvable ideal of maximum dimensionality, and by letting ŝ be any other
solvable ideal. We are then led to consider the linear space r̂ + ŝ. We know
that this space is Lie subalgebra of ĝ and indeed an ideal in ĝ. We want to
show that this ideal is also solvable.

Now we know that r̂ ∩ ŝ is also an ideal in ŝ, and by assumption ŝ is a
solvable ideal in ĝ, and thus ŝ is a solvable Lie algebra. We thus have the Lie
algebra ŝ/r̂ ∩ ŝ which is the homomorphic image of a solvable Lie algebra.
Thus we conclude that ŝ/r̂ ∩ ŝ is a solvable Lie algebra.

We now use the other fundamental dimension theorem of finite dimen-
sional linear spaces, which states

dim(r̂ + ŝ) = dim(r̂) + dim(ŝ) − dim(r̂ ∩ ŝ)

or

dim(r̂ + ŝ) − dim(ŝ) = dim(r̂) − dim(r̂ ∩ ŝ)

This translates immediately into the isomorphism theorem

(r̂ + ŝ)/ŝ ∼= r̂/r̂ ∩ ŝ

It is important to observe that these are isomorphic Lie algebras since
ŝ is an ideal in r̂ + ŝ and r̂ ∩ ŝ and ŝ an ideal in r̂, and thus the quotient
linear spaces are quotient Lie algebras. We can therefore conclude now that
(r̂ + ŝ)/ŝ is a solvable Lie algebra since it is isomorphic to a solvable Lie
algebra r̂/r̂ ∩ ŝ.

2.3.3 Homomorphism Theorem for Solvable Lie Algebras. We
now assert that r̂+ ŝ is also solvable. This will be true if we can show that if
l̂ is a Lie algebra which contains a solvable ideal ŝ and l̂/ŝ is solvable, then l̂
is solvable.

First, we have the homomorphism φ : l̂ −→ (l̂/ŝ) and since φ(l̂) = (l̂/ŝ),
and l̂/ŝ is solvable, we know that there exists a k such that Dk(l̂/ŝ) 6= 0 and
Dk+1(l̂/ŝ) = 0. Thus Dk(φ(l̂)) 6= 0 and Dk+1(φ(l̂)) = 0.
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This says that φ(Dk+1(l̂)) = 0. ThusDk+1(l̂) ⊂ ker(φ) = ŝ. Knowing that
Dk+1(l̂) = [Dk(l̂), Dk(l̂)] ⊂ ker(φ) = ŝ, we conclude that [Dk+1(l̂), Dk+1(l̂)] =
Dk+2(l̂) ⊂ [ŝ, ŝ] ⊂ ŝ.

Since ŝ is solvable, we know that there is a p such that Dp(ŝ) 6= 0 and
Dp+1(ŝ) = 0. Now if k ≥ p, then Dk+1(l̂) = 0. If k < p, then Dp+1(l̂) ⊂
Dp+1(ŝ) = 0. Thus, in either event, l̂ is solvable.

Note that his proof is easy to conceptualize. Since the target space is
solvable, this means that after some k,Dk(l̂) ⊂ ŝ, since φ(Dk(∗)) = Dk(φ(∗)).
Once the derived series for l̂ is in ŝ, then since ŝ is solvable, the derived series
for l̂ will arrive at 0 as well.

2.3.4 The Existence of the Radical of a Lie Algebra. Finally, we
arrive at what we have been seeking. In ĝ let r̂ be the solvable ideal of maxi-
mum dimension. [Recall that since we are in the context of finite dimensional
Lie algebras, and since 0 is a solvable ideal, this ideal always exists.] Now let
ŝ be any other solvable ideal. We have just shown that r̂+ ŝ is also a solvable
ideal. Thus the dim(r̂ + ŝ) ≤ dim(r̂). But r̂ ⊂ (r̂ + ŝ), and this means that
ŝ ⊂ r̂. And thus every Lie algebra of finite dimension contains a maximal
solvable ideal which contains all other solvable ideals. This maximal solvable
ideal is called the radical of the Lie algebra ĝ.

2.4 Some Remarks on Semisimple Lie Algebras (1)

We can now give the definition of a semisimple Lie algebra which we have
been seeking. A semisimple Lie algebra is a Lie algebra whose radical is
trivial, i.e., one whose radical is 0.

There are some properties of a semisimple Lie algebra which are immedi-
ate from the definition. First, let us take an arbitrary finite dimensional Lie
algebra ĝ. We know that ĝ possesses a radical, which we denote by r̂. Since
this radical is an ideal, we can form the Lie algebra ĝ/r̂. It is interesting that
we can prove that this quotient Lie algebra is semisimple. Let us represent
the homomorphism by φ : ĝ −→ ĝ/r̂. Now we take any solvable ideal ŝ in
ĝ/r̂ and look at its pre-image φ−1(ŝ) in ĝ. We know that this pre-image is an
ideal in ĝ. And by using the same reasoning as was used above, we can assert
that this ideal is solvable. Its image ŝ = φ−1(ŝ)/r̂ is solvable by assumption.
And since r̂ is the radical of ĝ, r̂ also is solvable. Thus again we have the
situation where we have a Lie algebra l̂ and a homomorphism of l̂ onto a
solvable Lie algebra, the kernel of which homomorphism is also solvable. As
above we can conclude that the Lie algebra l̂ is also solvable. Thus φ−1(ŝ) is
a solvable Lie algebra of ĝ, and we can conclude that φ−1(ŝ) ⊂ r̂, the radical,
which is the kernel of the map φ. But this means that the image of φ−1(ŝ),
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which is ŝ, is equal to 0. Thus any solvable ideal in ĝ/r̂ must be the 0 ideal,
which means that ĝ/r̂ is semisimple.

Thus we have the short exact sequence:

0 −→ r̂ −→ ĝ −→ ĝ/r̂ −→ 0

The question to ask now is: does this short exact sequence split? If it does,
then there is an injective isomorphism of Lie algebras

ĝ/r̂ −→ k̂ ⊂ ĝ

[thus making k̂ a semisimple Lie subalgebra of ĝ] such that ĝ is a direct sum
of r̂ and k̂.

ĝ = k̂ ⊕ r̂

There is a famous theorem of Levi that gives a positive answer to this question
[See 2.16 for its proof.]. The subalgebra k̂ is called a Levi factor of ĝ. [We
might again remark that this theorem is only valid in the case that the field of
scalars is of characteristic 0. But since we are only interested in the fields of
real numbers and complex numbers, the conclusion is valid in our situation.]
Here the direct sum is only that of linear spaces, not of Lie algebras. This
says that [k̂, r̂] is not necessarily 0. We describe this situation by saying the
ĝ is a semi-direct product of the Lie algebras k̂ and r̂.

In fact we can make the following observations. Since r̂ is an ideal,
we know that [k̂, r̂] ⊂ r̂. But we also have [k̂, r̂] ⊂ [ĝ, ĝ] = D1ĝ. Thus
[k̂, r̂] ⊂ D1ĝ ∩ r̂. It is interesting to remark at this point that we have the
important identity [ĝ, r̂] = D1ĝ∩ r̂, but its proof depends on the Levi Decom-
position Theorem. Certainly [ĝ, r̂] ⊂ [ĝ, ĝ] = D1ĝ and [ĝ, r̂] ⊂ r̂ since r̂ is an
ideal. Thus [ĝ, r̂] ⊂ D1ĝ ∩ r̂. Now using the Levi Decomposition Theorem,
we let c1 = a1 + b1 and c2 = a2 + b2 be in ĝ, with a1 and a2 in k̂ and b1 and
b2 in r̂. Then [c1, c2] = [a1 + a2, b1 + b2] is in D1ĝ. Also [a1 + b1, a2 + b2] =
[a1, a2]+[a1, b2]+[b1, a2]+[b1, b2] with [a1, a2] in k̂ and [a1, b2]+[b1, a2]+[b1, b2]
in r̂, since r̂ is an ideal. But by hypothesis [a1 + b1, a2 + b2] is also in r̂.
Since we have a direct sum of linear spaces, this means that [a1, a2] = 0
+++++++++++++++++++++++++++++++++++++++++++
That [a1, a2] = 0 is questionable at present for the reason given does not hold.
Do you see why? Can you fix the proof? Hint: see 2.16.2 on p. 200.
+++++++++++++++++++++++++++++++++++++++++++
and [a1, b2]+[b1, a2]+[b1, b2] is in [ĝ, r̂]. We conclude that [ĝ, r̂] = D1ĝ∩ r̂. Of
course, since r̂ is an ideal, we know that [ĝ, r̂] ⊂ r̂, but the above shows ex-
actly where [ĝ, r̂] lies in r̂. [Of course, once again, this result is only valid for
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Lie algebras of characteristic 0, since it depends on the Levi decomposition
theorem.]

We do not want to present the proof of this theorem of Levi at the present
moment. But we do wish to ask: How unique is this Levi factor? The an-
swer is very interesting. Let ĝ = k̂1 ⊕ r̂ and ĝ = k̂2 ⊕ r̂ be any two Levi
decompositions of ĝ. Then there exist a very special kind of automorphism
A of ĝ such that A(k̂2) = k̂1. And these automorphisms will play a large role
in the theme of this exposition of the real representations of semisimple real
Lie algebras. Again at this moment we do not want to present a proof of this
statement. However it is imperative that we identify these automorphisms.
And this takes us on an exploration of another trail in this trek through Lie
algebras, namely, that of nilpotent Lie algebras.

2.5 Nilpotent Lie Algebras (1)

2.5.1 Nilpotent Lie Algebras Are Solvable Lie Algebras. Let
us review and examine more carefully the information found in the lower
central series of a Lie algebra. The first few spaces in this series are

C0ĝ = ĝ
C1ĝ = [C0ĝ, ĝ]
C2ĝ = [C1ĝ, ĝ]
C3ĝ = [C2ĝ, ĝ]

We observe immediately that C1ĝ is merely the space generated by all
possible brackets of ĝ. Thus for any a1 and a2 in ĝ, [a1, a2] is in C1ĝ. And
for any a3 in ĝ, [[a1, a2], a3] is in C2ĝ. Continuing we have for any a4 in
ĝ, [[[a1, a2], a3], a4] is in C3ĝ. Thus the lower central series just iterates the
bracket product in the Lie algebra, but chooses it in a definite manner because
we do not have an associative algebra (where no matter how one groups the
products, the answer is the same). We see that, because of the manner
in which we have defined the series, it begins the iteration from the left and
proceeds to the right. Thus any element of the form [[[···[a1, a2], ···], ak], ak+1]
is in Ckĝ. Now if ĝ 6= 0 is nilpotent, we know that there exists a k such that
Ck−1ĝ 6= 0 but Ckĝ = 0. Thus a nilpotent Lie algebra has the amazing
property that any Lie bracket with k factors bracketed in this manner is 0.
Obviously this is a rather strong property.

We can now show an interesting relationship between the derived series
and the lower central series. If we examine again the derived series for ĝ, we
see

D0ĝ = ĝ
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D1ĝ = [ĝ, ĝ]
D2ĝ = [[ĝ, ĝ], [ĝ, ĝ]]

D3ĝ = [[[ĝ, ĝ], [ĝ, ĝ]], [[ĝ, ĝ], [ĝ, ĝ]]]

Let us write out these products in terms of elements of the Lie algebra.

[a1, a2] is in D1ĝ
[[a1, a2], [a3, a4]] is in D2ĝ

[[[a1, a2], [a3, a4]], [[a5, a6], [a7, a8]]] is in D3ĝ

Now using the Jacobi identity, we have

[a1, a2] is in D1ĝ = C1ĝ
[[a1, a2], [a3, a4]] = −[a3, [[a1, a2], a4]]− [a4, [a3, [a1, a2]] =
−[[[a1, a2], a3], a4] + [[[a1, a2], a4], a3] is in D2ĝ ⊂ C3ĝ

If we try to analyze D3ĝ in this manner, the calculations become unwieldy,
but we would like to be able to conclude that Dkĝ ⊂ C2k−1ĝ. Let us look
a little more closely at the calculations involved. D1ĝ involves one product
with two factors. D2ĝ involves four factors, which means, using the Jacobi
identity, it really is a product of four factors with three products, with the
products starting from the left and continuing to the right, i.e., it is contained
in C3ĝ. Now D2ĝ = [D1ĝ, D1ĝ], and D1ĝ = C1ĝ. Thus D2ĝ = [C1ĝ, C1ĝ],
and we can conclude that [C1ĝ, C1ĝ] ⊂ C3ĝ, where 3 = 1 + 1 + 1 = 22 − 1.

Examining D3ĝ = [D2ĝ, D2ĝ], we see that we have 8 factors [8 = 23], and
if by using the Jacobi identity we could rearrange them so that we would
have 7 products starting from the left and continuing to the right, we would
be in C7ĝ. From what is said above we know that D2ĝ ⊂ C3ĝ, and thus
D3ĝ ⊂ [C3ĝ, C3ĝ]. Now if [C3ĝ, C3ĝ] ⊂ C7ĝ, we see that our numbers are
correct since 3 + 3 + 1 = 7 = 23 − 1.

These observations lead us to prove that [Ciĝ, Cj ĝ] ⊂ Ci+j+1ĝ by in-
duction. For the base case we know that for all i, [Ciĝ, C0ĝ] = Ci+0+1ĝ
by definition. We assume that for some j ≥ 0 and for all i [Ciĝ, Cj ĝ] ⊂
Ci+j+1ĝ, and we prove that [Ciĝ, Cj+1ĝ] ⊂ Ci+j+1+1ĝ. Of course, we will
use the Jacobi identity. [Ciĝ, Cj+1ĝ] = [Ciĝ, [Cj ĝ, ĝ]] ⊂ [[Ciĝ, Cj ĝ], ĝ]] +
[Cj ĝ, [ĝ, Ciĝ]] ⊂ [Ci+j+1ĝ, ĝ] + [Cj ĝ, [Ciĝ, ĝ]] ⊂ Ci+j+1+1ĝ + [Cj ĝ, Ci+1ĝ] ⊂
Ci+j+1+1ĝ + Ci+1+j+1ĝ ⊂ Ci+j+1+1ĝ.

To conclude we once more use induction. The base case is obvious. It
says that D0 ⊂ C0 [which says ĝ ⊂ ĝ]. Then we assume that for some k ≥ 0
that Dkĝ ⊂ C2k−1ĝ, and therefore Dk+1ĝ = [Dkĝ, Dkĝ] ⊂ [C2k−1ĝ, C2k−1ĝ] ⊂
C(2k−1)+(2k−1)+1ĝ = C2(2k)−1ĝ = C2k+1−1ĝ. This is our desired relationship.
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With this information we can now conclude that if a Lie algebra is nilpo-
tent, then it must also be solvable, for if we take down the lower central
series to 0, then the derived series will also be pulled down to 0. (See 2.2.4
for the relevant definitions.) Conversely, however, a solvable Lie algebra is
not necessarily nilpotent. We will soon have an example of this situation.
We will see that for a given n, all upper triangular matrices with arbitrary
diagonal elements form a solvable Lie subalgebra in the Lie algebra of all
nxn matrices, but they are not nilpotent, since all of these upper triangular
matrices which form a nilpotent Lie subalgebra must have a zero diagonal.

2.5.2 The Existence of a Maximal Nilpotent Ideal — The Nil-
radical. We can now also show the existence of a maximal nilpotent ideal
for any finite dimensional Lie algebra. All that needs to be done is to show
that the sum of two nilpotent ideals is also a nilpotent ideal. If we re-
peat the proof for the solvable Lie algebras, we can indeed show that the
homomorphic image of a nilpotent Lie algebra ĝ is nilpotent. Since ĝ is
nilpotent, we have an l such that C lĝ 6= 0 and [C lĝ, ĝ] = C l+1ĝ = 0. Now
we have the homomorphism φ : ĝ −→ image(φ), and we want to assert that
the image(φ) is nilpotent. The key fact in the proof for solvable Lie alge-
bras was that φ(Dlĝ) = Dl(φ(ĝ)). A simple induction indeed shows that
φ(C lĝ) = C l(φ(ĝ)). Thus φ(C l+1ĝ) = C l+1(φ(ĝ)) = 0. -

However we do not have an isomorphism theorem for nilpotent Lie alge-
bras. Analyzing the proof for the solvable case, we see that after some k,
Ck(l̂) ⊂ ŝ, since φ(Ck(∗)) = Ck(φ(∗)). Now nilpotency demands that we
bracket ŝ with ĝ, but we only know that ŝ is nilpotent. This means that we
would have to bracket ŝ with ŝ if we wanted to use the nilpotency of ŝ. And
thus we cannot get information on [ŝ, ĝ].

Indeed the example that was given above shows the phenomenon men-
tioned above. We have for a given n a homomorphism of all upper triangular
matrices with arbitrary diagonal [a solvable Lie algebra] to the diagonal ma-
trices [an abelian Lie algebra, thus a nilpotent Lie algebra] by moding out the
upper triangular matrices with zero diagonal [a nilpotent Lie algebra]. Thus,
this is a counterexample to an isomorphism theorem for nilpotent Lie alge-
bras since the upper triangular matrices with arbitrary diagonal is a solvable
Lie algebra but not a nilpotent one. Thus we are reduced to finding another
method of proving the sum of two nilpotent ideals is also a nilpotent ideal.

We already know that the sum of two ideals is an ideal. Let us take some
brackets and examine the developing pattern. We take k̂ and l̂ to be two
nilpotent ideals and we want to show their sum k̂ + l̂ is also nilpotent. We
take ai in k̂ and bj in l̂. Then [a1 + b1, a2 + b2] is in [k̂+ l̂, k̂+ l̂] = C1(k̂+ l̂]).
Now

14



[a1 + b1, a2 + b2] = [a1, a2] + [a1, b2] + [b1, a2] + [b1, b2].

We see that [a1, a2] is in C1k̂, and because k̂ is an ideal, we have [a1, b2] is in
C0k̂. Likewise we have [b1, b2] is in C1l̂, and because l̂ is an ideal, we have
[b1, a2] is in C0l̂. Also

[[a1 + b1, a2 + b2], a3 + b3] = [[a1, a2] + [a1, b2] + [b1, a2] + [b1, b2], a3 + b3] =
[[a1, a2], a3] + [[a1, b2], a3] + [[b1, a2], a3] + [[b1, b2], a3] +

[[a1, a2], b3] + [[a1, b2], b3] + [[b1, a2].b3] + [[b1, b2], b3]

is in [[k̂+ l̂, k̂+ l̂], k̂+ l̂] = C2(k̂+ l̂]). We see that [[a1+b1, a2+b2], a3+b3] has 8
brackets. We choose 4 of these brackets, [[a1, a2], a3], [[a1, b2], a3], [[b1, a2], a3]
and [[a1, a2], b3]. Each of these products has at least two ai factors. Now be-
cause k̂ is an ideal, we have immediately that [[a1, a2], a3], [[a1, b2], a3], [[b1, a2], a3]
are in C1k̂. Also since C1k̂ is an ideal, we have [[a1, a2], b3] is in C1k̂. Thus all
4 of these terms are in C1k̂. Likewise the other 4 terms [[b1, b2], a3], [[a1, b2], b3],
[[b1, a2].b3], [[b1, b2], b3] are in C1l̂. We take one more bracket in k̂+ l̂, namely
[[[a1 + b1, a2 + b2], a3 + b3], a4 + b4], which is in C3(k̂ + l̂]). Now

[[[a1 + b1, a2 + b2], a3 + b3], a4 + b4] =
[[[a1, a2], a3], a4] + [[[a1, b2], a3], a4] + [[[b1, a2], a3], a4] + [[[b1, b2], a3], a4] +
[[[a1, a2], b3], a4] + [[[a1, b2], b3], a4] + [[[b1, a2].b3], a4] + [[[b1, b2], b3], a4] +
[[[a1, a2], a3], b4] + [[[a1, b2], a3], b4] + [[[b1, a2], a3], b4] + [[[b1, b2], a3], b4] +

[[[a1, a2], b3], b4] + [[[a1, b2], b3], b4] + [[[b1, a2], b3], b4] + [[[b1, b2], b3], b4]

Thus we see that we have 16 terms, 8 of which have 2 or a greater number
of factors ai, and 8 of which have 2 or a greater number of factors bj. The 8
with ai are:

[[[a1, a2], a3], a4],[[[a1, a2], a3], b4],[[[a1, a2], b3], a4], [[[a1, b2], a3], a4],
[[[b1, a2], a3], a4],[[[b1, a2], b3], a4],[[[a1, b2], b3], a4],[[[a1, a2], b3], b4]

[Some of the terms with 2 ai’s and 2 bj’s can be treated either in k̂ or in

l̂.] Now [[[a1, a2], a3], a4] is in C3k̂; [[[a1, b2], a3], a4] is in C2k̂, using the ideal
structure of k̂; [[[b1, a2], a3], a4] is in C2k̂; [[[a1, a2], b3], a4] is in C2k̂, using the
ideal structure of C1k̂; [[[a1, b2], b3], a4] is in C1k̂; [[[b1, a2], b3], a4] is in C1k̂;
[[[a1, b2], a3], b4] is in C1k̂; [[[a1, a2], a3], b4] is in C2k̂, using the ideal structure
of C2k̂; [[[a1, a2], b3], b4] is in C1k̂. The pattern is easy to recognize. Any
bracket, starting from the left and moving to the right [which order we have
chosen, you will recall, since we do not have associativity], with two or more
factors ai in any position, is in C1k̂ if there are 2 ai’s; in C2k̂ if there are 3

ai’s; and is in C3k̂ if there are 4 ai’s. Likewise we obtain the same conclusion
for the 8 terms which have 2 or greater number of factors bj, except now they
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pertain to the ideal l̂. Thus C3(k̂+ l̂]) ⊂ C1k̂+C1l̂ since C3k̂ ⊂ C2k̂ ⊂ C1k̂,
and likewise for l̂.

Now if we assume that we could do an induction on Ci+1(k̂+ l̂]) ⊂ Ci−1k̂+
Ci−1l̂, we are unfortunately led to a dead end. The induction step would be

Ci+2(k̂ + l̂]) =
[Ci+1(k̂ + l̂]), (k̂ + l̂)] =

[Ci+1(k̂ + l̂]), k̂] + [Ci+1(k̂ + l̂]), l̂] ⊂
[Ci−1k̂ + Ci−1l̂, k̂] + [Ci−1k̂ + Ci−1l̂, l̂] ⊂

[Ci−1k̂, k̂] + [Ci−1l̂, k̂] + [Ci−1k̂, l̂] + [Ci−1l̂, l̂] ⊂
Cik̂ + Ci−1l̂ + Ci−1k̂ + Cil̂ ⊂

Ci−1k̂ + Ci−1l̂

and we see that we do not get the desired conclusion that Ci+2(k̂ + l̂]) ⊂
Cik̂ + Cil̂.

But a more perceptive analysis of these two examples leads us to the
solution. All we have to do is observe that any term that has i ar’s as factors
can be shown, by using the ideal structure of k̂ and Cj k̂, to belong to Ci−1k̂.
Thus we see from the above example that

[[[a1, a2], a3], a4] is in C3k̂
[[[a1, a2], a3], b4] is in C2k̂
[[[a1, a2], b3], a4] is in C2k̂
[[[a1, b2], a3], a4] is in C2k̂
[[[b1, a2], a3], a4] is in C2k̂
[[[a1, b2], b3], a4] is in C1k̂
[[[a1, b2], a3], b4] is in C1k̂
[[[a1, a2], b3], b4] is in C1k̂

With these patterns before us we can see the general situation. Thus let
us start with Ci(k̂+ l̂) and i even; and Cj(k̂+ l̂) with j odd. The i−th product
will have i+ 1 factors, an odd number of factors; and the j−th product will
have j + 1 factors, an even number of factors. If ar is in k̂, and bs is in l̂,
then Ci(k̂ + l̂) will have 2i+1 terms and Cj(k̂ + l̂) will have 2j+1 terms, each
term of which will be a string of ar’s and bs’s as factors in arbitrary order.

For Ci(k̂ + l̂), 1
2
(2i+1) = 2i of the terms, each with i + 1 factors, will have

1
2
(i) + 1 or more ar’s and 1

2
(i) or less bs’s; or the contrary, 1

2
(i) + 1 or more

bs’s and 1
2
(i) or less ar’s. For Cj(k̂ + l̂), 1

2
(2j+1) = 2j of the terms, each with

j + 1 factors, with 1
2
(j + 1) or more ar’s and 1

2
(j + 1) or less bs’s; or vice

versa, 1
2
(j + 1) or more bs’s and 1

2
(j + 1) or less ar’s.

Thus, in the case where i is even, the first separation gives each term at
least (1

2
(i) + 1) ar’s, with each other term increasing the number of ar’s until
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all i + 1 factors have only ar’s. In the second separation each term has at
least (1

2
(i) + 1) bs’s, with each other term increasing the number of bs’s until

all i+ 1 factors have only bs’s. [In the example above, C2(k̂ + l̂) with i = 2,
each product has 2 + 1 = 3 factors, and we have a total of 22+1 = 8 terms.
The first separation contained 4 terms

[[a1, a2], b3], [[a1, b2], a3], [[b1, a2], a3], [[a1, a2], a3]

while the second separation contained the other 4 terms

[[b1, b2], a3], [[b1, a2].b3], [[a1, b2], b3], [[b1, b2], b3].

In the first separation each term contains at least 1
2
(i)+1 = 1

2
(2)+1 = 2 ar’s

and 1
2
(2) = 1 or less bs’s; and it continues adding ar’s until all the factors

are ar’s, that is, until all 3 factors are ar’s. In the second separation the ar’s
and the bs’s exchange roles.]

For the case Cj(k̂+ l̂) where j is odd, the first separation gives each term
at least 1

2
(j + 1) ar’s, with each other term increasing the number of ar’s

until all j + 1 factors have only ar’s. In the second separation each term has
at least 1

2
(j+ 1) bs’s with each other term increasing the number of bs’s until

all j + 1 factors have only bs’s. [In the example above, C3(k̂ + l̂) with j = 3,
each product has 3 + 1 = 4 factors, and we have a total of 23+1 = 16 terms.
The first separation contains 8 terms

[[[a1, a2], b3], b4],[[[a1, b2], b3], a4],[[[b1, a2], b3], a4],
[[[a1, a2], a3], b4],[[[a1, a2], b3], a4,[[[a1, b2], a3], a4],[[[b1, a2], a3], a4],

[[[a1, a2], a3], a4]

while the second separation contains the other 8 terms

[[[b1, b2], a3], a4],[[[b1, a2], a3], b4],[[[a1, b2], a3], b4],
[[[b1, b2], b3], a4],[[[b1, b2], a3], b4],[[[b1, a2], b3], b4],[[[a1, b2], b3], b4],

[[[b1, b2], b3], b4]

In the first separation each term contains at least 1
2
(j + 1) = 1

2
(3 + 1) = 2

ar’s; and 1
2
(3 + 1) = 2 or less bs’s; and continues adding ar’s until all the

factors are ar’s, that is, until all 4 factors are ar’s. In the second separation
the ar’s and the bs’s exchange roles. We might also add that when we have
the same number of ar’s and bs’s, it makes no difference into what separation
we place these terms.]

From these results it is immediate that k̂+ l̂ is a nilpotent ideal if k̂ and l̂
are nilpotent ideals. In both even and odd cases we have Ci(k̂+ l̂) ⊂ Cj1(k̂)+
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Cj2(l̂), where j1 = j2 = 1
2
(i) + 1 in the even case; and j1 = j2 = 1

2
(i + 1) in

the odd case. Thus all we have to do is take i sufficiently large so that both
Cj1 k̂ and Cj2 l̂ are brought down to 0, which insures that Ci(k̂ + l̂) will also
be brought down to 0. Thus we can conclude that the sum of two nilpotent
ideals is also a nilpotent ideal.

And now just as we have argued in the case of the existence of the rad-
ical — the maximal solvable ideal which contains any other solvable ideal
— that any finite dimensional Lie algebra possesses, we can conclude to
the existence of the nilradical — the maximal nilpotent ideal which contains
any other nilpotent ideal — that any finite dimensional Lie algebra possesses.

2.6 Some First Remarks on Representations of Lie Algebras

We recall that we are seeking an automorphism A such that A(k̂2) = k̂1,
where k̂1 and k̂2 are two Levi factors in the decomposition of an arbitrary
Lie algebra ĝ into ĝ = k̂1 ⊕ r̂ and ĝ = k̂2 ⊕ r̂, where r̂ is the radical of
ĝ. Later in our exposition we will show that A is obtained by integrating a
nilpotent Lie algebra. [Now this process of integration in this case turns out
to be an algebraic process and not an analytic process, and thus we remain
in the context of algebra.] This would lead us into an exploration of nilpo-
tent Lie algebras. But another reason for exploring nilpotent Lie algebras is
that they are related to the concept of solvable Lie algebras, and this is the
next topic that we will explore. But first we must examine the concept of a
representation of a Lie algebra. Since the word representation appears in the
title of this document, one would suspect that this concept is central to our
exposition.

2.6.1 The Set of Endomorphisms of V: End(V); ĝl(v). Recall
that we are now in the context of a finite dimensional linear space V over a
field lF, which is either the field of real numbers lR or the field of complex
numbers lC. Let End(V ) stand for the set of all linear transformations of V ,
that is, the set of all endomorphisms of V. Thus an element φ of End(V ) is a
function φ : V −→ V which preserves the addition and scalar multiplication
in V :

φ : V −→ V
φ : u 7−→ φ(u)

φ : u+ v 7−→ φ(u+ v) = φ(u) + φ(v)
φ : αu 7−→ φ(αu) = αφ(u)

Now End(V ) has the structure of an associative algebra over lF. In an
associative algebra we again have a field lF and a set with three operations:
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addition, multiplication, and scalar multiplication. The operation of addi-
tion gives the set the structure of an abelian group; scalar multiplication
combines with addition to give the set the structure of a linear space over
lF; multiplication distributes over addition both on the left and on the right,
giving the ring structure; and scalars are bilinear with respect to multipli-
cation, giving the whole structure that of an algebra. Thus the set End(V )
has three operations: addition, multiplication, and scalar multiplication over
lF. Since each endomorphism φ in End(V ) is a function, addition and scalar
multiplication on End(V ) are pointwise addition and pointwise scalar mul-
tiplication of functions:

φ1 + φ2 : V −→ V
φ1 + φ2 : u 7−→ (φ1 + φ2)(u) := φ1(u) + φ2(u)

αφ : V −→ V
αφ : u 7−→ (αφ)(u) := αφ(u)

It is trivial that these operations define an addition and a scalar multiplica-
tion on End(V ) over lF. The zero linear transformation is the zero of the
addition operation; while the additive inverse is the negative of the linear
transformation:

0 : V −→ V
0 : u 7−→ 0(u) := 0
−φ : V −→ V

−φ : u 7−→ (−φ)(u) := −(φ(u))

Again since an endomorphism is a function with the same domain and target
sets, we define the multiplication operation in End(V ) as the composition of
functions:

φ1φ2 : V −→ V

V
φ2−→ V

φ1−→ V
u 7−→ φ2(u) 7−→ φ1(φ2(u)) = (φ1 ◦ φ2)(u) := (φ1φ2)(u)

This multiplication distributes over addition on the left and on the right,
giving the necessary ring property:

φ1(φ2 + φ3) = φ1φ2 + φ1φ3

(φ1(φ2 + φ3))(u) = φ1((φ2 + φ3)(u)) = φ1(φ2(u) + φ3(u)) =
φ1(φ2(u)) + φ1(φ3(u)) = (φ1φ2)(u) + (φ1φ3)(u) = (φ1φ2 + φ1φ3))(u)

Likewise
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(φ1 + φ2)φ3 = φ1φ3 + φ2φ3

It is evident that this multiplication is bilinear with respect to the scalars
and thus

α(φ1φ2) = (αφ1)φ2 = φ1(αφ2)
(α(φ1φ2))(u) = (φ1φ2)(αu) = φ1(φ2(αu))

((αφ1)φ2)(u) = (αφ1)(φ2(u)) = φ1(α(φ2(u)) = φ1(φ2(αu))
(φ1(αφ2))(u) = φ1((αφ2)(u)) = φ1(φ2(αu))

Thus End(V ) exhibits the structure of an algebra over the field lF.

We observe that since we have chosen to write functions on the left of
the element on which they are acting, the second listed function in a compo-
sition acts first while the first listed function acts second. But since we are
just defining a binary operation of multiplication in End(V ), the notation is
consistent. Note, however, that function composition is not a commutative
operation.

Since composition of functions is an associative operation, our multiplica-
tion also associates. Thus End(V ) is a non-commutative, associative algebra
over lF. This algebra differs from a Lie algebra in this multiplication opera-
tion, since in a Lie algebra we have the Jacobi identity on the bracket product
replacing associativity. Another consequence of the associative multiplica-
tion is that it has a natural multiplicative identity. The identity function in
End(V ) is an identity with respect to composition. And thus every associa-
tive algebra with a multiplicative identity has a subgroup which contains all
the elements which have multiplicative inverses. In the case of End(V ) this
is just the group of non-singular linear transformations of V or the group of
invertible transformations in End(V ) or the group of automorphisms of V .
It is given the symbol Aut(V ).

Finally, we come to a most surprising structure. Every associative algebra
over lF can be made into an Lie algebra over lF: the Lie bracket of two
elements is what is called the commutator of these two elements. Thus for
any associative algebra A, and for a and b in A, we define

[a, b] := ab− ba

[We remark that if the associative algebra A is commutative, the commu-
tator is always 0. Thus, in general, the commutator measures the lack of
commutativity in the multiplication structure of the algebra A.]

It is trivial that [b, a] = ba− ab = −[a, b]. The Jacobi identity holds as well
because for any three elements a, b, and c in A, we have:
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[[a, b], c] = [a, b]c− c[a, b] = (ab− ba)c− c(ab− ba) = abc− bac− cab+ cba
[[c, a], b] = [c, a]b− b[c, a] = (ca− ac)b− b(ca− ac) = cab− acb− bca+ bac
[[b, c], a] = [b, c]a− a[b, c] = (bc− cb)a− a(bc− cb) = bca− cba− abc+ acb

and thus, after combining, we have

[[a, b], c] + [[c, a], b] + [[b, c], a] = 0

Also, scalar multiplication is bilinear with respect to the Lie bracket:

α[a, b] = [αa, b] = [a, αb]
α[a, b] = α(ab− ba) = α(ab)− α(ba)

[αa, b] = (αa)b− b(αa) = α(ab)− α(ba)
[a, αb] = a(αb)− (αb)a = α(ab)− α(ba)

Obviously the linear space structure of A remains the same in the Lie
algebra structure. Moreover, this Lie bracket distributes over addition both
on the left and on the right, that is,

[a, b+ c] = a(b+ c)− (b+ c)a = ab+ ac− ba− ca = (ab− ba) + (ac− ca) =
[a, b] + [a.c].

Likewise, we have

[a+ b, c] = [a, c] + [b.c]

Thus any associative algebra A can be given the structure of a Lie algebra
by means of the commutator. In particular End(V ) with this bracket takes
on the structure of a Lie algebra over lF.

When we wish to treat End(V ) as a Lie algebra, we use the notation
EndL(V ) or ĝl(V ) [this latter notation will become clear in a moment]. Also
quite frequently we use GL(V ) for Aut(V ).

There is one more important and natural associative algebra over lF. If
we are given a finite dimensional linear space V over lF of dimension n, we
know that bases exist for V . If we fix a basis B for V , then it is well known
that we have a bijective linear transformation from V to lFn, where we are
using the canonical basis in lFn. Also we can represent an element of lFn as
an nx1 column matrix in Mnx1(lF) using this same basis. Then any linear
transformation of V to V , that is, any endomorphism φ in End(V ), has
a representation as an nxn matrix A over lF. The following commutative
diagram illustrates this situation:
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-V V
φ

? ?

B B

-Mnx1(lF) Mnx1(lF)
A

We know how to add square matrices, to scalar multiply square matri-
ces, and to multiply square matrices [row-by-column multiplication], which
operations give the square matrices Mnxn(lF) the structure of an associative
algebra over lF isomorphic to the structure of End(V ). The multiplicative
identity is the identity matrix In, and the group of non-singular square ma-
trices is the general linear group GL(n, lF). [It is for this reason that the
notation GL(V ) is used for Aut(V )]. Also when we give Mnxn(lF) the struc-
ture of a Lie algebra by defining the bracket as the commutator, we use the
notation ĝl(n, lF), which denotes the Lie algebra of the Lie group GL(n, lF).

Even though these are concepts and relations which we do not wish to
explore at the present moment, we still want to point out that the notation
ĝl(V ) is also used for EndL(V ). Also, when there is a fixed basis being
used in an exposition, we frequently do not distinguish between ĝl(V ) and
ĝl(n, lF), and we just say that the elements of ĝl(V ) are matrices.

2.6.2 The Adjoint Representation of a Lie Algebra. Now we can
define the key concept of a representation. A representation of Lie algebra
ĝ on a linear space V is a homomorphism ρ of the Lie algebra ĝ into the
Lie algebra ĝl(V ), that is, it is a linear transformation such that brackets
are preserved, that is, ρ([a, b]) = [ρ(a), ρ(b)] = ρ(a)ρ(b)− ρ(b)ρ(a). It is easy
to see the motivation for looking at representations— we study an unknown
object ĝ as it realizes itself in a very well known object ĝl(V ) or ĝl(n, lF). This
exposition, then, explores certain aspects of this representation structure.

It is remarkable that there exists a very natural representation of a Lie
algebra ĝ on its own linear space ĝ. This representation is called the adjoint
representation and depends on the bracket product. It is one of the most
important objects that we have for studying the structure of a Lie algebra.
We give it the name ad and it is defined as follows:

ĝ
ad−→ ĝl(ĝ)

a 7−→ ad(a) : ĝ −→ ĝ
b 7−→ ad(a)(b) := [a, b]

First, we see that ad(a) is a linear map and thus is in ĝl(ĝ):
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ad(a)(b1 + b2) = [a, b1 + b2] = [a, b1] + [a, b2] = ad(a)(b1) + ad(a)(b2)
ad(a)(αb) = [a, αb] = α[a, b] = α(ad(a)(b))

Next, we see that ad is a linear map:

(ad(a1 + a2))(b) = [(a1 + a2), b] = [a1, b] + [a2, b] = ad(a1)(b) + ad(a2)(b) =
(ad(a1) + ad(a2))(b)

(ad(αa))(b) = [αa, b] = α[a, b] = α(ad(a)(b)) = (αad(a))(b)

We remark how we have used the bilinearity of addition and scalar multipli-
cation distribution in the Lie algebra to effect these calculations.

Finally, we show that ad preserves brackets, which is nothing more than
another way of expressing the Jacobi identity. [Recall that brackets in ĝl(ĝ)
are commutators.]

(ad[a1, a2])(b) = [[(a1, a2)], b] = −[[b, a1], a2]− [[a2, b], a1] =
−[a2, [a1, b]] + [a1, [a2, b]] = −ad(a2)([a1, b]) + ad(a1)([a2, b]) =

−ad(a2)(ad(a1)(b)) + ad(a1)(ad(a2)(b)) =
(ad(a1)ad(a2))(b)− (ad(a2)ad(a1))(b) =

((ad(a1)ad(a2)− (ad(a2)ad(a1))(b) = [ad(a1), ad(a2)](b)

Thus we have in ad a homomorphism of Lie algebras and a representation of
ĝ in ĝ.

We pause a moment to make some observations. The meaning of the
symbol ĝl(ĝ) is clear. It is the set of linear endomorphisms of the linear
space ĝ, but with a Lie algebra structure defined by commutation. There is
a subset of these, the non-singular linear endomorphisms, or automorphisms,
which form a group Aut(ĝ) or GL(ĝ). But since ĝ is more than just a linear
space, for it has a bracket product, we can ask whether these endomorphisms
and automorphisms respect this bracket product. Thus an ambiguity can
arise with respect to these structures. We thus will conform to the following
usage. An element φ of GL(ĝ) which also is an automorphism of the Lie
algebra structure of ĝ will be said to belong to Aut(ĝ). An element φ of
ĝl(ĝ) which also preserves the brackets in ĝ unfortunately will be given no
special name or symbol, and it will have to be described fully every time that
it occurs. Finally, there is a set of endomorphisms of ĝ, thus belonging to
ĝl(ĝ), which occur significantly in this structure. They are called derivations.
They act on the bracket product by a Leibniz rule. Thus an endomorphism D
in ĝl(ĝ) is a derivation if D([a, b]) = [D(a), b] + [a,D(b)]. It evidently cannot
be an endomorphism of Lie algebra structure on ĝ, since by definition it does
not preserve brackets. Surprisingly ad(a), coming from the representation
ad, is a derivation in ĝl(ĝ). We will return to this point later.
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We make some preliminary observations on this adjoint representation.
First, it is highly non-surjective. The dimension of the domain space is the
dimension n of the Lie algebra ĝ. The target space is ĝl(ĝ), which has the
dimension n2. Next , we see that the kernel of the adjoint map is the center of
the Lie algebra since ad(a) = 0 means that for all b in ĝ, ad(a)(b) = [a, b] = 0.
This says that a is in the center ẑ of the Lie algebra.

2.7 Nilpotent Lie algebras (2)

Nilpotent Lie Algebras Determine Nilpotent Linear Transforma-
tions. We will need to examine the concept of a nilpotent Lie algebra in
depth. In fact, with the adjoint representation defined, we can give a rather
complete picture of a nilpotent Lie algebra. Thus we now consider a nilpo-
tent Lie algebra n̂ and ask the question: How does information about the
lower central series, which terminates at 0 in this case, transfer over by the
adjoint representation? We begin by taking an a1 in n̂ and mapping it over
to ĝl(n̂) by the adjoint:

a1 7−→ ad(a1) : n̂ −→ n̂
b 7−→ ad(a1)(b) = [a1, b]

We do the same with a2 in n̂, but this time we act on ad(a1)(b) = [a1, b] in
n̂:

a2 7−→ ad(a2) : n̂ −→ n̂
ad(a1)(b) 7−→ ad(a2)(ad(a1)(b)) = [a2, [a1, b]]

We continue in this manner:

a3 7−→ ad(a3) : n̂ −→ n̂
ad(a2)(ad(a1)(b)) 7−→ ad(a3)(ad(a2)(ad(a1)(b))) =

[a3, [a2, [a1, b]]]

·
·
·

ak 7−→ ad(ak) : n̂ −→ n̂
ad(ak−1)(· · ·(ad(a3)(ad(a2)(ad(a1)(b)))) · ··)

7−→ ad(ak)(ad(ak−1)(· · ·(ad(a3)(ad(a2)(ad(a1)(b)))) · ··)) =
[ak, [ak−1, [· · ·[a3, [a2, [a1, b]]] · ··]]]

Now this means that the last term in each of the above maps can also be
written, as we have already displayed:
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ad(a1)(b) = [a1, b]
ad(a2)([a1, b]) = [a2, [a1, b]]

ad(a3)([a2, [a1, b]]) = [a3, [a2, [a1, b]]]
·
·
·

ad(ak)([ak−1, [· · ·[a3, [a2, [a1, b]]) =
[ak, [ak−1, [· · ·[a3, [a2, [a1, b]]] · ··]]]

But this immediately reveals how the adjoint map treats the lower central
series, namely

ad(n̂)(C0(n̂)) = C1(n̂)
ad(n̂)(C1(n̂)) = C2(n̂)
ad(n̂)(C2(n̂)) = C3(n̂)

·
·
·

ad(n̂)(Ck−1(n̂)) = Ck(n̂)

[We again make the observation that we are defining the lower central series
with brackets moving from right to left. But as we remarked above, this does
not matter.]

Thus we have this beautiful conclusion. Let n̂ be a nilpotent Lie algebra.
Suppose Ck−1(n̂) 6= 0 and Ck(n̂) = 0. Then any product ad(a1) · · · ad(ak)
of k factors is the zero transformation in ĝl(n̂). In particular ad(a)k = 0 for
any a in n̂, which means that

ad(a) is a nilpotent linear transformation in ĝl(n̂) for every a in n̂.

Indeed this is one of the conclusions that we are seeking.

But we can assert more than this. Knowing that Ck−1(n̂) 6= 0 and
Ck(n̂) = 0, we can relate the index k to the dimension of n̂. Let us say that
the dimension of n̂ is l. First we claim that dim(Cr(n̂)) > dim(Cr+1(n̂)) with
the bound (r+ 1) < k. We have Cr+1(n̂) = [Cr(n̂), n̂] and Cr+1(n̂) ⊂ Cr(n̂).
Now if Cr+1(n̂) = Cr(n̂), then [Cr(n̂), n̂] = Cr(n̂) and the lower central series
would stall at Cr(n̂) and never reach 0. But our Lie algebra n̂ is nilpotent.
Thus Cr+1(n̂) ⊂ Cr(n̂) properly and dim(Cr(n̂)) > dim(Cr+1(n̂)). Thus
starting with n̂ = C0(n̂), we have

n̂ = C0(n̂) ⊃ C1(n̂) ⊃ C2(n̂) ⊃ · · · ⊃ Ck−1(n̂) ⊃ Ck(n̂) = 0
dim(n̂) = dim(C0(n̂)) > dim(C1(n̂)) > dim(C2(n̂)) > · · · > dim(Ck−1(n̂)) >

dim(Ck(n̂)) = 0
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Since the dim(n̂) = l, we can conclude that, if the above decreases the di-
mension by only one in each step, the largest non-zero index r in Cr(n̂) that
can occur is l − 1. Thus k ≤ l.

2.8 Engel’s Theorem

2.8.1 Statement of Engel’s Theorem. In the 19th century when these
ideas were first being explored, the idea of a Lie algebra was linked to trans-
formations of a linear space V of dimension n. We know that End(V ) can
be made into a Lie algebra by defining the bracket as the commutator in
End(V ), and with this structure we can rename the set ĝl(V ). Thus a Lie
subalgebra in ĝl(V ) is a well defined object in ĝl(V ).

Now the classical Engel’s Theorem is the following:

Let ĝ be a Lie subalgebra of ĝl(V ). Suppose that every X ∈ ĝ is a
nilpotent linear transformation in ĝl(V ). Then there exist a non-zero
vector v in V which is a simultaneous eigenvector with eigenvalue 0 for
all X in ĝ.

It is easy to see how abstract nilpotent Lie algebras fit into this context.
For any nilpotent Lie algebra n̂ we know that for every a in n̂, ad(a)k = 0
for some k, that is, ad(a) is a nilpotent linear transformation in ĝl(n̂). Also
we know the homomorphic image of n̂ by ad gives a Lie subalgebra ad(n̂) of
ĝl(n̂). We see that this satisfies the supposition of the above theorem. Using
the theorem, we conclude that there exist a non-zero vector v in n̂ which is a
simultaneous eigenvector with eigenvalue 0 for all ad(a) in ĝl(n̂). Note that
we are able to come to this conclusion for the [abstract] nilpotent Lie algebra
above by using the fact that it has a non-zero center. And we remark that
(ad(a))v = [a, v] = 0 for all a in n̂ says that v belongs to the center of n̂.

Now using this simultaneous eigenvector v with eigenvalue 0 for all the
linear transformations in ĝ to build a quotient space, we can find a basis in
which all the transformations of ĝ are represented by upper diagonal matrices
with a zero diagonal. We give here the details of this construction.

Thus we want to give a basis for V and represent any X in ĝ by the
matrix A with respect to that basis. We let the first vector v1 in this basis
be v. Then X(v1) = 0 gives the first column of the matrix A as the zero
column matrix:
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

0
0
0
·
·
·
0


But knowing that v is a simultaneous eigenvector with eigenvalue 0 for

all Y in ĝ, then we have for any other Y in ĝ that the matrix representation
B of Y with respect to this first basis vector v1 will also be the zero column
matrix.

We now form the quotient linear space V/sp(v1) and note that ĝ induces a
linear transformation in this linear space. Let X be an element of ĝ. Without
changing the symbol of this transformation, we have

X : V/sp(v1) −→ V/sp(v1)
u+ sp(v1) 7−→ X(u+ sp(v1)) := X(u) + sp(v1)

Now X(u + sp(v1)) = X(u) + X(sp(v1)). But X(sp(v1)) ⊂ (sp(v1) [in fact,
(X(sp(v1)) = 0]. Thus we can conclude that

X(u+ sp(v1)) = X(u) + sp(v1)

and thus we have a valid definition of how X operates on V/sp(v1).

[To be complete in our argument, we should show that cosets go into
cosets. But the above relation implies this. For if we take two elements
in the same coset, u + sp(v1) and u2 + sp(v1), we can show that they map
into the same coset. This means that the difference of their images maps
into the zero coset, i.e., into sp(v1). Since u1 + sp(v1) and u2 + sp(v1) are
in the same coset, their difference must be in the zero coset sp(v1). Thus
(u1 + sp(v1))− (u2 + sp(v1)) = (u1 − u2) + sp(v1) ⊂ sp(v1) Thus

X((u1 + sp(v1))− (u2 + sp(v1))) ⊂ X(sp(v1)) ⊂ sp(v1)
X((u1 + sp(v1))−X((u2 + sp(v1)) ⊂ sp(v1)

We conclude that we have a valid definition.]

But we can also assert that for all X in ĝ, X acts as a nilpotent linear
transformation on V/sp(v1). We know that for some r, Xr = 0 since X is a
nilpotent linear transformation in V . Thus for any u+sp(v1) in V/sp(v1), we
have Xr(u+sp(v1)) ⊂ Xr(u)+sp(v1) = 0+sp(v1) = sp(v1), which, of course,
is 0 in V/sp(v1). We can therefore apply Engel’s Theorem again and assert
that there exist a non-zero v2 + sp(v1) in V/sp(v1) which is a simultaneous
eigenvector with eigenvalue 0 for all X in ĝ.
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X(v2 + sp(v1)) = sp(v1).

Thus X(v2) gives some element in sp(v1). This fact gives the second
column of the matrix A: 

0 ∗
0 0
0 0
· ·
· ·
· ·
0 0


But the simultaneity of the eigenvector with eigenvalue 0 for all X in

ĝ means that for any other Y in ĝ, the matrix representation B of Y with
respect to the basis vectors (v1, v2) will also give a column matrix of the same
form [with, of course, a different value for ∗ in the (1, 2) place in the matrix].
Thus all the matrix representations of ĝ begin with the same configuration
for the first two columns of the matrix.

Now obviously this process can be continued until we find a basis
(v1, · · ·, vn) in V (where, recall, the dimension of V is n) such that all the
matrices coming from any X in ĝ take the form:

0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
0 0 0 ∗ · · ∗

·
·
·

0 0 0 · · · 0


With these results we can make an important observation in Representa-

tion Theory. It concerns what is called an irreducible representation. We say
a representation is irreducible if it has no proper invariant subspaces. If, as
an example, we have a representation of a 4-dimensional Lie algebra ĝ with
basis (e1, e2, e3, e4) by φ into the 4x4 matrices:

ĝ −→M4x4(lF)

a 2-dimensional reducible representation would take the form
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


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since 
∗
∗
0
0

 −→

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 ·

∗
∗
0
0

 =


∗
∗
0
0


Thus a representation is irreducible if it cannot be blocked as follows:[

A B
0 D

]

Now from the form of the above matrices coming from the X in ĝ we see im-
mediately that the only irreducible representations of a nilpotent Lie algebra
are one-dimensional, i.e., V must be of dimension one.

2.8.2 Nilpotent Linear Transformations Determine Nilpotent Lie
Algebras. But there is one more important remark that we can make at this
point. Suppose we start with an abstract Lie algebra ĝ, and map it over to
ĝl(ĝ) by the adjoint map and we further assume that for every x in ĝ, ad(x)
in ĝl(ĝ) is a nilpotent linear transformation. Then Engel’s Theorem and its
consequences state that ad(ĝ) is the set of linear transformations in ĝl(ĝ)
which can be represented as upper triangular matrices with a zero diagonal.
As the example (which we will give after the proof of Engel’s Theorem)
shows, these matrices form a nilpotent Lie subalgebra of ĝl(ĝ). Now we
can obtain the converse of the theorem, namely that if ĝ is a nilpotent Lie
algebra, then for each x in ĝ the transformation ad(x) in ĝl(ĝ) is a nilpotent
linear transformation. Thus, if we assume for a Lie algebra ĝ that for each
x in ĝ the transformation ad(x) in ĝl(ĝ) is a nilpotent linear transformation,
Engel’s Theorem then asserts that ad(ĝ) can be represented as a set of upper
triangular matrices each with a zero diagonal. Thus we know that for some r,
every product of r-factors of the form ad(x1) · · ·ad(xr) has the property that
ad(x1) · · ·ad(xr) = 0. If we let this product act on an arbitrary element y in ĝ
then (ad(x1)···ad(xr))(y) = 0. But this translates to [x1, [x2, [···, [xr, y]···]]] =
0. We can conclude that Cr(ĝ) = 0, which says that ĝ is nilpotent.

2.8.3 Proof of Engel’s Theorem. Starting with ĝ as a Lie subalgebra
of ĝl(V ), in which every element of ĝ is a nilpotent linear transformation in
End(V ), we can build up an element which becomes zero in its lower central
series. We can do this since we know how to calculate the bracket product
in ĝ because it is nothing but the commutator of the associative algebra
End(V ).

Thus what we want to do is calculate a series of brackets in ĝ:
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[X, [X, [X, [· · ·, [X, Y ] · ··]]]] for X, Y in ĝ

until the result is zero, on the hypothesis that every element X in ĝ is a
nilpotent linear transformation. First we rewrite the above in the adjoint
notation:

ad(X)ad(X)ad(X) · · · ad(X)(Y ) for X, Y in ĝ

and thus we see that we are just repeating the adjoint representation of ĝ on
ĝ ⊂ ĝl(V ) since

X 7−→ ad(X) : ĝ −→ ĝ
Y 7−→ (ad(X))Y = [X, Y ]

Since ĝ is a Lie subalgebra of ĝl(V ) = End(V ), we know that the brackets
close in ĝ, and thus we know that (ad(X))Y = [X, Y ] is in ĝ. We remark
that now we are considering ad(X) to be in End(ĝ) = ĝl(ĝ) ⊂ ĝl(End(V )),
which in a matrix representation would give an n2 x n2 matrix, where n is
the dimension of V . And finally, we observe that if we can show that these
brackets do terminate in zero, then we can conclude that every ad(X) in
ad(ĝ) is a nilpotent linear transformation in End(ĝ). Thus we need to show
that ad(ĝ), a Lie subalgebra of ĝl(ĝ), has the property that for all ad(X) in
ad(ĝ), ad(X) is a nilpotent linear transformation in ĝl(ĝ), on the hypothesis
that every element X in ĝ is a nilpotent linear transformation in End(V ).
[Obviously we use the commutator as the definition of the bracket in ĝ.]

Thus we need to show that for any ad(X), we can find an s such that
(ad(X))s = 0 when it operates on ĝ. This says that for any Y in ĝ,
((ad(X))s)Y = 0, and thus ad(X) is a nilpotent linear transformation
in End(ĝ). Now ((ad(X))s)Y = ad(X)(· · ·(ad(X)((ad(X)Y ))) · ··)
for s repetitions of ad(X). But ad(X)(· · ·(ad(X)((ad(X)Y ))) · ··) =
[X, · · ·[X, [X, Y ]] · ··]. However since X and Y are matrices in ĝ ⊂
ĝl(V ), these are now not just abstract brackets. We can calculate these
brackets, because they are commutators: [X, Y ] = XY − Y X. Thus
we have:

(ad(X))(Y ) = [X, Y ] = XY − Y X
((ad(X)2)(Y ) = [X,XY − Y X] = XXY −XYX −XYX + Y XX =

XXY − 2XYX + Y XX
((ad(X)3)(Y ) = [X,XXY − 2XYX + Y XX] =

XXXY −XXYX − 2XXYX + 2XYXX +XYXX − Y XXX =
XXXY − 3XXYX + 3XYXX − Y XXX

((ad(X)4)(Y ) = [X,XXXY − 3XXYX + 3XYXX − Y XXX] =
XXXXY −XXXYX − 3XXXYX + 3XXYXX + 3XXYXX −
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3XYXXX −XYXXX + Y XXXX =
XXXXY − 4XXXYX + 6XXYXX − 4XYXXX + Y XXXX

·
·
·

Thus we observe that the power of X as a linear transformation in
ĝl(V ) = End(V ) is increasing either on the left or on the right of Y .
We know that since X is a nilpotent linear transformation in End(V ),
for some r, Xr = 0 and thus it is just a matter of combinatorics to see
how large s must be so that each power of X is equal to or greater than
r in every term. When this s is reached, we then have our conclusion
that (ad(X))s = 0.

But we can make the observation now that this sets up the hypothesis of
Engel’s Theorem in this situation. Our linear space of interest is ĝ in End(V )
and we have the Lie algebra of commutators in ĝl(ĝ). Our Lie subalgebra of
ĝl(ĝ) is ad(ĝ). [Since ad is a homomorphism of Lie algebras, and our ĝ is a Lie
algebra, ad(ĝ) is a Lie subalgebra of ĝl(ĝ).] Now we have that for each X in ĝ,
ad(X) in ad(ĝ) is a nilpotent linear transformation in ĝl(ĝ). Thus we satisfy
the conditions of Engel’s Theorem in this situation. Engel’s Theorem would
conclude that there exists a nonzero linear transformation Y in ĝ which
is a simultaneous eigenvector with eigenvalue zero for all transformations
ad(X) in ad(ĝ): ad(X) · Y = [X, Y ] = 0. We remark that we have, in this
processThus with this idenidentified a non-zero element Y in the center of ĝ.

Now to prove Engel’s Theorem we still need to identify a vector v in V
which is a simultaneous eigenvector with eigenvalue zero for all X in ĝ.

The theorem is true for ĝ of dimension one. This can be seen as follows.
In this case ĝ in End(V ) is generated by any nonzero X in ĝ. But by
hypothesis X 6= 0 is a nilpotent linear transformation in End(V ). Thus
it has an eigenvector v 6= 0 in V with eigenvalue 0, i.e., X(v) = 0. Now
any other Y in ĝ is a scalar multiple of X, i.e., Y = cX for c in the scalar
field. Thus Y (v) = (cX)(v) = c(X(v)) = c(0)) = 0. And thus we have the
simultaneous eigenvector v 6= 0 with eigenvalue = 0.

We consider the following. Let dim(ĝ) be greater than 1 and let ĥ be any
proper subalgebra of ĝ. [Of course, such a subalgebra exists. For example
choose any one-dimensional subspace of ĝ. Note that this is an abelian
subalgebra of ĝ.] We form the quotient linear space ĝ/ĥ. Since ĥ is a proper
subalgebra of ĝ, we know that the dimension of ĝ/ĥ is greater than or equal
to one. Now we can define an action of ad(Z) on ĝ/ĥ for each Z in ĥ:
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ad(Z) : ĝ/ĥ −→ ĝ/ĥ
X + ĥ 7−→ ad(Z)(X + ĥ) := ad(Z)(X) + ĥ

We see that ad(Z)(X + ĥ) = ad(Z)(X) + ad(Z)(ĥ) ⊂ ad(Z)(X) + ĥ, since
ad(Z)(ĥ) = [Z, ĥ]. Now ĥ is a subalgebra and Z is in ĥ. Thus ad(Z)(ĥ)
is in ĥ, and we have a valid definition [according to 2.7.2]. We also have a
subalgebra in ĝl(ĝ/ĥ) since [adZ1, adZ2] = ad[Z1, Z2], which is in ad(ĥ).

From the proof given above we know that ad(ĝ), which is a Lie subalgebra
of ĝl(ĝ), has the property that for all ad(X) in ad(ĝ), ad(X) is a nilpotent
linear transformation in End(ĝ). Thus ad(ĥ) has the same property. And
we see from the above definition that this same property holds when ad(ĥ)
acts on ĝ/ĥ. But we can now make this observation. ĥ is a Lie algebra
of dimension less that the dimension of ĝ. Suppose we now assume, by
induction, that Engel’s theorem is valid for all Lie algebras of dimension less
than that of ĝ where the linear space V can be any fixed linear space. In
particular suppose this linear space is ĝ/ĥ, and our Lie algebra is ad(ĥ). Since
dim ĥ < dim ĝ, we know that the dim ad(ĥ) ≤ dim ĥ < dim ĝ. Thus we can
use the induction hypothesis and we can assert that there exist a Y in ĝ/ĥ
not equal to zero such that it is a simultaneous eigenvector with eigenvalue
zero for all ad(Z) in ad(ĥ).

Y 7−→ ad(Z)(Y ) = 0 for all ad(Z) in ad(ĥ)

Unwinding this quotient, we have a Y 6= 0 in ĝ but not in ĥ such that for all
ad(Z) in ad(ĥ), ad(Z)(Y ) = [Z, Y ] is in ĥ.

Now we consider the subspace ĥ⊕sp(Y ) ⊂ ĝ. We know that this subspace
has dimension one higher than ĥ. Using the above relation ad(Z)(Y ) = [Z, Y ]
in ĥ for all Z in ĥ, we know that this subspace is actually a subalgebra of ĝ.

[ĥ⊕ sp(Y ), ĥ⊕ sp(Y )] ⊂ [ĥ, ĥ] + [ĥ, sp(Y )] + [sp(Y ), sp(Y )] ⊂ ĥ+ ĥ+ 0 = ĥ

Now if ĥ ⊕ sp(Y ) is still a proper subalgebra of ĝ, then we could have used
this subalgebra in our induction step. What we are saying is that in the
induction step we should be using a proper subalgebra which is a maximal
proper subalgebra. Then we can conclude that ĥ ⊕ sp(Y ) is actually equal
to ĝ.

But we can say more. The above calculation shows in this case that ĥ is
actually a maximal proper ideal in ĝ.

[ĥ, ĝ] = [ĥ, ĥ⊕ sp(Y )] ⊂ [ĥ, ĥ] + [ĥ, sp(Y )] ⊂ ĥ+ ĥ = ĥ
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And thus in our induction step above we could have started with ĥ being a
maximal proper ideal.

At this point we can make some interesting remarks. It may have been
observed above that we did not define an action of ad(ĝ) on ĝ/ĥ. We could
not do this if ĥ were only a subalgebra. This would have meant that for
X in ĝ, we would have been calculating [X, ĥ], which would not necessarily
have been in ĥ. However now that we have an ĥ that is an ideal, then [X, ĥ]
would be in ĥ. Thus we can define an action of ad(ĝ) on ĝ/ĥ. We know that
for every ad(X) in ad(ĝ), ad(X) will be a nilpotent linear transformation on
ĝ/ĥ. Thus we have all the conditions for the application of Engel’s Theorem.
But we remark that the induction step, after unwinding the quotient, only
gave a Y 6= 0 in ĝ which may not be in ĥ but is such that ad(Z)(Y ) is in ĥ
for all Z in ĥ. If we calculate ad(X)(Y ) for all X in ĝ, we would only know
that ad(X)(Y ) is in ĝ even though we know that Y 6= 0 is not in ĥ. We
would have to do more work to show that there exists an A 6= 0 in ĝ such
that ad(X)(A) = 0 for all X in ĝ. But we will do exactly this in the context
of the original expression of Engel’s Theorem.

Thus with this identification of the transformation Y , we can now show
that there exists a vector v in V such that for all X in ĝ, v is a simultaneous
eigenvector with eigenvalue 0. We again work by induction on the dimension
of ĝ. We know that ĥ has one dimension less that ĝ, and that for every Z
in ĥ, Z is nilpotent linear transformation in V . Thus there exists a vector
v1 6= 0 in V such that for every Z in ĥ, Z(v1) = 0. We have now produced a
transformation Y in ĝ and a vector v1 ∈ V and we know that ĝ = ĥ⊕ sp(Y ).
Now for every Z in ĥ, Z(v1) = 0. If Y (v1) = 0, we are finished, since for
every X in ĝ, X(v1) = 0. But of course we cannot assert that Y (v1) = 0.
However we can do the following. Let W be the subspace of V such that
for every Z in ĥ, Z(W ) = 0. Obviously v1 ∈ W . Now what is remarkable
is that for any w ∈ W , Y (w) is in W , i.e., Y stabilizes W . We show this
by taking the bracket [Z, Y ] in ĝ, where Z is any element in ĥ. This gives
Z(Y (w)) = [Z, Y ](w)+Y (Z(w)). Now ĥ is an ideal in ĝ, and thus [Z, Y ] ∈ ĥ
and we conclude that [Z, Y ](w) = 0. Also Z(w) = 0, and thus Y (Z(w)) = 0.
Now we have Z(Y (w)) = 0 and we thus we have Y (w) ∈ W . But this says
that Y (W ) ⊂ W . But we know that Y acts nilpotently on V . Thus there
exists an r such that Y r = 0 but Y (r−1) 6= 0. Thus for some k between 0
and r − 1 we have that v = Y k(v1) 6= 0 with (Y (Y k))(v1) = Y (v) = 0. Since
v1 is in W and Y stabilizes W , any iterate of v1 by Y is in W . Thus v is
in W . Now for any X = Z + cY in ĝ, with Z in ĥ and c a scalar, we have
X(v) = (Z + cY )(v) = Z(v) + (cY )(v) = 0 + 0 = 0. Thus we have found
a v 6= 0 in V such that for all X in ĝ, X(v) = 0, which is the conclusion of
Engel’s Theorem.
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2.8.4 Examples. Some computed examples are enlightening. Let us use
a V of dimension 4 and give it a basis (v1, v2, v3, v4). Then End(V ) = ĝl(V )
is the set of 4x4 matrices. We look at the upper triangular matrices with a
zero diagonal:


0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0


Given these matrices, we see immediately that v1 is a simultaneous eigen-

vector with eigenvalue zero whose existence Engel’s Theorem affirms. How-
ever what we would like to do is to follow the proof of the theorem in this
case and see how the proof identifies this vector to be the vector that we are
seeking.

It is evident that the set of all such matrices is a 6-dimensional subspace of
the 16-dimensional space of matrices. But this subspace is also an associative
subalgebra [but without an identity], for we have closure of products:


0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

 ·


0 b12 b13 b14
0 0 b23 b24
0 0 0 b34
0 0 0 0

 =


0 0 a12b23 a12b24 + a13b34
0 0 0 a23b34
0 0 0 0
0 0 0 0


From the shape of the product XY , it is clear that XY −Y X is also an upper
triangular 4x4 matrix with 0’s along the diagonal and thus we also have a
Lie subalgebra. We call this Lie subalgebra ĝ. This is the kind of Lie subal-
gebra of End(V ) spoken of in Engel’ s Theorem. The only condition on this
subalgebra is that each element of it is also a linear nilpotent transformation
in End(V ). We observe that these matrices do indeed have the property of
linear nilpotency. For any X in ĝ, we see that we have effectively already
calculated X ·X above. We now continue the iteration of multiplication by
X: 

0 0 a12a23 a12a24 + a13a34
0 0 0 a23a34
0 0 0 0
0 0 0 0

 ·


0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

 =
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
0 0 0 a12a23a34
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 a12a23a34
0 0 0 0
0 0 0 0
0 0 0 0

 ·


0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Thus after four products we obtain the zero transformation.

Thus we have all the conditions for the application of Engel’s Theorem.
What we are seeking to do is expose in this specific example the various
elements that we find in the proof of Engel’s Theorem. But before we do
this, let us calculate brackets in ĝ.

We choose the standard basis for End(V ). We let Eij be the matrix
with 1 in the i-th row and j-th column, and with 0 in all the other 15
entries. This gives us 16 basis vectors. The basis for the subalgebra ĝ is
(E12, E13, E14, E23, E24, E34). Thus we have 15 distinct brackets:

[E12, E13] = 0 [E12, E14] = 0 [E12, E23] = E13

[E12, E24] = E14 [E12, E34] = 0 [E13, E14] = 0
[E13, E23] = 0 [E13, E24] = 0 [E13, E34] = E14

[E14, E23] = 0 [E14, E24] = 0 [E14, E34] = 0
[E23, E24] = 0 [E23, E34] = E24 [E24, E34] = 0

This calculates C1ĝ. Continuing, to calculate C2ĝ, we have only 7 distinct
brackets:

[E12, E13] = 0 [E12, E14] = 0 [E12, E24] = E14

[E13, E14] = 0 [E13, E24] = 0 [E14, E24] = 0
[E23, E24] = 0

To calculate C3ĝ, we have only 2 distinct brackets:

[E12, E14] = 0 [E13, E14] = 0

which terminates the lower central series for ĝ. Thus we have for this Lie
algebra:

dim C0ĝ = 6, dim C1ĝ = 3, dim C2ĝ = 1. dim C3ĝ = 0
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We can also conclude that ĝ is Lie nilpotent and has a center which is one-
dimensional and is generated by the matrix E14.

Now we return to illustrating the proof of Engel’s Theorem. The first
step in the proof was to show that there exists an ideal ĥ in ĝ of codimension
one, and a vector Y in ĝ not in ĥ such that ĝ = ĥ ⊕ sp(Y ). Since ĥ is an
ideal, we know for all Z in ĥ, (ad(Z))(Y ) is in ĥ. The maximal proper ideal
ĥ that we can identify is the 5-dimensional Lie subalgebra of ĝ which has the
basis (E13, E14, E23, E24, E34). Thus each element of ĥ has the form:


0 0 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0


By taking brackets we see that we do have a Lie subalgebra:

[E13, E14] = 0 [E13, E23] = 0 [E13, E24] = 0
[E13, E34] = E14 [E14, E23] = 0 [E14, E24] = 0
[E14, E34] = 0 [E23, E24] = 0 [E23, E34] = E24

[E24, E34] = 0

which is an ideal since:

[E12, E13] = 0 [E12, E14] = 0 [E12, E23] = E13

[E12, E24] = E14 [E12, E34] = 0

Now we use our first application of induction in our proof of Engel”s
Theorem. The Lie algebra of the Theorem is ad(ĝ). It is acting on the
linear space ĝ/ĥ, which is a one-dimensional space. Thus essentially ad(ĝ) is
acting on ĝ. To apply the theorem we now need to show that each element
ad(X), for X in ĝ, acting on ĝ by the adjoint action is a nilpotent linear
transformation in End(ĝ). We already know that C3ĝ = 0. This means the
[ĝ, [ĝ, [ĝ, ĝ]]] is 0. But we can write this as (ad(ĝ)ad(ĝ)ad(ĝ))(ĝ) = 0. Thus
for any X in ĝ, (ad(X)ad(X)ad(X))(ĝ) = 0, or (ad(X))3(ĝ) = 0.

In the actual proof of the theorem we just calculated the brackets without
any knowledge of the lower central series. We knew that after a finite number
of repetitions of the bracket product we would reach the zero transformation
since each X in ĝ is a nilpotent linear transformation. In our case we have
already seen above that after 3 repetitions of the associative multiplication
in ĝ, we obtain the zero matrix. Now in computing the brackets in ĝ, we
have
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(ad(X))(A) = [X,A] = XA− AX

(ad(X)2)(A) = [X,XA− AX] = XXA−XAX −XAX + AXX =
XXA− 2XAX + AXX

(ad(X)3)(A) = [X,XXA− 2XAX + AXX] =
XXXA−XXAX − 2XXAX + 2XAXX +XAXX − AXXX =

XXXA− 3XXAX + 3XAXX − AXXX

(ad(X)4)(A) = [X,XXXA− 3XXAX + 3XAXX − AXXX] =
XXXXA−XXXAX − 3XXXAX + 3XXAXX+
3XXAXX − 3XAXXX −XAXXX + AXXXX =

XXXXA− 4XXXAX + 6XXAXX − 4XAXXX + AXXXX

Thus at this point the linear nilpotency kicks in. We have

XXXXA− 4XXXAX + 6XXAXX − 4XAXXX + AXXXX =
−4XXXAX + 6XXAXX − 4XAXXX

Thus

(ad(X)5)(A) = [X,−4XXXAX + 6XXAXX − 4XAXXX] =
−4XXXXAX + 4XXXAXX + 6XXXAXX − 6XXAXXX −

4XXAXXX + 4XAXXXX =
10XXXAXX − 10XXAXXX

(ad(X)6)(A) = [X, 10XXXAXX − 10XXAXXX] =
10XXXXAXX− 10XXXAXXX− 10XXXAXXX + 10XXAXXXX =

−20XXXAXXX

(ad(X)7)(A) = [X,−20XXXAXXX] =
−20XXXXAXXX + 20XXXAXXXX = 0

which, of course, is the conclusion we have been seeking.

