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Preface

This book is based on a course in cryptography at the upper-level under-
graduate and beginning graduate level that has been given at the University
of Maryland since 1997, and a course that bas been tought at Rutgers Uni-
versity since 2003. When designing the courses, we decided on the following
requircments:

o The courses should be up-to-date and cover a broad selection of topics
from a mathematical point of view.

o The material should be accessible to mathematically mature students
having little background in number theory and computer program-
ming.

e There should be examples involving numbers large enough to demon-
strate how the algorithms really work.

We wanted to avoid concentrating solely on RSA and discrete logarithms,
which would have made the courses mostly about number theory. We also
did not want to focus on protocols and how to hack into friends’ computers.
That would have made the courses less mathematical than desired.

There are numerous topics in cryptology that can be discussed in an
introductory course. We have tried to include many of them. The chapters
represent, for the most part, topics that were covered during the differ-
ent semesters we taught the course. There is certainly more material here
than could be treated in most one-semester courses. The first nine chapters
represent the core of the material. The choice of which of the remaining
chapters are used depends on the level of the students and the objectives of
the lecturer.

The chapters are numbered, thus giving them an ordering. However, ex-
cept for Chapter 3 on number theory, which pervades the subject, the chap-
ters are fairly independent of each other and can be covered in almost any

xi



xii PREFACE

reasonable order. Although we don't recommend doing so, a daring reader
could possibly read Chapters 4 through 19 in reverse order, with only having
to look ahead/behind & few times. Since students have varied backgrounds
in number theory, we have collected the basic number theory facts together
in Chapter 3 for ease of reference; however, we recommend introducing these
concepts graduvally throughout the course as they are needed.

Tlhe chapters on information theory, elliptic curves, quantum cryptogra-
phy, lattice methods, and error correcting codes are somewlhat more mathe-
matical than the others. The chapter on error correcting codes was included,
at the suggestion of several reviewers, because courses that include introduc-
tions to both cryptology and coding theory are fairly common.

Computer examples. Suppose you want to give an example for
RSA. You could choose two one-digit primes and pretend to be working
with fifty-digit primes, or you could use your favorite software package to
do an actual example with large primes. Or perhaps you are working with
shift ciphers and are trying to decrypt a message by trying all 26 shifts of
the ciphertext. This should also be done on a computer. At the end of
the book are appendices containing computer examples written in each of
Mathematica®, Maple®, and MATLAB® that show how to do such calcula-
tions. These languages were cliosen because they are user friendly and do
not require prior programming experience. Although the course has been
taught successfully without computers, these examples are an integral part
of the book and should be studied, if at all possible. Not only do they con-
tain numericel exemples of how to do certain computations but also they
demonstrate important ideas and issues that arise. They were placed at the
end of the book because of the logistic and aesthetic problems of including
extensive computer examples in tliree languages at the ends of chapters.

Programs available in each of the three languages can be downloaded
from the Web site

www. prenhall. com fwashington

In a classroom, all that is needed is a computer (with one of the languages
installed) and a projector in order to produce meaningful examples as the
lecture is being given. Homework problems (the computer problers in var-
ious chapters) bosed on the software allow students to play with examples
individually. Of course, students having more programming background
could write their own programs instead.

‘What is new in the second edition. Cryptography is a quickly
changing field. Since the first edition of this book appeared, there have
been significant developments regarding hash functions and identity-based
encryption, for example. These necessitated updates to the material. Many
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people also made suggestions for the exposition, and tlere were several re-
quests for more exercises. The main additions we made are as follows:

1. Many new exercises, especially in Chapters 2, 3, 5, 6, and 16.

2. New and expanded material on hash functions, collected into a new
chapter (Chapter 8).

. A new chapter (Chapter 10) on security protocols.
A new chapter (Chapter 17) on lattice methods.

. A section on identity-based encryption in Chapter 16.

. New sections on Legendre and Jacobi symbols and on continued frac-
tions in Chapter 3.

7. More modes of operation in Chapter 4.
8. More attacks on RSA in Chapter 6.

We of course welcome suggestions and corrections. An errata page can be
found at the website for the book: www.prenhall.com/washington. A solu-
tions manual, for instructors only, can be obtained from the mathematics
editors or publisher's representatives of Prentice Hall.

Acknowledgments., Many people helped and provided encourage-
ment during the preparation of this book. First, we would like to thank our
students, whose enthusiasm, insights, and suggestions contributed greatly.
We are especially grateful to many people who have provided corrections and
other input, especially our colleagues Bill Gasarch and Jef Adams. Jonathan
Rosenberg and Tim Strobell provided invaluable technical assistance. We
would like to thank Wenyuan Xu, Qing Li, and Pandurang Kamat, who
drew several of the diagrams and provided feedback on the new material
for the second edition. The reviewers deserve special thanks: for the first
edition: David Grant (University of Colorado at Boulder), David M. Pozar
(University of Massachusetts, Amherst), Jugal K. Kalita (University of Col-
orado at Colorado Springs), Anthony Ephremides (University of Maryland,
College Park), J. Felipe Voloch (University of Texas at Austin), Agnes Chan
(Northeastern University), Daniel F. Warren (Naval Postgraduate School),
and one anonymous Ieviewer; and for the second edition: Eric Bach (Univer-
sity of Wisconsin), James W. Brewer (Florida Atlantic Unjversity), Siman
Wong (University of Massachusetts, Amherst), Thomas P. Cahill {Brook-
lyn Polytechnic University), and Edmund Lamagna (University of Rhode
Island). Their suggestions on the exposition and the organization of the
topics greatly enhanced the final result. We have enjoyed working with
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the staff at Prentice Hall, especially the mathematics editor, George Lobell,
and the production editors Jeanne Audino (first edition) and Raegan Keida
(second edition).

The first author would like to thank Nisha Gilra, who provided encour-
agement and advice; Sheilagh O'Hare for introducing him to the field of
cryptography; and K.J. Ray Liu for his support. ’

The second author thanks Susan Zengerle and Patrick Washington for
their patience, help, and encouragement during the writing of this book.

Wade Trappe
trappe@uinlad.rutgers.edu

Lawrence C. Washington
{cw@math.umd.edu
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CHAPTER. 1

Overview of Cryptography
and Its Applications

People have always had a fascination with keeping information away from
others. As children, many of us had magic decoder rings for exchanging
coded messages with our friends and possibly keeping secrets from parents,
siblings, or teachers. History is filled with examples where people tried to
keep information secret from adversaries. Kings and generals communicated
with their troops using basic cryptographic methods to prevent the enemy
from learning sensitive military information. In fact, Julius Caesar report-
edly used a simple cipher, which has been named after him.

As society has evolved, the need for more sophisticated methods of pro-
tecting data has incrensed. Now, with the information era at hand, the need
is more prooounced than ever. As the world becomes more connected, the
demand for information and electronic services is growing, and with the in-
creased demand comes increased dependency on electronic systems. Already
the exchange of sensitive information, such as credit card numbers, over the
Internet is common practice. Protecting data and electronic systems is cru-
cial to our way of living.

The techniques needed to protect data belong to the field of cryptogra-
phy. Actually, the subject has three names, cryptography, eryptology,
and cryptanalysis, which are often used interchangeably. Technically, how-
ever, cryptology is the all-inclusive term for the study of communication over
nonsecure channels, and related problems. The process of designing systems
to do this is called cryptography. Cryptanalysis deals with breaking such

1



2 CHAPTER 1. OVERVIEW OF CRYPTOGRAPHY AND I'l'S APPLICATIONS

systems. Of course, it is essentially impossible to do either cryptography or
cryptanalysis without having a good understanding of the methods of both
nrens.

Often the term coding theory is used to describe cryptography; how-
ever, this can lead to confusion. Coding theory deals with representing
input information symbols by output symbols called code symbols. There
are three basic applications that coding theory covers: compression, secrecy,
nnd error correction. Over the past few decades, the term coding theory has
become associated predomtnantly with error correcting codes. Coding the-
ory thus studies communication over noisy channels and how to ensure that
the message received is the correct message, as opposed to cryptography,
which protects communication over nonsecure channels.

Although error correcting codes are only a secondary Jocus of this book,
wo should emphasize that, in any real-world system, error correcting codes
are used in conjunction with encryption, since the change of a single bit is
enough to destroy the message completely in a well-designed cryptosystem.

Modern cryptography is a field that draws heavily upon mathematics,
computer science, and cleverness. This book provides an introduction to
the mathematics and protocols needed to make data transmission and elec-
tronlc systems secure, along with techniques such as electronic signatures
and secret sharing.

1.1 Secure Communications

In the basic communication scenario, depicted in Figure 1.1, there are two
phrties, we'll call them Alice and Bob, who want to communicate with each
otlier. A third party, Eve, is a potential eavesdropper.

When Alice wants to send a message, called the plaintext, to Bob, she
encrypts it using a method prearranged with Bob. Usually, the encryption
method is assumed to be known to Eve; what keeps the message secret is a
key. When Bob receives the encrypted message, called the ciphertext, he
changes it back to the plaintext, using a decryption key.

Eve could bave one of the following goals:

1. Read the message.
2. Find the key and thus read all messages encrypted with that key.

3. Corrupt Alice's message into another message in such a way that Bob
will think Alice sent the altered message.

4, Masquerade as Alice, and thus communicate with Bob even though
Bob believes he is communicating with Alice.



1.1. SECURE COMMUNICATIONS 3

Encryption Decryption
Key Key
) plaintext ciplicrtext
Alice Encrypt Decrypt Bob
Eve

Figure 1.1: The Basic Communication Scenario for Cryptography.

Which case we're in depends on how evil Eve is. Cases (3) and (4) relate
to issues of integrity and authentication, respectively. We'll discuss these
shortly. A more active and malicious adversary, corresponding to cases (3)
and (4), is sometimes called Mallory in the literature. More passive observers
(as in cases (1) and (2)) are sometimes named Oscar. We'll generally use
only Eve, and assume she is as bad as the situation allows.

1.1.1 Possible Attacks

There are four main types of attack that Eve might be able to use. The
differences among these types of attacks are the amounts of information Eve
has available to her when trying to determine the key. The four attacks are
as follows:

1. Ciphertext only: Eve has only a copy of the ciphertext.

2. Known plaintext: Eve has a copy of a ciphertext and the correspond-
ing plaintext. For example, suppose Eve intercepts an encrypted press
release, then sees the decrypted release the next day. If she can de-
duce the decryption key, and if Alice doesn't change the key, Eve can
read all future messages. Or, if Alice always starts her messages with
“Dear Bob,” then Tve has a small piece of ciphertext and correspond-
ing plaintext. For many weak cryptosystems, this suffices to find the
key. Even for stronger systems such as the German Enigma machine
used in World War II, this amount of information has been useful.

3. Chosen plaintext: Eve gains temporary access to the encryption ma-
chine. She cannot open it to find the key; however, she can encrypt a
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large number of suitably chosen plaintexts and try to use the resulting
ciphertexts to deduce the key.

4. Chosen ciphertext: Eve obtains temporary access to the decryption
machine, uses it to “decrypt” several strings of symbols and tries to
use the results to deduce the key.

A chosen plaintext attack could happen as follows. You want to identify
an airplane as friend or foe. Send a random message to the plane, which en-
crypts the message automatically and sends it back. Only a friendly airplane
is assumed to have the correct key. Compare the message from the plane
with the correctly encrypted message. If they malch, the plane is friendly. If
not, it's the enemy. However, the enemy can send a large number of chosen
messages to one of your planes and look at the resulting ciphertexts. If this
allows them to deduce the key, the enemy can equip their planes so they can
masquerade as friendly.

An example of a known plaintext attack reportedly happened in World
War II in the Sahara Desert. An isolated German outpost every day sent an
identical message saying that there was nothing new to report, but of course
it was encrypted with the key being used that day. So each day the Allies
had a piaintext-ciphertext pair that was extremely useful in determining
the key. In fact, during the Sahara campaign, General Montgomery was
carefully directed around the outpost so that the transmissions would not
be stopped.

One of the most important assumptions in modern cryptography is Ker-
ckhoffs’s principle: In assessing the security of a cryptosystem, one should
always assume the enemy knows the method being used. This principle was
enunciated by Auguste IKerckhoffs in 1883 in his classic treatise Le Cryp-
tographie Militaire, The enemy can obtain this information in many ways.
For example, encryption/decryption machines can be captured and ana-
lyzed. Or people can defect or be captured. The security of the system
should therefore be based on the key and not on the obscurity of the algo-
rithm used. Consequently, we always assume that Eve has knowledge of the
algorithm that is used to perform encryption.

1.1.2 Symmetric and Public Key Algorithms

Encryption/decryption methods fall into two categories: symmetric key
and public key. In symmetric key algorithms, the encryption and deeryp-
tion leys are known to both Alice and Bob. For example, the encryption key
is shared and the decryption key is easily calculated from it. In many cases,
the encryption key and the decryption key are the same. All of the clas-
sical (pre-1970) cryptosystems are symmetric, as are the more recent Data
Encryption Standard (DES) and Advanced Encryption Standard (AES).
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Public key algorithms were introduced in the 1970s and revolutionized
cryptography. Suppose Alice wants to communicate securely with Bob, but
they are hundreds of lilometers apart and have not agreed on a key to use.
It seems almost impossible for them to do this without first getting together
to agree on a key, or using a trusted courier to carry the key from one to the
other. Certainly Alice cannot send a message over open channels to tell Bob
the key, and then send the ciphertext encrypted with this key. The amazing
fact is that this problem has a solution, called public key cryptography. The
encryption key is made public, but it is computationally infeasible to find the
decryption key without information known only to Bob. The most popular
implementation is RSA (see Chapter 6), which is based on the difficulty of
factoring large integers. Other versions (see Chapters 7, 17, and 18) are the
ElGamal system (based on the discrete log prablem), NTRU (lattice based)
and the McEliece system (based on error correcting codes).

Here is a nonmathematical way to do public key communication. Bob
sends Alice a box and an unlocked padlock. Alice puts her message in the
box, locks Bob’s lock on it, and sends the box back to Bob. Of course,
only Bob can open the box and read the message. The public key methods
mentioned previously are mathematical realizations of this idea. Clearly
there are questions of authentication that must be dealt with. For example,
Eve could intercept the first transmission and substitute her own lock. If
she then intercepts the locked box when Alice sends it back to Bob, Eve can
untock her lock and read Alice's message. This is a general problem that
must be addressed with any such system.

Public ey cryptography represents what is possibly the final step in an
interesting historical progression. In the earliest years of cryptography, secu-
rity depended on keeping the eacryption method secret. Later, the method
was assumed known, and the security depended on keeping the (symmet-
ric) key private or unknown to adversaries. In public key cryptography, the
method and the encryption key are made public, and everyone knows what
must be done to find the decryption key. The security rests on the fact (or
hope) that this is computationally infeasible. It's rather paradoxical that an
increase in the power of cryptographic algorithms over the years has corre-
sponded to an increase in the amount of information given to an adversary
about such algorithms.

Public key methods are very powerful, and it might seem that they
malce the use of symmetric key cryptography obsolete. However, this added
fexibility is not free and comes at a computational cost. The amount of
computation needed in public key algorithms is typically several orders of
magnitude more than the amount of computation needed in algorithms such
as DES or Rijndael. The rule of thumb is that public key methods should
not be used for encrypting large quantities of data. For this reason, public
key methods are used in applications where only small amounts of data must
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be processed (for example, digital signatures and sending keys to be used in
symmetric key algorithms).

Within symmetric key cryptography, there are two types of ciphers:
stream ciphers and block ciphers. In stream ciphers, the data are fed into
the algorithm in small pieces (bits or characters), and the output is pro-
duced in corresponding small pieces. In block ciphers, however, a block of
input bits is collected and fed into the algorithm all at once, and the output
is a block of bits. In Section 2.11 we discuss an example of a stream cipher
based on linear feedback shift registers. Mostly we shall be concerned with
block ciphers. In particular, we cover two very significant examples. The
first is DES, and the second is Rijndael, which was selected in the year 2000
by the National Institute for Standards and Technology as the replacement
for DES. Public key methods such as RSA can also be regarded as block
ciphers.

Finally, we mention a historical distinction between different types of
encryption, namely codes and ciphers. In a code, words or certain letter
combinations are replaced by codewords (which mey be strings of symbols).
For example, the British navy in World War I used 03680C, 36276C, and
50302C to represent shipped et, shipped by, and shipped from, respectively.
Codes have the disadvantage that unanticipated words cannot be used. A
cipher, on the other hand, does not use the linguistic structure of the message
but rather encrypts every string of characters, meaningful or not, by some
algorithm. A cipher is therefore more versatile than a code. In the early days
of cryptography, codes were commonly used, sometimes in conjunction with
ciphers. They are still used today; covert operations are often given code
names. However, any secret that is to remain secure needs to be encrypted
with a cipher. In this book, we'll deal exclusively with ciphers.

1.1.3 Key Length

The security of cryptographic algorithms is a difficult property to measure.
Most algorithms employ keys, and the security of the algorithm is related to
how difficult it is for an adversary to determine the key. The most obvious
approach is to try every possible key and see which ones yield meaningful
decryptions. Such an attack is called a brute force attack. In a brute
force attack, the length of the key is directly related to how long it will take
to search the entire keyspace. For example, if a key is 16 bits long, then
there are 2'6 = 65536 possible keys. The DES algorithm has a 56-bit key
and thus has 250 = 7.2 x 10'® possible keys.

In many situations we’ll encounter in this book, it will seem that a system
can be broken by simply trying all possible keys. However, this is often easier
said than done. Suppose you need to try 10%° possibilities and you have a
computer that can do 10° such calculations each second. There are around



-1

1.1. SECURE COMMUNICATIONS

3 x 107 seconds in a year, so it would take a little more than 3 x 10'3 years
to complete the task, longer than the predicted life of the universe. .

Longer keys are advantageous but are not guaranteed to make an ad-
versary’s task difficult. The algorithm itself also plays a critical role. Some
algorithms might be able to be attacked by means other than brute force,
and some algorithms just don't make very efficient use of their keys’ bits.
This is & very important point to keep in mind. Not all 128-bit algorithms
are created equal!

For example, one of the easiest cryptosystems to break is the substitution
cipher, which we discuss in Section 2.4. The number of possible keys is
26! ~ 4 x 10%. In contrast, DES (see Chapter 4) has only 256 ~ 7.2 x 106
keys. But it typically takes over a day on a specially designed computer to
find a DES key. The difference is that an attack on a substitution cipher
uses the underlying structure of the language, while the attack on DES is
by brute force, trying all possible keys.

A brute force attack should be the last resort. A cryptanalyst always
hopes to find an attack that is faster. Examples we'll meet are frequency
analysis (for the substitution and Vigenére cipliers) and birthday attacks
(for discrete logs).

We also warn the reader that just because an algorithm seems secure
now, doesn’t mean it will remain so. Human ingenuity has led to creative
attacks on cryptographic protocols. There are many examples in modern
cryptography where an algorithm or protocol was successfully attacked be-
cause of a loophole presented by poor implementation, or just because of
advances in technology. The DES algorithm, which withstood 20 years of
cryptographic scrutiny, ultimately succumbed to attacks by a well-designed
parallel computer. Even as you read this book, research in quantum com-
puting is underway, which could dramatically alter the terrain of future
cryptographic algorithms.

For example, the security of several systems we'll study depends on the
difficulty of factoring large integers, say of around 200 digits. Suppose you
want to factor a number n of this size. The method used in elementary
school is to divide n by all of the primes up to the square root of #. There
are approximately 4 x 1097 primes less than 10'%, Trying each one is im-
possible. The number of electrons in the universe is estimated to be less
than 109, Long before you finish your calculation, you'll get a call from the
electric company asking you to stop. Clearly, more sophisticated factoring
algorithms must be used, rather than this brute force type of attack. When
RSA was invented, there were some good factoring algorithms available,
but it was predicted that a 129-digit number such as the RSA challenge
number (see Section 6.5) would not be factored within the foreseeable fu-
ture. However, advances in algorithms and computer architecture have made
such factorizations fairly routine (although they still require substantial
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computing resources), so now numbers of several hundred digits are rec-
ornmended for security. But if a full-scale quantum computer is ever built,
factorizations of even these numbers will be easy, and the whole RSA scheme
(along with many other methods) will need to be reconsidered.

A natural question, therefore, is whether there any unbreakable cryp-
tosystems, and why aren't they used all the time?

The answer is yes; there is a system, known as the one-time pad, that
is unbreakable. Even a brute force attack will not yield the key. But the
unfortunate truth is that the expense of using a one-time pad is enormous.
It requires exchanging a key that is as long as the plaintext, and even then
the key can only be used once. Therefore, one opts for algorithms that,
when implemented correctly with the appropriate key size, are unbreakable
in any reasonable amount of time.

An tmportant point when considering key size is that, in many cases,
one can mathematically increase security by a slight increase in key size,
but this is not always practical. If you are working with chips that can
handle words of 64 bits, then an increase in the key size from G4 to 65 bits
could mean redesigning your hardware, which could be expensive. Therefore,
designing good cryptosystems involves both mathematical and engineering
considerations.

Finally, we need a few words about the size of numbers. Your intuition
might say that working with a 20-digit number takes twice as long as working
with a 10-digit number. That is true in some algorithms. However, if you
count up to 10!°, you are not even clase to 10°%; you are only one 10 billionth
of the way there. Similarly, a brute force attack against a 60-bit key takes
a billion times longer than one against a 30-bit key.

There are two ways to measure the size of numbers; the actual magnitude
of the number n, and the number of digits in its decimal representation (we
could also use its binary representation), which is approximately log;y(n).
The number of single-digit multiplications needed to square a k-digit number
n, using the standard algorithm from elementary school, is &%, or approx-
imately (log;pn)%. The number of divisions needed to factor a number n
by dividing by all primes up to the square root of n is around n!/2, An
algorithm that runs in time a power of logn is much more desirable than
one that runs in time a power of n. In the present example, if we double the
number of digits in 7, the time it takes to square n increases by a factor of
4, while the time it takes to factor n increases enormously. Of course, there
are better algorithms available for both of these operations, but, at present,
factorization tales significantly longer than muitiplication.

We'll meet algorithms that take time a power of logn to perform cer-
tain calculations {for example, finding greatest common divisors and doing
modular exponentiation). There are other computations for which the best
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known algorithms run only slightly better than a power of n {for example,
factoring and finding discrete logarithms). The interplay between the fast al-
gorithms and the slower ones is the basis of several cryptographic algorithms
that we'll encounter in this book.

1.2 Cryptographic Applications

Cryptography is not only sbout encrypting and decrypting messages, it is
also about solving real-world problems that require information security.
There are four main objectives that arise:

1. Confidentiality: Eve should not be able to read Alice's message to Bob.
The main tools are encryption and decryption algorithms.

2. Data integrity: Bob wants to be sure that Alice's message has not
been altered. For example, transmission errors might occur. Also,
an adversary might intercept the transmission and alter it before it
reaches the intended recipient. Many cryptographic primitives, such
as hash functions, provide methods to detect data manipulation by
malicious or accidental adversaries.

3. Authentication: Bob wants to be sure that only Alice could have sent
the message he received. Under this heading, we also include iden-
tification schemes and password protocols (in which case, Bob is the
computer). There are actually two types of authentication that arise
in cryptography: entity authentication and data-origin authentication.
Often the term identification is used to specify entity authentication,
which is concerned with proving the identity of the parties involved
in & communication. Data-origin authentication focuses on tying the
information about the origin of the data, such as the creator and time
of creation, with the data.

4. Non-repudiation: Alice cannot claim she did not send the message.
Non-repudiation is particularly important in electronic commerce ap-
plications, where it is important that a consumer cannot deny the
authorization of a purchase.

