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PREFACE 

Fifty years ago Claude Chevalley revolutionized Lie theory by pub
lishing his classic Theory of Lie Groups I. Before his book Lie theory 
was a mixture of local and global results. As Chevalley put it, "This 
limitation was probably necessary as long as general topology was not 
yet sufficiently well elaborated to provide a solid base for a theory in the 
large. These days are now passed:' 

Indeed, they are passed because Chevalley's book changed matters. 
Chevalley made global Lie groups into the primary objects of study. In 
his third and fourth chapters he introduced the global notion of ana
lytic subgroup, so that Lie subalgebras corresponded exactly to analytic 
subgroups. This correspondence is now taken as absolutely standard, 
and any introduction to general Lie groups has to have it at its core. 
Nowadays "local Lie groups" are a thing of the past; they arise only at 
one point in the development, and only until Chevalley's results have 
been stated and have eliminated the need for the local theory. 

But where does the theory go from this point? Fifty years after Cheval
ley's book, there are clear topics: E. Cartan's completion ofW. Killing's 
work on classifying complex semisimple Lie algebras, the treatment of 
finite-dimensional representations of complex semisimple Lie algebras 
and compact Lie groups by Cartan and H. Weyl, the structure theory 
begun by Cartan for real semisimple Lie algebras and Lie groups, and 
harmonic analysis in the setting of semisimple groups as begun by Cartan 
and Weyl. 

Since the development of these topics, an infinite-dimensional repre
sentation theory that began with the work of Weyl, von Neumann, and 
Wigner has grown tremendously from contributions by Gelfand, Harish
Chandra, and many other people. In addition, the theory of Lie algebras 
has gone in new directions, and an extensive theory of algebraic groups 
has developed. All of these later advances build on the structure theory, 
representation theory, and analysis begun by Cartan and Weyl. 

With one exception all books before this one that go beyond the level 
of an introduction to Lie theory stick to Lie algebras, or else go in the 
direction of algebraic groups, or else begin beyond the fundamental 
"Cartan decomposition" of real semisimple Lie algebras. The one excep-

xi 



xii Preface 

tion is the book Helgason [ 1962], * with its later edition Helgason [ 1978]. 
Helgason's books follow Cartan's differential-geometry approach, 
developing geometry and Lie groups at the same time by geometric 
methods. 

The present book uses Lie-theoretic methods to continue Lie theory 
beyond the introductory level, bridging the gap between the theory of 
complex semisimple Lie algebras and the theory of global real semisim
ple Lie groups and providing a solid foundation for representation theory. 
The goal is to understand Lie groups, and Lie algebras are regarded 
throughout as a tool for understanding Lie groups. 

· The flavor of the book is both algebraic and analytic. As I said in a 
preface written in 1984, "Beginning with Cartan and Weyland lasting 
even beyond 1960, there was a continual argument among experts about 
whether the subject should be approached through analysis or through 
algebra. Some today still take one side or the other. It is clear from 
history, though, that it is best to use both analysis and algebra; insight 
comes from each." That statement remains true. 

Examples play a key role in this subject. Experts tend to think ex
tensively in terms of examples, using them as a guide to seeing where 
the theory is headed and to finding theorems. Thus examples properly 
play a key role in this book. A feature of the presentation is that the 
point of view-about examples and about the theory-has to evolve as 
the theory develops. At the beginning one may think about a Lie group 
of matrices and its Lie algebra in terms of matrix entries, or in terms 
of conditions on matrices. But soon it should no longer be necessary 
to work with the actual matrices. By the time one gets to the last two 
chapters, the point of view is completely different. One has a large stock 
of examples, but particular features of them are what stand out. These 
features may be properties of an underlying root system, or relationships 
among subgroups, or patterns among different groups, but they are far 
from properties of concrete matrices. 

A reader who wants only a limited understanding of the examples 
and the evolving point of view can just read the text. But a better under
standing comes from doing problems, and each chapter contains some in 
its last section. Some of these are really theorems, some are examples 

·that show the degree to which hypotheses can be stretched, and some are 
exercises. Hints for solutions, and in many cases complete solutions, 
appear in a section near the end of the book. The theory in the text never 
relies on a problem from an earlier chapter, and proofs of theorems in 
the text are never left as problems at the end of the current chapter. 

*A name followed by a bracketed year points to the list of References at the end of 
the book. 



Preface xiii 

A section called Notes near the end of the book provides histori
cal commentary, gives bibliographical citations, tells about additional 
results, and serves as a guide to further reading. 

The main prerequisite for reading this book is a familiarity with 
elementary Lie theory, as in Chapter N of Chevalley [1946] or other 
sources listed at the end of the Notes for Chapter I. This theory itself 
requires a modest amount of linear algebra and group theory, some 
point-set topology, the theory of covering spaces, the theory of smooth 
manifolds, and some easy facts about topological groups. Except in the 
case of the theory of involutive distributions, the treatments of this other 
material in many recent books are more consistent with the present book 
than is Chevalley's treatment. A little Lebesgue integration plays a role 
in Chapter N. In addition, existence and uniqueness of Haar measure 
on compact Lie groups are needed for Chapter N; one can take these 
results on faith or one can know them from differential geometry or from 
integration theory. Differential forms and more extensive integration 
theory are used in Chapter Vlll. Occasionally some other isolated result 
from algebra or analysis is needed; references are given in such cases. 

Individual chapters in the book usually depend on only some of the 
earlier chapters. Details of this dependence are given on page xiv. 

My own introduction to this subject came from courses by B. Kostant 
and S. Helgason at MJ.T. in 1965-67, and parts of those courses have 
heavily influenced parts of the book. Most of the book is based on 
various courses I taught at Cornell University or SUNY Stony Brook 
between 1971 and 1995. IamindebtedtoR.Donley,J.J.Duistermaat,S. 
Greenleaf, S. Helgason, D. Vogan, and A. Weinstein for help with various 
aspects of the book and to the Institut Mittag-Leffler for its hospitality 
during the last period in which the book was written. The typesetting 
was by A_MS-TJ3)C, and the figures were drawn with Mathematic~. 

May 1996 



PREREQillSITES BY CHAPTER 

This book assumes knowledge of a modest amount of linear algebra 
and group theory, some point-set topology, the theory of covering spaces, 
the theory of smooth manifolds, and some easy facts about topological 
groups. The main prerequisite is a familiarity with elementary Lie the
ory, as in Chapter IV of Chevalley [1946]. The dependence of chapters 
on earlier chapters, as well as additional prerequisites for particular 
chapters, are listed here. 

CHAPTER I. Tensor products of vector spaces ( cf. § 1 of Appendix A). 
CHAPTER ll. Chapter I. Starting in §9: The proof of Proposition 2.96 

is deferred to Chapter ill, where the result is restated and proved as 
Proposition 3 29. Starting in § 11: Tensor algebra as in § 1 of Appendix 
A. 

CHAPTER ill. Chapter I, all of Appendix A. 
CHAPTER IV. Chapter I, tensor and exterior algebras as in §§1-3 

of Appendix A, a small amount of Lebesgue integration, existence of 
Haar measure for compact groups. The proof of Theorem 420 uses 
the Hilbert-Schmidt Theorem from functional analysis. Starting in §5: 
Chapter fl. 

CHAPTER V. Chapters ll, ill, and IV. The proof of Theoreem 5.62 
uses the Hilbert Nullstellensatz. 

CHAPTER VI. Chapters ll and IV. 
CHAPTER Vll. Chapter VI. Starting in §5: Chapter V. Starting in §8: 

complex manifolds (apart from complex Lie groups). 
CHAPTER vm. Chapter vn, differential forms, more Lebesgue 

integration. 
APPENDIX B. Chapters I and V. 

xiv 



Item 

#S or lSI 
0 
Ec 

8ij 
n positive 
Z,Q>,R,C 
Re z,lm z 
z 
1 
1 or I 
dimV 
V* 
R_n,cn 

TrA 
detA 
A' 
A* 
A diagonable 

diag(a!' ... 'an) 
EndV 
GL(V) 
[A: B] 
E9V; 
span(S) 
Go 
ZA(B) 
NA(B) 
coo 

STANDARD NOTATION 

Meaning 

number of elements in S 
empty set 
complement of set, contragredient module 
lifi=j,Oifi=tfj 
n>O 
integers, rationals, reals, complex numbers 
real and imaginary parts of z 
complex conjugate of z 
multiplicative identity 
identity matrix 
dimension of vector space 
dual of vector space 
spaces of column vectors 
trace of A 
determinant of A 
transpose of A 
conjugate transpose of A 
A has a basis of eigenvectors with 
eigenvalues in the given field 
diagonal matrix 
linear maps of V into itself 
invertible linear maps of V into itself 
index or multiplicity of B in A 
direct sum of the V; 
linear span of S 
identity component of group G 
centralizer of B in A 
normalizer of B in A 
infinitely differentiable 

Notation introduced in Appendix A and used throughout the book is 
generally defined at its first occurrence and appears in the Index of 
Notation at the end of the book. 

XV 



CHAPTER I 

Lie Algebras and Lie Groups 

Abstract. The first part of this chapter treats Lie algebras, beginning with definitions 
and many examples. The notions of solvable, nilpotent, radical, semisimple, and simple 
are introduced, and these notions are followed by a discussion of the effect of a change 
of the underlying field. 

The idea of a semidirect product begins the development of the main structural 
theorems for real Lie algebras-the iterated construction of all solvable Lie algebras 
from derivations and semidirect products, Lie's Theorem for solvable Lie algebras, 
Engel's Theorem in connection with nilpotent Lie algebras, and Cartan's criteria for 
solvability and semisimplicity in terms of the Killing form. From Cartan's Criterion for 
Semisimplicity, it follows that semisimple Lie algebras are direct sums of simple Lie 
algebras. 

Cartan's Criterion for Semisimplicity is used also to provide a long list of classical 
examples of semisimple Lie algebras. Some of these examples are defined in terms 
of quaternion matrices. Quaternion matrices of size n-by-n may be related to complex 
matrices of size 2n-by-2n. 

The treatment of Lie algebras concludes with a study of the finite-dimensional 
complex-linear representations of sl(2, C). There is a classification theorem for the 
irreducible representations of this kind, and the general representations are direct sums 
of irreducible ones. 

Section 10 contains a review of the elementary theory of Lie groups and their Lie 
algebras. The abstract theory as in Chevalley [1946] is summarized, and the corre
spondence is made with the concrete theory of closed linear groups, where the Lie 
algebra is obtained as the space of derivatives at t = 0 of smooth curves in the group 
passing through the identity at t = 0. The section ends with a discussion of the adjoint 
representation. 

The remainder of the chapter explores some aspects of the connection between Lie 
groups and Lie algebras. One aspect is the relationship between automorphisms and 
derivations. The derivations of a semisimple Lie algebra are inner, and consequently 
the identity component of the group of automorphisms of a semisimple Lie algebra 
consists of inner automorphisms. In addition, simply connected solvable Lie groups 
may be built one dimension at a time as semidirect products with JR1, and consequently 
they are diffeomorphic to Euclidean space. For simply connected nilpotent groups the 
exponential map is itself a diffeomorphism. The earlier long list of classical sernisimple 
Lie algebras corresponds to a list of the classical semisimple Lie groups. The issue that 
needs attention for these groups is their connectedness, and this is proved by using the 
polar decomposition of matrices. 



2 I. Ue Algebras and Ue Groups 

1. Definitions and Examples 

Let k be a field. An algebra g (not necessarily associative) is a vector 
space over k with a product [X, Y] that is linear in each variable. The 
algebra is a Lie algebra if the product satisfies also 

(a) [X, X] = 0 for all X e g (and hence [X, Y] = -[Y, X]) and 
(b) the Jacobi identity 

[[X, Y], Z] + [[Y, Z], X]+ [[Z, X], Y] = 0. 

For any algebra g we get a linear map ad : g -+- Endk g given by 

(adX)(Y) =[X, Y]. 

The fact that the image is in Endt g follows from the linearity of the 
bracket in the second variable, and the fact that ad is linear follows from 
the linearity of bracket in the first variable. Whenever there is a possible 
ambiguity in what the underlying vector space is, we write ad9 X in place 
of ad X. 

Suppose (a) holds in the definition of Lie algebra. Then (b) holds if 
and only if 

[Z, [X, Y]] = [X, [Z, Y]] + [[Z, X], Y], 

which holds if and only if 

(1.1) (adZ)[X, Y] =[X, (adZ)Y] + [(adZ)X, Y]. 

Any D in Endt g for which 

(1.2) D[X, Y] = [X, DY] + [DX, Y] 

is a derivation. We have just seen that in a Lie algebra, every ad X is 
a derivation. Conversely if (a) holds and if every ad X for X e g is a 
derivation, then g is a Lie algebra. 

Now let us make some definitions concerning a Lie algebra g. A 
homomorphism is a linear map fP : g -+- ~ such that 

fP([X, Y]) = [fP(X), qJ(Y)] for all X and Y. 

An isomorphism is a one-one homonnorphism onto. If a and b are 
subsets of g, we write 

[a, b] = span{[X, Y] I X e a, Y e b}. 

A subalgebra or Lie subalgebra ~ of g is a subspace satisfying [~. ~] £;; 
~;then~ is itself a Lie algebra. An ideal~ in g is a subspace satisfying 
[~. g] £;; ~; an ideal is automatically a subalgebra. The Lie algebra g is 
said to be abelian if [g, g] = 0; a vector space with all brackets defined 
to be 0 is automatically an abelian Lie algebra. 



1. Definitions and Examples 3 

ExAMPLEs. 
1) Let U be any open set in Rn. A smooth vector field on U is 

any operator on smooth functions on U of the form X = :L~=t a; (x) .!_ 
ax; 

with all a;(x) in C00 (U). The real vector space g of all smooth vector 
fields on U becomes a Lie algebra if the bracket is defined by [X, Y] = 
XY- YX. The skew-symmetry and the Jacobi identity follow from the 
next example applied to the associative algebra of all operators generated 
(under composition and linear combinations) by all smooth vector fields. 

2) Let g be an associative algebra. Then g becomes a Lie' algebra 
under [X, Y] = XY- YX. Certainly [X, X]= 0. For the Jacobi identity 
we have 

[[X, Y], Z] + [[Y, Z], X]+ [[Z, X], Y] 

= [X, Y]Z- Z[X, Y] + [Y, Z]X- X[Y, Z] + [Z, X]Y- Y[Z, X] 

= XYZ- YXZ -ZXY+ZYX +YZX- ZYX 

-XYZ+XZY+ZXY-XZY-YZX+YXZ 

=0. 

3) Let g = gl(n, k) denote the associative algebra of all n-by-n matrices 
with entries in the field k, and define a bracket product by [X, Y] = 
XY- YX. Then g becomes a Lie algebra. This is a special case of 
Example 2. More generally, let g = Endt V denote the associative 
algebra of all t linear maps from V to V, where V is a vector space over 
k, and define a bracket product by [X, Y] = X Y - Y X. Then g becomes 
a Lie algebra. The special case of gl(n, lk) arises when V is the vector 
space kn of all n-dimensional column vectors over k. 

4) Example 1 generalizes to any smooth manifold M. The vector 
space of all smooth vector fields on M becomes a real Lie algebra if the 
bracket is defined by [X, Y] = XY- YX. 

5) (Review of the Lie algebra of a Lie group) Let G be a Lie group. 
If f : G __. R is a smooth function and if g is in G, let f 6 be the left 
translate f 6 (x) = f(gx). A smooth vector field X on G is left-invariant 
if (Xj)6 = X(f6 ) for all f and g. The left-invariant smooth vector fields 
form a subalgebra g of the Lie algebra of all smooth vector fields, and 
this is just the Lie algebra of G. We can regard a smooth vector field X 
as a (smoothly varying) family of tangent vectors X6 , one for every g 
in G. Then the map X __. X 1 is a vector-space isomorphism of g onto 
the tangent space at the identity of G. Carrying the definition of bracket 
to the tangent space by this isomorphism, we may identify the tangent 
space at the identity of G with the Lie algebra of G. The elementary 
theory of Lie groups will be reviewed in more detail in §10. 



4 I. Lie Algebras and Lie Groups 

6) (Review of the Lie algebra of a Lie group of matrices) Let G be 
a closed subgroup of nonsingular real or complex matrices. Consider 
smooth curves c(t) of matrices with c(O) = 1 and c(t) e G for each 
t. Then g = {c' (0)} is a real vector space of matrices closed under the 
bracket operation [X, Y] = XY- YX in Example 3. Up to canonical 
isomorphism, g is the Lie algebra of G. The isomorphism is given as 
follows: Let e;j(g) denote the (i, j)th entry of the matrix g. Then Reeii 
and 1m e;i are smooth functions on G to which we can apply smooth 
vector fields. If X is a left-invariant smooth vector field on G, then the 
associated matrix has (i, j)th entry X1(Reeij) + iX1(1me;j). Under this 
identification we may identify the Lie algebra of the general linear group 
GL(n, JR.) with gl{n, JR.) and the Lie algebra of GL(n, C) with gl(n, C). In 
a similar fashion if Vis a finite-dimensional vector space over lR or C, 
we may identify the Lie algebra of the general linear group G L (V) with 
End V. The relationship between Examples 5 and 6 will be discussed in 
more detail in § 10. See especially Proposition 1.76. 

7) The space of n-by-n skew-symmetric matrices over the field k, 
given by 

g = {X e gl{n, k) I X+ X' = 0} = so(n, k), 

is a Lie subalgebra of the Lie algebra gl(n, k) given in Example 3. To 
see closure under brackets, we compute that 

[X, Y]' = (XY- YX)' = Y'X'- X'Y' = YX- XY =-[X, Y]. 

When tis lR or C, this example arises as the Lie algebra in the sense of 
Example 6 of the orthogonal group over JR. or C. The orthogonal group 
will be discussed in more detail in § 14. 

8) Fix an n-by-n matrix J over k, and let 

g ={X e gl(n, k) 1 JX +X' J = 0}. 

This g is a Lie subalgebra of gl{n, k) that generalizes Example 7. To see 
closure under brackets, we compute that 

[X, Y]' J = (XY- YX)' J = Y'X' J -X'Y' J = JYX- JXY = -J[X, Y]. 

In the special case that t is lR or C and n is even and J is of the block 
form J = ( ~1 ~), this example arises as the Lie algebra in the sense of 
Example 6 of the symplectic group over lR or C. The symplectic group 
will be discussed in more detail in § 14. 



10. Classification of Simple Real Ue Algebras 359 

and 

-----10 

I 
-----10 

The first of these, according to Example 2 in §8, comes from 
.sl(n + 1, IR). The second one comes from .sl<!<n + 1), JH[). In the latter 
case we take 

~o = {diag(x1 + iy., · · ·, Xi<n+1) + iyi<n+I)) I ~::>m = 0}. 

If em and fm on the indicated member of ~0 are iym and Xm, respectively, 
then !:J. is the same as in Example 2 of §8. The imaginary roots are the 
±2em, and they are compact. (The root vectors for ±2em generate the 
complexification of the .su(2) in the ph diagonal entry formed by the 
skew-Hermitian quatemions there.) 

For type Dn, the analysis uses .so(p, q) with p and q odd and with 

p + q = 2n. Represent so(p, q) by real matrices ( ;. :) with a and 

d skew symmetric. For ~0 , we use block-diagonal matrices with all 
blocks of size 2-by-2. The first !<P- 1) and the last !<q- 1) blocks 

are lR ( _ ~ ~) , and the remaining one is lR ( ~ ~). The blocks 

lR ( -~ ~) contribute to to. while lR (~ ~) contributes to ao. The 

linear functionals ei for j i: !<P + 1) are as in Example 4 of §ll.l, and 

e!<P+1> on the embedded (? ~) e lR ( ~ ~) is just t. The roots are 

±e; ± ei with i -:f. j, and those involving index 4 (p + 1) are complex. 
Suppose q = 1. Then the standard ordering takes ito before ao. The 

simple roots as usual are 

The last two are complex, and the others are compact imaginary. Sim
ilarly if p = 1, we can use the reverse of the standard ordering and 
conclude that all imaginary roots are compact. 

Now suppose p > 1 and q > 1. In this case we cannot use the standard 
ordering. To have ito before ao in defining positivity, we take !<P + 1) 
last, and the simple roots are 

e1-e2, ... , ei<p-1)-1 -e!<p-1)• ei<p-1) -ei<P+1)+1• 

e!(p+l)+l - e!(p+l)+2• •.. , en-1 -en, en- e!<p+1)• en+ e!<p+1)• 



360 VI. Structure Theory of Semisimple Groups 

The last two are complex, and the others are imaginary. Among the 
imaginary simple roots, e!<p-Il - e!<p+Il+I is the unique noncompact 
simple root. 

We can assemble our results for Dn in a diagram like that in Figure 6 .1. 
As we observed above, the situation with all imaginary roots unpainted 
corresponds to .so(l, 2n- 1) ~ so(2n- 1, 1). If one imaginary root is 
painted, the associated matrix algebra may be seen from the diagram 

o----------cr--
50(3, 2n - 3) so(5, 2n - 5) 

For type E6 , Theorem 6.96 gives us three diagrams to consider. As 
in (2.86c) let a 2 be the simple root corresponding to the endpoint vertex 
of the short branch in the Dynkin diagram, and let a 4 correspond to the 
triple point. The Vogan diagram in which a 4 is painted gives the same 
g0 (up to isomorphism) as the Vogan diagram with a2 painted. In fact, 
the Weyl group element sa4 sa2 carries the one with a 2 painted to the one 
with a 4 painted. Thus there are only two Vogan diagrams that need to be 
considered, and they are in Figure 6.3. The figure also gives the names 
of the Lie algebras g0 in the Cartan listing [ 1927 a] and identifies t0 • 

To compute t0 for each case of Figure 6.3, we regroup the root-space 
decomposition of g as 

(6.103) 

a imaginary 
compact 

a imaginary 
noncom pact 

complex pairs 
{a,lla} 

complex pairs 
{a,lla} 

and it is clear that the result is g = tE9p. Therefore the roots in ~(t, t) are 
the restrictions tot of the imaginary compact roots in ~(g, ~),together 
with the restrictions tot of each pair {a, Oa} of complex roots in ~(g, ~). 
Also the dimension of ao is the number of 2-element orbits in the Vogan 
diagram and is therefore 2 in each case. 

We can tell which roots are complex, and we need to know how to 
decide which imaginary roots are compact. This determination can be 
carried out by induction on the level in the expansion in terms of simple 
roots. Thus suppose that a and fJ are positive roots with fJ simple, and 
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EI to= sp(4) 

EIV 

FIGURE 6.3. Noncompact noncomplex exceptional simple real Lie 
algebras with a nontrivial automorphism in the Vogan diagram 

suppose a+ fJ is an imaginary root. If fJ is imaginary, then (6.99) settles 
matters. Otherwise fJ is complex simple, and Figure 6.3 shows that 
({J, O{J) = 0. Therefore the following proposition settles matters for g0 

as in Figure 6.3 and allows us to complete the induction. 

Proposition 6.104. For a connected Vogan diagram involving a 
nontrivial automorphism, suppose that a and fJ are positive roots, that 
fJ is complex simple, that fJ is orthogonal to O{J, and that a + fJ is an 
imaginary root. Then a- O{J is an imaginary root, and a- O{J and a+ fJ 
have the same type, compact or noncompact. 

PRooF. Taking the common length of all roots to be 2, we have 

1 = 2- 1 = ({J, {J) + ({J, a) = ({J, a + {J) 

= (O{J, O({J +a)) = (O{J, a+ {J} = (O{J, a}+ (O{J, {J} = (O{J, a}. 

Thus a- O{J is a root, and we have 

a + fJ = O{J + (a - O{J) + {J. 

Since a+ fJ is imaginary, a- O{J is imaginary. Therefore we can write 
OXa-8/3 = sXa-8/3 with s = ±1. Write OXp = tX8p and OX8p = tXp with 
t = ±1. Then we have 

O[[X8p. Xa-8p], Xp] = [[OX8p, 0Xa-8p], OXp] 

= st2 [[Xp, Xa-8p], X8p] 

= -s[[Xa-8/3• X8p], Xp]- s[[X8p, Xp], Xa-8p] 

= -s[[Xa-8/3• X8p], Xp] 

= s[[X8p, Xa-8p], Xp], 

and the proof is complete. 
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Let us summarize our results. 

Theorem 6.105 (classification). Up to isomorphism every simple 
real Lie algebra is in the following list, and everything in the list is a 
simple real Lie algebra: 

(a) the Lie algebra glR, where g is complex simple of type An for 
n::: 1, Bn for n::: 2, Cn for n::: 3, Dn for n::: 4, E6, E1, Es, F4, 
orG2 

(b) the compact real form of any gas in (a) 
(c) the classical matrix algebras 

su(p,q) 
so(p, q) 

sp(p, q) 
sp(n, JR.) 
so*(2n) 
sl(n, JR.) 
sl(n, JH[) 

with p ::: q > 0, p + q ::: 2 
with p > q > 0, p + q odd, p + q ::: 3 

or with p ::: q > 0, p + q even, p + q ::: 8 
with p ::: q > 0, p + q ::: 3 
with n::: 3 
with n::: 4 
with n::: 3 
with n::: 2 

(d) the 12 exceptional noncomplex noncompact simple Lie algebras 
given in Figures 6.2 and 6.3. 

The only isomorphism among Lie algebras in the above list is so*(8);;: 
.50(6, 2). 

REMARKs. The restrictions on rank in (a) prevent coincidences in 
Dynkin diagrams. These restrictions are maintained in (b) and (c) for 
the same reason. Note for sl(n, JR.) and sl(n, IHI) that the restrictions 
on n force the automorphism to be nontrivial. In (c) there are no 
isomorphisms within a series because the t0 's are different. To have an 
isomorphism between members of two series, we need at least two series 
with the same Dynkin diagram and automorphism. Then we examine 
the possibilities and are led to compare so* (8) with so(6, 2). The standard 
Vogan diagrams for these two Lie algebras are isomorphic, and hence 
the Lie algebras are isomorphic by Theorem 6.74. 

11. Restricted Roots in the Classification 

Additional information about the simple real Lie algebras of § 10 
comes by switching from a maximally compact Cartan subalgebra to 
a maximally noncompact Cartan subalgebra. The switch exposes the 
system of restricted roots, which governs the Iwasawa decomposition 
and some further structure theory that will be developed in Chapter VII. 
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According to §7 the switch in Cartan subalgebra is best carried out 
when we can find a maximal strongly orthogonal sequence of noncom
pact imaginary roots such that, after application of the Cayley trans
forms, no noncompact imaginary roots remain. If g0 is a noncomplex 
simple real Lie algebra and if we have a Vogan diagram for g0 as in 
Theorem 6.96, such a sequence is readily at hand by an inductive con
struction. We start with a noncompact imaginary simple root, form the 
set of roots orthogonal to it, label their compactness or noncompactness 
by means of Proposition 6.72, and iterate the process. 

EXAMPLE. Let g0 = su(p, n- p) with p ::: n- p. The distinguished 
Vogan diagram is of type An-! with e P - e p+ 1 as the unique noncompact 
imaginary simple root. Since the Dynkin diagram does not have a double 
line, orthogonality implies strong orthogonality. The above process 
yields the sequence of noncompact imaginary roots 

(6.106) 

2/J = ep - ep+l 

2h = ep-1 - ep+2 

2/p = e1 - e2p· 

We do a Cayley transform with respect to each of these. The order is 
irrelevant; since the roots are strongly orthogonal, the individual Cayley 
transforms commute. It is helpful to use the same names for roots before 
and after Cayley transform but always to remember what Cartan subalge
bra is being used. After Cayley transform the remaining imaginary roots 
are those roots involving only indices 2p + 1, ... , n, and such roots are 
compact. Thus a maximally compact Cartan subalgebra has noncompact 
dimension p. The restricted roots are obtained by projecting all ek - e1 

on the linear span of (6.106). If 1 ::: k < l ::: p, we have 

ek- e1 = 4<ek- e2p+!-d- 4<el- e2p+l-l) +(orthogonal to (6.106)) 

= <fk - ft) +(orthogonal to (6.106)). 

Thus fk- j 1 is a restricted root. For the same k and l, ek -e2p+I-I restricts 
to fk + ft. In addition, if k + l = 2 p + 1, then ek - e1 restricts to 2 fk, 
while if k::: p and l > 2p, then ek- e1 restricts to fk· Consequently the 
set of restricted roots is 

:E = { {±fk ±It} u {±2/d u {±/d 
{±fk ± fi} u {±2/d 

if2p < n 

if2p = n. 

Thus I: is of type (BC)p if 2p < n and of type Cp if 2p = n. 
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We attempt to repeat the construction in the above example for all of 
the classical matrix algebras and exceptional algebras in Theorem 6.105, 
parts (c) and (d). There is no difficulty when the automorphism in the 
Vogan diagram is trivial. However, the cases where the automorphism is 
nontrivial require special comment. Except for sl(2n + 1, JR), which we 
can handle manually, each of these Lie algebras has f3 orthogonal to (){3 
whenever f3 is a complex simple root. Then it follows from Proposition 
6.104 that any positive imaginary root is the sum of imaginary simple 
roots and a number of pairs {J, (){3 of complex simple roots and that the 
complex simple roots can be disregarded in deciding compactness or 
noncompactness. In particular, sl(n, lHI) and EN have no noncompact 
imaginary roots. 

EXAMPLE. Let g0 = E I. The Vogan diagram is 

Let a 2 be the first member in the orthogonal sequence of imaginary 
noncompact roots. From the theory for D4 , a nonobvious root orthogonal 
to az is ao = a2 + 2a4 + a3 + a5. This root is imaginary, and no smaller 
imaginary root is orthogonal to a2• We can disregard the complex pair 
a3 , a5 in deciding compactness or noncompactness (Proposition 6.104), 
and we see that a0 is noncompact. Following our algorithm, we can 
expand our list to a2, a0. The Vogan diagram of the system orthogonal 
to a2 is 

This is the Vogan diagram of sl(6, JR), and we therefore know that the 
list extends to 
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Thus the Cayley transforms increase the noncompact dimension of the 
Cartan subalgebra by 4 from 2 to 6, and it follows that E I is a split real 
form. 

It is customary to refer to the noncompact dimension of a maximal 
non compact Cartan subalgebra of g0 as the real rank of g0 • We are led 
to the following information about restricted roots. In the case of the 
classical matrix algebras, the results are 

(6.107) 

9o Condition Real Rank Restricted Roots 
su(p, q) p~q q (BC)q if p > q, Cq if p = q 

so(p, q) p~q q Bq if p > q, Dq if p = q 

sp(p, q) p~q q (BC)q if p > q, Cq if p = q 

sp(n, IR) n Cn 

so*(2n) [V Cin if n even, (BC)i<n-1> if n odd 
sl(n, IR) n-1 An-1 

sl(n, lHl) n-1 An-1 

For the exceptional Lie algebras the results are 

9o Real Rank Restricted Roots 
EI 6 E6 
Ell 4 F4 
Em 2 (BC)z 
EIV 2 Az 
EV 7 E1 

(6.108) EVI 4 F4 
EVll 3 c3 
Evm 8 Es 
EIX 4 F4 
FI 4 F4 
FIT 1 (BC)1 
G 2 Gz 

For the Lie algebras in Theorem 6.105a, the above analysis simplifies. 
Here g is complex simple, and we take g0 = glR. Let J be multiplication 
by J=T within glR. If e is a Cartan involution of giR, then Corollary 622 
shows that e comes from conjugation of g with respect to a compact real 
form Uo· In other words, glR = Uo e JUo with 8(X + JY) = X - JY. Let 
~0 = to e ao be a 8 stable Cartan subalgebra of giR. Since to commutes 
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with ao, to commutes with J ao. Also ao commutes with J ao. Since ~0 
is maximal abelian, Jao ~ to. Similarly Jto ~ ao. Therefore Jto = ao, 
and ~0 is actually a complex subalgebra of g. By Proposition 2.7, ~0 is 
a (complex) Cartan subalgebra of g. Let 

be the root-space decomposition. Here each a is complex-linear on the 
complex vector space ~0 • Thus distinct a's have distinct restrictions to 
ao. Hence 

is the restricted-root space decomposition, each restricted-root space 
being 2-dimensional over JR. Consequently the real rank of gR equals 
the rank of g, and the system of restricted roots of glR is canonically 
identified (by restriction or complexification) with the system of roots 
of g. In particular the system E of restricted roots is of the same type 
(An through G2) as the system !1 of roots. 

The simple real Lie algebras of real-rank one will play a special role 
in Chapter VII. From Theorem 6.105 and our determination above of 
the real rank of each example, the full list of such Lie algebras is 

(6.109) 

5U(p, 1) 
5o(p, 1) 
5lJ(p, 1) 

FII 

with p::: 1 
with p::: 3 
with p::: 2 

Low-dimensional isomorphisms show that other candidates are redun
dant: 

(6.110) 

51(2, C) 2: 50(3, 1) 
5o(2, 1) 2: 5u(l, 1) 

5p(1, 1) 2: 5o(4, 1) 
5j)(1, lR) 2: 5u(1, 1) 

5o*(4) 2: 5u(2) E9 5u(1, 1) 
5o*(6) 2: 5u(3, 1) 

51(2, lR) 2: 5u(l, 1) 
51(2, IHI) 2: so(5, 1). 
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12. Problems 

1. Prove that if g is a complex semisimple Lie algebra, then any two split real 

forms of g are conjugate via Aut g. 

2. Let go = to E9 Po be a Cartan decomposition of a real semisimple Lie 
algebra. Prove that to is compactly embedded in g0 and that it is maximal 
with respect to this property. 

3. Let G be semisimple, let go = to E9 Po be a Cartan decomposition of the 
Lie algebra, and let X andY be in p0 • Prove that exp X exp Y exp X is in 
exppo. 

4. Let g E SL(m, C) be positive definite. Prove that g can be decomposed 

as g = lu, where I is lower triangular and u is upper triangular. 

5. In the development of the Iwasawa decomposition for SO(p, 1)0 and 
SU(p, 1), make particular choices of a positive system for the restricted 
roots, and compute N in each case. 

6. (a) Prove that go = .so* (2n) consists in block form of all complex matrices 

( -E ~)with a skew Hermitian and b skew symmetric. 

(b) In go, let ~o be the Cartan subalgebra in (6.102). Assuming that the 
roots are ±e; ± ej, find the root vectors. Show that e; - ej is compact 
and e; + ej is noncompact. 

(c) Show that a choice of maximal abelian subspace of Po is to take a 
to be 0 and take b to be block diagonal and real with blocks of sizes 
2, ... , 2 if n is even and 1, 2, ... , 2 if n is odd. 

(d) Find the restricted-root space decomposition of go relative to the max

imal abelian subspace of Po given in (c). 

7. Let ~0 = to E9 ao be a maximally noncompact () stable Cartan subalgebra, 
and let~ = tEB a be the complexification. Fix a positive system :E+ for the 
restricted roots, and introduce a positive system D.+ for the roots so that a 
nonzero restriction to ao of a member of D.+ is always in :E+. 
(a) Prove that every simple restricted root for :E+ is the restriction of a 

simple root for D.+ . 
(b) Let V be the span of the imaginary simple roots. Prove for each simple 

a; not in V that -Oa; is in a;• + V for a unique simple a;•, so that 
a; ~--+ ai' defines a permutation of order 2 on the simple roots not in 
v. 

(c) For each orbit {i, i'} of one or two simple roots not in V, define an 
element H = H{i,i'J e ~ by a; (H) = a;• (H) = 1 and aj (H) = 0 for 
all other j. Prove that H is in a. 
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(d) Using the elements constructed in (c), prove that the linear span of 
the restrictions to ao of the simple roots has dimension equal to the 
number of orbits. 

(e) Conclude from (d) that the nonzero restriction to ao of a simple root 
for l.i + is simple for :E+. 

8. The group K for G = SL(3, JR) is K = S0(3), which has a double cover 

i. Therefore G itself has a double cover G. The group M = Zx(A) is 
known from Example I of §5 to be the direct sum of two 2-element groups. 
Prove that M = Zx(A) is isomorphic to the subgroup {±1, ±i, ±j, ±k} 
of the unit quaternions. 

9. Suppose that D and D' are Vogan diagrams corresponding to g0 and g~, 
respectively. Prove that an inclusion D ~ D' induces a one-one Lie algebra 
homomorphism go ~ g~. 

10. Let G be a semisimple Lie group with Lie algebra g0• Fix a Cartan 
involution(} and Cartan decomposition go = to E9 p0 , and let K be the 
analytic subgroup of G with Lie algebra to. Suppose that g0 has a Cartan 
subalgebra contained in to. 
(a) Prove that there exists k e K such that(} = Ad(k). 
(b) Prove that if :E is the system of restricted roots of g0 , then -1 is in the 

Weyl group of :E. 

11. Let G be a semisimple Lie group with Lie algebra g0 • Fix a Cartan 
involution(} and Cartan decomposition go = to E9 p0, and let K be the 
analytic subgroup of G with Lie algebra to. Prove that if g0 does not have 
a Cartan subalgebra contained in t0 , then there does not exist k e K such 
that(} = Ad(k). 

12. Let to E9 ao be a maximally noncompact (}stable Cartan subalgebra. Prove 
that if a is a root, then a + Oa is not a root. 

13. For go = .sl(2n, lR), let ~g> consist of all block-diagonal matrices whose 

first i blocks are of size 2 of the form { ( -~ ~~ ) } , for 1 ::: j ::: i, and 

whose remaining blocks are 2(n - i) blocks of size 1. 

(a) Prove that the ~g>, 0 ::: i ::: n, form a complete set of nonconjugate 
Cartan subalgebras of go. 

(b) Relate ~g> to the maximally ~ompact (} stable Cartan subalgebra of 
Example 2 in §8, using Cayley transforms. 

(c) Relate ~g> to the maximally noncompact (} stable Cartan subalgebra 
of diagonal matrices, using Cayley transforms. 
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14. The example in §7 constructs four Cartan subalgebras for sp(2, R). The 
first one ~0 is maximally noncompact, and the last one ~~ is maximally 
compact. The second one has noncompact part contained in ~0 and compact 
part contained in~~. but the third one does not. Show that the third one 
is not even conjugate to a Cartan subalgebra whose noncompact part is 
contained in ~o and whose compact part is contained in ~~. 

15. Let a (2n )-by-(2n) matrix be given in block form by f ( ~ ~ ). Define 

a mapping X ~ Y of the set of (2n)-by-(2n) complex matrices to itself 

by Y = ( ~ ~) X ( ~ ~) -t 
(a) Prove that the map carries su(n, n) to an image whose members Y 

are characterized by TrY= 0 and JY + Y* J = 0, where J is as in 
Example 2 of §1.8. 

(b) Prove that the mapping exhibits su(n, n) n sp(n, C) as isomorphic 
with sp(n, R). 

(c) Within g0 = su(n, n) nsp(n, C), let e be negative conjugate transpose. 
Define ~0 to be the Cartan subalgebra in (6.102). Referring to Example 
3 in §11.1, find all root vectors and identify which are compact and 
which are noncompact. Interpret the above mapping on (g0)c as a 
product of Cayley transforms Cp. Which roots fJ are involved? 

16. (a) Provethateveryelementof SL(2, R) isconjugatetoatleastonematrix 
oftheform 

or 

(1 t) (-1 t) 
0 1 ' 0 -1 ' 

( cose sine) 
-sine cose · 

(b) Prove that the exponential map fromsl(2, R) into SL(2, R) has image 

{X I Tr X> -2} U {-1}. 

17. Let g be a simple complex Lie algebra. Describe the Vogan diagram of gR. 

18. This problem examines the effect on the painting in a Vogan diagram when 
the positive system is changed from !! + to sa!!+, where a is an imaginary 
simple root. 
(a) Show that the new diagram is a Vogan diagram with the same Dynkin 

diagram and automorphism and with the painting unchanged at the 
position of a and at all positions not adjacent to a. 
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(b) If a is compact, show that there is no change in the painting of imag
inary roots in positions adjacent to a. 

(c) If a is noncompact, show that the painting of an imaginary root at a 
position adjacent to a is reversed unless the root is connected by a 
double line to a and is long, in which case it is unchanged. 

(d) Devise an algorithm for a Vogan diagram of type An for a step-by-step 
change of positive system so that ultimately at most one simple root 
is painted (as is asserted to be possible by Theorem 6.96). 

19. In the Vogan diagram from Theorem 6.96 for the Lie algebra F II of § 10, 

the simple root !<e1 - e2 - e3- e4) is noncompact, and the simple roots 

e2- e3, e3- e4, and e4 are compact. 

(a) Verify that !<e1 - e2 + e3 + e4) is noncompact. 

(b) The roots !<e,- e2- e3- e4) and !<e,- e2 +e3 + e4) are orthogonal 
and noncompact, yet (6.108) says that F II has real rank one. Explain. 

20. The Vogan diagram ofF I, as given by Theorem 6.96, has e2 - e3 as its 
one and only noncompact simple root. What strongly orthogonal set of 
noncompact roots is produced by the algorithm of § 11? 

21. Verify the assertion in (6.108) that E VII has real rank 3 and restricted roots 
of type C3. 

Problems 22-24 give further information about the Cartan decomposition 9o = 
to EB Po of a real semisimple Lie algebra. Let B be the Killing form of 9o· 

22. Let p~ be an ad to invariant subspace of po, and let 

p~_j_ ={X e Po I B(X, p~) = 0}. 

Prove that B([p~, p~_j_ l, to)= 0 and conclude that [p~, p~_j_ l = 0. 

23. Ifp~ is an ad to invariant subspace ofpo, prove that [p~, Pol EBp~ is an ideal 

in 9o· 

24. Under the additional assumption that 9o is simple but not compact, prove 
that 

(a) [po, Pol = to 
(b) to is a maximal proper Lie subalgebra of 9o. 

Problems 25-27 deal with low-dimensional isomorphisms. 

25. Establish the following isomorphisms by using Vogan diagrams: 
(a) the isomorphisms in (6.110) 

(b) s£(4, R) ~ so(3, 3), su(2, 2) ~ so(4, 2), sp(2, R) ~ so(3, 2) 
(c) sp(2) ~ so(5), su(4) ~ so(6), su(2) ED su(2) ~ so(4). 
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26. (a) Prove that the mapping of Problem 36 of Chapter II gives an isomor

phism of .s1(4, JR) onto .so(3, 3). 

(b) Prove that the mapping of Problem 38 of Chapter II gives an isomor
phism of .sp(2, JR) onto .so(3, 2). 

27. Prove that the Lie algebra isomorphisms of Problem 25b induce Lie group 
homomorphisms SL(4, lR) __. S0(3, 3)0 , SU(2, 2) __. S0(4, 2)0 , and 
Sp(2, JR) __. S0(3, 2)0 • What is the kernel in each case? 



CHAFfER VII 

Advanced Structure Theory 

Abstract. The first main results are that simply connected compact semisimple Lie 
groups are in one-one correspondence with abstract Cartan matrices and their associated 
Dynkin diagrams and that the outer automorphisms of such a group correspond exactly 
to automorphisms of the Dynkin diagram. The remainder of the first section prepares 
for the definition of a reductive Lie group: A compact connected Lie group has a 
complexification that is unique up to holomorphic isomorphism. A semisimple Lie 
group of matrices is topologically closed and has finite center. 

Reductive Lie groups G are defined as 4-tuples (G, K, 9, B) satisfying certain com
patibility conditions. Here G is a Lie group, K is a compact subgroup, 9 is an involution 
of the Lie algebra go of G, and B is a bilinear form on go. Examples include semisimple 
Lie groups with finite center, any connected closed linear group closed under conjugate 
transpose, and the centralizer in a reductive group of a 8 stable abelian subalgebra of 
the Lie algebra. The involution 8, which is called the "Cartan involution" of the Lie 
algebra, is the differential of a global Cartan involution El of G. In terms of El, G has a 
global Cartan decomposition that generalizes the polar decomposition of matrices. 

A number of properties of semisimple Lie groups with finite center generalize to 
reductive Lie groups. Among these are the conjugacy of the maximal abelian subs paces 
of the -1 eigenspace p0 of 9, the theory of restricted roots, the Iwasawa decomposition, 
and properties of Cartan subalgebras. The chapter addresses also some properties not 
discussed in Chapter VI, such as the K ApK decomposition and the Bruhat decomposi
tion. Here Ap is the analytic subgroup corresponding to a maximal abelian subspace of 

PO· 
The degree of disconnectedness of the subgroup Mp = Zg (Ap) controls the discon

nectedness of many other subgroups of G. The most complete description of Mp is in 
the case that G has a complexification, and then serious results from Chapter V about 
representation theory play a decisive role. 

Parabolic subgroups are closed subgroups containing a conjugate of Mp Ap Np. They 
are parametrized up to conjugacy by subsets of simple restricted roots. A Cartan 
subgroup is defined to be the centralizer of a Cartan subalgebra. It has only finitely 
many components, and each regular element of G lies in one and only one Cartan 
subgroup of G. When G has a complexification, the component structure of Cartan 
subgroups can be identified in terms of the elements that generate Mp. 

A reductive Lie group G that is semisimple has the property that G 1 K admits a 
complex structure with G acting holomorphically if and only if the centralizer in go of 
the center of the Lie algebra to of K is just to. In this case, G/ K may be realized as 
a bounded domain in some C" by means of the Harish-Chandra decomposition. The 
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proof of the Harish-Chandra decomposition uses facts about parabolic subgroups. The 
spaces G 1 K of this kind may be classified easily by inspection of the classification of 
simple real Lie algebras in Chapter VI. 

1. Further Properties of Compact Real Forms 

Some aspects of compact real forms of complex semisimple Lie 
algebras were omitted in Chapter VI in order to move more quickly 
toward the classification of simple real Lie algebras. We take up these 
aspects now in order to prepare for the more advanced structure theory to 
be discussed in this chapter. The topics in this section are classification 
of compact semisimple Lie algebras and simply connected compact 
semisimple Lie groups, complex structures on semisimple Lie groups 
whose Lie algebras are complex, automorphisms of complex semisimple 
Lie algebras, and properties of connected linear groups with reductive 
Lie algebra. Toward the end of this section we discuss Weyl's unitary 
trick. 

Proposition 7 .1. The isomorphism classes of compact semisimple 
Lie algebras g0 and the isomorphism classes of complex semisimple 
Lie algebras g are in one-one correspondence, the correspondence being 
that g is the complexification of g0 and g0 is a compact real form of g. 
Under this correspondence simple Lie algebras correspond to simple Lie 
algebras. 

REMARK. The proposition implies that the complexification of a com
pact simple Lie algebra is simple. It then follows from Theorem 6.94 
that a compact simple Lie algebra is never complex. 

PRooF. If a compact semisimple g0 is given, we know that its com
plexification g is complex semisimple. In the reverse direction Theorem 
6.11 shows that any complex semisimple g has a compact real form, 
and Corollary 620 shows that the compact real form is unique up to 
isomorphism. This proves the correspondence. If a complex g is simple, 
then it is trivial that any real form is simple. 

Conversely suppose that g0 is compact simple. Arguing by contradic
tion, suppose that the complexification g is semisimple but not simple. 
Write g as the direct sum of simple ideals g; by Theorem 1.51, and let 
(g;)o be a compact real form of g; as in Theorem 6.11. The Killing 
forms of distinct g; 's are orthogonal, and it follows that the Killing form 
of the direct sum of the (g;)o's is negative definite. By Proposition 4.27, 
the direct sum of the (g; )o 's is a compact real form of g. By Corollary 
620 the direct sum of the (g;)o's is isomorphic to go and exhibits go as 
semisimple but not simple, contradiction. 
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Proposition 7 .2. The isomorphism classes of simply connected 
compact semisimple Lie groups are in one-one correspondence with the 
isomorphism classes of compact semisimple Lie algebras by passage 
from a Lie group to its Lie algebra. 

PRooF. The Lie algebra of a compact semisimple group is compact 
semisimple by Proposition 4.23. Conversely if a compact semisim
ple Lie algebra g0 is given, then the Killing form of g0 is negative 
definite by Corollary 4.26 and Cartan's Criterion for Semisimplicity 
(Theorem 1.42). Consequently Int g0 is a subgroup of a compact or
thogonal group. On the other hand, Propositions 1.97 and 1.98 show 
that Int g0 ~ (Aut g0) 0 and hence that Int g0 is closed. Thus Int g0 is a 
compact connected Lie group with Lie algebra adg0 ~ g0 • By Weyl's 
Theorem (Theorem 4.69) a universal covering group of Int g0 is a sim
ply connected compact semisimple group with Lie algebra g0 • Since 
two simply connected analytic groups with isomorphic Lie algebras are 
isomorphic, the proposition follows. 

Corollary 7 .3. The isomorphism classes of 

(a) simply connected compact semisimple Lie groups, 
(b) compact semisimple Lie algebras, 
(c) complex semisimple Lie algebras, 
(d) reduced abstract root systems, 
(e) abstract Cartan matrices and their associated Dynkin diagrams 

are in one-one correspondence by passage from a Lie group to its Lie 
algebra, then to the complexification of the Lie algebra, and then to the 
underlying root system. 

PRooF. The correspondence of (a) to (b) is addressed by Proposition 
7 .2, that of (b) to (c) is addressed by Proposition 7.1, and that of (c) to 
(d) to (e) is addressed by Chapter II. 

Proposition 7 .4. A semisimple Lie group whose Lie algebra is com
plex admits uniquely the structure of a complex Lie group in such a way 
that the exponential mapping is holomorphic. 

REMARK. Consequently we may speak unambiguously of a complex 
semisimple Lie group as being a semisimple Lie group whose Lie 
algebra is complex. 

PRooF. Let G be the Lie group, and let g be the Lie algebra. Since 
g is complex, the analytic group Ad( G) is an analytic subgroup of the 
complex Lie group GL(g) with Lie algebra closed under multiplication 
by i. By the remarks at the end of §1.10, Ad( G) is a complex Lie group 
in a unique way such that the exponential map is holomorphic. Since 
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g ~ Ad(g) is a covering map, the complex structure on Ad(G) lifts 
uniquely to a complex structure on G such that the covering map is 
holomorphic and regular. This lift is the unique lift making the expo
nential mapping holomorphic, and the result follows. 

Proposition 7 .5. A complex semisimple Lie group necessarily has 
finite center. Let G and G' be complex semisimple Lie groups, and let K 
and K' be the subgroups fixed by the respective global Cartan involutions 
of G and G'. Then K and K' are compact, and a homomorphism of K into 
K' as Lie groups induces a holomorphic homomorphism of G into G'. If 
the homomorphism K ~ K' is an isomorphism, then the holomorphic 
homomorphism G ~ G' is a holomorphic isomorphism. 

PRooF. If G has Lie algebra g, then the most general Cartan de
composition of glR is gR = g0 EB ig0, where g0 is a compact real form 
of g by Proposition 6.14 and Corollary 6.19. The Lie algebra 9o is 
compact semisimple, and Weyl's Theorem (Theorem 4.69) shows that 
the corresponding analytic subgroup K is compact. Theorem 6.31f then 
shows that G has finite center. 

In a similar fashion let g' be the Lie algebra of G'. We may suppose 
that there is a Cartan decomposition g'R = g~ EB ig~ of g'R such that K' 
is the analytic subgroup of G' with Lie algebra g~. As with K, K' is 
compact. 

A homomorphism fP of K into K' yields a homomorphism dfP of g0 

into g0, and this extends uniquely to a complex-linear homomorphism, 
also denoted dfP, of g into g'. Let G be a universal covering group of G, 
let e : G ~ G be the covering homomorphism, and let K be the analytic 
subgroup of{; with Lie algebra g0 • Since{; is simply connected, dcp 

lifts to a smooth homomorphism ip of {; into G'. 
We want to see that ip descends to a homomorphism of G into G'. To 

see this, we show that ip is 1 on the kernel of e. The restriction ipli and 
the composition fP o (eli) both have dfP as differential. Therefore they 
are equal, and ip is 1 on the kernel of eli· Theorem 6.31e shows that 
the kernel of e in G is contained in K, and it follows that ip descends 
to a homomorphism of G into G' with differential dfP. Let us call this 
homomorphism fP. Then fP is a homomorphism between complex Lie 
groups, and its differential is complex linear. By remarks near the end 
of §1.10, fP is holomorphic. 

If the given homomorphism is an isomorphism, then we can re
verse the roles of G and G', obtaining a holomorphic homomorphism 
1f1 : G' ~ G with differential the inverse of dfP. Since 1/1 o fP and fP o 1/1 
have differential the identity, fP and 1fr are inverses. Therefore fP is a 
holomorphic isomorphism. 
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Corollary 7 .6. If G is a complex semisimple Lie group, then G is 
holomorphically isomorphic to a complex Lie group of matrices. 

PRooF. Let f1 be the Lie algebra of G, let fllR = flo EB i flo be a Cartan 
decomposition of fllR, and let K be the analytic subgroup of G with Lie 
algebra flo· By Corollary 4.22, K is isomorphic to a closed linear group, 
say K', and there is no loss of generality in assuming that the members of 
K' are in GL(V) for areal vector space V. Letfl~ be the linear Lie algebra 
of K', and write the complexification fl' of fl~ as a Lie algebra of complex 
endomorphisms of vc. If G' is the analytic subgroup of G L(Vc) with Lie 
algebra fl', then G' is a complex Lie group since G L(Vc) is complex and 
fl' is closed under multiplication by i. Applying Proposition 7.5, we can 
extend the isomorphism of K onto K' to a holomorphic isomorphism of 
G onto G'. Thus G' provides the required complex Lie group of matrices. 

Let G be a semisimple Lie group, and suppose that Gc is a complex 
semisimple Lie group such that G is an analytic subgroup of Gc and 
the Lie algebra of Gc is the complexification of the Lie algebra of 
G. Then we say that Gc is a complexification of G and that G has 
a complexification Gc. For example, SU(n) and SL(n, JR.) both have 
SL(n, C) as complexification. Because of Corollary 7.6 it will follow 
from Proposition 7.9 below that if G has a complexification Gc, then 
G is necessarily closed in Gc. Not every semisimple Lie group has a 
complexification; because of Corollary 7 .6, the example at the end of 
§VI.3 shows that a double cover of SL(2, JR.) has no complexification. 
If G has a complexification, then the complexification is not necessarily 
unique up to isomorphism. However, Proposition 7.5 shows that the 
complexification is unique if G is compact. 

We now use the correspondence of Corollary 7.3 to investigate auto
morphisms of complex semisimple Lie algebras. 

Lemma 7.7. Let G be a complex semisimple Lie group with Lie 
algebra fl, let~ be a Cartan subalgebra of fl, and let l:l. +(fl, ~)be a positive 
system for the roots. If H denotes the analytic subgroup of G with Lie 
algebra~. then any member oflntfl carrying~ to itself and f:l.+(fl, ~)to 
itself is in Ad9 (H). 

PRooF. The construction of Theorem 6.11 produces a compact real 
form flo of f1 such that flo n ~ = ~o is a maximal abelian subspace of flo· 
The decomposition fllR = g0 EB i g0 is a Cartan decomposition of glR by 
Proposition 6.14, and we let() be the Cartan involution. Let K be the 
analytic subgroup of G with Lie algebra g0 • The subgroup K is compact 
by Proposition 7.5. If T is the analytic subgroup of K with Lie algebra 
~0 , then T is a maximal torus of K. 
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Let g beinG, and suppose that Ad(g) carries~ to itself and .!l+(g, ~) 
to itself. By Theorem 6.31 we can write g = kexpX with k e K and 
X e ig0 • The map Ad(E>g) is the differential at 1 of g ~-+ (E>g)x(E>g)-1 = 
E>(g(E>x)g-1), hence is 9Ad(g)9. Since 9~ = ~. Ad(E>g) carries ~ to 
itself. Therefore so does Ad((E>g)-1g) = Ad(exp2X). 

The linear transformation Ad( exp 2X) is diagonable on g2 with pos
itive eigenvalues. Since it carries ~ to ~, there exists a real subspace 
~' of glR carried to itself by Ad( exp 2X) such that glR = ~ $ ~'. The 
transformation Ad( exp 2X) has a unique diagonable logarithm with real 
eigenvalues, and there are two candidates for this logarithm. One is 
ad 2X, and the other is the sum of the logarithms on ~ and ~' separately. 
By uniqueness we conclude that ad 2X carries ~ to ~. By Proposition 
2.7, X is in~. 

Therefore exp X is in H, and it is enough to show that k is in T. Here 
k is a member of K such that Ad(k) leaves ~0 stable and Ll +(g, ~) stable. 
Since Ad(k) leaves ~0 stable, Theorem 4.54 says that Ad(k) is in the 
Weyl group W(g, ~). Since Ad(k) leaves .!l+(g, ~)stable, Theorem 2.63 
says that Ad(k) is the identity element in W(g, ~). Therefore Ad(k) is 1 
on ~.and k commutes with T. By Corollary 4.52, k is in T. 

Theorem 7 .8. If g0 is a compact semisimple Lie algebra and g is 
its complexification, then the following three groups are canonically 
isomorphic: 

(a) AutJR go/Intgo 
(b) Autc g/Int g 
(c) the group of automorphisms of the Dynkin diagram of g. 

PRooF. By Proposition 7.4let G be a simply connected complex Lie 
group with Lie algebra g, for example a universal covering group of 
Intg. The analytic subgroup K with Lie algebra g0 is simply connected 
by Theorem 6.31, and K is compact by Proposition 7.5. 

Fix a maximal abelian subspace ~0 of g0 , let .!l+(g, ~)be a positive 
system of roots, and letT be the maximal torus of K with Lie algebra ~0 • 
Let D be the Dynkin diagram of g, and let Aut D be the group of auto
morphisms of D. Any member of Aut2 g0 extends by complexifying to 
a member of Autc g, and members of Int g0 yield members of Int g. Thus 
we obtain a group homomorphism <I> : AutJRgo/Int g0 ~ Autc g/Int g. 

Let us observe that <I> is onto. In fact, if a member ({) of Autc g is 
given, then qJ(g0) is a compact real form of g. By Corollary 6.20 we can 
adjust ({) by a member of Int g so that ({) carries g0 into itself. Thus some 
automorphism of g0 is carried to the coset of({) under <I>. 

We shall construct a group homomorphism \II : Autc g/Int g ~ Aut D. 
Let({) e Autc g be given. Since ~ is a Cartan subalgebra of g (by Corollary 
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2.13), q>(~) is another Cartan subalgebra. By Theorem 2.15 there exists 
1/FJ E Intg with 1/f 1 q>(~) = ~- Then 1/11q> maps ~(g, ~)to itself and carries 
~ +(g, ~)to another positive system(~ +)'(g, ~). By Theorem 2.63 there 
exists a uniquememberw of the Weylgroup W(g, ~)carrying (~+)'(g, ~) 
to ~+(g, ~). Theorem 4.54 shows that w is implemented by a member 
of Ad(K), hence by a member 1/12 oflntg. Then 1/121/f1q> maps ~+(g, ~) 
to itself and yields an automorphism of the Dynkin diagram. 

Let us see the effect of the choices we have made. With different 
choices, we would be led to some 1/1~1/lifP mapping ~+(g, ~)to itself, 
and the claim is that we get the same member of Aut D. In fact the 
composition 1/1 = (1/1~1/lfq>) o (1/121/f1q>)-1 is in lntg. Lemma 7.7 shows that 
1/f acts as the identity on ~, and hence the automorphism of the Dynkin 
diagram corresponding to 1/1 is the identity. Therefore 1/12 1/11 q> and 1/f~ 1/fi q> 
lead to the same member of Aut D. 

Consequently the above construction yields a well defined function 
Ill : Autc gjlnt g --+ Aut D. Since we can adjust any q> E Autc g by a 
member of lot g so that ~ maps to itself and ~ + (g, ~) maps to itself, it is 
clear that Ill is a homomorphism. 

Let us prove that Ill o <I> is one-one. Thus let q> E AutJR g0 lead to the 
identity element of Aut D. Write q> also for the corresponding complex
linear automorphism on g. Theorem 4.34 shows that we may adjust q> 
by a member of lot g0 so that q> carries ~0 to itself, and Theorems 2.63 
and 4.54 show that we may adjust q> further by a member of lot g0 so that 
cp carries .6.+(g, ~)to itself. Let Ea, be root vectors for the simple roots 
a~o ... , a1 of g. Since q> is the identity on~. q>(Ea;) = c;Ea, for nonzero 
constants c1, ••• , c1• For each j, let xi be any complex number with 
fi<i = ci. Choose, for 1 ~ i ~ 1, members hi of~ with a; (hi) = 8ii, and put 
g = exp ( L~=l xih i). The element g is in H. Then Ad(g) (Ea,) = c; Ea, 
for each i. Consequently Ad(g) is a member of lot g that agrees with q> 
on ~ and on each Ea;. By the Isomorphism Theorem (Theorem 2.108), 
q> = Ad(g). 

To complete the proof that Ill o <I> is one-one, we show that g is in T. 
We need to see that lei I = 1 for all j, so that xi can be chosen purely 
imaginary. First we show that Ea, is a root vector for -ai if bar denotes 
the conjugation of g with respect to g0 • In fact, write Ea, = Xi + ilj 
with Xi and lj in g0 • If h is in ~0 , then aj(h) is purely imaginary. Since 
[~o. go] ~ g0 , it follows from the equality 

[h, Xj] + i[h, lj] = [h, Eai] = aj(h)Eai = iaj(h)lj + aj(h)Xj 

that [h, Xj] = iaj(h)Yj and i[h, Yj] = aj(h)Xj. Subtracting these two 
formulas gives 

[h, Xj- ilj] = iaj(h)lj- aj(h)Xj = -aj(h)(Xj- ilj) 
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and shows that Ea1 is indeed a root vector for -ai. Hence we find that 
[Ea1 , EaJ is in~· Since rp is complex linear and carries g0 to itself, rp 
respects bar. Therefore rp(Ea1 ) = ciEa1 • Since rp fixes every element of 
~. rp fixes [Ea1 , Ea1], and it follows that CjCj = 1. We conclude that g is 
in T and that \II o 4> is one-one. 

Since 4> is onto and \II o 4> is one-one, both 4> and \II are one-one. 
The fact that \II is onto is a consequence of the Isomorphism Theorem 
(Theorem 2.108) and is worked out in detail in the second example at 
the end of §11.10. This completes the proof of the theorem. 

Now we take up some properties of Lie groups of matrices to prepare 
for the definition of "reductive Lie group" in the next section. 

Proposition 7 !J. Let G be an analytic subgroup of real or complex 
matrices whose Lie algebra g0 is semisimple. Then G has finite center 
and is a closed linear group. 

PRooF. Without loss of generality we may assume that G is an analytic 
subgroup of GL(V) for a real vector space V. Let g0 be the linear Lie 
algebra of G, and write the complexification g of g0 as a Lie algebra 
of complex endomorphisms of vc. Let go = to e p0 be a Cartan 
decomposition, and let K be the analytic subgroup of G with Lie algebra 
t0 • The Lie subalgebra Uo = t0 e iPo of En de V is a compact semisimple 
Lie algebra, and we let U be the analytic subgroup of GL(Vc) with Lie 
algebra Uo. Proposition 7 2 implies that the universal covering group U 
of U is compact, and it follows that U is compact. Since U has discrete 
center, the center Zu of U must be finite. 

The center Zo of G is contained inK by Theorem 6.3le, and K s;; U 
since t0 s;; 11(). Since Ad9 (Z0 ) acts as 1 on Uo, we conclude that Z0 s;; Zu. 
Therefore Zo is finite. This proves the first conclusion. By Theorem 
6.3lf, K is compact. 

Since U is compact, Proposition 4.6 shows that vc has a Hermitian 
inner product preserved by U. Then U is contained in the unitary 
group U(Vc). Let p(Vc) be the vector space of Hermitian transfor
mations of vc so that GL(Vc) has the polar decomposition GL(Vc) = 
U (Vc) exp p(Vc). The members of 11o are skew Hermitian, and hence the 
members of to are skew Hermitian and the members of Po are Hermitian. 
Therefore the global Cartan decomposition G = K exp Po of G that is 
given in Theorem 6.3lc is compatible with the polar decomposition of 
GL(Vc). 

We are to prove that G is closed in GL(Vc). Let gn = kn expXn 
tend tog e GL(Vc). Using the compactness of K and passing to a 
subsequence, we may assume that kn tends toke K. Therefore expXn 
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converges. Since the polar decomposition of GL(Vc) is a homeomor
phism, it follows that exp Xn has limit exp X for some X e p(Vc). Since 
p0 is closed in p(Vc), X is in p0 • Therefore g = kexpX exhibits gas in 
G, and G is closed. 

Corollary 7 .10. Let G be an analytic subgroup of real or complex 
matrices whose Lie algebra g0 is reductive, and suppose that the identity 
component of the center of G is compact. Then G is a closed linear 
group. 

REMARK. In this result and some to follow, we shall work with analytic 
groups whose Lie algebras are direct sums. If G is an analytic group 
whose Lie algebra g0 is a direct sum g0 = ao EB bo of ideals and if A and 
B are the analytic subgroups corresponding to ao and b0, then G is a 
commuting product G = AB. This fact follows from Proposition 1.99 
or may be derived directly, as in the proof of Theorem 4.29. 

PRooF. Write go = Z90 EB [go, go] by Corollary 1.53. The analytic 
subgroup of G corresponding to Z90 is (ZG)o, and we let Gss be the 
analytic subgroup corresponding to [g0, g0]. By the remarks before the 
proof, G is the commuting product (Z6 )oGss· The group Gss is closed 
as a group of matrices by Proposition 7.1, and (Z6 )0 is compact by 
assumption. Hence the set of products, which is G, is closed. 

Corollary 7 .11. Let G be a connected closed linear group whose Lie 
algebra g0 is reductive. Then the analytic subgroup Gss of G with Lie 
algebra [go, go] is closed, and G is the commuting product G = (Z6 )0Gss. 

PRooF. The subgroup G ss is closed by Proposition 7.1, and G is the 
commuting product (Z6 )0Gss by the remarks with Corollary 7 .10. 

Proposition 7 .12. Let G be a compact connected linear Lie group, 
and let go be its linear Lie algebra. Then the complex analytic group Gc 
of matrices with linear Lie algebra g = g0 EB i g0 is a closed linear group. 

REMARKs. If G is a compact connected Lie group, then Corollary 4.22 
implies that G is isomorphic to a closed linear group. If G is realized 
as a closed linear group in two different ways, then this proposition 
in principle produces two different groups Gc. However, Proposition 
7.5 shows that the two groups Gc are isomorphic. Therefore with no 
reference to linear groups, we can speak of the complexification Gc 
of a compact connected Lie group G, and Gc is unique up to isomor
phism. Proposition 7.5 shows that a homomorphism between two such 
groups G and G' induces a holomorphic homomorphism between their 
complexifications. 
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PRooF. By Theorem 4.29let us write G = (ZG)oGss with Gss compact 
semisimple. Proposition 4.6 shows that we may assume without loss 
of generality that G is a connected closed subgroup of a unitary group 
U(n) for some n, and Corollary 4.7 shows that we may take (ZG)o to be 
diagonal. 

