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Notations
(The number after the item indicates the page where the notation is defined.)

SET THEORY >i[ISi intersection of sets Si, i [ I
 <i[ISi union of sets Si, i [ I
 [a]  {x [ S | x , a}, equivalence class of S containing a, 18
 |s| number of elements in the set of S

SPECIAL SETS Z  integers, additive groups of integers, ring of integers
 Q  rational numbers, field of rational numbers
 Q1  multiplicative group of positive rational numbers
 F* set of nonzero elements of F
 R real numbers, field of real numbers
 R1 multiplicative group of positive real numbers
 C complex numbers

FUNCTIONS f21  inverse of the function f
AND ARITHMETIC t | s  t divides s, 3
 t B s t does not divide s, 3
 gcd(a, b)  greatest common divisor of the integers a and b, 4
 lcm(a, b)  least common multiple of the integers a and b, 6
 |a 1 b| 2a2 � b2, 13
 f(a) image of a under f, 20
 f: A → B mapping of A to B, 20
 gf, ab composite function, 21

ALGEBRAIC SYSTEMS D4  group of symmetries of a square, dihedral group of 
order 8, 33

 Dn  dihedral group of order 2n, 34
 e identity element, 43
 Zn  group {0, 1, . . . , n 2 1} under addition modulo n, 44
 det A the determinant of A, 45
 U(n)  group of units modulo n (that is, the set of integers 

less than n and relatively prime to n under multiplica-
tion modulo n), 46

 Rn  {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}, 47
 SL(2, F)  group of 2 3 2 matrices over F with  

determinant 1, 48
 GL(2, F)  2 3 2 matrices of nonzero determinants with coeffi-

cients from the field F (the general linear group), 48
 g21 multiplicative inverse of g, 51
 2g additive inverse of g, 52
 UGU order of the group G, 60
 UgU order of the element g, 60
 H # G subgroup inclusion, 61
 H , G subgroup H 2 G, 61
 kal {an U n [ Z}, cyclic group generated by a, 65
 Z(G)  {a [ G U ax 5 xa for all x in G}, the center of G, 66
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 C(a)  {g [ G U ga 5 ag}, the centralizer of a in G, 68
 kS l subgroup generated by the set S, 71
 C(H)  {x [ G U xh 5 hx for all h [ H}, the centralizer  

of H, 72
 f(n) Euler phi function of n, 84
 N(H)  {x [ G U xHx21 5 H} 5 {x [ G U Hx 5 xH}, the 

normalizer of H in G, 95
 cl(a) conjugacy class of a, 95
 Gn {gn U g [ G}, 96
 Sn  group of one-to-one functions from  

{1, 2, ? ? ? , n} to itself, 101
 An alternating group of degree n, 110
 G < G G and G are isomorphic, 128
 fa  mapping given by fa(x) 5 axa21 for all x, 135
 Aut(G) group of automorphisms of the group G, 136
 Inn(G) group of inner automorphisms of G, 136
 aH {ah U h [ H}, 144
 aHa21 {aha21 | h [ H}, 144
 UG:HU the index of H in G, 148
 HK {hk U h [ H, k [ K}, 150
 stabG(i)  {f [ G U f(i) 5 i}, the stabilizer of i under the per-

mutation group G, 151
 orbG(i)  {f(i ) U f [ G}, the orbit of i under the  

permutation group G, 151
 G1 % G2 % ? ? ? % Gn  external direct product of groups G1, G2, . . . , Gn, 162
 Uk(n) {x [ U(n) U x mod k 5 1}, 166
 G9 commutator subgroup, 181
 H v G H is a normal subgroup of G, 185
 G/H factor group, 187
 H 3 K internal direct product of H and K, 196
 H1 3 H2 3 ? ? ? 3 Hn internal direct product of H1, . . . , Hn, 197
 Ker f kernel of the homomorphism f, 208
 f21(g9) inverse image of g9 under f, 210

 f21(K) inverse image of K under f, 211
 Z[x]  ring of polynomials with integer coefficients, 246
 M2(Z)  ring of all 2 3 2 matrices with integer entries, 246
 R1 % R2 % ? ? ? % Rn direct sum of rings, 247
 nZ ring of multiples of n, 249
 Z[i] ring of Gaussian integers, 249
 U(R) group of units of the ring R, 251
 char R characteristic of R, 258
 kal principal ideal generated by a, 268
 ka1, a2, . . . , anl ideal generated by a1, a2, . . . , an, 268
 R/A factor ring, 268
 A 1 B sum of ideals A and B, 275
 AB product of ideals A and B, 275
 Ann(A) annihilator of A, 277
 N(A) nil radical of A, 277
 F(x) field of quotients of F[x], 291
 R[x] ring of polynomials over R, 298
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 deg f (x) degree of the polynomial, 300
 Fp(x) pth cyclotomic polynomial, 316
 M2(Q) ring of 2 3 2 matrices over Q, 352
 kv1, v2, . . . , vnl subspace spanned by v1, v2, . . . , vn, 353
 F(a1, a2, . . . , an) extension of F by a1, a2, . . . , an, 363
 f 9(x) the derivative of f (x), 368
 [E:F] degree of E over F, 378
 GF( pn) Galois field of order pn, 389
 GF( pn)* nonzero elements of GF( pn), 390
 cl(a) {xax21 U x [ G}, the conjugacy class of a, 409
 Pr(G)  probability that two elements from G commute, 411
 np  the number of Sylow p-subgroups of a group, 416
 W(S) set of all words from S, 446
 ka1, a2, . . . , an U w1 5 w2 5

 . . . 5 wtl  group with generators a1, a2, . . . , an and relations w1 
5 w2 5 . . . 5 wt , 449

 Q4 quarternions, 453
 Q6 dicyclic group of order 12, 453
 D` infinite dihedral group, 454
 fix(f) {i [ S U f(i) 5 i}, elements fixed by f, 497
 Cay(S:G)  Cayley digraph of the group G with generating set S, 

506
 k * (a, b, . . . , c) concatenation of k copies of (a, b, . . . , c), 514
 (n, k)  linear code, k-dimensional subspace of Fn, 531
 Fn  F % F % ? ? ? % F, direct product of n copies of the 

field F, 531
 d(u, v)  Hamming distance between vectors u and v, 532
 wt(u)  the number of nonzero components of the vector u 

(the Hamming weight of u), 532
 Gal(E/F) the automorphism group of E fixing F, 554
 EH fixed field of H, 554
 Fn(x) nth cyclotomic polynomial, 571
 C⊥ dual code of a code C, 582
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Preface

John Lennon and Paul McCartney, “Paperback Writer,” single, 1966*

Although I wrote the first edition of this book more than 25 years ago, 
my goals for it remain the same. I want students to receive a solid intro-
duction to the traditional topics. I want readers to come away with the 
view that abstract algebra is a contemporary subject—that its concepts 
and methodologies are being used by working mathematicians, com-
puter scientists, physicists, and chemists. I want students to see the  
connections between abstract algebra and number theory and geom-
etry. I want students to be able to do computations and to write proofs. 
I want students to enjoy reading the book. And I want to convey to the 
reader my enthusiasm for this beautiful subject.

Educational research has shown that an effective way of learning 
mathematics is to interweave worked-out examples and practice prob-
lems. Thus, I have made examples and exercises the heart of the book. 
The examples elucidate the definitions, theorems, and proof techniques. 
The exercises facilitate understanding, provide insight, and develop the 
ability of the students to do proofs. The exercises often foreshadow 
definitions, concepts, and theorems to come. Many exercises focus on 
special cases and ask the reader to generalize. Generalizing is a skill 
that students should develop but rarely do. Even if an instructor chooses 
not to spend class time on the applications in the book, I feel that hav-
ing them there demonstrates to students the utility of the theory.

Changes for the eighth edition include 200 new exercises, new ex-
amples, and a freshening of the quotations, historical notes, and biogra-
phies. These changes accentuate and enhance the hallmark features that 
have made previous editions of the book a comprehensive, lively, and 
engaging introduction to the subject:

nontraditional special topics

xi

*Copyright © 1966 (Renewed) Stony/ATV Tunes LLC. All rights administered by 
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights 
reserved. Used by permission.
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xii

-
cises appearing in each chapter and in Supplementary Exercise sets 
that synthesize concepts from multiple chapters

exercises
 

routine computations to quite challenging problems

my website, that stress guessing and making conjectures

as well as from everyday life

and events behind the mathematics

charts, and reproductions of stamps and currency that honor  
mathematicians

 
exploration of topics

To make room for the new material, the computer exercises from 
previous editions are available at www.d.umn.edu/~jgallian or through 
Cengage’s book companion site at www.cengage.com/math/gallian. 
The first website also offers a wealth of additional online resources 
supporting the book, including:

abstract algebra is a valuable subject to learn

and much, much more

Additionally, Cengage offers the following student and instructor  
ancillaries to accompany the book:

Student Solutions Manual, available for purchase separately, with 
detailed solutions to the odd-numbered exercises in the book 
(ISBN:978-1-133-60853-0)

worked-out solutions to all exercises in the text, which allows you to 
create customized, secure solutions printouts (in PDF format) 
matched exactly to the problems you assign in class. Sign up for  
access at www.cengage.com/solutionbuilder. 
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 xiii

Instructor’s Solutions Manual with solutions to all the exercises 
in the book and additional test questions and solutions

 
exercises designed to be done with the free computer algebra system 
software GAP

the exercises in the GAP lab manual

and the accuracy checker, Roger Lipsett. I am grateful to each for their 
careful attention to the manuscript. My appreciation also goes to Molly 
Taylor, Shaylin Hogan, and Alex Gontar from Cengage Learning, as 
well as Katie Costello and the Cengage production staff.

The thoughtful input of the following people, who served as re-
viewers for the eighth edition, is also sincerely appreciated: Homer 
Austin, Salisbury University; David Barth-Hart, Rochester Institute 

University; Daniel Daly, Southeast Missouri State University; Paul 
Felt, University of Texas of the Permian Basin; Donald Hartig, 
California Polytechnic State University, San Luis Obispo; Nancy  
Ann Neudauer, Pacific University; Bingwu Wang, Eastern Michigan 
University; Dana Williams, Dartmouth College; and Norbert Youmbi, 
Saint Francis University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition 
better. I owe many thanks to my UMD colleague Robert McFarland for 
giving me numerous exercises and comments that have been included 
in this edition. Douglas Dunham, another UMD colleague, has gener-
ously provided the spectacular cover image for this edition. For an ex-
planation of the mathematics underlying this image see www.d.umn 
.edu/~jgallian/Dunhamimage. Please send any comments and sugges-
tions you have to me at jgallian@d.umn.edu

Joseph A. Gallian
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 1

P A R T  1

Integers and 
Equivalence Relations
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3

Preliminaries

The whole of science is nothing more than a refinement  
of everyday thinking.

albert einstein, Physics and Reality

Properties of Integers
Much of abstract algebra involves properties of integers and sets. In this 
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the 
so-called Well Ordering Principle. Since this property cannot be proved 
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of 
numbers. We say a nonzero integer t is a divisor of an integer s if there 
is an integer u such that s 5 tu. In this case, we write t | s (read “t 
 divides s”). When t is not a divisor of s, we write t B s. A prime is a 
positive integer greater than 1 whose only positive divisors are 1 and 
itself. We say an integer s is a multiple of an integer t if there is an in-
teger u such that s 5 tu or, equivalently, if t is a divisor of s.

As our first application of the Well Ordering Principle, we establish 
a fundamental property of integers that we will use often.

 Theorem 0.1 Division Algorithm

Let a and b be integers with b . 0. Then there exist unique integers q 

and r with the property that a 5 bq 1 r , where 0 # r , b.

PROOF We begin with the existence portion of the theorem. Consider 
the set S 5 {a 2 bk | k is an integer and a 2 bk $ 0}. If 0 [ S, then b 

0
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4 Integers and Equivalence Relations

divides a and we may obtain the desired result with q 5 a/b and r 5 0. 
Now assume 0 n S. Since S is nonempty [if a . 0, a 2 b ? 0 [ S; if a , 
0, a 2 b(2a) 5 a(1 2 2b) [ S; a � 0 since 0 n S], we may apply the 
Well Ordering Principle to conclude that S has a smallest member, say 
r 5 a 2 bq. Then a 5 bq 1 r and r $ 0, so all that remains to be proved 
is that r , b.

If r $ b, then a 2 b(q 1 1) 5 a 2 bq 2 b 5 r 2 b $ 0, so that  
a 2 b(q 1 1) [ S. But a 2 b(q 1 1) , a 2 bq, and a 2 bq is the 
smallest member of S. So, r , b.

To establish the uniqueness of q and r, let us suppose that there are 
integers q, q9, r, and r9 such that

a 5 bq 1 r,  0 # r , b,  and  a 5 bq9 1 r9,  0 # r9 , b.

For convenience, we may also suppose that r9 $ r. Then bq 1 r 5  
bq9 1 r9 and b(q 2 q9) 5 r9 2 r. So, b divides r9 2 r and 0 # r9 2 r #  
r9 , b. It follows that r9 2 r 5 0, and therefore r9 5 r and q 5 q9. 

The integer q in the division algorithm is called the quotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

 EXAMPLE 1 For a 5 17 and b 5 5, the division algorithm gives  
17 5 5 ? 3 1 2; for a 5 223 and b 5 6, the division algorithm gives 
223 5 6(24) 1 1. 

Definitions Greatest Common Divisor, Relatively Prime Integers
The greatest common divisor of two nonzero integers a and b is the 
largest of all common divisors of a and b. We denote this integer by 
gcd(a, b). When gcd(a, b) 5 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the 
Well Ordering Principle. 

 Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that 

gcd(a, b) 5 as 1 bt. Moreover, gcd(a, b) is the smallest positive integer 

of the form as 1 bt.

PROOF Consider the set S 5 {am 1 bn | m, n are integers and  
am 1 bn . 0}. Since S is obviously nonempty (if some choice of m 
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0 | Preliminaries 5

and n makes am 1 bn , 0, then replace m and n by 2m and 2n), the 
Well Ordering Principle asserts that S has a smallest member, say,  
d 5 as 1 bt. We claim that d 5 gcd(a, b). To verify this claim, use the 
division algorithm to write a 5 dq 1 r, where 0 # r , d. If r . 0,  
then r 5 a 2 dq 5 a 2 (as 1 bt)q 5 a 2 asq 2 btq 5 a(1 2 sq) 1 
b(2tq) [ S, contradicting the fact that d is the smallest member of S. 
So, r 5 0 and d divides a. Analogously (or, better yet, by symmetry), 
d divides b as well. This proves that d is a common divisor of a and b. 
Now suppose d9 is another common divisor of a and b and write a 5 
d9h and b 5 d9k. Then d 5 as 1 bt 5 (d9h)s 1 (d9k)t 5 d9(hs 1 kt), 
so that d9 is a divisor of d. Thus, among all common divisors of a and 
b, d is the greatest. 

The special case of Theorem 0.2 when a and b are relatively prime is 
so important in abstract algebra that we single it out as a corollary.

 Corollary 

If a and b are relatively prime, then there exist integers s and t such 

that as 1 bt 5 1.

 EXAMPLE 2 gcd(4, 15) 5 1; gcd(4, 10) 5 2; gcd(22 ? 32 ? 5, 2 ? 33 ? 
72) 5 2 ? 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are 
not. Also, 4 ? 4 1 15(21) 5 1 and 4(22) 1 10 ? 1 5 2. 

The next lemma is frequently used. It appeared in Euclid’s Elements.

 Euclid’s Lemma p | ab Implies p | a or p | b

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We 
must show that p divides b. Since p does not divide a, there are  
integers s and t such that 1 5 as 1 pt. Then b 5 abs 1 ptb, and since  
p divides the right-hand side of this equation, p also  divides b. 

Note that Euclid’s Lemma may fail when p is not a prime, since  
6 | (4 ? 3) but 6 B 4 and 6 B 3.

Our next property shows that the primes are the building blocks for 
all integers. We will often use this property without explicitly saying so.
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6 Integers and Equivalence Relations

 Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This 

product is unique, except for the order in which the factors appear. 

That is, if n 5 p1p2 
. . . p

r
 and n 5 q1q2 

. . . q
s
, where the p’s and q’s 

are primes, then r 5 s and, after renumbering the q’s, we have p
i
 5 q

i
 

for all i.

We will prove the existence portion of Theorem 0.3 later in this 
chapter (Example 11). The uniqueness portion is a consequence of 
Euclid’s Lemma (Exercise 31).

Another concept that frequently arises is that of the least common 
multiple of two integers.

Definition Least Common Multiple
The least common multiple of two nonzero integers a and b is the 
smallest positive integer that is a multiple of both a and b. We will  
denote this integer by lcm(a, b).

We leave it as an exercise (Exercise 10) to prove that every common 
multiple of a and b is a multiple of lcm(a, b).

 EXAMPLE 3 lcm(4, 6) 5 12; lcm(4, 8) 5 8; lcm(10, 12) 5 60; 
lcm(6, 5) 5 30; lcm(22 ? 32 ? 5, 2 ? 33 ? 72) 5 22 ? 33 ? 5 ? 72. 

Modular Arithmetic
Another application of the division algorithm that will be important to 
us is modular arithmetic. Modular arithmetic is an abstraction of a 
method of counting that you often use. For example, if it is now 
September, what month will it be 25 months from now? Of course, the 
answer is October, but the interesting fact is that you didn’t arrive at the 
answer by starting with September and counting off 25 months.  
Instead, without even thinking about it, you simply observed that  
25 5 2 ? 12 1 1, and you added 1 month to September. Similarly, if it 
is now Wednesday, you know that in 23 days it will be Friday. This 
time, you arrived at your answer by noting that 23 5 7 ? 3 1 2, so you 
added 2 days to Wednesday instead of counting off 23 days. If your 
electricity is off for 26 hours, you must advance your clock 2 hours, 
since 26 5 2 ? 12 1 2. Surprisingly, this simple idea has numerous 
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0 | Preliminaries 7

important applications in mathematics and computer science. You will 
see a few of them in this section. The following notation is convenient.

When a 5 qn 1 r, where q is the quotient and r is the remainder 
upon dividing a by n, we write a mod n 5 r. Thus,

 3 mod 2 5 1 since 3 5 1 ? 2 1 1,
 6 mod 2 5 0 since 6 5 3 ? 2 1 0,
 11 mod 3 5 2 since 11 5 3 ? 3 1 2,
 62 mod 85 5 62 since 62 5 0 ? 85 1 62,
 22 mod 15 5 13 since 22 5 (21)15 1 13.

In general, if a and b are integers and n is a positive integer, then  
a mod n 5 b mod n if and only if n divides a 2 b (Exercise 7).

In our applications, we will use addition and multiplication mod n. 
When you wish to compute ab mod n or (a 1 b) mod n, and a or b  
is greater than n, it is easier to “mod first.” For example, to compute  
(27 ? 36) mod 11, we note that 27 mod 11 5 5 and 36 mod 11 5 3, so 
(27 ? 36) mod 11 5 (5 ? 3) mod 11 5 4. (See Exercise 9.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We 
present two such applications.

 EXAMPLE 4 The United States Postal Service money order shown 
in Figure 0.1 has an identification number consisting of 10 digits together 
with an extra digit called a check. The check digit is the 10-digit number 
modulo 9. Thus, the number 3953988164 has the check digit 2, since  

Figure 0.1
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8 Integers and Equivalence Relations

3953988164 mod 9 5 2.† If the number 39539881642 were incorrectly 
entered into a computer (programmed to calculate the check digit) as, 
say, 39559881642 (an error in the fourth position), the machine would 
calculate the check digit as 4, whereas the entered check digit would be 
2. Thus, the error would be detected. 

 EXAMPLE 5 Airline companies, the United Parcel Service, and  
the rental-car companies Avis and National use the mod 7 values of 
identification numbers to assign check digits. Thus, the identification 
number 00121373147367 (see Figure 0.2) has the check digit 3 appended 

Figure 0.2

Figure 0.3

†The value of N mod 9 is easy to compute with a calculator. If N 5 9q 1 r, where r is 
the remainder upon dividing N by 9, then on a calculator screen N 4 9 appears as 
q.rrrrr . . . , so the first decimal digit is the check digit. For example, 3953988164 4 9 5 
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, 
replace N by the sum of its digits and divide that number by 9. Thus, 3953988164  
mod 9 5 56 mod 9 5 2. The value of 3953988164 mod 9 can also be computed by 
searching Google for “3953988164 mod 9.”
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0 | Preliminaries 9

to it because 121373147367 mod 7 5 3. Similarly, the UPS pickup re-
cord number 768113999, shown in Figure 0.3, has the check digit 2 
appended to it. 

The methods used by the Postal Service and the airline companies 
do not detect all single-digit errors (see Exercises 41 and 45). However, 
detection of all single-digit errors, as well as nearly all  errors involving 
the transposition of two adjacent digits, is easily achieved. One method 
that does this is the one used to assign the so-called Universal Product 
Code (UPC) to most retail items (see Figure 0.4). A UPC identification 
number has 12 digits. The first six digits identify the manufacturer, the 
next five identify the  product, and the last is a check. (For many items, 
the 12th digit is not printed, but it is always bar-coded.) In Figure 0.4, 
the check digit is 8.

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(a1, a2, . . . , ak) ? (w1, w2, . . . , wk) 5 a1w1 1 a2w2 1 ? ? ? 1 akwk.

An item with the UPC identification number a1a2 ??? a12 satisfies the 
condition

(a1, a2, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

To verify that the number in Figure 0.4 satisfies this condition, we  
calculate

(0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 6 ? 3 1 5 ? 1 
     1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1) mod 10 5 90 mod 10 5 0.

The fixed k-tuple used in the calculation of check digits is called the 
weighting vector.

Now suppose a single error is made in entering the number in  
Figure 0.4 into a computer. Say, for instance, that 021000958978 is 
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10 Integers and Equivalence Relations

 entered (notice that the seventh digit is incorrect). Then the computer 
calculates

0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 9 ? 3 
  1 5 ? 1 1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1 5 99.

Since 99 mod 10 ∞ 0, the entered number cannot be correct.
In general, any single error will result in a sum that is not 0 modulo 10.
The advantage of the UPC scheme is that it will detect nearly all 

errors involving the transposition of two adjacent digits as well as all 
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice 
that the last two digits preceding the check digit have been transposed. 
But by calculating the dot product, we obtain 94 mod 10 ∞ 0, so we 
have detected an error. In fact, the only undetected transposition  
errors of adjacent digits a and b are those where |a 2 b| 5 5. To  
verify this, we observe that a transposition error of the form

a1a2 ? ? ? aiai11 ? ? ? a12 → a1a2 ? ? ? ai11ai ? ? ? a12

is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

That is, the error is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10
   5 (a1, a2, . . . , ai, ai11, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10.

This equality simplifies to either

(3ai11 1 ai) mod 10 5 (3ai 1 ai11) mod 10

or

(ai11 1 3ai) mod 10 5 (ai 1 3ai11) mod 10,

depending on whether i is even or odd. Both cases reduce to 2(ai11 2 ai) 
mod 10 5 0. It follows that |ai11 2 ai| 5 5, if ai11 ∞ ai.

In 2005, United States companies began to phase in the use of a 13th 
digit to be in conformance with the 13-digit product identification num-
bers used in Europe. The weighting vector for 13-digit numbers is (1, 3, 
1, 3, . . . , 3, 1).

Identification numbers printed on bank checks (on the bottom left 
between the two colons) consist of an eight-digit number a1a2 ? ? ? a8 
and a check digit a9, so that

(a1, a2, . . . , a9) ? (7, 3, 9, 7, 3, 9, 7, 3, 9) mod 10 5 0.

99708_ch00_ptg01_hr_001-028.indd   10 05/06/12   6:16 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



0 | Preliminaries 11

As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits 
a and b except when |a 2 b| 5 5. But it also detects most errors of the 
form ? ? ? abc ? ? ? → ? ? ? cba ? ? ?, whereas the UPC method detects no 
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as 
73245018 and you would like to be sure that if even a single mistake 
were made in entering this number into a computer, the computer 
would nevertheless be able to determine the correct number. (Think of 
it. You could make a mistake in dialing a telephone number but still get 
the correct phone to ring!) This is possible using two check digits. One 
of the check digits determines the magnitude of any single-digit error, 
while the other check digit locates the position of the error. With these 
two pieces of information, you can fix the error. To illustrate the idea, let 
us say that we have the eight-digit identification number a1a2 ? ? ? a8. We 
assign two check digits a9 and a10 so that

(a1 1 a2 1 ? ? ? 1 a9 1 a10) mod 11 5 0

and

(a1, a2, . . . , a9, a10) ? (1, 2, 3, . . . , 10) mod 11 5 0

are satisfied.
Let’s do an example. Say our number before appending the two 

check digits is 73245018. Then a9 and a10 are chosen to satisfy

 (7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  1 a9 1 a10) mod 11 5 0 (1)

and

 (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1 0 ? 6  (2)
      1 1 ? 7 1 8 ? 8 1 a9 ? 9 1 a10 ? 10) mod 11 5 0.

Since 7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  5 30  and 30 mod 11 5 8,  
Equation (1) reduces to

 (8 1 a9 1 a10) mod 11 5 0. (19)

Likewise, since (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1  
0 ? 6 1 1 ? 7 1 8 ? 8) mod 11 5 10, Equation (2) reduces to

 (10 1 9a9 1 10a10) mod 11 5 0. (29)
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12 Integers and Equivalence Relations

Since we are using mod 11, we may rewrite Equation (29) as

(21 2 2a9 2 a10) mod 11 5 0

and add this to Equation (19) to obtain 7 2 a9 5 0. Thus a9 5 7. Now 
substituting a9 5 7 into Equation (19) or Equation (29), we obtain  
a10 5 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into  
a computer programmed with our encoding scheme as 7824501877  
(an error in position 2). Since the sum of the digits of the received  
number  mod 11 is 5, we know that some digit is 5 too large (assum-
ing only one error has been made). But which one? Say the  
error is in position i. Then the second dot product has the form a1 ? 1 1 
a2 ? 2 1 ? ? ? 1 (ai 1 5)i 1 ai11 ? (i 1 1) 1 ? ? ? 1 a10 ? 10 5  
(a1, a2, ? ? ?, a10) ? (1, 2,  ? ? ? , 10) 1 5i. So, (7, 8, 2, 4, 5, 0, 1, 8, 7, 7) ?  
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11 5 5i mod 11. Since the left-hand 
side mod 11 is 10, we see that i 5 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Modular arithmetic is often used to verify the validity of statements 
about divisibility regarding all positive integers by checking only  
finitely many cases.

 EXAMPLE 6 Consider the statement, “The sum of the cubes of any 
three consecutive integers is divisible by 9.” This statement is equiva-
lent to checking that the equation (n3 1 (n 1 1)3 1 (n 1 2)3) mod 9 5 0 
is true for all integers n. Because of properties of modular arithmetic, to 
prove this, all we need do is check the validity of the equation for n 5 0, 
1, …, 8. 

Modular arithmetic is occasionally used to show that certain equa-
tions have no rational number solutions.

 EXAMPLE 7 We use mod 3 arithmetic to show that there are no  
integers a and b such that a2 2 6b 5 2. To see this, suppose that there 
are such integers. Then, taking both sides modulo 3, there is an integer 
solution to a2 mod 3 5 2. But trying a 5 0, 1, and 2 we obtain a contra-
diction. 
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Im
a + bi

br

a0
Re

θ

Figure 0.5

Complex Numbers
Recall that complex numbers are expressions of the form a 1 b 2 �1, 
where a and b are real numbers. The number 2 �1 is defined to have 
the property 2 �12 5 21. It is customary to use i to denote 2 �1. 
Then, i2 5 21. Complex numbers written in the form a 1 bi are said to 
be in standard form. In some instances it is convenient to write a com-
plex number a 1 bi in another form. To do this we represent a 1 bi as 
the point (a,b) in a plane coordinatized by a horizontal axis called the 
real axis and a vertical i axis called the imaginary axis. The distance 
from the point a 1 bi to the origin is r 5 2a2 � b2 and is often  
denoted by |a 1 bi|. If we draw the line segment from the origin to  
a 1 bi and denote the angle formed by the line segment and the positive 
real axis by u, we can write a 1 bi as r(cos u 1 i sin u) (see Figure 0.5). 
This form of a 1 bi is called the polar form. An advantage of the polar 
form is demonstrated in parts 5 and 6 of Theorem 0.4.

 Theorem 0.4 Properties of Complex Numbers

 1. Closure under addition: (a 1 bi) 1 (c 1 di) 5 (a 1 c) 1 (b 1 d)i
 2. Closure under multiplication: (a 1 bi) (c 1 di) 5 (ac) 1 (ad)i 1 

(bc)i 1 (bd)i2 5 (ac 2 bd) 1 (ad 1 bc)i

 3. Closure under division (c 1 di � 0) : 
(a � bi)

(c � di)
 5 

(a � bi)

(c � di)
 
(c � di)

(c � di)
 5 

(ac � bd) � (bc � ad)i

c2 � d2  5 
(ac � bd)

c2 � d2  1 
(bc � ad)

c2 � d2 i

99708_ch00_ptg01_hr_001-028.indd   13 05/06/12   6:16 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14 Integers and Equivalence Relations

 4. Complex conjugation: (a 1 bi) (a 2 bi) 5 a2 1 b2

 5. Inverses: For every nonzero complex number a 1 bi there is a  
complex number c 1 di such that (a 1 bi) (c 1 di) 5 1. (That is,  
(a 1 bi)21 exists in C.)

 6. Powers: For every complex number a 1 bi 5 r(cos u 1 i sin u) and 
every positive integer n, we have (a 1 bi)n 5 3r1cos u � i sin u2 4n 5 
rn (cos n u 1 i sin n u).

 7. Radicals: For every complex number a 1 bi 5 r(cos u 1 i sin u) and 
every positive integer n, we have (a � bi)

1
n 5 3r1cos u � i sin u2 41n 5 

r
1
n (cos un � i sin un).

PROOF Parts 1 and 2 are definitions. Part 4 follows from part 2. Part 6 
is proved in Example 10 in the next section of this chapter. Part 7 fol-
lows from Exercise 25 in this chapter. 

The next example illustrates properties of complex numbers.

 EXAMPLE 8 (3 1 5i) 1 (25 1 2i) 5 22 1 7i; 
(3 1 5i)(25 1 2i) 5 225 1 (219)i 5 225 2 19i; 

3 � 5i

�2 � 7i
�

3 � 5i

�2 � 7i
  

�2 � 7i

�2 � 7i
 5 

29 � 31i

53
�

29

53
�

�31

53
i; 

(3 1 5i) (3 2 5i) 5 9 1 25 5 34; 

(3 1 5i)21 �
3

34
�

5

34
i. 

To find (3 1 5i)4 and (3 � 5i)
1
4 we first note that if u 5 arctan 5

3,  

then cos u 5 
3

234
 and sin u 5 

5

234
 . Thus, (3 1 5i)4 5 ((234(cos u 1  

i sin u))4 5 2344 (cos 4u 1 i sin 4u) and (3 � 5i)
1
4 5 (234(cos u 1 

i sin u))
1
4 5 234 

1
4  (cos u4 1 i sin u4).

Mathematical Induction
There are two forms of proof by mathematical induction that we will 
use. Both are equivalent to the Well Ordering Principle. The explicit 
formulation of the method of mathematical induction came in the 
16th century. Francisco Maurolico (1494–1575), a teacher of Galileo, 
used it in 1575 to prove that 1 1 3 1 5 1 ? ? ? 1 (2n 2 1) 5 n2, and 
Blaise Pascal (1623–1662) used it when he presented what we now 
call Pascal’s triangle for the coefficients of the binomial expansion. 
The term mathematical induction was coined by Augustus De Morgan.
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0 | Preliminaries 15

 Theorem 0.5 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 

whenever some integer n $ a belongs to S, then the integer n 1 1 also 

belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 33). 

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for 
the integer n and use this assumption to prove that the statement is true 
for the integer n 1 1.

Our next example uses some facts about plane geometry. Recall that 
given a straightedge and compass, we can construct a right angle.

 EXAMPLE 9 We use induction to prove that given a straightedge, a 
compass, and a unit length, we can construct a line segment of length    
2n for every positive integer n. The case when n 5 1 is given. Now we 
assume that we can construct a line segment of length 2n. Then use the 
straightedge and compass to construct a right triangle with height 1 and 
base 2n. The hypotenuse of the triangle has length 2n � 1. So, by 
induction, we can construct a line segment of length 2n for every posi-
tive integer n. 

 EXAMPLE 10 DeMOIVRE’S THEOREM We use induction to prove 
that for every positive integer n and every real number u, (cos u 1  
i sin u)n 5 cos nu 1 i sin nu, where i is the complex number 2 �1. 
Obviously, the statement is true for n 5 1. Now assume it is true for n. 
We must prove that (cos u 1 i sin u)n11 5 cos(n 1 1)u 1 i sin(n 1 1)u. 
Observe that

 (cos u 1 i sin u)n11  5 (cos u 1 i sin u)n(cos u 1 i sin u) 
5 (cos nu 1 i sin nu)(cos u 1 i sin u) 
5 cos nu cos u 1 i(sin nu cos u  
  1 sin u cos nu) 2 sin nu sin u.

Now, using trigonometric identities for cos(a 1 b) and sin(a 1 b), we 
see that this last term is cos(n 1 1)u 1 i sin(n 1 1)u. So, by induction, 
the statement is true for all positive integers. 

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true 
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16 Integers and Equivalence Relations

for the integer n 1 1. In such cases, the following equivalent form of 
 induction may be more convenient. Some authors call this formulation 
the strong form of induction.

 Theorem 0.6 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 

n belongs to S whenever every integer less than n and greater than or 

equal to a belongs to S. Then, S contains every integer greater than or 

equal to a.

PROOF The proof is left to the reader. 

To use this form of induction, we first show that the statement is true 
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

 EXAMPLE 11 We will use the Second Principle of Mathematical 
Induction with a 5 2 to prove the existence portion of the Fundamental 
Theorem of Arithmetic. Let S be the set of integers greater than 1 that 
are primes or products of primes. Clearly, 2 [ S. Now we assume that 
for some integer n, S contains all integers k with 2 # k , n. We must 
show that n [ S. If n is a prime, then n [ S by definition. If n is not a 
prime, then n can be written in the form ab, where 1 , a , n and 1 , b 
, n. Since we are assuming that both a and b belong to S, we know that 
each of them is a prime or a product of primes. Thus, n is also a product 
of primes. This completes the proof. 

Notice that it is more natural to prove the Fundamental Theorem of 
Arithmetic with the Second Principle of Mathematical Induction than 
with the First Principle. Knowing that a particular integer factors as a 
product of primes does not tell you anything about factoring the next 
larger integer. (Does knowing that 5280 is a product of primes help you 
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of 
the January 1988 issue of the science magazine Discover.*

 EXAMPLE 12 The Quakertown Poker Club plays with blue chips 
worth $5.00 and red chips worth $8.00. What is the largest bet that 
 cannot be made?

*“Brain Boggler” by Maxwell Carver. Copyright © 1988 by Discover Magazine. Used 
by permission.
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0 | Preliminaries 17

To gain insight into this problem, we try various combinations of 
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the 
answer is 27. But how can we be sure? Well, we need only prove that 
every integer greater than 27 can be written in the form a ? 5 1  
b ? 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red 
chips needed to make a bet of a ? 5 1 b ? 8. For the purpose of contrast, 
we will give two proofs—one using the First Principle of Mathematical 
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form 
a ? 5 1 b ? 8, where a and b are nonnegative. Obviously, 28 [ S. Now 
assume that some integer n [ S, say, n 5 a ? 5 1 b ? 8. We must show 
that n 1 1 [ S. First, note that since n $ 28, we cannot have both a and 
b less than 3. If a $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (23 ? 5 1 2 ? 8)
 5 (a 2 3) ? 5 1 (b 1 2) ? 8.

(Regarding chips, this last equation says that we may increase a bet 
from n to n 1 1 by removing three blue chips from the pot and adding 
two red chips.) If b $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (5 ? 5 2 3 ? 8)
 5 (a 1 5) ? 5 1 (b 2 3) ? 8.

(The bet can be increased by 1 by removing three red chips and adding 
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that 
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that  
for some integer n . 32, S contains all integers k with 28 # k , n.  
We must show that n [ S. Since n 2 5 [ S, there are nonnegative 
 integers a and b such  that n 2 5 5 a ? 5 1 b ? 8. But then  
n 5 (a 1 1) ? 5 1 b ? 8. Thus n is in S. 

Equivalence Relations
In mathematics, things that are considered different in one context may 
be viewed as equivalent in another context. We have already seen one 
such example. Indeed, the sums 2 1 1 and 4 1 4 are certainly different 
in ordinary arithmetic, but are the same under modulo 5 arithmetic. 
Congruent triangles that are situated differently in the plane are not the 
same, but they are often considered to be the same in plane geometry. 
In physics, vectors of the same magnitude and direction can produce 
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18 Integers and Equivalence Relations

different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a 
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these 
distinctions precise is an appropriate generalization of the notion of 
equality; that is, we need a formal mechanism for specifying whether or 
not two quantities are the same in a given setting. This mechanism is an 
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of 
 elements of S such that

 1. (a, a) [ R for all a [ S  (reflexive property).
 2. (a, b) [ R implies (b, a) [ R  (symmetric property).
 3. (a, b) [ R and (b, c) [ R imply (a, c) [ R  (transitive property).

When R is an equivalence relation on a set S, it is customary to write 
aRb instead of (a, b) [ R. Also, since an equivalence relation is just a 
generalization of equality, a suggestive symbol such as <, ;, or , is 
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a , a; a , b implies  
b  , a; and a , b and b , c imply a , c. If , is an equivalence relation 
on a set S and a [ S, then the set [a] 5 {x [ S | x , a} is called the 
equivalence class of S containing a.

 EXAMPLE 13 Let S be the set of all triangles in a plane. If a, b [ S, 
define a , b if a and b are similar—that is, if a and b have correspond-
ing angles that are the same. Then , is an equivalence relation on S. 

 EXAMPLE 14 Let S be the set of all polynomials with real coeffi-
cients. If f, g [ S, define f , g if f 9 5 g9, where f 9 is the derivative of 
f. Then , is an equivalence relation on S. Since two polynomials with 
equal derivatives differ by a constant, we see that for any f in S, [ f ] 5 
{ f 1 c | c is real}. 

 EXAMPLE 15 Let S be the set of integers and let n be a positive inte-
ger. If a, b [ S, define a ; b if a mod n 5 b mod n (that is, if a 2 b is 
divisible by n). Then ; is an equivalence relation on S and [a] 5 {a 1 
kn | k [ S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence 
 relation. Certainly, a 2 a is divisible by n, so that a ; a for all a in S. 
Next, assume that a ; b, say, a 2 b 5 rn. Then, b 2 a 5 (2r)n, and 
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0 | Preliminaries 19

therefore b ; a. Finally, assume that a ; b and b ; c, say, a 2 b 5 rn 
and b 2 c 5 sn. Then, we have a 2 c 5 (a 2 b) 1 (b 2 c) 5 rn 1 sn 5 
(r 1 s)n, so that a ; c. 

 EXAMPLE 16 Let ; be as in Example 15 and let n 5 7. Then we 
have 16 ; 2; 9 ; 25; and 24 ; 3. Also, [1] 5 {. . . , 220, 213, 26, 1, 
8, 15, . . .} and [4] 5 {. . . , 217, 210, 23, 4, 11, 18, . . .}. 

 EXAMPLE 17 Let S 5 {(a, b) | a, b are integers, b 2 0}. If  
(a, b), (c, d ) [ S, define (a, b) < (c, d ) if ad 5 bc. Then < is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b 
and c/d are equal.] 

To verify that < is an equivalence relation on S, note that (a, b) < (a, b) 
requires that ab 5 ba, which is true. Next, we assume that (a, b) < (c, d), 
so that ad 5 bc. We have (c, d) < (a, b) provided that cb 5 da, which is 
true from commutativity of multiplication. Finally, we  assume that (a, b) 
< (c, d ) and (c, d) < (e, f ) and prove that (a, b) < (e, f ). This amounts to 
using ad 5 bc and cf 5 de to show that af 5 be. Multiplying both sides 
of ad 5 bc by f and replacing cf by de, we obtain adf 5 bcf 5 bde. Since 
d 2 0, we can cancel d from the first and last terms. 

Definition Partition
A partition of a set S is a collection of nonempty disjoint subsets of S 
whose union is S. Figure 0.6 illustrates a partition of a set into four 
subsets.

S

Figure 0.6 Partition of S into four subsets.

 EXAMPLE 18 The sets {0}, {1, 2, 3, . . .}, and {. . . , 23, 22, 21} 
constitute a partition of the set of integers. 

 EXAMPLE 19 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0. 
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20 Integers and Equivalence Relations

The next theorem reveals that equivalence relations and partitions 
are intimately intertwined.

 Theorem 0.7 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S 

constitute a partition of S. Conversely, for any partition P of S, there 

is an equivalence relation on S whose equivalence classes are the 

elements of P.

PROOF Let , be an equivalence relation on a set S. For any a [ S, the 
reflexive property shows that a [ [a]. So, [a] is nonempty and the union 
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct 
equivalence classes. We must show that [a] > [b] 5 0/ . On the contrary, 
assume c [ [a] > [b]. We will show that [a] # [b]. To this end, let x [ [a]. 
We then have c , a, c , b, and x , a. By the symmetric property, we 
also have a , c. Thus, by transitivity, x , c, and by transitivity again, 
x , b. This proves [a] # [b]. Analogously, [b] # [a]. Thus, [a] 5 [b], 
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint 
subsets of S whose union is S. Define a , b if a and b belong to the 
same subset in the collection. We leave it to the reader to show that , is 
an equivalence relation on S (Exercise 61). 

Functions (Mappings)
Although the concept of a function plays a central role in nearly every 
branch of mathematics, the terminology and notation associated with 
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)
A function (or mapping) f from a set A to a set B is a rule that assigns 
to each element a of A exactly one element b of B. The set A is called 
the domain of f, and B is called the range of f. If f assigns b to a, then 
b is called the image of a under f. The subset of B comprising all the 
images of elements of A is called the image of A under f.

We use the shorthand f: A → B to mean that f is a mapping from 
A to B. We will write f(a) 5 b or f: a → b to indicate that f carries 
a to b.

There are often different ways to denote the same element of a set. In 
defining a function in such cases one must verify that the function 
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0 | Preliminaries 21

 values assigned to the elements depend not on the way the elements 
are expressed but on only the elements themselves. For example, the 
correspondence f from the rational numbers to the integers given by 
f(a/b) 5 a 1 b does not define a function since 1/2 5 2/4 but f(1/2) ? 
f(2/4). To verify that a correspondence is a function, you assume that  
x1 5 x2 and prove that f(x1) 5 f (x2).

Definition Composition of Functions
Let f: A → B and c: B → C. The composition cf is the map ping from 
A to C defined by (cf)(a) 5 c(f(a)) for all a in A. The composition 
function cf can be visualized as in Figure 0.7.

a   (  (a))φ

    (a)

ψ

ψφ

ψφ

φ

Figure 0.7 Composition of functions f and c.

In calculus courses, the composition of f with g is written ( f 8 g)(x) and 
is defined by ( f 8 g)(x) 5 f (g(x)). When we compose functions, we omit 
the “circle.”

 EXAMPLE 20 Let f (x) 5 2x 1 3 and g(x) 5 x2 1 1. Then (  fg)(5) 5 
f (g(5)) 5 f (26) 5 55; (g f )(5) 5 g (  f (5)) 5 g (13) 5 170. More generally, 
( fg)(x) 5 f (g(x)) 5 f (x2 1 1) 5 2(x2 1 1) 1 3 5 2x2 1 5 and (g f )(x) 5 
g ( f (x)) 5 g (2x 1 3) 5 (2x 1 3)2 1 1 5 4x2 1 12x 1 9 1 1 5 4x2 1  
12x 1 10. Note that the function fg is not the same as the function g f. 

There are several kinds of functions that occur often enough to be 
given names.

Definition One-to-One Function
A function f from a set A is called one-to-one if for every a1, a2 [ A, 
f(a1) 5 f(a2) implies a1 5 a2.

The term one-to-one is suggestive, since the definition ensures that 
one element of B can be the image of only one element of A. Alternatively, 
f is one-to-one if a1 � a2 implies f(a1) � f(a2). That is, different ele-
ments of A map to different elements of B. See Figure 0.8.
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22 Integers and Equivalence Relations

a1 a1

a2 a2

(a1)φ

φ

φ

  (a1) 5    (a2) 
 (a2)

is one-to-one is not one-to-oneψ

ψ

ψ  ψ 

φ

Figure 0.8

Definition Function from A onto B
A function f from a set A to a set B is said to be onto B if each element 
of B is the image of at least one element of A. In symbols, f: A → B is 
onto if for each b in B there is at least one a in A such that f(a) 5 b. 
See Figure 0.9.

φ is onto is not ontoψ

ψ

φ

Figure 0.9

The next theorem summarizes the facts about functions we will need.

 Theorem 0.8 Properties of Functions

Given functions a: A → B, b: B → C, and g: C → D, then

 1. g(ba) 5 (gb)a (associativity).

 2. If a and b are one-to-one, then ba is one-to-one.

 3. If a and b are onto, then ba is onto.

 4.  If a is one-to-one and onto, then there is a function a21 from B 

onto A such that (a21a)(a) 5 a for all a in A and (aa21)(b) 5 b 

for all b in B.

PROOF We prove only part 1. The remaining parts are left as exercises 
(Exercise 57). Let a [ A. Then (g(ba))(a) 5 g((ba)(a)) 5 g(b(a(a))). 
On the other hand, ((gb)a)(a) 5 (gb)(a(a)) 5 g(b(a(a))). So, g(ba) 5 
(gb)a. 
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0 | Preliminaries 23

It is useful to note that if a is one-to-one and onto, the function a21 
described in part 4 of Theorem 0.8 has the property that if a (s) 5 t, 
then a21(t) 5 s. That is, the image of t under a21 is the unique element s 
that maps to t under a. In effect, a21 “undoes” what a does.

 EXAMPLE 21 Let Z denote the set of integers, R the set of real 
numbers, and N the set of nonnegative integers. The following table il-
lustrates the properties of one-to-one and onto.

Domain Range Rule One-to-One Onto
 Z Z x → x3 Yes No
 R R x → x3 Yes Yes
 Z N x → |x| No Yes
 Z Z x → x2 No No

To verify that x → x3 is one-to-one in the first two cases, notice that if  
x3 5 y3, we may take the cube roots of both sides of the equation to ob-
tain x 5 y. Clearly, the mapping from Z to Z given by x → x3 is not onto, 
since 2 is the cube of no integer. However, x → x3 defines an onto func-
tion from R to R, since every real number is the cube of its cube root 
(that is, 32b → b). The remaining verifications are left to the reader. 

Exercises

I was interviewed in the Israeli Radio for five minutes and I said that more 
than 2000 years ago, Euclid proved that there are infinitely many primes. 
Immediately the host interrupted me and asked: “Are there still infinitely 
many primes?”

noga alon

  1. For n 5 5, 8, 12, 20, and 25, find all positive integers less than n 
and rel atively prime to n.

  2. Determine gcd(24 ? 32 ? 5 ? 72, 2 ? 33 ? 7 ? 11) and lcm(23 ? 32 ? 5,  
2 ? 33 ? 7 ? 11).

  3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 ? 73) 
mod 7, (51 1 68) mod 7, (35 ? 24) mod 11, and (47 1 68) mod 11.

  4. Find integers s and t such that 1 5 7 ? s 1 11 ? t. Show that s and t 
are not unique.

  5. Show that if a and b are positive integers, then ab 5 lcm(a, b) ? 
gcd(a, b).

  6. Suppose a and b are integers that divide the integer c. If a and b are 
relatively prime, show that ab divides c. Show, by example, that if 
a and b are not relatively prime, then ab need not divide c.
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24 Integers and Equivalence Relations

  7. If a and b are integers and n is a positive integer, prove that a mod n 5 
b mod n if and only if n divides a 2 b.

  8. Let d 5 gcd(a, b). If a 5 da9 and b 5 db9, show that gcd(a9, b9) 5 1.
  9. Let n be a fixed positive integer greater than 1. If a mod n 5 a9 and  

b mod  n 5 b9, prove that (a 1 b) mod n 5 (a9 1 b9) mod n and (ab) 
mod n 5 (a9b9) mod n. (This exercise is referred to in Chapters 6,  
8, 10, and 15.)

 10. Let a and b be positive integers and let d 5 gcd(a, b) and m 5 
lcm(a, b). If t divides both a and b, prove that t divides d. If s is a 
multiple of both a and b, prove that s is a multiple of m.

 11. Let n and a be positive integers and let d 5 gcd(a, n). Show that the 
equation ax mod n 5 1 has a solution if and only if d 5 1. (This 
 exercise is referred to in Chapter 2.)

 12. Show that 5n 1 3 and 7n 1 4 are relatively prime for all n.
 13. Suppose that m and n are relatively prime and r is any integer. Show 

that there are integers x and y such that mx 1 ny 5 r.
 14. Let p, q, and r be primes other than 3. Show that 3 divides p2 1  

q2 1 r2.
 15. Prove that every prime greater than 3 can be written in the form 

6n 1 1 or 6n 1 5.
 16. Determine 71000 mod 6 and 61001 mod 7.
 17. Let a, b, s, and t be integers. If a mod st 5 b mod st, show that a 

mod s 5 b mod s and a mod t 5 b mod t. What condition on s and 
t is needed to make the converse true? (This exercise is referred to 
in Chapter 8.)

 18. Determine 8402 mod 5.
 19. Show that gcd(a, bc) 5 1 if and only if gcd(a, b) 5 1 and 

gcd(a, c) 5 1. (This exercise is referred to in Chapter 8.)
 20. Let p1, p2, . . . , pn be primes. Show that p1 p2 ? ? ? pn 1 1 is divisible 

by none of these primes.
 21. Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
 22. Express (27 2 3i)21 in standard form.

 23. Express 
�5 � 2i

4 � 5i
 in standard form.

 24. Express (cos 3608 1 i sin 3608)1/8 in standard form without trig 
expressions. (Note that cos 3608 1 i sin 3608 5 1.)

 25. Prove that for any positive integer n, (cos u 1 i sin u)1/n 5 cos un 1  

i sin un.
 26. For every positive integer n, prove that 1 1 2 1 ? ? ? 1 n 5  

n(n 1 1)/2.
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 27. For every positive integer n, prove that a set with exactly n elements 
has exactly 2n subsets (counting the empty set and the entire set).

 28. Prove that 2n32n 2 1 is always divisible by 17.
 29. Prove that there is some positive integer n such that  n, n 1 1,  

n 1 2, ? ? ?  , n 1 200 are all composite.
 30. (Generalized Euclid’s Lemma) If p is a prime and p divides  

a1a2 ? ? ? an, prove that p divides ai for some i.
 31. Use the Generalized Euclid’s Lemma (see Exercise 30) to establish 

the uniqueness portion of the Fundamental Theorem of Arithmetic.
 32. What is the largest bet that cannot be made with chips worth $7.00 

and $9.00? Verify that your answer is correct with both forms of 
 induction.

 33. Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

 34. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In gen-
eral, the Fibonacci numbers are defined by f1 5 1, f2 5 1, and for   
n $ 3,  fn 5 fn21 1 fn22. Prove that the nth Fibonacci number fn sat-
isfies fn , 2n.

 35. Prove by induction on n that for all positive integers n, n3 1  
(n 1 1)3 1 (n 1 2)3 is a multiple of 9.

 36. Suppose that there is a statement involving a positive integer  
parameter n and you have an argument that shows that whenever 
the statement is true for a particular n it is also true for n 1 2. What 
remains to be done to prove the statement is true for every positive 
integer? Describe a situation in which this strategy would be  
applicable.

 37. In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 3 8 3 8 5 4. Find all integers n for which this 
statement is true, modulo n.

 38. Prove that for every integer n, n3 mod 6 5 n mod 6.
 39. If it is 2:00 a.m. now, what time will it be 3736 hours from now?
 40. Determine the check digit for a money order with identification 

number 7234541780.
 41. Suppose that in one of the noncheck positions of a money order 

number, the digit 0 is substituted for the digit 9 or vice versa. Prove 
that this error will not be detected by the check digit. Prove that all 
other errors involving a single position are detected.

 42. Suppose that a money order identification number and check digit 
of 21720421168 is erroneously copied as 27750421168. Will the 
check digit detect the error?
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26 Integers and Equivalence Relations

 43. A transposition error involving distinct adjacent digits is one of the 
form . . . ab . . . → . . . ba . . . with a ≠ b. Prove that the money 
order check-digit scheme will not detect such errors unless the 
check digit itself is transposed.

 44. Determine the check digit for the Avis rental car with identification 
number 540047. (See Example 5.)

 45. Show that a substitution of a digit ai9 for the digit ai  (ai9 ≠ ai) in  
a noncheck position of a UPS number is detected if and only 
if |ai 2 ai9| ≠ 7.

 46. Determine which transposition errors involving adjacent digits are 
detected by the UPS check digit.

 47. Use the UPC scheme to determine the check digit for the number 
07312400508.

 48. Explain why the check digit for a money order for the number N is 
the repeated decimal digit in the real number N 4 9.

 49. The 10-digit International Standard Book Number (ISBN-10) 
a1a2a3a4a5a6a7a8 a9a10 has the property (a1, a2, . . . , a10) ? (10, 9, 8, 7, 
6, 5, 4, 3, 2, 1) mod 11 5 0. The digit a10 is the check digit. When 
a10 is required to be 10 to make the dot product 0, the character X is 
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

 50. Suppose that an ISBN-10 has a smudged entry where the question 
mark appears in the number 0-716?-2841-9. Determine the missing 
digit.

 51. Suppose three consecutive digits abc of an ISBN-10 are scrambled as 
bca. Which such errors will go undetected?

 52. The ISBN-10 0-669-03925-4 is the result of a transposition of two 
 adjacent digits not involving the first or last digit. Determine the 
correct ISBN-10.

 53. Suppose the weighting vector for ISBN-10s were changed to (1, 2, 
3, 4, 5, 6, 7, 8, 9, 10). Explain how this would affect the check digit.

 54. Use the two-check-digit error-correction method described in this 
chapter to append two check digits to the number 73445860.

 55. Suppose that an eight-digit number has two check digits appended 
using the error-correction method described in this chapter and it is 
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

 56. The state of Utah appends a ninth digit a9 to an eight-digit driver’s 
license number a1a2 . . . a8 so that (9a1 1 8a2 1 7a3 1 6a4 1 5a5 1 
4a6 1 3a7 1 2a8 1 a9) mod 10 5 0. If you know that the license 
number 149105267 has exactly one digit incorrect, explain why the 
error cannot be in position 2, 4, 6, or 8.
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 57. Complete the proof of Theorem 0.8.
 58. Let S be the set of real numbers. If a, b [ S, define a , b if a 2 b 

is an integer. Show that , is an equivalence relation on S. Describe 
the equivalence classes of S.

 59. Let S be the set of integers. If a, b [ S, define aRb if ab $ 0. Is R an 
equivalence relation on S?

 60. Let S be the set of integers. If a, b [ S, define aRb if a 1 b is even. 
Prove that R is an equivalence relation and determine the equiva-
lence classes of S.

 61. Complete the proof of Theorem 0.7 by showing that , is an equiva-
lence relation on S.

 62. Prove that 3, 5, and 7 are the only three consecutive odd integers 
that are prime.

 63. What is the last digit of 3100? What is the last digit of 2100?
 64. Prove that none of the integers 11, 111, 1111, 11111, . . . is a square 

of an integer.
 65. (Cancellation Property) Suppose a, b, and g are functions. If ag 5 

bg and g is one-to-one and onto, prove that a 5 b.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal 
8 (1987): 9–29.

This well-written article describes several ways in which modular 
arithmetic can be used to code secret messages. They range from a 
simple scheme used by Julius Caesar to a highly sophisticated scheme 
invented in 1978 and based on modular n arithmetic, where n has more 
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics  
Magazine 64 (1991): 13–22.

This article describes various methods used by the states to assign driv-
er’s license numbers. Several include check digits for error detection. 
This article can be downloaded at http://www.d.umn.edu/~jgallian/ 
license.pdf
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J. A. Gallian, “The Mathematics of Identification Numbers,” The College 
Mathe matics Journal 22 (1991): 194–202.

This article is a comprehensive survey of check-digit schemes that are 
associated with identification numbers. This article can be downloaded 
at http://www.d.umn.edu/~jgallian/ident.pdf 

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,” 
The American Mathematical Monthly 95 (1988): 548–551.

This article provides a more detailed analysis of the check-digit 
schemes presented in this chapter. In particular, the error detection 
rates for the various schemes are given. This article can be downloaded 
at http://www.d.umn.edu/~jgallian/marketplace.pdf 
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Groups

For online student resources, visit this textbook’s website at 
www.CengageBrain.com
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Introduction  
to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies 
at its root, and it would be hard to find a better one on which to 
demonstrate the working of the mathematical intellect.

hermann weyl, Symmetry

1

Symmetries of a Square
Suppose we remove a square region from a plane, move it in some way, 
then put the square back into the space it originally occupied. Our goal 
in this chapter is to describe all possible ways in which this can be 
done. More specifically, we want to describe the possible relationships 
between the starting position of the square and its final position in 
terms of motions. However, we are interested in the net effect of a mo-
tion, rather than in the motion itself. Thus, for example, we consider a 
908 rotation and a 4508 rotation as equal, since they have the same net 
effect on every point. With this simplifying convention, it is an easy 
matter to achieve our goal.

To begin, we can think of the square region as being transparent 
(glass, say), with the corners marked on one side with the colors blue, 
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now 
in a position to describe, in simple fashion, all possible ways in which a 
square object can be repositioned. See Figure 1.1. We now claim that 
any motion—no matter how complicated—is equivalent to one of these 
eight. To verify this claim, observe that the final position of the square 
is completely determined by the location and orientation (that is, face 
up or face down) of any particular corner. But, clearly, there are only 
four locations and two orientations for a given corner, so there are 
 exactly eight distinct final positions for the corner.
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R0R0   = Rotation of 0° (no change in position)
P W

BG

P W

BG

R90
R90  = Rotation of 90° (counterclockwise)

P W

BG

W B

GP

R180 = Rotation of 180°
P W

BG

B G

PW

R180

R270 = Rotation of 270°
P W

BG

G P

WB
R270

H     = Flip about a horizontal axis
P W

BG

G B

WP
H

V     = Flip about a vertical axis
P W

BG

W P

GB
V

D    = Flip about the main diagonal
P G

BW
D

P W

BG

D�   = Flip about the other diagonal
P W

BG

B W

PG
D�

Figure 1.1

Let’s investigate some consequences of the fact that every motion is 
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 908 followed by a flip about the horizontal axis 
of symmetry.

P
HR90

G

BW

P W

BG

W B

GP

Thus, we see that this pair of motions—taken together—is equal to 
the single motion D. This observation suggests that we can compose 
two motions to obtain a single motion. And indeed we can, since the 
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eight motions may be viewed as functions from the square region to 
itself, and as such we can combine them using function composition.

With this in mind, we write H R90 5 D because in lower level math 
courses function composition f 8 g means “g followed by f.” The eight 
motions R0, R90, R180, R270, H, V, D, and D9, together with the operation 
composition, form a mathematical system called the dihedral group of 
order 8 (the  order of a group is the number of elements it contains). It is 
denoted by D4. Rather than introduce the formal definition of a group 
here, let’s look at some properties of groups by way of the example D4.

To facilitate future computations, we construct an operation table or 
Cayley table (so named in honor of the prolific English mathematician 
Arthur Cayley, who first introduced them in 1854) for D4 below. The 
circled entry represents the fact that D 5 HR90. (In general, ab denotes 
the entry at the intersection of the row with a at the left and the column 
with b at the top.)

 R0 R90 R180 R270 H V D D9

R0 R0 R90 R180 R270 H V D D9
R90 R90 R180 R270 R0 D9 D H V
R180 R180 R270 R0 R90 V H D9 D
R270 R270 R0 R90 R180 D D9 V H
H H D  V D9 R0 R180 R90 R270
V V D9 H D R180 R0 R270 R90
D D V D9 H R270 R90 R0 R180
D9 D9 H D V R90 R270 R180 R0

Notice how orderly this table looks! This is no accident. Perhaps the 
most important feature of this table is that it has been completely filled 
in without introducing any new motions. Of course, this is because, as 
we have already pointed out, any sequence of motions turns out to be 
the same as one of these eight. Algebraically, this says that if A and B 
are in D4, then so is AB. This property is called closure, and it is one of 
the requirements for a mathematical system to be a group. Next, notice 
that if A is any element of D4, then AR0 5 R0A 5 A. Thus, combining 
any element A on either side with R0 yields A back again. An element 
R0 with this property is called an identity, and every group must have 
one. Moreover, we see that for each element A in D4, there is exactly 
one element B in D4 such that AB 5 BA 5 R0. In this case, B is said to 
be the inverse of A and vice versa. For example, R90 and R270 are  
 inverses of each other, and H is its own inverse. The term inverse is a 
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther  order produce R0, representing no change. Another striking feature 
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of the table is that every element of D4 appears exactly once in each 
row and column. This feature is something that all groups must have, 
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D4 deserves special comment. Observe that 
HD Z DH but R90R180 5 R180R90. Thus, in a group, ab may or may not 
be the same as ba. If it happens that ab 5 ba for all choices of group 
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel). 
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D4, three of the four con-
ditions that define a group—namely, closure, existence of an identity, 
and existence of inverses. The remaining condition required for a group 
is associativity; that is, (ab)c 5 a(bc) for all a, b, c in the set. To be sure 
that D4 is indeed a group, we should check this equation for each of the 
83 5 512 possible choices of a, b, and c in D4. In practice, however, 
this is rarely done! Here, for example, we simply observe that the eight 
motions are functions and the operation is function composition. Then, 
since function composition is associative, we do not have to check the 
equations.

The Dihedral Groups
The analysis carried out above for a square can similarly be done for  
an equilateral triangle or regular pentagon or, indeed, any regular n-gon 
(n $ 3). The corresponding group is denoted by Dn and is called the 
 dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the 
decorative designs used on floor coverings, pottery, and buildings have 
one of the dihedral groups as a group of symmetry. Corporation logos 
are rich sources of dihedral symmetry [1]. Chrysler’s logo has D5 as a 
symmetry group, and that of Mercedes-Benz has D3. The ubiquitous 
five-pointed star has symmetry group D5. The phylum Echinodermata 
contains many sea animals (such as starfish, sea cucumbers, feather 
stars, and sand dollars) that exhibit patterns with D5 symmetry.

Chemists classify molecules according to their symmetry. Moreover, 
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular 
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH3), depicted in Figure 1.2, is D3.
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N

H

H
H

Figure 1.2 A pyramidal molecule with symmetry group D3.

Mineralogists determine the internal structures of crystals (that is, 
rigid bodies in which the particles are arranged in three-dimensional 
repeating  patterns—table salt and table sugar are two examples) by 
studying two- dimensional x-ray projections of the atomic makeup  
of the crystals. The symmetry present in the projections reveals the 
 internal symmetry of the crystals themselves. Commonly occurring 
symmetry patterns are D4 and D6 (see Figure 1.3). Interestingly, it is 
mathematically impossible for a crystal to possess a Dn symmetry pat-
tern with n 5 5 or n . 6.

 
Figure 1.3 X-ray diffraction photos revealing D4 symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a 
plane is a function from the plane to itself that carries F onto F and 
preserves distances; that is, for any points p and q in the plane, the  
distance from the image of p to the image of q is the same as the 
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distance from p to q. (The term symmetry is from the Greek word 
symmetros, meaning “of like measure.”) The symmetry group of a 
plane figure is the set of all symmetries of the figure. Symmetries in 
three dimensions are defined analogously. Obviously, a rotation of a 
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional 
space. Similarly, any translation of a plane or of three-dimensional 
space is a symmetry. A reflection across a line L is that function that 
leaves every point of L fixed and takes any point q, not on L, to the point 
q9 so that L is the perpendicular bisector of the line segment joining 
q and q9 (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 1808 rota-
tion about a line L in three dimensions to a plane containing L is a 
 reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D9) are reflections across lines in two 
 dimensions. Just as a reflection across a line is a plane symmetry that 
cannot be achieved by a physical motion of the plane in two dimen-
sions, a  reflection across a plane is a three-dimensional symmetry that 
cannot be achieved by a physical motion of three-dimensional space. A 
cup, for instance, has reflective symmetry across the plane bisecting 
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

 

q

q9

L   

Figure 1.4

Many objects and figures have rotational symmetry but not reflective 
symmetry. A symmetry group consisting of the rotational symmetries of 
08, 3608/n, 2(3608)/n, . . . , (n 2 1)3608/n, and no other symmetries, is 
called a cyclic rotation group of order n and is denoted by 7R360/n8. Cyclic 
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic 
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

A study of symmetry in greater depth is given in Chapters 27 and 28.
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Exercises

The only way to learn mathematics is to do mathematics.
paul r. halmos, A Hilbert Space Problem Book

  1. With pictures and words, describe each symmetry in D3 (the set of 
symmetries of an equilateral triangle).

  2. Write out a complete Cayley table for D3. Is D3 Abelian?
  3. In D4, find all elements X such that
 a. X3 5 V;
 b. X3 5 R90;
 c. X3 5 R0;
 d. X2 5 R0;
 e. X2 5 H.
  4. Describe in pictures or words the elements of D5 (symmetries of a 

regular pentagon).
  5. For n $ 3, describe the elements of Dn. (Hint: You will need to 

consider two cases—n even and n odd.) How many elements 
does Dn have?

  6. In Dn,  explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

  7. In Dn,  explain geometrically why a rotation followed by a rotation 
must be a rotation.

  8. In Dn,  explain geometrically why a rotation and a reflection taken 
together in either order must be a reflection.

  9. Associate the number 1 with a rotation and the number 21 with a 
reflection. Describe an analogy between multiplying these two 
numbers and multiplying elements of Dn.

Figure 1.5 Logos with cyclic rotation symmetry groups.
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38 Groups

 10. If r1, r2, and r3 represent rotations from Dn and f1,  f2, and f3 represent 
reflections from Dn,  determine whether r1r2 f1r3 f2 f3r3 is a rotation 
or a reflection.

 11. Find elements A, B, and C in D4 such that AB 5 BC but A Z C. 
(Thus, “cross cancellation” is not valid.)

 12. Explain what the following diagram proves about the group Dn.

1 1

2

1

n

2

31

2

13

n2

n

n – 11

2n

F

FR360/ n

R360 /n

 13. Describe the symmetries of a nonsquare rectangle. Construct the 
corresponding Cayley table.

 14. Describe the symmetries of a parallelogram that is neither a rect-
angle nor a rhombus. Describe the symmetries of a rhombus that is 
not a rectangle.

 15. Describe the symmetries of a noncircular ellipse. Do the same for 
a hyperbola.

 16. Consider an infinitely long strip of equally spaced H’s:

? ? ? H H H H ? ? ?

  Describe the symmetries of this strip. Is the group of symmetries 
of the strip Abelian?

 17. For each of the snowflakes in the figure, find the symmetry group 
and locate the axes of reflective symmetry (disregard imperfections).

 Photographs of snowflakes from the Bentley and Humphreys atlas.
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1 | Introduction to Groups 39

 18. Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

 19. Does a fan blade have a cyclic symmetry group or a dihedral sym-
metry group?

 20. Bottle caps that are pried off typically have 22 ridges around the 
rim. Find the symmetry group of such a cap.

 21. What group theoretic property do uppercase letters F, G, J, L, P, Q, R 
have that is not shared by the remaining uppercase letters in the 
alphabet?

 22. What symmetry property does the word “zoonosis” have when 
written in uppercase letters? (It means a disease of humans acquired 
from animals.)

 23. What symmetry property do the words “mow,” “sis,” and “swims” 
have when written in uppercase letters?

 24. For each design below, determine the symmetry group (ignore 
 imperfections).
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Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford  
University Press, 1992.

This book has many beautiful symmetric designs that arise in  
chaotic dynamic systems.

Suggested Website

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous  
activities and links to many other sites on related topics. It is a wonderful 
website for K–12 teachers and students.
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Niels Abel

He [Abel] has left mathematicians 
 something to keep them busy for five 
 hundred years.

charles hermite

Niels Henrik Abel, one of the foremost 
mathematicians of the 19th century, was 
born in Norway on August 5, 1802. At the 
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange, 
and Gauss. When Abel was 18 years old, his 
father died, and the burden of supporting the 
family fell upon him. He took in private pu-
pils and did odd jobs, while continuing to do 
mathematical research. At the age of 19, 
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years. 
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite 
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic 
problem laid the groundwork for many of 
these subjects. Just when his work was be-
ginning to receive the attention it deserved, 
Abel contracted tuberculosis. He died on 
April 6, 1829, at the age of 26. 

In recognition of the fact that there is no 
Nobel Prize for mathematics, in 2002 Norway 
established the Abel Prize as the “Nobel Prize 
in mathematics” in honor of its native son. At 
approximately the $1,000,000 level, the Abel 
Prize is now seen as an award equivalent to a 
Nobel Prize.

To find more information about Abel, visit:
http://www-groups.dcs.st-and  

.ac.uk/~history/

A 500-kroner bank note first issued 
by Norway in 1948.

This stamp was issued in 1929 
to commemorate the 100th 
anniversary of Abel’s death.

S
to

ck
 M

on
ta

ge

99708_ch01_ptg01_hr_029-041.indd   41 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www-groups.dcs.st-and


42

Groups

A good stock of examples, as large as possible, is indispensable  
for a thorough understanding of any concept, and when I want  
to learn something new, I make it my first job to build one.

paul r. halmos

2

Definition and Examples of Groups
The term group was used by Galois around 1830 to describe sets of 
one-to-one functions on finite sets that could be grouped together to 
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that 
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walther von Dyck in 
1882, it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each 
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to 
yield a new member of G. This condition is called closure. The most 
familiar binary operations are ordinary addition, subtraction, and 
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not 
be an integer.

The binary operations addition modulo n and multiplication mod-
ulo n on the set {0, 1, 2, . . . , n 2 1}, which we denote by Zn, play an 
extremely important role in abstract algebra. In certain situations we 
will want to combine the elements of Zn by addition modulo n only; 
in other situations we will want to use both addition modulo n  and 
multiplication modulo n to combine the elements. It will be clear 
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2 | Groups 43

from the context whether we are using addition only or addition and 
multiplication. For example, when multiplying matrices with entries 
from Zn, we will need both addition modulo n and multiplication 
modulo n.

Definition Group
Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if 
the following three properties are satisfied.

 1. Associativity. The operation is associative; that is, (ab)c 5 a(bc) for 
all a, b, c in G.

 2. Identity. There is an element e (called the identity) in G such that 
 ae 5 ea 5 a for all a in G.

 3. Inverses. For each element a in G, there is an element b in G 
(called an inverse of a) such that ab 5 ba 5 e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any 
pair of elements can be combined without going outside the set. Be 
sure to verify closure when testing for a group (see Example 5). Notice 
that if a is the inverse of b, then b is the inverse of a.

If a group has the property that ab 5 ba for every pair of elements a 
and b, we say the group is Abelian. A group is non-Abelian if there is 
some pair of elements a and b for which ab 2 ba. When encountering 
a particular group for the first time, one should determine whether or 
not it is Abelian.

Now that we have the formal definition of a group, our first job is 
to build a good stock of examples. These examples will be used 
throughout the text to illustrate the theorems. (The best way to grasp 
the meat of a theorem is to see what it says in specific cases.) As we 
progress, the reader is bound to have hunches and conjectures that 
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the 
missing details.

 EXAMPLE 1 The set of integers Z (so denoted because the German 
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is 0 and the inverse of a is 2a. 
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44 Groups

 EXAMPLE 2 The set of integers under ordinary multiplication is not 
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 5b 5 1. 

 EXAMPLE 3 The subset {1, 21, i, 2i} of the complex numbers  
is a group under complex multiplication. Note that 21 is its own inverse, 
whereas the inverse of i is 2i, and vice versa. 

 EXAMPLE 4 The set Q1 of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a 5 a21. 

 EXAMPLE 5 The set S of positive irrational numbers together with 1 
under multiplication satisfies the three properties given in the defi nition 
of a group but is not a group. Indeed, 22 ? 22 5 2, so S is not closed 
under multiplication. 

 EXAMPLE 6 A rectangular array of the form ca b

c d
d  is called a 

2 3 2 matrix. The set of all 2 3 2 matrices with real entries is a group 
under componentwise addition. That is,

ca1 b1

c1 d1
d � ca2 b2

c2 d2
d � ca1 � a2

c1 � c2

b1 � b2

d1 � d2
d

The identity is c0 0

0 0
d , and the inverse of ca b

c d
d  is c�a �b

�c �d
d . 

 EXAMPLE 7 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a group 
under addition modulo n. For any j . 0 in Zn, the inverse of j is n 2 j.  
This group is usually referred to as the group of integers modulo n. 

As we have seen, the real numbers, the 2 3 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate 
addition. But what about multiplication? In each case, the existence of 
some elements that do not have inverses prevents the set from being a 
group under the usual multiplication. However, we can form a group in 
each case by simply throwing out the rascals. Examples 8, 9, and 11 
 illustrate this.

 EXAMPLE 8 The set R* of nonzero real numbers is a group under 
ordinary multiplication. The identity is 1. The inverse of a is 1/a. 
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2 | Groups 45

 EXAMPLE 9† The determinant of the 2 3 2 matrix ca b

c d
d  is the

number ad 2 bc. If A is a 2 3 2 matrix, det A denotes the determinant
of A. The set

GL(2, R) 5 e ca b

c d
d ` a, b, c, d [ R, ad � bc ? 0 f

of 2 3 2 matrices with real entries and nonzero determinants is a non-
Abelian group under the operation

ca1 b1

c1 d1
d ca2 b2

c2 d2
d � ca1a2 � b1c2

c1a2 � d1c2

a1b2 � b1d2

c1b2 � d1d2
d .

The first step in verifying that this set is a group is to show that the 
product of two matrices with nonzero determinants also has a nonzero 
determinant. This follows from the fact that for any pair of 2 3 2 
matrices A and B, det (AB) 5 (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

tions. The identity is c1 0

0 1
d ; the inverse of ca b

c d
d  is

≥ d

ad bc

b

ad bc

c

ad bc

a

ad bc

¥
(explaining the requirement that ad 2 bc 2 0). This very important 
non-Abelian group is called the general linear group of 2 3 2 matrices 
over R. 

 EXAMPLE 10 The set of all 2 3 2 matrices with real entries is not a 
group under the operation defined in Example 9. Inverses do not exist 
when the determinant is 0. 

Now that we have shown how to make subsets of the real numbers 
and subsets of the set of 2 3 2 matrices into multiplicative groups, we 
next consider the integers under multiplication modulo n.

†For simplicity, we have restricted our matrix examples to the 2 3 2 case. However, 
readers who have had linear algebra can readily generalize to n 3 n matrices.
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 EXAMPLE 11 (L. EULER, 1761) By Exercise 11 in Chapter 0, an 
 integer a has a multiplicative inverse modulo n if and only if a and n are 
relatively prime. So, for each n . 1, we define U(n) to be the set of all 
positive integers less than n and relatively prime to n. Then U(n) is a 
group under multiplication modulo n. (We leave it to the reader to check 
that this set is closed under this operation.)

For n 5 10, we have U(10) 5 {1, 3, 7, 9}. The Cayley table for 
U(10) is

mod 10 1 3 7 9

 1 1 3 7 9
 3 3 9 1 7
 7 7 1 9 3
 9 9 7 3 1

(Recall that ab mod n is the unique integer r with the property a ? b 5 
nq 1 r, where 0 # r , n and a ? b is ordinary multiplication.) In the 
case that n is a prime, U(n) 5 {1, 2, . . . , n 2 1}. 

In his classic book Lehrbuch der Algebra, published in 1895,  Heinrich 
Weber gave an extensive treatment of the groups U(n) and described 
them as the most important examples of finite Abelian groups.

 EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2 
do not. 

 EXAMPLE 13 The set of integers under subtraction is not a group, 
since the operation is not associative. 

With the examples given thus far as a guide, it is wise for the reader 
to pause here and think of his or her own examples. Study actively! 
Don’t just read along and be spoon-fed by the book.

 EXAMPLE 14 The complex numbers C 1 {a 1 bi | a, b [ R,  
i2 5 21} are a group under the operation (a 1 bi) 1 (c 1 di) 5  
(a 1 c) 1 (b 1 d)i. The inverse of a 1 bi is 2a 2bi. The nonzero 
complex numbers C* are a group under the operation (a 1 bi)  

(c 1 di) 5 (ac 2 bd) 1 (ad 1 bc)i. The inverse of a 1 bi is 
1

a � bi
 5 

1

a � bi
  

a � bi

a � bi
 5 

1

a2 � b2 a 2 
1

a2 � b2 bi. 
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2 | Groups 47

 EXAMPLE 15 For all integers n $ 1, the set of complex nth roots 
of unitye cos 

k # 360�

n
 � i sin 

k # 360�

n
`  k � 0, 1, 2, . . . , n � 1 f

(i.e., complex zeros of xn 2 1) is a group under multiplication. (See 
DeMoivre’s Theorem—Example 10 in Chapter 0.) Compare this group 
with the one in Example 3. 

Recall from Chapter 0 that the complex number cos u 1 i sin u can 
be represented geometrically as the point (cos u, sin u) in a plane coor-
dinatized by a real horizontal axis and a vertical imaginary axis, where 
u is the angle formed by the line segment joining the origin and the 
point (cos u, sin u) and the positive real axis. Thus, the six complex  
zeros of x6 5 1 are located at points around the circle of radius 1, 60° 
apart, as shown in Fig ure 2.1.

2
1

2
1

2
3

60

–
2
1

2
3–– i i

2
1

2
3+

2
3

i2
1

2
3+– i

Imaginary

Real–1 1

√
√

√√

√

Figure 2.1

 EXAMPLE 16 The set Rn 5 {(a1, a2, . . . , an) U a1, a2, . . . , an [ R} 
is a group under componentwise addition [i.e., (a1, a2, . . . , an) 1 
(b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)]. 

 EXAMPLE 17 For a fixed point (a, b) in R2, define Ta,b: R
2 → R2 

by (x, y) → (x 1 a, y 1 b). Then G 5 {Ta,b U a, b [ R} is a group 
under function composition. Straightforward calculations show that 
Ta,bTc,d 5 Ta1c,b1d. From this formula we may observe that G is closed, 
T0,0 is the identity, the inverse of Ta,b is T2a,2b, and G is Abelian. 
Function composition is always associative. The elements of G are 
called translations. 
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 EXAMPLE 18 The set of all 2 3 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Zp (p a prime) 
is a non-Abelian group under matrix multiplication. This group is called  
the special linear group of 2 3 2 matrices over Q, R, C, or Zp, respectively.  
If the entries are from F, where F is any of the above, we denote this group 
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for

the inverse of ca b

c d
d  simplifies to c d �b

�c a
d .

 
When the matrix 

entries are from Zp, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Z5), 

consider the element A 5 c3 4

4 4
d . Then det A 5 (3 ? 4 2 4 ? 4) mod 5 5 

24 mod 5 5 1, and the inverse of A is
 
c 4 �4

�4 3
d � c4 1

1 3
d . Note

that c3 4

4 4
d c4 1

1 3
d � c1 0

0 1
d  when the arithmetic is done modulo 5. 

Example 9 is a special case of the following general construction.

 EXAMPLE 19 Let F be any of Q, R, C, or Zp ( p a prime). The set 
GL(2, F) of all 2 3 2 matrices with nonzero determinants and entries 
from F is a non-Abelian group under matrix multiplication. As in 
 Example 18, when F is Zp, modulo p arithmetic is used to calculate 
 determinants, matrix products, and inverses. The formula given in 

Example 9 for the inverse of ca b

c d
d  remains valid for elements from

GL(2, Zp), provided we interpret division by ad 2 bc as multiplication 
by the inverse of (ad 2 bc) modulo p. For example, in GL(2, Z7),

consider c4 5

6 3
d.  Then the determinant (ad 2 bc) mod 7 is (12 2 30)

mod 7 5 218 mod 7 5 3 and the inverse of 3 is 5 [since (3 ? 5) 

mod 7 5 1]. So, the inverse of c4 5

6 3
d  is c3 ? 5 2 ? 5

1 ? 5 4 ? 5
d � c1 3

5 6
d . 

[The reader should check that c4 5

6 3
d  c1 3

5 6
d � c1 0

0 1
d  in GL(2, Z7)]. 

The group GL(n, F) is called the general linear group of n 3 n  
matrices over F.

 EXAMPLE 20 The set {1, 2, . . . , n 2 1} is a group under multipli-
cation modulo n if and only if n is prime. 

 EXAMPLE 21 The set of all symmetries of the infinite ornamental 
pat tern in which arrowheads are spaced uniformly a unit apart along  
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2 | Groups 49

a line is an Abelian group under composition. Let T denote a translation 
to the right by one unit, T 21 a translation to the left by one unit, and H  
a reflection across the horizontal line of the figure. Then, every member  
of the group is of the form x1x2 ? ? ? xn, where each xi [  
{T, T21, H}. In this case, we say that T, T21, and H generate the group. 

Table 2.1 summarizes many of the specific groups that we have 
 presented thus far.

As the previous examples demonstrate, the notion of a group is a 
very broad one indeed. The goal of the axiomatic approach is to find 
properties general enough to permit many diverse examples having 
these properties and specific enough to allow one to deduce many inter-
esting consequences.

The goal of abstract algebra is to discover truths about algebraic 
 systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows  
or needs to know is that these operations, whatever they may be, have

Table 2.1  Summary of Group Examples (F can be any of Q, R, C, or Zp; L is a reflection)

   Form of 
Group Operation Identity Element Inverse Abelian

Z Addition 0 k 2k Yes
Q1 Multiplication 1 m/n, n/m Yes
   m, n . 0
Zn Addition mod n 0 k n 2 k Yes
R* Multiplication 1 x 1/x Yes

C* Multiplication 1 a 1 bi 
1

a2 � b2 a �
1

a2 � b2 bi Yes

GL(2, F) Matrix   ≥ d

ad 2 bc

2b

ad 2 bc

2c

ad 2 bc

a

ad 2 bc

¥ No
   multiplication c 1 0

0 1
d  c a b

c d
d
,

   ad 2 bc 2 0
U(n) Multiplication 1 k, Solution to Yes
   mod n  gcd(k, n) 5 1 kx mod n 5 1
Rn Componentwise (0, 0, …, 0) (a1, a2, …, an) (2a1, 2a2, …, 2an) Yes
   addition
SL(2, F) Matrix c 1 0

0 1
d  c a b

c d
d
,

 c d

�c

�b

a
d  No

   multiplication

   ad 2 bc 5 1
Dn Composition R0 Ra, L R360 2 a, L No
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certain properties. We then seek to deduce consequences of these 
properties. This is why this branch of mathematics is called abstract 
algebra. It must be remembered, however, that when a specific group 
is being discussed, a specific operation must be given (at least   
im plicitly).

Elementary Properties of Groups
Now that we have seen many diverse examples of groups, we wish to 
deduce some properties that they share. The definition itself raises 
some fundamental questions. Every group has an identity. Could a 
group have more than one? Every group element has an inverse. Could 
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique 
identity by looking at examples, because each example inherently has 
properties that may not be shared by all groups. We are forced to 
 restrict ourselves to the properties that all groups have; that is, we must 
view groups as abstract entities rather than argue by example. The next 
three theorems illustrate the abstract approach.

 Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both e and e9 are identities of G. Then,

 1. ae 5 a for all a in G, and
 2. e9a 5 a for all a in G.

The choices of a 5 e9 in (part 1) and a 5 e in (part 2) yield e9e 5 e9 
and e9e 5 e. Thus, e and e9 are both equal to e9e and so are equal to 
each other. 

Because of this theorem, we may unambiguously speak of “the iden-
tity” of a group and denote it by ‘e’ (because the German word for 
identity is Einheit).

 Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,  

ba 5 ca implies b 5 c, and ab 5 ac implies b 5 c.
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PROOF Suppose ba 5 ca. Let a9 be an inverse of a. Then multi- 
plying on the right by a9 yields (ba)a9 5 (ca)a9. Associativity yields  
b(aa9) 5 c(aa9). Then be 5 ce and, therefore, b 5 c as desired. Simi-
larly, one can prove that ab 5 ac implies b 5 c by multiplying by a9 on 
the left. 

A consequence of the cancellation property is the fact that in a 
 Cayley table for a group, each group element occurs exactly once in 
each row and column (see Exercise 31). Another consequence of the 
cancellation property is the uniqueness of inverses.

 Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G 

such that ab 5 ba 5 e.

PROOF Suppose b and c are both inverses of a. Then ab 5 e and  
ac 5 e, so that ab 5 ac. Canceling the a on both sides gives b 5 c, as 
desired. 

As was the case with the identity element, it is reasonable, in view 
of Theorem 2.3, to speak of “the inverse” of an element g of a group;  
in fact, we may unambiguously denote it by g21. This notation is sug-
gested by that used for ordinary real numbers under multiplication. 
Similarly, when n is a positive integer, the associative law allows us to 
use gn to denote the unambiguous product

gg ? ? ? g.

n factors

We define g0 5 e. When n is negative, we define gn 5 (g21)|n| [for ex-
ample, g23 5 (g21)3]. Unlike for real numbers, in an abstract group we 
do not permit noninteger exponents such as g1/2. With this notation, the 
familiar laws of exponents hold for groups; that is, for all integers m and 
n and any group element g, we have gmgn 5 gm1n and (gm)n 5 gmn. 
 Although the way one manipulates the group expressions gmgn and  
(gm)n coincides with the laws of exponents for real numbers, the laws 
of  exponents fail to hold for expressions involving two group elements. 
Thus, for groups in general, (ab)n Z anbn (see Exercise 23).

