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Preface

This book is based on a course in cryptography at the upper-level under
graduate and beginning graduate level tha t has been given at the University 
of M aryland since 1997, and a course tha t has been taught a t Rutgers Uni
versity since 2003. When designing the courses, we decided on the following 
requirements:

• The courses should be up-to-date and cover a broad selection of topics 
from a mathematical point of view.

• The material should be accessible to mathematically mature students 
liuving little background in number theory and computer program
ming.

• There should be examples involving numbers large enough to demon
strate how the algorithms really work.

We wanted to avoid concentrating solely on RSA and discrete logarithms, 
which would have made the courses mostly about number theory. We also 
did not want to focus on protocols and how to hack into friends' computers. 
T hat would have made the courses less mathematical than desired.

There are numerous topics in cryptology that can be discussed in an 
introductory course. We have tried to include many of them. The chapters 
represent, for the most part, topics that were covered during the differ
ent semesters we taught the course. There is certainly more material here 
than could be treated in most one-semester courses. The first nine chapters 
represent the core of the material. The choice of which of the remaining 
chapters are used depends on the level of the students and the objectives of 
the lecturer.

The chapters are numbered, thus giving them an ordering. However, ex
cept for Chapter 3 on number theory, which pervades the subject, the chap
ters are fairly independent of each other and can be covered in almost any

xi
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reasonable order. Although we don’t recommend doing so, a  daring reader 
could possibly read Chapters 4 through 19 in reverse order, with only having 
to look ahead/behind a few times. Since students have varied backgrounds 
in number theory, we have collected the basic number theory facts together 
in Chapter 3 for ease of reference; however, we recommend introducing these 
concepts gradually throughout the course as they are needed.

The chapters on information theory, elliptic curves, quantum cryptogra
phy, lattice methods, and error correcting codes are somewhat more mathe
matical than the others, The chapter on error correcting codes was included, 
a t the suggestion of several reviewers, because courses th a t include introduc
tions to both cryptology and coding theory are fairly common.

C o m p u te r  e x a m p le s . Suppose you want to give an example for 
RSA. You could choose two one-digit primes and pretend to be worldng 
with fifty-digit primes, or you could use your favorite software package to 
do an actual example with large primes. Or perhaps you are working with 
shift ciphers and are trying to decrypt a  message by trying all 26 shifts of 
the ciphertext. This should also be done on a  computer. At the end of 
the book are appendices containing computer examples written in each of 
Mathematica®, Maple®, and MATLAB® that show how to do such calcula
tions. These languages were chosen because they are user friendly and do 
not require prior programming experience. Although the course has been 
taught successfully without computers, these examples are an integral part 
of the book and should be studied, if at all possible. Not only do they con
tain numerical examples of how to do certain computations but also they 
demonstrate important ideas and issues tha t arise. They were placed at the 
end of the book because of the logistic and aesthetic problems of including 
extensive computer examples in three languages at the ends of chapters.

Programs available in each of the three languages can be downloaded 
from the Web site

www.prenhall. com /washington

In a classroom, all tha t is needed is a computer (with one of the languages 
installed) and a projector in order to produce meaningful examples as the 
lecture is being given. Homework problems (the computer problems in var
ious chapters) based on the software allow students to play with examples 
individually. Of course, students having more programming background 
could write their own programs instead.

W h a t  is n e w  in  th e  s e c o n d  e d i t io n .  Cryptography is a quickly 
changing field. Since the first edition of this book appeared, there have 
been significant developments regarding hash functions and identity-based 
encryption, for example. These necessitated updates to the material. Many

http://www.prenhall
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people also made suggestions for the exposition, and there were several re
quests for more exercises. The main additions we made are as follows:

1. Many new exercises, especially in Chapters 2, 3, 5, 6, and 16.

2. New and expanded material on hash functions, collected into a new 
chapter (Chapter 8).

3. A new chapter (Chapter 10) on security protocols.

4. A new chapter (Chapter 17) on lattice methods.

5. A section on identity-based encryption in Chapter 16.

6. New sections on Legendre and Jacobi symbols and on continued frac
tions in Chapter 3.

7. More modes of operation in Chapter 4.

8. More attacks on RSA in Chapter 6.

We of course welcome suggestions and corrections. An errata page can be 
found at the website for the book: www.prenhall.com/washington. A solu
tions manual, fo r instructors only, can be obtained from the mathematics 
editors or publisher's representatives of Prentice Hall.

A c k n o w le d g m e n ts . Many people helped and provided encourage
ment during the preparation of this book. First, we would like to thank our 
students, whose enthusiasm, insights, and suggestions contributed greatly. 
We are especially grateful to many people who have provided corrections and 
other input, especially our colleagues Bill Gas arch and Jeff Adams. Jonathan 
Rosenberg and Tim Strobell provided invaluable technical assistance. We 
would like to thank Wenyuan Xu, Qing Li, and Pandurang Kamat, who 
drew several of the diagrams and provided feedback on the new material 
for the second edition. The reviewers deserve special thanks: for the first 
edition: David G rant (University of Colorado at Boulder), David M. Pozar 
(University of Massachusetts, Amherst), Jugal K. Kalita (University of Col
orado a t Colorado Springs), Anthony Ephremides (University of Maryland, 
College Park), J. Felipe Volocli (University of Texas a t Austin), Agnes Chan 
(Northeastern University), Daniel F. Warren (Naval Postgraduate School), 
and one anonymous reviewer; and for the second edition: Eric Bach (Univer
sity of Wisconsin), James W. Brewer (Florida Atlantic University), Simon 
Wong (University of Massachusetts, Amherst), Thomas P. Cahill (Brook
lyn Polytechnic University), and Edmund Lamagna (University of Rhode 
Island). Their suggestions on the exposition and the organization of the 
topics greatly enhanced the final result. We have enjoyed working with

http://www.prenhall.com/washington
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the staff at Prentice Hall, especially the mathem atics editor, George Lobell, 
and the production editors Jeanne Audi no (first edition) and Raegan Keida 
(second edition).

The first author would like to thank Nisha Gilra, who provided encour
agement and advice; Sheilagh O 'Hare for introducing him to the field of 
cryptography; and K.J. Ray Liu for his support.

The second author thanks Susan Zengerle and Patrick Washington for 
their patience, help, and encouragement during the writing of this book.

Wade Trapp e 
trappe@winlab.rutgers.edu

Lawrence C. Washington 
law@math.umd.edu
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C h a p t e r  1

Overview of Cryptography 
and Its Applications

People have always had a fascination with keeping information away from 
others. As children, many of us had magic decoder rings for exchanging 
coded messages with our friends and possibly keeping secrets from parents, 
siblings, or teachers. History is filled with examples where people tried to 
keep information secret from adversaries. Kings and generals communicated 
with their troops using basic cryptographic methods to prevent the enemy 
from learning sensitive military information. In fact, Julius Caesar report
edly used a simple cipher, which has been named after him.

As society has evolved, the need for more sophisticated methods of pro
tecting data has increased. Now, with the information era at hand, the need 
is more pronounced than ever. As the world becomes more connected, the 
demand for information and electronic services is growing, and with the in
creased demand comes increased dependency on electronic systems. Already 
the exchange of sensitive information, such as credit card numbers, over the 
Internet is common practice. Protecting data  and electronic systems is cru
cial to our way of living.

The techniques needed to protect data belong to the field of cryptogra
phy. Actually, the subject has three names, c ry p to g ra p h y , c ry p to lo g y , 
and c ry p ta n a ly s is , which are often used interchangeably. Technically, how
ever, cryptology is the all-inclusive term for the study of communication over 
nonsecure channels, and related problems. The process of designing systems 
to do this is called cryptography. Cryptanalysis deals with breaking such

1
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nystcms. Of course, it is essentially impossible to do either cryptography or 
cryptanalysis without having a good understanding of the methods of both 
mens.

Often the term cod ing  th e o ry  is used to describe cryptography; how- 
over, this can lead to confusion. Coding theory deals with representing 
Input information symbols by output symbols called code symbols. There 
are three basic applications that coding theory covers: compression, secrecy, 
mid error correction. Over the past few decades, the term coding theory has 
become associated predominantly with error correcting codes. Coding the
ory thus studies communication over noisy channels and how to ensure that 
the message received is the correct message, as opposed to cryptography, 
which protects communication over nonsecure channels.

Although error correcting codes are only o secondary focus of this book, 
wo should emphasize that, in any real-world system, error correcting codes 
arc used in conjunction with encryption, since the change of a  single bit is 
enough to destroy the message completely in a well-designed cryptosystem.

Modern cryptography is a field that draws heavily upon mathematics, 
computer science, and cleverness. This book provides an introduction to 
the mathematics and protocols needed to make data transmission and elec
tronic systems secure, along with techniques such as electronic signatures 
and secret sharing.

1.1 Secure Communications

In the basic communication scenario, depicted in Figure 1.1, there are two 
parties, we’ll call them Alice and Bob, who want to communicate with each 
other. A third party, Eve, is a  potential eavesdropper.

When Alice wants to send a message, called the p la in te x t, to Bob, she 
encrypts it using a method prearranged with Bob. Usually, the encryption 
method is assumed to be known to Eve; what keeps the message secret is a 
key. When Bob receives the encrypted message, called the c ip h e r tc x t , he 
changes it back to the plaintext using a decryption key.

Eve could have one of the following goals:

1. Read the message.

2. Find the key and thus read all messages encrypted with tha t key.

3. Corrupt Alice’s message into another message in such a way that Bob 
will think Alice sent the altered message.

4. Masquerade as Alice, and thus communicate with Bob even though 
Bob believes he is communicating with Alice.
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Encryption Decryption
Key Key

Figure 1.1: Tile Basic Communication Scenario for Cryptography.

Which case we're in depends on how evil Eve is. Cases (3) and (4) relate 
to issues of integrity and authentication, respectively. We’ll discuss these 
shortly. A more active and malicious adversary, corresponding to cases (3) 
and (4), is sometimes called Mallory in the literature. More passive observers 
(as in cases (1) and (2)) are sometimes named Oscar. We'll generally use 
only Eve, and assume she is as bad as the situation allows.

1.1.1 Possible Attacks

There are four main types of attack that Eve might be able to use. The 
differences among these types of attacks are the amounts of information Eve 
has available to her when trying to determine the key. The four attacks are 
as follows:

1. C ip h e r te x t only: Eve has only a copy of the ciphertext.

2. K now n p la in te x t: Eve has a copy of a ciphertext and the correspond
ing plaintext. For example, suppose Eve intercepts an encrypted press 
release, then sees the decrypted release the next day. If she can de
duce the decryption key, and if Alice doesn’t change the key, Eve can 
read all future messages. Or, if Alice always starts her messages with 
“Dear Bob,” then Eve has a small piece of ciphertext and correspond
ing plaintext. For many weak cryptosystems, this suffices to find the 
key. Even for stronger systems such as the German Enigma machine 
used in World War II, this amount of information has been useful.

3 . C hosen  p la in te x t: Eve gains temporary access to the encryption ma
chine. She cannot open it to find the key; however, she can encrypt a
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large number of suitably chosen plaintexts and try  to use the resulting 
ciphertexts to deduce the key.

4. C hosen  c ip h e r te x t: Eve obtains temporary access to the decryption 
machine, uses it to '‘decrypt1’ several strings of symbols, and tries to 
use the results to deduce the key.

A chosen plaintext attack could happen as follows. You want to identify 
an airplane as friend or foe. Send a  random message to the plane, which en
crypts the message automatically and sends it back. Only a friendly airplane 
is assumed to have the correct key. Compare the message from the plane 
with the correctly encrypted message. If they match, the plane is friendly. If 
not, i t ’s the enemy. However, the enemy can send a large number of chosen 
messages to one of your planes and look at the resulting ciphertexts. If this 
allows them to deduce the key, the enemy can equip their planes so they can 
masquerade as friendly.

An example of a known plaintext attack reportedly happened in World 
War II In the Sahara Desert. An isolated German outpost every day sent an 
identical message saying tha t there was nothing new to report, but of course 
it was encrypted with the key being used that day. So each day the Allies 
had a piaintext-ciphertext pair tha t was extremely useful in determining 
the key. In fact, during the Sahara campaign, General Montgomery was 
carefully directed around the outpost so that the transmissions would not 
be stopped.

One of the most im portant assumptions in modern cryptography is K er- 
ckhoffs’s p rin c ip le : In assessing the security of a cryptosystem, one should 
always assume the enemy knows the method being used. This principle was 
enunciated by Auguste Kerclchoffs in 1883 in his classic treatise La Cnjp- 
tographie Militaire. The enemy can obtain this information in many ways. 
For example, encryption/decryption machines can be captured and ana
lyzed. Or people can defect or be captured. The security of the system 
should therefore be based on the key and not on the obscurity of the algo
rithm used. Consequently, we always assume tha t Eve has knowledge of the 
algorithm that is used to perform encryption.

1 .1 .2  S y m m e tr ic  a n d  P u b l ic  K e y  A lg o r i th m s

Encryption/decryption methods fall into two categories: s y m m e tr ic  key  
and p u b lic  key. In symmetric key algorithms, the encryption and decryp
tion keys are known to both Alice and Bob. For example, the encryption key 
is shared and the decryption key is easily calculated from it. In many cases, 
the encryption key and the decryption key are the same. All of the clas
sical (pre-1970) cryptosystems are symmetric, as are the more recent D ata 
Encryption Standard (DES) and Advanced Encryption Standard (AES).
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Public key algorithms were introduced in the 1970s and revolutionized 
cryptography. Suppose Alice wants to communicate securely with Bob, but 
they are hundreds of kilometers apart and have not agreed on a  key to use. 
It seems almost impossible for them to do this without first getting together 
to agree on a key, or using a trusted courier to carry the key from one to the 
other. Certainly Alice cannot send a message over open channels to tell Bob 
the key, and then send the ciphertexh encrypted with this key. The amazing 
fact is that this problem has a  solution, called public key cryptography. The 
encryption key is made public, but it is computationally infeasible to find the 
decryption key without information known only to Bob. The most popular 
implementation is RSA (see Chapter 6), which is based on the difficulty of 
factoring large integers. Other versions (see Chapters 7, 17, and 18) are the 
ElGamal system (based on the discrete log problem), NTRU (lattice based) 
and the McEliece system (based on error correcting codes).

Here is a nonmathematical way to do public key communication. Bob 
sends Alice a box and an unlocked padlock. Alice puts her message in the 
box, locks Bob’s lock on it, and sends the box back to Bob. Of course, 
only Bob can open the box and read the message. The public key methods 
mentioned previously are mathematical realizations of this idea. Clearly 
there are questions of authentication that must be dealt with. For example, 
Eve could intercept the first transmission and substitute her own lock. If 
she then intercepts the locked box when Alice sends it back to Bob, Eve can 
unlock her lock and read Alice’s message. This is a general problem that 
must be addressed with any such system.

Public key cryptography represents what is possibly the final step in an 
interesting historical progression. In the earliest years of cryptography, secu
rity depended on keeping the encryption method secret. Later, the method 
was assumed known, and the security depended on keeping the (symmet
ric) key private or unknown to adversaries. In public key cryptography, the 
method and the encryption key are made public, and everyone knows what 
must be done to find the decryption key. The security rests on the fact (or 
hope) tha t this is computationally infeasible. I t ’s rather paradoxical tha t an 
increase in the power of cryptographic algorithms over the years has corre
sponded to an increase in the amount of information given to an adversary 
about such algorithms.

Public key methods are very powerful, and it might seem that they 
make the use of symmetric key cryptography obsolete. However, this added 
flexibility is not free and comes a t a computational cost. The amount of 
computation needed in public key algorithms is typically several orders of 
magnitude more than the amount of computation needed in algorithms such 
as DES or Rijndael. The rule of thumb is that public key methods should 
not be used for encrypting large quantities of data. For this reason, public 
key methods are used in applications where only small amounts of data  must



be processed (for example, digital signatures and sending keys to be used in 
symmetric key algorithms).

W ithin symmetric key cryptography, there are two types of ciphers: 
stream ciphers and block ciphers. In stream ciphers, the data are fed into 
the algorithm in small pieces (bits or characters), and the output is pro
duced in corresponding small pieces. In block ciphers, however, a block of 
input bits is collected and fed into the algorithm all at once, and the output 
is a block of bits. In Section 2.11 we discuss an example of a stream  cipher 
based on linear feedback shift registers. Mostly we shall be concerned with 
block ciphers. In particular, we cover two very significant examples. The 
first is DBS, and the second is Rijndael, which was selected in the year 2000 
by the National Institute for Standards and Teclmology as the replacement 
for DBS. Public key methods such as RSA can also be regarded as block 
ciphers.

Finally, we mention a historical distinction between different types of 
encryption, namely codes and c iphers. In a code, words or certain letter 
combinations are replaced by codewords (which may be strings of symbols). 
For example, the British navy in World War I used 03C80C, 36276C, and 
50302C to represent shipped at, shipped by, and shipped from, respectively. 
Codes have the disadvantage that unanticipated words cannot be used. A 
cipher, on the other hand, does not use the linguistic structure of the message 
but rather encrypts every string of characters, meaningful or not, by some 
algorithm. A cipher is therefore more versatile than a code. In the early days 
of cryptography, codes were commonly used, sometimes in conjunction with 
ciphers. They are still used today; covert operations are often given codc 
names. However, any secret that is to remain secure needs to be encrypted 
with a cipher. In this book, we’ll deal exclusively with ciphers.

1 .1 .3  K e y  L e n g th

The security of cryptographic algorithms is a difficult property to measure. 
Most algorithms employ keys, and the security of the algorithm is related to 
how difficult it is for an adversary to determine the key. The most obvious 
approach is to try every possible key and see which ones yield meaningful 
decryptions. Such an attack is called a b r u te  force a t ta c k . In a brute 
force attack, the length of the key is directly related to how long it will take 
to search the entire keyspace. For example, if a key is 16 bits long, then 
there are 216 =  65536 possible keys. The DBS algorithm has a 56-bit key 
and thus has 25C ~  7.2 x 10lc possible keys.

In many situations we’ll encounter in thus book, it will seem tha t a system 
can be broken by simply trying all possible keys. However, this is often easier 
said than done. Suppose you need to try 1030 possibilities and you have a 
computer that can do 109 such calculations each second. There are around

C C h a p t e r  1. O v e r v ie w  o f  C r y p t o g r a p h y  a nd  It s  A p p l ic a t io n s
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3 x 10' seconds in a year, so it would take a little more than 3 x 1013 years 
to complete the task, longer than the predicted life of the universe. .

Longer keys are advantageous but are not guaranteed to make an ad
versary’s task difficult. The algorithm itself also plays a critical role. Some 
algorithms might be able to be attacked by means other than brute force, 
and some algorithms just don’t make very efficient use of their keys’ bits. 
This is a very im portant point to keep in mind. Not all 128-bit algorithms 
are created equal!

For example, one of the easiest cryptosystems to  break is the substitution 
cipher, which we discuss in Section 2.4. The number of possible keys is 
26! R5 4 x 102G. In contrast, DBS (see Chapter 4) has only 2s6 r ; 7.2 x 1016 
keys. But it typically takes over a day on a specially designed computer to 
find a DBS key. The difference is that an attack on a substitution cipher 
uses the underlying structure of the language, while the attack on DBS is 
by brute force, trying all possible keys.

A brute force attack should be the last resort. A cryptanalyst always 
hopes to find an attack that is faster. Examples we’ll meet are frequency 
analysis (for the substitution and Vigenere ciphers) and birthday attacks 
(for discrete logs).

We also warn the reader that just because an algorithm seems secure 
now, doesn’t mean it will remain so. Human ingenuity has led to creative 
attacks on cryptographic protocols. There are many examples in modern 
cryptography where an algorithm or protocol was successfully attacked be
cause of a  loophole presented by poor implementation, or ju st because of 
advances in technology. The DBS algorithm, which withstood 20 years of 
cryptographic scrutiny, ultimately succumbed to attacks by a well-designed 
parallel computer. Even as you read this book, research in quantum com
puting is underway, which could dramatically alter the terrain of future 
cryptographic algorithms.

For example, the security of several systems we’ll study depends on the 
difficulty of factoring large integers, say of around 200 digits. Suppose you 
want to factor a number n  of this size. The method used in elementary 
school is to divide n  by all of the primes up to the square root of n. There 
are approximately 4 x 10°' primes less than 10100. Trying each one is im
possible. The number of electrons in the universe is estimated to  be less 
than 1090. Long before you finish your calculation, you’ll get a  call from the 
electric company asking you to stop. Clearly, more sophisticated factoring 
algorithms must be used, rather than this brute force type of attack. When 
RSA was invented, there were some good factoring algorithms available, 
but it was predicted tha t a 129-digit number such as the RSA challenge 
number (see Section 6.5) would not be factored within the foreseeable fu
ture. However, advances in algorithms and computer architecture have made 
such factorizations fairly routine (although they still require substantial
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computing resources), so now numbers of several hundred digits are rec
ommended for security. B ut if a full-scale quantum computer is ever built, 
factorizations of even these numbers will be easy, and the whole RSA scheme 
(along with many other methods) will need to be reconsidered.

A natural question, therefore, is whether there any unbreakable cryp
tosystems, and why aren 't they used all the time?

The answer is yes; there is a system, known as the one-time pad, that 
is unbreakable. Even a brute force attack will not yield the key. But the 
unfortunate tru th  is that the expense of using a one-time pad is enormous. 
It requires exchanging a key tha t is as long as the plaintext, and even then 
the key can only be used once. Therefore, one opts for algorithms that, 
when implemented correctly with the appropriate key size, are unbreakable 
in any reasonable amount of time.

An important point when considering key size is that, in many cases, 
one can mathematically increase security by a slight increase in key size, 
but this is not always practical. If you are working with chips that can 
handle words of 64 bits, then an increase in the key size from G4 to 65 bits 
could mean redesigning your hardware, which could be expensive. Therefore, 
designing good cryptosystems involves both mathematical and engineering 
considerations.

Finally, we need a  few words about the size of numbers. Your intuition 
might say that working with a 20-digit number takes twice as long as working 
with a 10-digit number. T hat is true in some algorithms. However, if you 
count up to 1010, you are not even close to 1020; you are only one 10 billionth 
of the way there. Similarly, a brute force attack against a  60-bit key takes 
a billion times longer than one against a 30-bit key.

There are two ways to measure the size of numbers: the actual magnitude 
of the number n, and the number of digits in its decimal representation (we 
could also use its binary representation), which is approximately log10(n). 
The number of single-digit multiplications needed to square a  A:-digit number 
n, using the standard algorithm from elementary school, is k2, or approx
imately (log10n )2. The number of divisions needed to factor a number n  
by dividing by all primes up to the square root of n  is around n l!~. An 
algorithm th a t runs in time a power of logn is much more desirable than 
one that runs in time a  power of n. In the present example, if we double the 
number of digits in n, the time it takes to square n  increases by a factor of
4, while the tim e it takes to factor n  increases enormously. Of course, there 
are better algorithms available for both of these operations, but, at present, 
factorization takes significantly longer than multiplication.

We’ll meet algorithms tha t take time a power of logn to perform cer
tain calculations (for example, finding greatest common divisors and doing 
modular exponentiation). There are other computations for which the best
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known algorithms run only slightly better than a power of n  (for example, 
factoring and finding discrete logarithms). The interplay between the fast al
gorithms and the slower ones is the basis of several cryptographic algorithms 
that we'll encounter in this book.

1.2 Cryptographic Applications

Cryptography is not only about encrypting and decrypting messages, it is 
also about solving real-world problems tha t require information security. 
There are four main objectives that arise:

1 . C o n fid en tia lity : Eve should not be able to read Alice’s message to Bob.
The main tools are encryption and decryption algorithms.

2. D a ta  in te g rity : Bob wants to be sure that Alice's message has not
been altered. For example, transmission errors might occur. Also, 
an adversary might intercept the transmission and alter it before it 
reaches the intended recipient. Many cryptographic primitives, such 
as hash functions, provide methods to detect data  manipulation by 
malicious or occidental adversaries.

3. A u th e n tic a tio n : Bob wants to be sure tha t only Alice could have sent
the message he received. Under this heading, we also include iden
tification schemes and password protocols (in which case, Bob is the 
computer). There are actually two types of authentication tha t arise 
in cryptography: entity authentication and dato-origin authentication. 
Often the term identification is used to specify entity authentication, 
which is concerned with proving the identity of the parties involved 
in a communication. Data-origin authentication focuses on tying the 
information about the origin of the data, such as the creator and time 
of creation, with the data.

4. N o n -re p u d ia tio n : Alice cannot claim she did not send the message.
Non-repudiation is particularly important in electronic commerce ap
plications, where it is important that o consumer cannot deny the 
authorization of a purchase.

Authentication and non-repudiation are closely related concepts, but 
there is a difference. In o symmetric key cryptosystem, Bob con be sure 
that a message comes from Alice (or someone who knows Alice’s key) since 
no one else could have encrypted the messoge that Bob decrypts successfully. 
Therefore, authentication is automatic. However, he connot prove to any
one else that Alice sent the message, since he could have sent the message
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himself. Therefore, non-repudiation is essentially impossible. In a  public 
key cryptosystem, both authentication and non-repudiation can be achieved 
(see Section 6.7 and Chapter 9).

Much of this book will present specific cryptographic applications, both 
in the text and as exercises. Here is an overview.

D ig ita l s ig n a tu re s : One of the most important features of a paper 
and ink letter is the signature. When a document is signed, an individual's 
identity is tied to the message. The assumption is that it is difficult for 
another person to forge the signature onto another document. Electronic 
messages, however, are very easy to copy exactly. How do we prevent an 
adversary from cutting the signature off one document and attaching it 
to another electronic document? We shall study cryptographic protocols 
that allow for electronic messages to be signed in such a way that everyone 
believes tha t the signer was the person who signed the document, and such 
that the signer cannot deny signing the document.

Id en tifica tio n : When logging into a  machine or initiating a communi
cation link, a  user needs to identify himself or herself. But simply typing 
in a user name is not sufficient as it does not prove that the user is really 
who he or she claims to be. Typically a  password is used. We shall touch 
upon various methods for identifying oneself. In the chapter on DES we 
discuss password files. Later, we present the Feige-Fiat-Shamir identifica
tion scheme, which is a zero-knowledge based method for proving identity 
without revealing a password.

K ey e s tab lish m e n t: When large quantities of data need to be en
crypted, it is best to use symmetric key encryption algorithms. But how 
does Alice give the secret key to Bob when she doesn’t have the opportu
nity to meet him personally? There are various ways to do this. One way 
uses public key cryptography. Another method is the DifRe-Hellman key ex
change algorithm. A different approach to this problem is to have a trusted 
third party give keys to Alice and Bob. Two examples are Blom’s key genera
tion scheme and Kerberos, which is a very popular symmetric cryptographic 
protocol that provides authentication and security in key exchange between 
users on a network.

S ecre t sh a rin g : In Chapter 12, we introduce secret sharing schemes. 
Suppose that you have a combination to a bank safe, but you don't want to 
trust any single person with the combination to the safe. Rather, you would 
iike to divide the combination among a  group of people, so that a t least two 
of these people must be present in order to open the safe. Secret sharing 
solves this problem.

S ecu rity  p ro to co ls : How can we carry out secure transactions over 
open channels such as the Internet, and how can we protect credit card
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information from fraudulent merchants? We discuss various protocols, such 
as SSL and SET.

E le c tro n ic  cash: Credit cards and similar devices are convenient but 
do not provide anonymity. Clearly a form of electronic cash could be useful, 
a t least to some people. However, electronic entities can be copied. We 
give an example of an electronic cash system tha t provides anonymity but 
catches counterfeiters.

G am es: How can you flip coins or play poker with people who are not in 
the same room as you? Dealing the cards, for example, presents a problem. 
We show how cryptographic ideas can solve these problems.



C h a p t e r  2

Classical Cryptosystem s

Methods of making messages unintelligible to adversaries have been impor
tant throughout history. In tliis chapter we shall cover some of the older 
cryptosystems th a t were primarily used before the advent of the computer. 
These cryptosystems are too weak to be of much use today, especially with 
computers at our disposal, but they give good illustrations of several of the 
important ideas of cryptology.

First, for these simple cryptosystems, we make some conventions.

• plaintext will be written in lowercase letters and CIPH ERTEXT  will 
be written in capital letters (except in the computer problems).

•  The letters of the alphabet are assigned numbers as follows:

a b c d e f g h i j k  I m  n  o p
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q r s t  u v w x  y  z
16 17 18 19 20 21 22 23 24 25

Note that we s ta rt with a =  0, so z  is letter number 25. Because 
many people are accustomed to a being 1 and z  being 26, the present 
convention can be annoying, but it is standard for the elementary 
cryptosystems that we’ll consider.

• Spaces and punctuation are omitted. This is even more annoying, 
but it is almost always possible to replace the spaces in the plaintext 
after decrypting. If spaces were left in, there would be two choices.

12
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They could be left as spaces; but this yields so much information on 
the structure of the message that decryption becomes easier. Or they 
could be encrypted; but then they would dominate frequency counts 
(unless the message averages at least eight letters per word), again 
simplifying decryption.

Note: In this chapter, we'll be using some concepts from number theory, 
especially modular arithmetic. If you are not familiar with congruences, you 
should read the first three sections of Chapter 3 before proceeding.

2.1 Shift Ciphers

One of the earliest cryptosystems is often attributed  to Julius Caesar. Sup
pose he wanted to send a plaintext such as

gaul is divided into three parts

but he didn’t want Brutus to read it. He shifted each letter by three places, 
so a became D, b became E, c became F, etc. The end of the alphabet 
wrapped around to the beginning, so x became A, y became B, and z became
C. The ciphertext was then

JDXOLVGLYLGHGLQWRWKUHHSDUWV.

Decryption was accomplished by shifting back by three spaces (and trying 
to figure out how to put the spaces back in).

We now give the general situation. I f  you are not familiar with modular 
arithmetic, read the first few pages of Chapter 3 before continuing.

Label the letters as integers from 0 to 25. The key is an integer k with
0 < k < 25. The encryption process is

i h i -i- k (mod 26).

Decryption is x  t-+ x  — n (mod 26). For example, Caesar used k, = 3.
Let’s see how the four types of attack work.

1. C ip h e r te x t  on ly : Eve has only the ciphertext. Her best strategy is 
an exhaustive search, since there are only 26 possible keys. If the 
message is longer than a few letters (we will make this more precise 
later when we discuss entropy), it is unlikely that there is more than 
one meaningful message tha t could be the plaintext. If you don’t 
believe this, try to find some words of four or five letters that are 
shifts of each other. One such is given in Exercise 1. Another possible 
attack, if the message is sufficiently long, is to do a  frequency count for
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the various letters. The letter e occurs most frequently in most English 
texts. Suppose the letter L appears most frequently in the ciphertext. 
Since e =  4 and L = 11, a reasonable guess is th a t k =  11 — 4 =  7. 
However, for shift ciphers this method takes much longer than an 
exhaustive search, plus it requires many more letters in the message 
in order for it to work (anything short, such as this, might not contain 
a common symbol, thus changing statistical counts).

2. K now n p la in te x t: If you know just one letter of the plaintext along 
with the corresponding letter of ciphertext, you can deduce the key. 
For example, if you know t(=  19) encrypts to D(=  3), then the key is 
k =  3 - 1 9 =  -1 6  =  10 (mod 26).

.1, C hosen  p la in te x t: Choose the letter a as the plaintext. The ciphertext 
gives the key. For example, if the ciphertext is H, then the key is 7.

<1. C hosen  c ip h e r te x t: Choose the letter A  as ciphertext. The plaintext 
is the negative of the key. For example, if the plaintext is h, the key 
Is - 7 =  19 (mod 2G).

2.2 Affine Ciphers

Tiio shift ciphers may be generalized and slightly strengthened as follows. 
CIiomhi: two integers or and 0, with gcd(a, 26) =  1, and consider the function 
(culled an affine function)

x a x  +  0  (mod 26).

For example, let a  =  9 and 0  =  2, so we are working with 9x +  2. Take 
u plaintext letter such as h{=  7). It is cncrypted to 9 - 7 +  2 =  65 =  13 
(mod 2G), which is the letter N . Using the same function, we obtain

a f f i n e C V V W P M .

How do we decrypt? If we were working with rational numbers rather than 
mod 26, we would sta rt with y  =  9 i  +  2 and solve: x  =  =(y — 2). B ut g 
needs to be reinterpreted when we work mod 26. Since gcd(9,26) =  1, there 
is n multiplicative inverse for 9 (mod 26) (if this last sentence doesn’t make 
sense to you, read Section 3.3 now). In fact, 9 -3  =  1 (mod 26), so 3 is the 
desired inverse and can be used in place of We therefore have

x  =  3 (y — 2) = 3y — 6 =  3y +  20 (mod 26).

Let's try this. The letter V(=  21) is mapped to 3-21+20 =  83 =  5 (mod 26), 
which is the letter f .  Similarly, we see that the ciphertext CVVW PM  is 
decrypted back to affine.
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Suppose we try to u s e  the function 13x +  4 as our encryption function. 
We obtain

input >->■ ERRER.

If we alter the input, we obtain

alter i-» ERRER.

Clearly this function leads to errors. I t is impossible to decrypt, since several 
plaintexts yield the same ciphertext. In particular, we note th a t encryption 
must be one-to-one, and this fails in the present case.

W liat goes wrong in this example? If we solve y  =  13x +  4, we obtain 
x  =  -£j(y — 4). But does not exist mod 26 since gcd(13,26) =  13 #  1. 
More generally, it can be shown th a t a x  +  0  is a one-to-one function mod 
26 if and only if gcd(a, 26) =  1. In this case, decryption uses x =  a 'y  — a ' 0  
(mod 26), where ac t' =  1 (mod 26). So decryption is also accomplished by 
an affine function.

The key for this encryption metliod is the pair {a ,0). There are 12 
possible choices for a  with gcd(a, 26) =  1 and there are 26 choices for 0  
(since we are working mod 26, we only need to consider a  and 0  between 0 
and 25). Therefore, there are 12 - 26 =  312 choices for the key.

Let’s look at the possible attacks.

1. C ip h e r te x t  only: An exhaustive search through all 312 keys would take
longer than the corresponding search in the case of the shift cipher; 
however, it would be very easy to do on a computer. When all possi
bilities for the key are tried, a  fairly short ciphertext, say around 20 
characters, will probably correspond to only one meaningful plaintext, 
thus allowing the determination of the key. It would also be possible 
to use frequency counts, though this would require much longer texts.

2. K now n  p la in te x t:  With a little luck, knowing two letters of the plain
text and the corresponding letters of the ciphertext suffices to find 
the key. In any case, the number of possibilities for the key is greatly 
reduced and a few more letters should yield the key.

For example, suppose the plaintext starts with i f  and the corresponding 
ciphertext is PQ. In numbers, this means that 8 (=  i) maps to  15 (=  P) 
and 5 maps to 16. Therefore, we have the equations

8a  +  0  =  15 and 5a +  0  s  16 (mod 26).

Subtracting yields 3o =  - 1  =  25 (mod 26), which has the unique 
solution a  — 17. Using the first equation, we find 8 ■ 17 +  0  =  15 
(mod 26), which yields 0  = 9.
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Suppose instead that the plaintext go corresponds to the ciphertext 
TH. We obtain the equations

6a  +  0  =  19 and 14a + 0  = 7 (mod 26).

Subtracting yields - 8a  s  12 (mod 26). Since g c d ( -8 ,26) =  2, this 
has two solutions: a  =  5,18. The corresponding values of 0  are both
15 (this is not a coincidence; it will always happen this way when the 
coefficients of a  in the equations are even). So we have two candidates 
for the key: (5,15) and (18,15). However, gcd(18, 26) ^  1 so the 
second is ruled out. Therefore, the key is (5,15).

The preceding procedure works unless the ged we get is 13 (or 26). In 
this case, use another letter of the message, if available.

If we know only one letter of plaintext, we still get a relation between 
a  and 0. For example, if we only know that g in plaintext corresponds 
to T  in ciphertext, then we have 6a  + 0  =  19 (mod 26). There are 12 
possibilities for a  and each gives one corresponding 0. Therefore, an 
exhaustive search through the 12 keys should yield the correct key.

3. C ho sen  p la in te x t: Choose ab as the plaintext. The first character of
the ciphertext will be a  ■ 0 +  0  =  0, and the second will be a  +  0. 
Therefore, we can find the key.

4. C hosen  c ip h e r te x t:  Choose A S  as the ciphertext. This yields the de
cryption function of the form x  =  a \y  +  0y. We could solve for y  and 
obtain the encryption key. But why bother? We have the decryption 
function, which is what we want.

2.3 The Vigenere Cipher

A variation of the shift cipher was invented back in the sixteenth century. It 
is often attributed  to Vigenere, though Vigenere’s encryption methods were 
more sophisticated. Well into the twentieth century, this cryptosystem was 
thought by many to be secure, though Babbage and Kasisld had shown how 
to attack it during the nineteenth century. In the 1920s, Friedman developed 
additional methods for breaking this and related ciphers.

The key for the encryption is a  vector, chosen as follows. First choose a 
key length, for example, 6. Then choose a  vector of this size whose entries 
are integers from 0 to 25, for example k  =  (21,4,2,19,14,17). Often the 
key corresponds to a word that is easily remembered. In our case, the word 
is vector. The security of the system depends on the fact tha t neither the 
keyword nor its length is known.
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To encrypt the message using the k  in our example, we take first the 
letter of the plaintext and shift by 21. Then shift the second letter by-4, the 
third by 2, and so on. Once we get to the end of the key, we sta rt back at 
its first entry, so the seventh letter is shifted by 21, the eighth letter by 4, 
etc. Here is a diagram of the encryption process.

(plaintext) h e r e  i s h o w i t w o r  k s 
(key) 21 4 2 19 14 17 21 4 2 19 14 17 21 4 2 19

(ciphertext) G I  T  X  W  J C S Y B H N J V  M L

A known plaintext attack will succeed if enough characters are known 
since the key is simply obtained by subtracting the plaintext from the cipher
text mod 26. A chosen plaintext attack using the plaintext aaaaa . . .  will 
yield the key immediately, while a chosen ciphertext attack with A A A A A ...  
yields the negative of the key. But suppose you have only the ciphertext. 
It was long thought that the method was secure against a ciphertext only 
attack. However, it is easy to find the key in this case, too.

The cryptanalysis uses the fact tha t in most English texts the frequencies 
of letters are not equal. For example, e occurs much more frequently than 
x. These frequencies have been tabulated in [Beker-Piper] and are provided 
in Table 2.1.

a b c d e f K h i j
.082 .015 .028 .043 .127 .022 .020 .061 .070 .002

k 1 m n 0 P q r s t
.008 .040 .024 .067 .075 .019 .001 .060 .063 .091

u V w X y z
.028 .010 .023 .001 .020 .001

Table 2.1: Frequencies of Letters in English

Of course, variations can occur, though usually it takes a certain amount 
of effort to produce them. There is a book Gadsby by Ernest Vincent Wright 
tha t does not contain the letter e. Even more impressive is the book La 
Disparition by George Perec, written in French, which also does not have a 
single e (not only are there the usual problems with verbs, etc., but almost 
all feminine nouns and adjectives must bo avoided). There is an English 
translation by Gilbert Adair, A Void, which also does not contain e. But 
generally we can assume that the above gives a rough estimate of what 
usually happens, as long os we have several hundred characters of text.



18 C h a p t e r  2. C la s sic a l  C r y p t o s y s t e m s

If we had a simple shift cipher, then the letter e, for example, would 
always appear as a certain ciphertext letter, which would then have the 
same frequency as that of e in the original text. Therefore, a frequency 
analysis would probably reveal the key. However, in the preceding example 
of a Vigenere cipher, the letter e appears as both I  and X .  If we had used 
a longer plaintext, e would probably have been encrypted as each of Z , / ,  
G, X ,  S, and V, corresponding to the shifts 21, 4, 2, 19, 14, 17. But the 
occurrences of Z  in a ciphertext might not come only from e. The letter 
v is also encrypted to Z  when its position in the text is such that it is 
shifted by 4. Similarly, x, g, I, and i can contribute Z  to the ciphertext, 
so the frequency of Z  is a combination of that of e, v, x , g, I, and i from 
the plaintext. Therefore, it appears to be much more difficult to deduce 
anything from a frequency count. In fact, the frequency counts are usually 
smoothed out and are much closer to 1/26 for each letter of ciphertext. At 
least, they should be much closer than the original distribution for English 
letters.

Here is a more substantial example. The ciphertext is the following:

WHqWVVRHMUSGJGTHKIHTSSEJCHLSFCBGWCRLRYQTFSVGAHW

KCUHWAUGLQHNSLRLJSHBLTSPISPRDXLJSVEEGHLQWKASSKUWE

PWqTWVSPGOELKCQYFNSVWLJSNiqKGNRGYBWLWGOVIOKHKAZKQ

KXZGYHCECMEIUJOQKWFWVEFqHKIJRCLRLKBIENQFRJLJSDHGR

HLSFQTWLAUqRHHDHWLGUSGIKKFLRYVCWVSPGPHLKASSJVOqXE

GCVEYCGZMLJCXXLJSVPAIVWIKVRDRYGFRJLJSLVECGVEYGGEI

APUUISFPBTGNWWMUCZRVTWGLRWGUMNCZVILE

The frequencies are as follows:

A B C D E F G H I J K L M
8 5 12 4 15 10 27 16 13 14 17 25 7

N 0 P Q R - S T U V W X Y Z
7 5 9 14 17 24 8 12 22 22 5 8 5

Note that there is no letter whose frequency is significantly larger than 
the others. As discussed previously, this is because e, for example, gets 
spread among several letters during the encryption process.

How do we decrypt the message? There are two steps: finding the key 
length and finding the key. In the following, we’ll first show how to find the 
key length and then give one way to find the key. After an explanation of 
why the method for finding the key works, we give an alternative way to 
find the key.
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2.3.1 Finding the Key Length

Write the ciphertext on a long strip of paper, and again on another long 
strip. P u t one strip above the other, but displaced by a certain number of 
places (the potential key length). For example, for a displacement of two we 
have the following:

V V H Q W V V R H M U S G J  G 
V V H Q W V V R H M U S G J G T H

*

T H K  I H T S  S E J C H L S  F C  B 
K I H T S  S E J C H L S F C B G  V

G V W C R L R Y Q T F S V G A H  - 
W C  R L R Y Q T F  S V G A H W  K

*

Mark a * each time a letter and the one below it are the same, and count 
the total number of coincidences. In the text just listed, we have two coinci
dences so far. If we had continued for the entire ciphertext, we would have 
counted 14 of them. If we do this for different displacements, we obtain the 
following data:

displacement: 1 2 3 4 5 6 
coincidences: 14 14 16 14 24 12

We have the most coincidences for a shift of 5. As we explain later, this is 
the best guess for the length of the key. This method works very quickly, 
even without a computer, and usually yields the key length.

2.3.2 Finding the Key: First M ethod

Now suppose we have determined the key length to be 5, as in our example. 
Look at the 1st, 6th, 11th, ... letters and see which letter occurs most 
frequently. We obtain

A B c D E F G H I J K L M
0 0 7 1 1 2 9 0 1 8 8 0 0

N 0 P Q R S T U V W X Y Z
3 0 4 5 2 0 3 6 5 1 0 1 0
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The most frequent is G, though J, K , C  are close behind. However, J  =  e 
would mean a shift of 5, hence C = x. But this would yield an unusually 
high frequency for x  in the ciphertext. Similarly, K  =  e would mean P  =  j  
and Q = k, both of which have too high frequencies. Finally, C  = e would 
require V = x, which is unlikely to be the case. Therefore, we decide that 
G = e and the first element of the key is 2 =  c.

We now look a t the 2nd, 7th, 12th, ... letters. We find tha t G  occurs 10 
times and S  occurs 12 times, and the other letters are far behind. If G  =  e, 
then S  =  q, which should not occur 12 times in the plaintext. Therefore,
S  =  e and the second element of the key is 14 =  o.

Now look a t the 3rd, 8th, 13th, ... letters. The frequencies are

A B C D E F G H I J IC L M
0 1 0 3 3 1 3 5 1 0 4 10 0

N 0 p Q R S T U V W X Y Z
2 1 2 3 5 3 0 2 8 7 1 0 1

The initial guess that L = e runs into problems; for example, R  = k  and 
E  =  x  have too high and A  — t has too low frequency. Similarly, V  =  e and 
W  — e do not seem likely. The best choice is H  =  e and therefore the third 
key element is 3 =  d.

The 4th, 9th, 14th, ... letters yield 4 =  e as the fourth element of the 
key. Finally, the 5th, 10th, 15th, ... letters yield 18 =  s os the final key 
element. Our guess for the key is therefore

{2,14,3,4,18} =  {c ,o ,d ,e ,s} .

As we saw in the case of the 3rd, 8th, 1 3 th ,... letters (this also happened 
in the 5th, 10th, 15th, ... case), if we take every fifth letter we have a much 
smaller sample of letters on which we are doing a frequency count. Another 
letter can overtake e in a short sample. But it is probable th a t most of the 
high frequency letters appear with high frequencies, and most of the low 
ones appear with low frequencies. As in the present case, this is usually 
sufficient to identify the corresponding entry in the key.

Once a potential key is found, test it by using it to decrypt. It should 
be easy to tell whether it is correct.

In our example, the key is conjectured to be (2,14,3,4,18). If we decrypt 
the ciphertext using this key, we obtain

themethoduaedforthepreparatlonandreadingofcodemessagesis 

simpleintheextremeandatthesametimeimpoagibleoftranslatio 
nunlessthekeyisknowntheeaseuithwhichthekeymaybechangedis 
anotharpointinfavoroftheadoptionofthiBCodebythosedesirin
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gtotransmitimportantmessagesvithoutthesliglitestdangerof t 
heinnessagesbeingreadbypoliticalorbusinessrivalsetc

Tliis passage is taken from a short article in Scientific American, Supple
ment LXXXIII (1/27/1917), page 61. A short explanation of the Vigenfere 
cipher is given, and the preceding passage expresses an opinion as to its 
security.

Before proceeding to a second method for finding the key, we give an 
explanation of why the procedure given earlier finds the key length. In 
order to avoid confusion, we note that when we use the word “shift” for 
a letter, we are referring to w hat happens during the Vigenere encryption 
process.

We also will be shifting elements in vectors. However, when we slide one 
strip of paper to  the right or left relative to the other strip, we use the word 
“displacement.”

Put the frequencies of English letters into a vector:

A 0 =  (.082, .015, .028, . . . ,  .020, .001).

Let A , be the result of shifting Ao by i  spaces to the right. For example,

A , =  (.020, .001, .082, .0 1 5 ,...) .

The dot product of A q with itself is

A 0 • A 0 =  (.082)2 +  (.015)2 +  ••• =  .066.

Of course, Aj -Aj  is also equal to .066 since we get the same sum of products, 
starting with a different term. However, the dot products of A,- • A j are much 
lower when i  ^  j ,  ranging from .031 to .045:

0 1 2 3 4 5 6
.066 .039 .032 .034 .044 .033 .036

7 8 9 10 11 12 13
.039 .034 .034 .038 .045 .039 .042

The dot product depends only on |i -  j |. This can be seen as follows. The 
entries in the vectors are the same as those in Aq, but shifted. In the dot 
product, the zth entry of Aq Is multiplied by the j th  entry, the (i +  l)s t 
times the (j  +  l)s t, etc. So each element is multiplied by the element j  — i 
positions removed from It. Therefore, the dot product depends only on the 
difference i — j .  Howovor, by reversing the roles of i and j ,  and noting that 
Aj • A j = A j ■ Aj, we see that i — j  and j  — i  give the same dot products,
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so the dot product only depends on |i — j |.  In the preceding table, we only 
needed to compute up to \i -  j |  =  13. For example, i -  j =  17 corresponds 
to o shift by 17 in one direction, or 9 in the other direction, so i  — j  =  9 will 
give the same dot product.

The reason Aq • A 0 is higher than the other dot products is that the 
large numbers in the vectors are paired with large numbers and the small 
ones are paired with small. In the other dot products, the large numbers are 
paired somewhat randomly with other numbers. This lessens their effect. 
For another reason that Ao ■ Aq is higher than the other dot products, see 
Exercise 9.

Let’s assume that the distribution of letters in the plaintext closely 
matches that of English, as expressed by the vector Aq above. Look at 
a random letter in the top strip of ciphertext. It corresponds to a random 
letter of English shifted by some amount i (corresponding to an element 
of the key). The letter below it corresponds to a random letter of English 
shifted by some amount j .

For concreteness, let's suppose that i =  0 and j  =  2. The probability 
that the letter in the 50th position, for example, is A is given by the first 
entry in A 0, namely .082. The letter directly below, on the second strip, has 
been shifted from the original plaintext by j  =  2 positions, If this ciphertext 
letter is A, then the corresponding plaintext letter was y, which occurs in 
the plaintext with probability .020. Note th a t .020 is the first entry of the 
vector A t. The probability tha t the letter in the 50th position on the first 
strip and the letter directly below it ore both the letter A is (,082)(.020). 
Similarly, the probability that both letters are B  is (.015)(.001). Working 
all the way through Z, we see that the probability that the two letters are 
the same is

(.082)(.020) +  (.015)(.001) +  ••• +  (,00l)(.001) =  A 0 • A 2.

In general, when the encryption shifts are i and j ,  the probability that 
the two letters are the same is Aj • A j . When i ^  j ,  this is approximately
0.038, but if i =  j ,  then the dot product is 0.066.

We are in the situation where i =  j  exactly when the letters lying one 
above the other have been shifted by the same amount during the encryption 
process, namely when the top strip is displaced by an amount equal to the 
key length (or a multiple of the key length). Therefore we expect more 
coincidences in this case.

For a displacement of 5 in the preceding ciphertext, we had 326 compar
isons and 24 coincidences. By the reasoning just given, we should expect 
approximately 326 x 0.066 =  21.5 coincidences, which is close to the actual 
value.
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2.3.3 Finding the Key: Second M ethod

Using the preceding ideas, we give another method for determining the key. 
It seems to work somewhat better than the first method on short samples, 
though it requires a little more calculation.

We’ll continue to work with the preceding example. To find the first 
element of the key, count the occurrences of the letters in the 1st, 6th, l l t l i ,  
... positions, as before, and put them in a vector:

V  =  (0 ,0 ,7 ,1 ,1 ,2 ,9 ,0 ,1 ,8, 8,0 ,0 ,3 ,0 ,4 ,5 ,2 ,0 ,3 ,6,5 ,1 ,0 ,1 ,0 )

(the first entry gives the number of occurrences of A, the second gives the 
number of occurrences of B , etc.). If we divide by 67, which is the total 
number of letters counted, we obtain a vector

W  =  (0, 0, .1045, .0149, .0149, .0299 ,..., .0149, 0).

Let’s think about where this vector comes from. Since we know the key 
length is 5, the 1st, 6th, 1 1 th ,... letters in the ciphertext were all shifted by 
the same amount (as we’ll see shortly, they were all shifted by 2). There
fore, they represent a random sample of English letters, all shifted by the 
same amount. Their frequencies, which are given by the vector W , should 
approximate the vector A,-, where i is the shift caused by the first element 
of the key.

The problem now is to determine i. Recall tha t Ai • A j is largest when 
i = j ,  and that W  approximates Aj. If we compute W  • Aj  for 0 < j  < 25, 
the maximum value should occur when j  = i. Here are the dot products:

.0250, .0391, .0713, .0388, .0275, .0380, .0512, .0301, .0325,

.0430, .0338, .0299, .0343, .0446, .0356, .0402, .0434, .0502,
.0392, .0296, .0326, .0392, .0366, .0316, .0488, .0349

The largest value is the third, namely .0713, which equals W -A 2. Therefore, 
we guess that the first shift is 2, which corresponds to the key letter c.

Let's use the same method to find the third element of the key. We 
calculate a new vector W , using the frequencies for the 3rd, 8th, 13th, ... 
letters that we tabulated previously:

W  =  (0, .0152, 0, .0454, .0454, .0152, . . . ,  0, .0152).

The dot products W  • A,- for 0 < i < 25 are

.0372, .0267, .0395, .0624, .04741, .0279, .0319, .0504, .0378,
.0351, .0367, .0395, .0264, .0415, .0427, .0362, .0322, .0457,

.0526, .0397, .0322, .0299, .0364, .0372, .0352, .0406
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The largest of these values is the fourth, namely .0624, which equals W • A 3. 
Therefore, the best guess is tha t the first shift is 3, which corresponds to 
the key letter d. The other three elements of the key can be found similarly, 
again yielding c, o, d, e, s ns the key.

Notice that largest dot product was significantly larger than the others in 
both cases, so we didn't have to make several guesses to find the correct one. 
In this way, the present method is superior to the first method presented; 
however, the first method is much easier to do by hand.

Why is the present method more accurate than the first one? To obtain 
the largest dot product, several of the larger values in W  had to match with 
the larger values in an A,-. In the earlier method, we tried to match only 
the e, then looked at whether the choices for other letters were reasonable. 
The present method does this all in one step.

To summarize, here is the method for finding the key. Assume we already 
have determined tha t the key length is tl.

For i =  1 to n, do the following:

1. Compute the frequencies of the letters in positions i mod n, and form 
the vector W .

2. For j  =  1 to 25, com pute W  • A  j .

3. Let kj = jo give the maximum value of W  • A j .

The key is probably { k \ , . , fcn}.

2.4 Substitution Ciphers

One of the more popular cryptosystems is the substitution cipher. It is com
monly used in the puzzle section of the weekend newspapers, for example. 
The principle is simple: Each letter in the alphabet Is replaced by another 
(or possibly the same) letter. More precisely, a permutation of the alpha
bet is chosen and applied to the plaintext. In the puzzle pages, the spaces 
between the words are usually preserved, which is a big advantage to the 
solver, since knowledge of word structure becomes very useful. However, to 
increase security it is better to omit the spaces.

The shift and affine ciphers are examples of substitution ciphers. The 
Vigenere and Hill ciphers (see Sections 2.3 and 2.7) are not, since they 
permute blocks of letters rather than one letter at a time.

Everyone “knows" tha t substitution ciphers can be broken by frequency 
counts. However, the process is more complicated than one might expect.

Consider the following example. Thomas Jefferson has a potentially 
treasonous message that he wants to send to Ben Franklin. Clearly he does
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not want the British to read the text if they intercept it, so he encrypts using 
a substitution cipher. Fortunately, Ben Franklin knows the permutation 
being used, so he can simply reverse the perm utation to obtain the original 
message (of course, Franklin was quite clever, so perhaps he could have 
decrypted it without previously knowing the key).

Now suppose we are working for the Government Code and Cypher 
School in England back in 1776 and are given the following intercepted 
message to decrypt.

LWNSOZBNWVWBAYBNVBSqWVUOHWDIZWRBBNPBPOOUWRPAWXAW 
PBWZWMYPOBNPBBNWJPAWWRZSLWZqjBNVIAXAWPBSALIBNXWA 
BPIRYRPOIWRPQOWAIENBVBNPBPUSREBNWVWPAWOIHWOiqWAB 
JPRZBNWFYAVYIBSHNPFFIRWVVBNPBBSVWXYAWBNWVWAIENBV 
ESDWARUWRBVPAWIRVBIBYBWZPUSREUWRZWAID IREBHWIATYV 
BFSLWAVHASUBNWXSRVWRBSHBOTESDWARWZBNPBLNWWDWAPR 
JHSAUSHESDWARUWRBQWXSUWVZWVBAYXBIDWSHBNWVWWRZVIB 
IVBNVAIENBSHBNWFWSFOWBSPOBWASABSPqSOIVNIBPRZBSIR 
VBIBYBWRWLESDWARUWRBOPJIREIBVHSYRZPBISRSRVYXNFAI 
RXIFOOTPRZSAEPRIKIREIBVFSLWAVIRVYXNHSAUPVBSVWMJ 
SVBOICWOJBSWHHWXBBNWIAVPHWBJPRZNPFFIRWW

A frequency count yields the following (there are 520 letters in the text):

W B R S  I V A P  N 0  •••
76 6-1 39 36 36 35 34 32 30 16

The approximate frequencies of letters in English were given in Section 2.3. 
We repeat some of the data  here in Table 2.2. This allows us to  guess with

e t a o i n s h r  
.127 .091 .082 .075 .070 .067 .063 .061 .060

Table 2.2: Frequencies of Most Common Letters in English

reasonable confidence tha t W  represents e (though B  is another possibility). 
But what about the other letters? We can guess that B , R, S, I , V, A, P, N , 
with maybe an exception or two, are probably the same as t, a, o, i, n , s, h, r  
in some order. But a simple frequency count is not enough to decide which 
is which. W hat we need to do now is look at digrams, or pairs of letters. 
We organize our results in Table 2.3 (we only use the most frequent letters 
here, though it would be better to include all).

The entry 1 in the IV row and N  column means that the combination 
W N  appears 1 time in the text. The entry 14 in the N  row and W  column 
means that AHV appears 14 times.
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W B R S I V A P N
W 3 4 12 2 4 10 14 3 1
B 4 4 0 11 5 5 2 4 20
R 5 5 0 1 1 5 0 3 0
S 1 0 5 0 1 3 5 2 0
I 1 8 10 1 0 2 3 0 0
V 8 10 0 0 2 2 0 3 1
A 7 3 4 2 5 4 0 1 0
P 0 8 6 0 1 1 4 0 0
N 14 3 0 1 1 1 0 7 0

Table 2.3: Counting Digrams

We have already decided that W  =  e, but if we had extended the table to 
include low-frequency letters, we would see that W  contacts many of these 
letters, too, which is another characteristic of e. This helps to confirm our 
guess.

The vowels a ,i,o  tend to avoid each other. If we look a t the R  row, 
we see that R  does not precede S , I , A , N  very often. But a look a t the R  
column shows th a t R  follows S, I, A  fairly often. So we suspect th a t R  is 
not one of a,i,o . V  and N  are out because they would require a, i, or o to 
precede W  = e quite often, which is unlikely. Continuing, we see th a t the 
most likely possibilities for a ,i,o  are S , I ,P  in some order.

The letter n has the property tha t around 80% of the letters tha t precede 
it ore vowels. Since we already have identified W, S , I , P  as vowels, we see 
that R  and A are the most likely candidates. We’ll have to wait to see which 
is correct.

The letter h  often appears before e and rarely after it. This tells us that 
N  = h.

The most common digram is th. Therefore, B  =  t.
Among the frequent letters, r  and s remain, and they should equal V  

and one of A, R. Since r  pairs more with vowels and s pairs more with 
consonants, we see th a t V  must be s and r  is represented by either A or R.

The combination rn  should appear more than nr, and A R  is more fre
quent than RA, so our guess is tha t A =  r  and R  = n.

We can continue the analysis and determine that S  — o (note th a t to 
is much more common than ot), I  =  i, and P  — a are the most likely 
choices. We have therefore determined reasonable guesses for 382 of the 520 
characters in the text:
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L W N S 0 z B N W V W B A Y B N V B
e h o t h e s e I r t h s t

Q W V W 0 H W D I Z W R B B N P B P
e s e e i e n t t h a t a

At this point, knowledge of the language, middle-level frequencies (i, d , . . . ) ,  
and educated guesses can be used to fill in the remaining letters. For exam
ple, in the first line a  good guess is th a t Y  =  u  since then the word tru ths  
appears. Of course, there is a lot of guesswork, and various hypotheses need 
to be tested until one works.

Since the preceding should give the spirit of the method, we slop the 
remaining details. The decrypted message, with spaces (but not punctua
tion) added, is as follows (the text is from the middle of the Declaration of 
Independence):

we hold these truths to be self evident that all men are cre
ated equal that they are endowed by their creator with certain 
unalienable right) that among these are life liberty and the pur
suit of happiness that to secure these rights governments are in
stituted among men deriving their just powers from the consent 
of the governed that whenever any form o f government becomes 
destructive o f these ends it is the right o f the people to alter or to 
abolish it and to institute new government laying its foundation 
on such principles and organizing its powers in such form  as to 
seem most likely to effect their safety and happiness

2.5 Sherlock Holmes

Cryptography has appeared in many places in literature, for example, in the 
works of Edgar Allen Poe ( The Gold Bug), William Thackeray (The History 
of Henry Esmond), Jules Verne ( Voyage to the Center o f the Earth), and 
Agatha Christie (The Four Suspects).

Here we give a summary of an enjoyable tale by Arthur Conan Doyle, in 
which Sherlock Holmes displays his usual cleverness, this time by breaking 
a cipher system. We cannot do the story justice here, so we urge the reader 
to read The Adventure of the Dancing Men in its entirety. The following is 
a cryptic, and cryptographic, summary of the plot,

Mr. Hilton Cubitt, who has recently married the former Elsie Patrick, 
mails Sherlock Holmes a letter. In it is a piece of paper with dancing stick
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figures that he found in his garden a t Riding Thorpe Manor:

i r
Two weeks later, Cubitt finds another series of figures written in chalk on 
his toolhouse door:

Two mornings later another sequence appears:

Three days later, another message appears:

m u -
Cubitt gives copies of all of these to Holmes, who spends the next two days 
making many calculations. Suddenly, Holmes jum ps from his chair, clearly 
having made a breakthrough. He quickly sends a long telegram to someone 
and then waits, telling Watson that they will probably be going to visit 
Cubitt the next day. But two days pass with no reply to the telegram, and 
then a letter arrives from C ubitt with yet another message:

m m m i r - i  

x r m u u m
Holmes studies it and says they need to travel to Riding Thorpe Manor as 
soon as possible. A short time later, a  reply to Holmes's telegram arrives, 
and Holmes indicates th a t the m atter has become even more urgent. When 
Holmes and Watson arrive at C ubitt's house the next day, they find the 
police already there. Cubitt has been shot dead. His wife, Elsie, has also 
been shot and is in critical condition (although she survives). Holmes asks
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several questions and then has someone deliver a note to a Mr. Abe Slaney 
at nearby Elrige’s Farm. Holmes then explains to Watson and the police 
how he decrypted the messages. First, he guessed tha t the flags on some 
of the figures indicated the ends of words. He then noticed tha t the most 
common figure was

so it was likely E . This gave the fourth message as -E -E -. The possibilities 
LEVER, NEVER, SEVER  came to mind, but since the message was proba
bly a one word reply to a previous message, Holmes guessed it was NEVER. 
Next, Holmes observed that

i m i
had the form E ----- E, which could be ELSIE. The third message was there
fore ----- E  ELSIE. Holmes tried several combinations, finally settling on
COME ELSIE  as the only viable possibility. The first message therefore 
was - M  -E R E  - - E  S L -N E -. Holmes guessed that the first letter was 
A and the third letter as H, which gave the message as A M  HERE A -E  
SLAN E-. It was reasonable to complete this to A M  H ERE A B E  SLANEY. 
The second message then was A -  ELRI-ES. Of course, Holmes correctly 
guessed tha t this must be stating where Slaney was staying. The only letters 
that seemed reasonable completed the phrase to A T  ELRIGES. It was after 
decrypting these two messages that Holmes sent a telegram to a friend at 
the New York Police Bureau, who sent back the reply that Abe Slaney was 
“the most dangerous crook in Chicago." When the final message arrived, 
Holmes decrypted it to ELSIE -R E -A R E  TO M EET T H Y  GO-. Since he 
recognized the missing letters os P, P, D, respectively, Holmes became very 
concerned and th a t's  why he decided to make the trip to Riding Thorpe 
Manor.

When Holmes finishes this explanation, the police urge that they go to 
Elrige’s and arrest Slaney immediately. However, Holmes suggests that is 
unnecessary and that Slaney will arrive shortly. Sure enough, Slaney soon 
appears and is handcuffed by the police. While waiting to be taken away, he 
confesses to the shooting (it was somewhat in self defense, he claims) and 
says that the writing was invented by Elsie Patrick's father for use by his 
gang, the Joint, in Chicago. Slaney was engaged to be married to Elsie, but 
she escaped from the world of gangsters and fled to London. Slaney finally
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traced her location and sent the secret messages. But why did Slancy walk 
into the trap tha t Holmes set? Holmes shows the message he wrote:

From the letters already deduced, we see that this says COME H ERE A T  
ONCE. Slaney was sure this message must have been from Elsie since he was 
certain no one outside of the Joint could write such messages. Therefore, he 
mode the visit that led to  his capture.

Comments
W hat Holmes did was solve a simple substitution cipher, though he did this 
with very little data. As with most such ciphers, both frequency analysis 
and a knowledge of the language are very useful. A little luck is nice, too, 
both in the form of lucky guesses and in the distribution of letters. Note 
how overwhelmingly £  was the most common letter. In fact, it appeared 11 
times among the 38 characters in the first four messages. This gave Holmes 
a good start. If Elsie had been Carol and Abe Slaney had been John Smith, 
the decryption would probably have been more difficult.

Authentication is an important issue in cryptography. If Eve breaks 
Alice’s cryptosystem, then Eve can often masquerade os Alice in communi
cations with Bob. Safeguards against this are important. The judges gave 
Abe Slaney many years to think about this issue.

The alert reader might have noticed that we cheated a little when de
crypting the messages. The same symbol represents the V  in N EVER  and 
the Ps in PREPARE. This is presumably due to a misprint and has oc
curred in every printed version of the work, starting with the story’s first 
publication back in 1903. In the original text, the R  in NEVER  is written 
os the B  in ABE, but this is corrected in later editions (however, in some 
later editions, the first C in theL message Holmes wrote is given an extra arm 
and therefore looks like the Af). If these mistakes had been In the text that 
Holmes wos working with, he would have had a very difficult time decrypting 
and would have rightly concluded tha t the Joint needed to use error correc
tion techniques in their transmissions. In fact, some type of error correction 
should be used in conjunction with almost every cryptographic protocol.

2.6 The P layfair and ADFG X C iphers
The Playfair and ADFGX ciphers were used in World War I by the British 
and the Germans, respectively. By modern standards, they are fairly weak
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systems, but they took real effort to break a t the time.
The Playfair system was invented around 1854 by Sir Charles W heat

stone, xvho named it after his friend, the Baron Playfair of St. Andrews, who 
worked to convince the government to use it. In addition to being used in 
World War I, it was used by the British forces in the Boer War.

The key is a  word, for example, playfair. The repeated letters are re
moved, to  obtain playfir, and the remaining letters are used to sta rt a 5 x 5 
matrix. The remaining spaces in the matrix are filled in with the remaining 
letters in the alphabet, with i and j  being treated as one letter:

p I a V f

i T b c d

e 9 k k m

71 0 g s t

U V V) X z

Suppose the plaintext is meet at the schoolhouse. Remove spaces and divide 
the text into groups of two letters. If there is a doubled letter appearing as 
a group, insert an x  and regroup. Add an extra x  a t the end to complete 
the lost group, if necessary. Our plaintext becomes

me et at th es ch ox ol ho us ex.

Now use the matrix to encrypt each two letter group by the following scheme:

•  If the two letters are not in the same row or column, replace each letter 
by the letter th a t is in its row and is in the column of the other letter. 
For example, et becomes MN, since M  is in the same row as e and the 
same column as t, and N  is in the same row as t and the same column 
as e.

• If the two letters are in the same row, replace each letter with the 
letter immediately to its right, with the matrix wrapping around from 
the last column to the first. For example, me becomes EG.

•  If the txvo letters are in the same column, replace each letter with the 
letter immediately below it, with the matrix wrapping around from 
the last row to the first. For example, ol becomes VR.

The ciphertext in our example is

EG MN FQ QM KN BK SV VR GQ XN KU.

To decrypt, reverse the procedure.

The system succumbs to  a frequency attack since the frequencies of the 
various digrams (two-letter combinations) in English have been tabulated.
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Of course, we only have to look for the most common digrams; they should 
correspond to the most common digrams in English: th, he, an, in, re,
es, __  Moreover, a slight modification yields results more quickly. For
example, both of the digrams re  and er are very common. If the pairs IG  
and G I  are common in the ciphertext, then a good guess is tha t e, i, r, g 
form the corners of a rectangle in the matrix. Another weakness is th a t each 
plaintext letter has only five possible corresponding ciphertext letters. Also, 
unless the keyword is long, the last few rows of the m atrix are predictable. 
Observations such as these allow the system to be broken with a ciphertext 
only attack. For more on its cryptanalysis, see [Gaines].

The ADFGX cipher proceeds as follows. P u t the letters of the alphabet 
into a 5 x 5 matrix. The letters i  and j  are treated ns one, and the columns 
of the m atrix are labeled with the letters A ,D ,F ,G ,X .  For example, the 
matrix could be

A D F G X
A P 9 c e n
D b <1 0 z r
F s I a f t
G m d V i w
X k u V X h

Each plaintext letter is replaced by the label of its row and column. For 
example, s becomes FA, and z becomes DG. Suppose the plaintext is

Kaiser Wilkelm.

The result of this initial step is

X A  FF GG FA AG D X GX GG FD X X  AG  FD GA.

So far, this is a disguised substitution cipher. The next step increases the 
complexity significantly. Choose a keyword, for example, Rhein. Label the 
columns of a m atrix by the letters of the keyword and pu t the result of the 
initial step into another matrix:

R H E I N  
X  A  F F G 
G F A A G 
D X  G X  G 
G F D X  X  
A G F  D G 
A
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Now reorder the columns so tha t the column labels are in alphabetic

E H / 1V R
F A F G X
A F A G G
G X X G D
D F X X G
F G D G A

A

Finally, the ciphertext is obtained by reading down the columns (omit
ting the labels) in order:

FA GDFA FXFGFAXXDGGGXGXGDGA A.

Decryption is easy, as long as you know the keyword. From the length 
of the keyword and the length of the ciphertext, the length of each column 
is determined. The letters are placed into columns, which are reordered to 
m atch the keyword. The original matrix is then used to recover the plaintext.

The initial m atrix and the keyword were changed frequently, making 
cryptanalysis more difficult, since there was only a limited amount of cipher
text avnilabte for any combination. However, the system was successfully 
attacked by the French cryptanalyst Georges Painvin and the Bureau du 
ChiEre, who were able to decrypt a substantial number of messages.

Here is one technique tha t was used. Suppose two diEerent ciphertexts 
intercepted a t approximately the same time agree for the first several char
acters. A reasonable guess is tha t the two plaintexts agree for several words. 
T hat means tha t the top few entries of the columns for one are the same as 
for the other. Search through the ciphertexts and find other places where 
they agree. These possibly represent the beginnings of the columns. If this 
is correct, we know the column lengths. Divide the ciphertexts into columns 
using these lengths. For the first ciphertext, some columns will have one 
length and others will be one longer. The longer ones represent columns 
tha t should be near the beginning; the other columns should be near the 
end. Repeat for the second ciphertext. If a  column is long for both cipher
texts, it is very near the beginning. If it is long for one ciphertext and not 
for the other, it goes in the middle. If it is short for both, it is near the end. 
At this point, try  the various orderings of the columns, subject to these 
restrictions. Each ordering corresponds to a potential substitution cipher. 
Use frequency analysis to try to solve these. One should yield the plaintext, 
and the initial encryption matrix.

The letters AD FG X  were chosen because their symbols in Morse code 
-----were not easily confused. This was to avoid
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transmission errors, and represents one of the early attem pts to combine 
error correction with cryptography. Eventually, the AD FG X  cipher was 
replaced by the AD FG VX  cipher, which used a 6 x 6 initial matrix. This 
allowed all 26 letters plus 10 digits to  be used.

For more on the cryptanalysis of the ADFGX cipher, see [Kahn],

2.7 Block Ciphers

In many of the aforementioned cryptosystems, changing one letter in the 
plaintext changes exactly one letter in the ciphertext. In the shift, affine, 
and substitution ciphers, a given letter in the ciphertext always comes from 
exactly one letter in the plaintext. This greatly facilitates finding the key 
using frequency analysis. In the Vigenere system, the use of blocks of letters, 
corresponding to the length of the key, made the frequency analysis more 
difficult, but still possible, since there was no interaction among the vari
ous letters in each block. Block ciphers avoid these problems by encrypting 
blocks of several letters or numbers simultaneously. A change of one char
acter in a plaintext block should change potentially all the characters in the 
corresponding ciphertext block.

The Playfair cipher in Section 2.6 is a simple example of a block cipher, 
since it takes two-letter blocks and encrypts them to two-letter blocks. A 
change of one letter of a plaintext pair will always change a t least one letter, 
and usually both letters, of the ciphertext pair. However, blocks of two 
letters are too small to be secure, and frequency analysis, for example, is 
usually successful.

Many of the modern cryptosystems that will be treated later in this book 
are block ciphers. For example, DBS operates on blocks of 64 bits. AES uses 
blocks of 128 bits. RSA uses blocks several hundred bits long, depending on 
the modulus used. All of these block lengths are long enough to be secure 
against attacks such as frequency analysis.

The standard way of using a  block cipher is to convert blocks of plain
text to blocks of ciphertcxt, independently and one a t a time. This is called 
the electronic codebook (ECB) mode. However, there are ways to use feed
back from the blocks of ciphertext in the encryption of subsequent blocks of 
plaintext. This leads to the cipher block chaining (CBC) mode and cipher 
feedback (CFB) mode of operation. These ore discussed in Section 4.5.

In this section, we discuss the Hill cipher, which is a block cipher in
vented in 1929 by Lester Hill. It seems never to have been used much in 
practice. Its significance is th a t it was perhaps the first time tha t algebraic 
methods (linear algebra, modular arithmetic) were used in cryptography 
in an essential way. As we'll see in later chapters, algebraic methods now 
occupy a central position in the subject.
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Choose an integer n, for example n  = 3. The key is an n  x n  matrix M  
whose entries are integers mod 26. For example, let

The message is written as a series of row vectors. For example, if the message 
is abc, we change this to the single row vector (0,1, 2). To encrypt, multiply 
the vector by the matrix (traditionally, the matrix appears on the right in 
the multiplication; multiplying on the left would yield a similar theory) and 
reduce mod 26:

Therefore, the ciphertext is AXW . (The fact that the first letter a remained 
unchanged is a random occurrence; it is not a defect of the method.)

In order to decrypt, we need the determinant of M  to  satisfy

This means that there is a m atrix N  with integer entries such that M N  s  I  
(mod 26), where I  is the n  x  n  identity matrix.

In our example, dct(M ) =  —3. The inverse of M  is

Since 17 is the inverse of —3 mod 26, we replace —1/3 by 17 and reduce mod 
26 to  obtain

gcd(det(M ), 26) =  1.

-1 4  11 - 3  
34 -2 5  6 

-1 9  13 - 3

The reader can check th a t M N  =  I  (mod 26).
For more on finding inverses of matrices mod n, see Section 3.8. 
The decryption is accomplished by multiplying by TV, as follows:
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In the general method with an n  x n  matrix, break the plaintext into 
blocks of n  characters and change each block to a  vector of n  integers between
0 and 25 using a =  0, b =  1, . . . ,  z  — 25. For example, with the matrix M  as 
above, suppose our plaintext is

blockcipher.

This becomes (we add an x  to fill the last space)

1 11 14 2 10 2 8 15 7 4 17 23.

Now multiply each vector by M , reduce the answer mod 26, and change 
back to letters:

(1 ,1 1 ,1 4 ^ / =  (199,183,181) =  (17, 1,25) (mod 26) =  R B Z

(2,10, 2)M  = { 64, 72, 82) =  (12,20, 4) (mod 26) =  M U E , 

etc.

In our case, the ciphertext is

RBZM UEPYONOM.

It is easy to see tha t changing one letter of plaintext will usually change 
n  letters of ciphertext. For example, if block is changed to dock, the first 
three letters of ciphertext change from R B Z  to SD C . This makes fre
quency counts less effective, though they are not impossible when n  is small. 
The frequencies of two-letter combinations, called d ig ram s, and three-letter 
combinations, tr ig ra m s , have been computed. Beyond tha t, the number of 
combinations becomes too large (though tabulating the results for certain 
common combinations would not be difficult). Also, the frequencies of com
binations are so low that it is hard to get meaningful data  without a very 
large amount of text.

Now that we have the ciphertext, how do we decrypt? Simply break the 
ciphertext into blocks of length n, change each to a vector, and multiply on 
the right by the inverse m atrix N . In our example, we have

R B Z  =  (17,1,25) I-* (1 7 ,1 ,2 5 )^  =  (755,427,66) =  (1,11,14) =bla,

and similarly for the remainder of the ciphertext.
The Hill cipher is difficult to  decrypt using only the ciphertext, but it 

succumbs easily to a known plaintext attack. If we do not know n, we can 
try various values until we find the right one. So suppose n  is known. If 
we have n  of the blocks of plaintext of size n, then we can use the plaintext
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and the corresponding ciphertext to obtain a matrix equation for M  (or for 
N , which might be more useful). For example, suppose we know that- n  — 2 
and we have the plaintext

howareyoutoday —
7 14 22 0 17 4 24 14 20 19 14 3 0 24

corresponding to the ciphertext

ZW SENIU SPLJVEU  =
25 22 18 4 13 8 20 18 15 11 9 21 4 20

The first two blocks yield the m atrix equation

Unfortunately, the matrix ^  Jo ^ hes determinant —308, which is not

invertible mod 26 (though this matrix could be used to reduce greatly the 
number of choices for the encryption matrix). Therefore, we replace the lost 
row of the equation, for example, by the fifth block to obtain

U  S ) ( : i ) - ( S 5 ) <-**>•
In this case, the matrix ^  Jq 19 ^  's >nvert*We mod 26:

( 2 0  I S )  ‘ =  ( i 8 a )  (™ d 2 6 >-

We obtain

- ( A  2 ) ( 5 S)-(i! s2) <-*>•
Because the Hill cipher is vulnerable to this attack, it cannot be regarded 

as being very strong.
A chosen plaintext attack proceeds by the same strategy, but is a little 

faster. Again, if you do not know n, try various possibilities until one works. 
So suppose n is known. Choose the first block of plaintext to be baaa ■ • ■ =
1000. . . ,  the second to be abaa -•■ =  0100. . . ,  and continue through the n th
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block being . . .  aaab =  . . .  0001. The blocks of ciphertext will be the rows of 
the matrix M .

For a chosen ciphertext attack, use the same strategy as for chosen plain
text, where the choices now represent ciphertext. The resulting plaintext will 
be the rows of the inverse matrix N.

Claude Shannon, in one of the fundamental papers on the theoretical 
foundations of cryptography [Shannonl], gave two properties that a good 
cryptosystem should have in order to hinder statistical analysis: diffusion 
and confusion.

Diffusion means that if we change a character of the plaintext, then sev
eral characters of the ciphertext should change, and, similarly, if we change 
a character of the ciphertext, then several characters of the plaintext should 
change. We saw tha t the Hill cipher has this property. This means tha t fre
quency statistics of letters, digrams, etc. in the plaintext are diffused over 
several characters in the ciphertext, which means that much more ciphertext 
is needed to do a meaningful statistical attack.

Confusion means that the key does not relate in a simple way to the 
ciphertext. In particular, each character of the ciphertext should depend on 
several parts of the key. For example, suppose we have a Hill cipher with an 
n  x n  matrix, and suppose we have a plaintext-ciphertext pair of length n~ 
with which we are able to solve for the encryption matrix. If we change one 
character of the ciphertext, one column of the matrix can change completely 
(see Exercise 12). Of course, it would be more desirable to have the entire 
key change. When a situation like that happens, the cryptanalyst would 
probably need to solve for the entire key simultaneously, rather than piece 
by piece.

The Vigenere and substitution ciphers do not have the properties of 
diffusion and confusion, which is why they are so susceptible to frequency 
analysis.

The concepts of diffusion and confusion play a  role in any well-designed 
block cipher. Of course, a disadvantage (which is precisely the cryptographic 
advantage) of diffusion is error propagation: A small error in the ciphertext 
becomes a major error in the "decrypted message, and usually means the 
decryption is unreadable.

2.8 Binary Numbers and ASCII

In many situations involving computers, it is more natural to  represent data  
as strings of Os and Is, rather than as letters and numbers.

Numbers can be converted to binary (or base 2), if desired, which we’ll 
quickly review. Our standard way of writing numbers is in base 10. For 
example, 123 means 1 x 102 +  2 x 101 +  3. Binary uses 2 in place of 10



2 .9 . O n e - T im e  P a d s 39

symbol ! " # $ % & '
decimal 33 34 35 35 37 38 39
binary 0100001 0100010 0100011 0100100 0100101 0100110 0100111

( ) * + , - /
40 41 42 43 44 45 46 47

0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111
0 1 2 3 4 5 6 7
48 49 50 51 52 53 54 55

0110000 0110001 0110010 0110011 0110100 0110101 0110110 0110111
8 9 ; < = > ?
56 57 58 59 60 Cl 62 63

0111000 0111001 0111010 0111011 0111100 0111101 0111110 0111111
<a A B C D E F G
64 65 66 67 68 69 70 71

1000000 1000001 1000010 1000011 1000100 1000101 1000110 1000111

Table 2.4: ASCII Equivalents of Selected Symbols

and needs only the digits 0 and 1. For example, 110101 in binary represents 
25 +  2'1 +  22 +  1 (which equals 53 in base 10).

Each 0 or 1 is called a b it, A representation that takes 8 bits is called 
an 8-bit number, or a by te . The largest number that 8 bits can represent 
is 255, and the largest number that 16 bits can represent is 65535.

Often, we want to deal with more than just numbers. In this case, words, 
symbols, letters, and numbers are given binary representations. There are 
many possible ways of doing this. One of the standard ways is called 
ASCII, which stands for American Standard Code for Information Inter
change. Each character is represented using 7 bits, allowing for 128 possible 
characters and symbols to be represented. Eight bit blocks are common for 
computers to use, and for this reason, each character is often represented 
using 8 bits. The eighth bit can be used for checking parity to see if an error 
occurred in transmission, or is often used to extend the list of characters to 
include symbols such as ii and e .

Table 2.4 gives the ASCII equivalents for some standard symbols. We'll 
never use them in this book. They are included simply to show how text 
can be encoded as a sequence of Os and Is.

2.9 One-Time Pads

The one-time pad, which is an unbreakable cryptosystem, was developed by 
Gilbert Vernam and Joseph Mauborgne around 1918. S tart by representing
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the message ns ft sequence of Os and Is. This can be accomplished by writing 
nil numbers in binary, for example, or by using ASCII, as discussed in the 
previous section. But the message could also be a digitalized video or audio 
fiIkiiiU.

The key is a random sequence of Os and Is of the same length as the 
mc#nnKe. Once a key is used, it is discarded and never used again. The 
encryption consists of adding the key to the message mod 2, bit by bit. This 

Is often called ex c lu siv e  or, and is denoted by X O R . In other 
words, we use the rules 0 +  0 =  0, 0 +  1 =  1, 1 +  1 =  0. For example, if 
lli# massage is 00101001 and the key is 10101100, we obtain the ciphertext 
im follnws:

(plaintext) 00101001 
(key) +  10101100 

(ciphertext) 10000101

Decryption uses the same key. Simply add the key onto the ciphertext: 
10000101 +  10101100 =  00101001.

A variation is to leave the plaintext as a sequence of letters. The key is 
then ft random sequence of shifts, each one between 0 and 25. Decryption 
iiioa the same key, but subtracts instead of adding the shifts.

This encryption method is completely unbreakable for a  ciphertext only 
attack. For example, suppose the ciphertext is FIOW PSLQNTISJQL. The 
plaintext could be wewillwinthewar or it could be theduckuiantsout. Each one 
Is equally likely, along with all other messages of the same length. There
fore the ciphertext gives no information about the plaintext (except for its 
length). This will be made more precise when we discuss Shannon's theory 
of entropy in Chapter 18.

If we have a piece of the plaintext, we can find the corresponding piece of 
the key, but it will tell us nothing about the remainder of the key. In most 
cases a chosen plaintext or chosen ciphertext attack is not possible. But 
such an attack would only reveal the part of the key used during the attack, 
which would not be useful unless this part of the key were to be reused.

How do we implement this system, and where can it be used? The key 
can be generated in advance. Of course, there is the problem of generating 
a truly random sequence of 0s and Is. One way would be to have some 
people sitting in a room flipping coins, but this would be too slow for most 
purposes. We could also take a  Geiger counter and count how many clicks 
It makes in a  small time period, recording a 0 if this number is even and 1 if 
It Is odd. There are other ways tha t are faster but not quite as random that 
can be used in practice (see Section 2.10); but it is easy to see tha t quickly 
generating a good key is difficult. Once the key is generated, it can be sent 
by a trusted courier to the recipient. The message can then be sent when
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needed. It is reported that the “hot line” between Washington, D.C., and 
Moscow used one-time pads for secure communications between the leaders 
of the United States and the U.S.S.R. during the Cold War.

A disadvantage of the one-time pad is tha t it requires a very long key, 
which is expensive to  produce and expensive to transmit. Once the key is 
used up, it is dangerous to reuse it for a second message; any knowledge of 
the first message would give knowledge of the second, for example. There
fore, in most situations, various methods are used in which a small input can 
generate o reasonably random sequence of Os and Is, hence an “approxima
tion” to a one-time pad. The amount of information carried by the courier 
is then several orders of magnitude smaller than the messages that will be 
sent. One such method, which is fast but not very secure, is described in 
the Section 2.11.

A variation of the one-time pad has been developed by Maurer, Rabin, 
Ding, and others. Suppose it is possible to have a satellite produce and 
broadcast several random sequences of bits at a rate fast enough that no 
computer can store more than a very small fraction of the outputs. Alice 
wants to send a message to Bob. They use a public key method such as RSA 
(see Chapter 6) to agree on a method of sampling bits from the random bit 
streams. Alice and Bob then use these bits to generate a key for a one
time pad. By the time Eve has decrypted the public key transmission, the 
random bits collected by Alice and Bob have disappeared, so Eve cannot 
decrypt the message. In fact, since the encryption used a one-time pad, she 
can never decrypt it, so Alice and Bob have achieved everlasting security for 
their message. Note tha t bounded storage is an integral assumption for this 
procedure. The production and the accurate sampling of the bit streams are 
also important implementation issues.

2.10 Pseudo-random Bit Generation

The one-time pad and many other cryptographic applications require se
quences of random bits. Before we can use a cryptographic algorithm, such 
as DES (Chapter 4) or AES (Chapter 5), it is necessary to generate a se
quence of random bits to  use as the key.

One way to generate random bits is to use natural randomness that oc
curs in nature. For example, the thermal noise from a semiconductor resistor 
is known to be a good source of randomness. However, ju st as flipping coins 
to produce random bits would not be practical for cryptographic applica
tions, most natural conditions are not practical due to the inherent slowness 
in sampling the process and the difficulty of ensuring that an adversary does 
not observe the process. We would therefore like a method for generating 
randomness that can be done in software. Most computers have a method
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for generating random numbers that is readily available to  the user. For 
example, the standard C library contains a function rand() that generates 
pseudo-random numbers between 0 and 65535. This pseudo-random func
tion takes a seed  as input and produces an output bitstream.

The m nd() function and many other pseudo-random number generators 
are based on linear congruential generators. A lin e a r  c o n g ru e n tia l gen
e ra to r  produces a sequence of numbers X],X2 , - - - ,  where

xn =  ax„-i + b (mod m ).

The number xq is the initial seed, while the numbers o, b, and m are pa
rameters that govern the relationship. The use of pseudo-random number 
generators based on linear congruential generators is suitable for experimen
tal purposes, but is highly discouraged for cryptographic purposes. This is 
because they are predictable (even if the parameters a, b, and m  are not 
known), in the sense tha t an eavesdropper can use knowledge of some bits 
to predict future bits with fairly high probability. In fact, it has been shown 
tha t any polynomial congruential generator is cryptographically insecure.

In cryptographic applications, we need a source of bits that is non- 
predictable. We now discuss two ways to create such non-predictable bits.

The first method uses one-way functions. These are functions f ( x )  that 
are easy to compute but for which, given y, it is computationally infeasible 
to solve y =  f ( x )  for x.  Suppose that we have such a  one-way function /  
and a random seed s. Define Xj =  f ( s  +  j )  for j  =  1 ,2 ,3 , . . . .  If we let 
bj be the least significant bit of xj ,  then the sequence bo, t>i, - - - will be a 
pseudo-random sequence of bits. This method of random bit generation is 
often used, and has proven to be very practical. Two popular choices for 
the one-way function are DES (Chapter 4) and the Sccure Hash Algorithm 
(Section 8.3). As an example, the cryptographic pseudo-random number 
generator in the OpenSSL toolkit (used for secure communications over the 
Internet) is based on SHA.

Another method for generating random bits is to use an intractable prob
lem from number theory. One of the most popular cryptographically se
cure pseudo-random number generators is the B Iu m -B Iu m -S h u b  (B B S) 
p seu d o -ran d o m  b it  g e n e ra to r , also known as the quadratic residue gen
erator. In this scheme, one first generates two large primes p and q tha t are 
both congruent to 3 mod 4. We set n = pq and choose a  random integer 
x  that is relatively prime to n. To initialize the BBS generator, set the 
initial seed to 5  x 2 (mod n). The BBS generator produces a sequence of 
random bits bi , • • • by

1. Xj =  (mod n)

2. bj is the least significant bit of Xj.
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Example. Let

p =  24G72462467892469787 and q =  396736894567834589803,

n  =  9788470140853110794168855217413715781961.

Take x  =  873245647888478349013. The initial seed is

x 0 =  x 2 (mod n)
=  8845298710478780097089917746010122863172.

The values for x i , 12, ■ • • ig  are

H  =  7118894281131329522745962455498123822408
z 2 =  3145174608888893164151380152060704518227
i 3 =  4898007782307156233272233185574899430355
x A 5  3935457818935112922347093546189672310389
x5 =  675099511510097048901761303198740246040
a:6 =  4289914828771740133546190658266515171326
x T =  4431066711454378260890386385593817521668
xa =  7336876124195046397414235333675005372436.

Taking the least significant bit of each of these, which is easily done 
by checking whether the number is odd or even, produces the sequence 

,68 =  0, 1, 1, 1, 0, 0, 0, 0. ■

The Blum-Blum-Shub generator is very likely unpredictable. See (Blum- 
Blum-ShubJ. A problem with BBS is that it can be slow to calculate. One 
way to improve its speed is to extract the k least significant bits of Xj. As 
long aa k  < log2 log2 n, this seems to be cryptographically secure.

2.11 Lineal’ Feed back Shift Register Sequences

N o te : In  th is  sec tio n , all cong ruences a re  m o d  2.

In many situations involving encryption, there is a trade-off between speed 
and security. If one wants a very high level of security, speed is often sac
rificed, and vice versa. For example, in cable television, many bits of data 
are being transm itted, so speed of encryption is important. On the other 
hand, security is not usually as important since there is rarely an economic 
advantage to mounting an expensive attack on the system.

In this section, we describe a method that can be used when speed is 
more im portant than security.
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The sequence

01000010010110011111000110111010100001001011001111

con be described by giving the initial values

Xi =  0, $2 =  1, X3 = 0 ,11 =  0, 15 — 0

and the linear recurrence relation

$n+B =  i „  +  x„+2 (mod 2).

This sequence repeats after 31 terms.
More generally, consider a  linear recurrence relation of length m:

£n+m — cqIti +  Ci£n+i Cjji—i xn+m^j (mod 2),

where the coefficients Cq, cl, . . .  are integers. If we specify the in itia l values

£2>. • ., x m,

then all subsequent values of x n can be computed using the recurrence. 
The resulting sequence of 0s and Is can be used os the key for encryption. 
Namely, write the plaintext as a sequence of 0s and Is, then add an appro
priate number of bits of the key sequence to the plaintext mod 2, bit by bit. 
For example, if the plaintext is 1011001110001111 and the key sequence is 
the example given previously, we have

(plaintext) 1011001110001111 
(key) +  0100001001011001 

(ciphertext) 1111000111010110

Decryption is accomplished by adding the key sequence to the ciphertext in 
exactly the same way.

One advantage of this method is tha t a key with large period can be 
generated using very little information. The long period gives an improve
ment over the Vigenere method, where a short period allowed us to find the 
key. In the above example, specifying the initial vector {0,1, 0,0, 0} and the 
coefficients {1,0,1, 0, 0} yielded a sequence of period 31, so 10 bits were used 
to produce 31 bits. It can be shown that the recurrence

$ n +31 =  X n  +  X „+3

and any nonzero initial vector will produce a sequence that has period 231 —
1 =  2147483647. Therefore, 62 bits produce more than two billion bits of
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P la in tex t

Figure 2.1: A Linear Feedback Shift Register Satisfying zm+3 = xm+1 + i m.

key. This is a great advantage over a one-time pad, where the full two billion 
bits must be sent in advance.

This method can be implemented very easily in hardware using what is 
known as a lin e a r  feedback  sh ift re g is te r  (LFSR) and is very fast. In 
Figure 2.1 we depict an example of a linear feedback shift register in a simple 
case. More complicated recurrences are implemented using more registers 
and more XORs,

For each increment of a counter, the bit in each box is shifted to other 
boxes as indicated, with © denoting the addition mod 2 of the incoming 
bits. The output, which is the bit x m , is added to the next bit of plaintext to 
produce the ciphertext. The diagram in Figure 2.1 represents the recurrence 
i m+3 =  x m+i + x m. Once the initial values x \,  in , $3 are specified, the 
machine produces the subsequent bits very efficiently.

Unfortunately, the preceding encryption method succumbs easily to a 
known plaintext attack. More precisely, if we know only a few consecutive 
bits of plaintext, along with the corresponding bits of ciphertext, we can 
determine the recurrence relation and therefore compute all subsequent bits 
of the key. By subtracting (or adding; it’s all the same mod 2) the plaintext 
from the ciphertext mod 2, we obtain the bits of the key. Therefore, for 
the rest of this discussion, we will ignore the ciphertext and plaintext and 
assume we have discovered a portion of the key sequence. Our goal is to 
use this portion of the key to deduce the coefficients of the recurrence and 
consequently compute the rest of the key.

For example, suppose we know the initial segment 011010111100 of the 
sequence 0110101111000100110101 111. . . ,  which has period 15, and suppose 
we know it is generated by a linear recurrence. How do we determine the 
coefficients of the recurrence? We do not necessarily know even the length, 
so we s ta rt with length 2 (length 1 would produce a constant sequence). 
Suppose the recurrence is i n+2 =  co$n +  Ci2n+1. Let tl =  1 and tl =  2 
and use the known values x i  =  0, 2:2 =  1, X3 =  1,$4 =  0. We obtain the



<16 C h a p t e u  2. C la s sic a l  C r y p t o s y s t e m s

e q u a tio n s

1 =  c0 ■ 0 +  ci • 1 (n = 1) 
0 =  co ■ 1 +  C i  ■ 1 (n =  2).

In matrix form, this is

The solution is co =  l , c \  =  1 , so we guess that the recurrence is z „ + 2  =  
x„  +  xn+i. Unfortunately, this is not correct since xq ^  s ,| +  25 ■ Therefore, 
we try length 3. The resulting matrix equation is

The determinant of the matrix is 0 mod 2; in fact, the equation has no 
solution. We can see this because every column in the matrix sums to 0 
mod 2 , while the vector on the right does not.

Now consider length 4. The m atrix equation is

The solution is co =  l ,c i  =  1 ,C2  =  0, C3  =  0. The resulting recurrence is 
now conjectured to be

This generates the remaining elements of the piece of key th a t we already 
know, so it is our best guess for the recurrence that generates the key se
quence. In fact, a  quick calculation shows that this is the case, so we have 
found the recurrence.

The general situation is as follows. To test for a  recurrence of length m,  
we assume we know x t , x 2, . . . , X2m- The m atrix equation is

-Cn+ <1 — 4 " ^n+l*

We show later that the m atrix is invertible mod 2 if and only if there is no 
linear recurrence of length less than m  that is satisfied by i i ,  xn, ■ ■ •,
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A strategy for finding the coefficients of the recurrence is now clear. 
Suppose we know the first 100 bits of the key. For m  =  2 ,3 ,4 , . . . ,  form the 
m  x m  matrix os before and compute its determinant. If several consecutive 
values of m  yield 0 determinants, stop. The last m  to yield a nonzero (i.e.,
1 mod 2) determinant is probably the length of the recurrence. Solve the 
matrix equation to get the coefficients Co,. . .  It can then be checked
whether the sequence that this recurrence generates matches the sequence 
of known bits of the key. If not, try larger values of m .

Suppose we don’t  know the first 100 bits, but rather some other 100 
consecutive bits of the key. The same procedure applies, using these bits as 
the starting point. In  fact, once we find the recurrence, we can also work 
backwards to find the bits preceding the starting point.

Here is an example. Suppose we have the following sequence of 100 bits:

10011001001110001100010100011110110011111010101001
01101101011000011011100101011110000000100010010000.

The first 20 determinants, starting with m  =  1, are

1, 0, 1, 0 , 0, 1, 0, 1, 0, 0, 0, 0 , 0, 0 , 0 , 0, 0, 0 , 0 , 0.

A reasonable guess is that m  =  8 gives the last nonzero determinant. When 
we solve the m atrix equation for the coefficients we get

{C0,C ,, .. .,C 7} =  {1, 1, 0, 0, 1, 0, 0, 0},

so we guess that the recurrence is

-^ r i f'f i —  T-n  4 .1  -

This recurrence generates all 100 terms of the original sequence, so we have 
the correct answer, a t least based on the knowledge that we have.

Suppose that the 100 bits were in the middle of some sequence, and we 
want to know the preceding bits. For example, suppose the sequence starts 
w ith i n ,  so i n  =  1, x xg =  0, Xig =  0 ,___Write the recurrence as

Xn =  Xn-j-i +  Xn+4 4" Xn+g

(it might appear tha t we made some sign errors, but recall tha t we are 
working mod 2, so —xn =  x n and — xn+8 =  x„+e). Letting n =  IC yields

Xlfi =  X n  +  X 20 +  X2.|

=  1 +  0 +  1 =  0.

Continuing in this way, we successively determine Xi5,x t .|....... x\.

We now prove the result we promised.
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P r o p o s i t io n .  Let x i ,  X2 , 2 :3 , . . .  be a sequence o f bits produced by a linear 
recurrence mod 2. For each n  > 1, let

Let N  be the length oj the shortest recurrence that generates the sequence
z i , X 2,X3, ___ Then d e t(M/ t )  =  1 (mod 2) and det( Mn) =  0 (mod 2) for
all n >  N.

Proof. We first make a few remarks on the length of recurrences. A se
quence could satisfy a length 3 relation such as i n+3 =  zn+2 - I t would 
clearly then also satisfy shorter relations such as i n+i =  x n (at least for 
n >  2). However, there are less obvious ways tha t a sequence could sa t
isfy a recurrence of length less than expected. For example, consider the 
relation xn+,i =  x n + 3  +  xn+i +  xn- Suppose the initial values of the se
quence are 1, 1, 0, 1. T he recurrence allows us to compute subsequent terms: 
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 ---- It is easy to see tha t the sequence satisfies
Xn+-2 =  -En+l Xn .

If there is a recurrence of length N  and if n  > N ,  then one row of the 
matrix M n is congruent mod 2 to a linear combination of other rows. For 
example, if the recurrence is z n + 3  =  xn+2 +  x„, then the fourth row is the 
sum of the first and third rows. Therefore, det(A/n) =  0 (mod 2) for all 
n >  N .

Now suppose det(Mjy) =  0_(mod 2). Then there is a nonzero row vector 
b — (6q, . . . ,  such tha t bM ^  =  0. We’ll show th a t this gives a re
currence relation for the sequence 1 1 , 1 2 , 1 3 1  • • ■ and tha t the length of this 
relation is less than N . This contradicts the assumption tha t N  is smallest. 
This contradiction implies that det(M/v) 3  1 (mod 2).

Let the recurrence of length /V be

For each i > 0, let
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Then A/(°) =  M at. The recurrence relation implies that

which is the last column of A/(|+1).

By the choice of b, we have 6A/W =  bMw ~ 0. Suppose that we know 

that bMW =  0 for some i. Then

Therefore, b annihilates the last column of A-/(1+1). Since the remaining 

columns of A-/(1+1) are columns of A'/W, we find that 6A/(*+I) =  0. By 

induction, we obtain tjJV/M =  0 for all i  > 0.
Let n > 1. The first column of A'/(n-1) yields

loin + tllTn+l H----h 6jV-lXn+/V-l =  0.

Since 6 is not the zero vector, bjj^O for at least one j .  Let m  be the largest 

j  such that bj /  0, which means that bm =  1. We are working mod 2, so 

bmxn+m-i — —Xn+m-i. Therefore, we can rearrange the relation to obtain

Xn+m—1 — "i“ b\ -|- ‘ ‘ • ■+■

This is a recurrence of length m  — 1. Since m — 1 < Ar, and N  is assumed to 

be the shortest possible length, we have a contradiction. Therefore, the as

sumption that det(Mjv) =  0 must be false, so det(jV/N) =  1. This completes 

the proof. □

Finally, we make a few comments about the period of a sequence. Sup

pose the length of the recurrence is m. Any m  consecutive terms of the 
sequence determine all future elements, and, by reversing the recurrence, all 

previous values, too. Clearly, if we have m  consecutive Os, then all future 

values are 0. Also, all previous values are 0. Therefore, we exclude this 

case from consideration. There are 2m — 1 strings of 0s and Is of length 

m in which at least one term is nonzero. Therefore, as soon as there are 

more than 2m — 1 terms, some string of length m  must occur twice, so the 

sequence repeats. The period of the sequence is at most 2m — 1.
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Associated to a recurrence z n+m =  c0x„ +  C iin+i H------- h Cm -iin+m-i
(mod 2), there is a polynomial

f ( T )  = r m -  c ^ r " - 1 --------- CO.

If f (T )  is irreducible mod 2 (this means tha t it is not cpngruent to the 
product of two lower-degiee polynomials), then it can be shown that the 
period divides 2m — 1. An interesting case is when 2m — I is prime (these 
are called Mersenne primes). If the period isn’t 1, that is, if the sequence is 
not constant, then the period in this special case must be maximal, namely 
2m — 1 (see Section 3.11). The example where the period is 231 — 1 is of this 
type.

Linear feedback shift register sequences have been studied extensively. 
For example, see [Golomb] or [van der Lubbe].

One way of thwarting the above attack is to use nonlinear recurrences, 
for example,

*̂ n+3 =  ^n+2*^n -^n+1 •
Generally, these systems are somewhat harder to break. However, we shall 
not discuss them here.

2.12 Enigma

Mechanical encryption devices known as rotor machines were developed in 
the 1920s by several people. The best known was designed by Arthur Scher- 
bius and became the famous Enigma machine used by the Germans in World 
War II.

It was believed to be very secure and several attem pts at breaking the 
system ended in failure. However, a group of three Polish cryptologists, 
Marian Rejewski, Henryk Zygalski, and Jerzy Rdzycki, succeeded in break
ing early versions of Enigma during the 1930s. Their techniques were passed 
to the British in 1939, two months before Germany invaded Poland. The 
British extended the Polish techniques and successfully decrypted German 
messages throughout World War II.

The fact that Enigma had been broken remained a secret for almost 30 
years after the end of the war, partly because the British had sold captured 
Enigma machines to former colonies and didn't want them to know that the 
system had been broken.

In the following, we give a brief description of Enigma and then describe 
an attack developed by Rejewski. For more details, see for example [Koza- 
czuk]. This book contains appendices by Rejeweski giving details of attacks 
on Enigma.

We give a basic schematic diagram of the machine in Figure 2.2. For 
more details, we urge the reader to visit some of the many websites that can
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be found on the Internet that give pictures of actual Enigma machines and 
extensive diagrams of the internal workings of these machines.

F igure 2.2: A Schematic Diagram of tile Enigma Machine.

L, M , N  are the rotors. On one side of each rotor are 26 fixed electri
cal contacts, arranged in a circle. On the other side are 26 spring-loaded 
contacts, again arranged in a circle so as to touch the Fixed contacts of the 
adjacent rotor. Inside each rotor, the fixed contacts are connected to the 
spring-loaded contacts in a somewhat random manner. These connections 
are different in each rotor. Each rotor has 26 possible initial settings.

R  is the reversing drum. It has 26 spring-loaded contacts, connected in 
pairs.

K  is the keyboard and is the same as a typewriter keyboard.
S  is the plugboard. It has approximately six pairs of plugs that can be 

used to interchange six pairs of letters.
When a key is pressed, the first rotor N  turns 1/26 of a turn. Then, 

starting from the key, electricity passes through S , then through the rotors 
N ,M ,L .  When it reaches the reversing drum R, it is sent back along a 
different path through L, M , N , then through S . At this point, the electricity 
lights a bulb corresponding to a letter on the keyboard, which is the letter 
of the ciphertext.

Since the rotor N  rotates before each encryption, this is much more 
complicated than a substitution cipher. Moreover, the rotors L  and M  also 
rotate, but much less often, just like the wheels on an odometer.

Decryption uses exactly the same method. Suppose a sender and re
ceiver have identical machines, both set to the same initial positions. The 
sender encrypts the message by typing it on the keyboard and recording the 
sequence of letters indicated by the lamps. This ciphertext is then sent to 
the receiver, who types the ciphertext into the machine. The sequence of 
letters appearing in the lamps is the original message. This can be seen as 
follows. Lamp “a" and key “a" are attached to a wire coming out of the 
plugboard. Lamp “h" and key "h" are attached to another wire coming out 
of the plugboard. If the key “a” is pressed and the lamp "li" lights up, then 
the electrical path through the machine is also connecting lamp “a” to key
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"h". Therefore, if the "h” key were pressed instead, then the “a" key would 
light.

Similar reasoning shows that no letter is ever encrypted as itself. This 
might appear to be a good idea, but actually it is a weakness since it allows 
a cryptanalyst to discard many possibilities at the start.

The security of the system rests on the keeping secret the initial settings 
of the rotors, the setting of the plugs on the plugboard, and the internal 
wiring of the rotors and reversing drum. The settings of the rotors and the 
plugboard are changed periodically (for example, daily).

We’ll assume the internal wiring of the rotors is known. This would be 
the case if a machine were captured, for example. However, there are ways 
to deduce this information, given enough ciphertext, and this is what was 
actually done in some cases.

How many combinations of settings are there? There are 26 initial set
tings for each of the three rotors. This gives 26a =  17576 possibilities. There 
are 6 possible orderings of the three rotors. This yields 6 x 17576 =  105456 
possible ways to initialize the rotors. In later versions of Enigma, there were 
5 rotors available, and each day three were chosen. This made 60 possible 
orderings of the rotors and therefore 1054560 ways to initialize the rotors.

On the plugboard, there are 100391791500 ways of interchanging six 
pairs of letters.

In all, there seem to be too many possible initializations of the machine 
to have any hope of breaking the system. Techniques such os frequency 
analysis fail since the rotations of the rotors change the substitution for 
each character of the message.

So, how was Enigma attacked? We don 't give the whole attack here, 
but rather show how the initial settings of the rotors were determined in 
the years around 1937. This attack depended on a weakness in the protocol 
being used a t that time, but it gives the general flavor of how the attacks 
proceeded in other situations.

Each Enigma operator was given a codebook containing the daily settings 
to be used for the next month. However, if these settings had been used 
without modification, then each message sent during a given day would 
have had its first letter encrypted by the same substitution cipher. The 
rotor would then have turned and the second letter of each text would have 
corresponded to another substitution cipher, and this substitution would 
have been the same for all messages for tha t day. A frequency analysis on the 
first letter of each intercepted message during a  day would probably allow a 
decryption of the first letter of each text. A second frequency analysis would 
decrypt the second letters. Similarly, the remaining letters of the ciphertexts 
(except for the ends of the longest few ciphertexts) could be decrypted.

To avoid this problem, for each message the operator chose a message key 
consisting of a sequence of three letters, for example, r, / ,  u. He then used
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the daily setting from the codebook to encrypt this message key. But since 
radio communications were prone to error, he typed in rfu twice, therefore 
encrypting rfurfu to obtain a string of six letters. The rotors were then set to 
positions r , / ,  and u  and the encryption of the actual message began. So the 
first six letters of the transm itted message were the encrypted message key, 
and the remainder was the ciphertext. Since each message used a different 
key, frequency analysis d idn 't work.

The receiver simply used the daily settings from the codebook to de
crypt the first six letters of the message. He then reset the rotors to the 
positions indicated by the decrypted message key and proceeded to decrypt 
the message.

The duplication of the key was a great aid to the cryptanalysts. Suppose 
on some day you intercept several messages, and,among them are three that 
have the following initial six letters:

dmqvbn
vonpuy
pucfmq

All of these were encrypted with the same daily settings from the code- 
boolc. The first encryption corresponds to a perm utation of the 26 letters; 
let’s call this perm utation A. Before the second letter is encrypted, a rotor 
turns, so the second letter uses another permutation, call it B. Similarly, 
there are permutations C, D, E , F  for the remaining 4 letters. The strategy 
is to look at the products AD , B E , and C F.

We need a few conventions and facts about permutations. When we write 
AD  for two perm utations A  and D, we mean th a t we apply the permutation 
A  then D  (some books use the reverse ordering). The permutation tha t 
maps a  to b, b to  c, and c to a will be denoted as the 3-cycle ( a 6 c). A 
similar notation will be used for cycles of other lengths. For example, (o 6) 
is the perm utation th a t switches a and b. A perm utation can be written as 
a product of cycles. For example, the permutation

(dvp f  kxgzyo) (eijm unqlht)(bc) (m )  (a)(s)

is the perm utation that maps d to v, v to p, t  to e, r  to w, etc., and fixes a 
and s. If the cycles are disjoint (meaning that no two cycles have letters in 
common), then this decomposition into cycles is unique.

Let’s look back a t the intercepted texts. We don't know the letters of any 
of the three message keys, but let’s call the first message key xyz. Therefore, 
xyzxtjz encrypts to dmqvbn. We ltnow tha t permutation A  sends x  to d. 
Also, the fourth perm utation D  sends x  to v. But we know more. Because 
of the internal wiring of the machine, A actually interchanges x  and d and 
D  interchanges x  and v. Therefore, the product of the permutations, AD,
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sends d  to v (namely, A  sends d to x  and then D  sends x  to v). The unknown 
x  has been eliminated. Similarly, the second intercepted text tells us that 
AD  sends v to p, and the third tells us that A D  sends p  to / .  We have 
therefore determined that

AD  = (d vp f •••)•■• .

In the same way, the second and fifth letters of the three messages tell 
us that

B E  =  (oumb •••)■•• 

and the third and sixth letters tell us that

C F  = (cqny • ••)•••  .

With enough data, we can deduce the decompositions of AD, B E , and C F  
Into products of cycles. For example, we might have

AD = (dvpfkxgzyo)(eijmunqlht)(bc)(rw)(a)(s)
B E  =  (blfqveoum) (h jpsw izrn)(axt) (cgy) (d) (k) 

C F  = (abviktj gfcqny) (duzrehlxwpamo).

This information depends only on the daily settings of the plugboard and 
the rotors, not on the message key. Therefore, it relates to  every machine 
used on u given day.

Let's look at the effect of the plugboard. It introduces a permutation S  
a t the beginning of the process and then adds the inverse permutation S -1 
at the end. We need another fact about permutations: Suppose we take 
a permutation P  and another permutation of the form 5 P 5 ~ l for some 
permutation S  (where 5 -1 denotes the inverse perm utation of 5; in our 
case, S  =  S ~ l ) and decompose each into cycles. They will usually not have 
the same cycles, but the lengths of the cycles in the decompositions will be 
the same. For example, AD- has cycles of length 10, 10, 2, 2, 1, 1. If we 
decompose S A D S -1  into cycles for any perm utation S , we will again get 
cycles of lengths 10, 10, 2, 2, 1, 1. Therefore, if the plugboard settings are 
changed, but the initial positions of the rotors remain the same, then the 
cycle lengths.remain unchanged.

You might have noticed tha t in the decomposition of AD , B E , and C F  
into cycles, each cycle length appears an even number of times. This is a 
general phenomenon. For an explanation, see Appendix E of the aforemen
tioned book by Kozaczuk.

Rejewski and his colleagues compiled a catalog of all 105456 initial set
tings of the rotors along with the set of cycle lengths for the corresponding
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three permutations AD, B E , CF. In this way, they could take the cipher
texts for a given day, deduce the cycle lengths, and find the small number 
of corresponding initial settings for the rotors. Each of these substitutions 
could be tried individually. The effect of the plugboard (when the correct 
setting was used) was then merely a substitution cipher, which was eas
ily broken. This method worked until September 1938, when a modified 
method of transm itting message keys was adopted. Modifications of the 
above technique were again used to decrypt the messages. The process was 
also mechanized, using machines called “bombes" to find daily keys, each in 
around two hours.

These techniques were extended by the British at Bletchley Park during 
World War II and included building more sophisticated “bombes.” These 
machines, designed by Alan Turing, are often considered to have been the 
first electronic computers.

2.13 Exercises

1. Caesar wants to arrange a secret meeting with Marc Antony, either 
a t the Tiber (the river) or a t the Coliseum (the arena). He sends the 
ciphertext EVIRE. However, Antony does not know the key, so he tries 
all possibilities. Where will he meet Caesar? (Hint: This is a trick 
question.)

2 . The ciphertext U C R  was encrypted using the affine function 9 i  +  2 
mod 26. Find the plaintext.

3. Encrypt howareyou using the affine function 5x +  7 (mod 26). W hat 
is the decryption function? Check that it works.

4. Consider an affine cipher (mod 26). You do a chosen plaintext attack 
using hahaha. The ciphertext is NONONO. Determine the encryption 
function.

5. The following ciphertext was encrypted by an affine cipher mod 26:
CRWWZ.

The plaintext starts ha. Decrypt the message.

6 . Suppose you encrypt using an affine cipher, then encrypt the encryp
tion using another affine cipher (both are working mod 26). Is there 
any advantage to doing this, rather than using a single affine cipher? 
Why or why not?

7. Suppose we work mod 27 instead of mod 26 for affine ciphers. How 
many keys are possible? W hat if we work mod 29?
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8 . Suppose that you want to  encrypt a message using an affine cipher. 
You let a =  0, b =  1, . . . ,  z  =  25, but you also include ? =  26, ; =  
27, " =  28, ! =  29. Therefore, you use x  t—► a x  +  /? (mod 30) for your 
encryption function, for some integers a  and /3.

(a) Show that there are exactly eight possible choices for the integer 
a  (that is, there are only eight choices of a  (with 0 <  a  < 30) 
tha t allow you to decrypt).

(b) Suppose you try  to  use a  =  10, P =  0. Find two plaintext letters 
that encrypt to the same ciphertext letter.

0. You want to carry out an affine encryption using the function a x  + 0, 
but you have gcd(a, 26) =  d > 1. Show that if x \  =  xo +  (26/d), then 
a x i + P = a x 2 +  y3 (mod 26). This shows tha t you will not be able to 
decrypt uniquely in this case.

10. Suppose there is a language tha t has only the letters a and b. The 
frequency of the letter a is .1 and the frequency of 6 is .9. A message 
is encrypted using a Vigenere cipher (working mod 2 instead of mod 
26). The ciphertext is BABABAAABA.

(a) Show tha t the key length is probably 2.
(b) Using the information on the frequencies of the letters, determine 

the key and decrypt the message.

11. Suppose you have a language with only the 3 letters a, b, c, and they 
occur with frequencies .7, .2, .1, respectively. The following ciphertext 
was encrypted by the Vigenere method (shifts are mod 3 instead of 
mod 26, of course):

ABGBABBBAC.

Suppose you are told th a t the key length is 1, 2, or 3. Show tha t the 
key length is probably 2 , and determine the most probable key.

12. If v and w are two vectors in n-dimensional space, v- w — |v||w| cos0, 
where 6 is the angle between the two vectors (measured in the two- 
dimensional plane spanned by the two vectors), and |v | denotes the 
length of v. Use this fact to show that, in the notation of Section 2.3, 
the dot product Aq • A ; is largest when i  =  0.

13. The ciphertext YIFZMA  was encrypted by a Hill cipher with matrix 

. Find the plaintext.

14. The ciphertext text GEZXDS  was encrypted by a Hill cipher with a 
2 x 2  matrix. The plaintext is solved. Find the encryption matrix M .
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15. Eve captures Bob’s Hill cipher machine, which uses a 2-by-2 matrix 
M  mod 26. She tries a  chosen plaintext attack. She finds that the 
plaintext ba encrypts to H C  and the plaintext zz  encrypts to GT. 
W hat is the matrix M .

16. (a) The ciphertext text B LN I  was encrypted by a Hill cipher with a
2 x 2  matrix. The plaintext is dont. Find the encryption matrix.

(b) Suppose the ciphertext is ELNK  and the plaintext is still dont. 
Find the encryption matrix. Note that the second column of the 
matrix is changed. This shows that the entire second column of 
the encryption m atrix is involved in obtaining the last character 
of the ciphertext (see the end of Section 2.7).

( l  2\17. Suppose the matrix I g ^ J is used for an encryption matrix in a Hill 

cipher. Find two plaintexts that encrypt to  the same ciphertext.

18. Let a ,b ,c ,d ,e , f  be integers mod 26. Consider the following combina
tion of the Hill and affine ciphers: Represent a block of plaintext os a 
pair (x ,y )  mod 26. The corresponding ciphertext (it, v) is

(c d) + (e ^  H V) (mod 26)‘

Describe how to carry out a chosen plaintext attack on this system 
(with the goal of finding the key a, b, c, d, e, / ) .  You should state ex
plicitly what plaintexts you choose and how to recover the key.

19. A sequence generated by a length three recurrence sta rts 001110. Find 
the next four elements of the sequence.

20. Consider the sequence starting ki =  1,^2 =  O.fca =  1 and defined by 
the length three recurrence fcn+3 =  kn+^n+i+^n+ 2- This sequence can 
also be given by a length two recurrence. Determine this length two 
recurrence by setting up and solving the appropriate m atrix equations.

21. Suppose we build an LFSR machine tha t works mod 3 instead of mod
2. It uses a recurrence of length 2 of the form

Xn+2 =  Co^n (mod 3)

to  generate the sequence 1, 1, 0, 2, 2 , 0, 1, 1. Set up and solve the 
matrix equation to  find the coefficients co and C \.
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22. Suppose you modify the LFSR method to work mod 5 and you use a 
(not quite linear) recurrence relation

i n +2 5  coin +  c ii„+ i +  2 (mod 5),

I I  =  0,12 =  1,^3 = 1 ,1 4  =  0.

Find the coefficients cq and c \.

23. In the mid-1980s, a recruiting advertisement for NSA had 1 followed 
by one hundred Os a t the top. The text began “You're looking at a 
‘googol.’ Tun raised to the 100th power. One followed by 100 zeroes. 
Counting 24 hours a  day, you would need 120 years to reach a googol. 
Two lifetimes. I t’s a number that's impossible to  grasp. A number 
beyond our imagination."
IIow many numbers wouJd you have to count eoch second in order 
to reach a googol in 120 years? (This problem is not related to the 
cryptosystems in this chapter. It is included to  show how big 100-digit 
numbers are from a computational viewpoint. Regarding the ad, one 
guess is that the advertising firm assumed that the time it took to 
factor a  100-digit number back then was the same as the time it took 
to count to a googol.)

24. Alice is sending a message to Bob using one of the following cryptosys
tems. In fact, Alice is bored and her plaintext consists of the letter a 
repeated a few hundred times. Eve knows what system is being used, 
but not the key, and intercepts the ciphertext. For systems (a), (b), 
and (c), state how Eve will recognize th a t the plaintext is one repeated 
letter and decide whether or not Eve can deduce the letter and the key. 
(Note: For system (c), the solution very much depends on the fact that 
the repeated letter is a, rather than b, c , ---- )

(a) Shift cipher
(b) Affine cipher

(c) Hill cipher (with a 2 x 2 matrix)

25. The operator of a Vigenere encryption machine is bored and encrypts a 
plaintext consisting of the same letter of the alphabet repeated several 
hundred times. The key is a  six-letter English word. Eve knows that 
the key is a word but does not yet know its length.

(a) W hat property of the ciphertext will make Eve suspect that the 
plaintext is one repeated letter and will allow her to guess that 
the key length is six?



2 .1 4 . C o m p u t e r  P r o b l e m s 59

(b) Once Eve recognizes that the plaintext is one repeated letter, 
how can she determine the key? (Hint: You need the fact that 
no English word of length six is a shift of another English word.)

(c) Suppose Eve doesn’t notice the property needed in part (a), and 
therefore uses the method of displacing then counting matches for 
finding the length of the key. W hat will the number of matches 
be for the various displacements? In other words, why will the 
length of the key become very obvious by this method?

2.14 Co m puter Problems
1. The following ciphertext was encrypted by a shift cipher:

yc v e j qwhqtdtvmm

Decrypt. (The ciphertext is stored in the downloadable computer files 
(see the Appendices) under the name ycve.)

2. The following ciphertext 'was the output of a shift cipher:

lcllewljazlnnzmvylylhrmhza

By performing a frequency count, guess the key used in the cipher. 
Use the computer to test your hypothesis. W hat is the decrypted 
plaintext? (The ciphertext is stored in the downloadable computer 
files (see the Appendices) under the name Icll.)

3. The following ciphertext was encrypted by an affine cipher:

edsgickxhuklzveqzvkxwkzukcvuh

The first two letters of the plaintext are if. Decrypt. (The ciphertext is 
stored in the downloadable computer files (see the Appendices) under 
the name edsg.)

4. The following ciphertext was encrypted by an affine cipher using the 
function 3z +  b for some b:

tcabtiqmfheqqmrmvmtmaq

Decrypt. (The ciphertext is stored in the downloadable computer files 
(see the Appendices) under the name tcab.)

5. Experiment with the affine cipher y = m x  +  n  (mod 26) for values of 
Tn > 26. In particular, determine whether or not these encryptions are 
the same as ones obtained with m  < 26.
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6 . In this problem you are to get your hands dirty doing some program
ming. Write some code that creates a new alphabet {A, C, G, T}. For 
example, this alphabet could correspond to the four nucleotides ade
nine, cytosine, guanine, and thymine, which are the basic building 
blocks of DNA and RNA codes. Associate the letters A ,C ,G ,T  with 
the numbers 0 ,1,2, 3, respectively.

(a) Using the shift cipher with n shift of 1, encrypt the following 
sequence of nucleotides which is taken from the beginning of the 
thirteenth human chromosome:

G AATTCG CG G CCG C AATTAACC CTCACTAAAG G G ATC T  
CTAGAACT.

(b) Write a  program that performs affine ciphers on the nucleotide 
alphabet. W hat restrictions are there on the affine cipher?

7. The following was encrypted using by the Vigenere method using a 
key of length a t most 6. Decrypt it and decide what is unusual about 
the plaintext. How did this affect the results?

hdsfgvm koouafw eetcm fthskucaqbilg jofm aqlgspvatvxqbiryscpcfr 
m vsw rvnqlszdm gaoqsakm lupsqforvtw vdfcjzvgaoaoqsacjkbrsevbel 
vbksarlscdcaarm nvrysyw xqgvellcyluw w eoafgclazow af o jd lh s s f  i  
ksepsoyuxaf owlbfcsocylngqsyzxgjbm lvgrggokgfgm hlm ejabsjvgnil 
nrvqzcrggcrghgeupcyfgtydycjkhqluhgxgzovqsw pdvbw sffsenbxapa 
sgazm yuhgsfhm ftayjxm uznrsofrsoaopgauaaarm ftqsm akvqecev

(The ciphertext is stored in the downloadable computer files (see the 
Appendices) under the name hdsf. The plaintext is from Gadsby by 
Ernest Vincent Wright.)

8 . The following was encrypted by the Vigenere method. Find the plain
text.

ocwyikoooniwugpmxvktzdwgtssayjzwyemdlbaqaaavsuwdvbrflauplo 
oubf gqhgcs cm gzlatoedc sde idpbhtmuo vp iek ifp im fn o  amvlpqfxe j  sm 
xmpgkccayktrfzpyuaxrtelwhrhmwkbbvgtguvtef jlo d fe fk v p x sg rso rv g  
ta jbsauhzrzalk im ouhgedefnsw m rciucpaaavogpdnfpktdbalaisurL n 
psjyeatcuceesohhdarkhwotikbroqrdfm zghgucebvgwcdqxgpbgqwlpb 
daylooqdmuhbdqgmyweuikmvswrvnqlszdmgaoqsakmlupsqforvtwvdfc 
jz v g so ao q sac jk b rsev b e l

(The ciphertext is stored in the downloadable com puter files (see the 
Appendices) under the name acwy. The plaintext is from The Adven
ture o f the Dancing Men by Sir Arthur Conan Doyle.)
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9. The following was encrypted by the Vigenere method. Decrypt it. 
(The ciphertext is stored in the downloadable computer files (see the 
Appendices) under the name xkju.)

xkjurowmllpxvznpimbvbqjcnowcpcchhvvf vsllf vxhazityxohulxqoj 

axelxzxmyjaqfBtanilhhucdakbxknjqidallpqalluhiaqfpbpcidsvci 

hwbueuthbtxrljnrsncihuvffuxvoukjljswmaqfvjwjsdyljogjxdboxa 

jultucpzmpliumlubzxvoodybafdskxgqfadskxnxehsaruojaqfpfkndh 

saaf vulluirtaqf rupw j rszxgpf ut j qiynrxnyntwmhcukj f birzsmehhs j 

BhyonddzzntzmplilrwnmwmlvTiryonthuhabvmw

10. The following is the ciphertext of a  Hill cipher

zirkzuopjjoptfapuhfhadrq

using the matrix

Decrypt.

11. The following sequence was generated by a linear feedback shift regis
ter. Determine the recurrence tha t generated it.
1, 0, 1, 0, 0. 1, 1, 0 . 1. 1, 0, 0, 0. 1, 0, 0, 1, 0, 0,
0 , 0, 1, 1, 1, 0, 0 , 0 , 0 , 0, 1. 0, 1, 1, 1, 1, 1, 1, 0,
0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 1 ,
1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 ,
1 , 0 . 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1, 1, 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ,

1 , 1 , 1 , 1 , 1
(It is stored in the downloadable computer files (see the Appendices) 
under the name H 01.)

12. The following are the first 100 terms of an LFSR output. Find the 
coefficients of the recurrence.
1 , 0 . 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 1 . 1 , 0 , 0 , 0 , 1 , 1 , 0 ,
0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1, 1 , 1 , 1 , 0 , 1, 1 , 0 , 0 , 1, 1,
1 . 1 . 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 ,
1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1, 0 , 0 , 1 , 0 , 1 ,
0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 ,
1 , 0 , 0 , 0 , 0
(The sequence is stored in the downloadable computer files (see the 
Appendices) under the name L100.)
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13. The following ciphertext was obtained by XORing an LFSR output 
with the plaintext.
0 . 1, 1, 0 , 0 , 0 , 1, 0 , 1, 0 , 1, 1, 1, 0 , 0, 1, 1, 1, 0,
1, 0, 1, 0 , 0 , 0 , 1, 0, 0 , 0 , 1, 1 , 0 , 0 , 0 , 1, 0 , 1, 0 ,
1. 1, 1, 0, 0, 1, 1, 1, 0 . 1, 0 , 1 
Suppose you know the plaintext starts
1, 0 , 0, 1, 0, 0 , 1, 0 , 0, 1, 0 , 0 , 1, 0 , 0 
Find the plaintext. (The ciphertext is stored in the downloadable 
computer files (see the Appendices) under the name L011.)



C h a p t e r  3

Basic Number Theory

In modern cryptographic systems, the messages axe represented by numerical 
values prior to  being encrypted and transmitted. The encryption processes 
are mathematical operations tha t turn the input numerical values into out
put numerical values. Building, analyzing, and attacking these cryptosys
tems requires mathematical tools. The most im portant of these is number 
theory, especially the theory of congruences. This chapter presents the basic 
tools needed for the rest of the book. More advanced topics such os factor
ing, discrete logarithms, and elliptic curves, will be treated in later chapters 
(Chapters 6 , 7, and 16, respectively).

3.1 Basic Notions

3 .1 .1  D iv is ib i l i ty

Number theory is concerned with the properties of the integers. One of the 
most important is divisibility.

D e f in it io n . Let a and b be integers with a ^  0. We say that a d iv ides b, 
i f  there is an integer k such that b =  ak. This is denoted by a|b. Another 
■way to express this is that b is a multiple of a.

E x a m p le s .  3[ 15, —15|60, 7 f 18 (does not divide). ■

The following properties of divisibility are useful.

63
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P r o p o s i t io n .  Let a ,b ,c  represent integers.

1. For every a ^  0, a|0 and a |a. Also, 1|6 fo r  every b.

2. I f  a\b and Z>|c, then a|c.

3. I f  a\b and a\c, then a |( s i  4- tc) for all integers s and t;

Proof. Since 0 =  a ■ 0 , we may take k  =  0 in the definition to obtain c|0. 
Since a = a • 1, we take k = 1 to prove ojo. Since b =  b • 1, we have 1|6. 
This proves (1). Ill (2), there exist k  and t  such that b = ak and c =  bL 
Therefore, c =  (kt)a , so o|c. For (3), write h =  ofci and c =  akn. Then 
sb +  tc = a(ski + tfcj), so a |s 6 +  tc. □

For example, take a =  2 in part (2). Then 2|6 simply means tha t b is 
even. The statem ent in the proposition says that c, which is a multiple of 
the even number b, must also be even (that is, a  multiple of a =  2).

3 .1 .2  P r im e  N u m b e r s

A number p > 1 that is divisible only by 1 and itself is called a p rim e  
n u m b er. The first few primes are 2,3,5, 7,11,13,17, ■ ■ •. An integer n  > 1 
that is not prime is called co m p o site , which means that n  must expressible 
as a product ab of integers with 1 < a, b < n. A fact, known already to 
Euclid, is that there are infinitely many prime numbers. A more precise 
statement is the following, proved in 1896.