Let us complexify the decomposition g0 = Z90 EB [g0, g0] to obtain 
glR = Z90 EB i Z90 EB [g, g]. The analytic subgroup corresponding to Z90 is 
G1 = (ZG)oandiscompact. SinceiZ90 consistsofrealdiagonalmatrices, 
Corollary 1.111 shows that its corresponding analytic subgroup G2 is 
closed. In addition the analytic subgroup G3 with Lie algebra [g, g] 
is closed by Proposition 7.9. By the remarks with Corollary 7.10, the 
group Gc is the commuting product of these three subgroups, and we 
are to show that the product is closed. 

For G3, negative conjugate transpose is a Cartan involution of its Lie 
algebra, and therefore conjugate transpose inverse is a global Cartan 
involution of G3. Consequently G3 has a global Cartan decomposition 
G3 = Gss exp(p3)o, where (p3)o = i[go, go]. Since iZ90 commutes with 
(p3)0 and since the polar decomposition of all matrices is a homeomor
phism, it follows that the product G2G3 is closed. Since G1 is compact, 
Gc = G1G2G3 is closed. 

Lemma 7 .13. On matrices let E> be conjugate transpose inverse, and 
let() be negative conjugate transpose. Let G be a connected abelian 
closed linear group that is stable under E>, and let g0 be its linear Lie 
algebra, stable under (). Let g0 = t0 EB Po be the decomposition of g0 

into +1 and -1 eigenspaces under(), and let K = {x E G 1 E>x = x}. 
Then the map K x Po ~ G given by (k, X) t-+ k exp X is a Lie group 
isomorphism. 

PRooF. The group K is a closed subgroup of the unitary group and is 
compact with Lie algebra t0 • Since p0 is abelian, expp0 is the analytic 
subgroup of G with Lie algebra p0 • By the remarks with Corollary 7 .10, 
G = K expp0 • The smooth map K x p0 ~ G is compatible with the 
polar decomposition of matrices and is therefore one-one. It is a Lie 
group homomorphism since G and p0 are abelian. Its inverse is smooth 
since the inverse of the polar decomposition of matrices is smooth (by 
an argument in the proof of Theorem 6.31). 

Proposition 7 .14. On matrices let e be conjugate transpose inverse, 
and let () be negative conjugate transpose. Let G be a connected closed 
linear group that is stable under E>, and let g0 be its linear Lie algebra, 
stable under (). Let g0 = t 0 EB p0 be the decomposition of g0 into + 1 and 
-1 eigenspaces under(), and let K = {x E G I E>x = x}. Then the map 
K x p0 ~ G given by (k, X) t-+ kexpX is a diffeomorphism onto. 
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PRooF. By Proposition 1.56, g0 is reductive. Therefore Corollary 
1.53 allows us to write go = Z90 e [go, go] with [go, go] semisimple. The 
analytic subgroup of G with Lie algebra Z90 is (Za}o, and we let Gss 
be the analytic subgroup of G with Lie algebra [g0 , g0]. By Corollary 
7.11, (Za)o and Gss are closed, and G = (Za)oGss· It is clear that Z90and 
[g0 , g0] are stable under 9, and hence (Za)o and Gss are stable under E>. 

Because of the polar decomposition of matrices, the map K x p0 --+ G 
is smooth and one-one. The parts of this map associated with (Za)o 
and Gss are onto by Lemma 7.13 and Theorem6.31,respectively. Since 
(Za)o and Gss commute with each other, it follows that K x Po--+ G is 
onto. The inverse is smooth since the inverse of the polar decomposition 
of marices is smooth (by an argument in the proof of Theorem 6.31). 

Proposition 7.15 (Weyl's unitary trick). Let G be an analytic sub
group of complex matrices whose linear Lie algebra g0 is semisimple 
and is stable under the map 9 given by negative conjugate transpose. 
Let go = to e p0 be the Cartan decomposition of .9o defined by 9, and 
suppose that ton ip0 = 0. Let U and Gc be the analytic subgroups of 
matrices with respective Lie algebras Uo = to e iPo and g = (to e p0}c. 
The group U is compact. Suppose that U is simply connected. If V is 
any finite-dimensional complex vector space, then a representation of 
any of the following kinds on V leads, via the formula 

(7.16) g =go e igo = Uo e iUo, 

to a representation of each of the other kinds. Under this correspondence 
invariant subspaces and equivalences are preserved: 

(a) a representation of G on V 
(b) a representation of U on V 
(c) a holomorphic representation of Gc on V 
(d) a representation of g0 on V 
(e) a representation of Uo on V 
(f) a complex-linear representation of g on V. 

PRooF. The groups G, U, and Gc are closed linear groups by Proposi
tion 7.9, and U is compact, being a closed subgroup of the unitary group. 
Since U is simply connected and its Lie algebra is a compact real form 
of g, Gc is simply connected. 

We can pass from (c) to (a) or (b) by restriction. Since continuous 
homomorphisms between Lie groups are smooth, we can pass from (a) 
or (b) to (d) or (e) by taking differentials. Formula (7.16) allows us 
to pass from (d) or (e) to (f). Since Gc is simply connected, a Lie 
algebra homomorphism as in (f) lifts to a group homomorphism, and 
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the group homomorphism must be holomorphic since the Lie algebra 
homomorphism is assumed complex linear. Thus we can pass from (f) 
to (c). If we follow the steps all the way around, starting from (c), we end 
up with the original representation, since the differential at the identity 
uniquely determines a homomorphism of Lie groups. Thus invariant 
subspaces and equivalence are preserved. 

EXAMPLE. Weyl's unitary trick gives us a new proof of the fact that 
finite-dimensional complex-linear representations of complex semisim
ple Lie algebras are completely reducible (Theorem 5.29); the crux of 
the new proof is the existence of a compact real form (Theorem 6.11). 
For the argument let the Lie algebra g be given, and let G be a simply 
connected complex semisimple group with Lie algebra g. Corollary 
7.6 allows us to regard G as a subgroup of GL(Vc) for some finite
dimensional complex vector space vc. Let Uo be a compact real form of 
g, so that glR = Uo E9 i Uo, and let U be the analytic subgroup of G with Lie 
algebra Uo· Proposition 7.15 notes that U is compact. By Proposition 
4.6 we can introduce a Hermitian inner product into vc so that U is a 
subgroup of the unitary group. If a complex-linear representation of g 
is given, we can use the passage (f) to (b) in Proposition 7.15 to obtain a 
representation of U. This is completely reducible by Corollary 4.7, and 
the complete reducibility of the given representation of g follows. 

The final proposition shows how to recognize a Cartan decomposition 
of a real semisimple Lie algebra in terms of a bilinear form other than 
the Killing form. 

Proposition 7.17. Let g0 be a real semisimple Lie algebra, let (} be 
an involution of g0 , and let B be a nondegnerate symmetric invariant 
bilinear form on g0 such that B((} X, (} Y) = B(X, Y) for all X and Y in g0 • 

If the form B6 (X, Y) = -B(X, OY) is positive definite, then(} is a Cartan 
involution of g0 • 

PRooF. Let g0 = t0 E9 Po be the decomposition of g0 into + 1 and 
-1 eigenspaces under (}, and extend B to be complex bilinear on the 
complexification g of g0 • Since(} is an involution, Uo = t0 E9 ip0 is a Lie 
subalgebra of g = (g0)c, necessarily a real form. Here g is semisimple, 
and then so is Uo· Since B6 is positive definite, B is negative definite on 
t0 and on i p0 • Also to and i Po are orthogonal since X e to and Y e i Po 
implies 

B(X, Y) = B(BX, BY)= B(X, -Y) = -B(X, Y). 

Hence B is real-valued and negative definite on Uo· 
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By Propositions 1.97 and 1.98, lnt Uo = (AutiR Uo)o. Consequently 
IntUo is a closed subgroup of GL(UQ). On the other hand, we have 
just seen that - B is an inner product on Uo, and in this inner product 
every member of ad Uo is skew symmetric. Therefore the corresponding 
analytic subgroup IntUo of GL(Uo) acts by orthogonal transformations. 
Since Int Uo is then exhibited as a closed subgroup of the orthogonal 
group, IntUo is compact. Hence Uo is a compact real form of g. By the 
remarks preceding Lemma 6.27, ()is a Cartan involution of g0 • 

2. Reductive Lie Groups 

We are ready to define the class of groups that will be the objects 
of study in this chapter. The intention is to study semisimple groups, 
but, as was already the case in Chapters IV and VI, we shall often have 
to work with centralizers of abelian analytic subgroups invariant under 
a Cartan involution, and these centralizers may be disconnected and 
may have positive-dimensional center. To be able to use arguments 
that take advantage of such subgroups and proceed by induction on the 
dimension, we are forced to enlarge the class of groups under study. 
Groups in the enlarged class are always called "reductive;' but their 
characterizing properties vary from author to author. We shall use the 
following definition. 

A reductive Lie group is actually a 4-tuple (G, K, 0, B) consisting 
of a Lie group G, a compact subgroup K of G, a Lie algebra involution 
() of the Lie algebra g0 of G, and a nondegenerate, Ad( G) invariant,() 
invariant, bilinear form B on g0 such that 

(i) g0 is a reductive Lie algebra, 
(ii) the decomposition of g0 into + 1 and -1 eigenspaces under() is 

go = t0 E9 Po, where t0 is the Lie algebra of K, 
(iii) to and p0 are orthogonal under B, and B is positive definite on p0 

and negative definite on t0 , 

(iv) multiplication, as a map from K x exp p0 into G, is a diffeomor
phism onto, and 

(v) every automorphism Ad(g) of g = (g0)c is inner for g E G, i.e., 
is given by some x in Int g. 

When informality permits, we shall refer to the reductive Lie group 
simply as G. Then () will be called the Cartan involution, g0 = to E9 p0 

will be called the Cartan decomposition of g0 , K will be called the 
associated maximal compact subgroup (see Proposition 7 .19a below), 
and B will be called the invariant bilinear form. 
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The idea is that a reductive Lie group G is a Lie group whose Lie 
algebra is reductive, whose center is not too wild, and whose discon
nectedness is not too wild. The various properties make precise the 
notion "not too wild:' Note that property (iv) and the compactness of K 

say that G has only finitely many components. 
We write G ss for the semisimple analytic subgroup of G with Lie 

algebra [g0 , g0]. The decomposition of G is property (iv) is called 
the global Cartan decomposition. Sometimes one assumes about a 
reductive Lie group that also 

(vi) Gss has finite center. 

In this case the reductive group will be said to be in the Harish-Chandra 
class because of the use of axioms equivalent with (i) through (vi) by 
Harish-Chandra. Reductive groups in the Harish-Chandra class have 
often been the groups studied in representation theory. 

EXAMPLES. 

1) G is any semisimple Lie group with finite center, () is a Cartan 
involution, K is the analytic subgroup with Lie algebra to, and B is 
the Killing form. Property (iv) and the compactness of K follow from 
Theorem 6.31. Property (v) is automatic since G connected makes 
Ad(G) = Intg0 £: Intg. Property (vi) has been built into the definition 
for this example. 

2) G is any connected closed linear group of real or complex matrices 
closed under conjugate transpose inverse,() is negative conjugate trans
pose, K is the intersection of G with the unitary group, and B(X, Y) is 
ReTr(XY). The compactness of K follows since K is the intersection 
of the unitary group with the closed group of matrices G. Property (iv) 
follows from Proposition 7 .14, and property (v) is automatic since G is 
connected. Property (vi) is automatic for any linear group by Proposition 
7.9. 

3) G is any compact Lie group satisfying property (v). Then K = G, 
() = 1, and B is the negative of an inner product constructed as in 
Proposition 4.24. Properties (i) through (iv) are trivial, and property (vi) 
follows from Theorem4.21. Every finite group G is trivially an example 
where property (v) holds. Property (v) is satisfied by the orthogonal 
group O(n) if n is odd but not by O(n) if n is even. 

4) G is any closed linear group of real or complex matrices closed 
under conjugate transpose inverse, given as the common zero locus of 
some set of real-valued polynomials in the real and imaginary parts of the 
matrix entries, and satisfying property (v). Here() is negative conjugate 
transpose, K is the intersection of G with the unitary group, and B(X, Y) 
is ReTr(XY). The compactness of K follows since K is the intersection 
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of the unitary group with the closed group of matrices G. Properties 
(iv) and (vi) follow from Propositions 1.122 and 7 .9, respectively. The 
closed linear group of real matrices of determinant ± 1 satisfies property 
(v) since 

Ad(diag( -1, 1, ... , 1)) = Ad(diag(i1r(n-l)/n, e-i1r!n, ... , e-i1r!n)). 

But as noted in Example 3, the orthogonal group O(n) does not satisfy 
property (v) if n is even. 

5) G is the centralizer in a reductive group (;·of a (} stable abelian 
subalgebra of the Lie algebra of G. Here K is obtained by intersection, 
and (} and B are obtained by restriction. The verification that G is a 
reductive Lie group will be given below in Proposition 7 .21. 

If G is semisimple with finite center and if K, (}, and B are specified 
so that G is considered as a reductive group, then (} is forced to be 
a Cartan involution in the sense of Chapter VI. This is the content of 
Proposition 7.17. Hence the new terms "Cartan involution" and "Cartan 
decomposition" are consistent with the terminology of Chapter VI in 
the case that G is semisimple. 

An alternate way of saying (iii) is that the symmetric bilinear form 

(7.18) Be(X, Y) = -B(X, OY) 

is positive definite on g0 • 

We use the notation g, t, p, etc., to denote the complexifications of 
g0 , to. p0 , etc. Using complex linearity, we extend(} from go tog and B 
from g0 x go to g x g. 

Proposition 7.19. If G is a reductive Lie group, then 

(a) K is a maximal compact subgroup of G 
(b) K meets every component of G, i.e., G = KG0 

(c) each member of Ad(K) leaves to and p0 stable and therefore 
commutes with (} 

(d) (ad X)*= -adO X relative to B6 if X is in g0 

(e) (} leaves Z90 and [go, go] stable, and the restriction of(} to fg0, g0] 

is a Cartan decomposition 
(f) the identity component Go is a reductive Lie group (with maxi

mal compact subgroup obtained by intersection and with Cartan 
involution and invariant form unchanged). 



2. Reductive Lie Groups 387 

PRooF. For (a) assume the contrary, and let K1 be a compact sub
group of G properly containing K. If k1 is in K1 but not K, write 
k1 = kexpX according to (iv). Then expX is in K1• By compactness 
of K1, (expX)" = expnX has a convergent subsequence in G, but this 
contradicts the homeomorphism in (iv). 

Conclusion (b) is clear from (iv). In (c), Ad(K)(t0) ~ t0 since K 
has Lie algebra t0 • Since B is Ad(K) invariant, Ad(K) leaves stable the 
subspace of g0 orthogonal to t0 , and this is just p0 • 

For (d) we have 

B11 ((adX)Y, Z) = -B((adX)Y, OZ) 

= B(Y, [X, OZ]) = B(Y, O[OX, Z]) = B11 (Y, -(adOX)Z), 

and (d) is proved. Conclusion (e) follows from the facts that 0 is an 
involution and B11 is positive definite, and conclusion (f) is trivial. 

Proposition 7 .20. If G is a reductive Lie group in the Harish-Chandra 
class, then 

(a) Gss is a closed subgroup 
(b) any semisimple analytic subgroup of G ss has finite center. 

REMARK. Because of (b), in checking whether a particular subgroup 
of G is reductive in the Harish-Chandra class, property (vi) is automatic 
for the subgroup if it holds for G. 

PRooF. 
(a) Write the global Cartan decomposition of Theorem 6.3lc for 

Gss as Gss = Kss exp(Po n [go, go]). This is compatible with the de
composition in (iv). By (vi) and Theorem 6.31f, Kss is compact. Hence 
Kss x (Po n [go, go]) is closed in K x Po. and (iv) implies that G ss is closed 
in G. 

(b) Let S be a semisimple analytic subgroup of G ss with Lie algebra s0 • 

The group Ad9 (S) is a semisimple analytic subgroup of the linear group 
GL(g) and has finite center by Proposition 7.9. Under Ad9 , Zs maps 
into the center of Ad9 (S). Hence the image of Zs is finite. The kernel 
of Ad9 on S consists of certain members x of G ss for which Ad9 (x) = 1. 
These x's are in ZG,, and the kernel is then finite by property (vi) for G. 
Consequently Zs is finite. 

Proposition 7 .21. If G is a reductive Lie group, then the function 
e : G ~ G defined by 

8(kexpX) = kexp(-X) for k E K and X E Po 

is an automorphism of G and its differential is 0. 
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REMARK. As in the semisimple case, e is called the global Cartan 
involution. 

PRooF. The function e is a well defined diffeomorphism by (iv). First 
consider its restriction to the analytic subgroup G ss with Lie algebra 
[g0, g0]. By Proposition 7.19e the Lie algebra [g0, g0] has a Cartan 
decomposition 

[go, go] = ([go, go] n to) $ ([go, go] n Po). 

If Kss denotes the analytic subgroup of G ss whose Lie algebra is the 
first summand on the right side, then Theorem 6.31 shows that Gss 

consists exactly of the elements in Kss exp([g0, g0] n Po) and that e is an 
automorphism on G ss with differential (). 

Next consider the restriction of e to the analytic subgroup (Zc0 ) 0 • By 
Proposition 7.19e the Lie algebra of this abelian group decomposes as 

Since all the subalgebras in question are abelian, the exponential map
pings in question are onto, and (Zc0)o is a commuting product 

(Zc0 )o = exp(Zg0 n to) exp(Zg0 n Po) 

contained inK exppo. Thus eon (Zc0)o is the lift to the group of() on 
the Lie algebra and hence is an automorphism of the subgroup (Zc0 ) 0 • 

The subgroups Gss and (Zc0 ) 0 commute, and hence e is an automor
phism of their commuting product, which is Go by the remarks with 
Corollary 7.10. 

Now consider eon all of G, where it is given consistently by E>(kg0 ) = 
kE>(g0) fork E K and g0 E G0• By Proposition 7.19c we have eAd(k) = 
Ad(k )() on g0 , from which we obtain e (k exp X k-1) = kE> ( exp X)k-1 for 
k E K and X E g0• Therefore 

for k E K and g E G0. 

On the product of two general elements kg0 and k' g~ of G, we therefore 
have 

E>(kgok'g~) = E>(kk'k'- 1gok'g~) = kk'8(k'- 1g0k'g~) 

= kk'E>(k!-lgok')8(g~) = k8(go)k'E>(g~) = 8(kgo)E>(k'g~), 

as required. 
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Lemma 7 .22. Let G be a reductive Lie group, and let g = k exp X 
be the global Cartan decomposition of an element g of G. If s0 is a 
(} stable subspace of g0 such that Ad(g) normalizes s0 , then Ad(k) and 
adX each normalize s0 • If Ad(g) centralizes s0 , then Ad(k) and ad X 
each centralize s0 • 

PRooF. For x e G, we have (Gg)x(Gg)- 1 = G(g(Gx)g- 1). Differenti
ating at x = 1, we obtain 

(7.23) Ad(Gg) = OAd(g)(}. 

Therefore Ad(8g) normalizes s0 • Since Gg = k exp( -X), it follows that 
Ad of (8g)-1g = exp2X normalizes s0 • Because of Proposition 7.19d, 
Ad(exp2X) is positive definite relative to Be, hence diagonable. Then 
there exists a vector subspace s~ of g0 invariant under Ad( exp 2X) such 
that g0 = s0 EB s~. The transformation Ad( exp 2X) has a unique logarithm 
with real eigenvalues, and ad2X is a candidate for it. Another candidate 
is the logarithm on each subspace, which normalizes s0 and s~. These 
two candidates must be equal, and therefore ad 2X normalizes s0 and s~. 
Hence the same thing is true of ad X. Then Ad(expX) and Ad(g) both 
normalize s0 and s~, and the same thing must be true of Ad(k). 

If Ad(g) centralizes s0 , we can go over the above argument to see that 
Ad(k) and ad X each centralize s0 • In fact, Ad(exp2X) must centralize 
s0 , the unique real logarithm must be 0 on s0 , and ad X must be 0 on s0 • 

The lemma follows. 

Lemma 7 .24. Let G be a reductive Lie group, and let Uo = ! 0 EB ip0 • 

Then Ad9 (K) is contained in Int9 (tto). 

PRooF. The group Int g is complex semisimple with Lie algebra ad9 (g). 
If bar denotes the conjugation of g with respect to g0 , then the exten
sion Be(Zb Z2) = -B(Zb OZ2) is a Hermitian inner product on g, and 
the compact real form ad9 (Uo) of ad9 (g) consists of skew Hermitian 
transformations. Hence Int9 (Uo) consists of unitary transformations and 
ad9 (iUo) consists of Hermitian transformations. Therefore the global 
Cartan decomposition of Intg given in Theorem 6.31c is compatible 
with the polar decomposition relative to Be, and every unitary member 
of Int g is in the compact real form Int9 ( Uo). 

Let k be inK. The transformation Ad9 (k) is in Intg by property (v) 
for G, and Ad9 (k) is unitary since B is Ad(k) invariant and since Ad(k) 

commutes with bar and (} (Proposition 7 .19c). From the result of the 
previous paragraph, we conclude that Ad9 (k) is in Int9 (tto). 

Proposition 7 .25. If G is a reductive Lie group and ~0 is a 0 stable 
abelian subalgebra of its Lie algebra, then ZG (~0) is a reductive Lie group. 
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Here the maximal compact subgroup of Z6(~0) is given by intersection, 
and the Cartan involution and invariant form are given by restriction. 

REMARK. The hypothesis "abelian" will be used only in the proof of 
property (v) for Z6 (~0), and we shall make use of this fact in Corollary 
7.26 below. 

PRooF. The group Z6(~0) is closed, hence Lie. Its Lie algebra is 
Z90 (~0), which is (} stable. Then it follows, just as in the proof of 
Corollary 6.29, that Z90 (~0) is reductive. This proves property (i) of 
a reductive Lie group. Since Z90 (~0) is(} stable, we have 

and the first summand on the right side is the Lie algebra of Z6(~0) n K. 
This proves property (ii), and property (iii) is trivial. 

In view of property (iv) for G, what needs proof in (iv) for Z6 (~0) is 
that Zx(~o) x (Z90 (~0) n p0) maps onto Z6 (~o). That is, we need to see 
that if g = k exp X is the global Cartan decomposition of a member g of 
Z6(~0), then k is in Z6 (~o) and X is in Z90 (~o). But this is immediate 
from Lemma 7 .22, and (iv) follows. 

For property (v) we are to show that Adz8 (1)) carries Z6 (~0) into 
IntZ9 (~). If x e Z6 (~0) is given, then property (iv) allows us to write 
X= kexpX with k E Zx(~o) and X E Zgo(~o) n Po· Then Adzg(f))(expX) 
is in IntZ9 (~). and it is enough to treat k. By Lemma 7.24, Ad9 (k) is in 
the subgroup Int9 (Uo), which is compact by Proposition 7.9. 

The element Ad9 (k) centralizes ~0 • hence centralizes the variant 
(~o n to) e i (~o n Po). Since (~o n to) e i (~o n Po) is an abelian subalgebra 
of g, the centralizer of ~0 in Int9 (Uo) is the centralizer of a torus, which 
is connected by Corollary 4.51. Therefore Ad9 (k) is in the analytic 
subgroup oflnt g with Lie algebra ZUo ((~0 nt0) EBi (~0 np0)). By Corollary 
4.48 we can write Ad9 (k) = expad9 Y withY in this Lie algebra. Then 
Adz8 <1)>(k) = expadz8 (1)) Y, andY is in Z9 (~). Then Adz8 <1)>(k) is in 
Int Z9 (~). and (v) is proved. 

Corollary 7 .26. If G is a reductive Lie group, then 

(a) (ZG0)o s; ZG 
(b) Z 6 is a reductive Lie group (with maximal compact subgroup 

given by intersection and with Cartan involution and invariant 
form given by restriction). 

PRooF. Property (v) for G gives Ad9 (G) s; Intg, and Intg acts trivially 
on Z9 • Hence Ad( G) acts trivially on Z90 , and G centralizes (Z60) 0 • This 
proves (a). 
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From (a) it follows that ZG has Lie algebra Z110 , which is also the 
Lie algebra of ZG(g0). Therefore property (v) is trivial for both ZG and 
ZG(g0). Propositon 7.25 and its remark show that ZG(g0) is reductive, 
and consequently only property (iv) needs proof for ZG. We need to see 
that if z e ZG decomposes in G under (iv) as z = k exp X, then k is in 
ZG n K and X is in Z90 • By Lemma 7.22 we know that k is in ZG (g0) 

and X is in Z90 • Then expX is in (ZG0) 0 , and (a) shows that expX is in 
ZG. Since z and exp X are in ZG, so is k. This completes the proof of 
(iv), and (b) follows. 

Let G be reductive. Since ad9 g carries [g, g] to itself, lnt g carries [g, g] 
to itself. By (v), Ad( G) normalizes [g0, g0]. Consequently 0G = KGss 
is a subgroup of G. 

The vector subspace ponZ90 is an abelian subspace of g0 , and therefore 
Zvec = exp(po n Z90 ) is an analytic subgroup of G. 

Proposition 7 2.7. If G is a reductive Lie group, then 

(a) 0G = K exp(p0 n [go, g0]), and 0G is a closed subgroup 
(b) the Lie algebra 0go of 0 G is to EEl (Po n [go, go]) 
(c) 0G is reductive (with maximal compact subgroup K and with 

Cartan involution and invariant form given by restriction) 
(d) the center of 0G is a compact subgroup of K 
(e) Zvec is closed, is isomorphic to the additive group of a Euclidean 

space, and is contained in the center of G 
(f) the multiplication map exhibits 0G x Zvec as isomorphic to G. 

REMARK. The closed subgroup Zvec is called the split component of 
G. 

PROOF. 

(a) If we write the global Cartan decomposition of Gss as Gss = 
Kss exp(po n [g0, go]), then °G = K exp(Po n [go, go]), and we see from 
property (iv) that 0G is closed. 

(b) Because of (a), 0G is a Lie subgroup. Since 0G contains K and 
Gsso its Lie algebra must contain to EEl (Po n [go, go]). From property 
(iv) for G, the formula 0G = K exp(p0 n [g0 , g0]) shows that dim 0go = 
dim to+ dim(po n [go, go]). So 0go =to EEl (Po n [go, go]). 

(c) From (b) we see that 0g0 is() stable. From this fact all the properties 
of a reductive group are clear except properties (iv) and ( v). Property (iv) 
follows from (a). For property (v) we know that any Ad9 (g) for g e 0G 
is in Int g. Therefore we can write Ad9 (g) as a product of elements 
expad11 (Xj) with Xj in [g, g] or Z9 • When Xj is in Z9 , expad9 (Xj) is 
trivial. Therefore Ad9 (g) agrees with a product of elements exp ad9 (Xj) 
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with Xi in [g, g]. Restricting the action to [g, g], we see that Ad19,91 (g) 
is in lnt [g, g]. 

(d) Conclusion (c) and Corollary 7.26 show that the center of 0G is 
reductive. The intersection of the Lie algebra of the center with p0 is 0, 
and hence property (iv) shows that the center is contained inK. 

(e) Since p0 n Z90 is a closed subspace of Po. property (iv) implies 
that Zvec is closed and that Zvec is isomorphic to the additive group of 
a Euclidean space. Since Intg acts trivially on Z9 , property (v) implies 
that Ad(g) = 1 on Po n Z90 for every g e G. Hence Zvec is contained in 
the center of G. 

(t) Multiplication is a diffeomorphism, as we see by combining 
(a), property (iv), and the formula exp(X + Y) = exp X exp Y for 
X e p0 n [g0 , g0] andY e Po n Z90 • Multiplication is a homomorphism 
since, by (e), Zvec is contained in the center of G. 

Reductive Lie groups are supposed to have all the essential structure
theoretic properties of sernisimple groups and to be closed under various 
operations that allow us to prove theorems by induction on the dimension 
of the group. The remainder of this section will be occupied with 
reviewing the structure theory developed in Chapter VI to describe how 
the results should be interpreted for reductive Lie groups. 

The first remarks concern the Cartan decomposition. The decompo
sition on the Lie algebra level is built into the definition of reductive Lie 
group, and the properties of the global Cartan decomposition (general
izing Theorem 6.31) are given partly in property (iv) of the definition 
and partly in Proposition 7 .21. 

It might look as if property (iv) would be a hard thing to check for 
a particular candidate for a reductive group. It is possible to substitute 
various axioms concerning the component structure of G that are easier 
to state, but it is often true that ones gets at the component structure by 
first proving (iv). Proposition 1.122 and Lemma 7.22 provide examples 
of this order of events; the global Cartan decomposition in those cases 
implies that the number of components of the group under study is finite. 
Thus property (iv) is the natural property to include in the definition even 
though its statement is complicated. 

The other two general structure-theoretic topics in Chapter VI are 
the lwasawa decomposition and Cartan subalgebras. Let us first extend 
the notion of an Iwasawa decomposition to the context of reductive 
Lie groups. Let G be a reductive Lie group, and write its Lie algebra 
as go = Z90 EB [go, go]. Let ao be a maximal abelian subspace of p0 • 

Certainly ao contains p0 n Z90 , and therefore ao is of the form 

(7.28) 



2. Reductive Lie Groups 393 

where aon[go, go] isamaximalabeliansubspaceofp0n[g0, g0]. Theorem 
6.51 shows that any two maximal abelian subspaces of p0 n [g0, g0] are 
conjugate via Ad(K), and it follows from (7 .28) that this result extends 
to our reductive go. 

Proposition 7 .29. Let G be a reductive Lie group. If ao and af, are 
two maximal abelian subs paces of p0 , then there is a member k of K 
with Ad(k)af, = ao. The member k of K can be taken to be inK n Gss· 
Hence Po= UkeK., Ad(k)ao. 

Relative to ao, we can form restricted roots just as in §VI.4. A 
restricted root of g0 , also called a root of (g0, ao), is a nonzero). e ~ 
such that the space 

(goh = {X E go I (ad H)X = J..(H)X for all H E ao} 

is nonzero. It is apparent that such a restricted root is obtained by taking 
a restricted root for [g0, g0] and extending it from ao n [go, g0] to ao by 
making it be 0 on p0 n Z90 • The restricted-root space decomposition for 
[g0, g0] gives us a restricted-root space decomposition for g0 • We define 
mo = Ze0 (ao), so that the centralizer of ao in go is mo E9 ao. 

The set of restricted roots is denoted :E. Choose a notion of positivity 
for~ in the manner of §11.5, as for example by using a lexicographic 
ordering. Let :E+ be the set of positive restricted roots, and define 
no = E9Aet+(goh. Then no is a nilpotent Lie subalgebra of go, and we 
have an Iwasawa decomposition 

(7.30) 

with all the properties in Proposition 6.43. 

Proposition 7 .31. Let G be a reductive Lie group, let (7 .30) be an 
Iwasawa decomposition of g0 of G, and let A and N be the analytic 
subgroups of G with Lie algebras ao and no. Then the multiplication 
map K x Ax N-+ G given by (k, a, n) ~-+> kan is a diffeomorphism onto. 
The groups A and N are simply connected. 

PRooF. Multiplication is certainly smooth, and it is regular by Lemma 
6.44. To see that it is one-one, it is enough, as in the proof of Theorem 
6.46, to see that we cannot have kan = 1 nontrivially. The identity kan = 
1 would force the orthogonal transformation Ad(k) to be upper triangular 
with positive diagonal entries in the matrix realization of Lemma 6.45, 
and consequently we may assume that Ad(k) = Ad(a) = Ad(n) = 1. 
Thus k, a, and n are in Z6 (g0). By Lemma 7 .22, a is the exponential of 
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something in Z90 (g0) = Z90 • Hence a is in Zvec. By construction n is 
in Gm and hence k and n are in °G. By Proposition 7.27f, a= 1 and 
kn = 1. But then the identity kn = 1 is valid in Gm and Theorem 6.46 
implies that k = n = 1. 

To see that multiplication is onto G, we observe from Theorem 6.46 
that exp(p0 n [g0, g0]) is in the image. By Proposition 7 .27a, the image 
contains 0G. Also Zvec is in the image (of 1 x Ax 1), and Zvec com
mutes with 0G. Hence the image contains 0GZvec· This is all of G by 
Proposition 7 .27f. 

We define n0 = EBJ.e:E+ (go)-J.. Then n0 is a nilpotent Lie subalgebra 
of g0 , and we let N- be the corresponding analytic subgroup. Since- I;+ 
is the set of positive restricted roots for another notion of positivity on ao' 
g0 = toEBaoEBnoisanotherlwasawadecompositionofg0 andG = KAN
is another lwasawa decomposition of G. The identity O(g0h = (g0)_.._ 

given in Proposition 6.40c implies that On0 = n0. By Proposition 7.21, 
8N=N-. 

We write M for the group Z K ( ao). This is a compact subgroup since it 
is closed inK, and its Lie algebra is Ze0 (ao). This subgroup normalizes 
each (goh since 

ad(H)(Ad(m)X.._) = Ad(m)ad(Ad(m)-1 H)X.._ 

= Ad(m)ad(H)X.._ = A.(H)Ad(m)XA 

form E M, H E ao, and x.._ E (g0h. Consequently M normalizes no. 
Thus M centralizes A and normalizes N. Since M is compact and AN 
is closed, MAN is a closed subgroup. 

Reflections in the restricted roots generate a group W(E), which we 
call the Weyl group of E. The elements of W(E) are nothing more 
than the elements of the Weyl group for the restricted roots of [g0 , g0], 

with each element extended to ao by being defined to be the identity on 
Po n Zgo· 

We define W(G, A) = NK(ao)/ZK(ao). By the same proof as for 
Lemma 6.56, the Lie algebra of NK(ao) is mo. Therefore W(G, A) is a 
finite group. 

Proposition 7 .32. If G is a reductive Lie group, then the group 
W(G, A) coincides with W(l:). 

PRooF. Just as with the corresponding result in the semisimple case 
(Theorem 6.57), we know that W(E) ~ W(G, A). Fix a simple system 
I;+ for E. As in the proof of Theorem 6.57, it suffices to show that 
if k e NK(ao) has Ad(k)I;+ = I;+, then k is in ZK(ao). By Lemma 
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7.24, Ad9 (k) is in the compact semisimple Lie group Int9 (Uo}, where 
Uo = t0 EB i p0 • The connectedness oflnt9 ( Uo) is the key, and the remainder 
of the proof of Theorem 6.57 is applicable to this situation. 

Proposition 7 .33. If G is a reductive Lie group, then M meets every 
component of K, hence every component of G. 

PRooF. Let k e K be given. Since Ad(k)- 1(ao) is maximal abelian in 
p0 , Proposition 7.28 gives us k0 e K0 with Ad(k01k- 1)(ao) = ao. Thus 
k01k- 1 normalizes ao. Comparison of Proposition 7.32 and Theorem 
6.57 produces k!' e Koso that k!1k01k-1 centralizes ao. Then kk0k1 is 
in M, and k is in MK0 • 

Next let us extend the notion of Cartan subalgebras to the context of 
reductive Lie groups. We recall from §N.5 that a Lie subalgebra 1)0 of g0 

is a Cartan subalgebra if its complexification [J is a Cartan subalgebra 
of g = (g0)c. Since (J must equal its own normalizer (Proposition 2.7), 
it follows that Z9 ~ [J. Therefore 1)0 must be ofthe form 

(7.34) 

where 1)0 n [g0, g0] is a Cartan subalgebra of the semisimple Lie algebra 
[g0 , g0]. By Corollary 2.13 a sufficient condition for 1)0 to be a Car
tan subalgebra of g0 is that 1)0 is maximal abelian in g0 and ad9 1)0 is 
simultaneously diagonable. 

As in the special case (4.31), we can form a set of roots li(g, (J), which 
amount to the roots of [g, g] with respect to [J n [g, g], extended to [J by 
being defined to be 0 on Z 9 • We can form also a Weyl group W(g, (J) 

generated by the reflections in the members of li; W(g, [J) consists of 
the members of W([g, g], [J n [g, g]) extended tog by being defined to be 
the identity on Z9 • 

Because of the form (7 .34) of Cartan subalgebras of g0 , Proposition 
6.59 implies that any Cartan subalgebra is conjugate via lnt g0 to a () 
stable Cartan subalgebra. There are only finitely many conjugacy classes 
(Proposition 6.64), and these can be related by Cayley transforms. 

The maximally noncompact () stable Cartan subalgebras are obtained 
by adjoining to an lwasawa ao a maximal abelian subspace of mo. As 
in Proposition 6.61, all such Cartan subalgebras are conjugate via K. 
The restricted roots relative to ao are the nonzero restrictions to ao of the 
roots relative to this Cartan subalgebra. 

Any maximally compact () stable Cartan subalgebra is obtained as the 
centralizer of a maximal abelian subspace of t0 • As in Proposition 6.61, 
all such Cartan subalgebras are conjugate via K. 
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Proposition 7 .35. Let G be a reductive Lie group. If two 0 stable 
Cartan subalgebras of g0 are conjugate via G, then they are conjugate 
via Gss and in fact by K n Gss. 

PRooF. Let ~0 and ~0 be 0 stable Cartan subalgebras, and suppose that 
Ad(g)(~o) = ~0 . By (7 23), Ad(E>g)(~o) = ~0 . If g = k exp X with k e K 
and X e p0 , then it follows that Ad of (9g)-1g = exp2X normalizes ~0 • 
Applying Lemma 7.22 to exp2X, we see that [X, ~0] ~ ~0 • Therefore 
expX normalizes ~o. and Ad(k) carries ~o to ~0 . 

Since Ad(k) commutes with 0, Ad(k) carries ~on Po to ~0npo. Let ao be 
a maximal abelian subspace of Po containing ~on Po. and choose ko e Ko 
by Proposition 7.29 so that Ad(k0k)(ao) = ao. Comparing Proposition 
7.32 and Theorem 6.57, we can find kt e Ko so that k1k0k centralizes 
ao. Then Ad(k)lao = Ad(k01k11)1ao, and the element k' = k01k11 of Ko 
has the property that Ad(k')(~o n p0) = ~0 n Po· The 0 stable Cartan 
subalgebras ~0 and Ad(k')- 1 (~0) therefore have the same p0 part, and 
Lemma 6.62 shows that they are conjugate via K n Gss· 

3. K AK Decomposition 

Throughout this section we let G be a reductive Lie group, and we let 
other notation be as in §2. 

From the global Cartan decomposition G = K exp Po and from the 
equality Po = ffikeK Ad(k)ao of Proposition 7 29, it is immediate that 
G = K AK in the sense that every element of G can be decomposed as 
a product of an element of K, an element of A, and a second element of 
K. In this section we shall examine the degree of nonuniqueness of this 
decomposition. 

Lemma 7 .36. If X is in p0 , then Zo ( exp X) = Zo (RX). 

PRooF. Certainly Z0 (RX) ~ Z0 (exp X). In the reverse direction 
if g is in Z0 (expX), then Ad(g)Ad(expX) = Ad(expX)Ad(g). By 
Proposition 7 .19d, Ad( exp X) is positive definite on g0 , thus diagonable. 
Consequently Ad(g) carries each eigenspace of Ad( exp X) to itself, and 
it follows that Ad(g)ad(X) = ad(X)Ad(g). By Lemma 1.95, 

(7.37) ad(Ad(g)X) = ad(X). 

Write X = Y + Z withY e Z90 and Z e [g0, go]. By property (v) of a 
reductive group, Ad(g) Y = Y. Comparing this equality with (7 .37), we 
see that ad(Ad(g)Z) = ad(Z), hence that Ad(g)Z- Z is in the center of 
go. Since it is in [go, go] also, it is 0. Therefore Ad(g)X = X, and g is in 
the centralizer of RX. 
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Lemma 7 .38. If k is in K and if a and a' are in A with kak-1 = a', 
then there exists ko in NK(tJo) with koak01 =a'. 

PRooF. The subgroup ZG (a') is reductive by Lemma 7.36 and Propo
sition 7 25, and its Lie algebra is Z90 (a') = {X e g0 I Ad(a')X = X}. 
Now ao and Ad(k)ao are two maximal abelian subspaces of Z90 (a') n p0 

since kak-1 =a'. By Proposition 7 29 there exists k1 inK n ZG(a') with 
Ad(k1)Ad(k)ao = ao. Then ko = k1k is in NK(tJo), and 

koak01 = k1(kak-1)k}1 = k1a'k}1 =a'. 

Theorem 7.39 (K AK decomposition). Every element in G has a 
decomposition as k1ak2 with k., k2 e Kanda e A. In this decomposition, 
a is uniquely determined up to conjugation by a member of W(G, A). If 
a is fixed as exp H with H e ao and if 'A(H) =F 0 for all 'A e I:, then k1 is 
unique up to right multiplication by a member of M. 

PRooF. Existence of the decomposition was noted at the beginning 
of the section. For uniqueness suppose kia'k~ = k~ak;. If k' = k1"-1ki 
and k = k~k~- 1 , then k'a'k = a and hence (k'k)(k- 1a'k) = a. By the 
uniqueness of the global Cartan decomposition, k' k = 1 and k-1 a' k = a. 
Lemma 7.38 then shows that a' and a are conjugate via NK(tJo). 

Now let a =a'= expH with H e ao and 'A(H) =F 0 for all 'A e I:. 
We have seen that k-1ak = a. By Lemma 7 .36, Ad(k)-1 H = H. Since 
'A(H) =F 0 for all 'A e I:, Lemma 6.50 shows that Z90 (H) = ao E9 mo. 
Hence the centralizer of H in !Jo is ao, and the centralizer of Ad(k)-1 H 
in !Jo is Ad(k)-1ao. But Ad(k)-1 H = H implies that these centralizers 
are the same: Ad(k)-1ao = ao. Thus k is in NK(tJo). 

By Proposition 7 .32, Ad(k) is given by an element w of the Weyl group 
W(I:). Since 'A(H) =F 0 for all 'A e I:, we can define a lexicographic 
ordering so that the positive restricted roots are positive on H. Then 
Ad(k)H = H says that w permutes the positive restricted roots. By 
Theorem 2.63, w = 1. Therefore Ad(k) centralizes ao, and k is in M. 

From k'k = 1, we see that k' is in M. Then k' = k1"-1ki shows that ki 
and k~ differ by an element of M on the right. 

4. Bruhat Decomposition 

We continue to assume that G is a reductive Lie group and that other 
notation is as in §2. 

We know that the subgroup M = ZK(tJo) of K is compact, and we saw 
in §2 that MAN is a closed subgroup of G. It follows from the Iwasawa 
decomposition that the multiplication map M x A x N -+ MAN is a 
diffeomorphism onto. 
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The Bruhat decomposition describes the double coset decomposition 
MAN\G/MAN of G with respect to MAN. Here is an example. 

EXAMPLE. Let G = SL(2,1R). Here MAN= { ( ~ b~I) }·The nor

malizer N K (ao) consists of the four matrices± ( 6 ~)and± ( _ ~ 6), 
while the centralizer Z K ( ao) consists of the two matrices ± ( 6 ~) . 
Thus IW(G, A)l = 2, and w = (~ -6) is a representative of the 

nontrivial element of W ( G, A). Let g = ( ~ ~) be given in G. If 

c = 0, then g is in MAN. If c =I= 0, then 

( -~ 6) ( ~ ~) = ( -~ -~) = ( -a~-I ~) ( ~ c~I) 
=(-~ 6)(6 a~-I)(~ -6)(~ c~I)· 

Hence 

(~ ~)=(6 a~-I)(~ -6)(~ c~I) 
exhibits ( ~ ~) as in MAN w MAN. Thus the double-coset space 

MAN\G/MAN consists of two elements, with 1 and was represen
tatives. 

Theorem 7.40 (Bruhat decomposition). The double cosets of 
MAN\ G 1M AN are parametrized in a one-one fashion by W ( G, A), the 
double coset corresponding to w e W ( G, A) being MAN w MAN, where 
w is any representative of win NK(ao). 

PROOF OF UNIQUENESS. Suppose that wi and w2 are in W(G, A), with 
wi and w2 as representatives, and that XI and x2 in MAN have 

(7.41) XIWI = W2X2· 

Now Ad(N) = exp(ad(no)) by Theorem 1.104, and hence Ad(N) carries 
ao to ao EB no while leaving the ao component unchanged. Meanwhile 
under Ad, NK(Oo) permutes the restricted-root spaces and thus carries 
moEBEB._ei: (goh to itself. Apply Ad of both sides of(7.41) to an element 
He ao and project to ao along mo EB EBA.ei: (g0h. The resulting left side 
is in ao EB no with ao component Ad(wi)H, while the right side is in 
Ad(w2)H + Ad(w2Htno EB no). Hence Ad(wi)H = Ad(w2)H. Since His 
arbitrary, w:Ziwi centralizes ao. Therefore WI = w2. 
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The proof of existence in Theorem 7.40 will be preceded by three 
lemmas. 

Lemma 7 A2. Let H e ao be such that 'A(H) '# 0 for all 'A e I:. Then 
the mapping ({J: N-+ go given by n ~ Ad(n)H- H carries N onto no. 

PRooF. Write no = E9 (goh as a sum of restricted-root spaces, and 
regard the restricted roots as ordered lexicographically. For any re
stricted root a, the subspace lla = E9A>a (g0h is an ideal, and we prove 
by induction downward on a that ({J cames N a = exp tta onto na. This 
conclusion for a equal to the smallest positive restricted root gives the 
lemma. 

If a is given, we can write lla = (go)a EB n11 with {J > a. Let X be 
given in na. and write X as XI+ x2 with XI E (go)a and x2 E np. Since 
a(H) '# 0, we can choose Y1 e (go)a with [H, YJ] = X1• Then 

Ad(expYi)H-H = H+[Y~o H]+~(adY1 )2H+ · ·-H=-X1+(np terms), 

and hence Ad(exp Y1)(H +X)- His in n11 • By inductive hypothesis we 
can find n e Np with 

Ad(n)H- H = Ad(exp Y1)(H +X) - H. 

Then Ad((exp YJ)- 1n)H- H = X, and the element (exp Y1)-1n of Na is 
the required element to complete the induction. 

Lemma 7 A3. Let 5o = mo EB ao EB no. Then 
(a) no EB Zgo = {Z E 5o I adg(Z) is nilpotent} 
(b) ao EBno EB (monZ90) = {Z e 5o I ad9 (Z) has all eigenvalues real}. 

PRooF. Certainly the left sides in (a) and (b) are contained in the right 
sides. For the reverse containments write z e 5o as z = Xo + H +X 
with Xo e mo. H e ao, and X e no. Extend JR.X0 to a maximal abelian 
subspace to of mo. so that ao EB to is a Cartan subalgebra of g0 • Extending 
the ordering of ao to one of ao EB ito so that ao is taken before ito, we obtain 
a positive system 11 + for 11(g, (a EB t)) such that I:+ arises as the set of 
nonzero restrictions of members of 11 +. Arrange the members of 11 + in 
decreasing order and form the matrix of adZ in a corresponding basis 
of root vectors (with vectors from a EB t used at the appropriate place in 
the middle). The matrix is upper triangular. The diagonal entries in the 
positionscorrespondingtotherootvectorsarea(Xo+H) = a(Xo)+a(H) 
for a e 11, and the diagonal entries are 0 in the positions corresponding to 
basis vectors in aEBt. Here a(Xo) is imaginary, and a(H) is real. To have 
adz nilpotent, we must get 0 for all a. Thus the component of Xo + H 
in [g0, g0] is 0. This proves (a). To have adZ have real eigenvalues, we 
must have a(Xo) = 0 for all X e !:l.. Thus the component of X0 in [g0, g0] 

is 0. This proves (b). 
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Lemma 7 .44. For each g e G, put .s~ = .s0 n Ad(g ).so. Then 

so = s~ + no. 

PRooF. Certainly .s0 2 .s~ +no, and therefore it is enough to show that 
dim(.s~ +no) = dim.s0 • Since G = K AN, there is no loss of generality 
in assuming that g is in K. Write k = g. Let ( · ).L denote orthogonal 
complement within g0 relative to Bo. From O(goh = (go)->., we have 
.s~ = Ono. Since Ad(k) acts in an orthogonal fashion, 

(7.45) 
(so+ Ad(k).s0).L = .s~ n (Ad(k).s0).L = Ono n Ad(k).s~ 

= Ono n Ad(k)Ono = O(no n Ad(k)no). 

Let X be in.s0 nAd(k).s0 and in no. Then ad9 (X) is nilpotent by Lemma 
7.43a. Since ad9 (Ad(k)-1X) and ad9 (X) have the same eigenvalues, 
ad9 (Ad(k)-1 X) is nilpotent. By Lemma 7 .43a, Ad(k)- 1 X is in no E9 Z90 • 

Since Ad(k) fixes Z90 (by property (v)), Ad(k)-1 X is in no. Therefore X 
is in Ad(k)no, and we obtain 

(7 .46) non Ad(k)no = non (.son Ad(k).so) = non .s~. 

Consequently 

2dim.s0 - dims~= dim(.so + Ad(k).so) 

=dim go- dim( non Ad(k)no) by (7.45) 

= dim go - dim(no n .s~) by (7 .46) 

=dim go+ dim(no +.s~)- dim no- dims~, 

and we conclude that 

dim go+ dim( no+ .s~)- dim no= 2dim.so. 

Since dim no + dim .s0 = dim g0 , we obtain dim( no + .s~) = dim .s0 , as 
required. 

PROOF OF EXISTENCE IN THEOREM 7 .40. Fix H E C1o with )..(H) =fi 0 for 
all)... E :E. Let X E G be given. Since ao s;; .So, Lemma 7.44 allows us 
to write H = X + Y with X e no and Y e .s~. By Lemma 7.42 we can 
choose n1 eN with Ad(n1)H- H =-X. Then 

Ad(n1)H = H- X= Y e .5() s;; Ad(x).so. 
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So Z = Ad(x-1n1)H is in s0 • Since ad9 Z and ad9 H have the same 
eigenvalues, Lemma 7.43b shows that z is in aoE9noE9 (monZ90). Since 
Ad(x-1n1)-1 fixes Z90 (byproperty(v)), Z isinaoE9mo. Write Z = H'+X' 
correspondingly. Here ad H and ad H' have the same eigenvalues, so 
that J...(H') =f:. 0 for all J... e I:. By Lemma 7.42 there exists n2 e N with 
Ad(n2)-1 H'- H' = X'. Then Ad(n2)-1 H' = H' +X' = Z, and 

H' = Ad(n2)Z = Ad(n2x-1n1)H. 

The centralizers of H' and H are both ao E9 mo by Lemma 6.50. Thus 

(7.47) 

If X is in ao, then ad9 (X) has real eigenvalues by Lemma 7.43b. Since 
ad9 (Ad(n2x-1n1)X) and ad9 (X) have the same eigenvalues, Lemma 
7 .43b shows thatAd(n2x-1n1)X is in aoE9(monZ90). Since Ad(n2x-1n1)-1 
fixes Z90 (by property (v)), Ad(n2x-1n1)X is in ao. We conclude that 
n2x.-1n1 is in NG(ao). 

Let n2x-1n1 = uexpX0 be the global Cartan decomposition of 
n2x-1n1. By Lemma 7.22, u is in NK(ao) and Xo is in N90 (Qo). By 
the same argument as in Lemma 6.56, N90 (ao) = ao E9 mo. Since X0 is 
in p0 , Xo is in ao. Therefore u is in NK(ao) and expX0 is in A. In other 
words, n21n1 is in uA, and x is in the same MAN double coset as the 
member u-1 of NK(ao). 

5. Structure of M 

We continue to assume that G is a reductive Lie group and that other 
notation is as in §2. The fundamental source of disconnectedness in the 
structure theory of semisimple groups is the behavior of the subgroup 
M = ZK(ao). We shall examine Min this section, paying particular 
attention to its component structure. For the first time we shall make 
serious use of results from Chapter V. 

Proposition 7 .48. M is a reductive Lie group. 

PRooF. Proposition 7.25 shows that Z6 (ao) is a reductive Lie group, 
necessarily of the form ZK(ao) exp(Z90 (ao) n p0) = MA. By Proposition 
7.27, 0(M A) = M is a reductive Lie group. 

Proposition 7.33 already tells us that M meets every component of 
G. But M can be disconnected even when G is disconnected. (Recall 
from the examples in §VI.S that M is disconnected when G = SL(n,JR).) 
Choose and fix a maximal abelian subspace to of mo. Then ao E9 to is a 
Cartan subalgebra of go. 
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Proposition 7 A9. Every component of M contains a member of M 
that centralizes to, so that M = ZM(to)Mo. 

REMARK. The proposition says that we may focus our attention on 
ZM(to). After this proof we shall study ZM(to) by considering it as a 
subgroup of Zx(to). 

PRooF. If m e M is given, then Ad(m )to is a maximal abelian subspace 
of mo. By Theorem 4.34 (applied to M0), there exists m0 e M0 such that 
Ad(mo)Ad(m)to =to. Then mom is in NM(tno). Introduce a positive sys
tem !i. +for the root system !i. = !l.(m, t). Then Ad(mom)!l. +is a positive 
system for !l., and Theorems 4.54 and 2.63 together say that we can find 
m 1 e Mo such that Ad(m 1m0m) maps !l.+ to itself. By Proposition 7.48, 
M satisfies property (v) of reductive Lie groups. Therefore Adm (m 1m0m) 
is in Intm. Then Adm(m 1m0m) must be induced by in lntm [m, m], and 
Theorem 7.8 says that this element fixes each member of !i. +. Therefore 
m 1m0m centralizes to, and the result follows. 

Suppose that the root a in !l.{g, a Eat) is real, i.e.,a vanishes on t. As in 
the discussion following (6.66), the root space 9a in g is invariant under 
the conjugation of g with respect to go. Since dime 9a = 1, 9a contains a 
nonzero root vector Ea that is in go. Also as in the discussion following 
(6.66), we may normalize Ea by a real constant so that B(Ea.flEa) = 
-2/lal2 • PutH~ = 21al-2 Ha. Then {H~, Ea, OEa} spansacopyof.sl{2, lR) 
with 

(7.50) OEa ~ -J. 

Let us write (go)a for REa and (go)-a for JR() Ea. 

Proposition 7.51. The subgroup ZG(to) of G 

(a) is reductive with global Cartan decomposition 

ZG(to) = Zx(to) exp{po n Z90 (to)) 

(b) has Lie algebra 

Zg0 (to) =to EBao E9 EJ1 (go)a, 
aeA(g, aEBt), 

areal 

which is the direct sum of its center with a real semisimple Lie 
algebra that is a split real form of its complexification 

(c) is such that the component groups of G, K, ZG(to), and Zx(to) 
are all isomorphic. 
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PRooF. Conclusion (a) is immediate from Proposition 7 .25. For (b) it 
is clear that 

Zg(to) = t$ a$ E9 ga. 
ae~(g, aG)t}, 

a real 

The conjugation of g with respect to g0 carries every term of the right 
side into itself, and therefore we obtain the formula of (b). Here ao 
is maximal abelian in p0 n Zg0 (to), and therefore this decomposition is 
the restricted-root space decomposition of g0 • Applying Corollary 6.49 
to [g0, g0], we obtain (b). In (c), G and K have isomorphic component 
groups as a consequence of the global Cartan decomposition, and ZG (to) 

and ZK(to) have the same component groups as a consequence of (a). 
Consider the natural homomorphism 

induced by inclusion. Propositions 7.49 and 7.33 show that this map is 
onto, and Corollary 4.51 shows that it is one-one. This proves (c). 

We cannot expect to say much about the disconnectedness of M that 
results from the disconnectedness of G. Thus we shall assume for 
the remainder of this section that G is connected. Proposition 7.5lc 
notes that ZG(to) is connected. To study ZG(to), we shall work with 
the analytic subgroup of ZG(to) whose Lie algebra is [Zg0 (to), Zg0 (to)]. 

This is the subgroup that could be called ZG(to)ss in the notation of §2. 
It is semisimple, and its Lie algebra is a split real form. We call the 
subgroup the associated split semisimple subgroup, and we introduce 
the notation Gsplit for it in order to emphasize that its Lie algebra is split. 

Let T be the maximal torus of M0 with Lie algebra to. Under the 
assumption that G is connected, it follows from Proposition 7.51 b that 
ZG (to) is a commuting product 

ZG(to) = T AGsplit· 

By Proposition 7.27, 
0ZG(to) = TGsplit 

is a reductive Lie group. 
The group Gsplit need not have finite center, but the structure theory of 

Chapter VI is available to describe it. Let Ksplit and Asplit be the analytic 
subgroups with Lie algebras given as the intersections of to and ao with 
[Zg0 (to), Zg0 (to)]. Let F = Msplit be the centralizer of Asplit in Ksplit· The 
subgroup F will play a key role in the analysis of M. It centralizes both 
T and A. 
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Corollary 7 .52. The subgroup F normalizes Mo, and M = F Mo. 

PRooF. Since F centralizes A and is a subgroup of K, it is a subgroup 
of M. Therefore F normalizes M0 , and F Mo is a group. We know from 
Proposition 7.49 that M = ZM(to)M0 • Since T ~ M0 , it is enough to 
prove that ZM(to) = TF. The subgroup ZM(to) is contained in ZK(to}, 
which in tum is contained in °Z0 (to) = TGsplit· Since ZM(to) is contained 
inK, it is therefore contained in T Ksplit· Decompose a member m of 
ZM(to) in a corresponding fashion as m = tk. Since m and t centralize 
A, so does k. Therefore k is in F = Msplir. and the result follows. 

Without additional hypotheses we cannot obtain further nontrivial 
results about F, and accordingly we recall the following definition from 
§1. 

A semisimple group G has a complexification Gc if Gc is a con
nected complex Lie group with Lie algebra g such that G is the analytic 
subgroup corresponding to the real form g0 of g. By Corollary 7 .6, Gc 
is isomorphic to a matrix group, and hence the same thing is true of 
G and Gsplit· By Proposition 7.9, each of G and Gsplit has finite center. 
Therefore we may consider G and G split in the context of reductive Lie 
groups. 

Fix K, e, and B for G. If the Cartan decomposition of g0 is g0 = t0$p0 , 

then 

is a Cartan decomposition of g, and the corresponding Cartan involution 
of g is bar o e, where bar is the conjugation of g with respect to g0 • The 
Lie algebra Uo = t0 EB ipo is compact semisimple, and it follows from 
Proposition 7.9 that the corresponding analytic subgroup U of Gc is 
compact. Then the tuple (Gc, U, bar o e, B) makes Gc into a reductive 
Lie group. Whenever a semisimple Lie group G has a complexification 
Gc and we consider G as a reductive Lie group ( G, K, e, B), we may 
consider Gc as the reductive Lie group ( Gc, U, bar o e, B). 

Under the assumption that the semisimple group G has a complexifi
cation Gc, exp i ao is well defined as an analytic subgroup of U. 

Theorem 7 .53. Suppose that the reductive Lie group G is semisimple 
and has a complexification Gc. Then 

(a) F = Ksplit n expiao 
(b) F is contained in the center of M 
(c) M is the commuting product M = F Mo 
(d) F is finite abelian, and every element f -:f. 1 in F has order 2. 
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PRooF. 
(a) Every member of Ksplit n expiao centralizes ao and lies in Ksplit. 

hence lies in F. For the reverse inclusion we have F ~ Ksplit by definition. 
To see that F ~ exp i ao, let Usplit be the analytic subgroup of ac with Lie 
algebra the intersection ofUQ with the Lie algebra [Z9 (to), Z9 (to)]. Then 
Usptit is compact,andiaon[Z9 (to), Z9 (to)] is a maximal abelian subspace 
of its Lie algebra. By Corollary 4.52 the corresponding torus is its own 
centralizer. Hence the centralizer of ao in Usplit is contained in exp i ao. 
Since Ksplit ~ Usplito it follows that F ~ expiao. 

(b, c) Corollary 7.52 says that M = F M0 • By (a), every element of 
F commutes with any element that centralizes ao. Hence F is central in 
M, and (b) and (c) follow. 

(d) Since Gsptit has finite center, F is compact. Its Lie algebra is 0, 
and thus it is finite. By (b), F is abelian. We still have to prove that 
every element f # 1 in F has order 2. 

Since G has a complexification, so does Gsplit· Call this group G~nt• 
let G~nt be a simply connected covering group, and let ffJ be the covering 

map. Let Gspnt be the analytic subgroup with the same Lie algebra as for 
Gsplito and form the subgroups Ksplit and F of Gsplit· The subgroup F is 
the complete inverse image ofF under ffJ. Let iisplit play the same role for 
G~nt that U plays for G. The automorphism 9 of the Lie algebra of Gsplit 
complexities and lifts to an automorphism 9 of G~nt that carries iispnt 
into itself. The automorphism 9 acts as x ~-+- x-1 on expiao and as the 
identity on Ksplit· The elements ofF are the elements of the intersection, 
by (a), and hence j-1 = j for every element j of F. That is P = 1. 
Applying ffJ and using the fact that ffJ maps F onto F, we conclude that 
every element f # 1 in F has order 2. 

EXAMPLE. When G does not have a complexification, the subgroup F 
need not be abelian. For an example we observe that the group K for 
SL(3, IR) is S0(3), which has SU(2) as a 2-sheeted simply connected 
covering group. Thus SL(3, IR) has a 2-sheeted simply connected cov
ering group, and we take this covering group as G. We already noted in 
§VI.5 that the group M for SL(3, IR) consists of the diagonal matrices 
with diagonal entries ± 1 and determinant 1. Thus M is the direct sum 
of two 2-element groups. The subgroup F of G is the complete inverse 
image of M under the covering map and thus has order 8. Moreover it 
is a subgroup of SU(2), which has only one element of order 2. Thus F 
is a group of order 8 with only one element of order 2 and no element 
of order 8. Of the five abstract groups of order 8, only the 8-element 
subgroup {±1, ±i, ±j, ±k} of the quaternions has this property. This 
group is nonabelian, and hence F is nonabelian. 
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Let a be a real root of ll.(g, a E9 t). From (7.50) we obtain a one
one homomorphism .s£(2, IR) -+ g0 whose only ambiguity is a sign 
in the definition of Ea. This homomorphism carries .so(2) to t0 and 
complexifies to a homomorphism .s£(2, C)-+ g. Under the assumption 
that G is semisimple and has a complexification Gc, we can form the 
analytic subgroup of Gc with Lie algebra .s£(2, C). This will be a ho
momorphic image of SL(2, C) since SL(2, C) is simply connected. We 

let Ya be the image of ( ~1 ~1 ) • This element is evidently in the image 

of S0(2) s; SL(2, IR) and hence lies in Ksplit· Clearly it does not depend 
upon the choice of the ambiguous sign in the definition of Ea. A formula 
for Ya is 

(7.54) 

Theorem 7 .55. Suppose that the reductive Lie group G is semisimple 
and has a complexification Gc. Then F is generated by all elements Ya 
for all real roots a. 

PRooF. Our construction of Ya shows that Ya is in both Ksplit and 
expiao. By Theorem 7.53a, Ya is in F. In the reverse direction we 
use the construction in the proof of Theorem 7 .53d, forming a simply 
connected cover G~nt of the complexification G~nt of Gsplit· We form 

also the groups Ksplitt F, and iisptit. The elements Ya are well defined in 
F via (7 .54), and we show that they generate F. Then the theorem will 
follow by applying the covering map G~nt-+ G~nt• since F maps onto 
F. 

Let ii be the maximal torus of iisptit with Lie algebra iao. We know 
from Theorem 7.53 that F is a finite subgroup of ii. Arguing by contra
diction, suppose that the elements Ya generate a proper subgroup Fo ofF. 
Let j be an element of F not in Fo. Applying the Peter-Weyl Theorem 
(Theorem 4.20) to H/ F0 , we can obtain a multiplicative character Xv of 
ii that is 1 on Fo and is =1= 1 on j. Here vis the imaginary-valued linear 
functional on iao such that Xv(expih) = ev(ih) for h e ao. The roots for 
iisplit are the real roots for g0 , and our assumption is that each such real 
rootahas 

That is 2{v, a)/lal2 is an even integer for all a. Hence ~vis algebraically 
integral. 

Since iisptit is simply connected, Theorem 5.107 shows that ~v is 
analytically integral. Thus the multiplicative character X!v of ii given 
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by X!v(exp ih) = eiv<ih) is well defined. Theorem 7 .53d says that j2 = 1, 
2 

and therefore X!v(j) = ±1. Since Xv = (X!v)2 , we obtain Xv(]) = 1, 
2 2 

contradiction. We conclude that F0 equals F, and the proof is complete. 

It is sometimes handy to enlarge the collection of elements Ya. Let {J be 
any restricted root, and let X fl be any restricted-root vector corresponding 
to {J. Then OXfl is a restricted-root vector for the restricted root -{J by 
Proposition 6.40c. Proposition 6.52 shows that we can normalize Xfl so 
that [Xfl, OXfl] = -21{31-2 Hfl, and then the correspondence 

(7.56) e~xfl, j ~ -OXfl 

is an isomorphism of s[(2, lR) with the real span of Hfl, Xfl, OXfJ in g0 • 

Once again this homomorphism carries so(2) = JR(e- f) to t0 and com
plexifies to a homomorphism s[(2, C) ~ g. Under the assumption that G 
is semisimple and has a complexification Gc, we can form the analytic 
subgroup of Gc with Lie algebra s[(2, C). This will be a homomorphic 
image of SL(2, C) since SL(2, C) is simply connected. We let YfJ be the 

image of ( -~-~).namely 

(7.57) 

This element is evidently in the image of S0(2) ~ SL(2, JR) and hence 
lies in K. Formula (7 .57) makes it clear that Yfl does not depend on the 
choice of X fJ, except for the normalization, and also (7 .57) shows that 
YtJ commutes with ao. Hence 

(7 .58) YfJ is in M for each restricted root {J. 

Since ( -~-~)has square the identity, it follows that 

(7.59) 2- 1 YfJ- for each restricted root {J. 

In the special case that {J extends to a real root a of 6(g, a EDt) when 
set equal to 0 on t, YfJ equals the element Ya defined in (7.54). The 
more general elements (7 .57) are not needed for the description of F in 
Theorem 7.55, but they will play a role in Chapter Vill. 
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6. Real-Rank-One Subgroups 

We continue to assume that G is a reductive Lie group, and we use 
the other notation of §2. In addition, we use the notation F of §5. 

The real rank of G is the dimension of a maximal abelian subspace 
of p0 • Proposition 7.29 shows that real rank is well defined. Since any 
maximal abelian subspace of p0 contains Po n Z 90 , it follows that 

(7.60) real rank(G) =real rank( 0G) + dimZvec· 

Our objective in this section is to identify some subgroups of G of real 
rank one and illustrate how information about these subgroups can give 
information about G. 

"Real rank" is meaningful for a real semisimple Lie algebra outside 
the context of reductive Lie groups (G, K, 0, B), since Cartan decompo
sitions exist and all are conjugate. But it is not meaningful for a reductive 
Lie algebra by itself, since the splitting of Z90 into its t0 part and its Po 
part depends upon the choice of(}. 