Authentication and non-repudiation are closely related concepts, but
there is o difference. In o symmetric key cryptosystem, Bob can be sure
that a message comes from Alice (or someone who knows Alice’s key) since
no one else could have encrypted the message that Bob decrypts successfully.
Therefore, authentication is automatic. However, Le cannot prove to any-
one else that Alice sent the message, since he could have sent the message
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himself. Therefore, non-repudiation is essentially impossible. In a public
key cryptosystem, both authentication and non-repudiation can be achieved
{see Section 6.7 and Chapter 9).

Much of this book will present specific cryptographic applications, both
in the text and as exercises. Here is an overview.

Digital signatures: One of the most important features of a paper
and ink letter is the signature. When a document is signed, an individual's
identity is tied to the message. The assumption is that it is difficult for
another person to forge the signature onto another document. Electronic
messages, however, are very easy to copy exactly. How do we prevent an
adversary from cutting the signature off one document and attaching it
to another clectronic document? We shall study cryptographic protocols
that allow for electronic messages to be signed in such a way that everyone
believes that the signer was the person who signed the document, and such
that the signer cannot deny signing the document.

Identification: When logging into a machine or initiating a communi-
cation link, a user needs to identify himself or herself. But simply typing
in a user name is not sufficient as it does not prove that the user is really
who lie or she claims to be. Typically a password is used. We shall touch
upon various methods for identifying oneself. In the chapter on DES we
discuss password files. Later, we present the Feige-Fiat-Shamir identifica-
tlon scheme, which is a zero-knowledge based method for proving identity
without revealing a password.

Key establishment: When large quantities of data need to be en-
crypted, it is best to use symmetric key encryption algorithms. But how
does Alice give the secret key to Bob when she doesn't have the opportu-
nity to meet him personally? There are various ways to do this. One way
uses public key cryptography. Another method is the Diffie-Hellman key ex-
change algorithm. A different approach to this problem is to have a trusted
third party give keys to Alice and Bob. Two examples are Blom’s key genera-
tion scheme and Kerberos, which is a very popular symmetric cryptographic
protocol that provides authentieation and security in key exchange between
users on a network.

Secret sharing: In Chapter 12, we introduce secret sharing schemes.
Suppose that you have a combination to a bank safe, but you don't want te
trust any single’person with the combination to the safe. Rather, you would
iike to divide the combination among a group of people, so that at least two
of these people must be present in order to open the safe. Secret siiaring
solves this problem.

Security protocols: How can we carry out secure transactions over
open channels such as the Internet, and how can we protect credit card
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information from fraudulent merchants? We discuss various protocols such
as SSL and SET.

Electronic cash: Credit cards and similar devices are convenient but
do not provide anonymity. Clearly a form of electronic cash could be useful,
ot least to some people. However, electronic entities can be copied. We
give an example of an electronic cash system that provides anonymity but
catclies counterfeiters.

Games: How can you flip coins or play poker with people who are not in
the same room as you? Dealing the cards, for example, presents a problem.
We show how cryptographic ideas can solve these problems.



CHAPTER 2

Classical Cryptosystems

Methods of making messages unintelligible to adversaries have been impor-
tant throughout history. In this chapter we shall cover some of the older
cryptosystems that were primarily used before the advent of the computer.
These cryptosystems are too weak to be of much use today, especially with
computers at our disposal, but they give good illustrations of several of the
important ideas of cryptology.

First, for these simple cryptosystems, we make some conventions.

plaintext will be written in lowercase letters and CIPHERTEXT will
be written in capital letters (except in the computer problems).

The letters of the alphabet are assigned numbers 8s follows:

b d f g b kI m n o p
1 3 5 6

€ 1
4 7 8 9 10 11 12 13 14 15

0

a
0
g T s t uw v w T Yy =z
16 17 18 19 20 21 22 23 24 25

Note that we start with @ = 0, so z is letter number 25. Because
many people are accustomed to a being 1 and z being 26, the present
convention can be annoying, but it is standard for the elementary
cryptosystems that we'll consider.

Spaces and punctuation are omitted. This is even more annoying,
but it is almost always possible to replace the spaces in the plaintext
alter decrypting. If spaces were left in, there would be two choices.

12
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They could be left as spaces; but this yields so much information on
the structure of the message that decryption becomes easier. Or they
could be encrypted; but then they would dominate frequency counts
(unless the message averages at least eight letters per word), again
simplifying decryption.

Note: In this chapter, we'll be using some concepts from number theory,
especially modular arithmetic. If you are not familiar with congruences, you
should read the first three sections of Chapter 3 before proceeding,.

2.1 Shift Ciphers

One of the earliest cryptosystems is often attributed to Julius Caesar. Sup-
pose he wanted to send a plaintext such as

gaul is divided into three parts

but he didn’t want Brutus to read it. He shifted each letter by three places,
so a became D, b became E, ¢ became [F, etc. The end of the alphabet
wrapped around to the beginning, so z became A, y became B, and z became
C. The ciphertext was then

JDXOLVGLYLGHGLQWRWIKUHHSDUWYV.

Decryption was accomplished by shifting back by three spaces (and trying
to figure out how to put the spaces back in).

We now give the general sitvation. If you are not fomiliar with modular
arithmetic, read the first few pages of Chapter 3 before continuing.

Label the letters as integers from 0 to 25. The key is an integer x with
0 < &k £ 25. The encryption process is

z—z+ £k (mod 26).

Decryption is £ — £ — & (mod 26). For example, Caesar used & = 3.
Let’s see how the four types of attaclc work.

1. Ciphertext only: Eve has only the ciphertext. Her best strategy is
an exhaustive search, since there are only 26 possible keys. If the
message i3 longer than a few letters (we will make this more precise
later when we discuss entropy), it is uniikely that there is more than
one meaningful message that could be the plaintext. If you don't
believe this, try to find some words of four or five letters that are
shifts of each other. One such is given in Exercise 1. Another possible
attack, if the message is sufficiently long, is to do a frequency count for
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the various letters. The letter e occurs most frequently in most English
texts. Suppose the letter L appears most frequently in the ciphertext.
Since ¢ = 4 and L = 11, a reasonable guess is that K = 11— 4 = 7.
However, for shift ciphers this method takes much longer than an
exhaustive search, plus it requires many more letters in the message
in order for it to work (anything short, such as this, might not contain
a common symbol, thus changing statistical counts).

2. Known plaintext: If you know just one letter of the plaintext along
with the corresponding letter of ciphertext, you can deduce the key.
For example, if you know t(= 19) encrypts to D(= 3), then the key is
k=3-19=-16= 10 (mod 26).

#4. Chosen plaintext: Choose the letter a as the plaintext. The ciphertext
gives the key. For example, if the ciphertext is H, then the key is 7.

4. Chosen ciphertext: Choose the letter A as ciphertext. The plaintext
is the negative of the key. For example, if the plaintext is &, the key
ls ~7 =19 (mod 20).

2.2 Affine Ciphers

The shilt ciphers may be generalized and slightly strengthened as follows.
Choose Lwo integers « and 3, with ged(a, 26) = 1, and consider the function
(cnlied an affine function)

z—az+f (mod 26).

For example, let & = 9 and B8 = 2, so we are working with 9z + 2. Take
o plaintext letter such as (= 7). It is cncrypted to 9-7+ 2 = 65 = 13
{(mod 26), which is the letter N. Using the same function, we obtain

affine— CVVIWPM.

How do we decrypt? If we were working with rational numbers rather than
mod 26, we would start with y = 9z + 2 and solve: z = }(y — 2). But §
needs to be reinterpreted when we work mod 26. Since ged(9, 26) = 1, there
is o multiplicative inverse for 9 (mod 26) (if this last sentence doesn’t make
sense to you, read Section 3.3 now). In fact, 9-3 =1 (mod 26), so 3 is the
desired inverse and can be used in place of ;‘) ‘We therefore have

z=3y—2)=3y~6=3y+20 (mod 26).

Let's try this. The letier V(= 21) is mapped to 3-214-20 =83 = 5 (mod 26),
which is the letter f. Similarly, we see that the ciphertext CVVWPM is
decrypted back to affine.
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Suppose we try to use the function 13z + 4 as our encryption function.
We obtain .
input — ERRER.

If we olter the input, we obtain
alter — ERRER.

Clearly this function leads to errors. 1t is impossible to decrypt, since several
plaintexts yield the same ciphertext. In particular, we note that encryption
must be one-to-one, and this fails in the present case.

What goes wrong in this example? If we solve y = 13z + 4, we obtain
z = 15(y — 4). But 5 does not exist mod 26 since ged(13,26) = 13 # 1.
More generally, it can be shown that az + 8 is a one-to-one function mod
26 if and only if ged(a, 26) = 1. In this case, decryption uses z = o’y —a*
(mod 26), where c«a™ =1 (mod 26). So decryption is also accomplished by
an affine function.

The key for this encryption method is the pair (a,3). There are 12
possible choices for o with ged(a, 26) = 1 and there are 26 choices for g8
(since we are working mod 26, we only need to consider o and § between 0
and 25). Therefore, there are 12 - 26 = 312 choices for the key.

Let’s look at the possible attacks.

1. Ciphertext only: An exhaustive search through all 312 keys would take
longer than the corresponding search in the case of the shift cipher;
however, it would be very easy to do on a computer. When all possi-
bilities for the key are tried, a fairly short ciphertext, say around 20
characters, will probably correspond to only one meaningful plaintext,
thus allowing the determination of the key. It would also be possible
to use frequency counts, though this would require much longer texts.

2. Known plaintext: With a little luck, knowing two letters of the plain-
text and the corresponding letters of the ciphertext suffices to find
the key. In any case, the number of possibilities for the key is greatly
reduced and a few more letters should yield the key.

For example, suppose the plaintext starts with if and the corresponding
ciphertext is PQ. In numbers, this means that 8 (= ¢) maps to 15 (= P)
and 5 maps to 16, Therefore, we have the equations

8a+pB=15and 52+ 5 =16 (mod 26).

Subtracting yields 3a = —1 = 25 (mod 26), which has tle unique
solution a = 17. Using the first equation, we find § - 17+ 3 = 15
(mod 26), which yields 8 =9.
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Suppose instead that the plaintext go corresponds to the ciphertext
TH. We obtain the equations

ba+A=19and lda+ =7 (mod 26).

Subtracting yields ~8a = 12 (mod 26). Since ged(-8,26) = 2, this
has two solutions: « = 5,18. The corresponding values of 8 are both
15 (this is not a coincidence; it will always happen this way when the
coefficients of & in the equations are even). So we have two candidates
for the key: (5,15) and (18,15). However, ged(18, 26) # 1 so the
second is ruled out. Therefore, the key is (5, 15).

The preceding procedure works unless the ged we get is 13 (or 26). In
this case, use another letter of the message, if available.

If we know only one letter of plaintext, we still get a relation between
o and 8. For example, if we only know that g in plaintext corresponds
to T" in ciphertext, then we have 6a -+ 4 = 19 (mod 26). There are 12
possibilities for o and each gives one corresponding . Therefore, an
exhaustive search through the 12 keys should yield the correct key.

3. Chosen plaintext: Choose ab as the plaintext. The first character of
the ciphertext will be a -0+ g = g, and the second will be a + 8.
Therefore, we can find the key.

4. Chosen ciphertext: Choose AB as the ciphertext. This yields the de-
cryption function of the form £ = oy + #;. We could solve for i and
obtain the encryption key. But why bother? We have the decryption
function, which is what we want.

2.3 The Vigenere Cipher

A variation of the shift cipher was invented back in the sixteenth century. It
is often attributed to Vigenére, though Vigenére's encryption metheds were
more sophisticated. Well into the twentieth century, this cryptosystem was
thought by many to be secure, though Babbage and Kasisli bad shown how
to attack it during the nineteenth century. In the 1920s, Friedman developed
additional methods for breaking this and related ciphers.

The key for the encryption is a vector, chosen as follows. First choose a
key length, for example, 6. Then choose a vector of this size whose entries
are integers from 0 to 25, for example & = (21,4, 2,19,14,17). Often the
key carresponds to a word that is easily remembered. In our case, the word
is vector. The security of the system depends on the fact that neither the
keyword nor its length is known.
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To encrypt the message using the k in our example, we take first the
letter of the. plaintext and shift by 21. Then shift the second letter by 4, the
third by 2, and so on. Once we get to the end of the key, we start back at
its first entry, so the seventh letter is shifted by 21, the eighth letter by 4,
etc. Here is a diagram of the encryption process.

(plaintext) h e r ¢ i s h o w i t w o 1T k s
(key) 21 4 219 14 17 21 4 2 19 14 17 21 4 2 19
(ciphertext) C I'T X W J C SY B HN J VML

A known plaintext attack will succeed if enough characters are known
since the key is simply obtained by subtracting the plaintext from the cipher-
text mod 26. A chosen plaintext attack using the plaintext acaea... will
yield the key immediately, while a chosen ciphertext attack with AAAAA. ..
yields the negative of the key. But suppose you have only the ciphertext.
It was long thought that the method was secure against a ciphertext only
attack. However, it is easy to find the key in this case, too.

The cryptanalysis uses the fact that in most English texts the frequencies
of letters are not equal. For example, e occurs much more frequently than
z. These frequencies have been tabulated in [Beker-Piper] and are provided
in Table 2.1.

a b c d e f g h i j
.082 .015 .028 .043 .127 .022 .020 .061 .070 .002

k 1 m n o p q r s ¢
.008 .040 .024 .067 .075 .019 .001 .060 .063 .091

u v w X Y Z
.028 010 .023 .001 .020 .001

Table 2.1: Irequencies of Letters in English

Of course, variations can occur, though usually it takes a certain amount
of effort to produce them. There is a book Gadsby by Ernest Vincent Wright
that does not contain the letter e. Even more impressive is the book La
Disparition by George Perec, written in IFrench, which also does not have a
single e (not only are there the usual problems with verbs, etc., but almost
all feminine nonns sund adjectives must be avoided). There is an English
translation by Gilbert Adair, A Void, which also does not contain e. But
generally we can assume that the above gives a rough estimate of what
usually happens, as long as we have several hundred characters of text.
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If we had a simple shift cipher, then the letter e, for example, would
always appear as a certain ciphertext letter, which would then have the
same frequency as that of e in the original text. Therefore, a frequency
analysis would probably reveal the key. However, in the preceding example
of a Vigenere cipher, the letter e appears as both [ and X. If we had used
o longer plaintext, e would probably have been encrypted as each of Z, I,
G, X, S, and V, corresponding to the shifts 21, 4, 2, 19, 14, 17. But the
occurrences of Z in o ciphertext might not come only from e. The letter
v is also encrypted to Z when its position in the text is such that it is
shifted by 4. Similarly, z, g, {, and i can contribute Z to the ciphertext,
so the frequency of Z is a combination of that of e, v, z, ¢, I, and 1 from
the plaintext. Therefore, it appears to be much more difficult to deduce
anything from a frequency count. In fact, the frequency counts are usually
smoothed out and are much closer to 1/26 for each letter of ciphertext. At
least, they should be much closer than the original distribution for English
letters.

Here is a more substantial example. The ciphertext is the following:

VVHQWVVRHNMUSGJGTHKIHTSSEJGHLSFCBGVWCRLRYQTFSVGAHY
KCUHWAUGLQHNSLRLJSHBLTSPISPRDXLJSVEEGHLQWKASSKUWE
PWQTWVSPGOELKCQYFNSVWLJISNIQKGNRGYBYLWGOVIOKHKAZKQ
KXZGYHCECMEIUJOQKWFWVEFQHKIJRCLRLKBIENQFRJILJSDHGR
HLSFQTWLAUQRHWDMWLGUSGIKKFLRYVCWVSPGPMLKASS JVOGXE
GGVEYGGZMLJICXXLJISVPATVWIKVRDRYGFRILJSLVEGGVEYGGEI
APUUISFPBTGNWWMUCZRVTWGLRWUGUMNCZVILE

The frequencies are as follows:

ABCDETFGHT1I I KL M
8 5 12 4 15 10 27 16 13 14 17 25 7
N OP Q RS TUV WX Y 2
7 5 9 14 17 24 8§ 12 22 22 5 8 5

Note that there is no letter whose frequency is significantly larger than
the others. As discussed previously, this is because e, for example, gets
spread among several letters during the encryption process.

How do we decrypt the message? There are two steps: finding the key
length and finding the key. In the following, we'll first show how to find the
key length and then give one way to find the key. After an explanation of
why the method for finding the key works, we give an alternative way to
find the key.
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2.3.1 PFinding the Key Length

Write the ciphertext on a long strip of paper, and again on another long
strip. Put one strip above the other, but displaced by a certain number of
places (the potential key length). For exemple, for a displacement of two we
have the following:

VVHQWVVRHMUSGIJ G

vV VHQWV VERHMUSGUIJIGT H
*
THX I HT S SEJCHTULSUF FOCB
K I HT S S EJCHULSU FOCBG V
G VWUCRILIRYQTV FS VG AH
WCRULRY QTVPF S VG AHWK
*

Mark a = each time a letter and the one below it are the same, and count
the total number of coincidences. In the text just listed, we have two coinci-
dences so far. If we had continued for the entire ciphertext, we would have
counted 14 of them. If we do this for different displacements, we obtain the
following data:

displacement: 1 2 3 4 5 6
coincidences: 14 14 16 14 24 12

‘We have the most coincidences for a shift of 5. As we explain later, this is
the best guess for the length of the key. This method works very quickly,
even without a computer, and usually yields the key length.

2.3.2 Finding the Key: First Method

Now suppose we have determined the key length to be 5, as in our example.
Look at the 1st, 6th, 11th, ... letters and see which letter occurs most
frequently. We obtain

A BCDEVPFGHTIJIKULM
0o 0 7 1.1 2 9 0 1 8 8 0 0
N OPQRSTUV WIXYZ
3 0 4 5 2 06 3 6 5 1 @ 1 0



20 CHAPTER 2. CLASSICAL CRYPTQSYSTEMS

The most frequent is G, though J, K, C are close behind. However, J = ¢
would mean a shift of 5, hence C = ., But this would yield an unusually
high frequency for z in the ciphertext. Similarly, K = e would mean P = j
and @ = k, both of which have too high frequencies. Finally, C = e would
require V = z, which is unlikely to be the case. Therefore, we decide that
G = e and the first element of the key is 2 = c.

We now look at the 2nd, 7th, 12th, ... letters. We find that G occurs 10
times and S occurs 12 times, and the other letters are far behind. If G = ¢,
then § = ¢q, which should not occur 12 tirnes in the plaintext. Therefore,
S = e and the second element of the key is 14 = 0.

Now look at the 3rd, 8th, 13th, ... letters. The frequencies are

A B CDEVFGHTI J KTULM
0 1 0 3 3 1 3 5 1 0 4 10 0

N OPQRS ST
2 1 2 3 5 3 0

[S N

vV W X Y 2
B 7 1 0 1

The initial guess that L = € runs into problems; for example, R = k and
E = z have too high and A =t has too low frequency. Similarly, V = e and
W = e do not seem likely. The best choice is f = e and therefore the third
key element is 3 = d.

The 4th, 9th, 14th, ... letters yield 4 = e as the fourth element of the
key. Finally, the 5th, 10th, 15th, ... letters yield 18 = s as the final key
element. Qur guess for the key is therefore

{2,14,3,4,18} = {c,0,d,¢, s}

As we saw in the case of the 3rd, 8th, 13th, ... letters (this also happened
in the 5th, 10th, 15th, ... case), if we take every fifth letter we have a much
smaller sample of letters on which we are doing a frequency count. Another
letter can overtake e in a short sample. But it is probable that most of the
high frequency letters appear with high frequencies, and most of the low
ones appear with low frequencies. As in the present case, this is usually
sufficient to identify the corresponding entry in the key.

Once a potential key is found, test it by using it to decrypt. It should
be easy to tell whether it is correct.

In our example, the key is conjectured to be (2,14, 3,4, 18). If we decrypt
the ciphertext using this key, we obtain

themethodusedforthepreparationandreadingofcodemessagesis
simpleintheextremeandatthesametimeimpossibleoftranslatio
nunlessthekeyisknowntheeasewithwhichthekeymaybechangedis
anotherpointinfavoroftheadoptionofthiscodebythosedesirin
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gtotransmitimportantmessageswithouttheslightestdangeroft
heirmessagesbeingreadbypoliticalorbusinessrivalsetc

This passage is taken from a short article in Scientific American, Supple-
ment LXXXIII (1/27/1917), page 61. A short explanation of the Vigenere
cipher is given, and the preceding passage expresses an opinion as to its
security.

Before proceeding to a second method for finding the key, we give an
explanation of why the procedure given earlier finds the key length. In
order to avoid confusion, we note that when we use the word “shift” for
a letter, we are referring to what happens during the Vigenere encryption
process.

We also will be shifting elements in vectors. However, when we slide one
strip of paper to the right or left relative to the other strip, we use the word
“displacement.”

Put the frequencies of English letters into a vector:

Ag = (.082, .015, 028, ..., .020, .001).
Let A; be the result of shifting Ag by i spaces to the right. For example,
As = (.020, .001, .082, .015,...).
The dot product of Ap with itself is
Ag - Ag = (.082)° + (.015)* + - - - = .0866.

Of course, A;-A; is also equal to .066 since we get the same sum of products,
starting with a different term. However, the dot products of A;- A; are much
lower when 7 # j, ranging from .031 to .045:

Ii - 3 0 1 2 3 4 5 6
A;-A; 066 039 032 .034 .44 .033 .036

7 8 9 10 11 12 13
039 .034 .034 .038 .045 .039 .042

The dot product depends only on [i — j|. This can be seen as follows. The
entries in the vectors are the same as those in Ag, but shifted. In the dot
product, the ith entry of Ag is multiplied by the jth entry, the (i + 1)st
times the (5 + 1)st, etc. So each element is multiplied by the element j — i
positions removed from It. Therefore, the dot product depends only on the
difference ¢ — j. Howover, by reversing the roles of ¢ and j, and noting that
A;-Aj;=A;- A wesee that 1 —j and j — 7 give the same dot products,



22 CHAPTER 2. CLASSICAL CRYPTOSYSTEMS

so the dot product only depends on |i — j|. In the preceding table, we only
needed to compute up to |i — j] = 13. For example, ¢ — j = 17 corresponds
to a shift by 17 in one direction, or 9 in the other direction, so i — 7 = 9 will
give the same dot product.

The reason Ag + Ag Is higher than the other dot products is that the
large numbers in the vectors are paired with large numbers and the small
ones are paired with small. In the other dot products, the large numbers are
paired somewhat randomly with other numbers. This lessens their effect.
For another reason that Ag - Ag is higher than the other dot products, see
Exercise 9.

Let's assume that the distribution of letters in the plaintext closely
matches that of English, as expressed by the vector Ag above. Look at
a random letter in the top strip of ciphertext. It corresponds to & random
letter of English shifted by some amount i (corresponding to an element
of the key). The letter below it corresponds to a random letter of English
shifted by some amount j.

For concreteness, let's suppose that ¢ = 0 and j = 2. The probability
that the letter in the 50th position, for example, is A is given by the first
entry in Ag, namely .082. The letter directly below, on the second strip, has
been shifted from the original plaintext by 7 = 2 positions, If this ciphertext
letter is A, then the corresponding plaintext letter was ¥, which occurs in
the plaintext with probability .020. Note that .020 is the first entry of the
vector An. The probability that the letter in the 50th position on the first
strip and the letter directly below it are both the letter A is (.082)(.020).
Similarly, the probability that both letters are B is (.015)(.001). Working
all the way through Z, we see that the probability that the two letters are
the same is

(.082)(.020) + (.015)(.001) + - - + (.001)(.001) = Ag - Aa.