P r im e  N u m b e r  T h e o r e m . Let <r(x) be the m m ber o f primes less than 
x. Then

in the sense that the ratio T v(x)j(x j\nx )  —> 1 as x  —► cc.

We won't prove this here; its proof would lead us too far away from our 
cryptographic goals. In various applications, we'll need large primes, say 
of around 100 digits. We can estimate the number of 100-digit primes as 
follows:

i a IOO i n9$)

7T(10100) -  tt(10m) «  lnl0l00  -  j-[oaa  ”  3 9 x 1()9'-

So there are certainly enough such primes. Later, we’ll discuss how to find 
them.

Prime numbers are the building blocks of the integers. Every positive 
integer has a unique representation as a product of prime numbers raised to 
different powers. For example, 504 and 1125 have the following factorizations

504 =  23327, 1125 =  3253.
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Moreover, these factorizations are unique, except for reordering the factors. 
For example, if we factor 504 into primes, then we will always obtain- three 
factors of 2, two factors of 3, and one factor of 7. Anyone who obtains the 
prime 41 as a factor has made a mistake.

T h e o re m . Every positive integer is a product of primes. This factorization 
into primes is unique, up to reordering the factors.

Proof. There ia a small technicality that must be dealt with before we begin. 
When dealing with products, it is convenient to make the convention that 
an empty product equals 1. This is similar to the convention that x° =  1. 
Therefore, the positive integer 1 is a product of primes, namely the empty 
product. Also, each prime is regarded as a one factor product of primes.

Suppose there exist positive integers tha t are not products of primes. Let 
n  be the smallest such integer. Then n  cannot be 1 (=  the empty product), 
or a prime {= a one factor product), so n  must be composite. Therefore, 
7i =  ab with 1 < a,b < n. Since n is the smallest positive integer that is not 
a product of primes, both a and b are products of primes. But a product 
of primes times a  product of primes is a product of primes, so n  =  ab is a 
product of primes. This contradiction shows tha t the set of integers that 
are not products of primes must be the empty set. Therefore, every positive 
integer is a product of primes.

The uniqueness of the factorization is more difficult to prove. We need 
the following very important property of primes.

L e m m a . I f  p is a prime and p divides a product o f integers ab, then either 
p\a or p\b. More generally, i f  a prime p divides a product ab- ■ ■ z, then p 
must divide one of the factors a ,b ,. . .  ,z .

For example, when p =  2, this says tha t if a product of two integers is 
even then one of the two integers must be even. The proof of the lemma will 
be given at the end of this section, after we discuss the Euclidean algorithm.

Continuing with the proof of the theorem, suppose th a t an integer n  can 
be written as a  product of primes in two different ways;

n  = pa1Y 21 ---Ps’ = < 7 ^

where p i , . . . ,  ps and qi, . , . ,  qt are primes, and the exponents a,- and bj are 
nonzero. If a prime occurs in both factorizations, divide both sides by it to 
obtain a shorter relation. Continuing in this way, vve may assume that none 
of the primes p i , . . .  ,p£ occur among the qj's. Take a prime that occurs on 
the left side, say p \. Since p t divides n, which equals qiqi ■ ■ • QiQ2 - • ■ 9t, the 
lemma says tha t p\ must divide one of the factors qj. Since qj is prime, 
p i = qj. This contradicts the assumption that pi does not occur among 
the qj’s. Therefore, an integer cannot have two distinct factorizations, as 
claimed. □
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3.1.3 Greatest Common Divisor

The g re a te s t com m on  d iv iso r of a ond b is the largest positive integer 
dividing both a aiid b and is denoted by either gcd(a, b) or by (a, b). In this 
book, we shall use the first notation.

E x a m p le s . gcd(6, 4) =  2 , gcd(5, 7) =  1, gcd(24, GO) =  12. ■

We say that a and b ate re la tiv e ly  p rim e  if gcd(a, b) = 1. There are 
two standard ways for finding the gcd:

1. If you can factor a and b into primes, do so, For each prime number, 
look at the powers tha t it appears in the factorizations of a and b. 
Take the smaller of the two. P u t these prime powers together to  get 
the gcd. This is easiest to understand by examples:

576 =  2°32, 135 =  335, gcd(576,135) =  32 =  9

gcd(253472, 22537) =  223°5°71 =  227 =  28.

Note that if a  prime does not appear in a factorization, then it cannot 
appear in the gcd.

2. Suppose a and 6 are large numbers, so it might not be easy to factor 
them. The gcd can be calculated by a procedure known as the E u 
c lidean  a lg o rith m . It goes back to what everyone learned in grade 
school: division with remainder. Before giving a formal description of 
the algorithm, le t’s see some examples.

E x a m p le . Compute gcd(482, 1180).

Solution: Divide 482 into 1180. The quotient is 2 and the remainder is 
216. Now divide the remainder 216 into 482. The quotient is 2 and the 
remainder is 50. Divide the remainder 50 into the previous remainder 216. 
The quotient is 4 and the remainder is 16. Continue this process of dividing 
the most recent remainder into the previous one. The last nonzero remainder 
is the gcd, which is 2 in this case:

1180 =  2 ■■ 482 +  216
482 _ 2 ■216 +  50
216 =  4 . 50 +  16

50 =  3 16 +  2
16 =  8 '•2 +  0.
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Notice how the numbers are shifted:

remainder —» divisor —> dividend —> ignore.

Here is another example:

12345 = 11111+ 1234
11111 = 9 1234 4- 5
1234 = 246 • 5 -f 4

5 = 1 • 4 +  1
4 = 4- 1 + 0.

Therefore, gcd(12345,11111) =  1. B

Using these examples as guidelines, we can now give a more form al de- 
scription of the E u c lid ean  a lg o rith m . Suppose that a is greater than b. 
If  not, switch a and 6. T he first step is to divide a  by b, hence represent a  
in the form

a =  q1b +  r 1.

If r! =  0, then b divides a and the greatest common divisor is b. If r 1 != 0, 
then continue by representing b in the form

b =  qar1 +  r 2 .

Continue in this way until the remainder th a t is zero, giving the following 
sequence of steps:

a  =  g1b +  r 1 
b =  q2r t  +  r2 

r i =  q3r 2  + r 3

r k - 2  =  qkr k-1 +  r k 
rk-1 =  qk+1rk.

The conclusion is that
gcd(a, b) =  r k.

There are two im portant aspects to this algorithm:

1. I t does not require factorization of the numbers.

2. It is fast.
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For a proof that it actually computes the gcd, see Exercise 28.
The Euclidean algorithm allows us to  prove the following fundamental 

result.

T h e o re m . Let a and b be two integers, with at least one o f a, b nonzero, 
and let d = gcd(a, b). Then there exist integers x , y  such that ax + by = d. 
In particular, i f  a and b are relatively prime, then there exist integers x, y  
■with ax +  by =  1.

Proof. More generally, we’ll show that if r j is a remainder obtained during 
the Euclidean algorithm, then there are integers x j , yj such tha t ry — axj +  
bijj. S tart with j  =  1, Taking i i  =  1 and y i =  —qi, we find tha t r\ = 
axi+tnji. Similarly, to =  “■(-qi)+b(l+qi 52 )• Suppose we have r,- =  o ij+ by , 
for all i < j .  Then

Tj -  Tj-o  -  qjTj - i  — ax j -2  + byj-7 -  QjiflXj- 1  ■+ bijj-l)-

Rearranging yields

Tj =  -  q jX j-i)  + b(l/j-2  -  q jV j-i) .

Continuing, we obtain the result for all j ,  in particular for j  = k. Since 
rjt =  gcd (a, b), we are done. □

As a corollary, we deduce the lemma we needed during the proof of the 
uniqueness of factorization into primes.

C o ro lla ry . I f  p is a prime and p divides a product of integers ab, then 
either p\a or p\b. More generally, i f  a prime p divides a product a b ---z , 
then p must divide one of the factors a ,b , . . . , z .

Proof. First, le t’s work with the case p|ob. If p divides o, we are done. Now 
assume p \a .  We claim p\b. Since p is prime, gcd(a,p) =  1 or p. Since p \a ,  
the gcd cannot be p. Therefore, gcd(a, p) =  1, so there exist integers x ,y  
with ax +  py =  1. Multiply by b to  obtain abx + pby = b. Since p\ab and 
p\p, we have p\abx +pby, so p\b, as claimed.

If p |a 6 - • • z, then p\a or p\b- ■■ z. If p|o, we're done. Otherwise, p \b-■ ■ z. 
We now have a shorter product. Either p\b, in which case we're done, or 
p divides the product of the remaining factors. Continuing in this way, we 
eventually find tha t p divides one of the factors of the product. □

The property of primes stated  in the corollary holds only for primes. For 
example, if we know a product ab is divisible by 6 , we cannot conclude that 
q or b is a  multiple of 6 . The problem is th a t 6 =  2-3, and the 2 could be in a 
while the 3 could be in b, as seen in the example 60 =  4 -15. More generally, 
if n  =  ab is any composite, then n\ab but n \  a and n \  b. Therefore, the 
primes, and 1, are the only integers with the property of the corollary.
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3.2 Solving ax +  by =  d

We did not use the quotients in the Euclidean  algorithm. Here is how we 
can use them. A very basic fact, proved in the last section, is that, given 
integers a and b, there are integers x and y such that

ax +  by =  gcd(a, b).

How do we find x and y? Suppose we st art by dividing a into b, so b =  
qia +  r i ,  and then proceed as in the Euclidean algorithm. Let the successive 
quot ients be q1,qs,...qn, so in the first example o f Section 3.1., we have 
qi =  2, q2  =  2, q3  =  4, q4 =  3, qs =  8. Form the following sequences:

x0 =  0, x 1 =  1, xj  =  - q j-1 xj-1  +  xj - 2 ,

yo =  1, y1 =  o, yj =  - q j-1 yj-1  + y j- 2 .

Then
axn +  byn =  gcd(a,b).

In t he first example, we have the following calculation:

x0 =  0, x 1 =  1
x2 =  —2x1 +  xo =  —2
x3 =  -2 x 2 +  x1 =  5
x4 =  —4x3 +  x2 =  —22
xs =  —3x4 +  x3 =  71.

Similarly, we calculate y5 =  —29. An easy calculation shows that

482 • 71 +  1180 • (-2 9 ) =  2 =  gcd(482,1180).

Notice that we did not use the final quotient. If we had used it, we would 
have calculated xn+1 =  590, which is the original number 1180 divided by 
the gcd, namely 2. Similarly, yn+1 =  241 is 482/2.

The preceding method is often called the e x te n d e d  E u c lid ea n  algo- 
r ith m . It w ill be used in the next section for solving certain congruences.

For small numbers, there is another way to find x and y that does not 
involve as much bookkeeping with subscripts. Let's consider the example 
gcd(12345,11111) =  1 from the previous section. We’ll use the numbers 
from that calculation. The idea is to work back through the remainders 1, 
4, 5, 1234, and the original numbers 11111 and 12345, and eventually obtain 
the gcd 1 as a  combination of 12345 and 11111. From the line th a t revealed 
the gcd, we find

1 =  5 - 1 *4,
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so we have 1 as a combination of the previous two remainders. Moving up 
one line, we write the remainder 4 as a combination of 1234 and 5, then 
substitute into the preceding equation:

4 =  1234 -  246 • 5,

so
1 = 5  — 1 -4  =  5 — 1- (1234 -  246 • 5) =  247 ■ 5 -  1 - 1234.

We have now used the last two remainders from the gcd calculation. Write 
the last unused remainder, namely 5, as a combination of 11111 and 1234, 
then substitute into the preceding equation:

1 =  247 • (11111 -  9 • 1234) -  1 ■ 1234 =  247 • 11111 -  2224 • 1234.

Finally, we substitute for 1234 to obtain

1 =  247 • 11111 -  2224 • (12345 -  1 ■ 11111) =  2471 • 11111 -  2224 • 12345.

This yields the gcd 1 os a combination of 12345 and 11111, as desired. As 
long as the gcd calculation takes only a few steps, this procedure is quite 
easy to  do by hand. But, in general, the previous method is better and 
adapts well to a computer.

3.3 Congruences

One of the most basic and useful notions in number theory is modular arith
metic, or congruences.

D e f in it io n . Let a ,b ,n  be integers with n j^O . We say that

o =  6 (mod n)

(read: a is c o n g ru e n t to b mod n j i f  a—b is a multiple (positive or negative) 
o fn .

Another formulation is th a t‘o =  b (mod n) if a and b differ by a multiple 
of n. This can be rewritten as a =  b +  nfc for some integer k (positive or 
negative).

E x a m p le s .

32 =  7 (mod 5), -1 2  =  37 (mod 7), 1 7 = 1 7  (mod 13). I

Congruence behaves very much like equality, In fact, the notation for 
congruence was intentionally chosen to resemble the notation for equality.
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P r o p o s i t io n .  Let a, 6, c, n  be integers with n  £  0.

1. a =  0 (mod n) if  and only if  n\a.

2 . a — a (mod n).

3. a = b (mod n) i f  and only i f  b = a (mod n).

jf. I f  a s  b and b = c (mod n), then a =  c (mod n).

Proof. In (1), a  H 0 (mod n) means that a = a — 0 is a multiple of n, which 
is the same as n|o. In (2), we have a — a = 0 n, so a = a (mod n). In (3), 
if a = b (mod n), write a -  b =  nk. Then b — a = n (—k), so 6 =  a (mod n). 
Reversing the roles of a and b gives the reverse implication. For (4), write 
a =  b + n k  and c =  b + n£. Then a — c — n[k  — £), so a = c (mod n). □

Often, we will work with the integers mod n , denoted Z„. These may 
be regarded as the set {0 , 1, 2, . . . ,  n  — 1}, with addition, subtraction, and 
multiplication mod n. If a is any integer, we may divide a by n  and obtain 
a remainder in this set:

a = nq + r  with 0 < r < n.

(This is just division with remainder; q is the quotient and r  is the remain
der.) Then a = r  (mod rt), so every number a is congruent mod n  to some 
integer r  with 0 <  r < n.

P r o p o s i t io n .  Let a ,b ,c ,d ,n  be integers with n  0, and suppose a s  b 
(mod n) and c = d  (mod n). Then

a + c = b + d, a — c = b — d , ac =  bd (mod n).

Proof. Write a =  b +  nk  and c = d + nC, for integers k and i. Then 
tt +  c =  b + d + n (k  + C), so a + c = b + d (mod n). The proof that 
o —c =  b—d is similar. For multiplication, we have ac = bd+n(dk-\-b£+nkC), 
so ac =  bd. □

The proposition says you can perform the usual arithmetic operations 
of addition, subtraction, and multiplication with congruences. You must be 
careful, however, when trying to perform division, as we’ll see.

If we take two numbers and want to multiply them modulo n, we sta rt 
by multiplying them as integers. If the product is less than n, we stop. If the 
product is larger than n - 1 ,  we divide by n  and take the remainder. Addition 
and subtraction are done similarly. For example, the integers modulo 6 have 
the following addition table:
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+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

A table for multiplication mod 6 is

X 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

E x a m p le .  Here is an example of how we can do algebra mod n. Consider 
the following problem: Solve 2 +  7 =  3 (mod 17),

Solution: r  =  3 — 7 = —4 = 1 3  (mod 17). I

There is nothing wrong with negative answers, but usually we write the 
final answer as an integer from 0 to n — 1 when we are working mod n.

3 .3 .1  D iv is io n

Division is much trickier mod n  than it is with rational numbers. The general 
rule is that you can divide by a (mod n) when gcd(a, n) =  1.

P ro p o s i t io n .  Let a ,b ,c ,n  be integers with, n  0 and with gcd(a,n) =  1. 
I f  ab =  ac (mod n), then b = c (mod n). In  other words, i f  a  and n  are 
relatively prime, we can divide both sides o f the congruence by a.

Proof. Since gcd(a, n) =  1, there exist integers x, y such tha t ax  +  ny  =  1. 
Multiply by b ^  c to obtain

(ab — ac)x +  n(b — c)y = b — c.

Since ab — ac is a multiple of n, by assumption, and n(b — c)y is also a 
multiple of n, we find tha t 6 — c is a  multiple of n. This means that b =  c 
(mod n). □
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E x a m p le .  Solve: 2x +  7 =  3 (mod 17).

Solution: 2x =  3 — 7 =  —4, so x  =  — 2 =  15 (mod 17). The division By 2 is 
allowed since gcd(2,17) =  1. I

E x a m p le .  Solve: 5$ +  6 =  13 (mod 11).
Solution: 5x — 7 (mod 11). Now what do we do? We want to divide by 
5, but what does 7/5 mean mod 11? Note that 7 s  18 =  29 =  40 =  ■ • ■ 
(mod 11). So 5x =  7 is the same as 5z =  40. Now we can divide by 5 and 
obtain x  =  8 (mod 11) as the answer. Note tha t 7 =  8 • 5 (mod 11), so 8 
acts like 7/5. ■

The lost example can be done another way. Since 5-9  =  1 (mod 11), we 
see tha t 9 is the multiplicative inverse of 5 (mod 11). Therefore, dividing 
by 5 can be accomplished by multiplying by 9. If we want to  solve 5x =  7 
(mod 11), we multiply both sides by 9 and obtain

x  =  45x =  63 =  8 (mod 11).

P r o p o s i t io n .  Suppose gcd(o, n) =  1. Let 3 and t be integers such that 
as + n t = 1 (they can be found using the extended Euclidean algorithm). 
Then as =  1 (mod n), so s is the multiplicative inverse for a (mod n).

Proof. Since as — 1 =  —nt, we see that as — 1 is a multiple of n. □

The extended Euclidean algorithm is fairly efficient for computing the 
multiplicative inverse of a by the method stated in the proposition.

E x a m p le .  Solve 11111s =  4 (mod 12345).
Solution: Referring to the calculation of gcd(12345,11111) done earlier, we 
have quotients qi =  1,<?2 =  9, <73 =  246, q\ =  1,95 — 4. Therefore, in the 
extended Euclidean algorithm, Xq =  0, =  1, x? =  — l,x$  =  10, x,i =  
-2461, X5 =  2471, which tells us th a t 11111 • 2471 +  12345 • 2/5 =  1; hence,

11111-2471 =  1 (mod 12345).

Multiplying both sides of the original congruence by 2471 yields

x  =  9884 (mod 12345).

In practice, this means that if we are working mod 12345 and we encounter 
the fraction 4/11111, we can replace it with 9884. This might seem a little 
strange, but think about what 4/11111 means. I t ’s simply a symbol to 
represent a quantity that, when multiplied by 11111, yields 4. When we are 
working mod 12345, the number 9884 also has this property since 11111 x 
0884 =  4 (mod 12345). 1

Let's summarize some of the discussion:
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Finding o-1 (mod n)

1. Use the extended Euclidean algorithm to find integers s and t such 
that as + n t =  1.

2 . a -1  — 3 (mod n).

Solving ax =  c (mod n) when gcd(a,n) =  1

(Equivalently, i/ou couM 6e working mod n and encounter a fraction c/a  with 
gcd(a, n) = \ . )

1. Use the extended Euclidean algorithm to find integers s and t  such 
that as + n t  =  1.

2. The solution is x  =  cs (mod n) (equivalently, replace the fraction c/a  
with cs (mod n)).

W h a t  if  gcd(a, n ) >  1?

Occasionally we will need to solve congruences of the form ax  =  b (mod n) 
when gcd(a, n) = d > 1. The procedure is as follows:

1. If d does not divide b, there is no solution.

2. Assume d\b. Consider the new congruence

(a jd)x  =  b/d  (mod n /d).

Note that ajd, b/d, n /d  are integers and g cd (a /d ,n /d ) =  1. Solve this 
congruence by the above procedure to obtain a solution xo-

3. The solutions of the original congruence ax = b (mod n) are

x0, so + {n /d ), xq + 2 ( n /d ) , . . . ,  xq +  (d — l)(n /d )  (mod n).

E x a m p le . Solve 12z =  21 (mod 39).

Solution: gcd(12,39) =  3, which divides 21. Divide by 3 to obtain the new 
congruence 4x =  7 (mod 13). A solution xq =  5 can be obtained by trying a 
few numbers, or by using the extended Euclidean algorithm. The solutions 
to the original congruence are x = 5, 18, 31 (mod 39). B
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The preceding congruences contained x to the first power. However, 
nonlinear congruences are also useful. In several places in this book, we will 
meet equations of the form

x2 =  a (mod n).

First, consider x2 =  1 (mod 7). The solutions are x =  1,6 (mod 7), as 
we can see by trying the values 0 ,1 ,2 , . . . ,  6 for x. In general, when p is an 
odd prime, x 1 =  1 (mod p) has exactly the two solutions x =  ±1  (mod p) 
(see Exercise 8).

Now consider r s l  (mod 15). If we try the numbers 0 ,1 ,2 , . . . ,  14 for 
x, we find th a t x =  1,4,11,14 are solutions. For example, l l 2 =  121 =
1 (mod 15). Therefore, a quadratic congruence for a composite modulus 
can have more than two solutions, in contrast to the fact that a quadratic 
equation with real numbers, for example, can have a t most two solutions. In 
Section 3.4, we’ll discuss this phenomenon. In Sections 6.4 (factoring), 13.1 
(flipping coins), and 14.2 (identification schemes), we'll meet applications of 
this fact.

3.3.2 Working with Fractions

In many situations, it will be convenient to work with fractions mod n. For 
example, 1/2 (mod 12345) is easier to write than 6173 (mod 12345) (note 
th a t 2 x 6173 =  1 (mod 12345)). The general rule is that a fraction b/a  can 
be used mod n  if gcd(a, n) =  1. Of course, it should be remembered tha t b/a 
(mod n) really means a~lb (mod n), where a -1  denotes the integer mod n 
that satisfies o-1 o =  1 (mod n). But nothing will go wrong if it is treated 
as a fraction.

Another way to look at this is the following. The symbol “1/2” is simply 
a symbol with exactly one property: If you multiply 1/2 by 2, you get 1. 
In all calculations involving the symbol 1/2, this is the only property that 
is used. When we are working mod 12345, the number 6173 also has this 
property, since 6173 x 2 =  1 (mod 12345). Therefore, 1/2 (mod 12345) and 
6713 (mod 12345) may be used interchangeably.

W hy can’t we use fractions with arbitrary denominators? Of course, we 
cannot use 1/6 (mod 6), since that would mean dividing by 0 (mod 6 ). But 
even if we try to work with 1/2  (mod 6), we run into trouble. For example,
2 =  8 (mod 6), but we cannot multiply both sides by 1/ 2 , since 1 ^ 4  
(mod 6). The problem is that gcd(2,6) =  2 ^  1. Since 2 is a factor of 6 , we 
can think of dividing by 2 as “partially dividing by 0." In any case, it is not 
allowed.
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3.4 The C hinese Remainder Theorem

In many situations, it is useful to break a congruence mod n  into a system 
of congruences mod factors of n. Consider the following example. Suppose 
we know that a number x  satisfies x = 25 (mod 42). This means tha t we 
can write x  = 25 +  42k for some integer k. Rewriting 42 as 7 • 6 , we obtain 
x — 25 +  7(6k), which implies that x = 25 =  4 (mod 7). Similarly, since 
x  =  25 +  6(7k), we have x  s  25 = 1 (mod 6). Therefore,

—  £53.
The Chinese remainder theorem shows th a t this process can be reversed; 
namely, a system of congruences can be replaced by a single congruence 
under certain conditions.

C h in e s e  R e m a in d e r  T h e o re m . Suppose gcd(m, n) =  1. Given integers 
a and b, there exists exactly one solution x  (mod m n) to the simultaneous 
congruences

x  = a (mod m), x  = b (mod n).

Proof. There exist integers s, t  such that m s+ n t  =  1. Then m s =  1 (mod n) 
and nt = 1 (mod m). Let x = bms +  ant. Then x  — an t =  a (mod m), 
and x  = bms = b (mod n), so a solution x  exists. Suppose X[ is another 
solution. Then x =  X\ (mod m) and x  = x \  (mod n), so x —x \  is a multiple 
of both m  and n.

L e m m a . Let m ,n  be integers with gcd(m, n) =  1. I f  an integer c is a 
multiple o f both m  and n, then c is a multiple of m n.

Proof. Let c =  m k  =  n t. Write m s  +  nt =  1 with integers s, t. Multiply by 
c to obtain c — cms +  cnt — m n ts  +  m n kt  =  m n(£s + kt). □

To finish the proof of the theorem, let c =  x  — xi in the lemma to find 
that x  — X\ is a multiple of m n. Therefore, x  = x \ (mod m n). This means 
that any two solutions x to the system of congruences are congruent mod 
m n, as claimed. □

E x a m p le .  Solve x =  3 (mod 7), x =  5 (mod 15).

Solution: x  =  80 (mod 105) (note: 105 =  7 • 15). Since 80 s  3 (mod 7) 
and 80 =  5 (mod 15), 80 is a solution. The theorem guarantees that such 
a solution exists, and says th a t it is uniquely determined mod the product 
m n, which is 105 in the present example. B
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How does one find the solution? One way, which works with small num
bers m  and n, is to list the numbers congruent to b (mod n) until you find 
one tha t is congruent to a (mod m). For example, the numbers congruent 
to 5 (mod 15) are

5 ,20 ,35 ,50 ,65 ,80 ,95 ,....

Mod 7, these are 5 ,6 ,0 ,1 ,2 ,3 ,4 ,___ Since we want 3 (mod 7), we choose
80.

For slightly larger numbers m  and n, making a list would be inefficient. 
However, a similar idea works. The numbers congruent to b (mod n) are of 
the form b + n k  with k  an integer, so we need to solve b + n k  = a (mod m). 
This is the same as

n k  = a — b (mod m}.
Since gcd(m ,n) =  1 by assumption, there is a multiplicative inverse i for n  
(mod m). Multiplication by i gives

k =  (a -  b)i (mod m ).

Substituting back into x  = b+ nk, then reducing mod m n, gives the answer.
Of course, for large numbers, the proof of the theorem gives an efficient 

method for finding x  tha t is almost the same as the one just given.

E x a m p le .  Solve x  =  7 (mod 12345), x  =  3 (mod 11111).

Solution: First, we know from our calculations in Section 3,3 that the inverse 
of 11111 (mod 12345) is i  =  2471. Therefore, k  =  2471(7 -  3) =  9884 
(mod 12345). This yields x  =  3 +  11111 - 9884 =  109821127 (mod (11111 • 
12345)). ■

How do you use the Chinese remainder theorem? The main idea is 
that if you s ta rt w ith a congruence mod a composite number n, you can 
break it into simultaneous congruences mod each prime power factor of n, 
then recombine the resulting information to obtain an answer mod n. The 
advantage is that often it is easier to analyze congruences mod primes or 
mod prime powers than to work mod composite numbers.

Suppose you want to solve x2 =  1 (mod 35). Note that 35 =  5 • 7. We 
have

[ x ‘ = 1 (mod 7)
*- =  1 (mod 35) .  ^  =  l

Now, x~ =  1 (mod 5) has two solutions: x  =  ± 1  (mod 5). Also, x2 =  1 
(mod 7) has two solutions: x  =  ± 1  (mod 7). We can put these together in 
four ways:

x  =  1 (mod 5), x  =  1 (mod 7) — > x =  1 (mod 35),
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x  = 1 (mod 5), x =  —1 (mod 7) — ► x  = G (mod 35),

x =  —1 (mod 5), x  = 1 (mod 7) — ► x  =  29 (mod 35),

x =  - 1  (mod 5), x  =  — 1 (mod 7) — » x  = 34 (mod 35).

So the solutions of x2 =  1 (mod 35) are x  = 1 ,6,29,34 (mod 35).
In general, if n  =  p \p i • - - pr is the product of r  distinct odd primes, then 

x2 =  1 (mod n) has 2r solutions. This is a consequence of the following.

Chinese Remainder Theorem (General Form). Let
be integers with gcd(ml, m j)  =  1 whenever i ^  j .  Given integers o l, . . . ,  
a t, there exists exactly one solution x  (mod m i • • ■ m^) to the simultaneous 
congruences

x  =  aj (mod m j), x =  a 2 (mod rnn), x  = (mod mu).

For example, the theorem guarantees there is a solution to the simulta
neous congruences

x =  I (mod 11), x =  — 1 (mod 13), x =  1 (mod 17).

In fact, x  s  1871 (mod 11 • 13 • 17) is the answer.
Exercise 24 gives a  m ethod for computing the number x  in the theorem.

3.5 M od ular Exponentiation

Throughout this book, we will be interested in numbers of the form

x a (mod n).

In this and the next couple of sections, we discuss some properties of numbers 
raised to a power modulo an integer.

Suppose we want to compute 2123,1 (mod 789). If we first compute 2123,1, 
then reduce mod 789, we'll be working with very large numbers, even though 
the final answer has only 3 digits. We should therefore perform each multipli
cation and then calculate the remainder. Calculating the consecutive powers 
of 2 would require that we perform the modular multiplication 1233 times. 
Tliis is method is too slow to be practical, especially when the exponent 
becomes very large. A more efficient way is the following (all congruences 
will be mod 789).
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We start with 22 =  4 (mod 789) and repeatedly square both sides to 
obtain the following congruences:

2'1 7 42 = 16
28 = 162 E= 256

2io 25G2 =  49
232 34
2<J4 = 367

2128 559
225G = 37
2512 = 580

2L021 = 280.

Since 1234 =  1024 4- 128 +  64 +  16 +  2 (this ju st means tha t 1234 equals 
10011010010 in binary), we have

2123'1 =  286 • 559 ■ 367 • 49 • 4 =  481 (mod 789).

Note that we never needed to work with a number larger than 7882.
The same method works in general. If we want to compute ak (mod n), 

we can do it with a t most 2 log2(6) multiplications mod n, and we never 
have to work with numbers larger than nr. This means that exponentiation 
can be accomplished quickly, and not much memory is needed.

This method is very useful if a, b, n  ore 100-digit numbers. If we simply 
computed ab, then reduced mod n, the computer's memory would overflow: 
The number ab hog more than 101DD digits, which is more digits than there 
are particles in the universe. However, the computation of ab (mod n) can 
be accomplished in less than 700 steps by the present method, never using 
a number of more than 200 digits.

An algorithmic version of this procedure is given in Exercise 23.

3.6 Fermat’s L ittle Theorem and Euler’s 
Theorem

Two of the most basic results in number theory are Fermat's and Euler’s 
theorems. Originally admired for their theoretical value, they have more 
recently proved to have important cryptographic applications and will be 
used repeatedly throughout this book.

F e r m a t ’s L i t t l e  T h e o r e m . I fp  is a prime andp does not divide a, then

a? 1 =  1 (mod p ).
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Proof. Let
{1,2,3....... ..  1}.

Consider the m ap ip : 5  —+ S  defined by ip(x) =  ax  (mod p). For example, 
when p — 7 and a =  2, th e map tZ> takes a number x, multiplies it by 2, then 
reduces the result mod 7.

We need to check that if $ € S, then ip[x) is actua lly in 5; that is, 
1/1(1 ) != 0. Suppose Tp(x) =  0. Then ax =  0 (mod p). Since gcd(a,p) =  1, 
we can divide this congruence by a to obtain x = 0 (mod p), so x  £  S.  This 
contradiction means tha t ip(x) cannot be 0, hence 4>(x) € S.  Now suppose 
there are x , y  6 S  with Tp(x) = 1p{y). This means ax =  ay  (mod p). Since 
gcd(a,p) =  1, we can divide this congruence by a to obtain x  = y  (mod p). 
We conclude that if x , y  are distinct e lements of S,  then ip{x) and 1/1(1/) are 
distinct. Therefore,

V,( 1) ,V' (2) ,V' (3) , - "  , ^ ( P - 1)

are distinct elements of S.  Since S  has only p — 1 elements, these must be 
the elements of S  written in a some order. It follows that

1 ■ 2 • 3 • • • (p -  1)

=  t f ( l) ■ V(2) - ^(3) ■ ■ ■ V>(P -  1)
=  (° ' l) (a  • 2)(a • 3) • • • (o • (p — 1))
=  ap-1( l ■ 2 • 3 ■ ■ • (p — 1)) (mod p).

Since gcd(7 ,p) =  1 for j  G S, we can divide this congruence by 1 ,2 ,3 , .. .  ,p  — 
1. W hat remains is 1 =  ap_1 (mod p). □

E x a m p le .  210 =  1024 =  1 (mod 11), From this we can evaluate 253 
(mod 11): Write 253 =  (210)s 2̂  =  1523 =  8 (mod 11). Note that when 
working mod 11, we are essentially working with the exponents mod 10, 
not mod 11. In other words, from 53 =  3 (mod 10), we deduce 253 =  23 
(mod 11). I

Usually, if 2n_1 e  1 (mod n), the number n  is prime. However, there are 
exceptions: 561 =  3 • 11 • 17 is composite but 25C0 =  1 (mod 561). We can 
see this as follows: Since 560 =  0 (mod 2), we have 25C0 =  2° =  1 (mod 3). 
Similarly, since 560 =  0 (mod 10) and 560 =  0 (mod 16), we can conclude 
tha t 2560 =  1 (mod 11) and 2560 =  1 (mod 17). P u tting  things together via 
the Chinese remainder theorem, we find th a t 2560 =  1 (mod 561).

Another such exception is 1729 =  7-13-19. However, these except ions are 
fairly rare in practice. Therefore, if 2"~1 =  1 (mod n), it is quite likely that 
n  is prime. Of course, if 2"-1 ^  1 (mod n),  then n  cannot be prime. Since



3 .6 . F e r m a t  a n d  E u l e r 81

2" 1 (mod n) can be evaluated very quickly (see Section 3.5), this gives a 
way to search for prime numbers. Namely, choose a  starting point tiq and

If n  fails the test, discard it and proceed to the next n. When an n  passes 
the test, use more sophisticated techniques (see Section 6.3) to test n  for 
primality. The advantage is tha t this procedure is much faster than trying 
to factor each n, especially since it eliminates many n  quickly. Of course, 
there are ways to speed up the search, for example, by first eliminating any 
n tha t has small prime factors.

We'll also need the analog of Fermat's theorem for a composite modulus 
7i. Let <p(n) be the number of integers 1 <  a <  n  such tha t gcd(a,n) =  1. 
For example, if n  — 10, then there are four such integers, namely 1,3,7,9. 
Therefore, 0(10) = 4. Often <j> is called E u le r ’s ^ fu n c t io n .

If p is a  prime and n  =  pr , then we must remove every pth number in 
order to get the list of a 's  with gcd(a,n) =  1, which yields

where the product is over the distinct primes p dividing n. When n  =  pq is 
the product of two distinct primes, this yields

successively test each odd number n  > no to see whether 2" 1 =  1 (mod n).

0(pr) = (i - V -  
p

More generally, it can be deduced from the Chinese remainder theorem that 
for any integer n,

) =  ( p -  i ) ( g - 1)-

Examples.
0(10) =  (2 — 1)(5 — 1) =  4,

0(120) =  120(1 - I ) ( l - I ) ( l - I )  =  32 1

E u le r ’s  T h e o r e m . //g c d (a ,n )  =  1, then

a^(") =  i  (mod n).
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Proof. The proof of this theorem is almost the same as the one given for 
Fermat's theorem. Let S  be the set of integers 1 <  x  < n  with gcd(x,n) =  1. 
Let ij>: S  —* S  be defined by ip(x) =  ax  (mod n). As in the proof of Fermat’s 
theorem, the numbers i>(x) for x e  S  are the numbers in S  written in some 
order. Therefore,

nx=n - °*<n) n *•
i e s  xes i65

Dividing out the factors x  £ S, we are left with 1 =  (mod n). □

Note that when n  = p  is prime, Euler's theorem is the same as Fermat's 
theorem.

E x a m p le . W hat are the last three digits of 7803?

Solution: Knowing the last three digits is the same as working mod 1000. 
Since 0(1000) =  1000(1 -  1)(1 -  5 ) =  400, we have 7803 =  (7'100)273 =  73 =  
343 (mod 1000). Therefore, the last three digits are 343.

In this example, we were able to change the exponent 803 to 3 because 
803 =  3 (mod 0(1000)). B

E x a m p le . Compute 243210 (mod 101).

Solution: Note that 101 is prime. From Fermat’s theorem, we know that 
2100 =  1 (mod 101). Therefore,

2432io =  ^2100)432210 =  1432210 =  1024 =  14 (mod 101).

In this case we were able to change the exponent 43210 to 10 because 43210 =  
10 (mod 100). I

To summarize, we sta te the following:

B a s ic  P r in c ip le .  Let a ,n ,x ,y  be integers with n  > 1 and gcd(o,n) =  1. 
I f  x  = y  (mod <j>(n}), then ax =  ay (mod n). In other words, i f  you want to 
work mod n, you should work mod <f>(n) in the exponent.

Proof. Write x  = y + <j)(n)k. Then

ax =  flS'+M* =  a'-/( a ^ n))*! =  avl k = av (mod n).

This completes the proof. □

This extremely im portant fact will be used repeatedly in the remainder 
of the book. Review the preceding examples until you are convinced that 
the exponents mod 400 =  0(1000) and mod 100 are what count (i.e., don’t 
be one of the many people who mistakenly try to work with the exponents 
mod 1000 and mod 101 in these examples).
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3.6.1 Three-Pass Protocol

Alice wishes to transfer a secret key K  (or any short message) to Bob via 
communication on a public channel. The Basic Principle can be used to 
solve this problem.

First, here is a nonmathematical way to do it. Alice puts K  into a box 
and puts her lock on the box. She sends the locked box to Bob, who puts 
his lock on the box and sends the box back to Alice. Alice then takes her 
lock off and sends the box to Bob. Bob takes his lock off, opens the box, 
and finds K .

Here is the mathematical realization of the method. First, Alice chooses 
a large prime number p that is large enough to represent the key K . For 
example, if Alice were trying to send a 56-bit key, she would need a prime 
number that is at least 56 bits long. However, for security purposes (to make 
what is known os the discrete log problem hard), she would want to choose 
a prime significantly longer than 56 bits. Alice publishes p so that Bob (or 
anyone else) can download it. Bob downloads p. Alice and Bob now do the 
following:

1. Alice selects a random number a  with gcd(a,p—1) =  1 and Bob selects 
a random number b with gcd(6,p -  1) =  1. We will denote by o-1 and 
b~l the inverses of a and b mod p -  1.

2. Alice sends K i  =  K a (mod p) to Bob.

3. Bob sends K i = K* (mod p) to Alice.

4. Alice sends I(j =  K? ' (mod p) to Bob.

5. Bob computes K  ~  Kjj ' (m odp).

At the end of this protocol, both Alice and Bob have the key K .
The reason this works is that Bob has computed K aba h 1 (mod p). 

Since a a -1 =  66"1 =  1 (p), the Basic Principle implies that K aba lfc_1 5  
K l =  K  (mod p).

The procedure is usually attributed to Shamir and to  Massey and Omura. 
One drawback is tha t it requires multiple communications between Alice and 
Bob. Also, it is vulnerable to the intruder-in-the-middle attack (see Section 
10.1).

3.7 Prim itive Roots
Consider the powers of 3 (mod 7):

31 =  3, 32 =  2, 33 =  6, 3'1 =  4, 3s =  5, 36 =  1.
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Note that we obtain all the nonzero congruence classes mod 7 as powers 
of 3. This means that 3 is a  primitive root mod 7 (the term multiplicative 
generator might be better but is not as common). Similarly, every nonzero 
congruence class mod 13 is a power of 2, so 2 is a primitive root mod 13. 
However, 33 s  1 (mod 13), so only 1, 3, 9 are powers of 3,. Therefore, 3 is 
not a primitive root mod 13. The primitive roots mod 13 are 2, 6, 7, 11.

In general, when p is a  prime, a  p r im itiv e  ro o t mod p is a  number 
whose powers yield every nonzero class mod p. It can be shown th a t there 
are <fi{p -  1) primitive roots mod p. In particular, there is always at least 
one. In practice, it is not difficult to find one, at least if the factorization of 
p — 1 is known. See Exercise 21.

The following summarizes the main facts we need about primitive roots.

Proposition. Let g be a primitive root for the prime p.
1. Let n  he an integer. Then gn =  1 (mod p) i f  and only i f  n  = 0 

(mod p -  1).

2. I f  j  and k are integers, then yJ =  gk (mod p) i f  and only i f  j  = k 
(mod p — 1).

Proof. If n  =  0 (mod p — 1), then n  =  (p — 1)771 for some m . Therefore,
gn _  (5m)p-l a  i (mod p)

by Fermat’s theorem. Conversely, suppose gn =  1 (mod p). We want to 
show that p — 1 divides n, so we divide p — 1 into n  and try to  show that 
the remainder is 0. Write

71 =  (p -  1)9 +  r, with 0 <  r  < p — 1 

(this is just division with quotient q and remainder r). We have 

1 s  gn =  (gq)p~ lgT = l - g r = gr (mod p).

Suppose r > 0. If we consider the powers 5 , g2, . . .  of g (mod p), then 
we get back to 1 after r steps. Then

9r+1 =  9, 9r+2 =  92, ■■■ 
so the powers of g (mod p) yield only the r numbers g ,g2, . . . ,  1. Since 
r < p — 1, not every number mod p can be a power of g. This contradicts 
the assumption that g is a primitive root.

The only possibility that remains is that r =  0. This means that n  =  
(p -  l) r , so p — 1 divides n. This proves part (1).

For part (2), assume tha t j  >  k (if not, switch j  and k). Suppose that 
gi =  gk (mod p). Dividing both sides by gk yields g*~k s  1 (mod p). By 
part (1), j  — k =  0 (mod p -  1), so j  =  k (mod p — 1). Conversely, if j  = k 
(mod p — 1), then j  -  k =  0 (mod p — 1), so g’~k =  1 (mod p), again by 
part (1). Multiplying by gk yields the result. □
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3.8 Inverting M atrices Mod n

Finding the inverse of a m atrix mod n  can be accomplished by the usual 
methods for inverting a matrix, as long as we apply the rule given in Section 
3.3 for dealing with fractions. The basic fact we need is that a square matrix 
is invertible mod n  if and only if its determinant and n  are relatively prime.

We treat only small matrices here, since tha t is all we need for the 
examples in this book. In this case, the easiest way is to find the inverse of 
the matrix is to use rational numbers, then change back to numbers mod 
n. It is a general fact tha t the inverse of an integer matrix can always be 
written as another integer m atrix divided by the determinant of the original 
matrix. Since we are assuming the determinant and n  are relatively prime, 
we can invert the determinant as in Section 3.3.

For example, in the 2 x 2  case the usual formula is

( a  6 V 1 _  1 f  d - b \
\  c d J  ad — be \  —c a J '

so we need to find an inverse for ad — be (mod n).

E x a m p le .  Suppose we want to invert ^  ^ ^ ^ (mod 11). Since ad—bc =

—2, we need the inverse of —2 mod 11. Since 5 x (—2) =  1 (mod 11), we 
can replace —1/2 by 5 and obtain

A quick calculation shows that

( s ; ) ( ?  0 - ( s  s ) - ( i ; )  <-«>■ ■

E x a m p le .  Suppose we want the inverse of

( 1 1
M  =  1 2 3 (mod 11).

V  4 9 /
The determinant is 2 and the inverse of M  in rational numbers is
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(For ways to  calculate the inverse of a matrix, look at any book on linear 
algebra.) We can replace 1/2 with 6 mod 11 and obtain

Z 3 3 6 \
M ~ l =  8 4 10 (mod 11). B

V  4 6 /

Why do we need the determinant and n to be relatively prime? Suppose 
M N  = I  (mod n), where I  is the identity matrix. Then

det(;V/) det(JV) =  det(A-/N ) = d et(/) =  1 (mod n).

Therefore, det(JW) has an inverse mod re, which means tha t det(JW) and re 
must be relatively prime.

3.9 Square R oots Mod n

Suppose we are told that x 2 =  71 (mod 77) has a solution. How do we find 
one solution, and how do we find all solutions? More generally, consider 
the problem of finding all solutions of x2 =  6 (mod re), where n  = pq is 
the product of two primes. We show in the following tha t this can be done 
quite easily, once the factorization of n  is known. Conversely, if we know all 
solutioas, then it is easy to factor re.

Let’s start with the case of square roots mod a prime p. The easiest cose 
is when p =  3 (mod 4), and this suffices for our purposes. The case when 
p = 1 (mod 4) is more difficult. See (Cohen, pp. 31-34).

Proposition. Let p = 3 (mod 4) be prime and let y be an integer. Let 
x  =  2/(p+1)/4 (mod p).

1. I f y  has a square root modp, then the square roots o fy  mod p are ±x.

2. I f  y has no square root mod p, then —y has a square root mod p, and 
the square roots of —y  are ±x .

Proof. If y  =  0 (mod p), all the statements are trivial, so assume y ~  0 
(mod p). Fermat’s theorem says that j/p_1 =  1 (mod p). Therefore,

x '1 =  yp+l =  y2yv~ l =  y 2 (mod p).

This implies that (x2 + y)(x2 — y) = 0 (mod p), so x2 =  ± y  (mod p). (See 
Exercise 7(a).) Therefore, a t least one of y  and —y is a square mod p. 
Suppose both y  and —y are squares mod p, say y  s  or and —y  =  (r. Then 
- 1  =  (a/6)2 (work with fractions mod p as in Section 3.3), which means
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— 1 is a square mod p. This is impossible when p =  3 (mod 4) (see Exercise 
26). Therefore, exactly one of y and —y has a  square root mod p. If y  has 
a square root mod p then y = x 2, and the two square roots of y are ±x. If 
—y  has a square root, then x 2 =  —y. □

E x a m p le .  Let’s find the square root of 5 mod 11. Since (p +  l) /4  =  3, we 
compute i  =  53 e  4 (mod 11). Since 42 =  5 (mod 11), the square roots of
5 mod 11 are ±4.

Now let’s try to find a square root of 2 mod 11. Since (p +  l) /4  =  3, we 
compute 23 =  8 (mod 11). But 82 =  9 =  —2 (mod 11), so we have found 
a  square root of —2 rather than of 2. This is because 2 has no square root 
mod 11. B

We now consider square roots for a composite modulus. Note that

x~ s  71 (mod 77)

means that

z 2 =  71 =  1 (mod 7) and x 2 s. 71 =  5 (mod 11).

Therefore,
x  =  ±1 (mod 7) and x  = ±4 (mod 11).

The Chinese remainder theorem tells us that a congruence mod 7 and a con
gruence mod 11 can be recombined into a congruence mod 77. For example, 
if x  =  1 (mod 7) and x  =  4 (mod 11), then x  =  15 (mod 77). In this way, 
we can recombine in four ways to get the solutions

x  =  ±15, ±29 (mod 77).

Now le t’s turn  things around. Suppose n = pq is the product of two 
primes and we know the four solutions x  =  ± a , ±6 of x 2 = y  (mod n). 
From the construction ju st used above, we know tha t o s i  (mod p) and o =  
—b (mod q) (or the same congruences with p and q switched). Therefore, 
p\(a — b) but q \ (a — b). This means tha t gcd(a — b,n) =  p, so we have found 
a nontrivial factor of n  (this is essentially the Basic Principle of Section 6.3).

For example, in the preceding example we know tha t 152 =  292 =  71 
(mod 77). Therefore, gcd(15 — 29, 77) =  7 gives a nontrivial factor of 77.

Another example of computing square roots mod n  is given in the Section 
13.1.

Notice that all the operations used above are fast, with the exception 
of factoring n. In  particular, the Chinese remainder theorem calculation 
can be done quickly. So can the computation of the gcd. The modular
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exponentiations needed to compute square roots mod p and mod q can be 
done quickly using successive squaring. Therefore, we can sta te  the following 
principle:

Suppose n  =  pq is the product of two primes congruent to 3 mod 4, 
and suppose y  is a number relatively prime to n  which has a square root 
mod n . Then finding the four solutions x  =  ± a , ±6 to x~ = y  (mod n) is 
computationally equivalent to factoring n.

In other words, if we can find the solutions, then we can easily factor n; 
conversely, if we can factor n, we can easily find the solutions.

3.10 Legendre and Jacobi Symbols

Suppose we want to determine whether or not x~ =  a (mod p) hos a  solution, 
where p is prime. If p is small, we could square all of the numbers mod p and 
see if a is on the list. When p is large, this is impractical. If p =  3 (mod 4), 
we can use the technique of the previous section and com pute s = a(p+1)/'1 
(mod p). If a has a square root, then s is one of them, so we simply have 
to square a and see if we get a. If not, then a has no square root mod p. 
The following proposition gives a method for deciding whether a is a square 
mod p that works for arbitrary odd p.

P ro p o s i t io n .  Let p be an odd prime and let a be an integer with a 0 
(mod p ). Then a ^ -1)/2 =  ±1 (mod p). The congruence x 2 =  a (mod p) 
has a solution if  and only =  1 (mod p).

Proof. Let y  =  q(p-i)/2 (mod p). Then y-  =  ap~l =  1 (mod p), by Ferm at’s 
theorem. Therefore (Exercise 8), y  =  ±1 (mod p).

If a = x 2, then a(p-1^ 2 =  xp_1 =  1 (mod p). The hard part is showing 
the converse. Let g be a primitive root mod p. Then a =  g* for some j ,  If 
a (p-i)/2 =  i  (mod p), then

g iip -1) / - _a(p-1)/2 =  i (mod p).

By the Proposition of Section 3.7, j ( p — l ) /2  s  0 (mod p -  1). This implies 
that j  must be even; j  =  2k. Therefore, a =  g3 ~  (gfc)2 (mod p), so a is a 
square mod p. □

The criterion is very easy to implement on a computer, but it can be 
rather difficult to use by hand. In the following, we introduce the Legendre 
and Jacobi symbols, which give us an easy way to determine whether or not 
a number is a square mod p. They also are useful in primality testing (see 
Section 6.3).
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Let p be an odd prime and let a ^  0 (mod p). Define the L egendre  
sym bol

/o N  _  f +1 if x 2 =  a (mod p) 
^ p j  — \  - 1  if x2 =  a (mod p)

has a solution, 
has no solution.

Some im portant properties of the Legendre symbol are given in the 
following.

P r o p o s i t io n .  Let p be an odd prime.

1. I f  a = b ~ 0  (mod p), then

O H ) -
2 . / / a j t O  (mod p), then

=  a ^ -1^ 2 (mod p).

3. / /  ab f  0 (mod p), then

Proof. Part (1) is true because the solutions to X 2 =  a are the same as 
those to X 2 s  6 when a = b (mod p).

P art (2) is the definition of the Legendre symbol combined with the 
previous proposition.

To prove part (3), we use part (2):

(j) =
Since the left and right ends of this congruence are ±1 and they are congruent 
mod the odd prime p, they must be equal. This proves (3).

For part (4), use part (2) with a =  —1:

=  ( - l ) ^ - 1)/2 (mod p).

Again, since the left and right sides of this congruence are ±1 and they are 
congruent mod the odd prime p, they must be equal. This proves (4). □
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E x a m p le . Let p  =  11. The nonzero squares mod 11 are 1 ,3 ,4 ,5 ,9 . We 
have . x . x

and (use property (1))

( n H n H
Therefore, mx i

'42
.11

The Jacobi symbol extends the Legendre symbol from primes p  to com
posite odd integers n. One might be tempted to define the symbol to be +1 
if a is a square mod n  and —1 if not. However, this would cause the impor
tant property (3) to  fail. For example, 2 is not a square mod 35, and 3 is not 
a square mod 35 (since they are not squares mod 5), but also the product C 
is not a square mod 35 (since it is not a square mod 7). If Property 3 held, 
then we would have (—1)(—1) =  —1, which is false.

In order to preserve property (3), we define the Ja co b i sy m b o l as fol
lows. Let n  be an odd positive integer and let a be a nonzero integer with 
gcd(o, n) =  1. Let

n = P bilP2 ■■'Prr 
be the prime factorization of n. Then

The symbols on the right side are the Legendre symbols introduced earlier. 
Note that if n =  p, the right side is simply one Legendre symbol, so the 
Jacobi symbol reduces to the Legendre symbol.

E x a m p le . Let n = 135 =  33 • 5. Then

G k M D ’G)-'-'*-’-
Note that 2 is not a square mod 5, hence is not a square mod 135. Therefore, 
the fact that the Jacobi symbol has the value +1 does not imply that 2 is a 
square mod 135. I

The main properties of the Jacobi symbol are given in the following 
theorem. Parts (1), (2), (3) can be deduced from those of the Legendre 
symbol. Parts (4) and (5) are much deeper.
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T h e o re m . Let n  be odd.

1. I f  a = b (mod n) and gcd(a,n) =  1, then

2. I f  gcd(ab,n) =  1, then

3.

OH;)'

I
(  2 \  _  f +1 i f  n  s  1 or 7 (mod n ) 
Vny — \  — 1 ifr i =  3 or 5 (mod n).

5. Let m  be odd with gcd(m ,n) =  1. Then

— ( —) i f  m  = n  = 3 (mod 4]
> 771'

'» X771/
(=)-

otherwise.

Note tha t we did not include a statement that (^) =  (— i)(n-1)/2. This 
is usually not true for composite n  (see Exercise 31). In fact, the Solovay- 
Strassen primality test (see Section 6.3) is based on this fact.

P art (5) is the famous law o f q u a d ra tic  rec ip ro c ity , proved by Gauss 
in 1796. When m  and n  are primes, it relates the question of whether m  is 
a square mod n  to the question of whether n  is a square mod m.

A proof of the theorem when m  and n  are primes can be found in most 
elementary number theory texts. The extension to composite m  and n  can 
be deduced fairly easily from this case. See [Niven et al.] or [Rosen], for 
example.

W hen quadratic reciprocity is combined with the other properties of the  
Jacobi symbol, Ave obtain a fast way to evaluate the symbol. Here are two 
examples.
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E x a m p le . Let's calculate ^  ̂ 3 4 5 ) :

( S )  ~  +  ( l H )  (by (5), since 12345 =  1 (mod 4)) 

/3 2 1 1 \
=  ( 4507 ) (by (1), since 12345 =  3211 (mod 4567))

--(in) <by<5» - "(in) e*™
-  - ( m i ) ' ( m )  C2), - n o .  1350 -  2> • 339)

=  -  ( H yy)  (since ( t i ) 2 =  !)

- +(wj (by<5» “ +(il) <by™
-  + ( i i )  ( 535) (by (2>'since 160 - 2S ■ 5>

+  (-I)S(s) <b'<4» = -( f )  (by<5»
4 \  .............  Z2X 2

(by (1)) =  -  -  = - 1 -

The only factorization needed in the calculation was removing powers of 2, 
which is easy to do. The fact tha t the calculations can be done without 
factoring odd numbers is im portant in the applications. The fact that the 
answer is —1 implies that 4567 is not a  square mod 12345. However, if the 
answer had been +1, we could not have deduced whether 4567 is a square 
or is not a square mod 12345. See Exercise 30. 1

E x a m p le .  Let’s calculate m
( I ) - ( b?) <*<=» 

- +(®)
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--( is)©  <*<*»
- + (-y { w j  <by(4»
- + ( f )  (b, (5))

- +(s) I*™
=  +1 (by (5)).

Since 137 is a prime, this says tha t 107 is a square mod 137. In contrast, 
during the calculation, we used the fact th a t ( ^ )  •= +1. This does not mean 
tha t 2 is a square mod 15. In fact, 2 is not a square mod 5, so it cannot 
be a square mod 15. Therefore, although we can interpret the final answer 
as saying tha t 107 is a square mod the prime 137, we should not interpret 
intermediate steps involving composite numbers as saying tha t a number is 
a square. B

Suppose n  =  pq is the product of two large primes. If (£ ) =  —1, then 
we can conclude th a t a is not a square mod n. W hat can we conclude if 
({*) =  +1? Since

there are two possibilities:

( i ) - ( i ) -1 - G)-(?)-*■
In the first case, a is not a square mod p, therefore cannot be a square 
mod pq. In the second case, a is a  square mod p and mod q. The Chinese 
remainder theorem can be used to combine a square root mod p and a square 
root mod q to get a square root of a mod n. Therefore, a is a square mod n.

Therefore, if (jj) =  +1, then a can be either a  square or a nonsquare 
mod n. Deciding which case holds is called the q u a d ra tic  re s id u o s ity  
p ro b lem . No fast algorithm is known for solving it. Of course, if we can 
factor n, then the problem can easily be solved by computing .

3.11 Finite Fields

N o te : This section is more advanced than the rest of the chapter. It is 
included because finite fields are often used in cryptography. In particular,
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finite fields appear in jour places in this book. The finite field G F(28) is 
used in Rijndael (Chapter 5). Finite fields give an explanation o f some 
phenomena that are mentioned in Section 2.11. Finally, finite fields are 
used in Section 16.4 and error correcting codes (Chapter 18).

Many times throughout this book, we work with the'integers mod p, 
where p is a  prime. We can add, subtract, and multiply, but what distin
guishes working mod p from working mod an arbitrary integer n  is that we 
can divide by any number th a t is nonzero mod p. For example, if we need 
to solve 3x =  1 (mod 5), then we divide by 3 to obtain x  =  2 (mod 5). In 
contrast, if we want to solve 3$ =  1 (mod G), there is no solution since we 
cannot divide by 3 (mod 6). Loosely speaking, a set that has the operations 
of addition, multiplication, subtraction, and division by nonzero elements 
is called a field. We also require that the associative, commutative, and 
distributive laws hold.

E x a m p le s . The basic examples of Gelds are the real numbers, the complex 
numbers, the rational numbers, and the integers mod a prime. The set of 
all integers is not a  field since we sometimes cannot divide and obtain an 
answer in the set (for example, 4 /3  is not an integer). 0

E x a m p le . Here is a field with four elements. Consider the set

GF(4) =  { 0 ,l,a ; ,W2},

with the following laws:

1. 0 4- x  =  x  for all x.

2. x  4- x  =  0 for all x.

3. I ■ x  = x lor all i .

4. ui +  1 =  uj2.

5. Addition and multiplication are commutative and associative, and the 
distributive law x(y  4- z) =  xy 4- xz  holds for all x ,y ,z .

Since
u/1 =  w - (J1 =  ui ■ (1 4- u j) =  u j  4- ui1 =  u j  4- (1 4- u j) =  1,

we see that u j 2  is the multiplicative inverse of tv. Therefore, every nonzero 
element of G F(4) has a multiplicative inverse, and G F(4) is a field with 4 
elements. 8

In general, a field is a  set containing elements 0 and 1 (with 1 ^ 0 )  and 
satisfying the following:
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1. It has a multiplication and addition satisfying (1), (3), (5) in the pre
ceding list.

2. Every element has an additive inverse (for each x, this means there 
exists an element — x  such that x  +  (—x) =  0).

3. Every nonzero element has a multiplicative inverse.

A field is closed under subtraction. To compute x  -  y, simply compute 
* +  (-!/)•

The set of 2 x 2 matrices with real entries is not a field for two reasons. 
First, the multiplication is not commutative. Second, there are nonzero 
matrices that do not have inverses (and therefore we cannot divide by them). 
The set of non-negative real numbers is not a field. We can add, multiply, 
and divide, but sometimes when we subtract the answer is not in the set.

For every power pn of a prime, there is exactly one finite field with 
p" elements, and these are the only finite fields. We'll soon show how to 
construct them, but first le t’s point out th a t if n  >  1, then the integers mod 
p" do not form a field. The congruence px = 1 (mod pn) does not have a 
solution, so we cannot divide byp, even though p ^  0 (mod pn). Therefore, 
we need more complicated constructions to produce fields with pn elements.

The field with pn elements is called G F(pn). The “GF" is for “Galois 
field," named for the French mathematician Evariste Galois (1811-1832), 
who did some early work related to fields.

E x a m p le , c o n t in u e d . Here is another way to produce the field G F(4). 
Let Z2[X\ be the set of polynomials whose coefficients are integers mod
2. For example, 1 4- X 3 +  X 6 and X  are in this set. Also, the constant 
polynomials 0 and 1 are in Z2PQ. We can add, subtract, and multiply in 
this set, as long as we work with the coefficients mod 2. For example,

( X 3 + X  + l) (X  4- 1) =  X 4 +  X 3 4- X 2 4-1

since the term 2 X  disappears mod 2. The important property for our pur
poses is that we can perform division with remainder, just as with the inte
gers. For example, suppose we divide X 2 +  X  4-1 into X 4 4- X 3 4- 1. We can 
do this by long division, just as with numbers:

X 2 4-1
X 2 4- X  4-1 ) X 4 4- vY3 4- 1 

X ‘l 4- X 3 4- X 2 

X 2 4- 1 
X 2 4- X  4-1

X
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In words, what we did was to divide by A 2 + X  + 1  and obtain the X 2 as 
the first term  of the quotient. Then we multiplied this X 2 times X 2 +  X  + 1  
to get A '1 + X 3 + X 2, which we subtracted from X 4 + A 3 + 1, leaving X '1 + 1 . 
We divided this X 2 +  1 by X 2 +  X  +  1 and obtained the second term of the 
quotient, namely 1. Multiplying 1 times X 2 + X  +  1 and subtracting from 
X 2 +  1 left the remainder X .  Since the degree of the polynomial X  is less 
than the degree of X 2 + X  +  1, we stopped. The quotient was X 2 +  1 and 
the remainder was X:

X* + X 3 +  1 =  ( X 2 +  1)(A 2 + X  + 1) +  X.

We can write this as

X 4 +  X 3 +  1 s  X  (mod X 2 +  X  +  1).

Whenever we divide by A'2 +  X  4- 1 we can obtain a  remainder tha t is 
either 0 or a polynomial of degree a t most 1 (if the remainder had degree 2 or 
more, we could continue dividing). Therefore, we define Zi2[X] (mod A'2 +  
X  + 1) to  be the set

{0,1, A, X  + 1}

of polynomials of degree a t most 1, since these are the remainders that 
we obtain when we divide by X 2 +  X  +  1. Addition, subtraction, and 
multiplication are done mod X 2 +  X  +  1. This is completely analogous to 
what happens when we work with integers mod n. In the present situation, 
we say tha t two polynomials f ( X )  and g[X)  are congruent mod X"2+ X  +  l, 
w ritten / ( A )  =  g( X)  (mod X 2 +  X  +  1), if f ( X )  and g( X)  have the same 
remainder when divided by X 2 +  A  +  1. Another way of saying this is 
that / ( A )  — g( X)  is a multiple of X 2 +  X  +  1. This means tha t there is a 
polynomial h( X)  such th a t f ( X )  — g[X)  =  (A 2 + X  + l)/i(X ).

Now let’s multiply in ^ [ X ]  (mod A 2 +  A  +  1). For example,

A  • X  =  A 2 =  X  +  1 (mod A 2 +  X  + 1).

(It might seem that the right side should be —A  — 1, but recall th a t we are 
working with coefficients mod 2, so +1 and —1 are the same.) As another 
example, we have

A 3 =  A  • A 2 =  X  ■ ( X  +  1) =  A 2 +  A  =  1 (mod A 2 +  A  +  1).

I t is easy to see th a t we are working with the set G F ( 4) from before, with 
X  in place of tv. I

Working with ZalA"] mod a polynomial can be used to  produce finite 
fields. But we cannot work mod an arbitrary polynomial. The polynomial
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must be irreducible, which means tha t it doesn’t factor into polynomials of 
lower degree mod 2. For example, A'2 +  1, which is irreducible when we are 
working with real numbers, is not irreducible when the coefficients are taken 
mod 2 since X 2 +  1 =  ( X  +  1)(X + 1 ) when we are working mod 2. However, 
X^  + X  + \ is irreducible: Suppose it factors mod 2 into polynomials of lower 
degree. The only possible factors mod 2 are X  and X  + 1, and X 2 + X  +  1 
is not a multiple of either of these, even mod 2.

Here is the general procedure for constructing a finite field with pn 
elements, where p is prime and n > 1. We let Zp denote the integers mod p.

1. ZP[X\ is the set of polynomials with coefficients mod p.

2. Choose P ( X )  to be an irreducible polynomial mod p of degree n.

3. Let G F(pn) be ZP[X] mod P( X) .  Then G F(pn) is a field with p" 
elements.

The fact tha t G F(pn) has pn elements is easy to see, The possible 
remainders after dividing by P { X)  are the polynomials of the form ao +
OiX H-------h O n -iX " -1, where the coefficients are integers mod p. There are
p choices for each coefficient, hence pn possible remainders.

For each n,  there are irreducible polynomials mod p of degree n,  so 
this construction produces fields with p" elements for each n >  1. W hat 
happens if we do the same construction for two different polynomials Pi{X)  
and P2(X) ,  both of degree n? We obtain two fields, call them G F(pn)' and 
G F fji^y . It is possible to show that these are essentially the same field 
(the technical term Is th a t the two fields are isomorphic), though this is not 
obvious since multiplication mod P j(X ) is not the same as multiplication 
mod P2(X).

3.11.1 Division

We can easily add, subtract, and multiply polynomials in ZP[X], but division 
is a little more subtle. Let’s look a t an example. The polynomial X 8 +  X 4 +  
X 3 + X  +  1 is irreducible in ZzlXJ (although there are faster methods, one 
way to show it is irreducible is to divide it by all polynomials of smaller 
degree in Z2[X']). Consider the field

GF( 28) =  Z 2[X] (mod X 6 +  X A + X 3 + X  +  1).

Since X 7+ X c + X 3 + X  +  1 is not 0, it should have an inverse. The inverse is 
found using the analog of the extended Euclidean algorithm. First, perform 
the gcd calculation for gcd(X7 +  X 6 +  X 3 +  X  +  1 ,X 8 +  X '1 + X 3 +  X  +  1).
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The procedure (remainder —«■ divisor —* dividend —* ignore) is the same as 
for integers:

X 8+ X ''+ X 3+ X + l  =  ( X + l) ( X 7-t-XG+ X 3+ X 4 -l)-K X 6+ X 2+ X ) 
X 7+ X 6+ X 3+ X + l  =  (X + 1 )(X C+ X 2+ X )+ 1 .

The last remainder is 1, which tells us that the "greatest common divisor" 
of X ‘ +  X 6 +  X 3 +  X  +  1 and X 8 +  X '1 +  A'3 +  X  +  1 is 1. Of course, this 
must be the case, since X 8 +  X -1 +  X 3 +  X  +  1 is irreducible, so its only 
factors are 1 and itself.

Now work back through the calculation to express 1 as a linear combina
tion of X 7 +  X G+ X 3 +  X  +  1 and X 8 +  X '1 +  X 3 +  X  +  1 (or use the formulas 
for the extended Euclidean algorithm). Recall th a t in each step we take the 
Inst unused remainder and replace it by the dividend minus the quotient 
times the divisor; since we are working mod 2, the minus signs disappear.

1 =  (X 7+ X 6+ X 3+ X + 1 )+ (X + 1 ) (X ° + X 2-I-X)
=  (X7+ X c+ X 3+ X + 1 )

+  (X +  1 )^ (X 8+ X 4+ X 3+ X + 1 )+ (X + 1 ) (X 7+ X G+ X 3+ X + 1 )^

=  ( l + ( X + l ) 2)(X 7+ X 6+ X 3+ X + l)  +  (X + l) ( X a+ X '1+ X 3+ X + l)  
=  (X 2)(X r + X 6+ X 3+ X + l) + ( X + l ) ( X 8+ X 'l+ X 3+ X + l ) .

Therefore,

1 =  (X2)(X 7+ X G+ X 3+ X + l) + ( X + l ) ( X 8+ X ‘l+ X 3+ X  +  l).

Reducing mod X 8 +  X '1 + X 3 +  X  +  1, we obtain

(X2)(X 7+ X 6+ X 3+ X + 1 )  =  1 (mod X 8+ X ,1+ X 3+ X  +  l).

which means tha t X 2 is the multiplicative inverse of X 7 +  X G +  X 3 +  X +  1. 
Whenever we need to divide by X ' +  X G +  X 3 +  X  +  1, we can instead 
multiply by X 2. This is the analog of what we did when working with the 
usual integers mod p.

3 .11 .2  G F (  28)

Lliter in this book, we shall discuss Rijndael, which uses G F ( 28) (see Chapter 
5), so let’s look a t this field a little more closely. We'll work mod the 
irreducible polynomial X s +  X*1 + X 3 +  X  +  1, since tha t is the one used by 
Rijndael. However, there are other irreducible polynomials of degree 8, and
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any one of them would lead to  similar calculations. Every element can be 
represented uniquely as a polynomial

b f X 1 4- 6qX^ 4* baX° 4* 64X  * 4- 63X 3 4* 62X" 4* biX 4- bot

where each bi is 0 or 1. The 8 bits 6766656,163626160 represent a byte, so 
we can represent the elements of G F (28) as 8-bit bytes. For example, the 
polynomial X 7 4- X ° 4- A' 3 4- X  4-1 becomes 11001011. Addition is the XOR 
of the bits:

(A 7 4- X° 4- A 3 4- X  4-1)4- (A 4 4-A 3 4-1)
— 11001011 ©  00011001 =  11010010

X 7 4- X° 4- A '1 4- A.

Multiplication is more subtle and does not have os easy an interpretation. 
T hat is because we are working mod the polynomial A 8 4- X *  4- A 3 4- X  4-1, 
which we can represent by the 9 bits 100011011. First, let’s multiply X '  4- 
X 6 4- A’’3 4- X  4-1 by X-. W ith polynomials, we calculate

(X T4-XC4-X34-X4-1)(X) =  X 84-X74-Xll4-X24-X 
=  (X 74-X34-X24-l)4-(X B4-X44-X34-X4-l) 
s  X 74-X34-X24-l (mod X 84-X'l4-X34-X4-1).

The same operation with bits becomes

11001011 —> 110010110 (shift left and append a 0)
— 110010110 ©100011011 (subtract X s4-X '14-X 34-X 4-1) 

010001101,

which corresponds to the preceding answer. In general, we can multiply by 
X  by the following algorithm:

1. Shift left and append a 0 as the lost bit,

2. If the first bit is 0, stop.

3. If the first bit is 1, XO R  with 100011011.

The reason we stop in step 2 is that if the first bit is 0 then the polynomial 
still has degree less than 8 after we multiply by X, so it does not need to be 
reduced. To multiply by higher powers of X ,  multiply by X  several times. 
For example, multiplication by X 3 can be done with three shifts and at most 
three XOfls. Multiplication by an arbitrary polynomial can be accomplished 
by multiplying by the various powers of X  appearing in that polynomial, 
then adding (i.e., XO/Zing) the results.
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In summary, we see tha t the fields operations of addition and multipli
cation in G F(28) can be carried out very efficiently. Similar considerations 
uppiy to any finite field.

The analogy between the integers mod a prime and polynomials mod an 
irreducible polynomial is quite remarkable. We summarize in the following.

integers <— ► Z p[X)
prime number q <— > irreducible P ( X)  of degree n

Z , > ZP[X\ (mod P( X) )
field with q elements <— ► field with pn elements

Let GF(pn)m denote the nonzero elements of GF( pn). This set, which 
has pn — 1 elements, is closed under multiplication, just as the integers not 
congruent to 0 mod p  are closed under multiplication. It can be shown that 
there is a generating polynomial g(X)  such tha t every element in G F(pn)m 
can be expressed as a power of g(X) .  This also means that the smallest 
exponent k such tha t g[X) k s  1 is pn — 1. This is the analog of a primitive 
root for primes. There are 0(pn — 1) such generating polynomials, where 0 
is Euler's function. An Interesting situation occurs when p =  2 and 2" — I 
is prime. In this case, every nonzero polynomial f ( X )  ^  1 in G F(2n) is 
a generating polynomial. (Remark, for those who know some group theory: 
The set G F(2n)* is a group of prime order in this cose, so every element 
except the identity is a generator.)

The d isc re te  log p ro b le m  mod a prime, which we’ll discuss in Chapter
7, has an analog for finite fields; namely, given h(x),  find an integer k such 
that h{X)  =  g ( X) k in G F(p"). Finding such a k is believed to be very hard 
in most situations.

3.11.3 LFSR Sequences

We can now explain a phenomenon th a t is mentioned in Section 2.11 on 
LFSR sequences.

Suppose th a t we have a recurrence relation

•En+rn =  ~i~ CiXn+i "h ""' "h Cm—i»^n+m—1 (mod 2).

For simplicity, we assume that the associated polynomial

P ( X)  = X m + Cm-xX"1- 1 +  CTn_2-^m_2 +  ■ • ' +  Co

is irreducible mod 2. Then Zn[X] (mod P[ X) )  is the field G F(2m). We re
gard G F(2m) as a  vector space over Z2 with basis {1, X , X 2, X 3, . . . ,  X m~1}. 
Multiplication by X  gives a linear transformation of this vector space. Since

X - 1  = X ,  X X  = X 2, X - X 2 = X 3, . . .
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X  ■ X m~l = X m =  Co +  c iX  + ■ ■ ■ +  cm_1X m- It 
multiplication by X  ia represented by the matrix

/  0 0 0 c0 \

X 0 0 0 1 Cm-, /

Suppose we know (x n .x n + i.in + i,. . .  ,x n+m- i) ,  We compute

(xni Xn.|_L, Xn-|_2, - • • i 2?n+m—l) MX
™ i.x n+l t x n+2, ^n+3i • • • i Co^n "h * ' * +  ^m -l^n+m -l)
=  (^n+li x n+2i ^n+Si ■ • • i ^n+m)1 .

Therefore, multiplication by M x  shifts the indices by 1. It follows easily 
tha t multiplication on the right by the m atrix M }x  sends (x i,x 2, ■ ■ • <x m) 
to (zi+j ,X2+j, •. ■, x m+j). If M x  =  I ,  the identity matrix, this must be 
the original vector (x i,i2 i - ■ •, x m)- Since there are 2m — 1 nonzero ele
ments in G F (2m), it follows from Lagrange’s theorem in group theory that 
X 2"1-1 =  1, which implies tha t M x  -1 =  1. Therefore, we know that
Xi S  X2m i x 2 — x 2m+l........

For any set of initial values (we’ll assume that a t least one initial value 
is nonzero), the sequence will repeat after k  terms, where k is the smallest 
positive integer such that X k =  1 (mod P(X) ) .  I t can be shown that k 
divides 2m — 1.

In fact, the period of such a sequence is exactly k. This can be proved 
as follows, using a few results from linear algebra: Let v =  ( x i , . .. ,x m) 0 
be the row vector of initial values. The sequence repeats when vM x  = v. 
This means that the nonzero row vector v  is in the left null space of the 
matrix M x  — / ,  so det(M j. — I)  =  0. But this means that there is a nonzero 
column vector iv =  (do,. . .  ,a Tn_i)7’ in the right null space of M x  — 1. That 
is, M x  w  =  w, Since the matrix M x  represents the linear transformation 
given by multiplication by X ^  with respect to the basis { l ,X , . . . , X m-1}, 
this can be changed back into a relation among polynomials:

X j (qo+Qi XH----- *) =  oo+ aiX + - • •+am-i-X m 1 (mod P (X )).

But ao +  a.\X  +  - • - +  (mod -P(X)) is a  nonzero element of the
field G F (2m), so we can divide by this element to get =  1 (mod P(X) ) .  
Since j  =  k  is the first time this happens, the sequence first repeats after k 
terms, so it has period k.

As mentioned previously, when 2m -  1 is prime, all polynomials (except
0 and 1) are generating polynomials for G F(2m). In particular, X  is a gen
erating polynomial and therefore k = 2m — 1 is the period of the recurrence.
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3.12 Continued  Fractions

There are many situations where we want to approximate a real number by 
a rational number. For example, we can approximate tt =  3.14159265... 
by 314/100 =  157/50. But 22/7 is a slightly better approximation, and it is 
more efficient in the sense that it uses a smaller denominator than 157/50. 
The method of continued fractions is a procedure tha t yields this type of 
good approximations. In this section, we summarize some basic facts. For 
proofs and more details, see, for example, [Hardy-Wright], [Niven et al.j, and 
[Rosen].

An easy way to approximate a real number x is to take the largest integer 
less than or equal to x. This is often denoted by [x[. For example, [tt] =  3. 
If we want to get a better approximation, we need to look at the remaining
fractional part. For tt =  3 .14159..., this is .14159___This looks close to
1/7 =  .142857___One way to express this is to look at 1/.14159 =  7.06251.
We can approximate this last number by [7.06251... ] =  7 and therefore con
clude that 1/7 is indeed a good approximation for .14159 and that 22/7 is a 
good approximation for tt. Continuing in this manner yields even better ap
proximations. For example, the next step is to compute 1/.06251 =  15.9966 
and then take the greatest integer to get 15 (yes, 16 is closer, but the algo
rithm corrects for this in the next step). We now have

7T Si 3 +  —-----[■
333

7 +  1L 106

If we continue one more step, we obtain

1 355
TT =  3 +

7 + istr 113'i

This last approximation is very accurate:

7r =  3.14159265..., and 355/113 =  3.14159292....

This procedure works for arbitrary real numbers. S tart with a real num
ber x. Let ao — [x] and xo = x. Then (if x; 5-  a.i\ otherwise, stop) define

•^i+l “  1 ^i+l =  [•Z'i+l]*Xi &i

We obtain the approximations
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We have therefore produced a sequence of rational numbers P1/ 911P2/ 92,
It can be shown that each rational number Pk/qk gives a better approxima
tion to x  than any of the preceding rational numbers Pj/qj  with 1 < j  < k. 
Moreover, the following holds.

T h e o re m . I f  |x -  ( r /s ) | < l /2 s 2 fo r  integers r, s, then r / s  = Pi/qi fo r

For example, |tt -  22/7| «  .001 < 1/98 and 22/7 =  p i/q 2- 
Continued fractions yield a convenient way to recognize rational numbers 

from their decimal expansions. For example, suppose we encounter the 
decimal 3.764705882 and we suspect that it is the beginning of the decimal 
expansion of a rational number with small denominator. The first few terms 
of the continued fraction are

3 +  1

3+'^maS7T

The fact that 9803921 is large indicates that the preceding approximation 
is quite good, so we calculate

3 + — = - -  3-7647058623529....
> +  r i i  17

which agrees with all of the terms of the original 3.764605882. Therefore, 
64/17 is a likely candidate for the answer. Note tha t if we had included 
the 9803921, we would have obtained a fraction that also agrees with the 
original decimal expansion but which has significantly larger denominator. 

Now let’s apply the procedure to  12345/11111. We have

12345 , 1
=  1 +

111,1 9+̂
This yields the numbers

10 2461 2471 12345 
’ 9 ’ 2215’ 2224’ 11111’

Note that the numbers 1, 9, 246, 1, 4 are the quotients obtained during the 
computation of gcd( 12345,11111) in Section 3.1 (see Exercise 35). 

Calculating the fractions such as
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can become tiresome when done in the straightforward way. Fortunately, 
there is a faster method. Define

P—2 : 0, P - i  =  1, q -2 - 1, q-\ -  0,
P n + 1  =  Q n + l P n  +  P n - >

<7n+1 =  Q n + ig n  +  9 n - l -

T h en
Pn -  A U. 1■ Qo +  '
qn Ol +  ■

Using these relations, we can compute the partial quotients pn/? n from the 
previous ones, rather than having to sta rt a new computation every time a 
now on is found.

3.13 Exercises

1. (a) Find integers x  and y  such that 17x +  101y =  1.
(b) Find 17"1 (mod 101).

2. (a) Solve 7d =  1 (mod 30).
(b) Suppose you write a message as a number m  (mod 31). Encrypt 

m as m 7 (mod 31). How would you decrypt? (Hint: Decryption 
ia done by raising the ciphertext to a power mod 31. Fermat's 
theorem will be useful.)

3. (a) Find all solutions of 12x =  28 (mod 236).
(b) Find all solutions of 12x =  30 (mod 236).

4. (a) Use the Euclidean algorithm to compute gcd(30030, 257).
(b) Using the result of part (a) and the fact tha t 30030 =  2 • 3 ■ 5 • 

7 • 11 • 13, show that 257 is prime. (Remark: This method of 
computing one gcd, rather than doing several trial divisions (by
2, 3, 5, . . . ) ,  is often faster for checking whether small primes 
divide a number.)

6. (a) Compute gcd(4883,4369).
(b) Factor 4883 and 4369 into products of primes.

6. (a) Let Fj =  1, F2 =  1, -Fn+i =  ,Fn +.F'n_i define the Fibonacci num
bers 1 ,1 ,2 ,3 ,5 ,8 ,___ Use the Euclidean algorithm to compute
gcd(.Fn,-Fn—1) for all n  >  1.
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(b ) Find g c d ( l l l l l l l l ,  11111).

(c) Let a =  111 11 be formed with Fn repeated l ’s and let b =
111 •■•11 be formed with Fn_ i repeated Vs. Find gcd(o,6). 
(Hint: Compare your computations in parts (a) and (b).)

7. (a) Let p be prime. Suppose a and b are integers such that ab = 0
(mod p). Show that either a =  0 or b =  0 (mod p).

(b ) Show that if o, b, n  are integers with n |o 6 and gcd(a, n) =  1, then 
n|6.

8 . Let p >  3 be prime. Show that the only solutions to x~ =  1 (mod p) 
are i  =  ± 1  (mod p). (Hint: Apply Exercise 7(a) to  (x + l) (x  — 1).)

9. Suppose x  =  2 (mod 7) and x  =  3 (mod 10). W hat is x  congruent to 
mod 70?

10. A group of people are arranging themselves for a parade. If they line 
up three to  a row, one person is left over. If they line up four to a row, 
two people are left over, and if they line up five to a row, three people 
are left over. W hat is the smallest possible number of people? W liat 
is the next smallest number? (Hint: Interpret this problem in terms 
of the Chinese remainder theorem.)

1 1 . Let p be prime. Show that a? s  a (mod p) for all a.

12. Divide 210203 by 101. W hat is the remainder?

13. Find the last 2 digits of 123562.

14. (a) Evaluate 77 (mod 4).

(b) Use part (a) to find the last digit of 77'.  (Note: a6* means
since the other possible interpretation would be (ai )c =  a6®, which 
is written more easily without a second exponentiation).

15. (a) Compute <t>(d) for all of the divisors of 10 (namely, 1, 2, 5, 10),
and find the sum of these <j>(d).

(b ) Repeat part (a) for all of the divisors of 12.

(c) Let n  > 1. Conjecture the value of 230(d), where the sum is 
over the divisors of n. (This result is proved in many elementary 
number theory texts.)

16. (a) Let p =  7, 13, or 19. Show that o1728 =  1 (mod p) for all a with
p \ a .
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(b) Let p  =  7, 13, or 19. Show tha t a1729 s  a (mod p) for all a. 
(Hint: Consider the case p |a separately.)

(c) Show tha t a 1'29 s  o (mod 1729) for all a. Composite numbers n 
such that on 3  a (mod n) for all a are called Carmichael num
bers. They are rare (561 is another example), but there are in
finitely many of them [Alford et al. 2).

17. (a) Show tha t every nonzero congruence class mod 11 is a power of
2 , and therefore 2 is a  primitive root mod 11.

(b) Note that 23 s  8 (mod 11). Find i  such th a t 8* =  2 (mod 11). 
(Hint: W hat is the inverse of 3 (mod 10)?)

(c) Show that every nonzero congruence class mod 11 is a power of
8 , and therefore 8 is a primitive root mod 11.

(d) Let p be prime and let g be a  primitive root mod p. Let h =  gv 
(mod p) with gcd(y,p — 1) =  1 . Let xy  =  1 (mod p — 1). Show 
that hx = g (mod p).

(e) Let p and h be as in part (d). Show tha t h is a primitive root 
mod p. (Remark: Since there are <j>(p — I) possibilities for the 
exponent x  in part (d), this yields all of the <f>{p — 1) primitive 
roots mod p.)

20. Let a and n  > 1 be integers with gcd(a, n) =  1. The order of a  mod n
is the smallest positive integer r  such tha t ar =  1 (mod n). We denote
r  =  ord„(a).

(a) Show that r  < <j>(n).
(b) Show tha t if m  =  rk  is a multiple of r, then am = 1 (mod n).
(c) Suppose a1 =  1 (mod n). Write t  =  qr -f 5 w ith 0 <  s < r  (this

is ju st division with remainder). Show that as =  1 (mod n).
(d) Using the definition of r  and the fact that 0 <  s < r, show that

s =  0 and therefore r |t .  This, combined with part (b), yields the
result that a ( =  1 (mod n) if and only if ord„(a)|t.

(mod 26).

such that I } (mod 26) is(b) Find all values of b (mod 26) such that 

invertible.

(mod p) is not invertible.
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(e) Show that-ordn (a)|0(n).
\

2 1 . This exercise will show by example how to use the results of Exercise
20 to prove a number is a primitive root mod a prime p, once we know
the factorization of p — 1. In particular, we’ll show that 7 is a primitive
root mod C01. Note tha t 600 =  23 - 3 • 52.

(a) Show that if an integer r  <  600 divides 600, then it divides at 
least one of 300, 200, 120 (these numbers are 600/2, 600/3, and 
600/5).

(b) Show that if ordcoi(7) <  600, then it divides one of the numbers 
300, 200, 120.

(c) A calculation shows that

7300 =  600, 7200 =  576, 7120 =  423 (mod 601).

Why can we conclude that ordcoi(7) does not divide 300, 200, or 
120?

(d) Show that 7 is o primitive root mod 601.
(e) In general, suppose p is a  prime and p — 1 =  ij“‘ • • -q°‘ is the 

factorization of p — 1 into primes. Describe a procedure to check 
whether a number g is a primitive root mod p. (Therefore, if 
we need to find a primitive root mod p, we can simply use this 
procedure to test the numbers g =2, 3, 5, 6 , ... in succession until 
we find one tha t is a primitive root.)

22. We want to find an exponent k such that 3k =  2 (mod 65537).

(a) Observe th a t 232 =  1 (mod 65537), but 21C ~  1 (mod 65537). It 
can be shown (Exercise 32) tha t 3 is a primitive root mod 65537, 
which implies that 3" =  1 (mod 65537) if and only if 65536|n. 
Use this to show that 2048|A; but 4096 does not divide k. (Hint: 
Raise both sides of 3* h  2 to the 16th and to the 32nd powers.)

(b) Use the result of part (a) to conclude tha t there are only 16 
possible choices for k that need to be considered. Use this in
formation to determine k. This problem shows tha t if p  — 1 has 
a special structure, for example, a power of 2, then this can be 
used to avoid exhaustive searches. Therefore, such primes are 
cryptographically weak. See Exercise 9 in Chapter 7 for a rein
terpretation of the present problem.

23. (a) Let x  =  ■ ■•bw be an integer written in binary (for example,
when i  =  1011, we have bi =  1, bn =  0,63 =  1 ,6.1 =  1). Let y and 
n  be integers. Perform the following procedure:
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1. S tart with k  =  1 and Si =  1.
2. If ifc =  1, let rfc =  s w  (mod n). If 6#, =  0, let
3. Let Sfc+j =  r l  (mod n).
4. If A: =  u;, stop. If k  <  to, add 1 to k  and go to  (2).

Show that t w =  y x  (mod n).
(b) Let x, y t and n  be positive integers. Show th a t the following 

procedure computes yx (mod n).
L. S tart with a =  x, b =  1, c =  y.
2. If a is even, let a = a/2, and let 6 =  6, c =  cr (mod n).
3. If a is odd, let a =  a — 1, and let b = be (mod n ) ,c  = c.
4. If a 7̂  0, go to step 2.
5. O utput b.

(Remark: This algorithm is similar to the one in part (a), but it 
uses the binary bits of x  in reverse order.)

24. Here is how to construct the x  guaranteed by the general form of the
Chinese remainder theorem. Suppose m j........mu are integers with
gcd(m,, m.j) =  1 whenever i ^  j .  Let Oi, , . . ,  a* be integers. Perform 
the following procedure:

1. For i =  1 , . . . ,  k, let 2; =  mi ■ • • m j- im 1+i • • • m*.
2. For i =  1 , . . .  ,k , let y, =  z~ ' (mod mi).

3. Let x  =  oiyizi H-----+  afci/fcAt-

Show x  =  a,- (mod m ;) for all i.

25. (a) Find all four solutions to x 2 s  133 (mod 143). (Note th a t 143 =
11 • 13.)

(b) Find all solutions to z2 =  77 (mod 143). (There are only two 
solutions in this case. This is because gcd(77,143) # 1 . )

26. Let p =  3 (mod 4) be prime. Show that x~ s  —I (mod p) has no 
solutions. (Hint: Suppose x  exists. Raise both  sides to the power 
(p — l) /2  and use Ferm at's theorem.)

27. Alice designs a cryptosystem as follows (this system is due to Rabin). 
She chooses two distinct primes p and q (preferably, both p and q are 
congruent to 3 mod 4) and keeps them secret. She makes n =  pq 
public. W hen Bob wants to send Alice a message m, he computes x  =  
m 2 (mod n) and sends x  to Alice. She makes a decryption machine 
that does the following: When the machine is given a number x, it
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computes the square roots of x  mod n  since ii knows p  and q. There 
is usually more than one'square root. It chooses one a t random, and 
gives it to Alice. When Alice receives a; from Bob, she puts it into 
her machine. If the output from the machine is a meaningful message, 
she assumes it is the correct message. If it is not meaningful, she puts 
x  into the machine again. She continues until she gets a meaningful 
message.

(a) Why should Alice expect to get a meaningful message fairly soon?
(b) If Oscar intercepts x  (he already knows n), why should it be hard 

for him to determine the message m?

(c) If Eve breaks into Alice's office and thereby is able to try a few 
chosen-ciphertext attacks on Alice’s decryption machine, how can 
she determine the factorization of n?

28. This exercise shows tha t the Euclidean algorithm computes the gcd. 
Let a,b,qi,ri be as in Section 3.1.

(a) Let d be a common divisor of a, b. Show that d |r i, and use this 
to show th a t rf|r2.

(b ) Let d be as in (a). Use induction to show tha t tZ|rj for all i. In 
particular, djr^, the lost nonzero remainder.

(c) Use induction to show that r t |r ,  for 1 <  i < k.

(d ) Using the facts tha t r t j r i  and r^ ro , show th a t rj..|6 and then rfc|a. 
Therefore, t\. is a common divisor of a, b.

(e) Use (b) to show that > d  for all common divisors d, and 
therefore r t  is the greatest common divisor.

29. Use the Legendre symbol to determine which of the following congru
ences have solutions (each modulus is prime):

(a) X 2 -  123 (mod 401)

(b ) X -  =  43 (mod 179)
(c) X 2 = 1093 (mod 65537)

30. (a) Let n  be odd and assume gcd(o, n) =  1. Show tha t if =  -1 ,
then a is not a square mod n.

(b) Show th a t ( ^ )  =  +1.
(c) Show th a t 3 is not a square mod 35.

31. Let n  =  15. Show that (2 ) ^  2(n - 1V2 (mod n).
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32. (a) Show that ( ^ 5=) =  -1 .

(b) Show that at05537"1)/2 =i 1 (mod 65537).

(c) Use the procedure of Exercise 21 to show that 3 is a primitive 
root mod 65537. (Remark: The same proof shows that 3 is a 
primitive root for any prime p >  5 such tha t p — I is a power of 2. 
However, there are only six known primes with p — 1 a power of 2; 
namely, 2, 3, 5, 17, 257, 65537. They are called Fermat primes.)

33. (n) Show tha t the only irreducible polynomials in Z2[X] of degree at
most 2 are X , X  +  1, and X 2 + X  + 1.

(b )  Show that X ‘l +  X  +  1 is irreducible in Z 2[X|. (Hint: If it factors, 
It must have at least one factor of degree at most 2.)

(c) Show that A''1 =  X +  l, X 8 =  X 2 +  l, and X 1G =  X  (m o d X ‘ +  
X + l).

(d ) Show that X 15 =  1 (mod X '1 +  X  +  1).

34. (a) Sliow that X 2 +  1 is irreducible in Zj[X].
(b ) Find the multiplicative inverse of 1 + 2 X  in Za[X] (mod X 2+  1).

3D. Show that the quotients in the Euclidean algorithm for gcd(o, 6) are 
exactly the numbers a o ,a i , • ■. that appear in the continued fraction 
of a/b.

SO. («) Compute several steps of the continued fractions of \/3  and V7.
Do you notice any patterns? (It can be shown th a t the Oi’s in the 
continued fraction of every irrational number of the form a + bVd 
with a, b,d rational and d >  0 eventually become periodic.)

(b )  For each of d =  3,7, let n  be such that a„+i =  2 a o  in the contin
ued fraction of \fd. Compute p„ and qn and show tha t x  =  pn 
and y = qn give a solution of what is known as Pell’s equation: 
x 1 -  dy2 = 1.

(c) Use the method of part (b) to solve x 2 — 19i/2 =  1.

87 . Compute several steps of the continued fraction expansion of e. Do 
you notice any patterns? (On the other hand, the continued fraction 
expansion of ir seems to be fairly random.)

81. Compute several steps of the continued fraction expansion of (1 +  
V5)/2 and compute the corresponding numbers pn and qn (defined 
In Section 3.12). The sequences P0 ,P i,P 2, • • • and - ■ ■ are what 
famous sequence of numbers?
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39. Let p and q be distinct primes.

(a) Show tha t among the integers m  satisfying 1 < m  < pq, there are 
q — 1 multiples of p, and there are p — 1 multiples of q.

(b) Suppose gcd(m, pq) >  1. Show that m  is a  multiple of p or a 
multiple of q.

(c) Show tliat if 1 < m  <pq,  then m  cannot be a multiple of both p 
and q.

(d) Show tha t the number of integers m  with 1 < m  < pq such that 
gcd(m,pq) =  1 is pq -  1 -  (p -  1) -  (q -  1) =  (p -  1 )(q -  1). 
(Remark: This proves the formula that 4>(pq) =  (p — 1)(<j -  1).)

40. (a) Give an example of integers m  ^  n  with gcd(m ,n) >  1 and
integers a, b such that the simultaneous congruences

x  = a (mod m), x  s  b (mod n) 

have no solution.
(b ) Give an example of integers m  n  with gcd(m, n) > 1 arid 

integers a - ^ b  such that the simultaneous congruences

x  = a (mod m), x  =  b (mod n)

have a solution.

3.14 Computer Problems

1. Evaluate gcd(8765,23485).

2. (a) Find integers x  and y  with 65537x +  35117/ =  1.
(b) Find integers x  and y  with 65537z +  3511y =  17.

3. Find the last five digits of 3 1234567. (Note: D on't ask the computer to 
print 3123'Io°7'. It is too large!)

4. Solve 314x =  271 (mod 11111).

5. Find all solutions to 216x =  66 (mod 606).

6 . Find an integer such tha t when it is divided by 101 the remainder 
ia 17, when it is divided by 201 the remainder is 18, and when it is 
divided by 301 the remainder is 19.

7. Let n  — 391 =  17-23. Show that 2"~l ^  1 (mod n). Find an exponent 
j  > 0 such tha t 2J s  1 (mod n).
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8. Let n  =  84047-65497. Find x and y with x 2 =  iy2 (mod n) but x ^  ± j/ 
(mod n).

9. Verify tha t 3 is a primitive root for the prime 65537. (Hint: Use the 
method of Exercise 21.)

(1 2 M10. Let M  =  1 5 25 .
\  1 14 196 J

(a) Find the inverse of M  (mod 101).
(b ) For which primes p does M  not have an inverse mod p?

11. Find the square roots of 26055 mod the prime 34807.

12. Find all square roots of 1522756 mod 2325781.

13. Try to find a square root of 48382 mod the prime 83987, using the 
method of Section 3.9. Square your answer to see if it is correct. 
W hat number did you find the square root of?
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The D ata Encryption 
Standard

4.1 Introduction

In 1973, the National Bureau of Standards (NBS), later to become the Na
tional Institu te of Standards and Technology (NIST), issued a public request 
seeking a cryptographic algorithm to become a national standard. IBM sub
m itted an algorithm called LUCIFER in 1974. The NBS forwarded it to the 
National Security Agency, which reviewed it and, after some modifications, 
returned a version that was essentially the D ata Encryption Standard (DES) 
algorithm. In 1975, NBS released DES, as well as a free license for its use, 
and in 1977 NBS made it the official data  encryption standard.

DES lias been used extensively in electronic commerce, for example in 
the banking industry. If two banks want to exchange data, they first use a 
public key method such as RSA to transm it a key for DES, then they use 
DES for transm itting the data. It has the advantage of being very fast and 
reasonably secure.

From 1975 on, there has been controversy surrounding DES. Some re
garded the key size as too small. Many were worried about NSA's involve
ment. For example, liad they arranged for it to have a “trapdoor" -  in 
other words, a secret weakness tha t would allow only them to break the sys
tem? It has also been suggested that NSA modified the design to avoid the

113
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possibility that IBM had inserted a trapdoor in LUCIFER. In any case, the 
design decisions remained a mystery for many years.

In 1990, Eli Biham and Adi Shamir showed how their method of dif
ferential cryptanalysis could be used to attack DES. The DES algorithm 
involves 16 rounds; differential cryptanalysis would be more efficient than 
exhaustively searching all possible keys if the algorithm used at most 15 
rounds. This indicated that perhaps the designers of DES had been aware 
of this type of attack. A few years later, IBM released some details of the 
design criteria, which showed tha t indeed they had constructed the system 
to be resistant to differential cryptanalysis. This cleared up at least some of 
the mystery surrounding the algorithm.

The  DES has lasted for a long time, but is becoming outdated. Brute 
force searches (see Section 4.6), though expensive, can now break the system. 
Therefore, NIST replaced it with a new system in the year 2000. However, 
it is worth studying DES since it represents a popular class of algorithms 
and it has been one of the most frequently used cryptographic algorithms in 
history.

The DES is a block cipher; namely, it breaks the plaintext into blocks of 
64 bits, and encrypts each block separately. The actual mechanics of how 
this is done is often called a F e iste l sy s tem , after Horst Feistel, who was 
part of the IBM team tha t developed LUCIFER. In the next section, we 
give a simple algorithm that has many of the characteristics of this type of 
system, but is small enough to use as an example. In Section 4.3, we show 
how differential cryptanalysis can be used to attack this simple system. We 
give the DES algorithm in Section 4.4, and describe ways it is implemented 
in Section 4.5. Finally, in Section 4.6, we describe recent progress in breaking 
DES.

For an extensive discussion of block ciphers, see [Schneier].

4.2 A Simplified DES-Type Algorithm

The DES algorithm is rather unwieldy to use for examples, so in the present 
section we present an algorithm that has many of the same features, but is 
much smaller. Like DES, the present algorithm is a block cipher. Since the 
blocks are encrypted separately, we assume throughout the present discus
sion that the full message consists of only one block.

The message has 12 bits and is written in the form LoRo, where L q 
consists of the first 6 bits and R q consists of the last 6 bits. The key K  has 
9 bits. The ith  round of the algorithm transforms an input /?,_] to  the 
output LiR, using an 8-bit key /f,- derived from K.

The main part of the encryption process is a function f {R i~ i ,K i )  that
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F ig u re  4.1: One Round of a  Feistel System.

takes a 6-bit input R i- i  and an 8-bit input /(",■ and produces a 6-bit output. 
This will be described later.

The output for the zth round is defined as follows:

Li = R i - i  and Jl, =  i ffi I Q ,

where ffi denotes XOR, namely bit-by-bit addition mod 2. This is depicted 
in Figure 4.1.

This operation is performed for a certain number of rounds, say n, and 
produces the ciphertext £ n-Rn-

How do we decrypt? S tart with L nR„ and switch left and right to obtain 
R nL n. (Note: This switch is built into the DES encryption algorithm, so it 
is not needed when decrypting DES.) Now use the same procedure os before, 
but with the keys Ki used in reverse order K n, . . . ,  Ki.  Let's see how this 
works. The first step takes RnLn and gives the output

(£„| © }{Ln , K n)\.

We know from the encryption procedure tha t L n =  Rn- i  and R„ = L n~i © 
} (R u^ l , K n). Therefore,

[Ln\ [ R n ® f ( L n, K n)} = 1 ^ - 3 ]  [£ „-i © f (R n ~ i ,K „ )  ffi / ( i n, K n)}
=  [Ln_!].

The last equality again uses Ln =  R ^ - i ,  so that / ( / t n - i , /<"„)©}{L n, K„) 
is 0. Similarly, the second step of decryption sends to J?„_2Ln_o.
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C ontinu ing , we see th a t  th e  d e c ry p tio n  p ro cess  leads us bade to  RqLq. 
Sw itch ing  th e  left a n d  rig h t halves, w e o b ta in  th e  o rig ina l p la in tex t L 0i?o, 
as desired .

Note tha t the decryption process is essentially the same as the encryption 
process. We simply need to switch left and right and use the keys I(i in 
reverse order. Therefore, both the sender and receiver use a common key 
and they can use identical machines (though the receiver needs to reverse 
left and right inputs).

So far, we have said nothing about the function / .  In fact, any /  would 
work in the above procedures. B ut some choices of /  yield much better 
security than others. The type of /  used in DES is similar to tha t which we 
describe next. It is built up from a few components.

The first function is an expander. It takes an input of 6 bits and outputs 
8 bits. The one we use is given in Figure 4.2.

1 2 3 4 5 6

F ig u re  4 .2 : The Expander Function.

This means that the first input bit yields the first ou tput bit, the third 
input bit yields both the fourth and the sixth output bits, etc. For example, 
011001 is expanded to 01010101.

The main components are called S-boxes. We use two:

101 010 001 110 O il 100 111 000
001 100 110 010 000 111 101 O il

100 000 110 101 i l l 001 O il 010 ]
101 O il 000 111 110 010 001 100

The input for an S-box has 4 bits. The first bit specifies which row will 
be used: 0 for the first row, 1 for the second. The other 3 bits represent a 
binary number that specifies the column: 000 For the first column, 001 for 
the second, ..., I l l  For the last column. The output for the S-box consists 
of the three bits in the specified location. For example, an input oF 1010 for
Si means we look at the second row, third column, which yields the output 
1 1 0 .

The key K  consists of 9 bits. The key Ki for the ith  round of encryption 
is obtained by using 8 bits of K,  starting with the ith  bit. For example, if
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K  =  010011001, then IQ  =  01100101 (after 5 bits, we readied the nrwl of 
K ,  so the last 2 bits were obtained from the beginning of K).

We can now describe , Ki).  The input iZj_! consists of 6 bits. The
expander function is used to expand it to  8 bits. The result is XORed with 
K i  to produce another 8-bit number. The first 4 bits are sent to S \,  and tlm 
last 4 bits are sent tojSo. Each S-box outputs 3 bits, which are concatenated 
to form a 6-bit number. This is /(iZ j_i, Ki). We present this in Figure 4,3.

F ig u re  4 .3 : T he Function Ki).

For example, suppose j =  100110 and IQ =  01100101. We have 

£ (100110) ®  Ki =  10101010 ©01100101 =  11001111.

The first 4 bit.s are sent to Sj and the last 4 bits are sent to  S3. The second 
row, fifth column of Si contains 000. The second row, last column of S 2 
contains 100. P u tting  these outputs one after the other yields f (R i~  1, Ki) =  
000100.
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We can now describe what happens in one round. Suppose the input is

L i- iR i -x  =  011100100110

imd Ki =  01100101, as previously. This means tha t i t j - i  =  100110, as in the 
example just discussed. Therefore, f ( R i - i ,K i )  =  000100.' This is XORed 
with L ,_x =  011100 to yield =  011000. Since Li = R i - i ,  we obtain

LiRi  =  100110011000.

The output becomes the input for the next round.

4.3 Differential Cryptanalysis
This section is rather technical and can be skipped on a first reading.

Differential cryptanalysis was introduced by Biham and Shamir around 
1990, though it was probably known much earlier to the designers of DES at 
IBM and NSA. The idea is to compare the differences in the ciphertexts for 
suitably chosen pairs of plaintexts and thereby deduce information about the 
key. Note tha t the difference of two strings of bits can be found by XORing 
them. Because the key is introduced by XORing with looldng at
the XOR of the inputs removes the effect of the key a t this stage and hence 
removes some of the randomness introduced by the key. We’ll see that this 
allows us to deduce information as to what the key could be.

4.3.1 Differential Cryptanalysis for Three Rounds

We eventually want to describe how to attack the above system when it uses 
four rounds, but we need to s ta rt by analyzing three rounds, Therefore, we 
temporarily s ta rt with L i R i instead of LqRq.

Tfye situation is now as follows. We have obtained access to  a three- 
round encryption device tha t uses the preceding procedure. We know all 
the inner workings of the encryption algorithm such as the S-boxes, but we 
do not know the key. We want to find the key by a chosen plaintext attack. 
We use various inputs and obtain outputs L 4R4 .

We have
R 2 = L\  © f { R i , K i )

£3 =  R i  =  L \  © f ( R i , K 2)

R 4 =  L 3 © /(/?3, IQ)  =  Li  @ f ( R i ,K ? )  © /(/Za, IQ).

Suppose we have another message L '/?J with R \  =  R \.  For each i, let 
R?i =  Ri © R ‘ and L\ =  L; © L '.  Then L[R[ is the “difference” (or sum; we 
are working mod 2) of LiRi and L 'R " .  The preceding calculation applied
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to L \R \  yields a formula for R\.  Since we have assumed that A] =  iij ,  we 
have f { R i , K 2) =  / ( ^ i i ^ ) -  Therefore, / ( R y , ! ^ )  © /(fi* , Jf2) =  0 and

R'i = R i ®  R:, =  L\ ® } ( R 3 , IU )® f{RTd, K i ).

This may be rearranged to \

R'i ® L\ =  f(Ha K ,) © f(R '3 ,IU).J
Finally, since Rz =  L,\ and R\ = L\, we obtain

© L[ =  f(L.\,  K i)  © }{L \,  K i) .

Note tha t if we know the input XOR, namely L ,1R[, and if we know the 
outputs L^R .i and ft,,, then we know everything in this last equation 
except K ^

Now let’s analyze the inputs to the S-boxes used to calculate f ( L i , K i )  
and /(I/*t,7f.i). If we sta rt with Li,  we first expand and then XOR with K,i 
to obtain E(L.i) © K,i, which are the bits sent to Si and S2. Similarly, L\ 
yields E (L ')  © K ,\. The XOR of these is

E{L.i) © E{L\)  =  E(L.i © L\)  =  E{L\)

(the first equality follows easily from the bit-by-bit description of the expan
sion function). Therefore, we know

1. the XORs of the inputs to the two S-boxes (namely, the first four and 
the last four bits of E (L ’4))\

2. the XORs of the two outputs (namely, the first three and the last three 
bits of R't ffi L[).

Let’s restrict our attention to S\.  The analysis for S2 will be similar. It 
is fairly fast to run through all pairs of 4-bit inputs with a given XOR (there 
are only 16 of them) and see which ones give a  desired output XOR. These 
can be computed once for all and stored in a table.

For example, suppose we have input XOR equal to 1011 and we are 
looking for output XOR equal to 100. We can run through the input pairs 
(1011, 0000), (1010, 0001), (1001, 0010), ..., each of which has XOR equal 
to 1011, and look at the output XORs. We find tha t the pairs (1010, 0001) 
and (0001, 1010) both produce output XORs 100. For example, 1010 means 
we look at the second row, third column of S i, which is 110. Moreover, 0001 
means we look a t the first row, second column, which is 010. The output 
XOR is therefore 110 ffi 010 =  100.

We know L i  and L\J. For example, suppose L \  =  101110 and Lj =
000010. Therefore, E (L i)  — 10111110 and E (L i)  = 00000010, so the inputs
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to Si are 1011 ffi and 0 0 0 0 © where K,f  denotes the left 4 bits of K.\. 
If we know that the output XOR for Si is 100, then ( lO l lS / f j ',  0000® if,f) 
must be one of the pairs on the list we just calculated, namely (1010, 0001) 
and (0001, 1010), This means tha t K j'  =  0001 or 1010.

If we repeat this procedure a few more times, we should be able to 
eliminate one of the two choices for K.\ and hence determine 4 bits of K .  
Similarly, using S2, we find 4 more bits of K .  We therefore know 8 of the 9 
bits of K.  The last bit can be found by trying both possibilities and seeing 
which one produces the same encryptions as the machine we are attacking.

Here is a summary of the procedure (for notational convenience, we 
describe it with both S-boxes used simultaneously, though in the examples 
we work with the S-boxes separately):

1. Look at the list of pairs with input XOR =  E(L'4) and output XOR
= &i e L ' l .

2. The pair (5(1.4) ffi K 4 , -E(LJ) ffi K.\) is on this list.

3. Deduce the possibilities for /Q .

4. Repeat until only one possibility for /Q  remains.

Example. We start with

L iR i  = 000111011011

and the machine encrypts in three rounds using the key K  =  001001101, 
though we do not yet know K .  We obtain (note tha t since we are starting 
with L \ R \ X we sta rt with the shifted key K i  =  01001101)

Z-4^4 =  000011100101.

If we start with
L \R [  =  101110011011

(note that Ri  =  R[),  then

L \R \  =  100100011000.

We have E(Li)  =  00000011 and E(L*t) =  10101000. The inputs to Si have 
XOR equal to 1010 and the inputs to S2 have XOR equal to 1011. The 
S-boxes have output XOR Rf  ̂ ffi L\ =  111101 ffi 101001 =  010100, so the 
output XOR from Si is 010 and tha t from is 100.

For the pairs (1001,0011), (0011,1001), S] produces output XOR equal 
to 010. Since the first member of one of these pairs should be the left four
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bits of E(L,i) 0  IQ =  OOOOffi K 4 , the first four bits of K 4 are in {1001,0011}. 
For the pairs (1100,0111), (0111,1100), S2 produces output XOR equal to 
100. Since the first member of one of these pairs should be the right four 
bits of £ ( L i )©/(",! — 00110/C,I, the Inst four bits of K 4 are in {1111,0100}.

Now repeat (with the same machine and the same key K)  and with

L1JZ1 =  010111 o n o ii" a n a 'L ;E ; =  101110011011.

A similar analysis shows that the first four bits of K i  are in {0011,1000} 
and the last four bits are in {0100,1011}. Combining this with the previous 
information, we see th a t the first 4 bits of IQ  are 0011 and the last 4 bits 
are 0100. Therefore, K  =  00* 001101 (recall th a t IQ  starts with the fourth 
bit of K.

It remains to find the third bit of K .  If we use K  — 000001101, it 
encrypts -Li-fti to 001011101010, which is not L 4R 4 , while K  =  001001101 
yields the correct encryption. Therefore, the key is K  =  001001101. H

4.3.2 Differential Cryptanalysis for Four Rounds

Suppose now th a t we have obtained access to a four-round device. Again, 
we know all the inner workings of the algorithm except the key, and we want 
to determine the key. The analysis we used for three rounds still applies, 
but to extend it to  four rounds we need to use more probabilistic techniques.

There is a weakness in the box S\.  If we look at the 16 input pairs with 
XOR equal to 0011, we discover that 12 of them have output XOR equal to
011. Of course, we expect on the average that two pairs should yield a given 
output XOR, so the present case is rather extreme. A little variation is to 
be expected; we’ll see tha t this large variation makes it easy to  find the key.

There is a similar weakness in St,  though not quite as extreme. Among 
the 16 input pairs with XOR equal to  1100, there are 8 with output XOR 
equal to 010.

Suppose now tha t we sta rt with randomly chosen R q and R q such that
=  R0 ffi RZ =  001100. This is expanded to  £(001100) =  00111100. 

Therefore the input XOR for Si is 0011 and the input XOR for S 2 is 1100. 
W ith probability 12/16 the output XOR for Si will be 011, and with prob
ability 8/16 the output XOR for S 2 will be 010. If we assume the outputs 
of the two S-boxes are independent, we see that the combined output XOR 
will be 011010 with probability (12/16)(8/16) =  3/8. Because the expan
sion function sends bits 3 and 4 to both Si and S2, the two boxes cannot be 
assumed to have independent outputs, but 3/8 should still be a reasonable 
estimate for what happens.

Now suppose we choose Lq and L[J so tha t L '0 =  Lq ffl Lq =  011010. 
Recall th a t in the encryption algorithm the output of the S-boxes is XORed
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wltli Lq to obtain Ri.  Suppose the output XOR of the S-boxes is 011010. 
Then R\  =  011010 © L '0 =  000000. Since R[ = R i  © R[,  it follows that 
rt, -  R].

Putting everything together, we see that if we s ta rt with two randomly 
vliuwon messages with XOR equal to L'0R'U =  011010001100, then there is a 
probability of around 3/8 tha t L\R!X =  001100000000.

I loro’s the strategy for finding the key. TVy several randomly chosen 
pnliH of Inputs with XOR equal to 011010001100. Look at the outputs 
[,t R.i mid Assume that L[R[ =  001100000000, Then use three-
round dllferential cryptanalysis with L[ — 001100 and the known outputs 
Id iIriIuco n set of possible keys K.j. When L \R \  =  001100000000, which 
ulioulrl happen around 3/8 of the time, this list of keys will contain /Ci, 
uloiifl with some other random keys. The remaining 5 /8  of the time, the 
1UI ulmuld contain random keys. Since there seems to be no reason that 
uny Incorrect key should appear frequently, the correct key will probably 
n|>j)our In the lists of keys more often than the other keys.

I loro Is an example. Suppose we are attacking a four-round device. 
Wo try one hundred random pairs of inputs L qR q and LqR£ =  L qR q ©
111 10101)01100. The frequencies of possible keys we obtain are in the follow
ing table. We find it easier to look at the first four bits and the last four
I>ll,h of K .i separately.

First 4 bits Frequency First 4 bits Frequency
0000 12 1000 33
0001 7 1001 40
0010 8 1010 35
0011 15 1011 35
0100 4 1100 59
0101 3 1101 32
0110 4 1110 28
0111 6 1111 39

Last 4 bits Frequency Last 4 bits Frequency
0000 ' 14 1000 8
0001 G 1001 16
0010 42 1010 8
0011 10 1011 18
0100 27 1100 8
0101 10 1101 23
0110 8 1110 6
0111 11 1111 17

It is therefore likely tha t IQ  =  11000010. Therefore, the key K  is 
10*110000.
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To determine the remaining bit, we proceed as before. We can compute 
that 000000000000 is encrypted to 100011001011 using K  =  101110000 and 
is encrypted to 001011011010 using K  =  100110000. If the machine we 
are attacking encrypts 000000000000 to 100011001011, we conclude that the 
second key cannot be correct, so the correct key is probably K  =  101110000.

The preceding attack can be extended to more rounds by extensions of 
these methods. I t  might be noticed that we could have obtained the key 
at least as quickly by simply running through all possibilities for the key. 
T hat is certainly true inxthis simple model. However, in more elaborate 
systems such as DES, differential cryptanalytic techniques are much more 
efficient than exhaustive searching through all keys, at least until the number 
of rounds becomes fairly large. In particular, the reason tha t DES uses 16 
rounds appears to be because differential cryptanalysis is more efficient than 
exhaustive search until 16 rounds are used.

There is another attack on DES, called lin ear c ry p ta n a ly s is , that was 
developed by M itsuru Matsui [Matsui]. The main ingredient is an approxi
mation of DES by a linear function of the input bits. It is theoretically faster 
than an exhaustive search for the key and requires around 2'13 plaintext- 
ciphertext pairs to find the key. It seems that the designers of DES had not 
anticipated linear cryptanalysis. For details of the method, see [Matsui],

4.4 DES
A block of ciphertext consists of 64 bits. The key has 56 bits, but is expressed 
as a 64-bit string. The 8th, 16th, 24th, . . . ,  bits are parity bits, arranged 
so that each block of 8 bits has an odd number of Is . This is for error 
detection purposes. The output of the encryption is a 64-bit ciphertext.

The DES algorithm, depicted in Figure 4.4, starts with a plaintext m  of 
64 bits, and consists of three stages:

1. The bits of m  are permuted by a  fixed initial permutation to obtain 
mo =  Write mu =  L oR qi where L q is the first 32 bits of mo 
and Bo is the last 32 bits.

2. For 1 <  i < 16, perform the following:

Li =  R,-i
Ri =  Li-i  © Ki),

where K i  is a  string of 48 bits obtained from the key K  and f  is a 
function to be described later.

3. Switch left and right to obtain -RigLie, then apply the inverse of the 
initial perm utation to get the ciphertext c =  I P ~ 1(RieLm)-
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Decryption is performed by exactly the same procedure, except that the 
keys K \ , . . . , K i e  are used in reverse order. The reason this works is the 
same as for the simplified system described in Section 4.2. Note that the 
left-right switch in step 3 of the DES algorithm means tha t we do not have 
to do the left-right switch that was needed for decryption in Section 4.2.

We now describe the steps in more detail.
The initial permutation, which seems to have no cryptographic signif

icance, but which was perhaps designed to  make the algorithm load more 
efficiently into chips that were available in 1970s, can be described by the 
Initial Permutation table. This means that the 58th bit of m  becomes the 
1st bit of mo, the 50th bit of m  becomes the 2nd bit of mo, etc.

In itia l P e rm u ta tio n
58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

The function } (R, Ki ),  depicted in Figure 4.5, is described in several 
steps.

1. First, R  is expanded to E(R)  by the following table.

E x p an sio n  P e rm u ta tio n
32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25
24 25 26 27 28 29 28 29 30 31 32 1

This means tha t the first bit of E(R)  is the 32nd bit of R,  etc. Note 
that E(R)  has 48 bits.

2. Compute E(R)  © Ki, which has 48 bits, and write it as BiB? ■ ■ • Bg, 
where each Bj  has 6 bits.

3. There are 8 S-boxes S i , . . . ,  Sg, given on page 128. By is the input for 
Sj. Write Bj  =  bibo • • • 6G. The row of the S-box is specified by 6j 6g 
while bibib^bs determines the column. For example, if Ba =  001001, 
we look a t the row 01 , which is the second row (00 gives the first row) 
and column 0100, which is the 5th column (0100 represents 4 in binary; 
the first column is numbered 0, so the fifth is labeled 4). The entry 
in S3 in this location is 3, which is 3 in binary. Therefore, the output 
of S3 is 0011 in this case. In this way, we obtain eight 4-bit outputs 
C UC2, . . .  Cg.



Figure 4.4: The DES Algorithm.
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Expander

J

© -

flv 5j B, 6 bits

A T T 7

F ig u re  4.5 : T he DES Function J(Ri-\,Ki).
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4. The string C 1C2 ■ ■ ■ Cs is permuted according to the following table.

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

The resulting 32-bit string is f (R ,  Kj).

Finally, we describe how to obtain K i , . . .  K 15. Recall that we sta rt with 
a 64-bit K.

1. The parity bits are discarded and the remaining bits are permuted by 
the following table.

K ey P e rm u ta tio n
57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 X35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

Write the result as Co-Do, where Co and Do have 28 bits.

2. For 1 <  i <  16, let C,- =  L S i(C i-1) and Di =  L S j(A -i)-  Here L5, 
means shift the input one or two places to the left, according to the 
following table.

N u m b e r  o f  K ey  B its  S h ifted  p e r  R o u n d  
Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Shift 1 1 2 2 2 2 2 2 1 2  2 2 2 2 2 1

3. 48 bits are chosen from the 56-bit string CiDi according to the follow
ing table. The output is K j.

14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

It turns out tha t each bit of the key is used in approximately 14 of the 
16 rounds.

A few remarks are in order. In a good cipher system, each bit of the 
ciphertext should depend on all bits of the plaintext. The expansion E(R)  is
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S-B oxes

14
S-box 1 

4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15
S -box 2

1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10
S -box  3

0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7
S -box 4
13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2
S -box 5 
12 4 I 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12
S -box  6 

1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4
S -box  7 
11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13
S -box a 

2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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designed so tha t this will happen in only a  few rounds. The purpose of the 
initial perm utation Is not completely clear. It has no cryptographic purpose. 
The S-boxes are the heart of the algorithm and provide the security. Their 
design was somewhat of a mystery until IBM published the following criteria 
in the early 1990s (for details, see (Coppersmithl)).

1. Each S-box has 6 input bits and 4 output bits. This was the largest 
tha t could be put on one chip in 1974.

2. The outputs of the S-boxes should not be close to  being linear functions 
of the inputs (linearity would have made the system much easier to 
analyze).

3. Each row of an S-box contains all^number's from 0 to 15.

4. If two inputs to an S-box differ'by 1 bit, the outputs must differ by 2 
bits.

5. If two inputs to  an S-box differ in their first 2 bits but have the same 
last 2 bits, the outputs must be unequal.

6. There are 32 pairs of inputs having a given XOR. For each of these 
pairs, compute the XOR of the outputs. No more than eight of these 
output XORs should be the same. This is clearly to avoid an attack 
via differential cryptanalysis.

7. A criterion similar to  (6), but involving three S-boxes.

In the early 1970s, it took several months of searching for a computer to 
find appropriate S-boxes. Now, such a search could be completed in a very 
short time.

4.4.1 DES Is N ot a Group

One possible way of effectively increasing the key size of DES is to double en
crypt. Choose keys A”i and A'z and encrypt a plaintext P  by E ;^  (Ex,  (P)). 
Does this increase the security?

Meet-in-the-middle attacks on cryptosystems are discussed in Section 
4.7. It is pointed out that, if an attacker has sufficient memory, double 
encryption provides little extra protection. Moreover, if a  cryptosystem is 
such tha t double encryption is equivalent to a single encryption, then there 
is no additional security obtained by double encryption.

In addition, if double encryption is equivalent to  single encryption, then 
the (single encryption) cryptosystem is much less secure than one might 
guess initially (see Exercise 9 in Chapter 8). If this were true for DES, for
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example, then an exhaustive search through all 25C keys could be replaced 
by a search of length around 228, which would be quite easy to do.

For affine ciphers (Section 2.2) and for RSA (Chapter 6), double en
crypting with two keys K i and K 2 is equivalent to encrypting with a third 
key K 3. Is the same true for DES? Namely, is there a key K 3 such tha t 
E k 3 =  E f o E i i ^  This question is often rephrased in the equivalent form “Is 
DES a group?" (The reader who is unfamiliar with group theory can ask “Is 
DES closed under composition?”.)

Fortunately, it turns out tha t DES is not a group. We sketch the proof. 
For more details, see [Campbell-Wiener], Let E q represent encryption with 
the key consisting entirely of Os and let Ei  represent encryption with the key 
consisting entirely of Is . These keys are weak for cryptographic purposes 
(see Exercise 5). Moreover, D. Coppersmith found tha t applying Ei o Eq 
repeatedly to certain plaintexts yielded the original plaintext after around 
232 iterations. A sequence of encryptions (for some plaintext P )

EyEk(P), E . E ^ E ^ P ) ) ,  E ^ E ^ E ^ F ) ) ) , . . . ,  ( £ i£ 0)rt(P) =  P,

where n  is the smallest positive integer such th a t (EiEo)n(P) = P,  is called 
a cycle of length n.

L e m m a . I f  m  is the smallest positive integer such that ( £ 1Eo)m(P ) =  P  
for all P , and n  is the length of a cycle (so (EiEa )n(Po) =  Pq for a particular 
Pq), then n  divides m.

Proof. Divide n  into m, with remainder r. This means th a t m  =  nq +  r  for 
some integer q, and 0 < r < n. Since (EiEo)n (Po) =  Pq, encrypting q times 
with (E\Eo)n leaves Pq unchanged. Therefore,

P0 =  (£ ,B o)m(^o) =  (Bi£-0)r (E iSo)n ,(Po) =  (E ,E 0)r(P0).

Since n is the smallest positive integer such that (EiE<j)n(Po) =  Pa, and 
0 <  r < n,  we must have r  =  0. This means that m  =  nq, so n  divides 
m. • □

Suppose now that DES is closed under composition. Then E i E q = E/c 
for some key K.  Moreover, Ej( , E (̂ , . . .  are also represented by DES keys. 
Since there are only 2sr’ possible keys, we must have Ej( =  E lK for some 
integers i , j  with 0 < i < j  < 25G (otherwise we would have 266 +  1 distinct 
encryption keys). Decrypt i times: E j^ '  =  D)( E]( = D){E}( , which is the 
identity map. Since 0 <  j  — i < 256, the smallest positive integer m  such 
that Eft  Is the identity map also satisfies m  < 250.

Coppersmith found the lengths of the cycles for 33 plaintexts Pq. By the 
lemma, m is a multiple of these cycle lengths. Therefore, m  is greater than
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or equal to the least common multiple of these cycle lengths, which turned 
out to be around 102' 7. But if DES is closed under composition, we showed 
tha t m  < 256. Therefore, DES is not closed under composition.

4.5 M odes of Operation

DES is an example of a block cipher algorithm. A block of plaintext, 64 bits 
in the cose of DES, is encrypted to a block of ciphertext. There are many 
circumstances, however, where it is necessary to encrypt messages that are 
either longer or shorter than the cipher’s block length. For example, we 
may have a long text message that is many times longer than 64 bits. A 
plaintext tha t is shorter than the block'size might occur in situations where 
data arc created in a bit-by-bit, or character-by-character manner, and we 
are required to produce ciphertext output as quickly as we receive plaintext 
input.

Block ciphers can be run in many different modes of operation, allow
ing users to choose appropriate modes to meet the requirements of their 
applications. There are five common modes of operation: electronic code
book (ECB), cipher block chaining (CBC), cipher feedback (CFB), output 
feedback (OFB), and counter (CTR) modes. We now discuss these modes.

4 .5 .1  E le c t r o n ic  C o d e b o o k  (E C B )

The natural manner for using a block cipher is to break a long piece of 
plaintext into appropriate sized blocks of plaintext and process each block 
separately with the encryption function Ex-  This is known as the electronic 
codebook (ECB) mode of operation. The plaintext P  is broken into smaller 
chunks P  =  [Pi, P i, • • • , Pl\ and the ciphertext is

C = [ C u C2 r  ■ ,C L]

where Cj = Erc(Pj) is the encryption of Pj using the key K.
There is a  natural weakness in the ECB mode of operation that becomes 

apparent when dealing with long pieces of plaintext. Say an adversary Eve 
has been observing communication between Alice and Bob for a long enough 
period of time. If Eve has managed to acquire some plaintext pieces cor
responding to the ciphertext pieces that she has observed, she can sta rt to 
build up a codebook with which she can decipher future communication 
between Alice and Bob. Eve never needs to calculate the key K \  she just 
looks up a ciphertext message in her codebook and uses the corresponding 
plaintext (if available) to decipher the message.
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F ig u re  4.6 : Cipher Black Chaining Mode.

This can be a serious problem since many real world messages consist of 
repeated fragments. E-mail is a prime example. An e-mail between Alice 
and Bob might sta rt with the following header:

D ate: Tue, 29 Feb 2000 13:44:38 -0500 (EST)

The ciphertext starts with the encrypted version of “Date: Tu". If Eve finds 
th a t this piece of ciphertext often occurs on a Tuesday, she might be able 
to guess, without knowing any of the plaintext, tha t such messages are e- 
mail sent on Tuesdays. W ith patience and ingenuity, Eve might be able to 
piece together enough of the message's header and trailer to figure out the 
context of the message. W ith even greater patience and computer memory, 
she might be able to piece together im portant pieces of the message.

Another problem that arises in ECB mode occurs when Eve tries to 
modify the encrypted message being sent to Bob. She might be able to 
extract key portions of the message and use her codebook to construct a 
false ciphertext message that she can insert in the data stream.

4 .5 .2  C ip h e r  B lo c k  C h a in in g  (C B C )

One method for reducing the problems th a t occur in ECB mode is to use 
chaining. Chaining is a feedback mechanism where the encryption of a block 
depends on the encryption of previous blocks. In particular, encryption 
proceeds as

Cj =  Ei<{Pj © C j - 1),
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while decryption proceeds as

Pj =  ® C; - i ,
where Cq is some chosen initial value. As usual, E k  and D/c denote the 
encryption and decryption functions for the block cipher.

Thus, in CBC mode, the plaintext is XORed with the previous ciphertext 
block and the result is encrypted. Figure 4.6 depicts CBC.

The initial value Co is often called the initialization vector, or the IV. If 
we use a fixed value for Co, say C q =  0, and ever have the same plaintext 
message, the result will be that the resulting ciphertexts will be the same. 
This is undesirable since it allows the adversary to  deduce th a t the same 
plaintext was created. This can be very valuable information, and can often 
be used by the adversary to infer the meaning of the original plaintext.

In practice, this problem is handled by always choosing the IV Co ran
domly and sending Cq in the clear along with the first ciphertext C\. By 
doing so, even if the same plaintext message is sent repeatedly, an observer 
will see a different ciphertext each time. /

(
4 .5 .3  C ip h e r  F e e d b a c k  (C F B )

One of the problems with both the CBC and ECB methods is tha t encryp
tion (and hence decryption) cannot begin until a complete block of 64 bits of 
plaintext data is available. The cipher feedback mode operates in a manner 
that is very similar to the way in whidi LFSR is used to encrypt plaintext. 
Rather than use linear recurrence to generate random bits, the cipher feed
back mode is a stream  mode of operation th a t produces pseudorandom bits 
using the block cipher E x .  In general, CFB operates in a fc-bit mode, where 
each application produces k  random bits for XORing with the plaintext. For 
our discussion, however, we focus on the 8-bit version of CFB. Using the 8- 
bit CFB allows one 8-bit piece of message (e.g., a single character) to be 
encrypted without having to wait for an entire block of data to be available. 
This is useful in interactive computer communications, for example.

The plaintext is broken into 8-bit pieces: P  = [P\,P2 , . . . ] ,  where each 
Pj has 8 bits, rather than  the 64 bits used in ECB and CBC. Encryption 
proceeds as follows. An initial 64-bit Ari is chosen. Then for j  =  1 ,2 ,3 , . . . ,  
the following is performed:

Oj = L e (EK (Xj))

Cj =  Pj © Oj
A V i = Rx{Xj )\\Cj ,

where La(X) denotes the 8 leftmost bits of X ,  Rse(X) denotes the rightmost 
56 bits of X , and AT[|y denotes the string obtained by writing X  followed 
by Y .  We present the CFB mode of operation in Figure 4.7.
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F ig u re  4 .7 : Cipher Feedback Mode.