However, in the case we are analyzing, using our knowledge of the lower
central series, which terminates at C3ĝ, we know that the above calculation
only needs to be carried to ((ad(X)3)(A). For completeness we show these
calculations.

X =


0 x12 x13 x14
0 0 x23 x24
0 0 0 x34
0 0 0 0

 A =


0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0


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[X,A] = XA− AX =
0 0 x12a23 − x23a12 x12a24 + x13a34 − x24a12 − x34a13
0 0 0 x23a34 − x34a23
0 0 0 0
0 0 0 0



[X, [X,A]] =


0 0 0 −(x12a23 − x23a12)x34 + x12(x23a34 − x34a23)
0 0 0 0
0 0 0 0
0 0 0 0



[X, [X, [X,A]]] =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Now we know that each element ad(X), for X in ĝ, acting on ĝ by the

adjoint action, is a nilpotent linear transformation in End(ĝ). Thus we can
use induction on the dimension of ĝ. Now ĥ has dimension less than ĝ, and
thus ad(ĥ) has dimension less than ad(ĝ). And we have shown in the proof
that if ĥ is an ideal, then ad(ĝ) acts on ĝ/ĥ, and thus ad(ĥ) acts on ĝ/ĥ.
The conclusion of Engel’s Theorem says that there exists a Y in ĝ/ĥ which
is not equal to zero but is an eigenvector with eigenvalue zero for all ad(Z)
in ad(ĥ). Unwinding this quotient, we assert that there exist a Y 6= 0 in ĝ
which is not in ĥ such that for all Z in ĥ, (ad(Z))(Y ) is in ĥ. The matrix Y is
given by the matrix E12, which is not in ĥ, and the span of Y is represented
by matrices of the form 

0 a12 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Also for any Z in ĥ, (ad(Z))(Y ) = [Z, Y ] = ZY − Y Z is in ĥ:




0 0 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 =


0 0 −a23 −a24
0 0 0 0
0 0 0 0
0 0 0 0


Thus we have shown that there exists an ideal ĥ in ĝ of codimension one,
and a vector Y in ĝ not in ĥ such that ĝ = ĥ⊕ sp(Y ). This is the conclusion
of the first part of the proof of Engel’s Theorem.
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The last part of the proof of Engel’s Theorem used induction again. But
now we focus on the ideal ĥ identified above. This subalgebra has dimension
one less than that of ĝ. Thus, using Engel’s Theorem, with ĥ acting on the
linear space V , we identified a vector u 6= 0 in V such that for every Z in ĥ,
Z(u) = 0. Since Z has the matrix form written on the basis (v1, v2, v3, v4) of
V ) of


0 0 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0


we see immediately that the subspace W of V such that Z(W ) = 0 for all Z
in ĥ has the basis (v1, v2). But we also observe that the matrix Y identified
above has the property of leaving invariant the space W since:


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1
0
0
0

 =


0
0
0
0




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0
1
0
0

 =


1
0
0
0


Thus Y (v1) = 0 and Y (v2) = v1. Since ĝ = ĥ ⊕ sp(Y ), it is now easy to
identify a vector u 6= 0 in V such that for all X in ĝ, X(u) = 0. Since
ĥ(W ) = 0, we need only examine Y (v1) and Y (v2). If we choose v1, we see
that Y (v1) = 0 and we are finished. If we choose v2, then Y (v2) = v1. But
we know that Y ∈ ĝ is linear nilpotent acting on V . In fact, since Y is equal
to E12, we have


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Then Y 2(v2) = 0 = Y (Y (v2)) = Y (v1). Thus once again we see that we
can choose the vector v1 6= 0 in V which is a simultaneous eigenvector with
eigenvalue 0 for all X in ĝ. And this is the conclusion of Engel’s Theorem.
Obviously we are dealing once again the matrices of the form


0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


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Changing focus, we now assume, if possible, that a 4-dimensional abstract
nilpotent Lie algebra exists, called n̂. Then given a basis of n̂, the adjoint
representation ad takes n̂ into the 4x4 matrices ĝl(n̂). We remark that if we
let n̂ = V , then V is 4-dimensional and thus we are in the above context of
ĝl(V ). From above we know that we have a nilpotent Lie subalgebra ĝ =
ad(n̂) of ĝl(n̂), and with respect to the basis (v1, v2, v3, v4), the elements of
this subalgebra are the upper triangular matrices with a zero diagonal. Now
we would like to identify the images by ad of the four vectors (v1, v2, v3, v4)
of n̂ as matrices in ĝ. We therefore choose v1 as a simultaneous eigenvector
with eigenvalue 0 for all X in ĝ = ad(n̂). Thus we have [v1, x] = 0:

(ad(v1))(v1) = [v1, v1] = 0
(ad(v1))(v2) = [v1, v2] = −[v2, v1] = −(ad(v2))(v1) = 0
(ad(v1))(v3) = [v1, v3] = −[v3, v1] = −(ad(v3))(v1) = 0
(ad(v1))(v4) = [v1, v4] = −[v4, v1] = −(ad(v4))(v1) = 0

We see that ad(v1) is the zero matrix. This just says that v1 is in the center
of n̂. We also know that the center of n̂ is the kernel of the homomorphism
ad. Continuing, we have

(ad(v2))(v1) = [v2, v1] = 0
(ad(v2))(v2) = [v2, v2] = 0

(ad(v2))(v3) = [v2, v3] = a13v1 + a23v2
(ad(v2))(v4) = [v2, v4] = a14v1 + a24v2 + a34v3

since we know that ad(v2) is an upper triangular matrix with zero diagonal.
Continuing,

(ad(v3))(v1) = [v3, v1] = 0
(ad(v3))(v2) = [v3, v2] = b12v1

(ad(v3))(v3) = [v3, v3] = 0
(ad(v3))(v4) = [v3, v4] = b14v1 + b24v2 + b34v3

(ad(v4))(v1) = [v4, v1] = 0
(ad(v4))(v2) = [v4, v2] = c12v1

(ad(v4))(v3) = [v4, v3] = c13v1 + c23v2
(ad(v4))(v4) = [v4, v4] = 0

Now using the relation [u, v] = −[v, u], we see

b12 = −a13 a23 = 0 c12 = −a14 a24 = 0 a34 = 0
c13 = −b14 c23 = −b24 b34 = 0

Thus we have
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(ad(v2))(v1) = [v2, v1] = 0
(ad(v2))(v2) = [v2, v2] = 0

(ad(v2))(v3) = [v2, v3] = a13v1
(ad(v2))(v4) = [v2, v4] = a14v1

(ad(v3))(v1) = [v3, v1] = 0
(ad(v3))(v2) = [v3, v2] = −a13v1

(ad(v3))(v3) = [v3, v3] = 0
(ad(v3))(v4) = [v3, v4] = b14v1 + b24v2

(ad(v4))(v1) = [v4, v1] = 0
(ad(v4))(v2) = [v4, v2] = −a14v1

(ad(v4))(v3) = [v4, v3] = −b14v1 − b24v2
(ad(v4))(v4) = [v4, v4] = 0

Therefore the matrices are:

ad(v1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, ad(v2) =


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0

,

ad(v3) =


0 −a13 0 b14
0 0 0 b24
0 0 0 0
0 0 0 0

, ad(v4) =


0 −a14 −b14 0
0 0 −b24 0
0 0 0 0
0 0 0 0


We now want to check the homomorphism between n̂ and this Lie subal-

gebra of ĝ. This means that we have to verify the following relation for all i
and j:

ad[vi, vj] = [ad(vi), ad(vj)]

In the following calculations we first give the bracket in n̂, and then map this
element over to ad(n̂). This is followed by mapping each factor of the bracket
to ad(n̂), and then calculating the bracket in ad(n̂). The two calculations
should give the same answer if we have a homomorphism.

[v1, v2] = 0 −→ ad([v1, v2]) = ad(0) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0


 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


41



[v1, v3] = 0 −→ ad([v1, v3]) = ad(0) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 −a13 0 b14
0 0 0 b24
0 0 0 0
0 0 0 0


 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



[v1, v4] = 0 −→ ad([v1, v4]) = ad(0) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 −a14 −b14 0
0 0 −b24 0
0 0 0 0
0 0 0 0


 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



[v2, v3] = a13v1 −→ ad([v2, v3]) = ad(a13v1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 −a13 0 b14
0 0 0 b24
0 0 0 0
0 0 0 0


 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



[v2, v4] = a14v1 −→ ad([v2, v4]) = ad(a14v1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0





0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 −a14 −b14 0
0 0 −b24 0
0 0 0 0
0 0 0 0


 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


[v3, v4] = b14v1 + b24v2 −→ ad([v3, v4]) = ad(b14v1 + b24v2) =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ b24


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0

 = b24


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0





0 −a13 0 b14
0 0 0 b24
0 0 0 0
0 0 0 0

 ,


0 −a14 −b14 0
0 0 −b24 0
0 0 0 0
0 0 0 0


 =


0 0 a13b24 a14b24
0 0 0 0
0 0 0 0
0 0 0 0

 =
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b24


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0


Thus brackets go into brackets by ad and the homomorphism is verified. And
thus our assumption that we have a 4-dimensional nilpotent Lie algebra is
justified.

We also observe that the three matrices
0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 −a13 0 b14
0 0 0 b24
0 0 0 0
0 0 0 0

 ,


0 −a14 −b14 0
0 0 −b24 0
0 0 0 0
0 0 0 0


form a linearly independent set. Thus we have

dim(n̂) = dim(ker ad) + dim(image ad)
4 = 1 + 3

and we observe that we have a 3-dimensional Lie subalgebra in the 6-dimen-
sional Lie algebra ĝ of all upper triangular matrices with diagonal zero in
ĝl(n̂). The kernel of the above map gives the center of the Lie algebra n̂,
which is sp{v1}. Since we also know that ad(n̂) is nilpotent in ĝ, we can
affirm that ad(n̂) also has a nontrivial center. From the above calculations
of the bracket of ad(n̂), we see that the matrix


0 0 a13 a14
0 0 0 0
0 0 0 0
0 0 0 0


and only this matrix has zero brackets with all other elements of ad(n̂). Thus
this matrix generates the one-dimensional center of ad(n̂). We also see that

C0(ad(n̂)) = ad(n̂);
C1(ad(n̂)) = [ad(n̂), ad(n̂)] = {c(a13E13 + a14E14)};

C2(ad(n̂)) = 0

and thus the center of ad(n̂) = C1(ad(n̂)) = sp{E13, E14}, and

dimC0(ad(n̂)) = 3; dimC1(ad(n̂)) = 2; dimC2(ad(n̂)) = 0
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2.9 Lie’s Theorem

2.9.1 Some Remarks on Lie’s Theorem. Recall that we took this ex-
cursion into nilpotent Lie algebras because we wanted to identify the auto-
morphism A between the semisimple part of two Levi decompositions of a
Lie algebra ĝ, where a Levi decomposition is a splitting at the level of linear
spaces of an arbitrary Lie algebra ĝ into its radical r̂ and a semisimple Lie
algebra k̂.

ĝ = k̂ ⊕ r̂

Since the radical r̂ is the maximal solvable ideal of the Lie algebra ĝ,
let us take another excursion into solvable Lie algebras and prove a theorem
comparable to Engel’s Theorem for solvable Lie algebras. This is the famous
Lie’s Theorem. It reads:

Let ŝ be a solvable complex Lie subalgebra of ĝl(V ). Then there exists
a nonzero vector v ∈ V which is a simultaneous eigenvector for all X
in ŝ [with eigenvalue dependent on X].

Once again we are in the context of the 19th century and thus Lie’s The-
orem will be about matrices. Let V be a finite dimensional linear space and
consider the Lie algebra ĝl(V ) of all endomorphisms of V . We are looking
once again for simultaneous eigenvectors for some endomorphisms, but now
the eigenvalue is not necessarily equal to zero. Thus immediately we must
restrict ourselves to the algebraically closed field of scalars of characteristic
0 — in our case the complex numbers — in order to insure that the charac-
teristic polynomial of any matrix can be factored linearly. Thus V must be a
complex vector space and ĝl(V ) the complex endomorphisms of V . And the
endomorphisms which give this property of having simultaneous eigenvectors
will be a solvable complex Lie subalgebra of ĝl(V ).

We again make the following remarks, this time as we compare Lie’s The-
orem with Engel’s Theorem. As we said above, the field of scalars for the
linear space and the endomorphisms must be the complex numbers. Also
the subalgebra in the Lie’s Theorem is given in terms of Lie algebras, i.e.,
solvable, rather than as in the Engel’s Theorem in terms of a property of
linear transformations, i.e., every element of ĝ is a nilpotent linear transfor-
mation. However in the context of the 19th century this was rather natural.
We are now working essentially with matrices, and thus with End(V ). But
End(V ) has a natural Lie algebra structure if the bracket is defined to be
the commutator. In our notation this gives End(V ) = ĝl(V ). Now in this
context it is natural to define the derived series, and the situation in which
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the derived series of ĝl(V ) ends in zero should be a valuable property. Thus
solvable Lie algebras become natural objects for consideration.

Now if we assume that Lie’s Theorem is true, it is evident that for every
solvable complex Lie algebra of linear transformations ŝ we can find a basis
for V such that every element in ŝ can be represented on this basis by an
upper triangular matrix. The proof is essentially the same as the proof given
above that nilpotent Lie algebras of linear transformations can be represented
by upper triangular matrices with a zero diagonal. We will not repeat the
details. But one immediate conclusion is that every nilpotent Lie algebra
is also solvable [which fact we already know]. But we also know that every
solvable Lie algebra is not necessarily nilpotent. We give some calculations
here so that we can get a feel for these statements. Let ŝ be the solvable Lie
subalgebra of upper triangular matrices in ĝl(lR4). We choose four matrices
in ŝ: A, B, F . G:

A =


1 2 −3 1
0 −1 1 −2
0 0 2 3
0 0 0 −2

 B =


−1 0 −3 1
0 1 1 −2
0 0 −2 3
0 0 0 2



F =


2 2 3 0
0 −1 1 −2
0 0 −2 3
0 0 0 1

 G =


2 2 −3 0
0 −2 1 −2
0 0 1 3
0 0 0 −1


Next we take the bracket [A,B], which is in D1ŝ = C1ŝ:

[A,B] =


0 4 8 2
0 0 −6 −4
0 0 0 24
0 0 0 0


We see immediately that [A,B] is an upper triangular matrix with a zero
diagonal. We will show later that, in general, D1ŝ is in the nilpotent Lie
subalgebra of upper triangular matrices with zero diagonal in ĝl(lR4). For
now, however, we continue building up the lower central series for ŝ. Thus
[F, [A,B]] is in C2ŝ and:

[F, [A,B]] =


0 12 16 50
0 0 −6 50
0 0 0 −72
0 0 0 0



45



We observe that these matrices in C2ŝ have the same form as those in C1ŝ,
and we can show that this is true in general. Thus we can conclude that
Ckŝ = 0 for some k will not occur. Of course, this means that ŝ is not a nilpo-
tent Lie algebra. We now compute the brackets [F,G] and [[A,B], [F,G]]:

[F,G] =


0 −2 −15 18
0 0 4 2
0 0 0 −15
0 0 0 0

 [[A,B], [F,G]] =


0 0 4 240
0 0 0 −6
0 0 0 0
0 0 0 0


As expected, [F,G] is upper triangular with zero diagonal — an element
in the nilpotent Lie subalgebra. Thus [[A,B], [F,G]], which is in D2ŝ, is a
bracketing of two elements in a nilpotent Lie algebra, which action we know
will push the bracket down in its lower central series. Continuing this process,
we will reach the trivial Lie algebra 0. Thus we can conclude that for some
k, Dkŝ = 0 and we see that ŝ is a solvable Lie algebra.

2.9.2 Proof of Lie’s Theorem. We now give the proof of Lie’s Theorem.
In doing so, we will follow closely the proof of Engel’s Theorem. [Once again
we will be using induction on the dimension of ŝ.] When the dimension of ŝ
is one, we are dealing essentially with one nonzero linear transformation X
in ĝl(V ). Now since we are in the context of the field of complex scalars, we
know that X has an eigenvector v with eigenvalue λ in lC: X(v) = λ · v. This
fact proves the theorem in this case.

We now let ŝ be a solvable complex Lie subalgebra of ĝl(V ) of dimension
greater than one. First we want to find an ideal ĥ of ŝ of codimension one.
Then this will give us a linear transformation Y in ŝ whose span sp(Y ) is
not in ĥ, giving ŝ = ĥ ⊕ sp(Y ). In doing this we will also describe some
interesting auxiliary structures of importance in mathematics. This time it
is relatively easy to find ĥ. Since the condition on ŝ is given in terms of
Lie algebra structures, we take advantage of these structures. We choose
the derived algebra of ŝ, the ideal D1ŝ. We know D1ŝ 6= ŝ, for if D1ŝ = ŝ,
then it would be impossible to find a k such that Dkŝ = 0, and ŝ would
not be solvable. Now if D1ŝ = 0, then ŝ is abelian and thus diagonalizable
and therefore satisfies the theorem. Thus we can assume that the dimension
of D1ŝ 6= 0 and is less than the dimension of ŝ. We now form the nonzero
quotient ŝ/D1ŝ, calling α the map from ŝ to ŝ/D1ŝ. But this process of
moding out the subalgebra of commutators, which is what D1ŝ is, gives the
abelianization of ŝ, i.e., ŝ/D1ŝ is an abelian Lie algebra. Here is the proof:

Taking the brackets of any two cosets Y1 and Y2, we have [Y1, Y2].
Writing this bracket in cosets language gives

[Y1 +D1ŝ, Y2 +D1ŝ] = [Y1, Y2] + [Y1, D
1ŝ] + [D1ŝ, Y2] + [D1ŝ, D1ŝ]
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Now [Y1, Y2] is in D1ŝ; and since D1ŝ is an ideal, the other three terms
are also in D1ŝ. We conclude that this bracket is in D1ŝ, which is the
zero coset. Thus [Y1, Y2] = 0. This gives us an abelian quotient Lie
algebra.

Now we choose a codimension one subspace of ŝ/D1ŝ. [We remark that if
the dimension of ŝ/D1ŝ is one, then

ŝ = ker(α)⊕ α−1(im(α)) = D1ŝ⊕ l̂

where the dimension of l̂ is one, giving l̂ = sp(Y ) where Y 6= 0 is in ŝ but
not in D1ŝ. Since D1ŝ is an ideal, we have in this case effected the desired
decomposition ŝ = ĥ⊕ sp(Y ).] Continuing, we have

ŝ/D1ŝ = k̂/D1ŝ⊕ l̂/D1ŝ

where the dim (ŝ/D1ŝ) ≥ 2, dim (k̂/D1ŝ) ≥ 1, and dim(l̂/D1ŝ) = 1. This, of
course, says that k̂+ l̂ = ŝ and k̂ ∩ l̂ = D1ŝ. We now look at the dimensions.
Let dim ŝ = n and dim D1ŝ = m. Then we have

n−m = dim k̂ −m+m+ 1−m
n = dim k̂ + 1

which says that k̂ has codimension 1. Now D1ŝ ⊂ k̂. Thus we have the map

k̂
α−→ k̂/D1ŝ ⊂ ŝ/D1ŝ

Now since ŝ/D1ŝ is abelian, we have

[k̂/D1ŝ, ŝ/D1ŝ] = 0 ⊂ k̂/D1ŝ

thus making k̂/D1ŝ an ideal in ŝ/D1ŝ. Now

α[k̂, ŝ] = [α(k̂), α(ŝ)] ⊂ k̂/D1ŝ

Thus

[k̂, ŝ] ⊂ α−1(k̂/D1ŝ) = k̂

which says that k̂ is an ideal in ŝ. Thus we have our conclusion that ŝ has a
codimension 1 ideal k̂. And thus we have ŝ = ĥ⊕ sp(Y ) with Y 6= 0 in ŝ but
with sp(Y ) not being in the ideal ĥ.

Again, following the proof of Engel’s Theorem, we will do an induction
on the dimension of ŝ. Since ŝ is solvable, we know that the ideal ĥ is also
solvable and of dimension less than the dimension of ŝ. Thus, by induction,
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there exists a vector u of V which is a simultaneous eigenvector for all ma-
trices Z in ĥ with complex eigenvalue λ(Z) dependent, of course, on Z, i.e.,
Z(u) = λ(Z)(u). We observe that this determines an element λ in the dual
ĥ∗ of ĥ.

Following the proof of Engel’s Theorem we define a subspace W of V
such that w ∈ W means w is also a simultaneous eigenvector for all Z in ĥ
with complex eigenvalue λ(Z), i.e., Z(w) = λ(Z)(w). We remark that we
have not changed the dual element in defining this subset W . Thus W is the
eigenspace corresponding to the eigenvalue λ. Obviously u belongs to W .

We want to show also that Y stabilizes W , i.e., leaves W invariant. We
proceed as follows. For all w in W , Z(Y (w)) = λ(Z)(Y (w)) for all Z in ĥ,
where λ(Z) is a complex eigenvalue for the simultaneous eigenvector Y (w).
Again let us take brackets: Z(Y (w)) = Y (Z(w)) − [Y, Z](w). Since ĥ is an
ideal, we know that [Y, Z] is in ĥ and thus [Y, Z](w) = λ([Y, Z])w. Now
Y (Z(w)) = Y (λ(Z)w). Thus we have

Z(Y (w)) = Y (λ(Z)w)− λ([Y, Z])w = λ(Z)(Y (w))− λ([Y, Z])w

This relation says that we must show λ([Y, Z]) = 0 in order for us to say that
Y stabilizes W .

Thus we must find a way to evaluate the dual λ on ĥ. In doing so,
we observe two facts. First Z operating on Y (w) gives a linear combina-
tion in the subspace generated by w and Y (w), and secondly the scalars
are eigenvalues coming from the constant dual λ. Thus this suggests, as
in the proof of Engel’s Theorem, that we take iterates of Y acting on w:
(w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)). [In Engel’s Theorem, because of nilpo-
tency, we knew that these iterates would arrive at zero, and this gave us
the proof of Engel’s Theorem. Now we lack the property of nilpotency
but we can gain important information once again from these iterates. We
know that (w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)) will be a maximal indepen-
dent set of vectors in V for some k. We note that w is in W , and thus
we are asking what happens when Y acts on W . Now either Y (w) is in
W or is not in W . If Y (w) is in W , then Y stabilizes W and U , (the
Span(w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)) is W itself. If not, then we ask
whether (w, Y (w)) is stabilized by Y . But this says that we are now look-
ing at the set (w, Y (w), Y 2(w)). If Span(w, Y (w), Y 2(w)) = Span(w, Y (w)),
then Y 2(w) is not independent, and we are finished. Thus we have the above
conclusion that (w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)) will be a maximal inde-
pendent set of vectors in V for some k. Thus they will span a subspace U of
V of dimension k + 1 ≤ n, where n is the dimension of V . It is evident that
Y stabilizes U . And we remark that induction shows that ĥ also stabilizes
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this subspace U . [We note that if k = 0, then the conclusion is trivial.] We
assume that Z((Y k−1)(w)) is in U for all Z in ĥ. Then

Z((Y k)(w)) = Z(Y ((Y k−1)(w))) = Y (Z((Y k−1)(w)))− [Y, Z]((Y k−1)(w))

By induction Z((Y k−1)(w)) is in U and Y , operating on U , remains in U .
Thus Y (Z((Y k−1)(w))) is in U . Also [Y, Z] is in ĥ and thus [Y, Z]((Y k−1)(w))
is in U . We conclude that ĥ stabilizes U . Indeed this means that ŝ also
stabilizes U .

We now let l ≤ k. We observe that when l = 1, the above equality gives

Z(Y (w)) = Y (λ(Z)w)− λ([Y, Z])w = λ(Z)(Y (w))− λ([Y, Z])w

which repeats the first equality given above. Continuing, we let l = 2. We
have

Z((Y 2)(w)) = Z(Y (Y (w))) = Y (Z(Y (w)))− [Y, Z](Y (w)) =
λ(Z)(Y (Y (w)))− λ([Y, Z])(Y (w)) = λ(Z)(Y 2(w))− λ([Y, Z])(Y (w))

We see the pattern developing. We are producing, for each Z in ĥ, with
respect to the basis for U : (w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)), an upper
triangular matrix for Z with constant diagonal entries equal to λ(Z). This
means that if we take the trace of this matrix, we obtain

trace(Z) = (k + 1) · λ(Z)

We conclude that we have found a method of calculating the dual λ.

We return to the question of whether Y stabilizes the subspace W of all
simultaneous eigenvectors under the action of ĥ. We know, when w is any
element in W , that

Z(Y (w)) = λ(Z)(Y (w))− λ([Y, Z])w

We now have a method of calculating λ([Y, Z]). Since [Y, Z] is in ĥ, we have
trace([Y, Z]) = (k+ 1) · λ([Y, Z]). But the trace of any commutator [Y, Z] in
ĥ is

trace([Y, Z]) = trace(Y Z − ZY ) = trace(Y Z)− trace(ZY ) = 0 =
(k + 1) · λ([Y, Z])
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since the trace(Y Z) = trace(ZY ). This gives the conclusion that λ([Y, Z]) =
0, and finally we have Z(Y (w)) = λ(Z)(Y (w)), which says that Y (w) is
a simultaneous eigenvector for all Z in ĥ with eigenvalue λ(Z). Thus Y
stabilizes W .

[It is interesting to remark that since λ([Y, Z]) = 0 whenever the bracket
product is in ĥ, we can conclude that for each Z in ĥ, with respect to the
basis for U : (w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)), the upper triangular matrix
for Z with constant diagonal entries equal to λ(Z) becomes a diagonal matrix
with constant entries equal to λ(Z).]

Now we know that Y is a linear transformation taking W into W , and
thus has an eigenvector v 6= 0 in W with eigenvalue λ(Y ) — we are extending
the dual λ now from ĥ to ŝ — since our field of scalars is lC. And since v ∈ W ,
it is also a simultaneous eigenvector for all Z in ĥ. Thus we have found a
vector v ∈ V , v 6= 0, which is a simultaneous eigenvector for all X in ŝ. The
proof is then complete.

2.9.3 Examples. An example again is enlightening. Let us use a V with
dimension equal to 4, and give it a basis (v1, v2, v3, v4). Then End(V ) = ĝl(V )
is the set of 4x4 matrices over lC. We look at the following set of upper
triangular matrices ŝ over lC:

X =


a11 a12 a13 0
0 0 a23 0
0 0 a33 0
0 0 0 a44


First let us show that ŝ is a solvable Lie subalgebra. We see that ŝ is

6-dimensional. We take the brackets in ŝ. Since the basis of ŝ is:

(E11, E12, E13, E23, E33, , E44)

we have 15 different such products:

[E11, E12] = E12 [E11, E13] = E13 [E11, E23] = 0 [E11, E33] = 0
[E11, E44] = 0 [E12, E13] = 0 [E12, E23] = E13 [E12, E33] = 0
[E12, E44] = 0 [E13, E23] = 0 [E13, E33] = E13 [E13, E44] = 0

[E23, E33] = E23 [E23, E44] = 0 [E33, E44] = 0

Thus we see that the brackets close and we do have a Lie subalgebra. Also
we have as a basis for D1ŝ = [ŝ, ŝ]:

(E12, E13, E23)
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We now take the brackets in D1ŝ:

[E12, E13] = 0 [E12, E23] = E13 [E13, E23] = 0

Thus we have as a basis for D2ŝ = [D1ŝ, D1ŝ]:

(E13)

Finally we have D3ŝ = [D2ŝ, D2ŝ] = 0. And thus we see that ŝ is solvable.

Moreover, we have

dim ŝ = 6 dim D1ŝ = 3 dim D2ŝ = 1 dim D3ŝ = 0

It is evident that given these matrices we see immediately that v1 is a
simultaneous eigenvector with eigenvalue λ1(X) = a11 [where, of course, a11
depends on X]; and also that v4 is a simultaneous eigenvector with eigenvalue
λ4(X) = a44 [where a44 depends on X]. Thus we are identifying duals λ1 and
λ4 in ŝ∗ with this property. However what we would like to do is to follow
the proof of the theorem in this case and see how the proof identifies these
vectors.

The first step in the proof of Lie’s Theorem in this case is to identify the
ideal ĥ of codimension one in ŝ. To do this we take the quotient algebra
ŝ/D1ŝ. This means we are taking matrices of the form


∗ ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 ∗


and moding out by the matrices of the form

0 ∗ ∗ 0
0 0 ∗ 0
0 0 0 0
0 0 0 0


which gives us the 3-dimensional abelian Lie algebra isomorphic to the diag-
onal matrices 

∗ 0 0 0
0 0 0 0
0 0 ∗ 0
0 0 0 ∗


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From these computations we can say that the quotient of ŝ by the commu-
tator D1ŝ abelianizes ŝ.

We now want to choose a codimension one subspace of the 3-dimensional
space ŝ/D1ŝ. At this point we have three choices, and we think it would be
quite informative to see how the proof of Lie’s Theorem picks a simultaneous
eigenvector in each of these choices.

First we choose the two-dimensional subspace with basis (E33+D1ŝ, E44+
D1ŝ) in ŝ/D1ŝ, which consists of matrices of the form

0 ∗ ∗ 0
0 0 ∗ 0
0 0 a33 0
0 0 0 a44


The inverse image of this subspace by the quotient map gives an ideal ĥ1 in
ŝ of dimension 5, thus of codimension one. ĥ1 consists of all matrices of the
form 

0 ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 ∗


that is, it has the basis

(E12, E13, E23, E33, E44)

We check that it is an ideal in ŝ. From above we see that the brackets of ĥ1
do close forming a Lie subalgebra. The only non-zero brackets are:

[E12, E23] = E13 [E13, E33] = E13 [E23, E33] = E23

To verify ideal structure we need only bracket E11 with the basis of ĥ2. From
above we see that the only non-zero brackets are:

[E11, E12] = E12 [E11, E13] = E13

We see that we have closure again in ĥ1, giving the ideal structure. We
also see that ŝ = ĥ1 ⊕ sp(Y1), where Y1 is the one-dimensional subspace of ŝ
generated by the matrix E11.

First we check that ĥ1 is solvable. From above we see the D1ĥ1 = [ĥ1, ĥ1]
has as a basis: (E13, E23). We see immediately that D2ĥ1 = [D1ĥ1, D

1ĥ1] = 0
Thus ĥ1 is solvable.
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By induction, we know that there exists a vector u1 in V which is a si-
multaneous eigenvector with eigenvalue λ1(Z) for each Z in ĥ1:, i.e., Z(u1) =
λ1(Z)(u1). We see that for the choices that we made this vector u1 is either
v1 or v4. For the choice of v1, we see that λ1(Z) = 0 for all Z in ĥ1; for
the choice of v4, we see that λ1(Z) = a44 for all Z in ĥ1, with, of course, a44
depending on Z.

Before we proceed with the analysis of the proof of Lie’s Theorem for
these choices, let us bring up at this point the other two possible choices for
the codimension one ideal of ŝ. We now want to choose another codimension
one subspace of the 3-dimensional space ŝ/D1ŝ. We choose now the two-
dimensional subspace with basis (E11 + D1ŝ, E44 + D1ŝ) in ŝ/D1ŝ, which
consists of matrices of the form

a11 ∗ ∗ 0
0 0 ∗ 0
0 0 0 0
0 0 0 a44


The inverse image of this subspace by the quotient map gives an ideal ĥ2 in
ŝ of dimension 5, thus of codimension one. ĥ2 consists of all matrices of the
form 

∗ ∗ ∗ 0
0 0 ∗ 0
0 0 0 0
0 0 0 ∗


that is, it has the basis

(E11, E12, E13, E23, E44)

We check that it is an ideal in ŝ. From above we see that the brackets of ĥ2
do close forming a Lie subalgebra. Moreover, the only non-zero brackets are:

[E11, E12] = E12 [E11, E13] = E13 [E12, E23] = E13

To verify the ideal structure we need only bracket E33 with the basis of ĥ1.
From above, we see that the only non-zero brackets are:

[E13, E33] = E13 [E23, E33] = E23
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We see that we have closure again in ĥ2, giving the ideal structure. We
also see that ŝ = ĥ2 ⊕ sp(Y2), where Y2 is the one-dimensional subspace of ŝ
generated by the matrix E33.

First we check that ĥ2 is solvable. From above we see the D1ĥ2 = [ĥ2, ĥ2]
has as a basis: (E12, E13). We see immediately that D2ĥ2 = [D1ĥ2, D

1ĥ2] = 0
Thus ĥ2 is solvable.

By induction, we know that there exists a vector u2 in V which is a
simultaneous eigenvector with eigenvalue λ2(Z) for each Z in ĥ2, i.e., Z(u2) =
λ2(Z)(u2). We see that for the choices that we made that this vector u2 is
again either v1 or v4. For the choice of v1, we see that λ2(Z) = a11 for all Z
in ĥ2 with a11 depending on Z; for the choice of v4, we see that λ2(Z) = a44
for all Z in ĥ2, with a44 depending on Z.

We now want to choose the last possible codimension one subspace of the
3-dimensional space ŝ/D1ŝ. We choose the two-dimensional subspace with
basis (E11 +D1ŝ, E33 +D1ŝ) in ŝ/D1ŝ, which consists of matrices of the form


a11 ∗ ∗ 0
0 0 ∗ 0
0 0 a33 0
0 0 0 0


The inverse image of this subspace by the quotient map gives an ideal ĥ3 in
ŝ of dimension 5, thus of codimension one. ĥ3 consists of all matrices of the
form 

∗ ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 0


that is, it has the basis

(E11, E12, E13, E23, E33)

We check that it is an ideal in ŝ. From above we see that the brackets of ĥ3
do close forming a Lie subalgebra. The only non-zero brackets are:

[E11, E12] = E12 [E11, E13] = E13 [E12, E23] = E13

[E13, E33] = E13 [E23, E33] = E23
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To verify ideal structure we need only bracket E44 with the basis of ĥ3. From
above we see that there are no non-zero brackets. We also see that we have
closure in ĥ3, giving the ideal structure. Moreover, ŝ = ĥ3 ⊕ sp(Y3), where
Y3 is the one-dimensional subspace of ŝ generated by the matrix E44.

First we check that ĥ3 is solvable. From above, we see the D1ĥ3 = [ĥ3, ĥ3]
has as a basis: (E12, E13, E23). We see D2ĥ3 = [D1ĥ3, D

1ĥ3] has a basis (E13).
Thus D3ĥ3 = [D2ĥ3, D

2ĥ3] = 0 and ĥ3 is solvable.

By induction, we know that there exists a vector u3 in V which is a
simultaneous eigenvector with eigenvalue λ3(Z) for each Z in ĥ3, i.e., Z(u3) =
λ3(Z)(u3). We see that, for the choices that we made, this vector u3 is again
either v1 or v4. For the choice of v1, we see that λ3(Z) = a11 for all Z in ĥ3
with a11 depending on Z. For the choice of v4, we see that λ2(Z) = 0 for all
Z in ĥ3.

Summarizing at this point, we have found three decompositions of ŝ:

ŝ = ĥ1 ⊕ sp(Y1) ŝ = ĥ2 ⊕ sp(Y2) ŝ = ĥ3 ⊕ sp(Y3)

where

ĥ1 =




0 ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 ∗


 ĥ2 =



∗ ∗ ∗ 0
0 0 ∗ 0
0 0 0 0
0 0 0 ∗


 ĥ3 =



∗ ∗ ∗ 0
0 0 ∗ 0
0 0 ∗ 0
0 0 0 0




and where the Yi are:

Y1 = E11 Y2 = E33 Y3 = E44

giving

ŝ = ĥ1 ⊕ sp(E11) ŝ = ĥ2 ⊕ sp(E33) ŝ = ĥ3 ⊕ sp(E44)

The possible simultaneous eigenvectors ui for each ĥi with their respective
eigenvalues λi are:

{v1, v4} for ĥ1 with Z(v1) = λ1(Z)(v1) = 0; Z(v4) = λ1(Z)(v4) = a44v4
{v1, v4} for ĥ2 with Z(v1) = λ2(Z)(v1) = a11v4; Z(v4) = λ2(Z)(v4) = a44v4
{v1, v4} for ĥ3 with Z(v1) = λ3(Z)(v1) = a11v4; Z(v4) = λ3(Z)(v4) = 0

The amazing conclusion is that the same two eigenvectors are chosen no
matter what the ideal ĥi is. To conclude the proof of Lie’s Theorem all we
have to do is show that each Yi also acts on v1 or v4 as an eigenvector, that
is, Yi(vj) = λi(Yi)(vj). We have
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E11(v1) = v1;E11(v4) = 0
E33(v1) = 0;E33(v4) = 0
E44(v1) = 0;E44(v4) = v4

and thus we can conclude that either v1 or v4 satisfies the conclusion of the
theorem.

What we would like to do now in order to conclude the analysis of Lie’s
Theorem is to see how the reasoning in general was able to come to this
same conclusion. At this point we identify the subspace W of V to be the
subspace defined by all elements of V such that for each w in W , w is a
simultaneous eigenvector for all Z in the ideal ĥ, i.e., Z(w) = λ(Z)(w). We
recall that W is just the eigenspace corresponding to each eigenvalue λ. In
all six of the cases above, two for each ĥi, this W is one-dimensional, i.e.,
W = sp(v1) or W = sp(v4). Then we affirm that Y stabilizes this subspace,
that is, Y (w) ∈ W , since., Z(Y (w)) = λ(Z)(Y (w)) for all Z in ĥ.

In our example we have:

Z(E11(v1)) = Z(v1) = λ(Z)(v1) = 0 λ(Z)(E11(v1)) = λ(Z)(v1) = 0
Z(E11(v4)) = Z(0) = 0 λ(Z)(E11(v4)) = λ(Z)(0) = 0

Z(E33(v1)) = Z(0) = 0 λ(Z)(E33(v1)) = λ(Z)(0) = 0
Z(E33(v4)) = Z(0) = 0 λ(Z)(E33(v4)) = λ(Z)(0) = 0
Z(E44(v1)) = Z(0) = 0 λ(Z)(E44(v1)) = λ(Z)(0) = 0

Z(E44(v4)) = Z(v4) = λ(Z)(v4) = 0 λ(Z)(E44(v4)) = λ(Z)(v4)) = 0

It is interesting to remark that the relation Z(Y (w)) = λ(Z)(Y (w)) gave the
zero vector in W in all cases.

However, in the proof we had to work with the bracket product;

Z(Y (w)) = Y (λ(Z)w)− λ([Y, Z])w = λ(Z)(Y (w))− λ([Y, Z])w

and we had to prove that λ([Y, Z]) = 0. Thus in the proof we were faced
with the task of evaluating the dual λ on ĥ. This evaluation we did by
taking iterates of w by Y , forming a linear subspace U of V which has the
basis (w, Y (w), Y 2(w), Y 3(w), · · ·, Y k(w)), with k+ 1 ≤ n and where n is the
dimension of V . From this calculation we obtain

trace(Z) = (k + 1) · λ(Z)

which says that

λ(Z) = trace(Z)
k+1
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Thus we have succeeded in evaluating the dual λ on ĥ. In our example we
we see that (w = Y 0

i (w)) is a basis for U for all ĥi for any w = vj in W , that
is, the dimension of all the W ’s is one. In general our calculation is:

w = vj
Y (w) = Y (vj)

Y 2(w) = Y 2(vj) = Y (Y (vj))

For ĥ1, this gives

w = v1 w = v4
E11(v1) = v1 E11(v4) = 0

which show that after one iteration we begin to repeat. Continuing, we have
for ĥ2,

w = v1 w = v4
E33(v1) = 0 E33(v4) = 0

which show that after one iteration we begin to repeat. For ĥ3, this gives

w = v1 w = v4
E44(v1) = 0 E44(v4) = v4

which show that after one iteration we begin to repeat.

Now in order to write each Z in ĥi in the basis (w) we need the following
information:

Z(v1) = λ1(Z)(v1) = 0 Z(v4) = λ1(Z)(v4) = a44v4
Z(v1) = λ2(Z)(v1) = a11v1 Z(v4) = λ2(Z)(v4) = a44v4
Z(v1) = λ3(Z)(v1) = a11v1 Z(v4) = λ3(Z)(v4) = 0

For ĥi, the basis for U is (v1) or (v4). On these bases we form the 1x1 matrices
for Z.

For ĥ1, Z(v1) = 0 Z(v4) = a44v4 giving matrices [0] [a44]
For ĥ2, Z(v1) = a11v1 Z(v4) = a44v4 giving matrices [a11] [a44]

For ĥ3, Z(v1) = a11v1 Z(v4) = 0 giving matrices [a11] [0]

Finally, we can calculate the traces of these matrices, which are, of course,
trivial calculations. For ĥ1 we have
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Z(v1) = λ(Z)(v1) = 0 λ(Z) = trace(Z)
1

= trace[0] = 0

Z(v4) = λ(Z)(v4) = a44v4 λ(Z) = trace(Z)
1

= trace[a44] = a44

For ĥ2 we have

Z(v1) = λ(Z)(v1) = a11v1 λ(Z) = trace(Z)
1

= trace[a11] = a11
Z(v4) = λ(Z)(v4) = a44v4 λ(Z) = trace(Z)

1
= trace[a44] = a44

For ĥ3 we have

Z(v1) = λ(Z)(v1) = a11v1 λ(Z) = trace(Z)
1

= trace[a11] = a11
Z(v4) = λ(Z)(v4) = 0 λ(Z) = trace(Z)

1
= trace[0] = 0

The previous part was just an interlude in the proof of Lie’s Theorem
where we showed how to calculate the dual λ. To complete the proof of the
theorem, we have to show how we can conclude to a simultaneous eigenvector
for all X in ŝ. We now have ŝ written in three ways:

ŝ = ĥ1 ⊕ sp(E11) ŝ = ĥ2 ⊕ sp(E33) ŝ = ĥ3 ⊕ sp(E44)

Thus

X = Z + a11E11 with Z in ĥ1 X = Z + a33E33 with Z in ĥ2
X = Z + a44E44 with Z in ĥ3

w = v1 w = v4
E44(v1) = 0 E44(v4) = v4

which show that after one iteration we begin to repeat.

We know

{v1, v4} for ĥ1 with Z(v1) = λ1(Z)(v1) = 0; Z(v4) = λ1(Z)(v4) = a44v4
{v1, v4} for ĥ2 with Z(v1) = λ2(Z)(v1) = a11v1; Z(v4) = λ2(Z)(v4) = a44v4
{v1, v4} for ĥ3 with Z(v1) = λ3(Z)(v1) = a11v1; Z(v4) = λ3(Z)(v4) = 0

and

E11(v1) = v1;E11(v4) = 0
E33(v1) = 0;E33(v4) = 0
E44(v1) = 0;E44(v4) = v4

We conclude
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X(v1) = Z(v1) + a11E11(v1) with Z in ĥ1
X(v4) = Z(v4) + a11E11(v4) with Z in ĥ1

X(v1) = Z(v1) + a33E33(v1) with Z in ĥ2
X(v4) = Z(v4) + a33E33(v4) with Z in ĥ2

X(v1) = Z(v1) + a44E44(v1) with Z in ĥ3
X(v4) = Z(v4) + a44E44(v4) with Z in ĥ3

X(v1) = λ1(Z)(v1) + a11v1 = 0 + a11v1 = a11v1 with Z in ĥ1
giving λ1(X) = a11 for v1

X(v4) = λ1(Z)(v4) + a110 = a44v4 + 0 = a44v4 with Z in ĥ1
giving λ1(X) = a44 for v4

X(v1) = λ2(Z)(v1) + a330 = a11v1 + 0 = a11v1 with Z in ĥ2
giving λ2(X) = a11 for v1

X(v4) = λ2(Z)(v4) + a330 = a44v4 + 0 = a44v4 with Z in ĥ2
giving λ2(X) = a44 for v4

X(v1) = λ3(Z)(v1) + a440 = a11v1 + 0 = a11v1 with Z in ĥ3
giving λ3(X) = a11 for v1

X(v4) = λ3(Z)(v4) + a44v4 = 0 + a44v4 = a44v4 with Z in ĥ3
giving λ3(X) = a44 for v4

We observe that no matter how we choose X we obtain the same eigenvalues
and indeed these eigenvalues agree with the matrix X

X =


a11 a12 a13 0
0 0 a23 0
0 0 a33 0
0 0 0 a44


We believe that this example gives a wonderful concrete understanding

of Lie’s Theorem.

But in order to get a better feel for the solvable case we repeat what we
did above for the nilpotent case.

We assume a 4-dimensional abstract solvable Lie algebra ŝ exists. Then
given a basis in ŝ, the adjoint representation ad takes ŝ into the 4x4 matrices
ĝl(ŝ). We remark again that if we let ŝ = V , then V is 4-dimensional and
thus we are in the above context of ĝl(V ). We thus know that we have a 10-
dimensional solvable Lie subalgebra ĝ of ĝl(ŝ), and on the basis (v1, v2, v3, v4),
the elements of this subalgebra are the upper triangular matrices. Now the
image of ad is a solvable Lie subalgebra of ĝl(ŝ). What we would like to show
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is that this subalgebra is a subalgebra of ĝ in ĝl(ŝ). Thus we would like to
identify the images by ad of the four vectors (v1, v2, v3, v4) as matrices in ĝ.
Now we know that v1 is a simultaneous eigenvector with eigenvalue λ1(X)
for all X in ĝ. But ad(v1) is in ĝ. Thus we have

(ad(v1))(v1) = [v1, v1] = λ1(ad(v1))(v1) = 0
(ad(v1))(v2) = [v1, v2] = −[v2, v1] = −(ad(v2))(v1) = −λ1(ad(v2))(v1)
(ad(v1))(v3) = [v1, v3] = −[v3, v1] = −(ad(v3))(v1) = −λ1(ad(v3))(v1)
(ad(v1))(v4) = [v1, v4] = −[v4, v1] = −(ad(v4))(v1) = −λ1(ad(v4))(v1)

(ad(v2))(v1) = [v2, v1] = λ1(ad(v2))(v1)
(ad(v2))(v2) = [v2, v2] = 0
(ad(v2))(v3) = [v2, v3] = a13v1 + a23v2 + a33v3
(ad(v2))(v4) = [v2, v4] = a14v1 + a24v2 + a34v3 + a44v4

since we know that ad(v2) is an upper triangular matrix. Continuing,

(ad(v3))(v1) = [v3, v1] = λ1(ad(v3))(v1)
(ad(v3))(v2) = [v3, v2] = b12v1 + b22v2
(ad(v3))(v3) = [v3, v3] = 0
(ad(v3))(v4) = [v3, v4] = b14v1 + b24v2 + b34v3 + b44v4

(ad(v4))(v1) = [v4, v1] = λ1(ad(v4))(v1)
(ad(v4))(v2) = [v4, v2] = c12v1 + c22v2
(ad(v4))(v3) = [v4, v3] = c13v1 + c23v2 + c33v3
(ad(v4))(v4) = [v4, v4] = 0

Now using the relation [u, v] = −[v, u], we see

b12 = −a13 b22 = −a23 a33 = 0 c12 = −a14
c22 = −a24 a34 = 0 a44 = 0 c13 = −b14

c23 = −b24 c33 = −b34 b44 = 0

Thus we have

(ad(v2))(v1) = [v2, v1] = λ1(ad(v2))(v1)
(ad(v2))(v2) = [v2, v2] = 0

(ad(v2))(v3) = [v2, v3] = a13v1 + a23v2
(ad(v2))(v4) = [v2, v4] = a14v1 + a24v2

(ad(v3))(v1) = [v3, v1] = λ1(ad(v3))(v1)
(ad(v3))(v2) = [v3, v2] = −a13v1 − a23v2

(ad(v3))(v3) = [v3, v3] = 0
(ad(v3))(v4) = [v3, v4] = b14v1 + b24v2 + b34v3
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(ad(v4))(v1) = [v4, v1] = λ1(ad(v4))(v1)
(ad(v4))(v2) = [v4, v2] = −a14v1 − a24v2

(ad(v4))(v3) = [v4, v3] = −b14v1 − b24v2 − b34v3
(ad(v4))(v4) = [v4, v4] = 0

Thus the matrices are:

ad(v1) =


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

,

ad(v2) =


λ1(ad(v2)) 0 a13 a14

0 0 a23 a24
0 0 0 0
0 0 0 0

,

ad(v3) =


λ1(ad(v3)) −a13 0 b14

0 −a23 0 b24
0 0 0 b34
0 0 0 0

,

ad(v4) =


λ1(ad(v4)) −a14 −b14 0

0 −a24 −b24 0
0 0 −b34 0
0 0 0 0


We now want to check the homomorphism between ŝ and this Lie subal-

gebra ad(ŝ) of ĝ by doing the following computations:

ad[vi, vj] = [ad(vi), ad(vj)]

[v1, v2] = −λ1(ad(v2))(v1) −→ ad([v1, v2]) = ad(−λ1(ad(v2))(v1)) =
−λ1(ad(v2))ad(v1) =

−λ1(ad(v2))


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 (λ1(ad(v2)))

2 (λ1(ad(v2)))(λ1(ad(v3))) (λ1(ad(v2)))(λ1(ad(v4)))
0 0 0 0
0 0 0 0
0 0 0 0

;

[ad(v1), ad(v2)] =
0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v2)) 0 a13 a14

0 0 a23 a24
0 0 0 0
0 0 0 0

−
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
λ1(ad(v2)) 0 a13 a14

0 0 a23 a24
0 0 0 0
0 0 0 0

·


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 −(λ1(ad(v2)))a23 −(λ1(ad(v2)))a24
0 0 0 0
0 0 0 0
0 0 0 0

−


0 −(λ1(ad(v2)))
2 −λ1(ad(v2))λ1(ad(v3)) −λ1(ad(v2))λ1(ad(v4))

0 0 0 0
0 0 0 0
0 0 0 0

 =

[Because of the length of some entries in these matrices, it is now necessary to
write this matrix in two parts. The ∗ij indicates where these entries occur.]

0 (λ1(ad(v2)))
2 −(λ1(ad(v2)))a23 + (λ1(ad(v2)))(λ1(ad(v3))) ∗14

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 ∗12 ∗13 −(λ1(ad(v2)))a24 + (λ1(ad(v2)))(λ1(ad(v4)))
0 0 0 0
0 0 0 0
0 0 0 0


We observe that we can effect a homomorphism if a23 = 0 and a24 = 0. This
gives the matrix

0 (λ1(ad(v2)))
2 (λ1(ad(v2)))(λ1(ad(v3))) (λ1(ad(v2)))(λ1(ad(v4)))

0 0 0 0
0 0 0 0
0 0 0 0


Continuing,

[v1, v3] = −λ1(ad(v3))(v1) −→ ad([v1, v3]) = ad(−λ1(ad(v3))(v1)) =
−λ1(ad(v3))ad(v1) =

−λ1(ad(v3))


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 (λ1(ad(v3)))(λ1(ad(v2))) λ1(ad(v3))

2 (λ1(ad(v3)))(λ1(ad(v4)))
0 0 0 0
0 0 0 0
0 0 0 0


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[ad(v1), ad(v3)] =
0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v3)) −a13 0 b14

0 −a23 0 b24
0 0 0 b34
0 0 0 0

−

λ1(ad(v3)) −a13 0 b14

0 −a23 0 b24
0 0 0 b34
0 0 0 0

 ·


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 (λ1(ad(v2)))a23 0 −(λ1(ad(v2)))b24 − (λ1(ad(v3)))b34
0 0 0 0
0 0 0 0
0 0 0 0

−


0 −λ1(ad(v3))λ1(ad(v2)) −(λ1(ad(v3)))
2 −λ1(ad(v3))λ1(ad(v4))

0 0 0 0
0 0 0 0
0 0 0 0

 =

since we know that a23 = 0,

[Again, because of the length of some entries in these matrices, it is now
necessary to write this matrix in two parts. And again the ∗ij indicates where
these entries occur.]


0 (λ1(ad(v3)))(λ1(ad(v2))) λ1(ad(v3))

2 ∗14
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 ∗12 ∗13 −(λ1(ad(v2)))b24 − (λ1(ad(v3)))b34 + (λ1(ad(v3)))(λ1(ad(v4)))
0 0 0 0
0 0 0 0
0 0 0 0


We observe that we can effect a homomorphism if b24 = 0 and b34 = 0:


0 (λ1(ad(v2)))(λ1(ad(v3))) λ1(ad(v3))

2 (λ1(ad(v3)))(λ1(ad(v4)))
0 0 0 0
0 0 0 0
0 0 0 0


Continuing,
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[v1, v4] = −λ1(ad(v4))(v1) −→ ad([v1, v4]) = ad(−λ1(ad(v4))(v1)) =
−λ1(ad(v4))ad(v1) =

−λ1(ad(v4))


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 (λ1(ad(v4)))(λ1(ad(v2))) (λ1(ad(v4)))(λ1(ad(v3))) λ1(ad(v4))

2

0 0 0 0
0 0 0 0
0 0 0 0


[ad(v1), ad(v4)] =

0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

·

λ1(ad(v4)) −a14 −b14 0

0 −a24 −b24 0
0 0 −b34 0
0 0 0 0

−

λ1(ad(v4)) −a14 −b14 0

0 −a24 −b24 0
0 0 −b34 0
0 0 0 0

·


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 (λ1(ad(v2)))a24 (λ1(ad(v2)))b24 + (λ1(ad(v3)))b34 0
0 0 0 0
0 0 0 0
0 0 0 0

−


0 −λ1(ad(v4))λ1(ad(v2)) −λ1(ad(v4))λ1(ad(v3)) −(λ1(ad(v4)))
2

0 0 0 0
0 0 0 0
0 0 0 0

 =

since we know that a24 = 0; b24 = 0; b34 = 0,


0 λ1(ad(v4))λ1(ad(v2)) λ1(ad(v4))λ1(ad(v3)) (λ1(ad(v4)))

2

0 0 0 0
0 0 0 0
0 0 0 0


We observe that we effect the homomorphism immediately in this calculation.

Continuing, since we know that a23 = 0, we have

[v2, v3] = a13v1 + a23v2 = a13v1 −→ ad([v2, v3]) = ad(a13v1) = a13ad(v1) =
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a13


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0


[ad(v2), ad(v3)] =

since we know that a23 = 0; a24 = 0; b24 = 0; b34 = 0, and



λ1(ad(v2)) 0 a13 a14

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v3)) −a13 0 b14

0 0 0 0
0 0 0 0
0 0 0 0


−



λ1(ad(v3)) −a13 0 b14

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v2)) 0 a13 a14

0 0 0 0
0 0 0 0
0 0 0 0


 =


(λ1(ad(v2))(λ1(ad(v3))) (λ1(ad(v2)))(−a13) 0 (λ1(ad(v2)))b14

0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v3))(λ1(ad(v2))) 0 λ1(ad(v3))(a13) λ1(ad(v3))(a14)

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 −(λ1(ad(v2)))a13 −(λ1(ad(v3)))a13 λ1(ad(v2))b14 − λ1(ad(v3))a14
0 0 0 0
0 0 0 0
0 0 0 0


We observe that we can effect a homomorphism if

−a13(λ1(ad(v4))) = λ1(ad(v2))b14 − λ1(ad(v3))a14

Continuing, since we know that a24 = 0, we have

[v2, v4] = a14v1 −→ ad([v2, v4]) = ad(a14(v1)) = a14ad(v1) =

a14


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0


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[ad(v2), ad(v4)] =

since we know that a23 = 0; a24 = 0; b24 = 0; b34 = 0,



λ1(ad(v2)) 0 a13 a14

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v4)) −a14 −b14 0

0 0 0 0
0 0 0 0
0 0 0 0


−



λ1(ad(v4)) −a14 −b14 0

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v2)) 0 a13 a14

0 0 0 0
0 0 0 0
0 0 0 0


 =


(λ1(ad(v2))(λ1(ad(v4))) (λ1(ad(v2)))(−a14) (λ1(ad(v2)))(−b14) 0

0 0 0 0
0 0 0 0
0 0 0 0

−


(λ1(ad(v4))(λ1(ad(v2))) 0 λ1(ad(v4))(a13) λ1(ad(v4))(a14)
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 −(λ1(ad(v2)))a14 −(λ1(ad(v2)))b14 − λ1(ad(v4))a13 −λ1(ad(v4))a14
0 0 0 0
0 0 0 0
0 0 0 0


We observe that we can effect a homomorphism if

−a14λ1(ad(v3)) = −λ1(ad(v2))b14 − λ1(ad(v4))a13.

Continuing, since we know that b24 = 0 and b34 = 0, we have

[v3, v4] = b14v1 −→ ad([v3, v4]) = ad(b14(v1)) = b14ad(v1) =

b14


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0


[ad(v3), ad(v4)] =

since we know that a23 = 0; a24 = 0; b24 = 0; b34 = 0,
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

λ1(ad(v3)) −a13 0 b14

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v4)) −a14 −b14 0

0 0 0 0
0 0 0 0
0 0 0 0


−



λ1(ad(v4)) −a14 −b14 0

0 0 0 0
0 0 0 0
0 0 0 0

 ·

λ1(ad(v3)) −a13 0 b14

0 0 0 0
0 0 0 0
0 0 0 0


 =


(λ1(ad(v3))(λ1(ad(v4))) (λ1(ad(v3)))(−a14) (λ1(ad(v3)))(−b14) 0

0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v4))(λ1(ad(v3))) λ1(ad(v4))(−a13) 0 λ1(ad(v4))(b14)

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 −λ1(ad(v3))a14 + λ1(ad(v4))a13 −(λ1(ad(v3)))b14 −(λ1(ad(v4)))b14
0 0 0 0
0 0 0 0
0 0 0 0


We observe that we can effect a homomorphism if

−b14λ1(ad(v2)) = −λ1(ad(v3))a14 + λ1(ad(v4))a13.

Besides a23 = 0; a24 = 0; b24 = 0; b34 = 0, we have found the following
three relations should hold:

−a13λ1(ad(v4)) = λ1(ad(v2))b14 − λ1(ad(v3))a14
−a14λ1(ad(v3)) = −λ1(ad(v2))b14 − λ1(ad(v4))a13
−b14λ1(ad(v2)) = −λ1(ad(v3))a14 + λ1(ad(v4))a13.

But on examining these three relations, we see that they all give the same
equality:

b14λ1(ad(v2))− a14λ1(ad(v3)) + a13λ1(ad(v4)) = 0.

It is evident now that we can rescale the vectors v2, v3, v4 so that a13 = a14 =
b14 = 1, giving the relation between the eigenvalues for the simultaneous
eigenvector v1:

λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)) = 0.
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Substituting then this one relation, we obtain

[ad(v2), ad(v3)] =


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0



[ad(v2), ad(v4)] =


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0



[ad(v3), ad(v4)] =


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0


Thus brackets go into brackets by ad and the homomorphism is verified.

The matrices which are the images of ad under this homomorphism are:

ad(v1) =


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

,

ad(v2) =


λ1(ad(v2)) 0 1 1

0 0 0 0
0 0 0 0
0 0 0 0

, ad(v3) =


λ1(ad(v3)) −1 0 1

0 0 0 0
0 0 0 0
0 0 0 0

,

ad(v4) =


λ1(ad(v4)) −1 −1 0

0 0 0 0
0 0 0 0
0 0 0 0


In addition the eigenvalues and the arbitrary constants are tied together by
the relation:

λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)) = 0.

We remark that the image of ŝ under ad lives in ĝ, the Lie algebra of
upper diagonal matrices, which is a Lie subalgebra of ĝl(ŝ), all written with
respect to the rescaled vectors v1, v2, v3, v4. Indeed the image is the sub-
space generated by the matrices E11, E12, E13, E14. Now these four matrices
produce six independent brackets, of which the only non-zero ones are:
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[E11, E12] = E12 [E11, E13] = E13 [E11, E14] = E14

We observe that these brackets close in the subspace, and thus the subspace
is a Lie subalgebra of ad(ŝ). Also from the brackets that we have found, we
see that [ad(ŝ), ad(ŝ)] 6= 0, and thus D1ad(ŝ) 6= 0. But we see from the above
brackets of the basis vectors E11, E12, E13, E14 that D2ad(ŝ) = 0, and thus
ad(ŝ) is a solvable Lie subalgebra of ĝ.

The question to ask, however, is the following. Is ad an isomorphism
or a homomorphism with a nontrivial kernel? This means we are ask-
ing the question: are the images under ad of the four basis vectors of ŝ,
v1, v2, v3, v4, linearly independent? Doing the linear algebra, we see that the
matrix which determines this calculation in the four-dimensional subspace
sp(E11, E12, E13, E14) is


0 λ1(ad(v2)) λ1(ad(v3)) λ1(ad(v4))

−λ1(ad(v2)) 0 −1 −1
−λ1(ad(v3)) 1 0 −1
−λ1(ad(v4)) 1 1 0


If we calculate the determinant of this matrix, we obtain

(λ1(ad(v2)))
2 − 2λ1(ad(v2))λ1(ad(v3)) + (λ1(ad(v3)))

2 +
2λ1(ad(v2))λ1(ad(v4))− 2λ1(ad(v3))λ1(ad(v4)) + (λ1(ad(v4)))

2

However the above determinant can be written as

(λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)))
2

We recognize that this is the square of the expression

λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4))

and thus = 0. This guarantees that we have a homomorphism but not an
isomorphism between ŝ and ad(ŝ). Thus we know that the above matrix is
singular and that ad has a kernel. On the assumption that λ1(ad(v2)) 6= 0,
we row-reduce this matrix and obtain

1 0 1
λ1(ad(v2))

1
λ1(ad(v2))

0 1 λ1(ad(v3))
λ1(ad(v2))

λ1(ad(v4))
λ1(ad(v2))

0 0 0 0
0 0 0 0


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Thus we know that the vectors

u3 = −( 1
λ1(ad(v2))

)v1 − (λ1(ad(v3))
λ1(ad(v2))

)v2 + v3

and

u4 = −( 1
λ1(ad(v2))

)v1 − (λ1(ad(v4))
λ1(ad(v2))

)v2 + v4

are in the kernel of ad, and thus are a basis for the center of ŝ. We confirm
these statements below:

ad(u3) = ad(−( 1
λ1(ad(v2))

)v1 − (λ1(ad(v3))
λ1(ad(v2))

)v2 + v3) =

−( 1
λ1(ad(v2))

)ad(v1)− (λ1(ad(v3))
λ1(ad(v2))

)ad(v2) + ad(v3) =

−( 1
λ1(ad(v2))

)


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

−

(λ1(ad(v3))
λ1(ad(v2))

)


λ1(ad(v2)) 0 1 1

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v3)) −1 0 1

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 1 λ1(ad(v3))

λ1(ad(v2))
λ1(ad(v4))
λ1(ad(v2))

0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v3)) 0 λ1(ad(v3))

λ1(ad(v2))
) λ1(ad(v3))

λ1(ad(v2))
)

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v3)) −1 0 1

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 λ1(ad(v4))

λ1(ad(v2))
− λ1(ad(v3))

λ1(ad(v2))
) + 1

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


if we apply our condition

λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)) = 0.

Continuing
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ad(u4) = ad(−( 1
λ1(ad(v2))

)v1 − (λ1(ad(v4))
λ1(ad(v2))

)v2 + v4) =

−( 1
λ1(ad(v2))

)ad(v1)− (λ1(ad(v4))
λ1(ad(v2))

)ad(v2) + ad(v4) =

−( 1
λ1(ad(v2))

)


0 −λ1(ad(v2)) −λ1(ad(v3)) −λ1(ad(v4))
0 0 0 0
0 0 0 0
0 0 0 0

−

(λ1(ad(v4))
λ1(ad(v2))

)


λ1(ad(v2)) 0 1 1

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v4)) −1 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 1 λ1(ad(v3))

λ1(ad(v2))
λ1(ad(v4))
λ1(ad(v2))

0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v4)) 0 λ1(ad(v4))

λ1(ad(v2))
) λ1(ad(v4))

λ1(ad(v2))
)

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v4)) −1 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 λ1(ad(v3))

λ1(ad(v2))
− λ1(ad(v4))

λ1(ad(v2))
)− 1 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


if we again apply our condition

λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)) = 0.

On the assumption that λ1(ad(v2)) 6= 0, we now know that ŝ is a solvable
Lie algebra with a two-dimensional center, and that ad(ŝ) is a two dimen-
sional solvable Lie subalgebra of the solvable Lie subalgebra ĝ of the Lie
algebra ĝl(ŝ).

We see immediately that the center of ŝ is generated by the two basis
vectors u3 and u4, while the image of ŝ in ĝ by ad is generated by the basis
vectors E11 and E12. Since [E11, E12] = E12, we see thatD1ad(ŝ) 6= 0 and that
D2ad(ŝ) = 0, confirming our above results. We remark that Lie’s Theorem
says that ad(ŝ) now has a simultaneous eigenvector, which is either u1 = v1
or u2 = v2, with corresponding eigenvalue λ1(ad(ui)), i = 1 or 2, giving 0 or
λ1(ad(v2) 6= 0.

If λ1(ad(v2)) = 0, then we see that in order to satisfy the condition
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λ1(ad(v2))− λ1(ad(v3)) + λ1(ad(v4)) = 0.

either λ1(ad(v3)) = λ1(ad(v4)) if λ1(ad(v3)) 6= 0, or λ1(ad(v3)) = λ1(ad(v4)) =
0. [If λ1(ad(v2)) = λ1(ad(v3)) = λ1(ad(v4)) = 0, then ad(ŝ) is a nilpotent
Lie algebra, and ŝ becomes a nilpotent Lie algebra, and we return to the
example of 2.8.4 with b24 = 0.]

Thus we are now in the case when λ1(ad(v2)) = 0 and λ1(ad(v3)) =
λ1(ad(v4)). And again we ask whether ad is an isomorphism or a homo-
morphism with a nontrivial kernel? This means again that we are ask-
ing the question: are the images under ad of the four basis vectors of ŝ,
v1, v2, v3, v4, linearly independent? Doing the linear algebra, we see that the
matrix which determines this calculation in the four-dimensional subspace
sp(E11, E12, E13, E14) is


0 0 λ1(ad(v3)) λ1(ad(v3))
0 0 −1 −1

−λ1(ad(v3)) 1 0 −1
−λ1(ad(v3)) 1 1 0


It is straightforward that the determinant of this matrix is equal to 0.

Row reducing this matrix we obtain
1 −1

λ1(ad(v3))
0 1

λ1(ad(v3))

0 0 1 1
0 0 0 0
0 0 0 0


Thus we know that the vectors

u2 = 1
λ1(ad(v3)

(v1) + v2

and

u4 = − 1
λ1(ad(v3)

(v1)− v3 + v4

are in the kernel of ad, and thus are a basis for the center of ŝ. We confirm
these statements in what follows:

ad(u2) = ad( 1
λ1(ad(v3)

v1 + v2) = 1
λ1(ad(v3)

ad(v1) + ad(v2) = 0 + ad(v2) =
0 0 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0

+


0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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Continuing

ad(u4) = ad(− 1
λ1(ad(v3)

(v1)− v3 + v4) = − 1
λ1(ad(v3)

(ad(v1)− ad(v3) + ad(v4) =

− 1
λ1(ad(v3)


0 0 −λ1(ad(v3) −λ1(ad(v3)
0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v3) −1 0 1

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v3) −1 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


In this case we have shown that the vectors

u2 = 1
λ1(ad(v3))

v1 + v2 and u4 = − 1
λ1(ad(v3))

v1 − v3 + v4

are in the center of ŝ. We see immediately that the center of ŝ is generated by
the two basis vectors u2 and u4, while the image of ŝ in ĝ by ad is generated by
the basis vectors E11 and E13. Since [E11, E13] = E13, we see that D1ad(ŝ) 6=
0 and that D2ad(ŝ) = 0, confirming our above results. We remark that Lie’s
Theorem says that ad(ŝ) now has a simultaneous eigenvector, which is either
u1 = v1 or u3 = v3, with corresponding eigenvalue λ1(ad(ui)), i = 1 or 3,
giving 0 or λ1(ad(v3) 6= 0.

The final case has λ1(ad(v2)) = λ1(ad(v3)) = λ1(ad(v4)) = 0. In this case
the vector v1 belongs to the center of ŝ since it is a simultaneous eigenvector
with eigenvalue 0. We also have in the center

u4 = v2 − v3 + v4

We confirm this latter statement below:

ad(u4) = ad(v2)− ad(v3) + ad(v4) =
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

−


0 −1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

+


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Continuing

ad(u4) = ad(− 1
λ1(ad(v3)

(v1)− v3 + v4) = − 1
λ1(ad(v3)

(ad(v1)− ad(v3) + ad(v4) =
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− 1
λ1(ad(v3)


0 0 −λ1(ad(v3) −λ1(ad(v3)
0 0 0 0
0 0 0 0
0 0 0 0

−

λ1(ad(v3) −1 0 1

0 0 0 0
0 0 0 0
0 0 0 0

+


λ1(ad(v3) −1 −1 0

0 0 0 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


We see immediately that the center of ŝ is generated by the two basis vectors
v1 and u4, while the image of ŝ in ĝ by ad is generated by the basis vectors
E12 and E13. Since [E12, E13] = 0, we see that D1ad(ŝ) = 0. and thus ad(ŝ)
is abelian. We remark that Lie’s Theorem says that ad(ŝ) now has two si-
multaneous eigenvectors, v1 and u4 with corresponding eigenvalues 0 and 0.
We also observe that ad(ŝ) is nilpotent.

2.10 Some Remarks on Semisimple Lie Algebras (2)

Recall that we took this excursion into nilpotent and solvable Lie algebras
because we wanted to identify the automorphism A between the semisimple
parts of two Levi decompositions of a Lie algebra ĝ, where a Levi decompo-
sition is a splitting at the level of linear spaces of an arbitrary Lie algebra ĝ
into its radical r̂ and a semisimple Lie algebra k̂.

ĝ = k̂ ⊕ r̂

Thus we now want to examine the other piece of this direct sum de-
composition, that is, we want to examine more in detail the structure of a
semisimple Lie algebra. We now change notation and call the semisimple Lie
algebra ĝ.

2.10.1 The Homomorphic Image of Semisimple Lie Algebra is
Semisimple. First we assert the homomorphic image of a semisimple Lie
algebra is also semisimple. Above we proved that the quotient of a Lie algebra
by its radical is a semisimple Lie algebra. If we let the homomorphism be
represented by φ : ĝ −→ φ(ĝ) = ĥ, we see that the proof essentially said that
if the Lie algebra ĥ had a solvable ideal ŝ, its pre-image φ−1(ŝ) would also
be solvable. But since ĝ is semisimple, then this solvable ideal must be the
zero ideal, and thus its image must also be the zero ideal. We conclude that
ĥ is semisimple.

2.10.2 ĝ Semisimple Implies D1ĝ = ĝ. Next we want to show that
if ĝ is semisimple, then D1ĝ = [ĝ, ĝ] = ĝ. Since D1ĝ is an ideal, we again
take the quotient algebra ĝ/D1ĝ. [We know that D1ĝ 6= 0, for if it were 0,
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then ĝ would be solvable.] Now suppose that D1ĝ 6= ĝ. We have already
remarked that this quotient is the abelianization of the Lie algebra ĝ. Thus
this quotient is a nonzero abelian Lie algebra. However we know that the
quotient of a semisimple Lie algebra ĝ is a semisimple Lie algebra. But an
nonzero abelian Lie algebra is solvable and thus its radical is not zero. We
conclude that the quotient is the zero Lie algebra, and thus D1ĝ = ĝ.