The important thing about the existence of a unique inverse for each 
group element a is that for every element b in the group there is a unique 
solution in the group of the equations ax 5 b and xa 5 b. Namely,  
x 5 a21b in the first case and x 5 ba21 in the second case. In contrast, 
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in the set {0, 1, 2, 3, 4, 5}, the equation 2x 5 4 has the solutions x 5 2 
and x 5 5 under the operation multiplication mod 6. However, this set 
is not a group under multiplication mod 6.

Also, one must be careful with this notation when dealing with a 
specific group whose binary operation is addition and is denoted by 
“1.” In this case, the definitions and group properties expressed in 
multiplicative notation must be translated to additive notation. For 
 example, the inverse of g is written as 2g. Likewise, for example, g3

Table 2.2

 Multiplicative Group Additive Group

a ? b or ab Multiplication a 1 b Addition
e or 1 Identity or one 0 Zero
a21 Multiplicative inverse of a 2a Additive inverse of a
an Power of a na Multiple of a
ab21 Quotient a 2 b Difference

means g 1 g 1 g and is usually written as 3g, whereas g23 means 
(2g) 1 (2g) 1 (2g) and is written as 23g. When additive notation  
is used, do not interpret “ng” as combining n and g under the group 
operation; n may not even be an element of the group! Table 2.2 shows 
the common notation and corresponding terminology for groups under 
multiplication and groups under addition. As is the case for real num-
bers, we use a 2 b as an abbreviation for a 1 (2b).

Because of the associative property, we may unambiguously write 
the expression abc, for this can be reasonably interpreted as only (ab)c 
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or 
deleted at will without affecting the value of a product involving any 
number of group elements. Thus,

a2(bcdb2) 5 a2b(cd )b2 5 (a2b)(cd )b2 5 a(abcdb)b,

and so on.
Although groups do not have the property that (ab)n 5 anbn, there is 

a simple relationship between (ab)21 and a21 and b21.

 Theorem 2.4 Socks–Shoes Property

For group elements a and b, (ab)21 5 b21a21.

PROOF Since (ab)(ab)21 5 e and (ab)(b21a21) 5 a(bb21)a21 5  
aea21 5 aa21 5 e, we have by Theorem 2.3 that (ab)21 5 b21a21. 
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Historical Note
We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was 
replete with annoying and puzzling ambiguities. It was Werner 
Heisenberg who recognized the cause. He observed that the product of 
the quantum-theoretical analogs of the classical Fourier series did not 
necessarily commute. For all his boldness, this shook Heisenberg. As 
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt 
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new 
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift für Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved 
in it that I thought about it for the whole day and could hardly sleep at night. For I 
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light: 
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas 
in terms of matrices, but it was Heisenberg who was credited with the 
formulation. In his autobiography, Born lamented [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study 
them.

Upon learning in 1933 that he was to receive the Nobel Prize  
with Dirac and Schrödinger for this work, Heisenberg wrote to Born 
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your 
congratulations, it was partly because of my rather bad conscience with respect to 
you. The fact that I am to receive the Nobel Prize alone, for work done in Göttingen 
in collaboration—you, Jordan, and I—this fact depresses me and I hardly know 
what to write to you. I am, of course, glad that our common efforts are now appreci-
ated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to 
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine 
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the 
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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Exercises

“For example” is not proof.
jewish proverb

  1. Which of the following binary operations are closed?
 a. subtraction of positive integers
 b. division of nonzero integers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
  2. Which of the following binary operations are associative?
 a. multiplication mod n
 b. division of nonzero rationals
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
  3. Which of the following binary operations are commutative?
 a. substraction of integers
 b. division of nonzero real numbers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with real entries
  4. Which of the following sets are closed under the given operation?
 a. {0, 4, 8, 12} addition mod 16
 b. {0, 4, 8, 12} addition mod 15
 c. {1, 4, 7, 13} multiplication mod 15
 d. {1, 4, 5, 7} multiplication mod 9
  5. In each case, find the inverse of the element under the given  

operation.
 a. 13 in Z20
 b. 13 in U(14)
 c. n21 in U(n) (n . 2)
 d. 322i in C*, the group of nonzero complex numbers under mul-

tiplication
  6. In each case, perform the indicated operation.
 a. In C*, (7 1 5i)( 23 1 2i)

 b. In GL(2, Z13), det c7 4

1 5
d

 c. In GL (2, R), c6 3

8 2
d �1

 d. In GL(2, Z13), c6 3

8 2
d �1
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2 | Groups 55

  7. Give two reasons why the set of odd integers under addition is not 
a group.

  8. Referring to Example 13, verify the assertion that subtraction is not 
associative.

  9. Show that {1, 2, 3} under multiplication modulo 4 is not a group 
but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

 10. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-
hibiting a pair of matrices A and B in GL(2, R) such that AB 2 BA.

 11. Find the inverse of the element c2 6

3 5
d in GL(2, Z11).

 12. Give an example of group elements a and b with the property that 
a21ba 2 b.

 13. Translate each of the following multiplicative expressions into its 
additive counterpart. Assume that the operation is commutative.

 a. a2b3

 b. a22(b21c)2

 c. (ab2)23c2 5 e
 14. For group elements a, b, and c, express (ab)3 and (ab22 c)22 with-

out parentheses.
 15. Let G be a group and let H 5 {x21 | x [ G}. Show that G 5 H  

as sets.
 16. Show that the set {5, 15, 25, 35} is a group under multiplication 

modulo 40. What is the identity element of this group? Can you see 
any relationship between this group and U(8)?

 17. (From the GRE Practice Exam)* Let p and q be distinct primes. 
Suppose that H is a proper subset of the integers that is a group un-
der addition that contains exactly three elements of the set {p, p 1 q, 
pq, pq, qp}.  Determine which of the following are the three elements 
in H.
 a. pq, pq, qp

 b. p 1 q, pq, pq

 c. p, p 1 q, pq
 d. p, pq, qp

 e. p, pq, pq

 18. List the members of H 5 {x 2 | x [ D4} and K 5 {x  [ D4 | x
2 5 e}.

 19. Prove that the set of all 2 3 2 matrices with entries from R and 
determinant 11 is a group under matrix multiplication.

 20. For any integer n . 2, show that there are at least two elements in 
U(n) that satisfy x2 5 1.

 21. An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead, 

*GRE materials selected from the GRE Practice Exam, Question 9 by Educational Testing 
Service. Reprinted by permission of Educational Testing Service, the copyright owner.
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one of the nine integers was inadvertently left out, so that the list 
appeared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out? 
(This really happened!)

 22. Let G be a group with the property that for any x, y, z in the group, 
xy 5 zx implies y 5 z. Prove that G is Abelian. (“Left-right cancel-
lation” implies commutativity.)

 23. (Law of Exponents for Abelian Groups) Let a and b be elements of 
an Abelian group and let n be any integer. Show that (ab)n 5 anbn. 
Is this also true for non-Abelian groups?

 24. (Socks–Shoes Property) Draw an analogy between the statement 
(ab)21 5 b21 a21 and the act of putting on and taking off your socks 
and shoes. Find distinct nonidentity elements a and b from a  
non-Abelian group such that (ab)21 5 a21 b21. Find an example 
that shows that in a group, it is possible to have (ab)22 Z b22 a22. 
What would be an appropriate name for the group property  
(abc)21 5 c21 b21 a21?

 25. Prove that a group G is Abelian if and only if (ab)21 5 a21b21 for 
all a and b in G.

 26. Prove that in a group, (a21)21 5 a for all a.

 27. For any elements a and b from a group and any integer n, prove 
that (a21ba)n 5 a21bna.

 28. If a1, a2, . . . , an belong to a group, what is the inverse of a1a2 . . . an?

 29. The integers 5 and 15 are among a collection of 12 integers that 
form a group under multiplication modulo 56. List all 12.

 30. Give an example of a group with 105 elements. Give two examples 
of groups with 44 elements.

 31. Prove that every group table is a Latin square†; that is, each ele-
ment of the group appears exactly once in each row and each  
column.

 32. Construct a Cayley table for U(12).

 33. Suppose the table below is a group table. Fill in the blank entries.

†Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.

  e a b c d

 e e — — — —
 a — b — — e
 b — c d e —
 c — d — a b

 d — — — — —
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2 | Groups 57

 34. Prove that in a group, (ab)2 5 a2b2 if and only if ab 5 ba.
 35. Let a, b, and c be elements of a group. Solve the equation axb 5 c 

for x. Solve a21xa 5 c for x.
 36. Let a and b belong to a group G. Find an x in G such that xabx21 5 ba.
 37. Let G be a finite group. Show that the number of elements x of G 

such that x3 5 e is odd. Show that the number of elements x of G 
such that x2 2 e is even.

 38. Give an example of a group with elements a, b, c, d, and x such 
that axb 5 cxd but ab 2 cd. (Hence “middle cancellation” is not 
valid in groups.)

 39. Suppose that G is a group with the property that for every choice 
of elements in G, axb 5 cxd implies ab 5 cd. Prove that G is  
Abelian. (“Middle cancellation” implies commutativity.)

 40. Find an element X in D4 such that R90VXH 5 D9.
 41. Suppose F1 and F2 are distinct reflections in a dihedral group Dn. 

Prove that F1F2 2 R0.
 42. Suppose F1 and F2 are distinct reflections in a dihedral group Dn 

such that F1F2 5 F2F1. Prove that F1F2 5 R180.
 43. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that RkFRk 5 F.
 44. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that FRkF 5 R2k. Why does this imply that Dn is  
non-Abelian?

 45. In the dihedral group Dn, let R 5 R360/n and let F be any reflection. 
Write each of the following products in the form Ri or RiF, where  
0 # i , n.

  a. In D4, FR22FR5

  b. In D5, R
23FR4FR22

  c. In D6, FR5FR22F
 46. Prove that the set of all rational numbers of the form 3m6n, where m 

and n are integers, is a group under multiplication.
 47. Prove that if G is a group with the property that the square of every 

element is the identity, then G is Abelian. (This exercise is referred 
to in Chapter 26.)

 48. Prove that the set of all 3 3 3 matrices with real entries of the form

£ 1 a b

0 1 c

0 0 1

§
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  is a group. (Multiplication is defined by

£1 a b

0 1 c

0 0 1

§  £1 a� b�

0 1 c�

0 0 1

§ � £1 a � a� b� � ac� � b

0 1 c� � c

0 0 1

§ .
 

 This group, sometimes called the Heisenberg group after the  Nobel 
Prize–winning physicist Werner Heisenberg, is intimately related to 
the Heisenberg Uncertainty Principle of quantum physics.)

 49. Prove the assertion made in Example 20 that the set {1, 2, . . . ,  
n 2 1} is a group under multiplication modulo n if and only if n is 
prime.

 50. In a finite group, show that the number of nonidentity elements 
that satisfy the equation x5 5 e is a multiple of 5. If the stipulation 
that the group be finite is omitted, what can you say about the 
number of nonidentity elements that satisfy the equation x5 5 e?

 51. List the six elements of GL(2, Z2). Show that this group is non-
Abelian by finding two elements that do not commute. (This exer-
cise is referred to in Chapter 7.)

 52. Let G � e ca a

a a
d �a [ R, a Z 0 f . Show that G is a group under

  matrix multiplication. Explain why each element of G has an inverse 
even though the matrices have 0 determinants. (Compare with  
Example 10.)

 53. Suppose that in the definition of a group G, the condition that there 
exists an element e with the property ae 5 ea 5 a for all a in G is 
replaced by ae 5 a for all a in G. Show that ea 5 a for all a in G. 
(Thus, a one-sided identity is a two-sided identity.)

 54. Suppose that in the definition of a group G, the condition that for 
each element a in G there exists an element b in G with the prop-
erty ab 5 ba 5 e is replaced by the condition ab 5 e. Show that  
ba 5 e. (Thus, a one-sided inverse is a two-sided inverse.)

Computer Exercises

Software for the computer exercises in this chapter is available 
at the website:

http://www.d.umn.edu/~jgallian
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3 Finite Groups; 
Subgroups

In our own time, in the period 1960–1980, we have seen particle physics 
emerge as the playground of group theory.

FREEMAN DYSON

Terminology and Notation
As we will soon discover, finite groups—that is, groups with finitely 
many elements—have interesting arithmetic properties. To facilitate 
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its  
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order, 
whereas the group U(10) 5 {1, 3, 7, 9} under multiplication modulo 
10 has order 4.

Definition Order of an Element
The order of an element g in a group G is the smallest positive integer 
n such that gn 5 e. (In additive notation, this would be ng 5 0.) If no 
such integer exists, we say that g has infinite order. The order of an 
 element g is denoted by |g|.

So, to find the order of a group element g, you need only compute the 
sequence of products g, g2, g3, . . . , until you reach the identity for the 
first time. The exponent of this product (or coefficient if the operation is 
addition) is the order of g. If the identity never appears in the sequence, 
then g has infinite order.

 EXAMPLE 1 Consider U(15) 5 {1, 2, 4, 7, 8, 11, 13, 14} under 
multiplication modulo 15. This group has order 8. To find the order of 
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the element 7, say, we compute the sequence 71 5 7, 72 5 4, 73 5 13, 
74 5 1, so |7| 5 4. To find the order of 11, we compute 111 5 11,  
112 5 1, so |11| 5 2. Similar computations show that |1| 5 1, |2| 5 4, 
|4| 5 2, |8| 5 4, |13| 5 4, |14| 5 2. [Here is a trick that makes these 
calculations easier. Rather than compute the sequence 131, 132, 133, 
134, we may observe that 13 5 22 mod 15, so that 132 5 (22)2 5 4, 
133 5 22 ? 4 5 28, 134 5 (22)(28) 5 1.]†     

 EXAMPLE 2 Consider Z10 under addition modulo 10. Since 1 ? 2 5 2, 
2 ? 2 5 4, 3 ? 2 5 6, 4 ? 2 5 8, 5 ? 2 5 0, we know that |2| 5 5. Similar 
computations show that |0| 5 1, |7| 5 10, |5| 5 2, |6| 5 5. (Here 2 ? 2 is 
an abbreviation for 2 1 2, 3 ? 2 is an abbreviation for 2 1 2 1 2, etc.) 

 EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero 
element has infinite order, since the sequence a, 2a, 3a, . . . never includes 
0 when a � 0. 

The perceptive reader may have noticed among our examples of 
groups in Chapter 2 that some are subsets of others with the same 
 binary operation. The group SL(2, R) in Example 18, for instance, is a 
subset of the group GL(2, R) in Example 9. Similarly, the group of 
complex numbers {1, 21, i, 2i} under multiplication is a subset of the 
group described in Example 15 for n equal to any multiple of 4. This 
situation arises so often that we introduce a special term to describe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we 
say that H is a subgroup of G.

We use the notation H # G to mean that H is a subgroup of G. If we 
want to indicate that H is a subgroup of G but is not equal to G itself, 
we write H , G. Such a subgroup is called a proper subgroup. The 
subgroup {e} is called the trivial subgroup of G; a subgroup that is not 
{e} is called a nontrivial subgroup of G.

Notice that Zn under addition modulo n is not a subgroup of Z under 
addition, since addition modulo n is not the operation of Z.

Subgroup Tests
When determining whether or not a subset H of a group G is a sub-
group of G, one need not directly verify the group axioms. The next 

† The website http://www.google.com provides a convenient way to do modular arith-
metic. For example, to compute 134 mod 15, just type “13ˆ4 mod 15” in the search box.
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three results provide simple tests that suffice to show that a subset of a 
group is a subgroup.

 Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab21 is in H 

whenever a and b are in H, then H is a subgroup of G. (In additive 

notation, if a 2 b is in H whenever a and b are in H, then H is a 

subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear 
that this operation is associative. Next, we show that e is in H. Since H 
is nonempty, we may pick some x in H. Then, letting a 5 x and b 5 x 
in the hypothesis, we have e 5 xx21 5 ab21 is in H. To verify that x21 
is in H whenever x is in H, all we need to do is to choose a 5 e and  
b 5 x in the statement of the theorem. Finally, the proof will be com-
plete when we show that H is closed; that is, if x, y belong to H, we 
must show that xy is in H also. Well, we have already shown that y21 is 
in H whenever y is; so, letting a 5 x and b 5 y21, we have xy 5 x(y21)21 5 
ab21 is in H.     

Although we have dubbed Theorem 3.1 the One-Step Sub group Test, 
there are actually four steps involved in applying the theorem. (After 
you gain some experience, the first three steps will be routine.) Notice 
the similarity between the last three steps listed  below and the three 
steps involved in the Second Principle of Mathematical Induction.

 1.  Identify the property P that distinguishes the elements of H; that is, 
identify a defining condition.

 2.  Prove that the identity has property P. (This verifies that H is 
 nonempty.)

 3.  Assume that two elements a and b have property P.
 4.  Use the assumption that a and b have property P to show that 

ab21 has pro perty P.

The procedure is illustrated in Examples 4 and 5.

 EXAMPLE 4 Let G be an Abelian group with identity e. Then H 5  
{x [ G | x2 5 e} is a subgroup of G. Here, the defining property of H 
is the condition x2 5 e. So, we first note that e2 5 e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a2 5 e 
and b2 5 e. Finally, we must show that (ab21)2 5 e. Since G is  
Abelian, (ab21)2 5 ab21ab21 5 a2(b21)2 5 a2(b2)21 5 ee21 5 e. 
Therefore, ab21 belongs to H and, by the One-Step Subgroup Test, H 
is a subgroup of G.     
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3 | Finite Groups; Subgroups 63

In many instances, a subgroup will consist of all elements that have 
a particular form. Then the property P is that the elements have that 
particular form. This is illustrated in the following example.

 EXAMPLE 5 Let G be an Abelian group under multiplication with 
identity e. Then H 5 {x2 | x [ G} is a subgroup of G. (In words, H is 
the set of all “squares.”) Since e2 5 e, the identity has the correct form. 
Next, we write two elements of H in the correct form, say, a2 and b2. We 
must show that a2(b2)21 also has the correct form; that is, a2(b2)21 is the 
square of some element. Since G is Abelian, we may write a2(b2)21 as 
(ab21)2, which is the correct form. Thus, H is a subgroup of G.     

Beginning students often prefer to use the next theorem instead of 
Theorem 3.1.

 Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H 

whenever a and b are in H (H is closed under the operation), and a21 

is in H whenever a is in H (H is closed under taking inverses), then H 

is a subgroup of G.

PROOF By Theorem 3.1, it suffices to show that a, b [ H implies  
ab21 [ H. So, we suppose that a, b [ H. Since H is closed under  
taking inverses, we also have b21 [ H. Thus, ab21 [ H by closure un-
der multiplication.     

When applying the Two-Step Subgroup Test, we proceed exactly as 
in the case of the One-Step Subgroup Test, except we use the assump-
tion that a and b have property P to prove that ab has property P and 
that a21 has property P.

 EXAMPLE 6 Let G be an Abelian group. Then H 5 {x [ G | |x| is 
finite} is a subgroup of G. Since e1 5 e, H Z u. To apply the Two-Step 
Subgroup Test we assume that a and b belong to H and prove that ab 
and a21 belong to H. Let |a| 5 m and |b| 5 n. Then, because G is 
Abelian, we have (ab)mn 5 (am)n(bn)m 5 enem 5 e. Thus, ab has finite 
order (this does not show that |ab| 5 mn). Moveover, (a21)m 5 (am)21 5 
e21 5 e shows that a21 has finite order. 

We next illustrate how to use the Two-Step Subgroup Test by intro-
ducing an important technique for creating new subgroups of Abelian 
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64 Groups

groups from existing ones. The method will be extended to some sub-
groups of non-Abelian groups in later chapters.

 EXAMPLE 7 Let G be an Abelian group and H and K be subgroups 
of G. Then HK 5 {hk | h [ H, k [ K} is a subgroup of G. First note 
that e 5 ee belongs to HK because e is in both H and K. Now suppose 
that a and b are in HK. Then by definition of H there are elements h1,  
h2 [ H and k1, k2 [ K such that a 5 h1k1 and b 5 h2k2. We must prove 
that ab [ HK and a21 [ HK. Observe that because G is Abelian and H 
and K are subgroups of G, we have ab 5 h1k1h2k2 5 (h1h2)(k1k2) [ HK. 
Likewise, a21 5 (h1k1)

21 5 k1
21h1

21 5 h1
21k1

21 [ HK. 

How do you prove that a subset of a group is not a subgroup? Here 
are three possible ways, any one of which guarantees that the subset is 
not a subgroup:

 1. Show that the identity is not in the set.
 2. Exhibit an element of the set whose inverse is not in the set.
 3. Exhibit two elements of the set whose product is not in the set.

 EXAMPLE 8 Let G be the group of nonzero real numbers under 
multiplication, H 5 {x [ G | x 5 1 or x is irrational} and K 5  
{x [ G | x $ 1}. Then H is not a subgroup of G, since 22 [ H  
but 22 ? 22 5 2 o H. Also, K is not a subgroup, since 2 [ K but  
221 o K.  

When dealing with finite groups, it is easier to use the following 
subgroup test.

 Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under 

the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that a21 [ H 
whenever a [ H. If a 5 e, then a21 5 a and we are done. If a ∞ e, 
consider the sequence a, a2, . . . . By closure, all of these elements  
belong to H. Since H is finite, not all of these elements are distinct. Say 
ai 5 aj and i . j. Then, ai2j 5 e; and since a ∞ e, i 2 j . 1. Thus, 
aai2j21 5 ai2j 5 e and, therefore, ai2j21 5 a21. But i 2 j 2 1 $ 1  
implies ai2j21 [ H and we are done.     
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3 | Finite Groups; Subgroups 65

Examples of Subgroups
The proofs of the next few theorems show how our subgroup tests 
work. We first introduce an important notation. For any element a from 
a group, we let kal denote the set {an | n [ Z}. In particular, observe 
that the exponents of a include all negative integers as well as 0 and the 
positive integers (a0 is defined to be the identity).

 Theorem 3.4 kal Is a Subgroup

Let G be a group, and let a be any element of G. Then, kal is a sub-

group of G.

PROOF Since a [ kal, kal is not empty. Let an, am [ kal. Then,  
an(am)21 5 an2m [ kal; so, by Theorem 3.1, kal is a subgroup of G. 

The subgroup kal is called the cyclic subgroup of G generated by a. In 
the case that G 5 kal, we say that G is cyclic and a is a generator of G. 
(A cyclic group may have many generators.) Notice that although the 
list . . . , a22, a21, a0, a1, a2, . . . has infinitely many entries, the set  
{an | n [ Z} might have only finitely many elements. Also note that, 
since aiaj 5 ai1j 5 aj1i 5 ajai, every cyclic group is Abelian.

 EXAMPLE 9 In U(10), k3l 5 {3, 9, 7, 1} 5 U(10), for 31 5 3,  
32 5 9, 33 5 7, 34 5 1, 35 5 34 ? 3 5 1 ? 3, 36 5 34 ? 32 5 9, . . . ; 321 5 7 
(since 3 ? 7 5 1), 322 5 9, 323 5 3, 324 5 1, 325 5 324 ? 321 5  
1 ? 7, 326 5 324 ? 322 5 1 ? 9 5 9, . . . .     

 EXAMPLE 10 In Z10, k2l 5 {2, 4, 6, 8, 0}. Remember, an means na 
when the operation is addition.     

 EXAMPLE 11 In Z, k21l 5 Z. Here each entry in the list . . . , 
22(21), 21(21), 0(21), 1(21), 2(21), . . . represents a distinct group 
element.     

 EXAMPLE 12 In Dn, the dihedral group of order 2n, let R denote a 
rotation of 360/n degrees. Then,

Rn 5 R360° 5 e,    Rn11 5 R,    Rn12 5 R2, . . . .

Similarly, R21 5 Rn21, R22 5 Rn22, . . . , so that kRl 5 {e, R, . . . , 
Rn21}. We see, then, that the powers of R “cycle back” periodically 
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66 Groups

with period n. Visually, raising R to successive positive powers is the 
same as moving counterclockwise around the following circle one 
node at a time, whereas raising R to successive negative powers is the 
same as moving around the circle clockwise one node at a time.

 

Rn 5 e

Rn11 5 R R21 5 Rn21 

R22 5 Rn22 Rn12 5 R2

 

In Chapter 4 we will show that |kal| 5 |a|; that is, the order of the 
subgroup generated by a is the order of a itself. (Actually, the definition 
of |a| was chosen to ensure the validity of this equation.)

For any element a of a group G, it is useful to think of kal as the 
smallest subgroup of G containing a. This notion can be extended to 
any collection S of elements from a group G by defining kSl as the  
subgroup of G with the property that kSl contains S and if H is any  
subgroup of G containing S, then H also contains kSl Thus, kSl is the 
smallest subgroup of G that contains S. The set kSl is called the sub-
group generated by S. We illustrate this concept in the next example. 
The verifications are left to the reader (Exercise 40).

 EXAMPLE 13 In Z20, k8,14l 5 {0, 2, 4,…, 18} 5 k2l; in Z, k8, 13l 5 
Z; in D4, kH, Vl 5 {H, H2, V, HV} 5 {R0, R180, H, V}; in D4, kR90, Vl 5 
{R90, R90

2, R90
3, R90

4, V, R90V, R90
2V, R90

3V} 5 D4; in C*, the group of 
nonzero complex numbers under multiplication, k1, il 5 {1, 21, i, –i} 5 
kil; in C, the group of complex numbers under addition, k1, il 5 {a 1 bi 
| a, b [ Z} (This group is called the “Gaussian integers”); in R, the 
group of real numbers under addition, k2, p, 22l 5 {2a 1 bp 1 c22 
| a, b, c [ Z}; in a group in which a, b, c, and d commute, ka, b, c, dl 5 
{aqbrcsdt | q, r, s, t [ Z}. 

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G ), of a group G is the subset of elements in G that  
commute with every element of G. In symbols,

Z(G) 5 {a [ G | ax 5 xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for  
center is Zentrum. The term was coined by J. A. de Séguier in 1904.]
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3 | Finite Groups; Subgroups 67

 Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.

PROOF For variety, we shall use Theorem 3.2 to prove this result. 
Clearly, e [ Z(G), so Z(G) is nonempty. Now, suppose a, b [ Z(G). 
Then (ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab) for all x in G; 
and, therefore, ab [ Z(G).

Next, assume that a [ Z(G). Then we have ax 5 xa for all x in G. 
What we want is a21x 5 xa21 for all x in G. Informally, all we need do 
to obtain the second equation from the first one is simultaneously to 
bring the a’s across the equals sign:

ax 5 xa

becomes xa21 5 a21x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a21 on the left, and the a on the 
right comes across as a21 on the right.) Formally, the desired equation 
can be obtained from the original one by multiplying it on the left and 
right by a21, like so:

a21(ax)a21 5 a21(xa)a21,
(a21a)xa21 5 a21x(aa21),

exa21 5 a21xe,
xa21 5 a21x.

This shows that a21 [ Z(G) whenever a is.     

For practice, let’s determine the centers of the dihedral groups.

 EXAMPLE 14 For n $ 3,

Z1Dn2 � e 5R0, R1806 when n is even,5 5R06 when n is odd.

To verify this, first observe that since every rotation in Dn is a power 
of R360/n, rotations commute with rotations. We now investigate when a 
rotation commutes with a reflection. Let R be any rotation in Dn and let  
F be any reflection in Dn. Observe that since RF is a reflection we have 
RF 5 (RF )21 5 F21 R21 5 FR21. Thus, it follows that R and F commute 
if and only if FR 5 RF  5 FR21. By cancellation, this holds if and only 
if R 5 R21. But R 5 R21 only when R 5 R0 or R 5 R180, and R180 is in 
Dn only when n is even. So, we have proved that Z(Dn) 5 {R0} when n 
is odd and Z(Dn) 5 {R0, R180} when n is even. 
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68 Groups

Although an element from a non-Abelian group does not necessarily 
commute with every element of the group, there are always some 
 elements with which it will commute. For example, every element a 
commutes with all powers of a. This observation prompts the next defi-
nition and theorem.

Definition Centralizer of a in G
Let a be a fixed element of a group G. The centralizer of a in G, C(a), is 
the set of all elements in G that commute with a. In symbols, C(a) 5 
{g [ G | ga 5 ag}.

 EXAMPLE 15 In D4, we have the following centralizers:

 C(R0) 5 D4 5 C(R180),
 C(R90) 5 {R0, R90, R180, R270} 5 C(R270),
 C(H) 5 {R0, H, R180, V} 5 C(V),
 C(D) 5 {R0, D, R180, D9} 5 C(D9).     

Notice that each of the centralizers in Example 15 is actually a sub-
group of D4. The next theorem shows that this was not a coincidence.

 Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to 
supply (Exercise 41).     

Notice that for every element a of a group G, Z(G) # C(a). Also, 
 observe that G is Abelian if and only if C(a) 5 G for all a in G.

Exercises

The purpose of proof is to understand, not to verify.
arnold ross

  1. For each group in the following list, find the order of the group 
and the order of each element in the group. What relation do you 
see between the orders of the elements of a group and the order of 
the group?

Z12,    U(10),    U(12),    U(20),    D4
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3 | Finite Groups; Subgroups 69

  2. Let Q be the group of rational numbers under addition and let Q* 
be the group of nonzero rational numbers under multiplication. 
In Q, list the elements in k1

2l. In Q*, list the elements in k1
2l.

  3. Let Q and Q* be as in Exercise 2. Find the order of each element in 
Q and in Q*.

  4. Prove that in any group, an element and its inverse have the same 
order.

  5. Without actually computing the orders, explain why the two ele-
ments in each of the following pairs of elements from Z30 must 
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

  6. In the group Z12, find |a|, |b|, and |a 1 b| for each case.
 a. a 5 6, b 5 2
 b. a 5 3, b 5 8
 c. a 5 5, b 5 4

Do you see any relationship between |a|, |b|, and |a 1 b|?
  7. If a, b, and c are group elements and |a| 5 6, |b| 5 7, express 

(a4c22b4)21 without using negative exponents.
  8. What can you say about a subgroup of D3 that contains R240 and a 

reflection F? What can you say about a subgroup of D3 that con-
tains two reflections?

  9. What can you say about a subgroup of D4 that contains R270 and a 
reflection? What can you say about a subgroup of D4 that contains 
H and D? What can you say about a subgroup of D4 that contains H 
and V?

 10. How many subgroups of order 4 does D4 have?
 11. Determine all elements of finite order in R*, the group of nonzero 

real numbers under multiplication.
 12. If a and b are group elements and ab Z ba, prove that aba Z e.
 13. Suppose that H is a nonempty subset of a group G that is closed 

under the group operation and has the property that if a is not in H 
then a21 is not in H. Is H a subgroup?

 14. Let G be the group of polynomials under addition with coefficients 
from Z10. Find the orders of f (x) 5 7x2 1 5x 1 4, g(x) 5 4x2 1 8x  
1 6, and f (x) 1 g(x) 5 x2 1 3x. If h(x) 5 anx

n 1 an21xn21 1 …  
1 a0 belongs to G, determine |h(x)| given that gcd (a1, a2, …, an) 5 1; 
gcd(a1, a2, …, an) 5 2; gcd(a1, a2, …, an) 5 5; and gcd(a1, a2, …,  
an) 5 10.

 15. If a is an element of a group G and |a| 5 7, show that a is the cube 
of some element of G.
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70 Groups

 16. Suppose that H is a nonempty subset of a group G with the prop-
erty that if a and b belong to H then a21b21 belongs to H. Prove or 
disprove that this is enough to guarantee that H is a subgroup of G.

 17. Prove that if an Abelian group has more than three elements of 
order 2, then it has at least 7 elements of order 2. Find an example 
that shows this is not true for non-Abelian groups.

 18. Suppose that a is a group element and a6 5 e. What are the possi-
bilities for |a|? Provide reasons for your answer.

 19. If a is a group element and a has infinite order, prove that am ? an 
when m ? n.

 20. Let x belong to a group. If x2 2 e and x6 5 e, prove that x4 2 e and 
x5 ∞ e. What can we say about the order of x?

 21. Show that if a is an element of a group G, then |a| # |G|.
 22. Show that U(14) 5 k3l 5 k5l. [Hence, U(14) is cyclic.] Is  

U(14) 5 k11l?
 23. Show that U(20) 2 kkl for any k in U(20). [Hence, U(20) is not 

cyclic.]
 24. Suppose n is an even positive integer and H is a subgroup of Zn. 

Prove that either every member of H is even or exactly half of the 
members of H are even.

 25. Prove that for every subgroup of Dn, either every member of the 
subgroup is a rotation or exactly half of the members are rotations.

 26. Prove that a group with two elements of order 2 that commute must 
have a subgroup of order 4.

 27. For every even integer n, show that Dn has a subgroup of order 4.
 28. Suppose that H is a proper subgroup of Z under addition and H 

contains 18, 30, and 40. Determine H.
 29. Suppose that H is a proper subgroup of Z under addition and that H 

contains 12, 30, and 54. What are the possibilities for H?
 30. Prove that the dihedral group of order 6 does not have a subgroup 

of order 4.
 31. For each divisor k . 1 of n, let Uk(n) 5 {x [ U(n) | x mod k 5 1}. 

[For example, U3(21) 5 {1, 4, 10, 13, 16, 19} and U7(21) 5 {1, 8}.] 
List the elements of U4(20), U5(20), U5(30), and U10(30). Prove that 
Uk(n) is a subgroup of U(n). Let H 5 {x [ U(10) | x mod 3 5 1}. Is 
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)

 32. If H and K are subgroups of G, show that H > K is a subgroup of 
G. (Can you see that the same proof shows that the intersection 
of  any number of subgroups of G, finite or infinite, is again a 
 subgroup of G?)
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3 | Finite Groups; Subgroups 71

 33. Let G be a group. Show that Z(G) 5 >a[GC(a). [This means the 
 intersection of all subgroups of the form C(a).]

 34. Let G be a group, and let a [ G. Prove that C(a) 5 C(a21).
 35. For any group element a and any integer k, show that C(a) # C(ak). 

Use this fact to complete the following statement: “In a group, if x 
commutes with a, then . . . .” Is the converse true?

 36. Complete the partial Cayley group table given below.

 37. Suppose G is the group defined by the following Cayley table.

 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 6 5
4 4 3 1 2 8 7 5 6
5 5 6 8 7 1   
6 6 5 7 8  1  
7 7 8 5 6   1 
8 8 7 6 5    1

 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 8 7 6 5 4 3
3 3 4 5 6 7 8 1 2
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 4 3 2 1 8 7
7 7 8 1 2 3 4 5 6
8 8 7 6 5 4 3 2 1

 a. Find the centralizer of each member of G.
 b. Find Z(G).
 c.  Find the order of each element of G. How are these orders arith-

metically related to the order of the group?

 38. If a and b  are distinct group elements, prove that either a2 2 b2 or 
a3 2 b3.

 39. Let S be a subset of a group and let H be the intersection of all sub-
groups of G that contain S.

 a. Prove that kSl 5 H.
 b. If S is nonempty, prove that kSl 5 {s1

n1 s2
n2  … sm

nm | m $ 1, si [ S, 
ni [ Z}. (The si terms need not be distinct.)

99708_ch03_ptg01_hr_060-076.indd   71 03/05/12   2:09 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



72 Groups

 40. In the group Z, find
 a. k8, 14l;
 b. k8, 13l;
 c. k6, 15l;
 d. km, nl;
 e. k12, 18, 45l.

In each part, find an integer k such that the subgroup is kkl.
 41. Prove Theorem 3.6.

 42. If H is a subgroup of G, then by the centralizer C(H) of H we mean 
the set {x [ G | xh 5 hx for all h [ H}. Prove that C(H) is a sub-
group of G.

 43. Must the centralizer of an element of a group be Abelian?

 44. Must the center of a group be Abelian?

 45. Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation 
xn 5 e is a subgroup of G. Give an example of a group G in which the 
set of all elements of G that satisfy the equation x2 5 e does not form 
a subgroup of G. (This exercise is referred to in Chapter 11.)

 46. Suppose a belongs to a group and |a| 5 5. Prove that C(a) 5 C(a3). 
Find an element a from some group such that |a| 5 6 and C(a) ∞ 
C(a3).

 47. Let G be the set of all polynomials with coefficients from the set 
{0, 1, 2, 3}. We can make G a group under addition by adding the 
polynomials in the usual way, except that we use modulo 4 to com-
bine the coefficients. With this group operation, determine the or-
ders of the elements of G. Determine a necessary and sufficient 
condition for an element of G to have order 2.

 48. In each case, find elements a and b from a group such that |a| 5  
|b| 5 2.

 a. |ab| 5 3   b. |ab| 5 4   c. |ab| 5 5
  Can you see any relationship among |a|, |b|, and |ab|?
 49. Suppose a group contains elements a and b such that |a| 5 4,  

|b| 5 2, and a3b 5 ba. Find |ab|.
 50. Suppose a and b are group elements such that |a| 5 2, b ? e, and 

aba 5 b 2. Determine |b|.
 51. Let a be a group element of order n, and suppose that d is a posi-

tive divisor of n. Prove that |ad | 5 n/d.

 52. Consider the elements A � c0 �1

1     0
d and B � c 0 1

�1 �1
d from 

  SL(2, R). Find |A|, |B|, and |AB|. Does your answer surprise you?
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 53. Consider the element A � c1 1

0 1
d  in SL(2, R). What is the order of 

  A? If we view A � c1 1

0 1
d  as a member of SL(2, Zp) (p is a prime), 

  what is the order of A?
 54. For any positive integer n and any angle u, show that in the group 

SL(2, R), c cos u � sin u

sin u      cos u
d n � c cos nu � sin nu

sin nu      cos nu
d .

Use this formula to find the order ofc cos 60� � sin 60�

sin 60�      cos 60�
d  and c cos 22� � sin 22�

sin 22 �     cos 22�
d .

  (Geometrically, c cos u � sin u

sin u      cos u
d  represents a rotation of the plane 

  u degrees.)
 55. Let G be the symmetry group of a circle. Show that G has elements 

of every finite order as well as elements of infinite order.
 56. Let x belong to a group and |x| 5 6. Find |x2|, |x3|, |x4|, and |x5|. Let 

y belong to a group and |y| 5 9. Find |yi| for i 5 2, 3, . . . , 8. Do 
these examples suggest any relationship between the order of the 
power of an element and the order of the element?

 57. D4 has seven cyclic subgroups. List them. 
 58. U(15) has six cyclic subgroups. List them.
 59. Prove that a group of even order must have an element of order 2.
 60. Suppose G is a group that has exactly eight elements of order 3. 

How many subgroups of order 3 does G have?
 61. Let H be a subgroup of a finite group G. Suppose that g belongs to 

G and n is the smallest positive integer such that gn [ H. Prove that 
n divides |g|.

 62. Compute the orders of the following groups.
  a. U(3), U(4), U(12)
  b. U(5), U(7), U(35)
  c. U(4), U(5), U(20)
  d. U(3), U(5), U(15)
  On the basis of your answers, make a conjecture about the relation-

ship among |U(r)|, |U(s)|, and |U(rs)|.
 63. Let R* be the group of nonzero real numbers under multiplication 

and let H 5 {x [ R* | x2 is rational}. Prove that H is a subgroup of 
R*. Can the exponent 2 be replaced by any positive integer and still 
have H be a subgroup?
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 64. Compute |U(4)|, |U(10)|, and |U(40)|. Do these groups provide a 
counterexample to your answer to Exercise 62? If so, revise your 
conjecture.

 65. Find a cyclic subgroup of order 4 in U(40).
 66. Find a noncyclic subgroup of order 4 in U(40).

 67. Let G 5 e  ca b

c d
d ` a, b, c, d [ Z f  under addition. Let H 5

  e ca b

c d
d  [  G | a� b�c� d � 0f .  Prove that H is a subgroup of G.

  What if 0 is replaced by 1?
 68. Let H 5 {A [ GL(2, R) | det A is an integer power of 2}. Show that 

H is a subgroup of GL(2, R).
 69. Let H be a subgroup of R under addition. Let K 5 {2a | a [ H}. 

Prove that K is a subgroup of R* under multiplication.
 70. Let G be a group of functions from R to R*, where the operation 

of G is multiplication of functions. Let H 5 { f  [ G | f(2) 5 1}. 
Prove that H is a subgroup of G. Can 2 be replaced by any real 
number?

 71. Let G 5 GL(2, R) and H � e ca 0

0 b
d ` a and b are nonzero inte-

gers f
 
under the operation of matrix multiplication. Prove or

  disprove that H is a subgroup of GL(2, R).
 72. Let H 5 {a 1 bi | a, b [ R, ab $ 0}. Prove or disprove that H is a 

subgroup of C under addition.
 73. Let H 5 {a 1 bi | a, b [ R, a2 1 b2 5 1}. Prove or disprove that 

H is a subgroup of C* under multiplication. Describe the elements 
of H geometrically.

 74. Let G be a finite Abelian group and let a and b belong to G. Prove 
that the set Ka, bL 5 {aib j | i, j [ Z} is a subgroup of G. What can 
you say about |Ka, bL| in terms of |a| and |b|?

 75. Let H be a subgroup of a group G. Prove that the set HZ(G) 5  
{hz | h [ H, z [ Z(G)} is a subgroup of G. This exercise is referred 
to in this chapter.

 76. Let G be a group and H a subgroup. For any element g of G, define 
gH 5 {gh | h [ H}. If G is Abelian and g has order 2, show that the 
set K 5 H < gH is a subgroup of G. Is your proof valid if we drop 
the assumption that G is Abelian and let K = Z(G) < gZ(G)?

 77. Let a belong to a group and |a| 5 m. If n is relatively prime to m, 
show that a can be written as the nth power of some element in the 
group.

99708_ch03_ptg01_hr_060-076.indd   74 03/05/12   2:09 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3 | Finite Groups; Subgroups 75

 78. Let F be a reflection in the dihedral group Dn and R a rotation in 
Dn. Determine C(F) when n is odd. Determine C(F) when n is 
even. Determine C(R).

 79. Let G 5 GL(2, R).

 a. Find C a c1 1

1 0
d b.

 b. Find C a c0 1

1 0
d b.

 c. Find Z(G).
 80. Let G be a finite group with more than one element. Show that G 

has an element of prime order.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78 
(2005): 45–48.

In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some k in U(n). Such groups have identities 
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical 
Monthly 100 (1993): 580–582.

A set S is called Abelian forcing if the only groups that satisfy (ab)n 5 
anbn for all a and b in the group and all n in S are the Abelian ones. 
This paper characterizes the Abelian forcing sets. It can be downloaded 
at http://www.d.umn.edu/~jgallian/forcing.pdf

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216 
(1982): 505–506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an 
undergraduate student as part of a programming course.
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Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with 
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,  
consists of 14 group labs, 13 ring labs, and documentation for the   
Abstract Algebra software on which the labs are based. The software uses 
the Mathematica language, and only a basic familiarity with the program 
is required. The software can be freely downloaded at http://www 
.central.edu/eaam/ and can be used independently of the book.
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4 Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome of 
sophistication, is today one of the mathematical concepts most widely  
used in physics, chemistry, biochemistry, and mathematics itself.

alexey sosinsky, 1991

Properties of Cyclic Groups
Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G 5 {an | n [ Z}. Such an element a is called a 
generator of G. In view of the notation introduced in the preceding 
chapter, we may indicate that G is a cyclic group generated by a by 
writing G 5 kal.

In this chapter, we examine cyclic groups in detail and determine 
their important characteristics. We begin with a few examples.

 EXAMPLE 1 The set of integers Z under ordinary addition is cyclic. 
Both 1 and 21 are generators. (Recall that, when the operation is addi-
tion, 1n is interpreted as

1 1 1 1 ? ? ?  1 1
 

n terms

when n is positive and as

 (21) 1 (21) 1 ? ? ?  1 (21)
 
 |n| terms

when n is negative.)   

 EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a   
cy  clic group under addition modulo n. Again, 1 and 21 5 n 2 1 are  
generators.     
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78 Groups

Unlike Z, which has only two generators, Zn may have many genera-
tors (depending on which n we are given).

 EXAMPLE 3 Z8 5 k1l 5 k3l 5 k5l 5 k7l. To verify, for instance, that 
Z8 5 k3l, we note that k3l 5 {3, 3 1 3, 3 1 3 1 3, . . .} is the set {3, 6, 
1, 4, 7, 2, 5, 0} 5 Z8. Thus, 3 is a gen erator of Z8. On the other hand, 2 
is not a generator, since k2l 5 {0, 2, 4, 6} 2 Z8.  

 EXAMPLE 4 (See Example 11 in Chapter 2.)
U(10) 5 {1, 3, 7, 9} 5 {30, 31, 33, 32} 5 k3l. Also, {1, 3, 7, 9} 5  
{70, 73, 71, 72} 5 k7l. So both 3 and 7 are generators for U(10). 

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8) 
serves this purpose; that is, U(8) is not a cyclic group. How can we 
verify this? Well, note that U(8) 5 {1, 3, 5, 7}. But

k1l 5 {1},
k3l 5 {3, 1},
k5l 5 {5, 1},
k7l 5 {7, 1},

so U(8) 2 kal for any a in U(8).
With these examples under our belts, we are now ready to tackle  

cyclic groups in an abstract way and state their key properties.

 Theorem 4.1 Criterion for ai 5 a j

Let G be a group, and let a belong to G. If a has infinite order, then  

ai 5 aj if and only if i 5 j. If a has finite order, say, n, then kal 5  

{e, a, a2, . . . , an–1} and ai 5 aj if and only if n divides i – j.

PROOF If a has infinite order, there is no nonzero n such that an is the 
identity. Since ai 5 aj implies ai2j 5 e, we must have i 2 j 5 0, and the 
first statement of the theorem is proved.

Now assume that |a| 5 n. We will prove that kal 5 {e, a, . . . , an21}. 
Certainly, the elements e, a, . . . , an21 are in kal.

Now, suppose that ak is an arbitrary member of kal. By the division 
algorithm, there exist integers q and r such that

k 5 qn 1 r  with  0 # r , n.
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4 | Cyclic Groups 79

Then ak 5 aqn1r 5 aqnar 5 (an)qar 5 ear 5 ar, so that ak [ {e, a,  
a2, . . . , an21}. This proves that kal 5 {e, a, a2, . . . , an21}.

Next, we assume that ai 5 a j  and prove that n divides i 2 j. We 
 begin by observing that ai 5 aj implies ai2j 5 e. Again, by the division 
algorithm, there are integers q and r such that

i 2 j 5 qn 1 r    with    0 # r , n.

Then ai2j 5 aqn1r, and therefore e 5 ai2j 5 aqn1r 5 (an)qar 5 eqar 5 
ear 5 ar. Since n is the least positive integer such that an is the identity, 
we must have r 5 0, so that n divides i 2 j.

Conversely, if i 2 j 5 nq, then ai2j 5 anq 5 eq 5 e, so that  
ai 5 aj. 

Theorem 4.1 reveals the reason for the dual use of the notation and 
terminology for the order of an element and the order of a group.

 Corollary 1 |a| 5 |kal|

For any group element a, |a| 5 |kal|.

One special case of Theorem 4.1 occurs so often that it deserves 
 singling out.

 Corollary 2 ak 5 e Implies That |a| Divides k

Let G be a group and let a be an element of order n in G. If ak 5 e, 

then n divides k.

PROOF Since ak 5 e 5 a0, we know by Theorem 4.1 that n divides  
k 2 0. 

Theorem 4.1 and its corollaries for the case |a| 5 6 are illustrated in 
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says 
that multiplication in kal is essentially done by addition modulo n. That 
is, if (i 1 j) mod n 5 k, then aia j 5 ak. Thus, no matter what group G 
is, or how the element a is chosen, multiplication in kal works the same 
as addition in Zn whenever |a| 5 n. Similarly, if a has infinite order,
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80 Groups

... a–6 = a0 = a6 ...

... a –5 = a = a7...

... a–4 = a 2 = a8 ...

... a–3 = a3 = a9...

... a–2 = a4 = a 10...

... a–1 = a 5 = a 11...

Figure 4.1

then multiplication in kal works the same as addition in Z, since aia j  
5 ai1j and no modular arithmetic is done.

For these reasons, the cyclic groups Zn and Z serve as prototypes for 
all cyclic groups, and algebraists say that there is essentially only one 
cyclic group of each order. What is meant by this is that, although 
there may be many different sets of the form {an | n [ Z}, there is 
 essentially only one way to operate on these sets. Algebraists do not 
really care what the elements of a set are; they care only about the 
 algebraic properties of the set—that is, the ways in which the elements 
of a set can be combined. We will return to this theme in the chapter 
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing |ak| 
knowing only |a|, and its first corollary provides a simple way to tell 
when kail 5 kajl.

 Theorem 4.2 kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k)

Let a be an element of order n in a group and let k be a positive 

integer. Then kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k).

PROOF To simplify the notation, let d 5 gcd(n, k) and let k 5 dr. 
Since ak 5 (ad)r, we have by closure that kakl # kadl. By Theorem 0.2 
(the gcd theorem), there are integers s and t such that d 5 ns 1 kt. So, 
ad 5 ans1kt 5 ansakt 5 (an)s(ak)t 5 e(ak)t 5 (ak)t [ kakl. This  
proves kadl # kakl. So, we have verified that kakl 5 kagcd(n,k)l.

We prove the second part of the theorem by showing first that |ad| 5  
n/d for any divisor d of n. Clearly, (ad)n/d 5 an 5 e, so that |ad| # n/d. On  
the other hand, if i is a positive integer less than n/d, then (ad)i 2 e by de-
finition of |a|. We now apply this fact with d 5 gcd(n, k) to obtain |ak| 5 
|kakl| 5 |kagcd(n,k)l| 5 |agcd(n,k)| 5 n/gcd(n, k).  

The advantage of Theorem 4.2 is that it allows us to replace one  
generator of a cyclic subgroup with a more convenient one. For example, 
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4 | Cyclic Groups 81

if |a| 5 30, we have ka26l 5 ka2l, ka23l 5 kal, ka22l 5 ka2l, ka21l 5 ka3l. 
From this we can easily see that |a23| 5 30 and |a22| 5 15. Moreover, if 
one wants to list the elements of, say, ka21l, it is easier to list the elements 
of ka3l instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order 
of an element in a finite cyclic group and the order of the group.

 Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order  

of the group.

 Corollary 2 Criterion for kail � kajl and |ai| � |aj|

Let |a| 5 n. Then kail 5 kajl if and only if gcd(n, i) 5 gcd(n, j),  

and |ai| 5 |aj| if and only if gcd(n, i) 5 gcd(n, j) .

PROOF Theorem 4.2 shows that kail 5 kagcd(n,i)l and ka jl 5 kagcd(n,j)l, 
so that the proof reduces to proving that kagcd(n,i)l 5 kagcd(n,j)l if and 
only if gcd(n, i) 5 gcd(n,  j). Certainly, gcd(n, i) 5 gcd(n, j) implies 
that kagcd(n,i)l 5 kagcd(n, j)l. On the other hand, kagcd(n,i)l 5 kagcd(n,j)l 
 implies that |agcd(n,i)| 5 |agcd(n,j)|, so that by the second conclusion of 
Theorem 4.2, we have n/gcd(n, i) 5 n/gcd(n, j), and therefore gcd(n, i) 5 
gcd(n, j). 

The second part of the corollary follows from the first part and 
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding 
corollary.

 Corollary 3 Generators of Finite Cyclic Groups

Let |a| 5 n. Then kal 5 kajl  if and only if gcd(n, j) 5 1, and  

|a| 5 |kajl| if and only if gcd(n, j) 5 1.

 Corollary 4 Generators of Zn

An integer k in Z
n 

 is a generator of Z
n
 if and only if gcd(n, k) 5 1.

The value of Corollary 3 is that once one generator of a cyclic group has 
been found, all generators of the cyclic group can easily be determined. 
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82 Groups

For example, consider the subgroup of all rotations in D6. Clearly, one 
generator is R60. And, since |R60| 5 6, we see by Corollary 3 that the only 
other generator is (R60)

5 5 R300. Of course, we could have readily de-
duced this information without the aid of Corollary 3 by direct calcula-
tions. So, to illustrate the real power of Corollary 3, let us use it to find all 
generators of the cyclic group U(50). First, note that direct computations 
show that |U(50)| 5 20 and that 3 is one of its generators. Thus, in view of 
Corollary 3, the complete list of generators for U(50) is

 3 mod 50 5 3, 311 mod 50 5 47,
 33 mod 50 5 27, 313 mod 50 5 23,
 37 mod 50 5 37, 317 mod 50 5 13,
 39 mod 50 5 33, 319 mod 50 5 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed 
much less work than finding all the generators by simply determining 
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries 
apply only to elements of finite order.

Classification of Subgroups 
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has 
and how to find them.

 Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if |kal| 5 n, 

then the order of any subgroup of kal is a divisor of n; and, for each 

positive divisor k of n, the group kal has exactly one subgroup of 

order k—namely, kan/kl.

Before we prove this theorem, let’s see what it means. Understand- 
ing what a theorem means is a prerequisite to understanding its proof. 
Suppose G 5 kal and G has order 30. The first and second parts of the 
theorem say that if H is any subgroup of G, then H has the form ka30/kl for 
some k that is a divisor of 30. The third part of the theorem says that G 
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and 
no others. The proof will also show how to find these subgroups.

PROOF Let G 5 kal and suppose that H is a subgroup of G. We must 
show that H is cyclic. If it consists of the identity alone, then clearly H is 
cyclic. So we may assume that H 2 {e}. We now claim that H contains 
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4 | Cyclic Groups 83

an element of the form at, where t is positive. Since G 5 kal, every 
 element of H has the form at; and when at belongs to H with t , 0, then 
a2t belongs to H also and 2t is positive. Thus, our claim is verified. Now 
let m be the least positive integer such that am [ H. By closure, kaml # H. 
We next claim that H 5 kaml. To prove this claim, it suffices to let b be an 
arbitrary member of H and show that b is in kaml. Since b [ G 5 kal, we 
have b 5 ak for some k. Now, apply the division algorithm to k and m to 
obtain integers q and r such that k 5 mq 1 r where 0 # r , m. Then ak 5 
amq1r 5 amqar, so that ar 5 a2mqak. Since ak 5 b [ H and a2mq 5 
(am)2q is in H also, ar [ H. But, m is the least positive integer such that 
am [ H, and 0 # r , m, so r must be 0. Therefore, b 5 ak 5 amq 5  
(am)q [ kaml. This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that |kal| 5 n and 
H is any subgroup of kal. We have already shown that H 5 kaml, where 
m is the least positive integer such that am [ H. Using e 5 b 5 an as in 
the preceding paragraph, we have n 5 mq.

Finally, let k be any positive divisor of n. We will show that kan/kl is 
the one and only subgroup of kal of order k. From Theorem 4.2, we see 
that kan/kl has order n/gcd(n, n/k) 5 n/(n/k) 5 k. Now let H be any 
 subgroup of kal of order k. We have already shown above that H 5 kaml, 
where m is a divisor of n. Then m 5 gcd(n, m) and k 5 |am| 5 |agcd(n,m)| 5 
n/gcd (n, m) 5 n/m. Thus, m 5 n/k and H 5 kan/kl. 

Returning for a moment to our discussion of the cyclic group kal, 
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of kal are precisely those of the form kaml, where m is a divisor 
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is  
ka30/kl. So the list of subgroups of kal is:

 kal 5 {e, a, a2, . . . , a29} order 30,
 ka2l 5 {e, a2, a4, . . . , a28} order 15,
 ka3l 5 {e, a3, a6, . . . , a27} order 10,

ka5l 5 {e, a5, a10, a15, a20, a25} order 6,
 ka6l 5 {e, a6, a12, a18, a24} order 5,
 ka10l 5 {e, a10, a20} order 3,
 ka15l 5 {e, a15} order 2,
 ka30l 5 {e} order 1.

In general, if kal has order n and k divides n, then kan/kl is the unique 
subgroup of order k.

Taking the group in Theorem 4.3 to be Zn and a to be 1, we obtain 
the following important special case.
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84 Groups

 Corollary Subgroups of Zn

For each positive divisor k of n, the set kn/kl is the unique subgroup 

of Z
n
 of order k; moreover, these are the only subgroups of Z

n
.

 EXAMPLE 5 The list of subgroups of Z30 is

 k1l 5 {0, 1, 2, . . . , 29} order 30,
 k2l 5 {0, 2, 4, . . . , 28} order 15,
 k3l 5 {0, 3, 6, . . . , 27} order 10,
 k5l 5 {0, 5, 10, 15, 20, 25} order 6,
 k6l 5 {0, 6, 12, 18, 24} order 5,
k10l 5 {0, 10, 20} order 3,
k15l 5 {0, 15} order 2,
k30l 5 {0} order 1.     

Theorems 4.2 and 4.3 provide a simple way to find all the generators 
of the subgroups of a finite cyclic group.

 EXAMPLE 6 To find the generators of the subgroup of order 9 in 
Z36, we observe that 36/9 5 4 is one generator. To find the others, we 
have from Corollary 3 of Theorem 4.2 that they are all elements of Z36 
of the form 4j, where gcd(9, j) 5 1. Thus,

k4 ? 1l 5 k4 ? 2l 5 k4 ? 4l 5 k4 ? 5l 5 k4 ? 7l 5 k4 ? 8l.

In the generic case, to find all the subgroups of kal of order 9 where  
|a| 5 36, we have 

k(a4)1l 5 k(a4)2l 5 k(a4)4l 5 k(a4)5l 5 k(a4)7l 5 k(a4)8l.

In particular, note that once you have the generator an/d for the subgroup 
of order d where d is a divisor of |a| 5 n, all the generators of kadl have 
the form (ad) j where j [ U(d). 

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience, 
we introduce an important number-theoretic function called the Euler 
phi function. Let f(1) 5 1, and for any integer n . 1, let f(n) denote 
the number of positive integers less than n and relatively prime to n. 
Notice that by definition of the group U(n), |U(n)| 5 f(n). The first 12 
values of f(n) are given in Table 4.1.

Table 4.1 Values of f(n)

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 2 2 4 2 6 4 6 4 10 4

99708_ch04_ptg01_hr_077-098.indd   84 06/06/12   9:23 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4 | Cyclic Groups 85

 Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in  

a cyclic group of order n is f(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of  
order d—call it kal. Then every element of order d also generates the 
subgroup kal and, by Corollary 3 of Theorem 4.2, an element ak gener-
ates kal if and only if gcd(k, d ) 5 1. The number of such elements is 
precisely f(d). 

Notice that for a finite cyclic group of order n, the number of  elements 
of order d for any divisor d of n depends only on d. Thus, Z8, Z640, and 
Z80000 each have f(8) 5 4 elements of order 8.

Although there is no formula for the number of elements of each 
 order for arbitrary finite groups, we still can say something important 
in this regard.

 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is a multiple  

of f(d).

PROOF If a finite group has no elements of order d, the statement is 
true, since f(d) divides 0. Now suppose that a [ G and |a| 5 d. By 
Theorem 4.4, we know that kal has f(d) elements of order d. If all 
 elements of order d in G are in kal, we are done. So, suppose that there 
is an element b in G of order d that is not in kal. Then, kbl also has f(d) 
 elements of order d. This means that we have found 2f(d) elements of 
order d in G provided that kal and kbl have no elements of order d in 
common. If there is an element c of order d that belongs to both kal and 
kbl, then we have kal 5 kcl 5 kbl, so that b [ kal, which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of 
order d in a finite group is a multiple of f(d).  

On its face, the value of Theorem 4.4 and its corollary seem limited  
for large values of n, because it is tedious to determine the number of 
 positive integers less than or equal to n and relatively prime to n  
by  examining them one by one. However, the following properties of the 
f function make computing f (n) simple: For any prime p, f (pn) 5 
pn � pn�1

 (see Exercise 85) and for relatively prime m and n, f(mn)  
5 f (m) f (n). Thus, f (40) 5 f (8) f (5) 5 4 ? 4 5 16; f (75) 5  
f (52)f (3) 5 (25 2 5) ? 2 5 40.
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86 Groups

The relationships among the various subgroups of a group can be 
 illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one 
level to a subgroup K at a higher level with a sequence of line segments 
if and only if H is a proper subgroup of K. Although there are many 
ways to draw such a diagram, the connections between the  subgroups 
must be the same. Typically, one attempts to present the diagram in an 
eye-pleasing fashion. The lattice diagram for Z30 is shown in Figure 4.2. 
Notice that k10l is a subgroup of both k2l and k5l, but k6l is not a sub-
group of k10l.

<10>

<0>

<6> <15>

<3>

<5>
<2>

<1>

Figure 4.2 Subgroup lattice of Z30.

The precision of Theorem 4.3 can be appreciated by comparing the 
ease with which we are able to identify the subgroups of Z30 with that of 
doing the same for, say, U(30) or D30. And these groups have relatively 
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3 
 extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite 
group need not have exactly one subgroup corresponding to each divisor 
of the order of the group. For some divisors, there may be none at all, 
whereas for other divisors, there may be many. Indeed, D4, the dihedral 
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite 
groups, we will see in Chapter 11 that they play the role of building 
blocks for all finite Abelian groups in much the same way that primes 
are the building blocks for the integers and that chemical elements are 
the building blocks for the chemical compounds.
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4 | Cyclic Groups 87

Exercises

It is not unreasonable to use the hypothesis.
arnold ross 

  1. Find all generators of Z6, Z8, and Z20.
  2. Suppose that kal, kbl, and kcl are cyclic groups of orders 6, 8, and 

20, respectively. Find all generators of kal, kbl, and kcl.
  3. List the elements of the subgroups k20l and k10l in Z30. Let a be a 

group element of order 30. List the elements of the subgroups ka20l 
and ka10l.

  4. List the elements of the subgroups k3l and k15l in Z18. Let a be a 
group element of order 18. List the elements of the subgroups ka3l 
and ka15l.

  5. List the elements of the subgroups k3l and k7l in U(20).
  6. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.
  7. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.
  8. Let a be an element of a group and let |a| 5 15. Compute the or-

ders of the following elements of G.
  a. a3, a6, a9, a12

  b. a5, a10

  c. a2, a4, a8, a14

  9. How many subgroups does Z20 have? List a generator for each of 
these subgroups. Suppose that G 5 kal and |a| 5 20. How many 
subgroups does G have? List a generator for each of these sub-
groups.

 10. In Z24, list all generators for the subgroup of order 8. Let G 5 kal 
and let |a| 5 24. List all generators for the subgroup of order 8.

 11. Let G be a group and let a [ G. Prove that ka21l 5 kal.
 12. In Z, find all generators of the subgroup k3l. If a has infinite order, 

find all generators of the subgroup ka3l.
 13. In Z24, find a generator for k21l > k10l. Suppose that |a| 5 24. Find 

a generator for ka21l > ka10l. In general, what is a generator for the 
subgroup kaml > kanl?

 14. Suppose that a cyclic group G has exactly three subgroups: G  itself, 
{e}, and a subgroup of order 7. What is |G|? What can you say if 7 
is replaced with p where p is a prime?
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88 Groups

 15. Let G be an Abelian group and let H 5 {g [ G | |g| divides 12}. 
Prove that H is a subgroup of G. Is there anything special about 12 
here? Would your proof be valid if 12 were replaced by some other 
positive integer? State the general result.

 16. Find a collection of distinct subgroups ka1l, ka2l, . . . , kanl of Z240  
with the property that ka1l , ka2l , ? ? ? , kanl with n as large as  
possible.

 17. Complete the following statement: |a| 5 |a2| if and only if |a| . . . .
 18. If a cyclic group has an element of infinite order, how many ele-

ments of finite order does it have?
 19. List the cyclic subgroups of U(30).
 20. Suppose that G is an Abelian group of order 35 and every element 

of G satisfies the equation x35 5 e. Prove that G is cyclic. Does 
your argument work if 35 is replaced with 33?

 21. Let G be a group and let a be an element of G.
  a. If a12 5 e, what can we say about the order of a?
  b. If am 5 e, what can we say about the order of a?
  c.  Suppose that |G| 5 24 and that G is cyclic. If a8 2 e and a12 2 e, 

show that kal 5 G.
 22. Prove that a group of order 3 must be cyclic.
 23. Let Z denote the group of integers under addition. Is every sub-

group of Z cyclic? Why? Describe all the subgroups of Z. Let a be 
a group element with infinite order. Describe all subgroups of kal.

 24. For any element a in any group G, prove that kal is a subgroup of 
C(a) (the centralizer of a).

 25. If d is a positive integer, d 2 2, and d divides n, show that the num-
ber of elements of order d in Dn is f(d ). How many elements of 
order 2 does Dn have?

 26. Find all generators of Z. Let a be a group element that has infinite 
order. Find all generators of kal.

 27. Prove that C*, the group of nonzero complex numbers under multi-
plication, has a cyclic subgroup of order n for every positive integer n.

 28. Let a be a group element that has infinite order. Prove that kail 5 
kajl if and only if i 5 6j.

 29. List all the elements of order 8 in Z8000000. How do you know your 
list is complete? Let a be a group element such that |a| � 8000000. 
List all elements of order 8 in kal. How do you know your list is 
complete?

 30. Suppose a and b belong to a group, a has odd order, and aba21 5 
b21. Show that b2 5 e.
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4 | Cyclic Groups 89

 31. Let G be a finite group. Show that there exists a fixed positive integer 
n such that an 5 e for all a in G. (Note that n is independent of a.)

 32. Determine the subgroup lattice for Z12.
 33. Determine the subgroup lattice for Zp2q, where p and q are distinct 

primes.
 34. Determine the subgroup lattice for Z8.
 35. Determine the subgroup lattice for Zpn, where p is a prime and n is 

some positive integer.
 36. Prove that a finite group is the union of proper subgroups if and 

only if the group is not cyclic.
 37. Show that the group of positive rational numbers under multiplica-

tion is not cyclic.

 38. Consider the set {4, 8, 12, 16}. Show that this set is a group under 
multiplication modulo 20 by constructing its Cayley table. What 
is the identity element? Is the group cyclic? If so, find all of its 
generators.

 39. Give an example of a group that has exactly 6 subgroups (including 
the trivial subgroup and the group itself). Generalize to exactly n 
subgroups for any positive integer n.

 40. Let m and n be elements of the group Z. Find a generator for the 
group kml > knl.

 41. Suppose that a and b are group elements that commute and have 
orders m and n. If kal > kbl 5 {e}, prove that the group contains an 
element whose order is the least common multiple of m and n. 
Show that this need not be true if a and b do not commute.

 42. Suppose that a and b belong to a group G, a and b commute, and 
|a| and |b| are finite. What are the possibilities for |ab|?

 43. Suppose that a and b belong to a group G, a and b commute, and |a| 
and |b| are finite. Prove that G has an element of order lcm(|a|, |b|).

 44. Let F and F9 be distinct reflections in D21. What are the possibili-
ties for |FF9|?

 45. Suppose that H is a subgroup of a group G and |H| 5 10. If a  
belongs to G and a6 belongs to H, what are the possibilities for |a|?

 46. Which of the following numbers could be the exact number of  
elements of order 21 in a group: 21600, 21602, 21604?

 47. If G is an infinite group, what can you say about the number of  
elements of order 8 in the group? Generalize.

 48. Suppose that K is a proper subgroup of D35 and K contains at least 
two reflections. What are the possible orders of K? Explain your 
reasoning.
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90 Groups

 49. For each positive integer n, prove that C*, the group of nonzero 
complex numbers under multiplication, has exactly f(n) elements 
of order n.

 50. Prove or disprove that H 5 {n [ Z | n is divisible by both 8 and 10} 
is a subgroup of Z.

 51. Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D3 and D5). If Z(G) 
is not trivial, prove that every nonidentity element of G has the 
same order.

 52. Prove that an infinite group must have an infinite number of  
subgroups.

 53. Let p be a prime. If a group has more than p 2 1 elements of order p, 
why can’t the group be cyclic?

 54. Suppose that G is a cyclic group and that 6 divides |G|. How many 
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list 
the other elements of order 8.

 55. List all the elements of Z40 that have order 10. Let |x| 5 40. List all 
the elements of kxl that have order 10.

 56. Reformulate the corollary of Theorem 4.4 to include the case when 
the group has infinite order.

 57. Determine the orders of the elements of D33 and how many there 
are of each.

 58. If G is a cyclic group and 15 divides the order of G, determine the 
number of solutions in G of the equation x15 5 e. If 20 divides the 
order of G, determine the number of solutions of x20 5 e. 
Generalize.

 59. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 5, what other sizes of cyclic subgroups must G contain? 
Generalize.

 60. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 6, what other sizes of cyclic subgroups must G contain? 
Generalize.

 61. Prove that no group can have exactly two elements of order 2.
 62. Given the fact that U(49) is cyclic and has 42 elements, deduce the 

number of generators that U(49) has without actually finding any of 
the generators.

 63. Let a and b be elements of a group. If |a| 5 10 and |b| 5 21, show 
that kal > kbl 5 {e}.

 64. Let a and b belong to a group. If |a| and |b| are relatively prime, 
show that kal > kbl 5 {e}.
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4 | Cyclic Groups 91

 65. Let a and b belong to a group. If |a| 5 24 and |b| 5 10, what are 
the possibilities for |kal > kbl|?

 66. Prove that U(2n) (n $ 3) is not cyclic.
 67. Suppose that G is a group of order 16 and that, by direct computa-

tion, you know that G has at least nine elements x such that  
x8 5 e. Can you conclude that G is not cyclic? What if G has at 
least five elements x such that x4 5 e? Generalize.

 68. Prove that Zn has an even number of generators if n . 2. What 
does this tell you about f(n)?

 69. If |a5| 5 12, what are the possibilities for |a|? If |a4| 5 12, what 
are the possibilities for |a|?

 70. Suppose that |x| 5 n. Find a necessary and sufficient condition on 
r and s such that kxrl # kxsl.

 71. Suppose a is a group element such that |a28| � 10 and |a22| � 20. 
Determine �a�.

 72. Let a be a group element such that |a| � 48. For each part, find a  
divisor k of 48 such that

  a. ka21l 5 kakl;
  b. ka14l 5 kakl;
  c. ka18l 5 kakl.
 73. Let p be a prime. Show that in a cyclic group of order pn 21, every 

element is a pth power (that is, every element can be written in the 
form ap for some a).

 74. Prove that H � e c1 n

0 1
d  `  n [ Z f  is a cyclic subgroup of  

GL(2, R).
 75. Let a and b belong to a group. If |a| 5 12, |b| 5 22, and kal > kbl 2 

{e}, prove that a6 5 b11.
 76. (2008 GRE Practice Exam) If x is an element of a cyclic group of 

order 15 and exactly two of x3, x5, and x9 are equal, determine |x13|.
 77. Determine the number of cyclic subgroups of order 4 in Dn.
 78. If n is odd, prove that Dn has no subgroup of order 4.
 79. If n $ 4 and is even, show that Dn has exactly n/2 noncyclic  

subgroups of order 4.
 80. If n $ 4 and n is divisible by 2 but not by 4, prove that Dn has  

exactly n/2 subgroups of order 4.
 81. How many subgroups of order n does Dn have?
 82. Let G be the set of all polynomials of the form ax2 1 bx 1 c with 

coefficients from the set {0, 1, 2}. We can make G a group under 
addition by adding the polynomials in the usual way, except that 
we use modulo 3 to combine the coefficients. With this operation, 
prove that G is a group of order 27 that is not cyclic.
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 83. Let a and b belong to some group. Suppose that |a| � m, |b| � n, 
and m and n are relatively prime. If ak � bk for some integer k, 
prove that mn divides k.

 84. For every integer n greater than 2, prove that the group U 1n2 � 12  
is not cyclic.

 85. Prove that for any prime p and positive integer n, f 1pn2  5 
pn � pn�1.

 86. Give an example of an infinite group that has exactly two elements 
of order 4.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Deborah L. Massari, “The Probability of Generating a Cyclic Group,”  
Pi Mu Epsilon Journal 7 (1979): 3–6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the 
group depends only on the set of prime divisors of the order of the 
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon paper contest.
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James Joseph Sylvester

I really love my subject.
j. j. sylvester

†F. Cajori, Teaching and History of Mathematics in the United States, Washington: Government 
Printing Office, 1890, 265–266.

James Joseph Sylvester was the most  influ - 
ential mathematician in America in the 19th 
century. Sylvester was born on September 3, 
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied 
under De Morgan and won several prizes for 
his mathematics, and at the unusually young 
age of 25, he was elected a fellow of the 
Royal Society.

After receiving B.A. and M.A. degrees 
from Trinity College in Dublin in 1841, 
Sylvester began a professional life that was 
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly 
founded Johns Hopkins University. During 
his seven years at Johns Hopkins, Sylvester 
pursued research in pure mathematics  
with tremendous vigor and enthusiasm.  
He also founded the American Journal of 
Mathematics, the first journal in America 
devoted to mathematical research. Sylvester 
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his 
death on March 15, 1897.

Sylvester’s major contributions to math-
ematics were in the theory of equations, 
 matrix theory, determinant theory, and in-
variant theory (which he founded with 
Cayley). His writings and lectures—flowery 
and eloquent, pervaded with poetic flights, 
emotional expressions, bizarre utterances, 
and paradoxes—reflected the personality of 
this sensitive, excitable, and enthusiastic 

man. We quote three of his students.† E. W. 
Davis commented on Sylvester’s teaching 
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal 
Algebra,” he would say; then, “The course 
must be extended to twelve.” It did last all the 
rest of that year. The following year the course 
was to be Substitutions-Theorie, by Netto. We 
all got the text. He lectured about three times, 
following the text closely and stopping sharp 
at the end of the hour. Then he began to think 
about matrices again. “I must give one lecture 
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture 
a week. Two weeks were passed, and Netto 
was forgotten entirely and never mentioned 
again. Statements like the following were not 
infrequent in his  lectures: “I haven’t proved 
this, but I am as sure as I can be of anything 
that it must be so. From this it will follow, 
etc.” At the next lecture it turned out that what 
he was so sure of was false. Never mind, he 
kept on forever guessing and trying, and  
presently a wonderful discovery followed, 
then another and another. Afterward he would 
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then 
made another leap in the dark, more treasures 
were discovered, and so on forever.
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Sylvester’s enthusiasm for teaching and his 
influence on his students are captured in the 
following passage written by Sylvester’s first 
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . . 
Sylvester’s capacious head was ever lost in  
the highest cloud-lands of pure mathematics. 
Often in the dead of night he would get his 
 favorite pupil, that he might communicate  
the very last product of his creative thought. 
Everything he saw suggested to him  some- 
thing new in the higher algebra. This transmu-
tation of everything into new  mathematics  
was a revelation to those who knew him 
 intimately. They began to do it themselves.

Another characteristic of Sylvester, which 
is very unusual among mathematicians, was 
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

Sylvester had one remarkable peculiarity. He 
seldom remembered theorems, propositions, 
etc., but had always to deduce them when he 
wished to use them. In this he was the very 
antithesis of Cayley, who was thoroughly 
conversant with everything that had been 
done in every branch of mathematics.

I remember once submitting to Sylvester 
some investigations that I had been engaged 
on, and he immediately denied my first state-
ment, saying that such a proposition had never 
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in 
which he had proved the proposition; in fact,  
I believe the object of his paper had been the 
very proof which was so strange to him.

For more information about Sylvester, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Supplementary Exercises for Chapters 1–4

If you really want something in this life, you have to work for it. Now quiet, 
they’re about to announce the lottery numbers!

homer simpson

True/false questions for Chapters 1–4 are available on the Web at: 

http://www.d.umn.edu/~jgallian/TF

  1. Let G be a group and let H be a subgroup of G. For any fixed x in 
G, define xHx21 5 {xhx21 | h [ H}. Prove the following.

 a. xHx21 is a subgroup of G.
 b. If H is cyclic, then xHx21 is cyclic.
 c. If H is Abelian, then xHx21 is Abelian.
  The group xHx21 is called a conjugate of H. (Note that conjuga- 

tion preserves structure.)
  2. Let G be a group and let H be a subgroup of G. Define N(H) 5  

{x [ G |  xHx21 5 H}. Prove that N(H) (called the normalizer of 
H) is a  subgroup of G.†

  3. Let G be a group. For each a [ G, define cl(a) 5 {xax21 | x [ G}. 
Prove that these subsets of G partition G. [cl(a) is called the 
 conjugacy class of a.]

  4. The group defined by the following table is called the group of 
quaternions. Use the table to determine each of the following.

  a. The center
  b. cl(a)
  c. cl(b)
  d. All cyclic subgroups

  e a a2 a3 b ba ba2 ba3

 e e a a2 a3 b ba ba2 ba3

 a a a2 a3 e ba3 b ba ba2

 a2 a2 a3 e a ba2 ba3 b ba
 a3 a3 e a a2 ba ba2 ba3 b
 b b ba ba2 ba3 a2 a3 e a
 ba ba ba2 ba3 b a a2 a3 e
 ba2 ba2 ba3 b ba e a a2 a3

 ba3 ba3 b ba ba2 a3 e a a2

†This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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96 Groups

  5. (Conjugation preserves order.) Prove that, in any group, |xax21| 5 
|a|. (This exercise is referred to in Chapter 24.)

  6. Prove that, in any group, |ab| 5 |ba|.
  7. If a and b are group elements, prove that |ab| 5 |a21b21|.
  8. Prove that a group of order 4 cannot have a subgroup of order 3.
  9. If a, b, and c are elements of a group, give an example to show that 

it need not be the case that |abc| 5 |cba|.
 10. Let a and b belong to a group G. Prove that there is an element x in 

G such that xax 5 b if and only if ab 5 c2 for some element c in G.
 11. Prove that if a is the only element of order 2 in a group, then a lies 

in the center of the group.
 12. Let G be the plane symmetry group of the infinite strip of equally 

spaced H’s shown below.

H H HHH
Axis 1 Axis 2

  Let x be the reflection about Axis 1 and let y be the reflection about 
Axis 2. Calculate |x|, |y|, and |xy|. Must the product of elements  
of finite order have finite order? (This exercise is referred to in 
Chapter 27.)

 13. What are the orders of the elements of D15? How many elements 
have each of these orders?

 14. Prove that a group of order 4 is Abelian.
 15. Prove that a group of order 5 must be cyclic.
 16. Prove that an Abelian group of order 6 must be cyclic.
 17. Let G be an Abelian group and let n be a fixed positive integer. Let 

Gn 5 {gn | g [ G}. Prove that Gn is a subgroup of G. Give an ex-
ample showing that Gn need not be a subgroup of G when G is 
non-Abelian. (This exercise is referred to in Chapter 11.)

 18. Let G 5 {a � b226, where a and b are rational numbers not both 
0. Prove that G is a group under ordinary multiplication.

 19. (1969 Putnam Competition) Prove that no group is the union of 
two proper subgroups. Does the statement remain true if “two” is 
replaced by “three”?

 20. Prove that the subset of elements of finite order in an Abelian 
group forms a subgroup. (This subgroup is called the torsion sub-
group.) Is the same thing true for non-Abelian groups?

 21. Let p be a prime and let G be an Abelian group. Show that the set 
of all elements whose orders are powers of p is a subgroup of G.
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Supplementary Exercises for Chapters 1–4 97

 22. Suppose that a and b are group elements. If |b| � 2 and bab � a4, 
determine the possibilities for |a|.

 23. Suppose that a finite group is generated by two elements a and b 
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a35 b2 5 e and ba2 5 ab, construct 
the Cayley table for the group. We have already seen an example 
of a group that satisfies these conditions. Name it.

 24. If a is an element from a group and |a| � n, prove that C(a) 5 
C(ak) when k is relatively prime to n.

 25. Let x and y belong to a group G. If xy [ Z(G), prove that xy 5 yx.
 26. Suppose that H and K are nontrivial subgroups of Q under addi-

tion. Show that H > K is a nontrivial subgroup of Q. Is this true if 
Q is replaced by R?

 27. Let H be a subgroup of G and let g be an element of G. Prove that 
N(gHg21) 5 gN(H)g21. See Exercise 2 for the notation.

 28. Let H be a subgroup of a group G and let |g| 5 n. If gm belongs to 
H, and m and n are relatively prime, prove that g belongs to H.

 29. Find a group that contains elements a and b such that |a| 5 2,  
|b| 5 11, and |ab| 5 2.

 30. Suppose that G is a group with exactly eight elements of order 10. 
How many cyclic subgroups of order 10 does G have?

 31. (1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy 5 xz implies 
y 5 z, and yx 5 zx implies y 5 z). Assume that for every a in S the 
set {an | n 5 1, 2, 3, . . .} is finite. Must S be a group?

 32. Let H1, H2, H3, . . . be a sequence of subgroups of a group with the 
property that H1 # H2 # H3 . . . . Prove that the union of the se-
quence is a subgroup.

 33. Let n be an integer greater than 1. Find a noncyclic subgroup of  
U (4n) of order 4 that contains the element 2n 2 1.

 34. Let G be an Abelian group and H 5 {x [ G | xn 5 e for some odd 
integer n (n may vary with x)}. Prove that H is a subgroup of G. Is H  
a subgroup if “odd” is replaced by “even”?

 35. Let H 5 {A [ GL(2, R) | det A is rational}. Prove or disprove that 
H is a subgroup of GL(2, R). What if “rational” is replaced by “an 
integer”?

 36. Suppose that G is a group that has exactly one nontrivial proper 
subgroup. Prove that G is cyclic and |G| 5 p2, where p is prime.

 37. Suppose that G is a group and G has exactly two nontrivial proper 
subgroups. Prove that G is cyclic and |G| 5 pq, where p and q are 
distinct primes, or that G is cyclic and |G| 5 p3, where p is prime.

99708_ch04_ptg01_hr_077-098.indd   97 06/06/12   9:23 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



98 Groups

 38. If |a2| 5 |b2|, prove or disprove that |a| 5 |b|.
 39. (1995 Putnam Competition) Let S be a set of real numbers that is 

closed under multiplication. Let T and U be disjoint subsets of S 
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of T is in T and that the product of any 
three elements of U is in U, show that at least one of the two sub-
sets T and U is closed under multiplication.

 40. If p is an odd prime, prove that there is no group that has exactly p 
elements of order p.

 41. Give an example of a group G with infinitely many distinct sub-
groups H1, H2, H3, . . . such that H1 , H2 , H3 . . .

 .
 42. Suppose a and b are group elements and b 2 e. If a21ba 5 b2 and  

|a| 5 3, find |b|. What is |b|, if |a| 5 5? What can you say about |b| 
in the case where |a| 5 k?

 43. Let a and b belong to a group G. Show that there is an element g in 
G such that g21 abg 5 ba.

 44. Suppose G is a group and x3y3 5 y3x3 for every x and y in G. Let  
H 5 {x [ G | |x| is relatively prime to 3}. Prove that elements of H 
commute with each other and that H is a subgroup of G. Is your 
 argument valid if 3 is replaced by an arbitrary positive integer n? 
Explain why or why not.

 45. Let G be a finite group and let S be a subset of G that contains 
more than half of the elements of G. Show that every element of G 
can be expressed in the form s1s2 where s1 and s2 belong to S.

 46. Let G be a group and let f be a function from G to some set. Show 
that H 5 {g [ G | f (xg) 5 f (x) for all x [ G} is a subgroup of G. In 
the case that G is the group of real numbers under addition and  
f (x) 5 sin x, describe H.

 47. Let G be a cyclic group of order n and let H be the subgroup of 
 order d. Show that H 5 {x [ G | |x| divides d}.

 48. Let a be an element of maximum order from a finite Abelian group 
G. Prove that for any element b in G, |b| divides |a|. Show by 
 example that this need not be true for finite non-Abelian groups.

 49. Define an operation * on the set of integers by a * b � a � b � 1. 
Show that the set of integers under this operation is a cyclic group.

 50. Let n be an integer greater than 1. Find a noncyclic subgroup of 
U 14n2  of order 4 that contains the element 2n � 1.
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Permutation Groups

Wigner’s discovery about the electron permutation group was just the 
beginning. He and others found many similar applications and nowadays 
group theoretical methods—especially those involving characters and 
representations—pervade all branches of quantum mechanics.

george mackey, Proceedings of the  
American Philosophical Society

5

 Definition and Notation
In this chapter, we study certain groups of functions, called permutation 
groups, from a set A to itself. In the early and mid-19th century, groups 
of permutations were the only groups investigated by mathematicians. 
It was not until around 1850 that the notion of an abstract group was 
introduced by Cayley, and it took another quarter century before the 
idea firmly took hold.

Definitions Permutation of A, Permutation Group of A
A permutation of a set A is a function from A to A that is both one- 
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects 
exist, we will focus on the case where A is finite. Furthermore, it is 
customary, as well as convenient, to take A to be a set of the form 
{1, 2, 3, . . . , n} for some positive integer n. Unlike in calculus, where 
most functions are defined on infinite sets and are given by formulas, 
in algebra, permutations of finite sets are usually given by an explicit 
listing of each element of the domain and its corresponding functional 
value. For example, we define a permutation a of the set {1, 2, 3, 4} by 
specifying

a(1) 5 2,    a(2) 5 3,    a(3) 5 1,    a(4) 5 4.
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100 Groups

gs 5 £1 2 3 4 5

5 4 1 2 3

§  £1 2 3 4 5

2 4 3 5 1

§  5 c1 2 3 4 5

4 2 1 3 5
d

A more convenient way to express this correspondence is to write a in 
array form as

a � c1 2 3 4

2 3 1 4
d .

Here a( j) is placed directly below j for each j. Similarly, the permuta-
tion b of the set {1, 2, 3, 4, 5, 6} given by

b(1) 5 5,  b(2) 5 3,  b(3) 5 1,  b(4) 5 6,  b(5) 5 2,  b(6) 5 4

is expressed in array form as

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

Composition of permutations expressed in array notation is carried 
out from right to left by going from top to bottom, then again from top 
to bottom. For example, let

s � c1 2 3 4 5

2 4 3 5 1
d

and

g � c1 2 3 4 5

5 4 1 2 3
d ;

then

On the right we have 4 under 1, since (gs)(1) 5 g(s(1)) 5 g(2) 5 4, 
so gs sends 1 to 4. The remainder of the bottom row gs is obtained in 
a similar fashion.