In general, when the encryption shifts are < and j, the probability that
the two letters are the same is A; - Aj. When 7 3 j, this is approximately
0.038, but if i = 7, then the dot product is 0.066.

We are in the situation where i = j exactly when the letters lying one
above the other have been shifted by the same amount during the encryption
process, namely when the top strip is displaced by an amount equal to the
key length (or a multiple of the key length). Therefore we expect more
coincidences in this case.

For a displacement of 5 in the preceding ciphertext, we had 326 compar-
isons and 24 coincidences. By the reasoning just given, we should expect
approximately 326 x 0.066 = 21,5 coincidences, which is close to the actual
value.
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2.3.3 Finding the Key: Second Method

Using the preceding ideas, we give another method for determining the key.
It seems to work somewhat better than the first method on short samples,
though it requires a little more calculation.

We'll continue to work with the preceding example. To find the first
element of the key, count the occurrences of the letters in the 1st, 6th, 11th,
... positions, as before, and put them in a vector:

vV =(0,0,7,1,1,2,9,0,1,8,8,0,0,3,0,4,5,2,0,3,6,5,1,0, 1,0)

(the first entry gives the number of occurrences of A, the second gives the
number of occurrences of B, etc.). If we divide by 67, which is the total
number of letters counted, we obtain a vector

W = (0, 0, .1045, .0149, .0149, .0299, .. .,.0149, 0).

Let’s think about where this vector comes from. Since we know the key
length is 5, the 1st, 6th, 11th, ... letters in the ciphertext were all shifted by
the same amount (as we'll see shortly, they were all shifted by 2). There-
fore, they represent a random sample of English letters, all shifted by the
same amount. Their frequencies, which are given by the vector W, should
approximate the vector A;, where i is the shift caused by the first element

of the key.

The problem now is to determine ¢. Recall that A; - A; is largest when
i = j, and that W approximates A;. If we compute W . A; for 0 < j < 25,
the maximum value should occur when j = i. Here are the dot products:

.0250, .0391, .0713, .0388, .0275, .0380, .0512, .0301, .0325,
.0430, .0338, .0299, .0343, .0446, .0356, .0402, .0434, .0502,
.0392, 0296, .0326, .0392, .0366, .0316, .0488, .0349

The lacgest value is the third, namely .0713, which equals W' Az, Therefore,
we guess that the first shift is 2, which corresponds to the key letter c.

Let’s use the same method to find the third element of the key. We
calculate a new vector W, using the frequencies for the 3rd, 8th, 13th, ...
letters that we tabulated previously:

W = (0, .0152, 0, .0454, .0454, .0152, ..., 0, .0152).
The dot products W+ A; for 0 < i < 25 are

0372, .0267, .0395, .0624, .04741, .0279, .0319, .0504, .0378,
.0351, .0367, .0395, .0264, .0415, .0427, .0362, .0322, .0457,
.0526, .0397, .0322, 0299, .0364, .0372, .0352, .0406
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The largest of these values is the fourth, namely .0624, which equals W - Aj.
Therefore, the best guess is that the first shift is 3, which corresponds to
the key letter d. The other three elements of the key can be found similarly,
again vielding ¢, o, d, e, s as the key.

Notice that largest dot product was significantly larger than the others in
both cases, so we didn't have to make several guesses to find the correct one.
In this way, the present method is superior to the first method presented;
however, the first method is much easier to do by hand.

Why is the present method more accurate than the first one? To obtain
the largest dot product, several of the larger values in W had to match with
the larger values in an A;. In the earlier method, we tried to match only
the e, then looked at whether the choices for other letters were reasonable.
The present method does this all in one step.

To summarize, bere is the method for finding the key. Assume we already
have determined that the key length is n.

For i =1 to n, do the [ollowing:

1. Compute the frequencies of the letters in positions i mod n, and form
the vector W.

2. For j =1 to 25, compute W - A;.
3. Let k; = o give the moximum value of W - A;.

The key is probably {ky,...,kn}.

2.4 Substitution Ciphers

One of the more popular cryptosystems is the substitution cipher. It is com-
monly used in the puzzle section of the weekend newspapers, for example.
The principle is simple: Each letter in the alphabet Is replaced by another
(or possibly the same) letter. More precisely, a permutation of the alpha-
bet is chosen and applied to the plaintext. In the puzzle pages, the spaces
between the words are usually preserved, which is a big advantage to the
solver, since knowledge of word structure becomes very useful. However, to
increase security it is better to omit the spaces.

The shift and affine ciphers ore examples of substitution ciphers. The
Vigentre and Hill ciphers (see Sections 2.3 and 2.7) are not, since they
permute blocks of letters rather than one letter at a time.

Everyone “knows” that substitution ciphers can be broken by frequency
counts. However, the process is more complicated than one might expect.

Consider the following example. Thomas Jeflerson has a potentially
treasonous message that he wants to send to Ben Franklin. Clearly he does
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not want the British to read the text if they intercept it, so he encrypts using
a substitution cipher. Fortunately, Ben Franklin knows the permutation
being used, so he can simply reverse the permutation to obtain the original
message (of course, Franklin was quite clever, so perhaps he could have
decrypted it without previously knowing the key).

Now suppose we are working for the Government Code and Cypher
School in England baclt in 1776 and are given the following intercepted
message to decrypt. :

LWNSOZBNWVWBAYBNVBSQWVWOHWDIZWRBENPBPOOUWRPAWX AY
PBWZWMYPOBNPBBNWIPAWWRZSLWZQJBNWIAXAWPBSALIBNXWA
BPIRYRPOTWRPQOWATENBVBNPBPUSREENWVWPAWO THWOIQWAB
JPRZBNWFYAVYIBSHNPFF IRWVVBNPBBSVWXYAWBNWVWAIENBY
ESDWARUWRBVPAWIRVBIBYBWZPUSREUWRZWAIDIREBNWIATYV
BFSLWAVHASUBNWXSRVWRBSHBNWESDWARWZENPBLNWRWDWAPR
JHSAUSHESDWARUWRBQWXSUWVZHWVBAYXBIDWSHBNWVWWRZVIB
IVBNWAIENBSHBNWFWSFOWBSPOBWASABSPQSOIVNIBPRZBSIR
VBIBYBWRWLESDWARUWRBOPJIREIBVHSYRZPBISRSRVYXNFAI
RXIFOWVPRZSAEPRIKIREIBVFSLWAVIRVYXNHSAUPVBSYWWUU
SVBOICWOJBSWHHWXBBNWIAVPHWBIPRZNPFFIRWVV

A frequency count yields the following (there are 520 letters in the text):

W B R 8§ I V A P N O
76 64 39 36 36 35 34 32 30 16

The approximate frequencies of letters in English were given in Section 2.3.
We repeat some of the data here in Table 2.2. This allows vs to guess with

e t a ) i n s h T
127 091 .082 075 .070 .067 .063 .061 .060

Table 2.2: Frequencies of Most Common Letters in English

reasonable confidence that W represents e (though B is another possibility).
But what about the other letters? We can guess that B, R, S,[, V,A, P, N,
with maybe an exception or two, are probably the same as t,a,0,1,n,s,h,7
in some order. But & simple frequency count is not enough to decide which
is which. What we need to do now is look at digrams, or pairs of letters.
We organize our results in Table 2.3 (we only use the most frequent letters
here, though it would be better to include all).

The entry 1 in the W row and N column means that the combination
W N oppears 1 tiine in the text. The entry 14 in the ¥ row and W column
means that NW sppears 14 times.
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EONwe~ o S
W w g oo o &
ocorog oo oW
HOWO — o~ S ew
R O e O R
el N e oo gl
OO W oK
NO WO W Wk g
coo—oool—Z

ZUP <~ w S

Table 2.3: Counting Digrams

‘We have already decided that W = e, but if we had extended the table to
include low-frequency letters, we would see that W contacts many of these
letters, too, which is another characteristic of e, This helps to confirm our
guess.

The vowels a,1,0 tend to avoid each other. If we look at the R row,
we see that R does not precede S, I, A, N very often. But a look at the R
column shows that R follows S, I, A fairly often. So we suspect that R is
not one of a,i,0. V and N are out because they would require a, i, or o to
precede IV = e quite often, which is unlikely. Continuing, we see that the
most likely possibilities for a,i,0 are S, I, P in some order.

The letter n has the property that around 80% of the letters that precede
it ore vowels. Since we already have identified 1, S, I, P as vowels, we see
that R oand A are the most likely candidates. We’ll have to wait to see which
is correct.

The letter k often appears before e and rarely after it. This tells us that
N=h. .

The most common digram is th. Therefore, B =t.

Among the frequent letters, r and s remain, and they should equal V
and one of 4, R. Since r pairs more with vowels and s pairs more with
consonants, we see that V' must be s and r is represented by either A or R.

The combination rn should appear more than nr, and AR is more fre-
quent than RA, so our guess is that A =7 and R=n.

We can continue the analysis and determine that S = o (note that to
is much more common than ot), I = i, and P = a are the most likely
choices. We have therefore determined rensonable guesses for 382 of the 520
characters in the text:
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LWNZS O0OZ BNWVWIBAYBUNVDB S
e h o t h e s e L r t h s t o
QWVWOHWDI ZWRIBBNPIBP
e s e e i e n t t h at a

At this point, knowledge of the language, middle-level frequencies (i,d,...),
and educated guesses can be used to &1l in the remaining letters. For exam-
ple, in the first line a good guess is that ¥ = u since then the word truths
appears. Of course, there is a lot of guesswork, and various hypotheses need
to be tested until one works.

Since the preceding should give the spirit of the method, we skip the
remaining details. The decrypted message, with spaces (but not punctua-
tion) added, is as follows (the text is from the middle of the Declaration of
Independence):

we hold these truths to be self evident that all men are cre-
ated equal that they are endowed by their creator with certain
unaliengble rights that among these are life liberty and the pur-
suit of happiness that to secure these rights governments arc in-
stituted among men deriving their just powers from the consent
of the governed that whenever any form of government becomes
destructive of these ends it is the right of the people to alter or to
abolish it and to institute new government laying its foundation
on such principles and organizing its powers in such form as to
seem most likely to effect their safety and happiness

2.5 Sherlock Holmes

Cryptography has appeared in many places in literature, for example, in the
works of Edgar Allen Poe (The Gold Bug), William Thackeray ( The History
of Henry Esmond), Jules Verne (Voyage to the Center of the Earth), and
Agatha Christie (The Four Suspects).

Here we give a summary of an enjoyable tale by Arthur Conan Doyle, in
which Sherlock Holmes displays his usual cleverness, this time by breaking
a cipher system. We cannot do the story justice here, so we urge the reader
to read The Adventure of the Dancing Men in its entirety. The following is
a cryptic, and cryptographic, summary of the plot.

Mr. Hilton Cubitt, who has recently married the former Elsie Patrick,
mails Sherlock Holmes a letter. In it is a piece of paper with dancing stick
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figures that he found in his garden at Riding Thorpe Manor:

IERIOD TN ERI LI

Two weeks later, Cubitt finds another series of figures written in chalk on

his toolhouse door: 7{ )LX ;% ﬁ_\r XI#

Two mornings later another sequence appears:

M YTTAT

Three days later, another message appears:

SCIOS

Cubitt gives copies of all of these to Holmes, who spends the next two days
making many calculations. Suddenly, Holmes jumps from his chair, clearly
having made a breakthrough. He quickly sends a long telegram to someone
and then waits, telling Watson that they will probably be going to visit
Cubitt the next day. But two days pass with no reply to the telegram, and
then a letter arrives from Cubitt with yet another message:

JCEROCIOCH IS
JCLI0908LSE R

Holmes studies it and says they need to trave! to Riding Thorpe Manor as
soon as possible. A short time later, a reply to Holmes's telegram arrives,
and Holmes indicates that the matter has become even more urgent. When
Holmes and Watson arrive at Cubitt's house the next day, they find the
police already there. Cubitt has been shot dead. His wife, Elsie, has also
been shot and is in critical condition (although she survives). Holmes asks
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several questions and then has someone deliver a note to a Mr. Abe Slaney
at nearby Elrige’s Farm. Holmes then explains to Watson and the police
how he decrypted the messages. First, he guessed that the flags on some
of the figures indicated the ends of words. He then noticed that the most

common figure was

so it was likely E. This gave the fourth message as -E-E-. The possibilities
LEVER, NEVER, SEVER came to mind, but since the message was proba-
bly a one word reply to a previous message, Holmes guessed it was NEVER.
Next, Holmes observed that

LA

had the form [---E, which could be ELSIE. The third message was there-
fore --—-FE ELSIE. Holmes tried several combinations, finally settling on
COME ELSIE as the only viable possibility. The first message therefore
was -M -ERE --L SL- NE- Holmes guessed that the first letter was
A and the third letter as H, which gave the message as AM HERE A-F
SLANE-. It was reasonable to complete this to AM HERE ABE SLANEY.
The second message then was A~ ELRI-ES. Of course, Holmes correctly
guessed that this must be stating where Slaney was staying. The only letters
that seemed reasonable completed the phrase to AT ELRIGES. It was after
decrypting these two messages that Holmes sent a telegram to a friend at
the New York Police Bureau, who sent back the reply that Abe Slaney was
“the most dangerous crook in Chicago." When the final message arrived,
Holmes decrypted it to ELSIE ~-RE-ARE TO MEET THY GO-. Since he
recognized the missing letters as P, P, D, respectively, Holmes became very
concerned and that's why he decided to make the trip to Riding Thorpe
Maner.

When Holmes finishes this explanation, the police urge that they go to
Elrige’s and arrest Slaney immediately. However, Holmes suggests that is
unnecessary and that Slaney will arrive shortly. Sure enough, Slaney soon
appears and is handcuffed by the police. While waiting to be taken away, he
confesses to the shooting (it was somewhat in self defense, he claims) and
says that the writing was invented by Elsie Patrick’s father for use by his
gang, the Joint, in Chicago. Slaney was engaged to be married to Elsie, but
she escaped from the world of gangsters and fled to London. Slaney finally
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traced her location and sent the secret messages. But why did Slaney walk
into the trap that Holmes set? Holmes shows the message he wrote:

RIS EICEPYS

From the letters already deduced, we see that this says COME HERE AT
ONCE. Slaney was sure this message must have been from Elsie since he was
certain no one outside of the Joint could write such messages. Therefore, he
made the visit that led to his capture.

Comments

What Holmes did was solve a simple substitution cipher, though he did this
with very little data. As with most such ciphers, both frequency analysis
and a knowledge of the language are very useful. A little luck is nice, too,
both in the form of lucky guesses and in the distribution of letters. Note
how overwhelmingly E was the most common letter. In fact, it appeared 11
times nmong the 38 characters in the frst four messages. This gave Holmes
o good start. If Elsie had been Carol and Abe Slaney had been John Smith,
the decryption would probably have been more difficult.

Authentication is an important issue in cryptography. If Eve breaks
Alice’s cryptosystem, then Eve can often masquerade as Alice in communi-
cations with Bob. Safeguards against this are important. The judges gave
Abe Slaney many years to think about this issue.

The nlert reader might have noticed that we cheated a little when de-
crypting the messages, The same symbol represents the Vin NEVER and
the Ps in PREPARE. This is presumably due to a misprint and has oc-
curred in every printed version of the work, starting with the story’s first
publication back in 1903. In the original text, the R in NEVER is written
os the B in ABE, but this is corrected in later editions (however, in some
later editions, the first Cin the, message Holmes wrote is given an extra arm
and therefore looks like the M). If these mistakes had been in the text that
Holmes was working with, he would have had a very difficult time decrypting
and would have rightly concluded that the Joint needed to use error correc-
tion techniques in their transmissions. In fact, some type of error correction
should be used in conjunction with almost every cryptographic protocol.

2.6 The Playfair and ADFGX Ciphers

The Playfair and ADFGX ciphers were used in World War I by the British
and the Germans, respectively. By modern standards, they are fairly weak
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systems, but they took real effort to break at the time.

The Playfair system was invented around 1854 by Sir Charles Wheat-
stone, who named it after his friend, the Baron Playfair of St. Andrews, who
worked to convince the government to use it. In addition to being used in
World War ], it was used by the British forces in the Boer War.

The key is a word, for example, playfair. The repeated letters are re-
moved, to obtain playfir, and the remaining letters are used to start a 5 x 5
matrix. The remaining spaces in the matrix are filled in with the remaining
letters in the alphabet, with i and j being treated as one letter:

ptltay f
it b ¢ d
e g h km
nogq s t
U v w s z

Suppose the plaintext is meet at the schoolhouse. Remove spaces and divide
the text into groups of two letters. If there is a doubled letter appearing as
a group, insert an = and regroup. Add an extra z at the end to complete
the last group, if necessary. Our plaintext becomes

me et at th es ch oz ol ho us ezx.

Now use the matrix to encrypt eacl: two letter group by the following scheme:

o If the two letters are not in the same row or column, replace each letter
by the letter that is in its row and is in the column of the other letter.
For example, et becomes MN, since M is in the same row as e and the
same column as ¢, and N is in the same row as t and the same column
as e.

e If the two letters are in the same row, replace each letter with the
letter immediately to its right, with the matrix wrapping around from
the last column to the first. For example, me becomes EG.

o If the two letters are in the same column, replace each letter with the
letter immediately below it, with the matrix wrapping around from
the last row to the first. For example, ol becomes VR.

The ciphertext in our example is

EG MN FQ QM KN BK SV VR GQ XN KU.

To decrypt, reverse the procedure.

The system succumbs to a frequency atteck since the frequencies of the
various digrams (two-letter combinations) in English have been tabulated.
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Of course, we only have to look for the most common digrams; they should
correspond to the most common digrams in English: th, he, an, in, e,
es, .... Moreover, a slight modification yields results more quickly. For
example, both of the digrams re and er are very common. If the pairs /G
and GI are common in the ciphertext, then a good guess is that ¢, 4, r, g
form the corners of a rectangle in the matrix. Another weakness is that each
plaintext letter has only five possible corresponding ciphertext letters. Also,
unless the keyword is long, the last few rows of the matrix are predictable.
Observations such as these allow the system to be broken with a ciphertext
only attack. For more on its cryptanalysis, see [Gaines].

The ADFGX cipher proceeds as follows. Put the letters of the alphabet
into a 5 x 5 matrix. The letters i and j are treated ns one, and the columns
of the matrix are labeled with the letters A, D, F, G, X. For example, the
matrix could be

OO
3 v own
R A~ 9
2 R O oy
SRR N o
N I

¥

Each plaintext letter is replaced by the label of its row and column. For
example, s becomes FA, and z becomes DG. Suppose the plaintext is

Kaiser Wilhelm.
The result of this initial step is
XA FF GG FA AG DX GX GG FD XX AG FD GA.
So far, this is a disguised substitution cipher. The next step increases the
complexity significantly. Choose a keyword, for example, Rhein. Label the

columns of a matrix by the letters of the keyword and put the result of the
initial step into another matrix:

hh QD QD
Q> w i
Qe
9 e ¢ gl
axaoal=
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Now reorder the columns so that the column labels are in alphabetic
order:

=0 Q e o
QM 3¢ g
(wiESE I N
axaaa=
2R QU QD

Finally, the ciphertext is obtained by reading down the columns (omit-
ting the labels) in order:

FAGDFAFXFGFAXXDGGGXGXGDGAA.

Decryption is easy, as long as you know the keyword. From the length
of the keyword and the length of the ciphertext, the length of each column
is determined. The letters are placed into columns, which are reordered to
match the keyword. The original matrix is then used to recover the plaintext.

The initial matrix and the keyword were changed frequently, making
cryptanalysis more difficult, since there was only a limited amount of cipher-
text avnilable for any combination. However, the system was successfully
attacked by the French cryptanalyst Georges Painvin and the Bureau du
Chiffre, who were able to decrypt a substantial number of messages.

Here is one technique that was used. Suppose two different ciphertexts
intercepted at approximately the same time agree for the first several char-
acters. A reasonable guess is that the two plaintexts agree for several words.
That means that the top few entries of the columuns for one are the same as
for the other. Search through the ciphertexts and find other places where
they agree. These possibly represent the beginnings of the columns. If this
is correct, we know the column lengths. Divide the ciphertexts into columns
using these lengths. For the first ciphertext, some columns will have one
length and others will be one longer. The longer ones represent columns
that should be near the beginning; the other columns should be near the
end. Repeat for the second ciphertext. If a column is long for both cipher-
texts, it is very near the beginning. If it is long for one ciphertext and not
for the other, it goes in the middle. If it is short for both, it is near the end.
At this point, try the various orderings of the columns, subject to these
restrictions. Each ordering corresponds to a potential substitution cipher.
Use frequency analysis to try to solve these. One should yield the plaintext,
and the initial encryption matrix.

The letters ADFGX were chosen because their symbols in Morse code
(-y—++ +-—+ ——- —-+—) were not easily confused. This was to avoid
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transmission errors, and represents one of the early attempts to combine
error correction with cryptography. Eventually, the ADFGX cipher was
replaced by the ADFGVX cipher, which used a 6 x 6 initial matrix. This
allowed all 26 letters plus 10 digits to be used.

For more on the cryptanalysis of the ADFGX cipher, see [{ahn].

2.7 Block Ciphers

In many of the aforementioned cryptosystems, changing one letter in the
plaintext changes exactly one letter in the ciphertext. In the shift, affine,
and substitution ciphers, a given letter in the ciphertext always comes from
exactly one letter in the plaintext. This greatly facilitates finding the key
using frequency analysis. In the Vigenére system, the use of blocks of letters,
corresponding to the length of the key, made the frequency analysis more
difficult, but still possible, since there was no interaction among the vari-
ous letters in each block. Block ciphers avoid these problems by encrypting
blocks of several letters or numbers simultaneously. A change of one char-
acter in a plaintext block should change potentially all the characters in the
corresponding ciphertext block.

The Playfair cipher in Section 2.6 is a simple example of a block cipher,
since it takes two-letter blocks and encrypts them to two-letter blocks. A
change of one letter of a plaintext pair will always change at least one letter,
and usually both letters, of the ciphertext pair. However, blocks of two
letters are too small to be secure, and frequency analysis, for example, is
usually successful.

Many of the modern cryptosystems that will be treated later in this book
are block ciphers. For example, DES operates on blocks of 64 bits. AES uses
blocks of 128 bits. RSA uses blocks several hundred bits long, depending on
the modulus used. All of these block lengths are long enough to be secure
against attacks such as frequency analysis.

The standard way of using a block cipher is to convert blocks of plain-
text to blocks of ciphertext, independently and one at a time, This is called
the electronic codebook (ECB) mode. However, there are ways to use feed-
back from the blocks of ciphertext in the encryption of subsequent blocks of
plaintext. This leads to the cipher block chaining (CBC) mode and cipher
feedback (CFB) mode of operation. These are discussed in Section 4.5.

In this section, we discuss the Hill cipher, which is a block cipher in-
vented in 1929 by Lester Hill. It seems never to have been used much in
practice, Its significance is that it was perhaps the first time that algebraic
methods (linear algebra, modular arithmetic) were used in cryptography
in an essential way. As we'll see in later chapters, algebraic methods now
occupy & central position in the subject.
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Choose an integer 7, for example 7 = 3. The key is an n X n matrix M
whose entries are integers mod 26. For example, let

1 3
M=| 4 6 {.
11 8

The message is written as a series of row vectors. For example, if the message
is abe, we change this to the single row vector (0, 1,2). To encrypt, multiply
the vector by the matrix (traditionally, the matrix appears on the right in
the multiplication; multiplying on the left would yield a similar theory) and
reduce mod 26:

1 2
0,1,2){ 4 5
11 9

O

00 o W

) = (0, 23,22) (mod 26).