The Lie subalgebra [g0 , g0] of g0 , being semisimple, is uniquely the 
sum of simple ideals. These ideals are orthogonal with respect to B, 
since if gi and gj are distinct ideals, then 

(7.61) B(gi, gj) = B([gi, gd, gj) = B(gio [gj, gj]) = B(gio 0) = 0. 

Since [g0 , g0] is invariant under (}, (} permutes these simple ideals, 
necessarily in orbits of one or two ideals. But actually there are no 
2-ideal orbits since if X and OX are nonzero elements of distinct ideals, 
then (7.61) gives 

0 < B9 (X, X)= -B(X, OX)= 0, 

contradiction. Hence each simple ideal is invariant under (}, and it 
follows that p0 is the direct sum of its components in each simple ideal 
and its component in Z90 • 

We would like to conclude that the real rank of G is the sum of the real 
ranks from the components and from the center. But to do so, we need 
either to define real rank for triples (g0, (}, B) or to lift the setting from Lie 
algebras to Lie groups. Following the latter procedure, assume that G is 
in the Harish-Chandra class; this condition is satisfied automatically if 
G is semisimple. If Gi is the analytic subgroup of G whose Lie algebra 
is one of the various simple ideals of G, then Proposition 7 .20b shows 
that Gi has finite center. Consequently Gi is a reductive group. Also in 
this case the subgroup Ki of Gi fixed byE> is compact, and it follows 
from property (iv) that Gi is closed in G. We summarize as follows. 
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Proposition 7 .62. Let the reductive Lie group G be in the Barish
Chandra class, and let G1, ••. , Gn be the analytic subgroups of G whose 
Lie algebra are the simple ideals of g0 • Then G1, ••• , Gn are reductive 
Lie groups, they are closed in G, and the sum of the real ranks of the 
G; 's, together with the dimension of Zvec. equals the real rank of g0 • 

With the maximal abelian subspace ao of p0 fixed, let A be a restricted 
root. Denote by Hf the orthogonal complement of lRH-. in ao relative 
to B9 • Propositions 7.25 and 7.27 show that Za(Hf) and 0Za(Hf) are 
reductive Lie groups. All of ao is in Za(Hf), and therefore Za(Hf) has 
the same real rank as G. The split component of Za(Hf) is Hf, and it 
follows from (7 .60) that 0 Za (Hf) is a reductive Lie group of real rank 
one. 

The subgroup 0 Za(Hf) is what is meant by the real-rank-one reduc
tive subgroup of G corresponding to the restricted root A. A maximal 
abelian subspace of the p0 for 0 Za (Hf) is JRH-., and the restricted roots 
for this group are those nonzero multiples of A that provide restricted 
roots for g0 • In other words the restricted-root space decomposition of 
the Lie algebra of 0 Za(Hf) is 

(7.63) lRH-. E9 mo E9 E9 (go)c-.. 
c,OO 

Sometimes it is desirable to associate to A a real-rank-one subgroup 
whose Lie algebra is simple. To do so, let us assume that G is in 
the Harish-Chandra class. Then so is 0Za(Hf). Since this group has 
compact center, Proposition 7.62 shows that the sum of the real ranks 
of the subgroups G; of 0 Za(Hf) corresponding to the simple ideals of 
the Lie algebra is 1. Hence exactly one G; has real rank one, and that is 
the real-rank-one reductive subgroup that we can use. The part of (7 .63) 
that is being dropped to get a simple Lie algebra is contained in mo. 

In the case that the reductive group G is semisimple and has a com
plexification, the extent of the disconnectedness of M can be investigated 
with the help ofthe real-rank-one subgroups 0Za(Hf). The result that 
we use about the real-rank-one case is given in Theorem 7.66 below. 

Lemma 7.64. N- n MAN= {1}. 

PRooF.Letx # 1 be inN-= eN. By Theorem 1.104writex = expX 
with X in n0 = Ono. Recall from Proposition 6.40c that O(goh = (g0)_._, 

let X = L~-tei: X~-t be the decomposition of X into restricted-root vectors, 

and choose JL = J.Lo as large as possible so that X ~-t # 0. If we take any 
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H e ao such that >..(H) "# 0 for all >.. e I:, then 

Ad(x)H- H = eadxH- H 

= [X, H] + !£X, [X, H]] + · · · 
= [XIlO, H] +terms for lower restricted roots. 

In particular, Ad(x)H- His in n0 and is not 0. On the other hand, if x 
is in MAN, then Ad(x) H - H is in no. Since n0 n no "# 0, we must have 
N- n MAN= {1}. 

Lemma 7 .65. The map K 1M -+ G 1M AN induced by inclusion is a 
diffeomorphism. 

PRooF. The given map is certainly smooth. If K(g) denotes the K 
component of g in the Iwasawa decomposition G = K AN of Proposition 
7.31, then g ~--+ K(g) is smooth, and the map gMAN ~--+ K(g)M is a two
sided inverse to the given map. 

Theorem 7 .66. Suppose that the reductive Lie group G is semisimple, 
is of real rank one, and has a complexification Gc. Then M is connected 
unless dim no = 1. 

REMARKs. Since G is semisimple, it is in the Harish-Chandra class. 
The above remarks about simple components are therefore applicable. 
The condition dim no = 1 is the same as the condition that the simple 
component of g0 containing ao is isomorphic to .st(2, lR). In fact, if 
dim no = 1, then no is of the form lRX for some X. Then X, eX, and 
[X, ex] span a copy of .st(2, lR), and we obtain g0 ~ .st(2, lR) E9 mo. The 
Lie subalgebra mo must centralize X, ex, and [X, ex] and hence must 
be an ideal in g0 • The complementary ideal is .st(2, lR), as asserted. 

PRooF. The multiplication map N- x M0 AN -+ G is smooth and 
everywhere regular by Lemma 6.44. Hence the map N- -+ G 1 MoAN 
induced by inclusion is smooth and regular, and so is the map 

(7.67) N--+ GIMAN, 

which is the composition of N- -+ G 1 MoAN and a covering map. 
Also the map (7 .67) is one-one by Lemma 7 .64. Therefore (7 .67) is 
a diffeomorphism onto an open set. 

Since G is semisimple and has real rank 1, the Weyl group W (I:) has 
two elements. By Proposition 7.32, W(G, A) has two elements. Let 
we NK(Cio) represent the nontrivial element of W(G, A). By the Bruhat 
decomposition (Theorem 7.40), 

(7.68) G =MANU MANwM AN= MANU NwM AN. 
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Since Ad(w)-1 acts as -1 on ao, it sends the positive restricted roots to 
the negative restricted roots, and it follows from Proposition 6.40c that 
Ad(w)-1no = n0. Therefore w-1Nw = N-. Multiplying (7.68) on the 
left by w-1, we obtain 

Hence GIMAN is the disjoint union of the single point wMAN and the 
image of the map (7.67). 

We have seen that (7 .67) is a diffeomorphism onto an open sub
set of G 1M AN. Lemma 7.65 shows that G 1M AN is diffeomorphic 
to KIM. Since Theorem 1.104 shows that N- is diffeomorphic to 
Euclidean space, K 1M is a one-point compactification of a Euclidean 
space, hence a sphere. Since K is connected, M must be connected 
whenever K 1M is simply connected, i.e., whenever dim K 1M > 1. Since 
dim K 1M = dim no. M is connected unless dim no = 1. 

Corollary 7 .69. Suppose that the reductive Lie group G is semisimple 
and has a complexification Gc. Let a e ~(g, a e t) be a real root. If the 
positive multiples of the restricted root a lao have combined restricted
root multiplicity greater than one, then Ya is in M0 • 

PRooF. The element Ya is in the homomorphic image of SL(2,1R) 
associated to the root a, hence is in the subgroup G' = 0ZG(H;-)0 • 

Consequently it is in the M subgroup of G'. The subgroup G' satisfies the 
hypotheses of Theorem 7 .66, and its no has dimension > 1 by hypothesis. 
By Theorem 7.66 its M subgroup is connected. Hence Ya is in the identity 
component of the M subgroup for G. 

7. Parabolic Subgroups 

In this section G will denote a reductive Lie group, and we shall use 
the other notation of §2 concerning the Cartan decomposition. But we 
shall abandon the use of ao as a maximal abelian subspace of Po, as 
well as the other notation connected with the Iwasawa decomposition. 
Instead of using the symbols ao, no, mo. a, n, m, A, N, and M for these 
objects, we shall use the symbols ap,o. np,o. mp,o. ap. np, mp. Ap, Np, and 
Mp. 

Our objective is to define and characterize "parabolic subgroups" 
of G, first working with "parabolic subalgebras" of g0 • Each parabolic 
subgroup Q will have a canonical decomposition in the form Q = MAN, 
known as the "Langlands decomposition" of Q. As we suggested at 
the start of §2, a number of arguments with reductive Lie groups are 



412 VII. Advanced Structure Theory 

carried out by induction on the dimension of the group. One way of 
implementing this idea is to reduce proofs from G to the M of some 
parabolic subgroup. For such a procedure to succeed, we build into the 
definition of M the fact that M is a reductive Lie group. 

In developing our theory, one approach would be to define a parabolic 
subalgebra of g0 to be a subalgebra whose complexification is a parabolic 
subalgebra of g. Then we could deduce properties of parabolic subalge
bras of g0 from the theory in §V.7. But it will be more convenient to work 
with parabolic subalgebras of g0 directly, proving results by imitating 
the theory of §V.7, rather than by applying it. 

A minimal parabolic subalgebra of g0 is any subalgebra of g0 that 
is conjugate to qp,o = mp,o E9 ap,o E9 np,o via Ad(G). Because of the 
Iwasawa decomposition G = K ApNp, we may as well assume that the 
conjugacy is via Ad(K). The subalgebra qp,o contains the maximally 
noncompact () stable Cartan subalgebra ap,o E9 tp,0 , where tp,o is any 
maximal abelian subspace of mp,o. and Ad(k) sends any such Cartan 
subalgebra into another such Cartan subalgebra if k is in K. Hence every 
minimal parabolic subalgebra of g0 contains a maximally noncompact 
() stable Cartan subalgebra of g0 • A parabolic subalgebra q0 of g0 

is a Lie subalgebra containing some minimal parabolic subalgebra. A 
parabolic subalgebra must contain a maximally noncompact () stable 
Cartan subalgebra of go. 

Therefore there is no loss of generality in assuming that q0 contains a 
minimal parabolic subalgebra of the form mp,o EB ap,o EB np,o, where ap,o is 
maximal abelian in Po. and mp,o and np,o are constructed are usual. Let 
:E denote the set of restricted roots of g0 relative to ap,o. The restricted 
roots contributing to np,o are taken to be the positive ones. 

We can obtain examples of parabolic subalgebras as follows. Let n 
be the set of simple restricted roots, fix a subset n' of n, and let 

(7.70) 

Then 

(7.71) 

r = :E+ u {,8 E :E 1 ,8 E span(n')}. 

qo = ap,o E9 mp,o E9 E9 (go)p 
per 

is a parabolic subalgebra of g0 containing mp,o E9 ap,o E9 np,O· This con
struction is an analog of the corresponding construction of parabolic 
subalgebras of g given in (5.88) and (5.89), and Proposition 7.76 will 
show that every parabolic subalgebra of g0 is of the form given in (7 .70) 
and (7.71). But the proof requires more preparation than in the situation 
with (5.88) and (5.89). 
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EXAMPLES. 

1) Let G = SL(n, IK), where lK is JR, C, or lHI. When g0 is realized as 
matrices, the Lie subalgebra of upper-triangular matrices is a minimal 
parabolic subalgebra qp,o. The other examples of parabolic subalge
bras q0 containing qp,o and written as in (7.70) and (7.71) are the Lie 
subalgebras of block upper-triangular matrices, one subalgebra for each 
arrangement of blocks. 

2) Let G have compact center and be of real rank one. The examples 
as in (7.70) and (7.71) are the minimal parabolic subalgebras and g0 

itself. 

We shall work with a vector X in the restricted-root space (g0)y and 
with() X in (go)-y. (See Proposition 6.40c.) Proposition 6.52 shows that 
B(X,()X) is a negative multiple of Hy. Normalizing, we may assume 
that B(X, ()X)= -2/lyl2. Put H; = 21yi-2Hy. Then the linear span slx 
of {X, ex, H;l is isomorphic to s(2, lR) under the isomorphism 

(7.72) x~e. ex~ -f. 

We shall make use of the copy slx of sl(2, lR) in the same way as 
in the proof of Corollary 6.53. This subalgebra of g0 acts by ad on g0 

and hence acts on g. We know from Theorem 1.64 that the resulting 
representation of slx is completely reducible, and we know the structure 
of each irreducible subspace from Theorem 1.63. 

Lemma 7 .73. Let y be a restricted root, and let X =ft 0 be in (g0)y. 
Then 

(a) ad X carries (go)y onto (gohr 
(b) (ad(JX)2 carries (g0)y onto (go)-y 
(c) (ad(JX)4 carries (gohr onto (go)-2y· 

PRooF. Without loss of generality, we may assume that X is normal
ized as in (7.72). The complexification of fficez (go)cy is an invariant 
subspace of g under the representation ad of slx. Using Theorem 1.64, 
we decompose it as the direct sum of irreducible representations. Each 
member of (go)cy is an eigenvector for ad H; with eigenvalue 2c, and H; 
corresponds to the member h of sl(2, lR). From Theorem 1.63 we see 
that the only possibilities for irreducible subspaces are 5-dimensional 
subspaces consisting of one dimension each from 

(go)2y· (go)y. mo. (go)-y. (go)-2y; 

3-dimensional subspaces consisting of one dimension each from 

(go)y. mo. (go)-y; 
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and !-dimensional subspaces consisting of one dimension each from mo. 
In any 5-dimensional such subspace, ad X carries a nonzero vector of 
eigenvalue 2 to a nonzero vector of eigenvalue 4. This proves (a). Also 
in any 5-dimensional such subspace, (adOX)4 carries a nonzero vector 
of eigenvalue 4 to a nonzero vector of eigenvalue -4. This proves 
(c). Finally in any 5-dimensional such subspace or 3-dimensional such 
subspace, (ad 0 X)2 carries a nonzero vector of eigenvalue 2 to a nonzero 
vector of eigenvalue -2. This proves (b). 

Lemma 7.74. Every parabolic subalgebra qo of g0 containing 
mp,o $ ap,o $ np,o is of the form 

qo = ap,o $ mp,o $ E9 (go) II 
/IEf 

for some subset r of I: that contains I:+. 

PRooF. Since q0 contains ap,o $ mp,o and is invariant under ad(ap,o), it 
is of the form 

qo = ap,o $ mp,o $ E9 ((go) II n qo). 
/IE'E 

Thus we are to show that if q0 contains one nonzero vector Y of (g0) 11 , 
then it contains all of (g0) 11 • Since q0 contains np,o. we may assume that 
{3 is negative. We apply Lemma 7.73b with X= OY andy= -{3. The 
lemma says that (ad Y)2 carries (go)-11 onto (go) II· Since Y and (go)-11 are 
contained in qo, so is (go)/1. 

Lemma 7 .75. If {3, y, and {3 + y are restricted roots and X is a nonzero 
member of (g0)y, then [X, (g0) 11] is a nonzero subspace of (g0)11+r. 

PRooF. Without loss of generality, we may assume that X is normal
ized as in (7.72). The complexification of fficez (g0)/l+cr is an invariant 
subspace of g under the representation ad of .slx. Using Theorem 1.64, 
we decompose it as the direct sum of irreducible representations. Each 
member of (g0) ll+cr is an eigenvector for ad H; with eigenvalue 2jCif> + 2c, 
and H; corresponds to the member h of .s£(2, lR). We apply Theorem 1.63 
and divide matters into cases according to the sign of ¥rf. If the sign 
is< 0, then ad X is one-one on (g0) 11 , and the lemma follows. If the sign 
is::: 0, then adO X and ad X adO X are one-one on (g0) 11 , and hence ad X 
is nonzero on the member [ 0 X, Y] if Y is nonzero in (g0) ll+r. 
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Proposition 7 .76. The parabolic subalgebras q0 containing 
mp,oEBap,oEBnp,o are parametrized by the set of subsets of simple restricted 
roots; the one corresponding to a subset n' is of the form (7 .71) with r 
as in (7 .70). 

PRooF. Lemma 7.74 establishes that any q0 is of the form (7.71) for 
some subset r. We can now go over the proof of Proposition 5.90 to see 
that it applies. What is needed is a substitute for Corollary 2.35, which 
says that [g.B, gy] = 9.B+y if {3, y, and {3 +yare all roots. Lemma 7.75 
provides the appropriate substitute, and the proposition follows. 

In the notation of the proposition, r n - r consists of all restricted 
roots in the span of n', and the other members of r are all positive and 
have expansions in terms of simple restricted roots that involve a simple 
restricted root not in n'. Define 

(7.77a) 

so that 

(7.77b) 

0o = n ker{J £ Op,O 

,Bern-r 

OM,O = at}- £ Op,O 

mo = aM,o EB mp,o EB E9 (go),B 
,Bern-r 

no= E9 (go),B 
,Ber, 
M.-r 

nM,O = np,O n ffio, 

The decomposition (7.77b) is called the Langlands decomposition of 
qo. 

EXAMPLE. Let G = SU (2, 2). The Lie algebra g0 consists of all4-by-4 
complex matrices of the block form 

with X11 and X22 skew Hermitian and the total trace equal to 0. We take 
the Cartan involution to be negative conjugate transpose, so that 

and 
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Let us take 

Define linear functionals It and h on ap,o by saying that It of the above 
matrix is s and h of the matrix is t. Then 

E ={±It± h. ±2ft, ±2h}, 

which is a root system of type C2 • Here ±It ± h have multiplicity 2, and 
the others have multiplicity one. In the obvious ordering, E+ consists 
of It± hand 21t and 2h, and the simple restricted roots are It- h 
and2h. Then 

mp,o = {diag(ir, -ir, ir, -ir)} 

np,o = E9 (go)ll with dimnp,o = 6. 
/le:E+ 

Our minimal parabolic subalgebra is qp,o = mp,o EB ap,o EB np,o. and this 
is reproduced as q0 by (7 .70) and (7 .71) with n' = 0. When n' = 
Ut- h. 2h}, then qo =go. The two intermediate cases are as follows. 
If n' = Ut- hl. then 

ao = {H e ap,o I Ut - h)(H) = 0} (s =tin ap,o) 

mo={(-~ -~ ~ -~)lx,relRandw,zeC} 
z -x -w -1r 

no= (goh/J EB (go)f•+h EB (gohtz

lf n' = {2h}, then 

ao = {H e ap,o 1 2h(H) = 0} 

{(
0 0 0 
0 is 0 mo = mp,o EB 0 0 0 

0 z 0 

no= (Soht. EB (So)t•+h EB (go>t.-tz· 

(t = 0 in ap,o) 

Proposition 7.76 says that there are no other parabolic subalgebras q0 

containing qp,O· 
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Proposition 7 .78. A parabolic subalgebra q0 containing the minimal 
parabolic subalgebra mp,o e ap,o e np,o has the properties that 

(a) mo. ao. and no are Lie subalgebras, and no is an ideal in q0 

(b) ao is abelian, and no is nilpotent 
(c) ao e mo is the centralizer of ao in go 
(d) qo n Oqo = ao e mo. and ao e mo is reductive 
(e) ap,o = ao e aM,o 

(f) np,o =no e nM.o as vector spaces 
(g) go = ao e mo e no e Ono orthogonally with respect to o 
(h) mo = mp,O EB aM,O EB nM,O EB ()nM,O• 

PROOF. 
(a, b, e, f) All parts of these are clear. 
(c) The centralizer of ao is spanned by ap,o. mp,o. and all the restricted 

root spaces for restricted roots vanishing on ao. The sum of these is 
aoemo. 

(d) Since O(go)p = (go)-p by Proposition 6.40c, qo n Oqo = ao e mo. 
Then ao e mo is reductive by Corollary 1.53. 

(g, h) These follow from Proposition 6.40. 

Proposition 7.79. Among the parabolic subalgebras containing qp,o. 
let q0 be the one corresponding to the subset n' of simple restricted roots. 
For 11 =F 0 in llQ, let 

(go)<11> = ED (go)p. 
jlea;,o• 
Jllao='IO 

Then (go)<,> 5; no or (go)<,> 5; Ono. 

PRooF. We have 

aM,O = ~ = ( n kerp)J. = ( n Hj)J. = L RHp = L RHp. 
pern-r pern-r pern-r pen' 

Let p and P' be restricted roots with a common nonzero restriction 11 to 
members of ao. Then f3- {3' is 0 on ao, and Hp- Hp' is in aM,O· From the 
formula for aM,O• the expansion of f3- {3' in terms of simple restricted 
roots involves only the members of n'. Since 11 =F 0, the individual 
expansions of f3 and {3' involve nonzero coefficients for at least one 
simple restricted root other than the ones in n'. The coefficients for this 
other simple restricted root must be equal and in particular of the same 
sign. By Proposition 2.49, f3 and {3' are both positive or both negative, 
and the result follows. 
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Motivated by Proposition 7.79, we define, for 1J e a0, 
(7.80) (go)(ll) ={X Ego I [H, X]= TJ(H)X for all HE ao}. 

We say that 1J is an ao root, or root of (g0 , ao), if 11 "# 0 and (g0)<11> "# 0. In 
this case we call (g0)<11> the corresponding ao root space. The proposition 
says that no is the sum of ao root spaces, and so is Ono. We call an ao root 
positive if it contributes to no, otherwise negative. The set of ao roots 
does not necessarily form an abstract root system, but the notion of an 
ao root is still helpful. 

Corollary 7 .81. The normalizer of ao in go is ao ED mo. 
PRooF. The normalizer contains ao ED mo by Proposition 7 .78c. In the 

reverse direction let X be in the normalizer, and write 

X = Ho + Xo + L X 11 with Ho e ao. Xo e mo. X11 e (go)<11>· 
11#0, 
IIEaQ 

If His in ao. then [X, H] = - I:11 TJ(H)X 11 , and this can be in ao for all 
such H only if X 11 = 0 for allTJ. Therefore X= H0 + X0 is in ao ED mo. 

Now let A and N be the analytic subgroups of G with Lie algebras ao 
and no, and define M = 0Z6 (ao). We shall see in Proposition 7.83 below 
that Q = MAN is the normalizer of mo ED ao ED no in G, and we define 
it to be the parabolic subgroup associated to the parabolic subalgebra 
q0 = mo ED ao ED no. The decomposition of elements of Q according to 
MAN will be seen to be unique, and Q = MAN is called the Langlands 
decomposition of Q. When q0 is a minimal parabolic subalgebra, the 
corresponding Q is called a minimal parabolic subgroup. We write 
N- = G>N. 

Let AM and N M be the analytic subgroups of g0 with Lie algebras aM,o 
and nM,O• and let MM = ZKnM(aM,o). Define KM = K n M. Recall the 
subgroup F of G that is the subject of Corollary 7 .52. 

Proposition 7.82. The subgroups M, A, N, KM, MM, AM, and NM 
have the properties that 

(a) MA = Z6 (ao) is reductive, M = 0(MA) is reductive, and A is 
Zvec forMA 

(b) M has Lie algebra mo 
(c) MM = Mp, Mp,oAMNM is a minimal parabolic subgroup of M, 

and M = KMAMNM 
(d) M = F Mo if G is connected 
(e) Ap = AAM as a direct product 
(f) Np = NNM as a semidirect product with N normal. 
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PROOF. 
(a, b) The subgroups Z 6 ( ao) and 0 Z 6 (ao) are reductive by Propositions 

7.25 and 7.27. By Proposition 7.78, Z 90 ( ao) = ao e mo. Thus the space 
Zvec for the group ZG(Ilo) is the analytic subgroup corresponding to the 
intersection of p0 with the center of aoemo. From the definition of mo, the 
center of Z90 (1lo) has to be contained in ap,o emp,o. and the p0 part of this 
is ap,o. The part of ap,o that commutes with mo is ao by definition of mo. 
Therefore Zvec = expao =A, and ZG(Ilo) = ( 0ZG(Ilo))A by Proposition 
7.27. Then (a) and (b) follow. 

(c) By (a), M is reductive. It is clear that aM,o is a maximal abelian 
subspace of p0 n mo, since mo n ao = 0. The restricted roots of mo relative 
to aM.o are then the members of r n - r, and the sum of the restricted
root spaces for the positive such restricted roots is nM,O· Therefore 
the minimal parabolic subgroup in question forM is MMAMNM. The 
computation 

MM = ZKnM(aM,o) =MAn ZK(aM,o) 

= ZG(Ilo) n ZK(aM,o) = ZK(ap,o) = Mp 

identifies MM. and M = KMAMNM by the Iwasawa decomposition for 
M (Proposition 7.31). 

(d) By (a), M is reductive. Hence M = MMMo by Proposition 7.33. 
But (c) shows that MM = Mp. and Corollary 7.52 shows that Mp = 
F(Mp)0 • Hence M = F Mo. 

(e) This follows from Proposition 7.78e and the simple connectivity 
of Ap. 

(f) This follows from Proposition 7 .78f, Theorem 1.102, and the 
simple connectivity of Np. 

Proposition 7.83. The subgroups M, A, and N have the properties 
that 

(a) M A normalizes N, so that Q = MAN is a group 
(b) Q = N6 (mo e ao e no), and hence Q is a closed subgroup 
(c) Q has Lie algebra qo = mo e llo e no 
(d) multiplication M x A x N --+ Q is a diffeomorphism 
(e) N- n Q = {1} 
(f) G = KQ. 

PRooF. 
(a) Let z be in MA = Z6 (ao), and fix (go)(rl) ~no as in (7.80). If X is 

in (go)<no> and His in ao, then 

[H, Ad(z)X] = [Ad(z)H, Ad(z)X] = Ad(z)[H, X] = TJ(H)Ad(z)X. 
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Hence Ad(z)X is in (g0 )<11>, and Ad(z) maps (g0)< 11> into itself. Since no 
is the sum of such spaces, Ad(z)no £ no. Therefore M A normalizes N. 

(b) The subgroup M A normalizes its Lie algebra mo ED ao, and it nor
malizes no by (a). The subgroup N normalizes q0 because it is connected 
with a Lie algebra that normalizes q0 by Proposition 7 .78a. Hence MAN 
normalizes q0 • In the reverse direction let x be in N G ( q0). We are to prove 
that x is in MAN. Let us write x in terms of the I wasawa decomposition 
G = K ApNp. Here Ap = AAM by Proposition 7.82e, and A and AM are 
both contained in M A. Also N P = N N M by Proposition 7 .82f, and N and 
NM are both contained in MN. Thus we may assume thatx is in Nx(q0). 

By (7.23), Ad(8x) = BAd(x)O, and thus Ad(8x) normalizes Bq0 • But 
ex= x since xis inK, and therefore Ad(x) normalizes both q0 and Bq0 • 

By Proposition 7.78d, Ad(x) normalizes ao ED mo. Since ao is the p0 part 
of the center of ao ED mo. Ad(x) normalizes ao and mo individually. Let 11 
be an ao root contributing to no. If X is in (g0) 11 and His in ao, then 

[H, Ad(x)X] = Ad(x)[Ad(x)- 1 H, X] 

= 17(Ad(x)-1 H)Ad(x)X = (Ad(x)17)(H)Ad(x)X. 

In other words, Ad(x) carries (g0)< 11> to (go)(Ad(x) 11>· So whenever 11 is 
the restriction to ao of a positive restricted root, so is Ad(x)17. Mean
while, Ad(x) carries aM,o to a maximal abelian subspace of p0 n mo. and 
Proposition 7.29 allows us to adjust it by some Ad(k) e Ad(K n M) 
so that Ad(kx)aM,o = aM,o· Taking Proposition 7.32 and Theorem 2.63 
into account, we can choose k' E K n M so that Ad(k'kx) is the identity 
on aM,O· Then Ad(k'kx) sends :E+ to itself. By Proposition 7.32 and 
Theorem 2.63, Ad(k'kx) is the identity on ap,o and in particular on ao. 
Hence k'kx is in M, and so is x. We conclude that MAN= NG(q0), and 
consequently MAN is closed. 

(c) By (b), Q is closed, hence Lie. The Lie algebra of Q is Ng0 (q0), 

which certainly contains q0 • In the reverse direction let X E g0 normalize 
q0 • Since ap,o and np,o are contained in q0 , the Iwasawa decomposition 
on the Lie algebra level allows us to assume that X is in to. Since X 
normalizes q0 , eX normalizes Bq0 • But X = eX, and hence X normalizes 
q0 n Bq0 , which is ao ED mo by Proposition 7 .78d. Since ao is the p0 part of 
the center of ao EDmo, X normalizes ao and mo individually. By Corollary 
7.81, X is in ao ED mo. 

(d) Use of Lemma 6.44 twice shows that the smooth map 
M x A x N ~ Q is regular on M0 x A x N, and translation to M 
shows that it is regular everywhere. We are left with showing that it is 
one-one. Since A £ Ap and N £ Np, the uniqueness for the Iwasawa 
decomposition of G (Proposition 7.31) shows that it is enough to prove 
that M n AN = { 1}. Given m e M, let the I wasawa decomposition of m 
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according toM= KMAMNM be m = kMaMnM. If this element is to be in 
AN, thenkM = 1,aM is in AMnA,andnM is in NMnN, by uniqueness of 
the Iwasawa decomposition in G. But AM n A = { 1} and N M n N = { 1} 
by (e) and (f) of Proposition 7 .82. Therefore m = 1, and we conclude 
that M nAN= {1}. 

(e) This is proved in the same way as Lemma 7.64, which is stated 
for a minimal parabolic subgroup. 

(f) Since Q 2 ApNp, G = K Q by the Iwasawa decomposition for G 
(Proposition 7.31). 

Although the set of ao roots does not necessarily form an abstract root 
system, it is still meaningful to define 

(7.84a) 

just as we did in the case that ao is maximal abelian in p0 • Corollary 7.81 
and Proposition 7.78c show that NK(Oo) and ZK(Oo) both have to nmo as 
Lie algebra. Hence W(G, A) is a compact 0-dimensional group, and we 
conclude that W(G, A) is finite. An alternate formula for W(G, A) is 

(7.84b) W(G, A) = NG(Oo)/ZG(ao). 

The equality of the right sides of (7 .84a) and (7 .84b) is an immediate 
consequence of Lemma 7.22 and Corollary 7.81. To compute NK(Oo), 
it is sometimes handy to use the following proposition. 

Proposition 7 .85. Every element of N K ( ao) decomposes as a product 
zn, where nisin NK(ap,o) and z is in ZK(ao). 

PRooF. Let k be in NK(ao) and form Ad(k)aM,O· Since aM.o commutes 
with ao, Ad(k)aM,o commutes with Ad(k)ao = ao. By Proposition 7 .78c, 
Ad(k )aM,o is contained in aoEBmo. Since aM,o is orthogonal to ao under B9, 
Ad(k)aM,o is orthogonal to Ad(k)ao = ao. Hence Ad(k)aM,o is contained 
in mo and therefore in p0 n mo. By Proposition 7.29 there exists z in 
K n M with Ad(z)-1Ad(k)aM,o = aM,o· Then n = z-1k is in NK(Oo) and 
in NK(aM,o), hence in NK(ap,o). 

EXAMPLE. Let G = SL(3, JR.). Take ap,o to be the diagonal subalgebra, 
and let I;+= {/I- h. h- /J, / 1 - /3} in the notation of Example 1 of 
§V1.4. Define a parabolic subalgebra q0 by using n' ={/I- /2}. The 
corresponding parabolic subgroup is the block upper-triangular group 
with blocks of sizes 2 and 1, respectively. The subalgebra ao equals 
{diag{r, r, -2r)}. Suppose that w is in W(G, A). Proposition 7.85 says 
that w extends to a member of W ( G, Ap) leaving ao and aM,o individually 
stable. Here W(G, Ap) = W(E), and the only member of W(E) sending 
ao to itself is the identity. So W(G, A) = {1}. 
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The members of W(G, A) act on set ofthe ao roots, and we have the 
following substitute for Theorem 2.63. 

Proposition 7.86. The only member of W(G, A) that leaves stable 
the set of positive ao roots is the identity. 

PRooF. Let k be in NK(ao). By assumption Ad(k)no = no. The 
centralizer of ao in g0 is ao e mo by Proposition 7 .78c. If X is in this 
centralizer and if H is arbitrary in ao, then 

[H, Ad(k)X] = Ad(k)[Ad(k)-1 H, X] = 0 

shows that Ad(k)X is in the centralizer. Hence Ad(k)(aoemo) = aoemo. 
By Proposition 7 .83b, k is in MAN. By Proposition 7 .82c and the 
uniqueness of the Iwasawa decomposition for G, k is in M. Therefore k 
is in ZK(ao). 

A parabolic subalgebra q0 of g0 and the corresponding parabolic 
subgroup Q = MAN of G are said to be cuspidal if mo has a (J stable 
compact Cartan subalgebra, say to. In this case, ~0 = toe ao is a (J stable 
Cartan subalgebra of g0 • The restriction of a root in d(g, ~)to ao is an 
ao root if it is not 0, and we can identify d(m, t) with the set of roots 
in d(g, ~)that vanish on a. Let us choose a positive system d+(m, t) 
form and extend it to a positive system .1.+(g, ~)by saying that a root 
a e A(g, ~)with nonzero restriction to ao is positive if a lao is a positive ao 
root. Let us decompose members a of ~· according to their projections 
on a* and t* as a= aa +at. Now Oa = -aa +at. and (J carries roots to 
roots. Hence if aa +at is a root, so is a a -at. 

The positive system d +(g, ~)just defined is given by a lexicographic 
ordering that takes ao before ito. In fact, write the half sum of positive 
roots as~= ~a+ ~t· The claim is that positivity is determined by inner 
products with the ordered set {~a. ~t} and that ~tis equal to the half sum 
of the members of d +(m, t). To see this,let a = aa +at be in d +(g, ~). 
If aa =F 0, then aa- at is in d+(g, ~).and 

Since the positive roots with nonzero restriction to a cancel in pairs when 
added, we see that ~t equals half the sum of the members of d+(m, t). 
Finally if a a = 0, then (a, ~a) = 0 and (a, ~t) > 0. Hence d +(g, ~) is 
indeed given by a lexicographic ordering of the type described. 

The next proposition gives a converse that tells a useful way to con
struct cuspidal parabolic subalgebras of g0 directly. 



7. Parabolic Subgroups 423 

Proposition 7 J!J7. Let ~0 = to E9 ao be the decomposition of a 9 
stable Cartan subalgebra according to 9, and suppose that a lexicographic 
ordering taking ao before ito is used to define a positive system 1:1 +(g, ~). 
Define 

and 

mo = 9o n (tEe E9 9a) 
otEd(g,~), 

otla=O 

no= 9o n ( E9 9a)· 
aed+(g.~). 

otlai'O 

Then qo = mo E9 ao E9 no is the Langlands decomposition of a cuspidal 
parabolic subgroup of go. 

PRooF. In view of the definitions, we have to relate q0 to a minimal 
parabolic subalgebra. Let bar denote conjugation of g with respect to 
go. If a= a 0 +at is a root, let ii = -Oa = a 0 - at. Then 9a = 9ii• and it 
follows that 

(7.88) m=t$ E9 9a 
aEd(g.~). 

otla=O 

and 

In particular, mo is 9 stable, hence reductive. Let ~M.o = tM,oEBaM,o be the 
decomposition of a maximally noncompact 9 stable Cartan subalgebra 
of mo according to 9. Since Theorem 2.15 shows that ~M is conjugate to 
t via Int m, ~' = a E9 ~M is conjugate to ~ = a E9 t via a member of Int g 
that fixes ao. In particular, ~0 = ao E9 ~M.o is a Cartan subalgebra of go. 
Applying our constructed member of Int g to (7 .88), we obtain 

(7.89) m= ~ME9 E9 9a 
otEd(g,~'), 

otla:O 

and 

for the positive system 1:1 + (g, ~') obtained by transferring positivity from 
ll.+(g.~). 

Let us note that ap,o = ao E9 aM,o is a maximal abelian subspace of Po· 
In fact, the centralizer of ao in g0 is ao E9 mo, and aM,o is maximal abelian 
in mo n p0; hence the assertion follows. We introduce a lexicographic 
ordering for ~0 that is as before on ao, takes ao before aM,o. and takes 
aM,o before itM,o· Then we obtain a positive system ll.+'(g, ~') with 
the property that a root a with alao :F 0 is positive if and only if alao 
is the restriction to ao of a member of ll.+(g, ~). Consequently we 
can replace 1:1 + (g, ~') in (7 .89) by 1:1 +' (g, ~'). Then it is apparent that 
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m $ a$ n contains mp $ ap $ np defined relative to the positive restricted 
roots obtained from !::.. +' (g, ~'), and hence q0 is a parabolic subalgebra. 
Referring to (7. 77), we see that q0 = mo $ ao $ no is the Lao glands 
decomposition. Finally to is a Cartan subalgebra of mo by Corollary 
2.13, and hence q0 is cuspidal. 

8. Cartan Subgroups 

We continue to assume that G is a reductive Lie group and to use 
the notation of §2 concerning the Cartan decomposition. A Cartan 
subgroup of G is the centralizer in G of a Cartan subalgebra. We know 
from §§VI.6 and VII.2 that any Cartan subalgebra is conjugate via Intg0 

to a () stable Cartan subalgebra and that there are only finitely many 
conjugacy classes of Cartan subalgebras. Consequently any Cartan 
subgroup of G is conjugate via G to a e stable Cartan subgroup, and 
there are only finitely many conjugacy classes of Cartan subgroups. A 
e stable Cartan subgroup is a reductive Lie group by Proposition 7.25. 

When G is compact connected and Tis a maximal torus, every element 
of G is conjugate to a member of T, according to Theorem 4.36. In 
particular every member of G lies in a Cartan subgroup. This statement 
does not extend to noncompact groups, as the following example shows. 

EXAMPLE. Let G = SL(2, JR.). We saw in §VI.6 that every Cartan 
subalgebra is conjugate to one of 

and { ( -~ ~)}' 
and the corresponding Cartan subgroups are 

and { ( cosr 
-sinr 

sinr)}. 
cosr 

Some features of these subgroups are worth noting. The first Cartan 
subgroup is disconnected; disconnectedness is common among Cartan 
subgroups for general G. Also every member of either Cartan subgroup 

is diagonable over C. Hence ( ~ ~) lies in no Cartan subgroup. 

Although the union of the Cartan subgroups of G need not exhaust 
G, it turns out that the union exhausts almost all of G. This fact is the 
most important conclusion about Cartan subgroups to be derived in this 
section and appears below as Theorem 7.108. When we treat integration 
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in Chapter Vlll, this fact will permit integration of functions on G 
by integrating over the conjugates of a finite set of Cartan subgroups; 
the resulting formula, known as the "Weyl Integration Formula;' is an 
important tool for harmonic analysis on G. 

Before coming to this main result, we give a proposition about the 
component structure of Cartan subgroups and we introduce a finite group 
W ( G, H) for each Cartan subgroup analogous to the groups W ( G, A) 

considered in § 7. 

Proposition 7 .90. Let H be a Cartan subgroup of G. 

(a) If His maximally noncompact, then H meets every component 
of G. 

(b) If H is maximally compact and if G is connected, then H is 
connected. 

REMARKs. The modifiers "maximally noncompact" and "maximally 
compact" are to be interpreted in terms of the Lie algebras. If ~0 is a 
Cartan subalgebra, ~0 is conjugate to a() stable Cartan subalgebra ~~. 
and we defined "maximally noncompact" and "maximally compact" for 
~~in §§VI.6 and VII.2. Proposition 7.35 says that any two candidates 
for ~~ are conjugate via K, and hence it is meaningful to say that ~0 is 
maximally noncompact or maximally compact if~~ is. 

PRooF. Let ~0 be the Lie algebra of H. We may assume that ~0 is 
() stable. Let ~0 = to $ ao be the decomposition of ~0 into + 1 and -1 
eigenspaces under (). 

(a) If ~0 is maximally noncompact, then ao is a maximal abelian 
subspace of Po. The group H contains the subgroup F introduced before 
Corollary 7 .52, and Corollary 7.52 and Proposition 7.33 show that F 
meets every component of G. 

(b) If ~0 is maximally compact, then to is a maximal abelian subspace 
of to. Since K is connected, the subgroup ZK(to) is connected by Corol
lary 4.51, and ZK(to) expao is therefore a connected closed subgroup of 
G with Lie algebra ~0 • On the other hand, Proposition 7.25 implies that 

Since Hand Z K (to) exp ao are closed subgroups with the same Lie algebra 
and since ZK(to) exp ao is connected, it follows that H = ZK(to) exp ao. 

Corollary 7 .91. If a maximally noncompact Cartan subgroup H of 
G is abelian, then ZG0 ~ ZG. 
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PRooF. By Proposition 7 .90a, G = GoH. If z is in Z 60 , then Ad(z) = 1 
on ~0 , and hence z is in Z6 (~0) = H. Let g e G be given, and write 
g = g0h with g e Go and h e H. Then zgo = goz since z commutes with 
members of G0 , and zh = hz since z is in Hand His abelian. Hence 
zg = gz, and z is in Z6 • 

If H is a Cartan subgroup of G with Lie algebra ~0 , we define 

(7.92a) W(G, H) = NG(~o)/ZG(~o). 

Here Z 6 (~0) is nothing more than H itself, by definition. When ~0 is () 
stable, an alternate formula for W(G, H) is 

(7.92b) W(G, H)= NK{~o)/ZK(~o). 

The equality of the right sides of (7 .92a) and (7 .92b) is an immedi
ate consequence of Lemma 7.22 and Proposition 2.7. Proposition 2.7 
shows that NK(~o) and ZK(~o) both have ton ~0 = to as Lie algebra. 
Hence W(G, H) is a compact 0-dimensional group, and we conclude 
that W(G, H) is finite. 

Each member of N6(~0) sends roots of li = li(g, ~)to roots, and the 
action of N6 (~0) on li descends to W(G, H). It is clear that only the 
identity in W(G, H) acts as the identity on li. Since Ad9 (G) £ lntg, it 
follows from Theorem 7.8 that 

(7.93) W(G, H) s;;; W(li(g, ~)). 

EXAMPLE. Let G = SL(2, R). For any ~. W(g, ~)has order 2. When 

~0 = { ( ~ -~)}, W ( G, H) has order 2, a representative of the nontrivial 

coset being ( ~1 ~)·When ~0 = { ( -~ ~) }. W(G, H) has order 1. 

Now we begin to work toward the main result of this section, that the 
union of all Cartan subgroups of G exhausts almost all of G. We shall 
use the notion of a "regular element" of G. Recall that in Chapter II 
we introduced regular elements in the complexified Lie algebra g. Let 
dimg = n. For X e g, we formed the characteristic polynomial 

n-1 

(7.94) det(Al- adX) = )..n + Ldi(X)J..i. 
j=O 

Here each di is a holomorphic polynomial function on g. The rank of g 
is the minimum index l such that d1(X) :1= 0, and the regular elements 
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of g are those elements X such that d1(X) =F 0. For such an X, Theorem 
2.9' shows that the generalized eigenspace of ad X for eigenvalue 0 is a 
Cartan subalgebra of g. Because g is reductive, the Cartan subalgebra 
acts completely reducibly on g, and hence the generalized eigenspace of 
ad X for eigenvalue 0 is nothing more than the centralizer of X in g. 

Within g, let ~ be a Cartan subalgebra, and let il = il(g, ~). For 
X e ~. dt(X) = Oae~ a(X), so that X e ~is regular if and only if no root 
vanishes on X. If ~0 is a Cartan subalgebra of our real form g0 , then we 
can find X e ~0 so that a(X) =F 0 for all a e fl. 

On the level of Lie algebras, we have concentrated on eigenvalue 0 
for ad X. On the level of reductive Lie groups, the analogous procedure 
is to concentrate on eigenvalue 1 for Ad(x). Thus for x e G, we define 

n-1 

D(x, A.)= det((A. + 1)1- Ad(x)) = A.n + L Dj(x)A.i. 
j=O 

Here each Di (x) is real analytic on G and descends to a real analytic 
function on Ad(G). But Ad(G) s;;; lntg by property (v) for reductive 
Lie groups, and the formula for Dj(x) extends to be valid on Intg and 
to define a holomorphic function on lntg. Let l' be the minimum index 
such that Dt'(x) ¢ 0 (on G or equivalently on Intg). We shall observe 
shortly that l' = l. With this understanding the regular elements of G 
are those elements x such that D1(x) =F 0. Elements that are not regular 
are singular. The set of regular elements is denoted G'. Note that 

(7.95) D(yxy-1, A.) = D(x, A.), 

from which it follows that G' is stable under group conjugation. It is 
almost but not quite true that the centralizer of a regular element of G 
is a Cartan subgroup. Here is an example of how close things get in a 
complex group. 

EXAMPLE. Let G = SL(2, C)/{±1}. We work with elements of G 
as 2-by-2 matrices identified when they differ only by a sign. The 

element (~ z~1 ). with z =F 0, is regular if z =F ±1. For most other 

values of z, the centralizer of ( z 0
1 ) is the diagonal subgroup, which is oz-

a Cartan subgroup. But for z = ±i, the centralizer is generated by the 

diagonal subgroup and ( 0 1 ) ; thus the Cartan subgroup has index 2 in 
-1 0 

the centralizer. 

Now, as promised, we prove that 1 = 1', i.e., the minimum index l such 
that d1(X) :if= 0 equals the minimum index 1' such that Dt'(x) ¢ 0. Let 
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ad X have generalized eigenvalue 0 exactly l times. For sufficiently small 
r, ad X has all eigenvalues < 2:~r in absolute value, and it follows for 
such X thatAd(exp X) has generalized eigenvalue 1 exactly l times. Thus 
l' :::: l. In the reverse direction suppose Dr(x) =/= 0. Since Dr extends 
holomorphically to the connected complex group Intg, Dr' cannot be 
identically 0 in any neighborhood of the identity in Intg. Hence Dr(x) 
cannot be identically 0 in any neighborhood of x = 1 in G. Choose 
a neighborhood U of X's in g0 about 0 such that all ad X have all 
eigenvalues < 2:~r in absolute value and such that exp is a diffeomorphism 
onto a neighborhood of 1 in G. Under these conditions the multiplicity 
of 0 as a generalized eigenvalue for ad X equals the multiplicity of 1 as 
a generalized eigenvalue for Ad(expX). Thus if Dr(x) is somewhere 
nonzero on exp U, then d1(X) is somewhere nonzero on U. Thus l :::: l', 
and we conclude that l = l'. 

To understand the relationship between regular elements and Cartan 
subgroups, we shall first study the case of a complex group (which 
in practice will usually be Intg). The result in this case is Theorem 
7.101 below. We establish notation for this theorem after proving three 
lemmas. 

Lemma 7 .96. Let Z be a connected complex manifold, and let 
f : z --+ en be a holomorphic function not identically 0. Then the 
subset of Z where f is not 0 is connected. 

PRooF. Lemma 2.14 proves this result for the case that Z =em and f 
is a polynomial. But the same proof works if Z is a bounded polydisc 
llJ'=1 {lzj 1 < rj} and f is a holomorphic function on a neighborhood of 
the closure of the polydisc. We shall piece together local results of this 
kind to handle general Z. 

Thus let the manifold structure of Z be specified by compatible charts 
<Va. ({Ja) with % : Va --+ em holomorphic onto a bounded polydisc. 
There is no loss of generality in assuming that there are open subsets 
Ua covering Z such that ({Ja(Ua) is an open polydisc whose closure is 
contained in (/Ja <Va). For any subset S of Z, let S' denote the subset of S 
where f is not 0. The result of the previous paragraph implies that U~ is 
connected for each a, and we are to prove that Z' is connected. Also U~ 
is dense in Ua since the subset of a connected open set where a nonzero 
holomorphic function takes on nonzero values is dense. 

Fix U = U0 • To each point z e Z, we can find a chain of Ua's of 
the form u = Uo, U1, ... , uk such that z is in uk and U;-I n U; =f. 0 
for 1 :::: i :::: k. In fact, the set of z's for which this assertion is true is 
nonempty open closed and hence is all of Z. 

Now let z e Z' be given, and form the chain U = Uo, U1, ... , Uk. Here 
z is in U~. We readily see by induction on m :::: k that U0 u · · · u U~ is 
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connected, hence that U0 u · · · u U~ is connected. Thus each z e Z' lies 
in a connected open set containing U0, and it follows that the union of 
these connected open sets is connected. The union is Z', and hence Z' 
is connected. 

Lemma 7 S7. Let N be a simply connected nilpotent Lie group with 
Lie algebra no, and let n0 be an ideal in no. If X is in no andY is in nij, 
then exp(X + Y) = exp X exp Y' for some Y' in nO· 

PRooF. If N' is the analytic subgroup corresponding to nO• then N' is 
certainly normal, and N' is closed as a consequence of Theorem 1.104. 
Let rp : N -+ N IN' be the quotient homomorphism, and let drp be its 
differential. Since drp(Y) = 0, we have 

rp((exp(X + Y))(expx)-1) = rp(exp(X + Y))rp{expx)-1 

= exp(drp(X) + drp(Y))(expdrp(X))-1 

= exp(drp(X))(expdrp(X))-1 = 1. 

Therefore (exp(X + Y))(expx)-1 is inN', and Theorem 1.104 shows 
that it is of the form exp Y' for some Y' E n0. 

Lemma 7 .98. Let G = K AN be an Iwasawa decomposition of the 
reductive group G,let M = ZK(A), and let no be the Lie algebra of N. If 
h e MA has the property that Ad(h) acts as a scalar on each restricted
root space and Ad(h )-1 -1 is nonsingular on no, then the map rp : N -+ N 
given by rp(n) = h-1nhn-1 is onto N. 

REMARK. This lemma may be regarded as a Lie group version of the 
Lie algebra result given as Lemma 7 .42. 

PRooF. Write no = E9 (goh as a sum of restricted-root spaces, and 
regard the restricted roots as ordered lexicographically. For any re
stricted root a, the subspace 1la = E9l.>a (g0h is an ideal, and we prove 
by induction downward on a that rp -carries exp 1la onto itself. This 
conclusion when a is equal to the smallest positive restricted root gives 
the lemma since exp carries no onto N (Theorem 1.104). 

If a is given, we can write 1la = (go)a e n1:1 with fJ > a. Let X be 
given in 1\a, and write X as X1 + X2 with X1 e (go)a and X2 e n/:1. Since 
Ad(h)-1 - 1 is nonsingular on (g0)a, we can choose Y1 e (go)a with 
X1 = (Ad(h)-1 - 1)Y1. Put n1 = exp Y1. Since Ad(h)-1 Y1 is a multiple 
of Y1, Ad(h )-1 Y1 commutes with Y1. Therefore 

(7.99) h-1n1hn}1 = (expAd(h)-1Y1)(expY1)-1 

= exp((Ad(h)-1 -l}Y1) = expX1. 
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expX = exp(X1 + X2) 

= expX1 expX~ 

= h-1n1hn!1 expX~ 

= h-1n1h expX~ n!1 

by Lemma 7.97 

by (7.99) 

with X~ E np. 

By induction expX~ = h-1n2hn:;1. Hence exp X= h-1(n1n2)h(n1n2)-1, 
and the induction is complete. 

Now we are ready for the main result about Cartan subgroups in 
the complex case. Let Ge be a complex semisimple Lie group (which 
will usually be Intg when we return to our reductive Lie group G). 
Proposition 7.5 shows that Ge is a reductive Lie group. Let Ge = U AN 
be an Iwasawa decomposition of Gc. and let M = Zu(A). We denote 
by g, Uo, ao, no, and mo the respective Lie algebras. Here mo = iao, mo 
is maximal abelian in Uo, and~ = ao EB mo is a Cartan subalgebra of g. 
The corresponding Cartan subgroup of G e is of the form He = M A since 
Proposition 7.25 shows that He is a reductive Lie group. Since 

M = Zu(ao) = Zu(iao) = Zu(tno), 

Corollary 4.52 shows that M is connected. Therefore 

(7.100) He is connected. 

Let G~ denote the regular set in G e. 

Theorem 7.101. For the complex semisimple Lie group Ge, the 
regular set G~ is connected and satisfies G~ ~ UxeGc xHex-1• If X0 is 
any regular element in~. then ZGc(X0 ) =He. 

PRooF. We may regard D1(x) as a holomorphic function on Ge. The 
regular set G~ is the set where D1(x) =F 0, and Lemma 7.96 shows that 
G~ is connected. 

Let H~ =Hen G~, and define V' = UxeGc xH~x- 1 • Then V' ~ G~ by 
(7 .95). If Xo E ~ is chosen so that no root in ll. (g, ~) vanishes on Xo, 
then we have seen that expr Xo is in H~ for all sufficiently small r > 0. 
Hence V' is nonempty. We shall prove that V' is open and closed in G~, 
and then it follows that G~ = V', hence that G~ ~ UxeGc xHex-1• 

To prove that V' is closed in G~, we observe that HeN is closed in 
G e, being the minimal parabolic subgroup MAN. Since U is compact, 
it follows that 
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is closed in Ge. By (7 .95), 

V n G~ = U u(HeN)'u-1, 

ueU 

where (HeN)'= HeN n G~. If his in He and nisin N, then Ad(hn) has 
the same generalized eigenvalues as Ad(h). Hence (HeN)'= H:N. If h 
is in H:, then Ad(h) is scalar on each restricted root space contributing 
to no, and Ad(h) - 1 is nonsingular on n0 • By Lemma 7.98 such an h 
has the property that n ~--+ h-1nhn-1 carries N onto N. Let no e N be 
given, and write no = h-1nhn-1• Then hn0 = nhn-1, and we see that 
every element of hN is anN conjugate of h. Since every N conjugate 
of h is certainly in hN, we obtain 

H;N = U nH;n-1• 

neN 

Therefore 
V n G~ = U U (un)H;(un)- 1• 

ueU neN 

Since aH:a-1 = H: for a e A and since Ge = U AN = UN A, we obtain 
V n G~ = V'. Thus V' is exhibited as the intersection of G~ with the 
closed set V, and V' is therefore closed in G~. 

To prove that V' is openinG~, it is enough to prove that the map 
1/1 : Ge x He --+> Ge given by 1/f(y, x) = yxy-1 has differential mapping 
onto at every point of G e x H:. The argument imitates part of the proof 
ofTheorem4.36. Letusabbreviateyxy-1 asx'. Fixy e Ge andx e H~. 
We identify the tangent spaces at y, x, and xY with g, ~.and g by left 
translation. First let Y be in g. To compute (d1/l)(y,x>(Y, 0), we observe 
from (1.90) that 

(7.102) xyexprY = xY exp(rAd(yx-1)Y) exp(-rAd(y)Y). 

We know from Lemma 1.92a that 

exprX' exprY' = exp{r(X' + Y') + 0(r2)} as r --+> 0. 

Hence the right side of (7 .1 02) is 

= x' exp(rAd(y)(Ad(x-1)- 1)Y + O(r2)), 

and 

(7.103) d1/f(Y, 0) = Ad(y)(Ad(x-1)- 1)Y. 
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Next if X is in ~, then ( 1.90) gives 

(x expr X)Y = xY exp(rAd(y)X), 

and hence 

(7.104) dt/f(O, X) = Ad(y)X. 

Combining (7.103) and (7.104), we obtain 

(7.105) dt/f(Y, X)= Ad(y)((Ad(x-1)- 1)Y +X). 

Sincex is in H:,Ad(x-1)-1 is invertible on the sum of the restricted-root 
spaces, and thus the set of all (Ad(x-1) -1)Y contains this sum. Since X 
is arbitrary in~. the set of all (Ad(x-1)- 1)Y +X is all of g. But Ad(y) 
is invertible, and thus (7 .105) shows that dt/f is onto g. This completes 
the proof that V' is open in G~. 

We are left with proving that any regular element X0 of ~ has 
ZGc(Xo) =He. Let x E Ge satisfy Ad(x)Xo = Xo. Since the centralizer 
of Xo in g is ~, Ad(x )~ = ~. If x = u exp X is the global Cartan decom
position ofx, then Lemma 7.22 shows thatAd(u)~ =~and (ad X)~=~. 
By Proposition 2.7, X is in~· Thus Ad(u)Xo = X0 , and it is enough 
to prove that u is in M. Write Xo = X1 + iX2 with X1 and Xz in mo. 
Since Ad(u)tto = Uo, we must have Ad(u)X1 = X1. The centralizer of the 
torus exp RX 1 in U is connected, by Corollary 4.51, and must lie in the 
analytic subgroup of U with Lie algebra Z110 (X1). Since X1 is regular, 
Lemma 4.33 shows that Z110 (X1) = mo. Therefore u is in M, and the 
proof is complete. 

Corollary 7.106. For the complex semisimple Lie group Ge, let Hx 
denote the centralizer in G e of a regular element x of G e. Then the 
identity component of Hx is a Cartan subgroup (Hx)o of Go and Hx lies 
in the normalizer NGc((Hx)o). Consequently Hx has only a finite number 
of connected components. 

REMARK. Compare this conclusion with the example of S L (2, C) 1 { ± 1} 
given after (7 .95). 

PRooF. Theorem 7.101 shows that we can choose y e G e with h = 
y-1xy in He. Since x is regular, so is h. Therefore Ad(h) has 1 as a 
generalized eigenvalue with multiplicity l = dime ~. Since Ad(h) acts 
as the identity on ~, it follows that ~ is the centralizer of h in g. Hence 
Ad(y)~ is the centralizer of x = yhy-1 in g, and Ad(y)~ is therefore the 
Lie algebra of Hx. Then (Hx)o = yHey-1 is a Cartan subgroup of Ge by 
(7.100). 

Next any element of a Lie group normalizes its identity component, 
and hence Hx lies in the normalizer NGc((Hx)o). By (7.93), Hx has a 
finite number of components. 
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Corollary 7.107. For the complex semisimple Lie group Ge, the 
centralizer in g of a regular element of Ge is a Cartan subalgebra of g. 

PRooF. This follows from the first conclusion of Corollary 7.1 06. 

We return to the general reductive Lie group G. The relationship 
between the regular set in G and the Cartan subgroups of G follows 
quickly from Corollary 7.107. 

Theorem 7.108. For the reductive Lie group G, let (~ 1 )0 , .•• , (~,)0 
be a maximal set of nonconjugate () stable Cartan subalgebras of g0 , and 
let H1, ••• , H, be the corresponding Cartan subgroups of G. Then 

(a) G' ~ u~=l UxeGXH;x-l 
(b) each member of G' lies in just one Cartan subgroup of G 
(c) each H; is abelian if G is semisimple and has a complexification. 

PRooF. 
(a) We apply Corollary 7.107 with Ge = Intg. Property (v) of reduc

tive Lie groups says that Ad( G) ~ G e, and the regular elements of G 
are exactly the elements x of G for which Ad(x) is regular in G e. If x 
isinG', then Corollary 7.107 shows that Z9 (x) is a Cartan subalgebra 
of g. Since xis in G, Z9 (x) is the complexification of Z90 (x), and hence 
Z90 (x) is a Cartan subalgebra of g0 • Therefore Z90 (x) = Ad(y)(~;)o for 
some y e G and some i with 1 ~ i ~ r. Write Go for Z90 (x), and let 
fl = Z6 (Go> be the corresponding Cartan subgroup. By definition, xis 
in fl. Since Go= Ad(y)(~;)o, it follows that fl = yH;y-1• Therefore x 
is in yH;y-1, and (a) is proved. 

(b) We again apply Corollary 7.107 with Ge = Intg. If x E G' 
lies in two distinct Cartan subgroups, then it centralizes two distinct 
Cartan subalgebras of 9o and also their complexifications in g. Hence 
the centralizer of x in g contains the sum of the two Cartan subalgebras 
in g, in contradiction with Corollary 7.107. 

(c) This time we regard G e as the complexification of G. Let ~0 be a 
Cartan subalgebra of g0, and let H be the corresponding Cartan subgroup 
of G. The centralizer He of ~ in G e is connected by (7 .1 00), and H is a 
subgroup of this group. Since He has abelian Lie algebra, it is abelian. 
Hence H is abelian. 

Now we return to the component structure of Cartan subgroups, but 
we shall restrict attention to the case that the reductive Lie group G is 
semisimple and has a complexification Gc. Let ~o = to e ao be the 
decomposition into + 1 and -1 eigenspaces under () of a 6 stable Cartan 
subalgebra ~0 • Let H be the Cartan subgroup ZG(~o),let T = expto, and 
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let A = exp ao. Here T is closed in K since otherwise the Lie algebra 
of its closure would form with ao an abelian subspace larger than ~0 • 

Hence Tis a torus. If a is a real root in ~(g, ~),then the same argument 
as for (7 .54) shows that 

(7.109) 

is an element of K with yJ = 1. As a varies, the elements Ya commute. 
Define F (T) to be the subgroup of K generated by all the elements Ya 
for a real. Theorem 7.55 identifies F(T) in the special case that ~0 is 
maximally noncompact; the theorem says that F(T) =Fin this case. 

Proposition 7 .110. Let G be semisimple with a complexification 
Gc, and let ~0 be a fJ stable Cartan subalgebra. Then the corresponding 
Cartan subgroup isH= AT F(T). 

PRooF. By Proposition 7.25, Za (to) is a reductive Lie group, and then 
it satisfies Za(to) = ZK (to) exp(po n Z90 (to)). By Corollary 4.51, ZK(to) 
is connected. Therefore Za(to) is connected. 

Consequently Za (to) is the analytic subgroup corresponding to 

a real a real a real 

The grouped term on the right is a split semisimple Lie algebra s0 • Let 
S be the corresponding analytic subgroup, so that ZG(to) = (exp 1)0)S = 

AT S. Since the subspace ~ = La reallRHa of s is a maximal abelian 
subspace of s0 n p0 , Theorem 7.55 shows that the corresponding F group 
is just F(T). By Theorem 7.53c, Zs(a~) = (exp~)F(T). Then 

Za(~o) = ZArs(ao) = ATZs(ao) = ATZs(~) =AT F(T). 

Corollary 7 .111. Let G be semisimple with a complexification Gc, 
and let Q = MAN be the Langlands decomposition of a cuspidal para
bolic subgroup. Let to be a fJ stable compact Cartan subalgebra of mo. 
and let ~0 = to $ ao be the corresponding fJ stable Cartan subalgebra of 
g0 • Define T and F(T) from to. Then 

(a) ZM(to) = T F(T) 
(b) ZMo = ZM n T 
(c) ZM = (ZM n T)F(T) = ZMoF(T) 
(d) MoZM = MoF(T). 

REMARK. When Q is a minimal parabolic subgroup, the subgroup 
MoZM is all of M. But for general Q, MoZM need not exhaust M. For 
some purposes in representation theory, MoZM plays an intermediate 
role in passing from representations of M0 to representations of M. 
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PRooF. 
(a) Proposition 7.110 gives ZM(to) = 0ZG(to EB ao) = 0 (ATF(T)) = 

TF(T). 

(b) Certainly Z M n T 5; Z Mo. In the reverse direction, Z Mo is contained 
in K n M0 , hence is contained in the center of K n Mo. The center of 
a compact connected Lie group is contained in every maximal torus 
(Corollary 4.47), and thus ZMo 5; T. To complete the proof of (b), we 
show that Z Mo 5; Z M. The sum of ao and a maximally noncompact 
Cartan subalgebra of mo is a Cartan subalgebra of g0 , and the corre
sponding Cartan subgroup of G is abelian by Proposition 7 .110. The 
intersection of this Cartan subgroup with M is a maximal noncompact 
Cartan subgroup of M and is abelian. By Corollary 7.91, ZMo 5; ZM. 

(c) The subgroup F (T) is contained in Z M since it is in K n exp i ao. 
Therefore ZM = ZM n ZM(lo) = ZM n (T F(T)) = (ZM n T)F(T), which 
proves the first equality of (c). The second equality follows from (b). 

(d) By (c), MoZM = MoZM0 F(T) = MoF(T). 

9. Barish-Chandra Decomposition 

For G = SU(l, 1) = { (~ ~) llal2 -1,812 = 1 }• the subgroup K 

{ ( e;o 0 ) } can be taken to be K = 0 e-;o , and G 1 K may be identified 

with the disc {lzl < 1} by gK ~ ,Bia. If g' = (~: ~:) is given, then 

. , (a' a + {3' fi a' f3 + {3' a ) . . 
the equality g g = fi' a + a' fi fi' ,8 + a' a rmphes that 

, a',B+,B'a a'(,Bia)+,B' 
8 (gK) ~ ,8',8 +a'a = fi'<.Bia) +a'· 

In other words, under this identification, g' acts by the associated linear 

fr · 1 fi · a' z + ,8' Th fi · b hi h actiona trans ormatiOn z ~ _ . e trans ormatwns y w c 
,B'z+a' 

G acts on G 1 K are thus holomorphic once we have imposed a suitable 
complex-manifold structure on G I K. 

If G is a semisimple Lie group, then we say that G I K is Hermitian if 
G 1 K admits a complex -manifold structure such that G acts by holomor
phic transformations. In this section we shall classify the semisimple 
groups G for which G 1 K is Hermitian. Since the center of G is contained 
in K (Theorem 6.31e), we could assume, if we wanted, that G is an 
adjoint group. At any rate there is no loss of generality in assuming that 
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G is linear and hence has a complexification. We begin with a more 
complicated example. 

EXAMPLE. Let n ~ m, let Mnm (C) be the complex vector space of all 
n-by-m complex matrices, and let lm be the m-by-m identity matrix. 
Define 

Q = {Z E Mnm(C) 11m- Z*Z is positive definite}. 

We shall identify Q with a quotient G/ K, taking G = SU(n, m) and 

K = S(U(n) x U(m)) 

= { ( ~ ~)I A E U(n), DE U(m), detAdetD = 1}. 
The group action of G on Q will be by 

(7.112) g(Z) = (AZ + B)(CZ + D)-1 ifg=(~ ~)· 
To see that (7.112) defines an action of G on Q, we shall verify that 
(C z + D)-1 is defined in (7 .112) and that g(Z) is in Q if Z is in Q. To 
do so, we write 

(AZ + B)*(AZ +B)- (CZ + D)*(CZ +D) 

= ( Z* 1m ) g* ( ~ _ ~m ) g ( ~) 

=(Z* 1m)(~ -~m)(~) sincegisinSU(n,m) 

(7.113) 
= Z*Z -1m. 

Let (CZ + D)v = 0. Unless v = 0, we see from (7.113) that 

0 ~ v*(AZ + B)*(AZ + B)v = v*(Z*Z- lm)v < 0, 

a contradiction. Hence (C Z + D)-1 exists, and then (7 .113) gives 

g(Z)*g(Z)- 1m= (CZ + D)*-1(Z*Z- 1m)(CZ +D)*. 