We are now ready to give some examples of permutation groups.

 EXAMPLE 1 Symmetric Group S3 Let S3 denote the set of all 
  one-to-one functions from {1, 2, 3} to itself. Then S3, under function 
composition, is a group with six elements. The six elements are

e � c1 2 3

1 2 3
d ,    a � c1 2 3

2 3 1
d ,    a2 � c1 2 3

3 1 2
d ,
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5 | Permutation Groups 101

b � c1 2 3

1 3 2
d ,    ab � c1 2 3

2 1 3
d ,    a2b � c1 2 3

3 2 1
d .

Note that ba 5 c1 2 3

3 2 1
d  5 a2b 2 ab, so that S3 is non-Abelian. 

The relation ba 5 a2b can be used to compute other products in S3 
without resorting to the arrays. For example, ba2 5 (ba)a 5 (a2b)a 5 
a2(ba) 5 a2(a2b) 5 a4b 5 ab.

Example 1 can be generalized as follows.

 EXAMPLE 2 Symmetric Group Sn Let A 5 {1, 2, . . . , n}. The set 
of all permutations of A is called the symmetric group of degree n and is 
denoted by Sn. Elements of Sn have the form

a � c 1 2 p n

a(1) a(2) p a(n)
d .

It is easy to compute the order of Sn. There are n choices of a(1). Once 
a(1) has been determined, there are n 2 1 possibilities for a(2) [since  
a is one-to-one, we must have a(1) 2 a(2)]. After choosing a(2), there 
are exactly n 2 2 possibilities for a(3). Continuing along in this fashion, 
we see that Sn has n(n 2 1) ? ? ? 3 ? 2 ? 1 5 n! elements. We leave it to the 
reader to prove that Sn is non-Abelian when n $ 3 (Exercise 45).     

The symmetric groups are rich in subgroups. The group S4 has 30 
subgroups, and S5 has well over 100 subgroups.

 EXAMPLE 3 Symmetries of a Square As a third example, we 
 associate each motion in D4 with the permutation of the locations of each 
of the four corners of a square. For example, if we label the four corner 
positions as in the figure below and keep these labels fixed for reference, 
we may describe a 90°  counterclockwise rotation by the permutation

3

4

2

1

r � c1 2 3 4

2 3 4 1
d ,
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102 Groups

whereas a reflection across a horizontal axis yields

f � c1 2 3 4

2 1 4 3
d .

These two elements generate the entire group (that is, every element is 
some combination of the r’s and f’s). 

When D4 is represented in this way, we see that it is a subgroup  
of S4.     

Cycle Notation
There is another notation commonly used to specify permutations. It is 
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in 
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permu tation

a � c1 2 3 4 5 6

2 1 4 6 5 3
d .

This assignment of values could be presented schematically as follows.

2

1

α α

α α

α α

6

3 5

4

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write a 5 (1, 2) 
(3, 4, 6)(5). As a second example, consider

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

In cycle notation, b can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2), 
since both of these unambiguously specify the function b. An expres-
sion of the form (a1, a2, . . . , am) is called a cycle of length m or an  
m-cycle.
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5 | Permutation Groups 103

A multiplication of cycles can be introduced by thinking of a cycle 
as a permutation that fixes any symbol not appearing in the cycle. 
Thus, the cycle (4, 6) can be thought of as representing the 

permutation c1 2 3 4 5 6

1 2 3 6 5 4
d . In this way, we can multiply cycles

by thinking of them as permutations given in array form. Consider the 
following example from S8. Let a 5 (13)(27)(456)(8) and b 5  
(1237)(648)(5). (When the domain consists of single-digit integers, it is 
common practice to omit the commas between the digits.) What  
is the cycle form of ab? Of course, one could say that ab 5  
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles 
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that (5) fixes 1; (648) fixes 1; 
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13) 
fixes 7. So the net effect of ab is to send 1 to 7. Thus, we begin  
ab 5 (17 ? ? ?) ? ? ? . Now, repeating the entire process beginning with 7, 
we have, cycle by cycle, right to left, 

7 → 7 → 7 → 1 → 1 → 1 → 1 → 3, 

so that ab 5 (173 ? ? ?) ? ? ? . Ultimately, we have ab 5 (1732)(48)(56). 
The important thing to bear in mind when multiplying cycles is to “keep 
moving” from one cycle to the next from right to left. (Warning: Some authors 
compose cycles from left to right. When reading another text, be sure to 
determine which convention is being used.)

To be sure you understand how to switch from one notation to the 
other and how to multiply permutations, we will do one more example 
of each.

If array notations for a and b, respectively, arec1 2 3 4 5

2 1 3 5 4
d     and    c1 2 3 4 5

5 4 1 2 3
d ,

then, in cycle notation, a 5 (12)(3)(45), b 5 (153)(24), and ab 5  
(12)(3)(45)(153)(24).

To put ab in disjoint cycle form, observe that (24) fixes 1; (153) 
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, ab sends 
1 to 4. Continuing in this way we obtain ab 5 (14)(253).

One can convert ab back to array form without converting each 
cycle of ab into array form by simply observing that (14) means 1 goes 
to 4 and 4 goes to 1; (253) means 2 → 5, 5 → 3, 3 → 2.
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104 Groups

One final remark about cycle notation: Mathematicians prefer not to 
write cycles that have only one entry. In this case, it is understood that any 
missing element is mapped to itself. With this convention, the permutation 
a above can be written as (12)(45). Similarly,

a � c1 2 3 4 5

3 2 4 1 5
d

can be written a 5 (134). Of course, the identity permutation consists 
only of cycles with one entry, so we cannot omit all of these! In this 
case, one usually writes just one cycle. For example,

e � c1 2 3 4 5

1 2 3 4 5
d

can be written as e 5 (5) or e 5 (1). Just remember that missing 
 elements are mapped to themselves.

Properties of Permutations
We are now ready to state several theorems about permutations and 
 cycles. The proof of the first theorem is implicit in our discussion of 
writing permutations in cycle form.

 Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a 

product of disjoint cycles.

PROOF Let a be a permutation on A 5 {1, 2, . . . , n}. To write a in 
 disjoint cycle form, we start by choosing any member of A, say a1, and let

a2 5 a(a1),    a3 5 a(a(a1)) 5 a2(a1),

and so on, until we arrive at a1 5 am(a1) for some m. We know that such 
an m exists because the sequence a1, a(a1), a

2(a1), ? ? ? must be finite; 
so there must eventually be a repetition, say a i(a1) 5 a j(a1) for some 
i and j with i , j. Then a1 5 am(a1), where m 5 j 2 i. We express this 
relationship among a1, a2, . . . , am as

a 5 (a1, a2, . . . , am) ? ? ? .

The three dots at the end indicate the possibility that we may not have 
exhausted the set A in this process. In such a case, we merely choose 
any element b1 of A not appearing in the first cycle and proceed to  
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5 | Permutation Groups 105

create a new cycle as before. That is, we let b2 5 a(b1), b3 5 a2(b1), and 
so on, until we reach b1 5 ak(b1) for some k. This new cycle will have 
no elements in common with the previously constructed cycle. For, if 
so, then a i(a1) 5 a j(b1) for some i and j. But then a i2j(a1) 5 b1, and 
therefore b1 5 at for some t. This contradicts the way b1 was chosen. 
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a 5 (a1, a2, . . . , am)(b1, b2, . . . , bk) ? ? ? (c1, c2, . . . , cs).

In this way, we see that every permutation can be written as a product 
of disjoint cycles.     

 Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a 5 (a1, a2, . . . , am
) and b 5 (b1,b2, . . . , bn

)  

have no entries in common, then ab 5 ba.

PROOF For definiteness, let us say that a and b are permutations of 
the set

S 5 {a1, a2, . . . , am, b1, b2, . . . , bn, c1, c2, . . . , ck},

where the c’s are the members of S left fixed by both a and b (there 
may not be any c’s). To prove that ab 5 ba, we must show that (ab)(x) 5 
(ba)(x) for all x in S. If x is one of the a elements, say ai, then

(ab)(ai) 5 a(b(ai)) 5 a(ai) 5 ai11,

since b fixes all a elements. (We interpret ai11 as a1 if i 5 m.) For the 
same reason,

(ba)(ai) 5 b(a (ai)) 5 b(ai11) 5 ai11.

Hence, the functions of ab and ba agree on the a elements. A similar 
argument shows that ab and ba agree on the b elements as well. 
 Finally, suppose that x is a c element, say ci. Then, since both a and b 
fix c elements, we have

(ab)(ci) 5 a(b(ci)) 5 a(ci) 5 ci

and

(ba)(ci) 5 b(a(ci)) 5 b(ci) 5 ci.

This completes the proof.     
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106 Groups

In demonstrating how to multiply cycles, we showed that the  product 
(13)(27)(456)(8)(1237)(648)(5) can be written in disjoint  cycle form as 
(1732)(48)(56). Is economy in expression the only advantage to writ-
ing a permutation in disjoint cycle form? No. The next theorem shows 
that the disjoint cycle form has the enormous advantage of  allowing us 
to “eyeball” the order of the permutation.

 Theorem 5.3 Order of a Permutation (Ruffini, 1799)

The order of a permutation of a finite set written in disjoint cycle 

form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this 
yourself.) Next, suppose that a and b are disjoint cycles of lengths m 
and n, and let k be the least common multiple of m and n. It follows from 
Theorem 4.1 that both ak and bk are the identity permutation e and, since 
a and b commute, (ab)k 5 akbk is also the identity. Thus, we know by 
Corollary 2 to Theorem 4.1 (ak 5 e implies that |a| divides k) that the 
order of ab—let us call it t—must divide k. But then (ab)t 5 atb t 5 e, 
so that at 5 b2t. However, it is clear that if a and b have no common 
symbol, the same is true for a t and b2t, since raising a cycle to a power 
does not introduce new symbols. But, if a t and b2t are equal and have 
no common symbol, they must both be the identity, because every sym-
bol in a t is fixed by b2t and vice versa (remember that a symbol not ap- 
pearing in a permutation is fixed by the permutation). It follows, then, 
that both m and n must divide t. This means that k, the least common 
multiple of m and n, divides t also. This shows that k 5 t.

Thus far, we have proved that the theorem is true in the cases 
where the permutation is a single cycle or a product of two disjoint 
cycles. The general case involving more than two cycles can be han-
dled in an analogous way. 

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permutations and the number of permutations of a particular 
order. We demonstrate this in the next two examples.

 EXAMPLE 4 To determine the orders of the 7! 5 5040 elements of 
S7, we need only consider the possible disjoint cycle structures of the 
 elements of S7. For convenience, we denote an n-cycle by (n). Then,  
arranging all possible disjoint cycle structures of elements of S7 
 according to longest cycle lengths left to right, we have
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5 | Permutation Groups 107

(7)
(6) (1)
(5) (2)
(5) (1) (1)
(4) (3)
(4) (2) (1)
(4) (1) (1) (1)
(3) (3) (1)
(3) (2) (2)
(3) (2) (1) (1)
(3) (1) (1) (1) (1)
(2) (2) (2) (1)
(2) (2) (1) (1) (1)
(2) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1). 

Now, from Theorem 5.3 we see that the orders of the elements of S7 
are 7, 6, 10, 5, 12, 4, 3, 2, and 1. To do the same for the 10! 5 3628800 
elements of S10 would be nearly as simple. 

 EXAMPLE 5 We determine the number of elements of S7 of order 3. 
By Theorem 5.3, we need only count the number of permutations of 
the forms (a1a2a3) and (a1a2a3) (a4a5a6). In the first case consider the 
triple a1a2a3. Clearly there are 7 ? 6 ? 5 such triples. But this product 
counts the permutation (a1a2a3) three times (for example, it counts 134, 
341, 413 as distinct triples whereas the cycles (134), (341), and (413) 
are the same group element). Thus, the number of permutations in S7 for 
the form (a1a2a3) is (7 ? 6 ? 5)/3 5 70. For elements of S7 of the form 
(a1a2a3) (a4a5a6) there are (7 ? 6 ? 5)/3 ways to create the first cycle and 
(4 ? 3 ? 2)/3 to create the second cycle but the product of (7 ? 6 ? 5)/3 and 
(4 ? 3 ? 2)/3) counts (a1a2a3) (a4a5a6) and (a4a5a6)(a3a2a1) as distinct when 
they are equal group elements. Thus, the number of elements in S7 for the 
form (a1a2a3) (a4a5a6) is (7 ? 6 ? 5)(4 ? 3 ? 2)/(3 ? 3 ? 2) 5 280. This gives 
us 350 elements of order 3 in S7. 

As we will soon see, it is often greatly advantageous to write a per-
mutation as a product of cycles of length 2—that is, as permutations of 
the form (ab) where a 2 b. Many authors call these permutations trans-
positions, since the effect of (ab) is to interchange or transpose a and b.

Example 6 and Theorem 5.4 show how this can always be done.
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108 Groups

 EXAMPLE 6

 (12345) 5 (15)(14)(13)(12)
 (1632)(457) 5 (12)(13)(16)(47)(45) 

 Theorem 5.4 Product of 2-Cycles

Every permutation in S
n
, n . 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and 
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(a1a2 ? ? ? ak)(b1b2 ? ? ? bt) ? ? ? (c1c2 ? ? ? cs).

A direct computation shows that this is the same as

(a1ak)(a1ak21) ? ? ? (a1a2)(b1bt)(b1bt21) ? ? ? (b1b2) 
 ? ? ? (c1cs)(c1cs21) ? ? ? (c1c2).

This completes the proof.     

The decomposition of a permutation into a product of 2-cycles given 
in Example 6 and in the proof of Theorem 5.4 is not the only way a per-
mutation can be written as a product of 2-cycles. Although the next  
example shows that even the number of 2-cycles may vary from one 
decomposition to another, we will prove in Theorem 5.5 (first proved by 
Cauchy) that there is one aspect of a decomposition that never varies.

 EXAMPLE 7

 (12345) 5 (54)(53)(52)(51)
 (12345) 5 (54)(52)(21)(25)(23)(13) 

We isolate a special case of Theorem 5.5 as a lemma.

 Lemma  

If e 5 b1b2 ? ? ? br
, where the b’s are 2-cycles, then r is even.

PROOF Clearly, r 2 1, since a 2-cycle is not the identity. If r 5 2, we 
are done. So, we suppose that r . 2, and we proceed by induction. 
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5 | Permutation Groups 109

Suppose that the rightmost 2-cycle is (ab). Then, since (ij) 5 ( ji), the 
product br21br can be expressed in one of the following forms shown 
on the right:

e 5 (ab)(ab),
(ab)(bc) 5 (ac)(ab),

 (ac)(cb )  5 (bc)(ab),
(ab)(cd) 5 (cd)(ab).

If the first case occurs, we may delete br21br from the original product 
to obtain e 5 b1b2 ? ? ? br22, and therefore, by the Second Principle of 
Mathematical Induction, r 2 2 is even. In the other three cases, we 
 replace the form of br21br on the right by its counterpart on the left to 
obtain a new product of r 2-cycles that is still the identity, but where 
the rightmost occurrence of the integer a is in the second-from-the-
rightmost 2-cycle of the product instead of the rightmost 2-cycle. We now 
repeat the procedure just described with br22br21, and, as be fore, we  
obtain a product of (r 2 2) 2-cycles equal to the identity or a new  product 
of r 2-cycles, where the rightmost occurrence of a is in the third 2-cycle 
from the right. Continuing this process, we must ob tain a product of  
(r 2 2) 2-cycles equal to the identity, because otherwise we have a prod-
uct equal to the identity in which the only occurrence of the integer a is in the 
leftmost 2-cycle, and such a product does not fix a, whereas the identity 
does. Hence, by the Second Principle of Mathematical Induction, r 2 2 is 
even, and r is even as well.     

 Theorem 5.5 Always Even or Always Odd

If a permutation a can be expressed as a product of an even (odd) 

number of 2-cycles, then every decomposition of a into a product of 

2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a 5 b1b2 ? ? ? br    and    a 5 g1g2 ? ? ? gs,

where the b’s and the g’s are 2-cycles, then r and s are both even or 

both odd.

PROOF Observe that b1b2 ? ? ? br 5 g1g2 ? ? ? gs implies

e 5 g1g2 ? ? ? gsbr
21 ? ? ? b2

21b1
21

     5 g1g2 ? ? ? gsbr ? ? ? b2b1,

since a 2-cycle is its own inverse. Thus, the lemma on page 108 guar- 
antees that s 1 r is even. It follows that r and s are both even or both 
odd. 
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110 Groups

Definition Even and Odd Permutations
A permutation that can be expressed as a product of an even number 
of 2-cycles is called an even permutation. A permutation that can  
be expressed as a product of an odd number of 2-cycles is called an 
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be 
unambiguously classified as either even or odd. The significance of  
this observation is given in Theorem 5.6.

 Theorem 5.6 Even Permutations Form a Group

The set of even permutations in S
n
 forms a subgroup of S

n
.

PROOF This proof is left to the reader (Exercise 17).     

The subgroup of even permutations in Sn arises so often that we give 
it a special name and notation.

Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by A

n
 and is 

called the alternating group of degree n.

The next result shows that exactly half of the elements of Sn(n . 1) 
are even permutations.

 Theorem 5.7

For n . 1, A
n
 has order n!/2.

PROOF For each odd permutation a, the permutation (12)a is even and, 
by the cancellation property in groups, (12)a 2 (12)b when a 2 b. Thus, 
there are at least as many even permutations as there are odd ones. On the 
other hand, for each even permutation a, the permutation (12)a is odd and 
(12)a 2 (12)b when a 2 b. Thus, there are at least as many odd permuta-
tions as there are even ones. It follows that there are equal numbers of 
even and odd permutations. Since |Sn| 5 n!, we have |An| 5 n!/2. 

The names for the symmetric group and the alternating group of  degree 
n come from the study of polynomials over n variables. A symmetric 
polynomial in the variables x1, x2, . . . , xn is one that is  unchanged under 
any transposition of two of the variables. An alternating polynomial is 
one that changes signs under any transposition of two of the variables. For 
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5 | Permutation Groups 111

Table 5.1  The Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside  
the table represents ak. For example, a3 a8 5 a6.)

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

 (1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
 (12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
 (13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
 (14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9
 (123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
 (243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
 (142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
 (134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
 (132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
 (143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
 (234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
 (124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7

example, the polynomial x1x2x3 is unchanged by any transposition of two 
of the three variables, whereas the polynomial (x12x2)(x12x3)(x22x3) 
changes signs when any two of the variables are transposed. Since every 
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the 
product of an even number of transpositions, the alternating polynomials 
are those that are unchanged by members of the alternating group.

The alternating groups are among the most important examples of 
groups. The groups A4 and A5 will arise on several occasions in later 
chapters. In particular, A5 has great historical significance.

A geometric interpretation of A4 is given in Example 8, and a multi-
plication table for A4 is given as Table 5.1.

 EXAMPLE 8 Rotations of a Tetrahedron
The 12 rotations of a regular tetrahedron can be conveniently described 
with the  elements of A4. The top row of Figure 5.1 illustrates the identity 
and three 180° “edge” rotations about axes joining midpoints of two 
edges. The second row consists of 120° “face” rotations about axes joining 
a vertex to the center of the opposite face. The third row consists of 2120° 
(or 240°) “face” rotations. Notice that the four rotations in the second row 
can be obtained from those in the first row by left-multiplying the four in 
the first row by the rotation (123), whereas those in the third row can be 
obtained from those in the first row by left-multiplying the ones in the first 
row by (132). 
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112 Groups

Many molecules with chemical formulas of the form AB4, such as 
methane (CH4) and carbon tetrachloride (CCl4), have A4 as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

Figure 5.2 A tetrahedral AB4 molecule.
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Figure 5.1 Rotations of a regular tetrahedron.
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 EXAMPLE 9 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

1

2

3

4

5

6

By sliding disks from one position to another along the lines indicated 
without lifting or jumping them, can we obtain the following arrangement?

3

5

2

4

6

1

To answer this question, we view the positions as numbered in the 
first figure above and consider two basic operations. Let r denote the 
following operation: Move the disk in position 1 to the center position, 
then move the disk in position 6 to position 1, the disk in position 5 to 
position 6, the disk in position 4 to position 5, the disk in position 3 to 
position 4, then the disk in the middle position to position 3. Let s 
 denote the operation: Move the disk in position 1 to the center position, 
then move the disk in position 2 to position 1, then move the disk in po- 
sition 3 to position 2, and finally move the disk in the center to position 3. 
In permutation notation, we have r 5 (13456) and s 5 (132). The 
 permutation for the arrangement we seek is (16523). Clearly, if we can 
express (16523) as a string of r’s and s’s, we can achieve the desired 
arangement. Rather than attempt to find an appropriate combination of 
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see 
Suggested Software at the end of this chapter). With GAP, all we need to 
do is use the following commands:

gap. G :5 SymmetricGroup(6);
gap. r :5 (1,3,4,5,6); s :5 (1, 3, 2);
gap. K :5 Subgroup(G,[r,s]);
gap. Factorization(K,(1,6,5,2,3));
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114 Groups

The first three lines inform the computer that our group is the 
 subgroup of S6 generated by r 5 (13456) and s 5 (132). The fourth  
line requests that (16523) be expressed in terms of r and s. If we in-
clude the command  

gap. Size (K)

we would find that the order of the subgroup generated by r and s is 360. 
Then, observing that r and s are even permutations and that |A6| 5 360, 
we deduce that r and s can achieve any arrangement that corresponds to 
an even permutation. 

 Rubik's Cube  

The Rubik’s Cube made from 48 cubes called “facets” is the quintes-
sential example of a group theory puzzle. It was invented in 1974 by the 
Hungarian Erró́  Rubik. By 2009 more than 350 million Rubik’s Cubes 
had been sold. The current record time for solving it is under 7 seconds; 
under 31 seconds blindfolded. Although it was proved in 1995 that 
there was a starting configuration that required at least 20 moves to 
solve, it was not until 2010 that it was determined that every cube could 
be solved in at most 20 moves. This computer calculation utilized about 
35 CPU-years donated by Google to complete. In early discussions 
about the minimum number of moves to solve the cube in the worst 
possible case, someone called it “God’s number,” and the name stuck. 
A history of the quest to find God’s number is given at the website at 
http://www.cube20.org/.

The set of all configuration of the Rubik’s Cube form a group of 
permutations of order 43,252,003,274,489,856,00. This order can be 
computed using GAP by labeling the faces of the cube as shown here.
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The group of permutations of the cube is generated by the following 
rotations of the six layers.

top 5 (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
left 5 (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
front 5 (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
right 5 (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
rear 5 (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
bottom 5  (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39) 

(16,24,32,40)

A Check-Digit Scheme Based on D5

In Chapter 0, we presented several schemes for appending a check digit 
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all 
 single-digit errors and all transposition errors involving adjacent digits. 
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to 
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the 
dihedral group of order 10 that detects all single-digit errors and all 
transposition errors involving adjacent digits without the necessity of 
avoiding certain numbers or introducing a new character. To describe 
this method, consider the permutation s 5 (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0 
through 4 for the rotations, 5 through 9 for the reflections, and p for the 
operation of D5.)

Table 5.2 Multiplication for D5

 * 0 1 2 3 4 5 6 7 8 9

 0 0 1 2 3 4 5 6 7 8 9
 1 1 2 3 4 0 6 7 8 9 5
 2 2 3 4 0 1 7 8 9 5 6
 3 3 4 0 1 2 8 9 5 6 7
 4 4 0 1 2 3 9 5 6 7 8
 5 5 9 8 7 6 0 4 3 2 1
 6 6 5 9 8 7 1 0 4 3 2
 7 7 6 5 9 8 2 1 0 4 3
 8 8 7 6 5 9 3 2 1 0 4
 9 9 8 7 6 5 4 3 2 1 0
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Verhoeff’s idea was to view the digits 0 through 9 as the elements of 
the group D5 and to replace ordinary addition with calculations done in 
D5. In particular, to any string of digits a1a2 . . . an21, we append the 
check digit an so that s(a1) p s2(a2) p ? ? ? p sn22(an22) p sn21(an21) p  
s n (an) 5 0. [Here s2(x) 5 s(s(x)), s3(x) 5 s(s2(x)), and so on.] 
Since s has the property that s i(a) 2 s i(b) if a 2 b, all single-digit er-
rors are detected. Also, because

 a p s(b) 2 b p s(a)    if a 2 b, (1)

as can be checked on a case-by-case basis (see Exercise 67), it follows 
that all transposition errors involving adjacent digits are detected [since 
Equation (1) implies that s i(a) p s i11(b) 2 si(b) p s i11(a) if a 2 b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeff’s check-digit scheme to append a check digit to the 
serial numbers on German banknotes. Table 5.3 gives the values of the 
functions s, s2, . . . , s10 needed for the computations. [The functional 
value s i( j) appears in the row labeled with s i and the column labeled j.] 
Since the serial numbers on the banknotes use 10 letters of the alphabet in 
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in 
Table 5.4.

Table 5.3 Powers of s

  0 1 2 3 4 5 6 7 8 9

 s 1 5 7 6 2 8 3 0 9 4
 s2 5 8 0 3 7 9 6 1 4 2
 s3 8 9 1 6 0 4 3 5 2 7
 s4 9 4 5 3 1 2 6 8 7 0
 s5 4 2 8 6 5 7 3 9 0 1
 s6 2 7 9 3 8 0 6 4 1 5
 s7 7 0 4 6 9 1 3 2 5 8
 s8 0 1 2 3 4 5 6 7 8 9
 s9 1 5 7 6 2 8 3 0 9 4
 s10 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

 A D G K L N S U Y Z

 0 1 2 3 4 5 6 7 8 9
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5 | Permutation Groups 117

To any string of digits a1a2 . . . a10 corresponding to a banknote serial 
number, the check digit a11 is chosen such that s (a1) p s 2(a2) p ? ? ? p 

s9(a9) p s10(a10) p a11 5 0 [instead of s(a1) p s2(a2) p ? ? ? p s10(a10) p 
s11(a11) 5 0 as in the Verhoeff scheme].

To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number 
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that s(0) p s2(2) p s3(8) p s 4(5) p s 5(3) p s 6(6) p s7(8) p 
s 8(2) p s9(7) p s10(7) p 7 5 1 p 0 p 2 p 2 p 6 p 6 p 5 p 2 p 0 p 1 p  
7 5 0, as it should be. [To illustrate how to use the multiplication table 
for D5, we compute 1 p 0 p 2 p 2 5 (1 p 0) p 2 p 2 5 1 p 2 p 2 5  
(1 p 2) p 2 5 3 p 2 5 0.]

 Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not 
distinguish between a letter and its assigned numerical value. Thus, a 
substitution of 7 for U (or vice versa) and the transposition of 7 and U 
are not detected by the check digit. Moreover, the banknote scheme 
does not detect all transpositions of adjacent characters involving the 
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by 
using the Verhoeff method with D18, the dihedral group of order 36, to 
assign every letter and digit a distinct value together with an appropri-
ate function s [1]. Using this method to append a check character, all 
single-position errors and all transposition errors involving adjacent 
digits will be detected.
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Exercises 

When you feel how depressingly
slowly you climb,
it’s well to remember that
Things Take Time.

piet hein, “t. t. t.,” Grooks (1966)†*

  1. Let

a 5 c1 2 3 4 5 6

2 1 3 5 4 6
d   and  b � c1 2 3 4 5 6

6 1 2 4 3 5
d .

  Compute each of the following.
 a. a21

 b. ba
 c. ab

  2. Let

 a 5 c1 2 3 4 5 6 7 8

2 3 4 5 1 7 8 6
d  and b 5 c1 2 3 4 5 6 7 8

1 3 8 7 6 5 2 4
d.

  Write a, b, and ab as
 a. products of disjoint cycles;
 b. products of 2-cycles.
  3. Write each of the following permutations as a product of disjoint 

cycles.
 a. (1235)(413)
 b. (13256)(23)(46512)
 c. (12)(13)(23)(142)
  4. Find the order of each of the following permutations.
 a. (14)
 b. (147)
 c. (14762)
 d. (a1a2 

. . . ak)
  5. What is the order of each of the following permutations?
 a. (124)(357)
 b. (124)(3567)
 c. (124)(35)
 d. (124)(357869)
 e. (1235)(24567)
 f. (345)(245)

†Hein is a Danish engineer and poet and is the inventor of the game Hex.

*Piet Hein, “T.T.T.,” Grooks (1966) Copyright © Piet Hein Grooks. Reprinted with 
kind permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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5 | Permutation Groups 119

  6. What is the order of each of the following permutations?

 a. c1 2 3 4 5 6

2 1 5 4 6 3
d

 b. c1 2 3 4 5 6 7

7 6 1 2 3 4 5
d

  7. What is the order of the product of a pair of disjoint cycles of 
lengths 4 and 6?

  8. Show that A8 contains an element of order 15.
  9. What are the possible orders for the elements of S6 and A6? What 

about A7? (This exercise is referred to in Chapter 25.)
 10. What is the maximum order of any element in A10?
 11. Determine whether the following permutations are even or odd.
 a. (135)
 b. (1356)
 c. (13567)
 d. (12)(134)(152)
 e. (1243)(3521)
 12. Show that a function from a finite set S to itself is one-to-one if and 

only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

 13. Suppose that a is a mapping from a set S to itself and a(a(x)) 5 x 
for all x in S. Prove that a is one-to-one and onto.

 14. Find eight elements in S6 that commute with (12)(34)(56). Do they 
form a subgroup of S6?

 15. Let n be a positive integer. If n is odd, is an n-cycle an odd or an 
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

 16. If a is even, prove that a21 is even. If a is odd, prove that a21 is odd.
 17. Prove Theorem 5.6.
 18. In Sn, let a be an r-cycle, b an s-cycle, and g a t-cycle. Complete 

the following statements: ab is even if and only if r 1 s is . . . ; 
abg is even if and only if r 1 s 1 t is . . . .

 19. Let a and b belong to Sn. Prove that ab is even if and only if a 
and b are both even or both odd.

 20. Associate an even permutation with the number 11 and an odd 
permutation with the number 21. Draw an analogy between the 
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers 11 or 21.
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 21. Let s be the permutation of the letters A through Z that takes each 
letter to the one directly below it in the display following. Write s 
in cycle form.

A B C D E F G H I J K L MN O P Q R S T U V WX Y Z
H D B G J E C M I L O N P F K R U S A W Q T V Z X Y

 22. If a and b are distinct 2-cycles, what are the possibilities for |ab|?
 23. Show that if H is a subgroup of Sn, then either every member of H 

is an even permutation or exactly half of the members are even. 
(This exercise is referred to in Chapter 25.)

 24. Suppose that H is a subgroup of Sn of odd order. Prove that H is a 
subgroup of An.

 25. Give two reasons why the set of odd permutations in Sn is not a 
subgroup.

 26. Let a and b belong to Sn. Prove that a21b21ab is an even 
 permutation.

 27. Use Table 5.1 to compute the following.
 a. The centralizer of a3 5 (13)(24)
 b. The centralizer of a12 5 (124)
 28. How many elements of order 5 are in S7?
 29. How many elements of order 4 does S6 have? How many elements 

of order 2 does S6 have?
 30. Prove that (1234) is not the product of 3-cycles.
 31. Let b [ S7 and suppose b 4 5 (2143567). Find b. What are the 

possibilities for b if b [ S9?
 32. Let b 5 (123)(145). Write b99 in disjoint cycle form.
 33. Find three elements s in S9 with the property that s 3 5  

(157)(283)(469).
 34. What cycle is (a1a2 ? ? ? an)

21?
 35. Let G be a group of permutations on a set X. Let a [ X and define 

stab(a) 5 {a [ G | a(a) 5 a}. We call stab(a) the stabilizer of a in 
G (since it consists of all members of G that leave a fixed). Prove 
that stab(a) is a subgroup of G. (This subgroup was introduced by 
Galois in 1832.) This exercise is referred to in Chapter 7.

 36. Let b 5 (1,3,5,7,9,8,6)(2,4,10). What is the smallest positive inte-
ger n for which bn 5 b25?

 37. Let a 5 (1,3,5,7,9)(2,4,6)(8,10). If am is a 5-cycle, what can you 
say about m?

 38. Let H 5 {b [ S5 | b(1) 5 1 and b(3) 5 3}. Prove that H is a  sub- 
group of S5. How many elements are in H? Is your argument valid 
when S5 is replaced by Sn for n $ 3? How many elements are in H 
when S5 is replaced by An for n $ 4?
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5 | Permutation Groups 121

 39. How many elements of order 5 are there in A6?
 40. In S4, find a cyclic subgroup of order 4 and a noncyclic subgroup 

of order 4.
 41. Suppose that b is a 10-cycle. For which integers i between 2 and 

10 is bi also a 10-cycle?
 42. In S3, find elements a and b such that |a| 5 2, |b| 5 2, and |ab| 5 3.
 43. Find group elements a and b in S5 such that |a| 5 3, |b| 5 3, and  

|ab| 5 5.
 44. Represent the symmetry group of an equilateral triangle as a group 

of permutations of its vertices (see Example 3).
 45. Prove that Sn is non-Abelian for all n $ 3.
 46. Prove that An is non-Abelian for all n $ 4.
 47. For n $ 3, let H 5 {b [ Sn | b(1) 5 1 or 2 and b(2) 5 1 or 2}. 

Prove that H is a subgroup of Sn. Determine |H|.
 48. Show that in S7, the equation x2 5 (1234) has no solutions but the 

equation x3 5 (1234) has at least two.
 49. If (ab) and (cd) are distinct 2-cycles in Sn, prove that (ab) and (cd) 

commute if and only if they are disjoint.
 50. Let a be a 2-cycle and b be a t-cycle in Sn. Prove that aba is a  

t-cycle.
 51. Use the previous exercise to prove that, if a and b belong to Sn and 

b is the product of k-cycles of lengths n1, n2, . . . , nk, then aba21 is 
the product of k-cycles of lengths n1, n2, . . . nk.

 52. Let a and b belong to Sn. Prove that bab21 and a are both even or 
both odd.

 53. What is the smallest positive  integer n such that Sn  has an element 
of order greater than 2n?

 54. Let n be an even positive integer. Prove that An has an element of 
order greater than n if and only if n $ 8.

 55. Let n be an odd positive integer. Prove that An has an element of 
order greater than 2n if and only if n $ 13.

 56. Let n be an even positive integer. Prove that An has an element of 
order greater than 2n if and only if n $ 14.

 57. Viewing the members of D4 as a group of permutations of a square 
labeled 1, 2, 3, 4 as described in Example 3, which geometric sym-
metries correspond to even permutations?

 58. Viewing the members of D5 as a group of permutations of a regular  
pentagon with consecutive vertices labeled 1, 2, 3, 4, 5, what geo-
metric symmetry corresponds to the permutation (14253)? Which 
symmetry corresponds to the permutation (25)(34)?
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 59. Let n be an odd integer greater than 1. Viewing Dn as a group of 
permutations of a regular n-gon with consecutive vertices labeled 
1, 2, . . . , n, explain why the rotation subgroup of Dn is a sub-
group of An.

 60. Let n be an integer greater than 1. Viewing Dn as a group of permu-
tations of a regular n-gon with consecutive vertices labeled 1, 2, . . . , 
n, determine for which n all the permutations corresponding to re-
flections in Dn are even permutations. Hint: Consider the fours 
cases for n mod 4.

 61. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 
15 elements of order 2. (This exercise is referred to in Chapter 25.)

 62. Find a cyclic subgroup of A8 that has order 4.
 63. Find a noncyclic subgroup of A8 that has order 4.
 64. Compute the order of each member of A4. What arithmetic rela-

tionship do these orders have with the order of A4?
 65. Show that every element in An for n $ 3 can be expressed as a  

3-cycle or a product of 3-cycle.
 66. Show that for n $ 3, Z(Sn) 5 {e}.
 67. Verify the statement made in the discussion of the Verhoeff check 

digit scheme based on D5 that a * s(b) 2 b * s(a) for distinct a and 
b. Use this to prove that si(a) * si11(b) 2 si(b) * si11(a) for all i. 
Prove that this implies that all transposition errors involving adjacent 
digits are detected.

 68. Use the Verhoeff check-digit scheme based on D5 to append a 
check digit to 45723.

 69. Prove that every element of Sn (n . 1)  can be written as a product 
of elements of the form (1k).

 70. (Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order 
in which they were given to it. All of the hearts arranged in order 
from ace to king were put into the machine, and then the shuffled 
cards were put into the machine again to be shuffled. If the cards 
emerged in the order 10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7, in what 
order were the cards after the first shuffle?

 71. Show that a permutation with odd order must be an even permutation.
 72. Let G be a group. Prove or disprove that H 5 {g2 | g [ G} is a sub-

group of G. (Compare with Example 5 in Chapter 3.)
 73. Let H 5 {a2 | a [ S4} and K 5 {a2 | a [ S5}. Prove H 5 A4 and  

K 5 A5.
 74. Let H 5 {a2 | a [ S6}. Prove H Z A6.
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5 | Permutation Groups 123

 75. Determine integers n for which H � {a [ An | a
2 � e} is a sub-

group of An.
 76. Given that b and g are in S4 with bg � 114322, gb � 112432, and 

b112 � 4, determine b and g.
 77. Why does the fact that the orders of the elements of A4 are 1, 2, and 

3 imply that |Z(A4)| 5 1?
 78. Find five subgroups of S5 of order 24.
 79. Find six subgroups of order 60 in S6.
 80. For n . 1, let H  be the set of all permutations in Sn that can be 

expressed as a product of a multiple of four transpositions. Show 
that H 5 An.

 81. Shown below are four tire rotation patterns recommended by the 
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S4 and find the smallest subgroup of S4 
that contains these four patterns. Is the subgroup Abelian?

FRONT

Modified 
X

Rear Wheel Drive
Vehicles

4 Wheel Drive
Vehicles

FRONT

Modified X

X Tires to
the Driven Axle

Front Wheel Drive
Vehicles

Alternate Pattern

FRONT

 X

FRONT

Normal

 82. Label the four locations of tires on an automobile with the labels 
1, 2, 3, and 4, clockwise. Let a represent the operation of switching 
the tires in positions 1 and 3 and switching the tires in positions 
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is. 
Let G be the group of all possible combinations of a and b. How 
many elements are in G? 

 83. What would be wrong with using the 2-cycle notation (11) instead 
of the 1-cycle (1) to indicate that a cycle sends 1 to 1?
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Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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This article explains some card tricks that are based on permutation 
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In this article, permutation groups are used to analyze various sorts of 
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Chapter 3 of this book discusses several interesting applications of permu-
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Solved by Cubemeisters,” Scientific American 244 (1981): 20–39.

This article, written by a Pulitzer Prize recipient, discusses the group the-
ory involved in the solution of the Magic (Rubik’s) Cube. In particular, 
permutation groups, subgroups, conjugates (elements of the form xyx21), 
commutators (elements of the form xyx21y21), and the “always even or 
 always odd” theorem (Theorem 5.5) are prominently mentioned. At one 
point, Hofstadter says, “It is this kind of marvelously concrete illustration 
of an abstract notion of group theory that makes the Magic Cube one of 
the most amazing things ever invented for teaching mathematical ideas.”
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Group Theory to Solve Them, Washington, D.C.: Mathematical Association  
of  America, 2003.

This book and the software that comes with it present the user with an array 
of computerized puzzles, plus tools to vary them in thousands of ways. The 
book provides the background needed to use the puzzle  software to its fullest 
potential, and also gives the reader a gentle,  not-too-technical introduction to 
the theory of permutation groups that is a prerequisite to a full understanding 
of how to solve puzzles of this type. The website http://www-instruct.nmu 
.edu/math_cs/kiltinen/web/mathpuzzles/ provides resources that expand 
upon the book. It also has news about puzzle software—modules that add 
functionality and fun to  puzzles.

Vladimir Dubrovsky, “Portrait of Three Puzzle Graces,” Quantum, Nov./Dec. 
1991: 63–66.

The author uses permutation groups to analyze solutions to the 15 puzzle, 
Rubik’s Cube, and Rubik’s Clock.

A. White and R. Wilson, “The Hunting Group,” Mathematical Gazette 79 
(1995): 5–16.

This article explains how permutation groups are used in bell ringing.

S. Winters, “Error-Detecting Schemes Using Dihedral Groups,” UMAP 
 Journal 11, no. 4 (1990): 299–308.

This article discusses error-detection schemes based on Dn for odd n. 
Schemes for both one and two check digits are analyzed.

Suggested Software

GAP is free for downloading. Versions are available for Unix, Windows, 
and Macintosh at:

http://www.gap-system.org
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Augustin Cauchy

You see that little young  
man? Well! He will supplant  
all of us in so far as we are  
mathematicians.

Spoken by Lagrange  
to Laplace about the  

11-year-old Cauchy

Augustin Louis Cauchy was born on 
 August 21, 1789, in Paris. By the time  
he was 11, both Laplace and Lagrange had 
recognized Cauchy’s extraordinary talent 
for mathematics. In school he won prizes for 
Greek, Latin, and the humanities. At the age 
of 21, he was given a commission in  
Napoleon’s army as a civil engineer. For the 
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant 
mathematical research on the side.

In 1815, at the age of 26, Cauchy was 
made Professor of Mathematics at the École 
Polytechnique and was recognized as the 
leading mathematician in France. Cauchy 
and his contemporary Gauss were among 
the last mathematicians to know the whole 
of mathematics as known at their time, and 
both made important contributions to nearly 

every branch, both pure and applied, as well 
as to physics and astronomy.

Cauchy introduced a new level of rigor 
into mathematical analysis. We owe our 
contemporary notions of limit and continu-
ity to him. He gave the first proof of the 
Fundamental Theorem of Calculus. Cauchy 
was the founder of complex function theory 
and a pioneer in the theory of permutation 
groups and determinants. His total written 
output of mathematics fills 24 large volumes. 
He wrote more than 500 research  papers 
 after the age of 50. Cauchy died at the age of 
67 on May 23, 1857.

For more information about Cauchy, 
visit:

http://www–groups.dcs 
.st-and.ac.uk/~history/

This stamp was issued by France  
in Cauchy’s honor.
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6 Isomorphisms

The basis for poetry and scientific discovery is the ability to comprehend 
the unlike in the like and the like in the unlike.

jacob bronowski

Motivation
Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . . . ,” whereas the 
German says, “Eins, zwei, drei, vier, fünf, . . . .” Are the two doing differ-
ent things? No. They are both counting the objects, but they are using dif-
ferent terminology to do so. Similarly, when one person says, “Two plus 
three is five” and another says, “Zwei und drei ist fünf,” the two are in 
agreement on the concept they are describing, but they are using different 
terminology to describe the concept. An analogous situation often occurs 
with groups; the same group is described with different terminology. We 
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R90), whereas in Chapter 5 we 
described the same group by way of permutations of the corners. In both 
cases, the underlying group was the symmetries of a square. In Chapter 4, 
we observed that when we have a cyclic group of order n generated by a, 
the operation turns out to be essentially that of addition modulo n, since 
aras 5 ak, where k 5 (r 1 s) mod n. For example, each of U(43) and U(49)  
is cyclic of order 42. So, each has the form kal, where aras 5 a (r 1 s)mod 42.

Definition and Examples
In this chapter, we give a formal method for determining whether two 
groups defined in different terms are really the same. When this is the 
case, we say that there is an isomorphism between the two groups. This 
notion was first introduced by Galois about 180 years ago. The term 
isomorphism is derived from the Greek words isos, meaning “same” or 
“equal,” and morphe, meaning “form.” R. Allenby has colorfully 
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128 Groups

 defined an algebraist as “a person who can’t tell the difference between 
isomorphic systems.”

Definition Group Isomorphism
An isomorphism f from a group G to a group G is a one-to-one map-
ping (or function) from G onto G that preserves the group operation. 
That is,

f(ab) 5 f(a)f(b)    for all a, b in G.

If there is an isomorphism from G onto G, we say that G and G are 
 isomorphic and write G < G.

This definition can be visualized as shown in Figure 6.1. The pairs 
of dashed arrows represent the group operations.

a

b

ab

(a)

(b)

G G
φ

φ

φ
φ

φ

φφ (a)  (b)

Figure 6.1 

It is implicit in the definition of isomorphism that isomorphic  
groups have the same order. It is also implicit in the definition of  
isomorphism that the operation on the left side of the equal sign is that 
of G, whereas the operation on the right side is that of G. The four 
cases involving ? and 1 are shown in Table 6.1.

Table 6.1

G Operation G Operation Operation Preservation

 ? ? f(a ? b) 5 f(a) ? f(b)
 ? 1 f(a ? b) 5 f(a) 1 f(b)
 1 ? f(a 1 b) 5 f(a) ? f(b)
 1 1 f(a 1 b) 5 f(a) 1 f(b)  

There are four separate steps involved in proving that a group G is 
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function f from G to G.

Step 2 “1–1.” Prove that f is one-to-one; that is, assume that f(a) 5 
f(b) and prove that a 5 b.
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6 | Isomorphisms 129

Step 3 “Onto.” Prove that f is onto; that is, for any element g in G, 
find an element g in G such that f(g) 5 g.

Step 4 “O.P.” Prove that f is operation-preserving; that is, show that 
f(ab) 5 f(a)f(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear 
novel is the fourth one. It requires that one be able to obtain the same 
result by combining two elements and then mapping, or by mapping 
two elements and then combining them. Roughly speaking, this says 
that the two processes—operating and mapping—can be done in either 
order without affecting the result. This same concept arises in calculus 
when we say

lim
 xSa
1f 1x2 . g1x2 2 � lim

xSa
 f 1x2 lim

xSa
 g1x2

or

�
b

a

1f � g2 dx � �
b

a

f dx � �
b

a

g dx.

Before going any further, let’s consider some examples.

 EXAMPLE 1 Let G be the real numbers under addition and let G be 
the positive real numbers under multiplication. Then G and G are iso-
morphic under the mapping f(x) 5 2x. Certainly, f is a function from 
G to G. To prove that it is one-to-one, suppose that 2x 5 2y. Then log2 2

x 5 
log2 2

y, and therefore x 5 y. For “onto,” we must find for any positive 
real number y some real number x such that f(x) 5 y; that is, 2x 5 y. 
Well, solving for x gives log2 y. Finally,

f(x 1 y) 5 2x1y 5 2x ? 2y 5 f(x)f(y)

for all x and y in G, so that f is operation-preserving as well. 

  EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed,  if 
a is a generator of the cyclic group, the mapping ak → k is an  
isomorphism. Any finite cyclic group kal of order n is isomorphic  
to Zn under the mapping ak → k mod n. That these correspondences are 
functions and are one-to-one is the essence of Theorem 4.1. Obviously, 
the mappings are onto. That the mappings are operation-preserving 
 follows from Exercise 9 in Chapter 0 in the finite case and from the 
 definitions in the infinite case. 

99708_ch06_ptg01_hr_127-143.indd   129 06/06/12   9:23 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



130 Groups

 EXAMPLE 3 The mapping from R under addition to itself given by 
f(x) 5 x3 is not an isomorphism. Although f is one-to-one and onto, it 
is not operation-preserving, since it is not true that (x 1 y)3 5 x3 1 y3 
for all x and y. 

 EXAMPLE 4 U(10) < Z4 and U(5) < Z4. To verify this, one need 
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2. 

 EXAMPLE 5 U(10) ] U(12). This is a bit trickier to prove. First, 
note that x2 5 1 for all x in U(12). Now, suppose that f is an isomor-
phism from U(10) onto U(12). Then,

f(9) 5 f(3 ? 3) 5 f(3)f(3) 5 1

and

f(1) 5 f(1 ? 1) 5 f(1)f(1) 5 1.

Thus, f(9) 5 f(1), but 9 2 1, which contradicts the assumption that   
f is one-to-one. 

 EXAMPLE 6 There is no isomorphism from Q, the group of rational 
numbers under addition, to Q*, the group of nonzero rational numbers 
under multiplication. If f were such a mapping, there would be a ra-
tional number a such that f(a) 5 21. But then

21 5 f(a) 5 f(1
2a 1 12a) 5 f(1

2a)f(1
2a) 5 [f(1

2a)]2.

However, no rational number squared is 21. 

 EXAMPLE 7 Let G 5 SL(2, R), the group of 2 3 2 real matrices 
with determinant 1. Let M be any 2 3 2 real matrix with determinant 1. 
Then we can define a mapping from G to G itself by fM(A) 5 MAM21 
for all A in G. To verify that fM is an isomorphism, we carry out the 
four steps.

Step 1 fM is a function from G to G. Here, we must show that fM(A) is 
indeed an element of G whenever A is. This follows from properties of 
determinants:

det (MAM21) 5 (det M)(det A)(det M)21 5 1 ? 1 ? 121 5 1.

Thus, MAM21 is in G.

Step 2 fM is one-to-one. Suppose that fM(A) 5 fM(B). Then MAM21 5 
MBM21 and, by left and right cancellation, A 5 B.
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6 | Isomorphisms 131

Step 3 fM is onto. Let B belong to G. We must find a matrix A in G 
such that fM(A) 5 B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM21 5 B. But this tells us exactly 
what A must be! For we can solve for A to obtain A 5 M21BM and 
 verify that fM(A) 5 MAM21 5 M(M21BM)M21 5 B.

Step 4 fM is operation-preserving. Let A and B belong to G. Then,

 fM(AB) 5 M(AB)M21 5 MA(M21M)BM21

5 (MAM21)(MBM21) 5 fM(A)fM(B).

The mapping fM is called conjugation by M. 

Cayley’s Theorem
Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

 Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of 
permutations that we believe is isomorphic to G. Since G is all we have 
to work with, we will have to use it to construct G. For any g in G, 
 define a function Tg from G to G by

Tg(x) 5 gx    for all x in G.

(In words, Tg is just multiplication by g on the left.) We leave it as an 
exercise (Exercise 33) to prove that Tg is a permutation on the set of 
 elements of G. Now, let G 5 {Tg | g [ G}. Then, G is a group under  
the operation of function composition. To verify this, we first observe 
that for any g and h in G we have TgTh(x) 5 Tg(Th(x)) 5 Tg(hx) 5 g(hx) 5 
(gh)x 5 Tgh(x), so that TgTh 5 Tgh. From this it follows that Te is the 
identity and (Tg)

21 5 Tg21 (see Exercise 9). Since function composition 
is associative, we have verified all the conditions for G to be a group.

The isomorphism f between G and G is now ready-made. For every 
g in G, define f(g) 5 Tg. If Tg 5 Th, then Tg(e) 5 Th(e) or ge 5 he. 
Thus, g 5 h and f is one-to-one. By the way G was constructed, we 
see that f is onto. The only condition that remains to be checked is that 
f is operation-preserving. To this end, let a and b belong to G. Then

 f(ab) 5 Tab 5 TaTb 5 f(a)f(b). 
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132 Groups

The group G constructed previously is called the left regular repre-
sentation of G.

 EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation U1122 for U(12) 5 {1, 5, 7, 11}. Writing the permutations of 
U(12) in array form, we have (remember, Tx is just multiplication by x)

T1 � c1 5 7 11

1 5 7 11
d ,

    
T5 � c1 5 7 11

5 1 11 7
d ,

T7 � c1 5 7 11

7 11 1 5
d ,

    
T11 � c 1 5 7 11

11 7 5 1
d .

It is instructive to compare the Cayley tables for U(12) and its left regu-
lar representation U1122.

U1122 T1 T5 T7 T11

 T1 T1 T5 T7 T11
 T5 T5 T1 T11 T7
 T7 T7 T11 T1 T5
 T11 T11 T7 T5 T1

U(12) 1 5 7 11

 1 1 5 7 11
 5 5 1 11 7
 7 7 11 1 5
 11 11 7 5 1

It should be abundantly clear from these tables that U(12) and U1122 
are only notationally different. 

Cayley’s Theorem is important for two contrasting reasons. One is 
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted 
for a group is the correct abstraction of its much earlier predecessor—a 
group of permutations. Indeed, Cayley’s Theorem tells us that abstract 
groups are not different from permutation groups. Rather, it is the 
viewpoint that is different. It is this difference of viewpoint that has 
stimulated the tremendous progress in group theory and many other 
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the 
case may be, that two particular groups are isomorphic. For example, it 
requires somewhat sophisticated techniques to prove the surprising fact 
that the group of real numbers under addition is isomorphic to the 
group of complex numbers under addition. Likewise, it is not easy to 
prove the fact that the group of nonzero complex numbers under  
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says that, 
as groups, the punctured plane and the unit circle are isomorphic [1]. 
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6 | Isomorphisms 133

PROOF We will restrict ourselves to proving only properties 1, 2, and 4, 
but observe that property 5 follows from properties 1 and 2, property 6 
follows from property 2, and property 7 follows from property 5. For 
convenience, let us denote the identity in G by e and the identity in G 
by e. Then, since e 5 ee, we have

f(e) 5 f(ee) 5 f(e)f(e).

Also, because f(e) [ G, we have f(e) 5 ef (e), as well. Thus, by can-
cellation, e 5 f(e). This proves property 1.

For positive integers, property 2 follows from the definition of an 
isomorphism and mathematical induction. If n is negative, then 2n is 
positive, and we have from property 1 and the observation about the 
positive integer case that e 5 f(e) 5 f(gng2n) 5 f(gn)f(g2n) 5  
f(gn)(f(g))2n. Thus, multiplying both sides on the right by (f(g))n, we 
have (f(g))n 5 f(gn). Property 1 takes care of the case n 5 0.

To prove property 4, let G 5 kal and note that, by closure, kf(a)l # 
G. Because f is onto, for any element b in G, there is an element ak in 
G such that f(ak) 5 b. Thus, b 5 (f(a))k and so b [ kf(a)l. This 
proves that G 5 kf(a)l.

Now suppose that G 5 kf(a)l. Clearly, kal # G. For any element  
b in G, we have f(b) [ kf(a)l. So, for some integer k we have  

Properties of Isomorphisms
Our next two theorems give a catalog of properties of isomorphisms 
and isomorphic groups.

 Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f carries the identity of G to the identity of G.

 2.  For every integer n and for every group element a in G, f(an) 5 

[f(a)]n.

 3.  For any elements a and b in G, a and b commute if and only if 

f(a) and f(b) commute.

 4. G 5 kal if and only if  G 5 kf(a)l.
 5. |a| 5 |f(a)| for all a in G (isomorphisms preserve orders).

 6.  For a fixed integer k and a fixed group element b in G, the 

equation xk 5 b has the same number of solutions in G as does 

the equation xk 5 f(b) in G.

 7.  If G is finite, then G and G have exactly the same number of 

 elements of every order.
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f(b) 5 (f(a))k 5 f(ak). Because f is one-to-one, b 5 ak. This proves 
that kal 5 G. 

When the group operation is addition, property 2 of Theorem 6.2 is 
f(na) 5 nf(a); property 4 says that an isomorphism between two  
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C* 
and R*. Because the equation x4 5 1 has four solutions in C* but only 
two in R*, no matter how one attempts to define an isomorphism from 
C* to R*, property 6 cannot hold.

 Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f21 is an isomorphism from G onto G.

 2. G is Abelian if and only if G is Abelian.

 3. G is cyclic if and only if G is cyclic.

 4.  If K is a subgroup of G, then f(K) 5 {f(k) | k [ K} is a 

 subgroup of G.

 5.  If K is a subgroup of G, then f21 (K) 5 {g [ G | f(g) [ K} is 

a subgroup of G.

 6. f(Z(G)) 5 Z(G).

PROOF Properties 1 and 4 are left as exercises (Exercises 31 and 32). 
Properties 2 and 6 are a direct consequence of property 3 of Theorem 6.2. 
Property 3 follows from property 4 of Theorem 6.2 and property 1 of 
Theorem 6.3. Property 5 follows from properties 1 and 4. 

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so 
that isomorphic groups have all group theoretic properties in common. 
By this we mean that if two groups are isomorphic, then any property 
that can be expressed in the language of group theory is true for one if 
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such 
groups equivalent, rather than the same, might be more appropriate, but 
we bow to long-standing tradition.

Automorphisms
Certain kinds of isomorphisms are referred to so often that they have 
been given special names.
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6 | Isomorphisms 135

Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism 

of G.

The isomorphism in Example 7 is an automorphism of SL(2, R). 
Two more examples follow.

 EXAMPLE 9 The function f from C to C given by f(a 1 bi) 5  
a 2 bi is an automorphism of the group of complex numbers under 
 addition. The restriction of f to C* is also an automorphism of the 
group of nonzero complex numbers under multiplication. (See   
Exercise 35.) 

 EXAMPLE 10 Let R2 5 {(a, b) | a, b [ R}. Then f(a, b) 5 (b, a) 
is an automorphism of the group R2 under componentwise addition. 
Geometrically, f reflects each point in the plane across the line y 5 x. 
More generally, any reflection across a line passing through the  
 origin or any rotation of the plane about the origin is an automor-
phism of R2. 

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of 
its own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a [ G. The function f

a
 defined by f

a
(x) 5 

axa21 for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that fa is actually an automor-
phism of G. (Use Example 7 as a model.)

 EXAMPLE 11 The action of the inner automorphism of D4 induced 
by R90 is given in the following table.

 x 
fR90→  R90 x R90

–1

 R0 → R90R0R90
–1 5 R0

 R90 → R90R90R90
21 5 R90

 R180 → R90R180R90
21 5 R180

 R270 → R90R270R90
21 5 R270

 H → R90HR90
21 5 V

 V → R90VR90
21 5 H

 D → R90DR90
21 5 D9

 D9 → R90D9R90
21 5 D 
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When G is a group, we use Aut(G) to denote the set of all auto- 
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by 
the next theorem.

 Theorem 6.4 Aut(G) and Inn(G) Are Groups†

The set of automorphisms of a group and the set of inner 

automorphisms of a group are both groups under the operation of 

function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).    
 

The determination of Inn(G) is routine. If G 5 {e, a, b, c. . . .}, then 
Inn(G) 5 {fe, fa, fb, fc, . . .}. This latter list may have duplications, 
however, since fa may be equal to fb even though a 2 b (see Exercise 
43). Thus, the only work involved in determining Inn(G) is deciding 
which distinct elements give the distinct automorphisms. On the other 
hand, the determination of Aut(G) is, in general, quite involved.

 EXAMPLE 12 Inn(D4)
To determine Inn(D4), we first observe that the complete list of inner 
automorphisms is fR0

, fR90
, fR180

, fR270
, fH, fV, fD, and fD9. Our job is 

to determine the repetitions in this list. Since R180 [ Z(D4), we have 
fR180

(x) 5 R180xR180
21 5 x, so that fR180

 5 fR0
. Also, fR270

(x) 5 
R270xR270

21 5 R90R180xR180
21R90

21 5 R90xR90
21 5 fR90

(x). Similarly, 
since H 5 R180V and D9 5 R180D, we have fH 5 fV and fD 5 fD9.  
This proves that the previous list can be pared down to fR0

, fR90
, fH, 

and fD. We leave it to the reader to show that these are distinct   
(Exercise 13). 

 EXAMPLE 13 Aut(Z10)
To compute Aut(Z10), we try to discover enough information about an 
element a of Aut(Z10) to determine how a must be defined. Because Z10 
is so simple, this is not difficult to do. To begin with, observe that once 
we know a(1), we know a(k) for any k, because

†The group Aut(G) was first studied by O. Hölder in 1893 and, independently, by E. H. 
Moore in 1894.
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6 | Isomorphisms 137

 a(k) 5 a(1 1 1 1 ? ? ? 1 1)
 

k terms
 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 ka(1).

 
k terms

So, we need only determine the choices for a(1) that make a an 
 automorphism of Z10. Since property 5 of Theorem 6.2 tells us that 
|a(1)| 5 10, there are four candidates for a(1):

a(1) 5 1,    a(1) 5 3,    a(1) 5 7,    a(1) 5 9.

To distinguish among the four possibilities, we refine our notation by 
denoting the mapping that sends 1 to 1 by a1, 1 to 3 by a3, 1 to 7 by a7, 
and 1 to 9 by a9. So the only possibilities for Aut(Z10) are a1, a3, a7, and 
a9. But are all these automorphisms? Clearly, a1 is the identity. Let us 
check a3. Since x mod 10 5 y mod 10 implies 3x mod 10 5 3y mod 10,  
a3 is well defined. Moreover, because a3112 � 3 is a generator of Z10, it 
follows that a3 is onto (and, by Exercise 12 in Chapter 5, it is also one-  
to-one). Finally, since a3(a 1 b) 5 3(a 1 b) 5 3a 1 3b 5 a3(a) 1 a3(b), 
we see that a3 is operation-preserving as well. Thus, a3 [ Aut(Z10). The 
same argument shows that a7 and a9 are also automorphisms.

This gives us the elements of Aut(Z10) but not the structure. For in-
stance, what is a3a3? Well, (a3a3)(1) 5 a3(3) 5 3 ? 3 5 9 5 a9(1), so 
a3a3 5 a9. Similar calculations show that a3

3 5 a7 and a3
4 5 a1, so 

that |a3| 5 4. Thus, Aut(Z10) is cyclic. Actually, the following Cayley 
tables reveal that Aut(Z10) is isomorphic to U(10). 

U(10) 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Aut(Z10) a1 a3 a7 a9

 a1 a1 a3 a7 a9
 a3 a3 a9 a1 a7
 a7 a7 a1 a9 a3
 a9 a9 a7 a3 a1

With Example 13 as a guide, we are now ready to tackle the group 
Aut(Zn). The result is particularly nice, since it relates the two kinds of 
groups we have most frequently encountered thus far—the cyclic 
groups Zn and the U-groups U(n).

 Theorem 6.5 Aut(Zn) < U(n)

For every positive integer n, Aut(Z
n
) is isomorphic to U(n).
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PROOF As in Example 13, any automorphism a is determined by the 
value of a(1), and a(1) [ U(n). Now consider the correspondence 
from Aut(Zn) to U(n) given by T: a → a(1). The fact that a(k) 5 ka(1) 
(see Example 13) implies that T is a one-to-one mapping. For if a and 
b belong to Aut(Zn) and a(1) 5 b(1), then a(k) 5 ka(1) 5 kb(1) 5 
b(k) for all k in Zn, and therefore a 5 b.

To prove that T is onto, let r [ U(n) and consider the mapping a 
 from Zn to Zn defined by a(s) 5 sr (mod n) for all s in Zn. We leave it as  
an exercise to verify that a is an automorphism of Zn (see Exercise 27). 
Then, since T(a) 5 a(1) 5 r, T is onto U(n).

Finally, we establish the fact that T is operation-preserving. Let a,  
b [ Aut(Zn). We then have

T(ab) 5 (ab)(1) 5 a(b(1)) 5 a(1 1 1 1 ? ? ? 1 1)
 

 b(1)

 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 a(1)b(1)
 

 b(1)
 5 T(a)T(b).

This completes the proof.  

Exercises

Being a mathematician is a bit like being a manic depressive: you spend 
your life alternating between giddy elation and black despair.

steven g. krantz, A Primer of Mathematical Writing

  1. Find an isomorphism from the group of integers under addition to 
the group of even integers under addition.

  2. Find Aut(Z).
  3. Let R1 be the group of positive real numbers under multiplication. 

Show that the mapping f(x) 5 2x is an automorphism of R1.
  4. Show that U(8) is not isomorphic to U(10).
  5. Show that U(8) is isomorphic to U(12).
  6. Prove that isomorphism is an equivalence relation. That is, for any 

groups G, H, and K, G < G, G < H implies H < G, and G < H and 
H < K implies G < K.

  7. Prove that S4 is not isomorphic to D12.
  8. Show that the mapping a → log10 a is an isomorphism from R+ 

 under multiplication to R under addition.
  9. In the notation of Theorem 6.1, prove that Te is the identity and  

that (Tg)
21 5 Tg21.
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6 | Isomorphisms 139

 10. Let G be a group. Prove that the mapping a(g) 5 g21 for all g in G 
is an automorphism if and only if G is Abelian.

 11. If g and h are elements from a group, prove that fgfh 5 fgh.
 12. Find two groups G and H such that G ] H, but Aut(G) < Aut(H).
 13. Prove the assertion in Example 12 that the inner automorphisms 

fR0
, fR90

, fH, and fD of D4 are distinct.
 14. Find Aut(Z6).
 15. If G is a group, prove that Aut(G) and Inn(G) are groups.
 16. If a group G is isomorphic to H, prove that Aut(G) is isomorphic to 

Aut(H).
 17. Suppose f belongs to Aut(Zn) and a is relatively prime to n.  

If f(a) 5 b, determine a formula for f(x).
 18. Let H be the subgroup of all rotations in Dn and let f be an auto-

morphism of Dn. Prove that f(H) 5 H. (In words, an automor-
phism of Dn carries rotations to rotations.)

 19. Let H 5 {b [ S5 | b(1) 5 1} and K 5 {b [ S5 | b(2) 5 2}. Prove 
that H is isomorphic to K. Is the same true if S5 is replaced by Sn, 
where n $ 3?

 20. Show that Z has infinitely many subgroups isomorphic to Z.
 21. Let n be an even integer greater than 2 and let f be an automor-

phism of Dn. Determine f(R180).
 22. Let f be an automorphism of a group G. Prove that H 5 {x [ G | 

f(x) 5 x} is a subgroup of G.
 23. Give an example of a cyclic group of smallest order that contains a 

subgroup isomorphic to Z12 and a subgroup isomorphic to Z20. No 
need to prove anything, but explain your reasoning.

 24. Suppose that f: Z20 S Z20 is an automorphism and f(5) 5 5. What 
are the possibilities for f(x)?

 25. Identify a group G that has subgroups isomorphic to Zn for all pos-
itive integers n.

 26. Prove that the mapping from U(16) to itself given by x → x3 is an 
automorphism. What about x → x5 and x → x7? Generalize.

 27. Let r [ U(n). Prove that the mapping a: Zn → Zn defined by a(s) 5  
sr mod n for all s in Zn is an automorphism of Zn. (This exercise is 
 referred to in this chapter.)

 28. The group e c1 a

0 1
d ` a [ Z f  is isomorphic to what familiar 

group? What if Z is replaced by R?
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140 Groups

 29.    If f and g are isomorphisms from the cyclic group HaI to some 
group and f1a2 � g1a2, prove that f � g.

 30. Suppose that f: Z50S Z50 is an automorphism with f1112 � 13. 
Determine a formula for f1x2.

 31. Prove property 1 of Theorem 6.3.
 32. Prove property 4 of Theorem 6.3.
 33. Referring to Theorem 6.1, prove that Tg is indeed a permutation on 

the set G.
 34. Prove or disprove that U(20) and U(24) are isomorphic.
 35. Show that the mapping f(a 1 bi) 5 a 2 bi is an automorphism of 

the group of complex numbers under addition. Show that f pre-
serves complex multiplication as well—that is, f(xy) 5 f(x)f(y) 
for all x and y in C. (This exercise is referred to in Chapter 15.)

 36. Let

G 5 {a 1 b22 | a, b are rational}

  and

H 5 e ca 2b

b a
d ` a, b are rational f .

  Show that G and H are isomorphic under addition. Prove that G 
and H are closed under multiplication. Does your isomorphism 
preserve multiplication as well as addition? (G and H are examples 
of rings—a topic we will take up in Part 3.)

 37. Prove that Z under addition is not isomorphic to Q under addition.
 38. Prove that the quaternion group (see Exercise 4, Supplementary Exer-

cises for Chapters 1–4) is not isomorphic to the dihedral group D4.
 39. Let C be the complex numbers and

M 5  e ca �b

b a
d `  a, b [ R f .

  Prove that C and M are isomorphic under addition and that C* and 
M*, the nonzero elements of M, are isomorphic under multiplication.

 40. Let Rn 5 {(a1, a2, . . . , an) | ai [ R}. Show that the mapping f: 
(a1, a2, . . . , an) → (2a1, 2a2, . . . , 2an) is an automorphism of  
the group Rn under componentwise addition. This automorphism 
is called inversion. Describe the action of f geometrically.

 41. Consider the following statement: The order of a subgroup divides 
the order of the group. Suppose you could prove this for finite 
permuta tion groups. Would the statement then be true for all finite 
groups? Explain.
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6 | Isomorphisms 141

 42. Suppose that G is a finite Abelian group and G has no element of 
order 2. Show that the mapping g → g2 is an automorphism of G. 
Show, by example, that there is an infinite Abelian group for which 
the mapping g S g2 is one-to-one and operation-preserving but not 
an automorphism.

 43. Let G be a group and let g [ G. If z [ Z(G), show that the inner 
 automorphism induced by g is the same as the inner automorphism 
induced by zg (that is, that the mappings fg and fzg are equal).

 44. Show that the mapping a → log10 a is an isomorphism from R+ 
 under multiplication to R under addition.

 45. Suppose that g and h induce the same inner automorphism of a 
group G. Prove that h21g [ Z(G).

 46. Combine the results of Exercises 43 and 45 into a single “if and 
only if” theorem.

 47. If x and y are elements in Sn (n $ 3), prove that fx 5 fy implies  
x 5 y. (Here, fx is the inner automorphism of Sn induced by x.)

 48. Let f be an isomorphism from a group G to a group G and let a 
belong to G. Prove that f(C(a)) 5 C(f(a)).

 49. Suppose the f and g are isomorphisms of some group G to the 
same group. Prove that H 5 {g [ G | f(g) 5 g(g)} is a subgroup 
of G.

 50. Suppose that b is an automorphism of a group G. Prove that H 5 
{g [ G | b2 (g) 5 g} is a subgroup of G. Generalize.

 51. Suppose that G is an Abelian group and f is an automorphism of 
G. Prove that H 5 {x [ G | f(x) 5 x21} is a subgroup of G.

 52. Given a group G, define a new group G* that has the same  
elements as G with the operation * defines by a * b 5 ba for all  
a and b in G*. Prove that the mapping from G to G* defined by  
f(x) 5 x21 for all x in G is an isomorphism from G onto G*.

 53. Let a belong to a group G and let |a| be finite. Let fa be the auto-
morphism of G given by fa(x) 5 axa21. Show that |fa| divides |a|. 
Exhibit an element a from a group for which 1 , |fa| , |a|.

 54. Let G 5 {0, 62, 64, 66, . . .} and H 5 {0, 63, 66, 69, . . .}. 
Show that G and H are isomorphic groups under addition. Does 
your isomorphism preserve multiplication? Generalize to the case 
when G � kml and H � knl, where m and n are integers.

 55. Suppose that f is an automorphism of D4 such that f1R902 � R270 
and f1V2 � V . Determine f1D2 and f1H2.

 56. In Aut(Z9), let ai denote the automorphism that sends 1 to i where 
gcd(i, 9) 5 1. Write a5 and a8 as permutations of {0, 1, . . . , 8} in 
disjoint cycle form. [For example, a2 5 (0)(124875)(36).]
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142 Groups

 57. Write the permutation corresponding to R90 in the left regular rep-
resentation of D4 in cycle form.

 58. Show that every automorphism f of the rational numbers Q under 
addition to itself has the form f(x) 5 xf(1).

 59. Prove that Q1, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

 60. Prove that Q, the group of rational numbers under addition, is not 
 isomorphic to a proper subgroup of itself.

 61. Prove that every automorphism of R*, the group of nonzero real 
numbers under multiplication, maps positive numbers to positive 
numbers and negative numbers to negative numbers.

 62. Let G be a finite group. Show that in the disjoint cycle form of the 
right regular representation Tg1x2 � xg of G, each cycle has  
length 0 g 0 .

 63. Give a group theoretic proof that Q under addition is not isomor-
phic to R+ under  multiplication.

Reference

 1. J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit 
Circle,” Journal of Number Theory 1 (1969): 500–501.

Computer Exercises

Software for the computer exercise in this chapter is available at the 
website:

http://www.d.umn.edu/~jgallian
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Arthur Cayley

Cayley is forging the weapons for future 
generations of physicists.

peter tait

Arthur Cayley was born on August 16, 
1821, in England. His genius showed itself at 
an early age. He published his first research 
paper while an  undergraduate of 20, and in 
the next year he published eight papers. 
While still in his early 20s, he originated the 
concept of n-dimensional geometry.

After graduating from Trinity College, 
Cambridge, Cayley stayed on for three years 
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period, 
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent 
the rest of his life in that position. One of his 
notable accomplishments was his role in the 
successful effort to have women admitted to 
Cambridge.

Among Cayley’s many innovations in 
mathematics were the notions of an abstract 
group and a group algebra, and the matrix 
concept. He made major contributions to  
geometry and linear algebra. Cayley and his 
lifelong friend and collaborator J. J. Sylvester 
were the founders of the theory of invariants, 
which was later to play an important role in 
the theory of relativity.

Cayley’s collected works comprise 13 
volumes, each about 600 pages in length. 
He died on January 26, 1895.

To find more information about Cayley, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Cosets and Lagrange’s 
Theorem7

Properties of Cosets
In this chapter, we will prove the single most important theorem in finite 
group theory—Lagrange’s Theorem. In his book on abstract algebra,  
I. N. Herstein likened it to the ABC’s for finite groups. But first we in-
troduce a new and powerful tool for analyzing a group—the notion of a 
coset. This notion was invented by Galois in 1830, although the term 
was coined by G. A. Miller in 1910.

Definition Coset of H in G
Let G be a group and let H be a nonempty subset of G. For any a [ G, 
the set {ah | h [ H} is denoted by aH. Analogously, Ha 5 {ha | h [ H} 
and aHa21 5 {aha21 | h [ H}. When H is a subgroup of G, the set aH is 
called the left coset of H in G containing a, whereas Ha is called the right 

coset of H in G containing a. In this case, the element a is called the coset 

 representative of aH (or Ha). We use |aH| to denote the number of ele-
ments in the set aH, and |Ha| to denote the number of elements in Ha.

 EXAMPLE 1 Let G 5 S3 and H 5 {(1), (13)}. Then the left cosets of 
H in G are

 (1)H 5 H,
(12)H 5 {(12), (12)(13)} 5 {(12), (132)} 5 (132)H,

 (13)H 5 {(13), (1)} 5 H,
 (23)H 5 {(23), (23)(13)} 5 {(23), (123)} 5 (123)H. 

It might be difficult , at this point , for students to see the extreme 
importance of this result [Lagrange’s Theorem]. As we penetrate the subject 
more deeply they will become more and more aware of its basic character.

i. n. herstein, Topics in Algebra
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7 | Cosets and Lagrange’s Theorem 145

 EXAMPLE 2 Let _ 5 {R0, R180} in D4, the dihedral group of order 8. 
Then,

 R0_ 5 _,
 R90_ 5 {R90, R270} 5 R270_,
 R180_ 5 {R180, R0} 5 _,
 V_ 5 {V, H} 5 H_,
 D_ 5 {D, D9} 5 D9_. 

 EXAMPLE 3 Let H 5 {0, 3, 6} in Z9 under addition. In the case that 
the group operation is addition, we use the notation a 1 H instead of 
aH. Then the cosets of H in Z9 are

0 1 H 5 {0, 3, 6} 5 3 1 H 5 6 1 H,
1 1 H 5 {1, 4, 7} 5 4 1 H 5 7 1 H,

 2 1 H 5 {2, 5, 8} 5 5 1 H 5 8 1 H. 

The three preceding examples illustrate a few facts about cosets that 
are worthy of our attention. First, cosets are usually not  subgroups. 
Second, aH may be the same as bH, even though a is not the same as b. 
Third, since in Example 1 (12)H 5 {(12), (132)} whereas H(12) 5 
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does 
aH 5 bH? Do aH and bH have any elements in common? When does  
aH 5 Ha? Which cosets are subgroups? Why are cosets important? The 
next lemma and theorem answer these questions. (Analogous results 
hold for right cosets.)

 Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

 1. a [ aH.

 2. aH 5 H if and only if a [ H.

 3. (ab)H 5 a(bH) and H(ab) 5 (Ha)b.

 4. aH 5 bH if and only if a [ bH.

 5. aH 5 bH or aH > bH 5 [.

 6. aH 5 bH if and only if a21b [ H.

 7. |aH| 5 |bH|.
 8. aH 5 Ha if and only if H 5 aHa21.

 9. aH is a subgroup of G if and only if a [ H.

PROOF

1. a 5 ae [ aH.
2.  To verify property 2, we first suppose that aH 5 H. Then a 5  

ae [ aH 5 H. Next, we assume that a [ H and show that aH # H 
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and H # aH. The first inclusion follows directly from the closure of 
H. To show that H # aH, let h [ H. Then, since a [ H and h [ H, we 
know that a21h [ H. Thus, h 5 eh 5 (aa21)h 5 a(a21h) [ aH.

3.  This follows directly from (ab)h 5 a(bh) and h(ab) 5 (ha)b.
4.  If aH 5 bH, then a 5 ae [ aH 5 bH. Conversely, if a [ bH we have  

a 5 bh where h [ H, and therefore aH 5 (bh)H 5 b(hH) 5  bH.
5.  Property 5 follows directly from property 4, for if there is an ele-

ment c in aH y bH, then cH 5 aH and cH 5 bH.
6.  Observe that aH 5 bH if and only if H 5 a21bH. The result now 

follows from property 2.
7.  To prove that |aH| 5 |bH|, it suffices to define a one-to-one map-

ping from aH onto bH. Obviously, the correspondence ah → bh  
maps aH onto bH. That it is one-to-one follows directly from the 
cancellation property.

8.  Note that aH 5 Ha if and only if (aH)a21 5 (Ha)a21 5 H(aa–1) 5 
H—that is, if and only if aHa21 5 H.

9.  If aH is a subgroup, then it contains the identity e. Thus, aH >  
eH 2 [; and, by property 5, we have aH 5 eH 5 H. Thus, from 
 property 2, we have a [ H. Conversely, if a [ H, then, again by 
property 2, aH 5 H. 

Although most mathematical theorems are written in symbolic form, 
one should also know what they say in words. In the preceding lemma, 
property 1 says simply that the left coset of H containing a does contain a. 
Property 2 says that the H “absorbs” an element if and only if the element 
belongs to H. Property 3 says that the left coset of H created by multiply-
ing H on the left by ab is the same as the one created by multiplying H on 
the left by b then multiplying the resulting coset bH on the left by a (and 
analogously for multiplication on the right by ab). Property 4 shows that a 
left coset of H is uniquely determined by any one of its elements. In par-
ticular, any element of a left coset can be used to represent the coset. 
Property 5 says—and this is very important—that two left cosets of H are 
either identical or disjoint. Thus, a left coset of H is uniquely determined 
by any one of its elements. In particular, any element of a left coset can be 
used to represent the coset. Property 6 shows how we may transfer a ques-
tion about equality of left cosets of H to a question about H itself and vice 
versa. Property 7 says that all left cosets of H have the same size. Property 
8 is analogous to property 6 in that it shows how a question about the 
equality of the left and right cosets of H containing a is equivalent to a 
question about the equality of two subgroups of G. The last property of the 
lemma says that H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 5, and 7 of the lemma guarantee that the 
left cosets of a subgroup H of G partition G into blocks of equal size. 
 Indeed, we may view the cosets of H as a partitioning of G into 
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7 | Cosets and Lagrange’s Theorem 147

equivalence classes under the equivalence relation defined by a , b 
if aH 5 bH (see Theorem 0.7).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is   
3-space R3 and H is a plane through the origin, then the coset (a, b, c) 1 
H (addition is done componentwise) is the plane passing through the 
point (a, b, c) and parallel to H. Thus, the cosets of H constitute a parti-
tion of 3-space into planes parallel to H. If G 5 GL(2, R) and  
H 5 SL(2, R), then for any matrix A in G, the coset AH is the set of all 
2 3 2 matrices with the same determinant as A. Thus,c2 0

0 1
d  H  is the set of all 2 3 2 matrices of determinant 2

and c1 2

2 1
d  H  is the set of all 2 3 2 matrices of determinant 23.

Property 5 of the lemma is useful for actually finding the distinct 
cosets of a subgroup. We illustrate this in the next example.

 EXAMPLE 4 To find the cosets of H 5 {1, 15} in G 5 U(32) 5  
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, we begin with  
H 5 {1, 15}. We can find a second coset by choosing any element not 
in H, say 3, as a coset representative. This gives the coset 3H 5 {3, 13}. 
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset 5H 5 
{5, 11}. We continue to form cosets by picking elements from U(32) 
that have not yet appeared in the previous cosets as representatives of 
the cosets until we have accounted for every element of U(32). We then 
have the complete list of all distinct cosets of H. 

Lagrange’s Theorem and Consequences
We are now ready to prove a theorem that has been around for more 
than 200 years—longer than group theory itself! (This theorem was not 
originally stated in group theoretic terms.) At this stage, it should come 
as no surprise.

 Theorem 7.1 Lagrange’s Theorem†: |H| Divides |G|

If G is a finite group and H is a subgroup of G, then |H| divides |G|. 
Moreover, the number of distinct left (right) cosets of H in G is |G| / |H|.

†Lagrange stated his version of this theorem in 1770, but the first complete proof was 
given by Pietro Abbati some 30 years later.
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PROOF Let a1H, a2H, . . . , arH denote the distinct left cosets of H in 
G. Then, for each a in G, we have aH 5 aiH for some i. Also, by prop-
erty 1 of the lemma, a [ aH. Thus, each member of G belongs to one 
of the cosets aiH. In symbols,

G 5 a1H < ? ? ? < arH.

Now, property 5 of the lemma shows that this union is disjoint, so that

|G| 5 |a1H| 1 |a2H| 1 ? ? ? 1 |arH|.

Finally, since |aiH| 5 |H| for each i, we have |G| 5 r|H|. 

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of 
the subgroups of a group. Thus, a group of order 12 may have subgroups 
of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse of La-
grange’s Theorem is false. For example, a group of order 12 need not 
have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of 
left (or right) cosets of a subgroup in a group. The index of a subgroup 
H in G is the number of distinct left cosets of H in G. This number  
is denoted by |G:H|. As an immediate consequence of the proof of 
 Lagrange’s Theorem, we have the following useful formula for the 
number of distinct left (or right) cosets of H in G.

 Corollary 1 |G:H| 5 |G|/|H|

If G is a finite group and H is a subgroup of G, then |G:H| 5 |G|/|H|.

 Corollary 2 |a| Divides |G|

In a finite group, the order of each element of the group divides the 

order of the group.

PROOF Recall that the order of an element is the order of the  subgroup 
generated by that element. 

 Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.
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7 | Cosets and Lagrange’s Theorem 149

PROOF Suppose that G has prime order. Let a [ G and a 2 e. Then, 
|kal| divides |G| and |kal| 2 1. Thus, |kal| 5 |G| and the corollary 
 follows. 

 Corollary 4 a|G| 5 e

Let G be a finite group, and let a [ G. Then, a|G| 5 e.

PROOF By Corollary 2, |G| 5 |a|k for some positive integer k. Thus, 
a|G| 5 a|a|k 5 ek 5 e. 

 Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, ap mod p 5 a mod p.

PROOF By the division algorithm, a 5 pm 1 r, where 0 # r , p. 
Thus, a mod p 5 r, and it suffices to prove that rp mod p 5 r. If r 5 0, 
the result is trivial, so we may assume that r [ U(p). [Recall that  
U(p) 5 {1, 2, . . . , p 2 1} under multiplication modulo p.] Then, by the 
preceding corollary, rp21 mod p 5 1 and, therefore, rp mod p 5 r. 

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the 
number p 5 2257 2 1. If p is prime, then we know from Fermat’s Little 
Theorem that 10 p mod p 5 10 mod p and, therefore, 10 p11 mod p 5 
100 mod p. Using multiple precision and a simple loop, a computer 
was able to calculate 10 p11 mod p 5 102257 mod p in a few seconds. 
The result was not 100, and so p is not prime.

 EXAMPLE 5 The Converse of Lagrange’s Theorem Is False.†  
The group A4 of order 12 has no subgroups of order 6. To verify this,  
recall that A4 has eight elements of order 3 (a5 through a12, in the notation 
of Table 5.1) and suppose that H is a subgroup of order 6. Let a be any 
element of order 3 in A4. If a is not in H, then A4 5 H c aH. But then  
a2 is in H or a2 is in aH. If a2 is in H then so is (a2)2 5 a4 5 a, so this case 
is ruled out. If a2 is in aH, then a2 5 ah for some h in H, but this also im-
plies that a is in H. This argument shows that any subgroup of A4 of order 
6 must contain all eight elements of A4 of order 3, which is absurd. 

†The first counterexample to the converse of Lagrange’s Theorem was given by Paolo 
Ruffini in 1799.
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Lagrange’s Theorem demonstrates that the finiteness of a group im-
poses severe restrictions on the possible orders of subgroups. The next 
theorem also places powerful limits on the existence of certain sub-
groups in finite groups.

 Theorem 7.2 |HK| 5 |H||K|/|H y K|

For two finite subgroups H and K of a group, define the set  
HK 5 {hk | h [ H, k [ K}. Then |HK| 5 |H||K|/|H y K|.

PROOF Although the set HK has |H||K| products, not all of these 
products need represent distinct group elements. That is, we may have 
hk 5 h9k9 where h ? h9 and k ? k9. To determine |HK|, we must find 
the extent to which this happens. For every t in H y K, the product hk 
5 (ht)(t21k), so each group element in HK is represented by at least  
|H y K| products in HK. But hk 5 h9k9 implies t 5 h21h9 5 kk921 [ H 
y K, so that h9 5 ht and k9 5 t21k. Thus, each element in HK is repre-
sented by exactly |H y K| products. So, |HK| 5 |H||K|/| H y K|. 