Therefore, the ciphertext is AXW. (The fact that the first letter e remained
unchanged is a random occurrence; it is not a defect of the method.) '
In order to decrypt, we need the determinant of M to satisfy

ged(det(M), 26) = 1.

This means that there is 2 matrix N with integer entries such that MN = [
(mod 26), where [ is the n x n identity matrix.
In our example, det(Af) = —~3. The inverse of M is

[ -M 11 -3
=2 34 -25 6 |.
3\ “19 13 -3

Since 17 is the inverse of ~3 mod 26, we replace —1/3 by 17 and reduce mod

26 to obtain
22 5 1
N= 6 17 24

15 13 1

The reader can check that MN = [ (mod 26).
For more on finding inverses of matrices mod r, see Section 3.8.
The decryption is accomplished by multiplying by N, as follows:

2 5 1
(0,23,22)| 6 17 24 | =(0,1,2) (inod 26).
15 13 1
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In the general method with an n X n matrix, break the plaintext into
blocks of n characters and change each block to a vector of n integers between
0 and 25 using e = 0,b=1,...,z = 25. TFor example, with the matrix A as
above, suppose our plaintext is

blockcipher.
This becomes (we add an z to fill the last space)
1 11 14 2 10 2 8§ 15 7 4 17 23.

Now multiply each vector by M, reduce the answer mod 26, and change
back to letters:

(1,11,14)M = (199,183,181) = (17, 1,25) (mod 26) = RBZ
(2,10, 2)M = ( 64, 72, 82) = (12,20, 4) (mod 26) = MUE,

etc.

In our case, the ciphertext is

RBZMUEPYONOM.

It is easy to see that changing one letter of plaintext will usually change
n letters of ciphertext. For example, if block is changed to clock, the first
three letters of ciphertext change from RBZ to SDC. This makes fre-
quency counts less effective, though they are not impossible when n is small.
The frequencies of two-letter combinations, called digrams, and three-letter
combinations, trigrams, have been computed. Beyond that, the number of
combinations becomes too large (though tabulating the results for certain
common combinations would not be difficult). Also, the frequencies of com-
binations are so low that it is hard to get meaningful data without a very
large amount of text.

Now that we have the ciphertext, how do we decrypt? Simply break the
ciphertext into blocks of length n, change each to a vector, and multiply on
the right by the inverse matrix N. In our example, we have

RBZ = (17,1,25) — (17,1,25)N = (755,427,66) = (1,11,14) = blo,

and similarly for the remainder of the ciphertext.

The Hill cipher is difficult to decrypt using only the ciphertext, but it
succumbs easily to a known plaintext attack. If we do not know n, we can
try various values until we find the right one. So suppose n is known. If
we have n of the blocks of plaintext of size n, then we can use the plaintext
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and the corresponding ciphertext to obtain a matrix equation for M (or for
N, which might be more useful). For example, suppose we know thatn = 2
and we have the plaintext

howareyoutoday =
7 14 22 0 17 4 24 14 20 19 14 3 0 24

corresponding to the ciphertext

ZWSENIUSPLIVEU =
25 22 18 4 13 8 20 18 15 11 g 21 4 20

The first two blocks yield the matrix equation |

7 1U4\[ab)_[% 22
(22 0)(-’: d)=(18 4) (mod 26).
7 1

Unfortunately, the matrix 2 0 ) has determinant —308, which is not

invertible mod 26 (though this matrix could be used to reduce greatly the
number of choices for the encryption matrix). Therefore, we replace the last
row of the equation, for example, by the fifth block to obtain

7T W\(a b\_({25 2
(20 19)(c d)=(15 11) (mod 26).

7
20

7 4\ _(5 10
(20 19) =(18 21) (mod 26).

In this case, the matrix ( ig ) is invertible mod 26:

We obtain

_[5 10\{2 2)_[15 12
M=(13 21)(15 11)=<11 3) (mod 26).

Because the Hill cipher is vulnerable to this attack, it cannot be regarded
as being very strong.

A chosen plaintext attack proceeds by the same strategy, but is a little
faster. Again, if you do not know n, try various possibilities until one works.
So suppose n is known. Choase the first block of plaintext to be baaa-.- =
1000. .., the second to be abaa--- = 0100..., and continue through the nth
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blodl being ...aaab =...0001. The blocks of ciphertext will be the rows of
the matrix M.

For a chosen ciphertext attack, use the same strategy as for chosen plain-
text, where the choices now represent ciphertext. The resulting plaintext will
be the rows of the inverse matrix N. .

Claude Shannon, in one of the fundamental papers on the theoretical
foundations of cryptography [Shannonl], gave two properties that a good
cryptosystem should have in order to hinder statistical analysis: diffusion
and confusion.

Diffusion means that if we change a character of the plaintext, then sev-
cral characters of the ciphertext should change, and, similarly, if we change
a character of the ciphertext, then several characters of the plaintext should
change. We saw that the Hill cipher has this property. This means that fre-
quency statistics of letters, digrams, etc. in the plaintext are difused over
several characters in the ciphertext, which means that much more ciphertext
is needed to do a meaningful statistical attack.

Confusion means that the key does not relate in a simple way to the
ciphertext. In particular, eacl character of the ciphertext should depend on
several parts of the key. For example, suppose we have a Hill cipher with an
n x n matrix, and suppose we have a plaintext-ciphertext pair of length n*
with whicli we are able to solve for the encryption matrix. If we change one
character of the ciphertext, one column of the matrix can change completely
(see Exercise 12). Of course, it would be more desirable to have the entire
key change. When a situation like that happens, the cryptanalyst would
probably need to solve for the entire key simultaneously, rather than piece
by piece.

The Vigenére and substitution ciphers do not have the properties of
diffusion and confusion, which is why they are so susceptible to frequency
analysis.

The concepts of diffusion and confusion play a role in any well-designed
block cipher. Of course, a disadvantage (which is precisely the cryptographic
advantage) of diffusion is error propagation: A small error in the ciphertext
becomes a major error in the 'decrypted message, and usually means the
decryption is unreadable.

2.8 Binary Numbers and ASCII

In many situations involving computers, it is more natural to represent data
as strings of Os and 1s, rather than as letters and numbers.

Numbers can be converted to binary (or base 2), if desired, which we'll
quickly review. Our standard way of writing numbers is in base 10. For
example, 123 means 1 x 102 + 2 x 10! 4+ 3, Binary uses 2 in place of 10
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symbol ! " # $ % & !

decimal 33 34 35 36 37 38 39

binary 0100001 0100010 0100011 0100100 0100101 0100110 0100111
( ) * + 1 - . /

40 41 42 43 44 45 46 47
0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111
0 1 2 3 4 5 6 7
4B 49 50 51 52 53 54 55
0110000 0110001 0110010 0110011 0110100 0110101 0110110 0110111
8 9 : ; < = > ?

56 57 58 59 60 61 62 63
0111000 0111001 0111010 0111011 0111100 0111101 0111110 0111111
Q A B C D E F G
64 65 66 67 68 69 70 71

1000000 1000001 1000010 1000011 1000100 1000101 1000110 1000111

Table 2.4: ASCII Equivalents of Selected Symbols

and needs only the digits 0 and 1. For example, 110101 in binary represents
25 4+ 21 4 22 4+ 1 (which equals 53 in base 10).

Each 0 or 1 is called a bit. A representation that takes B bits is called
an 8-bit number, or a byte. The largest number that 8 bits can represent
is 255, and the largest number that 16 bits can represent is 65535.

Often, we want to deal with more than just numbers. In this case, words,
symbols, letters, and numbers are given binary representations. There are
many possible ways of doing this. One of the standard ways is called
ASCII, which stands for American Standard Code for Information Inter-
change. Each character is represented using 7 bits, allowing for 128 possible
characters and symbols to be represented. Eight bit blocks are common for
computers to use, and for this reason, each character is often represented
using 8 bits. The eighth bit can be used for checking parity to see if an error
occurred in transmission, or is often used to extend the list of characters to
incinde symbols such as ii and & .

Table 2.4 gives the ASCII equivalents for some standard symbols. We'll
never use them in this book. They are included simply to show how text
cen be encoded as a sequence of Os and 1s.

2.9 One-Time Pads

The one-time pad, which is an unbreakable cryptosystem, was developed by
Gilbert Vernam and Joseph Mauborgne around 1918. Start by representing
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the messnge as a sequence of 0s and 1s. This can be accomplished by writing
all numbers In binary, for example, or by using ASCII, as discussed in the
provious section. But the message could also be a digitalized video or audio
algnal.

The key is a random sequence of Os and 1s of the same length as the
message. Once a key is used, it is discarded and never used again. The
ancryptlon consists of adding the key to the message mod 2, bit by bit. This
process s often called exclusive or, and is denoted by XOR. In other
words, we use the rules 0 +-0=0,0+1 =1, 1 + 1 = 0. For example, if
the message is 00101001 and the key is 10101100, we obtain the ciphertext
nx followe:

(plaintext) 00101001
(key) + 10101100
(ciphertext) 10000101

Decryption uses the same key. Simply add the key onto the ciphertext:
1ON00101 + 10101100 = 00101001,

A varlation is to leave the plaintext as a sequence of letters. The key is
then a random sequence of shifts, each one between 0 and 25. Decryption
uses the same ley, but subtracts instead of adding the shifts.

This encryption method is completely unbreakable for a ciphertext only
attack. For example, suppose the ciphertext is FIOWPSLQNTISJQL. The
plaintext could be wewillwinthewar or it could be theduckwantsout. Each one
Is equally likely, along with all other messages of the same length. There-
fore the ciphertext gives no information about the plaintext (except for its
length). This will be made more precise when we discuss Shannon's theory
of entropy in Chapter 18.

If we have a piece of the plaintext, we can find the corresponding piece of
the key, but it will tell us nothing about the remainder of the key. In most
cases a chosen plaintext or chosen ciphertext attacl is not possible. But
such an attacl would only reveal the part of the key used during the attack,
which would not be useful unless this part of the key were to be reused.

How do we implement this system, and where can it be used? The key
can be generated in advance. Of course, there is the problem of generating
a truly random sequence of Os and 1s. One way would be to have some
people sitting in a room flipping coins, but this would be too slow for most
purposes. We could also take a Geiger counter and count how many clicks
it makes in a small time period, recording a Q if this number is even and 1 if
it I8 odd. There are other ways that are faster but not quite as random that
can be used in practice (see Section 2.10); but it is easy to see that quickly
generating a good key is difficult. Once the key is generated, it can be sent
by a trusted courier to the recipient. The message can then be sent when
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peeded. It is reported that the “hot line” between Washington, D.C., and
Moscow used one-time pads for secure communications between the leaders
of the United States and the U.S.S.R. during the Cold War.

A disadvantage of the one-time pad is that it requires a very long key,
which is expensive to produce and expensive to transmit. Once the key is
used up, it is dangerous to reuse it for a second message; any knowledge of
the first message would give knowledge of the second, for example. There-
fore, in most situations, various methods are used in which a small input can
generate a reasonebly random sequence of 0s and 1s, hence an “approxime-
tion” to a one-time pad. The amount of information carried by the courier
is then several orders of magnitude smaller than the messages that will be
sent. One such method, which is fast but not very secure, is described in
the Section 2.11. .

A variation of the one-time pad has been developed by Maurer, Rabin,
Ding, and others. Suppose it is possible to have a satellite produce and
broadcast several random sequences of bits at a rate fast enough that no
computer can store more than a very small fraction of the outputs. Alice
wants to send a message to Bob. They use a public key method such as RSA
(see Chapter 6) to agree on a method of sampling bits from the random bit
streams. Alice and Bob then use these bits to generate a key for a one-
time pad. By the time Eve has decrypted the public key transmission, the
random bits collected by Alice and Bob have disappeared, so Eve cannot
decrypt the message. In fact, since the encryption used a one-time pad, she
can never decrypt it, so Alice and Bob have achieved everlasting security for
their message. Note that bounded storage is an integral assumption for this
procedure. The production and the accurate sampling of the bit streams are
also important implementation issues.

2.10 Pseudo-random Bit Generation

The one-time pad and many other cryptographic applications require se-
quences of random bits. Before we can use a cryptographic algorithm, such
as DES (Chapter 4) or AES (Chapter 5), it is necessary to generate a se-
quence of random bits to use as the key.

One way to generate random bits is to use natural randomuess that oc-
curs in nature. For example, the thermal noise from a semiconductor resistor
is known to be a good source of randomness. However, just as flipping coins
to produce random bits would not be practical for cryptographic applica-
tions, most natural conditions are not practical due to the inherent slowness
in sampling the process and the difficulty of ensuring that an adversary does
not observe the process. We would therefore like a method for generating
randomness that can be done in software. Most computers have a method
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for generating random numbers that is readily available to the user. For
example, the standard C library contains a function rand() that generates
pseude-random numbers between 0 and 65535. This pseudo-random func-
tion takes a seed as input and produces an output bitstream.

The rand() function and many other pseudo-random number generators
are based on linear congruential generators. A linear congruential gen-
erator produces a sequence of numbers zj, T3, -, where

Tp=aTp—1 +b (mod m).

The number zq is the initinl seed, while the numbers a, b, and m are pa-
rameters that govern the relationship. The use of pseudo-random number
generators based on linear congruential generators is suitable for experimen-
tal purposes, but is highly discouraged for cryptographic purposes. This is
because they are predictable (even if the parameters a, b, and m are not
known), in the sense that an eavesdropper can use knowledge of some bits
to predict future bits with fairly high probability. In fact, it has been shown
that any polynomial congruential generator is cryptographically insecure.

In cryptographic applications, we need a source of bits that is non-
predictable. We now discuss two ways to create such non-predictable bits.

The first method uses one-way functions. These are functions f(z) that
are easy to compute but for which, given y, it is computationally infeasible
to solve y = f(z) for z. Suppose that we have such a one-way function J
and a random seed s. Define z; = f(s +j) for j = 1,2,3,.... If we let
b; be the least significant bit of zj, then the sequence bo, by, - will be a
pseudo-random sequence of bits. This method of random bit generation is
often used, and has proven to be very practical. Two popular choices for
the one-way function are DES (Chapter 4) and the Secure Hash Algorithm
(Section 8.3). As an example, the cryptographic pseude-random number
generator in the OpenSSL toolkit (used for secure communications over the
Internet) is based on SHA.

Another method for generating random bits is to use an intractable prob-
lem from number theory. One of the most popular eryptographically se-
cure pseudo-random number generators is the Blum-Blum-Shub (BBS)
pseudo-random bit generator, also known as the quadratic residue gen-
erator. In this scheme, one first generates two large primes p and g that are
both congruent to 3 mod 4. We set » = pg and choose a random integer
1z that is relatively prime to ». To initialize the BBS generator, set the
initial seed to zp = z2 (mod n). The BBS generator produces a sequence of
random bits bt, s, -+ by

L= ?_1 (mod n)

2. b; is the least significant bit of zj.
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Example. Let
P = 240672462467892469787 and q = 396736894567834589803,

n = 9788476140853110794168855217413715781961.
Take T = 8§73245647888478349013. The initial seed is

zy = z° (modn)
8845208710478780097089917746010122863172.

The values for z,z2,--+2g are

x; = T118894281131329522745962455498123822408
r9 = 3145174608888893164151380152060704518227
T3 = 4898007782307156233272233185574899430355
T4 = 3035457818935112922347093546189672310389
zs = 675099511510097048901761303198740246040
zg = 4289914828771740133546190658266515171326
zr = 4431066711454378260890386385593817521668
zg = T7336876124195046397414235333675005372436.

Taking the least significant bit of each of these, which is easily done
by checking whether the number is odd or even, produces the seguence
blr"'|b5=0|111|1107010|0' B

The Blum-Blum-Shub generator is very likely unpredictable. See [Blum-
Blum-Shub|. A problem with BBS is that it can be slow to calculate. One
way to improve its speed is to extract the & least significant bits of z;. As
long a3 k < log, logy 2, this seems to be cryptographically secure.

2.11 Linear Feedback Shift Register Sequences

Note: In this section, all congruences are mod 2.

In many situations involving encryption, there is a trade-off between speed
and security. If one wants a very high level of security, speed is often sac-
rificed, and vice versa. For example, in cable television, many bits of data
are being transmitted, so speed of encryption is important. On the other
huand, security is not usually as important since there is rarely an economic
advantage to mounting an expensive attack on the system.

In this section, we describe a method that can be used when speed is
more important than security.



dd CHAPTER 2. CLASSICAL CRYPTOSYSTEMS

The sequence
01000010010110011111000116111010100001001011001111
can be described by giving the initial values
T1=0,z0=1,23=0,24=0,25 =0
and the linear recurrence relation
Tntb = Tn + Tnez  {mod 2).

This sequence repeats after 31 terms.
More generally, consider a linear recurrence relation of length m:

Tnt+m = €0%n + €1%n41 + - + Cm-1Tn4m—-1  (mod 2),
where the coefficients cg, 1, . . . are integers. If we specify the initial values
T T2y Tm,

then all subsequent values of z, can be computed using the recurrence.
The resulting sequence of 05 and 1s can be used as the key for encryption.
Namely, write the plaintext as a sequence of Os and 1s, then add an appro-
priate number of bits of the key sequence to the plaintext mod 2, bit by bit.
For example, if the plaintext is 1011001110001111 and the key sequence is
the example given previously, we have

(plaintext) 1011001110001111

(key) + 0100001001011001
(ciphertext) 1111000111010110

Decryption is accomplished by adding the key sequence to the ciphertext in
exactly the same way.

One advantage of this method is that a key with large period can be
generated using very little information. The long period gives an improve-
ment over the Vigenére method, where a short period allowed us to find the
key. In the above example, specifying the initinl vector {0,1,0, 0,0} and the
coefficients {1,0, 1, 0,0} vielded a sequence of period 31, so 10 bits were used
to produce 31 bits. It can be shown that the recurrence

Tn4n = In+ Tnis

and any nonzero initial vector will produce a sequence that has period 23! —
1 = 2147483647, Therefore, 62 bits produce more than two billion bits of
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Ciphertext

Plaintext

Tigure 2.1: A Linear Feedbnck Shift Register Satisfying 243 = Tm41 + Tn.

key. This is a great advantage over a one-time ped, where the full two billien
bits must be sent in advance.

This method can be implemented very easily in hardware using what is
known as a linear feedback shift register (LFSR) and is very fast. In
Figure 2.1 we depict an example of a linear feedback shift register in a simple
case. More complicated recurrences are implemented using more registers

and more XORs,
For cach increment of a counter, the bit in each box is shifted to other

boxes as indicated, with @ denoting the addition med 2 of the incoming
bits. The output, which is the bit 2,5, is added to the next bit of plaintext to
produce the ciphertext. The diagram in Figure 2.1 represents the recurrence
Im+d = Tm+1 + Tm- Once the initial values z, a1, T3 are specified, the
machine produces the subsequent bits very efficiently.

Unfortunately, the preceding encryption method succumbs easily to a
known plaintext attack. More precisely, if we know only a few consecutive
bits of plaintext, along with the corresponding bits of ciphertext, we can
determine the recurrence relation and therefore compute all subsequent bits
of the key. By subtracting (or adding; it's all the same mod 2) the plaintext
from the ciphertext mod 2, we obtain the bits of the key. Therefore, for
the rest of this discussion, we will ignore the ciphertext and plaintext and
assume we have discovered a portion of the key sequence. Our goal is to
use this portion of the key to deduce the coefficients of the recurrence and
consequently compute the rest of the key.

For example, suppose we know the initial segment 011010111100 of the
sequence 0110101111000100110101111..., which has period 15, aud suppose
we know it is generated by a linear recurrence. How do we determine the
coefficients of the recurrence? We do not necessarily know even the length,
so we start with length 2 (length 1 would produce a constant sequence).
Suppose the recurrence i3 Tn4o = €oTh + C1Zn+1- Letn =1 and n = 2
and use the known values z; = 0,22 = 1,z3 = 1,24 = 0. We obtain the
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cquations

1 =¢-04c-1 (n=1)
0 =cg-140e-1 (n=2).

(£)(2)-(0)

The solution is ¢g = 1,¢c1 = 1, 50 we guess that the recurrence is Tp43 =
Iy -+ Tpy1. Unfortunately, this is not correct since zg &= z4 + z5. Therefore,
we try length 3. The resulting matrix equation is

Tu matrix form, this is

011 Cp 0
110 C1 = 1
1 01 () 0

The determinant of the matrix is 0 mod 2; in fact, the egnation has no
solution. We can see this because every column in the matrix sums to 0
mod 2, while the vector on the right does not.

Now consider length 4. The matrix equation is

0110 ) 1
1101 et {10
1 010 e |1
0101 €3 1

The solution is cp = 1,61 = 1,¢0 = 0,c3 = 0. The resulting recurrence is
now conjectured to be
Tppd = Tn + Tpyt.

This generates the remaining elements of the piece of key that we already
know, so it is our best guess for the recurrence that generates the key se-
quence. In fact, 2 quick calculation shows that this is the case, so we have
found the recurrence. :

The general situation is as follows. To test for a recurrence of length m,
we nssume we know zp,2s,...,Zon. The matrix equation is

I z2 ttr Tm co Tm+1
z2 Z3 't TIm4l < | Emez
Im ZIm4l - T2m-} Cm-1 T2m

We show later that the makrix is invertible mod 2 if and only if there is no
linear recurrence of length less than m that is satisfied by z1,xo,...,Tom-1.
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A strotegy for finding the coefficients of the recurrence is now clear.
Suppose we know the first 100 bits of the key. For m = 2, 3,4, ..., form the
m %  matrix as before and compute its determinant. If several consecutive
values of m yield 0 determinants, stop. The last m to yield a nonzero (i.e.,
1 mod 2) determinant is probably the length of the recurrence. Solve the
matrix equation to get the coeficients cg,...,cn-1. It can then be checked
whether the sequence that this recurrence generates matches the sequence
of known bits of the key. If not, try larger values of m.

Suppose we don't know the first 100 bits, but rather some other 100
consecutive bits of the key. The same procedure applies, using these bits as
the starting point. In fact, once we find the recurrence, we can also work
backwards to find the bits preceding the starting point.

Here is an example. Suppose we have the following sequence of 100 bits:

10011001001110001100010100011110110011111010101001
01101101011000011011100101011110000000100010010000.

The first 20 determinants, starting with m = 1, are
91,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0.

A reasonable guess is that m = 8 gives the last nonzero determinant. When
we solve the matrix equation for the coefficients we get

{cﬂlch v ch} = {lv 11 01 01 ]-v 01 0; 0})
so we guess that the recurrence is
ZTn48 = Tn + Tntl + Tntda-

This recurrence generates all 100 terms of the original sequence, so we have
the correct answer, at least based on the knowledge that we have.

Suppose that the 100 bits were in the middle of sume sequence, and we
want to know the preceding bits. For example, suppose the sequence starts
with z,7,50 17 = 1,719 = 0, 219 = 0, .. .. Write the recurrence as

ZTn = Tpyl + Tnyd +Znts

(it might appear that we made some sign errors, but recall that we are
working mod 2, so —z,; = z, and —Zp48 = ZTn4a). Letting n = 16 yields

Ty = Z17+ T+ T2
= 14+0+1=0.
Continuing in this way, we successively determine z,5, Z14,...,Z1.

We now prove the result we promised.
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Proposition. Let 1, Ty, z3,... be a sequence of bits produced by e kinear
recurrence mod 2. For eachn > 1, let

x) Ta R In

T2 T3 -+ ZTpyl
M, = .