The right side is negative definite, and hence g(Z) is in Q. 
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The isotropy subgroup at Z = 0 is the subgroup with B = 0, and this 
subgroup reduces to K. Let us see that G acts transitively on Q. Let 
Z e Mnm (C) be given. The claim is that Z decomposes as 

(7.114) Z=udv with u E U(n), v E U(m), 

andd of the formd = (~),where do= diag()..1, ••• , Am) with all Aj ?: 0 

and where 0 is of size (n- m)-by-m. To prove (7 .114), we extend Z to a 
square matrix ( Z 0) of size n-by-n and let the polar decomposition of 
(Z 0) be (Z 0) = u1p with u1 e U(n) and p positive semidefinite. 
Since ( Z 0) is 0 in the last n- m columns, u1 gives 0 when applied to 
the last n- m columns of p. The matrix u1 is nonsingular, and thus the 

lastn-mcolumnsofpareO. SincepisHermitian,p = (~ ~)withp' 
positive semidefinite of size m-by-m. By the finite-dimensional Spectral 
Theorem, write p' = u2d0u21 with u2 e U(m) and do= diag(A1, ... , Am). 

Then (7 .114) holds with u = u, ( ~ 1n~m), d = (~),and v = u21• 

With Z as in (7.114), the matrix Z*Z = v*d*dv has the same eigen
values as d*d, which has eigenvalues A~, ... , A~. Thus Z is in Q if and 
only ifO.::: Aj < 1 for 1 .::: j .::: m. In the formula (7 .114) there is no loss 

of generality in assuming that ( det u) ( det v) _, = 1 , so that ( ~ v ~ 1 ) 

. . L b h b f S ( ) h . (cosh tj sinh tj ) . 
IS m K. et a e t e mem er o U n, m t at IS . h h m 

SID tj COS tj 

the ph and (n + j)th rows and columns for 1 .::: j .::: m and is otherwise 

the identity. Then a(O) = d, and ( ~ v~') (d) = udv = Z. Hence 

g = ( ~ v~') a maps 0 to Z, and the action of G on Q is transitive. 

Throughout this section we let G be a semisimple Lie group with 
a complexification Gc. We continue with the usual notation for G as 
a reductive Lie group. Let c0 be the center of t0 • We shall see that 
a necessary and sufficient condition for G 1 K to be Hermitian is that 
Z90 (c0) = t0 • In this case we shall exhibit Gl K as holomorphically 
equivalent to a bounded domain in en for a suitable n. The explicit 
realization of G 1 K as a bounded domain is achieved through the "Harish
Chandra decomposition" of a certain open dense subset of Gc. 

First we shall prove that if GIK is Hermitian, then Z90 (c0) = to. 
Before stating the precise theorem, it will be helpful to have a little detail 
available concerning the "multiplication-by-;" mapping mentioned in 
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connection with holomorphic mappings at the end of §1.10. Let M and 
N be open sets in em and en, and let <I> : M ~ N be smooth. Let 
(z" ... , zm) and (w" ... , wn) be coordinates for M and N, and write 
Zj =xi+ iyi and wi = ui + ivi. We think of <I> as given by expressions 
w; = w;(z" ... , Zm), 1 _::::: i _::::: n. If we put Xj+m = Yi for 1 _::::: j _::::: m 
and u;+n = v; for 1 _::::: i _::::: n, then the derivative matrix of <I> at a point 

is (<I>') = (au;). The Cauchy-Riemann equations for each w; in each 
OXj 

variable Zj say that (<I>') if of the form ( _: ! ) , or equivalently that 

(<I>') satisfies the commutativity relation 

(7.115a) 

where Im = ( 1~ - cim) and where In is defined similarly. Here Im is 

the matrix of the linear transformation (also denoted Im) that is defined 

by Im (..i_) = (~) and Im (~) = - (..i_). 
axi ayi ayi axi 

If <I> is the identity, then (7 .115a) for arbitrary coordinates says that the 
linear transformation corresponding to Im is well defined independently 
of basis. Then the above remarks make sense when <I> is a smooth 
mapping between complex manifolds. At each point p of M, we obtain 
a linear map Ip of the tangent space Tp(M) to itself with I} = -1, and 
we similarly have such a map I~ of the tangent space Tq (N) to itself. If 
<I> is holomorphic, then the Cauchy-Riemann equations yield 

(7.115b) 

for all p. The map Ip is the multiplication-by-i mapping at p, and 
the system of all Ip as p varies is the almost-complex structure on M 
associated to the complex structure. 

Now let us consider the case that M = N = G 1 K and p is the identity 
coset. If G 1 K is Hermitian, then each left translation Lk by k e K 
(defined by Lk(k') = kk') is holomorphic and fixes the identity coset. 
If I denotes the multiplication-by-i mapping at the identity coset, then 
(7 .115) gives 

I o dLk = dLk o I. 

We may identify the tangent space at the identity coset with p0 , and then 
dLk = Ad(k)lpo· Differentiating, we obtain 

(7 .116) I o (adX)Ip0 = (adX)Ip0 o I for all X e t0 • 
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Theorem 7.117. If G f K is Hermitian, then the multiplication-by-i 
mapping J : Po ~ Po at the identity coset is of the form J = (ad Xo)lpo 
for some Xo e to. This element Xo is in co and satisfies Z90 (X0) = t0 • 

Hence Z90 (co) =to. 

PRooF. Since 12 = -1 on p0 , the complexification p is the direct sum 
of its +i and -i eigenspaces p+ and p-. The main step is to prove that 

(7 .118) [X, Y] = 0 if X E p+ and Y E p+. 

Let B be the bilinear form on g0 and g that is part of the data of a reductive 
group, and define a bilinear form C on p by 

C(X, Y) = B(X, Y) + B(JX, JY). 

Since B is positive definite on p0 , so is C. Hence C is nondegenerate on 
p. Let us prove that 

(7 .119) C([[X, Y], Z], T) = C([[Z, T], X], Y) 

for X, Y, Z, Tin p. When X, Y, Z are in p, the bracket [Y, Z] is in t, and 
therefore (7 .116) implies that 

(7 .120) J[X, [Y, Z]] = [JX, [Y, Z]]. 

Using the Jacobi identity and (7 .120) repeatedly, together with the in
variance of B, we compute 

B(J[[X, Y], Z], JT) = B(J[X, [Y, Z]], JT)- B(J[Y, [X, Z]], JT) 

(7.121) 

= B([JX, [Y, Z]], JT)- B([JY, [X, Z]], JT) 

= -B([JT, [Y, Z]], J X)+ B([JT, [X, Z]], JY) 

= -B(J[T, [Y, Z]], JX) + B(J[T, [X, Z]], JY). 

Using the result (7.121) with Z and T interchanged, we obtain 

B(J[[X, Y], Z], JT) = B([[X, Y], JZ], JT) 

= -B([[X, Y], JT], JZ) 

= -B(J[[X, Y], T], JZ) 

(7.122) = B(J[Z, [Y, T]], J X)- B(J[Z, [X, T]], JY). 

The sum of (7 .121) and (7 .122) is 

2B(J[[X, Y], Z], JT) =- B(J[T, [Y, Z]], JX) + B(J[T, [X, Z]], JY) 

+ B(J[Z, [Y, T]], JX)- B(J[Z, [X, T]], JY) 

= B(J[Y, [Z, T]], JX)- B(J[X, [Z, T]], JY) 
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= B([JY, [Z, T]], JX)- B([JX, [Z, T]], JY) 

= 2B([Z, T], [JX, JY]) 

= 2B([[Z, T], JX], JY) 

= 2B(J[[Z, T], X], JY). 

The calculation that leads to (7 .123) remains valid if J is dropped 
throughout. If we add the results with J present and with J absent, 
we obtain (7 .119). To prove (7 .118), suppose that X and Y are in p+, so 
that JX = iX and JY = iY. Then 

C([[Z, T], X], Y) = C(J[[Z, T], X], JY) 

= C([[Z, T], JX], JY) 

= -C([[Z, T], X], Y) 

says C([[Z, T], X], Y) = 0. By (7.119), C([[X, Y], Z], T) = 0. Since T 
is arbitrary and Cis nondegenerate, 

(7.124) [[X, Y], Z] = 0 for all Z e p. 

If bar denotes conjugation of g with respect to g0 , then B(W, W) < 0 for 
all W # 0 in t. For W =[X, Y], we have 

B([X, Y], [X, Y]) = B([X, Y], [X, Y]) = B([[X, Y], X], Y), 

and the right side is 0 by (7.124). Therefore [X, Y] = 0, and (7.118) is 
proved. 

Let us extend J to a linear map 1 defined on g, putting 1 = 0 on t. 
We shall deduce from (7 .118) that 1 is a derivation of g0 , i.e., that 

(7.125) ][X, Y] = [JX, Y] +[X, iY] for X, Y E QO· 

If X and Y are in to, all terms are 0, and (7 .125) is automatic. If X is in 
t0 and Y is in p0 , then [ 1 X, Y] = 0 since 1 X = 0, and (7 .125) reduces to 
(7 .116). Thus suppose X and Y are in p0 • The element X - i J X is in p+ 
since 

J(X- iJX) = JX- iJ2X = JX + iX = i(X- iJX), 

and similarly Y- iJY is in p+. By (7.118), 

0 =[X- iJX, Y- iJY] =([X, Y]- [JX, JY])- i([JX, Y] +[X, JY]). 
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The ~al and imaginary parts must each be 0. Since the imaginary part 
is 0, the right side of (7 .125) is 0. The left side of (7 .125) is 0 since J is 
0 on t0 • Hence J is a derivation of g0 • 

By Proposition 1.98, J = adXo for some Xo e g0 • Let Y e Po be 
given. Since J2 = -1 on p0 , the element Y' = -JY ofp0 has JY' = Y. 
Then 

B(Xo, Y) = B(Xo, JY') = B(Xo, [Xo, Y']) = B([Xo, Xo], Y') = 0. 

Hence Xo is orthogonal to p0 , and Xo must be in to. Since J = adX0 is 
0 on to, Xo is in Co· 

If Y is in Z90 (X0), then the to component of Y already commutes with 
X0 since Xo is in eo. Thus we may assume that Y is in p0 • But then 
[X0, Y] = JY. Since J is nonsingular on Po, 0 = [X0, Y] implies Y = 0. 
We conclude that Z90 (X0) =to. Finally we have 

to ~ Z90 (Co) ~ Z90 (Xo) =to, 

and equality must hold throughout. Therefore Z90 (c0) =to. 

For the converse we assume that Z90 (Co) =to. and we shall exhibit a 
complex structure on G 1 K such that G operates by holomorphic trans
formations. Fix a maximal abelian subspace to of to. Then c0 ~ to, 
so that Z90 (to) ~ Z90 (co) = to. Consequently to is a compact Cartan 
subalgebra of g0 • The corresponding Cartan subgroup T is connected 
by Proposition 7 .90b, hence is a torus. 

Every root in IJ. = IJ. (g, t) is imaginary, hence compact or non compact 
in the sense of §VI.7. If l!!.K and l!!.n denote the sets of compact and 
noncompact roots, then we have 

(7.126) and 

just as in (6.103). 

Lemma 7.127. A root a is compact if and only if a vanishes on the 
center c of t. 

PRooF.If a is in IJ., then a(c) = 0 if and only if [c, ga] = 0, if and only 
if ga ~ Z9(c), if and only if~ ~ t, if and only if a is compact. 

By a good ordering for ito, we mean a system of positivity in which 
every noncompact positive root is larger than every compact root. A 
good ordering always exists; we can, for instance, use a lexicographic 
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ordering that takes ic0 before its orthogonal complement in it0 • Fixing 
a good ordering, let ~ +, ~ k, and ~~ be the sets of positive roots in ~, 
~K. and ~n· Define 

and 

so that p = p+ EB p-. 
In the example of SU(n, m) earlier in this section, we have 

· JR d. (I I I I) zco = tag :;; •... , :;;. -;; •... , -;; 

with n entries ~ and m entries - ~, and we may take to to be the diagonal 
subalgebra. If roots e; - ej that are positive on 

diag(~, ... , ~. -~, ... , -~) 

are declared to be positive, then p+ has the block form ( ~ ~) and p

has the block form ( ~ ~) . 

Lemma 7 .128. The subspaces p+ and p- are abelian subspaces of p, 
and [t, p+] ~ p+ and [t, p-] ~ p-. 

PRooF. Let a, {3, and a+ {3 be in ~ with a compact and {3 noncompact. 
Then [ga, gfl] ~ ga+fl, and {3 and a + {3 are both positive or both negative 
because the ordering is good. Summing on a and {3, we see that [t, p+] ~ 
p+ and [t, p-] ~ p-. 

If a and {3 are in ~~,then a+ {3 cannot be a root since it would have to 
be a compact root larger than the noncompact positive root a. Summing 
on a and {3, we obtain [p+, p+] = 0. Similarly [p-, p-] = 0. 

Let b be the Lie subalgebra 

of g, and let p+, Kc, p-, and B be the analytic subgroups of Gc with Lie 
algebras p+, t, p-, and b. Since Gc is complex and p+, t, p-, bare closed 
under multiplication by i, all the groups p+, Kc, p-, B are complex 
subgroups. 
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Theorem 7.129 (Harish-Chandra decomposition). Let G be semisim
ple with a complexification Gc, and suppose that the center c0 of to has 
Z90 (c0) = t0 • Then multiplication from p+ x Kc x p-into Gc is one
one, holomorphic, and regular (with image open in Gc), GB is open in 
ac, and there exists a bounded open subset n ~ p+ such that 

GB = GKCp- = QKCP-. 

Moreover, G 1 K is Hermitian. In fact, the map G ~ n given by 
g ~ (P+ component of g) exhibits G/ K and n as diffeomorphic, and G 
acts holomorphically on n by g(w) = (P+ component of gw). 

REMARKS. 

1) We shall see in the proof that the complex group p+ is holomor
phically isomorphic with some en' and the theorem asserts that n is a 
bounded open subset when regarded as in en in this fashion. 

2) When G = SU(n, m), ac may be taken as SL(n + m, C). The 
decomposition of an open subset of ac as p+ x Kc x p- is 

valid whenever D is nonsingular. Whatever Q is in the theorem, if w = 

( 1 Z) . . d (A B ) . . G th (A AZ + B ) 
0 1 IS m n an g = C D IS m , en gw = C C Z + D ; 

hence (7 .130) shows that the p+ component of gw is 

( 1 (AZ + B)(CZ + D)-1 ) 
0 1 . 

So the action is 

(7.131) (~ ~)((6 ~))=(6 (AZ+B)(fZ+D)-1
). 

We know from the example earlier in this section that the image of Z = 0 

under Z ~ (AZ + B)(CZ + D)-1 for all ( ~ ~)in SU(n, m) is all Z 

with 1m - Z* Z positive definite. Therefore n consists of all ( 6 f) 
such that 1m-Z* Z is positive definite, and the action (7 .131) corresponds 
to the action by linear fractional transformations in the example. 

3) The proof will reduce matters to two lemmas, which we shall 
consider separately. 
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PRooF. Define 

bK = t$ E9 g_a, 
ae81: 

N, N-, B K = corresponding analytic subgroups of Gc. 

Let HR. and H be the analytic subgroups of Gc with Lie algebras ito and 
t, so that H = T Ha as a direct product. By (7 .100) a Cartan subgroup 
of a complex semisimple Lie group is connected, and therefore H is a 
Cartan subgroup. The involution() o bar, where bar is the conjugation 
of g with respect to g0 , is a Cartan involution of g, and ito is a maximal 
abelian subspace of the -1 eigenspace. The +1 eigenspace is to$ ip0 , 

and the corresponding analytic subgroup of Gc we call U. Then 

Zu(ito) = Zu(t) = U n ZGc{t) = U n H = T. 

So the Mp group is just T. By Proposition 7.82 the M of every parabolic 
subgroup of Gc is connected. 

The restricted roots of gR. relative to ito are evidently the restrictions 
from t to ito of the roots. Therefore b = t $ n- is a minimal parabolic 
subalgebra of gR.. Since parabolic subgroups of Gc are closed (by 
Proposition 7 .83b) and connected, B is closed. 

The subspace t®p- is a Lie subalgebra of glR containing b and hence is 
a parabolic subalgebra. Then Proposition 7.83 shows that Kc and p- are 
closed, Kc p- is closed, and multiplication Kc x p- is a diffeomorphism 
onto. Similarly p+ is closed. 

Moreover the Lie algebra t $ p- of Kc p- is complex, and hence 
Kc p- is a complex manifold. Then multiplication Kc x p- is evidently 
holomorphic and has been observed to be one-one and regular. Since 
p+ $ (t$p-) = g, Lemma 6.44 shows thatthe holomorphic multiplication 
map p+ x (Kc p-) --+ Gc is everywhere regular. It is one-one by 
Proposition 7 .83e. Hence p+ x Kc x p- --+ G is one-one, holomorphic, 
and regular. 

Next we shall show that G B is open in Gc. First let us observe that 

(7.132) 

In fact, since roots are imaginary on to, we have ga = g-a· Thus if his 
in ito and X-a is inn-, then 

h + L X-a = -h + L X_a E -h + n, 
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and (7 .132) follows since members of g0 equal their own conjugates. The 
real dimension of ito$ n- is half the real dimension oft$ n $ n- = g, 
and hence 

(7.133) 

Combining (7.132) and (7.133), we see that 

(7 .134) 

The subgroup lfRN- of Gc is closed by Proposition 7.83, and hence 
lfRN- is an anlytic subgroup, necessarily with Lie algebra ito$ n-. By 
Lemma 6.44 it follows from (7 .134) that multiplication G x HR.N- --+ Gc 
is everywhere regular. The dimension relation (7 .133) therefore implies 
that G HR.N- is open in Gc. Since B = T HR.N- and T <; G, G B equals 
G HR.N- and is open in Gc. 

The subgroups p+ and p- are theN groups of parabolic subalgebras, 
and their Lie algebras are abelian by Lemma 7.128. Hence p+ and p
are Euclidean groups. Then exp: p+ --+ p+ is biholomorphic, and p+ 
is biholomorphic with en for some n. Similarly p- is biholomorphic 
with en. 

The subgroup Kc is a reductive group, being connected and having bar 
as a Cartan involution for its Lie algebra. It is the product of the identity 
component of its center by a complex semisimple Lie group, and our 
above considerations show that its parabolic subgroups are connected. 
Then Bx is a parabolic subgroup, and 

(7.135) Kc = KBx 

by Proposition 7 .83f. 
Let A denote a specific Ap component for the lwasawa decomposition 

of G, to be specified in Lemma 7.143 below. We shall show in Lemma 
7.145 that this A satisfies 

(7 .136a) 

and 

(7.136b) p+ components of members of A are bounded. 

Theorem 7.39 shows that G = K AK. Since b <; t $ p-, we have 
B <; Kc p-. Since Lemma 7.128 shows that Kc normalizes p+ and p-, 

(7.136a) gives 

(7.137) 
GB <; GKCp- <; KAKKCp-

<; KP+KCp-KCp- = p+KCP-. 
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By (7.135) we have 

(7.138) 

Inclusions (7 .137) and (7 .138) together imply that 

GB = GKCp- ~ p+KCP-. 

Since GB is open, 

(7 .139) 

for some open set Q in p+. 
Let us write p+( ·)for the p+ component. For gb e GB, we have 

p+(gb) = p+(g), and thus p+ restricts to a smooth map carrying G onto 
Q. From (7.139) it follows that the map G x Q--+ Q given by 

(7 .140) 

is well defined. For fixed g, this is holomorphic since left translation 
by g is holomorphic on Gc and since p+ is holomorphic from p+ Kc p
to p+. To see that (7 .140) is a group action, we use that Kc p- is a 
subgroup. Let g, and 82 be given, and write g2w = p+(g2w)k2P'i and 
g,g2w = p+(g1g2w)kc p-. Then 

g,p+(g2w) = g,g2w(k2P2)-1 = p+(g,g2w)(kc p-)(k2P2)-1. 

Since (kc p-)(k2P2)-1 is in Kc p-, p+(g,p+(g2w)) = p+(g,g2w). There
fore (7.140) is a group action. The action is evidently smooth, and we 
have seen that it is transitive. 

If g is in G and k is in K, we can regard 1 as in Q and write 

since k 1 is in K ~ Kc and has p+ component 1. Therefore p+ : G --+ Q 
descends to a smooth map of G J K onto Q. Let us see that it is one-one. 
If p+(g1) = p+(g2), then g1 = g2kc p- since Kc p-is a group, and hence 
g21g1 =kcp-. ThusthemapG/K--+ Qwillbeone-oneifweshowthat 

(7.141) GnKCp- = K. 

To prove (7.141), we note that ;2 is clear. Then we argue in the same 
way as for (7.131) that 

(7.142) 



9. Harish-Chandra Decomposition 447 

Since G and Kc p- are closed in Gc, their intersection is a closed 
subgroup of G with Lie algebra t0 • Let g = k exp X be the global Cartan 
decomposition of an element g of G n Kc p-. Then Ad(g)t0 = t0 , and 
Lemma 7.22 implies that (adX)to s;; t0 • Since ad X is skew symmetric 
relative to B, (ad X)p0 s;; Po· But X E Po implies that (ad X)t0 s;; Po and 
(adX)p0 s;; t0 • Hence ad X= 0 and X= 0. This proves (7.141). 

To see that G 1 K -+ n is everywhere regular, it is enough, since (7 .140) 
is a smooth group action, to show that the differential of p+ : G -+ n at 
the identity is one-one on p0 • But dp+ complexities to the projection of 
g = p+ $t$p- on p+, and (7 .142) shows that the kernel of this projection 
meets p0 only in 0. Therefore the map G/ K is a diffeomorphism. 

To see that n is bounded, we need to see that p+(g) remains bounded 
as g varies in G. If g E G is given, write g = k1ak2 according to 
G = K AK. Then p+(g) = p+(k1a) = k1p+(a) since it follows from 
(7.139) that Kn = n. Therefore it is enough to prove that lllogp+(a)ll 
remains bounded, and this is just (7 .136b). Thus the theorem reduces to 
proving (7 .136), which we do in Lemmas 7.143 and 7.145 below. 

Lemma 7 .143. Inductively define Y1, ... , Ys in ~;; as follows: y1 is 
the largest member of~;;, and Yj is the largest member of~;; orthogonal 
to y1, ••• , Yj-I. For 1 .::: j .::: s, let Ey, be a nonzero root vector for Yj. 

Then the roots y1, ••• , Ys are strongly orthogonal, and 
s 

Oo = ffi!R(Eyj + Ey) 
j=l 

is a maximal abelian subspace of p0 • 

PRooF. We make repeated use of the fact that if E f3 is in gp, then E f3 is 
in 9-fJ· Since [p+, p+] = 0 by Lemma 7.128, Yj + y; is never a root, and 
the Yj 's are strongly orthogonal. Then it follows that ao is abelian. 

To see that ao is maximal abelian in p0 , let X be a member of Po 
commuting with Oo· By (7.126) we can write X = Lpel\. Xp with 
Xp e gp. Without loss of generality, we may assume that X is orthogonal 
to ao, and then we are to prove that X = 0. Assuming that X =f. 0, let {30 

be the largest member of ~n such that Xf3o =f. 0. Since X= X, X_f3o =f. 0 
also; thus {30 is positive. Choose j as small as possible so that {30 is not 
orthogonal to Yj. 

First suppose that fJo =f. Yj. Since [p+, p+] = 0, fJo + Yj is not a root. 
Therefore {30 - Yj is a root. The root fJo is orthogonal to YJ. ... , Yj-h 

and Yj is the largest noncompact root orthogonal to YJ. ... , Yj-I· Thus 
fJo < Yj, and /30 - Yj is negative. We have 

(7.144) 0 =[X, Eyj + Ey) = L ([Xp, Ey,] + [Xp, Ey,]). 
{JEL\n 
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and [X~~o, Ey) is not 0, by Corollary 2.35. Thus there is a compensating 
term [X11 , Ey), i.e., there exists {3 e !1n with {3 + Yi = f3o- Yi and with 

Xp # 0. Since X= X, x_11 # 0. By maximality of f3o, f3o > -{3. Since 
Yi - f3o is positive, Yi > f3o > -{3. Therefore {3 + Yi is positive. But 
{3 + Yi = f3o - Yi, and the right side is negative, contradiction. 

Next suppose that {30 = Yi· Then [Xy1, Ey1] # 0, and (7.144) gives 

Define scalars c+ and c- by Xy1 = c+ Ey1 and X_y1 = c- Ey1 • Substituting, 
we obtain 

- - + --c [Ey1 , Ey1] + c [Ey1 , Ey) = 0, 

and therefore c+ =c-. Consequently Xy1 + X-y1 = c+(Ey1 + Ey) makes 
a contribution to X that is nonorthogonal to Ey1 + Ey1 • Since the other 
terms of X are orthogonal to Ey1 + Ey1 , we have a contradiction. We 
conclude that X = 0 and hence that ao is maximal abelian in p0 • 

Lemma 7.145. With notation as in Lemma 7.143 and with the Ey1 's 

normalized so that [Ey1 , Ey1] = 21Yi1-2Hy1 ,let Z = .Ej=1 ti(Ey1 + Ey1) be 
in ao. Then 

(7.146) exp Z = exp X 0 exp H0 exp Yo 

with 

Moreover the p+ components exp Xo of exp Z remain bounded as Z 
varies through ao. 

REMARK. The given normalization is the one used with Cayley trans
forms in §VI.7 and in particular is permissible. 

PRooF. For the special case that G = SU (1, 1) £;; S L (2, q, (7 .146) is 
just the identity 

( cosht sinht) _ ( 1 tanht) ( (cosht)-1 0 ) ( 1 0) 
sinht cosht - 0 1 0 cosht tanht 1 · 

Here we are using Ey = (~~)and Ey = (~ ~). 
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We can embed the special case in the general case for each Yi, 
1 ::::: j ::::: s, since the inclusion 

induces a homomorphism SL(2, C)--+ Gc, SL(2, C) being simply con
nected. This embedding handles each of the s terms of Z separately. 
Since the r/s are strongly orthogonal, the contributions to X0 , Y0 , and 
Ho for y; commute with those for Yi when i =F j, and (7 .146) follows for 
general Z. 

Finally in the expression for X0 , the coefficients of each Eyj lie be
tween -1 and + 1 for all Z. Hence exp Xo remains bounded in p+. 

This completes the proof of Theorem 7.129. Let us see what it means 
in examples. First suppose that g0 is simple. For eo to be nonzero, g0 

must certainly be noncompact. Consider the Vogan diagram of g0 in a 
good ordering. Lemma 7.128 rules out having the sum of two positive 
noncom pact roots be a root. Since the sum of any connected set of simple 
roots in a Dynkin diagram is a root, it follows that there cannot be two 
or more noncompact simple roots in the Vogan diagram. Hence there 
is just one noncompact simple root, and the Vogan diagram is one of 
those considered in §VI.lO. Since there is just one noncompact simple 
root and that root cannot occur twice in any positive root, every positive 
noncompact root has the same restriction to eo. In particular, dim eo = 1. 

To see the possibilities, we can refer to the classification in §VI.1 0 and 
see that c0 =F 0 for the following cases and only these up to isomorphism: 

go to 
su(p, q) su(p) E9 su(q) E9 lR 
so(2, n) so(n) E91R 

(7.147) sp(n, IR) su(n) E91R 
so*(2n) su(n) E91R 

EIII so(lO) E91R 
EVIl e6 E91R 

Conversely each of these cases corresponds to a group G satisfying the 
condition Z90 (c0) =to. and hence G/ K is Hermitian in each case. 

If g0 is merely semisimple, then the condition Z90 (c0) = t0 forces the 
center of the component of t0 in each noncompact simple component of 
g0 to be nonzero. The corresponding G 1 K is then the product of spaces 
obtained in the preceding paragraph. 
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10. Problems 

1. Prove that the orthogonal group 0(2n) does not satisfy property (v) of a 
reductive Lie group. 

2. Let SL(2, lR) be the universal covering group of SL(2, lR), and let qJ be 

the covering homomorphism. Let K be the subgroup of SL(2, lR) fixed 
by the global Cartan involution e. Parametrize K ;;;: lR so that ker (/) = z. 
Define {; = fi (2, lR) x JR, and extend e to {; so as to be 1 in the 
second factor. Within the subgroup lR x lR where e is 1, let D be the 
discrete subgroup generated by (0, 1) and (1, -J2), so that Dis central in 
G. Define G = G/D. 
(a) Prove that G is a connected reductive Lie group with 0G = G. 
(b) Prove that G ss has infinite center and is not closed in G. 

3. In G = SL(n, lR), take MpApNp to be the upper-triangular subgroup. 
(a) Follow the prescription of Proposition 7.76 to see that the proposition 

leads to all possible block upper-triangular subgroups of SL(n, lR). 
(b) Give a direct proof for SL(n, lR) that the only closed subgroups con

taining MpApNp are the block upper-triangular subgroups. 
(c) Give a direct proof for SL(n, lR) that no two distinct block upper

triangular subgroups are conjugate within SL(n, lR). 

4. In the notation for G = SL(4, lR) as in §VI.4, form the parabolic subgroup 
MAN containing the upper-triangular group and corresponding to the 
subset {/3 - / 4 } of simple restricted roots. 

(a) Prove that the ao roots are ±(/1 - /2), ±(/I - !<h + /4)), and 

±(/2- !<h + /4)). 
(b) Prove that the ao roots do not all have the same length and do not form 

a root system. 

5. Show that a maximal proper parabolic subgroup MAN of SL(3, lR) is 
cuspidal and that M :/:- MoZM. 

6. For G equal to split G2 , show that there is a cuspidal maximal proper 
parabolic subgroup MAN such that the set of ao roots is of the form 
{±J7, ±2J7, ±3J7}. 

7. The group G = Sp(2, lR) has at most four nonconjugate Cartan subalge
bras, according to §VI.7, and a representative of each conjugacy class is 
given in that section. 
(a) For each of the four, construct the MA of an associated cuspidal 

parabolic subgroup as in Proposition 7.87. 
(b) Use the result of (a) to show that the two Cartan subalgebras of non

compact dimension one are not conjugate. 
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8. Let G be SO(n, 2)o. 
(a) Show that Gc;;:; SO(n + 2, C). 

(b) Show that Z90 (Co) =to. 
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(c) The isomorphism in (a) identifies the root system of SO(n, 2) as of 

type B(n+l)/2 if n is odd and of type D<n+2)/2 if n is even. Identify 

which roots are compact and which are noncompact. 

(d) Decide on some particular good ordering in the sense of §9, and 

identify the positive roots. 

Problems 9-12 concern a reductive Lie group G. Notation is as in §2. 

9. Let ao be maximal abelian in Po- The natural inclusion NK(ao) ~ NG(Oo) 
induces a homomorphism Nx(ao)/Zx(ao) ~ NG(Oo)/ZG(ao). Prove 

that this homomorphism is an isomorphism. 

10. Let to$ ao be a maximally noncompact (}stable Cartan subalgebra of g0• 

Prove that every element of N x ( ao) decomposes as a product zn, where n 
is in Nx(to $ ao) and z is in Zx(ao). 

11. Let H be a Cartan subgroup of G, and let sa be a root reflection in W (g, ~). 

(a) Prove that sa is in W(G, H) if a is real or a is compact imaginary. 

(b) Prove that if H is compact and G is connected, then sa is not in 

W(G, H) when a is noncompact imaginary. 

(c) Give an example of a reductive Lie group G with a compact Cartan 

subgroup H such that Sa is in W ( G, H) for some noncompact imagi
nary root a. 

12. Let H = T A be the global Cartan decomposition of a e stable Cartan 

subgroup of G. Let W(G, A) = NG(Cto)/ZG(Cto), and let M = 0ZG(Cto). 

Let W1 (G, H) be the subgroup of W(G, H) of elements normalizing ito 
and ao separately. 
(a} Show that restriction to ao defines a homomorphism of W1 ( G, H) into 

W(G, A). 
(b) Prove that the homomorphism in (a) is onto. 

(c) Prove that the kernel of the homomorphism in (a) may be identified 

with W(M, T). 

Problems 13-21 concern a reductive Lie group G that is semisimple. Notation 

is as in §2. 

13. Let to$ ao be a maximally noncompact (}stable Cartan subalgebra of g0 , 

impose an ordering on the roots that takes ao before ito, let b be a Borel 

subalgebra of g containing t $a and built from that ordering, and let bar 

denote the conjugation of g with re~pect to g0 • Prove that the smallest Lie 

subalgebra of g containing b and b is the complexification of a minimal 

parabolic subalgebra of go. 
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14. Prove that N90 (to) =to. 
15. Let G have a complexification Gc. Prove that the normalizer of g0 in Gc 

is a reductive Lie group. 

16. Let G have a complexification Gc, let U ~ Gc be the analytic subgroup 
with Lie algebra to e ipo. and let ~0 = to e ao be the decomposition into 
+ 1 and -1 eigenspaces of a() stable Cartan subalgebra of go. Prove that 
exp i ao is closed in U. 

17. Give an example of a semisimple G with complexification Gc such that 
K n exp i ao strictly contains Ksplit n exp i ao. Here ao is assumed maximal 
abelian in Po. 

18. Suppose that G has a complexification Gc and that rankG = rankK. 

Prove that ZGc = ZG. 

19. Suppose that rank G = rank K. Prove that any two complexifications of 
G are holomorphically isomorphic. 

20. Show that the conclusions of Problems 18 and 19 are false for G = 
SL(3, R). 

21. Suppose that G I K is Hermitian and that go is simple. Show that there are 
only two ways to impose a G invariant complex structure on G I K. 

Problems 22-24 compare the integer span of the roots with the integer span 
of the compact roots. It is assumed that G is a reductive Lie group with 
rank G = rank K. 

22. Fix a positive system ll. +. Attach to each simple noncompact root the 
integer 1 and to each simple compact root the integer 0; extend additively 
to the group generated by the roots, obtaining a function y --+ n(y). 
Arguing as in Lemma 6.98, prove that n(y) is odd when y is a positive 
noncompact root and is even when y is a positive compact root. 

23. Making use of the function y --+ ( -l)n(y), prove that a noncompact root 
can never be an integer combination of compact roots. 

24. Suppose that G is semisimple, that 9o is simple, and that G I K is not 
Hermitian. Prove that the lattice generated by the compact roots has index 
2 in the lattice generated by all the roots. 

Problems 25-29 give further properties of semisimple groups with rank G = 
rank K. Let to ~ to be a Cartan subalgebra of g0 , and form roots, compact and 
noncompact. 

25. K acts on p via the adjoint representation. Identify the weights as the 
noncompact roots, showing in particular that 0 is not a weight. 

26. Show that the subalgebras of g containing t are of the form t Ea EBaeE 9a 
for some subset E of noncompact roots. 
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27. Suppose that t $ ffiaeE ga is a subalgebra of g. Prove that 

t $ L (Qa $ g_a) and !$ E9 ga 
aeE ae(En(-E)) 

are subalgebras of g that are the complexifications of subalgebras of g0 • 

28. Suppose that g0 is simple. Prove that the adjoint representation of K on p 

splits into at most two irreducible pieces. 

29. Suppose that g0 is simple, and suppose that the adjoint representation of K 
on pis reducible (necessarily into two pieces, according to Problem 28). 
Show that the center co of to is nonzero, that Z90 (c0) = t0 , and that the 
irreducible pieces are p+ and p-. 

Problems 30-33 concern the group G = SU(n, n) n Sp(n, C). In the notation 

of §9, let Q be the set of all Z E Mnn (C) such that ln- Z* Z is positive definite 

and z = Z1 • 

30. Using Problem 15b from Chapter VI, prove that G :;::; Sp(n, JR.). 

31. With the members of G written in block form, show that (7 .112) defines 

an action of G on Q by holomorphic transformations. 

32. Identify the isotropy subgroup of G at 0 with 

33. The diagonal subalgebra of go is a compact Cartan subalgebra. Exhibit 
a good ordering such that p+ consists of block strictly upper-triangular 
matrices. 

Problems 34-36 concern the group G = S0*(2n). In the notation of §9, let 
Q be the set of all Z E Mnn(C) such that ln - Z* Z is positive definite and 

z = -Z1 • 

34. With the members of G written in block form, show that (7 .112) defines 

an action of G on Q by holomorphic transformations. 

35. Identify the isotropy subgroup of G at 0 with 
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36. The diagonal subalgebra of go is a compact Cartan subalgebra. Exhibit 
a good ordering such that p+ consists of block strictly upper-triangular 
matrices. 

Problems 37-41 concern the restricted roots in cases when G is semisimple and 
G I K is Hermitian. 

37. In the example of §9 with G = SU(n, m), 
(a) show that the roots Yi produced in Lemma 7.143 are Yt = e1- en+m• 

Y2 = e2 - en+m-t. ... , Ym = em - em+l· 

(b) show that the restricted roots (apart from Cayley transform) always 

include all ±yi and all !<±y; ± Yi>· Show that there are no other 
restricted roots if m = n and that ±!y; are the only other restricted 
roots ifm < n. 

38. In the example of Problems 30-33 with G = SU(n, n) n Sp(n, C) ;;:: 
Sp(n,IR), 
(a) show that the roots Yi produced in Lemma 7.143 are Yt = 2et. ... , 

Yn = 2en. 
(b) show that the restricted roots (apart from Cayley transform) are all 

±yi and all !<±y; ± Yi>· 

39. In the example of Problem 6 of Chapter VI and Problems 34-36 above 
with G = S0*(2n), 
(a) show that the roots Yi produced in Lemma 7.143 are Yt = e1 +en. 

Y2 = e2 + en-lo ...• Yrn/2] = e[n/2] + en-[n/2]+1· 

(b) find the restricted roots apart from Cayley transform. 

40. For general G with Gl K Hermitian, suppose that a, {3, andy are roots 
with a compact and with {3 andy positive noncompact in a good ordering. 
Prove that a + {3 and a + {3 + y cannot both be roots. 

41. LettheexpansionofarootintermsofLemma7.143bey = .E:=l c;y;+y' 
with y' orthogonal to Yt. ... , Ys. 

(a) Prove for each i that 2c; is an integer with 12c; I =:: 3. 
(b) Rule out c; = - ~ by using Problem 40 and the y; string containing 

y, and rule out c; = +~ by applying this conclusion to -y. 
(c) Rule out c; = ± 1 for some j =F i by a similar argument. 
(d) Show that c; =F 0 for at most two indices i by a similar argument. 
(e) Deduce that each restricted root, apart from Cayley transform, is of 

one of the forms ±y;, !<±y; ± Yi),or ±!y;. 
(f) If g0 is simple, conclude that the restricted root system is of type (BC) s 

orCs. 

Problems 42-44 yield a realization of G I K, in the Hermitian case, as a partic
ularly nice unbounded open subset Q' of p+. Let notation be as in §9. 
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42. In the special case that G = SU(l, 1),letu be the Cayley transform. matrix 

1 (1 i) 1 211]) -/2 i 1 , let G = SL( , ll'.), and let 

It is easily verified that uGu-1 = G'. Prove that uGB = G'uB = 
0' Kc p- and that G' acts on 0' by the usual action of SL(2, JR) on the 
upper half plane. 

43. In the general case as in §9, let Y1, ... , Ys be constructed as in Lemma 
7.143. For each j, construct an element Uj in Gc that behaves for the 
3-dimensional group corresponding to Yi like the element u of Problem 
42. Putu = Oj=1 Uj. 

(a) Exhibit u as in p+ Kc p-. 
(b) Let ao be the maximal abelian subspace of Po constructed in Lemma 

7.143,andletAp =expao. ShowthatuApu-1 s; Kc. 
(c) Show for a particular ordering on a(i that uNpu-1 s; p+ Kc if Np is 

built from the positive restricted roots. 
(d) Writing G = NpApK by the Iwasawa decomposition, prove that 

uGB s; p+KCP-. 

44. Let G' = uGu-1• Prove that G'uB = 0' Kc p- for some open subset 0' 
of p+. Prove also that the resulting action of G' on 0' is holomorphic and 
transitive, and identify 0' with G I K. 



CHAPTER VIII 

Integration 

Abstract. An m-dimensional manifold M that is oriented admits a notion of inte
gration f ~--+ JM fw for any smooth m form. Here f can be any continuous real-valued 
function of compact support. This notion of integration behaves in a predictable way 
under diffeomorphism. When w satisfies a positivity condition relative to the orientation, 
the integration defines a measure on M. A smooth map M -+ N with dim M < dim N 
carries M to a set of measure zero. 

For a Lie group G, a left Haar measure is a nonzero Borel measure invariant under left 
translations. Such a measure results from integration of w if M = G and if the form w is 
positive and left invariant. A left Haar measure is unique up to a multiplicative constant. 
Left and right Haar measures are related by the modular function, which is given in 
terms of the adjoint representation of G on its Lie algebra. A group is unimodular if 
its Haar measure is two-sided invariant. Unimodular Lie groups include those that are 
abelian or compact or semisimple or reductive or nilpotent. 

When a Lie group G has the property that almost every element is a product of 
elements of two closed subgroups S and T with compact intersection, then the left 
Haar measures on G, S, and T are related. As a consequence, Haar measure on a 
reductive Lie group has a decomposition that mirrors the Iwasawa decomposition, and 
also Haar measure satisfies various relationships with the Haar measures of parabolic 
subgroups. These integration formulas lead to a theorem of Helgason that characterizes 
and parametrizes irreducible finite-dimensional representations of G with a nonzero K 
fixed vector. 

The Weyl Integration Formula tells how to integrate over a compact connected Lie 
group by first integrating over conjugacy classes. It is a starting point for an analytic 
treatment of parts of representation theory for such groups. Harish-Chandra generalized 
the Weyl Integration Formula to reductive Lie groups that are not necessarily compact. 
The formula relies on properties of Cartan subgroups proved in Chapter VII. 

1. Differential Forms and Measure Zero 

Let M be an m-dimensional manifold, understood to be smooth and 
to have a countable base for its topology; M need not be connected. We 
say that Misoriented if an atlas of compatible charts (Ua. CfJa) is given 
with the property that the m-by-m derivative matrices of all coordinate 
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changes 

(8.1) 

have everywhere positive determinant. When M is oriented, a compati
ble chart (U, rp) is said to be positive relative to (Ua, (/)a) if the derivative 
matrix of rp o rp;;1 has everywhere positive determinant for all a. We 
always have the option of adjoining to the given atlas of charts for an 
oriented Many or all other compatible charts (U, rp) that are positive 
relative to all (Ua, (/)a), and M will still be oriented. 

On an oriented Mas above, there is a well defined notion of integration 
involving smooth m forms, which is discussed in Chapter V of Chevalley 
[1946], Chapter X of Helgason [1962], and elsewhere. In this section 
we shall review the definition and properties, and then we shall apply 
the theory in later sections in the context of Lie groups. 

We shall make extensive use of pullbacks of differential forms. If 
<I> : M ~ N is smooth and if w is a smooth k form on N, then <I>* w is the 
smooth k form on M given by 

for p in M and ~1 , ••• , ~k in the tangent space Tp(M); here d<l>p is the 
differential of <I> at p. In case M and N are open subsets of JR.m and w is 
the smooth m form F(y., ..• , Ym) dy1 /\ · · · /\ dym on N, the formula for 
<I>* w on M is 

(8.3) <l>*w = (F o <l>)(x., ... , Xm) det(<l>'(xt, ... , Xm)) dx1 /\ • · · /\ dxm, 

where <I> has m entries YI (x., ... , Xm), ... , Ym (x., ... , Xm) and where <I>' 

denotes the derivative matrix ( :;~ ) . 
Let w be a smooth m form on M. The theory of integration provides a 

definition of J M I w for all I in the space Ccom (M) of continuous functions 
of compact support on M. Namely we first assume that 1 is compactly 
supported in a coordinate neighborhood Ua. The local expression for w 
in (/)a(Ua) is 

{8.4) (rp;;1)*w = Fa(Xb ... , Xm) dx1 /\ · · · /\ dxm 

with Fa : rpa(Ua) ~ JR. smooth. Since I o rp;; 1 is compactly supported in 
(/)a (U a), it makes sense to define 
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If 1 is compactly supported in an intersection Ua n U fJ, then the integral 
is given also by 

To see that the right sides of (85) are equal, we use the change of 
variables formula for multiple integrals. The change of variables y = 
({)p o qJ;1(x) in (8.1) expresses y., ... , Ym as functions of x., ... , Xm, and 
therefore (8.5b) is 

= 1 (/ 0 (/)i1)(y., • • • • Ym)Fp(Ylo • • •, Ym) dy1 · · · dym 
<P~(UanU~) 

=1 loqJi1oqJpoqJ;1(xl•···•Xm) 
<Pa(UanU~) 

x Fp o (/){J o ({); 1(x., ... , Xm)l det(qJp o (/);1)'1 dx1 • · • dxm. 

The right side here will be equal to the right side of (8.5a) if it is shown 
that 

(8.6) 

Now 

Fa dx1 1\ · · • 1\ dxm = (({);1)*w from (8.4) 

Thus 

(8.7a) 

= (({)p o (/);•)*(qJil)*w 

= (({)p 0 (/); 1)*(Fp dy1 1\ • · • dym) 
from (8.4) 

= (Fp o (/){J o ({);1) det(qJp o ({);1)' dx1 1\ • • • 1\ dxm 
by (8.3). 

Since det(qJp o ({);1)' is everywhere positive, (8.6) follows from (8.7a). 
Therefore JM lw is well defined if I is compactly supported in Ua n Up. 

For future reference we rewrite (8.7a) in terms of coordinates as 

(8.7b) 
(a )-1 

Y; 
Fp(Ylo ... , Ym) = Fa(x., .•. , Xm) det -

axj 
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To define JM lw for general I in Ccom(M), we make use of a smooth 
partition of unity {l/la} such that t/la is compactly supported in Ua and 
only finitely many t/la are nonvanishing on each compact set. Then 
I= I: t/lal is actually a finite sum, and we can define 

(8.8) L lw = L L (t/lal)w. 

Using the consistency result proved above by means of (8.6), one shows 
that this definition is unchanged if the partition of unity is changed, and 
then f M lw is well defined. (See either of the above references.) 

When w is fixed, it is apparent from (85a) and (8.8) that the map 
I ..-. f M I w is a linear functional on Ccom (M). We say that w is positive 
relative to the given atlas if each local expression (8.4) has Fa(XI. ... , Xm) 
everywhere positive on ({Ja(Ua). In this case the linear functional 1 ..-. 
JM lw is positive in the sense that I ~ 0 implies JM lw ~ 0. By the 
Riesz Representation Theorem there exists a Borel measure d ILw on M 
such that JMiw = JMI(x)duw(x) for all I e Ccom(M). The first two 
propositions tell how to create and recognize positive w's. 

Proposition 8.9. If an m-dimensional manifold M admits a nowhere
vanishing m form w, then M can be oriented so that w is positive. 

PRooF. Let {(Ua. ({Ja)} be an atlas forM. The components of each Ua 
are open and cover Ua. Thus there is no loss of generality in assuming 
that each coordinate neighborhood Ua is connected. For each Ua, let 
Fa be the function in (8.4) in the local expression for w in ({Ja(Ua). 
Since w is nowhere vanishing and Ua is connected, Fa has constant 
sign. If the sign is negative, we redefine (/Ja by following it with the map 
(xi. x2, ... ,xm) ..-. (-x1>x2, ... ,xm), and then Fa is positive. In this way 
we can arrange that all Fa are positive on their domains. Referring to 

(8.7b}, we see that each function det (oy;) is positive on its domain. 
oxi 

Hence M is oriented. Since the Fa are all positive, w is positive relative 
to this orientation. 

Proposition 8.10. If a connected manifold M is oriented and if w is 
a nowhere-vanishing smooth m form on M, then either w is positive or 
-w is positive. 

PROOF. At each point p of M, all the functions Fa representing w 
locally as in (8.4) have Fa(({Ja(p)) nonzero of the same sign because of 
(8.7b), the nowhere-vanishing of w, and the fact that Misoriented. Let 
S be the set where this common sign is positive. Possibly replacing w 
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by -w, we may assume that S is nonempty. We show that S is open and 
closed. Let p be in S and let U a be a coordinate neighborhood containing 
p. Then Fa(f/Ja(p)) > 0 since pis in S, and hence Fa o f/Ja is positive 
in a neighborhood of p. Hence Sis open. Let {Pn} be a sequence inS 
converging top in M, and let Ua be a coordinate neighborhood containing 
p. Then Fa(f/Ja(Pn)) > 0 and Fa(f/Ja(P)) # 0. Since lim Fa(f/Ja(Pn)) = 
Fa(f/Ja(p)), Fa(f/Ja(p)) is> 0. Therefore pis inS, and Sis closed. Since 
M is connected and S is nonempty open closed, S = M. 

The above theory allows us to use nowhere-vanishing smooth m forms 
to define measures on manifolds. But we can define sets of measure zero 
without m forms and orientations. Let {(Ua, f/Ja)} be an atlas for them
dimensional manifold M. We say that a subset S of M has measure zero 
if f/Ja(S n Ua) has m-dimensional Lebesgue measure 0 for all a. 

Suppose that Misoriented and w is a positive m form. If dt-tw is the 
associated measure and if w has local expressions as in (8.4), then (8.5a) 
shows that 

(8.11) 

If S has measure zero in the sense of the previous paragraph, then the 
right side is 0 and hence dt-tw(S n Ua) = 0. Since a countable collection 
of Ua 's suffices to cover M, dt-tw(S) = 0. Thus a set a measure zero as 
in the previous paragraph has dt-tw(S) = 0. 

Conversely if w is a nowhere-vanishing positive m form, dt-tw(S) = 0 
implies that S has measure zero as above. In fact, the left side of (8.11) 
is 0, and the integrand on the right side is > 0 everywhere. Therefore 
f/Ja(S n Ua) has Lebesgue measure 0. 

Let <I> : M---+ N be a smooth map between m-dimensional manifolds. 
A critical point p of <I> is a point where d<l>p has rank< m. In this case, 
<I> (p) is called a critical value. 

Theorem 8.12 (Sard's Theorem). If <I> : M---+ N is a smooth map 
between m-dimensional manifolds, then the set of critical values of <I> 
has measure zero in N. 

PRooF. About each point of M, we can choose a compatible chart 
(U, f/J) so that <I>(U) is contained in a coordinate neighborhood of N. 
Countably many of these charts in M cover M, and it is enough to con
sider one of them. We may then compose with the coordinate mappings 
to see that it is enough to treat the following situation: <I> is a smooth map 
defined on a neighborhood of C = {x e JR.m 1 0 :::: x; :::: 1 for 1 :::: i :::: m} 
with values in JR.m, and we are to prove that <I> of the critical points in C 
has Lebesgue measure 0 in JR.m. 
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For points x = (x1, ..• , Xm) and X1 = (xi, .•. , x~) in Rm, the Mean 
Value Theorem gives 

(8.13) I ~ 8«1>; I 
«<>;(X)- «<>;(X) = L.., ~(Z;)(xj - Xj), 

j=l ux1 

where z; is a point on the line segment from x to x1 • Since the 8«1>; are 
8xj 

bounded on C, we see as a consequence that 

(8.14) ll«<>(x1)- cl>(x)ll ~ allx1 -xll 

with a independent of x and X1 • Let Lx(X1) = (Lx,I(X 1), ••• , Lx,m(X1)) be 
the best first-order approximation to «<> about x, namely 

(8.15) I ~ 8«1>; I 
Lx,;(x) = «<>;(x) + L.., -(x)(xj - Xj)· 

j=l 8xj 

Subtracting (8.15) from (8.13), we obtain 

1 1 ~ (8«1>; 8«1>; ) 1 «<>;(x)- Lx,;(x) = L.., ~(z;)- ~(x) (xi- Xj). 
j=l ux1 ux1 

Since :«<>; is smooth and liz; - x II ~ llx 1 - x II, we deduce that 
uXj 

(8.16) ll«<>(x1)- Lx(x1)11 ~ bllx1 - xll 2 

with b independent of x and x 1• 

If x is a critical point, let us bound the image of the set of x 1 with 
llx1 - x II ~ c. The determinant of the linear part of Lx is 0, and hence 
Lx has image in a hyperplane. By (8.16), «<>(x1) has distance ~ bc2 

from this hyperplane. In each of them- 1 perpendicular directions, 
(8.14) shows that «<>(x1) and cl>(x) are at distance ~ ac from each other. 
Thus «<>(x1) is contained in a rectangular solid about cl>(x) of volume 
2m(ac)m-l(bcl) = 2mam-lb~+1 • 

We subdivide C into Nm smaller cubes of side 1/ N. If one of these 
smaller cubes contains a critical point x, then any point X 1 in the smaller 
cube has llx1 - x II ~ ,Jm 1 N. By the result of the previous paragraph, «<> 
of the cube is contained in a solid of volume 2mam-1b(,JinJN)m+I. The 
union of these solids, taken over all small cubes containing a critical 
point, contains the critical values. Since there are at most Nm cubes, 
the outer measure of the set of critical values is ~ 2mam-1bm!<m+I> N-1. 
This estimate is valid for all N, and hence the set of critical values has 
Lebesgue measure 0. 
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Corollary 8.17. If cf> : M --+ N is a smooth map between manifolds 
with dim M < dim N, then the image of cf> has measure zero in N. 

PRooF. Let dim M = k < m = dim N. Without loss of generality we 
may assume that M ~ JRk. Sard's Theorem (Theorem 8.12) applies to 
the composition of the projection !Rm --+ JRk followed by cf>. Every point 
of the domain is a critical point, and hence every point of the image is a 
critical value. The result follows. 

We define a lower-dimensional set in N to be any set contained in the 
countable union of smooth images of manifolds M with dim M < dim N. 
It follows from Corollary 8.17 that 

(8.18) any lower-dimensional set in N has measure zero. 

Let M and N be oriented m-dimensional manifolds, and let cf>: M--+ 
N be a diffeomorphism. We say that cf> is orientation preserving if, 
for every chart (Ua. ({Ja) in the atlas forM, the chart (cf>(Ua). ({Ja o ct>-1) 

is positive relative to the atlas for N. In this case the atlas of charts for 
N can be taken to be {(cf>(Ua). ({Ja o cf>-1)}. Then the change of variables 
formula for multiple integrals may be expressed using pullbacks as in 
the following proposition. 

Proposition 8.19. Let M and N be oriented m-dimensional manifolds, 
and let cf> : M --+ N be an orientation-preserving diffeomorphism. If w 
is a smooth m form on N, then 

L fw = L (f o cf>)cf>*w 

for every f E Ccom(N). 

PRooF. Let the atlas forM be {(Ua. ({Ja)}, and take the atlas for N to 
be {(cf>(Ua). ({Ja o cf>-1)}. It is enough to prove the result for f compactly 
supported in a particular cf> ( U a). For such f, (8 .5) gives 

(8.20a) 

{ fw = 1 f o cf> o ({J; 1(XJ, ... , Xm)Fa(XJ, .•• , Xm) dx1 • · · dxm, 1 N 'l'aocl>-1 (ci>(Ua)) 

where Fa is the function with 

(8.20b) 
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The function 1 o <I> is compactly supported in Ua, and (8.5) gives also 

(8.20c) 

{ (/ o <l>)<l>*w = 1 I o <I> o qJ;1(Xt. ... , Xm)Fa(Xt. ..• , Xm) dx1 · · · dxm 
}M ~(Ua) 

since 

by (8.20b). The right sides of (820a) and (8.20c) are equal, and hence 
so are the left sides. 

2. Haar Measure for Lie Groups 

Let G be a Lie group, and let g be its Lie algebra. For g e G, 
let L8 : G -+ G and R8 : G -+ G be the left and right translations 
L 8 (x) = gx and R8 (x) = xg. A smooth k form wonG is left invariant 
if L;w for all g e G, right invariant if R;w = w for all g e G. 

Regarding g as the tangent space at 1 of G, let X 1, ••• , Xm be a basis 
of g, and let X 1, ••• , Xm be the corresponding left-invariant vector fields 
on G. We can define smooth 1 forms w., ... , wm on G by the condition 
that (w;)p((Xj)p) = 8ii for all p. Then w., ... , wm are left invariant, and 
at each point of G they form a basis of the dual of the tangent space at 
that point. The differential form w = w1 A • • · A wm is therefore a smooth 
m form that is nowhere vanishing on G. Since pullback commutes with 
A, w is left invariant. Using Proposition 8.9, we can orient G so that w 
is positive. This proves part of the following theorem. 

Theorem 8.21. If G is a Lie group of dimension m, then G admits 
a nowhere-vanishing left-invariant smooth m form w. Then G can be 
oriented so that w is positive, and w defines a nonzero Borel measure 
dJ.L1 on G that is left invariant in the sense that dJ.LJ(L(g)E) = dJ.LJ(E) for 
all g e G and every Borel set E in G. 

PRooF. We have seen that w exists and that G may be oriented so 
that w is positive. Let dJ.L1 be the associated measure, so that fo lw = 
fo l(x)dJ.LJ(x) for all I e Ccom(G). From Proposition 8.19 and the 
equality L;w = w, we have 

(822) L l(gx)dJ.LJ(X) = L l(x)dJ.LJ(x) 
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for all 1 e Ccom(G). If K is a compact set in G, we can apply (8.22) 
to all 1 that are ~ the characteristic function of K. Taking the infimum 
shows that dJL1(L(g-1)K) = dJL1(K). Since G has a countable base, the 
measure dJLt is automatically regular, and hence dJL1(l(g-1)E) = dJL1(E) 
for all Borel sets E. 

A nonzero Borel measure on G invariant under left translation is 
called a left Haar measure on G. Theorem 8.21 thus says that a left 
Haar measure exists. 

In the construction of the left-invariant m form w before Theorem 
8.21, a different basis of G would have produced a multiple of w, hence 
a multiple of the left Haar measure in Theorem 8.21. If the second 
basis is Yt. ... , Ym and if lj = L~=1 aiiXi, then the multiple is det(aij)-1• 

When the determinant is positive, we are led to orient G in the same way, 
otherwise oppositely. The new left Haar measure is 1 det(aij)l-1 times 
the old. The next result strengthens this assertion of uniqueness of Haar 
measure. 

Theorem 8.23. If G is a Lie group, then any two left Haar measures 
on G are proportional. 

PRooF. Let dJL1 and dJL2 be left Haar measures. Then the sum dJL = 
dJL 1 + dJL2 is a left Haar measure, and dJL(E) = 0 implies dJLt(E) = 0. 
By the Radon-Nikodym Theorem there exists a Borel function h 1 ~ 0 
such that dJL1 = h1 dJL. Fix gin G. By the left invariance of dJL1 and dJL, 
we have 

L l(x)h1(g-1x)dJL(X) = L l(gx)h1(x)dJL(X) = L l(gx)dJL1(x) 

= L l(x)dJL1(x) = l l(x)h1(x)dJL(x) 

for every Borel function 1 ~ 0. Therefore the measures h 1 (g-1 x) d JL(x) 
and h1 (x) dJL(x) are equal, and h1 (g-1x) = h1 (x) for almost every x e G 
(with respect to dJL). We can regard h1(g-1x) and h1(x) as functions of 
(g, x) e G x G, and these are Borel functions since the group operations 
are continuous. For each g, they are equal for almost every x. By Fubini 's 
Theorem they are equal for almost every pair (g, x) (with respect to the 
product measure), and then for almost every x they are equal for almost 
every g. Pick such an x, say x0 • Then it follows that h1(x) = h1(x0 ) for 
almost every x. Thus dJL1 = h1 (x0) dJL. So dJL1 is a multiple of dJL, and 
so is dJL2 • 
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A right Haar measure on G is a nonzero Borel measure invariant 
under right translations. Such a measure may be constructed similarly 
by starting from right-invariant 1 forms and creating a nonzero right
invariant m form. As is true for left Haar measures, any two right Haar 
measures are proportional. To simplify the notation, we shall denote 
particular left and right Haar measures on G by d1x and drx, respectively. 

An important property of left and right Haar measures is that 

(8.24) any nonempty open set has nonzero Haar measure. 

In fact, in the case of a left Haar measure if any compact set is given, 
finitely many left translates of the given open set together cover the 
compact set. If the open set had 0 measure, so would its left translates 
and so would every compact set. Then the measure would be identically 
0 by regularity. 

Another important property is that 

(8.25) any lower-dimensional set in G has 0 Haar measure. 

In fact, Theorems 8.21 and 8.23 show that left and right Haar measures 
are given by nowhere-vanishing differential forms. The sets of measure 
0 relative to Haar measure are therefore the same as the sets of measure 
zero in the sense of Sard 's Theorem, and (8 .25) is a special case of (8 .18). 

Since left translations on G commute with right translations, d1( • t) is 
a left Haar measure for any t e G. Left Haar measures are proportional, 
and we therefore define the modular function !:1 : G -+ JR.+ of G by 

(8.26) 

Proposition 8.27. If G is a Lie group, then the modular function for 
G is given by !:i(t) = I detAd(t)l. 

PRooF. If X ising and X is the corresponding left-invariant vector 
field, then we can use Proposition 1.88 to make the computation 

- - d -1 
(dR,-t)p(Xp)h = Xp(h o R,-•) =- h(p(expr X)t )ir=O 

dr 

= ~ h(pt-1 exprAd(t)X)Ir=o = (Ad(t)X)- h(pt-1), 
dr 

and the conclusion is that 

(8.28) (dR,-•)p(Xp) = (Ad(t)X) ;,-•. 
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Therefore the left-invariant m form w has 

(R:-1w)p((X1)p •... , (Xm)p) 

= Wp1-1((dR,-1)p(X1)p, ... , (dR,-1)p(Xm)p) 

= Wp1-1((Ad(t)Xt) ~,-1, ... , (Ad(t}Xm} ~,-1} by (8.28) 

= (detAd(t))wp1-1 ((X 1)p1-1, ••• , (Xm)p,-1 ), 

and we obtain 

(8.29) R:-1w = (detAd(t))w. 

The assumption is that w is positive, and therefore R:_1w or -R:_1w is 
positive according as the sign of detAd(t). When detAd(t) is positive, 
(8.29) and Proposition 8.19 give 

(detAd(t)) l j(x)d1x = (detAd(t}} l fw = l f R:-1w 

= l (/ o R1)w = l j(xt)d1x 

= l j(x)dJ(xt-1) = ~(t) l j(x)d1x, 

and thus detAd(t) = ~(t). When detAd(t) is negative, every step of 
this computation is valid except for the first equality of the second line. 
Since -R:_1w is positive, Proposition 8.19 requires a minus sign in its 
formula in order to apply to <I>= R1-1. Thus- detAd(t) = ~(t). For all 
t, we therefore have ~(t) = I detAd(t)l. 

Corollary 8.30. The modular function ~ for G has the properties 
that 

(a) ~ : G --+ JR.+ is a smooth homomorphism 
(b) ~(t) = 1 fort in any compact subgroup of G and in any semi-

simple analytic subgroup of G 
(c) d1(x-1) and ~(x) d1x are right Haar measures and are equal 
(d) d7 (x-1) and ~(x)- 1 d7 x are left Haar measures and are equal 
(e) dr (t · ) = ~ (t) dr ( · ) for any right Haar measure on G. 

PRooF. Conclusion (a) is immediate from Proposition 8.27. The 
image under ~ of any compact subgroup of G is a compact subgroup of 
JR.+ and hence is { 1}. This proves the first half of (b), and the second half 
follows from Lemma 4.28. 
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In (c) put dJ1-(x) = Ll(x) d1x. This is a Borel measure since fl. is 
continuous (by (a)). Since fl. is a homomorphism, (8.26) gives 

L f(xt) d11-(x) = L f(xt)Ll(x) dtx = L f(x)Ll(xt- 1) d1(xr1) 

= L f(x)Ll(x)Ll(r 1)Ll(t)d1x 

= L f(x)Ll(x)dtx = L j(x)d/1-(X). 

Hence dJl-(x) is a right Haar measure. It is clear that d1(x- 1) is a right 
Haar measure, and thus Theorem 8.23 for right Haar measures implies 
that d1(x- 1) = cil(x) d1x for some constant c > 0. Changing x to x-1 in 
this formula, we obtain 

dtx = cil(x-1) dt(x-1) = c2 Ll(x-1)/l(x) dtx = c2 dtx. 

Hence c = 1, and (c) is proved. 
For (d) and (e) there is no loss of generality in assuming that drx = 

d1(x- 1) = Ll(x)d1x, in view of (c). Conclusion (d) is immediate from 
this identity if we replace x by x- 1• For (e) we have 

L f(x)dr(tx) = L f(t- 1x)drx = L f(t- 1x)Ll(x)dtX 

= L j(x)Ll(tx) dtx 

= il(t) i f(x)Ll(x)dtX = ~(t) i f(x)drx, 

and we conclude that dr(t ·) = Ll(t) dr( · ). 

The Lie group G is said to be unimodular if every left Haar measure 
is a right Haar measure (and vice versa). In this case we can speak of 
Haar measure on G. In view of (8.26), G is unimodular if and only if 
Ll(t) = 1 for all t e G. 

Corollary 8.31. The following kinds of Lie groups are always uni-
modular: 

(a) abelian Lie groups 
(b) compact Lie groups 
(c) semisimple Lie groups 
(d) reductive Lie groups 
(e) nilpotent Lie groups. 



468 VIII. Integration 

PRooF. Conclusion (a) is trivial, and (b) and (c) follow from Corol
lary 8.30b. For (d) let (G, K, 0, B) be reductive. By Proposition 7.27, 
G ;::;:; 0G x Zvec· A left Haar measure for G may be obtained as the 
product of the left Haar measures of the factors, and (a) shows that Zvec 
is unimodular. Hence it is enough to consider 0G, which is reductive 
by Proposition 7 .27c. The modular function for 0G must be 1 on K by 
Corollary 8 .30b, and K meets every component of 0G. Thus it is enough 
to prove that 0G0 is unimodular. This group is generated by its center 
and its semisimple part. The center is compact by Proposition 7.27, and 
the modular function must be 1 there, by Corollary 8.30b. Again by 
Corollary 8.30b, the modular function must be 1 on the semisimple part. 
Then (d) follows. 

For (e) we appeal to Proposition 8 27. It is enough to prove that 
detAd(x) = 1 for all x in G. By Theorem 1.104 the exponential map 
carries the Lie algebra g onto G. If x = exp X, then det Ad(x) = 
deteadX = eTradx. Since g is nilpotent, (1.31) shows that adX is a 
nilpotent linear transformation. Therefore 0 is the only generalized 
eigenvalue of ad X, and Tr ad X = 0. This proves (e). 

3. Decompositions of Haar Measure 

In this section we let G be a Lie group, and we let d1x and drx be left 
and right Haar measures for it. 

Theorem 8.32. Let G be a Lie group, and letS and T be closed 
subgroups such that S n T is compact, multiplication S x T ~ G is an 
open map, and the set of products ST exhausts G except possibly for a 
set of Haar measure 0. Let l!Jq and !10 denote the modular functions of 
T and G. Then the left Haar measures on G, S, and T can be normalized 
so that 

1 L ll.rW 
j(x)d1x = j(st)-;:--() d1sd1t 

G SxT U.G t 

for all Borel functions f ::: 0 on G. 