 EXAMPLE 6 A group of order 75 can have at most one subgroup of 
order 25. (It is shown in Chapter 24 that every group of order 75 has a 
subgroup of order 25). To see that a group of order 75 cannot have two 
subgroups of order 25, suppose H and K are two such subgroups. Since 
|H y K| divides |H| 5 25 and |H y K| 5 1 or 5 results in |HK| 5 
|H||K|/| H y K| 5 25 ? 25/| H y K| 5 625 or 125 elements, we have 
that |H y K| 5 25 and therefore H 5 K. 

For any prime p . 2, we know that Z2p and Dp are nonisomorphic 
groups of order 2p. This naturally raises the question of whether there 
could be other possible groups of these orders. Remarkably, with just 
the simple machinery available to us at this point, we can answer this 
question.

 Theorem 7.3 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then 

G is isomorphic to Z2p
 or D

p
.

PROOF We assume that G does not have an element of order 2p and 
show that G < Dp. We begin by first showing that G must have an  
element of order p. By our assumption and Lagrange’s Theorem, any 
nonidentity element of G must have order 2 or p. Thus, to verify our as- 
sertion, we may assume that every nonidentity element of G has order 2.  
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7 | Cosets and Lagrange’s Theorem 151

In this case, we have for all a and b in the group ab 5 (ab)21 5 b21a21 5 ba, 
so that G is Abelian. Then, for any nonidentity elements a, b [ G with 
a 2 b, the set {e, a, b, ab} is closed and therefore is a subgroup of G of 
order 4. Since this contradicts Lagrange’s Theorem, we have proved 
that G must have an element of order p; call it a.

Now let b be any element not in kal. Then by Lagrange’s Theorem 
and our assumption that G does not have an element of order 2p, we 
have that |b| 5 2 or p. Because |kal y kbl| divides |kal| 5 p and kal ? kbl 
we have that |kal y kbl| 5 1. But then |b| 5 2, for otherwise, by Theorem 
7.2 |kalkbl|5|kal||kbl| 5 p2 . 2p 5 |G|, which is impossible. So, any 
element of G not in kal has order 2.

Next consider ab. Since ab o kal, our argument above shows that 
|ab| 5 2. Then ab 5 (ab)21 5 b21a21 5 ba21. Moreover, this relation 
completely determines the multiplication table for G. [For example, 
a3(ba4) 5 a2(ab)a4 5 a2(ba21)a4 5 a(ab)a3 5 a(ba21)a3 5 (ab)a2  5 
(ba21)a2 5 ba.] Since the multiplication table for all noncyclic groups 
of order 2p is uniquely determined by the relation ab 5 ba21, all 
 noncyclic groups of order 2p must be isomorphic to each other. But of 
course, Dp, the dihedral group of order 2p, is one such group. 

As an immediate corollary, we have that the non-Abelian groups S3, 
the symmetric group of degree 3, and GL(2, Z2), the group of 2 3 2 
matrices with nonzero determinants with entries from Z2 (see Example 
19 and Exercise 51 in Chapter 2) are isomorphic to D3.

An Application of Cosets  
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the 
fruitfulness of the coset concept. We next consider an application of 
cosets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stab

G
(i) 5 

{f [ G | f(i) 5 i}. We call stab
G
(i) the stabilizer of i in G. 

The student should verify that stabG(i) is a subgroup of G. (See 
 Exercise 35 in Chapter 5.)

Definition Orbit of a Point
Let G be a group of permutations of a set S. For each s in S, let orb

G
(s) 5 

{f(s) | f [ G}. The set orb
G
(s) is a subset of S called the orbit of s 

 under G. We use |orb
G
(s)| to denote the number of elements in orb

G
(s).
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152 Groups

Example 7 should clarify these two definitions.

 EXAMPLE 7 Let

G 5 {(1), (132)(465)(78), (132)(465), (123)(456),

 (123)(456)(78), (78)}.

Then,

orbG(1) 5 {1, 3, 2},    stabG(1) 5 {(1), (78)},
orbG(2) 5 {2, 1, 3},    stabG(2) 5 {(1), (78)},
orbG(4) 5 {4, 6, 5},    stabG(4) 5 {(1), (78)},
orbG(7) 5 {7, 8},      stabG(7) 5 {(1), (132)(465), (123)(456)}. 

 EXAMPLE 8 We may view D4 as a group of permutations of a  
square region. Figure 7.1(a) illustrates the orbit of the point p under D4, 
and Figure 7.1(b) illustrates the orbit of the point q under D4. Observe 
that stabD

4
( p) 5 {R0, D}, whereas stabD

4
(q) 5 {R0}. 

p

(a)       

q

(b)

Figure 7.1

The preceding two examples also illustrate the following theorem.

 Theorem 7.4 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for  

any i from S, |G| 5 |orb
G

(i)| |stab
G
(i)|.

PROOF By Lagrange’s Theorem, |G|/|stabG(i)| is the number of dis-
tinct left cosets of stabG(i) in G. Thus, it suffices to establish a one- 
to-one correspondence between the left cosets of stabG(i) and the  
elements in the orbit of i. To do this, we define a correspondence T 
by mapping the coset fstabG(i) to f(i) under T. To show that T is a well-
defined function, we must show that astabG(i) 5 bstabG(i) implies a(i) 5 
b(i). But astabG(i) 5 bstabG(i) implies a21b [ stabG(i), so that  
(a21b) (i) 5 i and, therefore, b(i) 5 a(i). Reversing the argument from 
the last step to the first step shows that T is also one-to-one. We conclude 
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7 | Cosets and Lagrange’s Theorem 153

†“People who don’t count won’t count” (Anatole France).

the proof by showing that T is onto orbG(i). Let j [ orbG(i). Then a(i) 5 j 
for some a [ G and clearly T(astabG(i)) 5 a(i) 5 j, so that T is onto. 

We leave as an exercise the proof of the important fact that the orbits 
of the elements of a set S under a group partition S (Exercise 43).

The Rotation Group of a Cube 
and a Soccer Ball

It cannot be overemphasized that Theorem 7.4 and Lagrange’s Theorem 
(Theorem 7.1) are counting theorems.† They enable us to determine the 
numbers of elements in various sets. To see how Theorem 7.4 works, we 
will determine the order of the rotation group of a cube and a soccer ball. 
That is, we wish to find the number of essentially different ways in  
which we can take a cube or a soccer ball in a certain location in space, 
physically rotate it, and then have it still occupy its original location.

 EXAMPLE 9 Let G be the rotation group of a cube. Label the six 
faces of the cube 1 through 6. Since any rotation of the cube must carry 
each face of the cube to exactly one other face of the cube and different 
rotations induce different permutations of the faces, G can be viewed as 
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is 
some rotation about a central horizontal or vertical axis that carries face 
number 1 to any other face, so that |orbG(1)| 5 6. Next, we consider 
stabG(1). Here, we are asking for all rotations of a cube that leave face 
number 1 where it is. Surely, there are only four such motions— 
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to 
the face and passing through its center (see Figure 7.2). Thus, by 
Theorem 7.4, |G| 5 |orbG(1)| |stabG(1)| 5 6 ? 4 5 24. 

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that 
S4 is the symmetric group of degree 4.
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154 Groups

 Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S4.

PROOF Since the group of rotations of a cube has the same order as 
S4, we need only prove that the group of rotations is isomorphic to a 
subgroup of S4. To this end, observe that a cube has four diagonals and 
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations 
correspond to different permutations. To see that this is so, all we need 
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious 
that there is a 90° rotation that yields the permutation a 5 (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields 
the permutation b 5 (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup  
{e, a, a2, a3, b2, b2a, b2a2, b2a3} (see Exercise 63) and ab, which has 
order 3. Clearly, then, the rotations yield all 24 permutations, since the 
order of the rotation group must be divisible by both 8 and 3. 

 EXAMPLE 10 A traditional soccer ball has 20 faces that are regular 
hexagons and 12 faces that are regular pentagons. (The technical term  
for this solid is truncated icosahedron.) To determine the number of ro- 
tational symmetries of a soccer ball using Theorem 7.4, we may choose  
our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is 
the set of 12 pentagons. Since any pentagon can be carried to any other

2

2

3

1

3

1

4

4

= (1234)α  

2

2

3

1

3

1

4

4

= (1423)β

Figure 7.3
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7 | Cosets and Lagrange’s Theorem 155

pentagon by some rotation, the orbit of any pentagon is S. Also, there 
are five rotations that fix (stabilize) any particular pentagon. Thus, by 
the Orbit-Stabilizer Theorem, there are 12 ? 5 5 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is 
isomorphic to A5.) 

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto 
caused tremendous excitement in the scientific community when they 
created a new form of carbon by using a laser beam to vaporize graphite. 
The structure of the new molecule was composed of 60 carbon atoms  
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect  
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery 
“buckyballs.” Buckyballs are the roundest, most symmetric large mole-
cules known. Group theory has been particularly useful in illuminating 
the properties of buckyballs, since the absorption spectrum of a molecule 
depends on its symmetries and chemists classify various molecular states 
according to their symmetry properties. The buckyball discovery spurred 
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto 
 received the Nobel Prize in chemistry for their discovery.

An Application of Cosets  
to the Rubik’s Cube

Recall from Chapter 5 that in 2010 it was proved via a computer com-
putation, which took 35 CPU-years to complete, that every Rubik’s 
cube could be solved in at most 20 moves. To carry out this effort, the 
research team of Morley Davidson, John Dethridge, Herbert Kociemba, 
and Tomas Rokicki applied a program of Rokicki, which built on early 
work of Kociemba, that checked the elements of the cosets of a sub-
group H of order (8! · 8! · 4!)/2 5 19,508,428,800 to see if each cube in 
a position corresponding to the elements in a coset could be solved 
within 20 moves. In the rare cases where Rokicki’s program did not 
work, an alternate method was employed. Using symmetry consider-
ations, they were able to reduce the approximately 2 billion cosets of H 
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156 Groups

to about 56 million cosets for testing. Cosets played a role in this effort 
because Rokicki’s program could handle the 19.51 billion elements in 
the same coset in about 20 seconds.

Exercises

I don’t know, Marge. Trying is the first step towards failure.
homer simpson

  1. Let H 5 {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of 
H in A4 (see Table 5.1 on page 111).

  2. Let H be as in Exercise 1. How many left cosets of H in S4 are 
there? (Determine this without listing them.)

  3. Let H 5 {0, 63, 66, 69, . . .}. Find all the left cosets of H in Z.
  4. Rewrite the condition a21b [ H given in property 5 of the lemma on 

page 145 in additive notation. Assume that the group is Abelian.
  5. Let H be as in Exercise 3. Use Exercise 4 to decide whether or not 

the following cosets of H are the same.
 a. 11 1 H and 17 1 H
 b. 21 1 H and 5 1 H
 c. 7 1 H and 23 1 H
  6. Let n be a positive integer. Let H 5 {0, 6n, 62n, 63n, . . .}. Find 

all left cosets of H in Z. How many are there?
  7. Find all of the left cosets of {1, 11} in U(30).
  8. Suppose that a has order 15. Find all of the left cosets of ka5l in kal.
  9. Let |a| 5 30. How many left cosets of ka4l in kal are there? List them.
 10. Give an example of a group G and subgroups H and K such that 

HK 5 {h [ H, k [ K} is not a subgroup of G.
 11. If H and K are subgroups of G and g belongs to G, show that  

g(H y K) 5 gH y gK.
 12. Let a and b be nonidentity elements of different orders in a group 

G of order 155. Prove that the only subgroup of G that contains  
a and b is G itself.

 13. Let H be a subgroup of R*, the group of nonzero real numbers un-
der multiplication. If R+ # H # R*, prove that H 5 R+ or H 5 R*.

 14. Let C* be the group of nonzero complex numbers under multiplica-
tion and let H 5 {a + bi [ C* | a2 + b2 5 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the 
coset (c + di)H.
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7 | Cosets and Lagrange’s Theorem 157

 15. Let G be a group of order 60. What are the possible orders for the 
 subgroups of G?

 16. Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If |K| 5 42 and |G| 5 420, what are the possible  orders 
of H?

 17. Let G be a group with |G| 5 pq, where p and q are prime. Prove 
that every proper subgroup of G is cyclic.

 18. Recall that, for any integer n greater than 1, f(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove 
that if a is any integer relatively prime to n, then af(n) mod n 5 1.

 19. Compute 515 mod 7 and 713 mod 11.
 20. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove 

that the order of U(n) is even when n . 2.
 21. Suppose G is a finite group of order n and m is relatively prime to n. 

If g [ G and gm 5 e, prove that g 5 e.
 22. Suppose H and K are subgroups of a group G. If |H| 5 12 and  

|K| 5 35, find |H > K|. Generalize.
 23. Suppose that H is a subgroup of S4 and that H contains (12) and 

(234). Prove that H 5 S4.
 24. Suppose that H and K are subgroups of G and there are elements  

a and b in G such that aH 8 bK. Prove that H 8 K.
 25. Suppose that G is an Abelian group with an odd number of elements. 

Show that the product of all of the elements of G is the identity.
 26. Suppose that G is a group with more than one element and G has 

no proper, nontrivial subgroups. Prove that |G| is prime. (Do not 
assume at the outset that G is finite.)

 27. Let |G| 5 15. If G has only one subgroup of order 3 and only one 
of order 5, prove that G is cyclic. Generalize to |G| 5 pq, where p 
and q are prime.

 28. Let G be a group of order 25. Prove that G is cyclic or g5 5 e for  
all g in G. Generalize to any group of order p2 where p is prime. 
Does your proof work for this generalization?

 29. Let |G| 5 33. What are the possible orders for the elements of G? 
Show that G must have an element of order 3.

 30. Let |G| 5 8. Show that G must have an element of order 2.
 31. Can a group of order 55 have exactly 20 elements of order 11? 

Give a reason for your answer.
 32. Determine all finite subgroups of C*, the group of nonzero com-

plex numbers under multiplication.
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158 Groups

 33. Let H and K be subgroups of a finite group G with H # K # G. 
Prove that |G:H| 5 |G:K| |K:H|.

 34. Suppose that a group contains elements of orders 1 through 10. 
What is the minimum possible order of the group?

 35. Give an example of the dihedral group of smallest order that con-
tains a subgroup isomorphic to Z12 and a subgroup isomorphic to 
Z20. No need to prove anything, but explain your reasoning.

 36. Show that in any group of order 100, either every element has order 
that is a power of a prime or there is an element of order 10.

 37. Suppose that a finite Abelian group G has at least three elements of 
order 3. Prove that 9 divides |G|.

 38. Prove that if G is a finite group, the index of Z(G) cannot be prime.
 39. Find an example of a subgroup H of a group G and elements a and 

b in G such that aH ? Hb and aH y Hb ? f. (Compare with prop-
erty 5 of cosets.)

 40. Prove that a group of order 63 must have an element of order 3.
 41. Let G be a group of order 100 that has a subgroup H of order 25. 

Prove that every element of G of order 5 is in H.
 42. Let G be a group of order n and k be any integer relatively prime to 

n. Show that the mapping from G to G given by g S gk is one-to-
one. If G is also Abelian, show that the mapping given by  
g S gk is an automorphism of G.

 43. Let G be a group of permutations of a set S. Prove that the orbits of 
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

 44. Prove that every subgroup of Dn of odd order is cyclic.
 45. Let G 5 {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), 

(14)(23), (24)(56)}.
 a. Find the stabilizer of 1 and the orbit of 1.
 b. Find the stabilizer of 3 and the orbit of 3.
 c. Find the stabilizer of 5 and the orbit of 5.
 46. Prove that a group of order 12 must have an element of order 2.
 47. Show that in a group G of odd order, the equation x2 5 a has a 

unique solution for all a in G.
 48. Let G be a group of order pqr, where p, q, and r are distinct primes. 

If H and K are subgroups of G with |H| 5 pq and |K| 5 qr, prove 
that |H > K| 5 q.

 49. Prove that a group that has more than one subgroup of order 5 must 
have order at least 25.

 50. Prove that A5 has a subgroup of order 12.
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7 | Cosets and Lagrange’s Theorem 159

 51. Prove that A5 has no subgroup of order 30.
 52. Prove that A5 has no subgroup of order 15 to 20.
 53. Suppose that a is an element from a permutation group G and one 

of its cycles in disjoint cycle form is (a1a2
…ak). Show that {a1,  

a2, …, ak} # orbG(ai) for 1 5 1, 2, …, k.
 54. Let G be a group and suppose that H is a subgroup of G with the 

property that for any a in G we have aH 5 Ha. (That is, every ele-
ment of the form ah where h is some element of H can be written in 
the form h1a for some h1 [ H.) If a has order 2, prove that the set 
K 5 H c aH is a subgroup of G. Generalize to the case that |a| 5 k.

 55. Prove that A5 is the only subgroup of S5 of order 60.
 56. Why does the fact that A4 has no subgroup of order 6 imply that 

|Z(A4)| 5 1?
 57. Let G 5 GL(2, R) and H 5 SL(2, R). Let A [ G and suppose that 

det A 5 2. Prove that AH is the set of all 2 3 2 matrices in G that 
have determinant 2.

 58. Let G be the group of rotations of a plane about a point P in  
the plane. Thinking of G as a group of permutations of the plane, 
describe the orbit of a point Q in the plane. (This is the motivation 
for the name “orbit.”)

 59. Let G be the rotation group of a cube. Label the faces of the cube  
1 through 6, and let H be the subgroup of elements of G that carry 
face 1 to itself. If s is a rotation that carries face 2 to face 1, give a 
physical description of the coset Hs.

 60. The group D4 acts as a group of permutations of the square regions 
shown below. (The axes of symmetry are drawn for reference pur-
poses.) For each square region, locate the points in the orbit of the 
indicated point under D4. In each case, determine the stabilizer of 
the indicated point.
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160 Groups

 61. Let G 5 GL(2, R), the group of 2 3 2 matrices over R with nonzero 
determinant. Let H be the subgroup of matrices of determinant 61. 
If a, b [ G and aH 5 bH, what can be said about det (a) and 
det  (b)? Prove or disprove the converse. [Determinants have the 
property that det (xy) 5 det (x)det (y).]

 62. Calculate the orders of the following (refer to Figure 27.5 for  
illustrations).

 a.  The group of rotations of a regular tetrahedron (a solid with four 
congruent equilateral triangles as faces)

 b.  The group of rotations of a regular octahedron (a solid with 
eight congruent equilateral triangles as faces)

 c.  The group of rotations of a regular dodecahedron (a solid with 
12 congruent regular pentagons as faces)

 d.  The group of rotations of a regular icosahedron (a solid with  
20 congruent equilateral triangles as faces)

 63. Prove that the eight-element set in the proof of Theorem 7.5 is a 
group.

 64. A soccer ball has 20 faces that are regular hexagons and 12 faces 
that are regular pentagons. Use Theorem 7.4 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through 
the centers of two opposite hexagonal faces.

 65. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

Computer Exercises

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Joseph Lagrange

Joseph Louis Lagrange was born in Italy of 
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early 
age when he read an essay by Halley on 
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal 
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of 
mathematics and physics, among them the 
theory of numbers, the theory of equations, 
ordinary and partial differential equations, 
the calculus of variations, analytic geometry, 
fluid dynamics, and celestial mechanics. His 
methods for solving third- and fourth-degree 
polynomial equations by radicals laid the 
groundwork for the group theoretic approach 
to solving polynomials taken by Galois. 
Lagrange was a very careful writer with a 
clear and elegant style.

At the age of 40, Lagrange was appointed 
head of the Berlin Academy, succeeding 
Euler. In offering this appointment, Frederick 
the Great proclaimed that the “greatest king 
in Europe” ought to have the “greatest math-
ematician in Europe” at his court. In 1787, 
Lagrange was invited to Paris by Louis XVI 
and became a good friend of the king and his 
wife, Marie Antoinette. In 1793, Lagrange 
headed a commission, which included 
Laplace and Lavoisier, to devise a new system 

Lagrange is the Lofty Pyramid of the 
Mathematical Sciences.

napoleon bonaparte

This stamp was issued by 
France in Lagrange’s honor 
in 1958.

of weights and measures. Out of this came 
the metric system. Late in his life he was 
made a count by Napoleon. Lagrange died on 
April 10, 1813.

To find more information about Lagrange, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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8 External Direct  
Products

The universe is an enormous direct product of representations  
of symmetry groups.

steven weinberg†

Definition and Examples
In this chapter, we show how to piece together groups to make larger 
groups. In Chapter 9, we will show that we can often start with one 
large group and decompose it into a product of smaller groups in much 
the same way as a composite positive integer can be broken down into 
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product
Let G1, G2, . . . , Gn

 be a finite collection of groups. The external direct 

product of G1, G2, . . . , Gn
, written as G1 % G2 % ? ? ? % G

n
, is the set of 

all n-tuples for which the ith component is an element of G
i
 and the 

operation is componentwise.

In symbols,

G1 % G2 % ? ? ? % Gn 5 {(g1, g2, . . . , gn) | gi [ Gi},

where (g1, g2, . . . , gn)(g19, g29, . . . , gn9) is defined to be (g1g19,   
g2g29, . . . , gngn9). It is understood that each product gigi9 is performed 
with the operation of Gi. Note that in the case that each Gi is finite, we 
have by properties of sets that |G1 % G2 % … % Gn | 5 |G1||G2| … |Gn|. 
We leave it to the reader to show that the external direct product of 
groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or 
physics. Indeed, R2 5 R % R and R3 5 R % R % R—the operation being 
componentwise addition. Of course, there is also scalar multiplication, but 

†Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus 
Salam for their construction of a single theory incorporating weak and electromagnetic 
interactions.
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8 | External Direct Products 163

we ignore this for the time being, since we are interested only in the group 
structure at this point.

 EXAMPLE 1

 U(8) %  U(10) 5 {(1, 1), (1, 3), (1, 7), (1, 9), (3, 1), (3, 3),  
                 (3, 7), (3, 9), (5, 1), (5, 3), (5, 7), (5, 9),  

                     (7, 1),(7, 3), (7, 7), (7, 9)}.

The product (3, 7)(7, 9) 5 (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are 
combined by multiplication modulo 10. 

 EXAMPLE 2

Z2 % Z3 5 {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z6? Consider the 
subgroup of Z2 % Z3 generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) 5 (1, 1), 2(1, 1) 5 (0, 2), 3(1, 1) 5  
(1, 0), 4(1, 1) 5 (0, 1), 5(1, 1) 5 (1, 2), and 6(1, 1) 5 (0, 0). Hence  
Z2 % Z3 is cyclic. It follows that Z2 % Z3 is isomorphic to Z6. 

In Theorem 7.3 we classified the groups of order 2p where p is an 
odd prime. Now that we have defined Z2 % Z2, it is easy to classify the 
groups of order 4.

 EXAMPLE 3 Classification of Groups of Order 4 
A group of order 4 is isomorphic to Z4 or Z2 % Z2. To verify this, let G 5 
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem 
that |a | 5 |b | 5 |ab | 5 2. Then the mapping e S (0, 0), a S (1, 0),  
b S (0, 1), and ab S (1, 1) is an isomorphism from G onto Z2 % Z2. 

We see from Examples 2 and 3 that in some cases Zm % Zn is isomor-
phic to Zmn and in some cases it is not. Theorem 8.2 provides a simple 
characterization for when the isomorphism holds.

Properties of External Direct Products
Our first theorem gives a simple method for computing the order of an 
 element in a direct product in terms of the orders of the component  
pieces.
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164 Groups

 Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of 

finite groups is the least common multiple of the orders of the 

components of the element. In symbols,

|(g1, g2, . . . , gn
)| 5 lcm(|g1|, |g2|, . . . , |gn

|).

PROOF Denote the identity of Gi by ei. Let s 5 lcm(|g1|, |g2|, . . . , |gn|) 
and t 5|(g1, g2, . . . , gn)|. Because the fact that s is a multiple of each |gi| 
implies that (g1, g2, . . . , gn)

s 5 (gs
1, g

s
2, . . . , g

s
n) 5 (e1, e2, . . . , en), we know  

that t # s. On the other hand, from (gt
1, g

t
2, . . . , g

t
n) 5 (g1, g2, . . . , gn)

t 5  
(e1, e2, . . . , en) we see that t is a common multiple of |g1|, |g2|, . . . , |gn|. 
Thus, s # t. 

The next two examples are applications of Theorem 8.1.

 EXAMPLE 4 We determine the number of elements of order 5 in  
Z25 % Z5. By Theorem 8.1, we may count the number of elements  
(a, b) in Z25 % Z5 with the property that 5 5 |(a, b)| 5 lcm(|a|, |b|). 
Clearly this requires that either |a| 5 5 and |b| 5 1 or 5, or |b| 5 5 and 
|a| 5 1 or 5. We consider two mutually exclusive cases.

Case 1 |a| 5 5 and |b| 5 1 or 5. Here there are four choices for a 
(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 |a| 5 1 and |b| 5 5. This time there is one choice for a and four 
choices for b, so we obtain four more elements of order 5.

Thus, Z25 % Z5 has 24 elements of order 5. 

 EXAMPLE 5 We determine the number of cyclic subgroups of order 
10 in Z100 % Z25. We begin by counting the number of elements (a, b) of 
order 10.

Case 1 |a| 5 10 and |b| 5 1 or 5. Since Z100 has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators 
(Theorem 4.4), there are four choices for a. Similarly, there are five 
choices for b. This gives 20 possibilities for (a, b).

Case 2 |a| 5 2 and |b| 5 5. Since any finite cyclic group of even  order 
has a unique subgroup of order 2 (Theorem 4.4), there is only one 
choice for a. Obviously, there are four choices for b. So, this case yields 
four more possibilities for (a, b).
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8 | External Direct Products 165

Thus, Z100 % Z25 has 24 elements of order 10. Because each cyclic 
subgroup of order 10 has four elements of order 10 and no two of the 
cyclic subgroups can have an element of order 10 in common, there 
must be 24/4 5 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs 
and dividing by 4.) 

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

 EXAMPLE 6 For each divisor r of m and s of n, the group Zm % Zn 
has a subgroup isomorphic to Zr % Zs (see Exercise 19). To find a sub-
group of, say, Z30 % Z12 isomorphic to Z6 % Z4, we observe that k5l is a 
subgroup of Z30 of order 6 and k3l is a subgroup of Z12 of order 4, so  
k5l % k3l is the desired subgroup. 

The next theorem and its first corollary characterize those direct 
products of cyclic groups that are themselves cyclic.

 Theorem 8.2 Criterion for G % H to be Cyclic

Let G and H be finite cyclic groups. Then G % H is cyclic if and only 

if |G| and |H| are relatively prime.

PROOF Let |G| 5 m and |H| 5 n, so that |G % H| 5 mn. To prove the 
first half of the theorem, we assume G % H is cyclic and show that  
m and n are relatively prime. Suppose that gcd(m, n) 5 d and (g, h) is a 
generator of G % H. Since (g, h)mn/d 5 ((gm)n/d, (hn)m/d) 5 (e, e), we 
have mn 5 |(g, h)| # mn/d. Thus, d 5 1.

To prove the other half of the theorem, let G 5 kgl and H 5 khl and sup-
pose gcd(m, n) 5 1. Then, |(g, h)| 5 lcm(m, n) 5 mn 5 |G % H|, so that 
(g, h) is a generator of G % H. 

As a consequence of Theorem 8.2 and an induction argument, we 
obtain the following extension of Theorem 8.2.

 Corollary 1 Criterion for G1 % G2 % ? ? ? % Gn to Be Cyclic

An external direct product G1 % G2 % ? ? ? % G
n
 of a finite number  

of finite cyclic groups is cyclic if and only if |G
i
| and |G

j
| are relatively 

prime when i 2 j.
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166 Groups

 Corollary 2 Criterion for Zn1n2 . . . nk
 < Zn1

 % Zn2
 % . . . % Znk

Let m 5 n1n2 ? ? ? nk
. Then Z

m
 is isomorphic to Z

n1
 % Z

n2 
% ? ? ? %

 
Z

nk 

if and only if n
i
 and n

j
 are relatively prime when i 2 j.

By using the results above in an iterative fashion, one can express 
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 < Z2 % Z30.

Similarly,

 Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 

 < Z2 % Z3 % Z2 % Z5 < Z6 % Z10.

Thus, Z2 % Z30 < Z6 % Z10. Note, however, that Z2 % Z30 ] Z60.

The Group of Units Modulo n as  
an External Direct Product

The U-groups provide a convenient way to illustrate the preceding 
ideas. We first introduce some notation. If k is a divisor of n, let

Uk(n) 5 {x [ U(n) | x mod k 5 1}.

For example, U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92}. It can be readily 
shown that Uk(n) is indeed a subgroup of U(n). (See Exercise 31 in 
Chapter 3.)

 Theorem 8.3 U(n) as an External Direct Product

Suppose s and t are relatively prime. Then U(st) is isomorphic to the 

external direct product of U(s) and U(t). In short,

U(st) < U(s) % U(t).

Moreover, U
s
(st) is isomorphic to U(t) and U

t
(st) is isomorphic to U(s).

PROOF An isomorphism from U(st) to U(s) % U(t) is x S (x mod s, 
x mod t); an isomorphism from Us(st) to U(t) is x S x mod t; an isomor-
phism from Ut(st) to U(s) is x S x mod s. We leave the verification that 
these mappings are operation-preserving, one-to-one, and onto to the 
reader. (See Exercises 9, 17, and 19 in Chapter 0; see also [1].) 

As a consequence of Theorem 8.3, we have the following result.
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8 | External Direct Products 167

Corollary

Let m 5 n1n2 ? ? ? nk 
, where gcd(n

i 
, n

j
) 5 1 for i 2 j. Then,

U(m) < U(n1) % U(n2) % ? ? ? % U(n
k
).

To see how these results work, let’s apply them to U(105). We  obtain

 U(105) < U(7) % U(15),
 U(105) < U(21) % U(5),

U(105) < U(3) % U(5) % U(7).

Moreover,

 U(7) < U15(105) 5 {1, 16, 31, 46, 61, 76},
 U(15) < U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92},
U(21) < U5(105) 5 {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101},
 U(5) < U21(105) 5 {1, 22, 43, 64},
 U(3) < U35(105) 5 {1, 71}.

Among all groups, surely the cyclic groups Zn have the simplest 
structures and, at the same time, are the easiest groups with which to 
compute. Direct products of groups of the form Zn are only slightly 
more complicated in structure and computability. Because of this, alge-
braists endeavor to describe a finite Abelian group as such a direct 
product. Indeed, we shall soon see that every finite Abelian group can 
be so represented. With this goal in mind, let us reexamine the   
U-groups. Using the corollary to Theorem 8.3 and the facts (see  
[2, p. 93]), first proved by Carl Gauss in 1801, that

U(2) < {0},    U(4) < Z2,    U(2n) < Z2 % Z2n22    for n $ 3,

and

U( pn) < Zpn2pn21    for p an odd prime,

we now can write any U-group as an external direct product of cyclic 
groups. For example,

U(105) 5 U(3 ? 5 ? 7) < U(3) % U(5) % U(7)

    < Z2 % Z4 % Z6

and

U(720) 5 U(16 ? 9 ? 5) < U(16) % U(9) % U(5)

 < Z2 % Z4 % Z6 % Z4.
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168 Groups

What is the advantage of expressing a group in this form? Well, for one 
thing, we immediately see that the orders of the elements U(720) can 
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an 
element from Z2 % Z4 % Z6 % Z4 has the form (a, b, c, d), where  
|a| 5 1 or 2, |b| 5 1, 2, or 4, |c| 5 1, 2, 3, or 6, and |d| 5 1, 2, or 4, and  
that |(a, b, c, d)| 5 lcm(|a|, |b|, |c|, |d|). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has. 
Because U(720) is isomorphic to Z2 % Z4 % Z6 % Z4, it suffices to cal-
culate the number of elements of order 12 in Z2 % Z4 % Z6 % Z4. But 
this is easy. By Theorem 8.1, an element (a, b, c, d) has order 12 if and 
only if lcm(|a|, |b|, |c|, |d|) 5 12. Since |a| 5 1 or 2, it does not matter 
how a is chosen. So, how can we have lcm(|b|, |c|, |d|) 5 12? One way 
is to have |b| 5 4, |c| 5 3 or 6, and d arbitrary. By Theorem 4.4, there 
are two choices for b, four choices for c, and four choices for d. So, in 
this case, we have 2 ? 4 ? 4 5 32 choices. The only other way to have 
lcm(|b|, |c|, |d|) 5 12 is for |d| 5 4, |c| 5 3 or 6, and |b| 5 1 or 2 (we 
exclude |b| 5 4, since this was already accounted for). This gives 2 ? 4 ? 
2 5 16 new choices. Finally, since a can be either of the two elements in 
Z2, we have a total of 2(32 1 16) 5 96 elements of order 12.

These calculations tell us more. Since Aut(Z720) is isomorphic to 
U(720), we also know that there are 96 automorphisms of Z720 of  
 order 12. Imagine trying to deduce this information directly from 
U(720) or, worse yet, from Aut(Z720)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as 
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Zn) and U(n). After all, theorems are labor- 
saving devices. If you want to convince yourself of this, try to prove 
directly from the definitions that Aut(Z720) has exactly 96 elements of 
or     der 12.

Applications
We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components, 
it is natural to represent information as strings of 0s and 1s called 
 binary strings. A binary string of length n can naturally be thought of 
as an element of Z2 % Z2 % ? ? ? % Z2 (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string 
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8 | External Direct Products 169

11000110 corresponds to the element (1, 1, 0, 0, 0, 1, 1, 0) in Z2 % Z2 % 
Z2 % Z2 % Z2 % Z2 % Z2 % Z2. Similarly, two binary strings a1a2 ? ? ? an 
and b1b2 ? ? ? bn are added componentwise modulo 2 just as their 
 corresponding elements in Z2 % Z2 % ? ? ? % Z2 are. For  example,

 11000111 1 01110110 5 10110001

and

 10011100 1 10011100 5 00000000.

The fact that the sum of two binary sequences a1a2 ? ? ? an 1 b1b2 ? ? ? 
bn 5 00 ? ? ? 0 if and only if the sequences are identical is the basis for 
a data security system used to protect Internet transactions.

Suppose that you want to purchase a compact disc from http://www 
.amazon.com. Need you be concerned that a hacker will intercept  
your credit-card number during the transaction? As you might expect, 
your credit-card number is sent to Amazon in a way that protects the 
data. We explain one way to send credit-card numbers over the Web 
securely. When you place an order with Amazon, the company sends 
your computer a randomly generated string of 0’s and 1’s called a key. 
This key has the same length as the binary string corresponding to 
your credit-card number and the two strings are added (think of this 
process as “locking” the data). The resulting sum is then transmitted 
to Amazon. Amazon in turn adds the same key to the received string, 
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string 
such as s 5 10101100 to Amazon (actual credit-card numbers have  
very long strings) and Amazon sends your computer the key  
k 5 00111101. Your computer returns the string s 1 k 5 10101100 1 
00111101 5 10010001 to Amazon, and Amazon adds k to this string to 
get 10010001 1 00111101 5 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number  
s 1 k 5 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly 
generated and used only one time. You can tell when you are using an en-
cryption scheme on a Web transaction by looking to see if the Web ad-
dress begins with “https” rather than the customary “http.” You will also 
see a small padlock in the status bar at the bottom of the browser window.

Public Key Cryptography

Unlike auctions such as those on eBay, where each bid is known by 
everyone, a silent auction is one in which each bid is secret. Suppose 
that you wanted to use your Twitter account to run a silent auction. 
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How could a scheme be devised so that users could post their bids in 
such a way that the amounts are intelligible only to the account holder? 
In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman 
devised an ingenious method that permits each person who is to receive 
a secret message to tell publicly how to scramble messages sent to him 
or her. And even though the method used to scramble the message is 
known publicly, only the person for whom it is intended will be able to 
unscramble the message. The idea is based on the fact that there exist 
efficient methods for finding very large prime numbers (say about  
100 digits long) and for multiplying large numbers, but no one knows 
an efficient algorithm for factoring large integers (say about 200 digits 
long). The person who is to receive the message chooses a pair of large 
primes p and q and chooses an integer e (called the encryption expo-
nent) with 1 , e , m, where m 5 lcm (p 2 1, q 2 1), such that e  
is relatively prime to m (any such e will do). This person calculates  
n 5 pq (n is called the key) and announces that a message M is to be 
sent to him or her publicly as Me mod n. Although e, n, and Me are 
available to everyone, only the person who knows how to factor n as pq 
will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the messages “YES.” 
We convert the message into a string of digits by replacing A by 01, B 
by 02,  . . . , Z by 26, and a blank by 00. So, the message YES becomes 
250519. To keep the numbers involved from becoming too unwieldy, 
we send the message in blocks of four digits and fill in with blanks 
when needed. Thus, the messages YES is represented by the two blocks 
2505 and 1900. The person to whom the message is to be sent has 
picked two primes p and q, say p 5 37 and q 5 73, and a number e that 
has no prime divisors in common with lcm (p 21, q 21) 5 72, say  
e 5 5, and has published n 5 37 ? 73 5 2701 and e 5 5 in  a public 
forum. We will send the “scrambled” numbers (2505)5 mod 2701 and 
(1900)5 mod 2701 rather than 2505 and 1900, and the receiver will un-
scramble them. We show the work involved for us and the receiver only 
for the block 2505. We determine (2505)5 mod 2701 5 2415 by using a 
modular arithmetic calculator such as the one at http://users.wpi 
.edu/~martin/mod.html.†

†Provided that the numbers are not too large, the Google search engine at http://www 
.google.com will do modular arithmetic. For example, entering 2505^2 mod 2701 in 
the search box yields 602. Be careful, however: Entering 2505^5 mod 2701 does not 
return a value, because 25055 is too large. Instead, we can use Google to compute 
smaller powers such as 2505^2 mod 2701 and 2505^3 mod 2701 (which yields 852) 
and then enter (852 3 602) mod 2701.
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8 | External Direct Products 171

Thus, the number 2415 is sent to the receiver. Now the receiver must 
take this number and convert it back to 2505. To do so, the receiver 
takes the two factors of 2701, p 5 37 and q 5 73, and calculates the 
least common multiple of p 2 1 5 36 and q 2 1 5 72, which is 72. 
(This is where the knowledge of p and q is necessary.) Next, the re-
ceiver must find e21 5 d (called the decryption exponent) in U(72)—
that is, solve the equation 5 ? d 5 1 mod 72. This number is 29. See 
http://www.d.umn.edu/~jgallian/msproject06/chap8.html 
#chap8ex5 or use a Google search box to compute 5k for each divisor k 
of |U(72)| 5 f(9) ? f(8) 5 24 starting with 2 until we reach 5k mod 72 
5 1. Doing so, we obtain 56 mod 72 5 1, which implies that 55 mod 72 
5 29 is 521 in U(72).

Then the receiver takes the number received, 2415, and calculates 
(2415)29 mod 2701 5 2505, the encoded number. Thus, the receiver cor-
rectly determines the code for “YE.” On the other hand, without know-
ing how pq factors, one cannot find the modulus (in our case, 72) that is 
needed to determine the decryption exponent d.

The procedure just described is called the RSA public key encryption 
scheme in honor of the three people (Rivest, Shamir, and Adleman) who 
discovered the method. It is widely used in conjunction with web servers 
and browsers, e-mail programs, remote login sessions, and electronic fi- 
nancial transactions. The algorithm is summarized below.

Receiver
1.  Pick very large primes p and q and compute n 5 pq.
2.  Compute the least common multiple of p – 1 and q – 1; let us call  

it m.
3.  Pick e relatively prime to m.
4.  Find d such that ed mod m 5 1.
5.  Publicly announce n and e.

Sender
1.  Convert the message to a string of digits.
2.  Break up the message into uniform blocks of digits; call them M1, 

M2,…, Mk.
3.  Check to see that the greatest common divisor of each Mi and n is 1. 

If not, n can be factored and our code is broken. (In practice, the 
primes p and q are so large that they exceed all Mi, so this step may 
be omitted.)

4.  Calculate and send Ri 5 Mi
e mod n.
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Receiver
1.  For each received message Ri, calculate Ri

d mod n.
2.  Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) < U(p) % 
U(q) < Zp21 % Zq21. Thus, an element of the form xm in U(n) corre-
sponds under an isomorphism to one of the form (mx1, mx2) in Zp21 % 
Zq21. Since m is the least common multiple of p 2 1 and q 2 1, we may 
write m 5 s(p 2 1) and m 5 t(q 2 1) for some integers s and t. Then 
(mx1, mx2) 5 (s(p 2 1)x1, t(q 2 1)x2) 5 (0, 0) in Zp21 % Zq21, and it 
follows that xm 5 1 for all x in U(n). So, because each message Mi is an 
element of U(n) and e was chosen so that ed 5 1 1 km for some k, we 
have, modulo n,

Ri
d 5 (Mi

e)d 5 Mi
ed 5 Mi 

11km 5 Mi(Mi
m)k 5 Mi1

k 5 Mi.

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received 
the Association for Computing Machinery A. M. Turing Award, which 
is considered the “Nobel Prize of computing,” for their contribution to 
public key cryptography.

An RSA calculator that does all the calculations is provided at http://
www.d.umn.edu/~jgallian/msproject06/chap8.html#chap8ex5. A list 
of primes can be found by searching the Web for “list of primes.”

Digital Signatures

With so many financial transactions now taking place electronically, the 
problem of authenticity is paramount. How is a stockbroker to know that 
an electronic message she receives that tells her to sell one stock and buy 
another actually came from her client? The technique used in public key 
cryptography allows for digital signatures as well. Let us say that person 
A wants to send a secret message to person  B in such a way that only B 
can decode the message and B will know that only A could have sent it. 
Abstractly, let EA and DA denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let EB and DB denote the algo-
rithms that B uses for encryption and decryption, respectively. Here 
we assume that EA and EB are available to the public, whereas DA is 
known only to A and DB is known only to B, and that DBEB and EADA 
applied to any message leaves the message unchanged. Then A sends 
a message M to B as EB (DA(M)) and B decodes the received message 
by applying the function EADB to it to obtain

(EADB) (EB(DA(M)) 5 EA(DBEB)(DA(M)) 5 EA(DA(M)) 5 M.
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8 | External Direct Products 173

Notice that only A can execute the first step (i.e., create DA(M)) and 
only B can implement the last step (i.e., apply EADB to the received 
message).

Transactions using digital signatures became legally binding in the 
United States in October 2000.

Genetics†

The genetic code can be conveniently modeled using elements of Z4 % 

Z4 % ? ? ? % Z4, where we omit the parentheses and the commas and 
just use strings of 0’s, 1’s, 2’s, and 3’s and add componentwise modulo 
4. A DNA molecule is composed of two long strands in the form of a 
double helix. Each strand is made up of strings of the four nitrogen 
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each 
base on one strand binds to a complementary base on the other strand. 
Adenine always is bound to thymine, and guanine always is bound to 
cytosine. To model this process, we identify A with 0, T with 2, G with 1, 
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and 
21302212332. Noting that in Z4, 0 1 2 5 2, 2 1 2 5 0, 1 1 2 5 3, and 
3 1 2 5 1, we see that adding 2 to elements of Z4 interchanges 0 and 2 
and 1 and 3. So, for any DNA segment a1a2 ? ? ? an represented by ele-
ments of Z4 % Z4 % ? ? ? % Z4, we see that its complementary segment 
is represented by a1a2 ? ? ? an 1 22 ? ? ? 2.

Electric Circuits

Many homes have light fixtures that are operated by a pair of switches. 
They are wired so that when either switch is thrown, the light changes 
its status (from on to off or vice versa). Suppose the wiring is done so 
that the light is on when both switches are in the up position. We can 
conveniently think of the states of the two switches as being matched 
with the elements of Z2 % Z2, with the two switches in the up position 
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the 
 corresponding component in the group Z2 % Z2. We then see that the 
lights are on when the switches correspond to the elements of the sub-
group k(1, 1)l and are off when the switches correspond to the elements 
in the coset (1, 0) 1 k(1, 1)l. A similar analysis applies in the case of 
three switches, with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)} 
corresponding to the lights-on situation.

†This discussion is adapted from [3].
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Exercises

What’s the most difficult aspect of your life as a mathematician, Diane 
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove 
 theorems,” she said. And the most fun? “Trying to prove theorems.”

  1. Prove that the external direct product of any finite number of 
groups is a group. (This exercise is referred to in this chapter.)

  2. Show that Z2 % Z2 % Z2 has seven subgroups of order 2.
  3. Let G be a group with identity eG and let H be a group with iden - 

tity eH. Prove that G is isomorphic to G % {eH} and that H is iso-
morphic to {eG} % H.

  4. Show that G % H is Abelian if and only if G and H are Abelian. 
State the general case.

  5. Prove or disprove that Z % Z is a cyclic group.
  6. Prove, by comparing orders of elements, that Z8 % Z2 is not iso-

morphic to Z4 % Z4.
  7. Prove that G1 % G2 is isomorphic to G2 % G1. State the general 

case.
  8. Is Z3 % Z9 isomorphic to Z27? Why?
  9. Is Z3 % Z5 isomorphic to Z15? Why?
 10. How many elements of order 9 does Z3 % Z9 have? (Do not do this 

exercise by brute force.)
 11. How many elements of order 4 does Z4 % Z4 have? (Do not do this 

by examining each element.) Explain why Z4 % Z4 has the same 
number of elements of order 4 as does Z8000000 % Z400000. General-
ize to the case Zm % Zn.

 12. Give examples of four groups of order 12, no two of which are 
isomorphic. Give reasons why no two are isomorphic.

 13. For each integer n . 1, give examples of two nonisomorphic 
groups of order n2.

 14. The dihedral group Dn of order 2n (n $ 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why Dn cannot be iso-
morphic to the external direct product of two such groups.

 15. Prove that the group of complex numbers under addition is iso-
morphic to R % R.

 16. Suppose that G1 < G2 and H1 < H2. Prove that G1 % H1 < G2 % 
H2. State the general case.

 17. If G % H is cyclic, prove that G and H are cyclic. State the  general 
case.

 18. In Z40 % Z30, find two subgroups of order 12.
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8 | External Direct Products 175

 19. If r is a divisor of m and s is a divisor of n, find a subgroup of Zm % 
Zn that is isomorphic to Zr % Zs.

 20. Find a subgroup of Z12 % Z18 that is isomorphic to Z9 % Z4.
 21. Let G and H be finite groups and (g, h) [ G % H. State a necessary 

and sufficient condition for k(g, h)l 5 kgl % khl.
 22. Determine the number of elements of order 15 and the number of 

cyclic subgroups of order 15 in Z30 % Z20.
 23. What is the order of any nonidentity element of Z3 % Z3 % Z3? 

Generalize.
 24. Let m . 2 be an even integer and let n . 2 be an odd integer. Find 

a formula for the number of elements of order 2 in Dm % Dn.
 25. Let M be the group of all real 2 3 2 matrices under addition. Let  

N 5 R % R % R % R under componentwise addition. Prove that 
M and N are isomorphic. What is the corresponding theorem for 
the group of m 3 n matrices under addition?

 26. The group S3 % Z2 is isomorphic to one of the following groups: 
Z12, Z6 % Z2, A4, D6. Determine which one by elimination.

 27. Let G be a group, and let H 5 {(g, g) | g [ G}. Show that H is a  
subgroup of G % G. (This subgroup is called the diagonal of  
G % G.) When G is the set of real numbers under addition,  
describe G % G and H geometrically.

 28. Find a subgroup of Z4 % Z2 that is not of the form H % K, where H 
is a subgroup of Z4 and K is a subgroup of Z2.

 29. Find all subgroups of order 3 in Z9 % Z3.
 30. Find all subgroups of order 4 in Z4 % Z4.
 31. What is the largest order of any element in Z30 % Z20?
 32. What is the order of the largest cyclic subgroup of Z6 % Z10 % Z15? 

What is the order of the largest cyclic subgroup of Zn1
 % Zn2

 % … 
% Znk

?
 33. Find three cyclic subgroups of maximum possible order in Z6 % 

Z10 % Z15 of the form kal % kbl % kcl, where a [ Z6, b [ Z10, and 
c [ Z15.

 34. How many elements of order 2 are in Z2000000 % Z4000000? Generalize.
 35. Find a subgroup of Z800 % Z200 that is isomorphic to Z2 % Z4.
 36. Find a subgroup of Z12 % Z4 % Z15 that has order 9.
 37. Prove that R* % R* is not isomorphic to C*. (Compare this with 

Exercise 15.)
 38. Let

 H � • £1 a b

0 1 0

0 0 1
t †  a, b [ Z3¶ .
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  (See Exercise 48 in Chapter 2 for the definition of multiplication.) 
Show that H is an Abelian group of order 9. Is H isomorphic to Z9 
or to Z3 % Z3?

 39. Let G 5 {3m6n | m, n [ Z} under multiplication. Prove that G is isomor-
phic to Z % Z. Does your proof remain valid if G 5 {3m9n | m, n [ Z}?

 40. Let (a1, a2, . . . , an) [ G1 % G2 % ? ? ? % Gn. Give a necessary and 
sufficient condition for |(a1, a2, . . . , an)| 5 `.

 41. Prove that D3 % D4 ] D12% Z2.
 42. Determine the number of cyclic subgroups of order 15 in Z90 % Z36.

Provide a generator for each of the subgroups of order 15.
 43. List the elements in the groups U5(35) and U7(35).
 44. Prove or disprove that U(40) % Z6 is isomorphic to U(72) % Z4.
 45. Prove or disprove that C* has a subgroup isomorphic to Z2 % Z2.
 46. Let G be a group isomorphic to Zn1

 % Zn2
 % . . . % Znk. Let x be the 

product of all elements in G. Describe all possibilities for x.
 47. If a group has exactly 24 elements of order 6, how many cyclic 

subgroups of order 6 does it have?
 48. For any Abelian group G and any positive integer n, let Gn 5 {gn | 

g [ G} (see Exercise 17, Supplementary Exercises for Chapters 
1– 4). If H and K are Abelian, show that (H % K)n 5 Hn % Kn.

 49. Express Aut(U(25)) in the form Zm % Zn.
 50. Determine Aut(Z2 % Z2).
 51. Suppose that n1, n2, . . . , nk are positive even integers. How many 

 elements of order 2 does Zn1
 % Zn2

 % . . . % Znk
 have ? How many are 

there if we drop the requirement that n1, n2, . . . , nk must be even?
 52. Is Z10 % Z12 % Z6 ^ Z60 % Z6 % Z2?
 53. Is Z10 % Z12 % Z6 ^ Z15 % Z4 % Z12?
 54. Find an isomorphism from Z12 to Z4 % Z3.
 55. How many isomorphisms are there from Z12 to Z4 % Z3?
 56. Suppose that f is an isomorphism from Z3 % Z5 to Z15 and  

f(2, 3) 5 2. Find the element in Z3 % Z5 that maps to 1.
 57. If f is an isomorphism from Z4 % Z3 to Z12, what is f(2, 0)? What 

are the possibilities for f(1, 0)? Give reasons for your answer.
 58. Prove that Z5 % Z5 has exactly six subgroups of order 5.
 59. Let (a, b) belong to Zm % Zn. Prove that |(a, b)| divides lcm(m, n).
 60. Let G 5 {ax2 1 bx 1 c | a, b, c [ Z3}. Add elements of G as you 

would polynomials with integer coefficients, except use modulo 3 
addition. Prove that G is isomorphic to Z3 % Z3 % Z3. Generalize.
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8 | External Direct Products 177

 61. Determine all cyclic groups that have exactly two generators.
 62. Explain a way that a string of length n of the four nitrogen bases A, 

T, G, and C could be modeled with the external direct product of n 
copies of Z2 % Z2.

 63. Let p be a prime. Prove that Zp % Zp has exactly p 1 1 subgroups 
of order p.

 64. Give an example of an infinite non-Abelian group that has exactly 
six elements of finite order.

 65. Give an example to show that there exists a group with elements a 
and b such that |a| 5 `, |b| 5 `, and |ab| 5 2.

 66. Express U(165) as an external direct product of cyclic groups of 
the form Zn.

 67. Express U(165) as an external direct product of U-groups in four 
different ways.

 68. Without doing any calculations in Aut(Z20), determine how many 
elements of Aut(Z20) have order 4. How many have order 2?

 69. Without doing any calculations in Aut(Z720), determine how many 
elements of Aut(Z720) have order 6.

 70. Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

 71. What is the largest order of any element in U(900)?
 72. Let p and q be odd primes and let m and n be positive integers. 

Explain why U( pm) % U(qn) is not cyclic.
 73. Use the results presented in this chapter to prove that U(55) is 

 isomorphic to U(75).
 74. Use the results presented in this chapter to prove that U(144) is 

 isomorphic to U(140).
 75. For every n . 2, prove that U(n)2 5 {x2 | x [ U(n)} is a proper 

subgroup of U(n).
 76. Show that U(55)3 5 {x3 | x [ U(55)} is U(55).
 77. Find an integer n such that U(n) contains a subgroup isomorphic to  

Z5 % Z5.
 78. Find a subgroup of order 6 in U(700).
 79. Show that there is a U-group containing a subgroup isomorphic  

to Z3 % Z3.
 80. Find an integer n such that U(n) is isomorphic to Z2 % Z4 % Z9.
 81. What is the smallest positive integer k such that xk 5 e for all x in 

U(7 ? 17)? Generalize to U(pq) where p and q are distinct primes.
 82. If k divides m and m divides n, how are Um(n) and Uk(n) related?
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 83. Let p1, p2,…, pk be distinct odd primes and n1, n2,…, nk be  
positive integers. Determine the number of elements of order 2 in 
U(p1

n1 p2
n2… pk

nk). How many are there in U(2np1
n1 p2

n2… pk
nk) where 

n is at least 3?
 84. Show that no U-group has order 14.
 85. Show that there is a U-group containing a subgroup isomorphic  

to Z14.
 86. Show that no U-group is isomorphic to Z4 % Z4.
 87. Show that there is a U-group containing a subgroup isomorphic to  

Z4 % Z4.
 88. Using the RSA scheme with p 5 37, q 5 73, and e 5 5, what num-

ber would be sent for the message “RM”?
 89. Assuming that a message has been sent via the RSA scheme with  

p 5 37, q 5 73, and e 5 5, decode the received message “34.”

Computer Exercises

Computer exercises in this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Applicable Algebra in Engineering, Communication, and Computing 22 
(2011):109–112.

This article provides a new check-digit system for hexadecimal num-
bers that is based on the use of a suitable automorphism of the group 
Z2 % Z2 % Z2 % Z2. It is able to detect all single errors, adjacent trans-
positions, twin errors, jump transpositions, and jump twin errors.
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Leonard Adleman

Leonard Adleman was born on December 
31, 1945 in San Francisco, California. He re-
ceived a B.A. degree in mathematics in 1968 
and a Ph.D. degree in computer science in 
1976 from the University of California, 
Berkeley. He spent 1976–1980 as professor 
of mathematics at the Massachusetts Institute 
of Technology where he met Ronald Rivest 
and Adi Shamir. Rivest and Shamir were at-
tempting to devise a secure public key cryp-
tosystem and asked Adleman if he could 
break their codes. Eventually, they invented 
what is now known as the RSA code that was 
simple to implement yet secure.

In 1983, Adleman, Shamir, and Rivest 
formed the RSA Data Security company to 
license their algorithm. Their algorithm has 
become the primary cryptosystem used for 
security on the World Wide Web. They sold 
their company for $200 million in 1996.

In the early 1990s, Adleman became in-
terested in trying to find out a way to use 
DNA as a computer. His pioneering work on 
this problem lead to the field now called 
“DNA computing.”

Among his many honors are: the 
Association for Computing Machinery  
A. M. Turing Award, the Kanallakis Award 
for Theory and Practice, and election to the 
National Academy of Engineering, the 
American Academy of Arts and Sciences, 
and the National Academy of Sciences.

Adleman’s current position is the Henry 
Salvatori Distinguished Chair in Computer 
Science and Professor of Computer Science 
and Biological Sciences at the University of 
Southern California, where he has been 
since 1980.

For more information on Adleman, visit:

http://www.wikipedia.com

and

http://www.nytimes.com/1994/12/13/
science/scientist-at-work-leonard-
adleman-hitting-the-high-spots-of-

computer-theory.html? 
pagewanted=all&src=pm

“For their ingenious contribution for making 
public-key cryptography useful in practice.”

Citation for the ACM A. M. Turing Award
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Supplementary Exercises for Chapters 5–8

My mind rebels at stagnation. Give me problems, give me work, give me  
the most obstruse cryptogram, or the most intricate analysis, and I am in  
my own proper atmosphere.

sherlock holmes, The Sign of Four

True/false questions for Chapters 5–8 are available on the Web at:

www.d.umn.edu/~jgallian/TF

  1. A subgroup N of a group G is called a characteristic subgroup if 
f(N) 5 N for all automorphisms f of G. (The term characteristic 
was first applied by G. Frobenius in 1895.) Prove that every sub-
group of a cyclic group is characteristic.

  2. Prove that the center of a group is characteristic.
  3. The commutator subgroup G9 of a group G is the subgroup gener-

ated by the set {x21y21xy | x, y [ G}. (That is, every element of G9 
has the form a1

i1a2
i2 ? ? ? a k

ik, where each aj has the form x21y21xy, 
each ij 5 61, and k is any positive integer.) Prove that G9 is a char-
acteristic subgroup of G. (This subgroup was first introduced by  
G. A. Miller in 1898.)

  4. Prove that the property of being a characteristic subgroup is transi-
tive. That is, if N is a characteristic subgroup of K and K is a char-
acteristic subgroup of G, then N is a characteristic subgroup of G.

  5. Let G 5 Z3 % Z3 % Z3 and let H be the subgroup of SL(3, Z3) 
 consisting of

H � • £1 a b

0 1 c

0 0 1
t †  a, b, c [ Z3¶ .

  (See Exercise 48 in Chapter 2 for the definition of multiplication.) 
Determine the number of elements of each order in G and H. Are G 
and H isomorphic? (This exercise shows that two groups with the 
same number of elements of each order need not be isomorphic.)

  6. Let H and K be subgroups of a group G and let HK 5 {hk | h [ H, 
k [ K} and KH 5 {kh | k [ K, h [ H}. Prove that HK is a group if 
and only if HK 5 KH.

  7. Let G be a finite Abelian group in which every nonidentity element 
has order 2. If |G| . 2, prove that the product of all the elements in 
G is the identity.
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182 Groups

  8. Prove that S4 is not isomorphic to D4 % Z3.
  9. Let G be a group. For any element g of G, define gZ(G) 5 {gh | h 

[ Z(G)}. If a is an element of G of order 4, prove that H 5 Z(G) x 
aZ(G) x a2Z(G) x a3Z(G) is a subgroup of G. Generalize to the 
case that |a| 5 k.

 10. The exponent of a group is the smallest positive integer n such that  
xn 5 e for all x in the group. Prove that every finite group has an ex-
ponent that divides the order of the group.

 11. Determine all U-groups of exponent 2.
 12. Suppose that H and K are subgroups of a group and that |H| and |K| 

are relatively prime. Show that H y K 5 {e}.

 13. Let R1 denote the multiplicative group of positive real numbers and 
let T 5 {a 1 bi [ C* | a2 1 b2 5 1} be the multiplicative group of 
complex numbers on the unit circle. Show that every element of C* 
can be uniquely expressed in the form rz, where r [ R1 and z [ T.

 14. Prove that Q* under multiplication is not isomorphic to R* under 
multiplication.

 15. Prove that Q under addition is not isomorphic to R under addition.
 16. Prove that R under addition is not isomorphic to R* under 

 multiplication.
 17. Show that Q1 (the set of positive rational numbers) under multipli-

cation is not isomorphic to Q under addition.
 18. Suppose that G 5 {e, x, x2, y, yx, yx2} is a non-Abelian group with 

|x| 5 3 and |y| 5 2. Show that xy 5 yx2.
 19. Let p be an odd prime. Show that 1 is the only solution of  xp22 5 1 

in U(p).
 20. Let G be an Abelian group under addition. Let n be a fixed positive 

integer and let H 5 {(g, ng) | g [ G}. Show that H is a subgroup of 
G % G. When G is the set of real numbers under addition, describe 
H geometrically.

 21. Find a subgroup of Z12 % Z20 that is isomorphic to Z4 % Z5.
 22. Suppose that G 5 G1 % G2 % ? ? ? % Gn. Prove that Z(G) 5  

Z(G1) % Z(G2) % ? ? ? % Z(Gn).
 23. Exhibit four nonisomorphic groups of order 18.
 24. What is the order of the largest cyclic subgroup in Aut(Z720)? (Hint: 

It is not necessary to consider automorphisms of Z720.)
 25. Let G be the group of all permutations of the positive integers. Let 

H be the subset of elements of G that can be expressed as a product 
of a finite number of cycles. Prove that H is a subgroup of G.
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Supplementary Exercises for Chapters 5–8 183

 26. Let G be a group and let g [ G. Show that Z(G)kgl is a subgroup of G.
 27. Show that D11 % Z3 ] D3 % Z11. (This exercise is referred to in 

Chapter 24.)
 28. Show that D33 ] D11 % Z3. (This exercise is referred to in Chapter 24.)
 29. Show that D33 ] D3 % Z11. (This exercise is referred to in Chapter 24.)
 30. Exhibit four nonisomorphic groups of order 66. (This exercise is 

referred to in Chapter 24.)
 31. Prove that |Inn(G)| 5 1 if and only if G is Abelian.
 32. Prove that x100 5 1 for all x in U(1000).
 33. Find a subgroup of order 6 in U(450).
 34. List four elements of Z20 % Z5 % Z60 that form a noncyclic  

subgroup.
 35. In S10, let b 5 (13)(17)(265)(289). Find an element in S10 that com-

mutes with b but is not a power of b.
 36. Prove or disprove that Z4 % Z15 < Z6 % Z10.
 37. Prove or disprove that D12 < Z3 % D4.
 38. Describe a three-dimensional solid whose symmetry group is iso-

morphic to D5.
 39. Let G 5 U(15) % Z10 % S5. Find the order of (2, 3, (123)(15)). Find 

the inverse of (2, 3, (123)(15)).
 40. Let G 5 Z % Z10 and let H 5 {g [ G | |g| 5 ` or |g| 5 1}. Prove 

or disprove that H is a subgroup of G.
 41. Find a subgroup H of Zp2 % Zp2 such that (Zp2 % Zp2)/H is isomor-

phic to Zp % Zp.
 42. Find three subgroups H1, H2, and H3 of Zp2 % Zp2 such that (Zp2 % 

Zp2)/Hi is isomorphic to Zp2 for i 5 1, 2, 3.
 43. Find an element of order 10 in A9.
 44. In the left regular representation for D4, write TR90

 and TH in matrix 
form and in cycle form.

 45. How many elements of order 6 are in S7?
 46. Prove that S3 % S4 is not isomorphic to a subgroup of S6.
 47. Find a permutation b such that b2 5 (13579)(268).
 48. In R % R under componentwise addition, let H 5 {(x, 3x) | x [ R}. 

(Note that H is the subgroup of all points on the line y 5 3x.) Show 
that (2, 5) 1 H is a straight line passing through the point (2, 5) and 
parallel to the line y 5 3x.

 49. In R % R, suppose that H is the subgroup of all points lying on a 
line through the origin. Show that any left coset of H is a line par-
allel to H.
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184     Groups

 50. Let G be a group of permutations on the set {1, 2, . . . , n}. Recall 
that stabG(1) 5 {a [ G | a(1) 5 1}. If g sends 1 to k, prove that 
g stabG(1) 5 {b [ G | b(1) 5 k}.

 51. Let H be a subgroup of G and let a, b [ G. Show that aH 5 bH if 
and only if Ha21 5 Hb21.

 52. Suppose that G is a finite Abelian group that does not contain a 
subgroup isomorphic to Zp % Zp for any prime p. Prove that G is 
cyclic.

 53. Let p be a prime. Determine the number of elements of order p in 
Zp2 % Zp2.

 54. Show that Zp2 % Zp2 has exactly one subgroup isomorphic to Zp % Zp.
 55. Let p be a prime. Determine the number of subgroups of Zp2 % Zp2 

that are isomorphic to Zp2.
 56. Find a group of order 32 ? 52 ? 72 ? 28 that contains a subgroup iso-

morphic to A8.
 57. Let p and q be distinct odd primes. Let n 5 lcm(p 2 1, q 2 1). 

Prove that xn 5 1 for all x [ U( pq).
 58. Give a simple characterization of all positive integers n for which 

Zn � H % Zn/H for every subgroup H of Zn.
 59. Prove that the permutations (12) and (123 . . . n) generate Sn. (That 

is, every member of Sn can be expressed as some combination of 
these  elements.)

 60. Suppose that n is even and s is an (n 2 1)-cycle in Sn. Show that s 
does not commute with any element of order 2.

 61. Suppose that n is odd and s is an n-cycle in Sn. Prove that s does 
not commute with any element of order 2.

 62. Let H 5 {a [ Sn | a maps the set {1, 2} to itself}. Prove that  
C ((12)) 5 H.

 63. Let m be a positive integer. For any n-cycle s, show that sm is the 
product of gcd(m, n) disjoint cycles, each of length n/gcd(m, n).
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9 Normal Subgroups  
and Factor Groups

It is tribute to the genius of Galois that he recognized that those subgroups 
for which the left and right cosets coincide are distinguished ones. Very 
often in mathematics the crucial problem is to recognize and to discover 
what are the relevant concepts; once this is accomplished the job may be 
more than half done.

i. n. herstein, Topics in Algebra

Normal Subgroups
As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not 
always true that aH 5 Ha for all a in G. There are certain situations where 
this does hold, however, and these cases turn out to be of critical impor-
tance in the theory of groups. It was Galois, about 180 years ago, who first 
recognized that such subgroups were worthy of special attention.

Definition Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH 5 
Ha for all a in G. We denote this by H v G.

You should think of a normal subgroup in this way: You can switch 
the order of a product of an element a from the group and an element h 
from the normal subgroup H, but you must “fudge” a bit on the element 
from the normal subgroup H by using some h9 from H rather than h. 
That is, there is an element h9 in H such that ah 5 h9a. Likewise, there 
is some h0 in H such that ha 5 ah0. (It is possible that h9 5 h or h0 5 h, 
but we may not assume this.)

There are several equivalent formulations of the definition of nor-
mality. We have chosen the one that is the easiest to use in applications. 
However, to verify that a subgroup is normal, it is usually better to use 
Theorem 9.1, which is a weaker version of property 8 of the lemma in 
Chapter 7. It allows us to substitute a condition about two subgroups of 
G for a condition about two cosets of G.
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186 Groups

 Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if xHx21 # H  

for all x in G.

PROOF If H is normal in G, then for any x [ G and h [ H there is an h9 
in H such that xh 5 h9x. Thus, xhx21 5 h9, and therefore xHx21 # H.

Conversely, if xHx21 # H for all x, then, letting x 5 a, we have 
aHa21 # H or aH # Ha. On the other hand, letting x 5 a21, we have 
a21H(a21)21 5 a21Ha # H or Ha # aH. 

 EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this 
case, ah 5 ha for a in the group and h in the subgroup.) 

 EXAMPLE 2 The center Z(G) of a group is always normal. [Again, 
ah 5 ha for any a [ G and any h [ Z(G).] 

 EXAMPLE 3 The alternating group An of even permutations is a nor-
mal subgroup of Sn. [Note, for example, that for (12) [ Sn and (123) [ 
An, we have (12)(123) 2 (123)(12) but (12)(123) 5 (132)(12) and  
(132) [ An.] 

 EXAMPLE 4 Every subgroup of Dn consisting solely of rotations is 
normal in Dn. (For any rotation R and any reflection F, we have FR 5 
R21F and any two rotations commute.) 

The next example illustrates a way to use a normal subgroup to cre-
ate new subgroups from existing ones.

 EXAMPLE 5 Let H be a normal subgroup of a group G and K be any 
subgroup of G. Then HK 5 {hk | h [ H, k [ K} is a subgroup of G.  
To verify this, note that e 5 ee is in HK. Then for any a 5 h1k1 and  
b 5 h2k2, where h1, h2 are in H and k1, k2 are in K, there is an element h9 
in H such that ab21 5 h1k1k2

21h2
21 5 h1(k1k2

21)h2
21 5 (h1h9)(k1k2

21). 
So, ab21 is in HK. 

Be careful not to assume that for any subgroups H and K of a group 
G, the set HK is a subgroup of G. See Exercise 57.

99708_ch09_ptg01_hr_185-207.indd   186 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9 | Normal Subgroups and Factor Groups 187

Combining Examples 4 and 5, we form a non-Abelian subgroup of 
D8 of order 8.

 EXAMPLE 6 In D8, let H 5 {R0, R90, R180, R270} and K 5 {R0, F}, 
where F is any reflection. Then HK 5 {R0, R90, R180, R270, R0F, R90F, 
R180F, R270F} is a subgroup of D8. 

 EXAMPLE 7 If a group G has a unique subgroup H of some finite 
order, then H is normal in G. To see that this is so, observe that for any 
g [ G, gHg21 is a subgroup of G and |gHg21| 5 |H|. 

 EXAMPLE 8 The group SL(2, R) of 2 3 2 matrices with determinant 
1 is a normal subgroup of GL(2, R), the group of 2 3 2 matrices with 
nonzero determinant. To verify this, we use the Normal Subgroup Test 
given in Theorem 9.1. Let x [ GL(2, R) 5 G, h [ SL(2, R) 5 H, and 
note that det xhx21 5 (det x)(det h)(det x)21 5 (det x)(det x)21 5 1. So, 
xhx21 [ H, and, therefore, xHx21 # H. 

 EXAMPLE 9 Referring to the group table for A4 given in Table 5.1 on 
page 111, we may observe that H 5 {a1, a2, a3, a4} is a normal 
subgroup of A4, whereas K 5 {a1, a5, a9} is not a normal subgroup 
of A4. To see that H is normal, simply note that for any b in A4, bHb21 is 
a subgroup of order 4 and H is the only subgroup of A4 of order 4  
(see Table 5.1). Thus, bHb21 5 H. In contrast, a2a5a 2

21 5 a7, so that 
a2Ka2

21 s K. 

Factor Groups
We have yet to explain why normal subgroups are of special significance. 
The reason is simple. When the subgroup H of G is normal, then the set 
of left (or right) cosets of H in G is itself a group—called the factor group 
of G by H (or the quotient group of G by H). Quite often, one can obtain 
information about a group by studying one of its factor groups. This 
method will be illustrated in the next section of this chapter.

 Theorem 9.2 Factor Groups (O. Hölder, 1889)

Let G be a group and let H be a normal subgroup of G. The set  

G/H 5 {aH | a [ G} is a group under the operation (aH)(bH) 5 abH.†

 

†The notation G/H was first used by C. Jordan.  
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PROOF Our first task is to show that the operation is well-defined; that 
is, we must show that the correspondence defined above from G/H 3 
G/H into G/H is actually a function. To do this, we assume that for 
some elements a, a9, b, and b9 from G, we have aH 5 a9H and bH 5 
b9H, and verify that aHbH 5 a9Hb9H. That is, verify that abH 5 a9b9H. 
(This shows that the definition of multiplication depends on only the 
cosets and not on the coset representatives.) From aH 5 a9H and bH 5 
b9H , we have a9 5 ah1 and b9 5 bh2 for some h1, h2 in H, and therefore 
a9b9H 5 ah1bh2H 5 ah1bH 5 ah1Hb 5 aHb 5 abH. Here we have made 
multiple use of associativity, property 2 of the lemma in Chapter 7, and 
the fact that H v G. The rest is easy: eH 5 H is the identity; a21H is the 
inverse of aH; and (aHbH)cH 5 (ab)HcH 5 (ab)cH 5 a(bc)H 5 
aH(bc)H 5 aH(bHcH). This proves that G/H is a group. 

Although it is merely a curiosity, we point out that the converse of 
Theorem 9.2 is also true; that is, if the correspondence aHbH 5 abH 
 defines a group operation on the set of left cosets of H in G, then H is 
normal in G.

The next few examples illustrate the factor group concept.

 EXAMPLE 10 Let 4Z 5 {0, 64, 68, . . .}. To construct Z/4Z, we 
first must determine the left cosets of 4Z in Z. Consider the following 
four cosets:

0 1 4Z 5 4Z 5 {0, 64, 68, . . .},
1 1 4Z 5 {1, 5, 9, . . . ; 23, 27, 211, . . .},
2 1 4Z 5 {2, 6, 10, . . . ; 22, 26, 210, . . .},
3 1 4Z 5 {3, 7, 11, . . . ; 21, 25, 29, . . .}.

We claim that there are no others. For if k [ Z, then k 5 4q 1 r, where 
0 # r , 4; and, therefore, k 1 4Z 5 r 1 4q 1 4Z 5 r 1 4Z. Now that 
we know the elements of the factor group, our next job is to determine 
the structure of Z/4Z. Its Cayley table is

 0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z

 0 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z
 1 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z
 2 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z
 3 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z

Clearly, then, Z/4Z L Z4. More generally, if for any n . 0 we let nZ 5 
{0, 6n, 62n, 63n, . . .}, then Z/nZ is isomorphic to Zn. 
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9 | Normal Subgroups and Factor Groups 189

 EXAMPLE 11 Let G 5 Z18 and let H 5 k6l 5 {0, 6, 12}. Then G/H 5 
{0 1 H, 1 1 H, 2 1 H, 3 1 H, 4 1 H, 5 1 H}. To illustrate how the 
group elements are combined, consider (5 1 H) 1 (4 1 H). This  
should be one of the six elements listed in the set G/H. Well, (5 1 H) 1 
(4 1 H) 5 5 1 4 1 H 5 9 1 H 5 3 1 6 1 H 5 3 1 H, since H ab-
sorbs all multiples of 6. 

A few words of caution about notation are warranted here. When H 
is a normal subgroup of G, the expression |aH| has two possible inter-
pretations. One could be thinking of aH as a set of elements and |aH| 
as the size of the set; or, as is more often the case, one could be think-
ing of aH as a group element of the factor group G/H and |aH| as the 
order of the element aH in G/H. In Example 11, for instance, the set  
3 1 H has size 3, since 3 1 H 5 {3, 9, 15}. But the group element  
3 1 H has order 2, since (3 1 H) 1 (3 1 H) 5 6 1 H 5 0 1 H. As is 
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

 EXAMPLE 12 Let _ 5 {R0, R180}, and consider the factor group of 
the dihedral group D4 (see the back inside cover for the multiplication 
table for D4)

D4/_ 5 {_, R90_, H_, D_}.

The multiplication table for D4/_ is given in Table 9.1. (Notice that 
even though R90H 5 D9, we have used D_ in Table 9.1 for R90_H_ 
because D9_ 5 D_.)

Table 9.1

  � R90� H� D�

 � _ R90_ H_ D_
 R90� R90_ _ D_ H_
 H� H_ D_ _ R90_
 D� D_ H_ R90_ _

D4/_ provides a good opportunity to demonstrate how a factor  
group of G is related to G itself. Suppose we arrange the heading of the 
Cayley table for D4 in such a way that elements from the same coset of 
_ are in adjacent columns (Table 9.2). Then, the multiplication table 
for D4 can be blocked off into boxes that are cosets of _, and the sub-
stitution that replaces a box containing the element x with the coset x_ 
yields the Cayley table for D4/_.
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190 Groups

For example, when we pass from D4 to D4/_, the box

H V

V H

in Table 9.2 becomes the element H_ in Table 9.1. Similarly, the box

D D9

D9 D

becomes the element D_, and so on. 

Table 9.2

  R0 R180 R90 R270 H V D D9

 R0 R0 R180 R90 R270 H V D D9
 R180 R180 R0 R270 R90 V H D9 D

 R90 R90 R270 R180 R0 D9 D H V
 R270 R270 R90 R0 R180 D D9 V H

 H H V D D9 R0 R180 R90 R270
 V V H D9 D R180 R0 R270 R90

 D D D9 V H R270 R90 R0 R180
 D9 D9 D H V R90 R270 R180 R0

In this way, one can see that the formation of a factor group G/H 
causes a systematic collapse of the elements of G. In particular, all the 
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

 EXAMPLE 13 Consider the group A4 as represented by Table 5.1 
on page 111. (Here i denotes the permutation ai.) Let H 5 {1, 2, 3, 4}. 
Then the three cosets of H are H, 5H 5 {5, 6, 7, 8}, and 9H 5 {9, 
10, 11, 12}. (In this case, rearrangement of the headings is unneces-
sary.) Blocking off the table for A4 into boxes that are cosets of H 
and replacing the boxes containing 1, 5, and 9 (see Table 9.3) with 
the cosets 1H, 5H, and 9H, we obtain the Cayley table for G/H given 
in Table 9.4.
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9 | Normal Subgroups and Factor Groups 191

Table 9.3  

 1 2 3 4 5 6 7 8 9 10 11 12

 1 1 2 3 4 5 6 7 8 9 10 11 12
 2 2 1 4 3 6 5 8 7 10 9 12 11
 3 3 4 1 2 7 8 5 6 11 12 9 10
 4 4 3 2 1 8 7 6 5 12 11 10 9

 5 5 8 6 7 9 12 10 11 1 4 2 3
 6 6 7 5 8 10 11 9 12 2 3 1 4
 7 7 6 8 5 11 10 12 9 3 2 4 1
 8 8 5 7 6 12 9 11 10 4 1 3 2

 9 9 11 12 10 1 3 4 2 5 7 8 6
10 10 12 11 9 2 4 3 1 6 8 7 5
11 11 9 10 12 3 1 2 4 7 5 6 8
12 12 10 9 11 4 2 1 3 8 6 5 7

 Table 9.4

  1H 5H 9H

 1H 1H 5H 9H
 5H 5H 9H 1H
 9H 9H 1H 5H

This procedure can be illustrated more vividly with colors. Let’s say 
we had printed the elements of H in green, the elements of 5H in red, 
and the elements of 9H in blue. Then, in Table 9.3, each box would 
consist of elements of a uniform color. We could then think of 
the factor group as consisting of the three colors that define a group  
table isomorphic to G/H.

  Green Red Blue

 Green Green Red Blue
 Red Red Blue Green

 Blue Blue Green Red

It is instructive to see what happens if we attempt the same proce-
dure with a group G and a subgroup H that is not normal in G—that is, 
if we arrange the headings of the Cayley table so that the elements  
from the same coset of H are in adjacent columns and attempt to block 
off the table into boxes that are also cosets of H to produce a Cayley 
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192 Groups

table for the set of cosets. Say, for instance, we were to take G to be A4 
and H 5 {1, 5, 9}. The cosets of H would be H, 2H 5 {2, 6, 10},  
3H 5 {3, 7, 11}, and 4H 5 {4, 8, 12}. Then the first three rows of the 
rearranged Cayley table for A4 would be the following.

 1 5 9 2 6 10 3 7 11 4 8 12

 1 1 5 9 2 6 10 3 7 11 4 8 12
 5 5 9 1 8 12 4 6 10 2 7 11 3
 9 9 1 5 11 3 7 12 4 8 10 2 6

But already we are in trouble, for blocking these off into 3 3 3 boxes 
yields boxes that contain elements of different cosets. Hence, it is im-
possible to represent an entire box by a single element of the box in the 
same way we could for boxes made from the cosets of a normal sub-
group. Had we printed the rearranged table in four colors with all  
members of the same coset having the same color, we would see multi-
colored boxes rather than the uniformly colored boxes produced by a 
normal subgroup.  

In Chapter 11, we will prove that every finite Abelian group is 
isomorphic to a direct product of cyclic groups. In particular, an  
Abelian group of order 8 is isomorphic to one of Z8, Z4 % Z2, or Z2 % 
Z2 % Z2. In the next two examples, we examine Abelian factor groups 
of order 8 and determine the isomorphism type of each.

 EXAMPLE 14 Let G 5 U(32) 5 {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 
23, 25, 27, 29, 31} and H 5 U16(32) 5 {1, 17}. Then G/H is an Abelian 
group of order 16/2 5 8. Which of the three Abelian groups of order 8 
is it—Z8, Z4 % Z2, or Z2 % Z2 % Z2? To answer this question, we need 
only determine the elements of G/H and their orders. Observe that the 
eight cosets

 1H 5 {1, 17},  3H 5 {3, 19},   5H 5 {5, 21}, 7H 5 {7, 23},
9H 5 {9, 25}, 11H 5 {11, 27}, 13H 5 {13, 29},  15H 5 {15, 31}

are all distinct, so that they form the factor group G/H. Clearly, 
(3H)2 5 9H 2 H, and so 3H has order at least 4. Thus, G/H is not  
Z2 % Z2 % Z2. On the other hand, direct computations show that both 
7H and 9H have order 2, so that G/H cannot be Z8 either, since a cyclic 
group of even order has exactly one element of order 2 (Theorem 4.4). 
This proves that U(32)/U16(32) L Z4 % Z2, which (not so incidentally!) 
is isomorphic to U(16). 
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9 | Normal Subgroups and Factor Groups 193

 EXAMPLE 15 Let G 5 U(32) and K 5 {1, 15}. Then |G/K| 5 8, 
and we ask, which of the three Abelian groups of order 8 is G/K? Since 
(3K)4 5 81K 5 17K 2 K, |3K| 5 8. Thus, G/K L Z8. 

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H 
to be the identity. Thus, in Example 12, we are making R180_ 5 _ the 
identity. Likewise, R270_ 5 R90R180_ 5 R90_. Similarly, in Example 10, 
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This 
is why 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z, and so on. In Example 14, we 
have 3H 5 19H, since 19 5 3 ? 17 in U(32) and going to the factor 
group makes 17 the identity. Algebraists often refer to the process of 
creating the factor group G/H as “killing” H.

Applications of Factor Groups
Why are factor groups important? Well, when G is finite and H 2 {e}, 
G/H is smaller than G, and its structure is usually less complicated than 
that of G. At the same time, G/H simulates G in many ways. In fact, we 
may think of a factor group of G as a less complicated approximation  
of G (similar to using the rational number 3.14 for the irrational   
number p). What makes factor groups important is that one can often 
deduce properties of G by examining the less complicated group G/H 
instead. We illustrate this by giving another proof that A4 has no sub-
group of order 6.

 EXAMPLE 16 A4 has no subgroup of order 6. 
The group A4 of even permutations on the set {1, 2, 3, 4} has no sub-
group H of order 6. To see this, suppose that A4 does have a subgroup H 
of order 6. By Exercise 9 in this chapter, we know that H v A4. Thus, 
the factor group A4/H exists and has order 2. Since the order of an 
 element divides the order of the group, we have for all a [ A4 that  
a2H 5 (aH)2 5 H. Thus, a2 [ H for all a in A4. Referring to the main 
 diagonal of the group table for A4 given in Table 5.1 on page 111, how-
ever, we observe that A4 has nine different elements of the form a2, all 
of which must belong to H, a subgroup of order 6. This is clearly 
 impossible, so a subgroup of order 6 cannot exist in A4.

† 

The next three theorems illustrate how knowledge of a factor group 
of G reveals information about G itself.

†“How often have I said to you that when you have eliminated the impossible, whatever 
remains, however improbable, must be the truth.” Sherlock Holmes, The Sign of Four
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 Theorem 9.3 G/Z Theorem

Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, 

then G is Abelian.
 

PROOF Since G is Abelian is equivalent to Z(G) 5 G, it suffices to 
show that the only element of G/Z(G) is the identity coset Z(G). To this end, 
let G/Z(G) 5 kgZ(G)l and let a [ G. Then there exists an integer i such that 
aZ(G) 5 (gZ(G)) i 5 giZ(G). Thus, a 5 giz for some z in Z(G). Since both 
gi and z belong to C(g), so does a. Because a is an arbitrary element of G  
this means that every element of G commutes with g so g [ Z(G). Thus, 
gZ(G) 5 Z(G) is the only element of G/Z(G). 

A few remarks about Theorem 9.3 are in order. First, our proof shows 
that a better result is possible: If G/H is cyclic, where H is a subgroup of 
Z(G), then G is Abelian. Second, in practice, it is the contrapositive of 
the theorem that is most often used—that is, if G is non-Abelian, then 
G/Z(G) is not cyclic. For example, it follows immediately from this 
statement and Lagrange’s Theorem that a non-Abelian group of order 
pq, where p and q are primes, must have a trivial center. Third, if G/Z(G) 
is cyclic, it must be trivial.

 Theorem 9.4 G/Z(G) < Inn(G)

For any group G, G/Z(G) is isomorphic to Inn(G).
 

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by 
T : gZ(G) → fg [where, recall, fg(x) 5 gxg21 for all x in G]. First, we 
show that T  is  well  defined. To do this,  we assume that  
gZ1G2 � hZ1G2 and verify that fg � fh. (This shows that the image  
of a coset of Z1G2 depends only on the coset itself and not on the ele-
ment representing the coset.) From gZ1G2 � hZ1G2 , we have that  
h�1g belongs to Z(G). Then, for all x in G, h21gx 5 xh21g. Thus,  
gxg21 5 hxh21 for all x in G, and, therefore, fg 5 fh. Reversing this 
argument shows that T is one-to-one, as well. Clearly, T is onto.

That T is operation-preserving follows directly from the fact that 
fgfh 5 fgh for all g and h in G. 

As an application of Theorems 9.3 and 9.4, we may easily determine 
Inn(D6) without looking at Inn(D6)!
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9 | Normal Subgroups and Factor Groups 195

 EXAMPLE 17 We know from Example 14 in Chapter 3 that  
|Z(D6)| 5 2. Thus, |D6 /Z (D6)| 5 6. So, by our classification of groups 
of order 6 (Theorem 7.3), we know that Inn(D6) is isomorphic to D3 
or Z6. Now, if Inn(D6) were cyclic, then, by Theorem 9.4, D6/Z(D6) 
would be also. But then, Theorem 9.3 would tell us that D6 is Abelian. 
So, Inn(D6) is isomorphic to D3. 

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of 
factor groups and induction.

 Theorem 9.5 Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the 

order of G. Then G has an element of order p.
 