Tn ZInyl - T2p-)

Let N be the length of the shortest recurrence that generates the sequence
Z),22,23,.... Then det(My) = 1 (mod 2) and det{M,) = 0 (mod 2) for
aln>N.

Proof. We first make a few remarks on the length of recurrences. A se-
quence could satisfy a length 3 relation such as zp43 = Znppo. It would
clearly then also satisfy shorter relations such as z,,) = z, (at least for
n > 2). However, there are less obvious ways that a sequence could sat-
isfy a recurrence of length less than expected. For example, consider the
relation Tpea = Zpes + Tne1 + T,. Suppose the initial values of the se-
quence are 1, 1, 0, 1. Therecurrence allows us to compute subsequent terms:
1,01,1,0,1,1,0,1, 1,0, L.... It is easy to see that the sequence satisfies
Tneg = Ipyd + z,.

If there is a recurrence of length N and if n > N, then one row of the

matrix M, is congruent mod 2 to a linear combination of other rows. For
example, if the recurrence is 2,43 = Zpie + Ty, then the fourth row is the
sum of the first and third rows. Therefore, det(M,) = 0 (mod 2) for all
n>N.
_ Now suppose det(Mpy) = 0_(mod 2). Then there is a nonzero row vector
b= (bo,...,bn-1) such that bAy = 0. We'll show that this gives a re-
currence relation for the sequence zj, £3,z3,... and that the length of this
relation is less than N. This contradicts the assumption that /V is smallest.
This contradiction implies that det(My) =1 (mod 2).

Let the recurrence of length IV be

IN4n =CZn +* +CN-1Tn+N-1-
For each 7 > O, let

Tiy1 Ti42 v Ti+N

MO = Tit+a Tit+3 Ii+{\r+l

Ti+N ZTitN+1 - Tit2N-1
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Then M(® = Mpy. The recurrence relation implies that

(&1] Tit N+1

. 9] TitN+2
M s = . ,

CN-1 TitIN

which is the last column of M{+1). _
By the choice of &, we have 53/(®) = BMy = 0. Suppose that we know
that 5A76) = 0 for some i. Then

TieN+41 o
| TitN42 — s cy-
b . =bM0) ) =0.
TitaN Cm~1

Therefore, b annihilates the last column of MG+, Since the remaining
columns of MU*+Y) are columns of M%), we find that BMU+D) = 9. By
induction, we obtain 5M ) = 0 for all { > 0.

Let n > 1. The first column of 1®~1) yields

bo%n + 01Tt + -+ bN1Tpen-1 =0

Since b is not the zero vector, b; 5 0 for at least one 7. Let m be the largest
7 such that b; # 0, which means that by, = 1. We are working mod 2, so
bnTutm—1 = —Tn+m—1. Therefore, we can rearrange the relation to obtain

Tnpm—1 = boZn + 01 Tn41 + - 4+ Dn-1Tnim—2.

This is a recurrence of length m — 1. Since m -1 < N, and N is assumed to
be the shortest possible length, we have a contradiction. Therefore, the as-
sumption that det(Mpy) = 0 must be false, so det(My) = 1. This completes
the proof. O

Finally, we make a few comments about the period of a sequence. Sup-
pose the length of the recurrence is m. Any m consecutive terms of the
sequence determine all future elements, and, by reversing the recurrence, all
previous values, too. Clearly, if we have m consecutive 0s, then all future
values are 0. Also, all previous values are 0. Therefore, we exclude this
case from consideration. There are 2™ — 1 strings of Os and 1s of length
m in which at least one term is nonzero. Therefore, as soon as there are
more than 2™ — 1 terms, some string of length m must occur twice, so the
sequence repeats. The period of the sequence is at most 2™ — 1.
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Associated to a recurrence Tn4m = CoTn + ClTn+1 4+t Crm—1Tn+m—1
(mod 2}, there is a polynomial

JT)=T™ = en T = — gy,

If f(T) is irreducible mod 2 (this means that it is not congruent to the
product of two lower-degree polynomials), then it can be shown that the
period divides 2™ — 1. An interesting case is when 2™ — 1 is prime (these
are called Mersenne primes). If the period isn't 1, that is, if the sequence is
not constant, then the period in this special case must be maximal, namely
2™ — 1 (see Section 3.11). The example where the period is 23! —1 is of this
type.

Linear feedback shift register sequences have been studled extensively.
For example, see [Golomb] or [van der Lubbe].

One way of thwarting the above attack is to use nonlinear recurrences,
for example,

Tp+3 = Tn42Tn + Tntl-

Generally, these systems are somewlat harder to break. However, we shall
not discuss them here.

2.12 Enigma

Mechanical encryption devices known as rotor machines were developed in
the 1920s by several people. The best known was designed by Arthur Scher-
bius and became the famous Enigma machine used by the Germans in World
War 11

It was believed to be very secure and several attempts at breaking the
system ended in failure. However, a group of three Polish cryptologists,
Marian Rejewski, Henryk Zygalski, and Jerzy Rézycki, succeeded in break-
ing early versions of Enigma during the 1930s. Their techniques were passed
to the British in 1939, two months before Germany invaded Poland. The
British extended the Polish techniques and successfully decrypted German
messages throughout World War II.

The fact that Enigma had been broken remained a secret for almost 30
years after the end of the war, partly because the British had sold captured
Enpigma machines to former colonies and didn't want them to know that the
system had been broken.

In the following, we give a brief description of Enigma and then describe
an attack developed by Rejewski. For more details, see for example [oza-
czuk]. This book contains appendices by Rejeweski giving details of attacks
on Enigma.

We give a basic schematic diagram of the machine in Figure 2.2. TFor
more details, we urge the reader to visit some of the many websites that can
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be found on the Internet that give pictures of actusl Enigma machines and
extensive diagrams of the internal workings of these machines.

R L M N Glowlamps

Keyboar)

Figure 2.2: A Schematic Diagram of tle Enigma Machine.

L, M, N are the rotors. On one side of each rotor are 26 fixed electri-
cal contacts, arranged in a circle. On the other side are 26 spring-loaded
contacts, again arranged in a circle so as to touch the fixed contacts of the
adjacent rotor. Inside each rotor, the fixed contacts are connected to the
spring-loaded contacts in u somewhat random manner. These connections
are different in each rotor. Each rotor has 26 possible initial settings.

R is the reversing drum. It has 26 spring-loaded contacts, connected in
pairs.

K is the keyboard and is the same as a typewriter keyboard.

S is the plugboard. It has approximately six pairs of plugs that can be
used to interchange six pairs of letters.

When a key is pressed, the first rotor N turns 1/26 of a turn. Then,
starting from the key, electricity passes through S, then through the rotors
N, M, L. When it reaches the reversing drum R, it is senl back along a
different path through L, M, N, then through S. At this point, the electricity
lights a bulb corresponding to a letter on the keyboanrd, which is the letter
of the ciphertext.

Since the rotor N rotates before each encryption, this is much more
complicated than a substitution cipher. Moreover, the rotors L and M also
rotate, but much less often, just like the wheels on an odometer.

Decryption uses exactly the same method. Suppose a sender and re-
ceiver have identical machines, both set to the same initial positions. The
sender encrypts the message by typing it on the keyboard and recording the
sequence of letters indicated by the lamps. This ciphertext is then sent to
the receiver, who types the ciphertext into the machine. The sequence of
letters appearing in the lamps is the original message. This can be seen as
follows. Lamp “a” and key “a” are attached to a wire coming out of the
plugboard. Lamp “h” and key “h” are attached to another wire coming out
of the plugboard. If the key “a” is pressed and the lamp “I" lights up, then
the electrical path through the machine is also connecting lamp “a” to key
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“h". Therefore, if the “h" key were pressed instead, then the “a” key would
light.

Similar reasoning shows that no letter is ever encrypted as itsell. This
might appear to be a good idea, but actually it is a weakness since it allows
a cryptanalyst to discard many possibilities at the start.

The security of the system rests on the keeping secret the inltia} settings
of the rotors, the setting of the plugs on the plugboard, and the internal
wiring of the rotors and reversing drum. The settings of the rotors and the
plugboard are changed periodically (for example, daily).

We'll assume the internal wiring of the rotors is known. This would be
the case if a machine were captured, for example. However, there are ways
to deduce this information, given enough ciphertext, and this is what was
actuslly done in some cases.

How many combinations of settings are there? There are 26 initial set-
tings for each of the three rotors. This gives 267 = 17576 possibilities. There
are 6 possible orderings of the three rotors. This yields 6 x 17576 = 105456
possible ways to initialize the rotors. In later versions of Enigma, there were
5 rotors available, and each day three were chosen. This made 60 possible
orderings of the rotors and therefore 1054560 ways ta initialize the rotors.

On the plugboard, there are 100391791500 ways of interchanging six
pairs of letters.

In all, there seem to be too many possible initializations of the machine
to have any hope of breaking the system. Techniques such as frequency
analysis fail since the rotations of the rotors change the substitution for
each character of the message.

So, how was Enigma attacked? We don't give the whole attack here,
but rather show how the initial settings of the rotors were determined in
the years around 1937. This attack depended on 2 weakness in the protocol
being used at that time, but it gives the general flavor of how the attacks
proceeded in other situations.

Each Enigma operator was given a codebook containing the daily settings
to be used for the next month. However, if these settings had been used
without modification, then each message sent during a given day would
have had its first letter encrypted by the same substitution cipher. The
rotor would then have turned and the second letter of each text would have
corresponded to another substitution cipher, and this substitution would
have been thesame for all messnges for that day. A frequency analysis on the
first letter of each intercepted message during a day would probably allow a
decryption of the first letter of each text. A second frequency analysis would
decrypt the second letters. Similarly, the remaining letters of the ciphertexts
(except for the ends of the longest few ciphertexts) could be decrypted.

To avoid this problem, for each message the operator chose a message key
consisting of a sequence of three letters, for example, r, f,u. He then used
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the daily setting from the codebook to encrypt this message key. But since
radio communications were prone to error, he typed in rfu twice, therefore
encrypting rfurfu to obtain a string of six letters. The rotors were then set to
positions 7, f, and u and the encryption of the actual message began. So the
first six letters of the transmitted message were the encrypted message key,
and the remainder was the ciphertext. Since each message used a different
key, frequency analysis didn't work.

The receiver simply used the daily settings from the codebook to de-
crypt the first six letters of the message. He then reset the rotors to the
positions indicated by the decrypted message key and proceeded to decrypt
the message.

The duplication of the key was a great aid to the cryptanalysts. Suppose
on some day you intercept several messages, and .among them are three that
have the following initial six letters:

dmqvbn
- vonpuy
pucfmq

All of these were encrypted with the same daily settings from the code-
book. The first encryption corresponds to a permutation of the 26 letters;
let's call this permutation A. Before the second letter is encrypted, a rotor
turns, so the second letter uses another permutation, call it B. Similarly,
there are permutations C, D, E, F for the remeaining 4 letters. The strategy
is to look at the products AD, BE, and CF.

We need a few conventions and facts about permutations. When we write
AD for two permutations A and D, we mean that we apply the permutation
A then D (some books use the reverse ordering). The permutation that
maps a to b, b to ¢, and ¢ to a will be denoted as the 3-cycle (abc). A
similar notation will be used for cycles of other lengths. For example, (ab)
is the permutation that switches ¢ and b. A permutation can be written as
a product of cycles. For example, the permutation

(dupfkzgzyo)(eijmnungtht)(bc) (rw)(a)(s)

is the permutation that maps d to v, v to p, t to e, r to w, etc., and fixes a
and s. If the cycles are disjoint (menning that no two cycles have letters in
common), then this decomposition into cycles is unique.

Let’s look back at the intercepted texts. We don't know the letters of any
of the three message keys, but let’s call the first message key zyz Therefore,
Tyzzyz encrypts to dmgubn. We linow that permutation 4 sends z to d.
Also, the fourth permutation D sends z to v. But we know more. Because
of the internal wiring of the machine, 4 actually interchanges z and d and
D interchanges z and v. Therefore, the product of the permutations, AD,
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sends d to v (namely, A sends d to £ and then D sends z to v). The unknown
z has been eliminated. Similarly, the second intercepted text tells us that
AD sends v to p, and the third tells us thet AD sends p to f. We have
therefore determined that

AD:(dypf..) .

In the same way, the second and fifth letters of the three messages tell
us that
BE = (oumb--)- .-

and the third and sixth letters tell us that
CF = (cgny-+)---.

With enough data, we can deduce the decompositions of AD, BE, and CF
Into products of cycles. For example, we might have

AD = (dvpfkzgzyo)(eijmunglht)(be)(rw)(a)(s)
BE = (bl fquveoum)(hjpswizrn){azt)(cgy)(d) (k)
CF = (abviktjgfegny)(duzrehlzwpsmo).

This information depends only on the daily settings of the plugboard and
the rotors, not on the message key. Therefore, it relates to every machine
used on a given day.

Let's look at the effect of the plugboard. It introduces a permutation S
at the beginning of the process and then adds the inverse permutation §~*
nt the end. We need another fact about permutations: Suppose we take
o permutation P and another permutation of the form SPS~! for some
permutation S (where §~! denotes the inverse permutation of S; in our
case, § = 57!) and decompose each into eycles. They will ususlly not have
the same cycles, but the lengths of the cycles in the decompositions will be
the sume. For example, AD. has cycles of length 10, 10, 2, 2, 1, 1. If we
decompose SADS™! into cycles for any permutation S, we will again get
cycles of lengths 10, 10, 2, 2, 1, 1. Therefore, if the plugboard settings are
chunged, but the initial positions of the rotors remain the same, then the
cycle lengths.remain unchanged.

You might have noticed that in the decomposition of AD, BF, and CF
into cycles, each cycle length appears an even number of times. This is a
general phenomenon. For an explanation, see Appendix E of the aforemen-
tioned book by Kozaczuk.

Rejewski and his colleagues compiled a catalog of all 105456 initial set-
tings of the rotors along with the set of cycle lengths for the corresponding
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three permutations AD, BE, CF. In this way, they could take the cipher-
texts for a given day, deduce the cycle iengths, and find the small number
of corresponding initial settings for the rotors. Each of these substitutions
could be tried individually. The effect of the plugboard (when the correct
setting was used) was then merely a substitution cipher, which was eas-
ily broken. This method worked until September 1938, when a modified
method of transmitting message keys was adopted. Modifications of the
above technique were again used to decrypt the messages. The process was
aiso mechanized, using machines called *bombes” to find daily keys, each in
around two hours.

These techniques were extended by the British at Bletchley Park during
World War II and included building more sophisticated "bombes.” These
machines, designed by Alan Turing, are often considered to have been the
first electronic computers.

2.13 Exercises

1. Caesar wants to arrange a secret meeting with Marc Antony, either
at the Tiber (the river) or at the Coliseum (the arena). He sends the
ciphertext EVIRE. However, Antony does not know the key, so he tries
all possibilities. Where will he meet Caesar? (Hint: This is o trick
question.)

2. The ciphertext UCR was encrypted using the affine function 9z + 2
mod 26. Find the plaintext.

3. Encrypt howereyou using the affine function 5z + 7 (mod 26). What
is the decryption function? Check that it works.

4. Consider an affine cipher (mod 26). You do a chosen plaintext attack
using hahaha. The ciphertext is NONONO. Determine the encryption
function.

5. The following ciphertext was encrypted by an affine cipher mod 26:
CRWWZ.

The plaintext starts he. Decrypt the message.

6. Suppose you encrypt using an affine cipher, then encrypt the encryp-
tion using another affine cipher (both are working mod 26). Is there
any advantage to doing this, rather than using a single affine cipher?
Why or why not?

7. Suppose we work mod 27 instead of mod 26 for affine ciphers, How
many keys are possible? What if we work mod 297



56

8.

10.

11

12,

13.

14.

CHAPTER 2. CLASSICAL CRYPTOSYSTEMS

Suppose that you want to encrypt a message using an affine cipher.
Youlet a =0,b=1,...,z =25 but you also include ? = 26, ;=
27, " = 28, ! = 29. Therefore, you use z— az + 8 (mod 30) for your
encryption function, for some integers a and 3.

(a) Show that there are exactly eight possible choicés for the integer
a (that is, there are only eight choices of a (with 0 < o < 30)
that allow you to decrypt).

(b) Suppose you try to use a = 10, § = 0. Find two plaintext letters
that encrypt to the same ciphertext letter.

. You want to carry out an affine encryption using the function az + 3,

but you have ged(e, 26) = d > 1. Show that if z; = zq + (26/d), then
ar; + f = azg + [ (mod 26). This shows that you will not be able to
decrypt uniquely in this case.

Suppose there is a language that has only the letters ¢ and b. The
frequency of the letter a is .1 and the frequency of b is .9. A message
is encrypted using a Vigeneére cipher (working mod 2 instead of mod
26). The ciphertext is BABABAAABA.

(a) Show that the key length is probably 2.

(b) Using the information on the frequencies of the letters, determine
the key and decrypt the message.

Suppose you have a language with only the 3 letters a, b, ¢, and they
occur with frequencies .7, .2, .1, respectively. The following ciphertext
was encrypted by the Vigenere method (shifts are mod 3 instead of
mod 26, of course):

ABCBABBBAC.

Suppose you are told that the key length is 1, 2, or 3. Show that the
key length is probably 2, and determine the most probable key.

If v and w are two vectors in n-dimensional space, v-w = |v||w| cos 8,
where 6 is the angle between the two vectors (measured in the two-
dimensional plane spanned by the two vectors), and |v| denotes the
length of v. Use this fact to show that, in the notation of Section 2.3,
the dot. product Ag - A; is largest when ¢ = 0.

The ciphertext YIFZMA was encrypted by a Hill cipher with matrix

( g 133 ) Find the plaintext.

The ciphertext text GEZXDS was encrypted by a Hill cipher with a
2 x 2 matrix. The plaintext is solved. Find the encryption matrix M.
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. Eve captures Bob's Hill cipher machine, which uses a 2-by-2 matrix

M mod 26. She tries a chosen plaintext attack. She finds that the
plaintext ba encrypts to HC and the plaintext zz encrypts to GT.
What is the matrix M.

(2) The ciphertext text ELNI was encrypted by a Hill cipher with a
2 x 2 matrix. The plaintext is dont. Find the encryption matrix.

(b) Suppose the ciphertext is ELNK and the plaintext is still dont.
Find the encryption matrix. Note that the second column of the
matrix is changed. This shows that the entire second column of
the encryption matrix is involved in obtaining the last character
of the ciphertext (see the end of Section 2.7).

Suppose the matrix (:111 i) is used for an encryption matrix in a Hill

cipher. Find two plaintexts that encrypt to the same ciphertext.

Let a,b,¢,d, ¢, f be integers mod 26. Consider the following combina-
tion of the Hill and affine ciphers: Represent a block of plaintext as a
pair (z,y) mod 26. The corresponding ciphertext (u,v) is

(z v) (z Z) +(e f)= (u v) (mod 26).

Describe how to carry out a chosen plaintext attack on this system
(with the goal of finding the key a,b,c,d, e, f). You should state ex-
plicitly what plaintexts you choose and how to recover the key.

A sequence generated by a length three recurrence starts 001110. Find
the next four elements of the sequence.

Consider the sequence starting k; = 1,k2 = 0,k3 = 1 and defined by
the length three recurrence &, 43 = kn+kn+1+knt2. This sequence can
also be given by a length two recurrence. Determine this length two
recurrence by setting up and solving the appropriate matrix equations.

Suppose we build an LFSR machine that works mod 3 instead of mod
2. It uses a recurrence of length 2 of the form

Tn42 = C0Tn + C1Tn+t  (mod 3)

to generate the sequence 1, 1, 0, 2, 2, 0, 1, 1. Set up and solve the
matrix equation to find the coefficients co and ¢;.
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Suppose you modify the LFSR method to work mod 5 and you use a
(not quite linear) recurrence relation

Tni2 = C0Tp + C1Tnsr +2  (mod 5),

T;=0z=1,z3=1,z, =0.
Find the coeflicients cp and c;.

In the mid-1980s, a recruiting advertisement for NSA had 1 followed
by one hundred Os at the top. The text began “You're looking at a
‘googol.’ Ten raised to the 100th power. One followed by 100 zeroes.
Counting 24 lours a day, you would need 120 years to reach a googol.
Two lifetimes. It’s a number that's imnpossible to grasp. A number
beyond our imagination.”

Ilow many numbers would you have to count each second in order
to reach a googol in 120 years? (This problem is not related to the
cryptosystems in this chapter. It is included to show how big 100-digit
numbers are from a computational viewpoint. Regarding the ad, one
guess is that the aedvertising firm assumed that the time it took to
factor a 100-digit number back then was the same as the time it took
to count to a googol.)

Alice is sending a message to Bob using one of the following cryptosys-
tems. In fact, Alice is bored and her plaintext consists of the letter a
repeated a few hundred times. Eve knows what system is being used,
but not the key, and intercepts the ciphertext. For systems (a), (b},
and (c), state how Eve will recognize that the plaintext is one repeated
letter and decide whether or not Eve can deduce the letter and the key.
(Note: For system (c), the solution very much depends on the fact that
the repeated letter is a, rather than b,¢,....)

(a) Shift cipher

(b) Affine cipher

(c) Hill cipher (with a 2 x 2 matrix)

The operator of a Vigenére encryption machine is bored and encrypts a
plaintext consisting of the same letter of the alphabet repeated several

hundred times. The key is a six-letter English word. Eve knows that
the key is a word but does not yet know its length.

(a) What property of the ciphertext will make Eve suspect that the
plaintext is one repeated letter and will allow her to guess that
the key length is six?
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(b) Once Eve recognizes that the plaintext is one repecated letter,
how can she determine the key? (Hint: You need the fact that
no English word of length six is a shift of another English word.)

(¢) Suppose Eve doesn’t notice the property needed in part (a), and
therefore uses the method of displacing then counting matches for
Anding the length of the key. What will the number of matches
be for the various displacements? In other words, why will the
length of the key become very obvious by this method?

2.14 Computer Problems

1. The following ciphertext was encrypted by a shift cipher:
ycvejquvhqtdtwvuwu

Decrypt. (The ciphertext is stored in the downloadable computer files
(see the Appendices) under the name ycve.)

2. The following ciphertext was the output of a shift cipher:
lcllewl jazlnnzmvyilylhrmhza

By performing a frequency count, guess the key used in the cipher.
Use the computer to test your hypothesis. What is the decrypted
plaintext? (The ciphertext is stored in the downloadable computer
files (see the Appendices) under the name Icil.)

3. The following ciphertext was encrypted by an affine cipher:
edsgickxhuklzveqzvkxwlzukcvuh

The first two letters of the plaintext are if. Decrypt. (The ciphertext is
stored in the downloadable computer files (see the Appendices) under
the name edsg.)

4. The following ciphertext was encrypted by an affine cipher using the
function 3z + b for some b:

tcabtigqmfheqqmrmvmtmaq

Decrypt. (The ciphertext is stored in the downloadable computer files
(see the Appendices) under the name tcab.)

5. Experiment with the affine cipher y = mz +n (mod 26) for values of
m > 26. In particulor, determine whether or not these encryptions are
the same as ones obtained with m < 26.
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6. In this problem you are to get your hands dirty doing some program-

ming. Write some code that creates a new alphabet {4, C, G, T}. For
example, this alphabet could correspond to the four nucleotides ade-
nine, cytosine, guanine, and thymine, which are the basic building
blocks of DNA and RNA. codes. Associate the tetters A, C,G, T with
the numbers 0, 1, 2, 3, respectively.

(a) Using the shift cipher with a shift of 1, encrypt the following
sequence of nucleotides which ts taken from the beginning of the
thirteenth human chromosome:
GAATTCGCGGCCGCAATTAACCCTCACTAAAGGGATCT
CTAGAACT.