PRooF. Let S'2 £ G be the set of products ST, and let K = s n T. 
The group S x T acts continuously on S'2 by (s, t)(J) = S(J)t-1, and the 
isotropy subgroup at 1 is diag K. Thus the map (s, t) ~ sr1 descends 
to a map (S x T)jdiag K ~ Sl. This map is a homeomorphism since 
multiplicationS x T ~ G is an open map. 

Hence any Borel measure on S'2 can be reinterpreted as a Borel measure 
on (S x T)jdiag K. We apply this observation to the restriction of a left 
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Haar measure d1x for G from G ton, obtaining a Borel measure dJL on 
(S X T)ldiag K. On n, we have 

dt(Ls0 Rc•X) = llG(to) dtX 
0 

by (8.26), and the action unwinds to 

(8.33) dJL(L(s0 ,t0)X) = llG(to) dJL(X) 

on (S x T)ldiag K. Define a measure d{L(s, t) on S x T by 

( l(s, t) d{L(s, t) = 1 [ ( l(sk, tk) dk] dJL((S, t)K}, 
lsxT (SxT)/diagK JK 

where dk is a Haar measure on K normalized to have total mass 1. From 
(8.33) it follows that 

d{L(sos, tot)= llG(to)d{L(s, t). 

The same proof as for Theorem 8.23 shows that any two Borel measures 
on S x T with this property are proportional, and llG (t) d1s d1t is such a 
measure. Therefore 

d{L(s, t) = flG(t) dtS dtt 

for a suitable normalization of d1s d1t. 
The resulting formula is 

( l(x)dtX = ( l(st-1)/lG(t)dtSdtt 
Jn lsxT 

for all Borel functions 1 ::::: 0 on Q. On the right side the change of 
variables t ~ t-1 makes the right side become 

f l(st)llG(t)-1 dts llr(t)dtt. 
lsxT 

according to Corollary 8.30c, and we can replace n by G on the left 
side since the complement of n in G has measure 0. This completes the 
proof. 

If H is a closed subgroup of G, then we can ask whether G I H has 
a nonzero G invariant Borel measure. Theorem 8.36 below will give a 
necessary and sufficient condition for this existence, but we need some 
preparation. Fix a left Haarmeasure d1h for H. If I is in Ccom(G),define 

(8.34a) 11 (g) = f l(gh)dth. 
JG/H 

This function is invariant under right translation by H, and we can define 

(8.34b) 111(gH) = 11(g). 

The function 11111 has compact support on G I H. 
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Lemma 8.35. The map I ~-+- / 11 carries Ccom(G) onto Ccom(GI H), 
and a nonnegative member of Ccom(GIH) has a nonnegative preimage 
in Ccom(G). 

PRooF. Let']'(: G--+ GIH be the quotient map. Let Fe Ccom(GIH) 
be given, and let K be a compact set in G 1 H with F = 0 off K. We 
first produce a compact set K in G with ']'((K) = K. For each coset in 
K, select an inverse image x and let Nx be a compact neighborhood of .X 
in G. Since ']'( is open, ']'( of the interior of Nx is open. These open sets 
cover K, and a finite number of them suffices. Then we can take K to 
be the intersection of ']'(-I (K) with the union of the finitely many Nx 's. 

Next let KH be a compact neighborhood of 1 in H. By (824) the 
left Haar measure on His positive on KH. Let K' be the compact 
set K' = KKH, so that ']'((K') = ']'((K) = K. Choose /I e Ccom(G) with 
!I ::: 0 everywhere and with /I = 1 on K'. If g is inK', then JH !I (gh) d1h 
is ::: the H measure of K H, and hence If' is > 0 on K. Define 

{ 
/I(g) F(']'((g)) 

/(g)= 0 J{'(']'((g)) 
if']'((g)eK 

otherwise. 

Then j 11 is F on K and is 0 off K, so that j 11 = F everywhere. 
Certainly f has compact support. To see that f is continuous, it 

suffices to check that the two formulas for f (g) fit together continuously 
at points g of 1'(-I(K). It is enough to check points where f(g) =f:. 0. 
Say gn --+ g. We must have F(']'((g)) =f:. 0. Since F is continuous, 
F(']'((gn)) =f:. 0 eventually. Thus for all n sufficiently large, f(gn) is given 
by the first of the two formulas. Thus f is continuous. 

Theorem 8.36. Let G be a Lie group, let H be a closed subgroup, and 
let !10 and liH be the respective modular functions. Then a necessary 
and sufficient condition for G 1 H to have a nonzero G invariant Borel 
measure is that the restriction to H of !10 equal !iH. In this case such 
a measure d~L(gH) is unique up to a scalar, and it can be normalized so 
that 

(8.37) L J(g) dtg = L/H [ L f(gh) dth] d#L(g H) 

for all I E Ccom(G). 
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PRooF. Let df.L(gH) be such a measure. In the notation of (8.34), we 
can define a measure djj,(g) on G by 

{ f(g)djj,(g) = 1 /##(gH)dJL(gH). 
la ajH 

Since f ~--+ f## commutes with left translation by G, djj, is a left Haar 
measure on G. By Theorem 8.23, djj, is unique up to a scalar; hence 
dJL(g H) is unique up to a scalar. 

Under the assumption that G 1 H has a nonzero invariant Borel mea
sure, we have just seen in essence that we can normalize the measure 
so that (8.37) holds. If we replace fin (8.37) by/(. h0 ), then the left 
side is multiplied by da(h0 ), and the right side is multiplied by t,.H(h0 ). 

Hence da IH = t,.H is necessary for existence. 
Let us prove that this condition is sufficient for existence. Given 

h E Ccom(GIH), we can choose f E Ccom(G) by Lemma 8.35 so that 
!## = h. Then we define L(h) = fa j(g)d1g. If Lis well defined, 
then it is linear, Lemma 8.35 shows that it is positive, and L certainly is 
the same on a function as on its G translates. Therefore L defines a G 
invariant Borel measure df.L(gH) on Gl H such that (8.37) holds. 

Thus all we need to do is see that L is well defined if da I H = t,. H. We 
are thus to prove that iff E Ccom(G) has / 1 = 0, then fa j(g)d1g = 0. 
Let 1ft be in Ccom(G). Then we have 

o = L 1/t(g)J'(g) d1g = o 

= L [ L 1/t(g)j(gh) d1h J d1g 

= L [ L 1/t(g)f(gh) d1g J d1h 

= L [£ 1/t(gh-1)/(g)dlg] da(h)dlh 

= L j(g)[L 1/t(gh-1)da(h)dlh J d1g 

= l f(g)[ L 1/t(gh)da(h)-1 dH(h) d1h] d1g 

= l f(g)l/t'(g)dlg 

by (8.26) 

by Corollary 8 .30c 

since daiH = t,.H· 

By Lemma 8.35 we can choose 1ft E Ccom(G) so that 1/t" = 1 on the 
projection to G I H of the support off. Then the right side is fa f (g) d1 g, 
and the conclusion is that this is 0. Thus Lis well defined, and existence 
is proved. 
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4. Application to Reductive Lie Groups 

Let (G, K, 0, B) be a reductive Lie group. We shall use the notation of 
Chapter VII, but we drop the subscripts 0 from real Lie algebras since we 
shall have relatively few occurrences of their complexifications. Thus, 
for example, the Cartan decomposition of the Lie algebra of G will be 
written g =tED p. 

In this section we use Theorem 8.32 and Proposition 8.27 to give 
decompositions of Haar measures that mirror group decompositions in 
Chapter VII. The group G itself is unimodular by Corollary 8.31d, and 
we write dx for a two-sided Haar measure. We shall be interested in 
parabolic subgroups MAN, and we need to compute the corresponding 
modular function that is given by Proposition 8.27 as 

ll.MAN(man) =I detAdm+a+n(man)l. 

For the element m, I detAdm+a+n(m)l = 1 by Corollary 8.30b. The 
element a acts as 1 on m and a, and hence detAdm+a+n(a) = detAdn(a). 
On an a root space gA, a acts by eAloga, and thus detAdn(a) = e2PAloga, 

where 2pA is the sum of all the positive a roots with multiplicities 
counted. Finally detAdm+a+n(n) = 1 for the same reasons as in the 
proof of Corollary 8.31 e. Therefore 

(8.38) 

We can then apply Theorem 8.32 and Corollary 8.31 to obtain 

(8.39a) 

By (8.38) and Corollary 8.30c, 

(8.39b) dr(man) = e2PAloga dmdadn. 

Similarly for the subgroup AN of MAN, we have 

(8.40) 

and 

(8.41) 
dt(an) = dadn 

dr(an) = e2PAloga dadn. 

Now we shall apply Theorem 8.32 toG itself. Combining Corollary 
8.30c with the fact that G is unimodular, we can write 

(8.42) 

whenever the hypotheses in the theorem for S and T are satisfied. 
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Proposition 8A3. If G = K ApNp is an Iwasawa decomposition of 
the reductive Lie group G, then the Haar measures of G, Ap N P, Ap, and 
N P can be normalized so that 

dx = dkd,(an) = e2PAp Ioga dkdadn. 

If the Iwasawa decomposition is written instead as G = ApNpK, then 
the decomposition of measures is 

dx = d,(an)dk = dadndk. 

PRooF. If G is written as G = KApNp, then we useS= KandT= 
ApNp in Theorem 8.32. The hypotheses are satisfied since Proposition 
7.31 shows that S x T ~ G is a diffeomorphism. The second equality 
follows from (8.41). The argument when G = ApNpK is similar. 

Proposition 8.44. If G is a reductive Lie group and MAN is a 
parabolic subgroup, so that G = K MAN, then the Haar measures of 
G, MAN, M, A, and N can be normalized so that 

dx = dkd,(man) = e2p,..Iogadkdmdadn. 

PRooF. We useS= KandT = MAN in Theorem 8.32. HereS n T = 
K n M is compact, and we know that G = K MAN. Since ApNp ~ MAN 
andKxApNp ~ Gisopen,KxMAN ~ Gisopen. ThenTheorem8.32 
gives the first equality, and the second equality follows from (8.39b). 

Proposition 8.45. If MAN is a parabolic subgroup of the reductive 
Lie group G, then N-MAN is open in G and its complement is a lower
dimensional set, hence a set of measure 0. The Haar measures of G, 
MAN, N-, M, A, and N can be normalized so that 

dx = dnd,(man) = e2p,..Iogadndmdadn 

PRooF. We use S = N- and T = MAN in Theorem 8.32. Here 
S n T = {1} by Lemma 7.64, and S x T ~ G is everywhere regular 
(hence open) by Lemma 6.44. We need to see that the complement of 
N-MANislowerdimensionalandhasmeasureO. LetMpApNp ~MAN 
be a minimal parabolic subgroup. In the Bruhat decomposition of G as 
in Theorem 7.40, a double coset of MpApNp is of the form 
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where w is a representative in NK(ap) of a member of NK(ap)/Mp. The 
double coset is thus a translate of (w-1Npw)MpApNp. To compute the 
dimension of this set, we observe that 

dimAd(w)-1np + dim(mp e ape np) =dim g. 

Now Ad(w)-1np has 0 intersection with mp e ap e np if and only if 
Ad(w)-1np = Onp. which happens for exactly one coset wMp by Propo
sition 7.32 and Theorem 2.63. This case corresponds to the open set 
N; MpApNp. In the other cases, there is a closed positive-dimensional 
subgroup Rw of w-1 Np w such that the smooth map 

given by (x, y) ~ xy-1 factors to a smooth map 

(w-1Npw x MpApNp)/diagRw ~ (w-1Npw)MpApNp. 

Hence in these cases (w-1 Npw)MpApNp is the smooth image of a man
ifold of dimension < dim G and is lower dimensional in G. 

This proves for MpApNp that N; MpApNp is open with complement 
of lower dimension. By (825) the complement is of Haar measure 0. 
Now let us consider N-MAN. Since MpApNp ~MAN, we have 

N; MpApNp = (MpApNp)MpApNp 
~ (MAN-)MAN = N-MAN. 

Thus the open set N-MAN has complement of lower dimension and 
hence of Haar measure 0. 

Theorem 8.32 is therefore applicable, and we obtain dx = dii dr (man). 
The equality diidr(man) = e2PAioga diidmdadn follows from (8.39b). 

Proposition 8.46. Let MAN be a parabolic subgroup of the reductive 
Lie group G, and let Pt. be as in (8.38). For g in G, decompose g 
according to G = K MAN as 

g = K(g)JL(g)expH(g)n. 

Then Haar measures, when suitably normalized, satisfy 

{ j(k) dk = { j(K(ii)}e-lPAH(n) dii 
)K )N-

for all continuous functions on K that are right invariant under K n M. 
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REMARK. The expressions x(g) and f.L(g) are not uniquely defined, but 
H(g) is uniquely defined, as a consequence of the Iwasawa decomposi
tion, and j(K(ii)) will be seen to be well defined because ofthe assumed 
right invariance under K n M. 

PRooF. Given f continuous on K and right invariant under K n M, 
extend f to a function F on G by 

(8.47) F(kman) = e-2PAloga f(k). 

The right invariance of f under K n M makes F well defined since 
K n MAN= K n M. Fix q;::: 0 in Ccom(MAN) with 

{ q;(man)d,(man) = 1; 
}MAN 

by averaging over K n M, we may assume that q; is left invariant under 
K n M. Extend q; to G by the definition q;(kman) = q;(man); the left 
invariance of q; under K n M makes q; well defined. Then 

{ q;(xman) d,(man) = 1 
}MAN 

for all x e G. 

The left side of the formula in the conclusion is 

if(k)dk 

= 1 f(k) [ { q;(kman) d,(man)] dk 
K }MAN 

= 1 f(k)q;(kman)e-2PA toga dk d, (man) by (8.39) 
KxMAN 

= 1 F(kman)q;(kman)dkd,(man) by (8.47) 
KxMAN 

= l F(x)q;(x) dx by Proposition 8.44, 

while the right side of the formula is 

1 j(K(ii))e-2PAH(n) dii 
N-

= { F(ii) [ { q;(iiman) d,(man)] dii 
JN- }MAN 

by (8.47) 
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= 1 F(n)e-2PAiogaq;(nman)dndr(man) by (8.39) 
N-xMAN 

= 1 F(nman)q;(nman)dndr(man) by (8.47) 
N-xMAN 

= L F(x)q;(x)dx by Proposition 8.45. 

The proposition follows. 

For an illustration of the use of Proposition 8.46, we shall prove a 
theorem of Helgason that has important applications in the harmonic 
analysis of G 1 K. We suppose that the reductive group G is semisimple 
and has a complexification Gc. We fix an Iwasawa decomposition G = 
K ApNp. Let tp be a maximal abelian subspace of mp, so that tp $ ap is a 
maximally noncom pact(} stable Cartan subalgebra of g. Representations 
of G yield representations of g, hence complex-linear representations 
of gc. Then the theory of Chapter V is applicable, and we use the 
complexification of tp $ ap as Cartan subalgebra for that purpose. Let fl. 
and I: be the sets of roots and restricted roots, respectively, and let I;+ 

be the set of positive restricted roots relative to np • 
Roots and weights are real on i tp $ ap, and we introduce an ordering 

such that the nonzero restriction to ap of a member of fl.+ is a member 
of I;+. By a restricted weight of a finite-dimensional representation, 
we mean the restriction to ap of a weight. We introduce in an obvious 
fashion the notions of restricted-weight spaces and restricted-weight 
vectors. Because of our choice of ordering, the restriction to ap of 
the highest weight of a finite-dimensional representation is the highest 
restricted weight. 

Lemma 8.48. Let the reductive Lie group G be semisimple. If 1r is 
an irreducible complex-linear representation of gc, then mp acts in each 
restricted weight space of 1r, and the action by mp is irreducible in the 
highest restricted-weight space. 

PRooF. The first conclusion follows at once since mp commutes with 
ap. Let v =F 0 be a highest restricted-weight vector, say with weight 
v. Let V be the space for 1r, and let V11 be the restricted-weight space 
corresponding to v. We write g = Oqp $ mp $ ap $ np, express members 
of U (gc) in the corresponding basis given by the Poincare-Birkhoff-Witt 
Theorem, and apply an element to v. Since np pushes restricted weights 
up and ap acts by scalars in V11 and Onp pushes weights down, we see from 
the irreducibility of 1r on V that U(m~)v = V11 • Since vis an arbitrary 
nonzero member of V11 , mp acts irreducibly on V11 • 
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Theorem 8.49 (Helgason). Let the reductive Lie group G be 
semisimple and have a complexification Gc. For an irreducible finite
dimensional representation 1r of G, the following statements are 
equivalent: 

(a} 1r has a nonzero K fixed vector 
(b) Mp acts by the !-dimensional trivial representation in the highest 

restricted-weight space of 1r 
(c) the highest weight ii of 1r vanishes on tp , and the restriction v of 

ii to ap is such that (v, ,8)/1,812 is an integer for every restricted 
root ,8. 

Conversely any dominant v e a; such that (v, ,8)/1,812 is an integer for 
every restricted root ,8 is the highest restricted weight of some irreducible 
finite-dimensional1r with a nonzero K fixed vector. 

PRooF. For the proofs that (a) through (c) are equivalent, there is no 
loss in generality in assuming that Gc is simply connected, as we may 
otherwise take a simply connected cover of Gc and replace G by the 
analytic subgroup of this cover with Lie algebra g. With Gc simply 
connected, the representation 1r of G yields a representation of g = t EEl p, 
then of gc, and then of the compact form u = t EEl ip. Since Gc is simply 
connected, so is the analytic subgroup U with Lie algebra u (Theorem 
6.31). The representation 1r therefore lifts from u to U. By Proposition 
4.6 we can introduce a Hermitian inner product on the representation 
space so that U acts by unitary operators. Then it folows that K acts by 
unitary operators and i tp EEl ap acts by Hermitian operators. In particular, 
distinct weight spaces are orthogonal, and so are distinct restricted
weight spaces. 

(a)::::? (b). Let r/Jv be a nonzero highest restricted-weight vector, and 
let r!JK be a nonzero K fixed vector. Since np pushes restricted weights 
up and since the exponential map carries np onto Np (Theorem 1.104), 
H(n)r/Jv = r/Jv for n e Np. Therefore 

By the irreducibility of 1r and the fact that G = K ApNp, the left side can
not be identically 0, and hence (r/Jv. r!JK) on the right side is nonzero. The 
inner product with r!JK is then an everywhere-nonzero linear functional 
on the highest restricted-weight space, and the highest restricted-weight 
space must be !-dimensional. If r/Jv is a nonzero vector of norm 1 in 
this space, then (r/JK, r/Jv)r/Jv is the orthogonal projection of r!JK into this 
space. Since Mp commutes with ap, the action by Mp commutes with 
this projection. But Mp acts trivially on r!JK since Mp ~ K, and therefore 
Mp acts trivially on r/Jv. 
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(b) ::::} (a). Let v =F 0 be in the highest restricted-weight space, with 
restricted weight v. Then JKrr(k)dk is obviously fixed by K, and the 
problem is to see that it is not 0. Since vis assumed to be fixed by Mp, 
k ~--+ rr(k)v is a function on K right invariant under Mp. By Proposition 
8.46, 

f rr(k)v dk = f rr(K(n))ve-2PAp H<n> dn = f rr(n)ve<-v-2PAp>H<n> dn. 
k h; h; 

Here e<-v-2PAp>H<n> is everywhere positive since vis real, and (rr(n)v, v) = 
lvl2 since the exponential map carries Onp onto N;, Onp lowers re
stricted weights, and the different restricted-weight spaces are orthogo-
nal. Therefore ( JK rr(k)v dk, v) is positive, and JK rr(k)v dk is not 0. 

(b) ::::} (c). Since (Mp)o acts trivially, it follows immediately that v 
vanishes on tp. For each restricted root ,8, define yp = exp2rri 1,81-2 Hp as 
in (7 .57). This element is in Mp by (7 .58). Since Gc is simply connected, 
rr extends to a holomorphic representation of Gc. Then we can compute 
rr(yp) on a vector v of restricted weight v as 

(8.50) 

Since the left side equals v by (b), (v, ,B)/1,812 must be an integer. 
(c)::::} (b). The action of (Mp)o on the highest restricted-weight space 

is irreducible by Lemma 8.48. Since v vanishes on tp, the highest weight 
of this representation of (Mp)o is 0. Thus (Mp)o acts trivially, and the 
space is !-dimensional. The calculation (8.50), in the presence of (c), 
shows that each yp acts trivially. Since the yp that come from real roots 
generate F (by Theorem 7 .55) and since Mp = (F)(Mp)o (by Corollary 
7 .52), Mp acts trivially. 

We are left with the converse statement. Suppose v e a; is such that 
(v, ,8)/1,812 is an integer:::=: 0 for all ,8 e :E+. Define v to be von ap and 
0 on tp. We are to prove that v is the highest weight of an irreducible 
finite-dimensional representation of G with a K fixed vector. The form 
v is dominant. If it is algebraically integral, then Theorem 5.5 gives us a 
complex-linear representation 1r of gc with highest weight v. Some finite 
covering group G of G will have a simply connected complexification, 
and then 1r lifts to G. By the implication (c) ::::} (a), 1r has a nonzero 
K fixed vector. Since the kernel of G -+ G is in K and since such 
elements must then act trivially, rr descends to a representation of G 
with a nonzero K fixed vector. In other words, it is enough to prove that 
v is algebraically integral. 
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Let a be a root, and let fJ be its restriction to ap. Since (ii, a) = (v, {J), 
we may assume that fJ =fi 0. Let lal2 = ClfJI2 • Then 

2(ii, a) 2(v, {J) 
Tar = ClfJ 12 ' 

and it is enough to show that either 

(8.51a) 2/ C is an integer 

or 

(8.51b) 12/CI =! and (v, fJ)/IfJI 2 is even. 

Write a = fJ + e withe e i~. Then Oa is the root Oa = -fJ +e. Thus 
-Oa = fJ - e is a root with the same length as a. 

If a and -Oa are multiples of one another, then e = 0 and C = 1, so 
that 2/C is an integer. If a and -Oa are not multiples of one another, 
then the Schwarz inequality gives 

(_ 1 0 r 1) = 2(a, -Oa) = 2({3 + e, fJ- e) 
or 0 + lal2 lal2 

= 2(1{312 - lel2) = 2(21{312 - lal2) = 4 _ 2. 
lal2 lal2 C 

(8.52) 

If the left side of (8.52) is -1, then 2/C = !· Since the left side of(8.52) 
is -1, a- Oa = 2{3 is a root, hence also a restricted root. By assumption, 
(v, 2{J)/12fJ12 is an integer; hence (v, fJ)/1{31 2 is even. Thus (8.51b) holds. 
If the left side of (8.52) is 0, then 2/C = 1 and (8.51a) holds. 

To complete the proof, we show that the left side of (8.52) cannot 
be +1. If it is +1, then a- (-Oa) = 2e is a root vanishing on ap, 
and hence any root vector for it is in m~ ~ tc. However this root 
is also equal to a+ Oa, and [Xa, OXa] must be a root vector. Since 
O[Xa, OXa] = -[Xa, OXa], [Xa, OXa] is in pc. Thus the root vector is in 
tc n pC = 0, and we have a COntradiction. 

5. Weyl Integration Formula 

The original Weyl Integration Formula tells how to integrate over a 
compact connected Lie group by first integrating over each conjugacy 
class and then integrating over the set of conjugacy classes. Let G be 
a compact connected Lie group, let T be a maximal torus, and let go 
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and to be the respective Lie algebras. Let m = dim G and l = dim T. 
As in §VI1.8, an element g of G is regular if the eigenspace of Ad(g) 
for eigenvalue 1 has dimension l. Let G' and T' be the sets of regular 
elements in G and T; these are open subsets of G and T, respectively. 

Theorem 4.36 implies that the smooth map G x T ~ G given by 
'tfr(g, t) = gtg-1 is onto G. Fix g E G and t E T. If we identify tangent 
spaces at g, t, and gtg-1 with g0 , to, and g0 by left translation, then (4.45) 
computes the differential of 'tfr at (g, t) as 

lfr(X, H)= Ad(g)((Ad(r1)- 1)X +H) for X E go, H E to. 

The map 'tfr descends to G 1 T x T ~ G, and we call the descended map 
'tfr also. We may identify the tangent space of G 1 T with an orthogonal 
complement~ to to in g0 (relative to an invariant inner product). The 
space~ is invariant under Ad(r1)- 1, and we can write 

d'tfr(X, H)= Ad(g)((Ad(t- 1)- 1)X +H) for X E ~, H E to. 

Now d'tfr at (g, t) is essentially a map of g0 to itself, with matrix 

to ~ 

(dlfr)<g.r> = Ad(g) ( ~ Ad(t~)- 1). 
Since det Ad(g) = 1 by compactness and connectedness of G, 

(8.53) det(dlfr)<g.r> = det((Ad(t-1)- 1)1tt>· 

We can think of building a left-invariant (m -l) form on GIT from the 
duals of the X 's in ~ and a left -invariant l form on T from the duals of the 
H's in to. We may think of a left-invariant m form on G as the wedge of 
these forms. Referring to Proposition 8.19 and (8.7b) and taking (8.53) 
into account, we at first expect an integral formula 

(8.54a) 

f j(x)dx:!:: f [ f j(gtg-1)d(gT)] idet(Ad(r1) -l)ltl.ldt JG lr JG/T 0 

if the measures are normalized so that 

(8.54b) 
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But Proposition 8.19 fails to be applicable in two ways. One is that the 
onto map 1/1 : G 1 T x T ~ G has differential of determinant 0 at some 
points, and the other is that 1/1 is not one-one even if we exclude points 
of the domain where the differential has determinant 0. 

From (8.53) we can exclude the points where the differential has 
determinant 0 if we restrict 1/1 to a map 1/1 : G 1 TxT' ~ G'. To understand 
T', consider Ad(r 1) -1 as a linear map of the complexification g to itself. 
If 1:1 = li(g, t) is the set of roots, then Ad(t-1)- 1 is diagonable with 
eigenvalues 0 with multiplicity land also ~a(t- 1)- 1 with multiplicity 
1 each. Hence I det(Ad(t-1) -l)lttl =I nae4 (~a(t- 1 ) -1)1. If we fix a 

positive system 1:1+ and recognize that ~a(t- 1 ) = ~-a<t- 1 ), then we see 
that 

(8.55) I det(Ad(t-1) -1)1ttl = n l~a(t- 1 ) -112• 

ae4+ 

Putting t = expiH with iH e to, we have ~a(r1 ) = e-ia(H). Thus the set 
in the torus where (855) is 0 is a countable union oflower-dimensional 
sets and is a lower-dimensional set. By (8.25) the singular set in T has 
dt measure 0. The singular set in G is the smooth image of the product 
of G 1 T and the singular set in T, hence is lower dimensional and is of 
measure 0 for df.L(gT). Therefore we may disregard the singular set and 
consider 1/1 as a map G 1 T x T' ~ G'. 

The map 1/J : GIT x T' ~ G' is not, however, one-one. If w is in 
Na(to), then 

(8.56) 1/f(gwT, w-1tw) = 1/f(gT, t). 

Since gwT =f. gT when w is not in Za(to) = T, each member of G' has 
at least IW(G, T)l preimages. On the other hand, if 1/f(gT, s) = 1/l(hT, t), 
then Proposition 4.53 shows that sand tare conjugate via Na(to). Say 
s = w-1tw. Then (8.56) gives 

1/l(hT, t) = 1/f(gT, w-1tw) = 1/J(gw-1T, t). 

So hth-1 = gw-1t(gw-1)-1 and wg-1h centralizes t. Since tis regular 
and G has a complexification, Corollary 7.106 shows that wg-1h is in 
Na(to), say wg-1h = w'. Then h = gw-1w', and the new feature beyond 
(8.56) is that 

(8.57) 1/l(hT, t) = 1/l(hw'-1T, t) if w'-1tw' = t. 

Here is an example of how (8.57) can happen. 
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( 
cosO sinO 0) 

EXAMPLE. Let G = S 0 (3) and T = - sin 0 cos 0 0 . Here 
0 0 1 

T' corresponds to 0 :f:. 21rn. If 0 is not a multiple of 1r, then the 

( 0 1 0) 
corresponding element t ofT' is not centralized by w' = -1 0 0 . 

0 0 1 
Thus for 0 not a multiple of 1r, t has two preimages under 1/F. But for 
0 = 1r, the element t is regular but is centralized by w'. Thus t has more 
than two preimages under lfF: 

(1, t), (w', t), (diag(-1, 1, -1), t). 

Lemma 8.58. The set of elements t e T' where wtw-1 = t for some 
member w of Na(to) not inTis a relatively closed lower-dimensional 
set of dt measure 0. 

PRooF. It is clear that the set in question is relatively closed, and 
(8.25) shows that it is enough to exhibit it as lower dimensional. Write 
such an element t as expiH with iH e fo. Since wtw-1 = t, we have 
expiAd(w)H = expiH. Applying ~a for a ell., we obtain eia(Ad(w)Hl = 
eia(Hl. Thus a(Ad(w)H) = a(H) + 21rn for some n. If w is nontrivial, 
then the set of H's satisfying this equation for a single a and n is lower 
dimensional. Hence the set in question is lower dimensional. 

Let T" be the complement in T' of the exceptional set in Lemma 
8.58. Put G" = 1/F(GIT x T"). Since T" is open and 1/F is everywhere 
regular on G IT x T', G" is open. Lemma 8.58 and (8 25) show that the 
complement of T" in T and the complement of G" in G have measure 
0. Thus in establishing an integration formula, we may consider 1fF as a 
map G IT x T" ~ G". By restricting from T' to T", we have eliminated 
the phenomenon (857). Therefore each member of G" has exactly 
IW(G, T)l preimages under 1/F, given as in (8.56). 

Now we return to Proposition 8.19. Instead of assuming that 
<I> : M ~ N is an orientation-preserving diffeomorphism, we assume 
that <I> is an everywhere regular n-to-1 map of M onto N with dim M = 
dim N. Then the proof of Proposition 8.19 applies with easy modifica
tions to give 

(8.59) n L fw = L (/ o <l>)<l>*w. 

Therefore we have the following result in place of (8.54). 
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Theorem 8.60 (Weyl Integration Formula). Let T be a maximal torus 
of the compact connected Lie group G, and let invariant measures on G, 
T, and G 1 T be normalized so that 

1 l(x)dx = ( [ f l(xt)dt]d(xT) 
G JG/T JT 

for all continuous 1 on G. Then every Borel function F ~ 0 on G 
satisfies 

where ID(t)l2 = f1 11- ~a(r 1 )12 • 
ae.O.+ 

The integration formula in Theorem 8.60 is a starting point for an an
alytic treatment of parts of representation theory for compact connected 
Lie groups. For a given such group for which ~ is analytically integral, 
let us sketch how the theorem leads simultaneously to a construction of 
an irreducible representation with given dominant analytically integral 
highest weight and to a proof of the Weyl Character Formula. 

Define 

(8.61) D{t) = ~.s{t) TI {1 - ~-a(t)), 
ae.O.+ 

so that Theorem 8.60 for any Borel function I constant on conjugacy 
classes and either nonnegative or integrable reduces to 

(8.62) L l(x)dx = IW(~, T)l i l(t)ID(t)l2 dt 

if we take dx,dt, andd(gT) to have total mass one. For J.. e t* dominant 
and analytically integral, define 

( LseW(G,T) s(s)~s(J.+&)(t) 
XA. t) = D(t) . 

Then XA. is invariant under W ( G, T), and Proposition 4.53 shows that X A. (t) 
extends to a function XA. on G constant on conjugacy classes. Applying 
(8.62) with I = IXA-12 , we see that 

(8.63a) L IXA-12 dx = 1. 
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Applying (8.62) with 1 = XJ..XJ..'• we see that 

(8.63b) if A# A1• 

Let x be the character of an irreducible finite-dimensional representation 
of G. On T, x(t) must be of the form .Ell ~ll(t), where the JL'S are the 
weights repeated according to their multiplicities. Also x (t) is even 
under W(G, T). Then D(t)x(t) is odd under W(G, T) and is of the 
form Lvnv~v(t) with each nv in Z. Focusing on the dominant v's and 
seeing that the v's orthogonal to a root must drop out, we find that 
x (t) = LJ.. aJ..XJ..(t) with aJ.. E Z. By (8.63), 

For an irreducible character Corollary 4.16 shows that the left side is 1. 
So one aJ.. is ± 1 and the others are 0. Since x (t) is of the form .Ell ~ll (t), we 
readily find that aJ.. = + 1 for some A. Hence every irreducible character is 
of the form x = XJ.. for some A. This proves the Weyl Character Formula. 
Using the Peter-Weyl Theorem (Theorem 4.20), we readily see that no 
L 2 function on G that is constant on conjugacy classes can be orthogonal 
to all irreducible characters. Then it follows from (8.63b) that every XJ.. 
is an irreducible character. This proves the existence of an irreducible 
representation corresponding to a given dominant analytically integral 
form as highest weight. 

For reductive Lie groups that are not necessarily compact, there is a 
formula analogous to Theorem 8.60. This formula is a starting point 
for the analytic treatment of representation theory on such groups. We 
state the result as Theorem 8.64 but omit the proof. The proof makes 
use of Theorem 7.108 and of other variants of results that we applied in 
the compact case. 

Theorem 8.64 (Harish-Chandra). Let G be a reductive Lie group, let 
(~t)0 , ••• , (~, ) 0 be a maximal set of nonconjugate () stable Cartan subal
gebras of g0 , and let H1, ••• , H, be the corresponding Cartan subgroups. 
Let the invariant measures on each Hj and G 1 Hi be normalized so that 

f l(x)dx = { [ { l(gh)dh]d(gHj) 
}G JG/Hj }Hj 

for all I E Ccom(G). 
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Then every Borel function F ~ 0 on G satisfies 

where IDH/h)l2 = n 11- ~a(h- 1 )1. 
aeMg,l)1) 

6. Problems 

1. Prove that if M is an oriented m-dimensional manifold, then M admits a 
nowhere-vanishing smooth m form. 

2. Prove that the zero locus of a nonzero real analytic function on a cube in 
lRn has Lebesgue measure 0. 

3. Let G be the group of all real matrices ( ~ ~)with a > 0. Show that 

a-2 da db is a left Haar measure and that a-1 da db is a right Haar measure. 

4. Let G be a noncompact semisimp1e Lie group with finite center, and let 
MpApNp be a minimal parabolic subgroup. Prove that G/MpApNp has 
no nonzero G invariant Borel measure. 

5. Prove that the complement of the set of regular points in a reductive Lie 
group G is a closed set of Haar measure 0. 

Problems~ concern Haar measure on GL(n, lR). 

6. Why is Haar measure on GL(n, lR) two-sided invariant? 

7. Regard gl(n, lR) as an n2-dimensional vector space over JR. For each 
X e GL(n, lR), let Lx denote left multiplication by x. Prove that detLx = 
(detx)n. 

8. LetE;j be the matrix that is 1 in the (i, j)th placeandisOelsewhere. Regard 
{Eij} as the standard basis of gl(n, lR), and introduce Lebesgue measure 
accordingly. 
(a) Why is the set of x e gl(n, lR) with detx = 0 a set of Lebesgue 

measureO? 
(b) Deduce from Problem 7 that I detyl-n dy is a Haar measure for 

GL(n, lR). 
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Problems 9-12 concern the function evHp(x) for a semisimple Lie group G with 
a complexification Gc. Here it is assumed that G = K ApNp is an Iwasawa 
decomposition of G and that elements decompose as x = K(g) exp Hp(x) n. 
Let ap be the Lie algebra of Ap, and let v be in a;. 
9. Let 1r be an irreducible finite-dimensional representation of G on V, and 

introduce a Hermitian inner product in V as in the proof of Theorem 8.49. 
If 1r has highest restricted weight v and if v is in the restricted-weight space 
for v, prove that ll7r(x)vll2 = e 2vHp(x) llvll2 • 

10. In G = SL(3, JR.), let K = S0(3) and let MpApNp be upper-triangular. 

Introduce paramete<S for Np by writing Np = {;; = G ! ~) I· Let 

/I - h, h - h, and !I - h be the positive restricted roots as usual, and 
let Pp denote half their sum (namely /I- /3). 
(a) Showthate2f 1Hp(ii) = l+x2+z2 ande2<1I+h)Hp(ii) = l+y2+(z-xy)2 

forn eN;. 
(b) Deducethate2PpHp(ii) = (l+x2 +z2)(1+y2 +(z-xy)2)forn EN;. 

11. In G = SO(n, l)o, let K = SO(n) x {1} and ap = lR(EI,n+I + En+I,I), 
with Eij as in Problem 8. If A(EI,n+I + En+I,I) > 0, say that J... E a; is 
positive, and obtain G = K ApNp accordingly. 
(a) Using the standard representation of SO(n, 1)0 , compute e 2J..Hp(x) for 

a suitable ). and all x E G. 
(b) Deduce a formula for e2PpHp(x) from the result of (a). Here Pp is 

half the sum of the positive restricted roots repeated according to their 
multiplicities. 

12. In G = SU(n, 1), let K = S(U(n) x U(l)), and let ap and positivity be 
as in Problem 11. Repeat the two parts of Problem 11 for this group. 
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Tensors, Filtrations, and Gradings 

Abstract. If Eisa vector space, the tensor algebra T(E) of E is the direct sum over 
n :::: 0 of the n-fold tensor product of E with itself. This is an associative algebra with 
the following universal mapping property: Any linear mapping of E into an associative 
algebra A with identity extends to an algebra homomorphism of T(E) into A carrying 1 
into 1. 

The symmetric algebra S(E) is a quotient of E with the following universal mapping 
property: Any linear mapping of E into a commutative associative algebra A with 
identity extends to an algebra homomorphism of S(E) into A carrying 1 into 1. The 
symmetric algebra is commutative. 

Similarly the exterior algebra 1\(E) is a quotient of E with this universal mapping 
property: Any linear mapping I of E into an associative algebra A with identity such that 
l(v)2 = 0 for all v e E extends to an algebra homomorphism of A<E) into A carrying 1 
into 1. 

The tensor algebra, the symmetric algebra, and the exterior algebra are all examples 
of graded associative algebras. A more general notion than a graded algebra is that 
of a filtered algebra. A filtered associative algebra has an associated graded algebra. 
The notions of gradings and filtrations make sense in the context of vector spaces, and a 
linear map between filtered vector spaces that respects the filtration induces an associated 
graded map between the associated graded vector spaces. If the associated graded map 
is an isomorphism, then the original map is an isomorphism. 

1. Tensor Algebra 

Just as polynomial rings are often used in the construction of more 
general commutative rings, so tensor algebras are often used in the 
construction of more general rings that may not be commutative. In 
this section we construct the tensor algebra of a vector space as a direct 
sum of iterated tensor products of the vector space with itself, and we 
establish its properties. We shall proceed with care, in order to provide 
a complete proof of the associativity of the multiplication. 

Fix a field k. Let E and F be vector spaces over the field k. A tensor 
product V of E and F is a pair (V, t) consisting of a vector space V 
over lk: together with a bilinear map t : E x F ~ V, with the following 
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universal mapping property: Whenever b is a bilinear mapping of E x F 
into a vector space U over k, then there exists a unique linear mapping 
B of V into U such that the diagram 

V (=tensor product) 

(A.l) -,_ B 

ExF-----~u 
b 

commutes. We call B the linear extension of b to the tensor product. 
It is well known that a tensor product of E and F exists and is unique 

up to canonical isomorphism, and we shall not repeat the proof. One 
feature of the proof is that it gives an explicit construction of a vector 
space that has the required property. 

A tensor product of E and F is denoted E ®k F, and the associated 
bilinear map tis written (e, f) ~-+> e ®f. The elements e ® f generate 
E ®k F, as a consequence of a second feature of the proof of existence 
of a tensor product. 

There is a canonical isomorphism 

(A2) E®kF~F®kE 

given by taking the linear extension of (e, f)~-+> f ® e as the map from 
left to right. The linear extension of(/, e) ~-+> e ® f gives a two-sided 
inverse. 

Another canonical isomorphism of interest is 

(A.3) 

Here the map from left to right is the linear extension of (e, c) ~-+> ce, 
while the map from right to left is e ~-+> e ® 1. In view of (A.2) we have 
lk®k E ~ E also. 

Tensor product distributes over direct sums, even infinite direct sums: 

(A.4) E ®k ($Fa)~ $<E ®k Fa). 
a a 

The map from left to right is the linear extension of the bilinear map 
(e, L fa)~--+ L (e ®fa). To define the inverse, we have only to define it 
on each E®kFa. where it is thelinearextensionof(e, fa)~-+> e®(ia<fa)); 
here ia : Fa ___. ffi Fp is the injection corresponding to a. It follows from 
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(A.3) and (A.4) that if {x;} is a basis of E and {yj} is a basis ofF, then 
{x; ® Yj} is a basis of E ®k F. Consequently 

(A.5) dim(£ ®k F) = (dim E)( dim F). 

Let Homk (E, F) be the vector space of lk linear maps from E into F. 
One special case is E = lk, and we have 

(A.6) 

The map from left to right sends ffJ into ffJ(l), while the map from right 
to left sends f into ffJ with ffJ(c) = cf. Another special case of interest 
occurs when F = lk. Then Hom(£, lk) = E* is just the vector space dual 
of E. 

We can use ®k to construct new linear mappings. Let £ 1, F1, £ 2 and 
F2 be vector spaces, Suppose that L 1 is in Homk(E~o FI) and L 2 is in 
Homk(£2, F2). Then we can define 

(A.7) L1 ® L2 in Homk(EI ®k £2, F1 ®k F2) 

as follows: The map (e~o e2) ~---+ L1 (e1) ® L 2(e2) is bilinear from £ 1 x E2 

into F1 ®k F2, and we let L 1 ® L2 be its linear extension to E 1 ®k £ 2. The 
uniqueness in the universal mapping property allows us to conclude that 

(A.8) 

when the domains and ranges match in the obvious way. 
Let A, B, and C be vector spaces over lk. A triple tensor 

product V = A ®k B ®k C is a vector space over k with a trilinear map 
t : A x B x C ~ V having the following universal mapping property: 
Whenever t is a trilinear mapping of A x B x C into a vector space U 
over k, then there exists a linear linear mapping T of V into U such that 
the diagram 

V (=triple tensor product) 

(A.9) ',, T 

A X B X c -------+ u 
t 

commutes. It is clear that there is at most one triple tensor product up to 
canonical isomorphism, and one can give an explicit construction just as 
for ordinary tensor products E ®k F. We shall use triple tensor products 
to establish an associativity formula for ordinary tensor products. 
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Proposition A.lO. 
(a) (A ®k B) ®k C and A ®k (B ®k C) are triple tensor products. 
(b) There exists a unique isomorphism <I> from left to right in 

(A.ll) (A ®k B) ®k C ~ A ®k (B ®k C) 

such that <l>((a ®b)® c)= a® (b ®c) for all a e A, be B, and c e C. 

PROOF. 
(a) Consider (A ®k B) ®k C. Lett: Ax B x C ~ U be trilinear. For 

c e C, define tc : A x B ~ U by tc(a, b) = t(a, b, c). Then tc is bilinear 
and hence extends to a linear Tc : A ®k B ~ U. Since t is trilinear, 
tc1+<'2 = fc1 + tc2 and fxc = xtc for scalar x; thus uniqueness of the linear 
extension forces Tc1+<'2 = Tc1 + T<'l and Txc = xTc. Consequently 

t' : (A ®k B) X c ~ u 
given by t'(d, c) = Tc(d) is bilinear and hence extends to a linear 
T : (A ®k B) ®k C ~ U. This T proves existence of the linear extension 
of the given t. Uniqueness is trivial, since the elements (a ® b) ® c 
generate (A ®k B) ®k C. So (A ®k B) ®k C is a triple tensor product. In 
a similar fashion, A ®k (B ®k C) is a triple tensor product. 

(b) In (A.9) take V = (A ®k B) ®k C, U = A ®k (B ®k C), and 
t(a, b, c) = a ® (b ® c). We have just seen in (a) that V is a triple 
tensor product with t(a, b, c) = (a® b)® c. Thus there exists a linear 
T : V ~ U with Tt(a, b, c) = t(a, b, c). This equation means that 
T((a ®b)® c) =a® (b ®c). Interchanging the roles of (A ®k B) ®k C 
and A ®k (B ®k C), we obtain a two-sided inverse for T. Thus T will 
serve as <I> in (b), and existence is proved. Uniqueness is trivial, since 
the elements (a® b)® c generate (A ®k B) ®k C. 

When this proposition is used, it is often necessary to know that the 
isomorphism <I> is compatible with maps A ~ A', B ~ B', and C ~ C'. 
This property is called naturality in the variables A, B, and C, and we 
make it precise in the next proposition. 

Proposition A.12. Let A, B, C, A', B', and C' be vector spaces over 
k, and let LA: A~ A', Ls: B ~ B', and Lc: C ~ C' be linear maps. 
Then the isomorphism <I> of Proposition A.lOb is natural in the sense 
that the diagram 

A®k (B ®kC) 

4> 
(A' ®k B') ®k C' ----+ A' ®k (B' ®k C') 

commutes. 
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PRooF. We have 

((LA® (Ls ® Le)) o cl>)((a ®b)® c) 

and the proposition follows. 

=(LA® (Ls ® Le))(a ® (b ®c)) 

= LAa ® (Ls ® Le)(b ®c) 

= ci>((LAa ® Lsb) ®Lee) 

= ci>((LA ® Ls)(a ®b)® Lee) 

=(<I> o ((LA® Ls) ® Le))((a ®b)® c), 
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There is no difficulty in generalizing matters ton-fold tensor prod
ucts by induction. An n-fold tensor product is to be universal for 
n-multilinear maps. It is clearly unique up to canonical isomorphism. 
A direct construction is possible. Another such tensor product is the 
(n- 1)-fold tensor product of the first n- 1 spaces, tensored with the nth 

space. Proposition A .lOb allows us to regroup parentheses (inductively) 
in any fashion we choose, and iterated application of Proposition A.12 
shows that we get a well defined notion of the tensor product of n linear 
maps. 

Fix a vector space E over lk, and let Tn (E) be then-fold tensor product 
of E with itself. In the case n = 0, we let T0 (E) be the field lk. Define, 
initially as a vector space, T(E) to be the direct sum 

(A.l3) 

The elements that lie in one or another Tn(E) are called homogeneous. 
We define a bilinear multiplication on homogeneous elements 

Tm(E) x Tn(E)-+ Tm+n(E) 

to be the restriction of the above canonical isomorphism 

Tm(E) ®k Tn(E)-+ Tm+n(E). 

This multiplication is associative because the restriction of the isomor

phism 

T1(E) ®k (Tm(E) ®k Tn(E))-+ (T1(E) ®k Tm(E)) ®k Tn(E) 

to T1(E) x (Tm(E) x Tn(E)) factors through the map 

T1(E) X (Tm(E) X r(E))-+ (T1(E) X Tm(E)) X Tn(E) 

given by (r, (s, t)) ~--+ ((r, s), t). Thus T(E) becomes an associative 
algebra with identity and is known as the tensor algebra of E. The 
algebra T(E) has the following universal mapping property. 
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Proposition A.14. T(E) has the following universal mapping prop
erty: Lett be the map that embeds E as T1(E) £ T(E). If I : E--+ A is 
any linear map of E into an associative algebra with identity, then there 
exists a unique associative algebra homomorphism L : T(E)--+ A with 
L ( 1) = 1 such that the diagram 

T(E) 

(A.15) t/ L 

:..1 

E A 
I 

commutes. 

PRooF. Uniqueness is clear, since E and 1 generate T(E) as an algebra. 
For existence we define L <n> on Tn (E) to be the linear extension of the 
n-multilinear map 

(VJ, v2, ... , Vn) t-+ l(Vt)l(v2) · · ·l(vn), 

and we let L = ffi L<n> in obvious notation. Let u1 ®· · ·®um be in Tm(E) 
and v1 ® · · · ® Vn be in Tn(E). Then we have 

L(m)(Ut ® · · · ® Um) = l(ut) · · ·l(um) 

L(n)(Vt ® · · · ® Vn) = l(VJ) · · ·l(vn) 

L(m+n>(ul ® · · · ® Um ® Vt ® · · · ® Vn) = l(ut) · · ·l(um)l(vt) · · ·l(vn). 

Hence 

L(m)(UJ ®· · ·®Um)L(n)(VJ ®· · ·®vn) = L(m+n)(UJ ®· · ·®Um ®vi®·· ·®Vn). 

Taking linear combinations, we see that Lis a homomorphism. 

2. Symmetric Algebra 

We continue to allow lk to be an arbitrary field. Let E be a vector 
space over lk, and let T(E) be the tensor algebra. We begin by defining 
the symmetric algebra S(E). The elements of S(E) are to be all the 
symmetric tensors, and so we want to force u ® v = v ® u. Thus we 
define the symmetric algebra by 

(A.l6a) S(E) = T(E)/ I, 



where 

(A.l6b) 

2. Symmetric Algebra 

( 
two-sided ideal generated by all ) 

I = u ® v - v ® u with u and v . 
in TI(E) 

Then S(E) is an associative algebra with identity. 
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Since the generators of I are homogeneous elements (all in T2(E)), 

it is clear that the ideal I satisfies 
()() 

I= EB (In Tn(E)). 
n=O 

An ideal with this property is said to be homogeneous. Since I is 

homogeneous, 
()() 

S(E) = EB Tn(E)/(1 n Tn(E)). 
n=O 

We write sn(E) for the nth summand on the right side, so that 
()() 

(A.l7) S(E) = EB sn(E). 
n=O 

Since InTI(£)= 0, the map of E into first-order elements SI(E) is one

one onto. The product operation in S(E) is written without a product 

sign, the image in Sn(E) of VI®···® Vn in Tn(E) being denoted VI··· Vn· 

If a is in sm(E) and b is in sn(E), then ab is in sm+n(E). Moreover 

sn(E) is generated by elements VI ... Vn with all Vj in SI(E);;;;: E, since 

Tn (E) is generated by corresponding elements VI®· · · ® vn. The defining 

relations for S(E) make v;vi =vi vi for v; and vi in si(E), and it follows 
that S(E) is commutative. 

Proposition A.18. 
(a) sn(E) has the following universal mapping property: Let t be 

the map t(Vt. ... ' Vn) = VI ... Vn of E X ... X E into sn(E). If lis any 

symmetric n-multilinear map of E x · · · x E into a vector space U, then 
there exists a unique linear map L : sn(E)--+ U such that the diagram 

L 

Ex···xE-----~U 

commutes. 
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(b) S(E) has the following universal mapping property: Lett be the 
map that embeds E as SI(E) ~ S(E). If I is any linear map of E into 
a commutative associative algebra A with identity, then there exists a 
unique algebra homomorphism L: S(E)-+ A with L(l) = 1 such that 
the diagram 

S(E) 

L 

E--------+A 
l 

commutes. 

PRooF. In both cases uniqueness is trivial. For existence we use the 
universal mapping properties of rn(E) and T(E) to produce Lon Tn(E) 
or T(E). If we can show that L annihilates the appropriate subspace so 
as to descend to sn(E) or S(E), then the resulting map can be taken as 
L, and we are done. For (a) we have L : Tn(E) -+ U, and we are to 
show that i(Tn(E) n I)= 0, where I is generated by all u ® v- v ® u 
with u and v in TI(E). A member of Tn(E) n I is thus of the form 
L;a; ® (u; ® V;- V; ® U;) ® b; with each term in rn(E). Each term here 
is a sum of pure tensors 

(A.19) XI®· · ·®xr®U; ®v;®YI ®· · ·®Ys-XI ®· · ·®Xr®V;®u;®YI ®· · ·®Ys 

with r + 2 + s = n. Since I by assumption takes equal values on 

XI X • • • X Xr X U; X V; X YI X • • • X Ys 

and XI X • • • X Xr X V; X U; X YI X • • • X Ys• 

L vanishes on (A.l9), and it follows that i(Tn(E) n /) = 0. 
For (b) we are to show that i : T(E) -+ A vanishes on I. Since ker i 

is an ideal, it is enough to check that i vanishes on the generators of I. 
But i(u ® v - v ® u) = l(u)l(v) - l(v)l(u) = 0 by the commutativity of 
A, and thus L(l) = 0. 

CoroUary A.20. If E and F are vector spaces over k, then 
Homt(Sn(E), F) is canonically isomorphic (via restriction to pure ten
sors) to the vector space ofF valued symmetric n-multilinear functions 
onE x ... x E. 
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PRooF. Restriction is linear and one-one. It is onto by Proposition 
A.18a. 

Next we shall identify a basis for sn(E) as a vector space. The union 
of such bases as n varies will then be a basis of S(E). Let {u;};eA be a 
basis of E. A simple ordering on the index set A is a partial ordering 
in which every pair of elements is comparable. 

Proposition A.21. Let E be a vector space over lk, let {u; heA be a 
basis of E, and suppose that a simple ordering has been imposed on the 
index set A. Then the set of all monomials uf: · · · uf: with i 1 < · · · < ik 
and Lm jm = n is a basis of sn (E). 

REMARK. In particular if E is finite-dimensional with ordered basis 
u 1, ••• , u N, then the monomials u{1 • • • uf: of total degree n form a basis 
of sn(E). 

PRooF. Since S(E) is commutative and since monomials span Tn(E), 
the indicated set spans sn(E). Let us see independence. The map 
I:c;u; 1-+ I:c;X; of E into the polynomial algebra lk[{X;};eA] is linear 
into a commutative algebra with identity. Its extension via Proposi
tion A.18b maps our spanning set for sn(E) to distinct monomials 
in lk[{X;heA], which are necessarily linearly independent. Hence our 
spanning set is a basis. 

The proof of Proposition A.21 may suggest that S(E) is just polyno
mials in disguise, but this suggestion is misleading, even if E is finite
dimensional. The isomorphism with lk[{X; };eAl in the proof depended on 
choosing a basis of E. The canonical isomorphism is between S(E*) and 
polynomials on E. Part (b) of the corollary below goes in the direction 
of establishing such an isomorphism. 

Corollary A.22. Let E be a finite-dimensional vector space over lk 
of dimension N. Then 

( n+N-1) (a) dimSn(E) = N _ 1 forO~ n < oo. 

(b) sn(E*) is canonically isomorphic to sn(E)* by 

n 

<II ... fn)(w~o ... 'Wn) = L n /j(W-r:(j))). 
-r:e6.j=l 

where 6n is the symmetric group on n letters. 
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PRooF. 
(a) A basis has been described in Proposition A.21. To see its cardi

nality, we recognize that picking out N- 1 objects from n + N- 1 to 
label as dividers is a way of assigning exponents to the u j 's in an ordered 

basis; thus the cardinality of the indicated basis is ( n t ':.._ }1 ) . 

(b) Let ft. ... , In be in E*, and define 

n 

lflo···.fn(w,, ... ' Wn) = L n /j{Wr(j))). 
re6. j=! 

Then lft, ... ,J. is symmetric n-multilinear from E x · · · x E into lk and 
extends by Proposition A.l8a to a linear Lft, ... .f. : sn(E) --+ lk. Thus 
l(j,, ... , fn) = LJ~o ... ,f. defines a symmetric n-multilinear map of 
E* X ••• X E* into sn(E*). Its linear extension L maps sn(E*) into 
sn(E)*. 

To complete the proof, we shall show that L carries basis to basis. Let 
u,, ... 'UN be an ordered basis of E' and let ur' ... ' ur., be the dual basis. 
Part (a) shows that the elements (u!)h · · · (u7.,)jN with Lm jm = n form 
a basis of sn(E*) and that the elements (ud 1 ••• (uN)kN with Lm km = n 
form a basis of sn(E). We show that L of the basis of sn(E*) is the dual 
basis of the basis of sn (E), except for nonzero scalar factors. Thus let 
JI, ... , fh all be u1, let fh+'• ... , fh+h all be ui, and so on. Similarly let 
w~o ... , wk1 all be ur.let wk1+" ... , wk1+k2 all be uz, and so on. Then 

. . k k 
L((u1)11 • • • (u7.,)1N)((ui) 1 • • • (uN) N) = L(j, · · · fn)(w, · · · Wn) 

= l(j,, ... , fn)(W! · · · Wn) 
n 

= L n /;(Wr(i))). 
res. i=l 

For given r, the product on the right side is 0 unless, for each index i , 
an inequality jm-1 + 1 ::: i ::: jm implies that km-! + 1 ::: r(i) ::: km. In 
this case the product is 1; so the right side counts the number of such 
r's. For given r, getting product nonzero forces km = jm for all m. And 
when km = jm for all m, the choice r = 1 does lead to product 1. Hence 
the members of L of the basis are nonzero multiples of the members of 
the dual basis, as asserted. 

Now let us suppose that lk has characteristic 0. We define an n
multilinear function from Ex · · · x E into P(E) by 

1 
(v,, ... , Vn) 1-4 1 L Vr(!) ® · · · ® Vr(n)• 

n. re6. 
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and let u : Tn(E) --+ Tn(E) be its linear extension. We call u the 
symmetrizer operator. The image of u is denoted sn(E), and the 
members of this subspace are called symmetrized tensors. 

Corollary A.23. Let lk have characteristic 0, and let E be a vector 
space over k. Then the symmetrizer operator u satisfies u 2 = u. The 
kernel of u is exactly Tn(E) n I, and therefore 

REMARK. In view of this corollary, the quotient map Tn(E)--+ sn(E) 
carries sn(E) one-one onto S(E). Thus sn(E) can be viewed as a copy 
of S(E) embedded as a direct summand of Tn(E). 

PRooF. We have 

2 1 "' U (Vt ® · · · ® Vn) = (n!)2 ~ Vpr(l) ® · · · ® Vpr(n) 
p,re6. 

1 
= ( 1)2 L L Vw(l) ® .. • ® Vw(n) 

n. peS. we6 •• 
(a>=pT) 

1 
= 1 L U(Vt ® · · · ® Vn) 

n. peS. 

= U(Vt ® · · · ® Vn). 

Hence u 2 = u. Consequently TR (E) is the direct sum of image u and 
keru. We thus are left with identifying keru as Tn(E) n I. 

The subspace Tn (E) n I is spanned by elements 

Xt ® · · · ® Xr ® U ® V ® Yt ® · · · ® Ys - Xt ® · · · ® Xr ® V ® U ® Yl ® · · · ® Ys 

with r + 2+s = n, and it is clear that u vanishes on such elements. Hence 
Tn (E) n I ~ ker u. Suppose that the inclusion is strict, say with tinker u 
butt not in Tn(E) n I. Let q be the quotient map Tn(E)--+ sn(E). The 
kernel of q is Tn(E) n I, and thus q(t) =f:. 0. From Proposition A.21 it is 
clear that q carries sn (E) = image u onto sn (E). Thus choose t' e sn (E) 
with q(t') = q(t). Then t' - t is in kerq = Tn(E) n I ~ ker u. Since 
u(t) = 0, we seethatu(t') = 0. Consequently t' is inkerunimageu = 0, 
and we obtain t' = 0 and q(t) = q(t') = 0, contradiction. 
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3. Exterior Algebra 

We tum to a discussion of the exterior algebra. Let t be an arbitrary 
field, and let E be a vector space overt. The construction, results, and 
proofs for the exterior algebra A (E) are similar to those for the sym
metric algebra S(E). The elements of A<E) are to be all the alternating 
tensors(= skew-symmetric ift has characteristic::/: 2), and so we want 
to force v ® v = 0. Thus we define the exterior algebra by 

(A.24a) 

where 

(A.24b) 

A<E) = T(E)/ I', 

1, = ( two-sid~d id~al generated by all ) . 
v ® v With v 1D T 1(E) 

Then A<E) is an associative algebra with identity. 
It is clear that I' is homogeneous: I'= EB:o (I' n Tn(E)). Thus we 

can write 

A<E) = EB:O Tn(E)/(1' n P(E)). 

We write An(E) for the nth summand on the right side, so that 

(A.25) A(E) = EB:OAn(E). 

Since I' n T 1(E) = 0, the map of E into first-order elements A1(E) is 
one-one onto. The product operation in A<E) is denoted A rather than 
®.the image in An (E) of Vi ® ... Vn in Tn (E) being denoted Vi 1\ • • •I\ Vn. 
If a is in Am (E) and b is in An (E), then a 1\ b is in A m+n (E). Moreover 
An (E) is generated by elements Vi 1\ ••• 1\ Vn with all Vj in A I (E) ~ E' 
since P(E) is generated by corresponding elements v1 ® ... ® vn. The 
defining relations for A<E) make v;Avi = -vil\v; forv; and vi in A1(E), 
and it follows that 

(A26) 

Proposition A.l7. 
(a) An(E) has the following universal mapping property: Lett be the 

map t(vlt ... , Vn) =VIA·· ·A Vn of Ex··· x E into An(E). If lis any 
alternating n-multilinear map of E x · · · x E into a vector space U, then 
there exists a unique linear map L : An (E) -+ U such that the diagram 
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L 

EX ... X E -------+ u 

commutes. 
(b) /\(E) has the following universal mapping property: Lett be the 

map that embeds E as /\1(E) £/\(E). If lis any linear map of E into 
an associative algebra A with identity such that l ( v )2 = 0 for all v e E, 
then there exists a unique algebra homomorphism L: /\(E)~ A with 
L (1) = 1 such that the diagram 

/\(E) 

L 

E-------+A 

commutes. 

PRooF. The proof is completely analogous to the proof of Proposition 
A.l8. 

Corollary A.28. If E and F are vector spaces over lk, then 
Homk(/\n(E), F) is canonically isomorphic (via restriction to pure ten
sors) to the vector space ofF valued alternating n-multilinear functions 
onEx···xE. 

PRooF. Restriction is linear and one-one. It is onto by Proposition 
A.27a. 

Next we shall identify a basis for 1\ n (E) as a vector space. The union 
of such bases as n varies will then be a basis of 1\ (E). 

Proposition A.29. Let E be a vector space over lk, let {u; heA be a 
basis of E, and suppose that a simple ordering has been imposed on the 
indexsetA. Thenthesetofallmonomialsu;1 A···Au;. withi1 <···<in 
is a basis of 1\ n (E). 
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PRooF. Since multiplication in 1\ (E) satisfies (A.26) and since mono
mials span Tn(E), the indicated set spans 1\n(E). Let us see indepen
dence. Fori e A, let ut be the member of E* with ut(uj) equal to 1 for 
j = i and equal to 0 for j =f:. i. Fix r1 < .. · < r n, and define 

forwl·····wninE. 

Then l is alternating n-multilinear from E x · · · x E into lk and extends 
by Proposition A.27a to L : 1\n(E) ""* lk. If k1 < · · · < kn, then 

L(Uk1 1\ · • · 1\ uk.) = l(uk1 , ••• , uk.) = det{u;i (uk)}, 

and the right side is 0 unless r 1 = kt. ... , rn = kn, in which case it is 1. 
This proves that the u,1 1\ · · · 1\ Urn are linearly independent in 1\ n (E). 

Corollary A.30. Let E be a finite-dimensional vector space over lk 
of dimension N. Then 

(a) diml\n(E) = (:)forO::::: n::::: Nand= 0 for n > N. 

(b) 1\\E*) is canonically isomorphic to 1\n(E)* by 

U1 1\ · · · 1\ fn)(Wt, ... , Wn) = det{/;(wj)}. 

PRooF. Part (a) is an immediate consequence of Proposition A.29, 
and (b) is proved in the same way as Corollary A.22b, using Proposition 
A.27a as a tool. 

Now let us suppose that lk has characteristic 0. We define an 
n-multilinear function from Ex··· x E into Tn(E) by 

1 
(vi, ... , Vn) f-+ 1 L (sgn t')Vr(l) ® · · · ® Vr(n)• 

n. re6. 

and let u' : Tn(E) ""* Tn(E) be its linear extension. We call u' the 
antisymmetrizer operator. The image of u' is denoted An (E), and the 
members of this subspace are called antisymmetrized tensors. 

Corollary A.31. Let lk have characteristic 0, and let E be a vector 
space over lk. Then the antisymmetrizer operator u' satisfies u'2 = u'. 
The kernel of u' is exactly Tn(E) n /',and therefore 

- n 
Tn(E) = 1\ (E)$ (rn(E) n /'). 

REMARK. In view of this corollary, the quotient map Tn(E) ""* 1\n(E) 
- n - n 

carries 1\ (E) one-one onto 1\ (E). Thus 1\ (E) can be viewed as a copy 
of 1\(E) embedded as a direct summand of Tn(E). 
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PRooF. We have 

12 1 ""' u (Vt ® · · · ® Vn) = (n!)2 L.J (sgnpr)vp~(l) ® · · · ® Vp~(n) 
p.~es. 

1 
= ( 1)2 L L (sgnw)Vw(l) ® · · · ® Vw(n) 

n. peS. weS., 
(w=p-r) 

1 I:, = - U (Vt ® • • · ® Vn) 
nl 

·peS. 

= u'(Vt ® · · · ® Vn)· 
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Hence u'2 = u'. Consequently T" (E) is the direct sum of image u' and 
ker u'. We thus are left with identifying ker u' as T" (E) n I'. 

The subspace T"(E) n /'is spanned by elements 

Xt ® · · · ® Xr ® V ® V ® Yt ® · · · ® Ys 

with r + 2 + s = n, and it is clear that u' vanishes on such elements. 
Hence T"(E) n /' £; keru'. Suppose that the inclusion is strict, say 
with t in keru' butt not in T"(E) n /'. Let q be the quotient map 
T"(E) ~ /\"(E). The kernel of q is T"(E) n I', and thus q(t) =fo 0. 
From Proposition A.29 it is clear that q carries A" (E)= imageu' onto 
/\"(E). Thus choose t' e A" (E) with q(t') = q(t). Then t'- t is in 
kerq = T"(E) n /' £; ker u'. Since u'(t) = 0, we see that u'(t') = 0. 
Consequently t' is in keru' n imageu' = 0, and we obtain t' = 0 and 
q(t) = q(t') = 0, contradiction. 

4. Filtrations and Gradings 

Let k be any field. A vector space V over k will be said to be filtered 
if there is a specified increasing sequence of subspaces 

(A.32) 

with union V. In this case we put V_ 1 = 0 by convention. We shall 
say that V is graded if there is a specified sequence of subspaces 
V0 , V 1, V2 , • • • such that 

00 

(A.33) v = E9v". 
n=O 
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When V is graded, there is a natural filtration of V given by 

(A.34) 
n 

Vn = E9vk. 
k=O 

When E is a vector space, the tensor algebra V = T(E) is graded 
as a vector space, and the same thing is true of the symmetric algebra 
S(E) and the exterior algebra /\(E). In each case the nth subspace of 
the grading consists of the subspace of tensors that are homogeneous of 
degree n. 

When Vis a filtered vector space as in (A.32), the associated graded 
vector space is 

(A.35) 
n=O 

In the case that V is graded and its filtration is the natural one given in 
(A.34), gr V recovers the given grading on V, i.e., gr V is canonically 
isomorphic with V in a way that preserves the grading. 