PROOF Clearly, this statement is true for the case in which G has 
 order 2. We prove the theorem by using the Second Principle of Math-
ematical Induction on |G|. That is, we assume that the statement is true 
for all Abelian groups with fewer elements than G and use this assump-
tion to show that the statement is true for G as well. Certainly, G has 
elements of prime order, for if |x| 5 m and m 5 qn, where q is prime, 
then |xn| 5 q. So let x be an element of G of some prime order q, say. If 
q 5 p, we are finished; so assume that q 2 p. Since every subgroup of 
an Abelian group is normal, we may construct the factor group G 5  
G/kxl. Then G is Abelian and p divides |G|, since |G| 5 |G|/q. By 
 induction, then, G has an element—call it ykxl—of order p. 

Then, (ykxl) p = y pkxl = kxl and therefore y p [ kxl. If y p = e, we are 
done. If not, then yp has order q and yq has order p. 

Internal Direct Products
As we have seen, the external direct product provides a method of put-
ting groups together to get a larger group in such a way that we can 
determine many properties of the larger group from the properties of 
the component pieces. For example: If G 5 H % K, then |G| 5 |H||K|; 
every element of G has the form (h, k) where h [ H and k [ K; if |h| 
and |k| are finite, then |(h, k)| 5 lcm(|h|, |k|); if H and K are Abelian, 
then G is Abelian; if H and K are cyclic and |H| and |K| are relatively 
prime, then H % K is cyclic. It would be quite useful to be able to reverse 
this process—that is, to be able to start with a large group G and break 
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it down into a product of subgroups in such a way that we could glean 
many properties of G from properties of the component pieces. It is oc-
casionally possible to do this.

Definition Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write  
G 5 H 3 K if H and K are normal subgroups of G and

G 5 HK  and  H > K 5 {e}.

The wording of the phrase “internal direct product” is easy to justify. 
We want to call G the internal direct product of H and K if H and K are 
subgroups of G, and if G is naturally isomorphic to the external direct 
product of H and K. One forms the internal direct product by starting 
with a group G and then proceeding to find two subgroups H and K 
within G such that G is isomorphic to the external direct product of H 
and K. (The definition ensures that this is the case—see Theorem 9.6.) 
On the other hand, one forms an external direct product by starting with 
any two groups H and K, related or not, and proceeding to produce the 
larger group H % K. The difference between the two products is that the 
internal direct product can be formed within G itself, using subgroups  
of G and the operation of G, whereas the external direct product can be 
formed with totally unrelated groups by creating a new set and a new 
operation. (See Figures 9.1 and 9.2.)

G

eH K

  Figure 9.1 For the internal direct product,  
H and K must be subgroups of the same group.

H K

Figure 9.2 For the external 
direct product, H and K can 
be any groups.
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9 | Normal Subgroups and Factor Groups 197

Perhaps the following analogy with integers will be useful in clar-
ifying the distinction between the two products of groups discussed 
in the preceding paragraph. Just as we may take any (finite) collec-
tion of integers and form their product, we may also take any collec-
tion of groups and form their external direct product. Conversely, 
just as we may start with a particular integer and express it as a prod-
uct of certain of its divisors, we may be able to start with a particular 
group and factor it as an internal direct product of certain of its sub-
groups.

 EXAMPLE 18 In D6, the dihedral group of order 12, let F denote 
some reflection and let Rk denote a rotation of k degrees. Then,

 D6 5 {R0, R120, R240, F, R120F, R240F} 3 {R0, R180}. 

Students should be cautioned about the necessity of having all con-
ditions of the definition of internal direct product satisfied to ensure 
that HK L H % K. For example, if we take

G 5 S3,    H 5 k(123)l,    and    K 5 k(12)l,

then G 5 HK, and H > K 5 {(1)}. But G is not isomorphic to H % K, 
since, by Theorem 8.2, H % K is cyclic, whereas S3 is not. Note that K 
is not normal.

A group G can also be the internal direct product of a collection of 
subgroups.

Definition Internal Direct Product H1 3 H2 3 ? ? ? 3 Hn

Let H1, H2, . . . , Hn
 be a finite collection of normal subgroups of G. We 

say that G is the internal direct product of H1, H2, . . . , Hn
 and write 

G 5 H1 3 H2 3 ? ? ? 3 H
n
, if

 1. G 5 H1H2 ? ? ? Hn
 5 {h1h2 ? ? ? hn

 | h
i
 [ H

i
},

 2. (H1H2 ? ? ? Hi
) > H

i11 5 {e} for i 5 1, 2, . . . , n 2 1.

This definition is somewhat more complicated than the one given for 
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it 
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem 
shows, the conditions in the definition of internal direct product were 
chosen to ensure that the two products are isomorphic.
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 Theorem 9.6 H1 3 H2 3 ? ? ? 3 Hn L H1 % H2 % ? ? ? % Hn

If a group G is the internal direct product of a finite number of 

subgroups H1, H2, . . . , Hn
, then G is isomorphic to the external 

direct product of H1, H2, . . . , Hn
.

 

PROOF We first show that the normality of the H’s together with the 
second condition of the definition guarantees that h’s from different 
Hi’s commute. For if hi [ Hi and hj [ Hj with i 2 j, then

(hihjhi
21)hj

21 [ Hjhj
21 5 Hj

and

hi(hjhi
21hj

21) [ hiHi 5 Hi.

Thus, hihjhi
21hj

21 [ Hi > Hj 5 {e} (see Exercise 5), and, therefore,  
hihj 5 hjhi. We next claim that each member of G can be expressed 
uniquely in the form h1h2 ? ? ? hn, where hi [ Hi. That there is at least one 
such representation is the content of condition 1 of the definition. To 
prove uniqueness, suppose that g 5 h1h2 ? ? ? hn and g 5 h19 h29 ? ? ? hn9, 
where hi and hi9 belong to Hi for i 5 1, . . . , n. Then, using the fact that 
the h’s from different Hi’s commute, we can solve the equation

    h1h2 ? ? ? hn 5 h19 h29 ? ? ? hn9 (1)

for hn9 hn
21 to obtain

hn9 hn
21 5 (h91)

21h1(h29)
21h2 ? ? ? (h9n21)

21hn21.

But then

hn9 hn
21 [ H1H2 ? ? ? Hn21 > Hn 5 {e},

so that hn9 hn
21 5 e and, therefore, hn9 5 hn. At this point, we can cancel 

hn and hn9 from opposite sides of the equal sign in Equation (1) and repeat 
the preceding argument to obtain hn21 5 h 9n21. Continuing in this fash-
ion, we eventually have hi 5 hi9 for i 5 1, . . . , n. With our claim estab-
lished, we may now define a function f from G to H1 % H2 % ? ? ? % Hn 
by f(h1h2 ? ? ? hn) 5 (h1, h2, . . . , hn). We leave to the reader the easy ver-
ification that f is an isomorphism. 

The next theorem provides an important application of Theorem 9.6.
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 Theorem 9.7 Classification of Groups of Order p2 

Every group of order p2, where p is a prime, is isomorphic to Zp2 or 

Z
p
 % Z

p
. 

PROOF Let G be a group of order p2, where p is a prime. If G has an 
 element of order p2, then G is isomorphic to Zp2. So, by Corollary 2 of 
Lagrange’s Theorem, we may assume that every nonidentity  element of 
G has order p. First we show that for any element a, the subgroup kal is 
normal in G. If this is not the case, then there is an element b in G such 
that bab�1 is not in kal. Then kal and kbab�1l are distinct subgroups of 
order p. Since kal >

 kbab�1l is a subgroup of both kal and kbab�1l,  
we have that kal >

 kbab�1l � {e}. From this it follows that the distinct 
left cosets of kbab�1l  are kbab�1l ,  akbab�1l ,  a2kbab�1l ,  .  .  .  ,  
ap�1kbab�1l. Since b�1 must lie in one of these cosets, we may write  
b�1 in the form b�1 � ai1bab�12j � aibajb�1 for some i and j. Cancel-
ing the b�1 terms, we obtain e � aibaj and therefore b � a�i� j [ kal. 
This  contradiction verifies our assertion that every subgroup of the form 
kal is normal in G. To complete the proof, let x be any  nonidentity ele-
ment in G and y be any element of G not in kxl. Then, by comparing or-
ders and using Theorem 9.6, we see that G � kxl � kyl � Zp % Zp. 

As an immediate corollary of Theorem 9.7, we have the following 
important fact.

 Corollary 

If G is a group of order p2, where p is a prime, then G is Abelian. 

We mention in passing that if G 5 H1 % H2 % ? ? ? % Hn, then G can 
be expressed as the internal direct product of subgroups isomorphic to 
H1, H2, . . . , Hn. For example, if G 5 H1 % H2, then G 5 H1 3 H2, 
where H1 5 H1 % {e} and H2 5 {e} % H2.

The topic of direct products is one in which notation and terminol-
ogy vary widely. Many authors use H 3 K to denote both the internal 
direct product and the external direct product of H and K, making no 
notational distinction between the two products. A few authors define 
only the external direct product. Many people reserve the notation  
H % K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always Abelian 
groups under addition.
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The U-groups provide a convenient way to illustrate the preceding 
ideas and to clarify the distinction between internal and external direct 
products. It follows directly from Theorem 8.3, its corollary, and   
Theorem 9.6 that if m 5 n1n2 ? ? ? nk, where gcd(ni, nj) 5 1 for i 2 j, then

 U(m) 5 Um/n1
(m) 3 Um/n2

(m) 3 ? ? ? 3 Um/nk
(m)

 L U(n1) % U(n2) % ? ? ? % U(nk).

Let us return to the examples given following Theorem 8.3.

U(105) 5 U(15 ? 7) 5 U15(105) 3 U7(105)
 5 {1, 16, 31, 46, 61, 76} 3 {1, 8, 22, 29, 43, 64, 71, 92}
 L U(7) % U(15),

U(105) 5 U(5 ? 21) 5 U5(105) 3 U21(105)
 5  {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
 3 {1, 22, 43, 64} L U(21) % U(5),

U(105) 5 U(3 ? 5 ? 7) 5 U35(105) 3 U21(105) 3 U15(105)
 5 {1, 71} 3 {1, 22, 43, 64} 3 {1, 16, 31, 46, 61, 76}
 L U(3) % U(5) % U(7).

Exercises

The heart of mathematics is its problems.
Paul Halmos

  1. Let H 5 {(1), (12)}. Is H normal in S3?
  2. Prove that An is normal in Sn.
  3. In D4, let K 5 {R0, R90, R180, R270}. Write HR90 in the form xH, 

where x [ K. Write DR270 in the form xD, where x [ K. Write R90V 
in the form Vx, where x [ K.

  4. Write (12)(13)(14) in the form a(12), where a [ A4. Write (1234)
(12)(23), in the form a(1234), where a [ A4.

  5. Show that if G is the internal direct product of H1, H2, . . . , Hn and 
i 2 j with 1 # i # n, 1 # j # n, then Hi > Hj 5 {e}. (This exercise 
is referred to in this chapter.)

  6. Let H � e ca    b

0    d
d ` a, b, d  [  R, ad ? 0 f . Is H a normal sub-

  group of GL(2, R)?
  7. Let G 5 GL(2, R) and let K be a subgroup of R*. Prove that H 5 

{A [ G | det A [ K} is a normal subgroup of G.
  8. Viewing k3l and k12l as subgroups of Z, prove that k3l/k12l is iso-

morphic to Z4. Similarly, prove that k8l/k48l is isomorphic to Z6. 
Generalize to arbitrary integers k and n.
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9 | Normal Subgroups and Factor Groups 201

  9. Prove that if H has index 2 in G, then H is normal in G. (This exer-
cise is referred to in Chapters 24 and 25 and this chapter.)

 10. Let H 5 {(1), (12)(34)} in A4.
  a. Show that H is not normal in A4.
  b.  Referring to the multiplication table for A4 in Table 5.1 on page 

111, show that, although a6H 5 a7H and a9H 5 a11H, it is not 
true that a6a9H 5 a7a11H. Explain why this proves that the left 
cosets of H do not form a group under coset multiplication.

 11. Let G 5 Z4 % U(4), H 5 k(2, 3)l, and K 5 k(2, 1)l. Show that G/H 
is not isomorphic to G/K. (This shows that H L K does not imply 
that G/H L G/K.)

 12. Prove that a factor group of a cyclic group is cyclic.
 13. Prove that a factor group of an Abelian group is Abelian.
 14. What is the order of the element 14 1 k8l in the factor group  

Z24/k8l?
 15. What is the order of the element 4U5(105) in the factor group 

U(105)/U5(105)?
 16. Recall that Z(D6) 5 {R0, R180}. What is the order of the element 

R60Z(D6) in the factor group D6/Z(D6)?
 17. Let G 5 Z/k20l and H 5 k4l/k20l. List the elements of H and G/H.
 18. What is the order of the factor group Z60/k15l?
 19. What is the order of the factor group (Z10 % U(10))/k(2, 9)l?
 20. Construct the Cayley table for U(20)/U5(20).
 21. Prove that an Abelian group of order 33 is cyclic.
 22. Determine the order of (Z % Z)/k(2, 2)l. Is the group cyclic?
 23. Determine the order of (Z % Z)/k(4, 2)l. Is the group cyclic?
 24. The group (Z4 % Z12)/k(2, 2)l is isomorphic to one of Z8, Z4 % Z2, or 

Z2 % Z2 % Z2. Determine which one by elimination.
 25. Let G 5 U(32) and H 5 {1, 31}. The group G/H is isomorphic to 

one of Z8, Z4 % Z2, or Z2 % Z2 % Z2. Determine which one by 
elimination.

 26. Let G be the group of quaternions given by the table in Exercise 4 
of the Supplementary Exercises for Chapters 1–4, and let H be the 
subgroup {e, a2}. Is G/H isomorphic to Z4 or Z2 % Z2?

 27. Let G 5 U(16), H 5 {1, 15}, and K 5 {1, 9}. Are H and K iso-
morphic? Are G/H and G/K isomorphic?

 28. Let G 5 Z4 % Z4, H 5 {(0, 0), (2, 0), (0, 2), (2, 2)}, and K 5 k(1, 2)l. 
Is G/H isomorphic to Z4 or Z2 % Z2? Is G/K isomorphic to Z4 or  
Z2 % Z2?

 29. Prove that A4 % Z3 has no subgroup of order 18.
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202 Groups

 30. Express U(165) as an internal direct product of proper subgroups 
in four different ways.

 31. Let R* denote the group of all nonzero real numbers under multi-
plication. Let R1 denote the group of positive real numbers under 
multiplication. Prove that R* is the internal direct product of R1 
and the subgroup {1, 21}.

 32. Prove that D4 cannot be expressed as an internal direct product of 
two proper subgroups.

 33. Let H and K be subgroups of a group G. If G 5 HK and g 5 hk, 
where h [ H and k [ K, is there any relationship among |g|, |h|, 
and |k|? What if G 5 H 3 K?

 34. In Z, let H 5 k5l and K 5 k7l. Prove that Z 5 HK. Does Z 5 H 3 K?
 35. Let G 5 {3a6b10 c | a, b, c [ Z} under multiplication and H 5 

{3a6b12c | a, b, c [ Z} under multiplication. Prove that G 5 k3l 3 
k6l 3 k10l, whereas H 2 k3l 3 k6l 3 k12l.

 36. Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2.

 37. Let G be a finite group and let H be a normal subgroup of G. Prove 
that the order of the element gH in G/H must divide the order  
of g in G.

 38. Let H be a normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and |H| 510, what are the 
possibilities for the order of a?

 39. If H is a normal subgroup of a group G, prove that C(H), the cen-
tralizer of H in G, is a normal subgroup of G. 

 40. Let f be an isomorphism from a group G onto a group G. Prove 
that if H is a normal subgroup of G, then f(H) is a normal sub-
group of G.

 41. Show that Q, the group of rational numbers under addition, has no 
proper subgroup of finite index.

 42. An element is called a square if it can be expressed in the form b2 
for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of 
G/H is a square, prove that every element of G is a square. Does 
your proof remain valid when “square” is replaced by “nth power,” 
where n is any integer?

 43. Show, by example, that in a factor group G/H it can happen that 
aH 5 bH but |a| 2 |b|.

 44. Observe from the table for A4 given in Table 5.1 on page 111 that 
the subgroup given in Example 9 of this chapter is the only sub-
group of A4 of order 4. Why does this imply that this subgroup 
must be normal in A4? Generalize this to arbitrary finite groups.
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9 | Normal Subgroups and Factor Groups 203

 45. Let p be a prime. Show that if H is a subgroup of a group of order 
2p that is not normal, then H has order 2.

 46. Show that D13 is isomorphic to Inn(D13).
 47. Suppose that N is a normal subgroup of a finite group G and H is a 

subgroup of G. If 0 G/N 0 is prime, prove that H is contained in N or 
that NH � G.

 48. If G is a group and |G: Z(G)| 5 4, prove that G/Z(G) < Z2 % Z2.
 49. Suppose that G is a non-Abelian group of order p3, where p is a 

prime, and Z(G) 2 {e}. Prove that |Z(G)| 5 p.
 50. If |G| 5 pq, where p and q are primes that are not necessarily dis-

tinct, prove that |Z(G)| 5 1 or pq.
 51. Let N be a normal subgroup of G and let H be a subgroup of G. If 

N is a subgroup of H, prove that H/N is a normal subgroup of G/N 
if and only if H is a normal subgroup of G.

 52. Let G be an Abelian group and let H be the subgroup consisting of 
all elements of G that have finite order. (See Exercise 20 in the 
Supplementary Exercises for Chapters 1–4.) Prove that every non-
identity element in G/H has infinite order.

 53. Determine all subgroups of R* that have finite index.
 54. Let G 5 {61, 6i, 6j, 6k}, where i2 5 j2 5 k2 5 21, 2i 5 (21)i, 

12 5 (21)2 5 1, ij 5 2ji 5 k, jk 5 2kj 5 i, and ki 5 2ik 5 j.
  a. Construct the Cayley table for G.
  b. Show that H 5 {1, 21} v G.
  c.  Construct the Cayley table for G/H. Is G/H isomorphic to Z4 or 

Z2 % Z2?
  (The rules involving i, j, and k can be remembered by using the cir-

cle below.

k j

i

  Going clockwise, the product of two consecutive elements is the third 
one. The same is true for going counterclockwise, except that we ob-
tain the negative of the third element.) This is the group of quaterni-
ons that was given in another form in Exercise 4 in the Supplementary 
Exercises for Chapters 1–4. It was invented by William Hamilton  
in 1843. The quaternions are used to describe rotations in three- 
dimensional space, and they are used in physics. The quaternions can 
be used to extend the complex numbers in a natural way.
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204 Groups

 55. In D4, let K 5 {R0, D} and let L 5 {R0, D, D9, R180}. Show that K v 
L v D4, but that K is not normal in D4. (Normality is not transitive. 
Compare Exercise 4, Supplementary Exercises for Chapters 5–8.)

 56. Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

 57. Give an example of subgroups H and K of a group G such that HK 
is not a subgroup of G.

 58. If N and M are normal subgroups of G, prove that NM is also a 
normal subgroup of G.

 59. Let N be a normal subgroup of a group G. If N is cyclic, prove that 
every subgroup of N is also normal in G. (This exercise is referred 
to in Chapter 24.)

 60. Without looking at inner automorphisms of Dn, determine the num-
ber of such automorphisms.

 61. Let H be a normal subgroup of a finite group G and let x [ G. If 
gcd(|x|, |G/H|) 5 1, show that x [ H. (This exercise is referred to 
in Chapter 25.)

 62. Let G be a group and let G9 be the subgroup of G generated by the 
set S 5 {x21y21xy | x, y [ G}. (See Exercise 3, Supplementary 
Exercises for Chapters 5–8, for a more complete description of G9.)

  a. Prove that G9 is normal in G.
  b. Prove that G/G9 is Abelian.
  c. If G/N is Abelian, prove that G9 # N.
  d.  Prove that if H is a subgroup of G and G9 # H, then H is normal 

in G.
 63. If N is a normal subgroup of G and |G/N| 5 m, show that xm [ N 

for all x in G.
 64. Suppose that a group G has a subgroup of order n. Prove that the 

intersection of all subgroups of G of order n is a normal subgroup 
of G.

 65. If G is non-Abelian, show that Aut(G) is not cyclic.
 66. Let |G| 5 pnm, where p is prime and gcd( p, m) 5 1. Suppose that 

H is a normal subgroup of G of order pn. If K is a subgroup of G of 
order pk, show that K # H.

 67. Suppose that H is a normal subgroup of a finite group G. If G/H 
has an element of order n, show that G has an element of order n. 
Show, by example, that the assumption that G is finite is necessary. 

 68. Recall that a subgroup N of a group G is called characteristic if 
f(N) 5 N for all automorphisms f of G. If N is a characteristic 
subgroup of G, show that N is a normal subgroup of G.
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9 | Normal Subgroups and Factor Groups 205

 69. In D4, let _ 5 {R0, H}. Form an operation table for the cosets _, 
D_, V_, and D9_. Is the result a group table? Does your answer 
contradict Theorem 9.2?

 70. Prove that A4 is the only subgroup of S4 of order 12.
 71. If |G| 5 30 and |Z(G)| 5 5, what is the structure of G/Z(G)?
 72. If H is a normal subgroup of G and |H| 5 2, prove that H is con-

tained in the center of G.
 73. Prove that A5 cannot have a normal subgroup of order 2.
 74. Let G be a finite group and let H be an odd-order subgroup of G of 

index 2. Show that the product of all the elements of G (taken in 
any order) cannot belong to H.

 75. Let G be a group and p a prime. Suppose that H 5 {gp  Z g [ G} is 
a subgroup of G. Show that H is normal and that every nonidentity 
element of G/H has order p.

 76. Suppose that H is a normal subgroup of G. If |H| 5 4 and gH has 
order 3 in G/H, find a subgroup of order 12 in G.

 77. Let G be a group and H an odd-order subgroup of G of index 2. 
Show that H contains every element of G of odd order.

 78. A proper subgroup H of a group G is called maximal if there is no 
subgroup K such that H ( K ( G (that is, there is no subgroup K 
properly contained between H and G). Show that Z(G) is never a 
maximal subgroup of a group G.

 79. Let G be a group of order 100 that has exactly one subgroup of 
order 5. Prove that it has a subgroup of order 10.

Suggested Readings

Michael Brennan and Des MacHale, “Variations on a Theme: A4 Defi-
nitely Has No Subgroup of Order Six!,” Mathematics Magazine 73 
(2000): 36–40.

The authors offer 11 proofs that A4 has no subgroup of order 6. These 
proofs provide a review of many of the ideas covered thus far in this 
text.

J. A. Gallian, R. S. Johnson, and S. Peng, “On Quotient Structures of  
Zn,” Pi Mu Epsilon Journal 9 (1993): 524–526.

The authors determine the structure of the group (Z % Z)/k(a, b)l and 
related groups.
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Tony Rothman, “Genius and Biographers: The Fictionalization of Évariste 
Galois,” The American Mathematical Monthly 89 (1982): 84–106. 

The author argues that many popular accounts of Galois’s life have 
been greatly embroidered.

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music 34 (1996): 140–161.

The author discusses how group theoretic notions such as subgroups, 
cosets, factor groups, and isomorphisms of Z12 and Z20 relate to musical 
scales, tuning, temperament, and structure.
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Évariste Galois (pronounced gal-WAH) 
was born on October 25, 1811, near Paris. 
Although he had mastered the works of 
Legendre and Lagrange at age 15, Galois 
twice failed his entrance examination to the 
École Polytechnique. He did not know 
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the 
annoyance of the examiner.

At 18, Galois wrote his important  research 
on the theory of equations and submitted it to 
the French Academy of Sciences for publica-
tion. The paper was given to Cauchy for ref-
ereeing. Cauchy, impressed by the paper, 
agreed to present it to the academy, but he 
never did. At the age of 19, Galois entered a 

Galois at seventeen was making discover-
ies of epochal significance in the theory of 
equations, discoveries whose conse-
quences are not yet exhausted after more 
than a century.

e. t. bell, Men of Mathematics

This French stamp was issued as part of 
the 1984 “Celebrity Series” in support of 
the Red Cross Fund.

Évariste Galois

paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics, 
given by the French Academy of Sciences. 
The paper was given to Fourier, who died 
shortly thereafter. Galois’s paper was never 
seen again.

Galois spent most of the last year and a 
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted 
suicide and prophesied that he would die in a 
duel. On May 30, 1832, Galois was shot in a 
duel; he died the next day at the age of 20.

Among the many concepts introduced by 
Galois are normal subgroups, isomorphisms, 
simple groups, finite fields, and Galois theory. 
His work provided a method for disposing 
of  several famous constructability problems, 
such as trisecting an arbitrary angle and dou-
bling a cube. Galois’s entire collected works 
fill only 60 pages.

To find more information about Galois, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Definition and Examples
In this chapter, we consider one of the most fundamental ideas of 
 algebra—homomorphisms. The term homomorphism comes from the 
Greek words homo, “like,” and morphe, “form.” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that 
there is an intimate connection between factor groups of a group and 
homomorphisms of a group. The concept of group homomorphisms 
was introduced by Camille Jordan in 1870, in his influential book Traité 
des substitutions.

Definition Group Homomorphism
A homomorphism f from a group G to a group G is a mapping  
from G into G that preserves the group operation; that is, f(ab) 5  
f(a)f(b) for all a, b in G.

Before giving examples and stating numerous properties of 
homomorphisms, it is convenient to introduce an important subgroup 
that is intimately related to the image of a homomorphism. (See 
property 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism
The kernel of a homomorphism f from a group G to a group with 
identity e is the set {x [ G | f(x) 5 e}. The kernel of f is denoted by 
Ker f.

10 Group  
Homomorphisms

When it comes to laws, there is absolutely no doubt that symmetry and 
group theory are extremely useful concepts. Without the introduction of 
symmetry and the language of groups into particle physics the description 
of the elementary particles and their interactions would have been an 
intricate nightmare. Groups truly flesh out order and identify patterns like 
no other mathematical machinery.

mario livio, The Equation That Couldn't be Solved
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10 | Group Homomorphisms 209

 EXAMPLE 1 Any isomorphism is a homomorphism that is also onto 
and one-to-one. The kernel of an isomorphism is the trivial subgroup. 

 EXAMPLE 2 Let R* be the group of nonzero real numbers under 
multiplication. Then the determinant mapping A → det A is a 
homomorphism from GL(2, R) to R*. The kernel of the determinant 
mapping is SL(2, R). 

 EXAMPLE 3 The mapping f from R* to R*, defined by f(x) 5 |x|, 
is a homomorphism with Ker f 5 {1, 21}. 

 EXAMPLE 4 Let R[x] denote the group of all polynomials with real 
coefficients under addition. For any f in R[x], let f 9 denote the deriva-
tive of f. Then the mapping f S f 9 is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant  
polynomials. 

 EXAMPLE 5 The mapping f from Z to Zn, defined by f(m) 5 m 
mod n, is a homomorphism (see Exercise 9 in Chapter 0). The kernel of 
this mapping is knl. 

 EXAMPLE 6 The mapping f(x) 5 x2 from R*, the nonzero real 
numbers under multiplication, to itself is a homomorphism, since  
f(ab) 5 (ab)2 5 a2b2 5 f(a)f(b) for all a and b in R*. (See Exercise 5.)  
The  kernel is {1, –1}. 

 EXAMPLE 7 The mapping f(x) 5 x2 from R, the real numbers 
under addition, to itself is not a homomorphism, since f(a 1 b) 5  
(a 1 b)2 5 a2 1 2ab 1 b2, whereas f(a) 1 f(b) 5 a2 1 b2. 

When defining a homomorphism from a group in which there are 
several ways to represent the elements, caution must be exercised to 
ensure that the correspondence is a function. (The term well-defined is 
often used in this context.) For example, since 3(x 1 y) 5 3x 1 3y in 
Z6, one might believe that the correspondence x 1 k3l S 3x from Z/k3l to 
Z6 is a homomorphism. But it is not a function, since 0 1 k3l 5 3 1 
k3l in Z/k3l but 3 ? 0 2 3 ? 3 in Z6.

For students who have had linear algebra, we remark that every 
 linear transformation is a group homomorphism and the null-space is 
the same as the kernel. An invertible linear transformation is a group 
isomorphism.
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Properties of Homomorphisms
 Theorem 10.1 Properties of Elements Under Homomorphisms

Let f be a homomorphism from a group G to a group G and let g be 

an element of G. Then

 1. f carries the identity of G to the identity of G.

 2. f(gn) 5 (f(g))n for all n in Z.

 3. If |g| is finite, then |f(g)| divides |g|.
 4. Ker f is a subgroup of G.

 5. f(a) 5 f(b) if and only if aKer f 5 bKer f.
 6.  If f(g) 5 g9, then f21(g9) 5 {x [ G | f(x) 5 g9} 5 gKer f.

PROOF The proofs of properties 1 and 2 are identical to the proofs of 
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3, 
notice that properties 1 and 2 together with gn 5 e imply that e 5 
f(e) 5 f(gn) 5 (f(g))n. So, by Corollary 2 to Theorem 4.1, we have 
|f(g)| divides n.

By property 1 we know that Ker f is not empty. So, to prove prop-
erty 4, we assume that a, b [ Ker f and show that ab21 [ Ker f. 
Since f(a) 5 e and f(b) 5 e, we have f(ab21) 5 f(a)f(b21) 5  
f(a)(f(b))21 5 ee21 5 e. So, ab21 [ Ker f.

To prove property 5, first assume that f(a) 5 f(b). Then  
e 5 (f(b))21f(a) 5 f(b21)f(a) 5 f(b21a), so that b21a[ Ker f.  
It now follows from property 6 of the lemma in Chapter 7 that  
bKer f 5 aKer f. Reversing this argument completes the proof.

To prove property 6, we must show that f21(g9) # gKer f and that 
gKer f # f21(g9). For the first inclusion, let x [ f21(g9), so that  
f(x) 5 g9. Then f(g) 5 f(x) and by property 5 we have gKer f 5 
xKer f and therefore x [ gKer f. This completes the proof that  
f21(g9) # gKer f. To prove that gKer f # f21(g9), suppose that k [ 
Ker f. Then f(gk) 5 f(g)f(k) 5 g9e 5 g9. Thus, by definition, gk [ 
f21(g9). 

Since homomorphisms preserve the group operation, it should not be 
a surprise that they preserve many group properties.
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10 | Group Homomorphisms 211

 Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let f be a homomorphism from a group G to a group G and let H be 

a subgroup of G. Then

 1. f(H) 5 {f(h) | h [ H} is a subgroup of G.

 2. If H is cyclic, then f(H) is cyclic.

 3. If H is Abelian, then f(H) is Abelian.

 4. If H is normal in G, then f(H) is normal in f(G).
 5. If |Ker f| 5 n, then f is an n-to-1 mapping from G onto f(G).
 6. If |H| 5 n, then |f(H)| divides n.

 7.  If K is a subgroup of G, then f21(K) 5 {k [ G | f(k) [ K}  

is a subgroup of G.

 8.  If K is a normal subgroup of G, then f21(K) 5 {k [ G |  

f(k) [ K} is a normal subgroup of G.

 9.  If f is onto and Ker f 5 {e}, then f is an isomorphism  

from G to G.

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem 
6.3, since those proofs use only the fact that an isomorphism is an 
 operation-preserving mapping.

To prove property 4, let f(h) [ f(H) and f(g) [ f(G). Then  
f(g)f(h)f(g)21 5 f(ghg21) [ f(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the 
fact that all cosets of Ker f 5 f21(e) have the same number of elements.

To prove property 6, let fH denote the restriction of f to the  
elements of H. Then fH is a homomorphism from H onto f(H).  
Suppose |Ker fH| 5 t. Then, by property 5, fH is a t-to-1 mapping. So, 
|f(H)|t 5 |H|.

To prove property 7, we use the One-Step Subgroup Test. Clearly,  
e [ f21(K), so that f21(K) is not empty. Let k1, k2 [ f21(K). Then, 
by the definition of f21(K), we know that f(k1), f(k2) [ K. Thus, 
f(k2)

21 [ K as well and f(k1k2
21) 5 f(k1)f(k2)

21 [ K. So, by the  
defi nition of f21(K), we have k1k2

21 [ f21(K).
To prove property 8, we use the normality test given in Theorem 9.1. 

Note that every element in xf21(K)x21 has the form xkx21, where f(k) [ 
K. Thus, since K is normal in G, f(xkx21) 5 f(x)f(k)(f(x))21 [ K,  
and, therefore, xkx21 [ f21(K).

Finally, property 9 follows directly from property 5. 
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212 Groups

A few remarks about Theorems 10.1 and 10.2 are in order. Students 
should remember the various properties of these theorems in words. For 
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic 
image of a cyclic group is cyclic and the homomorphic image of an 
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho- 
momorphic image of a normal subgroup of G is normal in the image of 
G. Property 5 of Theorem 10.2 says that if f is a homomorphism from 
G to G, then every element of G that gets “hit” by f gets hit the same 
number of times as does the identity. The set f21(g9) defined in prop-
erty 6 of Theorem 10.1 is called the inverse image of g9 (or the pullback 
of g9). Note that the inverse image of an element is a coset of the kernel 
and that every element in that coset has the same image. Similarly, the 
set f21(K) defined in property 7 of Theorem 10.2 is called the inverse 
image of K (or the pullback of K).

Property 6 of Theorem 10.1 is reminiscent of something from linear 
algebra and differential equations. Recall that if x is a particular solu-
tion to a system of linear equations and S is the entire solution set of the 
corresponding homogeneous system of linear equations, then x 1 S is 
the entire solution set of the nonhomogeneous system. In reality, this 
statement is just a special case of property 6. Properties 1 and 6 of 
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1.

The special case of property 8 of Theorem 10.2, where K 5 {e}, is 
of such importance that we single it out.

 Corollary Kernels Are Normal

Let f be a group homomorphism from G to G. Then Ker f is a nor-

mal subgroup of G.

The next two examples illustrate several properties of Theorems 10.1 
and 10.2.

 EXAMPLE 8 Consider the mapping f from C* to C* given by  
f(x) 5 x4. Since (xy)4 5 x4y4, f is a homomorphism. Clearly,  
Ker f 5 {x | x4 5 1} 5 {1, 21, i, 2i}. So, by property 5 of Theorem 
10.2, we know that f is a 4-to-1 mapping. Now let’s find all elements 
that map to, say, 2. Certainly, f( 422 ) 5 2. Then, by property 6 of 
Theorem 10.1, the set of all elements that map to 2 is 422 Ker f 5  
{ 422 , 2 422 , 422 i, 2 422 i}.
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10 | Group Homomorphisms 213

Finally, we verify a specific instance of property 3 of Theorem 10.1 
and of properties 2 and 6 of Theorem 10.2. Let H 5 kcos 30° 1 i sin 
30°l. It follows from DeMoivre’s Theorem (Example 10 in Chap ter 0) 
that |H| 5 12, f(H) 5 kcos 120° 1 i sin 120°l, and |f(H)| 5 3. 

 EXAMPLE 9 Define f: Z12 → Z12 by f(x) 5 3x. To verify that f is a 
homomorphism, we observe that in Z12, 3(a 1 b) 5 3a 1 3b (since the 
group operation is addition modulo 12). Direct calculations show that 
Ker f 5 {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that 
f is a 3-to-1 mapping. Since f(2) 5 6, we have by property 6 of  
Theorem 10.1 that f21(6) 5 2 1 Ker f 5 {2, 6, 10}. Notice also that k2l 
is cyclic and f(k2l) 5 {0, 6} is cyclic. Moreover, |2| 5 6 and |f(2)| 5  
|6| 5 2, so |f(2)| divides |2| in agreement with property 3 of Theorem 
10.1. Letting K5 {0, 6}, we see that the subgroup f21(K) 5 {0, 2, 4, 6, 
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case. 

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

 EXAMPLE 10 We determine all homomorphisms from Z12 to Z30. 
By property 2 of Theorem 10.1, such a homomorphism is completely 
specified by the image of 1. That is, if 1 maps to a, then x maps to xa. 
Lagrange’s Theorem and property 3 of Theorem 10.1 require that |a| di- 
vide both 12 and 30. So, |a| 5 1, 2, 3, or 6. Thus, a 5 0, 15, 10, 20,  
5, or 25. This gives us a list of candidates for the homomorphisms. That 
each of these six possibilities yields an operation-preserving, well- 
defined function can now be verified by direct calculations. [Note that 
gcd(12, 30) 5 6. This is not a coincidence!] 

φ

φ

φ φ

(g) = g9

G

G

(G)

e

φ φKer 21(e)= φ φgKer 21(g9)=

 e = g1, g2,..., gn  g, gg2,..., ggn

Figure 10.1
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214 Groups

 EXAMPLE 11 The mapping from Sn to Z2 that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2 
illustrates the telescoping nature of the mapping. 
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O
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Figure 10.2 Homomorphism from S3 to Z2. 

The First Isomorphism Theorem
In Chapter 9, we showed that for a group G and a normal subgroup H, 
we could arrange the Cayley table of G into boxes that represented the 
cosets of H in G, and that these boxes then became a Cayley table for 
G/H. The next theorem shows that for any homomorphism f of G and 
the normal subgroup Ker f, the same process produces a Cayley table 
isomorphic to the homomorphic image of G. Thus, homomorphisms, 
like factor groups, cause a systematic collapse of a group to a simpler 
but closely related group. This can be likened to viewing a group 
through the reverse end of a telescope—the general features of the 
group are present, but the apparent size is diminished. The important 
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10 | Group Homomorphisms 215

relationship between homomorphisms and factor groups given below is 
often called the Fundamental Theorem of Group Homomorphisms.

 Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

Let f be a group homomorphism from G to G. Then the mapping 

from G/Ker f to f(G), given by gKer f → f(g), is an isomorphism. 

In symbols, G/Ker f L f(G).

PROOF Let us use c to denote the correspondence gKerf S f(g). 
That c is well-defined (that is, the correspondence is independent of 
the particular coset representative chosen) and one-to-one follows 
 directly from property 5 of Theorem 10.1. To show that c is operation-
preserving, observe that c(xKer f yKer f) 5 c(xyKer f) 5 f(xy) 5 
f(x) f(y) 5 c(xKer f)c(yKer f). 

The next corollary follows directly from Theorem 10.3, property 1 of 
Theorem 10.2, and Lagrange’s Theorem.

 Corollary

If f is a homomorphism from a finite group G to G, then |f(G)| 

divides |G| and |G|.

 EXAMPLE 12 To illustrate Theorem 10.3 and its proof, consider the 
homomorphism f from D4 to itself given by the following.

 R0     R180 R90   R270 H       V D D9

                         
 R0 H R180 V

Then Ker f 5 {R0, R180}, and the mapping c in Theorem 10.3 is 
R0Ker f S R0, R90Ker f S H, HKer f S R180, DKer f S V. It is 
straight forward to verify that the mapping c is an isomorphism. 

Mathematicians often give a pictorial representation of Theorem 
10.3, as follows:

 

G (G)
φ

φ

φ

γ ψ

G/Ker
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216 Groups

where g: G S G/Ker f is defined as g(g) 5 gKer f. The mapping g 
is  called the natural mapping from G to G/Ker f. Our proof of 
Theorem 10.3 shows that cg 5 f. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various 
factor groups of G. For example, we know that the homomorphic image of 
an Abelian group is Abelian because the factor group of an Abelian group 
is Abelian. We know that the number of homomorphic images of a cyclic 
group G of order n is the number of divisors of n, since there is exactly one 
subgroup of G (and therefore one factor group of G) for each divisor of n. 
(Be careful: The number of homomorphisms of a cyclic group of order n 
need not be the same as the number of divisors of n, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few 
examples.

 EXAMPLE 13 Z/8n9 � Zn
Consider the mapping from Z to Zn defined in Example 5. Clearly, its 
kernel is knl. So, by Theorem 10.3, Z/knl L Zn. 

 EXAMPLE 14 Wrapping Function
Recall the wrapping function W from trigonometry. The real number 
line is wrapped around a unit circle in the plane centered at (0, 0) with 
the number 0 on the number line at the point (1, 0), the positive reals 
in the counterclockwise direction and the negative reals in the 
clockwise direction (see Figure 10.3). The function W assigns to each 
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the 
circle group (the group of complex numbers of magnitude 1 under 
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) 5 cos x 1 i sin x and W(x 1 y) 5 W(x)W(y). Since W is 
periodic of period 2p, Ker W 5 k2pl. So, from the First Isomorphism 
Theorem, we see that R/k2pl is isomorphic to the circle group. 

W(3)

W(2)

W(0)

W(1)

(0, 0)

(1, 0)

W(21)

Figure 10.3
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10 | Group Homomorphisms 217

Our next example is a theorem that is used repeatedly in Chapters 24 
and 25.

 EXAMPLE 15 N/C Theorem
Let H be a subgroup of a group G. Recall that the normalizer of H in 
G  is N(H) 5 {x [ G | xHx21 5 H} and the centralizer of H in G is  
C(H) 5 {x [ G | xhx21 5 h for all h in H}. Consider the mapping from 
N(H) to Aut(H) given by g S fg, where fg is the inner automorphism of 
H induced by g [that is, fg(h) 5 ghg21 for all h in H]. This mapping is a 
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is 
isomorphic to a subgroup of Aut(H). 

As an application of the N/C Theorem, we will show that every group 
of order 35 is cyclic.

 EXAMPLE 16 Let G be a group of order 35. By Lagrange’s 
Theorem, every nonidentity element of G has order 5, 7, or 35. If 
some element has order 35, G is cyclic. So we may assume that all 
nonidentity elements have order 5 or 7. However, not all such   
elements can have order 5, since elements of order 5 come 4 at a time 
(if |x| 5 5, then |x2| 5 |x3| 5 |x4| 5 5) and 4 does not divide 34. 
Similarly, since 6 does not divide 34, not all nonidentity elements can 
have order 7. So, G has elements of order 7 and order 5. Since G has 
an element of order 7, it has a subgroup of order 7. Let us call it H. In 
fact, H is the only subgroup of G of order 7, for if K is another sub-
group of G of order 7, we have by Theorem 7.2 that |HK| 5 |H||K|/| 
H > K| 5 7 ? 7/1 5 49. But, of course, this is impossible in a group of 
order 35. Since for every a in G, aHa21 is also a subgroup of G of 
order 7 (see Exercise 1 of the Supplementary Exercises for Chapters 
1–4), we must have aHa21 5 H. So, N(H) 5 G. Since H has prime 
order, it is cyclic and therefore Abelian. In particular, C(H) contains 
H. So, 7 divides |C(H)| and |C(H)| divides 35. It follows, then, that 
C(H) 5 G or C(H) 5 H. If C(H) 5 G, then we may obtain an element 
x of order 35 by letting x 5 hk, where h is a nonidentity element of H 
and k has order 5. On the other hand, if C(H) 5 H, then |C(H)| 5 7 and 
|N(H)/C(H)| 5 35/7 5 5. However, 5 does not divide |Aut(H)| 5 
|Aut(Z7)| 5 6. This contradiction shows that G is cyclic. 

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude 
this chapter by verifying that the converse of this statement is also true.
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218 Groups

 Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor- 

phism of G. In particular, a normal subgroup N is the kernel  

of the mapping g S gN from G to G/N.

PROOF Define g: G S G/N by g(g) 5 gN. (This mapping is called the 
natural homomorphism from G to G/N.) Then, g(xy) 5 (xy)N 5 xNyN 5 
g(x)g(y). Moreover, g [ Ker g if and only if gN 5 g(g) 5 N, which is 
true if and only if g [ N (see property 2 of the lemma in Chapter 7). 

Examples 13, 14, and 15 illustrate the utility of the First Isomorphism 
Theorem. But what about homomorphisms in general? Why would one 
care to study a homomorphism of a group? The answer is that, just as 
was the case with factor groups of a group, homomorphic images of a 
group tell us some of the properties of the original group. One measure 
of the likeness of a group and its homomorphic image is the size of the 
kernel. If the kernel of the homomorphism of group G is the identity, 
then the image of G tells us everything (group theoretically) about G (the 
two being isomorphic). On the other hand, if the kernel of the homomor-
phism is G itself, then the image tells us nothing about G. Between these 
two extremes, some information about G is preserved and some is lost. 
The utility of a particular homomorphism lies in its ability to preserve 
the group properties we want, while losing some inessential ones. In this 
way, we have replaced G by a group less complicated (and therefore eas-
ier to study) than G; but, in the process, we have saved enough informa-
tion to answer questions that we have about G itself. For example, if G is 
a group of order 60 and G has a homomorphic image of order 12 that is 
cyclic, then we know from properties 5, 7, and 8 of Theorem 10.2 that G 
has normal subgroups of orders 5, 10, 15, 20, 30, and 60. To illustrate 
further, suppose we are asked to find an infinite group that is the union 
of three proper subgroups. Instead of attempting to do this directly, we 
first make the problem easier by finding a finite group that is the union 
of three proper subgroups. Observing that Z2 % Z2 is the union of H1 5 
k1, 0l, H2 5 k0, 1l, and H3 5 k1, 1l, we have found our finite group. Now  
all we need do is think of an infinite group that has Z2 % Z2 as a homo-
morphic image and pull back H1, H2, and H3, and our original problem is 
solved. Clearly, the mapping from Z2 % Z2 % Z onto Z2 % Z2 given by 
f(a, b, c) 5 (a, b) is such a mapping, and therefore Z2 % Z2 % Z is the 
union of f21(H1) 5 {(a, 0, c,) | a [ Z2, c [ Z}, f21(H2) 5 {(0, b, c) | b 
[ Z2, c [ Z}, and f21(H3) 5 {(a, a, c) | a [ Z2, c [ Z}.
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10 | Group Homomorphisms 219

Although an isomorphism is a special case of a homomorphism, the 
two concepts have entirely different roles. Whereas isomorphisms 
allow us to look at a group in an alternative way, homomorphisms act as 
investigative tools. The following analogy between homomorphisms 
and photography may be instructive.† A photograph of a person cannot 
tell us the person’s exact height, weight, or age. Nevertheless, we may 
be able to decide from a photograph whether the person is tall or short, 
heavy or thin, old or young, male or female. In the same way, a homo-
morphic image of a group gives us some information about the group.

In certain branches of group theory, and especially in physics and 
chemistry, one often wants to know all homomorphic images of a group 
that are matrix groups over the complex numbers (these are called group 
representations). Here, we may carry our analogy with photography one 
step further by saying that this is like wanting photographs of a person 
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the 
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

Exercises

The greater the difficulty, the more glory in surmounting it. Skillful pilots 
gain their reputation from storms and tempests.

epicurus

  1. Prove that the mapping given in Example 2 is a homomorphism.
  2. Prove that the mapping given in Example 3 is a homomorphism.
  3. Prove that the mapping given in Example 4 is a homomorphism.
  4. Prove that the mapping given in Example 11 is a homomorphism.
  5. Let R* be the group of nonzero real numbers under multiplication, 

and let r be a positive integer. Show that the mapping that takes x to 
xr is a homomorphism from R* to R* and determine the kernel. 
Which values of r yield an isomorphism?

  6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each f in G, let ∫f denote the antiderivative of f that passes 
through the point (0, 0). Show that the mapping f S ∫f from G to G is 
a homomorphism. What is the kernel of this mapping? Is this map-
ping a homomorphism if ∫f denotes the antiderivative of f that passes 
through (0, 1)?

†“All perception of truth is the detection of an analogy.” Henry David Thoreau, Journal.
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220 Groups

  7. If f is a homomorphism from G to H and s is a homomorphism 
from H to K, show that sf is a homomorphism from G to K. How 
are Ker f and Ker sf related? If f and s are onto and G is finite,

  describe [Ker sf:Ker f] in terms of |H| and |K|.
  8. Let G be a group of permutations. For each s in G, define

 sgn1s2 � e�1  if s is an even permutation, 

�1  if s is an odd permutation.

  Prove that sgn is a homomorphism from G to the multiplicative 
group {11, 21}. What is the kernel? Why does this homomor-
phism allow you to conclude that An is a normal subgroup of Sn of 
index 2? Why does this prove Exercise 23 of Chapter 5?

  9. Prove that the mapping from G % H to G given by (g, h) S g is a 
homomorphism. What is the kernel? This mapping is called the 
projection of G % H onto G.

 10. Let G be a subgroup of some dihedral group. For each x in G, define

 f1x2 � e�1  if x is a rotation, 

�1  if x is a reflection.

  Prove that f is a homomorphism from G to the multiplicative 
group {�1, �1}. What is the kernel? Why does this prove Exercise 
25 of Chapter 3?

 11. Prove that (Z % Z )/(k(a, 0)l 3 k(0, b)l) is isomorphic to Za % Zb.
 12. Suppose that k is a divisor of n. Prove that Zn/kkl L Zk.
 13. Prove that (A % B)/(A % {e}) L B.
 14. Explain why the correspondence x → 3x from Z12 to Z10 is not a 

homomorphism.
 15. Suppose that f is a homomorphism from Z30 to Z30 and Ker f 5 

{0, 10, 20}. If f(23) 5 9, determine all elements that map to 9.
 16. Prove that there is no homomorphism from Z8 % Z2 onto Z4 % Z4.
 17. Prove that there is no homomorphism from Z16 % Z2 onto Z4 % Z4.
 18. Can there be a homomorphism from Z4 % Z4 onto Z8? Can there be 

a homomorphism from Z16 onto Z2 % Z2? Explain your answers.
 19. Suppose that there is a homomorphism f from Z17 to some group 

and that f is not one-to-one. Determine f.
 20. How many homomorphisms are there from Z20 onto Z8? How many 

are there to Z8?
 21. If f is a homomorphism from Z30 onto a group of order 5, deter-

mine the kernel of f.
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10 | Group Homomorphisms 221

 22. Suppose that f is a homomorphism from a finite group G onto G 
and that G has an element of order 8. Prove that G has an element 
of order 8. Generalize.

 23. Suppose that f is a homomorphism from Z36 to a group of order 24.
  a. Determine the possible homomorphic images.
  b. For each image in part a, determine the corresponding kernel of f.
 24. Suppose that f: Z50 S Z15 is a group homomorphism with f(7) 5 6.
  a. Determine f(x).
  b. Determine the image of f.
  c. Determine the kernel of f.
  d.  Determine f21(3). That is, determine the set of all elements 

that map to 3.
 25. How many homomorphisms are there from Z20 onto Z10? How 

many are there to Z10?
 26. Determine all homomorphisms from Z4 to Z2 % Z2.
 27. Determine all homomorphisms from Zn to itself.
 28. Suppose that f is a homomorphism from S4 onto Z2. Determine 

Ker f. Determine all homomorphisms from S4 to Z2.
 29. Suppose that there is a homomorphism from a finite group G onto 

Z10. Prove that G has normal subgroups of indexes 2 and 5.
 30. Suppose that f is a homomorphism from a group G onto Z6 % Z2 

and that the kernel of f has order 5. Explain why G must have nor-
mal subgroups of orders 5, 10, 15, 20, 30, and 60.

 31. Suppose that f is a homomorphism from U(30) to U(30) and  
that Ker f 5 {1, 11}. If f(7) 5 7, find all elements of U(30) that 
map to 7.

 32. Find a homomorphism f from U(30) to U(30) with kernel {1, 11} 
and f(7) 5 7.

 33. Suppose that f is a homomorphism from U(40) to U(40) and that  
Ker f 5 {1, 9, 17, 33}. If f(11) 5 11, find all elements of U(40) 
that map to 11.

 34. Find a homomorphism f from U(40) to U(40) with kernel {1, 9, 
17, 33} and f(11) 5 11.

 35. Prove that the mapping f: Z % Z S Z given by (a, b) S a 2 b is a 
homomorphism. What is the kernel of f? Describe the set f21(3) 
(that is, all elements that map to 3).

 36. Suppose that there is a homomorphism f from Z % Z to a group G 
such that f((3, 2)) 5 a and f((2, 1)) 5 b. Determine f((4, 4)) in 
terms of a and b. Assume that the operation of G is addition.
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222 Groups

 37. Let H 5 {z [ C* | |z| 5 1}. Prove that C*/H is isomorphic to R1, 
the group of positive real numbers under multiplication.

 38. Let a be a homomorphism from G1 to H1 and b be a homomor-
phism from G2 to H2. Determine the kernel of the homomorphism 
g from G1 % G2 to H1 % H2 defined by g(g1, g2) 5 (a(g1), b(g2)).

 39. Prove that the mapping x S x6 from C* to C* is a homomorphism. 
What is the kernel?

 40. For each pair of positive integers m and n, we can define a homo-
morphism from Z to Zm % Zn by x S (x mod m, x mod n). What is 
the kernel when (m, n) 5 (3, 4)? What is the kernel when (m, n) 5 
(6, 4)? Generalize.

 41. (Second Isomorphism Theorem) If K is a subgroup of G and N is 
a normal subgroup of G, prove that K/(K > N) is isomorphic  
to KN/N.

 42. (Third Isomorphism Theorem) If M and N are normal subgroups of 
G and N # M, prove that (G/N)/(M/N) L G/M.

 43. Let f(d) denote the Euler phi function of d (see page 85). Show 
that the number of homomorphisms from Zn to Zk is Sf(d), where 
the sum runs over all common divisors d of n and k. [It follows 
from number theory that this sum is actually gcd(n, k).]

 44. Let k be a divisor of n. Consider the homomorphism from U(n) to 
U(k) given by x S x mod k. What is the relationship between this 
homomorphism and the subgroup Uk(n) of U(n)?

 45. Determine all homomorphic images of D4 (up to isomorphism).
 46. Let N be a normal subgroup of a finite group G. Use the theorems 

of this chapter to prove that the order of the group element gN in 
G/N divides the order of g.

 47. Suppose that G is a finite group and that Z10 is a homomorphic 
image of G. What can we say about |G|? Generalize.

 48. Suppose that Z10 and Z15 are both homomorphic images of a finite 
group G. What can be said about |G|? Generalize.

 49. Suppose that for each prime p, Zp is the homomorphic image of a 
group G. What can we say about |G|? Give an example of such a 
group.

 50. (For students who have had linear algebra.) Suppose that x is a 
 particular solution to a system of linear equations and that S is the 
entire solution set of the corresponding homogeneous system of 
linear equations. Explain why property 6 of Theorem 10.1 guaran-
tees that x 1 S is the entire solution set of the nonhomogeneous 
system. In particular, describe the relevant groups and the homo-
morphism between them.
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10 | Group Homomorphisms 223

 51. Let N be a normal subgroup of a group G. Use property 7 of 
Theorem 10.2 to prove that every subgroup of G/N has the form 
H/N, where H is a subgroup of G. (This exercise is referred to in 
Chapter 24.)

 52. Show that a homomorphism defined on a cyclic group is com-
pletely determined by its action on a generator of the group.

 53. Use the First Isomorphism Theorem to prove Theorem 9.4.
 54. Let a and b be group homomorphisms from G to G and let H 5  

{g [ G | a(g) 5 b(g)}. Prove or disprove that H is a subgroup of G.
 55. Let Z[x] be the group of polynomials in x with integer coefficients 

under addition. Prove that the mapping from Z[x] into Z given by 
f(x) S f(3) is a homomorphism. Give a geometric description of 
the kernel of this homomorphism. Generalize.

 56. Prove that the mapping from R under addition to GL(2, R) that 
takes x to

  c cos x sin x

�sin x cos x
d

  
is a group homomorphism. What is the kernel of the homomorphism?

 57. Suppose there is a homomorphism f from G onto Z2 % Z2. Prove 
that G is the union of three proper normal subgroups.

 58. If H and K are normal subgroups of G and H > K 5 {e}, prove that 
G is isomorphic to a subgroup of G/H % G/K.

 59. Suppose that H and K are distinct subgroups of G of index 2. Prove 
that H > K is a normal subgroup of G of index 4 and that G/(H > K) 
is not cyclic.

 60. Suppose that the number of homomorphisms from G to H is n. 
How many homomorphisms are there from G to H % H % ? ? ? % H 
(s terms)? When H is Abelian, how many homomorphisms are there 
from G % G % ? ? ? % G (s terms) to H?

 61. Prove that every group of order 77 is cyclic.
 62. Determine all homomorphisms from Z onto S3. Determine all 

 homomorphisms from Z to S3.
 63. Let G be an Abelian group. Determine all homomorphisms from  

S3 to G.
 64. If f is an isomorphism from a group G under addition to a group G

under addition, prove that for any integer n, the mapping from G to 
G defined by g(x) 5 nf(x) is a homomorphism from G to G.

 65. Prove that the mapping from C* to C* given by f(z) 5 z2 is a ho-
momorphism and that C*/ {1, 21} is isomorphic to C*.
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224 Groups

 66. Let p be a prime. Determine the number of homomorphisms from 
Zp % Zp into Zp.

 67. Suppose G is an Abelian group under addition with the property 
that for every positive integer n, the set nG 5{ng | g [ G} 5 G. 
Show that every proper subgroup of G is properly contained in a 
proper subgroup of G. Name two familiar groups that satisfy the 
hypothesis.

Computer Exercise

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Camille Jordan

Camille Jordan was born into a well-to-do 
family on January 5, 1838, in Lyons, France. 
Like his father, he graduated from the École 
Polytechnique and became an engineer. 
Nearly all of his 120 research papers in 
mathematics were written before his retire-
ment from engineering in 1885. From 1873 
until 1912, Jordan taught simultaneously at 
the École Polytechnique and at the College 
of France.

In the great French tradition, Jordan was 
a universal mathematician who published in 
nearly every branch of mathematics. Among 
the concepts named after him are the Jordan 
canonical form in matrix theory, the Jordan 
curve theorem from topology, and the 
Jordan–Hölder Theorem from group theory. 

His classic book Traité des substitutions, 
published in 1870, was the first to be de-
voted solely to group theory and its applica-
tions to other branches of mathematics.

Another book that had great influence 
and set a new standard for rigor was his 
Cours d’analyse. This book gave the first 
clear definitions of the notions of volume 
and multiple integral. Nearly 100 years  
after this book appeared, the distinguished  
mathematician and mathematical historian 
B. L. van der Waerden wrote, “For me, every 
 single chapter of the Cours d’analyse is a 
pleasure to read.” Jordan died in Paris on 
January 22, 1922.

To find more information about Jordan, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Although these contributions [to  
analysis and topology] would have been 
enough to rank Jordan very high among 
his mathematical contemporaries, it is 
chiefly as an algebraist that he reached 
celebrity when he was barely thirty; and 
during the next forty years he was 
 universally regarded as the undisputed 
master of group theory.

j. dieudonné, Dictionary of  
Scientific Biography
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Fundamental  
Theorem of Finite 
Abelian Groups

The Fundamental Theorem
In this chapter, we present a theorem that describes to an algebraist’s 
eye (that is, up to isomorphism) all finite Abelian groups in a  stan- 
d ardized way. Before giving the proof, which is long and difficult, we 
discuss some consequences of the theorem and its proof. The first proof 
of the theorem was given by Leopold Kronecker in 1858.

 Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

11

By a small sample we may judge of the whole piece.
miguel de cervantes, Don Quixote

Every finite Abelian group is a direct product of cyclic groups of 

prime-power order. Moreover, the number of terms in the product 

and the orders of the cyclic groups are uniquely determined by the 

group.

Since a cyclic group of order n is isomorphic to Zn, Theorem 11.1 
shows that every finite Abelian group G is isomorphic to a group of 
the form

Zp1
n1 % Zp2

n2 % ? ? ? % Zpk
nk,

where the pi’s are not necessarily distinct primes and the prime  
powers p1

n1, p2
n2, . . . , pk

nk are uniquely determined by G. Writing a 
group in this form is called determining the isomorphism class of G.

The Isomorphism Classes  
of Abelian Groups

The Fundamental Theorem is extremely powerful. As an application, 
we can use it as an algorithm for constructing all Abelian groups of any 
order. Let’s look at groups whose orders have the form pk, where p is 
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11 | Fundamental Theorem of Finite Abelian Groups 227

prime and k # 4. In general, there is one group of order pk for each set 
of positive integers whose sum is k (such a set is called a partition of k); 
that is, if k can be written as

k 5 n1 1 n2 1 ? ? ? 1 nt,

where each ni is a positive integer, then

Zp 
n1 % Zp 

n2 % ? ? ? % Zp 
nt

is an Abelian group of order pk.

   Possible direct  
 Order of G Partitions of k products for G

 p 1 Zp

 p2 2 Zp2

  1 1 1 Zp % Zp

 p3 3 Zp3

  2 1 1 Zp2 % Zp

  1 1 1 1 1 Zp % Zp % Zp

 p4 4 Zp4

  3 1 1 Zp3 % Zp

  2 1 2 Zp2 % Zp2

  2 1 1 1 1 Zp2 % Zp % Zp

  1 1 1 1 1 1 1 Zp % Zp % Zp % Zp

Furthermore, the uniqueness portion of the Fundamental Theorem 
guarantees that distinct partitions of k yield distinct isomorphism 
classes. Thus, for example, Z9 % Z3 is not isomorphic to Z3 % Z3 % Z3. 
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

A % B L A % C    if and only if    B L C  (see [1]).

Thus, Z4 % Z4 is not isomorphic to Z4 % Z2 % Z2, because Z4 is not  
isomorphic to Z2 % Z2.

To appreciate fully the potency of the Fundamental Theorem, con trast 
the ease with which the Abelian groups of order pk, k # 4, were 
 determined with the corresponding problem for non-Abelian groups. 
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Theorem 26.4), and a description of the nine non-Abelian 
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian  
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228 Groups

groups of a certain order n, where n has two or more distinct prime 
 divisors. We begin by writing n in prime-power decomposition form  
n 5 p1

n1p2
n2 ? ? ? pk

nk. Next, we individually form all Abelian groups of 
order p1

n1, then p2
n2, and so on, as described earlier. Finally, we form all 

possible external direct products of these groups. For example, let n 5 
1176 5 23 ? 3 ? 72. Then, the complete list of the distinct isomorphism 
classes of Abelian groups of order 1176 is

 Z8 % Z3 % Z49,
 Z4 % Z2 % Z3 % Z49,
 Z2 % Z2 % Z2 % Z3 % Z49,
 Z8 % Z3 % Z7 % Z7,
 Z4 % Z2 % Z3 % Z7 % Z7,

Z2 % Z2 % Z2 % Z3 % Z7 % Z7.

If we are given any particular Abelian group G of order 1176, the 
question we want to answer about G is: Which of the preceding six iso-
morphism classes represents the structure of G? We can answer this 
question by comparing the orders of the elements of G with the orders of 
the elements in the six direct products, since it can be shown that two fi-
nite Abelian groups are isomorphic if and only if they have the same 
number of elements of each order. For instance, we could determine 
whether G has any elements of order 8. If so, then G must be isomorphic 
to the first or fourth group above, since these are the only ones with ele-
ments of order 8. To narrow G down to a single choice, we now need 
only check whether or not G has an element of order 49, since the first 
product above has such an element, whereas the fourth one does not.

What if we have some specific Abelian group G of order p1
n1p2

n2  
? ? ? pk

nk, where the pi’s are distinct primes? How can G be expressed as 
an internal direct product of cyclic groups of prime-power order? For 
simplicity, let us say that the group has 2n elements. First, we must 
compute the orders of the elements. After this is done, pick an element 
of maximum order 2r, call it a1. Then ka1l is one of the factors in the 
 desired internal direct product. If G 2 ka1l, choose an element a2 of 
maximum order 2s such that s # n 2 r and none of a2, a2

2, a2
4, . . . , 

a2
2 s21

 is in ka1l. Then ka2l is a second direct factor. If n 2 r 1 s, select 
an element a3 of maximum order 2t such that t # n 2 r 2 s and none of 
a3, a3

2, a3
4, . . . , a3

2 t21
 is in ka1l 3 ka2l 5 {a1

ia2
j | 0 # i , 2r, 0 #  

j , 2s}. Then ka3l is another direct factor. We continue in this fashion 
until our direct product has the same order as G.

A formal presentation of this algorithm for any Abelian group G of 
prime-power order pn is as follows.
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11 | Fundamental Theorem of Finite Abelian Groups 229

Element 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64

Order 1 4 4 2 4 4 4 4 4 4 4 4 2 4 4 2

From the table of orders, we can instantly rule out all but Z4 % Z4 and  
Z4 % Z2 % Z2 as possibilities. Finally, we observe that since this latter 
group has a subgroup isomorphic to Z2 % Z2 % Z2, it has more than 
three elements of order 2, and therefore we must have G L Z4 % Z4.

Expressing G as an internal direct product is even easier. Pick an ele-
ment of maximum order, say the element 8. Then k8l is a factor in the 
product. Next, choose a second element, say a, so that a has order 4 and 
a and a2 are not in k8l 5 {1, 8, 64, 57}. Since 12 has this property, we 
have G 5 k8l 3 k12l. 

Greedy Algorithm for an Abelian Group of Order pn

 1. Compute the orders of the elements of the group G.
 2.  Select an element a1 of maximum order and define G1 5 ka1l.  

Set i 5 1.
 3. If |G| 5 |Gi|, stop. Otherwise, replace i by i 1 1.
 4.  Select an element ai of maximum order pk such that pk #  

|G|/|Gi21| and none of ai, ai
p, ai

p2
, . . . , ai

pk21
 is in Gi21, and define 

Gi 5 Gi21 3 kail.
 5. Return to step 3.

In the general case where |G| 5 p1
n1p2

n2 ? ? ? pk
nk, we simply use the 

algorithm to build up a direct product of order p1
n 1, then another of 

 order p2
n 2, and so on. The direct product of all of these pieces is the 

 desired factorization of G. The following example is small enough that 
we can compute the appropriate internal and external direct products 
by hand.

 EXAMPLE 1 Let G 5 {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 
53, 57, 64} under multiplication modulo 65. Since G has order 16, we 
know it is isomorphic to one of

 Z16,
 Z8 % Z2,
 Z4 % Z4,
 Z4 % Z2 % Z2,
 Z2 % Z2 % Z2 % Z2.

To decide which one, we dirty our hands to calculate the orders of the 
elements of G.
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230 Groups

Example 1 illustrates how quickly and easily one can write an Abelian 
group as a direct product given the orders of the elements of the group. 
But calculating all those orders is certainly not an appealing prospect! 
The good news is that, in practice, a combination of theory and calcula-
tion of the orders of a few elements will usually suffice.

 EXAMPLE 2 Let G 5 {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,  
64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to  
one of

 Z8 % Z3 L Z24,
 Z4 % Z2 % Z3 L Z12 % Z2,

Z2 % Z2 % Z2 % Z3 L Z6 % Z2 % Z2.

Consider the element 8. Direct calculations show that 86 5 109 and 812 5 1. 
(Be sure to mod as you go. For example, 83 mod 135 5 512 mod  
135 5 107, so compute 84 as 8 ? 107 rather than 8 ? 512.) But now we 
know G. Why? Clearly, |8| 5 12 rules out the third group in the list. At 
the same time, |109| 5 2 5 |134| (remember, 134 5 21 mod 135) im-
plies that G is not Z24 (see Theorem 4.4). Thus, G L Z12 % Z2, and G 5 
k8l 3 k134l. 

Rather than express an Abelian group as a direct product of cyclic 
groups of prime-power orders, it is often more convenient to combine 
the cyclic factors of relatively prime order, as we did in Example 2, to 
obtain a direct product of the form Zn1

 % Zn2
 % ? ? ? % Znk

, where ni di-
vides ni21. For example, Z4 % Z4 % Z2 % Z9 % Z3 % Z5 would be written 
as Z180 % Z12 % Z2 (see Exercise 11). The algorithm above is easily 
adapted to accomplish this by replacing step 4 by 49: Select an element 
ai of maximum order m such that m # |G|/|Gi21| and none of ai, ai

2, . . . , 
ai

m21 is in Gi21, and define Gi 5 Gi21 3 kail.
As a consequence of the Fundamental Theorem of Finite Abelian 

Groups, we have the following corollary, which shows that the converse 
of Lagrange’s Theorem is true for finite Abelian groups.

 Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a 

subgroup of order m.

It is instructive to verify this corollary for a specific case. Let us say 
that G is an Abelian group of order 72 and we wish to produce a subgroup 
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11 | Fundamental Theorem of Finite Abelian Groups 231

of order 12. According to the Fundamental Theorem, G is isomorphic to 
one of the following six groups:

 Z8 % Z9, Z8 % Z3 % Z3,
 Z4 % Z2 % Z9, Z4 % Z2 % Z3 % Z3,

Z2 % Z2 % Z2 % Z9,    Z2 % Z2 % Z2 % Z3 % Z3.

Obviously, Z8 % Z9 L Z72 and Z4 % Z2 % Z3 % Z3 L Z12 % Z6 both 
have a subgroup of order 12. To construct a subgroup of order 12 in Z4 
% Z2 % Z9, we simply piece together all of Z4 and the subgroup of order 
3 in Z9; that is, {(a, 0, b) | a [ Z4, b [ {0, 3, 6}}. A subgroup of order 
12 in Z8 % Z3 % Z3 is given by {(a, b, 0) | a [ {0, 2, 4, 6}, b [ Z3}. An 
analogous procedure applies to the remaining cases and indeed to any 
finite Abelian group.

Proof of the Fundamental Theorem
Because of the length and complexity of the proof of the Fundamental 
Theorem of Finite Abelian Groups, we will break it up into a series of 
lemmas.

 Lemma 1

PROOF It is an easy exercise to prove that H and K are subgroups of G 
(see Exercise 45 in Chapter 3). Because G is Abelian, to prove that G 5 
H 3 K we need only prove that G 5 HK and H > K 5 {e}. Since we 
have gcd(m, pn) 5 1, there are integers s and t such that 1 5 sm 1 tpn. 
For any x in G, we have x 5 x1 5 xsm1tpn

 5 xsmxtpn
 and, by Corollary 4 

of Lagrange’s Theorem (Theorem 7.1), xsm [ H and x tpn
 [ K. Thus, 

G 5 HK. Now suppose that some x [ H > K. Then xpn 5 e 5 xm and, 
by Corollary 2 of Theorem 4.1, |x| divides both pn and m. Since p does 
not divide m, we have |x| 5 1 and, therefore, x 5 e.

To prove the second assertion of the lemma, note that pnm 5  
|HK| 5 |H||K|/|H > K| 5 |H||K| (Theorem 7.2). It follows from 
Theorem 9.5 and Corollary 2 to Theorem 4.1 that p does not divide |K| 
and therefore |H| 5 pn. 

Given an Abelian group G with |G| 5 p1
n1p2

n2 ? ? ? pk
nk, where the 

p’s are distinct primes, we let G(pi) denote the set {x [ G | x pi
ni

 5 e}.  

Let G be a finite Abelian group of order pnm, where p is a prime that 

does not divide m. Then G 5 H 3 K, where H 5 {x [ G | x pn
 5 e} 

and K 5 {x [ G | xm 5 e}. Moreover, |H| 5 pn.
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232 Groups

It then follows immediately from Lemma 1 and induction that G 5 
G(p1) 3 G(p2) 3 ? ? ? 3 G(pk) and |G(pi)| 5 pi

ni. Hence, we turn our 
attention to groups of prime-power order.

 Lemma 2

PROOF We denote |G| by pn and induct on n. If n 5 1, then G 5  
kal 3 kel. Now assume that the statement is true for all Abelian  
groups of order pk, where k , n. Among all the elements of G, choose 
a of maximum order pm. Then x pm 5 e for all x in G. We may assume 
that G 2 kal, for otherwise there is nothing to prove. Now, among all 
the elements of G, choose b of smallest order such that b o kal. We 
claim that kal > kbl 5 {e}. Since |b p| 5 |b|/p, we know that b p [ kal 
by the manner in which b was chosen. Say b p 5 ai. Notice that e 5 
b pm 5 (b p) pm21 5 (ai) pm21, so |ai| # pm21. Thus, ai is not a generator of 
kal and, therefore, by Corollary 3 to Theorem 4.2, gcd(pm, i) 2 1. 
This proves that p divides i, so that we can write i 5 pj. Then bp 5  
ai 5 apj. Consider the element c 5 a2jb. Certainly, c is not in kal, for 
if it were, b would be, too. Also, cp 5 a2jpb p 5 a2ib p 5 b2pb p 5 e. 
Thus, we have found an element c of order p such that c o kal. Since 
b was chosen to have smallest order such that b o kal, we conclude 
that b also has order p. It now follows that kal > kbl 5 {e}, because 
any nonidentity element of the intersection would generate kbl and 
thus contradict b o kal.

Now consider the factor group G 5 G/kbl. To simplify the notation, 
we let x denote the coset xkbl in G. If |a| , |a| 5 pm, then apm21 5 e. This 
means that (akbl) pm21 5 apm21kbl 5 kbl, so that apm21 [ kal > kbl 5 {e}, 
contradicting the fact that |a| 5 pm. Thus, |a| 5 |a| 5 pm, and therefore 
a is an element of maximum order in G. By induction, we know that G 
can be written in the form kal 3 K for some subgroup K of G. Let K be 
the pullback of K under the natural homomorphism from G to G (that 
is, K 5 {x [ G | x [ K}). We claim that kal > K 5 {e}. For if x [ kal 
> K, then x [ kal > K 5 {e} 5 kbl and x [ kal > kbl 5 {e}. It now 
follows from an order argument (see Exercise 35) that G 5 kalK, and 
therefore G 5 kal 3 K. 

Lemma 2 and induction on the order of the group now give the 
 following.

Let G be an Abelian group of prime-power order and let a be an 

element of maximum order in G. Then G can be written in the form 
kal 3 K.
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11 | Fundamental Theorem of Finite Abelian Groups 233

 Lemma 3

Let us pause to determine where we are in our effort to prove the 
Fundamental Theorem of Finite Abelian Groups. The remark following 
Lemma 1 shows that G 5 G( p1) 3 G( p2) 3 ? ? ? 3 G( pn), where each  
G( pi) is a group of prime-power order, and Lemma 3 shows that each of 
these factors is an internal direct product of cyclic groups. Thus, we have 
proved that G is an internal direct product of cyclic groups of prime-
power order. All that remains to be proved is the uniqueness of the factors. 
Certainly the groups G(pi) are uniquely determined by G, since they 
comprise the elements of G whose orders are powers of pi. So we must 
prove that there is only one way (up to isomorphism and  rearrangement 
of factors) to write each G(pi) as an internal direct product of cyclic 
groups.

 Lemma 4

PROOF We proceed by induction on |G|. Clearly, the case where |G| 5 
p is true. Now suppose that the statement is true for all Abelian groups 
of order less than |G|. For any Abelian group L, the set Lp 5 {x p | x [ L} 
is a subgroup of L (see Exercise 17 in the Supplementary Exercises for 
Chapters 1– 4) and, by Theorem 9.5, is a proper subgroup if p  
 divides |L|. It follows that Gp 5 H1

p 3 H2
p 3 ? ? ? 3 Hm9

p, and Gp 5 
K1

p 3 K2
p 3 ? ? ? 3 Kn9

p, where m9 is the largest integer i such that  
|Hi| . p, and n9 is the largest integer j such that |Kj| . p. (This ensures 
that our two direct products for G p do not have trivial factors.) Since |G p| 
, |G|, we have, by induction, m9 5 n9 and |Hi

p| 5 |Ki
p| for i 5 1, . . . , 

m9. Since |Hi| 5 p|Hi
p|, this proves that |Hi| 5 |Ki| for all i 5 1, . . . , m9. 

All that remains to be proved is that the number of Hi of order p equals 
the number of Ki of order p; that is, we must prove that m 2 m9 5 n 2 n9 
(since n9 5 m9). This follows directly from the facts that |H1||H2| ? ? ? 
|Hm9|p

m2m9 5 |G| 5 |K1||K2| ? ? ? |Kn9|p
n2n9, |Hi| 5 |Ki|, and m9 5 n9. 

A finite Abelian group of prime-power order is an internal direct 

product of cyclic groups.

Suppose that G is a finite Abelian group of prime-power order. If  

G 5 H1 3 H2 3 ? ? ? 3 H
m

 and G 5 K1 3 K2 3 ? ? ? 3 K
n
, where the 

H’s and K’s are nontrivial cyclic subgroups with |H1| $ |H2| $ ? ? ? $ 
|H

m
| and |K1| $ |K2| $ ? ? ? $ |K

n
|, then m 5 n and |H

i
| 5 |K

i
|  

for all i.
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234 Groups

Exercises

You know it ain’t easy, you know how hard it can be.
john lennon and paul mccartney, 

“The Ballad of John and Yoko”*

  1. What is the smallest positive integer n such that there are two noni-
somorphic groups of order n? Name the two groups.

  2. What is the smallest positive integer n such that there are three 
nonisomorphic Abelian groups of order n? Name the three groups.

  3. What is the smallest positive integer n such that there are exactly 
four nonisomorphic Abelian groups of order n? Name the four 
groups.

  4. Calculate the number of elements of order 2 in each of Z16, Z8 % Z2,  
Z4 % Z4, and Z4 % Z2 % Z2. Do the same for the elements of order 4.

  5. Prove that any Abelian group of order 45 has an element of order 15. 
Does every Abelian group of order 45 have an element of order 9?

  6. Show that there are two Abelian groups of order 108 that have  
exactly one subgroup of order 3.

  7. Show that there are two Abelian groups of order 108 that have  
exactly four subgroups of order 3.

  8. Show that there are two Abelian groups of order 108 that have  
exactly 13 subgroups of order 3.

  9. Suppose that G is an Abelian group of order 120 and that G has 
 exactly three elements of order 2. Determine the isomorphism class 
of G.

 10. Find all Abelian groups (up to isomorphism) of order 360.
 11. Prove that every finite Abelian group can be expressed as the 

 (external) direct product of cyclic groups of orders n1, n2, . . . , nt, 
where ni11 divides ni for i 5 1, 2, . . . , t 2 1. (This exercise is re-
ferred to in this chapter.)

 12. Suppose that the order of some finite Abelian group is divisible by 
10. Prove that the group has a cyclic subgroup of order 10.

 13. Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

 14. On the basis of Exercises 12 and 13, draw a general conclusion 
about the existence of cyclic subgroups of a finite Abelian group.

*Copyright © 1969 (Renewed) Stony/ATV Tunes LLC. All rights  administered by 
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights 
reserved. Used by permission.
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11 | Fundamental Theorem of Finite Abelian Groups 235

 15. How many Abelian groups (up to isomorphism) are there
 a. of order 6?
 b. of order 15?
 c. of order 42?
 d. of order pq, where p and q are distinct primes?
 e. of order pqr, where p, q, and r are distinct primes?
 f. Generalize parts d and e.
 16. How does the number (up to isomorphism) of Abelian groups of 

order n compare with the number (up to isomorphism) of Abelian 
groups of order m where

 a. n 5 32 and m 5 52?
 b. n 5 24 and m 5 54?
 c. n 5 pr and m 5 qr, where p and q are prime?
 d. n 5 pr and m 5 prq, where p and q are distinct primes?
 e. n 5 pr and m 5 prq2, where p and q are distinct primes?
 17. Up to isomorphism, how many additive Abelian groups of order 16 

have the property that x 1 x 1 x 1 x 5 0 for all x in the group?
 18. Let p1, p2,  p , pn be distinct primes. Up to isomorphism, how many 

Abelian groups are there of order p1
4 p2

4 . . . pn
4?

 19. The symmetry group of a nonsquare rectangle is an Abelian group 
of order 4. Is it isomorphic to Z4 or Z2 % Z2?

 20. Verify the corollary to the Fundamental Theorem of Finite  
Abelian Groups in the case that the group has order 1080 and the 
divisor is 180.

 21. The set {1, 9, 16, 22, 29, 53, 74, 79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.

 22. Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of |G|. Show that G is cyclic.

 23. Characterize those integers n such that the only Abelian groups of 
order n are cyclic.

 24. Characterize those integers n such that any Abelian group of order 
n belongs to one of exactly four isomorphism classes.

 25. Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

 26. Let G 5 {1, 7, 17, 23, 49, 55, 65, 71} under multiplication modulo  
96. Express G as an external and an internal direct product of cyclic 
groups.
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236 Groups

 27. Let G 5 {1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

 28. The set G 5 {1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group 
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.

 29. Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one 
needs to compute the order to determine the isomorphism class of 
G? What if G has order 18? What about 16?

 30. Suppose that G is an Abelian group of order 16, and in computing 
the orders of its elements, you come across an element of order 8 
and two elements of order 2. Explain why no further computations 
are needed to determine the isomorphism class of G.

 31. Let G be an Abelian group of order 16. Suppose that there are ele-
ments a and b in G such that |a| 5 |b| 5 4 and a2 2 b2. Determine 
the isomorphism class of G.

 32. Prove that an Abelian group of order 2n (n $ 1) must have an odd 
number of elements of order 2.

 33. Without using Lagrange’s Theorem, show that an Abelian group of 
odd order cannot have an element of even order.

 34. Let G be the group of all n 3 n diagonal matrices with 61 diago-
nal entries. What is the isomorphism class of G?

 35. Prove the assertion made in the proof of Lemma 2 that G 5 kalK.
 36. Suppose that G is a finite Abelian group. Prove that G has order pn, 

where p is prime, if and only if the order of every element of G is a 
power of p.

 37. Dirichlet’s Theorem says that, for every pair of relatively prime 
integers a and b, there are infinitely many primes of the form at 1 b. 
Use Dirichlet’s Theorem to prove that every finite Abelian group is 
isomorphic to a subgroup of a U-group.

 38. Determine the isomorphism class of Aut(Z2 % Z3 % Z5).
 39. Give an example to show that Lemma 2 is false if G is non-Abelian.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Supplementary Exercises for Chapters 9–11

Every prospector drills many a dry hole, pulls out his rig, and moves on.
john l. hess

True/false questions for Chapters 9–11 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

  1. Suppose that H is a subgroup of G and that each left coset of H in 
G is some right coset of H in G. Prove that H is normal in G.

  2. Use a factor group-induction argument to prove that a finite  
Abelian group of order n has a subgroup of order m for every posi-
tive divisor m of n.

  3. Let diag(G) 5 {(g, g) | g [ G}. Prove that diag(G) v G % G if 
and only if G is Abelian. When G is finite, what is the index of 
diag(G) in G % G?

  4. Let H be any group of rotations in Dn. Prove that H is normal in Dn.
  5. Prove that Inn(G) v Aut(G).
  6. Let H be a subgroup of G. Prove that H is a normal subgroup if and 

only if, for all a and b in G, ab [ H implies ba [ H.
  7. The factor group GL(2, R)/SL(2, R) is isomorphic to some very 

 familiar group. What is the group?
  8. Let k be a divisor of n. The factor group (Z/knl)/(kkl/knl) is isomor-

phic to some very familiar group. What is the group?
  9. Let

   

H � • £1 a b

0 1 c

0 0 1
t †  a, b, c [ Q¶

  under matrix multiplication.
a. Find Z1H2.
b. Prove that Z(H) is isomorphic to Q under addition.
c. Prove that H/Z(H) is isomorphic to Q % Q.
d.  Are your proofs for parts a and b valid when Q is replaced by  

R? Are they valid when Q is replaced by Zp, where p is prime?
 10. Prove that D4/Z(D4) is isomorphic to Z2 % Z2.
 11. Prove that Q/Z under addition is an infinite group in which every 

element has finite order.
 12. Show that the intersection of any collection of normal subgroups of 

a group is a normal subgroup.
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 13. Let n . 1 be a fixed integer and let G be a group. If the set H 5 
{x [ G | |x| 5 n} together with the identity forms a subgroup of 
G, prove that it is a normal subgroup of G. In the case where such 
a subgroup exists, what can be said about n? Give an example of 
a non-Abelian group that has such a subgroup. Give an example 
of a group G and a prime n for which the set H together with the 
identity is not a subgroup.

 14. Show that Q/Z has a unique subgroup of order n for each positive 
integer n.

 15. If H and K are normal Abelian subgroups of a group and H > K 5 
{e}, prove that HK is Abelian.

 16. Let G be a group of odd order. Prove that the mapping x S x2 from 
G to itself is one-to-one.

 17. Suppose that G is a group of permutations on some set. If |G| 5 60 
and orbG(5) 5 {1, 5}, prove that stabG(5) is normal in G.

 18. Suppose that G 5 H 3 K and that N is a normal subgroup of H. 
Prove that N is normal in G.

 19. Show that there is no homomorphism from Z8 % Z2 % Z2 onto  
Z4 % Z4.

 20. Show that there is no homomorphism from A4 onto a group of 
order 2, 4, or 6, but that there is a homomorphism from A4 onto a 
group of order 3.

 21. Let H be a normal subgroup of S4 of order 4. Prove that S4/H is iso-
morphic to S3.

 22. Suppose that f is a homomorphism of U(36), Ker f 5 {1, 13, 25}, 
and f(5) 5 17. Determine all elements that map to 17.

 23. Let n 5 2m, where m is odd. How many elements of order 2  
does Dn/Z(Dn) have? How many elements are in the subgroup 
kR360/nl/Z(Dn)? How do these numbers compare with the number 
of elements of order 2 in Dm?

 24. Suppose that H is a normal subgroup of a group G of odd order and 
that |H| 5 5. Show that H # Z(G).

 25. Let G be an Abelian group and let n be a positive integer. Let Gn 5 
{g | gn 5 e} and Gn 5 {gn | g [ G}. Prove that G/Gn is isomorphic 
to Gn.

 26. Let R1 denote the multiplicative group of positive reals and let T 5  
{a 1 bi [ C | a2 1 b2 5 1} be the multiplicative group of complex 
numbers of norm 1. Show that C* is the internal direct product of R1 
and T.
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 27. Let G be a finite group and let p be a prime. If p2 . |G|, show that 
any subgroup of order p is normal in G.

 28. Let G 5 Z % Z and H 5 {(x, y) | x and y are even integers}. Show 
that H is a subgroup of G. Determine the order of G/H. To which 
familiar group is G/H isomorphic?