2.10.3 Simple Lie Algebras. We now give the another class of Lie
algebras which form the building blocks of the other Lie algebras — the
simple Lie algebras. We define a simple Lie algebra â to be a Lie algebra
which is not abelian, and whose only ideals are the improper ideals 0 and â.
We can show that every simple Lie algebra is also semisimple. For let r̂ be
the radical of â and 6= 0. Since r̂ is an ideal, it can only be 0 or â. If the
radical is â, then we know that â has a nonzero abelian ideal. But this says
that â is this nonzero abelian ideal. But by definition no simple Lie algebra
can be abelian. Thus we conclude that the radical of â = 0, and thus â is
semisimple.

The final fact that we want to establish is that every semisimple Lie alge-
bra can be decomposed into a direct sum of ideals, each of which is a simple
Lie algebra. And thus we see that the building blocks of the Lie algebras
are the simple Lie algebras, and with the Levi decomposition theorem, the
radical of the Lie algebra.

2.11 The Killing Form (1)

2.11.1 Structure of the Killing Form and its Fundamental Theo-
rem. In order to obtain the above conclusion about semisimple Lie algebras,
we introduce a powerful tool in the study of Lie algebras — the Killing form.
First we define the Killing form B̂, and then we specialize it to the adjoint
representation.

The term “form” here carries with it the usual meaning: given a linear
space over a scalar field lF of characteristic 0 – see below – [recall that because
we are considering only the fields of the real numbers or the complex numbers,
we meet the condition that the scalar field have characteristic 0], a form B̂
is a bilinear function on the linear space with values in the field of scalars.
But the linear space involved in this definition is a very special one linked to
the concept of a Lie algebra. Thus we begin with a linear space V and take
its Lie algebra of the endomorphisms of V , ĝl(V ), and then we take a Lie
subalgebra ĝ of this Lie algebra. Given a basis for V , we then define B̂ on
this linear space ĝ to be

B̂ : ĝ × ĝ −→ lF
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(X, Y ) 7−→ B̂(X, Y ) := trace(X ◦ Y )

where X ◦ Y is just the product of two matrices. [We might remark that
in a matrix representation of End(V ), since the trace is just the sum of the
elements on the diagonal of the matrix, and since we do not want a sum
to be zero because of a finite characteristic of the field of scalars, we have
restricted the field of scalars to have characteristic 0.] Since, as we shall
see, the trace of a linear transformation is independent of the choice of a
basis, we have a valid definition. What is amazing is that we are reducing
the information of a product of two matrices X and Y to information about
its product’s diagonal only, and then reducing once more this information to
just the sum of the elements on this product’s diagonal. Yet as in other uses
of this concept in mathematics this information is so sufficiently rich that it
gives information about the structure of the original matrices and ultimately
also about the structure of the Lie algebra ĝ.

Indeed this definition gives us a bilinear form.

B̂(X1 +X2, Y ) = trace((X1 +X2) ◦ Y ) = trace(X1 ◦ Y +X2 ◦ Y ) =
trace(X1 ◦ Y ) + trace(X2 ◦ Y ) = B̂(X1, Y ) + B̂(X2, Y )

Likewise we have B̂(X, Y1 + Y2) = B̂(X, Y1) + B̂(X, Y2). Also for c in lF

B̂(cX, Y ) = trace((cX) ◦ Y ) = trace(c(X ◦ Y )) = c(trace(X ◦ Y )) =
c(B̂(X, Y ))

Likewise we have B̂(X, cY ) = c(B̂(X, Y )).

Our first observation is that B̂ is symmetric since the trace function is
symmetric:

B̂(X, Y ) = trace(X ◦ Y ) = trace(Y ◦X) = B̂(Y,X)

At this point we have used just the properties of a linear algebra. However
when we bring in the structure of a Lie algebra, we obtain another property
of the trace function called its associative structure. We use the structure of
the Lie bracket to show that

B̂([X, Y ], Z) = B̂(X, [Y, Z])

We have
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B̂([X, Y ], Z) = trace([X, Y ] ◦ Z) =
trace((X ◦ Y − Y ◦X) ◦ Z) =
trace(X ◦ Y ◦ Z − Y ◦X ◦ Z) =

trace(X ◦ Y ◦ Z)− trace(Y ◦X ◦ Z) =
trace(X ◦ Y ◦ Z)− trace(X ◦ Z ◦ Y ) =

trace(X ◦ Y ◦ Z −X ◦ Z ◦ Y ) =
trace(X ◦ (Y ◦ Z − Z ◦ Y )) =
trace(X ◦ [Y, Z]) = B̂(X, [Y, Z])

We observe in this calculation that we used the definition and properties of
the Lie bracket, and thus we would expect the form B̂ to reflect in some
manner the structure of the Lie algebra ĝ.

We will be working with the condition that B̂(X,X) = 0 for all X in ĝ.
We want to remark now that this condition is equivalent to B̂(X, Y ) = 0 for
all X, Y in ĝ. Obviously if B̂(X, Y ) = 0 for all X, Y in ĝ, then B̂(X,X) = 0
for all X in ĝ. Now suppose that B̂(X,X) = 0 for all X in ĝ. Then we know
that B̂(X+Y,X+Y ) = 0 for all X, Y in ĝ. We have 0 = B̂(X+Y,X+Y ) =
B̂(X,X) + B̂(X, Y ) + B̂(Y,X) + B̂(Y, Y ) = 0 + B̂(X, Y ) + B̂(Y,X) + 0 =
2B̂(X, Y ), by symmetry, giving 0 = 2B̂(X, Y ). But since our field of scalars
is not mod 2, we can conclude that B̂(X, Y ) = 0 for X, Y in ĝ.

We note that we have assumed that the Lie algebra ĝ is a Lie subalgebra
of ĝl(V ), where V is a finite dimensional, linear space over the field lC. Thus
ĝ is a matrix algebra. The fundamental and difficult theorem about B̂ that
we wish to prove is the following. (We will call this theorem Theorem B̂).

Let ĝ be a subalgebra of ĝl(V ). Let the form B̂ satisfy the condition
that for all X in D1ĝ and for all Y in ĝ, B̂(X, Y ) = 0. Then such an
X is a nilpotent linear transformation.

On first glance this seems like a formidable task since there appears to
be no easy connection between these two statements. And indeed the proof
is not conceptually easy. We return to linear algebra and use the result that
if a linear transformation X in ĝl(V ) has all of its eigenvalues equal to zero,
then it is linearly nilpotent, which is the conclusion we are seeking.

Since ĝ is a subalgebra of the matrix algebra ĝl(V ) on End(V ), we can
represent X in ĝ as a matrix. Being a linear transformation, X has a char-
acteristic polynomial. Since our scalar field is algebraically closed and the
dimension of V is n, we know that the characteristic polynomial for X factors
into n linear factors, which give the eigenvalues λ1, · · ·, λn, where, of course,
some eigenvalues will be repeated according to their multiplicities. Now we
must show that all these eigenvalues are zero, under the supposition that for
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all X in D1ĝ and for all Y in ĝ, B̂(X, Y ) = 0. For then we can conclude that
X is a nilpotent linear transformation.

In our proof we will use the Jordan Decomposition Theorem, which says
that X, now written in its canonical Jordan form, can be expressed uniquely
as a sum of two linear transformations, X = SX +NX , where SX is diagonal
and NX is nilpotent, with SXNX = NXSX , and in which both SX and NX

can be written as polynomials in X [with zero constant term]. Since SX is a
diagonal matrix, it has the n eigenvalues λ1, · · ·, λn, where, of course, some
eigenvalues will be repeated according to their multiplicities.

We remark the following. Suppose we use the hypothesis that for all X
in ĝ, B̂(X,X) = 0. This would give us trace(X ◦X) = 0. Since the trace is
independent of the basis chosen to calculate it, we know from the form of the
Jordan canonical form that trace(X◦X) = trace(SX◦SX) = λ21+···+λ2n = 0.
But this is not sufficient to give us the conclusion that every λi = 0 since we
are not working over the real numbers but over the complex numbers.

However, if we take the conjugate matrix SX , then we know that trace(SX◦
SX) = λ1λ1 + · · · + λnλn = |λ1|2 + · · · + |λn|2. Of course, if we show that
this sum is zero, then we can conclude that |λi|2 = 0, giving λi = 0 for all i,
which indeed is the conclusion we are seeking.

Thus the assumption that B̂(X,X) = 0 for X in ĝ is not sufficient. But
if we assume that B̂(X, Y ) = 0 for X in D1ĝ and Y in ĝ, we will be able to
reach our desired conclusion after a long and rather involved analysis of ĝ.
But this just reveals how vital the nature of D1ĝ is in the structure of a Lie
algebra ĝ.

We proceed as follows. What we need to do is to take advantage of the
fact that the Killing form is associative in ĝl(V ). We do this in the following
manner. Since X is in [ĝ, ĝ], we can say that with respect to the basis chosen
above, X is a sum of commutators [Yr, Zr] with Yr and Zr in ĝ. We examine
the term trace(X ◦ SX). Since the trace function is linear, we need look at
only trace([Yr, Zr]◦SX). Now [Yr, Zr] is indeed inD1ĝ, but we cannot say that
SX is in ĝ, and thus we cannot use our hypothesis that B̂(X, Y ) = 0 for X in
D1ĝ and Y in ĝ. But by using the associativity of the Killing Form, we have
trace([Yr, Zr]◦SX) = trace(Yr ◦ [Zr, SX ]), and if we can show that [Zr, SX ] is
in D1ĝ, then our hypothesis says that B̂(Yr, [Zr, SX ]) = trace(Yr ◦ [ZrSX ]) =
0, which means [by associativity and linearity of the trace function] that
trace(X ◦ SX) = 0. This is equivalent to trace(SX ◦ SX) = 0 and this fact
gives us our conclusion that all the eigenvalues of X are zero and this, in turn,
says that X is a nilpotent linear transformation. Thus we need to begin with
the hypothesis that X is in D1ĝ and not just in ĝ.
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All this implies that we are now reduced to proving that [Zr, SX ] is an
element in D1ĝ, knowing that Zr is in ĝ.

But first, we need to back off from SX and return to SX , and then to X,
which we know is an element in D1ĝ. We now use some facts from linear
algebra. It can be proven that ad respects the Jordan decomposition. This
means the following. We know that X is in ĝl(V ) = End(V ). Thus X has
the Jordan decomposition X = SX + NX . Now ad(X) is in ĝl(ĝl(V )) =
End(ĝl(V )), and thus is again a linear transformation. It therefore has a
Jordan decomposition ad(X) = Sad(X) + Nad(X). Now when we say that
ad respects the Jordan decomposition, we mean ad(X) = ad(SX + NX) =
ad(SX) + ad(NX) = Sad(X) + Nad(X), with ad(SX) = Sad(X) and ad(NX) =
Nad(X). Now we use the fact that in the Jordan decomposition Sad(X) is a
polynomial in ad(X) without constant term, i.e., we can express Sad(X) as:

Sad(X) = c1ad(X) + c2(ad(X))2 + · · ·+ cs(ad(X))s

Now we know that

[SX , Zr] = ad(SX)Zr = Sad(X)Zr =
(c1ad(X) + c2(ad(X))2 + · · ·+ cs(ad(X))s)Zr =

c1ad(X)Zr + c2((ad(X))2)Zr + · · ·+ cs((ad(X))s)Zr =
c1[X,Zr] + c2[X, [X,Zr]] + · · ·+ cs[X, [· · ·[X,Zr] · ··]]

But we also know that X is in D1ĝ and Zr is in ĝ. Thus [X,Zr] = ad(X)Zr
is in D1ĝ. We conclude that [SX , Zr] is in D1ĝ.

Now we can show that [SX , Zr] is also in D1ĝ. We recall that we have so
chosen a basis in V that X is in its Jordan canonical form. This makes SX a
diagonal matrix. We now take advantage of the fact from linear algebra that,
knowing that SX is in the form of a diagonal matrix, then ad(SX) = Sad(X)

is also in the form of a diagonal matrix. Thus since SX is a diagonal matrix,
then the conjugate of SX , SX , is a diagonal matrix, and ad(SX) = ad(SX) =
Sad(X). But now we know that Sad(X) can be written as a polynomial in
Sad(X) [without constant term]:

Sad(X) = d1ad(SX) + d2(ad(SX))2 + · · ·+ dt(ad(SX))t

Thus, in our chosen basis, we have

ad(SX) · Zr = (d1ad(SX) + d2(ad(SX))2 + · · ·+ dt(ad(SX))t) · Zr =
d1ad(SX)Zr + d2(ad(SX))2)Zr + · · ·+ dt(ad(SX))t)Zr
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And we know that ad(SX) ·Zr is in D1ĝ. We conclude that ad(SX) ·Zr is in
D1ĝ, and we have finally reached the conclusion that we have been seeking.
Thus Theorem B̂ has been proven.

We think that this proof is an exciting and remarkable proof. At so
many junctures we seemed to have been foiled, but there was always another
fact that we had not yet used, Using them, one by one, we eventually won
over the day. Now before we continue we want to comment more on the
three steps above which we merely quoted: 1) the fact that the adjoint
representation respects the Jordan decomposition; 2) if SX is a diagonal
matrix, then ad(SX) = Sad(X) is also a diagonal matrix. 3) the fact that

the matrix Sad(X) = ad(SX) = ad(SX) is diagonal, and that Sad(X) can be
written as a polynomial in Sad(X) without constant term. We will not prove
these statements, since the proofs are straightforward but tedious, or they
pertain to other parts of mathematics than Lie algebras. But we do want to
construct an example involving a space of high enough dimension to show
how one would construct a general proof in these cases.

First, we examine the fact that the adjoint representation respects the
Jordan decomposition. Thus, for a linear transformation X in ĝl(V ), we have
its Jordan Decomposition X = SX +NX , where SX is diagonalizable and NX

is a nilpotent linear transformation. Now the adjoint representation of ĝl(V )
puts X into ad(X) in ĝl(ĝl(V )), which is again a set of linear transformations.
Thus ad(X) has a Jordan decomposition ad(X) = Sad(X) +Nad(X). We want
to assert that ad(SX) = Sad(X) and ad(NX) = Nad(X).

We now write X in a basis which gives X the Jordan canonical form. This
means that SX is realized as a diagonal matrix with the eigenvalues of X,
including repetitions, down the diagonal; and NX is realized as a nilpotent
linear matrix, i.e., an upper triangular matrix with a zero diagonal. Since
we are working on an example here in dimension three, we need to use the
canonical basis of the 3x3 matrices, Eij. Thus

SX = λ1E11 + λ2E22 + λ3E33

where the λi are the three eigenvalues of X. Now

ad(SX) = λ1ad(E11) + λ2ad(E22) + λ3ad(E33)

Thus we need to evaluate ad(Eii) on the basis Eij:

ad(Ekk) · Eij = [Ekk, Eij]
= Ekj, if i = k; = −Eik, if j = k; and = 0 otherwise.
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Our job is to find eigenvalues that work. Thus, we form the 9x9 matrices,
where we have chosen the nine basis vectors in the following order:

(E11, E21, E31, E12, E22, E32, E13, E23, E33)

We begin with λ1ad(E11).

λ1ad(E11) =



0 0 0 0 0 0 0 0 0
0 −λ1 0 0 0 0 0 0 0
0 0 −λ1 0 0 0 0 0 0
0 0 0 λ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 λ1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Next we calculate λ2ad(E22).

λ2ad(E22) =



0 0 0 0 0 0 0 0 0
0 λ2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −λ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −λ2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 λ2 0
0 0 0 0 0 0 0 0 0


Finally we form λ3ad(E33).

λ3ad(E33) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 λ3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 λ3 0 0 0
0 0 0 0 0 0 −λ3 0 0
0 0 0 0 0 0 0 −λ3 0
0 0 0 0 0 0 0 0 0


We now have
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ad(SX) =

0 0 0 0 0 0 0 0 0
0 λ2 − λ1 0 0 0 0 0 0 0
0 0 λ3 − λ1 0 0 0 0 0 0
0 0 0 λ1 − λ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 λ3 − λ2 0 0 0
0 0 0 0 0 0 λ1 − λ3 0 0
0 0 0 0 0 0 0 λ2 − λ3 0
0 0 0 0 0 0 0 0 0


Thus we have the beautiful conclusion that ad(SX) is a diagonal matrix,

and thus is a good candidate for SadX .

We now calculate ad(NX). Recall that we have so chosen the basis for ĝ
so that X = SX + NX is in its Jordan canonical form. Thus SX is diagonal
and NX is an upper triangular matrix with zero diagonal and with the only
non-zero terms being ones just above the diagonal. Since we are in the case
of three dimensions, let us suppose the NX matrix has the form

NX =

 0 a1 0
0 0 a2
0 0 0


where a1 and a2 are either zero or one. Thus we suppose that we start with
a matrix X with Jordan canonical form

X =

 λ1 a1 0
0 λ2 a2
0 0 λ3


which has the three eigenvalues λ1,λ2,λ3. Thus we can write

NX = a1E12 + a2E23

ad(NX) = a1ad(E12) + a2ad(E23)

Proceeding, we need to evaluate ad(E12) and ad(E23) on the basis Eij. We
have

ad(E12) · Eij = [E12, Eij]
= E1j, if i = 2; = −Ei2, if j = 1; and = 0 otherwise

ad(E23) · Eij = [E23, Eij]
= E2j, if i = 3; = −Ei3, if j = 2; and = 0 otherwise

82



Thus we have:

a1ad(E12) =



0 a1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−a1 0 0 0 a1 0 0 0 0

0 −a1 0 0 0 0 0 0 0
0 0 −a1 0 0 0 0 0 0
0 0 0 0 0 0 0 a1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



a2ad(E23) =



0 0 0 0 0 0 0 0 0
0 0 a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 a2 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −a2 0 0 0 0 0
0 0 0 0 −a2 0 0 0 a2
0 0 0 0 0 −a2 0 0 0


and this gives

ad(NX) =



0 a1 0 0 0 0 0 0 0
0 0 a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−a1 0 0 0 a1 0 0 0 0

0 −a1 0 0 0 a2 0 0 0
0 0 −a1 0 0 0 0 0 0
0 0 0 −a2 0 0 0 a1 0
0 0 0 0 −a2 0 0 0 a2
0 0 0 0 0 −a2 0 0 0


We observe that ad(NX) is not in an obvious linear nilpotent form. since it
is not in upper [or lower] triangular form with a zero diagonal. However it
does have a zero diagonal and if we take powers of ad(NX):
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(ad(NX))2 =



0 0 a1a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −2a21 0 0 0 a1a2 0 0 0
0 0 −2a1a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a1a2 0 0 0 −2a1a2 0 0 0 a1a2
0 a1a2 0 0 0 −2a22 0 0 0
0 0 a1a2 0 0 0 0 0 0



(ad(NX))3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −3a21a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3a21a2 0 0 0 −3a1a

2
2 0 0 0

0 0 3a1a
2
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


we find that (ad(NX))3 does have a lower triangular form with zero diagonal,
and thus ad(NX) is a nilpotent linear transformation, since (ad(NX))4 6= 0,
but (ad(NX))5 = 0.

(ad(NX))4 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 6a21a

2
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(ad(NX))5 = 0

We can therefore affirm that ad(NX) is a candidate for Nad(X). But we
need to check the commutativity of ad(SX) and ad(NX). We know that
SXNX = NXSX . Now we have

SX =

 λ1 0 0
0 λ2 0
0 0 λ3

 NX =

 0 a1 0
0 0 a2
0 0 0


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where the λi’s can have repetitions and a1 and a2 are either one or zero. We
calculate

SXNX −NXSX =

 0 λ1a1 − λ2a1 0
0 0 λ2a2 − λ3a2
0 0 0

 =

 0 (λ1 − λ2)a1 0
0 0 (λ2 − λ3)a2
0 0 0


which we know must be the zero matrix. Thus we now need to find what
values of the λi’s and the aj’s are possible in order for 0 = SXNX − NXSX
to be true. We have three possibilities. The first is to have λ1, λ2, and
λ3 all distinct. Then we know that SX is diagonal with no repetitions and
thus λ1 − λ2 6= 0 and λ2 − λ3 6= 0. Thus the only way SXNX − NXSX
can be 0 is if a1 = 0 and a2 = 0. In this case we must choose NX to be
the zero matrix and we have SXNX − NXSX = 0. The second possibility
is to have one repetition of eigenvalues, say: λ1 = λ2 with λ3 6= λ1. In
this case a1 = 1 and a2 = 0, giving again SXNX − NXSX = 0. The third
possibility is to have all three eigenvalues identical and thus a1 = a2 = 1 can
be the choice giving SXNX −NXSX = 0. Thus in all three cases we can find
values so that SXNX = NXSX . Given these values we now need to calculate
ad(SX)ad(NX)− ad(NX)ad(SX).

ad(SX) =

0 0 0 0 0 0 0 0 0
0 −λ1 + λ2 0 0 0 0 0 0
0 0 −λ1 + λ3 0 0 0 0 0 0
0 0 0 λ1 − λ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −λ2 + λ3 0 0 0
0 0 0 0 0 0 λ1 − λ3 0 0
0 0 0 0 0 0 0 λ2 − λ3 0
0 0 0 0 0 0 0 0 0


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ad(NX) =



0 a1 0 0 0 0 0 0 0
0 0 a2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−a1 0 0 0 a2 0 0 0 0

0 −a1 0 0 0 a2 0 0 0
0 0 −a1 0 0 0 0 0 0
0 0 0 −a2 0 0 0 a1 0
0 0 0 0 a2 0 0 0 a2
0 0 0 0 0 −a2 0 0 0


and

ad(SX)ad(NX)− ad(NX)ad(NX) =

0 −a1(−λ1 + λ2) 0 0 0 · · · ·
0 0 a2(λ2 − λ3) 0 0 · · · ·
0 0 0 0 0 · · · ·

a1(−λ1 + λ2) 0 0 0 a1(λ1 − λ2) · · · ·
0 a1(−λ1 + λ2) 0 0 0 · · · ·
0 0 a1(−λ1 + λ2) 0 0 · · · ·
0 0 0 a2(−λ2 + λ3) 0 · · · ·
0 0 0 0 −a2(λ2 − λ3) · · · ·
0 0 0 0 0 · · · ·


—-



· · · · · 0 0 0 0
· · · · · 0 0 0 0
· · · · · 0 0 0 0
· · · · · 0 0 0 0
· · · · · −a2(−λ2 + λ3) 0 0 0
· · · · · 0 0 0 0
· · · · · 0 0 a1(λ1 − λ2) 0
· · · · · 0 0 0 a2(λ2 − λ3)
· · · · · a2(−λ2 + λ3) 0 0 0


We now examine the following three cases that basically take care of all
possible cases:

1) λ1 6= λ2 6= λ3 with a1 = a2 = 0
2) λ1 = λ2 6= λ3 with a1 6= 0 and a2 = 0

3) λ1 = λ2 = λ3 with a1, a2 6= 0
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And we observe that in each of the three cases we have ad(SX)ad(NX) −
ad(NX)ad(SX) = 0, giving us desired the commutativity, i.e.:

ad(SX)ad(NX) = ad(NX)ad(SX)

Thus, with the right choices of eigenvalues and off diagonals, we can find an
X in a 3-dimensional ĝ where ad does preserve the Jordan decomposition of
X and ad(X):

X = SX +NX −→ ad(X) = ad(SX +NX) = ad(SX) + ad(NX) =
Sad(X) +Nad(X)

with, of course, ad(SX) = Sad(X) and ad(NX) = Nad(X). [We remark that we
have not examined the other two properties of the Jordan decomposition, i.e.,
1) the uniqueness of the decomposition; 2) the fact that the diagonalizable
part and the linear nilpotent part are each polynomials (without constant
term) in the linear transformation X.]

The example given above shows how we could come to this same conclu-
sion in general. One observation that can be made from this example is that
ad does not preserve the Jordan canonical form. It does take the diagonal
matrix SX over to the diagonal matrix Sad(X), but the nilpotent matrix Nad(X)

does not have the correct form. This should be expected since in forming NX ,
we had to choose a very special basis in ĝ, but in forming Nad(X), we just used
the given canonical basis (Eij) in ad(ĝ), and it would be surprising if that
produced the special basis needed in ad(ĝ) to form its Jordan canonical form.

However we note that the commutativity relationship can easily be proven
in general. We start with the fact that SXNX = NXSX and we want to show
that

Sad(X)Nad(X) = Nad(X)Sad(X)

We operate these expressions on an arbitrary element Z in ĝl(V ).

Sad(X)Nad(X) ·Z = ad(SX)ad(NX) ·Z = [SX , [NX , Z]] = [SX , NXZ−ZNX ] =
[SX , NXZ]− [SX , ZNX ] = SXNXZ −NXZSX − SXZNX + ZNXSX =

NXSXZ −NXZSX − SXZNX + ZSXNX =
NX(SXZ − ZSX) + (−SXZ + ZSX)NX =

NX([SX , Z])− ([SX , Z])NX = [NX , [SX , Z]] = ad(NX)ad(SX) · Z =
Nad(X)Sad(X) · Z
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from which we can conclude that Sad(X)Nad(X) = Nad(X)Sad(X).

Finally there is one more observation we should make. We used in the
proof the important step that ad(SX) = ad(SX). But just examining the
following expressions

SX = λ1E11 + λ2E22 + λ3E33

ad(SX) = λ1ad(E11) + λ2ad(E22) + λ3ad(E33)

and

SX = λ1E11 + λ2E22 + λ3E33

ad(SX) = λ1ad(E11) + λ2ad(E22) + λ3ad(E33)

we immediately see that we have the desired conclusion ad(SX) = ad(SX).

We still have two more comments to make before we can close down this
proof. The second comment stated that if SX is a diagonal matrix, then
ad(SX) = Sad(X) is also a diagonal matrix. And in the three-dimensional
case above we have shown the validity of this relationship. Finally, the
third comment used the fact that for the diagonal matrix Sad(X) we have

Sad(X) = ad(SX) and that it can be written as a polynomial in Sad(X) without
constant term. This latter is just the expression that the conjugate of any n-
dimensional complex diagonal matrix can be written as a linear combination
of that n-dimensional complex diagonal matrix without constant term. We
give a few examples of this phenomenon, which, though they do not give a
general proof, will suffice for our exposition.

When we are working in lC, it is nothing but the relationship cc = |c|2.

c = |c|2
c

= ( c
c
)c

Using real notation, we have

c1 − c2i =
c21+c

2
2

c1+c2i
= ( c1−c2i

c1+c2i
)(c1 + c2i)

This says that

c1 − c2i = (a1 + a2i)(c1 + c2i) = (a1c1 − a2c2) + i(a1c2 + a2c1)

and gives the linear equations

c1 = c1a1 − c2a2
−c2 = c2a1 + c1a2
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whose unique solution is a1 =
c21−c

2
2

c21+c
2
2
; a2 = −2c1c2

c21+c
2
2

.

We observe that

a1 + a2i =
c21−c

2
2

c21+c
2
2

+ i(−2c1c2
c21+c

2
2

) =
(c21−c

2
2)+i(−2c1c2)
c21+c

2
2

= (c1−c2i)2
c21+c

2
2

=
(c1−c2i)2

(c1+c2i)(c1−c2i) = c1−c2i
c1+c2i

which is exactly the coefficient of c1 + c2i that gives c1 − c2i.

When we are working in lC2, we see how we can generalize the above
procedure. We seek (a1 + a2i) and (b1 + b2i) such that the following matrix
equation is satisfied: [

c1 − c2i 0
0 d1 − d2i

]
=

(a1 + a2i)

[
c1 + c2i 0

0 d1 + d2i

]
+ (b1 + b2i)

[
c1 + c2i 0

0 d1 + d2i

]2

However, instead of working in general we will show the procedure for a
specific numerical example. This will be sufficient to guide us to the gener-
alization. Our example is [

1− 2i 0
0 3− 4i

]
=

(a1 + a2i)

[
1 + 2i 0

0 3 + 4i

]
+ (b1 + b2i)

[
1 + 2i 0

0 3 + 4i

]2
=

(a1 + a2i)

[
1 + 2i 0

0 3 + 4i

]
+ (b1 + b2i)

[
−3 + 4i 0

0 −7 + 24i

]

which gives the following equations:

1 = 1a1 − 2a2 − 3b1 − 4b2
−2 = 2a1 + 1a2 + 4b1 − 3b2
3 = 3a1 − 4a2 − 7b1 − 24b2
−4 = 4a1 + 3a2 + 24b1 − 7b2

which have the unique solution

a1 = −22
25

a2 = −19
25

b1 = 1
25

b2 = −3
25

Thus we have
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[
1− 2i 0

0 3− 4i

]
=

(−22
25
− 19

25
i)

[
1 + 2i 0

0 3 + 4i

]
+ ( 1

25
− 3

25
i)

[
1 + 2i 0

0 3 + 4i

]2

which expansion shows how the conjugate diagonal matrix can be expressed
as a polynomial [without constant term] in the diagonal matrix.

And thus for a Lie algebra ĝ, a Lie subalgebra of ĝl(V ), where V is a linear
space over the field lC, we can affirm the fundamental theorem Theorem B̂:

Let the form B̂ satisfy the condition that for all X in D1ĝ and all Y in
ĝ, B̂(X, Y ) = 0. Then X is a nilpotent linear transformation.

2.11.2 Two Theorems for Solvable and Semisimple Lie Algebras.

The first modification of B̂ is to define the form that has traditionally been
called the Killing Form, and to give it the symbol B. It is said to be the
Killing form B of a finite dimensional Lie algebra ĝ over a field lF of charac-
teristic 0. Thus it differs from B̂ by the Lie algebra over which it is defined.
B̂ was defined over a subalgebra ĝ of the Lie algebra ĝl(V ) of brackets in
End(V ) of a linear space V over a field lF of characteristic 0. Now B starts
with an arbitrary Lie algebra ĝ over a field lF of characteristic 0, and is de-
fined as a bilinear form over ĝ by using the adjoint map ad from ĝ into the Lie
subalgebra ad(ĝ) of the Lie algebra of brackets ĝl(ĝ). Thus, after choosing a
basis for ĝ, we have

B : ĝ × ĝ −→ lF
(x, y) 7−→ B(x, y) := trace(ad(x) ◦ ad(y))

This says that B̂ is defined on the Lie subalgebra ad(ĝ) of the Lie algebra
ĝl(ĝ), that is, B(x, y) = B̂(ad(x), ad(y)). Now since ad is linear on ĝ, i.e.,

ad(x+ y) = ad(x) + ad(y) ad(cx) = cad(x)

we see immediately from the bilinearity of B̂ that B is also bilinear on ĝ.
Finally since the adjoint ad is a homomorphism of Lie algebras, i.e.,

ad[x, y] = [ad(x), ad(y)]

we also see that the associative property of B̂ is preserved, i.e.,

B([x, y], z) = B(x, [y, z])
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We remark that since this homomorphism is just another way of writing the
Jacobi identity of ĝ, we would expect that the Killing form B would reflect
the structure of the Lie algebra ĝ.

With this new tool of the Killing form we can prove two remarkable
theorems:

A Lie algebra ĝ over lR or lC is solvable if and only if the Killing form
B(x, x) = 0 for all x in D1ĝ.

and

A Lie algebra ĝ over lR or lC is semisimple if and only if its Killing form
B is nondegenerate.

These will be proved below but their proofs require much preparation.

2.11.3 Solvable Lie Algebra ŝ over lC Implies D1ŝ is a Nilpotent
Lie Algebra. Before we get to these proofs, we pause a moment to prove
something that we will use in the following development. First we show
that for ŝ, a solvable Lie algebra over lC, ad(D1ŝ) is a set of nilpotent linear
transformations in ĝl(ŝ). We have seen this phenomenon many times in our
examples above and now we would like to confirm it in general. By defini-
tion ad(D1ŝ) = ad([ŝ, ŝ]) ⊂ [ad(ŝ), ad(ŝ]). Since ŝ is solvable and ad is a
homomorphism of Lie algebras, we know that ad(ŝ) is a solvable Lie algebra
of linear transformations in ĝl(ŝ). Thus using Lie’s Theorem, we know that
we can find a basis for ŝ such that all the linear transformations in ad(ŝ)
are represented as upper triangular matrices. We now take the brackets of
these matrices. Let (aij) be an i-th row of the matrix A in ad(ŝ) and let
(bji) be the i-th column of the matrix B in ad(ŝ). We calculate the diago-
nal element cii =

∑
j(aij) · (bji) of the product matrix A · B. Since we are

dealing with upper triangular matrices, the know the 0 elements of the row
(aij) are (ai,1, ai,2, · · ·, ai,i−1). And also we know that the 0 elements of the
column (bji) are (bi+1,i, bi+2,i, · · ·, bn,i) [where n is the dimension of ŝ]. Thus
cii =

∑
j(aij) · (bji) = aii · bii. Now we do the same for the product B ·A. Let

(bij) be a i-th row of the matrix B and (aji) be the i-th column of the matrix
A. We calculate the diagonal element dii =

∑
j(bij) · (aji) of the product ma-

trix B ·A. It is obvious that dii = bii · aii. Thus we can conclude that all the
entries on the diagonal of the bracket [A,B] = AB − BA are equal to zero,
giving us an upper triangular matrix with a zero diagonal. We conclude that
[A,B] ∈ [ad(ŝ), ad(ŝ)] is a nilpotent linear transformation in ĝl(ŝ). Thus by
2.8.2 we can conclude that D1ŝ is a nilpotent Lie algebra. [Since we used
Lie’s Theorem in the proof, this conclusion now applies only to Lie algebras
over lC.]
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2.12 Changing the Scalar Field

We focus now on the proof of

A Lie algebra ĝ over lR or lC is solvable if and only if the Killing form
B(x, x) = 0 for all x in D1ĝ

We see that we are affirming that this theorem is true if the scalar field
for the Lie algebra is either lR or lC. However in proving this theorem we will
need to use Lie’s Theorem which says

Let ŝ be a solvable complex Lie subalgebra of ĝl(V ). Then there exists
a nonzero vector v ∈ V which is a simultaneous eigenvector for all X
in ŝ [with eigenvalue dependent on X].

and therefore we need lC, an algebraically closed field, in that proof. Thus
we must separate the proof for a Lie algebra over lC from the proof for a Lie
algebra over lR. But obviously the two scalar fields are connected to one
another and thus it will be natural to ask when one begins with one field
what information carries over to the other.

2.12.1 From lR to lC: the Linear Space Structure. We first move
from a lR-linear space to a lC-linear space. Thus, given a real linear space, we
ask what kind of complex linear structures does it determine? In this part of
our exposition we will assume many details from linear algebra. Our initial
task is to set up notation. First of all, we need a knowledge of the tensor
product in linear algebra. Thus, we let V and W be two finite dimensional
linear spaces over a field lF whose characteristic is 0, with dim V = m and dim
W = n. We then form the free linear space Free(V ×W ) on the Cartesian
product V ×W , that is, we take all pairs (v, w) in V ×W as a basis over the
scalars lF. This forms an infinite dimensional linear space Free(V ×W ) over
lF. We then place relations on this space by defining a subspace N generated
by elements of the form:

(v1 + v2, w)− (v1, w)− (v2, w) (v, w1 + w2)− (v, w1)− (v, w2)
(cv, w)− c(v, w) (v, cw)− c(v, w)

with v, v1, v2 ∈ V , w,w1, w2 ∈ W , and c ∈ lF. Now we define a bilinear space
over lF: V ⊗W := Free(V ×W )/N . The image of (v, w) in Free(V ×W ) by
the projection of Free(V ×W ) on V ⊗W is given the symbol v⊗w, which is
read “v tensor w”. We note that we have immediately the following bilinear
relations on V ⊗W :

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(cv)⊗ w = c(v ⊗ w) = v ⊗ (cw)
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This process essentially is the multilinearization of linear spaces. In our case
we take a typical bilinear map ψ of V ×W to a linear space U and express
it by defining a bilinear map φ of V ×W to a newly defined bilinear space
V ⊗W and a newly defined bilinear map α of V ⊗W to the linear space U .
This map is such that ψ = α ◦ φ.

-V ×W V ⊗W
@
@
@
@
@
@
@@R ?

ψ

U

φ

α

We can easily show that if V has a basis (v1, · · ·, vm) and W has a basis
(w1, · · ·, wn), then V ⊗W has a basis (v1 ⊗ w1, · · ·, vi ⊗ wj, · · ·, vm ⊗ wn),
where i runs from 1 to m and j runs from 1 to n. Thus the dimension of
V ⊗W is mn, the product of the dimensions of V and of W . (We can, in
this vein, also use for any scalar field lF and any linear space V over lF the
identification lF⊗ V ∼= V by r ⊗ v 7−→ rv.)

Recall that bilinearity means that the map is linear in both factors:

(x1 + x2, y) 7−→ φ(x1 + x2, y) = (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
(ax, y) 7−→ φ(ax, y) = ax⊗ y = a(x⊗ y)

(x, y1 + y2) 7−→ φ(x, y1 + y2) = x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2
(x, by) 7−→ φ(x, by) = (x⊗ by) = b(x⊗ y)

and

(x1 + x2, y) 7−→ ψ(x1 + x2, y) = ψ(x1, y) + ψ(x2, y)
(ax, y) 7−→ ψ(ax, y) = a(ψ(x, y))

(x, y1 + y2) 7−→ ψ(x, y1 + y2) = ψ(x, y1) + ψ(x, y2)
(x, by) 7−→ ψ(x, by) = b(ψ(x, y))

and thus we have

α((x1 + x2)⊗ y) = ψ(x1, y) + ψ(x2, y);α(ax⊗ y)) = a(ψ(x, y))
α(x⊗ (y1 + y2)) = ψ(x, y1) + ψ(x, y2);α((x⊗ by)) = b(ψ(x, y))

We begin with the field lR of characteristic 0 whose algebraic closure is
the field lC]. Suppose now we have a linear space V over lR. We want to define
a linear space V c over lC [called the complexification of V ] by using tensor
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products. Now to make sense of a tensor product, we need both factors of
the tensor product to be linear spaces over the same field. Since lC is a linear
space over lC, and since lR is a subfield of lC, we know that lC is also a linear
space over lR. We give this real linear space the symbol lCr to distinguish it
from the same set with its complex linear space structure, that is, from lC.
Now we can define a linear space V c over lC by using tensor products.

This means that V c is the same set of elements as lCr ⊗lR V . Also since
lCr⊗lR V has an additive structure, V c repeats this additive structure. What
is different is the scalar multiplication structure. V c is to be a lC-linear space,
while lCr ⊗lR V is a lR-linear space. Thus we have to make lCr ⊗lR V into a
lC-linear space.

We now have an lR-linear space lCr ⊗lR V . [We might remark that this
notation is frequently shortened to lC ⊗lR V , where by the ambiguous lC we
mean the lR-linear space lCr ⊗lR V . Since the full symbol is lCr ⊗lR V , the
fact that we are tensoring over lR implies that we must be considering lC as
a real linear space.]

With these constructs in mind, We can now define V c to be a lC-linear
space.

By the construction of the tensor product we already have an addition
on V c. We have

V c × V c +−→ V c

given by

(lC⊗lR V )× (lC⊗lR V ) −→ lC⊗lR V
(c1 ⊗ u, c2 ⊗ v) 7−→ (c1 ⊗ u) + (c2 ⊗ v)

and this defines an addition in V c which associates, commutes, has an identity
element 0 and has inverses. Next, we need to define a lC-scalar multiplication
in V c. The following definition seems to be the obvious one.

lC× V c −→ V c

lC× (lC⊗lR V ) −→ lC⊗lR V
(c1, c⊗ v) 7−→ c1(c⊗ v) := (c1c)⊗ v

We check that this is indeed a scalar multiplication. The following properties
are straightforward.

(c1 + c2)(c⊗ v) = ((c1 + c2)(c))⊗ v = (c1c+ c2c)⊗ v = (c1c)⊗ v + (c2c)⊗ v

and
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(c1c2)(c⊗ v) = ((c1c2)c)⊗ v = (c1(c2c))⊗ v = c1((c2c)⊗ v))
1(c⊗ v) = (1 · c)⊗ v = c⊗ v

Thus we only need to verify that this definition is linear over V c, i.e.,

c(c1 ⊗ u+ c2 ⊗ v) = c(c1 ⊗ u) + c(c2 ⊗ v)

But there is nothing in our definition that allows us to do this distribution.
This is a whole new relationship. However, the righthand side of this expres-
sion can be handled by our definition. We have a real basis for the real linear
space lC⊗R V :

{1⊗ v1, · · ·, 1⊗ vn, i⊗ v1, · · ·, i⊗ vn}

and we know that an lR-basis for lC considered as a real linear space is {1, i}.
Thus everything on the right hand side of

c(c1 ⊗ u+ c2 ⊗ v) = c(c1 ⊗ u) + c(c2 ⊗ v)

can be expressed as being in a real linear space. Thus we need to verify

c(c1 ⊗ u+ c2 ⊗ v) = c(c1 ⊗ u) + c(c2 ⊗ v)

We begin by examining the expression on the right: c(c1⊗u) + c(c2⊗ v). At
this point we use the lR-basis for lC ⊗lR V . We know that an lR-basis for lC
considered as a real linear space is {1, i}. We choose a lR-basis for V to be
{v1, · · ·, vn}. Then a lR-basis for lC⊗R V is

{1⊗ v1, · · ·, 1⊗ vn, i⊗ v1, · · ·, i⊗ vn}

Using the definition of scalar multiplication, we have

c(c1 ⊗ u) + c(c2 ⊗ v) = (cc1)⊗ u+ (cc2)⊗ v =
((a+ bi)(a1 + b1i))⊗ (

∑n
k=1(rkvk)) + ((a+ bi)(a2 + b2i))⊗ (

∑n
k=1(skvk)) =

((aa1 − bb1) + (ab1 + ba1)i)⊗ (
∑n
k=1(rkvk))+

((aa2 − bb2) + (ab2 + ba2)i)⊗ (
∑n
k=1(skvk)) =

((aa1 − bb1)⊗ (
∑n
k=1(rkvk)) + ((ab1 + ba1)i)⊗ (

∑n
k=1(rkvk))+

((aa2 − bb2)⊗ (
∑n
k=1(skvk)) + ((ab2 + ba2)i)⊗ (

∑n
k=1(skvk)) =∑n

k=1((aa1 − bb1)⊗ (rkvk)) +
∑n
k=1(((ab1 + ba1)i)⊗ (rkvk))+∑n

k=1((aa2 − bb2)⊗ (skvk)) +
∑n
k=1(((ab2 + ba2)i)⊗ (skvk)) =∑n

k=1(rk((aa1 − bb1)(1⊗ vk))) +
∑n
k=1(rk((ab1 + ba1)(i⊗ vk)))+∑n

k=1(sk((aa2 − bb2)(1⊗ vk))) +
∑n
k=1(sk((ab2 + ba2)(i⊗ vk))) =∑n

k=1((rk(aa1 − bb1) + sk(aa2 − bb2))(1⊗ vk)+
(rk(ab1 + ba1) + sk(ab2 + ba2))(i⊗ vk))
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Using the definition of scalar multiplication again, we can write

(rk(ab1 + ba1) + sk(ab2 + ba2))(i⊗ vk) =
((rk(ab1 + ba1) + sk(ab2 + ba2)))(i · 1⊗ vk) =

((rk(ab1 + ba1) + sk(ab2 + ba2)))i)(1⊗ vk)

giving

∑n
k=1((rk(aa1 − bb1) + sk(aa2 − bb2))(1⊗ vk)+
(rk(ab1 + ba1) + sk(ab2 + ba2))(i⊗ vk)) =∑n
k=1((rk(aa1 − bb1) + sk(aa2 − bb2))(1⊗ vk)+
((rk(ab1 + ba1) + sk(ab2 + ba2))i)(1⊗ vk) =∑n

k=1((rk(aa1−bb1)+sk(aa2−bb2))+((rk(ab1 +ba1)+sk(ab2 +ba2))i)(1⊗vk)

Changing notation from lC⊗lR V to V c, we have

(a+ bi)((a1 + b1i)(
∑n
k=1(rkvk)) + (a+ bi)((a2 + b2i)(

∑n
k=1(skvk)) =∑n

k=1(((rk(aa1 − bb1) + sk(aa2 − bb2)) + (rk(ab1 + ba1) + sk(ab2 + ba2))i)vk

Returning to the expression

c(c1 ⊗ u+ c2 ⊗ v) = c(c1 ⊗ u) + c(c2 ⊗ v)

we now examine the expression of the left. We write c1⊗ u+ c2⊗ v in terms
of the above basis.

c1 ⊗ u+ c2 ⊗ v = (a1 + b1i)⊗ (
∑n
k=1(rkvk)) + (a2 + b2i)⊗ (

∑n
k=1(skvk)) =

a1 ⊗ (
∑n
k=1(rkvk)) + b1i⊗ (

∑n
k=1(rkvk))+

a2 ⊗ (
∑n
k=1(skvk)) + b2i⊗ (

∑n
k=1(skvk)) =∑n

k=1(a1 ⊗ (rkvk)) +
∑n
k=1(b1i⊗ (rkvk))+∑n

k=1(a2 ⊗ (skvk)) +
∑n
k=1(b2i⊗ (skvk)) =∑n

k=1 rk(a1 ⊗ vk) +
∑n
k=1 rk(b1i⊗ vk)+∑n

k=1 sk(a2 ⊗ vk) +
∑n
k=1 sk(b2i⊗ vk) =∑n

k=1(rka1(1⊗ vk) + ska2(1⊗ vk) + rkb1(i⊗ vk) + skb2(i⊗ vk)) =∑n
k=1((rka1 + ska2)(1⊗ vk) + (rkb1 + skb2)(i⊗ vk))

Using the definition of scalar multiplication, we write

(rkb1 + skb2)(i⊗ vk) = (rkb1 + skb2)(i · 1⊗ vk) = ((rkb1 + skb2)i)(1⊗ vk)

Changing notation from lC⊗lR V to V c, we now have

(a1 + b1i)(
∑n
k=1(rkvk)) + (a2 + b2i)(

∑n
k=1(skvk)) =∑n

k=1((rka1 + ska2) + ((rkb1 + skb2)i))vk
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What we would like to establish is

c(c1 ⊗ u+ c2 ⊗ v) = c(c1 ⊗ u) + c(c2 ⊗ v)

The right side of this identity we have already calculated directly.

c(c1 ⊗ u) + c(c2 ⊗ v) =∑n
k=1(((rk(aa1 − bb1) + sk(aa2 − bb2)) + (rk(ab1 + ba1) + sk(ab2 + ba2))i)(vk)

We also have calculated c1 ⊗ u + c2 ⊗ v of the left side. We would like to
multiply this by c to get the expression

c(c1 ⊗ u+ c2 ⊗ v) =
c(
∑n
k=1((rka1 + ska2) + ((rkb1 + skb2)i))vk)

However, we have nothing that allows us to move c over the summation sign.
What we need is lC-linearity with respect to addition in V c. Let us for the
moment suppose that we do have this. Returning to the tensor notation
lC⊗lR V , we would have

c(
∑n
k=1((rka1 + ska2) + ((rkb1 + skb2)i))(1⊗ vk)) =

(a+ bi)(
∑n
k=1((rka1 + ska2) + ((rkb1 + skb2)i))(1⊗ vk)) =∑n

k=1((a+ bi)((rka1 + ska2) + ((rkb1 + skb2)i)))(1⊗ vk)) =∑n
k=1((a(rka1 + ska2)− b(rkb1 + skb2))+

(a(rkb1 + skb2) + b(rka1 + ska2))i)(1⊗ vk)

Returning to V c notation gives

c(
∑n
k=1((rka1 + ska2) + ((rkb1 + skb2)i))vk) =∑n

k=1((a(rka1 + ska2)− b(rkb1 + skb2)) + (a(rkb1 + skb2) + b(rka1 + ska2))i)vk

We compare the expressions on the left side and the right side and we see
that they are equal. Thus we can conclude in V c that it is ”natural” to define

c(c1 ⊗ u+ c2 ⊗ v) := (cc1)⊗ u+ (cc2)⊗ v

and thus, with this natural definition, we make V c into a lC-linear space.

In order to make more intuitive the above construction, let us repeat it
for the case where V = lR. This means that we want the complexification of
lR, i.e., lRc, and we show that naturally lRc = lC⊗lR lR can be made into a
complex linear space lC. Fortunately, we can visualize this situation by taking
any line in a plane to represent lR, and showing that its complexification lC
is the plane. Now any line is a one-dimensional real linear space, and the
plane is a two- dimensional real linear space, but also it is a one-dimensional
complex linear space.

Thus we begin with real linear space lC⊗lR lR. Every element in this space
is written as
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c⊗ k = (a+ bi)⊗ k = a⊗ k + bi⊗ k = a(1⊗ k) + b(i⊗ k)

We recognize (1⊗k, i⊗k) as a real basis for lC⊗lR lR, and thus we have c⊗k
written in a 2-dimensional real basis. Interpreting this geometrically on the
plane, we see that this says that if we take a plane with a distinguished point
O [called the origin of the plane], and any line through O, and any point k
on this line, which is represented by lR, and multiply this by a, we obtain the
point a ⊗ k = ak on this line. Then if we rotate this line counterclockwise
by 90 degrees around the origin [multiplying by i] and we obtain a point
i ⊗ k = ik on the line perpendicular to the original line through the origin.
Multiplying this by b, we obtain another point bi ⊗ k = bik on this line
perpendicular to the original line. Adding these two points [vector addition
in the plane] gives us a point c⊗ k in the plane.

We remark that all of the above can be interpreted in the notation of V r.
This means that we are interpreting (lRc)r. If we write c⊗ k as ck, that is,
a complex scalar c times a 1-dimensional real vector k, we have

ck = (a+ ib)k = ak + b(ik)

which shows a 1-dimensional complex vector written as a 2-dimensional real
vector using the special basis (1k, ik).

Now we have defined a complex scalar multiplication in lC⊗lR lR as

c1(c⊗ k) := (c1c)⊗ k

Using this definition, c⊗ k becomes

c⊗ k = (a+ bi)⊗ k = a(1⊗ k) + b(i⊗ k) = a(1⊗ k) + bi(1⊗ k) =
(a+ bi)(1⊗ k) = ck

and this says that the point in the plane can also be obtained by multiplying
the basis element k by the complex scalar c. Thus we have changed the
2-dimensional real space lC ⊗lR lR into the one-dimensional complex vector
space lRc, which is the complexification of lR. And, of course, lRc = lC.

We remark that if we take advantage of the natural isomorphism
lC ⊗lC V c ∼= V c so that c ⊗ v, which maps to cv by scalar multiplication,
will be considered just an element u in V c. Then, in this context there is
no need to write a scalar in front of the vector. Also we have this very use-
ful identity where we use the definition of complex scalar multiplication in
lC⊗lR V .
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V c = lC⊗lR V = (lR⊕ lRi)⊗lR V =
(lR⊗lR V )⊕ ((lRi)⊗lR V ) =

V ⊕ (i⊗ V ) = V ⊕ iV

which again shows that V ⊂ V c. This also shows that dimlCV
c = dimlRV .

We also conclude that we have two notations for the same set: lC ⊗lR V
and V c. The first is a 2n-dimensional real linear space, while the second is
an n-dimensional complex linear space.

2.12.2 From lR to lC: The Lie Algebra Structure. Now we let V be
a real Lie algebra, e.g., V = ĝ, where ĝ is a real Lie algebra. We form ĝc and
we wish to give it the structure of a complex Lie algebra. Thus, we need to
define a bracket in ĝc. We choose:

ĝc × ĝc = (lC⊗lR ĝ)× (lC⊗lR ĝ) −→ lC⊗lR ĝ = ĝc

(c1 ⊗ u, c2 ⊗ v) 7−→ [c1 ⊗ u, c2 ⊗ v] := c1c2 ⊗ [u, v]

where, of course, [u, v] is the bracket in ĝ.

With this definition of bracket in ĝc we show that ĝc is a Lie algebra over
lC. First, we note that

[c1 ⊗ u, c2 ⊗ v] = [(a1 + ib1)⊗ u, (a2 + ib2)⊗ v] =
[a1⊗ u+ (ib1)⊗ u, a2⊗ v+ (ib2)⊗ v] = [a1⊗ u+ i(b1⊗ u), a2⊗ v+ i(b2⊗ v)]

Now we let a1 ⊗ u = x1; b1 ⊗ u = y1; a2 ⊗ v = x2; b2 ⊗ v = y2. This gives

[(x1 + iy1), (x2 + iy2)] = [x1, x2]− [y1, y2] + i([x1, y2] + [y1, x2])

Now

c1c2 ⊗ [u, v] = (a1 + ib1)(a2 + ib2)⊗ [u, v] =
((a1a2 − b1b2) + i(a1b2 + b1a2))⊗ [u, v] =

(a1a2 − b1b2)⊗ [u, v] + i(a1b2 + b1a2))⊗ [u, v]

Comparing these two expressions, we have

(a1a2)⊗ [u, v] = [a1u, a2v] = [x1, x2]
−(b1b2)⊗ [u, v] = −[b1u, b2v] = −[y1, y2]

(a1b2)⊗ [u, v] = [a1u, b2v] = [x1, y2]
(b1a2)⊗ [u, v] = [b1u, a2v] = [y1, x2]

Thus we see that by just using lC-linearity in ĝc we have a natural identity of
a Lie bracket in ĝc.

It is straightforward that scalar multiplication is bilinear with respect to
this multiplication. For c in lC and c1 ⊗ u and c2 ⊗ v in (lC⊗lR ĝ), we have
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c[c1 ⊗ u, c2 ⊗ v] = c(c1c2 ⊗ [u, v]) = (c(c1c2))⊗ [u, v] =
((cc1)c2)⊗ [u, v] = [(cc1)⊗ u, c2 ⊗ v] = [c(c1 ⊗ u), c2 ⊗ v]

and

c[c1 ⊗ u, c2 ⊗ v] = c(c1c2 ⊗ [u, v]) = (c(c1c2))⊗ [u, v] =
(c1(cc2))⊗ [u, v] = [c1 ⊗ u, (cc2)⊗ v] = [c1 ⊗ u, c(c2 ⊗ v)]

We also need to show that this multiplication distributes on the right and
on the left, that is, it is bilinear with respect to addition.

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u), c3 ⊗ w]
[c1 ⊗ u+ c2 ⊗ v, c3 ⊗ w] = [c1 ⊗ u), c3 ⊗ w] + [c2 ⊗ v, c3 ⊗ w]

For left distribution we want to show

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w]

We reduce first the righthand side of this equation. We work with a basis
(v1, ..., vn) in ĝ.

[c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w] = c1c2 ⊗ [u, v] + c1c3 ⊗ [u,w] =
(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi),

∑n
j=1(sjvj)]+

(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi),

∑n
k=1(tkvk)] =

((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗
∑n
i=1

∑n
j=1 risj[vi, vj]+

((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗
∑n
i=1

∑n
k=1 ritk[vi, vk] =∑n

i=1

∑n
j=1((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

Handling the lefthand side of the equation is more delicate. We work first
with c2 ⊗ v + c3 ⊗ w.

c2 ⊗ v + c3 ⊗ w = (a2 + b2i)⊗
∑n
j=1(sjvj) + (a3 + b3i)⊗

∑n
k=1(tkvk) =∑n

j=1((a2 + b2i)⊗ (sjvj)) +
∑n
k=1((a3 + b3i)⊗ (tkvk))

Now we have

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] =
[c1 ⊗ u,

∑n
j=1((a2 + b2i)⊗ (sjvj)) +

∑n
k=1((a3 + b3i)⊗ (tkvk))]

Once again we see that we have nothing that makes legitimate moving brack-
ets across addition in ĝc = (lC⊗lR ĝ). Again, let us assume, for the moment,
that we can. This gives
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[c1 ⊗ u,
∑n
j=1((a2 + b2i)⊗ (sjvj)) +

∑n
k=1((a3 + b3i)⊗ (tkvk))] =

[c1 ⊗ u,
∑n
j=1((a2 + b2i)⊗ (sjvj))] + [c1 ⊗ u,

∑n
k=1((a3 + b3i)⊗ (tkvk))] =∑n

j=1[c1 ⊗ u, ((a2 + b2i)⊗ (sjvj))] +
∑n
k=1[c1 ⊗ u, ((a3 + b3i)⊗ (tkvk))] =

Now we can apply the definition of the Lie bracket in ĝc = (lC⊗lR ĝ).

∑n
j=1[c1 ⊗ u, ((a2 + b2i)⊗ (sjvj))] +

∑n
k=1[c1 ⊗ u, ((a3 + b3i)⊗ (tkvk))] =∑n

j=1 c1(a2 + b2i)⊗ [u, sjvj] +
∑n
k=1 c1(a3 + b3i)⊗ [u, tkvk]

We now expand c1 and u.

∑n
j=1 c1(a2 + b2i)⊗ [u, sjvj] +

∑n
k=1 c1(a3 + b3i)⊗ [u, tkvk] =∑n

j=1(a1 + b1i)(a2 + b2i)⊗ [
∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk]

Now since we know that brackets in ĝ are bilinear with respect to addition
and real scalars, we have

∑n
j=1(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk] =∑n

i=1

∑n
j=1(a1a2 − b1b2 + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1(a1a3 − b1b3 + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

Now we wanted to show that

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w]

We calculated

[c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w] =∑n
i=1

∑n
j=1((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

Assuming that we can move brackets across addition in ĝc = (lC ⊗lR ĝ), we
obtained

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] =∑n
j=1(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk] =∑n

i=1

∑n
j=1(a1a2 − b1b2 + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1(a1a3 − b1b3 + (a1b3 + b1a3)i)⊗ ritk[vi, vk]
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We see that these two expressions are identical. Thus it is reasonable to
define that brackets are linear with respect to addition in ĝc = (lC ⊗lR ĝ).
And obviously the same conclusion is true for right distribution.

We also need to show the anticommutativity of the bracket product in
ĝc. It comes from this property holding in ĝ:

[c1 ⊗ u, c2 ⊗ v] = c1c2 ⊗ [u, v] = −c2c1 ⊗ [v, u] = −[c2 ⊗ v, c1 ⊗ u]

Finally we need to show that the Jacobi identity holds in ĝc.

[c1 ⊗ u, [c2 ⊗ v, c3 ⊗ w]]+
[c3 ⊗ w, [c1 ⊗ u, c2 ⊗ v]]+

[c2 ⊗ v, [c3 ⊗ w, c1 ⊗ u]] =
[c1 ⊗ u, (c2c3)⊗ [v, w]] + [c3 ⊗ w, (c1c2)⊗ [u, v]] + [c2 ⊗ v, (c3c1)⊗ [w, u]] =

(c1c2c3)⊗ [u, [v, w]] + (c3c1c2)⊗ [w, [u, v]] + (c2c3c1)⊗ [v, [w, u]] =
(c1c2c3)⊗ ([u, [v, w]] + [w, [u, v]] + [v, [w, u]]) = 0

since the Jacobi identity is valid in ĝ.

Thus when we build the complexification of the lC-linear Lie algebra ĝc

from the structure of the lR-linear Lie algebra ĝ, we have a canonical way of
obtaining it. If the complex dimension of ĝc is n, then we have immediately
the 2n-real dimensional Lie algebra (ĝc)r = ĝ × ĝ, since we have already
identified ĝ, i.e., we do not need to choose a basis in ĝc to identify ĝ in ĝc.
Also, from the following calculation, we see that for any decomposition of
ĝc = ĝ ⊕ iĝ such that ĝ ⊕ i0 ⊂ ĝ ⊕ iĝ, we can conclude that ĝ is a real
Lie subalgebra of real dimension n of (ĝc)r, which latter algebra has real
dimension 2n. We have for u = ure1 + i(0) and v = vre1 + i(0) in ĝ ⊕ iĝ[[

[ure1]
[0]

]
,

[
[vre1]
[0]

]]
=

[
[ure1, vre1]− [0, 0]
[ure1, 0] + [0, vre1]

]
=

[
[ure1, vre1]

0 + 0

]

This also says that [u, v] = [ure1 + i(0), vre1 + i(0)] = [ure1, vre1] + i(0) in
ĝ ⊕ iĝ.

2.12.3 From lC to lR: the Linear Space Structure. We now want
to move from a lC-linear space to an lR-linear space. Given a complex linear
space, we ask what kind of real linear structures does it determine? This
means that the given complex linear space V is regarded as coming from the
complexification of some real linear space VUe , i.e., V = (VUe)

c, where VUe is
given a basis {e1, ..., en}. [CAUTION: the basis {e1, ..., en} is in this section
not the basis of the canonical vectors {(1, 0, · · ·, 0), · · ·, (0, · · ·, 0, 1)}, but an
arbitrary basis in VUe .]
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It seems evident that, given a complex linear space V , there is no unique
VUe whose complexification is the given complex linear space V . Thus we
start with a complex linear space V and chose a VUe with basis {e1, ..., en}
such that V = (VUe)

c.

This means that any element in x in VUe can be written as x = a1e1 + · ·
·+ anen. Now the complexifcation V = (VUs)

c came from putting a complex
structure on the real linear space lCr ⊗lR VUe . When one starts with a real
linear space lCr ⊗lR VUe , then all of the above analysis is seen to depend on
the following definition for making this space into a lC-linear space:

c1(c⊗ v) := (c1c)⊗ v

In particular if c1 = 1, we have 1(c⊗ v) = (1c)⊗ v = c⊗ v; and if c1 = i, we
have i(c⊗ v) = (ic)⊗ v.

Now since (VUe)
c is the same set as lC ⊗lR VUe , we can form a basis for

(VUe)
c over lC to be {1⊗ e1, ..., 1⊗ en}, giving dimlC(VUe)

c = n. We now take
the set of linear combinations of this basis and note that

a1(1⊗ e1) + · · ·+ an(1⊗ en) =
1⊗ a1e1 + · · ·+ 1⊗ anen =

1⊗ (a1e1 + · · ·+ anen)

with ai in lR, and this coincides with the subset {1 ⊗ x|x ∈ VU} of (VUe)
c.

Thus this set is a lR-subspace of (VUe)
c and is isomorphic to VUe . Thus VUe

becomes a lR-subspace, and it has the following two properties:

(1) The lC-space spanned by VUe is (VUe)
c

(2) Any subset of VUe which is linearly independent over lR is linearly
independent over lC
The proofs follow:

(1) is obvious. Any v in (VUe)
c can be written as

v = c1(1⊗ e1) + · · ·+ cn(1⊗ en) with ci in lC =
c1 · 1⊗ e1 + · · ·+ cn · 1⊗ en =

c1 ⊗ e1 + · · ·+ cn ⊗ en
(2) Let W be a subspace of V and let {f1, ..., fk} be an lR basis for W . For x in W

and ai in lR,
if x = a1f1 + · · ·+ akfk = 0, then a1 = · · · = ak = 0. Now

we take the corresponding lC basis {1⊗ f1, ..., 1⊗ fk} and form
z = c1(1⊗ f1) + · · ·+ ck(1⊗ fk) = 0

z = (a1 + ib1)(1⊗ f1) + · · ·+ (ak + ibk)(1⊗ fk) = 0
then z = (a1(1⊗ f1) + · · ·+ ak(1⊗ fk))+

i(b1(1⊗ f1) + · · ·+ bk(1⊗ fk)) = 0
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z = ((1⊗ a1f1) + · · ·+ (1⊗ akfk))+
i((1⊗ b1f1) + · · ·+ (1⊗ bkfk)) = 0

z = 1⊗ ((a1f1 + · · ·+ akfk) + i(b1f1 + · · ·+ bkfk)) = 0
z = 1⊗ ((a1 + ib1)f1 + · · ·+ (ak + ibk)fk) = 0

z = 1⊗ ((a1f1 + · · ·+ akfk) + i(b1f1 + · · ·+ bkfk)) = 0
Thus (a1f1 + · · ·+ akfk) = 0 and (b1f1 + · · ·+ bkfk) = 0;
and we conclude that a1 = · · · = ak = 0, and b1 = · · · = bk = 0,
giving c1 = · · · = ck = 0. Thus we conclude that W c,

a lC-subspace of (VUe)
c, is k-dimensional over lC.

Thus we start with an n-dimensional real linear space VUe with basis
{e1, ..., en}. From the above we know that the complex linear space (VUe)

c

has a basis {1⊗ e1, ...1⊗ en} over lC and therefore any vector v in (VUe)
c can

be written as:

v = c1(1⊗ e1) + ...+ cn(1⊗ en) = (a1 + ib1)(1⊗ e1) + ...+ (an + ibn)(1⊗ en) =
(a1)(1⊗ e1) + ...+ (an)(1⊗ en) + i(b1(1⊗ e1) + ...+ bn(1⊗ en))

In this combination the ci’s are complex numbers and the a1’s and bi’s are
real numbers. However if we identify (1 ⊗ fi) with fi, we can write the
combination as:

v = (a1 + ib1)f1 + ...+ (an + ibn)fn =
a1f1 + ...+ anfn + i(b1f1 + ...+ bnfn) =
a1f1 + · · ·+ anfn + b1(if1) + · · ·+ b(ifn)

This shows that VUe + iVUe can be written as a 2n-dimensional real linear
space on a special basis {e1, ..., en, ie1, ..., ien}. We call this real linear space
V r
e . Thus we have

V r
e = VUe + iVUe

Given a linear space V over lC, we have complex scalar multiplication

lC× V −→ V
(ck, v) 7−→ ckv.

where the ck’s are complex numbers. Also we can write these complex num-
bers as ck = ak + bki, where the ak’sand the bk’s are real numbers. This
gives

v = c1e1 + · · ·+ cnen
v = (a1 + b1i)e1 + · · ·+ (an + bni)en =

a1e1 + · · ·+ anen + b1(ie1) + · · ·+ bn(ien)
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This says that we can give same set V a basis {e1, · · ·, en, ie1, · · ·, ien} over
the real numbers, making the set V into a real linear space V r

e with real
dimension twice the complex dimension of V . Thus we know that if V is a
complex linear space of complex dimension n, then V r

e is a real linear space
of real dimension 2n.

However we observe that the real basis given above is not completely
arbitrary. We did arbitrarily choose n vectors linearly independent over the
reals, but the other n vectors linearly independent over the reals were not
arbitrary but were i times the original set of n vectors linearly independent
over the reals. Thus we have a very special kind of basis for V r

e . In fact, the
v in V r

e can now be written as

v = (a1 + b1i)e1 + · · ·+ (an + bni)en =
a1e1 + · · ·+ anen + b1(ie1) + · · ·+ bn(ien) =
a1e1 + · · ·+ anen + i(b1e1 + · · ·+ bnen)

and thus we see that V r
e = VUe ⊕ iVUe , where VUe is a real subspace of

dimension n of V r
e .

We thus have a map from the complexification of VUe to V:

(VUe)
c −→ V

VUe ⊕ iVUe −→ V
(a1e1 + · · ·+ anen) + i(b1e1 + · · ·+ been) 7−→ (a1 + b1i)e1 + · · ·+ (an + bni)en

which is obviously an isomorphism of complex linear spaces.

This phenomenon of complexification shows up in some surprising ways.
Suppose now that we chose another complexification VUu of V where VUu is
given a basis {u1, ..., un}, and suppose that VUu is not equal VUe This means
that the given complex linear space V comes from the complexification of
some real linear space VUu , i.e., V = (VUu)c, where VUu is given a basis
{u1, ..., un}. And with respect to the u-basis V r

u = VUu × VUu , that is, V r
u is

represented by two independent copies of VUu , giving the dimension of V r
u as a

real linear space to be 2n. However the information communicated by writing
V r
u as such is very much linked together. To see this we do the following. We

go to matrix notation. Having chosen a e-basis for V , then each element v in
V is written as a column vector [ck] = [ak + ibk] = [ak] + i[bk], and this says
that the corresponding element in V r

e can be written as a 2n column vector
of real numbers.

[
[ak]
[bk]

]
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We now choose another basis for V : {u1, · · ·, un}, and write an arbitrary
element v in V in this basis:

v = d1u1 + · · ·+ dnun

where the dk’s are complex numbers. Now we can write these complex num-
bers as dk = rk + ski, where the rk’s and the sk’s are real numbers. This
gives

v = (r1 + s1i)u1 + · · ·+ (rn + sni)un =
r1u1 + · · ·+ rnun + s1(iu1) + · · ·+ sn(iun) =
r1u1 + · · ·+ rnun + i(s1u1 + · · ·+ snun)

Now we let VUu be the real linear space which is generated by the real basis
{u1, · · ·, un}. Maintaining our choices as above, we have that every element
v in V can be expressed also as v = ure1 + iure2, and thus V is expressed as
V = VUu ⊕ iVUu , and V r

u = VUu × VUu is just two copies of VUu . Thus each
element of v in V is written as a column vector [dk] = [rk + isk] = [rk] + i[sk],
and the same element in V r

u is written as a column vector[
[rk]
[sk]

]

Now the matrix C = [cjk], which changes the e-basis to the u-basis, is a
non-singular matrix in GL(n, lC), that has n2 complex entries. Also C can be
written as C = A+ iB, where A = [ajk] and B = [bjk] are in Mnxn(lR). This
now gives us 2n2 real entries. We seek the lR-matrix K which maps the basis
{e1, · · ·, en, ie1, · · ·, ien} to the basis {u1, · · ·, un, iu1, · · ·, iun}. We observe
that this matrix must be 2nx2n and thus it must have (2n)2 = 4n2 real
entries. Since we only have 2n2 real entries, this means that the K matrix
is not arbitrary, but has a very special form. Of course, this is due to the
fact that the second parts of the bases {ie1, · · ·, ien} and {iu1, · · ·, iun} are
not independent of the first parts, but are related to the first parts in a very
special way — through multiplication by i.

To obtain this matrix K from the matrix C = A+iB, we do the following.
We write the vector v in V as an n-column matrix of complex entries [ck]
with respect to the basis {ek}. Since ck = ak+bki, this matrix can be written
as [ck] = [ak] + i[bk], where [ak] and [bk] are n-column real matrices written
with respect to the same basis {ek}. We do the same with v written with
respect to the basis {uk}, giving [dk] = [rk] + i[sk], where [rk] and [sk] are
n-column real matrices written with respect to the same basis {uk}. Using
matrix notation we get
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[dk] = C[ck]
[rk] + i[sk] = (A+ iB)([ak] + i[bk]) =
A[ak] + A(i[bk]) + iB[ak] + iB(i[bk]) =

A[ak]−B[bk] + i(A[bk] +B[ak])

This matrix equation can be rewritten in the following real notation[
A −B
B A

] [
[ak]
[bk]

]
=

[
A[ak]−B[bk]
B[ak] + A[bk]

]
=

[
[rk]
[sk]

]

which shows a (2n)2 real matrix operating on a 2n-column real matrix, giving
a 2n-column real matrix. We therefore define K to be[

A −B
B A

]

This development shows how an n2 complex matrix C, with 2n2 pieces of
real information gives a (2n)2 real matrix K with the same amount of real
information. The special form of K is most important. One 2n-column
real matrix is written with respect to two copies of the {ek}-basis, while
the other 2n-column real matrix is written with respect to two copies of the
{uk}-basis. Essentially we have shown how to take any lC-automorphism φ
of V and express it as a special lR-automorphism ψ of V r

e to V r
u .

But we can say more about this structure. We know that we can compose
two endomorphisms of V , φ1, represented in some given basis of V by the
matrix C1, and φ2 represented in the same basis of V by the matrix C2,
giving the endomorphism φ2 ◦ φ1, represented by the matrix product C2C1

with respect to the same basis. We have

C2C1 = (A2 + iB2)(A1 + iB1) = A2A1 + A2(iB1) + iB2A1 + iB2(iB1) =
A2A1 −B2B1 + i(A2B1 +B2A1)

Thus C2C1 gives the real matrix[
A2A1 −B2B1 −(A2B1 +B2A1)
A2B1 +B2A1 A2A1 −B2B1

]

while by multiplying the corresponding matrices, we obtain[
A2 −B2

B2 A2

] [
A1 −B1

B1 A1

]
=

[
A2A1 −B2B1 −A2B1 −B2A1

B2A1 + A2B1 −B2B1 + A2A1

]
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We observe that we arrive at the same matrix, and thus we can conclude
multiplication is preserved under the above correspondence.