Let V and V' be two filtered vector spaces, and let ({J be a linear 
map between them such that ({J(Vn) ~ V~ for all n. Since the restriction 
of ({J to Vn carries Vn-l into V~_ 1 , this restriction induces a linear map 
grn ({J: <Vn/Vn-d--+ (V~/V~_ 1 ). The direct sum ofthese linear maps is 
then a linear map 

(A.36) gr({J : gr V ~ gr V' 

called the associated graded map for ((J. 

Proposition A.37. Let V and V' be two filtered vector spaces, and let 
({J be a linear map between them such that ({J(Vn) ~ V~ for all n. If gr({J is 
an isomorphism, then ({J is an isomorphism. 

PRooF. It is enough to prove that ({Jiv. : Vn --+ V~ is an isomorphism 
for every n. We establish this property by induction on n, the trivial case 
for the induction being n = -1. Suppose that 

(A.38) ({Jiv._, : Yn-1 --+ V~_ 1 is an isomorphism. 

By assumption 

(A.39) g~ ({J: <Vn/Yn-1)--+ (V~/VL 1 ) is an isomorphism. 

If v is in ker(({Jiv.), then (grn qJ}(v + Yn-1) = 0 + V~_ 1 , and (A.39) 
shows that v is in Vn-l· By (A.38), v = 0. Thus ({Jiv. is one-one. 
Next suppose that v' is in V~. By (A.39) there exists Vn in Vn such that 
(g~ ({J)(vn + Vn-!) = v' + v~_,. Write ({J(Vn) = v' + v~-1 with v~-1 in 
v~_,. By (A.38) there exists Vn-1 in Yn-1 with ({J(Vn-!) = v~_,. Then 
({J(Vn- Vn-1) = v', and thus ({Jiv. is onto. This completes the induction. 
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Now let A be an associative algebra over lk with identity. If A has a 
filtration A0 , A~> ... of vector subspaces with 1 E Ao such that Am An ~ 
Am+n for all m and n, then we say that A is a filtered associative algebra. 
Similarly if A is graded as A= EB:o An in such a way that Am An ~ Am+n 

for all m and n, then we say that A is a graded associative algebra. 

Proposition A.40. If A is a filtered associative algebra with identity, 
then the graded vector space gr A acquires a multiplication in a natural 
way making it into a graded associative algebra with identity. 

PRooF. We define a product 

by 

This is well defined since amAn-h Am-Ian, and Am-IAn-I are all con
tained in Am+n-I· It is clear that this multiplication is distributive and 
associative as far as it is defined. We extend the definition of multiplica
tion to all of gr A by taking sums of products of homogeneous elements, 
and the result is an associative algebra. The identity is the element 
1 + A_I of Ao/A-J. 



APPENDIXB 

Lie's Third Theorem 

Abstract. A finite-dimensional real Lie algebm is the semidirect product of a 
semisimple subalgebm and the solvable mdical, according to the Levi decomposition. 
As a consequence of this theorem and the correspondence between semi direct products 
of Lie algebras and semidirect products of simply connected analytic groups, every 
finite-dimensional real Lie algebm is the Lie algebm of an analytic group. 

1. Levi Decomposition 

Chapter I omits two important theorems about general finite
dimensional Lie algebras over lR that need to be mentioned, and those 
results appear in this appendix. They were omitted from Chapter I 
because they use a result about semisimple Lie algebras that was not 
proved until Chapter V. 

Lemma B.l. Let rp be an lR linear representation of the real semisim
ple Lie algebra g on a finite-dimensional real vector space V. Then v 
is completely reducible in the sense that there exist invariant subspaces 
U~o ... , Ur of V such that V = Ut e · · · e Ur and such that the restriction 
of the representation to each U; is irreducible. 

PRooF. It is enough to prove that any invariant subspace U of V has 
an invariant complement W. By Theorem 5.29, there exists an invariant 
complex subspace W' of vc such that vc = uc e W'. Let P be the lR 
linear projection of vc on V along i V, and put 

W = P(W' n (V $ iU)). 

Since P commutes with rp(g), we see that rp(g)(W) s;; W. To complete 
the proof, we show that V = U e W. 

Let a be in U n W. Then a + ib is in W' n (V e i U) for some b e V. 
The element b must be in U, and we know that a is in U. Hence a + i b is 
in uc. But then a+ ibis in uc n W' = 0, and a = 0. Hence U n W = 0. 
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Next let v e V be given. Since vc = uc + W', we can write v = 
(a+ ib) + (x + iy) with a e U, b e U, a.tld x + iy e W'. Since vis in V, 
y =-b. Thereforex+iy is in VEeiU,as well as W'. Since P(x+iy) = x, 
x is in W. Then v = a + x with a e U and x e W, and V = U + W. 

Theorem 8.2 (Levi decomposition). If g is a finite-dimensional Lie 
algebra over R, then there exists a semisimple subalgebra s of g such that 
g is the semi direct product g = s E9:rr (rad g) for a suitable homomorphism 
1r : s ~ Del'JR (rad g). 

PRooF. Lett= radg. We begin with two preliminary reductions. The 
first reduction will enable us to assume that there is no nonzero ideal a 
of g properly contained in t. In fact, an argument by induction on the 
dimension would handle such a situation: Proposition 1.11 shows that 
the radical of gfa is t/a. Hence induction gives gfa = s/aE9t/a with sf a 
semisimple. Since sja is semisimple, a= rads. Then induction gives 
s = s' E9 a with s' semisimple. Consequently g = s' E9 t, and s' is the 
required complementary subalgebra. 

As a consequence, t is abelian. In fact, otherwise Proposition 1.7 
shows that [t, t] is an ideal in g, necessarily nonzero and properly con
tained in t. So the first reduction eliminates this case. 

The second reduction will enable us to assume that [g, t] = t. In fact, 
[g, t] is an ideal of g contained in t. The first reduction shows that we 
may assume it is 0 or t. If [g, t] = 0, then the real representation ad 
of g on g descends to a real representation of g/t on g. Since g/t is 
semisimple, Lemma B .1 shows that the action is completely reducible. 
Thus t, which is an invariant subspace in g, has an invariant complement, 
and we may take this complement as s. 

As a consequence, 

(B.3) tn Z9 = o. 

In fact t n Z9 is an ideal of g. It is properly contained in t since t n Z9 = 
t implies that [g, t] = 0, in contradiction with the second reduction. 
Therefore the first reduction implies (B.3). 

With the reductions in place, we imitate some of the proof of Theorem 
5.29. That is, we put 

V = {y e Endg I y(g) ~ t and YIT is scalar} 

and define a representation u of g on End g by 

u(X)y = (adX)y- y(adX) fory e Endg and X e g. 
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The subspace V is an invariant subspace under u, and 

U = {y e V I y = 0 on t} 

is an invariant subspace of codimension 1 in V such that u(X)(V) s; U 
for X e g. Let 

T = {adY I Yet}. 

This is a subspace of U since t is an abelian Lie subalgebra. If X is in g 
andy =ad Y is in T, then u(X)y =ad [X, Y] with [X, Y] e t. Hence T 
is an invariant subspace under u. 

From V 2 U 2 T, we can form the quotient representations VI T and 
V 1 U. The natural map of V 1 T onto V 1 U respects the g actions, and the 
g action of V 1 U is 0 since u(X)(V) s; U for X e g. If X is in t andy is 
in V, then 

u(X)y = (adX)y- y(adX) = -y(adX) 

since image y s; t and tis abelian. Since y is a scalar A.(y) on t, we can 
rewrite this formula as 

(B.4) u(X)y = ad(-A.(y)X). 

Equation (B.4) exhibits u(X)y as in T. Thus ul~ maps V into T, and u 
descends to representations of glt on V 1 T and V 1 U. The natural map 
of V 1 T onto V 1 U respects these glt actions. 

Since dim VI U = 1, the kernel of VI T ~ VI U is a glt invariant 
subspace of V 1 T of codimension 1, necessarily of the form WIT with 
W s; V. Since glt is semisimple, Lemma B .1 allows us to write 

(B.5) VIT =WIT E9 (Ry0 + T)IT 

for a 1-dimensional invariant subspace (Ry0 + T) 1 T. The directness of 
this sum means that y0 is not in U. So y0 is not 0 on t. Normalizing, we 
may assume that y0 acts by the scalar -1 on t. In view of (B .4), we have 

(B.6) u(X)yo =ad X for X e t. 

Since (Ry0 + T)IT is invariant in (B.5), we have u(X)y0 e T for each 
X e g. Thus we can write u(X)y0 = adcp(X) for some cp(X) e t. The 
element cp(X) is unique by (B.3), and therefore cp is a linear function 
cp : g ~ t. By (B.6), cp is a projection. If we puts = kercp, then we 
have g = s E9 t as vector spaces, and we have only to show that s is a Lie 
subalgebra. The subspace s = ker cp is the set of all X such that u (X)y0 = 
0. This is the set of all X such that (adX)y0 = y0(adX). Actually if y is 
any element ofEndg, then the set of X e g such that (adX)y = y(adX) 
is always a Lie subalgebra. Hence s is a Lie subalgebra, and the proof 
is complete. 
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2. Lie's Third Theorem 

Lie's Third Theorem, which Lie proved as a result about vector fields 
and local Lie groups, has come to refer to the following improved 
theorem due to Cartan. 

Theorem 8.7. Every finite-dimensional Lie algebra over lR is 
isomorphic to the Lie algebra of an analytic group. 

PROOF. Let g be given, and write g = s E9n t as in Theorem B .2, with s 
semisimple and t solvable. Corollary 1.103 shows that there is a simply 
connected Lie group R with Lie algebra isomorphic tot. The group lots 
is an analytic group with Lie algebra ads isomorphic to s since s has 
center 0. LetS be the universal covering group of lots. By Theorem 
1.102 there exists a unique action t' of S on R by automorphisms such 
that di = 1r, and G = S xT R is a simply connected analytic group with 
Lie algebra isomorphic to g = s E9n t. 
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Data for Simple Lie Algebras 

Abstract. This appendix contains information about irreducible root systems, simple 
Lie algebras over IC and JR, and Lie groups whose Lie algebras are simple, noncompact, 
and noncomplex. The first two sections deal with the root systems themselves and the 
corresponding complex simple Lie algebras. The last two sections deal with the simple 
real Lie algebras that are noncompact and noncomplex and with their corresponding Lie 
groups. 

1. Classical Irreducible Reduced Root Systems 

This section collects information about the classical irreducible re
duced root systems, those of types An for n 2:: 1, Bn for n 2:: 2, Cn for 
n 2:: 3, and Dn for n 2:: 4. 

The first three items describe the underlying vector space V, the root 
system 11 as a subset of V, and the usual complex semisimple Lie algebra 
g associated with 11. All this information appears also in (2.43). In each 
case the root system is a subspace of some ~k = { L~=l a;e;}. Here {e;} 
is the standard orthonormal basis, and the a; 's are real. 

The next four items give the number 1111 of roots, the dimension 
dimg of the Lie algebra g, the order IWI of the Weyl group of 11, and the 
determinant det(Aij) of the Cartan matrix. All this information appears 
also in Problems 15 and 28 for Chapter II. 

The next two items give the customary choice of positive system !1 + 
and the associated set n of simple roots. This information appears also 
in (2.50), and the corresponding Dynkin diagrams appear in Figure 2.3 
and again in Figure 2.4. 

The last three items give, relative to the listed positive system !1 +,the 
fundamental weights ru1, ••• run, the largest root, and the half sum 8 of the 
positive roots. The fundamental weights ruj are defined by the condition 
2(ruj, a; )/la;12 = 8;j ifn is regarded as the ordered set{ at. ... , an}· Their 
significance is explained in Problems 36-41 for Chapter V. The ru; are 
expressed as members of V. The largest root is listed in two formats: 
(a) as a tuple like (11· .. 1) that indicates the expansion in terms of the 
simple roots at. ... , an and (b) as a member of V. 
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V = {v E JRn+I I (v, e1 + · · · + en+I) = 0} 
fl. = {e; - ei I i # j} 
g=.sl(n+1,C) 

Ill. I = n(n + 1) 
dimg = n(n + 2) 
IWI = (n + 1)! 
det(Aij) = n + 1 

fl.+ = {e; - ei I i < j} 
n = {e! - e2, e2 - e3, ... 'en - en+d 

Fundamental weights: 
ru; = e1 + · · · + e; projected to V 

= e1 + · · · + e;- n~I (ei + · · · + en+I) 

Largest root= (11 · · · 1) = e1 - en+I 

~ = (~)ei + (n22)e2 +···+(-~)en+! 

V = ]Rn 

fl.= {±e; ± ei I i < j} U {±e;} 
g = so(2n + 1, <C) 

lll.l = 2n2 

dimg = n(2n + 1) 
IWI = n!2n 
det(Aij) = 2 

fl.+ = {e; ± ei I i < j} U {e;} 

n = {e! - e2, e2- e3 •... 'en-! -en. en} 

Fundamental weights: 
ru; = e1 + · · · + e; for i < n 
W"n = i<e1 +···+en) 

Largest root= (122 · · · 2) = e1 + e2 

~ = (n- i)ei + (n- ~)e2 + · · · + ien 
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V =JR.n 
!::. = {±e; ± ej I i < j} U {±2e;} 
g = .sp(n, C) 

11::.1 =2n2 

dimg = n(2n + 1) 
IWI = n!2n 
det(Aij) = 2 

t:.+ = {e; ± ej I i < j} U {2e;} 
n = {e! - e2, e2- e3 •... ' en-i -en. 2en} 

Fundamental weights: 
ru; = e1 + · · · + e; 

Largest root= (22 · · · 21) = 2e1 
8 = ne1 + (n- l)e2 +···+len 

v = JRR 
!::. = {±e; ± ej I i < j} 
g = .so(2n, C) 

11::.1 = 2n(n- 1) 
dimg = n(2n- 1) 
IWI =n!2n-l 
det(Aij) = 4 

t:.+ = {e; ± ej I i < j} 
n = {e! - e2. e2- e3 •... 'en-i -en. en-i +en} 

Fundamental weights: 
ru; = e1 + · · · + e; for i :::: n - 2 
run-! = t<ei + ... + en-i -en) 

run = t<ei + · · · + en-i +en) 
Largest root= (122 · · · 211) = e1 + e2 

8 = (n- l)e1 + (n- 2)e2 +···+len-! 
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2. Exceptional Irreducible Reduced Root Systems 

This section collects information about the exceptional irreducible 
reduced root systems, those of types E6 , E1 , E8 , F4 , and G2. 

The first two items describe the underlying vector space V and the 
root system 1:1 as a subset of V. All this information appears also in 
Proposition 2.87 and in the last diagram of Figure 2.2. In each case the 
root system is a subspace of some JRk = 0:::~= 1 a;e;}. Here {e;} is the 
standard orthonormal basis, and the a; 's are real. 

The next four items give the number 11:11 of roots, the dimension 
dim g of a Lie algebra g with 1:1 as root system, the order 1 W 1 of the Weyl 
group of 1:1, and the determinant det(Aij) of the Cartan matrix. All this 
information appears also in Problems 16 and 29-34 for Chapter II. 

The next three items give the customary choice of positive system 1:1 +, 
the associated set n of simple roots, and the numbering of the simple 
roots in the Dynkin diagram. This information about n appears also in 
(2.85b) and (2.86b), and the corresponding Dynkin diagrams appear in 
Figure 2.4. 

The last three items give, relative to the listed positive system 1:1 +, 
the fundamental weights !'171, ••• !'lTn, the positive roots with a coefficient 
::: 2, and the half sum ~ of the positive roots. The fundamental weights 
!'Uj are defined by the condition 2(llTj, a;) /Ia; 12 = ~ii if n is regarded as 
the ordered set {a~o ... , a,}. Their significance is explained in Problems 
36-41 for Chapter V. Let the fundamental weights be expressed in terms 
of the simple roots as !'.ZTj = L; Ciia;. Taking the inner product of both 
sides with 21akl-2ak. we see that the matrix (Cij) is the inverse of the 
Cartan matrix (Aij). Alternatively taking the inner product of both sides 
with !'17; , we see that Cii is a positive multiple of ( !'.ZTj, !'17;) , which is > 0 
by Lemma 6.97. The forms w; that appear in §VIJO are related to the 
fundamental weights !'17; by !'17; = ~ Ia; 12w;. The positive roots with a 
coefficient ::: 2 are listed in a format that indicates the expansion in 
terms of the simple roots a 1, ••• , an . The last root in the list is the largest 
root. 

The displays of the last two sets of items have been merged in the 
case ofG2. 
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V = {v e R8 I (v, e6- e7) = (v, e1 + es) = 0)} 
d = {±e; ± ei I i < j :=: 5} U {! .E~=l ( -l)n<i>e; e VI .E~=l ( -l)n(i) even} 

ldl =72 
dimg = 78 
IWI = 27 • 34 • 5 
det(Aij) = 3 

d + = {e; ± ei I i > j} 

U {!<es- e1- e6 + .E~=l (-l)n(i>e; I.E~=l (-l)n(i) even} 

n = {at. a2, a3, a4, as, a6} 
= ft<es- e1- e6- es- e4- e3- e2 + et). 

e2 +e., e2- e1, e3- e2, e4- e3, es- e4} 

Numbering of simple roots in Dynkin diagram = ( 65~31 ) 

Fundamental weights in terms of simple roots: 
ll1t = l<4at + 3a2 + 5a3 + 004 + 4as + 2a6) 
zu2 = 1al + 2a2 + 2a3 + 3a4 + 2as + 1a6 
ll13 = l<5at + 002 + 10a3 + 12a4 + Bas+ 4a6) 
ZU4 = 2at + 3a2 + 4a3 + 004 + 4as + 2a6 
zus = l<4at + 002 + 8a3 + 12a4 + 10as + 5a6) 
ll16 = l (2at + 3a2 + 4a3 + 004 + 5as + 4a6) 

Positive roots having a coefficient :::: 2: 

( 01~10) ' ( 11~10) ' ( 01~11) ' ( 12~10) ' ( 11~11) ' ( 01~21) ' 
( 12~11) ' ( 11~21) ' ( 12~21) ' ( 12j21) ' ( 12;21) 

8 = e2 + 2e3 + 3e4 + 4es - 4e6 - 4e7 + 4es 



2. Exceptional Irreducible Reduced Root Systems 513 

V = {v E R8 I (v, e1 + eg) = 0} 
!l. = {±e; ± ei I i < j :S: 6} U {±(e7- es)} 

U {! L~=I (-l)n{i)e; E VI L~=I (-l)n(i) even} 

l!l.l = 126 
dimg = 133 
IWI = 210 • 34 • 5 · 7 
det(Aij) = 2 

fl.+= {e; ±ei I i > j}U{es -e7} 
U {!(eg- e7 + L~=l (-l)n{i)e; I L~=l (-l)n(i) odd} 

n = {a~o a2, a3, a4, as, a6, a7} 
= I!<es- e1- e6- es- e4- e3- e2 + e1, 

e2 + e1, e2- e~o e3- e2, e4- e3, es- e4, e6- es} 

Numbering of simple roots in Dynkin diagram= ( 765~31 ) 

Fundamental weights in terms of simple roots: 
llTI = 2al + 2a2 + 3a3 + 4cx4 + 3as + 2a6 + 1a7 

llT2 = !<4cxl + 7a2 + 8a3 + 12a4 + 9as + 006 + 3a7) 

llTJ = 3al + 4cx2 + 003 + 8a4 + oos + 4cx6 + 2a7 

llT4 = 4cxl + 002 + 8a3 + 12a4 + 9as + 006 + 3a7 
llTs = !<oo1 + 9a2 + 12a3 + l8a4 + 15as + 10a6 + Sa7) 

llT6 = 2al + 3a2 + 4cx3 + 004 + 5as + 4cx6 + 2a7 

llT7 = 4<2al + 3a2 + 4cx3 + 004 + 5as + 4cx6 + 3a7) 

Positive roots having a coefficient::: 2 and involving a7: 

( 111i10) ' ( 111ill) ' ( 112i10) ' ( 111i21) ' ( 112ill)' 

( 122i10) ' ( 112i21) ' ( 122ill) ' ( 122i21) ' ( 112~21)' 
( 122~21) ' ( 112~21) ' ( 123~21) ' ( 122~21) ' ( 123~21)' 
( 123~21)' ( 12~31)' ( 123~32) 

S = !<2e2 + 4e3 + 6e4 + 8es + 10e6- 17e7 + 17es) 
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V=R8 

~ = {±e; ± ei I i < j} 
U U .E:=l (-1)n<i)e; I .E:=l (-1)n(i) even} 

1~1 =240 
dimg =248 
IWI = 214. 3s. 52.7 
det(A;j) = 1 

~ + = {e; ± ei I i > j} 

U U<es + .EJ=l (-1)n<i)e; I .EJ=l (-l)n(i) even} 
n = {at. a2, a3, a4, as, a6, a7, as} 

= ti<es- e1- e6- es- e4- e3- e2 + e~o 
e2 + e~o e2 - e~o e3 - e2, e4 - e3, es - e4, e6 - es, e1 - e6} 

Numbering of simple roots in Dynkin diagram = ( 8765~31 ) 

Fundamental weights in terms of simple roots: 
lZTt = 4at + Sa2 + 7a3 + 10a4 + 8as + 006 + 4a7 + 2as 
lZTz = 5at + 8a2 + 10a3 + 15a4 + 12as + 9a6 + 007 + 3as 
lZT3 = 7at + 10a2 + 14a3 + 20a4 + 1oos + 12a6 + 8a7 + 4as 
lZT4 = 10at + 15a2 + 20a3 + 30a4 + 24as + 18a6 + 12a7 + oos 
Ws = Sat+ 12a2 + 1oo3 + 24a4 + 20as + 15a6 + 10a7 + 5as 
lZT6 = OOt + 9a2 + 12a3 + 18a4 + 15as + 12a6 + 8a7 + 4as 
lZT7 = 4at + 002 + 8a3 + 12a4 + 10as + 8a6 + 007 + 3as 
ws = 2at + 3a2 + 4a3 + 004 + 5as + 4a6 + 3a7 + 2as 

Positive roots having a coefficient::: 2 and involving a8: 

( 1111~10)' ( 1112~10)' ( 1111~11)' ( 1122~10)' ( 1111~21 ). 

( 1112~11)' ( 1112~21)' ( 1122~11)' ( 1222~10)' ( 1112~21). 
( 1122~21)' ( 1222~11)' ( 1112~21)' ( 1122~21)' ( 1222~21 ). 

( 1122~21)' ( 1123~21)' ( 1222j21)' ( 1123~21)' ( 1222~21 ). 

( 1223~21)' ( 1123~21)' ( 1223~21)' ( 1233j21)' ( 1123~31 ). 
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( 1223~21)' ( 1233;21)' ( 1123~32)' ( 1223~31)' ( 1233~21)' 
( 122~32)' ( 1233~31)' ( 123~21)' ( 1233~32)' ( 123~31 ). 

( 1234;31)' ( 123~32)' ( 1234~31)' ( 1234;32)' ( 1234~32 ). 

( 1234;42)' ( 1234~42)' ( 1234~2)' ( 1235~2)' ( 1245~2 ). 

( 1345~2) ' ( 2345~2) 
a = e2 + 2e3 + 3e4 + 4es + 5e6 + 6e1 + 23es 
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v = JR.4 
!:J. = {±e; ± ei I i < j} U {±e;} U f!<±e1 ± e2 ± e3 ± e4)} 

l!l.l=48 
dimg =52 
IWI = 27 • 32 

det(Aij) = 1 

t:J.+ = {e; ±ei I i < j} U {e;} U f!<e1 ±e2 ±e3 ±e4} 
n = {a~. a2, a3, a4} 

= {~(ei- e2- e3- e4), e4, e3- e4, e2- e3} 
Numbering of simple roots in Dynkin diagram= (1234) 

Fundamental weights in terms of simple roots: 
lZTJ = 2a1 + 3a2 + 2a3 + 1a4 
lZT2 = 3al + 6a2 + 4a3 + 2a4 
lZT3 = 4al + 8a2 + 6a3 + 3a4 
lZT4 = 2ai + 4a2 + 3a3 + 2a4 

Positive roots having a coefficient :::: 2: 
(0210), (0211), (1210), (0221), (1211), (2210), (1221), 
(2211), (1321), (2221), (2321), (2421), (2431), (2432) 

8 = 11el + 5e2 + 3e3 + e4 
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V = {v e 1R3 I (v, e1 + e2 + e3) = 0} 
A = {±(ei - e2), ±(e2 - e3), ±(e2 - e3)} 

U {±(2el - e2 - e3), ±(2e2 - e1 - e3), ±(2e3 - e1 - e2)} 

IA.I = 12 
dimg = 14 
IWI =22 ·3 
det(A;j) = 1 

n = {a~o a2} 
= {e1 - e2, -2el + e2 + e3} 

Numbering of simple roots in Dynkin diagram = (12) 
A.+= {(10), (01), (11), (21), (31), (32)} 

Fundamental weights in terms of simple roots: 
ll7'1 = 2a1 + 1a2 
llT2 = 3al + 2a2 

8 = Sa1 + 3a2 
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3. Classical Noncompact Simple Real Lie Algebras 

This section shows for the classical noncompact noncomplex simple 
real Lie algebras how the methods of § § Vl.l 0-11 reveal the structure of 
each of these examples. 

The first three items, following the name of a Lie algebra g0 , describe 
a standard Vogan diagram of g0 , the fixed subalgebra t0 of a Cartan 
involution, and the simple roots for t0 • In §VI.lO each g0 has at most 
two standard Vogan diagrams, and one of them is selected and described 
here. References to roots use the notation of§ 1 of this appendix. If the 
Dynkin diagram has a double line or a triple point, then the double line 
or triple point is regarded as near the right end. 

The simple roots of t0 are obtained as follows. When the automor
phism in the Vogan diagram is nontrivial, the remarks before Lemma 
7.127 show that t0 is semisimple. The simple roots for t0 then include 
the compact imaginary simple roots and the average of the members 
of each 2-element orbit of simple roots. If the Vogan diagram has no 
painted imaginary root, there is no other simple root for t0 • Otherwise 
there is one other simple root for t0 , obtained by taking a minimal 
complex root containing the painted imaginary root in its expansion and 
averaging it over its 2-element orbit under the automorphism. When the 
automorphism is trivial, the remarks near the end of §VII.9 show that 
either dim c0 = 1 , in which case the simple roots for t0 are the compact 
simple roots for g0 , or else dim c0 = 0, in which case the simple roots for 
t0 are the compact imaginary simple roots for g0 and one other compact 
imaginary root. In the latter case this other compact imaginary root is 
the unique smallest root containing the noncompact simple root twice 
in its expansion. 

The next two items give the real rank and a list of roots to use in Cayley 
transforms to pass from a maximally compact Cartan subalgebra to a 
maximally noncompact Cartan subalgebra. The list of roots is obtained 
by an algorithm described in §VI.ll. In every case the members of 
the list are strongly orthogonal noncompact imaginary roots. When the 
automorphism in the Vogan diagram is nontrivial, the noncompactness 
of the roots is not necessarily obvious but may be verified with the aid 
of Proposition 6.104. The real rank of g0 is the sum of the number of 
2-element orbits among the simple roots, plus the number of roots in the 
Cayley transform list. The Cayley transform list is empty if and only if 
g0 has just one conjugacy class of Cartan subalgebras. 

The next three items identify the system of restricted roots, the real
rank-one subalgebras associated to each restricted root, and the subal
gebra mp,O· Let ~0 = to EB ao be the given maximally compact Cartan 
subalgebra. The information in the previous items has made it possible 
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to identify the Cayley transform of ap,o as a subspace of ito E9 ao. The 
restriction of the roots to this subspace therefore identifies the restricted 
roots. By (6.109) the multiplicities of the restricted roots determine 
the real-rank-one subalgebras associated by §Vll.6 to each restricted 
root>.. for which !>..is not a restricted root. The computation of these 
subalgebras is simplified by the fact that any two restricted roots of the 
same length are conjugate by the Weyl group of the restricted roots; the 
associated subalgebras are then conjugate. The roots of g0 orthogonal 
to all roots in the Cayley transform list and to the -1 eigenspace of the 
automorphism are the roots of mp,o; such roots therefore determine the 
semisimple part of mp,O· The dimension of the center of mp,o can then 
be deduced by comparing rank go, dim ap,o, and rank [ mp,o. mp,o]. 

The next three items refer to the customary analytic group G with Lie 
algebra g0 • The group G is listed together with the customary maximal 
compact subgroup K and the number of components of Mp. For results 
about the structure of Mp, see §§Vll.5-6. 

An item of "special features" notes if G 1 K is Hermitian or if g0 is a 
split real form or if g0 has just one conjugacy class of Cartan subalgebras. 
Finally an item of "further information" points to some places in the 
book where this g0 or G has been discussed as an example. 

Vogan diagrams of the Lie algebras in this section are indicated in 
Figure 6.1. A table of real ranks and restricted-root systems appears as 
(6.107). 
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.sl(n, JR), n odd ::;: 3 

Vogan diagram: 
An-I, nontrivial automorphism, 
no imaginary simple roots 

to= so(n) 
Simple roots for to: 

!<et<n-1) - et<n+3)) and 
all !<e; - e;+I + en-i - en+I-i) for 1 :::::: i :::::: !<n- 3) 

Real rank = n - 1 
Cayley transform list: 

all e·- e +I-· for 1 < i < l(n- 1) I n I - - 2 

I:= An-I 
Real-rank-one subalgebras: 

sl(2, JR) for all restricted roots 
mp,o = 0 

G = SL(n, lR) 
K = SO(n) 
IMp I= 2n-t 

Special feature: 
g0 is a split real form 

Further information: 
For ~0 , compare with Example 2 in §VI.8. 
For Mp, see Example 1 in §VI.5. 
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.sl(n, JR.), n even~ 2 

Vogan diagram: 
An-I, nontrivial automorphism (if n > 2), 
unique imaginary simple root e!n- e!n+l painted 

2 2 

to= so(n) 
Simple roots for t0 : 

~(ei<n-2) + e!n - e!<n+2) - e!<n+4)) and 
all ~(e; - e;+! + en-i - en+!-i) for 1 .::::: i .::::: ~(n- 2) 

Real rank = n - 1 
Cayley transform list: 

all e·- e +!-· for 1 < i < ln I n I - - 2 

:E =An-! 
Real-rank-one subalgebras: 

sl(2, JR.) for all restricted roots 
mp,o =0 

G = SL(n, IR.) 
K = SO(n) 
IMp I= 2n-l 

Special features: 
G I K is Hermitian when n = 2, 
go is a split real form for all n 

Further information: 
For ~0 , see Example 2 in §Vl.S. 
For Mp, see Example 1 in §Vl.5. 
For Cartan subalgebras see Problem 13 for Chapter VI. 
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sl(n, !Hl), n 2:: 2 

Vogan diagram: 
A2n-I, nontrivial automorphism, 
unique imaginary simple root en- en+! unpainted 

to= .sp(n) 
Simple roots for t0 : 

en- en+! and 
all !<e; - e;+! + e2n-i - e2n+1-;) for 1 :::: i :::: n - 1 

Real rank = n - 1 
Cayley transform list: empty 

:E = An-1 
Real-rank-one subalgebras: 

.so(5, 1) for all restricted roots 
mp,O ~ su(2)n, 

simple roots equal to 
all e; - ezn+I-i for 1 :::: i :::: n 

G = SL(n, lHI) 
K = Sp(n) 
IMp/(Mp)ol = 1 

Special feature: 
g0 has one conjugacy class of Cartan subalgebras 

Further information: 
For Mp, see Example 1 in §VI.5. 
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.su(p,q), 1 ~ p ~ q 

Vogan diagram: 
Ap+q-I, trivial automorphism, 
p1h simple root e P - e p+ 1 painted 

to= s(u(p) E9 u(q)) 
Simple roots for t0 : compact simple roots only 

Real rank= p 
Cayley transform list: 

all e; - e2p+I-i for 1 ~ i ~ p 

:E = { (BC)p ~f p < q } 
Cp lfp=q 

Real-rank-one subalgebras: 
sl(2, C) for all restricted roots±/;± h 
su(q - p + 1, 1) for all±{/;, 2/;} 

_ { JRP E9 su(q - p) if p < q } 
mp,O- JRP-1 if p = q ' 

simple roots by Cayley transform from 
all e2p+i - e2p+i+I for 1 ~ i ~ q - p - 1 

G = SU(p, q) 
K = S(U(p) x U(q)) 

{ lifp<q} 
IMp/(Mp)ol = 2 if P = q 

Special feature: 
G I K is Hermitian 

Further information: 
For ~0 , see Example 1 in §V1.8. 
For Mp, see Example 2 in §V1.5. 
For the Hermitian structure see the example in §V11.9. 
For restricted roots see the example with (6.106) and see also 

Problem 37 for Chapter VII. 
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.so(2p, 2q + 1), 1 :::: p :::: q 

Vogan diagram: 
Bp+q, trivial automorphism, 
pth simple root ep- ep+l painted 

t0 = so(2p) $ so(2q + 1) 
Simple roots for to: compact simple roots and 

{ e p-I + e P when p > 1 } 
no other when p = 1 

Real rank = 2 p 
Cayley transform list: 

all e; ± ezp+l-i for 1 :::: i :::: p 

I:= Bzp 
Real-rank-one subalgebras: 

s[(2, lR) for all long restricted roots 
so(2q- 2p + 2, 1) for all short restricted roots 

mp,o = so(2q- 2p + 1), 
simple roots when p < q by Cayley transform from 
ep+q and all ezp+i - ezp+i+l for 1 :::: i :::: q - p - 1 

G = S0(2p, 2q + 1)o 
K = SO(p) x S0(2q + 1) 
IMp/(Mp)ol = 22P-l 

Special features: 
G I K is Hermitian when p = 1, 
g0 is a split real form when p = q 

Further information: 
For Mp, see Example 3 in §VI.5. 
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so(2p, 2q + 1), p > q :::: 0 

Vogan diagram: 
B p+q, trivial automorphism, 
pth simple root ep- ep+1 painted 

to= .so(2p} e.so(2q + 1) 
Simple roots for to: compact simple roots and 

{ 
ep-1 + ep when p > 1 } 
no other when p = 1 and q = 0 

Real rank = 2q + 1 
Cayley transform list: 

ep-q and all e; ± ezp+l-i for p- q + 1 :::: i :::: p 

I:= B2q+l 

Real-rank-one subalgebras: 
.sl(2, lR) for all long restricted roots 
.so(2p- 2q, 1) for all short restricted roots 

mp,o = .so(2p- 2q - 1), 
simple roots when p > q + 1 by Cayley transform from 
ep-q-1 and all e; - ei+1 for 1 :::: i :::: p - q - 2 

G = S0(2p, 2q + l)o 
K = SO(p) x S0(2q + 1) 
IMp/(Mp)ol = 22q 

Special feature: 
G 1 K is Hermitian when p = 1 and q = 0, 
go is a split real form when p = q + 1 

Further information: 
For Mp, see Example 3 in §VI5. 
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.sp(p, q), 1 ::: p ::: q 

Vogan diagram: 
C p+q, trivial automorphism, 
pth simple root ep- ep+! painted 

to= sp(p) x sp(q) 
Simple roots for t0 : compact simple roots and 

2ep 

Real rank= p 
Cayley transform list: 

all e; - e2p+l-i for 1 ::: i ::: p 

:E = { (BC)p ~f p < q} 
Cp If p = q 

Real-rank -one subalgebras: 
so(5, 1) for all restricted roots ±/; ± h 
sp(q- p + 1, 1) for all±{/;, 2/;} 

mp,o = su(2)P EBsp(q- p), 
simple roots by Cayley transform from 
all e; + e2p+l-i for 1 ::: i ::: p, 
all e2p+i- e2p+i+l for 1:::: i:::: q- p- 1, 
and also 2ep+q if p < q 

G= Sp(p,q) 
K = Sp(p) x Sp(q) 
IMp/(Mp)ol = 1 

Further information: 
Mp is connected by Corollary 7.69 and Theorem 7.55. 
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.sp(n, .IR), n ?:: 1 

Vogan diagram: 
Cn, trivial automorphism, 
nth simple root 2en painted 

to= u(n) 
Simple roots for t0: compact simple roots only 

Real rank= n 
Cayley transform list: 

all2e;, 1 :::: i :::: n 

I:= Cn 
Real-rank-one subalgebras: 

sl(2, .IR) for all restricted roots 
mp,o = 0 

G = Sp(n,.IR) 
K = U(n) 
IMpl =2n 

Special features: 
G I K is Hermitian, 
g0 is a split real form 

Further information: 
For isomorphisms see Problem 15 for Chapter VI and Problem 30 

for Chapter VII. 
For the Hermitian structure see Problems 31-33 for Chapter VII. 
For restricted roots see Problem 38 for Chapter VII. 
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.so(2p + 1, 2q + 1), 0 ~ p ~ q but not so(l, 1) or so(l, 3) 

Vogan diagram: 
Dp+q+I, nontrivial automorphism, 
pth simple root ep- ep+I painted, none if p = 0 

t0 = so(2p + 1) $ so(2q + 1) 
Simple roots for to: 

ep (if p > 0), ep+q• and 
all e; - e;+I with 1 ~ i ~ p - 1 or p + 1 ~ i ~ p + q - 1 

Real rank = 2p + 1 
Cayley transform list: 

all e; ± e2p+I-i· 1 ~ i ~ p 

:E = { Bp ~f p < q } 
Dp tf p = q 

Real-rank-one subalgebras: 
sl(2, !R) for all long restricted roots 
so(2q- 2p + 1, 1) for all short restricted roots when p < q 

mp,o = so(2q- 2p), 
simple roots when p < q - 1 by Cayley transform from 
ep+q- 1 + ep+q and all e2p+i - e2p+i+I for 1 ~ i ~ q - p - 1 

G = S0(2p + 1, 2q + 1)o 
K = S0(2p + 1) x S0(2q + 1) 
IMp/(Mp)ol = 22P 

Special feature: 
g0 has one conjugacy class of Cartan subalgebras when p = 0 

Further information: 
For p = 0 and q = 1, so(1, 3) ~ s1(2, C) is complex. 
For Mp, see Example 3 in §Vll.5. 
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.so(2p, 2q), 1 ::::: p ::::: q but not .so(2, 2) 

Vogan diagram: 
Dp+q, trivial automorphism, 
pth simple root ep- ep+l painted 

to= .so(2p) ED .so(2q) 
Simple roots for to: compact simple roots and 

{
ep-1 +ep whenp > 1} 
no other when p = 1 

Real rank = 2p 
Cayley transform list: 

all e; ± e2p+l-i• 1 ::::; i ::::; p 

I: = { Bp ~ p < q } 
Dp if p = q 

Real-rank-one subalgebras: 
.sl(2, IR) for all long restricted roots 
.so(2q- 2p + 1, 1) for all short restricted roots when p < q 

mp,o = .so(2q- 2p), 
simple roots when p < q - 1 by Cayley transform from 
ep+q-1 + ep+q and all e2p+i - e2p+i+l for 1 ::::; i ::::; q - p - 1 

G = S0(2p, 2q)o 
K = S0(2p} x S0(2q) 
IMp/(Mp)ol = 22P-I 

Special features: 
G I K is Hermitian when p = 1, 
g0 is a split real form when p = q 

Further information: 
For p = q = 2, .so(2, 2) ;:: .sl(2, IR) ED .sl(2, IR) is not simple. 
For Mp, see Example 3 in §VIS. 
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.so*(2n), n 2:: 3 

Vogan diagram: 
Dn, trivial automorphism, 
nth simple root en- I +en painted 

to= u(n) 
Simple roots for to: compact simple roots only 

Real rank= [n/2] 
Cayley transform list: 

all en-2i+l + en-2i+2• 1 ::S i ::S [n/2] 

I:= { (BC)!<n-1) ~f n odd } 
C1n tf n even 

2 

Real-rank-one subalgebras: 

{ sl(2, IR) for all ± 2J; if n even} 
su(3, 1) for all ± {J;, 2J;} if n odd 

so(5, 1) for all ±J; ± h 

{ su(2) !n if n even } 
mp,O = .su(2)!<n-I) E91R if n odd ' 

simple roots by Cayley transform from 
all en-2i+l - en-2i+2 for 1 ::::; i ::::; [n/2] 

G = S0*(2n) 
K = U(n) 

{ 2 if n even} 
IMp/(Mp)ol = 1 if n odd 

Special feature: 
G I K is Hermitian 

Further information: 
When n = 2, .so*(4) ~ .sl(2, lR) E9 .su(2) is not simple. 
For 1)0 and explicit root structure, see Problem 6 for Chapter VI. 
Mp is connected when n is odd by Corollary 7.69 and Theorem 7.55. 
For Hermitian structure see Problems 34-36 for Chapter VII. 
For restricted roots see Problem 39 for Chapter VII. 
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4. Exceptional Noncompact Simple Real Lie Algebras 

This section exhibits the structure of the exceptional noncompact 
noncomplex simple real Lie algebras by using the methods of 
§§VI.l0-11. 

The format is rather similar to that in the previous section. The first 
three items following the name of a Lie algebra g0 (given as in the listing 
of Cartan [1927a] and Helgason [1978]) describe the standard Vogan 
diagram of g0 , the fixed subalgebra t0 of a Cartan involution, and the 
simple roots of to. In the cases of F4 and G2, the left root in a Dynkin 
diagram is short. Techniques for obtaining the roots of to are described 
in §3, and references to explicit roots use the notation of §2. As in §3, 
when the automorphism in the Vogan diagram is trivial and dimeo=O, 
there is one simple root of t0 that is not simple for g0 • This root is the 
unique smallest root containing the noncompact simple root twice in its 
expansion. It may be found by referring to the appropriate table in §2 
of "positive roots having a coefficient:::: 2:• 

One difference in format in this section, by comparison with §3, is 
that roots are displayed in two ways. The first way gives the expansion 
in terms of simple roots, using notation introduced in §2. The second 
way is in terms of the underlying space V of the root system. 

The next two items give the real rank and a list of roots to use in Cayley 
transforms to obtain a maximally noncompact Cartan subalgebra. The 
three items after that identify the system of restricted roots, the real-rank
one subalgebras associated to each restricted root, and the subalgebra 
mp,O· The techniques are unchanged from §3. 

The final item is the mention of any special feature. A notation 
appears if G 1 K is Hermitian or if g0 is a split real form or if g0 has 
just one conjugacy class of Cartan subalgebras. For each complex 
simple Lie algebra, there is a unique real form such that G 1 K has a 
kind of quaternion structure (see the Notes). Except in type An, to has 
a summand .su(2) for this case. Under the item of special features, a 
notation appears if G I K is quaternionic. 

Vogan diagrams of the Lie algebras in this section appear also in 
Figures 6.2 and 6.3, and t0 for each diagram is indicated in those figures. 
A table of real ranks and restricted-root systems appears as (6.108). 
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EI 

to= .sp(4) 
Simple roots for to: 

1) ( oo~oo) · ( o~g~o) · ( H~~) · ( o~~!O) 
2) e3- e2, 4<e4- e3 +e2- e1), !<es- e1- e6 +es- 3e4- e3- e2 +e1), 

4(e4+e3+e2+e1) 

Real rank= 6 
Cayley transform lists: 

1) ( ~), ( 01~10), ( 11~11), ( 12~21) 
2) e2 + e~o e4 + e3, 4<es- e1- e6 + es - e4 + e3 - e2 + e1), 

4<es- e1- e6 + es + e4- e3 + e2- e1) 

E =E6 
Real-rank-one subalgebras: 

.sl(2, lR) for all restricted roots 
mp,o = 0 

Special feature: 
g0 is a split real form 
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Ell 

to = su(6) $ su(2) 
Simple roots for to: compact simple roots and 

( 12;21 ) = !<es- e1- e6 + es + e4 + e3 + e2 + e1) 

Real rank= 4 
Cayley transform lists: 

l) ( 00~) ' ( OlilO) ' ( llill) ' ( 12i21) 
2) e2 + e1, e4 + e3, !<es- e1- e6 + es- e4 + e3- e2 + et), 

!<es- e1- e6 + es + e4- e3 + e2- et) 

I;= F4 
Real-rank-one subalgebras: 

sl(2, lR) for all long restricted roots 
sl(2, C) for all short restricted roots 

mp,o = JR2 

Special feature: 
G I K is of quaternion type 



534 C. Data for Simple Lie Algebras 

EIII 

to = .so(lO) EB R 
Simple roots for to: compact simple roots only 

Real rank= 2 
Cayley transform lists: 

1) (1~). (12~10) 
2) es - e4, es + e4 

I:= (BCh 
Real-rank-one subalgebras: 

.so(7, 1) for restricted roots ±/1 ± 12 

.su(5, 1) for±{/;, 2/;} 
mp,o = .su(4) EB R, simple roots by Cayley transform from 

1> (~). (~w)· (oo?oo) 
2) e2 + e~o e2 - e~o e3 - e2 

Special feature: 
G I K is Hermitian 
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EIV 

to= f4 
Simple roots for to: 

l) ( 00~00) ' ( O!g!O) ' ( !Og<H) ' ( ~) 
2) e3 - e2, ! (e4- e3 + e2 - e1), ! (es - e1 - e6 + es - 3e4- e3 - e2 + e1), 

e2 +e1 

Real rank = 2 
Cayley transform list: empty 

I:= A2 
Real-rank-one subalgebras: 

so(9, 1) for all restricted roots 
mp,o = so(8), simple roots by Cayley transform from 

1) (~). (oo~oo)· (o1~w)· (u~u) 
2) e2 + et. e3- e2, e4- e1, !<es- e7- e6 + es- e4- e3- e2- e1) 

Special feature: 
g0 has one conjugacy class of Cartan subalgebras 
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EV 

to= .su(8) 
Simple roots for to: compact simple roots and 

( 012~21 ) = i<es- e,- e6 + es + e4 + e3 + e2 + e1) 

Real rank= 7 
Cayley transform lists: 

1> ( ~)' ( 001~10)' ( 122~10)' ( 011~11 ). 

( 012~21) ' ( 111~21) ' ( 112~11) 
2) e2 + e~o e4 + e3, e6 + es, i<es- e,- e6 + es- e4 + e3- e2 + et), 

i<es-e,-e6+es+e4-e3+e2-e1), i<es-e,+e6-es-e4+e3+e2-et), 
i<es - e, + e6 - es + e4 - e3 - e2 + et) 

I:= E, 
Real-rank-one subalgebras: 

.sl(2, lR) for all restricted roots 
mp,o =0 

Special feature: 
go is a split real form 
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EVI 

to= so(12) $ su(2) 
Simple roots for t0 : compact simple roots and 

( 123~32) = es - e1 

Real rank= 4 
Cayley transform lists: 

1> ( ~1)' ( 001~21) ' ( 122~21)' ( 123~21) 
2) ~(es-e7-e6-e5-e4-e3-ez+e1), ~(es-e7-e6-e5+e4+e3+ez-e1), 

~(es-e1+e6+e5-e4-e3+ez-e1), ~(es-e1+e6+e5+e4+e3-ez+e1) 

:I;= F4 
Real-rank-one subalgebras: 

st(2, lR) for all long restricted roots 
so(5, 1) for all short restricted roots 

mp,o = su(2) $ su(2) $ su(2), simple roots by Cayley transform from 

1> (ooo6oo)· (oo1~). ( 1~) 
2) ez+e1, e4-e3, e6-e5 

Special feature: 
G I K is of quaternion type 
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EVIl 

to=t6$lR 
Simple roots for t0: compact simple roots only 

Real rank = 3 
Cayley transform lists: 

1) ( 1~) ' ( 122~10) ' ( 123~32) 
2) e6- es, e6 + es, es- e1 

I:= c3 
Real-rank-one subalgebras: 

.sl(2, lR) for all long restricted roots 

.so(9, 1) for all short restricted roots 
mp,o = .so(8), simple roots by Cayley transform from 

1) (~). (~w)· (ooo~oo)· (oo1~) 
2) e2 +e., e2 - e., e3 - e2, e4 - e3 

Special feature: 
G I K is Hermitian 
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EVIII 

to= so(16) 
Simple roots for t0 : compact simple roots and 

( 0123~32) = es- e7 

Real rank = 8 
Cayley transform lists: 

1> ( ~1)' ( 0001~21)' ( 0122~21)' ( 0123~21 ). 

( 1122j21)' ( 1223j21)' ( 1222;21)' ( 1123;21) 
2) ~(es-e7-e6-es-e4-e3-ez+eJ), ~(es-e7-e6-es+e4+e3+ez-eJ), 

~ (es -e1+e6 +es -e4 -e3 +ez -ei), ~ (es -e7 +e6 +es +e4 +e3 -ez +e1), 
~(es+e7-e6+es-e4+e3-ez-ei),~(es+e7+e6-es+e4-e3-ez-eJ), 
~(es+e7+e6-es-e4+e3+ez+ei), ~(es+e1-e6+es+e4-e3+ez+ei) 

:E = Es 
Real-rank-one subalgebras: 

s[(2, ~)for all restricted roots 
mp,o = 0 

Special feature: 
g0 is a split real form 
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EIX 

to = t1 EB su(2) 
Simple roots for t0: compact simple roots and 

( 2345~2) = eg + e, 
Realrank=4 
Cayley transform lists: 

1) ( 1~) ' ( 1222i10) ' ( 1223~32) ' ( 1245~2) 
2) e,- e6, e, + e6, eg- es, eg + es 

I:= F4 
Real-rank-one subalgebras: 

sl(2, JR.) for all long restricted roots 
so(9, 1) for all short restricted roots 

mp,o = so(8), simple roots by Cayley transform from 

1) (~)· (~10)· (oooo~oo)· (ooo1~) 
2) e2 + e1, e2 - e1, e3 - e2, e4 - e3 

Special feature: 
G I K is of quaternion type 
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FI 
o--------o=:::: 

to = sp(3) e su(2) 
Simple roots for to: compact simple roots and 

( 2432) = e1 + e2 , with ( 1000) short 

Real rank =4 
Cayley transform lists: 

1) (0001)' (0221)' (2221)' (2421) 
2) e2 - e3, e2 + e3, e1 - e4, e1 + e4 

I:= F4 
Real-rank-one subalgebras: 

sl(2, lR) for all restricted roots 
m.,,o=O 

Special feature: 
go is a split real form 
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FII 
..--o==o---o 

to= so(9) 
Simple roots for t0 : compact simple roots and 

(2210) = e1 - e2 , with ( 1000) short 

Real rank= 1 
Cayley transform lists: 

1) (1000) 
2) !<e, - e2- e3 - e4) 

:E = (BC)! 
Real-rank-one subalgebra: 

FIT 
mp,o = so(7), simple roots by Cayley transform from 

1) (0010)' (0001)' (1210) 
2) e3- e4, e2- e3, !<e, - e2 + e3 + e4). 
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G 
~ 

to = .su(2) E9 .su(2) 
Simple roots for t0 : compact simple roots and 

( 32 ), with ( 10) short 

Real rank= 2 
Cayley transform list: 

(01), (21) 

:E = G2 
Real-rank-one subalgebras: 

.sl(2, JR.) for all restricted roots 
mp,o = 0 

Special feature: 
g0 is a split real form, 
G 1 K is of quatemion type 



IDNTS FOR SOLUTIONS OF PROBLEMS 

Chapter I 

1. In Example 12a, [g, g] has a = b = 0, and [g, [g, g]] = 0. In Example 
12b an elementary sequence has a1 with t = 0 and a2 with t = x = 0. 

2. For (c), the span of X andY is characterized as [g, g]. The given Z is an 
element not in [g, g], and adZ has eigenvalues 0 (from Z), a (from X), and 1 
(from Y). If Z is replaced by Z + s X+ t Y, then the eigenvalues are unchanged. 
If we multiply by c e IR, the eigenvalues are multiplied by c. Hence a is 
characterized as follows: Let Z be any vector not in [g, g]. Then a is the ratio 
of the larger nonzero absolute value of an eigenvalue to the smaller one. 

4. The complexifications in this sense are both sl(2, C). 

8. Compute B(X, Y) andC(X, Y) for X= Y = diag(l, -1, 0, ... , 0) and 
find that B = 2nC. 

9. Abbreviate the displayed matrix as (0, x, y). For (a) we have 

[(1, 0, 0), (0, x, y)] = (0, y, -x). 

Hence ifC(O, x, y) is an ideal,x = y = 0. But then 0 = 0 also from the same 
bracket formula with x = 1, y = 0. For (b), ad ( 1, 0, 0) has eigenvalues 0 and 
±i. 

10. Complexify and apply Lie's Theorem to ad g. 

11. Lie's Theorem shows that adg can be taken simultaneously upper 
triangular, and (1.31) shows that the diagonal entries are then 0. 

12. The Killing form B, being nondegenerate, gives a vector space isomor
phism b : g--+ g*, while C gives a linear map c: g--+ g*. Then b-1c: g--+ g 
is a linear map that commutes with ad g. Since g is simple, ad: g--+ Endg is 
an irreducible representation. As in Lemma 1.66, b-1c must then be scalar. 

13. For sl(2, IR), there is a 2-dimensional subalgebra, while for su(2), there 
is not. 

14. For (b) use the remarks at the end of §2. For (a), SU(2) is topologically 
a 3-sphere and is therefore simply connected. Having a simply connected 
domain is a sufficient condition for a homomorphism of Lie algebras to lift to 
a homomorphism of analytic groups. 

16. No if n > 1. SU(n) and Z have finite nontrivial intersection. 

545 
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17. The linear map ({J ( ~ _ ~) acts on P ( ~~ ) = zi with eigenvalue n. 

Since fP is a direct sum of irreducibles and n is an eigenvalue of fP ( ~ _ ~) , it 
follows that an irreducible of some dimension n + 2k with k ~ 0 occurs in Vn. 
Dimensionality forces k = 0 and gives the result. 

19. We use Problem 18. Direct computation shows that [g, g] is contained 
in the subspace with(} = 0. One still has to show that equality holds. For this 
purpose one is allowed to pick particular matrices to bracket and show that the 
span of such brackets is 3-dimensional. 

20. The starting point is Theorem 1.104. For details of how to apply this 
theorem, see Lemma 1.1.4.1 of Warner [1972a]. 

21. n; 2- (n mod 2) if n ~ 3; 2; n; 2- (n mod 2) if n ~ 3; 2. 

22. Let M be the diagonal matrix with n diagonal entries of i and then n 
diagonal entries of 1. An isomorphism G --. S0(2n, C) is x ~--+- y, where 
y = MxM-1• 

24. G = {diag(ek,e-k}~_00 • 

27. A suitable linear combination L of the two given linear mappings lowers 
the degree of P(s) in e-1rs2 P(s) by exactly one. Take a nonzero e-1rs2 P(s) in 
an invariant subspace U and apply LdegP to e-1rs2 P(s) to see that e-1rs2 is in 
U. Apply powers of "multiplication by -ins" to this to see that all of V is 
contained in U. 

28. Let Z be nonzero in [g, g]. Extend to a basis {X, Y, Z}. If [g, Z] = 0, 
then [g, g] = IR[X, Y] and hence [X, Y] = cZ with c =F 0; in this case we 
can easily set up an isomorphism with the Heisenberg algebra. Otherwise 
[g, Z] = IRZ. Since [X, Z] and [Y, Z] are multiples of Z,some nonzero linear 
combination of X andY brackets Z to 0. Thus we can find a basis {X', Y', Z} 
with [X', Z] = 0, [Y', Z] = Z, [X', Y'] = cZ. Then {X'+ cZ, Y', Z} 
has [X' + cZ, Z] = 0, [Y', Z] = Z, [X' + cZ, Y'] = 0. Then g = 
lR(X' + cZ) E9 span{Y', Z} as required. 

29. A 2-dimensional nilpotent Lie algebra is abelian; hence [g, g] is abelian. 

The matrix (; ~) is nonsingular since otherwise dim[g, g] < 2. 

30. Classify by dim[g, g]. If this is 3, g is simple by the remarks at the end 
of §2. If it is 2 or 1, g is analyzed by Problem 29 or Problem 28. If it is 0, g is 
abelian. 

31. If X= [Y, Z], then ad X= ad YadZ- adZ adY, and the trace is 0. 

32. One of the eigenvalues ofadXo isO,and the sum of the eigenvalues is 0 
by Problem 31. Hence the eigenvalues are 0, A, -A with A e C. The number A 
cannot be 0 since ad X0 is by assumption not nilpotent. Since the characteristic 
polynomial of ad Xo is real, A is real or purely imaginary. If A is real, then the 
sum of the eigenspaces in g for A and -A is the required complement. If A 
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is purely imaginary, then the intersection of g with the sum of the A and -A 

eigenspaces in gc is the required complement. 

33. Let A be as in Problem 32. If A is real, then scale X0 to X to make A= 2 

and show that ad X has the first form. If A is purely imaginary, scale Xo to X 

to make A = i and show that ad X has the second form. 

34. The Jacobi identity gives (adX)[Y, Z] = 0. So [Y, Z] =aX, and a 

cannot be 0 since [g, g] = g. Scale one of Y and Z to make a = 1, and then 

compare with (1.6) and (1.3) in the two cases. 

35. In Problem 32 we still obtain A e C with A =f:. 0. Since the field is C, we 

obtain eigenvectors for ad Xo with eigenvalues A and -A, respectively. Then 

we can proceed as in the first case of Problem 33. 

Chapter II 

1. (2n + 2)-1, (2n- 1)-1, (2n + 2)-1, (2n- 2)-1. 

2. One of the ideals is the complex span of 

( 0 0 li) 
0 0 -i I 

_ 1 i 0 0 , its conjugate, and 

-i -I 0 0 

( 
0 I 0 0) 

-I 0 0 0 
0 0 0 -I . 

001 0 

3. For (c), g = CX EBCY with CY the weight space for the linear functional 

ex~ c. 

4. For (a), take g = .sp(2, C) and 11' = {±e1 ± ez}. 

6. Propositions 2.17c and 2.17e show that dim g =::: 3 dim~ and that dim g = 
dim~ mod 2. Thus dim~ =::: 3 implies dim g =::: 9. If dim ~ = 2, then dim g 

is even and is =::: 6. Hence dim g = 4, 5, or 7 implies dim~ = 1. Meanwhile 

Propositions 2.21 and 2.29 show that dim~ = 1 implies dimg = 3. Hence 

dim g = 4, 5, and 7 cannot occur. 

7. From Ja 12 > 0, we get (a, a;) > 0 for some simple a;. Use this i as ik, 

repeat with a - a;k, and iterate. 

8. Proposition 2.48e for the first conclusion. For the second conclusion use 

the positive roots in (250) and take fJo = e1• 

10. In (a) any two roots at an angle 150° will do. 

11. For (a) ifthe two roots are a and ,8, then sasp(a) =,B. For (b) combine 

(a) with Proposition 2.62, using a little extra argument in the nonreduced case. 

13. By induction Chevalley's Lemma identifies the subgroup of the Weyl 

group fixing a given vector subspace as generated by its root reflections. For 

(a) use this extended result for the+ 1 eigenspace, inducting on the dimension 

ofthe -1 eigenspace. Then (b) is a special case. 
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14. Choose w with l(w) as small as possible so that wA and A are both 
dominant but WA :F A. Write w = vsa with a simple and l(v) = l(w) - 1. 
Then va > 0 by Lemma 2.71. So (wA, va) :::: 0, and we get (A, a) ::::: 0. Since 
A is dominant, (A, a) = 0. Then A :F wA = VA, in contradiction with the 
minimal choice of w. 

17. For (b) if a = :Ec;a; with all c; :::: 0, then av = l:d;ar with 
d; = c;lal-2 la;l2 :::: 0. 

18. For (a) use Theorem 2.63. For (b) the indicated Dynkin diagrams admit 
no nontrivial automorphisms. For (c) and (d) use the explicit descriptions of 
the Weyl groups in Example 1 of §6. 

19. (BCh $ Ar and (BC)r $ (BC)r are missing. 

20. Here g' = g, ~' = ~.and qJ = w. Fix n, and choose nonzero root 
vectors Ea for a E n. For each a E n' choose any nonzero root vector Ewa' 
and require that Ea map to Ewa. 

22. For (a) Lemma 2.71 allows us to see that sgn w = -1 if w is a product 
of an odd number of simple reflections in any fashion and sgn w = + 1 if 
w is a product of an even number of simple reflections in any fashion. The 
homomorphism property follows. In (b), sgn w and det w are multiplicative 
and agree on simple reflections. Part (c) follows from (b). 

23. Wehave 

l(wrw2) =#{a> 0 I wrw2a < 0} 

= #{a > 0 I w2a > 0, wr w2a < 0} 

+#{a> 0 I w2a < 0, wrw2a < 0} 

= #{a I a > 0, w2a > 0, wr w2a < 0} 

+l(w2)- #{a I a> 0, w2a < 0, wrw2a > 0} 

= #{{J I w;r fJ > 0, fJ > 0, wrfJ < 0} 

+ l(w2)- #{y I w;ry < 0, y > 0, WrY < 0} 

= l(wr) - #{{J I w;r fJ < 0, fJ > 0, wrfJ < 0} 

+ l(w2)- #{y I w;ry < 0, y > 0, WrY < 0} 

with fJ = w2a andy= -w2a. 

24. By Problem 23, 

l(wsa) = l(w) + l(sa) - 2#{{3 > 0 I wfJ < 0 and safJ < 0}. 

For the first conclusion we thus are to prove that wa < 0 implies 

l(sa) < 2#{{3 > 0 I wfJ < 0 and safJ < 0}. 
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Heretheleftsideis#{y > 0 I SaY< 0}. Except for a, such y'scomeinpairs, 
y and -say. From each pair at least one of y and -say is a {:J for the right 
side of(*) because y -SaY = 2j~jf1 a is> 0 and wa is < 0. So each pair, 
y and -say, makes a contribution to ( *) for which the left side is =:: the right 
side. The root a contributes 1 to the left side of(*) and 2 to the right side. So 
the inequality ( *) is strict. 

25. Use expansion in cofactors about the first column. 

26. The Dynkin diagram should consist consecutively of vertex, single edge, 
vertex, single edge, and then the rest of the diagram. 

28. In handling Cn and Dn, take into account that C2 ~ B2 and D3 ~ A3. 

31. In (a) the long roots are already as in (2.43); no isomorphism is involved. 
In (b) each member of WF preserves length when operating on roots. In (c) 
the two indicated reflections correspond to two distinct transpositions of the 
three outer roots of the Dynkin diagram of D4, and together they generate the 
symmetric group on three letters. This group is the full group of automorphisms 
of the Dynkin diagram of D4• For (d) the order of W 0 is given in Problem 15. 

32. For (a) use Problem lib. Let a be the root in (a). In (b) there are five 
simple roots orthogonal to a, and all the roots orthogonal to a then have to be 
in the space spanned by these simple roots. For (c) apply Chevalley's Lemma 
to -sa. For (d) use Chevalley's Lemma directly. For (e) the number of roots 
for E6 is given in Problem 16, and the order of the Weyl group fixing a is given 
in Problem 15, by (d). 

33. Same idea as for Problem 32. 

34. Same idea as for Problem 32 once the result of Problem 33d is taken 
into account. 

35. Multiply X' 1),3 + IJ,3X = 0 through on the left and right by s-•. 
36. Use the basis in the order 

(e1 1\ e4) + (e2 1\ e3), (e1 1\ e2) + (e3 1\ e4), (e1 1\ e3) - (e2 1\ e4), 

(e1 1\ e4) - (e2 1\ e3), (e1 1\ e2) - (e3 1\ e4), (e1 1\ e3) + (e2 1\ e4). 

Then the matrix of M is of the form(:~) with a, b, c, d each 3-by-3, with a 

and d skew symmetric, and with c = b'. This is the condition that M be in g. 

37. Since .sl(4, C) is simple and the kernel is an ideal, it suffices to find one 
element that does not act as 0, and a diagonal element will serve this purpose. 
Then the homomorphism is one-one. A count of dimensions shows it is onto. 

38. Theconditionfora4-by-4matrix (:~)with a, b, c, dto bein.sp{2, C) 

is that d = -a' and c = b'. Putting this condition into place in Problem 36 
as solved above, we find that the last row and column of the image matrix are 
alwaysO. 
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39. The homomorphism is one-one by Problem 37, and a count of dimen
sions shows it is onto. 

40. The projected system consists of the six vectors obtained by permuting 
the indices of± 1 He1 +e2-2e3 , together with the six vectors He; -ei for i =/:- j. 

41. The centralizer is the direct sum of the Cartan subalgebra and the six 
!-dimensional spaces CHe;-ej. 

42. Showing closure under brackets involves several cases and makes sys
tematic use of Corollary 2.37. Under the action of the complementary space to 
He,+e2+e3 in the Cartan subalgebra, the roots are those in problem 40 and form 
a system of type G2. 

Chapter III 

1. For (a) the argument is essentially the same as the proof of Lemma 1.65. 
Part (b) is trivial. 

2. The finite-dimensional subspaces Un (g) are invariant. 

3. Use Proposition 3.16 and the fact that S(g) has no zero divisors. 

4. For(a), ~is 1-dimensionalabelian. For (b) let V have basis {X, Y}. Then 
the element [X,[ ... , [X, Y]]] is in~ and is in rn+1(V) ifthere are n factors 
X. When expanded out, this element contains the term X ® · · · ® X ® Y only 
once, the other terms being independent of this term. Hence the element is not 
0. 

5. For (a) a basis is XI. X2, X3, [Xt. X2], [X2, X3], [X3, XI]. Any triple 
bracket is 0, and hence g is nilpotent. The bracket of X1 and X2 is not zero, and 
hence g is not abelian. In (b) one writes down the 6-by-6 symmetric matrix that 
incorporates the given values forB and checks that it is nonsingular. This proves 
nondegeneracy. For invariance it is enough to check behavior on the basis, and 
expressions B(X;, [Xj, Xk]) are the only ones that need to be checked. 

6. Let ~ be a free Lie algebra on n elements X 1 , ••• , X n , and let vt be the 
two-sided ideal generated by all [X;, [ Xj, X k]]. Then ~ jvt is two-step nilpotent 
and has the required universal property. The elements of~ n T2{span{X; }7=1) 

map onto ~/vt, and finite-dimensionality follows. 

7. See the comparable construction for Lie algebras in §1.3. 

8. This is an application of Proposition 3.3. 

10. Use Proposition 3.3. 

11. See Knapp [1986], proof of Theorem 3 .6. 

12. See Knapp [1986], proof of Lemma 35. 
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Chapter IV 

1. For (a), <l>(to)(z~zf-k) = (e-i 9zd(e;9z2)N-k = ei<N-2kl9z~zf-k. For 

(c), 

For (d) write XMas a sum and XN as a quotient, and then multiply and sort out. 

2. If x E G is given, choose X in the Lie algebra with exp X = x. By 

Theorem 4.34 there is an element g E G with Ad(g)X in the Lie algebra of the 
given torus. Then gxg-1 = expAd(g)X is in the given torus. 