Deciyption is done with the following steps:

PJ = CJ ® L B(EK(Xj ))

X j+l = Rso(Xj) || Cj.

We note that decryption does not involve calling the decryption function, 
D](. This would be an advantage of running a block cipher in a stream 
mode in a case where the decryption function for the block cipher is slower 
than the encryption function.

Let’s step through one round of the CFB algorithm. First, we have a 
64-bit register tha t is initialized with X \ .  These 64 bits are encrypted using 
Eft  and the leftmost 8 bits qf E k {X\)  are extracted and XORed with the 
8-bit Pi to form G\. Then Ci is sent to the recipient. Before working with 
P>, the 64-bit register X \  is updated by extracting the rightmost 56 bits. 
The 8 bits of C | are appended on the right to form X i  =  i?5n(Xi)||C 'i. Then 
Pi is encrypted by the same process, but using X i  in place of X i .  After Pi 
is encrypted to Ci, the 64-bit register is updated to form

*3  =  W * 2 ) | |C 2 =  UsiXJWCiWCi.

By the end of the 8th round, the initial A'i has disappeared from the 64-bit 
register and vYg =  HC2II ■ ■ ■ ||Cg. The Cj continue to pass through the 
register, so for example X iq =  C12IIC13II • • • ||Cio.
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Note that CFB encrypts the plaintext in a manner similar to one-time 
pads or LFSRs. The key K  and the numbers X j  are used to produce-binary 
strings tha t are XORed with the plaintext to produce the ciphertext. This 
is a  much different type of encryption than the ECB and CBC, where the 
ciphertext is the output of DES.

In practical applications, CFB is useful because it can recover from er
rors in transmission of the ciphertext. Suppose tha t the transm itter sends 
the ciphertext blocks C\,Cn ........C&,. . . ,  and C\ is corrupted during trans
mission, so tha t the receiver observes C i,C 2, ---- Decryption takes C\ and
produces a garbled version of P\ with bit errors in the locations that C\ had 
bit errors. Now, after decrypting this ciphertext block, the receiver forms 
an incorrect X 2 , which we denote XV If X i was (* ,* ,* ,* ,* ,* ,* ,* ), then 
X 2 =  (*,*,*, * ,* ,* ,* ,Ci). When the receiver gets an uncorrupted Co and 
decrypts, then a completely garbled version of Pn is produced. When forming 
A'a, the decrypter actually forms X 3 =  (* ,* ,* ,* ,* ,* , Ci, C2). The decrypter 
repeats this process, ultimately getting bad versions of P i , P>, • • • , Pg. When 
the decrypter calculates X<), the error block has moved to the leftmost block 
of Xq as Xg =  (C i, Ca, • • • , Cb). At the next step, the error will have been 
flushed from the X 10 register, and X 10 and subsequent registers will be un
corrupted. For a simplified version of these ideas, see Exercise 9.

4.5.4 O utput Feedback (OFB)

The CBC and CFB modes of operation exhibit a drawback in tha t errors 
propagate for a duration of time corresponding to the block size of the cipher. 
The output feedback mode (OFB) is another example of a stream mode of 
operation for a  block cipher where encryption is performed by XORing the 
message with a  pseudo-random bit stream generated by the block cipher. 
One advantage of the OFB mode is tha t it avoids error propagation.

Much like CFB, OFB may work on chunks of different sizes. For our 
discussion, we will focus on the 8-bit version of OFB, where OFB is used 
to encrypt 8-bit chunks of plaintext in a streaming mode. Just as for CFB, 
we break our plaintext into 8-bit pieces, with P  =  [Pi, Po, ■ • • ,)• We sta rt 
with an initial value X i ,  which has a length equal to the block length of 
the cipher, for example, 64 bits. X i  is often called the IV, and should be 
chosen to be random. Xi is encrypted using the key K  to produce 64 bits 
of output, and the leftmost 8 bits Oi of the ciphertext are extracted. These 
are then XORed with the first 8 bits Pi of the plaintext to produce 8 bits 
of ciphertext, Ci-

So far, this is the same as what we were doing in CFB. But OFB differs 
from CFB in wliat happens next. In order to iterate, CFB updates the 
register Xn by extracting the right 56 bits of X\  and appending C\ to the 
right side. Rather than use the ciphertext, OFB uses the output of the
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F ig u re  4.8: O utpu t Feedback Mode.

encryption. That is, OFB updates the register X 2 by extracting the right 
56 bits of X i  and appending Oi to the right side.

In general, the following procedure is performed for j  =  1, 2,3, • • •:

Oj = Lg (E/((Xj))  
X j+ 1  = R w [ X i ) \ \ O s 

Cj -  Pj ® Oj.

We depict the steps for the OFB mode of operation in Figure 4.8. Here, the 
output stream Oj is the encryption of the register containing the previous 
output from the block cipher. This output is then treated as a keystream 
and is XORed with the incoming plaintexts Pj  to produce a stream of ci
phertexts. Decryption is very simple. We get the plaintext Pj by XORing 
the corresponding ciphertext Cj with the output keystream Oj, Again, just 
like CFB, we do not need the decryption function Dr .

So why would one want to build a stream  cipher this way as opposed to 
the way the CFB stream  cipher was built? There are a few key advantages 
to  the OFB strategy. First, the generation of the Oj output key stream  may 
be performed completely without any plaintext. W hat this means is th a t 
the key stream can be generated in advance. This might be desirable for
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applications where we cannot afford to perform encryption operations as the 
plaintext message arrives.

Another advantage lies in its performance when errors are introduced 
to the ciphertext. Suppose a few errors are introduced to Cj when it is 
delivered to the receiver. Then only those corresponding bits in the plaintext 
are corrupted when decryption is performed. Since we build future output 
streams using the encryption of the register, and not using the corrupted 
ciphertext, the output stream will always remain clean and the errors in the 
ciphertext will not propagate.

To summarize, CFB required the register to completely flush itself of 
errors, which produced an entire block length of garbled plaintext bits. OFB, 
on the other hand, will immediately correct itself.

There is one problem associated with OFB, however, tha t is common 
to all stream ciphers that are obtained by XORing pseudo-random num
bers with plaintext. If an adversary knows a particular plaintext Pj and 
ciphertext Cj, he can conduct the following attack. He first calculates

O j  = Cj ® Pj

to  get out the key stream. He may then create any false plaintext P j he 
wants. Now, to  produce a ciphertext, he merely has to XOR with the output 
stream  he calculated:

C '= P j ® O r

This allows him to modify messages.
The OFB mode produces a bit stream  and it encrypts similarly to the 

LFSR method (see Section 2.11). The differences are tha t LFSR is faster, 
but OFB is more secure.

4.5.5 Counter (CTR)

The counter (CTR) mode builds upon the ideas tha t were used in the OFB 
mode. Just like OFB, CTR creates an output key stream tha t is XORed 
with chunks of plaintext to produce ciphertext. The main difference between 
CTR and OFB lies in the fact th a t the output stream Oj in CTR is not linked 
to previous output streams.

CTR starts with the plaintext broken into 8-bit pieces, P  =  [P i, P q , ■ ■ ■ ]. 
We begin with an initial value X i ,  which has a length equal to the block 
length of the cipher, for example, 64 bits. Now, A'i is encrypted using the 
key K  to produce 64 bits of output, and the leftmost 8-bits of the ciphertext 
are extracted and XORed with Pi to produce 8 bits of ciphertext, C\.

Now, rather than update the register X i  to  contain the output of the 
block cipher, we simply take X i  = X \  +  1. In this way, Xo does not depend 
on previous output. CTR then creates new output stream by encrypting
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X 2. Similarly, we may proceed by using A'a =  X? +  1, and so on. The jtl i  
ciphertext is produced by XORing the left 8 bits from the encryption of the 
j th  register with the corresponding plaintext Pj.

In general, the procedure for CTR is

X j  =  A'j'-i + 1  
Oj = Is  (Ek (Xj )) 

Cj  = Pj ffi Oj

for j  =  2,3, ■ • ■, and is presented in Figure 4.9. The reader might wonder 
what happens to X j  if we continually add 1 to it. Shouldn’t  it eventually 
become too large? This is unlikely to happen, but if it does, we simply wrap 
around and sta rt back a t 0.

Just like OFB, the registers X j  can be calculated ahead of time, and 
the actual e n c r y p t io n  0f plaintext is simple in that it involves just the XOR 
operation. As a result, its performance is identical to OFB's when errors 
are introduced in the ciphertext. The advantage of CTR mode compared 
to OFB, however, stems from the fact that many output chunks Oj may 
be calculated in parallel. We do not have to calculate Oj  before calculating 
Oj+j. This makes CTR mode ideal for parallelizing.
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4.6 Breaking DES

DES was the standard cryptographic system for the lost 20 years of the 
twentieth century, but, in the latter half of this period, DES was showing 
signs of age. In this section we discuss the breaking of DES, and we present 
some possible alternatives to DES.

From 1975 onward, there were questions regarding the strength of DES. 
Many in the academic community complained about the size of the DES 
keys, claiming tha t a 56-bit key was insufficient for security. In fact, a few 
months after the NBS release of DES, Whitfield Diffie and Martin Heil
man published a paper titled “Exhaustive cryptanalysis of the NBS D ata 
E n c r y p t io n  Standard" [Dilfie-Hellman2] in which they estimated that a ma
chine could be built for $20 million (in 1977 dollars) that would crack DES 
in roughly a day. This machine’s purpose was specifically to attack DES, 
which is a point that we will come back to later.

In 1987 DES came under its second five-year review. At this time NBS 
asked for suggestions whether to  accept the standard for another period, to 
modify the standard, or to dissolve the standard altogether. The discussions 
regarding DES saw NSA opposing the recertification of DES. The NBS ar
gued at tha t time that DES was beginning to show signs of weakness, given 
the current of level of computing power, and proposed doing away with DES 
entirely and replacing it with a  set of NSA-designed algorithms whose inner 
workings would be known only to NSA and be well protected from reverse 
engineering techniques. This proposal was turned down, partially due to the 
fact that several key American industries would be left unprotected while 
replacement algorithms were put in place. In the end, DES was reapproved 
as a standard, yet in the process it had been acknowledged that DES was 
showing signs of weakness.

Five years later, after NBS had been renamed NIST, the next five-year 
review came around. Despite the weaknesses mentioned in 1987 and the 
technology advances tha t had taken place in five years, NIST recertified the 
DES algorithm in 1992.

In 1993, Michael Wiener, a researcher at Bell-Northern Research, pro
posed and designed a device that would attack DES more efficiently than 
ever before. The idea was to use the already well-developed switching tech
nology available to the telephone industry.

The year 1996 saw the formulation of three basic approaches for attack
ing symmetric ciphers such as DES. The first method was to do distributive 
computation across a vast collection of machines. This had the advantage 
tha t it was relatively cheap, and the cost that was involved could be easily 
distributed over many people. Another approach was to design custom ar
chitecture (such as Michael Wiener’s idea) for attacking DES. This promised 
to be more effective, yet also more expensive, and could be considered as the
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high-end approach. The middle of the line approach involved programmable 
logic arrays and has received the lenst attention to date.

In all three of these cases, the most popular approach to attacking DES 
has been to perform an exhaustive search of the keyspace. For DES this 
seems to be reasonable since, as mentioned earlier, more complicated crypt- 
analytic techniques have failed to show significant improvement over exhaus
tive search.

The distributive computing approach to breaking DES became very pop
ular, especially with the growing popularity of the Internet. In 1997 the RSA 
D ata Security company issued a challenge to find the key and crack a DES 
encrypted message. Whoever cracked the message would win a  $10,000 
prize. Only five months after the announcement of the 1997 DES Chal
lenge, Rocke Verser subm itted the winning DES key. W hat is im portant 
about this is that it represents an example where the distributive comput
ing approach had successfully attacked DES. Rocke Verser had implemented 
a program where thousands of computers spread over the Internet had man
aged to crack the DES cipher. People volunteered time on their personal 
(and corporate) machines, running Verser’s program under the agreement 
that Verser would split the winnings 60% to 40% w ith the owner of the 
computer tha t actually found the key. The key was finally found by Michael 
Sanders. Roughly 25% of the DES keyspace had been searched by tha t time. 
The DES Challenge phrase decrypted to “Strong cryptography makes the 
world a safer place."

In the following year, RSA Data Security issued DES Challenge II. This 
time the correct key was found by Distributed Computing Technologies, 
and the message decrypted to “Many hands make light work.” The key was 
found after searching roughly 85% of the possible keys and was done in 
39 days. The fact th a t the winner of the second challenge searched more 
of the keyspace and performed the task quicker than the first task shows 
the dramatic effect tha t a year of advancement in technology can have on 
cryptanalysis.

In the summer of 1998 the Electronic Frontier Foundation (EFF) devel
oped a project called DES Cracker whose purpose was to reveal the vulnera
bility of the DES algorithm when confronted with a specialized architecture. 
The DES Cracker project was founded on a simple principle: The average 
computer is ill suited for the task of cracking DES. This is a reasonable 
statem ent since ordinary computers, by their very nature, are multipurpose 
machines tha t are designed to handle generic tasks such as running an oper
ating system or even playing a computer game or two. W hat the EFF team 
proposed to do was build specialized hardware tha t would take advantage of 
the parallelizable nature of the exhaustive search. The team  had a budget 
of $200,000.

We now describe briefly the architecture that the EFF team ’s research
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produced. For more information regarding the EFF Cracker as well os the 
other tasks their cracker was designed to handle, see [Gilmore],

The EFF DES Cracker consisted of basically three main parts: a per
sonal computer, software, and a large collection of specialized chips. The 
computer was connected to the array of chips and the software oversaw the 
tasking of each chip. For the most part, the software didn’t interact much 
with the hardware; it just gave the chips the nccessary information to sta rt 
processing and waited until the chips returned candidate keys. In this sense, 
the hardware efficiently eliminated a large number of invalid keys and only 
returned keys th a t were potentially promising. The software then processed 
each of the promising candidate keys on its own, checking to see if one of 
the promising keys was in fact the actual key.

The DES Cracker took a  128-bit (16-byte), sample of ciphertext and 
broke it into two 64-bit (8-byte) blocks of text. Each chip in the EFF DES 
Cracker consisted of 24 search units. A search unit was a  subset of a chip 
whose task was to take a key and two 64-bit blocks of ciphertext and attem pt 
to decrypt the first 64-bit block using the key. If the “decrypted" ciphertext 
looked interesting, then the search unit decrypted the second block and 
checked to see if th a t “decrypted” ciphertext was also interesting. If both 
decrypted texts were interesting then the search unit told the software that 
the key it checked was promising. If, when the first 64-bit block of ciphertext 
was decrypted, the decrypted text did not seem interesting enough, then the 
search unit incremented its key by 1 to form a new key. It then tried this 
new key, again checking to see if the result was interesting, and proceeded 
this way as it searched through its allotted region of keyspace.

How did the EFF team define an “interesting" decrypted text? First they 
assumed that the plaintext satisfied some basic assumption, for example 
tha t it was written using letters, numbers, and punctuation. Since the data 
they were decrypting was text, they knew each byte corresponded to an 
8-bit character. Of the 256 possible values th a t an 8 bit character type 
represented, only 6Q characters were interesting (the uppercase and lowercase 
alphabet, the numbers, the space, and a few punctuation marks). For a byte 
to be considered interesting, it had to  contain one of these 69 characters, and 
hence had a 69/256 chance of being interesting. Approximating this ratio 
to 1/4, and assuming tha t the decrypted bytes are in fact independent, we 
see th a t the chance tha t an 8-byte block of decrypted text was interesting is 
1/48 =  1/65536. Thus only 1/65536 of the keys it examined were considered 
promising.

This was not enough of a reduction. The software would still spend too 
much time searching false candidates. In order to narrow down the field 
of promising key candidates even further, it was necessary to use the sec
ond 8-byte block of text. This block was decrypted to see if the result was 
interesting. Assuming independence between the blocks, we get that only
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1/416 =  1/655362 of the keys could be considered promising. This signifi
cantly reduced the amount of keyspace that the software had to examine.

Each chip consisted of twenty-four search units, and each search unit was 
given its own region of the keyspace th a t it was responsible for searching. A 
single 40-MHz chip would have taken roughly 38 years to search the entire 
keyspace. To reduce further the amount of time needed to process the keys, 
the EFF team used 64 chips on a single circuit board, then twelve boards to 
each chassis, and finally two chassis were connected to  the personal computer 
that oversaw the communication with the software.

The end result was that the DES Cracker consisted of about 1500 chips 
and could crack DES in roughly 4.5 days on average. The DES Cracker was 
by no means an optimum model for cracking DES. In particular, each of 
the chips that it used ran a t 40 MHz, which is slow by modern standards. 
Newer models could certainly be produced in the future that employ chips 
running at much faster clock cycles.

This development strongly indicates the need to replace DES. There are 
two main approaches to achieving increased security in the future. The first 
involves using DES multiple times and leads to the popular method called 
TYiple DES. The second approach is to find a new system tha t employs a 
larger key size than 56 bits.

We sta rt by describing the idea behind multiple DES schemes. The idea 
is to encrypt the same plaintext multiple times using the same algorithm 
with different keys. D oub le  D E S encrypts the plaintext by first encrypting 
with one key and then encrypting again using a different key. Since DES 
does not form a group (see Section 4.4), one might guess that Double DES 
should double the keyspace and thus the keyspace should consist of 2 112 
keys. This, however, is not true. Merkle and Helhnan showed that the 
double encryption scheme actually has the security level of a 57-bit key. The 
reduction from 2112 to 257 makes use of the m e e t- in - th e -m id d le  a ttac k , 
which is described in the next section.

Since Double DES has a weakness, T rip le  D E S  is often used. This 
appears to have a level of security approximately equivalent to a 112-bit 
key. There are a t least two wdys that Triple DES can be implemented. One 
is to choose three keys, K  1, 1( 2, K 3 and perform £/<■, (E/fa(£/<-, (m))). The 
other is to choose two keys, K\  and K 2, and perform [D;^ [E k 1 (m))). 
When Ki = K->, this reduces to single DES. This compatibility is the reason 
for using D ^ 2 instead of E k s in the middle; the use of D  instead of E  
gives no extra cryptographic strength, Both versions of Triple DES are 
resistant to meet-in-the-middle attacks (cf. Exercise 6). However, there are 
other attacks on the two-key version ([Merkle-Heilman] and [van Oorschot- 
Wiener]) that indicate possible weaknesses, though they require so much 
memory as to be impractical.

Another strengthening of DES has been proposed by Rivest. Choose
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three keys, ICj, K 2 , K 3 and perform A'3 © E k ^ K i  ffi m). In other words, 
modify the plaintext by XORing  with A 'i, then apply DES with K^-  then 
XO R  the result with K 3 . This method, known as DESX, hos been shown 
to be fairly secure. See [Kilian-Rogaway].

Another approach is to use one of the new family of encryption algo
rithms being developed. In 1998 NIST requested comments on 15 algorithms 
that were candidates to take the place of DES as the new encryption stan
dard, which would be known as the Advanced Encryption Standard (AES). 
In the year 2000, one of these, Rijndael, was chosen to be the AES. It will 
be described in the next chapter.

4.7 M eet-in-the-M idd le Attacks

Alice and Bob are using an encryption method. The encryption functions 
are called Ek, and the decryption functions are called D\:, where k is a 
key. We assume that if someone knows k, then she also knows Ek and 
Dk (so Alice and Bob could be using one of the classical, nonpublic key 
systems such os DES). They have a great idea. Instead of encrypting once, 
they use two keys k\ and k? and encrypt twice. S tarting with a plaintext 
message m,  the ciphertext is c — E ^ iE k ^ m ) ) .  To decrypt, simply compute 
m  =  Dk, (Dk2 (c))- Eve will need to discover both k 1 and kz to decrypt their 
messages.

Does this provide greater security? For many cryptosystems, applying 
two encryptions is the same as using an encryption for some other key. For 
example, the composition of two affine functions is still an affine function (see 
Exercise 2.5). Similarly, using two RSA encryptions (with the same n) with 
exponents ei and 63 corresponds to doing a single encryption with exponent 
eie2- In these cases, double encryption offers no advantage. However, there 
are systems, such as DES (see Section 4.4) where the composition of two 
encryptions is not simply encryption with another key. For these, double 
encryption might seem to offer a much higher level of security. However, the 
following attack shows that this is not really the case, as long as we have a 
computer with a  lot of memory.

Assume Eve has intercepted a message m and a doubly encrypted ci
phertext c =  E f!3(Ekl (m))- She wants to  find fcj and ki- She first computes 
and stores £jt(m) for all possible keys fc. She then computes D k(c) for all 
possible keys k. Finally, she compares the two lists. This is similar to the 
birthday attack (see Section 8.4), except that she knows there will be at 
least one match, since the correct pair of keys will be one of them. If there 
are several matches, she then takes another plaintext-ciphertext pair and 
determines which of the pairs she has found will encrypt the plaintext to 
the ciphertext. This should greatly reduce the list. If there is still more
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than one pair remaining, she continues until only one pair remains (or she 
decides that two or more pairs give the same double encryption function). 
Eve now has the desired pair ki,  fco.

If Eve has only one plaintext-ciphertext pair, she still has reduced the 
set of possible key pairs to a short list. If she intercepts a  future transmis
sion, she can try each of these possibilities and obtain a very short list of 
meaningful plaintexts.

If there are N  possible keys, Eve needs to compute and store N  val
ues Eiiim). She then needs to compute another N  numbers £>t(c) and 
compare them with the stored list. But these 2N  computations (plus the 
comparisons) are much less than the N 2 computations required for searching 
through all key pairs ki, ko.

This meet-in-the-middle procedure takes slightly longer than the exhaus
tive search through all keys for single encryption. It also takes a lot of mem
ory to store the first list. However, the conclusion is that double encryption 
does not significantly raise the level of security in most situations.

Similarly, we could use triple encryption, using triples of keys. A similar 
attack brings the level of security down to at most what one might naively 
expect from double encryption, namely squaring the possible number of keys.

4.8 Password Security

When you log in to a computer and enter your password, the computer 
checks th a t your password belongs to you and then grants access. However, 
it would be quite dangerous to store the passwords in a file in the computer. 
Someone who obtains that file would then be able to open anyone's account. 
Making the file available only to the computer adm inistrator might be one 
solution; but what happens if the adm inistrator makes a  copy of the file 
shortly before changing jobs? The solution is to encrypt the passwords 
before storing them.

Let }{x)  be a o ne-w ay  fu n c tio n . This means that it is easy to compute 
f ( x ) ,  but it is very difficult to solve y  =  / ( x) for x. A password x  can then 
be stored as /($ ) ,  along with the user's name. When the user logs in, 
and enters the password i ,  the computer calculates f ( x )  and checks that 
it matches the value of f ( x )  corresponding to that user. An intruder who 
obtains the password file will have only the value of / ( x)  for each user. To 
log in to the account, the intruder needs to know x, which is hard to compute 
since f ( x )  is a one-way function.

In many systems, the encrypted passwords are stored in a public file. 
Therefore, anyone with access to the system can obtain this file. Assume 
the function f ( x )  is known. Then all the words in a dictionary, and various 
modifications of these words (writing them backward, for example) can be
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fed into f{x ) .  Comparing the results with the password file will often yield 
the passwords of several users.

This d ic tio n a ry  a t ta c k  can be partially prevented by making the pass
word file not publicly available, but there is still the problem of the departing 
(or fired) computer administrator. Therefore, other ways of making the in
formation more secure are also needed.

Here is another interesting problem. It might seem desirable tha t f ( x )  
can be computed very quickly. However, a slightly slower / ( x)  can slow 
down a dictionary attack. But slowing down f ( x )  too much could also 
cause problems. If f ( x )  is designed to run in a  tenth of a second on a very 
fast computer, it could take an unacceptable amount of time to login on a 
slower computer. There doesn’t seem to be a completely satisfactory way to 
resolve this.

One way to hinder a dictionary attack is with what is called s a lt.  Each 
password is randomly padded with an additional 12 bits. These 12 bits are 
then used to modify the function f ( x ) .  The result is stored in the password 
file, along with the user’s name and the values of the 12-bit salt. When a 
user enters a password x, the computer finds the value of the salt for this 
user in the file, then uses it in the computation of the modified f ( x ) ,  which 
is compared with the value stored in the file.

When salt is used and the words in the dictionary are fed into / ( i ) ,  they 
need to be padded with each of the 212 =  4096 possible values of the salt. 
This slows down the computations considerably. Also, suppose an attacker 
stores the values of / ( x) for all the words in the dictionary. This could be 
done in anticipation of attacking several different password files. W ith salt, 
the storage requirements increase dramatically, since each word needs to be 
stored 4096 times.

The main purpose of salt is to stop attacks that aim at finding a random 
person’s password. In particular, it makes the set of poorly chosen passwords 
somewhat more secure. Since many people use weak passwords, this is 
desirable. Salt does not slow down an attack against an individual password 
(except by preventing use of over-the-counter DES chips). If Eve wants to 
find Bob’s password and has access to the password file, she finds the value 
of the salt used for Bob and tries a dictionary attack, for example, using 
only this value of salt corresponding to Bob. If Bob’s password is not in the 
dictionary, this will fail, and Eve may have to resort to an exhaustive search 
of all possible passwords.

In many Unix password schemes, the one-way function is based on DES. 
The first eight characters of the password are converted to 7-bit ASCII (see 
Section 2.8). These 56 bits become a DES key. If the password is shorter 
than eight symbols, it is padded with zeros to obtain the 56 bits. The 
"plaintext” of all zeros is then encrypted using 25 rounds of DES with this
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key. The output is stored in the password file. The function

password —> output

is believed to be one-way. Namely, we know the "ciphertext," which is the 
output, and the “plaintext," which is all zeros. Finding the.key, which is the 
password, amounts to a  known plaintext attack on DES, which is generally 
assumed to be difficult.

In order to increase security, salt is added as follows. A random 12-bit 
number is generated as the salt. Recall tha t in DES, the expansion function 
E  takes a 32-bit input R  (the right side of the input for the round) and 
expands it to 48 bits E(R).  If the first bit of the salt is 1, the 1st and 25th 
bits of E (R )  are swapped. If the second bit of the salt is 1, the 2nd and 
26th bits of E (R )  are swapped. This continues through the twelfth bit of 
the salt. If it is 1, the 12th and 36th bits of E(R)  are swapped. When a 
bit of the salt is 0, it causes no swap. If the salt is all zero, then no swaps 
occur and we are working with the usual DES. In this way, the salt means 
that 4096 variations of DES are possible.

One advantage of using salt to modify DES is that someone cannot use 
high-speed DES chips to compute the one-way function when performing a 
dictionary attack. Instead, a chip would need to be designed that tries all 
40D6 modifications of DES caused by the salt; otherwise the attack could be 
performed with software, which is much slower.

Salt is regarded by many os a temporary measure. As storage space 
increases and computer speed improves, a factor of 4096 quickly fades. For 
this reason, several new password schemes are being studied for future im
plementation.

4.9 Exercises

1 . Consider the following DES-like encryption method. S tart with a  mes
sage of 2n  bits. Divide it into two blocks of length n  (a left half and a 
right half): Mo M i. The key K  consists of k  bits, for some integer k. 
There is a function f ( K ,  M )  that takes an input of k  bits and n  bits 
and gives an output of n  bits. One round of encryption starts with a 
pair The output is the pair where

(© means XOR, which is addition mod 2 on each bit). This is done 
for m  rounds, so the ciphertext is M mM m+1.

(a) If you have a machine that does the m-round encryption just 
described, how would you use the same machine to decrypt the
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ciphertext MmA/m+i (using the same key A')? Prove that your 
decryption method works.

(b) Suppose K  has n  bits and f ( K , M ) =  I i  ffi M,  and suppose the 
encryption process consists of m  =  2 rounds. If you know only a 
ciphertext, can you deduce the plaintext and the key? If you know 
a ciphertext and the corresponding plaintext, can you deduce the 
key? Justify your answers.

(c) Suppose K  has n  bits and f ( K ,  M ) = K  ffi M ,  and suppose the 
encryption process consists of m  =  3 rounds. Why is this system 
not secure?

2. As described in Section 4.8, a common way of storing passwords on a 
computer is to use DES with the password as the key to encrypt a  fixed 
plaintext (usually 000 . . .  0). The ciphertext is then stored in the 
file. When you log in, the procedure is repeated and the ciphertexts are 
compared. Why is this method more secure than the similar-sounding 
method of using the password as the plaintext and using a fixed key 
(for example, 000 • • • 0)?

3. Show th a t the decryption procedures given for the CBC and CFB 
modes actually perform the desired decryptions.

4. For a string of bits <S, let S  denote the complementary string obtained 
by changing all the Is to 0s and all the 0s to Is (equivalently, S  =  
S  ffi 11111 . SJiow tha t if the DES key K  encrypts P  to C, then 
7? encrypts P  to C. (Hint: This has nothing to do with the structure 
of the S-boxes. To do the problem, just work through the encryption 
algorithm.)

5. (a) Let K  ~  111. . .  I l l  be the DES key consisting of all Is . Show
that if E k (P) =  C, then E k (C) = P,  so encryption twice with 
this key returns the plaintext.

(b) Find another key with the same property as IC in part (a).

6 . Suppose Triple DES is performed by choosing two keys I i \ , JVo and 
computing £/<-, (E/v,(Ek , (m))) (note tha t the order of the keys has 
been modified from the usual two-key version of Triple DES). Show 
how to attack this modified version with a meet-in-the-middle attack.

7. Suppose E l and E -  are two encryption methods. Let A'i and /v> be 
keys and consider the double encryption

EKllKx(m)  =  E}( l ( E U m ) ) .
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(a) Suppose you know a plaintext-ciphertext pair. Show how to per
form a meet-in-vthc-middle attack on this double encryption.

(b) An affine encryption given by x  i—*■ a x  +  0  (mod 26) can be re
garded as a double encryption, where one encryption is multiply
ing the plaintext by a  and the other is a  shift by 0. Assume that 
you have a plaintext and ciphertext that are long enough tha t a  
and 0  are unique. Show tha t the meet-in-the-middle attack from 
part (a) takes at most 38 steps (not including the comparisons 
between the lists). Note tha t this is much faster than a brute 
force search through all 312 keys.

8. Suppose we modify the Feistel setup as follows. Divide the plaintext 
into three equal blocks: Lq, Mo, i?o- Let the key for the ith  round 
be Ki  and let /  be some function th a t produces the appropriate size 
output. The ith  round of encryption is given by

Li = R i- i ,  Mi = Li- ], R-, = /(A'i,Hi-i) ffi Mj_i.

This continues for n rounds. Consider the decryption algorithm that 
sta rts w ith the ciphertext A niB„, C„  and uses the algorithm

j4j_i =  Bi, S i- i  =  f [K i,  A )  © Ci, C i- i  =  Ai.

This continues for n rounds, down to A q, B q, C o. Show th a t Ai =  
Li, Bi = Mi, Ci =  Ri for all i, so th a t the decryption algorithm returns 
the plaintext. (Remark: Note tha t the decryption algorithm is similar 
to  the encryption algorithm, but cannot be implemented on the same 
machine as easily as in the case of the Feistel system.)

9. Consider the following simplified version of the CFB mode. The plain
text is broken into 32-bit pieces: P  =  [Pi, P i , . .. ], where each Pj has 
32 bits, rather than the 8 bits used in CFB. Encryption proceeds as 
follows. An initial 64-bit A'i is chosen. Then for j  — 1 ,2 ,3 , . . . ,  the 
following is performed:

Cj =  Pj&> Ly>{Eyc{Xj)) 

X_,+] = Rri {Xj ) || Cj,

where L & (X )  denotes the 32 leftmost bits of X ,  R32{X) denotes the 
rightmost 32 bits of X ,  and XJ|y denotes the string obtained by writ
ing X  followed by Y .

(a) Find the decryption algorithm.
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(b) The ciphertext consists of 32-bit blocks C\, C2, C3, C,j , ___ Sup
pose tha t a  transmission error causes c\ to  be received as C\ C\ , 
but that C2, Ca, C\ , .. ■ are received correctly. This corrupted ci
phertext is then decrypted to yield plaintext blocks P \ ,P x ,___
Show tha t Pi ^  Pi, but tha t P, = Pi for all i > 4. Therefore, the 
error affects only three blocks of the decryption.

10. The cipher block chaining (CBC) mode has the property tha t it recov
ers from errors in ciphertext blocks. Show tha t if an error occurs in 
the transmission of a block Cj, but all the other blocks are transm itted 
correctly, then this affects only two blocks for decryption. Which two 
blocks?

11. Suppose E n (M )  is the DES encryption of a message M  using the 
key K .  We showed in problem 4 th a t DES has the complementation 
property, namely tha t if y = E k (M )  then y = Ej-(M ),  where M  is 
the bit complement of M. T hat is, the bitwise complement of the 
key and the plaintext result in the bitwise complement of the DES 
ciphertext. Explain how an adversary can use this property in a brute 
force, chosen plaintext attack to reduce the expected number of keys 
that would be tried from 255 to 25'1. (Hint: Consider a chosen plaintext 
set of (M i,C \)  and (M i, Co)).

4.10 Computer Problems

1. (For those who are comfortable with programming)

(a) Write a  program th a t performs one round of the simplified DES- 
type algorithm presented in Section 4.2.

(b) Create a sample input bitstring, and a random key. Calculate 
the corresponding ciphertext when you perform one round, two 
rounds, three rounds, and four rounds of the Feistel structure 
using your implementation. Verify th a t the decryption procedure 
works in each case.

(c) Let E k ( M )  denote four-round encryption using the key K .  By 
trying all 2 ° keys, show that there are no weak keys for this 
simplified DES-type algorithm. Recall tha t a weak key is one 
such tha t when we encrypt a plaintext twice we get back the 
plaintext. T hat is, a weak key K  satisfies E k ( E k ( M ) )  = M  for 
every possible M . (Note: For each key K , you need to find some 
M  such that E k (Ek (M)) ^  M .)
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(d) Suppose you modify the encryption algorithm E k (M)  to create a 
new encryption algorithm E'I((M)  by swapping the left and right 
halves after the four Feistel rounds. Are there any weak keys for 
this algorithm?

2. Using your implementation of E k (M)  from Computer Problem 1(b), 
implement the CBC mode of operation for this simplified DES-type 
algorithm.

(a) Create a plaintext message consisting of 48 bits, and show liow it 
encrypts and decrypts using CBC.

(b) Suppose th a t you have two plaintexts that differ in the 14th bit. 
Show the effect that this has on the corresponding ciphertexts.
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The Advanced Encryption 
Standard: Rijndael

In 1997, the National Institute of Standards and Technology put out a call 
for candidates to replace DES. Among the requirements were tha t the new 
algorithm should allow key sizes of 128, 192, and 256 bits, it should oper
ate on blocks of 128 input bits, and it should work on a variety of different 
hardware, for example, 8-bit processors that could be used in sm art cards 
and the 32-bit architecture commonly used in personal computers. Speed 
and cryptographic strength were also important considerations. In 1998, 
the cryptographic community was asked to comment on 15 candidate al
gorithms. Five finalists were chosen: MARS (from IBM), RC6 (from RSA 
Laboratories), Rijndael (from Joan Daemen and Vincent Rijmen), Serpent 
(from Ross Anderson, Eli Biham, and Lars Knudsen), and Twofish (from 
Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and 
Niels Ferguson). Eventually, Rijndael was chosen as the Advanced Encryp
tion Standard. The other four algorithms are also very strong, and it is 
likely that they will used in many future cryptosystems.

As with other block ciphers, Rijndael can be used in several modes, for 
example, ECB, CBC, CFB, OFB, and CTR (see Sectiou 4.5).

Before proceeding to the algorithm, we answer a very basic question: 
How do you pronounce Rijndael? We quote from their Web page:

If you're Dutch, Flemish, Indonesian, Surinamer or South- 
African, it's  pronounced like you think it should be. Otherwise,
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you could pronounce it like “Reign Dahl,” “Rain Doll,” “Rhine 
Dahl”. We're not picky. As long as you make it sound different 
from “Region Deal.”

5.1 The Basic Algorithm

Rijndael is designed for use with keys of lengths 128, 192, and 256 bits. For 
simplicity, we’ll restrict to 128 bits. First, we give a brief outline of the 
algorithm, then describe the various components in more detail.

The algorithm consists of 10 rounds (when the key has 192 bits, 12 
rounds are used, and when the key has 256 bits, 14 rounds are used). Each 
round has a round key, derived from the original key. There is also a  0th 
round key, which is the original key. A round starts with an input of 128 
bits and produces an ou tput of 128 bits.

There are four basic steps, called layers, that are used to form the 
rounds:

1. T h e  B y te S u b  T ra n sfo rm a tio n  (B S ): This non-linear layer is for re
sistance to differential and linear cryptanalysis attacks.

2. T h e  S h iftR ow  T ra n sfo rm a tio n  (S R ): This linear mixing step causes
diffusion of the bits over multiple rounds.

3. T h e  M ix C o lu m n  T ra n sfo rm a tio n  (M C ): This layer has a purpose
similar to ShiftRow.

4. A d d R o u n d K e y  (A R K ): The round key is XORed  with the result of
the above layer.

A round is then

ByteSub  —* S h i f tR o w  —► M ixC olum n  —► AddRoundKey

Putting everything together, we obtain the following (see also Figure 
5.1):

___________ Rijndael Encryption________________

1. ARK, using the 0th round key.
2. Nine rounds of BS, SR, MC, ARK, using round keys 1 to 9.
3. A final round: BS, SR, ARK, using the 10th round key.
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Figure 5.1: The AES-Rijndnel Algorithm
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The final round uses the ByteSub, ShiftRow, and AddRoundKey steps 
but omits MixColumn (this omission will be explained in the decryption 
section).

The 128-bit output is the ciphertext block.

5.2 The Layers

We now describe the steps in more detail. The 128 input bits are grouped 
into 16 bytes of 8 bits each, call them

Q0,0 , Gl.Oi 0 2 ,Oi 0 3 ,0, “ 0,1 , 0 1 ,1 ...........<13,3 .

These are arranged into a 4 x 4 matrix

/  “ d.d Qo.i ao,2 ao,3 \
01.0  Q i . i  01,2 a i , a

02.0 02,1 a-2,2 02,3 
V “3,0 03,1 03,3 03,3 /

In the following, we'll occasionally need to work with the finite field 
G F(28). This is covered in Section 3.11. However, for the present purposes, 
wc only need the following facts. The elements of GF(28) are bytes, which 
consist of 8 bits. They can be added by XOR. They can also be multiplied in 
a certain way (i.e., the product of two bytes is again a byte), but this process 
is more complicated. Each byte b except the zero byte has a  multiplicative 
inverse; tha t is, there is a byte b' such tha t b • b' =  00000001. Since we can 
do arithmetic operations 011 bytes, we can work with matrices whose entries 
are bytes.

As a technical point, we note tha t the model of G F (28) depends on 
a choice of irreducible polynomial of degree 8. The choice for Rijndael is 
X 8 +  X 4 +  X 3 +  X  + 1. This is also the polynomial used in the examples 
in Section 3.11. Other choices for this polynomial would presumably give 
equally good algorithms.

5.2.1 The ByteSub Transformation

In this step, each of the bytes in the matrix is changed to another byte by 
Table 5.1, called the S-box.

Write a byte as 8 bits: abedefgh. Look for the entry in the abed row and 
e/g/t column (the rows and columns are numbered from 0 to 15). This entry, 
when converted to binary, is the output. For example, if the input byte 
is 10001011, we look in row 8 (the ninth row) and column 11 (the twelfth 
column). The entry is 61, which is 111101 in binary. This is the output of 
the S-box.
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99 124 119 123 242 107 111

S-Box 

197 48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168
81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

T able 5.1: S-Box for Rijndael

The output of ByteSub is again a 4 x 4 m atrix of bytes, let's call it

(
&o,o &o,i io ,2 bo,3 \
bi.o !>i,i 6 1,2 61,3 I

63,0 62,1 62,2 62,3 I

fa.D i>3,l h ,2 63,3 /

5.2.2 The ShiftRow Transformation

The four rows of the matrix are shifted cyclically to  the left by offsets of 0,
1, 2, and 3, to obtainco,o C0,1 Co,2 CO ,3 \ I  0̂,0 60,] 6o,2 6q,3

Cl.o Cl.l Cl ,2 C l,3 *1.1 6l,2 6 l ,3 6l,0

C2,0 C2,l 02,2 C2,3 I *2,2 f>2,3 ^2,0 62,1
C3,0 C3,l C3,2 C3,3 I V 63,3 63,0 63,1 63,2

5.2.3 The M ixColum n Transformation

Regard a byte as an element of GjF(28), as in Section 3.11. Then the output 
of the ShiftRow step is a 4 x 4 matrix (cjj) with entries in G F (28). Multiply
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this by a matrix, again with entries in G F(28), to produce the output (d ;j) , 
as follows:

/  00000010 00000011 00000001 00000001 \ j  co.o CQ,1 CO,2 CQ,3
00000001 00000010 00000011 00000001 1 [ Cl.O C l,l Cl,2 C l ,3
00000001 00000001 00000010 00000011 1 C2,0 C2,l C2,2 C i ,3

\  00000011 00000001 00000001 00000010 J V ca,o C3 ,l C3,2 C3,3

do,o do,i do,2 4),3 \
di,o d a  d\n d i j  
d2,0 <̂2,1 d<2 2 <̂2,3 
da,o da.i ^3,2 <£j,3 /

5.2.4 The RoundK ey Addition

The round key, derived from the key in a way we'll describe later, consists 
of 128 bits, which are arranged in a 4 x 4 m atrix (k ij)  consisting of bytes. 
This is XORed  with the output of the MixColumn step:

This is the final output of the round.

5.2.5 The K ey Schedule

The original key consists of 128 bits, which are arranged into a  4 x 4 m atrix 
of bytes. This matrix is expanded by adjoining 40 more columns, as follows. 
Label the first four columns W(0), 1^(1), W{2), ty(3). The new columns 
are generated recursively. Suppose columns up through \V(i — 1) have been 
defined. If i is not a multiple of 4, then

W (i) = W (i  -  4) ffi W {i  -  I).

If z is a multiple of 4, then

\V(i) = W (i  -  4) ® T {W {i ~  I)),



5 .2 . T h e  L a y ers 157

where T (W (i  — 1)) is the transformation of W (i  — 1) obtained as follows. 
Let the elements of the column W (i  — 1) be a, b, c, d. Shift these cyclically 
to obtain b, c, d, a. Now replace each of these bytes with the corresponding 
element in the S-box from the ByteSub step, to get 4 bytes c , f , g ,h .  Finally, 
compute the round constant

r ( i )  =  00000010(i~‘l)/'1

in G F (28) (recall that we are in the case where i is a multiple of 4). Then 
T (lV (i  — 1)) is the column vector

(e@ r(i),/,<7,/i).

In this way, columns H/ (4 ),. . . ,  W(43) are generated from the initial four 
columns.

The ro u n d  key for the ith  round consists of the columns 

Hz(4i), W (4i +  1), W (4i +  2), IV(4i +  3).

5.2.6 T he Construction o f the S-Box

Although the S-box is implemented as a lookup table, it has a simple m ath
ematical description. S tart with a byte 172:6152:42:3X2X110, where each z, 
is a binary bit. Compute its inverse in G F(28), as in Section 3.11. If the 
byte is 00000000, there is no inverse, so we use 00000000 in place of its in
verse. The resulting byte 1/71/62/52/-lZ/3y2i/i2/a represents an eight-dimensional 
column vector, with the rightmost bit 7/0 in the top position. Multiply by 
a m atrix and add the column vector (1,1,0, 0 ,0 ,1 ,1 ,0 ) to obtain a vector 
(z0,^ i ,z 2,za ,z4, 25, 20, 27) os follows-.

( 1 0 0 0 1 1 1 1 \ ( Vo \ / 1  \ ( x°\1 1 0 0 0 1 1 1 2/1 1 Zi
1 1 1 0 0 0 1 1 i/2 0 Zo
1 1 1 1 0 0 0 1 2/3 +

0 Z3
1 1 1 1 1 0 0 0 2/4 0 2.1
0 1 1 1 1 1 0 0 2/5 1 25
0 0 1 1 1 1 1 0 2/6 1 ZG

X 0 0 0 1 1 1 1 1 / V 2/7 / v 0  y \z~ J
The byte Z7ZGZ5Z4Z3Z2Z1Z0 is the entry in the S-box.

For example, s ta rt with the byte 11001011. Its inverse in G F (28) is
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00000100, os we calculated in Section 3.11. We now calculate

/  1 
1 
1 
1

0 
1
1 1

0 0 1 
0 0 0 

0

1 
1

0 0 1
1 1 1 0  0 0

1 1 1 1  
0 1 1 1  
0 0 1 1  

\  0 0 0 1

1 1 \  
1 1 

1 
1 
0 
0 
0 
1 /

/  0 X 
0 
1 
0 
0 
0 
0

< 0 /

Z 1 \ 
1 
0 
0 
0 
1 
1

X 0 1

( 1 \  
1 
1
1 
1 
0 
0

X 0 /

This yields the byte 00011111. The first 4 bits 1100 represent 12 in binary 
mid the lost 4 bits 1011 represent 11 in binary. Add 1 to each of these 
numbers (since the first row and column are numbered 0) and look in the 
13th row and 12th column of the S-box. The entry is 31, which in binary is 
00011111.

Some of the considerations in the design of the S-box were the following, 
'l'lio map i h i " '  was used to achieve nonlinearity. However, the simplicity 
of this map could possibility allow certain attacks, so it was combined with 
multiplication by the matrix and adding the vector, as described previously. 
The matrix was chosen mostly because of its simple form (note how the rows 
are shifts of each other). The vector was chosen so that no input ever equals 
ItH S-box output or the complement of its S-box output (complementation 
muims changing cach 1 to 0 and cach 0 to 1).

5.3 Decryption

lincli of the steps ByteSub, ShiftRow, MixColumn, and AddRoundKey is 
Invertible:

1. The inverse of ByteSub is another lookup table, called In v B y te S u b .

2. The inverse of ShiftRow is obtained by shifting the rows to  the right 
instead of to  the left, yielding In v B y teS u b .

3. The inverse of MixColumn exists because the 4 x 4  m atrix used in Mix
Column is invertible. The transformation In v M ix C o lu m n  is given 
by multiplication by the matrix

j 00001110 00001011 00001101 00001001
00001001 00001110 00001011 00001101
00001101 00001001 00001110 00001011

X 00001011 00001101 00001001 00001110
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4. AddRoundKey is its own inverse.

The Rijndael encryption consists of the steps 

ARK
BS, SR, MC, ARK

BS, SR, MC, ARK 
BS, SR, ARK.

Recall tha t MC is missing in the last round.
To decrypt, we need to run through the inverses of these steps in the 

reverse order. This yields the following preliminary version of decryption:

ARK, ISR, IBS 
ARK, IMG, ISR, IBS

ARK, IMG, ISR, IBS 
ARK.

However, we want to rewrite this decryption in order to make it look more 
like encryption.

Observe tha t applying BS then SR is the same as first applying SR then 
BS. This happens because BS acts one byte at a  time and SR permutes the 
bytes. Correspondingly, the order of ISR and IBS can be reversed.

We also want to reverse the order of ARK and IMC, but this is not 
possible. Instead, we proceed as follows. Applying MC and then ARK to a 
m atrix (c,i;) is given as

(Ci.j) ~ ( e i j )  =  (TOijX Ctj) ©

where (m ^ )  is a the 4 x 4  matrix in MLxColumn and (kij)  is the round 
key matrix. The inverse is obtained by solving (e*,,) =  ( m i j j ic i j )  © ( h j )  
for ( a j )  in terms of (e^ ), namely, (cjj) =
Therefore, the process is

( e i , j )  ( e i j )  ©  ( ^ i , j ) i

where (kjj)  =  (m ,j ) -1 (k\j).  The first arrow is simply InvMix Column ap
plied to (eij).  If we let In v A d d R o u n d K ey  be XORing with (fc'j), then we 
have that the inverse of "MC then ARK” is “ IMC then LARK." Therefore, 
we can replace the steps “ARK then IMC” with the steps “IMC then IARK" 
in the preceding decryption sequence.

We now see tha t decryption is given by
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ARK, IDS, ISR 
IMC, I ARK, IBS, ISR

IMG, IARK, IBS, ISR 
ARK.

Regroup the lines to obtain the final version:

Rijndael Decryption

1. ARK, using the 10th round key
2. Nine rounds of IBS, ISR, IMC, IARK, using round keys 9 to 1
3. A final round: IBS, ISR, ARK, using the 0th round key

Therefore, the decryption is given by essentially the same structure as 
encryption, but ByteSub, ShiftRow, and MixColumn are replaced by tbeir 
inverses, and AddRoundKey is replaced by InvAddRoundKey, except in the 
initial and final steps. Of course, the round keys arc used in the reverse 
order, so the first ARK uses the 10th round key, and the last ARK uses the 
0th round key.

The preceding shows why the MixColumn is omitted in the last round. 
Suppose it had been left in. Then the encryption would sta rt ARK, BS, SR, 
MC, ARK, . . . ,  and it would end with ARK, BS, SR, MC, ARK. Therefore, 
the beginning of the decryption would be (after the reorderings) IMC, IARK,
IBS, IS R ,___This means the decryption would have an unnecessary IMC at
the beginning, and this would have the effect of slowing down the algorithm.

Another way to look a t encryption is tha t there is an initial ARIC, then 
a sequence of alternating half rounds

(BS, SR), (MC, ARK), (BS, SR), . . . ,  (MC, ARK), (BS, SR),

followed by a final ARIC. The decryption is ARK, followed by a sequence of 
alternating half rounds

(IBS, ISR), (IMC, I ARIC), (IBS, ISR), . . . ,  (IMC, I ARIC), (IBS, ISR),

followed by a final ARIC. From this point of view, we see tha t a final MC 
would not fit naturally into any of the half rounds, and it is natural to leave 
it out.

On 8-bit processors, decryption is not quite as fast as encryption. This is 
because the entries in the 4 x 4  m atrix for InvMLxColumn are more complex 
than those for MixColumn, and this is enough to make decryption take
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around 30% longer than encryption for these processors. However, in many 
applications, decryption is not needed, for example, when CFB mode (see 
Section 4.5) is used. Therefore, this is not considered to be a significant 
drawback.

The fact tha t encryption and decryption are not identical processes leads 
to the expectation that there are no weak keys, in contrast to DES (see 
Exercise 5 in Chapter 4) and several other algorithms.

5.4 Design Considerations

The Rijndael algorithm is not a Feistel system (see Sections 4.1 and 4.2). In 
a Feistel system, half the bits are moved but not changed during each round. 
In Rijndael, all bits are treated uniformly. This has the effect of diffusing the 
input bits faster. I t can be shown that two rounds are sufficient to obtain 
full diffusion, namely, each of the 128 output bits depends on each of the 
128 input bits.

The S-box was constructed in an explicit and simple algebraic way so as 
to avoid any suspicions of trapdoors built into the algorithm. The desire was 
to avoid the mysteries about the S-boxes tha t haunted DES. The Rijndael 
S-box is highly nonlinear, since it is based on the mapping i  i-> x ~ l in 
GF(28). It is excellent at resisting differential and linear cryptanalysis, as 
well as more recently studied methods called interpolation attacks.

T he ShiftRow step was added to resist two recently developed attacks, 
namely truncated differentials and the Square attack (Square was a prede
cessor of Rijndael).

The MixColumn causes diffusion among the bytes. A change in one 
input byte in this step always results in all four output bytes changing. If 
two input bytes are changed, at least three output bytes are changed,

The Key Schedule involves nonlinear mixing of the key bits, since it uses 
the S-box. The mixing is designed to resist attacks where the cryptanalyst 
knows part of the key and tries to deduce the remaining bits. Also, it aims 
to ensure th a t two distinct keys do not have a large number of round keys 
in common. The round constants are used to eliminate symmetries in the 
encryption process by making each round different.

The number of rounds was chosen to be 10 because there are attacks that 
are better than brute force up to six rounds. No known attack beats brute 
force for seven or more rounds. It was felt that four extra rounds provide a 
large enough margin of safety, Of course, the number of rounds could easily 
be increased if needed.
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5.5 Exercises

1 . Suppose the key for round 0 in AES consists of 128 bits, each of which 
is 0.

(a) Show that the key for the first round is W(4), Wz(5), W (6), T-1z(7), 
where

01100100

W ( 4 ) = ^ ( 5 ) = mz( 6 ) = w ) = i

01100011

(b) Show tha t W (8) =  W(10) $  W(9) =  IV (ll)  {Hint: This can be 
done without computing W (8) explicitly).

2 . Suppose the key for round 0 in AES consists of 128 bits, each of which 
is 1.

(a) Show tha t the key for the first round is Uz(4), W(5), IV(6), Hz(7), 
where

/  00010111

Hz(4) = W {6) =  s ; ; ° 0 

\  00010110

(
11101000

\ r n m i  
11101001

Note that Hz(5) =  Hz(4) =  the complement of 1^(5) (the com
plement can be obtained by X O R ing with a  string of all Is).

(b) Show tha t Vt^lO) =  1^(8) and th a t W ^ll) =_IV(9) (Hints: 
1,1Z(5)©HZ(6) is a string of all Is. Also, the relation A®B =  A ®  B  
might be useful.)

3. Let f ( x )  be a function from binary strings (of a fixed length N )  to 
binary strings. For the purposes of this problem, let’s say that f ( x )  
has the equal difference property if the following is satisfied: Whenever 
$ 1, 12, 13,14 are binary strings of length N  tha t satisfy xi ® xn = 

then
f ( x  1) ffi f ( x 2) = f ( x 3) $  f ( x 4).

(a) Show that if a ,P  6 G F(28) and f ( x )  =  ax+/3  for all x  G G F (28), 
then f ( x )  has the equal difference property.
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(b) Show that the ShiftRow Transformation, the MixColumn Trans
formation, and the RoundKey Addition have the equal difference 
property.

4. (a) Suppose we remove all ByteSub Transformation steps from the
AES algorithm. Show that the resulting AES encryption would 
then have the equal difference property defined in Exercise 3.

(b) Suppose we are in the situation of part (a), with all ByteSub 
Transformation steps removed. Let xj and xn be two 128-bit 
plaintext blocks and let E ( x i) and E (x2) be their encryptions un
der this modified AES scheme. Show tha t E (x \)  © E (x 2) equals 
the result of encrypting x i  ffi xn using only the ShiftRow and 
MixColumn Transformations (that is, both the RoundKey Addi
tion and the ByteSub Transformation are missing). In particular, 
E (x  1) ffi E (x 2) is independent of the key.

(c) Suppose we are in the situation of part (a), and Eve knows x \  and 
E ( x  1) for some 128-bit string x. Describe how she can decrypt 
any message E (x 2) (your solution should be much faster than 
using brute force or making a list of all encryptions). (Remark: 
This shows that the ByteSub transformation is needed to prevent 
the equal difference property. See also Exercise 5.)

5. Let I ,  =  00000000, x 2 =  00000001, =  00000010, x., = 00000011. 
Let B S ( x ) denote the ByteSub Transformation of x. Show that

B S (x i )  ffi B S { x 2) =  00011111 ^  00001100 =  B S (x 3) ffi B S (i .i).

Conclude th a t the ByteSub Transformation is not an affine map (that 
is, a map of the form a x  +  f3) from G F (28) to G F (2&). (Hint: See 
Exercise 3(a).)
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The RSA Algorithm

6.1 The RSA Algorithm

Alice wants to send a message to Bob, but they have not had previous 
contact and they do not want to take the time to send a courier with a 
key. Therefore, all information that Alice sends to Bob will potentially be 
obtained by the evil observer Eve. However, it is still possible for a message 
to be sent in such a way that Bob can read it but Eve cannot.

With all the previously discussed methods, this would be impossible. 
Alice would have to send a key, which Eve would intercept. She could then 
decrypt all subsequent messages. The possibility of the present scheme, 
called a public key cryp tosystem , was first publicly suggested by Diffie 
and Heilman in their classic paper (Diffie-Hellman). However, they did not 
yet have a practical implementation (although they did present an alterna
tive key exchange procedure that works over public channels; see Section 
7.4). In the next few years, several methods were proposed. The most 
successful, based on the idea that factorization of integers into their prime 
factors is hard, was proposed by Rivest, Shamir, and Adleman in 1977 and 
is known as the RSA algorithm.

It had long been claimed that government cryptographic agencies had 
discovered the RSA algorithm several years earlier, but secrecy rules pre
vented them from releasing any evidence. Finally, in 1997, documents re
leased by CESG, a British cryptographic agency, showed that in 1970, James

164
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Ellis had discovered public key cryptography, and in 1973, Clifford Cocks 
had written an internal document describing a version of the RSA algorithm 
in which the encryption exponent e (see the discussion that follows) was Lliti 
same as the modulus n.

Here is how the RSA algorithm works. Bob chooses two distinct large 
primes p and q and multiplies them together to form

n = pq.

He also chooses an encryption exponent e such that

gcd(e, (p — l)(q — 1)) =  1.

He sends the pair (n, e) to Alice but keeps the values of p and q secret. In 
particular, Alice, who could possibly be an enemy of Bob, never riccds to 
know p and q to send her message to Bob securely. Alice writes her message 
as a number m. If m is larger than n, she breaks the message into block*, 
each of which is less than tl. However, for simplicity, let’s assume for the 
moment that m  < n. Alice computes

c s m f  (mod n)

and sends c to Bob. Since Bob knows p and q, he can compute ( p -  1) (q — 1) 
and therefore can find the decryption exponent d with

de = 1 (mod (p — l)(g — 1)).

As we’ll see later,
m  = cd (mod n),

so Bob can read the message.
We summarize the algorithm in the following table.

The RSA Algorithm

1. Bob chooses secret primes p and q and computes n = pq.
2. Bob chooses e with gcd(e, (p — l)(g -  1)) =  1.
3. Bob computes d with de =  1 (mod (p -  l)(g — 1)).
4. Bob makes n and e public, and keeps p, q, d secret.
5. Alice encrypts m a s c s m '  (mod n) and sends c to Bob.
6. Bob decrypts by computing m  = cd (mod n).__________

E x a m p le . Bob chooses

p =  885320963, q = 238855417.
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Then
Ti—p q  = 211463707796206571.

Let the encryption exponent be

e =  9007.

The values of n and e are sent to Alice.
Alice’s message is cat. We will depart from our earlier practice of num

bering the letters starting with a = 0; instead, we start the numbering at
o =  01 and continue through z =  26. We do this because, in the previous 
method, if the letter a appeared at the beginning of a message, it would 
yield a message number m  starting with 00, so the a would disappear.

The message is therefore

m  -- 30120.

Alice computes

c = m e = 301200007 =  113535859035722S6G (mod n).

She sends c to Bob.
Since Bob knows p and q, he knows (p — l)(q — 1). He uses the extended 

Euclidean algorithm (see Section 3.2) to compute d such that

de = 1 (mod (p — 1)(<j — 1)).

The answer is
d =  116402471153538991.

Bob computes

cd =  11353585903572286Glle‘l02‘1' 1153538001 =  30120 (mod n),

so he obtains the original message. ■

There are several aspects that need to be explained, but perhaps the 
most important is why m = cd (mod n). Recall Euler's theorem (Section 
3.6): If gcd(o, n) = 1, then = 1 (mod n). In our cose, ip(n) =  4>(pq) =  
(p-l)(<j— 1). Suppose gcd(m,n) =  1. This is very likely the case; sincep and 
q are large, m probably has neither as a factor. Since de =  1 (mod </>(tz)), 
we can write de = 1 + k<j>(n) for some integer k. Therefore,

cd s  (me)d s  m l+fĉ W =  m  , (m*t'*^)k = m ■ l k = m  (mod n).

VVe have shown that Bob can recover the message. If gcd(m,n) ^  1, Bob 
still recovers the message. See Exercise 19.
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What does Eve do? She intercepts n, e, c. She does not know p, q, d. We 
assume that Eve lias no way of factoring n. The obvious way of computing 
d requires knowing 0(n). We show later that this is equivalent to knowing p 
and q. Is there another way? We will show that if Eve can find d, then she 
can probably factor n. Therefore, it is unlikely that Eve finds the decryption 
exponent d.

Since Eve knows c =  tjic (mod n), why doesn’t she simply take the eth 
root of c? This works well if we are not working mod n  but is very difficult 
in our cose. For example, if you know that m3 = 3 (mod 85), you cannot 
calculate the cube root of 3, namely 1.4422 . . . ,  on your calculator and then 
reduce mod 85. Of course, a case-by-cose search would eventually yield 
m  =  7, but this method is not feasible for large n.

How does Bob choose p and 9? They should be chosen at random, 
independently of each other. How large depends on the level of security 
needed, but it seems that they should have at least 100 digits. For reasons 
that we discuss later, it is perhaps best if they are of slightly different lengths. 
When we discuss primality testing, we'll see that finding such primes can be 
done fairly quickly. A few other tests should be done 011 p and q to make 
sure they are not bad. For example, if p -  1 has only small prime factors, 
then n is easy to factor by the p -  1 method (see Section G.4), so p should 
be rejected and replaced with another prime.

Why does Bob require gcd(e, (p -  l ) ( g - 1)) =  1? Recall (see Section 3.3) 
that de = 1 (mod (p — l)(rj -  I)) lias a solution d if and only if gcd(e, (p -  
1)(<7— I)) =  1. Therefore, this condition is needed in order for d to exist. The 
extended Euclidean algorithm can be used to compute d quicldy. Since p -  1 
is even, e =  2 cannot be used; one might be tempted to use e =  3. However, 
there are dangers in using small values of e (see Section 6.2, Computer 
Problem 14, and Section 17.3), so something larger is usually recommended. 
For example, one could let e be a moderately large prime. Then there is no 
difficulty ensuring that gcd(e, {p — l)(q — 1)) =  1.

In the encryption process, Alice calculates m c (mod n). Recall that this 
can be done fairly quickly and without large memory, for example, by suc
cessive squaring. This is definitely an advantage of modular arithmetic: 
If Alice tried to calculate tne first, then reduce mod n, it is possible that 
recording m c would overflow her computer’s memory. Similarly, the decryp
tion process of calculating cd (mod 71) can be done efficiently. Therefore, all 
the operations needed for encryption and decryption can be done quickly 
(i.e., in time a power of logn). The security is provided by the assumption 
that n cannot be factored.

We made two claims. We justify them here. Recall that the point of 
these two claims was that finding 0 (n) or finding the decryption exponent 
d is essentially as hard as factoring n. Therefore, if factoring is hard, then 
there should be no fast, clever way of finding d.
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Claim 1: Suppose n  =  pq is the product of two distinct primes. If we 
know n  and then we.can quickly find p and q.

Note that

n  -  <j)[n) +  1 =  pq -  (p -  1)(<j -  1) + 1 =  p + q.

Therefore, we know pq and p + q. The roots of the polynomial

X 2 -  (n -  4>(n) + 1)X + n = X 2 — {p + q)X  +  pq =  (X  -  p)(A' -  q) 

are p and q, but they can also be calculated by the quadratic formula:

(n — + 1) ±  v/(n — </>(n) + l )2 -  4n 
Pi 9 =  -------------------5-------------------•

This yields p and q.
For example, suppose n  =  221 and we know that =  192. Consider 

the quadratic equation
X - -  30X + 221.

The roots are
30 ±  V302 - 4  -221 1Q 

P -9 = ------------- j ------------- =  ’

Claim  2: If we know d and e, then we can probably factor n.
In the discussion of factorization methods in Section 6.4, we show that if 

we have a universal exponent b > 0 such that ab =  1 (mod n) for all a with 
gcd(o,n) =  1, then we can probably factor n. Since de — 1 is a multiple of 
<p(n), say de — 1 =  we have

ade~l = (a^tn))fc = 1 (mod n)

whenever gcd(a, n) =  1. The method for universal exponents can now be 
applied.

One way the RSA algorithm can be used is when there are several banks, 
for example, that want to be able to send financial data to each other. If 
there are several thousand banks, then it is impractical for each pair of banks 
to have a key for secret communication. A better way is the following. Each 
bank chooses integers n  and e as before. These are then published in a public 
book. Suppose bank A wants to send data to bank B. Then A looks up B's 
n  and e and uses them to send the message. In practice, the RSA algorithm 
is not quite fast enough for sending massive amounts of data. Therefore, the 
RSA algorithm is often used to send a key for a faster encryption method 
such as DES.
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PGP (= Pretty Good Privacy) is a popular method for encrypting email. 
When Alice sends an email message to Bob, she first signs the message.using 
a digital signature algorithm such as those discussed in Chapter 9. She then 
encrypts the message using a block cipher such as triple DES (other choices 
are IDEA or CAST-128) with a randomly chosen 128-bit key (a new random 
key is chosen for each transmission). She then encrypts this key using Bob's 
public RSA key (other public key methods can also be used). When Bob 
receives the email, he uses his private RSA exponent to decrypt the random 
key. Then he uses this random key to decrypt the message, and he checks 
the signature to verify that the message is from Alice. For more discussion 
of PGP, see Section 10.G.

6.2 Attacks on RSA

In practice, the RSA algorithm has proven to be effective, as long as it is 
implemented correctly. We give a few possible implementation mistakes in 
the Exercises. Here are a few other potential difficulties. For more about 
attacks on RSA, see [Boneh].

T h e o re m . Let n  =  pq have m digits. I f we know the first m/4, or the last 
m /4, digits of p, we can efficiently factor n.

In other words, if p and q have 100 digits, and we know the first 50 digits, 
or the last 50 digits, of p, then we can factor n. Therefore, if we choose a 
random starting point to choose our prime p, the method should be such 
that a large amount of p is not predictable. For example, suppose we take 
a random 50-digit number N  and test numbers of the form N  • 105Q + k, 
k = 1 ,3 ,5 ,... ,  for primality until we find a prime p (which should happen 
for k < 1000). An attacker who knows that this method is used will know 
47 of the last 50 digits (they will all be 0 except for the last 3 digits). TYying 
the method of the theorem for the various values of k < 1000 will eventually 
lead to the factorization of n.

For details of the preceding result, see [Coppersmith2). A related result 
is the following.

T h e o re m . Suppose (n, e) is an RSA public key and n has m  digits. Let d 
be the decryption exponent. I f  we have at least the last m /4 digits of d, we 
can efficiently find d in time that is linear in e logo e.

This means that the time to find d is bounded as a function linear in 
e logo e. If e is small, it is therefore quite fast to find d when we know a large 
part of d. If e is large, perhaps around n, the theorem is no better than a 
case-by-case search for d. For details, see [Boneh et al.].
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Low encryption or decryption exponents are tempting because they speed 
up encryption or decryption. However, there are certain dangers that must 
be avoided. One pitfall of using e =  3 is given in Computer Problem 14. 
Another difficulty is discussed in Chapter 17 (Lattice Methods). These 
problems can be avoided by using a somewhat higher exponent. One popular 
choice is e =  65537 =  216 +1. This is prime, so it is likely that it is relatively 
prime to (p—!)((/ —1). Since it is one more than a power of 2, exponentiation 
to this power can be done quickly: To calculate a;05537, square x  sixteen 
times, then multiply the result by x.

The decryption exponent d should of course be chosen large enough that 
brute force will not find it. However, even more care is needed, os the 
following result shows. One way to obtain desired properties of d is to 
choose d first, then find e with de=  1 (mod

Suppose Bob wants to be able to decrypt messages quickly, so he chooses
0 small value of d. The following theorem of M. Wiener [Wiener] shows 
that often Eve can then find d easily. In practice, if the inequalities in 
the hypotheses of the proposition are weakened then Eve can still use the 
method to obtain d in many cases. Therefore, it is recommended that d be 
chosen fairly large.

Theorem. Suppose p, q are primes with q < p < 2q. Let n = pq and let
1 < d,e < <f>(n) satisfy de = 1 (mod (p — l)(q — 1)). I f d < gn1/'1, then d 
can be calculated quickly (that is, in time polynomial in log n).

Proof. Since q1 <pq = n, we have q < y/n. Therefore, since p < 2q, 

n -  <j>(n) = pq — (p — 1)(<7 - l ) = p  + q -  l< 3 q <  3 \/n.

Write ed = 1 + <j>(n)k for some integer k > 1. Since e < we have

<f>(n)k < ed < ^0(n)nly,'1I

so k < jjTz1'''1. Therefore,

k n ~  ed=  k(n — <t>[n)) — 1 < k(n  -  <j>(n)) < gTt^'VsVn) =  n3̂ '1.

Also, since k{n — <p(n)) — 1 > 0, we have kn — ed>  0. Dividing by dn yields

k _ e  1 J _
<  fi n  dn 1/*1 < 3d 2 '

since 3d < n 1/4 by assumption.

6.2.1 Low E xponent A ttacks
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We now need a result about continued fractions. Recall from Section 
3.12 that if x is a positive real number and k and d are positive integers 
with

1
d 1 <  2d2’

then k /d  arises from the continued Fraction expansion of x. Therefore, in our 
case, k /d  arises from the continued fraction expansion of e/n. Therefore, 
Eve does the following:

1. Computes the continued fraction of e/n. After each step, she obtains 
a fraction A /B .

2. Eve uses k ~  A  and d =  B  to compute C = (cd — 1 )/fc. (Since 
ed =  1 + <j>{n)k, this value if C  is a candidate for <f>(n).)

3. If C is not an integer, she proceeds to the next step of the continued 
fraction.

4. If C is an integer, then she finds the roots n , r 2 of X 2 ~(n~-C +l)X+ n. 
(Note that this is possibly the equation X 2 — (n — <j>(n) +  1)JY + n = 
(X — p)(X  — q) from earlier.) If r i  and ro are integers, then Eve has 
factored n. If not, then Eve proceeds to the next step of the continued 
fraction algorithm.

Since the number of steps in the continued fraction expansion of e/n  is 
at most a constant times logn, and since the continued fraction algorithm 
stops when the fraction e/n is reached, the algorithm terminates quickly. 
Therefore, Eve finds the factorization of n  quickly. □

R em arks. Recall that the rational approximations to a number x  aris
ing from the continued fraction algorithm are alternately larger than x and 
smaller than x. Since 0 < ^ we only need to consider every second 
fraction arising from the continued fraction.

What happens if Eve reaches e /n  without finding the factorization of 
n? This means that the hypotheses of the proposition are not satisfied. 
However, it is possible that sometimes the method will yield the factorization 
of n  even when the hypotheses fail.

E x am p le . Let n  =  1966981193543797 and e =  323815174542919. The 
continued fraction of e /n  is

[0; G, 13,2,3,1,3,1,9,1,36,5, 2,1,6,1,43,13,1,10,11,2,1,9,5]
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The first fraction is 1/6, so we try k =  l ,d  =  6. Since d must be odd, we 
discard this possibility.

By the remark, we may jump to the third fraction:

1 27
6 + I ^  164"

Again, we discard this since d must be odd.
The fifth fraction is 121/735. This gives C =  (e • 735 — 1)/121, which is 

not an integer.
The seventh fraction is 578/3511 This gives C = 196G981103495136 as 

the candidate for </>(n). The roots of

X'! - { n - C  + 1)X + n

are 37264873 and 52783789, to several decimal places of accuracy. Since

n  =  37264873 x 52783789,

we have factored n.

6.2.2 Short P laintext

A common use of RSA is to transmit keys for use in DES or AES. However, 
a naive implementation could lead to a loss of security. Suppose a 56-bit 
DES key is written as a number m  as 1017. This is encrypted with RSA to 
obtain c = m e (mod n). Although m  is small, the ciphertext c is probably 
a number of the same size as n, so perhaps around 200 digits. However, Eve 
attacks the system as follows. She makes two lists:

1. cx~‘ (mod rt) for all x with 1 < x < 10°.

2. ye (mod n) for all y  with 1 < y < 109,

She looks for a match between an element on the first list and an element 
on the second list. If she finds one, then she has cx~c =  y c for some x,y . 
This yields

c h  [xijY  (mod n),

so m  = xy  (mod n). Is this attack likely to succeed? Suppose m  is the 
product of two integers x  and y, both less than 10Q, Then these x ,y  will
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yield a match for Eve. Not every m  will have this property, but many values 
of m  are the product of two integers less than 109. For these, Eve will obtain 
m.

This attack is much more efficient than trying all 1017 possibilities for m, 
which is nearly impossible on one computer, and would take a very long time 
even with several thousand computers working in parallel. In the present 
attack, Eve needs to compute and store a list of length 10®, then compute the 
elements on the other list and check each one against the first list. Therefore, 
Eve performs approximately 2 x 10° computations (and compares with the 
list up to 10° times). This is easily possible on a single computer. For more 
on this attack, see (Boneh-Joux-Nguyen].

It is easy to prevent this attack. Instead of using a small value of m, 
adjoin some random digits to the beginning and end of m  so as to form 
a much longer plaintext. When Bob decrypts the ciphertext, he simply 
removes these random digits and obtains m.

A more sophisticated method of preprocessing the plaintext, namely Op
timal Asymmetric Encryption Padding (OAEP), was introduced by Bellare 
and Rogaway [Bellare-Rogaway2] in 1994. Suppose Alice wants to send a 
message m to Bob, whose RSA public key is (n, e), where n  has k bits. Two 
positive integers ko and k\ are specified in advance, with ko +  k\ < k. Alice's 
message is allowed to have k — ko — k\ bits. Typical values Eire k — 1024, 
ko = ki = 128, k — ko — ki = 768. Let G be a function that inputs strings 
of kg bits and outputs strings of k -  ko bits. Let H  be a function that 
inputs k — ko bits and outputs ko bits. The functions G and H  are usu
ally constructed from hash functions (see Chapter 8 for a discussion of hush 
functions). To encrypt m, Alice first expands it to length k —ko by adjoining 
k i  zero bits. The result is denoted m 0 k l . She then chooses a random string 
t  of ko bits and computes

xl = m0 fcl ffi G(r), X2 = r<BH( x i).

If the concatenation x i||x 2 is a binary number larger than n, Alice chooses 
a new random number r  and computes new values for x i and xa- As soon 
as she obtains < n (this has a probability of at least 1/2 of happening 
for each r, as long as G(r) produces fairly random outputs), she forms the 
ciphertext

E(m) =  (xiH^a)6 (m odn).
To decrypt a ciphertext c, Bob uses his private RSA decryption exponent d 
to compute cd (mod n). The result is written in the form

cd (mod n) = yi\\y2, 

where y\ has k  — ko  bits and 1/2 has ko  bits. Bob then computes 

m O *1 =  1/1 ©  G ( H (7/1) ffi y n ) .
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The correctness of this decryption can be justified as follows. If the 
ciphertext is the encryption of m, then

1/1 =  x i =  mO*1 © G(r) and 1/2 =  ^2 =  r  ©

Therefore,
O/i) ©2/2 = i f ( i i )  ©r © J/(ii) =  r

and
1/1 © G(H( 1/1) © 1/2) =  i i  © <7(r) =  mOfcl.

Bob removes the fci zero bits from the end of mOtl and obtains m. Also, 
Bob has check on the integrity of the ciphertext. If there are not ki zeros 
at the end, then the ciphertext does not correspond to a valid encryption.

This method is sometimes called a plaintext-aware encryption. Note 
that the padding with 12 depends on the message m  and on the random 
parameter r. This makes chosen ciphertext attacks on the system more 
difficult.

6.2.3 T im in g  A tta c k s

Another type of attack on RSA and similar systems was discovered by Paul 
Kocher in 1995, while he was an undergraduate a t Stanford. He showed 
that it is possible to discover the decryption exponent by carefully timing 
the computation times for a series of decryptions. Though there are ways 
to thwart the attack, this development was unsettling. There had been 
a general feeling of security since the mathematics was well understood. 
Kocher’s attack demonstrated that a system could still have unexpected 
weaknesses.

Here is how the timing attack works. Suppose Eve is able to observe 
Bob dccrypt several ciphertexts y. She times how long this takes for each 
y. Knowing each y  and the time required for it to be decrypted will allow 
her to find the decryption exponent d. But first, how could Eve obtain such 
information? There are several situations where encrypted messages are sent 
to Bob and his computer automatically decrypts and responds. Measuring 
the response times suffices for the present purposes.

We need to assume that we know the hardware being used to calculate yd 
(mod n). We can use this information to calculate the computation times 
for various steps that potentially occur in the process.

Let’s assume that yd (mod n) is computed by an algorithm given in 
Exercise 23 in Chapter 3, which is as follows:

Let d =  6162 ■ ■ - bw be written in binary (for example, when x  =  1011, we. 
have Z>i =  1, £>2 — 0,(13 =  1, b.\ = 1). Let y and n be integers. Perform, the 
following procedure:
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1. Start with k = 1 and si =  1.

2 . Ifb k =  1, let rk = sky (mod n). I fb k =  0, let rk =  sk.

3. Let s t+i s  t\  (mod n).

4. If k = w, stop. I f  k < w, add 1 to k and go to (2).

Then rw =  yd (mod n).
Note that the multiplication sky  occurs only when the bit bk =  1. In 

many situations, there is a reasonably large variation in how long this mul
tiplication takes. We assume this is the case here.

Before we continue, we need a few facts from probability. Suppose we 
have a random process that produces real numbers t as outputs. For us, t 
will be the time It takes for the computer to complete a calculation, given a 
random input y. The mean is the average value of these outputs. If we record 
outputs t i , . . .  the mean should be approximately m  =  [t\ + ■ ■ ■tn) jn . 
The variance for the random process is approximated by

Var({fj}) =  (tl + +

The standard deviation is the square root of the variance and gives a measure 
of how much variation there is in the values of the tj’s.

The important fact we need is that when two random processes are 
independent, the variance for the sum of their outputs is the sum of the 
variances of the two processes. For example, we will break the computation 
done by the computer into two Independent processes, which will take times 
t' and t". The total time i will be t' + 1". Therefore, Var({i,}) should be 
approximately Var({l'-}) +  Var({t''}).

Now assume Eve knows ciphertexts y i , . . . , y n and the times that it took 
to compute each y f  (mod n). Suppose she knows bits b \,. . . , 6*_i of the 
exponent d. Since she knows the hardware being used, she knows how 
much time was used in calculating r i , . . .  ,7'jt-i in the preceding algorithm. 
Therefore, she knows, for each i/,-, the time ij that it takes to compute

■ - ■ i rvf-
Eve wants to determine bk. If bk =  1, a multiplication sky (mod n) will 

take place for each ciphertext yi that is processed. If bk = 0, there is no 
such multiplication.

Let t' be the amount of time it takes the computer to perform the mul
tiplication sky (mod n), though Eve does not yet know whether this mul
tiplication actually occurs. Let t'[ =  ti —1\. Eve computes Var({tj}) and 
Var({t"}). If Var({tj}) >  Var({t'-'}), then Eve concludes that bk =  1. If not, 
bk — 0. After determining ij., she proceeds in the same manner to find all 
the bits.
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Why does this work? If the multiplication occurs, t" is the amount of 
time it takes the computer to complete the calculation after the multiplica
tion. It is reasonable to assume t' and t" are outputs that are independent 
of each other. Therefore,

Var({tj}) *  Var({*<}) + Var({<"}) > Var({i''})-

If the multiplication does not occur, t' is the amount of time for an operation 
unrelated to the computation, so it is reasonable to assume t; and t[ are 
independent. Therefore,

Var({t"}) «  Var({tf» + Var({-((}) > Var({ti».

Note that we couldn’t use the mean in place of the variance, since the 
mean of {—£i} would be negative, so the lost inequality would not hold. All 
that can be deduced from the mean is the total number of nonzero bits in 
the binary expansion of d.

The preceding gives a fairly simple version of the method. In practice, 
various modifications would be needed, depending on the specific situation. 
But the general strategy remains the same. For more details, see [Kocher].

A similar attack on RSA works by measuring the power consumed during 
the computations. See [Kocher et al.]. Attacks such as this one and the 
timing attack can be prevented by appropriate design features in the physical 
implementation.

6.3 Prim ality Testing

Suppose we have an integer of 200 digits that we want to test for primality. 
Why not divide by all the primes less than its square root? There are around 
4 x 1007 primes less than 101OD. This is significantly more than the number of 
particles in the universe. Moreover, if the computer can handle 109 primes 
per second, the calculation would take around 1081 years. Clearly, better 
methods are needed. Some of these are discussed in this section.

A very basic idea, one that is behind many factorization methods, is the 
following.

B asic  P r in c ip le . Let n be an integer and suppose there exist integers x 
and y with x 2 s  y~ (mod n), but x  ~k ±y  (mod n). Then n  is composite. 
Moreover, gcd(x — y, n ) gives a nontrivial factor of n.

Proof. Let d = gcd(x — y, n). If d =  n  then x  = y  (mod n), which is 
assumed not to happen. Suppose d =  1. A basic result on divisibility is 
that if a\bc and gcd(a, 6) =  1, then o|c (see Exercise 7 in Chapter 3). In our



6 .3 . P rim a l it y  T estin g 177

case, since n  divides x~ — y2 =  (x — y)(x  +  y) and d =  1, we must have that 
n divides x  +  y, which contradicts the assumption that x == —y (mod n). 
Therefore, d ^  l ,n ,  so d is a nontrivial factor of n. □

E x am p le . Sincc 122 =  2" (mod 35), but 12 ^  ±2 (mod 35), we know 
that 35 is composite. Moreover, gcd(12 -  2, 35) =  5 is a nontrivial factor of 
35. I

It might be surprising, but factorization and primality testing are not 
the same. It is much easier to prove a number is composite than it is to 
factor it. There are many large integers that are known to be composite 
but that have not been factored. How can this be done? We give a simple 
example. We know by Fermat’s theorem that if p is prime, then 2P-1 =  1 
(mod p). Let’s use this to show 35 is not prime. By successive squaring, we 
find (congruences are mod 35)

2'1 ee 16,
2a =  256 =  11 
21C =  121 =  16 
232 =  256 =  11.

Therefore,
q3-‘ =  23222 ~e 11 - 4 =  9 ^  1 (mod 35).

Fermat’s theorem says that 35 cannot be prime, so we have proved 35 to be 
composite without finding a factor.

The same reasoning gives us the following.

F e rm a t P r im a li ty  T es t. Let n > 1 be an integer. Choose a random 
integer a with 1 < a < n  — 1. If an~l ^  1 (mod n), then n is composite. I f  
a"-1 =  1 (mod n), then n is probably prime.

Although this and similar tests are usually called “primality tests," they 
are actually “compositeness tests,” since they give a completely certain an
swer only in the case when n  is composite. The Fermat test is quite accurate 
for large n. If it declares a number to be composite, then this is guaranteed 
to be true. If it declares a number to be probably prime, then empirical 
results show that this is very likely true. Moreover, since modular exponen
tiation is fast, the Fermat test can be carried out quickly.

Recall that modular exponentiation is accomplished by successive squar
ing. If we are careful about how we do this successive squaring, the Fermat 
test can be combined with the Basic Principle to yield the following stronger 
result.
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Miller-Rabin Prim ality Test. Let n > 1 be an odd integer. Write 
n — I =  2km  with m odd. Choose a random integer a with 1 < a < n — 1. 
Compute bo = am (mod n). I f  bo =  ±1 (mod n), then stop and declare that 
n is probably prime. Otherwise, let bi =  6g (mod n). I f  by 'S 1 (mod n), 
then n is composite (and gcd(io — 1, n) gives a nontrivial factor of n). I f  
bi =  -1  (mod n), then slop and declare thatn is probably prime. Otherwise, 
let d>2 =  b] (mod n). I f b2 =  1 (mod n), then n  is composite. I f b2 = 
-1  (mod n), then stop and declare that n is probably prime. Continue in 
this way until stopping or reaching If fit- 1 ^  —1 (mod n), then n  is 
composite.

Example. Let n  =  561. Then n  — 1 =  560 =  16 • 35, so 2k =  2'1 and 
m = 35. Let a =  2. Then

60 =  235 H 263 (mod 561)
bi =  =  166 (mod 561)
bn =  61 = 67 (mod 561)
63 =  b \ ^ \  (mod 561).

Since 63 B 1 (mod 561), we conclude that 561 is composite. Moreover, 
gcd(i)2 -  1, 561) =  33, -which is a nontrivial factor of 561. B

If n  is composite and an~J = 1 (mod n), then we say that n  is a pseu
doprime for the base a. If a and n  are such that n  passes the Miller-Rabin 
test, we say that n is a strong pseudoprime for the base a. We showed in 
Section 3.6 that 2500 s  1 (mod 561), so 561 is a pseudoprime for the base 2. 
However, the preceding calculation shows that 561 is not a strong pseudo
prime for the base 2. For a given base, strong pseudoprimes are much more 
rare than pseudoprimes.

Up to 1010, there are 455052511 primes. There are 14884 pseudoprimes 
for the base 2, and 3291 strong pseudoprimes for the base 2. Therefore, 
calculating 2n_1 (mod n) will fail to recognize a composite in this range 
with probability less than 1 out of 30 thousand, and using the Miller-Rabin 
test with a = 2 will fail with probability less than 1 out of 100 thousand.

It can be shown that the probability that the Miller-Rabin test fails to 
recognize a composite for a randomly chosen a is at most 1/4. In fact, it 
fails much less frequently than this. See [Damgard et al.]. If we repeat 
the test 10 times, say, with randomly chosen values of a, then we expect 
that the probability of certifying a composite number as prime is at most 
(1/4) 10 ~  10-6 . In practice, using the test for a single a is fairly accurate.

Though strong pseudoprimes are rare, it has been proved (see [Alford et 
al.]) that, for any finite set B  of bases, there are infinitely many integers
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that are strong pseudoprimes for all b 6 B. The first strong pseudoprime for 
all the bases b =  2,3,5,7 is 3215031751. There is a 337-digit number that 
is a strong pseudoprime for all bases that are primes < 200.

Suppose we need to find a prime of around 100 digits. The prime number 
theorem asserts that the density of primes aroundx  is approximately 1/ l n i .  
When i  =  1010D, this gives a density of around 1/In(10100) =  1/230. Since 
we can skip the even numbers, this can be raised to 1/115. Pick a random 
starting point, and throw out the even numbers (and multiples of other small 
primes). Test each remaining number in succession by the Miller-Rabin test. 
This will tend to eliminate all the composites. On average, it will take less 
than 100 uses of the Miller-Rabin test to find a likely candidate for a prime, 
so this can be done fairly quickly. If we need to be completely certain that 
the number in question is prime, there are more sophisticated primality tests 
that can test a number of 100 digits in a few seconds.

Why does the test work? Suppose, for example, that 63 = 1 (mod n). 
This means that b; =  l 2 (mod n). Apply the Basic Principle from before. 
Either 62 =  ±1  (mod 71), or 62 f  ±1  (mod n ) and n  is composite. In the 
latter case, gcd(&2 -  1, n) gives a nontrivial factor of n. In the former case, 
the algorithm would have stopped by the previous step. If we reach bk-i, 
we have computed 6jt_i =  a n̂_1^ 2 (mod n). The square of this is a"-1 , 
which must be 1 (mod n) if n  is prime, by Fermat's theorem. Therefore, if 
n  is prime, bk-i = ±1 (mod n). All other choices mean that n is composite. 
Moreover, if =  1, then, if we didn’t stop at an earlier step, 6j!_2 =  l 2 
(mod n) with 2 ±1 (mod n). This means that n is composite (and we 
can factor n).

In practice, if n  is composite, usually we reach 6t_ i and it is not ±1 
(mod n). In fact, usually a" -1 ^  1 (mod 71). This means that Fermat's 
theorem fails, so n  is not prime.

For example, let n  =  299 and a = 2. Since 2298 =  140 (mod 299), 
Fermat's theorem and also the Miller-Rabin test say that 299 is not prime 
(without factoring it). The reason this happens is the following. Note that 
299 = 13 x 23. An easy calculation shows that 212 =  1 (mod 13) and 
no smaller exponent works. In fact, 1? =  1 (mod 13) if and only if j  is a 
multiple of 12. Since 298 is not a multiple of 12, we have 2298 ^  1 (mod 13), 
and therefore also 2238 ^  1 (mod 299). Similarly, 2̂  =  1 (mod 23) if and 
only if j  is a multiple of 11, from which we can again deduce that 2208 ^  1 
(mod 299). If Fermat's theorem (and the Miller-Rabin test) were to give 
us the wrong answer in this case, we would have needed 13-23 — 1 to be a 
multiple of 12 • 11.

Consider the general case n  = pq, a product of two primes. For simplicity, 
consider the case where p > q and suppose ak = 1 (mod p) if and only if 
k = 0 (mod p — 1). This means that a is a primitive root mod p; there are
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<j>(p — 1) such a mod p. Since 0 < g -  1 < p — 1, we have

n - l = p g - l  =  q(jp — l) +  g — 1 ^ 0  (mod p -  1).

Therefore, an~l ^  1 (mod p) by our choice of a, which implies that an_1 ^  1 
(mod t i) .  Similar reasoning shows that usually on_1 ^  1 (mod n) for many 
other choices of a, too.

But suppose we are in a case where an~l = 1 (mod n). What happens? 
Let’s look at the example of n =  561, Since 561 =  3 x 11 x 17, we consider 
what is happening to the sequence bo, bi, 62,63 mod 3, mod 11, and mod 17:

bo = - 1 (mod 3), =  -1 (mod 11), =  8 (mod 17)
bi = 1 (mod 3), = 1 (mod 11), =  -4 (mod 17)
bn r 1 (mod 3), -- 1 (mod 11), =  -1 (mod 17)
63 1 (mod 3), =  1 (mod 11), =  1 (mod 17).

Since 63 =  1 (mod 561), we have 62 = 63 s  1 mod all three primes. But 
there is no reason that 63 is the first time we get 6, =  1 mod a particular 
prime. We already have bi = 1 mod 3 and mod 11, but we have to wait 
for bj when working mod 17. Therefore, 6? s  63 =  1 mod 3, mod 11, and 
mod 17, but 60 is congruent to 1 only mod 3 and mod 11. Therefore, 62 — 1 
contains the factors 3 and 11, but not 17. This is why gcd(&2 — I, 561) finds 
the factor 33 of 561. The reason we could factor 561 by this method is that 
the sequence f>o> bi,. -. reached ] mod the primes not all at the some time.

More generally, consider the case n = pq (a product of several primes 
is similar) and suppose a"-1 =  1 (mod n). As pointed out previously, it is 
very unlikely that this is the case; but if it does happen, look at what is 
happening mod p and mod q. It is likely that the sequences bi (mod p) and 
bi (mod q) reach —1 and then 1 at different times, just as in the example of 
561. In this cose, we will be have bi = —1 (mod p) but 6; =  1 (mod q) for 
some i;  therefore, 6? =  1 (mod n) but bi ^  ±1 (mod n). Therefore, we’ll be 
able to factor n.

The only way that n  can pass the Miller-Rabin test is to have an~l = 1 
(mod n) and also to have the sequences 6,- (mod p) and 6; (mod q) reach 1 
at the same time. This rarely happens.

Another primality test of a nature similar to the Miller-Rabin test is the 
following, which uses the Jocobi symbol (see Section 3.10).

Solovay-Strassen Prim ality Test. Let n be an odd integer. Choose 
several random integers a with 1 < a < n — 1. I f

^  a.(n (mod n)
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for some a, then n is composite. I f

=  at"-1)/2 (mod n)

for all a, then n is probably prime.

Note that if n is prime, then the test will declare n to be a probable 
prime. This is because of the Proposition in Section 3.10.

The Jacobi symbol can be evaluated quickly, as in Section 3.10. The 
modular exponentiation can also be performed quickly.

For example,

( A )  = - l= i  23 s  2t«-D/a ‘(mod 15),

so 15 is not prime. As in the Miller-Rabin tests, we usually do not get ±1 
for a(n-1^ 2 (mod n). Here is a case where it happens:

( 3 i l )  =  - 1 ^  + 1 =  2(3'n ' 1)/2 (mod 341).

Therefore, 341 is composite.

Both the Miller-Rabin and the Solovay-Strassen tests work quickly in 
practice, but, when p is prime, they do not give rigorous proofs that p is 
prime. There are tests that actually prove the primality of p, but they are 
somewhat slower and are used only when it is essential that the number be 
proved to be prime. Most of these methods are probabilistic, in the sense 
that they work with very high probability in any given case, but success is 
not guaranteed. In 2002, Agrawal, Kayal, and Saxena [Agrawal et al.] gave 
what is known as a deterministic polynomial time algorithm for deciding 
whether or not a number is prime. This means that the computation time is 
always, rather than probably, bounded by a constant times a power of log p. 
This was a great theoretical advance, but their algorithm has not yet been 
improved to the point that it competes with the probabilistic algorithms. 

For more on primality testing and its history, see [Williams],

6.4 Factoring

We now turn to factoring. The basic method of dividing an integer n by 
all primes p < \ fn  is much too slow for most purposes. For many years, 
people have worked on developing more efficient algorithms. We present 
some of them here. In Chapter 16, we’ll also cover a method using elliptic
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curves, and in Chapter 19, we’ll show how a quantum computer, if built, 
could factor efficiently.

One method, which is also too slow, is usually called the F erm at fac
to rization  method. The idea is to express n as o difference of two squares: 
n  = i 2— y2. Then n  — (x+ y)(x — y) gives a factorization of n. For example, 
suppose we want to factor n = 295927. Compute n  + I2, rc + 22, n  + 32, . . . ,  
until we find a square. In this case, 295927 +  32 =  295936 =  5442. Therefore,

295927 =  (544 + 3)(544 -  3) =  547 ■ 541.

The Fermat method works well when n  is the product of two primes that 
are very close together. If n = pq, it takes |p — q\/2 steps to find the 
factorization. But if p and q are two randomly selected 100-digit primes, 
it is likely that |p — g| will be very large, probably around 100-digits, too. 
So Fermat factorization is unlikely to work. Just to be safe, however, the 
primes for an RSA modulus are often chosen to be of slightly different sizes.

We now turn to more modern methods. If one of the prime factors of 
n  has a special property, it is sometimes easier to factor n. For example, if 
p divides n and p — 1 has only small prime factors, the following method is 
effective. It was invented by Pollard in 1974.

T h e  p  — 1 F ac to r ing  A lg o rith m . Choose an integer a > 1. Often 
a =  2 is used. Choose a bound B. Compute b =  ofll (mod n) as follows. 
Let bi = a (mod n) and bj =  by_1 (mod n). Then =  b (mod n). Let 
d = gcd(b — 1, n). / /1  < d < n, we have found a nontrivial factor o fn.

Suppose p is a prime factor of n  such that p  — 1 has only small prime 
factors. Then it is likely that p — 1 will divide fl!, say B\ = (p — l)k. By 
Fermat’s theorem, b = aBI = (ap-1)* =  1 (mod p), so p will occur in the 
greatest common divisor of 6 — 1 and n. If q is another prime factor of n, 
it is unlikely that b =  1 (mod q), unless q — 1 also has only small prime 
factors. If d =  n, not all is lost. In this case, we have an exponent r  
(namely BI) and an a such that ar = I (mod n). There is a good chance 
that the exponent factorization method (explained later in this section) will 
factor n. Alternatively, we could choose a smaller value of B  and repeat the 
calculation.

How do we choose the bound B? If we choose a small B, then the 
algorithm will run quickly but will have a very small chance of success. If 
we choose a very large B, then the algorithm will be very slow. The actual 
value used will depend on the situation at hand.

In the applications, we will use integers that are products of two primes, 
say 7i =  pq, but that are hard to factor. Therefore, we should ensure that 
p — 1 has at least one large prime factor. This is easy to accomplish. Suppose 
we want p to have around 100 digits. Choose a large prime po, perhaps
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around 10‘ID. Look at integers of the form kpo + 1, with k running through 
some integers around 1060. Test kpo +  1 for primality by the Miller-Rabin 
test, as before. On the average, this should produce a desired value of p 
in less than 100 steps. Now choose a large prime <70 and follow the same 
procedure to obtain q. Then n = pq will be hard to factor by the p — 1 
method.

The elliptic curve factorization method (see Section 16.3) gives a gener
alization of the p -  1 method. However, it uses some random numbers near 
p -  1 and only requires at least one of them to have only small prime factors. 
This allows the method to detect many more primes p, not just those where 
p — 1 has only small prime factors.

6 .4 .1  T h e  Q u a d ra tic  S ieve

Since it is the basis of the best current factorization methods, we repeat the 
following result from Section 6.3.

B asic  P r in c ip le . Let n be an integer and suppose there exist integers x 
and y with x 1 = y2 (mod n), but x  ^  ±y (mod n). Then n is composite. 
Moreover, gcd(x — y, n) gives a nontrivial factor of n.

Suppose we want to factor n =  3837523. Observe the following:

93982 =  55 • 19 (mod 3837523)
190952 =  22 • 5 • 11 • 13 • 19 (mod 3837523)
19642 =  32 • 133 (mod 3837523)

170782 =  2° • 32 • 11 (mod 3837523).

If we multiply the relations, we obtain

(9398 ■ 19095 • 1964 • 17078)2 =  (24 - 32 ■ 53 ■ 11 ■ 132 • 19)2 
22303872 =  25867052.

Since 2230387 ^  ±2586705 (mod 3837523), we now can factor 3837523 by 
calculating

gcd(2230387 -  2586705, 3837523) =  1093.

The other factor is 3837523/1093 =  3511.
Here is a way of looking at the calculations we just did. First, we generate 

squares such that when they are reduced mod n  =3837523 they can be 
written as products of small primes (in the present case, primes less than 
20). This set of primes is called our factor base. We’ll discuss how to 
generate such squares shortly. Each of these squares gives a row in a matrix, 
where the entries are the exponents of the primes 2, 3, 5, 7, 11, 13, 17, 19.
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For example, the relation 170782 = 2° ■ 32 ■ 11 (mod 3837523) gives the row 
6, 2, 0, 0, 1, 0, 0, 0.

In addition to the preceding relations, suppose that we have also found 
the following relations:

80772 =  2-19 (mod 3837523)
33972 =  2s • 5 • 132 (mod 3837523)

142622 =  52 • 72 • 13 (mod 3837523).

We obtain the matrix

9398 0 0 5 0 0 0 0 1
19095 2 0 1 0 1 1 0 1
1964 0 2 0 0 0 3 0 0
17078 6 2 0 0 1 0 0 0
8077 1 0 0 0 0 0 0 1
3397 5 0 1 0 0 2 0 0
14262 . 0 0 2 2 0 1 0 0

Now look for linear dependencies mod 2 among the rows. Here are three of 
them:

1. 1st +  5th +  6th =  (6,0,6,0,0,2,0,2)= 0 (mod 2)

2. 1st +  2nd +  3rd + 4th =  (8,4,6,0,2,4,0,2)= 0 (mod 2)

3. 3rd + 7th =  (0,2,2,2,0,4,0,0)= 0 (mod 2)

When we have such a dependency, the product of the numbers yields a 
square. For example, these three yield

1. (9398 - 8077 • 3397)2 =  26 • 56 • 132 ■ 192 =  (23 - 53 13 - 19)2

2. (9398 • 19095 ■ 1964 • 17078)2 =  (23 - 32 • 53 • 11 • 132 • 19)2

3. (1964 • 14262)2 =  (3 • 5 • 7 - 132)2

Therefore, we have x 2 = y 2 (mod n) for various values of x  and y. If x ^  ±y  
(mod n), then gcd(x — y, n) yields a nontrivial factor of n. If x = ±y  
(mod n), then gcd(x —j/, n) =  1 or n, so we don’t obtain a factorization. In 
our three examples, we have

1. 35905232 =  2470002, but 3590523 =  -247000 (mod 3837523)

2. 22303872 =  25867052 and gcd(2230387 -  2586705, 3837523) =  1093

3. 11479072 =  177452 and gcd(1147907 -  17745, 3837523) =  1093
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Year Number of Digits
1964 20
1974 45
1984 71
1994 129
1999 155
2003 174
2005 200

Thble 6.1: Factorization Records

We now return to the basic question; How do we find the numbers 9398, 
19095, etc.? The idea is to produce squares that are slightly larger than a 
multiple of n, so they are small mod n. This means that there is a good 
chance they areproducts of small primes. An easy way is to look at numbers 
of the form [V m + j\ for small j  and for various values of i. Here [s] denotes 
the greatest integer less than or equal to x. The square of such a number 
is approximately in +  2jv /m  +  j 2, which is approximately 2jV m  +  j'2 mod 
n. As long as i is not too large, this number is fairly small, hence there is a 
good chance it is a product of small primes.

In the preceding calculation, we have 8077 =  [\Zl7n +  1] and 9398 =  
[V23n +  4], for example.

The method just used is the basis of many of the best current factoriza
tion methods. The main step is to produce congruence relations

x “ = product of small primes.

An improved version of the above method is called the quadratic sieve. A 
recent method, the number field sieve, uses more sophisticated techniques 
to produce such relations and is somewhat faster in many situations. See 
[Pomerance] for a description of these two methods and for a discussion of 
the history of factorization methods. See also Exercise 28.

Once we have several congruence relations, they are put into a matrix, as 
before. If we have more rows than columns in the matrix, we are guaranteed 
to have a linear dependence relation mod 2 among the rows. This leads to 
a congruence x2 =  y~ (mod n). Of course, as in the case of 1st +  5th +  6th 
=  0 (mod 2) considered previously, we might end up with x =  ±y, in which 
case we don’t obtain a factorization. But this situation is expected to occur 
at most half the time. So if we have enough relations -  for example, if there 
are several more rows than columns -  then we should have a relation that
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yields x2 = y2 with x  ^  ±y. In this case gcd(z — y, n) is a nontrivial factor
of 71.

In the last half of the twentieth century, there was dramatic progress in 
factoring. This was partly due to the development of computers and partly 
due to improved algorithms. A major impetus was provided by the use of 
factoring in cryptology, especially the RSA algorithm. Table 6.1 gives the 
factorization records (in terms of the number of decimal digits) for various 
years.

6 .4 .2  T h e o re tic a l M e th o d s

On the surface, the Miller-Rabin test looks like it might factor n quite often; 
but what usually happens is that bk-i is reached without ever having bu = 
±1 (mod 7i). The problem is that usually a"-1 ^  1 (mod n). Suppose, on 
the other hand, that we have some exponent r, maybe not n — 1, such that 
or =  1 (mod n) for all a with gcd(a, n) =  1. Then it is often possible to 
factor 7i. We note that such an exponent r must be even (if n > 2); since 
we can take a  =  —1 (mod ti) ,  we need (—l) r = 1.

U n iv e rsa l E x p o n e n t F a c to r iz a tio n  M e th o d . Suppose we have an 
exponent r > 0  such that ar = 1 (mod ti) for all a with gcd(a, n) =  1. 
Write r =  2*771 with m  odd. Choose a random a with 1 < a < n — 1. I f  
gcd(a, 7i) yi 1, we have a factor of n, so assume gcd(a, n) =  1. Let bo s  tzm 
(mod n), and successively define 6u+i =  6' (mod n) for 0 < u < k — 1. I f  
(>o =  l (mod n), then stop and try a different a. If, for some u, we have 
bu =  —1 (mod n), stop and try a different a. If, for some u we have 6u+i = 1 
(mod 71) but bu ^  ±1 (mod ti), then gcd(6„ — 1, n) gives a nontrivial factor 
of n.

This looks very similar to the Miller-Rabin test. The difference is that 
the existence of r guarantees that we have 6u+i s  1 (mod n) for some u, 
which doesn't happen as often in the Miller-Rabin situation. TVying a few 
values of a has a very high probability of factoring n.

Of course, we might ask how we can find an exponent r. Generally, 
this seems to be very difficult, and this test cannot be used in practice. 
However, it is useful in showing that knowing the decryption exponent in 
the RSA algorithm allows us to factor the modulus.

In some situations, we don’t know a universal exponent, but we know an 
exponent r that works for one value of a. Sometimes this allows us to factor 
n.

E x p o n e n t F a c to r iz a tio n  M e th o d . Suppose we have an exponent r > 0 
and an integer a such that ar s  1 (mod n). Write r =  2km  with m  odd. Let
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bo = a"1 (mod n), and successively define fcu+i =  b* (mod n) for 0 < u < 
k — 1. If bo = 1 (mod n), then stop; the procedure has failed to factor n. 
If, for some u, we have bu = —1 (mod n), stop; the procedure has failed to 
factor n. If, for some u, we have 6u+i =  1 (mod n) but bu #  ±1 (mod n), 
then gcd(l>„ — 1, n) gives a nontrivial factor of n.

Of course, if we take a =  1, then any r works. But then bo = 1, so the 
method fails. But if a and r are found by some reasonably sensible method, 
there is a good chance that this method will factor n.

6.5 The RSA Challenge

When the RSA algorithm was first made public in 1977, the authors made 
the following challenge.

Let the RSA modulus be 

n =
114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541

and let e =  9007 be the encryption exponent. The ciphertext is 

c =
968696137546220614771409222543558829057599911245743198 
746951209308162982251457083569314766228839896280133919 
90551829945157815154.

Find the message.

The only known way of finding the plaintext is to factor n. In 1977, 
it was estimated that the then-current factorization methods would take 
4 x 1016 years to do this, so the authors felt safe in offering $100 to anyone 
who could decipher the message before April 1, 1982. However, techniques 
have improved, and in 1994, Atkins, Graff, Lenstra, and Leyland succeeded 
in factoring n.

They used 524339 “small” primes, namely those less than 16333610, plus 
they allowed factorizations to include up to two "large" primes between 
16333610 and 230. The idea of allowing large primes is the following: If 
one large prime q appears in two different relations, these can be multiplied 
to produce a relation with q squared. Multiplying by q~- (mod n) yields a 
relation involving only small primes. In the same way, if there are several
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relations, each with the same two large primes, a similar process yields a 
relation with only small primes. The “birthday paradox” (see Section 8.4) 
implies that there should be several cases where a large prime occurs in more 
than one relation.

Six hundred people, with a total of 1600 computers working in spare time, 
found congruence relations of the desired type. These were sent by e-mail to 
a central machine, which removed repetitions and stored the results in a large 
matrix. After 7 months, they obtained a matrix with 524339 columns and 
569466 rows. Fortunately, the matrix wos sparse, in the sense that most of 
the entries of the matrix were Os , so it could be stored efficiently. Gaussian 
elimination reduced the matrix to a nonsparse matrix with 188160 columns 
and 188614 rows. This took a little less than 12 hours. With another 45 
hours of computation, they found 205 dependencies. The first three yielded 
the trivial factorization of n, but the fourth yielded the factors

P -
349052951084765094914784961990389813341776463849338784
3990820577,

9 =
327691329932G67095499619881908344614131776429679929425
39798288533.

Computing 9007~* (mod (p — 1 )(q — 1)) gave the decryption exponent 

d =
106698614368578024442868771328920154780709906633937862
8012262244966310631259117744708733401G8597462306553968
544513277109053G06095.

Calculating cd (mod n) yielded the plaintext message

200805001301070903002315180419000118050019172105011309
190800151919090618010705,

which, when changed back to letters using a =  01, b =  0 2 ,... ,  blank =  00, 
yielded

the magic words are squeamish ossifrage

(a squeamish ossifrage is an oversensitive hawk; the message was chosen so 
that no one could decrypt the message by guessing the plaintext and showing 
that it encrypted to the ciphertext). For more details of this factorization, 
see [Atkins et al.J.
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6.6 An Application to T reaty Verification

Countries A and B have signed a nuclear test ban treaty. Now each wants to 
make sure the other doesn’t test any bombs. How, for example, is country 
A going to use seismic data to monitor country B? Country A wants to put 
sensors in B, which then send data back to A. Two problems arise.

1. Country A wants to be sure that Country B doesn’t modify the data.

2. Country B wants to look at the message before it’s sent to be sure that 
nothing else, such as espionage data, is being transmitted.

These seemingly contradictory requirements can be met by reversing RSA. 
First, A chooses n = pq to be the product of two large primes and chooses 
encryption and decryption exponents e and d. -The numbers n and e are 
given to B, but p, q, and d are kept secret. The sensor (it's buried deep 
in the ground and is assumed to be tamper proof) collects the data x  and 
uses d to encrypt x to y =  xd (mod n). Both x  and y are sent first to 
country B, which checks that ye =  x  (mod n). If so, it knows that the 
encrypted message y corresponds to the data x, and forwards the pair x, y 
to A. Country A then checks that i/c =  x (mod n), also. If so, A can be sure 
that the number x has not been modified, since if x is chosen, then solving 
i/c =  x (mod n) for y  is the same as decrypting the RSA message x, and 
this is believed to be hard to do. Of course, B could choose a number y first, 
then let x = ye (mod n), but then x would probably not be a meaningful 
message, so A would realize that something had been changed.

The preceding method is essentially the RSA signature scheme, which 
will be studied in Section 9.1.

6.7 The Pub l ic K ey Concept

In 1976, Diffie and Heilman described the concept of public key cryptogra
phy, though at that time no realizations of the concept were publicly known 
(os mentioned in the introduction to this chapter, Clifford Cocks of the 
British cryptographic agency CESG had invented a secret version of RSA 
in 1973). In this section, we give the general theory of public key systems.

There are several implementations of public key cryptography other than 
RSA. In later chapters we describe three of them. One is due to ElGamal and 
is based on the difficulty of finding discrete logarithms. A second is NTRU 
and involves lattice methods. The third is due to McEliece and uses error 
correcting codes. There are also public key systems based on the knapsack 
problem. We don’t cover them in this book; some versions have been broken 
and they are generally suspected to be weaker than systems such as RSA 
and ElGamal.
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A public key cryptosystem  is built up of several components. First, 
there is the set M  of possible messages (potential plaintexts and cipher
texts). There is also the set K  of “keys." These are not exactly the en
cryption /decryption keys; in RSA, a key k is a triple (e,d,n) with ed = 1 
(mod <p{n)). For each key k, there is an encryption function Ek and a de
cryption function Dk- Usually, Ek and Dk are assumed "to map M  to M , 
though it would be possible to have variations that allow the plaintexts and 
ciphertexts to come from different sets. These components must satisfy the 
following requirements:

1. Ek{Dk(m))  =  77i and Dk(Ek{m))  =  m  for every m  S M  and every 
k e  K .

2. For every m  and every k, the values of Ek(m ) and Dkirn) are easy to 
compute.

3. For almost every k E K , if someone knows only the function Ek, it is 
computationally infeasible to find an algorithm to compute Dk.

4. Given k 6 K , it is easy to find the functions Ek and Dk-

Requirement (1) says that encryption and decryption cancel each other. 
Requirement (2) is needed; otherwise, efficient encryption and decryption 
would not be possible. Because of (4), a user can choose a secret random k 
from K  and obtain functions Ek and Dk- Requirement (3) is what makes 
the system public key. Since it is difficult to determine Dk from Ek, it is 
possible to publish Ek without compromising the security of the system.

Let's see how RSA satisfies these requirements. The message space can 
be taken to be all nonnegative integers. As we mentioned previously, a key 
for RSA is a triple k =  (e, d, n). The encryption function is

Ek[m) = m c (mod n),

where we break m  into blocks if tti > n, The decryption function is

Dk(m)  =  m d (mod n),

again with tti broken into blocks if needed. The functions Ek and Dk ore 
immediately determined from knowledge of k (requirement (4)) and are easy 
to compute (requirement (2)). They are inverses of each other since ed=  1 
(mod <j>[n)), so (1) is satisfied. If we know Ek, which means we know e 
and n, then we have seen that it is (probably) computationally infeasible to 
determine d, hence Dk- Therefore, (3) is (probably) satisfied.

Once a public key system is set up, each user generates a key k and 
determines Ek and Dk- The encryption function Ek is made public, while
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Dk is kept secret. If there is a problem with impostors, a trusted authority 
can be used to distribute and verify keys.

In a symmetric system, Bob can be sure that a message that decrypts 
successfully must have come from Alice (who could really be a group of 
authorized users) or someone who has Alice's key. Only Alice has been 
given the key, so no one else could produce the ciphertext. However, Alice 
could deny sending the message since Bob could have simply encrypted the 
message himself. Therefore, authentication is easy (Bob knows that the 
message came from Alice, if he didn't forge it himself) but non-repudiation 
is not (see Section 1.2).

In a public key system, anyone can encrypt a message and send it to 
Bob, so he will have no idea where it came from. He certainly won't be able 
to prove it came from Alice. Therefore, more steps are needed for authen
tication and non-repudiation. However, these goals are easily accomplished 
as follows.

Alice starts with her message m  and computes E ^(D ^(m )), where ka is 
Alice's key and kb is Bob's key. Then Bob can decrypt using DkL to obtain 
Dka{m). He uses the publicly available Eka to obtain Ek*{Du*(m)) =  m. 
Bob knows that the message must have come from Alice since no one else 
could have computed Dka(m). For the same reason, Alice cannot deny send
ing the message. Of course, all this assumes that most random “messages” 
are meaningless, so it is unlikely that a random string of symbols decrypts 
to a meaningful message unless the string was the encryption of something 
meaningful.

Concrete versions of these methods of authentication will be discussed 
in Chapter 9 on digital signatures.

It is possible to use one-way functions with certain properties to construct 
a public key cryptosystem. Let /(m ) be an invertible one-way function. This 
means f (x )  is easy to compute, but, given y, it is computationally infeasible 
to find the unique value of x  such that y  =  /(x ). Now suppose f (x )  has a 
trapdoor, which means that there is an easy way to solve y =  f (x )  for x, but 
only with some extra information known only to the designer of the function. 
Moreover, it should be computationally infeasible for someone other than the 
designer of the function to determine this trapdoor information. If there is 
a very large family of one-way functions with trapdoors, they can be used 
to form a public key cryptosystem. Each user generates a function from the 
family in such a way that only that user knows the trapdoor. The user’s 
function is then published as a public encryption algorithm. When Alice 
wants to send a message m  to Bob, she looks up his function ft(x )  and 
computes y = /^(m). Alice sends y to Bob. Since Bob knows the trapdoor 
for /(,(i ) ,  he can solve y  =  and thus find m.

In RSA, the functions f(x )  =  xe (mod n), for appropriate n  and e, 
form the family of one-way functions. The secret trapdoor information is
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the factorization of n. In the ElGamal system (Section 7.5), the one-way 
function is obtained from exponentiation modulo a prime, and the trapdoor 
information is knowledge of a discrete log. In NTRU (Section 17.4), the 
trapdoor information is a pair of small polynomials. In the McEliece system 
(Section 18.10), the trapdoor information is an efficient way for finding the 
nearest codeword (“error correction”) for certain linear binary codes.

6.8 Exercises

1. The ciphertext 5859 was obtained from the RSA algorithm using n  = 
11413 and e =  7467. Using the factorization 11413 =  101 ■ 113, find 
the plaintext.

2 . Suppose your RSA modulus is n  =  55 =  5 x  11 and your encryption 
exponent is e =  3,

(a) Find the decryption modulus d.
(b) Assume that gcd(m,55) = 1. Show that if c =  m 3 (mod 55) is 

the ciphertext, then the plaintext is m  = c? (mod 55). Do not 
quote the fact that RSA decryption works. That is what you are 
showing in this specific case.

3. The ciphertext 75 was obtained using RSA with n  =  437 and e =  3. 
You know that the plaintext is either 8 or 9. Determine which it is 
without factoring n.

4. Suppose you encrypt messages m  by computing c s  m3 (mod 101). 
How do you decrypt? (That is, you want a decryption exponent d such 
that d1 s  m  (mod 101); note that 101 is prime.)

5. Let p be a large prime. Suppose you encrypt a message x  by computing 
y  =  xc (mod p) for some (suitably chosen) encryption exponent e. 
How do you find a decryption exponent d such that yd =  x  (mod p)?

6. Let n  be the product of two large primes. Alice wants to send a message 
m  to Bob, where gcd(m, n) =  1. Alice and Bob choose integers a and 
6 relatively prime to <£(n). Alice computes c =  m a (mod p) and sends 
c to Bob. Bob computes d =  c6 (mod p) and sends d back to Alice. 
Since Alice knows o, she finds Qi such that aai =  1 (mod 4>(n)). Then 
she computes e =  dai (mod p) and sends e to Bob. Explain what Bob 
must now do to obtain m, and show that this works. (Remark: In this 
protocol, the prime factors of n do not need to be kept secret. Instead, 
the security depends on keeping a, b, ai, &i secret. The present protocol 
is a less efficient version of the three-pass protocol from Section 3.6).
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7. Naive Nelson uses RSA to receive a single ciphertext c, corresponding 
to the message m. His public modulus is n  and his public encryption 
exponent is e. Since he feels guilty that his system was used only once, 
he agrees to decrypt any ciphertext that someone sends him, as long 
as it is not c, and return the answer to that person. Evil Eve sends 
him the ciphertext 2ec (mod n). Show how this allows Eve to find m.

8 . In order to increase security, Bob chooses n and txvo encryption ex
ponents ei, e2. He asks Alice to encrypt her message m  to him by 
first computing Ci =  mc* (mod n), then encrypting ci to get c2 =  c\3 
(mod n). Alice then sends c2 to Bob. Does this double encryption 
increase security over single encryption? Why or why not?

9. Let p and q be distinct odd primes, and let n  =  pq. Suppose that the 
integer x  satisfies gcd(x,pg) =  1.

(a) Show that =  1 (mod p) and = 1 (mod 17).

(b) Use (a) to show that =  1 (mod ti) .

(c) Use (b) to show that if erf =  1 (mod \<p{n)) then x cd =  x 
(mod n). (This shows that we could work with \4>{n) instead 
of <j>(n) in RSA. In fact, we could also use the least common 
multiple of p -  1 and q — 1 in place of 0(n), by similar reasoning.)

10. The exponents e =  1 and e =  2 should not be used in RSA. Why?

11. Suppose that there are two users on a network. Let their RSA moduli 
be ri! and TI2, with ni not equal to n j. If you are told that ni and n2 
are not relatively prime, how would you break their systems?

12. You are trying to factor n  =  642401. Suppose you discover that

5161072 s  7 (mod n)

and that
1877222 =  22 ■ 7 (mod n).

Use this information to factor n.

13. Suppose you discover that

8805252 e  2, 20572022 s= 3, 6485812 = 6,

6686762 5  77 (mod 2288233).

How would you use this information to factor 2288233? Explain what 
the steps you would do, but do not perform the numerical calculations.
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14. Suppose you have two distinct large primes p and q. Explain how you 
can find on integer x  such that

x~ =  49 (mod pq), x  ^  ±7 (mod pq).

15. Suppose n  is a large odd number. You calculate 2 n̂~ 1̂ 2 = k (mod n), 
where k is some integer with k p  ± 1  (mod t i) .

(a) Suppose k2 ^  1 (mod t i) .  Explain why this implies that n  is not 
prime.

(b) Suppose k2 =  1 (mod ti) .  Explain how you can use this informa
tion to factor n.

10. Suppose two users Alice and Bob have the same RSA modulus n  
and suppose that their encryption exponents ba and eg are relatively 
prime. Charles wants to send the messoge m to Alice and Bob, so he 
encrypts to get =  mC/1 and Cg =  m e° (mod n). Show how Eve can 
find m if she intercepts c,i and eg.

17. Suppose Alice uses the RSA method as follows. She starts with a mes
sage consisting of several letters, and assigns a =  1, b =  2, . . . ,  z  =  26. 
She then encrypts each letter separately. For example, if her message 
is cat, she calculates 3C (mod n), l c (mod ti) ,  and 20c (mod n). Then 
she sends the encrypted message to Bob. Explain how Eve can find 
the message without factoring n. In particular, suppose n = 8881 and 
e =  13. Eve intercepts the message

4461 794 2015 2015 3603.

Find the message without factoring 8881.

18. Show that if x 2 = y2 (mod ti)  and x  ^  ± y  (mod n), then gcd(i+ y ,n ) 
is a nontrivial factor of n.

19. Let n  =  pq be the product of two distinct primes.

(a) Let m be a multiple of ^(n). Show that if gcd(o, n) =  1, then 
om =  1 (mod p) and (mod q).

(b) Suppose tti is as in part (a), and let a be arbitrary (possibly 
gcd(a, n) 7̂  1). Show that om+1 s  a (mod p) and (mod q).

(c) Let e and d be encryption and decryption exponents for RSA 
with modulus n. Show that acd s  a (mod n) for all a. This 
shows that we do not need to assume gcd(o,n) = 1 in order to 
use RSA.



C.8. E xercises 195

(d) If p and q are large, why is it likely that gcd(a, n) =  1 for a 
randomly chosen a!

20. Suppose n  =  pgr is the product of three distinct primes. How would 
an RSA-type scheme work in this case? In particular, what relation 
would e and d satisfy?
Note: There does not seem to be any advantage in using three primes 
instead of two. The running times of some factorization methods de
pend on the size of the smallest prime factor. Therefore, if three primes 
are used, the size of n  must be increased in order to achieve the same 
level of security as obtained with two primes.

21. Let p =  7919 and q =  17389. Let e =  66909025. A calculation 
shows that e2 = 1 (mod (p — l)(<j — 1)). Alice decides to encrypt the 
message m = 12345 using RSA with modulus n = pq and exponent 
e. Since she wants the encryption to be very secure, she encrypts 
the ciphertext, again using n  and e (so she has double encrypted the 
original plaintext). What is the final ciphertext that she sends? Justify, 
your answer without using a calculator.

22. (a) Show that if gcd(e, 24) = 1, then e2 =  1 (mod 24).
(b) Show that if n =  35 is used as an RSA modulus, then the encryp

tion exponent e always equals the decryption exponent d.

23. Your opponent uses RSA with n =  pq and encryption exponent e and 
encrypts a message m. This yields the ciphertext c =  m° (mod n). 
A spy tells you that, for this message, m 123'15 =  1 (mod n). Describe 
how to determine m. Note that you do not know p, q, 0(n), or the 
secret decryption exponent d. However, you should find a decryption 
exponent that works for this particular ciphertext. Moreover, explain 
carefully why your decryption works (your explanation must include 
how the spy’s information is used).

24. Suppose you are using RSA (with modulus n — pq and encrypting 
exponent e), but you decide to restrict your messages to numbers m  
satisfying m 1000 =  1 (mod n).

(a) Show that if d satisfies de s  1 (mod 1000), then d works as a 
decryption exponent for these messages.

(b) Assume that both p and q are congruent to 1 mod 1000. De
termine how many messages satisfy m 1000 = 1 (mod n). You 
may assume and use the fact that m 1000 =  1 (mod r) has 1000 
solutions when r  is a prime congruent to 1 mod 1000.
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25. You may assume the fact that m2703Cm =  1 (mod 1113121) for all m  
with gcd(m, 1113121-) =  1. Let e and d satisfy ed =  1 (mod 270300), 
and suppose that m  is a message such that 0 < m < 1113121 and 
gcd(m, 1113121) =  1. Encrypt m  as c =  m e (mod 1113121). Show 
that 77i s  d* (mod 1113121). Show explicitly how you.use the fact that 
ed =  1 (mod 270300) and the fact that m270300 =  1 (mod 1113121). 
(Note: 0(1113121) r= 2703000, so Euler's theorem does not apply.)

26. Suppose Bob’s encryption company produces two machines, A and 
B, both of whicli are supposed to be implementations of RSA using 
the same modulus n = pq for some unknown primes p and q. Both 
machines also use the same encryption exponent e. Each machine re
ceives a message m  and outputs a ciphertext that is supposed to be 
mc (mod n). Machine A always produces the correct output. How
ever, Machine B, because of implementation and hardware errors, al
ways outputs a ciphertext c (mod n) such that c =  m c (mod p) and 
c =  T7ie +  1 (mod q). How could you use machines A and B to find 
p and q? (See Computer Problem 11 for a discussion of how such a 
situation could arise.)

27. (a) Suppose Alice wants to send a short message m  but wants to
prevent the short message attack of Section 6,2. She tells Bob 
that she is adjoining 100 zeros at the end of her plaintext, so she 
is using m i - 101DOTn os the plaintext and sending cy — m \. If 
Eve knows that Alice is doing this, how can Eve modify the short 
plaintext attack and possibly find the plaintext?

(b) Suppose Alice realizes that the method of part (a) does not pro
vide security, so instead she makes the plaintext longer by re
peating it two times: m\\m  (where x\\y means we write the digits 
of i  followed by the digits of y to obtain a longer number). If 
Eve knows that Alice is doing this, how can Eve modify the short 
plaintext attack and possibly find the plaintext? Assume that 
Eve knows the length of m. (Hint: Express m\\m  as a multiple 
of m.)

28. This exercise provides some of the details of how the quadratic sieve 
obtains the relations that are used to factor a large odd integer n. Let 
s be the smallest integer greater than the square root of n  and let 
f(x )  =  ( i  +  a)2 — ti. Let the factor base B consist of the primes up to 
some bound B. We want to find squares that are congruent mod n to 
a product of primes in B. One way to do this is to find values of f(x )  
that are products of primes in B. We'll search over a range 0 < x < A, 
for some A.
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(a) Suppose 0 < x  < (V2 — 1)-/^ — 1- Show that 0 < f[x ) < n, so 
f(x )  (mod n) is simply f(x ). (Hint: Show that x  -t-s < $ + v n  +
1 < •Jr2n.) Henceforth, we’ll assume that A  < (V2 — 1 ) 'J n — 1, 
so the values of x  that we consider have f(x )  < n.

(b) Let p be a prime in B. Show that if there exists an integer x  with 
f(x )  divisible by p, then n is a square mod p. This shows that 
we may discard those primes in B for which n  is not a square 
mod p. Henceforth, we will assume that such primes have been 
discarded.

(c) Let p 6 B be such that n is a square mod p. Show that if p is 
odd, and p f n, then there are exactly two values of x  mod p such 
that f(x )  = 0 (mod p). Call these values $Pil and zpo. (Note: 
In the unlikely case that p|n, we have found a factor, which was 
the goal.)

(d) For each x  with 0 < x < A, initialize a register with value 
log f ( x )- For each prime p £ B, subtract logp from the regis
ters of those x  with x = xPti or xp n (mod p). (Remark: This is 
the "sieving” part of the quaidratic sieve.) Show that if f(x )  (with
0 < x  < A) is a product of distinct primes in B, then the register 
for x  becomes 0 at the end of this process.

(e) Explain why it is likely that if f (x )  (with 0 < $ < A) is a product 
of (possibly nondistinct) primes in B then the final result for the 
register for x is small (compared to the register for an x  such that 
f (x )  has a prime factor not in B).

( f ) Why is the procedure of part (d) faster than trial division of each 
f ( x )  by each element of B, and why does the algorithm subtract 
logp rather than dividing f(x )  by p?

In practice, the sieve also takes into account solutions to f(x )  =  0 
mod some powers of small primes in B. After the sieving process is 
complete, the registers with small entries are checked to see which 
correspond to f (x )  being a product of primes from B. These give the 
relations “square = product of primes in B mod n” that are used to 
factor n.

6.9 Computer P roblems

N ote: Many of the numbers in the following problems are too large for
MATLAB® without the assistance of the Maple® Kernel.

1. Paul Revere’s friend in a tower at M.I.T. says he’ll send the message 
one if (the British are coming) by land and two if by sea. Since they
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know that RSA will be invented in the Boston area, they decide that 
the message should be encrypted using RSA with n — 712446816787 
and e =  6551. Paul Revere receives the ciphertext 273095689186. 
What was the plaintext?

2. In an RSA cryptosystem, suppose you know n =  71854 8065 9737455 07, 
e = 3449, and d =  543546506135745129. Factor n.

3. Choose two 30-digit primes p  and q and an encryption exponent e. 
Encrypt each of the plaintexts cat, bat, hat, encyclopedia, antidises- 
tabliskmentarianism. Can you tell from looking at the ciphertexts that 
the first three plaintexts differ in only one letter or that the last two 
plaintexts are much longer than the first three?

4. Factor 618240007109027021 by the p  — 1 method.

5. Factor 8834884587090814646372459890377418962766907 by the p -  1 
method. (The number is stored in the downloadable computer files 
(see the Appendices) as nl.)

6. Let n  = 537069139875071. Suppose you know that

859753244431662 =  4624361062612 (mod n).

Factor n.

7. Let n  =  985739879 • 1388749507. Find x  and y  with x2 =  y2 (mod n) 
but x  ^ ± 7/ (mod n).

8. (a) Suppose you know that

333352 =  6707050932 (mod 670726081).

Use this information to factor 670726081.
(b) Suppose you know that 32 = 6707260782 (mod 670726081). Why 

won't this information help you to factor 670726081?

9. Suppose you know that

2D58230 3  H88665 (mod 3837523)
2idi6400 _  x (mod 383 7523).

How would you use this information to factor 3837523? Note that the 
exponent 1916460 is twice the exponent 958230.

10. (a) Suppose the primes p  and q used in the RSA algorithm are con
secutive primes. How would you factor n  =  pq?
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(b) The ciphertext 10787770728 was encrypted using e =  113 and 
n =  10993522499. The factors p and q of n were chosen so that 
q — p = 2. Decrypt the message.

(c) The following ciphertext c was encrypted mod n using the expo
nent e:

n =  15241578750190598570188183215083508903785886862121100-1433 

e =  9007

c =  14107746176556950024119950561785-1673388398574333341423525,

The prime factors p  and 17 of ti are consecutive primes. De
crypt the message. (The number n  is stored in the downloadable 
computer files (see the Appendices) as naive, and c is stored os 
cnaive.)
(Note: In Mathematica®, the command Round[N[Sqrt[n],50]] 
evaluates the square root of n to 50 decimal places and then 
rounds to the nearest integer. In Maple, first use the command 
D ig its:= 50  to obtain 50-digit accuracy, then use the command 
ro u n d (sq rt(n * l.))  to change ti to a decimal number, take its 
square root, and round to the nearest integer.)