Using the methods that gave us this conclusion, we would like see how the
inverse of a matrix corresponds. Thus we choose C−1 so that C · C−1 = In,
where In is the complex n-dimensional identity matrix. Since In = In;real +
i0n, the real 2n-matrix corresponding to In is[

In;real 0n
0n In;real

]

which we see is the 2n-real identity matrix I2n. Now writing C · C−1 as

C · C−1 = (A+ iB)(A′ + iB′) = (AA′ −BB′) + i(AB′ +BA′)

gives the 2n-real matrix[
AA′ −BB′ −(AB′ +BA′)
AB′ +BA′ AA′ −BB′

]
=

[
In 0n
0n In

]

Therefore we can say that

[
A −B
B A

]−1
=

[
A′ −B′
B′ A′

]

We also observe that AA′−BB′ = In and AB′ = −BA′. Thus caution must
be observed when treating inverses in this construction.

Finally, another caution should be mentioned, namely, one concerning the
taking of transposes. If X is a mxn matrix, we define the transpose X t of X
to be the nxm matrix whose rows are the columns of the original matrix X,
and thus whose columns are the rows of the matrix X. We know that

if C = A+ iB then Ct = (A+ iB)t = At + iBt

Thus if the real matrix representing C is[
A −B
B A

]

then the real matrix representing Ct is[
At −Bt

Bt At

]
6=
([

A −B
B A

])t
=

[
At Bt

−Bt At

]
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Thus the operation of taking transposes is not preserved in this construction.

2.12.4 The J Transformation. Now we said above that V r has “more”
structure than just V r = Vree ×Vree , since it comes from V , a complex linear
space, by a choice of a lC-basis in V . But since our concern now will not
be the specific basis chosen, we will simplify our notation to V r = Vre × Vre
to indicate that some basis has been chosen. Using this notation, we can
now identify what this “more” structure is. We can get to this additional
structure by asking how can we take the real vector space V r = Vre×Vre and
make it into a complex vector space which is isomorphic to V . Giving Vre a
real basis, we can write any element in Vre × Vre as a column matrix[

[ak]
[bk]

]

Recalling our construction above, we want to operate on what corresponds in
Vre×Vre to the imaginary component of V by a transformation C which corre-
sponds to the imaginary transformation. Now 0×Vre in Vre×Vre corresponds
to the imaginary component of V , and the transformation corresponding to
the imaginary transformation is 0 + iIn. In matrix notation we get[

0 −In
In 0

] [
[0]
[bk]

]
=

[
[−bk]

[0]

]

If we let the same transformation operate on what corresponds to the real
component of V , we get[

0 −In
In 0

] [
[ak]
[0]

]
=

[
[0]
[ak]

]

We now show that if Vre × Vre possesses a linear transformation, call it J ,
defined by

J : Vre × Vre −→ Vre × Vre
(v1, v2) 7−→ J(v1, v2) := (−v2, v1)

then we can define a complex linear space structure on Vre × Vre. In matrix
notation we have

J =

[
0 −In
In 0

]

We remark that J2 = −I2n since:
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J · J =

[
0 −In
In 0

]
·
[

0 −In
In 0

]
= −

[
In 0
0 In

]
= −I2n

The additive structure is simply the additive structure in Vre × Vre, i.e.:

(Vre × Vre)× (Vre × Vre) −→ Vre × Vre
((v1, v2), (w1, w2)) 7−→ (v1, v2) + (w1, w2) := (v1 + w1, v2 + w2)

But the scalar multiplication is defined using the J transformation.

lC× (Vre × Vre) −→ Vre × Vre
(c, (v1, v2)) 7−→ c(v1, v2) = (a+ ib)(v1, v2) := (aI2n + bJ)((v1, v2)) =

a(v1, v2) + b(J(v1, v2)) = (av1, av2) + (−bv2, bv1) = (av1 − bv2, av2 + bv1)

We verify that the expected properties of scalar multiplication hold.

c((v1, v2) + (w1, w2)) = (a+ ib)(v1 + w1, v2 + w2) =
(a(v1 + w1)− b(v2 + w2), a(v2 + w2) + b(v1 + w1)) =

(av1 + aw1 − bv2 − bw2, av2 + aw2 + bv1 + bw1) =
((av1 − bv2, av2 + bv1) + ((aw1 − bw2, aw2 + bw1) =

c(v1, v2) + c(w1, w2)

(c1 + c2)(v1, v2) = ((a1 + ib1) + (a2 + ib2))(v1, v2) =
((a1 + a2) + i(b1 + b2))(v1, v2) =

((a1 + a2)v1 − (b1 + b2)v2, (a1 + a2)v2 + (b1 + b2)v1) =
(a1v1 + a2v1 − b1v2 − b2v2, a1v2 + a2v2 + b1v1 + b2v1) =
(a1v1 − b1v2, a1v2 + b1v1) + (a2v1 − b2v2, a2v2 + b2v1) =

c1(v1, v2) + c2(v1, v2)

(c1c2)(v1, v2) = ((a1 + ib1)(a2 + ib2))(v1, v2) =
((a1a2 − b1b2) + i(a1b2 + b1a2))(v1, v2) =

((a1a2 − b1b2)v1 − (a1b2 + b1a2)v2, (a1a2 − b1b2)v2 + (a1b2 + b1a2)v1) =
(a1a2v1 − b1b2v1 − a1b2v2 − b1a2v2, a1a2v2 − b1b2v2 + a1b2v1 + b1a2v1) =
(a1a2v1 − a1b2v2 − b1a2v2 − b1b2v1, a1a2v2 + a1b2v1 + b1a2v1 − b1b2v2) =
(a1(a2v1 − b2v2)− b1(a2v2 + b2v1), a1(a2v2 + b2v1) + b1(a2v1 − b2v2) =
(a1 + ib1)(a2v1 − b2v2, a2v2 + b2v1) = (a1 + ib1)((a2 + ib2)(v1, v2)) =

c1(c2(v1, v2))

1(v1, v2) = (1 + i0)(v1, v2) := 1(v1, v2) + 0(J(v1, v2)) = (v1, v2)

This linear transformation J on Vre×Vre has been traditionally called an
almost complex structure on Vre × Vre. We also remark that it is canonical,
i.e., it does not depend on a basis chosen in Vre, since it is made up from
only the identity matrix In.

We now show that the mapping
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V −→ Vre × Vre
v = (v1 + iv2) 7−→ (v1, v2)

is an isomorphism of complex linear space structures. It is clear that the
mapping is 1-to-1 and onto; we need only show that addition and scalar
multiplication are preserved.

v + w = (v1 + iv2) + (w1 + iw2) = (v1 + w1) + i(v2 + w2) 7−→
(v1 + w1, v2 + w2) = (v1, v2) + (w1, w2)

cv = (a+ib)(v1+iv2) = (av1−bv2)+i(bv1+av2) 7−→ ((av1−bv2), (bv1+av2))
= (av1, av2) + (−bv2, bv1) = a(v1, v2) + b(−v2, v1) = a(v1, v2) + b(J(v1, v2)) =

(aI2n + bJ)(v1, v2) = c(v1, v2)

But we can say still more. We have shown that if we give a complex
linear space V any basis, we can construct a isomorphic complex linear space
Vre × Vre from the real linear space Vre × Vre, which latter cross product we
called above V r, by constructing an almost complex structure J on Vre×Vre.
If we now emphasize the choice of basis, we have the symbols V r = Vree×Vree
and V r = Vreu × Vreu for the choice of two bases for V . And we now know
that both of these spaces, given a almost complex structure J , possess a
unique complex linear structure such that they are are both isomorphic to
the complex linear space V . And V is the complexification (Vre)

c of the real
linear space Vre.

In sum, we can therefore say the following: given a complex linear space
V , the corresponding real linear space V r loses some of the structure, and
to regain the original complex structure we must define on V r an almost
complex structure J that is independent of bases, so that we can relate V r

to V in a compatible manner.

2.12.5 From lC to lR: The Lie Algebra Structure.

Now we would like to examine the Lie algebra structures of these con-
structions. Thus we consider a complex linear space ĝ which also has the
structure of a Lie algebra. Since we are now not interested in a change of
basis, we choose one basis (u1, · · ·, un) in ĝ and fix it. With respect to this
basis, we write ĝ = ĝre ⊕ iĝre and ĝr = ĝre × ĝre Now for any x and y in
ĝ, we have a bracket product [x, y]. We write x = ure1(x) + iure2(x) and
y = ure1(y)+ iure2(y) according to the above construction. However since we
are fixing our basis (ui) once and for all, we can shorten this notation to

x = ure1(x) + iure2(x) = x1 + ix2 y = ure1(y) + iure2(y) = y1 + iy2

for xi and yi in ĝre. Using this notation we calculate the bracket in ĝ:
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[x, y] = [x1 + ix2, y1 + iy2] = ([x1, y1]− [x2, y2]) + i([x1, y2] + [x2, y1])

This gives the bracket in ĝ with respect to the (ui)-basis for ĝ. Now the
brackets in ĝre must be taken in the complex Lie algebra ĝ for we have no
reason to assert that ĝre is a real Lie algebra with brackets closing in ĝre. On
the contrary we must write

[xi, yj] = αij + iβij in ĝ, αij, βij in ĝre

Thus we have

[x, y] = [x1 + ix2, y1 + iy2] = ([x1, y1]− [x2, y2]) + i([x1, y2] + [x2, y1])
= (α11 + iβ11)− (α22 + iβ22) + i((α12 + iβ12) + (α21 + iβ21))

= (α11 − α22 − β12 − β21) + i(β11 − β22 + α12 + α21)

Also since we have chosen a basis to obtain the elements of this space, it
will be convenient to express this space as column matrices of real numbers.
[To achieve this, we will now use another convention to express matrices.
Since we have only one basis under discussion, we will say that the vector x1
will be represented in this basis by the symbol of a column matrix [x1], that
is, we will put brackets around the vector symbol in order to represent the
column matrix representing this vector. Thus even though brackets will mean
column matrices as well as the bracket product of two vectors or two matrices,
we hope the context will be sufficient to distinguish these two usages.] Thus
in this matrix notation we have[[

[x1]
[x2]

]
,

[
[y1]
[y2]

]]
=

[
[α11]− [α22]− [β12]− [β21]
[β11]− [β22] + [α12] + [α21]

]

We remark if we just started with x1 and y1 in ĝre, we would obtain[[
[x1]
[0]

]
,

[
[y1]
[0]

]]
=

[
[α11]
[β11]

]

which again shows that the value of the bracket product in ĝre is not real,
but is complex.

Thus we have

[x1 + ix2, y1 + iy2)] := ((α11 − α22 − β12 − β21) + i(β11 − β22 + α12 + α21)
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We would now like to confirm that this definition of a Lie bracket in ĝr

does give to ĝr = ĝre × ĝre the structure of a complex Lie algebra. In the
following calculations we will use [xi, zk] = γik + iδik to make clear that the
brackets map what is inside to a complex number.

We have distribution on the left. In the following calculation we are
using the fact that all xi, yj and zk belong to V and thus we are using the
distribution property in V when we write

[xi, yj + zk] = [xi, yj] + [xi, zk]

Now

[(x1, x2), (y1, y2) + (z1, z2)] = [(x1, x2), (y1 + z1, y2 + z2)]

By our definition we have

[x1, y1 + z1] = [x1, y1] + [x1, z1] = (α11, β11) + (γ11, δ11) =
(α11 + γ11, β11 + δ11)

[x2, y2 + z2] = [x2, y2] + [x2, z2] = (α22, β22) + (γ22, δ22) =
(α22 + γ22, β22 + δ22)

[x1, y2 + z2] = [x1, y2] + [x1, z2] = (α12, β12) + (γ12, δ12) =
(α12 + γ12, β12 + δ12)

[x2, y1 + z1] = [x2, y1] + [x2, z1] = (α21, β21) + (γ21, δ21) =
(α21 + γ21, β21 + δ21)

Continuing

[(x1, x2), (y1, y2) + (z1, z2)] = [(x1, x2), (y1 + z1, y2 + z2)] =
(α11 + γ11, β11 + δ11)− (α22 + γ22, β22 + δ22)+

J(α12 + γ12, β12 + δ12) + J(α21 + γ21, β21 + δ21) =
(α11 + γ11 − α22 − γ22 − β12 − δ12 − β21 − δ21,
β11 + δ11 − β22 − δ22 + α12 + γ12 + α21 + γ21)

Now we calculate [(x1, x2), (y1, y2)] and [(x1, x2), (z1, z2)].

[(x1, x2), (y1, y2)] = (α11, β11)− (α22, β22) + J(α12, β12) + J(α21, β21) =
(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21)

[(x1, x2), (z1, z2)] = (γ11, δ11)− (γ22, δ22) + J(γ12, δ12) + J(γ21, δ21) =
(γ11 − γ22 − δ12 − δ21, δ11 − δ22 + γ12 + γ21)

Adding [(x1, x2), (y1, y2)] and [(x1, x2), (z1, z2)], we obtain
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(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21)+
(γ11 − γ22 − δ12 − δ21, δ11 − δ22 + γ12 + γ21) =
(α11 − α22 − β12 − β21 + γ11 − γ22 − δ12 − δ21,
β11 − β22 + α12 + α21 + δ11 − δ22 + γ12 + γ21)

Thus we see that

[(x1, x2), (y1, y2) + (z1, z2)] = [(x1, x2), (y1, y2)] + [(x1, x2), (z1, z2)].

and we have distribution on the left. It is evident that if we use the same
kind of argument we will also show that we have distribution on the right.

We now have to show that for c in lC

c[(x1, x2), (y1, y2)] = [c(x1, x2), (y1, y2)] = [(x1, x2), c(y1, y2)].

First we calculate c[(x1, x2), (y1, y2)]. We write c = a+ ib.

(a+ib)[(x1, x2), (y1, y2)] = (a+ib)((α11−α22−β12−β21, β11−β22+α12+α21)) =
(a(α11 − α22 − β12 − β21)− b(β11 − β22 + α12 + α21),
a(β11 − β22 + α12 + α21) + b(α11 − α22 − β12 − β21))

Next we calculate

[c(x1, x2), (y1, y2)] =
[(a+ ib)(x1, x2), (y1, y2)] = [(ax1 − bx2, ax2 + bx1), (y1, y2)]

By our definition we have

[ax1 − bx2, y1] = [ax1, y1]− [bx2, y1] = a[x1, y1]− b[x2, y1] =
a(α11, β11)− b(α21, β21)

[ax2 + bx1, y2] = [ax2, y2] + [bx1, y2] = a[x2, y2] + b[x1, y2] =
a(α22, β22) + b(α12, β12)

[ax1 − bx2, y2] = [ax1, y2]− [bx2, y2] = a[x1, y2]− b[x2, y2] =
a(α12, β12)− b(α22, β22)

[ax2 + bx1, y1] = [ax2, y1] + [bx1, y1] = a[x2, y1] + b[x1, y1] =
a(α21, β21) + b(α11, β11)

Continuing

[c(x1, x2), (y1, y2)] = [(ax1 − bx2, ax2 + bx1), (y1, y2)] =
a(α11, β11)− b(α21, β21)− (a(α22, β22) + b(α12, β12))

+J(a(α12, β12)− b(α22, β22)) + J(a(α21, β21) + b(α11, β11)) =
a(α11, β11)− b(α21, β21)− a(α22, β22)− b(α12, β12)

+aJ(α12, β12)− bJ(α22, β22)) + aJ(α21, β21) + bJ(α11, β11)) =
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a(α11, β11)− b(α21, β21)− a(α22, β22)− b(α12, β12)
+a(−β12, α12)− b(−β22, α22) + a(−β21, α21) + b(−β11, α11) =

(aα11 − bα21 − aα22 − bα12 − aβ12 + bβ22 − aβ21 − bβ11,
aβ11 − bβ21 − aβ22 − bβ12 + aα12 − bα22 + aα21 + bα11) =

(a(α11 − α22 − β12 − β21)− b(α21 + α12 − β22 + β11),
a(β11 − β22 + α12 + α21) + b(−β21 − β12 − α22 + α11))

Finally, we calculate

[(x1, x2), c(y1, y2)] =
[(x1, x2), (a+ ib)(y1, y2)] = [(x1, x2), (ay1 − by2, ay2 + by1)]

By our definition we have

[x1, ay1 − by2] = [x1, ay1]− [x1, by2] = a[x1, y1]− b[x1, y2] =
a(α11, β11)− b(α12, β12)

[x2, ay2 + by1] = [x2, ay2] + [x2, by1] = a[x2, y2] + b[x2, y1] =
a(α22, β22) + b(α21, β21)

[x1, ay2 + by1] = [x1, ay2] + [x1, by1] = a[x1, y2] + b[x1, y1] =
a(α12, β12) + b(α11, β11)

[x2, ay1 − by2] = [x2, ay1]− [x2, by2] = a[x2, y1]− b[x2, y2] =
a(α21, β21)− b(α22, β22)

Continuing

[(x1, x2), c(y1, y2)] = [(x1, x2), (ay1 − by2, ay2 + by1)] =
a(α11, β11)− b(α12, β12)− (a(α22, β22) + b(α21, β21))

+J(a(α12, β12) + b(α11, β11)) + J(a(α21, β21)− b(α22, β22)) =
a(α11, β11)− b(α12, β12)− a(α22, β22)− b(α21, β21)

+aJ(α12, β12) + bJ(α11, β11)) + aJ(α21, β21)− bJ(α22, β22)) =
a(α11, β11)− b(α12, β12)− a(α22, β22)− b(α21, β21)

+a(−β12, α12) + b(−β11, α11) + a(−β21, α21)− b(−β22, α22) =
(aα11 − bα12 − aα22 − bα21 − aβ12 − bβ11 − aβ21 + bβ22,
aβ11 − bβ12 − aβ22 − bβ21 + aα12 + bα11 + aα21 − bα22) =

(a(α11 − α22 − β12 − β21)− b(α12 + α21 + β11 − β22),
a(β11 − β22 + α12 + α21) + b(−β12 − β21 + α11 − α22))

Thus we can conclude that scalar multiplication by lC satisfies

c[(x1, x2), (y1, y2)] = [c(x1, x2), (y1, y2)] = [(x1, x2), c(y1, y2)].

We now verify the anticommutativity of the bracket product. In order
to write [(y1, y2), (x1, x2)], we must return to the calculation of [y, x] in V ,
which, of course, gives immediately [y, x] = −[x, y]. We use this to show
[(y1, y2), (x1, x2)] = −[(x1, x2), (y1, y2)]
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[y, x] = [y1 + iy2, x1 + ix2] = ([y1, x1]− [y2, x2]) + i([y1, x2] + [y2, x1]) =
(−[x1, y1] + [x2, y2])− i([x2, y1] + [x1, y2]) =

−(α11, β11) + (α22, β22)− i((α21, β21) + (α12, β12))

Now by definition

[(y1, y2), (x1, x2)] := −(α11, β11) + (α22, β22)− J(α12, β12)− J(α21, β21) =
−(α11, β11) + (α22, β22)− (−β12, α12)− (−β21, α21) =

(−α11 + α22 + β12 + β21,−β11 + β22 − α12 − α21)

And we see immediately that

[(y1, y2), (x1, x2)] = (−α11 + α22 + β12 + β21,−β11 + β22 − α12 − α21) =
−(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21)) =

−[(x1, x2), (y1, y2)]

Finally, we must verify the Jacobi identity in ĝr = ĝre × ĝre.

First we calculate [[(x1, x2), (y1, y2)], (z1, z2)]. In this calculation we have
[xi, yj] = (αij, βij), [αij, zk] = (αijk, βijk) and [βij, zk] = (γijk, δijk).

[[(x1, x2), (y1, y2)], (z1, z2)] =
[(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21), (z1, z2)] =
[(α11 − α22 − β12 − β21), z1]− [(β11 − β22 + α12 + α21), z2]

+J([(α11 − α22 − β12 − β21), z2]) + J([(β11 − β22 + α12 + α21), z1]) =
[α11, z1]− [α22, z1]− [β12, z1]− [β21, z1]
−[β11, z2] + [β22, z2]− [α12, z2]− [α21), z2]

+J([α11, z2]− [α22, z2]− [β12, z2]− [β21, z2])
+J([β11, z1]− [β22, z1] + [α12, z1] + [α21, z1]) =

(α111, β111)− (α221, β221)− (γ121, δ121)− (γ211, δ211)
−(γ112, δ112) + (γ222, δ222)− (α122, β122)− (α212, β212)

+J((α112, β112)− (α222, β222)− (γ122, δ122)− (γ212, δ212))
+J((γ111, δ111)− (γ221, δ221) + (α121, β121) + (α211, β211)) =

(α111, β111)− (α221, β221)− (γ121, δ121)− (γ211, δ211)
−(γ112, δ112) + (γ222, δ222)− (α122, β122)− (α212, β212)

+(−β112, α112)− (−β222, α222)− (−δ122, γ122)− (−δ212, γ212)
+(−δ111, γ111)− (−δ221, γ221) + (−β121, α121) + (−β211, α211) =

(α111 − α221 − γ121 − γ211 − γ112 + γ222 − α122 − α212

−β112 + β222 + δ122 + δ212 − δ111 + δ221 − β121 − β211,
β111 − β221 − δ121 − δ211 − δ112 + δ222 − β122 − β212

+α112 − α222 − γ122 − γ212 + γ111 − γ221 + α121 + α211)

Next we calculate [[(z1, z2), (x1, x2)], (y1, y2)]. In this calculation we have
[zi, xj] = −(γij, δij), [γij, yk] = (κijk, λijk) and [δij, yk] = (µijk, νijk).
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[[(z1, z2), (x1, x2)], (y1, y2)] =
[(−γ11 + γ22 + δ12 + δ21,−δ11 + δ22 − γ12 − γ21), (y1, y2)] =
[(−γ11 + γ22 + δ12 + δ21), y1]− [(−δ11 + δ22 − γ12 − γ21), y2]

+J([(−γ11 + γ22 + δ12 + δ21), y2]) + J([(−δ11 + δ22 − γ12 − γ21), y1]) =
[−γ11, y1] + [γ22, y1] + [δ12, y1] + [δ21, y1]
+[δ11, y2]− [δ22, y2] + [γ12, y2] + [γ21), y2]

+J([−γ11, y2] + [γ22, y2] + [δ12, y2] + [δ21, y2])
+J(−[δ11, y1] + [δ22, y1]− [γ12, y1]− [γ21, y1]) =

−(κ111, λ111) + (κ221, λ221) + (µ121, ν121) + (µ211, ν211)
+(µ112, ν112)− (µ222, ν222) + (κ122, λ122) + (κ212, λ212)

J(−(κ112, λ112) + (κ222, λ222) + (µ122, ν122) + (µ212, ν212))
J(−(µ111, ν111) + (µ221, ν221)− (κ121, λ121)− (κ211, λ211)) =
−(κ111, λ111) + (κ221, λ221) + (µ121, ν121) + (µ211, ν211)
+(µ112, ν112)− (µ222, ν222) + (κ122, λ122) + (κ212, λ212)

+(λ112,−κ112) + (−λ222, κ222) + (−ν122, µ122) + (−ν212, µ212)
+(ν111,−µ111) + (−ν221, µ221)− (−λ121, κ121)− (−λ211, κ211) =

(−κ111 + κ221 + µ121 + µ211 + µ112 − µ222 + κ122 + κ212
λ112 − λ222 − ν122 − ν212 + ν111 − ν221 + λ121 + λ211,
−λ111 + λ221 + ν121 + ν211 + ν112 − ν222 + λ122 + λ212
−κ112 + κ222 + µ122 + µ212 − µ111 + µ221 − κ121 − κ211)

Lastly, we calculate [[(y1, y2), (z1, z2)], (x1, x2)]. In this calculation we have
[yi, zj] = (κij, λij), [κij, xk] = (πijk, ρijk) and [λij, xk] = (σijk, τijk)

[(y1, y2), (z1, z2)], (x1, x2)] =
[(κ11 − κ22 − λ12 − λ21, λ11 − λ22 + κ12 + κ21), (x1, x2)] =
[(κ11 − κ22 − λ12 − λ21), x1]− [(λ11 − λ22 + κ12 + κ21), x2]

+J([(κ11 − κ22 − λ12 − λ21), x2]) + J([(λ11 − λ22 + κ12 + κ21), x1]) =
[κ11, x1]− [κ22, x1]− [λ12, x1]− [λ21, x1]
−[λ11, x2] + [λ22, x2]− [κ12, x2]− [κ21, x2]

+J([κ11, x2]− [κ22, x2]− [λ12, x2]− [λ21, x2])
+J([λ11, x1]− [λ22, x1] + [κ12, x1] + [κ21, x1]) =

(π111, ρ111)− (π221, ρ221)− (σ121, τ121)− (σ211, τ211)
−(σ112, τ112) + (σ222, τ222)− (π122, ρ122)− (π212, ρ212)

+J((π112, ρ112)− (π222, ρ222)− (σ122, τ122)− (σ212, τ212))
+J((σ111, τ111)− (σ221, τ221) + (π121, ρ121) + (π211, ρ211)) =

(π111, ρ111)− (π221, ρ221)− (σ121, τ121)− (σ211, τ211)
−(σ112, τ112) + (σ222, τ222)− (π122, ρ122)− (π212, ρ212)

+(−ρ112, π112)− (−ρ222, π222)− (−τ122, σ122)− (−τ212, σ212)
+(−τ111, σ111)− (−τ221, σ221) + (−ρ121, π121) + (−ρ211, π211) =

(π111 − π221 − σ121 − σ211 − σ112 + σ222 − π122 − π212
−ρ112 + ρ222 + τ122 + τ212 − τ111 + τ221 − ρ121 − ρ211,
ρ111 − ρ221 − τ121 − τ211 − τ112 + τ222 − ρ122 − ρ212
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+π112 − π222 − σ122 − σ212 + σ111 − σ221 + π121 + π211)

To complete the proof we must show that the sums of the following three
expressions are each equal to 0.

(α111 − α221 − γ121 − γ211 − γ112 + γ222 − α122 − α212

−β112 + β222 + δ122 + δ212 − δ111 + δ221 − β121 − β211,
β111 − β221 − δ121 − δ211 − δ112 + δ222 − β122 − β212

+α112 − α222 − γ122 − γ212 + γ111 − γ221 + α121 + α211)

(−κ111 + κ221 + µ121 + µ211 + µ112 − µ222 + κ122 + κ212
λ112 − λ222 − ν122 − ν212 + ν111 − ν221 + λ121 + λ211,
−λ111 + λ221 + ν121 + ν211 + ν112 − ν222 + λ122 + λ212
−κ112 + κ222 + µ122 + µ212 − µ111 + µ221 − κ121 − κ211)

and

(π111 − π221 − σ121 − σ211 − σ112 + σ222 − π122 − π212
−ρ112 + ρ222 + τ122 + τ212 − τ111 + τ221 − ρ121 − ρ211,
ρ111 − ρ221 − τ121 − τ211 − τ112 + τ222 − ρ122 − ρ212

+π112 − π222 − σ122 − σ212 + σ111 − σ221 + π121 + π211)

Now, knowing that xi,yj, and zk are all in V , we can use the Jacobi identity
in V to make the following calculations:

[[xi, yj], zk] = [(αij, βij), (zk, 0)] =
[αij, zk]− [βij, 0] + J([αij, 0]) + J([βij, zk]) =

(αijk, βijk) + J(γijk, δijk) = (αijk, βijk) + (−δijk, γijk) =
(αijk − δijk, βijk + γijk)

[[zi, xj], yk] = [−(γij, δij), (yk, 0)] =
[−γij, yk]− [−δij, 0] + J([−γij, 0]) + J([−δij, yk]) =

−(κijk, λijk)− J(µijk, νijk) = −(κijk, λijk)− (−νijk, µijk) =
(−κijk + νijk,−λijk − µijk)

[[yi, zj], xk] = [(κij, λij), (xk, 0)] =
[κij, xk]− [λij, 0] + J([κij, 0]) + J([λij, xk]) =

(πijk, ρijk) + J(σijk, τijk) = (πijk, ρijk) + (−τijk, σijk) =
(πijk − τijk, ρijk + σijk)

Thus by the Jacobi identity in V we have:

(αijk−δijk, βijk+γijk)+(−κijk+νijk,−λijk−µijk)+(πijk−τijk, ρijk+σijk) = 0
(αijk − δijk − κijk + νijk + πijk − τijk, βijk + γijk − λijk −µijk + ρijk + σijk) = 0
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Thus we have

(α111 − δ111 − κ111 + ν111 + π111 − τ111 = 0
β111 + γ111 − λ111 − µ111 + ρ111 + σ111) = 0

and, using similar arguments, we have the same result for the indices {112},
{121}, {122}, {211}, {212}, {221}, and {222}. giving us that the sum of the
above three expressions are indeed each equal to 0. This proves the Jacobi
identity in ĝr = ĝre × ĝre.

Finally, we show that there is an isomorphism of Lie algebras between V
and ĝre × ĝre. We already know as lC-linear spaces that they are isomorphic.
Thus we only need to show that brackets go to brackets. Now for v and w
in V we have

V −→ Vre × Vre
v = (v1 + iv2) 7−→ (v1, v2)
w = (w1 + iw2) 7−→ (w1, w2)

If in the following calculation we let [vi, wj] = αij + iβij then we have

[v, w] = [v1 + iv2, w1 + iw2] = [v1, w1]− [v2, w2] + i([v1, w2] + [v2, w1]) =
α11 + iβ11 − (α22 + iβ22) + i((α12 + iβ12) + (α21 + iβ21)) =

(α11 − α22 − β12 − β21) + i(β11 − β22 + α12 + α21) 7−→
(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21)

Now we calculate [(v1, v2), (w1, w2)] in ĝre × ĝre.

[(v1, v2), (w1, w2)] = (α11, β11)− (α22, β22) + J(α12, β12) + J(α21, β21) =
(α11, β11)− (α22, β22) + (−β12, α12) + (−β21, α21) =

(α11 − α22 − β12 − β21, β11 − β22 + α12 + α21)

Thus we can conclude that we have an isomorphism of lC-Lie algebras.

At this point, it would be good to recall that the reason for making
all these calculations is to be able to move from lC-Lie algebras to lR-Lie
algebras. We saw that just expressing V as ĝr = ĝre × ĝre was just not
enough. However our search might still be able to find lR-Lie algebras in
the lC-Lie algebra ĝre × ĝre. For example, if perchance we found a basis for
V such that ĝre = ĝre × 0 ⊂ ĝre × ĝre is real with the Lie bracket as defined
above, then we could write the following.

For x, y in V , we write (x1, x2) and (y1, y2) in ĝre × ĝre. Now [x, y] in V
is written as
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[x1 + ix2, y1 + iy2] = [x1, y1]− [x2, y2] + i([x1, y2] + [x2, y1])

Now we wrote [xi, yj] = αij + iβij, since the bracket was still a complex
quantity. However if we knew that [xi, yj] was real, then we would have
[xi, yj] = αij + i0, and we would have no need for the complex notation and
then the following expression becomes

[(x1, x2), (y1, y2)] = ([x1, y1], 0)−([x2, y2], 0)+J(([x1, y2], 0))+J(([x2, y1], 0)) =
([x1, y1], 0)− ([x2, y2], 0) + (−0, [x1, y2]) + (−0, [x2, y1]) =

([x1, y1]− [x2, y2], [x1, y2] + [x2, y1])

and if we restrict to just ĝre = ĝre × 0 ⊂ ĝre × ĝre, we would obtain

[(x1, 0), (y1, 0)] = ([x1, y1]− 0, 0 + 0) = ([x1, y1], 0)

which just says that in ĝre we have a real valued bracket product making it
into a real Lie algebra, which is what we assumed in the beginning.

However we can say more, namely that ĝre×ĝre, which is a 2n-dimensional
real linear space, can be made into a real Lie algebra by letting

[(x1, x2), (y1, y2)] = ([x1, y1]− [x2, y2], [x1, y2] + [x2, y1])

And it is these kinds of real Lie algebras that we are searching for in this
study. They are called the real Lie subalgebras of a simple complex Lie
algebra. We shall remark more on this point later.

For now, however, we let V be a real Lie algebra, i.e., V = ĝ, where ĝ
is a real Lie algebra. We form ĝc and we wish to give it the structure of a
complex Lie algebra. Thus we need to define a bracket in ĝc:

ĝc × ĝc = (lC⊗lR ĝ)× (lC⊗lR ĝ) −→ lC⊗lR ĝ = ĝc

(c1 ⊗ u, c2 ⊗ v) 7−→ [c1 ⊗ u, c2 ⊗ v] := (c1c2)⊗ [u, v]

where, of course, [u, v] is the bracket in ĝ.

We then write the following.

[c1⊗u, c2⊗v] = [(a1+ib1)⊗u, (a2+ib2)⊗v] = [a1⊗u+(ib1)⊗u, a2⊗v+(ib2)⊗v]

Continuing, we get

(c1c2)⊗ [u, v] = ((a1 + ib1)(a2 + ib2))⊗ [u, v] =
((a1a2 − b1b2) + i(a1b2 + b1a2))⊗ [u, v] =

(a1a2 − b1b2)⊗ [u, v] + (i(a1b2 + b1a2))⊗ [u, v]
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Now

(a1a2)⊗ [u, v] = [a1 ⊗ u, a2 ⊗ v]
−(b1b2)⊗ [u, v] = −[b1 ⊗ u, b2 ⊗ v]

(a1b2)⊗ [u, v] = [a1 ⊗ u, b2 ⊗ v]
(b1a2)⊗ [u, v] = [b1 ⊗ u, a2 ⊗ v]

Thus we see that by just using lC-linearity in ĝc we have a natural definition
of a Lie bracket in ĝc.

It is straightforward that scalar multiplication is bilinear with respect to
this multiplication. For c in lC and c1 ⊗ u and c2 ⊗ v in (lC⊗lR ĝ), we have

c[c1 ⊗ u, c2 ⊗ v] = c(c1c2 ⊗ [u, v]) = (c(c1c2))⊗ [u, v] =
((cc1)c2)⊗ [u, v] = [(cc1)⊗ u, c2 ⊗ v] = [c(c1 ⊗ u), c2 ⊗ v]
c[c1 ⊗ u, c2 ⊗ v] = c(c1c2 ⊗ [u, v]) = (c(c1c2))⊗ [u, v] =

(c1(cc2))⊗ [u, v] = [c1 ⊗ u, (cc2)⊗ v] = [c1 ⊗ u, c(c2 ⊗ v)]

We also need to show that this multiplication distributes on the right and
on the left, that is, it is bilinear with respect to addition:

[c1 ⊗ u, c2 ⊗ v + c3 ⊗ w] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u), c3 ⊗ w]

and

[c1 ⊗ u+ c2 ⊗ v, c3 ⊗ w] = [c1 ⊗ u), c3 ⊗ w] + [c2 ⊗ v, c3 ⊗ w]

For left distribution we want to show

[c1 ⊗ u, c2 ⊗ v + c3 ⊗ w] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w]

We reduce first the righthand side. We work with a basis (v1, ..., vn) in ĝ.

[c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w] = c1c2 ⊗ [u, v] + c1c3 ⊗ [u,w] =
(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi),

∑n
j=1(sjvj)]+

(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi),

∑n
k=1(tkvk)] =

((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗
∑n
i=1

∑n
j=1 risj[vi, vj]+

((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗
∑n
i=1

∑n
k=1 ritk[vi, vk] =∑n

i=1

∑n
j=1((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

The lefthand side is more delicate. We work first with c2 ⊗ v + c3 ⊗ w.

c2 ⊗ v + c3 ⊗ w = (a2 + b2i)⊗
∑n
j=1(sjvj) + (a3 + b3i)⊗

∑n
k=1(tkvk) =∑n

j=1((a2 + b2i)⊗ (sjvj)) +
∑n
k=1((a3 + b3i)⊗ (tkvk))
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Now we have

[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] =
[c1 ⊗ u,

∑n
j=1((a2 + b2i)⊗ (sjvj)) +

∑n
k=1((a3 + b3i)⊗ (tkvk))]

Once again we see that we have nothing that makes legitimate moving brack-
ets across addition in ĝc = (lC⊗lR ĝ). Again let us assume that we can. This
gives

[c1 ⊗ u,
∑n
j=1((a2 + b2i)⊗ (sjvj)) +

∑n
k=1((a3 + b3i)⊗ (tkvk))] =

[c1 ⊗ u,
∑n
j=1((a2 + b2i)⊗ (sjvj))] + [c1 ⊗ u,

∑n
k=1((a3 + b3i)⊗ (tkvk))] =∑n

j=1[c1 ⊗ u, ((a2 + b2i)⊗ (sjvj))] +
∑n
k=1[c1 ⊗ u, ((a3 + b3i)⊗ (tkvk))] =

Now we can apply the definition of the Lie bracket in ĝc = (lC⊗lR ĝ).

∑n
j=1[c1 ⊗ u, ((a2 + b2i)⊗ (sjvj))] +

∑n
k=1[c1 ⊗ u, ((a3 + b3i)⊗ (tkvk))] =∑n

j=1 c1(a2 + b2i)⊗ [u, sjvj] +
∑n
k=1 c1(a3 + b3i)⊗ [u, tkvk]

We now expand c1 and u.

∑n
j=1 c1(a2 + b2i)⊗ [u, sjvj] +

∑n
k=1 c1(a3 + b3i)⊗ [u, tkvk] =∑n

j=1(a1 + b1i)(a2 + b2i)⊗ [
∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk]

Now since we know that brackets in ĝ are bilinear with respect to addition
and real scalars, we have

∑n
j=1(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk] =∑n

i=1

∑n
j=1(a1a2 − b1b2 + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1(a1a3 − b1b3 + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

Now we wanted to show that

[c1 ⊗ u, c2 ⊗ v + c3 ⊗ w] = [c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w]

We calculated

[c1 ⊗ u, c2 ⊗ v] + [c1 ⊗ u, c3 ⊗ w] =∑n
i=1

∑n
j=1((a1a2 − b1b2) + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1((a1a3 − b1b3) + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

Assuming that we can move brackets across addition in ĝc = (lC ⊗lR ĝ), we
obtained
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[c1 ⊗ u, (c2 ⊗ v + c3 ⊗ w)] =∑n
j=1(a1 + b1i)(a2 + b2i)⊗ [

∑n
i=1(rivi), sjvj]+∑n

k=1(a1 + b1i)(a3 + b3i)⊗ [
∑n
i=1(rivi), tkvk] =∑n

i=1

∑n
j=1(a1a2 − b1b2 + (a1b2 + b1a2)i)⊗ risj[vi, vj]+∑n

i=1

∑n
k=1(a1a3 − b1b3 + (a1b3 + b1a3)i)⊗ ritk[vi, vk]

We see that these two expressions are identical. Thus it is reasonable to
define that brackets are linear with respect to addition in ĝc = (lC ⊗lR ĝ).
And obviously the same conclusion is true for right distribution.

We also need to show the anticommutativity of the bracket product in
ĝc. This is easy since we have this property in ĝ.

[c1 ⊗ u, c2 ⊗ v] = c1c2 ⊗ [u, v] = −c2c1 ⊗ [v, u] = −[c2 ⊗ v, c1 ⊗ u]

Finally we need to show that the Jacobi identity holds in ĝc.

[c1 ⊗ u, [c2 ⊗ v, c3 ⊗ w]]+
[c3 ⊗ w, [c1 ⊗ u, c2 ⊗ v]]+

[c2 ⊗ v, [c3 ⊗ w, c1 ⊗ u]] =
[c1 ⊗ u, (c2c3)⊗ [v, w]] + [c3 ⊗ w, (c1c2)⊗ [u, v]] + [c2 ⊗ v, (c3c1)⊗ [w, u]] =

(c1c2c3)⊗ [u, [v, w]] + (c3c1c2)⊗ [w, [u, v]] + (c2c3c1)⊗ [v, [w, u]] =
(c1c2c3)⊗ ([u, [v, w]] + [w, [u, v]] + [v, [w, u]]) = 0

since the Jacobi identity is valid in ĝ.

In light of all the structures created and combinations computed , we can
make the following observation. Moving from lC to lR, we needed a basis
for the lC-linear Lie algebra ĝ in order to expose the structure of a lR-linear
Lie algebra ĝr. On the contrary moving from lR to lC by the process of
complexification, no such choice was necessary to expose the structure of the
lC-linear Lie algebra ĝc from the structure of the lR-linear Lie algebra ĝ.

Thus when we build the complexification of the lC-linear Lie algebra ĝc

from the structure of the lR-linear Lie algebra ĝ, we have a canonical way of
obtaining it. If the complex dimension of ĝc is n, then we have immediately
the 2n-real dimensional Lie algebra (ĝc)r = ĝ × ĝ, since we have already
identified ĝ in ĝc, i.e., we do not need to choose a basis in ĝc to identify ĝ in
ĝc. Also for any decomposition of ĝc = ĝ⊕ iĝ we have for u = ure1 + i(0) and
v = vre1 + i(0) in ĝ ⊕ iĝ[[

[ure1]
[0]

]
,

[
[vre1]
[0]

]]
=

[
[ure1, vre1]− [0, 0]
[ure1, 0] + [0, vre1]

]
=

[
[ure1, vre1]

0 + 0

]

123



and since ĝ is a real Lie algebra, we have [u, v] = [ure1 + i(0), vre1 + i(0)] =
[ure1, vre1] + i(0) in ĝ⊕ iĝ since [ure1, vre1] is a real number because ĝ is a real
Lie algebra.

2.12.6 Real Forms.

Now the ĝc1 = ĝ1⊕iĝ1 may not be unique, i.e., there may be another real ĝ2
whose complexification ĝc2 = ĝc1. Thus, given a complex Lie algebra ĝ, there
may be more than one real Lie algebra whose complexification is ĝ. These
real Lie algebras are called the real forms of ĝ. For instance, we can take
ŝl(n, lC) and form matrices using only real numbers giving ŝl(n, lR) ⊂ ŝl(n, lC),
thus making ŝl(n, lR) a real subalgebra of ŝl(n, lC). And we know that the
complexification of ŝl(n, lR) is ŝl(n, lC), i.e.,

ŝl(n, lC) = lC⊗ ŝl(n, lR) = ŝl(n, lR)⊕ i(ŝl(n, lR))

Thus ŝl(n, lR) is a real form of ŝl(n, lC), called the split form of ŝl(n, lC). For
instance for n = 2, ŝl(2, lC) are the 2x2 complex matrices with trace 0; and
ŝl(2, lR) are the 2x2 real matrices with trace 0, giving

ŝl(2, lC) = ŝl(2, lR)⊕ i(ŝl(2, lR))[
u t
s −u

]
=

[
a1 c1
b1 −a1

]
+ i

[
a2 c2
b2 −a2

]

However, we also have

ŝun = {A ∈ ŝln(lC)|At = −A}

which, even though the matrices are not real, we will show that it is also a
real form of ŝl(n, lC).

Again for dimension n= 2 we have

A =

[
u t
s −u

]
=

[
a1 + ia2 c1 + ic2
b1 + ib2 −a1 − ia2

]

At =

[
a1 + ia2 b1 + ib2
c1 + ic2 −a1 − ia2

]
At =

[
a1 − ia2 b1 − ib2
c1 − ic2 −a1 + ia2

]

Now

−A =

[
−a1 − ia2 −c1 − ic2
−b1 − ib2 a1 + ia2

]

Thus we see that At 6= −A, and thus A is not in ŝun. But we now let A in
ŝln(lR) have the form
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A =

[
a b
b −a

]

then iA is in ŝun:

iA =

[
ia ib
ib −ia

]

Now

(iA)t =

[
ia ib
ib −ia

]

and

(iA)t =

[
−ia −ib
−ib ia

]

Now

−iA =

[
−ia −ib
−ib ia

]

and thus we see that (iA)t = −iA, which says that iA is in ŝun. This gives

−iA+ i(−iA) = −iA+ A =[
−ia −ib
−ib ia

]
+

[
a b
b −a

]
=

[
−ia+ a −ib+ b
−ib+ b ia− a

]

and we can conclude that [
−ia+ a −ib+ b
−ib+ b ia− a

]

is in ŝln(lC).

Thus when we begin with a lC Lie algebra ĝ and ask what real structures
it determines, we are actually in the context of determining the real forms of
the complex Lie algebra ĝ. This pursuit is a major endeavor in the study of
Lie algebras and leads to some beautiful mathematics, but we will pursue it
no further in these pages.

2.12.7 Changing Fields Preserves Solvability. Recall that we took
this long detour through the topic of “Changing Scalar Fields” in order to
address the proofs of theorems such as
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A Lie algebra ĝ over lR or lC is solvable if and only if the Killing form
B(x, x) = 0 for all x in D1ĝ

The reason for doings so is the fact that we will need below the following
result to achieve our proof:

If a Lie algebra ŝ over lR is solvable, then its complexification ŝc =
lCr ⊗lR ŝ is solvable; and if a Lie algebra ŝ over lC is solvable and if
ŝ = ŝre ⊕ iŝre and ŝr = sre × sre, where ŝre is a real Lie algebra, then
the real Lie algebra ŝr and its subalgebra sre are solvable.

First we make the following remarks. Recall that D1ŝc is the linear space
generated by brackets in ŝc. Let c ⊗ v be one summand in D1ŝc, where c is
in lC and v is in ŝ. Thus there exists a c1 ⊗ v1 and a c2 ⊗ v2 in ŝc such that
[c1 ⊗ v1, c2 ⊗ v2] = c ⊗ v, where c1 and c2 are in lC and v1 and v2 are in ŝ.
But [c1 ⊗ v1, c2 ⊗ v2] = c1c2 ⊗ [v1, v2]. Thus c = c1c2 and v = [v1, v2], and we
can conclude that every summand in D1ŝc comes from an element in D1ŝ by
complexification. Likewise, by induction, we can assert that every summand
in Dkŝc comes from an element v in Dkŝ by complexification.

On the other hand (given ŝ, a complex Lie algebra such that the subalge-
bras sre and ŝr are real Lie algebras) and after having chosen a decomposition
ŝ = ŝre ⊕ iŝre, we know that D1ŝr ⊂ ŝre × ŝre is generated by brackets in
ŝre × ŝre. Thus each summand comes from an element in D1ŝr ⊂ ŝre × ŝre.
Let (u1, u2) be a summand in D1ŝr ⊂ ŝre× ŝre. Then there exist (x1, x2) and
(y1, y2) in ŝre × ŝre such that

[(x1, x2), (y1, y2)] =
([x1, y1]− [x2, y2], [x1, y2] + [x2, y1]) = (u1, u2)

To see this we let u be in ŝ, giving u = u1 + iu2 with u1 and u2 in ŝre. Now
let x = x1 + ix2 and y = y1 + iy2. They are in ŝ. Then we have

[x, y] = [x1 + ix2, y1 + iy2] =
([x1, y1]− [x2, y2]) + i([x1, y2] + [x2, y1]) = u1 + iu2 = u

Thus any summand (u1, u2) in D1ŝr comes from an element u in D1ŝ. Like-
wise, by induction, we can assert that any summand in Dkŝr comes from an
element in Dkŝ.

Now let us assume that the real Lie algebra ŝ is solvable. This means for
some k, Dk−1ŝ 6= 0 and Dkŝ = 0. We complexify ŝ and obtain ŝc. Now we
know that any summand c⊗v in Dkŝc comes from an element v in Dkŝ. But
Dkŝ = 0, and thus Dkŝc is also equal to 0 and this says that the complex Lie
algebra ŝc is solvable. We now assume that the complex Lie algebra ŝ such
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that the subalgebras sre and ŝr are real Lie algebras is solvable. This means
that for some k, Dk−1ŝ 6= 0 and Dkŝ = 0. We choose a decomposition of
ŝ = ŝre ⊕ iŝre. Now any summand of Dkŝr comes from an element in Dkŝ.
But Dkŝ = 0. Thus we conclude that Dkŝr = 0 and that the real Lie algebra
ŝr is solvable. Since ŝre is a subalgebra of ŝr, we can also conclude that the
real Lie algebra ŝre is solvable.

Since this proof just uses the properties of the Lie bracket, it is obvious
that if the real Lie algebra n̂ is a nilpotent Lie algebra, then n̂c is a nilpotent
complex Lie algebra; and if the complex Lie algebra n̂ such that the subalge-
bras nre and n̂r are real Lie algebras is a nilpotent Lie algebra, then n̂r and
n̂re are nilpotent real Lie algebras for any decomposition of n̂ = n̂re ⊕ in̂re.

2.12.8 Solvable Lie Algebra ŝ implies D1ŝ is a Nilpotent Lie Al-
gebra. We already know this statement is true for a Lie Algebra ŝ over lC
(see 2.11.2). Thus we start now with a solvable Lie algebra ŝ over lR. From
the above we know that ŝc is a solvable Lie algebra over lC. Thus D1ŝc is
a nilpotent Lie algebra. But again from the above we know that D1ŝ is a
nilpotent Lie algebra over lR. And thus we have our conclusion that for any
solvable Lie algebra over lF, where lF is either lR or lC, we know that D1ŝ is
a nilpotent Lie algebra.

2.13 The Killing Form (2)

We are now ready to give the proof of

A Lie algebra ĝ over lR or lC is solvable if and only if the Killing form
B(x, x) = 0 for all x in D1ĝ.

2.13.1 From Solvability to the Killing Form. The easy direction
of this proof is that if ĝ is solvable over lR or lC, then the Killing form
B(x, x) = 0 for all x in D1ĝ. Note that for either field lR or lC, the definition
of the Killing form is the same.

B(x, y) = trace(ad(x) ◦ ad(y))

Since ĝ is a solvable Lie algebra, we have shown that D1ĝ is nilpotent. Thus
we know that ad(x) is a nilpotent linear transformation in ĝl(ĝ) for every
x ∈ D1ĝ (see 2.7.1). Also, we know that the composition of a nilpotent linear
transformations is still nilpotent and that the trace of the nilpotent linear
transformations with respect to the basis found by Engel’s Theorem is zero,
since these matrices are upper triangular with a zero diagonal. Now since
the trace is independent of the basis used to calculate it, we can conclude
that B(x, y) = 0 for all x, y in D1ĝ. Thus the weaker conclusion is also true,
B(x, x) = 0 for all x in D1ĝ.
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At this point we would like to expose another technique using complex-
ification. We would like to show how we can arrive at the above conclusion
for a Lie algebra over lR, a field of characteristic zero which is not alge-
braically closed, but now on the assumption that the conclusion is true for
a Lie algebra over lC. Thus If ĝ is a Lie algebra over lR, and it is solvable,
we would like to conclude again that B(x, x) = 0 for all x in D1ĝ. But we
know that if ĝ is solvable as a real Lie Algebra, then its complexification ĝc

is also solvable (see 2.12.7). Thus, by assumption, we can apply the theorem
to ĝc. We choose and fix a summand x in D1ĝ. Complexifying ĝ, we obtain
ĝc = ĝ ⊕ iĝ, and we know that for any c 6= 0, cx = c ⊗ x is in D1ĝc. [To
distinguish the Killing form in ĝc and in ĝ, we use BlC and BlR respectively.]
Using the theorem we have

BlC(cx, cx) = BlC((a+ ib)x, (a+ ib)x) = ((a2 − b2) + i(ab+ ba))BlC(x, x) = 0

But we observe that if we restrict BlC in ĝc to ĝ ⊂ ĝc, we obtain BlR. We have
for x, y in ĝ, BlC(x, y) = trace(ad(x)ad(y)), and we see only ad(ĝ) appearing.
Thus we can conclude that in this case only BlC(x, y) = BlR(x.y). Since
c 6= 0,

BlC(cx, cx) = ((a2 − b2) + i(ab+ ba))BlR(x, x) = 0

giving BlR(x, x) = 0 for any x in D1ĝ.

2.13.2. From the Killing Form to Solvability over lC. We now want
to prove the converse, that if the Killing form B(x, x) = 0 for all x in D1ĝ
in a Lie algebra ĝ over lR or lC, then ĝ is solvable. We first treat the case for
the scalar field lC.

We first observe that we can assume that D1ĝ 6= 0. Since if D1ĝ = 0,
then B(x, x) = 0 is immediately satisfied and this means that ĝ is abelian,
and thus ĝ is solvable and the theorem is verified.

Next we want to remark that B(x, x) = 0 for all x in a Lie algebra ĝ is
equivalent to B(x, y) = 0 for all x and y in that Lie algebra ĝ. [In 2.11.1,
where we were treating a similar result for B̂, we saw that this property just
depended on the symmetry of the form B̂ and the fact that our field was not
of characteristic 2. Since the same conditions apply to B, the equivalence is
true here as well.]

Of course, we will use our Theorem B̂ (cf 2.11.1). In order to avoid
ambiguities for the Lie algebra in the Theorem we will use the symbol ĝ′,
which, we recall, is a subalgebra of the Lie algebra ĝl(V ) for some complex
linear space V .] Theorem B̂ then becomes:
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Let the form B̂ satisfy the condition that for all X in D1ĝ′ and all Y
in ĝ′, B̂(X, Y ) = 0. Then X is a nilpotent linear transformation.

Our hypothesis now is that B(x, x) = 0 for all x in D1ĝ, where ĝ is a Lie
algebra over lC. This means by the definition of B that tr(ad(x), ad(x)) = 0
with ad(x) in ad(D1ĝ) ⊂ ĝl(ĝ). However this is the same as B̂(ad(x), ad(x)) =
0 for B̂ defined on the subalgebra ad(D1ĝ) of the Lie algebra ĝl(ĝ) for the
complex Lie algebra ĝ as a complex linear space. We now take y in D2ĝ, and
note that ad(y) is in ad(D2ĝ). We have

ad(D2ĝ) = ad([D1ĝ, D1ĝ]) ⊂ [ad(D1ĝ), ad(D1ĝ)] = D1(ad(D1ĝ))

Now we have ad(y) in D1(ad(D1ĝ)) and ad(x) in ad(D1ĝ) and thus we can
conclude that B̂(ad(y), ad(x)) = 0, which is the same as B(y, x) = 0, for all
x in D1ĝ and all y in D2ĝ. And we have reached the conclusion that ad(y)
is a nilpotent linear transformation for all y in D2ĝ. Now 2.8.2 says that in
this case D2ĝ is a nilpotent Lie algebra. And we know that nilpotent Lie
algebras are also solvable (see 2.5.1). This says then that Dk(D2ĝ) = 0 for
some k. Thus Dk+2ĝ = Dk(D2ĝ) = 0, giving us our conclusion that ĝ is
solvable. And therefore we can assert that

A Lie algebra ĝ over lC is solvable if the Killing form B(x, x) = 0 for all
x in D1ĝ.

2.13.3 From the Killing Form to Solvability over lR. To complete
this part of the exposition we would like to prove that for a Lie algebra ĝ over
lR , if the Killing form B(x, x) = 0 for each x in D1ĝ, then the Lie algebra is
solvable. Now in order to prove this we should first complexify the real Lie
algebra ĝ, apply the theorem just proven to this case, and then move back
down to the real Lie algebra.

Thus, we assume that for a Lie algebra ĝ over lR the Killing form BlR(x, x)
= 0 for each x in D1ĝ. We complexify ĝ to ĝc and consequently we know
that any z in D1ĝc can be written as z = cx for some x in ĝ and some c in
lC. Now z is a linear combination of brackets zij = [zi, zj] for zi and zj in ĝc.
But zi = cixi for some ci in lC and some xi in ĝ; and likewise for zj. Thus
[zi, zj] = [cixi, cjxj] = cicj[xi, xj] = cijxij. We can conclude that xij is in
D1ĝ. Calculating the Killing form BlC in ĝc, we obtain

BlC(cijxij, cijxij) = BlC((aij + ibij)xij, ((aij + ibij)xij) =
((a2ij − b2ij) + i(aijbij + bijaij))B

lR(xij, xij)

But by hypothesis BlR((xij, xij)) = 0, which gives the desired conclusion that
BlC(cijxij, cijxij) = BlC(zij, zij) = 0. But z is a linear combination of the zij,
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and since BlC is bilinear, we can conclude that BlC(z, z) = 0 for z in D1ĝc.
Thus we know that ĝc is solvable. And we have already shown that this
means that ĝ is solvable. (See 2.12.7.)

2.14 Some Remarks on Semisimple Lie Algebras (3)

Recall that, after defining the Killing form of a Lie algebra, we affirmed that
with this new tool we could prove two remarkable theorems:

A Lie algebra ĝ over lR or lC is solvable if and only if the Killing form
B(x, x) = 0 for all x in D1ĝ.

A Lie algebra ĝ over lR or lC is semisimple if and only if its Killing form
B is nondegenerate.

2.14.1 Non-Trivial Solvable Ideal Implies the Degeneracy of the
Killing Form. We have just given some beautiful proofs for solvable Lie
algebras. Now we wish to give the proofs for the semisimple Lie algebras.
But rather than using the defining property of semisimple Lie algebras — a
semisimple Lie algebra has a trivial radical — we translate this property over
to its equivalent one using the Killing form (see 2.11.2), which property is a
rather powerful expression for semisimplicity. The bridge among these ideas
is the fact that every bilinear form B on a linear space V , e.g. the Killing
form, determines a linear map B between V and its dual V ∗. In our case we
have [where the scalar field for ĝ is indicated by lF] that

ĝ
B−→ ĝ∗

u 7−→ B(u) : ĝ −→ lF
v 7−→ B(u)(v) := B(u, v)

If there is a nonzero element u in the kernel k̂ of this map B, this element
has the property that for all v in ĝ, B(u, v) = 0. Thus any such u gives the
zero map in ĝ∗, and, of course, this means that there is a degeneracy in the B
map. For non-degeneracy it is demanded that the only zero map in ĝ∗ comes
by B from the zero element in ĝ. In other words non-degeneracy demands
that the kernel k̂ of the map B be zero. We also note that, in general, the
kernel k̂ is a Lie subalgebra. To show this we let u1 and u2 be in the kernel k̂.
We show that [u1, u2] is also in the kernel. For by associativity of the Killing
form, we have for any v in ĝ, B([u1, u2])(v) = B([u1, u2], v) = B(u1, [u2, v]) =
B(u1)([u2, v]) = 0 since u1 is in the kernel. Thus we can conclude that [u1, u2]
is also in the kernel, and thus we have that k̂ a subalgebra of ĝ. We remark
that since associativity of the Killing form is a consequence of the Jacobi
identity, we see that k̂ being a subalgebra reflects the structure of the Lie
algebra ĝ.
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Now the condition that we placed on a non-trivial solvable Lie algebra ŝ
— namely that for every u in D1ŝ we have B(u, u) = 0 — that condition
implies that a degeneracy exists in the map B. We remark that since ŝ is just
a part of ĝ, we need a way of extending this condition on ŝ to all of ĝ. This
can be done since in our situation ŝ is a solvable ideal in ĝ and the Killing
form is associative. Here is how. For any v in ĝ and any u1 and u2 in D1ŝ,
consider B(v, [u1, u2]). Associativity of B gives B(v, [u1, u2]) = B([v, u1], u2).
Since D1ŝ is an ideal in ĝ, this means [v, u1] is in D1ŝ. Our condition on B
says that B([v, u1], u2) = 0. [Recall that B(u, u) = 0 implies B(u, v) = 0 for
all u and v in ĝ.] Thus B(v, [u1, u2]) = 0, which says [u1, u2] is in the kernel
of the map B. We can conclude that if D1ŝ is not abelian, then B has a
degeneracy.

If, however, D1ŝ is abelian, we return to the definition of B to affirm
that we have a degeneracy also in this case. We take v in ĝ and u1 in
D1ŝ. Then B(v, u1) = trace(ad(v)ad(u1)). We choose a basis (ai) for D1ŝ,
and a complementary basis (bi) for a complementary subspace d̂ such that
ĝ = D1ŝ⊕ d̂. For any w in ĝ, we write w = a+b, where a is in D1ŝ and b is in
d̂. Now ad(u1) ·w = ad(u1) · (a+ b) = ad(u1) · a+ ad(u1) · b = [u1, a] + [u1, b].
Since u1 and a are in D1ŝ, which is abelian, then [u1, a] = 0. Also since u1 is
in the ideal D1ŝ, then [u1, b] is in D1ŝ. Thus the matrix for ad(u1) written
with respect to the above basis takes the form

ad(u1) =

[
0 A12

0 0

]

We see that ad(u1) · w = [u1, w] and therefore gives an element u2 in D1ŝ,
which fact, of course, is also a conclusion from the ideal structure of D1ŝ in
ĝ. Now for arbitrary matrix B representing ad(v), we have for an arbitrary
u in D1ŝ that ad(v) ·u = [v, u], which gives again an element in D1ŝ because
of the ideal structure of D1ŝ. Thus with respect to the above chosen basis,
we obtain:

ad(v) =

[
B11 B12

0 B22

]

Thus the matrix representing ad(v)ad(u1) is the following

ad(v)ad(u1) =

[
B11 B12

0 B22

] [
0 A12

0 0

]
=

[
0 B11A12

0 0

]

which obviously has trace zero. Thus if D1ŝ is abelian, we again have a
degeneracy for B. where the scalar field [But this last proof exposes the
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structure. We know that a non-trivial ŝ, as a solvable Lie algebra, has a
non-zero abelian ideal (which may be ŝ itself). Thus we can repeat the proof
given above, using this abelian ideal instead of D1ŝ, and prove immediately
that B has a degeneracy on ĝ – without analyzing the condition of B on D1ŝ.
This means that the condition on D1ŝ is really superfluous. What matters is
the abelian character of the radical. And we will see in the following pages
how the fact that ŝ itself is abelian, and more particularly when it is the
center, demands special attention in the important parts of the proofs of this
theory.]

2.14.2 Semisimple Implies Non-Degeneracy of the Killing Form.
We now are in a position to prove that

A Lie algebra ĝ over lR or lC is semisimple if and only if its Killing form
B is nondegenerate.

We first prove that a semisimple Lie algebra ĝ has a non-degenerate
Killing form. This means we are affirming that the kernel k̂ of the map
B contains only the zero element of ĝ. Let us suppose that this kernel is not
trivial. First , as was proved in general above, we observe that k̂ is an ideal
in ĝ. Recall the proof. This fact follows from the associativity of the Killing
form. We wish to show that [k̂, ĝ] is contained in k̂. Let u be in k̂ and v be
in ĝ. Now for any w in ĝ, we have B([u, v], w) = B(u, [v, w]). Since u is in
k̂, this says that B(u, [v, w]) = 0. Thus B([u, v], w) = 0 for all w in ĝ, which
says that [u, v] is in the kernel of the map B. We conclude that k̂ is an ideal
in ĝ. We now show that this ideal is a solvable ideal. We restrict the Killing
form now to k̂. Let u be in D1k̂. [Clearly, if D1k̂ = 0, k̂ is solvable.] Then
B(u, u) = B(u)(u). But u is in the kernel of B, giving B(u, u) = 0 for all
u in D1k̂. Thus we know that k̂ is solvable, and that it is also a solvable
ideal in ĝ. But we have assumed that ĝ is semisimple. Thus we can conclude
that k̂ = 0. But this is the same as asserting that map B is an isomorphism,
which fact is the definition of non-degeneracy for the Killing form B.

2.14.3 Non-Degeneracy of the Killing Form Implies Semisimple.
Now we prove that if a Lie algebra ĝ has a non-degenerate Killing form, then
it is semisimple. Again suppose that ĝ is not semisimple. Then it has a non-
trivial solvable ideal ŝ. Above we showed that this information implied that
B was degenerate on ĝ. But we have assumed that B is non-degenerate, and
thus we can conclude that the ideal ŝ = 0, which means that ĝ is semisimple.

2.14.4 A Semisimple Lie Algebra is a Direct Sum of Simple Lie
Algebras. We now have arrived at the point to which we have been heading.
Assuming the Levi decomposition theorem, we know that any Lie algebra ĝ
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can be written as a direct sum of linear spaces ĝ = k̂⊕r̂, where k̂ is semisimple
ideal and r̂ is the radical of ĝ. Now we want to affirm that any semisimple
Lie algebra k̂ can be written as a direct sum of simple Lie algebras which
are ideals in ĝ. From this we can affirm the structure theorem for any Lie
algebra ĝ over lR or lC, namely that

ĝ = â1 ⊕ â2 ⊕ · · ·âl ⊕ r̂

where each âi is a simple Lie algebra and r̂ is the radical of ĝ and where this
decomposition is unique up to the order.

To prove this theorem we take advantage of the beautiful criterion for
semisimplicity — non-degeneracy of the Killing form. Thus, suppose that l̂
is any semisimple Lie algebra which is not simple. Thus it has a proper ideal
â which is also semisimple. Now we define â⊥ to be all the elements of l̂ which
are perpendicular to â with respect to the Killing form B on l̂, i.e., v in l̂ is
in â⊥ if B(v, u) = 0 for all u in â. It is obvious that â⊥ is a linear subspace of
l̂. It is also a ideal in l̂ and here is the proof. Let v be in â⊥, w any element
in l̂, and u in â. Then B([v, w], u) = B(v, [w, u]). Since â is an ideal in l̂,
[w, u] is in â. Thus B(v, [w, u]) = 0, giving [v, w] in â⊥. We conclude that
â⊥ is an ideal in l̂. We also know that the intersection of any two ideals is
an ideal. We conclude that â ∩ â⊥ is also an ideal in l̂. But we remark that
this ideal is an abelian ideal in l̂. To show this we take two elements w1 and
w2 in â ∩ â⊥ and we calculate [w1, w2]. Now for any element w in l̂, we have
B([w1, w2], w) = B(w1, [w2, w]). Since w2 is in â, which is an ideal in l̂, we
know that [w2, w] is in â. But w1 is in â⊥. Thus B(w1, [w2, w]) = 0, giving
B([w1, w2], w) = 0. Since w is arbitrary in l̂, and since B is nondegenerate,
this means that [w1, w2] lies in the zero kernel of the map B, giving us our
desired conclusion that [w1, w2] = 0 and that â ∩ â⊥ is abelian. Thus l̂ has
an abelian ideal, which of course, is solvable. But l̂ is semisimple, making
â ∩ â⊥ = 0.

To continue, we need to use one of the dimension theorems of linear
algebra:

dim(â) + dim(â⊥) = dim(l̂) + dim(â ∩ â⊥)

Now since â ∩ â⊥ = 0, we have that:

â⊕ â⊥ = l̂

We remark that this also shows [â, â⊥] = 0 since both â and â⊥ are ideals,
then [â, â⊥] is contained in â and also in â⊥, which says that [â, â⊥] = 0.
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Finally, we show that â⊥ is semisimple. We do this by using the nonde-
generacy of the Killing form B. We begin by choosing (u⊥)1 in â⊥ such that
B((u⊥)1, u

⊥) = 0 for an arbitrary u⊥ in â⊥. We choose an arbitrary element
v = u+ u⊥ in l̂, where u is in â. Now

B((u⊥)1, v) = B((u⊥)1, u+ u⊥) = B((u⊥)1, u) +B((u⊥)1, u
⊥).

Since (u⊥)1 is in â⊥ and u is in â, we have B((u⊥)1, u) = 0. By hypo-
thesis B((u⊥)1, u

⊥) = 0. Thus we conclude that B((u⊥)1, v) = 0. Since l̂ is
semisimple, this means B on l̂ is nondegenerate, making (u⊥)1 = 0. We now
conclude that B on â⊥ is nondegenerate, which makes â⊥ semisimple.

We can continue in this manner. If â has a proper ideal, we can write
it also as a direct sum of semisimple ideals â = â1 ⊕ â2. Since these are
proper ideals, their dimensions are decreasing, and we must finally arrive at
a âk which has no proper ideals. But an ak that is semisimple ideal with
no proper ideals is simple. Thus we can conclude that any semisimple Lie
algebra l̂ can be written as

l̂ = â1 ⊕ â2 ⊕ · · · ⊕ âl

where each âi is a simple Lie algebra. [Indeed it can be proven that this
decomposition is unique up to the order, and that each summand is uniquely
determined, and not only up to isomorphism. But we shall not do so here.]

2.15 The Casimir Operator and the Complete Reducibility of a
Representation of a Semisimple Lie Algebra

Before we can give a proof of the Levi Decomposition Theorem, we need
the fact of the complete reducibility of a representation of a semisimple Lie
algebra. This is one of the deepest results in the theory and its proof is not
trivial. The complete reducibility of a representation of a semisimple Lie
algebra refers to the following theorem:

Let V be a representation of a semisimple Lie algebra ĝ, and let W
be an invariant subspace of ĝ. Then there exists a subspace W ′ of V
invariant by ĝ which is complementary.

[Put in other words: complete reducibility of a representation of ĝ in a rep-
resentation space V refers to the fact that given an invariant subspace W
of ĝ in the representation space V , there exists an invariant subspace W ′

complementary to W , such that, V = W ⊕W ′.]

In a matrix representation of ĝ acting on V , the invariance of the subspace
W means that all the matrices would take the block form
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[
∗ ∗
0 ∗

]
What we are affirming is that we can find a basis of V such that all the
matrices of the representation take the block form[

∗ 0
0 ∗

]
The Casimir operator allows us to begin the process of finding such in-

variant subspaces. But in order to define the Casimir operator we need first
to return to the form B̂.

2.15.1 The Killing Form Defined on ĝl(V). Recall that in 2.11.1
we stated that the form B̂ is a bilinear form defined over the Lie algebra ĝ
[considered as a linear space], which is a Lie subalgebra of ĝl(V ), where V
is a linear space over the field lC or lR. Choosing a basis for V , we defined
form B̂ as

B̂ : ĝ × ĝ −→ lF
(X, Y ) 7−→ B̂(X, Y ) := trace(X ◦ Y )

and we proved the difficult and beautiful Theorem B̂ which says that when
V is a lC-linear space:

Let the form B̂ satisfy the condition that for all X in D1ĝ and all Y in
ĝ, B̂(X, Y ) = 0. Then X is a nilpotent linear transformation.

Using the form B̂, we then defined the traditional Killing form B. It
was defined as a bilinear form over a Lie algebra ĝ [considered as a linear
space] over the field lC or lR, by using the adjoint map ad from ĝ into the Lie
subalgebra ad(ĝ) of ĝl(ĝ). Thus after choosing a basis for ĝ, we defined

B : ĝ × ĝ −→ lF
(x, y) 7−→ B(x, y) := trace(ad(x) ◦ ad(y))

Now we wish to rename form B̂ and call it the Killing form BV of a Lie
algebra ĝ contained in ĝl(V ) over a field lF of characteristic 0. To do this we
choose a basis for V , and define the form as:

BV : ĝ × ĝ −→ lF

(X, Y ) 7−→ BV (X, Y ) := B̂(X, Y ) = trace(X ◦ Y )

We know that BV is a symmetric bilinear form that also has the associa-
tive property, that is, for X, Y, Z in ĝ

BV ([X, Y ], Z) = BV (X, [Y, Z])

For a Killing form defined in this way on ĝ contained in ĝl(V ), we also
have these corresponding theorems:
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First we examine the following theorem:

A Lie subalgebra ĝ of ĝl(V ) is solvable if and only if the Killing form
BV (X,X) = 0 for all X in D1ĝ.

We examine first the case when V is a complex linear space. Assuming
that the Lie subalgebra ĝ of ĝl(V ) is solvable, we show that BV (X,X) = 0 for
all X in D1ĝ. Now since ĝ is a solvable Lie algebra in ĝl(V ), Lie’s theorem
says that we can find a basis in V such that all elements X in ĝ can be
represented simultaneously by upper triangular matrices. But we know that
brackets of such matrices yield nilpotent linear transformations, which in this
representation means that the matrices are upper triangular matrices with a
zero diagonal. Obviously such matrices have a zero trace, and linear products
of these matrices will also have a zero trace. Since the trace is independent
of the basis used to calculate it, we can conclude that, since BV is bilinear,
BV (X, Y ) = 0 for all summands X and Y in D1ĝ. [Recall that D1ĝ is the
span of the set of all brackets of ĝ.] Thus the weaker conclusion also holds:
BV (X,X) = 0, and we can conclude that for V a complex linear space and
ĝ a solvable Lie algebra BV (X,X) = 0 for all X in D1ĝ.

Suppose now that our field of scalars is lR. If ĝ is a solvable Lie subalgebra
of ĝl(V ), we would like to conclude again that BV (X,X) = 0 for all X in
D1ĝ. But, of course, we cannot imitate the above proof, which needed an
algebraically closed field of characteristic zero.