 29. Let n be a positive integer. Prove that every element of order n in 
Q/Z is contained in k1/n 1 Zl.

 30. (1997 Putnam Competition) Let G be a group and let f: G S G  be 
a function such that

f(g1)f(g2)f(g3) 5 f(h1)f(h2)f(h3)

  whenever g1g2g3 5 e 5 h1h2h3. Prove that there exists an element a 
in G such that c(x) 5 af(x) is a homomorphism.

 31. Prove that every homomorphism from Z % Z into Z has the form  
(x, y) S ax 1 by, where a and b are integers.

 32. Prove that every homomorphism from Z % Z into Z % Z has the 
form (x, y) S (ax 1 by, cx 1 dy), where a, b, c, and d are integers.

 33. Prove that Q/Z is not isomorphic to a proper subgroup of itself.
 34. Prove that for each positive integer n, the group Q/Z has exactly 

f(n) elements of order n (f is the Euler phi function).
 35. Show that any group with more than two elements has an automor-

phism other than the identity mapping.
 36. A proper subgroup H of a group G is called maximal if there is no 

subgroup K such that H , K , G. Prove that Q under addition has 
no maximal subgroups.

 37. Let G be the group of quaternions as given in Exercise 4 of the 
Supplementary Exercises for Chapters 1–4 and let H � ka2l. 
Determine whether G/H is isomorphic to Z4 or Z2 % Z2. Is G/H iso-
morphic to a subgroup of G?

 38. Write the dihedral group D8 as {R0,  R45, R90, R135, R180, R225, R270,
R315, F1, F2, F3, F4, F5, F6, F7, F8} and let N 5 {R0, R90, R180, R270}. 
Prove that N is normal in D8. Given that F1N 5 {F1, F4, F3, F2},  
determine whether D8/N is cyclic.
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 39. Let G be the group e c1 a

0 b
d `  where a, b [ R, b Z 0 f  and

  H � e c1 x

0 1
d `

 
where x [ Rf . Show that H is a subgroup of G. Is 

H a normal subgroup of G? Justify your answer.
 40. Find a subgroup H of Zp2 % Zp2 such that (Zp2 % Zp2)/H is isomorphic 

to Zp % Zp.
 41. Recall that H is a characteristic subgroup of K if f1H2 � H for 

every automorphism f of K. Prove that if H is a characteristic sub-
group of K, and K is a normal subgroup of G, then H is a normal 
subgroup of G.
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P A R T  3

Rings

For online student resources, visit this textbook’s website at 
www.CengageBrain.com
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Introduction  
to Rings

Example is the school of mankind, and they will learn at no other.
edmund burke, On a Regicide Peace

12

†The term ring was first applied in 1897 by the German mathematician David Hilbert 
(1862–1943).

Motivation and Definition
Many sets are naturally endowed with two binary operations: addition 
and multiplication. Examples that quickly come to mind are the inte-
gers, the integers modulo n, the real numbers, matrices, and polynomi-
als. When considering these sets as groups, we simply used addition and 
ignored multiplication. In many instances, however, one wishes to take 
into account both addition and multiplication. One abstract concept that 
does this is the concept of a ring.† This notion was originated in the  
mid-19th century by Richard Dedekind, although its first formal abstract 
definition was not given until Abraham Fraenkel presented it in 1914.

Definition Ring
A ring R is a set with two binary operations, addition  (denoted by  
a 1 b) and multiplication (denoted by ab), such that for all a, b, c in R:

 1. a 1 b 5 b 1 a.
 2. (a 1 b) 1 c 5 a 1 (b 1 c).
 3. There is an additive identity 0. That is, there is an element 0 in R 

such that a 1 0 5 a for all a in R.
 4. There is an element 2a in R such that a 1 (2a) 5 0.
 5. a(bc) 5 (ab)c.
 6. a(b 1 c) 5 ab 1 ac and (b 1 c) a 5 ba 1 ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition. 
Note that multiplication need not be commutative. When it is, we say 
that the ring is commutative. Also, a ring need not have an identity 
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246 Rings

under multiplication. A unity (or identity) in a ring is a nonzero element 
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it 
does, we say that it is a unit of the ring. Thus, a is a unit if a21 exists.

The following terminology and notation are convenient. If a and b 
belong to a commutative ring R and a is nonzero, we say that a divides 
b (or that a is a factor of b) and write a | b, if there exists an element c 
in R such that b 5 ac. If a does not divide b, we write a B b.

Recall that if a  is an element from a group under the operation of 
 addition and n is a positive integer, na means a 1 a 1 ? ? ? 1 a, where 
there are n summands. When dealing with rings, this notation can cause 
confusion, since we also use juxtaposition for the ring multiplication. 
When there is the potential for confusion, we will use n ? a to mean 
a 1 a 1 ? ? ? 1 a (n summands).

For an abstraction to be worthy of study, it must have many diverse 
concrete realizations. The following list of examples shows that the 
ring concept is pervasive.

Examples of Rings
 EXAMPLE 1 The set Z of integers under ordinary addition and  

multiplication is a commutative ring with unity 1. The units of Z are 
1 and 21. 

 EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} under addition and  
multiplication modulo n is a commutative ring with unity 1. The set of 
units is U(n). 

 EXAMPLE 3 The set Z[x] of all polynomials in the variable x with 
integer coefficients under ordinary addition and multiplication is a  
commutative ring with unity f(x) 5 1. 

 EXAMPLE 4 The set M2(Z) of 2 3 2 matrices with integer entries 

is a noncommutative ring with unity c1 0

0 1
d . 

 EXAMPLE 5 The set 2Z of even integers under ordinary addition  
and multiplication is a commutative ring without unity. 

 EXAMPLE 6 The set of all continuous real-valued functions of a  
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and 
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12 | Introduction to Rings 247

multiplication [that is, the operations ( f 1 g)(a) 5 f(a) 1 g(a) and  
( fg)(a) 5 f(a)g(a)]. 

 EXAMPLE 7 Let R1, R2, . . . , Rn be rings. We can use these to con-
struct a new ring as follows. Let

R1 % R2 % ? ? ? % Rn 5 {(a1, a2, . . . , an) | ai [ Ri}

and perform componentwise addition and multiplication; that is, define

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and
(a1, a2, . . . , an)(b1, b2, . . . , bn) 5 (a1b1, a2b2, . . . , anbn).

This ring is called the direct sum of R1, R2, . . . , Rn. 

Properties of Rings
Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b 2 c to denote b 1 (2c).

 Theorem 12.1 Rules of Multiplication

Let a, b, and c belong to a ring R. Then

1. a0 5 0a 5 0.

2. a(2b) 5 (2a)b 5 2(ab).
3. (2a)(2b) 5 ab.†

4. a(b 2 c) 5 ab 2 ac  and  (b 2 c)a 5 ba 2 ca.

Furthermore, if R has a unity element 1, then

5. (21)a 5 2a.

6. (21)(21) 5 1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises 
(see Exercise 11). To prove statements such as those in Theorem 12.1, we 
need only “play off ” the distributive property against the fact that R is a 
group under addition with additive identity 0. Consider rule 1. Clearly,

0 1 a0 5 a0 5 a(0 1 0) 5 a0 1 a0.

So, by cancellation, 0 5 a0. Similarly, 0a 5 0.

†“Minus times minus equals plus.
The reason for this we need not discuss.”
W. H. Auden, A Certain World: A Commonplace Book
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248 Rings

To prove rule 2, we observe that a(2b) 1 ab 5 a(2b 1 b) 5  
a0 5 0. So, adding 2(ab) to both sides yields a(2b) 5 2(ab). The re-
mainder of rule 2 is done analogously. 

Recall that in the case of groups, the identity and inverses are unique. 
The same is true for rings, provided that these elements exist. The proofs 
are identical to the ones given for groups and therefore are omitted.

 Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multipli- 

cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were 
a group under multiplication. It is not. The two most common errors are 
the assumptions that ring elements have multiplicative inverses—they 
need not—and that a ring has a multiplicative identity—it need not. For 
example, if a, b, and c belong to a ring, a 2 0 and ab 5 ac, we cannot 
conclude that b 5 c. Similarly, if a2 5 a, we cannot conclude that a 5 0 
or 1 (as is the case with real numbers). In the first place, the ring need 
not have multiplicative cancellation, and in the second place, the ring 
need not have a multiplicative identity. There is an important class of 
rings that contains Z and Z[x] wherein multiplicative identities exist and 
for which multiplicative cancellation holds. This class is taken up in the 
next chapter.

Subrings
In our study of groups, subgroups played a crucial role. Subrings, the 
analogous structures in ring theory, play a much less prominent role than 
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring
A subset S of a ring R is a subring of R if S is itself a ring with the 
 operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

 Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under 

subtraction and multiplication—that is, if a 2 b and ab are in S 

whenever a and b are in S.
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12 | Introduction to Rings 249

PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that S 
is an Abelian group under addition. Also, since multiplication in R is 
associative as well as distributive over addition, the same is true for 
multiplication in S. Thus, the only condition remaining to be checked  
is that multiplication is a binary operation on S. But this is exactly what 
closure means. 

We leave it to the student to confirm that each of the following ex-
amples is a subring.

 EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the 
trivial subring of R. 

 EXAMPLE 9 {0, 2, 4} is a subring of the ring Z6, the inte- 
gers modulo 6. Note that although 1 is the unity in Z6, 4 is the unity in 
{0, 2, 4}. 

 EXAMPLE 10 For each positive integer n, the set

nZ 5 {0, 6n, 62n, 63n, . . .}

is a subring of the integers Z. 

 EXAMPLE 11 The set of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a subring of the complex numbers C. 

 EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set S of R of functions whose graphs pass through the origin forms a 
subring of R. 

 EXAMPLE 13 The sete ca 0

0 b
d ` a, b [ Z f

of diagonal matrices is a subring of the ring of all 2 3 2 matrices  
over Z. 

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring 
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the 
rings we have already discussed.
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250 Rings

C

Q
Q(√2) = {a 1 b√2 | a, b [ Q}

Z

R

5Z 2Z 3Z

6Z4Z

8Z 12Z 18Z

10Z

7Z

9Z

Z[ i] = {a 1 bi | a, b [ Z}

Figure 12.1 Partial subring lattice diagram of C.

In the next several chapters, we will see that many of the fundamen-
tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

Exercises

There is no substitute for hard work.
thomas alva edison, Life

  1. Give an example of a finite noncommutative ring. Give an example 
of an infinite noncommutative ring that does not have a unity.

  2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo 
10 has a unity. Find it.

  3. Give an example of a subset of a ring that is a subgroup under 
 addition but not a subring.

  4. Show, by example, that for fixed nonzero elements a and b in a 
ring, the equation ax 5 b can have more than one solution. How 
does this compare with groups?

  5. Prove Theorem 12.2.
  6. Find an integer n that shows that the rings Zn need not have the fol-

lowing properties that the ring of integers has.
  a. a2 5 a implies a 5 0 or a 5 1.
  b. ab 5 0 implies a 5 0 or b 5 0.
  c. ab 5 ac and a 2 0 imply b 5 c.
  Is the n you found prime?
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12 | Introduction to Rings 251

  7. Show that the three properties listed in Exercise 6 are valid for Zp, 
where p is prime.

  8. Show that a ring is commutative if it has the property that ab 5 ca 
implies b 5 c when a 2 0.

  9. Prove that the intersection of any collection of subrings of a ring R 
is a subring of R.

 10. Verify that Examples 8 through 13 in this chapter are as stated.
 11. Prove rules 3 through 6 of Theorem 12.1.
 12. Let a, b, and c be elements of a commutative ring, and suppose that 

a is a unit. Prove that b divides c if and only if ab divides c.
 13. Describe all the subrings of the ring of integers.
 14. Let a and b belong to a ring R and let m be an integer. Prove that  

m ? (ab) 5 (m ? a)b 5 a(m ? b).
 15. Show that if m and n are integers and a and b are elements from a 

ring, then (m ? a)(n ? b) 5 (mn) ? (ab). (This exercise is referred to 
in Chapters 13 and 15.)

 16. Show that if n is an integer and a is an element from a ring, then  
n ? (2a) 5 2(n ? a).

 17. Show that a ring that is cyclic under addition is commutative.
 18. Let a belong to a ring R. Let S 5 {x [ R | ax 5 0}. Show that S is 

a subring of R.
 19. Let R be a ring. The center of R is the set {x [ R | ax 5 xa for all 

a in R}. Prove that the center of a ring is a subring.
 20. Describe the elements of M2(Z) (see Example 4) that have multipli-

cative inverses.
 21. Suppose that R1, R2, . . . , Rn are rings that contain nonzero ele-

ments. Show that R1 % R2 % ? ? ? % Rn has a unity if and only if 
each Ri has a unity.

 22. Let R be a commutative ring with unity and let U(R) denote the set 
of units of R. Prove that U(R) is a group under the multiplication of 
R. (This group is called the group of units of R.)

 23. Determine U(Z[i]) (see Example 11).
 24. If R1, R2, . . . , Rn are commutative rings with unity, show that 

U(R1 % R2 % ? ? ? % Rn) 5 U(R1) % U(R2) % ? ? ? % U(Rn).
 25. Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
 26. Determine U(R[x]).
 27. Show that a unit of a ring divides every element of the ring.
 28. In Z6, show that 4 | 2; in Z8, show that 3 | 7; in Z15, show that 9 | 12.
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252 Rings

 29. Suppose that a and b belong to a commutative ring R with unity. If 
a is a unit of R and b2 5 0, show that a 1 b is a unit of R.

 30. Suppose that there is an integer n . 1 such that xn 5 x for all elements 
x of some ring. If m is a positive integer and am 5 0 for some a, show 
that a 5 0.

 31. Give an example of ring elements a and b with the properties that 
ab 5 0 but ba 2 0.

 32. Let n be an integer greater than 1. In a ring in which xn 5 x for all x, 
show that ab 5 0 implies ba 5 0.

 33. Suppose that R is a ring such that x3 5 x for all x in R. Prove that 
6x 5 0 for all x in R.

 34. Suppose that a belongs to a ring and a4 5 a2. Prove that a2n 5 a2 
for all n $ 1.

 35. Find an integer n . 1 such that an 5 a for all a in Z6. Do the same 
for Z10. Show that no such n exists for Zm when m is divisible by the 
square of some prime.

 36. Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ > nZ 5 kZ.

 37. Explain why every subgroup of Zn under addition is also a subring 
of Zn.

 38. Is Z6 a subring of Z12?
 39. Suppose that R is a ring with unity 1 and a is an element of R such 

that a2 5 1. Let S 5 {ara | r [ R}. Prove that S is a subring of R. 
Does S contain 1?

 40. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

   e c a a � b

a � b b
d `  a, b [ Z f . Prove or disprove that R is a subring

   of M2(Z).
 41. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

   e c a a � b

a � b b
d `  a, b [ Z f . Prove or disprove that R is a subring

   of M2(Z).

 42. Let R 5 e ca a

b b
d `  a, b [ Z f . Prove or disprove that R is a subring 

  of M2(Z).
 43. Let R 5 Z % Z % Z and S 5 {(a, b, c) [ R | a 1 b 5 c}. Prove or 

disprove that S is a subring of R.
 44. Suppose that there is a positive even integer n such that an 5 a for 

all elements a of some ring. Show that 2a 5 a for all a in the ring.
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12 | Introduction to Rings 253

 45. Let R be a ring with unity 1. Show that S 5 {n ? 1 | n [ Z} is a 
subring of R.

 46. Show that 2Z < 3Z is not a subring of Z.
 47. Determine the smallest subring of Q that contains 1/2. (That is, 

find the subring S with the property that S contains 1/2 and, if T is 
any subring containing 1/2, then T contains S.)

 48. Determine the smallest subring of Q that contains 2/3.
 49. Let R be a ring. Prove that a2 2 b2 5 (a 1 b)(a 2 b) for all a, b in 

R if and only if R is commutative.
 50. Suppose that R is a ring and that a2 5 a for all a in R. Show that R 

is commutative. [A ring in which a2 5 a for all a is called a  
Boolean ring, in honor of the English mathematician George Boole 
(1815–1864).]

 51. Give an example of a Boolean ring with four elements. Give an ex-
ample of an infinite Boolean ring.

 52. If a, b, and c are elements of a ring, does the equation ax 1 b 5 c 
always have a solution x? If it does, must the solution be unique? 
Answer the same questions given that a is a unit.

Computer Exercises

Software for the computer exercises in this chapter is available at the  
website:

http://www.d.umn.edu/~jgallian

Suggested Reading

D. B. Erickson, “Orders for Finite Noncommutative Rings,” American 
 Mathematical Monthly 73 (1966): 376–377.

In this elementary paper, it is shown that there exists a noncommutative ring 
of order m . 1 if and only if m is divisible by the square of a prime.
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I. N. Herstein

A whole generation of textbooks and an entire 
generation of mathematicians, myself 
 included, have been profoundly influenced 
by that text [Herstein’s Topics in  Algebra]. 
 georgia benkart

I. N. Herstein was born on March 28, 1923, 
in Poland. His family moved to Canada  
when he was seven. He grew up in a poor and 
tough environment, on which he commented 
that in his neighborhood you became either a 
gangster or a college professor. During his 
school years he played football, hockey, golf, 
tennis, and pool. During this time he worked 
as a steeplejack and as a barber at a fair. 
Herstein received a B.S. degree from the 
University of Manitoba, an M.A. from the 
University of Toronto, and, in 1948, a Ph.D. 
degree from Indiana University under the su-
pervision of Max Zorn. Before permanently 
settling at the University of Chicago in 1962, 
he held positions at the University of Kansas, 
the Ohio State University, the University of 
Pennsylvania, and Cornell University.

Herstein wrote more than 100 research 
papers and a dozen books. Although his 
principal interest was noncommutative ring 

theory, he also wrote papers on finite  
groups, linear algebra, and mathematical 
economics. His textbook Topics in Algebra, 
first published in 1964, dominated the field 
for 20 years and has become a classic. 
Herstein had great influence through his 
teaching and his collaboration with col-
leagues. He had 30 Ph.D. students, and 
traveled and lectured widely. His nonmath-
ematical interests included languages and 
art. He spoke Italian, Hebrew, Polish, and 
Portuguese. Herstein died on February 9, 
1988, after a long battle with cancer.

To find more information about Herstein, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Integral Domains13

Definition and Examples
To a certain degree, the notion of a ring was invented in an attempt to 
put the algebraic properties of the integers into an abstract setting. A 
ring is not the appropriate abstraction of the integers, however, for too 
much is lost in the process. Besides the two obvious properties of com-
mutativity and existence of a unity, there is one other essential feature 
of the integers that rings in general do not enjoy—the cancellation 
property. In this chapter, we introduce integral domains—a particular 
class of rings that have all three of these properties. Integral domains 
play a prominent role in number theory and algebraic ge ometry.

Definition Zero-Divisors
A zero-divisor is a nonzero element a of a commutative ring R such 
that there is a nonzero element b [ R with ab 5 0.

Definition Integral Domain
An integral domain is a commutative ring with unity and no   
zero- divisors.

Thus, in an integral domain, a product is 0 only when one of the 
 factors is 0; that is, ab 5 0 only when a 5 0 or b 5 0. The following 
 examples show that many familiar rings are integral domains and some 
familiar rings are not. For each example, the student should verify the 
assertion made.

 EXAMPLE 1 The ring of integers is an integral domain. 

Don’t just read it! Ask your own questions, look for your own examples, 
discover your own proofs. Is the hypothesis necessary? Is the converse 
true? What happens in the classical special case? Where does the proof  
use the hypothesis?

paul halmos
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256 Rings

 EXAMPLE 2 The ring of Gaussian integers Z[i] 5 {a 1 bi | a, b [ Z} 
is an integral domain. 

 EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients 
is an integral domain. 

 EXAMPLE 4 The ring Z[22] 5 {a 1 b22 | a, b [ Z} is an integral 
domain. 

 EXAMPLE 5 The ring Zp of integers modulo a prime p is an integral 
domain. 

 EXAMPLE 6 The ring Zn of integers modulo n is not an integral do-
main when n is not prime. 

 EXAMPLE 7 The ring M2(Z) of 2 3 2 matrices over the integers is 
not an integral domain. 

 EXAMPLE 8 Z % Z is not an integral domain. 

What makes integral domains particularly appealing is that they have 
an important multiplicative group theoretic property, in spite of the fact 
that the nonzero elements need not form a group under multiplication. 
This property is cancellation.

 Theorem 13.1 Cancellation

Let a, b, and c belong to an integral domain. If a 2 0 and ab 5 ac, 

then b 5 c.

PROOF From ab 5 ac, we have a(b 2 c) 5 0. Since a 2 0, we must 
have b 2 c 5 0. 

Many authors prefer to define integral domains by the cancellation 
property—that is, as commutative rings with unity in which the cancel-
lation property holds. This definition is equivalent to ours.

Fields
In many applications, a particular kind of integral domain called a field 
is necessary.

Definition Field
A field is a commutative ring with unity in which every nonzero 
 element is a unit.
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13 | Integral Domains 257

To verify that every field is an integral domain, observe that if a and 
b belong to a field with a 2 0 and ab 5 0, we can multiply both sides 
of the last expression by a21 to obtain b 5 0.

It is often helpful to think of ab21 as a divided by b. With this in 
mind, a field can be thought of as simply an algebraic system that  
is closed under addition, subtraction, multiplication, and division 
 (except by 0). We have had numerous examples of fields: the complex 
numbers, the real numbers, the rational numbers. The abstract theory of 
fields was initiated by Heinrich Weber in 1893. Groups, rings, and 
fields are the three main branches of abstract algebra. Theorem 13.2 
says that, in the finite case, fields and integral domains are the same.

 Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any 
nonzero element of D. We must show that a is a unit. If a 5 1, a is its 
own inverse, so we may assume that a 2 1. Now consider the following 
sequence of elements of D: a, a2, a3, . . . . Since D is finite, there must 
be two positive integers i and j such that i . j and ai 5 a j. Then, by can-
cellation, ai2j 5 1. Since a 2 1, we know that i 2 j . 1, and we have 
shown that ai2j21 is the inverse of a. 

 Corollary Zp Is a Field

For every prime p, Z
p
, the ring of integers modulo p is a field.

PROOF According to Theorem 13.2, we need only prove that Zp has 
no zero-divisors. So, suppose that a, b [ Zp and ab 5 0. Then ab 5 pk 
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p 
 divides a or p divides b. Thus, in Zp, a 5 0 or b 5 0. 

Putting the preceding corollary together with Example 6, we see that 
Zn is a field if and only if n is prime. In Chapter 22, we will describe 
how all finite fields can be constructed. For now, we give one example 
of a finite field that is not of the form Zp.

 EXAMPLE 9 Field with Nine Elements
Let Z3[i] 5 {a 1 bi | a, b [ Z3}

 5 {0, 1, 2, i, 1 1 i, 2 1 i, 2i, 1 1 2i, 2 1 2i},
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258 Rings

where i2 5 21. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that 
the coefficients are reduced modulo 3. In particular, 21 5 2. Table 13.1 
is the multiplication table for the nonzero elements of Z3[i]. 

Table 13.1  Multiplication Table for Z3[i]*

 1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i

1 1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i
2 2 1 2i 2 1 2i 1 1 2i i 2 1 i 1 1 i
i i 2i 2 2 1 i 2 1 2i 1 1 1 i 1 1 2i
1 1 i 1 1 i 2 1 2i 2 1 i 2i 1 1 1 2i 2 i
2 1 i 2 1 i 1 1 2i 2 1 2i 1 i 1 1 i 2i 2
2i 2i i 1 1 1 2i 1 1 i 2 2 1 2i 2 1 i
1 1 2i 1 1 2i 2 1 i 1 1 i 2 2i 2 1 2i i 1
2 1 2i 2 1 2i 1 1 i 1 1 2i i 2 2 1 i 1 2i

 EXAMPLE 10 Let Q[22] 5 {a 1 b22 | a, b [ Q}. It is easy to see 
that Q[22] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a 1 b22 is simply 1/(a 1  
b22). To verify that Q[22] is a field, we must show that 1/(a 1 b22) 
can be written in the form c 1 d22. In high school algebra, this process 
is called “rationalizing the denominator.” Specifically,

1

a � b22
�

1

a � b22
 
a � b22

a � b22
�

a

a2 � 2b2 �
b

a2 � 2b2 22.

(Note that a 1 b22 2 0 guarantees that a 2 b22 2 0.) 

Characteristic of a Ring
Note that for any element x in Z3[i], we have 3x 5 x 1 x 1 x 5 0, since 
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z12, 
we have 4x 5 x 1 x 1 x 1 x 5 0 for all x. This observation motivates 
the following definition.

Definition Characteristic of a Ring
The characteristic of a ring R is the least positive integer n such that 
nx 5 0 for all x in R. If no such integer exists, we say that R has char-
acteristic 0. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Zn has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the 
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13 | Integral Domains 259

Let R be a ring with unity 1. If 1 has infinite order under addition, 

then the characteristic of R is 0. If 1 has order n under addition, 

then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such 
that n ? 1 5 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n ? 1 5 0, and n is the least positive integer with this 
property. So, for any x in R, we have

 n ? x 5 x 1 x 1 ? ? ? 1 x (n summands)
 5 1x 1 1x 1 ? ? ? 1 1x (n summands)
 5 (1 1 1 1 ? ? ? 1 1)x (n summands)
 5 (n ? 1)x 5 0x 5 0.

Thus, R has characteristic n. 

In the case of an integral domain, the possibilities for the character-
istic are severely limited.

 Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order 
of 1 is finite, it must be prime. Suppose that 1 has order n and that n 5 st, 
where 1 # s, t # n. Then, by Exercise 15 in Chapter 12,

0 5 n ? 1 5 (st) ? 1 5 (s ? 1)(t ? 1).

So, s ? 1 5 0 or t ? 1 5 0. Since n is the least positive integer with the 
property that n ? 1 5 0, we must have s 5 n or t 5 n. Thus, n is  
prime. 

We conclude this chapter with a brief discussion of polynomials 
with coefficients from a ring—a topic we will consider in detail in 

ring Z2[x] of all polynomials with coefficients in Z2 has characteristic 2. 
(Addition and multiplication are done as for polynomials with ordinary 
integer coefficients except that the coefficients are reduced modulo 2.) 
When a ring has a unity, the task of determining the characteristic is 
simplified by Theorem 13.3.

 Theorem 13.3 Characteristic of a Ring with Unity
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260 Rings

later chapters. The existence of zero-divisors in a ring causes unusual 
results when one is finding zeros of polynomials with coefficients in 
the ring. Consider, for example, the equation x2 2 4x 1 3 5 0. In the 
integers, we could find all solutions by factoring

x2 2 4x 1 3 5 (x 2 3)(x 2 1) 5 0

and setting each factor equal to 0. But notice that when we say we can 
find all solutions in this manner, we are using the fact that the only way 
for a product to equal 0 is for one of the factors to be 0—that is, we are 
using the fact that Z is an integral domain. In Z12, there are many pairs of 
nonzero elements whose products are 0: 2 ? 6 5 0, 3 ?  4 5 0, 4 ? 6 5 0,  
6 ? 8 5 0, and so on. So, how do we find all solutions of x2 2 4x 1 3 5 0 
in Z12? The easiest way is simply to try every element! Upon doing so, 
we find four solutions: x 5 1, x 5 3, x 5 7, and x 5 9. Observe that we 
can find all solutions of x2 2 4x 1 3 5 0 over Z11 or Z13, say, by setting 
the two factors x 2 3 and x 2 1 equal to 0. Of course, the reason this 
works for these rings is that they are integral domains. Perhaps this will 
convince you that integral domains are particularly advantageous rings. 
Table 13.2 gives a summary of some of the rings we have introduced and 
their properties.

Table 13.2 Summary of Rings and Their Properties

     Integral
Ring  Form of Element Unity Commutative Domain Field Characteristic

Z k 1 Yes Yes No 0

Zn, n composite k 1 Yes No No n

Zp, p prime k 1 Yes Yes Yes p

Z[x] anx
n 1 ? ? ? 1 f(x) 5 1 Yes Yes No 0

   a1x 1 a0

nZ, n . 1 nk None Yes No No 0

M2(Z) c a b

c d
d  c 1 0

0 1
d  No No No 0

M2(2Z) c 2a 2b

2c 2d
d  None No No No 0

Z[i] a 1 bi 1 Yes Yes No 0

Z3[i] a 1 bi; a, b [ Z3 1 Yes Yes Yes 3
Z[22] a 1 b22; a, b [ Z 1 Yes Yes No 0
Q[22] a 1 b22; a, b [ Q 1 Yes Yes Yes 0

Z % Z (a, b) (1, 1) Yes No No 0
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13 | Integral Domains 261

Exercises

It looked absolutely impossible. But it so happens that you go on worrying 
away at a problem in science and it seems to get tired, and lies down and 
lets you catch it.

william lawrence bragg†

  1. Verify that Examples 1 through 8 are as claimed.
  2. Which of Examples 1 through 5 are fields?
  3. Show that a commutative ring with the cancellation property 

 (under multiplication) has no zero-divisors.
  4. List all zero-divisors in Z20. Can you see a relationship between the 

zero-divisors of Z20 and the units of Z20?
  5. Show that every nonzero element of Zn is a unit or a zero-divisor.
  6. Find a nonzero element in a ring that is neither a zero-divisor nor a 

unit.
  7. Let R be a finite commutative ring with unity. Prove that every 

nonzero element of R is either a zero-divisor or a unit. What hap-
pens if we drop the “finite” condition on R?

  8. Let a 2 0 belong to a commutative ring. Prove that a is a zero- 
divisor if and only if a2b 5 0 for some b Z 0.

  9. Find elements a, b, and c in the ring Z % Z % Z such that ab, ac, 
and bc are zero-divisors but abc is not a zero-divisor.

 10. Describe all zero-divisors and units of Z % Q % Z.
 11. Let d be an integer. Prove that Z[2d] 5 {a 1 b2d | a, b [ Z} is 

an integral domain. (This exercise is referred to in Chapter 18.)
 12. In Z7, give a reasonable interpretation for the expressions 1/2, 

22/3, 2�3, and 21/6.
 13. Give an example of a commutative ring without zero-divisors that 

is not an integral domain.
 14. Find two elements a and b in a ring such that both a and b are zero- 

divisors, a 1 b 2 0, and a 1 b is not a zero-divisor.
 15. Let a belong to a ring R with unity and suppose that an 5 0 for 

some positive integer n. (Such an element is called nilpotent.) 
Prove that 1 2 a has a multiplicative inverse in R. [Hint: Consider 
(1 2 a)(1 1 a 1 a2 1 ? ? ? 1 an21).]

†Bragg, at age 24, won the Nobel Prize for the invention of x-ray crystallography. He 
remains the youngest person ever to receive the Nobel Prize.
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262 Rings

 16. Show that the nilpotent elements of a commutative ring form a 
subring.

 17. Show that 0 is the only nilpotent element in an integral domain.
 18. A ring element a is called an idempotent if a2 5 a. Prove that the 

only idempotents in an integral domain are 0 and 1.
 19. Let a and b be idempotents in a commutative ring. Show that each 

of the following is also an idempotent: ab, a � ab, a � b � ab, 
a � b � 2ab.

 20. Show that Zn has a nonzero nilpotent element if and only if n is di-
visible by the square of some prime.

 21. Let R be the ring of real-valued continuous functions on [21, 1]. 
Show that R has zero-divisors.

 22. Prove that if a is a ring idempotent, then an � a for all positive inte-
gers n.

 23. Determine all ring elements that are both nilpotent elements and 
idempotents.

 24. Find a zero-divisor in Z5[i] 5 {a 1 bi | a, b [ Z5}.
 25. Find an idempotent in Z5[i] 5 {a 1 bi | a, b [ Z5}.
 26. Find all units, zero-divisors, idempotents, and nilpotent elements 

in Z3 % Z6.
 27. Determine all elements of a ring that are both units and idempotents.
 28. Let R be the set of all real-valued functions defined for all real 

numbers under function addition and multiplication.
  a. Determine all zero-divisors of R.
  b. Determine all nilpotent elements of R.
  c. Show that every nonzero element is a zero-divisor or a unit.
 29. (Subfield Test) Let F be a field and let K be a subset of F with at 

least two elements. Prove that K is a subfield of F if, for any  
a, b (b 2 0) in K, a 2 b and ab21 belong to K.

 30. Let d be a positive integer. Prove that Q[2d] 5 {a 1 b2d |  
a, b [ Q} is a field.

 31. Let R be a ring with unity 1. If the product of any pair of nonzero 
elements of R is nonzero, prove that ab 5 1 implies ba 5 1.

 32. Let R 5 {0, 2, 4, 6, 8} under addition and multiplication modulo 
10. Prove that R is a field.

 33. Formulate the appropriate definition of a subdomain (that is, a 
“sub” integral domain). Let D be an integral domain with unity 1. 
Show that P 5 {n ? 1 | n [ Z} (that is, all integral multiples of 1) 
is a subdomain of D. Show that P is contained in every subdomain 
of D. What can we say about the order of P?
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13 | Integral Domains 263

 34. Prove that there is no integral domain with exactly six elements. Can 
your argument be adapted to show that there is no integral domain 
with exactly four elements? What about 15 elements? Use these ob-
servations to guess a general result about the number of elements in 
a finite integral domain.

 35. Let F be a field of order 2n. Prove that char F 5 2.
 36. Determine all elements of an integral domain that are their own 

inverses under multiplication.
 37. Characterize those integral domains for which 1 is the only ele-

ment that is its own multiplicative inverse.
 38. Determine all integers n 7 1 for which 1n � 12! is a zero-divisor 

in Zn.
 39. Suppose that a and b belong to an integral domain.
  a. If a5 5 b5 and a3 5 b3, prove that a 5 b.
  b.  If am 5 bm and an 5 bn, where m and n are positive integers that 

are relatively prime, prove that a 5 b.
 40. Find an example of an integral domain and distinct positive inte-

gers m and n such that am 5 bm and an 5 bn, but a 2 b.
 41. If a is an idempotent in a commutative ring, show that 1 2 a is also 

an idempotent.
 42. Construct a multiplication table for Z2[i], the ring of Gaussian inte-

gers modulo 2. Is this ring a field? Is it an integral domain?
 43. The nonzero elements of Z3[i] form an Abelian group of order 8 un-

der multiplication. Is it isomorphic to Z8, Z4 % Z2, or Z2 % Z2 % Z2?
 44. Show that Z 7[23] 5 {a 1 b23 | a, b [ Z 7} is a field. For any 

positive integer k and any prime p, determine a necessary and suf-
ficient condition for Zp[2k] 5 {a 1 b2k | a, b [ Zp} to be a field.

 45. Show that a finite commutative ring with no zero-divisors and at 
least two elements has a unity. 

 46. Suppose that a and b belong to a commutative ring and ab is a 
zero- divisor. Show that either a or b is a zero-divisor.

 47. Suppose that R is a commutative ring without zero-divisors. Show 
that all the nonzero elements of R have the same additive order.

 48. Suppose that R is a commutative ring without zero-divisors. Show 
that the characteristic of R is 0 or prime.

 49. Let x and y belong to a commutative ring R with prime character-
istic p.

  a. Show that (x 1 y) p 5 xp 1 yp.
  b. Show that, for all positive integers n, (x 1 y)pn

 5 xpn
 1 ypn

.
  c.  Find elements x and y in a ring of characteristic 4 such that  

(x 1 y)4 2 x4 1 y4. (This exercise is referred to in Chapter 20.)
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264 Rings

 50. Let R be a commutative ring with unity 1 and prime characteristic. 
If a [ R is nilpotent, prove that there is a positive integer k such that 
(1 1 a)k 5 1.

 51. Show that any finite field has order pn, where p is a prime. Hint: Use 
facts about finite Abelian groups. (This exercise is referred to in 
Chapter 22.)

 52. Give an example of an infinite integral domain that has character-
istic 3.

 53. Let R be a ring and let M2(R) be the ring of 2 3 2 matrices with entries 
from R. Explain why these two rings have the same  characteristic.

 54. Let R be a ring with m elements. Show that the characteristic of R 
divides m.

 55. Explain why a finite ring must have a nonzero characteristic.
 56. Find all solutions of x2 2 x 1 2 5 0 over Z3[i]. (See Example 9.)
 57. Consider the equation x2 2 5x 1 6 5 0.
  a. How many solutions does this equation have in Z7?
  b. Find all solutions of this equation in Z8.
  c. Find all solutions of this equation in Z12.
  d. Find all solutions of this equation in Z14.
 58. Find the characteristic of Z4 % 4Z.
 59. Suppose that R is an integral domain in which 20 ? 1 5 0 and  

12 ? 1 5 0. (Recall that n ? 1 means the sum 1 1 1 1 ? ? ? 1 1 with 
n terms.) What is the characteristic of R?

 60. In a commutative ring of characteristic 2, prove that the idempo-
tents form a subring.

 61. Describe the smallest subfield of the field of real numbers that con-
tains 22. (That is, describe the subfield K with the property that K 
contains 22 and if F is any subfield containing 22, then F con-
tains K.)

 62. Let F be a finite field with n elements. Prove that xn21 5 1 for all 
nonzero x in F.

 63. Let F be a field of prime characteristic p. Prove that K 5 {x [ F | 
xp 5 x} is a subfield of F.

 64. Suppose that a and b belong to a field of order 8 and that a2 1 ab 1 
b2 5 0. Prove that a 5 0 and b 5 0. Do the same when the field has 
order 2n with n odd.

 65. Let F be a field of characteristic 2 with more than two elements. 
Show that (x 1 y)3 2 x3 1 y3 for some x and y in F.

 66. Suppose that F is a field with characteristic not 2, and that the non-
zero elements of F form a cyclic group under multiplication. Prove 
that F is finite.
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13 | Integral Domains 265

 67. Suppose that D is an integral domain and that f is a nonconstant 
function from D to the nonnegative integers such that f(xy) 5  
f(x)f(y). If x is a unit in D, show that f(x) 5 1.

 68. Let F be a field of order 32. Show that the only subfields of F are  
F itself and {0, 1}.

 69. Suppose that F is a field with 27 elements. Show that for every 
 element a [ F, 5a � �a.

 70. Let

R � e ca �b

b a
d  ` a, b [ Z7 f

  with the usual matrix addition and multiplication and mod 7 addi-
tion and multiplication of the entries. Prove that R is a commutative 
ring. How many elements are in R? Is R a field? What happens 
when Z7 is replaced by Z5?

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154–155.

In this article, the author uses properties of logarithms and exponents  
to define recursively an infinite family of fields starting with the real 
 numbers.

N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly 
70 (1963): 736–738.

Here it is shown that a ring has nonzero characteristic n if and only  
if n is the maximum of the orders of the elements of R.

K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical  
Gazette 62 (1978): 94–104.

This article explores the interplay between various groups of integers un-
der multiplication modulo n and the ring Zn. It shows how to  construct 
groups of integers in which the identity is not obvious; for example, 1977 
is the identity of the group {1977, 5931} under  multiplication modulo 
7908.
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Nathan Jacobson

Nathan Jacobson was born on September 8, 
1910, in Warsaw, Poland. After arriving in 
the United States in 1917, Jacobson grew up 
in Alabama, Mississippi, and Georgia, where 
his father owned small clothing stores. He 
received a B.A. degree from the University of 
Alabama in 1930 and a Ph.D. from Princeton 
in 1934. After brief periods as a professor at 
Bryn Mawr, the University of Chicago, the 
University of North Carolina, and Johns 
Hopkins, Jacobson accepted a position at 
Yale, where he remained until his retirement 
in 1981.

Jacobson’s principal contributions to al-
gebra were in the areas of rings, Lie algebras, 
and Jordan algebras. In particular, he devel-
oped structure theories for these systems. He 
was the author of nine books and numerous 
articles, and he had 33 Ph.D. students.

Few mathematicians have been as produc-
tive over such a long career or have had as 
much influence on the profession as has 
Professor Jacobson.

Citation for the Steele Prize
for Lifetime Achievement

Jacobson held visiting positions in 
France, India, Italy, Israel, China, Australia, 
and Switzerland. Among his many honors 
were the presidency of the American 
Mathematical Society, memberships in the 
National Academy of Sciences and the 
American Academy of Arts and Sciences, a 
Guggenheim Fellowship, and an honorary 
degree from the University of Chicago. 
Jacobson died on December 5, 1999, at the 
age of 89.

To find more information about Jacobson, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Ideals and Factor Rings

The secret of science is to ask the right questions, and it is the choice of 
problem more than anything else that marks the man of genius in the 
scientific world.

sir henry tizard in c. p. snow,  

A postscript to Science and Government

14

Ideals
Normal subgroups play a special role in group theory—they permit us 
to construct factor groups. In this chapter, we introduce the analogous 
concepts for rings—ideals and factor rings.

Definition Ideal
A subring A of a ring R is called a (two-sided) ideal of R if for  
every r [ R and every a [ A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements 
from R—that is, if rA 5 {ra | a [ A} # A and Ar 5 {ar | a [ A} # A 
for all r [ R.

An ideal A of R is called a proper ideal of R if A is a proper subset  
of R. In practice, one identifies ideals with the following test, which is 
an immediate consequence of the definition of ideal and the subring 
test given in Theorem 12.3.

 Theorem 14.1 Ideal Test

A nonempty subset A of a ring R is an ideal of R if

 1. a 2 b [ A whenever a, b [ A.

2. ra and ar are in A whenever a [ A and r [ R.
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268 Rings

 EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0} 
is called the trivial ideal. 

 EXAMPLE 2 For any positive integer n, the set nZ 5 {0, 6n,  
62n, . . .} is an ideal of Z. 

 EXAMPLE 3 Let R be a commutative ring with unity and let a [ R. 
The set kal 5 {ra | r [ R} is an ideal of R called the principal ideal 
generated by a. (Notice that kal is also the notation we used for  
the cyclic subgroup generated by a. However, the intended meaning 
will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example (see Exercise 31 in the Sup-
plementary Exercises for Chapters 12–14). 

 EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant 
term 0. Then A is an ideal of R[x] and A 5 kxl. 

 EXAMPLE 5 Let R be a commutative ring with unity and let a1, 
a2, . . . , an belong to R. Then I 5 ka1, a2, . . . , anl 5 {r1a1 1 r2a2 1 
? ? ? 1 rnan | ri [ R} is an ideal of R called the ideal generated by a1,  
a2, . . . , an. The verification that I is an ideal is left as an easy exercise 
(Exercise 3). 

 EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let I be the subset of Z[x] of all polynomials with 
even constant terms. Then I is an ideal of Z[x] and I 5 kx, 2l (see 
Exercise 37). 

 EXAMPLE 7 Let R be the ring of all real-valued functions of a real 
variable. The subset S of all differentiable functions is a subring of R 
but not an ideal of R. 

Factor Rings
Let R be a ring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group 
R/A 5 {r 1 A | r [ R}. The natural question at this point is: How may 
we form a ring of this group of cosets? The addition is already taken care 
of, and, by analogy with groups of cosets, we define the product of two 
cosets of s 1 A and t 1 A as st 1 A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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14 | Ideals and Factor Rings 269

 Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets {r 1 A | 
r [ R} is a ring under the operations (s 1 A) 1 (t 1 A) 5 s 1 t 1 A 

and (s 1 A)(t 1 A) 5 st 1 A if and only if A is an ideal of R.

PROOF We know that the set of cosets forms a group under addition. 
Once we know that multiplication is indeed a binary operation on the 
cosets, it is trivial to check that the multiplication is associative and 
that multiplication is distributive over addition. Hence, the proof boils 
down to showing that multiplication is well-defined if and only if A is 
an ideal of R. To do this, let us suppose that A is an ideal and let s 1 A 5 
s9 1 A and t 1 A 5 t9 1 A. Then we must show that st 1 A 5 s9t9 1 A. 
Well, by definition, s 5 s9 1 a and t 5 t9 1 b, where a and b belong 
to A. Then

st 5 (s9 1 a)(t9 1 b) 5 s9t9 1 at9 1 s9b 1 ab,

and so

st 1 A 5 s9t9 1 at9 1 s9b 1 ab 1 A 5 s9t9 1 A,

since A absorbs at9 1 s9b 1 ab. Thus, multiplication is well-defined 
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an 
ideal of R. Then there exist elements a [ A and r [ R such that ar o A 
or ra o A. For convenience, say ar o A. Consider the elements a 1 A 5 
0 1 A and r 1 A. Clearly, (a 1 A)(r 1 A) 5 ar 1 A but (0 1 A) ? 
(r 1 A) 5 0 ? r 1 A 5 A. Since ar 1 A 2 A, the multiplication is not 
well-defined and the set of cosets is not a ring. 

Let’s look at a few factor rings.

 EXAMPLE 8 Z/4Z 5 {0 1 4Z, 1 1 4Z, 2 1 4Z, 3 1 4Z}. To see how 
to add and multiply, consider 2 1 4Z and 3 1 4Z.

(2 1 4Z) 1 (3 1 4Z) 5 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z,
 (2 1 4Z)(3 1 4Z) 5 6 1 4Z 5 2 1 4 1 4Z 5 2 1 4Z.

One can readily see that the two operations are essentially modulo 4 
arithmetic. 
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270 Rings

 EXAMPLE 9 2Z/6Z 5 {0 1 6Z, 2 1 6Z, 4 1 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 1 6Z) 1  
(4 1 6Z) 5 2 1 6Z and (4 1 6Z)(4 1 6Z) 5 4 1 6Z. 

Here is a noncommutative example of an ideal and factor ring.

 EXAMPLE 10 Let R 5 e ca1 a2

a3 a4
d ` ai [ Z f  and let I be the 

subset of R consisting of matrices with even entries. It is easy to 
show that I is indeed an ideal of R (Exercise 21). Consider the factor  
ring R/I. The interesting question about this ring is: What is its size? 

We claim R/I has 16 elements; in fact, R/I 5e c r1 r2

r3 r4
d�I  0  ri [{0, 1}f .

An  example illustrates the typical situation. Which of the 16 elements 

is  c7 8

5 �3
d� I ? Well ,  observe that  c7 8

5 �3
d � I � c1 0

1 1
d �

c6 8

4 �4
d� I � c1 0

1 1
d� I, since an ideal absorbs its own elements. 

The general case is left to the reader (Exercise 23). 

 EXAMPLE 11 Consider the factor ring of the Gaussian integers 
R 5 Z[i]/k2 2 il. What does this ring look like? Of course, the elements 
of R have the form a 1 bi 1 k2 2 il, where a and b are integers, but the 
important question is: What do the distinct cosets look like? The fact 
that 2 2 i 1 k2 2 il 5 0 1 k2 2 il means that when dealing with coset 
representatives, we may treat 2 2 i as equivalent to 0, so that 2 5 i. For 
example, the coset 3 1 4i 1 k2 2 il 5 3 1 8 1 k2 2 il 5 11 1 k2 2 il. 
Similarly, all the elements of R can be written in the form a 1 k2 2 il, 
where a is an integer. But we can further reduce the set of distinct coset 
representatives by observing that when dealing with coset representa-
tives, 2 5 i implies (by squaring both sides) that 4 5 21 or 5 5 0. 
Thus, the coset 3 1 4i 1 k2 2 il 5 11 1 k2 2 il 5 1 1 5 1 5 1 k2 2 il 5 
1 1 k2 2 il. In this way, we can show that every element of R is equal to 
one of the following cosets: 0 1 k2 2 il, 1 1 k2 2 il, 2 1 k2 2 il, 3 1 
k2 2 il, 4 1 k2 2 il. Is any further reduction possible? To demonstrate 
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 1 k2 2 il has additive order 5. Since 5(1 1 k2 2 il) 5 
5 1 k2 2 il 5 0 1 k2 2 il, 1 1 k2 2 il has order 1 or 5. If the order is 
actually 1, then 1 1 k2 2 il 5 0 1 k2 2 il, so 1 [ k2 2 il. Thus, 1 5  
(2 2 i) (a 1 bi) 5 2a 1 b 1 (2a 1 2b)i for some integers a and b. But 
this equation implies that 1 5 2a 1 b and 0 5 2a 1 2b, and solving these 
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14 | Ideals and Factor Rings 271

simultaneously yields b 5 1/5, which is a contradiction. It should be 
clear that the ring R is essentially the same as the field Z5. 

 EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let kx2 1 1l denote the principal ideal generated by  
x2 1 1; that is,

kx2 1 1l 5 {f(x)(x2 1 1) | f(x) [ R[x]}.

Then

R[x]/kx2 1 1l 5 {g(x) 1 kx2 1 1l | g(x) [ R[x]}
5 {ax 1 b 1 kx2 1 1l | a, b [ R}.

To see this last equality, note that if g(x) is any member of R[x], then 
we may write g(x) in the form q(x)(x2 1 1) 1 r(x), where q(x) is the 
quotient and r(x) is the remainder upon dividing g(x) by x2 1 1. In 
particular, r(x) 5 0 or the degree of r(x) is less than 2, so that r(x) 5 
ax 1 b for some a and b in R. Thus,

g(x) 1 kx2 1 1l 5 q(x)(x2 1 1) 1 r(x) 1 kx2 1 1l
  5 r(x) 1 kx2 1 1l,

since the ideal kx2 1 1l absorbs the term q(x)(x2 1 1).
How is multiplication done? Since

x2 1 1 1 kx2 1 1l 5 0 1 kx2 1 1l,

one should think of x2 1 1 as 0 or, equivalently, as x2 5 21. So, for 
 example,

(x 1 3 1 kx2 1 1l) ? (2x 1 5 1 kx2 1 1l)
5 2x2 1 11x 1 15 1 kx2 1 1l 5 11x 1 13 1 kx2 1 1l.

In view of the fact that the elements of this ring have the form ax 1 
b 1 kx2 1 1l, where x2 1 kx2 1 1l 5 21 1 kx2 1 1l, it is perhaps not 
surprising that this ring turns out to be algebraically the same ring as 
the ring of complex numbers. This observation was first made by Cau-
chy in 1847. 

Examples 11 and 12 illustrate one of the most important applica-
tions of factor rings—the construction of rings with highly desirable 
properties. In particular, we shall show how one may use factor rings to 
construct integral domains and fields.
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272 Rings

Prime Ideals and Maximal Ideals
Definition Prime Ideal, Maximal Ideal
A prime ideal A of a commutative ring R is a proper ideal of R such 
that a, b [ R and ab [ A imply a [ A or b [ A. A maximal ideal of a 
commutative ring R is a proper ideal of R such that, whenever B is an 
ideal of R and A # B # R, then B 5 A or B 5 R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from 
the integers.

 EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of 
integers, the ideal nZ is prime if and only if n is prime (Exercise 9). 
({0} is also a prime ideal of Z.) 

 EXAMPLE 14 The lattice of ideals of Z36 (Figure 14.1) shows that 
only k2l and k3l are maximal ideals. 

 EXAMPLE 15 The ideal kx2 1 1l is maximal in R[x]. To see this, 
assume that A is an ideal of R[x] that properly contains kx2 1 1l. We will 
prove that A 5 R[x] by showing that A contains some nonzero real 
number c. [This is the constant polynomial h(x) 5 c for all x.] Then 1 5 
(1/c)c [ A and therefore, by Exercise 15, A 5 R[x]. To this end, let 
f(x) [ A, but f(x) o kx2 1 1l. Then

f(x) 5 q(x)(x2 1 1) 1 r(x),

where r(x) 2 0 and the degree of r(x) is less than 2. It follows that  
r(x) 5 ax 1 b, where a and b are not both 0, and

ax 1 b 5 r(x) 5 f(x) 2 q(x)(x2 1 1) [ A.

<2>

<4>

<12> <18>

<6>

<3>

<9>

<0>

Z36

Figure 14.1
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14 | Ideals and Factor Rings 273

Thus,

a2x2 2 b2 5 (ax 1 b)(ax 2 b) [ A    and    a2(x2 1 1) [ A.

So,

 0 2 a2 1 b2 5 (a2x2 1 a2) 2 (a2x2 2 b2) [ A. 

 EXAMPLE 16 The ideal kx2 1 1l is not prime in Z2[x], since it con-
tains (x 1 1)2 5 x2 1 2x 1 1 5 x2 1 1 but does not contain x 1 1. 

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

 Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R. 

Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is an integral domain and ab [ A. Then  
(a 1 A)(b 1 A) 5 ab 1 A 5 A, the zero element of the ring R/A. So, 
either a 1 A 5 A or b 1 A 5 A; that is, either a [ A or b [ A. Hence, 
A is prime.

To prove the other half of the theorem, we first observe that R/A is a 
commutative ring with unity for any proper ideal A. Thus, our task is 
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (a 1 A)(b 1 A) 5 0 1 A 5 A. Then ab [ A 
and, therefore, a [ A or b [ A. Thus, one of a 1 A or b 1 A is the zero 
coset in R/A. 

For maximal ideals, we can do even better.

 Theorem 14.4 R/A Is a Field If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R. 

Then R/A is a field if and only if A is maximal.

PROOF Suppose that R/A is a field and B is an ideal of R that properly 
contains A. Let b [ B but b o A. Then b 1 A is a nonzero element 
of  R/A and, therefore, there exists an element c 1 A such that  
(b 1 A) ? (c 1 A) 5 1 1 A, the multiplicative identity of R/A. Since  
b [ B, we have bc [ B. Because

1 1 A 5 (b 1 A)(c 1 A) 5 bc 1 A,
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274 Rings

we have 1 2 bc [ A , B. So, 1 5 (1 2 bc) 1 bc [ B. By Exercise 15, 
B 5 R. This proves that A is maximal.

Now suppose that A is maximal and let b [ R but b o A. It suffices 
to show that b 1 A has a multiplicative inverse. (All other properties 
for a field follow trivially.) Consider B 5 {br 1 a | r [ R, a [ A}. This 
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B 5 R. Thus, 1 [ B, say, 1 5 bc 1 a9, where a9 [ A. 
Then

 1 1 A 5 bc 1 a9 1 A 5 bc 1 A 5 (b 1 A)(c 1 A). 

When a commutative ring has a unity, it follows from Theorems 
14.3 and 14.4 that a maximal ideal is a prime ideal. The next example 
shows that a prime ideal need not be maximal.

 EXAMPLE 17 The ideal kxl is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that 
kxl 5 {f(x) [ Z[x] | f(0) 5 0} (see Exercise 29). Thus, if g(x)h(x) [ kxl, 
then g(0)h(0) 5 0. And since g(0) and h(0) are integers, we have g(0) 5 0 
or h(0) 5 0.

To see that kxl is not maximal, we simply note that kxl , kx, 2l , 
Z[x] (see Exercise 37). 

Exercises

Problems worthy of attack  
prove their worth by hitting back.

piet hein, “Problems,” Grooks*

  1. Verify that the set defined in Example 3 is an ideal.
  2. Verify that the set A in Example 4 is an ideal and that A 5 kxl.
  3. Verify that the set I in Example 5 is an ideal and that if J is any 

ideal of R that contains a1, a2, . . . , an, then I # J. (Hence, ka1,  
a2, . . . , anl is the smallest ideal of R that contains a1, a2, . . . , an.)

  4. Find a subring of Z % Z that is not an ideal of Z % Z.
  5. Let S 5 {a 1 bi | a, b [ Z, b is even}. Show that S is a subring of 

Z[i], but not an ideal of Z[i].
  6. Find all maximal ideals in 
 a. Z8. b. Z10. c. Z12. d. Zn.
  7. Let a belong to a commutative ring R. Show that aR 5 {ar | r [ R} is 

an ideal of R. If R is the ring of even integers, list the  elements of 4R.

*Piet Hein, “Problems,” Grooks (1966) Copyright © Piet Hein Grooks. Reprinted with kind 
permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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14 | Ideals and Factor Rings 275

  8. Prove that the intersection of any set of ideals of a ring is an ideal.
  9. If n is an integer greater than 1, show that knl 5 nZ is a prime ideal 

of Z if and only if n is prime. (This exercise is referred to in this 
chapter.)

 10. If A and B are ideals of a ring, show that the sum of A and B, A 1 B 5 
{a 1 b | a [ A, b [ B}, is an ideal.

 11. In the ring of integers, find a positive integer a such that
 a. kal 5 k2l 1 k3l.
 b. kal 5 k6l 1 k8l.
 c. kal 5 kml 1 knl.

 12. If A and B are ideals of a ring, show that the product of A and B, 
AB 5 {a1b1 1 a2b2 1 ? ? ? 1 anbn | ai [ A, bi [ B, n a positive 
 integer}, is an ideal.

 13. Find a positive integer a such that
 a. kal 5 k3lk4l.
 b. kal 5 k6lk8l.
 c. kal 5 kmlknl.

 14. Let A and B be ideals of a ring. Prove that AB # A > B.
 15. If A is an ideal of a ring R and 1 belongs to A, prove that A 5 R. 

(This exercise is referred to in this chapter.)
 16. If A and B are ideals of a commutative ring R with unity and A 1 B 5 R, 

show that A > B 5 AB.
 17. If an ideal I of a ring R contains a unit, show that I 5 R.
 18. Suppose that in the ring Z, the ideal k35l is a proper ideal of J and J 

is a proper ideal of I. What are the possibilities for J? What are the 
possibilities for I?

 19. Give an example of a ring that has exactly two maximal ideals.
 20. Suppose that R is a commutative ring and |R| 5 30. If I is an ideal 

of R and |R| 5 10, prove that I is a maximal ideal.
 21. Let R and I be as described in Example 10. Prove that I is an ideal  

of R.
 22. Let I 5 k2l. Prove that I[x] is not a maximal ideal of Z[x] even 

though I is a maximal ideal of Z.
 23. Verify the claim made in Example 10 about the size of R/I.
 24. Give an example of a commutative ring that has a maximal ideal 

that is not a prime ideal.
 25. Show that the set B in the latter half of the proof of Theorem 14.4 

is an ideal of R. (This exercise is referred to in this chapter.)
 26. If R is a commutative ring with unity and A is a proper ideal of R, 

show that R/A is a commutative ring with unity.
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276 Rings

 27. Prove that the only ideals of a field F are {0} and F itself.
 28. Show that R[x]/kx2 1 1l is a field.
 29. In Z[x], the ring of polynomials with integer coefficients, let I 5  

{ f (x) [ Z [x] | f (0) 5 0}. Prove that I 5 kxl. (This exercise is re-
ferred to in this chapter and in Chapter 15.)

 30. Show that A 5 {(3x, y) | x, y [ Z} is a maximal ideal of Z % Z. 
Generalize. What happens if 3x is replaced by 4x? Generalize.

 31. Let R be the ring of continuous functions from R to R. Show that  
A 5 { f [ R | f (0) 5 0} is a maximal ideal of R.

 32. Let R 5 Z8 % Z30. Find all maximal ideals of R, and for each maxi-
mal ideal I, identify the size of the field R/I.

 33. How many elements are in Z[i]/k3 1 il? Give reasons for your 
 answer.

 34. In Z[x], the ring of polynomials with integer coefficients, let I 5 
{ f (x) [ Z[x] | f (0) 5 0}. Prove that I is not a maximal ideal.

 35. In Z % Z, let I 5 {(a, 0) | a [ Z}. Show that I is a prime ideal but 
not a maximal ideal.

 36. Let R be a ring and let I be an ideal of R. Prove that the factor ring 
R/I is commutative if and only if rs 2 sr [ I for all r and s in R.

 37. In Z[x], let I 5 { f(x) [ Z[x] | f (0) is an even integer}. Prove that  
I 5 kx, 2l. Is I a prime ideal of Z[x]? Is I a maximal ideal? How 
many elements does Z[x]/I have? (This exercise is referred to in 
this chapter.)

 38. Prove that I 5 k2 1 2il is not a prime ideal of Z[i]. How many 
 elements are in Z[i]/I? What is the characteristic of Z[i]/I?

 39. In Z5[x], let I 5 kx2 1 x 1 2l. Find the multiplicative inverse of 2x 1 
3 1 I in Z5[x]/I.

 40. Let R be a ring and let p be a fixed prime. Show that Ip 5 {r [ R | 
additive order of r is a power of p} is an ideal of R.

 41. An integral domain D is called a principal ideal domain if every 
ideal of D has the form kal 5 {ad | d [ D} for some a in D. Show 
that Z is a principal ideal domain. (This exercise is referred to in 
Chapter 18.)

 42. Let R 5 e ca b

0 d
d `  a, b, d [ Z f  and S � e c r s

0 t
d `  r, s, t [ Z, s

  
is even f . If S is an ideal of R, what can you say about r and t?

 43. If R and S are principal ideal domains, prove that R % S is a princi-
pal ideal ring. (See Exercise 41 for the definition.)
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14 | Ideals and Factor Rings 277

 44. Let a and b belong to a commutative ring R. Prove that {x [ R | 
ax [ bR} is an ideal.

 45. Let R be a commutative ring and let A be any subset of R. Show 
that the annihilator of A, Ann(A) 5 {r [ R | ra 5 0 for all a in A}, 
is an ideal.

 46. Let R be a commutative ring and let A be any ideal of R. Show that 
the nil radical of A, N(A) 5 {r [ R | r n [ A for some positive in-
teger n (n depends on r)}, is an ideal of R. [N(k0l) is called the nil 
radical of R.]

 47. Let R 5 Z27. Find
 a. N(k0l).     b. N(k3l).     c. N(k9l).

 48. Let R 5 Z36. Find
 a. N(k0l).     b. N(k4l). c. N(k6l).

 49. Let R be a commutative ring. Show that R/N(k0l) has no nonzero 
nilpotent elements.

 50. Let A be an ideal of a commutative ring. Prove that N(N(A)) 5 N(A).
 51. Let Z2[x] be the ring of all polynomials with coefficients in Z2 (that 

is, coefficients are 0 or 1, and addition and multiplication of coef-
ficients are done modulo 2). Show that Z2[x]/kx2 1 x 1 1l is a field.

 52. List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

 53. Show that Z3[x]/kx2 1 x 1 1l is not a field.
 54. Let R be a commutative ring without unity, and let a [ R. Describe 

the smallest ideal I of R that contains a (that is, if J is any ideal that 
contains a, then I # J).

 55. Let R be the ring of continuous functions from R to R. Let A 5 
{ f [ R | f (0) is an even integer}. Show that A is a subring of R, 
but not an ideal of R.

 56. Show that Z[i]/k1 2 il is a field. How many elements does this 
field have?

 57. If R is a principal ideal domain and I is an ideal of R, prove that 
every ideal of R/I is principal (see Exercise 41).

 58. How many elements are in Z5[i]/k1 1 il?
 59. Let R be a commutative ring with unity that has the property that 

a2 5 a for all a in R. Let I be a prime ideal in R. Show that |R/I| 5 2.
 60. Let R be a commutative ring with unity, and let I be a proper ideal 

with the property that every element of R that is not in I is a unit of R. 
Prove that I is the unique maximal ideal of R.
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278 Rings

 61. Let I0 5 { f(x) [ Z[x] | f(0) 5 0}. For any positive integer n, show 
that there exists a sequence of strictly increasing ideals such that 
I0 , I1 , I2 , ? ? ? , In , Z[x].

 62. Let R 5 {(a1, a2, a3, . . .)}, where each ai [ Z. Let I 5 {(a1, a2,  
a3, . . . )}, where only a finite number of terms are nonzero. Prove 
that I is not a principal ideal of R.

 63. Let R be a commutative ring with unity and let a, b [ R. Show that  
ka, bl, the smallest ideal of R containing a and b, is I 5 {ra 1 sb |  
r, s [ R}. That is, show that I contains a and b and that any ideal 
that contains a and b also contains I.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Richard Dedekind

This stamp was issued by East Germany  
in 1981 to commemorate the 150th 
 anniversary of Dedekind’s birth. Notice 
that it features the representation of an 
ideal as the product of powers of prime 
ideals.

Richard Dedekind was not only  
a mathematician, but one of the wholly 
great in the history of mathematics, now 
and in the past, the last hero of a great 
epoch, the last pupil of Gauss, for four  
decades himself a classic, from whose 
works not only we, but our teachers and 
the teachers of our teachers, have drawn.

edmund landau,  
Commemorative Address  

to the Royal Society of Göttingen

Richard Dedekind was born on October 6, 
1831, in Brunswick, Germany, the birth-
place of Gauss. Dedekind was the youngest 
of four children of a law professor. His early 
interests were in chemistry and physics, but 
he obtained a doctor’s degree in mathe-
matics at the age of 21 under Gauss at the 
University of Göttingen. Dedekind contin-
ued his studies at Göttingen for a few years, 
and in 1854 he began to lecture there.

Dedekind spent the years 1858–1862 as a 
professor in Zürich. Then he accepted a po-
sition at an institute in Brunswick where he 
had once been a student. Although this 
school was less than university level,  
Dedekind remained there for the next  
50 years. He died in Brunswick in 1916.

During his career, Dedekind made  numer - 
ous fundamental contributions to mathemat-
ics. His treatment of irrational numbers, 
“Dedekind cuts,” put analysis on a firm, 
logical foundation. His work on unique 
factorization led to the modern theory of 
algebraic numbers. He was a pioneer in the 
theory of rings and fields. The notion of  
ideals as well as the term itself are attributed 
to Dedekind. Mathematics historian Morris 
Kline has called him “the effective founder 
of abstract algebra.”

To find  more  in format ion  about  
Dedekind, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Emmy Noether was born on March 23, 
1882, in Germany. When she entered the 
University of Erlangen, she was one of  
only two women among the 1000 students. 
Noether completed her doctorate in 1907.

In 1916, Noether went to Göttingen and, 
under the influence of David Hilbert and 
Felix Klein, became interested in general 
relativity. While there, she made a major 
contribution to physics with her theorem 
that whenever there is a symmetry in nature, 
there is also a conservation law, and vice 
versa. Hilbert tried unsuccessfully to obtain 
a faculty appointment at Göttingen for 
Noether, saying, “I do not see that the sex of 
the candidate is an argument against her ad-
mission as Privatdozent. After all, we are a 
university and not a bathing establishment.”

It was not until she was 38 that Noether’s 
true genius revealed itself. Over the next 

13 years, she used an axiomatic method to 
develop a general theory of ideals and non-
commutative algebras. With this abstract 
theory, Noether was able to weld together 
many important concepts. Her approach was 
even more important than the individual  
results. Hermann Weyl said of Noether,  
“She originated above all a new and epoch- 
making style of thinking in algebra.”

With the rise of Hitler in 1933, Noether,  
a Jew, fled to the United States and took a 
position at Bryn Mawr College. She died 
suddenly on April 14, 1935, following an 
operation.

To find more information about Noether, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

. . . she discovered methods which have 
proved of enormous importance in the  
development of the pres ent-day younger 
generation of mathematicians.

 albert einstein, The New York Time

Emmy Noether

Th
e 

G
ra

ng
er

 C
ol

le
ct

io
n,

 N
ew

 Y
or

k

99708_ch14_ptg01_hr_267-284.indd   280 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www-groups.dcs


Supplementary Exercises for Chapters 12–14 281

Supplementary Exercises for Chapters 12–14

If at first you do succeed—try to hide your astonishment.
harry f. banks

True/false questions for Chapters 12–14 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

  1. Find all idempotents in Z10, Z20, and Z30. (Recall that a is an idem-
potent if a2 5 a.)

  2. If m and n are relatively prime integers greater than 1, prove that 
Zmn has at least two idempotents besides 0 and 1.

  3. Suppose that R is a ring in which a2 5 0 implies a 5 0. Show that 
R has no nonzero nilpotent elements. (Recall that b is nilpotent if 
bn 5 0 for some positive integer n.)

  4. Let R be a commutative ring with more than one element. Prove 
that if for every nonzero element a of R we have aR 5 R, then R is 
a field.

  5. Let A, B, and C be ideals of a ring R. If AB # C and C is a prime 
ideal of R, show that A # C or B # C. (Compare this with Euclid’s 
Lemma in Chapter 0.)

  6. Show, by example, that the intersection of two prime ideals need 
not be a prime ideal.

  7. Let R denote the ring of real numbers. Determine all ideals of R % R. 
What happens if R is replaced by any field F?

  8. Determine all factor rings of Z.
  9. Suppose that n is a square-free positive integer (that is, n is not 

 divisible by the square of any prime). Prove that Zn has no nonzero 
nilpotent elements.

 10. Let R be a commutative ring with unity. Suppose that a is a unit 
and b is nilpotent. Show that a 1 b is a unit. (Hint: See Exercise 29 
in Chap ter 12.)

 11. Let A, B, and C be subrings of a ring R. If A # B < C, show that 
A # B or A # C.

 12. For any element a in a ring R, define kal to be the smallest ideal of 
R that contains a. If R is a commutative ring with unity, show that 
kal 5 aR 5 {ar | r [ R}. Show, by example, that if R is commuta-
tive but does not have a unity, then kal and aR may be different.

 13. Let R be a ring with unity. Show that kal 5 {s1at1 1 s2at2 1 ? ? ? 1 
snatn | si, ti [ R and n is a positive integer}.

 14. Show that Zn[x] has characteristic n.
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282 Rings

 15. Let A and B be ideals of a ring R. If A > B 5 {0}, show that ab 5 0 
when a [ A and b [ B.

 16. Show that the direct sum of two integral domains is not an integral 
domain.

 17. Consider the ring R 5 {0, 2, 4, 6, 8, 10} under addition and multi-
plication modulo 12. What is the characteristic of R?

 18. What is the characteristic of Zm % Zn? Generalize.
 19. Let R be a commutative ring with unity. Suppose that the only ide-

als of R are {0} and R. Show that R is a field.
 20. Suppose that I is an ideal of J and that J is an ideal of R. Prove that 

if I has a unity, then I is an ideal of R. (Be careful not to assume that 
the unity of I is the unity of R. It need not be—see Exercise 2 in 
Chapter 12.)

 21. Show that in the ring Z[x]/K2x 1 1L, the element x 1 K2x 1 1L  
is a unit. 

 22. Let a [ Z. Show that KaL is not a maximal ideal in Z[x].
 23. Recall that an idempotent b in a ring is an element with the property 

that b2 5 b. Find a nontrivial idempotent (that is, not 0 and not 1)  
in Q[x]/kx4 1 x2l.

 24. In a principal ideal domain, show that every nontrivial prime ideal 
is a maximal ideal.

 25. Find an example of a commutative ring R with unity such that a, 
b [ R, a 2 b, an 5 bn, and am 5 bm, where n and m are positive in-
tegers that are relatively prime. (Compare with Exercise 39, part b, in 
Chap ter 13.)

 26. Let Q(322) denote the smallest subfield of R that contains Q and  
322. [That is, Q(322) is the subfield with the property that Q(322)  
contains Q and 322 and if F is any subfield containing Q and 322,  
then F contains Q(322).] Describe the elements of Q(322).

 27. Let R be an integral domain with nonzero characteristic. If A is a 
proper ideal of R, show that R/A has the same characteristic as R.

 28. Let F be a field of order pn. Determine the group isomorphism 
class of F under the operation addition.

 29. If R is a finite commutative ring with unity, prove that every prime 
ideal of R is a maximal ideal of R.

 30. Let R be a noncommutative ring and let C(R) be the center of R 
(see Exercise 19 in Chapter 12). Prove that the additive group of 
R/C(R) is not cyclic.
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 31. Let

R � e ca b

c d
d `  a, b, c, d [ Z2 f

  with ordinary matrix addition and multiplication modulo 2. Show that

A � e c1 0

0 0
d r ` r [ R f

  is not an ideal of R. (Hence, in Exercise 7 in Chapter 14, the com-
mutativity assumption is necessary.)

 32. If R is an integral domain and A is a proper ideal of R, must R/A be 
an integral domain?

 33. Let A 5 {a 1 bi | a, b [ Z, a mod 2 5 b mod 2}. How many ele-
ments does Z[i]/A have? Show that A is a maximal ideal of Z[i].

 34. Suppose that R is a commutative ring with unity such that for each 
a in R there is a positive integer n greater than 1 (n depends on a) 
such that an 5 a. Prove that every prime ideal of R is a maximal 
ideal of R.

 35. State a “finite subfield test”; that is, state conditions that guarantee 
that a finite subset of a field is a subfield.

 36. Let F be a finite field with more than two elements. Prove that the 
sum of all of the elements of F is 0.

 37. Show that if there are nonzero elements a and b in Zn such that a2 1 
b2 5 0, then the ring Zn[i] 5 {x 1 yi | x, y [ Zn} has zero-divisors. 
Use this fact to find a zero-divisor in Z13[i].

 38. Suppose that R is a ring with no zero-divisors and that R contains a 
nonzero element b such that b2 5 b. Show that b is a unity for R.

 39. Find the characteristic of Z[i]/k2 1 il.
 40. Show that the characteristic of Z[i]/ka 1 bil divides a2 1 b2.
 41. Show that 4x2 1 6x 1 3 is a unit in Z8[x].
 42. For any commutative ring R, R[x, y] is the ring of polynomials in x 

and y with coefficients in R (that is, R[x, y] consists of all finite sums 
of terms of the form axiyj, where a [ R and i and j are nonnegative 
integers). (For example, x4 2 3x2y 2 y3 [ Z[x, y].) Prove that kx, yl 
is a prime ideal in Z[x, y] but not a maximal ideal in Z[x, y].

 43. Prove that kx, yl is a maximal ideal in Z5[x, y].
 44. Prove that k2, x, yl is a maximal ideal in Z[x, y].
 45. Let R and S be rings. Prove that (a, b) is nilpotent in R % S if and 

only if both a and b are nilpotent.
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284 Rings

 46. Let R and S be commutative rings. Prove that (a, b) is a zero-divisor 
in R % S if and only if a or b is a zero-divisor or exactly one of a or 
b is 0.

 47. Determine all idempotents in Zpk, where p is a prime.
 48. Let R be a commutative ring with unity 1. Show that a is an idem-

potent if and only if there exists an element b in R such that ab 5 0 
and a 1 b 5 1.

 49. Let Zn[22] 5 {a 1 b22 | a, b [ Zn}. Define addition and multi-
plication as in Z[22], except that modulo n arithmetic is used to 
combine the coefficients. Show that Z3[22] is a field but Z7[22]  
is not.

 50. Let p be a prime. Prove that every zero-divisor in Zpn is a nilpotent  
element.

 51. If x is a nilpotent element in a commutative ring R, prove that rx is 
nilpotent for all r in R.

 52. List the distinct elements in the ring Z[x]/K3, x2 1 1L. Show that this 
ring is a field.
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Ring Homomorphisms

If there is one central idea which is common to  
all aspects of modern algebra it is the notion of homomorphism.

i. n. herstein, Topics in Algebra

Definition and Examples
In our work with groups, we saw that one way to discover information 
about a group is to examine its interaction with other groups by way of 
homomorphisms. It should not be surprising to learn that this concept 
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring 
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism f from a ring R to a ring S is a mapping from 
R to S that preserves the two ring operations; that is, for all a, b in R,

f(a 1 b) 5 f(a) 1 f(b)    and    f(ab) 5 f(a)f(b).

A ring homomorphism that is both one-to-one and onto is called a 
ring isomorphism.

As is the case for groups, in the preceding definition the operations 
on the left of the equal signs are those of R, whereas the operations on 
the right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two 
rings are algebraically identical; a homomorphism is used to simplify a 
ring while retaining certain of its features.

A schematic representation of a ring homomorphism is given in 
Figure 15.1. The dashed arrows indicate the results of performing the 
ring operations.

The following examples illustrate ring homomorphisms. The reader 
should supply the missing details.

15
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Figure 15.1

 EXAMPLE 1 For any positive integer n, the mapping k S k mod n is 
a ring homomorphism from Z onto Zn (see Exercise 9 in Chapter 0). 
This mapping is called the natural homomorphism from Z to Zn. 

 EXAMPLE 2 The mapping a 1 bi S a 2 bi is a ring isomorphism 
from the complex numbers onto the complex numbers (see Exercise 35 
in Chapter 6). 

 EXAMPLE 3 Let R[x] denote the ring of all polynomials with real 
coefficients. The mapping f (x) S f (1) is a ring homomorphism from 
R[x] onto R. 

 EXAMPLE 4 The correspondence f: x S 5x from Z4 to Z10  
is a ring homomorphism. Although showing that f(x 1 y) 5 
f(x) 1 f(y) appears to be accomplished by the simple statement that 
5(x 1 y) 5 5x 1 5y, we must bear in mind that the addition on the left is 
done modulo 4, whereas the addition on the right and the multiplication 
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that f preserves multiplication. So, to verify that f preserves both op-
erations, we write x 1 y 5 4q1 1 r1 and xy 5 4q2 1 r2, where 0 # r1 , 4 
and 0 # r2 , 4. Then f(x 1 y) 5 f(r1) 5 5r1 5 5(x 1 y 2 4q1) 5 5x 1 
5y 2 20q1 5 5x 1 5y 5 f(x) 1 f(y) in Z10. Similarly, using the fact that 
5 ? 5 5 5 in Z10, we have f(xy) 5 f(r2) 5 5r2 5 5(xy 2 4q2) 5 5xy 2 
20q2 5 (5 ? 5)xy 5 5x5y 5 f(x)f(y) in Z10. 

 EXAMPLE 5 We determine all ring homomorphisms from Z12 to Z30. 
By Example 10 in Chapter 10, the only group homomorphisms from Z12 
to Z30 are x S ax, where a 5 0, 15, 10, 20, 5, or 25. But, since 1 ? 1 5 1 
in Z12, we must have a ? a 5 a in Z30. This requirement rules out 20 and 5 
as possibilities for a. Finally, simple calculations show that each of the  
remaining four choices does yield a ring homomorphism. 
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15 | Ring Homomorphisms 287

 EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then 
the mapping a S a2 is a ring homomorphism from R to R. 

 EXAMPLE 7 Although 2Z, the group of even integers under addi-
tion, is group-isomorphic to the group Z under addition, the ring 2Z is 
not  ring-isomorphic to the ring Z. (Quick! What does Z have that 2Z 
doesn’t?) 

Our next two examples are applications to number theory of the nat-
ural homomorphism given in Example 1.

 EXAMPLE 8 Test for Divisibility by 9
An integer n with decimal representation akak21 ? ? ? a0 is divisible by 9 
if and only if ak 1 ak21 1 ? ? ? 1 a0 is divisible by 9. To verify this, ob-
serve that n 5 ak10k 1 ak2110k21 1 ? ? ? 1 a0. Then, letting a denote 
the natural homomorphism from Z to Z9 [in particular, a(10) 5 1], we 
note that n is divisible by 9 if and only if

0 5 a(n) 5 a(ak)(a(10))k 1 a(ak21)(a(10))k21 1 ? ? ? 1 a(a0)

5 a(ak) 1 a(ak21) 1 ? ? ? 1 a(a0)

5 a(ak 1 ak21 1 ? ? ? 1 a0).

But a(ak 1 ak21 1 ? ? ? 1 a0) 5 0 is equivalent to ak 1 ak21 1 ? ? ? 1 
a0 being divisible by 9. 

 EXAMPLE 9 Theorem of Gersonides
Among the most important unsolved problems in number theory is the 
so-called “abc conjecture.” This conjecture is a natural generalization 
of a theorem first proved in the fourteenth century by the Rabbi 
Gersonides. Gersonides proved that the only pairs of positive integers 
that are powers of 2 and powers of 3 which differ by 1 are 1, 2; 2, 3; 3, 
4; and 8, 9. That is, these four pairs are the only solutions to the equa-
tions 2m 5 3n 6 1. To verify that this is so for 2m 5 3n 1 1, observe that 
for all n we have 3n mod 8 5 3 or 1. Thus, 3n 1 1 mod 8 5 4 or 2. On 
the other hand, for m . 2, we have 2m mod 8 5 0. To handle the case 
where 2m 5 3n 2 1, we first note that for all n, 3n mod 16 5 3, 9, 11, or 
1, depending on the value of n mod 4. Thus, (3n 2 1) mod 16 5 2, 8, 10, 
or 0. Since 2m mod 16 5 0 for m $ 4, we have ruled out the cases where 
n mod 4 5 1, 2, or 3. Because 34k mod 5 5 (34)k mod 5 5 1k mod 5 5 
1, we know that (34k 2 1) mod 5 5 0. But the only values for 2m mod 5 
are 2, 4, 3, and 1. This contradiction completes the proof. 
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Properties of Ring Homomorphisms
 Theorem 15.1 Properties of Ring Homomorphisms

Let f be a ring homomorphism from a ring R to a ring S. Let A be a 

subring of R and let B be an ideal of S.

1.  For any r [ R and any positive integer n, f(nr) 5 nf(r) and 

f(rn) 5 (f(r))n.

2. f(A) 5 {f(a) | a [ A} is a subring of S.

3. If A is an ideal and f is onto S, then f(A) is an ideal.

4. f21(B) 5 {r [ R | f(r) [ B} is an ideal of R.

5. If R is commutative, then f(R) is commutative.

6.  If R has a unity 1, S 2 {0}, and f is onto, then f(1) is the unity 

of S.

7.  f is an isomorphism if and only if f is onto and Ker f 5  

{r [ R | f(r) 5 0} 5 {0}.
8.  If f is an isomorphism from R onto S, then f21 is an 

isomorphism from S onto R.

PROOF The proofs of these properties are similar to those given in 
Theorems 10.1 and 10.2 and are left as exercises (Exercise 1). 

The student should learn the various properties of Theorem 15.1 
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback 
of an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The 
proofs are nearly identical to their group theory counterparts and are 
left as exercises (Exercises 2, 3, and 4).

 Theorem 15.2 Kernels Are Ideals

Let f be a ring homomorphism from a ring R to a ring S. Then Ker f 

5 {r [ R | f(r) 5 0} is an ideal of R.

 Theorem 15.3 First Isomorphism Theorem for Rings

Let f be a ring homomorphism from R to S. Then the mapping from 

R/Ker f to f(R), given by r 1 Ker f S f(r), is an isomorphism. In 

symbols, R/Ker f < f(R).
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15 | Ring Homomorphisms 289

  Theorem 15.4 Ideals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.  

In particular, an ideal A is the kernel of the mapping r S r 1 A  

from R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called 
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that kxl is a 
prime ideal of Z[x] but not a maximal ideal. In the following example 
we illustrate a better way to do this kind of problem.

 EXAMPLE 10 Since the mapping f from Z[x] onto Z given by  
f( f(x)) 5 f(0) is a ring homomorphism with Ker f 5 kxl (see Exercise 29 
in Chapter 14), we have, by Theorem 15.3, Z[x]/kxl < Z. And because  
Z is an integral domain but not a field, we know by Theorems 14.3 and 
14.4 that the ideal kxl is prime but not maximal in Z[x]. 

 Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping f: Z S R given by n S n ? 1 
is a ring homomorphism.

PROOF Since the multiplicative group property am+n 5 aman translates to 
(m 1 n)a 5 ma 1 na when the operation is addition, we have f(m 1 n) 5 
(m 1 n) ? 1 5 m ? 1 1 n ? 1. So, f preserves addition. 

That f also preserves multiplication follows from Exercise 15 in 
Chapter 12, which says that (m ? a)(n ? b) 5 (mn) ? (ab) for all integers 
m and n. Thus, f(mn) 5 (mn) ? 1 5 (mn) ? ((1)(1)) 5 (m ? 1)(n ? 1) 5 
f(m)f(n). So, f preserves multiplication as well. 

 Corollary 1 A Ring with Unity Contains Zn or Z

If R is a ring with unity and the characteristic of R is n . 0, then 

R contains a subring isomorphic to Z
n
. If the characteristic of R is 0, 

then R contains a subring isomorphic to Z.

PROOF Let 1 be the unity of R and let S 5 {k ? 1 | k [ Z}. Theorem 15.5 
shows that the mapping f from Z to S given by f(k) 5 k ? 1 is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have  
Z/Ker f < S. But, clearly, Ker f 5 knl, where n is the additive  order of 1 
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290 Rings

and, by Theorem 13.3, n is also the characteristic of R. So, when R 
has characteristic n, S < Z/knl < Zn. When R has characteristic 0, S <  
Z/k0l < Z. 

 Corollary 2 Zm Is a Homomorphic Image of Z

For any positive integer m, the mapping of f: Z S Z
m

 given by x S  

x mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5, 
since in the ring Zm, the integer x mod m is x ? 1. (For example, in Z3, if 
x 5 5, we have 5 ? 1 5 1 1 1 1 1 1 1 1 1 5 2.) 

 Corollary 3 A Field Contains Zp or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield 

isomorphic to Z
p
. If F is a field of characteristic 0, then F contains 

a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Zp if F has 
characteristic p, and F has a subring S isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T 5 {ab21 | a, b [ S, b 2 0}.

Then T is isomorphic to the rationals (Exercise 63). 

Since the intersection of all subfields of a field is itself a subfield 
(Exercise 11), every field has a smallest subfield (that is, a subfield 
that is contained in every subfield). This subfield is called the prime 
subfield of the field. It follows from Corollary 3 that the prime 
subfield of a field of characteristic p is isomorphic to Zp, whereas the 
prime subfield of a field of characteristic 0 is isomorphic to Q. (See 
Exercise 67.) 

The Field of Quotients
Although the integral domain Z is not a field, it is at least contained in a 
field—the field of rational numbers. And notice that the field of rational 
numbers is nothing more than quotients of integers. Can we mimic the 
construction of the rationals from the integers for other integral do- 
mains? Yes. The field constructed in Theorem 15.6 is called the field of 
quotients of D. Throughout the proof of Theorem 15.6, you should keep 
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15 | Ring Homomorphisms 291

in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.

Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the 

field of quotients of D) that contains a subring isomorphic to D.

PROOF Let S 5 {(a, b) | a, b [ D, b 2 0}. We define an equivalence 
relation on S by (a, b) ; (c, d ) if ad 5 bc (compare with Example 17 
in Chapter 0). Now, let F be the set of equivalence classes of S under 
the relation ; and denote the equivalence class that contains (x, y) by 
x/y. We define addition and multiplication on F by

a/b 1 c/d 5 (ad 1 bc)/(bd )    and    a/b ? c/d 5 (ac)/(bd ).

(Notice that here we need the fact that D is an integral domain to ensure 
that multiplication is closed; that is, bd 2 0 whenever b 2 0 and d 2 0.)