11. Let p — 123456791, q =  987654323, and e = 127. Let the message be 
m  =  14152019010605.

(a) Compute m e (mod p) and me (mod g); then use the Chinese re
mainder theorem to combine these to get c = m e (mod pq).

(b) Change one digit of m c (mod p) (for example, this could be 
caused by some radiation). Now combine this with m c (mod q) to 
get an incorrect value /  for mc (mod pq). Compute gcd(c-/, pq). 
Why does this factor pq?

The method of (a) for computing me (mod pq) is attractive since it 
does not require as large multiprecision arithmetic as working directly 
mod pq. However, as part (b) shows, if an attacker can cause an 
occasional bit to fail, then pq can be factored.

12. Suppose that p — 76543692179, q =  343434343453, and e =  457. The 
ciphertext c =  m e (mod pq) is transmitted, but an error occurs dur
ing transmission. The received ciphertext is 2304329328016936947195. 
The receiver is able to determine that the digits received are correct 
but that last digit is missing. Determine the missing digit and decrypt 
the message.
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13. Test 38200901201 for primality using the Miller-Rabin test with a =  2. 
Then test using a =  3. Note that the first test says that 38200901201 
is probably prime, while the second test says that it is composite. A 
composite number such as 38200901201 that passes the Miller-Rabin 
test for a number a is called a s trong  a-pseudoprim e.

14. There are three users with pairwise relatively prime moduli 711,712,713. 
Suppose that their encryption exponents are all e =  3. The same 
message m  is sent to each of them and you intercept the ciphertexts 
Ci = m 3 (mod 7i<) for i =  1,2,3.

(a) Show that 0 < m 3 < T i^ns-
(b) Show how to use the Chinese remainder theorem to find m3 (as 

an exact integer, not only as m3 (mod tij 712713)) and therefore m. 
Do this without factoring.

(c) Suppose that

711 =  2469247531693, n2 =  11111502225583,

7i3 =  44444222221411 

and the corresponding ciphertexts are

359335245251, 10436363975495, 5135984059593.

These were all encrypted using e =  3. Find the message.
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Discrete Logarithms

7.1 D iscrete Logarithms
In the RSA algorithm, we saw how the difficulty of factoring yields useful 
cryptosystems. There is another number theory problem, namely discrete 
logarithms, that has similar applications.

Fix a prime p. Let a  and 0  be nonzero integers mod p and suppose

0  = ax (mod p).

The problem of finding x  is called the d iscre te  logarithm  problem . If n 
is the smallest positive integer such that a n = 1 (mod p), we may assume
0 < x  < n, and then we denote

*  =  L a (P)

and call it the discrete log of 0  with respect to or (the prime p is omitted 
from the notation).

For example, let p =  11 and let a  =  2. Since 26 =  9 (mod 11), we have 
£2(9) =  6. Of course, 26 =  21C =  220 =  9 (mod 11), so we could consider 
taking any one of 6, 16, 26 as the discrete logarithm. But we fix the value by 
taking the smallest nonnegative value, namely 6, Note that we could have 
defined the discrete logarithm in this case to be the congruence class 6 mod
10. In some ways, this would be more natural, but there are applications 
where it is convenient to have a number, not just a congruence class.

201
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Often, a  is taken to be a primitive root mod p, which means that every
0 is a power of a  (mod p). If a  is not a primitive root, then the discrete 
logarithm will not be defined for certain values of (3.

Given a prime p, it is fairly easy to find a primitive root in many cases. 
See Exercise 21 in Chapter 3.

The discrete log behaves in many ways like the usual logarithm. In 
particular, if q is a primitive root mod p, then

La(PiP2) = La(Pi) + Laifa) (mod p  -  1)

(see Exercise 5).
When p is small, it is easy to compute discrete logs by exhaustive search 

through all possible exponents. However, when p is large this is not feasible. 
We give some ways of attacking discrete log problems later. However, it is 
believed that discrete logs are hard to compute in general. This assumption 
is the basis of several cryptosystems.

The size of the largest primes for which discrete logs can be computed 
has usually been approximately the same size as the size of largest integers 
that could be factored (both of these refer to computations that would work 
for arbitrary numbers of these sizes; special choices of integers will succumb 
to special techniques, and thus discrete log computations and factorizations 
work for much larger specially chosen numbers). In the year 2001, a discrete 
log was computed for a 120-digit prime, which was the record at that time. 
The record factorization up to then was 155 digits.

A function /(x ) is called a one-way function  if / ( x) is easy to com
pute, but, given y, it is computationally infeasible to find x with f(x )  =  y. 
Modular exponentiation is probably an example of such a function. It is 
easy to compute a 1 (mod p), but solving a z = p  for x is probably hard. 
Multiplication of large primes can also be regarded as a (probable) one-way 
function: It is easy to multiply primes but difficult to factor the result to 
recover the primes. One-way functions have many cryptographic uses.

7.2 Com puting Discrete Logs

In this section, we present some methods for computing discrete logarithms. 
Another useful method, the important birthday attack, is discussed in Sec
tion 8.4.

For simplicity, take a  to be a primitive root mod p, so p —1 is the smallest 
positive exponent n such that a" =  1 (mod p). This implies that

ami =  a ”12 (mod p) -i=> m i — mn (mod p — 1).

Assume that
p  = ax , 0 < x < p — 1.
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We want to find x.
First, it’s easy to determine x  (mod 2). Note that

(q(p-1)/2) - =  qP_1 =  l  (mod p),

so q(p-1)/2 =  ±1 (mod p) (see Exercise 8 in Chapter 3). However, p  -  1 is 
assumed to be the smallest exponent to yield +1, so we must have

q (p - 1 )/2  — ( m o c j  p ) .

Starting with p  = ax (mod p), raise both sides to the (p — l)/2  power to 
obtain

p(p-m =  a*(p-D/2 =  ( _ ! ) x  (m od p ).

Therefore, if /j(p_1)/2 =  -j-1, then x is even; otherwise, x  is odd.

E x am p le . Suppose we want to solve 2X =  9 (mod 11). Since 

p ip-1)/2 =  g5 = i (mod 11), 

we must have x  even. In fact, x = 6, as we saw previously. I

7.2.1 T h e  P o h lig -H e llm a n  A lg o rith m

The preceding idea was extended by Pohlig and Heilman to give an algorithm 
to compute discrete logs when p — 1 has only small prime factors. Suppose

p - i - I K

is the factorization of p — 1 into primes. Let qr be one of the factors. We'll 
compute La (P) (mod qr). If this can be done for each gp, the answers can 
be recombined using the Chinese remainder theorem to find the discrete 
logarithm.

Write
I  =  10 +  Xi q + x 2q2 H---- with 0 < if  < q — 1.

We’ll determine the coefficients Xoi *it • • • i r- i  successively, and thus obtain
i  mod qT. Note that

I  -  x0 + ( P “  l)(a=l+ Xnq + x3q2 + ■ ■ ■)

=  + ( P - I )n,
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where n is an integer. Starting with 0 =  qz , raise both sides to the (p— l)/g  
power to obtain

^ ( p - i)/, =  q i (p -1)/7 =  =  q i o (p - i )/s  (m o d  p).

The last congruence is a consequence of Fermat's theorem: a J,-1= l (mod p). 
To find iq, simply look at the powers

(mod p), * =  0 ,1 ,2 ,...,< 7- 1,

until one of them yields 0 b,~1)/<>. Then xq =  k. Note that since a mi = 
Qm3 mi =  m,  (mod p — 1), and since the exponents k(p — 1 )jq  are
distinct mod p ~ 1, there is a unique k  that yields the answer.

An extension of this idea yields the remaining coefficients. Assume that 
q2\p — 1. Let

A  =  0 a~xa =  QiC*-+*=-!+•'•) (mod p).

Raise both sides to the (p — 1 )/q2 power to obtain

^(p-1)/1?3 s  a (p-l)(n+i2ij+— )/q

=  axi(p-l)/<! (mod p).

The last congruence follows by applying Fermat’s theorem. We couldn't 
calculate 0 p̂~ ^ q as (0 [~l )l/ ql since fractional exponents cause problems. 
Note that every exponent we have used is an integer.

To find x i , simply look at the powers

qMp-i)/<z (mod p), k =  0,1, 2 , . . . ,  q -  1,

until one of them yields Then Xi =  A.
If ?3|p — 1, let 02 =  0iQ~xiq and raise both sides to the (p— l) /? 3 power 

to obtain X2- In this way, we can continue until we find that qr+1 doesn’t 
divide p — 1, Since we cannot use fractional exponents, we must stop. But 
we have determined i q , i l ,  . . . ,  xr_ ], so we know x  mod qT.

Repeat the procedure for all the prime factors of p — 1. This yields x  
mod qY for all i. The Chinese remainder theorem allows us to combine these 
into a congruence for x  mod p — 1. Since 0 < x  < p — 1, this determines x.

E x am p le . Let p =  41, a  =  7, and 0  =  12. We want to solve

7= =  12 (mod 41).
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Note that
41 -  1 = 23 • 5.

First, let q =  2 and let's find x mod 23. W rites =  io  +  2x i + 4x2 (mod 8). 
To start,

^(p-D/2 s  1220 =  40 =  - 1  (mod 41),

and
q (p - 1 ) / 2  _  720 =  _ i  (mod 41).

Since
p{p-1)/2 =  (a (P-1)/2)z« (mod 41), 

we have xo =  1. Next,

A  =/3a~x,> =  12-7-1 = 31  (mod 41).

Also,
^ (p -i)/2 5 =  31io =  !  (moci 41).

Since
pb>-1)/2‘ =  (a(p-l)/2yt, (mod 41)t

we have xi = 0. Continuing, we have

02 h  Act-211 =  31 - 7° =  31 (mod 41),

and ,
^(P-0/9 =  31s =  _ i  =  (Q(P-D/2)ii (mod 41).

Therefore, i j  =  1. We have obtained

x =  xo +  2xi +  4x2 = 1 +  4 =  5 (mod 8).

Now, let q =  5 and let's find x mod 5. We have

^(p-il/5 =  128 5= 18 (mod 41)

and
a(P-i)/q =  78 =  37 (m od 41).

TVying the possible values of k yields

37° =  1, 371 =  37, 372 =  16, 373 s  18 , 374 =  10 (mod 41).

Therefore, 373 gives the desired answer, so x =  3 (mod 5).
Since x =  5 (mod 8) and x =  3 (mod 5), we combine these to obtain 

x =  13 (mod 40), so x  =  13. A quick calculation checks that 713 =  12 
(mod 41), as desired. *
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As long as the primes q involved in the preceding algorithm are reason
ably small, the calculations can be done quickly. However, when q is large, 
calculating the numbers for k =  0,1, 2 , . . . ,  q — 1 becomes infeasi
ble, so the algorithm no longer is practical. This means that if we want a 
discrete logarithm to be hard, we should make sure that p — 1 has a large 
prime factor.

Note that even if p -  1 =  tq has a large prime factor q, the algorithm 
can determine discrete logs mod t if t is composed of small prime factors. 
For this reason, often @ is chosen to be a power of a 1. Then the discrete log 
is automatically 0 mod t, so the discrete log hides only mod q information, 
which the algorithm cannot find. If the discrete log x  represents a secret (or 
better, t times a secret), this means that an attacker does not obtain partial 
information by determining x  mod t, since there is no information hidden 
this way. This idea is used in the Digital Signature Algorithm, which we 
discuss in Chapter 9.

7.2.2 Baby Step, Giant Step

Eve wants to find x  such that ax =  /? (mod p). She does the following. First, 
she chooses an integer N  with N 2 > p  — 1, for example N  =  [V p-T] + 1. 
Then she makes two lists:

1. a? (mod p) for 0 < j  < N

2. P a ~ N k  (mod p) for 0 <  A ; <  N

She looks for a match between the two lists. If she finds one, then

Q? =  paTNkt

so =e (3. Therefore, x  =  j  +  N k  solves the discrete log problem.
Why should there be a match? Since 0 < i < p  — 1 <  N 2, we can write 

x  in base N  as x = xq +  N x j with 0 < xo, < TV. In fact, x\ =  \x/N\ and 
xo = x — jV i]. Therefore,

j  = X q ,  k = Xi

gives the desired match.
The list a J for j  — 0 ,1,2, . . .  is the set of “Baby Steps" since the elements 

of the list arc obtained by multiplying by a , while the “Giant Steps" are 
obtained in the second list by multiplying by a~N. It is of course not 
necessary to compute all of the second list. Each element, as it is computed, 
can be compared with the first list. As soon as a match is found, the 
computation stops.
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The number of steps in this algorithm is proportional to N  ~  ^/p and 
it requires storing approximately N  numbers. Therefore, the method works 
for primes p up to ID20, or even slightly larger, but is impractical for very 
large p.

7.2.3 The Index Calculus

The idea is similar to the quadratic sieve method of factoring. Again, we 
are trying to solve @ = a 1 (mod p), where p is a large prime and a  is a 
primitive root.

First, there is a precomputation step. Let B  be a bound and let pi, P2, 
. . . ,  pm be the primes less than B. This set of primes is called our factor 
base. Compute a k (mod p) for several values of k. For each such number, 
try to write it as a product of the primes less than B. If this is not the case, 
discard a k. However, if a k =  f ]p ”‘ (mod p), then

k = ^ O iL 0(pi) ( m o d p - 1 ) .

When we obtain enough such relations, we can solve for La(j>i) for each i.
Now, for random integers r, compute Par (mod p). For each such num

ber, try to write it as a product of primes less than B. If we succeed, we 
have p a T = Hp?* (mod p), which means

La(P) =  - r  + J 2 biLa(Pi) (m o d p - 1 ) .

This algorithm is effective if p is of moderate size. This means that p 
should be chosen to have at least 200 digits, maybe more, if the discrete log 
problem is to be hard.

E x a m p le . Let p = 131 and a  =  2. Let B  =  10, so we are working with 
the primes 2,3,5,7. A calculation yields the following:

21 =  2 (mod 131)
2a =  53 (mod 131)

212 =  5 -7  (mod 131)
214 =  32 (mod 131)
231 =  3 ■ 52 (mod 131).
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Therefore,

1 =  Ln (2) (mod 130)
8 =  31,2 (5) (mod 130)

12 =  L2( 5 ) + L 2(7) (mod 130)
14 =  21,(3) (mod 130)
34 =  L2(3 )+ 2L 2(5) (mod 130).

The second congruence yields 1,2(5) =  46 (mod 130). Substituting this into 
the third congruence yields L i(7) =  -34  =  96 (mod 130). The fourth 
congruence only yields the value of L2(3) (mod 65) since gcd(2,130) ^  1. 
This gives two choices for £ 2(3) (mod 130). Of course, we could try them 
and see which works. Or we could use the fifth congruence to obtain L2(3) =  
72 (mod 130). This finishes the precomputation step.

Suppose now that we want to find L2(37). Trying a few randomly chosen 
exponents yields 37 • 2li =  3 - 5 - 7  (mod 131), so

Z,2(37) =  -43  +  1,2(3) +  Lo(5) -I- L2(7) =  41 (mod 130). 

Therefore, i 2(37) =  41. B

Of course, once the precomputation has been done, it can be reused for 
computing several discrete logs for the same prime p.

7.2.4 Com puting D iscrete Logs M od 4

When p =  1 (mod 4), the Pohlig-Heilman algorithm computes discrete logs 
mod 4 quite quickly. What happens when p — 3 (mod 4)? The Pohlig- 
Hellman algorithm won’t work, since it would require us to raise numbers 
to the (p — l) /4  power, which would yield the ambiguity of a fractional 
exponent. The surprising fact is that if we have an algorithm that quicldy 
computes discrete logs mod 4 for a prime p =  3 (mod 4), then we can use it 
to compute discrete logs mod p quickly. Therefore, it is unlikely that such 
an algorithm exists.

There is a philosophical reason that we should not expect such an algo
rithm. A natural point of view is that the discrete log should be regarded 
as a number mod p — 1. Therefore, we should be able to obtain information 
on the discrete log only modulo the power of 2 that appears in p — 1. When 
p =  3 (mod 4), this means that asking questions about discrete logs mod 4 
is somewhat unnatural. The question is possible only because we normal
ized the discrete log to be an integer between 0 and p — 2. For example, 
2C =  216 =  9 (mod 11). We defined £1 (9) to be 6 in this case; if we had 
allowed it also to be 16, we would have two values for L2(9), namely 6 and
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16, that are not congruent mod 4. Therefore, from this point of view, we 
shouldn't even be asking about 1^(9) mod 4.

We need the following lemma, which is similar to the method for com
puting square roots mod a prime p =  3 (mod 4) (see Section 3.9).

L em m a. Let p =  3 (mod 4) be prime, let r >  2, and let y be an inte
ger. Suppose a and 7 are two nonzero numbers mod p such that 7 =
(mod p). Then

< y ( p + i ) / 4  —  a 2 r  1 j/  ( m o d  p )

Proof.

,y(p+l)/-1 =  Q,(p+1)2r aU =  a -r '!/(QP-1)2r ~V = Q,2r *!/ (mod pY

The final congruence is because of Fermat’s theorem. □

Fix the prime p =  3 (mod 4) and let a  be a primitive root. Assume 
we have a machine that, given an input fi, gives the output L a(j3) mod 4. 
As we saw previously, it is easy to compute La {(3) mod 2. So the new 
information supplied by the machine is really only the second bit of the 
discrete log.

Now assume a* = /3 (mod p) let x = xo +  2xi +4x2 H------ H 2nx„ be the
binary expansion of x. Using the La{0) (mod 4) machine, we determine xo 
and x\. Suppose we have determined xo,xi , . . . ,  xr- 1 with r > 2. Let

(3r — j3a~(Xa+~"+2r lXr- 1) =  Q2r(lr + 2lr+I+-)

Using the lemma r  — 1 times, we find

p(tp+ i)/‘>)r 1 =  Q,2(I r+2ir+i+-) (mod p).

Applying the La (mod 4) machine to this equation yields the value of xr . 
Proceeding inductively, we obtain all the values xo ,xi , . . . ,  x„. This deter
m ine x, as desired.

It is possible to make this algorithm more efficient. See, for example, 
[Stinsonl, page 175).

In conclusion, if we believe that finding discrete logs for p =  3 (mod 4) 
is hard, then so is computing such discrete logs mod 4.

7.3 B it Co m mitm ent

Alice claims that she has a method to predict the outcome of football games. 
She wants to sell her method to Bob. Bob asks her to prove her method
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works by predicting the results of the games that will be played this weekend. 
“No way," says Alice. “Then you will simply make your bets and not pay 
me. If you want me to prove my system works, why don’t I show you my 
predictions for lost week's games?" Clearly there is a problem here. We’ll 
show how to resolve it.

Here's the setup. Alice wants to send a bit b, which is either 0 or 1, to 
Bob. There are two requirements.

1. Bob cannot determine the value of the bit without Alice’s help.

2. Alice cannot change the bit once she sends it.

One way is for Alice to put the bit in a box, put her lock on it, and send it 
to Bob. When Bob wants the value of the bit, Alice removes the lock and 
Bob opens the box. We want to implement this mathematically in such a 
way that Alice and Bob do not have to be in the same room when the bit is 
revealed.

Here is a solution. Alice and Bob agree on a large prime p ~  3 (mod 4) 
and a primitive root a. Alice chooses a random number x < p  -  1 whose 
second bit xi is b. She sends ft =  a* (mod p) to Bob, We assume that Bob 
cannot compute discrete logs for p. As pointed out in the last section, this 
means that he cannot compute discrete logs mod 4. In particular, he cannot 
determine the value of b = xj. When Bob wants to know the value of b, 
Alice sends him the full value of x, and by looking at x mod 4, he finds 
b. Alice cannot send a value of x different than the one already used, since 
Bob checks that (3 = ax (mod p), and this equation has a unique solution 
x < p -  1.

Back to football: For each game, Alice sends b =  1 if she predicts the 
team will win, b ~  0 if she predicts it will lose. After the game has been 
played, Alice reveals the bit to Bob, who can see whether her predictions 
were correct. In this way, Bob cannot profit from the information by receiv
ing it before the game, and Alice cannot change her predictions once the 
game has been played.

Bit commitment can also be accomplished with many other one-way 
functions. For example, Alice can take a random 100-bit string, followed 
by the bit b, followed by another 100-bit string. She applies the one-way 
function to this string and sends the result to Bob. After the game, she 
sends the full 201-bit string to Bob, who applies the one-way function and 
compares with what Alice originally sent.

7.4 Diffie-Hellman Key Exchange

An important problem in cryptography is how to establish keys for use 
in cryptographic protocols such as DES or AES, especially when the two
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parties are widely separated. Public key methods such as RSA provide one 
solution. In the present section, we describe a different method, due to 
Difiie and Heilman, whose security is very closely related to the difficulty of 
computing discrete logarithms.

There are several technical implementation issues related to any key 
distribution scheme. Some of these are discussed in Chapter 10. In the 
present section, we restrict ourselves to the basic Diffie-Hellman algorithm.

Here is how Alice and Bob establish a private key K . All of their com
munications in the following algorithm are over public channels.

1. Either Alice or Bob selects a large, secure prime number p and a 
primitive root a  (mod p). Both p and or can be made public.

2. Alice chooses a secret random x  with 1 < x < p — 2, and Bob selects 
a secret random y with 1 < y  < p — 2.

3. Alice sends a x (mod p) to Bob, and Bob sends orv (mod p) to Alice.

4. Using the messages that they each have received, they can each cal
culate the session key K. Alice calculates K  by K  s  (a v)x (mod p), 
and Bob calculates K  by K  = (ox )v (mod p).

There is no reason that Alice and Bob need to use all of K  as their key 
for their communications. Now that they have the same number K , they 
can use some prearranged procedure to produce a key. For example, they 
could use the middle 56 bits of K  to obtain a DES key.

Suppose Eve listens to all the communications between Alice and Bob. 
She will know a 1 and av. If she can compute discrete logs, then she can 
find the discrete log of qt  to obtain x. Then she raises or5' to the power x  to 
obtain orxy =  K. Once Eve has K , she can use the same procedure as Alice 
and Bob to extract a communication key. Therefore, if Eve can compute 
discrete logs, she can break the system.

However, Eve does not necessarily need to compute x  or y to find K. 
What she needs to do is solve the following:

C om puta tional Diffie-Hellman Problem : Let p be prime and let 
Q be a primitive root mod p. Given a z (mod p) and or1-' (mod p), find orty 
(mod p).

It is not known whether or not this problem is easier than computing 
discrete logs. The reasoning above shows that it is no harder than computing 
discrete logs. A related problem is the following:

Decision Diffie-Hellm an Problem : Let p be prime and let or be 
a primitive root mod p. Given a 1 (mod p) and a" (mod p), and ~  0 
(mod p), decide whether or not c s  ctz 'J (mod p).
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In other words, if Eve claims that she has found c with c =  a xy (mod p), 
and offers to sell you this information, can you decide whether or not she 
is telling the truth? Of course, if you can solve the computational Diffie- 
Hcllman problem, then you simply compute q11 (mod p) and check whether 
it is c (and then you can ignore Eve's offer).

Conversely, does a method for solving the decision Diffie-Hellman prob
lem yield a solution to the computational Diffie-Hellman problem? This is 
not known at present. One obvious method is to choose many values of c and 
check each value until one equals aI,J (mod p). But this brute force method 
takes at least as long as computing discrete logarithms by brute force, so 
is impractical. There are situations involving elliptic curves, analogous to 
the present setup, where a fast solution is known for the decision Diffie- 
Hellman problem but no practical solution is known for the computational 
Diffie-Hellman problem (see [Washington]).

7.5 The ElGamal Public Key Cryptosystem

In Chapter 6, we studied a public key cryptosystem whose security is based 
on the difficulty of factoring. It is also possible to design a system whose 
security relies on the difficulty of computing discrete logarithms. This was 
done by ElGamal in 1985. This system does not quite fit the definition of 
a public key cryptosystem given at the end of Chapter 6, since the set of 
possible plaintexts (integers mod p) is not the same as the set of possible 
ciphertexts (pairs of integers (r, t) mod p). However, this technical point 
will not concern us.

Alice wants to send a  message m  to Bob. Bob chooses a large prime p 
and a primitive root a. Assume m  is an integer with 0 < m  < p. If m  is 
larger, break it into smaller blocks. Bob also chooses a secret integer a and 
computes /? =  a 0 (mod p). The information (p, a ,0 )  is made public and is 
Bob’s public key. Alice does the following:

1. Downloads (p,a,/7)

2. Chooses a secret random integer k  and computes r =  a k (mod p)

3. Computes t =  Pkm  (mod p)

4. Sends the pair (r, t) to Bob 

Bob decrypts by computing

tr~a = m  (mod p).

This works because

tr  ° =  (3km (ak) ° =  (a a)kmct ak = m  (mod p).
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If Eve determines a, then she can also decrypt by the same procedure that 
Bob uses. Therefore, it is important for Bob to keep a secret. The numbers a  
and fi are public, and fi = a a (mod p). The difficulty of computing discrete 
logs is what keeps a secure.

Since k is a random integer, /3k will be a random nonzero integer mod 
p. Therefore, t =  f}km  (mod p) is m multiplied by a random integer, and 
t is random mod p (unless m  =  0, which should be avoided, of course). 
Therefore, t gives Eve no information about m. Knowing r  does not seem 
to give Eve enough additional information.

The integer k is difficult to determine from r, since this is again a discrete 
logarithm problem. However, if Eve finds k, she can then calculate tj3~k, 
which is m.

It is important that a different random k be used for each message. 
Suppose Alice encrypts messages m i and 771.2 for Bob and uses the same 
value k for each message. Then r  will be the same for both messages, so the 
ciphertexts will be (r, ti)  and (r, to). If Eve finds out the plaintext m  1, she 
can also determine m2, as follows. Note that

t i /m \  =  0 k =  ta/mo (mod p).

Since Eve knows t \  and *2, she computes mo s  t i T n \ / t \  (mod p ) .
In Chapter 16, we’ll meet an analog of the ElGamal method that uses 

elliptic curves.

7.5.1 Security o f ElGamal Ciphertexts

Suppose Eve claims to have obtained the plaintext m  corresponding to an 
RSA ciphertext c. It is easy to verify her claim: Compute me (mod n) and 
check whether this equal c. Now suppose instead that Eve claims to pos
sess the message m  corresponding to an ElGamal encryption (r, t). Can you 
verify her claim? It turns out that this is as hard as the decision Diffie- 
Hellman problem from Section 7.4. In this aspect, the ElGamal algorithm 
is therefore much different than the RSA algorithm (of course, if some ran
domness is added to an RSA plaintext, for example through OAEP, then 
RSA encryption has a similar property).

P ro p o s itio n . A machine that solves Decision Diffie-Hellman problems 
mod p can be used to decide the validity of mod p ElGamal ciphertexts, 
and a machine that decides the validity of mod p ElGamal ciphertexts can 
be used to solve Decision Diffie-Hellman problems mod p.

Proof. Suppose first that you have a machine Mi that can decide whether 
an ElGamal decryption is correct. In other words, when given the inputs
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p ,a,P, (r, t),m, the machine outputs “yes" if m  is the decryption of (r, i) and 
outputs "no" otherwise. Let's use this machine to solve the decision Diffie- 
Hellman problem. Suppose you are given ax and a v, and you want to decide 
whether or not c =  axv. Let /3 =  a1 and r =  av (mod p). Moreover, let 
t = c and m =  1. Input all of these into M i. Note that in the present setup, 
x  is the secret integer o and av takes the place of the r  =  ak. The correct 
decryption of (r,t) is tr~a =  cr~s = ca~xv. Therefore, M\ outputs llyes" 
exactly when m  =  1 is the same as ca~zv (mod p), namely when c =  a xv 
(mod p). This solves the decision Diflie-Hellman problem.

Conversely, suppose you have a machine M2 that can solve the decision 
Diffie-Hellman problem. This means that if you give M2 inputs p, a .o r^a^ .c , 
then M 2 outputs “yes” if c =  cF'J and outputs “no” if not. Let m be the 
claimed decryption of the ElGamal ciphertext (r, t). Input ft = aa as or1, 
so 1 =  o, and input r =  a* as a y so y  =  k. Input tm ~ l (mod p) as c. 
Note that m  is the correct plaintext for the ciphertext (r, t) if and only if 
m =  tr~a - ta ~xy, which happens if and only if tm ~l =  a xv. Therefore, m  
is the correct plaintext if and only if c =  trrT1 is the solution to the Diffie- 
Hellman problem. Therefore, with these inputs, M 2 outputs “yes” exactly 
when m  is the correct plaintext. □

The reasoning just used can also be used to show that solving the com
putational Diffie-Hellman problem is equivalent to breaking the ElGamal 
system:

P ro p o s itio n . A machine that solves Computational Diffie-Hellman prob
lems modp can be used to decrypt modp ElGamal ciphertexts, and a machine 
that decrypts modp ElGamal ciphertexts can be used to solve Diffie-Hellman 
problems mod p.

Proof. If we have a machine M3 that can decrypt all ElGamal ciphertexts, 
then input /? =  ax (so a =  x) and r = a v. Take any nonzero value for t. 
Then M3 outputs m ■ tr~* =  ta -iv . Therefore, tm -1 (mod p) yields the 
solution a™ to the computational Diffie-Hellman problem.

Conversely, suppose we have a machine M4 that can solve computational 
Diffie-Hellman problems. If we have an ElGamal ciphertext (r, t), then we 
input ax =' q “ = p  and av s  a k = r. Then M.\ outputs axv =  a ak. Since 
m = tr~a =  ta~ak, we obtain the plaintext m. □

7.6 Exercises
1. (a) Let p =  13. Compute -£>2(3).
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2. (a) Compute 65 (mod 11).
(b) Letp =  11. Then 2 is a primitive root. Suppose 21 5  6 (mod 11). 

Without finding the value of x, determine whether x is even or 
odd.

3. It can be shown that 5 is a primitive root for the prime 1223. You want 
to solve the discrete logarithm problem 5X = 3 (mod 1223). Given 
that 3011 =  1 (mod 1223), determine whether x  is even or odd.

4. Let p =  19. Then 2 is a primitive root. Use the Pohlig-Hellman 
method to compute Lz( 14).

5. (a) Let a  be a primitive root mod p. Show that

L a (P iP i) =  - M A )  +  (m o d  P -  1 ).

(Hint: You need the proposition in Section 3.7.)
(b) More generally, let a  be arbitrary. Show that

-M A ft)  s  4 . (A) +  La(@i) (mod ordp(a)), 

where ordp(a) is defined in Exercise 20 in Chapter 3.

6. Let p =  101, so 2 is a primitive root. It can be shown that 1,2(3) =  69 
and £ 2(6) =  24.

(a) Using the fact that 24 =  23 • 3, evaluate 1,2(24).
(b) Using the fact that 53 =  24 (mod 101), evaluate 1,2(24).

7. Suppose you know that

36 =  44 (mod 137), 310 =  2 (mod 137).

Find a value of x  with 0 <  x  < 135 such that 31 =  11 (mod 137).

8. (a) Suppose you have a random 500-digit prime p. Suppose some
people want to store passwords, -written as numbers. If x is the 
password, then the number 2Z (mod p) is stored in a file. When y 
is given as a password, the number 2V (mod p) is compared with 
the entry for the user in the file. Suppose someone gains access 
to the file. Why is it hard to deduce the passwords?

(b) Suppose p is instead chosen to be a five-digit prime. Why would 
the system in part (a) not be secure?

(b ) Show that £ 2(11) =  7.
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9. Let’s reconsider Exercise 22 in Chapter 3 from the point of view of the 
Pohlig-Hellman algorithm. The only prime q is 2. For A; as in that 
exercise, write k — xo + 2x t -i------ h 215z i5.

(a) Show that the Pohlig-Hellman algorithm yields

$o =  =  ■ ■ ■ =  iio  =  0

and
2 =  0  =  0 \ — •■ - = 0 u .

(b) Use the Pohlig-Hellman algorithm to compute k.

10. In the Diffie-Hellman key exchange protocol, Alice and Bob choose a 
primitive root a  for a large prime p. Alice sends x\ =  a ti (mod p) to 
Bob, and Bob sends x2 =  Q6 (mod p) to Alice. Suppose Eve bribes 
Bob to tell her the values of b and x2. However, he neglects to tell 
her the value of a. Suppose gcd(6,p — 1) =  1. Show how Eve can 
determine a  from the knowledge of p, X2, and b.

11. In the ElGamal cryptosystem, Alice and Bob use p =  17 and a = 3. 
Bob chooses his secret to be a — 6, so 0 =  15. Alice sends the 
ciphertext (r, t) = (7,6). Determine the plaintext m.

12. Consider the following Baby Step, Giant Step attack on RSA, with 
public modulus n. Eve knows a plaintext m and a ciphertext c. She 
chooses N 2 > n  and makes two lists: The first list is c? (mod n) for
0 < j  < N. The second list is mc~Nk (mod n) for 0 < k < N.

(a) Why is there always a match between the two lists, and how does 
a match allow Eve to find the decryption exponent d?

(b) Your answer to (a) is probably partly false. What you have really 
found is an exponent d such that cd = m  (mod n). Give an 
example of a plaintext-ciphertext pair where the d you find is not 
the encryption exponent. (However, usually d is very close to 
being the correct decryption exponent.)

(c) Why is this not a useful attack on RSA? (Hint: How long are the 
lists compared to the time needed to factor n by trial division?)

7.7 Computer Problems

1. Let p =  53047. Verify that ^(8576) =  1234.

2. Let p =  31. Evaluate La (24).
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Let p =  3989. Then 2 is a primitive root mod p.

(a) Show that L2(3925) =  2000 and £ 2(1046) =  3000.
(b) Compute L2(3925-1046). (Note: The answer should be less than 

3988.)

Let p = 1201. Use the Pohlig-Hellman algorithm to find L \\(2).
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Hash Functions

8.1 Hash Functions

A basic component of many cryptographic algorithms is what is known as 
a hash function. When a hash function satisfies certain non-invertibility 
properties, it can be used to make many algorithms more efficient. In the 
following, we discuss the basic properties of hash functions and attacks on 
them. We also briefly discuss the random oracle model, which is a method 
of analyzing the security of algorithms that use hash functions. Later, in 
Chapter 9, hash functions will be used in digital signature algorithms. They 
also play a role in security protocols in Chapter 10, and in several other 
situations.

A cryp tograph ic  hash Function h takes as input a message of arbi
trary length and produces as output a m essage digest of fixed length; for 
example, 160 bits as depicted in Figure 8.1. Certain properties should be 
satisfied:

1. Given a message ne, the message digest h(m) can be calculated very 
quickly.

2. Given a y, it is computationally infeasible to find an m' with h(m') — y 
(in other words, A is a one-way, or p reim age resistan t, function). 
Note that if y ia the message digest of some message, we are not trying 
to find this message. We are only looking for some m ' with h(m!) = y.

218
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Long Message

Hash Function

Y
. 160-Bit Message Digest

Figure 8.1: A Hosh Function.

3. It is computationally infeasible to find messages m-i and m2 with 
/i(mi) =  h(m,2) (in this case, the function h is said to be strong ly  
collision-free).

Note that since the set of possible messages is much larger than the set of 
possible message digests, there should always be many examples of messages 
7711 and m2 with h(m\) =  h{m2). The requirement (3) says that it should 
be hard to find examples. In particular, if Bob produces a message m and 
its hash h(m), Alice wants to be reasonably certain that Bob does not know 
another message m 1 with h{m') =  h(m), even if both m  and m! arc allowed 
to be random strings of symbols.

In practice, it is sometimes sufficient to weaken (3) to require H to be 
weakly collision-free. This means that given x, it is computationally 
infeasible to find x 1 r  1 with H{x') =  H(x). This property is also called 
second preim age resistance.

Requirement (3) is the hardest one to satisfy. In fact, in 2004, Wang, 
Feng, Lai, and Yu (see [Wang et al.]) found many examples of collisions for 
the popular hash functions MD4, MD5, HAVAL-128, and RIPEMD. In fact, 
the MD5 collisions have been used by Ondrej Mikle to create two different 
and meaningful documents with the same hash, and the paper [Lenstra et 
al.] shows how to produce examples of X.509 certificates (see Section 10.5) 
with the same MD5 hash (see also Exercise 11). This means that a valid 
digital signature (see Chapter 9) on one certificate is also valid for the other 
certificate, hence it is impossible for someone to determine which is the cer
tificate that was legitimately signed by a Certification Authority. Moreover, 
in 2005, Wang, Yin, and Yu [Wang et al. 2] predicted that collisions could 
be found for the hash function SHA-1 with around 2C9 calculations, which 
is much better than the expected 280 calculations required by the birthday
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attack (see Section 8.4). In addition, they found collisions in a smaller 60- 
round version of SIIA-1. These weaknesses are a cause for concern for using 
these hush algorithms and are leading to research into replacements.

One of the main uses of hash functions is in digital signatures. Since the 
length of a digital signature is often at least as long as the document being 
signed, it is much more efficient to sign the hash of a document rather the 
the full document. This will be discussed in Chapter 9.

Hash functions may also be employed as a check on data integrity. The 
question of data integrity comes up in basically two scenarios. The first is 
when the data (encrypted or not) are being transmitted to another person 
and a noisy communication channel introduces errors to the data. The 
second occurs when an observer rearranges the transmission in some manner 
before it gets to the receiver. Either way, the data have become corrupted.

For example, suppose Alice sends Bob long messages about financial 
transactions with Eve and encrypts them in blocks. Perhaps Eve deduces 
that the tenth block of each message lists the amount of money that is to 
be deposited to Eve’s account. She could easily substitute the tenth block 
from one message into another and increase the deposit.

In another situation, Alice might send Bob a message consisting of several 
blocks of data, but one of the blocks is lost during transmission. Bob might 
not ever realize that the block is missing.

Here is how hash functions can be used. Say we send (m, h(m)) over 
the communications channel and it is received as (M ,H ). To check whether 
errors might have occurred, the recipient computes h(M ) and sees whether 
it equals H. If any errors occurred, it is likely that h(M ) ^  H, because of 
the collision-free properties of h.

E x am p le . Let n  be a large integer. Let h(m) =  m  (mod n) be regarded as 
an integer between 0 and n — 1. This function clearly satisfies (1). However, 
(2) and (3) fail: Given y, let m  = y. Then h(m) = y. So h is not one-way. 
Similarly, choose any two values m i and m2 that are congruent mod n. Then 
/i(mi) =  h(mz), so h is not strongly collision-free. I

E x am p le . The following example, sometimes called the discrete log hash 
function, is due to Chaum, van Heijst, and Pfitzmann [Chaum et al.]. It 
satisfies (2) and (3) but is much too slow to be used in practice. However, 
it demonstrates the basic idea of a hash function.

First we select a large prime number p such that q =  (p — l)/2  is also 
prime (see Exercise 9 in Chapter 9). We now choose two primitive roots a  
and f3 for p. Since a  is a primitive root, there exists a such that q “  = /? 
(mod p). However, we assume that a is not known (finding a, if not given 
it in advance, involves solving a discrete log problem, which we assume is 
hard).
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The hash function h  will map integers mod q1 to integers mod p. There
fore, the message digest contains approximately half as many bits as the 
message. This is not as drastic a reduction in size as is usually required in 
practice, but it suffices for our purposes.

Write m  = xq + X\q with 0 < xo, xi < q — 1. Then define

h(m) = a XoPXl (mod p).

The following shows that the function h is probably strongly collision- 
free.

P ro p o sitio n .. I f we know messages m  ^  mf with h(m) = h(m'), then wc 
can determine the discrete logarithm a =  La(f3).

Proof. Write m  =  xo + Xiq and m ' =  x '0 +  x[q. Suppose

a xo0 x' =  a 1!/?1! (mod p).

Using the fact that /3 =  a “ (mod p), we rewrite this as

=  ! (mod p).

Since a  is a primitive root mod p, we know that ak = 1 (mod p) if and only 
if k =  0 (mod p -  1). In our case, this means that

a(xj — x't ) s  x '0 — Xq (mod p — 1).

Let d =  gcd(xi — x[, p — 1). There are exactly d solutions to the preceding 
congruence (see Section 3.3), and they can be found quickly. By the choice 
of p, the only factors of p — 1 are 1,2,q ,p — 1. Since 0 < x \ ,x \  < q — 1, it 
follows that —(<7 — 1) < xi — X] < q — 1. Therefore, if xi — x\ ^  0, then 
it is a nonzero multiple of d of absolute value less than q. This means that 
d 7̂  q,p — 1, so d =  1 or 2. Therefore, there are at most two possibilities for 
a. Calculate a “ for each possibility; only one of them will yield (3. Therefore, 
we obtain a, as desired.

On the other hand, if xi -  x[ = 0, then the preceding yields x '0 -  xo =  0 
(mod p  — 1). Since ~ ( q  — 1) < x'0 — xo < q  — 1, we must have x '0 =  Xq. 
Therefore, m  =  m \  contrary to our assumption. □

It is now easy to show that h is preimage resistant. Suppose we have an 
algorithm g that starts with a message digest y and quickly finds an m  with 
h(m) = y. In this case, it is easy to find mi ^  m2 with /i(toi) -  h(m2): 
Choose a random m  and compute y = h(m), then compute g(y). Since h 
maps q2 messages to p — 1 =  2q message digests, there are many messages
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m' with /i(m') =  /t(m). It is therefore not very likely that m' =  m. If it is, 
try another random m. Soon, we should find a collision, that is, messages 
Wi ^  m2 with h(m i) =  h(m.2). The preceding proposition shows that we 
cun then solve a discrete log problem. Therefore, it is unlikely that such a 
function g exists.

As we mentioned earlier, tliis hash function is good for illustrative pur
poses but is impractical because of its slow nature. Although it can be 
computed efficiently via repeated squaring, it turns out that even repeated 
squaring is too slow for practical applications. In applications such as elec
tronic commerce, the extra time required to perform the multiplications in 
software is prohibitive.

8.2 A Simple Hash Example

There are many families of hash functions. The discrete log hash function 
that we described earlier is too slow to be of practical use. One reason 
I# that It employs modular exponentiation, which makes its computational 
requirements about the same as RSA or ElGamal. Even though modular 
exponentiation is fast, it is not fast enough for the massive inputs that are 
used in some situations. The hash functions described in this section and 
the next are easily seen to involve only very basic operations on bits and 
therefore can be carried out much faster than procedures such as modular 
exponentiation.

We now describe the basic idea behind many cryptographic hash func
tions by giving a simple hash function that shares many of the basic proper
ties of hash functions that are used in practice. This hash function is not an 
Industrial strength hash function and should never be used in any system.

Suppose we start with a message m of arbitrary length L. We may 
break m into n-bit blocks, where n  is much smaller than L. We shall denote 
these n-bit blocks by rrij, and thus represent m — [mi, m 2, ■ ■ ■ ,m{\. Here
I = \L /n \, and the last block m; is padded with zeros to ensure that it has 
n bits.

We write the j th  block m.j as a row vector

nij — j m - j i ,  77i j 2 , t H j s ,  - • * , TTijn] ,

where each mji is a bit.
Now, we may stack these row vectors to form an array. Our hash h(m) 

will have n bits, where we calculate the ith  bit as the XOR along the ith 
column of the matrix, that is hi =  m u  ffi m u  ffi • • • ffi mu. We may visualize 
this as
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" m u 77112 Tn In
m2i T7122 7712n

. m i m i2 m i„ .
4 - a- a-

© ffi ® ®
a- a-

[ Cl c2 *  ]

This hash function is able to take an arbitrary length message and out

put an n-bit message digest. It is not considered cryptographically secure, 

though, since it is easy to find two messages that hash to the same value 

(Exercise 10).

Practical cryptographic hash functions typically make use of several 

other bit-level operations in order to make it more difficult to find colli

sions. Section 8.3 contains many examples of such operations.

One operation that is often used is bit rotation. We saw the use of bit 

rotation in DES. We define the left rotation operation

m y

os the result of shifting m to the left y bits and wrapping the leftmost y bits 

around, placing them in rightmost y bit locations.

We may modify our simple hash function above by requiring that block 
771j  is left rotated by j  — 1, to produce a new block m'- =  mj <—1 j  — 1. We 

may now arrange the m'j in columns and define a new, simple hash function 

by XORing these columns. Thus, we get

771l l 77112 77lln
77122 77123 m 2i
77133 77134 77132

. mtl 7711,/+1 m i,l- i  .
a- V
ffi ffi ffi ffi
V a- 4 a-

[ =1 C2 Cn

This new hash function involving rotations makes it a little harder to 
find collisions than with the previous hash function. But it is still possible
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(Exercise 10). Building a cryptographic hash requires considerably more 

tricks than just rotating. In the next section, we describe an example of a 
hash function that is used in practice. It uses the techniques of the present 

section, coupled with many more ways of mixing the bits.

8.3 The Secure Hash Algorithm

Now let us look at what is involved in making a real cryptographic hash 

function. Unlike block ciphers, where there are many block ciphers to choose 

from, there are only a few hash functions that are available. The most 

notable of these are the Secure Hash Algorithm (SHA-1), the Message Digest 

(MD) family, and the RIPEMD-160 message digest algorithm. The MD 

family has an interesting history. The original MD algorithm was never 
published, and the first MD algorithm to be published was MD2, followed 

by MD4 and MD5. Wealmesses in MD2 and MD4 were found, and MD5 

was proposed by Ron Rivest as an improvement upon MD4. Collisions have 

been found for MD5, and the strength of MD5 is now less certain.

For this reason, we have chosen to discuss SHA-1 instead of the MD 

family. The reader is warned that discussion that follows is fairly technical 

and is provided in order to give the flavor of what happens inside a hash 

function.

The Secure Hash Algorithm was developed by the National Security 

Agency (NSA) and given to the National Institute of Standards and Tech

nology (NIST). The original version, often referred to as SHA or SHA-0, was 

published in 1993 as a Federal Information Processing Standard (FIPS 180). 

SHA contained a weakness that was later tmcovered by the NSA, which led 

to the a revised standards document (FIPS 180-1) that was released in 1995. 

This revised document describes the improved version, SHA-1, which is now 

the hash algoritlun recommended by NIST.

SHA-1 produces a 160-bit hash and is built upon the same design prin

ciples as MD4 and MD5. These hash functions use an iterative procedure. 

Just as we did earlier, the original message m is broken into a set of fixed- 

size blocks, m — [mi.m j, • • • , mi], where the last block is padded to fill out 

the block. The message blocks are then processed via a sequence of rounds 
that use a compression function h!, which combines the current block and 

the result from the previous round. That is, we start with an initial value 

A'o, and define X , =  rrij). The final Xi is the message digest.

The trick behind building a hash function is to devise a good compression 

function. This compression function should be built in such a way as to make 
each input bit affect as many output bits as possible. One main difference 

between SHA-1 and the MD family is that for SHA-1 the input bits are used 

more often during the course of the hash function than they are for MD4
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or MD5. This more conservative approach makes the design of SHA-1 more 

secure than, either MD4 or MD5, but also makes it a little slower.

SHA-1 begins by taking the original message and padding it with a 1 bit 

followed by a sequence of 0 bits. Enough 0 bits are appended to make the 

new message 64 bits short of the next highest multiple of 512 bits in length. 

Following the appending of Is and Os, we append the 64-bit representation 

of the length T of the message. Thus, if the message is T bits, then the 

appending creates a message that consists of L =  IT/512] + 1 blocks of 512 

bits. We break the appended message into L blocks • • ■ ,m i. The

hash algorithm inputs these bio cits one by one.

For example, if the original message has 2800 bits, we add a 1 and 207 

Os to obtain a new message of length 3008 =  6 x 512 — 64. Since 2800 =  

10101IIIOOOO2 in binary, we append fifty-two 0s followed by 101011110000 

to obtain a message of length 3072. This is broken into six blocks of length 

512.

In the description of the hash algorithm, we need the following operations 

on strings of 32 bits:

1. Xf\Y =  bitwise “and", which is bitwise multiplication mod 2, or bitwise 

minimum.

2. X  V Y =  bitwise “or”, which is bitwise maximum.

3. X  © Y =  bitwise addition mod 2.

4. -‘X  changes Is to 0s and 0s to Is .

5. X  + Y =  addition of X  and Y mod 232, where X  and Y  are regarded 

as integers mod 232.

6. X  *-> r =  shift of X  to the left by r positions (and the beginning wraps 

around to the end).

We also need the following functions:

I (B A C) V ((-.fl) A D)
B ® C @ D  

[B A C) V [B A D) V (C A D)

B ® C ® D

if 0 < t < 19

if 20 < t < 39

if 40 < t < 59
if 60 < t < 79

Define constants Ko, • - •, K~o os follows:

Kt =

5A827999 if 0 < t < 19

6ED9EBA1 if 20 < t < 39

BF1BBGDG if 40 < t < 59

CA62C1D6 if 60 < t < 79
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The preceding are written in hexadecimal notation. Each digit or letter 

represents a string of 4 bits:

0 =  0000, 1 =  0001, 2 =  0010, 9 =  1001,

A =  1010, B — 1011, . . . , F =  1111.

For example, BA1 equals 11 * 162 + 10 * 161 + 1 =  2977.

The SHA-1 Algorithm

1. Start with a message m. Append bits, os specified in the

text, to obtain a message y of the form y =  mi\\m21| • ■ ■

where each mi has 512 bits.

2. Initialize Hg =  67452301, Hi =  EFCDAB89, Hn —

98BADCFE, H3 =  10325476, HA = C3D2EIFQ.

3. For i =  0 to L — 1, do the following:

(a) Write m{ =  Wq|| W( || • • • [|IVi5, where each Wj has 32 bits.

(b) For t =  16 to 79, let Wt =  ( ^ - 3  © Wt-R ffi VKt_ u  ffi 

Wt-w) «-* 1

(c) Let A =  H0,B  =  H i,C  = H2, D =  Hj, E  =  tf.,.

(d) For t =  0 to 79, do the following steps in succession:

T =  (A ^  5) + ft(B ,C ,D ) + E + W t + Kt, E = D,

D  =  C ,C  = ( B ^  30), B = A, A =  T.

(e) Let H0 =  H0 + A, Hi = Hi + B, H2 =  H2 + C,

H3 = H3 + D, H4 =  H4 + E.

4. Output H ^H i^H 2^Hz\[Hi. This is the 160-bit hash value.

We summarize SHA-1 in the table. The core of the algorithm is step (3), 

which we present in Figure 8.2. All of the operations involved in the SHA- 
1 algorithm are elementary and very fast. Note that the basic procedure 

is iterated as many times as is needed to digest the whole message. This 

iterative procedure makes the algorithm very efficient in terms of reading 
and processing the message.

We now step through the algorithm. SHA-1 begins by first creating an 
initial IGO-bit register X q that consists of five 32-bit subregisters Hq,H i ,H2i
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Figure 8.2: The Operations Performed by SHA-1 on n Single Message Block mr

Ha, Hi- These subregisters are initialized as follows:

H0 =  67452301

Hi = EFCDAB89

H2 =  98BADCFE

H3 =  10325476

Hi = C3D2E1FQ.

After the message block mj is processed, the register Xj is updated to yield 
a register Xj+i.
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Figure 8.3: The Operations that Take Place on Each of the Subregisters in
SHA-1.

SHA-1 loops through each of the 512-bit message blocks mj. For each 

message block, mj, the register Xj is copied into subregisters A ,B ,C ,D ,E . 
Let's start with the first message block mo, which is cut and mixed to yield 

Woi • • • i W70. These are fed into a sequence of four rounds, corresponding 
to the four intervals 0 < i < 19, 20 < t < 39, 40 < t <  59, and 60 < t < 79. 
Each round takes as input the current value of the register Xo and the 

blocks Wt for that interval, and operates upon them for 20 iterations (that 

is, the counter t runs through the 20 values in the interval). Each iteration 

uses the round constant IQ and the operation ft(B ,C ,D ), which are the 

same for all iterations in that round. One after another, each round updates 

the (A ,B ,C ,D ,E ). Following the output of the fourth round, which is 

completed when t =  79, the output subregisters (A ,B ,C ,D ,E ) are added 

to the input subregisters (Ho,Hi,H2, I l3,Hi) to produce 160 bits of output 

that become the next register A'i, which will be copied into (A,B,C, D, E) 
when processing the next message block m i. This output register X i may 

be looked at as the output of the compression function h' when it is given 

input Xq and mo\ that is, X\ = h'(Xo,mo)-

We continue in this way for each of the of the 512-bit message blocks 

mj, using the previous register output Xj as input into calculating the next 

register output Xj+i- Hence X j+i = h (Xj,mj). In Figure 8.2, we depict 

the operation of the compression function h! on the jth  message block mj
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using the register Xj . After completing all of the L message blocks, the 

final output is the 160-bit message digest.

The basic building block of the algorithm is the set of operations that 

take place on the subregisters in step (3d). These operations are pictured in 

Figure 8.3. They take the subregisters and operate on them using rotations 

and XORs, much like the method described in Section 8.2. However, SHA-1 

also uses complicated mixing operations that are performed by ft and the 

constants Kt.
For more details on this and other hash functions, and for some of the 

theory involved in their construction, see [Stinson], [Schneier], and [Menezes 

et al.].

8.4 Birthday Attacks

If there are 23 people in a room, the probability is slightly more than 50% 

that two of them have the same birthday. If there are 30, the probability is 

around 70%. This might seem surprising; it is called the birthday paradox. 

Let’s see why it's true. We'll ignore leap years and assume that all birthdays 
are equally likely (if not, the probabilities given would be slightly higher).

Consider the case of 23 people. We’ll compute the probability that they 

all have different birthdays. Line them up in a row. The first person uses 

up one day, so the second person has probability (1 — 1/365) of having a 

different birthday. There are two days removed for the third person, so the 

probability is (1 — 2/365) that the third birthday differs from the first two. 
Therefore, the probability of all three people having different birthdays is 

(1 — 1/365)(1 — 2/3C5). Continuing in this way, we see that the probability 

that all 23 people have different birthdays is

Therefore, the probability of at least two having the same birthday is

1 - .493 =  .507.

One way to understand the preceding calculation intuitively is to consider 

the case of 40 people. If the first 30 have a match, we're done, so suppose 

the first 30 have different birthdays. Now we have to choose the last 10 

birthdays. Since 30 birthdays are already chosen, we have approximately a 

10% chance that a randomly chosen birthday will match one of the first 30. 

And we are choosing 10 birthdays. Therefore, it shouldn’t be too surprising 

that we get a match. In fact, the probability is 89% that there is a match 

among 40 people.
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More generally, suppose we have N  objects, where N  is large. There are 

r people, and each chooses an object (with replacement, so several people 

could choose the same one). Then

Prob(there is a match) ss 1 — e~r' |/ZJV. (8.1)

Note that this is only an approximation that holds for large N ; for small n it 

Is better to use the above product and obtain an exact answer. In Exercise 

6, we derive this approximation. Choosing r2/2JV =  In2, we find that if 

r a  1.177vT7, then the probability is 50% that at least two people choose 

the same object.
To summarize, if there are N  possibilities and we have a list of length 

\/5V, then there is a good chance of a match. If we want to increase the 

chance of a match, we can make the list have length 2v7v or 5VN. The 

main point is that a length of a constant times y/N (instead of something 

liko N) suffices.
For example, suppose we have 40 license plates, each ending in a 3-digit 

number. What is the probability that two of the license plates end in the 

same 3 digits? We have N  =  1000, the number of possible 3-digit numbers, 
and r = 40, the number of license plates under consideration. Since

the approximate probability of a match is

1 -  e~'a = .551,

which is more than 50%. We stress that this is only an approximation. The 

correct answer is obtained by calculating

1 ~ (1-Î o) (1-T̂o) " "(l-I55o) = "546'
The next time you are stuck in traffic (and have a passenger to record 

numbers), check out this prediction.
But what is the probability that one of these 40 license plates has the 

same last 3 digits as yours (assuming that yours ends in 3 digits)? Each 

plate has probability 1 — 1/1000 of not matching yours, so the probability 

is (1 — l/lOOO)40 =  .961 that none of the 40 plates matches your plate. 
The reason the birthday paradox works is that we are not just looking for 

matches between one fixed plate, such as yours, and the other plates. We 

are looking for matches between any two plates in the set, so there are many 
more opportunities for matches.
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The applications of these ideos to cryptology require a slightly different 

setup. Suppose there are two rooms, each with 30 people. What is the 

probability that someone in the first room has the same birthday as some

one in the second room? More generally, suppose there are N  objects and 

there are two groups of r people. Each person from each group selects an 

object (with replacement). What is the probability that someone from the 

first group chooses the same object as someone from the second group? If 

A =  r'l /N, then the probability is 1 — e~x that there is a match. The prob

ability of exactly i matches is \'e~x/i\. An analysis of this problem, with 
generalizations, is given in [Girault et al.].

Again, if there are N  possibilities and we have two lists of length VvV, 
then there is a good chance of a match. Also, if we want to increase the 

chance of a match, we can make the lists have length 2\fN or 5V77. The 

main point is that a length of a constant times V7V (instead of something 

iike N) suffices.

For example, if we take N  =  365 and r =  30, then

A =  302/365 =  2.466.

Since 1 — e_A =  .915, there is approximately a 91.5% probability that some
one in one group of 30 people has the same birthday os someone in a second 

group of 30 people.

The birthday attack can be used to find collisions for hash functions if 

the output of the hash function is not sufficiently large. Suppose that h is an 
n-bit hash function. Then there are N  =  2" possible outputs. Make a list 
h(x) for approximately r = \/N =  2"/2 random choices of x. Then we have 

the situation of r w V7V “people" with N  possible “birthdays," so there is a 

good chance of having two values x\ and xo with the same hash value. If we 

make the list longer, for example r =  10 • 2n/2 values of x, the probability 

becomes very high that there is a match.

Similarly, suppose we have two sets of inputs, S and T. If we compute 

k[s) for approximately VvV randomly chosen s € 5 and h(t) for approxi

mately VN randomly chosen t £  T, then we expect some value h(s) to be 

equal to some value h(t). This situation will arise in ah attack on signature 

schemes in Chapter 9, where S will be a set of good documents and T will 

be a set of fraudulent documents.

If the output of the hash function is around n =  60 bits, the above 
attacks have a high chance of success. It is necessary to make lists of length 

approximately 2n/2 =  230 109 and to store them. This is possible on most 

computers. However, if the hash function outputs 128-bit values, then the 

lists have length around 264 as 1019, which is too large, both in time and in 
memory.
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Suppose we are working with a large prime p and want to evaluate La(/3). 
In other words, we want to solve ax =  0 (mod p). We can do this with high 

probability by a birthday attack.
Make two lists, both of length around jp :

1. The first list contains numbers ak (mod p) for approximately .Jp ran

domly chosen values of k.

2. The second list contains numbers 0a~c (mod p) for approximately yfp 
randomly chosen values of I.

There is a good chance that there is a match between some element on the 

first list and some element on the second list. If so, we have

ak =  Pa~c, hence =  0  (mod p).

Therefore, x s  k + £ (mod p - I) is the desired discrete logarithm.

Let's compare this method with the Baby Step, Giant Step (BSGS) 

method described in Section 7.2. Both methods have running time and 
storage space proportional to jp . However, the BSGS algorithm is deter
ministic which means that it is guaranteed to produce an answer. The 

birthday algorithm is probabilistic, which means that it probably produces 

an answer, but this is not guaranteed. Moreover, there is a computational 

advantage to the BSGS algorithm. Computing one member of a list from a 

previous one requires one multiplication (by a  or by a~N). In the birthday 
algorithm, the exponent k is chosen randomly, so ak must be computed each 

time. This makes the algoritlim slower. Therefore, the BSGS algorithm is 

somewhat superior to the birthday method.

8.5 Multicollisions

In this section, we show that the iterative nature of most hash algorithms 

makes them less resistant than expected to finding multicollisions, namely 

inputs all with the same hash value. This was pointed out by
Joux [Joux], who also gave implications for properties of concatenated hash 

functions, which we discuss below.

Suppose there are r people and there are N  possible birthdays. It can 
be shown that if r «  /V^_1)A', then there is a good chance of at least k 
people having the same birthday. In other words, we expect a A>coIlision. If 

the output of a hash function is random, then we expect that this estimate 

would hold for /c-collisions of hash function values. Namely, if a hash function 

has n-bit outputs, hence N  =  2n possible values, and if we calculate r =

8.4.1 A  Birthday Attack on Discrete Logarithms
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2>i(fc-i)/fc values of the hash function, we expect a ^-collision. However, 

in the following, we’ll show that often we can obtain collisions much more 

easily.

In many hash functions, for example, SHA-1, there is a compression 

function f  that operates on inputs of a fixed length. Also, there is a fixed 
initial value IV. The message is padded to obtain the desired format, then 

the following steps are performed:

1. Split the message M  into blocks M i, M2, . . . ,  M(.

2. Let Hq be the initial value IV.

3. For i — 1 ,2 ,... ,£, let Hi =  /(//<_!, M<).

4. Let H{M) =  Ht.

In SHA-1, the compression function is given in Figure 8.3. For each 

iteration, it takes a 160-bit input v4||B||C||D||£ from the preceding iteration 

along with a message block ra, of length 512 and outputs a new string 

A\\B\\C\\D\\E of length 160.
Suppose the output of the function / , and therefore also of the hash 

function H, has n bits. A birthday attack can find, in approximately 

2n/2 steps, two blocks mo and mg such that f{Ho,mo) = /(H q, m'0). Let 

hi =  /(/fo,mo). A second birthday attack finds blocks mi and m\ with 

f(h i,m i)  =  f  {hi,mi). Continuing in this manner, we let

h i —  f { h i— i,77X ,'_1 )

and use a birthday attack to find m, and m'f with 

f(hi,mi) =

This process is continued until we have t pairs of blocks mo, m'Q, m\, m'j, . . . ,  
mt-1, where t is some integer to be determined later.

We claim that each of the 21 messages

• IK - i

m'olKH-

mollSII- • I K _ i

•llmt-i

millmiH-

mollm',!!- •II m 't- i

m'olKlh-IK-!
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(all possible combinations with m,- and m') has the same hash value. This 

is because of the iterative nature of the hash algorithm. At each calculation 

hi — f(m ,hi-1), the same value hi is obtained whether m =  m;_i or m = 
m j_ ,. Therefore, the output of the function /  during each step of the hash 

algorithm is independent of whether an mi-1 or an is used. Therefore, 

the final output of the hash algorithm is the same for all messages. We thus 

have a 2t-collision.

This procedure takes approximately 12n/'2 steps and has an expected 

running time of approximately a constant times tn2n/'2 (see Exercise 6). 

Let t =  2, for example. Then it takes only around twice as long to find 

four messages with same hash value as it took to find two messages with the 

same hash. If the output of the hash function were truly random, rather than 

produced for example by an iterative algorithm, then the above procedure 
would not work. The expected time to find four messages with the same 

hash would then be approximately 23n/f'1, which is much longer than the 

time it takes to find two colliding messages. Therefore, it is easier to find 

collisions with an iterative hush algorithm.

An interesting consequence of the preceding discussion relates to at

tempts to improve hash functions by concatenating their outputs. Suppose 

we have two hash functions Hi and Hi- Before [Joux) appeared, the general 
wisdom was that the concatenation

H(M) =  Hi{M)\\H2(M)

should be a significantly stronger hash function than either Hi or Hi indi

vidually. This would allow people to use somewhat weak hash functions to 
build much stronger ones. However, it now seems that this is not the case. 

Suppose the output of Hi has nj bits. Also, assume that Hi is calculated by 

an iterative algorithm, as in the preceding discussion. No assumptions arc 

needed for Hj- We may even assume that it is a random oracle, in the sense 

of Section 8.6. In time approximately n2n i2ni/2, we can find 2n3/" messages 

that all have the same hash value for Hi- We then compute the value of Ho 
for each of these 2n messages. By the birthday paradox, we expect to find 

a match among these values of H2- Since these messages all have the same 

Hi value, we have a collision for Hi\\Hn- Therefore, in time proportional 

to 7i2rti2ni/2 + n i l '1'1! '1 (we’ll explain this estimate shortly), we expect to be 

able to find a collision for Hi\\H2- This is not much longer than the time a 
birthday attack takes to find a collision for the longer of Hi and H 2, and is 
much faster than the time 2tn,+n2V2 that a standard birthday attack would 

take on this concatenated hash function.

How did we get the estimate 712̂ 12n|/2 + for the running time?

We used 7i2n i2n‘/2 steps to get the 2nj/2 messages with the same Hi value. 
Each of these messages consisted of 713 blocks of a fixed length. We then
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evaluated Hi for each of these messages. For almost every hash function, 

the evaluation time is proportional to the length of the input. Therefore, 

the evaluation time is proportional to no for each of the 2713/2 messages that 

are given to H2. This gives the term n22n^'1 in the estimated running time.

8.6 The Random Oracle Model

Ideally, a hash function is indistinguishable from a random function. The 

random oracle model, introduced in 1993 by Bellare and Rogaway [Bellare- 

Rogaway], gives a convenient method for analyzing the security of crypto

graphic algorithms that use hash functions by treating hash functions as 

random oracles.

A random oracle acts as follows. Anyone can give it an input, and it 

will produce a fixed length output. If the input has already been asked 

previously by someone, then the oracle outputs the same value as it did 

before. If the input is not one that has previously been given to the oracle, 

then the oracle gives a randomly chosen output. For example, it could flip 

n fair coins and use the result to produce an n-bit output.

For practical reasons, a random oracle cannot be used in most crypto

graphic algorithms; however, assuming that a hash function behaves like a 

random oracle allows us to analyze the security of many cryptosystems that 

use hash functions.

We already made such an assumption in Section 8.4. When calculating 
the probability that a birthday attack finds collisions for a hash function, 

we assumed that the output of the hash function is randomly and uniformly 

distributed among all possible outcomes. If this is not the case, so the hash 

function has some values that tend to occur more frequently than others, 

then the probability of finding collisions is somewhat higher (for example, 

consider the extreme case of a really bad hash function that, with high prob
ability, outputs only one value). Therefore, our estimate for the probability 

of collisions really only applies to an idealized setting. In practice, the use 

of actual hash functions probably produces very slightly more collisions.

In the following, we show how the random oracle model is used to analyze 

the security of a cryptosystem. Because the ciphertext is much longer than 
the plaintext, the system we describe is not as efficient as methods such as 

OAEP (see Section 6.2). However, the present system is a good illustration 

of the use of the random oracle model.

Let /  be a one-way function that Bob knows how to invert. For example, 
f(x) =  xc (mod n), where (e,n) is Bob's public RSA key. Let S' be a hash 

function. To encrypt a message m, which is assumed to have the same 
bitlength as the output of H, Alice chooses a random integer r mod n and
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lets the ciphertext be

(z/i, 2/2) =  (/(r), H(r) © m).

When Bob receives (2/1,2/2), he computes

r =  f~1(vi), m =  H(r) © y2.

It is eosy to see that this decryption produces the original message m.
Now consider the following problem. Suppose Alice is shown two plain

texts, m\ and m 2, and one ciphertext, but she is not told which plaintext 

encrypts to this ciphertext. Her job is to guess which one. If she cannot 

do this with probability significantly better than 50%, then we say that the 

cryptosystem has the ciphertext indistinguishability property.

Let’s assume that the hash function is a random oracle. We'll show that 
if Alice can succeed with significantly better than 50% probability, then she 

can invert /  with significantly better than zero probability. Therefore, if /  

is truly a one-way function, the cryptosystem has the ciphertext indistin
guishability property.

Suppose now that Alice has a ciphertext (y 1,2/2) and two plaintexts, mi 
and 7712. She is allowed to make a series of queries to the random oracle, each 

time sending it a value r and receiving back the value H(t). Suppose that, 

in the process of trying to figure out whether mj or m2 yielded (2/1,2/2), Alice 
asks for the hash values of each element of some set L =  { r i, r2, . . . ,  77} .

As Alice asks for each value H(x) for x € L, she computes f(x) for this 

x. If t  6 L, she eventually tries x =  t  and finds that f(r) =  y\. She then 

knows this is the correct value of r. Since she obtains H(r) from the oracle, 
she computes H(r) ffi y2 to obtain the plaintext, which is either mi or m2.

If r ^  L, then Alice does not know the value of H(r). Since H  is a random 

oracle, the possible values of H(t) are randomly and uniformly distributed 

among all possible outputs. Therefore, the possible values for H ( t )  ffi m, for 

any m, are also randomly and uniformly distributed among all possibilities. 

This means that y2 gives Alice no information about whether it comes from 

m i or from m2. So if r & L, Alice has probability 1/2 of guessing the correct 

plaintext.

Let’s write this procedure in terms of probabilities. If r & L, Alice 

guesses correctly half the time. If r € L, Alice always guesses correctly. 

Therefore

Prob(Alice guesses correctly) =  ^Prob(r $ L) + Prob(r 6 L).

Suppose now that Alice has probability at least |+e of guessing correctly, 

where e > 0 is some fixed number. Since Prob(r & L) < 1 (this is true of aU
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probabilities), we obtain

5 + e<  5 + Prob(reL ).

Therefore,

Prob(r 6 L) > e.

But if t  6 L, then Alice discovers that f ( r )  =  yi, so the probability that she 

solves f ( r )  = Ui for r  is at least t.

If we assume that it is computationally infeasible for Alice to find r with 

probability at least e, then we conclude that it is computationally infeasible 
for Alice to guess correctly with probability at least | + e. Therefore, if the 

function /  is one-way, then the cryptosystem has the ciphertext indistin- 

guishability property.
Note that it was important in the argument to assume that the values 

of H  are randomly and uniformly distributed. If this were not the case, so 

the hash function had some bias, then Alice might have some method for 

guessing correctly with better than 50% probability, maybe with probability 

^ + e. This would reduce the conclusion to Prob(r € L) > 0, which gives 

us no information. Therefore, the assumption that the hash function is a 
random oracle is important.

Of course, a good hash function is probably close to acting like a random 

oracle. In this case, the above argument shows that the cryptosystem with 

an actual hash function should be fairly resistant to Alice guessing correctly. 

However, it should be noted that Canetti, Goldreich, and Halevi [Canetti 

et al.] have constructed a cryptosystem that is secure in the random oracle 

model but is not secure for any concrete choice of hash function. Fortunately, 

this construction is not one that would be used in practice.

The above procedure of reducing the security of a system to the solvabil

ity of some fundamental problem, such os the non-invertibility of a one-way 

function, is common in proofs of security. For example, in Section 7.5, we 

reduced certain questions for the ElGamal public key cryptosystem to the 

solvability of Diffie-Hellman problems.

Section 8.5 shows that most hash functions do not behave as random 

oracles with respect to multicollisions. This indicates that some care is 

needed when applying the random oracle model.

The use of the random oracle model in analyzing a cryptosystem is some

what controversial. However, many people feel that it gives some indication 

of the strength of the system. If a system is not secure in the random oracle 

model, then it surely is not safe in practice. The controversy arises when 

a system is proved secure in the random oracle model. What does this say 

about the security of actual implementations? Different cryptographers will 
give different answers. However, at present, there seems to be no better 

method of analyzing the security that works widely.
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8.7 Using Hash Functions to Encrypt

Cryptographic hash functions are some of the most widely used crypto

graphic tools, perhaps second only to block ciphers. They find application 

in many different areas of information security. Later, in Chapter 9, we shall 

see an application of hash functions to digital signatures, where the fact that 

they shrink the representation of data makes the operation of creating a dig

ital signature more efficient. We now look at how they may be used to serve 

the role of a cipher by providing data confidentiality.

A cryptographic hash function takes an input of arbitrary length and 

provides a fixed-size output that appears random. In particular, if we have 

two inputs that are similar, then their hashes should be different. Generally, 

their hashes are very different. This is a property that hash functions share 
with good ciphers and is a property that allows us to use a hash function to 

perform encryption.

Using a hash function to perform encryption is very similar to a cipher- 

systein in which the output of a pseudo-random number generator is XORed 

with the plaintext. We saw such an example when we studied the output 

feedback mode (OFB) of a block cipher. Much like the block cipher did for 

OFB, the hash function creates a pseudorandom bit stream that is XORed 

with the plaintext to create a ciphertext.

In order to make a cryptographic hash function operate as a stream ci

pher, we need two components: a key shared between Alice and Bob, and 

an initialization vector. We shall soon address the issue of the initializa

tion vector, but for now let us begin by assuming that Alice and Bob have 
established a shared secret key K a b -

Now, Alice could create a pseudorandom byte Xi by taking the leftmost 

byte of the hash of K ab\ that is, x  ̂ =  Lg (/t(/<Afl)). She could then encrypt 

a byte of plaintext pi by XORing with the random byte Xi to produce a 

byte of ciphertext

Cj =  pi © x i.
But if she has more than one byte of plaintext, then how should continue? 

We use feedback, much like we did in OFB mode. The next pseudorandom 

byte should be created by xo = Lg (/i(A'^B||a:i)). Then the next ciphertext 

byte can be created by

Co =  p2 ©  Xs.

In general, the pseudorandom byte xj is created by Xj =  Lg (/i(./if,,ifl||zj-i)), 
and encryption is simply XORing xj with the plaintext pj. Decryption is a 

simple matter, as Bob must merely recreate the bytes Xj and XOR with the 

ciphertext Cj to get out the plaintext pj.
There is a simple problem with this procedure for encryption and decryp

tion. What if Alice wants to encrypt a message on Monday, and a different
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message on Wednesday? How should she create the pseudorandom bytes? 

If she starts all over, then the pseudorandom sequence Xj on Monday and 

Wednesday will be the same. This is not desirable.

Instead, we must introduce some randomness to make certain the two 

bit streams are different, Thus, each time Alice sends a message, she should 

choose a random initialization vector, which we denote by xo■ She then starts 

by creating xt — Lg (h(Kabl|zo)) and proceeding as before. But now she 
must send xu to Bob, which she can do when she sends C\. If Eve intercepts 

$1, she is still not able to compute xj since she doesn’t know K a b ■ In fact, 
if h is a good hash function, then xq should give no information about x\.

The idea of using a hash function to create an encryption procedure 
can be modified to create an encryption procedure that incorporates the 

plaintext, much in the same way as the CFB mode does.

8.8 Exercises

1. Let p be a prime and let a  be an integer with p { a. Let h(x) = a 1 

(mod p). Explain why h(x) is not a good cryptographic hash function.

2. Let n =  pq be the product of two distinct large primes and let h(x) =  

x2 (mod n).

(a) Why is h preimage resistant? (Of course, there are some values, 

such os 1,4,9,1G, • • • for which it is easy to find a preimage. But 
usually it is difficult.)

(b) Why is h not strongly collision-free?

3. Suppose a message m is divided into blocks of length 160 bits: m =  

M||M2|| • • ■ Let h(x) =  Mi ® M2 © ■ ■ ■ © Me. Which of the 
properties (1), (2), (3) for a hash function does h satisfy?

4. In a family of four, what is the probability that no two people have 

birthdays in the same month? (Assume that all months have equal 

probabilities.)

5. This problem derives the formula (8.1) for the probability of at least 

one match in a list of length r when there are N  possible birthdays.

(a) Let f(x) =  ln(l — x) + x and g(x) — ln(l — x) + x + x2. Show 

that }'(x) < 0 and g'(x) > 0 for 0 < x < 1/2.

(b) Using the facts that /(0) =  g(0) =  0 and /  is decreasing and g is 
increasing, show that

—x — x2 < ln(l — x) < —x for 0 < x < 1/2.
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(c) Show that if r < N/2, then

( r - l j r  r3 /  j\ (r - l)r

2N 3//2 - 4 ^  V TV/ - 2JV
J  =  1 X '

(Hint: £ £ : }  j  =  (r - l)r/2  and £ j= i  r  =  (r - l)r(2r -  l)/6  < 

r3/ 3.)

(d) Let A =  r~/(2N) and assume that A < N /8  (this implies that 

r < N/2). Show that

r—l / . \
-A ci/VN

J = 1 X '

with Ci =  \f\j2 — 5 (2A)3/2 and ci =  y/A/2.

(e) Observe that when N  is large, ec/ ^  is close to 1. Use this to 

show that as N  becomes large and A is constant with A < N/8, 
then we have the approximation

r—1
„-Ae

6. Suppose f(x) is a function with n-bit outputs and with inputs much 

larger than n bits (this implies that collisions must exist). We know 
that, with a birthday attack, we have probability 1/2 of finding a 

collision in approximately 2n/2 steps.

(a) Suppose we repeat the birthday attack until we find a collision. 

Show that the expected number of repetitions is

l . l + 2 . I + 3 .i +  4 .± +  ...=2

(one way to evaluate the sum, call it S, is to write 5 — ?jS =  

1 + (2-1 )}  + (3 _ 2 ) I  + . . .  =  l).

(b) Assume that each evaluation of /  takes time a constant times n. 
(This is realistic since the inputs needed to find collisions can be 

taken to have 2n bits, for example.) Show that the expected time 

to find a collision for the function /  is a constant times n2n/2.

(c) Show that the expected time to produce the messages mo, m'Q, . . . ,  

m£_ i, m 't_ 1 in Section 8.5 is a constant times tn 2”/2.
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7. Suppose we have on iterative hash function, as in Section 8.5, but sup

pose we adjust the function slightly at each iteration. For concreteness, 

assume that the algorithm proceeds as follows. There is a compression 

function /  that operates on inputs of a fixed length. There is also a 

function g that yields outputs of a fixed length, and there is a fixed 

initial value IV . The message is padded to obtain the desired format, 

then the following steps are performed:

1. Split the message M  into blocks M i, M 2, . . . ,  Mi.

2. Let Ho be the initial value IV.

3. For i =  1, 2 ,. .. ,  t, let H{ = /(#<_!, M,||ff(i)).

4. Let H(M) =  He.

Show that the method of Section 8.5 can be used to produce multicol

lisions for this hash function.

6. The initial values Kt in SHA-1 might appear to be random. Here is 

how they were chosen.

(a) Compute [230V2J and write the answer in hexadecimal. The 

answer should be Kq.

(b) Do a similar computation with V2 replaced by V3, V5, and \/T0 

and compare with K20, K. 10, and Kqq-

9. (a) Let _E/V- be an encryption function with N  possible keys K, N  pos
sible plaintexts, and N  possible ciphertexts. Assume that if you 

know the encryption key K then it is easy to find the decryption 

function DK (therefore, this problem does not apply to public 

key methods). Suppose that, for each pair (J<i, Ko) of keys, it is 

possible to find a key K3 such that E/f, — E/c3(m) for

all plaintexts m. Assume also that for every plaintext-ciphertext 

pair (m, c), there is usually only one key K  such that £/f(m ) =  c. 

Suppose that you know a plaintext-ciphertext pair (m,c). Give 

a birthday attack that usually finds the key K  in approximately 
2V77 steps. (Remark: This is much faster than brute force search

ing through all keys K, which takes time proportional to N.)

(b) Show that the shift cipher (see Section 2.1) satisfies the condi

tions of part (a), and explain how to attack the shift cipher mod 

26 using two lists of length 6. (Of course, you could also find 

the key by simply subtracting the plaintext from the ciphertext; 
therefore, the point of this part of the problem is to illustrate 

part (a).)
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10. (a) Show that neither of the two hash functions of Scction 8.2 is

preimage resistant. That is, given an arbitrary y (of the appro

priate length), show how to find an input x whose hash is y.

(b) Find a collision for each of the two hash functions of Section 8.2.

11. Let H be an iterative hash function that operates successively on input 

blocks of 512 bits. In particular, there is a compression function h and 

an initial value IV . The hash of a message Mipcfc of 1024 bits is 

computed by X\ =  h(lV, M i), and H(M 1WM2) =  h{Xi,M i). Suppose 

we have found a collision h(IV, x L) =  h(IVt xn) for some 512-bit blocks 

xi and X2. Choose distinct primes pi and P2, each of approximately 

240 bits. Regard Xi and $2 as numbers between 0 and 2512.

(a) Show that there exists an xo with 0 < Xq < pipn such that

xo + 2512xi =  0 (mod pi) and xo 4- 25l2X2 =  0 (mod P2).

(b) Show that if 0 < k < 230, then qi =  (x0 + 2512xi+fcpip2)/pi is ap

proximately 278'1, and similarly for q2 =  (xq + 2512i 2 + kp\p2)/p2- 
(Assume that xi and $2 are approximately 2512.)

(c) Use the Prime Number Theorem (see Section 3.1) to show that 

the probability that qi is prime is approximately 1/543 and the 

probability that both qi and qn are prime is about 1/300000.

(d) Show that it is likely that there is some k with 0 < k < 230 such 

that both q\ and q2 are primes.

(e) Show that Tii =  piqi and 712 =  P2<72 satisfy H{n\) =  ^ ( 712).

This method of producing two RSA moduli with the same hash values 

is based on the method of [Lenstra et al.] for using a collision to 
produce two X.509 certificates with the same hashes. The method 

presented here produces moduli n =  pq with p and q of significantly 

different sizes (240 bits and 784 bits), but an adversary does not know 

this without factoring n. Finding a 240-bit factor of a 1024-bit number 

is still beyond present technology (in 2005).

8.9 Computer Problems

1. (a) If there are 30 people in a classroom, what is the probability 

that at least two have the same birthday? Compare this to the 
approximation given by formula (8.1).
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(b) How many people should there be in a classroom in order to have 

a 99% chance that at least two have the same birthday? .(Hint: 
Use the approximation to obtain an approximate answer. Then 

use the product, for various numbers of people, until you find the 
exact answer.)

(c) How many people should there be in a classroom in order to have 

100% probability that at least two have the same birthday?

2. A professor posts the grades for a class using the last four digits of 

the Social Security number of each student. In a class of 200 students, 

what is the probability that at least two students have the same four 

digits?
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Digital Signatures

For years, people have been using various types of signatures to associate 
their identities to documents. In the Middle Ages, a nobleman sealed a 

document with a wax imprint of his insignia. The assumption was that 

the noble was the only person able to reproduce the insignia. In modern 

transactions, credit card slips are signed. The salesperson is supposed to 

verify the signature by comparing with the signature on the card. With 
the development of electronic commerce and electronic documents, these 

methods no longer suffice.

For example, suppose you want to sign an electronic document. Why 

can't you simply digitize your signature and append it to the document? 

Anyone who has access to it can simply remove the signature and add it to 

something else, for example, a check for a large amount of money. With clas

sical signatures, this would require cutting the signature off the document, 

or photocopying it, and posting it on the check. This would rarely pass for 

an acceptable signature. However, such an electronic forgery is quite easy 

and cannot be distinguished from the original.

Therefore, we require that digital signatures cannot be separated from 

the message and attached to another. That is, the signature is not only 

tied to the signer but also to the message that is being signed. Also, the 

digital signature needs to be easily verified by other parties. Digital signature 

schemes therefore consist of two distinct steps: the signing process, and the 
verification process.

In the following, we first present two signature schemes. We also discuss 

the important “birthday attacks" on signature schemes.

244
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Note that in the following, we are not trying to encrypt the message m. 

In fact, often the message is a legal document, and therefore should be kept 

public. However, if necessary, a signed message may be encrypted after it is 
signed. (This is done in PGP, for example. See Section 10.6.)

9.1 RSA Signatures

Bob has a document m that Alice agrees to sign. They do the following:

1. Alice generates two large primes p, q, and computes n =  pq. She 

chooses Cyi such that 1 < < 0 (n) with gcd(ea , <f>(n)) =  1, and 

calculates d,4 such that e^ri.4 =  1 (mod ij>(n)). Alice publishes (ex, n) 

and keeps private d^, p, q.

2. Alice’s signature is

1/ = mdA (mod n).

3. The pair (m, y) is then made public.

Bob can then verify that Alice really signed the message by doing the 

following:

1. Download Alice’s (eyt,n).

2. Calculate z =  yC/1 (mod 71). If z =  m, then Bob accepts the signature 

as valid; otherwise the signature is not valid.

Suppose Eve wants to attach Alice's signature to another message mj. 

She cannot simply use the pair (mi, y), since ye* ^  mi (mod tl). Therefore, 

she needs 7/1 with i/,yl =  m i (mod n). This is the same problem as decrypt
ing an RSA “ciphertext” m i to obtain the “plaintext” y\. This is believed to 

be hard to do.

Another possibility is that Eve chooses yi first, then lets the message be 

mi =  j/j'* (mod n). It does not appear that Alice can deny having signed 

the message m i under the present scheme. However, it is very unlikely that 

mi will be a meaningful message. It will probably be a random sequence of 

characters, and not a message committing her to give Eve millions of dollars. 

Therefore, Alice’s claim that it has been forged will be believable.

There is a variation on this procedure that allows Alice to sign a docu

ment without knowing its contents. Suppose Bob has made an important 

discovery. He wants to record publicly what he has done (so he will have 

priority when it comes time to award Nobel prizes), but he does not want 

anyone else to know the details (so he can make a lot of money from his 

invention). Bob and Alice do the following. The message to be signed is m.
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1. Alice chooses an RSA modulus n (n = pq, the product of two large 

primes), an encryption exponent e, and decryption exponent d. She 

makes n and e public while keeping p, q,d private. In fact, she can 

erase p, q, d from her computer’s memory at the end of the signing 

procedure.

2. Bob chooses a random integer k (mod n) with gcd(fc,n) =  1 and com

putes t =  kem (mod n). He sends t to Alice.

3. Alice signs t by computing s =  td (mod n). She returns s to Bob.

4. Bob computes s/k (mod n). This is the signed message md.

Let’s show that s/k is the signed message: Note that ked =  (kc)d =  k 
(mod n), since this is simply the encryption, then decryption, of k in the 

RSA scheme. Therefore,

s/k =  td/k = kedmd/k s  md (mod n),

which is the signed message.

The choice of k is random, so ke (mod n) is the RSA encryption of a 

random number, and hence random. Therefore, kem (mod n) gives essen

tially no information about m (however, it would not hide a message such as 

th =  0). In this way, Alice knows nothing about the message she is signing.

Once the signing procedure is finished, Bob has the same signed message 

ns he would have obtained via the standard signing procedure.

There are several potential dangers with this protocol. For example, Bob 
could have Alice sign a promise to pay him a million dollars. Safeguards are 
needed to prevent such problems. We will not discuss these here.

Schemes such as these, called blind signatures, have been developed 

by David Chaum, who has several patents on them.

9.2 The ElGamal Signature Scheme

The ElGamal encryption method from Section 7.5 can be modified to give 

a signature scheme. One feature that is different from RSA is that, with 

the ElGamal method, there are many different signatures that are valid for 

n given message.

Suppose Alice wants to sign a message. To start, she chooses a large 

prime p and a primitive root a. Alice next chooses a secret integer a such 

tlmt 1 < a < p — 2. and calculates 0 =  a “ (mod p). The values of p, a, 
and 0  are made public. The security of the system will be in the fact that a 
is kept private. It is difficult for an adversary to determine a from (p, a, 0) 
since the discrete log problem is considered difficult.

In order for Alice to sign a message m, she does the following:
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1. Selects a secret random k such that gcdf/c, p — 1) = 1

2. Computes r =  (mod p)

3. Computes s = k~l (m - or) (mod p - 1)

The signed message is the triple (m, r, s).
Bob can verify the signature as follows:

1. Download Alice's public key (p, a, P).

2. Compute vi =  /3rrs (mod p), and V2 =  am (mod p).

3. The signature is declared valid if and only if uj =  v2 (mod p).

We now show that the verification procedure works. Assume the signa

ture is valid. Since s = /c-1(t7i - ar) (mod p — 1), we have sk =  m — ar 
(mod p— 1), so 77i =  s/i+ar (mod p— 1). Therefore (recall that a congruence 

mod p — 1 in the exponent yields an overall congruence mod p),

v? =  am =  Qsfc+ar =  (a°)r(a*)s =  f3rrs =  v, (mod p).

Suppose Eve discovers the value of a. Then she can perform the signing 

procedure and produce Alice’s signature on any desired document. There

fore, it is very important that a remain secret.

If Eve has another message m, she cannot compute the corresponding s 

since she doesn't know a. Suppose she tries to bypass this step by choosing 
an s that satisfies the verification equation. This means she needs s to satisfy

0 Tr ’ s  am (mod p).

This can be rearranged to r* =  f3~ram (mod p), which is a discrete loga

rithm problem. Therefore, it should be hard to find an appropriate s. If s is 

chosen first, the equation for r is similar to a discrete log problem, but more 

complicated. It is generally assumed that it is also difficult to solve. It is 

not known whether there is a way to choose r and s simultaneously, though 

this seems to be unlikely. Therefore, the signature scheme appears to be 
secure, os long as discrete logs mod p are difficult to compute (for example, 

p — 1 should not be a product of small primes; see Section 7.2).
Suppose Alice wants to sign a second document. She must choose a new 

random value of k. Suppose instead that she uses the same k for messages 

77ii and m2. Then the same value of r is used in both signatures, so Eve will 

see that k has been used twice. The s values are different, call them si and 

92. Eve knows that

Sifc — m i =  —or =  s2fc — 7712 (mod p — 1).
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Therefore,

(si — so)fc s  mi — mo (mod p — 1).

Let d =  gcd(si - s ,̂ p — 1). There are d solutions to the congruence, and 

they can be found by the procedure given in Section 3.3. Usually d is small, 

so there are not very many possible values of k. Eve computes ak for each 

possible k until she gets the value r. She now knows k. Eve now solves

or s  mj — ksi (mod p — 1)

for a. There are gcd(r, p — 1) possibilities. Eve computes q° for each one 

until she obtains j3, at which point she has found o. She now has completely 

broken the system and can reproduce Alice’s signatures at will.

E xam ple . Alice wants to sign the message mi =  151405 (which corre

sponds to one, if we let 01 =  a ,02 =  fa,...). She chooses p =  225119. 

Then a =  11 is a primitive root. She has a secret number a. She computes 

P = oa =  18191 (mod p). To sign the message, she chooses a random num

ber k and keeps it secret. She computes r =  ak =  164130 (mod p). Then 

she computes

si =  &-1(mi — ar) =  130777 (mod p — 1).

The signed message is the triple (151405,164130,130777).

Now suppose Alice also signs the message m j =  202315 (which is two) 
and produces the signed message (202315,164130,164899). Immediately, 

Eve recognizes that Alice used the same value of k, since the value of r is 
the same in both signatures. She therefore writes the congruence

-34122k e  (si — S2 )k s m i - m j s  —50910 (mod p — 1).

Since gcd(—34122,p — 1) =  2, there are two solutions, which can be found 

by the method described in Section 3.3. Divide the congruence by 2:

—17061 A: =  -25455 (mod (p -  l)/2).

This has the solution k =  239 (mod (p - l)/2), so there are two values of k 
(mod p), namely 239 and 239 + (p — l)/2  =  112798. Calculate

a230 =  164130, a 113708 s  59924 (mod p).

Since the first is the correct value of r, Eve concludes that k =  239. She 

now rewrites aifc =  m i — ar (mod p — 1) to obtain

16'1130a =  ra =  m\ — Sik =  187104 (mod p — 1).



Since gcd(164130,p — 1) =  2, there are two solutions, namely a =  28862 

and o =  141421, which can be found by the method of Section 3.3: Eve 

computes

q28862 =  20 6 9 28, a MW21 = 18191 (mod p).

Since the second value is /3, she has found that a =  141421.

Now that Eve knows a, she can forge Alice's signature on any document.
I

The ElGamal signature scheme is an example of a signature w ith ap

pendix. The message is not easily recovered from the signature (r, s). The 

message m must be included in the verification procedure. This is in con

trast to the RSA signature scheme, which is a message recovery scheme. 

In this case, the message is readily obtained from the signature y. Therefore, 

only y needs to be sent since anyone can deduce m as yeA (mod n). It is 

unlikely that a random y will yield a meaningful message m, so there is little 

danger that someone can successfully replace a valid message with a forged 

message by changing y.

9.3 Hashing and Signing

In the two signature schemes just discussed, the signature is at least as long 

as the message. This is a disadvantage when the message is long. To remedy 
the situation, a hash function is used. The signature scheme is then applied 

to the hash of the message, rather than to the message itself.

The hash function h is made public. Starting with a message m, Alice 

calculates the hash h(m). This output h(m) is significantly smaller, and 

hence signing the hash may be done more quickly than signing the entire 

message. Alice calculates the signed message sig[h(m)) for the hash func
tion and uses it as the signature of the message. The pair (m, sig(li(m))) 
now conveys basically the same knowledge os the original signature scheme 
did. It has the advantages that it is foster to create (under the reasonable 

assumption that the hash operation is quick) and requires less resources for 

transmission or storage.

Is this method secure? Suppose Eve has possession of Alice's signed 

message (m, sig(h(m)). She has another message m' to which she wants to 

add Alice’s signature. This means that she needs sig(/i(m')) =  sig(/i(m)); in 

particular, she needs h(m!) =  h{m). If the hash function is one-way, Eve will 

find it hard to find any such tv! . The chance that her desired m! will work 

is very small. Moreover, since we require our hash function to be strongly 

collision-free, it is unlikely that Eve can find two messages m i ^  m2 with 

the same signatures. Of course, if she did, she could have Alice sign ,



250 C h a p t e r  9. D ig it a l  S ig n a t u res

then transfer her signature to m i. But Alice would get suspicious since mi 

(and m2) would very likely be meaningless messages.

I11 the next section, however, we’ll see how Eve can trick Alice if the size 

of the message digest is too small (and we’ll see that the hash function will 

not be strongly collision-free, either).

9.4 Birthday Attacks on Signatures

Alice is going to sign a document electronically by using one of the signature 

schemes to sign the hash of the document. Suppose the hash function pro

duces an output of 50 bits. She is worried that FYed will try to trick her into 

signing an additional contract, perhaps for swamp land in Florida, but she 

feels safe because the chance of a fraudulent contract having the same hash 

as the correct document is 1 out of 250, which is approximately 1 out of 1015. 

Fred can try several fraudulent contracts, but it is very unlikely that he can 

find one that has the right hash. Fred, however, has studied the birthday 

problem and does the following. He finds 30 places where he can make a 

slight change in the document: adding a space at the end of a line, changing 

a wording slightly, etc. At each place, he has two choices: Make the small 
change or leave the original. Therefore, he can produce 230 documents that 

are essentially identical with the original. Surely, Alice will not object to any 

of these versions. Now, Fred computes the hash of each of the 230 versions 

and stores them. Similarly, lie makes 230 versions of the fraudulent contract 

and stores their hashes. Consider the generalized birthday problem with 
r =  230 and n =  250. We have r =  VAn with A =  210 =  102-1. Therefore, 

the probability is around 1 — e-1024 «  1 that a version of the good document 

has the same hash as a version of the fraudulent contract. Fred finds the 

match and asks Alice to sign the good version. He plans to append her 

signature to the fraudulent contract, too. Since they have the same hash, 

the signature would be valid for the fraudulent one, so Fred could claim 

that Alice agreed to buy the swamp land. But Alice is an English teacher 

and insists on removing a Comma from one sentence. Then she signs the 

document, which has a completely different hash from the document Fred 

asked her to sign. Fred is foiled again. He now is faced with the prospect 

of trying to find a fraudulent contract that has the same hash as this new 
version of the good document. This is essentially impossible.

What Fred did is called the birthday attack. Its practical implication 

is that you should probably use a hash function with output twice os long 
as what you believe to be necessary, since the birthday attack effectively 

halves the number of bits. What Alice did is the recommended way to 

foil the birthday attack on signature schemes. Before signing an electronic 
document, make a slight change.
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9.5 The Digital Signature Algorithm

The National Institute of Standards and Technology proposed the Digital 

Signature Algorithm (DSA) in 1991 and adopted it as a standard in 1994. 

Just like the ElGamal method, DSA is a digital signature scheme with ap

pendix. Also, like other schemes, it is usually a message digest that is signed. 

In this case, the hash function produces a 160-bit output. We will assume in 

the following that our data message m has already been hashed. Therefore, 

we are trying to sign a 160-bit message.

The generation of keys for DSA proceeds as follows. First, there is an 

initialization phase:

1. Alice finds a prime q that is 160 bits long and chooses a prime p that 

satisfies q\p — 1 (see Exercise 9). The discrete log problem should be 

hard for this choice of p. (In the initial version, p had 512 bits. Later 

versions of the algorithm allow for longer primes.)

2. Let g be a primitive root mod p and let a =  (mod p). Then 

o '7 =  1 (mod p).

3. Alice chooses a secret o such that 1 < a < q — 1 and calculates P = aa 
(mod p).

4. Alice publishes (p, q, o, /?) and keeps a secret.

Alice signs a message m by the following procedure:

1. Select a random, secret integer k such that 0 < k < q — 1.

2. Compute r =  (a* (mod p)) (mod q).

3. Compute s =  k~1(m + or) (mod q).

4. Alice’s signature for m is (r, s), which she sends to Bob along with m. 

For Bob to verify, he must

1. Download Alice’s public information {p,q,a,P).

2. Compute Ui — a-1m (mod q), and 113 =  s-1r (mod q).

3. Compute u =  (aiuip'1- (mod p)) (mod q).

4. Accept the signature if and only if v =  r.
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We show that the verification works. By the definition of s, we have 

m - - {—ar + ks) (mod g),

which implies

a-1m  =  ( —qt-s-1 +  fc) (mod g).

Therefore,

k =  s~Lm + ars-1 (mod g)

=  ui + au2 (mod q).

So a* = a 1'1 +OU2 =  (aUl/3UJ (mod p)) (mod g). Thus v =  r.
As in the ElGamal scheme, the integer a must be kept secret. Anyone 

who has knowledge of a can sign any desired document. Also, if the same 

value of k is used twice, it is possible to find a by the same procedure os 

before.
In contrast to the ElGamal scheme, the integer r does not carry full 

information about k. Knowing r allows us to find only the mod q value. 

There are approximately 2512~1G0 =  2342 numbers mod p that reduce to a 

given number mod g.
What is the advantage of having an =  I (mod p) rather than using a 

primitive root? Recall the Pohlig-Hellman attack for solving the discrete log 

problem. It could find information mod small prime factors of p — 1, but 

it was useless mod large prime factors, such as g. In the ElGamal scheme, 

an attacker could determine a (mod 2(), where 21 is the largest power of

2 dividing p — 1. This would not come close to finding o, but the general 

philosophy is that many little pieces of information collectively can often 

be useful. The DSA avoids this problem by removing all but the mod q 
information for a.

In the ElGamal scheme, three modular exponentiations are needed in 

the verification step. This step is modified for the DSA so that only two 
modular exponentiations are needed. Since modular exponentiation is one of 

the slower parts of the computation, this change speeds up the verification, 

which can be important if many signatures need to be verified in a short 

time.

9.6 Exercises

1. Show that if someone discovers the value of k used in the ElGamal 
signature scheme, then a can also be determined.

2. Suppose that (m, r, s) is a message signed with the ElGamal signature 

scheme. Choose h with gcd(/t,p- 1) =  1 and let r i =  rh (mod p). Let 

si =  sri/i_1r _l (mod p — 1).



9.6. E x e r c is e s 253

(a) Find a message m; for which (mi,7"i,si) is a valid signature.

(b) This method allows Eve to forge a signature on the message m\. 
Why is it unlikely that this causes problems?

3. Let p = 11, q =  5, a =  3, and k =  3. Show that (ak (mod p)) 

(mod q) j— (a* (mod q)) (mod p). This shows that the order of oper

ations in the DSA is important.

4. There are many variations to the ElGamal digital signature scheme 
that can be obtained by altering the signing equation s =  fc-1(m - ar) 

(mod p — 1). Here are some variations.

(a) Consider the signing equation s =  a-1 (m—kr) (mod p— 1). Show 

that the verification om =  (a°)3rr (mod p) is a valid verification 

procedure.

(b) Consider the signing equation s =  am + kr (mod p — 1). Show 

that the verification as =  (a°)mrr (mod p) is a valid verification 

procedure.

(c) Consider the signing equation s =  ar + km (mod p — 1). Show 
that the verification a 1 =  (a°)Trm (mod p) is a valid verification 

procedure.

5. The ElGamal signature scheme presented is weak to a type of attack 

known as existential forgery. Here is the basic existential forgery at

tack. Choose u,v such that gcd(i), p — 1) =  1. Compute r =  /3va u 

(mod p) and s =  -rz/_1 (mod p - 1).

(a) Prove the claim that the pair (r, s) is a valid signature for the 

message m =  su (mod p — 1) (of course, it is likely that m is not 

a meaningful message).

(b) Suppose a hash function h is used and the signature must be 

valid for h(m) instead of for m (so we need to have /i(m) = 

su). Explain how this scheme protects against existential forgery. 

Tliat is, explain why it is hard to produce a forged, signed message 

by the this procedure.

6. Alice wants to sign a document using the ElGamal signature scheme. 

Suppose her random number generator is broken, so she uses k =  a 
in the signature scheme. How will Eve notice this and how can Eve 

determine the values of k and a (and thus break the system)?

7. (a) In several cryptographic protocols, one needs to choose a prime

p such that q =  (p— l)/2  is also prime. One way to do this is to 

choose a prime q at random and then test 2q + 1 for primality.
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Suppose q is chosen to have approximately 100 decimal digits. 

Assume 2g + 1 is a random odd integer of 100 digits. (This is 
not quite accurate, since 2q + 1 cannot be congruent to 1 mod

3, for example. But the assumption is good enough for a rough 

estimate.) Show that the probability that 2q + 1 is prime is ap

proximately 1/115 (use the prime number theorem, os in Section 

6.3). This means that with approximately 115 random choices 

for the prime q, you should be able to find a suitable prime p.

(b) In a version of the Digital Signature Algorithm, Alice needs a 
160-bit prime q and a 512-bit prime p such that q\p — 1. Suppose 

Alice chooses a random 160-bit prime q and a random 352-bit 

even number k such that qk + 1 has 512 bits. Show that the 

probability that qk + 1 is prime is approximately 1/177. This 

means that Alice can find a suitable q and p fairly quickly.

8. Consider the following variation of the ElGamal signature scheme. 

Alice chooses a large prime p and a primitive root ct. She also chooses 

a function f(x) that, given an integer x with 0 < x < p, returns an 

integer f(x) with 0 < f(x) < p  — 1. (For example, f{x) =  x7 — 3x + 2 
(mod p — 1) for 0 < x < p is one such function.) She chooses a secret 

integer a and computes /? =  a° (mod p). The numbers p, a, /3 and the 

function f(x) are made public.

Alice wants to sign a message m:

1. Alice chooses a random integer k with gcd(k,p — 1) =  1.

2. She computes r =  ak (mod p).

3. She computes s = k~* (m — f(r)a) (mod p — 1).

The signed message is (m, r, s).

Bob verifies the signature as follows:

1. He computes vi = /3-fMr3 (mod p).

2. He computes v? - am (mod p).

3. If v\ = V2 (mod p), he declares the signature to be valid.

(a) Show that if all procedures are followed correctly, then the verification 
equation is true.

(b) Suppose Alice is lazy and chooses the constant function satisfying 

f(x) =  0 for all x. Show that Eve can forge a valid signature on 

every message mi (for example, give a value of k and of r and s that 
will give a valid signature for the message mi).
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.7 Computer Problems

1. Suppose we use the ElGamal signature scheme with p =  65539, a  =  2,

0 =  33384. We send two signed messages (m,r, s):

(809,18357,1042) (= hi) and (22505,18357,26272) (= bye).

(a) Show that the same value of k was used for each signature.

(b) Use this fact to find this value of k and to find the value of a such 

that /? 5  q° (mod p).

2. (The numbers in this problem are too large for MATLAB® without the 

assistance of the Maple® Kernel.) Alice and Bob have the following 

RSA parameters:

nA =  171024704183616109700818066925197841516671277,

nB =  839073542734369359260871355939062622747633109,

eA =  1571, eB =  87697.

Bob knows that

pB =  98763457697834568934613, qB =  8495789457893457345793

(where nB = pBgB). Alice signs a document and sends the document 

and signature (m, s) (where s =  mdA (mod «a)) to Bob. To keep 

the contents of the document secret, she encrypts using Bob’s public 

key. Bob receives the encrypted signature pair (m i,s i) =  (meB,sCB) 
(mod ris), where

mi =  418726553997094258577980055061305150940547956 

si =  749142649641548101520133634736865752883277237.

Find the message m and verify that it came from Alice. (The signed 

pair is stored as sigpairml, aigpairsl. The numbers na, nB,pB,qB are 

stored as signa, signb, sigpb, sigqb.)

3. (The numbers in this problem are too large for MATLAB without 

the assistance of the Maple Kernel.) In problem 2, suppose that Bob 

had primes pB =  7865712896579 and qB =  8495789457893457345793. 

Assuming the same encryption exponents, explain why Bob is unable 

to verify Alice’s signature when she sends him the pair (m2, S2) with

m2 =  14823765232498712344512418717130930, 

s2 =  43176121628465441340112418672065063.

What modifications need to be made for the procedure to work? (The 

signed pair is stored as sigpairm.2, sigpairsS.)
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Security P rotocols

Up to this point, we have covered many basic cryptographic tools, ranging 

from encryption algorithms to hash algorithms to digital signatures. A natu

ral question arises: Can we just apply these tools directly to make computers 

and communications secure?

At first glance, one might think that public key methods are the panacea 

for all of security. They allow two parties who have never met to exchange 

messages securely. They also provide an easy way to authenticate the ori

gin of a message and, when combined with hash functions, these signature 

operations can be made efficient.

Unfortunately, the answer is definitely no and there are many problems 

that still remain. In discussing public key algorithms, we never really dis
cussed how the public keys are distributed. We have casually said that Alice 

will announce her public key for Bob to use. Bob, however, should not be 

too naive in just believing what he hears. How does he know that it is 

actually Alice that he is communicating with? Perhaps Alice's evil friend, 

Mallory, is pretending to be Alice but is actually announcing Mallory's pub
lic key instead. Similarly, when you access a website to make a purchase, 

how do you know that your transaction is really with a legitimate merchant 

and that no one has set up a false organization? The real challenge in these 

problems is the issue of authentication, and Bob should always confirm that 

he is communicating with Alice before sending any important information.

Combining different cryptographic tools to provide security is much trick

ier than grabbing algorithms off of the shelf. Instead, security protocols in

volving the exchange of messages between different entities must be carefully

256
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thought out in order to prevent clever attacks. This chapter focuses on such 

security protocols.

10.1 Intruders-in-the-Middle and Impostors

If you receive an email asking you to go to a website and update your 

account information, how can you be sure that the website is legitimate? 

An impostor can easily set up a web page that looks like the correct one 
but simply records sensitive information and forwards it to Eve. This is 

an important authentication problem that must be addressed in real-world 

implementations of cryptographic protocols. One standard solution uses 

certificates and a trusted authority and will be discussed in Section 10.7. 

Authentication will also play an important role in the protocols in many 

other sections of tin's chapter.

Another major consideration that must be addressed in communications 

over public channels is the intruder-in-the-middle attack, which we'll discuss 

shortly. It is another cause for several of the steps in the protocols we discuss.

10.1.1 Intruder-in-the-Middle Attacks

Eve, who has recently learned the difference between a knight and a rook, 

claims that she can play two chess grandmasters simultaneously and either 

win one game or draw both games. The strategy is simple. She %vaits for 

the first grandmaster to move, then makes the identical move against the 

second grandmaster. When the second grandmaster responds, Eve makes 

that play against the first grandmaster. Continuing in this way, Eve cannot 

lose both games (unless she runs into time trouble because of the slight delay 

in transferring the moves).

A similar strategy, called the intruder-in-the-middle attack, can be 

used against many cryptographic protocols. Many of the technicalities of the 

algorithms in this chapter are caused by efforts to thwart such an attack.

Let's see how this attack works against the Diffie-Hellman key exchange 

from Section 7.4.

Let's recall the protocol. Alice and Bob want to establish a key for 

communicating. The Diffie-Hellman scheme for accomplishing this is os 

follows:

1. Either Alice or Bob selects a large, secure prime number p and a 

primitive root a  (mod p). Both p and a  can be made public.

2. Alice chooses a secret random x with 1 < x < p — 2, and Bob selects 

a secret random y with 1 < y < p — 2.
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3. Alice sends ax (mod p) to Bob, and Bob sends av (mod p) to Alice.

4. Using the messages that they each have received, they can each cal

culate the session key K. Alice calculates K  by K  =  (a1')1 (mod p), 

and Bob calculates K  by K  =  (ax)v (mod p).

Here is how the intruder-in-the-middle attack works.

1. Eve chooses an exponent z.

2. Eve intercepts ax and aV.

3. Eve sends of to Alice and to Bob (Alice believes she is receiving a y 

and Bob believes he is receiving a1).

4. Eve computes Ii^E  =  (q I ); (mod p) and I<eb =  (as)z (mod p). Al
ice, not realizing that Eve is in the middle, also computes Kaei and 

Bob computes K e b .

5. When Alice sends a message to Bob, encrypted with K^e< Eve inter
cepts it, deciphers it, encrypts it with K e b , and sends it to Bob. Bob 

decrypts with Keb and obtains the message. Bob has no reason to 
believe the communication was insecure. Meanwhile, Eve is reading 
the juicy gossip that she has obtained.

To avoid the intruder-in-the-middle attack, it is desirable to have a pro

cedure that authenticates Alice’s and Bob's identities to each other while 

the key is being formed. A protocol that can do this is known as an au
thenticated key agreement protocol.

A standard way to stop the intruder-in-the-middle attack is the station- 

to-station (STS) protocol, which uses digital signatures. Each user U 
has a digital signature function sigu with verification algorithm very. For 

example, sign could produce an RSA or ElGamal signature, and very checks 

that it is a valid signature for U. The verification algorithms are compiled 

and made public by the trusted authority TYent, who certifies that very is 

actually the verification algorithm for U and not for Eve.

Suppose now that Alice and Bob want to establish a key to use in an en

cryption function Ek - They proceed as in the Diffie-Hellman key exchange, 

but with the added feature of digital signatures:

1. They choose a large prime p and a primitive root a.

2. Alice chooses a random x and Bob chooses a random y.

3. Alice computes a z (mod p), and Bob computes av (mod p).

4. Alice sends ax to Bob.
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5. Bob computes K — (or1)2' (mod p).

6. Bob sends av and EK(sigB(<xv< a1)) to Alice.

7. Alice computes K  = (ay)x (mod p).

8. Alice decrypts E/f(sigg(o!,1 ax)) to obtain sigs(oiv, ax)■

9. Alice asks Trent to verify that i/erg is Bob’s verification algorithm.

10. Alice uses tiers to verify Bob’s signature.

11. Alice sends ^ ( s i y ^ a 1, q^)) to Bob.

12. Bob decrypts, asks Trent to verify that vcta is Alice’s verification 
algorithm, and then uses ver^ to verify Alice’s signature.

This protocol is due to Diffie, van Oorschot, and Wiener. Note that Alice 

and Bob are also certain that they are using the same key K, since it is 

very unlikely that an incorrect key would give a decryption that is a valid 
signature.

Note the role that trust plays in the protocol. Alice and Bob must trust 
TVent's verification if they are to have confidence that their communications 

are secure. Throughout this chapter, a trusted authority such as Trent will 

be an important participant in many protocols.

10.2 Key Distribution

So far in this book we have discussed various cryptographic concepts and 
focused on developing algorithms for secure communication. But a crypto

graphic algorithm is only as strong as the security of its keys. If Alice were 

to announce to the whole world her key before starting a DES session with 

Bob, then anyone could eavesdrop. Such a scenario is absurd, of course. But. 

it represents an extreme version of a very important issue: If Alice and Bob 

are unable to meet in order to exchange their keys, can they still decide on 

a key without compromising future communication?

In particular, there is the fundamental problem of sharing secret in

formation for the establishment of keys for symmetric cryptography. By 

symmetric cryptography, we mean a system such as DES where both the 

sender and the recipient use the same key. This is in contrast to public 

key methods such as RSA, where the sender has one key (the encryption 

exponent) and the receiver has another (the decryption exponent).

In key establishment protocols, there is a sequence of steps that take 

place between Alice and Bob so that they can share some secret information 

needed in the establishment of a key. Since public key cryptography methods
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employ public encryption keys that are stored in public databases, one might 

think that public key cryptography provides an easy solution to this problem. 

This is partially true. The main downside to public key cryptography is 

that even the best public key cryptosystems are computationally slow when 

compared with the best symmetric key methods. RSA, for example, requires 

exponentiation, which is not as fast as the mixing of bits that takes place in 

DES. Therefore, sometimes RSA is used to transmit a DBS key that will then 

be used for transmitting vast amounts of data. However, a central server that 

needs to communicate with many clients in short time intervals sometimes 

needs key establishment methods that are faster than current versions of 

public key algorithms. Therefore, in this and in various other situations, we 

need to consider other means for the exchange and establishment of keys for 

symmetric encryption algorithms.

There are two basic types of key establishment. In key agreement 

protocols, neither party knows the key in advance; it is determined as a 

result of their interaction. In key d istribution protocols, one party has 

decided on a key and transmits it to the other party.

Diffie-Hellman key exchange (see Sections 7.4 and 10.1) is an example 

of key agreement. Using RSA to transmit a DES key is an example of key 

distribution.

In any key establishment protocol, authentication and intruder-in-the- 

middle attacks are security concerns. Pre-distribution, which will be dis

cussed shortly, is one solution. Another solution involves employing a server 

that will handle the task of securely giving keys to two entities wishing to 

communicate. We will also look at some other basic protocols for key dis

tribution using a third party. Solutions that are more practical for Internet 

communications are treated in later sections of this chapter.

10.2.1 Key Pre-distribution

In the simplest version of this protocol, if Alice wants to communicate with 

Bob, the keys or key schedules (lists describing which keys to use at which 

times) are decided upon in advance and somehow this information is sent 

securely from one to the other. For example, this method was used by 

the German navy in World War II. However, the British were able to use 

codebooks from captured ships to find daily keys and thus read messages.

There are some obvious limitations and drawbacks to pre-distribution. 

First, it requires two parties, Alice and Bob, to have met or to have estab

lished a secure channel between them in the first place. Second, once Alice 

and Bob have met and exchanged information, there is nothing they can 

do, other than meeting again, to change the key information in case it gets 

compromised. The keys are predetermined and there is no easy method to 

change the key after a certain amount of time. When using the same key for
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long periods of time, one runs a risk that the key will become compromised. 

The more data that are transmitted, the more data there are with which to 

build statistical attacks.

Here is a general and slightly modified situation. First, we require a 

trusted authority whom xve call Trent. For every pair of users, call them 

(A, B ) ,  Trent produces a random key K a b  that will be used as a key for 

a symmetric encryption method (hence K b a  = K a b )- It is assumed that 
TYent is powerful and has established a secure channel to each of the users. 

He distributes all the keys that he has determined to his users. Thus, if 
Trent is responsible for n users, each user will be receiving n — 1 keys to 

store, and Trent must send n (n— l)/2 keys securely. If n is large, this could 

be a problem. The storage that each user requires is also a problem.

One method for reducing the amount of information that must be sent 

from the trusted authority is the Blora key pre-distribution scheme. 

Start with a network of n users, and let p be a large prime, where p > n. 
Everyone has knowledge of the prime p. The protocol is now the following:

1. Each user U in the network is assigned a distinct public number ry 

(mod p).

2. Trent chooses three secret random numbers a, b, and c mod p.

3. For each user U, Trent calculates the numbers

au =  a + bru (mod p) bu = b + cry (mod p) 

and sends them via his secure channel to U.

4. Each user U forms the linear polynomial

9u(x) =  aj/ + byx.

5. If Alice (A) wants to communicate with Bob (B), then Alice computes 

^ a b  =  9a  (ra), while Bob computes K Ba  =  9B ( rA ).

6. It can be shown that K a b  =  K b a  (Exercise 2). Alice and Bob com

municate via a symmetric encryption system, for example, DES, using 

the key (or a key derived from) K a b -

E xam p le . Consider a network consisting of three users Alice, Bob, and 

Charlie. Let p =  23, and let

ta =  rg =  3, tc  =  2.
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Suppose Trent chooses the numbers a =  8, 6 — 3, c =  1. The corresponding 

linear polynomials are given by

S aM  =  18 + 14$, 5b(x) = 17 + 6x, ffc(s) =  14 + 5x.

It is now possible to calculate the keys that this scheme would generate:

K a b  - 9 a {t b ) =  14, K a c  =  9a {tc ) =  0, K b c  =  sa(rc) =  6.

It is easy to check that K ab =  Kb A, etc., in this example. B

If the two users Eve and Oscar conspire, they can determine a, b, and c 
and therefore find all numbers a^, for all users. They proceed as follows. 

They know the numbers aj;,fcjr, no, to- The defining equations for the last 

three of these numbers can be written in matrix form as

/  0 1 rg \ /  a \ Z \

I 1 tq 0 6 =  I ao (mod p).

V 0 1 r o ) \ c j  \bo }

The determinant of the matrix is te- tq- Since the numbers ta were chosen 
to be distinct mod p, the determinant is nonzero mod p and therefore the 

system has a unique solution a, 6, c.
Without Eve’s help, Oscar has only a 2 x 3 matrix to work with and 

therefore cannot find a, b, c. In fact, suppose he wants to calculate the key 

Kab being used by Alice and Bob. Since Kab =  “ + b(TA + tb ) + c{tatb ) 
(see Exercise 2), there is the matrix equation

/ 1 t a  + v b  t a t b  \ ( a\ / k a b  \
1 t0  0 f b f =  I a0 } (mod p).

V 0 1 ro /  \ c /  \ bo /

The matrix has determinant (ro — rA)(ro - rg) ^  0 (mod p). Therefore, 

there is a solution a,b,c for every possible value of K ab- This means that 

Oscar obtains no information about Kab •

For each k > 1, there are Blom schemes that are secure against coalitions 

of at most k users, but which succumb to conspiracies of k + 1 users. See 

[Blom].

10.2.2 Authenticated Key Distribution

Key pre-distribution schemes are often impractical because they require sig

nificant resources to initialize and do not allow for keys to be changed or 

replaced easily when keys are deemed no longer safe. One way around these
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problems is to introduce a trusted authority, whose task is to distribute 

new keys to communicating parties as they are needed. This trusted third 
party may be a server on a computer network, or an organization that is 

trusted by both Alice and Bob to distribute keys securely.

Authentication is critical to key distribution. Alice and Bob will ask the 

trusted third party, Trent, to give them keys. They want to make certain 

that there are no malicious entities masquerading as Trent and sending them 

false key messages. Additionally, when Alice and Bob exchange messages 
with each other, they will each need to make certain that the person they 
are talking to is precisely the person they think they are talking to.

One of the main challenges facing key distribution is the issue of replay 

attacks. In a replay attack, an opponent may record a message and repeat it 

at a later time in hope of either pretending to be another party or eliciting a 

particular response from an entity in order to compromise a key. To provide 

authentication and protect against replay attacks, we need to make certain 

that vital information, such as keys and identification parameters, are kept 

confidential. Additionally, we need to guarantee that each message is fresh; 

that is, it isn't a repeat of a message from a long time ago.

The task of confidentiality can be easily accomplished using existing keys 

already shared between entities. These keys are used to encrypt messages 
used in the distribution of session keys and are therefore often called key 

encrypting keys. Unfortunately, no matter how we look at it, there is a 
chicken-and-egg problem; In order to distribute session keys securely, we 

must assume that entities have already securely shared key encrypting keys 

with the trusted authority.
To handle message freshness, however, we typically need to attach extra 

data fields in each message we exchange. There are three main types of data 

fields that are often introduced in order to prevent replay attacks:

•  Sequence numbers: Each message that is sent between two enti

ties has a sequence number associated with it. If an entity ever sees 

the same sequence number again, then the entity concludes that the 

message is a replay. The challenge with sequence numbers is that it 

requires that each party keep track of the sequence numbers it lias 

witnessed.

• Timestamps: Each message that is sent between two entities has a 

statement of the time period for when that message is valid. This 

requires that both entities have clocks that are set to the same time.

• Nonces: A nonce is a random message that is allowed to be used 

only once and is used as part of a challenge-response mechanism. In a 

cliallenge-response, Alice sends Bob a message involving a nonce and 

requires Bob to send back a correct response to her nonce.
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We will now look at two examples of key distribution schemes and ana

lyze attacks that may be used against each in order to bypass the intended 

security. These two examples should highlight how difficult it is to distribute 
keys securely.

We begin with a protocol known as the wide-mouthed frog protocol, 

which is one of the simplest symmetric key management protocols involving 

a trusted authority. In this protocol, Alice chooses a session key K a b  to 

communicate with Bob and has Trent transfer it to Bob securely:

1. Alice —t Trent: EKAT[tA\\IDB\\KAB\.

2. Trent -» Bob: Ekbt [trWI D a\\Kab]-

Here, KAt is a key shared between Alice and Trent, while Kbt is a key 

shared between Bob and Trent. Alice’s and Bob’s identifying information 

are given by ID A and ID s , respectively. The parameter tA is a timestamp 

supplied by Alice, while ty is a timestamp given by TYent. It is assumed 

that Alice, TVent, and Bob have synchronized clocks. Bob will accept KAb 
as fresh if it arrives within a window of time. The key K Ab will be valid for 

a certain period of time after It-
The purpose behind the two timestamps is to allow Bob to check to see 

that the message is fresh. In the first message, Alice sends a message with 

a timestamp tA. If TYent gets the message and the time is not too far off 

from tA, he will then agree to translate the message and deliver it to Bob.

The problem with the protocol comes from the second message. Here, 

TYent has updated the timestamp to a newer timestamp t?. Unfortunately, 

this simple change allows for a clever attack in which the nefarious Mallory 

may cause TYent to extend the lifetime of an old key. Let us step through 
this attack.

1. After seeing one exchange of the protocol, Mallory pretends to be Bob 

wanting to share a key with Alice. Mallory sends Trent the replay 

E i< b t [It{\IE>a\\Kab}-

2. TYent sends Ekat ^||-T D .b[| j to Alice, with a new timestamp tT. 

Alice thinks this is a valid message since it came from Trent and was 

encrypted using Trent’s key. The key Kab will now be valid for a 

period of time after tT.

3. Mallory then pretends to be Alice and gets Ekbt [ti-PAiII-Kah] ■ The 

key KAb will now be valid for a period of time after tT > t'T.

4. Mallory continues alternately playing TYent against Bob and then 

Trent against Alice.
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The net result is that the malicious Mallory can use TVent as an agent to 

force Alice and Bob to continue to use K a b  indefinitely. Of course, Alice and 

Bob should keep track of the fact that they have seen K a s  before and begin 
to suspect that something suspicious is going on when they repeatedly see 

K a s - The protocol did not explicitly state that this was necessary, however, 

and security protocols should be very explicit on what it is that they assume 

and don't assume. The true problem, though, is the fact that Trent replaces 

tA with ty. If TYent had not changed tr and instead had left as the 
timestamp, then the protocol would have been better off.

Another example of an authenticated key exchange protocol is due to 

Needham and Schroeder. In the Needham-Schroeder protocol, Alice and 

Bob wish to obtain a session key Ks from Trent so that they can talk with 

each other. The protocol involves the following steps:

1. Alice —♦ Trent: /D yi||/£)fl||ri

2. TVent —* Alice: EI<AT \Ks\\WB\\ri\\EKBT\Ks\\IDA}}

3. Alice -> Bob: Ekbt (/OH/Da]

4. Bob —> Alice: Exs fal

5. Alice —► Bob: Eks fa  — 1]

Just as in the earlier protocol, K at  is a key shared between Alice and 

TVent, while K b t  is a key shared between Bob and Trent. Unlike the wide
mouthed frog protocol, the Needham-Schroeder protocol does not employ 

timestamps but instead uses random numbers rj and r2 as nonces. In the 

first step, Alice sends Trent her request, which is a statement of who she is 

and whom she wants to talk to, along with a random number ri. TVent gives 

Alice the session key K s  and gives Alice a package E i(nT[Ks\\IDA\ that she 
will deliver to Bob. In the next step, she delivers the package to Bob. Bob 

can decrypt this to get the session key and the identity of the person he is 

talking with. Next, Bob sends Alice his own challenge by sending the second 

nonce r2. In the final step, Alice proves her identity to Bob by answering 

his challenge. Using r2 — 1 instead of r2 prevents Mallory from replaying 
message 4.

Observe that the key exchange portion of the protocol is completed at 

the end of the third step. The last two exchanges, however, seem a little 

out of place and deserve some more discussion. The purpose of the nonce 

in step 4 and step 5 is to prevent replay attacks in which Mallory sends an 

old Ej(bt[Ks \\IDa\ to Bob. If we didn’t have step 4 and step 5, Bob would 
automatically assume that Ks is the correct key to use. Mallory could use 

this strategy to force Bob to send out more messages to Alice involving K$. 
Step 4 and step 5 allow Bob to issue a challenge to Alice where she can prove
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to Bob that she really knows the session key Ks- Only Alice should be able 

to use Ks to calculate £/cs[ra — 1].

In spite of the the apparent security that the challenge-reaponse in step

4 and step 5 provides, there is a potential security problem that can arise 

if Mallory ever figures out the session key Ks- Let us step through this 

possible attack.

1. Mallory -  Bob: EKor [KS\\IDA)

2. Bob—f Alice:

3. Mallory —t Bob: E;cs[r3 — 1]

Here, Mallory replays an old message from step 3 of Needham-Schroeder as 

if Mallory were Alice. When Bob gets this message, he issues a challenge to 

Alicc in the form of a new nonce rj. Mallory con intercept this challenge and, 

since she knows the session key Ks, she can respond correctly to the chal

lenge. The net result is that Mallory will have passed Bob’s authentication 

challenge as if she were Alice. From this point on, Bob will communicate us

ing Ks and believe he is communicating with Alice. Mallory can use Alice’s 

identity to complete her evil plans.

Building a solid key distribution protocol is very tough. There are many 

examples in the security literature of key distribution schemes that have 

failed because of a clever attack that was found years later. It might seem a 

lost cause since vie have examined two protocols that both have weaknesses 

associated with them. However, in the rest of this chapter we shall look 
at protocols that have so far proven successful. We begin our discussion 

of successful protocols in the next section, where we will discuss Kerberos, 

which is an improved variation of the Needham-Schroeder key exchange 

protocol. Kerberos has withstood careful scrutiny by the community and 

lius been adopted for use in many applications.

10.3 Kerberos

Kerberos (named for the three-headed dog that guarded the entrance to 
Hades) is a real-world implementation of a symmetric cryptography proto

col whose purpose is to provide strong levels of authentication and security 

in key exchange between users in a network. Here we use the term users 

luosnly, os a user might be an individual, or it might be a program requesting 

communication with another program. Kerberos grew out of a larger devel
opment projcct ot M.I.T. known as Project Athena. The purpose of Athena 

won to provide a huge network of computer workstations for the undergrad
uate student body at M.I.T., allowing students to access their files easily
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from anywhere on the network. As one might guess, such a development 

quickly raised questions about network security. In particular, communi

cation across a public network such as Athena is very insecure. It is easily 

possible to observe data flowing across a network and look for interesting bits 
of information such as passwords and other types of information that one 

would wish to remain private. Kerberos was developed in order to address 

such security issues. In the following, we present the basic Kerberos model 
and describe what it is and what it attempts to do. For more thorough 

descriptions, see [Schneier],

Kerberos is based on a client/server architecture. A client is either a 

user or some software that has some task that it seeks to accomplish. For 

example, a client might wish to send email, print documents, or mount 

devices. Servers are larger entities whose function is to provide services to 
the clients. As an example, on the Internet and World Wide Web there is a 

concept of a domain name server (DNS), which provides names or addresses 
to clients such as email programs or Internet browsers.

The basic Kerberos model has the following participants:

•  Cliff: a client

• Serge: a server

• Trent: a trusted authority

• Grant: a ticket-granting server

The trusted authority is also known as an authentication server. To 
begin, Cliff and Serge have no secret key information shared between them, 

and it is the purpose of Kerberos to give each of them information securely. 

A result of the Kerberos protocol is that Serge will have verified Cliff's 

identity (he wouldn’t want to have a conversation with a fake Cliff, would 

he?), and a session key will be established.

The protocol, depicted in Figure 10.1, begins with Cliff requesting a 

ticket for ticket-granting service from Trent. Since Trent is the powerful 

trusted authority, he has a database of password information for all the 

clients (for this reason, Trent is also sometimes referred to as the Kerberos 

server). Trent returns a ticket that is encrypted with the client’s secret 
password information. Cliff would now like to use the service that Serge 

provides, but before he con do this, he must be allowed to talk to Serge. 

Cliff presents his ticket to Grant, the ticket-granting server. Grant takes this 
ticket, and if everything is OK (recall that the ticket has some information 

identifying Cliff), then Grant gives a new ticket to Cliff that will allow Cliff 

to make use of Serge’s service (and only Serge’s service; this ticket will not 
be valid with Sarah, a different server). Cliff now has a service ticket, which



268 C h a p t e r  10. S e c u r it y  P r o t o c o l s

5

V

Serge

Figure 10.1: Kerberos.

he can present to Serge. He sends Serge the service ticket as well as an 

authentication credential. Serge checks the ticket with the authentication 

credential to make sure it is valid. If this final exchange checks out, then 

Serge wilt provide the service to Cliff.

The Kerberos protocol is a formal version of protocols we use in everyday 

life, where different entities are involved in authorizing different steps in a 

process; for example, using an ATM to get cash, then buying a ticket for a 

ride at a fair.

We now took at Kerberos in more detail, Kerberos makes use of a sym

metric encryption algorithm. In Version V, Kerberos uses DES operating in 

CBC mode; however, any symmetric encryption algorithm would suffice.

1. Cliff to TVent: Cliff sends a message to Trent that contains his name 

and the name of the ticket-granting server that he will use (in this case 

Grant).