However, starting with a Lie algebra ĝ over lR which is solvable, we know
that its complexificaton ĝc is solvable. Now ĝ is a real Lie subalgebra of the
real Lie algebra ĝl(V ) which acts on V . On complexification we obtain the
complex linear space V c, and ĝc, a complex Lie subalgebra of the complex
Lie algebra ĝl(V c) = (ĝl(V ))c, the complexification of ĝl(V ). The set of
transformations ĝl(V c) acts on V c. Thus, starting with ĝ solvable, we know
that ĝc is also solvable, and we can apply the theorem to ĝc. Taking X in ĝ,
we know that cX is in ĝc for any c in lC. We also know that for X in D1ĝ,
cX is in D1ĝc. Using the theorem, we have BV c(cX, cX) = 0 for all cX in
D1ĝc. Now we move back to ĝ. We take X in D1ĝ. Then for c = a+ ib in lC,
we have cX in D1ĝc. Expanding

BV c(cX, cX) = BV c((a+ ib)X, (a+ ib)X) =
((a2 − b2) + i(ab+ ba))BV c(X,X) = 0

However starting with a Lie algebra ĝ over lR, we know that its complex-
ificaton ĝc = ĝ ⊕ iĝ, which is contained in the complexification (ĝl(V ))c =
ĝl(V c). Thus for X in ĝl(V ) we also see that X is in ĝl(V c), and therefore
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it makes sense to write BV c(X,X). However, we know that BV is BV c re-
stricted to ĝ, and we obtain by this restriction the Killing form for BV that
BV c(X, Y ) = trace(X ◦ Y ) = BV (X, Y ) for X and Y in ĝ. Thus, using the
above relation BV c(cX, cX) = 0 we can conclude that BV (X,X) = 0 and
this gives us our theorem.

We now want to prove the converse, namely that for a Lie subalgebra ĝ
of ĝl(V ) over lR or lC, if the Killing form BV (X,X) = 0 for all X in D1ĝ,
then ĝ is solvable.

Again we observe that we can assume that D1ĝ 6= 0 for if D1ĝ = 0 then
BV (X,X) = 0 is immediately satisfied and this means that ĝ is abelian and
therefore is solvable and the theorem is verified.

We first assume the field of scalars is lC. Then under this assumption we
will show that for each Y in D2ĝ, Y is a nilpotent linear transformation in
ĝl(V ), and thus 2.8.2 says that D2ĝ is a nilpotent Lie algebra. But we know
that a nilpotent Lie algebra is a solvable Lie algebra (see 2.5.1). This says
then that Dk(D2ĝ) = 0 for some k. Thus Dk+2ĝ = Dk(D2ĝ) = 0, giving us
our conclusion that ĝ is solvable.

Thus we are reduced to proving that for each Y in D2ĝ, Y is a linear
nilpotent transformation in ĝl(V ) because the Killing form BV (X,X) = 0
for all X in D1ĝ.

But we know that BV is just another name for form B̂ and for form B̂
we have already proven that for a Lie algebra ĝ (a Lie subalgebra of ĝl(V ) )
and for V (a linear space over the field lC,) Theorem B̂ holds. Thus we have

Let the form B̂ satisfy the condition that for all Y in D1ĝ and all X in
ĝ, B̂(Y,X) = 0. Then Y is a nilpotent linear transformation.

This translates into

If the form BV (Y,X) = 0, then Y is a nilpotent linear transformation,

where ĝ is a subalgebra of ĝl(V ) and V is a complex linear space. Now our
subalgebra is

D1ĝ ⊂ ĝ ⊂ ĝl(V )

Also we have

D2ĝ = D1(D1ĝ) ⊂ D1ĝ ⊂ ĝl(V )

Thus we can apply our theorem to prove
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Let the form BV satisfy the condition that for all Y in D2ĝ and all X
in D1(ĝ), BV (Y,X) = 0. Then Y is a nilpotent linear transformation
in ĝl(V ).

However our hypothesis is for all X in D1ĝ, BV (X,X) = 0. Certainly D2ĝ is
a subset of D1ĝ, and thus for all Y in D2ĝ and all X in D1ĝ, BV (Y,X) = 0.
We can therefore conclude that Y is a nilpotent linear transformation in
ĝl(V ), which is what we were seeking.

To complete this part of the exposition we still need to prove that for a
Lie subalgebra ĝ over lR of ĝl(V ), if the Killing form BV (X,X) = 0 for each
X in D1ĝ, then the Lie subalgebra is solvable. Of course, to prove this we
first complexify the real Lie subalgebra ĝ, apply the theorem just proven to
this case, and then move back down to the real Lie subalgebra.

Thus we assume that for a Lie subalgebra ĝ over lR the Killing form
BV (X,X) = 0 for each X in D1ĝ which is contained in ĝl(V ), where V is a
n-dimensional real linear space. On complexification we obtain the complex
linear space V c, and ĝc, a complex Lie subalgebra of the complex Lie algebra
ĝl(V c) = (ĝl(V ))c (which last mentioned is the complexification of ĝl(V )).
Now the set of transformations ĝl(V c) acts on V c. Thus any Z in D1ĝc

can be written as Z = cX for some X in ĝ and some c in lC. Now Z is
a linear combination of brackets Zij = [Zi, Zj] for Zi and Zj in ĝc. But
Zi = ciXi for some ci in lC and some Xi in ĝ; and likewise for Zj. Thus
[Zi, Zj] = [ciXi, cjXj] = cicj[Xi, Xj] = cijXij. We can conclude that Xij is
in D1ĝ. Calculating the Killing form BV c in ĝc, we obtain

BV c(cijXij, cijXij) = BV c((aij + ibij)Xij, ((aij + ibij)Xij) =
((a2ij − b2ij) + i(aijbij + bijaij))BV c(Xij, Xij)

[Once again we are using the fact that X in ĝl(V ) is also in ĝl(V c). Thus
it makes sense to write BV c(X,X), and that BV can be defined as the re-
striction of BV c to V .] But by hypothesis BV (Xij, Xij) = 0 and this gives
the desired conclusion that BV c(cijXij, cijXij) = BV c(Zij, Zij) = 0. But Z is
a linear combination of the Zij, and since BV c is bilinear, we can conclude
that BV c(Z,Z) = 0 for Z in D1ĝc. Thus we know that ĝc is solvable. And
we have already shown that this means that ĝ is solvable.

We now want to prove the “other” theorems for the Killing form BV .
But here is where a surprise occurs. In one direction the conclusion remains
unchanged, i.e.:

If a Lie subalgebra ĝ over lR or lC contained in ĝl(V ) is semisimple,
then the Killing form BV is nondegenerate.
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But in the other direction an important modification must be made:

If a Lie subalgebra ĝ over lR or lC contained in ĝl(V ) has a non-
degenerate Killing form, then this algebra is either semisimple or it
has a non-zero radical r̂ which is abelian.

We want to comment on this phenomenon. When we treated the Killing
form in the context of an abstract Lie algebra, we had the adjoint represen-
tation to move us over to the Lie algebra of matrices ĝl(ĝ). Thus the Lie
subalgebra of ĝl(ĝ) was not arbitrary but came form a well-defined object.
But now we begin with a arbitrary Lie subalgebra ĝ of ĝl(V ), where there
is no connection between ĝ and the vector space V . And thus we impose
another condition that connects ĝ with V , namely that ĝ has non-degenerate
Killing form. In this sense we are more in the spirit of representation theory
of Lie algebras.

Just as before we begin with the dual map. Every bilinear form on a
linear space V determines a linear map between V and its dual V ∗. In our
case we have

ĝl(V )
BV−→ (ĝl(V ))∗

X 7−→ BV (X) : ĝl(V ) −→ lF
Y 7−→ BV (X)(Y ) := BV (X, Y )

However, we are only interested in a Lie subalgebra ĝ of ĝl(V ). Thus we
restrict this dual map to the domain ĝ:

ĝ
BV−→ (ĝ)∗

X 7−→ BV (X) : ĝ −→ lF
Y 7−→ BV (X)(Y ) := BV (X, Y )

If there is a nonzero element W in the kernel k̂ of this restricted map BV ,
this element has the property that for all Y in ĝ, BV (W,Y ) = 0. Thus any
such W gives the zero map in (ĝ)∗, and, of course, this means that there is
a degeneracy in this restricted BV map. For non-degeneracy it is demanded
that the only zero map in (ĝ)∗ comes from the zero element in ĝ by BV . In
other words non-degeneracy demands that the kernel k̂ of this restricted map
BV be zero.

We first prove that a semisimple Lie subalgebra ĝ of ĝl(V ) has a non-
degenerate Killing form. This means we are affirming that the kernel k̂ of the
map BV contains only the zero element of ĝ. First we observe that k̂ is an ideal
in ĝ. Recall that this follows from the associativity of the Killing form. It was
used to show that [k̂, ĝ] is contained in k̂ as follows. Let W be in k̂ and Y be
in ĝ. Now for any Z in ĝ, we have BV ([W,Y ], Z) = BV (W, [Y, Z]). Since W is
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in k̂, this says that BV (W, [Y, Z]) = 0. Thus BV ([W,Y ], Z) = 0 for all Z in ĝ,
which says that [W,Y ] is in the kernel of the map BV . We conclude that k̂ is
an ideal in ĝ. We now show that this ideal is a solvable ideal. We restrict the
Killing form now to k̂. Let W be in D1k̂. Then BV (W,W ) = ((BV )(W ))(W ).
But W is in the kernel of BV , giving BV (W,W ) = 0 for all W in D1k̂. Thus
we know that k̂ is solvable, and a solvable ideal in ĝ. But we have assumed
that ĝ is semisimple. Thus we can conclude that k̂ = 0. But this is the
same as asserting that map BV is an isomorphism, which is the definition of
non-degeneracy for the Killing form BV .

Now in order to prove the theorem in the other direction, namely to prove
that

If a Lie subalgebra ĝ over lR or lC contained in ĝl(V ) has a non-
degenerate Killing form, then this algebra is either semisimple or it
has a non-zero radical r̂ which is abelian

we show that if ĝ is not semisimple and has a nontrivial radical which is
not abelian, then the Killing form is degenerate. This means that we are
assuming that ĝ has a non-trivial solvable ideal ŝ which is not abelian. Thus
we can affirm that for every X in D1ŝ the Killing form BV (X,X) = 0.
We show that this implies the existence of a degeneracy in the map BV
restricted to ĝ except in the case when ŝ is abelian. We remark that since
ŝ is just a part of ĝ, we need a way of extending this information on ŝ to
all of ĝ. This can be done in our situation since ŝ is a solvable ideal in
ĝ and since the Killing form is associative. Thus for any Y in ĝ and any
W1 and W2 in D1ŝ, we consider BV (Y, [W1,W2]). Associativity of BV gives
BV (Y, [W1,W2]) = BV ([Y,W1],W2). Since D1ŝ is an ideal in ĝ, we have
that [Y,W1] is in D1ŝ. Our condition on BV says that BV ([Y,W1],W2) = 0.
[Recall that BV (X,X) = 0 implies BV (X, Y ) = 0 for all X and Y in ĝ.] Thus
BV ([Y, [W1,W2]) = 0, which says [W1,W2] is in the kernel of the restricted
map BV . We can therefore conclude that if D1ŝ is not abelian, then the
restricted map BV has a degeneracy.

If, however, D1ŝ is abelian, we can modify the above proof a little and
reach the same conclusion. We choose any Y in ĝ, any W1 in ŝ, and any W2

in D1ŝ. Now BV (Y, [W1,W2]) = BV ([Y,W1],W2). We have [Y,W1] in ŝ by the
ideal structure of ŝ in ĝ, and we have W2 in D1ŝ. Obviously we cannot say
that BV ([Y,W1],W2) = 0 since [Y,W1] = Z is not known to be in D1ŝ, but
only in ŝ. But we know that BV ([Y,W1],W2) = BV (Z,W2) = trace(Z ◦W2).
Since Z and W2 are both in ŝ, and ŝ is a solvable Lie subalgebra of ĝl(V ),
Lie’s Theorem tells us we can find a basis in V such that all the matrices
in ŝ ⊂ ĝl(V ) written with respect to that basis are in upper triangular form
with the eigenvalues on the diagonal. [Of course, this means we are now
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working in the field of scalars lC]. Now Z is in ŝ and thus may have a
non-zero diagonal, and W2 is in D1ŝ, which we know is a linear nilpotent
transformation in ĝl(V ). Thus its eigenvalues are all zero. Now since the
matrix product (Z ◦W2) has a zero diagonal, the trace of the product equal
to zero. Thus we can conclude that BV (Y, [W1,W2]) = 0 for all Y in ĝ, and
that [W1,W2] is in the kernel of BV , making BV degenerate. This proves the
claim when the scalar field is lC. Obviously we will need to use a further
argument to obtain conclusions when the scalar field is lR.

At this point we make the following observation. We could not use the
fact that BV (X,X) = 0 for all X in D1ŝ in the above proof. But instead all
we needed was that D1ŝ was a non-trivial abelian ideal. Thus our situation
is as follows. We have a Lie subalgebra ĝ in ĝl(V ) and we have that ĝ
contains a non-trivial solvable ideal ŝ. This means, of course, that ĝ has a
nontrivial radical. But we also know that this means that ĝ contains a non-
trivial abelian ideal â, and we assume it is not equal to ŝ, i.e., â is properly
contained in ŝ. Thus we can repeat the above proof, using this abelian ideal
ŝ instead of D1ŝ, and show immediately that the restricted map BV has a
degeneracy on ĝ without analyzing the condition of BV on D1ŝ.

We now complete the proof by treating the real case. Thus, we are now
in the situation where we have a real linear space V and a subalgebra ĝ of
ĝl(V ). We also have a non-trivial solvable ideal ŝ of ĝ and for every X in
D1ŝ, BV (X,X) = 0. And finally D1ŝ is also abelian. We want to show that
all this implies that a degeneracy exists in the restricted map BV . Our first
step is to complexify. This gives us a non-trivial solvable ideal ŝc of ĝc. We
choose a Z in D1ŝc. Now we know that Z is a linear combination of brackets
Zij = [Zi, Zj] for Zi and Zj in ŝc. But Zi = ciXi for some ci in lC and some Xi

in ŝ; and likewise for Zj. Thus [Zi, Zj] = [ciXi, cjXj] = cicj[Xi, Xj] = cijXij.
We can conclude that Xij is in D1ŝ. Calculating the Killing form BV c in ŝc,
we obtain

BV c(cijXij, cijXij) = BV c((aij + ibij)Xij, ((aij + ibij)Xij) =
((a2ij − b2ij) + i(aijbij + bijaij))BV c(Xij, Xij)

[Once again we are using the fact that X in ĝl(V ) is also in ĝl(V c). Thus
it makes sense to write BV c(X,X), and it also makes sense that BV can be
defined as the restriction of BV c to V .] But by hypothesis BV (Xij, Xij) = 0,
which gives the desired conclusion that BV c(cijXij, cijXij) = BV c(Zij, Zij) =
0. But Z is a linear combination of the Zij, and since BV c is bilinear, we
can conclude that BV c(Z,Z) = 0 for Z in D1ŝc. Thus we know that ŝc is
solvable. And we have already shown that this means that ĝ is solvable.

However the situation changes when ŝ itself is a non-trivial abelian ideal.
Then the above proof will not produce a non-zero element in ŝ which is in
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the kernel of the restricted map BV . But this condition holding for ŝ means,
of course, that we can choose ŝ to be the maximal solvable ideal in ĝ, that
is, ŝ becomes the radical of ĝ. Thus when ĝ has an abelian radical, we
cannot conclude that BV is degenerate. In fact in this situation BV can be
nondegenerate, as the following example shows.

We take the 2x2 matrices over lF, where lF can be either lR or lC. We
choose our subalgebra ĝ of Lie algebra ĝl(lF2) to be the entire Lie algebra
ĝl(lF2) itself. Our ĝ is then the 4-dimensional Lie algebra ĝl(lF2). Now ĝ is
not semisimple since it has a one-dimensional abelian radical, which consists
of all the scalar matrices [diagonal matrices with the same scalar on the
diagonal]. The set of 3-dimensional matrices with trace zero is the simple
Lie algebra ŝl(2, lF). We calculate the Killing Form BlF2 of ĝ and the dual
map BlF2 of ĝ to (ĝ)∗.

First we choose the 4-dimensional canonical basis for the matrices in
ĝl(lF2) = ĝ: (E11, E21, E12, E22), where Eij is the 2x2 matrix with 1 in the
i, j position and 0 everywhere else. Since this basis has no natural order, we
choose the above order for the four basis vectors of ĝ: (E11, E21, E12, E22).
With respect to this basis we write the corresponding 4x4 matrix representing
BlF2

For the first column:

(BlF2)11 = trace(E11 ◦ E11) = traceE11 = 1 + 0 = 1
(BlF2)21 = trace(E21 ◦ E11) = traceE21 = 0 + 0 = 0

(BlF2)31 = trace(E12 ◦ E11) = trace 0 = 0
(BlF2)41 = trace(E22 ◦ E11) = trace 0 = 0

For the second column:

(BlF2)12 = trace(E11 ◦ E21) = trace 0 = 0
(BlF2)22 = trace(E21 ◦ E21) = trace 0 = 0

(BlF2)32 = trace(E12 ◦ E21) = traceE11 = 1 + 0 = 1
(BlF2)42 = trace(E22 ◦ E21) = traceE21 = 0 + 0 = 0

For the third column:

(BlF2)13 = trace(E11 ◦ E12) = traceE12 = 0 + 0 = 0
(BlF2)23 = trace(E21 ◦ E12) = traceE22 = 0 + 1 = 1

(BlF2)33 = trace(E12 ◦ E12) = trace 0 = 0
(BlF2)43 = trace(E22 ◦ E12) = trace 0 = 0

For the fourth column:
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(BlF2)14 = trace(E11 ◦ E22) = trace 0 = 0
(BlF2)24 = trace(E21 ◦ E22) = trace 0 = 0

(BlF2)34 = trace(E12 ◦ E22) = traceE12 = 0 + 0 = 0
(BlF2)44 = trace(E22 ◦ E22) = traceE22 = 0 + 1 = 1

Thus, with respect to the basis chosen for ĝ, namely (E11, E21, E12, E22), the
matrix for BlF2 becomes

BlF2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


From this matrix we see immediately that the bilinear form BlF2 is non-
degenerate since the determinant of the matrix is nonzero.

Recalling the definition of BlF2 , we have

Eij 7−→ BlF2(Eij)

and

BlF2(Eij)(Ekl) = BlF2(Eij, Ekl) = trace(EijEkl)

Using the basis chosen for ĝ, we calculate the image of these four elements
of ĝ by BlF2 . We wish to express these duals in ĝ∗ as 4x1 row matrices, again
using the above basis:

BlF2(E11)(E11) = BlF2(E11, E11) = trace(E11E11) = 1
BlF2(E11)(E21) = BlF2(E11, E21) = trace(E11E21) = 0
BlF2(E11)(E12) = BlF2(E11, E12) = trace(E11E12) = 0
BlF2(E11)(E22) = BlF2(E11, E22) = trace(E11E22) = 0

which gives the matrix representation of BlF2(E11) with respect to this basis
as [1, 0, 0, 0]. Continuing, we have

BlF2(E21)(E11) = BlF2(E21, E11) = trace(E21E11) = 0
BlF2(E21)(E21) = BlF2(E21, E21) = trace(E21E21) = 0
BlF2(E21)(E12) = BlF2(E21, E12) = trace(E21E12) = 1
BlF2(E21)(E22) = BlF2(E21, E22) = trace(E21E22) = 0

which gives the matrix representation of BlF2(E21) with respect to this basis
as [0, 0, 1, 0]. Continuing, we have
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BlF2(E12)(E11) = BlF2(E12, E11) = trace(E12E11) = 0
BlF2(E12)(E21) = BlF2(E12, E21) = trace(E12E21) = 1
BlF2(E12)(E12) = BlF2(E12, E12) = trace(E12E12) = 0
BlF2(E12)(E22) = BlF2(E12, E22) = trace(E12E22) = 0

which gives the matrix representation of BlF2(E12) with respect to this basis
as [0, 1, 0, 0]. Continuing, we have

BlF2(E22)(E11) = BlF2(E22, E11) = trace(E22E11) = 0
BlF2(E22)(E21) = BlF2(E22, E21) = trace(E22E21) = 0
BlF2(E22)(E12) = BlF2(E22, E12) = trace(E22E12) = 0
BlF2(E22)(E22) = BlF2(E22, E22) = trace(E22E22) = 1

which gives the matrix representation of BlF2(E11) with respect to this basis
as [0, 0, 0, 1].

However if we wish to write the map

BlF2 : ĝ −→ (ĝ)∗

as a 4x4 matrix with respect to this basis, we must transpose the above row
vectors to be the columns of its matrix and we get:

BlF2 7−→


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


We note that it is this matrix that shows that the map

BlF2 : ĝ −→ (ĝ)∗

is nondegenerate, i.e., that its kernel is 0. Moreover, this gives us the result
that we have been seeking — that a non-degenerate Killing form on ĝ in
ĝl(lF2) does not necessarily give the conclusion that ĝ is semisimple, but it
can give a Lie algebra with an abelian radical. In fact, all ĝl(lFn) for all n
with lF = lR or lC have this structure.

In order to complete this discussion we now want to define the Killing
form on the Lie algebra ĝ = ĝl(lF2) and not the Killing form on the linear
space lF2 as we did above. The latter Killing form BlF2 we have just shown
is non-degenerate, but ĝ = ĝl(lF2) is not semisimple. Since we now want to
focus on the Killing form B of the Lie algebra ĝ = ĝl(lF2), we pick any two
elements X and Y of ĝl(lF2) and calculate B(X, Y ) = trace(ad(X), ad(Y )).
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Using the basis (E11, E21, E12, E22) for ĝl(lF2), we calculate B as follows.

First we need the ad(Eij).

ad(Eij) : ĝl(lF2) −→ ĝl(lF2)
Ekl 7−→ ad(Eij) · Ekl = [Eij, Ekl] = EijEkl − EklEij

Thus

If j = k, i 6= l, then ad(Eij) · Ekl = Eil
If j 6= k, i = l, then ad(Eij) · Ekl = −Ekj

If j = k, i = l, then ad(Eij) · Ekl = Eii − Ejj

Then we choose the canonical basis for the 16-dimensional space ĝl(ĝl(lF2))
in the following manner.

(e11, e21, e31, e41, e12, e22, e32, e42, e13, e23, e33, e43, e14, e24, e34, e44)

and we get the matrix


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


On this basis we have

ad(E11) =


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 ad(E21) =


0 0 −1 0
1 0 0 −1
0 0 0 0
0 0 1 0



ad(E12) =


0 1 0 0
0 0 0 0
−1 0 0 1
0 −1 0 0

 ad(E22) =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


The Killing form B of the Lie algebra ĝl(lF2), written as a matrix with
respect to the basis (E11, E21, E12, E22) is determined by 16 calculations of
the following type.

B(Eij, Ekl) = trace(ad(Eij) ◦ ad(Ekl))

For instance the (1,1)-term of the matrix is
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B11 = B(E11, E11) = trace(ad(E11) ◦ ad(E11))

ad(E11) ◦ ad(E11) =


0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0




0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


trace(ad(E11) ◦ ad(E11)) = 2

Continuing in this manner with the other matrix entries, we arrive at the B
matrix

B =


2 0 0 −2
0 0 4 0
0 4 0 0
−2 0 0 2


We see that the B matrix is singular. Thus we conclude that ĝl(lF2) is not
semisimple and has a Killing form as a Lie algebra which is degenerate.

We remark that even though the Killing form B on the Lie algebra ĝl(lF2)
is degenerate, the Killing form BlF2 on the linear space lF2 is non-degenerate.
Our theorems say that for the first assertion that ĝl(lF2) is not semisimple;
and for the second assertion that ĝl(lF2) is either semisimple or has an abelian
radical 6= 0. Combining these two assertions, we conclude that ĝl(lF2) has
an abelian radical.

Guided by the other theorems on solvability, we arrive at the follow-
ing computations and conclusions. First we calculate D1(ĝl(lF2)). Using
(E11, E21, E12, E22) for a basis of ĝl(lF2), we have:

[E11, E21] = E11E21 − E21E11 = −E21

[E11, E12] = E11E12 − E12E11 = E12

[E11, E22] = E11E22 − E22E11 = 0
[E21, E12] = E21E12 − E12E21 = E22 − E11

[E21, E22] = E21E22 − E22E21 = −E21

[E12, E22] = E12E22 − E22E12 = E12

And thus D1(ĝl(lF2)) = Sp(E12, E11 − E22, E12). Our first remark is that
D1(ĝl(lF2)) 6= ĝl(lF2), and thus ĝl(lF2) cannot be semisimple. Now

B(E11 − E22, E11 − E22) = B(E11, E11) +B(E22, E22)− 2B(E11, E22) =
2 + 2− 2(−2) = 8
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and this computation gives us sufficient information for us to assert that
B(X,X) 6= 0 for all X in D1(ĝl(lF2)). Thus ĝl(lF2) is not solvable and we
conclude that ĝl(lF2) has a semisimple part and a non-trivial radical.

Similarly we have

BlF2(E11 − E22, E11 − E22) =
BlF2(E11, E11) +BlF2(E22, E22)− 2BlF2(E11, E22) = 1 + 1− 2(0) = 2

which is sufficient information for us to assert that BlF2(X,X) 6= 0 for all X
in D1(ĝl(lF2)), and thus we reach the same conclusion as above.

There are some additional remarks that we would like to make. In section
2.4 we showed that if r̂ is the radical of a Lie algebra ĝ, then [ĝ, r̂] = D1ĝ∩ r̂.
Now suppose the radical is also the center ẑ of ĝ. This would mean that r̂ is
abelian, but also we would have [ĝ, ẑ] = 0 = D1ĝ∩ ẑ. If we assumed the Levi
Decomposition Theorem, this would mean that D1ĝ is semisimple. Now the
counterexample we examined above has exactly this structure. ĝl(lF2) has a
semisimple part ŝl(2, lF) and an abelian radical which is the center of ĝl(lF2).
Thus it is still an open question for us whether the only counterexamples must
have this additional structure, i.e., whether ĝ must be the direct sum of a
semisimple subalgebra and a radical which is abelian. [We add the remark
that a Lie algebra whose non-trivial radical is the center is called a reductive
Lie algebra.]

2.15.2 The Casimir Operator.

With this new definition of the Killing form we can now define the Casimir
operator for a Lie subalgebra ĝ of ĝl(V ) whose Killing form is non-degenerate.
However, since the understanding of this operator is not very transparent, we
begin by giving three examples of how one calculates the Casimir operator.
They will help us understand this operator better .

We already have at hand our first example for which to compute this
operator. We calculate the Casimir operator for the Lie algebra ĝl(lF2). [We
have shown this Lie algebra to have a non-degenerate Killing form on the
linear space lF2.] We let ĝ = ĝl(lF2).

First we choose a basis for the four-dimensional ĝ: {E11, E21, E12, E22}.
We know that BlF2 maps ĝ bijectively onto its dual ĝ∗ and what we are
now seeking is the dual basis of {E11, E21, E12, E22}. First we give the sym-
bols for elements in ĝ∗ which will be dual to the basis of ĝ. We choose
{E∗11, E∗21, E∗12, E∗22}. This means that the dual element E∗ij in ĝ∗ acting on
the ”undual” element Ekl in ĝ will give 1 when (k, l) = (i, j) and will give 0
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for the other three choices of basis elements. We recall that if Eij is written
with respect to the basis {E11, E21, E12, E22}, it will be a 4x1 column vector
with 1 in the ij-th place and 0 elsewhere. This means that E∗ij written with
respect to the basis {E∗11, E∗21, E∗12, E∗22} will be a 1x4 row vector with 1 in
the ij-th place and 0 elsewhere. In other words each E∗ij is a well-defined
element in ĝ∗. The important observation is that E∗ij is not a 2x2 matrix,

while Eij is an element of ĝ = ĝl(lF2), and thus is 2x2 matrix over lF. But
by using the inverse of the bijective map BlF2 , which is a map from ĝ to ĝ∗,
we can write E∗ij as a 4x4 matrix. We will name these matrices as follows:

B−1
lF2(E∗ij) := E ′ij

We now determine these matrices. For the matrix E ′11, we first write it using
the basis {E11, E21, E12, E22}:

E ′11 = aE11 + bE21 + cE12 + dE22

that is,

E ′11 =

[
a c
b d

]

Now

BlF2(E ′11) = E∗11

Thus

E∗11 = BlF2(aE11 + bE21 + cE12 + dE22) =
BlF2(aE11) + BlF2(bE21) + BlF2(cE12) + BlF2(dE22)

We now operate on the basis (E11, E21, E12, E22).

1 = E∗11 · E11 =
BlF2(aE11) · E11 + BlF2(bE21) · E11 + BlF2(cE12) · E11 + BlF2(dE22) · E11

But by definition of BlF2 , we have

BlF2(Eij) · Ekl = BlF2(Eij, Ekl) = trace(EijEkl)

Thus

1 = aBlF2(E11, E11) + bBlF2(E21, E11) + cBlF2(E12, E11) + dBlF2(E22, E11) =
a(trace(E11E11)) + b(trace(E21E11))+
c(trace(E12E11)) + d(trace(E22E11)) = a
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Continuing

0 = E∗11 · E21 =
BlF2(aE11) · E21 + BlF2(bE21) · E21 + BlF2(cE12) · E21 + BlF2(dE22) · E21

Thus

0 = aBlF2(E11, E21) + bBlF2(E21, E21) + cBlF2(E12, E21) + dBlF2(E22, E21) =
a(trace(E11E21)) + b(trace(E21E21))+
c(trace(E12E21)) + d(trace(E22E21)) = c

Continuing

0 = E∗11 · E12 =
BlF2(aE11) · E12 + BlF2(bE21) · E12 + BlF2(cE12) · E12 + BlF2(dE22) · E12

Thus

0 = aBlF2(E11, E12) + bBlF2(E21, E12) + cBlF2(E12, E12) + dBlF2(E22, E12) =
a(trace(E11E12)) + b(trace(E21E12))+
c(trace(E12E12)) + d(trace(E22E12)) = b

Continuing

0 = E∗11 · E22 =
BlF2(aE11) · E22 + BlF2(bE21) · E22 + BlF2(cE12) · E22 + BlF2(dE22) · E22

Thus

0 = aBlF2(E11, E22) + bBlF2(E21, E22) + cBlF2(E22, E12) + dBlF2(E22, E22) =
a(trace(E11E22)) + b(trace(E21E22))+
c(trace(E12E22)) + d(trace(E22E22)) = d

Therefore we conclude that

E ′11 =

[
1 0
0 0

]

We observe that we are essentially calculating the Killing form BlF2 with
respect to the basis (E11, E21, E12, E22).

Recall that the Killing form BV of a Lie algebra ĝ contained in ĝl(V )
over a field lF of characteristic 0 is defined in the following manner. After
choosing a basis for V , then the following traces define BV :
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BV : ĝ × ĝ −→ lF
(X, Y ) 7−→ BV (X, Y ) := trace(X ◦ Y )

Now in the above calculations we have computed these traces:

1 = a(trace(E11E11)) + b(trace(E21E11))+
c(trace(E12E11)) + d(trace(E22E11)) = a

0 = a(trace(E11E21)) + b(trace(E21E21))+
c(trace(E12E21)) + d(trace(E22E21)) = c

0 = a(trace(E11E12)) + b(trace(E21E12))+
c(trace(E12E12)) + d(trace(E22E12)) = b

0 = a(trace(E11E22)) + b(trace(E21E22))+
c(trace(E12E22)) + d(trace(E22E22)) = d .

This gives the first column of the matrix for the Killing form of BlC2 :

BlC2 =


1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗



Continuing in this manner we calculate the entire matrix for the Killing
form of BlC2 . However we do know that the Killing form is a symmetric
matrix, and thus we already know the matrix has the following form.

BlC2 =


1 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


Thus we need only compute six more entries in the Killing form. Now we

have for the matrix E ′21

E ′21 = eE11 + fE21 + gE12 + hE22

that is,

E ′21 =

[
e g
f h

]

Now
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BlF2(E ′21) = E∗21

Thus

E∗21 = BlF2(eE11 + fE21 + gE12 + hE22) =
BlF2(eE11) + BlF2(fE21) + BlF2(gE12) + BlF2(hE22)

We now operate on the basis (E11, E21, E12, E22). But we already know
trace(E21E11) = 0. Thus we only compute the following:

1 = E∗21 · E21

1 = e(trace(E11E21)) + f(trace(E21E21))+
g(trace(E12E21)) + h(trace(E22E21)) = g

Continuing

0 = E∗21 · E12

0 = e(trace(E11E12)) + f(trace(E21E12))+
g(trace(E12E12)) + h(trace(E22E12)) = f

Continuing

0 = E∗21 · E22

0 = e(trace(E11E21)) + f(trace(E21E21))+
g(trace(E12E21)) + h(trace(E22E21)) = h

Thus we conclude that

E ′21 =

[
0 1
0 0

]

Thus this gives the second column and second row of the Killing form of BlC2 :

BlC2 =


1 0 0 0
0 0 1 0
0 1 ∗ ∗
0 0 ∗ ∗



Now we have for the matrix E ′12

E ′12 = iE11 + jE21 + kE12 + lE22

that is,
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E ′12 =

[
i k
j l

]

Now

BlF2(E ′12) = E∗12

Thus

E∗12 = BlF2(iE11 + jE21 + kE12 + lE22) =
BlF2(iE11) + BlF2(jE21) + BlF2(kE12) + BlF2(lE22)

We now operate on the basis (E11, E21, E12, E22). But we already know
trace(E11E12) = 0, trace(E21E12) = 1. Thus we only compute the following:

1 = E∗12 · E21

1 = i(trace(E11E12)) + j(trace(E21E12))+
k(trace(E12E12)) + l(trace(E22E12)) = j

Continuing

0 = E∗12 · E22

0 = i(trace(E11E22)) + j(trace(E21E22))+
k(trace(E12E22)) + l(trace(E22E22)) = l

Thus we conclude that

E ′21 =

[
0 0
1 0

]

Thus this gives the third column and third row of the Killing form of BlC2 :

BlC2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ∗


We remark that symmetry immediately gave the {2,3} entry in the matrix
of the Killing form; and now in calculating the E ′21 matrix we confirm that
entry.

The only entry that is now missing in the Killing form BlC2 is the {4,4}
entry which is equal to trace(E44E44) = trace(E44) = 1, giving
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BlC2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Thus we conclude that

E ′22 =

[
0 0
0 1

]

and the Killing form is

BlF2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Thus we may remark immediately that the Killing form gives us the four
matrices:

E ′11 =

[
1 0
0 0

]
E ′21 =

[
0 1
0 0

]
E ′12 =

[
0 0
1 0

]
E ′22 =

[
0 0
0 1

]

We also observe that

E ′11 = E11 E ′21 = E12 E ′12 = E21 E ′22 = E22

We now define the Casimir operator for ĝ. It is a linear transformation
on lF2 in ĝ = ĝl(lF2) and it is given as follows.

ClF2 : lF2 −→ lF2

v 7−→ ClF2(v) := (E11E
′
11 + E21E

′
21 + E12E

′
12 + E22E

′
22)(v)

(The motivation for this formula will be given later in this chapter.)

Given the identifications above, we see that

ClF2 = E11E11 + E21E12 + E12E21 + E22E22 = E11 + E22 + E11 + E22 =
2E11 + 2E22

Writing this as a matrix, we have

ClF2 =

[
2 0
0 2

]
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We can immediately see that the trace of ClF2 is 4, which, we also note, is
the dimension of ĝ. Also, since ClF2 is a scalar matrix, it is in the center of
ĝ. In other words ClF2 commutes with every element of ĝ in the sense that
for every X in ĝ and every v in lF2

ClF2(Xv) = X(ClF2(v))

Later we will also prove that the Casimir operator is independent of the
choice of basis for its definition and thus only depends on ĝ in ĝl(lF2).

For our next example, we will take the simple Lie algebra ŝl(2, lC) con-
tained in ĝl(2, lC). We seek a representation ρ in ŝl(2, lC) of the canonical
3-dimensional simple Lie algebra â1 that is defined as follows. [For a brief
summary of the facts we are using about Lie algebras (which we are not
developing in this set of Notes) refer to Appendix 2, p. 265 and following.]
We recall that â1 has a basis {h, e, f} such that its brackets are

[h, e] = 2e [h, f ] = −2f [e, f ] = h.

Thus we assume that we have a representation ρ of â1 in ĝl(2, lC). Since â1 is
simple, we know that the Killing form BlC2 of ρ(â1) is non-degenerate, and
thus it will give the 2x2 matrices which form a basis for the representation
of â1 in ĝl(2, lC).

We calculate the Killing form BlC2 of ρ(â1) exactly as we did for the Lie
algebra treated in the previous example. Since â1 is 3-dimensional, we have
three 2x2 matrices with trace = 0 to calculate. We map the basis {h, e, f}
of â1 to trace = 0 matrices {H,E, F} in ĝl(2, lC), giving

H =

[
a c
b −a

]
E =

[
d f
e −d

]
F =

[
g i
h −g

]

Now the Killing form BlC2 is given by

BlC2 : ŝl(2, lC)× ŝl(2, lC) −→ lC
(X, Y ) 7−→ BlC2(X, Y ) := trace(X ◦ Y )

We compute these traces and get the first column of matrix of the Killing
form:

1 = a(trace(HH)) + b(trace(EH)) + c(trace(FH) =
a(trace(E11 − E22)(E11 − E22))+

b(trace(E12(E11 − E22)) + c(trace(E21(E11 − E22)) =
a(trace(E11E11)− trace(E11E22)− trace(E22E11) + trace(E22E22))+

b(trace(E12E11)− trace(E12E22)) + c(trace(E21E11)− trace(E21E22)) =
a(1− 0− 0 + 1) + b(0− 0) + c(0− 0) = 2a+ 0b+ oC = 2a
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0 = a(trace(HE)) + b(trace(EE)) + c(trace(FE) =
a(trace(E11 − E22)(E12 + b(trace(E12E12 + c(trace(E21E12 =
a(trace(E11(E12 − E22)) + b(trace(E12E12 + c(trace(E21E12 =

a(trace(E11E12)− trace(E11E22)) + b(trace(E12E12) + c(trace(E21E12) =
a(0− 0) + b(0) + c(1) = 0a+ 0b+ c = c

0 = a(trace(HF )) + b(trace(EF )) + c(trace(FF ) =
a(trace(E11 − E22)(E21 + b(trace(E21E12 + c(trace(E21E21 =

a(trace(E11(E21 − E11)(E21 + b(trace(E21E12 + c(trace(E21E21 =
a(trace(E11E21)− trace(E11E21)) + b(trace(E21E12) + c(trace(E21E21) =

a(0− 0) + b(1) + c(0) = 0a+ b+ 0c = b

giving a = 1
2
, b = 0, c = 0. Thus we have the first column of the matrix for

the Killing form of BlC2 :

BlC2 =


1
2
∗ ∗

0 ∗ ∗
0 ∗ ∗


and thus the H matrix is

H =

[
1
2

0
0 −1

2

]

Continuing we now seek the matrix E:

E =

[
d f
e −d

]

Also we know that the Killing form is symmetric and thus we have

BlC2 =


1
2

0 0
0 ∗ ∗
0 ∗ ∗


This gives d = 0. Thus in order to complete the second column we need only
calculate the (2, 2) term e and the (3, 2) term f :

1 = d(trace(HE)) + e(trace(EE)) + f(trace(FE) =
d(trace(E11E12 − E22E12)) + e(trace(E12E21)) + f(trace(E21E12)) =

d(trace(E11E12))−d(trace(E11E22))+e(trace(E12E12))+f(trace(E21E12)) =
d(0− 0) + e(0) + f(1) = 0d+ 0e+ f = f
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0 = d(trace(HF )) + e(trace(EF )) + f(trace(FF )) =
d(trace(E11E21 − E22E21)) + e(trace(E12E21)) + f(trace(E21E21)) =

d(trace(E11E21)− trace(E11E21)) + e(trace(E21E12)) + f(trace(E21E21)) =
d(0− 0) + e(1) + f(0) = 0d+ e+ 0f = e

This gives f = 1, e = 0, and the second column of the matrix for the Killing
form of BlC2 :

BlC2 =


1
2

0 0
0 0 ∗
0 1 ∗


and the E matrix

E =

[
0 1
0 0

]

Continuing we now seek the matrix F :

F =

[
g i
h −g

]

Now symmetry of the Killing form gives

BlC2 =


1
2

0 0
0 0 1
0 1 ∗


This gives g = 0 and h = 1 and thus, in order to complete the third column,
we need only calculate the (3, 3) term i in the Killing form.

1 = g(trace(HF )) + h(trace(EF )) + i(trace(FF )) =
g(trace(E11E21 − E22E21)) + h(trace(E12E21)) + i(trace(E21E21)) =

g(trace(E11E21)− trace(E22E21)) + h(trace(E12E21)) + i(trace(E21E21)) =
g(0− 0) + h(1) + i(0) = 0g + h+ 0i = h

We see however that the above calculation evaluates h once again, which
value we already know is equal to 1. Thus to compute i we go back to the
calculation

0 = g(trace(HE)) + h(trace(EE)) + i(trace(FE)) =
g(trace(E11E12 − E22E12)) + h(trace(E12E12)) + i(trace(E21E12)) =

g(trace(E11E12)− trace(E22E12)) + h(trace(E12E12)) + i(trace(E21E12)) =
g(0− 0) + h(0) + i(1) = 0g + 0h+ i = i
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giving i = 0, and the third column of the matrix for the Killing form of BlC2 :

BlC2 =


1
2

0 0
0 0 1
0 1 0


and the F matrix

F =

[
0 0
1 0

]

Now {H,E,F} is a basis for the set of matrices of trace 0 [called the Special
Linear Algebra: ŝl(2, lC)] . It is contained in the General Linear Algebra
ĝl(2, lC) and has dimension 3. These matrices, of course, have the form:[

a c
b −a

]

The image of the basis {h, e, f} of â1 is {H,E, F} in ŝl(2, lC). It is given by
the three matrices which we calculated above:

H = 1
2
(E11 − E22) =

[
1
2

0
0 −1

2

]
E = E12 =

[
0 1
0 0

]

F = E21 =

[
0 0
1 0

]

We check the brackets to verify that there is an isomorphism of Lie algebras:

[H,E] = [1
2
(E11 − E22), E12] = 1

2
(E11 − E22)E12 − E12(

1
2
)(E11 − E22) =

1
2
E12 + 1

2
E12 = E12

[H,F ] = [1
2
(E11 − E22), E21] = 1

2
(E11 − E22)E21 − E21(

1
2
)(E11 − E22) =

−1
2
E21 − 1

2
E21 = −E21

[E,F ] = [E12, E21] = E12E21 − E21E12 = E11 − E22 = 2H

Now recall again that â1 has a basis {h, e, f} such that its brackets are

[h, e] = 2e [h, f ] = −2f [e, f ] = h.

Thus we see that we do have an isomorphism of Lie algebras if we define
H ′ := 2H. This gives
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[H ′, E] = [2H,E] = 2[H,E] = 2E12 = 2E
[H ′, F ] = [2H,F ] = 2[H,F ] = −2E21 = −2F

[E,F ] = 2H = H ′

Thus the basis in ŝl(2, lC) maps isomorphically onto the basis in â1 that
is {H ′, E, F} = {2H,E, F}.

However when we wish to calculate the Casimir operator, we will need
once again the dualized basis of {2H,E, F}, and thus we seek the dual basis
{H∗, E∗, F ∗} in ŝl(2, lC)∗.

Thus we have

H∗(2H) = 1 and H∗(E) = 0 and H∗(F ) = 0
E∗(2H) = 0 and E∗(E) = 1 and E∗(F ) = 0
F ∗(2H) = 0 and F ∗(E) = 0 and F ∗(F ) = 1

Now since the Killing form BlC2 restricted to ŝl(2, lC) is non-degenerate —
ŝl(2, lC) being a simple Lie algebra — we have the bijective map

BlC2 : ŝl(2, lC) −→ ŝl(2, lC)∗

We seek the matrices in ŝl(2, lC) which correspond to H∗, E∗, F ∗ by B−1
lC2 . By

using the inverse of the bijective map BlC2 , we will name these matrices as
follows.

B−1
lC2 (H∗) := H ′ B−1

lC2 (E∗) := E ′ B−1
lC2 (F ∗) := F ′

We now determine the content of these matrices. For the matrix H ′, we first
write it using the basis {2H,E, F}, giving

2H = (E11 − E22) =

[
1 0
0 −1

]
E = E12 =

[
0 1
0 0

]

F = E21 =

[
0 0
1 0

]

and thus the Killing form is

BlC2 =

 1 0 0
0 0 1
0 1 0


Thus

H ′ = a(2H) + cE + bF
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that is,

H ′ =

[
a c
b −a

]

Now

BlC2(H ′) = H∗

Thus

H∗ = BlC2(a(2H) + cE + bF ) =
BlC2(2.aH) + BlC2(cE) + BlC2(bF )

We now operate on the basis {2H,E, F}.

1 = H∗ · 2H = BlC2(a(2H) · 2H + BlC2(cE) · 2H + BlC2(bF ) · 2H

By definition of BlC2 we translate these expressions to BlC2 and traces.

Thus

1 = aBlC2(2H, 2H) + cBlC2(E, 2H) + bBlC2(F, 2H) =
a(trace(2H ◦ 2H)) + c(trace(E ◦ 2H)) + b(trace(F ◦ 2H)) =

a(trace((E11 − E22) ◦ (E11 − E22))) + c(trace(E12 ◦ (E11 − E22))) +
b(trace(E21 ◦ (E11 − E22))) =

a(trace(E11 + E22)) + c(trace(−E12)) + b(trace(E21)) = a(1 + 1) = 2a

We conclude that a = 1
2
.

Continuing we have

0 = H∗ · E = BlC2(2aH) · E + BlC2(cE) · E + BlC2(bF ) · E

Thus

0 = aBlC2(2H,E) + cBlC2(E,E) + bBlC2(F,E) =
a(trace(2H ◦ E)) + c(trace(E ◦ E)) + b(trace(F ◦ E)) =

a(trace((E11 −E22) ◦ (E12))) + c(trace(E12 ◦E12))) + b(trace(E21 ◦E12))) =
a(trace(E12)) + c(trace(0)) + b(trace(E22)) = b(1) = b

We conclude that b = 0.

Continuing we have
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0 = H∗ · F = BlC2(2aH) · F + BlC2(cE) · F + BlC2(bF ) · F

Thus we have

0 = aBlC2(2H,F ) + cBlC2(E,F ) + bBlC2(F, F ) =
a(trace(2H ◦ F )) + c(trace(E ◦ F )) + b(trace(F ◦ F )) =

a(trace((E11 −E22) ◦ (E21))) + c(trace(E12 ◦E21))) + b(trace(E21 ◦E21))) =
a(trace(−E21)) + c(trace(E11)) + b(trace(0)) = c(1) = c

We conclude that c = 0.

Thus we have calculated H ′:

H ′ =

[
1 0
0 −1

]

We observe again that we are essentially calculating the Killing form BlC2

with respect to the basis {2H,E, F}. Recall that the Killing form BV of a
Lie algebra ĝ contained in ĝl(V ) over a field lF of characteristic 0 is defined
in the following manner. After choosing a basis for V , then the following
traces define BV :

BV : ĝ × ĝ −→ lF
(X, Y ) 7−→ BV (X, Y ) := trace(X ◦ Y )

Now in the above calculations we have computed these traces:

a(trace(2H ◦2H))+ c(trace(E ◦2H))+ b(trace(F ◦2H)) = a(2)+ c(0)+ b(0)
a(trace(2H ◦ E)) + c(trace(E ◦ E)) + b(trace(F ◦ E)) = a(0) + c(0) + b(1)
a(trace(2H ◦ F )) + c(trace(E ◦ F )) + b(trace(F ◦ F )) = a(0) + c(1) + b(0)

giving the following matrix for BlC2 :

BlC2 =

 2 0 0
0 0 1
0 1 0


Thus we can read immediately

E ′ =

[
0 1
0 0

]
F ′ =

[
0 0
1 0

]

We observe that

H ′ = 2H E ′ = F F ′ = E
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We now define the Casimir operator for ŝl(2, lC). It is a linear transfor-
mation on lC2 in ĝl(2, lC) and is given as follows:

ClC2 : lC2 −→ lC2

v 7−→ ClC2(v) := (HH ′ + EE ′ + FF ′)(v)

Given the identifications above, we see that

ClC2 = H(2H) + EF + FE = 1
2
(E11 − E22)(E11 − E22) + E12E21 + E21E12 =

1
2
(E11 + E22) + E11 + E22 = 3

2
E11 + 3

2
E22

Writing this as a matrix, we have

ClC2 =

[
3
2

0
0 3

2

]

We can immediately see that the trace of ClC2 is 3, which is the dimension of
ŝl(2, lC). Also, since ClC2 is a scalar matrix, it is in the center of ĝl(2, lC). In
other words, ClC2 commutes with every element of ĝl(2, lC) in the sense that
for every X in ĝl(2, lC) and every v in lC2

ClC2(Xv) = X(ClC2(v))

We also remark that ClC2 is not an element of ŝl(2, lC) for its trace is not 0.
[As we mentioned before, later we will also prove that the Casimir operator
is independent of a choice of basis for its definition and thus only depends
on ŝl(2, lC) in ĝl(2, lC).]

For our third example, we want to examine a more complicated simple
Lie algebra, yet one whose structure is simple enough so that the calculations
are still doable. We choose the eight-dimensional simple complex Lie algebra
with code symbol â2. Since it is simple, it is also semisimple. It has a basis
(h1, h2, e1, e2, e3, f1, f2, f3) with the following brackets:

[h1, h2] = 0 [h1, e1] = 2e1 [h1, e2] = e2 [h1, e3] = −e3 [h1, f1] = −2f1
[h1, f2] = −f2 [h1, f3] = f3 [h2, e1] = −e1 [h2, e2] = e2

[h2, e3] = 2e3 [h2, f1] = f1 [h2, f2] = −f2 [h2, f3] = −2f3
[e1, e2] = 0 [e1, e3] = e2 [e1, f1] = h1 [e1, f2] = −f3 [e1, f3] = 0

[e2, e3] = 0 [e2, f1] = −e3 [e2, f2] = h1 + h2 [e2, f3] = e1 [e3, f1] = 0
[e3, f2] = f1 [e3, f3] = h2 [f1, f2] = 0 [f1, f3] = −f2 [f2, f3] = 0

We choose a representation of â2 in the 3-dimensional complex linear space
lC3. We give lC3 its canonical basis (e1, e2, e3). We write the complex Lie
algebra ĝl(lC3) = ĝl(3, lC) as 3x3 complex matrices with respect to the canon-
ical basis (Eij) in ĝl(lC3). The representation map ρ takes â2 onto ŝl(3, lC) in

ĝl(lC3), giving:
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h1 7−→ ρ(h1) = H1 = E11 − E22

h2 7−→ ρ(h2) = H2 = E22 − E33

e1 7−→ ρ(e1) = E12

e2 7−→ ρ(e2) = E13

e3 7−→ ρ(e3) = E23

f1 7−→ ρ(f1) = E21

f2 7−→ ρ(f2) = E31

f3 7−→ ρ(f3) = E32

We see immediately the (H1, H2, E12, E13, E23, E21, E31, E32) are independent
in ĝl(lC3), and thus we have an 8-dimensional subspace in the 9-dimensional
complex Lie algebra ĝl(lC3). We calculate its brackets and using the above
morphism, we compare them with the brackets in â2:

[H1, H2] = [E11 − E22, E22 − E33] = −E22 + E22 = 0
[h1, h2] = 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E12] = [E11 − E22, E12] = E12 + E12 = 2E12

[h1, e1] = 2e1
e1 7−→ ρ(e1) = E12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E13] = [E11 − E22, E13] = E13

[h1, e2] = e2
e2 7−→ ρ(e2) = E13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E23] = [E11 − E22, E23] = −E23

[h1, e3] = −e3
e3 7−→ ρ(e3) = E23

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E21] = [E11 − E22, E21] = −E21 − E21 = −2E21

[h1, f1] = −2f1
f1 7−→ ρ(f1) = E21

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E31] = [E11 − E22, E31] = −E31

[h1, f2] = −f2
f2 7−→ ρ(f2) = E31

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H1, E32] = [E11 − E22, E32] = E32

[h1, f3] = f3
f3 7−→ ρ(f3) = E32

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
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[H2, E12] = [E22 − E33, E12] = −E12

[h2, e1] = −e1
e1 7−→ ρ(e1) = E12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H2, E13] = [E22 − E33, E13] = E13

[h2, e2] = e2
e2 7−→ ρ(e2) = E13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H2, E23] = [E22 − E33, E23] = E23 + E23 = 2E23

[h2, e3] = 2e3
e3 7−→ ρ(e3) = E23

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H2, E21] = [E22 − E33, E21] = E21

[h2, f1] = f1
f1 7−→ ρ(f1) = E21

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H2, E31] = [E22 − E33, E31] = −E31

[h2, f2] = −f2
f2 7−→ ρ(f2) = E31

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[H2, E32] = [E22 − E33, E32] = −E32 − E32 = −2E32

[h2, f3] = −2f3
f3 7−→ ρ(f3) = E32

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E12, E13] = 0

[e1, e2] = 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E12, E23] = E13

[e1, e3] = e2
e2 7−→ ρ(e2) = E13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E12, E21] = E11 − E22 = H1

[e1, f1] = h1
h1 7−→ ρ(h1) = H1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E12, E31] = −E32

[e1, f2] = −f3
f3 7−→ ρ(f3) = E32

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E12, E32] = 0

[e1, f3] = 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
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[E13, E23] = 0
[e2, e3] = 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E13, E21] = −E23

[e2, f1] = −e3
e3 7−→ ρ(e3) = E23

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E13, E31] = H1 +H2

[e2, f2] = h1 + h2
h1 7−→ ρ(h1) = H1

h2 7−→ ρ(h2) = H2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E13, E32] = E12

[e2, f3] = e1
e1 7−→ ρ(e1) = E12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E23, E21] = 0

[e3, f1] = 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E23, E31] = E21

[e3, f2] = f1
f1 7−→ ρ(f1) = E21

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E23, E32] = H2

[e3, f3] = h2
h2 7−→ ρ(h2) = H2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E21, E31] = 0

[f1, f2] = 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

[E21, E32] = −E31

[f1, f3] = −f2
f2 7−→ ρ(f2) = E31

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
[E31, E32] = 0

[f2, f3] = 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Thus we see that ρ takes brackets in â2 to brackets in ĝl(lC3), and we have
a representation of â2 in lC3. Of course, this image of â2 by ρ in ĝl(lC3) is
ŝl(3, lC), the 3x3 complex matrices with trace zero.
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We now want to dualize the basis (H1, H2, E12, E13, E23, E21, E31, E32),
i.e., we want a basis ((H1)

∗, (H2)
∗, (E12)

∗, (E13)
∗, (E23)

∗, (E21)
∗, (E31)

∗, (E32)
∗)

in ŝl(3, lC)∗ such that

(H1)
∗(H1) = 1 and (H1)

∗ operating on all 7 other basis vectors = 0
(H2)

∗(H2) = 1 and (H2)
∗ operating on all 7 other basis vectors = 0

(E12)
∗(E12) = 1 and (E12)

∗ operating on all 7 other basis vectors = 0
etc.

Now since the Killing form BlC3 restricted to ŝl(3, lC) is non-degenerate —
again ŝl(3, lC) being a simple Lie algebra — we have the bijective map

BlC3 : ŝl(3, lC) −→ ŝl(3, lC)∗

We seek the matrices in ŝl(3, lC) which correspond to dual basis vectors

((H1)
∗, (H2)

∗, (E12)
∗, (E13)

∗, (E23)
∗, (E21)

∗, (E31)
∗, (E32)

∗)

by B−1
lC3 . By using the inverse of the bijective map BlC3 , we will name these

matrices as follows.

B−1
lC3 ((H1)

∗) := H ′1 B−1
lC3 ((H2)

∗) := H ′2
B−1
lC3 ((E12)

∗) := E ′12 B−1
lC3 ((E13)

∗) := E ′13
B−1
lC3 ((E23)

∗) := E ′23 B−1
lC3 ((E21)

∗) := E ′21
B−1
lC3 ((E31)

∗) := E ′31 B−1
lC3 ((E32)

∗) := E ′32

We now determine the content matrices (H ′1, H
′
2, E

′
12, E

′
13, E

′
23, E

′
21, E

′
31, E

′
32)

in ŝl(3, lC). We write these matrices in terms of the basis

(H1 = E11 − E22, H2 = E22 − E33, E12, E13, E23, E21, E31, E32)

If we let Ai be any one of these matrices, we have

Ai = riH1 + siH2 + biE21 + ciE31 + diE32 + fiE12 + giE13 + hiE23

Ai = ri(E11−E22)+si(E22−E33)+biE21+ciE31+diE32+fiE12+giE13+hiE23

which gives

Ai =

 ri fi gi
bi −ri + si hi
ci di −si


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We note that these matrices have trace 0, and thus are in ŝl(3, lC).

Now we know that the Killing form of ŝl(3, lC) written with respect to
the above basis gives an 8x8 non-singular symmetric matrix whose entries
are Aij, i, j = 1, · · ·, 8, and whose values are defined as BlC3(Aij, Akl) :=
trace(Aij ◦ Akl).

For the first column we have:

(BlC3(H1))(H1) = BlC3(H1, H1) = trace(H1 ◦H1) =
trace((E11 − E22) ◦ (E11 − E22)) = trace(E11 + E22) = 2

(BlC3(H2))(H1) = BlC3(H2, H1) = trace(H2 ◦H1) =
trace((E22 − E33) ◦ (E11 − E22)) = trace(−E22) = −1

(BlC3(E21))(H1) = BlC3(E21, H1) = trace(E21 ◦H1) =
trace(E21 ◦ (E11 − E22)) = trace(E21) = 0

(BlC3(E31))(H1) = BlC3(E31, H1) = trace(E31 ◦H1) =
trace(E31 ◦ (E11 − E22)) = trace(E31) = 0

(BlC3(E32))(H1) = BlC3(E32, H1) = (trace(E32 ◦H1) =
trace(E32 ◦ (E11 − E22)) = trace(−E32) = 0

(BlC3(E12))(H1) = BlC3(E12, H1) = trace(E12 ◦H1) =
trace((E12) ◦ (E11 − E22))) = trace(−E12) = 0

(BlC3(E13))(H1) = BlC3(E13, H1) = trace(E13 ◦H1) =
trace((E13) ◦ (E11 − E22)) = (trace(0)) = 0

(BlC3(E23))(H1) = BlC3(E23, H1) = trace(E23 ◦H1) =
trace(E23 ◦ (E11 − E22)) = trace(0)) = 0

For the second column we have:

By symmetry we have

(BlC3(H1))(H2) = −1
(BlC3(H2))(H2) = BlC3(H2, H2) = trace(H2 ◦H2) =

trace((E22 − E33) ◦ (E22 − E33)) = trace(E22 + E33) = 2
(BlC3(E21))(H2) = BlC3(E21, H2) = trace(E21 ◦H2) =

trace(E21 ◦ (E22 − E33)) = trace(0) = 0
(BlC3(E31(H2) = BlC3(E31, H2) = trace(E31 ◦H2) =

trace(E31 ◦ (E22 − E33)) = trace(0) = 0
(BlC3(E32))(H2) = BlC3(E32, H2) = trace(E32 ◦H2) =

trace(E32 ◦ (E22 − E33)) = trace(E32) = 0
(BlC3(E12))(H2) = BlC3(E12, H2) = trace(E12 ◦H2) =

trace(E12 ◦ (E22 − E33)) = trace(E12) = 0
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(BlC3(E13))(H2) = BlC3(E13, H2) = trace(E13 ◦H2) =
trace(E13 ◦ (E22 − E33)) = trace(−E13) = 0

(BlC3(E23))(H2) = BlC3(E23, H2) = trace(E23 ◦H2) =
trace(E23 ◦ (E22 − E33)) = trace(−E23) = 0

For the third column we have:

By symmetry we have (BlC3(H1)(E12) = 0
By symmetry we have (BlC3(H2)(E12) = 0
(BlC3(bE21))(E12) = BlC3(E21, E12) = trace(E21 ◦ E12) = (trace(E22)) = 1
(BlC3(E31))(E12) = BlC3(E31, E12) = trace(E31 ◦ E12) = (trace(E32)) = 0
(BlC3(E32))(E12) = BlC3(E32, E12) = trace(E32 ◦ E12) = (trace(0)) = 0
(BlC3(E12))(E12) = BlC3(E12, E12) = trace(E12 ◦ E12) = (trace(0)) = 0
(BlC3(E13))(E12) = BlC3(E13, E12) = trace(E13 ◦ E12) = (trace(0)) = 0
(BlC3(hE23))(E12) = BlC3(E23E12) = trace(E23 ◦ E12) = (trace(0)) = 0

For the fourth column we have:

By symmetry we have (BlC3(H1)(E13) = 0
By symmetry we have (BlC3(H2)(E13) = 0
By symmetry we have (BlC3(E12)(E13) = 0
(BlC3(E21))(E13) = BlC3(E21, E13) = trace(E21 ◦ E13) = trace(E23) = 0
(BlC3(E31))(E13) = BlC3(E31, E13) = trace(E31 ◦ E13) = trace(E33) = 1
(BlC3(E32))(E13) = BlC3(E32, E13) = trace(E32 ◦ E13) = trace(0) = 0
(BlC3(E13))(E13) = BlC3(E13, E13) = trace(E13 ◦ E13) = trace(0) = 0
(BlC3(E23))(E13) = BlC3(E23, E13) = trace(E23 ◦ E13) = trace(0) = 0
?

For the fifth column we have:

By symmetry we have (BlC3(H1)(E23) = 0
By symmetry we have (BlC3(H2)(E23) = 0
By symmetry we have (BlC3(E12)(E23) = 0
By symmetry we have (BlC3(E13)(E23) = 0
(BlC3(E23))(E23) = BlC3(E23, E23) = trace(E23 ◦ E23) = trace(0) = 0
(BlC3(E21))(E23) = BlC3(E21, E23) = trace(E21 ◦ E23) = trace(0) = 0
(BlC3(E31))(E23) = BlC3(E31, E23) = trace(E31 ◦ E23) = trace(0) = 0
(BlC3(E32))(E23) = BlC3(E32, E23) = trace(E32 ◦ E23) = trace(E33) = 1

For the sixth column we have:
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By symmetry we have (BlC3(H1)(E21) = 0
By symmetry we have (BlC3(H2)(E21) = 0
By symmetry we have (BlC3(E12)(E21) = 1
By symmetry we have (BlC3(E13)(E21) = 0
By symmetry we have (BlC3(E23)(E21) = 0
(BlC3(E21))(E21) = BlC3(E21, E21) = trace(E21 ◦ E21) = trace(0) = 0
(BlC3(E31))(E21) = BlC3(E31, E21) = trace(E31 ◦ E21) = trace(0) = 0
(BlC3(E32))(E21) = BlC3(E32, E21) = trace(E32 ◦ E21) = trace(E31) = 0

For the seventh column we have:

By symmetry we have (BlC3(H1)(E31) = 0
By symmetry we have (BlC3(H2)(E31) = 0
By symmetry we have (BlC3(E12)(E31) = 0
By symmetry we have (BlC3(E13)(E31) = 1
By symmetry we have (BlC3(E23)(E31) = 0
By symmetry we have (BlC3(E21)(E31) = 0
(BlC3(E31))(E31) = BlC3(E31, E31) = trace(E31 ◦ E31) = trace(0) = 0
(BlC3(E32))(E31) = BlC3(E32, E31) = trace(E32 ◦ E31) = trace(0) = 0

For the eighth column we have:

By symmetry we have (BlC3(H1)(E32) = 0
By symmetry we have (BlC3(H2)(E32) = 0
By symmetry we have (BlC3(E12)(E32) = 0
By symmetry we have (BlC3(E13)(E32) = 0
By symmetry we have (BlC3(E23)(E32) = 1
By symmetry we have (BlC3(E21)(E32) = 0
By symmetry we have (BlC3(E31)(E32) = 0
(BlC3(E32))(E32) = BlC3(E32, E32) = trace(E32 ◦ E32) = trace(0) = 0

This gives immediately the non-singular symmetric 8x8 matrix of the
Killing form written respect to the ordered basis in ŝl(3, lC):

(H1 = E11 − E22, H2 = E22 − E33, E12, E13, E23, E21, E31, E32)
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BlC3 =



2 −1 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0



We can now write the 8 matrices in ŝl(3, lC) which we are seeking:

H ′1, H
′
2, E

′
12, E

′
13, E

′
23, E

′
21, E

′
31, E

′
32.

Now again we let Ai be any one of these 8 matrices.

We know that (Ai)
∗ = BlC3(Ai) maps Aj to δij. Now if

Ak = rkH1 + skH2 + bkE21 + ckE31 + dkE32 + fkE12 + gkE13 + hkE23

then

δij = BlC3(Ai)(Aj) =
BlC3(riH1 + siH2 + biE21 + ciE31 + diE32 + fiE12 + giE13 + hiE23)(Aj) =

riBlC3(H1, Aj) + siBlC3(H2, Aj) + biBlC3(E21, Aj) + ciBlC3(E31, Aj)+
diBlC3(E32, Aj) + fiBlC3(E12, Aj) + giBlC3(E13, Aj) + hiBlC3(E23, Aj)

Thus for the first row of the Killing form (1, i) we have

δ11 = 1 = BlC3(H ′1)(H1) =
r1BlC3(H1, H1) + s1BlC3(H2, H1) + b1BlC3(E21, H1) + c1BlC3(E31, H1)+
d1BlC3(E32, H1) + f1BlC3(E12, H1) + g1BlC3(E13, H1) + h1BlC3(E23, H1)

giving

1 = 2r1 − s1 + 0b1 + 0c1 + 0d1 + 0f1 + 0g1 + 0h1 = 2r1 − s1

δ12 = 0 = BlC3(H ′1)(H2) =
r1BlC3(H1, H2) + s1BlC3(H2, H2) + b1BlC3(E21, H2) + c1BlC3(E31, H2)+
d1BlC3(E32, H2) + f1BlC3(E12, H2) + g1BlC3(E13, H2) + h1BlC3(E23, H2)

giving

0 = −r1 + 2s1 + 0b1 + 0c1 + 0d1 + 0f1 + 0g1 + 0h1 = −r1 + 2s1
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δ13 = 0 = BlC3(H ′1)(E21) =
r1BlC3(H1, E21) + s1BlC3(H2, E21) + b1BlC3(E21, E21) + c1BlC3(E31, E21)+
d1BlC3(E32, E21) + f1BlC3(E12, E21) + g1BlC3(E13, E21) + h1BlC3(E23, E21)

giving

0 = 0r1 + 0s1 + 0b1 + 0c1 + 0d1 + f1 + 0g1 + 0h1 = f1

δ14 = 0 = BlC3(H ′1, E31) =
r1BlC3(H1, E31) + s1BlC3(H2, E31) + b1BlC3(E21, E31) + c1BlC3(E31, E31)+
d1BlC3(E32, E31) + f1BlC3(E12, E31) + g1BlC3(E13, E31) + h1BlC3(E23, E31)

giving

0 = 0r1 + 0s1 + 0b1 + 0c1 + 0d1 + 0f1 + g1 + 0h1 = g1

δ15 = 0 = BlC3((H ′1, E32) =
r1BlC3(H1, E32) + s1BlC3(H2, E32) + b1BlC3(E21, E32) + c1BlC3(E31, E32)+
d1BlC3(E32, E32) + f1BlC3(E12, E32) + g1BlC3(E13, E32) + h1BlC3(E23, E32)

giving

0 = 0r1 + 0s1 + 0b1 + 0c1 + 0d1 + 0f3 + 0g1 + h1 = h1

δ16 = 0 = BlC3(H”1E12) =
r1BlC3(H1, E12) + s1BlC3(H2, E12) + b1BlC3(E21, E12) + c1BlC3(E31, E12)+
d1BlC3(E32E12) + f1BlC3(E12, E12) + g1BlC3(E13, E12) + h1BlC3(E23E12)

giving

0 = 0r1 + 0s1 + b1 + 0c1 + 0d1 + f3 + 0g1 + 0h1 = b1

δ17 = 0 = BlC3(H ′1, E13) =
r1BlC3(H1, E13) + s1BlC3(H2, E13) + b1BlC3(E21, E13) + c1BlC3(E31, E13)+
d1BlC3(E32, E13) + f1BlC3(E12, E13) + g1BlC3(E13, E13) + h1BlC3(E23, E13)

giving

0 = 0r1 + 0s1 + 0b1 + c1 + 0d1 + 0f3 + 0g1 + 0h1 = c1

δ18 = 0 = BlC3(H ′1, E23) =
r1BlC3(H1, E23) + s1BlC3(H2, E23) + b1BlC3(E21, E23) + c1BlC3(E31, E23)+
d1BlC3(E32, E23) + f1BlC3(E12, E23) + g1BlC3(E13, E23) + h1BlC3(E23, E23)

giving
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0 = 0r1 + 0s1 + 0b1 + 0c1 + d1 + 0f3 + 0g1 + 0h1 = d1

Thus we have for H ′1:

1 = 2r1 − s1; 0 = −r1 + 2s1; 0 = b1; 0 = c1; 0 = d1; 0 = f1; 0 = g1; 0 = h1

or

r1 = 2
3

s1 = 1
3

0 = b1 0 = c1
0 = d1 0 = f1 0 = g1 0 = h1

giving

H ′1 = 2
3
H1 + 1

3
H2 = 2

3
(E11 − E22) + 1

3
(E22 − E33) = 2

3
E11 − 1

3
E22 − 1

3
E33

Its matrix is

H ′1 =


2
3

0 0
0 −1

3
0

0 0 −1
3


Obviously H ′1 has trace 0 .

Repeating for H ′2 we have:

0 = 2r2 − s2; 1 = −r2 + 2s2; 0 = b2; 0 = c2; 0 = d2; 0 = f2; 0 = g2; 0 = h2

or

r2 = 1
3

s2 = 2
3

0 = b2 0 = c2
0 = d2 0 = f2 0 = g2 0 = h2

giving

H ′2 = 1
3
H1 + 2

3
H2 = 1

3
(E11 − E22) + 2

3
(E22 − E33) = 1

3
E11 + 1

3
E22 − 2

3
E33

Its matrix is

H ′2 =


1
3

0 0
0 1

3
0

0 0 −2
3


Also H ′2 has trace 0 .

Repeating for E ′21 we have:

0 = 2r3 − s3; 0 = −r3 + 2s3; 1 = b3; 0 = c3; 0 = d3; 0 = f3; 0 = g3; 0 = h3
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or

r3 = 0 s3 = 0 1 = b3 0 = c3
0 = d3 0 = f3 0 = g3 0 = h3

giving

E ′21 = E21

Its matrix is

E21 =

 0 0 0
1 0 0
0 0 0


Also E21 has trace 0 .

Repeating for E ′31 we have:

0 = 2r4 − s4; 0 = −r4 + 2s4; 0 = b4; 1 = c4; 0 = d4; 0 = f4; 0 = g4; 0 = h4

or

r4 = 0 s4 = 0 0 = b4 1 = c4
0 = d4 0 = f4 0 = g4 0 = h4

giving

E ′31 = E31

Its matrix is

E31 =

 0 0 0
0 0 0
1 0 0


Also E31 has trace 0 .

Repeating for E ′32 we have:

0 = 2r5 − s5; 0 = −r5 + 2s5; 0 = b5; 0 = c5; 1 = d5; 0 = f5; 0 = g5; 0 = h5

or

r5 = 0 s5 = 0 0 = b5 0 = c5
1 = d5 0 = f5 0 = g5 0 = h5

giving
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E ′32 = E32

Its matrix is

E32 =

 0 0 0
0 0 0
0 1 0


Also E ′32 has trace 0 .