Since there are many representations of any particular element of F 
( just as in the rationals, we have 1/2 5 3/6 5 4/8), we must show that 
these two operations are well-defined. To do this, suppose that a/b 5 a9/b9 
and c/d 5 c9/d9, so that ab9 5 a9b and cd9 5 c9d. It then follows that

 (ad 1 bc)b9d9 5 adb9d9 1 bcb9d9 5 (ab9)dd9 1 (cd9)bb9
5 (a9b)dd9 1 (c9d )bb9 5 a9d9bd 1 b9c9bd
5 (a9d9 1 b9c9)bd.

Thus, by definition, we have

(ad 1 bc)/(bd) 5 (a9d9 1 b9c9)/(b9d9),

and, therefore, addition is well-defined. We leave the verification that 
multiplication is well-defined as an exercise (Exercise 55). That F is a 
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the 
 additive identity of F. The additive inverse of a/b is 2a/b; the multipli-
cative inverse of a nonzero element a/b is b/a. The remaining field 
properties can be checked easily.

Finally, the mapping f: D S F given by x S x/1 is a ring isomor-
phism from D to f(D) (see Exercise 7). 

 EXAMPLE 11 Let D 5 Z[x]. Then the field of quotients of D is {f(x)/
g(x) | f(x), g(x) [ D, where g(x) is not the zero polynomial}. 

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).
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 EXAMPLE 12 Let p be a prime. Then Zp(x) 5 {f(x)/g(x) | f(x), g(x) 
[ Zp[x], g(x) 2 0} is an infinite field of characteristic p. 

Exercises

We can work it out.
john lennon and paul mccartney,  

“We Can Work It Out,” single*

  1. Prove Theorem 15.1.
  2. Prove Theorem 15.2.
  3. Prove Theorem 15.3.
  4. Prove Theorem 15.4.
  5. Show that the correspondence x S 5x from Z5 to Z10 does not pre-

serve addition.
  6. Show that the correspondence x S 3x from Z4 to Z12 does not pre-

serve multiplication.
  7. Show that the mapping f: D S F in the proof of Theorem 15.6 is a 

ring homomorphism.
  8. Prove that every ring homomorphism f from Zn to itself has the 

form f(x) 5 ax, where a2 5 a.
  9. Suppose that f is a ring homomorphism from Zm to Zn. Prove that 

if f(1) 5 a, then a2 5 a. Give an example to show that the converse 
is false.

 10. a. Is the ring 2Z isomorphic to the ring 3Z?
  b. Is the ring 2Z isomorphic to the ring 4Z?
 11. Prove that the intersection of any collection of subfields of a field F 

is a subfield of F. (This exercise is referred to in this chapter.)
 12. Let Z3[i] 5 {a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13). Show 

that the field Z3[i] is ring-isomorphic to the field Z3[x]/kx2 1 1l. 
 13. Let

S � e c a b

�b a
d ` a, b [ Rf .

  Show that f: C S S given by

f(a 1 bi) 5 c a b

�b a
d

  is a ring isomorphism.

*Copyright © 1965 (Renewed) Stony/ATV Tunes LLC. All rights  administered by 
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights 
reserved. Used by permission.
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15 | Ring Homomorphisms 293

 14. Let Z[22] 5 {a 1 b22 | a, b [ Z} and

H � e ca 2b

b a
d ` a, b [ Z f .

  Show that Z[22] and H are isomorphic as rings.

 15. Consider the mapping from M2(Z ) into Z given by ca b

c d
d  S a. 

  Prove or disprove that this is a ring homomorphism.

 16. Let R 5 e ca b

0 c
d  ̀ a, b, c [ Z f . Prove or disprove that the map-

  ping ca b

0 c
d
 
S a is a ring homomorphism.

 17. Is the mapping from Z5 to Z30 given by x S 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image 
but not the unity of Z30.

 18. Is the mapping from Z10 to Z10 given by x S 2x a ring homomor-
phism?

 19. Describe the kernel of the homomorphism given in Example 3.
 20. Recall that a ring element a is called an idempotent if a2 5 a. Prove 

that a ring homomorphism carries an idempotent to an idempotent.
 21. Determine all ring homomorphisms from Z6 to Z6. Determine all 

ring homomorphisms from Z20 to Z30.
 22. Determine all ring isomorphisms from Zn to itself.
 23. Determine all ring homomorphisms from Z to Z.
 24. Suppose f is a ring homomorphism from Z % Z into Z % Z. What 

are the possibilities for f((1, 0))?
 25. Determine all ring homomorphisms from Z % Z into Z % Z.
 26. In Z, let A 5 k2l and B 5 k8l. Show that the group A/B is isomor-

phic to the group Z4 but that the ring A/B is not ring-isomorphic to 
the ring Z4.

 27. Let R be a ring with unity and let f be a ring homomorphism from R 
onto S where S has more than one element. Prove that S has a unity.

 28. Show that (Z % Z )/(kal % kbl) is ring-isomorphic to Za % Zb.
 29. Determine all ring homomorphisms from Z % Z to Z.
 30. Prove that the sum of the squares of three consecutive integers can-

not be a square.
 31. Let m be a positive integer and let n be an integer obtained from m 

by rearranging the digits of m in some way. (For example, 72345 is 
a rearrangement of 35274.) Show that m 2 n is divisible by 9.
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 32. (Test for Divisibility by 11) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 11 if and only 
if a0 2 a1 1 a2 2 ? ? ? (21)kak is divisible by 11.

 33. Show that the number 7,176,825,942,116,027,211 is divisible by 9 
but not divisible by 11.

 34. Show that the number 9,897,654,527,609,805 is divisible by 99.
 35. (Test for Divisibility by 3) Let n be an integer with decimal repre-

sentation akak21 ? ? ? a1a0. Prove that n is divisible by 3 if and only 
if ak 1 ak21 1 ? ? ? 1 a1 1 a0 is divisible by 3.

 36. (Test for Divisibility by 4) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 4 if and only 
if a1a0 is divisible by 4.

 37. Show that no integer of the form 111,111,111, . . . ,111 is prime.
 38. Consider an integer n of the form a,111,111,111,111,111,111, 

111,111,12b. Find values for a and b such that n is divisible by 99.
 39. Suppose n is a positive integer written in the form n 5 ak3

k 1 
ak213

k21 1 ? ? ? 1 a13 1 a0, where each of the ai’s is 0, 1, or 2 (the 
base 3 representative of n). Show that n is even if and only if ak 1 
ak21 1 ? ? ? 1 a1 1 a0 is even.

 40. Find an analog of the condition given in the previous exercise for 
characterizing divisibility by 4.

 41. In your head, determine (2 ? 1075 1 2)100 mod 3 and (10100 1 1)99 
mod 3.

 42. Determine all ring homomorphisms from Q to Q.
 43. Let R and S be commutative rings with unity. If f is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove 
that the characteristic of S divides the characteristic of R.

 44. Let R be a commutative ring of prime characteristic p. Show that 
the Frobenius map x S xp is a ring homomorphism from R to R.

 45. Is there a ring homomorphism from the reals to some ring whose 
kernel is the integers?

 46. Show that a homomorphism from a field onto a ring with more 
than one element must be an isomorphism.

 47. Suppose that R and S are commutative rings with unities. Let f be a 
ring homomorphism from R onto S and let A be an ideal of S.

 a. If A is prime in S, show that f21(A) 5 {x [ R | f(x) [ A} is 
prime in R.

 b. If A is maximal in S, show that f21(A) is maximal in R.
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15 | Ring Homomorphisms 295

 48. A principal ideal ring is a ring with the property that every ideal 
has the form kal. Show that the homomorphic image of a principal 
ideal ring is a principal ideal ring.

 49. Let R and S be rings.
 a.  Show that the mapping from R % S onto R given by (a, b) S a 

is a ring homomorphism.
 b.  Show that the mapping from R to R % S given by a S (a, 0) is a 

one-to-one ring homomorphism.
 c. Show that R % S is ring-isomorphic to S % R.
 50. Show that if m and n are distinct positive integers, then mZ is not 

ring-isomorphic to nZ.
 51. Prove or disprove that the field of real numbers is ring-isomorphic 

to the field of complex numbers.
 52. Show that the only ring automorphism of the real numbers is the 

identity mapping.
 53. Determine all ring homomorphisms from R to R.
 54. Suppose that n divides m and that a is an idempotent of Zn (that is, 

a2 5 a). Show that the mapping x S ax is a ring homomorphism 
from Zm to Zn. Show that the same correspondence need not yield a 
ring homomorphism if n does not divide m.

 55. Show that the operation of multiplication defined in the proof of 
Theorem 15.6 is well-defined.

 56. Let Q[22] 5 {a 1 b22 | a, b [ Q} and Q[25] 5 {a 1 b25 |  
a, b [ Q}. Show that these two rings are not ring-isomorphic.

 57. Let Z[i] 5 {a 1 bi | a, b [ Z}. Show that the field of quotients of 
Z[i] is ring-isomorphic to Q[i] 5 {r 1 si | r, s [ Q}. (This exercise 
is referred to in Chapter 18.)

 58. Let F be a field. Show that the field of quotients of F is ring- 
isomorphic to F.

 59. Let D be an integral domain and let F be the field of quotients of D. 
Show that if E is any field that contains D, then E contains a 
 subfield that is ring-isomorphic to F. (Thus, the field of quotients 
of an integral domain D is the smallest field containing D.)

 60. Explain why a commutative ring with unity that is not an integral do-
main cannot be contained in a field. (Compare with Theorem 15.6.)

 61. Show that the relation ; defined in the proof of Theorem 15.6 is an 
equivalence relation.

 62. Give an example of a ring without unity that is contained in a field.
 63. Prove that the set T in the proof of Corollary 3 to Theorem 15.5 is 

ring-isomorphic to the field of rational numbers.
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296 Rings

 64. Suppose that f: R S S is a ring homomorphism and that the 
image of f is not {0}. If R has a unity and S is an integral domain, 
show that f carries the unity of R to the unity of S. Give an ex-
ample to show that the preceding statement need not be true if S 
is not an integral domain.

 65. Let f(x) [ R[x]. If a 1 bi is a complex zero of f(x) (here i 5 2�1), 
show that a 2 bi is a zero of f(x). (This exercise is referred to in 
Chapter 32.)

 66. Let R 5 e ca b

b a
d ` a, b [ Z f , and let f be the mapping that

  takes c a b

b a
d  to a 2 b.

 a. Show that f is a homomorphism.
 b. Determine the kernel of f.
 c. Show that R/Ker f is isomorphic to Z.
 d. Is Ker f a prime ideal?
 e. Is Ker f a maximal ideal?
 67. Show that the prime subfield of a field of characteristic p is ring-

isomorphic to Zp and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in 
this chapter.)

 68. Let n be a positive integer. Show that there is a ring isomorphism 
from Z2 to a subring of Z2n if and only if n is odd.

 69. Show that Zmn is ring-isomorphic to Zm % Zn when m and n are rela-
tively prime.

 70. Prove that every integer with decimal representation of the form 
abcabc (for example, 916916) is divisible by 11.

Suggested Readings

J. A. Gallian and J. Van Buskirk, “The Number of Homomorphisms from 
Zm into Zn,” American Mathematical Monthly 91 (1984): 196–197.

In this article, formulas are given for the number of group homomor-
phisms from Zm into Zn and the number of ring homomorphisms from 
Zm into Zn.
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Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are 
 Principal Ideal Rings,” Journal of Undergraduate Mathematics 23 
(1991): 59–62.

In this article written by undergraduates, it is shown that R[x] is a 
 principal ideal ring if and only if R < R1 % R2 % ? ? ? % Rn, where 
each Ri is a field.

Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms from Zm1

 % ? ? ? % Zmr into Zk1
 % ? ? ? % Zks,” American Mathe-

matical Monthly 105 (1998): 259–260.

This article gives a formula for the number described in the title.

Suggested Website

http://www.d.umn.edu/~jgallian/puzzle

This site has a math puzzle that is based on the ideas presented in this 
chapter. The user selects an integer and then proceeds through a series of 
steps to produce a new integer. Finally, another integer is created by using 
all but one of the digits of the previous integer in any order. The software 
then determines the digit not used.
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16

Wit lies in recognizing the resemblance among things which differ and the 
difference between things which are alike.

madame de staël

Polynomial Rings

Notation and Terminology
One of the mathematical concepts that students are most familiar with 
and most comfortable with is that of a polynomial. In high school,  
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably 
new—polynomials with coefficients from Zn. Notice that all of these 
sets of polynomials are rings, and, in each case, the set of coefficients is 
also a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R
Let R be a commutative ring. The set of formal symbols

R[x] 5 {anxn 1 an21x
n21 1 ? ? ? 1 a1x 1 a0 | ai [ R,

 n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.

Two elements

anxn 1 an21x
n21 1 ? ? ? 1 a1x 1 a0

and

bmxm 1 bm21x
m21 1 ? ? ? 1 b1x 1 b0

of R[x] are considered equal if and only if ai 5 bi for all nonnegative 
 integers i. (Define ai 5 0 when i . n and bi 5 0 when i . m.)   
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16 | Polynomial Rings 299

In this definition, the symbols x, x2, . . . , xn do not represent 
 “unknown” elements or variables from the ring R. Rather, their  purpose 
is to serve as convenient placeholders that separate the ring  elements 
an, an21, . . . , a0. We could have avoided the x’s by defining a polyno-
mial as an infinite sequence a0, a1, a2, . . . , an, 0, 0, 0, . . . , but our 
method takes advantage of the student’s experience in manipulating 
polynomials where x does represent a variable. The disadvantage of our 
method is that one must be careful not to confuse a polynomial with the 
function determined by a polynomial. For example, in Z3[x], the poly-
nomials f (x) 5 x and g(x) 5 x3 determine the same function from Z3 to 
Z3, since f(a) 5 g(a) for all a in Z3.† But f(x) and g(x) are different ele-
ments of Z3[x]. Also, in the ring Zn[x], be careful to reduce only the 
coefficients and not the exponents modulo n. For example, in Z3[x], 
5x 5 2x, but x5 2 x2.

To make R[x] into a ring, we define addition and multiplication in 
the usual way.

Definition Addition and Multiplication in R[x]
Let R be a commutative ring and let

f (x) 5 anxn 1 an21x
n21 1 ? ? ? 1 a1x 1 a0

and

g(x) 5 bmxm 1 bm21x
m21 1 ? ? ? 1 b1x 1 b0

belong to R[x]. Then

f (x) 1 g(x) 5 (as 1 bs)xs 1 (as21 1 bs21)xs21

 1 ? ? ? 1 (a1 1 b1)x 1 a0 1 b0,

where s is the maximum of m and n, ai 5 0 for i . n, and bi 5 0 for  
i . m. Also,

f (x)g(x) 5 cm1nxm1n 1 cm1n21x
m1n21 1 ? ? ? 1 c1x 1 c0,

where

ck 5 akb0 1 ak21b1 1 ? ? ? 1 a1bk21 1 a0bk

for k 5 0, . . . , m 1 n.

Although the definition of multiplication might appear complicated, 
it is just a formalization of the familiar process of using the distributive 

†In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula  
for f(x). This substitution is a homomorphism from R[x] to R.
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300 Rings

property and collecting like terms. So, just multiply polynomials over a 
commutative ring R in the same way that polynomials are always mul-
tiplied. Here is an example.

Consider f(x) 5 2x3 1 x2 1 2x 1 2 and g(x) 5 2x2 1 2x 1 1 in Z3[x]. 
Then, in our preceding notation, a5 5 0, a4 5 0, a3 5 2, a2 5 1, a1 5 2, 
a0 5 2, and b5 5 0, b4 5 0, b3 5 0, b2 5 2, b1 5 2, b0 5 1. Now, using 
the definitions and remembering that addition and multiplication of the 
coefficients are done modulo 3, we have

f(x) 1 g(x) 5 (2 1 0)x3 1 (1 1 2)x2 1 (2 1 2)x 1 (2 1 1)

 5 2x3 1 0x2 1 1x 1 0

 5 2x3 1 x

and

 f(x) ? g(x) 5 (0 ? 1 1 0 ? 2 1 2 ? 2 1 1 ? 0 1 2 ? 0 1 2 ? 0)x5

  1 (0 ? 1 1 2 ? 2 1 1 ? 2 1 2 ? 0 1 2 ? 0)x4

  1 (2 ? 1 1 1 ? 2 1 2 ? 2 1 2 ? 0)x3

  1 (1 ? 1 1 2 ? 2 1 2 ? 2)x2 1 (2 ? 1 1 2 ? 2)x 1 2 ? 1
 5 x5 1 0x4 1 2x3 1 0x2 1 0x 1 2
 5 x5 1 2x3 1 2.

Our definitions for addition and multiplication of polynomials were 
formulated so that they are commutative and associative, and so that 
multiplication is distributive over addition. We leave the verification 
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0,

where an 2 0, we say that f(x) has degree n; the term an is called the 
leading coefficient of f(x), and if the leading coefficient is the multipli-
cative identity element of R, we say that f(x) is a monic polynomial. 
The polynomial f(x) 5 0 has no degree. Polynomials of the form 
f(x) 5 a0 are called constant. We often write deg f(x) 5 n to indicate 
that f(x) has degree n. As with polynomials with real coefficients, we 
may insert or delete terms of the form 0xk; 1xk is the same as xk; and 
1(2ak)xk is the same as 2akxk.

Very often properties of R carry over to R[x]. Our first theorem is a 
case in point.
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   Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

PROOF Since we already know that D[x] is a ring, all we need  
to show is that D[x] is commutative with a unity and has no zero -divisors. 
Clearly, D[x] is commutative whenever D is. If 1 is the unity  element of 
D, it is obvious that f(x) 5 1 is the unity element of D[x]. Finally, sup-
pose that

f (x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0

and

g(x) 5 bmxm 1 bm21xm21 1 ? ? ? 1 b0,

where an 2 0 and bm 2 0. Then, by definition, f(x)g(x) has leading co-
efficient anbm and, since D is an integral domain, anbm 2 0. 

The Division Algorithm  
and Consequences

One of the properties of integers that we have used repeatedly is the 
division algorithm: If a and b are integers and b 2 0, then there exist 
unique integers q and r such that a 5 bq 1 r, where 0 # r , |b|. The 
next theorem is the analogous statement for polynomials over a field.

 Theorem 16.2 Division Algorithm for F[x]

Let F be a field and let f(x), g(x) [ F[x] with g(x) 2 0. Then  

there exist unique polynomials q(x) and r(x) in F[x] such that f(x) 5 

g(x)q(x) 1 r(x) and either r(x) 5 0 or deg r(x) , deg g(x).

PROOF We begin by showing the existence of q(x) and r(x). If 
f(x) 5 0 or deg f(x) , deg g(x), we simply set q(x) 5 0 and r(x) 5 f(x). 
So, we may assume that n 5 deg f(x) $ deg g(x) 5 m and let f(x) 5 
anxn 1 ? ? ? 1 a0 and g(x) 5 bmxm 1 ? ? ? 1 b0. The idea behind this 
proof is to begin just as if you were going to “long divide” g(x) into 
f(x), then use the Second Principle of Mathematical Induction on 
deg f(x) to finish up. Thus, resorting to long division, we let f1(x) 5 

If D is an integral domain, then D [x] is an integral domain.
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302 Rings

f(x) 2 anbm  
21xn2mg(x).† Then, f1(x) 5 0 or deg f1(x) , deg f(x); so, by 

our  induction hypothesis, there exist q1(x) and r1(x) in F[x] such that  
f1(x) 5 g(x)q1(x) 1 r1(x), where r1(x) 5 0 or deg r1(x) , deg g(x). 
[Technically, we should get the induction started by proving the case 
in which deg f(x) 5 0, but this is trivial.] Thus,

f(x) 5 anbm   
21xn2mg(x) 1 f1(x)

 5 anbm   
21xn2mg(x) 1 q1(x)g(x) 1 r1(x)

 5 [anbm   
21xn2m 1 q1(x)]g(x) 1 r1(x).

So, the polynomials q(x) 5 anbm   
21xn2m 1 q1(x) and r(x) 5 r1(x) have 

the desired properties.
To prove uniqueness, suppose that f(x) 5 g(x)q(x) 1 r(x) and f(x) 5 

g(x) q(x) 1 r(x), where r(x) 5 0 or deg r(x) , deg g(x) and r(x) 5 0 
or deg r(x) , deg g(x). Then, subtracting these two equations, we obtain

0 5 g(x)[q(x) 2 q(x)] 1 [r(x) 2 r(x)]

or

r(x) 2 r(x) 5 g(x)[q(x) 2 q(x)].

Thus, r(x) 2 r(x) is 0, or the degree of r(x) 2 r(x) is at least that of  
g(x). Since the latter is clearly impossible, we have r(x) 5 r(x) and  
q(x) 5 q(x) as well. 

The polynomials q(x) and r(x) in the division algorithm are called 
the quotient and remainder in the division of f(x) by g(x). When the 
ring of coefficients of a polynomial ring is a field, we can use the long 
division process to determine the quotient and remainder.

†For example,

 

 (3>2)x2

q3x4                1 x 1 1

3x4 1 3x2                   

2 3x2 1 x 1 1

2x2 1 2

So,
23x2 1 x 1 1 5 3x4 1 x 1 1 2 (3/2)x2(2x2 1 2)

In general,
anbm

21xn2m

qan x
n 1 . . . 

 an x
n 1 . . . 

f1(x)

bm xm 1 . . .

So,
f1(x) 5 (anxn 1 ? ? ?) 2 anbm  

21xn2m(bmxm 1 ? ? ?)
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16 | Polynomial Rings 303

 EXAMPLE 1 To find the quotient and remainder upon dividing 
f(x) 5 3x4 1 x3 1 2x2 1 1 by g(x) 5 x2 1 4x 1 2, where f(x) and g(x) 
belong to Z5[x], we may proceed by long division, provided we keep in 
mind that addition and multiplication are done modulo 5. Thus,

 3x2 1 4x

q3x4 1 x3 1 2x2     1 1

  3x4 1 2x3 1    x2                   

4x3 1  x2     1 1

  4x3 1  x2 1 3x        

2x 1 1

x2 1 4x 1 2

So, 3x2 1 4x is the quotient and 2x 1 1 is the remainder. Therefore,

  3x4 1 x3 1 2x2 1 1 5 (x2 1 4x 1 2)(3x2 1 4x) 1 2x 1 1. 

Let D be an integral domain. If f(x) and g(x) [ D[x], we say that g(x) 
divides f(x) in D[x] [and write g(x) | f(x)] if there exists an h(x) [ D[x] 
such that f(x) 5 g(x)h(x). In this case, we also call g(x) a factor of f(x). 
An element a is a zero (or a root) of a polynomial f(x) if f(a) 5 0. 
 [Recall that f(a) means substitute a for x in the expression for f(x).] 
When F is a field, a [ F, and f(x) [ F[x], we say that a is a zero of 
multiplicity k (k $ 1) if (x 2 a)k is a factor of f(x) but (x 2 a)k11 is not 
a factor of f(x). With these definitions, we may now give several impor-
tant corollaries of the division algorithm. No doubt you have seen these 
for the special case where F is the field of real numbers.

 Corollary 1 Remainder Theorem

Let F be a field, a [ F, and f(x) [ F [x]. Then f(a) is the remainder in 

the division of f(x) by x 2 a.

PROOF The proof of Corollary 1 is left as an exercise (Exercise 5). 

 Corollary 2 Factor Theorem

Let F be a field, a [ F, and f(x) [ F[x]. Then a is a zero of f(x) if 
and only if x 2 a is a factor of f(x).

PROOF The proof of Corollary 2 is left as an exercise (Exercise 9). 
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304 Rings

 Corollary 3 Polynomials of Degree n Have at Most n Zeros

A polynomial of degree n over a field has at most n zeros, counting 

multiplicity. 

PROOF We proceed by induction on n. Clearly, a polynomial of 
 degree 0 over a field has no zeros. Now suppose that f(x) is a polyno-
mial of degree n over a field and a is a zero of f(x) of multi plicity k. 
Then, f(x) 5 (x 2 a)kq(x) and q(a) 2 0; and, since n 5 deg f(x) 5 deg  
(x 2 a)k q(x) 5 k 1 deg q(x), we have k # n (see Exercise 19). If f(x)  
has no zeros other than a, we are done. On the other hand, if b 2 a and 
b is a zero of f(x), then 0 5 f(b) 5 (b 2 a)kq(b), so that b is also a zero 
of q(x) with the same multiplicity as it has for f(x) (see Exercise 21).  
By the Second Principle of Mathematical Induction, we know that 
q(x) has at most deg q(x) 5 n 2 k zeros, counting multiplicity. Thus, 
f(x) has at most k 1 n 2 k 5 n zeros, counting multiplicity. 

We remark that Corollary 3 is not true for arbitrary polynomial rings. 
For example, the polynomial x2 1 3x 1 2 has four zeros in Z6. (See 
Exercise 3.) Lagrange was the first to prove Corollary 3 for polynomi-
als in Zp[x].

 EXAMPLE 2 The Complex Zeros of xn 2 1
We find all complex zeros of xn 2 1. Let v 5 cos(360°/n) 1 
i sin(360°/n). It follows from DeMoivre’s Theorem (see Example 10  
in Chapter 0) that vn 5 1 and vk 2 1 for 1 # k , n. Thus, each of 1,  
v, v2, . . . , vn21 is a zero of xn 2 1 and, by Corollary 3, there are no 
others. 

The complex number v in Example 2 is called a primitive nth root of 
unity.

We conclude this chapter with an important theoretical application 
of the division algorithm, but first an important definition.

Definition Principal Ideal Domain (PID)
A principal ideal domain is an integral domain R in which every ideal 
has the form kal 5 {ra | r [ R} for some a in R.

 Theorem 16.3 F[x] Is a PID

Let F be a field. Then F [x] is a principal ideal domain.
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16 | Polynomial Rings 305

PROOF By Theorem 16.1, we know that F[x] is an integral domain. 
Now, let I be an ideal in F[x]. If I 5 {0}, then I 5 k0l. If I 2 {0}, then 
among all the elements of I, let g(x) be one of minimum degree. We will 
show that I 5 kg(x)l. Since g(x) [ I, we have kg(x)l # I. Now 
let f(x) [ I. Then, by the division algorithm, we may write f(x) 5  
g(x)q(x) 1 r(x), where r(x) 5 0 or deg r(x) , deg g(x). Since r(x) 5 f(x) 2 
g(x)q(x) [ I, the minimality of deg g(x) implies that the latter condition 
cannot hold. So, r(x) 5 0 and, therefore, f(x) [ kg(x)l. This shows that 
I # kg(x)l. 

The proof of Theorem 16.3 also establishes the following.

 Theorem 16.4 Criterion for I 5 kg(x)l

Let F be a field, I a nonzero ideal in F [x], and g(x) an element of 

F [x]. Then, I 5 8g(x)9 if and only if g(x) is a nonzero polynomial of 

minimum degree in I.

As an application of the First Isomorphism Theorem for Rings 
(Theorem 15.3) and Theorem 16.4, we verify the remark we made in 
Example 12 in Chapter 14 that the ring R[x]/kx2 1 1l is isomorphic to 
the ring of complex numbers.

 EXAMPLE 3 Consider the homomorphism f from R[x] onto C given 
by f(x) S f(i) (that is, evaluate a polynomial in R[x] at i). Then  
x2 1 1 [ Ker f and is clearly a polynomial of minimum degree in Ker f. 
Thus, Ker f 5 kx2 1 1l and R[x]/kx2 1 1l is isomorphic to C. 

Exercises

If I feel unhappy, I do mathematics to become happy. If I am happy, I do 
mathematics to keep happy.

paul turán

  1. Let f(x) 5 4x3 1 2x2 1 x 1 3 and g(x) 5 3x4 1 3x3 1 3x2 1 x 1 4, 
where f(x), g(x) [ Z5[x]. Compute f(x) 1 g(x) and f(x) ? g(x).

  2. In Z3[x], show that the distinct polynomials x4 1 x and x2 1 x 
 determine the same function from Z3 to Z3.

  3. Show that x2 1 3x 1 2 has four zeros in Z6. (This exercise is 
 referred to in this chapter.)
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306 Rings

  4. If R is a commutative ring, show that the characteristic of R[x] is 
the same as the characteristic of R.

  5. Prove Corollary 1 of Theorem 16.2.
  6. List all the polynomials of degree 2 in Z2[x]. Which of these are 

equal as functions from Z2 to Z2?
  7. Find two distinct cubic polynomials over Z2 that determine the 

same function from Z2 to Z2.
  8. For any positive integer n, how many polynomials are there of  

degree n over Z2? How many distinct polynomial functions from Z2 
to Z2 are there?

  9. Prove Corollary 2 of Theorem 16.2.
 10. Let R be a commutative ring. Show that R[x] has a subring isomor-

phic to R.
 11. If f: R S S is a ring homomorphism, define f: R[x] S S[x] by 

(anxn 1 ? ? ? 1 a0) S f(an)xn 1 ? ? ? 1 f(a0). Show that f is a ring  
homomorphism. (This exercise is referred to in Chapter 33.)

 12. If the rings R and S are isomorphic, show that R[x] and S[x] are  
isomorphic.

 13. Let f(x) 5 5x4 1 3x3 1 1 and g(x) 5 3x2 1 2x 1 1 in Z7[x]. 
Determine the quotient and remainder upon dividing f(x) by g(x).

 14. Let f(x) and g(x) be cubic polynomials with integer coefficients 
such that f (a) 5 g(a) for four integer values of a. Prove that f (x) 5 
g(x). Generalize.

 15. Show that the polynomial 2x 1 1 in Z4[x] has a multiplicative in-
verse in Z4[x].

 16. Are there any nonconstant polynomials in Z[x] that have multi-
plicative inverses? Explain your answer.

 17. Let p be a prime. Are there any nonconstant polynomials in Zp[x] 
that have multiplicative inverses? Explain your answer.

 18. Show that Corollary 3 of Theorem 16.2 is false for any commuta-
tive ring that has a zero divisor.

 19. (Degree Rule) Let D be an integral domain and f(x), g(x) [ D[x]. 
Prove that deg ( f(x) ? g(x)) 5 deg f(x) 1 deg g(x). Show, by ex-
ample, that for commutative ring R it is possible that deg f(x)g(x) , 
deg f(x) 1 deg g(x), where f(x) and g(x) are nonzero elements in 
R[x]. (This exercise is referred to in this chapter, Chapter 17, and 
Chapter 18.)

 20. Prove that the ideal kxl in Q[x] is maximal.
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16 | Polynomial Rings 307

 21. Let f(x) belong to F[x], where F is a field. Let a be a zero of f(x) of 
multiplicity n, and write f(x) 5 (x 2 a)nq(x). If b Z a is a zero of 
q(x), show that b has the same multiplicity as a zero of q(x) as it 
does for f(x). (This exercise is referred to in this chapter.)

 22. Prove that for any positive integer n, a field F can have at most a 
 finite number of elements of multiplicative order at most n.

 23. Let F be an infinite field and let f(x) [ F[x]. If f(a) 5 0 for infi-
nitely many elements a of F, show that f(x) 5 0.

 24. Let F be an infinite field and let f(x), g(x) [ F[x]. If f(a) 5 g(a) for 
infinitely many elements a of F, show that f(x) 5 g(x).

 25. Let F be a field and let p(x) [ F[x]. If f(x), g(x) [ F[x] and  
deg f(x) , deg p(x) and deg g(x) , deg p(x), show that f(x) 1  
kp(x)l 5 g(x) 1 kp(x)l implies f(x) 5 g(x). (This exercise is  
 referred to in Chapter 20.)

 26. Prove that Z[x] is not a principal ideal domain. (Compare this with 
Theorem 16.3.)

 27. Find a polynomial with integer coefficients that has 1/2 and 21/3 
as zeros.

 28. Let f(x) [ R[x]. Suppose that f(a) 5 0 but f9(a) 2 0, where f9(x) is 
the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

 29. Show that Corollary 2 of Theorem 16.2 is true over any commuta-
tive ring with unity.

 30. Show that Corollary 3 of Theorem 16.2 is true for polynomials 
over integral domains.

 31. Let F be a field and let

I 5 {anxn 1 an21xn21 1 ? ? ? 1 a0 | an, an21, . . . , a0 [ F and  
 an 1 an21 1 ? ? ? 1 a0 5 0}.

  Show that I is an ideal of F[x] and find a generator for I.
 32. Let F be a field and let f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0 [ F[x]. 

Prove that x 2 1 is a factor of f(x) if and only if an 1 an21 1 ? ? ? 1 
a0 5 0.

 33. Let m be a fixed positive integer. For any integer a, let a denote 
a mod m. Show that the mapping of f: Z[x] S Zm[x] given by

f(anxn 1 an21xn21 1 ? ? ? 1 a0) 5 anxn 1 an21xn21 1 ? ? ? 1 a0

  is a ring homomorphism. (This exercise is referred to in Chapters 
17 and 33.)

 34. Find infinitely many polynomials f(x) in Z3[x] such that f(a) 5 0 for 
all a in Z3.
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308 Rings

 35. For every prime p, show that

xp21 2 1 5 (x 2 1)(x 2 2) ? ? ? [x 2 ( p 2 1)]
  in Zp[x].
 36. Let f be the ring homomorphism from Z[x] to Z given by f(f(x)) 5 

f(1). Find a polynomial g(x) in Z[x] such that Ker f 5 kg(x)l. Is 
there more than one possibility for g(x)? To what familiar ring is 
Z[x]/Ker f isomorphic? Do this exercise with Z replaced by Q.

 37. Give an example of a field that properly  contains the field of com-
plex numbers C.

 38. (Wilson’s Theorem) For every integer n . 1, prove that (n 2 1)! 
mod n 5 n 2 1 if and only if n is prime.

 39. For every prime p, show that ( p 2 2)! mod p 5 1.
 40. Find the remainder upon dividing 98! by 101.
 41. Prove that (50!)2 mod 101 5 21 mod 101.
 42. If I is an ideal of a ring R, prove that I[x] is an ideal of R[x].
 43. Give an example of a commutative ring R with unity and a   

maximal ideal I of R such that I[x] is not a maximal ideal of R[x].
 44. Let R be a commutative ring with unity. If I is a prime ideal of R, 

prove that I[x] is a prime ideal of R[x].
 45. Let F be a field, and let f(x) and g(x) belong to F[x]. If there is no 

polynomial of positive degree in F[x] that divides both f(x) and g(x) 
[in this case, f(x) and g(x) are said to be relatively prime], prove that 
there exist polynomials h(x) and k(x) in F[x] with the property that 
f(x)h(x) 1 g(x)k(x) 5 1. (This exercise is referred to in Chapter 20.)

 46. Prove that Q[x]/kx2 2 2l is ring-isomorphic to Q[22] 5 {a 1  
b22 | a, b [ Q}.

 47. Let f(x) [ R[x]. If f(a) 5 0 and f 9(a) 5 0 [f 9(a) is the derivative of 
f(x) at a], show that (x 2 a)2 divides f(x).

 48. Let F be a field and let I 5 {f(x) [ F[x] | f (a) 5 0 for all a in F}. 
Prove that I is an ideal in F[x]. Prove that I is infinite when F is fi-
nite and I 5 {0} when F is infinite. When F is finite, find a monic 
polynomial g(x) such that I 5 kg(x)l.

 49. Let g(x) and h(x) belong to Z[x] and let h(x) be monic. If h(x) di-
vides g(x) in Q[x], show that h(x) divides g(x) in Z[x]. (This exer-
cise is referred to in Chapter 33.)

 50. Let R be a ring and x be an indeterminate. Prove that the rings R[x] 
and R[x2] are ring-isomorphic.

 51. Let f (x) be a nonconstant element of Z[x]. Prove that f (x) takes on 
infinitely many values in Z.
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16 | Polynomial Rings 309

 52. Let f (x) be a nonconstant element in Z[x]. Prove that k f (x)l is not 
maximal in Z[x].

 53. Let Zn[x] be the ring of polynomials in x with coefficients from Zn 
and ordinary addition and multiplication. If n can be written in the 
form t2m, show that tmx 1 1 is a unit in Zn[x].

 54. Let f (x) belong to Zp[x]. Prove that if f (b) 5 0, then f (bp) 5 0.
 55. Suppose f (x) is a polynomial with odd integer coefficients and even 

degree. Prove that f (x) has no rational zeros. 
 56. For any field F, recall that F(x) denotes the field of quotients of the 

ring F[x]. Prove that there is no element in F(x) whose square is x.
 57. Let F be a field. Show that there exist a, b [ F with the property 

that x2 1 x 1 1 divides x43 1 ax 1 b.
 58. Let f(x) 5 amxm 1 am21xm21 1 ? ? ? 1 a0 and g(x) 5 bn 1 bn21xn21 1 

? ? ? 1 b0 belong to Q[x] and suppose that f (x)g(x) belongs to Z[x]. 
Prove that aibj is an integer for every i and j.

 59. Let f (x) belong to Z[x]. If a mod m 5 b mod m, prove that f (a) 
mod m 5 f(b) mod m. Prove that if both f(0) and f(1) are odd, then  
f  has no zero in Z.

 60. Find the remainder when x51 is divided by x 1 4 in Z7[x].
 61. Show that 1 is the only solution of x25 2 1 5 0 in Z37.
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Saunders Mac Lane

Saunders Mac Lane ranks among the most 
influential mathematicians in the 20th cen-
tury. He was born on August 4, 1909, in 
Norwich, Connecticut. In 1933, at the height 
of the Depression, he was newly married; de-
spite having degrees from Yale, the University 
of Chicago, and the University of Göttingen, 
he had no prospects for a position at a college 
or university. After applying for employment 
as a master at a private preparatory school for 
boys, Mac Lane received a two-year instruc-
torship at Harvard in 1934. He then spent a 
year at Cornell and a year at the University 
of Chicago before returning to Harvard  
in 1938. In 1947, he went back to Chicago  
permanently. 

Much of Mac Lane’s work focuses on the 
interconnections among algebra, topology, 

The 1986 Steele Prize for cumulative 
 influence is awarded to Saunders Mac Lane 
for his many contributions to algebra and 
algebraic topology, and in particular for his 
pioneering work in homological and 
 categorical algebra.

Citation for the Steele Prize

and geometry. His book Survey of Modern 
Algebra, coauthored with Garrett Birkhoff, 
influenced generations of mathematicians 
and is now a classic. Mac Lane served as 
president of the Mathematical Association of 
America and the American Mathematical 
Society. He was elected to the National 
Academy of Sciences, received the National 
Medal of Science and the American 
Mathematical Society’s Steele Prize for 
Lifetime Achievement, and supervised 41 
Ph.D. theses. Mac Lane died April 14, 2005, 
at age 95.

To find more information about Mac 
Lane, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

O
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Factorization  
of Polynomials

The value of a principle is the number of things it will explain.
ralph waldo emerson

17

Reducibility Tests
In high school, students spend much time factoring polynomials and 
finding their zeros. In this chapter, we consider the same problems in a 
more abstract setting.

To discuss factorization of polynomials, we must first introduce the 
polynomial analog of a prime integer.

Definition Irreducible Polynomial, Reducible Polynomial
Let D be an integral domain. A polynomial f(x) from D[x] that is 
 neither the zero polynomial nor a unit in D[x] is said to be irreducible 

over D if, whenever f(x) is expressed as a product f(x) 5 g(x)h(x), with 
g(x) and h(x) from D[x], then g(x) or h(x) is a unit in D[x]. A nonzero, 
nonunit element of D[x] that is not irreducible over D is called 
 reducible over D.

In the case that an integral domain is a field F, it is equivalent and more 
convenient to define a nonconstant f(x) [ F[x] to be irreducible if f(x) can-
not be expressed as a product of two polynomials of lower degree.

 EXAMPLE 1 The polynomial f(x) 5 2x2 1 4 is irreducible over Q  
but reducible over Z, since 2x2 1 4 5 2(x2 1 2) and neither 2 nor x2 1 2 
is a unit in Z[x]. 

 EXAMPLE 2 The polynomial f(x) 5 2x2 1 4 is irreducible over R  
but reducible over C. 

 EXAMPLE 3 The polynomial x2 2 2 is irreducible over Q but re-
ducible over R. 
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 EXAMPLE 4 The polynomial x2 1 1 is irreducible over Z3 but re-
ducible over Z5. 

In general, it is a difficult problem to decide whether or not a particu-
lar polynomial is reducible over an integral domain, but there are spe-
cial cases when it is easy. Our first theorem is a case in point. It applies 
to the four preceding examples.

 Theorem 17.1 Reducibility Test for Degrees 2 and 3

Let F be a field. If f(x) [ F[x] and deg f(x) is 2 or 3, then f(x) is 

reducible over F if and only if f(x) has a zero in F.

PROOF Suppose that f(x) 5 g(x)h(x), where both g(x) and h(x) belong 
to F[x] and have degrees less than that of f(x). Since deg f(x) 5 deg g(x) 1 
deg h(x) (Exercise 19 in Chapter 16) and deg f(x) is 2 or 3, at least one 
of g(x) and h(x) has degree 1. Say g(x) 5 ax 1 b. Then, clearly, 2a21b 
is a zero of g(x) and therefore a zero of f(x) as well.

Conversely, suppose that f(a) 5 0, where a [ F. Then, by the Factor 
Theorem, we know that x 2 a is a factor of f(x) and, therefore, f(x) is 
reducible over F. 

Theorem 17.1 is particularly easy to use when the field is Zp, because 
in this case we can check for reducibility of f(x) by simply testing  
to see if f(a) 5 0 for a 5 0, 1, . . . , p 2 1. For example, since 2 is a  
zero of x2 1 1 over Z5, x2 1 1 is reducible over Z5. On the other hand, 
because neither 0, 1, nor 2 is a zero of x2 1 1 over Z3, x

2 1 1 is irre-
ducible over Z3.

Note that polynomials of degree larger than 3 may be reducible over 
a field even though they do not have zeros in the field. For example, in 
Q[x], the polynomial x4 1 2x2 1 1 is equal to (x2 1 1)2, but has no 
zeros in Q.

Our next three tests deal with polynomials with integer coefficients. 
To simplify the proof of the first of these, we introduce some terminol-
ogy and isolate a portion of the argument in the form of a lemma.

Definition Content of a Polynomial, Primitive Polynomial
The content of a nonzero polynomial a

n
xn 1 a

n21x
n21 1 ? ? ? 1 a0, 

where the a’s are integers, is the greatest common divisor of the 
 integers a

n
, a

n21, . . . , a0. A primitive polynomial is an element of Z[x] 
with content 1.
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 Gauss’s Lemma

The product of two primitive polynomials is primitive.

PROOF Let f(x) and g(x) be primitive polynomials, and suppose that 
f(x)g(x) is not primitive. Let p be a prime divisor of the content of  
f(x)g(x), and let f (x), g(x), and f(x)g(x) be the polynomials obtained 
from f(x), g(x), and f(x)g(x) by reducing the coefficients modulo p. 
Then, f (x) and g(x) belong to the integral domain Zp[x] and f (x)g(x) 5 
f(x)g(x) 5 0, the zero element of Zp[x] (see Exercise 33 in Chapter 16). 
Thus, f (x) 5 0 or g(x) 5 0. This means that either p divides every co-
efficient of f(x) or p divides every coefficient of g(x). Hence, either f(x) 
is not primitive or g(x) is not primitive. This contradiction completes 
the proof. 

Remember that the question of reducibility depends on which ring  
of coefficients one permits. Thus, x2 2 2 is irreducible over Z but  
reducible over Q[22]. In Chapter 20, we will prove that every poly-
nomial of degree greater than 1 with coefficients from an integral  
domain is reducible over some field. Theorem 17.2 shows that in the 
case of polynomials irreducible over Z, this field must be larger than 
the field of rational numbers.

 Theorem 17.2 Reducibility over Q Implies Reducibility over Z

Let f(x) [ Z[x]. If f(x) is reducible over Q, then it is reducible over Z.

PROOF Suppose that f (x) 5 g(x)h(x), where g(x) and h(x) [ Q[x]. 
Clearly, we may assume that f (x) is primitive because we can divide 
both f (x) and g(x) by the content of f (x). Let a be the least common 
multiple of the denominators of the coefficients of g(x), and b the least 
common multiple of the denominators of the coefficients of h(x). Then 
abf(x) 5 ag(x) ? bh(x), where ag(x) and bh(x) [ Z[x]. Let c1 be the con-
tent of ag(x) and let c2 be the content of bh(x). Then ag(x) 5 c1g1(x) and 
bh(x) 5 c2h1(x), where both g1(x) and h1(x) are primitive, and abf(x) 5 
c1c2g1(x)h1(x). Since f(x) is primitive, the content of abf(x) is ab. Also, 
since the product of two primitive polynomials is primitive, it follows 
that the content of c1c2g1(x)h1(x) is c1c2. Thus, ab 5 c1c2 and f(x) 5 
g1(x)h1(x), where g1(x) and h1(x) [ Z[x] and deg g1(x) 5 deg g(x) and 
deg h1(x) 5 deg h(x). 
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 EXAMPLE 5 We illustrate the proof of Theorem 17.2 by tracing 
through it for the polynomial f (x) 5 6x2 1 x 2 2 5 (3x 2 3/2)(2x 1 
4/3) 5 g(x)h(x). In this case we have a 5 2, b 5 3, c1 5 3, c2 5 2, g1(x) 5 
2x 2 1, and h1(x) 5 3x 1 2, so that 2 ? 3(6x2 1 x 2 2) 5 3 ? 2(2x 2  
1)(3x 1 2) or 6x2 1 x 2 2 5 (2x 2 1)(3x 1 2). 

Irreducibility Tests
Theorem 17.1 reduces the question of irreducibility of a polynomial of 
degree 2 or 3 to one of finding a zero. The next theorem often allows us 
to simplify the problem even further.

 Theorem 17.3 Mod p Irreducibility Test

Let p be a prime and suppose that f(x) [ Z[x] with deg f(x) $ 1.  
Let f (x) be the polynomial in Z

p
[x] obtained from f(x) by reducing 

all the coefficients of f(x) modulo p. If f (x) is irreducible over Z
p
 and 

deg f (x) 5 deg f(x), then f(x) is irreducible over Q.

PROOF It follows from the proof of Theorem 17.2 that if f(x) is re-
ducible over Q, then f(x) 5 g(x)h(x) with g(x), h(x) [ Z[x], and both 
g(x) and h(x) have degree less than that of f(x). Let f (x), g(x), and h(x) 
be the polynomials obtained from f(x), g(x), and h(x) by reducing all 
the  coefficients modulo p. Since deg f(x) 5 deg f (x), we have deg  
g(x) # deg g(x) , deg f (x) and deg h(x) # deg h(x) , deg f (x). But, 
f (x) 5 g(x)h(x), and this contradicts our assumption that f (x) is irre-
ducible over Zp. 

 EXAMPLE 6 Let f(x) 5 21x3 2 3x2 1 2x 1 9. Then, over Z2, we 
have f (x) 5 x3 1 x2 1 1 and, since f 102 5 1 and f 112 5 1, we see that 
f (x) is irreducible over Z2. Thus, f (x) is irreducible over Q. Notice that, 
over Z3, f (x) 5 2x is irreducible, but we may not apply Theorem 17.3 to 
conclude that f(x) is irreducible over Q. 

Be careful not to use the converse of Theorem 17.3. If f(x) [ Z[x] 
and f (x) is reducible over Zp for some p, f(x) may still be irreducible 
over Q. For example, consider f(x) 5 21x3 2 3x2 1 2x 1 8. Then, over 
Z2, f (x) 5 x3 1 x2 5 x2(x 1 1). But over Z5, f (x) has no zeros and 
therefore is irreducible over Z5. So, f(x) is irreducible over Q. Note that 
this example shows that the Mod p Irreducibility Test may fail for 
some p and work for others. To conclude that a particular f(x) in Z[x] is 
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17 | Factorization of Polynomials 315

irreducible over Q, all we need to do is find a single p for which the cor-
responding polynomial f 1x2 in Zp is irreducible. However, this is not al-
ways possible, since f(x) 5 x4 1 1 is irreducible over Q but reducible 
over Zp for every prime p. (See Exercise 29.)

The Mod p Irreducibility Test can also be helpful in checking for 
 irreducibility of polynomials of degree greater than 3 and polynomials 
with rational coefficients.

 EXAMPLE 7 Let f(x) 5 (3/7)x4 2 (2/7)x2 1 (9/35)x 1 3/5. We will 
show that f(x) is irreducible over Q. First, let h(x) 5 35f(x) 5 15x4 2 
10x2 1 9x 1 21. Then f(x) is irreducible over Q if h(x) is irreducible 
over Z. Next, applying the Mod 2 Irreducibility Test to h(x), we get  
h1x2 5 x4 1 x 1 1. Clearly, h1x2 has no zeros in Z2. Furthermore, h1x2 
has no quadratic factor in Z2[x] either. [For if so, the factor would have 
to be either x2 1 x 1 1 or x2 1 1. Long division shows that x2 1 x 1 1 
is not a factor, and x2 1 1 cannot be a factor because it has a zero, 
whereas h1x2 does not.] Thus, h1x2 is irreducible over Z2[x]. This guar-
antees that h(x) is irreducible over Q. 

 EXAMPLE 8 Let f(x) 5 x5 1 2x 1 4. Obviously, neither Theorem 
17.1 nor the Mod 2 Irreducibility Test helps here. Let’s try mod 3. 
Substitution of 0, 1, and 2 into f (x) does not yield 0, so there are no linear 
factors. But f (x)  may have a quadratic factor. If so, we may assume it has 
the form x2 1 ax 1 b (see Exercise 5). This gives nine possibilities to 
check. We can immediately rule out each of the nine that has a zero over 
Z3, since f (x) does not have one. This leaves only x2 1 1, x2 1 x 1 2, and 
x2 1 2x 1 2 to check. These are eliminated by long division. So, since 
f (x) is irreducible over Z3, f(x) is irreducible over Q. (Why is it unneces-
sary to check for cubic or fourth-degree factors?) 

Another important irreducibility test is the following one, credited to 
Ferdinand Eisenstein (1823–1852), a student of Gauss. The corollary 
was first proved by Gauss by a different method.

 Theorem 17.4 Eisenstein’s Criterion (1850)

Let

f(x) 5 a
n
xn 1 a

n21x
n21 1 ? ? ? 1 a0 [ Z[x].

If there is a prime p such that p B a
n
, p | a

n21, . . . , p | a0 and p2 B a0, 
then f (x) is irreducible over Q.

99708_ch17_ptg01_hr_311-327.indd   315 06/06/12   9:24 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



316 Rings

PROOF If f (x) is reducible over Q, we know by Theorem 17.2 that 
there exist elements g(x) and h(x) in Z[x] such that f (x) 5 g(x)h(x),  
1 # deg g(x), and 1 # deg h(x) , n. Say g(x) 5 br x

r 1 ? ? ? 1 b0 and 
h(x) 5 cs x

s 1 ? ? ? 1 c0. Then, since p | a0, p
2 B a0, and a0 5 b0c0, it fol-

lows that p divides one of b0 and c0 but not the other. Let us say p | b0 
and p B c0. Also, since p B an 5 brcs, we know that p B br. So, there is a 
least integer t such that p B bt. Now, consider at 5 btc0 1 bt21c1 1 ? ? ? 
1 b0ct. By assumption, p divides at and, by choice of t, every summand 
on the right after the first one is divisible by p. Clearly, this forces p to 
divide btc0 as well. This is impossible, however, since p is prime and p 
divides neither bt nor c0. 

 Corollary Irreducibility of pth Cyclotomic Polynomial

For any prime p, the pth cyclotomic polynomial

F
p
(x) 5 

xp � 1
x � 1

 5 xp21 1 xp22 1 ? ? ? 1 x 1 1

is irreducible over Q.

PROOF Let

f(x)�£p(x � 1)�
(x � 1)p � 1

(x � 1) � 1
�xp�1�ap

1
b xp�2�ap

2
b xp�3� . . .�ap

1
b.

Then, since every coefficient except that of xp21 is divisible by p and 
the constant term is not divisible by p2, by Eisenstein’s Criterion, f(x) is 
irreducible over Q. So, if Fp(x) 5 g(x)h(x) were a nontrivial factoriza-
tion of Fp(x) over Q, then f(x) 5 Fp(x 1 1) 5 g(x 1 1) ? h(x 1 1) 
would be a nontrivial factorization of f(x) over Q. Since this is impossi-
ble, we conclude that Fp(x) is irreducible over Q. 

 EXAMPLE 9 The polynomial 3x5 1 15x4 2 20x3 1 10x 1 20 is 
 irreducible over Q because 5 B 3 and 25 B 20 but 5 does divide 15, 
220, 10, and 20. 

The principal reason for our interest in irreducible polynomials 
stems from the fact that there is an intimate connection among them, 
maximal ideals, and fields. This connection is revealed in the next theo-
rem and its first corollary.
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17 | Factorization of Polynomials 317

 Theorem 17.5 kp(x)l Is Maximal If and Only If p(x) Is Irreducible

Let F be a field and let p(x) [ F[x]. Then kp(x)l is a maximal ideal  

in F[x] if and only if p(x) is irreducible over F.

PROOF Suppose first that kp(x)l is a maximal ideal in F[x]. Clearly, 
p(x) is neither the zero polynomial nor a unit in F[x], because neither 
{0} nor F[x] is a maximal ideal in F[x]. If p(x) 5 g(x)h(x) is a factor-
ization of p(x) over F, then k p(x)l # kg(x)l # F[x]. Thus, k p(x)l 5 kg(x)l 
or F[x] 5 kg(x)l. In the first case, we must have deg p(x) 5 deg g(x). In 
the second case, it follows that deg g(x) 5 0 and, consequently, deg h(x) 5 
deg p(x). Thus, p(x) cannot be written as a product of two polynomials 
in F[x] of lower degree.

Now, suppose that p(x) is irreducible over F. Let I be any ideal of 
F[x] such that k p(x)l # I # F[x]. Because F[x] is a principal ideal do-
main, we know that I 5 kg(x)l for some g(x) in F[x]. So, p(x) [ kg(x)l 
and, therefore, p(x) 5 g(x)h(x), where h(x) [ F[x]. Since p(x) is irre-
ducible over F, it follows that either g(x) is a constant or h(x) is a con-
stant. In the first case, we have I 5 F[x]; in the second case, we have  
k p(x)l 5 kg(x)l 5 I. So, k p(x)l is maximal in F[x]. 

 Corollary 1 F[x]/k p(x)l Is a Field

Let F be a field and p(x) be an irreducible polynomial over F. Then  

F[x]/k p(x)l is a field.

PROOF This follows directly from Theorems 17.5 and 14.4. 

The next corollary is a polynomial analog of Euclid’s Lemma for 
primes (see Chapter 0).

 Corollary 2 p(x) | a(x)b(x) Implies p(x) | a(x) or p(x) | b(x)

Let F be a field and let p(x), a(x), b(x) [ F[x]. If p(x) is irreducible 

over F and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

PROOF Since p(x) is irreducible, F[x]/kp(x)l is a field and, therefore, an 
integral domain. From Theorem 14.3, we know that kp(x)l is a prime  
ideal, and since p(x) divides a(x)b(x), we have a(x)b(x) [ kp(x)l. Thus, 
a(x) [ k p(x)l or b(x) [ kp(x)l. This means that p(x) | a(x) or p(x) | b(x). 

The next two examples put the theory to work.
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 EXAMPLE 10 We construct a field with eight elements. By Theorem 
17.1 and Corollary 1 of Theorem 17.5, it suffices to find a cubic polyno-
mial over Z2 that has no zero in Z2. By inspection, x3 1x 1 1 fills the 
bill. Thus, Z2[x]/kx3 1 x 1 1l 5 {ax2 1 bx 1 c 1 kx3 1 x 1 1l | a, b, c 
[ Z2} is a field with eight elements. For practice, let us do a few calcula-
tions in this field. Since the sum of two polynomials of the form ax2 1 
bx 1 c is another one of the same form, addition is easy. For example,

(x2 1 x 1 1 1 kx3 1 x 1 1l) 1 (x2 1 1 1 kx3 1 x 1 1l)
  5 x 1 kx3 1 x 1 1l.

On the other hand, multiplication of two coset representatives need not 
yield one of the original eight coset representatives:

(x2 1 x 1 1 1 kx3 1 x 1 1l) ? (x2 1 1 1 kx3 1 x 1 1l)
  5 x4 1 x3 1 x 1 1 1 kx3 1 x 1 1l 5 x4 1 kx3 1 x 1 1l

(since the ideal absorbs the last three terms). How do we express this in 
the form ax2 1 bx 1 c 1 kx3 1 x 1 1l? One way is to long divide x4 by 
x3 1 x 1 1 to obtain the remainder of x2 1 x (just as one reduces  
12 1 k5l to 2 1 k5l by dividing 12 by 5 to obtain the remainder 2). 
Another way is to observe that x3 1 x 1 1 1 kx3 1 x 1 1l 5 0 1 
kx3 1 x 1 1l implies x3 1 kx3 1 x 1 1l 5 x 1 1 1 kx3 1 x 1 1l. Thus, 
we may multiply both sides by x to obtain

x4 1 kx3 1 x 1 1l 5 x2 1 x 1 kx3 1 x 1 1l.

Similarly,

(x2 1 x 1 kx3 1 x 1 1l) ? (x 1 kx3 1 x 1 1l)
 5 x3 1 x2 1 kx3 1 x 1 1l
 5 x2 1 x 1 1 1 kx3 1 x 1 1l.

A partial multiplication table for this field is given in Table 17.1. To 
simplify the notation, we indicate a coset by its representative only.

Table 17.1 A Partial Multiplication Table for Example 10

 1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1

1 1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1
x x x2 x2 1 x x 1 1 1 x2 1 x 1 1 x2 1 1
x 1 1 x 1 1 x2 1 x x2 1 1 x2 1 x 1 1 x2 1 x
x2 x2 x 1 1 x2 1 x 1 1 x2 1 x x x2 1 1 1
x2 1 1 x2 1 1 1 x2 x x2 1 x 1 1 x 1 1 x2 1 x
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17 | Factorization of Polynomials 319

(Complete the table yourself. Keep in mind that x3 can be replaced by  
x 1 1 and x4 by x2 1 x.) 

 EXAMPLE 11 Since x2 1 1 has no zero in Z3, it is irreducible over 
Z3. Thus, Z3[x]/kx2 1 1l is a field. Analogous to Example 12 in Chapter 14, 
Z3[x]/kx2 1 1l 5 {ax 1 b 1 kx2 1 1l | a, b [ Z3}. Thus, this field has 
nine elements. A multiplication table for this field can be obtained from 
Table 13.1 by replacing i by x. (Why does this work?) 

Unique Factorization in Z[x]
As a further application of the ideas presented in this chapter, we next 
prove that Z[x] has an important factorization property. In Chapter 18, 
we will study this property in greater depth. The first proof of Theorem 
17.6 was given by Gauss. In reading this theorem and its proof, keep in 
mind that the units in Z[x] are precisely f(x) 5 1 and f(x) 5 21 (see 
Exercise 25 in Chapter 12), the irreducible polynomials of degree 0 
over Z are precisely those of the form f(x) 5 p and f(x) 5 2p where p is 
a prime, and every nonconstant polynomial from Z[x] that is irreducible 
over Z is primitive (see Exercise 3).

 Theorem 17.6 Unique Factorization in Z[x]

Every polynomial in Z[x] that is not the zero polynomial or a unit 

in Z[x] can be written in the form b1b2 ? ? ? bs
p1(x)p2(x) ? ? ? p

m
(x), 

where the b
i
’s are irreducible polynomials of degree 0 and the p

i
(x)’s 

are irreducible polynomials of positive degree. Furthermore, if

b1b2 ? ? ? bs 
p1(x)p2(x) ? ? ? p

m
(x) 5 c1c2 ? ? ? ct 

q1(x)q2(x) ? ? ? q
n
(x),

where the b
i
’s and c

i
’s are irreducible polynomials of degree 0 and the 

p
i
(x)’s and q

i
(x)’s are irreducible polynomials of positive degree, then 

s 5 t, m 5 n, and, after renumbering the c’s and q(x)’s, we have b
i
 5 

6c
i
  for i 5 1, . . . , s and p

i
(x) 5 6q

i
(x) for i 5 1, . . . , m.

PROOF Let f(x) be a nonzero, nonunit polynomial from Z[x]. If 
deg  f(x) 5 0, then f(x) is constant and the result follows from the 
Fundamental Theorem of Arithmetic. If deg f(x) . 0, let b denote the 
content of f(x), and let b1b2 ? ? ? bs be the factorization of b as a product 
of primes. Then, f(x) 5 b1b2 ? ? ? bs f1(x), where f1(x) belongs to Z[x], is 
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primitive and deg f1(x) 5 deg f(x). Thus, to prove the existence portion 
of the theorem, it suffices to show that a primitive polynomial f(x) of 
positive degree can be written as a product of irreducible polynomials 
of positive degree. We proceed by induction on deg f(x). If deg f(x) 5 1, 
then f(x) is already irreducible and we are done. Now suppose that 
every primitive polynomial of degree less than deg f(x) can be written 
as a product of irreducibles of positive degree. If f(x) is irreducible, 
there is nothing to prove. Otherwise, f(x) 5 g(x)h(x), where both g(x) 
and h(x) are primitive and have degree less than that of f(x). Thus, by in-
duction, both g(x) and h(x) can be written as a product of irreducibles of 
positive degree. Clearly, then, f(x) is also such a product.

To prove the uniqueness portion of the theorem, suppose that 
f(x) 5 b1b2 ? ? ? bsp1(x)p2(x) ? ? ? pm(x) 5 c1c2 ? ? ? ctq1(x)q2(x) ? ? ? 
qn(x), where the bi’s and ci’s are irreducible polynomials of degree 0 
and the pi(x)’s and qi(x)’s are irreducible polynomials of positive degree. 
Let b 5 b1b2 ? ? ? bs and c 5 c1c2 ? ? ? ct. Since the p(x)’s and q(x)’s are 
primitive, it follows from Gauss’s Lemma that p1(x)p2(x) ? ? ? pm(x) and 
q1(x)q2(x) ? ? ? qn(x) are primitive. Hence, both b and c must equal plus 
or minus the content of f(x) and, therefore, are equal in absolute value. 
It then follows from the Fundamental Theorem of Arithmetic that s 5 t 
and, after renumbering, bi 5 6ci for i 5 1, 2, . . . , s. Thus, by cancel-
ing the constant terms in the two factorizations for f(x), we have  
p1(x)p2(x) ? ? ? pm(x) 5 6q1(x) q2(x) ? ? ? qn(x). Now, viewing the p(x)’s 
and q(x)’s as elements of Q[x] and noting that p1(x) divides q1(x) ? ? ? 
qn(x), it follows from Corollary 2 of Theorem 17.5 and induction (see 
Exercise 28) that p1(x) | qi(x) for some i. By renumbering, we may as-
sume i 5 1. Then, since q1(x) is irreducible, we have q1(x) 5 (r/s)p1(x), 
where r, s [ Z. However, because both q1(x) and p1(x) are primitive, we 
must have r/s 5 61. So, q1(x) 5 6p1(x). Also, after canceling, we have 
p2(x) ? ? ? pm(x) 5 6q2(x) ? ? ? qn(x). Now, we may repeat the argument 
above with p2(x) in place of p1(x). If m , n, after m such steps we 
would have 1 on the left and a nonconstant polynomial on the right. 
Clearly, this is impossible. On the other hand, if m . n, after n steps we 
would have 61 on the right and a nonconstant polynomial on the left—
another impossibility. So, m 5 n and pi(x) 5 6qi(x) after suitable  
renumbering of the q(x)’s. 

Weird Dice: An Application 
of Unique Factorization

 EXAMPLE 12 Consider an ordinary pair of dice whose faces are 
 labeled 1 through 6. The probability of rolling a sum of 2 is 1/36, the 
probability of rolling a sum of 3 is 2/36, and so on. In a 1978 issue of
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17 | Factorization of Polynomials 321

Scientific American [1], Martin Gardner remarked that if one were to 
label the six faces of one cube with the integers 1, 2, 2, 3, 3, 4 and the six 
faces of another cube with the integers 1, 3, 4, 5, 6, 8, then the probabil-
ity of obtaining any particular sum with these dice (called Sicherman 
dice) would be the same as the probability of rolling that sum with ordi-
nary dice (that is, 1/36 for a 2, 2/36 for a 3, and so on). See Figure 17.1. 
In this example, we show how the Sicherman labels can be derived, and 
that they are the only possible such labels besides 1 through 6. To do so, 
we utilize the fact that Z[x] has the unique factorization property.
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Figure 17.1

To begin, let us ask ourselves how we may obtain a sum of 6, say, with 
an ordinary pair of dice. Well, there are five possibilities for the two faces: 
(5, 1), (4, 2), (3, 3), (2, 4), and (1, 5). Next we consider the product of the 
two polynomials created by using the ordinary dice labels as exponents:

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x).

Observe that we pick up the term x6 in this product in precisely the fol-
lowing ways: x5 ? x1, x4 ? x2 , x3 ? x3, x2 ? x4, x1 ? x5. Notice the correspon-
dence between pairs of labels whose sums are 6 and pairs of terms 
whose products are x6. This correspondence is one-to-one, and it is valid 
for all sums and all dice—including the Sicherman dice and any other 
dice that yield the desired probabilities. So, let a1, a2, a3, a4, a5, a6 and 
b1, b2, b3, b4, b5, b6 be any two lists of positive integer labels for the faces 
of a pair of cubes with the property that the probability of rolling any 
particular sum with these dice (let us call them weird dice) is the same as 
the probability of rolling that sum with ordinary dice labeled 1 through 
6. Using our observation about products of polynomials, this means that

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x)
  5 (xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6) ?

(xb1 1 xb2 1 xb3 1 xb4 1 xb5 1 xb6).                 (1)
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322 Rings

Now all we have to do is solve this equation for the a’s and b’s. Here is 
where unique factorization in Z[x] comes in. The polynomial x6 1 x5 1 
x4 1 x3 1 x2 1 x factors uniquely into irreducibles as

x(x 1 1)(x2 1 x 1 1)(x2 2 x 1 1)

so that the left-hand side of Equation (1) has the irreducible factor ization

x2(x 1 1)2(x2 1 x 1 1)2(x2 2 x 1 1)2.

So, by Theorem 17.6, this means that these factors are the only possible 
irreducible factors of P(x) 5 xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6. Thus, 
P(x) has the form

xq(x 1 1)r(x2 1 x 1 1)t(x2 2 x 1 1)u,

where 0 # q, r, t, u # 2.
To restrict further the possibilities for these four parameters, we evalu-

ate P(1) in two ways. P(1) 5 1a1 1 1a2 1 ? ? ? 1 1a6 5 6 and  
P(1) 5 1q2r3t1u. Clearly, this means that r 5 1 and t 5 1. What about q? 
Evaluating P(0) in two ways shows that q 2 0. On the other hand, if  
q 5 2, the smallest possible sum one could roll with the corresponding 
labels for dice would be 3. Since this violates our assumption, we have 
now reduced our list of possibilities for q, r, t, and u to q 5 1, r 5 1,  
t 5 1, and u 5 0, 1, 2. Let’s consider each of these possibilities in turn.

When u 5 0, P(x) 5 x4 1 x3 1 x3 1 x2 1 x2 1 x, so the die labels 
are 4, 3, 3, 2, 2, 1—a Sicherman die.

When u 5 1, P(x) 5 x6 1 x5 1 x4 1 x3 1 x2 1 x, so the die labels 
are 6, 5, 4, 3, 2, 1—an ordinary die.

When u 5 2, P(x) 5 x8 1 x6 1 x5 1 x4 1 x3 1 x, so the die labels 
are 8, 6, 5, 4, 3, 1—the other Sicherman die.

This proves that the Sicherman dice do give the same probabilities 
as ordinary dice and that they are the only other pair of dice that have 
this property. 

Exercises

No matter how good you are at something, there’s always about a million 
people better than you.

homer simpson

  1. Verify the assertion made in Example 2.
  2. Suppose that D is an integral domain and F is a field containing D. 

If f(x) [ D[x] and f(x) is irreducible over F but reducible over D, 
what can you say about the factorization of f(x) over D?
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17 | Factorization of Polynomials 323

  3. Show that a nonconstant polynomial from Z[x] that is irreducible 
over Z is primitive. (This exercise is referred to in this chapter.)

  4. Suppose that f(x) 5 xn 1 an21x
n21 1 ? ? ? 1 a0 [ Z[x]. If r is ra-

tional and x 2 r divides f(x), show that r is an integer.
  5. Let F be a field and let a be a nonzero element of F.
 a. If af(x) is irreducible over F, prove that f(x) is irreducible over F.
 b. If f(ax) is irreducible over F, prove that f(x) is irreducible over F.
 c.  If f(x 1 a) is irreducible over F, prove that f(x) is irreducible 

over F.
 d. Use part c to prove that 8x3 2 6x 1 1 is irreducible over Q.
  (This exercise is referred to in this chapter.)
  6. Let F be a field and f(x) [ F[x]. Show that, as far as deciding upon 

the irreducibility of f(x) over F is concerned, we may assume that 
f(x) is monic. (This assumption is useful when one uses a computer 
to check for irreducibility.)

  7. Explain how the Mod p Irreducibility Test (Theorem 17.3) can be 
used to test members of Q[x] for irreducibility.

  8. Suppose that f(x) [ Zp[x] and f(x) is irreducible over Zp, where p is 
a prime. If deg f(x) 5 n, prove that Zp[x]/k f(x)l is a field with pn 
elements.

  9. Construct a field of order 25.
 10. Construct a field of order 27.
 11. Show that x3 1 x2 1 x 1 1 is reducible over Q. Does this fact con-

tradict the corollary to Theorem 17.4?
 12. Determine which of the polynomials below is (are) irreducible 

over Q.
 a. x5 1 9x4 1 12x2 1 6
 b. x4 1 x 1 1
 c. x4 1 3x2 1 3
 d. x5 1 5x2 1 1
 e. (5/2)x5 1 (9/2)x4 1 15x3 1 (3/7)x2 1 6x 1 3/14
 13. Show that x4 1 1 is irreducible over Q but reducible over R. (This 

exercise is referred to in this chapter.)
 14. Show that x2 1 x 1 4 is irreducible over Z11.
 15. Let f(x) 5 x3 1 6 [ Z7[x]. Write f(x) as a product of irreducible 

polynomials over Z7.
 16. Let f(x) 5 x3 1 x2 1 x 1 1 [ Z2[x]. Write f(x) as a product of ir-

reducible polynomials over Z2.
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 17. Let p be a prime.
 a.  Show that the number of reducible polynomials over Zp of the 

form x2 1 ax 1 b is p(p 1 1)/2.
 b.  Determine the number of reducible quadratic polynomials over Zp.
 18. Let p be a prime.
 a.  Determine the number of irreducible polynomials over Zp of the 

form x2 1 ax 1 b.
 b.  Determine the number of irreducible quadratic polynomials 

over Zp.
 19. Show that for every prime p there exists a field of order p2.
 20. Prove that, for every positive integer n, there are infinitely many 

polynomials of degree n in Z[x] that are irreducible over Q.
 21. Show that the field given in Example 11 in this chapter is isomor-

phic to the field given in Example 9 in Chapter 13.
 22. Let f(x) [ Zp[x]. Prove that if f(x) has no factor of the form x2 1  

ax 1 b, then it has no quadratic factor over Zp.
 23. Find all monic irreducible polynomials of degree 2 over Z3.
 24. Given that p is not the zero of a nonzero polynomial with rational 

coefficients, prove that p 2 cannot be written in the form ap 1 b, 
where a and b are rational.

 25. Find all the zeros and their multiplicities of x5 1 4x4 1 4x3 2 x2 2 
4x 1 1 over Z5.

 26. Find all zeros of f(x) 5 3x2 1 x 1 4 over Z7 by substitution. Find 
all zeros of f(x) by using the quadratic formula (2b 6 2b2 � 4ac) ? 
(2a)21 (all calculations are done in Z7). Do your answers agree? 
Should they? Find all zeros of g(x) 5 2x2 1 x 1 3 over Z5 by sub-
stitution. Try the quadratic formula on g(x). Do your answers 
agree? State necessary and sufficient conditions for the quadratic 
formula to yield the zeros of a quadratic from Zp[x], where p is a 
prime greater than 2.

 27. (Rational Root Theorem) Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x]

  and an 2 0. Prove that if r and s are relatively prime integers and 
f (r/s) 5 0, then r | a0 and s | an.

 28. Let F be a field and let p(x), a1(x), a2(x), . . . , ak(x) [ F[x], where 
p(x) is irreducible over F. If p(x) | a1(x)a2(x) ? ? ? ak(x), show that 
p(x) divides some ai(x). (This exercise is referred to in the proof of 
Theorem 17.6.)

 29. Show that x4 1 1 is reducible over Zp for every prime p. (This ex-
ercise is referred to in this chapter.)
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17 | Factorization of Polynomials 325

 30. If p is a prime, prove that xp21 2 xp22 1 xp23 2 ? ? ? 2 x 1 1 is 
 irreducible over Q.

 31. Let F be a field and let p(x) be irreducible over F. If E is a field 
that contains F and there is an element a in E such that p(a) 5 0, 
show that the mapping f: F[x] S E given by f(x) S f(a) is a ring 
homomorphism with kernel kp(x)l. (This exercise is referred to in 
Chapter 20.)

 32. Prove that the ideal kx2 1 1l is prime in Z[x] but not maximal in Z[x].
 33. Let F be a field and let p(x) be irreducible over F. Show that {a 1  

k p(x)l | a [ F} is a subfield of F[x]/kp(x)l isomorphic to F. (This 
exercise is referred to in Chapter 20.)

 34. Let F be a field and let f(x) be a polynomial in F[x] that is reducible 
over F. Prove that kf(x)l is not a prime ideal in F[x].

 35. Example 1 in this chapter shows the converse of Theorem 17.2 is 
not true. That is, a polynomial f(x) in Z[x] can be reducible over Z 
but irreducible over Q. State a condition on f(x) that makes the con-
verse true.

 36. Suppose there is a real number r with the property that r 1 1/r is 
an odd integer. Prove that r is irrational.

 37. In the game of Monopoly, would the probabilities of landing on 
various properties be different if the game were played with  
Sicherman dice instead of ordinary dice? Why?

 38. Carry out the analysis given in Example 12 for a pair of tetrahe-
drons instead of a pair of cubes. (Define ordinary tetrahedral dice 
as the ones labeled 1 through 4.)

 39. Suppose in Example 12 that we begin with n (n . 2) ordinary dice 
each labeled 1 through 6, instead of just two. Show that the only 
possible labels that produce the same probabilities as n ordinary 
dice are the labels 1 through 6 and the Sicherman labels.

 40. Show that one two-sided die labeled with 1 and 4 and another 18- 
sided die labeled with 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8 
yield the same probabilities as an ordinary pair of cubes labeled 
1 through 6. Carry out an analysis similar to that given in Example  
12 to derive these labels.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Serge Lang

Lang’s Algebra changed the way graduate 
algebra is taught . . . . It has affected all 
subsequent graduate-level algebra books. 

Citation for the Steele Prize

Serge Lang was a prolific mathematician, 
inspiring teacher, and political activist. He 
was born near Paris on May 19, 1927. His 
family moved to Los Angeles when he was a 
teenager. Lang received a B.A. in physics 
from Caltech in 1946 and a Ph.D. in mathe-
matics from Princeton in 1951 under Emil 
Artin (see the biography in Chapter 19). His 
first permanent position was at Columbia 
University in 1955, but in 1971 Lang re-
signed his position at Columbia as a protest 
against Columbia’s handling of Vietnam an-
tiwar protesters. He joined Yale University in 
1972 and remained there until his retirement.

Lang made significant contributions to 
number theory, algebraic geometry, differ-
ential geometry, and analysis. He wrote more 
than 120 research articles and 60 books.  
His most famous and influential book was 
his graduate-level Algebra. Lang was a 

prize-winning teacher known for his ex-
traordinary devotion to students. Lang often 
got into heated discussions about mathemat-
ics, the arts, and politics. In one incident, he 
threatened to hit a fellow mathematician 
with a bronze bust for not conceding it was 
self- evident that the Beatles were greater 
musicians than Beethoven.

Among Lang’s honors were the Steele 
Prize for Mathematical Exposition from the 
American Mathematical Society, the Cole 
Prize in Algebra (see Chapter 25), and elec-
tion to the National Academy of Sciences. 
Lang died on September 25, 2005, at the 
age of 78.

For more information about Lang, visit:

http://wikipedia.org/wiki/ 
Serge_Lang
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Divisibility in  
Integral Domains

Give me a fruitful error anytime, full of seeds, bursting with its own 
corrections. You can keep your sterile truth for yourself.

vilfredo pareto

Irreducibles, Primes
In the preceding two chapters, we focused on factoring polynomials 
over the integers or a field. Several of those results—unique factoriza-
tion in Z[x] and the division algorithm for F[x], for instance—are natu-
ral counterparts to theorems about the integers. In this chapter and the 
next, we examine factoring in a more abstract setting.

Definition Associates, Irreducibles, Primes
Elements a and b of an integral domain D are called associates if 
a 5 ub, where u is a unit of D. A nonzero element a of an integral 
 domain D is called an irreducible if a is not a unit and, whenever b, 
c [ D with a 5 bc, then b or c is a unit. A nonzero element a of an 
 integral domain D is called a prime if a is not a unit and a | bc implies 
a | b or a | c.

Roughly speaking, an irreducible is an element that can be factored 
only in a trivial way. Notice that an element a is a prime if and only if 
kal is a prime ideal.

Relating the definitions above to the integers may seem a bit confus-
ing, since in Chapter 0 we defined a positive integer to be a prime if it 
satisfies our definition of an irreducible, and we proved that a prime in-
teger satisfies the definition of a prime in an integral domain (Euclid’s 
Lemma). The source of the confusion is that in the case of the integers, 
the concepts of irreducibles and primes are equivalent, but in general, as 
we will soon see, they are not.

The distinction between primes and irreducibles is best illustrated by 
integral domains of the form Z[2d] 5 {a 1 b2d | a, b [ Z}, where d is 
not 1 and is not divisible by the square of a prime. (These rings are of 
fundamental importance in number theory.) To analyze these rings, we 
need a convenient method of determining their units, irreducibles, and 

18
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18 | Divisibility in Integral Domains 329

primes. To do this, we define a function N, called the norm, from Z[2d] 
into the nonnegative integers by N(a 1 b2d) 5 |a2 2 db2|. We leave it 
to the reader (Exercise 1) to verify the following four properties: N(x) 5 0 
if and only if x 5 0; N(xy) 5 N(x)N(y) for all x and y; x is a unit if and 
only if N(x) 5 1; and, if N(x) is prime, then x is irreducible in Z[2d].

 EXAMPLE 1 We exhibit an irreducible in Z[2�3] that is not prime. 
Here, N(a 1 b2�3) 5 a2 1 3b2. Consider 1 1 2�3. Suppose that we 
can factor this as xy, where neither x nor y is a unit. Then N(xy) 5  
N(x)N(y) 5 N(1 1 2�3) 5 4, and it follows that N(x) 5 2. But there are 
no integers a and b that satisfy a2 1 3b2 5 2. Thus, x or y is a unit and  
1 1 2�3 is an irreducible. To verify that it is not prime, we observe that 
(1 1 2�3)(1 2 2�3) 5 4 5 2 ? 2, so that 1 1 2�3 divides 2 ? 2. On the 
other hand, for integers a and b to exist so that 2 5 (1 1 2�3)(a 1 
b2�3) 5 (a 2 3b) 1 (a 1 b)2�3, we must have a 2 3b 5 2 and a 1 
b 5 0, which is impossible. 

Showing that an element of a ring of the form Z[2d] is irreducible is 
more difficult when d . 1. The next example illustrates one method of 
doing this. The example also shows that the converse of the fourth 
property above for the norm is not true. That is, it shows that x may be 
irreducible even if N(x) is not prime.

 EXAMPLE 2 The element 7 is irreducible in the ring Z[25]. To verify 
this assertion, suppose that 7 5 xy, where neither x nor y is a unit. Then 
49 5 N(7) 5 N(x)N(y), and since x is not a unit, we cannot have N(x) 5 
1. This leaves only the case N(x) 5 7. Let x 5 a 1 b25. Then there are 
integers a and b satisfying |a2 2 5b2| 5 7. This means that a2 2 5b2 5 
67. Viewing this equation modulo 5 and trying all possible cases for a 
reveals that the only solution is a 5 0. But this means that a is divisible 
by 5, and this implies that |a2 2 5b2| 5 7 is divisible by 5, which is 
false. 

Example 1 raises the question of whether or not there is an integral 
domain containing a prime that is not an irreducible. The answer: no.

 Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.
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PROOF Suppose that a is a prime in an integral domain and a 5 bc. 
We must show that b or c is a unit. By the definition of prime, we know 
that a | b or a | c. Say at 5 b. Then 1b 5 b 5 at 5 (bc)t 5 b(ct) and,  
by cancellation, 1 5 ct. Thus, c is a unit. 

Recall that a principal ideal domain is an integral domain in which 
every ideal has the form kal. The next theorem reveals a circumstance 
in which primes and irreducibles are equivalent.

 Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, an element is an irreducible if and only  

if it is a prime.

PROOF Theorem 18.1 shows that primes are irreducibles. To prove the 
converse, let a be an irreducible element of a principal ideal domain D 
and suppose that a | bc. We must show that a | b or a | c. Consider the 
ideal I 5 {ax 1 by | x, y [ D} and let kdl 5 I. Since a [ I, we can write 
a 5 dr, and because a is irreducible, d is a unit or r is a unit. If d is a 
unit, then I 5 D and we may write 1 5 ax 1 by. Then c 5 acx 1 bcy, 
and since a divides both terms on the right, a also divides c.

On the other hand, if r is a unit, then kal 5 kdl 5 I, and, because b [ I, 
there is an element t in D such that at 5 b. Thus, a divides b. 

It is an easy consequence of the respective division algorithms for Z 
and F[x], where F is a field, that Z and F[x] are principal ideal domains 
(see Exercise 41 in Chapter 14 and Theorem 16.3). Our next example 
shows, however, that one of the most familiar rings is not a principal 
ideal domain.

 EXAMPLE 3 We show that Z[x] is not a principal ideal domain. 
Consider the ideal I 5 k2, xl. We claim that I is not of the form kh(x)l. If 
this were so, there would be f(x) and g(x) in Z[x] such that 2 5 h(x)f(x) 
and x 5 h(x)g(x), since both 2 and x belong to I. By the degree rule 
(Exercise 19 in Chapter 16), 0 5 deg 2 5 deg h(x) 1 deg f(x), so that 
h(x) is a constant polynomial. To determine which  constant, we observe 
that 2 5 h(1)f(1). Thus, h(1) 5 61 or 62. Since 1 is not in I, we must 
have h(x) 5 62. But then x 5 62g(x), which is nonsense. 

We have previously proved that the integral domains Z and Z[x] have 
important factorization properties: Every integer greater than 1 can be 
uniquely factored as a product of irreducibles (that is, primes), and 
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18 | Divisibility in Integral Domains 331

every nonzero, nonunit polynomial can be uniquely factored as a prod-
uct of irreducible polynomials. It is natural to ask whether all integral 
domains have this property. The question of unique factorization in in-
tegral domains first arose with the efforts to solve a famous problem in 
number theory that goes by the name Fermat’s Last Theorem.

Historical Discussion 
of Fermat’s Last Theorem

There are infinitely many nonzero integers x, y, z that satisfy the equa-
tion x2 1 y2 5 z2. But what about the equation x3 1 y3 5 z3 or, more 
generally, xn 1 yn 5 zn, where n is an integer greater than 2 and x, y, z 
are nonzero integers? Well, no one has ever found a single solution of 
this equation, and for more than three centuries many have tried to 
prove that there is none. The tremendous effort put forth by the likes of 
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker, 
and Hilbert to prove that there are no solutions to this equation has 
greatly influenced the development of ring theory.

About a thousand years ago, Arab mathematicians gave an incorrect 
proof that there were no solutions when n 5 3. The problem lay dor-
mant until 1637, when the French mathematician Pierre de Fermat 
(1601–1665) wrote in the margin of a book, “. . . it is impossible to 
separate a cube into two cubes, a fourth power into two fourth powers, 
or, generally, any power above the second into two powers of the same 
degree: I have discovered a truly marvelous demonstration [of this gen-
eral theorem] which this margin is too narrow to contain.”

Because Fermat gave no proof, many mathematicians tried to prove 
the result. The case where n 5 3 was done by Euler in 1770, although 
his proof was incomplete. The case where n 5 4 is elementary and was 
done by Fermat himself. The case where n 5 5 was done in 1825 by 
Dirichlet, who had just turned 20, and by Legendre, who was past 70. 
Since the validity of the case for a particular integer implies the valid-
ity for all multiples of that integer, the next case of interest was n 5 7. 
This case resisted the efforts of the best mathematicians until it was 
done by Gabriel Lamé in 1839. In 1847, Lamé stirred excitement by 
announcing that he had completely solved the problem. His approach 
was to factor the expression xp 1 yp, where p is an odd prime, into

(x 1 y)(x 1 ay) ? ? ? (x 1 a p21y),
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332 Rings

where a is the complex number cos(2p/p) 1 i sin(2p/p). Thus, his 
factorization took place in the ring Z[a] 5 {a0 1 a1a 1 ? ? ? 1 
ap21a

p21 | ai [ Z}. But Lamé made the mistake of assuming that, in 
such a ring, factorization into the product of irreducibles is unique. In 
fact, three years earlier, Ernst Eduard Kummer had proved that this is 
not always the case. Undaunted by the failure of unique factorization, 
Kummer began developing a theory to “save” factorization by creat-
ing a new type of number. Within a few weeks of Lamé’s announce-
ment, Kummer had shown that Fermat’s Last Theorem is true for all 
primes of a special type. This proved that the theorem was true for all 
exponents less than 100, prime or not, except for 37, 59, 67, and 74. 
Kummer’s work has led to the theory of ideals as we know it today.