3. See Knapp [1986], 86-87. 

4. Use diag(-1, -1, 1). 

5. Matrices with one nonzero element in each row and column. 

6. Let G be a nontrivial finite cover of G. Then Proposition 4.67 shows that 

there are analytically integral forms for G that are not algebraically integral, in 
contradiction with Proposition 4.59. 

7. dim v. 
8. It is enough to check that so (n) acts in a skew-symmetric fashion, and this 

reduces to checking what happens with a Lie algebra element that is ( 0 1 ) in 
-10 

the upper left 2-by-2 block and is 0 elsewhere. 

10. Let VN-2 be in VN-2 and VN be in VN. Then 

If VN is harmonic, then the right side vanishes and we see from the left side 
that lxi2VN-2 is orthogonal to HN. In the reverse direction if VN is orthogonal 
to lxi2VN_2, then the left side vanishes and we see from the right side that 

8(ixi2)vN is orthogonal to VN-2 and must be 0. 

11. The dimension of the image of fl. in V N _ 2 must equal the dimension of 

the orthogonal complement to the kernel in the domain. 

12. Induction. 

13. Use dimHN = dim VN- dim VN-2· The number of monomials in 

V N is the number of ways of choosing n - 1 dividers from among N + n - 1 

'b · f 1 h · ( N + n - 1 ) contn ut10ns o to an exponent, t us IS n _ 1 . 

15. Wehave$p+q=N Vp,q = VN and$p+q=N Vp-!,q-! = VN-2· Certainly 
tl.(Vp,q) ~ Vp-!,q-I· If the inclusion is proper for one pair (p, q ), then fl. cannot 

map VN onto VN-2· 
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16. Use dim Vp,q = (dim Vp)(dim Vq) and the computation for Problem 
13. 

17. For (c) let .A= "L,ciei. If Cj = ai +~with ai E Z for all j, then 
~.A.(diag(eu\ ... , ei6•)) = expi("L,ajl~j). For (d), the quotient is canonically 
isomorphic to the set of all kfn with k taken modulo n. 

18. For (c), use Proposition 4.68. 

19. For (c), ~ek (diag(ei6•, ••• , ei6•, e-i6•, •.. , e-i6•) = ei6k. 

20. For (d) the group is cyclic for S 0 (2n) with n odd, and it is the direct 
sum of two groups of order 2 for S0(2n) with n even. In fact, two distinct 
nontrivial coset representatives are et and t<et +···+en). The first one has 
order 2 as a coset, while the second one has order 2 as a coset if n is even but 
order 4 if n is odd. 

Chapter V 

1. For (b) apply w0 to (d) or (e) in Theorem 55. 

2. For (a) Problem 10 in Chapter IV gives PN = PN-2 E9lxl2 HN. Once one 
has shown that Net is the highest weight of Pn, then (N- 2)et must be the 
highest weight of PN -2, and Net must be the highest weight of HN. For (b) the 
resultofProblem 13 in Chapter IV is (N+n-t) -( N+n-J) = <N+n-~)!(2N;n-2). 

n-t n-t N.(n-2). 
When n =2m+ 1 is odd, use~ = (m- t. m- t .... , t> and Net+ 8 = 
(N + m- t. m- t .... , t> in the Weyl Dimension Formula to obtain 

(N +m ~ t)(Ii N :- j -1 )(Ii N +2m~ j), 
m - 2 i=2 J - 1 i=2 2m - 1 

which reduces to the same result. 

3. For(a) argue as in Problem2a. For(b) the result of Problem 16in Chapter 
IV is (p+n-2~!(~+:;l~~!~~y+n-l). Use(~. e; -e1·) = j- i in the Weyl Dimension p.q. n . n . 

Formula to obtain 

( p + q ~ n- 1) (n q ~ ~- 1) (n p + ~ ~ i ). 
n 1 i=2 J 1 i=2 n z 

which reduces to the same result. 

4. Abbreviate He1-e2 as Ht2• etc. A nonzero homogeneous element of 
degree 3 is (H12 + Hn)(H2t + H23)(H3t + H32). 
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5. Lett= diag(t., ... ' tn) with n t; = 1. Then w is the symmetric group 
on n letters, and s( w) is the sign of the permutation. The right side of the formula 
in Corollary 5.76, evaluated at t, is the determinant of the Vandermonde matrix 
with (i, j)th entry (tn+l- j )i-l. The left side, evaluated at t, is the value of the 
determinant, namely ni<j(t;- tj). 

6. Use the Kostant Multiplicity Formula for occurrence of the weight}.. in 
the trivial representation. 

7. The Weyl Dimension Formula gives 

8. Here 8 = (n- !. n- ! .... , !>.and the Weyl Dimension Formula gives 
us nontrivial factors for the e; - ei with i ::::; l < j, the e; with i ::::; l, thee; + ei 
with i < j::::; l, and thee;+ ei with i ::::; l < j, namely 

( n ~)(n*)( n 2n+3-~-~)( n 2n+l-~-~) J-1 n+--• 2n+1-•-J 2n+l 1 J 
i~l<j i~l 2 i<j~l i~l<j 

_ (n) ~(n 2n+l-i-')(n (2+2n-2i)(1+2n-2i) ) 
- I n+ 2-t n+l-i (2+2n-i-1)(1+2n-i-/) • 

i~/ i<l 

and this reduces to ( 2n:l). 

9. Similar to Problem 8 but without factors from thee; 's. 

10. The dimension of /\nC2n is(~). and the dimensions of the indicated 

irreducible representations are seen to be each ! ( ~ ) . Each weight of 1\ n C2n 

is of the form 'Lj=1 aiei with ai = 1, 0, or -1 and with 'Lai of the same 
parity as n. Here L.j=1 ei has multiplicity one and corresponds to one of the 

irreducible constituents. The next highest weight is ( 'Lj~f ej) - en, which is 
not a weight of this irreducible constituent by Theorem 55d. Hence it leads 
to a second irreducible constituent. These two constituents account for the full 
dimension of 1\ nc2n. 

11. If not, then the action of U(n-) in V(A.) would not be one-one, in 
contradiction with Proposition 5 .14b. 

12. By Proposition 5.11c, JL - 8 = A. - 8 - q+ with q+ in Q+. Also JL is 
in WJ.. by Theorem 5.62 and Example 2 at the end of §5. 

13. M must have at least one highest weight vector, and irreducibility 
implies that that vector must generate. By Proposition 5.14c, M is isomorphic 
to a quotient of some V(JL). By Proposition 5.15, M is isomorphic to L(JL). 
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16. Write the A" highest weight vector as v = LJ.L+J.L'='-"(vJ.L ® vJ.L'), al
lowing more than one term per choice of J.L and taking the v/s to be linearly 
independent. Choose J.L = J.Lo as large as possible so that there is a nonzero 
term vJ.L ® vJ.L'. Apply root vectors for positive roots and see that vJ.L is highest 
for cp-.. 

17. Changing notation, suppose that the weights of cp._, have multiplicity 
one. Let cp._, occur more than once. By Problem 16 write A" = A+ J.L1 for 
a weight J.L1 of cp'-'· The solution to Problem 16 shows that a highest weight 
vector for each occurrence of cp._, contains a term equal to a nonzero multiple 
of v-. ® vJ.L'. A suitable linear combination of these vectors does not contain 
such a term, in contradiction with Problem 16. 

18. By Chevalley's Lemma, {A, a) = 0 for some root a. Rewrite the sum 
as an iterated sum, the inner sum over { 1, sa} and the outer sum over cosets of 
this subgroup. 

19. Putting J.L11 = wA" and using that m-.(wA") = m-.(A"), we have 

x-.x .. , = d-I L L m-.(J.L")s(w)~J.L"~w('-'+8) 
weW J.L"=weightofcp, 

= d-1 L L m-.(A")s(w)~w('-"+'-'+8) 
weW '-"=weightofcp, 

= d-1 L m-.(A") L s(w)~w<'-"+A'+W 
'-"=weightofcp,. weW 

m-. (A") X w +A' +W -8 · 
'-"=weight of 'P>. 

20. The lowest weight -J.L has m-.(-J.L) = 1 by Theorem 5.5e. If A'- J.L 
is dominant, then sgn(-J.L +A'+ 8) = 1. So A11 = -J.L contributes +1 to the 
coefficient of X'-'-J.L· Suppose some other A" contributes. Then (A" +A' +8)v-
8 = A1 - J.L. So (A"+ A1 + 8)v = A1 - J.L + 8, A11 + A1 + 8 = s(A'- J.L + 8) = 
A' - J.L + 8 - La>O naa, and A11 = - J.L - La>O naa. This says that A11 is lower 
than the lowest weight unless A"= -J.L. 

22. Write (A'+ 8 + A")v = A1 + WA + 8, A1 + 8 + A11 = s(A' + WA + 8). 
Subtract A' + 8 from both sides and compute the length squared, taking into 
account that A'+ 8 is strictly dominant and A'+ wA + 8 is dominant: 

IA"I 2 = ls(A' + wA + 8)- (A'+ 8)12 

= lA' + wA + 81 2 - 2{s(A' + wA + 8), A'+ 8) + lA' + 812 

2: lA' + WA + 81 2 - 2{A1 + WA + 8, A1 + 8) + lA' + 812 

= I(A' + WA + 8)- (A'+ 8)12 

= IAI2• 
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Equalityholds,andthisforcess(A.'+wA.+8) = A.'+wA.+8. HenceA.'+8+A." = 

A.'+ wA. + 8, and A."= wA.. 

23. Use Corollary 4.16. 

24. To multiply two basis vectors, one deletes the common pairs of u; 's, 

inserts a factor of -1 for each such pair, puts the remaining u; 'sin order, and 

inserts the sign of the permutation used to put the u; 'sin order. In the same way 

it is possible to give a description of how to multiply three basis vectors, and 

associativity comes down to knowing that the sign function is multiplicative on 

the permutation group. 

25. The bracket [u;ui, u;'ui'] is 0 if all indices are different, is 2u;ur if 

j = i' and i =f. j', and so on. 

28. c(u2m+I)Zs = ±zs, and c(u2m+dzs, = ±zs. 

29. This follows from Problems 27 and 28. 

30. The parity of the number of elements of S changes under each c(Zj) or 

c(Zj), hence under each c(u2i_1) or c(u2i). Hence c(qc) leaves s+ and s

invariant. 

31. Argue as in Problem 30, taking the result of Problem 28 into account. 

34. The computation in (b) is similar to the one for Problem 10. 

35. The computation in (b) is similar to the one in Problem 8 when 1 = n. 

36. For (a), 2( L:i=l et. e; - e;+!)lle; - e;+Ii2 is 1 if i = 1, 0 if i =f. I. 

For (b) Problem 7 shows that the alternating-tensor representation in I\1Cn is 

irreducible with highest weight L:i=I ek. 

39. For the ath factor of the Weyl Dimension Formula, we have 

(A.+ 8, a} (A.'+ 8, a} (A. -A.', a} 
-'-----'--- = + . 

(8, a} (8, a} (8, a) 

The right side is ~ the first term on the right for every a, and there is some a 

for which the inequality is strict. 

40. It follows from Problem 39 by induction that if A. = L n;r:u; and 

M = L n;, then the dimension of the irreducible representation with highest 

weight A. is ~ M + 1. 
41. For (a) Problem 42 exhibits a complex simple Lie algebra of type 

G2 inside a complex simple Lie algebra of type B3. The latter can be taken 

to be so(7, C), for which the standard representation has dimension 7. The 

Cartan subalgebra of G2 does not act trivially in this representation, and hence 

the representation is not 0. For (c) the dimension of the fundamental rep

resentation attached to a2 is 7. For (d) let CfJ'A be irreducible with highest 

weight n 1ru1 + n2 r:u2 • Problem 39 shows that dimcp'A ~ 14 if n1 ~ 1. Also 

dimcp'A ~ 7ifn2 ~ 1 withequalityonlyif(nJ.n2) = (0, 1). Henceanonzero 
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irreducible representation must have dimension ::= 7. Since the representation 
in (a) is completely reducible (Theorem 5 .29) and nonzero, one of its irreducible 
constituents has dimension ::= 7. This irreducible constituent must exhaust the 
representation. 

Chapter VI 

1. By Theorem 2.15 we can assume that the two split real forms g0 and 
g0 have a common Cartan subalgebra ~O· Fix a positive system of roots. For 
each simple root a, choose root vectors Xa e go and X~ E g0. Using the 
Isomorphism Theorem, construct an isomorphism ({J : g --+ g that is the identity 
on ~o and carries Xa to X~ for each simple root a. 

2. Let G be semisimple with Lie algebra go, and let K correspond to to. 
Then Ad90 (K) is compact with Lie algebra ad90 (to), and hence to is compactly 
embedded. If t0 5; t 1 with t1 compactly embedded, let K1 correspond to t1. 
Since Int go ~ Ad( G), the analytic subgroup oflnt go with Lie algebra ad90 (t1), 

which is compact by assumption, is Ad90 (K1). Apply Theorem 6.31g to the 
group Ad( G). 

3. Write exp ~ Y exp X = k exp X' with k e K and X' e p0 • Apply() to 
this identity, take the inverse, and multiply. 

4. Write g112 = kan with k e K, a e A, n eN. Apply() to this identity, 
take the inverse, and multiply. 

7. For (b) let a!,····al be the simple roots of d+, with as+h····al 
spanning V. For i :::= s, the root -(}a; has the same restriction to a as a;. 

In particular it is positive. Write -(}a; = E~=l nijaj with nij an integer 

::= 0. Then -(}a; is in LJ=! n;pj + V. Application of-(} shows that a; is 

in LJ=! L~=! nijnjkak + V. Hence (nij)2 = (~ij). Given i, choose i' with 
nwni'i = 1. Then nwni'k = 0 fork =F i says ni'k = 0 fork =F i'. It follows 
that (nij) is the matrix of a permutation of order 2. For (c) the definition 
makes -(}a; (H) = a; (H) for 1 :::: i :::: /. So a; (-(}H) = a; (H) for all 
i, and ()H = -H. Result (d) is immediate from (c). For (e) suppose that 

a; lao = fJ' + fJ" with fJ' and {3" in l:+. By (a), fJ' =a;' lao and fJ" =a;" lao with 
a;' and a;" simple. Then the set of restrictions from the orbits is dependent, in 
contradiction with (d). 

8. K ~ SU(2), and M is a subgroup of K of order 8 with Mas a quotient. 
Since M 5; SU(2), M has a unique element of order 2. Considering the five 
abstract groups of order 8, we see that {±1, ±i, ±j, ±k} is the only possibility. 

9. Theorem 6.74 reduces this to showing that a subdiagram D of D' closed 
under the automorphism yields a subalgebra of g0. There is no loss of generality 
in assuming that g(, is set up as in the proof of Theorem 6.88, with corresponding 
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compact real form u~ as in (6.89). Let Uo be the sum as in (6.89) but taken just 
over roots a for D. Since Dis closed under the automorphism, O'Uo = UQ. 
Thus Uo = (Uo n t') E9 (Uo n p'), and we can take g0 = (Uo n t') E9 i(Uo n p'). 

10. For (a) let ~o be the Cartan subalgebra, and let a 1, ••• , a1 be the simple 
roots. DefineH e i~o byaj(H) = +1 ifaj iscompact,-1 ifaj isnoncompact. 
Put k = exp rri H e K. Then Ad(k)Xa = etria(H) X a for a simple. By the 
uniqueness in the Isomorphism Theorem, Ad(k) = (}. For (b), Ad(k) is -1 on 
Po. hence on ao. So W(G, A) contains -1. By Theorem 6.57,-1 is in W(E). 

11. Let ~o = to E9 ao be a maximally compact Cartan subalgebra, choose 
D.+ taking ito before ao. and suppose k exists. Since Ad(k) fixes to. k is in the 
analytic subgroup T corresponding to to (Corollary 4.51). Let U be the adjoint 
group of the compact real form to E9 i Po, and let S be the maximal torus with 
Lie algebra toEeiao. ThenAd(k) is inS. ByTheorem4.54,Ad(k) is in W(ll.). 
But (}D.+ = D.+. So Theorem 2.63 says that (} = 1 on ~0 , in contradiction with 
ao =F o. 

12. If Ea is a root vector for a, then O[Ea, OEa] = -[Ea. OEa]. So if 
a+ Oa is a root (necessarily imaginary), it is noncompact. This contradicts 
Proposition 6.70. 

14. Let the third subalgebra be {H(t, 0)}. Let g e GL(4, lR) conjugate the 
third subalgebra so that g{H(t, O)}g-1 is contained in ~0 and g{H(O, O)}g-1 

is contained in~~· Then gH(t,O)g-1 must be diagonal with diagonal en
tries (t, t, -t, -t) or (-t, t, t, -t) or (t, -t, -t, t) or (-t, -t, t, t). Since 
g H (0, (}) g _, has to commute with one of these for all t, it has to occur in blocks, 
using entries (12, 21) and (34, 43), or (14, 41) and (23, 32). However, ~~ 
uses entries (13) (31), (24), (42), which are different. 

15. The map carries sp(n, C) to itself. Thus in (b) the members Y of the 
image satisfy JY + Y* J = 0 and JY + Y' J = 0. Hence Y is real. 

16. The computation in (a) should be compared with the example at the 
beginning of §6. In (b) the exponential map commutes with matrix conjugation. 
Hence it is enough to find which matrices of (a) are in the image. To do so, one 
first checks that any matrix (like the X that exponentiates to it) that commutes 

with ( ~ a~ 1 ) for some a with a =F a-1 is itself diagonal. Similarly, any matrix 

that commutes with ± ( ~ ; ) for some t =F 0 is upper triangular. 

17. Two copies of the Dynkin diagram of g with an arrow between each 
vertex of one diagram and the corresponding vertex of the other diagram. 

18. A simple root {3 in the Vogan diagram gets replaced by sa/3 = 
{3 -2({3, a)/lal2• Since(} fixesa,expansion of saf3 in terms of a and {3 shows 
that (} commutes with sa. Hence the automorphism of the Dynkin diagram of 
sa D.+ has the same effect as it does on the Dynkin diagram of D.+. For the 
imaginary roots the key fact for the painting is (6.99). Suppose a is compact. 
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Since safJ is the sum of fJ and a multiple of a, fJ and safJ get the same painting. 
If a is noncompact, safJ = fJ- 2({3, a)/JaJ2 . For fJ =a, a gets replaced by 
-a, for no change in painting. For fJ orthogonal to a, fJ is left unchanged. 
This proves (a) and (b). For fJ adjacent to a, the painting of fJ gets reversed 
unless2({J,a)/JaJ 2 = -2,inwhichcaseitisunchanged. Thisproves(c). The 
algorithm for (d) is repeatedly to let Sa be the second painted simple root from 
the left and to apply sa. 

19. In (a) the root is the sum of !<e1 - e2- e3- e4), e3- e4, e4 and e4. In 
(b) the roots are orthogonal but not strongly orthogonal. If a Cayley transform 
is performed relative to one of the two roots, the other root becomes compact 
by Proposition 6.72b. 

20. e2- e3, e2 + e3, e1 - e4, e1 + e4. 

21. In the notation of (2.86), the algorithm gives e6 - e5, e6 + e5, e8 - e1 as 
the strongly orthogonal sequence of noncompact roots. 

22. B([p~,p~l.],to) = B(p~.[p~l.,to]) ~ B(p~,p~l.) = 0. Since 
[p~, p~ l.] ~ to and since Bltoxto is negative definite, [p~. p~ l.] = 0. 

23. Invariance under ad to follows from the Jacobi identity. Since B lp0 xp0 

is positive definite, Po = p~ $ p~ l.. By Problem 22, [p~, Po] = [p~, p~]. Then 
[Po. {[p~. Pol E9 p~}] ~ [Po. [p~. pm + [Po. p~]. The first term, by the Jacobi 
identity, is ~ [p~. [Po. p~]] ~ [p~. to] ~ p~. 

24. In (a) Problem 23 says that [Po. Pol $Po is an ideal in go. Since go 
is simple and Po =/: 0, this ideal is go. Hence [Po. Pol = to. In (b) a larger 
subalgebra has to be of the form to$ p~, where p~ is an ad to invariant subspace 
of Po· If p~ =f. 0, Problem 23 forces [p~. Po]$ p~ = go. and then p~ has to be 
Po· 

25. All the necessary Vogan diagrams are the special ones from Theorem 
6.96. So this problem is a routine computation. 

26. These are the restrictions to real matrices, and the images are the sets of 
real matrices in so(3, 3)c and so(3, 2)c, respectively. 

27. The point here is that the domain groups are not simply connected. 
But the analytic subgroups of matrices corresponding to the complexified Lie 
algebras are simply connected. The kernel in each case has order 2. 

Chapter VII 

1. When n > 1, the element g = diag(l, ... , 1, -1) yields a nontrivial 
automorphism of the Dynkin diagram. Then Theorem 7.8 implies that Ad(g) 
is not in Intg. 

2. In (a) the main step is to show that K is compact. The subgroup of G 
where e is 1 is IR2 , and K is of the form IR2 I D, which is compact. In (b), Gss is 
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(fi(2, JR) x {0})/(D n (fi(2, JR) x {0})), and the intersection on the bottom 
is trivial. Thus Gss has infinite center. If Gss were closed in G, Kss would be 
closed in G, hence in K. Then Kss would be compact, contradiction. 

5. Let MAN be block upper-triangular with respective blocks of sizes 2 and 
1. Then M is isomorphic to the group of 2-by-2 real matrices of determinant 
±1 and has a compact Cartan subalgebra. The group M is disconnected, and 
its center ZM = {±1} is contained in M0• Therefore M "# MoZM. 

6. Refer to the diagram of the root system G2 in Figure 2.2. Take this to be 
the diagram of the restricted roots. Arrange for ao to correspond to the vertical 
axis and for to to correspond to the horizontal axis. The nonzero projections of 
the roots on the ao axis are of the required form. 

7. In (b) one MA is~ GL +(2, lR) x Z/2Z (the plus referring to positive 
determinant), and the other is~ GL(2, JR). If the two Cartan subalgebras were 
conjugate, the two M A's would be conjugate. 

8. It is easier to work with S0(2, n)o. For (a), conjugate the Lie algebra 
by diag(i, i, 1, ... , 1). In (b), eo comes from the upper left 2-by-2 block. For 
(c) the Cartan subalgebra ~ given in §11.1 is fixed by the conjugation in (a) 
and intersects with g0 in a compact Cartan subalgebra of g0 • The noncompact 
roots are those that involve ±e~o and all others are compact. For (d) the usual 
ordering makes e1 ± ei and e1 larger than all compact roots; hence it is good. 

9. It is one-one since NK(Oo) n ZG(Oo) = ZK(ao). To see that it is onto, 
let g e NG(Oo) be given, and write g = kexpX. By Lemma 7.22, k and X 
normalize ao. Then X centralizes ao. Hence g can be adjusted by the member 
exp X of ZG( ao) so as to be in N K ( ao). 

10. Imitate the proof of Proposition 7.85. 

11. The given ordering on roots is compatible with an ordering on restricted 
roots. Any real or complex root whose restriction to ao is positive contributes 
to both b and b. Any imaginary root contributes either to b or to b. Therefore 
meaen= b+b. 

12. For (a) when a is real, form the associated Lie subalgebra .sl(2, JR) and 
argue as in Proposition 6.52c. When a is compact imaginary, reduce matters 
to SU(2). For (b), fix a positive system .6_+(t, ~)of compact roots. If sa is 
in W(G, H), choose w E W(.6.(t, ~))with wsad+(t, ~) = .6_+(t, ~). Let w 
and sa be representatives. By Theorem 7.8, Ad(wsa) = 1 on~- Hence sa 
is in W(.6.(t, ~)). By Chevalley's Lemma some multiple of a is in .6-(t, ~). 
contradiction. For (c) use the group of 2-by-2 real matrices of determinant ± 1. 

13. Parts (a) and (c) are trivial. In (b) put M = 0ZG(Oo). If k is in NK(Oo), 
then Ad(k) carries to to a compact Cartan subalgebra of mo and can be carried 
back to to by Ad of a member of K n M, essentially by Proposition 6.61. 

14. Otherwise N90 (to) would contain a nonzero member X of Po· Then 
ad X carries to to to because X is in the normalizer, and ad X carries to to Po 
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since X is in p0• So ad X is 0 on to. It follows that (ad X)2 is 0 on g0• If B is 
the Killing form, then B(X, X) = 0. Since B is positive definite on p0, X = 0. 

15. Using Corollary 7 .6, we can set G up as a closed linear group of matrices 
closed under conjugate transpose. Then Example 4 of reductive Lie groups will 
show that NGc(go) is reductive. 

16. Without loss of generality, Gc is simply connected, so that 0 extends to 
g and lifts to E> on Gc. The closure of exp i ao is a torus, and it is contained in 
the maximal torus exp(to e iao). If expiao is not closed, then there is some 
nonzero X e to such that exp r X is in the closure for all real r. Every element 
x of exp i ao has the property that E>x = x-1• If exp r X has this property for 
all r, then OX= -X. Since X is in to, OX= X. Hence X= 0. 

17. G = SL(2,C)containselementsyp =/: 1asin(757),butKspntistrivial. 

18. Let T be a maximal torus of K with Lie algebra to. Let U be the analytic 
subgroup of Gc with Lie algebra to e i p0 • The analytic subgroup H of Gc 
with Lie algebra (to)c is a Cartan subgroup of Gc and is of the form H = T A 
for a Euclidean group A. The center of Gc lies in U n H = T and hence lies 
in G. 

19. Let G ~ Gf and G ~ Gf. Define (;C to be a simply connected cover 
of Gf, and let (;C __. Gf be the covering map. Let G be the analytic subgroup 
of (;C with Lie algebra go. The isomorphism between the Lie algebras of Gf 
and Gf induced by the identity map of G yields a holomorphic homomorphism 
(;C __. Gf, and the main step is to show that this map descends to Gf. By 
Problem 18 the kernel of the holomorphic covering map (;C __. Gf and the 
constructed map (;C __. Gf are both equal to the kernel of G __. G, hence are 
equal to each other. Therefore (;C __. Gf descends to a one-one holomorphic 
homomorphism Gf __. Gf. Reversing the roles of Gf and Gf shows that this 
is an isomorphism. 

20. G is isomorphic to the group Ad( G) of 8-by-8 matrices, but SL(3, C) 
is not isomorphic to Ad(SL(3, C)). 

21. The multiplication-by-; mapping J :Po__. Po has to come from Co by 
Theorem 7.117, and g0 simple implies that dim Co = 1. Since J 2 = -1, the 
only possibilities for J are some operator and its negative. 

24. Since G I K is not Hermitian, there exist noncompact roots. Problem 23 
shows that the lattices are distinct. By Theorem 6.96 we may assume that the 
simple roots are a1, ... , a, with exactly one noncompact, say a1• Since G I K is 

not Hermitian, some expression 2a, + E~:~ n iai is a root, necessarily compact. 
Then the lattice generated by the compact roots has Z basis a., ... , a1_., 2a1, 

while the lattice generated by all the roots has Z basis a1, ... , a,. Thus the 
index is 2. 

25. This is a special case of (6.103). 
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26. If 5 is the subalgebra, then the fact that t s;; 5 means that 

5 = tE9 EB<5nga). 
a 

Then 5 = t E9 EBaeE 9a since each root space has dimension 1. 

27. This follows from the fact that 9a = 9-a. 

28. If V is an invariant subspace of p, then t E9 V is a Lie subalgebra of 
g, hence is of the form in Problem 26 for some E s;; lin. By Problem 24b 
in Chapter VI, any proper nonempty E satisfying the conditions in Problem 
27 must have E U (-E) = lin and En (-E) = 0. Since pis completely 
reducible, it follows that the only nontrivial splitting of p can involve some E 
and its complement. Hence there are at most two irreducible pieces. 

29. Let Pt be one of the two irreducible pieces, and let it correspond to 
E as above. Let P2 be the other irreducible piece. If at and a2 are in E and 
at+ a2 is a root, then a nonzero root vector for -(at + a2) carries a nonzero 
root vector for at to a nonzero root vector for -a2, hence a nonzero member of 
Pt to a nonzero member of P2. contradiction. Thus a sum of two members of E 
cannot be a root. Consequently (a, {3) ::::: 0 for all a, {3 e E. Let u = LaeE a. 
Then it follows that (u, a) > 0 for all a e E. Proposition 5.99 implies that 
u is orthogonal to all compact roots. Hence i Ha is in co. If we determine an 
ordering by using Ha first, then Pt = p+ and P2 = p-. 

30. Problem 15b of Chapter VI gives a one-one map on matrices that 
exhibits the Lie algebras of the two groups as isomorphic. The group 
Sp(n, lR) is connected by Proposition 1.124, and it is enough to prove that 
SU(n, n) n Sp(n, C) is connected. For this connectivity it is enough by Propo
sition 1.122 to prove that U(2n) n SU(n, n) n Sp(n, C) is connected, i.e., that 

the unitary matrices ( "~ :) in Sp(n, C) are exactly those with u2 = iit. This 

is an easy computation from the definition of Sp(n, C). 

31. The example in §9 shows that SU(n, n) preserves the condition that 
ln- Z* Z is positive definite. Let us check that the preservation of the condition 

Z = Z' dependsonlyonSp{n, C). The conditions for(~~) to be in Sp(n, C) 

are that A'C = C' A, B' D = D' B, and A' D-C' B = 1. These conditions 
imply that (ZC' + D')(AZ +B) = (ZA' + B')(CZ +D) when Z = Z', 
and it follows that (AZ + B)(C Z + D)-t is symmetric when (C Z + D)-t is 
defined. 

33. et ::=:: e2 ::::: .. • ::=:: en. 

37. For (b) the question concerns the projection of a root e, - es on the linear 
span of the Yi. The projection of e, - es can involve only those Yi 's containing 
±e, or ±es. Hence there are at most two. The projection of ±(e;- en+m+I-i) 
is ±y; if i ::: m, and the projection of e; - ei is ! (y; - Yi) if i and j are :5 m. 
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Applying root reflections, we must get all t<±y; ± yj). If m = n, all er 's 
contribute to the y; 's, and we get no other restricted roots. If m < n, then en 
does not contribute to the y; 's. If r is any index such that er does not contribute, 
then ±(e;- er) has projection ±ty;. 

40. The roots a+ {J andy are positive noncompact, and their sum cannot 
be a root in a good ordering since [p+, p+] = 0. 

41. For (a), 2(y, y;)/ly;1 2 = 2c; is an integer::: 3 in absolute value. For (b) 
if c; = -~,then y, y + y;, y + 2y;, y + 3y; are roots. Either y or y + y; 
is compact, and then Problem 40 applies either to the first three roots or to the 
last three. For (c) let c; = ±1 and Cj =f. 0. Applying root reflections suitably, 
we obtain a root y with c; = -1 and Cj < 0. Then we can argue as in (b) for 
the sequence y, y + y;, y + 2y;, y + 2y; + Yj· In (d) if c; =f. 0, Cj =f. 0, and 
Ck =f. 0, we may assume y has c; < 0, Cj < 0, Ck < 0. Then we argue similarly 
withy, y + y;, y + y; + Yj· y + y; + Yj + Yk· In (e) the restricted roots are 
all possibilities for 2::=, c;y;, and parts (a) through (d) have limited these to 
±y;, t<±y; ± Yj), ±ty;. For (f) the ±y; are restricted roots, and the system 
is irreducible. If some ±ty; is a restricted root, then the system is (BC)s by 
Proposition 2.92. Otherwise the system is an irreducible subsystem of rank s 
within all ±y; and t<±y; ± Yj), and it must be C5 • 

42. From uGu-1 = G', we have uGB = G'uB. Also GB = QKCp-
. . _ c _ (1 z) _ 1 (1 z+i) + Implies uGB - uQK P . Here u 0 1 - ,J2 i iz + 1 hasP 

( 1 .z+i ) . component 0 •zf , and hence uG B = Q" Kc p-, where Q" consists of 

all ( ~ ~) with w = i:: i1 and lzl < 1. Then Q" is just Q' (the mapping 

from Q to Q' being the classical Cayley transform). The action of G' on Q' 

is by g(w') = (P+ component of gw'), and this is given by linear fractional 
transformations by the same computation as for the action of G on Q. 

43. For ~ (: ~),the decomposition into p+ Kc p- is 

(~ ~) ( ~ 1/~) (: g). 
The element Uj is the Cayley transform Cyj defined as in (6.65a), with root 
vectors normalized so that [Eyj' Eyj] = 21Yji-2 HY.t = H;j. More precisely 

. (0 -i) - (0 0) we are to think of Eyj ~ 0 0 and Eyj ~ i 0 , so that uj = 

exp ~ (Ey1 - Ey1 ) ~ ~ ( : ~ ) • Then the decomposition for (a) is 

Uj = exp(-Eyj)exp((pog2)H;)exp(Ey)· 
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In (b) the factor ui of u affects only the jth factor of exp ( L Cj(Ey, + Ey)) 
when it is expanded out, and the result of applying Ad(u) is therefore 
exp LCjAd(ui)(Ey, + Ey) = exp 2:<-ciH;,> by a computation insl(2, C). 

In (c) define a restricted root f3 to be positive if fJ(Ey1 + Ey) < 0 for the 

first j having fJ(Ey, + Ey) =F 0. If X is a restricted-root vector for such a f3 
and j is the distinguished index, then [Ey, + Ey,, X]= -c;X for all i, with 
c1 = · · · = Cj-1 = 0 and Cj > 0. Then 

[H;,, Ad(u)X] = -[Ad(u)(Ey, + Ey,), Ad(u)X] = c;Ad(u)X. 

So Ad(u)X is a sum of root vectors for roots P such that P<H;,> = c;. If pis 
negative and noncompact, then (p, y;) is< 0 when it is =F 0 for the first time. 
But (p, Yi) = ci > 0. Hence Pis compact or positive noncompact. Then 
(c) follows, and (d) is a consequence of uGB = (uNpu- 1)(uApu-1)uK B s; 
p+KC · Kc · p+KCp- · KB £ p+KCP-. 

44. This follows from Problem 43 and the style of argument used in the 
proof of Theorem 7.129. 

Chapter VIII 

1. Let {1/la} be a smooth partition of unity as in (8.8). Define a smooth m 
formwa on Ua by Wa = ({J;(dx1 A··· Adxm). Then w =La 1/laWa is a smooth 
m form on M. Since Misoriented, the local coefficient (8.4) of each Wa is 
::: 0 in each coordinate neighborhood. Hence the sum defining w involves no 
cancellation in local coordinates and is everywhere positive. 

2. It is assumed that F is real analytic on a neighborhood of a cube, say with 
sides 0 :::: Xj :::: 1. The set of a with 0 :::= a :::: 1 such that F(a, x2, ••• , Xn) is 
identically 0 is finite since otherwise there would be an accumulation point and a 
power series expansion about the limiting point would show that F vanishes on 
an open set. This fact may be combined with Fubini's Theorem and induction 
to give a proof. 

3. We have ( ~ ~0 ) ( ~ t) = ( aOa aob :- bo). Thus left trans-

lation carries da db to d(aoa) d(aob) = a5 da db, and it carries a-2 da db to 
(aoa)-2a5 da db = a-2 da db. So a-2 da db is a left Haar measure. The 
computation for a right Haar measure is similar. 

4. G is unimodular by Corollary 8.31, and MpApNp is not (by (8.38)). 
Apply Theorem 8.36. 

5. Use Problem 2. 

6. GL(n, lR) is reductive. 
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7. With Eii as in Problem 8, use 

Eu, E21, •.. , En~o E12, ... , En2• .•• , E!n• ..• , Enn 

as a basis. Then Lx is linear, and its expression in this basis is block diagonal 
with each block a copy of x. Hence det Lx = ( det x )n. 

8. Part (a) uses Problem 2. For (b) we use Problem 7 and the change-of
variables formula for multiple integrals to write 

{ f(y)dy= { f(LxY)IdetLxldy 
jGL(n,JR.) jGL(n,R) 

= { f(xy)l detxln dy = { f(y)l detxln d(x- 1y), 
j GL(n,JR.) j GL(n,JR.) 

where dy denotes Lebesgue measure restricted to the open set G L (n, JR). This 
shows that I detxln d(x- 1y) = dy, and it follows that I detyl-n dy is left 
invariant. 

9. Write x = kan. Then rr(n)v = v, and rr(a)v = ev!ogav. Hence 
llrr(x)vll2 = llevlogarr(k)vll2 = e2vlogallvll2. 

10. Part (a) uses Problem 9, first with the standard representation (with v = 

( ~)) and then with I\ 2 of the standard representation (with v = ( ~) A ( ~)). 
For (b), (2/I) + 2(/I + /2) = 4/I + 2!2 = 2/I- 2h = 2pp. 

II. FO< (a) m•e the standanl representation with v = ( i} The highest 

restricted weight J.. is 1 on E 1,n+l +En+!,!· Then 

( 
Xu + X!,n+! ) 

rr(x)v = : , 
Xn+!,! + Xn+!,n+! 

n+l 
e2AHp(x) _! ""'<x· +x· )2 - 2 L...J Jl J,n+l . 

j=! 

In (b) the unique positive restricted root a is 2 on E!,n+I + En+!,!o and Pp = t<n- l)a. Hence e2ppHp(x) = (e2AHp(x))n-I. 



NOTES 

Background 

The theory of Lie groups, as it came to be known in the 20th century, was 
begun single-handedly by Sophus Lie in 1873. Lie developed the theory 
over a period of many years, and then he gave a systematic exposition as 
part of a three-volume work written jointly with the younger F. Engel (Lie
Engel [1888-90-93]). A detailed summary of this early theory, with extensive 
references, appears in Bourbaki [1972], 286--308. 

Lie worked with families of (not necessarily linear) transformations of n 
complex variables given by holomorphic functions 

1 ~ i ~ n, 

the family given by the complex parameters a~o ... , a,. Later a~o ... , a, were 
allowed to be real. It was assumed that the transformation corresponding to 
some set a?, ... , a~ of parameters reduced to the identity and that, roughly 
speaking, the family was effective and was closed under composition. The 
result was a "transformation group, finite and continuous:' For more detail 
about the composition law, see Cartan [1894], 13-14, and for the definition of 
"effective;• see Bourbaki [1972], 290. 

Such a transformation group was not literally closed under composition, the 
functions /; not being globally defined. Thus it had a local nature, and Lie 
and Engel assumed that it was local when necessary. On the other hand, a 
transformation group in the sense of Lie is not quite what is now meant by a 
"local Lie group;' because the space variables Xi and the group variables aj were 
inseparable, at least at first. In any event, to a "finite and continuous" transfor
mation group, Lie associated a family of "infinitely small transformations" or 
"infinitesimal transformations;• which carried the information now associated 
with the Lie algebra. In terms of a Taylor development through order 1, namely, 

r 

/;(x~o ... , Xn, a?+ Zio ... , a~+ Zr) =Xi+ L ZkXki(Xt,. ·., Xn) + · · · , 
k=! 

the infinitesimal transformations were given by 

r 

dxi = (LzkXki(x~o ... ,xn))dt, 1 ~ i ~ n. 
k=l 

565 
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The main results of Lie-Engel [1888-90-93] for current purposes were 
three theorems of Lie for passing back and forth between "finite continuous" 
transformation groups and their families of infinitesimal transformations, each 
theorem consisting of a statement and its converse. For precise statements, see 
Bourbaki [1972], 294-296. 

Lie did observe that the (local) group of transformations of en yielded a 
new transformation group whose space variables were the parameters, and he 
called this the "parameter group." There were in effect two parameter groups, 
one given by the group of left translations of the parameters and one given 
by the group of right translations of the parameters. Lie showed that two 
transformation groups have isomorphic parameter groups if and only if their 
families of infinitesimal transformations are isomorphic. 

Although Lie did have occasion to work with particular global groups (such 
as the complex classical groups), he did not raise the overall question of what 
constitutes a global group. He was able to study his particular global groups as 
transformation groups with their standard linear actions. 

The idea of treating global groups systematically did not arise until Weyl, 
inspired by work of I. Schur [1924] that extended representation theory from 
finite groups to the orthogonal and unitary groups, began his study Weyl [1924] 
and [1925-26] of compact connected groups. Schreier [1926-27] defined topo
logical groups and proved the existence of universal covering groups of global 
Lie groups, and Cartan [1930] underlined the importance of global groups by 
proving a global version of Lie's third theorem-that every finite-dimensional 
real Lie algebra is the Lie algebra of a Lie group. Pontrjagin [1939] gave a 
systematic exposition of topological groups, carefully distinguishing local and 
global results for Lie groups and proving global results where he could. Finally 
Chevalley [1946] provided the first systematic treatment of a global theory, 
introducing analytic subgroups and establishing a one-one correspondence 
between Lie subalgebras and analytic subgroups. 

The term "Lie group" came into widespread use in the early 1930s, and the 
term "Lie algebra" appeared shortly thereafter. In retrospect much early work 
in Lie theory was on Lie algebras because of Lie's three theorems that in effect 
reduced properties of local Lie groups to properties of Lie algebras. 

Chapter I 

The beginning properties of finite-dimensional Lie algebras in Chapter I 
are all due to Lie (see Lie-Engel [1888-90-93]). Lie classified the complex 
Lie algebras of dimension :54, introduced solvable Lie algebras (calling them 
"integrable"), proved Proposition 1.23, and proved Lie's Theorem (Theorem 
1.25 as Satz 2 on p. 678 of Vol. ill and Corollary 1.29 as Satz 9 on p. 681 of 
Vol. ill). Lie defined simple Lie algebras and showed that the complex classical 
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Lie algebras .sl(n, C), .so(n, C), and .sp(n, C) are simple for the appropriate 
values ofn. 

The original form of Engel's Theorem is that g is solvable if ad X is nilpotent 
for all X e g. Application of Lie's Theorem yields Corollary 1.38. The result of 
Engel's Theorem came out of an incomplete discusion in Killing [1888-89-90]. 
Engel had his student Umlauf in his thesis (Umlauf [1891]) make a number of 
Killing's results rigorous, and this was one of them. Cartan had access to 
Umlauf's thesis but gave Engel principal credit for the theorem (see Cartan 
[1894], 46), and "Engel's Theorem" has come to be the accepted name. 

Killing [1888-89-90] proved the existence of the radical and defined a Lie 
algebra to be semisimple if it has radical 0. Theorem 1.51 , relating semisim
plicity to simplicity, is due to Killing. 

The Killing form defined in (1.18) came later (see Weyl [1925-26], Kap. III, 
§3). Killing used no bilinear form of this kind, and Cartan [1894] used a 
variant. If dimg = n, Cartan defined 1fJ2 (X) to be the coefficient of J..n-2 

in the characteristic polynomial det(Al -ad X). Then 1/12(X) is a quadratic 
form in X given by 1fJ2(X) = H<Tr(adX))2 - Tr((adX)2)). The form 1fJ2(X) 
reduces to a multiple of the Killing form if Tr(ad X) = 0 for all X, as is true 
when [g, g] = g. Cartan [1894] established the criteria for solvability and 
semisimplicity (Proposition 1.43 and Theorem 1.42), but the criteria are stated 
in terms of 1/12 rather than the Killing form. 

Most of the results on Lie algebras in §§1-7 are valid whenever the un
derlying field has characteristic 0; occasionally (as in Lie's Theorem) it is 
necessary to assume also that the field is algebraically closed or at least that 
some eigenvalues lie in the field. Some proofs are easier when the underlying 
field is a subfield of C, and the goal for this book of working with Lie groups 
has led us to give only the easier proofs in such cases. An example occurs 
with Cartan's Criterion for Solvability. The part of the proof where it is easier 
to handle subfields of C rather than general fields of characteristic 0 is that 
[g, g] ~ rad B implies g solvable. One general proof of this assertion regards 
the base field as a vector space over Q and works with Q linear functions on the 
base field in a complicated way; see Varadarajan [1974] for this proof. Another 
general proof, which was pointed out to the author by R. Scott Fowler, uses the 
theory of real closed fields to generalize the argument that we have given. 

The simple Lie algebras over lR were classified in Cartan [1914], and Cartan 
must accordingly be given credit for the discovery of any of the classical 
simple Lie algebras that were not known from geometry. The irreducible finite
dimensional complex linear representations of .sl(2, C) as in Theorem 1.63 are 
implicit in Cartan [1894] and explicit in Cartan [1913]. Complete reducibility 
of finite-dimensional complex linear representations of .s l(2, C) (Theorem 1.64) 
was proved by E. Study, according to Lie-Engel [1888-90-93]. The expression 
!h2 + h + 2je that appears in Lemma 1.65 is called the "Casimir operator" 
for .sl(2, C); see the Notes for Chapter V. 
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The name "Schur's Lemma" is attached to many results like Lemma 1.66. 
Burnside [1904] proved in the language of matrix representations that a linear 
map carrying one irreducible representation space for a finite group to another 
and commuting with the group is 0 or is nonsingular. I. Schur [1905] proved in 
the same language that if the linear map carries one irreducible representation 
space for a finite group to itself and commutes with the group, then the map is 
scalar. 

The origins of the theory of Lie groups in § 10 have been discussed above. 
The text weaves together the general theory from Chevalley [ 1946] with its 
concrete interpretation for Lie groups of matrices as given in Knapp [1988], 
Chapter I. The exponential mapping was already part of the work in Lie
Engel [1888-90-93], and Lie understood the exponential's behavior through 
quadratic terms (in a form equivalent with Lemma 1.92). Higher-order terms 
are related to the Campbell-Hausdorff formula and are discussed in the Notes 
for Appendix B. The adjoint representation is due to Lie. 

The treatment in § 10 uses C 00 functions rather than real analytic functions, 
and it is remarked that the Lie groups under discussion are the same in the 
two cases. This fact had already been noticed by Lie. F. Schur [1893] gave a 
proof essentially that a C 2 Lie group could be made into a real analytic group, 
and Hilbert in 1900 raised the question whether Lie's transformation groups 
might be approached without the assumption of differentiability (Hilbert's 
fifth problem). An affirmative answer to the question whether every locally 
Euclidean group is Lie was provided by Gleason, Montgomery, and Zippin, 
and an exposition appears in Montgomery-Zippin [1955]. See Yang [1976] for 
a discussion of progress on the full question of Hilbert's. 

At a certain stage in Lie theory, analyticity plays a vital role, but not before the 
end of this book. In infinite-dimensional representation theory real analyticity 
is crucial. The group lR = {r e JR} acts continuously by unitary transformations 
on L2(1R) when it acts by translations, and this action is reflected on the Lie 
algebra level on smooth functions, the members of the Lie algebra acting by 
multiples of d I dr. The subspace of smooth functions with support in the unit 
interval is carried to itself by the Lie algebra of differentiations, but not even 
the closure of this subspace is carried to itself by the group of translations. 
Harish-Chandra [1953] showed how to avoid this pathology in all situations by 
using real analyticity. 

The results of§ 12 are implicit in Cartan [1930], which proves the existence 
of a Lie group corresponding to each real Lie algebra. Cartan [1927b] lists the 
classical groups of§ 14, and the geometric methods of that paper yield the polar 
decomposition of Proposition 1.122 for those groups. The actual method of 
proof that we have used for Proposition 1.122 is taken from Mostow [1949]. 

A number of books treat elementary Lie theory. In addition to Chevalley 
[1946], the list includes Adams [1969], Bourbaki [1960] and [1972], Cohn 
[1957], Freudenthal and de Vries [1969], Helgason [1962] and [1978], 
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Hochschild [1965], Pontrjagin [1939], Serre [1965], Spivak [1970], Varadara
jan [1974], and F. Warner [1971]. See Seminaire "Sophus Lie" [1955] for a 
treatment using Chevalley [ 1946] as a prerequisite. The books Dixmier [197 4], 
Humphreys [1972], and Jacobson [1962] treat Lie algebras. 

Chapter II 

Although the four families of classical complex simple Lie algebras in § 1 
were known to Lie, the general theory and classification of complex simple Lie 
algebras are largely due to Killing [1888-89-90] and Cartan [1894]. Many of 
the results in § § 1-5 and § 7 were announced by Killing, but Killing's proofs were 
often incomplete or incorrect, and sometimes proofs were absent altogether. 
Umlauf [1891] in his thesis under the direction of Engel undertook to give 
rigorous proofs of some of Killing's work. Cartan had access to Umlauf's 
thesis, and Cartan [1894] gives a rigorous treatment of the classification of 
complex simple Lie algebras. Cartan [1894] repeatedly gives page references 
to both Killing's work and Umlauf's work, but Cartan's thesis gives principal 
credit to Engel for Umlauf's work. Cartan was generous to Killing both in 
1894 and later for the contributions Killing had made, but others were less 
kind, dismissing Killing's work completely because of its gaps and errors. 

The characteristic polynomial det(A.l - ad X) had already been considered 
by Lie, and Killing [1888-89-90] investigated its roots systematically. Umlauf 
[ 1891] was able to take the crucial step of dropping all special assumptions about 
multiplicities of the roots. Umlauf's work contains a proof of the existence of 
Cartan subalgebras in the style of Theorem 2.9': go,x is a Cartan subalgebra if 
the lowest-order nonzero term of the characteristic polynomial is nonzero on 
X. Elementary properties of roots and root strings were established by Umlauf 
without the assumption of semisimplicity, and Cartan [1894] reproduces all 
this work. Then Cartan [ 1894] brings in the assumption of semisimplicity and 
makes use of Cartan's Criterion (Theorem 1.42). Cartan [1894] defines Weyl 
group reflections ( § IV.6) and uses "fundamental roots" rather than simple roots. 
An JR. basis of roots is fundamental if when the reflections in these roots are 
applied to the basis and iterated, all roots are obtained. 

Killing's main result had been a classification of the complex simple Lie 
algebras. Killing [1888-89-90] correctly limited the possible exceptional al
gebras to ones in dimensions 14, 52, 78, 133, 248. He found two possibilities 
in dimension 52, and he did not address the question of existence. Engel [1893] 
constructed what we now call G2. 

Cartan [1894] redid the classification, pointing out (p. 94) a simple isomor
phism between Killing's two 52-dimensional exceptional cases. Effectively 
Cartan also showed that the passage to roots is one-one in the semisimple case, 
and he proved existence. Since Cartan's definition of what we now call a Cartan 
subalgebra for a given g involved regular elements, Cartan knew that all such 
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subalgebras had a common dimension, namely the number of low-order 0 terms 
in the characteristic polynomial. Thus to show that the passage to roots is one
one, Cartan had only to investigate cases of equal rank and dimension, showing 
how the Lie algebras can be distinguished. This he did case by case. He proved 
existence case-by-case as well, giving multiplication tables for the root vectors. 
He omitted the details of these computations on the grounds of their length. 

The proof of the classification was simplified over a period of time. Simple 
roots do not appear in Cartan [1894] and [1913]. Weyl [1925-26], Kap. IV, 
§5, introduces lexicographic orderings and positive roots as a tool in working 
with roots. Van der Waerden [1933] simplified the proof of classification, 
and then Dynkin [ 1946] and [194 7] used the diagrams bearing his name and 
simplified the proof still further. Dynkin diagrams are instances of Coxeter 
graphs (Coxeter [1934]), and Witt [1941] makes use of these graphs in the 
context of complex semisimple Lie algebras. The second Dynkin paper, Dynkin 
[1947], acknowledges this work of Coxeter and Witt. For a fuller discussion 
ofCoxeter graphs, see Bourbaki [1968], Ch. IV, and Humphreys [1990]. The 
proof of classification given here is now standard except for minor variations; 
see Jacobson [1962] and Humphreys [1972], for example. 

Abstract root systems occur implicitly in Witt [1941] and explicitly in 
Bourbaki [1968], and the Weyl group makes appearances as a group in Weyl 
[1925-26] and Cartan [1925b]. Chevalley's Lemma (Proposition 2.72) appears 
without proof in a setting in Harish-Chandra [ 1958] where it is combined with 
Theorem 6.57, and it is attributed to Chevalley. 

Although Cartan had proved what amounts to the Existence Theorem (The
orem 2.111), he had done so case by case. Witt [1941], Satz 15, gave what 
amounted to a general argument, provided one knew existence in rank~ 4. 
Chevalley [1948a] and [1948b] and Harish-Chandra [1951] gave the first com
pletely general arguments, starting from a free Lie algebra and factoring out a 
certain ideal. See Jacobson [1962] for an exposition. Serre [1966] improved 
the argument by redefining the ideal more concretely; the Serre relations of 
Proposition 2.95 are generators of this ideal. Serre's argument is reproduced 
in Humphreys [1972]; we have given the same argument here but in a different 
order. See Helgason [1978], §X.4, for this kind of argument in a more general 
context. 

The uniqueness aspect of the Isomorphism Theorem is in Cartan [ 1894], and 
the existence aspect is in Weyl [1925-26] and van der Waerden [1933]. The 
argument here is built around the Serre relations. 

The result of Problem 7 is from Cartan [ 1894] and is used over and over in 
the theory. The result in Problem 11 appears in Kostant [1955]. The length 
function of Problems 21-24 is in Bourbaki [1968]. The realization of G2 in 
Problem 40 is the one that Bourbaki [1968] gives and that we repeat in §2 of 
Appendix C. The connection with C3 was pointed out to the author by J.-S. 
Huang; a connection with D4 was known much earlier. 
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The results about complex semisimple Lie algebras are essentially 
unchanged if one replaces C by an arbitrary algebraically closed field of char
acteristic 0, but a little algebraic geometry needs to be added to some of the 
proofs to make them valid in this generality. See Jacobson [1962], Dixmier 
[1974], and Humphreys [1972]. Humphreys develops the theory using "toral 
subalgebras" in place of Cartan subalgebras, at least at first. 

Chapter III 

The universal enveloping algebra in essence was introduced by Poincare 
[1899] and [1900]. The paper [1899] announces a result equivalent with 
Theorem 3.8, and Poincare [1900] gives a sketchy proof. Schmid [1982] gives a 
perspective on this work. Garrett Birkhoff [1937] and Witt [1937] rediscovered 
Poincare's theorem and proved it more generally. We have used the proofs as 
given in Humphreys [1972] and Dixmier [1974]. 

Cartan [1913] used iterated products of members of the Lie algebra in his 
work on finite-dimensional representations, but this work did not require the 
linear independence in the Poincare-Birkhoff-Witt Theorem. Apart from this 
kind of use, the first element of order greater than one in a universal enveloping 
algebra that arose in practice was the Casimir operator (Chapter V), which 
appeared in Casimir and van der Waerden [1935]. The Casimir operator 
plays a key role in the proof of the complete reducibility theorem that we 
give as Theorem 5.29. The universal enveloping algebra did not find further 
significant application until Gelfand and Harish-Chandra in the 1950s showed 
its importance in representation theory. 

The connection with differential operators (Problems 10-12) is stated by 
Godement [1952] and is identified on p. 537 of that paper as an unpublished 
result ofL. Schwartz; a published proof is in Harish-Chandra [1956a] as Lemma 
13. No generality is gained by adjusting the definition of left-invariant differ
ential operator so as to allow an infinite-order operator that is of finite-order on 
each compact subset of a chart. 

For further discussion of the universal enveloping algebra and its properties, 
see Helgason [1962], 90-92, 97-99, 386, and 391-393. Also see Jacobson 
[1962], Chapter V, and Dixmier [1974]. The Poincare-Birkhoff-Witt Theorem 
is valid over any field. 

Symmetrization in §3 is due to Gelfand [1950] and Harish-Chandra [1953]. 

Chapters IV and V 

Historically representations of complex semisimple Lie algebras were con
sidered even before group representations of finite groups were invented, and the 
connection between the two theories was realized only much later. According 
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to Lie-Engel [1888-90-93], m, 785-788, E. Study proved complete reducibility 
for the complex-linear finite-dimensional representations of .sl(2, C), .sl(3, C), 
and .sl(4, C). Lie and Engel then conjectured complete reducibility of repre
sentations of .sl(n, C) for arbitrary n. 

Frobenius [1896] is the first paper on the representation theory of finite 
groups, apart from papers about 1-dimensional representations. Frobenius at 
first treated the characters of finite groups, coming at the problem by trying 
to generalize an identity of Dedekind concerning multiplicative characters of 
finite abelian groups. It was only in later papers that Frobenius introduced 
matrix representations and related them to his theory of characters. Frobenius 
credits Molien with independently discovering in 1897 the interpretation of 
characters in terms of representations. Frobenius also takes note of Molien's 
1893 paper realizing certain finite-dimensional semisimple associative algebras 
as matrices; the theory of semisimple associative algebras has points of contact 
with the theory of representations of finite groups. Burnside [1904] and then I. 
Schur [1905] redid the Frobenius theory, taking matrix representations as the 
primary objects of study and deducing properties of characters as consequences 
of properties of representations. According to E. Artin [1950], 67, "It was 
Emmy Noether who made the decisive step. It consisted in replacing the notion 
of matrix by the notion for which the matrix stood in the first place, namely, a 
linear transformation of a vector space." 

Much of Chapters IV and V stems from work of Cartan and Weyl, especially 
Cartan [1913] and Weyl [1925-26]. 

Cartan [1913] contains an algebraic treatment of the complex-linear finite
dimensional representations of complex semisimple Lie algebras, including 
the Theorem of the Highest Weight essentially as in Theorem 55. The paper 
proves existence by handling fundamental representations case by case and 
by generating other irreducible representations from highest weight vectors of 
tensor products. Cartan makes use of iterated products of elements of the Lie 
algebra, hence implicitly makes use of the universal enveloping algebra. But 
he does not need to know the linear independence that is the hard part of the 
Poincare-Birkhoff-Witt Theorem (Theorem 3.8). 

Cartan's paper refers to the underlying transformation groups for his rep
resentations, and differentiation leads him to the formalism of representations 
of Lie algebras on tensor products. But oddly the formal similarity between 
Cartan's theory for Lie groups and the representation theory of finite groups 
went unnoticed for many years. Possibly mathematicians at the time were still 
thinking (with Lie and Engel) that transformation groups were the principal 
objects of study. Cartan uses language in the 1913 paper to suggest that he 
regards two group representations in different dimensions as involving different 
groups, while he regards two Lie algebra representations as involving the same 
Lie algebra if the bracket relations can be matched. 

Cartan [1914] classifies the real forms of complex simple Lie algebras, and 
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one sees by inspection that each complex simple Lie algebra has one and only 
one compact real form. At this stage the ingredients for a theory of group 
representations were essentially in place, but it is doubtful that Cartan was 
aware at the time of any connection between his papers and the theory of group 
representations. 

Having a fruitful theory of representations of compact Lie groups requires 
having invariant integration, and Hurwitz [1897] had shown how to integrate 
on O(n) and U(n). I. Schur [1924] put this idea together with his knowledge 
of the representation theory of finite groups to arrive at a representation theory 
for O(n) and U(n). Invariant integration on arbitrary Lie groups (defined 
by differential forms as at the start of §VIll.2) was already known to some 
mathematicians; it is mentioned in a footnote on the second page of Cartan 
[1925a]. Weyl was aware of this fact and of Cartan's work, and Weyl [1924] 
immediately set forth, using analysis, a sweeping representation theory for 
compact semisimple Lie groups. 

Weyl [1925-26] gives the details of this new theory. Kap. I is about.sl(n, C). 
After reviewing Cartan 's treatment, Weyl points out (footnote in §4) that Cartan 
implicitly assumed without proof that finite-dimensional representations are 
completely reducible (Theorem 5 .29) when he constructed representations with 
given highest weights. Weyl then gives a proof of complete reducibility, using 
his "unitary trick:' To push this argument through, he has to lift a representation 
of su(n) to a representation of SU(n). Lie's results give Weyl a locally defined 
representation, and Weyl observes in a rather condensed argument in §5 that 
there is no obstruction to extending the locally defined representation to be 
global if SU(n) is simply connected. Then he proves that SU(n) is indeed 
simply connected. He goes on in Kap. IT to use what is now called the Weyl 
Integration Formula (Theorem 8.60) to derive formulas for the characters and 
dimensions of irreducible representations of SU (n). Kap. II treats sp(n, C) and 
so(n, C) similarly, taking advantage of Sp(n) and SO(n). The treatment of 
SO(n) is more subtle than that of Sp(n), because Weyl must consider single
valued and double-valued representations for SO(n). (That is, SO(n) is not 
simply connected.) 

Kap. Ill begins by redoing briefly some of Cartan [1894] in Weyl's own 
style. The Killing form is introduced on its own, and Cartan's Criteria are 
stated and proved. Then Weyl introduces the Weyl group of the root system 
and derives some of its properties. (The Weyl group appears also in Cartan 
[1925b].) Finally Weyl proves the existence of a compact real form for any 
complex semisimple Lie algebra, i.e., a real form on which the Killing form 
is negative definite. (Later Cartan [1929a] remarks (footnote in §6) that Weyl 
implicitly assumed without proof that the adjoint group of this compact real 
form is compact, and then Cartan gives a proof.) Kap. IV begins by proving that 
every element of a compact semisimple Lie group is conjugate to a member of 
a maximal torus (Theorem 4.36), the proof being rather similar to the one here. 
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Next Weyl shows that the universal covering group of a compact semisimple 
Lie group is compact (Theorem 4.69). He is then free to apply the unitary trick 
to lift representations from a complex semisimple Lie algebra to a compact 
simply connected group corresponding to the compact real form and to deduce 
complete reducibility (Theorem 5.21). The rest ofKap. IV makes use the Weyl 
Integration Formula (Theorem 8.60). Proceeding along lines that we indicate 
at the end of Chapter VIII, Weyl quickly derives the Weyl Character Formula 
(Theorems 5.77 and 5.113) and the Weyl Dimension Formula (Theorem 5.84). 
To complete the discussion of the Theorem of the Highest Weight, Weyl handles 
existence by noting on analytic grounds that the irreducible characters are a 
complete orthogonal set in the space of square-integrable functions constant 
on conjugacy classes. He dismisses the proof of this assertion as in the spirit 
of his earlier results; Peter-Weyl [ 1929] gives a different, more comprehensive 
argument. Weyl's definition of "integral" is what we have called "algebraically 
integral"; there does not seem to be a proof that algebraically integral implies 
analytically integral in the simply connected case (Theorem 5.107). 

Let us consider the sections of Chapters IV and V in order. The representa
tions in §1 were known to Cartan [1913]. Representation theory as in §2 began 
with a theory for finite groups, which has been discussed above. Maschke 
proved Corollary 4.7 for finite groups, and Loewy and Moore independently 
proved Proposition 4.6 in this context. Burnside [1904] was the one who saw 
that Corollary 4.7 follows from Proposition 4.6, and Burnside [1904] proved 
Proposition 4.8. Although there is a hint of Corollary 4.9 in the earlier work of 
Burnside, Corollary 4.9 is generally attributed to I. Schur [1905]. Schur [1905] 
also proved Corollary 4.10. Schur [1924] observed that the results of §2 extend 
to O(n) and U(n), Hurwitz [1897] having established invariant integration for 
these groups. Weyl [1925-26] understood that invariant integration existed 
for all compact semisimple Lie groups, and he derived the Weyl Integration 
Formula (Theorem 8.60). 

Topological groups and covering groups were introduced systematically by 
Schreier [1926] and [1927], and it was plain that the abstract theory of §2 (and 
also §3) extends to general compact groups as soon as invariant integration is 
available. Existence of Haar measure for locally compact groups was proved 
under a separability assumption in Haar [ 1933], and uniqueness was established 
in von Neumann [1934a]. Von Neumann [1934b] gives a quick development 
of invariant means that handles both existence and uniqueness in the compact 
case. See Weil [1940] for further historical discussion. 

The Peter-Weyl Theorem in §3 originally appeared in Peter-Weyl [1927]. 
We have followed an argument given in Cartan [ 1929b]. The text has not 
discussed infinite-dimensional representations at all, but the Peter-Wey1 The
orem has important consequences for this theory that we should mention. A 
continuous group action by unitary operators in a Hilbert space is called a 
unitary representation. The Hilbert space L 2 (G) carries two natural unitary 
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representations, the left regular representation 1r(g)j(x) = f(g- 1x) and 
the right regular representation 1r(g)j(x) = f(xg). Corollary 4.21 implies 
that each of these representations decomposes as a Hilbert space orthogonal 
direct sum of finite-dimensional irreducible representations, each irreducible 
representation occurring with multiplicity equal to its dimension. It is not hard 
to derive as a consequence a formula for the orthogonal projection to the sum of 
the spaces corresponding to a given irreducible representation. In addition, it 
follows that any unitary representation of a compact group is the Hilbert space 
orthogonal direct sum of finite-dimensional irreducible representations, and the 
same kind of formula is valid for the orthogonal projection to the sum of the 
spaces corresponding to a given irreducible representation. See §1.5 of Knapp 
[1986] for details. 

The results of §4 are influenced by §11.6 of Helgason [1978]. Because of 
Corollary 4.22, Theorem 4.29 is really a theorem about matrix groups. Goto 
[1948] proved that a semisimple matrix group is a closed subgroup of matrices, 
and the proof of Theorem 4.29 makes use of some of Goto's ideas. 

The first key result in §5 is Theorem4.36, which appears as Weyl [1925-26], 
Kap. IV, Satz 1. We have followed Varadarajan [1974], and the proof is not too 
different from Weyl's. Other proofs are possible. Adams [1969] gives a proof 
due to Weil [1935] that uses the Lefschetz Fixed-Point Theorem. Helgason 
[1978] gives a proof due to Cartan that is based on Riemannian geometry. 
Serre [1955] discusses both these proofs. For variations, see the proofs in 
Hochschild [1965] and Wallach [1973]. 

Theorem 4.34 is a consequence of the proofs by Weyl or Weil of Theorem 
4.36; the quick proof that we give is from Hunt [1955]. Theorem 4.50 and 
its corollaries are due to Hopf [1940-41] and [1942-43]; we have followed 
Helgason [1978] and ultimately Serre [1955]. 

The results of §§6-7 are implicit or explicit in Weyl [1925-26]. In connec
tion with §8,see Weyl [1925-26],Kap.IV,Satz2,forTheorem4.69. Helgason 
[1978], 154, discusses a number of other proofs. Our proof of Lemma 4.70 is 
taken from Varadarajan [1974], 343, and ultimately from Cartier [1955b]. 

The results of §§1-2 of Chapter V are due to Cartan [1913]. In proving 
the existence of a representation with a given highest weight, Cartan did not 
give a general argument. Instead he made explicit computations to produce 
each fundamental representation (Problems 36-41) and used Cartan composi
tion (Problem 15) to generate the other irreducible representations. Chevalley 
[1948a] and [1948b] and Harish-Chandra [1951] gave the first general argu
ments to prove existence. Harish-Chandra [1951] constructs semisimple Lie 
algebras g and their representations together. The paper works with an infinite
dimensional associative algebra 21, Verma-like modules for it (Lemma 12), and 
quotients of such modules. Then the paper obtains g as a Lie subalgebra of 21, 
and the modules of 21 yield representations of g. A construction of modules 
closer to the Verma modules of §3 appears in Harish-Chandra [1954-55], 
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IV, §§1-6, expecially Lemmas 2, 5, and 16. Cartier [1955a], item (2) on 
p. 3, constructs Verma modules explicitly and establishes properties of highest 
weight modules. The name "Verma modules" seems to have been introduced 
in lectures and discussions by Kostant in the late 1960s, in recognition of the 
work Verma [1968] that establishes some structure theory for these modules. 
Verma proved that the space of U (g) maps between two of these modules is 
at most !-dimensional and that any nonzero such map is one-one. Bemstein
Gelfand-Gelfand [1971] developed further properties of these modules. Early 
publications in which the name "Verma modules" appears are Dixmier [1974] 
and Kostant [1975]. 