(b) Write a program that performs affine ciphers on the nucleotide
alphabet. What restrictions are there on the affine cipher?

. The following was encrypted using by the Vigenére method using a

key of length at most 6. Decrypt it and decide what is unusual about
the plaintext. How did this affect the results?

hdsfgvmkoowafweetcmfthskucaqbilgjofmaqlgspvatvxgbiryscpefr
mvswrvnglszdmgaogsakmlupsqforvtwvdfcjzvgeoaogsacjkbrsevbel
vbksarlscdcaarmnvrysywxqgvellcyluwwveoafgclazowafojdlhssfi
ksepsoywxafouwlbfcsocylngqsyzxgjbmlvgrggokgfgnhlmejabs jvgml
nrvqzcrggerghgeupcyfgtydycjkhqluhgxgzovqswpdvbwsffsenbxapa
sgazmyuhgsfhmftayjxmwznrsofrscaopgavaaarmftqsmahvqecev

(The ciphertext is stored in the downloadable computer files (see the

Appendices) under the name hdsf The plaintext is from Gadsby by
Ernest Vincent Wright.)

. The following was encrypted by the Vigenére method. FFind the plain-

text.

ocwyikoooniwugpmxwktzdwgtssayjzwyemdlbnqaaavsuwdvbrflauplo
oubfgqhgcscmgzlatoedcsdeidpbhtmuovpiekifpimfnoamvipqfxe jem
xmpgkccaykvfzpyuavteluvhrhmwkbbvgtguvtef jlodfefkvpxsgrsorvg
tajbsauhzrzalkvuovhgedefnswmrciwcpaaavogpdnfpktdbalsisurln
psjyeatcuceesohhdarkhwotikbroqrdfmzghgucebvgwecdqxgpbgqulpb
daylocqdmuhbdgqgmyweuikmvsurvnqlszdmgaogsakmlupsqforvtwvdfc
jzvgsoaogsacjkbrsevbel

(The ciphertext is stored in the downloadable computer files (see the
Appendices) under the name ocwy. The plaintext is from The Adven-
ture of the Dancing Men by Sir Arthur Conan Doyle.)
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10.

11.

12,

. The following was encrypted by the Vigenére method. Decrypt it.

(The ciphertext is stored in the downloadable computer files (see the
Appendices) under the name zkju.)

xkjurowmllpxwznpimbvbqjcnowxpcchhvvfvsllfvxhazityxohulxqej
axelxzxmyjaqfstsrulhhucdskbxlmjqidallpgslluhiaqfpbpecidsvei
hwhwewthbtxrljnrsncihuvffuxvoukjljswmaqfvjwjsdyljogjxdboxa
jultucpzmpliwmlubzxvoodybafdskxgqfadshxnxehsaruojaqfpflimdh
saafvulluwtagfrupwjrszxgpfutjqiynrmyntvmhcukjfbirzsmehhsj
shyonddzzntzwplilrwnmwelvuryonthuhabwnvw

The following is the ciphertext of a Hill cipher
zirkzwopjjoptfapuhfhadrq

using the matrix

—
s
6”“”
D N W
Lo = I =N

Decrypt.

The following sequence was generated by a linear feedback shift regis-
ter. Determine the recurrence that generated it.

i, 0, 1, 0,0, 1,190,114 000,100,100,
¢0,0,1,1%,14,40,60,0,0,01,0,1,1,1,1,1,1,0,
0,1,0,1,0,1,¢0,0,0,11,0,0,1,1, 1,1, 0,1,
t,1,¢0,14¢,0,1,1,0,10,011,0,1,1,0,0,0,
{,0901,0000111200000,101,
1,1, 1,1, 1

(It is stored in the downloadable computer files (see the Appendices)
under the name LI01.)

The following are the first 100 terms of an LFSR output. Find the
coefficients of the recurrence.

1, 0,0,1,1,90,0,1,001t1,1400,0,1,1,0,
0,01,01,0,0,01,1¢141,01140,0,1,1,
1, ¢ 0,1,0,14t601,0,0,1,0,1,1,01,1,0,
t,0,1,1,0,0,0,0,1,1,90,1,1,1¢0,0, 1,0, 1,
0,1, 11,14,%o0400000,0,1¢0,001,0,0,
1, 0,0, 0,0

(The sequence is stored in the downloadable computer files (see the
Appendices) under the name L100.)
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13. The following ciphertext was obtained by XORiné; an LFSR output

with the plaintext.

0,4{,1,0,0,0,1,0,1, 0,1, 1,1, 0, 0,1, 1, 1, O,
1,0,1,90,00,1,090,0,0,1,1,0,0,0,1,0,1, 0,
i, 1,1,60,0,1,1,1,0,1, 0,1

Suppose you knoow the plaintext starts

1, 0,0,1,0,0,1,0,0,1, 0, 0,1, 0,0
Find the plaintext. (The ciphertext is stored in the downloadable
computer files (see the Appendices) under the name L011.)



CHAPTER 3
Basic Number Theory

In modern cryptographic systems, the messages are represented by numerical
values prior to being encrypted.and transmitted. The encryption processes
are mathematical operations that turn the input numerical values into out-
put numerical values. Building, analyzing, and attacking these cryptosys-
tems requires mathematical tools. The most important of these is number
theory, especially the theory of congruences. This chapter presents the basic
tools needed for the rest of the book. More advanced topics such as factor-
ing, discrete logarithms, and elliptic curves, will be treated in later chapters
(Chapters 6, 7, and 16, respectively).

3.1 Basic Notions
3.1.1 Divisibility

Number theory is concerned with the properties of the integers. One of the
most important is divisibility.

Definition. Let a and b be integers with a # 0. We say that a divides b,

if there is an integer k such that b = ek. This is denoted by a|b. Another
way to ezpress this is that b is ¢ multiple of a.

Examples. 3|15, —15{60, 7118 (does not divide). ]
The following properties of divisibility are useful.

63
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Proposition. Let a,b, c represent integers.
1. For every a # 0, ¢|0 and afa. Also, 1)|b for every b.
2. If a|b and b|c, then a|c.
3. If a|b and alc, then a|(sb + tc) for all integers s and ¢

Proof. Since 0 = a - 0, we may take k = 0 in the definition to obtain ¢|0.
Since @ = a - 1, we take K = 1 to prove ale. Since b = b-1, we have 1/b.
This proves (1). In (2), there exist k and £ such that b = ak and ¢ = b¢.
Therefore, ¢ = (kf)a, so elc. For (3), write » = ¢k; and c = aky. Then
sb + te = a(sky + tha), so a|sb + tc. O

For example, tale @ = 2 in part (2). Then 2|b simply means that b is
even. The statement in the proposition says that ¢, which is a multiple of
the even number b, must also be even (that is, a multiple of a = 2).

3.1.2 Prime Numbers

A number p > 1 that is divisible only by 1 and itself is called a prime
number. The first few primes are 2,3,5,7,11,13,17,---. An integer n > 1
that is not prime is called composite, which means that n must expressible
as a product ab of integers with 1 < a,b < n. A fact, known already to
Buclid, is that there are infinitely many prime numbers. A more precise
statement is the following, proved in 1896.

Prime Number Theorem. Let w(z) be the number of primes less than
z. Then

7['(1:) = E)

in the sense that the ratio w(z)/(z/Inz) = 1 as z — co.

We won't prove this here; its proef would lead us too far away from our
cryptographic goals. In various applications, we’'ll need large primes, say
of around 100 digits. We can estimate the number of 100-digit primes as
follows:

10100 1099 _
100 99y ~ 9
7['(10 )—ﬂ'(lo )~m—1n1099~39x10'.
So there are certainly enough such primes. Later, we'll discuss how to find
them.

Prime numbers are the building blocks of the integers. Every positive
integer has a unique representation as a product of prime numbers raised to
different powers. For example, 504 and 1125 have the following factorizations

504 = 233%7, 1125 = 3°5%.
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Moreover, these factorizations are unique, except for reordering the factors.
For example, if we factor 504 into primes, then we will always obtain-three
factors of 2, two factors of 3, and one factor of 7. Anyone who obtains the
prime 41 as a factor has made a mistake.

Theorem. Every positive integer is @ product of primes. This factorization
into primes is unique, up to reordering the factors.

Proof. There is a small technicality that must be dealt with before we begin.
When dealing with products, it is convenient to make the convention that
an empty product equals 1. "This is similar to the convention that z¢ = 1.
Therefore, the positive integer 1 is a product of primes, namely the empty
product. Also, each prime is regarded as a one factor product of primes.

Suppose there exist positive integers that are not products of pritmes. Let
n be the smallest such integer. Then n cannot be 1 (= the empty product),
or a prime {= a one factor product), so 2 must be composite. Therefore,
n = ab with 1 < a,b < n. Since n is the smallest positive integer that is not
a product of primes, both a and b are products of primes. But a product
of primes times a product of primes is a product of primes, son = abis a
product of primes. This contradiction shows that the set of integers that
are not products of primes must be the empty set. Therefore, every positive
integer is a product of primes.

The uniqueness of the factorization is more difficult to prove. We need
the following very important property of primes.

Lemma. Ifp is a prime and p divides a product of integers ab, then either
pla or plb. More generally, if a prime p divides ¢ product ab---z, then p
must divide one of the factors a,b, ..., z.

For example, when p = 2, this says that if a product of two integers is
even then one of the two integers must be even. The proof of the lemma will
be given at the end of this section, after we discuss the Euclidean algorithm.

Continuing with the proof of the theorem, suppose that an integer n can
be written as a product of primes in two different ways:

2 b
n=plpl® Pl = qrl ey gp,

where p1,...,p; and qi,. .., g are primes, and the exponents a; and b; are
nonzero. If a prime occurs in both factorizations, divide both sides by it to
obtain a shorter relation. Continuing in this way, we may assume that none
of the primes pi,...,ps occur among the g;'s. Take a prime that occurs on
the left side, say p;. Since p, divides n, which equals ¢1¢1---g1¢2-- - g¢, the
lemma says that p; must divide one of the factors g;. Since g; is prime,
p1 = ¢;. This contradicts the assumption that p; does not occur among
the g;'s. Therefore, an integer cannot have two distinct factorizations, as
claimed. 0
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3.1.3 Greatest Common Divisor

The greatest common divisor of a and b is the largest positive integer
dividing both a and b and is denoted by either gcd(a, b) or by (g, b). In this
book, we shall use the first notation.

Examples. ged(6, 4) =2, ged(5, 7) =1, ged(24, 60) = 12. R

We say that a and b are relatively prime if ged(a,b) = 1. There are
two standard ways for finding the ged:

1. If you can factor a and b into primes, do so. For each prime number,
look at the powers that it appears in the factorizations of ¢ and b.
Take the smaller of the two. Put these prime powers together to get
the ged. This is easiest to understand by examples:

576 = 2032, 135 =3%5, gcd(576,135)=3%=9
ged(253172, 225%7) = 223%507! = 227 = 28.

Note that if a prime does not appear in a factorization, then it cannot
appear in the ged.

2. Suppose a and b are large numbers, so it might not be easy to factor
them. The ged can be calculated by a procedure known as the Eu-
clidean algorithm. It goes back to what everyone learned in grade
schoo!: division with remainder. Before giving a formal description of
the algorithm, let’s see some examples.

Example. Compute gcd(482, 1180).

Solution: Divide 482 into 1180. The quotient is 2 and the remainder is
216. Now divide the remainder 216 into 482. The quotient is 2 and the
remainder js 50. Divide the remainder 50 into the previous remainder 216.
The quotient is 4 and the remainder is 16. Continue this process of dividing
the most recent remainder into the previous one. The last nonzero remainder
is the ged, which is 2 in this case:

1180 = 2-482 4 216
482 = 2-.216+50
216 = 4-.-50+16
50 = 3-16+2
16 = 8-240.
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Notice how the numbers are shifted:

remainder — divisor —+ dividend — ignore.

Here is anotlier example:

12345 = 1-11111+ 1234

11111 = 9-1234+5
1234 = 246-5+4
5 = 1-441
4 = 4-140.
Therefore, ged(12345,11111) = 1. |

Using these examples as guidelines, we can now give a more formal de-
scription of the Buclidean algorithm. Suppose that a is greater than b.
If not, switch a and b. The first step is to divide a by b, hence represent a
in the form

a=gb+r.

If 1y = 0, then b divides a and the greatest common divisor is b. If r; # 0,
then continue by representing b in the form

b=qar + 9.

Continue in this way until the remainder that is zero, giving the following
sequence of steps:

a = qb+n
b = @nit+n
T = qarz+7T3
Th-2 = QTh-1+ Tk
Th-1 = Ge+1Tk-
The conclusion is that
ged{a, b) = 7.

There are two important aspects to this algorithm:
1. It does not require factorization of the numbers.

2. 1t is fast.
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For a proof that it actually computes the ged, see Exercise 28.
The Euclidean algorithm allows us to prove the following fundamental
result.

Theorem. Let a and b be two integers, with at least one of a, b nonzero,
and let d = ged(a,b). Then there ezist integers T,y such that az + by = d.
In particular, if o and b are relatively prime, then there exist integers z,y
with az + by = 1.

Proof. More generally, we'll show that if r; is a remainder obtained during
the Euclidean algorithm, then there are integers z;, y; such that r; = ax; +
by,. Start with j = 1. Taking z; = 1 and y; = —qi, we find that r; =
azy+by;. Similarly, ra = a(—g2)+b(1+q,q2). Suppose we have r; = ax;+by;
for all ¢ < j. Then

Tj =Tj—2 = Tj-1 = azj-2 + byj_a — g(azj1 + by;-1).
Rearranging yields
i = a(zj-2 — ¢;T5-1) + by;-2 — qjvj—1)-

Continuing, we obtain the result for all 7, in particular for j = k. Since
T, = ged(a, b), we are done. O

As a corollary, we deduce the lemma we needed during the proof of the
uniqueness of factorization inte primes.

Corollary. If p is a prime and p divides a product of integers ab, then
either pla or plb. More generally, if a prime p divides a product ab---z,
then p must divide one of the factors a,b,..., 2.

Proof. First, let’s work with the case plab. If p divides a, we are done. Now
assume p t a. We claim p|b. Since p is prime, gcd(a,p) = 1 or p. Sincepta,
the gcd cannot be p. Therefore, ged(e,p) = 1, so there exist integers =,y
with az + py = 1. Multiply by & to obtain abz + pby = b. Since p|ab and
p|p, we have plebz + pby, so p|b, as claimed.

If plab- - - z, then pla or plb- -+ z. If pla, we're done. Otherwise, plb-- - z.
We now have a shorter product. Either plb, in which case we're done, or
p divides the product of the remaining factors. Continuing in this way, we
eventually find that p divides one of the factors of the product. O

The property of primes stated in the corollary holds only for primes. For
example, if we know a product ab is divisible by 6, we cannot conclude that
@ or bis a multiple of 6. The problem is that 6 = 2-3, and the 2 could beina
while the 3 could be in b, as seen in the example 60 = 4-15. More generally,
if n = ab is any composite, then nlab but n { @ and n { b. Therefore, the
primes, and 1, are the only integers with thie property of the corollary.
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3.2 Solving az+by=4d

We did not use the quotients in the Euclidean algorithm. Here is how we
can use tliem. A very basic fact, proved in the last section, is that, given
integers a and b, there are integers = and y such that

az + by = ged(a, b).

How do we find z and y? Suppose we start by dividing a into b, so b =
qra+ 11, and then proceed as in the Euclidean algorithm. Let the successive
quotients be g;,g2,...qn, so in the first example of Section 3.1, we have
Q1 =2,q2=2,q93=4,q1 = 3,95 = 8. Form the following sequences:

g =0,z =1, 5 = —¢j—1Tj1 + Tj-2,

w=1n=0y=—¢-1yj-1 + ¥i-2.

Then
azn, + byn = ged(a, b).

In the first example, we have the following calculation:

Ty = 0, =1
Ty = =23 +zp=~2
T3 = —2T»+IT; =35
T4y = —Adzy4 30 =-22
5 = =3z4+13="71.
Similarly, we calculate y5 = —29. An easy calculation shows that

482 - 71+ 1180 - (=29) = 2 = gcd(482, 1180).

Notice that we did not use the final quotient. If we had used it, we would
have calculated zn4+y = 590, which is the original number 1180 divided by
the ged, namely 2. Similacly, yn41 = 241 is 482/2.

The preceding method is often called the extended Euclidean algo-
rithm. It will be used in the next section for salving certain congruences.

For small numbers, there is another way to find = and y that does not
involve as much bookkeeping with subscripts. Let's consider the example
ged(12345,11111) = 1 from the previous section. We'll use the numbers
from that calculation. The idea is to work back through the remainders 1,
4, 5, 1234, and the original numbers 11111 and 12345, and eventually obtain
the ged 1 as a combination of 12345 and 11111. From the line that revealed
the ged, we find

1=5-1.4,
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so we have 1 as a combination of the previous two remeinders. Moving up
one line, we write the remainder 4 as a combination of 1234 and 5, then
substitute into the preceding equation:

4 =1234 — 246 - 5,

s0
1=5-1-4=5-—1-(1234 —246-5) =247-5—1-1234.

We have now used the last two remainders from the ged calculation. Write
the last unused remainder, namely 5, as a combination of 11111 and 1234,
then substitute into the preceding equation:

1=247-(11111-9.1234) ~1.1234 = 247 - 11111 — 2224 - 1234.
Finally, we substitute for 1234 to obtain
1=247-11111 — 2224 - (12345 — 1 - 11111) = 2471 - 11111 — 2224 . 12345.

This yields the gcd 1 as a combination of 12345 and 11111, as desired. As
long as the ged calculation takes only a few steps, this procedure is quite
easy to do by hand. But, in general, the previous method is better and
adapts well to a computer.

3.3 Congruences
One of the most basic and useful notions in number theory is modular arith-
metic, or congruences.
Definition. Let a, b, n be integers with n # 0. We say that

a=b (modn)
(read: a is congruent to b mod n) if a—b is @ multiple (positive or negative)
of n.

Another formulation is that'a = b {mod n) if ¢ and b differ by a multiple
of n. This can be rewritten as a = b + nk for some integer & (positive or
negative).

Examples.

32=7 (mod 5), -12=37 (mod 7), 17=17 (mod 13). B

Congruence behaves very much like equality. In fact, the notation for
congruence was intentionally chosen to resemble the notation for equality.
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Proposition. Let a,b,c,n be integers with n # 0.
1.a=0 (mod n) if and only if nja.
2. a=ca (mod n).
3. a=b (mod n) if and only if b = a (mod n).
4. Ifa=band b=c (mod n), then a = ¢ (mod n).

Proof. In (1), a =0 (mod n) means that e = a — 0 is a multiple of n, which
is the same as nja. In (2), we havea — 2 =0-n, so e =a (mod n). In (3),
if a= b (mod n), write a — b = nk. Then b~a = n(—k), so b= (mod n).
Reversing the roles of ¢ and b gives the reverse implication. For (4), write
a=b+nkande=b+nl. Thena—c=n(k—£),30a=c(modn). O

Often, we will work with the integers mod n, denoted Z,,. These may
be regarded as the set {0,1,2,...,n — 1}, with addition, subtraction, and
multiplication mod n. If @ is any integer, we may divide a by n and obtain
a remainder in this set:

a=ng+rwith0<r <n.

(This is just division with remainder; q is the quotient and r is the remain-
der.) Then ¢ = r (mod n), so every number a is congruent mod n to some
integer r with0 £ r < n.

Proposition. Let a,b,c,d,n be integers with n # 0, and suppose ¢ = b
(mod n) and ¢ = d {mod n). Then

a+c=b+d, e—-c=b-d, ac=bd (wodn).

Proof. Write a = b + nk and ¢ = d + n(, for integers k and {. Then
a+tc=b+d+nk+0,s0a+c=b+d (modn). The proof that
a—c = b—d is similar. For multiplication, we have ac = bd+n(dk+bl+nkl),
50 ac = bd. a

The proposition says you can perform the usual arithmetic operations
of addition, subtraction, and multiplication with congruences. You must be
careful, however, when trying to perform division, as we'll see.

If we take two numbers and want to multiply them modulo n, we start
by multiplying them as integers. If the product is less than n, we stop. If the
product is larger than n—1, we divide by n and take the remainder. Addition
and subtraction are done similarly. For example, the integers modulo 6 have
the following addition table:
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+|/0 1 2 3 4 5
001 2 3 4 5
1]1 2 3 4 5 0
212 3 45 01
313 4 5 061 2
414 5 01 2 3
5456 01 2 3 4
A table for multiplication mod 6 is
x{0 1 2 3 4 5
0|0 00 0 0 O
1101 2 3 4 5
210 2 4 0 2 4
310 3 0 3 0 3
410 4 2 0 4 2
5]/0 5 4 3 2 1

Example. Here is an example of how we can do algebra mod n. Consider
the following problem: Solve z + 7 =3 (mod 17).

Solution: t=3—-7=-4=13 (mad 17). 1

There is nothing wrong with negative answers, but usually we write the
final answer as an integer from 0 to n — 1 when we are working mod n.

3.3.1 Division

Division is much trickier mod n than it is with rational numbers. The general
rule is that you can divide by e (mod n) when ged(a,n) = 1.

Proposition. Let a,b, ¢, n be integers with n # 0 and with ged(a,n) = 1.
If ab = ac (mod n), then b = ¢ (mod n). In other words, if a and n are
relatively prime, we can divide both sides of the congruence by a.

Proof. Since ged{e,n) = 1, there exist integers z, y such that az + ny = 1.
Multiply by b — ¢ to obtain

(@b—ac)z+n(b—c)y=5b—-c.
Since ab — ac is a muitiple of n, by assumption, and n(b — c)y is also a

muitiple of n, we find that b — ¢ is a multiple of n. This means that b= ¢
{mod n). a
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Example. Solve: 22+ 7 =3 (mad 17).

Solution: 22 =3—-7= -4, so 3= ~2=15 (mad 17). The division by 2 is
allowed since ged(2,17) = 1. |

Example. Solve: 52+ 6 = 13 (mod 11).

Solution: 5z = 7 (mod 11). Now what do we do? We want to divide by
5, but what does 7/5 mean mod 11?7 Note that 7=18=20=40= ...
(mod 11). So 5z = 7 is the same as 5z = 40. Now we can divide by 5 and
obtain = = 8 (mod 11) as the answer. Note that 7 =85 (mod 11), so 8
acts like 7/5. ]

The last example can be done another way. Since 5-9 =1 (mod 11), we
see that 9 is the multiplicative inverse of 5 (mod 11). Therefore, dividing
by 5 can be accomplished by multiplying by 9. If we want to solve 5z =7
(med 11), we multiply both sides by 9 and obtain

z=45z=63=8 (mod 11).

Proposition. Suppose ged(a,n) = 1. Let g and ¢t be integers such that
as + nt = 1 (they can be found using the eztended Euclidean algorithm).
Thenas =1 (mod n), so s is the multiplicative inverse for a (mod n).

Proof. Since as — 1 = —nt, we see that as — 1 is a multiple of n. ]

The extended Euclidean algorithm is fairly efficient for computing the
multiplicative inverse of a by the method stated in the proposition.
Example. Solve 11111z = 4 (mod 12345).

Solution: Referring to the calculation of gcd(12345,11111) done earlier, we
have quotients 1 = 1,92 = 9,93 = 246,94 = 1,95 = 4. Therefore, in the
extended Euclidean algorithm, zp = 0,21 = 1,22 = —1,2z3 = 10,7y =
—2461, 5 = 2471, which tells us that 11111 - 2471 + 12345 - y5 = 1; hence,

11111-2471=1 (mod 12345).
Multiplying both sides of the original congruence by 2471 yields
z=9884 (mod 12345).