Repeating for E ′12 we have:

0 = 2r6 − s6; 0 = −r6 + 2s6; 0 = b6; 0 = c6; 0 = d6; 1 = f6; 0 = g6; 0 = h6

or

r6 = 0 s6 = 0 0 = b6 0 = c6
0 = d6 1 = f6 0 = g6 0 = h6

giving

E ′12 = E12

Its matrix is

E12 =

 0 1 0
0 0 0
0 0 0


Also E12 has trace 0 .

Repeating for E ′13 we have:

0 = 2r7 − s7; 0 = −r7 + 2s7; 0 = b7; 0 = c7; 0 = d7; 0 = f7; 1 = g7; 0 = h7

or

r7 = 0 s7 = 0 0 = b7 0 = c7
0 = d7 0 = f7 1 = g7 0 = h7

giving

E ′13 = E13

Its matrix is
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E13 =

 0 0 1
0 0 0
0 0 0


Also E13 has trace 0 .

Repeating for E ′23 we have:

0 = 2r8 − s8; 0 = −r8 + 2s8; 0 = b8; 0 = c8; 0 = d8; 0 = f8; 0 = g8; 1 = h8

or

r8 = 0 s8 = 0 0 = b8 0 = c8
0 = d8 0 = f8 0 = g8 1 = h8

giving

E ′23 = E23

Its matrix is

E23 =

 0 0 0
0 0 1
0 0 0


Also E23 has trace 0 .

We observe

H ′1 = 2
3
H1 + 1

3
H2 H ′2 = 1

3
H1 + 2

3
H2

E ′12 = E21 E ′21 = E12 E ′13 = E31 E ′31 = E13 E ′23 = E23 E ′32 = E32

We now define the Casimir operator for ŝl(3, lC). It is a linear transfor-
mation on lC3 in ĝl(3, lC) and is given as follows.

ClC3 : lC3 −→ lC3

v 7−→ ClC3(v) :=
(H1H

′
1 +H2H

′
2 +E12E

′
12 +E21E

′
21 +E13E

′
13 +E31E

′
31 +E23E

′
23 +E23E

′
32)(v) =

(H1(
2
3
H1 + 1

3
H2) +H2(

1
3
H1 + 2

3
H2)+

E12E21 + E21E12 + E13E31 + E31E13 + E23E32 + E32E23)(v) =
(2
3
(E11 − E22)(E11 − E22) + 1

3
(E11 − E22)(E22 − E33)+

1
3
(E22 − E33)(E11 − E22) + 2

3
(E22 − E33)(E22 − E33)+

E12E21 + E21E12 + E13E31 + E31E13 + E23E32 + E32E23)(v) =
(2
3
(E11 + E22) + 1

3
(−E22) + 1

3
(−E22) + 2

3
(E22 + E33)+

E11 + E22 + E11 + E33 + E22 + E33)(v) =
(2
3
(E11 + E22 + E33) + E11 + E22 + E11 + E33 + E22 + E33)(v) =

(8
3
E11 + 8

3
E22 + 8

3
E33)(v)
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Writing this as a matrix, we have

ClC3 =


8
3

0 0
0 8

3
0

0 0 8
3


We see that the trace of ClC3 is 8, which is the dimension of ŝl(3, lC). Also
since ClC3 is a scalar matrix, it is in the center of ĝl(3, lC). In other words
ClC3 commutes with every element of ĝl(3, lC) in the sense that for every X
in ĝl(3, lC) and every v in lC3

ClC3(Xv) = X(ClC3(v))

We also remark that ClC3 is not an element of ŝl(3, lC) for its trace is not 0.
And as we mentioned before, later we will prove that the Casimir operator
is independent of a choice of basis for its definition and thus only depends
on ŝl(3, lC) in ĝl(3, lC).

With the help of these examples we can now examine the Casimir operator
in general. We observe that we can define the Casimir operator for a Lie
subalgebra ĝ of ĝl(V ) whose Killing form on a linear space V restricted to ĝ
is non-degenerate. We do so as follows. [We remark again that the field lF can
be either lR or lC even though all the examples given here were only over lR.]
Let the dimension of V be n and the dimension of ĝ be r. Because the Killing
form is non-degenerate, we know that this form defines an isomorphism of
the linear space ĝ with its dual ĝ∗.

BV : ĝ −→ ĝ∗.

First we choose a basis for ĝ in ĝl(V ): (A1, · · ·, Ar), giving r matrices in the
n2-dimensional linear space of matrices ĝl(V ). Now we dualize this basis by
means of the above map, giving us a dual basis for ĝ∗: (A∗1, · · ·, A∗r). This
means that the map BV takes Ai to A∗i . where A∗i is defined in ĝ∗ by

(A∗i )(Aj) = δij

Now A∗i comes from some matrix A′i in ĝ by BV , i.e.,

(B−1V )(A∗i ) = A′i

where (A′1, · · ·, A′r) are the matrices in ĝ which represent the duals. This
means

(A∗i )(Aj) = ((BV )(A′i))(Aj) = BV (A′i, Aj) = trace(A′i ◦ Aj) = δij
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[We remark that here we are restricting the form BV defined on ĝl(V )× ĝl(V )
to ĝ × ĝ.]

Now the Casimir operator is a linear transformation on V in ĝl(V ) and
is defined as follows:

CV : V −→ V

v 7−→ CV (v) := (
r∑
i=1

Ai ◦ A′i)(v)

We remark that this definition just depends on our being able to dualize
a linear subspace of matrices by a non-degenerate bilinear form defined on
those matrices.

First, we show that the Casimir operator is independent of the basis
chosen for ĝ. Since A′i is a matrix in ĝ, we can express it in the A-basis for ĝ.

A′i =
∑
k

aikAk

We want to determine this rxr matrix a = [aik].

δij = A∗i (Aj) = BV (A′i) · Aj = BV (A′i, Aj) = trace(A′i ◦ Aj) = trace(Aj ◦ A′i)

Now

Aj ◦ A′i = Aj(
∑
k

aikAk) =
∑
k

aikAj ◦ Ak

Thus

δij = trace(
∑
k

aikAj ◦ Ak) =
∑
k

aiktrace(Aj ◦ Ak) =
∑
k

aikBV (Aj, Ak)

Writing BV in the A-basis, we have

BV (Aj, Ak) = (BV (A))jk = [Aj]
T
ABV (A)[Ak]A

where the term [Aj]
T
ABV (A)[Ak]A is a product of three matrices written in

the A-basis; [Aj]
T
A is a 1xr row matrix corresponding to the dual A∗j [thus

giving the canonical row matrix [ej]; BV (A) is the rxr matrix representing
the bilinear form BV ; and [Ak]A, an rx1 column matrix corresponding to the
Ak basis vector [thus giving the canonical column matrix [ek]]. The product
is a 1x1 matrix corresponding to the jk entry in the matrix [BV (A))jk].

Continuing and using the symmetry of the [BV (A))jk] matrix, we have
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δij =
∑
k

aikBV (Aj, Ak) =
∑
k

aik(BV (A))jk =
∑
k

aik(BV (A))kj = (aBV (A))ij

Thus we have

aBV (A) = Ir

and we see that the matrix a is the inverse of the matrix for BV written with
respect to the A-basis.

a = B−1V (A)

We now change bases from an A-basis to, say, a D-basis.

-ĝ ĝ
identity

? ?

(Ai) (Di)

-Mrx1(lF) Mrx1(lF)
P

Thus, from the commutative diagram, we see that the change of basis matrix
is labelled P = [Pij], and in terms of this matrix the j-th column is Aj written
in the D-basis is

[Aj]D = P [Aj]A or Aj =
∑
i

PijDi

We now write BV in the A-basis in terms of D-basis.

(BV (A))ij = BV (Ai, Aj) = BV (
∑
k

PkiDk,
∑
l

PljDl) =

∑
kl

PkiPljBV (Dk, Dl) =
∑
kl

PkiPlj(BV (D))kl =
∑
kl

P T
ik(BV (D))klPlj

Thus we can conclude that

BV (A) = P TBV (D)P

Similarly the D-basis (Di) in ĝ dualizes by the map BV to a dual basis
(D∗i ) in ĝ∗, giving the relation
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D∗i (Dj) = δij

Now D∗i comes from some matrix D′i in ĝ by BV , i.e.,

(B−1V )(D∗i ) = D′i

where the (D′i) are the matrices in ĝ which represent the duals. If we write
these matrices in the basis (Di), we obtain

D′i =
∑
k

dikDk

Now we know that the matrix d = [dik] is the inverse of the matrix represen-
tation of BV in the D-basis:

d = B−1V (D)

The Casimir operator defined with respect to the D-basis is

CV :=
r∑
i=1

Di ◦D′i

We show that these two definitions, one written with respect to the A-basis
and other with respect to the D-basis, yield the same result.

Ai ◦ A′i = Ai
∑
k

aikAk = (
∑
j

PjiDj)(
∑
k

aik(
∑
l

PlkDl)) =

(
∑
j

PjiDj)(
∑
kl

aikPlkDl) = (
∑
j

PjiDj)(
∑
l

(aP T )ilDl) =
∑
jl

PjiDj(aP
T )ilDl

Now we know that

BV (A) = P TBV (D)P a = B−1V (A) d = B−1V (D)

Thus

a = B−1V (A) = P−1B−1V (D)P
T−1 = P−1dP T−1

Continuing
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Ai ◦ A′i =
∑
jl

PjiDj(aP
T )ilDl =

∑
jl

PjiDj(P
−1dP T−1P T )ilDl =

∑
jl

PjiDj(P
−1d)ilDl =

∑
jlk

PjiDjP
−1
ik dklDl =

∑
jlk

PjiP
−1
ik DjdklDl =

∑
jk

PjiP
−1
ik DjD

′
k

Finally, we obtain:

∑
i

Ai ◦ A′i =
∑
ijk

PjiP
−1
ik DjD

′
k =

∑
jk

δjkDjD
′
k =

∑
k

Dk ◦D′k

Thus we can conclude that the value of the Casimir operator is basis
independent. We also can conclude that a Casimir operator can be defined
on a linear space of matrices acting on a linear space V on which a non-
degenerate Killing form BV is defined. We know that such a Killing form
exists if the linear space of matrices is a semisimple Lie subalgebra ĝ of ĝl(V ).

With these assumptions we can also show that the Casimir operator,
which is an element of ĝl(V ) but not necessarily in ĝ, commutes with every
matrix X in ĝ, i.e.,

CV (Xv) = X(CV v)

for all v in V . To prove this we need the fact that the Killing form associates,
i.e.,

BV ([X, Y ], Z) = BV (X, [Y, Z])

We remark that if CV were in the center of ĝl(V ), then trivially it would
commute with all X in ĝ. In the examples given above this is what occurred.
However we are affirming that CV commutes only with all X in ĝ, which may
be only a proper subset of ĝl(V ), and thus it is not necessarily in the center
of ĝl(V ).

Thus we need to show that

CV (Xv)−X(CV v) = 0

for all X in ĝ and all v in V . We write CV in an A-basis:
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CV (Xv)−X(CV v) = (
r∑
i

AiA
′
i)(Xv)−X((

r∑
i

AiA
′
i)(v) =

r∑
i

(AiA
′
iX −XAiA′i)(v)

We add and subtract
∑r
i (AiXA

′
i) to obtain brackets.

r∑
i

(AiA
′
iX −XAiA′i)(v) =

(
r∑
i

(AiA
′
iX − AiXA′i) +

r∑
i

(AiXA
′
i −XAiA′i))(v) =

(
r∑
i

(Ai[A
′
i, X]) +

r∑
i

([Ai, X]A′i))(v)

We now express [A′i, X] in terms of the A′-basis, and [Ai, X] in terms of the
A-basis.

[A′i, X] =
∑r
j dijA

′
j [Ai, X] =

∑r
j cijAj

Thus we have

(
r∑
i

(Ai[A
′
i, X]) +

r∑
i

([Ai, X]A′i))(v) =

((
r∑
ij

dijAiA
′
j) + (

r∑
ij

cijAjA
′
i))(v)

Switching indices in the first sum, we have

((
r∑
ij

dijAiA
′
j) + (

r∑
ij

cijAjA
′
i))(v) =

((
r∑
ij

djiAjA
′
i) + (

r∑
ij

cijAjA
′
i))(v) =

(
r∑
ij

(dji + cij)AjA
′
i)(v)
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Thus we have

CV (Xv)−X(CV v) = (
r∑
ij

(dji + cij)AjA
′
i)(v)

Now we show that CV (Xv) − X(CV v) = 0 by showing that (dji + cij) = 0,
or that dji = −cij. To do this we use the associative property of the Killing
form.

By this property we know that

BV ([Ai, X], A′j) = BV (Ai, [X,A
′
j])

We first work on the left side. We have already expressed the bracket [Ai, X]
in the A-basis. Thus

BV ([Ai, X], A′j) = BV (
r∑
k

cikAk, A
′
j) =

r∑
k

cikBV (Ak, A
′
j)

Now we write A′j in the A-basis, using the matrix a.

r∑
k

cikBV (Ak, A
′
j) =

r∑
k

cikBV (Ak,
r∑
l

ajlAl) =

r∑
kl

cikajlBV (Ak, Al) =
r∑
kl

cikajl(BV (A))kl

Using the symmetry of the Killing form, we have

r∑
kl

cikajl(BV (A))kl =
r∑
kl

cikajl(BV (A))lk

We know that BV (A) = a−1. Thus

r∑
kl

cikajl(BV (A))lk =
r∑
kl

cikajl(a
−1)lk =

r∑
k

cikδjk = cij

Thus we have

BV ([Ai, X], A′j) = cij
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Continuing, we now work on the right side. We have already expressed
the bracket [A′j, X] in the A′-basis. Thus

BV (Ai, [X,A
′
j]) = −BV (Ai, [A

′
j.X]) =

−BV (Ai,
r∑
k

djkA
′
k) = −

r∑
k

djkBV (Ai, A
′
k)

Now we write A′k in the A-basis, using the matrix a.

−
r∑
k

djkBV (Ai, A
′
k) = −

r∑
k

djkBV (Ai,
r∑
l

aklAl) =

−
r∑
kl

djkaklBV (Ai, Al) = −
r∑
kl

djkakl(BV (A))il

Using the symmetry of the Killing form, we have

−
r∑
kl

djkakl(BV (A))il = −
r∑
kl

djkakl(BV (A))li =

−
r∑
kl

djkakl(a
−1)li = −

r∑
k

djkδki = −dji

Thus we have

BV ([Ai, X], A′j) = −dji

and we can conclude that cij = −dji. Thus we have our desired result and
we can affirm that CV (Xv) −X(CV v) = 0, or that CV and X commute for
all X in ĝ.

Finally, we show that the third property of the Casimir operator men-
tioned above, i.e., the trace the Casimir operator CV is equal to the dimension
of ĝ. Now we have

trace(CV ) = trace(
r∑
i=1

Ai ◦ A′i) =
r∑
i=1

(trace(Ai ◦ A′i))

and
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trace(Ai ◦ A′i) = BV (Ai, A
′
i) = BV (A′i, Ai) = (BV (A′i))(Ai) = A∗i (Ai) = δii

Thus

trace(CV ) =
r∑
i=1

(trace(Ai ◦ A′i)) =
r∑
i=1

δii = r

We note that none of the above discussion of the Casimir operator depended
on the field of scalars of the Lie algebra ĝ except that it must be of charac-
teristic 0. Thus the field of scalars of ĝ can be either lR or lC.

2.15.3 The Complete Reducibility of a Representation of a Semi-
simple Lie Algebra. We can now return to giving the proof of the complete
reducibility of a representation of a semisimple Lie algebra. We recall the
wording of the theorem.

Let V be a representation of a semisimple Lie algebra ĝ and let W be

an invariant subspace of ĝ. Then there exists a subspace W ′ of V

invariant by ĝ which is complementary, i.e., V = W ⊕W ′.

Here is the situation: we have a linear space V of dimension n, a semisim-
ple Lie algebra ĝ, and a representation ρ of ĝ on V . [This structure is
frequently described by saying that V is a ĝ-module, and the ĝ-invariant
subspace W is a ĝ-submodule. But we will continue to use the original ter-
minology, i.e., we will call it a representation ρ of ĝ on V The reader may
run into this alternative terminology and thus we mention it here.]. This
means that we have a Lie algebra homomorphism ρ of ĝ into the Lie algebra
ĝl(V ). Also since Lie algebra homomorphisms carry semisimple Lie algebras
to semisimple Lie algebras, we know that ρ(ĝ) is also semisimple and of di-
mension r < n2. [We remark that r 6= n2 since ĝl(V ) always has a center,
which means ĝl(V ) has a non-zero radical, and thus it is not semisimple.] Let
W be a proper subspace of V which is invariant by ρ(ĝ), i.e., (ρ(ĝ))(W ) ⊂ W ,
and W 6= 0 and W 6= V . [By the way this means that V must be at least two-
dimensional.] It therefore seems obvious that we should be taking quotient
spaces and using a proof by induction on the dimension n of V .

Thus we begin by forming the quotient space V/W of dimension less than n.
First we show that for any invariant proper subspace, the representation ρ
of ĝ on V induces a representation ρ′ of ĝ on V/W . Thus for X in ρ(ĝ) and
v in V we have by invariance

X(v +W ) = X(v) +X(W ) ⊂ X(v) +W
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and we therefore define X(v + W ) := X(v) + W . [We review quickly why
this procedure is valid. Let v1 and v2 belong to the same coset. This
means that v1 − v2 belongs to W . Now X(v1 + W ) ⊂ X(v1) + W and
X(v2+W ) ⊂ X(v2)+W . Calculating, we have (X(v1)+W )−(X(v2)+W ) =
(X(v1)−X(v2)) +W = (X(v1 − v2)) +W = W , since v1 − v2 belongs to W
and X leaves W invariant. Thus cosets go to cosets by X.]

Now X is linear since

X((v1 +W ) + (v2 +W )) = X(v1) +X(W ) +X(v2) +X(W ) ⊂
X(v1) +W +X(v2) +W = (X(v1) +X(v2)) +W

and if c is a scalar then

X(c(v1 +W )) = c(X(v1) +X(W )) ⊂ c(X(v1) +W )

We conclude that ρ′(ĝ) is in ĝl(V/W ).

Now we must show that brackets go to brackets. For if ρ(x) = X and
ρ(y) = Y , we have

ρ([x, y])(v +W ) = [ρ(x), ρ(y)](v +W ) = [X, Y ](v +W ) =
X(Y (v +W ))− Y (X(v +W )) =

X(Y (v))+X(Y (W ))−Y (X(v))−Y (X(W )) ⊂ X(Y (v))+W−Y (X(v))+W =
X(Y (v))− Y (X(v)) +W = [X, Y ](v) +W

and we have

ρ([x, y])(v +W ) = ρ([x, y])(v) + ρ([x, y])(W ) ⊂ ρ([x, y])(v) +W =
[ρ(x), ρ(y)](v) +W = [X, Y ](v) +W

Hence we have a representation ρ′ of ĝ on the linear space V/W that is
induced by ρ.

Since W is a proper subspace of V , we know that the dimension of V/W
is less than the dimension of V . Let us say that the dimension of W is m < n.
First we assume that W is itself reducible. (Now in this case we can set up
the process of induction.)

This means that there is subspace W ′ in W , not equal to W or to 0, that
is invariant by ρ(ĝ). Thus V must now be at least three-dimensional.

Here is where it would be good to look at an example to give us a feeling
for what has to be done, Now we know that we have an eight-dimensional
simple Lie algebra which we have met before in 2.15.2, namely â2. We know
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that â2 has a basis of eight elements (h1, h2, e1, e2, e3, f1, f2, f3) whose brack-
ets are given in 2.15.2. And we have a representation of â2 on lC3, given by a
homomorphism ρ of â2 into ĝl(lC3), where ρ(â2) = ŝl(3, lC), the 3x3 complex
trace zero matrices in ĝl(lC3). We map this basis (h1, h2, e1, e2, e3, f1, f2, f3)
of â2 to eight trace 0 matrices in ĝl(lC3), by the following correspondences:

h1 7−→ ρ(h1) = H1 = E11 − E22

h2 7−→ ρ(h2) = H2 = E22 − E33

e1 7−→ ρ(e1) = E12

e2 7−→ ρ(e2) = E13

e3 7−→ ρ(e3) = E23

f1 7−→ ρ(f1) = E21

f2 7−→ ρ(f2) = E31

f3 7−→ ρ(f3) = E32

This map we know from 2.15.2 is a homomorphism of Lie algebras. A typical
matrix in ĝl(lC3) then is given by

c1H1 + c2H2 + c3E12 + c4E13 + c5E23 + c6E21 + c7E31 + c8E32 = c1 c3 c4
c6 −c1 + c2 c5
c7 c8 −c2


where the ci are in lC.

In this 3-dimensional example V = lC3, and thus to start the induction
we must show that the theorem holds in this case. Thus we must find a
two-dimensional subspace W of V which is invariant by ρ(â2) = ŝl(3, lC).

+++++++++++++++++++++++++++++++++++++++++++
Here is also where we need a more general 2-dimensional invariant subspace
to be our ground case. And we need a proof of the ground case. Thus the
induction proof has a gap that we hope our readers can fill in. We ran out of
time and inspiration at this point. Assuming that we have such a space and
that we have shown that the theorem holds for this case we proceed below
on the inductive steps.

We also think that the proof of the ground case, as we said, will strongly
resemble the proof offered below for the inductive case(s) but we ran out of
time and inspiration for carrying through our thoughts. The reader is invited
to fill in the gaps that exist.
+++++++++++++++++++++++++++++++++++++++++++
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Assuming that the ground case has been proved, we now look at dimen-
sions bigger than the ground case and we let W ′ be any invariant subspace
of any invariant subspace W of V . We form the linear space V/W ′. From
above we know that ρ induces a representation ρ′ on V/W ′. [We remark that
we are using the symbol ρ′ for the induced representation on any quotient
space and thus there should be no ambiguity.] We then proceed to show that
W/W ′ is an invariant subspace of V/W ′, We start by letting X be in ρ(ĝ).
We then have for w in W that

X(w +W ′) = X(w) +X(W ′) ⊂ X(w) +W ′

which is in W/W ′ since X(w) is in W . Thus, the induction assumption says
that there exists a complementary subspace Z/W ′ invariant by ρ′(ĝ) such
that V/W ′ = W/W ′ ⊕ Z/W ′. This says V + W ′ = W + W ′ + Z + W ′ and
thus V +W ′ = W+Z+W ′ or V = W+Z. It also says that W/W ′∩Z/W ′ = 0
[as a coset] or (W + W ′) ∩ (Z + W ′) ⊂ W ′; and thus (W ∩ Z) + W ′ ⊂ W ′,
which says that (W ∩ Z) ⊂ W ′. We seek now an estimate of the size of the
dimension of Z. We know that

n− dimW ′ = m− dimW ′ + dimZ − dimW ′

n = m− dimW ′ + dimZ
dimZ = n− (m− dimW ′) < n−m < n

Since W ′ ⊂ Z is invariant by ρ(ĝ), another induction argument gives a
subspace L of Z invariant by ρ(ĝ) such that Z = W ′ ⊕ L. We have

V = W + Z = W +W ′ + L = W + L

Now since W ∩Z ⊂ W ′ and Z = W ′⊕L, we have that W ∩ (W ′⊕L) ⊂ W ′.
and thus L is not part of W . Therefore W ∩L = 0 and this gives V = W ⊕L,
which is our desired conclusion when the invariant subspace W of V is itself
reducible.

However when W is irreducible, i.e., when ρ(ĝ) leaves no subspace of W
invariant except 0 and W , then we do not have a W ′ nor can an inductive
argument as that given above be set up. Moreover, how to proceed from here
is not obvious. In fact, a whole new and surprising direction must be taken
in this case.

We begin this new direction by first choosing our representation spaces
for ĝ to be linear spaces of linear maps involving V and W .

Since W ⊂ V , we have two related sets of maps of linear spaces involving
V and W : Hom(V,W ) and Hom(W,W ) = End(W ). We choose each of
these as a representation space of ĝ, giving us linear spaces of linear maps
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of dimension nm and m2 respectively. On each of these we seek to define a
ĝ-representation: a ρ1(ĝ) in ĝl(Hom(V,W )) and ρ2(ĝ) in ĝl(End(W )).

By hypothesis we already have a ĝ-representation ρ on V .

ĝ −→ ρ(ĝ) ⊂ ĝl(V )
x 7−→ ρ(x) = X

Now we want to define a linear map of ρ1(ĝ) into ĝl(Hom(V,W )) which
preserves the bracket. To do this, we take advantage of the composition of
linear maps.

ĝ −→ ρ1(ĝ) ∈ ĝl(Hom(V,W ))
x 7−→ ρ1(x) = X·

x 7−→ X· : Hom(V,W ) −→ Hom(V,W )
φ 7−→ X · φ := −φ ◦X = −φX

[Note that the necessity of the negative sign in this definition is certainly
not obvious, but indeed it is needed below to prove that [X, Y ]· = [X·, Y ·]
holds. Note, too, the special use of a dot to denote a special kind of function
composition.]

Linearity is obvious. We have for X and Y in ρ(ĝ) and c a scalar that

(X1 +X2) · φ = −φ(X1 +X2) = −φ(X1)− φX2) = (X1) · φ+ (X2) · φ =
(X1 ·+X2·) · φ

(cX) · φ = −φ(cX) = c(−φX) = c(X · φ) = (c(X·))φ

Showing the bracket preservation is more delicate. There is no way that we
can compose two functions in Hom(V,W ). But we can use the fact that the
composition of functions does associate. We have for X and Y in ρ(ĝ):

φ 7−→ [X, Y ] · φ = −φ[X, Y ] = −φ(XY − Y X) = −φ(XY ) + φ(Y X) =
(−φX)Y + (φY )X = −Y · (−φX)−X · (φY ) = −Y · (X ·φ)−X · (−Y ·φ) =

−(Y ·X·)φ+ (X · Y ·)φ = (−Y ·X ·+X · Y ·)φ = [X·, Y ·]φ

And thus we have the desired relation [X, Y ]· = [X·, Y ·].

In the same manner we have a representation of ĝ onHom(W,W ) = End(W ).
We define a linear map of ρ2(ĝ) into ĝl(End(W )) by

ρ2(ĝ) −→ ĝl(End(W ))
X 7−→ X· : End(W ) −→ End(W )

ψ 7−→ X · ψ := −ψ ◦X|W = −ψ(X|W )
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Note that this definition is valid since for all X in ρ(ĝ), X restricted to W
leaves W invariant. (It is here where we use the invariance of W by ρ(ĝ).)
Also, note that we will symbolize both representations ρ1 and ρ2 of ĝ by
ρ′, and for X in ρ(ĝ) we will use, as we did above, the symbol X· for both
representations.

Now we define the restriction map σ, a linear map which takesHom(V,W )
into Hom(W,W ) and which respects the representation[in the sense that σ
commutes with X·: (X·)σ = σ(X·). We define it as follows:

Hom(V,W )
σ−→ Hom(W,W )

φ 7−→ σ(φ) := φ|W

Linearity is straightforward.

σ(φ1 + φ2) = (φ1 + φ2)|W = φ1|W + φ2|W = σ(φ1) + σ(φ2)
σ(cφ) = (cφ)|W = c(φ|W ) = cσ(φ)

(where, of course, c is a scalar).

We now consider the following diagram for the representations:

-Hom(V,W ) Hom(W,W )
σ

? ?

X· X·

-Hom(V,W ) Hom(W,W )
σ

φ 7−→ σ(φ) 7−→ X · σ(φ) = X · φ|W = −φ|WX|W
φ 7−→ X · φ 7−→ σ(X · φ) = σ(−φX) = (−φX)|W = −φ|WX|W

and we see that it is commutative. Thus we can conclude that σ respects the
representation, i.e.,

(X·)σ = σ(X·).

We now have arrived at the crucial steps in our attempt to show that
W ⊂ V – which is invariant and irreducible by ρ(ĝ), – has a complementary
subset W ′ which is also invariant and irreducible.

We outline our approach.
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Observation 1) Starting with the subspace W , we can form a new in-
variant and irreducible subspace of V of dimension n − 1 which will have a
complementary subspace of dimension one and thus will be irreducible, and
invariant.

Since W ⊂ V , we have two related sets of maps of linear spaces involving V
and W : Hom(V,W ) and Hom(W,W ) = End(W ). We choose each of these
as a representation space of ĝ, giving us linear spaces of linear maps of dimen-
sions nm and m2 respectively. On each of these we define a ĝ-representation:
ρ1(ĝ) in ĝl(Hom(V,W )) and ρ2(ĝ) in ĝl(End(W )).

By hypothesis we already have a ĝ-representation ρ on V .

ĝ −→ ρ(ĝ) ⊂ ĝl(V )
x 7−→ ρ(x) = X

since we defined a linear map of ρ1(ĝ) into ĝl(Hom(V,W )) which preserves
the bracket:

ĝ −→ ρ1(ĝ) ∈ ĝl(Hom(V,W ))
x 7−→ ρ1(x) = X·

x 7−→ X· : Hom(V,W ) −→ Hom(V,W )
φ 7−→ X · φ := −φ ◦X = −φX

And thus we have the desired relation [X, Y ]· = [X·, Y ·]. In the same
manner we have a representation of ĝ on Hom(W,W ) = End(W ). We
defined a linear map of ρ2(ĝ) into ĝl(End(W )) by

ρ2(ĝ) −→ ĝl(End(W ))
X 7−→ X· : End(W ) −→ End(W )

ψ 7−→ X · ψ := −ψ ◦X|W = −ψ(X|W )

This definition is valid since for all X in ρ(ĝ), X restricted to W leaves W
invariant. It is here where we use the invariance of W by ρ(ĝ). We will
symbolize both representations ρ1 and ρ2 of ĝ by ρ′, and for X in ρ(ĝ) we
will use, as above, the symbol X· for both representations.

Observation 2) To identify this new invariant and irreducible subspace of
V of dimension n−1, we first we choose the identity map IW in Hom(W,W ),
which determines a one-dimensional set of transformations {cIW : c ∈ lC} in
Hom(W,W ). Again the target space for the restriction map σ is Hom(W,W )
and thus σ−1{(cIW )} ⊂ Hom(V,W ), and has codimension one.

Now we have already defined the restriction map σ. It is a linear map
which takes Hom(V,W ) into Hom(W,W )
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Hom(V,W )
σ−→ Hom(W,W )

φ 7−→ σ(φ) := φ|W

and which respects the representation, i.e.,

(X·)σ = σ(X·).

Now the target space for the restriction map σ is Hom(W,W ) and thus
σ−1{(cIW )} ⊂ Hom(V,W ), and has codimension one, which gives

σ−1({cIW}) = (ker(σ|σ−1({cIW })))⊕ {cIW}

Observation 3) From all of this we will be able to conclude that the
subspace ker(σ|σ−1({cIW })) of σ−1({cIW}) is an invariant subspace.

We remark immediately that the action of ĝ on {cIW} does not leave
invariant the subspace {cIW}:

X · cIW = −cIW (X|W ) = −cX|W

It still leaves Hom(W,W ) invariant but not {cIW}. However, this set of en-
domorphisms {cIW} forms a one-dimensional space, and thus the set of trans-
formations ĝl({cIW}) is one-dimensional, and brackets in such an algebra are
zero. Thus we can conclude that the only representation of a semisimple Lie
algebra on a one-dimensional linear space is the zero representation. This
gives us the following diagram.

-σ−1({cIW}) {cIW}
σ

? ?

X· (X ′)·

-σ−1({cIW}) {0IW} ⊂ {cIW}
σ

Since {cIW} is one-dimensional and the image of σ−1({cIW}), we know
that

σ−1({cIW}) = ker(σ|σ−1({cIW }))⊕{cIW}

Moreover, we affirm that X· takes σ−1({cIW}) onto itself. We also recall that
the invariance relation, modified as follows, is valid:

((X ′)·)σ = σ(X·)
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Observation 4) But knowing that W is irreducible we will be able to also
conclude that ker(σσ−1({cIW })) of co-dimension 1 is irreducible.

Now we move from our original invariant subset W of V to an irre-
ducible representation in the ker(σσ−1({cIW })) in the semisimple Lie algebra
ĝ in Hom(V,W ).

Here, too, since {cIW} is one-dimensional and is the image of σ−1({cIW}),
we know that

σ−1({cIW}) = ker(σ|σ−1({cIW }))⊕ {cIW}

We affirm , as above, that X· takes σ−1({cIW}) onto itself since the
invariance relation, modified as follows, is valid.

((X ′)·)σ = σ(X·)

This says that for any φ in σ−1({cIW}) we have

(X ′) · (σ(φ)) = σ((X·)(φ))
0IW = σ((X·)(φ))

and we can conclude that (X·)(φ) is in ker(σ|σ−1({cIW })), giving us the fact
that σ−1({cIW}) is invariant by any X in ρ(ĝ), and indeed that the subspace
ker(σ|σ−1({cIW })) of σ−1({cIW}) is an invariant subspace also.

Thus, suppose that ker(σ|σ−1({cIW })) is reducible. Then there exists a
subspace A of ker(σ|σ−1({cIW })) such that A 6= 0 and A 6= ker(σ|σ−1({cIW })),

and X · (A) ⊂ A for all X in ĝl(V ). Now we know that

dim(σ−1({cIW})) = dim(ker(σ|σ−1({cIW }))) + dim(im(σ|σ−1({cIW })))

Thus we see that the invariant subspace ker(σ|σ−1({cIW })) of σ−1({cIW})
has codimension one. Now we take any linear function ψ : V 7−→ W in
σ−1({cIW}) such that it determines a one-dimensional subspace {cψ} com-
plementary to the (ker(σ|σ−1({cIW }))), that is,

σ−1({cIW}) = (ker(σ|σ−1({cIW })))⊕ {cψ}

Putting all this information together, we can assert the following. We have
ψ(V ) = W since ψ|W = σ(ψ) = c0IW . Now W is a subspace of V . Thus we
know that V = ker(ψ)⊕W . Now for all φ in A and all X in ĝl(V ) we know
that -X · φ = φX is also in A and for φ′ in ker(σ|σ−1({cIW })) but not in A,
-X · φ′ = φ′X is not in A. This means that there exists a proper subspace
W ′ in W such that φ|W ′ = 0 and (φX)|W ′ = 0, and such that φ′|W ′ = 0 but
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such that (φ′X)|W ′ 6= 0. If not, then (φ′X)|W ′ = 0 and this would mean that
W ′ would be the same as W , or that A would be equal to ker(σ|σ−1({cIW })).
We conclude that X|W ′ ⊂ W ′ and thus W is reducible. But by hypothesis
W is irreducible, and we can therefore conclude that ker(σ|σ−1({cIW })) is also
irreducible and of co-dimension one.

Observation 5) However, what we want to assert is that it is also true
that there exists a map ψ such that the one-dimensional subspace{cψ} is
complementary to ker(σσ−1({cIW })) and invariant. [Obviously, being one-
dimensional, it is irreducible. And surprisingly, in this case we would have
proven the theorem!]

Since {cIW} is one-dimensional and the image of σ−1({cIW}), we know
that

σ−1({cIW}) = ker(σ|σ−1({cIW }))⊕ {cIW}

We affirm that X· takes σ−1({cIW}) onto itself. We still know that the
invariance relation, modified as follows, is valid:

((X ′)·)σ = σ(X·)

This says that for any φ in σ−1({cIW}) we have

(X ′) · (σ(φ)) = σ((X·)(φ))
0IW = σ((X·)(φ))

and we can conclude that (X·)(φ) is in ker(σ|σ−1({cIW })), giving us the fact
that σ−1({cIW}) is invariant by any X in ρ(ĝ), and indeed that the subspace
ker(σ|σ−1({cIW })) of σ−1({cIW}) is an invariant subspace also. We would also
like to affirm that it is irreducible.

To show this, we suppose that ker(σ|σ−1({cIW })) is reducible. Then there
exists a subspaceA of ker(σ|σ−1({cIW })) such thatA 6= 0 andA 6= ker(σ|σ−1({cIW })),

and X · (A) ⊂ A for all X in ĝl(V ). Now we know that

dim(σ−1({cIW})) = dim(ker(σ|σ−1({cIW }))) + dim(im(σ|σ−1({cIW })))

Thus we see that the invariant subspace ker(σ|σ−1({cIW })) of σ−1({cIW})
has codimension one. Now we take any linear function ψ : V 7−→ W in
σ−1({cIW}) such that it determines a one-dimensional subspace {cψ} com-
plementary to the (ker(σ|σ−1({cIW }))), that is,

σ−1({cIW}) = (ker(σ|σ−1({cIW })))⊕ {cψ}
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Once again, putting all this information together, as above, we can assert the
following. We have ψ(V ) = W since ψ|W = σ(ψ) = c0IW andW is a subspace
of V . Thus we know that V = ker(ψ)⊕W . Now for all φ in A and all X in
ĝl(V ) we know that -X · φ = φX is also in A and for φ′ in ker(σ|σ−1({cIW }))
but not in A, X · φ′ = φ′X is not in A. This means that there exists a
proper subspace W ′ in W such that φ|W ′ = 0 and (φX)|W ′ = 0, and that
φ′|W ′ = 0 but (φ′X)|W ′ 6= 0. If not, then (φ′X)|W ′ = 0, which means that W ′

would be the same as W , or that A would be equal to ker(σ|σ−1({cIW })). We
conclude that X|W ′ ⊂ W ′ and thus W is reducible. But by hypothesis W
is irreducible, and we can conclude that ker(σ|σ−1({cIW })) is also irreducible,
and of co-dimension one.

Thus we have reduced our proof to the case where W is an invariant sub-
space of V and is also irreducible. This led us to the point where we produced
a representation space for ĝ of maps σ−1(cIW ) which has a decomposition

σ−1({cIW}) = (ker(σ|σ−1({cIW })))⊕ {cψ}

and in which (ker(σ|σ−1({cIW }))) was an invariant and irreducible subspace
of codimension one of σ−1({cIW}). Here the map ψ is arbitrary in the one-
dimensional space {cψ}. Now suppose that in this case we could find a ψ
such that {cψ} is also invariant. [Obviously, being one-dimensional, it is
irreducible.] This means we would have proven the theorem in this case.

But we shall see that proving the theorem in this case also proves the the-
orem for the case when the subset W is irreducible and invariant !

In the above proof we showed that V = ker(ψ) ⊕ W . Let us rename
ker(ψ) = W ′. Now what does it mean for {cψ} to be an invariant subspace
of σ−1({cIW})? It says that for all X in ρ(ĝ)

X · {cψ} ⊂ {cψ}

or for some scalar c′

X · ψ = c′ψ

This gives

(ψX)(W ′) = ψ(X(W ′)) = c′ψ(W ′) = 0

since W ′ is the kernel of ψ. We can conclude the X(W ′) is also in ker(ψ) =
W ′, and thus W ′ is invariant by ρ(ĝ) – the conclusion we have been seeking.
Recall that the subspace W in this discussion was proper, invariant and also
irreducible, but of any codimension.
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Thus we are now reduced to proving the theorem in the case where we
have an irreducible invariant subspace W of codimension one, that is, we
need to prove that an irreducible invariant subspace W of codimension one
has a complementary one-dimensional invariant subspace. It is here that we
need the completely new tool to effect this proof, and that tool is the Casimir
operator (which we treated in 2.15.2).

+++++++++++++++++++++++++++++++++++++++++++
Note that in the 3-dimensional base case cited above, if one has a two-
dimensional invariant subspace then the proof given here would apply, it
seems, to the base case as well, unless, of course, the base case is assumed in
this part of the proof.
+++++++++++++++++++++++++++++++++++++++++++

Observation 6) But proving the theorem in the case given in Observation
5 also proves the

THEOREM: A semisimple Lie algebra has a representation that is
completely reducible

for the only case which remains, that is, when the subset W is irreducible and
invariant. In this proof we show that V = ker(ψ)⊕W , where ker(ψ) is the
invariant subspace of V that we are seeking. Let us rename ker(ψ) = W ′.

Let us now make the following assumption. We return to our original
expression of our theorem in this particular case. Thus if V is any finite
dimensional linear space over a field lF and W is any irreducible invariant
subspace of codimension one, let us then assume that under these conditions
the theorem is valid, i.e., there exist an invariant subspace W ′ complementary
to W . In our situation the linear space is σ−1({cIW}) and the irreducible
invariant subspace of codimension one is ker(σ|σ−1({cIW })). Thus we can find
a ψ such that {cψ} is an invariant subspace of σ−1({cIW}) complementary
to ker(σ|σ−1({cIW })).

Now under this assumption we can show that V = ker(ψ)⊕W . Having
called ker(ψ) = W ′, we thus have the conclusion of our theorem: V =
W ′ ⊕W .

Now what does it mean for {cψ} to be an invariant subspace of σ−1({cIW})?
It says that for all X in ρ(ĝ)

X · {cψ} ⊂ {cψ}

or that for some scalar c′
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X · ψ = c′ψ

This gives

(ψX)(W ′) = ψ(X(W ′)) = c′ψ(W ′) = 0

We can conclude the X(W ′) is in ker(ψ) = W ′, and thus W ′ is invariant
by ρ(ĝ), the conclusion we have been seeking. Thus in this case we would
have proved our Theorem. Recall that the subspace W in this discussion was
proper, invariant and also irreducible, but of any codimension.

But this conclusion is valid only on the assumption that for any irreducible
invariant subspace W of codimension one there exist an invariant subspace
W ′ complementary to W .

To prove this assumption we need the Casimir operator.

Since ρ(ĝ) is semisimple, we know that it has a nondegenerate Killing
form on V , and thus we can define a Casimir operator CV on V .

We now want to set up the situation so that we can apply Schur’s Lemma
[Appendix A.1.13]. We have only one linear space W . We also have ρ(ĝ)
acting irreducibly on W . Now we need CV to act invariantly on W . But
CV =

∑r
i=1AiA

′
i for an arbitrary basis (Ai) in ρ(ĝ). Since both Ai and A′i

are in ρ(ĝ), and W invariant by ρ(ĝ), then CV (W ) ⊂ W . [We remark that
even though both Ai and A′i are in ρ(ĝ), AiA

′
i is not the bracket product and

thus AiA
′
i is not necessarily in ρ(ĝ).] By the commutativity of the Casimir

operator, we know that for all w in W and for all X in ρ(ĝ), X(CV (w)) =
CV (X(w)). Since ρ(ĝ) acts irreducibly on W , Schur’s Lemma says that CV
is either an isomorphism or the zero map. But since the trace of CV is equal
to r 6= 0, CV is certainly not the zero map. Thus we know that CV is an
isomorphism on W . And thus we can conclude that im(CV ) = W .

Since the co-dimension of W is one, if we can show that ker(CV ) 6= 0, we
would know that it is one-dimensional, and we would have V = W⊕ker(CV ).
We now go to the quotient space V/W . This is one-dimensional. Now from
the invariance of W we have shown above that ρ(ĝ) induces a representation
ρ′(ĝ) of ĝ on V/W . Now since this representation is one-dimensional and
since ĝ is semisimple, we know that this must be the zero representation in
V/W . Thus ρ′(ĝ) = 0. This means

CV (v +W ) = (
r∑
i

AiA
′
i)(v +W ) ⊂ W
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since A′, A are both in ρ(ĝ), and the sum
∑r
i AiA

′
i is also in ρ(ĝ). Thus this

quantity acting on any coset must go into the zero coset, which is W . We can
conclude then that CV acting on any element of V must have its image in
W , and thus ker(CV ) is non-empty and, of course, is one-dimensional. [We
remark that in this argument we needed once again that ρ(ĝ) be semisimple,
since we used the fact that ρ′(ĝ) = ρ′(D(ĝ)) = [ρ′(ĝ), ρ′(ĝ)] = 0. We also
needed semisimplicity to conclude that the Killing form on V was nondegen-
erate. Now above we showed that ĝl(V ), even though it is not semisimple,
did have a nondegenerate Killing form on V , and thus had a Casimir opera-
tor. But since ĝl(V ) is not semisimple, it is possible to have images in V/W
which are not zero, but whose brackets would be zero, as required for the
one-dimensional representation. Thus in this situation we could not conclude
that the Casimir operator, even though defined for ĝl(V ), would have a non-
zero kernel.]

We now have V = W ⊕ ker(CV ). To complete the argument we need to
show that ker(CV ) is invariant by ρ(ĝ). We let v 6= 0 in V be in the ker(CV ).
We show that X(v) is also in the ker(CV ) for any X in ρ(ĝ). This is true
because of the commutativity of CV and X.

CV (X(v)) = X(CV (v)) = X(0) = 0

And thus we can conclude that if W is an irreducible subspace of V of
codimension one, there exist a complementary one-dimensional subspace W ′

also invariant by ρ(ĝ), namely, W ′ = ker(CV ).

With this we have reached our conclusion that W as a proper invariant
subset of whatever dimension of V has a complementary subset W ′ = ker(ψ)
which is invariant by ĝ.

2.16 Levi Decomposition Theorem

Recall that an arbitrary Lie algebra ĝ possesses a radical, which we denote
by r̂. If r̂ = 0, then by definition ĝ is semisimple. Let us assume now that
r̂ 6= 0. Since this radical is an ideal, we can form the quotient Lie algebra
ĝ/r̂. This gives us the short exact sequence

0 −→ r̂ −→ ĝ −→ ĝ/r̂ −→ 0

We proved that this quotient Lie algebra is indeed semisimple. [See 2.4.]
The question now is: does this short exact sequence split? There is a famous
theorem of Levi that gives a positive answer to this question, namely that
there exists a Levi factor l̂ [a Lie algebra] such that l̂ is isomorphic to ĝ/r̂
[and thus l̂ is semisimple] and such that

196



ĝ = l̂ ⊕ r̂

We note, however, that the above expression is just a linear space direct sum
and not a direct sum of Lie algebras. The bracket of l̂ with r̂ does not have
to be zero. Since r̂ is an ideal, we know that [l̂, r̂] ⊂ r̂ but it is not necessarily
0. [As we remarked above in 2.4, we call this a semi-direct product of Lie
algebras.]

2.16.1 ĝ = D1ĝ does not always imply that ĝ is semisimple. Before
we present a proof of the Levi decomposition theorem, we first would like to
recall that we have shown that for any semisimple Lie algebra ĝ, D1ĝ = ĝ
[See 2.10.2.] At this moment we would like to show that this condition is not
sufficient, that is, the condition D1ĝ = ĝ does not necessarily imply that ĝ is
semisimple.

Here is an example. Let the Lie algebra ĝ be defined as follows. First
we choose any semisimple Lie algebra ĥ, and let ρ be a representation of
ĥ on a linear space V over a field lF such that no linear subspace of V is
left invariant by ρ(ĥ) except the two improper subspaces 0 and V . (This,
of course, says that the representation is irreducible.) We then define a Lie
algebra ĝ = ĥ⊕ V , where the bracket in ĥ is already defined because it is a
Lie algebra. We make V into an abelian Lie algebra by defining its brackets
to be 0. In addition we define a twisted bracket product between ĥ and V :

[(x1, v1), (x2, v2)] := ([x1, x2], ρ(x1) · (v2)− ρ(x2) · (v1))

We now show that this set up does indeed define ĝ to be a Lie algebra.

In the following we use the fact that ρ is a linear map from ĥ to End(V ),
i.e., for x1 and x2 in ĥ, we have ρ(x1 +x2) = ρ(x1)+ρ(x2); and for x in ĥ and
c in lF, we have ρ(cx) = cρ(x). Likewise since ρ(x) is a linear transformation
on V , for v1 and v2 in V , we have ρ(x) · (v1 + v2) = ρ(x) · (v1) + ρ(x) · (v2);
and for v in V and for c in lF, we have ρ(x) · (cv) = c(ρ(x) · v).

We have distribution on the right for this bracket.

[(x1, v1) + (x2, v2), (x3, v3)] =
[(x1 + x2, v1 + v2), (x3, v3)] =

([x1 + x2, x3], ρ(x1 + x2) · (v3)− ρ(x3) · (v1 + v2)) =
([x1, x3] + [x2, x3], (ρ(x1) + ρ(x2)) · (v3)− ρ(x3) · (v1 + v2)) =

([x1, x3] + [x2, x3], ρ(x1) · (v3) + ρ(x2) · (v3)− ρ(x3) · (v1)− ρ(x3) · (v2)) =
([x1, x3], ρ(x1) · (v3)− ρ(x3) · (v1)) + ([x2, x3], ρ(x2) · (v3)− ρ(x3) · (v2)) =

[(x1, v1), (x3, v3)] + [(x2, v2), (x3, v3)]

Likewise we can show that we have distribution on the left. Also we have
the distributivity property for scalars. For let c be in the field lF. Then
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c[(x1, v1), (x2, v2)] = c([x1, x2], ρ(x1) · (v2)− ρ(x2) · (v1)) =
(c[x1, x2], c(ρ(x1) · (v2)− ρ(x2) · (v1))) =

([cx1, x2], (c(ρ(x1) · (v2))− c(ρ(x2) · (v1)))) =
([cx1, x2], (cρ(x1)) · (v2)− ρ(x2) · (cv1)) =
([cx1, x2], (ρ(cx1)) · (v2)− ρ(x2) · (cv1)) =
[(cx1, cv1), (x2, v2)] = [c(x1, v1), (x2, v2)]

and

c[(x1, v1), (x2, v2)] = c([x1, x2], ρ(x1) · (v2)− ρ(x2) · (v1)) =
(c[x1, x2], c(ρ(x1) · (v2)− ρ(x2) · (v1))) =

([x1, cx2], (c(ρ(x1) · (v2))− c(ρ(x2) · (v1)))) =
([x1, cx2], ρ(x1) · (cv2)− cρ(x2) · (v1)) =

([x1, cx2], ρ(x1) · (cv2)− (ρ(cx2)) · (v1)) =
[(x1, v1), (cx2, cv2)] = [(x1, v1), c(x2, v2)]

Now we show that this bracket gives us the structure of a Lie algebra over
lF. We need to show the anticommutativity property of the bracket:

[(x2, v2), (x1, v1)] = ([x2, x1], ρ(x2) · (v1)− ρ(x1) · (v2)) =
(−[x1, x2],−(ρ(x1) · (v2)− ρ(x2) · (v1))) =

−([x1, x2], ρ(x1) · (v2)− ρ(x2) · (v1)) = −[(x1, v1), (x2, v2)]

Finally, we verify the Jacobian identity:

[[(x1, v1), (x2, v2)], (x3, v3)] = [([x1, x2], ρ(x1) · (v2)− ρ(x2) · (v1)), (x3, v3)] =
([[x1, x2], x3], ρ([x1, x2]) · (v3)− ρ(x3) · (ρ(x1) · (v2)− ρ(x2) · (v1))) =

([[x1, x2], x3], [ρ(x1), ρ(x2)] · (v3)−ρ(x3) · (ρ(x1) · (v2))+ρ(x3) · (ρ(x2) · (v1))) =
([[x1, x2], x3],
(ρ(x1)ρ(x2)− ρ(x2)ρ(x1)) · (v3)− (ρ(x3)ρ(x1)) · (v2) + (ρ(x3)ρ(x2)) · (v1)) =
([[x1, x2], x3],
(ρ(x1)ρ(x2)) ·(v3)−(ρ(x2)ρ(x1)) ·(v3)−(ρ(x3)ρ(x1)) ·(v2)+(ρ(x3)ρ(x2)) ·(v1))

[[(x3, v3), (x1, v1)], (x2, v2)] = [([x3, x1], ρ(x3) · (v1)− ρ(x1) · (v3)), (x2, v2)] =
([[x3, x1], x2], ρ([x3, x1]) · (v2)− ρ(x2) · (ρ(x3) · (v1)− ρ(x1) · (v3))) =

([[x3, x1], x2], [ρ(x3), ρ(x1)] · (v2)−ρ(x2) · (ρ(x3) · (v1))+ρ(x2) · (ρ(x1) · (v3))) =
([[x3, x1], x2],
(ρ(x3)ρ(x1)− ρ(x1)ρ(x3)) · (v2)− (ρ(x2)ρ(x3)) · (v1) + (ρ(x2)ρ(x1)) · (v3)) =
([[x3, x1], x2],
(ρ(x3)ρ(x1)) ·(v2)−(ρ(x1)ρ(x3)) ·(v2)−(ρ(x2)ρ(x3)) ·(v1)+(ρ(x2)ρ(x1)) ·(v3))

[[(x2, v2), (x3, v3)], (x1, v1)] = [([x2, x3], ρ(x2) · (v3)− ρ(x3) · (v2)), (x1, v1)] =
([[x2, x3], x1], ρ([x2, x3]) · (v1)− ρ(x1) · (ρ(x2) · (v3)− ρ(x3) · (v2))) =

([[x2, x3], x1], [ρ(x2), ρ(x3)] · (v1)−ρ(x1) · (ρ(x2) · (v3))+ρ(x1) · (ρ(x3) · (v2))) =
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([[x2, x3], x1],
(ρ(x2)ρ(x3)− ρ(x3)ρ(x2)) · (v1)− (ρ(x1)ρ(x2)) · (v3) + (ρ(x1)ρ(x3)) · (v2)) =
([[x2, x3], x1],
(ρ(x2)ρ(x3)) ·(v1)−(ρ(x3)ρ(x2)) ·(v1)−(ρ(x1)ρ(x2)) ·(v3)+(ρ(x1)ρ(x3)) ·(v2))

Obviously the ĥ-component of these three expressions adds to zero since this
is the Jacobi identity in ĥ. The V -component has 12 terms, 6 positive and
6 negative. On inspection we see that the 6 positive terms are balanced by
the 6 negative terms, giving zero for the V -component also. Thus we have
verified the Jacobi identity in ĝ = ĥ⊕V , and we can conclude that ĝ = ĥ⊕V
is a Lie algebra over lF.

We now show that V is a solvable ideal in ĝ. For an arbitrary (x, v) in
ĝ and an arbitrary (0, u) in V , we have [(x, v), (0, u)] = ([x, 0], ρ(x) · u −
ρ(0) · v) = (0, ρ(x) · u) which is certainly in V . Thus we know that V is
an ideal in ĝ. Now for any two elements (0, u1) and (0, u2) in V , we have
[(0, u1), (0, u2)] = ([0, 0], ρ(0) · u2 − ρ(0) · u1) = (0, 0). Thus we see that V is
actually an abelian ideal and thus is solvable.

However we can assert more. We can say that V is actually the radical
of ĝ. Suppose W is a solvable ideal in ĝ. Let (x1, v1) and (x2, v2) be two
elements in W . Then [(x1, v1), (x2, v2)] = ([x1, x2], ρ(x1) · v2 − ρ(x2) · v1).
Now the ĥ-component of this product, by iterations of the bracket product
in ĥ, can never be pulled down to 0 since we know that ĥ is semisimple, and
thus [ĥ, ĥ] = ĥ. Thus the only way of having W solvable is that it have no
ĥ-component. We conclude that W is contained in V , thus making V the
radical of ĝ.

Finally, we calculate D1ĝ = [ĝ, ĝ] = [ĥ⊕V, ĥ⊕V ]. Now the ĥ-component
of the bracket product gives [ĥ, ĥ] = ĥ, since ĥ is semisimple. For the V -
component of the bracket product, we take arbitrary (x1, v1) and (x2, v2) in ĝ
and calculate the V -component of the bracket product, ρ(x1) · v2− ρ(x2) · v1.
We wish to show that for any v in V , there is a pair ((x1, v1), (x2, v2)) such
that v = ρ(x1) · v2 − ρ(x2) · v1. Suppose there is no such pair. First let
us fix one element of the pair, say, (x1, v1); and let us suppose we cannot
reach v0 in V by v0 = ρ(x1) · v2 − ρ(x2) · v1 for any x2 in ĥ and any v2 in
V . We can write this as v0 6∈ ρ(x1) · V − ρ(ĥ) · v1. Suppose now that we
choose the subset ρ(ĥ) · 0 in ρ(ĥ) · V . This gives v0 6∈ ρ(ĥ) · V − ρ(ĥ) · 0,
or equivalently v0 6∈ ρ(ĥ) · V . This says that for all x in ĥ and all v in V ,
ρ(x) · (v) 6= v0. But this statement is equivalent to asserting that the map
ρ(ĥ) operating on V is not surjective. Then ρ(ĥ) · V would give a proper
subspace W of V . But ρ(ĥ) ·W would again be in W . But this means that
W is a proper invariant subspace of V by ρ(ĥ). However we know that ρ is an
irreducible representation on V , and thus has no invariant subspaces except
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the two improper ones. We can therefore conclude that ρ(ĥ) operating on V
is surjective, and thus we have D1ĝ = D1(ĥ⊕ V ) = ĥ⊕ V = ĝ.

We have shown that D1ĝ = ĝ can be true even if ĝ is not semisimple. For
if ĝ = ĥ⊕V , then we know that D1ĝ = ĝ, but since ĝ has a non-trivial radical
V , it certainly is not semisimple. What is interesting about this example is
that it illustrates the Levi Decomposition Theorem. ĝ is decomposed as a
direct sum of a semisimple part ĥ and the radical V of ĝ. But in this example
the radical is abelian. We will return to this example later. But at the present
moment we want to prove another fact about Lie algebras.

2.16.2 rad(â) = â ∩ r̂. We would like to show that if ĝ is a Lie algebra
and r̂ is its radical, then for any other ideal â of ĝ, the radical of â, rad(â),
is determined by the following relation

rad(â) = â ∩ r̂

The fact that â ∩ r̂ ⊂ rad(â) is straightforward. Since the intersection of
two ideals in ĝ is an ideal in ĝ, â∩ r̂ ⊂ â is an ideal, and thus is also an ideal
in â. And since â ∩ r̂ ⊂ r̂ is an ideal in r̂ and r̂ is solvable, then â ∩ r̂ is a
solvable ideal in â. Thus â ∩ r̂ ⊂ rad(â).

Now to prove rad(â) ⊂ â ∩ r̂, we obviously have rad(â) ⊂ â. Thus we
need to prove that rad(â) is also in r̂, the radical of ĝ. To do this we go to
quotient Lie algebras. Since â ∩ r̂ is an ideal in â, and â contains rad(â), we
have the quotient Lie algebra relation:

rad(â)/â ∩ r̂ ⊂ â/â ∩ r̂

Now if we can show that â/â∩ r̂ is the zero coset, then we can conclude that
rad(â) ⊂ â∩ r̂. We use an isomorphism theorem of linear algebra to give the
following isomorphism of Lie algebras:

â/â ∩ r̂ ∼= (â+ r̂)/r̂

Then we show that (â+ r̂)/r̂ is an ideal in ĝ/r̂:

[(â+ r̂) + r̂, ĝ + r̂] ⊂ [â+ r̂, ĝ] ⊂ [â, ĝ] + [r̂, ĝ] ⊂ â+ r̂ = (â+ r̂) + r̂

We conclude that (â + r̂)/r̂ is an ideal in ĝ/r̂. But we know that ĝ/r̂
is semisimple. Now the only ideals that a semisimple Lie algebra has are
semisimple ideals. Thus we can conclude that (â + r̂)/r̂ is semisimple. By
the above isomorphism we can assert that â/â ∩ r̂ is also semisimple. Now
we can show that rad(â)/â ∩ r̂ is an ideal in â/â ∩ r̂ and is also solvable. It
is an ideal because
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[rad(â)+(â∩r̂), â+(â∩r̂)] ⊂ [rad(â), â]+[rad(â), â∩r̂]+[â∩r̂, â]+[â∩r̂, â∩r̂] ⊂
rad(â) + â ∩ r̂ + â ∩ r̂ + â ∩ r̂ = rad(â) + â ∩ r̂

since rad(â) and â∩ r̂ are ideals. Now rad(â)/â∩ r̂ is solvable since rad(â) is
solvable, and homomorphic images of solvable Lie algebras are also solvable.
Thus we have a solvable ideal rad(â)/â ∩ r̂ contained in a semisimple ideal
â/â ∩ r̂. But the only solvable ideal that a semisimple Lie algebra can have
is the trivial ideal 0. If we unwind the quotient, this means that rad(â) is
contained in â ∩ r̂. We thus have our conclusion that rad(â) = â ∩ r̂.

2.16.3 Proof of the Levi Decomposition Theorem. We proceed
now with the proof of the Levi Decomposition Theorem. It is obvious that
we should use induction on the dimension of ĝ. Let us start, then. with
the dimension of ĝ = 1. In this case ĝ is abelian and thus the radical is
equal to ĝ, and there is nothing to prove. Now we know that there are no
two-dimensional simple Lie algebras (why is that so?) and therefore, once
again, there is nothing to prove. If we have the dimension of ĝ = 3, then
sl2(lC), the set of 2x2 trace zero matrices, forms a 3-dimensional simple Lie
algebra, and once again there is nothing to prove. Thus the first dimension
that can illustrate the theorem is where the dimension equal to 4. Here is
such a Lie algebra:

ĝ = sl2(lC)⊕ â

where â is a one-dimensional abelian Lie algebra, the radical of ĝ.

Thus we assume that the Levi Decomposition Theorem is true for all Lie
algebras whose dimension is less than the dimension of ĝ. First we want to
assume that there is an ideal â of ĝ that is properly contained in the radical
r̂, that is, 0 ⊂ â ⊂ r̂ and 0 6= â 6= r̂. This means that â is also solvable. Since
â is also properly contained in ĝ, the quotient Lie algebra ĝ/â has dimension
less than ĝ. Thus assuming the Levi Decomposition Theorem for ĝ/â, we
have

ĝ/â = r̂/â⊕ k̂/â

where the quotient algebra k̂/â is semisimple. We would now like to show that
rad(ĝ/â) is actually equal to r̂/â, which we have assumed not to be equal to
0 nor to r̂. Since r̂ is solvable, then the homomorphic image of r̂, r̂/â, is also
solvable and thus is contained in the radical rad(ĝ/â). Now let b̂/â be any
solvable subalgebra of ĝ/â. Since â is also solvable, by the homomorphism
theorem of solvable Lie algebras, we know that b̂ is also solvable in ĝ. Thus
we have b̂ contained in the radical r̂ of ĝ, giving b̂/â contained in r̂/â. But
the rad(ĝ/â) is also a solvable subalgebra of ĝ/â, and thus must be contained
in r̂/â. We conclude that r̂/â = rad(ĝ/â), giving
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ĝ/â = r̂/â⊕ k̂/â

Since r̂/â is the radical of ĝ/â, we know we have semisimple Lie algebras

(ĝ/â)/(r̂/â) ∼= ĝ/r̂ ∼= k̂/â

Recall that we are still seeking a semisimple Lie subalgebra l̂ of ĝ such that

ĝ = r̂ ⊕ l̂

that is, we need l̂ to satisfy

k̂/â ∼= l̂

Once again we can use induction on the dimension of ĝ. We calculate the
dimension of k̂.

dim(ĝ) - dim(â) = dim(r̂) - dim(â) + dim(k̂) - dim(â)
dim(ĝ) - dim(r̂) + dim(â) = dim(k̂)

But dim(r̂) > dim(â), which means that dim(ĝ) > dim(k̂). Thus we can use
induction on the Lie algebra k̂. Applying the Levi Decomposition Theorem
to k̂, we have

k̂ = rad(k̂)⊕ k̂2

where k̂2 is a semisimple Lie subalgebra of ĝ isomorphic to k̂/rad(k̂). Now
we show that the rad(k̂) = â. We know that k̂/rad(k̂) is a semisimple Lie
algebra. Now â is solvable in ĝ, thus is solvable in k̂, and thus we know
that it is in rad(k̂). Now let d̂ be any solvable subalgebra of k̂. Then d̂/â is
solvable since it is the homomorphic image of a solvable algebra d̂. Since d̂ is
contained in k̂, we have d̂/â is contained in k̂/â. But k̂/â is semisimple and
thus has no nontrivial solvable algebras. Thus d̂/â = 0, which says that d̂ is
contained in â. But since rad(k̂) is a solvable subalgebra in k̂, we know that
rad(k̂) is contained in â. We conclude that rad(k̂) = â. This gives

k̂ = â⊕ k̂2

with

â ∩ k̂2 = 0

We also know

k̂/rad(k̂) = k̂/â ∼= ĝ/r̂ ∼= k̂2
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Thus we see that k̂2 is semisimple and isomorphic to ĝ/r̂. Finally we have
from ĝ/â = r̂/â⊕ k̂/â that

ĝ + â = r̂ + â+ k̂ + â
ĝ = r̂ + k̂ = r̂ + â+ k̂2 with â ∩ k̂2 = 0

ĝ = r̂ + k̂2 with â ∩ k̂2 = 0

But knowing also that ĝ/â = r̂/â⊕k̂/â, we claim that this says that ĝ = r̂⊕k̂2.
For ĝ/â = r̂/â ⊕ k̂/â says that r̂ ∩ k̂ ⊂ â. We know that k̂2 ⊂ k̂. Since
ĝ = r̂ + k̂2, we choose a d in r̂ ∩ k̂2. But since â ∩ k̂2 = 0, we know that d is
not in â. But d in r̂ and d in k̂2 and d not in â means that d is in k̂. Thus d
is in r̂ ∩ k̂, which is contained in â. Therefore we reach a contradiction, and
thus d is not in k̂2, and we can conclude that ĝ = r̂ ⊕ k̂2. Thus we see that
k̂2 is the l̂ that we are seeking and this establishes the Levi Decomposition
Theorem in the case where ĝ has a solvable ideal â which is also contained
properly in the radical r̂ of ĝ.

But what is the situation if the above condition for â is not true? We
make the following observations. Under certain conditions we know that the
above ideal â always exists. Since r̂ is a solvable Lie algebra, we know that
for some k, Dkr̂, which is an ideal in r̂, is not equal to 0, but Dk+1r̂ = 0. Also
we know that r̂ 6= D1r̂, for otherwise the process of taking successive brackets
would never arrive at a Dkr̂ = 0, and having a k such that a Dkr̂ = 0 for
some k ≥ 0 is the definition of r̂ being solvable. Thus we can conclude that
in this case there is solvable ideal of r̂ which is properly contained in r̂. We
would also like to affirm that it is also an ideal of ĝ, and thus also a solvable
ideal of ĝ. Using the Jacobi identity, we have the following.

[ĝ, D1r̂] = [ĝ, [r̂, r̂]] ⊂ [[ĝ, r̂], r̂] + [r̂, [ĝ, r̂]] ⊂ [r̂, r̂] + [r̂, r̂] = [r̂, r̂] = D1r̂

Thus we see that D1r̂ is an ideal in ĝ. Continuing

[ĝ, D2r̂] = [ĝ, [D1r̂, D1r̂]] ⊂ [[ĝ, D1r̂], D1r̂] + [D1r̂, [ĝ, D1r̂]] ⊂
[D1r̂, D1r̂] + [D1r̂, D1r̂] = [D1r̂, D1r̂] = D2r̂

Continuing in this way. we can conclude that Dkr̂ is also an ideal in ĝ for
all k > 0. And thus we have a solvable ideal of ĝ properly contained in the
radical of r̂, and we know that the Levi Decomposition theorem applies to
this case.

But what happens when D1r̂ = 0, i.e., when r̂ is abelian and thus when
there is no nontrivial ideal in r̂ in the derived series of r̂? Since r̂ is an ideal
in ĝ, we know that [ĝ, r̂] ⊂ r̂. Let us read this as [ĝ, r̂] = ad(ĝ)(r̂) ⊂ r̂; that
is, we have the adjoint representation of ĝ on r̂. Now let us suppose that this
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representation is reducible. This means that there is a proper subspace â of
r̂ [0 6= â 6= r̂] which is invariant by ad(ĝ). This says that ad(ĝ)(â) ⊂ â, or
[ĝ, â] ⊂ â. [Thus, by the way, we see that the subspace â is actually an ideal
of ĝ.] Unwinding all these facts, we can assert that, even when r̂ is abelian
and when the adjoint representation of ĝ on r̂ is reducible, we have an ideal
â of ĝ properly contained in r̂, and again this is a hypothesis which enables
us to prove the Levi Decomposition Theorem. [We note, as a side remark,
that nowhere in the above proof of the theorem did we exclude the fact that
â is abelian, which it is since it is contained in r̂.]

In particular, then, we consider the case where the center ẑ of ĝ and
0 6= ẑ 6= r̂. In this case the adjoint representation of ĝ on r̂ is reducible since
the center, which is an ideal, gives ad(ĝ)(ẑ) = [ĝ, ẑ] = 0 ⊂ ẑ. This says, of
course, that the center is an ideal, and again the proof given above is valid.
In particular we get ĝ = r̂⊕ k̂2, where k̂2 is semisimple and r̂ is the maximal
abelian ideal, which is the radical, but also k̂ = ẑ⊕ k̂2, which shows how the
center, which is a solvable abelian ideal, sits in r̂ and thus in ĝ.

But suppose now that the center itself is the abelian radical, i.e., suppose
that r = z. Then ad(ĝ)ẑ = [ĝ, ẑ] = 0 ⊂ ẑ, and this says that ẑ is irreducible.
[Recall that a representation is irreducible if the only invariant subspaces
are 0 and the representation space V itself. (See 2.8.1)] Now ĝl(ĝ) is our
representation space and our representation is ad. We are now assuming
that the center ẑ of ĝ is also the radical r̂ of ĝ. We are asking, in this
case, if this radical is reducible? But ad(ĝ)ẑ = [ĝ, ẑ] = 0. Thus there is no
proper subspace of ẑ left invariant by ad(ĝ), and we can conclude that ẑ is
irreducible, and thus none of the above methods can be applied in this case.
We therefore need another method of attack.

We first remark that if the center is the radical, then D1ĝ is semisimple.
We know that [ĝ, r̂] = D1ĝ ∩ r̂ (see 2.4 but note that the proof there is not
complete – the reader is challenged to complete it). Since ẑ is the center,
we have [ĝ, ẑ] = 0 = D1ĝ ∩ ẑ. On the other hand we know that rad(D1ĝ) =
D1ĝ ∩ r̂ (see 2.16.2), and thus we have rad(D1ĝ) = D1ĝ ∩ ẑ = 0, and we can
conclude that D1ĝ is semisimple.

We also know that if the center is the radical, we have ĝ/ẑ is isomorphic
to a semisimple Lie algebra. We need then to show that this Lie algebra is
exactly D1ĝ, which we know is semisimple.

We return to the Killing form B of ĝ and to the map B of ĝ to its dual
ĝ∗ that it determines.

ĝ
B−→ ĝ∗

x −→ B(x) : ĝ −→ lF
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y −→ B(x)(y) := B(x, y)

If we restrict B to D1ĝ, we know B is an isomorphism on this part of ĝ
since D1ĝ is semisimple. (Cf. the ends of 2.14.2 and 2.14.3.) Thus, the only
element in D1ĝ that goes to 0 in ĝ∗ is the 0 element in D1ĝ ⊂ ĝ. Let k̂ be
the kernel of the B map. Then k̂ ∩D1ĝ = 0 and we have k̂ ⊕D1ĝ ⊂ ĝ. We
see that ẑ ⊂ k̂. We restrict B to ẑ.