2. Trent to Cliff: Trent looks up Cliff's name in his database. If he finds 

it, he generates a session key Kcg that will be used between Cliff and 

Grant. Trent also has a secret key Kc with which he can communicate 

with Cliff, so he uses this to encrypt the Cliff-Grant session key:
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In addition, TVent creates a Ticket Granting Ticket (TGT), which will 

allow Cliff to authenticate himself to Grant. This ticket is encrypted 

using Grant’s personal key Kg (which TVent also has):

TGT =

Grant’s name||e/fc (Cliff's name, Cliff's Address, Timestampl, K c g )-

Here || is used to denote concatenation. The ticket that Cliff receives 

is the concatenation of these two subtickets:

Ticket =T\\TGT.

3. Cliff to Grant: Cliff can extract Kcg using the key Kc, which he 

shares with TVent. Using Kcg , Cliff can now communicate securely 

with Grant. Cliff now creates an authenticator, which will consist of 

his name, his address, and a timestamp. He encrypts this using Kcg 
to get

Autllcc — eKCa (Cliff's name, Cliff's address, Timestamp2).

Cliff now sends Autllcc 33 well as TGT to Grant so that Grant can 
administer a service ticket.

4. Grant to Cliff: Grant now has Authcc and TGT. Part of TGT was 
encrypted using Grant's secret key, so Grant can extract this portion 

and can decrypt it. Thus he can recover Cliff’s name, Cliff's address, 

Timestampl, as well as K c g - Grant can now use K c g  to decrypt 
Authcc in order to verify the authenticity of Cliff’s request. That 

is, dicca (Autllcc) will provide another copy of Cliff’s name, Cliff’s 
address, and a different timestamp. If the two versions of Cliff’s name 

and address match, and if Timestampl and Timestamp2 are suffi

ciently close to each other, then Grant will declare Cliff valid. Now 
that Cliff is approved by Grant, Grant will generate a session key 

I<cs for Cliff to communicate with Serge and will also return a service 

ticket. Grant has a secret key Ks which he shares with Serge. The 

service ticket is

ServTicket =

eh's (Cliff’s name, Cliff’s address, Timestamp3, ExpirationTime, Kcs) ■

Here ExpirationTime is a quantity that describes the length of validity 

for this service ticket. The session key is encrypted using a session key 

between Cliff and Grant:

eKcc (Kcs) ■

Grant sends ServTicket and ca'cc (K c s ) to Cliff.
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5. Cliff to Serge: Cliff is now ready to start making use of Serge's services. 

He starts by decrypting e/<-cc (Kcs) in order to get the session key 

Kcs that he will use while communicating with Serge. He creates an 

authenticator to use with Serge:

Authcs =  ekcs (Cliff's name, Cliff's address, Timestiimp4).

Cliff now sends Serge Authcs as well os ServTicket. Serge can de

crypt ServTicket and extract from this the session key Kcs that he is 

to use with Cliff. Using this session key, he can decrypt Authcs and 
verify that Cliff is who he says he is, and that Timestamp4 is within 

ExpirationTime of Timestamp3. If Timestamp4 is not within Expira- 
tionTime of TimestampS, then Cliff’s ticket is stale and Serge rejects 

his request for service. Otherwise, Cliff and Serge may make use of 

Kcs to perform their exchange.

10.4 Public Key Infrastructures (PKI)

Public key cryptography is a powerful tool that allows for authentication, 

key distribution, and non-repudiation. In these applications, the public 

key is published, but when you access public keys, what assurance do you 

have that Alice's public key actually belongs to Alice? Perhaps Eve has 

substituted her own public key in place of Alice’s. Unless confidence exists 

in how the keys were generated, and in their authenticity and validity, the 

benefits of public key cryptography are minimal.
In order for public key cryptography to be useful in commercial appli

cations, it is necessary to have an infrastructure that keeps track of public 

keys. A public key infrastructure, or PKI for short, is a framework con

sisting of policies defining the rules under which the cryptographic systems 

operate and procedures for generating and publishing keys and certificates.

All PICIs consist of certification and validation operations. Certification 

binds a public key to an entity, such as a user or a piece of information. 

Validation guarantees that certificates are valid.

A certificate is a quantity of information that has been signed by its 
publisher, who is commonly referred to as the certification authority 

(CA). There are many types of certificates. Two popular ones are iden
tity certificates and credential certificates. Identity certificates contain an 

entity’s identity information, such as an email address, and a list of public 

keys for the entity. Credential certificates contain information describing 

access rights. In either case, the data are typically encrypted using the CA’s 
private key.

Suppose we have a PKI, and the CA publishes identity certificates for 

Alice and Bob. If Alice knows the CA’s public key, then she can take the
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encrypted identity certificate for Bob that has been published and extract 

Bob’s identity information as well os a list of public keys needed to com

municate securely with Bob. The difference between this scenario and the 

conventional public key scenario is that Bob doesn't publish his keys, but 

instead the trust relationship is placed between Alice and the publisher. 

Alice might not trust Bob as much as she might trust a CA such as the 

government or the phone company. The concept of trust is critical to PKIs 

and is perhaps one of the most important properties of a PKI.

It is unlikely that a single entity could ever keep track of and issue every 

Internet user's public keys. Instead, PKIs often consist of multiple CAs that 
are allowed to certify each other and the certificates they issue. Thus, Bob 

might be associated with a different CA than Alice, and when requesting 

Bob’s identity certificate, Alice might only trust it if her CA trusts Bob’s 

CA. On large networks like the Internet, there may be many CAs between 

Alice and Bob, and it becomes necessary for each of the CAs between her 
and Bob to trust each other.

In addition, most PKIs have varying levels of trust, allowing some CAs to 

certify other CAs with varying degrees of trust. It is possible that CAs may 

only trust other CAs to perform specific tasks. For example, Alice's CA may 

only trust Bob’s CA to certify Bob and not certify other CAs, while Alice’s 

CA may trust Dave’s CA to certify other CAs. Trust relationships can 

become very elaborate, and, as these relationships become more complex, 

it becomes more difficult to determine to what degree Alice will trust a 
certificate that she receives.

In the following two sections, we discuss two examples of PKIs that are 

used in practice.

10.5 X.509 Certificates

Suppose you want to buy something on the Internet. You go to the website 

Gigafirm.com, select your items, and then proceed to the checkout page. 

You are asked to enter your credit card number and other information. 

The website assures you that it is using secure public key encryption, using 

Gigafirm's public key, to set up the communications. But how do you luiow 

that Eve hasn’t substituted her public key? In other words, when you are 

using public keys, how can you be sure that they are correct? This is the 

purpose of Digital Certificates.

One of the most popular types of certificate is the X.509. In this system, 

every user has a certificate. The validity of the certificates depends on a 

chain of trust. At the top is a certification authority (CA). These are 

often commercial companies such as VeriSign, GTE, AT&T, and others. It 
is assumed that the CA is trustworthy. The CA produces its own certificate
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and signs it. This certificate is often posted on the CA’s website. In order 

to ensure that their services are used frequently, various CAs arrange to 

have their certificates packaged into Internet browsers such as Netscape and 

Microsoft Internet Explorer.

The CA then (for a fee) produces certificates for various clients, such as 

Gigofirin. Such a certificate contains Gigafirm’s public key. It is signed by 

the CA using the CA's private key. Often, for efficiency, the CA authorizes 

various registration authorities (RA) to sign certificates. Each RA then 

has a certificate signed by the CA.

A certificate holder can sometimes then sign certificates for others. We 

therefore get a certification hierarchy where the validity of each certificate 

is certified by the user above it, and this continues all the way up to the CA.

Figure 10.2: A Certification Hierarchy.

If Alice wants to verify that Gigafirm’s public key is correct, she uses 

her copy of the CA’s certificate (stored in her computer) to get the CA’s 

public key. She then verifies the signature on Gigafirm’s certificate. If it 

is valid, she trusts the certificate and thus has a trusted public key for 

Gigafirm. Of course, she must trust the CA’s public key. This means that 

she trusts the company that packaged the CA’s certificate into her computer. 

The computer company of course has a financial incentive to maintain a 

good reputation, so this trust is reasonable. But if Alice has bought a used 

computer in which Eve has tampered with the certificates, there might be 

a problem (in other words, don’t buy used computers from your enemies, 

except to extract unerased information).

Figures 10.3, 10.4, and 10.5 show examples of X.509 certificates. The 

ones ln Figures 10.3 and 10.4 are for a CA, namely VeriSign. The part in 

Figure 10.3 gives the general information about the certificate, including its 

possible uses. Figure 10.4 gives the detailed information. The one in Figure 

10.5 is an edited version of the Details part of a certificate for the bank Wells 

Fargo.

Some of the fields in Figure 10.4 are as follows:
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This certificate has been verified for the following uses:

(~Email Signer Certificate ~~ ~|

J Em a il Recip ient Certificate - — -- —|

| Statua Responder Certificate

Issued to:
Organization (O ): VeriSign , Inc.

Organizational Unit (OU ): Class 1 Public Primary Certification A uthority - G2 

Serial Number: 39:CA:54:8D:FE:£0:22:32:FE-,32:DD:DB:FB;1B:8-1;I9

Issued By:
Organization (O ): VeriSign , Inc,

Organizational Unit (OU ): Class 1 Public Primary Certification Authority - G2 

V a lid ity :

Issued On: 05/17/98 

Expires On: 05/18/18

Fingerp rints:
S H A l Fingerprint: G4:98:n:O5:6A:FE:OF;D0:F5:BE:01:G8;5A:AC :EG:A5:Dl:C4:45:4C 

M D5 Fingerprint: F2:7D;E9:5'1:E4:A3:22:0D:7G:DF:E7:0B;BB:B3:21:2B

Figure 10.3: CA's Certificate; General.
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Certificate Hierarchy

p Verisign Class 1 Pub lic Primary Certification Authority - G2

Certificate Fields

Verisign Class 1 Public Primary Certification Authority - G2 

Certificate

Version: Version 1

Serial Number: 39:CA:5-l:69:FE:50:22:32:FEr32:D9.DB:FB:IB:8-l:19 

Certificate Signature A lgorithm: PICCS #  1 SHA-1 W ith  RSA  Encryption 

Issuer: O U  =  VeriSign TYust Network

O U  =  (c) 1996 VeriSign , Inc. • For authorized use only 

O U  =  Class I P ublic Primary Certification Authority - G2 

O  =  VeriSign, Inc.

c-us
Validity

Not Before: 05/17/98 20:00:00 (05/18/98 00:00:00 G M T )

Not After: 05/18/18 10:50:50 (05 /18/18 23:59:59 GM T)

Subject: OU  =  VeriSign TYust Network

O U  =  (c) 1998 VeriSign, Inc. - For authorized use only 

OU =  Class I  P ublic Primary Certification Authority - G2 

O  =  VeriSign, Inc.

C =  US

Subject P ublic Key Info: PKCS # 1  RSA  Encryption 

Subject's Public Key:

30 01 89 02 81 81 00 DO dO ba bo 16 2d bB 93 d4
ca d2 01 be 76 31 ca 94 de Id 93 Sc 56 02 be dS
61 la 61 52 36 6e 75 56 0a 56 d3 d l 43 B7 21 11
65 Bb 7o 81 bd 21 do 6b 32 31 l b 84 34 96 OS 9d

41 36 ob 92 ob 96 dd aa 59 31 01 63 6d 99 41 ed

q5 e2 2a 6a 90 c l b9 c4 a6 15 c l cB 46 ab a6 Bd

Be 9c 3o 10 64 24 76 aS cd ab la 61 bfi dB 7b 51

61 6a afl 71 87 cB c2 b7 o5 34 dc 41 6B oa 09 40

be 73 92 3d 6b c7 75 02 03 01 00 01
Certificate Signature Algorithm: PKCS #1 SHA- 1 W ith R SA  Encryption

Certificate Signature Value:

8b 17 la 10 ca 76 5c 07 ab 83 99 dc 17 BO 61 34

39 Sd 98 3o 6b 72 2c e l c7 02 7b 40 29 b9 78 66
ba 4c c5 a 3 6a 5e 9o 6o 7b e3 12 02 41 0c 66 bo

ad fb ao n2 14 ce 92 13 a2 34 Bb b4 hi bS 24 12
o5 dS oO c8 o5 62 6d 84 7b cb be bb 03 8b 7c 57

ca fo 37 a9 90 a l 8a 00 03 bo Id 26 9c d9 26 76

a0 cd c4 Sd 4o 10 &o 07 16 d5 be a l 67 08 6a dO

a0 42 42 42 l e 14 20 cc n5 76 B2 95 26 38 8a 47

Figure 10.4: CA’s Certificate; Details.
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Certificate H ierarchy

t> Verisign Class 3 Publ ic P rim ary CA 

▻ wxvw.verisign.com/ CPS Ineorp. by Ucf. L IA B IL IT Y  LTD.(c)97VeriStgn 

t> onlino.weUsfargo.com

C e r tif ic a te  F ie ld s

Verisign Class 3 Pub lic Primary Certification Authority 

Certificate 

Version: Version 3

Serial N um ber. 03:D7:98:CA:98:59:30;B1:B2jD3;BD:28:B8;E7:2B:8F 

Certificate Signature A lgorithm; mdSRSA 

Issuer: OU =  www.vorisign .com /CPS Incorp. •

O U  =  VcriSlgn International Server CA - Class 3 

O U =  VcriSign, Inc.

O  =  VeriSign TYust Network 

C  =  US

Validity

Not Before: Sunday, September 21, 2003 7:00:00 PM 

Not After: Wednesday, September 21, 2005 0:59:59 PM  

Subject: CN =  onIlne.wellsfargo.com

O U  =  Terms of use at www.vorislgn.com.rpa (e)00 

O U =  Class 1 P ub lic Primary Certification A u thority - G2 

O U  =  I5G

O  =  Wells Fargo and Company 

L =  San FYancisco 

S =  California 

C  =  US

Subject Pub lic  Key Info: PKCS #1  RSA Encryption 

Subject's Public Key: 30 81 89 02 81 BI 00 n9 

Basic Constraints: Subject Type =  End Entity,

Path Length Constraint =  None 

Subject’s Key Usage: D igital Signature, Key Encipherment (AO) 

C R 1  D istribu tion Points: (1) CRL Distribution Point

D istribution Point Name:

Pull Name;
U R L = http ://c r l . vcrisign.com/ 

cIoss3InternationalServcr.crl 

Certificate Signature A lgorithm: MD5 W ith  RSA  Encryption 

Certificate Signature Value: ..........

Figure 10.5: A Client's Certificate.

http://www.vorisign.com/CPS
http://www.vorislgn.com.rpa
http://crl
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1. Version: There are three versions, the first being Version 1 (from 1988) 

and the most recent being Version 3 (from 1997).

2. Serial number: There is a unique serial number for each certificate 

issued by the CA.

3. Signature algorithm: Various signature algorithms can be used. This 

one uses RSA to sign the output of the hash function SHA-1.

'I. Issuer: The name of the CA that created and signed this certificate. 

OU is the organizational unit, 0  is the organization, C is the country.

5. Subject: The name of the holder of this certificate.

6. Public key: Several options are possible. This one uses RSA with 

a 1024-bit modulus. The key is given in hexadecimal notation. In 

hexadecimal, the letters a, b, c, d, e, /  represent the numbers 10, 11,
12, 13, 14, 15. Each pair of symbols is a byte, which is 8 bits. For 

example, b6 represents 11, 6, which is 10110110 in binary.

The last three bytes of the public key are 01 00 01, which is 65537 = 
210 + 1. This is a very common encryption exponent e for RSA, since 

raising something to this power by successive squaring (see Section 3.5) 

is fast. The preceding bytes 02 03 and the bytes 30 81 89 02 81 81 

00 at the beginning of the key are control symbols. The remaining 128 
bytes aa do ba ■ • • 6b e7 75 are the 1024-bit RSA modulus n.

7. Signature: The preceding information on the certificate is hashed using 

the hash algorithm specified - in this case, SHA-1 - and then signed 

by raising to the CA's private RSA decryption exponent.

The certificate in Figure 10.5 has a few extra lines. One notable entry is 

under the heading Certificate Hierarchy. The certificate of Wells Fargo has 

been signed by the Registration Authority (RA) on the preceding line. In 

turn, the RA's certificate has been signed by the root CA. Another entry 
worth noting is CRL Distribution Points. This is the certificate revoca

tion list. It contains lists of certificates that have been revoked. There are 

two common methods of distributing the information from these lists to the 

users. Neither is perfect. One way is to send out announcements whenever 

a certificate is revoked. This has the disadvantage of sending a lot of ir

relevant information to most users (most people don’t need to know if the 

Point Barrow Sunbathing Club loses its certificate). The second method is 

to maintain a list (such as the one at the listed URL) that can be accessed 

whenever needed. The disadvantage here is the delay caused by checking 

each certificate. Also, such a website could get overcrowded if many people 

try to access it at once. For example, if everyone tries to trade stocks during
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their lunch hour, and the computers check each certificate for revocation 

during each transaction, then a site could be overwhelmed.

When Alice (or, usually, her computer) wants to check the validity of 

the certificate in Figure 10.5, she sees from the certificate hierarchy that 

VeriSign’s RA signed Wells Fargo's certificate and the RA's certificate was 

signed by the root CA. She verifies the signature on Wells Fargo's certificate 

by using the public key (that is, the RSA pair (t i, e ) )  from the RA's certifi

cate; namely, she raises the encrypted hash value to the eth power mod n. If 

this equals the hash of Wells Fargo’s certificate, then she trusts Wells Fargo’s 

certificate, as long as she trusts the RA’s certificate. Similarly, she can check 

the RA's certificate using the public key on the root CA’s certificate. Since 

she received the root CA’s certificate from a reliable source (for example, 

it was packaged in her Internet browser, and the company doing this has 

a financial incentive to keep a good reputation), she trusts it. In this way, 

Alice has established the validity of Wells Fargo’s certificate. Therefore, she 

can confidently do online transactions with Wells Fargo.

There are two levels of certificates. The high assurance certificates are 

issued by the CA under fairly strict controls. High assurance certificates are 
typically issued to commercial firms. The low assurance certificates are 

issued more freely and certify that the communications are from a particular 

source. Therefore, if Bob obtains such a certificate for his computer, the cer

tificate verifies that it is Bob's computer but does not tell whether it is Bob 

or Eve using the computer. The certificates on many personal computers 

contain the following line:

Subject: Verisign Class 1 CA Individual Subscriber - Persona Not Validated.

This indicates that the certificate is a low assurance certificate. It does not 

make any claim os to the identity of the user.

If your computer has Internet Explorer, click on Tools, then Internet Op
tions, then Content. This will allow you to find the CA’s whose certificates 
have been packaged with the browser. Usually, the validity of most of them 

has not been checked. But for the accepted ones, it is possible to look at the 

certification path, which gives the path (often one step) from the user’s 

computer's certificate back to the CA.

10.6 Pretty Good Privacy

Pretty Good Privacy, more commonly known as PGP, was developed by 

Phil Zimmerman in the late 1980s and early 1990s. In contrast to X.509 

certificates, PGP is a very decentralized system with no CA. Each user has 

a certificate, but the trust in this certificate is certified to various degrees 

by other users. This creates a web of trust.
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For example, if Alice knows Bob and can verify directly that his certifi

cate is valid, then she signs his certificate with her public key. Charles trusts 

Alice and has her public key, and therefore can check that Alice’s signature 

on Bob’s certificate is valid. Charles then trusts Bob’s certificate. However, 
this does not mean that Charles trusts certificates that Bob signs - he trusts 

Bob's public key. Bob could be gullible and sign every certificate that he 

encounters. His signature would be valid, but that does not mean that the 

certificate is.
Each user, for example Alice, maintains a file with a keyring, containing 

the trust levels Alice has in various people’s signatures. There are varying 

levels of trust that someone can assign: no information, no trust, partial 

trust, and complete trust. When a certificate's validity is being judged, the 

PGP program accepts certificates that are signed by someone Alice trusts, 

or a sufficient combination of partial trusts. Otherwise it alerts Alice and 

she needs to make a choice on whether to proceed.
The primary use of PGP is for authenticating and encrypting email. 

Suppose Alice receives an email asking for her bank account number so that 

Charles can transfer millions of dollars into her account. Alice wants to be 

sure that this email comes from Charles and not from Eve, who wants to 

uee the account number to empty Alice's account. In the unlikely case that 

tills email actually comes from her trusted friend Charles, Alice sends her 

account information, but she should encrypt it so that Eve cannot intercept 

It and empty Alice’s account. Therefore, the first email needs authentication 

that proves that it comes from Charles, while the second needs encryption. 

There are also cases where both authentication and encryption are desirable. 

We’ll show how PGP handles these situations.
To keep the discussion consistent, we’ll always assume that Alice is send

ing a message to Bob.

Authentication.

1. Alice uses a hash function, usually SHA-1, and computes the hash of 

the message.

2. Alice signs the hash by raising it to her secret decryption exponent d 
mod n. The resulting hash code is put at the beginning of the message, 

wlilch is sent to Bob.

,"l. Bob raises the hash code to Alice's public RSA exponent e. The result 

In compared to the hash of the rest of the message.

‘I. If the result agrees with the hash, and if Alice trusts Bob's public key, 

tlio message is accepted as coming from Bob.

This authentication is the RSA signature method from Section 9.1. 
Note the role that trust plays. If Bob does not trust Alice’s public key
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as belonging to Alice, then he cannot be sure that the message did not 

come from Eve, with Eve’s signature in place of Alice’s.

Encryption.

1. Alice’s computer generates a random number, usually 128 bits, to 

be used as the session key for a symmetric private key encryption 

algorithm such as 3DES, IDEA, or CAST-128 (these are block ciphers 
using 128-bit keys).

2. Alice uses the symmetric algorithm with this session key to encrypt 

her message.

3. Alice encrypts the session key using Bob's public key.

4. The encrypted key and the encrypted message are sent to Bob.

5. Bob uses his private RSA key to decrypt the session key. He then uses 

the session key to decrypt Alice’s message.

The combination of a public key algorithm and a symmetric algorithm 

is used because encryption is generally faster with symmetric algo

rithms than with public key algorithms. Therefore, the public key 

algorithm RSA is used for the small encryption of the session key, and 
then the symmetric algorithm is used to encrypt the potentially much 

larger message.

Note that trust is not needed when only encryption is desired.

Authentication and Encryption.

1. Alice hashes her message and signs the hash to obtain the hash code, 

as in step (2) of the authentication procedure described previously. 

This hash code is put at the beginning of the message.

2. Alice produces a random 128-bit session key and uses a symmetric 

algorithm with this session key to encrypt the hash code together with 

the message, as in the encryption procedure described previously.

3. Alice uses Bob’s public key to encrypt the session key.

4. The encrypted session key and the encryption of the hash code and 

message are sent to Bob.

5. Bob uses his private key to decrypt the session key.

6. Bob uses the session key to obtain the hash code and message.
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7. Bob verifies the signature by using Alice's public key, as in the authen

tication procedure described previously.

Of course, this procedure requires that Bob trusts Alice's public key 

certificate. Also, the reason the signature is done before the encryp

tion is so that Bob can discard the session key after decrypting and 

therefore store the plaintext message with its signature.

To set up a PGP certificate, Alice’s computer uses random input ob
tained from keystrokes, timing, mouse movements, etc. to find primes p, g 
und then produce an RSA modulus n =  pq and encryption and decryption 

exponents e and d. The numbers n and e are then Alice’s public key. Al

ice also chooses a secret passphrase. The secret key d is stored securely in 

her computer. When the computer needs to use her private key, the com

puter asks her for her passphrase to be sure that Alice is the correct person. 

This prevents Eve from using Alice’s computer and pretending to be Alice 

The advantage of tlie passphrase is that Alice is not required to memorize or 

type in the decryption exponent d, which is probably more than one hundred 

digits long.

In the preceding, we have used RSA for signatures and for encryption 
of the session keys. Other possibilities are allowed. For example, Diffie- 

Hellman can be used to establish the session key, and DSA can be used to 

sign the message.

The software for PGP can be downloaded for free from many websites, 

including http://www.mit.edu/network/pgp.htinl. There is also a com

mercial version available through Network Associates.

10.7 SSL and TLS

If you have ever paid for anything over the Internet, your transactions were 
probably kept secret by SSL or its close relative TLS. Secure Sockets Layer 

(SSL) was developed by Netscape in order to perform http communications 

securely. The first version was released in 1994. Version 3 was released 

in 1995. Transport Layer Security (TLS) is a slight modification of SSL 

version 3 and was released by the Internet Engineering Task Force in 1999. 
These protocols are designed for communications between computers with 

no previous knowledge of each other’s capabilities.

In the following, we’ll describe SSL version 3. TLS differs in a few minor 

details such as how the pseudo-random numbers are calculated. SSL consists 

of two main components. The first component is known as the record pro

tocol and is responsible for compressing and encrypting the bulk of the data 

sent between two entities. The second component is a collection of man

agement protocols that are responsible for setting up and maintaining the

http://www.mit.edu/network/pgp.htinl
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parameters used by the record protocol. The main part of this component 

is called the handshake protocol.

We will begin by looking at the handshake protocol, which is the most 

complicated part of SSL. Let us suppose that Alice has bought something 

online from Gigafirm and wonts to pay for her purchase. The handshake 

protocol performs authentication between Alice’s computer and the server 

at Gigafirm and is used to allow Alice and Gigafirm to agree upon various 

cryptographic algorithms. Alice’s computer starts by sending Gigafirm’s 

computer a message containing the following:

1. The highest version of SSL that Alice’s computer can support

2. A random number consisting of a 4-byte timestamp and a 28-byte 

random number

3. A Cipher Suite containing, in decreasing order of preference, the algo

rithms that Alice's computer wants to use for public key (for example, 

RSA, Diffie-Hellman, ...), block cipher encryption (3DES, DES, AES, 

...), hashing (SHA-1, MD5, ...), and compression (PKZip, ...)

Gigafirm’s computer responds with a random 32-byte number (chosen sim

ilarly) and its choices of which algorithms to use; for example, RSA, DES, 

SHA-1, PKZip.

Gigafirm’s computer then sends its X.509 certificate (and the certifi
cates in its certification chain). Gigafirm can ask for Alice’s certificate, but 

this is rarely done for two reasons. First, it would impede the transaction, 

especially if Alice does not have a valid certificate. This would not help Gi

gafirm accomplish its goal of making sales. Secondly, Alice is going to send 

her credit card number later in the transaction, and this serves to verify that 

Alice (or the thief who picked her pocket) has Alice's card.
We’ll assume from now on that RSA was chosen for the public key 

method. The protocol differs only slightly for other public key methods.

Alice now generates a 48-byte pre-master secret, encrypts it with Gi- 

gafirm’s public key (from its certificate), and sends the result to Gigafirm, 

who decrypts it. Both Alice and Gigafirm now have the following secret 

random numbers:

1. The 32-byte random number rx that Alice sent Gigafirm.

2. The 32-byte random number to that Gigafirm sent Alice.

3. The 48-byte pre-master secret Spm-

Note that the two 32-byte numbers were not sent securely. The pre-master 

secret is secure, however.
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Since they both have the same numbers, both Alice and Gigafirm can 

calculate the master secret as the concatenation of

MD5(spm||SHA-l(A||flprn||rA||rG))

MD5(spm||SHA-l(BB||Spm||rA||rc ))-

MD5(spm||SHA-l(CCC||spm|M|rG)).

The A, BB, and CCC are strings added for padding. Note that timestamps 

are built into rA and re- This prevents Eve form doing replay attacks, where 

she tries to use information intercepted from one session to perform similar 
transactions later.

Since MD5 produces a 128-bit (— 16-byte) output, the master secret has 

48 bytes. The master secret is used to produce a key block, by the same 

process that the master secret was produced from the pre-master secret. 
Enough hashes are concatenated to produce a sufficiently long key block. 

The key block is then cut into six secret keys, three for communications from 

Alice to Gigafirm and three for communications from Gigafirm to Alice. For 

Alice to Gigafirm, one key serves as the secret key in the block cipher (3DES, 

AES, ...) chosen at the beginning of the communications. The second is a 

message authentication key. The third is the initial value for the CBC mode 

of the block cipher. The three other keys are for the corresponding purposes 

for Gigafirm to Alice.

Now Alice and Gigafirm are ready to communicate using the record 

protocol. When Alice sends a message to Gigafirm, she does the following:

1 . Compresses the message using the agreed upon compression method.

2. Hashes the compressed message together with the message authenti

cation key (the second key obtained from the key block). This yields 

the hashed message authentication code.

3. Uses the block cipher in CBC mode to encrypt the compressed message 
together with the hashed message authentication code, and sends the 

result to Gigafirm.

Gigafirm now does the following:

1 . Uses the block cipher to decrypt the message received. Gigafirm now 

lias the compressed message and the hashed message authentication 

code.

2. Uses the compressed message and the Alice-to-Gigafirm message au

thentication key to recompute the hashed message authentication code. 
If it agrees with the hashed message authentication code that was in 
the message, the message is authenticated.
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3. Decompresses the compressed message to obtain Alice's message.

Communications from Gigafirm are encrypted and decrypted similarly, 

using the other three keys deduced from the key block. Therefore, Alice and 
Gigafirm can exchange information securely.

10.8 Secure Electronic Transaction

Every time someone places an order in an electronic transaction over the 
Internet, large quantities of information are transmitted. These data must 

be protected from unwanted eavesdroppers in order to ensure the customer’s 

privacy and prevent credit fraud. Requirements for a good electronic com
merce system include the following:

1. Authenticity: Participants in a transaction cannot be impersonated

and signatures cannot be forged.

2. Integrity: Documents such as purchase orders and payment instructions

cannot be altered.

3. Privacy: The details of a transaction should be kept secure.

4. Security: Sensitive account information such as credit card numbers
must be protected.

All of these requirements should be satisfied, even over public communica
tion channels such os the Internet.

In 1996, the credit card companies MasterCard and Visa called for the 

establishment of standards for electronic commerce. The result, whose devel

opment involved several companies, is called the SET, or Secure Electronic 

Transaction™ protocol. It starts with the existing credit card system and 
allows people to use it securely over open channels.

The SET protocol is fairly complex, involving, for example, the SSL pro

tocol in order to certify that the cardholder and merchant are legitimate and 

also specifying how payment requests are to be made. In the following we’ll 

discuss one aspect of the whole protocol, namely the use of dual signatures.

There are several possible variations on the following. For example, 

in order to improve speed, a fast symmetric key system can be used in 

conjunction with the public key system. If there is a lot of information to 

be transmitted, a randomly chosen symmetric key plus the hash of the long 

message can be sent via the public key system, while the long message itself 
is sent via the faster symmetric system. However, we’ll restrict our attention 

to the simplest case where only public key methods are used.
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Suppose Alice wants to buy a book entitled How to Use Other People's 
Credit Card Numbers to Defraud Banks, which she has seen advertised on the 

Internet. For obvious reasons, she feels uneasy about sending the publisher 

her credit card information, and she certainly does not want the bank that 

issued her card to know what she is buying. A similar situation applies to 

many transactions. The bank does not need to know what the customer is 

ordering, and for security reasons the merchant should not know the card 

number. However, these two pieces of information need to be linked in 
some way. Otherwise the merchant could attach the payment information 

to another order. D ua l signatures solve this problem.

The three participants in the following will be the Cardholder (namely, 

the purchaser), the Merchant, and the Bank (which authorizes the use of 

the credit card).

The Cardholder has two pieces of information:

• GSO =  Goods and Services Order, which consists of the cardholder’s 

and merchant's names, the quantities of each item ordered, the prices, 

etc.

•  PI = Payment Instructions, including the merchant’s name, the credit 
card number, the total price, etc.

The system uses a public hash function; let’s call it H. Also, a public key 
cryptosystem such os RSA is used, and the Cardholder and the Bank have 

their own public and private keys. Let Ec, Em , and Eb denote the (public) 
encryption functions for the Cardholder, the Merchant, and the Bank, and 

let Dc, Dm , and Dg be the (private) decryption functions.

The Cardholder performs the following procedures:

1. Calculates GSOMD =  H(Em (GSO)), which is the message digest, 

or hash, of on encryption of GSO.

2. Calculates P IM D  = H(Eq (PI)), which is the message digest of an 

encryption of PI.

3. Concatenates GSOMD  and P IM D  to obtain PIMD\\GSOMD, then 
computes the hash of the result to obtain the payment-order message 

digest POM D  =  H(PIMD\\GSOMD).

4. Signs POMD  by computing DS =  Dc(POMD). This is the dual 

signature.

5. Sends E m (GSO), DS, P IM D , and Eb (PI) to the Merchant.

The Merchant then does the following:
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1. Calculates H(Em (GSO)) (which should equal GSOMD).

2. Calculates H(PIMD\\H(Em {GSO))) and Ec(DS). If they are equal, 
then the Merchant has verified the Cardholder’s signature and is there

fore convinced that the order is from the Cardholder.

3. Computes Dm (Em (GSO)) to obtain GSO.

4. Sends GSOMD, Eb (PI), and DS to the Bank.

The Bank now performs the following:

1. Computes H(Eb (PI)) (which should equal PIMD).

2. Concatenates H(Eb (PI)) and GSOMD.

3. Computes H (H(Eb (PI))\\GSOMD) and Ec{DS). If they are equal, 

the Bank has verified the Cardholder’s signature.

4. Computes Db (Eb (PI)), obtaining the payment instructions PI.

5. Returns an encrypted (with Em) digitally signed authorization to the 

Merchant, guaranteeing payment.

The Merchant completes the procedure as follows:

1 . Returns an encrypted (with Ec) digitally signed receipt to the Card

holder, indicating that the transaction has been completed.

The Merchant only sees the encrypted form Eb (PI) of the payment in

structions, and so does not see the credit card number. It would be infeasible 

for the Merchant or the Bank to modify any of the information regarding 

the order because the hash function is used to compute DS.
The Bank only sees the message digest of the Goods and Services Order, 

and so has no idea what is being ordered.
The requirements of integrity, privacy, and security are met by this pro

cedure. In actual implementations, several more steps are required in order 

to protect authenticity. For example, it must be guaranteed that the pub

lic keys being used actually belong to the participants as claimed, not to 

impostors. Certificates from a trusted authority are used for this purpose.

10.9 Exercises

1. In a network of three users, A, B, and C, we would like to use the Blom 

scheme to establish session keys between pairs of users. Let p =  31 

and let

r A =  11 r,g =  3 Tc — 2.
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Suppose Trent chooses the numbers

a =  8  6  =  3 c =  1.

Calculate the session keys.

2. (a) Show that in the Blom scheme, Kab =  o + b(rA + rg) + cta'I'b
(mod p).

(b) Show that Kab =  Kba-

(c) Another way to view the Blom scheme is by using a polynomial in 

two variables. Define the polynomial f(x,y) =  a + b(x + y) + cxy 
(mod p). Express the key Kab in terms of /.

3. You (U) and I (I) are evil users on a network that uses the Blom scheme 

for key establishment with k =  1. We have decided to get together to 

figure out the other session keys on the network. In particular, suppose 

p =  31 and ru =  9,r/ =  2. We have received au — 18, i[/ =  29, 

o; =  24, 6 / =  23 from Trent, the trusted authority. Calculate a, 6 , 

and c.

4. Here is another version of the intruder-in-the-middle attack on the 

Diffie-Hellman key exchange in Section 10.1. It has the “advantage" 
that Eve does not have to intercept and retransmit all the messages 

between Bob and Alice. Suppose Eve discovers thatp =  Mg+1, where 

(7 is an integer and M  is small. Eve intercepts ax and ay as before. 

She sends Bob (a1)1* (mod p) and sends Alice (av)q (mod p).

(a) Show that Alice and Bob each calculate the same key K.

(b) Show that there are only M  possible values for K, so Eve may 

find K  by exhaustive search.

5. Bob, Ted, Carol, and Alice want to agree on a common key (cryp

tographic key, that is). They publicly choose a large prime p and a 

primitive root a. They privately choose random numbers b,t,c,a, re
spectively. Describe a protocol that allows them to compute K  s  ablca 
(mod p) securely (ignore intruder-in-the-middle attacks).

6 . Suppose naive Nelson tries to implement an analog of the three-pass 
protocol of Section 3.6 to send a key K  to Heidi. He chooses a one

time pad key Kn and XORs it with K. He sends M i =  /Qy ffi K  to 
Heidi. She XORs what she receives with her one-time pad key Km to 

get A/a =  M i ®Kh. Heidi sends M2 to Nelson, who computes M 3 =  

M 2 ® Kfj. Nelson sends M3 to Heidi, who recovers K  as M 3 $  Km-

(a) Show that K  =  M 3 @ Kh -

(b) Suppose Eve intercepts M i, M 2 , M 3 . How can she recover K?



C h a p t e r  11 

Digital Cash

As communication technologies such as the Internet and wireless networks 

have advanced, new avenues of commerce have become available. Many 

transactions are now carried out electronically, often with credit cards. But 

credit cards are not the same as cash. In this chapter, we look at a model 

of digital cash, which emulates the behavior of money using digital data. 

When making a purchase using coin and paper cash, the consumer is en

sured that his or her identity is not disclosed to the vendor. In an electronic 
system, files, instead of coins, are exchanged for products and services. One 

goal is anonymity. Since electronic files are easily copied, if we guaran

tee anonymity, then measures must also be taken to prevent counterfeiting. 

We’ll show how to achieve both goals.

11.1 Digital Cash

Suppose Congressman Bill Passer is receiving large donations from his friend 

Phil Pockets. For obvious reasons, he would like to hide this fact, pretending 

instead that the money comes mostly from people such as Vera Goode. Or 

perhaps Phil does not want Bill to know he's the source of the money. If Phil 

pays by check, well-placed sources in the bank can expose him. Similarly, 

Congressman Passer cannot receive payments via credit card. The only 
anonymous payment scheme seems bo be cash.

But now suppose Passer has remained in office for many terms and we 
are nearing the end of the twenty-first century. All commerce is carried out

287
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electronically. Is it possible to have electronic cash? Several problems arise. 

For example, near the beginning of the twenty-first century, photocopying 

money was possible, though a careful recipient could discern differences be

tween the copy and the original. Copies of electronic information, however, 

are indistinguishable from the original. Therefore, someone who has a valid 

electronic coin could make several copies. Some method is needed to pre

vent such double spending. One idea would be for a central bank to have 

records of every coin and who has each one. But if coins are recorded as 

they are spent, anonymity is compromised. Occasionally, communications 

with a central bank could fail temporarily, so it is also desirable for the 

person receiving the coin to be able to verify the coin as legitimate without 

contacting the bank during each transaction.

T. Okamoto and K. Ohta [Okamoto-Ohta] list six properties a digital 

cash system should have:

1. The cash can be sent securely through computer networks.

2. The cash cannot be copied and reused.

3. The spender of the cash can remain anonymous. If the coin is spent le
gitimately, neither the recipient nor the bank can identify the spender.

4. The transaction can be done offline, meaning no communication with 

the central bank is needed during the transaction.

5. The cash can be transferred to others.

6 . A piece of cash can be divided into smaller amounts.

Okamoto and Ohta give a system that satisfies all these requirements. Sev

eral systems satisfying some of them have been devised by David Chaum. 

In the following, we describe a system that satisfies 1 through 4, due to S. 

Brands [Brands],

The reader will surely notice that the system is much more complicated 

than the centuries-old system of actual coins. This is because, as we men

tioned previously, electronic objects can be reproduced at essentially no cost, 

in contrast to physical cash, which has usually been rather difficult to coun

terfeit. Therefore, steps are needed to catch electronic cash counterfeiters. 

But this means that something like a user's signature needs to be attached 

to an electronic coin. How, then, can anonymity be preserved? The solu

tion uses "restricted blind signatures." This process contributes much of the 

complexity to the scheme.

11.1.1 Participants

Participants are the Bank, the Spender, and the Merchant.
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11.1.2 Initialization

Initialization is done once and for all by some central authority. Choose a 

large prime p such that q =  (p— l)/2 is also prime (see Exercise 9 in Chapter 

9). Let y be the square of a primitive root mod p. This implies that gkl =  gk2 

(mod p) ■*=> k\ =  Z.2 (mod g). Two secret random exponents are chosen, 

and gi and gn are defined to be g raised to these exponents mod p. These 

exponents are then discarded (storing them serves no useful purpose, and if 

a hacker discovers them, then the system is compromised). The numbers

5. 9 u  52

are made public. Also, two public hash functions are chosen. The first,

H, takes a 5-tuple of Integers as input and outputs an integer mod q. The 

second, Hq, takes a 4-tuple of integers os input and outputs an integer mod 

5'

11.1.3 The Bank

The bank chooses its secret identity number x and computes 

h =  gx, lh = gf, hn - g% (mod p).

The numbers h, h\, and /12 are made public and identify the bank.

11.1.4 The Spender

The Spender chooses a secret identity number u and computes the account 

number

I  =  gi (mod p).

The number I  is sent to the Bank, which stores I  along with information 

identifying the Spender (e.g., name, address, etc.). However, the Spender 

does not send u to the bank. The Bank sends

z' =  U 0 2 ) 1 (mod p)

to the Spender.

11.1.5 The Merchant

The Merchant chooses an identification number M  and registers it with the 

bank.
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The Spender contacts the bank, asking for a coin. The bank requires proof 

of identity, just as when someone is withdrawing classical cash from an 

account. All coins in the present scheme have the same value. A coin will 

be represented by a 6-tuple of numbers

{A,B,z,a, b, r).

This may seem overly complicated, but we'll see that most of this effort is 

needed to preserve anonymity and at the same time prevent double spending. 

Here is how the numbers are constructed.

1. The Bank chooses a random number w (a different number for each 

coin), computes

gw =  gw and 0  =  (7>>)u' (mod p), 

and sends gu and 0 to the Spender.

2. The Spender chooses a secret random 5-tuple of integers

(5,Il,l2|Ctl.Q2)-

3. The Spender computes

(Ig2y, B = g ?g? , 

a =  g°lgaz, b =  psa^Aa'- (mod p).

Coins with A =  1 are not allowed. This can happen in only two 

ways. One is when 5 =  0 (mod q), so we require s ^  0. The other is 
when Ign =  1 (mod p), which means the Spender has solved a discrete 

logarithm problem by a lucky choice of u. The prime p should be 

chosen so large that this has essentially no chance of happening.

4. The Spender computes

c =  ct~{lH{A, B, z, o, b) (mod q)

and sends c to the Bank. Here H  is the public hash function mentioned 
earlier.

5. The Bank computes ci =  cx + w (mod q) and sends ci to the Spender.

11.1.6 Creating a Coin
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6. T h e Spender computes

t =  a jC i 4- oy (mod q).

T he coin (A,B,z,a,b,r) is now complete. T he amount of the coin is 
deducted from the Spender’s bank account.

T h e procedure, which is quite fast, is repeated each time a Spender wants a 
coin. A  new random number w should be chosen hy the B ank for each trans
action. Similarly, each spender should choose a  new 5-tuple ( s ,x i ,  12 ,0 1,0 2 ) 
for each coin.

11.1.7 Spending the Coin

T he Spender gives the coin (A,B,z, a, b,r) to the Merchant. T h e following 
procedure is then performed:

1. The Merchant checks whether

gr =  a AT =  z »{A,B,z.a,b)b (mod p )

If this is the case, the Merchant knows that the coin is valid. However, 
more steps are required to prevent double spending.

2. T he Merchant computes

d = H0(A,B,M ,t),

where Ho is the hash function chosen in the initialization phase and 
t is a  number representing the date and time of the transaction. T he 
number t is included so that different transactions will have different 
values of d. T h e Merchant sends d to the Spender.

3. T h e  Spender computes

=  dus +  Xi, r2 =  ds +  x 2 (mod 7),

where u  is the Spender's secret number, and s, X i, x 2 are part o f the 
secret random 5-tuple chosen earlier. T he Spender sends h  and r2 to 
the Merchant.

4 . T he M erchant checks whether

g['g2‘ -=AdB (m odp).

If this congruence holds, the Merchant accepts the coin. Otherwise, 
the Merchant rejects it-
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11.1.8 The Merchant Deposits the Coin in the Bank

A  few days after receiving the coin, the M erchant wants to deposit it in 
the Bank. T h e Merchant subm its the coin (A ,B ,z ,a ,b ,r )  plus the triple 
( n , r i ,  tf). T h e Bank performs the following:

1. T h e Bank checks that the coin (A , B ,z ,a ,b ,r )  has not been previously 
deposited. If it hasn’t been, then the next step is performed. If it 
has been previously deposited, the Bank skips to the Fraud Control 
procedures discussed in the next subsection.

‘2 . T h e Bank checks that

gr = a hH<~A‘B' A r =  z f{(A'B': ’a’bh , B.ndg[lgT2= = A dB  (mod p). 

If so, the coin is valid and the M erchant’s account is credited.

11.1.9 Fraud Control

There are several possible ways for someone to try to cheat. Here is how 
they are dealt with.

1. T h e  Spender spends the coin twice, once w ith the M erchant, and once 
w ith someone we'll call the Vendor. T he Merchant submits the coin 
along w ith the triple (n,r2,d).  T h e Vendor subm its the coin along 
w ith the triple (r[,T'2,d'). An easy calculation shows that

7*i — r\ =  us(d — d1), r j  — r'2 =  s(d — d') (mod q).

D ividing yields u =  (ri — r [ ) (ro — r^)-1  (mod <j). T h e Bank computes 
I  =  (mod p) and identifies the Spender. Since the Bank cannot 
discover u otherwise, it has proof (at least beyond a reasonable doubt) 
that double spending has occurred. T h e Spender is then sent to jail 
(if the ju ry  believes that the discrete logarithm  problem is hard).

2. T h e  M erchant tries subm itting the coin twice, once w ith the legiti
m ate triple (ri,T2,d) and once w ith a  forged triple ( r l .r ^ ii ') ,  T his is 
essentially impossible for the Merchant to do, since it is very difficult 
for the Merchant to produce numbers such that

g\xg\2 =  A d' B  (m odp ).

3. Someone tries to make an unauthorized coin. This requires finding 
numbers such that gT =  a h ll Â,B'z'a^  and A r =  z H Â’B,:,a'b̂ b. This 
is probably hard to  do. For exam ple, starting w ith  A ,B ,z ,a ,b ,  then
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trying to find r, requires solving a discrete logarithm problem just 
to make the first equation work. Note that the Spender is foiled in 
attem pts to produce a  second coin using a  new 5-tuple since the values 
of x  is known only to the Bank. Therefore, Ending the correct value 
of r  is very difficult.

4. Eve L. Dewar, an evil merchant, receives a coin from the Spender 
and deposits it in the bank, but also tries to spend the coin with the 
Merchant. Eve gives the coin to the Merchant, who computes d', which 
very likely is not equal to  d. Eve does not know u, £1,2:2, s, but she 

must choose r\ and r? such that g^g^' =  Ad' B (mod p). T h is again 
is a type of discrete logarithm  problem. W h y can't Eve sim ply use the 
t*i,r2 that she already knows? Since d' /  d, the Merchant would find 
that g\l92 F  Ad' B.

5. Someone working in the Bank tries to forge a coin. T his person has 
essentially the sam e information as Eve, plus the identification number
I. It is possible to make a  coin that satisfies gT =
However, since the Spender has kept u  secret, the person in the bank 
will not be able to produce a suitable r 1. O f course, if  s =  0 were 
allowed, this would be possible; this is one reason A =  1 is not allowed.

6. Someone steals the coin from the Spender and tries to spend it. T he 
first verification equation is still satisfied, but the thief does not know 
u and therefore will not be able to produce r j , T2 such that g^g? =  
A d'B.

7 . Eve L. Dewar, the evil merchant, steals the coin and ( r i .r i ,^ )  from 
the M erchant before they are subm itted to the Bank. Unless the bank 
requires merchants to keep records of the time and date of each trans
action, and therefore be able to reproduce the inputs th at produced 
d, E ve ’s theft will be successful. T his of course is a  flaw of ordinary 
cash, too.

11.1.10 Anonymity

During the entire transaction with the Merchant, the Spender never needs 
to provide any identification. T his is the same as for purchases made 
w ith conventional cash. Also, note that the Bank never sees the values 
of A , B , z , a , b , r  for the coin until it is deposited by the Merchant. In fact, 
the Bank provides only the number w and the number Ci, and has seen only 
c. However, the coin still contains information that identifies the Spender 
in the case of double spending. Is it possible for the Merchant or the Bank 
to extract the Spender’s identity from knowledge o f the coin (A, B ,  2, a, 6, r)
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and the triple (rt l r2,d)? Since the Bonk also knows the identification num
ber /, it suffices to consider the case where the Bank is trying to identify 
the Spender. Since 5,2:1,12 are secret random numbers known only to the 
Spender, A  and B are random numbers, In particular, A  is a random power 
of g and cannot be used to deduce I. T h e number z is sim ply Ax (mod p), 
and so does not provide any help beyond w hat is known from A . Since a 
and b introduce two new secret random exponents <11,0:2. they are again 
random numbers from the viewpoint of everyone except the Spender.

A t this point, there m e five numbers, A,B,z,a,b, that look like ran
dom powers of g to everyone except the Spender. However, when c =  
o f  l .ff(A, B, z, a, 6) (mod </) is sent to the Bank, the Bank m ight try to com
pute the value of H  and thus deduce Q j. B u t the Bank has not seen the coin 
and so cannot compute H. The Bank could try to keep a list of all values c 
it has received, along with values of H  for every coin that is deposited, and 
then try all combinations to find a i-  B ut it is easily seen that, in a system 
with millions of coins, the number of possible values o f o i  is too large for 
this to be practical. Therefore, it is unlikely that knowledge of c, hence of 
b, will help the Bank identify the Spender.

T h e numbers o i  and 02 provide what Brands calls a  r e s tr ic te d  b lin d  
s ig n a tu r e  for the coin. Namely, using the coin once does not allow identifi
cation o f the signer (namely, the Spender), but using it twice does (and the 
Spender is sent to jail, as pointed out previously).

To see the effect o f the restricted blind signature, suppose Oi is essentially 
removed from the process by taking o i  =  1. Then the Bank could keep a 
list of values of c, along with the person corresponding to each c. W hen a 
coin is deposited, the value of H  would then be com puted and compared 
w ith the list. Probably there would be only one person for a  given c, so the 
Bank could identify the Spender.

11.2 Exercises

1. Show that a  valid coin satisfies the verification equations

gr = a / l ff(AB,=,a ,b)t A r 5  z H(A,B,;,a,b,r)bt a „ d  f t  f t  =  ( m Q d  p )

2 . A  hacker discovers the B ank’s secret number x. Show how coins can 
be produced and spent w ithout having an account a t the bank.

3 . T h e  numbers gi and <72 are powers o f g, but the exponents are supposed 
to be hard to find. Suppose we take g 1 =  <72-

(a) Show that if  the Spender replaces r i , 73 with r\, r'2 such that 
r i +  rn =  t[ +  r i , then the verification equations still work.
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(b ) Show how the Spender can double spend without being identified.

4 . Suppose the coin is represented only as {A, B ,a,r);  for example, by 
ignoring z and b, taking the hash function i f  to be a function o f only 
A, B, a, and ignoring the verification equation Ar =  z lrb. Show that 
the Spender can change the value of u  to any desired number (without 
informing the Bank), com pute a  new value of 7, and produce a  coin 
that will pass the two remaining verification equations.

5 . If the Spender double spends, once with the Merchant and once with 
the Vendor, why is it very likely that r 2 — r'2 ^  0 (mod q) (where r j ,  r'2 
are as in the discussion o f Fraud Control)?
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Secret Sharing Schemes

Imagine, if you will, that you have made billions of dollars from Internet 
stocks and you wish to leave your estate to relatives. Your money is locked 
up in a safe whose combination only you know. You don ’t want to give 
the combination to each of your seven children because they are less than 
trustworthy. You would like to divide it among them in such a way that 
three o f them have to get together to reconstruct the real combination. T h a t 
way, someone who wants some of the inheritance must somehow cooperate 
w ith two other children. In this chapter we show how to solve this type of 
problem.

12.1 Secret Splitting

T h e first situation that we present is the simplest. Consider the case where 
you have a message M ,  represented as an integer, that you would like to 
split between two people A lice and Bob in such a way that neither of them 
alone can reconstruct the message M. A  solution to this problem readily 
lends itself: Give A lice  a random integer r and give Bob M  — r. In order to 
reconstruct the message M,  A lice and Bob sim ply add their pieces together.

A  few technical problems arise from the fact that it is impossible to 
choose a  random integer in a  way that all integers are equally likely (the 
sum of the infinitely m any equal probabilities, one for each integer, cannot 
equal 1). Therefore, we choose an integer n  larger than all possible messages 
M  that might occur and regard M  and r  as numbers mod n. Then there

296
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is no problem choosing r as a random integer mod 71; simply assign each 

integer mod n the probability 1/n.

Now let us exam ine the case where we would like to split the secret 
am ong three people, Alice, Bob, and Charles. Using the previous idea, we 
choose two random numbers r and s mod n and give M  — r — s (mod n) 
to Alice, r to Bob, and s to Charles. To reconstruct the message M, Alice, 
Bob, and Charles sim ply add their respective numbers.

For the more general case, if we wish to split the secret M  among m 
people, then we must choose to — 1 random numbers r j , . . . ,  7'm- i  mod n 
and give them to m  -  1 of the people, and M  -  £ £ 7,' (mod n) to the 
remaining person.

12.2 Threshold Schemes

In the previous section, we showed how to split a  secret among m  people so 
th at all m  were needed in order to reconstruct the secret. In this section we 
present m ethods th at allow a subset o f the people to reconstruct the secret.

It has been reported that the control of nuclear weapons in Russia em
ployed a safety mechanism where two out of three im portant people were 
needed in order to launch missiles. T his idea is not uncommon, It's in fact a 
plot device that is often employed in spy movies. One can imagine a control 
panel w ith three slots for keys and the missile launch protocol requiring that 
two of the three keys be inserted and turned at the same time in order to 
launch missiles to eradicate the earth.

W hy not ju st  use the secret splitting scheme of the previous section? 
Suppose some country is about to attack the enemy of the week, and the 
secret is split am ong three officials. A  secret splitting method would need 
all three in order to reconstruct the key needed for the launch codes. This 
might not be possible; one of the three m ight be away on a diplomatic 
mission making peace w ith the previous week’s opponent or m ight sim ply 
refuse because of a difference of opinion.

Definition. Let t,w be positive integers with t < w. A (t, iy)-threshold 
scheme is a method of sharing a message M  among a set of w participants 

suck that any subset consisting of t participants can reconstruct the message 

M, but no subset of smaller size can reconstruct M.

T h e (i,u/)-threshold schemes are key building blocks for more general 
sharing schemes, some of which w ill be explored in the Exercises for this 
chapter. We will describe two m ethods for constructing a (<, u/)-threshold 
scheme.

T he first m ethod was invented in 1979 by Sham ir and is known as the 
S h a m ir  th r e s h o ld  sc h e m e  or the Lagrange interpolation scheme. It is
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based upon some natural extensions of ideas that we learned in high school 
algebra, namely that two points are needed to determ ine a  line, three points 
to determine a quadratic, and so on.

Choose a prime p, which must be larger than all possible messages and 
also larger than the number w of participants. A ll com putations will be 
carried out mod p. T h e  prime replaces the integer n  of Section 12.1. If a 
composite number were to be used instead, the matrices we obtain might 
not have inverses.

T he message M  is represented as a  number mod p, and we want to split 
it among w people in such a way that i  of them are needed to reconstruct 
the message. T h e  first thing we do is randomly select t — 1 integers mod p, 
call them s i , $2,• • • s t - i . Then the polynomial

is a polynomial such that s(0) =  M  (mod p). Now, for the w participants, 
we select distinct integers x i , . . .  , Xu, (mod p) and give each person a pair 
(xi,iji) with yi =  s(i i)  (mod p). For example, l , 2 , . . . , w  is a reasonable 
choice for the i ’s, so we give out the pairs ( l , s ( l ) ) , . . . ,  (w, s(w )), one to 
each person. The prime p is known to all, but the polynom ial s(x) is kept 
Hccrct.

Now suppose t people get together and share their pairs. For sim plicity 
of notation, we assume the pairs are ( x i ,y i) ,  • • • , (xt,i/t). T hey want to 
recover the message M .

We begin w ith a  linear system approach. Suppose we have a polyno
mial »(i) of degree t — 1 that we would like to reconstruct from the points 
(x i,i/ i), • • • , (it,i/t). where yk — s{xk). This means that

Vk =  M  +  s ii jt  H-------h s t - i i j .-1  (mod p), ! < / ; < ( .

If we denote sq =  M ,  then we may rewrite this as

Thu matrix, let’s call it V,  is what is known as a  Vandermonde m atrix. We 
know that this system  has a  unique solution mod p if the determinant of 
l.lin nmtrix V is nonzero mod p (see Section 3.8). It can be shown that the 
ilolm nlim nt is

s(x) =  M  + s\x H-------h s t - ix l 1 (mod p)

/  I  X\

1 X2

\ { *o \ /  3/i \ 
Sl 1/2

(mod p).

\  1 x t ••• I , -1  J \ st J \  yt /

dety =  J J  (xk-Xj),
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which is zero mod p only when two of the x;’s coincide mod p (this is where 

we need p to be prime; see Exercise 7 in Chapter 3). Thus, as long as we 

have distinct a^'s, the system has a unique solution.

We now describe an alternative approach that leads to a formula for 

the reconstruction of the polynomial and hence for the secret message. Our 

goal is to reconstruct a polynomial s(x) given that we know t of its values 

(x*, 3/fc)- First, let

h(x) =  —— —  (mod p).
i = i Xk ~ x'
> # t

Here, we work with fractions mod p as described in Section 3.3. Then

, / \ _  J 1 when k = j  
lk(xj) =  |o when k j.

This is because ifc(xjt) is a product of factors (xii — xi)/(xk—xi), all of which 

are 1. When k ^  j ,  the product for lh(xj) contains the factor (xj —x3 )/(x^ — 

Xj), which is 0 .

The Lagrange interpolation polynomial

t

pM  =  23yiA-(z)
*=i

satisfies the requirement p(xj) =  yj for 1 < k < t. For example,

p{x\) =  Vih(x\) + V ihfa) H---=  2/i • 1 + J/2 • 0  H--- = y x (mod p).

We know from the previous approach with the Vandermonde matrix that 

the polynomial s(x) is the only one of degree t - 1 that takes on the specified 
values. Therefore, p(x) =  s(x).

Now, to reconstruct the secret message all we have to do is calculate p(x) 
and evaluate it at x =  0. This gives us the formula

i t
- X i

m  = Y ,V ‘ n  (n iodp)-
k=l j = l Xk 

if4*

Exam p le . Let’s construct a (3, 8 )-threshold scheme. We have eight people 

and we want any three to be able to determine the secret, while two people 
cannot determine any information about the message.
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Suppose the secret is the number A/ =  190503180520 (which corresponds 

to the word secret). Choose a prime p, for example, p =  1234567890133 (we 

need a prime at least as large as the secret, but there is no advantage in 

using primes much larger than the maximum size of the secret). Choose 

random numbers S) and so mod p and form the polynomial

s(x) =  M  + Six + six2.

For example, let's work with

s(x) =  190503180520 + 482943028839x + 1206749628665a:2.

We now give the eight people pairs (x,s(x)). There is no need to choose 

the values of x randomly, so we simply use x = 1 ,2 ,... , 8 . Therefore, we 
distribute the following pairs, one to each person:

(1 , 645627947891)
(2, 1045116192326)

(3, 154400023692)

(4, 442615222255)
(5, 675193897882)

(6 , 852136050573)

(7, 973441680328)
(8 , 1039110787147).

Suppose persons 2, 3, and 7 want to collaborate to determine the secret. 

Let's use the Lagrange interpolating polynomial. They calculate that the 

following polynomial passes through their three points:

20705602144728/5 - 1986192751427x + (1095476582793/5)a:2.

At this point they realize that they should have been working mod p. But

740740734080 x 5 =  1 (mod p),

so they replace 1/5 by 740740734080, as in Section 3.3, and reduce mod p 
to obtain

190503180520 + 482943028839x + 1206749628665x3.

This is, of course, the original polynomial s(x). All they care about is the 

constant term 190503180520, which is the secret. (The last part of the 

preceding calculations could have been shortened slightly, since they only 

needed the constant term, not the whole polynomial.)

Similarly, any three people could reconstruct the polynomial and obtain 

the secret.
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If persons 2, 3, und 7 chose the linear system approach instead, they 

would need to solve the following:

Z 1 2  4 \ f  M  \ Z 1045116192326 \

1 3 9 I si =  154400023692 (mod 1234567890133). 

y 1 7 49 / \ s2 / \ 973441680328 J

This yields

(A-/,si, s2) =  (190503180520,482943028839,1206749628665),

so they again recover the polynomial and the message.

What happens if only two people get together? Do they obtain any 

information? For example, suppose that person "4 and person 6 share their 

points (4, 442615222255) and (6 , 852136050573) with each other. Let c be 

any possible secret. There is a unique quadratic polynomial ax2 + bx + c 

passing through the points (0, c), (4, 442615222255), and (6 , 852136050573). 

Therefore, any secret can still occur.

Similarly, they cannot guess the shore held, for example, by person 7: 
Any point (7,1/7 ) yields a unique secret c, and any secret c yields a polynomial 
ax2 + bx + c, which corresponds toy7 = 49a + 76 + c. Therefore, every value 

of 7/7 can occur, and each corresponds to a secret. So persons 4 and 6  don’t 

obtain any additional information about which secrets are more likely when 
they have only their own two points.

Similarly, if we use a polynomial of degree t — 1, there is no way that 
t — 1 persons can obtain information about the message with only their data- 

Therefore, t people are required to obtain the message. ■

There are other methods that can be used for secret sharing. We now 

describe one due to Blakley, also from 1979. Suppose there are several people 

and we want to arrange that any three can find the secret, but no two can. 

Choose a prime p and let xq be the secret. Choose 1/0 ,2 0  randomly mod 

p. We therefore have a point Q =  (xq,ijq, z q )  in three-dimensional space 

mod p. Each person is given the equation of a plane passing through Q. 
This is accomplished os follows. Choose o, b randomly mod p and then set 

c  — z q  — ax0 — 61/0 (mod p). The plane is then

z = ax + by + c.

This is done for each person. Usually, three planes will intersect in a point, 

which must be Q. Two planes will intersect in 0  line, so usually no informa

tion can obtained concerning the secret xq (but see Exercise 11).
Note that only one coordinate should be used to carry the secret. If the 

secret had instead been distributed among all three coordinates x q , ! /o , z q ,
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then there might be only one meaningful message corresponding to a point 

on a line that is the intersection of two persons’ planes.

The three persons who want to deduce the secret can proceed as follows. 

They have three equations

Oji + bi-y - z =  —Ci (mod p), 1 < i < 3,

which yield the matrix equation

/  ai bi -1 \ /  x0 \ /  -ci \

62 — 1 2/0 I =  c2 
\a3 b3 - I  J  \ z0 J  \ -c3 J

As long as the determinant of this matrix is nonzero mod p, the matrix can 

be inverted mod p and the secret xq can be found (of course, in practice, 

one would tend to solve this by row operations rather than by inverting the 

matrix).

Exam ple . Let p =  73. Suppose we give A, B, C, D, E the following planes:

A: z =  4x + 19y + 68 

B: z = 52x + 27y + 10 

C: z — 36x + 65y + 18 

D: z =  57x4-12i/+ 16 

E : z =  34x + 19y + 49.

If A, B, C want to recover the secret, they solve

/  4 19 -1 W  x„ \ /  -68 \
52 27 -1 z/o = -10 (mod 73).

\ 36 65 -1 J  \ zo J  \ -18 /

The solution is (xo.yo, zq) =  (42,29,57), so the secret is xq =  42. Similarly, 

any three of A, B, C, D, E can cooperate to recover xq. B

By using (t— l)-dimensional hyperplanes in t-dimensional space, we can 
use the same method to create a (t,ui)-threshold scheme for any values of t 
and w.

As long as p is reasonably large, it is very likely that the matrix is in
vertible, though this is not guaranteed. It would not be hard to arrange 

ways to choose a, b, c so that the matrix is always invertible. Essentially, 
this is what happens in the Shamir method. The matrix equations for both
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methods are similar, and the Shamir method could be regarded as a special 

case of the Blakley method. But since the Shamir method yields a Vander- 

monde matrix, the equations can always be solved. The other advantage of 

the Shamir method is that it requires less information to be carried by each 
person: (x, y) versus (a, 6 , c ,. ..) .

We now return to the Shamir method and consider variations of the basic 

situation. By giving certain persons more shares, it is possible to make some 

people more important than others. For example, suppose we have a system 

in which eight shares are required to obtain the secret, and suppose the 

boss is given four shares, her daughters are given two shares, and the other 

employees are each given one share. Then the boss and two of her daughters 

can obtain the secret, or three daughters and two regular employees, for 

example.

Here is a more complicated situation. Suppose two companies A and B 

share a bank vault. They want a system where four employees from A and 

three from B are needed in order to obtain the secret combination. Clearly it 

won’t work if we simply supply shares that are all for the same secret, since 

one company could simply use enough partial secrets from its employees 

that the other company’s shares would not be needed. The following is a 

solution that works. Write the secret s as the sum of two numbers s =  Ca+cB 

(mod p). Now make into a secret shared among the employees of A as the 

constant term of a polynomial of degree 3. Similarly, let eg be the constant 

term of a polynomial of degree 2  and use this to distribute shares of eg 
among the employees of B. If four employees of A and three employees of B 

get together, then those from A determine and those from B determine 

cs. Then they add ca and cB to get s.
Note that A does not obtain any information about the secret s by itself 

since C4 +X =  s (mod p) has a unique solution x for every s, so every possible 

value of s corresponds to a possible value of cB. Therefore, knowing does 

not help A to find the secret; A also needs to know eg.

12.3 Exercises

1 . Suppose you have a secret, namely 5. You want to set up a system 

where four persons A, B, C, D are given shares of the secret in such a 
way that any two of them can determine the secret, but no one alone 

can determine the secret. Describe how this can be done. In particular, 

list the actual pieces of information (i.e., numbers) that you could give 

to each person to accomplish this.

2 . You set up a (2 , 30) Shamir threshold scheme, workingzinod the prime
101. Two of the shares are (1,13) and (3,12). Another person received
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the share (2 , *), but the part denoted by * is unreadable. What is the 

correct value of * ? ,

3. In a (3,5) Shamir secret sharing scheme with modulus p =  17, the 

following were given to Alice, Bob, and Charles: (1,8 ), (3,10), (5,11). 

Calculate the corresponding Lagrange interpolating polynomial, and 

identify the secret.

4. In a Shamir secret sharing scheme, the secret is the constant term of a 
degree 4 polynomial mod the prime 1093. Suppose three people have 

the secrets (2, 197), (4, 874), and (13, 547). How many possibilities 

are there for the secret?

5. Mark doesn’t like mods, so he wants to implement a (2,30) Shamir 
secret sharing scheme without them. His secret is M  (a positive inte

ger) and he gives person i the share (i, M  + si) for a positive integer 

s that he randomly chooses. Bob receives the share (20,97). Describe 
how Bob can narrow down the possibilities for M  and determine what 

values of M  are possible.

6 . A key distributor uses a (2 , 20)-threshold scheme to distribute a com

bination to an electronic safe to 2 0  participants.

(a) What is the smallest number of participants needed to open the 

safe, given that one unknown participant is a cheater who will 

reveal a random share?

(b) If they are only allowed to try one combination (if they are wrong 

the electronic safe shuts down permanently), then how many par

ticipants are necessary to open the safe? (Note: This one is a little 

subtle. A majority vote actually works with four people, but you 

need to show that a tie cannot occur.)

7. A certain military office consists of one general, two colonels, and five 

desk clerks. They have control of a powerful missile but don’t want 

the missile launched unless the general decides to launch it, or the two 

colonels decide to launch it, or the five desk clerics decide to launch 

it, or one colonel and three desk clerks decide to launch it. Describe 

how you would do this with a secret sharing scheme. (Hint: Try 

distributing the shares of a (10, 30) Shamir scheme.)

8 . Suppose there are four people in a room, exactly one of whom is a 

foreign agent. The other three people have been given pairs corre

sponding to a Shamir secret sharing scheme in which any two people 

can determine the secret. The foreign agent has randomly chosen a
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pair. The people and pairs are as follows. All the numbers are mod 

11.
A: (1,4) B: (3,7) C : (5 ,l)  D: (7,2).

Determine who the foreign agent is and what the message is.

9. Consider the following situation: Government A, Government B, and 

Government C are hostile to each other, but the common threat of 

Antarctica looms over them. They each Bend a delegation consisting 
of 10 members to an international summit to consider the threat that 

Antarctica’s penguins pose to world security. They decide to keep a 

watchful eye on their tuxedoed rivals. However, they also decide that 

if the birds get too rowdy, then they will launch a full-force attack on 

Antarctica. Using secret sharing techniques, describe how they can 
arrange to share the launch codes so that it is necessary that three 

members from delegation A, four members from delegation B, and 

two members from C cooperate to reconstruct the launch codes.

10. This problem explores what is known as the Newton form of the inter- 

polant. In the Shamir method, we presented two methods for calculat
ing the interpolating polynomial. The system of equations approach 

is difficult to solve and easy to evaluate, while with the Lagrange ap

proach it is quite simple to determine the interpolating polynomial but 

becomes a labor to evaluate. The Newton form of the interpolating 

polynomial comes from choosing l,x  ~ xi,(x — x\)(x — xo), • - • , (x — 
$i)(x  — xn) ■■■(x — xt) as a basis. The interpolating polynomial is

then p(x) =  co + ci ( i — xi) + C2(x — xi)(x — xo) -I--- f- ct(x — xi)(x —

i 2) . . .  (x — x<). Show that we can solve for the coefficients Cjt by solv

ing a system Nc =  y. What special properties do you observe in the 

matrix N? Why does this make the system easier to solve?

11. In a Blakley (3, ui) scheme, suppose persons A and B are given the 

planes z =  2x + 3y + 13 and z =  5x + 3y + 1. Show that they can 

recover the secret without a third person.

12.4 Computer Problems

1. Alice, Bob, and Charles have each received shares of a secret that 

was split using the secret splitting scheme described in Section 12.1. 

Suppose that n = 2110763. Alice is given the share M  — r — s =  

1008369, Bob is given the share r =  593647, and Charles is given the 

share s =  631870. Determine the secret M.
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2. For a Shamir (4,7) secret sharing scheme, take p =  8737 and let the 

shares be

(1,214), (2,7543), (3,6912), (4,8223), (5,3904), (6,3857), (7,510).

Take a set of four shares and find the secret. Now take another set of 

four shares and verify that the secret obtained is the same.

3. Alice, Bob, Charles, and Dorothy use a (2, 4) Shamir secret sharing 

scheme using the prime p =  984583. Suppose that Alice gets the share 

(38, 358910), Bob gets the share (3876, 9612), Charles gets the share 

(23112, 28774), and Dorothy gets the share (432,178067). One of these 

shares was incorrectly received. Determine which one is incorrect, and 

find the secret.
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Games

13.1 Flipping Coins over the Telephone

Alice is living in Anchorage and Bob is living in Baltimore. A friend, not 
realizing that they are no longer together, leaves them a car in his will. How 
do they decide who gets the car? Bob phones Alice and says he’ll flip a coin. 

Alice chooses “Tails” but Bob says “Sorry, it was Heads.” So Bob gets the 
car.

For some reason, Alice suspects Bob might not have been honest. (Actu

ally, he told the truth; as soon as she called tails, he pulled out his specially 

made two-headed penny so he wouldn't have to lie.) She resolves that the 

next time this happens, she'll use a different method. So she goes to her 

local cryptologist, who tells her the following method.

Alice chooses two large random primes p and q, both congruent to 3 

mod 4. She keeps them secret but sends the product n = pq to Bob. Then 
Bob chooses a random integer x and computes y = x1 (mod n). He keeps x 
secret but sends y to Alice, Alice knows that y has a square root mod n (if it 

doesn't, her calculations will reveal this fact, in which case she accuses Bob 

of cheating), so she uses her knowledge of p and q to find the four square 
roots ±o, ±b of y (mod n) (see Section 3.9). One of these will be x, but she 

doesn’t know which one. She chooses one at random (this is the “flip”), say 
b, and sends it to Bob. If b s  ±x (mod n), Bob tells Alice that she wins. If

307
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b ^  ±x (mod n), Bob wins.

'Alice Bob

n = pq — ► 71

y <—  y =  x 1
a2 2  li2 =  y — > b

Alice wins <—  i> =  ±x 

or or

Bob wins <—  b ^  ±x

But, asks Alice, how can I be sure Bob doesn't cheat? If Alice sends 

b to Bob and x = ±a (mod n), then Bob knows all four square roots of y 
(mod n), so he can factor n. In particular, gcd(x - b, n) gives a nontrivial 

factor of n. Therefore, if it is computationally infeasible to factor n, the 

only way Bob could produce the factors p and q would be when his value 

of x is not plus or minus the value Alice sends. If Alice sends Bob ±x, Bob 

has no more information than he had when Alice sent him the number n. 
Therefore, he should not be able to produce p and q in this case. So Alice 

can check that Bob didn't cheat by asking Bob for the factorization of n.
What if Alice tries to cheat by sending Bob a random number rather 

than a square root of y? This would surely prevent Bob from factoring n. 
Bob can guard against this by checking that the square of the number Alice 

sends is congruent to y.
Suppose Alice tries to deceive Bob by sending a product of three primes. 

Of course, Bob could ask Alice for the factorization of n at the end of 

the game; if Alice produces two factors, they can be quicldy checked for 

primality. But Bob shouldn’t worry about this possibility. When n is the 

product of three distinct primes, there are eight square roots of y. Therefore, 

up to sign there are four choices of numbers for Alice to send. Each of the 

three wrong choices will allow Bob to find a nontrivial factor of n. So Alice 

would decrease her chances of winning to only one in four. Therefore, she 

should not try this.

There is one flaw in this procedure. Suppose Bob decides he wants to 

lose. He can then claim his value of x was exactly the value that Alice sent 

him. Alice cannot dispute this since the only information she has is the 

square of Bob's number, which is congruent to the square of her number. 

There are other procedures that can prevent Bob from trying to lose, but 

we will not discuss them here.

Finally, we should mention that it is not difficult to find primes p and q 
that are congruent to 3 mod 4. The density of primes congruent to 1 mod

4 is the same as the density of primes that are 3 mod 4. Therefore, find 

a random prime p. If it is not 3 mod 4, try another. This process should 

succeed quickly. We can find q similarly.
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Exam p le . Alice chooses

p =  2038074743 and q =  1190494759.

She sends

n = pq = 2426317299991771937

to Bob. Bob takes

x =  1414213562373095048

(this isn't as random as it looks; but Bob thinks the decimal expansions of 

square roots look random) and computes

y =  x2 =  363278601055491705 (mod n),

which he sends to Alice.

Alice computes

y(p+i)/-i =  1701899961 (mod p) and y(l,+1V4 =  325656728 (mod q).

Therefore, she knows that

x =  ±1701899961 (mod p) and i  =  ±325656728 (mod q).

The Chinese remainder theorem puts these together in four ways to yield

x =  ±1012103737618676889 or ± 937850352623334103 (mod n).

Suppose Alice sends 1012103737618676889 to Bob. This is —x (mod n), 

so Bob declares Alice the winner.

Suppose instead that Alice sends 937850352623334103 to Bob. Then 

Bob claims victory. By computing

gcd(1414213562373095048 - 937850352623334103, n) =  1190494759,

he can prove that he won. I

13.2 Poker over the Telephone

Alice and Bob quickly tire of flipping coins over the telephone and decide to 

try poker. Bob pulls out his deck of cards, shuffles, and deals two hands, one 

for Alice and one for himself. Now what does he do? Alice won’t let him read 

the cards to her. Also, she suggests that he might not be playing with a full 

deck. Arguments ensue. But then someone suggests that they each choose 

their own cards. The betting is fast and furious. After several hundred coins
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(they remain unused from the coin-flipping protocol) have been wagered, 

Alice and Bob discover that they each have a royal flush. Each claims the 

other must have cheated. Fortunately, their favorite cryptologist can help.

Here is the method she suggests, in nonmathematical terms. Bob takes 
52 identical boxes, puts a card in each box, and puts a lock on each one. 

He dumps the boxes in a bag and sends them to Alice. She chooses five 

boxes, puts her locks on them, and sends them back to Bob. He takes his 

locks off and sends the five boxes back to Alice, who takes her locks off and 

finds her five cards. Then she chooses five more boxes and sends them back 

to Bob. He takes off his locks and gets his five cards. Now suppose Alice 

wants to replace three cards. She puts three cards in a discard box, puts on 

her lock, and sends the box to Bob. She then chooses three boxes from the 

remaining 42 card boxes, puts on her locks, and sends them to Bob. Bob 

removes his locks and sends them back to Alice, who removes her locks and 

gets the cards. If Bob wants to replace two cards, he puts them in another 

discard box, puts on his lock, and sends the box to Alice. She chooses two 

card boxes and sends them to Bob. He removes his locks and gets his cards. 

They then compare hands to see who wins. We’ll assume Alice wins.

After the hand has been played, Bob wants to check that Alice put three 

cards in her discard box since he wants to be sure she wasn’t playing with 

eight cards. He puts his lock on the box and sends the box to Alice, who 

takes her lock off. Since Bob’s lock ia still on the box, she can’t change the 

contents. She sends the box back to Bob, who removes the lock and finds 

the three cards that Alice discarded (this differs from standard poker in 

that Bob sees the actual cards discarded; in a standard game, Bob only sees 
tlmt Alice discards three cards and doesn’t need to look at them afterward). 

Similarly, Alice can check that Bob discarded two cards.

Bob can check that Alice played with the hand that was dealt by asking 

her to send her cords to him. Alice cannot change her hand since all the 

remaining cards still have Bob’s locks on them (and Bob can't open them 

since Alice has them in her possession).

Of course, various problems arise if Alice or Bob unjustly accuses the 

other of cheating. But, ignoring such complications, we see that Alice and 

Bob can now play poker. However, the postage for sending 52 boxes back 

imd forth is starting to cut into Alice's profits. So she goes back to her 

cryptologist and asks for a mathematical implementation. The following is 
llio method..

Alice and Bob agree on a large prime p. Alice chooses a secret integer a 
with gcd(a, p — 1) =  1, and Bob chooses a secret integer (3 with gcd(/?, p — 
1) = 1. Alice computes a' such that act =  1 (mod p — 1) and Bob computes 

[I1 with pp' =  1 (mod p — 1). A different a and y3 are used for euch hand. 

A different p could be used for each hand also.

Note that cOQ =  c (modp), and similarly for p. This can be seen as
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follows: aa' =  1 (mod p — 1 ), so a o' =  1 + (p - 1 )k for some integer k. 
Therefore, when CpO  (mod p)

caa - c ■ (cp-1)fc = C‘ l k =  c (mod p).

Trivially, we also have caa’ = c (mod p) when c =  0 (mod p).

The 52 cards are changed to 52 distinct numbers cj, . . . ,  C52 mod p via 

some prearranged scheme. Bob computes Zi, =  cf (mod p) for 1 < i < 52, 

randomly permutes these numbers, and sends them to Alice. Alice chooses 

five numbers 6 j,, • • • , £>j0, computes 6? (mod p) for 1 < j  < 5, and sends 

these numbers to Bob. Bob takes off his lock by raising these numbers to 

the P‘ power and sends them to Alice, who removes her lock by raising to 

the a' power. This gives Alice her hand.

Alice then chooses five more of the numbers b; and sends them bock to 

Bob, who removes his locks by raising the numbers to the ft' power. This 

gives him his hand. The rest of the game proceeds in this fashion.

It seems to be quite difficult for Alice to deduce Bob's cards. She could 

guess which encrypted card corresponds to a fixed unencrypted card cj. 

This means Alice would need to solve equations of the form = b, (mod p) 

for b. Doing this for the 52 choices for f>, would give at most 52 choices for 

p. The correct exponent p  could then be determined by choosing another 
card cy and trying the various possibilities for p  to see which ones give 

the encrypted values that are on the list of encrypted cards. But these 
equations that Alice needs to solve are discrete logarithm problems, which 
are generally assumed to be difficult when p is large (see Chapter 7).

Exam p le . Let's consider a simplified game where there are only five cards: 

ten, jack, queen, king, ace. Each player is dealt one card. The winner is the 

one with the higher card. Change the cards to numbers using a =  0 1 , b =  
0 2 , , . . ,  so we have the following:

Ten Jack Queen King Ace 

200514 10010311 1721050514 11091407 10305

Let the prime be p =  2396271991. Alice chooses her secret a =  1234567 and 

Bob chooses his secret P — 7654321. Alice computes a' =  402406273 and 
Bob computes P' =  200508901. This can be done via the extended Euclidean 

algorithm. Just to be sure, Alice checks that aa' =  1 (mod p — 1), and Bob 

does a similar calculation with p  and p'.
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2005140 =  914012224

1001031V3 =  1507298770

1721050514^ =  74390103

11091407^ =  2337996540

10305fl =  1112225809.

He shuffles these numbers and sends them to Alice:

1507298770, 1112225809 , 2337996540, 914012224 , 74390103.

Since Alice does not know /3, it is unlikely she can deduce which card is 

which without a lot of computation.

Alice now chooses her card by choosing one of these numbers - for ex

ample, the fourth - raises it to the power o, and sends it to Bob:

914012224°' =  1230896099 (mod p).

Bob takes off his lock by raising this to the power 0' and sends it back to 

Alice:

1230896099s' =  1700536007 (mod p).

Alice now removes her lock by raising this to the power a':

1700536007“' =  200514 (mod p).

Her card is therefore the ten.

Now Alice chooses Bob’s card by simply choosing one of the original 

cards she received - for example, 1507298770 - and sending it back to Bob. 

Bob computes

1507298770^* =  10010311 (mod p).

Therefore, his card is the jack.

This accomplishes the desired dealing of the cards. Alice and Bob now 

compare cards and Bob wins. To prevent cheating, Alice and Bob then 

reveal their secret, exponents a  and 0. Suppose Alice tries to claim she has 

the king. Bob can quickly compute d  and show that the card he sent to 

Alice was the ten. 1

13.2.1 How to Cheat

No game of poker would be complete without at least the possibility of 

cheating. Here’s how to do it in the present situation.

B o b  no w  c a lc u la te s  (co n g ruen ce s  are  m o d  p )
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Bob goes to his local number theorist, who tells him about quadratic 

residues, A number r (mod p) is called a quadratic residue mod p if the 

congruence x~ = t  (mod p) has a solution; in other words, r is a square mod 

p. A nonresidue n is an integer such that x2 =  n (mod p) has no solution.
There is an easy way to decide whether or not a number z ~ 0 (mod p) 

is a quadratic residue or nonresidue:

(p-i)/2 _  J +1 (mod p) if z is a quadratic residue

1 —1 (mod p) if 2 is a quadratic nonresidue

(see Exercise 1). This determination can also be done using the Legendre 

or Jacobi symbol plus quadratic reciprocity. See Section 3.10.

Recall that we needed gcd(a, p—1) — 1 and gcd(/3, p— 1) =  1. Therefore, 

q and P are odd. A card c is encrypted to c8, and

( c Q ) (p - 1)/2  =  ^ ( p - U /2 ) / ?  s  c (p—1)/2 ( m o d  p ) i

since (±l)odd =  ±1 (with the same choice of signs on both sides of the 
congruence). Therefore, c is a quadratic residue mod p if and only if cP is 

a quadratic residue. The corresponding statement also applies to the a  and 
a/} power of the cards.

When Alice sends Bob the five cards that will make up her hand, Bob 

quickly checks these cards to see which are quadratic residues and which are 

nonresidues. This means that there are two sets R  and N, and for each of 

Alice’s cards, he knows whether the card is in R  or N. This gives him a 

slight advantage. For example, suppose he needs to know whether or not 

she has the queen of hearts and he determines that it is in N. If she has 

only one N  card, the chances are low that she has the card. In this way, 

Bob obtains a slight advantage and starts winning.

Alice quickly consults her local cryptologist, who fortunately knows about 

quadratic residues, too. Now when Alice chooses Bob’s hand, she arranges 

that all of his cards are in R, for example. Then she knows that his hand 

is chosen from 26 cards rather than 52. This is better than the partial in

formation that Bob has and is useful enough that she gains an advantage 

over Bob. Finally, Alice gets very bold. She sneakily chooses the prime p 

so that the ace, king, queen, jack, and ten of spades are the only quadratic 

residues. When she chooses Bob’s hand, she gives him five nonresidues. She 

chooses the five residues for herself. Bob, who has been computing residues 

and nonresidues on each hand, has already been getting suspicious since his 

cards have all been residues or all been nonresidues for several hands. But 

now he sees before the hand is played that she has chosen a royal flush for 

herself. He accuses her of cheating, arguments ensue, and they go back to 

coin flipping.
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Exam ple . Let's return to the simplified example. The choice of prime p 

was not random. In fact,

200514(p_1)''2 =  1

10010311(p_I)/2 =  1

1721050514(p-1)/2 =  1

11091407(p~1)/2 =  1

loaos^-1)/2 = - l ,

so only the ace is a nonresidue, while all the remaining cards are quadratic 

residues.

When Alice is choosing her hand, she computes

1507298770(,’-1>/2 =  1

1112225809(p“1)/2 =  -1

233799G540(p~1)/2 = 1

914012224(p-1>''2 =  1

74390103°,-1)/2 =  1.

This tells her that the ace is 1112225809. She raises it to the power o', then 

sends it to Bob. He raises it to the power 0' and sends it back to Alice, who 

raises it to the power a'. Of course, she finds that her card is the ace. ■

For more on playing poker over the telephone, see [Fbrtune-Merritt],

13.3 Exercises

1. Let g be a primitive root for the prime p. This means that the numbers

1, g, g2, g3, . . . ,  gp_2 (mod p) yield all of the nonzero congruence classes 

mod p.

(a) Let i be fixed and suppose x2 =  g% (mod p) has a solution x. 
Show that i must be even. (Hint: Write x =  gi for some j. 
Now use the fact that gk =  gl (mod p) if and only if k =  I 
(mod p — 1).) This shows that the nonzero squares mod p are 

exactly l,g 2,5 '1,gc). • • (modp), and therefore <?,g3,g5, ••. are 
the quadratic nonresidues mod p.

(b) Using the definition of primitive root, show that g(p-1V2 ^  i 

(mod p).

(c) Use Exercise 8 in Chapter 3 to show that g(P-1)/2 =  —1 (mod p).
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(d) Let x ~ 0 (mod p). Show that z^1-1)/2 =  1 (mod p) if x is a 

quadratic residue and rr(p-1)/2 =  — 1 (mod p) if x is a quadratic 

nonresidue mod p.

2. In the coin flipping protocol with n = pq, suppose Bob sends a number

y such that neither y nor —y has a square root mod n.

(a) Show that y cannot be a square both mod p and mod q. Similarly, 

—y cannot be a square mod both primes.

(b) Suppose y is not a square mod q. Show that —y is a square mod 

<7-

(c) Show that y is a square mod one of the primes and — y is a square 

mod the other.

(d) Benevolent Alice decides to correct Bob's “mistake." Suppose y 
is a square mod p and — y is a square mod q. Alice calculates a 

number b such that b2 =  y (mod p) and b2 — —y (mod q) and 

sends b to Bob (there are two pairs of choices for b). Show how 

Bob can use this information to factor n, hence claim victory.

3. (a) Let p be an odd prime. Show that if x =  — x (mod p), then x =  0
(mod p).

(b) Let p be an odd prime. Suppose x, y 0 (mod p) and ar =  y1 

(mod p2). Show that x = ±.y (mod p2) (Hint: Look at the proof 

of the Basic Principle in Section 6.3.)

(c) Suppose Alice cheats when flipping coins by choosing p = q. Show 

that Bob always loses in the sense that Alice always returns ±x, 

Therefore, it is wise for Bob to ask for the two primes at the end 

of the game.
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Zero-Knowledge Techniques

14.1 The Basic Setup

A few years ago, it was reported that some thieves set up a fake automatic 

teller machine at a shopping mall. When a person inserted a bank card and 

typed in an identification number, the machine recorded the information but 
responded with the message that it could not accept the card. The thieves 

then made counterfeit bank cards and went to legitimate teller machines 

and withdrew cash, using the identification numbers they had obtained.

How can this be avoided? There are several situations where someone 

reveals a secret identification number or password in order to complete a 

transaction. Anyone who obtains this secret number, pins some (almost 

public) identification information (for example, the information on a bank 

card), can masquerade as this person. What is needed is a way to use the 

secret number without giving any information that can be reused by an 

eavesdropper. This is where zero-knowledge techniques come in.

The basic challenge-response protocol is best illustrated by an example 

due to Quisquater, Guillou, and Berson |Quisquater et al.]. Suppose there is 

a tunnel with a door, as in Figure 14.1. Peggy (the prover) wants to prove 

to Victor (the verifier) that she can go through the door without giving any 

information to Victor about how she does it. She doesn't even want to let 

Victor know which direction she can pass through the door (otherwise, she 

could simply walk down one side and emerge from the other). They proceed

316
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as follows. Peggy enters the tunnel and goes down either the left side or the 

right side of the tunnel. Victor waits outside for a minute, then comes in and 

stands at point B. He calls out “Left” or “Right" to Peggy. Peggy then comes 

to point B by the left or right tunnel, as requested. This entire protocol is 

repeated several times, until Victor is satisfied. Of course, in each round, 

Peggy randomly chooses which side she will go down, and Victor randomly 
chooses which side he will request.

Since Peggy must choose to go down the left or right side before she 

knows what Victor will say, she has only a 50% chance of fooling Victor if 

she doesn't know how to go through the door. Therefore, if Peggy comes 

out the correct side for each of 10 repetitions, there is only one chance in 
210 =  1024 that Peggy doesn't know how to go through the door. At this 

point, Victor is probably convinced, though he could try a few more times 

just to be sure.

Suppose Eve is watching the proceedings on a video monitor carried by 

Victor. She will not be able to use anything she sees to convince Victor or 

anyone else that she, too, can go through the door. Moreover, she might not 

even be convinced that Peggy can go through the door. After all, Peggy and 

Victor could have planned the sequence of rights and lefts ahead of time. 

By this reasoning, there is no useful information that Victor obtains that 

can be transmitted to anyone.

Note that there is never a proof, in a strict mathematical sense, that 

Peggy can go through the door. But there is overwhelming evidence, ob

tained through a series of challenges and responses. This is a feature of 

zero-knowledge “proofs."

There are several mathematical versions of this procedure, but we’ll con

centrate on one of them. Let n =  pq be the product of two large primes. Let 

y be a square mod n with gcd(y,n) = 1. Recall that finding square roots 

mod n is hard; in fact, finding square roots mod tl is equivalent to factoring
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n (see Section 3.9). However, Peggy claims to know a square root s of y. 
Victor wants to verify this, but Peggy does not want to reveal s. Here is the 

method:

1. Peggy chooses a random number t\ and lets T2 =  s r f 1 (mod n), so

r\T2 = s (mod n).

She computes

xi =  rj, x2 =  r; (mod n) 

and sends and xn to Victor.

2 . Victor checks that xixo =  y (mod n), then cliooses either x\ or x2 

and asks Peggy to supply a square root of it. He checlcs that it is an 

actual square root.

3. The first two steps are repeated several times, until Victor is convinced.

Of course, if Peggy knows s, the procedure proceeds without problems. 

But what if Peggy doesn’t know a square root of y? She can still send 

Victor two numbers and with i\X2 =  y. If she knows a square root 
of i] and a square root of X2, then she knows a square root of y = xix?. 
Therefore, for at least one of them, she does not know a square root. At 

least half the time, Victor is going to ask her for a square root she doesn’t 

know. Since computing square roots is hard, she is not able to produce the 

desired answer, and therefore Victor finds out that she doesn’t know s.
Suppose, however, that Peggy predicts correctly that Victor will ask for 

a square root of x2- Then she chooses a random r2, computes 1 2  =  r2 

(mod n), and lets xi =  yx%1 (mod n). She sends xi and i 2 to Victor, and 

everything works. This method gives Peggy a 50% chance of fooling Victor 

on any given round, but it requires her to guess which number Victor will 

request each time. As soon as she fails, Victor will find out that she doesn't 

know s.
If Victor verifies that Peggy knows a square root, does he obtain any 

information that can be uted by someone else? No, since in any step he is 

only learning the square root of a random square, not a square root of y. Of 
course, if Peggy uses the same random numbers more than once, he could 

find out the square roots of both xi and X2 and hence a square root of y. 
So Peggy should be careful in her choice of random numbers.

Suppose Eve is listening. She also will only learn square roots of ran

dom numbers. If she tries to use the same sequence of random numbers to 

masquerade as Peggy, she needs to be asked for the square roots of exactly 
the same sequence of si's and x2 ’s. If Victor asks for a square root of an xi 
in place of an x2 at one step, for example, Eve will not be able to supply it.
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14.2 The Feige-Fiat-Shamir Identification Scheme

The preceding protocol requires several communications between Peggy and 

Victor. The Feige-Fiat-Shamir method reduces this number and uses a type 

of parallel verification. This then is used as the basis of an identification 

scheme.

Again, let n =  pq be the product of two large primes. Peggy has secret 

numbers Si , . . .  ,sj(. Let iij =  s~z (mod n) (we assume gcd(si,n) =  1). The 

numbers Vi are sent to Victor. Victor will try to verify that Peggy knows 

the numbers s i , . . . ,  su- Peggy and Victor proceed as follows:

1 . Peggy chooses a random integer r, computes x =  r~ (mod n) and 

sends x to Victor.

2. Victor chooses numbers , . . . ,  bk with each 6 ; E {0,1}. He sends these 

to Peggy.

3. Peggy computes y = • • • sj'*-' (mod n) and sends y to Victor.

4. Victor checks that x = ■ ■ ■ vbf  (mod n).

5. Steps 1 through 4 are repeated several times (each time with a different

r).

Consider the case k =  1. Then Peggy is asked for either r or rsi. These 

are two random numbers whose quotient is a square root of v j. Therefore, 

this is essentially the same idea as the simplified scheme discussed previously, 

with quotients instead of products.

Now let’s analyze the case of larger k. Suppose, for example, that Victor 

sends =  1, bs =  1, b-i =  1, and all other 6 j =  0. Then Peggy must produce 

y =  rsisns.t, which is a square root of XV1V2V4. In fact, in each round, Victor 

is asldng for a square root of a number of the form xv^v^ ■ ■ ■ . Peggy can 

supply a square root if she knows r, Sj,,. . . ,  s^. If she doesn't, she will have 

a hard time computing a square root.

If Peggy doesn’t know any of the numbers s i , . . . ,3). (the likely scenario 

also if someone other than Peggy is pretending to be Peggy), she could guess 

the string of bits that Victor will send. Suppose she guesses correctly, before 

she sends x. She lets y be a random number and declares x =  y-v^vlt? ■■■vbkk 
(mod n). When Victor sends the string of bits, Peggy sends back the value 

of y. Of course, the verification congruence is satisfied. But if Peggy guesses 
incorrectly, she will need to modify her choice of y, which means she will 

need some square roots of v,-’s.

For example, suppose Peggy is able to supply the correct response when 
&i =  1 ,& 2 =  1 , 6,| =  1, and all other b{ =  0. This could be accomplished by
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guessing the bits and using the preceding method of choosing x. However, 

suppose Victor sends &i =  1,6s =  1, and all other bi =  0. Then Peggy will 

be ready to supply a square root of niiimui but will be asked to supply a 

square root of xvivj. This, combined with what she knows, is equivalent to 

knowing a square root of which she is not able to compute. In

an extreme ease, Victor could send all bits equal to 0, which means Peggy 

must supply a square root of x. With Peggy’s guess as before, this means 

she would know a square root of V1V0V4. In summary, if Peggy's guess is 
not correct, she will need to know the square root of a nonempty product 

of v.'s, which she cannot compute. Therefore, there are 2k possible strings 
of bits that Victor can send, and only one will allow Peggy to fool Victor. 

In one iteration of the protocol, the chances are only one in 2k that Victor 

will be fooled. If the procedure is repeated t times, the chances are 1 in 

2kl that Victor is fooled. Recommended values are k =  5 and t =  4. Note 

that this gives the same probability as 2 0  iterations of the earlier scheme, so 

the present procedure is more efficient in terms of communication between 

Peggy and Victor. Of course, Victor has not obtained as strong a verification 

that Peggy knows, for example, si, but he is very certain that Eve is not 
masquerading as Peggy, since Eve should not know any of the sj’s.

The preceding can be used to design an identification scheme. Let I  be 

a string that includes Peggy's name, birth date, and any other information 

deemed appropriate. Let H  be a public hash function. A trusted authority 

Arthur (the bank, a passport agency, ...) chooses n =  pq to be the prod

uct of two large primes. Arthur computes for some small values 

of j , where I\\j means j  is appended to I. Using his knowledge of p,q, 
he can determine which of these numbers H(I\\j) have square roots mod 

n and calculate a square root for each such number. This yields numbers 

Vi =  B (H lji) ,... ,Vk =  B’(IHjk) and square roots s i , . . . ,  s*. The num
bers /, n ,ji, ■ ■. ,jk are made public. Arthur gives the numbers sl t . . . ,  st to 

Peggy, who keeps them secret. The prime numbers p, q are discarded once 

the square roots are calculated. Likewise, Arthur does not need to store 

si 1 • • • 1 St once they are given to Peggy. These two facts add to the secu
rity, since someone who breaks into Arthur’s computer cannot compromise 

Peggy’s security. Moreover, a different n can be used for each person, so it 

is hard to compromise the security of more than one individual at a time.

Note that since half the numbers mod p and half the numbers mod 9  have 

square roots, the Chinese remainder theorem implies that 1/4 of the numbers 

mod n have square roots. Therefore, each H ( / ||j) has a 1/4 probability of 

having a square root mod n. This means that Arthur should be able to 

produce the necessary numbers j i , ... ,jk quickly.

Peggy goes to an automatic teller machine, for example. The machine 

reads I  from Peggy's card. It downloads , jit from a database and
calculates v,- =  H(I\\ji) for 1 < i < fc. It then performs the preceding
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procedure to verify that Peggy knows S],. . . , Sfc. After a few iterations, the 

machine is convinced that the person is Peggy and allows her to withdraw 

cash. A naive implementation would require a lot of typing on Peggy’s part, 

but at least Eve won’t get Peggy's secret numbers. A better implementation 

would use chips embedded in the card and store some information in such a 
way that it cannot be extracted.

If Eve obtains the communications used in the transaction, she cannot 

determine Peggy’s secret numbers. In fact, because of the zero-knowledge 

nature of the protocol, Eve obtains no information on the secret numbers 

s i , . . .  ,Sfc that can be reused in future transactions.

14.3 Exercises

1. Consider the diagram of tunnels in Figure 14.2. Suppose each of the 

four doors to the central chamber is locked so that a key is needed 

to enter, but no key is needed to exit; Peggy claims she has the key 

to one of the doors. Devise a zero-knowledge protocol in which Peggy 

proves to Victor that she can enter the central chamber. Victor should 
obtain no knowledge of which door Peggy can unlock.

Figure 14.2: Diagram for Exercise 1.

2. Suppose p is a large prime, a  is a primitive root, and /3 =  a“ (mod p). 

The numbers p, a, ft are public. Peggy wants to prove to Victor that 
she knows a without revealing it. They do the following:

1. Peggy chooses a random number r (mod p - 1).

2. Peggy computes hi =  ctr (mod p) and hi =  a “~r (mod p) and 

sends to Victor.
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3. Victor chooses i =  1 or i =  2 asks Peggy to send either n  = r or 

r2 =  a — r (mod p - 1).

4. Victor checks that hihn = 0 (mod p) and that h, = a r' (mod p).

They repeat this procedure t times, for some specified t.

(a) Suppose Peggy does not know o. Why will she usually be unable 

to produce numbers that convince Victor?

(b) If Peggy does not know a, what is the probability that Peggy can 

convince Victor that she knows a?

(c) Suppose naive Nelson tries a variant. He wants to convince Victor 

that he knows a, so he chooses a random r as before, but does not 

send h\,h,2- Victor asks for r; and Nelson sends it. They do this 

several times. Why is Victor not convinced of anything? What 
is the essential difference between Nelson's scheme and Peggy's 

scheme that causes this?

3. Naive Nelson thinks he understands zero-knowledge protocols. He 

wants to prove to Victor that he knows the factorization of n (which 

equals pq for two large primes p and q) without revealing this factoriza

tion to Victor or anyone else. Nelson devises the following procedure: 

Victor chooses a random integer x mod n, computes y =  x~ (mod n), 
and sends y to Nelson. Nelson computes a square root s of y mod n 

and sends s to Victor, Victor checks that s~ =  y (mod n). Victor 

repeats this 2 0  times.

(a) Describe how Nelson computes s. You may assume that p and q 
are =  3 (mod 4) (see Section 3.9).

(b) Explain how Victor can use this procedure to have a high prob

ability of finding the factorization of n. (Therefore, this is not a 

zero-knowledge protocol.)

(c) Suppose Eve is eavesdropping and hears the values of each y and 

s. Is it likely that Eve obtains any useful information? (Assume 

no value of y repeats.)

4. Exercise 2 gave a zero-knowledge proof that Peggy knows a discrete 

logarithm. Here is another method. Suppose p is a large prime, a  is a 

primitive root, and /J =  aa (mod p). The numbers p, a ,0  are public. 

Peggy wants to prove to Victor that she knows a without revealing it. 

They do the following:

1. Peggy chooses a random integer k with 1 <  k < p — 1, computes 
7  =  ak (mod p), and sends 7  to Victor.
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2. Victor chooses a random integer r with 1 < r < p — 1 and sends 
r  to Peggy.

3. Peggy computes y =  k — ar (mod p — 1) and sends y to Victor.

4. Victor checks whether 7  =  av/3r (mod p). If so, he believes that 

Peggy knows a.

(a) Show that the verification equation holds if the procedure is fol

lowed correctly.

(b) Does Victor obtain any information that will allow him to com

pute a?

(c) Suppose Eve finds out the values of 7 , r, and y. Will she be able 

to determine a?

(d) Suppose Peggy repeats the procedure with the same value of k, 
but Victor uses a different values and r2- How can Eve, who 

has listened to all communications between Victor and Peggy, 

determine a?

The preceding procedure is the basis for the Schnorr identification 
scheme. Victor could be a bank and 0  could be Peggy's personal 

identification number. The bank stores P, and Peggy must prove she 

knows a to access her account. Alternatively, Victor could be a cen

tral computer and Peggy could be logging on to the computer through 

nonsecure telephone lines. Peggy’s password is a, and the central com

puter stores p.

In the Schnorr scheme, p is usually chosen so that p — 1 has a large 

prime factor g, and a, instead of being a primitive root, is taken to 

satisfy aP = 1 (mod p). The congruence defining y is then taken mod 

q. Moreover, r is taken to satisfy 1 < r < 2* for some t, for example, 

t =  40.

5. Peggy claims that she knows an RSA plaintext. That is, n, e,c are 

public and Peggy claims that she knows m such that me = c (mod n). 
She wants to prove this to Victor using a zero knowledge protocol. 

Peggy and Victor perform the following steps:

1. Peggy chooses a random integer ri and computes r? = m ■ r^ 1 

(mod n) (assume that gcd(n,n) =  1.)

2. Peggy computes xi =  r\ (mod n ) and 1 2  =  (mod n) and 

sends 1 1 , 1 2  to Victor.

3. Victor checks that X1X2 =  c (mod n ).
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Give the remaining steps of the protocol. Victor should be at least 

99% convinced that Peggy is not lying.

6. Suppose that n is the product of two large primes, and that s is given. 

Peggy wants to prove to Victor, using a zero knowledge protocol, that 
she knows a value of x with x~ =  s (mod n). Peggy and Victor do the 

following:

1. Peggy chooses three random integers ri, t%, ra with nrora =  x 
(mod n).

2. Peggy computes $,■ =  rf, for i = 1,2,3 and sends 1 1 , 1 2 , 1 3  to 
Victor.

3. Victor checks that 1 1 X2I 3 =  s (mod n).

Design the remaining steps of this protocol so that Victor is at least 

99% convinced that Peggy is not lying. (Nate: There are two ways for 

Victor to proceed in Step 4. One has a higher probability of catching 

Peggy, if she is cheating, than the other.)



C h a p t e r  15 

Information Theory

In this chapter we introduce the theoretical concepts behind the security of a 

cryptosystem. The basic question is the following: If Eve observes a piece of 

ciphertext, does she gain any new information about the encryption key that 

she did not already have? To address this issue, we need a mathematical 

definition of information. This involves probability and the use of a very 

important measure called entropy.

Many of the ideas in this chapter originated with Claude Shannon in the 

1940s.

Before we start, let’s consider an example. Roll a standard six-sided 

die. Let A be the event that the number of dots is odd, and let B be the 

event that the number of dots is at least 3. If someone tells you that the 

roll belongs to the event A n  B , then you know that there are only two 

possibilities for what the roll is. In this sense, A n  B tells you more about 

the value of the roll than just the event A, or just the event B. In this sense, 

the information contained in the event A n  B is larger than the information 

just in A or just in B.

The idea of information is closely linked with the idea of uncertainty. 

Going back to the example of the die, if you are told that the event A fl B 
happened, you become less uncertain about what the value of the roll was 

than if you are simply told that event A occurred. Thus the information 

increased while the uncertainty decreased. Entropy provides a measure of 

the increase in information or the decrease in uncertainty provided by the 

outcome of an experiment.

325
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15.1 Probability Review

In this section we briefly introduce the concepts from probability needed 

for what follows. An understanding of probability and the various identities 

that arise is essential for the development of entropy.

Consider an experiment X  with possible outcomes in a finite set X. For 

example, A' could be flipping a coin and X  =  {heads, tails}. We assume each 

outcome is assigned a probability. In the present example, p(X =  heads) =  
1/2 and p[X =  tails) — 1/2. Often, the outcome X  of an experiment is 

called a random variable.

In general, for each x e X, denote the probability that X  — x by

P x M  =  Px =  p{X =  x).

Note that £  x€X px =  1. II A C  X, let

P(A) =  Pi,
z €-A

which is the probability that X  takes a value in A.
Often one performs an experiment where one is measuring several dif

ferent events. These events may or may not be related, but they may be 

lumped together to form a new random event. For example, if we have 

two random events X  and Y  with possible outcomes X  and y, respectively, 

then we may create a new random event Z  =  (X, Y) that groups the two 

events together. In this case, the new event Z  has a set of possible outcomes 
Z =  X  x y, and Z  is sometimes called a joint random variable.

Exam ple . Draw a card from a standard deck. Let X  be the suit of the card, 

so X  =  {clubs, diamonds, hearts, spades}. Let Y  be the value of the card, 

so y  =  {two, three, . . . ,  ace}. Then Z  gives the 52 possibilities for the card. 

Note that if x 6 X  and y £ S', then p((X, Y) =  ( i, y)) =  p(X =  x, Y  =  y) is 
simply the probability that the card drawn has suit x and value y. Since all 

cards are equally probable,"this probability is 1/52, which is the probability 

that X  =  x (namely 1/4) times the probability that Y — y (namely 1/13). 

As we discuss later, this means X  and Y  are independent. I

Exam ple . Roll a die. Suppose we are interested in two things: whether the 
number of dots is odd and whether the number is at least 2. Let X  — 0 if the 

number of dots is even and X  =  1 if the number of dots is odd. Let Y =  0 

if the number of dots is less than 2 and Y =  1 if the number of dots is at 

least 2. Then Z  =  (X, Y) gives us the results of both experiments together. 
Note that the probability that the number of dots is odd and less than 2 

is p(Z =  (1,0)) =  1/6. This is not equal to p(X =  0) ■ p(Y =  0), which is
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(1/2)(1/G) =  1/12. This means that X  and Y  are not independent. As we'll 

see, this is closely related to the fact that knowing X  gives us information 
about Y. B

We denote

Px,r(x,y) = P(x  - x ,Y  =  y).

Note tlmt we can recover the probability that X  =  x os

Px{x) =  ^Pa-.Hz,!/)- 
iisy

We say that two random events X  and Y  are independent if

Pxy(x,v) =P x {x )p y { V)

for all x e X  and all y 6 y. In the preceding example, the suit of a card 

and the value of the card were independent.

We are also interested in the probabilities for Y  given that X  — x has 

occurred. Ifpx  (z) > 0, define the conditional probability of Y  =  y given 
that X  — x to be

, , x pxy{x,y)
Pviv\x) =  - ; - r r -- 

Px(x)

One way to think of this is that we have restricted to the set where X  =  x. 
This has total probability px ($) =  53ypx,y(z,y). The fraction of this sum 

that comes from Y =  y is py{y\x).

Note that X  and Y  are independent if and only if

py{v\x) =  pr{y)

for all x, y. In other words, the probability of y is unaffected by what happens 

with X.
There is a nice way to go from the conditional probability of Y  given X  

to the conditional probability of X  given Y.

Bayes’s T heorem . Ifpx{x) > 0 andpy(v) > 0, then

_ _  px{x)pr{y\x)

M(lW p,M '

The proof consists of simply writing the conditional probabilities in terms 

of their definitions.
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15.2 Entropy

Roll a six-sided die and a ten-sided die. Which experiment has more uncer

tainty? If you make a guess at the outcome of each roll, you are more likely 

to be wrong with the ten-sided die than with the six-sided die. Therefore, 

the ten-sided die has more uncertainty. Similarly, compare a fair coin toss 

in which heads and tails are equally likely with a coin toss in which heads 

occur 90% of the time. Which has more uncertainty? The fair coin toss 

does, again because there is more randomness in its possibilities.
In our definition of uncertainty, we want to make sure that two random 

variables X  and Y  that have same probability distribution have the same 
uncertainty. In order to do this, the measure of uncertainty must be a 

function only of the probability distributions and not of the names chosen 

for the outcomes.
We require the measure of uncertainty to satisfy the following properties:

1. To each set of nonnegative numbers Pi,... ,pn with p\ + -- (-pn =  1,

the uncertainty is given by a number H(p\, . . . ,  pn).

2. H  should be a continuous function of the probability distribution, so 
a small change in the probability distribution should not drastically 

change the uncertainty.

3. • i „) 5  -̂ (s+T> • • • t HTl) f°r aU n > 0. In other words, in situ
ations where all outcomes are equally likely, the uncertainty increases 

when there are more possible outcomes.

4. If 0 < q < 1, then

H{pi , . . . ,  qpj, (1 ~q)pj,. .. ,pn) =  ff(p i, . . .  ,p>,. •. ,p„)+PjH(q,l-q).

What this means is that if the jth  outcome is broken into two subout

comes, with probabilities qpj and (1 — q)pj, then the total uncertainty 
is increased by the uncertainty caused by the choice between the two 

suboutcomes, multiplied by the probability pj that we are in this case 

to begin with. For example, if we roll a six-sided die, we can record two 

outcomes: even and odd. This has uncertainty Jf(^ , j), Now suppose 

we break the outcome even into the suboutcomes 2 and {4, 6). Then 

we have three possible outcomes: 2, {4,6}, and odd. We have

The first term is the uncertainty caused by even versus odd. The second 

term is the uncertainty added by splitting even into two suboutcomes.
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Starting from these basic assumptions, Shannon [Shannon2] showed the 

following:

T heorem . Let H (X) be a function satisfying properties (l)-(4). In other 

words, for each random variable X  with outcomes X  =  {xi , . . .  ,$„} having 

probabilities p i , ... ,pn, the function H assigns a number H (X) subject to 

the conditions (l)-(4). Then H must be of the form

,Pn) =  -A^Pn.logzPt, 

k

where \ is a non-negative constant and where the sum is taken over those k 

such that pk > 0.

Because of the theorem, we define the entropy of the variable X  to be

H{X) =  - '^ P M -
x&X

The entropy H(X) is a measure of the uncertainty in the outcome of X. 
Note that since log2 p(x) < 0, we have II(X ) > 0, so there is no such thing 

as negative uncertainty.
The observant reader might notice that there are problems when we have 

elements x S X  that have probability 0. In this case we define 0log20 =  0, 

which is justified by looking at the limit of x logo x as x —* 0. It is typical 

convention that the logarithm is taken base 2, in which case entropy is 

measured in bits. The entropy of X  may also be interpreted as the expected 

value of — log2p(X ) (recall that £[g(-X)] =  g(a)p(z)).

We now look at some examples.

E xam ple . Consider a fair coin toss. There are two outcomes, each with 
probability 1/2. The entropy of this random event is

,1 , 1 1 ,  1. ,

- ( 2 l0g22 + 2 bg22) =  1-

This means that the result of the coin flip gives us 1 bit of information, or 
that the uncertainty in the outcome of the coin flip is 1 bit. I

E xam p le . Consider a nonfair coin toss X  with probability p of getting 

heads and probability 1 — p of getting tails (where 0 < p < 1). The entropy 
of this event is

H(X) -  -plog2p -  (1 -p)  log2(l -p).
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If one considers H(X) as a function of p, one sees that the entropy is a 

maximum when p =  v,- (For a more general statement, see Exercise 14.) 8

Exam ple . Consider an n-sided fair die. There are n outcomes, each with 

probability 1/n. The entropy is

- - lo g ,( l/n )------log2 (l/n ) =  log2 (n). D
n n

There is a relationship between entropy and the number of yes-no ques

tions needed to determine accurately the outcome of a random event. If one 

considers a totally nonfair coin toss where p(l) =  1, then H(X) =  0. This 

result can be interpreted as not requiring any questions to determine what 
the value of the event was. If someone rolls a four-sided die, then it takes 

two yes-no questions to find out the outcome. For example, is the number 
less tlmn 3? Is the number odd?

A slightly more subtle example is obtained by flipping two coins. Let 

X  be the number of heads, so the possible outcomes are {0,1,2}. The 

probabilities are 1/4, 1/2, 1/4 and the entropy is

l°62 (l/4) - 5  l°g2 (l/2) - ^ log2 (l/4) =  |.

Note that we can average 3/2 questions to determine the outcome. For 

example, the first question could be “Is there exactly one head?" Half of the 

time, this will suffice to determine the outcome. The other half of the time 

a second question is needed, for example, “Are there two heads?" So the 

average number of questions equals the entropy.
Another way of looking at H(X) is that it measures the number of bits 

of information that we obtain when we are given the outcome of X. For 

example, suppose the outcome of X  is a random 4-bit number, where each 

possibility has probability 1/16. As computed previously, the entropy is 

H(X) =  4, which says we have received 4 bits of information when we are 

told the value of X.
In a similar vein, entropy relates to the minimal amount of bits necessary 

to represent an event on a computer (which is a binary device). See Section 

15.3. There is no sense recording events whose outcomes can be predicted 

with 100% certainty; it would be a waste of space. In storing information, 

one wants to code just the uncertain parts because that is where the real 
information is.

If we have two random variables X  and Y, the joint entropy H(X,Y) is 

defined as

H[X,Y) = - ^ 2  ^P.Y.yOr,!/) log2Px,Y(x,y). 
xex vei>



15.2 . E n t r o p y 331

This is just the entropy of the joint random variable Z =  (X, Y) discussed 

in Section 15.1.

In a cryptosystem, we might want to know the uncertainty in a key, given 

knowledge of the ciphertext. This leads us to the concept of conditional 
entropy, which is the amount of uncertainty in Y, given X. It is defined to 

be

H(Y\X) =  2 > v ( z ) t f ( y  1* =  *)

I

=  \ Y^PY{y\x)\og2vy{y\x)
I \ V

x y

The last equality follows from the relationship Px ,y (x<v) ~ PY(y\x)Pxix)- 
The quantity H(Y\X =  x) is the uncertainty in Y given the information that 

X  = x. It is defined in terms of conditional probabilities by the expression in 

parentheses on the second line. We calculate H{Y\X) by forming a weighted 

sum of these uncertainties to get the total uncertainty in Y given that we 

know the value of X.

R em ark . The preceding definition of conditional entropy uses the 

weighted average, over the various x € X, of the entropy of Y given X  =  x. 

Note that J7(y|vY) ^  — Ylx.yPY{y\x)\°&2{PY{y\x))- This sum does not have 
properties that information or uncertainty should have. For example, if X  
and Y are independent, then this definition would imply that the uncer
tainty of Y given X  is greater than the uncertainty of Y  (see Exercise 15). 

This clearly should not be the case.

We now derive an important tool, the chain rule for entropies. It will be 

useful in Section 15.4.

T heorem  (C ha in  R u le ). H (X ,Y) =  H{X) + H(Y\X).

Proof.

h (x , y ) =  - X !  pxyfo  y) lo&2 px.y(x> v)
xsa'

=  - 5 Z  5 Z  Vx,y(x, V) Iog2px(i)py(l/| i) 
xsx vey
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=  -  5 3  £ 3 P A ', r ( x ,y )  lo g 2 PA-(3:) -  5 3  ’YjPxyiZ'V') 1°S2Py{v\x)
*ex vey x&xv&y

=  -  ( 5 ]  loS2 PX  (z )  5 3  P * , ! ^ 1 ' y )) + # 0 1 * )
I  y

=  - ^ P x ( z ) l o g 2px(x) +.H(Y|X) (since ^p x ,y (x ,y ) =  px(x))

I  v
=  fl"(x) + /f(y|x).

□
What does the chain rule tell us? It says that the uncertainty of the 

joint event (X, Y) is equal to the uncertainty of event X  + uncertainty of 

event Y given that event X  has happened.

We now state three more results about entropy.

Theorem.

1. H(X) < log2 \X\, where |A'| denotes the number of elements in X. We 

have equality if and only if all elements of X  are equally likely.

£. H (X ,Y) <H{X )  + H(Y).

3. (Conditioning reduces entropy) H(Y\X) < H{Y), with equality if and 

only if X  and Y are independent.

The first result states that you are most uncertain when the probability 

distribution is uniform. Referring back to the example of the nonfair coin 

flip, the entropy was maximum for p =  This extends to events with more 

possible outcomes. For a proof of (1), see [Welsh, p. 5].

The second result says that the information contained in the pair (X, Y) 
is at most the information contained in X  plus the information contained in 

Y . The reason for the inequality is that possibly the information supplied 

by X  and Y overlap (which is when X  and Y are not independent). For a 

proof of (2), see [Stinson].

The third result is one of the most important results in information 

theory. Its interpretation is very simple. It says that the uncertainty one has 
in a random event Y  given that event X  occurred is less than the uncertainty 

in event Y alone. That is, X  can only tell you information about event Y; 

it can’t make you any more uncertain about Y.
The third result is an easy corollary of the second plus the chain rule:

H{X) + H(Y\X) =  H(X, Y) <  H{X) + H{Y).
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15.3 Huffman Codes

Information theory originated in the late 1940s from the seminal papers by 

Claude Shannon. One of the primary motivations behind Shannon’s math

ematical theory of information was the problem of finding a more compact 

way of representing data. In short, he was concerned with the problem of 

compression. In tliis section we shall briefly touch on the relationship be

tween entropy and compression and introduce Huffman codes as a method 

for more succinctly representing data.
For more on how to compress data, see [Cover-Thomos] or [Nelson- 

Gailly].

Exam p le . Suppose we have an alphabet with four letters a,b,c,d, and 

suppose these letters appear in a text with frequencies as follows.

a b e d  

.5 .3 .1 .1

We could represent a as the binary string 00, 6 as 01, c as 10, and d as
11. This means that the message would average 2 bits per letter. However, 

suppose we represent a us 1, 6 us 01, c as 001, and d as 000. Then the 

average number of bits per letter is

(l)(.5) + (2)(.3) + (3)(.]) + (3)(.l) =  1.7

(the number of bits for a times the frequency of o, plus the number of bits 
for b times the frequency of 6, etc.). This encoding of the letters is therefore 

more efficient. I

In general, we have a random variable with outputs in a set X.  We want 
to represent the outputs in binary in an efficient way; namely, the average 

number of bits per output should be as small as possible.
An early example of such a procedure is Morse code, wliich represents 

letters as sequences of dots and dashes and was developed to send messages 
by telegraph. Morse asked printers which letters were used most, and made 

the more frequent letters have smaller representations. For example, e is 

represented as ■ and t as —. But x is — • • — and z i s ---

A more recent method was developed by Huffman. The idea is to list 

all the outputs and their probabilities. The smallest two are assigned 1 

and 0 and then combined to form an output with a larger probability. The 

same procedure is then applied to the new list, assigning 1 and 0 to the 

two smallest, then combining them to form a new list. This procedure is 

continued until there is only one output remaining. The binary strings are
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then obtained by reading backward through the procedure, recording the bits 

that have been assigned, to a given output and to combinations containing 

it. This is best explained by an example.

Suppose we have outputs o, 6,c, d with probabilities 0.5,0.3,0.1,0.1. as 

in the preceding example. The diagram in Figure 15.1 gives the procedure.

Figure 15.1: An Example of Huffman Encoding.

Note that when there were two choices for the lowest, we made a random 

choice for which one received 0 and which one received 1. Tracing backward 

through the table, we see that a only received a 1, b received 01, c received

001, and d received 000. These are exactly the assignments made previously 

that gave a low number of bits per letter.

A useful feature of Huffman encoding is that it is possible to read a 

message one letter at a time. For example, the string 011000 can only be 
read as bad] moreover, as soon as we liave read the first two bits 01, we know 

that the first letter is b.
Suppose instead that we wrote the bits assigned to letters in reverse 

order, so 6 is 10 and c is 001. Then the message 101000 cannot be determined 

until all bits have been read, since it potentially could start with bb or ba.
Even worse, suppose we had assigned 0 to a instead of 1. Then the 

messages aaa and d would be the same. It is possible to show that Huffman 

encoding avoids these two-problems.

The average number of bits per output is closely related to the entropy.

Theorem . Let L be the average number oj bits per output jor Hujjman 

encoding jor the random variable X. Then

H{X) < L <  H{X) + 1.

This result agrees with the interpretation that the entropy measures how 

many bits of information is contained in the output of X. We omit the proof. 
In our example, the entropy is

H(X) =  -(.5 Iog2(.5) + .3 log2(.3) + .1 log(.l) + .1 log(.l)) »  I.C85.
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15.4 Perfect Secrecy

Intuitively, the one-time pod provides perfect secrecy. Entropy allows us to 

state this in mathematical terms.

Suppose we have a cipher system with possible plaintexts T, ciphertexts 

C, and keys fC. Each plaintext in P  lias a certain probability of occurring; 

some are more likely than others. The choice of a key in K. is always assumed 

to be independent of the choice of plaintext. The possible ciphertexts in C 
have various probabilities, depending on the probabilities for P  and >C.

If Eve intercepts a ciphertext, how much information does she obtain 
for the key? In other words, what is H(K\C)t Initially, the uncertainty 

in the key was H(K). Has the knowledge of the ciphertext decreased the 

uncertainty?

E xam ple . Suppose we have three possible plaintexts: a, 6, c with proba

bilities .5, .3, .2 and two keys fcj, k2 with probabilities .5 and .5. Suppose 

the possible ciphertexts are U, V, W . Let cfc be the encryption function for 

the key k. Suppose

e*, (a) =  U, ekl (b) = V, ekl (c) =  W 

C it,(o) =  U, ekn (6) =  W, 6*2 (c) =  V.

Let pp(a) denote the probability that the plaintext is o, etc. The probability 

that the ciphertext is U is

P c (U ) =  P K ih ) p p ( a )  + PK{k2)p p (a )

=  (.5) (-5) + (-5) (.5) =  .50.

Similarly, we calculate pc{V) =  .25 and pc(W ) =  .25.

Suppose someone intercepts a ciphertext. This gives some information 

on the plaintext. For example, if the ciphertext is U, then it can be deduced 

immediately that the plaintext was a. If the ciphertext is V, the plaintext 

was either b or c.

We can even say more: The probability that a ciphertext is V is .25, so 

the conditional probability that the plaintext was 6, given that the ciphertext

P(P .C )(b ,V ) P(P,K )(b ,k i) (.3)(.5)

p m >  ------ = - x -  = -6'

Similarly, p{c\V) =  .4 and p(a\V) =  0. We can also calculate 

p(a|W) = 0, p(6|lV) = -6, p[c\W) =  .4.

Note that the original probabilities of the plaintexts were .5, .3, and .2; 
knowledge of the ciphertext allows us to revise the probabilities. Therefore,
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the ciphertext gives us information about the plaintext. We can quantify this 

via the concept of conditional entropy. First, the entropy of the plaintext is

H(P) =  -(.51og2(.5) + ,31og2(.3) + .21og2(.2)) =  1.485.

The conditional entropy of P  given C is

H(P\C) =  — £  £  7j(y)p(2:|y)log2(p N y )) =  .485.

TG Y€{U,V,W}

Therefore, in the present example, the uncertainty for the plaintext decreases 
when the ciphertext is known. B

On the other hand, we suspect that for the one-time pad the cipher
text yields no information about the plaintext that was not known before. 

In other words, the uncertainty for the plaintext should equal the uncer

tainty for the plaintext given the ciphertext. This leads us to the following 
definition and theorem.

D e fin ition . A cryptosystem has perfect secrecy if  H(P\C) = H{P). 

Theorem . The one-time pad has perfect secrecy.

Proof. Recall that the basic setup is the following: There is an alphabet 

with Z letters (for example, Z could be 2 or 26). The possible plaintexts 

consist of strings of characters of length L. The ciphertexts are strings of 

characters of length L. There are ZL keys, each consisting of a sequence 

of length L denoting the various shifts to be used. The keys are chosen 

randomly, so each occurs with probability 1 /ZL.

Let c S C b e a  possible ciphertext. As before, we calculate the probability 

that c occurs:

Pc(c) =  £  Pp(x )PK(k).

x <= P . i €  K.

=*(*)= =

Here e^(i) denotes the ciphertext obtained by encrypting x using the key 

k. The sum is over those pairs x, k such that k encrypts x to c. Note 

that we have used the independence of P  and K  to write joint probability 

P(P A')(x, A) as the product of the individual probabilities.

In the one-time pad, every key has equal probability l/Z ^ , so we can 

replace pn(k) in the above sum by 1 /ZL. We obtain

p c (c) =  pH 1 )-
x e 7>. fc € £  

ek (x) - e
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We now use another important feature of the one-time pad: For each plain

text x and each ciphertext c, there is exactly one key k such that e<:(x) =  c 

Therefore, every occurs exactly once in the preceding sum, so we have

Z~L P p {x )- But the sum of the probabilities of all possible plaintexts 

is 1, so we obtain

P c (c ) =

This confirms what we already suspected: Every ciphertext occurs with 

equal probability.

Now let’s calculate some entropies. Since K  and C each have equal 

probabilities for all ZL possibilities, we have

H(K) = H(C ) =  log2('ZL).

We now calculate H(P, K, C) in two different ways. Since knowing (P, K, C) 

is the same as knowing (P, K), we have

H[P, K, C) =  H(P, K) =  H(P) + H(K).

The last equality is because P  and K  are independent. Also, knowing 

(P, K, C) is the same as knowing (P, C) since C  and P  determine K  for 

the one-time pad. Therefore,

H{P, K, C) =  H(P, C) =  H{P\C) + H(C).

The last equality is the chain rule. Equating the two expressions, and using 

the fact that H(K) =  H(C), ive obtain H(P\C) =  H(P). This proves that 

the one-time pad has perfect secrecy. □

The preceding proof yields the following more general result. Let 

denote the number of possible keys, etc.

T heorem . Consider a cryptosystem such that

1. Every key has probability 1/#K,

2. For each x G V and c G C there is exactly one k G K. such that 

e* (x )  =  c.

Then this cryptosystem has perfect secrecy.

It is easy to deduce from condition (2) that # C  =  #/C. Conversely, it 
can be shown that if #V = #C =  jfK. and the system has perfect secrecy, 

then (1) and (2) hold (see [Stinson, Theorem 2.4]).
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It is natural to ask how the preceding concepts apply to RSA. The possi

bly surprising answer is that H(P\C) =  0; namely, the ciphertext determines 

the plaintext. The reason is that entropy does not take into account com

putation time. The fact that it might take billions of years to factor n is 

irrelevant. What counts is that all the information needed to recover the 

plaintext is contained in the knowledge of n, e, and c.

The more relevant concept for RSA is the computational complexity of 

breaking the system.

15.5 The Entropy of English

In an English text, how much information is obtained per letter? If we had 

a random sequence of letters, each appearing with probability 1/26, then 

the entropy would be Iog2(26) =  4.70; so each letter would contain 4.7 bits 

of information. If we include spaces, we get log2 (27) =  4.75. But the letters 

are not equally likely: a has frequency .082, h has frequency .015, etc. (see 

Section 2.3). Therefore, we consider

- (.082 log, .082 + .015 log2 .015 + • • • ) =  4.18.

However, this doesn't tell the whole story. Suppose we have the sequence 

of letters vie are studyin. There is very little uncertainty as to what the 

last letter is; it is easy to guess that it is g. Similarly, if we see the letter 

q, it is extremely likely that the next letter is u  Therefore, the existing 

letters often give information about the next letter, which means that there 
is not as much additional information carried by that letter. This says that 

the entropy calculated previously is still too high. If we use tables of the 

frequencies of the 262 =  676 digrams (a digram is a two-letter combination), 

we can calculate the conditional entropy of one letter, given the preceding 

letter, to be 3.56. Using trigram frequencies, we find that the conditional 

entropy of a letter, given the preceding two letters, is approximately 3.3. 

This means that, on the average, if we know two consecutive letters in a text, 

the following letter carries 3.3 bits of additional information. Therefore, if 

we have a long text, we should expect to be able to compress it at least by 

u factor of around 3.3/4.7 = .7.