In practice, this means that if we are working mod 12345 and we encounter
the fraction 4/11111, we can replace it with 9884. This might seem a little
strange, but think about what 4/11111 means. It's simply a symbol to
represent a quantity that, when multiplied by 11111, yields 4. When we are
working mod 12345, the number 9884 also has this property since 11111 x
0884 = 4 (mod 12345). ]

Let's summarize some of the discussion:
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Finding ¢~} (mod n)

1. Use the extended Euclidean algorithin to find integers s and ¢ such
that as + nt = 1.

2. a~! =5 (mod n).

Solving ax = ¢ (mod n) when gecd(a,n) =1

{Equivalently, you could be working mod n and encounter a fraction ¢/a with
ged(a,n) =1.)

1. Use the extended Euclidean algorithm to find integers s and ¢ such
that as +nt = 1.

2. The solution is £ = ¢s (mod n) (equivalently, replace the fraction ¢/a
with ¢s (mod n)).

What if ged{a,n) > 17

Occasionally we will need to solve congruences of the form az = b (mod n)
when ged(a,n) = d > 1. The procedure is as follows:

1. If d does not divide b, there is no solution.

2. Assume d|b. Consider the new congruence
(a/d)z =b/d (mod n/d).

Note that a/d, b/d, n/d are integers and gcd(e/d,n/d) = 1. Solve this
congruence by the above procedure to obtain a solution zp.

3. The solutions of the original congruence az = b (mod n) are

9, zo+(n/d), za+2(n/d),..., =zo+(d—1)(n/d) (mod n).

Example. Solve 12z = 21 (mod 39).

Solution: ged(12,39) = 3, which divides 21. Divide by 3 to obtain the new
congruence 4z = 7 (mod 13). A solution zg = 5 can be obtained by tryinga
few numbers, or by using the extended Euclidean algorithm. The solutions
to the ariginal congruence are z =5, 18, 31 (mod 39). |
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The preceding congruences contained z to the first power. However,
nonlinear congruences are also useful. In several places in this book, we will
meet equations of the form

?=a (mod n).

First, consider 2 = 1 (mod 7). The solutions are z = 1,6 (mod 7), as
we can see by trying the values 0,1,2,...,6 for z. In general, when p is an
odd prime, z2 = 1 (mod p) has exactly the two solutions z = +1 (mod p)
(see Exercise 8).

Now consider z* = 1 (mod 15). If we try the numbers 0,1,2,...,14 for
z, we find that z = 1,4,11, 14 are solutions. For example, 112 = 121 =
1 (mod 15). Therefore, a quadratic congruence for a composite modulus
can have more than two solutions, in contrast to the fact that a quadratic
equation with real numbers, for example, can have at most two solutions. In
Section 3.4, we’ll discuss this phenomenon. In Sections 6.4 (factoring), 13.1
(Ripping coins), and 14.2 (identification schemes), we'll meet applications of
this fact.

3.3.2 Working with Fractions

In many situations, it will be convenient to work with {ractions mod n. For
example, 1/2 (mod 12345) is easier to write than 6173 (mod 12345) (note
that 2 x 6173 = 1 (mod 12345)). The general rule is that a fraction b/a can
be used mod n if ged{a, n) = 1. Of course, it should be remembered that b/
(mod n) really means a~'b (mod n), where a™! denotes the integer mod n
that satisfies a"'a = 1 (mod n). But nothing will go wrong if it is treated
as a fraction.

Another way to look at this is the following. The symbol *1/2” is simply
a symbol with exactly one property: If you multiply 1/2 by 2, you get 1.
In all calculations invelving the symbol 1/2, this is the only property that
is used- When we are working mod 12343, the number 6173 also has this
property, since 6173 x 2 = 1 (mod 12345). Therefore, 1/2 (mod 12345) and
6713 (mod 12345) may be used interchangeably.

Why can’t we use fractions with arbitrary denominators? Of course, we
cannot use 1/6 (mod 6), since that would mean dividing by 0 (mod 6). But
even if we try to work with 1/2 (mod 6), we run into trouble. For example,
2 = 8 (mod 6), but we canpot multiply both sides by 1/2, since 1 # 4
(mod 6). The problem is that ged(2,6) = 2 # 1. Since 2 is a factor of 6, we
can think of dividing by 2 as “partially dividing by 0." In any case, it is not
allowed.
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3.4 The Chinese Remainder Theorem

In many situations, it is useful to brealk a congruence mod n inta a system
aof congruences mod factors of n. Consider the following example. Suppase
we know that a number z satisfies z = 25 (mod 42). This means that we
can write z = 25 + 42k for same integer k. Rewriting 42 as 7 - 6, we abtain
z = 25 + T(6k), which implies that z = 25 = 4 (mod 7). Similarly, since
z = 25 + 6(7k), we have £ = 25 =1 (mod 6). Therefore,

z=4 (moad7)
=2 d 42
2225 (mod 42) = {a: =1 (mod 6).

The Chinese remainder theorem shows that this process can be reversed;
namely, a system aof congruences can be replaced by a single congruence
under certain conditions.

Chinese Remainder Theorem. Suppose ged(m, n) = 1. Given integers
e and b, there erists exactly one solution £ (mod mn) to the simultaneous
congruences

z=a (modm), z=0b (madn).

Proof. There exist integers s, ¢ such that ms+nt = 1. Thenms =1 (mad n)
and nt = 1 (mod m). Let £ = dms + ent. Then z = ent = e¢ (mod m),
and = = bms = b (mad n), so a solution z exists. Suppose z,; is another
solution. Then z = z; (mad m) and z = z; {mad n), so z—z is 2 multiple
of both m and n.

Lemma. Let m,n be integers with ged(m,n) = 1. If an integer ¢ is a
multiple of both m and n, then c is e multiple of mn.

Proof. Let c = mk = né. Write ms + nt = 1 with integers s, £. Multiply by
¢ to obtain ¢ = cms + cnt = mnls + mnkt = mn(fs + kt). ]

To finish the procf of the theorem, let ¢ = £ — z; in the lemma to find
that £ — z; is a multiple of mn. Therefore, £ = z; (mod mn). This means
that any two solutions £ ta the system of congruences are congruent mod
mn, as claimed. O

Example. Solve =3 (mod 7), z=5 (mead 15).

Solution: T = B0 (mod 105) (note: 105 = 7 -15). Since 80 = 3 (mod 7)
and 80 = 5 (mad 15), 80 is a solution. The theorem guarantees that such
a salution exists, and says that it is uniquely determined mod the praduct
mn, which is 105 in the present example. :|
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How does one find the salution? One way, which warks with small num-
bers m and n, is ta list the numbers congruent to b (mod n) until you find
one that is congruent to a¢ (mod m). For example, the numbers congruent
to 5 (moad 15) are

5,20, 35, 50, 65, 80,95,....
Mod 7, these are 5,6,0,1,2,3,4,.... Since we want 3 (mod 7), we choose
80.

For slightly larger numbers m and n, making a list would be inefficient.
However, a similar idea warks. The numbers congruent to b (mod n) are of
the form b+ nk with & an integer, so we need to solve b+ nk =a (mod m).
This is the same as

nk=a—b (modm}).
Since ged(m,n) = 1 by assumption, there is a multiplicative inverse i for n
{mod m). Multiplication by i gives

k=(a-b) (modm).

Substituting back into z = b+ nk, then reducing mod mn, gives the answer.
Of course, for large numbers, the proaf of the theorem gives an efficient
method for finding z that is almest the same as the one just given.

Example. Solve z =7 (mod 12345), =z =3 (mod 11111).

Solution: First, we know from our calculations in Section 3.3 that the inverse
of 11111 (mad 12345) is ¢ = 2471. Therefare, k = 2471(7 — 3) = 9884
(mod 12345). This yields £ = 3 4- 11111 - 9884 = 109821127 (med (11111 -
12345)). ]

How do you use the Chinese remainder thearem? The main idea is
that if you start with a congruence mod a compasite number n, you can
break it into simultanecus cangruences mod each prime power factor of n,
then recombine the resulting information to obtain an answer mod n. The
advantage is that often it is easier to analyze congruences maod primes or
mod prime powers than to work mod camposite numbers.

Suppase you want to solve z2 = 1 (mod 35). Nate that 35 =5.7. We
have

?=1 (mod 35) & {
Now, 2> = 1 {mad 5) has twa solutions: =z = +1 (med 5). Also, z% =

(mod 7) has two solutions: £ = £1 (mod 7). We can put these together in
four ways:

z= 1 (mod5), z= 1 (mod7) — z= 1 (mod 35),
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z= 1 (mod5), z=-1 (med7) — T= 6 (mod 35),

z=-1 (mod5), z= 1 (mod?7) — z=29 (mod 35),
z=-1 (modb), z=-1 (modT) — z=34 (mod 35).

So the solutions of 22 = 1 (mod 35) are £ = 1,6,29,34 (mod 35).
In general, if n = p1pa - - - pr is the product of r distinct odd primes, then
2 =1 (mod n) has 2" solutions. This is a consequence of the following.

Chinese Remainder Theorem (General Form). Let my,...,m;
be integers with ged(my, m;) = 1 whenever ¢ # j. Given inlegers ay,...,
ay, there exists ezactly one solution x (mod my ---my) to the simultaneous
congruences

x=a (modm),z=az (modma),...,z=a; (modmy).

For example, the theorem guarantees there is a solution to the simulta-
neous congruences

z=1 (mod 11), z=-1 (mod 13), z=1 (mod17).

In fact, = 1871 (mod 11-13 - 17) is the answer.
Exercise 24 gives a method for computing the number z in the theorem.

3.5 Modular Exponentiation

Throughout this book, we will be interested in numbers of the form

Iﬂ

(mod n).
In this and the next couple of sections, we discuss some praperties of nurmnbers
raised to a power modulo an integer.

Suppose we want to compute 2'2*! (mod 789). If we first compute 2123,
then reduce mod 789, we'll be working with very large numbers, even though
the final answer has only 3 digits. We should therefore perform each multipli-
cation and then calculate the remainder. Calculating the consecutive powers
of 2 would require that we perform the modular multiplication 1233 times.
This is method is too slow to be practical, especially when the exponent
becomes very large. A more efficient way is the following (all congruences
will be mod 789).
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We start with 22 = 4 (mod 789) and repeatedly square both sides to
obtain the following congruences: ’

2 = 42=16
28 = 162=256
2% = 2562=49
22 = 34
29 = 367
2128 = 559
28 = g7
2512 = 580
210’.’-1 = 9286.

Since 1234 = 1024 4 128 + 64 + 16 + 2 (this just means that 1234 equals
10011010010 in binary), we have

2129 = 986 . 559 - 367- 49 4 = 481 (mod 789).

Note that we never needed to work with a number larger than 7882,

The same method works in general. If we want to compute a® (mod n),
we can do it with at most 2log,(b) multiplications mod n, and we never
have to work with numbers larger than n®. This means that exponentiation
can be accomplished quickly, and not much memory is needed.

This method is very useful if @, b, n are 100-digit numbers. If we simply
computed a®, then reduced mod n, the computer's memory would overfiow:
The nurnber a¥ has more than 10'% digits, which is more digits than there
are particles in the universe. However, the computation of o? (mod n) can
be accomplished in less than 700 steps by the present method, never using
a number of more than 200 digits.

An algorithmic version of this procedure is given in Exercise 23.

3.6 Fermat’s Little Theorem and Euler's
Theorem

Two of the most basic results in number theory are Fermat's and Euler’s
theorems. Originally admired for their theoretical value, they have more
recently proved to have important cryptographic applications and will be
used repeatedly throughout this book.

Fermat’s Little Theorem. Ifp is a prime and p does not divide a, then

a®'=1 (modp)
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Proof. Let
S={1,23,...,p-1}.

Consider the map 1 : § — S defined by ¥(x) = az (mod p). For example,
when p = 7 and a = 2, the map v takes a number z, multlphes it by 2, then
reduces the result mod 7.

We need to check that if z € S, then y(z) is actually in S; that is,
P(z) # 0. Suppose ¥(z) = 0. Then ax = 0 (mod p). Since ged(a, p) = 1,
we can divide this congruence by a to obtain z =0 (mod p), soz € S. This
contradiction means that 1(z) cannot be 0, hence ¥(z) € S. Now suppose
there are z,y € § with ¥(z) = 9¥(y). This means az = ay (mod p). Since
ged(a, p) = 1, we can divide this congruence by a to obtain z =y (mod p).
We conclude that if z,y are distinct elements of S, then (z) and #(y) are
distinct. Therefore,

P(1),9(2),9(3), - ¥lp— 1)

are distinct elements of S. Since S has only p— 1 elements, these must be
the elements of S written in a some order. It follows that

1.2.3...(},_1)

) $(2) - 9@ plp - )
(a-1)(a- )( ) (2 (p-1)
@ 1(1-2.3---(p~1)) (mod p).

Iit

Since ged(j,p) = 1 for j € S, we can divide this congruence by 1,2,3,...,p—
1. What remains is 1 = a?~! (mod p). |

Example. 2! = 1024 = 1 (mod 11). From this we can evaluate 253
(mod 11): Write 2°% = (219)52 = 1593 = 8 (mod 11). Note that when
working mod 11, we are essentially working with the exponents mod 10,
not mod 11. In other words, from 53 = 3 (mod 10), we deduce 25% = 23
(mod 11). ]

Usually, if 2"~ = 1 (mod n), the number 7 is prime. However, there are
exceptions: 561 = 3-11-17 is composite but 2°0 = 1 (mod 561). We can
see this as follows: Since 560 = 0 (mod 2), we have 2560 =20 = 1 (mod 3).
Similarly, since 560 = 0 (mod 10) and 560 = 0 {mod 16), we can conclude
that 258 = 1 (mod 11) and 2°6° = 1 (mod 17). Putting things together via
the Chinese remainder theorem, we find that 2%° = 1 (mod 561).

Another such exception is 1729 = 7-13-19. However, these exceptions are
fairly rare in practice. Therefore, if 2"~ = 1 (mod n), it is quite likely that
n is prime. Of course, if 2"~ # 1 (mod =), then n cannot be prime. Since
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27! (mod n) can be evalunted very quickly (see Section 3.5), this gives a
way to search for prime numbers. Namely, choose a starting point ng and
successively test each add number n > no to see whether 2r—1 =1 (mod n).
If n fails the test, discard it and proceed to the next ». When an n passes
the test, use more sophisticated techniques (see Section 6.3) to test n for
primality. The advantage is that this procedure is much faster than trying
to factor each 1, especially since it eliminates many n quickly. Of course,
there are ways to speed up the search, for example, by first eliminating any
n that has small prime factors.

We'll also need the analog of Fermat's theorem for a composite modulus
7. Let ¢{n) be the number of integers 1 < a < n such that ged{a,n) = 1.
For example, if n = 10, then there are four such integers, namely 1,3,7,9.
Therefore, $(10) = 4. Often ¢ is called Euler’s ¢-function.

If p is a prime and n = p", then we must remove every pth number in
order to get the list of a's with ged(e,n) = 1, which yields

40) = (1"

In particuler,
¢(p)=p-1

More generally, it can be deduced from the Chinese remainder theorem that
for any integer n,

#m =nJJ01-2),

where the product is over the distinct primes p dividing n. When n = pq is
the product of two distinct primes, this yields

¢(pg) = (p—1)(g—1).

Examples.
$(10) = (2-1)(5 - 1) = 4,
#(120) = 1201 - 3)(1 - %)(1 - %) =32 .

FEuler’s Theorem. If ged(a,n) =1, then

a®™ =1 (mod n).
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Proof. The proof of this theorem is almost the same as the one given for
Fermat's theorem. Let S be the set of integers 1 € = € n with ged(z,n) = 1.
Lety : § — S be defined by ¢(z) = az (mod n). As in the proof of Fermat's
theorem, the numbers 1(z) for = € S are the numbers in S written in some

order. Therelore,
H z= Hd)(a:) = g#") H z.

z€S €S T€S§
Dividing out the factors = € §, we are left with 1 = ¢*™ (mod n). O
Note that when n = p is prime, Euler's thieorem is the same as Fermat's
theorem.
Example. What are the last three digits of 780%?

Solution: Knowing the Jast three digits is the same as working mod 1000.
Since ¢(1000) = 1000(1 — 1)(1 — 1) = 400, we have 7% = (71023 = 73 =
343 (mod 1000). Therefore, the last three digits are 343.

In this example, we were able to change the exponent 803 to 3 because
803 =3 (mod ¢(1000)). : B

Example. Compute 243! (mod 101).

Solution: Note that 101 is prime. From Fermat’s theorem, we know that
2190 =1 (mod 101). Therefore,

243210 — (91001432910 — 1432910 = 10924 = 14 (mod 101).

In this case we were able to change the exponent 43210 to 10 because 43210 =
10 (mod 100). ]

To suminarize, we state the following;

Basic Principle. Let a,n,z,y be integers with n > 1 and ged(e,n) = 1.
If =y (mod ¢(n})), then a® = a¥ (mod n). In other words, if you want to
work mod n, you should work mod ¢(n} in the ezponent.

Proof. Write £ =y + ¢(n)k. Then
a® = oMk = g¥(? (k= o¥1* = 0¥ (mod n).
This completes the proof. a

This extremely important fact will be used repeatedly in the remainder
of the book. Review the preceding examples until you are convinced that
the exponents mod 400 = ¢(1000) and mod 100 are what count (i.e., don’t
be one of the many people who mistakenly try to work with the exponents
mod 1000 and mod 101 in these examples).
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3.6.1 Three-Pass Protocol

Alice wishes to transfer a secret key I (or any short message) to Bob via
communication on a public channel. The Basic Principle can be used to
solve this problem.

First, here is a nonmathematical way to do it. Alice puts K into a box
and puts her lock on the box. She sends the locked box to Baob, who puts
his lock on the box and sends the box back to Alice. Alice then takes her
lock off and sends the box to Bob. Bob takes his lock off, opens the box,
and finds K.

Here is the mathematical realization of the method. First, Alice chooses
a large prime number p that is large enough to represent the key K. For
example, if Alice were trying to send a 56-bit key, she would need a prime
number that is at least 56 bits long. However, for security purposes (to make
what is known as the discrete log problem hard), she would want to choose
a prime significantly longer than 56 bits. Alice publishes p so that Bob (or
anyone else) can download it. Bob downloads p. Alice and Bob now do the
following:

1. Alice selects a random number a with ged{a,p—1) = 1 and Bob selects
a random number b with ged(b,p~1) = 1. We will denote by a~! and
b-! the inverses of 2 and b mod p ~ 1.

2. Alice sends X} = /(* (mod p) to Bob.
3. Bob sends K» = K? (mod p) to Alice.
4. Alice sends K3 = K§~' (mod p) to Bob.

5. Bob computes i = K%' (med p).

At the end of this protocol, both Alice and Bob have the key K.

The reason this works is that Bob has computed K°® "¢ (mod p).
Since aa~! = bb~! = 1 (p), the Basic Principle implies that Ko™ '¢7" =
K!' = K (mod p).

The procedure is usually attributed to Shamir and to Massey and Omura.
One drawback is that it requires multiple communications between Alice and
Bob. Also, it is vulnerable to the intruder-in-the-middle attack (see Section

10.1).

3.7 Primitive Roots

Consider the powers of 3 (mod 7):

n

3'=3 3°=2 P=6 3'=4 3°=5 3F=1
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Note that we obtain all the nonzero congruence classes mod 7 as powers
of 3. This means that 3 is a primitive root mod 7 (the term multiplicative
generator might be better but is not as common). Similarly, every nonzero
congruence class mod 13 is a power of 2, so 2 is a primitive root mod 13.
However, 3% = 1 (mod 13), so only 1, 3, 9 are powers of 3. Therefore, 3 is
not a primitive root mod 13. The primitive roots mod 13 are 2, 6, 7, 11.

In general, when p is & prime, a primitive root mod p is a number
whose powers yield every nonzero class mod p. It can be shown that there
are ¢{p — 1) primitive roots mod p. In particular, there is always at least
one. In practice, it is not difficult to find one, at least if the factorization of
p—1is known. See Exercise 21.

The following summarizes the main facts we need about primitive roots.

Proposition. Let g be a primitive root for the prime p.

1. Let n be an integer. Then g" = 1 (mod p) +f end only if n = 0
(mod p - 1).

2. If j and k are integers, then ¢/ = g* (mod p) if and only if j = k
(mod p — 1).

Proof. If n =0 (mod p — 1), then n = (p — 1)m for some m. Therefore,
g"= (") =1 (modp)
by Fermat’s theorem. Conversely, suppose g" = 1 (mod p). We want to

show that p — 1 divides n, so we divide p~ 1 into n and try to show that
the remainder is 0. Write

n={p-1)¢g+r, withO<r<p-1
(this is just division with quotient ¢ and remainder r). We have
l=g"=(@" g =1-g =g
Suppose r > 0. If we consider the powers g, g%, ... of g (mod p), then
we get back to 1 after r steps. Then
g tl=g ¢¥=g,
so the powers of g (mod p) yield only the r numbers g,¢%...,1. Since
T < p—1, not every number mod p can be a power of g. This contradicts
the assumption that ¢ is a primitive root.
The only possibility that remains is that r = 0. This means that n =
(p - 1)r, so p— 1 divides n. This proves part (1).
~ For part (2), assume that j > k (if not, switch j and k). Suppose that
¢ = ¢* (mod p). Dividing both sides by g* yields ¢~* = 1 (mod p). By
part (1), j—k =0 (mod p—1),50 j = k (mod p— 1). Conversely, if j = k
(mod p— 1), then j — k£ = 0 (mod p— 1), so ¢7=* = 1 (mod p), again by
part (1). Multiplying by ¢* yields the result. O

r

(mod p).
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3.8 Inverting Matrices Mod n

Finding the inverse of a matrix mod n can be accomplished by the usual
methods for inverting a matrix, as long as we apply the rule given in Section
3.3 for dealing with fractions. The basic fact we need is that a square matrix
is invertible mod n if and only if its determinant and n are relatively prime.

We treat only small matrices here, since that is all we need for the
examples in this book. In this case, the easiest way is to find the inverse of
the matrix is to use rational numbers, then change back to numbers mod
n. Tt is a general fact that the inverse of an integer matrix cen always be
written as another integer matrix divided by the determinant of the original
matrix. Since we are assuming the determinant and » are relatively prime,
we can invert the determinant as in Section 3.3.

For example, in the 2 x 2 case the usual formula is

a b\ 1 d -b
c d Tad-bec\ ¢ a }'
so we need to find an inverse for ad — be (mod n).

Example. Suppose we want to invert ( ; 3 ) (mod 11). Since ad—bc =

—2, we need the inverse of —2 mod 11. Since 5 x (—~2) =1 (mod 11), we
can replace —1/2 by 5 and obtain

(é 2)_1—:—:2'1‘(.?3 _12)55(_43 _12)5(3 ;) (mod 11).

A quick calculation shows that
1 2Y/9 1) _ /(23 1 1
3 4 7 5/)7\55 23 0

Example. Suppose we want the inverse of

il

‘1)) (mod 11). @

M= (mod 11).

— e
N =
O~

The determinant is 2 and the inverse of M in rational numbers is
1 6 -5 1
3 -6 8 -2
2 -3 1
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(For ways to calculate the inverse of a matrix, look at uhy book on linear
algebra.) We can replace 1/2 with 6 mod 11 and obtain

33 6
M3t=|8 4 10 (mod 11). a
14 6 :

Why do we need the determinant and » to be relatively prime? Suppose
MN =1 (mod n), where [ is the identity matrix. Then

det(M) det(N) = det(MN)=det(J/) =1 (mod n).