B(ẑ) : ĝ −→ lF
B(t) : ĝ −→ lF
x 7−→ B(t)(x) = B(t, x) = tr(ad(t) ◦ ad(x)),

where t is in ẑ. Since t is in the center of ĝ, we know that [t, ĝ] = 0 = ad(t)(ĝ).
Thus ad(t) is the zero map and therefore tr(ad(t) ◦ ad(x)) = 0. Thus for t in
ẑ, B(t) is the zero map in ĝ∗, and we can conclude that ẑ is in k̂. Finally we
want to show that k̂ is an ideal in ĝ, and thus a Lie subalgebra of ĝ. Thus we
must show that [k̂, ĝ] ⊂ k̂. To do this we use the associativity of the Killing
form B. Let x and y be in ĝ and t and t1 be in k̂ . Then we have

0 = B(t)([t1, x]) = B(t, [t1, x]) = −B(t, [x, t1]) = −B([t, x], t1)

and

0 = B(t)([y, x]) = B(t, [y, x]) = −B(t, [x, y]) = −B([t, x], y)

and thus B restricted to [k̂, ĝ] acting on ĝ is the zero map, and we can conclude
that [k̂, ĝ] is in k̂, which says that k̂ is an ideal of ĝ. We now let ŝ be any
subalgebra of ĝ such that ŝ⊕ k̂⊕D1ĝ = ĝ. Now if we show that ŝ must be 0,
this will give us what we are seeking, the Levi decomposition theorem. Since
D1ĝ is an ideal, we know

ĝ/D1ĝ ∼= ŝ⊕ k̂

But we also know that ĝ/D1ĝ abelianizes ĝ, and thus ŝ⊕ k̂ is an abelian Lie
algebra. Therefore

0 = [ŝ⊕ k̂, ŝ⊕ k̂] = [ŝ, ŝ]⊕ [ŝ, k̂]⊕ [k̂, k̂] =
[ŝ, ŝ]⊕ [k̂, k̂]

which says that [ŝ, ŝ] = 0 and [k̂, k̂] = 0. Thus k̂ is an abelian ideal and must
be contained in the radical ẑ, the center of ĝ. But we also know that ẑ ⊂ k̂,
and thus we can conclude that k̂ = ẑ. This also says that ŝ must be 0 and
we have ẑ ⊕ D1ĝ = ĝ, which, of course, is a Levi decomposition of ĝ which
we have been seeking.
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Thus we now are reduced to proving the Levi Decomposition Theorem in
the case when r̂ 6= 0, is abelian and not equal to the center, and ad(ĝ) acts
irreducibly on r̂, i.e., ad(ĝ) leaves no subspace [ideal] of r̂ invariant except
0 and r̂ itself. [We remark here that this implies that the center ẑ of ĝ is
0. Here is the proof. Our hypotheses are that the radical r̂ is abelian —
ad(r̂)(r̂) = [r̂, r̂] = 0; and that ad(ĝ) acting on r̂ is irreducible. This means
that if â is contained in r̂ and ad(ĝ)(â) is contained in â, then â = r̂ or
â = 0. Now let the center be ẑ. Since ẑ is solvable, we know that it is
contained in the radical r̂. Now ad(ẑ)(ĝ) = 0 ⊂ ẑ. Thus ẑ = r̂ or ẑ = 0. But
ad(ĝ)(r̂) = r̂ 6= 0 and r̂ 6= ẑ. Thus ẑ = 0.]

We also remark that when we proved above that ĝ could be D1ĝ even if ĝ
is not semisimple (see 2.16.1) we exhibited a Lie algebra ĝ = ĥ⊕ V with an
abelian radical V and a semisimple subalgebra ĥ. And in this case we had a
representation of ĥ on V which was irreducible. We also had

[ĝ, V ] = [ĥ+ V, V ] = [ĥ, V ] + [V, V ] = [ĥ, V ] + 0 = [ĥ, V ] = V

But this also says that ad(ĝ)(V ) = V , i.e., that ad(ĝ) acts irreducibly on
the radical V , and this is exactly the situation in which we now find our-
selves. In this example we started with a semisimple Lie algebra ĥ which
acted irreducibly on an abelian Lie algebra V and produced a Lie algebra ĝ
in which the Levi Decomposition was true. However we are now given the
Lie algebra ĝ with an abelian radical on which it acts irreducibly [by the
adjoint representation] and we need to find a semisimple Lie subalgebra k̂
which is complementary to this abelian radical.

But first let us again return to our example above. We assumed that we
had a linear space ĝ which contained a semisimple Lie algebra ĥ and a com-
plementary linear subspace V , i.e., we assumed that ĝ = ĥ ⊕ V . Also we
assumed that we had an irreducible representation ρ of ĥ in V . Then we
defined a bracket product in ĝ as

[(x1, v1), (x2, v2)] := ([x1, x2], ρ(x1) · v2 − ρ(x2) · v1)

making ĝ into a Lie algebra, with ĥ being a Lie subalgebra of ĝ. Finally we
also showed that V was abelian and the radical of ĝ. Under these conditions
we proved that D1ĝ = [ĝ, ĝ] = ĝ. But we also remarked that this was an
example of the Levi Decomposition Theorem, where indeed the radical was
abelian and [ĝ, V ] = V .

But we wish to say more. We are in the context where we have a Lie
algebra ĝ and its radical r̂, which is abelian. We take any linear subspace k̂
of ĝ complementary to r̂ in ĝ, i.e., ĝ = r̂ ⊕ k̂. Now for this choice of such an
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arbitrary linear subspace, there is no reason why we can assert that it is a
Lie subalgebra of ĝ. But the Levi Decomposition Theorem allows us to say
that there are certain linear subspaces with this property, and indeed these
subspaces are semisimple Lie subalgebras. Now how does our example above
fit into this scheme? We know one more fact about the algebra ĝ. We know
that the adjoint representation of ĝ acting on the linear space r̂, the radical,
is irreducible and not equal to 0. This means the ad(ĝ) · r̂ = [ĝ, r̂] = r̂. Now
let us assume the Levi Decomposition Theorem in this case: ĝ = l̂⊕ r̂, where
l̂ is a semisimple Lie subalgebra of ĝ. Then

r̂ = [ĝ, r̂] = [l̂ ⊕ r̂, r̂] = [l̂, r̂] + [r̂, r̂] = [l̂, r̂] + 0

Here we see that [l̂, r̂] = r̂. Thus we see that [l̂, r̂] = ad(l̂) · r̂, and this
says that ad(l̂) acts irreducibly on r̂, the radical of ĝ. We now calculate the
bracket in ĝ.

[ĝ, ĝ] = [l̂ ⊕ r̂, l̂ ⊕ r̂] =
[l̂, l̂] + [l̂, r̂] + [r̂, l̂] + [r̂, r̂] =

[l̂, l̂] + [l̂, r̂] + [r̂, l̂] + 0

Choosing u1 and u2 in l̂; and s1 and s2 in r̂, we have

[(u1 + s1), (u2 + s2)] = [u1, u2] + [u1, s2] + [s1, u2] + [s1, s2] =
[u1, u2] + [u1, s2]− [u2, s1] + [s1, s2] =
[u1, u2] + ad(u1)(s2)− ad(u2)(s1) + 0

Thus we see that the bracket in ĝ follows exactly the bracket in the above
example where the irreducible representation on r̂ is now the adjoint repre-
sentation. We certainly can now conclude that under our hypotheses in ĝ we
have D1ĝ = ĝ.

We proceed now to the proof of the Levi Decomposition theorem in the
case where we are assuming that the radical r̂ of ĝ is abelian, and that ad(ĝ)
acts irreducibly on r̂, and is not equal to 0, i.e., ad(ĝ) · r̂ = [ĝ, r̂] = r̂. We
recall the proof of the theorem of the complete reducibility of a semisimple
representation. (See 2.15.3.) The final step in that proof was a reduction
in which we introduced linear spaces of maps as the representation spaces,
and then chose certain special maps which would lead us to the conclu-
sion we were seeking. Likewise we now do the same in our present proof.
Our representation space will now be the set of endomorphisms of ĝ into ĝ:
End(ĝ) = ĝl(ĝ). Thus our representation ρ will be a map from ĝ to the Lie
algebra of brackets ĝl(ĝl(ĝ)) which is linear and takes brackets to brackets.
Thus [using the symbol X· for ρ(x)] we have

207



ĝ
ρ−→ ĝl(ĝl(ĝ))

x 7−→ ρ(x) = X· : ĝl(ĝ) −→ ĝl(ĝ)
φ 7−→ X · φ

However we do have a natural representation in this case, the adjoint repre-
sentation of ĝl(ĝ) on ĝl(ĝ). And since for x in ĝ, ad(x) is in ĝl(ĝ), we take
the adjoint representation of ad(x) on ĝl(ĝ): X· := ad(ad(x)).

ĝ
ρ−→ ĝl(End(ĝ))

x 7−→ ρ(x) = X· := ad(ad(x)) : ĝl(ĝ) −→ ĝl(ĝ)
φ 7−→ X · φ = ad(ad(x))(φ) = [ad(x), φ] = ad(x)φ− φ(ad(x))

If we let X · φ act on y in ĝ, we have

(X · φ)(y) = [ad(x), φ](y) = (ad(x)φ− φ(ad(x)))(y) = [x, φ(y)]− φ[x, y]

We would now like to make explicit this representation. First we show
that X· is in ĝl(ĝl(ĝ)), that is, X· acts linearly on ĝl(ĝ).

X · (φ1 + φ2) = ad(x)(φ1 + φ2)− (φ1 + φ2)(ad(x)) =
ad(x)(φ1) + ad(x)(φ2)− φ1(ad(x))− φ2(ad(x)) =
ad(x)(φ1)− φ1(ad(x)) + ad(x)(φ2)− φ2(ad(x)) =

X · φ1 +X · φ2

For c a scalar in lF, we have

X · (cφ) = ad(x)(cφ)− (cφ)(ad(x)) = c(ad(x)φ)− c(φ(ad(x))) =
c(ad(x)φ− φ(ad(x))) = c(X · φ)

We conclude that X· does indeed belong to ĝl(ĝl(ĝ))

We now show that this map is linear, i.e.,

ρ(x1 + x2) = ρ(x1) + ρ(x2)
ρ(cx) = cρ(x)

(where c is in the scalar field lF) and that the brackets are preserved, i.e.,

ρ[x1, x2] = [ρ(x1), ρ(x2)]

We have

ρ(x1 + x2)(φ) = [ad(x1 + x2), φ] = [ad(x1) + ad(x2), φ] = [ad(x1), φ] +
[ad(x2), φ] = X1 · φ+X2 · φ = ρ(x1)(φ) + ρ(x2)(φ) = (ρ(x1) + ρ(x2))(φ)
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ρ(cx)(φ) = [ad(cx), φ] = [cad(x), φ] = c[ad(x), φ] =
c(X · φ) = c(ρ(x)φ) = (cρ(x))(φ)

ρ[x1, x2](φ) = [ad[x1, x2], φ] = [[ad(x1), ad(x2)], φ]

As would be expected, we now use the Jacobi identity. [In fact we have also
used the Jacobi identity by writing ad[x1, x2] = [ad(x1), ad(x2)], thus making
the second time we have used this identity in this proof.]

[[ad(x1), ad(x2)], φ] = [ad(x1), [ad(x2), φ]]− [ad(x2), [ad(x1), φ]] =
X1 · [ad(x2), φ]−X2 · [ad(x1), φ] = X1 · (X2 · φ)−X2 · (X1 · φ) =

((X1·)(X2·))φ− ((X2·)(X1·))φ = [X1·, X2·]φ = [ρ(x1), ρ(x2)]φ

At this point we would like to remark that the subalgebra r̂ also has a
representation on ĝl(ĝ). Obviously we define it as follows.

r̂
ρ−→ ĝl(ĝl(ĝ))

d 7−→ ρ(d) = D· : ĝl(ĝ) −→ ĝl(ĝ)
φ 7−→ D · φ := [ad(d), φ] = ad(d)φ− φ(ad(d))

If we let D · φ act on y in ĝ, we have

(D · φ)(y) = [ad(d), φ](y) = (ad(d)φ− φ(ad(d)))(y) = [d, φ(y)]− φ[d, y]

We remark that this representation is nothing but the representation ρ above
restricted to the subalgebra r̂. Since r̂ ⊂ ĝ, we know ad(ad(r̂)) ⊂ ad(ad(ĝ)) ⊂
ĝl(ĝl(ĝ)), and thus ad(ad(d)) is in ĝl(ĝl(ĝ)) for all d in r̂.

Now, as before, we define three special subspaces in ĝl(ĝ) and our argu-
ments using these subspaces are very much the same as before. We think
that going over the arguments serves here as a good method of consolidating
understanding Moreover, once again in the following, the scalars, denoted by
c, ci’s and the like, are in lF. Here are the subspaces:

C := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = cIr̂}
B := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = 0}

A := {ad(x) ∈ ĝl(ĝ)|x ∈ r̂}

[We remark immediately that A is the image of r̂ by ad:

r̂
ad−→ ad(r̂) ⊂ (ĝl(ĝ))

and since ĝ has no center, the map is an injection.]

The fact that these sets are subspaces is immediate. For C: we have for
φ1 and φ2 in C and c and ci scalars,
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(φ1 + φ2)(ĝ) = (φ1)(ĝ) + (φ2)(ĝ) ⊂ (r̂ + r̂) ⊂ r̂
(cφ)(ĝ) = c(φ(ĝ)) ⊂ (cr̂) ⊂ r̂

(φ1 + φ2)(r̂) = (φ1)(r̂) + (φ2)(r̂) = (c1Ir̂)(r̂) + (c2Ir̂)(r̂) = ((c1 + c2)Ir̂)(r̂)
(cφ)(r̂) = c(φ(r̂)) = (c(c1Ir̂))(r̂) = ((cc1)Ir̂)(r̂)

Thus we conclude that C is a subspace of ĝl(ĝ). For B: we observe that we
have the same calculations except that now all the scalar multiples, when
restricted to r̂, are mapped to 0, which fact obviously gives us the desired
conclusion that B is a subspace of ĝl(ĝ). Finally for A: as stated in a
comment above, this is indeed equal to the image of r̂ in ĝl(ĝ) by the adjoint
representation, and we know that such an image is a linear space.

We see immediately that B is contained in C [set c = 0]; and that A is
contained in B since (ad(t))x = [t, x] ∈ r̂, for we know that for t in r̂ and x
in ĝ we have [t, x] ∈ [r̂, ĝ] = r̂; and (ad(t))|r̂)(s) for t in r̂ and s in r̂ means
[t, s] is in [r̂, r̂] = 0. [We remark that here, when treating A, we are using
the full force of our hypotheses.] The set A indeed is equal to the image of
r̂ in ĝl(ĝ) by the adjoint representation under the given conditions, namely,
[r̂, ĝ] = r̂ and [r̂, r̂] = 0. The set B is the set of all φ in ĝl(ĝ) which satisfies
this condition, except now φ need not be an adjoint map ad(t) for some t in
r̂. The set C is set of all φ in ĝl(ĝ) such the φ(ĝ) is contained in r̂ and is a
scalar multiple when restricted to r̂.

We know that ĝ acts by ρ, the representation defined above, on ĝl(ĝ) and
we will now show that each of these three subspaces of ĝl(ĝ) is invariant by
ρ(ĝ).

First we want to show that ρ(ĝ)(C) ⊂ C. If X· = ρ(x) for x in ĝ, and φ
is in C, then we have for y in ĝ

(X · φ)(y) = [x, φ(y)]− φ[x, y]

But φ(y) is in r̂, since φ is in C; and thus [x, φ(y)] is in [ĝ, r̂] = r̂. Also φ[x, y]
is in r̂ since [x, y] is in ĝ and φ(ĝ) is contained in r̂. Thus [x, φ(y)]− φ[x, y]
is in r̂ and we conclude that (X · φ)(ĝ) is contained in r̂ for all x in ĝ. We
now restrict ρ(ĝ)(C) to r̂. Letting s be in r̂, we have

(X · φ)(s) = [x, φ(s)]− φ[x, s]

Since s is in r̂, φ(s) = (cI|r̂)(s) = cs. Thus [x, φ(s)] = [x, cs] = c[x, s]. Also
since [x, s] is in [ĝ, r̂] = r̂, φ[x, s] = (cI|r̂)[x, s] = c[x, s]. We conclude that

(X · φ)(s) = [x, φ(s)]− φ[x, s] = c[x, s]− c[x, s] = 0
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and thus (X · φ)(s) = 0 = (0I|r̂)(s) for all s in r̂. We can conclude that
ρ(ĝ)(C) ⊂ C. In fact we see that ρ(ĝ)(C) ⊂ B.

Next we want to show that ρ(ĝ)(B) ⊂ B. However, since B is contained in
C, we conclude that ρ(ĝ)(B) ⊂ ρ(ĝ)(C) ⊂ B. If we analyze this calculation,
as done above, we see that the first part — analyzing (X ·φ)(y) — just repeats
itself; and in second part — (X · φ)(s) — we observe all the elements are
mapped to zero. Thus we can again immediately conclude that ρ(ĝ)(B) ⊂ B.

Finally, we show that ρ(ĝ)(A) ⊂ A. If we take X· = ρ(x) for all x in ĝ
and ad(t) in A for all t in r̂, then for y in ĝ we have

(X · ad(t))(y) = [x, ad(t)(y)]− ad(t)([x, y]) = [x, [t, y]]− [t, [x, y]]

Then using the Jacobi identity in ĝ.

[x, [t, y]]− [t, [x, y]] = [x, [t, y]] + [t, [y, x]] = −[y, [x, t]] = [[x, t], y] =
ad([x, t])(y)

we thus have

X · ad(t) = ad[x, t] ∈ A

since t is in r̂ and thus [x, t] is in r̂. We can conclude that ad([x, t]) is in A,
and this says that ρ(ĝ)(A) ⊂ A. [Again we remark that in treating the set
A, we are using the full structure of the Lie algebra since we are here using
the Jacobi identity.] Also we note here that the properties of this set A will
be vital to our proof of the final phase of the Levi decomposition theorem.

Next we show that each of the three subspaces C, B and A of ĝl(ĝ) is
invariant by ρ(r̂). But we know that since r̂ ⊂ ĝ, we have immediately
ρ(r̂) ⊂ ρ(ĝ). Thus we have ρ(r̂)(C) ⊂ ρ(ĝ)(C) ⊂ C. Likewise we can
conclude that ρ(ĝ)(B) ⊂ B and ρ(ĝ)(A) ⊂ A.

However, how ρ(r̂) acts on these three subsets gives more information
than just keeping these three subsets of ĝl(ĝ) invariant. In fact how ρ(r̂) acts
on C will be an important piece of information as we conclude this proof
later on. Thus, we calculate D· = ρ(d) for d in r̂, and φ is in C. We have for
y in ĝ

(D · φ)(y) = [d, φ(y)]− φ[d, y]

But φ(y) is in r̂, since φ is in C; and thus [d, φ(y)] is in [r̂, r̂] = 0. Also φ[d, y]
is in r̂ since [d, y] is in r̂ and φ(r̂) is (cI|r̂)(r̂) = cr̂. Thus
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(D · φ)(y) = [d, φ(y)]− φ[d, y] = 0− c[d, y] = −c(ad(d)y)

giving D · φ = −c(ad(d)) with c depending on the function φ. And we can
conclude that ρ(d) for d in r̂ acting on C actually gives us an element in A
since ρ(r̂)(C) ⊂ A. Since we already know that C contains B and B contains
A, obviously we then have ρ(r̂)(B) ⊂ A and ρ(r̂)(A) ⊂ A.

However on analyzing the fact that ρ(r̂)(A) ⊂ A, we meet something vital
for our proof. If we take D· = ρ(d) and ad(t) in A for all d and t in r̂, then
for y in ĝ we have

(D · ad(t))(y) = [d, ad(t)(y)]− ad(t)([d, y]) = [d, [t, y]]− [t, [d, y]]

Now since d and t are in r̂ and y is in ĝ, we have [t, y] in [r̂, ĝ] = r̂, and
thus [d, [t, y]] is in [r̂, r̂] = 0. Also [d, y] is in r̂, and thus [t, [d, y]] = 0, giving
(D · ad(t))(y) = 0. Since we want D · ad(t) to be some ad(s) for some s in
r̂, this says that we can take any s in r̂ such that ad(s) = 0. But we know
that the map ad restricted to r̂ is injective. [The center is 0, and thus ad
is injective.] Thus for each y in ĝ there is one and only one element s in r̂
which maps to zero, that is, s = 0, and we know that D · ad(t) = ad(0) = 0.

Let us see what happens if we use the Jacobi identity in ĝ.

[d, [t, y]]− [t, [d, y]] = [d, [t, y]] + [t, [y, d]] = −[y, [d, t]] = [[d, t], y] =
ad([d, t])(y)

We thus have D · ad(t) = ad([d, t]) ∈ A. But again we observe that [t, y] is
in r̂, and [d, [t, y]] is 0; and [y, d] is in r̂ and [t, [y, d]] is 0. Also [d, t] is 0 and
thus ad([d, t]) = 0. This calculation immediately gives the fact that d = 0 is
the only element in r̂ which satisfies D · ad(t) = ad([d, t]) ∈ A.

We thus have ρ(r̂) acting on the three subsets C, B and A of ĝl(ĝ) in an
invariant manner. We now form the quotient spaces C/A and C/B. Since

C := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = cIr̂}

and

B := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = 0}

we see immediately that C = {cIr̂} + B, and we conclude that C/B is one-
dimensional.

We now claim that C/A and C/B are representation spaces for ĝ. This
is reasonable since C, B, and A are invariant by ρ(ĝ) and thus are represen-
tation spaces for ĝ. We define a representation of ĝ on C/A. If we let ρ′ be
this representation map, then ρ′(ĝ) is in ĝl(C/A). [Below, again as before,
we use the symbol X ′· for ρ′(x)]. Thus
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ĝ −→ ρ′(ĝ)
x 7−→ ρ′(x) = X ′· : C/A −→ C/A

φ+ A 7−→ X ′ · (φ+ A) := (X · φ) + A

We observe that the symbol X ′ · (φ + A) can also be read as X · (φ + A) =
(X · φ) + (X ·A) since φ+A is just a subset of C, and we know how X· acts
on C. Thus we have X ′ · (φ + A) = (X · φ) + (X · A) = (X · φ) + A, since
we know that X · A is in A. Now, again by 2.7.2, we know that we have
a valid definition. Likewise if we let ρ′ be this representation map for ĝ in
C/B, then ρ′(ĝ) is in ĝl(C/B). Again

ĝ −→ ρ′(ĝ)
x 7−→ ρ′(x) = X ′· : C/B −→ C/B

φ+B 7−→ X ′ · (φ+B) := (X · φ) +B

Again we observe that X ′ · (φ + B) can also be read as X · (φ + B) =
(X ·φ) + (X ·B) since φ+B is just a subset of C, and we know how X· acts
on C. Thus X ′ · (φ + B) = (X · φ) + (X · B) = (X · φ) + B, since we know
that X ·B is in B. Again by 2.7.2, we know that we have a valid definition.

Now from the above definitions we know that these maps are in ĝl(C/A)
and ĝl(C/B). Next we show how ρ′ takes addition in ĝ to addition in ĝl(C/A):

ρ′(x1 + x2) = ρ′(x1) + ρ′(x2)

We remark that we are just using cosets in C. Thus we have by the
definition of ρ′

ρ′((x1 + x2)(φ+ A) = ρ(x1 + x2)(φ) + A

Continuing, we have

ρ(x1 + x2)(φ) + A = (ρ(x1) + ρ(x2))(φ) + A
= ρ(x1)(φ) + ρ(x2)(φ) + A

= ρ(x1)(φ) + A+ ρ(x2)(φ) + A
= ρ′(x1)(φ+ A) + ρ′(x2)(φ+ A)

= (ρ′(x1) + ρ′(x2))(φ+ A)

and thus giving us the linearity of ρ′ with respect to addition.

ρ′(x1 + x2) = ρ′(x1) + ρ′(x2)

Also, with c in lF
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ρ′(c(x1))(φ+ A) = ρ(c(x1))(φ) + A
= cρ(x1)(φ) + cA

= c(ρ(x1)(φ) + A))
= c(ρ′(x1)(φ+ A)
= c(ρ′(x1))(φ+ A)

Hence we can conclude that we have the linearity of ρ′ with respect to scalar
multiplication.

Finally we show that brackets go to brackets:

ρ′[x1, x2] = [ρ′(x1), ρ
′(x2)]

(ρ′[x1, x2])(φ+ A) = (ρ[x1, x2])(φ) + A
= ([ρ(x1), ρ(x2)])(φ) + A

= (ρ(x1)ρ(x2)− ρ(x2)ρ(x1))(φ) + A
= ρ(x1)(ρ(x2)(φ)− ρ(x2)(ρ(x1)(φ) + A

= ρ(x1)(ρ(x2)(φ) + A− ρ(x2)(ρ(x1)(φ) + A
= ρ′(x1)((ρ(x2)(φ) + A)− ρ′(x2)((ρ(x1)(φ) + A)

= ρ′(x1)ρ
′(x2)(φ+ A)− ρ′(x2)ρ′(x1)(φ+ A)

= (ρ′(x1)ρ
′(x2)− ρ′(x2)ρ′(x1))(φ+ A)

= ([ρ′(x1), (ρ
′(x2)])(φ+ A)

giving

ρ′[x1, x2] = [ρ′(x1), ρ
′(x2)]

It is evident that we can make the same calculations for C/B and show
that the map ρ′ from ĝ to ĝl(C/B) takes addition in ĝ to addition in ĝl(C/B);
takes scalar multiplication in ĝ to scalar multiplication in ĝl(C/B); and takes
brackets in ĝ to brackets in ĝl(C/B).

But what we are seeking is a representation of the Lie algebra ĝ/r̂ in C/A
and C/B. Again since r̂ is a subalgebra of ĝ, we know immediately from
the above that r̂ has a representation in C/A and C/B since r̂ also leaves
invariant the spaces C, B and A. Now by using cosets in ĝ and in C, we can
show that ĝ/r̂ has indeed a representation in C/A and in C/B.

Thus we define a representation of ĝ/r̂ on C/A. We again let ρ′ be this
representation map, and thus ρ′(ĝ/r̂) is in ĝl(C/A). We have

ĝ/r̂ −→ ρ′(ĝ/r̂)
x+ r̂ 7−→ ρ′(x+ r̂) : C/A −→ C/A

φ+A 7−→ ρ′(x+ r̂)(φ+A) := ρ(x+ r̂)(φ) +A
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We observe that the symbol ρ′(x + r̂)(φ + A) can also be read as
ρ(x + r̂)(φ) + ρ(x + r̂)(A). Now since ρ(x) and ρ(r̂) leave A invariant, we
do indeed get ρ(x + r̂)(φ) + A as claimed, and we see that we have a valid
definition. We need to show how ρ′ takes addition in ĝ/r̂ to addition in
ĝl(C/A):

ρ′((x1 + r̂) + (x2 + r̂)) = ρ′(x1 + r̂) + ρ′(x2 + r̂)

Thus we have by the definition of ρ′

ρ′((x1 + r̂) + (x2 + r̂))(φ+ A) = ρ((x1 + r̂) + (x2 + r̂))(φ) + A

Continuing, we have

ρ((x1 + r̂) + (x2 + r̂))(φ) + A = ρ(x1 + r̂)(φ) + ρ(x2 + r̂)(φ) + A
= ρ(x1 + r̂)(φ) + A+ ρ(x2 + r̂)(φ) + A
= ρ′(x1 + r̂)(φ+ A) + ρ′(x2 + r̂)(φ+ A)

= (ρ′(x1 + r̂) + ρ′(x2 + r̂))(φ+ A)

giving

ρ′((x1 + r̂) + (x2 + r̂))(φ+ A) = (ρ′(x1 + r̂) + ρ′(x2 + r̂))(φ+ A)

and we can conclude that we have linearity of ρ′ with respect to addition.

Also, with c in lF

ρ′(c(x1 + r̂))(φ+ A) = ρ(c(x1 + r̂))(φ) + A
= (cρ(x1 + r̂))(φ) + cA
= c(ρ(x1 + r̂)(φ) + A))
= c(ρ′(x1 + r̂))(φ+ A)

= ((cρ′)(x1 + r̂))(φ+ A)

and we can conclude that we have linearity of ρ′ with respect to scalar mul-
tiplication.

Finally, we show that brackets go into brackets.

(ρ′[x1 + r̂, x2 + r̂])(φ+ A) = (ρ[x1 + r̂, x2 + r̂])(φ) + A
= ([ρ(x1 + r̂), ρ(x2 + r̂])(φ) + A

= (ρ(x1 + r̂)ρ(x2 + r̂)− ρ(x2 + r̂)ρ(x1 + r̂))(φ) + A
= (ρ(x1 + r̂)ρ(x2 + r̂))(φ)− (ρ(x2 + r̂)ρ(x1 + r̂))(φ) + A

= (ρ(x1 + r̂)ρ(x2 + r̂))(φ) + A− (ρ(x2 + r̂)ρ(x1 + r̂))(φ) + A
= ρ′(x1 + r̂)(ρ(x2 + r̂)(φ) + A)− ρ′(x2 + r̂)(ρ(x1 + r̂)(φ) + A)
= ρ′(x1 + r̂)(ρ′(x2 + r̂)(φ+ A))− ρ′(x2 + r̂)(ρ′(x1 + r̂)(φ+ A))

= (ρ′(x1 + r̂)(ρ′(x2 + r̂))(φ+ A)− (ρ′(x2 + r̂)(ρ′(x1 + r̂))(φ+ A)
= (ρ′(x1 + r̂)(ρ′(x2 + r̂)− ρ′(x2 + r̂)(ρ′(x1 + r̂))(φ+ A)

= ([ρ′(x1 + r̂), ρ′(x2 + r̂])(φ+ A)
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and thus we have

ρ′[x1 + r̂, x2 + r̂] = [ρ′(x1 + r̂), ρ′(x2 + r̂)]

It is evident that we can make the same calculations for C/B. The map
ρ′ from ĝ to ĝl(C/B)

ĝ/r̂ −→ ρ′(ĝ/r̂)
x+ r̂ 7−→ ρ′(x+ r̂) : C/B −→ C/B

φ+B 7−→ ρ′(x+ r̂)(φ+B) := ρ(x+ r̂)(φ) +B

takes addition in ĝ to addition in ĝl(C/B); takes scalar multiplication in ĝ
to scalar multiplication in ĝl(C/B); and takes brackets in ĝ to brackets in
ĝl(C/B).

With respect to the representation of ĝ/r̂ on C/B, we can make one
more remark. Since C/B is one-dimensional and ĝ/r̂ is semisimple, the only
possible representation of ĝ/r̂ on C/B is the zero representation.

ĝ/r̂ −→ ρ′(ĝ/r̂)
x+ r̂ 7−→ ρ′(x+ r̂) : C/B −→ C/B

φ+B 7−→ ρ′(x+ r̂)(φ+B) = 0(φ+B) = B

since the zero coset of C/B is B.

Having established representations of ĝ/r̂ on C/A and C/B, we now seek
a linear map σ of C/A to C/B which preserves these representations in the
sense that σ commutes with these representations. If such a map can be
defined, we know that the image and kernel of this map will be invariant
subspaces respectively of C/B and C/A by the representation of ĝ/r̂. We
define σ as the natural coset map

C/A
σ−→ C/B

φ+ A 7−→ σ(φ+ A) := φ+B

Since A is contained in B, the map is well defined. Let φ1 and φ2 be two
elements of C which are in the same coset, which means that φ1−φ2 is in A.
Now σ(φ1 + A) = φ1 + B and σ(φ2 + A) = φ2 + B. We want to prove that
φ1 and φ2 are in the same coset of C/B. We take their difference: φ1 − φ2,
which is in A. But A is contained in B. Thus φ1 − φ2 is contained in B,
which says that φ1 and φ2 are in the same coset of C/B.

The map is obviously linear and it preserves sums and scalar multiples,
as can be seen from:
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σ((φ1 + A) + (φ2 + A)) = σ((φ1 + φ2) + A) = (φ1 + φ2) +B =
(φ1 +B) + (φ2 +B) = σ(φ1 + A) + σ(φ2 + A)

and

σ(c(φ+ A)) = σ(cφ+ A) = cφ+B = cφ+ cB = c(φ+B) = c(σ(φ+ A))

for any φ1 and φ2 in C and any c in lF.

And finally, we see that the σ map respects all of the above representations
in the sense that it commutes with them. We have representations, denoted
by ρ′, of ĝ on C/A and C/B as well as of r̂ and of ĝ/r̂. Thus we assert that

(ρ′(ĝ))(σ) = σ(ρ′(ĝ))

since for any x in ĝ and φ in C, we have

ρ′(x̂)(σ(φ+ A))) = X ′ · (σ(φ+ A)) = X ′ · (φ+B) = X · φ+B

and

σ(ρ′(x)(φ+ A)) = σ(X ′ · (φ+ A)) = σ((X · φ) + A) = X · φ+B

We conclude that the map σ commutes with the two representations of ĝ.

We also observe that for x in ĝ

ρ′(x)(φ+B) = X ′ · (φ+B) = X · φ+B ⊂ B

since X · φ ⊂ B.

We also assert that the σ map respects the representation of r̂ on C/A
and C/B in the sense that it commutes with them:

(ρ′(r̂))(σ) = σ(ρ′(r̂))

Here is proof. For any d in r̂ and φ in C,

ρ′(d)(σ(φ+ A)) = D′ · (σ(φ+ A)) = D′ · (φ+B) = D · φ+B

and

σ(ρ′(d)(φ+ A)) = σ(D′ · (φ+ A)) = σ((D · φ) + A) = D · φ+B

We conclude that the map σ commutes with the two representations of r̂.

We also observe that for d in r̂
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ρ′(d)(φ+B) = D′ · (φ+B) = D · φ+B ⊂ A+B ⊂ B

since D · C ⊂ A.

Thus it is evident that the σ map also respects the representation of ĝ/r̂
on C/A and C/B, i.e.,

ρ′(ĝ/r̂)(σ) = σ(ρ′(ĝ/r̂))

For any x+ r̂ in ĝ/r̂ and φ+ A in C/A, we have

ρ′(x̂+ r̂)(σ(φ+ A)) = ρ′(x̂+ r̂)(φ+B) = ρ(x+ r̂)(φ) +B

and

σ(ρ′(x+ r̂)(φ+ A)) = σ(ρ(x+ r̂)(φ) + A) = ρ(x+ r̂)(φ) +B

We conclude that the map σ commutes with the two representations of ĝ/r̂.
And we again remark that

ρ′(x̂+ r̂)(φ+B) = ρ(x+ r̂)(φ) +B ⊂ B

We return now to the map σ.

C/A
σ−→ C/B

φ+ A 7−→ σ(φ+ A) := φ+B

From the definitions of C, B, and A, we see immediately that σ is sur-
jective, and indeed surjects onto a one-dimensional space C/B. We see that
C surjects onto B: for any φ in C, there is a φ′ in B with the same action;
and acting on r̂, any φ in C is a scalar map, while the only scalar map in B
is the 0-scalar map. To help see this, recall that

C := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = cIr̂}
B := {φ ∈ ĝl(ĝ)|φ(ĝ) ⊂ r̂;φ|r̂ = 0}

Thus, as we remarked above, the image set of σ is C/B and is one-dimensional.
Now we know that the representation of ĝ/r̂ leaves invariant this image space.
From the above calculations we know that

ρ′(x̂+ r̂)(φ+B) = ρ(x+ r̂)(φ) +B ⊂ B
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and this says that ĝ/r̂ takes C/B to the zero coset B which is contained
in C/B, and thus leaves invariant the image space C/B. But it also says
that the representation of ĝ/r̂ on C/B is the zero representation. We remark
that we have already arrived at this conclusion since we know that ĝ/r̂ is a
semisimple Lie algebra and that is one-dimensional.

We also know that any map which commutes with the representations
leaves invariant the kernel of the map. Let us confirm this statement. The
kernel of the σ map is the set of all the cosets that map to B, which obviously
are the cosets B/A of C/A. Now ĝ/r̂ acting on B/A gives, for φ in B,

ρ′(x̂+ r̂)(φ+ A) = ρ(x+ r̂)(φ) + A =
[ad(x+ r̂), φ] + A = [ad(x), φ] + [ad(r̂), φ] + A

Now for any y in ĝ, we have [ad(x), φ](y) = ad(x)(φ(y)) − φ(ad(x)(y)). We
know that φ(y) in r̂ and ad(x)(r̂) is in r̂. Also ad(x)(y) is in ĝ and φ on ĝ is
in r̂. Now for any s in r̂, we have [ad(x), φ](s) = ad(x)(φ(s))− φ(ad(x)(s)).
Since φ(s) = 0, ad(x)(φ(s)) = 0. Since [x, s] is in r̂, φ(ad(x)(s)) = 0. Thus
[ad(x), φ](s) = 0− 0 = 0, and we can conclude that [ad(x), φ] is in B.

Again for any y in ĝ, we have [ad(r̂)), φ](y) = ad(r̂)(φ(y))− φ(ad(r̂)(y)).
We know φ(y) is in r̂ and ad(r̂)(r̂) is 0. Also ad(r̂)(y) is in r̂ and φ on r̂ is
0. Finally for any s in r̂ we have [ad(r̂), φ](s) = ad(r̂)(φ(s)) − φ(ad(r̂)(s)).
Since φ(s) is 0, we have that ad(r̂)(0) = 0. Since ad(r̂)(s) = 0, we have that
φ(0) = 0 and we conclude that [ad(r̂)), φ] is in B. Thus ρ′(B/A) ⊂ B/A,
and we confirm that the representation ĝ/r̂ leaves invariant the kernel of the
map σ.

We are now at the following point. We have a subspace of (C/A), the
kernel of σ, and we know that (C/A) = ker(σ)⊕ S where S is any subspace
of C/A of dimension equal to one and not contained in ker(σ), i.e., S is
{cφ0} + A and σ(S) = C/B for some φ0 in C. We also know that ker(σ)
is an invariant subset by the action of the semisimple Lie algebra ĝ/r̂. Now
of all the one-dimensional subspaces S, we are obviously seeking those that
respect the action of ĝ/r̂ on S, that is, that are invariant by this action.

Now we know from 2.15.3 that representations of semisimple Lie algebras
have the complete reducibility property. Thus we know that an S exists such
that ĝ/r̂ acting on S leaves S invariant. [There is no reason, by the way, to
assert that there is only one unique S.] This says the ρ′(ĝ/r̂)(S) ⊂ S. Now
we know that S is also one-dimensional and that the only representation of a
semisimple Lie algebra on a one-dimensional space is the zero representation.
Thus we seek a φ0 in C such that ρ(x + r̂)((cφ0) + A) ⊂ A. [Obviously we
can omit the scalar in φ0 and write ρ(x + r̂)(φ0 + A) ⊂ A, where φ0 is in
C and not in B, and where A is the zero coset of C/A.] This, of course, is
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the condition that identifies the kind of one-dimensional subspace S that we
seek.

We can reduce this information as follows. For x in ĝ

ρ(x+ r̂)(φ0 + A) ⊂ A
(ρ(x) + ρ(r̂))(φ0 + A) ⊂ A

ρ(x)(φ0) + ρ(x)(A) + (ρ(r̂))(φ0) + (ρ(r̂))(A) ⊂ A
X · φ0 +D · φ0 + A ⊂ A

since ρ(ĝ) leaves A invariant . Now let x be an arbitrary element of ĝ. Then
we can just write for all x in ĝ that X · φ0 + A ⊂ A for some φ0 in C but
not in B. This says that [ad(x), φ0] = ad(a) for some a in r̂. We observe
that [ad(x), φ0] = X · φ0 is in B, since ρ(ĝ)(C) ⊂ B. But since A ⊂ B, we
seek a φ0 in C but not in B for which, for x in ĝ, ρ(x)(φ0) is in A ⊂ B. We
remark that we already know that for all d in r̂, ρ(d)(φ0) is in A ⊂ B, since
this is true for all φ in C, i.e., (ρ(r̂))(C) ⊂ A. Therefore what is new is that
we want to chose a φ0 in C such that this is also true for all x in ĝ.

Now we can identify at least one φ0. Since φ0 is in C and not in B, we
let φ0 restricted to r̂ be the identity transformation on r̂.

φ0 : r̂ −→ (φ0)(r̂)
t 7−→ (φ0)(t) := I(t) = t

To define φ0 on ĝ but not in r̂ we choose an arbitrary d0 in r̂.

φ0 : ĝ\r̂ −→ (φ0)(ĝ\r̂)
x 7−→ (φ0)(x) := ad(d0) · x = [d0, x] ∈ r̂

In matrix notation, for any basis in r̂ and any basis in ĝ\r̂, we would obtain

φ0 =

[
I ad(d0)
0 0

]

where the square matrix I is independent of the basis chosen in r̂, while the
rectangular matrix ad(d0) would depend on the basis chosen in ĝ\r̂. Now for
any x in ĝ\r̂ we calculate

ρ(x)(φ0) = [ad(x), φ0] = ad(x) ◦ φ0 − φ0 ◦ ad(x)

Operating ρ(x)(φ0) on t in r̂, we have

(ad(x) ◦ φ0 − φ0 ◦ ad(x))(t) = (ad(x) ◦ φ0)(t)− (φ0 ◦ ad(x)(t) =
(ad(x) ◦ I)(t)− (I ◦ ad(x)(t) = [x, t]− [x, t] = 0
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since ad(x)(t) = [x, t] is in r̂. We conclude that ρ(x)(φ0) is in B. Operating
ρ(x)(φ0) on y in ĝ\r̂, we have

ρ(x)(ad(d0)) = [ad(x), ad(d0)] = ad[x, d0] ∈ ad(r̂)

which says that ρ(ĝ)(φ0) is in A, which is the conclusion which we have been
seeking.

Thus we have identified at least one φ0 in C not in B such that
ρ(x + r̂)(φ0 + A) is in A for all x in ĝ. But now we ask how does this
give us information about ĝ? Well, ρ(x + r̂)(φ0 + A) being in A for all x in
ĝ says that, choosing an x in ĝ, we have [ad(x), φ0] = ad(a) for some a in r̂.
Now we know that for any φ in C, [ad(r), φ] is in A since ρ(r̂)(C) ⊂ A. First
let us take a d in r̂ and see what element a in r̂ corresponds to it. But we
already made this calculation when we were showing that r̂ left invariant the
subspace C. If D· = ρ(d) for d in r̂, and φ0 is in C, we have for y in ĝ

(D · φ0)(y) = [ad(d), φ0](y)] = (ad(d) ◦ φ0 − φ0 ◦ ad(d))(y) =
[d, φ0(y)]− φ0([d, y])

But φ0(y) is in r̂, since φ0 is in C; and thus [d, φ0(y)] is in [r̂, r̂] = 0. Also
φ0([d, y]) = Ir̂([d, y]) since [d, y] is in r̂ and φ0|r̂ is the identity on r̂. And thus
we have our conclusion that D · φ0 = −ad(d) = ad(−d). This is a satisfying
result for it says that a d in r̂, by this construction, determines ad(−d) in
ad(r̂), and thus this construction injects r̂ into ad(r̂). [Note that we already
know this from the fact that ĝ has no center and thus ad is an injection of ĝ
into ad(ĝ).] But this is true for any φ in C. What are we then adding when
we choose our particular φ0? We are asking when for x in ĝ\r̂ do we have
[ad(x), φ0] in ad(r̂)? Since ad is injective, the only element x in ĝ\r̂ that
injects into ad(r̂) is the 0 element. This is saying that we have a map

ĝ −→ r̂

such that r̂ injects onto r̂ and ĝ\r̂ maps to 0.

Now we can show that this map is a Lie algebra morphism! Since r̂
injects onto r̂, our conclusion that we have a Lie algebra morphism on r̂ is
immediate. We define an l̂ in ĝ\r̂ such that the representation map ρ(ĝ)
restricted to l̂ acting on φ0 is 0:

l̂ := {p ∈ ĝ | P · φ0 = 0}

or equivalently

l̂ := {p ∈ ĝ | [ad(p), φ0] = 0}
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Here we are using our conclusion from above that [ad(p), φ0] = ad(a) = 0
means that a in r̂ is itself 0. Now obviously l̂ is a linear subspace of ĝ. For c
in lF and P , P1 and P2 in l̂ we have

(P1 + P2) · φ0 = (P1 ·+ P2·)φ0 = P1 · φ0 + P2 · φ0 = 0 + 0 = 0

(cP ) · φ0 = c(P · φ0) = c0 = 0

We show also that brackets close. For p and q in l̂, we have

ρ([p, q])φ0 = [ρ(p), ρ(q)]φ0 = [P ·, Q·]φ0 =
(P ·Q · − Q · P ·)φ0 =

(P ·Q·)φ0−(Q ·P ·)φ0 = P ·(Q ·φ0)−Q ·(P ·φ0) = P ·(0)−Q ·(0) = 0−0 = 0

We can also see this fact by using the Jacobi identity [twice!] in the following
manner.

[ad[p, q], φ0] = [[ad(p), ad(q)], φ0] = [[ad(p), φ0], ad(q)] + [ad(q), [ad(p), φ0]] =
[0, ad(q)] + [ad(q), 0] = 0

Thus we have found a subalgebra l̂ of ĝ of the kind that we have been
seeking! Here is the proof that this is so. First we show that l̂ ∩ r̂ = 0. We
can conclude this from our analysis above. However making the argument
explicit, we suppose a 6= 0 is in l̂∩r̂. Since a is in l̂, we know that [ad(a), φ0] =
0. This says that ad(a)(φ0) = φ0(ad(a)). Now suppose a 6= 0 is also in r̂.
Then for any x in ĝ, we know that (φ0)(x) is in r̂, and thus ad(a)((φ0)(x)) = 0.
Thus φ0(ad(a)) = 0. Now for all x in ĝ

φ0(ad(a)(x)) = φ0([a, x)]) = Ir̂([a, x)]) = [a, x]

since [a, x] is in r̂. And thus we arrive at the point where we are asking when
[a, x] = 0, for a in r̂ and for all x is in ĝ. But this says that a is then in the
center of ĝ. But as we have said above, the center of ĝ must be 0. Thus we
can conclude that a = 0, and we have our conclusion that l̂ ∩ r̂ = 0.

We next show that ĝ = l̂ + r̂. Let x be any element in ĝ. We know
that X · φ0 is in A. Thus there is a a in r̂ such that ad(a) = X · φ0. But
we also know that this same element ad(a) comes from a in r̂ by this same
construction, i.e., ad(a) = −A · φ0. Thus we have X · φ0 + A · φ0 = 0 or
(X +A) · φ0 = [ad(x+ a), φ0] = 0. This says that x+ a is in l̂. Now for each
x in ĝ we have x = (x+ a)− a and thus we have ĝ = l̂ + r̂, which fact gives
us our conclusion that ĝ = l̂ ⊕ r̂.

We remark immediately that the subalgebra l̂ is semisimple. Using 2.16.2,
we know that rad(l̂) = l̂ ∩ r̂. But we have just shown that l̂ ∩ r̂ = 0. Thus
rad(l̂) = 0 and this makes l̂ semisimple.
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To complete this proof, we need to show that ĝ/r̂ is isomorphic to l̂.
The fact that ĝ/r̂ is isomorphic to l̂ in the sense of linear spaces is a direct
consequence of an isomorphism theorem of Linear Algebra.

ĝ/r̂ = (l̂ + r̂)/r̂ ∼= l̂/(l̂ ∩ r̂) = l̂/0 = l̂

Thus we only need to define a Lie algebra map from ĝ/r̂ to l̂. For x in ĝ,
we let x = p+ s for p in l̂ and s in r̂, and we define the map

ĝ/r̂ −→ l̂
x+ r̂ = p+ s+ r̂ = p+ r̂ 7−→ p

Now for y = q + t, y in ĝ, q in l̂ and t in r̂, we have

[x+ r̂, y + r̂] = [p+ s+ r̂, q + t+ r̂] =
[p, q] + [p, t] + [p, r̂] + [s, q] + [s, t] + [s, r̂] + [r̂, q] + [r̂, t] + [r̂, r̂] =

[p, q] + r̂ + r̂ + r̂ + 0 + 0 + r̂ + 0 + 0 =
[p, q] + r̂ 7−→ [p, q]

and thus brackets do go into brackets, and we have a Lie algebra isomorphism
between ĝ/r̂ and l̂. And we conclude that ĝ = l̂ ⊕ r̂ where l̂ is semisimple
and isomorphic to ĝ/r̂ and r̂ is the radical of ĝ.

And this is the Levi Decomposition Theorem!

2.17 Ado’s Theorem

Ado’s Theorem states that every finite dimensional Lie algebra [over lR or lC]
is essentially linear, that is, it has a faithful finite dimensional representation
in some matrix algebra ĝl(V ) [over lR or lC]. This means the following: if ρ
is a representation of ĝ in V :

ρ : ĝ −→ ĝl(V )
c 7−→ ρ(c) : V −→ V

x 7−→ ρ(c)(x)

and ρ[c, d] = [ρ(c), ρ(d)] then ρ(c)(x) being faithful means that ρ(c) = 0
implies c = 0, i.e., the kernel of ρ = 0. [This is just another language for
saying that we have a homomorphism from an abstract Lie algebra into the
Lie algebra of the set of matrices of some dimension n; and “faithful” means
we have a isomorphism.]

Now if we let ρ be the adjoint representation of ĝ and let ẑ be the center
of ĝ, then we have the following.
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ad : ĝ −→ ĝl(ĝ)
c 7−→ ad(c) : ĝ −→ ĝ

d 7−→ ad(c)(d) = [c, d]

[Recall that the adjoint representation is a representation since we know from
the Jacobi identity that ad[c, d] = [ad(c), ad(d)].] Now for all a in ẑ, [a, d] = 0
for all d in ĝ. This then says that ad(a) is the zero map, and thus the center
of the adjoint representation is in the kernel of ad. However if ad(a)(d) = 0
for all d in ĝ, then a is in the center of ĝ, and thus the center is the kernel
of the adjoint representation. Therefore, when the center of a Lie algebra
is zero, the adjoint representation is faithful, and we have Ado’s Theorem
fulfilled.

Now suppose the center ẑ 6= 0. Then we seek a linear space W and a
representation τ of ĝ in W which is faithful when restricted to the center ẑ,
that is, we want

τ : ĝ −→ ĝl(W )
c 7−→ τ(c) : W −→ W

x 7−→ τ(c)(x)

and for a in the center ẑ, if τ(a)(x) = 0 for x in W , then a = 0.

Now if we combine these two representations.

ρ = ad⊕ τ : ĝ −→ ρ(ĝ) = ad(ĝ)⊕ τ(ĝ) ⊆ ĝl(ĝ)⊕ ĝl(W )
x 7−→ ρ(x) = (ad⊕ τ)(x) =

ad(x)⊕ τ(x) : (y, w) 7−→ ad(x)(y) + τ(x)(w)

where ĝl(ĝ)⊕ ĝl(W ) consists of matrices of the form[
ĝl(ĝ) 0

0 ĝl(W )

]

and then we restrict τ to the center ẑ of ĝ, then for a in the center ẑ we have[
ad(a) 0

0 τ(a)

] [
y
w

]
=

[
ad(a)(y)
τ(a)(w)

]

and we ask for all y in ĝ and w in W such that[
ad(a)(y)
τ(a)(w)

]
= 0

Since τ is faithful on the center ẑ, for a in ẑ, we have τ(a) = 0 only if a = 0.
And if ad(0) = 0, then we get the 0 vector only when the matrix
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[
ad(a) 0

0 τ(a)

]
= 0

Now we restrict ρ to the set ĝ \ ẑ. Thus for x in ĝ \ ẑ we have[
ad(x) 0

0 τ(x)

] [
y
w

]
=

[
ad(x)(y)
τ(x)(w)

]

and we ask for all y in ĝ and w in W when[
ad(x)(y)
τ(x)(w)

]
= 0

Since ad is faithful on the set ĝ \ ẑ, for x in ĝ \ ẑ we have ad(x) = 0 only
if x = 0. And since τ(0) = 0, this says we get the 0 vector only when the
matrix [

ad(x) 0
0 τ(x)

]
= 0

and in both of these cases the matrix gives a faithful representation. Thus,
if τ and W exist, we can conclude that every finite dimensional Lie algebra
ĝ over lC has a faithful finite dimensional representation, which is what what
Ado’s Theorem states.

And thus we are on the hunt for W and the representation τ of ĝ in
W which is faithful on ẑ and from this point on we will be working with
complex Lie algebras. Now if the center ẑ is one-dimensional, we can produce
a faithful representation of ẑ in the following manner. The center ẑ, being
one-dimensional, means that it is isomorphic to the scalars lC which can be
considered a complex Lie algebra in the following manner. The field structure
of lC immediately gives us that lC is a linear space over lC and it also has the
structure of an associative algebra over lC. Now every associative algebra
becomes a Lie algebra if we define the bracket [u, v] = u · v− v ·u. If u and v
are in lC, then uv− vu = 0 since multiplication in lC is commutative. Thus lC
as a Lie algebra is an abelian Lie algebra. And the center ẑ of lC is lC itself.

We now can build a representation of lC in the 2x2 nilpotent matrices over
lC. These matrices are of the form[

0 u
0 0

]
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They comprise a nilpotent Lie subalgebra of the Lie algebra of all 2x2 ma-
trices over lC. It is evident that the addition of two nilpotent matrices and a
scalar times a nilpotent matrix give nilpotent matrices, and thus the nilpo-
tent matrices form a linear subspace of ĝl(2, lC). Also by multiplying two
nilpotent matrices together, we see that the nilpotent matrices are a subal-
gebra of the matrix algebra ĝl(2, lC), and, in fact, the product of any two of
these nilpotent matrices is always the zero matrix.[

0 u1
0 0

]
·
[

0 u2
0 0

]
=

[
0 0
0 0

]

But this also says that these nilpotent matrices are a Lie subalgebra of
ĝl(2, lC), since the Lie bracket of these nilpotent matrices is always the zero
matrix. And thus these nilpotent matrices form a commutative Lie subalge-
bra.

Now we have a faithful representation σ of ẑ = lC in the nilpotent matrices
of ĝl(2, lC), as can be seen here.

σ : lC −→
{[

0 u
0 0

]}

u 7−→ σ(u) =

[
0 u
0 0

]
: lC2 −→ lC2[
v1
v2

]
7−→

[
0 u
0 0

] [
v1
v2

]
=

[
u · v2

0

]

We do have a representation. Obviously σ is linear. Now if u, v are in ĝ,
then [u, v] = 0; and [σ(u), σ(v)] = 0 since the bracket of any two nilpotent
matrices in ĝl(2, lC) is also equal to 0. Thus we do have a representation. It
is also faithful. Since the center ẑ of lC is lC itself, we take any u in lC. Now
suppose σ(u) = 0:

σ(u) =

[
0 u
0 0

]
= 0

We see immediately that implies that u = 0, and thus we have a faithful
representation of ẑ when ẑ is one-dimensional. In fact this representation is
a nilpotent representation in the sense that σ(u) is a nilpotent matrix for all
u in ẑ.

[Side comment: as noted several times already, we will call a representa-
tion ρ of a Lie algebra ĝ a nilrepresentation if ρ(x) is a nilpotent matrix for
each x in the nilradical n̂ of ĝ.]
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Now if the center ẑ, which is abelian, has dimension k > 1, we can produce
a faithful representation by taking the direct sum of k copies of the above
one-dimensional faithful representation. We will lay out the case for k = 2
and it will be obvious how one could proceed for larger dimensions.

Let us then consider the case when the center ẑ of ĝ, which is abelian,
has dimension k = 2. Choosing a basis {c1, c2} for ẑ, we write for any a in ẑ

a = u1c1 + u2c2

for some u1 and u2 in lC.

We now examine the following matrices over lC.
0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0


We see immediately that these matrices are nilpotent since

0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0




0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


They form a Lie subalgbra of the Lie algebra of all 4x4 matrices over lC. It is
evident that the addition of two nilpotent matrices of this type and a scalar
times a nilpotent matrix of this type again give nilpotent matrices of this
type, and thus the nilpotent matrices of this type form a linear subspace
of ĝl(4, lC). Also we see that the nilpotent matrices are a subalgebra of
the matrix algebra ĝl(4, lC) since the product of two nilpotent matrices is
always the zero matrix. And thus in fact these nilpotent matrices form a
commutative Lie subalgebra.

Now we have a faithful representation σ of ẑ in the nilpotent matrices of
ĝl(4, lC).

σ : ẑ −→




0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0




a = u1c1 + u2c2 7−→


0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0

 : lC4 −→ lC4
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
v1
v2
v3
v4

 7−→


0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0



v1
v2
v3
v4

 =


u1 · v2

0
u2 · v4

0


We do have a representation. Obviously σ is linear. Now if a1 and a2 are
in ẑ, then [a1, a2] = 0 since ĝ is abelian; and [σ(a1), σ(a2)] = 0 since the
bracket of any two nilpotent matrices in ĝl(4, lC) is also equal to 0. Thus we
do have a representation. It is also faithful. Since the center is ẑ, we take
any a = u1c1 + u2c2 in ẑ. Now suppose σ(a) = 0:

σ(a) =


0 u1 0 0
0 0 0 0
0 0 0 u2
0 0 0 0

 = 0

We see immediately that this implies that u1 and u2 are equal to 0, and thus
a = 0 and we have a faithful representation of ẑ when ẑ is two-dimensional.
In fact this representation is a nilrepresentation since these matrices are
nilpotent.

Thus we see that we can have a faithful representation of the center for
any dimension k in the nilpotent matrices of ĝl(2k, lC). Now we are seeking
a subalgebra k̂ of ĝ such that ĝ = ẑ ⊕ k̂. Obviously if ẑ is the radical r̂ of
ĝ, then the Levi Decomposition Theorem, which identifies a semisimple Lie
subalgebra k̂, says that ẑ⊕ k̂ = ĝ. And now we have a faithful representation
on ẑ [the representation σ we constructed above] and a faithful representation
on k̂ [the adjoint representation, which is always faithful on a semisimple Lie
algebra] and these facts give Ado’s theorem in this case.

But suppose that ẑ is not the radical. Of course, ẑ is always contained
in the radical. [Since the center is an abelian ideal, it is nilpotent, and thus
solvable and this implies that it is contained in a maximal solvable ideal, the
radical.] Our task now is to get a representation τ of the radical r̂ which
preserves the above mentioned faithful representation of the center. Once
we have accomplished this, we can reason as follows. We complement r̂ with
a semisimple Lie subalgebra k̂ [by Levi’s Theorem], so that ĝ = r̂ ⊕ k̂. We
now define a representation ρ on ĝ such that ρ restricted to the radical is the
representation τ [which is faithful on ẑ], and restricted to k̂ is the adjoint
representation. Since the adjoint representation is faithful on k̂, we can con-
clude that the representation ρ is faithful on ĝ, which is what Ado’s Theorem
asserts, namely that every Lie algebra has a faithful representation. In fact
we can make a stronger assertion: Every Lie algebra has a faithful nilrepre-
sentation because a nilrepresentation is a representation ρ in which for every
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x in ĝ which is in the nilradical n̂ of ĝ [the maximal nilpotent ideal n̂ in ĝ],
ρ(x) is a nilpotent endomorphism.

Fortunately every finite dimensional Lie algebra does possess two subal-
gebras other then the radical — the maximal solvable subalgebra and the
maximal nilpotent subalgebra, i.e., the nilradical n̂ (see 2.5.2). And for each
of these special subalgebras we can construct a complete flag. [See Appendix
to 2.17 for details.] [Recall that a flag for a linear space V is a sequence of
subspaces

0 = V0 ⊂6= V1 ⊂6= ... ⊂6= Vl ⊂6= V

and that a complete flag is a flag where the subspaces grow one dimension
in each step.] Since the nilradical n̂ is a nilpotent Lie algebra, it determines
a nilpotent complete flag

n̂ = ân ⊃ ân−1 ⊃ ân−2 ⊃ ... ⊃ â1 ⊃ â0 = ẑ
[âk, âk] ⊂ âk, a nilpotent subalgebra
âk+1 = âk ⊕ ĥk+1, dim ĥk+1 = 1

[n̂, âk+1] ⊂ âk ⊂ âk+1: thus âk+1 is an ideal in n̂

Thus, starting with the center ẑ, which, of course, is nilpotent, we can add
nilpotent subalgebras one dimension greater than the previous one until we
reach the nilradical n̂.

Now since the radical r̂ is a solvable Lie algebra, it determines a solvable
complete flag

r̂ = âr ⊃ âr−1 ⊃ âr−2 ⊃ ... ⊃ ân−1 ⊃ ân = n̂
[âl, âl] ⊂ âl, a solvable subalgebra
âl+1 = âl ⊕ ĥl+1, dim ĥl+1 = 1

[r̂, âl] ⊂ âl: thus âl is an ideal in r̂

Thus, starting with the nilradical n̂ (which, of course, is solvable), we can
add solvable subalgebras one dimension greater than the previous one until
we reach the radical r̂. This produces a complete flag of subalgebras, where
the center ẑ = â0 sits at the bottom:

ẑ = â0 ⊂ â1 ⊂ ... ⊂ âk ⊂ ... ⊂ ân = n̂ ⊂ ... ⊂ âl ⊂ ... ⊂ âr = r̂

and where the â′k’s are nilpotent, for k <= n, and the âl’s are solvable but
not nilpotent. In constructing this complete flag for a Lie algebra r̂, we have
that each ai, for i >= n, is a subalgebra of r̂, and moving from ai to ai+1,
a one-dimensional subspace ĥi+1 of r̂ complementary to ai was chosen. This
means that ĥi+1 is a 1-dimensional Lie subalgebra, and ai+1 = ai ⊕ hi+1 and
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indeed ai is an ideal in r̂: [r̂, âi] ⊂ âi. [In the case of a nilpotent complete
flag, we have another condition, namely [n̂, âi] ⊂ âi−1 ⊂ âi.]

Now we are seeking a representation on the radical r̂ which, when re-
stricted to the center ẑ = â0 of dimension n, is the faithful representation of
this center in the nilpotent matrices of ĝl(2n, lC). We do this by moving up
our flag one dimension at a time.

Now there is a Proposition which asserts that we can do this in a more
general situation:

Proposition:

Let ĝ be a Lie algebra which is a direct sum of a solvable ideal â
and a subalgebra ĥ. Let µ be a representation of â. Then there is a
representation τ of ĝ such that

â ∩ ker(τ) ⊂ ker(µ)

It also states that if the nilradical n̂ of ĝ is the nilradical of â, or if the
nilradical of ĝ is itself ĝ, then τ may be taken to be a nilrepresentation.

[I might remark that the last mentioned condition — â ∩ ker(τ) ⊂ ker(µ)
— insures that the representation τ remains faithful on the center ẑ as we
move up the flag.]

However at this point in our exposition we will not prove this Proposition
in its generality. Rather we circumvent this proof by explicitly defining a
representation τi on ai as we move up the flag such that, when restricted
to the center ẑ, this representation is faithful. And we will show that the
condition

âi−1 ∩ ker(τi) ⊂ ker(τi−1)

is indeed satisfied at each step.

Thus, starting from the center ẑ = â0, we have the following:

For n = 1, we have â1 = ẑ ⊕ ĥ1. Now ẑ is a solvable ideal in â1 [since
ẑ is the center of ĝ] and ĥ1 is a one-dimensional subalgebra of n̂ not
contained in ẑ. We know that σ is the faithful representation of the
center ẑ in the nilpotent matrices of ĝl(2k, lC) as constructed above. We
define τ0 to be this representation σ and define τ1 to be a representation
of â1

τ1 : â1 = ẑ ⊕ ĥ1 −→ ĝl(2k, lC)
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which on the center ẑ is the representation σ found above, and on ĥ1
is 0. Thus ker(τ1) is ĥ1, and since σ is faithful, its kernel is 0 and
τ1(ĥ1) = 0. Thus we observe that the condition

â0 ∩ ker(τ1) ⊂ ker(τ0)

is satisfied and â0∩ker(τ1) = ẑ∩ker(σ) = 0 and ker(τ0) = ker(σ) = 0.
Finally, since â1 is nilpotent, its nilradical is itself and the image of τ1
is the image of τ0 which is the image of σ, which is in the nilpotent
matrices of ĝl(2k, lC), and thus we have a nilrepresentation.

What we do, then, is move up the nilpotent complete flag one dimension
at a time from the center ẑ = â0 to the nilradical n̂ = ân, and then up the
solvable complete flag to the radical r̂ = âr, and at each step we define a
representation τi of the Lie subalgebra âi which is faithful on the center ẑ,
and whose image is a set of nilpotent matrices in ĝl(2k, lC). And we remark
that indeed all these representations satisfy the condition:

âi−1 ∩ ker(τi) ⊂ ker(τi−1)

Thus, in the end, we will have a nilrepresentation of the radical r̂ which is
faithful on the center ẑ.

The following calculation is informative. We now have a nilpotent Lie
algebra â1 in our complete nilpotent flag of the nilradical n̂. We calculate

[â1, â1] = [â0 ⊕ ĥ1, â0 ⊕ ĥ1] = [â0, â0] + [â0, ĥ1] + [ĥ1, â0] + [ĥ1, ĥ1]

Now knowing that â0 = ẑ, we have [â0, â0] = 0. Now [â0, ĥ1] and [ĥ1, â0]
are the same subspace [since in any Lie algebra, [x, y] = −[y, x]], and since
â0 is the center of ĝ, this gives [â0, ĥ1] = 0. And finally, since ĥ1 is one-
dimensional, [ĥ1, ĥ1] = 0. Thus [â1, â1] = 0, and â1 is abelian but it is not
in the center of ĝ. We can, however, conclude that â1 is a nilpotent Lie
subalgebra of ĝ. Also, we note that [â1, â0] = 0 ⊂ â0, and thus â0 is an ideal
of â1 which fact is a consequence of being part of the complete nilpotent flag.

Thus we move up our nilpotent flag one dimension: â2 = â1 ⊕ ĥ2, where
h2 is a one-dimensional linear space in n̂ complementary to â1.

From â1 to â2:

For n = 2, we have â2 = â1 ⊕ ĥ2. Since â1 is an ideal in n̂, we have
[n̂, â1] ⊂ â1, and thus [â2, â1] ⊂ â1, giving us â1 as an ideal in â2. Now
we define τ2 to be a representation of â2
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τ2 : â2 = â1 ⊕ ĥ2 = ẑ ⊕ ĥ1 ⊕ ĥ2 −→ ĝl(2k, lC)

which on â1 is the representation τ1 found above, and on ĥ2 is 0. Thus
ker(τ2) is ĥ1 ⊕ ĥ2: since σ is faithful and τ2(ĥ1 ⊕ ĥ2) = 0. Thus we
observe that the condition

â1 ∩ ker(τ2) ⊂ ker(τ1)

is satisfied since â1∩ker(τ2) = (ẑ⊕ĥ1)∩(ĥ1⊕ĥ2) = ĥ1 and ker(τ1) = ĥ1.
Finally since â2 is nilpotent, its nilradical is itself and the image of τ2 is
the image of τ1 which is the image of σ, which is in the set of nilpotent
matrices of ĝl(2k, lC), and thus we have a nilrepresentation.

We again make the following calculation. We now have a nilpotent Lie
algebra â2 in our complete nilpotent flag of the nilradical n̂. We calculate

[â2, â2] = [â1 ⊕ ĥ2, â1 ⊕ ĥ2] = [â1, â1] + [â1, ĥ2] + [ĥ2, â1] + [ĥ2, ĥ2]

Now knowing that â1 is abelian, we have [â1, â1] = 0. Also [â1, ĥ2] and [ĥ2, â1]
are the same subspace. Finally, ĥ2 is one- dimensional and thus [ĥ2, ĥ2] = 0.
Thus we have [â2, â2] = [â1, ĥ2]. Also we note that [â2, â1] ⊂ â0 ⊂ â1, because
we have the properties of a nilpotent complete flag and a1 is an ideal in a2.

Let us now move up one more step in our complete nilpotent flag, if
possible. We have â3 = â2 ⊕ ĥ3, where ĥ3 is a one-dimensional subspace
complementary to n̂.

From â2 to â3:

For n = 3, we have â3 = â2 ⊕ ĥ3. Since â2 is an ideal in n̂, we have
[n̂, â2] ⊂ â2, and thus [â3, â2] ⊂ â2, giving us â2 an ideal in â3. Now we
define τ3 to be a representation of â3

τ3 : â3 = â2 ⊕ ĥ3 = ẑ ⊕ ĥ1 ⊕ ĥ2 ⊕ ĥ3 −→ ĝl(2k, lC)

which on â2 is the representation τ2 found above, and on ĥ3 is 0. Thus
ker(τ3) is ĥ1⊕ ĥ2⊕ ĥ3: since σ is faithful — thus its kernel is 0 — and
τ3(ĥ1 ⊕ ĥ2 ⊕ ĥ3) = 0. Thus we observe that the condition

â2 ∩ ker(τ3) ⊂ ker(τ2)

is satisfied, since â2∩ ker(τ3) = (ẑ⊕ ĥ1⊕ ĥ2)∩ (ĥ1⊕ ĥ2⊕ ĥ3) = ĥ1⊕ ĥ2
and ker(τ2) = ĥ1 ⊕ ĥ2. Finally, since â3 is nilpotent, its nilradical is
itself; and the image of τ3 is the image of τ2 which is the image of σ,
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which is in the set of nilpotent matrices of ĝl(2k, lC), and thus we have
a nilrepresentation.

We again make the following calculation. We now have a nilpotent Lie
algebra â3 in our complete nilpotent flag of the nilradical n̂. We calculate

[â3, â3] = [â2 ⊕ ĥ3, â2 ⊕ ĥ3] = [â2, â2] + [â2, ĥ3] + [ĥ3, â2] + [ĥ3, ĥ3]

Now [â2, ĥ3] and [ĥ3, â2] are the same subspace. Also, ĥ3 is one-dimensional
and thus [ĥ3, ĥ3] = 0. Thus [â3, â3] = [â2, â2] + [â2, ĥ3] = [â3, â2]. Also we
remark that [â3, â2] ⊂ â1 ⊂ â2, by the properties of a nilpotent complete flag,
and also a2 is an ideal in a3.

At this point let us recall the flag that we are building:

ẑ = â0 ⊂ â1 ⊂ ... ⊂ âk ⊂ ... ⊂ ân = n̂ ⊂ ... ⊂ âl ⊂ ... ⊂ âr = r̂

where n̂ is the nilradical and r̂ is the radical of our algebra ĝ. Continuing
as above, we will eventually reach the nilradical n̂ (since our Lie algebra is
finite-dimensional).

Let us now explore what happens when we begin to add on the solvable
Lie subalgebras. Thus we are now at this point in the flag:

... ⊂ ân−1 ⊂ ân = n̂ ⊂ ân+1 ⊂ ...

and we have ân+1 = ân ⊕ ĥn+1, where ĥn+1 is a one-dimensional subalgebra
of the radical r̂ not contained in n̂. Now we are seeking a representation τn+1

of ân+1 which is faithful on â0. Using the properties of our solvable complete
flag, we know that ân is a nilpotent and thus solvable, ideal in ân+1, and
ĥn+1, being one-dimensional, is a Lie subalgebra of ân+1.

From ân to ân+1:

We have ân+1 = ân⊕ĥn+1. Since ân is an ideal in r̂, we have [r̂, ân] ⊂ ân,
and thus [ân+1, ân] ⊂ ân, giving us that ân is an ideal in ân+1. Now
define τn+1 to be a representation of ân+1

τn+1 : ân+1 = ân ⊕ ĥn+1 = ẑ ⊕ ĥ1 ⊕ ĥ2 ⊕ ...⊕ ĥn−2 ⊕ ĥn−1 ⊕ ĥn ⊕ ĥn+1

−→ ĝl(2k, lC)

which on ân is the representation τn found above, and on ĥn+1 is 0.
Thus ker(τn+1) is ĥn+1 ⊕ ĥ1 ⊕ ĥ2 ⊕ ... ⊕ ĥn−2 ⊕ ĥn−1 ⊕ ĥn: since σ is
faithful and τn+1(ĥn+1) = 0. Thus we observe that the condition

ân ∩ ker(τn+1) ⊂ ker(τn)
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is satisfied and ân∩ker(τn+1) = (ẑ⊕ ĥ1⊕ ...ĥn)∩(ĥ1⊕ ĥ2⊕ ...⊕ ĥn+1) =
ĥ1 ⊕ ... ⊕ ĥn; and ker(τn) = ĥ1 ⊕ ... ⊕ ĥn. Finally, since the nilradical
of ân+1 is an = n̂, the image of τn+1 restricted to ân is again the image
of σ, which is in the nilpotent matrices of ĝl(2k, lC), and thus we have
a nilrepresentation.

Thus we see that we can move from the nilpotent subalgebras to the
solvable subalgebras and that in fact nothing in the series of calculations
changes.