Let L represent the letters of English. Let LN denote the jV-gram com

binations. Define the entropy of English to be

H  -  l im•^English “  hm  -- —— ,
N — oo

where H[LN) denotes the entropy of N-grams. This gives the average 

amount of information per letter in a long text, and it also represents the
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average amount of uncertainty in guessing the next letter, if we already know 

a lot of the text. If the letters were all independent of each other, so the 

probability of the digram qu equaled the probability of q times the proba

bility of u, then we would have H(LN) =  N • H(L), and the limit would be 

H(L), which is the entropy for one-letter frequencies. But the interactions 

of letters, as noticed in the frequencies for digrams and trigiams, lower the 

value of H(Ln ).
How do we compute H(LN)7 Calculating 100-gram frequencies is im

possible. Even tabulating the most common of them and getting an approx

imation would be difficult. Shannon proposed the following idea.

Suppose we have a machine that is an optimal predictor, in the sense 

that, given a long string of text, it can calculate the probabilities for the 

letter that will occur next. It then guesses the letter with highest probability. 

If correct, it notes the letter and writes down a 1. If incorrect, it guesses 
the second most likely letter. If correct, it writes down a 2, etc. In this 

way, we obtain a sequence of numbers. For example, consider the text 

itissunnytoday. Suppose the predictor says that £ Is the most likely for the 

1st letter, and it is wrong; it’s second guess is i, which is correct, so we 

write the i and put 2 below it. The predictor then predicts that t is the 

next letter, which is correct. We put 1 beneath the t. Continuing, suppose 

it finds i on its 1st guess, etc. We obtain a situation like the following:

i t i s s u n n y t o d a y
2 1 1 1 4 3 2 1 4 1 1 1 1 1

Using the prediction machine, we can reconstruct the text. The prediction 
machine says that its second guess for the first letter will be i, so we know 

the 1st letter is i. The predictor says that its first guess for the next letter 

is t, so we know that's next. The first guess for the next is i, etc.

What this means is that if we have a machine for predicting, we can 

change a text into a string of numbers without losing any information, be

cause we can reconstruct the text. Of course, we could attempt to write 

a computer program to do the predicting, but Shannon suggested that the 

best predictor is a person who speaks English. Of course, a person is un

likely to be os deterministic as a machine, and repeating the experiment 

(assuming the person forgets the text from the first time) might not yield 

an identical result. So reconstructing the text might present a slight diffi
culty. But it is still a reasonable assumption that a person approximate an 

optimal predictor.

Given a sequence of integers corresponding to a text, we can count the 

frequency of each number. Let

qi =  frequency of the number i.
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Since the text and the sequence of numbers can be reconstructed from each 

other, their entropies must be the same. The largest the entropy can be for 

the sequence of numbers is when these numbers are independent. In this 

case, the entropy is — 52?= 1 <Ji log2 (<7i)' However, the numbers are probably 
not independent. For example, if there are a couple consecutive Is, then 
perhaps the predictor has guessed the rest of the word, which means that 

there will be a few more Is. However, we get an upper bound for the entropy, 

which is usually better than the one we obtain using frequencies of letters. 
Moreover, Shannon also found a lower bound for the entropy. His results 

are
20 26

5 3  -  9 « > l)  lo e 2 M  ^  English <  “  X !  q i ,o 6 2 ( 0i)- 

1=1 i = l

Actually, these are only approximate upper and lower bounds, since there is 

experimental error, and we are really considering a limit as N  —► oo.

These results allow an experimental estimation of the entropy of English. 

Alice chooses a text and Bob guesses the first letter, continuing until the 

correct guess is made. Alice records the number of guesses. Bob then tries 

to guess the second letter, and the number of guesses is again recorded. 

Continuing in this way, Bob tries to guess each letter. When he is correct, 

Alice tells him and records the number of guesses. Shannon gave Table

15.1 as a typical result of an experiment. Note that he included spaces, but 

ignored punctuation, so he had 27 possibilities: There are 102 symbols. 

There are seventy-nine Is, eight 2s, three 3s, etc. This gives

9 , =  79/102, qn =  8/102, q3 =  3/102, q,i =  qs =  2/102,

96 =  3/102, qi =  qs =  <7n =  qis =  qi7 =  1/102.

The upper bound for the entropy is therefore

79 70 i i

"^102 l°62 102+ -  + i02 1062 I 0 2 ^ L42-
Note that since we are using 0 log2 0 = 0 ,  the terms with qt =  0 can be 

omitted. The lower bound is

7Q ft o o
l . ( I5 5 - ^ ) l o g 2( l ) + 2 . ( I E - - ) l o g 2(2) + . . .« .72 .

A reasonable estimate is therefore that the entropy of English is near 1, 

maybe slightly more than 1.

If we want to send a long English text, we could write each letter (and 

the space) as a string of 5 bits. This would mean that a text of length

102, such as the preceding, would require 510 bits. It would he neces

sary to use something like this method if the letters were independent and



15.5. T h e  E n t r o p y  o f  E n glish 341

t h e r e i s n o r e V e r s e

1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1

o n a m 0 t 0 r c y c 1 e a

3 2 1 2 2 7 1 1 1 1 4 i 1 1 1 1 3 1

f r i e n d 0 f m i n e f 0 u n d
8 6 1 3 1 1 1 1 1 1 1 1 1 1 1 6 2 1 1 1

t h i s 0 u t r a t h e r

1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1

d r a m a t i c a 1 1 y t' h e

11 5 1 1 1 1 1 1 1 1 1 i 1 6 1 1 1

o t h e r d a y
1 1 1 1 1 1 1 1 l 1

Table 15.1: Shannon’s Experiment on the Entropy of English

equally likely. However, suppose we do a Huffman encoding of the message

1,1,1,5,1,1, 2 ,... from Table 14.1. Let

1<-»1 2 <-*110 3 <-*1010 4 <-*0100

5 <-* 11100 6 <-*0010 7 <-* 01100 8 <-* 11000

11 <-* 01000 15 <-> 10000 17 <-> 100000.

All other numbers up to 27 can be represented by various combinations of 

6 or more bits. To send the message requires

7EM + 8- 3 + 3- 4 + 2- 4 + ---1-1-6 =  171 bits,

which is 1.68 bits per letter.
Note that 5 bits per letter is only slightly more than the “random” entropy 

4.75, and 1.68 bits per letter is slightly more than our estimate of the entropy 

of English. These agree with the result that entropy differs from the average 

length of a Huffman encoding by at most 1.

One way to look at the preceding entropy calculations is to say that 

English is around 75% redundant. Namely, if we send a long message in 

standard written English, compared to the optimally compressed text, the 

ratio is approximately 4 to 1 (that is, the random entropy 4.75 divided by
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the entropy of English, which is around 1). In our example, we were close, 

obtaining a ratio near 3 to 1 (namely 4.75/1.68).

Define the redundancy of English to be

n _  1 _  -̂ English

log2(26)'

Then R is approximately 0.75, which is the 75% redundancy mentioned 

previously.

15.5.1 Unicity Distance

Suppose we have a ciphertext. How many keys will decrypt it to something 

meaningful? If the text is long enough, we suspect that there is a unique 

key and a unique corresponding plaintext. The unicity distance no for a 

cryptosystem is the length of ciphertext at which one expects that there is 

a unique meaningful plaintext. A rough estimate for the unicity distance is

log2 \K\
no ~

JZlog2 \L\’

where |/f| is the number of possible keys, \L\ is the number of letters or sym

bols, and R  is the redundancy (see [Stinson]). We’ll take R  =  .75 (whether 

we include spaces in our language or not; the difference is small).

For example, consider the substitution cipher, which has 26! keys. We 
have

log2 26! _ oc1

0 .75 log2 26 ~

This means that if a ciphertext has length 25 or more, we expect that usu

ally there is only one possible meaningful plaintext. Of course, if we have a 

ciphertext of length 25, there are probably several letters that have not ap

peared. Therefore, there could be several possible keys, all of which decrypt 

the ciphertext to the same plaintext.

As another example, consider the affiue cipher. There are 312 keys, so

!ogi 312 

7,0 =  1 & ^ 2 6  ”  2<35'

This should be regarded as only a very rough approximation. Clearly it 

should take a few more letters to get a unique decryption. But the estimate 

of 2.35 indicates that very few letters suffice to yield a unique decryption in 

most cases for the affine cipher.
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Finally, consider the one-time pad for a message of length N. The en

cryption is a separate shift mod 26 for each letter, so there are 26^ keys. 

We obtain the estimate

loEo 26n

U° ~ .75 logo 26 =  L33N'

In this cose, it says we need more letters than the entire ciphertext to get a 
unique decryption. This reflects the fact that all plaintexts are possible for 

any ciphertext.

15.6 Exercises

1. Let X i and X i be two independent tosses of a fair coin. Find the 

entropy H(X\) and the joint entropy H  (X i, X2). Why is H(Xi,Xn) =  

# ( * ! )  + H(X2)?

2. Consider an unfair coin where the two outcomes, heads and tails, have 

probabilities p(heads) =  p and p(tails) =  1 — p.

(a) If the coin is flipped two times, what are the possible outcomes 
along with their respective probabilities?

(b) Show that the entropy in part (a) is —2plogz(p)-2(l-p) log2( l-  

p). How could this have been predicted without calculating the 

probabilities in part (a)?

3. A random variable X  takes the values 1, 2, • ■ • , n, • • • with probabilities 

|> j i i  • • • , ^r, • - • • Calculate the entropy H(X).

4. Let A" be a random variable taking on integer values. The probability 

is 1/2 that X  is in the range [0, 2a — 1], with all such values being 

equally likely, and the probability is 1/2 that the value is in the range 

(28,232 — 1], with all such values being equally likely. Compute H(X).

5. Let A" be a random event taking on the values —2, -1, 0,1,2, all with 

positive probability. Wliat is the general inequality/equality between 

H(X) and H(Y), where Y is the following?

(a) y  =  2'Y

(b) Y =  X 2

6. (a) In this problem we explore the relationship between the entropy
of a random variable X  and the entropy of a function f{X) of 

the random variable. The following is a short proof that shows
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H(J(X)) < H(X). Explain what principles are used in each of 

the steps.

H(X, f(X )) =  H (X) + H(f(X)\X) =  H(X),

H(X, f(X )) =  H(f(X)) + H(X\f(X)) > H (f(X )).

Letting X  take on the values ±1 and letting f(x) =  x~, show that 

it is possible to have H (f(X )) < H(X).

In part (a), show that you have equality if and only if /  is a 
one-to-one function (more precisely, /  is one-to-one on the set of 

outputs of X  that have nonzero probability).

The preceding results can be used to study the behavior of the 

run length coding of a sequence. Run length coding is a tech
nique that is commonly used in data compression. Suppose that 

X\, X i, ■■■ , Xn are random variables that take the values 0 or

1. This sequence of random variables can be thought of os rep

resenting the output of a binary source. The run length coding 

of ATi, Xo, • • • ,X n is a sequence L =  (Li, L?, • ■ ■ , Lk) that repre
sents the lengths of consecutive symbols with the same value. For 

example, the sequence 110000100111 has a run length sequence of 

L =  (2,4,1,2,3). Observe that L is a function of X i, Xn, ■ • ■ , X„. 
Show that L and X\ uniquely determine X i,X 2, ■■■ , Xn. Do L 

and Xn determine X i,X 2, ■■■ ,X n1 Using these observation and 
the preceding results, compare H (X  1, ^ 2 , ••• ,ATn), /f(L ), and

H( h ,X l ).

7. A bag contains five red balls, three white balls, and two black balls 

that are identical to each other in every manner except color.

(a) Choose two balls from the bag with replacement. What is the 

entropy of this experiment?

(b) What is the entropy of choosing two balls without replacement? 

(Note: In both parts, the order matters; i.e., red then white is 

not the same os white then red.)

8. We often run into situations where we have a sequence of n random 

events. For example, a piece of text is a long sequence of letters. 

We are concerned with the rate of growth of the joint entropy os n 
increases. Define the entropy rate of a sequence X  =  of random 

events as

tfoo(X)=* lim - H (X UX 2, — Xn)-
n—00 n

(b)

(c)

(d)
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A very crude model for a language is to assume that subsequent 

letters in a piece of text are independent and come from identical 

probability distributions. Using this, show that the entropy rate 

equals /f(X i).

In general, there is dependence among the random variables. As

sume that X i,X 2,- • • Xn have the same probability distribution 

but are somehow dependent on each other (for example, if I give 

you the letters TH you can guess that the next letter is E). Show 

that
H (Xu X 2l-.-X „ ) < ] T B ( X k) 

k

and thus that
ffoo(X) < H(Xi)

(if the limit defining Hoc exists).

9. Suppose we have a cryptosystem with only two possible plaintexts. 

The plaintext a occurs with probability 1/3 and b occurs with prob

ability 2/3. There are two keys, k\ and kz, and each is used with 

probability 1/2. Key A,'i encrypts a to A and b to B. Key kz encrypts 

a to B and b to A.

(a) Calculate H(P), the entropy for the plaintext.

(b) Calculate H (F|C), the conditional entropy for the plaintext given 

the ciphertext. (Optional hint: This can be done with no addi

tional calculation by matching up this system with another well- 

known system.)

10. Consider a cryptosystem {P,K, C}.

(a) Explain why H(P,K) =  H(C,P,I<) =  H{P) + H(K).

(b) Suppose the system has perfect secrecy. Show that

H(C,P) =  H{C) + H(P)

and
H{C) =  H{K)-H{K\C,P).

(c) Suppose the system has perfect secrecy and, for each pair of plain

text and ciphertext, there is at most one corresponding key that 

does the encryption. Show that H(C) =  J7(/f).

11. Prove that for a cryptosystem {P, K, C} we have

(a)

(b)

H{C\P) =  H(P,K, C) - H(P) - H(K\C, P) =  H(IC) - H{K\C, P).
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12. Consider a Shamir secret sharing scheme where any 5 people of a set 

of 20 can determine the secret K, but no fewer can do so. Let H(I() 
be the entropy of the choice of K, and let if(/C|5i) be the conditional 

entropy of K, given the information supplied to the first person. What 

are the relative sizes of H(K) and H{K\S\)7 (Larger, smaller, equal?)

13. Let X  be a random event taking on the values 1 ,2 ,3 ,...,36, all with 

equal probability.

(a) What is the entropy H(X)7

(b) Let Y  =  X™ (mod 37). What is H(Y)?

14. (a) Show that the maximum of -plog2p — (1 — p) log2(l - p) for
0 < p < 1 occurs when p =  1/2.

(b) Let p,- > 0 for 1 < i < n. Show that the maximum of

" 5 3  Pi log2 Pi.

subject to the constraint 53,pi =  1, occurs when p\ = ■ • • =  pn. 

(Hint: Lagrange multipliers could be useful in this problem.)

15. (a) Suppose we define H(Y\X) =  - ^2xypy(y\x)]og2py[y\x). Show

that if X  and Y are independent, and X  has |«-Y| possible outputs, 

then H{Y\X) = \X\H(Y) > H(Y).

(b) Use (a) to show that H(Y\X) is not a good description of the 
uncertainty of Y  given X.
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Elliptic Curves

In the mid-1980s, Miller and Koblitz introduced elliptic curves into cryp

tography, and Lenstra showed how to use elliptic curves to factor integers. 

Since that time, elliptic curves have played an increasingly important role in 

many cryptographic situations. One of their advantages is that they seem 

to offer a level of security comparable to classical cryptosystems that use 

much larger key sizes. For example, it is estimated in [Blake et al] that 
certain conventional systems with a 4096-bit key size can be replaced by 
313-bit elliptic curve systems. Using much shorter numbers can represent a 

considerable savings in hardware implementations.

In this chapter, we present some of the highlights. Fbr more details on 

elliptic curves and their cryptologic uses, see [Blake et al.], [Hankerson et 
al.], or [Washington]. For a list of elliptic curves recommended by NIST for 

cryptographic uses, see [FIPS 186-2],

16.1 The Addition Law

An elliptic curve E  is the graph of an equation

E  : y~ — z3 + ax2 4- bx + c,

where a, 6, c are in whatever is the appropriate set (rational numbers, real 

numbers, integers mod p, etc.). In other words, let K  be the rational num
bers, the real numbers, or the integers mod a prime p (or, for those who

347
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know what this means, any field of characteristic not 2). Then we assume

a,b,c 6  K  and take E  to be

{(x,y) | x,y e K.y2 =  x3 + ax2 +bx+ c}.

As will be discussed below, it is also convenient to include a point (co,oo), 

which often will be denoted simply by oo.

Let's consider the case of real numbers first, since this case allows us 

to work with pictures. The graph E  has two possible forms, depending on 
whether the cubic polynomial has one real root or three real roots. For 

example, the graphs of y2 =  x(x + l)(x — 1) and y2 — x3 + 73 are the 

following:

y =  x(x + ! ) ($ -  l) y2 =  i 3 + 73

The case of two components (for example, y2 =  x(x + l ) ( i  — 1 )) occurs 

when the cubic polynomial has 3 real roots. The case of one component (for 

example, y2 =  x3 + 73) occurs when the cubic polynomial has only one real 

root.

For technical reasons that will become clear later, we also include a 

“point at infinity,” denoted oo, which is most easily regarded os sitting at 

the top of the y-axis. It can be treated rigorously in the context of projective 

geometry (see [Washington]), but this intuitive notion suffices for what we 

need. The bottom of the y-axis is identified with the top, so oo also sits at 

the bottom of the y-axis.

Now let’s look at elliptic curves mod p, where p is a prime. For example, 

let E  be given by

y2 = x3 + 2x — 1 (mod 5).
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We can list the points on E  by letting x run through the values 0,1,2,3,4 
and solving for y:

(0,2),(0,3),(2,1),(2,4),(4,1),(4,4),oo.

Note that we again include a point oo.

Elliptic curves mod p are finite sets of points. It is these elliptic curves 
that are useful in cryptography.

Technical po in t: We assume that the cubic polynomial x3 + ax2 + bx + c 
has no multiple roots. This means we exclude, for example, the graph of 

y2 = (x — l)2(x 4- 2). Such curves will be discussed in Section 16.3.

Technical po in t: For most situations, equations of the form y2 =  x3 + 
bx + c suffice for elliptic curves. In fact, in situations where we can divide by

3, a change of variables changes an equation y2 =  x3  4- ax2 + bx + c into an 

equation of the form y2 =  x3 4 - b'x 4- d. See Exercise 1. However, sometimes 

it is necessary to consider elliptic curves given by equations of the form

y2 4- a-ixy 4- a3y =  x3 4- aox2 4- a.|X 4- o6,

where o i,. . .,a e  are constants. If we are working mod p, where p > 3 is 
prime, or if we are working with real, rational, or complex numbers, then 

simple changes of variables transform the present equation into the form 

y2  =  x3  4- bx 4- c. However, if we are worlcing mod 2 or mod 3, or with a 

finite field of characteristic 2 or 3 (that is, 14-1 =  0 or 14-14-1 = 0 ) , 
then we need to use the more general form. Elliptic curves over fields of 

characteristic 2  will be mentioned briefly in Section 16.4.

H is to rica l po in t: Elliptic curves are not ellipses. They received their 

name from their relation to elliptic integrals such as

f z* dx Z' " 3 xdx

Jzt s/x3 + bx + c 7;, Vx3  4-bx + c

that arise in the computation of the arc length of ellipses.

The main reason elliptic curves are important is that we can use any two 

points on the curve to produce a third point on the curve. Given points Pi 
and P2 on E, we obtain a third point P3 on E  as follows (see Figure 16.1): 

Draw the line L through Py and P> (if Pi =  P2 , take the tangent line to E  
at PL). The line L intersects E  in a third point Q. Reflect Q through the 

x-axis (i.e., change y to —y) to get P3. Define a law of addition on E  by

P i 4- P i — Pa-
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Figure 16.1: Adding Points on an Elliptic Curve.

Note that this is not the same as adding points in the plane.

Exam ple . Suppose E  is defined by y2 =  x3  + 73. Let Pi =  (2,9) and 

P-> =  (3,10). The line L through Pi and P? is

y =  x 4- 7.

Substituting into the equation for E  yields

(ar + 7) 2 =  x3  + 73,

which yields x3 — x2 — 14x 4 - 24 =  0. Since L intersects E  in Pi and A , we 

already know two roots, namely x =  2 and x =  3. Moreover, the sum of the 
three roots is minus the coefficient of x2 (Exercise 1) and therefore equals

1. If x is the third root, then

24-34-1 =  1,

so the third point of intersection has x =  —4. Since y = x + 7, we have 

y — 3, and Q =  (-4,3). Reflect across the x-axis to obtain

(2,0) 4- (3,10) ~ Pi =  (—4, —3).
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Now suppose we want to add P3 to itself. The slope of the tangent line 

to E  at P3 is obtained by implicitly differentiating the equation for E:

0 dy 31 2
2y dy =  3xm dx, so —  =  —— =  —8 , 

dx 2  y

where we have substituted (x,y) =  (—4, -3) from P3. In this case, the line 

L is y — —8 ( 1  + 4) — 3. Substituting into the equation for E  yields

(—8 (x + 4) - 3) 2 = x3 + 73,

hence x3 — (—S)2 z 2 H-- = 0. The sum of the three roots is 64 (= minus the

coefficient of x2}. Because the line L is tangent to E, it follows that x =  -4 
is a double root. Therefore,

(—4) + (—4) +x =  64,

so the third root is x = 72. The corresponding value of y (use the equation 

of L) is —611. Changing y to —y yields

P3 + P3 =  (72,611). ■

What happens if we try to compute P  + oo? We make the convention 

that the lines through 0 0  are vertical. Therefore, the line through P  =  (x,y) 
and 0 0  intersects E  in P  and also in [x, —y). When we reflect (x, —y) across 

the z-axis, we get back P  =  (x,y). Therefore,

P  + 0 0  =  P.

We can also subtract points. First, observe that the line through (1 , 1/) 

and (x, —y) is vertical, so the third point of intersection with E is 0 0 . The 

reflection across the i-axis is still 0 0  (that’s what we meant when we said

0 0  sits at the top and at the bottom of the y-axis). Therefore,

(x,y) + (x, -y) =  0 0 .

Since 0 0  plays the role of an additive identity (in the same way that 0 is the 

identity for addition), we define

~(x,y) =  (x, -y).

To subtract points P  — Q, simply add P  and —Q.
Another way to express the addition law is to say that

P  + Q 4- R =  0 0  •<=>■ P, Q, R are collinear.

(see Exercise 10).

For computations, we can ignore the geometrical interpretation and work 
only with formulas, which are as follows:
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A d d it io n  Law . Let E  be given by y2 = x3 + bx + c and let 

P\ =  (1 1 , 1/2 ), Pi =  (1 2 , 2/2 ).

Than

when

and

Pi + P2 =  P3 =  (1 3 , 2/3 ),

X 3 --- t t i ?  — x 1 — xz 

2/3 =  m(x i- x 3)- y i

m (Z/2 -2/l)/(l2 - I I )

(3i? + 6)/(2y0 t/ Pi =  Pi-

If the slope m is infinite, then Pj = 00. There is one additional law: 00+P =  

P for all points P.

It can be shown that the addition law is associative:

{P + Q )+ R  = P+{Q + R).

It is also commutative:

P + Q = Q+P.

When adding several points, it therefore doesn't matter in what order the 
points are added nor how they are grouped together. In technical terms, we 

have found that the points of E  form an abelian group. The point 0 0  is the 

identity element of this group.

16.2 Elliptic Curves Mod p

If p Is a prime, we can work with elliptic curves mod p using the aforemen
tioned ideas. For example, consider

E  1 y2 =  x3 + 4x 4- 4 (mod 5).

The points on E  are the pairs (x,y) mod 5 that satisfy the equation, along 

with the point at infinity. These can be listed as follows. The possibilities 

for 1  mod 5 are 0, 1, 2, 3, 4. Substitute each of these into the equation and 

find the values of y that solve the equation:

i  =  0 ==S- y2 =  4 =*• y =  2,3 (mod 5)

i  =  l  = >  y2 =  9 =  4 =►  y = 2,3 (mod 5)

i  =  2 =4- y- =  20 = 0 =S- y s  0 (mod 5)

x =  3 =4- y2 =  43 =  3 =►  no solutions

x s  4 =►  y2 s  84 =  4 =4- y =  2,3 (mod 5) 
x =  0 0  =4- y =  0 0 .
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The points on E are (0,2), (0,3), (1,2), (1,3), (2,0), (4,2), (4,3), (oo,co).

The addition of points on an elliptic curve mod p is done via the same 

formulas as given previously, except that a rational number a/6 must be 

treated as aft-1, where 6~l b =  1 (mod p). This requires that gcd(6, p) =  1.

More generally, it is possible to develop a theory of elliptic curves mod 

n for any integer n. In this case, when we encounter a fraction a/fa, we need 

to have gcd(6, n) =  1. The situations where this fails form the key to using 

elliptic curves for factorization, as we’ll see in Section 16.3. There are various 

technical problems in the general theory that arise when 1 < gcd(6, n) < n, 
but the method to overcome these will not be needed in the following. For 

details on how to treat this cose, see [Washington]. For our purposes, when 

we encounter an elliptic curve mod a composite n, we can pretend n is prime. 

If something goes wrong, we usually obtain useful information about n, for 

example its factorization.

Exam p le . Let's compute (1,2) + (4,3) on the curve just considered. The 

slope is
3 — 2

m = -— - = 2 (mod 5).

Therefore,

X3 = m2 — xi — X 2S22 — 1 — 4 =  4 (mod 5)

1/3 =  m (zi - x3) -  i/i s  2(1 - 4) - 2 =  2 (mod 5).

This means that
(1,2)+ (4,3) =  (4,2). ■

Exam p le . Here is a somewhat larger example. Let n =  2773, Let

E : j/2 =  i 3 + 4 i + 4 (mod 2773), and P =  (1,3).

Let's compute 2P = P  + P. To get the slope of the tangent line, we differ

entiate implicitly and evaluate at (1,3):

2ydy = (3x2 +4)dx =*• ^
ax 0

But we are working mod 2773. Using the extended Euclidean algorithm (see 

Section 3.2), we find that 2311-6 = 1 (mod 2773), so we can replace 1/6 by 

2311. Therefore,

m =  ^ s  7 x 2311 =  2312 (mod 2773).
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1 3  =  2312* - 1 - 1 =  1771 (mod 2773) 

j/3  =  2312(1 - 1771) - 3  = 705 (mod 2773).

The final answer is

2P = P + P =  (1771, 705).

Now that we're done with the example, we mention that 2773 is not prime. 

When we try to calculate 3P  in Section 16.3, we'll obtain the factorization 

of 2773. B

16.2.1 N um be r o f Po in ts  M o d  p

Let E  : y2 =  x3 + bx + c (mod p) be ah elliptic curve, where p > 5 is prime. 

We can list the points on E  by letting x =  0 ,1 ,... ,p — 1 and seeing when 

x3 + 6 1  + c is a square mod p. Since half of the nonzero numbers are squares 

mod p, we expect that x3 + bx + c will be a square approximately half the 

time. When it is a nonzero square, there are two square roots: y and —y. 
Therefore, approximately half the time we get two values of y and half the 

time we get no y. Therefore, we expect around p points. Including the point
0 0 , we expect a total of approximately p+ 1 points. In the 1930s, H. Hasse 

made tills estimate more precise.

Hasse’s Theorem . Suppose E  (mod p) has N  points. Then 

\N-p~ 1| < 2Vp.

The proof of this theorem is well beyond the scope of this book (for 

u proof, see [Washington]). It can also be shown that whenever N  and p 
satisfy the inequality of the theorem, there is an elliptic curve E  mod p with 

cxnctly N points.

If p is large, say around 1030, it is infeasible to count the points on 

nn elliptic curve by listing them. More sophisticated algorithms have been 

ilovoloped by Schoof, Atkin; Elkies, and others to deal with this problem.

10.2.2 D iscrete Logarithm s on E llip t ic  Curves

lliicull the classical discrete logarithm problem: We know that x =  gk 
(11101] ]>) for some k, and we want to find k. There is an elliptic curve 

vornion: Suppose we have points A, D on an elliptic curve E  and we know
llml D — kA (=  A + A H----A) for some integer k. We want to find k.
TliIn might not look like a logarithm problem, but it is clearly the analog of 

Min classical discrete logarithm problem. Therefore, it is called the discrete 
loHiii'ltlnn problem for elliptic curves.

The form ulas yield



1C.2. E l l i p t i c  C u rve s  M o d  p 355

There is  no good general attack on the discrete logarithm problem for 

elliptic curves. There is  an analog of the Pohlig-Hellman attack that works 

i n  some situations. Let E  be an elliptic curve mod a prime p and let n 
be the smallest integer such that nA =  co. If n has only small prime 

factors, then it is  possible to calculate the discrete logarithm k mod the 

prime powers dividing n and then use the Chinese remainder theorem to 

find k (see Exercise 15). The Pohlig-Hellman attack can be thwarted by 

choosing E  and A so that n has a large prime factor.

There is no replacement for the index calculus attack described in Section 

7.2. This is because there is no good analog of "small." You might try to use 

points with small coordinates in place of the "small primes," but this doesn’t 

work. When you factor a number by dividing off the prime factors one by 

one, the quotients get smaller and smaller until you finish. On an elliptic 

curve, you could have a point with fairly small coordinates, subtract off a 

small point, and eud up with a point with large coordinates (see Computer 

Problem 5). So there is no good way to know when you are making progress 

toward expressing a point in terms of the factor base of small points.

The Baby Step, Giant Step attack on discrete logarithms works for ellip
tic curves (Exercise 9), although it requires too much memory to be practical 

in most situations. For other attacks, see [Blake et a l.J  and [Washington].

16.2.3 Represen ting  P la in tex t

In most cryptographic systems, we must have a method for mapping our 

original message into a numerical value upon which we can perform math
ematical operations. In order to use elliptic curves, we need a method for 
mapping a message onto a point on an elliptic curve. Elliptic curve cryp

tosystems then use elliptic curve operations on that point to yield a new 

point that will serve as the ciphertext.

The problem of encoding plaintext messages as points on an elliptic curve 

is not as simple as it was in the conventional case. In particular, there is no 
known polynomial time, deterministic algorithm for writing down points on 

an arbitrary elliptic curve E  (mod p). However, there are fast probabilistic 

methods for finding points, and these can be used for encoding messages. 

These methods have the property that with small probability they will fail 

to produce a point. By appropriately choosing parameters, this probability 

can be made arbitrarily small, say on the order of 1/230.

Here is one method, due to Koblitz. The idea is the following. Let 

E : y~ =  x3 + bx + c (mod p) be the elliptic curve. The message m (already 

represented as a number) will be embedded in the x-coordinate of a point. 

However, the probability is only about 1/2 that m3 + bm + c is a square mod 

p. Therefore, we adjoin a few bits at the end of m and adjust them until we 
get a number x such that x3 +bx + c is a square mod p.
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More precisely, let I( be a large integer so that a failure rate of 1/2K 
is acceptable when trying to encode a message as a point. Assume that m 
satisfies (m + 1 )K  < p. The message m will be represented by a number 

x = mK +j, where 0 < j  < K. For j  =  0 ,1 ,..., I(  — 1, compute x3 + bx+c 
and try to calculate the square root of x3 +bx + c (mod p). For example, if 

p =  3 (mod 4), the method of Section 3.9 can be used. If there is a square 

root y, then we take Pm =  (x,y); otherwise, we increment j  by one and try 

again with the new x. We repeat this until either we find a square root or 

j  — K. If j  ever equals K, then we fail to map a message to a point. Since 

x3+bx+c is a square approximately half of the time, we have about a 1/2K 
chance of failure.

In order to recover the message from the point Pm = (x, y) we simply 

calculate m by

m = {x/K\,

where [i/A'J denotes the greatest integer less than or equal to x/K.

Exam ple . Let p =  179 and suppose that our elliptic curve is y2 =  i 3+2x+

7. If we are satisfied with a failure rate of 1/210, then we may take K  =  10. 

Since we need mK  4■ K  < 179, we need 0 < m < 16. Suppose our message 

is m =  5. We consider x of the form mK + j =  50 + j.  The possible choices 
for x are 50,51,..., 59. For x =  51 we get x3 + 2x + 7 =  121 (mod 179), and 

l l 2 =  121 (mod 179). Thus, we represent the message m =  5 by the point 

Pm =  (51,11). The message m can be recovered by m =  [51/10] =  5. I

16.3 Factoring with Elliptic Curves

Suppose n = pq is a number we wish to factor. Choose a random elliptic 

curve mod n and a point on the curve. In practice, one chooses several 

(around 14 for numbers around 50 digits; more for larger integers) curves 

with points and runs the algorithm in parallel.

How do we choose the curve? First, choose a point P  and a coefficient

a. Then choose 6 so that P  lies on the curve y2 =  x3 +bx +c. This is much 

more efficient than choosing a and b and then trying to find a point.

For example, let n =  2773. Take P =  (1,3) and a =  4. Since we want 

32 =  l 3 + 4 ■ 1 + b, we take 6 =  4. Therefore, our curve is

E  : y2 =  i 3 + 4x + 4 (mod 2773).

We calculated 2P  =  (1771,705) in a previous example. Note that dur

ing the calculation, we needed to find 6-1 (mod 2773). This required that 
gcd(6,2773) =  1 and used the extended Euclidean algorithm, which was 

essentially a gcd calculation.
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Now let's calculate 3P  = 2P  + P. The line through the points 2P  =  

(1771,705) and P  =  (1,3) has slope 702/1770. When we try to invert 1770 
mod 2773, we find that gcd(1770,2773) =  59, so we cannot do this. So what 

do we do? Our original goal was to factor 2773, so we don’t need to do 

anything more. We have found the factor 59, which yields the factorization 

2773 =  59 • 47.

Here's what happened. Using the Chinese remainder theorem, we can 

regard E  as a pair of elliptic curves, one mod 59 and the other mod 47. 

It turns out that 3P = ca (mod 59), while 4P = oo (mod 47). Therefore, 

when we tried to compute 3P, we had a slope that was infinite mod 59 but 

finite mod 47. In other words, we hod a denominator that was 0 mod 59 

but nonzero mod 47. Taking the gcd allowed us to isolate the factor 59.

The same type of idea is the basis for many factoring algorithms. If 

n =  pq, you cannot separate p and q as long as they behave identically. 

But if you can find something that makes them behave slightly differently, 

then they can be found. In the example, the multiples of P  reached oo 

faster mod 59 than mod 47. Since in general the primes p and q should act 

fairly independently of each other, one would expect that for most curves E  
(mod pq) and points P, the multiples of P  would reach oo mod p and mod 
q at different times. This will cause the gcd to find either p or q.

Usually, it takes several more steps than 3 or 4 to reach oo mod p or 

mod q. In practice, one multiplies P  by a large number with many small 

prime factors, for example, 10000!. This can be done via successive doubling 

(the additive analog of successive squaring; see Exercise 13). The hope is 

that this multiple of P  is oo either mod p or mod q. This is very much 

the analog of the p — 1 method of factoring. However, recall that the p — 1 

method (see Section 6.4) usually doesn’t work when p — 1 has a large prime 

factor. The same type of problem could occur in the elliptic curve method 

just outlined when the number m such that mP equals oo has a large prime 

factor. If this happens (so the method fails to produce a factor after a 

while), we simply change to a new curve E. This curve will be independent 

of the previous curve and the value of m such that mP =  co should have 

essentially no relation to the previous m. After several tries (or if several 

curves are treated in parallel), a good curve is often found, and the number 

n =  pq is factored. In contrast, if the p — 1 method fails, there is nothing 

that can be changed other than using a different factorization method.

E xam p le . We want to factor n =  455839. Choose

E : y 2 =  x3 +  5x - 5 , P =  (1 ,1 ) .

Suppose we try to compute 10!P. There are many ways to do this. One 

is to compute 2!P, 3!P =  3(2!P),4!P =  4(3IP),—  If we do this, every
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thing is fine through 7!P, but SIP requires inverting 599 (mod ti). Since 

gcd(599,n) =  599, we can, factor n  as 599 x 761.

Let’s examine this more closely. A computation shows that E  (mod 599) 

has 640 =  2' x 5 points and E  (mod 761) has 777 =  3x7x37 points. More

over, 640 is the smallest positive m such that mP =  oo on E  (mod 599), and 

777 is the smallest positive m such that mP — oo on E  (mod 761). Since 

8! is a multiple of 640, it is easy to see that SIP = oo on E (mod 599), as 

we calculated. Since 81 is not a multiple of 777, it follows that 8!P ^  oo on 

E (mod 761). Recall that we obtain oo when we divide by 0, so calculating 
8!P asked us to divide by 0 (mod 599). This is why we found the factor 

599. B

In general, consider an elliptic curve E  (mod p) for some prime p. The 

smallest positive m such that mP =  oo on this curve divides the number N  
of points on E  (mod p) (if you know group theory, you’ll recognize this as 

a corollary of Lagrange’s theorem), so NP  =  oo. Quite often, m will be N  
or a large divisor of N. In any case, if AT is a product of small primes, then 

BI will be a multiple of N  for a reasonably small value of B. Therefore, 
BIP =  oo.

A number that has only small prime factors is called smooth. More 

precisely, if all the prime factors of an integer are less than or equal to B, 
then it is called B-smooth. This concept played a role in the quadratic 
sieve (Section 6.4), the p - 1 factoring method (Section 6.4), and the index 

calculus attack on discrete logarithms (Section 7.2).
Recall from Hasse’s theorem that N  is an integer near p. It is possible 

to show that the density of smooth integers is large enough (we’ll leave 
small and large undefined here) that if we choose a random elliptic curve E 
(mod p), then there is a reasonable chance that the number N  is smooth. 

This means that the elliptic curve factorization method should find p for 

this choice of the curve. If we try several curves E  (mod n), where n =  pq, 
then it is likely that at least one of the curves E  (mod p) or E (mod q) will 

have its number of points being smooth.

In summary, the advantage of the elliptic curve factorization method 

over the p — 1 method is the following. The p — 1 method requires that p — 1 

is smooth. The elliptic curve method requires only that there are enough 

smooth numbers near p so that at least one of some randomly chosen integers 
near p is smooth. This means that elliptic curve factorization succeeds much 

more often than the p - 1 method.

The elliptic curve method seems to be best suited for factoring numbers 

of medium size, say around 40 or 50 digits. These numbers are no longer 

used for the security of factoring-based systems such as RSA, but it is some

times useful in other situations to have a fast factorization method for such 
numbers, Also, the elliptic curve method is effective when a large number
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has a small prime factor, say of 10 or 20 decimal digits. For large numbers 

where the prime factors are large, the quadratic sieve and number field sieve 

are superior (see Section 6.4).

16.3.1 Singular Curves

In practice, the case where the cubic polynomial x3 + bx + c has multiple 

roots rarely arises. But what happens if it does? Does the factorization 

algorithm still work? The discriminant 463 + 27c2 is zero if and only if there 

is a multiple root (this is the cubic analog of the fact that ax2 + bx + c 

has a double root if and only if 62 — 4ac =  0). Since we are working mod 

n =  pq, the result says that there is a multiple root mod n if and only if the 

discriminant is 0 mod n. Since n is composite, there is also the intermediate 

case where the gcd of n and the discriminant is neither 1 nor n. But this 

gives a nontrivial factor of n, so we can stop immediately in this case.

E xam ple . Let’s look at an example:

y2 — x3 — 3x + 2 =  (x — l ) 2(x + 2).

Given a point P =  (x, y) on this curve, we associate the number

(y + V3(x - l))/(y - V3(x -  1)).

It can be shown that adding the points on the curve corresponds to multi

plying the corresponding numbers. The formulas still work, as long as we 

don’t use the point (1,0). Where does this come from? The two lines tan

gent to the curve at (1, 0) are y + \/3(i - 1) =  0 and y - V3(i - 1) =  0. 
This number is simply the ratio of these two expressions.

Since we need to work mod n, we give an example mod 143. We choose 

143 since 3 is a square mod 143; in fact, 822 =  3 (mod 143). If this were 
not the case, things would become more technical with this curve. We could 

easily rectify the situation by choosing a new curve.

Consider the point P =  (—1,2) on y2 — x3 — 3 i + 2 (mod 143). Look at 

its multiples:

P =  (-1,2), 2 P =  (2,141), 3 P =  (112,101), 4P =  (10,20).

When trying to compute 5F, we find the factor 11 of 143.
Recall that we are assigning numbers to each point on the curve, other 

than (1,1). Since vve are working mod 143, we use 82 in place of y/3. There

fore, the number corresponding to (—1,2) is (2 + 82(—1 — l))/(2 — 82(-l - 
1)) =  80 (mod 143). We can compute the numbers for all the points above:

P  80, 2P  108, 3P ~  60, 4P  «-> 81.
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Let's compare with the powers of 80 mod 143:

801 =  80, 802 = 108, 803 =  60, 80'1 =  81, 80s =  45.

We get the same numbers. This is simply the fact mentioned previously 

that the addition of points on the curve corresponds to multiplication of the 

corresponding numbers. Moreover, note that 45 =  1 (mod 11), but not mod 

13. This corresponds to the fact that 5 times the point (—1,2) is oo mod 11 

but not mod 13. Note that 1 is the multiplicative identity for multiplication 

mod 11, while oo is the additive identity for addition on the curve.
It is cosy to see from the preceding that factorization using the curve 

i/2 =  x3—3i+2 is essentially the same as using the classical p— 1 factorization 

method (see Section 6.4). ■

In the preceding example, the cubic equation had a double root. An 

even worse possibility is the cubic having a triple root. Consider the curve

y2 =  z3.

To a point (x,y) ^  (0,0) on this curve, associate the number x/y. Let's 

start with the point P  =  (1,1) and compute its multiples:

P  =  (l , l>,  2F =  ( H ) ,  3 P = ( i  mP={̂ _,±).
Note that the corresponding numbers x/y are 1 , 2 , 3 , Adding the 

points on the curve corresponds to adding the numbers x/y.
If we are using the curve y2 =  x3 to factor n, we need to change the 

points mP to integers mod n, which requires finding inverses for m2 and 

m3 mod n. This is done by the extended Euclidean algorithm, which is 

essentially a gcd computation. We find a factor of n when gcd(m,n) ^  1. 

Therefore, this method is essentially the same as computing in succession 

gcd(2,n),gcd(3,n),gcd(4,n),... until a factor is found. This is a slow ver

sion of trial division, the oldest factorization technique known. Of course, 

in the elliptic curve factorization algorithm, a large multiple (B!)P of P  is 
usually computed. This is equivalent to factoring by computing gcd(B!,n), 

a method that is often used to test for prime factors up to B.
In summary, we see that the p — 1 method and trial division are included 

in the elliptic curve factorization algorithm if we allow singular curvcs.

16.4 Elliptic Curves in Characteristic 2

Many applications use elliptic curves mod 2, or elliptic curves defined over 

the finite fields GF(2n) (these are described in Section 3.11). This is often
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because mod 2 adapts well to computers. In 1999, NIST recommended 15 

elliptic curves for cryptographic uses (see [PIPS 18G-2]). Of these, 10 are 
over finite fields G ir(2n).

If we’re working mod 2, the equations for elliptic curves need to be mod

ified slightly. There are many reasons for this. For example, the derivative 
of y2 is 2yy' =  0, since 2  is the same as 0. This means that the tangent lines 

we compute are vertical, so 2P =  oo for all points P. A more sophisticated 

explanation is that the curve y2 s  x3 + bx + c (mod 2 ) has singularities 
(points where the partial derivatives with respect to x and y simultaneously 

vanish).

The equations we need are of the form

E :y2 + aixy + a^y — x3 4- a?x2 + 0 4 1  + ac,

where a .........ag are constants. The addition law is slightly more compli

cated. We still have three points adding to infinity if and only if they lie 

on a line. Also, the lines through 0 0  are vertical. But, as we’ll see in the 

following example, finding —P  from P  is not the same as before.

E xam p le . Let E : y2 + y =  x3 + x (mod 2 ). As before, we can list the 
points on E:

(0, 0), (0, 1), (1, 0), (1, 1), 00.

Let’s compute (0,0) + (1,1). The line through these two points is y =  x. 
Substituting into the equation for E  yields x2 + x =  x3 + x, which can 
rewritten as i 2( i  + 1) =  0. The roots are x — 0,0,1 (mod 2 ). Therefore, 

the third point of intersection also has x =  0. Since it lies on the line y — x, 
it must be (0,0). (This might be puzzling. What is happening is that the 

line is tangent to E  at (0,0) and also intersects E  in the point (1 ,1).) As 
before, we now have

(0 , 0 )+ (0 , 0 )+  ( 1 , 1 ) =  0 0 .

To get (0,0) + (1,1) we need to compute 0 0  - (0,0). This means we need to 

find P  such that P  + (0,0) =  0 0 . A line through 0 0  is still a vertical line. 

In this case, we need one through (0,0), so we take i  =  0. This intersects 

E  in the point P  =  (0,1). We conclude that (0,0) + (0,1) — 0 0 . Putting 

everything together, we see that

(0,0) + (1,1) =  (0,1). B

In most applications, elliptic curves mod 2 are not large enough. There

fore, elliptic curves over finite fields are used. For an introduction to finite
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fields, see Section 3.11. However, in the present section, we only need the 

field GF(4), which we now describe.

Let

GF(4) =  {0, l,tv,iv2},

with the following laws:

1. 0 + x =  x for all x.

2. x + x =  0 for all x.

3. 1 • x =  x for all x.

4. 1 + tv =  tv2.

5. Addition and multiplication are commutative and associative, and the 

distributive law holds: x(y + z) =  xy + xz for all x,y, z.

Since

tv3 =  tv • w2 =  tv ■ (1 + tv) = tv + J 1 =  tv + (1 + tv) =  1,

we see that tv2 is the multiplicative inverse of tv. Therefore, every nonzero 

element of G.F(4) has a multiplicative inverse.

Elliptic curves with coefficients in finite fields are treated just like elliptic 

curves with integer coefficients.

Exam ple. Consider

E  : y- + xy =  x3 + tv,

where tv 6 GF(4) is as before. Let’s list the points of E  with coordinates in 

GF{‘l):

2  =  0 =S- y2 “  tv =*- y = tv2

3 =  1 =s- y2 + y = 1 + tv =  tv2 =4- no solutions 

x =  tv =s- y2 + tvy =  tv2 =>  y = 1, tv2

z =  tv2 =J- y2 ’+ tv2y =  1 + tv =  tv2 =s- no solutions 

ar =  oo =>• y =  oo.

The points on £  are therefore

( 0 , t v 2 ) ,  ( t v ,  1 ) ,  ( t v ,  t v 2 ) ,  C O .

Let’s compute (0, tv2) + (tv, tv2). The line through these two points is y =  tv2. 

Substitute this into the equation for E:

tv'1 + tv2x = x3 +tv,
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which becomes z3 + tv2x =  0. This has the roots x — 0,tv,tv. The third 

point of intersection of the line and E  is therefore (tv, tv2), so

(0,tv2) + (tv, iv2) + (tv, tv2) = oo.

We need —(tv,tv2), namely the point P  with P  + (tv,tv2) =  oo. The vertical 

line x =  tv intersects E  in P  =  (tv, 1), so

( 0 , t v 2 ) +  ( t v , t v 2 ) =  ( t v , l ) .  B

For cryptographic purposes, elliptic curves are used over fields GF{2n) 

with n large, say at least 150,

16.5 Elliptic Curve Cryptosystems

Elliptic curve versions exist for many cryptosystems, in particular those 

involving discrete logarithms. An advantage of elliptic curves over working 

with integers mod p is the following. In the integers, it is possible to use 

the factorization of integers into primes (especially small primes) to attack 

the discrete logarithm problem. This is known as the index calculus and is 

described in Section 7.2. There seems to be no good analog of this method 

for elliptic curves. Therefore, it is possible to use smaller primes, or smaller 

finite fields, with elliptic curves and achieve a level of security comparable to 
that for much larger integers mod p. This allows great savings in hardware 

implementations, for example.
In the following, we describe three elliptic curve versions of classical 

algorithms. As we’ll see, there is a general procedure for changing a classical 

system based on discrete logarithms into one using elliptic curves:

1. Change modular multiplication to addition of points on an elliptic 

curve.

2. Change modular exponentiation to multiplying a point on an elliptic 

curve by an integer.

Of course, the second situation above is really a special case of the first, since 

exponentiation consists of multiplying a number by itself several times, and 

multiplying a point by an integer is adding the point to itself several times.

16.5.1 An Elliptic Curve ElGamal Cryptosystem

We recall the non-elliptic curve version. Alice wants to send a message x 
to Bob, so Bob chooses a large prime p and an integer a  mod p. He also
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chooses a secret integer a and computes /? =  a° (mod p). Bob makes p, a,P  
public and keeps a secret. Alice chooses a random k and computes y\ and 

7/2 , wliere

t/i =  ork and 2/2 =  x0k (mod p).

She sends (z/i. 1/2 ) to Bob, who then decrypts by calculating

x = yn/f° (mod p).

Now we describe the elliptic curve version. Bob chooses an elliptic curve 

E (mod p), wliere p is a large prime. He chooses a point or on £  and a secret 

integer a. He computes

P — aa (= a  + a  + • • ■ + a).

The points a and P are made public, while a is kept secret. Alice expresses 

her message as a point x on E  (see Section 16.2). She chooses a random 

integer k, computes

yi =  ka and 1/2 = 1  + kp, 

and sends the pair 2/1 , 1/2 to Bob. Bob decrypts by calculating

x = 1/2 - ai/i.

A more workable version of this system is due to Menezes and Vanstone. 
It is described in [Stinson 1, p. 189).

Exam ple . We must first generate a curve. Let’s use the prime p =  8831, 

the point G — (x, y) =  (4,11), and a =  3. To make G lie on the curve 

y~ =  x3 + bx + c (mod p), we take b =  45. Alice has a message, represented 
as a point Pm =  (5,1743), that she wishes to send to Bob. Here is how she 

does it.

Bob has chosen a random number ag — 3 and has published the point 

aBG =  (413,1808).

Alice downloads this and chooses a random number k =  8. She sends 

Bob kG =  (5415,6321) and Pm + k(aBG) =  (6626,3576). He first calcu

lates as(kG) =  3(5415,6321) =  (673,146). He now subtracts this from 

(6626,3576):

(6626,3576) - (673,146) =  (6626,3576) + (673, -146) =  (5,1743).

Note that we subtracted points by using the rule P  — Q =  P  + (—Q) from 
Section 16.1. I
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16.5.2 Elliptic Curve Diffie-Hellman Key Exchange

Alice and Bob want to exchange a key. In order to do so, they agree on 
a public basepoint G on an elliptic curve E  : ij2 =  a:3 + bx + c (mod p). 

Let’s choose p =  7211 and a =  1 and G =  (3, 5). This gives us b =  7206. 

Alice chooses Na randomly and Bob chooses Ng randomly. Let’s suppose 

Na =  12 and Ng — 23. They keep these private to themselves but publish 
NaG and NgG. In our case, we have

NaG =  (1794,6375) and NgG =  (3861,1242).

Alice now takes NgG  and multiplies by Na to get the key:

N a (N b G) =  12(3861,1242) =  (1472,2098).

Similarly, Bob takes NaG and multiplies by Ng to get the key:

Ng(NAG) =  23(1794,6375) =  (1472,2098).

Notice that they have the same key.

16.5.3 ElGamal Digital Signatures

There is an elliptic curve analog of the procedure described in Section 9.2. 
A few modifications are needed to account for the fact that we are working 

with both integers and points on an elliptic curve.

Alice wants to sign a message m (which might actually be the hash of 
a long message). We assume m is an integer. She fixes an elliptic curve E 
(mod p), where p is a large prime, and a point A on E. We assume that 

the number of points n on E  has been calculated and assume 0 < m < n (if 

not, choose a larger p). Alice also chooses a private integer a and computes 

B = a A. The prime p, the curve E, the integer n, and the points A and B 
are made public. To sign the message, Alice does the following:

1. Chooses a random integer k with 1 < k < n and gcd(fc,n) =  1, and 
computes R  =  kA =  (x, y)

2. Computes s =  /:_1(m — ax) (mod n)

3. Sends the signed message (mtR,s) to Bob

Note that R is a point on E, and m  and s are integers.

Bob verifies the signature as follows:

1. Downloads Alice's public information p, E, n. A, B

2. Computes Vj =  xB + sR and Vo =  mA
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The verification procedure works because 

V] = xB 4- sR = xaA 4- fc-1(m — ax)(kA) =  xaA 4- (m — ax)A =  mA =  IA-

There is a subtle point that should be mentioned. We have used k~l in 

this verification equation as the integer mod n satisfying k~lk =  1 (mod n). 
Therefore, k-1k is not 1, but rather an integer congruent to 1 mod n. So 

k~lk = 14-tn for some integer t. It can be shown that nA =  oo. Therefore,

k~lkA =(14- tn)A — A 4- t(nA) =  A 4- too =  A.

This shows that A;-1 and k cancel each other in the verification equation, as 

wc implicitly assumed above.

The classical ElGamal scheme and the present elliptic curve version are 

oimlogs of each other. The integers mod p are replaced with the elliptic 

curve E, and the number p — 1 becomes n. Note that the calculations in the 

classical scheme work with integers that are nonzero mod p, and there are 

p — 1 such congruence classes. The elliptic curve version works with points 

on the elliptic curve that are multiples of A, and the number of such points 

in u divisor of n.

The use of the x-coordinate of R in the elliptic version is somewhat 

arbitrary. Any method of assigning integers to points on the curve would 

work. Using the x-coordmnte is an easy choice. Similarly, in the classical 

ElGiunal scheme, the use of the integer r in the mod p—1 equation for s might 
Hccm it little unnatural, since r was originally defined mod p. However, any 
method of assigning integers to the integers mod p would work (see Exercise 

10 in Chapter 9). The use of r itself is an easy choice.

There is an elliptic curve version of the Digital Signature Algorithm that 

is similar to the preceding (Exercise 14).

16.6 Identity-Based Encryption

In most public key systems, when Alice wants to send a message to Bob, 
who looks up his public key in a directory and then encrypts her message. 

However, she needs some type of authentication - perhaps the directory has 

been modified by Eve, and the public key listed for Bob was actually created 
by Eve. Alice wants to avoid this situation. It was suggested by Shamir in 

1984 tlmt it would be nice to have an identity-based system, where Bob’s 
public identification information (for example, his email address) serves as 

his public key. Such a system was finally designed in 2001 by Boneh and 
Franklin.

3. Declares the signature valid if V\ =  Vo
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Of course, some type of authentication of each user is still needed. In the 

present system, this occurs in the initial setup of the system during the com

munications between the Trusted Authority and the User. In the following, 

we give the basic idea of the system. For more details and improvements, 

see [Boneh-Franklin].

Before describing the system, we need some preliminary information. 
Let p be a prime of the form 6q — 1, where q is also prime. Let E  be the 

elliptic curve y~ = x3 + 1 mod p. We need the following facts about E.

1. There are exactly p + 1 =  &q points on E.

2. There is a point Pq oo such that qPo =  oo. In fact, if we take a 

random point P, then, with very high probability, 6P oo and 6P is 

a multiple of Pq.

3. There is a function e that maps pairs of points (aPg, bPg) to i/th roots 

of unity for all integers a, b. It satisfies the bilinearity property

e(aP0,bP0) = e(P0,P0)ab

for all o, b.

4. If we are given two points P and Q that are multiples of Pq, then 

e(P, Q) can be computed quickly from the coordinates of P  and Q.

5. e(Po, Pq) 1, so it is a non-trivial tfth root of unity.

Remarks. Properties (1) and (2) are fairly easy to verify (see Exercises 16 
and 17). The existence of e satisfying (3), (4), (5) is deep. In fact, e is a 

modification of what is known as the Weil pairing in the theory of elliptic 

curves. The usual Weil pairing e satisfies e(Po, Po) =  1, but the present 

version is modified using special properties of E  to obtain (5).

The fact that e(P, Q) can be computed quickly needs some more expla

nation. The two points P, Q satisfy P  =  aPo and Q =  6Pq for some a, b. 
However, to find a and b requires solving a discrete log problem, which could 

take a long time. Therefore, the obvious solution of choosing a random gth 

root of unity for e(P0, Pq) and then using the bilinearity property to define 

e does not work, since it cannot be computed quickly. Instead, e(P,Q) is 

computed directly in terms of the coordinates of the points P, Q.
Although we will not need to know this, the gtli roots of unity lie in the 

finite field with p2 elements (see Section 3.11).
For more about the definition of e, see [Boneh-Franklin] or [Washington].

The curve E is an example of a supersingular elliptic curve, namely one 

where the number of points is congruent to 1 mod p. (See Exercise 1G.) For 
a while, these curves were regarded as desirable for cryptographic purposes,
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because computations can be done quickly on them. But then it was shown 

that the discrete logarithm problem for them was only slightly more difficult 

than the classical discrete logarithm mod p (see Exercise 20), so they fell out 

of favor (after all, they are slower computationally than simple multiplication 

mod p, and they provide no security advantage). Because of the existence 

of the pairing e, they have become popular again.

To set up the cryptosystem, we’ll need two public hash functions:

1. H i maps arbitrary length binary strings to multiples of Pq. A little 

care is needed in defining Hi, since no one should be able, given a 

binary string b, to find k with Hi(b) — kPo. See Exercise 18.

2. Ho maps qth roots of unity to binary strings of length n, where n is the 

length of the messages that will be sent. Since Ho must be specified 

before the system is set up, this limits the lengths of the messages that 

can be sent. However, the message could be, for example, a DES key 

that is used to encrypt the remainder of a much longer message, so 

this length requirement is not a severe restriction.

To set up the system we need a Trusted Authority. Let’s call him Arthur. 
Arthur does the following.

1. He chaoses, once and for all, a secret integer s. He computes P\ =  sP0, 

which is made public.

2. For each User, Arthur finds the user's identification ID (written as a 
binary string) and computes

DUser = Sy ,  (/£>).

Recall that H\{ID) is a point on E, so £>user '5 5 times this point.

3. Arthur sends D(jfier to the user, who keeps it secret. Arthur does not 

need to store -Dusen 50 discards it.

The system is now ready to operate, but first let’s review what is known:

Public: E,p,P0lPi,HuHa
Secret: s (known only to Arthur), Djjst[ (one for each User; it is known 

only by that User)

Alice wants to send an email message m  (of binary length n) to Bob, who 

is one of the Users. She knows Bob’s address, which is bobScomputer.com. 

This is his ID. Alice does the following.

1. She computes g =  e(H\(babacomputer.com), Pi). This is a r/th root of 

unity.
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2. She chooses a random r ^  0 (mod g) and computes

t =  mffl H2(gr).

3. She sends Bob the ciphertext

c = (rP0, t).

Note that rPo is a point on E, and t is a binary string of length n.

If Bob receives a pair (U,v), where U is a point on E  and v is a binary 

string of length n, then he does the following.

1. He computes h =  e(Z3B0bi t/)j which is a qth root of unity.

2. He recovers the message as

m = v © 112(h).

Why does this yield the message? If the encryption is performed cor

rectly, Bob receives U =  tPq and v =  t =  m ®  U2(gr). Since =  
s Hi (bobacomputer.com),

h =  e(DBob, tPq) =  e(Hu PoYr =  e(Hu sP0y  =  gr. (16.1)

Therefore,

t © H2(h) =  t ffi Ho(gr) =  m © H2(gr) © H2(gr) =  m,

as desired. Note that the main step is Equation 16.1, which removes the 

secret s  from the D g0t, in the first argument of e and puts it on the Pq 
in the second argument. This follows from the bilinearity property of the 

function e.

It is very important that s be kept secret. If Eve obtains s, then she 

con compute the points D user for each user and read every email. Since 

Pi =  sPoi the security of s is compromised if Eve can compute discrete logs 

on the elliptic curve. Moreover, the ciphertext contains rPo■ If Eve can 

compute a discrete log and find r, then she can compute gT and use this 

to find H2(gr) and also m. Therefore, for the security of the system, it is 

vital that p be chosen large enough that discrete logs are computationally 

infeasible.
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16.7 Exercises

1. (a) Let i 3 + ax1 4- bx + c be a cubic polynomial with roots H , r , , r3.

Show that ri + T2 + rj =  —a.

(b) Write x = xi — a/3. Show that

i 3 + ax2 4- fcx + c = x3 4- b'x i 4- c \

with !>' =  b — (1/3)q2 and d = c — (l/3)a6 + (2/27)a3. (Remark: 
This shows that a simple change of variables allows us to consider 

the case where the coefficient of x~ is 0.)

2. (a) List the points on the elliptic curve E: y~ = x3 — 2 (mod 7).

(b) Find the sum (3,2) + (5,5) on E.

(c) Find the sum (3,2) + (3,2) on E.

3. Show that if P  =  (x, 0) is a point on an elliptic curve, then 2P =  oo.

4. The points (3, ±5) lie on the elliptic curve y2 =  x3 - 2 defined over the 

rational numbers. Find another point with rational coordinates that 

lies on this curve.

5. (a) Show that Q — (0,1) on y2 =  x3 + 1 satisfies GQ — oo. (Hint:
Compute 3Q, then use Exercise 3.)

(b) Your computations in (a) probably have shown that 2Q ^  oo and

3Q ^  oo. Use this to show that the points oo, Q, 2Q, 3Q,4Q, 5Q 
are distinct.

6. (a) Factor n =  35 by the elliptic curve method by using the elliptic

curve y2 =  x3 + 26 and calculating 3 times the point P  =  (10,9).

(b) Factor n =  35 by the elliptic curve method by using the elliptic 

curve y1 s  x3 + 5x + 8 and the point P =  (1, 28).

7. Suppose you want to factor a composite integer n by using the elliptic 

curve method. You start with the curve y2 = x3 — 4x (mod n) and 
the point (2,0). Why will this not yield the factorization of n?

8. Devise an analog of the procedure in Exercise 8(a) in Chapter 7 that 

uses elliptic curves.

9. Show how to use a Baby Step, Giant Step attack (see Section 7.2) to 

attack the discrete log problem on elliptic curves.

10. Show that if P,Q ,R  are points on an elliptic curve, then

P + Q + R =  oo <t=  ̂ P,Q ,R  are collinear.
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11. Let P  be a point on the elliptic curve E  mod n.

(a) Show that there are only finitely many points on E, so P  has only 

finitely many distinct multiples.

(b) Show that there are integers i , j  with i > j  such that iP  =  jP . 
Conclude that (i - j)P  =  oo.

(c) The smallest positive integer k such that kP =  oo is called the 

order of P. Let m be an integer such that mP  =  oo. Show 

that k divides m. (Hint: Imitate the proof of Exercise 20(c, d) 
in Chapter 3.)

(d) (for those who know some group theory) Use Lagrange’s theorem 

from group theory to show that the number of points on £  is a 

multiple of the order of P. (Combined with Basse’s theorem, this 
gives a way of finding the number of points on E. See Computer 
Problems 1 and 4.)

12. Let P  be a point on the elliptic curve E  mod n. Suppose you know a

positive integer k such that kP =  oo. You want to prove (or disprove)

that k is the order of P.

(a) Show that if (k/p)P =  oo for some prime factor p of k, then k is 

not the order of P.

(b) Suppose mjk and 1 < m < k. Show that m\(k/p) for some prime 

divisor p of k.

(c) Suppose that (k/p)P =4 oo for each prime factor of k. Use Ex

ercise 11(c) to show that the order of P  is k. (Compare with 

Exercise 21 in Chapter 3. For an example, see Computer Prob

lem 4.)

13. (a) Let x =  b\b2 ...bw be an integer written in binary. Let P  be a

point on the elliptic curve E. Perform the following procedure:

1. Start with k =  1 and Si =  oo.

2. If bh =  1, let Rk =  Sk + P. If bk =  0, let Rk =  Sk.

3. Let S*+i =  2Rk.

4. If k =  w, stop. If k < w, add 1 to k and go to step 2.

Show that Ru, =  xP. (Compare with Exercise 23(a) in Chapter

3.)

(b) Let x be a positive integer and let P  be a point on an elliptic 
curve. Show that the following procedure computes xP.

1. Start with a =  x, B =  oo, C =  P.

2. If a is even, let a =  a/2, and let B = B ,C  =  2C.
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3. If a is odd, let a =  a — 1, and let B = B + CyC = C.

4. If a /  0, go to step 2.

5. Output B.

(Compare with Exercise 23(b) in Chapter 3.)

14. Here is an elliptic curve version of the Digital Signature Algorithm. 

Alice wants to sign a message m, which is an integer. She chooses a 

prime p and an elliptic curve E  (mod p). The number of points n on E  
is computed and a large prime factor q of tl is found. A point A ( /  oo) 

is chosen such that qA =  oo. (In fact, n is not needed. Choose a point 

A! on E and find an integer n' with n'A' =  oo. There are ways of 

doing this, though it is not easy. Let q be a large prime factor of n\ if 

it exists, and let A =  (n'/q)A'. Then qA =  oo.) It is assumed that the 

message satisfies 0 < m < q. Alice chooses her secret integer a and 

computes B =  aA. The public information is p, E, q, A, B. Alice does 

the following:

1. Chooses a random integer k with 1 < k < q and computes R  =  
fiA = (x, y)

2. Computes s s  k~1(m + ax) (mod g)

3. Sends the signed message (mtR,s} to Bob

Bob verifies the signature as follows:

1. Computes ui — s~lm (mod q) and un =  s-1x (mod q)

2. Computes V  =  ui A + uzB

3. Declares the signature valid if V =  R

(a) Show that the verification equation holds for a correctly signed 

message. Where is the fact that qA =  oo used (see the “subtle 

point" mentioned in the ElGamal scheme in Section 16.5)7

(b) Why does k-1 (mod q) exist?

(c) If q is large, why is there very little chance that a-1 does not exist 

mod ij? How do we recognize the case when it doesn't exist? (Of 

course, in this case, Alice should start over by choosing a new k.)

(d) How many computations “(large integer)x (point on E)n are made 

in the verification process here? How many are made in the veri

fication process for the elliptic ElGamal scheme described in the 

text? (Compare with the end of Section 9.5.)

15. Let A and B be points on an elliptic curve and suppose B =  kA for 

some integer k. Suppose also that 2"A =  oo for some integer n, but 

T =  2n_1A /  oo.
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(a) Show that if k =  k' (mod 2"), then B =  k!A. Therefore, we may 

assume that 0  <  k < 2 ".

(b) Let j  be an integer. Show that jT  =  oo when j  is even and 

jT  oo when j  is odd.

(c) Write k =  zo + 2xi + 4x, H---+ 2n-1 xn_i, where each i j  is 0
or 1 (binary expansion of k). Show that =  0  if and only if 
2 n" 1B =  oo.

(d) Suppose that for some m < n we know xo, • • • , i ra-i. Let Qm =  
B - (xo + • • • + 2m-1 xm_i)A . Show that 2n_m_1£?m =  oo if 

and only if xm =  0. This allows us to find xm. Continuing in 

this way, we obtain x q , . . . ,  x„-i, and therefore we can compute 

k. This technique can be extended to the case where sA =  oo, 

where s is an integer with only small prime factors. This is the 

analog of the Pohlig-Hellman algorithm (see Section 7.2).

16. Let p s - l  (mod 3) be prime.

(a) Show that there exists d with 3d =  1 (mod p — 1).

(b) Show that if a3 =  b (mod p) if and only if a = bd (mod p). This 
shows that every integer mod p has a unique cube root.

(c) Show that y- =  a?+ 1 (mod p) has exactly p+ 1 points (including 

the point 0 0 ). (Hint: Apply part (b) to y2  —1.) (Remark: A curve 

mod p whose number of points is congruent to 1  mod p is called 

supersingular.)

17. (for those who know some group theory)

(a) In the situation of Exercise 16, suppose that p =  6q - 1 with q 
also prime. Show that there exists a point Pa ^  0 0  such that 

qPo =  00.

(b) Let Q = (0,1 ), as in Exercise 5. Show that if P & {0 0 , Q, 2Q, 3Q, 
4C?,5Q), then 6P ^  0 0  and 6 F  is a multiple of Po. (For simplicity, 

assume that q > 3.)

18. In the identity-based system of Section 16.6, suppose Eve can compute 

k such that ^(bobdcomputer.edu) =  kP0. Show that Eve can compute 

gT and therefore read Bob's messages.

19. Let Ho be a hash function that takes a binary string of arbitrary length 

os input and then outputs an integer mod p. Let p =  613 — 1 be prime 

with q also prime. Show how to use H0 to construct a hash function 

H\ that takes a binary string of arbitrary length as input and outputs 

a point on the elliptic curve y2 =  x3 + 1 (mod p) that is a multiple of
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the point Pa os Exercise 17. (Bint: Use the technique of Exercise 16 

to find y, then x. Then use Exercise 17(b).)

20. (a) Using the function e of Section 16.6, show that an analogue of

the Decision Diffie-Hellman problem can be solved for the curve 

y2 =  i 3 + 1 (mod p), where p =  6g — 1 is prime with g also 

prime. Namely, if we are given aPo, bP0, cPa, show how we can 
decide whether abPa =  cPq.

(b) Show that the discrete logarithm problem for multiples of Pq on 

E  (namely, if we know kPo, find k) can be reduced to solving a 

classical discrete logarithm for the gth roots of unity, hence in the 

field with p2 elements. (Remark: This is the reason supersingular 

curves became unpopular.)

21. Suppose you try to set up an identity-based cryptosystem os follows. 

Arthur chooses large primes p and q and forms n — pq, which is made 

public. For each User, he converts the User's identification ID  to 

a number euser by some public method and then computes d with 

deuser =  1 (m°d 4>(n))- Arthur gives d to the User. The integer n 
is the same for all users. When Alice wants to send an email to Bob, 

she uses the public method to convert liis email address to and 

then uses this to encrypt mssages with RSA. Bob knows d, so he can 

decrypt. Explain why this system is not secure.

16.8 Computer Problems

1. Let E  be the elliptic curve y2 =  i 3 + 2x + 3 (mod 19).

(a) Find the sum (1,5) + (9,3).

(b) Find the sum (9,3) + (9, —3).

(c) Using the result of part (b), find the difference (1,5) - (9,3).

(d) Find an integer k such that fc(l,5) =  (9,3).

( g ) Show that (1,5) has exactly 20 distinct multiples, including oo. 

(f)] Using (e) and Exercise 11(d), show that the number of points 
on £  is a multiple of 20. Use Hasse's theorem to show that E  
has exactly 20 points.

2. You want to represent the message 12345 as a point (x,y) on the curve

l/J = z3 + 7x + 11 (mod 593899). Write i  =  12345. and find a value 

of the missing last digit of x such that there is a point on the curve 
with this x-coordinate.
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3. (a) Factor 3900353 using elliptic curves.

(b) Tty to factor 3900353 using the p — 1 method of Section 6.4. 

Using the knowledge of the prime factors obtained from part (a), 

explain why the p — 1 method does not work well for this problem.

4. Let P  =  (2,3) be a point on the elliptic curve y2 =  x3 - lOx + 21 

(mod 557).

(a) Show that 189P - co, but 63P oo and 27P  ^  oo.

(b) Use Exercise 12 to show that P  has order 189.

(c) Use Exercise 11(d) and Basse's theorem to show that the elliptic 
curve has 567 points.

5. Compute the difference (5,9) — (1,1) on the elliptic curve y2 =  i 3 — 

l l i  + 11 (mod 593899). Note that the answer involves large integers, 

even though the original points have small coordinates.
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Lattice Methods

Lattices have become an important tool for the cryptanalyst. In this chapter, 
we give a sampling of some of the techniques. In particular, we use lattice 

reduction techniques to attack RSA in certain cases. Also, we describe the 

NTRU public key system and show how it relates to lattices. For a more 

detailed survey of cryptographic applications of lattices, see [Nguyen-Stern],

17.1 Lattices

Let u i, . .. ,u„ be linearly independent vectors in n-dimensional real space 

R ". This means that every n-dimensional real vector v can be written in 

the form

v =  aim H----1- aniin

with real numbers a i,... ,a „  that are uniquely determined by v. The lattice 

generated by vl t . . .  ,v„ is the set of vectors of the form

m i«i H----1- mnvn

where m i , . . m n are integers. The set {vi, . . . ,  u„} is called a basis of the 

lattice. A lattice has infinitely many possible bases. For example, suppose 

{ f i i^ }  is a basis of a lattice. Let k be an integer and let toi =  ui + kv2 

and W2 =  vi • Then {1 0 1 , 1^2 } is also a basis of the lattice: Any vector of 
the form m\Vi +m2V2 can be written os m\wi + m iuii with m'y =  m\ and 

m't =  m 2 — fcrri], and similarly any integer linear combination of Wi and vjo 
can be written as an integer linear combination of Vi and u2.

376
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Exam p le . Let vi =  (1,0) and v2 — (0,1). The lattice generated by vi 
and V2 is the set of all pairs ( i, y) with x, y integers. Another basis for this 

lattice is {(1,5), (0,1)}. A third basis is {(5,16), (6,19)}. More generally,

if ^  ^ J  is a matrix with determinant ±1, then {(a, b), (c, d)} is a basis

of this lattice (Exercise 4). I

The length of a vector v =  ( i i , . .. ,xn) is

H I =  {x\ + -" + xl)v' ■
Many problems can be related to finding a shortest nonzero vector in a 

lattice. In general, the shortest vector problem is hard to solve, especially 

when the dimension of the lattice is large. In the following section, we give 

some methods that work well in small dimensions.

E xam p le . A shortest vector in the lattice generated by

(31,59) and (37,70)

is (3,-1) (another shortest vector is (—3,1)). How do we find this vector? 

This is the subject of the next section. For the moment, we verify that 

(3, —1) is in the lattice by writing

(3,-1) =  -19(31,59) + 16(37,70).

In fact, {(3,-1), (1,4)} is a basis of the lattice. For most purposes, this 

latter basis is much easier to work with than the original basis since the 

two vectors (3,-1) and (1,4) are almost orthogonal (their dot product is 

(3, -1) • (1,4) =  -1, which is small). In contrast, the two vectors of the 

original basis are nearly parallel and have very large dot product. The 

methods of the next section show how to replace a basis of a lattice with a 

new basis whose vectors are almost orthogonal. I

17.2 Lattice Reduction

17.2.1 Tw o-D im ensional Lattices

Let vi,v2 form the basis of a two-dimensional lattice. Our first goal is to 

replace this basis with what will be called a reduced basis.

If ||ui|| > ||v2 ||, then swap vi and V2, so we may assume that ||x»i|| < |]u2 ||. 

Ideally, we would like to replace i>2 with a vector v% perpendicular to i»i. As 

in the Gram-Schmidt process from linear algebra, the vector
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is perpendicular to v\. But this vector might not lie in the lattice. Instead, 

let t be the closest integer bo (t>rti2)/(vi'i/i) (for definiteness, take 0 to be 
the closest integer to ±£, and ±1 to be closest to ±|, etc.). Then we replace 

the basis {vi, V2 } with the basis

{«!, Vn

We then repeat the process with this new basis.

We say that the basis {t/i, 112} is reduced if

IN I < IN I a n d  -  1 M  <  1.
Z V; ’t/i 1

The above reduction process stops exactly when we obtain a reduced basis, 

since this means that i =  0.

In the figures, the first basis is reduced because v2 is longer than vi and 

the projection of v2 onto vi is less than half the length of V\. The second 

basis is non-reduced because the projection of v2 onto Vi is too long. It is 

easy to see that a basis {vi,v2} is reduced when v2 is at least as long as vi 

and V2  lies within the dotted lines of the figures.

Exam ple . Let’s start with’ vi =  (31,59) and v2 =  (37,70). We have 

IN I < IN I, so we do not swap the two vectors. Since

v i‘v2 _  5277 

Vj-vi 4442’ 

we take t =  1. The new basis is

v[ = vi =  (31,59) and v'2 — v2 — vi =  (6,11).

Swap v[ and v2 and rename the vectors to obtain a basis

v" =  (6,11) and ^  =  (31,59).
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We have
< 4 '  _  835 

v ~  157’

so we take t =  5. This yields vectors

(6,11) and (1,4) =  (31,59) -  5 (6,11).

Swap these and name them =  (1,4) and t>23' =  (6,11). We have

y[3)-43) 50 

t,<3).„<3) "  17’

so i =  3. This yields, after a swap,

v[ =  (3, -1) and v2 =  (1,4).

Since ||u[|| < ||t>2|| and

u[-v2 1 

v\-v\ =  ~ 10’

the basis {u[, v2} is reduced. I

A natural question is whether this process always produces a reduced 
basis. The answer is yes, as we prove in the following theorem. Moreover, 

the first vector in the reduced basis is a shortest vector for the lattice.
We summarize the discussion in the following.

Theorem . Let {t>i, be a basis for a two-dimensional lattice in Rr. 

Perform the following algorithm:

1. 7/ ||x»i || > ||wall, swap vi and vn so that ||vi|| < ||v2||.

2. Let t be the closest integer to (vi-v2)/(vi-vi).

3. If t =  0, stop. I f  t 0, replace V2 with u2 - tvi and return to step J.

The algorithm stops in finite time and yields a reduced basis (u ,, v2} of the 

lattice. The vector v[ is a shortest nonzero vector for the lattice.

Proof. First we prove that the algorithm eventually stops. As in Equation

17.1, let /j. =  (i>i•■u2)/('t|i"'Vi) and let v2 =  vn - fivj. Then

V2 -  tv i  =  u 2 + ( f i -  i ) v i .
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Since vi and uj are orthogonal, the Pythagorean theorem yields

II"2 -  t^ ill2 = llv jll2 + ||(/« -  iH I I 2 =  lb?II2 +  { f t -  t)2|M |2.
Also, since v? =  + pvi, and again since v\ and v% are orthogonal,

I N M k i i2+ m2"
Note that if —1/2 < fi <  1/2 then t =  0 and fi — t = p. Otherwise, 

\fi~t\< 1/2 < |/i|. Therefore, if t ^  0, we have |/j — i| < |/t|, which implies 

that

H  -  <t-.ll2 =  ||«; ||2 + ( f i- 0 2I M I 2 <  I K l l 2 +  A 2l h l l 2 =  I N I 2 .

Therefore, if the process continues forever without yielding a reduced basis, 

then the lengths of the vectors decrease indefinitely. However, there are only 

finitely many vectors in the lattice that are shorter than the original basis 

vector v2. Therefore, the lengths cannot decrease forever, and a reduced 

basis must be found eventually.

To prove that the vector v\ in a reduced basis is a shortest nonzero vector 

for the lattice, let avi -f bv2 be any nonzero vector in the lattice, where a 

and b are integers. Then

||aui + bvz |l2 = (ovi + + bv2) =  o2||vi ||2 + fe2||uo||2 + 2abvi-v2.

Because {i/i, vo} is reduced,

1 1
--vi-vi <  vv v2 < -vx-vu

which implies that 2abvi-v2 > —|ai| ||vi||2. Therefore,

||oyi + iro2||2 =  (ati[ + bv 2)-(av1 + &1/2 )

=  a2\\vi\]2+2abvi -v2 + b2\\v2\\2

>  a2||Vl||2 -  |a&| ||V1|1= + 6 2||i/2|j2

>  a 2 ||t>i||2 -  |a 6 |  h i | | 2 +  &2 || t/ i| l2 , 

since ||i/2||2 > ||ui|)2 by assumption. Therefore,

||at/i + fru2||2 > (a2 - |ah| + ft2) ^ ! ! 2.

But a2 —|a6|+i>2 is an integer. Writing it as (|a| — |̂6|)2 + ||6|2, we see that it 

is nonnegative, and it equals 0 if and only if a =  b =  0. Since aui + bv2 ^  0, 

we must have a2 - |o6| + b2 > 1. Therefore,

Havi + bv2H2 >  ||ui||2, 

so vi is a shortest nonzero vector. □
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17.2.2 T he L L L  a lgorithm

Lattice reduction in dimensions higher than two is much more difficult. One 

of the most successful algorithms was invented by A. Lenstra, H. Lenstra, 

and L. Lovasz and is called the LLL algorithm. In many problems, a short 

vector is needed, and it is not necessary that the vector be the shortest. 
The LLL algorithm takes this approach and looks for short vectors that are 

almost ns short as possible. This modified approach makes the algorithm 

run very quickly (in what is known as polynomial time). The algorithm 

performs calculations similar to those in the two-dimensional case, but the 

steps are more technical, so we omit details, which can be found in [Cohen], 

for example. The result is the following.

T heorem . Let L be the n-dimensional lattice, generated by « i , . . . ,  t>n in 

R n. Define the determinant of the lattice to be

D =  \det(vu ... ,vn)\.

(This can be shown to be independent of the choice of basis. It is the volume 

of the parallelepiped spanned by t»j,. . . ,  vn.) Let X be the length of a shortest 

nonzero vector in L. The LLL algorithm produces a basis (bi , . . . ,  bn} of L 

satisfying

1. [|;,[| < 2<n-1)/'1D I/n

2. ||&i|| <2<n" 1>/2A

s. H M I N I - - - I M  <

Statement (2) says that bi is close to being a shortest vector, at least 

when the dimension n is small. Statement (3) say that the new basis vec
tors are in some sense close to being orthogonal. More precisely, if the 

vectors 6i, . . . ,  6„ are orthogonal, then the volume D  equals the product 

||6i|| ||621|- • ■ ||6n||. The fact that this product is no more than 2n(n_1^ ‘l times 

D  says that the vectors are mostly close to orthogonal.

The running time of the LLL algorithm is less than a constant times 

nc log3 B, where n is the dimension and B  is a bound on the lengths of the 
original basis vectors. In practice it is much faster than this bound. This 

estimate shows that the running time is quite good with respect to the size 

of the vectors, but potentially not efficient when the dimension gets large.

E xam p le . Let’s consider the lattice generated by (31, 59) and (37, 70), 

which we considered earlier when looking at the two-dimensional algorithm. 

The LLL algorithm yields the same result, namely bi =  (3, —1) and bo =  

(1,4). We have D =  13 and A =  VTO (given by ||(3, —1)||, for example). 

The statements of the theorem are



1. ||fri|| =  VlO < 21/-‘Vl3

2. H6J =  VlO < 21<,2VlO

3. IN I IN I =  V l0V l7 < 21/213. B

17.3 An Attack on RSA

Alice wants to send Bob a message of the form

The answer is **

or
The password for your new account is ********

In these cases, the message is of the form

m = B 4- x, where B is fixed and |z| < Y

for some integer Y. We’ll present an attack that works when the encryption 

exponent is small.
Suppose Bob has public RSA key (n, e) =  (t i, 3). Then the ciphertext is

c =  (B + 1 ) 3  (mod ti).

We assume that Eve knows B, Y, and ti, so she only needs to find x. She 

forms the polynomial

f(T) =  (B + T ) 3 -  c =  T3  + 3BT2 + 3B2T + S 3  - c 

= T*3 4" 0 2 T2 4- a\T 4~ Qq (mod ti).

Eve is looking for |x| < Y  such that }{x) =  0 (mod n). In other words, 

she is looking for a small solution to a polynomial congruence f(T) =  0 

(mod n ).
Eve applies the LLL algorithm to the lattice generated by the vectors 

D i =  ( t i ,  0,0,0), u 2 =  (0,771,0,0), vs  =  (0 ,0 ,y2n,0),

u ^ ^ o . a ^ . a a y 2̂ 3).

This yields a new basis fcj, . . . ,  6 4 , but we need only by. The theorem in 

Subsection 17.2.2 tells us that

IN I < 2 3 /4 det(y! , . . . , V4 ) 1/ 4  (17.2)

=  2 3 /4 (n3 y ° ) 1 / 4  =  2 3 ',4 n 3 /4 y 3/2. (17.3)

3g2 C h a p t e r  17. L a t t ic e  M et h o d s
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We can write

fci =  cit/i 4--- l-c,|U| =  (e0,Ye i,Y2e2,Y ae3)

with integers c, and with

eg =  cjn + CjOo 

ei =  C 2 f i  4- c , [ a i  
6 3  =  C371 4  C 4 Q 2 
ea =  c4.

It is easy to see that

ej =  6 4 0 ; (mod n), 0  < t < 2 .

Form the polynomial

p(T) =  e3 T3 4- e2 T2  4  ejT 4 - e0.

Then, since the integer 1  satisfies f(x) =  0 (mod n) and since the coefficients 
of c,\j(T) and g(T) are congruent mod n,

0  =  c.j/(x) =  y(x) (mod n).

Assume now that

Y  < 2-7' V /0. (17.4)

Then

|p(z)| < |eo| + |eix|4-|e3 x2 |4-|e3 x3|

< N 4-k|y4-|e2|y2 + ]e3|y3

=  (l,l,l,l)-(|e0|,|eiy|,|e2y 3|,|e3y 3|)

<  11(1,1,1,1)1! H(M,...,|e3Y 3|)||

=  2||till,

where the last inequality used the Cauchy-Schwarz inequality for dot prod
ucts (that is, v ■ w < ||n|| ||w||). Since, by (17.3) and (17.4),

I N I  <  23̂ n 3/iY 3/2 < 23̂  ( 2- T/ 6n V 6)3/2 =  2- J n ,

we obtain

|y(x)| < n .
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Since 17(1 ) =  0 (mod n), we must have g(x) =  0. The zeros of g(T) may be 

determined numerically,.and we obtain at most three candidates for x. Each 

of these may be tried to see if it gives the correct ciphertext. Therefore, Eve 

can find x.
Note that the above method replaces the problem of finding a solution to 

the congruence f(T) =  0 (mod n) with the exact, non-congruence, equation 

g(T) =  0. Solving a congruence often requires factoring n, but solving exact 

equations can be done by numerical procedures such as Newton's method.

In exactly the same way, we can find small solutions (if they exist) to 

a polynomial congruence of degree d, using a lattice of dimension d + 1 . 

Of course, d must be small enough that LLL will run in a reasonable time. 

Improvements to this method exist. Coppersmith ([Coppersmith2]) gave on 

algorithm using higher-dimensional lattices that looks for small solutions
1  to a monic (that is, the highest degree coefficient equals 1 ) polynomial 

equation f(T) =  0 (mod n) of degree d. If |x| < nxtd, then the algorithm 

runs in time polynomial in logn and d.

E xam ple . Let

n =  1927841055428697487157594258917

(which happens to be the product of the primes p =  757285757575769 and 

q =  2545724696579693, but Eve does not know this). Alice is sending the 

message
The answer is **,

where * *  denotes a two-digit number. Therefore the message is 771 =  B +  x 
where B =  200805000114192305180009190000 and 0 < x < 100. Suppose 
Alice sends the ciphertext c =  (B + x ) 3 =  30326308498619648559464058932 

(mod n). Eve forms the polynomial

/ (T) — (B + T)3 — c =  T3 + aoT2 + &\T + <zq (mod n),

where

a2 =  602415000342576915540027570000

0 1  =  1123549124004247469362171467964 

o q  =  587324114445679876954457927616.

Note that ag = f l 3 — c (mod n).
Eve uses LLL to find a root of /(T) (mod n). She lets Y =  100 and 

forms the vectors

u, =  (n, 0,0,0), t* =  (0,1002, 0,0), ”3 =  (0 ,0 ,104n, 0), 

v 4 = ( o q ,  IOO0 1 ,10la2,10s).
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308331465484476402^+ 58983709237783961lu2 

+316253828707108264^ - 101207l602751202635u4 

=  (246073430665887186108474, -577816087453534232385300, 

405848565585194400880000, -1012071602751202635000000).

Eve then looks, at the polynomial

g(T) =  -1012071602751202635T3 + 40584856558519440088T2

—5778160874535342323853T + 246073430665887186108474.

The roots of g(T) are computed numerically to be

42.000000000, -0.949612039 ± 76.0796085Hi.

It is easily checked that fl(42) =  0, so the plaintext is

The answer is 42.

Of course, a brute force search through all possibilities for the two-digit 

number I  could have been used to find the answer in this case. However, if 

n is taken to be a 200-digit number, then Y  can have around 33 digits. A 

brute force search would usually not succeed in this situation. 1

17.4 NTRU

If the dimension n is large, say n > 100, the LLL algorithm is not effective 
in finding short vectors. This allows lattices to be used in cryptographic 

constructions. Several cryptosystems based on lattices have been proposed. 

One of the most successful current systems is NTRU (rumored to stand for 

either “Number Theorists aRe Us” or "Number Theorists aRe Useful"). It is a 

public key system. In the following, we describe the algorithm for transmit

ting messages using a public key. There is also a related signature scheme, 

which we won't discuss. Although the initial description of NTRU does not 

involve lattices, we’ll see later that it also has a lattice interpretation.

First, we need some preliminaries. Choose an integer N. We will work 

with the set of polynomials of degree less than N. Let

/  =  apt— *+■•• + qq and g =  bpi—iX ^  1 + • • • + bo

be two such polynomials. Define

h =  f *  g =  cN-iX w_1 H----h co,

The LLL algorithm produces the vector
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where

c, =  23  °A "  
j+k=i

The summation ia over all pairs j, k with j  + k =  i (mod N).
For example, let N =  3, let /  =  X 2 + 7X + 9, and let g =  3X2 + IX  + 5. 

Then the coefficient c2 of X  in /  * g is

a0J>i + aifco + Q2̂ 2 =  9- 2 + 7- 5 + l- 3 =  56,

and

/ * g  =  46X2 + 56X + 68.

From a slightly more advanced viewpoint, f  * g is simply multiplication 
of polynomials mod X N — 1 (see Exercise 5 and Section 3.11).

NTRU works with certain sets of polynomials with small coefficients, so 

it is convenient to have a notation for them. Let

the set of polynomials of degree < N 

f t  ■ i.\ _  with j  coefficients equal to +1 
' ~ and k coefficients equal to —1.

The remaining coefficients are 0.

We can now describe the NTRU algorithm. Alice wants to send a mes

sage to Bob, so Bob needs to set up his public key. He chooses three integers 

N,p,q with the requirements that gcd(p, q) =  1 and that p is much smaller 

than q. Recommended choices are

(N,p,q) =  (107,3,64)

for moderate security and

(NlPlq) =  (503,3,256)

for very high security. Of course, these parameters will need to be adjusted 

as attacks improve. Bob then chooses two secret polynomials f  and g with 

small coefficients (we'll say more about how to choose them later). Moreover, 

/  should be invertible mod p and mod q, which means that there exist 

polynomials Fp and of degree less than N  such that

Fp* f = l  (mod p), Fq* f  = 1 (mod q).

Bob calculates
h = Fq* g (mod q).

Bob’s public key is

(N,p,q,h).
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His private key is / . Although Fp can be calculated easily from / ,  he should 

store (secretly) Fp since he will need it in the decryption process. What 

about gl Since g = f  * h (mod q), he is not losing information by not 

storing it (and he does not need it in decryption).

Alice can now send her message. She represents the message, by some 

prearranged procedure, as a polynomial m of degree less than N  with coef

ficients of absolute value at most (p — l)/2. When p = 3, this means that 

m has coefficients -1,0,1. Alice then chooses a small polynomial <j> (“small" 

will be'made more precise shortly) and computes

c = p<p + k + 771 (mod q).

She sends the ciphertext c to Bob.

Bob decrypts by first computing

a =  f  * c (mod q)

with all coefficients of the polynomial a of absolute value at most q/2, then 

(usually) recovering the message as

m = Fp*a (mod p).

Why should this work? In fact, sometimes it doesn’t, but experiments 

with the parameter choices given below indicate that the probability of de
cryption errors is less than 5 x 10-5. But here is why the decryption is 

usually correct. We have

a — f  * c s  f  * {p<f> * h + m )

= f*pif>*Fq*g + f * m  

=  ptp±g + f * m  (mod q).

Since <j>, g, / , ttl have small coefficients and p is much smaller than q, it is 

very probable that p<j>* g + f  *m, before reducing mod g, has coefficients of 

absolute value less than q/2. In this case, we have equality

a = p<f>* g + f  * m.

Then

Fp * a =  pFp *4>*g + Fp* f * m  = 0 + l * m  = Tn (mod p),

so the decryption works.
For (N,p,q) — (107,3,64), the recommended choices for /, g, ij> are

/  6 £(15,14), g E £(12,12), </>e£(5,5)
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(recall that this means that the coefficients of /  are fifteen Is, fourteen —Is, 

and the remaining 78 coefficients are 0).

For (N,p,q) =  (503,3,256), the recommended choices for f,g,4> are

/ £  £(216,215), g e £(72,72), ^ 6  £(55,55).

With these choices of parameters, the polynomials f , g, <p are small 

enough that the decryption works with very high probability.

The reason /  has a different number of Is and —Is is so that / ( l )  ^  0. 

It can be shown that if / ( l )  =  0 then /  cannot be invertible.

Exam p le . Let (N,p,g) =  (5,3,16) (this choice of N  is much too small 

for any security; we use it only in order to give an explicit example). Take 

f  = X* + X  - 1 and g =  X 3 — X. Since

(jV3 + X 2 - l ) * ( jV ' l + A - l )  =  l (mod 3),

we have 

Also,

Fp =  X 3 + X- - 1.

Fq = X 3+ X 2- l

h =  - X 4 -  2X3 + IX  + 1 =  Fq * g (mod 16).

Bob's public key is

(N, p, q, h) =  (5,3,16, - X 4 -  2X3 + 2X+ 1).

His private key is

/  =  A'4 + X - 1 .

Alice takes her message to be m = X 2 — X  + 1. She chooses tj> =  X  — 1. 

Then the ciphertext is

c = 3ij)*h + m. =  —3X‘l + 6X3 + 7X2 — 4X — 5 (mod 16).

Bob decrypts by first computing

a = f * c  = 4Xi - 2 X 3 -5 X 2 +6X -2  (mod 16),

then

Fp * a =  X 2 - X  + 1 (mod 3).

Therefore, Bob has obtained the message. I
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17.4.1 An Attack on NTRU

Let h = + • • • + ho. Form the N  x N  matrix

/ ho h\ ■■■ /i/v-i \ 
htf-i ho hfj—2

V hi hz ■■■ ho j

If we represent f  = 4- ■ • • 4- fo and g — H----H go by

the row vectors

/  =  ( fo ,  - and g  =  (p0..- ■ • , 9n - i ) ,

then we see that fH  =  g (mod g).
Let I  be the N  x N  identity matrix. Form the 2N  x 2N  matrix

Let L be the lattice generated by the rows of M. Since g =  f  * h {mod q), 
we can write g =  /  * /i 4- qy for some polynomial y. Represent y as an N- 
dimensional row vector y, so (/, y) is a 2/'/-dimensional row vector. Then

( 7 ,  y )M  =  (7 ,  g),

so (f,g) is in_ the lattice L (see Exercise 3). Since f  and g have small 

coefficients, (/, g) is a small vector in the lattice L. Therefore, the secret 

information for the key can be represented as a short vector in a lattice. An 

attacker can try to apply a lattice reduction algorithm to find short vectors, 

and possibly obtain (/, g). Once the attacker has found f  and g, the system 

is broken.

To stop lattice attacks, we need to make the lattice have high enough 

dimension that lattice reduction algorithms are inefficient. This is easily 

achieved by making N  sufficiently large. However, if N  is too large, the en

cryption and decryption algorithms become slow. The suggested values of N 
were chosen to achieve security while keeping the cryptographic algorithms 

efficient.

Lattice reduction methods have the best success when the shortest vector 

is small (more precisely, small when compared to the 2Arth root of the 

determinant of the 2AT-dimensional lattice). Improvements in the above 

lattice attack can be obtained by replacing I  in the upper left block of M  
by a l  for a suitably chosen real number a. This makes the resulting short 

vector (af, g) comparatively shorter and thus easier to find. The parameters
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in NTRU, especially the sizes of /  and 5 , have been chosen so as to limit 

the effect of these lattice attacks.

So far, the NTRU cryptosystem appears to be strong; however, as with 

many new cryptosystems, the security is still being studied. If no success

ful attacks are found, NTRU will have the advantage of providing security 

comparable to RSA and other public key methods, but with smaller key size 

and with foster encryption and decryption times.

17.5 Exercises

1 . Find a reduced basis and a shortest nonzero vector in the lattice gen

erated by the vectors (58,19), (168,55).

2. (a) Find a reduced basis for the lattice generated by the vectors

(53,88), (107,205).

(b) Find the vector in the lattice of part (a) that is closest to the 

vector (151,33). (Remark: This is an example of the closest 

vector problem. It is fairly easy to solve when a reduced basis 

is known, but difficult in general. For cryptosystems based on 
the closest vector problem, see [Nguyen-Stern].)

3. Let v i , . . . , vn be linearly independent row vectors in R n. Fbrm the 

matrix M  whose rows are the vectors u;. Let o =  (0 1 , . . . ,  a„) be a row 

vector with integer entries. Show that aM  is a vector in the lattice 

generated by v\, ■.., v„, and show that every vector in the lattice can 

be written in this way.

4. Let {1/1 , 112} be a basis of a lattice. Let a,b,c,d be integers with ad — 
be =  ± 1 , and let

•Wi =  avi + bv 2,  u>2 — cvi + dv 2.

(a) Show that

vi =  ±(dto 1 — bwi), vz — ± (— ewi + awo).

(b) Show that {wi, 1 0 2 } is also a basis of the lattice.

5. Let N  be a positive integer.

(a) Show that if j  + k = i (mod N), then X^+k — X ' is a multiple of 

X N
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(b) Let 0 < i < N. Let ao, ■ ■ •, qat-i, f>o, • • • > ̂ n-i be integers and let

Cj = 'y ' ajbk, 
j+k = i

where the sum is over pairs j,k  with j  + k = i (mod N). Show 

that

« X ' - 53  ajbkX j+k 
j+k=i

is a multiple of X ^  — 1.

(c) Let f  and g be polynomials of degree less than N. Let fg  be the 
usual product of f  and g and let /  * g be defined as in Section 

17,4. Show that fg  — f  * g is a multiple of X N — 1.

6. Let N  and p be positive integers. Suppose that there is a polynomial 

F(X) such that f(X ) * F(X) = 1 (mod p). Show that / ( l)  ^  0 

mod p. (Hint: Use Exercise 5(c).)

7. (a) In the NTRU cryptosystem, suppose we ignore q and let c =
p<f>*h+m. Show how an attacker can obtain the message quickly.

(b) In the NTRU cryptosystem, suppose q is a multiple of p. Show 
how an attacker can obtain the message quickly.
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Error Correcting Codes

In a good cryptographic system, changing one bit in the ciphertext changes 

enough bits in the corresponding plaintext to make it unreadable. Therefore, 
we need a way of detecting and correcting errors that could occur when 

ciphertext is transmitted.

Many noncryptographic situations also require error correction; for ex
ample, fax machines, computer hard drives, CD players, and anything that 

works with digitally represented data. Error correcting codes solve this 

problem.

Though coding theory (communication over noisy channels) is techni

cally not part of cryptology (communication over nonsecure channels), in 

Section 18.10 we describe how error correcting codes can be used to con
struct a public key cryptosystem.

18.1 Introduction

All communication channels contain some degree of noise, namely interfer

ence caused by various sources such as neighboring channels, electric im

pulses, deterioration of the equipment, etc. This noise can interfere with 

data transmission. Just as holding a conversation in a noisy room becomes 

more difficult as the noise becomes louder, so too does data transmission be

come more difficult as the communication channel becomes noisier. In order 

to hold a conversation in a loud room, you either raise your voice, or you are 

forced to repeat yourself. The second method Is the one that will concern

392
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us; namely, we need to add some redundancy to the transmission in order 

for the recipient to be able to reconstruct the message. In the following, 

we give several examples of techniques that can be used. In each case, the 

symbols in the original message are replaced by codewords that have some 

redundancy built into them.

E xam p le  1. (repetition codes)

Consider an alphabet {A,B,C,D}. We want to send a letter across a 
noisy channel that has a probability p = 0.1 of error. If we want to send C, 

for example, then there is a 90% chance that the symbol received is C. This 

leaves too large a chance of error. Instead, we repeat the symbol three times, 

thus sending CCC. Suppose an error occurs and the received word is CBC. 
We take the symbol that occurs most frequently, as the message, namely C. 
The probability of the correct message being found is the probability that 

all three letters are correct plus the probability that exactly one of the three 

letters is wrong:

(0.9)3 + 3(0.9)2(0.1) =0.972,

which leaves a significantly smaller chance of error.

Two of the most important concepts for codes are error detection and 

error correction. If there are at most two errors, this repetition code allows 
us to detect that errors have occurred. If the received message is CBC, 
then there could be either one error from CCC or two errors from BBB; 
we cannot tell which. If at most one error has occurred, then we can correct 

the error and deduce that the message was CCC. Note that if we used only 
two repetitions instead of three, we could detect the existence of one error, 

but we could not correct it (did CB come from BB  or CC?).

This example was chosen to point out that error correcting codes can 

use arbitrary sets of symbols. Typically, however, the symbols that are used 

are mathematical objects such as integers mod a prime or binary strings. 

For example, we can replace the letters A, B, C, D  by 2-bit strings: 00, 01,

10, 11. The preceding procedure (repeating three times) then gives us the 

codewords

000000, 010101, 101010, 111111. I

E x a m p l e  2 . (parity check)
Suppose we want to send a message of 7 bits. Add an eighth bit so 

that the number of nonzero bits is even. For example, the message 0110010 

becomes 01100101, and the message 1100110 becomes 11001100. An error 

of one bit during transmission is immediately discovered since the message 

received will have an odd number of nonzero bits. However, it is impossible 

to tell which bit is incorrect, since an error in any bit could have yielded the
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odd number of nonzero bits. When an error is detected, the best thing to 

do is resend the message,. B

E xam ple  3. (two-dimensional parity code)

The parity check code of the previous example can be used to design a 

code that can correct an error of one bit. The two-dimensional parity code 

arranges the data into a two-dimensional array, and then parity bits are 

computed along each row and column.

To demonstrate the code, suppose we want to encode the 20 data bits 
10011011001100101011. We arrange the bits into a 4 x 5 matrix

1 0  0 1 1  

0 1 1 0  0 

1 1 0  0 1 

0 1 0  1 1

and calculate the parity bits along the rows and columns. We define the last 

bit in the lower right corner of the extended matrix by calculating the parity 

of the parity bits that were calculated along the columns. This results in 

the 5 x 6  matrix
1 0 0 1 1 1

0 1 1 0 0 0

1 1 0 0 1 1
0 1 0 1 1 1

0 1 1 0 1 1.
Suppose that this extended matrix of bits is transmitted and that a bit error 
occurs at the bit in the third row and fourth column. The receiver arranges 

the received bits into a 5 x G matrix and obtains

1 0 0 1 1 1

0 1 1 0 0 0

1 1 0 1 1 1

0 1 0 1 1 1

0 1 1 0 1 1.

The parities of the third row and fourth column are odd, so this locates the 
error as occurring at the third row and fourth column.

If two errors occur, this code can detect their existence. For example, 
if bit errors occur at the second and third bits of the second row, then the 

parity checks of the second and third columns will indicate the existence of 

two bit errors. However, in this case it is not possible to correct the errors, 
since there are several possible locations for them. For example, if the second 

and third bits of the fifth row were incorrect instead, then the parity checks 

would be the same as when these errors occurred in the second row. ■
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Exam p le  4. (Hamming (7, 4] code)

The original message consists of blocks of 4 binary bits. These are re

placed by codewords, which are blocks of 7 bits, by multiplying (mod 2) on 
the right by the matrix

G =

(  1 0 0 0 1 1 0
0 1 0  0 1 0  1

0 0 1 0 0 1 1
\ 0 0 0 1 1 1 1

For example, the message 1100 becomes

(1, 1, 0, 0)

/  1 0 0 0 1 1 0
0 1 0  0 1 0  1

0 0 1 0 0 1 1
\ 0 0 0 1 1 1 1

3  (1, 1, 0, 0, 0, 1, 1) (mod 2).

Since the first four columns of G are the identity matrix, the first four entries 

of the output are the original message. The remaining 3 bits provide the 

redundancy that allows error detection and correction. In fact, as we’ll see, 

we can easily correct an error if it affects only one of the seven bits in o 
codeword.

Suppose, for example, that the codeword 1100011 is sent but is received 

as 1100001. How do we detect and correct the error? Write G in the form 

[/.i, P], where P  is a 4 x 3 matrix. Form the matrix H  =  [PT, /g], where PT 
is the transpose of P. Multiply the message received times the transpose of 
H:

/  I 1 0 1 1 0 0 V  

(1, 1, 0, 0, 0, 0, 1) 1 0 1 1 0 1 0

V 0 1 1 I 0 0 1 J

=  (1, 1, 0, 0, 0, 0, I)

Z 1 1 0 \
1 0 1
0 1 1
i 1 1
l 0 0
0 1 0

^ 0 0 1 /

=  (0, 1, 0) (mod 2).

This is the 6th row of HT, which means there was an error in the 6th bit 

of the message received. Therefore, the correct codeword was 1100011. The 

first 4 bits give the original message 1100. If there had been no errors, 

the result of multiplying by HT would have been (0, 0, 0), so we would have 
recognized that no correction was needed. This rather mysterious procedure
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will be explained when we discuss Hamming codes in Section 18.5. For the 

moment, note that it allows us to correct errors of one bit fairly efficiently.
The Hamming [7, 4] code is a significant improvement over the repetition 

code. In the Hamming code, if we want to send 4 bits of information, we 

transmit 7 bits. Up to two errors can be detected and up to one error can 

be corrected. For a repetition code to achieve this level of error detection 

and correction, we need to transmit 12 bits in order to send a 4-bit message. 

Later, we’ll express this mathematically by saying that the code rate of 

this Hamming code is 4/7, while the code rate of the repetition code is 

4/12 =  1/3. Generally, a higher code rate is better, os long as not too much 

error correcting capability is lost. For example, sending a 4-bit message as 

itself has a code rate of 1 but is unsatisfactory in most situations since there 

is no error correction capability. I

E xam p le  5. (ISBN code)

The International Standard Book Number (ISBN) provides another ex

ample of an error detecting code. The ISBN is a 10-digit codeword that 

is assigned to each book when it is published. For example, this book has 

ISBN number 0-13-186239-1. The first digit represents the language that is 

used; 0 indicates English. The next two digits represent the publisher. For 

example, 13 is associated with the publisher (Prentice Hall) of the book you 

ate currently reading. The next six numbers correspond to a book identity 

number that is assigned by the publisher. The tenth digit is chosen so that 

the ISBN number a\a.2 - ■ ■ Qio satisfies

IQ

^ 2 ja j =  0 (mod 11).

j-l

Notice that the equation is done modulo 11. The first 9 numbers 0 1 0 2  • ■ • ag 

are taken from {0,1, • • ■ 9} but aic may be 10, in which case it is represented 

by the symbol X.
Suppose that the ISBN number a\ao ■ ■ - am is sent over a noisy channel, 

or is written on a book order form, and is received as x\x% ■ • • Xio- The 
ISBN code can detect a single error, or a double error that occurs due to 

the transposition of the digits. To accomplish this, the receiver calculates 
the weighted checksum

10

S =  (mod 11).

j= i

If S =  0 (mod 11), then we do not detect any errors, though there is a 

small chance that an error occurred and was undetected. Otherwise, we 

have detected an error. However, we cannot correct it (see Exercise 2).
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If x i i i  ■ ■ • xio is the same as a\ao ■ ■ • oio except in one place xt, we may 

write Xk — a-k + e where e /  0 . Calculating S gives

10

S = ^ i ja j + ke =  he (mod 1 1 ). 

j=i

Thus, if a single error occurs we can detect it. The other type of error that 

can be reliably detected is when an and aj have been transposed. This is one 
of the most common errors that occur when someone is copying numbers. 

In this case xj =  a*,, and Xk =  aj. Calculating S gives

10 10

S =  53-7'xj =  (k _  @ - k)afc (mod 1 1 )
j -1 j=i

s  (k - l)(ai - at) (mod 1 1 )

If a/ ak, then the checksum is not equal to 0, and an error is detected. ■

E xam p le  6 . (Hadamard code)
This code was used by the Mariner spacecraft in 1969 us it sent pictures 

back to Earth. There are 64 codewords; 32 are represented by the rows of 

the 32 x 32 matrix

/ 1 1 I 1 •• 1

1 -1 1 -1 . -1

V 1 -1 -1 1 • -1

The matrix is constructed as follows. Number the rows and columns from

0 to 31. Tb obtain the entry h,j in the ith row and j'th column, write

1 =  a,[a3 a2 ai<ia and j  =  6 .1 6 3 6 2 6 1 6 0  in binary. Then

For example, when i =  31 and j  =  3, we have i =  11111 and j  =  00011. 
Therefore, A3 1 ,3  =  (—l ) 2  =  1.

The other 32 codewords are obtained by using the rows of —H. Note 

that the dot product of any two rows of H  is 0 , unless the two rows are 

equal, in which case the dot product is 32.

When Mariner sent a picture, each pixel had a darkness given by a 6 -bit 

number. This was changed to one of the 64 codewords and transmitted. 
A received message (that is, a string of Is and -Is of length 32) can be 

decoded (that is, corrected to a codeword) as follows. Take the dot product
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of the message with each row of H. If the message is correct, it will have 

dot product 0 with all- rows except one, and it will have dot product ±32 

with that row. If the dot product is 32, the codeword is that row of H. If 

it is —32, the codeword is the corresponding row of —H. If the message has 

one error, the dot products will all be ±2, except for one, which will be ±30. 

This again gives the correct row of H or —H- If there are two errors, the 

dot products will all be 0, ±2, ±4, except for one, which will be ±32, ±30, or 

±28. Continuing, we see that if there are 7 errors, all the dot products will 

be between —14 and 14, except for one between —30 and —16 or between 16 
and 30, which yields the correct codeword. With 8 or more errors, the dot 

products start overlapping, so correction is not possible. However, detection 

is possible for up to 15 errors, since it takes 16 errors to change one codeword 

to another.
This code has a relatively low code rate of 6/32, since it uses 32 bits to 

send a 6-bit message. However, this is balanced by a high error correction 

rate. Since the messages from Mariner were fairly weak, the potential for 

errors was high, so high error correction capability was needed. The other 

option would have been to increase the strength of the signal and use a 

code with a higher code rate and less error correction. The transmission 

would have taken less time and therefore potentially have used less energy. 

However, in this case, it turned out that using a weaker signal more than 

offset the loss in speed. This issue (technically known as coding gain) is 

an important engineering consideration in the choice of which code to use 

in a given application. B

18.2 Error Correcting Codes

A sender starts with a message and encodes it to obtain codewords con

sisting of sequences of symbols. These are transmitted over a noisy channel, 

depicted in Figure 18.1, to the receiver. Often the sequences of symbols 

that are received contain errors and therefore might not be codewords. The 

receiver must decode, which means correct the errors in order to change 

what is received back to codewords and then recover the original message.

The symbols used to construct the codewords belong to an alphabet. 
When the alphabet consists of the binary bits 0 and 1, the code is called a 

binary code. A code that uses sequences of 3 symbols, often represented 

us integers mod 3, is called a ternary code. In general, a code that uses 

an alphabet consisting of q symbols is called a q-ary code.

D e fin ition . Let A be an alphabet and let An denote the set of n-tuples of 
elements of A. A code of length n is a nonempty subset of An.

The n-tuples that make up a code are called codewords, or code vectors.
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Figure 18.1: Encoding and Decoding.

For example, in a binary repetition code where each symbol is repeated 

three times, the alphabet is the set A  =  {0,1} and the code is the set 

{(0,0,0), (1,1,1)} C ^ 3.
Strictly speaking, the codes in the definition are called block codes. 

Other codes exist where the codewords can have varying lengths. These will 

be mentioned briefly at the end of this chapter, but otherwise we focus only 

on block codes.

For a code that is a random subset of ,4n, decoding could be n time- 

consuming procedure. Therefore, most useful codes are subsets of _4n sat

isfying additional conditions. The most common is to require that A  be a 
finite field, so that An is a vector space, and require that the code be a sub

space of this vector space. Such codes are called linear and will be discussed 

in Section 18.4.

For the rest of this section, however, we work with arbitrary, possibly 

nonlinear, codes. We always assume that our codewords are n-dimensional 

vectors.
In order to decode, it will be useful to put a measure on how close two 

vectors are to each other. This is provided by the Hamming distance. Let 

ti,v be two vectors in An. The H am m ing distance d(u,v) is the number 

of places where the two vectors differ. For example, if we use binary vectors 

and have the vectors u =  (1,0,1,0,1,0,1,0) and v =  (1,0,1,1,1,0,0,0), 

then u and v differ in two places (the 4th and the 7th) so d(u,v) =  2. As 
another example, suppose we are working with the usual English alphabet. 

Then d(f ourth, eighth) =  4 since the two strings differ in four places.

The importance of the Hamming distance d(u, v) is that it measures the 

minimum number of “errors" needed for u to be changed to u. The following 

gives some of its basic properties.

P ropos ition . d(u, v) is a metric on An, which means that it satisfies
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1. d(u, v) > 0 , and d(u, v) =  0  if and only if u = v

2. d(u, v) — d(v, u) for all u, v

3. d(u, v) < d(u, w) + d(w,v) for all u,v,w.

The third property is often called the triangle inequality.

Proof. (1) d(ui v) =  0 is exactly the same as saying that u and v differ in no 

places, which means that u = v. Part (2) is obvious. For part (3), observe 

that if u and v differ in a place, then either u and w differ at that place, or

v and w differ at that place, or both. Therefore, the number of places where 

u and v differ is less than or equal to the number of places where u and w 

differ, plus the number of places where v and w differ. □

For a code C, one can calculate the Hamming distance between any two 

distinct codewords. Out of this table of distances, there is a minimum value 

d(C), which is called the m in im u m  distance of C. In other words,

d(C) =  min{d(u,tj)|u,'u 6  C,u ^  v}.

The minimum distance of C is very important number, since it gives the 

smallest number of errors needed to change one codeword into another.

When a codeword is transmitted over a noisy channel, errors are intro

duced into some of the entries of the vector. We correct these errors by 

finding the codeword whose Hamming distance from the received vector is 

as small as possible. In other words, we change the received vector to a 

codeword by changing the fewest places possible. This is called nearest 

ne ighbor decoding.

We say that a code can detect up to s errors if changing a codeword 

in at most s places cannot change it to another codeword. The code can 

correct up to t errors if, whenever changes are made at t or fewer places in a 

codeword c, then the closest codeword is still c. This definition says nothing 

about an efficient algorithm for correcting the errors. It simply requires that 

nearest neighbor decoding gives the correct answer when there are at most t 
errors. An important result from the theory of error correcting codes is the 

following.

T heo re m . 1. A code C can detect up to s errors if d(C) > s + 1 .

2. A cade C can correct up to t errors if d(C) > 2t + 1 .

Proof. ( 1 ) Suppose that d(C) > s + l. If a codeword c is sent and s or fewer 

errors occur, then the received message r cannot be a different codeword. 

Hence, an error is detected.
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(2) Suppose that d(C) > 2t + l. Assume that the codeword c is sent and 

the received word r has t or fewer errors; that is, d(c, r) <  t. If ci is any 

other codeword besides c, we claim that d(ci,r) > i+1. To see this, suppose 

that ci(ci,r) <  t. Then, by applying the triangle inequality, we have

2t + 1  < d(C) < d(c, cj) < d(c, r) + d(ci, r) < t + t =  2t.

This is a contradiction, so d(ci,r) > t +1. Since r has t or fewer errors, 

nearest neighbor decoding successfully decodes r to c. □

How does one find the nearest neighbor? One way is to calculate the 

distance between the received message r and each of the codewords, then 

select the codeword with the smallest Hamming distance. In  practice, this is 

impractical for large codes. In general, the problem of decoding is challeng

ing, and considerable research effort is devoted to looking for fast decoding 

algorithms. In later sections, we’ll discuss a few decoding techniques that 

have been developed for special classes of codes.

Before continuing, it is convenient to introduce some notation.

N o ta t io n .  A code of length n, with M  codewords, and with minimum 

distance d = d(C), is called an (n, M , d) code.

When we discuss linear codes, we'll have a similar notation, namely, an 

(n, k, d] code. Note that this latter notation uses square brackets, while the 

present one uses curved parentheses. (These two similar notations cause less 

confusion than one might expect!) The relation is that an [n, k, d] binary 

linear code is an (n,2k,d) code.

The binary repetition code {(0,0,0), (1,1,1)} is a (3,2,3) code. The 

Hadamard code of Example 6 , Section 18.1, is a (32,64,16) code (it could 

correct up to 7 errors because 16 >  2 • 7 + 1).

If we have a g-ary (n, M , d) code, then we define the code rate, or 

in fo rm ation  rate, R  by

R  .

TL

For example, for the Hadamard code, R  — log2(64)/32 =  6/32. The code 

rate represents the ratio of the number of input data symbols to the number 

of transmitted code symbols. It is an important parameter to consider when 

implementing real-world systems, as it represents what fraction of the band

width is being used to transmit actual data. The code rate was mentioned 

in Examples 4 and 6  in Section 18.1. A few limitations on the code rate will 

be discussed in Section 18.3.

Given a code, it is possible to construct other codes that are essen

tially the same. Suppose that we have a codeword c that is expressed os
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c =  (c i,c i,• • • ,Cn). Then we may define a positional permutation of c 

by permuting the order of the entries of c. For example, the new vector 

c' =  (c2 ,c3 ,c i) is a positional permutation of c =  (ci, 0 2 , 0 3 ). Another type 

of operation that can be done is a symbol permutation. Suppose that we 

have a permutation of the q-ary symbols. Then we may fix a position and 

apply this permutation of symbols to that fixed position for every codeword. 

For example, suppose that we have the following permutation of the ternary 

symbols { 0  —» 2 , 1  —> 0 , 2  -+ 1 }, and that we have the following codewords: 

(0,1, 2), (0,2,1), and (2,0,1). Then applying the permutation to the second 

position of all of the codewords gives the following vectors: (0 , 0 , 2 ), (0 , 1 , 1 ), 

and (2 , 2 , 1 ).

Formally, we say that two codes are equ ivalent if one code can be 

obtained from the other by a series of the following operations:

1. Permuting the positions of the code

2. Permuting the symbols appearing in a fixed position of all codewords

It is easy to see that all codes equivalent to an ( ti, M, d) code are also 

(n, M, d) codes. However, for certain choices of n, M , d, there can be several 

inequivalent (n, M, d) codes.

18.3 Bounds on General Codes

We have shown that an (n, M, d) code can correct t errors if d > 2t + 1. 

Hence, we would like the minimum distance d to be large so that we can 

correct as many errors as possible. But we also would like for M  to be 

large so that the code rate R  will be as close to 1 as possible. This would 

allow us to use bandwidth efficiently when transmitting messages over noisy 

channels. Unfortunately, increasing d tends to increase n  or decrease M.
In  this section, we study the restrictions on n, M, and d without worrying 

about practical aspects such as whether the codes with good parameters 

have efficient decoding algorithms. It is still useful to have results such as 

the ones we’ll discuss since they give us some idea of how good an actual 

code is, compared to the theoretical limits.

First, we treat upper bounds for M  in terms of n and d. Then we show 

that there exist codes with M  larger than certain lower bounds. Finally, we 

see how some of our examples compare with these bounds.

18.3.1 Upper Bounds

Our first result was given by R. Singleton in 1964 and is known as the 

S ingleton bound .
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Theorem. Lei C be a q-ary (n,M ,d ) code. Then

M  < qn~d+1.

Proof. For a codeword c — ( a j , . . . ,  cn), let d =  (a,/,. . . ,  an). If ci /  Co are 

two codewords, then they differ in at least d places. Since c'j and d, are 

obtained by removing d — 1 entries from ci and C2 , they must differ in at 

least one place, so cj j i  ci. Therefore, the number M  of codewords c equals 

the number of vectors d obtained in this way. There are at most g"_d+l 

vectors d since there are n — d + 1 positions in these vectors. This implies 

that M < qn~d+l, as desired. □

C o ro lla ry . The code rate of a q-ary (n, M, d) code is at most 1 — . 

Proof. The corollary follows immediately from the definition of code rate.

□
The corollary implies that if the relative m in im u m  distance d/n is 

large, the code rate is forced to be small,

A code that satisfies the Singleton bound with equality is called an M D S  

code (maximum distance separable). The Singleton bound can be rewritten 

as qd <  qn+l jM , so an MDS code has the largest possible value of d for a 

given n  and M. The Reed-Solomon codes (Section 18.9) are an important 

class of MDS codes.

Before deriving another upper bound, we need to introduce a geometric 

interpretation that is useful in error correction. A H am m in g  sphere of 

radius t centered at a codeword c is denoted by B(c,t) and is defined to be 

all vectors that are at most a Hamming distance of t from the codeword c. 

That is, a vector u belongs to the Hamming sphere S(c, t) if d(c, u) < t. We 

calculate the number of vectors in B(c,t) in the following lemma.

Lemma. A sphere B(c, t) in n-dimensional q-ary space has

elements.

Proof. First we calculate the number of vectors that are a distance 1 from c. 

These vectors are the ones that differ from c in exactly one location. There 

are n possible locations and q - 1 ways to make an entry different. Thus the 

number of vectors that have a Hamming distance of 1 from c is n(q — 1). 

Now let’s calculate the number of vectors that have Hamming distance m 

from c. There are (^ ) ways in which we can choose m locations to differ



404 C h a p t e r  18. E r r o r  C o r r e c t in g  C o d e s

from the values of c. For each of these m locations, there are — 1 choices 

for symbols different from the corresponding symbol from c. Hence, there 

are

0 - ‘>m

vectors that have a Hamming distance of m from c. Including the vector c 

itself, and using the identity (JJ) =  1 , we get the result:

( o )  +  ( l )  ( l 7 ' 1 )  +  ( 2 )  ( < ? " 1 ) 2 + " +  ( r )  '  1 ) r >

□
We may now state the H am m in g  bound , which is also called the 

sphere pack ing  bound .

T heo re m . Let C be a q-anj (n, M , d) code with d > 2t 4- 1 . Then

At < q"
' - £ i = „ (? )(?-  i ) r

Proof. Around each codeword c we place a Hamming sphere of radius t. 

Since the minimum distance of the code is d > 2t + 1, these spheres do not 

overlap. The total number of vectors in all of the Hamming spheres cannot 

be greater than qn. Thus, we get

(number of codewords) x (number of elements per sphere)

This yields the desired inequality for M. □

An (n, M, d) code with d =  2f+ 1  that satisfies the Hamming bound with 

equality is called a perfect code. A perfect i-error correcting code is one 

such that the M  Hamming spheres of radius t with centers at the codewords 

cover the entire space of q-ary n-tuples. The Hamming codes (Section 18.5) 

and the Golay code Q23 (Section 18.6) are perfect. Other examples of perfect 

codes are the trivial (n, qn, 1 ) code obtained by taking all n-tuples, and the 

binary repetition codes of odd length (Exercise 15).

Perfect codes have been studied a lot, and they are interesting from many 

viewpoints. The complete list of perfect codes is now known. It includes 

the preceding examples, plus a ternary [11,6,5] code constructed by Golay.
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We leave the reader a caveat. A name like perfect codes might lead one to 

assume that perfect codes Me the best error correcting codes. This, however, 

is not true, os there are error correcting codes, such os Reed-Solomon codes, 

that are not perfect codes yet have better error correcting capabilities for 

certain situations than perfect codes.

18 .3 .2 L ow er B o u n d s

One of the problems central to the theory of error correcting codes is to find 

the largest code of a given length and given minimum distance d. This leads 

to the following definition.

D e f in it io n . Let the alphabet A have q elements. Given n and d with d < n, 

the largest M  such that an (n,M ,d ) code exists'is denoted Aq(n,d).

We can always find at least one (n, M, d) code: Fix an element qq of 

A. Let C be the set of all vectors (a, a , . . . ,  a, aa, •. • i «o) (with d copies of a 
and n  — d copies of ao) with a 6  A. There are q such vectors, and they are 

at distance d from each other, so we have an (ti, q, d.) code. This gives the 

trivial lower bound An(n, d) > q. We'll obtain much better bounds later.

It is easy to see that Ag(n, 1) =  qn: When a code has minimum distance 

d — 1, we can take the code to be all g-ary n-tuples. At the other extreme,

A,(ti, ti) =  q (Exercise 7).

The following lower bound, known as the G ilbert-Varsham ov bound , 

was discovered in the 1950s.

T h e o re m . Given n, d with n > d, there exists a q-ary (n, M, d) code with

qn
M  > — t t- t t------ •

" E ^ o 1 <■)(?- IV

This means that

Ag(n,d)~ E U  ( > - i y

Proof. Start with a vector Ci and remove all vectors in An (where A is an 

alphabet with q symbols) that are in a Hamming sphere of radius d — 1  

about that vector. Now choose another vector ci from those that remain. 

Since all vectors with distance at most d — 1 from C\ have been removed, 

d{c2 , ci) >  d. Now remove all vectors that have distance at most d — 1  from 

C2, and choose eg from those that remain. We cannot have d(ca, c\) < d — 1 

or rf(c3, co) < d — 1 , since all vectors satisfying these inequalities have been 

removed. Therefore, d(c3 , Cj) >  d for i  =  1, 2. Continuing in this way, choose 

c,j, C5 , . . . ,  until there are no more vectors.
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The selection of a vector removes at most 

d-1 / N

s o - *
vectors from the space. If we have chosen M  vectors c i , . . .  then we 

have removed at most

vectors, by the preceding lemma. We can continue until all q" vectors are 

removed, which means we can continue at least until

Therefore, there exists a code { c l , . . . , c,v} with M  satisfying the preceding 

Inequality.

Since Aq(n, d) is the largest such M, it also satisfies the inequality. 

There is one minor technicality that should be mentioned. We actually 

have constructed an (n, M, e) code with e >  d. However, by modifying a few 

entries of eg if necessary, we can arrange that d(c2, ci) =  d. The remaining 

vectors are then chosen by the above procedure. This produces a code where 

the minimal distance is exactly d. □

If we want to send codewords with n  bits over a noisy channel, and 

there is a probability p that any given bit will be corrupted, then we expect 

the number of errors to be approximately pn when n is large. Therefore, 

wo need au (n, M, d) code with d > 2pn. We therefore need to consider 

(n,M,d) codes with d/n ss x >  0, for some given x > 0. How does this 

affect M  and the code rate?

Here is what happens’. Fix q and choose x with 0 <  x <  1 — 1/q. The 

asym pto tic  G ilbert-Varsham ov bo und  says that there is a sequence of 

i;-ary (n, M, d) codes with n  —> oo and d/n —* x such that the code rate 

approaches a limit > Hn(x), where

Hq{x) =  1 - i l o g g(g-  1) + xlog7( i)  + (1 - i )  lo g g (I- z ) .

The graph of Hi(x) is as in Figure 18.2. O f course, we would like to have 

codes with high error correction (that is, high x), and with high code rate (=  

k/n). The asymptotic result says that there are codes with error correction 

and code rate good enough to lie arbitrarily close to, or above, the graph.
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Code Rale

Figure 18.2: The Graph of Hn(x)

The existence of certain sequences of codes having code rate limit strictly 

larger than Hq{x) (for certain x and q) was proved in 1982 by Tsfasman, 

Vladut, and Zink using Goppa codes arising from algebraic geometry.

Examples

Consider the binary repetition code C  of length 3 with the two vectors 

(0,0,0) and (1,1,1). It is a (3,2,3) code. The Singleton bound says that 

2 =  M  <  2, so C is an MDS code. The Hamming bound says that

23
2 =  M  < _________=  2

- ®  + ©
so C is also perfect. The Gilbert-Varshamov bound says that there exists a 

(3 ,M ,3 ) binary code with

2s _  8 

©  + ©  + © “  ?■

which means M  >  2.

The Hamming [7,4] code has M  =  16 and d =  3, so it is a (7,16,3) code. 

The Singleton bound says that 16 =  M  < 2s, so it is not an MDS code. The 

Hamming bound says that

16=M- ( i r h i r 16’
so the code is perfect. The Gilbert-Varshamov bound says that there exists 

a (7, M, 3) code with
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so the Hamming code is much better than this lower bound. Codes that have 

efficient error correction algorithms and also exceed the Gilbert-Varshamov 

bound are currently relatively rare.

The Hadamard code from Section 18.1 is a binary (because there are two 

symbols) (32,64,16) code. The Singleton bound says that 64 =  M  <  217, 

so it is not very sharp in this case. The Humming bound says that

n32
64 =  M  < - - - - ^ 9 5 1 . 3 .

2^=o I. j )

The Gilbert-Varshamov bound says there exists a binary (32, M, 16) code 

with
<j32

r a - 2 . 3 .

2-j=o j J

18.4 Linear Codes

When you are having a conversation with a friend over a cellular phone, your 

voice is turned into digital data that has an error correcting code applied 

to it before it is sent. When your friend receives the data, the errors in 

transmission must be accounted for by decoding the error correcting code. 

Only after decoding are the data turned into sound that represents your 

voice.

The amount of delay it takes for a packet of data to be decoded is 

critical in such an application. If it took several seconds, then the delay 

would become aggravating and make holding a conversation difficult.

The problem of efficiently decoding a code is therefore of critical impor

tance. In order to decode quickly, it is helpful to have some structure in the 

code rather than taking the code to be a random subset of *4n . This is one 

of the primary reasons for studying linear codes. For the remainder of this 

chapter, we restrict our attention to linear codes.

Henceforth, the alphabet A will be a finite field F . For an introduction 

to finite fields, see Section 3.11. For much of what we do, the reader can 

assume that F  is Z 2  =  {0,1} =  the integers mod 2, in which case we are 

working with binary vectors. Another concrete example of a finite field is 

Zp =  the integers mod a prime p. For other examples, see Section 3.11. 

In particular, as is pointed out there, F must be one of the finite fields 

GF(q)\ but the present notation is more compact. Since we are working 

with arbitrary finite fields, we'll use “= "  instead of “= ” in our equations. 

If you want to think of F  as being Zo, just replace all equalities between 

elements of F  with congruences mod 2.