Therefore, det(Af) has an inverse mod », which means that det(M) and =
must be relatively prime.

3.9 Square Roots Mod n

Suppose we are told that z2 = 71 (mod 77) hes a solution. How do we find
one solution, and how do we find all solutions? More generally, consider
the problem of finding all solutions of z> = b (mod n), where n = pq is
the product of two primes, We show in the following that this can be done
quite easily, once the factorization of n is known. Conversely, if we know all
solutions, then it is easy to factor n.

Let's start with the case of square roots mod a prime p. The easiest cose
is when p = 3 (rmod 4), and this suffices for our purposes. The case when
p=1 (mod 4) is more difficult. See {Cohen, pp. 31-34].

Proposition, Let p = 3 (mod 4) be prime and let y be an integer. Let
z = yPt4 (mod p).

1. Ify has a square root mod p, then the square roots of y mod p are £1.

2. If y has no square oot mod p, then —y has a square root mod p, and
the square roots of —y are +z.

Proof. If y = 0 (mod p), all the statements are trivial, so assume y & 0
(mod p). Fermat’s theorem says that 4*~! =1 (mod p). Therefore,

=y =P 1= (mod p).

'This implies that {2 + y)(z° — y) = 0 (mod p), 50 2> = +y (mod p). (See
Exercise 7(n).) Therefore, at least one of y and —y is a square mod p.
Suppose both y and —y are squares mod p, say y = o> and —y = *. Then
—1 = (a/b)? (work with fractions med p as in Section 3.3), which means
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—1 is a square mod p. This is iinpassible when p = 3 (inod 4) (see Exercise
26). Therefore, exactly one of y and —y has a square root mod p. If y has
a square root mod p then y = z2, and the two square roots of y are £z, If
—y has a square roat, then 2 = —y. O

Examnple. Let’s find the square root of 5 mod 11. Since {p+1)/4 =3, we
compute z = 5° = 4 (mod 11). Since 4> =5 (mod 11), the square roots of
5 mod 11 are +4.

Now let’s try to find a square root of 2 mod 11. Since (p+1)/4 = 3, we
compute 23 = 8 (mod 11). But 8% = 9 = —2 (mod 11), so we have found
a aquare root of —2 rather than of 2. This is because 2 has no square root
mod 11. |

We now consider square roots for a composite modulus. Note that

2

z°=T71 (mod 77)
means that
2?=71=1 (mod7)and z?=71=5 (mod 11).

Therefore,
z=+1 (mod7)andz =44 (mod 11).

The Chinese remainder theorem tells us that 2 congruence mod 7 and a con-
gruence mod 11 can be recombined into a congruence mod 77. For example,
ifx=1 (mod 7) and = = 4 (mod 11), then £ = 16 (mod 77). In this way,
we can recombine in four ways to get the solutions

z=415, +29 (mod 77).

Now let's turn things around. Suppose n = pq is the product of two
primes and we know the four solutions = = *q, +b of 22 = y (mod n).
From the construction just used above, we know that ¢ = b (mod p) anda =
—b {mod g) (or the same congruences with p and g switched). Therefore,
pl(a—b) but gt {a —b). This means that ged(a— b, 7) = p, so we have found
a nontrivial factor of n (this is essentially the Basic Principle of Section 6.3).

For example, in the preceding example we know that 157 = 292 = 71
(mod 77). Therefore, ged(15 — 29, 77) = 7 gives a nontrivial factor of 77.

Another example of computing square roots mod » is given in the Section
13.1.

Notice that all the operations used above are fast, with the exception
of factoring n. In particular, the Chinese remainder theorem calculation
can be done quickly. So can the computation of the ged. The modular
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exponentiations needed to compute square roots mod p and mod ¢ can be
done quickly using successive squaring. Therefore, we can state the following
principle:

Suppose n = pq is the product of two primes congruent to 8 mod 4,
and suppose Y is a number relatively prime to n which has o square root
mod n. Then finding the four solutions x = +a, b to £* = y (mod n) is
computationally equivalent to factoring n.

In other words, if we can find the solutions, then we can easily factor n;
conversely, if we can factor n, we can easily find the solutions.

3.10 Legendre and Jacobi Symbols

Suppose we want to determine whether or not z° = a (mod p) has a solution,
where p is prime. If pis small, we could square all of the numbers mod p and
see if a is on the list. When p is large, this is impractical. If p = 3 (mod 4),
we can use the technique of the previous section and compute s = gP+1)/4
(mod p). If ¢ has a square root, then s is one of them, so we simply have
to square s and see if we get a. If not, then a has no square root mod p.
The following proposition gives a method for deciding whether a is a square
mod p that works for arbitrary odd p.

Proposition. Let p be an odd prime and let a be an integer with a & 0
(mod p). Then a®=/2 = £1 (mod p). The congruence z® = a (mod p)

kas a solution if end only if a®~1/2 =1 (mod p).

Proof. Let y = a®"1/2 (mod p). Theny® = ¢”~! =1 (mod p), by Fermat’s
theorem, Therefore (Exercise 8), ¥ = +1 {(mod p).

If o = 22, then a®~1/2 = zP~1 = 1 (mod p). The hard part is showing
the converse. Let g be a primitive root mod p. Then a = g7 for some j, If
a® /2 =1 (mod p), then

g2 = (P12 =1 (mod p).

By the Proposition of Section 3.7, j(p—1)/2=0 (mod p~ 1). This implies
that 7 must be even: j = 2k. Therefore, a = g7 = (¢*)° (mod p), so 2 is a
square mod p.

The criterion is very easy to implement on a computer, but it can be
rather difficult to use by hand. In the following, we introduce the Legendre
and Jacobi symbols, which give us an easy way to determine whether or not
a number is a square mod p. They also are usefu] in primality testing (see
Section 6.3).
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Let p be an odd prime and let a # 0 (mod p). Define the Legendre
symbol '

a\ [ +1ifz?=a (mod p) has a solution.
p/ | —lifz?=a (mod p) has no solution.

Some important properties of the Legendre symbol are given in the
following.
Proposition. Let p be an odd prime.

1. Ifa=b20 (mod p), then

3)-()-
2. Ifa#0 (mod p), then

(E) =aPY? (mod p).

3. Ifab 20 (mod p), theznfJ
-0

(.‘p_l) = (~1)-Dr2,

Proof. Part (1) is true because the solutions to X? = a are the same as
those to X2 = b when a = b (mod p).

Part (2) is the definition of the Legendre symbol combined with the
previous proposition.

To prove part (3), we use part (2):

ab a b
8D\ _ (ap) -1/ = or-1)/2p-1)/2 = (-) (_) mod o).
(P ) (ab) P P ( 2
Since the left and right ends of this congruence are =1 and they are congruent
mod the odd prime p, they must be equal. This proves (3).
For part (4), use part (2) witha = —-1:

(%) = (=)D (mod p).

Again, since the left and right sides of this congruence are +1 and they are
congruent mod the odd prime p, they must be equal. This proves (4). O
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Example. Let p = 11. The nonzero squares mod 11 are 1,3,4,5,9. We

have (%) (%) = a1

and (use property (1))
42 9
(TI) = (1—1) =+t

() @)= () =

The Jacobi symbol extends the Legendre symbol from primes p to com-
posite odd integers n. One might be tempted to define the symbol to be +1
if a is a square mod n and ~1 if not. However, this would cause the impor-
tant property (3) to [ail. For example, 2 is not a square mod 35, and 3 is not
a square mod 35 (since they are not squares mod §), but also the product G
is not a square mod 35 (since it is not a square mod 7). If Property 3 held,
then we would have (—1)(—1) = —1, which is false.

'In order to preserve property (3), we define the Jacobi symbal as fol-
lows. Let n be an odd positive integer and let a be a nonzerc integer with
ged{a,n) = 1. Let

Therefore,

b b
n=piipg - pr
be the prime factorization of n. Then

9-6 -

The symbols on the right side are the Legendre symbols introduced earlier.
Note that if n = p, the right side is simply one Legendre symbol, so the
Jacobi symbol reduces to the Legendre symbol.

Example. Let n = 135 = 33. 5, Then

(5)- () (@)-cren-n

Note that 2 is not a square mod §, hence is not a square mod 135. Therefore,
the fact that the Jacobi symbol has the value +1 does not imply that 2 is a
square mod 135. | |

The main properties of the Jacobi symbol are given in the following
theorem. Parts (1), (2), (3) cen be deduced from those of the Legendre
symbol. Parts (4) and (§) are much deeper.
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Theorem. Letn be odd.

1. Ifa=b (mod n) and gcd(a, n) = 1, then

2. If ged(ab,n) = 1, then
)G

(;1) — (~1)n-D/2,

n

~~

3|8

N—
n

(Z) _{ +lifn=10r7 (modn)

n) | —lifn=3or5 (mod n).

5. Let m be odd with ged(m,n) = 1. Then

_(l) ifm=n=3 (mod 4)

()= .

+ (2) otherwise,
m

Note that we did not include a statement that (&) = (=1)("~1/2, This
is usually not true for composite n (see Exercise 31). In fact, the Solovay-
Strassen primality test (see Section 6.3) is based on this fact.

Part (5) is the famous law of quadratic reciprocity, proved by Gauss
in 1796. When m end n are primes, it relates the question of whether m is
a square mod n to the question of whether n is a square mod m.

A proof of the theorem when m and n are primes can be found in most
elementary number theory texts. The extension to composite m and n can
be deduced fairly easily from this case. See [Niven et al.] or [Rosen|, for
example.

When quadratic reciprocity is combined with the other properties of the
Jacobi symbol, we obtain a fast way to evaluate the symbol. Here are two
examples.
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, 4567
Example. Let's colculate (12345).

4567 12345 . _
(m) = 4+ (74567) {by (5), since 12345 =1 (r_nod 4))

4567
4567 1356
- -(3) o) = -(37) Groy

(ﬂ) (by (2), since 1356 = 27 . 339)

(since (£1)2 = 1)

Gy ) = +(kg) (v )

(i> (by (2), since 160 = 25 .5)
5

=+(-1)5(T9 (by (4)) = —(3—29) (by (5))

The only factorization needed in the calculation was removing powers of 2,
which is ensy to do. The fact that the calculations can be done without
factoring odd numbers is important in the applications. The fact that the
answer is —1 implies that 4567 is not a square mod 12345. However, if the
answer had been +1, we could not have deduced whether 4567 is a square
or is not a square mod 12345. See Exercise 30. |

, 107
Example. Let's calculate (1—3—7)

(&) =+ () v
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- +(£;) (ﬁ%) (by (2)
—+(0(3%) v @)

- +(ﬁ) (by (5))
- +(2) wvay

Since 137 is a prime, this says that 107 is a square mod 137. In contrast,
during the calculation, we used the fact that (%) = +1. This does not mean
that 2 is a square mod 15. In fact, 2 is not a square mod 5, so it cannot
be a square mod 15. Therefore, although we can interpret the final answer
as saying that 107 is a square mod the prime 137, we should not interpret
intermediate steps involving composite numbers as saying that a number is
a square. [ |

Suppose n = pg is the product of two large primes. If (£) = —1, then
we can conclude that a is not a square mod n. What can we conclude if

(2) = +17 Since
()-6)6)
n p/\g/’
there are two possibilities:

B () ()-()-o

In the first case, a is not a square mod p, therefore cannct be a square
mod pg. In the second case, a is a square mod p and mod g. The Chinese
remainder theorem can be used to combine a square root mod p and a square
root mod g to get a square root of @ mod n. Therefore, ¢ is a square mod n.

Therefore, if (%) = +1, then a can be either a square or a nonsquare
mod n. Deciding which case holds is called the quadratic residuosity
problem. No fast algorithm is known for solving it. Of course, if we can

factor n, then the problem can easily be solved by computing (%)

3.11 Finite Fields

Note: This section is more edvanced than the rest of the chapter. It is
included because finite fields are often used in cryptogrephy. In particular,
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finite fields appear in four places in this book. The finite field GF(28) is
used in Rijndue! (Chapler 5). Finite fields give an caplanation of some
phenomena that are mentioned in Section 2.11. Finally, finite ficlds are
used in Section 16.4 and in error correcting codes (Chapter 18).

Many times throughout this book, we work with the-integers mod p,
where p is a prime, We can add, subtract, and multiply, but what distin-
guishes working mod p from working mod an arbitrary integer n is that we
can divide by any number that is nonzero mod p. For example, if we need
to solve 3z =1 (mod 5), then we divide by 3 to obtain z =2 (mod 5). In
contrast, if we want to solve 3z = 1 (mod G), there is no solution since we
cannot divide by 3 (mod 6). Loosely speaking, a set that has the operations
of addition, multiplication, subtraction, and division by nonzero elements
is called a field. We also require that the associative, commutative, and
distributive laws hold.

Examples. The basic examples of fields are the real numbers, the complex
numbers, the rational numbers, and the integers mod a prime. The set of
all integers is not a field since we sometimes cannot divide and obtain an
answer in the set (for example, 4/3 is not an integer). ]

Example. Here is a field with four elements. Consider the set
GF(4) = {0,1,w,u?},
with the following laws:
1. 0+ z ==z for all z.
2. z+z=0forall T.

. 1.z =z for all .

()

Lwt+1l=w

P~

5. Addition and multiplication are commutative and associative, and the
distributive law =(y + z) = zy + =z holds for all z,y, 2.

Since
Cwwt=w (l+w)=wtwl=w+(1+w) =1,

we see that w? is the multiplicative inverse of w. Therefore, every nonzero
element of GF(4) has a multiplicative inverse, and GF(4) is a field with 4
elements. |

In general, a field is a set containing elements 0 and 1 (with 1 # 0} and
satisfying the following:
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1. It has a multiplication and addition satisfying (1), (3), {5) in the pre-
ceding list. '

2. Every element has an additive inverse (for each z, this means there
exists an element —z such that z + (—z) = 0).

3. Every nonzero element has a multiplicative inverse.

A field is closed under subtraction. To compute = — y, simply compute
z+ (-y) .

The set of 2 x 2 matrices with renl entries is not a field for two reasons.
First, the multiplication is not commutative. Second, there are nonzero
matrices that do not have inverses (and therefore we cannot divide by them).
The set of non-negative real numbers is not a field. We can add, multiply,
and divide, but sometimes when we subtract the answer is not in the set.

For every power p" of a prime, there is exactly one finite field with
p* elements, and these are the only finite fields. We'll soon show how to
construct them, but first let's point out that if » > 1, then the integers mod
P" do not form a feld. The congruence pz =1 (mod p") does not have a
solution, so we cannot divide by p, even though p # 0 (mod p"). Therefore,
we need more complicated constructions to produce felds with p™ elements.

The field with p" elements is called GF(p"). The “GF” is for “Galois
field,” named for the French mathematician Evariste Galois (1811-1832),
who did some early worl related to fields.

Example, continued. Here is another way to produce the field GF(4).
Let Zs[X] be the set of polynomials whose coefficients are integers mod
2. For example, 1 + X* 4+ X% and X are in this set. Also, the constant
polynomials 0 and 1 are in Zz[X]. We can add, subtract, and multiply in
this set, as long as we work with the coefficients mod 2. For example,

XC+HX+1)(X+D) =X+ X3+ X241

since the term 2X disappears mod 2. The important property for our pur-
poses is that we can perform division with remainder, just as with the inte-
gers. For example, suppose we divide X2+ X +1 into X4+ X3+ 1. We can
do this by long division, just as with numbers:

X?+1
XT+X41 ) X' +X3+1
X4+ X34 X?
X2+
X4+ X +1
X
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In words, what we did was to divide by X2+ X +1 and obtain the X2 as
the first term of the quotient. Then we multiplied this X2 times X2+ X 41
to get X7+ X3+ X2, which we subtracted from X4+ X3+1, leaving X?+1.
We divided this X2+ 1 by X2+ X +1 and obtained the second term of the
quotient, namely 1. Multiplying 1 times X2+ X + 1 and subtracting from
X? 41 left the remainder X. Since the degree of the polynomial X is less
than the degree of X2 + X + 1, we stopped. The quotient was X2 + 1 and
the remainder was X:

X' +XP+1=X*+1)(X2+X +1) + X.
We can write this as
X4 X3 41=X (mod X’+X +1).

Whenever we divide by X% + X + 1 we can obtain a remainder that is
either 0 or a polynomial of degree at most 1 (if the remainder had degree 2 or
more, we could continue dividing). Therefore, we define Zo[X) (mod X2+
X 4 1) to be the set :
{0,1, X, X + 1}
of polynomials of degree at most 1, since these are the remainders that
we obtain when we divide by X2 + X + 1. Addition, subtraction, and
multiplication are done mod X% + X + 1. This is completely analogous to
what happens when we work with integers mod 7. In the present situation,
we say that two polynomials f(X) and g(X) are congruent mod X%+ X +1,
written f(X) = g(X) (mod X2 + X 4 1), if f(X) and g(X) have the same
remainder when divided by X% + X + 1. Another way of saying this is
that f(X) - g(X) is a multiple of X? + X 4 1. This means that there is a
polynomial A(X) such that f(X) — g(X) = (X2 + X + 1)h(X).

Now let’s multiply in Z2{X] {mod X2 4+ X + 1). For example,

X-X=X*=X+1 (mod X2+ X +1).

(1t might seem that the right side should be —X — 1, but recall that we are
working with coefficients mod 2, so +1 and —1 are the same.) As another
example, we have

X=X X=X (X+1)=X>+X=1 (mod X2+ X 41).

It is easy to see that we are working with the set GF(4) from before, with
X in place of w. |

Working with Zs[X] mod a polynomial can be used to produce finite
fields. But we cannot work mod an arbitrary polynomial. The polynomial
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must be irreducible, which means that it doesn’t factor into polynomials of
lower degree mod 2. For example, X2 4 1, which is irreducible when we are
working with real numbers, is not irreducible when the coefficients are taken
mod 2 since X241 = (X +1)(X +1) when we are working mod 2. However,
X? 4+ X 41 is irreducible: Suppose it factors mod 2 into polynomials of lower
degree. The only possible factors mod 2 are X and X +1, and X2+ X +1
is not a multiple of either of these, even mod 2.

Here is the general procedure for constructing a finite field with p"
elements, where p is prime and n > 1. We let Z, denote the integers mod p.

1. Z,[X] is the set of polynomials with coefficients mod p.
2. Choose P(X) to be an irreducible polynomial mod p of degree n.

3. Let GF(p") be Z,[X] mod P(X). Then GF(p”) is & field with p"
elements.

The fact that GF(p"™) has p" clements is easy to see. The possible
remainders after dividing by P(X) are the polynomials of the form ap +
01X 4+ +an-1X""!, where the coefficients are integers mod p. There are
p choices for each coefficient, hence p™ possible remainders.

For each n, there are irreducible polynomials mod p of degree n, so
this construction produces fields with p™ elements for each n > 1. What
happens if we do the same construction for two different polynomials P,(X)
and P(X), both of degree n? We obtain two fields, call them GF(p™)’ and
GF(p")". It is possible to show that these are essentially the same field
(the technical term Is that the two fields are isomorphic), though this is not
obvious since multiplication mod P;(X) is not the same as multiplication
mod Py(X).

3.11.1 Division

We can easily add, subtract, and multiply polynomials in Z[X], but division
is a little more subtle. Let's lock at an example. The polynomial X® + X4+
X3+ X 41 is irreducible in Zg[X] (although there are faster methods, one
way to show it is irreducible is to divide it by all polynomials of smaller
degree in Z2[X]). Consider the field

GF(2%) = Z2(X] (mod X®4+ X'+ X+ X +1).
Since X7+ X%+X34 X 41 is not 0, it should have an inverse. The inverse is

found using the analog of the extended Euclidean algorithm. First, perform
the ged calculation for ged( X7+ X8+ X2 4+ X +1, X84+ X4 4+ X34 X 41).
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The procedure (remainder — divisor — dividend — ignore) is the same as
for integers:

Xeae X e X3 X 41 (X A+ (X7 XS4+ X X 1) +( X+ X2+ X)
X4+X54X4X+1 = (X+DX+X2+X)+1.
The last remainder is 1, which tells us that the “greatest common divisor”
of XT+ X6+ X3+ X +1and XB 4+ X+ X3+ X +1is 1. Of course, this
must be the case, since X® + X* 4+ X3 4+ X + 1 is irreducible, so its only
factors are 1 and itself.

Now work back through the calculation to express 1 as o linear combina-
tion of X7+ X%+ X*+ X +1 and X®+ X4+ X3+ X +1 (or use the formulas
for the extended Euclidean elgorithm). Recall that in each step we take the
Inst unused remainder and replace it by the dividend minus the quotient
times the divisor; since we are working mod 2, the minus signs disappear.

1 (XT 4+ X4+ X4 X+ 1) (X + )X+ X2+ X)
(XT+ X4 X34 X +1)

+(X+1) ((X3+X“+X“+X+1)+(X+1)(X7+X°+X3+X+1))

A+ X+ DX+ X+ X0+ X+ 1)+ (X 1) (X X X34 X +1)
(XX T+ X520+ X 1)+ (X + D)X+ X X3+ X +1).

Therelore,
1= (X)(XT+ X4+ X+ X 4+1)+(X+D) (O + X+ X+ X +1).
Reducing mod X 4+ X% 4+ X2 + X + 1, we obtain
XHXT+X04+X 4 X +1) =1 (mod XB4+ X'+ X34+ X +1),

which means that X2 is the multiplicative inverse of X7+ X%+ X34+ X +1.
Wlienever we need to divide by X7 + X6 + X3 4+ X + 1, we can instead
multiply by X2. This is the analog of what we did when working with the
usual integers mod p.

3.11.2 GF(2%)

Luter in this book, we shall discuss Rijndael, which uses GF(28) (see Chapter
5), so let’s look at this field a little more closely. We'll work mod the
irreducible polynomial X8 + X% 4 X3 + X +1, since that is the one used by
Rijndael. However, there are other irreducible polynomials of degree 8, and
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any one of them would lead to similar calculations. Every element can be
represented uniquely os a polynomial

br X7 4 beX O 4 b5 X5 + by X+ 53 X2 4+ 02 X2 + 51X + bo,

where each b; is 0 or 1. The 8 bits b;b6bsbibsbabiby represent a byte, so
we can represent the elements of GF(2?) as 8-bit bytes. For example, the
polynomial X7 4+ X%+ X34 X 41 becomes 11001011. Addition is the XOR
of the bits:

(XT+ X+ X+ X+ 1)+ (X +X3+1)
— 11001011 @ 00011001 = 11010010
= X"+ X5+ X'+ X
Multiplication is more subtle and does not have as easy an interpretation.
That is because we are working mod the polynomial X8+ X144 X3 + X 41,

which we can represent by the 9 bits 100011011, First, let’s multiply X7 +
X6 4 X3+ X 41 by X: With polynomials, we calculate

(XT+ X+ X34+ X +1)(X) = X34+ X"+ X+ X2+ X
= (X X004 X )+ (X X X X 41)
=X+ X34X%+1 (mod X8+ X'+ X3+ X +1).

The same operation with bits becomes

11001011 — 110010110 {shift left and append a 0)
— 110010110 @ 100011011 (subtract X8+ X1+ X34+ X+1)
= 010001101,

which corresponds to the preceding answer. In general, we can multiply by
X by the following algorithm:

1. Shift left and append a 0 as the last bit.
2. 1f the first bit is 0, stop.
3. If the first bit is 1, XOR with 100011011,

The reason we stop in step 2 is that if the first bit is 0 then the polynomial
still has 