Complete reducibility (§4) was first proved by Weyl [1925-26], using ana
lytic methods. Casimir and van der Waerden [1935] gave an algebraic proof. 
Other algebraic proofs were found by Brauer [1936] and Whitehead [1937]. 
For Proposition 5.19, see §2.6 of DixmierJ1974]. Proposition 5.32 is from 
Harish-Chandra [ 1951]. 

The Harish-Chandra isomorphism in §5 (Theorem 5.44) is a fundamental 
result in infinite-dimensional representation theory and first appeared in Barish
Chandra [ 1951]. Most proofs of this theorem make use of a result of Chevalley 
about invariants in the symmetric algebra. See Humphreys [1972] or Dixmier 
[1974] or Varadarajan [1974], for example, for this proof. We have chosen to 
bypass the symmetric algebra and reproduce the more direct argument that is 
in Knapp-Vogan [1995]. 

Weyl [1925-26] gives analytic proofs of the Weyl Character Formula and 
Wey1 Dimension Formula of §6. For the algebraic proof of the Weyl Character 
Formula in this section, we have followed Dixmier [1974]. The proof comes 
ultimately from Bemstein-Gelfand-Gelfand [ 1971] and proves the Kostant Mul
tiplicity Formula (Corollary 5.83) (Kostant [1959]) at the same time. 

The name "Borel subalgebra" in §7 has come to be standard because of the 
systematic treatment in Borel [1956] of the corresponding groups in the theory 
of algebraic groups. 

In §8 Theorems 5.110 and 5.117 are due to Weyl [1925-26]. 
Problem 19 is taken from Humphreys [1972] and ultimately from Steinberg 

[1961], and Problems 21-23 are from Parthsarathy and Ranga Rao and 
Varadarajan [1967]. The spin representations of Problems 24-35 are recalled 
by Weyl [1924]. Chevalley [1946] gives a concrete discussion, Cartan [1938b] 
has a more abstract book-length development, and Lawson-Michelsohn [1989] 
gives a more recent treatment. 

There are several books with substantial sections devoted to the represen
tation theory of compact Lie groups and/or complex semisimple Lie algebras. 
Among these are the ones by Adams [1969], Dixmier [1974], Freudenthal 
and de Vries [1969], Fulton and Harris [1991], Helgason [1984], Humphreys 
[1972], Jacobson [1962], Knapp [1986], Lichtenberg [1970], Seminaire "So
phus Lie" [1955], Serre [1966], Varadarajan [1974], Wallach [1973], Warner 
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[1972a], Weyl [1946], Wigner [1959], and Zelobenko [1973]. To this list 
one can add the books by Helgason [1962] and [1978] and Hochschild [1965] 
as including extensive structure theory of compact Lie groups and complex 
semisimple Lie algebras, though essentially no representation theory. 

Chapter VI 

After 1914 Cartan turned his attention to differential geometry and did not 
return to Lie groups until1925. His interest in geometry led him eventually to 
introduce and study Riemannian symmetric spaces, and he found that classify
ing these spaces was closely tied to the classification of simple real Lie algebras, 
which he had carried out in 1914. (Many symmetric spaces tum out to be of 
the form G I K with G semisimple .) He began to study the corresponding Lie 
groups, bringing to bear all his knowledge and intuition about geometry, and 
soon the beginnings of a structure theory for semisimple Lie groups were in 
place. The treatment of structure theory in Helgason [1978] follows Cartan's 
geometric approach. 

In this book the approach is more Lie-theoretic. The existence of a compact 
real form for any complex semisimple Lie algebra (Theorem 6.11) is proved 
case by case in Cartan [1914], and Weyl [1925-26] gives a proof independent 
of classification. Lemmas 6.2 through 6.4 and Theorem 6.6 appear in Weyl's 
treatment. But Weyl's proof uses more information about the constants Ca,p 
of§ 1 than appears in these results, enough in fact to deduce the Isomorphism 
Theorem (Theorem 2.108). The proof of the Isomorphism Theorem in Helgason 
[1978], 173, follows the lines of Weyl's argument. We have used the Serre 
relations to obtain the Isomorphism Theorem, and the result is a simpler proof 
of the existence of a compact real form. 

Having known all the simple real Lie algebras for many years, Cartan could 
see many results case by case before he could give general proofs. Cartan 
[1927a], 122, effectively gives the Cartan decomposition on the Lie algebra 
level; comments in Cartan [1929a], 14, more clearly give the decomposition 
and refer back to the spot in the paper [1927a]. Cartan [1929a] gives a general 
argument for the existence of a Cartan involution and for uniqueness of the Car
tan involution up to conjugacy. Essentially this argument appears in Helgason 
[1978]. In §2 we have followed an approach in lectures by Helgason, which is 
built around the variant Theorem 6.16 of Cartan's results; this variant is due to 
Berger [ 1957]. 

The global Cartan decomposition of §3 appears in Cartan [1927b], pro
ceeding by a general argument that uses the case-by-case construction of the 
involution of the Lie algebra. The group-theoretic approach we have followed 
is due to Mostow [1949]. The computation of the differential in connection 
with (6.36) is taken from Helgason [1978], 254-255. 
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One result about structure theory that we have omitted in §3, having no Lie
theoretic proof, is the theorem of Cartan [1929a] that any compact subgroup of 
G is conjugate to a subgroup of K. 

Cartan [1927b] shows that there is a Euclidean subgroup A of G such that 
any element of G I K can be reached from the identity coset by applying a 
member of A and then a member of K. This is the subgroup A of §4, and the 
geometric result establishes Theorem 6.51 in §5 and the K AK decomposition 
in Theorem 7 .39. Cartan [1927b] introduces restricted roots. The introduction 
of N in §4 is due to Iwasawa [1949], and the decomposition given as Theorem 
6.46 appears in the same paper. Lemma 6.44 came after Iwasawa's original 
proof and appears as Lemma 26 of Harish-Chandra [1953]. Cartan [1927b] 
uses the group W(G, A) of §5, and Theorem 657 is implicit in that paper. 

It was apparent from the work of Harish-Chandra and Gelfand-Graev in the 
early 1950s that Cartan subalgebras would play an important role in harmonic 
analysis on semisimple Lie groups. The results of §6 appear in Kostant [1955] 
and Harish-Chandra [1956a]. Kostant [1955] announces the existence of a 
classification of Cartan subalgebras up to conjugacy, but the appearance of 
Harish-Chandra [1956a] blocked the appearance of proofs for the results of 
that paper. Sugiura [1959] states and proves the classification. 

In effect Cayley transforms as in §7 appear in Harish-Chandra [1957], §2. 
For further information, see the Notes for §VII.9. 

In §8 the name "Vogan diagram" is new. In the case that ao = 0, the idea of 
adapting a system of positive roots to given data was present in the late 1960s 
and early 1970s in the work of Schmid on discrete series representations (see 
Schmid [1975], for example), and a Vogan diagram could capture this idea in 
a picture. Vogan used the same idea in the mid 1970s for general maximally 
compact Cartan subalgebras. He introduced the notion of a 0 stable parabolic 
subalgebra of g to handle representation-theoretic data and used the diagrams 
to help in understanding these subalgebras. The paper [1979] contains initial 
results from this investigation but no diagrams. 

Because of Theorem 6.74 Vogan diagrams provide control in the problem of 
classifying simple real Lie algebras. This theorem was perhaps understood for 
a long time to be true, but Knapp [1996] gives a proof. Theorem 6.88 is due to 
Vogan. 

The results of §9 were already recognized in Cartan [1914]. The classifica
tion in § 10, as was said earlier, is in Cartan [1914]; it is the result of a remarkable 
computation made before the discovery of the Cartan involution. Lie algebras 
of each complex type are to be classified in that paper, and the signature of the 
Killing form is the key invariant. The classification is recalled in Cartan [ 1927 a], 
and to is identified in each case. In this paper Cartan provided a numbering 
for the noncomplex noncompact simple real Lie algebras. This numbering has 
been retained by Helgason [1978], and we use the same numbering for the 
exceptional cases in Figures 6.2 and 6.3. 
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Cartan [1927b] improves the classification by relating Lie algebras and 
geometry. This paper contains tables giving more extensive information about 
the exceptional Lie algebras. Gantmacher [1939a] and [1939b] approached 
classification as a problem in classifying automorphisms and then succeeded in 
simplifying the proof of classification. This method was further simplified by 
Murakami [1965] and Wallach [1966] and [1968] independently. Murakami 
and Wallach made use of the Borel and de Siebenthal Theorem (Borel and de 
Siebenthal [1949]), which is similar to Theorem 6.96 but slightly different. The 
original purpose of the theorem was to find a standard form for automorphisms, 
and Murakami and Wallach both use the theorem that way. Helgason [1978] 
gives a proof of classification that is based on classifying automorphisms in 
a different way. The paper Knapp [1996] gives the quick proof of Theorem 
6.96 and then deduces the classification as a consequence of Theorem 6.74; no 
additional consideration of automorphisms is needed. 

The above approaches to classification make use of a maximally compact 
Cartan subalgebra. An alternate line of attack starts from a maximally noncom
pact Cartan subalgebra and is the subject of Araki [ 1962]. The classification is 
stated in terms of"Satake diagrams;' which are described by Helgason [1978], 
531. Problem 7 at the end of Chapter VI establishes the facts due to Satake 
[1960] needed to justify the definition of a Satake diagram. 

The information in (6.107) and (6.108) appears in Cartan [1927b]. Appendix 
C shows how this information can be obtained from Vogan diagrams. 

Chapter VD 

§1. The essence of Theorem 7.8 is already in Cartan [1925b]. Goto [1948] 
and Mostow [ 1950] investigated conditions that ensure that an analytic subgroup 
is closed. The circle of ideas in this direction in§ 1 is based ultimately on Goto's 
work. Theunitarytrickisdueto Weyl [1925-26] andconsistsoftwoparts-the 
existence of compact real forms and the comparison of g and Uo· 

§2. The necessity for considering reductive groups emerged from the work 
of Harish-Chandra, who for a semisimple group G was led to form a series of 
infinite-dimensional representations constructed from the M of each cuspidal 
parabolic subgroup. The subgroup M is not necessarily semisimple, however, 
and it was helpful to have a class of groups that would include a rich supply of 
semisimple groups G and would have the property that the M of each cuspidal 
parabolic subgroup of G is again in the class. Various classes have been 
proposed for this purpose. The Harish-Chandra class is the class defined by 
axioms in §3 of Harish-Chandra [1975], and its properties are developed in 
the first part of that paper. We have used axioms from Knapp-Vogan [1995], 
based on Vogan [1981]. These axioms, though more complicated to state than 
Barish-Chandra's axioms, have the advantage of being easier to check. The 
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present axioms yield a slightly larger class of groups than Barish-Chandra's, 
according to Problem 2 at the end of the chapter. 

§3. The existence of the K AK decomposition is in Cartan [1927b]. See the 
Notes for Chapter VI. 

§4. The Bruhat decomposition was announced for complex classical groups 
and their real forms in Bruhat [1954a] and [1954b]. Barish-Chandra [1954], 
citing Bruhat, announced a proof valid for all simple Lie groups, and Barish
Chandra [1956b] gives the proof. Bruhat [1956] repeats Barish-Chandra's 
proof. 

§5. The group M does not seem to appear in Cartan's work, but it appears 
throughout Barish-Chandra's work. Some of its properties are developed in 
Barish-Chandra [1958], Satake [1960], and Moore [1964a]. A version of 
Theorem 7 53 appears in Satake [1960], Lemma 9, and Moore [1964a], Lemmas 
1 and 3. See also Knapp-Zuckerman [1982], §2. Theorem 7 55 seems to have 
been discovered in the late 1960s. See Loos [1969b], Theorems 3.4a and 3.6 
onpp. 75-77,forthekeystepthat2{H e iao I expH e K}iscontainedinthe 
lattice generated by the vectors 4nii,81-2Hp; this step comes out of the work 
in Cartan [1927b]. The proof that we give, based on Theorem 5.107, is new. 

§6. Real-rank-one subgroups appear in Araki [1962]. Gindikin-Karpelevic 
[1962] shows that integrals JN- e-<Hp)H(n) dii, where x = K(x)eH<x>n is the 
Iwasawa decomposition of x and p is half the sum of the positive restricted 
roots, can be computed in terms of integrals for the real-rank-one subgroups. 
Theorem 7.66 was known case by case at least as in the early 1950s. The proof 
here, independent of classification, is from Knapp [1975]. 

§7. Parabolic subgroups, particularly cuspidal parabolic subgroups, play 
an important role in the work of Barish-Chandra on harmonic analysis on 
semisimple Lie groups. For some information about parabolic subgroups, see 
Satake [1960] and Moore [1964a]. Much of the material of this section appears 
in Barish-Chandra [1975]. Barish-Chandra was the person to introduce the 
name "Langlands decomposition" for parabolic subgroups. For Proposition 
7.110 and Corollary 7.111, see Knapp-Zuckerman [1982], §2. 

§8. Most of the material deriving properties of Cartan subgroups from Cartan 
subalgebras is based on Barish-Chandra [1956a]. That paper contains an error 
that is noted in the Collected Papers, but the error can be accommodated. Also 
that paper uses a definition of Cartan subgroup that Barish-Chandra modified 
later. We use the later definition here. 

§9. Spaces G I K for which G I K embeds as a bounded domain in some 
en with G operating holomorphically were studied and classified by Cartan 
[1935]. The classification is summarized in (7.147). Bua [1963] develops at 
length properties of the domains of this kind corresponding to classical groups 
G. The proof of Theorem 7.117 is based on material in Belgason [1962], 354 
and 304-322, and Knapp [1972], as well as a suggestion of J .-i. Bano. Theorem 
7.129 and the accompanying lemmas are due to Barish-Chandra [1955-56]. 
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Problem 41 is based on the proof of a conjecture of Bott and Koranyi by 
Moore [ 1964b]. The hint for the solution of Problem 42 shows why the Cayley 
transforms of Chapter VI are so named. For more about Problems 42-44, see 
Koranyi-Wolf [1965] and Wolf-Koranyi [1965]. For further discussion, see 
Helgason [1994], §V.4. 

Chapter VIII 

§ 1. The development of integration of differential forms is taken from 
Chevalley [1946] and Helgason [1962]. The proof of Sard's Theorem is taken 
from Sternberg [1964], 47-49. 

§2. Invariant integration on Lie groups, defined in terms of differential 
forms, is already mentioned in a footnote on the second page ofCartan [1925a]. 
Existence of a left-invariant measure on a general locally compact group was 
proved under a separability assumption by Haar [1933], and uniqueness was 
proved by von Neumann [1934a]. See Weil [1940], Loomis [1953], Hewitt
Ross [1963], and Nachbin [1965] for later developments and refinements. 

§3. Theorem 8.32 and its proof are from Bourbaki [1963], 66. The proof of 
Lemma 8.35 is taken from Helgason [1962]. Knapp-Vogan [1995], 661-663, 
explains how the natural objects to integrate over G I H are functions on G that 
are "densities" relative to H. The condition that AGIH = AH forces densities 
to be right invariant under H, and then they descend to functions on G I H. 

§4. This section follows the lines of §V.6 of Knapp [1986]. Proposition 8.46 
is due to Harish-Chandra [1958], 287. The technique of proof given here occurs 
in Kunze-Stein [1967], Lemma 13. Use of densities (see above) makes this 
proof look more natural; see Knapp-Vogan [1995], 663. Helgason's Theorem 
is from Helgason [1970], §111.3. Warner [1972a], 210, calls the result the 
"Cartan-Helgason Theorem:• Possibly the mention of Cartan is a reference to 
Cartan [1929b], 238-241, but Cartan's treatment is flawed. Cartan's work was 
redone by Harish-Chandra and Sugiura. Harish-Chandra [1958], §2, proved 
that if v is the highest restricted weight of an irreducible finite-dimensional 
representation with a K fixed vector, then (v, /3)111312 is an integer 2:: 0 for 
every positive restricted root. Sugiura [1962] proved conversely that any v 
such that (v, 13)111312 is an integer 2:: 0 for every positive restricted root is the 
highest restricted weight of some irreducible finite-dimensional representation 
with a K fixed vector. See also Wallach [1971] and [1972] and Lepowsky
Wallach [1973]. For further discussion, see Helgason [1994], §11.4. 

§5. The Weyl Integration Formula in the compact case is due to Weyl 
[1925-26]. The proof is rather rapid. One may find a proof also in Adams 
[1969]. The formula in the noncompact case is due to Harish-Chandra [1965], 
Lemma 41, and [1966], Lemma 91; the proof is omitted, being similar to the 
proof in the compact case. 
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Appendix A 

The material in §§1-3 ofthis appendix is taken from Knapp [1988], Chapter 
II. 

Appendix B 

Representations on vector spaces over lR were considered by Cartan but not 
by Weyl, and the question of their complete reducibility does not seem to have 
been addressed. We have taken Lemma B .1 and its proof from Helgason [1984], 
601-602, and Helgason [1978] in turn quotes Freudenthal and de Vries [1969] 
on this point. 

The decomposition now called the Levi decomposition (Theorem B.2) was 
announced by Killing [1888-89-90]. In one of the announcements preceding 
Cartan [1894], Cartan notes errors in Killing's argument but affirms that the 
result is true. The first published correct proof appears to be the one in Levi 
[1905], valid over C. Whitehead [ 1936] gives a proof valid over lR as well; see 
Jacobson [1962] for an exposition. The semisimple subalgebra is unique up to 
conjugacy, according to Malcev [1945]. The proof we have given for Theorem 
B 2 is from Bourbaki [ 1960], 89-90, and is reproduced in Fulton-Harris [ 1991]. 
A proof of the Malcev theorem also appears in Bourbaki [ 1960]. 

The global form of Lie's third theorem in Theorem B.7 is in Cartan [1930]. 
The proof here is taken from lectures by Kostant. 

Lie believed but could not prove that every finite-dimensional Lie algebra 
(over C) can be realized as a Lie algebra of matrices. Ado [1935] and [1947] 
finally proved that Lie's conjecture was correct. Ado's Theorem, as it is called, 
is valid over any field of characteristic 0. Other proofs were given by Cartan 
[1938a] and Harish-Chandra [1949]. 

Another topic omitted from Chapter I is the Campbell-Hausdorff formula. 
This formula expresses exp X exp Yin the form exp W for X and Yin a suitably 
small neighborhood of 0 and may be regarded as a sharpening of Lemma 1.92a. 
We have omitted the result since its known uses with reductive Lie groups are 
quite limited. References to the work on this formula by Campbell, Baker, 
Hausdorff, and Dynkin may be found in Bourbaki [1972], 301-302. For a 
treatment of the result and its proof, see Hochschild [ 1965]. 

Appendix C 

The information in §§1-2 was all known to Cartan, most of it as early as 
1913. For tables giving this information and more, see Bourbaki [1968]. 
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Much of the information in §§3-4 appears in Cartan [1927b]. Tables in that 
paper give to, a set of simple roots for to, the real rank, the system of restricted 
roots, and the multiplicities of each restricted root. Cartan's way of obtaining 
simple roots for to is different from what has been used here; see Murakami 
[1965] for an exposition. In addition, Cartan [1927b] tells the order of the 
center of a simply connected group with each Lie algebra. 

Wolf [1965] classified those simple real Lie algebras g0 for which G I K has 
a reasonable quaternionic structure. In §4 a notation is made which go's have 
this property. For further discussion of this matter, see Aleksseevskii [1968], 
Sudbery [1979], and Besse [1987]. 

Further Topics 

Realizations of representations of compact Lie groups. Borel and Well 
(see Serre [1954]) and Tits [1955], 112-113, independently discovered an ex
plicit construction of the irreducible representations of compact connected Lie 
groups. The realizations are geometric ones, in terms of spaces of holomorphic 
sections ofholomorphic line bundles, and the result goes under the name Borei
Weil Theorem. An exposition appears in Knapp [1986], §V.7. 

At about the same time as the work of Borel and Weil and Tits, Barish
Chandra [1955-56] independently introduced "holomorphic discrete series" 
representations of semisimple Lie groups G as generalizations of some known 
representations of SL(2, IR). Barish-Chandra's construction works under the 
assumption of §VII.9 that Z9 (c) = t, which is valid in particular in the special 
case that G is compact. In this special case Barish-Chandra's construction 
reduces to the Borel-Weil Theorem. 

Bott [ 1957] generalized the construction in the Borel-Weil Theorem to allow 
other realizations in spaces of sheaf cohomology sections (or equivalently 
Dolbeault cohomology sections). This generalization goes under the name 
Bott-Borel-Weil Theorem, and an exposition appears in Baston-Eastwood 
[1989]. This theorem is more or less equivalent with an algebraic theorem of 
Kostant's (see Kostant [1961] and Cartier [1961]). See Knapp-Vogan [1995] 
for an exposition of Kostant's Theorem and for further discussion. 

Linear algebraic groups. The possibility of defining matrix groups over 
fields other than R and C has led to a large theory of linear algebraic groups. 
Some books on this subject are Chevalley [ 1951] and [ 1955], Borel [ 1969], and 
Springer [1981]. 

Representations of reductive Lie groups. The theory in this book leads 
naturally to the infinite-dimensional representation theory of reductive Lie 
groups. For orientation, see Knapp [1986]. The first book on the subject 
was Gelfand-Naimark [1950]. Other books in this field are Warner [1972a] and 
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[1972b], Vogan [1981], Wallach [1988] and [1992], and Knapp-Vogan [1995]. 
A book giving a sense of ongoing research is Vogan [1987]. 

Analysis on symmetric spaces and related spaces. The theory in this book 
leads naturally also to a field of analysis in settings that involve semisimple or 
reductive groups. Some of this work, but not all, makes use of some infinite
dimensional representation theory. Some books on the subject are Wallach 
[1973], Helgason [1984] and [1994], Schlichtkrull [1984], and Varadarajan 
[1989]. 



REFERENCES 

In the text of this book, a name followed by a bracketed year points to the list 
that follows. The date is followed by a letter in case of ambiguity. 

Adams, J. F., Lectures on Lie Groups, W. A. Benjamin, New York, 1969. Reprinted 
edition: University of Chicago Press, Chicago, 1982. 

Ado, I. D., Note on the representation of finite continuous groups by means of linear 
substitutions, Bull. Phys. Math. Soc. Kazan 7 (1935), 3--43 (Russian). 

Ado, I. D., The representation of Lie algebras by matrices, Uspekhi Mat. Nauk 2 
(1947), No.6 (22), 159-173 (Russian). English translation: Amer. Math. Soc. 
Translations (1) 9 (1962), 308-327. 

Aleksseevskii, D. V., Compact quatemionic spaces, Funktsionalnyi Analiz i Ego 
Prilozheniya 2 ( 1968), No. 2, 11-20 (Russian). English translation: Functional 
Anal. and Its Appl. 2 (1968), 106-114. 

Araki, S., On root systems and an infinitesimal classification of irreducible symmetric 
spaces,}. of Math., Osaka City Univ.13 (1962), 1-34. 

Artin, E., The influence of J. H. M. Wedderburn on the development of modem algebra, 
Bull. Amer. Math. Soc. 56 (1950), 65-72. ( = Collected Papers, Springer-Verlag, 
New York, 1965, 526-533.) 

Artin, E., Geometric Algebra, lnterscience, New York, 1957. 
Artin, M., Algebra, Prentice-Hall, Englewood Cliffs, N J ., 1991. 
Baston, R. J., and M. G. Eastwood, The Penrose Transform: Its Interaction with 

Representation Theory, Oxford University Press, Oxford, 1989. 
Berger, M., Les espaces symetriques non compacts, Annales Sci. Ecole Norm. Sup. 74 

(1957), 85-177. 
Bernstein, I. N., I. M. Gelfand, and S. I. Gelfand, Structure of representations gen

erated by highest weight vectors, Funktsionalnyi Analiz i Ego Prilozheniya 5 
(1971), No.1, 1-9 (Russian). English translation: Functional Analysis and Its 
Applications 5 (1971), 1-8. 

Besse, A. L., Einstein Manifolds, Springer-Verlag, New York, 1987. 
Birkhoff, Garrett, Representability of Lie algebras and Lie groups by matrices, Annals 

of Math. 38 (1937), 526-533. 
Borel, A., Linear Algebraic Groups, W. A. Benjamin, New York, 1969. 
Borel, A., Groupes lineaires algebriques,Annals of Math. 64 ( 1956), 20-82. ( = Oeuvres, 

Vol. I, 490-552.) 
Borel, A., and J. de Siebenthal, Les sous-groupes fermes de rang maximum des groupes 

de Ue clos, Comment. Math. Helv. 23 (1949), 200-221. (=Borel, Oeuvres, 
Vol. I, 11-32.) 

Borel,A., Oeuvres, Collected Papers, I, II, III, Springer-Verlag, Berlin, 1983. 

585 



586 References 

Bott, R., Homogeneous vector bundles, Annals of Math. 66 (1957), 203-248. 
Bourbaki, N., Elements de Mathematique, Livre II, Algebre: Chapitre 8, Modules et 

Anneaux Semi-Simples, Actualites scientifiques et industrielles 1261, Hermann, 
Paris,1958. 

Bourbaki, N., Elements de Mathematique, Groupes et Algebres de Lie: Chapitre 1, 
Actualites scientifiques et industrielles 1285, Hermann, Paris, 1960. 

Bourbaki, N., Elements de Mathematique, Livre Vl,lntegration: Chapitre 7, Mesur de 
Haar, Chapitre 8, Convolution et Representations, Hermann, Paris, 1963. 

Bourbaki, N., Elements de Mathematique, Groupes et Algebres de Lie: Chapitres 4, 5 
et 6, Actualites scientifiques et industrielles 1337, Hermann, Paris, 1968. 

Bourbaki, N., Elements de Mathematique, Groupes et Algebres de Lie: Chapitres II et 
lll, Hermann, Paris, 1972. 

Brauer, R., Eine Bedingung f\ir vollstiindige Reduzibilitiit von Darstellungen 
gewohnlicher und infinitesimaler Gruppen, Math. Zeitschrift 41 (1936), 
330-339. (=Collected Papers, Vol. III, MIT Press, Cambridge, Mass., 1980, 
pp. 462-471.) 

Bremmer, M. R., R. V. Moody, and J. Patera, Tables of Dominant Weight Multiplicities 
for Representations of Simple Lie Algebras, Marcel Dekker, New York:, 1985. 

Bruhat, F., Representations induites des groupes de Lie semi-simples complexes, C. R. 
Acad. Sci. Paris 238 (1954a),437-439. 

Bruhat, F., Representations induites des groupes de Lie semi-simples reels, C. R. Acad. 
Sci. Paris 238 (1954b), 550-553. 

Bruhat, F., Surles representations induites des groupes de Lie, Bull. Soc. Math. France 
84 (1956), 97-205. 

Burnside, W., On the representations of a group of finite order as an irreducible group 
of linear substitutions and the direct establishment of the relations between the 
group-characteristics, Proc. London Math. Soc. (2) 1 (1904), 117-123. 

Cartan, E., Sur Ia structure des groupes de transformations finis et continus, These, 
Nony, Paris, 1894. Second edition: Vuibert, 1933. (= (Euvres Completes, I, 
137-287.) 

Cartan, E., Les groupes projectifs qui ne laissent invariante aucune multiplicite plane, 
Bull. Soc. Math. France 41 (1913), 53-96. (= (Euvres Completes, I, 355-398.) 

Cartan, E., Les groupes reels simples finis et continus, Annales Sci. Ecole Norm. Sup. 
31 (1914), 263-355. (= (Euvres Completes, I, 399-491.) 

Cartan, E., Les tenseurs irreductibles et les groupes lineaires simples et semi-simples, 
Bull. des Sci. Math. 49 (1925a),130-152. (= CEuvres Completes, I, 531-553.) 

Cartan, E., Le principe de dualite et Ia theorie des groupes simples et semi-simples, Bull. 
des Sci. Math. 49 (1925b), 361-374. (= (Euvres Completes, I, 555-568.) 

Cartan, E., Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 
55 (1927a),114-134. (= CEuvres Completes, I, 639-659.) 

Cartan, E., Sur certaines formes riemanniennes remarquables des geometries a groupe 
fondamental simple, Annates Sci. Ecole Norm. Sup. 44 (1927b), 345-467. 
(= (Euvres Completes, I, 867-989.) 

Cartan, E., Groupes simples clos et ouverts et geometrie riemannienne, J. de Math. 
Pures et Appliquees 8 (1929a),1-33. (= (Euvres Completes, 1,1011-1043.) 



References 587 

Cartan, E., Sur Ia determination d'un systeme orthogonal complet dans un espace de 
Riemann symetrique clos, Rend. Circ. Mat. Palermo 53 (1929b}, 217-252. 
(= CEuvres Completes, I, 1045-1080.) 

Cartan, E., Le troisieme them·eme fondamental de Lie, C. R. Acad. Sci. Paris 190 (1930}, 
914-916 and 1005-1007. (= (Euvres Completes,l, 1143-1148.) 

Cartan, E., Surles domaines homes homogenes de l'espace den variables complexes, 
Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univer
sitiit 11 (1935}, 116-162. (= CEuvres Completes, I, 1259-1305.) 

Cartan, E., Les representations lineaires des groupes de Lie, J. de Math. Pures et 
Appliquees 17 (1938a), 1-12; correction 17 (1938), 438. ( = CEuvres Completes, 
I, 1339-1351.) 

Cartan, E., Lefons sur Ia Theorie des Spineurs I, II, Hermann, Paris, 1938b. English 
translation: The Theory ofSpinors, Hermann, Paris, 1966; reprinted by Dover, 
New York, 1981. 

Cartan, E., CEuvres Completes, I, II, III, Gauthiers-Villars, Paris, 1952. Reprinted: 
Centre National de Ia Recherche Scientifique, Paris, 1984. 

Cartier, P., Representations lineaires des algebres de Lie semi-simples, Expose 17, 
Seminaire "Sophus Lie;• Theorie des algebres de Lie, topologie des groupes de 
Lie, 1954-55, Ecole Normale Superieure, Paris, 1955a. 

Cartier, P., Structure topologique des groupes de Lie generaux, Expose 22, Seminaire 
"Sophus Lie;• Theorie des algebres de Lie, topologie des groupes de Lie, 
1954-55, Ecole Normale Superieure, Paris, 1955b. 

Cartier, P., Remarks on "Lie algebra cohomology and the generalized Borel-Weil theo
rem;• by B. Kostant, Annals of Math. 14 (1961), 388-390. 

Casimir, H., and B. L. van der Waerden, Algebraischer Beweis der vollstiindigen Re
duzibilitiit der Darstellungen halbeinfacher Liescher Gruppen, Math. Annalen 
111 (1935), 1-12. 

Chevalley, C., Theory of Lie Groups I, Princeton University Press, Princeton, 1946. 
Chevalley, C., Sur la classification des algebres de Lie simples et de leurs representations, 

C. R. Acad. Sci. Paris 227 (1948a), 1136-1138. 
Chevalley, C., Surles representations des algebres de Lie simples, C. R. Acad. Sci. Paris 

227 (1948b}, 1197. 

Chevalley, C., Theorie des Groupes de Lie, Tome II, Groupes Algebriques, Actualites 
scientifiques et industrielles 1152, Hermann, Paris, 1951. 

Chevalley, C., Theorie des Groupes de Lie, Tome Ill, Theoremes generaux sur les 
algebres de Lie, Actualites scientifiques et industrielles 1226, Hermann, Paris, 
1955. 

Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math. 11 
(1955}, 778-782. 

Cohn, P.M., Lie Groups, Cambridge University Press, London, 1957. 

Coxeter, H. S.M., Discrete groups generated by reflections, Annals of Math. 35 (1934), 
588-621. 

Dixmier, J., Algebres Enveloppantes, Gauthier-Villars Editeur, Paris, 1974. English 
translation: Enveloping Algebras, North-Holland Publishing Co., Amsterdam, 
1977. 



588 References 

Dynkin, E., Classification of the simple Lie groups, Mat. Sbornik 18 (60) (1946), 
347-352 (Russian with English summary). 

Dynkin, E. B., The structure of semisimple algebras, Uspekhi Mat. Nauk 2 (1947), No. 
4 (20), 59-127 (Russian). English translation: Amer. Math. Soc. Translations 
(1) 9 (1962), 328-469. 

Engel, F., Sur un groupe simple a quatorze parametres, C. R. Acad. Sci. Paris 116 ( 1893), 
786-788. 

Freudenthal, H., and H. de Vries, Linear Lie Groups, Academic Press, New York, 1969. 
Frobenius, F. G., Uber Gruppencharaktere, Sitzungsberichte der Koniglich Preussischen 

Akademie der Wissenschaften zu Berlin (1896), 985-1021. (= Gesammelte 
Abhandlungen, Vol. III, Springer-Verlag, Berlin, 1968, pp. 1-37.) 

Fulton, W., and J. Harris, Representation Theory, A First Course, Springer-Verlag, New 
York, 1991. 

Gantmacher, F., Canonical representation of automorphisms of a complex semi-simple 
Lie group, Mat. Sbornik 5 (47) (1939a), 101-146 (English with Russian 
summary). 

Gantmacher, F., On the classification of real simple Lie groups, Mat. Sbornik 5 (47) 
(1939b), 217-250 (English with Russian summary). 

Gelfand, I. M., The center of an infinitesimal group ring, Mat. Sbornik N.S. 26 (68) 
(1950), 103-112 (Russian). 

Gelfand, I. M., and M.A. Naimark, Unitary Representations of the Classical Groups, 
Trudy Mat. Inst. Steklov 36, Moskow-Leningrad, 1950 (Russian). German 
translation: Akademie-Verlag, Berlin, 1957. 

Gindikin, S. G., and F. I. Karpelivic, Plancherel measure for Riemann symmetric spaces 
of nonpositive curvature, Doklady Akademiia Nauk SSSR 145 ( 1962), 252-255 
(Russian). English translation: Soviet Math. Doklady 3 (1962), 962-965. 

Godement, R., A theory of spherical functions I, Trans. Amer. Math. Soc. 73 (1952), 
496-556. 

Goto, M., Faithful representations of Lie groups I, Math. Japonicae 1 ( 1948), 107-119. 
Haar, A., Der Maassbegriff in der Theorie der Kontinuierlichen Gruppen, Annals of 

Math. 34 (1933), 147-169. 
Barish-Chandra, Faithful representations of Lie algebras, Annals of Math. 50 (1949), 

68-76. (=Collected Papers, Vol. I, 222-230.) 
Barish-Chandra, On some applications of the universal enveloping algebra of a 

semisimple Lie algebra, Trans. Amer.Math. Soc. 70 ( 1951 ), 28-96. ( = Collected 
Papers, Vol. I, 292-360.) 

Barish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. 
Amer. Math. Soc. 15 (1953), 185-243. (=Collected Papers, Vol. I, 391-449.) 

Barish-Chandra, Representations of semisimple Lie groups V, Proc. Nat. Acad. Sci. USA 
40 (1954), 1076-1077. (=Collected Papers, Vol. I, 561-563.) 

Barish-Chandra, Representations of semisimple Lie groups IV, V, VI Amer. J. Math. 77 
(1955), 743-777; 78 (1956), 1-41; 78 (1956), 564-628. (=Collected Papers, 
Vol. II, 13-154.) 

Barish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 
(1956a), 98-163. (=Collected Papers, Vol. II, 156-221.) 

Barish-Chandra, On a lemma of F. Bruhat, J. de Math. Pures et Appliquees 35 (1956b), 
203-210. (= Collected,Papers, Vol. II, 223-330.) 



References 589 

Harish-Chandra, Fourier transforms on a semisimple Lie algebra II, Amer. J. Math. 19 
(1957), 653-686. (=Collected Papers, Vol. II, 343-376.) 

Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math. 80 
(1958), 241-310. (= Collected Papers, Vol. II, 409-478.) 

Harish-Chandra, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. 
Math. Soc. 119 (1965),457-508. (=Collected Papers, Vol. III, 351-402.) 

Harish-Chandra, Discrete series for semisimple Lie groups II, Acta Math. 116 (1966), 
1-111. (=Collected Papers, Vol. III, 537-647 .) 

Harish-Chandra, Harmonic analysis on real reductive groups I,J. Func. Anal. 19 (1975), 
104-204. (=Collected Papers, Vol. IV, 102-202.) 

Harish-Chandra, Collected Papers, I, II, III, IV, Springer-Verlag, New York, 1984. 
Helgason, S ., Differential Geometry and Symmetric Spaces, Academic Press, New York, 

1962. 
Helgason, S., A duality for symmetric spaces with applications to group representations, 

Advances in Math. 5 (1970), 1-154. 
Helgason, S., Differential Geometry, Ue Groups, and Symmetric Spaces, Academic 

Press, New York, 1978. 
Helgason, S., Groups and Geometric Analysis,lntegral Geometry, Invariant Differential 

Operators, and Spherical Functions, Academic Press, Orlando, Aa., 1984. 
Helgason, S., Geometric Analysis on Symmetric Spaces, Mathematical Surveys and 

Monographs, Vol.39,AmericanMathematical Society, Providence, R.I., 1994. 
Hewitt, E., and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin, 

1963. Second edition: Springer-Verlag, New York, 1979. 
Hochschild, G., The Structure of Lie Groups, Holden-Day, San Francisco, 1965. 
Hoffman, K., and R. Kunze, linear Algebra, Prentice-Hall, Englewood Cliffs, NJ., 

1961. Second edition: Prentice-Hall, 1971. 
Hopf, H., Uber den Rang geschlossener Liescher Gruppen, Comment. Math. Helv. 13 

(1940-41), 119-143. 
Hopf, H., Maximale Toroide und singuliire Elemente in geschlossenen Lieschen Grup

pen, Comment. Math. Helv. 15 (1942-43), 59-70. 
Hua, L.-K., Harmonic Analysis of Functions of Several Complex Variables in the 

Classical Domains, American Mathematical Society, Providence, RJ., 1963; 
revised 1979. 

Humphreys, J. E., Introduction to Ue Algebras and Representation Theory, Springer
Verlag, New York, 1972. 

Humphreys, J. E., Reflection Groups and Coxeter Groups, Cambridge University Press, 
Cambridge, 1990. 

Hunt, G. A., A theorem of Elie Cartan, Proc. Amer. Math. Soc. 7 (1956), 307-308. 
Hurwitz, A., Ueber die Erzeugung der Invarianten durch Integration, Nachrichten von 

der Koniglichen Gesellschaft der Wissenschaften zu Gottingen (1897), 71-90. 
(= Mathematische Werke, Vol. II, Emil Birkhiiuser, Basel, 1933, pp. 546-564.) 

lwasawa, K., On some types of topological groups, Annals of Math. 50 (1949), 507-558. 
Jacobson, N., Ue Algebras, Interscience Publishers, New York, 1962. 
Killing, W., Die Zusammensetzung der stetigen endlichen Transformationsgruppen I, 

II, III, IV, Math. Annalen 31 (1888), 252-290; 33 (1889), 1-48; 34 (1889), 
57-122;36(1890),161-189. 



590 References 

Knapp, A. W., Bounded symmetric domains and holomorphic discrete series, Symmetric 
Spaces, W.M.BoothbyandG.L. Weiss(ed.),Marcel Dekker,NewYork,1972, 
211-246. 

Knapp, A. W., Weyl group of a cuspidal parabolic, Annales Sci. Ecole Norm. Sup. 8 
(1975), 275-294. 

Knapp, A. W., Representation Theory of Semisimple Groups: An Overview Based on 
Examples, Princeton University Press, Princeton, 1986. 

Knapp, A. W., Lie Groups, Lie Algebras, and Cohomology, Princeton University Press, 
Princeton, 1988. 

Knapp, A. W., A quick proof of the classification of simple real Lie algebras, Proc. 
Amer. Math. Soc.l24 (1996), in press for October. 

Knapp, A. W., and D. A. Vogan, Cohomologicallnduction and Unitary Representations, 
Princeton University Press, Princeton, 1995. 

Knapp, A. W., and G. J. Zuckerman, Classification of irreducible tempered representa
tions ofsemisimple groups,AnnalsofMath.ll6 (1982), 389-501; typesetter's 
correction 119 (1984), 639. 

Koecher, M., An elementary approach to bounded symmetric domains, duplicated 
lecture notes, Rice University, Houston, 1969. 

Koranyi, A., and J. A. Wolf, Realization of Hermitian symmetric spaces as generalized 
half-planes, Annals of Math. 81 (1965), 265-288. 

Kostant, B., On the conjugacy of real Cartan subalgebras I, Proc. Nat. Acad. Sci. USA 
41 (1955), 967-970. 

Kostant, B., A formula for the multiplicity of a weight, Trans. Amer. Math. Soc. 93 
(1959), 53-73. 

Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Annals 
of Math. 14 (1961), 329-387. 

Kostant, B., Verma modules and the existence of quasi-invariant differential operators, 
Non-Commutative Harmonic Analysis, Lecture Notes in Mathematics, Vol. 466, 
Springer-Verlag, Berlin,1975, pp. 101-128. 

Kunze, R. A., and E. M. Stein, Uniformly bounded representations III, Amer. J. Math. 
89 (1967), 385-442. 

Lawson, H. B., and M.-L. Michelsohn, Spin Geometry, Princeton University Press, 
Princeton,1989. 

Lepowsky, J., and N. R. Wallach, Finite- and infinite-dimensional representations of 
linear semisimple groups, Trans. Amer. Math. Soc. 184 (1973), 223-246. 

Levi, E. E., Sulla struttura dei gruppi finiti e continui, Ani della Reale Accademia delle 
Scienze di Torino 40 (1905),423-437 (551-565). 

Lichtenberg, D. B., Unitary Symmetry and Elementary Particles, Academic Press, New 
York, 1970; 2nd ed., 1978. 

Lie, S., with the help of F. Engel, Theorie der Transformationsgruppen /,II, Ill, B. 
G. Teubner, Leipzig, 1888, 1890, 1893. (Engel's role is listed as "Unter 
Mitwirkung von Dr. Friedrich Engel.") 

Loomis, L. H., An Introduction to Abstract Harmonic Analysis, D. Van Nostrand, New 
York,1953. 

Loos, 0., Symmetric Spaces, Vol. I, W. A. Benjamin Inc., New York,1969a. 
Loos, 0., Symmetric Spaces, Vol. II, W. A. Benjamin Inc., New York, 1969b. 



References 591 

Malcev, A., On the theory of Lie groups in the large, Mat. Sbornik 16 (58) (1945), 
163-190 (English with Russian summary). 

McKay, W. G., and J. Patera, Tables of Dimensions, Indices, and Branching Rules for 
Representations of Simple Lie Algebras, Marcel Dekker, New York, 1981. 

Montgomery, D., and L. Zippin, Topological Transformation Groups, lnterscience, New 
York, 1955. 

Moore, C. C., Compactifications of symmetric spaces, Amer. J. Math. 86 (1964a), 
201-218. 

Moore, C. C., Compactifications of symmetric spaces II, Amer. J. Math. 86 (1964b), 
358-378. 

Mostow, G. D., A new proof of E. Cartan's theorem on the topology of semi-simple 
groups, Bull. Amer. Math. Soc. 55 (1949), 969-980. 

Mostow, G. D., The extensibility of local Lie groups of transformations and groups on 
surfaces, Annals of Math. 52 (1950), 606-636. 

Mostow, G. D., Self-adjoint groups, Annals of Math. 62 ( 1955), 44-55. 
Murakami, S., Sur Ia classification des algebres de Lie reelles et simples, Osaka J. Math. 

2 (1965), 291-307. 
Nachbin, L., The Haar Integral, D. Van Nostrand, Princeton, 1965. 
Parthasarathy, K. R., R. Ranga Rao, and V. S. Varadarajan, Representations of complex 

semi-simple Lie groups and Lie algebras, Annals of Math. 85 (1967), 383-429. 
Peter, F., and H. Weyl, Die Vollstiindigkeit der primitiven Darstellungen einer 

geschlossenen kontinuierlichen Gruppe, Math. Annalen 97 (1927), 737-755. 
(= Weyl, Gesammelte Abhandlungen, Vol. III, 58-75.) 

Poincare, H., Surles groupes continus, C. R. Acad. Sci. Paris 128 (1899), 1065-1069. 
Poincare, H., Surles groupes continus, Trans. Cambridge Philosophical Soc. 18 ( 1900), 

220-255. 
Pontrjagin, L., Topological Groups, Princeton University Press, Princeton, 1939. Second 

edition: Gordon and Breach, New York, 1966. 
Riesz, F., and B. Sz. Nagy, Functional Analysis, Frederick Ungar Publishing Co., New 

York, 1955. 
Satake, 1., On representations and compactifications of symmetric Riemannian spaces, 

Annals of Math. 71 (1960), 77-110. 
Schlichtkrull, H., Hyperjunctions and Harmonic Analysis on Symmetric Spaces, 

Birkhliuser, Boston, 1984. 
Schmid, W., On the characters of discrete series: the Hermitian symmetric case, Invent. 

Math. 30 (1975),47-144. 
Schmid, W., Poincare and Lie groups, Bull. Amer. Math. Soc. 6 (1982), 175-186. 
Schreier, 0., Abstrakte kontinuierliche Gruppen, Abhandlungen aus dem Mathematis

chen Seminar der Hamburgischen Universitiit4 (1926), 15-32. 
Schreier, 0., Die Verwandtschaft stetiger Gruppen im grossen, Abhandlungen aus dem 

Mathematischen Seminar der Hamburgischen Universitiit 5 (1927), 233-244. 
Schur, F., Zur Theorie der endlichen Transformationsgruppen, Math. Annalen 38 ( 1891 ), 

263-286. 
Schur, F., Ueber den analytischen Charakter der eine endliche continuierliche Transfor

mationsgruppe darstellenden Functionen, Math. Annalen 41 (1893), 509-538. 



592 References 

Schur, 1., Neue Begri.indung der Theorie der Gruppencharaktere, Sitzungsberichte 
der Koniglich Preussischen Akademie der Wissenschaften (1905), 406-432. 
(= Gesammelte Abhandlungen, Vol. I, 143-169.) 

Schur, 1., Neue Anwendungen der lntegralrechnung auf Probleme der lnvariantenthe
orie, Sitzungsberichte der Preussischen Akademie der Wissenschaften (1924), 
189-208. (= Gesammelte Abhandlungen, Vol. II, 440-459.) 

Schur, 1., Gesammelte Abhandlungen, I, II, III, Springer-Verlag, Berlin, 1973. 
Seminaire "Sophus Lie;• Theorie des algebres de Lie, topologie des groupes de Lie, 

1954-55, Ecole Normale Superieure, Paris, 1955. 
Serre, J.-P., Representations lineaires et espaces homo genes Kiihlerians des groupes de 

Lie compacts, Expose 100, Seminaire Bourbaki, 6• annee, 1953154, lnst. Henri 
Poincare, Paris, 1954. Reprinted with corrections: 1965. 

Serre, J.-P., Tores maximaux des groupes de Lie compacts, Expose 23, Seminaire 
"Sophus Lie;• Theorie des algebres de Lie, topologie des groupes de Lie, 1954-
55, Ecole Normale Superieure, Paris, 1955. 

Serre, J.-P., Lie Algebras and Lie Groups, W. A. Benjamin, New York, 1965. 
Serre,J.-P.,AlgebresdeLieSemi-SimplesComplexes, W.A.Benjamin,NewYork, 1966. 

English translation: Complex Semisimple Lie Algebras, Springer-Verlag, New 
York,1987. 

Spivak, M., A Comprehensive Introduction to Differential Geometry, Vol. 1, Publish or 
Perish, Houston, TX, 1970. 

Springer, T. A., Linear Algebraic Groups, Birkhliuser, Boston, 1981. 
Steinberg, R., A general Clebsch-Gordon theorem, Bull. Amer. Math. Soc. 67 (1961), 

406-407. 
Sternberg, S ., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N J ., 

1964. 
Sudbery, A., Quaternionic analysis, Math. Proc. Cambridge Phil. Soc. 85 (1979), 

199-225. 
Sugiura, M., Representations of compact groups realized by spherical functions on 

symmetric spaces, Proc. Japan Acad. 38 (1962), 111-113. 
Sugiura, M., Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, 

J. Math. Soc. Japan 11 (1959), 374-434; correction 23 (1971), 379-383. 
Tits, J ., Sur certaines classes d' espaces homogenes de groupes de Lie, Acad. Roy. Bel g. 

Ct. Sci. Mem. Coli. 29 (1955), No.3. 
Tits, J ., Classification of algebraic semisimple groups, Algebraic Groups and 

Discontinuous Subgroups, Proceedings Symposia in Pure Mathematics, Vol. 9, 
American Mathematical Society, Providence, R.I., 1966, pp. 33-62. 

Umlauf, K. A., t:Tber die Zusammensetzung der enlichen continuierlichen Transfor
mationsgruppen, insbesondere der Gruppen vom Range Null, thesis, Leipzig, 
1891. 

van der Waerden, B. L., Die Klassifikation der einfachen Lieschen Gruppen, Math. 
Zeitschrift 31 (1933), 446-462. 

Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Representations, Prentice-Hall, 
Englewood Cliffs, NJ., 1974. Second edition: Springer-Verlag, New York, 
1984. 



References 593 

Varadarajan, V. S., An Introduction to Harmonic Analysis on Semisimple Lie Groups, 
Cambridge University Press, Cambridge, 1989. 

Verma, D.-N., Structure of certain induced representations of complex semisimple Lie 
algebras,Bull.Amer.Math.Soc. 74 (1968), 160-166; correction 74 (1968),628. 

Vogan, D. A., The algebraic structure of the representation of semisimple Lie groups I, 
Annals of Math. 109 (1979), 1--60. 

Vogan, D. A., Representations of Real Reductive Lie Groups, Birkhiiuser, Boston, 1981a. 
Vogan, D. A., Unitary Representations of Reductive Lie Groups, Princeton University 

Press, Princeton, 1987. 
von Neumann, J ., Zum Haarschen Mass in topologischen Gruppen, Compositio Math. 

1 (1934a), 106-114. (=Collected Works, Vol. II, 445-453.) 
von Neumann, J., Almost periodic functions in a group I, Trans. Amer. Math. Soc. 36 

(1934b), 445-492. (= Collected Works, Vol. II, 454-501.) 
von Neumann, J., Collected Works, I to VI, Pergamon Press, Oxford, 1961. 
Wallach, N. R., A classification of real simple Lie algebras, thesis, Washington Univer

sity, 1966. 
Wallach, N. R., On maximal subsystems of root systems, Canad. J. Math. 20 (1968), 

555-574. 
Wallach, N. R., Cyclic vectors and irreducibility for principal series representations, 

Trans. Amer. Math. Soc. 158 (1971), 107-113. 
Wallach, N. R., Cyclic vectors and irreducibility for principal series representations II, 

Trans. Amer. Math. Soc. 164 ( 1972), 389-396. 
Wallach, N. R., Harmonic Analysis on Homogenous Spaces, Marcel Dekker, New York, 

1973. 
Wallach, N., Real Reductive Groups I, Academic Press, San Diego, 1988. 
Wallach, N., Real Reductive Groups II, Academic Press, San Diego, 1992. 
Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, 

Glenview, Ill., 1971. Second edition: Springer-Verlag, New York, 1982. 
Warner, G., Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, New 

York, 1972a. 
Warner, G., Harmonic Analysis on Semi-Simple Lie Groups II, Springer-Verlag, New 

York, 1972b. 
Weil, A., Demonstration topologique d'un them·eme fondamental de Cartan, C. R. Acad. 

Sci. Paris 200 (1935), 518-520. 
Weil, A., L'integration dans les groupes topologiques et ses applications, Actualites 

scientifiques et industrielles 869, Hermann, Paris, 1940. Second edition: Actu
alites scientifiques et industrielles 869-1145, 1951. 

Wells, R. 0., Differential Analysis on Complex Manifolds, Prentice-Hall, Englewood 
Cliffs, NJ., 1973. Second edition: Springer-Verlag, New York, 1980. 

Weyl, H., Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen (Aus 
einem Schreiben an Herrn I. Schur), Sitzungsberichte der Preussischen 
Akademie der Wissenschaften (1924), 338-345. ( = Gesammelte Abhandlungen, 
Vol. II, 453-460.) 

Weyl, H., Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare 
Transformationen I, II, III, and Nachtrag, Math. Zeitschrift 23 ( 1925), 271-309; 
24 (1926), 328-376; 24 (1926), 377-395; 24 (1926), 789-791. (= Gesammelte 
Abhandlungen, Vol. II, 543-645.) 



594 References 

Weyl, H., The Classical Groups, Their Invariants and Representations, 2nd ed., Prince
ton University Press, Princeton, 1946. 

Weyl, H., Gesammelte Abhandlungen, I, II, III, IV, Springer-Verlag, Berlin,1968. 
Whitehead, J. H. C., On the decomposition of an infinitesimal group, Proc. Cambridge 

Phil. Soc. 32 (1936), 229-237. (=Mathematical Works, Vol. I, Macmillan, 
New York, 1963, 281-289.) 

Whitehead, J. H. C., Certain equations in the algebra of a semi-simple infinitesimal 
group, Quart. J. Math. 8 (1937), 220-237. (=Mathematical Works, Vol. I, 
Macmillan, New York,1963, 291-308.) 

Wigner, E. P., Group Theory and Its Applications to the Quantum Mechanics of Atomic 
Spectra, Academic Press, New York, 1959. 

Witt, E., Treue Darstellung Liescher Ringe,). Reine Angew. Math. 177 ( 1937), 152-160. 
Witt, E., Spiegelungsgruppen und Aufziihlung halbeinfacher Liescher Ringe, Abhand

lungen aus dem Mathematischen Seminar der Hansischen Universitiit 14 (1941 ), 
289-322. 

Wolf, J. A., Complex homogeneous contact manifolds and quaternionic symmetric 
spaces,). Math. and Mech. 14 (1965),1033-1047. 

Wolf, J. A., and A. Koranyi, Generalized Cayley transformations of bounded symmetric 
domains, Amer. J. Math. 87 (1965), 899-939. 

Yang, C. T., Hilbert's fifth problem and related problems on transformation groups, 
Mathematical Developments Arising from Hilbert Problems, Proceedings 
Symposia in Pure Mathematics, Vol. 28, Part 1, American Mathematical 
Society, Providence, RJ., 1976, pp. 142-146. 

Zariski, 0., and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand, Princeton, 
1958. 

Zariski, 0., and P. Samuel, Commutative Algebra, Vol. II, D. Van Nostrand, Princeton, 
1960. 

Zelobenko, D.P., Compact Lie Groups and Their Representations, Translations of Math
ematical Monographs, Vol. 40, American Mathematical Society, Providence, 
Rl., 1973 (English translation of 1970 edition in Russian). 



INDEX OF NOTATION 

See also the list of Standard Notation on page xv. In the list below, Latin, 
German, and script letters appear together and are followed by Greek symbols, 
special superscripts, and non-letters. 

ad, 2, 8, 237 
A, 317, 393 
A;i, 111 
AM, 418 
AM,O. 415 
An, 104, 110, 114, 133, 136, 

158, 355, 509 
Ap, 411 
Asplih 403 
Ad, 53, 237 
Ad9 , 53 
Autcg, 56 
AutRg, 56 
a, 312 
ao. 392, 415 
ap. 411 
ap,o. 411 
B, 442 
B( ·, · ), 13, 94, 198, 238, 312, 

384 
Bn, 104, 110, 114, 133, 136, 

158, 355, 509 
B9, 298, 299, 386 
(BC)n. 105, 138 
b, 229, 442 
char(V), 261 
Cp, 331, 333 
C00(M), 43 
Cn, 104, 110, 114, 133, 136, 

158, 355, 509 

Ca,P• 294 
Cl-a• 231 

595 

d, 263 
d,x, 465 
d,x, 465 
d(a), 190 
d<l>p. 43 
da. 331, 334 
Dn, 104, 110, 114, 133, 136, 

158, 355, 509 
Oefk b, 15 
e, 6 
e;, 140 
ei, 80, 83, 85, 137 

eii• 45 
ex, 44 
el, 260 
expX, 49 
E I, 361, 364, 365, 532 
E II, 357, 365, 533 
E III, 357, 365, 534 
E IV, 361, 364, 365, 535 
E V, 357, 365, 536 
E VI, 357, 365, 537 
E VII, 357, 365, 449, 538 
E VIII, 357, 365, 539 
E IX, 357, 365, 540 
E6, 133, 135, 136, 158, 512 
E1, 133, 135, 136, 158, 513 
Es, 133-136, 158, 514 

Eii• 80 
Ea, 95 
e, 143 
f, 6 



596 Index of Notation 

/;, 140 
F I, 357, 365, 370, 541 
F II, 357, 365, 366, 370, 542 
F, 403 
F4, 133-136, 158, 516 
F(T), 434 
~. 143 
j, 143 
gr A, 172, 173, 502 
gr(/J, 502 
G, 357, 365, 543 
G, 43, 44, 304, 384 
0G, 391 
G2, 105, 114, 133, 136, 158, 

162, 289, 517 
Gc, 430 
G~, 430 
Gc, 382, 404 
GjH, 51 
(G, K, (),B), 384 
Gsplit. 403 
Gm 198, 380, 385 
a, 48 
GL(n,C), 4 
GL(n, lHr), 66 
GL(n, lR), 4, 485 
g, 2, 44, 198 
go, 12, 198, 299, 384 
go,x. 90 
(goh, 393 
(go)<~>· 417, 418 
(go)c, 13 
(go, ~o. ll. +), 339 
gj, 8 
gj. 8 
giR' 13 
{Ia. 94, 200, 313 
[g, g], 7 
gja, 8 
gl(n, lHr), 36 
gl(n, lk:), 3 
h, 6 

h;, 140 
H(g), 474 
He, 430 
Ha, 95, 207 
JH[, 31 
1{, 246 
1in, 253 
1iw, 246 
~. 89, 94 
~o. 101, 328, 395 
~. 143 
i :::: /, 169 
I, 173, 493 
I', 498 
I= {i1, ... , ip), 169 
lm,n• 34 
Intg, 57 
Int9 (t), 196 
J, 33, 165 
ln,n• 33 
K, 263, 305, 384 
Kc, 442 
KM, 418 
Ksplit. 403 
lk:, 2, 11 
][{, 11 
to. 303, 384 
l, 109 
l(w), 122, 159 
l9 (V), 90 
(, 271, 274 
mw, 273 
M, 324, 394 
MM, 418 
Mnm(C), 436 
Mp, 411 
Msplit. 403 
MAN, 394, 411, 418 
m, 319 
mo. 393, 415, 423 
mp, 411 
mp,o. 411 



N, 317, 393 
N-, 394 
N9 (s), 7 
NM, 418 
Np. 411 
Na,fJ• 295 
N, 247 
n, 229, 315 
n-, 229 
no. 393, 415, 423 
n0, 394 
nM,O• 415 
np, 411 
np,o. 411 
O(m, n), 70 
O(n), 68, 183 
p+, 442 
p-, 442 
P, 247 
P('A), 260 
p+, 442 
p-, 442 
Po. 303, 384 
Q, 411, 418 
Q+, 260 
q, 270 
q-, 273 
q0 , 412, 415, 423 
qp,o. 412 
radC, 24 
radg, 10 
R9 (V), 90 
!>\, 142 
Sa, 103, 207 
sgn/L, 285 
S(g), 173, 492 
sn(E), 493 
sn(E), 497 
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abstract root system, 103 

irreducible, 104 
reduced, 104 
reducible, 104 

acts by automorphisms, 59 
adjoint representation, 2, 53,237 
Ado's Theorem, 582 
algebra, 2 

associated graded, 172 
Clifford, 286 
exterior, 498 
filtered associative, 503 
graded filtered, 503 
Lie,2 
quotient, 8 
symmetric, 492 
tensor, 165,491 
universal enveloping, 165 

algebraically integral, 211, 224 
almost-complex structure, 438 
analytic group, 43 
analytic mapping, 43 
analytic subgroup, 47 
analytically integral, 211,277 
antisymmetrized tensors, 500 
antisymmetrizer, 500 
associated graded algebra, 172 
associated graded map, 502 
associated graded vector space, 502 
associated split semisimple subgroup, 403 
atlas,456 
automorphism, 56 

Borel and de Siebenthal Theorem, 350 
Borel subalgebra, 269 
Borel-Wei1 Theorem, 583 
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Bott-Borel-Wei! Theorem, 583 
bracket,2 
Bruhat decomposition, 398 

Campbell-Hausdorff formula, 582 
canonical coordinates 

first kind, 50 
second kind, 50 

canonical generator, 231 
canonical homomorphism, 142 
Cartan composition, 285 
Cartan decomposition, 303,384 

global, 305,385 
Cartan involution, 299,384 

global, 305,388 
Cartan matrix, 111 

abstract, 112 
irreducible abstract, 113 
reducible abstract, 113 

Cartan subalgebra, 89,201,318 
maximally compact, 328 
maximally noncompact, 328 

Cartan subgroup, 424 
Cartan's Criterion for Semisimplicity, 25 
Cartan's Criterion for Solvability, 25 
Casimir element, 239 
Cayley transform, 331, 332, 562 
center of Lie algebra, 7 
centralizer, 7 
character, 190,261 

infinitesimal, 236, 257, 258 
multiplicative, 201 

chart,456 
Chevalley's Lemma, 123 
classical Lie algebra, 31 
classical Lie group, 66 
classification, 133, 362 
Clifford algebra, 286 
closed linear group, 43 
commutator ideal, 7 
commutator series, 8 
compact Lie algebra, 196 
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compact dimension, 328 
compact real form, 296, 354 
compact root, 332 
compactly embedded, 196 
completely reducible, 38, 241, 504 
complex Lie group, 55 
complex manifold, 55,428, 438 
complex root, 332 
complex semisimple Lie group, 374 
complexification, 11, 376, 404 
conjugate representation, 182 
conjugation, 12, 13 
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contragredient representation, 182, 184, 185 
coset space, 51 
critical point, 460 
critical value, 460 
cuspidal parabolic subgroup, 422 

decomposition, 27 
Bruhat, 398 
Cartan, 303,384 
Harish-Chandra, 443 
Iwasawa, 315,317 
KAK,391 
Langlands,415,418,580 
Levi,505 
global Cartan, 305,385 
polar, 72 
restricted-root space, 313 
root-space, 81, 94,201 
weight-space, 86 

degree, 190 
derivation,2, 17,56 
determinant of Cartan matrix, 160, 279 
determinant of quatemion matrix, 67 
diagonable, xv 
diagram 

abstract Dynkin, 115 
abstract Vogan, 344 
Dynkin, 113 
Satake,579 
Vogan,339,578 

differential form 
left-invariant, 463 
positive, 459 
right-invariant, 463 

differential, 43 
differential operator, left-invariant, 180 
direct product of Lie groups, 58 
direct sum of Lie algebras, 15 

Dixmier, 236 
dominant, 121 
double line, 129 
Dynkin diagram, 113 

abstract, 115 

elementary sequence, 18 
Engel's Theorem, 23 
enveloping algebra, 165 
equivalent, 37, 182, 187 
evaluation, 267 
Existence Theorem, 152, 344 
exponential map, 49 
exponential of matrix, 43 
exterior algebra, 498 

filtered, 50 I 
filtered associated algebra, 503 
finite-dimensional representation, 182, 

186 
flag, invariant, 21 
form 

compact real, 296,354 
invariant, 13 
Killing, 13 
nondegenerate, 24 
real, 12, 13 
split real, 296,367,319 

free Lie algebra, 141, 177 
fundamental basis, 569 
fundamental representation, 289 
fundamental weight, 289, 508, 511 

general linear group, 4 
generalized weight space, 86, 222 
generalized weight vectors, 86,222 
global Cartan decomposition, 305,385 
global Cartan involution, 305, 388 
good ordering, 441 
graded, 501 
graded associative algebra, 503 
Gram-Schmidt process, 312 

Haar measure, 187,464,465,467 
Harish-Chandra class, 385 
Harish-Chandra decomposition, 443 
Harish-Chandra integration formula, 

484 
Harish-Chandra isomorphism, 248,249 
harmonic, 216 



Heisenberg Lie algebra, 6, 76 
Helgason's Theorem, 477 
Hermitian G 1 K, 435 
highest weight, 225 
highest weight module, 230 
highest weight vector, 230 
Hilbert's fifth problem, 568 
holomorphic mapping, 55,428, 438 
homogeneousideal,493 
homogeneoustensor,491 
homomorphism, 2 

ideal, 2 
commutator, 7 

imaginary root, 332 
increasing tuple, 169 
infinitesimal character, 236, 257, 258 
inner automorphism, 384 
integral 

algebraically, 211,224 
analytically, 211,277 

invariant bilinear form, 384 
invariant flag, 21 
invariant form, 13 
invariantsubspace,21,37,182,186 
invariants under n, 243 
invariants under u, 275 
involution, 298 

Cartan,299,384 
involution, global Cartan, 305,388 

irreducible, 37 
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irreducible abstract Cartan matrix, 113 
irreducible abstract root system, 104 
irreducible representation, 186 
isomorphic abstract Cartan matrices, 112 
Isomorphism Theorem, 150,341 
Iwasawa decomposition, 315,317 

Jacobi identity, 2 
Jordan decomposition, 27 

K AK decomposition, 397 
Killing form, 13 
Kostant Multiplicity Formula, 267 
Kostant partition function, 260 

Langlands decomposition, 415,418,580 
lattice, 212 
left regular representation, 575 
left-invariant differential form, 463 
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left-invariant differential operator, 180 
left-invariant vector field, 3, 43 
length, 122 
Levi decomposition, 505 
Levi factor, 273 
lexicographic ordering, 109 
Lie algebra, 2 

2-dimensional, 5 
3-dimensional, 5, 77 
abelian,2 
center, 7 
classical, 31 
compact, 196 
direct sum, 15 
free, 141,177 
Heisenberg, 6, 76 
nilpotent, 6, 9, 22 
of a Lie group of matrices, 4 
of a Lie group, 3, 44 
reductive, 30, 32, 196 
semisimple, 10,29 
simple, 6, 10 
solvable,6,8, 17 
split solvable, 6, 21 

Lie algebras, semidirect product of, 16 
Lie group, 43, 55,565 

classical, 66 
complex, 55 
complex semisimple, 374 
nilpotent, 61,63 
reductive, 61, 384 
semisimple, 61 
solvable, 61 
unimodular, 467 

Lie groups, semidirect product of, 59 
Lie subalgebra, 2 
Lie's Theorem, 19,21 
Lie's Third Theorem, 507 
linear extension, 487 
lower central series, 9 
lower-dimensional set, 462 

manifold 
analytic, 43 
complex, 55,428,438 
smooth, 43,456 
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