The set of n-dimensional vectors with entries in F  is denoted by F n . 

They form a vector space over F. Recall that a subspace of F n is a nonempty



18.-I. Ltneah C o d es 409

subset S that is closed under linear combinations, which means that if s i , 5 3  

are in S and a i , 0 2  are in F , then n isi + 0 2 6 2  6 S. By taking =  do =  0, 

for example, we see that ( 0 ,0 , , . . . ,  0) 6 S.

D e f in it io n . A linear code of dimension k and length n over a field F  is 

a k-dimensional subspace of F n. Such a code is called an [n, k] code. If 

the minimum distance of the code is d, then the code is called an [n,k, d| 

code.

When F  =  Z 2 , the definition can be given more simply. A binary code 

of length n and dimension k is a set of 2* binary 71-tuples (the codewords) 

such that the sum of any two codewords is always a codeword.

Many of the codes we have met are linear codes. For example, the 

binary repetition code {(0,0, 0), (1,1,1)} is a one-dimensional subspace of 

Z j. The parity check code from Example 2 in Section 18.1 is a linear code 

of dimension 7 and length 8. It  consists of those binary vectors of length 8 

such that the sum of the entries is 0 mod 2. It is not hard to show that the 

set of such vectors forms a subspace. The vectors

(1 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ), (0 ,1,0 ,0,0 ,0 ,0 ,1), . . . , (0 ,0 , 0,0 ,0 ,0 ,1,1)

form a basis of this subspace. Since there are seven basis vectors, the sub

space is seven-dimensional.

The Hamming [7, 4] code from Example 4 of Section 18.1 is a linear code 

of dimension 4 and length 7. Every codeword is a linear combination of the 

four rows of the matrix G. Since these four rows span the code and are 

linearly independent, they form a basis.

The ISBN code (Example 5 of Section 18.1) is not linear. It consists of 

a set of 10-dimensional vectors with entries in Zn- However, it is not closed 

under linear combinations since X  is not allowed as one of the first nine 

entries.

Let C be a linear code of dimension k over a field F. If  F  has q elements, 

then C  has qk elements. This may be seen as follows. There is a basis of

C with k elements; call them .......... .. Every element of C can be written

uniquely in the form a 1V1 + ■ • • + a/.Vk, with 0 1 , . . . ,  6 F. There are q 
choices for each a; and there are k numbers a,. This means there are qk 
elements of C, as claimed. Therefore, an [n, k, d\ linear code is an (n, qk, d) 
code in the notation of Section 18.2.

For an arbitrary, possibly nonlinear, code, computing the minimum dis

tance could require computing d(u,v) for every pair of codewords. For a 

linear code, the computation is much easier. Define the H am m in g  weight 

tot(ti) of a vector -u to be the number of nonzero places in u. It equals d(u, 0), 

where 0 denotes the vector (0, 0 , . . . ,  0).
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P ro p o s it io n . Let C be a linear code. Then d{C) equals the smallest Ham

ming weight of all nonzero code vectors: d(C) =  min{w<(u) 10 ^  u 6 C}.

Proof. Since wt(u) =  d(u, 0) is the distance between two codewords, we 

have wt(u) > d[C) for all codewords u. It remains to show that there is 

a codeword with weight equal to d(C). Note that d (iw )  =  wt(v — w) for 

any two vectors v,w. This is because an entry of v — w is nonzero, and 

hence gets counted in wt(v — w), if and only if v and w differ in that entry. 

Choose v and w to be distinct codewords such that d(v,w) =  d(C). Then 

wt(ii — w) — d(C), so the minimum weight of the nonzero codewords equals 

d{C). □

To construct a linear [n, k] code, we have to construct a ^-dimensional 

subspace of F n. The easiest way to do this is to choose k linearly indepen

dent vectors and take their span. This can be done by choosing a k x n 
generating m a tr ix  G of rank k, with entries in F . The set of vectors of 

the form vG, where v runs through all row vectors in F k, then gives the 

subspace.

For our purposes, we’ll usually take G =  [Jk,P], where Jjt is the I: x k 
identity matrix and P  is a k x (n — k) matrix. The rows of G are the 

basis for a ^-dimensional subspace of the space of all vectors of length n. 
This subspace is our linear code C. In other words, every codeword is 

uniquely expressible as a linear combination of rows of G. If  we use a 

matrix G =  [/*, P\ to construct a code, the first k columns determine the 

codewords. The remaining n — k columns provide the redundancy.

The code in the second half of Example 1, Section 18.1, has

(  1 0 1 0 1 0 

^ 0 1 0 1 0 1

The codewords 101010 and 010101 appear as rows in the matrix and the 

codeword 111111 is the sum of these two rows. This is a [6,2] code.

The code in Example 2 has

/ 1 0 0 0 0 0 0 1 \

0 1 0 0 0 0 0 1 

0 0 1 0 0 0 0 1 

G =  0 0 0 1 0 0 0 1 

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1 

V o o o o o o i i /

For example, the codeword 11001001 is the sum mod 2 of the first, second, 

and fifth rows, and hence is obtained by multiplying (1,1,0,0,1,0,0) times 

G. This is an [8,7] code.
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In Example 4, the matrix G is given in the description of the code. As 

you can guess from its name, it is a [7,4] code.

As mentioned previously, we could start with any k x n matrix of rank k. 
Its rows would generate an [ti, /;] code. However, row and column operations 

can be used to transform the matrix to the form of G we are using, so we 

usually do not work with the more general situation. A  code described by 

a matrix G =  [Jj,-, P] as before is said to be system atic. In this case, the 

first k bits are the in fo rm ation  symbols and the last n - k symbols are 

the check symbols.

Suppose we have G =  [//t,P] os the generating matrix for a code C. Let

f f  =  [-PT,/„-fc],

where P T is the transpose of P . In Example 4 of Section 18.1, this is 

the matrix that was used to correct errors. For Example 2, we have H  =  

[1,1,1,1,1,1,1,1). Note that in this case a binary string v is a codeword if 

and only if the number of nonzero bits is even, which is the same as saying 

that its dot product with H  is zero. This can be rewritten as vHT =  0, 

where HT is the transpose of H.
More generally, suppose we have a linear code C C Fn. A matrix H  is 

called a parity  check m a tr ix  for C if H has the property that a vector 

u G F n is in C  if and only if vHT =  0. We have the following useful result.

Theorem. If G =  [Ik, P] is the generating matrix for a code C, then H  =  

[—P T, Jn_jt] is a parity check matrix for C.

Proof. Consider the ith row of G, which has the form

Vj — (0, . . . , 1, . . .  , 0, p it\, . . .  , p i ,n—k)i

where the 1 is in the ith position. This is a vector of the code C. The jth  

column of HT is the vector

( P i  j  i 1 * * t Pn— 0,  . . . , 1 , . , . , 0 ) ,

where the 1 is in the (n - k + j) th  position. To obtain the jth  element of 

ViHT, take the dot product of these two vectors, which yields

1 • ( - P i j )  +  Pi,j - 1 = 0 .

Therefore, H T annihilates every row v,• of G. Since every element of C is a 

sum of rows of G, we find that vH? — 0 for all v G C.

Recall the following fact from linear algebra: The left null space of an 

m x n  matrix of rank r has dimension n  — r. Since HT contains /„_* as a
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submatrix, it has rank n — k. Therefore, its left null space has dimension k. 

But we have just proved that C  is contained in this null space. Since C  also 

has dimension k, it must equal the null space, which is what the theorem

We now have a way of detecting errors: If v is received during a transmis

sion and v H t  #  0, then there is an error. If vHT =  0, we cannot conclude 

that there is no error, but we do know that v is a codeword. Since it is 

more likely that no errors occurred than enough errors occurred to change 

one codeword into another codeword, the best guess is that an error did not 

occur.

We can also use a parity check matrix to make the task of decoding 

easier. First, let's look at an example.

E x am p le . Let C be the binary linear code with generator matrix

to the following procedure. First, list the four elements of the code in the 

first row, starting with (0,0,0,0,0). Then, among the 12 remaining vectors,

vector to the first row to obtain the second row. From the remaining 8 

vectors, again choose one with smallest weight and add it to the first row to 

obtain the third row. Finally, choose a vector with smallest weight from the 

remaining four vectors, add it to the first row, and obtain the fourth row. 

We obtain the following:

This can be used as a decoding table. When we receive a vector, find it in

The error that is removed is first element of its row. For example, suppose 

we receive (0,1,0,1). It is the last element of the second row. Decode it to 

(1 ,1,0,1), which means removing the error (1,0, 0, 0). In  this small example, 

this is not exactly the same as nearest neighbor decoding, since (0,0,1,0) 

decodes as (0,1,1,0) when it has an equally close neighbor (0,0,0,0). The 

problem is that the minimum distance of the code is 2, so general error 

correction is not possible. However, if we use a code that can correct up to t

claims. □

0 1 

1 1

We are going to make a table of all binary vectors of length 4 according

choose one of smallest weight (there might be several choices). Add this

(0,0,0,0) (1,0,1,1) (0,1,1,0) (1,1,0,1) 

(1,0,0,0) (0,0,1,1) (1,1,1,0) (0,1,0,1) 

(0,1,0,0) (1,1,1,1) (0,0,1,0) (1,0,0,1) 

(0,0,0,1) (1,0,1,0) (0,1,1,1) (1,1,0,0).

the table. Decode by changing the vector to the one at the top of its column.
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errors, this procedure correctly decodes all vectors that are distance at most 

t from a codeword.

In a large example, finding the vector in the table can be tedious. In 

fact, writing the table can be rather difficult (that's why we used such a 

small example). This is where a parity check matrix H  comes to the rescue.

The first vector v in a row is called the coset leader. Let r be any 

vector in the same row as v. Then r  =  v + c for some codeword c, since this 

is how the table was constructed. Therefore,

tH t  =  vHt  + cHt  =  vH t ,

since cHT =  0 by the definition of a parity check matrix. The vector S(r) = 
rHT is called the syndrom e of r. W hat we have shown is that two vectors 

in the same row have the same syndrome. Replace the preceding table with 

the following much smaller table.

Coset Leader Syndrome 

(0, 0, 0, 0) (0, 0)

(1, 0, 0, 0) (1, 1)

(0, 1, 0, 0) (1, 0)

(0, 0, 0, 1) (0, 1)

This table may be used for decoding as follows. For a received vector r, 

calculate its syndrome S(r) = tH t . Find this syndrome on the list and 

subtract the corresponding coset leader from r. This gives the same decoding 

as above. For example, if r  =  (0,1,0,1), then

S(r) =  (0, 1, 0, 1)

This is the syndrome for the second row. Subtract the coset leader (1,0, 0,0) 

from r to obtain the codeword (1 ,1,0,1). ■

We now consider the general situation. The method of the example leads 

us to two definitions.

D e f in it io n . Let C be a linear code and let u be an n-dimensional vector. 

The setu + C given by

u + C  =  {tt + c| c€ C }

is called a coset of C .
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It is easy to see that if v € u + C, then the sets v 4- C and u + C are the 

same (Exercise 9).

D e f in it io n . A vector having minimum Hamming weight in a coset is called 

a coset leader.

The syndrom e of a vector u is defined to be S(u) =  uHT. The following 

lemma allows us to determine the cosets easily.

L e m m a . Two vectors u and v belong to the same coset if and only if they 

have the same syndrome.

Proof. Two vectors u and v to belong to the same coset if an only if their 

difference belongs to the code C; that is, u —v 6 C. This happens if and only 

if (u — v)Ht =  0, which is equivalent to S(u) =  uHT =  vHT =  S(v). □

Decoding can be achieved by building a syndrome lookup table, which 

consists of the coset leaders and their corresponding syndromes. W ith a 

syndrome lookup table, we can decode with the following steps:

1. For a received vector r, calculate its syndrome S(r) — r I lT.

2. Next, find the coset leader with the same syndrome as S(r). Call the 

coset leader c q .

3. Decode r as r — ca-

Syndrome decoding requires significantly fewer steps than searching for 

the nearest codeword to a received vector. However, for large codes it is still 

too inefficient to be practical. In general, the problem of finding the nearest 

neighbor in a general linear code is hard; in fact, it is what is known as an 

NP-complete problem. However, for certain special types of codes, efficient 

decoding is possible. We treat some examples in the next few sections.

18.4.1 D u a l  C ode s

The vector space F n has a dot product, defined in the usual way:

(ttl, . . • , On) * (6q, • • • i 6rt) =  OqI?q + • ■ ■ + Gn̂ Tl'

For example, if F  =  Z 2 , then

(0,1,0,1,1,1) • (0,1,0,1,1,1) =  0,

so we find the possibly surprising fact that the dot product of a nonzero 

vector with itself can sometimes be 0, in contrast to the situation with real
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numbers. Therefore, the dot product does not tell us the length of a vector. 

But it is still a useful concept.

I f  C is a linear [n, A;] code, deSne ttie dua l code

P ro p o s it io n . If C is a linear [n,fc] code with generating matrix G =  

j/fc, P), then CL is a linear [n,n — fc] code with generating matrix H  = 

[—P T,/„_fc], Moreover, G is a parity check matrix for C 'L.

Proof. Since every element of C is a linear combination of the rows of G, a 

vector u is in CL if and only if uGT =  0. This means that C1 is the left null 

space of GT. Also, we see tliat G is a parity check matrix for C1. Since G 

has rank k, so does GT. The left null space of GT therefore has dimension 

n — k, so C 1 has dimension n — k. Because H  is a parity check matrix for 

C, and the rows of G are in C, we have GHT =  0. Taking the transpose of 

this relation, and recalling that transpose reverses order ((AB)T =  BTAT), 

we find HGT =  0. This means that the rows of I I  are in the left null space 

of G7; therefore, in C 1 . Since H  has rank n — k, the span of its rows has 

dimension n — k, which is the same as the dimension of C1. It follows that 

the rows of H  span C^, so H  is a generating matrix for C^. D

A code C  is called self-dual is C  =  C1. The Golay code Qi\ of Section 

18.6 is an important example of a self-dual code.

E x a m p le . Let C =  {(0,0,0), (1,1,1)} be the binary repetition code. Since 

u- (0,0,0) =  0 for every u, a vector it is in C1 if and only if u ■ (1,1,1) =  0. 

This means that C1 is a parity check code: (0 1 , 0 2 , 0 3 ) G C 1 if and only if 

a i  4- Q2 4- <13 =  0 .  1

E x a m p le . Let C be the binary code with generating matrix

C1 =  {u G F n | u ■ c =  0 for all c e C}.

0 0 

1 1

The proposition says that C 1 has generating matrix

1 1 

0 0

This is G with the rows switched, so the rows of G and the rows of H  generate 

the same subspace. Therefore, C =  C1, which says that C is self-dual. 1
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18.5 Hamming Codes

The Hamming codes are an important class of single error correcting codes 

that can easily encode and decode. They were originally used in controlling 

errors in long-distance telephone calls. Binary Hamming codes have the 

following parameters:

1. Code length: n =  2m — 1

2. Dimension: k =  2m — m — 1

3. Minimum distance: d =  3

The easiest way to describe a Hamming code is through its parity check 

matrix. For a binary Hamming code of length n =  2m — 1, first construct an 

m  x n matrix whose columns are all nonzero binary m-tuples, For example, 

for a [7,4] binary Hamming code we take m =  3, so n  =  7 and k =  4, and 

start with
/  1 0 1 0 1 0 1 \

0 1 1 0  0 1 1 .

\ 0 0 0 1 1 1 1 J
In order to obtain a parity check matrix for a code in systematic form, 

we move the appropriate columns to the end so that the matrix ends with 

the m x m identity matrix. The order of the other columns is irrelevant. 

The result is the parity check matrix H  for a Hamming [ti, k] code. In our 

example, we move the 4th, 2nd, and 1st columns to the end to obtain

/  1 1 0 1 1 0 0 \ 

# = 1 0 1 1 0 1 0 ,
\ 0 1 1 1 0 0 1 )

which is the matrix H  from Example 3.

We can easily calculate a generator matrix G from the parity check ma

trix H. Since Hamming codes are single error correcting codes, the syndrome 

method for decoding can be simplified. In  particular, the error vector e is 

allowed to have weight at most 1, and therefore will be zero or will have all 

zeros except for a single 1 in the j t h  position.

The Hamming decoding algorithm, which corrects up to one bit error, is 

as follows:

1. Compute the syndrome s =  yHT for the received vector p. If s =  0, 

then there are no errors. Return the received vector and exit.

2. Otherwise, determine the position j  of the column of H  that is the 

transpose of the syndrome.
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3. Change the jfth bit in the received word, and output the resulting code.

As long as there is at most one bit error in the received vector, the result 

will be the codeword that was sent.

E x a m p le . The [15,11] binary Hamming code has parity check matrix

(  0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 \  

1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1  

o i i i o i i o o i i o o i o r  
1 0 1 1 1 0 1 0 1 0  1 0 0 0 1 /

Assume the received vector is

y =  (0 ,0,0,0 ,1 ,0 ,0 ,0, 0 ,0 ,1 ,1 ,0,0,1).

The syndrome s =  yHT is calculated to be s =  ( l,  1,1,1). Notice that s is 

the transpose of the 11th column of H, so we change the 11th bit of y to 

get the decoded word as

(0,0, 0, 0,1,0, 0,0,0,0, 0,1,0,0,1).

Since the first 11 bits give the information, the original message was

(0, 0,0,0,1,0, 0, 0, 0, 0, 0).

Therefore, we have detected and corrected the error. I

18.6 Golay Codes

Two of the most famous binary codes are the Golay codes S2 3  and S2 1 The 

[24, 12, 8] extended Golay code 521 was used by the Voyager I  and Voyager
I I  spacecrafts during 1979-1981 to provide error correction for transmission 

back to Earth of color pictures of Jupiter and Saturn. The (non-extended) 

Golay code 6 2 3 . which is a [23, 12, 7] code, is closely related to t/2i- We 

shall construct G2 4  first, then modify it to obtain £ 2 3 - There are many other 

ways to construct the Golay codes. See [MacWilliams-Sloane].
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The generating matrix for Qia is the 12 x 24 matrix G =

Z 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 \

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 I 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1

\o 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 /

All entries of G are integers mod 2. The first 12 columns of G are the 12 x 12 

identity matrix. The last 11 columns are obtained os follows. The squares 

mod 11 are 0, 1,3, 4, 5, 9 (for example, 42 =  3 and 7 2 s  5). Take the vector 

( io , . . . ,  Tio) =  (1,1 ,0 ,1 ,1 ,1 ,0 ,0 ,0 ,1 ,0), with a 1 in positions 0, 1, 3, 4, 5,

9. This gives the last 11 entries in the first row of G. The last 11 elements 

of the other rows, except the last, are obtained by cyclically permuting the 

entries in this vector. (Note: The entries are integers mod 2, not mod 11. 

The squares mod 11 are used only to determine which positions receive a 1.) 

The 13th column and the 12th row are included because they can be; they 

increase k and d ajid help give the code some of its nice properties. The 

basic properties of S2 4  are given in the following theorem.

Theorem. <?24 w a self-dual [24, 12, 8j  binary code. The weights of all 

vectors in ore multiples of 4-

Proof. The rows in G have length 24. Since the 12 x 12 identity matrix is 

contained in G, the 12 rows of G are linearly independent. Therefore, 524 

has dimension 12, so it is a [24,12, d] code for some d. The main work will 

be to show that d =  8. Along the way, we’ll show that £ 2 4  is self-dual and 

that the weights of its codewords are 0 (mod 4).

Of course, it would be possible to have a computer list all 212 =  4096 

elements of Qi\ and their weights. We would then verify the claims of the 

theorem. However, we prefer to give a more theoretical proof.

Let 7-j be the first row of G and let r r i be any of the other first 11 

rows. An easy check shows that r\ and r have exactly four Is in common, 

and cach has four Is that are matched with 0s in the other vector. In the 

sum ri + r, the four common Is cancel mod 2, and the remaining four Is 

from each row give a total of eight Is in the sum. Therefore, r} + r hos
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weight 8. Also, the dot product n  • r receives contributions only from the 

common Is, s o r i- r  =  l- l + l- l  + l- l + l- l  =  4 =  0 (mod 2).

Now let u and v be any two distinct rows of G, other than the last row. 

The first 12 entries and the last 11 entries of v are cyclic permutations of the 

corresponding parts of u and also of the corresponding parts of the first row. 

Since a permutation of the entries does not change the weights of vectors 

or the value of dot products, the preceding calculation of rj + r and r\ • r 

applies to u and v. Therefore,

1. wt(u + ti) =  8

2. u • v =  0 (mod 2).

Any easy check shows that (1) and (2) also hold if u or v is the last row of 

G, so we see that (1) and (2) hold for any two distinct rows u,v of G. Also, 

each row of G has an even number of Is, so (2) holds even when u =  v.

Now let ci and c? be arbitrary elements of Qi\- Then cj and C2  are linear 

combinations of rows of G, so ci ■ C2  is a linear combination of numbers of 

the form ti • v for various rows u and v of G- Each of these dot products 

is 0 mod 2, so n  • 72 =  0 (mod 2). This implies that C C C 1 . Since C 

is a 12-dimensional subspace of 24-dimensional space, C 1 has dimension 

24 — 12 =  12. Therefore, C and Cx have the same dimension, and one is 

contained in the other. Therefore, C =  C 1 , which says that C is self-dual.

Observe that the weight of each row of G is a multiple of 4. The following 

lemma will be used to show that every element of Q2<\ has weight that is a 

multiple of 4.

Lemma. Lei vi and v2 be binary vectors of the 3ame length. Then

wt(vi + v2) — wt(vi) + wt(v2) - 2[vi ■ 1/2 )1

where the notation [«i • v2] means that the dot product is regarded as a usual 

integer, not mod S (for example, [(1,0,1,1) ■ (1,1,1,1)] =  3, rather than 1).

Proof. The nonzero entries of v\ +v2 occur when exactly one of the vectors 

ui, ti2 has an entry 1 and the other has a 0 as its corresponding entry. When 

both vectors have a 1, these numbers add to 0 mod 2 in the sum. Note that 

wt(vi) +wt(v2 ) counts the total number of Is in tii and V2 and therefore 

includes these Is that canceled each other. The contributions to [ui ■ v?] are 

caused exactly by these Is that are common to the two vectors. So there 

are [ui • v2] entries in uj and the same number in v2 that are included in 

tuf(tii) + wt(v2), but do not contribute to wt(v 1 + v2). Putting everything 

together yields the equation in the lemma. □
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We now return to the proof of the theorem. Consider a vector g in 6 2 4 -

It can be written as a sum 5  =  u 1 H---- 1- ujt (mod 2), where u i , . . .  ,Uk are

distinct rows of G. We’ll prove that wt(g) =  0  (mod 4) by induction on 

k. Looking at G, we see that the weights of all rows of G are multiples of

4, so the case k =  1 is true. Suppose, by induction, that all vectors that 

can be expressed as a sum of k — 1 rows of G have weight =  0 (mod 4). I 11 

particular, u = u ! + •■• + u^-i has weight a multiple of 4. By the lemma,

wt(g) =  wt(u + Uk) =  uit(u) +wt(uk) — 2[u-uk] =  0 + 0 — 2[u- -û] (mod 4).

But u • Uk =  0 (mod 2), as we proved. Therefore, 2 [it ■ ujt] =  0 (mod 4). 

We have proved that 1ut(g) =  0 (mod 4) whenever g is a sum of k rows. By 

induction, all sums of rows of G have weight =  0 (mod 4). This proves that 

all weights of Qn,i are multiples of 4.

Finally, we prove that the minimum weight in S2 4  is 8 . This is true 

for the rows of G, but we also must show it for sums of rows of G. Since 

the weights of codewords are multiples of 4, we must show that there is no 

codeword of weight 4, since the weights must then be at least 8 . In fact, 8  

is then the minimum, because the first row of G, for example, has weight 8 . 

We need the following lemma.

L e m m a . The rows of the 1 2  x 12 matrix B formed from the last 12 columns 

of G are linearly independent mod 2. The rows of the 1 1 x 1 1  matrix A formed 

from the last 11 elements of the first 11 rows of G arc linearly dependent 

mod 2. The only linear dependence relation is that the sum of all 11 rows of 

A is 0 mod 2.

Proof. Since £ 2-1 is self-dual, the dot product of any two rows of G is 0. 

This means that the matrix product GGT =  0. Since G =  [I\B\ (that is, I  

followed by the matrix B), this may be rewritten as

I 2 + B BT =  0,

which implies that B~l =  BT (we're working mod 2, so the minus signs 

disappear). This means that B is invertible, so the rows are linearly inde

pendent.

The sum of the rows of A is 0 mod 2 , so this is a dependence relation. 

Let vy =  ( 1 , . . . ,  1 )T be an 11-dimensional column vector. Then Av\ =  0, 

which is just another way of saying that the sum of the rows is 0. Suppose 

V2 is a nonzero 1 1 -dimensional column vector such that Av2 =  0. Extend v\
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and V2 to 12-dimensional vectors v\, vi, by adjoining a 0 at the top of each 

column vector. Let r 12 be the bottom row of B. Then

Bv[ =  (0....... 0 ,r l 2 v')T.

This equation follows from the fact that Avi =  0. Note that multiplying a 

matrix times a vector consists of taking the dot products of the rows of the 

matrix with the vector.

Since B is invertible and v[ ^  0, we have Bv[ ^  0, so r i ■ ^  0 Since we 

are working mod 2, the dot product must equal 1. Therefore,

B(v[ + v2) = ( 0 , . . . ,  0, ri • wj + r i • v2)T =  ( 0 , . . . ,  0,1 + l ) r  =  0.

Since B is invertible, we must have v[ + v2 =  0, so v[ =  v'2 (we are working 

mod 2). Ignoring the top entries in uj and v2, we obtain V2 =  (1 , . . . ,  1). 

Therefore, the only nonzero vector in the null space of A is vi. Since the 

vectors in the null space of a matrix give the linear dependencies among the 

rows of the matrix, we conclude that the only dependency among the rows 

of A is that the sum of the rows is 0. This proves the lemma. □

Suppose g is a codeword in 5m- If g is, for example, the sum of the 

second, third, and seventh rows, then g will have Is in the second, third, 

and seventh positions, because the first 12 columns of G form an identity 

matrix. In this way, we see that if g is the sum of k rows of G, then wt(g) > k. 

Suppose now that wt(g) =  4. Then g is the sum of at most 4 rows of G. 

Clearly, g cannot be a single row of G, since each row has weight at least 8- 

If g is the sum of two rows, we proved that wt(g) is 8. If g =  r i + 7 2  + 7 3  is 

the sum of 3 rows of G, then there are two possibilities.

(1) First, suppose that the last row of G is not one of the rows in the 

sum. Then three Is are used from the 13th column, so a 1 appears in the 

13th position of g. The Is from the first 12 positions (one for each of the 

rows r i , 7 2 , 7 3 ) contribute three more Is to g. Since wt(g) =  4, we have 

accounted for all four Is in g. Therefore, the last 11 entries of g are 0. By 

the preceding lemma, a sum of only three rows of the matrix A cannot be

0. Therefore, this case is impossible.

(2) Second, suppose that the last row of G appears in the sum for g, 

say <7 =  r j + r2  + ra with 7 3  = the last row of G. Then the last 11 entries 

of g are formed from the sum of two rows of A (from 7) and 7 2 ) plus the 

vector (1 ,1 , . . . ,  1) from 7 3 . Recall that the weight of the sum of two distinct 

rows of G is 8. There is a contribution of 2 to this weight from the first 13 

columns. Therefore, looking at the last 11 columns, we see that the sum of
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two distinct rows of A has weight 6 . Adding a vector mod 2 to the vector 

(1 ,1 ,... ,  1) changes all.the Is to Os and all the Os to Is. Therefore, the 

weight of the last 11 entries of g is 5. Since wt(g) =  4, this is impossible, so 

this case also cannot occur.

Finally, if g is the sum of four rows of G, then the first 12 entries of g 

have four Is. Therefore, the last 1 2  entries of g are all 0. By the lemma, a 

sum of 4 rows of B cannot be 0, so we have a contradiction. This completes 

the proof that there is no codeword of weight 4.

Since the weights are multiples of 4, the smallest possibility for the weight 

is 8 . As we pointed out previously, there are codewords of weight 8 , so we 

have proved that the minimum weight of £ 2.1 is 8 . Therefore, Qn.i is a [24, 

12, 8 ] code, as claimed. This completes the proof of the theorem. □

The (non-extended) Golay code £ > 3  is obtained by deleting the last entry 

of each codeword in C/2 .I-

T heo re m . S2 3  is a linear {23,12,7] code.

Proof. Clearly each codeword has length 23. Also, the set of vectors in Q23 is 

easily seen to be closed under addition (ifv i.uo are vectors of length 24, then 

the first 23 entries of Ui + « 2  are computed from the first 23 entries of v\ and 

V2) and Q22 forms a binary vector space. The generating matrix G' for C/ 2 3  

Is obtained by removing the last column of the matrix G for C/2 -i- Since G' 

contains the 1 2  x 1 2  identity matrix, the rows of G' are linearly independent, 

and hence span a 12-dimensional vector space. If g1 is a codeword in S2 3 , 

then g' can be obtained by removing the last entry of some element g of Gn- 

If g' #  0, then g ^  0, so wt(g) > 8 . Since g' has one entry fewer than g, we 

have wt(g') > 7. This completes the proof. □

18.6.1 D e c o d in g  Qu

Suppose a message is encoded using G24 and the received message contains 

at most 3 errors. In the following, we show a way to correct these errors. 

Let G be the 12 x 24 generating matrix for £ 2 4 - Write G in the form

G =  [/, B\ =  (ci, ■ • • .ca-i),

where I  is the 12 x 12 identity matrix, B  consists of the last 12 columns of 

G, and c j , . . . ,  C2.1 are column vectors. Note that Ci, . . . ,  c\2 are the standard 

basis elements for 12-dimensional space. Write
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where 6 i , . . . ,  612 are column vectors. This means that b f,...,b f2 are the 

rows of B. .
Suppose the received message is r =  c + e, where c is a codeword from

and

e =  (eI , . . . ,e 2 .i )

is the error vector. We assume wt(e) < 3.

The algorithm is as follows. The justification is given below.

1. Let s =  rGT be the syndrome.

2. Compute the row vectors s, sB, s 4- cf ,13 <  j  <  24, and sB 4- bj, 1 < 

j  < 12.

3. If tot(s) < 3, then the nonzero entries of s correspond to the nonzero 

entries of e.

4. If wt(sB) <  3, then there is a nonzero entry in the fcth position of sB 
exactly when the (fc + 12)th entry of e is nonzero.

5. If wt(s 4- cj) < 2 for some j  with 13 <  j  < 24, then ej =  1 and 

the nonzero entries of s + c j  are in the positions of the other nonzero 

entries of the error vector e.

6. If  wt(sB +bj) < 2 for some j  with 1 < j  < 12, then Cj — 1. If there is 

a nonzero entry for this sB + bj in position k (there are at most two 

such fc), then e^+k = 1.

E x a m p le . The sender starts with the message

m =  (1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ).

The codeword is computed as

m G =  (1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,1 ,1 ,0 ) 

and sent to us. Suppose we receive the message as

r =  (1,1,0,1,0,0, 0,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ,0 ,0 ,1 , 0,0,0,0 ,1,0).

A calculation shows that

s =  (0 ,1 ,1 ,1 ,1 ,0 ,1 ,1 ,0 ,0 ,1 ,0 )

and

sB =  (1 ,0 ,1 ,0 ,1 ,1 ,0 ,0 ,1 ,0 ,0 ,0 ).
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Neither of these has weight at most 3, so we compute s + cj, 13 <  j  <  24 

and sB -I- bj, 1 <  j  <  12: We find that

sB + bf =  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ).

Tliia means that there is an error in position 4 (corresponding to the choice 

(j.i) and in positions 2 0  (=  1 2  + 8 ) and 2 2 (=  1 2  + 1 0 ) (corresponding to the 

nonzero entries in positions 8  and 10 of sB + bj). We therefore compute

c =  r + (0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,0 ,0 ) 

=  (1, 1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1, 0 , 1, 0 , 0 , 0 , 0 , 1, 0 , 1, 0, 1, 1, 0).

Moreover, since G is in systematic form, we recover the original message 

from the first 1 2  entries:

m =  ( l , 1,0,0,0,0,0,0,0,0,1,0). ■

We now justify the algorithm and show that if vut(e) <  3, then at least 

one of the preceding cases occurs.

Since G21 is self-dual, the dot product of a row of G with any codeword 

c is 0. This means that cGT =  0. In our case, we have t  =  c + e, so

s — rGT =  cGt + eGT =  eGT =  ejc^ H-- -I- eo-ic^.

This last equality just expresses the fact that the vector e =  (e j....... 6 3 -1 )

times the matrix GT equals ei times the first row cf of GT, plus eo times 

the second row of GT, etc. Also,

7

Bt
B = e

B
J

sB =  eG B =  e 

since BT =  B~l (proved in the preceding lemma). We have 

=  [Bt ,I]t =  (i>i,. . . ,  6 1 2 , C i,. . . ,  C1 2 ).

Therefore,

sB  =  e ( i) i , . . . , 6 1 2 ,C i , . . . ,c i 2 )r  =  e ibf + --- 1- e2 ,icf2.

If  wt(e) < 3, then either w t((e i,. . . ,  6 1 2 )) <  1 or ttii((ei3 , . . . , e2 /i)) <  1, 

since otherwise there would be too many nonzero entries in e. We therefore 

consider the following four cases.
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1. m t((e i,. . .  ,eio)) =  0. Then

sB =  eiacf H----h e2-icf2 =  (eia, •. •, £2 4 )-

Therefore, wt(sB) <  3 and we can determine the errors as in step (4) 

of the algorithm.

2. wt((e 1 , . . .  , 6 1 2 )) =  1. Then ej =  1 for exactly one j  with 1  < j  <  12, 

so

sB =  bj + e;acf H----h e2 ,tcf2.

Therefore,

sB + bj =  eiacf H----h e2 4 Ci'2 =  (e is ,. . . ,  e2i).

The vector (e is ,. . . ,  e2,|) has at most two nonzero entries, so we are in 

step (6 ) of the algorithm.

The choice of j  is uniquely determined by sB. Suppose <  2

for some k ^  j. Then

tot(6 £  + bj ) =  wt(sB + b% + sB + bj)

< 1ut(sB + bjT) + tut(sS + bj) < 2 4- 2  =  4

(see Exercise 6 ). However, we showed in the proof of the theorem 

about Qi<i that the weight of the sum of any two distinct rows of G has 

weight 8 , from which it follows that the sum of any two distinct rows 

of B has weight 6 . Therefore, wt(b% + bj) =  6 . This contradiction 

shows that 6 * cannot exist, so bj is unique.

3. wt((ej 3 , . . . ,  e2 ,t)) =  0. In this case,

s =  eicf +■ • • • + ei2 Cj2  =  (e i, . . . ,  ei2).

We have wt(s) < 3, so we are in step (3) of the algorithm.

4. wt((e 1 3 , •. • , 6 3 4 )) =  1. In this case, ej =  1 for some j  with 13 <  j  <  24. 

Therefore,

s =  eicf + ---h ei2 cf2  + cj,

and we obtain

S + ^  =  elCf  + • • • + fii2Cjo =  (e j, . , . , ey>).

There ore at most two nonzero entries in (e i,. . . ,  el2), so we are in 

step (5) of the algorithm.

As in (2), the choice of Cj is uniquely determined by s.
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In each of these cases, we obtain a vector, let's call it e', with at most 

three nonzero entries. To correct the errors, we add (or subtract; we are 

working mod 2) d  to the received vector r to get d  =  r  + e'. How do we 

know this is the vector that was sent? By the choice of e', we have

e'GT =  s,

so

c'Gt =  tGt + e'GT =  5  + s =  0.

Since ft*  is self-dual, G is a parity check matrix for C/2 4 ■ Since dGT =  0, we 

conclude that d is a codeword. We obtained d  by correcting at most three 

errors in r. Since we assumed there were at most three errors, and since 

the minimum weight of Qi\ is 8, this must be the correct decoding. So the 

algorithm actually corrects the errors, as claimed.

The preceding algorithm requires several steps. We need to compute the 

weights of 26 vectors. Why not just look at the various possibilities for 3 

errors and see which correction yields a codeword? There are (gl) + ("j1) + 

(V) Ca*) =  2325 possibilities for the locations of at most three errors, 

so this could be done on a computer. However, the preceding decoding 

algorithm is faster.

18.7 Cyclic Codes

Cyclic codes are a very important class of codes. In  the next two sections, 

we’ll meet two of the most useful examples of these codes. In this section, 

we describe the general framework.

A code C is called cyclic if

(ci,c2, .. . ,c „ )  6 C implies (cn ic i1c2, . . . , c n-i) € C.

For example, if (1,1,0,1) is in a cyclic code, then so is (1,1,1,0). Applying 

the definition two more times, we see that (0,1,1,1) and (1,0,1,1) are also 

codewords, so all cyclic permutations of the codeword are codewords. This 

might seem to be a strange condition for a code to satisfy. After all, it would 

seem to be rather irrelevant that, for a given codeword, all of its cyclic shifts 

are still codewords. The point is that cyclic codes have a lot of structure, 

which makes them easier to study. In the case of BCH codes (see Section 

18.8), this structure yields an efficient decoding algorithm.

Let’s start with an example. Consider the binary matrix

/  1 0 1 1 1 0 0 \ 

( 7 = 1 0 1 0 1 1  l O l  

\ 0 0 1 0 1 1 1 /
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The rows of G generate a three-dimensional subspace of seven-dimensional 

binary space. In fact, in this case, the cyclic shifts of the first row give all 

the nonzero codewords:

G =  {(0,0,0,0,0 ,0 ,0), (1,0,1 ,1,1 ,0 ,0), (0,1,0,1,1,1 ,0), (0,0,1 ,0,1 ,1 ,1), 

(1,0 ,0,1,0 ,1 ,1), (1,1,0 ,0,1 ,0 ,1), (1,1,1,0,0,1 ,0), (0,1,1,1,0 ,0 ,1)}.

Clearly the minimum weight is 4, so we have a cyclic [7, 3, 4] code.

We now show an algebraic way to obtain this code. Let ZofA’) denote 

polynomials in X  with coefficients mod 2, and let Z 2 [X\j(X~ - 1) denote 

these polynomials mod (X1 - 1). For a detailed description of what this 

means, see Section 3.11. For the present, it suffices to say that working 

mod X 7 — 1 means we are working with polynomials of degree less than 7. 

Whenever we have a polynomial of degree 7 or higher, we divide by X 7 — 1 

and take the remainder.

Let g{X) =  1 + X '  + X 3 + X*. Consider all products

g(X)f(X) =  o<1 + a1X  + . . .+  a6X c

with f(X )  of degree <  2. Write the coefficients of the product as a vector 

(ao,. . . ,  afl). For example, g{X) ■ 1 yields (1,0,1,1,1 ,0 ,0), which is the top 

row of G. Similarly, g{X)X  yields the second row of G and g(X)X2 yields 

the third row of G. Also, g(X)( 1 + X 2) yields (1,0,0,1,0 ,1 ,1), which is the 

sum of the first and third rows of G. In  this way, we obtain all the codewords 

of our code.

We obtained this code by considering products g(X)f(X ) with deg(/) <

2. We could also work with f(X ) of arbitrary degree and obtain the same 

code, as long as we work mod ( i f 7—1). Note that 5 (X ) (X 3-l-vX"2-|-l) =  X 7- l  

(mod 2). Divide X 3 + X 2 + 1 into f(X):

f(X ) =  (X 3 + X 2 + l)q (X )+ M X ),

with deg(/i) < 2. Then

9(X )f(X ) =  g(X)(X3 + X 2 + 1 ) ,(* )  + g{X)h{X) 

-  (X7- l)q(X) + g (X )h (X )= g (X )f l(X) mod (X7 - 1).

Therefore, g(X)fi(X) gives the same codeword os g(X)j(X), so we may 

restrict to working with polynomials of degree at most two, as claimed.

Why is the code cyclic? Start with the vector for g(X). The vectors for 

g(X)X  and g(X)X2 are cyclic shifts of the one for g{X) by one place and 

by two places, respectively. W hat happens if we multiply by X 31 We obtain 

a polynomial of degree 7, so we divide by X 7 — 1 and take the remainder:

g(X)X3 =  X 3 + X 5+ X 0 + X 7=  (X 7 - 1)(1) +(1 + X 3 + X 5 + X 6).
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The remainder yields the vector (1, 0,0,1, 0,1,1). This is the cyclic shift by 

three places of the vector- for g(X).
A similar calculation for j  = 4 ,5 ,6  shows that the vector for g(X)X3 

yields the shift by j  places of the vector for g(X). In fact, this is a general 

phenomenon. If q(X ) =  oq  + a iJ f  + • • - + aeX6 is a polynomial, then

q{X)X =  aaX  + a1X 2 + ---+acX 7

= <io(X7 — 1) + + a^X  + ai-X2 + • • • + asX G.

The remainder is as + agX + a\X2 + • ■ ■ + QsX0, which corresponds to 

the vector (do, ao, • • •, as). Therefore, multiplying by X  and reducing mod 

X 7 — 1 corresponds to a cyclic shift by one place of the corresponding vector. 

Repeating this j  times shows that multiplying by X 3 corresponds to shifting 

by j  places.

We now describe the general situation. Let F  be a finite field. For a 

treatment of finite fields, see Section 3.11. For the present purposes, you may 

think of F  as being the integers mod p, where p is a prime number, since this 

is an example of a finite field. For example, you could take F  =  Z 2  =  {0,1}, 

the integers mod 2. Let F[yY] denote polynomials in X  with coefficients 

in F . Choose a positive integer n. We'll work in i?[X\/(Xn — 1), which 

denotes the elements of F[X] mod [Xn — 1). This means we’re working with 

polynomials of degree less than n. Whenever we encounter a polynomial of 

degree > n, we divide by X n — 1 and take the remainder. Let g(X) be a 

polynomial in F[X], Consider the set of polynomials

m(X) =  g{X)f(X) mod (X "  -  1),

where f(X )  runs through all polynomials in Fpf] (we only need to con

sider / (X) with degree less than n, since higher-degree polynomials can be 

reduced mod X n — 1). Write

TTl(X) — Q0 + CLiX + • • " + On—l X n *.

The coefficients give us the n-dimensional vector (oq, ••. ,an- i). The set of 

all such coefficients forms a subspace C  of n-dimensional space F n . Then C 
is a code.

If m(X) =  g(X)f(X ) mod {Xn — 1) is any such polynomial, and s(X) 
is another polynomial, then m(X)s(X) =  g(X)f(X)s(X) mod (Xn — I) 

is the multiple of g(X) by the polynomial f(X )s(X). Therefore, it yields 

an element of the code C. In particular, multiplication by X  and reducing 

mod X n — 1 corresponds to a codeword that is a cyclic shift of the original 

codeword, as above. Therefore, C is cyclic.

The following theorem gives the general description of cyclic codes.
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Theorem. Let C be a cyclic code oj length n over a finite field F. To

each codeword (aa, . . . ,  an_ i)  G C, associate the polynomial ag + a\X +'-- H

an_ iX n_1 in F[A'"]. Among all the nonzero polynomials obtained from C 

in this way, let g(X) have the smallest degree. By dividing by its highest 

coefficient, we may assume that the highest nonzero coefficient of g(X) is 1. 

The polynomial g(X) is called the generating po lynom ia l for C. Then

1. g(X) is uniquely determined by C.

S. g{X) is a divisor of X n — 1.

3. C is exactly the set of coefficients of the polynomials of the form 

9 ix )f(x ) wi(/l <leg(/) <  n  — 1 — deg(g).

4- Write X n — 1 =  g(X)h(X). Then m(X) G F[JY]/(Xn — 1) corresponds 

to an element of C if and only if h(X)m(X ) =  0 mod (Xn — 1).

Proof. (1) If <ji(X) is another such polynomial, then g(X) and gi(X) have 

the same degree and have highest nonzero coefficient equal to 1. Therefore, 

g(X) — g\(X) has lower degree and still corresponds to a codeword, since 

C is closed under subtraction. Since g{X) had the smallest degree among 

nonzero polynomials corresponding to codewords, g(X) — gi (X) must be 0, 

which means that gi(X) =  g{X). Therefore, g(X) is unique.

(2) Divide g(X) into X" — 1:

X n - l= g (X )h (X )+ r(X )

for some polynomials h(X) and r(X), vnth deg(7-) <  deg(g). This means 

that

-r(X) =  g(X)/i(A-) mod (Xn -  1).

As explained previously, multiplying g(X) by powers of X  corresponds to 

cyclic shifts of the codeword associated to g(X). Since C  is assumed to be 

cyclic, the polynomials g{X)X^ mod (X n — 1) for j  =  0 ,1 ,2 ,... therefore

correspond to codewords; call them Cq, Ci,C2 , ___Write h(X) =  b0 + byX +

• • • + bkXk. Then g(X)h(X) corresponds to the linear combination

6nCo +b\Ci H---+bjtcjt.

Since each b{ is in F  and each c,- is in C, we have a linear combination 

of elements of C. But C is a vector subspace of n-dimensional space F n. 

Therefore, this linear combination is in C. This means that r (X ), which is 

g(X)h(X) mod (X n — 1), corresponds to a codeword. But deg(r) <  deg(g),
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which is the minimal degree of a polynomial corresponding to a nonzero 

codeword in C. Therefore, t(X) =  0. Consequently X n — 1 =  g(X)h(X), 

so g(X) is a divisor of X n — 1.

(3) Let m(X) correspond to an element of C. Divide g (X ) into m(X):

m {X )= :g (X )nX ) + n[X),

with deg(ri(X )) <  deg(g(X)). As before, g(X)f(X) mod (>Yn - 1) cor

responds to a codeword. Also, m(X) corresponds to a codeword, by as

sumption. Therefore, m(X) — g{X)f(X) mod (AT71 — 1) corresponds to the 

difference of these codewords, which is a codeword. But this polynomial is 

just r\(X) =  ri(-X") mod [Xn — 1). As before, this polynomial has degree 

less than deg(y(X)), so n (X )  =  0. Therefore, m(X) = g(X)f(X). Since 

deg(m) <  n  — 1, we must have deg((/) <  n  — 1 - deg(y). Conversely, as ex

plained in the proof of (2), since C is cyclic, any such polynomial of the form 

g(X)f(X) yields a codeword. Therefore, these polynomials yield exactly the 

elements of C.

(4) Write X n — 1 — g(X)h(X), which can be done by (2). Suppose m(X) 

corresponds to an element of C. Then m(X) =  g(X)f(X), by (3), so

h(X)m(X) =  h(X)g(X)f(X) =  (Xn -  l) f(X )  =  0 mod (A"n -  1).

Conversely, suppose m(X) is a polynomial such that h(X)m(X) =  0 

mod (X" - 1). Write h(X)m{X) =  (Xn - l)q(X) =  h(X)g{X)q{X), for 

some polynomial q[X). Dividing by h[X) yields m(X) =  g(X)q(X), which 

is a multiple of g{X), and hence corresponds to a codeword. This completes 

the proof of the theorem. □

Let g(X) =  ao + a iX  H----h 0 fc_iXfc~1 + X k be as in the theorem. By

part (3) of the theorem, every element of C corresponds to a polynomial of 

the form g(X)f{X), with deg(/(X )) <  n — 1 — k. This means that each 

such f(X )  is a linear combination of the monomials 1, X, X -,. . . ,  J f " -1-6. 

It follows that the codewords of C are linear combinations of the codewords 

corresponding to the polynomials

g(X), g(X)X, g(X)X2, . . . ,  g(X)Xn-l~k.

But these are the vectors

(a0, . .. ,afc, 0 ,0 ,. . .) ,  (0,ao,. . .  , o n - , 0 , . (0, . . .  ,0, a0, . . , ,a k).
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Therefore, a generating matrix for C can be given by

C =

/  Qq 
0

oi

“o a i

Qfc 0 

••• Ok

\  o Ok /

We can use port (4) of the theorem to obtain a parity check matrix for 

C. Let h(X) — bo + biX  + • • •+ 6 |XI be os in the theorem (where I = n — k). 
We'll prove that the k x n matrix

bi-z
bi

bo 0

bo

\ 0 0 bi 6j_

\

is a parity check matrix for C. Note that the order of the coefficients of 

/t(X) is reversed. Recall that H  is a parity check matrix for C means that 

Hct  =  0 if and only if c G (7.

P ro p o s it io n . H is a parity check matrix for C.

Proof. First observe that since g(X) has 1 as its highest nonzero coefficient, 

and since g(X)h(X) =  X n — 1, the highest nonzero coefficient 6 ; of h(X) 
must also be 1. Therefore, H  is in row echelon form and consequently its 

rows are linearly independent. Since H  has k rows, it has rank k. The right 

null space of H  therefore has dimension n — k.

Let m(X) =  Co + CyX + • • • + c„-iXn~l. We know from part (4) that 

(co, C i,. . . ,  t^- i) G C if and only if h.(X)m(X) s  0 mod (Xn — 1).

Choose j  with I < j  < n — 1 and look at the coefficient of X* in the 

product h(X)m(X). It equals

boCj + biCj-y H----h 6 j_iCj_i+i +

There is a technical point to mention: Since we are looking at h(X)m(X) 

mod (Xn — 1), we need to worry about a contribution from the term X n+J 

(since X n+J s  X nX^ = 1 X J, the monomial X n+J reduces to X J ). However, 

the highest-degree term in the product h(X)m(X) before reducing mod 

X n — 1  is cn- iX l+n~l . Since I < j, we have I + n — 1 < j + n .  Therefore, 

there is no term with X n+J to worry about.

When we multiply H  times (c0, c i , . . .  ,cn_ i)T, we obtain a vector whose 

first entry is

bico + 61- 1C1 + • • • + boCi-
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More generally, the ith  entry (where 1 < i < k) is

biCi-i + h-iCi H----h 6acj+i-v

This is the coefficient of in the product h(X)m(X) mod (X n — 1).

If (cq, ci, . . .  .Cn-i) is in C, then h(X)m(X) =  0 mod (Xn — 1), so all 

these coefficients are 0. Therefore, H times (cq, ci, . . . ,  Cn_i)T is the 0 vector, 

so the transposes of the vectors of C  are contained in the right null space 

of H. Since both C and the null space have dimension k, we must have 

equality. This proves that c e C if and only if HcT =  0, which means that 

FI is a parity check matrix for O. □

E x a m p le . In the example at the beginning of this section, we had n  =  7 

and g(X) =  X i + X 3 + X '1 + 1. We have $ ( X ) ( * 3 + X 2 + 1) =  X 7 -  1, so 

h(X) = X 3 + X 2 + 1. The parity check matrix is

(  1 1 0 1 0 0 0 \

0 1 1 0 1 0 0 ]  - 

0 0 1 1 0 1 0 ■

0 0 0 1 1 0 1 /

The parity check matrix gives a way of detecting errors, but correcting 

errors for general cyclic codes is generally quite difficult. In  the next section, 

we describe a class of cyclic codes for which a good decoding algorithm exists.

18.8 BCH Codes

BCH codes are a class of cyclic codes. They were discovered around 1959 

by R. C. Bose and D. K. Ray-Chaudhuri and independently by A. Hoc- 

quenghem. One reason they are important is that there exist good decod

ing algorithms that correct multiple errors (see, for example, [Gallager] or 

[Wicker]). BCH codes are used in satellites. The special BCH codes called 

Reed-Solomon codes (see Section 18.9) have numerous applications.

Before describing BCH codes, we need a fact about finite fields. Let F 

be a finite field with q elements. From Section 3.11, we know that q = pm is 

a power of a prime number p. Let n be a positive integer not divisible by p. 

Then it can be proved that there exists a  finite field F ; containing F  such 

that F ' contains a primitive n th  root of unity a. This means that a" =  1, 

but ak 1 for 1 <  k < n.
For example, if F  =  Z t, the integers mod 2, and n  =  3, we may take 

F ' =  GF(4). The element w in the description of GF(A) in Section 3.11 is a
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primitive third root of unity. More generally, a primitive 71th root of unity 

exists in a finite field F ' with q' elements if and only if n\q' — 1.

The reason we need the auxiliary field F ' is that several of the calculations 

we perform need to be carried out in this larger field. In the following, when 

we use an nth root of unity a, we'll implicitly assume that we’re calculating 

in some field F ' that contains a. The results of the calculations, however, 

will give results about codes over the smaller field F.

The following result, often called the BCH bound, gives an estimate 

for the minimum weight of a cyclic code.

T heo re m . Let C be a cyclic [n, k, d] code over a finite field F , where F  has 

q =  pm elements. Assume p\n. Let g(X) be the generating polynomial for 

C , Let a be a primitive nth root of unity and suppose that for some integers 

£ and 6,

g(a() =  g(ae+1) =  •■• =  g (aw ) =  0.

Then d > 6 + 2.

Proof. Suppose (co .ci,. . . ,  Cn-\) G C hns weight w with 1 <  w < 5 + 2. We 

want to obtain a contradiction. Let m(X) =  Cq + cyX + • ■ ■ + Cn-iAT"-1. 

We know that m(X) is a multiple of g(X), so

m (a1) - 7n(a<+1) =  • • • =  m (a<+i) =  0.

Let Ci,, c,-a, . . . ,  Ciw be the nonzero coefficients of m(X), so

m (X ) =  c,-, X '1 + a2X »  + •• • + Ciw

The fact that m(df3) =  0 for I <  j  < £ + w — 1 (note that w — 1 <  5) can be 

rewritten as

/  Or,,‘ • • • a l,w \ /  Cil \ Z 0 \

0

a

Ci 2

/  V ) w
We claim that the determinant of the matrix is nonzero. We need the 

following evaluation of the Vandermonde determinant. The proof can be 

found in most books on linear algebra.

Proposition.

det

/

\ 1

1 1 1
S i X 2 xn

x 2 X2

.n - 1 
1 rnn-1  * x2 • x 71-1 x n

■Xi).
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(The -product is over all pairs of integers (i,j) with 1 < i < j  < n.) In 

particular, if x i , . . . ,xn are pairwise distinct, the determinant is nonzero.

In our matrix, we can factor a1'1 from the first column, a fl- from the 

second column, etc., to obtain

(

det

q Hi

><<+!)•,

/

/

Since a '1, • ■ - , q ‘“ are pairwise distinct, the determinant is nonzero. Why 

lire these numbers distinct? Suppose a'j =  a 'k. We may assume ij < ik. 

Wc have 0 < ij < u- < n. Therefore, 0 < ijt — ij < n. Note that a**-1-’ =  1. 

Since a  is a primitive n th root of unity, a 1 ^  1 for 1 <  i < n. Therefore, 

t/t - ij =  0, so ij =  ifc. This means that the numbers a 11, • • • ,a '“ are 

pairwise distinct, as claimed.

Since the determinant is nonzero, the matrix is nonsingular. This implies 

that (c jj,. . . ,  dw) =  0 , contradicting the fact that three were the nonzero 

Cj’s. Therefore, all nonzero codewords have weight at least 6 + 2. This 

completes the proof of the theorem. □

E x am p le . Let F  =  Z i=  the integers mod 2, and let n  =  3. Let g(X) =  
X-+ X+  1. Then

C =  {(0,0,0), (1 , 1 , 1 )},

which is a binary repetition code. Let u b e a  primitive third root of unity, 

as ln the description of GF(4) in Section 3.11. Then g(w) =  3 (or) =  0 . 

In the theorem, we can therefore take £ =  1 and <5 =  1. We find that the 

minimal weight of C is at least 3. In this case, the bound is sharp, since the 

minimal weight of C  is exactly 3. ■

E x am p le . Let F  be any finite field and let n be any positive integer. Let 

g(X) =  X  — 1. Then g( 1) - 0, so we may take £ — 0 and <5 =  0. We 

conclude that the minimum weight of the code generated by g(X) is at 

least 2  (actually, tlie theorem assumes that p ] n, but this assumption is 

not needed for this special case where £ =  5 =  0). We have seen this code
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before. If (c0, . . . ,  Cn_i) is a vector, and m(X) =  c<j + • • • + Cn-iJV1-1 is 

the associated polynomial, then m(A") is a multiple of X  — 1 exactly when

m (l)  =  0. This means that co H---+ Cn-i = 0 .  So a vector is a codeword

if and only if the sum of its entries is 0. When F  =  Z 2, this is the parity 

check code, and for other finite fields it is a generalization of the parity 

check code. The fact that its minimal weight is 2 is easy to see directly: If a 

codeword has a nonzero entry, then it must contain another nonzero entry 

to cancel it and make the sum of the entries be 0. Therefore, each nonzero 

codeword has at least two nonzero entries, and hence has weight at least 2. 

The vector (1 ,—1 ,0 ,. . . )  is a codeword and has weight 2, so the minimal 

weight is exactly 2. I

E x a m p le . Let’s return to the example of a binary cyclic code of length 7 

from Section 18.7. We have F  =  Z 2, and g(JY) =  1 + X~ + X 3 + X 4. We 

can factor g(X) =  [X — l)(jV3 + X  + 1). Let a  be a root of X 3 + X  + 1. 

Then a  is a primitive seventh root of unity (see Exercise 18), and we are 

working in GF(8). Since Z 2 C GF(8), we have 2 =  1 + 1 =  0 and —1 =  1. 

Therefore, a 3 =  a+ 1. Squaring yields a c =  a 2+ 2a+ l =  a 2 + l. Therefore, 

(a2)3 + (a2) + 1 =  0. This means that (/(or2) =  0, so

g(l) = g(a) =  g(a2) =  0.

In the theorem, we can take £ =  0 and 5 =  2. Therefore, the minimal weight 

in the code is at least 4 (in fact, it is exactly 4). I

To define the BCH codes, we need some more notation. We are going 

to construct codes of length n  over a finite field F. Factor X n - 1 into 

irreducible factors over F:

X n - l  = h (X ) f2(X).--fr(X),

where each fi(X) is a polynomial with coefficients in F, and each fi{X) 
cannot be factored into lower-degree polynomials with coefficients in F. We 

may assume that the highest nonzero coefficient of each fi(X) is 1, Let a  be 

a primitive n th root of unity. Then a0, a 1, a1, . . . ,  a n_1 are roots of X n — 1, 

This means that

X n - l  =  (X -  l) ( J f  -  a ) (X  - a 2) • • • (X  - a " -1).

Therefore, each fi(X ) is a product of some of these factors (X-a-'), and each 

aP is a root of exactly one of the polynomials fi[X). For each j,  let qj(X) 
be the polynomial /<(X) such that / ,(a J) =  0. This gives us polynomials 

go(AT), gi(vY),. . .  qn_i(A"). Of course, usually these polynomials are not all 

distinct, since a polynomial fi(X) that has two different powers a i,a k as
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roots will serve as both qj(X) and qk[X) (see the examples given later in 

this section).

A B C H  code o f designed distance d is a code with generating poly

nomial

g(X) =  least common multiple of gt+i • •, <?M-d-iPO

for some integer k.

T heo re m . A BCH code of designed distance d has minimum weight greater 

than or equal to d.

Proof. Since qj(X) divides g(X) for k + 1 < j  < k 4- d — 1, and qj(aj) — 0, 

we have

g(oft+1) =  5 (a fc+2) =  ■ - • =  j( t t fc+d_1) =  0.

The BCH bound (with I  =  k + 1 and 8 =  d - 2) implies that the code has 

minimum weight at least d = 5+2. □

E x a m p le . Let F  =  Zo, and let n — 1. Then

X 7 -  1 =  (X  -  1)(X3 + X-+  1 )(X3 + X + 1 ) .

Let a  be a root of X 3 + X  + 1. Then ct is a primitive 7th root of unity, as 

in the previous example. Moreover, in that example, we showed that a2 is 

also a root of X 3 4- X  4- 1. In fact, we actually showed that the square of a 

root of X 3 + X  + 1 is also a root, so we have that a 4 =  (a2)2 is also a root 

of X 3 + X  + 1. (We could square this again, but a 8 =  a , so we are back to 

where we started.) Therefore, a, a2, a 4 are the roots of X 3 + X  + 1, so

X 3 + X  + 1 =  (X  -  a){X  - a2){X - aA).

The remaining powers of a  must be roots of X 3 4- X 2 + 1, so

X 3 + X 2 + l  = (X - a 3) (X  - as){X - a 6).

Therefore,

q0(X) = X - I ,  qi(X) =  q2(X) =  94 ( * )  =  X 3 + X  + 1,

q3(X) =  q5(X) =  g6(X ) = X 3 + X 3 + 1.

If we take k = — 1 and d =  3, then

g(X) = lcm(q0(X),ql (X))
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=  (X  - 1 )(X3 + X + 1 )  =  X* + X 3 + X 2 + 1.

We obtain the cyclic [7,3,4] code discussed in Section 18.7. The theorem 

says that the minimum weight is at least 3. In this case, we can do a little 

better. If we take k =  —1 and d — 4, then we have a generating polynomial 

9 i (X )  with

9l (X) =  1cm (q0(X), 9 l (X ), « ( X ) )  = g(X).

This is because qo(X) =  q i(X ), so the least common multiple doesn’t change 

when qo(X) is included. The theorem now tells us that the minimum weight 

of the code is at least 4. As we have seen before, the minimum weight is 

exactly 4. I

E x a m p le  (c o n t in u e d ) . Let's continue with the previous example, but 

take k — 0 and d =  7. Then

g(X) =  Icm (q:(X ) , . . . ,  qe(X)) =  (X 3 + X  + 1 )(X3 + X 2 + 1)

=  X 6 + X 5 + X '1 + X 3 + X 2  + X  + 1.

We obtain the repetition code with only two codewords:

{(0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,( 1 , 1 , 1 , 1 , 1 , 1 , 1 )}.

The theorem says that the minimum distance is at least 7. In fact it is 

exactly 7. I

E x a m p le . Let F  =  Z 5  =  {0,1,2,3,4} =  the integers mod 5. Let n =  4. 

Then

X 4 -  1  =  (X  -  1 ) (X  -  2)(X  -  3)(X  -  4)

(this is an equality, or congruence if you prefer, in Zg). Let a  =  2. We have

24 — 1, but 2  ̂ 1 for 1 <  j  < 4. Therefore, 2  is a primitive 4th root of 

unity in Z 5 . We have 2° =  1 , 2 2  =  4, 23 =  3 (these are just congruences 

mod 5). Therefore,

9 o(X) =  X  — 1, 9 i(X )  =  X  — 2, ffi(X) =  X  — 4, q3(X) =  X  -  3.

In the theorem, let k =  0, d =  3. Then

fl(X ) =  Icm(9 l ( X ) , 9 2 (X )) =  (X  -  2)(X  - 4)

=  X 2 -  6 X  + 8  =  X 2  + 4X  + 3.

We obtain a cyclic [4, 2] code over Z 5 with generating matrix

The theorem says that the minimum weight is at least 3. Since the first row 

of the matrix is a codeword of weight 3, the minimum weight is exactly 3. 

This code is an example of a Reed-Solomon code, which will be discussed in 

the next section. I
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18.8.1 Decoding BCH Codes

One of the reason BCH codes are useful is that there are good decoding 

algorithms. One of the best known is due to Berlekamp and Massey (see 

[Gallager] or (Wicker]). In the following, we won't give the algorithm, but, 

in order to give the spirit of some of the ideas that are involved, we show a 

way to correct one error in a  BCH code with designed distance d>  3.

Let C be a BCH code of designed distance d > 3. Then C is a cyclic 

code, say of length n, with generating polynomial g(X). There is a primitive 

nth root of unity o  such that

for some integer k. 
Let

S(a*+1)= f f ( o t+2) = 0

( l  ak+l Q2(t+1) . . .  Q(n-!)(*+!) \

H =  V 1 Q2(A:+2) • • • Q:<n-1><fc+2) )  '

If c =  (cq, • ■ •, Cn-i) is a codeword, then the polynomial m(X) =  C0  + CiA' + 

---h Cn_iXn-1 is a multiple of g[X), so

m(ak+l) - m (ak+2) =  0.

This may be rewritten in terms of H:

/  1 1 \
Qk+i ak+2

rt2(fc+l) o.2(fc+2)
cH =  (cq, ci, . . . ,  c„_i) =  0 .

H  is not necessarily a parity check matrix for C, since there might be non- 

codewords that are also in "the null space of H. However, as we shall see, H  
can correct an error.

Suppose the vector r = c + e is received, where c is a codeword and 

e =  (eo,. . . ,  e„_i) is an error vector. We assume that at most one entry of 

e is nonzero.

Here is the algorithm for correcting one error.

1. Write tH'1' =  (si,S 2 ).

2. If si =  0, there is no error (or there is more than one error), so we're 

done.
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3. If Si 5^ 0, compute s2/s i. This will be a power cP-1 of Q. The error is 

in the j t h  position. If we are working over the finite field Zo, we are 

done, since then e, =  1. But for other finite fields, there are several 

choices for the value of tj.

4. Compute e, =  This is the ji'th entry of the error vector 

e. The other entries of e are 0.

5. Subtract the error vector e from the received vector r to obtain the 

correct codeword c.

E x a m p le . Let’s look at the BCH code over Zt of length 7 and designed 

distance 7 considered previously. It is the binary repetition code of length 

7 and has two codewords: (0,0,0,0,0,0,0), (1 ,1 ,1,1,1 ,1 ,1). The algorithm 

corrects one error. Suppose the received vector is r =  (1,1,1,1,0 ,1 ,1). As 

before, let a  be a root of X 3 + X  + 1. Then a  is a primitive 7th root of 

unity.

Before proceeding, we need to deduce a few facts about computing with 

powers of a. We have a 3 =  a + 1. Multiplying this relation by powers of a 

yields

a4 = a2 + q, 

a 5 — a3 + a2 =  a 2 + a + 1, 

a c =  a3 + a2 + a =  (a  + 1) + a 2 + a  =  a2 + 1.

Also, the fact that a* =  Q? (mod 7> is useful.

We now can compute

( I

rHT =  (1,1,1,1,0,1,1)

\ \ 
or

\ a6 a 12 /

=  ( 1 + a  + a2 + a 3 + a 5 + ac, 1 + a2 + a 4 + a° + a 10 + a 12 )

=  ( a  + a 2, a  ).

The sum in the first entry, for example, can be evaluated as follows:

l+ a+ a2+ a3+a5+a° =  l+ a+ a2+(l+ a) + (a2+a+ l)+ (or+ l) =  a+of.

Therefore, =  tt + a 2 and so = a. We need to calculate so/si. Since 

si =  a  + a 2 =  a '1, we have

So/si =  a /c t1 — a -3 =  a 4.
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Therefore, j  — 1 =  4, so the error is in position j  =  5. The fifth entry of 

the error vector is s i/ a 4 =  1, so the error vector is (0 ,0 ,0 ,0 ,1 ,0 ,0 ). The 

corrected messoge is

r- e = >  (1,1,1,1,1 ,1 ,1). B

Here is why the algorithm works. Since cHT =  0, we have 

tH t =  cH t =  eHT =  eHr  =  (s,, s2).

If e — (0 ,0 ,. . . ,  &j, 0 , . . . )  with ej 0, then the definition of H  gives

S l = e JaO-»)(k+i>] s,  =  e .a O-l)(fc+8).

Therefore, s^/si =  o '-1. Also, si/qO-W^+i) =  ej, as claimed.

18.9 Reed-Solomon Codes

The Reed-Solomon codes, constructed in I960, are an example of BCH codes. 

Because they work well for certain types of errors, they have been used in 

spacecraft communications and in compact discs.

Let F  be a finite field with q elements and let n =  q — 1. A basic fact 

from the theory of finite fields is that F  contains a primitive nth  root of 

unity a. Choose d with 1 <  d < n and let

g(X) = ( X - a ) p T - a 2)- . ( X -

This is a polynomial with coefficients in F. It generates a BCH code C over 

F  of length n, called a Reed-Solomon code.

Since g(a) =  • • • =  3 (ad _ l) =  0, the BCH bound implies that the min

imum distance for C is at least d. Since g[X) is a polynomial of degree 

d — 1, it has at most d nonzero coefficients. Therefore, the codeword cor

responding to the coefficients of g(X) is a codeword of weight at most d. 
It follows that the minimum weight for C  is exactly d. The dimension of 

C is n  — deg(fl) =  n + 1 — d. Therefore, a Reed-Solomon code is a cyclic 

[n, n + 1 — d, d] code.

The codewords in C correspond to the polynomials

g(X)f(X ) with deg(/) < n - d .

There are qn~d+1 such polynomials }(X) since there are q choices for each 

of the n  — d+ 1 coefficients of f(X ), and thus there are qn~d+1 codewords in 

C. Therefore, a Reed-Solomon code is a MDS code, namely, one that makes 

the Singleton bound (Section 18.3) an equality.
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E x a m p le . Let F  =  Z 7  =  { 0 ,1 ,2 ,. . . , 6 }, the integers mod 7. Then q =  7 

and n =  g - 1 = 6 .  A primitive sixth root of unity a in F  is the same' as a 

primitive root mod 7 (see Section 3.7). We may take a  =  3. Choose d — 4. 

Then

g{X) =  {X -  3){X -  32){X -  33) =  X 3 + 3X 2  + X  + 6 .

The code has generating matrix

/  6 1 3 1 0 0 \

G =  0 6  1 3 1 0 .

\ 0 0 6  1 3 1 /

There are 73  =  343 codewords in the code, obtained by taking all linear 

combinations mod 7 of the three rows of G. The minimum weight of the 

code is 4. 9

E x a m p le . Let F  =  GF(4) =  {0, l,w , w2}, which was introduced in Section 

3.11. Then F  has 4 elements, n = q — 1 =  3, and a =  u j . Choose d =  2, so

g(X) = (X-u>).

The matrix

G=(S i i)
is a generating matrix for the code. The code contains nil 16 linear combi

nations of the two rows of G, for example,

u  • (w, 1 , 0 ) 1  ■ (0 ,ai, 1 ) =  (w2 , 0 , 1 ).

The minimum weight of the code is 2. ■

In many applications, errors are not randomly distributed. Instead, they 

occur in bursts. For example, in a CD, a scratch introduces errors in many 

adjacent bits. A burst of solar energy could have a similar effect on communi

cations from a spacecraft. Reed-Solomon codes are useful in such situations.

For example, suppose we take F  =  GF(2S). The elements of F  are 

represented as bytes of eight bits cach, as in Section 3.11. We have n  — 

2a — 1 =  255, Let d =  33. The codewords are then vectors consisting 

of 255 bytes. There are 222 information bytes and 33 check bytes. These 

codewords are sent as strings of 8 x 255 =  2040 binary bits. Disturbances 

in the transmission will corrupt some of these bits. However, in the case of 

bursts, these bits will often be in a small region of the transmitted string. 

If, for example, the corrupted bits all lie within a string of 121 (=  15 x 8 +1)
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consecutive bits, there can be errors in at most 16 bytes. Therefore, these 

errors can be corrected (because 16 < d/2). On the other hand, if there 

were 121 bit errors randomly distributed through the string of 2040 bits, 

numerous bytes would be corrupted, and correct decoding would not be 

possible. Therefore, the choice of code depends on the type of errors that 

are expected.

18.10 The McEliece Cryptosystem

In this book, we have mostly described cryptographic systems that are based 

on number theoretic principles. There are many other cryptosystems that 

are based on other complex problems. Here we present one based on the 

difficulty of finding the nearest codeword for a linear binary code.

The idea is simple. Suppose you have a binary string of length 1024 that 

has 50 errors. There are ( ^ q4) ~ 3 x  1085 possible locations for these errors, 

so an exhaustive search that tries all possibilities is infeasible. Suppose, 

however, that you have an efficient decoding algorithm that is unknown to 

anyone else. Then only you can correct these errors and find the corrected 

string. McEliece showed how to use this to obtain a public key cryptosystem.

Bob chooses G to be the generating matrix for an (n, k) linear error 

correcting code C with d(C) =  d. He chooses S to be a k x k matrix that is 

invertible mod 2 and lets P  be an n x n permutation matrix, which means 

that P  has exactly one 1 in every row and in every column, with all the 

other entries being 0. Define

G\ =  SGP.

The matrix G\ is the public key for the cryptosystem. Bob keeps S,G ,P  
secret.

In order for Alice to send Bob a message x, she generates a random 

binary string e of length n that has weight t. She forms the ciphertext by 

computing

y r  xGi + e (mod 2).

Bob decrypts y as follows:

1. Calculate y\ =  yP~l . (Since P  is a permutation matrix, ei =  eP-1 is 

still a binary string of weight t. We have yi = xSG + ei-)

2. Apply the error decoder for the code C  to yi to correct the “error" and 

obtain the codeword x\ closest to yi-

3. Compute xo such that xqG =  z i (in the examples we have considered, 

xo is simply the first k bits of xi).
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4. Compute x =  xo£ -1.

The security of the system lies in the difficulty of decoding yi to obtain 

s i. There is a little security built into the system by 5; however, once 

a decoding algorithm is known for the code generated by GP, a chosen 

plaintext attack allows one to solve for the matrix S (as in the Hill cipher).

To make decoding difficult, d(C) should be chosen to be large. McEliece 

suggested using a [1024,512,101] Goppa code. The G op pa  codes have 

parameters of the form n =  2m,d = 2t + l,k  — n — mt. For example, taking 

m =  10 and t =  50 yields the [1024,524,101] code just mentioned. It can 

correct up to 50 errors. For given values of m and t, there are in fact many 

inequivalent Goppa codes with these parameters. We will not discuss these 

codes here except to mention that they have an efficient decoding algorithm 

and therefore can be used to correct errors quickly.

E x a m p le . Consider the matrix

/  1 0 0 0 1 1

0 1 0  0 1 0

0 0 1 0 0 1

\ 0 0 0 1 1 1

which is the generator matrix for the [7,4] Hamming code. Suppose Alice 

wishes to send a message

m =  (1,0,1,1)

to Bob. In order to do so, Bob must create an invertible matrix S and a 

random permutation matrix P  that he will keep secret. If Bob chooses

1 0 0 1 \

1 1 0  1

0 1 0  1 

1 1 1 0 /

G =

S =

and / 0 0 1 0 0 0 0 \
1 0 0 0 0 0 0

0 0 0 0 

0 0 0 0 

0 0 0 0

1 0 

0 1

0 0 1

0 1 0 0 0 0 0 
X o o o i o o o /

Using these, Bob generates the public encryption matrix

/  0 0 1 1 0 1 0 \

r  _  1 0 1 0 0 1 1

1 -  1 1 0 0 0 1 0 '

\ 1 0 1 0 1 0 0 /
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In order to encrypt, Alice generates her own random error vector e and 

calculates the ciphertext y = xGi + e. In  the case of a Hamming code the 

error vector has weight 1. Suppose Alice chooses

e =  ( 0 ,1 ,0 ,0 ,0 ,0 ,0 ) .

Then

y =  (0,0,0 ,1,1 ,0 ,0).

Bob decrypts by first calculating

vi = yP~1 =  (0 , 0 , 1 , 0 , 0 , 0 , 1 ).

Calculating the syndrome of i/i by applying the parity check matrix H  and 

changing the corresponding bit yields

H  =  (0,0,1,0,0 ,1 ,1 ).

Bob next forms a vector xo such that xqG =  ®j, which can be done by 

extracting the first four components of x i, that is,

xo =  (0,0,1,0).

Bob decrypts by calculating

x = x 0S~l =  (1,0,1,1),

which is the original plaintext message. B

The McEliece system seems to be reasonably secure, For a discussion of 

its security, see [Chabaud], A disadvantage of the system compared to RSA, 

for example, is that the size of the public key G\ is rather large.

18.11 Other Topics

The field of error correcting codes is a vast subject that is explored by 

both the mathematical community and the engineering community. In this 

chapter we have only touched upon a select handful of the concepts of this 

field. There are many other areas of error correcting codes that we have not 

discussed.

Perhaps most notable of these is the study of convolutional codes. In this 

chapter we have entirely focused on block codes, where typically the data 

are segmented into blocks of a fixed length k and mapped into codewords 

of a fixed length n. However, in many applications, the data are produced 

in o continuous fashion, and it is better to map the stream of data into a
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stream of coded symbols. For example, such codes have the advantage of 

not requiring the delay needed to observe an entire block of symbols before 

encoding or decoding. A good analogy is that block codes are the coding 

theory analogue of block ciphers, while convolutional codes are the analogue 

of stream ciphers.

Another topic that is very important in the study of error correcting 

codes is that of efficient decoding. In the case of linear codes, we presented 

syndrome decoding, which is more efficient than performing a search for the 

nearest codeword. However, for large linear codes, syndrome decoding is 

still too inefficient to be practical. When BCH and Reed-Solomon codes 

were introduced, the decoding schemes that were originally presented were 

impractical for decoding more than a few errors. Later, Berlekamp and 

Massey provided an efficient approach to decoding BCH and Reed-Solomon 

codes. There is still a lot of research being done on this topic. We direct the 

reader to the books [Lin-Costello], [Wicker], [Gollager], and [Berlekamp] for 

further discussion on the subject of decoding.

We have also focused entirely on bit or symbol errors. However, in mod

ern computer networks, the types of errors that occur are not simply bit or 

symbol errors but also the complete loss of segments of data. For example, 

on the Internet, data are transferred over the network in chunks called pack

ets. Due to congestion at various locations on the network, such os routers 

and switches, packets might be dropped and never reach their intended re

cipient. In this case, the recipient might notify the sender, requesting a 

packet to be resent. Protocols such as the Transmission Control Protocol 

(TCP) provide mechanisms for retransmitting lost packets.

When performing cryptography, it is critical to use a combination of 

many different types of error control techniques to assure reliable delivery of 

encrypted messages; otherwise, the receiver might not be able decrypt the 

messages that were sent.

Finally, we mention that coding theory has strong connections with 

various problems in mathematics such as finding dense packings of high- 

dimensional spheres. For more on this, see [Thompson],

18.12 Exercises

1. Two codewords were sent using the Hamming [7,4] code and were 

received as 0100111 and 0101010. Each one contains at most one 

error. Correct the errors. Also, determine the 4-bit messages that 

were multiplied by the matrix G to obtain the codewords.

2. An ISBN number is incorrectly written as 0-13-116093-8. Show that 

tills is not a correct ISBN number. Find two different valid ISBN
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numbers such that an error in one digit would give this number. This 

shows that ISBN cannot correct errors.

3. The following is ft parity check matrix for a binary [n, fc] code C:

f  1 1  1  0 0 \
1 0  0 1 0 .

\ 0 1 0 0 1 /

(a) Find n and k.

(b) Find the generator matrix for C.

(c) List the codewords in C.

(d) W hat is the code rate for Cl

4. Let C  =  {(0, 0,0), (1,1,1)} be a binary repetition code.

(a) Find a parity check matrix for C.

(b) List the cosets and coset leaders for C.

(c) Find the syndrome for each coset.

(d) Suppose you receive the message (1,1, 0). Use the syndrome de

coding method to decode it.

B. Lot C  be the binary code {(0,0,1), (1,1,1), (1,0,0), (0,1,0)}.

(a) Show that C is not linear.

(b) What is d(C)7. (Since C is not linear, this cannot be found by 

calculating the minimum weight.)

(c) Show that C  satisfies the Singleton bound with equality.

0. Show that the weight function (on F") satisfies the triangle inequality: 

1tit(ti + v) < wt(u) + wt(v).

7. Show that Aq(n,n) =  q, where Aq[n,d) is the function defined in 

Section 18.3.

M. Lot C be the repetition code of length n. Show that Cx is the parity 

check code of length n. (This is true for arbitrary F.)

I). I,lit C bo a linear code and let ti + C  and v + C be cosets of C. 
Show that u + C =  v + C if and only if u — v € C. (Hint: To show 

it -I-C v+C, it suffices to show that u~hc G v-t- C  for every c £  C, and

l.hal v -I- c 6 u + C for every c € C. To show the opposite implication, 

mu the fact that u 6 u + C.)
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10. Show that if C  is a self-dual [t i, k, d] code, then n  must be even.

11. Show that g{X) =  1 + X + X 2H--- l-X"_1 is the generating polynomial

for the [ti, 1] repetition code. (This is true for arbitrary F.)

12. Let g{X) =  1 + X  + X 3 be a polynomial with coefficients in Zo.

(a) Show that g(X) is a factor of A'7 — 1 in Z2IX].

(b) The polynomial g{X) is the generating polynomial for a cyclic 

code [7,4] code C. Find the generating matrix for C.

(c) Find a parity check matrix H  for C.

(d) Show that G'HT — 0, where

G' =

1 1 0  1 0  0 0 

0 1 1 0  1 0  0 

0 0 1 1 0  1 0  

0 1 1 1 0  0 1

(e) Show that the rows of G' generate C.

(f) Show that a permutation of the columns of G' gives the generating 

matrix for the Hamming [7,4] code, and therefore these two codes 

are equivalent.

13. Let C be the cyclic binary code of length 4 with generating polynomial 

g(X) =  X 2 + 1. Which of the following polynomials correspond to 

elements of Cl

h{X ) = l + X + X 3, f2(X) =  1 + X  + X 2 + X 3, f3( X ) = X 2 + X 3

14. Let g(X) be the generating polynomial for a cyclic code C of length n,
and let g(X)h(X) — X n - 1. Write h(X) =  bo + biX  H----h X 1. Show

that the dual code CL is cyclic with generating polynomial hr(X) =  
(l/bo )(l + be-iX + ••• + 6 1  AT* " 1 + b0X e). (The factor 1 /bo is included 

to make the highest nonzero coefficient be 1 .)

15. (a) Let C be a binary repetition code of odd length n (that is, C
contains two vectors, one with all 0s and one with all Is). Show 

that C  is perfect. (Hint Show that every vector lies in exactly 

one of the two spheres of radius (n - l ) / 2 .)

(b) Use (a) to show that if n is odd then (j) =  2n_1. (This

can also be proved by applying the binomial theorem to (l + 1 )", 

and then observing that we're using half of the terms.)
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16. Let 2 < d < n and let Vq(n,d — 1 ) denote the number of points in a 

Hamming sphere of radius d —1. The proof of the Gilbert-Varshomov 

bound constructs an (n,M,d ) code with M  > Qn/Vq(n, d - 1). How

ever, this code is probably not linear. This exercise will construct a 

linear [n, k,d\ code, where k is the smallest integer satisfying qk > 

,"- 7 ^ (71 , d - l ) .

(a) Show that there exists an [n, 1 , d] code C\.

(b) Suppose < qn/Vq(n,d — 1) and that we have constructed an 

[n,j — 1, d\ code Cj-i in F " (where F  is the finite field with q 
elements). Show that there is a vector v with d(v,c) > d for all 

c £  Cj-i-

(c) Let Cj be the subspace spanned by v and Cj-i- Show that Cj 
has dimension j  and that every element of Cj can be written in 

the form av + c with a £ F  and c 6  Cj-1 -

(d) Let av + c, with a ^  0, be an element of Cj, as in (c). Show that 

wt(av + c) =  wt(v + a~lc) =  d(v, —a- 1 c) >  d.

(e) Show that Cj is an [n, j ,d j code. Continuing by induction, we 

obtain the desired code Ca.-.

( f ) Here is a technical point. We have actually constructed an [n, k, e] 
code with e >  d. Show that by possibly modifying v in step (b), 

we may arrange that d(v, c) =  d for some c G Cj-i, so we obtain 

an [n, k, d\ code.

17. Show that the Golay code £ 2 3  is perfect.

18. Let o: be a root of the polynomial X* + X  + 1 G Zn[X\.

(a) Using the fact that X 3 + X  + l  divides X 7 — 1 , show that a 7 =  1 .

(b) Show that a  ^  1.

(c) Suppose that a J =  1 with 1 <  j  < 7. Then gcd(j, 7) =  1 , so there 

exist integers a, b with ja  + lb =  1. Use this to show that a 1 =  1, 

which is a contradiction. This shows that a  is a primitive seventh 

root of unity.

19. Let C be the binary code of length 7 generated by the polynomial 

g(X) = 1 + X 2 + X 3 + X '1. As in Section 18.8, 5 ( 1 ) =  g(a] =  0, where 

at is a root of X 3  + X  + 1. Suppose the message (1, 0 ,1 ,1 ,0 , 1 ,1) is 

received. It has one error. Use the procedure from Section 18.8 to 

correct the error.

20. Let C  C F "  be a cyclic code of length n with generating polynomial 

g(X). Assume 0 ^  C ^  F n and p { n  (as in the theorem on p. 433).
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(a) Show that deg(g) > 1.

(b) Write X n — 1 =  fl(X )/i(X ). Let a  be a primitive n th root of 

unity. Show that at least one of 1, a, o:2, . . . ,  a " -1 is a root of 

g(X). (You may use the fact that h(X) cannot have more than 

deg(/i) roots.)

(c) Show that d(C) > 2.

18.13 Computer Problems

1. Three codewords from the Golay code G2 4  are sent and you receive the 

vectors

(0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1), 

(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0), 

( 1 , 1, 1, 0 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 , 1, 1, 1, 1, 1, 1, 1, 1).

Correct the errors. (The Golay matrix is stored as golay and the matrix 

B is stored in the downloadable computer files (see the Appendices) 

as golayb.)

2. An 11-bit message is multiplied by the generating matrix for the Ham

ming [15, 11] code and the resulting codeword is sent. The vector

(0 ,1 ,1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,1 ,0 ,1 ,0 )

is received. Assuming there is at most one error, correct it and de

termine the original 11-bit message. (The parity check matrix for the 

Hamming [15, 11] code is stored in the downloadable computer files 

(see the Appendices) as hammingpc.)
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Quantum Techniques in 
Cryptography

Quantum computing is a new area of research that has only recently started 

to blossom. Quantum computing and quantum cryptography were born 

out of the study of how quantum mechanical principles might be used in 

performing computations. The Nobel Laureate Richard Feynman observed 

in 1982 that certain quantum mechanical phenomena could not be simulated 

efficiently on a classical computer. He suggested that the situation could 

perhaps be reversed by using quantum mechanics to do computations that 

are impossible on classical computers. Feynman didn't present any examples 

of such devices, and only recently has there been progress in constructing 

even small versions.

In 1994 the field of quantum computing had a significant breaktlirough 

when Peter Shor of AT&T Research Labs introduced a quantum algorithm 

that can factor integers in (probabilistic) polynomial time (if o suitable quan

tum computer is ever built). This was a dramatic breakthrough as it pre

sented one of the first examples of a scenario in which quantum techniques 

might significantly outperform classical computing techniques.

In this chapter we introduce a couple of examples from the area of quan

tum computing and quantum cryptography. By no means is this chapter 

a thorough treatment of this young field, for even as we write this chapter 

significant breakthroughs are being made at NIST and other places, and the 

field likely will continue to advance rapidly.

450



19.1. A  Q u an t u m  E x p e r im e n t 451

There are many books and expository articles being written on quantum 

computing. One readable account is [Rieffel-Polak].

19.1 A Quantum Experiment

Quantum mechanics is a difficult subject to explain to nonphysicists since 

it deals with concepts where our everyday experiences aren't applicable. In 

particular, the scale at which quantum mechanical phenomena take place 

is on the atomic level, which is something that can't be observed without 

special equipment. There are a few examples, however, that are accessible to 

us, and we now present one such example and use it to develop the mathe

matical formulation needed to describe some quantum computing protocols.

Since quantum mechanics is a  particle-level physics, we need particles 

that we are able to observe. Photons are the particles that make up light and 

are therefore observable (similar demonstrations using other particles, such 

as electrons, can be performed but require more sophisticated equipment).

In order to understand this experiment better, we recommend that you 

try it at home. Start with a light source and three Polaroid® filters from a 

camera supply store or three lenses from Polaroid sunglasses.

Label the three filters A, B, and C. Rotate them so that they have the 

following polarizations: horizontal, 45°, and vertically, respectively (we will 

explain polarization in more detail after the experiment). Shine the light at 

the wall and insert filter A between the light source and the wall as in Figure 

19.1. The photons coining out of the filter will have horizontal polarization. 

Now insert filter C as in Figure 19.2. Since filter C  has vertical polarization, 

it filters out all of the horizontally polarized photons from filter A. Notice 

that no light arrives at the wall after this step, the two filters have removed 

all of the light components. Now for the final (and most bizarre) step, insert 

filter B  in between filter A and C. You should observe that there is now 

light arriving at the wall, as depicted in Figure 19.3. This is puzzling, since 

filter A and C were enough to remove all of the light, yet the addition of a 

third filter allows for light to reach the wall.

In order to explain this demonstration, we need to discuss the concept 

of polarization of light.

Light is an example of an electromagnetic wave, meaning that it consists 

of an electric field that travels orthogonally to a corresponding magnetic 

field. In order to visualize this, consider the light traveling along the x- 
axis. Now imagine, for example, that the electric field is a wavelike function 

that lies in the iz-plane. Then the corresponding magnetic field would be a 

wavelike function in the xy-plane. For such a scenario, the light is referred 

to os vertically polarized. In general, polarization refers to the direction in 

which the electric field lies. There is no constraint on this direction.
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Polaroid A

Light Source

Light

F ig u re  10.1: The Photon Experiment with Only Filter A  Inserted.

C3BB
Ughi Source I

Ufilit

F ig u re  10.2: The Photon Experiment with Filters A  and C  Inserted.

Polaroid A Polaroid D Polaroid C

Light Source

Light

F ig u re  19.3: The Photon Experiment after All Filters Have Been Inserted.
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We will represent a photon's polarization by a unit vector in the two- 

dimensional complex vector space (however, for our present purposes, real 

numbers suffice). This vector space has a dot product given by (a, b)• (c, d) = 
ac+bd, where c and d denote the complex conjugates of c and d. The square 

of the length of a vector (a, 6 ) is then (a, 6 ) • (o, 6 ) =  |a|2  + |b|2. Choose a 

basis for this vector space, which we shall denote | T) and | —>). We are 

choosing to use the ket (the second half of “bracket") notation from physics 

to represent vectors. We can think of ] T) as being the vertical direction 

and | —») as being horizontal. Therefore, an arbitrary polarization may be 

represented as o| I) + fc| —*), where a and b are complex numbers. Since we 

are working with unit vectors, the following property holds: [o|2 + |6 | 2  =  1 . 

We could just have well chosen a different orthogonal basis, for example, one 

corresponding to a 45° rotation: | \) and | / ) ,
The Polaroid filters perform a measurement of the polarity of the photon. 

There are two possible outcomes: Either the photon is aligned with the filter, 

or it is perpendicular to the direction of the filter. If the vector a| j) +i<| —*) 

is measured by a vertical filter, then the probability that the photon has 

vertical polarity after passing through the filter is |a|2. The probability that 

it will have horizontal polarity is |Z/|2.

Similarly, suppose we measure a vertically aligned photon with respect 

to a 45° filter. Since

l t )  =  ^ | \ )  +  ^ l / ) ,

the probability that the photon passes through the filter (which means that 

it is measured as being aligned at 45°) is (l/\/2) 2 =  1/2. Similarly, the 

probability that it doesn't pass through the filter (which means that it is 

measured at —45°) is also 1/2.

One of the basic principles of quantum mechanics is that such a measure

ment forces the photon into a definite state. After being measured, the state 

of the photon will be changed to the result of the measurement. Therefore, 

if we measured the state of o| T) + b| —►) as | —•), then, from that moment 

on, the photon will have the state | —<■). If we then measure this photon 

with a | —») filter, we will always observe that the photon is in the [ —>) 

state; however, if we measure with a | j)  filter, we will never observe that 

the photon is in the | f) state.

Let’s now explain the interpretation of the experiment. The original 

light was emitted with random polarization, meaning that the probability 

of a photon being emitted at state oi| T) + M  ~0 >s equal to the probability 

of it being emitted at state oi| f) + 6 2 ! —»). Only half of the photons being 

emitted will pass through the | —>) filter, and all of these photons will have 

their state changed to | —*) (the remaining half are absorbed or reflected and
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are changed to | t))- When we place the vertical filter after the horizontal 

filter, the photons, which are in state | —>), m il be stopped.

When we insert filter B in the middle, it corresponds to measuring with 

respect to | / ) ,  and hence those photons that had | —») polarity will come 

out having | /"') polarity with probabiHty 1/2. Therefore, there has been 

a 4 : 1 reduction in the amount of photons passing through up to filter B. 
Now the | / )  photons pass through the | f) filter with probability 1/2 also, 

and so the total intensity of light arriving at the wall is l/8 th  the original 

intensity.

19.2 Quantum Key Distribution

Now that we have set up some of the ideas behind quantum mechanics, we 

can use them to describe a technique for distributing bits through a quantum 

channel. These bits can be used to establish a key that can be used for 

communicating across a classical channel, or any other shared secret.

We begin by describing a quantum bit. Start with a two-dimensional 

complex vector space. Choose a pair of orthogonal vectors of length 1; call 

them |0) and |1). For example, these two vectors could be either of the 

two pairs of orthogonal vectors used in the previous section. A q uan tum  

bit, also known as a qub it, is a unit vector in this vector space. For the 

purposes of the present discussion, we can think of a qubit as a polarized 

photon. We have chosen |0) and |1) as notation to conveniently represent 

the 0 and 1 bits, respectively. The other qubits are linear combinations of 

these two bits.

Since a qubit is a unit vector, it can be represented as a|0) + 6|1), where 

a and b are complex numbers such that |q|2 + |6|2 =  1. Just as in the case for 

photons from the preceding section, we can measure this qubit with respect 

to the basis |0),|l). The probability that we observe it in the |0) state is 

|a|2.

Let us now examine how Alice and Bob can communicate with each 

other in order to establish a message. They will need two things: a quantum 

channel and a classical channel. A quantum channel is one through which 

they can exchange polarized photons that are isolated from interactions 

with the environment (that is, the environment doesn’t alter the, photons). 

The classical channel will be used to send ordinary messages to each other. 

We assume that the evil observer Eve can observe what is being sent on 

the classical channel and that she can observe and resend photons on the 

quantum channel.

Alice starts the establishment of a message by sending a sequence of bits 

to Bob. They are encoded using a randomly chosen basis for each bit as 

follows. There are two bases: S i =  {| T), I —*)} and Bn =  {| \),| / ’)}•



19.2. Q u an t u m  K e y  D ist r ib u t io n 455

If Alice chooses B ] , then she encodcs 0 as | T) and 1 as | -+), while if she 

chooses Bo  then she encodes 0 and 1 using the two elements of Bo.

Each time Alice sends a photon, Bob randomly chooses to measure with 

respect to either basis By or Bn. Therefore, for each photon, lie obtains an 

element of that choice of basis as the result of his measurement. Bob records 

the measurements he has made and keeps them secret. He then tells Alice 

the basis with which he measured each photon. Alice responds to Bob by 

telling him which bases were the correct bases for the polarity of the photons 

that she sent. They keep the bits that used the same bases and discard the 

other bits. Since two bases were used, Alice and Bob will agree on roughly 

half of the amount of bits that Alice sent. They can then use these bits as 

the key for a conventional cryptographic system.

E x a m p le . Suppose Alice wants to send the bits 0 ,1 ,1 ,1 ,0 ,0 ,1 ,0 . She 

randomly chooses the bases B\, B 2 , B\ ,B \ ,B i,B o , 8 1 , 8 2 . Therefore, she 

sends the qubits (photons)

I T). I / ) ,  I -*), I -*), I \ ), I \), I -*)> I \)

to Bob. He chooses the bases B 2 ,Bo,Bo, B i, B i, B j, B i, B t. He measures 

the qubits that Alice sent and also tells Alice which bases he used. Alice tells 

him that the second, fourth, fifth, seventh, and eighth match her choices. 

These yielded measurements

for Bob, and they correspond to the bits 1,1,0,1,0. Therefore, both Alice 

and Bob have the same string 1,1,0,1,0. They use 11010 as a key for future 

communication (for example, if they obtained a longer string, they could 

use the first 56 characters for a DES key). ■

The security behind quantum key distribution is based upon the laws of 

quantum mechanics and the fundamental principle that following a measure

ment of a particle, that particle's state will be altered. Since an eavesdropper 

Eve must perform measurements in order to observe the photon transmis

sions between Alice and Bob, Eve will introduce errors in the data that Alice 

and Bob agreed upon.

Let’s see how this happens. Suppose Eve measures the states of the 

photons transmitted by Alice and allows these measured photons to proceed 

onto Bob. Since these photons were measured by Eve, they will have the 

state that Eve observed. Eve will use the wrong basis half of the time when 

performing the measurement. When Bob performs his measurements, if he 

uses the correct basis there will be a 25% chance that lie will have measured 

the wrong value.
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Let's examine this last statement in more detail. Suppose that Alice 

sends a photon corresponding to | —*) and that Bob uses the same basis f l i 

as Alice. If Eve uses B i, then the photon is passed through correctly and 

then Bob measures the photon correctly. However, if Eve used Bn, then she 

will measure | / )  and | \) equally likely. The photons that pass to Bob will 

have one of these orientations and he will therefore half the time measure 

them correctly as | —►} and half the time incorrectly. Combining the two 

possible choices of basis that Eve has causes Bob to have a 25% chance of 

measuring the incorrect value.

Thus, any eavesdropping introduces a higher error rate in the communi

cation between Alice and Bob. If Alice and Bob test their data for discrep

ancies over the conventional channel (for example, they could send parity 

bits), they will detect any eavesdropping.

Actual implementations of this technique have been used to establish 

keys over a distance of 60 Ion using conventional fiber optical cables and 

23.4 km in open air.

19.3 Shot’s Algorithm

Quantum computers are not yet a reality. The current versions can only 

handle a few qubits. But, if the great technical problems can be overcome 

and large quantum computers are built, the effect on cryptography will be 

enormous. In  this section we give a brief glimpse at how a quantum computer 

could factor large integers, using an algorithm developed by Peter Slior. We 

avoid discussing quantum mechanics and ask the reader to believe that a 

quantum computer should be able to do all the operations we describe, 

and do them quickly. For more details, see, for example, [Ekert-Joszo.] or 

[Rieffel-Polak],

W hat is a quantum computer and what does it do? First, let’s look 

at what a classical computer does. It takes a binary input, for example, 

100010, and gives a binary output, perhaps 0101. If it has several inputs, 

it has to work on them individually. A quantum computer takes as input a 

certain number of qubits and outputs some qubits. The main difference is 

that the input and output qubits can be linear combinations of certain basic 

states. The quantum computer operates on all basic states in this linear 

combination simultaneously. In  effect, a quantum computer is a massively 

parallel machine.

For example, think of the basic state |100) as representing three particles, 

the first in orientation 1 and the last two in orientation 0 (with respect to 

some basis that will implicitly be fixed throughout the discussion). The 

quantum computer can take 1100) and produce some output. However, it 

can also take as input a normalized (that is, of length 1) linear combination
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of basic quantum states such as

-^(|100> +|011)+ 1110))

and produce an output just os quickly as it did when working with a basic 

state. After all, the computer could not know whether a quantum state is 

one of the basic states, or a linear combination of them, without making 

a measurement. But such a measurement would alter the input. It is this 

ability to work with a linear combination of states simultaneously that makes 

a quantum computer potentially very powerful.

Suppose we have a function / ( i )  that can be evaluated for an input x by 

a classical computer. The classical computer asks for an input and produces 

an output. A  quantum computer, on the other hand, can accept as input a 

sum

(C  is a normalization factor) of all possible input states and produce the 

output

^ 5 3 1®-/(*))-

where ]x, /(x )) is a longer sequence of qubits, representing both x and the 

value of /(x ). (Technical point: It might be notationally better to input 

(1/C) |x, 00 • • •) in order to have some particles to change to f(x). For 

simplicity, we will not do this.) So we can obtain a list of all the values of 

}{x). This looks great, but there is a problem. If you make a measurement, 

you force the quantum state into the result of the measurement. You get 

|x q , / ( x q ) )  for some randomly chosen x q , and the other states in the output 

are destroyed. So, if you are going to look at the list of values of f(x), 
you’d better do it carefully, since you get only one chance. In particular, 

you probably want to apply some transformation to the output in order to 

put it into a more desirable form. The skill in programming a quantum 

computer is in designing the computation so that the outputs you want to 

examine appear with much higher probability than the others. This is what 

is done in Shor's factorization algorithm.

19.3.1 Factoring

We want to factor n. The strategy is os follows. Recall that if we can find 

(nontrivial) a and r with ar =  I (mod n), then we have a good chance of 

factoring n (see the exponent factorization method in Section 6.4). Choose 

a random a and consider the sequence 1, a, a2, a3, ... (mod n). If ar =  1
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(mod ti), tlien this sequence will repeat every r  terms since a]+r =  a3aT =  a] 
(mod n). If  we can measure the period of this sequence (or a multiple of the 

period), we will have an r such that ar =  1 (mod n). We therefore want to 

design our quantum computer so that when we make a measurement on the 

output, we’ll have a high chance of obtaining the period.

19.3.2 The Discrete Fourier Transform

We need a technique for finding the period of a periodic sequence. Classi

cally, Fourier transforms can be used for this purpose, and they can be used 

in the present situation, too. Suppose we have a sequence

do, ai> • ■ ■ i <l2m-l

of length 2m, for some integer m. Define the Fourier transform to be

F{x) =
V 2"

2m — 1 

Y2
c=0

whore 0 < x < 2m.

For example, consider the sequence

1,3 ,7 ,2 ,1,3,7, 2

of length 8 and period 4. The length divided by the period is the frequency, 

namely 2, which is how many times the sequence repeats. The Fourier 

transform takes the values

.F(O) =  26/V8, F( 2) =  (-12 + 2i)/V8,

F(4) =  6/V8, jF’(6) =  (- 1 2 - 2 i)/V 8 ,

.F(l) =  ^(3 ) =  F{ 5) =  F( 7) =  0.

For example, letting C =  e2*1̂8, we find that

V S ^ l )  =  1 + 3C + 7C2 + 2C3 + C‘‘ + 3C5 + 7CS + 2C7.

Since =  —1, the terms cancel and we obtain _F(1) =  0. The nonzero 

values of F  occur at multiples of 2, which is the frequency.

Let’s consider another example: 2,1,2,1, 2,1,2,1. The Fourier transform

In

F(0) =  12/V8, F( 4) =  4/V8,

F( 1) =  F( 2) =  F ( 3) =  F(5) =  F{ 6) =  F(7) =  0.
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Figure 19.4: The Absolute Value of a Discrete Fourier Transform.

Here the nonzero values of F  are again at the multiples of the frequency.

In general, if the period is a divisor of 2m, then all the nonzero values 

of F  will occur at multiples of the frequency (however, a multiple of the 

frequency could still yield 0). See Exercise 2.

Suppose now that the period isn't a divisor of 2m. Let's look at an 

example. Consider the sequence 1,0,0,1,0,0,1,0. It has length 8 and almost 

has period 3 and frequency 3, but we stopped the sequence before it had a 

chance to complete the last period. In Figure 19.4, we graph the absolute 

value of its Fourier transform (these are real numbers, hence easier to graph 

than the complex values of the Fourier transform). Note that there are 
peaks at 0, 3, and 5. If we continued F(x) to larger values of x we would 

get peaks at 8,11,13,16,.... The peaks are spaced at an average distance 

of 8/3. Dividing the length of the sequence by the average distance yields a 

period of 8/(8/3) =  3, which agrees with our intuition.

The fact that there is a peak at 0 is not very surprising. The formula 

for the Fourier transform shows that the value at 0 is simply the sum of 
the elements in the sequence divided by the square root of the length of the 

sequence.

Let’s look at one more example: 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 1, 0, 0, 0, 0,
1. This sequence has 16 terms. Our intuition might say that the period is 

around 5 and the frequency is slightly more than 3. Figure 19.5 shows the 
graph of the absolute value of its Fourier transform. Again, the peaks are 

spaced around 3 apart, so we can say that the frequency is around 3. The 

period of the original sequence is therefore around 5, which agrees with our 

intuition.

In the first two examples, the period was a divisor of the length (namely, 

8) of the sequence. We obtained nonzero values of the Fourier transform 
only at multiples of the frequency. In these last two examples, the period
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Figure 19.6: The Absolute Value of a Discrete Fourier Transform.

was not a divisor of the length (8 or 16) of the sequence. This introduced 

some "noise" into the situation. We had peaks at approximate multiples of 

the frequency and values close to 0 away from these peaks.

The conclusion is that the peaks of the Fourier transform occur approx

imately at multiples of the frequency, and the period is approximately the 
number of peaks. This will be useful in Shor’s algorithm.

19.3.3 Shor’s Algorithm

Choose m so that n2 < 2m < 2n2. We start with m  qubits, all in state 0:

looooooooo).

As in the previous section, by changing axes, we can transform the first bit 

to a linear combination of |0) and |1), which gives us

4 =  (1000000000) + 1100000000)). 
v2

We then successively do a similar transformation to the second bit, the third 

bit, up through the mth bit, to obtain the quantum state

— L (| 000000000) + 100000001) + |000000010) + - • • + l l l l l l l l l l ) ) .

Thus all possible states of the m qubits are superimposed in this sum. For 

simplicity of notation, we replace each string of 0s and Is with its decimal 

equivalent, so we write

- i= (| 0 ) + |l) + |2) + . . .  + |2m - l ) ) .
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Clioose a random number a with 1 < a < n. We may assume gcd(a, n) =  1; 

otherwise, we have a factor of n. The quantum computer computes the 

function f(x) =  ax (mod n) for this quantum state to obtain

(for ease of notation, ax is used to denote ax (mod n)). This gives a list of 

all the values of ax. However, so far we are not any better off than with 

a classical computer. If we measure the state of the system, we obtain a 

basic state |zo,axo) for some randomly chosen x q . We cannot even specify 

which $o we want to use. Moreover, the system is forced into this state, 

obliterating all the other values of ax that have been computed. Therefore, 

we do not want to measure the whole system. Instead, we measure the 

value of the second half. Each basic piece of the system is of the form 

\x, ax), where x represents m bits and ax is represented by m/2 bits (since 

ax (mod r.) <  n < 2m/2). If we measure these last m/2 bits, we obtain some 

number u (mod n), and the whole system is forced into a combination of 

those states of the form |x,ii) with ax =  u (mod t i) :

where C  is whatever factor is needed to make the vector have length 1 (in 

fact, C is the square root of the number of terms in the sum).

E xam p le . At this point, it is probably worthwhile to have an example. 

Let ti =  21. (This example might seem simple, but it is larger than quantum 

computers can currently handle!) Since 21- < 29 < 2 • 212, we have m  =  9. 

Let's choose a =  11, so we compute the values of l l 1 (mod 21) to obtain

C
o < i  < a"1

a s s  u (mad n)

y = (  |0,1) + 11,11) + |2,16) + 13,8) + |4,4) + |5,2) + |6,1) + |7,11) +

|8,16) + |9,8) + 110,4) + |11,2) + 112,1) + |13,11) + |14,16) + 

115,8) + |16,4) + |17,2) + 118,1) + |19,11) + |20,16) + ■ • • 

+|508,4) + |509,2) + 1510,1) + |511,11)).

Suppose we measure the second part and obtain 2. This means we have 

extracted all the terms of the form \x, 2) to obtain
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For notational convenience, and since it will no longer be needed, we drop 

the second part to obtain

--L(|5) + |11) + |17) + |23) -+■•- + |497) + |503) + |509».

If we now measured this system, we would simply obtain a number x such 

that l l x =  2 (mod 21). This would not be useful. I

Suppose we could take two measurements. Then we would have two 

numbers x and y with l l z s  l l y (mod 21). This would yield l l I-!/ =  1 

(mod 21). By the exponent factorization method (see Section 6.4), this 

would give us a good chance of being able to factor 21. However, we cannot 

take two independent measurements. The first measurement puts the system 

into the output state, so the second measurement would simply give the same 

answer as the first.

Not all is lost. Note that in our example, the numbers in our state are 

periodic mod 6. In general, the values of ax (mod n) are periodic with period 

r, with ar =  1 (mod n). So suppose we are able to make a measurement 

that yields the period. We then have a situation where ar =  1 (mod n), so 

we can hope to factor n by the method from Section 6.4 mentioned above.

The quantum  Fourier transform is exactly the tool we need. It 

measures frequencies, which can be used to find the period. If r happens 
to be a divisor of 2m, then the frequencies we obtain are multiples of a 

fundamental frequency fa, and r/o =  2m. In general, r is not a divisor of 
2m, so there will be some dominant frequencies, and they will be approximate 

multiples of a fundamental frequency /o with r/o  «  2m. This will be seen 
in the analysis of our example and in Figure 19.6.

The quantum Fourier transform is defined on a basic state |x) (with

0 < x < 2m) by

QFT( |2)) =  7 L 2£ 1e W | c>.

c=0

It extends to a linear combination of states by linearity:

QFT(a, |n) + + a£|x,)) =  a ^ F T d n ) )  + ••• + atQFT(|xt» .

We can therefore apply QFT to our quantum state.

In our example, we compute

QFr^--L=(|5) + |11) + 117) + |23) + ••■ + 1497) + |503) + |509)
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and obtain a sum

for some numbers g(c).
The number g(c) is given by

which is the discrete Fourier transform of the sequence

0,0,0,0,0,1,0,0,0,0,0,1.......0,0,0,0,0,1,0,0.

Therefore, the peaks of the graph of the absolute value of g should correspond 

to the frequency of the sequence, which should be around 512/6 ss 85. The 

graph in Figure 19.6 is a plot of |g|.

There are sharp peaks at c =  0, 85, 171, 256, 341, 427 (the ones at 0 

and 256 do not show up on the graph since they are centered at one value; 

see below). These are the dominant frequencies mentioned previously. The 
values of g near the peak at c =  341 are

338 339 340 341 342 343 344 345

0.305 0.439 0.773 3.111 1.567 0.631 0.398 0.291

The behavior near c =  85, 171, and 427 is similar. At c =  0 and 256, we 

have g(0) =  3.756, while all the nearby values of c have g(c) «  0.015.

0.2

0.15

0.1

100 200 300 400 500 

Figure 19.6: The Absolute Value of g(c).
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The peaks are approximately at multiples the fundamental frequency 

fo  = 85. Of course, we don’t really know this yet, since we haven’t made 
any measurements.

Now we measure the quantum state of this Fourier transform. Recall 

thnt if we start with a linear combination of states ai|zi) + ••• + Ot|xt) 

normalized such that £  |aj|2  =  1 , then the probability of of obtaining [x̂ ) 
is |at|2. More generally, if we don't assume £2 \ai\2 =  li the probability is

iatiV53N2<

In our example,

3 .n ia/ ^ | a j |I « .U 4 ,

so if we sample the Fourier transform, the probability is around 4 x .114 =  

.456 that we obtain one of c =  85, 171, 341, 427. Let's suppose this is 

the case; say we get c =  427. We know, or at least expect, that 427 is 

approximately a multiple of the frequency fo  that we’re looking for:

427 «  j/o

for some j. Since rfo « 2 m =  512, we divide to obtain

427 _  j

512 ~ r '

Note that 427/512 ss .834 «  5/6. Since we must have r  < 0(21) < 21, 

a reasonable guess is that r =  6  (see the following discussion of continued 

fractions).

In general, Shor showed that there is a high chance of obtaining a value 

of c/2 m with

I —  - J I 1 1
12m r* ^  2m+1 2n2 1 

for some j . The method of continued fractions will find the unique (see 

Exercise 3) value of j / r  with r < n satisfying this inequality.

In our example, we take r — 6  and check that ar =  l l e =  1 (mod 21).

We want to use the exponent factorization method of Section 6.4 to factor 

21. Recall that this method writes r =  2km with m  odd, and then computes 

fro =  Qrn (mod n). We then successively square bo to get 6 i, 6 2 , • • •, until we 
reach 1 (mod n). If bu is the Inst bi ^  1  (mod n), we compute gcd(6 u — l,n )  

to get a factor (possibly trivial) of n.
In our example, we write 6  =  2 • 3 (a power of 2 times an odd number) 

and compute (in the notation of Section 6.4)

bo =  l l 3  =  8  (mod 2 1 ) 

6 t =  l l c =  1 (mod 2 1 )
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so we obtain 21 =  7 • 3.

In general, once we have a candidate for r, we check that ar =  1 (mod n). 

If not, we were unlucky, so we start over with a new a and form a new 

sequence of quantum states. If ar = 1 (mod n), then we use the exponent 
factorization method from Section 6.4. If this fails to factor n, start over 

with a new a. It is very likely that, in a few attempts, a factorization of n 
will be found.

We now say more about continued fractions. In Chapter 3, we outlined 

the method of continued fractions for finding rational numbers with small 
denominator that approximate real numbers. Let's apply the procedure to 

the real number 427/512. We have

427 „ 1 
=  0 +

gcd(60 - l , 2 1 ) = g c d ( 7 l 2 1 ) = 7 ,

512 i + s V

This yields the approximating rational numbers

5 211 427 

' ' 6 ’ 253' 512"

Since we know the period in our example is less than n — 21, the best guess 

is the lost denominator less than t l , namely r =  6.

In general, we compute the continued fraction expansion of c/2m, where 

c is the result of the measurement. Then we compute the approximations, 
as before. The last denominator less than n is the candidate for r.

19.3.4 Final Words

The capabilities of quantum computers and quantum algorithms are of sig

nificant importance to economic and government institutions. Many secrets 

are protected by cryptographic protocols. Quantum cryptography’s poten
tial for breaking these secrets as well as its potential for protecting future 

secrets has caused this new research field to grow rapidly over the past few 

years.

Although the first full-scale quantum computer is probably many years 

off, and there ore still many who are skeptical of its possibility, quantum 
cryptography has already succeeded in transmitting secure messages over a 

distance of 60 km, and quantum computers have been built that can handle 

a (very) small number of qubits. Quantum computation and cryptography 

have already changed the manner in which computer scientists and engineers 

perceive the capabilities and limits of the computer. Quantum computing 
has rapidly become a popular interdisciplinary research area and promises 

to offer many exciting new results in the future.
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19.4 Exercises

1. Consider the sequence 2°,21,22, ... (mod 15).

(a) W hat is the period of this sequence?

(b) Suppose you want to use Shor’s algorithm to factor n =  15. What 

value of m would you take?

(c) Suppose the measurement in Shor’s algorithm yields c =  192. 

What value do you obtain for r? Does this agree with part (a)?

(d) Use the value of r from part (c) to factor 15.

2. (a) Let 0 < s <  m. Fix an integer cq with 0 < cq < 2s. Show that

if x =± 0 (mod 2m" s) and =  2m~3e2lrixc°/2’” if x =  0 (mod 2m~3). 
(Hint: Write c =  cq + j2 a with 0 < j  < 2m-s, factor e2'rtIco/2Tn 

off the sum, and recognize wbat’s left as a geometric sum.)

(b) Suppose ao ,a i,. . . ,  a2 "-_i is a sequence of length 2m such that 

a#, =  ak+j2‘ for all j, k. Show that the Fourier transform F(x) of 

this sequence is 0 whenever x 0 (mod 2m~5).

This shows that if the period of o sequence is a divisor of 2m then 

all the nonzero values of F  occur at multiples of the frequency 
(namely, 2m-,,).

3. (a) Suppose j / r  and ji/r\ are two distinct rational numbers, with

0 < r < ti and 0 < ri < n. Show that

(b) Suppose, as in Shor’s algorithm, that we have

o < c < 3m 
e a  co (mod 2*)

_  3
2m T

Show that j / r  =
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Mathematica® Examples

These computer examples are written in Mathematica. If you have Mathematica 
available, you should try some of them on your computer. If Mathematica is not 
available, it is still possible to read the examples. They provide examples for several 
of the concepts of this book. For information on getting started with Mathemat
ica, see Section A.I. To download a Mathematica notebook that contains these 
commands, go to

http://www.prenhall.com/-uia3hington

A .l Getting Started with Mathematica

1. Download the Mathematica notebook crypto.nb thot you find using the links 
starting at http://wunu.prenhall.com/washington

2. Open Mathematica, and then open crypto.nb using the menu options under 
File on the command bar at the top of the Mathemntica window. (Perhaps this is 
done automatically when you download it; it depends on your computer settings.)

3. With crypto.nb in the foreground, click (left button) on Kernel on the 
command bar. A menu will appear. Its first line will read Evaluation. Move the 
arrow so it is on this line. A submenu will appear. Move the orrow down to the 
line Evaluate Notebook and click (left button). This evaluates the notebook and 
loads the necessary functions. Ignore any warning messages about spelling. They 
occur because a few functions have similar names.

4. Go to the command bar at the top and click on File. Move the arrow down 
to New and click. A new notebook will appear on top of crypto.nb. However, all 
the commands of crypto.nb will still be working.

467
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5. If you want to give the new notebook a name, use the File command and 
scroll down to Save As.... Then save under some name with a .nb at the end.

0. You are now ready to use Mathematica. If you want to try something easy, 
type l+2*3+4"5 and then press the Shift and Enter keys simultaneously. Or, if 
your keyboard has a number pad with Enter, probably on the right side of the 
keyboard, you can press that (without the Shift). The result 1031 should appear 

(it’s 1+2 -3 + -Is).

7. Turn to the Computer Examples Section A.3. Try typing in some of the 
commands there. The outputs should be the some as that in the examples. Re
member to press Shift Enter (or the numeric Enter) to make Mathematica evaluate 
nil expression.

8. If you want to delete part of your notebook, simply move the arrow to the 
blue line at the right edge of the window and click the left button. The highlighted 
part can be deleted by clicking on Edit on the top command bar, then clicking on 
Cut on the menu that appears.

9. Save your notebook by clicking on File on the command bar, then clicking 
on Save on the menu that appears.

10. Print your notebook by clicking on File on the command bar, then clicking 
on Print on the menu that appears. (You will see the advantage of opening a new 
notebook in Step 4; If you didn’t open one, then all the commands in crypto.nb will 
also be printed.)

11. If you make a mistake in typing in a command and get an error message, 
you can edit the command and hit Shift Enter to try again. You don't need to 
retype everything.

12. If a program seems to be running for a very long time, you can sometimes 
stop it by clicking on Kernel and Abort Evaluation. If this doesn’t work, there is 
always the Off button on the computer.

13. Look at the commands available through the command bar at the top. For 
example, Format then Style allows you to change the type font on any cell that has 
been highlighted (by clicking on its blue bar on the right side).

14. If you are looking for help or a command to do something, try the Help 
command. The Master Index leads to a lot of useful information. Note that the 
commands that are built into Mathematica always start with capital letters. The 
commands that are coming from crypto.nb start with small letters and will not be 
found in the Help Index.

15. Some of the number theory and plotting commands require that special 
packages be loaded (for example, see Example 7 for Chapter 3). These are automat
ically loaded when the notebook from the Web site is evaluated. If the commands 
are used independently of that notebook, don't forget to load the packages. One 
way to identify which packages are needed is to look up the commands in the Master 
Index.
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A. 2 Some Commands

The following ore some Mathematica commands that are used in the Computer 
Examples. The commands that start with capital letters, such as EulerPhi, are 
built into Mathematica. The ones that start with small letters, such os addell, have 
been written specially for this text and ore in the Mathematica notebook available 
at

htip://www.prenhall. com/Washington

addell[{x,y}, {u,v}, b, c, n] finds the sum of the points and {u,u} on 
the elliptic curve t/2 = x3 + bx + c (mod n), where n Is odd. 

affinecrypt[txt,m,n] affine encryption of txt using mx + n. 
allshifts [txt] gives all 26 shifts of txt.
ChineseRemainderTheorem[{a,b,...}l{m,n,...}] gives a solution to the si

multaneous congruences x = a (mod m),x = b (mod n),___
choose[txt,m,n] lists the characters in txt in positions congruent ton (mod m). 
coinc[txt,n] the number of matches between txt and txt shifted by n. 
corr[v] the dot product of the vector v with the 26 shifts of the alphabet 

frequency vector.
EulerPhi [n] computes ip(n) (don't try very large values of n). 
ExtendedGCD(m,n] computes the gcd of m and n along with a solution of 

mx + ny =  gcd.
FactorInteger(n] factors n.
frequency(txt] lists the number of occurrences of each letter a through = in

txt.

GCD[m,n] is the gcd of m and n.
Inverse[M] finds the inverse of the matrix M.
lfsr[c,k,n] gives the sequence of n bits produced by the recurrence that has 

coefficients given by the vector c. The initial values of the bits are given by the 
vector k.

lrsrlength|v,n] tests the vector v of bits to see if it is generated by a recurrence 
of length at most n,

lfsrsolve(v,n] given a guess n for the length of the recurrence that generates 
the binary vector v, it computes the coefficients of the recurrence.

Max[v] is the largest element of the vector v.
Mod[a,n] is the vnlue of a (mod n).
multell[{x,y}, m, b, c, n] computes m times the point {z,y} on the elliptic 

curve y- =  i 3 + bx + c (mod n).
multsell[{x,y}, m, b, c, n] lists the first m multiples of the point {x,y} on 

the elliptic curve y2 = x3 + bx + c (mod n).
NextPrime[x] gives the next prime > x (the NumberTheoryFunctions package 

must be loaded).
nuni2text0[n] changes a number n to letters. The successive pairs of digits 

must each be at most 25; a is 00, z is 25.

http://www.prenhall
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num2text[n] changes a number n to letters. The successive pairs of digits 
must each be at most 26; space is 00, a is 01, z is 26.

PowerMod[a,b,nj computes ab (mod n).

PrimitiveRoot[p] finds a primitive root for the prime p. 
shift[txt,n| shifts txt by n.

txt2numD[txt] changes txt to numbers, with a = 00,..., z = 25. 

txt2num[txt] changes txt to numbers, with spuce=00, a = 01,..., z = 26, 
vigenere[txt,v] gives the Vigenere encryption of txt using the vector v. 
vigvec[txt,m,n] gives the frequencies of the letters a through z in positions 

congruent to n (mod m).

A.3 Examples for Chapter 2

Example 1. A shift cipher was used to obtain the ciphertext kddmu. Decrypt 
It by trying all possibilities.

In[l]:= allshlftg[”kddkmu”]

kddkmu
leelnv

mffoov

nggnpx

ohhoqy

p ilprz

qjjqea

rkkrtb

ellsuc

tmmtvd

unnuwe

vaovxf

uppuyg

xqqxzh

yrryal

zsszbj

attack
buubdl

cwcem

duwdfn

exxego

fyyfhp

gzzgiq
haahjr

lbbiks
jc c j l t
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As you can see, attack is the only word that occurs on this list, so that was the 

plaintext.

Example 2. Encrypt the plaintext message clecipalra using the affine function 

7x + 8:

In[2]:=afflnecrypt("cleopatra”, 7, 8|

Out[2]=whkcjilxi

Example 3. The ciphertext mzdvezc was encrypted using the affine function 

5x + 12. Decrypt it.

Solution: First, solve y = 5 i + 12 (mod 26) for x to obtain x =  5-1(y — 12). 

We need to find the inverse of 5 (mod 26):

In[3]:= PowerMod[5, -1, 26]

Out[3]= 21

Therefore, x = 21(y — 12) =  21y — 12 • 21. To change —12 ■ 21 to standard form: 

In[4]:= Mod[-12*21, 26]

Out[4]= 8

Therefore, the decryption function is i  s  l ly  + 8. To decrypt the message:

In[5]:= offinecrypt["mzdvezc”, 21, 8]

Out[5]= anthony

In case you were wondering, the plaintext was encrypted as follows:

In|6]:= affinecrypt[’’anthony”, 5, 12]

0ut(6]= mzdvezc

Example 4. Here is the example of a Vigenere cipher from the text. Let’s see 

how to produce the data that was used in Section 2.3 to decrypt it. For convenience, 

we've already stored the ciphertext under the name vvhq.

In[7]:= w h q

Out[7]=

w h q w v v T h m u s g j g t h k i h t s s e j c h l s f c b g w c r l r y q t f s v g a h v k c u h w a u g l q h n s l r l j s  

hbltspisprdxljsveeghlqwkasskuwepwqtwvspgoelkcqyfnsvuljsniqkgnrgybvl 

wgoviokhkazkqlcxzgyhcecmeiujoqkwfirvef qhk ijrc lrlkb ienqfrjljsdhgrh lsf q 

twlauqrhwdmwlgusgikkf lryvcwspgpmlkass j  voqxeggveyggzml j  cxxl j avpalvu 
ikvrdrygfrjljalveggveyggeiapuuiBfpbtgmrumuczrvtuglrvugumnczvile
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Find the frequencies of the letters in the ciphertext:

In[8]:= frequency (whq]

0 ut[8|=

{{a, 0>, {b, 5>, <c, 12}, {d, 4}, {e, 1S>, { f , 10}, {g, 27},

{h, 16), {1, 13}, {], 14}, {k, 17}, {1, 25}, {m, 7 } ,'{n , 7},

{o, 5}. {p. 9}, {q, 14}, {r, 17}, {s, 24}, <t. 8}, {u, 12},

<v, 22}, {u, 22}, {x, 5}, <y, 6}, {z, 5}}

Let’s compute the coincidences for shifts of 1, 2, 3, 4, 5, 6:

In[9]:= coinejwhq, 1]

Out[9|= 14

In[10]:= coinc[whq, 2]

0ut[10]= 14 

In[ll]:= coinc[whq, 3]

Out[ll]= 16 

In[12]:= coinc[whq, 4]

Out[12]= 14 

In[13]:= coinc[whq, 5]

Out[13]= 24 

In[l4]:= coinc[whq, 6]

Out(l4]= 12

We conclude that the key length is probably 5. Let's look at the 1st, 6th, 11th, ... 

letters (namely, the letters in positions congruent to 1 mod 5):

In[15]:= choose [whq, 5, 1]

Out[15]=

wuttcccqgcunjtpjgkuqpknjkygkkgcjf qrkqjrqudukvpkvggjj ivgjggpfncvuce 

In[16]:= frequency [%]

Out[l6]= {{a, 0}, {b, 0}, <c, 7}, {d, 1}. <e, 1}, { f , 2},

{g, 9}, (h, 0}, { i,  1}, { j, 8}, {k, 8}, <1, 0}, {m. 0}, <n, 3},

{=, 0}, {p. 4}. {q, 5}, {r, 2}, {s, 0}, { t, 3}, {u, 6}, {v. 5},

{v, 1}, <x, 0}, {y, 1}, {z, 0}}

To express this as a vector of frequencies:

In[l7]:= vigvec[whq, 5, 1]

Out[l7]={0, 0 , 0.104478, 0.0149254, 0.0149254, 0.0298507,

0.134328, 0, 0.0149254, 0.119403, 0.119403, 0, 0, 0.0447761,
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0, 0.0597015, 0.0746269, 0.029BS07, 0, 0.0447761, 0.0895522, 

0.0746269, 0.0149254, 0, 0.0149254, 0}

The dot products of this vector with the shifts of the alphabet frequency vector are 

computed as follows:

In[18):= corr(%]

Out[18]=
<0.0250149, 0.0391045, 0.0713284, 0.0388209, 0.0274925, 0.0380149, 

0.051209, 0.0301493, 0.0324776, 0.0430299, 0.0337761, 0.0298507,

0.0342687, 0.0445672, 0.0355522, 0.0402239, 0.0434328, 0.0501791,

0.0391791, 0.0295821, 0.0326269, 0.0391791, 0.0365522, 0.0316119,

0.0488358, 0.0349403>

The third entry is the maximum, but sometimes the largest entry is hard to locate. 

One way to find it is

In[19]:= Max[%]

Out[19]= 0.0713284

Now it is easy to look through the list and find this number (it usually occurs only 

once). Since it occurs in the third position, the first shift for this Vigencre cipher is 

by 2, corresponding to the letter c. A procedure similar to the one just used (using 

vigveefvvhq, 5 ,2 ] , . .vigvec[whq,5,5/) shows that the other shifts ore probably 14,

3, 4, 18. Let's check that we have the correct key by decrypting.

In[20|:= vigenere[whq, -{2, 14, 3, 4, 18}]

0 ut[20)=

themethodusedforthepreparatlonandreadingofcodemesaageslaaimplelnthe 

extremeandatthesametlmeimpossibleoftranslatloEunleasthekeyiaknounth 

eeasewithwhichthekeymaybechangedlsanotherpointlnfavoroftheadoptlono 

fthiBcodebythoaedesirlngtotransmltlmportantmesBageswlthouttheallght 
estdangeroftheirmeseagesbeingreadbypoliticalorbuBineaBrivalaetc

For the record, the plaintext was originally encrypted by the command 

In[21]:= vigenere[%, {2, 14, 3, 4, 18}]

Out[21] =

whqwwrhmuBgjgthkihtsBejchlsf cbgwcrlryqtfsvgahwkcuhwauglqtmalrlja 

hbltspiaprdxljsveeghlqvkaaakuvepwqtwvapgoelkcqyfnavwljsniqkgnrgybul 

wgovlokhkazkqkxzgyhcecmaiujoqkwfuvefqhkijrclrlkbienqfrjljadhgrhlstq 

twlauqrhwdmulgusgikkflryvcwvapgpmlkaasjvoqxeggveyggzmlj cxxljsvpaiwi 

ikvrdrygfrj1jslvaggvayggeiapuuiafpbtgnwHmuczrvtwglruuguamczvlle
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Example 5. T h e  c ip h e r te x t

22,09,00,12,03,01,10,03,04,08,01,17

wns encrypted using a Hill cipher with matrix

1 2 3 X 

4 5 6 .

7 8 10 /

Decrypt it.