We again make the following calculation. We now have a solvable Lie
algebra ân+1 in our complete solvable flag of the radical r̂. We calculate

[ân+1, ân+1] = [ân ⊕ ĥn+1, ân ⊕ ĥn+1] =
[ân, ân] + [ân, ĥn+1] + [ĥn+1, ân] + [ĥn+1, ĥn+1]

Now [ân, ĥn+1] and [ĥn+1, ân] are the same subspace. Also, ĥn+1 is one- dimen-
sional, and thus [ĥn+1, ĥn+1] = 0. Thus [ân+1, ân+1] = [ân, ân] + [ân, ĥn+1] =
[ân+1, ân]. Also we remark that [ân+1, ân] ⊂ ân, which is the property of a
solvable complete flag, and thus an is an ideal in an+1.

And, finally, we arrive at the radical r̂ of our Lie algebra ĝ where we
have a representation τr of r̂ which is faithful on the center ẑ. Now we use
Levi’s Theorem to get a decomposition of ĝ = r̂ ⊕ k̂ for some semisimple
subalgebra k̂. Finally using any representation τ on ĝ which when restricted
to the radical r̂ is the representation τr, we define a representation ρ = ad⊕τ ,
which gives us a faithful finite dimensional representation of ĝ. [We remark
that this representation was over the field lC.]

And thus we have Ado’s Theorem: Every Lie algebra over lC has a faithful
finite dimensional nilrepresentation in some matrix algebra ĝl(V, lC).

******************************************************************

Now in order to get a better grasp of what we are doing let us work
through the following example.

Let us examine, therefore, the following set of matrices:

A6 =




0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1




First we show that these matrices form a Lie algebra. Clearly we need only
compute the bracket product:
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
0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1




0 u3 a3 c3
0 0 b3 0
0 0 d4 0
0 0 0 d3

−


0 u3 a3 c3
0 0 b3 0
0 0 d4 0
0 0 0 d3




0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1

 =


0 0 −a3d2 + a1d4 + b3u1 − b1u3 −c3d1 + c1d3
0 0 −b3d2 + b1d4 0
0 0 0 0
0 0 0 0


Thus we do have a Lie algebra of 6 dimensions.

Next we show that this algebra is solvable.

D1A6 = [A6, A6] =


0 0 −a3d2 + a1d4 + b3u1 − b1u3 −c3d1 + c1d3
0 0 −b3d2 + b1d4 0
0 0 0 0
0 0 0 0




D2A6 = [D1A6, D
1A6] =

0 0 −a3d2 + a1d4 + b3u1 − b1u3 −c3d1 + c1d3
0 0 −b3d2 + b1d4 0
0 0 0 0
0 0 0 0

 ·


0 0 −a7d6 + a5d8 + b7u5 − b5u7 −c7d5 + c5d7
0 0 −b7d6 + b5d8 0
0 0 0 0
0 0 0 0

−


0 0 −a7d6 + a5d8 + b7u5 − b5u7 −c7d5 + c5d7
0 0 −b7d6 + b5d8 0
0 0 0 0
0 0 0 0

 ·


0 0 −a3d2 + a1d4 + b3u1 − b1u3 −c3d1 + c1d3
0 0 −b3d2 + b1d4 0
0 0 0 0
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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And thus we do have a solvable Lie algebra.

We now take the brackets of the six basis matrices.

U1 =


0 u1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ;A1 =


0 0 a1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ;B1 =


0 0 0 0
0 0 b1 0
0 0 0 0
0 0 0 0



C1 =


0 0 0 c1
0 0 0 0
0 0 0 0
0 0 0 0

 ;D1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 d1

 ;D2 =


0 0 0 0
0 0 0 0
0 0 d2 0
0 0 0 0



[U1, A1] = 0; [U1, B1] =


0 0 u1b1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ; [U1, C1] = 0; [U1, D1] = 0; [U1, D2] = 0

[A1, B1] = 0; [A1, C1] = 0; [A1, D1] = 0; [A1, D2] =


0 0 a1d2 0
0 0 0 0
0 0 0 0
0 0 0 0



[B1, C1] = 0; [B1, D1] = 0; [B1, D2] =


0 0 0 0
0 0 b1d2 0
0 0 0 0
0 0 0 0



[C1, D1] =


0 0 0 c1d1
0 0 0 0
0 0 0 0
0 0 0 0

 ; [C1, D2] = 0; [D1, D2] = 0

From these brackets we see that A6 does not have a trivial center.

We now want to lay out a solvable complete flag corresponding to the
solvable Lie algebra A6. We have

A6 =




0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1


 ⊃ D1A6 =




0 0 a3 c3
0 0 b3 0
0 0 0 0
0 0 0 0


 ⊃ D2A6 = 0

Thus we see a complete flag is
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


0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1


 ⊃




0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 d1


 ⊃




0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0


 ⊃


0 0 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0


 ⊃




0 0 a1 0
0 0 b1 0
0 0 0 0
0 0 0 0


 ⊃




0 0 a1 0
0 0 0 0
0 0 0 0
0 0 0 0


 ⊃ 0

Just examining the matrices we see that the matrices


0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0


 ;




0 0 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0







0 0 a1 0
0 0 b1 0
0 0 0 0
0 0 0 0


 ;




0 0 a1 0
0 0 0 0
0 0 0 0
0 0 0 0




are nilpotent, while the matrices


0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1


 ⊃




0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 d1




are solvable. Thus we see that the 6-dimensional set of matrices A6 is its
own radical r̂, which contains the 4-dimensional nilradical n̂ = A4 comprised
of the matrices 


0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0




and that it does not have a zero center.

Now we first climb up the Nilpotent Complete Flag to the nilradical A4.
To do this, we first calculate the lower central series for A4:

C1A4 = [A4, A4] =
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



0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0


 ,




0 u3 a3 c3
0 0 b3 0
0 0 0 0
0 0 0 0



 =




0 0 b3u1− b1u3 c1
0 0 0 0
0 0 0 0
0 0 0 0




C2A4 = [A4, C
1A4] =





0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0


 ,




0 0 b3u1− b1u3 c1
0 0 0 0
0 0 0 0
0 0 0 0



 = 0

Thus we choose the first set of matrices in the Complete Nilpotent Flag
to be

A1 =




0 0 a1 0
0 0 0 0
0 0 0 0
0 0 0 0


.

It is one-dimensional, and thus is an abelian subalgebra of A4. Indeed from
our knowledge of the Complete Nilpotent Flag, we know that A1 is an ideal
in A4. From the brackets of the basis vectors we have immediately that this
bracket [A1, A4] = 0 and this affirms that the matrices A1 is an ideal in A4.

We choose the next set of matrices in the Complete Nilpotent Flag to be

A2 =




0 0 a1 c1
0 0 0 0
0 0 0 0
0 0 0 0




which is equal to A1 plus the 1-dimensional subspace C1

C1 =




0 0 0 c1
0 0 0 0
0 0 0 0
0 0 0 0




We see from the bracket of the basis vectors that
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[A2, A4] =




0 0 −b1u3 0
0 0 0 0
0 0 0 0
0 0 0 0




and thus A2 is an ideal in A4, but also we see that [A2, A4] ⊂ A1 ⊂ A2, which
is as it should be from our knowledge of the Complete Nilpotent Flag. We
remark also that C1A4 = A2.

We choose the next set of matrices in the Complete Nilpotent Flag to be

A3 =




0 0 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0




which is equal to A2 plus the 1-dimensional subspace B1, where

B1 =




0 0 0 0
0 0 b1 0
0 0 0 0
0 0 0 0




We see from the bracket of the basis vectors that

[A3, A4] =




0 0 −b1u3 0
0 0 0 0
0 0 0 0
0 0 0 0




and thus A3 is an ideal in A4, but also we see that [A4, A5] ⊂ A2 ⊂ A3, which
is as it should be from our knowledge of the Complete Nilpotent Flag.

Now the next set of matrices in the Complete Nilpotent Flag is

A4 =




0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 0




which, of course, is the nilradical of A6. We observe that A4 is equal to A3

plus the 1-dimensional subspace U1

U1 =




0 u1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


,
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is indeed a subalgebra of our Lie algebra A6, since it is generated by a basis
vector for A6.

We continue up our flag. We are now in the Solvable Complete flag part
of our Lie algebra A6. Everything repeats except that we no longer have the
relation

[n̂, âi+1] ⊂ âi ⊂ âi+1

(which was a characteristic of nilpotent Lie algebras and not of solvable Lie
algebras) but only the relation

[r̂, âi+1] ⊂ âi+1

We choose the next set of matrices in the Complete Solvable Flag to be

A5 =




0 u1 a1 c1
0 0 b1 0
0 0 0 0
0 0 0 d1




which is equal to A4 plus the 1-dimensional subspace D1

D1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 d1




We see from the bracket of the basis vectors that

[A4, A5] =




0 0 b2u1 − b1u2 c1d2
0 0 0 0
0 0 0 0
0 0 0 0




and thus A4 is an ideal in A5.

Finally, the next set of matrices in the Complete Solvable Flag is the
radical r̂ = A6

A6 =




0 u1 a1 c1
0 0 b1 0
0 0 d2 0
0 0 0 d1



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which is equal to A5 plus the 1-dimensional subspace D2

D2 =




0 0 0 0
0 0 0 0
0 0 d2 0
0 0 0 0




Again we see from the bracket of the basis vectors that A5 is an ideal in A6

since

[A5, A6] =




0 0 a1d4 + b3u1 − b1u3 −c3d1 + c1d3
0 0 b1d4 0
0 0 0 0
0 0 0 0




******************************************************************

******************************************************************

Appendix for 2.17: A Review of Some Terminology:

Nilpotent Lie Algebra:

We have

C0ĝ := ĝ
C1ĝ := [ĝ, C0ĝ] = [ĝ, ĝ] ⊂ ĝ
C2ĝ := [ĝ, C1ĝ] ⊂ [ĝ, ĝ] = C1ĝ
C3ĝ := [ĝ, C2ĝ] ⊂ [ĝ, C1ĝ] = C2ĝ

.

.

.
Ck−1ĝ := [ĝ, Ck−2ĝ] ⊂ [ĝ, Ck−3ĝ] = Ck−2ĝ

Ckĝ := [ĝ, Ck−1ĝ] = 0 ⊂ Ck−1ĝ
Ck−1ĝ ⊂ center(ĝ) 6= 0

Each Ciĝ is an ideal of ĝ

********************************************
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Nilpotent Complete Flag

We have

C0ĝ = ĝ = â0 ⊃ â1 ⊃ . . . ⊃ as = C lĝ ⊃ . . . ⊃ ât = C l+1ĝ ⊃ . . . ⊃ an =
Ckĝ = 0

where dim ĝ = n = dim a0 = dim a1 + 1; dim a2 = dim a1 + 1; . . . . dim an =
dim an−1 + 1.

Also we have ĝ ⊃ C1ĝ ⊃ C2ĝ ⊃ C3ĝ ⊃ ... ⊃ Ck−1ĝ ⊃ Ckĝ = 0 where

dim ĝ = n > dim C1ĝ > dim C2ĝ > dim C3ĝ > . . . > dim Ck−1ĝ >
dim Ckĝ = 0

********************************************

Nilpotent Lie Algebra implies a Nilpotent Complete Flag:

We have

ĝ ⊃ C1ĝ ⊃ C2ĝ ⊃ C3ĝ ⊃ ... ⊃ Ck−1ĝ ⊃ Ckĝ = 0 where

dim ĝ = n > dim C1ĝ > dim C2ĝ > dim C3ĝ > . . .> dim Ck−1ĝ >
dim Ckĝ = 0

Now having chosen â0 = ĝ = C0ĝ, we then choose â0 = â1 ⊕ ĥ0 where
â1 ⊃ C1ĝ is of dimension n−1 and ĥ0 is an arbitrary complementary subspace
of dimension = 1.

If â1 6= C1ĝ, we continue with â1 = â2 ⊕ ĥ1, where â2 ⊂ C1ĝ and is of
dimension n− 2 and ĥ1 is an arbitrary complementary subspace of â1 and is
of dimension = 1.

Continuing in this manner we obtain a complete flag

ĝ = â0 ⊃ â1 ⊃ â2 ⊃ . . . ⊃ ân−1 ⊃ ân = 0.

where each Ciĝ appears for some âj.

Thus we have

C0ĝ = â0 ⊃ â1 ⊃ . . . ⊃ as = C lĝ ⊃ . . . ⊃ ât = C l+1ĝ ⊃ . . . ⊃ an = 0

Now choose an âi such that
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. . . ⊃ âs = C lĝ ⊇ . . . ⊇ âi ⊃ âi+1 ⊇ . . . ⊇ ât = C l+1ĝ ⊃ . . .

Then we have

[ĝ, âi] = [â0, âi] ⊆ [C0ĝ, C lĝ] = C l+1ĝ = ât ⊆ âi+1 ⊂ âi

and thus âi is an ideal in ĝ; and indeed this means [âi, âi] ⊂ âi, and thus âi
is a subalgebra. [We remark that nilpotency of the Lie algebra determines
the critical inclusion âi+1 ⊂ âi; and also this inclusion means

[ĝ/âi+1, âi/âi+1] ⊆ âi+1/âi+1 = 0

and this relation says that âi/âi+1 is in the center of ĝ/âi+1.]

********************************************

Nilpotent Complete Flag implies Nilpotent Lie Algebra:

We are given the nilpotent complete flag

ĝ = â0 ⊃ â1 ⊃ â2 ⊃ ... ⊃ ân−1 ⊃ ân = 0

We use induction to prove that Ciĝ ⊂ âi; that is, Ci = [ĝ, Ci−1ĝ] ⊂ âi.

For i = 0, we have C0ĝ = ĝ = â0 = ĝ.

Assume that the claim is true for i. This gives Ciĝ ⊂ âi.

We prove that the claim is true for i + 1, i.e., Ci+1ĝ ⊂ âi+1. Now since
âi = âi+1 ⊕ ĥi, we have

Ci+1ĝ = [ĝ, Ciĝ] ⊂ [ĝ, âi]
= [ĝ, âi+1 ⊕ ĥi]

= [ĝ, âi+1] + [ĝ, ĥi]
⊂ âi+1 + âi+1

⊂ âi+1

since âi+1 is an ideal in ĝ and [ĝ, ĥi] ⊂ [ĝ, âi] ⊂ âi+1. Thus for some n,
Cn−1ĝ ⊂ ân−1, C

nĝ ⊂ ân = 0 and thus ĝ is a nilpotent Lie algebra.

********************************************
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Solvable Lie Algebra:

In a solvable Lie Algebra, we have:

D0ĝ := ĝ
D1ĝ := [D0ĝ, D0ĝ] = [ĝ, ĝ];D1ĝ = C1ĝ

D2ĝ := [D1ĝ, D1ĝ]
D3ĝ := [D2ĝ, D2ĝ]

.

.

.
Dk−1ĝ := [Dk−2ĝ, Dk−2ĝ]
Dkĝ := [Dk−1ĝ, Dk−1ĝ] = 0

[Each Diĝ is an ideal of ĝ by Jacobi identity]
Dk−1ĝ 6= 0 is an abelian ideal of ĝ

********************************************

Solvable Complete Flag:

In a solvable complete flag we have:

D0ĝ = ĝ = â0 ⊃ â1 ⊃ . . . ⊃ as = Dlĝ ⊃ . . . ⊃ ât = Dl+1ĝ ⊃ . . . ⊃ an =
Dkĝ = 0

where dim ĝ = n = dim a0 = dim a1 + 1; dim a2 = dim a1 + 1; . . . .; dim an =
dim an−1 + 1.

Also we have ĝ ⊃ D1ĝ ⊃ D2ĝ ⊃ D3ĝ ⊃ ... ⊃ Dk−1ĝ ⊃ Dkĝ = 0 where

dim ĝ = n > dim D1ĝ > dim D2ĝ > dim D3ĝ > . . .> dim Dk−1ĝ >
dim Dkĝ = 0

Also we a have

[âi, âi] ⊂ âi: thus âi is a subalgebra
[âi, âi+1] ⊂ âi+1: thus âi+1 is an ideal in âi

********************************************
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Solvable Lie Algebra implies Solvable Complete Flag:

Here we have

dim ĝ = n >
D1ĝ := [D0ĝ, D0ĝ] = [ĝ, ĝ];D1ĝ = C1ĝ

D2ĝ := [D1ĝ, D1ĝ]
D3ĝ := [D2ĝ, D2ĝ]

.

.

.
Dk−1ĝ := [Dk−2ĝ, Dk−2ĝ]
Dkĝ := [Dk−1ĝ, Dk−1ĝ] = 0

[Each Diĝ is an ideal of ĝ by the Jacobi identity]
Dk−1ĝ 6= 0 is an abelian ideal of ĝ

dim ĝ = n > dim D1ĝ > dim D2ĝ > dim D3ĝ > . . . > dim Dk−1ĝ >
dim Dkĝ = 0

Now having chosen â0 = ĝ = D0ĝ, we choose â0 = â1 ⊕ ĥ0 where â1 ⊃ D1ĝ
and is of dimension n− 1 and ĥ0 is an arbitrary complementary subspace of
dimension = 1.

If â1 6= D1ĝ, we continue with â1 = â2 ⊕ ĥ1, where â2 ⊃ D1ĝ and is of
dimension n − 2 and ĥ1 is an arbitrary complementary subspace of â1 of
dimension = 1.

Continuing in this manner we obtain a complete flag

ĝ = â0 ⊃ â1 ⊃ â2 ⊃ . . . ⊃ ân−1 ⊃ ân = 0.

where each Diĝ appears for some âj.

Thus we have

D0ĝ = â0 ⊃ â1 ⊃ . . . ⊃ as = Dlĝ ⊃ . . . ⊃ ât = Dl+1ĝ ⊃ . . . ⊃ an = 0

Now choose an âi such that

. . . ⊃ âs = Dlĝ ⊇ . . . ⊇ âi ⊃ âi+1 ⊇ . . . ⊇ ât = Dl+1ĝ ⊃ . . .

Then we have

[ĝ, âi] = [â0, âi] ⊆ [D0ĝ, Dlĝ] = Dl+1ĝ = ât ⊆ âi+1 ⊂ âi

245



and thus âi is an ideal in ĝ; and indeed this means [âi, âi] ⊂ âi, and thus âi is
a subalgebra. [We remark that solvability of the Lie algebra determines the
critical inclusion âi+1 ⊂ âi; and also this inclusion means [ĝ/âi+1, âi/âi+1] ⊆
âi+1/âi+1 = 0 and that this says that âi/âi+1 is in the center of ĝ/âi+1.]

********************************************

Solvable Complete Flag implies Solvable Lie Algebra:

We are given the solvable complete flag

ĝ = â0 ⊃ â1 ⊃ â2 ⊃ ... ⊃ ân−1 ⊃ ân = 0

We use induction to prove that Diĝ ⊂ âj for some j > i; that is, Diĝ =
[Di−1ĝ, Di−1ĝ] ⊂ âj.

For i = 0, we have D0ĝ = ĝ = â0 = ĝ.

Assume that the claim is true for i. This gives Diĝ ⊂ âj for some j > i.

We prove that the claim is true for i+ 1, i.e.,Di+1ĝ ⊂ âk for some k > i+ 1.
Now since âj = âj−1 ⊕ ĥj, we have

Di+1ĝ = [Diĝ, Diĝ] ⊂ [âj, âj] = [âj−1 ⊕ ĥj, âj−1 ⊕ ĥj]
= [âj−1, âj−1] + [ĥj, âj−1] ⊂ âj−1 + [âj, âj−1] ⊂

âj−1 + âj ⊂ âj−1

since âj−1 is a subalgebra and since hj is in âj and is an ideal in âj−1 . Thus
for some k−1, Dk−1ĝ ⊂ ân−1, and for some l, Dlĝ ⊂ ân = 0, and we conclude
that ĝ is a solvable Lie algebra.

********************************************
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Appendices for the Whole Treatise

A.1. Linear Algebra

We begin with the definition of a Linear Algebra or Linear Space.
When we talk about a Linear Algebra, we need to talk about two sets: a set
V which is an abelian group and a set lF which is a field – and we say that
we are treating a Linear Algebra V [the abelian group] over a scalar field lF.

A.1.1 The Concept of a Group. We assume that our readers have
some acquaintance with the concept of a group. Here, it is the set V which
has a binary operation V × V −→ V that associates, has a unique identity,
and in which every element has a unique inverse. If this operation also
commutes, then we have an abelian group in which the binary operation is
written in additive notation [(u, v) 7−→ u + v ∈ V ], the identity is given the
symbol 0, and the inverse of any element v in V is given the symbol −v.
Here the group is abelian.

A.1.2 The Concept of a Field. The concept of a field lF is rather com-
plicated. A field lF is a set which has two binary operations, called addition,
symbolized by +, and multiplication, symbolized by just writing the two el-
ements of the binary operation in juxtaposition. The addition operation in
lF, symbolized again by +, is an abelian group, with identity written as 0,
and with the inverse of an element c in lF written as −c. [There is usually no
confusion between these two addition operations and the two identities, one
from V and one from lF, since one always knows when one is adding elements
in V and when one is adding elements in lF.] The multiplication operation
in lF associates and commutes and has a multiplicative identity symbolized
by 1. However this multiplication operation does not make lF into a group.
But the operation restricted to the subset (lF \ {0}) of lF is again an abelian
group with the identity 1, and with the multiplicative inverse of an element
c in (lF \ {0}) written as c−1. [Thus 0 is the only element in lF which does
not have a multiplicative inverse.] Now it is necessary to relate these two op-
erations in lF to one another, and this is done by the law of distribution. We
say the multiplication distributes over addition on the left if for any elements
a, b, and c in lF, we have a(b+ c) = ab+ ac. Since multiplication commutes
in lF, this implies that multiplication also distributes over addition on the
right, i.e., (a+ b)c = ac+ bc.
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A.1.3 The Concept of a Linear Space V over a scalar field lF. A
linear space V over a scalar field lF, where V is an abelian group and lF is a
field, defines a binary function lF × V −→ V , written as (c, v) 7−→ cv ∈ V ,
and this function is given the name of scalar multiplication. In order to
complete our definition of a linear space V over the scalar field lF we need
to relate the two operations in the field lF with the addition operation in the
linear space V . Relating an element c in the field lF with the addition of two
elements u and v in V , we have the first relation for scalar multiplication
c(u + v) = cu + cv. Relating two elements a and b in the field lF with an
element v in V , we have for addition in lF the second relation for scalar
multiplication (a+ b)v = av + bv. Relating two elements a and b in the field
lF with an element v in V , we have for multiplication in lF the third relation
for scalar multiplication (ab)v = a(bv) . We also have the relationship of
the identity 1 in lF with any element v in V : 1v = v, giving the fourth
and final property of scalar multiplication. As seen in the above treatment,
the elements of the linear space are in the set V . Since one example of this
structure is a beautiful model for the Euclidean Plane with an arbitrary but
fixed point called the origin, the elements of V are frequently called vectors,
even though we might not be referring to this model. In this context, the
elements of the scalar field lF are called scalars. Another mathematical entity
which exhibits this structure is the set of all n-tuples lFn of the field lF, with
addition defined coordinate-wise (a1, ···, an)+(b1, ···, bn) = (a1+b1, ···, an+bn),
and scalar multiplication defined by c(a1, · · ·, an) = (ca1, · · ·, can). [Also
we observe that the inverse c−1 of an element c in lF does not enter into
the definition of a linear space over a field lF. Thus we could weaken the
structure on the set lF to one in which 0 is not the only element without
a multiplicative inverse. In this case that structure is called an associative,
commutative ring R with an identity, and the abelian group V is called a
module over the ring R. But we shall not pursue these concepts in this work.]

A.1.4 Bases for a Linear Space. From this point on we will consider
only linear spaces which are finite dimensional. This means that there exists
a linearly independent finite ordered subset B of V , called a basis of V , which
spans V . This means that each vector can be expressed as a linear combi-
nation of the vectors in the basis and that these combinations are unique
because the vectors in the basis are linearly independent. Thus suppose B
= (v1, · · ·, vn) [where the order is given by the integer subscripts]. Then for
any element v in V , v = c1v1 + · · ·+ cnvn, where the n-scalars c1, · · ·, cn are
uniquely determined. Now to prove that such a subset exists we would need
the full force of the scalars being a field lF We also know that every other
basis for V has the same finite number of elements. [The proof of this fact
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is also omitted here.] Thus we can associate with V a non-negative integer
n which describes the dimension of the linear space V . Note that we say
that the dimension of V is 0 if the basis for V is the empty set and then V
consists of only the vector 0.

We remark that in the linear space lFn, where n > 0, there is a natural or
canonical basis (e1, · · ·, en), where ei is the n-tuple with 0 in each coordinate
except the ith-coordinate, where it is 1: thus ei = (0, · · ·, 0, 1, 0, · · ·, 0), where
1 is the ith-coordinate. We can conclude that lFn has dimension n.

A.1.5 The Fields of Scalars: lR and lC. The only fields of scalars that
we will consider in this study are the field of real numbers lR and the field of
complex numbers lC. We pause here to make some remarks about these fields.
The fundamental field is the field of real numbers. It is defined mathemati-
cally as the ”complete ordered field”. [The word ”the” implies that there is
essentially only one complete ordered field. Thus, no matter in what guises
they may appear, all complete ordered fields are isomorphic to one another.]
We have already discussed the meaning of a field. Now a field is ordered if for
any two elements a and b in the field, with a 6= b, we can assert that either
a < b or b < a, where a < b means that b−a is a positive real number, i.e., is
in the interval (0,+∞). [Obviously both relations cannot be true, for if a < b
is true, then b < a means a−b is a positive real number. But a−b = −(b−a).
Since b− a is a positive real number, this means that −(b− a) is a negative
number, a contradiction.] Finally we say an ordered field is complete if any
non-empty set which has an upper bound also has a least upper bound. [This
concept is a concept from analysis, and not from algebra. We just quote it
and will make no more comments about it. But it does give us the conclusion
that lR = {set of rational numbers} ∪ {set of irrational numbers}; and
{set of rational numbers} ∩ {set of irrational numbers} = nullset.]

What is important is that in an algebraic context, where we can write an
algebraic equation such as x2− 2 = 0, where 2 is a rational number, x needs
to belong to the set of real numbers for the equation to have a solution. Since
x2 − 2 = 0 means x2 = 2, this says that x = ±

√
(2), which are irrational

numbers. The fact that lR is a complete ordered field allows us to conclude
that it contains solutions to equations like x2−2 = 0, but it does not furnish
solutions to all polynomials over lR, for the real field is not algebraically
closed. (The reader should review what ”complete” means.)

Now it is a fact that the algebraic equation, the polynomial equation over
lR x2 + 1 = 0, where 1 is a real number, has no solution in the field of real
numbers. Since x2 + 1 = 0 means x2 = −1, and we know that the square
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of any real number is non-negative. But there is another field which is the
algebraic closure of the field of real numbers, in which equations of this
type have solutions. It is here where the field of complex numbers makes
its appearance. The assertion that this field exists is the incredibly beautiful
but difficult to prove Fundamental Theorem of Algebra. In so far as we will
use this result we can state it as follows. Every polynomial in one indetermi-
nate x with coefficients in the field of complex numbers can be factored into
linear factors over the complex numbers, where the factoring is unique except
for its order. Since the real field is contained in the complex field, this means
that any such polynomial with coefficients in the field of real numbers can
be factored over the the field of complex numbers into linear factors. Thus
the above polynomial x2 + 1 has the factorization x2 + 1 = (x + i)(x − i),
where i is the so-called imaginary complex number such that i2 = −1.

A.1.6 Linear Transformations. The Dimension Theorems and
the Isomorphisms. Some of the most important results in Linear Algebra
are the two dimension theorems and the corresponding isomorphism theo-
rems. The context of the first dimension theorem concerns linear subspaces
of a given linear space V . A subset W of a linear space V is a linear sub-
space if W is a linear space with respect to the same addition and scalar
multiplication which defines V . This means that addition closes in W , i.e.,
the sum of any two elements in W remains in W and a scalar multiple of an
element in W remains in W , that 0 is in W , and that the additive inverse
of any element in W remains in W also. When W is a linear subspace of V ,
the concept of a quotient space or coset space also appears and is written as
V/W . It is given a natural linear space structure: Two cosets u + W and
v+W add together to give (u+v)+W ; the 0 coset is 0+W ; and the additive
inverse of the coset u+W is (−u)+W ; and for scalar multiplication we have:
c(v+W) = cv + W.

The first dimension theorem and the corresponding isomorphism theorem
considers two linear subspaces V1 and V2 of the same linear space V . Now
the symbol V1 + V2 means all possible sums v1 + v2 with v1 in V1 and v2 in
V2 It is an easy conclusion that V1 + V2 is a linear subspace of V . The first
dimension theorem asserts:

dim(V1 + V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2)

or

dim(V1 + V2) − dim(V1) = dim(V2) − dim(V1 ∩ V2)

which translates immediately into the isomorphism theorem between the
quotient spaces, where the symbol ∼= indicates a relation of isomorphism:
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(V1 + V2)/V1 ∼= V2/(V1 ∩ V2)

The second dimension theorem and the corresponding isomorphism the-
orem also put us in the context of a linear map φ between two linear spaces
V and W over the same scalar field. Linear maps are the homomorphisms in
the study of Linear Algebra. Thus a linear map between two linear spaces V
and W over the same scalar field is a map that preserves addition and scalar
multiplication:

V
φ−→ W

v −→ φ(v)

is such that

φ(u+ v) = φ(u) + φ(v) and φ(cu) = cφ(u)

Now any linear transformation φ determines two subspaces: the kernel
of φ, written as ker(φ), is a subspace of the domain V of φ; and the image
of φ, given by image(φ), is a subspace of the target space W of φ. Their
definitions are:

ker(φ) := {v ∈ V |φ(v) = 0}
image(φ) := {w ∈ W |φ(v) = w for some v ∈ V}

We remark that if φ is injective then ker(φ) = 0; while if φ is surjective then
image(φ) = W . Evidently if φ is bijective then ker(φ) = 0 and image(φ) =
W and φ is an isomorphism.

The second dimension theorem and the corresponding isomorphism theorem
are the following:

dim(V ) = dim(ker(φ)) + dim(image(φ))

or

dim(V )− dim(ker(φ)) = dim(image(φ))

This equation, if φ surjects onto W , gives immediately the isomorphism
between the quotient space and W or at least image(φ) if φ does not surject:

V/ker(φ) ∼= image(φ)
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In our notation, given two linear spaces V and W over the same scalar
field, the set of all linear maps from V to W is symbolized by Hom(V,W ),
and the set of linear isomorphisms from V to W is symbolized by Iso(V,W ).
[In this situation the dimension of V must be the same as the dimension
of W .] However if W = V , i.e., if the domain and target spaces are the
same, then we say that the set of all linear transformations from V to V is
symbolized by End(V ), the linear endomorphisms on V . If these maps are
all bijective, then we say that the set of these linear isomorphisms from V to
V is symbolized by Aut(V ), the linear automorphisms of V . We also say that
these maps are the nonsingular or invertible linear transformations. Within
End(V ) we have some very special linear transformations, called nilpotent
linear transformations. A linear transformation A is nilpotent if after k-
iterations (k positive) it becomes the null transformation. i.e., Ak = 0, while
Ak−1 6= 0.

We can also make Hom(V,W ) into a linear space over the same field lF
by a process called pointwise addition and pointwise scalar multiplication:

Hom(V,W ))×Hom(V,W ))
α+β−→ Hom(V,W ))

(α, β) 7−→ α + β : V −→ W
v 7−→ (α + β)(v) := α(v) + β(v)

lF×Hom(V,W )
cα−→ Hom(V,W )

(c, α) 7−→ cα : V −→ W
v 7−→ (cα)(v) := c(α(v))

It is straightforward to show that α+β and cα are also linear transformations.
It is interesting to note that Iso(V,W ) is not a linear subspace ofHom(V,W ).
[If α is in Iso(V,W ), then −α is also in Iso(V,W ) but α + (−α) = 0, but
the zero transformation is certainly not an isomorphism. However cα, c 6= 0,
is in Iso(V,W ).]

A.1.7 Matrices. Another concept from Linear Algebra is that of a
matrix. An mxn matrix A in Mmxn is an array of field elements arranged in
m rows and n columns:

A = [aij] =



a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·
· · · · · ·
am1 am2 · · · amn


We can give Mmxn the structure of a linear space over lF by defining addition
and scalar multiplication entrywise:
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A+B = [aij] + [bij] := [aij + bij]
cA = c[aij] := [caij]

A row matrix is an element in M1xn, i.e., it is of the form

[a11 a12 · · · a1n]

and a column matrix is an element in Mmx1, i.e., it is of the form

a11
a21
·
·
·
am1


There is another binary operation on matrices, that of row-by-column

multiplication. This can be defined if the number of columns of the first
matrix A equals the number of rows of the second matrix B, i.e., A is a mxn
and B is a nxp. Then the product matrix AB is an mxp matrix, defined by

AB = [aij][bjk] := [
∑n
j=1 aijbjk]

The importance of matrices is that they can be representations of linear
transformations. If we are given a finite dimensional linear space V over lF
of dimension n, and a finite dimensional linear space W over lF of dimension
m, and if we choose a basis BV = (v1, · · ·, vn) for V and a basis BW =
(w1, · · ·, wm) for W , then any linear transformation φ from V to W can be
given a matrix representation A = [aij] in Mmxn. The following commutative
diagram illustrates this situation.

-V W
φ

? ?

BV BW

-Mnx1(lR) Mmx1(lR)
A

The matrix A = [aij] in Mmxn is defined as follows. The j-th column is
obtained by taking the j-th basis vector vj for V , transforming it over to W
by φ, and then writing φ(vj) in terms of the basis for W , giving the m scalars
which form the j-th column of the matrix A, i.e., φ(vj) =

∑m
i=1 aijwi. In this

correspondence between linear transformations and matrices, it is necessary

253



to note that in the symbol Mmxn the target dimension m comes first and the
domain dimension comes second. Thus there is a reversal in the manner of
writing the dimensions in this correspondence.

We remark that in this interpretation an element v in V (or w in W ) is
represented by a column matrix whose entries are the scalar coefficients of v
[or of w] written with respect to a basis BV of V [BW of W ].

The above definitions of (Hom(V,W ),+, scalarmultiplication) and
(Mmxn,+, scalarmultiplication) give an isomorphism between these two lin-
ear spaces, and indeed this is the meaning of the word representation used
above. We remark that in the case of End(V ), the corresponding matrices
are square matrices.

The row-by-column multiplication of matrices was chosen so that the
following relation is realized. If we take three linear spaces over the same
scalar field, U of dimension p with basis BU , V of dimension n with basis BV ,
and W of dimension m with basis BW ; and two linear maps φ1 : U −→ V
represented by the matrix A in Mnxp, and φ2 : V −→ W represented by
the matrix B in Mmxn, then the matrix C which represents the composition
of the two maps φ2 ◦ φ1 is exactly the product of the matrices B and A:
C = BA. With these remarks one can also see that the non-singular matrices
correspond to the invertible transformations.

A.1.8 The Trace and the Determinant of a Matrix. Now that
we are considering square matrices, we can define two important functions
of a linear transformation φ of a linear space V into itself: the trace and
the determinant of a linear transformation. The target space of both of
these functions is the field lF. Both of these will be defined by choosing a
matrix representation of the linear transformation, which in this case will be
a square matrix since both the domain and the target spaces are the same,
and then we will prove that the function’s value is independent of such a
matrix representation.

The trace of a linear transformation φ : V −→ V in End(V ), with the
dimension of V equal to n, is a linear function tr(φ) : V −→ lF. We define
it off of a matrix representation A = [aij] of φ. After choosing a basis for V ,
giving us a matrix representation A = [aij], tr(A) is the sum of the diagonal
elements of A: tr(A) :=

∑n
i=1 aii. We know that we can give the set End(V )

a linear space structure, and we can then assert that the trace function on
End(V ) is linear, i.e., tr(A + B) = tr(A) + tr(B) and tr(cA) = c(tr(A)),
where c is any scalar. It also has the property of being cyclic with respect to
multiplication [or composition], i.e.: tr(ABC) = tr(CAB) = tr(BCA). As
a corollary we have tr(AB) = tr(BA).
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The determinant of a linear transformation φ : V −→ V in End(V ),
with the dimension of V equal to n, is an alternating n-multilinear function
det(φ) : V × · · · × V −→ lF. We define it off of a matrix representation A =
[aij] of φ. After choosing a basis for V , giving us a matrix representation A =
[aij], we read the n-columns of this matrix as the representation of n vectors
(v1, · · ·, vn) in V , or as we say, a representation of an n-multivector in V n.
Here multilinear means that in each term of the domain we have linearity
with respect to addition and scalar multiplication, i.e.:

det(φ)(v1, ···, ui+vi, ···, vn) = det(φ)(v1, ···, ui, ···, vn)+det(φ)(v1, ···, vi, ···, vn)

and

det(φ)(v1, · · ·, c(ui), · · ·, vn) = c(det(φ)(v1, · · ·, vi, · · ·, vn))

for any scalar c. An alternating multilinear function is one in which if two ad-
jacent vectors are interchanged in the domain, then the value of the function
changes sign.

det(φ)(v1, · · ·, vi, vj, · · ·, vn) = −(det(φ)(v1, · · ·, vj, vi, · · ·, vn))

The definition of the determinant function is complicated and at this
level very unintuitive. We will just give it by an induction procedure on the
dimension of V. Having chosen a basis for V , we now define the determinant
of φ in terms of the matrix representation A of φ, that is, det(A), which is
an element of lF . If the dimension of V is one, then the det([a11]) := a11. If
the dimension of V is 2, then the det([aij]) := a11det([a22])− a12det([a21]) =
a11a22 − a12a21. If the dimension of V is 3, then

det([aij]) = det


 a11 a12 a13
a21 a22 a23
a31 a32 a33


 :=

+a11det

([
a22 a23
a32 a33

])
− a12det

([
a21 a23
a31 a33

])
+ a13det

([
a21 a22
a31 a32

])
=

+a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22) =
+a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22

Guided by the definition for the first few dimensions, we can now give full
inductive definition of the determinant function:

det([aij]) = det



a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
am1 am2 · · · amn


 :=
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+a11det


 a22 · · · a2n
· · · · ·
am2 · · · amn


− a12det


 a21 a23 · · · a2n
· · · · · ·
am1 am3 · · · amn


+ · · ·

±a1ndet


 a21 · · · a2(n−1)
· · · · ·
am1 · · · am(n−1)




where the determinants in the sum are taken on the submatrices which are
missing the i-th row and the j-th column if aij is the coefficient of that
determinant. In our definition the elements in the first row are used but it
could be any row. We see that if the dimension of V is n, then the number
of terms in the full expansion of the determinant is n!, which is the number
of permutations on n objects and/or the order of the n-th order symmetric
group. Now each element in the expanded defining equation carries with it
a ± sign, and thus we see that the determinant is an alternating multilinear
map, where half of the terms in the expansion carry a positive sign and half
of the terms carry a negative sign. Each set of subscripts found in each term
defines a permutation, and the sign of the permutation of the numbers 1, 2
..., n is given to the term in the expansion of the determinant.

Another interpretation – a geometric one – can be given to the determi-
nant. Suppose our linear space is lRn and our basis is the canonical basis.
Each column of the nxn matrix representing a linear transformation is the
image of one of these canonical vectors. These n vectors now determine an n-
dimensional parallelepiped in lRn. If they are linearly independent then the
determinant of this matrix determines a real number which is the oriented
Euclidean n-volume of this parallelepiped. If the vectors are not linearly
independent, then the n-volume is zero. From these observations we can
conclude that the determinant of a singular transformation is zero, while
that of a non-singular transformation is not zero.

With respect to multiplication of matrices [or composition of functions]
we have the following nice property of the determinant function:

det(AB) = det(A) det(B)

We do not prove this property but just here declare it.

A.1.9 Eigenspaces, Eigenvalues, Characteristic Polynomial and
the Jordan Decomposition Theorem. The eigenspaces of linear trans-
formations along with their eigenvectors and eigenvalues play an important
part in our development. In this context we fix our attention on one linear
transformation T in End(V ), where V is a linear space of dimension n.over
the field lF. [Recall, again, that the only fields that we are considering are
lR and lC]. We seek vectors v 6= 0 in V with the following property:
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Tv = λv

where λ is a scalar in lF. This essentially says the T stabilizes v in a one-
dimensional subspace of V . Such a vector is called an eigenvector with the
eigenvalue = λ. Now we can rewrite this information as follows:

Tv = λv or λv − Tv = 0 or λInv − Tv = 0 or (λIn − T )v = 0

where In is the identity function in End(V ). Since v 6= 0, this means that
(λIn − T ) has a non-zero kernel. Thus this property identifies these special
scalars, the eigenvalues, which in turn identify the eigenvectors. In order
to obtain these scalars we use the fact that (λIn − T ) has a non-zero ker-
nel implies that (λIn − T ) is a singular linear transformation, and thus its
determinant is 0. Now we know that we need to choose a basis for V in
order to calculate this determinant and its eigenvalues. What is remarkable
is that these eigenvalues do not depend on the basis chosen to calculate this
determinant. And this determinant will be an nth-degree polynomial in the
indeterminate λ over the field lF. Thus we have this polynomial which is
uniquely determined by a linear transformation T . It is called the character-
istic polynomial of the linear transformation T . The roots of this polynomial
in the field lF are exactly the eigenvalues of the transformation T .

At this point it is necessary to bring in the algebraic closure of lR, which
is lC. With this field of scalars we know that the characteristic polynomial
of a linear transformation can be factored into linear polynomials. Also any
linear space V over lR can be considered a linear space over lC, since lR is a
subfield of lC. Thus among the linear polynomials of this factorization will
again appear those with real factors, if there be any.

For a linear space V over lC there is a beautiful theorem that states that
for any linear transformation T of V , there exists a basis such that T is
represented by a matrix A of the form

A =


c1 a12 a13 a14 · · · a1n
0 c2 a23 a24 · · · a2n
0 0 c3 a34 · · · a2n
· · · · · · · ·
0 0 0 0 · · · cn


In fact more can be said. This more is the content of the Jordan Decom-
position Theorem. The linear transformation T of V over lC can be written
uniquely as a sum of two linear transformations, T = S + N , where S is
diagonalizable and N is nilpotent, with SN = NS, and in which both S and
N can be written as polynomials in T with zero constant term .
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A.1.10 The Jordan Canonical Form. In this context we would also
like to quote the theorem on the Jordan Canonical Form. First let us describe
a kxk Jordan block matrix J(c; k), where c is in lC and k is a positive integer:

J(c; k) =



c 1
c 1

c 1
· ·
· ·
· 1
c


∈Mkxk

and where all other entries are zero. We remark that J(c; k) is of the form
J(c; k) = S + N , where S is the diagonal matrix with c on the diago-
nal, and N is nilpotent [an upper triangular matrix with a zero diagonal].
Also we see that SN = (cIk)(N) = cN = cNIk = (N)(cIk) = NS, and
we affirm that S = cIk and N can be written as polynomials in J(c; k)
without constant terms. [Since this result is not that well-known, we will
give a detailed calculation of it in an example below. In the meantime let us
continue in our context.] We now begin to put together these Jordan blocks.
For k1 ≥ k2 ≥ · · · ≥ kp, we define

J(c; k1, · · ·, kp) =



J(c; k1)
J(c; k2)

·
·
·
J(c; kp)


We remark that the size of this matrix is (

∑p
i=1 ki)x(

∑p
i=1 ki). Finally we give

the Jordan Matrix of the Jordan Canonical Form:

J =


J(c1; k

(1)
1 , · · ·, k(1)p1

)
·
·
·
J(cm; k

(m)
1 , · · ·, k(m)

pm )

 ∈Mnxn

The theorem states that any linear transformation T ∈ End(V ), where V
is an n-dimensional linear space over lC and V has a basis which represents T
as Jordan Matrix J , and where the {c1, · · ·, cm} are the distinct eigenvalues

of T with multiplicities {n1, · · ·, nm} respectively and where ni =
∑pi
j=1 k

(i)
j

for 1 ≤ i ≤ m. The dimension of V is n =
∑m
i=1 ni. The characteristic

polynomial of T is (x − c1)n1 · · ·(x − cm)nm . Lastly the Jordan Canonical

Form is unique up to the order of the blocks J(ci; k
(i)
i , · · ·, k(i)pi ).
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A.1.11 An Example.

We now give in detail the calculations mentioned above, which show
how we may write the matrices S and N as polynomials in J(c; k).
First we remark that if c = 0, J(0; k) = N [and S is 0], and we have
our conclusion trivially. However for c 6= 0, since we are writing these
matrices in general form, it would be rather complicated to give the
exact entries in these matrices. But we can give the flavor of these
calculations by giving this decomposition for k = 2 and k = 4 and
c 6= 0.

J(c; 2) =

[
c 1
0 c

]

J(cI2) =

[
c 0
0 c

]
= r

[
c 1
0 c

]
+ s

[
c 1
0 c

]2

J(cI2) =

[
c 0
0 c

]
= r

[
c 1
0 c

]
+ s

[
c2 2c
0 c2

]

One observes that there are only two independent equations:

c = r(c) + s(c2)
0 = r + s(2c)

Their solution is

r = 2 s = −1
c

giving

cI2 =

[
c 0
0 c

]
= 2

[
c 1
0 c

]
− 1

c

[
c 1
0 c

]2

and [
0 1
0 0

]
=

[
c 1
0 c

]
− cI2

= −
[
c 1
0 c

]
+ 1

c

[
c 1
0 c

]2
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The details for the k = 4 case are as follows:

J(c; 4) =


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c



cI4 =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 =

r


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

+ s


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


2

+ t


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


3

+u


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


4

cI4 =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 = r


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

+ s


c2 2c 1 0
0 c2 2c 1
0 0 c2 2c
0 0 0 c2

+

t


c3 3c2 3c 1
0 c3 3c2 3c
0 0 c3 3c2

0 0 0 c3

+ u


c4 4c3 6c2 4c
0 c4 4c3 6c2

0 0 c4 4c3

0 0 0 c4


One observes that there are only four independent equations:

c = r(c) + s(c2) + t(c3) + u(c4)
0 = r + s(2c) + t(3c2) + u(4c3)

0 = s+ t(3c) + u(6c2)
0 = t+ u(4c)

Their solution is

r = 4 s = −61
c

t = 4 1
c2

u = − 1
c3

giving:

cI4 =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 = 4


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

− 61
c


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


2

+

4 1
c2


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


3

− 1
c3


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


4
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and
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

− cI4

= −3


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c

+ 61
c


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


2

−4 1
c2


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


3

+ 1
c3


c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


4

A.1.12 The Dual Space.

Another key notion in Linear Algebra is that of the dual V ∗ of a linear
space V. This is a very subtle concept since sets of duals are special kinds
of linear transformations and not just a set of elements as is V . We define
the dual V ∗ of V to be the set of linear transformations from V to the scalar
field lF. This is a clearly defined idea and thus there is no ambiguity about
what the elements of V ∗ are. If we give V a basis (e1, · · ·, en), we can define
a dual basis ((e1)∗, · · ·, (en)∗) by (ei)∗(ej) = δij

If we have a linear map φ between two linear spaces V and W over the
same scalar field

V
φ−→ W

v −→ φ(v)

then we can define immediately a dual linear map φ∗ between the two dual
spaces V ∗ and W ∗, but we have to reverse the domain and the target spaces:

W ∗ φ∗−→ V ∗

w∗ −→ φ∗(w∗)

where (φ∗(w∗))(v) := (w∗)(φ(v))

Choosing dual bases, we can put this information in terms of matrices.
Let V be n-dimensional and W be m-dimensional. Then we have the follow-
ing two diagrams.
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-V W
φ

? ?

BV BW

-Mnx1(lR) Mmx1(lR)
A

�W ∗ V ∗
φ∗

? ?

BW ∗ BV ∗

�Mmx1(lR) Mnx1(lR)
AT

The mxn matrix A corresponding to φ becomes the nxm transpose matrix
AT corresponding to φ∗.

In the case where v∗ is a dual in V ∗ acting on V , choosing a basis
(e1, · · ·, en) in V means that v∗ becomes a 1xn row matrix [v∗] =
[(v∗)1, · · ·, (v∗)n], where (v∗)i = v∗(ei). In matrix notation this becomes

[
(v∗)1 · · · (v∗)n

]
·



0
·
·
·
1i
·
·
·
0


= [(v∗)i]

The incredible fact is that there is no natural or canonical transformation
to map V to V ∗. If we give V a basis and V ∗ the dual basis, we can map V
to V ∗ by the map ei 7−→ (ei)∗. But this map is not canonical and depends
on the basis chosen. However if we give V a bilinear form B, then we have a
natural map between V and V ∗. Now a bilinear form B on V is a mapping

B : V × V −→ lF
(u, v) 7−→ B(u, v)

such that B is a linear map in each variable. Then the linear map B from V
to V ∗ is defined as follows.

V
B−→ V ∗

u 7−→ B(u) : V −→ lF
v 7−→ B(u)(v) := B(u, v)

This map is called nondegenerate if the only zero map comes from 0 in
V . This means that if the map B(u) acting on any v in V is zero, then u in
V must be zero.
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A.1.13 Schur’s Lemma.

An important tool in representation theory is Schur’s Lemma. [Below we
follow the exposition of [N]]. Assume that we have two linear spaces V and
W over a field lF. Let A be a set of linear transformations in End(V ) and
B be a set of linear transformations in End(W ). Let UV be a subspace of
V , and UW be a subspace of W . For each X in A, assume that X(UV ) is
contained in UV . [In this situation we say that A acts invariantly on UV .
Also we say that A acts irreducibly on the subspace UV if A leaves no proper
subspace of UV invariant]. Likewise we assume that B acts invariantly on
UW . Then Schur’s Lemma affirms the following.

Let V and W be linear spaces over a field lF. Let A be a set of
linear transformations in End(V ) acting invariantly on a subspace UV
of V ; and let B be a set of linear transformations in End(W ) acting
invariantly on a subspace UW of W . Let C be a linear map from V to
W which satisfies the following conditions:

1) For any A in A there exists a B in B such that CA = BC.

1) For any B in B there exists a A in A such that CA = BC.

Assume further that both A and B act irreducibly on V and W respec-
tively. Then C is either the zero map of V into W , or is an isomorphism
of V onto W [and hence B = {CAC−1, A ∈ A}].

We remark that in the situation expressed in Schur’s Lemma, we can prove
that both the ker(C) in V is an invariant subspace of V by A, and the Im(C)
in W is an invariant subspace of W by B.

As a corollary of Schur’s Lemma, we have the following important speci-
fication of the linear transformation C of Schur’s Lemma.

Let V be a linear space over lC [an algebraically closed field]. Let A
be a set of linear transformations in End(V ) acting irreducibly on V .
Then every linear transformation C of V which commutes with every
transformation A in A has the form cI, where c is an element of lC and
I is the identity transformation of V .
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A. 2 Cartan’s Classification of Simple Complex Lie Algebras

Note that in this appendix, many of the results are merely declared and
are not proved. The reader is strongly advised to consult [K] or [FH] for
fuller treatments.

We start with a semisimple complex Lie algebra ĝ. We seek what is
called a Cartan subalgebra of ĝ. We know that every simple complex Lie
algebra contains a Cartan subalgebra but the existence of such an algebra
is not easy to prove. The problem is that its definition contains a compli-
cated maximality property, and this property is not a trivial matter to verify.
We give one description of this Cartan subalgebra, which here we shall call ĥ.

Thus, a subalgbra ĥ is called a Cartan subalgebra if it is a maximal abelian
subalgebra such that for each H in ĥ the adjoint representation of H acts
diagonally on ĝ. This gives us a characteristic equation for the operation
ad(H) acting on ĝ:

det(ad(H)− λI) = 0

and we have

ĝ = ⊕αi ĝαi

where ĝαi is an eigenspace parametrized by a linear form αi in ĥ∗:

ĝαi = {X ∈ ĝ|ad(H)X = [H,X] = αi(H)X for all H in ĥ}

and where X is the simultaneous eigenvector in ĝ with the corresponding
eigenvalue αi(H) for each H in ĥ. We say that αi in ĥ∗ is a root of the Lie
algebra ĝ. Also, we have ad(Hi)H = [Hi, H] = 0(H) for all H in ĥ since ĥ is
abelian, and thus we see that we have zero roots, and that the zero root space
ĝ0 is equal to ĥ. We usually want to think of only the non-zero roots and thus
we reserve the αi symbols for the non-zero roots. Also, except for the zero
eigenspace, which has the dimension of ĥ [since, of course, ĥ is an abelian
subalgebra], we know that each non-zero eigenspace is one-dimensional. It is
interesting to observe that this means the trace of the linear transformation
ad(Hi) is zero.

We call these one-dimensional non-zero eigenspaces ĝα the root spaces
of ĝ. [The zero root space is ĥ.] Thus we can conclude that we have a
decomposition of ĝ:

ĝ = ĥ⊕ (⊕α 6=0ĝα)
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and that the roots span a real subspace of ĥ∗. The dimension of the Cartan
subalgebra ĥ, which is the zero root space, is called the rank of the Lie alge-
bra ĝ.

We have that if αi and αj are roots [now, by exception, including the
0 root] and αi + αj is a root then

[ĝαi , ĝαj ] ⊂ ĝαi+αj ]

but if αi + αj is not a root, then

[ĝαi , ĝαj ] = 0

We see that if αi = 0, then

[ĝ0, ĝαj ] ⊂ ĝ0+αj = ĝαj

and we are just repeating that ĝαj is a simultaneous eigenspace for all of

ad(ĝ0) = ad(ĥ)

Since our Lie algebras are finite dimensional, we know that there are
only a finite number of roots. Thus the expression above says that the bracket
of two elements from two root spaces ĝαi and ĝαj produces an element in an-
other root space if and only if αi + αj is another root [in this case again, by
exception, including the zero root space].

We also have that for each root α, [ĝα, ĝ−α] is non-zero and one-dimensional
and from the statements given above is in ĥ, and such that

ŝα = ĝα ⊕ ĝ−α ⊕ [ĝα, ĝ−α]

is a 3-dimensional subalgebra of ĝ isomorphic to ŝl(2, lC). We also have that
[[ĝα, ĝ−α], ĝα] 6= 0. In fact, we pick a basisXα in ĝα and a basisX−α in ĝ−α and
Hα in ĥ such that [Xα, X−α] = Hα and [Hα, Xα] = ad(Hα)Xα = α(Hα)Xα =
2Xα and [Hα, X−α] = ad(Hα)X−α = −α(Hα)X−α = −2X−α. We see that
Hα in ĥ is uniquely determined by these choices, while Xα and X−α are not.
[However, there is no motivation here for choosing the eigenvalue of ad(Hα)
acting on X−α to be 2, or -2 for ad(Hα) acting on X−α. But a natural basis
for ŝl(2, lC) has this structure:

H =

[
1 0
0 −1

]
E =

[
0 1
0 0

]
and F =

[
0 0
1 0

]
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where [H,E] = 2E and [H,F ] = −2F and [E,F ] = H. Thus each ŝα is
isomorphic to ŝl(2, lC)] The set of all non-zero roots will be called ∆. We also
remark that we can show that all the eigenvalues associated with the roots
are integers. Thus the roots determine an integer-valued lattice on ĥ∗ and
thus we can restrict ourselves to considering ĥ∗ as a linear space over the
rational field.

These roots are symmetric about the origin. We express this by choosing
for any root α an involution Wα of ĥ∗, defined by

Wα : ĥ∗ −→ ĥ∗

β −→ Wα(β) := β − 2β1(Hα)
α(Hα)

α = β − β(Hα)α

[Recall that α(Hα) = 2.]

Wα is certainly linear since

Wα(β1 + β2) = (β1 + β2)− 2(β1+β2)(Hα)
α(Hα)

= β1 − 2(β1)(Hα)
α(Hα)

α + β2 − 2(β2)(Hα)
α(Hα)

α =

Wα(β1) +Wα(β2)

and

Wα(cβ) = cβ − 2cβ(Hα)
α(Hα)

= c(β(Hα)− 2β(Hα)
α(Hα)

) = c(Wα(β))

It is also an involution since

Wα(Wα(β)) = Wα(β − β(Hα)α) = Wα(β)−Wα(β(Hα)α) =
β − β(Hα)α− β(Hα)α + β(Hα)α(Hα)α =
β − β(Hα)α− β(Hα)α + 2β(Hα)α = β

[This says that Wα, acting twice on β, is equal to β and thus is the identity
map, which means that Wα is an involution.]

The +1 eigenspace [i.e., the invariant hyperplane of the involution] is
defined as:

Ωα := {β ∈ ĥ∗|β(Hα) = 0}

The negative eigenspace is the one-dimensional line determined by α. Let us
verify both of these statements. Thus, for any β in Ωα we have

Wα(β) = β − β(Hα)α = β − 0α = β

which shows everything in Ωα remains fixed by Wα; and

Wα(α) = α− α(Hα)α = α− 2α = −α
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which shows that α is flipped to its negative by Wα.

The set of all these involutions, the Wα’s, form a group called the Weyl
group of the Lie algebra. And the set of roots is invariant by the Weyl group.
To prove this we need to know αj(Hαi).

We work now in the integer-valued lattice of ĥ∗. We choose a root α
in ∆ and we let β be any other root in ∆. We define the α-series containing
β to be all the roots of the form β + nα, where n is an integer. This series
has a lower bound n = p and an upper bound n = q and therefore includes
all integers n such that p ≤ n ≤ q. Recall that for each α in ∆, there cor-
responds a well-determined Hα in ĥ. Now for the α-series containing β we
know that

−2β(Hα)
α(Hα)

= p+ q

Since α(Hα) = 2 we know that q = −(p+ β(Hα)). In particular the α-series
containing −α is

{−α, 0, α} = {−α + 0α,−α + 1α,−α + 2α}

where we see that p = 0 and q = 2. Thus −2β(Hα)
α(Hα)

= 2 and we do have
2 = 0 + 2.

Once again, we choose Xα in ĝα and X−α in ĝ−α such that [Xα, X−α] = Hα

and [Hα, Xα] = 2Xα and [Hα, X−α] = −2X−α. Now for the α-series contain-
ing β we have that, with Xβ in ĝβ,

[[Xβ, X−α], X−α] = (p+1)q
2

α(Hα)Xβ

Recalling that for the α-series containing −α, p = 0 and q = 2, we see that
we have

[[X−α, Xα], X−α] = (p+1)q
2

α(Hα)X−α = (0+1)2
2

[Hα, X−α] = −2X−α

and

[[X−α, Xα], X−α] = [Hα, X−α] = −α(Hα)X−α = −2X−α

and we observe that these two expressions are equal.

One of the most amazing facts about the roots is that if α and β are
not zero roots, then the α-string containing β contains at most four roots.
This gives us the possibilities:

267



For p = 0 : β, α + β, 2α + β, 3α + β [q = 3]
For p = −1 : −α + β, α + β, 2α + β [q = 2]

For p = −2 : −2α + β,−α + β, β, α + β [q = 1]
For p = −3 : −3α + β.−2α + β,−α + β, β [q = 0]

since for p = 1 [q = 4] and for p = −4 [q = −1], β would disappear from the
string. This means in this case that

−2β(Hα)
α(Hα

= −β(Hα) = p+ q = 3, 1,−1, 3

If the α-string containing β contains three roots, this gives us the possibilities:

For p = 0 : β, α + β, 2α + β [q = 2]
For p = −1 : −α + β, β, α + β [q = 1]

For p = −2 : −2α + β,−α + β, β [q = 0]

since for p = 1 [q = 2] and for p = −3 [q = −1] we would have β disappear
from the string. This means in this case that

−2β(Hα)
α(Hα)

= −β(Hα) = p+ q = 2, 0,−2

If the α-string containing β contains two roots, this gives us the possibilities:

For p = 0 : β, α + β [q = 1]
For p = −1 : −α + β, β [q = 0]

since for p = 1 [q = 2] and for p = −2 [q = −1], β would disappear from the
string. This means that in this case

−2β(Hα)
α(Hα)

= −β(Hα) = p+ q = 1,−1

If the α-string containing β contains one root, this gives us the possibilities

For p = 0 : β[q = 0]

since for p = 1 and q = −1, β would disappear from the string. This means
in that case that

−2β(Hα)
α(Hα)

= −β(Hα) and p+ q = 0

There are two other ideas that help control the roots – that of a simple sys-
tem of roots and that of an indecomposable system of roots. First we choose
a basis of roots in ĥ∗ : (β1, ..., βl), where l is the dimension of the Cartan
subalgebra [or rank of the Lie algebra]. Thus for any root α in ĥ∗ we have α
=
∑n
i=1 aiβi, where we know that the scalars ai will be integers. We can now

introduce an ordering on the set of roots by ordering ĥ∗. We say an element γ
of ĥ∗ is positive if the first non-zero scalar ci in this sum γ =

∑n
i=1 ciβi is pos-

itive. The set of positive duals in ĥ∗ is closed under addition and by scalar
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multiplication by positive rationals. We can now order ĥ∗ by saying that
σ > γ if σ− γ > 0; and if σ > γ, then for any τ in ĥ∗ we have σ+ τ > γ+ τ ;
and if c > 0, then cσ > cγ; and if c < 0, then cσ < cγ.

Now we can call a root simple if α is positive and α cannot be writ-
ten as the sum of two other positive roots. We then let Λ be the set of all
simple roots relative to some fixed ordering of ĥ∗. Then we can make the
following assertions:

(i) If α and β are in Λ and α 6= β, then α− β in not a root.
(ii) If α and β are in Λ, and α 6= β, then β(Hα) ≤ 0.
(iii) The set Λ is a basis for ĥ∗ over the rational field.
(iv) If α is any positive root, then α =

∑n
i=1 aiβi where the ai

are non-negative integers.
(v) If α is a positive root and α is not in Λ, then there exists a β in Λ
such that α− β is a positive root.

We now write the simple system of roots Λ = {β1, , , , βl} and we will
call this the simple system of roots for the semisimple algebra ĝ of rank l
relative to the given ordering in ĥ∗. We know that this is a basis over the
rational field for the linear space ĥ∗; but more than this, we know that every
root α of ĝ can be written as α =

∑n
i=1 aiβi, where either the scalars ai are

positive integers or 0 [with at least one non-zero root] or all the scalars ai
are negative integers or 0 [with at least one non-zero root].

Now having fixed a Cartan subalgebra ĥ of ĝ, a semisimple Lie alge-
bra, and a simple system of roots, we can define the Cartan matrix of ĝ. The
entries in this matrix are:

[Aij] = [
2(αi(Hαj ))

αi(Hαj )
] = [αi(Hαj)]

Each diagonal entry on the Cartan matrix αi(Hαi) is equal to 2. For
the off-diagonal entries αi(Hαj), we know that they must be non-positive
[see (ii) above], and also from above they can only be 0, -1, -2 or -3. Also,
the determinant of the Cartan matrix is not zero. Now since αi and αj are
basis vectors and thus independent, the angle θij between them must satisfy
0 ≤ cos2(θij) < 1. This is equivalent to saying that

0 ≤ (
2αi(Hαj )

αi(Hαi )
)(

2αj(Hαi )

αj(Hαj )
) < 4 or 0 ≤ αi(Hαj)αj(Hαi) < 4 or 0 ≤ AijAji < 4

This, of course means that both Aij and Aji are 0 or that one is -1 and
the other is -1, -2 or -3.
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Everything that has been said above applies to semisimple Lie algebras.
But we know that a semisimple Lie algebra is a direct sum of simple Lie
algebras. To identify such a system of roots we need the concept of an
indecomposable system of roots. We define it negatively as follows. An in-
decomposable system of roots ∆ = {α1, ...αl} is a system of roots such that
it is impossible to partition ∆ into non-empty, non-overlapping sets ∆1,∆2

such that Aij = 0 for every αi in ∆1 and every αj in ∆2. And we can assert
that ĝ is simple if and only if the associated simple system of roots ∆ is
indecomposable.

We are now at the point where we can identify the simple Lie algebras
ĝ. We choose a simple system of roots Λ = {α1, ..., αl} where l is the rank
of ĝ [which now again may be semisimple and not necessarily simple] or the
dimension of the Cartan subalgebra ĥ. Then each root space ĝαi is one dimen-
sional and it has a corresponding one-dimensional root space ĝ−αi . Changing
notation a little to conform with the standard notation, we choose a basis
(Hαi , ..., Hαl) for ĥ such that αi(Hαi) = 2, a basis of Eαi ’s for ĝα, and a basis
of F−αi ’s for ĝ−α, such that [Eαi , F−αi ] = Hαi . As we have said above, this
does determine Hαi but it does not uniquely determine Eαi or F−αi . With
these choices we have

[Eαi , F−αj ] = 0

and

[Eαi , F−αi ] = ad(Hαi)(Eαi) = αi(Hαi)Eαi = 2Eαi
[Hαi , F−αi ] = ad(Hαi)(F−αi) = −αi(Hαi)F−αi = 2F−αi

[Eαi , F−αi ] = Hαi

Since [Eαi , F−αj ], i 6= j is in ĝαi−αj and αi − αj is not a root, we have

[Eαi , F−αj ] = 0

and

[Hαi , Hαj ] = 0
[Hαi , Eαj ] = ad(Hαi)(Eαj) = αj(Hαi)Eαj = AijEαj

[Hαi , F−αj ] = ad(Hαi)(F−αj) = −αj(Hαi)F−αj = −AjiF−αj
[Hαj , Eαi ] = ad(Hαj)(Eαi) = αi(Hαj)Eαj = AijEαi

With this notation in place we can now assert the following. We have chosen
a simple system of roots Λ = {α1, ..., αl}. This system determines the triples
Hαi , Eαi and F−αi .Then the 3l elements of ĝ, namely, Hαi,Eαi and F−αi ,
generate ĝ. Now for each positive root β [not necessarily simple] we can
select a representation of β = αi1 + ... + αim so that αi1 + ... + αik is also a
root for all k ≤ m. Now we know that these sequences can be determined
from the Cartan matrix [Aij]. Then the elements
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Hαi and [...[[Eαi1 , Eαi2 ], Eαi3 , ..., Eαim ] and [...[[F−αi1 , F−αi2 ], F−αi3 , .., .F−αim ]

determined by β form a basis for ĝ and the multiplication table for this basis
has rational coefficients determined by the Cartan matrix [Aij].

And thus if we want to identify the simple Lie algebras, all we have
to do is choose an indecomposable simple system of roots.

We pause here to give three low dimensional examples. The basic building
blocks of the simple complex Lie algebra is the algebra a1, the 2x2 matrices
of trace zero in ŝl(2, lC). The subscript 1 on a1 says that the Cartan subalge-
bra of a1 is one-dimensional.] We have already exposed this algebra above,
giving the basis:

H =

[
1 0
0 −1

]
E =

[
0 1
0 0

]
and F =

[
0 0
1 0

]

with the multiplication table:

[H,E] = α(H)E = 2E and [H,F ] = −α(H)F = −2F and [E,F ] = H

We now show how what was discussed above ideas apply to ŝl(2, lC). We see
that the Cartan subalgebra ĥ of ŝl(2, lC) is one-dimensional with basis H, and
thus ŝl(2, lC) has rank one. Dualizing, we let β be a basis for ĥ∗ such that
β(H) = 1. Thus for the two roots of ŝl(2, lC) we have α = 2β and −α = −2β.
And we see that α is a positive root. We also see that α is simple, since it is
the only root, that is, the set of positive roots Λ consists of one element α.
Now the Cartan matrix for ŝl(2, lC) is a 1x1 matrix [A11] = [α(H)] = [2]. We
also see that the simple system of roots Λ is also indecomposable, for there
is no way that we can partition a set of only one member. Thus Λ is indeed
a ∆. This says that ŝl(2, lC) is not only semisimple but indeed is simple.

The second low dimensional complex Lie algebra that we examine is the
algebra d2. These are the 4x4 skew symmetric matrices ŝo(4, lC). [Again the
subscript 2 of d2 says that the Cartan subalgebra of d2 has dimension 2.] Its
elements have the form: 

0 −a −b −c
a 0 −d −e
b d 0 −f
c e f 0


We see that it is six-dimensional. We choose the following matrices as it
basis:
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H1 =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

H2 =


0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0



E1 =


0 0 −1/2 −i/2
0 0 i/2 1/2

1/2 −i/2 0 0
i/2 −1/2 0 0

E2 =


0 0 1/2 −i/2
0 0 −i/2 −1/2
−1/2 i/2 0 0
i/2 1/2 0 0



F1 =


0 0 −1 −i
0 0 −i −1
1 i 0 0
−i 1 0 0

F2 =


0 0 −1 −i
0 0 −i 1
1 i 0 0
i −1 0 0


We calculate the brackets:

[H1, H2] = ad(H1)(H2) = 0

[H1, E1] = ad(H1)(E1) = α1(H1)(E1) = 2E1

[H1, F1] = ad(H1)(F1) = −α1(H1)(F1) = −2F1

[H1, E2] = ad(H1)(E2) = α2(H1)(E2) = 0
[H1, F2] = ad(H1)(F2) = −α2(H1)(F2) = 0

[H2, E1] = ad(H2)(E1) = α1(H2)(E1) = 0
[H2, F1] = ad(H2)(F1) = −α1(H2)(F1) = 0

[H2, E2] = ad(H2)(E2) = α2(H2)(E2) = 2E2

[H2, F2] = ad(H2)(F2) = −α2(H2)(F2) = −2F2

[E1, E2] = ad(E1)(E2) = 0
[E1, F1] = ad(E1)(F1) = H1

[E1, F2] = ad(E1)(F1) = 0
[E2, F1] = ad(E2)(F1) = 0

[E2, F2] = ad(E2)(F2) = H2

[F1, F2] = ad(F1)(F2) = 0

This says that the rank of ŝo(4, lC) is two, the dimension of the Cartan sub-
algebra with basis (H1, H2). Correspondingly we choose a dual basis for
ĥ∗ : (β,β2) dual to (H1, H2). We write the roots with respect to this dual
basis. We know that

α1(H1) = 2;α1(H2) = 0 and α2(H1) = 0; α2(H2) = 2

Thus
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α1 = 2β1 + 0β2 and α2 = 0β1 + 2β2

since

α1(H1) = 2 and (2β1 + 0β2)H1 = (2β1)H1 + 0(β2)H1 = 2(1) + 0 = 2
α1(H2) = 0 and (2β1 + 0β2)H2 = (2β1)H2 + 0(β2)H2 = 0 + 0(1) = 0
α2(H1) = 0 and (0β1 + 2β2)H1 = (0β1)H1 + 2(β2)H2 = 0(1) + 0 = 0
α2(H2) = 2 and (0β1 + 2β2)H2 = (0β1)H2 + 2(β2)H2 = 0(1) + 2(1) = 2

We choose β1.β2 as a basis corresponding to the roots. We see that with
respect to this basis both α1 and α2 are both positive and simple [since they
cannot be written as a sum of two other positive roots]. Finally, we know
that this set of positive and simple roots is a basis for ĥ∗.

We now compute the Cartan matrix:

A11 = α1(H1) = 2
A21 = α1(H2) = 0
A12 = α2(H1) = 0
A22 = α2(H2) = 2

and thus the 2 x 2 Cartan matrix is

[Aij] =

[
A11 A12

A21 A22

]
=

[
2 0
0 2

]

We now show how the ideas given above apply to ŝo(4, lC). Thus, for the
4 roots of ŝo(4, lC), written on the dual basis (β1, β2), we have

α1 = 2β1 + 0β2 or −α1 = −2β1 + 0β2
α2 = 0β1 + 2β2 or −α2 = 0β1 − 2β2

Thus, we see that α1 and α2 are positive roots. We also see that α1 and α2

are simple roots since neither can be written as a sum of two other positive
roots. Thus the set of positive roots Λ is the set {α1, α2}. We observe that
α1 6= α2 and thus α1 − α2 is a root; and that −α2(Hα1) ≤ 0. In fact it is
equal to 0. And, of course, the set Λ is decomposable. And thus we can
conclude that ŝo(4, lC) is semisimple [we can show that it has no radical] but
not simple. In fact, from the Cartan matrix, we see that is it just two copies
of ŝl(2, lC).

This concludes our discussion of Cartan subalgebras. The reader is strongly
encouraged to pursue this topic in greater depth in [K] or [FH].
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