Solution: A matrix ^ ^ ^ is entered os {{a, t}, (c, d}}. Type Af.N to

multiply matrices M  and N. Type v.M to multiply a vector v on the right by a 

matrix M.
First, we need to invert the matrix mod 26: 

ln|22|:= Inverse[{{ 1,2,3},{ 4,5,6),{7,8,10}}]

Out[22] = { { ~ , 1>, < | , y ,  -2}, <1, -2 , 1»

Since we are working mod 26, we can’t stop with numbers like 2/3. We need to get 

rid of the denominators and reduce mod 2G. To do so, we multiply by 3 to extract 

the numerators of the fractions, then multiply by the inverse of 3 mod 26 to put 

the ’’denominators” bock in (see Section 3.3):

ln|23]:= %*3

Out[23]= {{-2, -4, 3>, {-2, 11. -6>, {3, -6 , 3 »  

ln(24];= Mod[PowerMod[3, -I, 26]*%, 26]

Out|24]= {{8 , 16,1}, {8,21,24}, {1,24,1}}

This is the inverse of the matrix mod 20. We can check this as follows:

In[25|:= M od[% .{{l, 2, 3}, {4, 5, 6}, {7, 8 , 10}}, 26]

Out[25]= {{1, 0 , 0}, {0, 1, 0}, {0, 0, 1}}

To decrypt, we break the ciphertext into blocks of three numbers and multiply each 

block on the right by the inverse matrix we just calculated:

Iu[26]:= Mod[{22, 09, 00}.%%, 26]

Out[26]= {14, 21, 4}

In[27]:= Mod[{l2, 03, 01}.%%%, 26]

Out[27]= {17. 19, 7}

ln[28]:= Mod[{l0, 03, 04}.%%%%, 26]

Out[28]= {4, 7, 8}
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In[29]:= Mod[{08, 01, 17).%%%%%, 26]

Out(29]= {11, 11, 23}

Therefore, the plaintext is 14, 21, 4, 17, 19, 7, 4, 7, 8, 11, 11, 23. This can be 

changed back to letters:

In[30]:= alph0[l42104171907040708111123]

0 ut[30]= overthehillx

Note that the final x was appended to the plaintext in order to complete a block of 

three letters,

E x a m p le  6 . Compute the first 50 terms of the recurrence

Xn+S = I n  + Xn+2 (mod 2).

The initial values are 0,1,0,0,0.

Solution: The vector of coefficients is {1,0,1,0,0} and the initial values are 

given by the vector {0,1,0,0,0}. Type

In|31]:= lfsr[{l, 0, 1, 0, 0}, {0, 1, 0, 0, 0}, 50]

Out(3l]= {0, 1, 0 , 0 , 0 , 0, 1, 0. 0 , 1 , 0. 1, 1, 0 , 0 , 1, 1. 1. 1 , 1 , 

0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0. 0, 0, 0, 1, 0,
0. 1, 0, 1, 1, 0, 0, 1, 1, 1. 1}

E x a m p le  7. Suppose the first 20 terms of an LFSR sequence arc 1, 0, 1, 0, 1, 1,

1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1. Find a recurrence that generates this sequence.

Solution: First, we find the length of the recurrence. The command l/srlengilifv, 
n/ calculates the determinants mod 2 of the first n matrices that appear in the 

procedure in Section 2.11:

In [32]:=

lfsrlength({l, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1}, 10]

{1, 1}
{2 , 1}

{3, 0}
{4, 1}

{5, 0} 
{6 , 1}
{7, 0}

{8, 0}
{9, 0}

{10 , 0}

The last nonzero determinant is the sixth one, so we guess that the recurrence has 

length G. To End the coefficients:

In[33]:= lfsrsolve[{l, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1}, 6]



476 A p p e n d ix  A .  M a t h e m a t ic a ® E x a m p l e s

Out|33|= <1, 0, 1, 1. 1, 0}

This gives the recurrence os

In+o S  I n + In+2 +Xn+3 +!„+.! (mod 2).

E x a m p le  8 . The ciphertext 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, "1, 0, 0, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0 was produced by adding the 

output of a LFSR onto the plaintext mod 2 (i.e., XOR the plaintext with the LFSR 
output). Suppose you know that the plaintext starts 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,

1, 1, 1, 0, 0. Find the rest of the plaintext.

Solution: XOR the ciphertext with the known part of the plaintext to obtain 

the beginning of the LFSR output:

In[34]:= Mod[{l, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0} + {0, 1, 1, 0, 
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1}, 2]

Out [34]= <1, 0, 0, 1, 0, 1, 1. 0, 1, 0, 0, 1, 0, 1. 1, 0, 1}

This is the beginning of the LFSR output. Now let's find the length of the recur

rence:

In[35]:= lfsrlength[%, 8]

U , 1} 
{2, 0}

<3, 1}
{4, 0}

{5, 1}

{6 , 0}
{7, 0}

{B, 0}

We guess the length is 5. To find the coefficients of the recurrence:

In[36j:= Ifarsolve(%%, 5]

Out[3G]= {1. 1, 0, 0, 1}

Now we can generate the full output of the LFSR using the coefficients we just 

found plus the first five terms of the LFSR output:

In[37|:= )fsr({l, 1, 0, O, 1>, {1, 0, 0, 1, 0}, 40]

Out[37]= -[1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,

1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0}

When we XOR the LFSR output with the ciphertext, we get bock the plaintext:

In[38]:= Mod[% + {0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
0 , 1, 0, 1 , 0 , 1, 0 , 1, 0 , 1, 0 , 0, 1, 0, 0 , 0, 1, 0, 1 , 1, 0 }, 2]

Out(38]= {1, 1, 1, 1, 1, 1, 0 . 0, 0 , 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,

1, 1. 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 . 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 . 0 . 0}

This is the plaintext.
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A.4 Examples for Chapter 3

E x a m p le  1. Find gcd(23456,987654). 

ln[l]:= G C D [23456, 087654]

Out(l]= 2

E x a m p le  2. Solve 234561 + 987654y = 2 in integers x, y.

In[2]:= ExtendedG CD [23456, 987654]

Out[2]={2, {-3158, 75}}

This means that 2 is the gcd and 23456 • (—3158) + 987654 • 75 =  2.

E x a m p le  3. Compute 234 ■ 456 (mod 789).

In[3):= Mod|234*456, 789]

Out[3]= 189

E x a m p le  4. Compute 2345678TG543 (mod 565656565).

In[4]:= PowerMod(234567, 876543, 565656565]

Out[4)= 473011223

E x a m p le  5. Find the multiplicative inverse of 87878787(mod 9191919191). 

In[5]:= PowerMod(87878787, -1, 9191919191]

Out[5]= 7079995354

E x a m p le  6 . Solve 7654x =  2389 (mod 65537).

Solution: Here is one way:

In[6J:=Solve[{7654*x = =  2389,Modulus = =  65537},x,Mode -> Modular] 

Out[6]= {{Modulus -> 65537, x -> 43626}}

Here is another way. It corresponds to the method in Section 3.3. We calculate 

7G54-1 and then multiply it by 2389:

In[7]:= PowerMod[7654, -1, 65537]

Out[7]= 54637

In[8]:= Mod[%*2380, 65537]

Out [8]= 43626

E x a m p le  7. Find i  with

i  =  2 (mod 78),$ =  5 (mod 97),x =  1 (mod 119).
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Solution: First, we need to load n number theory package: 

In[9]:=<<NumberTheory‘NumberTheoryFunctions‘

Now we can solve the problem:

In[lO]:= ChineseRemainderTheorem({2, 5, 1}, {78, 97, 119}]

0ut[10j= 647480 

We can check the answer:

In[ll|:= Mod(647480, {78, 97, 119}]

Out(ll]= {2, 5, 1>

Example 8 . Factor 123450 into primes. 

ln[12]:= Factorlnteger[123450]

Out(12]={{2, 1>, <3. 1}. <5, 2}, {823, 1}}

This means that 123450 =  2131528231.

Example 9. Evaluate $(12345).

In( 13] := EulerPhi(12345]

Out[13]= 6576

Example 10. Find a primitive root for the prime 65537.

Solution: This also requires loading the number theory package (which we have 

already done). Then type

In[14|:= PrimitiveRoot[65637]

Out(14]= 3

Therefore, 3 is a primitive root for 65537.

/  13 12 35 \

E x a m p le  11. Find the inverse of the matrix [ 41 53 62 j (mod 999).
\ 71 68 10 /

Solution: First, invert the matrix without the mod:

In(15]:= Inverse[{{13, 12, 35}, {41, 53, 62}, {71, 68, 10}}]

n . . i . f i K l _  r I  3SB6 3360 1111 l  r J 2 2 L  3365 _  639 1 r_97S_____ 33----- - 1 2 L } }
U u t l l b | —  X\3 4 i 3 g T 34|39 > 34139 J ’ 1 34139 1 34139 ’ 34139 J ' I  34139 ' 34139 ’ 3413911

We need to clear the 34139 out of the denominator, so we evaluate 1/34139 mod 

999:

In[16]:= PowerMod[34139, -1, 999]

Out(L6]= 410
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Since 410 • 34139 s  1 (mod 999), we multiply the inverse matrix by 410 • 34139 and 

reduce mod 999 in order to remove the denominators without changing anything 

mod 999:

In[17):= Mod[410*34139*%%, 999]

Out[17]= {{772, 472, 965}, {641, 516, 851}, {150, 133, 149}}

/  772 472 965 \

Therefore, the inverse matrix mod 999 is j 641 516 851 1.

\ 150 133 149 )
In many cases, it is possible to determine by inspection the common denomi

nator that must be removed. When this is not the cose, note that the determinant 

of the original matrix will always work as a common denominator.

Example 12. Find a square root of 26951623672 mod the prime j>=98573007539.

Solution: Since p = 3 (mod 4), we can use the Proposition of Section 3.9: 

ln(18]:=PowerMud(26951623672, (98573007539 + l)/4 , 98573007539] 

Out(18]= 98338017685 

The other square root is minus this one:

In[l9]:=Mod[-%, 98573007539]

Out[l9]= 234989854

Example 13. Let n =  34222273 = 9803 • 3491. Find all four solutions of 

x~ =  19101358 (mod 34222273).

Solution: First, find a square root mod each of the two prime factors, both of 

which are congruent to 3 (mod 4):

In[20]:=PowerMod [19101358, (9803 + l) /4 , 9803]

0ut(20]= 3998

In[21]:=PowerMod[19101358, (3491 + l)/4 , 3491]

Out[2l]= 1318

Therefore, the square roots are congruent to ±3998 (mod 9803) and are congruent 

to ±1318 (mod 3491). There are four ways to combine these using the Chinese 

remainder theorem:

In[22]:=ChineseRemainderTheorem[ {3998, 1318 }, {9803, 3491 }] 

Out[22]= 43210

In[23]:=ChineseRemainderTheorem[ {-3998, 1318 }, {9803, 3491 }] 

Out[23]= 8397173
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In[24]:=ChineseRemaindcrTheorem[ {3998, -1318 }, {9803, 3491 }] 

Out[24|= 2S825100

In[25]:=CliineseRcmainderTheorem[ {-3998, -1318}, {9803, 3491}] 

0»t[25|= 34179063

These are the four desired square roots.

A.5 Examples for Chapter 6

E x a m p le  1. Suppose you need to find a large random prime of 50 digits. Here 

is one way. First, load the number theory package:

In(l ):=< <Num b erThcory'NumberTheory Functions1

The function NextPrimefx] finds the next prime greater than x. The function 

Random/Integer,{a,li}/ gives a random integer between a and b. Combining these, 

we can find a prime:

In[2]:=NextPrime[Random(Integer, {10*49, 10*50 }]]

Out(2]= 73050570031667109175215303340488313456708913284291 

If we repeat this procedure, we should get another prime: 

In[3]:=NextPrime[RiLndom[Integer, {10*49, 10*50 }]]

Out[3]= 97476407694931303255724326040586144145341054568331

Example 2. Suppose you want to change the text hellohowarcyov to numbers:

In[4]:=numl[”hellohowareyou”I

0ut[4]= 805121215081523011805251521

Note that we are now using o =  1,6 =  2,..., z =  26, since otherwise a’s at the 

beginnings of messages would disappear. (A more efficient procedure would be to 

work in base 27, so the numerical form of the message would be 8 + 5 • 27 + 12 ■ 

272 + ■ ■ ■ + 21 • 2713 =  87495221502384554951. Note that this uses fewer digits.) 

Now suppose you want to change it back to letters:

In[5|:=alphl(80512l215081523011805251521]

Out[5]= hellohovareyou

Example 3. Encrypt the message hi using RSA with n = 823091 and e = 17. 

Solution: First, change the message to numbers:

ln[6):=numl[”hi”]

Out|6]= 809
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Now, raise it to the cth power mod tl:

In|7]:=PowerMod[%, 17, 823091]

Out[7]= 596912

E x a m p le  4. Decrypt the ciphertext in the previous problem.

Solution: First, we need to find the decryption exponent d. To do this, we need 

to find 0(823091). One way is os follows:

In(8] :=EulerPhi [823091]

Out[8|= 821184

Another way is to factor n as j> • g and then compute (p- l)(q - 1): 

In[9]:=FactorInteger [823091]

Out[9]= { {659, 1 }, {1249, 1 > }

In[10]:=658*1248 

0ut[10|= 821184

Since de = I (mod 0(n)), we compute the following (note that we are finding the 

inverse of e mod not mod n):

In[ll]:=PowerMod[l7, -1, 821184]

Out[ll]= 48305

Therefore, d =  48305. To decrypt, raise the ciphertext to the rfth power mod n: 

In[12]:=PowerMod[596912, 48305, 823091]

Out[12]= 809

Finally, change back to letters:

In|l3|.-alphl[809]

Out(13]= hi

E x a m p le  5. Encrypt helloliowareyou using RSA with n =  823091 and e =  17. 

Solution: First, change the plaintext to numbers:

In[14|:=numl |"hel lohowareyou”]

Out[14]= 805121215081523011805251521

Suppose we simply raised this to the eth power mod n:

In[l5]:=PowerMod[%, 17, 823091]

Out[15]= 447613

If we decrypt (we know d from Example 4), we obtain
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In[16]:=PowerMod[%, 48305, 823091]

Out[16]= 628863

This is not the original plaintext. The reason is that the plaintext is larger than n, 

so we have obtained the plaintext mod n:

In[17]:=Mod[805121215081523011S05251521, 823091]

Out[17]= 628BB3

We need to break the plaintext into blocks, each less than n. In our case, we use 

three letters at a time:

80512 121508 152301 180525 1521

In[18]:=PowerMod[80512, 17, 823091]

Out[18]= 757396

In[19]:=PowerMod[121508, 17, 823091]

Out[19]= 164513

In[20):=PowerMod[152301, 17, 823091]

0ut[20]= 121217

ln[2l]:=PowerMod [180525, 17, 823091]

Out[21)= 594220

ln[22]:=PowerMod[l521, 17, 823091]

Out[22|= 442163

The ciphertext is therefore 757396164513121217594220442163. Note that there is 

no reason to change this back to letters. In Tact, it doesn’t correspond to any text 

with letters.

Decrypt each block individually:

In[23]:=PowerMod[757396, 48305, 823091]

Out[23]= 80512

In[24]:=PowerMod|l64513, 48305, 823091]

Out[24|= 121508 

Etc.

We’ll now do some examples with large numbers, namely the numbers in the 

ILSA Challenge discussed in Section 6.5. These are stored under the names rsan, 
rsac, Tsap, rsaq:

lu[25]:=rsan
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Out[25]=
114381625757888867669235779976146612010218296721242362562561842935

706935245733897830597123563958705058989075147599290026879543541

In[26]:=rsae

Out[2G)= 9007

E xam p le  6. Encrypt each of the messages 6, ba, bar> bard using rsan and rsae. 

In[27):=PowerMod[numl[”b”|, rsae, rsan]

Out[27]=
709467584676126685983701649915507861828763310606852354105647041144

86782261716497200122155332348462014053287987580899263765142534

In[28[:=PowerMod[numl [”ba”|, rsae, rsan]

Out[28]=
350451306089751003250117094498719542737882047539485930603136976982 

27621759806027962270538031565564773352033671782261305796158951

In[29]:=PowerMod[numl[”bar"], rsae, rsan]

Out[29]=
448145128638551010760045308594921093424295316066074090703605434080

00843645986880405953102818312822586362580298784441151922606424

In[30|:=PowerMod[numl[”bard”J, rsae, rsan]

0ut[30]=
242380777851116664232028625120903173934852129590562707831349916142

56054323297179804928958073445752663026449873986877989329909498

Observe that the ciphertexts are all the same length. There seems to be no easy 
way to determine the length of the corresponding plaintext.

E xam p le  7. Using the factorization r3an=rsap rsaq, find the decryption expo
nent for the RSA Challenge, and decrypt the ciphertext (see Section 6.5). 
Solution: First we find the decryption exponent:

In[31]:=rsad=PowerMod[rsae,-l,(rsap-l)*(rsaq-l)];

Note that we use the final semicolon to avoid printing out the value, If you want 
to see the value of rsad, see Section 6.5, or don't use the semicolon. To decrypt the 
ciphertcxt, which is stored as rsact, and change to letters:

In|32]:=a]phl[PowerMod[rsaci, rsad, rsan]]

Out[32]=

the magic words are squeamish ossifrage

Exam p le  8. Encrypt the message rsacncryptsmessaijeswell using rsan and rsae.
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In[33]:= PowerMod[numl['’rsaencrypt3messogeswell”), rsae, rsan]

0ut[33] =
946394203490022593163068235392494964146409699340017097214043524182

71960664254365584906013966328817753539283112653197553130781684

Example 9. Decrypt the preceding ciphertext.

Solution. Fortunately, we know the decryption exponent rsad. Therefore, we 

compute

In|34]:=PowerMod[%, rsad, rsnn)

Out [34]= 1819010514031825162019130519190107051923051212 

In[35]:=alphl[%]

0ut[35]= rsaencryptsmesaagesvoll

Suppose we lose the final 4 of the ciphertext in transmission. Let’s try to decrypt 

what's left (subtracting 4 and dividing by 10 is a mathematical way to remove the 

4):

In(36]:=PowerMod[(%%% - 4)/10, rsad, rsan]

0ut(36]=

479529991731959886649023526295254864091136336943756298468549079705

88412300373487969657794254117158956921267912628461494475682806

If we try to change this to letters, we get a long error message. A small error in the 

plaintext completely changes the decrypted message and usually produces garboge.

Example 10. Suppose we are told that n  = 11313771275590312567 is the 

product of two primes and that <j>(n) =  11313771187608744400. Factor n.
Solution: We know (see Section 6.1) that p and q are the roots of X 2 — (n — 

<f>(n) + 1)X 4- ti. Therefore, we compute

In[37]~Roots[X*2 -

(11313771275590312567 - 11313771187608744400 + 1)*X + 
11313771275500312567 = =  0, X]

0ut[37]= X == 128781017 | | X == 87852787151

Therefore, n =  128781017 • 87852787151. We also could have used the quadratic 

formula to find the roots.

Exam ple  11. Suppose we know rsae and rsad. Use these to factor rsan.
Solution.- We use the universal exponent factorization method from Section 6.4. 

First write rsaersad — 1 =  2‘m with m odd. One way to do this is first to compute 

rsae • rsad — 1, then keep dividing by 2 until you get an odd number:

In[38]:—rsoe*rsnd - 1



A.5. E x a m p le s  f o r  C h a p t e r  6 485

Out [38]=

961034419617782266156919023359583034109854129051878330250644604041

155985575087352659156174898557342995131594680431086921245830097664

In[39):=%/2

Out[39]=

480517209806891133078459511679791917054927064525939165125322302020

577992787543676329578087449278671497565797340215543460622915048832

Ln[40]:=%/2

Out[40] =
240258604904445566539229755839895958527463532262969582562661151010

266996393771838164769043724639335746782896670107771730311457524416

In[49]:=PowerMod[%, 2, rsan]

Out[49]=
781728141546773565791419280667640000219487870664836209179306251152

15181839742056013275521913487560944732073516467722273875579363

In[50]:=PowerMod[%, 2, rsan]

Out[50] =
428361912025087287421992990405829002029762229160177671676516702165

09444518239462186379470569442055101392992293082269601738226702

Ln[51]:=PowerMod[%, 2, rsan]

Out[51]= 1

Since the last number before the 1 was not ±1 (mod rsan), we have an example of 

x ^  ±1 (mod rsan) with x2 =  1. Therefore, gcd(x — 1, roan) is a nontrivial factor 

of r$an:

In[52]:=GCD[%% - 1, rsan]

Out[52|=
32769132993266709549961988190834461413177642967992942539798286533 

This is rsaq. The other factor is obtained by computing rsan/rsaq: 

In[53]:=rsan/%

Out[53|=
3490529510847650949147649619903698133417764638493367843990620577 

This is rsap.

Example 12. Suppose you know that

150883475569-1512 =  168875705328582 (mod 205611444308117).

Factor 205611444308117.
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Solution: Wc use the Basic Principle of Section 6.3.

In[54]:=GCD[l50883475569451-16887570532858,2 05611444308117]

Out[54]= 23495881

This gives one factor. The other is

In[55]:=205611444308117/%

Out[55]= 8750957

We can check that these factors are actually primes, so we can't factor any further: 

In[56]:=PrimeQ[%%]

Out(56j= True 

In[57]:=PrimeQ[%%]

Out[57]= True

Example 13. Factor n =  376875575426394855599989992897873230 by thep- 1 
method.

Solution: Let’s choose our bound us fl =  100, and let's take a =  2, so we 

compute 21001 (mod »):

In[58]:= PowerMod[2,Factorial[100]137687557542639485559998999289787 

3239]

Out(58]= 369676678301956331939422106251199512 

Then we compute the gcd of 21001 — 1 and n:

In(59]:=GCD(% - 1, 376875575426394855599989992897873239]

Oill(59)= 430653161739796481 

Thin Is a factor p. The other factor q is 

In|G0]:=376875575426394855599989992897873239/% 

f)ut|00)= 875328783798732119

I,i!I’# act; why tliis worked. The factorizations of p — 1 and <j — 1 are 

ln(lll]:=FnctorInteger[430553161739796481 - 1]

()iit[01]» {{2, 18 >, {3, 7 }, <5, 1 }, {7, 4 >, {11, 3 }, {47, 1 »  

lii[()2(:>»FnctorInteger [875328783798732119 - 1]

()iil|()2]=> {{2, 1 }, {61, 1 }, {20357, 1 }. {39301, 1 }, {8967967, 1 >}

Wn urn Hint 1001 is a multiple of p — 1, so 21001 = 1 (mod p). However, 100! is not 

n multiple of q — 1, so it is likely that 21001 ^  1 (mod q). Therefore, both 2lom — 1 

iiml luwi* p as a factor, but only pq has q as a factor. It follows that the gcd is p.
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A. 6 Examples for Chapter 8

E x a m p le  1. Suppose there are 23 people in a room. What is the probability 

that at least two have the same birthday?

Solution: The probability that no two have the same birthday is i/3G5)

(note that the product stops at i = 22, not i = 23). Subtracting from I gives the 

probability that at least two have the same birthday:

In[l]:= 1 - Producfc[l. - i/365, {i, 22}]

Out[l]= 0.507297

Note that we used 1. in the product instead of 1 without the decimal point. If we 

had omitted the decimal point, the product would have been evaluated as a rational 

number (try it, you’ll see).

E x a m p le  2. Suppose a lazy phone company employee assigns telephone numbers 
by choosing random seven-digit numbers. In a town with 10,000 phones, what is 

the probability that two people receive the same number?

In[2]:= 1 - Product[l. - i/10*7, {i, 9909}]

Out]2]= 0.99327

Note that the number of phones is about three times the square root of the number 

of possibilities. This means that we expect the probability to be high, which it is. 

From Section 8.4, we have the estimate that if there are around v^2(ln 2)107 =  3723 

phones, there should be a 50% chance of a match. Let’s see how accurate this is:

In(3]:= 1 - Product[l. - i/10'7, i, 3722]

Out [3]= 0.499895

A.7 Examples for Chapter 12

E x a m p le  1. Suppose we have a (5, 8) Shamir secret sharing scheme. Everything 

is mod the prime p =  987541. Five of the shares are

(9853,853), (4421,4387), (6543,1234), (93293,78428), (12398,7563).

Find the secret.

Solution: One way: First, find the Lagrange interpolating polynomial through 

the five points:

ln[l]:=InterpolatingPolynomial[ { {9853, 853 }, {4421, 4387 }, {6543, 

1234 >, {93293, 78428 >, {12398, .7563 } }, x]

^  , 1767 , , 2406987 , 8464915920541
Out[l]= 853 -f* (-----+ (4* - + (— ■ — )

1 1 x 2716 x 9538347560 x 3130697195363428640000;
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49590037201346406337547 -93293 + x) ,,
----------------------- 2---------—)(—6543 + x))(—4421 + x))

133788641510994876594882226797600000 ,A

(-9863+ x)

Now evaluate at x = 0 to find the constant term (use /.x— > 0 to evaluate at 
1 = 0):

In[2].'=%/. x-> 0

1 1 22298106918499146099147037799600000 

We need to change this to on integer mod 987541, so we find the multiplicative 
inverse of the denominator:

In[3]:=PowerMod[Denominator|%], -1, 087541]

Out[3]= 509495

Now, multiply times the numerator to get the desired integer:

In[4]:=Mod[Numerator[%%]*%, 987541]

Out [4]= 678987

Therefore, 678987 is the secret.
Here is another way. Set up the matrix equations as in the text and then solve 

for the coefficients of the polynomial mod 987541:

In[5]:=Solve({{{l, 9853, 9853 2, 9853*3, 9853*4}, {1, 4421, 4421*2, 

4421*3, 4421*4 }, {1, 6543, 6543'2, 6543*3, 6543*4}, {1, 03293, 93293*2, 

93293*3, 93293*4}, {1, 12398, 12398*2, 12398*3, 12398*4 

}}.{{s0}, {s i} , {s2}, {S3}, {s4}} = =  {{853}, {4387}, {1234}, {78428}, 

{7563}}, Modulus = — 987541}, Mode -> Modular]

Out(5]= { {Modulus -> 987541, sO -> 678987, s i -> 14728, s2 ->
1651, s3 -> 574413, s4 -> 456741 } }

The constant term is 678987, which is the secret.

A .8 Examples for Chapter 13

Example 1. Here is a game you can play. It is essentially the simplified version 
of poker over the telephone from Section 13.2. There ore five cards: ten, jack, 
queen, king, ace. They are shuffled and disguised by raising their numbers to a 
random exponent mod the prime 24691313099. You are supposed to guess which 
one is the ace. To start, pick a random exponent. We use the semicolon after kl\ide 
so that we cannot cheat and see what value of k is being used.

In[l]:= k =  khide;

Now, shuffle the disguised cards (their numbers are raised to the fcth power mod p 
and then randomly permuted):
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In[2]:= shuffle

Out[2]= {14001090567, 16098641856, 23340023892, 20919427041, 

7768690848}

These are the five cards. None looks like the nee; thnt's because their numbers hove 

been raised to powers mod the prime. Moke a guess anyway. Let’s see if you're 

correct.

In(3|:= reveal[%]

Out[3]= {ten, ace, queen, jack, king}

Let’s play again:

In[4]:= k =  khide;

In [5]:= shuffle

Out|5]= {13015921305, 14788966861, 23856418969, 22566749952, 

8361552666}

Make your guess (note that the numbers are different because a different random 

exponent was used). Were you lucky?

In[6]:= reveal[%]

Out[6]= {ten, queen, ace, king, jack}

Perhaps you need some help. Let’s play one more time:

In[7]:= k  =  khide;

In[8]:= shuffle

Out[8]= {13471751030, 20108480083, 8636729758, 14735216549, 

11884022059}

We now ask for advice:

In(9]:= advise[%]

Out[9]- 3

We are advised that the third card is the ace. Let's see (note that %% is used to 

refer to the next to lost output):

In[10]:= reveal[%%]

0ut[10]= {jack, ten, ace, queen, king}

How does this work? Read the part on “How to Cheat" in Section 13.2. Note that 

If we raise the numbers for the cards to the (p — l )/2 power mod p, we get

In[ll]:= PowerMod[{200514, 10010311, 1721050514, 11091407,

10305), (24691313099- 1)/ 2, 24691313099]

O u t( ll]= { l, 1, 1, 1, 24691313098}

Therefore, only the acc is a quadratic nonresidue mod p.
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A.9 Examples for Chapter 16

Exam ple  I .  All of the elliptic curves we work with in tills chapter are elliptic 
curves mod n. However, it is helpful use the graphs of elliptic curves with real 
numbers in order to visualize what is happening with the addition law, for example, 
even though such pictures do not exist mod n. Therefore, let’s graph the elliptic 
curve y2 = x(x — 1)($ + 1).

First, load a graphics package:

In[l):=«Graphics'ImplicltPlot‘

To graph the curve, we’U specify that — 1 < x < 3:

In[2]:=ImplicitPlot[y‘ 2 = =  x*(x - l)*(x  + 1), {x, -1, 3 }]

Exam ple  2. Add the points (1, 3) and (3, 5) on the elliptic curve y~ = i 3 + 
24a: + 13 (mod 29).

In[3]:=addell[ {1, 3 }, {3, 5 >, 24, 13, 29]

Out[3|= {26, 1 }

You can check that the point (26, 1) is on the curve: 263 + 24 - 26 + 13 = I2 
(mod 29).

Exam ple  3. Add (1, 3) to the point at infinity on the curvc of the previous 
example.

In(4]:=addell[ {1, 3 }, {"infinity", "infinity” }, 24, 13, 29]

Graphics
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Out(<l]= <1, 3 }

As expected, adding the point at infinity to a point P  returns the point P.

E x a m p le  4. Let P  =  (1,3) be a point on the elliptic curve i /  =  i 3 +2<lx + 13 

(mod 29). Find 7P.

In[5]:=multell[ {1, 3 }, 7, 24, 13, 29]

Out[5]= {15, 6 }

E x a m p le  5. Find t(l,3 ) for k =  1,2 ,3,...,40 on the curve of the previous 

example.

In[6].-multsell[ {1, 3 }, 40, 24, 13, 29]

Out[G]= <1, {1,3}, 2, {11,10}, 3. {23,26}, 4, {0,10}, 5, {19,7>, 6 , {18,19}, 7, 

<15,6},8,{20,24},9,{4,12},10,{4,17},11,{20,5},12,{15,23},13,{18,10}, 

14,{19,22}, 15. {0,19}, 16,{23,1}, 17,{U , 19},IB ,{1,26}, 19,

{ " in f in i ty " ," in f in ity " } ,20,{1.3},21,{11,10}, 22,{23,28},23.{0,10},

24,{19,7}, 25,{18,19},26,{15,6},27,{20,24},28,{4,12},29,{4,17},

30,{20,5},31,{15,23},32,{18,10}.33,{19,22}, 34,{0,19},35,{23,1},36, 

{11,19},37,{1,26}, 38,{ " in f in i ty " ," in f in ity " } ,39,{1,3},40,{11,10}}

Notice how the points repeat after every 19 multiples.

E x a m p le  6. The previous four examples worked mod the prime 29. If we work 

mod a composite number, the situation at infinity becomes more complicated since 

we could be at infinity mod both factors or we could be at infinity mod one of 
the factors but not mod the other. Therefore, we stop the calculation if this last 

situation happens and we exhibit a factor. For example, let's try to compute 12P, 

where P  =  (1,3) is on the elliptic curve jr  =  i 3 - 5 i  + 13 (mod 209):

In[7]:=multell[ {1, 3 }, 12, -5, 13, 11*19]

Out[7]= {"f actor=", 19 }

Now let's compute the successive multiples to see what happened along the way: 

In[8):=multsell[ {1, 3 >, 12, -5, 13, 11*19]

Out[8j=  1. {{1,3}, 2 ,{91,27}, 3, {118,133}, 4. {148,182}, 5, {20,35},

6 , {"factor=” , 19}}

When we computed 6P, we ended up at infinity mod 19. Let’s see what is happening 
mod the two prime factors of 209, namely 19 and 11:

In[9]:=multsell[{l,3}, 12, -5, 13, 19]

Out[9]= 1, {{1.3}. 2. {15,8}, 3, {4.0}. 4, {15.11}, 5. {1,16},

6 , { " in f in ity " ," in f in ity " } , 7 ,{1 ,3},8,{15,8},9,{4,0},10,{16,11},

11,{1 ,16}, 12,{ " in f in i ty " , " in fin ity "}}
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In[10|:=multsell[ {1, 3 }, 20, -5, 13, 11]

Out[10]= 1, {{1,3},2 , {3,6},3. {8 , 1} ,4 ,{6 ,6}, 5. {9,2}, 6. {6 ,10} ,7 , {2 ,0},

B,{6,1},9,{9,9},10.{6,6},11,{6,10},12.{3,6},13,{1,8},

14,{ " in f in i ty " ." in f in ity " } ,15,{1,3}, 16,{3,5},17,{8,1},18,{5,6},

19,{9.2},20,{6,10}}

After six steps, we were at infinity mod 19, but it takes 14 steps to reach infinity 

mod 11. To find 6P, we needed to invert a number that was 0 mod 19 and nonzero 

mod 11. This couldn't be done, but it yielded the factor 19. This is the basis of 

the elliptic curve factorization method.

Example 7. Factor 193279 using elliptic curves.

Solution: First, we need to choose some random elliptic curves and a point on 

each curve. For example, let's take P =  (2,4) and the elliptic curve

I f  =  i 3 -  l O i  + b (mod 193279).

For P to lie on the curve, we take 6 =  28. We'll also take

y2 =  i 3+ 11$-11, P = ( l , l )

=  x3 + 17i — 14, P =  (1,2).

Now we compute multiples of the point P. We do the analog of the p — I method, 
so we choose a bound B, say B - 12, and compute B\P.

In[ll]:= multell[{2,4}, Factorial(l2], -10, 28, 193279]

Out[ll]= {factor-, 347}

In[12]:= m ulte ll[{ l,l} , Factorial[l2], 11, -11, 193279]

Out|12]= {13862, 35249}

In|ll]:= multell[{l, 2}, Factorial[l2], 17, -14, 193279]

Out]ll]= {factor*, 557}

Let's analyze in more detail what happened in these examples.

On the first curve, 266P ends up at infinity mod 557 and 35P  is infinity mod 

347. Since 266 =  2-7-19, it has a prime factor larger than B = 12, so B!P is not 

infinity mod 557, But 35 divides Bi, so B\P is infinity mod 347.-

On the second curve, 356P =  infinity mod 347 and 561P =  infinity mod 557. 

Since 356 =  4-89 and 561 =3-11-17, we don't expect to find the factorization 

with this curve.

The third curve is a surprise. We have 331P =  infinity mod 347 and 272P  = 

infinity mod 557. Since 331 is prime and 272 =  16 • 17, we don't expect to find 

the factorization with this curve. However, by chance, an intermediote step in 

the calculation of B\P yielded the factorization. Here's what happened. At one 

step, the program required adding the points (184993, 13462) and (20678, 150484).
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These two points are congruent mod 557 but not mod 347. Therefore, the slope of 

the line through these too points is defined mod 347 but is 0/0 mod 557. When 

we tried to find the multiplicative inverse of the denominator mod 193279, the gcd 

algorithm yielded the factor 557. This phenomenon is fairly rare.

E x a m p le  8. Here is how to produce the example of an elliptic curve ElGamal 

cryptosystem from Section 16.5. For more details, see the text. The elliptic curve 

is y2 =  i 3 + 3x + 45 (mod 8831) and the point is G =  (4,11). Alice’s message is 

the point Pm =  (5,1743).

Bob bus chosen his secret random number ag = 3 and has computed at,G:

ln[l5]:=multell[{4, 11}, 3, 3, 45, 8831]

Out[15]= {413, 1808}

Bob publishes this point. Alice chooses the random number k = 8 and computes 

kG and Pm + k(asG)-.

In[l6]:=multell[{4, 11}, 8, 3, 45, 8831]

Out(16]= {5415, 6321}

ln[17]:=addell[{5, 1743}, multcll[{413, 1808}, 8, 3, 45, 8831), 3, 45, 8831] 

Out[17]= {6626, 3576}

Alice sends (5415,6321) and (6626, 3576) to Bob, who multiplies the first of these 

point by ag:

In[18]:=multell[{5415, 6321}, 3, 3, 45, 8831]

Out[I8]= {673, 146}

Bob then subtracts the result from the last point Alice sends him. Note that he 

subtracts by adding the point with the second coordinate negated:

ln[19|:=addell[{6626, 3576}, {673, -146}, 3, 45, 8831]

Out[19]={5, 1743}

Bob has therefore received Alice's message.

E x a m p le  9, Let's reproduce the numbers in the example of a Diffie-Hellmnn key 

exchange from Section 16.5: The elliptic curve is y2 s  x3 + x + 7206 (mod 7211) 

and the point is G =  (3,5). Alice chooses her secret Na =  12 and Bob chooses his 

secret Ng =  23. Alice calculates

Ia|20|:=multell[{3, 5}, 12, 1, 7206, 7211]

0ut[20]= {1794, 6375}

She sends (1794,6375) to Bob. Meanwhile, Bob calculates 

In[21]:=multelll{3, 5}, 23, 1, 7206, 7211]
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Out[21]= {3861, 1242}

and sends (3861,1242) to Alice. Alice multiplies what she receives by Na and Bob 

multiplies what he receives by N b ‘-

In(22j:=multell[{3861, 1242}, 12, 1, 7206, 7211]

Out[22]= {1472, 2098}

In[23]:=multell[{l794, 6375}, 23, 1, 7206, 7211]

Out[23]= {1472, 2098}

Therefore, Alice and Bob have produced the same key.
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Maple® Examples

These computer examples are written in Maple. If you have Maple available, you 
should try some of them on your computer. If Maple is not available, it is still 
possible to read the examples. They provide examples for several of the concepts 
of this book. For information on getting started with Maple, see Section B.l. To 
download a Maple notebook that contains the necessary commands, go to

http://www.prenhall.com/washington

B .l Getting Started with Maple

1. Download the Maple notebook math.mws that you find using the links 
starting at http://www.prenhalI.com/washinglon

2. Open Maple (on a Unix machine, use the command xmaple; on most other 
systems, click on the Maple icon)), then open math.mws using the menu options 
under File on the command bar at the top of the Maple window. (Perhaps this is 
done automatically when you download it; it depends on your computer settings.)

3. With math.mws in the foreground, press the Enter or Return key on your 
keyboard. This will load the functions and packages needed for the following ex
amples. Ignore any warning messages about names being redefined.

4. Go to the command bar at the top and click on File. Move the arrow down 
to New and click. A new notebook will appear on top of math.mws. However, all 
the commands of math.mws will still be working.

5. To give the new notebook a name, use the File command and scroll down 
to Save As.... Then save under some name with a .mws at the end.

495
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0. You are now ready to use Maple. If you want to try something cosy, type 
l+2*3+>l'5; (don’t forget the semicolon) and then press the Return/Enter key. The 
result 1031 should appear (it’s 1 + 2 • 3 + 46).

7. Go to the Computer Examples in Section B.3. Try typing in some of the 
commands there. The outputs should be the same as those in the examples. Note 
that all commands end with a semicolon (alternatively, you can use a colon to 
suppress the output). Press the Return or Enter key to make Maple evaluate an 
expression.

ti. If you want to delete part of your notebook, move the arrow to the black 
line at the left edge of the window and double click with the left button. The 
highlighted part can be deleted by pressing the Back Space key or by clicking on 
Edit on the top command bar then clicking on Cut on the menu that appears.

0. Save your notebook by clicking on File on the command bar, then clicking 
on Save on the menu that appears.

10. Print your notebook by clicking on File on the command bar, then clicking 
on Print on the menu that appears. (You will see the advantage of opening a new 
notebook in Step 4; if you didn’t open one, then all the commands in math.mws 
will also be printed.)

11. If you make a mistake in typing in a command and get an error message, 
you can edit the command and hit Return or Enter to tty again. You don’t need 
to retype everything.

12. Look at the commands available through the command bar at the top. For 
example, Options, then Output Display, allows you to change the output format. 
In the examples, we have used the Standard Math Notation option.

13. If you are looking for help or a command to do something, tty the Help 
menu on the command bar at the top. If you can guess the name of a function, 
there is another way. For example, to obtain information on gcd, type ?gcd (no 
semicolon) and Return or Enter.

B.2 Some Commands

The following are some Maple commands that arc used in the examples. Some, such 
as phi, are built into Maple. Others, such as addell, are in the Maple notebook 
available at

http://vnmi.prenhal I. com/washington

Each command is followed by a semicolon. If you want to suppress the output, use 
a colon instead.

The argument of a function is enclosed in round parentheses. Vectors are en
closed in square brackets. Entering matrix(m,n, [a ,h ,c ,. . .  ,z]) gives the m x n 
matrix with first row a,b, . . ,  and last row . . ,z. To multiply two matrices A 
and S, type evalm(A6*B).

If you want to refer to the previous output, use %. The next to last output is 
%%, etc. Note that % refers to the most recent output, not to the last displayed

http://vnmi.prenhal
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line. If you will be referring to an output frequently, it might be better to name 
it. For example, g:=phi(12345) defines g to be the value of 0(12345). Note that 
when you are assigning a value to a variable in this way, you should use a colon 
before the equality sign. Leaving out the colon is a common cause of hard-to-find 
errors.

Exponentiation is written ns a"b. However, we will need to use modular expo
nentiation with very large exponents. In that case, use ai*b mod n.

Some of the following commands require certain Maple packages to be loaded 
via the commands

w i t h ( n u m t h e o r y ) , u i t h ( l i n a l g ) ,  w i t h ( p l o t s ) , w i t h ( c o m b i n a t )

These are loaded when the math.mws notebook is loaded. However, if you want 
to use a command such as nextprime without loading the notebook, first type 
vith(numtheory): to load the package (once for the whole session). Then you 
can use functions such as nextprime, isprime, etc. If you type with(numtkeory); 
with a semicolon, you'll get a list of the functions in the package, too.

Tile following are some of the commands used in the examples. We list them 
here for easy reference. To see how to use tlieni, look at the examples. We have 
used txt to refer to a string of letters. Such strings should be enclosed in quotes 
("string").

addell([x,y], [u,v] , b, c, n) finds the sum of the points (i,y) and (u,v) 
on the elliptic curve y~ = x3 + bx + c (mod n). The integer n should be odd. 

af f inecrypt (txt ,m, n) is the affine encryption of txt using mx + n. 
a llsh ifts  (txt) gives all 26 shifts of txt.
chrem( [a,b, . , .], [m,n, . . .  ]) gives a solution to the simultaneous congru

ences x = a (mod m),x = b (mod n)......
choose(txt,o,n) lists the characters in txt in positions that are congruent to 

n (mod m).
coinc(txt.n) is the number of matches between txt and txt shifted by n. 
corr(v) is the dot product of the vector v with the 26 shifts of the alphabet 

frequency vector.
phi (n) computes 0(n) (don't try very large values of n). 
igcdex(m,n, 'x ' , ’y’ ) computes the gcd of m and n along with a solution of 

mx + ny = gcd. To get x and y, type x;y; on this or a subsequent command line, 

i f  actor (n) factors n.
frequency(txt) lists the number of occurrences of each letter a through z in 

txt.

gcd(m,n) is the gcd of m and n.
inverse (H) finds the inverse of the matrix M.
lfsr(c ,k ,n ) gives the sequence of n bits produced by the recurrence that has 

coefficients given by the vector c. The initial values of the bits are given by the 
vector k.

lfsrlength(v,n) tests the vector v of bits to see if it is generated by a recur
rence of length at most n.
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Ifsreolve(v,n) computes the coefficients of a recurrence, given a guess n for 
the length of the recurrence that generates the binary vector v. 

majc(v) is the largest element of the list v. 
a mod n is the value of a (mod n).
multelH [x,y], m, b, c, n) computes m times the point (x, y) on the ellip

tic curve y2 = + bx + c (mod n).
multaellC [x,y] , m, b, c, n) lists the first m multiples of the point (x,y) 

on the elliptic curve y2 = x3 + bx + c (mod n). 
nextprime(x) gives the next prime > x.
num2text(n) changes a number n to letters. The successive pairs of digits must 

each be at most 26; space is 00, a is 01, z is 26.
primroot (p) finds a primitive root for the prime p.
B hift(tx t.n ) shifts tx t by n.

text2num(txt) changes txt to numbers, with spaca=00, a=01, . . . .  z=25. 

vigenere (tx t, v) gives the Vigenere encryption of tx t using the vector v ns 
the key.

vigvec (txt ,m,n) gives the frequencies of the letters a through z in positions 
congruent to n (mod m).

B.3 Examples for Chapter 2

Exam ple  1. A shift cipher was used to obtain the ciphertext kddkmu. Decrypt 
it by trying all possibilities.

> a l ls h if t s ( "kddkmu");

"kddkmu"

"leelnv"

"mffmow"

"nggnpx"
11 ohhoqy"

"p iiprz"

"qjjqaa"
"rkkrtb"

"allsuc"

"tmmtvd11 ,

"unnuwe”

"voovxf"

"wppvyg"

"xqqxzh"

"yrryai"

"zaszbj"

"attack"

"buubdl"
"cwcem”
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"dwvdfn"

"entego"

"fyyfhp"

"gzzgiq"

"haahjr"

"ibbiks"

"Jc c jlt"

Ab you can see, attack is the only word that occurs on this list, so that was the

plaintext.

E x a m p le  2. Encrypt the plaintext message Cleopatra using the affine function

7x + 8:

> affinecryptO 'cleopatra", 7, 8);

"vhkcjilx i"

Example 3. The ciphertext mzdvezc was encrypted using the affine function

5x + 12. Decrypt it.
Solution: First, solve y = 5x + 12 (mod 26) for x to obtain x = 5-1(y - 12).

We need to find the inverse of 5 (mod 26):

> 56 * (-1) mod 26;

21

Therefore, x =  21(y - 12) =  21y - 12 • 21. To change -12 • 21 to standard form:

> -12*21 mod 26;

8

Therefore, the decryption function is x =  21y + 8. To decrypt the message:

> affinecrypt("mzdvezc", 21, 8);

"anthony"

In cose you were wondering, the plaintext was encrypted as follows:

> affinecrypt("anthony", 6, 12);

"mzdvezc"
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Example 4. Here is the example of a Vigenere cipher from the text. Let’s see 

how to produce the data that was used in Section 2.3 to decrypt it. For convenience, 

we've already stored the ciphertext under the name whq.

> whq;

whqwvrhmuagjgthkihtsaejchlsf cbgvucrlryqtfavgahwkcuhvauglqhnalrlja 
hbltsplaprdxlJoveaghlqwkaflBkuvapwqtwspgoelkcqyfnsvulJsniqkgnrgybvl 

ugovlokhkazkqkxzgyhcecmelujoqkwfuvefqhkljrclrlkbienqfrjljsdhgrhlefq 

twlauqrhwdmwlgusglkkflryvcvvspgpmlkaesjvoqxeggveyggzmljcxxljavpaivw 

ikvrdrygfrjljslveggveyggeiapuuisfpbtgnwwmuczrvtwglrwugumnczvile

Find the frequencies of the letters in the ciphertcxt:

> frequency(vvhq);

[ 8, 5, 12, 4, 15, 10, 27. 16, 13. 14, 17, 25. 7, 7, 5, 9, 14, 17, 

24, 8, 12, 22, 22, 5, 8, 5]

Let’s compute the coincidences for shifts of 1, 2, 3, 4, 5, C:

> colncCwhq, 1);

14

> coinc(whq,2) ;

14

> coinc(whq,3) ;

16

> coinc(whq,4) ;

14

> coinc(whq,5) ;

24

> co inctw hq,6) ;

12
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We conclude that the key length Is probably 5. Let’s look at the 1st, 6th, 11th, ... 

letters (namely, the letters in positions congruent to 1 mod 5):

> choose (whq, 5, 1);

"wuttcccqgcunj tp j gkuqpknj kygkkgcj fqrkqj rqudukvpkvggj j iv g j ggp 

fnctruce"

> frequency(%);

[0, 0, 7, 1, 1, 2, 9, 0, 1, 8, 8, 0, 0, 3, 0, 4, 5, 2, 0, 3,

6. 5, 1, 0, 1, 0]

To express this as a vector of frequencies:

> vigvec(whq, 5, 1);

[0., 0 ., .1044776119, .01492537313. .01492537313,

.02985074627, .1343283582, 0 ., .01492537313, .1194029851,

.1194029851, 0 ., 0 ., .04477611940, 0 ., .05970149254,

.07462686567, .02985074627, 0 ., .04477611940, .08955223881, 

.07462686567, .01492537313, 0 ., .01492537313, 0.]

The dot products of tliis vector with the sliifts of the alphabet frequency vector are 

computed ns follows:

> corr (’/,);

.02501492539, .03910447762, .07132835821, .03682089552,

.02749253732, .03801492538, .05120895523, .03014925374,

.03247761194, .04302985074, .03377611940, .02985074628,

.03426865672, .04456716420, .03555223882, .04022388058,

.04343283582, .05017910450, .03917910447, .02958208957.

.03262686569, .03917910448, .03655223881, .03161194031,

.04883582088, .03494029848

The third entry is the maximum, but sometimes the largest entry is hard to locate. 

One way to find it is

> maxC/.);

.07132835821

Now it is easy to look through the list and find this number (it usually occurs only 

once). Since it occurs in the third position, the first shift for this Vigenere cipher 

is by 2, corresponding to the letter c. A procedure similar to the one just used

(using vigvec (whq, 5 ,2 )........ vigvec (whq, 5,5)) shows that the other shifts

are probably 14, 3, 4, 18. Let's check that we have the correct key by decrypting.

> vigenere (whq, - [2, 14, 3, 4, 18]);
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them ethodusedforthepreparationandreadingofcodem esaagesissim pleinthe 
extrem eandattheBam etim elm possibleoftranslationunlessthekeyisknoirath 
eeasevithwhichthekeymaybechangediBanotherpointinfavoroftheadoptiono 
fthiscodebythosedeairingtotrangm itlm portantm eaaageauithoutthaslight 
estdangerofth eirm essagesbeln greadbyp oliticalorbusin essrivalB B tc

For the record, the plaintext was originally encrypted by the command

> vigenereCZ, [2, 14, 3, 4, 16]);

w hqvw rhm uBgjgthklhtaaej c h ls f  c b g w c r lr y q tf  evgahvkcuhwauglqhnelrlja 
hbltspisprdjcljavaeghlqvkaaskuuepuqtuvapgoelkcqyfnavyljsniqkgnrgybul 
w govlokhkazkqkxzgyhcecm B lujoqkvfw efqlikljrclrlkbiB nqfrjlj sdhgrhlafq 
tulauqrhHdmulgusglkkflryvcwvapgpmlkaBBjvoqxeggveyggzmljcxxljavpaivw 
ikvrdrygf rjljElveggvayggaiapuuiBfpbtgnm m uczrvtvglrvugunm czvile

E x a m p le  5. The ciphertext

22,09,00,12,03,01,10,03,04,08,01,17 

wos encrypted using a Hill cipher with matrix

Decrypt it.

Solution: There are several ways to input a matrix. One way is the follow-

evalm(Ht*N) to multiply matrices AI and N. Type evalm(v4*M) to multiply a 

vcctor v on the right by a matrix 71/.

Here is the encryption matrix.

> M;-matrix(3 ,3 ,[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,10]);

1 2 3 

4 5 6

7 8 10

Wii need to invert the matrix mod 26:

» lnvM:-map(x->x mod 26, inverse(M));

8 16 1

8 21 24

1 24 1
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The command map(x->x mod 26, E) takes each number in an expression E and 

reduces it mod 26.

This is the inverse of the matrix mod 26. We can check this as follows:

> M6*invH;

27 130 52
78 313 130

130 520 209

> map(x->x mod 26, ;

' 1 0 0 '
0 1 0

0 0 1

To decrypt, we break the ciphertext into blocks of three numbers and multiply each 

block on the right by the inverse matrix we just calculated:

> map(x->x mod 26, evalmC[22,09,00]ft*invM));

[14, 21, 4]

> map(x->x mod 26, evalm([12,03,01]6:*invH));

[17, 19, 7]

> map(x->x mod 26, evalm([10,03,04]6*invM));

[4, 7. 8]

> map(x->x mod 26, evalm( [08,01,17]fc*invM));

[11, 11, 23]

Therefore, the plaintext is 14, 21, 4, 17, 19, 7, 4, 7, 8, 11, 11, 23. Changing this 

back to letters, we obtain overthehlllx. Note that the final x was appended to 

the plaintext in order to complete a block of three letters.

E x a m p le  6. Compute the first 50 terms of the recurrence

x„+5 =  i„  + xn+2 (mod 2).

The initial values are 0,1,0,0,0.

Solution: The vector of coefficients is [1,0,1,0,0] and the initial values are given 
by the vcctor [0,1,0,0,0|. Type
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> l f s r ( [ l ,  0, 1, 0, 0], [0, 1, 0, 0, 0], 50);

[0, 1, 0. 0. 0, 0, 1, 0, 0, 1, 0. 1, 1, 0, 0, 1, 1, 1. 1, 1,
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0. 1, 0, 0, 1, 

0. 1, 1, 0, 0, 1, 1, 1. 1]

E xam p le  7. Suppose the first 20 terms of on LFSR sequence are 1, 0, 1, 0, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1. Find a recurrence that generates this sequence.

Solution: First, we need to find the length of the recurrence. The command 
I f  srlengthCv, n) calculates the determinants mod 2 of the first n matrices that 
appear in the procedure in Section 2.11:

> Ifs r le ng th ([1, 0, 1, 0, 1, 1, 1, 0. 0, 0, 0, 1, 1. 1. 0, 1,

0, 1, 0, 1], 10);

Cl. 1]
[2 . 1]
[3, 0]

C4. 1]
[5. 0]

C6, 1]

[7. 0]
C8. 0] 
[9. 0] 
[10, 0]

The lost nonzero determinant is the sixth one, so we guess that the recurrence has 
length 6. Ib  find the coefficients:

> lfsrsolva( [1, 0, 1, 0, 1. 1, 1, 0, 0. 0, 0, 1, 1, 1, 0, 1,

0. 1, 0, 1], 6); 

[1, 0, 1, 1, 1, 0]

This gives the recurrence aa

X„+6 = Xn + Xn+2 + *n+3 + Xr»+4 (mod 2).

E xam p le  8. The ciphertext 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, I, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0 was produced by adding the 
output of a LFSR onto the plaintext mod 2 (i.e., XOR the plaintext with the LFSR 
output). Suppose you know that the plaintext starts 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0. Find the rest of the plaintext.

Solution: XOR the ciphertext with the known part of the plaintext to obtain 

the beginning of the LFSR output:

> [1, 1. 1, 1. 1, 1. 0, 0, 0, 0, 0, 0. 1, 1, 1, 0, 0]
+ [0, 1, 1, 0, 1, 0, 1, 0. 1. 0, 0, 1, 1. 0, 0, 0, 1] mod 2;
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[1, o, o, 1, o, 1, 1, o, 1, o, o, i,  o, 1, l ,  o, l]

This Is the beginning of the LFSR output. Now let’s find the length of the recur
rence.

> lfsrlength(7., 8);

[1 . 1]
[2 , 0]
[3, 1]
[4 , 0]
[5, 1]

[6, 0]

£7, 0]
[8 . 0]

We guess the length is 5. To find the coefficients of the recurrence:

> Ifarsolve , 5);

[1, 1, 0, 0, 1]

Now we can generate the full output of the LFSR using the coefficients we just 
found plus the first five terms of the LFSR output:

> I f a r ( [1, 1, 0, 0, 1], [1. 0, 0, 1, 0], 40);

[1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1,

0, 1, 1, 0, 1, 0, 0, 1, 0, >1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0]

When we XOR the LFSR output with the ciphertext, we get back the plaintext:

> ’/. + [0, 1, 1, 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1, 1, 0 , 0 . 0 , 1 , 0 , 1 . 
0 , 1. 0 , 1. 0 , 1, 0 , 1, 0 . 1, 0 , 0 , 1 , 0 . 0 , 0 , 1, 0 , 1, 1. 0] 
mod 2;

[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

This is the plaintext.

B.4 Examples for Chapter 3

E x a m p le  1. Find gcd(23456,987654).

> gcd(23456, 987654);

2
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E x a m p le  2. Solve 23456$ + 987654i/ =  2 in integers x,y. 

igcdex(23456, 987654,'x ' , 'y ' ) ;

2

> x;y;

-3158

75

This means that 2 is the gcd and 23456 • (—3158) + 987654 • 75 =  2. (The command 

igcdex is for integer gcd extended■ Maple also calculates gcd’s for polynomials.) 

Variable names other than ’x’ and ’y ’ can be used if these let ten are going to be 

used elsewhere, for example, in a polynomial. We can also clear the value of x as 

follows:

> x:- ’x ' ;

x:=x

E x a m p le  3. Compute 234 ■ 456 (mod 789).

> 234*456 mod 789;

189

E x a m p le  4. Compute 234567870543 (mod 565656565).

> 2345676*876543 mod 565656565;

473011223

Example 5. Find the multiplicative inverse of 87878787 (mod 9191919191).

> 878787876"(-1) mod 9191919191;

7079995354

(the command 1/87878787 mod 9191919191; also works)

Example 6. Solve 7654x = 2389 (mod 65537).

Solution: Here is one way.

> uolvo(76B4*x=2389,x) mod 65537;
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43626

Here is another way.

> 2389/7654 mod 65637;

43626

Example 7. Find z with

x =  2 (mod 78), x =  5 (mod 97), x =  1

> chrem([2, 5, 1],[78, 97, 119]);

647480

We can check the answer:

> 647480 mod 78; 647480 mod 97; 647480 mod 119;

2
6
1

Example 8. Factor 123450 into primes.

> ifa c to r (123460);

(2)(3)(S )Z(823)

This means that 123450 =  2l3l5J823l .

Example 9. Evaluate 0(12345).

> p h i(12345);

6576

Example 10. Find o primitive root for the prime 65537.

> primroot(65537);

(mod 119).

3
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Therefore, 3 in u primitive root for 65537.

/  13 12 35 \

Example 11. Find the inverse of the matrix I 41 53 62 I (mod 999).
\ 71 68 10 J

Solution: First, Invert the matrix without the mod, and then reduce the matrix 

mod 999:

> inverBe(matrix(3,3, [13, 12, 3E, 41, 53, 62, 71, 6B, 10]));

3eea ?360 1111
34139 34139 34139

3902 2366 629
34139 34139 34139

976 32 JB7
34139 34139 34139 .

> map(x->x mod 999, '/,);

" 772 472 965 '

641 516 651

150 133 149

This is the inverse matrix mod 999.

Example 12. Find a square root of2G951G23672 mod the prune p = 98573007539. 

Solution: Since p =  3 (mod 4), we can use the proposition of Section 3.9:

> 269516236726'((96573007539 + l)/4 ) mod 98673007539;

96338017685

The extra parentheses in the exponent are necessary; otherwise, the exponent would 

be taken as 98573007539 + 1, and the result divided by 4. The other square root is 

minus the preceding one:

> mod 98573007539;

234989854

Example 13. Let n =  34222273 =  9803 • 3491. Find all four solutions of 

x- =  19101358 (mod 34222273).

Solution: First, find a square root mod each of the two prime factors, both of 

which ore congruent to 3 (mod 4):

> 19101358&*((9803 + l)/4 ) mod 9803;
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3998

> 191013584“((3491 + l)/4 ) mod 3491;

1318

Therefore, the square roots are congruent to ±3998 (mod 9803) and are congruent 
to ±1318 (mod 3491). There are four ways to combine these using the Chinese 
remainder theorem:

> chrem([3998, 1318],[9803, 3491]);

43210

> chrem([-3998, 1318],[9803, 3491]);

8397173

> chrem([3998, -1318] , [9803, 3491]);

25825100

> chrem( [-3998, -1318] , [9803, 3491]);

34179063

These are the four desired square roots.

B.5 Examples for Chapter 6

Example 1. Suppose you need to find a large random prime of 50 digits. Here 
is one way. The function nextprime finds the next prime greater than x. The 

function rand (a. .b) () gives a random integer between a and b. Combining these, 

we can find a prime:

> nextprime(rand(10*49..10*50)()) ;

73050570031667109175215303340488313456708913284291

If we repeat this procedure, we should get another prime:

> nextprime(rand(10*49..10*50)()) ;
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97476407694931303255724326040586144145341054568331

Example 2. Suppose you want to change the text hellohowareyou to numbers:

> text2num("hellohovareyou");

805121215081523011805251521

Note that we ore now using a — 1, b = 2, z = 26, since otherwise a’s at the 

beginnings of messages would disappear. (A more efficient procedure would be to 

work in base 27, so the numerical form of the message would be 8 + 5 • 27 + 12 ■

272 + -- 1- 21 • 2713 = 87495221502384554951. Note that this uses fewer digits.)

Now suppose you wont to change it back to letters:

> num2text(805121215081523011805251521);

"hellohowareyou"

Example 3. Encrypt the message h i using RSA with n = 823091 ond e = 17. 
Solution: First, change the message to numbers:

> text2num("hi11) ;

809

Now, raise it to the eth power mod n;

> %&*17 nod 823091;

596912

Example 4. Decrypt the ciphertext in the previous problem.

Solution: First, we need to find the decryption exponent d. To do this, wc need 

to find g!>(823091). One way is

> phi (823091) ;

821184

Another way is to factor n asp - q and then compute (p — 1)(<j — I)-.

> ifa c to r(823091);
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> 658*1248 .

821184

Since dc h  1 (mod 4>(n)), we compute the following (note that we are finding the 
inverse of e mod 0(rt), not mod n):

> 176*(-1) mod 821184:

48305

Therefore, d = 48305. To decrypt, raise the ciphertext to the Ah power mod n:

> 5969126*48305 mod 823091;

809

Finally, change bock to letters:

> num2text(809);

"hi"

Example 5. Encrypt hellohovareyou using RSA with n = 823091 and e = 17. 
Solution: First, change the plaintext to numbers:

> text2num("hellohovareyou");

805121215081523011805251521

Suppose we simply raised this to the eth power mod n:

> */,6*17 mod 823091);

447613

If we decrypt (we know d from Example 4), we obtain

> Xt‘ 48305 mod 823091;

(6 5 9 )(1 2 4 9 )

628883
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This is not the original plaintext. The reason is that the plaintext is larger than n, 
so we have obtained the plaintext mod n:

> 805121215061523011805251521 mod B23091;

62BB83

We need to break the plaintext into blocks, each less than n. In our cose, we use 
three letters at a time:

80512 121508 152301 180525 1521

> 805126*17 mod 823091;

757396

> 1215086*17 mod 823091;

164513

> 1523016*17 mod 823091;

121217

> 1805256*17 mod 823091;

694220

> 15216*17 mod 823091;

442163

The ciphertext is therefore 757396164513121217594220442163. Note that there is 
no reason to change this back to letters. In fact, it doesn't correspond to any text 
with letters.

Decrypt each block individually:

> 7573966*48305 mod 823091;

80512

> 1645136*48305 mod 823091;
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121508

etc.

We’ll now do some examples with large numbers, namely the numbers in the 
RSA Challenge discussed in Section 6.5. These are stored under the names rsan, 
rsae, rsap, rsaq:

> rsan;

114381625757868867669235779976146612010218296721242362562561842935 

706935245733897830597123563958705058989075147599290026879643541

> rsae;

9007

E xam p le  6. Encrypt each of the messages b, ba, bar, bard using non and 
rsae.

> teKt2num("b“)t*rsae mod rsan;

709467584676126685983701649915507861828763310606852354105647041144

86782261716497200122155332348462014053287987580899263765142534

> text2num ("ba""rsae mod rsan;

350451306089751003250117094498719542737882047539485930603136976982

27521759806027962270538031565564773352033671782261305796158951

> tBxt2num("bar")fc'rsae mod rsan;

448145128638551010760045308594921093424295316066074090703605434080

00843645986880405953102818312822586362580298784441151922606424

> text2num("bard")&*rsae mod rsan;

242380777851116664232028625120903173934852129590562707831349916142
56054323297179804928958073445752663026449873986877989329909498

Observe that the ciphertexts ore all the same length. There seems to be no easy 
way to determine tbe length of the corresponding plaintext.

E xam p le  7. Using the factorization rsan=rsap-rsaq, find the decryption expo
nent for the RSA Challenge, and decrypt the ciphertext (see Section 6.5).

First we find the decryption exponent:

> rsad:=rsae&*(-1) mod((rsap-l)*(reaq-l)):

Note that we use the final colon to avoid printing out the value. If you want to 
see the value of rsad, see Section 6.5, or don’t use the semicolon. To decrypt the 
ciphertext, which is stored as rsad, and change to letters:

> num2text(rsaclfraad mod rsan);
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"the magic uords are squeamish ossifrage"

E xam ple  8. Encrypt the message rsaencryptsmessagesuell using rsan and 
rsae.

> text2num("rsaencryptsmessagesvell“)6*rsae mod rsan; 

946394203490022593163058235392494964146409699340017097214043524182 

71950654254365584906013966328817753539283112653197553130781884

E xam ple  9. Decrypt the preceding ciphertext.
Solution: Fortunately, we know the decryption exponent rsad. Therefore, we 

compute

> 7,t*rsad mod rsan;

1819010514031825162019130519190107051923051212

> num2cext ('/,) ;

"rsaencryptsmessagesuell"

Suppose we lose the final digit 4 of the ciphertext in transmission. Let’s try to 
decrypt what's left (subtracting 4 and dividing by 10 is a mathematical way to 
remove the 4):

> Cm  - 4)/10)6*rsad mod rsan;

479629991731959886649023526295254864091136338943756298468549079705

88412300373487969657794254117158956921267912628461494475682806

If we try to change this to letters, we get a long error message. A small error in the 
plaintext completely changes the deprypted message and usually produces garbage.

Example 10. Suppose we are told that n = 11313771275590312567 is the 
product of two primes and that 0(n) = 11313771187608744400. Factor n.

Solution: We know (see Section G.l) that p and <j are the roots of X 2 — (n — 
<t>(n) + 1)X + n. Therefore, we compute

> solve(x“2 -

(11313771275590312567 - 11313771187608744400 + l)*x + 

11313771275690312567, x );

87852787151, 128781017
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Therefore, n — 128781017 • 87852787151. We also could have used the quadratic 
formula to find the roots.

Example 11. Suppose we know rsae and rand. Use these to factor rsan.
Solution: We use the universal exponent factorization method from Section 6.4. 

First write rsaersad— 1 = 2‘ ra with m odd. One way to do this is first to compute 
rsae ■ rsad - 1, and then keep dividing by 2 until you get an odd number:

> raae*rsad - 1;

961034419617782266156919023359583834109854129051878330250644604041

155985575087352659156174898557342995131594680431086921246830097664

> -/./2;

480517209808891133078459511679791917054927064525939165126322302020 

577992787643676329678087449278671497565797340215543460622915048832

> 7./2;

240268604904445566539229765839895958527463632262969582562661151010

288996393771838164789043724639335748782898670107771730311457524416

We continue this way for six more steps until we get

375404070163196197717546493499837435199161769160889972754158048453

5765568652684971324828808197489621074732791720433933286116523819

This number is m. Now choose a random integer a. Hoping to be luck)', we choose
13. As in the universal exponent factorization method, we computc

> 136*'/, mod rsan;

275743685070065305922434948688471611984230957073078056905698396470

30183109839862370800529338092984795490192643587960859870551239

Since this is not ±1 (mod rsan), we successively square it until we get ±1:

> 'Z6*2 mod rsan;

483189603219285155801384764187230345541040990699408462254947027766

54996412582955636035266156108686431194298574075854037512277292

> '/.ft*2 mod rsan;

781728141548773565791419280687540000219487870664838209179306251152

15181839742056013275521913487560944732073516487722273875579363

> Xi*2 mod rsan;

428361912025087287421992990405829002029762229160177671675518702165

09444518239462186379470569442055101392992293082259601738228702

> y,6*2 mod rsan;

1
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Since the last number before the 1 was not ±1 (mod rsan), we have an example of
i  # ±1 (mod rsan) with x~ = I. Therefore, gcd(z - 1, rsan) is a nontrivial factor 
of rsan.

> gcd (M  - 1, rsan);

32769132993266709549961988190834461413177642967992942539798288533 

This is rsaq. The other factor is obtained by computing rsan/rsaq. 

rsan/'/,;

3490529510847650949147849619903898133417764638493387843990820577 

This is rsap.

E xam p le  12. Suppose you know that

1508834755694512 = 168875705328582 (mod 205611444308117).

Factor 205611444308117.
Solution: We use the Basic Principle of Section 6.3:

> gcd(150883475569451-16887570532858,205611444308117);

23495881

This gives one factor. The other is

> 205611444308117/%;

8750957

We can check that these factors are actually primes, so we can’t factor any further:

> isprima (’/,'/„);

true

> i6prim e(M );

true

Exam p le  13. Factor n = 376875575426304855599989092897873239 by the p - 1 
method.

Solution: Let's choose our bound as B =  100, and let's take o = 2, so we 
compute 21001 (mod n):

> 26~factorial(100)

mod 376875575426394855599989992897873239;
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369676678301956331939422106251199512

Then we compute the gcd of 2loa! - 1 and n:

> gcd(7, - 1, 376875575426394855599989992897873239);

430553161739796481

This is a factor p. The other factor q is

> 376875575426394856599989992897873239/*/.;

875328783798732119

Let's see why this worked. The factorizations of p — 1 and q — 1 are

> Ifa c to r (430563161739796481 - 1);

(2)18(3)7(5)(7 )‘ ( i l ) 3(47)

> ifa c to r (875328783798732119 - 1);

(2)(61)(8967967)(20357)(39301)

We see that 100! is a multiple of p — 1, so 21001 = I (mod p). However, 100! is not 
a multiple of q — 1, so it is likely that 210a' ^  1 (mod q). Therefore, both 2im - 1 
and pq have pas a factor, but only pq has q as a factor. It follows that the gr.d is p.

B.6 Examples for Chapter 8

E xam p le  1. Suppose there are 23 people in a room. What is the probability 
that at least two have the same birthday?

Solution: The probability that no two have the same birthday is flfZi (1—i/365) 
(note that the product stops at i =  22, not i =  23). Subtracting from 1 gives the 

probability that at least two have the same birthday:

> l-mul(1.-1/365, i = l ..22);

.6072972344
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Note that we used 1. in the product instead of 1 without the decimal point. If we 

had omitted the decimal point, the product would have been evaluated as a rational 

number (try it, you'll see).

E x a m p le  2. Suppose o lazy phone company employee assigns telephone numbers 

by choosing random seven-digit numbers. In a town with 10,000 phones, what is 

the probability that two people receive the same number?

> l-m u l(l.- i/10 "7 , 1=1. .9999);

.9932699135

Note that the number of phones is about three times the square root of the number 

of possibilities. This means that we expect the probability to be high, which it is. 

From Section 8.4, we have the estimate that if there are around •/2(ln 2) 107 ~ 3723 

phones, there should be a 50% chance ol a match. Let’s see how accurate this is:

> l-m u l(l.- i/10*7 , 1-1..3722);

.4998945410

B.7 Examples for Chapter 12

E x am p le  1. Suppose we have a (5, 8) Shamir secret sharing scheme. Everything 

is mod the prime p = 9875‘11. Five of the shares are

(9853,853), (4421,4387), (6543,1234), (93293,78428), (12398,7563).

Find the secret.
Solution: One way: First, find the Lagrange interpolating polynomial through 

the five points:

> ln te rp ([9853,4421,6543,93293,12398],

[853,4387,1234,78428,7563],*);

49590037201346405337547 _4

~ 133788641610994876594882226797600000* 

353130857169192557779073307 3 

^ 8919242767399658439658815119040000X 

8829628978321139771076837361481 2 

19112663072999268084983175256800000* 

9749049230474450716950B03519811081 

^44596213836998292198294075599200000*
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+ 22298106918499146099147037799600000

Now evaluate a t x =  0 to find the constant term:

> eval(y,,x=0) ;

204484326154044983230114592433944282591

22298106918499146099147037799600000

We need to change this to an integer mod 987541:

> % mod 987541;

678987

Therefore, C78987 is the secret.

Here is another way. Set up the matrix equations as in the text and limn solve 

for the coefficients of the polynomial mod 987541:

> map(x->x mod 987541,evalm dnverse(m atrlx (5 ,5, 

[1,9853,9853*2,9853*3,9853*4,

1,4421,4421*2,4421*3,4421*4,

1,6543,6543*2,6543*3, 6543*4,

1, 93293, 93293*2.93293*3, 93293*4,

1, 12398, 12398*2,12398*3,12398*4])) 

ft*m a tr ix (5 ,l,[853,4387,1234,78428,7663])));

" 678987 '

14728 

1651 

574413 

456741 _

The constant term is 678987, which is the secret.

B.8 Examples for Chapter 13

E x a m p le  1. Here is a game you can play. It is essentially the simplified version 

of poker over the telephone from Section 13.2. There are five cards: ten, jack, 

queen, king, ace. They are shuffled and disguised by raising their numbers to a 

random exponent mod the prime 24691313099. You are supposed to guess which 

one is the ace.
To start, pick a random exponent. We use the colon after khideO so that we 

cannot cheat and see what value of k is being used.
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Now, shuffle the disguised cards (their numbers are raised to the kth power mod p 

and then randomly permuted):

> s h u f f le (k ) ;

[14001090567, 1609B641856, 23340023B92, 20919427041, 776B690B48]

These are the five cards. None looks like the ace; that's because their numbers have 

been raised to powers mod the prime. Make a guess anyway. Let’s see if you're 

correct.

> reveal ('/.);

["ten", "ace ", "queen", " ja c k " , "king"]

Let’s play again:

> k:= kh ide ():

> s h u f f le (k ) ;

[13015921305, 14788966861, 23655418969, 22566749952, 8361552666]

Make your guess (note that the numbers are different because a different random 

exponent was used). Were you lucky?

> reveal ('/,);

[ "te n ", "queen", “ace", “k ing " , "jack"]

Perhaps you need some help. Let's play one more time:
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> k:- k h id e O :

> s h u ff le (k ) ;

[13471751030, 20108480083, 8636729758, 14736216549, 11884022069]

We now ask for advice:

> adviseC/,);

3

We are ndvised that the third card is the ace, Let's see (recall that %% is used to 

refer to the next to lost output):

> reveal (*/.*/,);

[ "jack " , "ten " , "ace", "queen” , "king"]

How does this work? Read the port on “How to Cheat" in Section 13.2. Note that 
if we raise the numbers for the cards to the (p — l)/2 power mod p, we get

> map(x->x6*( (24691313099-l)/2) mod 24691313099,

[200614, 10010311, 1721060614, 11091407, 10305]);

[1, 1, 1, 1, 24691313098]

Therefore, only the ece is a quadratic nonresidue mod p.

B.9 Examples for Chapter 16

Example 1. All of the elliptic curves we work with in this chapter are elliptic 

curves mod n. However, it is helpful use the graphs of elliptic curves with real 

numbers in order to visualize what is happening with the addition law, for example, 

even though such pictures do not exist mod n.

Let's graph the elliptic curve y2 =  x(x— 1 )(*+!). We’ll specify that — 1 < x < 3 

and — 5 < y < 5.

> im p lic itp lo t(y*2 = x*(x - l ) * (x  + 1), x = - l..3,y=-5..5);
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E x a m p le  2. Add the points (1, 3) and (3, 5) on the elliptic curve i f  =  i 3 + 

24z + 13 (mod 29).

> a d d a l l( [1,3], [3,5], 24, 13, 29);

[26,1]

You can check that the point (26, 1) is on the curve: 2G3 + 24 • 26 + 13 =  l 2 

(mod 29).

E x a m p le  3. Add (1, 3) to the point ot infinity on the curve of the previous 

example.

> a d d a l l( [ l ,3 ] , [ " in f in ity " ." in f in ity "  3. 24, 13, 29);

[1,3]

As expected, adding the point at infinity to a point P  returns the point P.

E x a m p le  4 . Let P  =  (1,3) be a point on the elliptic curve y1 =  z3 + 24z + 13 

(mod 29). Find 7P.

> m u lte llC [1,3], 7, 24, 13, 29);

[15,6]
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E x a m p le  5. Find fc(l,3) for k =  1,2,3,...,40 on the curve of the previous 

example.

> m u lt3 e l l( [ l ,3 ] , 40, 24, 13, 29);

[[1, [1,3]] ,[2. [11,10]]. [3, [23,28]], [4, [0,10]], [5, [19,7]], [6, [18,19]), 

C7, [15,6] ] , [8, [20,24] ] , [9, [4,12] ] , [10, [4,17] ] , [11, [20,5] ] ,

[12. [15,23]] , [13,[18,10]],[14, [19,22]] , [15, [0,19]] , [16, [23,1]] ,

[17, [11,19]] , [18, [1,26]], [19, [ " in f in i ty " ," in f in i ty " ] ]  , [20, [1,3]] .

[21 ,[11,10]],[22,[23,28]].[23,[0,10]], [24 ,[19,7]],[25,[ IB ,19]],

[26, [15,6] ] , [27, [20.24] ] , [28. [4,12] ] , [29. [4,17] ] , [30, [20.6] ] ,

[31, [15,23]], [32, [18,10]] , [33, [19,22]] , [34, [0,19]] , [35, [23,1]] ,

[36, [11,19]] . [37, [1,26]], [38, [ " in f in i ty " ," in f in i ty " ] ]  , [39, [1,3]] ,

[40,[11,10]]]

Notice how the points repeat after every 19 multiples.

Example 6. The previous four examples worked mod the prime 29. If we work 

mod a composite number, the situation at infinity becomes more complicated since 

we could be at infinity mod both factors or we could be at infinity mod one of 

the factors but not mod the other. Therefore, we stop the calculation if this last 

situation happens and we exhibit a factor. For example, let’s try to compute 12P, 

where P  =  (1,3) is on the elliptic curve y~ =  x3 — 5x + 13 (mod 209):

> m u ltB l l( [ l ,3 ] , 12, -5, 13, 11*19);

["fac tor” ” ,19]

Now let’s compute the successive multiples to see what happened along the way:

> m u lts a ll( [ l ,3 ] ,  12, -5, 13, 11*19);

[[1, [1,3]]. [2, [91,27]], [3, [118,133]], [4, [148,182]] ,[6, [20,35]],

[6, [ " fac to r= " ,19]]]

When we computed 6P, we ended up at infinity mod 19. Let's see what is happening 

mod the two prime factors of 209, namely 19 and 11:

> m u lta e l l ( [ l ,3 ] , 12, -5, 13, 19);

L[l, [1,3]], [2, [15,8]], [3, [4,0]], [4, [15,11]] ,[5 . [1,16]],

[6, [ " in f in i t y " , " i n f in i t y ”]] , [7, [1,3]] , [8, [15,8]] , [9, [4,0]] ,

[10, [15,11]] , [11, [1,16]] , [12, [ " in f in i t y " , " in f in i t y " ] ]]

> m u lts e l l ( [ l ,3 ] , 24, -5, 13, 11);

[[1. [1.3]], [2. [3,5]], [3, [8,1]], [4, [5.6]]. [5, [9,2]], [6. [6.10]],

[7, [2.0]] , [8, [6,1]], [9, [9,9]], [10, [5,5]], [11, [8,10]] , [12, [3,6]] ,

[13 ,[1 ,8 ]] ,[14 ,[ " in f in i t y " , " in f in i t y " ] ] ,[15 ,[1 ,3]] ,[16 ,[3 ,5]] ,
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[17, [8,1]], [18, [5, 6]], [19, [9, 2] ], [20, [6,10]] . [21. [2.0]] .

[22, [6.1]] , [23, [9,9]]. [24, [6.5]]]

After six steps, we were at infinity mod 19, but it takes 14 steps to reach infinity 

mod 11. To find 6P, we needed to invert a number that was 0 mod 19 and nonzero 

mod 11. This couldn’t be done, but it yielded the factor 19. This is the basis of 

the elliptic curve factorization method.

Example 7. Factor 193279 using elliptic curves.

Solution: First, we need to choose some random elliptic curves and a point on 

each curve. For example, let’s take P  =  (2,4) and the elliptic curve

y~ = i 3 — lOz + b (mod 193279).

For P to lie on the curve, we take b =  28. We’ll also take

y1 =  z3+ 111-11, P  =  ( l, l)  

i f  ee i 3 + 17z-14, P =  (1,2).

Now we compute multiples of the point P. We do the analog of the p — 1 method, 

so we choose a bound S, say B  =  12, and compute SIP.

> m u l t e l l ( [2,4], f a c to r ia l(1 2 ) , -10, 28, 193279);

["fac to r= ",347]

> m u l t e l l ( [ l , l ] , f a c to r ia l (12), 11, -11, 193279);

[13862,35249]

> m u l to l l ( [ l ,2 ] , f a c to r ia l (12 ), 17, -14, 193279);

["factor=” ,557]

Let’s analyze in more detail what happened in tbese examples.

On the first curve, 266P ends up at infinity mod 557 and 35P is infinity mod 

347. Since 266 =  2 ■ 7 ■ 19, it has a prime factor larger than B =  12, so S IP  is not 

infinity mod 557. But 35 divides B\, so SIP is infinity mod 347.

On the sccond curve, 356P =  infinity mod 347 and 561P =  infinity mod 557. 

Since 356 =  4-89 and 561 — 3 • 11 ■ 17, wo don't expect to find the factorization 
with this curve.

The third curve is a surprise. We have 331P =  infinity mod 347 and 272P =  

infinity mod 557. Since 331 is prime and 272 =  16 • 17, we don’t expect to find 

the factorization with this curve. However, by chancc, an intermediate step in
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the calculation of BIP  yielded the factorization. Here’s what happened. At one 

step, the program required adding the points (184993, 13462) and (20678, 150484). 

These two points are congruent mod 557 but not mod 347. Therefore, the slope of 

the line through these two points is defined mod 347 but is 0/0 mod 557. When 

we tried to find the multiplicative inverse of the denominator mod 193279, the gcd 

algorithm yielded the factor 557. This phenomenon is fairly rare,

E x a m p le  8. Here is how to produce the example of an elliptic curve ElGamal 

cryptosystem from Section 16.5. For more details, see the text. The elliptic curve 

is y- =  i 3 + 3x + 45 (mod 8831) and the point is G =  (4,11). Alice's message is 

the point Pm =  (5,1743).

Bob has chosen bis secret random number aB =  3 and has computed abG:

> m u l t e l l ( [4,11], 3, 3, 45, 6631);

[413,1808]

Bob publishes this point. Alice chooses the random number k =  8 and computes 

kG and Pm + &(gb(j):

> m u lte lK C 4 .i l] .  8, 3, 45, 8831);

[5415,6321]

> addellC[5.1743],m u lte ll( [413,1808],8,3,45,8831),3,45.8831);

[6626,3576]

Alice sends (5415,6321) and (6626,3576) to Bob, who multiplies the first of these 

point by ag:

> m u lte llC [6415,6321] , 3 , 3, 45, 8831);

[673.146]

Bob then subtracts the result from the last point Alice sends him. Note that he 

subtracts by adding the point with the second coordinate negated:

> adde llC [6626.3576]. [673,-146], 3, 45, 8631);

[5.1743]



Bob lias therefore received Alice’s message.

Example 9. Let's reproduce the numbers in the example of a Diffie-Hellman key 

exchange from Section 16.5: The elliptic curve is y1 =  x3 + x + 720G (mod 7211) 

and the point is G  =  (3,5). Alice chooses her secret Na =  12 and Bob chooses his 

secret Nb =  23. Alice calculates

> m ultellC  [3,5], 12, 1, 7206, 7211);

[1794,6375]

She sends (1794,6375) to Bob, Meanwhile, Bob calculates 

multellC [3,5], 23, 1, 7206, 7211);

[3861, 1242]

and sends (3861,1242) to Alice. Alice multiplies what she receives by Na and Bob 

multiplies what he receives by Ng-

> m u lte llC [3861,1242], 12, 1, 7206, 7211);

[1472.2098]

> m u lte llC [1794,6375], 23, 1, 7206, 7211);

[1472.2098]
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Therefore, Alice and Bob have produced the same key.



A p p e n d ix  C  

MATLAB® Examples

These computer examples are written for MATLAB. If you have MATLAB avail

able, you shouJd try some of them on your computer. For information on getting 

started with MATLAB, see Section C.l. Several functions have been mitten to al

low for experimentation with MATLAB. The MATLAB functions associated with 

this book are available at

http://www.prenhall.com/washington

We recommend that you create a directory or folder to store these files and 

download them to that directory or folder. One method for using these functions 

is to launch MATLAB from the directory where the files are stored, or launch 

MATLAB and change the current directory to where the files are stored. In some 

versions of MATLAB the working directory can be changed by changing the current 

directory on the command bar. Alternatively, one can add the path to that directory 

in the MATLAB path by using the path function or the Set Path option from the 

File menu on the command bar.

If MATLAB is not available, it is still possible to read the examples. They 

provide examples for several of the concepts presented in the book. Most of the 

examples used in the MATLAB appendix are similar to the examples in the Math

ematica and Maple appendices. MATLAB, however, is limited in the size of the 

numbers it con handle. The maximum number that MATLAB can represent ac

curately is rouglily 15 digits. The double precision used in MATLAB forces larger 
numbers to be approximated. We may, however, still use MATLAB for many of 

the examples used in this book.

It is possible to use Mnplc from within MATLAB. This requires that the Sym
bolic toolbox is available. The use of Maple from within MATLAB is not available

527
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on Student Editions of MATLAB and for that reason we have chosen to present 

functions that are native to MATLAB to avoid using the Symbolic toolbox.

A final note before we begin. It may be useful when doing the MATLAB 

exorcises to change the formatting of your display. The command

»  format rat

aatu the formatting to represent numbers using a fractional representation. This 

notation is particularly useful for representing large numbers. The conventional 

thart format represents large numbers in scientific notation, which often doesn’t 

(llwplay Home of the least significant digits.

C .l Getting Started with MATLAB

MATLAB Is a programming language for performing technical computations. It is 

a powerful language that has become very popular and is rapidly becoming a stan

dard Instructional language for courses in mathematics, science, and engineering. 

MATLAB is available on most campuses, and many universities have site licenses 

allowing MATLAB to be Installed on any machine on campus.

In order to launch MATLAB on a PC, double click on the MATLAB icon. If 

you want to run MATLAB on a Unix system, type matlab at the prompt. Upon 

launching MATLAB, you will see the MATLAB prompt:

»

which indicates that MATLAB is waiting for a command for you to type in. When 

you wish to quit MATLAB, type quit at the command prompt.

MATLAB is able to do the basic arithmetic operations such as addition, sub

traction, multiplication and division. These can be accomplished by the operators 

+, *, and /, respectively. In order to raise a number to a power, we use the 

operator Let us look at an example:

If we type 2‘ 7 + 125/5 at the prompt and press the Enter key

»  2'7 + 125/5

then MATLAB will return the answer:

ans - 

153

Notice that in this example, MATLAB performed the exponentiation first, the 

division next, and then added the two results. The order of operations used in 

MATLAB is the one that we have grown up using. We can also use parentheses 

to change the order in which MATLAB calculates its quantities. The following 

example exhibits this:

»  11*C (128/(9+7) - 2'(72/12)))

ana -

-616
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In these examples, MATLAB has called the result of the calculations arts, which 

is a variable that is used by MATLAB to store the output of a computation. It is 

possible to assign the result of a computation to a specific variable. For example,

»  spot=17

spot =

17

nssigns the value of 17 to the variable spot. It is possible to use variables in com

putations:

»  dog=ll

dog =

11

»  cat=7

cat =

7

»  animals=dog+cat

animals = 

ia

MATLAB also operates like an advanced scientific calculator since it has many 

functions available to It. For example, we can do the standard operation of taking 

a square root by using the sqrt function, as in the following example:

»  sqrt(1024)

an 3 =

32

There ore many other functions available. Some functions that will be useful for 

this book are mod, factorial, factor, prod, and size.

Help is available in MATLAB. If you are on a PC, you may cither type help 

at the prompt, or pull down the Help menu. If you are on a Unix system, help is 

basically available by the same methods as those for the PC. However, if you are 

running a version of MATLAB before version 6.0, the pull-down menu may not be 

available to you. MATLAB also provides help from the command line by typing 

help commandname. For example, to get help on the function mod, which we shall 

be using a lot, type the following:

»  he lp  mod

MATLAB has a collection of toolboxes available. The toolboxes consist of 

collections of functions that implement many application-specific tasks. For ex

ample, the Optimization toolbox provides a collection of functions that do linear 

and nonlinear optimization. Generally, not all toolboxes are available. However, 

for our purposes, this is not a problem since we will only need general MATLAB
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functions and have built our own functions to explore the number theory behind 

cryptography.

The basic data type used in MATLAB is the matrix. The MATLAB program

ming language has been written to use matrices and vectors os the most fundamental 

data type. This is natural since many mathematical and scientific problems lend 

themselves to using matrices and vectors.

Let us start by giving an example of how one enters a matrix in MATLAB. 

Suppose we wish to enter the matrix

1 1 1 1
1 2 4 8
1 3 9 27
1 4 1G G4

into MATLAB. To do this we type:

»  A = [1 1 1 1; 1 2 4 8; 1 3 9 27; 1 4 16 64] 

at the prompt. MATLAB returns 

A “
1 1 1 1
1 2  4 8 

1 3 9 27

1 4 16 64

There are a few basic rules that are used when entering matrices or vectors. First, 

a vector or matrix is started by using a square bracket [ and ended using a square 

bracket ]. Next, blanks or commas separate the elements of a row. A semicolon is 

used to end each row. Finally, we may place a semicolon at the very end to prevent 

MATLAB from displaying the output of the command.

To define a row vector, use blanks or commas. For example,

»  x - [2, 4, 6, 8, 10, 12]

x -

2 4 6 8 10 12.

To define a column vector, use semicolons. For example,

»  y™Cl;3;5;7]

y -
1
3

6
7

In order to access a particular element of y, put the desired index in parentheses. 

For example, y(l) =  1, y(2) =  3, and so on.
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MATLAB provides a useful notation for addressing multiple elements at the 

same time. For example, to access the third, fourth, and fifth elements of x; we 
would type

»  x(3:5)

ana =
6 0 10

The 3:5 tells MATLAB to start at 3 and count up to 5. To access every second 

element of x, you can do this by

»  x (l:2 :6 )

ans =

2 6 10

We may do this for the array also. For example,

»  A (l:2 :4 ,2:2:4)

ana =
1 1
3 27

The notation l:n may also be used to assign to a variable. For example,

»  x=l:7 

returns 

x =

1 2 3 4 5 6 7

MATLAB provides the size function to determine the dimensions of a vector or 

motrix variable. For example, if we want the dimensions of the matrix A that we 

entered earlier, then we would do

»  size(A)

ans =

4 4

It is often necessary to display numbers in different formats. MATLAB provides 

several output formats for displaying the result of a computation. To find a list of 

formats available, type

»  help format

The short format is the default format and is very convenient for doing many 

computations. However, in this book, we will be representing long whole numbers, 

and the short format will cut off some of the trailing digits in a number. For 

example,

»  a=1234567899
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B ”
1.23466+009

Instead of using the short formot, we shall use the rational format. To switch 

MATLAB to using the rational format, type

»  format rat

Ah an example, if we do the some example as before, we now get different results: 

»  8-1234667899 

n ■
1234667899

This format Is also useful becausc it allows us to represent fractions in their frac

tional form, for example,

»  111/323

ana -

111/323

In many situations, it will be convenient to suppress the results of a computa

tion. In order to have MATLAB suppress printing out the results of a command, a 

semicolon must follow the command. Also, multiple commands may be entered on 

the same line by separating them by a comma. For example,

»  dogB-11, cats=7; elephante=3, zebras=19;

doga -

11

elephants =

3

returns the values for the variables dogs and elephants but does not display the 

values for cats and zebras.
MATLAB can also handle variables that are mode of text. A string is treated 

as an array of characters. To assign a string to a variable, enclose the text with 

single quotes. For example,

»  txt-'How are you today?1

returns

tx t =

How are you today?

A string has size much like a vector does. For example, the size of the variable txt 

is given by

>> alze (tx t)

ans =
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1 18

It is possible to edit the characters one by one. For example, the following command 

changes the first word of txt:

»  tx t ( l ) = 'W '; tx t (2 )= ’h ’ ; t i t ( 3 ) = , o'

tx t =

Who are you today?

As you work in MATLAB, it will remember the commands you have entered as well 

as the values of the variables you have created. To scroll through your previous 

commands, press the up-arrow and down-arrow. In order to see the variables you 

have created, type who at the prompt. A similar command whos gives the variables, 

their size, and their type information.

N o te s . 1. To use the commands that have been written for the examples, you 

should run MATLAB in the directory into which you have downloaded the file from 

the Web site http://wurw.prenhaU.com/tijashington

2, Some of the examples and computer problems use long ciphertexts, etc. For 

convenience, these have been stored in the file ciphertexts.m, which can be loaded 

by typing ciphertexts at the prompt. The ciphertexts can then be referred to by 

their names. For example, see Computer Example 4 for Chapter 2.

C.2 Examples for Chapter 2

E xam p le  1, A shift cipher wns used to obtain the ciphertext kddkmu.
Decrypt it by trying oil possibilities.

>> a l l s h i f t ( ‘kddkmu1)

kddkmu

lee lnv

mffmow

nggnpx

ohhoqy

p i ip r z

q jjq aa

rkkrtb

s lls u c

tmmtvd

unnuwe

voovxf

vppuyg

xqqxzh

yrrya i

zsszbj

http://wurw.prenhaU.com/tijashington
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attack

buubdl

cwcem

difwdfn

exxego

fyyfhp

gzzgiq

haahjr
ibb iks

j c c j l t

As you can see, attack is the only word that occurs on this list, so that was the 

plaintext.

Example 2. Encrypt the plaintext message cleopatra using the affine function 

7x + 8:

»  a ffinecryp tC 'c leopa tra ’ ,7 ,8) 

ans =

v h ic jil jc i

Example 3. The ciphertext mzdvezc was encrypted using the affine function 

5x + 12. Decrypt it.

Solution: First, solve y =  5x + 12 (mod 26) for x to obtain x =  5~1 (y — 12). 

We need to find the inverse of 5 (mod 26):

»  pouermod(6,-1,26)

mid ■

21

Therefore, x =  21 (y — 12) =  21y - 12- 21. To change —12 • 21 to standard form:

»  mod(-12*21,26)

nnu “

0

'Vlwjraforc, tlie decryption function is x = 21y + 8. To decrypt the message:

>> alllnecryptC'mzdvezc’ ,21,8) 

nnu *

nnUiuny
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In case you were wondering, the plaintext was encrypted as follows: 

»  affinecrypt('anthony’ ,5,12) 

ans =

mzdvezc

Example 4. Here is the example of n Vigenere cipher from the text. Let’s sec 

how to produce the data that was used in Scction 2.3 to decrypt the ciphertcxt. In 

the file eiphertexts.m, the ciphertext is stored under the name whq. If you haven’t 

already done so, load the file eiphertexts.m:

»  ciphertexts

Now we can use the variable whq to obtain the ciphertext:

»  whq

whqwvrhousgjgthkihtssej chlsf cbgvucrlryqtf svgahukcuhwauglqhnBlrlJs 
hbltspisprdxljsveeghlqukasskuvepwqtvvspgoelkcqyfnsvvljsniqkgnrgybvl 

vgovlokhkazkqkxzgyhcecmelujoqkufwef qhk ijrc lrlkb ienqfrjljsdhgrh lsfq  

tulauqrhudmulguagikkf lryvcuvspgpmlkassj voqxeggveyggzmljcxjcl jsvpaivu 

ikvTdrygfrjljalveggveyggeiapuuisfpbtgnwvmuczrvtuglriragumnczvile

We now find the frequencies of the letters in the ciphertext. We use the function 

frequency. The frequency command wos written to display automatically the letter 

and the count next to it. We therefore hove put a semicolon nt the end of the 

command to prevent MATLAB from displaying the count twice.

»  fr=frequency (w hq );

a B
b 5

c 12

d 4

e 15

f 10

g 27
h 16

i  13

j  14
k 17

1 25

m 7

n 7

o 5

P 9
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q 14

r 17

s 24

t a
u 12

v 22

v 22

x 5

y e
z 6

Let's compute the coincidences for shifts of 1, 2, 3, 4, 5, 6:

»  colnc(whq, 1)

14

»  coine(whq,2)

ans =

14

»  co inc (w hq ,3 )

16

»  coinc(vvhq,4)

ans - 

14

»  co iac (w hq ,S )

ans =

24

»  co lnc (w hq ,6 )

ans =

12

We conclude that the key length is probably 5. Let’s look at the 1st, 6th, 11th, 

... letters (namely, the letters in positions congruent to 1 mod 5). The function 

choose will do this for us. The function choose(txt,m,n)  extracts every letter from 

the string txt that has positions congruent to n mod m.

»  chooae(whq,5,1)

ans =
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w uttcccqgcunjtpjgkuqpknjkygkkgcjfqrkqjrqudukvpkvggjjivgjgg

pfncwuce

We now do a frequency count of the preceding substring. To do this, we use the 
frequency function and use ans os input. In MATLAB, if a command is issued 
without declaring a variable for the result, MATLAB will put the output in the 
variable ans.

»  frequency(ans);

a 0

b 0

c 7

d 1

e 1
f  2

g 9
h 0

i  1

J 8
k e
1 o
m 0

n 3

o 0

P 4
q 6
r  2

B 0
t  3

u 6

v 5

v 1
x o

y i
z o

To express this os a vector of frequencies, we use the vigvec function. The vigvec 
function will not only display the frequency counts just shown, but will return a 
vector that contains the frequencies. In the following output, we have suppressed 
the table of frequency counts since they appear above and have reported the results 

in the short format.

»  v ig v e c (w h q ,5 ,1)
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ana =
0

0

0.1045

0.0149

0.0149

0.0299

0.1343

0

0.0149

0.1194

0.1194

0
0

0.0448

0

0.0597

0.0746

0.0299

0

0.044B

0.0896

0.0746

0.0149

0

0.0149

0

The dot products of this vector with the shifts of the alphabet frequency vector are 
computed as follows:

>> corr(ans)

nnn o

0.0250 

0.0391 

0.0713 

0.0388 

0,0275 

0.0380 

0.0612 

0.0301 

0.0325 

0.0430 

0,0338 
I). 0209
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0.0343 

0.0446 

0.0356 

0.0402 

0.0434 

0.0502 

0.0392 

0.0296 

0.0326 

0.0392 

0.0366 

0.0316

0.0488

0.0349

The third entry is the maximum, but sometimes the largest entry is hard to locate. 

One way to find it is

»  max(ans)

ans =
0.0713

Now it is easy to look through the list and find this number (it usually occurs only 

once). Since it occurs in the third position, the first shift for this Vigen6re cipher is 

by 2, corresponding to the letter c. A procedure similar to the one just used (using 

vigvec(vvhq, 5,2),. ■., vigvec(whq,5,5)) shows that the other shifts are probably 14,

3, 4, 18. Let’s check that we have the correct key by decrypting.

»  vigenere(whq,-[2,14,3,4,18])

ans -

themethoduseiforthepreparationandreadingofcodemessagesissimpleinthe 

extremeandatthesametineimpoBslbleoftranslationunlesBthekeyiBknounth 

eeasewithvhichthekeymaybechangediBanotherpointinf avoroftheadoptiono 

fthiscodebythosedeBiringtotransmitlmportantmesaagesuithoutthesllght 

estdangeroftheinnesBagesbeingreadbypoliticalorbuaineserivalsetc

For the record, the plaintext was originally encrypted by the command 

»  vigenere(ans,[2,14,3,4,18]) 

ans =

whquwrhmusgjgthkihtssejchlsfcbgvvcrlryqtf svgahwkcuhvauglqhnslrljs 

hbltapicprdxljaveeghlqukaaskUHepuqtwspgoelkcqyfnavuljsniqkgnrgybul 

vgoviokhkazkqkxzgyhcecmeiuj oqkirf w e i qhki j  rclrlkbienqf r j  l j  sdhgrhlaf q 

tulauqrhvdmulguagikkflryvcwvspgpmlkassjvoqxeggveyggzmljcxxljsvpaivu 

ikvrdrygfrj1j  slveggveyggeiapuuisfpbtgnvumuczrvtuglrvugumnczvile
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Exam ple  5. The ciphertext

22,09,00,12,03,01,10,03,04,08,01,17

was encrypted using a Hill cipher with matrix

1 2 3 \
4 5 6 .
7 8 10 /

Decrypt it.

Solution: A matrix ^ ^ ^ is entered as (a, b;c,d]. Type M * N to multiply

matrices M  and N. Type v * M  to multiply a vector v on the right by a matrix M. 
First, we put the above matrix in the variable M.

»  M=[l 2 3; 4 5 6; 7 8 10]

H =
1 2 3

4 5 6

7 8 10

Next, we need to invert the matrix mod 26:

»  Minv-inv(M)

Minv «
-2/3 -4/3 1 

-2/3 11/3 -2

1 -2 1

Since we are working mod 26, we can't stop with numbers like 2/3. We need to get 
rid of the denominators and reduce mod 26. To do so, we multiply by 3 to extract 
the numerators of the fractions, then multiply by the inverse of 3 mod 20 to put 
the “denominators’1 back in (see Section 3.3):

»  Ml=(Hlnv*3)

Ml =
-2 -4 3 

-2  11 -6 

3 - 6  3

»  M2=raund(mpd(Ml*9,26))

M2 =
8 16 1

8 21 24

1 24 1

Note that we used the function rvund in calculating M2. This was done since 
MATLAB performs its calculations in floating point and calculating the inverse
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matrix Minv produces numbers that ore slightly different from whole numbers. 
The matrix M2 is the inverse of the matrix M mod 26. We can chedt this as 

follows:

»  mod(M2*M,26)

ans =
1 0 0
0 1 0
0 0 1

To decrypt, we break the ciphertext into blocks of 3 numbers and multiply each 
block on the right by the inverse matrix we just calculated:

»  mod([22,9,0]*M2,26)

ans =

14 21 4

»  mod([12,3,1]*M2,26)

ans =

17 19 7

»  mod([10,3,4]*M2,26)

ans =
4 7 8

»  mod([8,l,17]*M2,26)

ans =
11 11 23

Therefore, the plaintext is 14, 21, 4, 17, 19, 7, 4, 7, 8, 11, 11, 23. This can be 
changed back to letters:

»  int2taxt([14 21 4 17 19 7 4 7 8 11 11 23]) 

ana -

overthehillx

Note that the final x was appended to the plaintext in order to complete a block of 
three letters.

Example 6. Compute the first 50 terms of the recurrence

r„+5 = In + in+2 (mod 2).

The initial values are 0,1,0,0,0.
Solution: The vector of coefficients is {1,0,1,0,0} and the initial values are 

given by the vector {0,1,0,0,0}. Type
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»  l f s r (  [1 0 1 0 0],[0 1 0 0 0] ,50) 

ans =

Columns 1 through 12

0 1 0 0 0 0 

Columns 13 through 24

1 0 0 1 0 1

1 0  0 1 1 1  

Columns 25 through 36

1 1 0 0 0 1

1 0  1 1 1 0  

Columns 37 through 48

1 0 1 0 0 0

0 1 0  0 1 0  

Columns 49 through 50 

1 1

1 1 0 0 1 1

Exam ple  7. Suppose the first 20 terms of an LFSR sequence are 1,0, 1, 0, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1. Find a recursion that generates this sequence.

Solution: First, we find a candidate for the length of the recurrence. The 
command lfsriength(v, n) calculates the determinants mod 2 of the first n matrices 
that appear in the procedure described in Section 2.11 for the sequence v. Recall 
that the lost nonzero determinant gives the length of the recurrence.

»  I f  srlength( [1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0  1], 10)

Order Determinant

1 1

2 1

3 0

4 1

5 0

6 1
7 0

8 0
9 0

10 0

The lost nonzero determinant is the sixth one, so wc guess that the recurrence has 
length 6. To find the coefficients: .

»  lfsrao lveC U  0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0  1],  6)

ans "

1 0  1 1 1 0

This gives the recurrence os

In+B S I „  + Xn+2 + I„+3 +• Xn-H (mod 2).

Exam ple  8. The ciphertext 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0 was produced by adding the 
output of a LFSR onto the plaintext mod 2 (i.e., XOR the plaintext with the LFSR
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output). Suppose you know that the plaintext starts 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,

1, 1, 1, 0, 0. Find the rest of the plaintext.

Solution: XOR the ciphertext with the known part of the plaintext to obtain 

the beginning of the LFSR output:

»  x=mod([l 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0  0] + [0 1 1 0  1 0  1 0  

1 0 0 1 1 0 0 0 1] ,2)

x =

Columns 1 through 12 

1 0 0 1 0 1 1 0 1 0 0 1  

Columns 13 through 17

0 1 1 0  1

This is the beginning of the LFSR output. Let’s find the length of the recurrence:

»  lfs r le n g th (x .a )

Order Determinant

1 1

2 0

3 1

4 0
5 1

6 0

7 0

8 0

We guess the length is 5. To find the coefficients of the recurrence:

»  lfs rso lvoC x ,5)

ans =

1 1 0  0 1

Now we can generate the full output of the LFSR using the coefficients we just 

found plus the first live terms of the LFSR output:

»  l f s r (  [1 1 0 0 1], [1 0 0 1 0] ,40)

ans =

Columns 1 through 12 

1 0 0 1 0 1 1 0 1 0 0 1  

Columns 13 through 24 

0 1 1 0 1 0 0 1 0 1 1 0  

Columns 25 through 36 

1 0 0 1 0 1 1 0 1 0 0 1  

Columns 37 through 40

0 1 1 0

When we XOR the LFSR output with the ciphertext, we get back the plaintext:
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»  mod (ans+ [0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1  

0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1  0] ,2)

ans =

Columns 1 through 12 

1 1 1 1 1 1 0 0 0 0 0 0  
Columns 13 through 24 

1 1 1 0 0 0 1 1 1 1 0 0  

Columns 25 through 36 

0 0 1 1 1 1 1 1 1 0 0 0  

Columns 37 through 40

0 0 0 0

This is the plaintext.

C.3 Examples for Chapter 3

E x a m p le  1. Find gcd(23456,987654).

»  gcd(23456,987654)

E xam ple  2. Solve 23456x + 387654y = 2 in integers x,y. 

»  [a,b,c]=gcd(23456,987654)

-315B

75

This meuns that 2 is the gcd and 23456 ■ (—3158) + 987654 ■ 75 =  2.

E x a m p le  3. Compute 234-456 (mod 789).

»  mod(234*456,769)

ana =
189

Example 4. Compute 234607 (mod 9871).

»  pouermod(234,567,9671)
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5334

Example 5. Find the multiplicative inverse of 8787 (mod 91919).

»  powarmod(87B7,-1,91919)

ana =

71374

Example 6. Solve 7654x = 2389 (mod 65537).

Solution: To solve this problem, we follow the method described in Section 3.3. 

We calculate 7654“ 1 and then multiply it by 2389:

»  powannod(7654,-1,65537)

ans =

54637

»  mod(ana*23B9,65537)

ans =

43626

Example 7. Find x with

x s 2  (mod 78), x =  5 (mod 97), x =  1 (mod 119).

Solution: To solve the problem we use the function crt.

»  c rt( [2 5 1] , [78 97 119])

6474BO

We can check the answer:

»  mod(6474B0,[78 97 119])

ana “

2 5 1

Example 8. Factor 123450 into primes.

»  fac to r(123450)

2 3 5 5 B23 

This means that 123450 =  213l 528231.

Example 9. Evaluate 0(12345).

>> eulerphi(12345)
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6576

Example 10. Find a primitive root for the prime 65537. 

>> prim ltiveroot(65637)

Solution: First, we enter the matrix a3 M.

»  M-[13 12 35; 41 53 62; 71 68 10];

Next, Invert the matrix without the mod:

»  Hlnv-inv(H)

Mlnv -
233/2158 -539/8142 103/3165 

-270/2309 139/2015 -40/2171 

209/7318 32/34139 -197/34139

Wc need to multiply by the determinant of M in order to clear the fractions out of 
the numbers in Minv. Then we need to multiply by the inverse of the determinant 
mod 999.

»  Mdet-det(M)

Mdet »
-34139

»  powennod(Mdet,-1,999)

The answer is given by 

»  mod(Minv*589*Mdet,999)

aim «
772 472 965

641 516 851

150 133 149

3

Therefore, 3 is o primitive root for 65537.

ana =

Therefore, the inverse matrix mod 999 is
772 472 965 

641 516 851 
150 133 149
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In many cases, it is possible to determine by inspection the common denomi
nator that must be removed, When this is not the case, note that the determinant 
of the original matrix will always work as a common denominator.

In this example, we have used the determinant of the matrix ns the common 
denominator to remove. The determinant of the original matrix will always work 
as a common denominator.

Example 12. Find a square root of 29887 mod the prime p = 32579.

Solution: Since p = 3 (mod 4), we can use the proposition of Section 3.9:

»  povennod(29B87, (32579+0 /4,32579)

ana - 
19237

The other square root is minus this one:

>> mod(-ans,32579)

ana =
13342

Example 13. Let n = 34222273 = 9803 ■ 3491. Find all four solutions of 
x2 = 19101358 (mod 34222273).

Solution: First, find a square root mod each of the two prime factors, both of 
•which are congruent to 3 (mod 4):

»  pouermod(19101358,(9803+1)/ 4 ,9803)

one =

3998

»  pouermod(19101358,(3491+1)/4,3491)

ana =
1318

Therefore, the square roots are congruent to ±3998 (mod 9803) and are congruent 
to ±1318 (mod 3491). There are four ways to combine these using the Chinese 

remainder theorem:

»  crt([3998 1318],[9803 3491])

an 8 =
43210

»  crt([-3998 1318], [9803 3491])

ana =
8397173

»  c r t ( [3998 -1318],[9803 3491])



548 A p p e n d ix  C . MATLAB® E x a m p l e s

ana ”

25825100

»  crt( [-3998 -1318], [9803 3491] )

ans ■
34179063

These are the four desired square roots.

C.4 Examples for Chapter 6

Example 1. As pointed out previously, MATLAB is limited in the size of 
the numbers It can handle. The maximum number that MATLAB can represent 
accurately is about 10l5. The double precision used in MATLAB forces larger 
numbers to be approximated. However, one can still use MATLAB to generate 
prime numbers less than 107. Two functions, nextprime and randprime, have been 
written to generate prime numbers. The function nextprime takes a number n as 
input and attempts to find the next prime after n. The function ra ndprime takes 
a number n as input and attempts to find a random prime between 1 and n. Both 
of these functions use the Miller-Rabin test described in Chapter 6.

>> nextprime(346735)

346739

»  randprime(888888)

ana =

737309

Example 2. Suppose you want to change the text hello to numbers:

»  te x t2 in t l( ’h e llo ')

ans =

805121215

Note that we are now using a = 1, b = S, z = 26, since otherwise a's at the 
beginnings of messages would disappear. (A more efficient procedure would be to 
work in base 27, so the numerical form of the message would he 8 + 5 • 27 + 12 • 
27z + 12 • 273 + 15 • 27'* = 1497902. Note that this uses fewer digits.)

Now suppose you want to change it buck to letters:

»  in t2 te x tl(805121215)

ans = 
hello

Example 3. Encrypt the message hi using RSA with n = 823091 and e = 17.
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Solution: First, change the message to numbers:

»  te r t2 in t l ( 'h i ')

ans =

809

Now, raise it to the eth power mod n:

»  povermod(ans,17,823091)

ana =

596912

Exam p le  4. Decrypt the ciphertext in the previous problem.
Solution: First, we need to find the decryption exponent d. To do this, we need 

to find <£(823091). One way is

»  eulerphl(823091)

821184

Another way is to factor n as p ■ q and then compute (p — 1)(ij — 1):

»  fac to r(823091)

ans =
669 1249

»  658*1248

ana =

821184

Since de = 1 (mod 4>{n)), we compute the following (note that we are finding the 
inverse of e mod <f>{n), not mod n):

>> powermod(17,-1,821184)

ana ■

48305

Therefore, d = 48305. Tb decrypt, raise the ciphertext to the dth power mod n:

»  powennod(596912,48305,823091)

ans - 

809

Finally, change back to letters;

»  in t2textl(ans)

ans = 

h i
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Exam ple 5. Encrypt sunshine using RSA with n = 823091 and e = 17. 
Solution: First, change the plaintext to numbers:

>> tax t2 intl('sunsh ine ')

ana -

1921141908091405

Suppose we simply raised this to the eth power mod n:

»  powermod(ans,17,823091)

ana =

640791

If we decrypt (we know d from Example 4), we obtain

»  pouennod(ans,48305,823091)

ana - 

340339

This Is not the original plaintext. The reason is that the plaintext is larger than n, 
eo we have obtained the plaintext mod n:

>> mod(text2intl(’ sunsh ine '),823091)

ans -
340339

Wc need to break the plaintext into blocks, each less than n. In our case, we use 
three letters at a time:

192114 190809 1405

»  povennod(192114,17,823091)

ana -

686022

»  pouennod(190809,17,023091)

ans ■

660591

»  powermod(1405,17,023091)

ans =
702126

The ciphertext is therefore 686022660591702126. Note that there is no reason to 
change this back to letters. In fact, it doesn't correspond to any text with letters. 

Decrypt each block individually:

»  powennod(686022,40305,023091)
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ans -

192114

»  powsrmocK660591,48305,823091)

ana =

190809

ans - 

1405

E x a m p le  6. Encrypt the messages bat, cat, and hat using the RSA with the 

primes p — 857, q =  683, and the encryption exponent e =  9007.

Solution: First, we calculate enter the variables p, g, and e.

»  p=857; q= 683; e=9007;

To calculate n, we enter the command

>> n»p*q;

The clphcrtexts ore calculated by

»  pouermod(text21ntl('bat'),e,n)

ans =

54984

»  povermod(text2intl(‘ ca t’ ),e ,n )

ans =

236057

»  powermod(text2intl(’hat*) ,e,n)

ans =

382934

E x a m p le  7. In the previous example, we had e =  9007 and n = 585331. For 

this choice of e and n, the corresponding decryption exponent is d =  265743. (How 

would you calculate this?) Let’s use d and e to factor n.

Solution: We use the universal exponent factorization method from Section 6.4. 

First, we define y =  ed - 1, and represent y =  23m. One way to do this is to first 

calculate y and then keep dividing by 2 until you get an odd number.

»  y=e*d-l

y "
2393547200

»  y/2

ans =

1196773600
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»  ans/2

ana =

698386800

We continue this way until we get 37399175. Let’s define m = 37399175. Now 
choose u random integer a. Hoping to be lucky, we choose 13. As in the universal 
exponent factorization method, we compute

»  povormcd(13,m,n)

630690

Since this is not ±1 (mod n), we successively square it until we get ±1:

»  pouermod(an3,2,n)

ana ■

450781

»  powermod(ans,2,n)

ans =

1

Since the last number before the 1 was not ±1 (mod n), we have on example of 
x ±1 (mod n) with x~ =  1. Therefore, gcd(i — l,n) is a nontrivial factor of n:

»  gcd(450781 - 1, n)

ans =

683

This is the q factor. We can calculate the other factor by njq.

»  n/ans

ans “

857

Since MATLAB is not naturally capable of dealing with large numbers, we 
shall skip presenting the example of the RSA Challenge discussed in Section 6.5. 
We present the RSA challenge in the Mathematica and Maple computer examples.

For those readers who have the Symbolic toolbox, we now demonstrate how to 
perform some Maple commonds from within MATLAB.

First, to calculate 2345G78765'13 (mod 565656565), type

»  maple(• 234567fc"876543 mod 565656565')

ana =

473011223

To calculate the nextprime after 574786324786343457, type
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»  maple( 'nextprime(574786324786343457)’ )

ans =

574786324786343459

For other useful Maple commands, we refer the reader to the Maple examples 

in Appendix B.

C.5 Examples for Chapter 8

E x a m p le  1. Suppose there are 23 people in a room. What is the probability 

that at least two have the same birthday?

Solution: The probability that no two have the same birthday is (l-i/365) 

(note that the product stops at i =  22, not i =  23). Subtracting from 1 gives the 

probability that nt least two have the same birthday:

»  l-prod( 1 - (l:22)/365)

ana =

0.5073

Example 2. Suppose a lazy phone company employee assigns telephone numbers 

by choosing random seven-digit numbers. In a town with 10,000 phones, what is 

the probability that two people receive the same number?

»  1-prod( 1 - (1:9999)/10'7)

ans =

0.9933

Note that the number of phones Is about three times the square root of the number 

of possibilities. This means that we expect the probability to be high, which it is. 

From Section 8.4, we have the estimate that if there are around ^/2(ln2)107 ~ 3723 

phones, there should be a 50% chance of a match. Let’s see how accurate this is:

»  l-prod( 1 - (l:3722)/10-7)

0.4999

C.6 Examples for Chapter 12

Example 1. Suppose we have a (5, 8) Shamir secret sharing scheme. Everything 

is mod the prime p =  987541. Five of the shores are

(9853,853), (4421,4387), (6543,1234), (93293,78428), (12398,7563).

Find the secret.
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Solution: The function interppoly(x,f,m) calculates the interpolating polynomial 

that passes through the points The arithmetic is done mod m.

In order to use this function, we need to make a vector that contains the x 
values, and another vector that contains the share values. This can be done using 

the following two commands:

»  x=[9853 4421 6543 93293 12398];

»  s-[853 4387 1234 78428 7563];

Now we calculate the coefficients for the interpolating polynomial.

»  y=interppoly(x ,b ,9B7541)

y -
678987 14728 1651 574413 456741

The first value corresponds to the constant term in the interpolating polynomial 

and is the secret value. Therefore, 678987 is the secret.

C.7 Examples for Chapter 13

Example 1. Here is a game you can play. It is essentially the simplified version 

of poker over the telephone from Section 13.2. There are Eve cards: ten, jack, 

queen, king, ace. We have chosen to abbreviate them by the following: ten, ace, 

quo, Juc, kin. They are shuffled and disguised by raising their numbers to a random 

exponent mod the prime 300649. You are supposed to guess which one is the ace.
first, the cards are entered in and converted to numerical values by the following 

ittupsl:

> > cards*[’ ten’ ; ’ ace’ ; 1qua' ; ' j  ac1;*k in ’];

>> cvale-text21ntl(cards)

cvalo -

200614

10306

172106

100103

110914

Noxt, wc pick a random exponent fc that will be used in the hiding operation. We 

iiiifi tlio semicolon after khide so that we cannot cheat and see what value of k is 

lining used.

>> p-300649;

>> k-khldo(p);

Now, Hhufllc the disguised cards (their numbers ore raised to the fcth power mod p 
mill Vlieti randomly permuted):
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>> Bhufvala=shuffla(cvala,k,p) 

shufvals =

226536

226058

241033

281258

116809

These are the five cards. None looks like the ace; that’s because their numbers have 
been raised to powers mod the prime. Make a guess anyway, Let's sec if you're 
correct.

»  reveal(shufvals,k,p) 

ans =

jac

que

ten

kin

ace

Let's piny again:

>> k=khide(p);

»  shulvals=ah\iffle(cvals,k,p) 

shufvals =

117136
144487

108150

266322

264045

Make your guess (note that the numbers are different because a different random 
exponent was used). Were you lucky?

>> rsvsaKshufvals.k.p)

aos =

kin

ja c

ten
que

ace
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Perhaps you need some help. Let’s play one more time:

>> k=khide(p);

»  Bhulvals«ehuffle(cvals,k,p) 

ehufvala ■

100150

144487

266322

264045

117135

We now ask for advice:

»  advise(shufvala,p);

Ace Index: 4

We are advised that the fourth card is the ace. Let's see;

»  reveal(shufvale,k,p) 

ang =

ten

jac
qua
ace

kin

How does this work? Read the part on “How to Cheat" in Section 13.2. Note that 
if we raise the numbers for the cards to the (p — l)/2 power mod p, we get

»  povarmodCcvale, (p-l)/2,p)

ans =
1

300648

1
1
1

Therefore, only the ace is a quadratic nonresidue mod p.

C.8 Examples for Chapter 16

Exam p le  1. Wc want to graph the elliptic curve y1 =  x(x — l)(z + 1).

First, we create a string v that will contain the equation we wish to graph.
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»  v-’y*2 - x*(x-l)*(x+ l)';

Next we use the ezplot command to plot the elliptic curve,

»  e zp lo t(v ,[-1,3,-6,5])

The plot appears in Figure C.l. The use of [—1,3, —5,5] in the preceding command 

is to define the limits of the x-axis and y-axis in the plot.

Figure C .l: Graph of the Elliptic Curve y2 =  x(x — l)(x + 1).

Example 2. Add the points (1,3) and (3,5) on the elliptic curve y2 =  i 3+24i+13 

(mod 29).

»  a d de ll([ l,3 ] ,[3,5],24,13,29)

ans =
26 1

You can check that the point (26,1) is on the curve: 26a+24-26+13 = I 2 (mod 29). 

(Note: addell ( [x,y] , [u,v] ,b ,c ,n ) is only programmed to work for odd n.)

Example 3. Add (1,3) to the point at infinity on the curve of the previous 

example.

»  adde ll([1 ,3 ] ,[ in f , in f] ,24,13,29)

ans =

1 3
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As expected, adding the point at infinity to a point P returns the point P.

Exam ple  4. Let P = (1,3) be a point on the elliptic curve y1 = x3 + 24$ + 13 

(mod 29). Find 7P.

»  nm lte lK C l,3] ,7,24,13,29)

ans =

IS 6

E xam ple  5. Find Jfc(l,3) for k =  1,2,3,...,40 on the curve of the previous 

example.

»  m u lts e ll( C l,3],40,24,13,29)

one “

1 1 3

2 11 10

3 23 28

4 0 10

6 19 7

6 18 19

7 16 6

8 20 24

0 4 12

10 4 17

11 20 5

12 16 23
13 18 10

14 19 22

16 0 19

16 23 1

17 11 19

18 1 26

19 In i Inf

20 1 3

21 11 10

22 23 28

23 0 10

24 19 7

25 18 19

26 15 6

27 20 24

28 4 12

29 4 17

30 20 6
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31 15 23

32 16 10

33 19 22

34 0 19

35 23 1

36 11 19

37 1 26

38 In f Inf

39 1 3

40 11 10

Notice how the points repeat after every 19 multiples.

E x a m p le  6. The previous four examples worked mod the prime 29. If we work 

mod a composite number, the situation at infinity becomes more complicated since 

we could be at infinity mod both factors or we could be at infinity mod one of 

the factors but not mod the other. Therefore, we stop the calculation if this last 

situation happens and we exhibit a factor. For example, let's try to compute 12P, 

where P  =  (1,3) Is on the elliptic curve jr  =  x3 — 5x + 13 (mod 209):

»  m u lte ll ([1,3],12,-6,13,11*19)

E l l ip t ic  Curve add itio n  produced a fac to r  of n , factor= 19 

M u lte ll found a fac to r  of n and exited

ans =

D

Now let's compute the successive multiples to see what happened along the way: 

»  m u ltse lK U ,3] ,12,-5,13,11*19)

E l l ip t ic  Curve add itio n  produced a fac to r  of n, fac to r0 19 

M u ltse ll ended early since i t  found a fac to r

ans -
1 1 3

2 91 27

3 n a 133

4 148 182

5 20 35

When we computed 6P, we ended up at infinity mod 19. Let's sec what is happening 

mod the two prime factors of 209, namely 19 and 11:

»  m u ltse lK U ,3] ,20,-6,13,19)
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ana

1 1 3

2 15 a
3 4 0

4 15 l i

5 1 16

6 In f In f

7 1 3

8 15 8

9 4 0

10 15 11

11 1 16

12 In f In f

13 1 3

14 15 8

15 4 0

16 15 11

17 1 16

18 In f In f

19 1 3

20 16 a

»  m u lts e l l ( [ l ,3 ] ,20,-5,13,11)

ana

1 1 3

2 3 5

3 8 1

4 5 6

5 9 2

6 6 10

7 2 0

8 6 1

9 9 9

10 5 5

11 8 10

12 3 6

13 1 8

14 In f In f

15 1 3

16 3 5

17 8 1

18 5 6

19 9 2
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2 0 : 6 10

After six steps, we were et infinity mod 19, but it takes 14 steps to reach infinity 
mod 11. To find 6P, we needed to invert a number that was 0 mod 19 and nonzero 
mod 11. This couldn't be done, but it yielded the factor 19. This is the basis of 
the elliptic curve factorization method,

E xam p le  7. Factor 193279 using elliptic curves.

Solution: First, we need to choose some random elliptic curves and a point on 
each curve. For example, let's take P = (2,4) and the elliptic curve

y2 = x3 — lOx + 6 (mod 193279).

For P to lie on the curve, we take b = 28. We’U also take

V2 s  r 3 + H i - 11, P = (l,l), 

r  = x3 + 17x - 14, P = (1,2).

Now we compute multiples of the point P. We do the analog of the p — 1 method, 
so we choose a bound B, say B =  12, and compute B\P.

»  m u lte llC [2,4]. f a c t o r ia l (12),-10,28,193279)

E l l ip t ic  Curve add itio n  produced a fa c to r  o f n, factor™ 347 

M u lte ll found a fa c to r  of n and exited

ans - 

[]

»  m u l te l l ([1 ,1 ] ,f a c to r ia l (12),11,-11,193279)

ans =

13862 36249

»  m u lte l l ([1 ,2 ] . f a c to r ia l (12),17,-14,193279)

E l l ip t ic  Curve add itio n  produced a fac to r  of n , fac to r^  557 

M u lte ll found a fa c to r  of n and exited 

[]

Let’s analyze in more detail what happened in these examples.
On the first curve, 266P ends up at infinity mod 557 and 35P is infinity mod 

347. Since 272 = 2 • 7 • 9, it has a prime factor larger than B = 12, so B!P ia not 
infinity mod 557. But 35 divides BI, so BIP is infinity mod 347.

On the second curve, 356P = infinity mod 347, and 561P =  infinity mod 557. 
Since 356 = 4 • 89 and 561 =  3 • 11 • 17, we don’t expect to find the factorization 
with this curve.
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The third curve is a surprise. We have 331P =  infinity mod 347 and 272P = 
infinity mod 557. Since 331 is prime and 272 = 16 • 17, we don't expect to find the 
factorization with this curve. However, by chance, an intermediate step in the calcu
lation of fl!P yielded the factorization. Here’s what happened. At an intermediate 
step In the calculation, the program required adding the points (184993,13462) 
and (20678,150484). These two points are congruent mod 557 but not mod 347. 
Therefore, the slope of the line through these two points is defined mod 347 but is 
0/0 mod 657. When we tried to find the multiplicative inverse of the denominator 
mod 193279, the gcd algorithm yielded the factor 557. This phenomenon is fairly 
roio.

Exam ple 8. Here is how to produce the example of an elliptic curve ElGamal 
cryptosystem from Section 16.5. For more details, see the text. The elliptic curve
li y3 ■ z3 + 3z + 45 (mod 8831) and the point Is G = (4,11). Alice’s message is 
the point Pm •= (5,1743).

Bob hoa chosen his secret random number op = 3 and has computed at,G:

»  mult«ll([4 .11] ,3 ,3 ,46,8831)

m  -
413 1808

Uol) publishes this point. Alice chooses the random number k =  8 and computes

kO mid Pm + fc(oflG):

»  multell([4 ,11],8 ,3 ,46,8831)

one ■
6415 6321

>> addell([5 ,1743] ,multell([413,1808],8 ,3 ,45,8831),3 ,45,8831)

ana ■

6626 3676

Alice sends (5415,6321) and (6626, 3576) to Bob, who multiplies the first of these 
point by aij:

»  m u lte lH [6415,6321] ,3,3,45/8831)

ana ■

673 146

Bob then subtracts the result from the last point Alice sends him. Note that he 
nubtracts by adding the point with the second coordinate negated:

>> addelH [6626,3576],[673,-146],3 ,45,8831)

line «

6 1743

Dob bus therefore received Alice’s message.
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E xam p le  9. Let's reproduce the numbers in the example of a Diffie-Hellman key 
exchange from Section 16.5: The elliptic curve is y2 =  x3 + x + 7206 (mod 7211) 
and the point is G — (3,5). Alice chooses her secret N,\ =  12 and Bob chooses his 
secret Nb — 23. Alice calculates

»  m u lte ll([3 ,5 ] ,12,1,7206,7211)

ans =

1794 6376

She sends (1794,6375) to Bob. Meanwhile, Bob calculates

»  m u lte ll([3 ,5],23,1,7206,7211)

ana =
3861 1242

and sends (3861,1242) to Alice. Alice multiplies what she receives by Na and Bob 
multiplies what he receives by N b '

»  multell([3861,1242],12,1,7206,7211)

ana =

1472 2098

»  m u lte lK [1794,6376] ,23,1,7206,7211)

ans =

1472 2098

Therefore, Alice and Bob have produced the same key.
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Suggestions for Further 
Reading

For the history of cryptography, the best source by far is [Kahn].

For additional treatment of topics in the present book, and many other topics, 

see [Stinson], [Stinsonl], [Schneier], [Mao], and [Menezes et ol.]. These books also 
have extensive bibliographies.

An approach emphasizing algebraic methods is given in [Koblitz].

For the theoretical foundations of cryptology, see [Goldreichl] and [Goldreich2], 

Books that ore oriented toward protocols and practical network security include 

[Stallings] and [Kaufman et al.]

For a guidelines on properly applying cryptographic algorithms, the reader is 

directed to [Ferguson-Schneier], For a general discussion on securing computing 

platforms, see [Pfleeger-Pfleeger].

The Internet, of course, contains a wealth of information about cryptographic is

sues. The Cryptology ePrint Archive server at h ttp : / /e p r in t . ia c r . org/ contains 

very recent research. Also, the conference proceedings CRYPTO, EUROCRYPT, 

and ASIACRYPT (published in Springer-Verlng’s Lecture Notes in Computer Sci

ence series) contain many interesting reports on recent developments.
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