Over the centuries, many proposed proofs have not held up under 
scrutiny. The famous number theorist Edmund Landau received so many 
of these that he had a form printed with “On page ____, lines ____ to 
____, you will find there is a mistake.” Martin Gardner, “Mathematical 
Games” columnist of Scientific American, had postcards printed to  
decline requests from readers asking him to examine their proofs.

Recent discoveries tying Fermat’s Last Theorem closely to modern 
mathematical theories gave hope that these theories might eventu ally 
lead to a proof. In March 1988, newspapers and scientific publi cations 
worldwide carried news of a proof by Yoichi Miyaoka (see Figure 18.1). 
Within weeks, however, Miyaoka’s proof was shown to be invalid. In 
June 1993, excitement spread through the mathematics community 
with the announcement that Andrew Wiles of Princeton University had 
proved Fermat’s Last Theorem (see Figure 18.2). The Princeton math-
ematics department chairperson was quoted as saying, “When we  
heard it, people started walking on air.” But once again a proof did not 
hold up under scrutiny. This story does have a happy ending. The math-
ematical community has agreed on the validity of the  revised proof 
given by Wiles and Richard Taylor in September of 1994.

In view of the fact that so many eminent mathematicians were un-
able to prove Fermat’s Last Theorem, despite the availability of the 
vastly powerful theories, it seems highly improbable that Fermat had a 
correct proof. Most likely, he made the error that his successors made 
of assuming that the properties of integers, such as unique factoriza-
tion, carry over to integral domains in general.
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Figure 18.1
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334 Rings

Figure 18.2  Andrew Wiles

Unique Factorization Domains
We now have the necessary terminology to formalize the idea of  
unique factorization.

Definition Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

 1. every nonzero element of D that is not a unit can be written as a 
product of irreducibles of D; and

 2. the factorization into irreducibles is unique up to associates and 
the order in which the factors appear.

Another way to formulate part 2 of this definition is the following:  
If p1

n1p2
n2 ? ? ? pr

nr and q1
m1q2

m2 ? ? ? qs
ms are two factorizations of some 

ele ment as a product of irreducibles, where no two of the pi’s are asso-
ciates and no two of the qj’s are associates, then r 5 s, each p i  is an  
associate of one and only one qj, and ni = mj .

Of course, the Fundamental Theorem of Arithmetic tells us that the 
ring of integers is a unique factorization domain, and Theorem 17.6  
says that Z[x] is a unique factorization domain. In fact, as we shall soon 
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18 | Divisibility in Integral Domains 335

see, most of the integral domains we have encountered are unique fac-
torization domains.

Before proving our next theorem, we need the ascending chain con-
dition for ideals.

 Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chain of ideals 

I1 , I2 , ? ? ? must be finite in length.

PROOF Let I1 , I2 , ? ? ? be a chain of strictly increasing ideals in  
an integral domain D, and let I be the union of all the ideals in this chain. 
We leave it as an exercise (Exercise 3) to verify that I is an ideal of D.

Then, since D is a principal ideal domain, there is an element a in D 
such that I 5 kal. Because a [ I and I 5 <Ik, a belongs to some mem-
ber of the chain, say a [ In. Clearly, then, for any member Ii of the 
chain, we have Ii # I 5 kal # In, so that In must be the last member of 
the chain. 

 Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.
 

PROOF Let D be a principal ideal domain and let a0 be any nonzero 
nonunit in D. We will show that a0 is a product of irreducibles (the 
product might consist of only one factor). We begin by showing that 
a0 has at least one irreducible factor. If a0 is irreducible, we are done. 
Thus, we may assume that a0 5 b1a1, where neither b1 nor a1 is a unit 
and a1 is nonzero. If a1 is not irreducible, then we can write a1 5 b2a2, 
where neither b2 nor a2 is a unit and a2 is nonzero. Continuing in this 
fashion, we obtain a sequence b1, b2, . . . of elements that are not units 
in D and a sequence a0, a1, a2, . . . of nonzero elements of D with an 5 
bn11 an11 for each n. Hence, ka0l , ka1l , ? ? ? is a strictly increasing 
chain of ideals (see Exercise 5), which, by the preceding lemma, must 
be finite, say, ka0l , ka1l , ? ? ? , karl. In particular, ar is an irre-
ducible factor of a0. This argument shows that every nonzero nonunit 
in D has at least one irreducible factor.

Now write a0 5 p1c1, where p1 is irreducible and c1 is not a unit. If c1 
is not irreducible, then we can write c1 5 p2c2, where p2 is irreducible 
and c2 is not a unit. Continuing in this fashion, we obtain, as before, a 
strictly increasing sequence ka0l , kc1l , kc2l , ? ? ? , which must end 
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336 Rings

in a finite number of steps. Let us say that the sequence ends with kcsl. 
Then cs is irreducible and a0 5 p1p2 ? ? ? pscs, where each pi is also irre-
ducible. This completes the proof that every nonzero nonunit of a prin-
cipal ideal domain is a product of irreducibles.

It remains to be shown that the factorization is unique up to associ-
ates and the order in which the factors appear. To do this, suppose that 
some element a of D can be written

a 5 p1p2 ? ? ? pr 5 q1q2 ? ? ? qs,

where the p’s and q’s are irreducible and repetition is permitted. We use 
induction on r. If r 5 1, then a is irreducible and, clearly, s 5 1 and  
p1 5 q1. So we may assume that any element that can be expressed as a 
product of fewer than r irreducible factors can be so expressed in only 
one way (up to order and associates). Since D is a principal ideal  
domain, by Theorem 18.2, each irreducible pi in the product p1p2 ? ? ? 
pr is prime. Then because p1 divides q1q2 ? ? ? qs, p1 must divide some qi 
(see Exercise 33), say p1 | q1. Then, q1 5 up1, where u is a unit of D. 
Since

up1p2 ? ? ? pr 5 uq1q2 ? ? ? qs 5 q1(uq2) ? ? ? qs

and

up1 5 q1,

we have, by cancellation,

p2 ? ? ? pr 5 (uq2) ? ? ? qs.

The induction hypothesis now tells us that these two factorizations are 
identical up to associates and the order in which the factors appear. 
Hence, the same is true about the two factorizations of a. 

In the existence portion of the proof of Theorem 18.3, the only 
way we used the fact that the integral domain D is a principal ideal 
domain was to say that D has the property that there is no infinite, 
strictly increasing chain of ideals in D. An integral domain with this 
property is called a Noetherian domain, in honor of Emmy Noether, 
who inaugurated the use of chain conditions in algebra. Noetherian 
domains are of the utmost importance in algebraic geometry. One 
reason for this is that, for many important rings R, the polynomial 
ring R[x] is a Noetherian domain but not a principal ideal domain. 
One such example is Z[x]. In particular, Z[x] shows that a UFD need 
not be a PID (see Example 3).

As an immediate corollary of Theorem 18.3, we have the follow-
ing fact.
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18 | Divisibility in Integral Domains 337

Corollary F[x] Is a UFD

Let F be a field. Then F[x] is a unique factorization domain.
 

PROOF By Theorem 16.3, F[x] is a principal ideal domain. So, F[x] is 
a unique factorization domain, as well. 

As an application of the preceding corollary, we give an elegant 
proof, due to Richard Singer, of Eisenstein’s Criterion (Theorem 17.4).

 EXAMPLE 4 Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x],

and suppose that p is prime such that

p B an, p | an21, . . . , p | a0    and    p2 B a0.

We will prove that f(x) is irreducible over Q. If f(x) is reducible over Q, 
we know by Theorem 17.2 that there exist elements g(x) and h(x) in Z[x] 
such that f(x) 5 g(x)h(x), 1 # deg g(x) , n, and 1 # degh (x) , n. Let 
f (x), g(x), and h(x) be the polynomials in Zp[x] obtained from f (x), 
g(x), and h(x) by reducing all coefficients modulo p. Then, since p di-
vides all the coefficients of f(x) except an, we have anx

n 5 f (x) 5 g(x)? 
h(x). Since Zp is a field, Zp[x] is a unique factorization domain. Thus,  
x | g(x) and x | h(x). So, g(0) 5 h(0) 5 0 and, therefore, p | g(0) and p | h(0). 
But then p2 | g(0)h(0) 5 f(0) 5 a0, which is a contradiction. 

Euclidean Domains
Another important kind of integral domain is a Euclidean domain.

Definition Euclidean Domain (ED)
An integral domain D is called a Euclidean domain if there is a 
 function d (called the measure) from the nonzero elements of D to 
the nonnegative integers such that

 1. d(a) # d(ab) for all nonzero a, b in D; and
 2. if a, b [ D, b 2 0, then there exist elements q and r in D such 

that a 5 bq 1 r, where r 5 0 or d(r) , d(b).

 EXAMPLE 5 The ring Z is a Euclidean domain with d(a) 5 |a| (the 
absolute value of a). 
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338 Rings

 EXAMPLE 6 Let F be a field. Then F[x] is a Euclidean domain with 
d(  f (x)) 5 deg f (x) (see Theorem 16.2). 

Examples 5 and 6 illustrate just one of many similarities between the 
rings Z and F[x]. Additional similarities are summarized in Table 18.1.

Table 18.1 Similarities Between Z and F[x]

 Z F[x]

Euclidean domain: ↔ Euclidean domain:
d(a) 5 |a|  d( f(x)) 5 deg f(x)
Units:  Units:
a is a unit if and only if |a| 5 1  f(x) is a unit if and only if deg f(x) 5 0
Division algorithm: ↔ Division algorithm:
For a, b [ Z, b 2 0, there exist q, r [ Z   For f(x), g(x) [ F[x], g(x) 2 0, there 
  such that a 5 bq 1 r, 0 # r , |b|    exist q(x), r(x) [ F[x] such that f(x) 
    5 g(x)q(x) 1 r(x), 0 # deg r(x) , 
    deg g(x) or r(x) 5 0
PID: ↔ PID:
Every nonzero ideal I 5 kal, where   Every nonzero ideal I 5 kf(x)l, where 
  a 2 0 and |a| is minimum    deg f(x) is minimum
Prime: ↔ Irreducible:
No nontrivial factors  No nontrivial factors
UFD: ↔ UFD:
Every element is a “unique” product of   Every element is a “unique” product of
  primes    irreducibles

 EXAMPLE 7 The ring of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a Euclidean domain with d(a 1 bi) 5 a2 1 b2. Unlike the previous 
two examples, in this example the function d does not obviously sat-
isfy the necessary conditions. That d(x) # d(xy) for x, y [ Z[i] follows 
directly from the fact that d(xy) 5 d(x)d(y) (Exercise 7). To verify that 
condition 2 holds, observe that if x, y [ Z[i] and y 2 0, then xy21 [ 
Q[i], the field of quotients of Z[i] (Exercise 57 in Chapter 15). Say 
xy21 5 s 1 ti, where s, t [ Q. Now let m be the integer nearest s, and 
let n be the integer nearest t. (These integers may not be uniquely 
 determined, but that does not matter.) Thus, |m 2 s| # 1/2 and |n 2 t| 
# 1/2. Then

xy21 5 s 1 ti 5 (m 2 m 1 s) 1 (n 2 n 1 t)i
5 (m 1 ni) 1 [(s 2 m) 1 (t 2 n)i].
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18 | Divisibility in Integral Domains 339

So,

x 5 (m 1 ni)y 1 [(s 2 m) 1 (t 2 n)i]y.

We claim that the division condition of the definition of a Euclidean 
domain is satisfied with q 5 m 1 ni and

r 5 [(s 2 m) 1 (t 2 n)i]y.

Clearly, q belongs to Z[i], and since r 5 x 2 qy, so does r. Finally,

 d(r) 5 d([(s 2 m) 1 (t 2 n)i])d(y)
 5 [(s 2 m)2 1 (t 2 n)2]d(y)

# a1

4
�

1

4
b d(y) , d(y). 

 Theorem 18.4 ED Implies PID

Every Euclidean domain is a principal ideal domain.
 

PROOF Let D be a Euclidean domain and I a nonzero ideal of D. Among 
all the nonzero elements of I, let a be such that d(a) is a minimum. Then 
I 5 kal. For, if b [ I, there are elements q and r such that b 5 aq 1 r, 
where r 5 0 or d(r) , d(a). But r 5 b 2 aq [ I, so d(r) cannot be less 
than d(a). Thus, r 5 0 and b [ kal. Finally, the zero ideal is k0l. 

Although it is not easy to verify, we remark that there are principal 
ideal domains that are not Euclidean domains. The first such example 
was given by T. Motzkin in 1949. A more accessible account of  
Motzkin’s result can be found in [2].

As an immediate consequence of Theorems 18.3 and 18.4, we have 
the following important result.

 Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.
 

We may summarize our theorems and remarks as follows:

    ED ⇒ PID ⇒ UFD;
UFD  /⇒ PID  /⇒ ED.
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340 Rings

(You can remember these implications by listing the types alphabetically.)
In Chapter 17, we proved that Z[x] is a unique factorization domain. 

Since Z is a unique factorization domain, the next theorem is a broad 
generalization of this fact. The proof is similar to that of the special 
case, and we therefore omit it.

 Theorem 18.5 D a UFD Implies D[x] a UFD

If D is a unique factorization domain, then D[x] is a unique 

factorization domain.
 

We conclude this chapter with an example of an integral domain that 
is not a unique factorization domain.

 EXAMPLE 8 The ring Z[2� 5] 5 {a 1 b2� 5 | a, b [ Z} is an inte-
gral domain but not a unique factorization domain. It is straightforward 
that Z[2� 5] is an integral domain (see Exercise 11 in Chapter 13). To 
verify that unique factorization does not hold, we mimic the method 
used in Example 1 with N(a 1 b2� 5) 5 a2 1 5b2. Since N(xy) 5 N(x)
N(y) and N(x) 5 1 if and only if x is a unit (see Exercise 1), it follows 
that the only units of Z[2� 5] are 61.

Now consider the following factorizations:

 46 5 2 ? 23,

46 5 (1 1 32� 5)(1 2 32� 5).

We claim that each of these four factors is irreducible over Z[2� 5]. 
Suppose that, say, 2 5 xy, where x, y [ Z[2� 5] and neither is a unit. 
Then 4 5 N(2) 5 N(x)N(y) and, therefore, N(x) 5 N(y) 5 2, which is 
impossible. Likewise, if 23 5 xy were a nontrivial factorization, then 
N(x) 5 23. Thus, there would be integers a and b such that a2 1 5b2 5 
23. Clearly, no such integers exist. The same argument applies to 1 6  
32� 5. 

In light of Examples 7 and 8, one can’t help but wonder for which d , 0 
is Z[2d] a unique factorization domain. The answer is only when d 5 21 
or 22 (see [1], p. 297). The case where d 5 21 was first proved, naturally 
enough, by Gauss.
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18 | Divisibility in Integral Domains 341

Exercises

I tell them that if they will occupy themselves with the study of mathemat-
ics they will find in it the best remedy against lust of the flesh.

thomas mann, The Magic Mountain

  1. For the ring Z[2d] 5 {a 1 b2d | a, b [ Z}, where d 2 1 and d is 
not divisible by the square of a prime, prove that the norm N(a 1  
b2d) 5 |a2 2 db2| satisfies the four assertions made preceding 
Example 1. (This exercise is referred to in this chapter.)

  2. In an integral domain, show that a and b are associates if and only 
if kal 5 kbl.

  3. Show that the union of a chain I1 , I2 , ? ? ? of ideals of a ring R is 
an ideal of R. (This exercise is referred to in this chapter.)

  4. In an integral domain, show that the product of an irreducible and a 
unit is an irreducible.

  5. Suppose that a and b belong to an integral domain, b 2 0, and a is 
not a unit. Show that kabl is a proper subset of kbl. (This exercise is 
referred to in this chapter.)

  6. Let D be an integral domain. Define a , b if a and b are associates. 
Show that this defines an equivalence relation on D.

  7. In the notation of Example 7, show that d(xy) 5 d(x)d(y).

  8. Let D be a Euclidean domain with measure d. Prove that u is a unit 
in D if and only if d(u) 5 d(1).

  9. Let D be a Euclidean domain with measure d. Show that if a and b 
are associates in D, then d(a) 5 d(b).

 10. Let D be a principal ideal domain and let p [ D. Prove that kpl is a 
max imal ideal in D if and only if p is irreducible.

 11. Trace through the argument given in Example 7 to find q and r in 
Z[i] such that 3 2 4i 5 (2 1 5i)q 1 r and d(r) , d(2 1 5i).

 12. Let D be a principal ideal domain. Show that every proper ideal of 
D is contained in a maximal ideal of D.

 13. In Z[2� 5], show that 21 does not factor uniquely as a product of 
irreducibles.

 14. Show that 1 2 i is an irreducible in Z[i].
 15. Show that Z[2�6] is not a unique factorization domain. (Hint: 

Factor 10 in two ways.) Why does this show that Z[2�6] is not a 
principal ideal domain?

 16. Give an example of a unique factorization domain with a subdo-
main that does not have a unique factorization.
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 17. In Z[i], show that 3 is irreducible but 2 and 5 are not.
 18. Prove that 7 is irreducible in Z[26], even though N(7) is not prime. 
 19. Prove that if p is a prime in Z that can be written in the form a2 1 b2, 

then a 1 bi is irreducible in Z[i]. Find three primes that have this 
property and the corresponding irreducibles.

 20. Prove that Z[2�3] is not a principal ideal domain.
 21. In Z[2�5], prove that 1 1 32�5 is irreducible but not prime.
 22. In Z[25], prove that both 2 and 1 1 25 are irreducible but not 

prime.
 23. Prove that Z[25] is not a unique factorization domain.
 24. Let F be a field. Show that in F[x] a prime ideal is a maximal ideal.
 25. Let d be an integer less than 21 that is not divisible by the square 

of a prime. Prove that the only units of Z[2d] are 11 and 21.
 26. In Z[22] 5 {a 1 b22 | a, b [ Z}, show that every element of the 

form (3 1 222)n is a unit, where n is a positive integer.
 27. If a and b belong to Z[2d], where d is not divisible by the square 

of a prime and ab is a unit, prove that a and b are units.
 28. For a commutative ring with unity we may define associates, irre-

ducibles, and primes exactly as we did for integral domains. With 
these definitions, show that both 2 and 3 are prime in Z12 but 2 is 
irreducible and 3 is not.

 29. Let n be a positive integer and p a prime that divides n. Prove that p 
is prime in Zn. (See Exercise 28).

 30. Let p be a prime divisor of a positive integer n. Prove that p is ir-
reducible in Zn if and only if p2 divides n. (See Exercise 28).

 31. Prove or disprove that if D is a principal ideal domain, then D[x] is 
a principal ideal domain.

 32. Determine the units in Z[i].
 33. Let p be a prime in an integral domain. If p | a1a2 ? ? ? an, prove that 

p divides some ai. (This exercise is referred to in this chapter.)
 34. Show that 3x2 1 4x 1 3 [ Z5[x] factors as (3x 1 2)(x 1 4) and  

(4x 1 1)(2x 1 3). Explain why this does not contradict the corol-
lary of Theorem 18.3.

 35. Let D be a principal ideal domain and p an irreducible element of D. 
Prove that D/kpl is a field.

 36. Show that an integral domain with the property that every strictly  
decreasing chain of ideals I1 . I2 . ? ? ? must be finite in length is 
a field.

 37. An ideal A of a commutative ring R with unity is said to be finitely 
generated if there exist elements a1, a2, . . . , an of A such that  
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A 5 ka1, a2, . . . , anl. An integral domain R is said to satisfy the 
ascending chain condition if every strictly increasing chain of ide-
als I1 , I2 , ? ? ? must be finite in length. Show that an integral 
domain R satisfies the ascending chain condition if and only if 
every ideal of R is finitely generated.

 38. Prove or disprove that a subdomain of a Euclidean domain is a 
Euclidean domain.

 39. Show that for any nontrivial ideal I of Z[i], Z[i]/I is finite.
 40. Find the inverse of 1 1 22 in Z[22]. What is the multiplicative 

order of 1 1 22?
 41. In Z[2�7], show that N(6 1 22�7) 5 N(1 1 32�7) but 6 1 2

2�7 and 1 1 32�7 are not associates.
 42. Let R 5 Z % Z % ? ? ? (the collection of all sequences of integers 

under componentwise addition and multiplication). Show that R 
has ideals I1, I2, I3, . . . with the property that I1 , I2 , I3 , ? ? ?. 
(Thus R does not have the ascending chain condition.)

 43. Prove that in a unique factorization domain, an element is irreduc-
ible if and only if it is prime.

 44. Let F be a field and let R be the integral domain in F 3x4  generated by 
x2 and x3. (That is, R is contained in every integral domain in F 3x4  that 
contains x

2 and x3.) Show that R is not a unique factorization domain.
 45. Prove that for every field F, there are infinitely many irreducible  

elements in F 3x4 .
 46. Find a mistake in the statement shown in Figure 18.2.

Computer Exercise

Software for a computer exercise is available at the website:

http://www.d.umn.edu/~jgallian
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Suggested Readings

Oscar Campoli, “A Principal Ideal Domain That Is Not a Euclidean 
 Domain,” The American Mathematical Monthly 95 (1988): 868–871.

The author shows that {a 1 bu | a, b [ Z, u 5 (1 1 2�19)/2} is a 
PID that is not an ED.

Gina Kolata, “At Last, Shout of ‘Eureka!’ in Age-Old Math Mystery,” The 
New York Times, June 24, 1993.

This front-page article reports on Andrew Wiles’s announced proof of 
Fermat’s Last Theorem.

C. Krauthhammer, “The Joy of Math, or Fermat’s Revenge,” Time, April 18, 
1988: 92.

The demise of Miyaoka’s proof of Fermat’s Last Theorem is charm-
ingly lamented.

Sahib Singh, “Non-Euclidean Domains: An Example,” Mathematics Mag-
azine 49 (1976): 243.

This article gives a short proof that Z[2�n] 5 {a 1 b2�n | a, b [ Z} 
is an integral domain that is not Euclidean when n . 2 and 2n mod  
4 5 2 or 2n mod 4 5 3.

Simon Singh and Kenneth Ribet, “Fermat’s Last Stand,” Scientific Ameri-
can 277 (1997): 68–73.

This article gives an accessible description of Andrew Wiles’s proof of 
Fermat’s Last Theorem.

Suggested Video

The Proof, Nova, http://www.pbs.org/wgbh/nova/proof
This documentary film shown on PBS’s Nova program in 1997  chronicles 
the seven-year effort of Andrew Wiles to prove Fermat’s Last Theorem. It 
can be viewed in five segments at http://www.youtube.com.

Suggested Websites

http://en.wikipedia.org/wiki/Fermat's_Last_Theorem

This website provides a concise history of the efforts to prove Fermat’s Last 
Theorem. It includes photographs, references, and links.
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Sophie Germain

One of the very few women to overcome 
the prejudice and discrimination that 
tended to exclude women from the pursuit  
of higher mathematics in her time was 
Sophie Germain.

Sophie Germain was born in Paris on April 1, 
1776. She educated herself by reading the 
works of Newton and Euler in Latin and the 
lecture notes of Lagrange. In 1804, Germain 
wrote to Gauss about her work in number 
 theory but used the pseudonym Monsieur 
LeBlanc because she feared that Gauss would 
not take seriously the efforts of a woman. 
Gauss gave Germain’s results high praise and 
a few years later, upon learning her true iden-
tity, wrote to her:

But how to describe to you my admiration 
and astonishment at seeing my esteemed cor-
respondent Mr. LeBlanc metamorphose him-
self into this illustrious personage who gives 
such a brilliant example of what I would find 
it difficult to believe. A taste for the abstract 
sciences in general and above all the myster-
ies of numbers is excessively rare: it is not a 
subject which strikes everyone; the enchant-
ing charms of this sublime science reveal 

themselves only to those who have the  
courage to go deeply into it. But when a 
 person of the sex which, according to our 
customs and prejudices, must encounter 
 infinitely more difficulties than men to 
 familiarize herself with these thorny re-
searches, succeeds nevertheless in surmount-
ing these obstacles and penetrating the most 
obscure parts of them, then without doubt she 
must have the noblest courage, quite extraor-
dinary talents, and a superior genius.*

Germain is best known for her work on 
Fermat’s Last Theorem. She died on June 
27, 1831, in Paris.

For more information about Germain, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history

S
to

ck
 M

on
ta

ge

*Quote from Math’s Hidden Woman, Nova Online, http://www.pbs.org/wgbh/nova/proof/germain 
.html (accessed Nov 5, 2008).
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Andrew Wiles

For spectacular contributions to number 
theory and related fields, for major 
 advances on fundamental conjectures, 
and for settling Fermat’s Last Theorem.

Citation for the Wolf Prize

In 1993, Andrew Wiles of Princeton electri-
fied the mathematics community by announc-
ing that he had proved Fermat’s Last Theorem 
after seven years of effort. His proof, which 
ran 200 pages, relied heavily on ring theory 
and group theory. Because of Wiles’s solid 
reputation and because his approach was 
based on deep results that had already shed 
much light on the problem, many experts in 
the field believed that Wiles had succeeded 
where so many others had failed. Wiles’s 
achievement was reported in newspapers and 
magazines around the world. The New York 
Times ran a front-page story on it, and one TV 
network announced it on the evening news. 
Wiles even made People magazine’s list of the 
25 most intriguing people of 1993! In San 
Francisco a group of mathematicians rented a 
1200-seat movie theater and sold tickets for 
$5.00 each for public lectures on the proof. 

Scalpers received as much as $25.00 a ticket 
for the sold-out event.

The bubble soon burst when experts 
had an opportunity to scrutinize Wiles’s 
manuscript. By December, Wiles released a 
statement saying he was working to resolve 
a gap in the proof. In September of 1994, a 
paper by Wiles and Richard Taylor, a former 
student of his, circumvented the gap in the 
original proof. Since then, many experts 
have checked the proof and have found no 
errors. One mathematician was quoted as 
saying, “The exuberance is back.” In 1997, 
Wiles’s proof was the subject of a PBS Nova 
program.

Wiles was born in 1953 in Cambridge, 
England. He obtained his bachelor’s degree at 
Oxford and his doctoral degree at Cambridge 
University in 1980. He was a professor at Har-
vard before moving to Princeton in 1982. In 
2011, he became a research professor at  
Oxford. He has received many prestigious 
awards.

To find more information about Wiles, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Postage stamp issued by the 
Czech Republic in honor of 
Fermat’s Last Theorem.
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Supplementary Exercises for Chapters 15–18

The intelligence is proved not by ease of learning, but by understanding 
what we learn.

joseph whitney

True/false questions for Chapters 15–18 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

  1. Suppose that F is a field and there is a ring homomorphism from Z 
onto F. Show that F is isomorphic to Zp for some prime p.

  2. Let Q[22] 5 {r 1 s22 | r, s [ Q}. Determine all ring automor-
phisms of Q[22].

  3. (Second Isomorphism Theorem for Rings) Let A be a subring  
of R and let B be an ideal of R. Show that A > B is an ideal of A 
and that A/(A > B) is isomorphic to (A 1 B)/B. (Recall that A 1 B 5 
{a 1 b | a [ A, b [ B}.)

  4. (Third Isomorphism Theorem for Rings) Let A and B be ideals of a 
ring R with B # A. Show that A/B is an ideal of R/B and  
(R/B)/(A/B) is isomorphic to R/A.

  5. Let f(x) and g(x) be irreducible polynomials over a field F. If f(x) 
and g(x) are not associates, prove that F[x]/k f(x)g(x)l is isomorphic 
to F[x]/k f(x)l % F[x]/kg(x)l.

  6. (Chinese Remainder Theorem for Rings) If R is a commutative 
ring and I and J are two proper ideals with I 1 J 5 R, prove that  
R/(I > J) is isomorphic to R/I % R/J. Explain why Exercise 5 is a 
special case of this theorem.

  7. Prove that the set of all polynomials whose coefficients are all even 
is a prime ideal in Z[x].

  8. Let R 5 Z[2�5] and let I 5 {a 1 b2�5 | a, b [ Z, a 2 b is 
even}. Show that I is a maximal ideal of R.

  9. Let R be a ring with unity and let a be a unit in R. Show that the map-
ping from R into itself given by x S axa21 is a ring automorphism.

 10. Let a 1 b2�5 belong to Z[2�5] with b 2 0. Show that 2 does 
not belong to ka 1 b2�5l.

 11. Show that Z[i]/k2 1 il is a field. How many elements does it have?
 12. Is the homomorphic image of a principal ideal domain a principal 

ideal domain?
 13. For any f(x) [ Zp[x], show that f(xp) 5 ( f(x))p.
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348 Rings

 14. Let p be a prime. Show that there is exactly one ring homomor-
phism from Zm to Zpk if pk does not divide m, and exactly two ring 
homomorphisms from Zm to Zpk if pk does divide m.

 15. Recall that a is an idempotent if a2 5 a. Show that if 1 1 k is an 
idempotent in Zn, then n 2 k is an idempotent in Zn.

 16. Show that Zn (where n . 1) always has an even number of idempo-
tents. (The number is 2d, where d is the number of distinct prime 
divisors of n.)

 17. Show that the equation x2 1 y2 5 2003 has no solutions in the 
 integers.

 18. Prove that if both k and k 1 1 are idempotents in Zn and k 2 0, then  
n 5 2k.

 19. Prove that x4 1 15x3 1 7 is irreducible over Q.
 20. For any integers m and n, prove that the polynomial x3 1 (5m 1 1)x 1 

5n 1 1 is irreducible over Z.
 21. Prove that k22l is a maximal ideal in Z[22]. How many elements 

are in the ring Z[22]/k22l?
 22. Prove that Z[2�2] and Z[22] are unique factorization domains. 

(Hint: Mimic Example 7 in Chapter 18.)
 23. Is k3l a maximal ideal in Z[i]?
 24. Express both 13 and 5 1 i as products of irreducibles from Z[i].
 25. Let R 5 {a/b | a, b [ Z, 3 B b}. Prove that R is an integral domain. 

Find its field of quotients.
 26. Give an example of a ring that contains a subring isomorphic to Z 

and a subring isomorphic to Z3.
 27. Show that Z[i]/k3l is not ring-isomorphic to Z3 % Z3.

 28. For any n . 1, prove that R 5 e ca 0

0 b
d `  a, b [ Zn f  is ring-

   isomorphic to Zn % Zn.
 29. Suppose that R is a commutative ring and I is an ideal of R. Prove 

that R[x]/I[x] is isomorphic to (R/I)[x].
 30. Find an ideal I of Z8[x] such that the factor ring Z8[x]/I is a field.
 31. Find an ideal I of Z8[x] such that the factor ring Z8[x]/I is an integral 

domain but not a field.
 32. Find an ideal I of Z[x] such that Z[x]/I is ring-isomorphic to Z3.
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For online student resources, visit this textbook’s website at 
www.CengageBrain.com
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Vector Spaces

Still round the corner there may wait
A new road or a secret gate.

j. r. r. tolkien, The Fellowship of the Ring

19

Definition and Examples
Abstract algebra has three basic components: groups, rings, and fields. 
Thus far we have covered groups and rings in some detail, and we have 
touched on the notion of a field. To explore fields more deeply, we need 
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space
A set V is said to be a vector space over a field F if V is an Abelian 
group under addition (denoted by 1) and, if for each a [ F and 
v [ V, there is an element av in V such that the following conditions 
hold for all a, b in F and all u, v in V.

 1. a(v 1 u) 5 av 1 au

 2. (a 1 b)v 5 av 1 bv

 3. a(bv) 5 (ab)v
 4. 1v 5 v

The members of a vector space are called vectors. The members of 
the field are called scalars. The operation that combines a scalar a and 
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet, 
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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 EXAMPLE 1 The set Rn 5 {(a1, a2, . . . , an) | ai [ R} is a vector 
space over R. Here the operations are the obvious ones:

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and

 b(a1, a2, . . . , an) 5 (ba1, ba2, . . . , ban). 

 EXAMPLE 2 The set M2(Q) of 2 3 2 matrices with entries from Q is 
a vector space over Q. The operations areca1 a2

a3 a4
d � cb1 b2

b3 b4
d � ca1 � b1 a2 � b2

a3 � b3 a4 � b4
d

and

 
b ca1 a2

a3 a4
d � cba1 ba2

ba3 ba4
d. 

 EXAMPLE 3 The set Zp[x] of polynomials with coefficients from Zp 
is a vector space over Zp, where p is a prime. 

 EXAMPLE 4 The set of complex numbers C 5 {a 1 bi | a, b [ R} 
is a vector space over R. The vector addition and scalar multiplication 
are the usual addition and multiplication of complex numbers. 

The next example is a generalization of Example 4. Although it ap-
pears rather trivial, it is of the utmost importance in the theory of fields.

 EXAMPLE 5 Let E be a field and let F be a subfield of E. Then E is a 
vector space over F. The vector addition and scalar multiplication are 
the operations of E. 

Subspaces
Of course, there is a natural analog of subgroup and subring.

Definition Subspace
Let V be a vector space over a field F and let U be a subset of V. We 
say that U is a subspace of V if U is also a vector space over F under 
the operations of V.

 EXAMPLE 6 The set {a2x
2 1 a1x 1 a0 | a0, a1, a2 [ R} is a sub-

space of the vector space of all polynomials with real coefficients  
over R. 
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19 | Vector Spaces 353

 EXAMPLE 7 Let V be a vector space over F and let v1, v2, . . . , vn be 
(not necessarily distinct) elements of V. Then the subset

kv1, v2, . . . , vnl 5 {a1v1 1 a2v2 1 ? ? ? 1 anvn | a1, a2, . . . , an [ F}

is called the subspace of V spanned by v1, v2, . . . , vn. Any sum of  
the form a1v1 1 a2v2 1 ? ? ? 1 anvn is called a linear combination of 
v1, v2, . . . , vn. If kv1, v2, . . . , vnl 5 V, we say that {v1, v2, . . . , vn} 
spans V. 

Linear Independence
The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent
A set S of vectors is said to be linearly dependent over the field F if 
there are vectors v1, v2, . . . , vn

 from S and elements a1, a2, . . . , an
 from 

F, not all zero, such that a1v1 1 a2v2 1 ? ? ? 1 a
n
v

n
 5 0. A set of vectors 

that is not linearly dependent over F is called linearly independent 

over F.

In other words, a set of vectors is linearly dependent over F if there 
is a nontrivial linear combination of them over F equal to 0.

 EXAMPLE 8 In R3 the vectors (1, 0, 0), (1, 0, 1), and (1, 1, 1) are lin-
early independent over R. To verify this, assume that there are real 
numbers a, b, and c such that a(1, 0, 0) 1 b(1, 0, 1) 1 c(1, 1, 1) 5  
(0, 0, 0). Then (a 1 b 1 c, c, b 1 c) 5 (0, 0, 0). From this we see that 
a 5 b 5 c 5 0. 

Certain kinds of linearly independent sets play a crucial role in the 
theory of vector spaces.

Definition Basis
Let V be a vector space over F. A subset B of V is called a basis for V  
if B is linearly independent over F and every element of V is a linear 
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for 
a vector space V, then every member of V is a unique linear combina-
tion of the elements of B (see Exercise 19). Second, with every vector 
space spanned by finitely many vectors, we can use the notion of basis 
to associate a unique integer that tells us much about the vector space. 
(In fact, this integer and the field completely determine the vector space 
up to isomorphism—see Exercise 31.)
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 EXAMPLE 9 The set V 5 e c a a � b

a � b b
d ` a, b [ R f

is a vector space over R (see Exercise 17). We claim that the set

B � e c1 1

1 0
d , c0 1

1 1
d f  is a basis for V over R. To prove that the set

B is linearly independent, suppose that there are real numbers a and b 
such that

a c1 1

1 0
d � b c0 1

1 1
d � c0 0

0 0
d .

This gives c a a � b

a � b b
d � c0  0

0 0
d , so that a 5 b 5 0. On the other 

hand, since every member of V has the formc a a � b

a � b b
d � a c1 1

1 0
d � b c0 1

1 1
d ,

we see that B spans V. 

We now come to the main result of this chapter.

 Theorem 19.1 Invariance of Basis Size

If {u1, u2, . . . , um
} and {w1, w2, . . . , wn

} are both bases of a vector 

space V over a field F, then m 5 n.

PROOF Suppose that m 2 n. To be specific, let us say that m , n. 
Consider the set {w1, u1, u2, . . . , um}. Since the u’s span V, we 
know  that  w1 is a linear combination of the u’s, say, w1 5 a1u1 1  
a2u2 1 ? ? ? 1 amum, where the a’s belong to F. Clearly, not all the a’s are 
0. For convenience, say a1 2 0. Then {w1, u2, . . . , um} spans V (see 
Exercise 21). Next, consider the set {w1, w2, u2, . . . , um}. This time, w2 
is a linear combination of w1, u2, . . . , um, say, w2 � b1w1 � b2u2 �  . . .  
1 bmum, where the b’s belong to F. Then at least one of b2, . . . , bm is 
nonzero, for otherwise the w’s are not linearly independent. Let us say 
b2 2 0. Then w1, w2, u3, . . . , um span V. Continuing in this fashion, we 
see that {w1, w2, . . . , wm} spans V. But then wm11 is a linear combina-
tion of w1, w2, . . . , wm and, therefore, the set {w1, . . . , wn} is not 
 linearly independent. This contradiction finishes the proof. 

Theorem 19.1 shows that any two finite bases for a vector space have 
the same size. Of course, not all vector spaces have finite bases. 
However, there is no vector space that has a finite basis and an infinite 
basis (see Exercise 25).
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19 | Vector Spaces 355

Definition Dimension
A vector space that has a basis consisting of n elements is said  
to have dimension n. For completeness, the trivial vector space {0} is 
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of 
this text, it can be shown that every vector space has a basis. A vector 
space that has a finite basis is called finite dimensional; otherwise, it is 
called infinite dimensional.

Exercises

Somebody who thinks logically is a nice contrast to the real world.
the law of thumb

  1. Verify that each of the sets in Examples 1–4 satisfies the axioms 
for a vector space. Find a basis for each of the vector spaces in  
Examples 1–4.

  2. (Subspace Test) Prove that a nonempty subset U of a vector space 
V over a field F is a subspace of V if, for every u and u9 in U and 
every a in F, u 1 u9 [ U and au [ U. (In words, a nonempty set U 
is a subspace of V if it is closed under the two operations of V.)

  3. Verify that the set in Example 6 is a subspace. Find a basis for this 
subspace. Is {x2 1 x 1 1, x 1 5, 3} a basis?

  4. Verify that the set kv1, v2, . . . , vnl defined in Example 7 is a sub-
space.

  5. Determine whether or not the set {(2, 21, 0), (1, 2, 5), (7, 21, 5)} is 
linearly independent over R.

  6. Determine whether or not the set

e c2 1

1 0
d , c0 1

1 2
d , c1 1

1 1
d f

  is linearly independent over Z5.
  7. If {u, v, w} is a linearly independent subset of a vector space, show 

that {u, u 1 v, u 1 v 1 w} is also linearly independent.
  8. If {v1, v2, . . . , vn} is a linearly dependent set of vectors, prove that 

one of these vectors is a linear combination of the other.
  9. (Every spanning collection contains a basis.) If {v1, v2, . . . , vn} spans 

a vector space V, prove that some subset of the v’s is a basis for V.
 10. (Every independent set is contained in a basis.) Let V be a finite- 

dimensional vector space and let {v1, v2, . . . , vn} be a linearly 
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356 Fields

 independent subset of V. Show that there are vectors w1, w2, . . . , wm 
such that {v1, v2, . . . , vn, w1, . . . , wm} is a basis for V.

 11. If V is a vector space over F of dimension 5 and U and W are sub-
spaces of V of dimension 3, prove that U > W 2 {0}. Generalize.

 12. Show that the solution set to a system of equations of the form

a11x1 1 ? ? ? 1 a1nxn 5 0
 a21x1 1 ? ? ? 1 a2nxn 5 0

  ? ? ?
  ? ? ?
  ? ? ?
 am1x1 1 ? ? ? 1 amnxn 5 0,

  where the a’s are real, is a subspace of Rn.
 13. Let V be the set of all polynomials over Q of degree 2 together 

with the zero polynomial. Is V a vector space over Q?
 14. Let V 5 R3 and W 5 {(a, b, c) [ V | a2 1 b2 5 c2}. Is W a sub-

space of V? If so, what is its dimension?
 15. Let V 5 R3 and W 5 {(a, b, c) [ V | a 1 b 5 c}. Is W a subspace 

of V? If so, what is its dimension?

 16. Let V 5 e ca b

b c
d ` a, b, c [ Q f . Prove that V is a vector space 

  over Q, and find a basis for V over Q.
 17. Verify that the set V in Example 9 is a vector space over R.
 18. Let P 5 {(a, b, c) | a, b, c [ R, a 5 2b 1 3c}. Prove that P is a sub-

space of R3. Find a basis for P. Give a geometric description of P.
 19. Let B be a subset of a vector space V. Show that B is a basis for V if 

and only if every member of V is a unique linear combination of 
the elements of B. (This exercise is referred to in this chapter and 
in Chap ter 20.)

 20. If U is a proper subspace of a finite-dimensional vector space V, 
show that the dimension of U is less than the dimension of V.

 21. Referring to the proof of Theorem 19.1, prove that {w1, u2, . . . , um} 
spans V.

 22. If V is a vector space of dimension n over the field Zp, how many 
elements are in V?

 23. Let S 5 {(a, b, c, d) | a, b, c, d [ R, a 5 c, d 5 a 1 b}. Find a 
 basis for  S.

 24. Let U and W be subspaces of a vector space V. Show that U > W is 
a subspace of V and that U 1 W 5 {u 1 w | u [ U, w [ W} is a 
subspace of V.
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19 | Vector Spaces 357

 25. If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements. 
(This exercise is referred to in this chapter.)

 26. Let u 5 (2, 3, 1), v 5 (1, 3, 0), and w 5 (2, 23, 3). Since (1/2)u 2  
(2/3)v 2 (1/6)w 5 (0, 0, 0), can we conclude that the set {u, v, w} 
is linearly depen dent over Z7?

 27. Define the vector space analog of group homomorphism and ring 
homomorphism. Such a mapping is called a linear transformation. 
Define the vector space analog of group isomorphism and ring iso-
morphism.

 28. Let T be a linear transformation from V to W. Prove that the image 
of V under T is a subspace of W.

 29. Let T be a linear transformation of a vector space V. Prove that  
{v [ V | T(v) 5 0}, the kernel of T, is a subspace of V.

 30. Let T be a linear transformation of V onto W. If {v1, v2, . . . , vn} 
spans V, show that {T(v1), T(v2), . . . , T(vn)} spans W.

 31. If V is a vector space over F of dimension n, prove that V is isomor-
phic as a vector space to Fn 5 {(a1, a2, . . . , an) | ai [ F}. (This 
exercise is referred to in this chapter.)

 32. Let V be a vector space over an infinite field. Prove that V is not the 
union of finitely many proper subspaces of V.
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Emil Artin

Emil Artin was one of the leading mathe-
maticians of the 20th century and a major 
contributor to linear algebra and abstract al-
gebra. Artin was born on March 3, 1898, in 
Vienna, Austria, and grew up in what was 
recently known as Czechoslovakia. He  re-
ceived a Ph.D. in 1921 from the University 
of Leipzig. From 1923 until he emigrated  
to America in 1937, he was a professor at 
the University of Hamburg. After one year 
at Notre Dame, Artin went to Indiana 
University. In 1946 he moved to Princeton, 
where he stayed until 1958. The last four 
years of his career were spent where it 
began, at Hamburg.

Artin’s mathematics is both deep and 
broad. He made contributions to number the-
ory, group theory, ring theory, field theory, 
Galois theory, geometric algebra, algebraic 

For Artin, to be a mathematician meant to 
participate in a great common effort, to 
continue work begun thousands of years 
ago, to shed new light on old discoveries, 
to seek new ways to prepare the develop-
ments of the future. Whatever standards 
we use, he was a great mathematician.

richard brauer,  
Bulletin of the American 

Mathematical Society

topology, and the theory of braids—a field  
he invented. Artin received the American 
Mathematical Society’s Cole Prize in number 
theory, and he solved one of the 23 famous 
problems posed by the eminent mathemati-
cian David Hilbert in 1900.

Artin was an outstanding teacher of 
mathematics at all levels, from freshman 
calculus to seminars for colleagues. Many  
of his Ph.D. students as well as his son  
Michael have become leading mathemati-
cians. Through his research, teaching, and 
books, Artin exerted great influence among 
his contemporaries. He died of a heart at-
tack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Olga Taussky-Todd

Olga Taussky-Todd was born on August 30, 
1906, in Olmütz in the Austro-Hungarian 
Empire. Taussky-Todd received her doctoral 
degree in 1930 from the University of Vienna. 
In the early 1930s she was hired as an assis-
tant at the University of Göttingen to edit 
books on the work of David Hilbert. She also 
edited lecture notes of Emil Artin and as-
sisted Richard Courant. She spent 1934 and 
1935 at Bryn Mawr and the next two years 
at Girton College in Cambridge, England. 
In 1937, she taught at the University of 
London. In 1947, she moved to the United 
States and took a job at the National Bureau 
of Standards’ National Applied Mathematics 
Laboratory. In 1957, she became the first 
woman to teach at the California Institute of 
Technology as well as the first woman to  
receive tenure and a full professorship in 
mathematics, physics, or  astronomy there. 
Thirteen Caltech Ph.D. students wrote their 
Ph.D. theses under her direction.

“Olga Taussky-Todd was a distinguished 
and prolific mathematician who wrote 
about 300 papers.”

edith luchins and mary ann mcloughlin, 
Notices of the American  

Mathematical Society, 1996

In addition to her influential contribu-
tions to linear algebra, Taussky-Todd did 
important work in number theory.

Taussky-Todd received many honors and 
awards. She was elected a Fellow of the 
American Association for the Advancement 
of Science and vice president of the American 
Mathematical Society. In 1990, Caltech estab-
lished an instructorship named in her honor. 
Taussky-Todd died on October 7, 1995, at the 
age of 89.

For more information about Taussky-
Todd, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history

http://www.agnesscott 
.edu/lriddle/women/women.htm
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Extension Fields

In many respects this [Kronecker’s Theorem] is the  
fundamental theorem of algebra.

richard a. dean, Elements of Abstract Algebra

20

The Fundamental Theorem 
of Field Theory

In our work on rings, we came across a number of fields, both finite 
and infinite. Indeed, we saw that Z3[x]/kx2 1 1l is a field of order 9, 
whereas R[x]/kx2 1 1l is a field isomorphic to the complex numbers.  
In the next three chapters, we take up, in a systematic way, the subject 
of fields.

Definition Extension Field
A field E is an extension field of a field F if F # E and the operations 
of F are those of E restricted to F.

Cauchy’s observation in 1847 that R[x]/kx2 1 1l is a field that con-
tains a zero of x2 1 1 prepared the way for the following sweeping 
generalization of that fact.

 Theorem 20.1 Fundamental Theorem of Field Theory  
(Kronecker’s  Theorem, 1887)

Let F be a field and let f (x) be a nonconstant polynomial in F[x]. 
Then there is an extension field E of F in which f (x) has a zero.

PROOF Since F[x] is a unique factorization domain, f (x) has an irre-
ducible factor, say, p(x). Clearly, it suffices to construct an extension 
field E of F in which p(x) has a zero. Our candidate for E is F[x]/kp(x)l. 
We already know that this is a field from Corollary 1 of Theorem 17.5. 
Also, since the mapping of f: F S E given by f(a) 5 a 1 kp(x)l is  
one-to-one and preserves both operations, E has a subfield isomorphic 
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20 | Extension Fields 361

to F. We may think of E as containing F if we simply identify the coset 
a 1 kp(x)l with its unique coset representative a that belongs to F [that 
is,  think of a 1 kp(x)l as just a and vice versa; see Exercise 33 in 
Chapter 17].

Finally, to show that p(x) has a zero in E, write

p(x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0.

Then, in E, x 1 kp(x)l is a zero of p(x), because

p(x 1 kp(x)l) 5 an(x 1 kp(x)l)n 1 an21(x 1 kp(x)l)n21 1 ? ? ? 1 a0
5 an(x

n 1 kp(x)l) 1 an21(x
n21 1 kp(x)l) 1 ? ? ? 1 a0

5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 1 kp(x)l
5 p(x) 1 kp(x)l 5 0 1 kp(x)l. 

 EXAMPLE 1 Let f (x) 5 x2 1 1 [ Q[x]. Then, viewing f (x) as an 
 element of E[x] 5 (Q[x]/kx2 1 1l)[x], we have

 f (x 1 kx2 1 1l) 5 (x 1 kx2 1 1l)2 1 1
 5 x2 1 kx2 1 1l 1 1
 5 x2 1 1 1 kx2 1 1l
 5 0 1 kx2 1 1l.

Of course, the polynomial x2 1 1 has the complex number 2�1 as a 
zero, but the point we wish to emphasize here is that we have con-
structed a field that contains the rational numbers and a zero for the 
polynomial x2 1 1 by using only the rational numbers. No knowledge 
of complex numbers is necessary. Our method utilizes only the field we 
are given. 

 EXAMPLE 2 Let f (x) 5 x5 1 2x2 1 2x 1 2 [ Z3[x]. Then, the irre-
ducible factorization of f (x) over Z3 is (x2 1 1)(x3 1 2x 1 2). So, to find 
an extension E of Z3 in which f (x) has a zero, we may take E 5 Z3[x]/ 
kx2 1 1l, a field with nine elements, or E 5 Z3[x]/kx3 1 2x 1 2l, a field 
with 27 elements. 

Since every integral domain is contained in its field of quotients 
(Theorem 15.6), we see that every nonconstant polynomial with coef-
ficients from an integral domain always has a zero in some field con-
taining the ring of coefficients. The next example shows that this is not 
true for commutative rings in general.

 EXAMPLE 3 Let f(x) 5 2x 1 1 [ Z4[x]. Then f(x) has no zero in any 
ring containing Z4 as a subring, because if b were a zero in such a ring, 
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then 0 5 2b 1 1, and therefore 0 5 2(2b 1 1) 5 2(2b) 1 2 5 
(2 ? 2)b 1 2 5 0 ? b 1 2 5 2. But 0 2 2 in Z4. 

Splitting Fields
To motivate the next definition and theorem, let’s return to Example 1 for 
a moment. For notational convenience, in Q[x]/kx2 1 1l, let a 5  
x 1 kx2 1 1l. Then, since a and 2a are both zeros of x2 1 1 in (Q[x]/ 
kx2 1 1l)[x], it should be the case that x2 1 1 5 (x 2 a)(x 1 a). Let’s 
check this out. First note that

(x 2 a)(x 1 a) 5 x2 2 a2 5 x2 2 (x2 1 kx2 1 1l).

At the same time,

x2 1 kx2 1 1l 5 21 1 kx2 1 1l

and we have agreed to identify 21 and 21 1 kx2 1 1l, so

(x 2 a)(x 1 a) 5 x2 2 (21) 5 x2 1 1.

This shows that x2 1 1 can be written as a product of linear factors in 
some extension of Q. That was easy and you might argue coincidental. 
The polynomial given in Example 2 presents a greater challenge. Is 
there an extension of Z3 in which that polynomial factors as a product 
of linear factors? Yes, there is. But first some notation and a definition.

Let F be a field and let a1, a2, . . . , an be elements of some exten-
sion E of F. We use F(a1,a2, . . . , an) to denote the smallest subfield 
of E that contains F and the set {a1, a2, . . . , an}. We leave it as an 
exercise (Exercise 35) to show that F(a1, a2, . . . , an) is the intersec-
tion of all subfields of E that contain F and the set {a1, a2, . . . , an}.

Definition Splitting Field
Let E be an extension field of F and let f(x) [ F[x] with degree at least 
1. We say that f(x) splits in E if there are elements a [ F and a1, a2, . . ., 
a

n
 [ E such that

f(x) 5 a(x 2 a1)(x 2 a2) . . . (x 2 a
n
).

We call E a splitting field for f(x) over F if

E 5 F(a1, a2, . . ., an
).

Note that a splitting field of a polynomial over a field depends not 
only on the polynomial but on the field as well. Indeed, a splitting field 
of f (x) over F is just a smallest extension field of F in which f(x) splits. 
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20 | Extension Fields 363

The next example illustrates how a splitting field of a polynomial f (x) 
over field F depends on F.

 EXAMPLE 4 Consider the polynomial f (x) 5 x2 1 1 [ Q[x]. Since 
x2 1 1 5 (x 1 2�1)(x 2 2�1), we see that f(x) splits in C, but a splitting 
field over Q is Q(i) 5 {r 1 si | r, s [ Q}. A splitting field for x2 1 1 over 
R is C. Likewise, x2 2 2 [ Q[x] splits in R, but a splitting field over Q is 
Q(22) 5 {r 1 s 22 | r, s [ Q}. 

There is a useful analogy between the definition of a splitting field and 
the definition of an irreducible polynomial. Just as it makes no sense to 
say “f(x) is irreducible,” it makes no sense to say “E is a splitting field for 
f(x).” In each case, the underlying field must be specified; that is, one must 
say “f(x) is irreducible over F” and “E is a splitting field for f(x) over F.”

Our notation in Example 4 appears to be inconsistent with the nota-
tion that we used in earlier chapters. For example, we denoted the set  
{a 1 b22 | a, b [ Z} by Z[22] and the set {a 1 b22 | a, b [ Q} by 
Q(22). The difference is that Z[22] is merely a ring, whereas Q(22) is 
a field. In general, parentheses are used when one wishes to indicate 
that the set is a field, although no harm would be done by using, say,  
Q[22] to denote {a 1 b22 | a, b [ Q} if we were concerned with its 
ring properties only. Using parentheses rather than brackets simply 
conveys a bit more information about the set.

 Theorem 20.2 Existence of Splitting Fields

Let F be a field and let f(x) be a nonconstant element of F[x]. Then 

there exists a splitting field E for f (x) over F.

PROOF We proceed by induction on deg f (x). If deg f (x) 5 1, then 
f (x) is linear. Now suppose that the statement is true for all fields and 
all polynomials of degree less than that of f (x). By Theorem 20.1,  
there is an  extension E of F in which f(x) has a zero, say, a1. Then we 
may write f (x) 5 (x 2 a1)g(x), where g(x) [ E[x]. Since deg g(x) , 
deg f (x), by induction, there is a field K that contains E and all the 
zeros of g(x), say, a2, . . . , an. Clearly, then, a splitting field for f (x) 
over F is F(a1, a2, . . . , an). 

 EXAMPLE 5 Consider

f (x) 5 x4 2 x2 2 2 5 (x2 2 2)(x2 1 1)
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over Q. Obviously, the zeros of f (x) in C are 622 and 6i. So a split-
ting field for f (x) over Q is

Q(22, i) 5 Q(22)(i) 5 {a 1 bi | a, b [ Q(22)}

 5 {(a 1 b 22) 1 (c 1 d  22)i | a, b, c, d [ Q}.  

 EXAMPLE 6 Consider f (x) 5 x2 1 x 1 2 over Z3. Then Z3(i) 5 
{a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13) is a splitting field 
for f (x) over Z3 because

f (x) 5 [x 2 (1 1 i)][x 2 (1 2 i)].

At the same time, we know by the proof of Kronecker’s Theorem that 
the element x 1 kx2 1 x 1 2l of

F 5 Z3[x]/kx2 1 x 1 2l

is a zero of f (x). Since f (x) has degree 2, it follows from the Factor 
Theorem (Corollary 2 of Theorem 16.2) that the other zero of f (x) must 
also be in F. Thus, f (x) splits in F, and because F is a two-dimensional 
vector space over Z3, we know that F is also a splitting field of f (x) over 
Z3. But how do we factor f(x) in F? Factoring f(x) in F is confusing be-
cause we are using the symbol x in two distinct ways: It is used as a 
placeholder to write the polynomial f(x), and it is used to create the coset 
representatives of the elements of F. This confusion can be avoided by 
simply identifying the coset 1 1 kx2 1 x 1 2l with the element 1 in Z3 and 
denoting the coset x 1 kx2 1 x 1 2l by b. With this identification, the field 
Z3[x]/kx2 1 x 1 2l can be represented as {0, 1, 2, b, 2b, b 1 1, 2b 1 1,  
b 1 2, 2b 1 2}. These elements are added and multiplied just as polyno-
mials are, except that we use the observation that x2 1 x 1 2 1 kx2 1  
x 1 2l 5 0 implies that b2 1 b 1 2 5 0, so that b2 5 2b 2 2 5 2b 1 1. 
For example, (2b 1 1)(b 1 2) 5 2b2 1 5b 1 2 5 2(2b 1 1) 1 5b 1 
2 5 9b 1 4 5 1. To obtain the factorization of f(x) in F, we simply long 
divide, as follows:

  x 1 (b 1 1)

qx2 1 x 1 2                  
  x2 2 bx                       
(b 1 1)x 1 2
(b 1 1)x 2 (b 1 1)b

(b 1 1)b 1 2 5 b2 1 b 1 2 5 0.

x 2 b

So, x2 1 x 1 2 5 (x 2 b)(x 1 b 1 1). Thus, we have found two split-
ting fields for x2 1 x 1 2 over Z3, one of the form F(a) and one of the 
form F[x]/kp(x)l [where F 5 Z3 and p(x) 5 x2 1 x 1 2]. 
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20 | Extension Fields 365

The next theorem shows how the fields F(a) and F[x]/kp(x)l are 
 related in the case where p(x) is irreducible over F and a is a zero of 
p(x) in some extension of F.

 Theorem 20.3 F(a) < F[x]/kp(x)l

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a  

zero of p(x) in some extension E of F, then F(a) is isomorphic to 

F[x] / kp(x)l. Furthermore, if deg p(x) 5 n, then every member of F(a) 
can be uniquely expressed in the form

c
n21a

n21 1 c
n22a

n22 1 ? ? ? 1 c1a 1 c0,

where c0, c1, . . . , cn21 [ F.

PROOF Consider the function f from F[x] to F(a) given by f( f (x)) 5 
f (a). Clearly, f is a ring homomorphism. We claim that Ker f 5 kp(x)l. 
(This is Exercise 31 in Chapter 17.) Since p(a) 5 0, we have kp(x)l # 
Ker f. On the other hand, we know by Theorem 17.5 that kp(x)l is a 
maximal ideal in F[x]. So, because Ker f 2 F[x] [it does not contain 
the constant polynomial f (x) 5 1], we have Ker f 5 kp(x)l. At this 
point it follows from the First Isomorphism Theorem for Rings and 
Corollary 1 of Theorem 17.5 that f(F[x]) is a subfield of F(a). Noting 
that f(F[x]) contains both F and a and recalling that F(a) is the small-
est such field, we have F[x]/kp(x)l < f(F[x]) 5 F(a).

The final assertion of the theorem follows from the fact that every 
element of F[x]/kp(x)l can be expressed uniquely in the form

cn21x
n21 1 ? ? ? 1 c0 1 kp(x)l,

where c0, . . . , cn21 [ F (see Exercise 25 in Chapter 16), and the 
natural isomorphism from F[x]/kp(x)l to F(a) carries ckx

k 1 kp(x)l  
to cka

k. 

As an immediate corollary of Theorem 20.3, we have the following 
attractive result.

 Corollary F(a) < F(b)

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a  

zero of p(x) in some extension E of F and b is a zero of p(x) in some 

extension E9 of F, then the fields F(a) and F(b) are isomorphic.

PROOF From Theorem 20.3, we have

 F(a) < F[x]/kp(x)l < F(b). 
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Recall that a basis for an n-dimensional vector space over a field F  
is a set of n vectors v1, v2, . . . , vn with the property that every member 
of the vector space can be expressed uniquely in the form a1v1 1  
a2v2 1 ? ? ? 1 anvn, where the a’s belong to F (Exercise 19 in Chapter 19). 
So, in the language of vector spaces, the latter portion of Theorem 20.3  
says that if a is a zero of an irreducible polynomial over F of degree n, then 
the set {1, a, . . . , an21} is a basis for F(a) over F.

Theorem 20.3 often provides a convenient way of describing the 
 elements of a field.

 EXAMPLE 7 Consider the irreducible polynomial f (x) 5 x6 2 2 
over Q. Since 16 2 is a zero of f(x), we know from Theorem 20.3 that the 
set {1, 21/6, 22/6, 23/6, 24/6, 25/6} is a basis for Q(16 2) over Q. Thus,

Q(16 2) 5 {a0 1 a12
1/6 1 a22

2/6 1 a32
3/6 1 a42

4/6 1 a52
5/6 | ai [ Q}.

This field is isomorphic to Q[x]/kx6 2 2l. 

In 1882, Ferdinand von Lindemann (1852–1939) proved that p is 
not the zero of any polynomial in Q[x]. Because of this important re-
sult, Theorem 20.3 does not apply to Q(p) (see Exercise 11). Fields of 
the form F(a) where a is in some extension field of F but not the zero 
of an element of F(x) are discussed in the next chapter.

In Example 6, we produced two splitting fields for the polynomial  
x2 1 x 1 2 over Z3. Likewise, it is an easy exercise to show that both 
Q[x]/kx2 1 1l and Q(i) 5 {r 1 si | r, s [ Q} are splitting fields of the 
polynomial x2 1 1 over Q. But are these different-looking splitting fields 
algebraically different? Not really. We conclude our discussion of split-
ting fields by proving that splitting fields are unique up to isomorphism. 
To make it easier to apply induction, we will prove a more general result.

We begin by observing first that any ring isomorphism f from F 
to  F9 has a natural extension from F[x] to F9[x] given by cnx

n 1 
cn21x

n21 1 ? ? ? 1 c1x 1 c0 S f(cn)x
n 1 f(cn21)x

n21 1 ? ? ? 1 
f(c1)x 1 f(c0). Since this mapping agrees with f on F, it is conve-
nient and natural to use f to denote this mapping as well.

 Lemma

Let F be a field, let p(x) [ F[x] be irreducible over F, and let a be a 

zero of p(x) in some extension of F. If f is a field isomorphism from 

F to F9 and b is a zero of f(p(x)) in some extension of F9, then there 

is an isomorphism from F(a) to F9(b) that agrees with f on F and 

carries a to b.
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20 | Extension Fields 367

PROOF First observe that since p(x) is irreducible over F, f(p(x)) is 
irreducible over F9. It is straightforward to check that the mapping 
from F[x]/kp(x)l to F9[x]/kf(p(x))l given by

 f (x) 1 kp(x)l S f( f (x)) 1 kf(p(x))l

is a field isomorphism. By a slight abuse of notation, we denote this 
mapping by f also. (If you object, put a bar over the f.) From the proof 
of Theorem 20.3, we know that there is an isomorphism a from F(a) to 
F[x]/kp(x)l that is the identity on F and carries a to x 1 kp(x)l. Simi-
larly, there is an isomorphism b from F9[x]/kf(p(x))l to F9(b) that is the 
identity on F9 and carries x 1 kf(p(x))l to b. Thus, bfa is the desired 
mapping from F1a2 to F�1b2. See Figure 20.1. 

φ

φ

φ

βα

F F'

F(a) F[x]/ p(x) F'[x]/ ( p (x)) F'(b)

Figure 20.1

 Theorem 20.4 Extending f: F S F9

Let f be an isomorphism from a field F to a field F9 and let 

 f (x) [ F[x]. If E is a splitting field for f (x) over F and E9 is a 

splitting field for f( f (x)) over F9, then there is an isomorphism  

from E to E9 that agrees with f on F.

PROOF We use induction on deg f (x). If deg f (x) 5 1, then E 5 F 
and E9 5 F9, so that f itself is the desired mapping. If deg f (x) . 1, 
let p(x) be an irreducible factor of f (x), let a be a zero of p(x) in E, and 
let b be a zero of f(p(x)) in E9. By the preceding lemma, there is an 
isomorphism a from F(a) to F9(b) that agrees with f on F and carries 
a to b. Now write f(x) 5 (x 2 a)g(x), where g(x) [ F(a)[x]. Then E is a   
splitting field for g(x) over F(a) and E9 is a splitting field for a(g(x)) 
over F9(b). Since deg g(x) , deg f (x), there is an isomorphism from E 
to E9 that agrees with a on F(a) and therefore with f on F. 
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 Corollary Splitting Fields Are Unique

Let F be a field and let f (x) [ F[x]. Then any two splitting fields  

of f (x) over F are isomorphic.

PROOF Suppose that E and E9 are splitting fields of f(x) over F. The 
result follows immediately from Theorem 20.4 by letting f be the 
identity from F to F. 

In light of the corollary above, we may refer to “the” splitting field 
of a polynomial over F without ambiguity.

Even though x6 2 2 has a zero in Q(16 2), it does not split in Q(16 2). 
The splitting field is easy to obtain, however.

 EXAMPLE 8 The Splitting Field of xn 2 a over Q
Let a be a positive rational number and let v be a primitive nth root of 
unity (see Example 2 in Chapter 16). Then each of

a1/n, va1/n, v2a1/n, . . . , vn21a1/n

is a zero of xn 2 a in Q(2n a, v). 

Zeros of an Irreducible Polynomial
Now that we know that every nonconstant polynomial over a field  
splits in some extension, we ask whether irreducible polynomials must 
split in some special way. Yes, they do. To discover how, we borrow 
something whose origins are in calculus.

Definition Derivative
Let f (x) 5 a

n
xn 1 a

n21x
n21 1 ? ? ? 1 a1x 1 a0 belong to F[x]. The 

 derivative of f (x), denoted by f 9(x), is the polynomial na
n
xn21 1 

(n 2 1)a
n21x

n22 1 ? ? ? 1 a1 in F[x].

Notice that our definition does not involve the notion of a limit. The 
standard rules for handling sums and products of functions in calculus 
carry over to arbitrary fields as well.

 Lemma Properties of the Derivative

Let f (x) and g(x) [ F[x] and let a [ F. Then

1. ( f (x) 1 g(x))9 5 f 9(x) 1 g9(x).
2. (af (x))9 5 af 9(x).
3. ( f (x)g(x))9 5 f (x)g9(x) 1 g(x)f 9(x).

99708_ch20_ptg01_hr_360-375.indd   368 04/05/12   9:14 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20 | Extension Fields 369

PROOF Properties 1 and 2 follow from straightforward applications 
of the definition. Using property 1 and induction on deg f(x), property 3 
reduces to the special case in which f (x) 5 anx

n. This also follows di-
rectly from the  definition. 

Before addressing the question of the nature of the zeros of an irre-
ducible polynomial, we establish a general result concerning zeros of 
multiplicity greater than 1. Such zeros are called multiple zeros.

 Theorem 20.5 Criterion for Multiple Zeros

A polynomial f (x) over a field F has a multiple zero in some 

extension E if and only if f (x) and f 9(x) have a common factor of 

positive degree in F[x].

PROOF If a is a multiple zero of f (x) in some extension E, then 
there is a g(x) in E[x] such that f (x) 5 (x 2 a)2g(x). Since f 9(x) 5  
(x 2 a)2g9(x) 1 2(x 2 a)g(x), we see that f 9(a) 5 0. Thus, x 2 a is a fac-
tor of both f(x) and f 9(x) in the extension E of F. Now if f(x) and f 9(x) 
have no common divisor of positive degree in F[x], there are polynomials 
h(x) and k(x) in F[x] such that f(x)h(x) 1 f 9(x)k(x) 5 1 (see Exercise 45 
in Chapter 16). Viewing f (x)h(x) 1 f 9(x)k(x) as an element of E[x], we 
see also that x 2 a is a factor of 1. Since this is nonsense, f (x) and f 9(x) 
must have a common divisor of positive degree in F[x].

Conversely, suppose that f (x) and f 9(x) have a common factor of posi-
tive degree. Let a be a zero of the common factor. Then a is a zero of f (x) 
and f 9(x). Since a is a zero of f (x), there is a polynomial q(x) such that 
f (x) 5 (x 2 a)q(x). Then f 9(x) 5 (x 2 a)q9(x) 1 q(x) and 0 5 f 9(a) 5 
q(a). Thus, x 2 a is a factor of q(x) and a is a multiple zero of f (x). 

 Theorem 20.6 Zeros of an Irreducible

Let f (x) be an irreducible polynomial over a field F. If F has 

characteristic 0, then f (x) has no multiple zeros. If F has charac-

teristic p 2 0, then f (x) has a multiple zero only if it is of the  

form f (x) 5 g(xp) for some g(x) in F[x].

PROOF If f (x) has a multiple zero, then, by Theorem 20.5, f (x) and 
f 9(x) have a common divisor of positive degree in F[x]. Since the only 
divisor of positive degree of f(x) in F[x] is f(x) itself (up to associates), 
we see that f (x) divides f 9(x). Because a polynomial over a field  cannot 
divide a polynomial of smaller degree, we must have f 9(x) 5 0.

99708_ch20_ptg01_hr_360-375.indd   369 04/05/12   9:14 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



370 Fields

Now what does it mean to say that f 9(x) 5 0? If we write f(x) 5 anx
n 1 

an21x
n21 1 ? ? ? 1 a1x 1 a0, then f9(x) 5 nanx

n21 1 (n 2 1)an21x
n22 1  

? ? ? 1 a1. Thus, f 9(x) 5 0 only when kak 5 0 for k 5 1, . . . , n.
So, when char F 5 0, we have f(x) 5 a0, which is not an irreducible 

polynomial. This contradicts the hypothesis that f(x) is irreducible over 
F. Thus, f(x) has no multiple zeros.

When char F 5 p 2 0, we have ak 5 0 when p does not divide k. Thus, 
the only powers of x that appear in the sum anx

n 1 ? ? ? 1 a1x 1 a0 are 
those of the form xpj 5 (xp) j. It follows that f (x) 5 g(xp) for some  
g(x) [ F[x]. [For example, if f (x) 5 x4p 1 3x2p 1 xp 1 1, then g(x) 5 
x4 1 3x2 1 x 1 1.] 

Theorem 20.6 shows that an irreducible polynomial over a field of 
characteristic 0 cannot have multiple zeros. The desire to extend this re-
sult to a larger class of fields motivates the following definition.

Definition Perfect Field
A field F is called perfect if F has characteristic 0 or if F has 
 characteristic p and Fp 5 {ap | a [ F} 5 F.

The most important family of perfect fields of characteristic p is the 
finite fields.

 Theorem 20.7 Finite Fields Are Perfect

Every finite field is perfect.

PROOF Let F be a finite field of characteristic p. Consider the map-
ping f from F to F defined by f(x) 5 xp for all x [ F. We claim that  
f is a field automorphism. Obviously, f(ab) 5 (ab)p 5 a pb p 5

f(a)f(b). Moreover, f(a 1 b) 5 (a 1 b)p 5 ap 1 ap
1
b ap21b 1ap

2
b ap22b2 1 ? ? ? 1 a p

p � 1
 b ab p21 1 b p 5 a p 1 b p, since each 

ap
i
b is divisible by p. Finally, since xp 2 0 when x 2 0, Ker f 5 {0}.

Thus, f is one-to-one and, since F is finite, f is onto. This proves that 
Fp 5 F. 
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20 | Extension Fields 371

 Theorem 20.8 Criterion for No Multiple Zeros

If f(x) is an irreducible polynomial over a perfect field F, then f(x) has 

no multiple zeros.

PROOF The case where F has characteristic 0 has been done. So  
let us assume that f (x) [ F[x] is irreducible over a perfect field F of 
characteristic p and that f (x) has multiple zeros. From Theorem 20.6 
we know that f (x) 5 g(x p) for some g(x) [ F[x], say, g(x) 5 anx

n 1 
an21x

n21 1 ? ? ? 1 a1x 1 a0. Since Fp 5 F, each ai in F can be written 
in the form b

i

p for some bi in F. So, using Exercise 49a in Chapter 13, 
we have

f (x) 5 g(xp) 5 bn
px pn 1 bn21

pxp(n21) 1 ? ? ? 1 b1
pxp 1 b0

p

            5 (bnxn 1 bn21x
n21 1 ? ? ? 1 b1x 1 b0)

p 5 (h(x))p,

where h(x) [ F[x]. But then f(x) is not irreducible. 

The next theorem shows that when an irreducible polynomial does 
have multiple zeros, there is something striking about the multiplicities.

 Theorem 20.9 Zeros of an Irreducible over a Splitting Field

Let f (x) be an irreducible polynomial over a field F and let E be a 

splitting field of f (x) over F. Then all the zeros of f (x) in E have the 

same multiplicity.

PROOF Let a and b be distinct zeros of f(x) in E. If a has multiplicity m, 
then in E[x] we may write f(x) 5 (x 2 a)mg(x). It follows from the 
lemma preceding Theorem 20.4 and from Theorem 20.4 that there is a 
field isomorphism f from E to itself that carries a to b and acts as the 
identity on F. Thus,

f (x) 5 f( f (x)) 5 (x 2 b)mf(g(x)),

and we see that the multiplicity of b is greater than or equal to the mul-
tiplicity of a. By interchanging the roles of a and b, we observe that the 
multiplicity of a is greater than or equal to the multiplicity of b. So, we 
have proved that a and b have the same multiplicity. 

As an immediate corollary of Theorem 20.9 we have the following 
appealing result.
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 Corollary Factorization of an Irreducible over a Splitting Field

Let f (x) be an irreducible polynomial over a field F and let E be a 

splitting field of f (x). Then f (x) has the form

a(x 2 a1)
n(x 2 a2)

n ? ? ? (x 2 a
t
)n,

where a1, a2, . . . , at
 are distinct elements of E and a [ F.

We conclude this chapter by giving an example of an irreducible 
polynomial over a field that does have a multiple zero. In particular, 
notice that the field we use is not perfect.

 EXAMPLE 9 Let F 5 Z2(t) be the field of quotients of the ring Z2[t] 
of polynomials in the indeterminate t with coefficients from Z2. (We 
must introduce a letter other than x, since the members of F are going to 
be our coefficients for the elements in F[x].) Consider f (x) 5 x2 2 t [ 
F[x]. To see that f (x) is irreducible over F, it suffices to show that it has 
no zeros in F. Well, suppose that h(t)/k(t) is a zero of f (x). Then (h(t)/
k(t))2 5 t, and therefore (h(t))2 5 t(k(t))2. Since h(t), k(t) [ Z2[t], we 
then have h(t2) 5 tk(t2) (see Exercise 49 in Chapter 13). But deg h(t2) is 
even, whereas deg tk(t2) is odd. So, f(x) is irreducible over F.

Finally, since t is a constant in F[x] and the characteristic of F is 2, we 
have f9(x) 5 0, so that f9(x) and f(x) have f(x) as a common factor. So, by 
Theorem 20.5, f(x) has a multiple zero in some extension of F. (Indeed, it 
has a single zero of multiplicity 2 in K 5 F[x]/kx2 2 tl.) 

Exercises

I have yet to see any problem, however complicated, which, when you 
looked at it in the right way, did not become still more complicated.

paul anderson, New Scientist

  1. Describe the elements of Q(13 5).
  2. Show that Q(22, 23) 5 Q(22 1 23).
  3. Find the splitting field of x3 2 1 over Q. Express your answer in 

the form Q(a).
  4. Find the splitting field of x4 1 1 over Q.
  5. Find the splitting field of

x4 1 x2 1 1 5 (x2 1 x 1 1)(x2 2 x 1 1)

  over Q.
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20 | Extension Fields 373

  6. Let a, b [ R with b 2 0. Show that R(a 1 bi) 5 C.
  7. Find a polynomial p(x) in Q[x] such that Q(21 � 25) is ring- 

isomorphic to Q[x]/kp(x)l.
  8. Let F 5 Z2 and let f (x) 5 x3 1 x 1 1 [ F[x]. Suppose that a is a 

zero of f(x) in some extension of F. How many elements does F(a) 
have? Express each member of F(a) in terms of a. Write out a 
complete multiplication table for F(a).

  9. Let F(a) be the field described in Exercise 8. Express each of a5, 
a22, and a100 in the form c2a

2 1 c1a 1 c0.
 10. Let F(a) be the field described in Exercise 8. Show that a2 and a2 1 a 

are zeros of x3 1 x 1 1.
 11. Describe the elements in Q(p).
 12. Let F 5 Q(p3). Find a basis for F(p) over F.
 13. Write x7 2 x as a product of linear factors over Z3. Do the same for  

x10 2 x.
 14. Find all ring automorphisms of Q(13 5).
 15. Let F be a field of characteristic p and let f (x) 5 xp 2 a [ F[x]. 

Show that f (x) is irreducible over F or f (x) splits in F.
 16. Suppose that b is a zero of f (x) 5 x 4 1 x 1 1 in some extension 

field E of Z2. Write f (x) as a product of linear factors in E[x].
 17. Find a, b, c in Q such that

(1 1 13 4)/(2 2 13 2) 5 a 1 b13 2 1 c13 4.

 Note that such a, b, c exist, since

(1 1 13 4)/(2 2 13 2) [ Q(13 2) 5 {a 1 b13 2 1 c13 4 | a, b, c [ Q}.

 18. Express (3 1 422)21 in the form a 1 b22, where a, b [ Q.
 19. Show that Q(4 2 i) 5 Q(1 1 i), where i 5 2�1.
 20. Let F be a field, and let a and b belong to F with a 2 0. If c   

belongs to some extension of F, prove that F(c) 5 F(ac 1 b).  
(F “absorbs” its own elements.)

 21. Let f (x) [ F[x] and let a [ F. Show that f (x) and f (x 1 a) have the 
same splitting field over F.

 22. Recall that two polynomials f (x) and g(x) from F[x] are said to be 
relatively prime if there is no polynomial of positive degree in F[x] 
that divides both f (x) and g(x). Show that if f (x) and g(x) are rela-
tively prime in F[x], they are relatively prime in K[x], where K is 
any extension of F.

 23. Determine all of the subfields of Q(22).
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374 Fields

 24. Let E be an extension of F and let a and b belong to E. Prove that  
F(a, b) 5 F(a)(b) 5 F(b)(a).

 25. Write x3 1 2x 1 1 as a product of linear polynomials over some 
extension field of Z3.

 26. Express x8 2 x as a product of irreducibles over Z2.
 27. Prove or disprove that Q(23) and Q(2�3) are ring-isomorphic.
 28. For any prime p, find a field of characteristic p that is not perfect.
 29. If b is a zero of x2 1 x 1 2 over Z5, find the other zero.
 30. Show that x4 1 x 1 1 over Z2 does not have any multiple zeros in 

any extension field of Z2.
 31. Show that x21 1 2x8 1 1 does not have multiple zeros in any 

 extension of Z3.
 32. Show that x21 1 2x9 1 1 has multiple zeros in some extension of Z3.
 33. Let F be a field of characteristic p 2 0. Show that the polynomial 

f(x) 5 xpn 2 x over F has distinct zeros.
 34. Find the splitting field for f (x) 5 (x2 1 x 1 2)(x2 1 2x 1 2) over 

Z3[x]. Write f (x) as a product of linear factors.
 35. Let F be a field and E an extension field of F that contains a1,  

a2, . . ., an. Prove that F(a1, a2, . . ., an) is the intersection of all  
subfields of E that contain F and the set {a1, a2, . . ., an}. (This ex-
ercise is referred to in this chapter.)

 36. Suppose that a  is algebraic over a field F. Show that a and  
1 1 a21 have the same degree over F.

 37. Suppose that f1x2 is a fifth-degree polynomial that is irreducible 
over Z2. Prove that every nonidentity element is a generator of the 
cyclic group 1Z23x4/k f1x2l2*.

 38. Show that Q(27, i) is the splitting field for x4 2 6x2 27.
 39. Let p be a prime, F 5 Zp(t) (the field of quotients of the ring Zp[x]), 

and f(x) 5 xp 2 t. Prove that f(x) is irreducible over F and has a 
multiple zero in K 5 F[x]/kxp 2 tl.

 40. Let f(x) be an irreducible polynomial over a field F. Prove that the 
number of distinct zeros of f(x) in a splitting field divides deg f(x).
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Leopold Kronecker

Leopold Kronecker was born on December 
7, 1823, in Liegnitz, Prussia. As a schoolboy, 
he received special instruction from the great 
algebraist Kummer. Kronecker entered the 
University of Berlin in 1841 and completed 
his Ph.D. dissertation in 1845 on the units in a 
certain ring.

Kronecker devoted the years 1845–1853 to 
business affairs, relegating mathematics to a 
hobby. Thereafter, being well-off financially, 
he spent most of his time doing research in al-
gebra and number theory. Kronecker was one 
of the early advocates of the abstract approach 
to algebra. He  innovatively applied rings and 
fields in his investigations of algebraic num-
bers, established the Fundamental Theorem of 
Finite Abelian Groups, and was the first math-
ematician to master Galois’s theory of fields.

He [Kronecker] wove together the three 
strands of his greatest interests—the 
 theory of numbers, the theory of  equations 
and elliptic functions—into  
one beautiful pattern.

e. t. bell

Kronecker advocated constructive meth-
ods for all proofs and definitions. He believed 
that all mathematics should be based on rela-
tionships among integers. He went so far as 
to say to Lindemann, who proved that p is 
transcendental, that irrational numbers do 
not exist. His most famous remark on the 
matter was “God made the integers, all the 
rest is the work of man.” Henri Poincaré  
once remarked that Kronecker was able to 
produce fine work in number theory and 
 algebra only by temporarily forgetting his 
own philosophy.

Kronecker died on December 29, 1891, 
at the age of 68.

For more information about Kronecker, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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21

Characterization of Extensions
In Chapter 20, we saw that every element in the field Q(22) has the 
particularly simple form a 1 b22, where a and b are rational. On the 
other hand, the elements of Q(p) have the more complicated form

(anp
n 1 an21p

n21 1 ? ? ? 1 a0)/(bmpm 1 bm21p
m21 1 ? ? ? 1 b0),

where the a’s and b’s are rational. The fields of the first type have a 
great deal of algebraic structure. This structure is the subject of this 
chapter.

Definition Types of Extensions
Let E be an extension field of a field F  and let a [ E. We call a 
 al gebraic over F if a is the zero of some nonzero polynomial in F[x]. If 
a is not  algebraic over F, it is called transcendental over F. An exten-
sion E of F is called an algebraic extension of F if every element of E is 
 algebraic over F. If E is not an algebraic extension of F, it is called a 
transcendental extension of F. An extension of F of the form F(a) is 
called a simple extension of F.

Leonhard Euler used the term transcendental for numbers that are 
not algebraic because “they transcended the power of algebraic meth-
ods.” Although Euler made this distinction in 1744, it wasn’t until 1844 
that the existence of transcendental numbers over Q was proved by  
Joseph Liouville. Charles Hermite proved that e is transcendental over 
Q in 1873, and Lindemann showed that p is transcendental over Q in 
1882. To this day, it is not known whether p 1 e is transcendental over Q. 
With a precise definition of “almost all,” it can be shown that almost all 
real numbers are transcendental over Q.

Algebraic Extensions

Banach once told me, “Good mathematicians see analogies between 
theorems or theories, the very best ones see analogies between analogies.”

s. m. ulam, Adventures of a Mathematician
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21 | Algebraic Extensions 377

Theorem 21.1 shows why we make the distinction between elements 
that are algebraic over a field and elements that are transcendental over 
a field. Recall that F(x) is the field of quotients of F[x]; that is,

F(x) 5 {f (x)/g(x) | f (x), g(x) [ F[x], g(x) 2 0}.

 Theorem 21.1 Characterization of Extensions

Let E be an extension field of the field F and let a [ E. If a is 

transcendental over F, then F(a) < F(x). If a is algebraic over F, then 

F(a) < F[x]/kp(x)l, where p(x) is a polynomial in F[x] of minimum 

degree such that p(a) 5 0. Moreover, p(x) is irreducible over F.

PROOF Consider the homomorphism f: F[x] S F(a) given by 
f (x) S f (a). If a is transcendental over F, then Ker f 5 {0}, and so  
we may extend f to an isomorphism f: F(x) S F(a) by defining  
f( f(x)/g(x)) 5 f(a)/g(a).

If a is algebraic over F, then Ker f 2 {0}; and, by Theorem 16.4, 
there is a polynomial p(x) in F[x] such that Ker f 5 kp(x)l and p(x) has 
minimum degree among all nonzero elements of Ker f. Thus, p(a) 5 0 
and, since p(x) is a polynomial of minimum degree with this property, 
it is irreducible over F. 

The proof of Theorem 21.1 can readily be adapted to yield the next 
two results also. The details are left to the reader (see Exercise 1).

 Theorem 21.2 Uniqueness Property

If a is algebraic over a field F, then there is a unique monic irreduci-

ble polynomial p(x) in F[x] such that p(a) 5 0.

The polynomial with the property specified in Theorem 21.2 is 
called the minimal polynomial for a over F.

 Theorem 21.3 Divisibility Property

Let a be algebraic over F, and let p(x) be the minimal polynomial for 

a over F. If f(x) [ F[x] and f(a) 5 0, then p(x) divides f(x) in F[x].

If E is an extension field of F, we may view E as a vector space over F 
(that is, the elements of E are the vectors and the elements of F are the 
scalars). We are then able to use such notions as dimension and basis in 
our discussion.
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Finite Extensions
Definition Degree of an Extension
Let E be an extension field of a field F. We say that E has degree n 

over F and write [E:F] 5 n if E has dimension n as a vector space 
over F. If [E:F] is finite, E is called a finite extension of F; otherwise, 
we say that E is an infinite extension of F.

Figure 21.1 illustrates a convenient method of depicting the de gree  
of a field extension over a field.

Q(√2) Q(√2)
3

Q(√2)
6

[Q(√2):Q] = 6
6

[Q(√2):Q] = 3
3

[Q(√2):Q] = 2

E

Q FQQ

[E:F] = n

2 3 6 n

Figure 21.1

 EXAMPLE 1 The field of complex numbers has degree 2 over the 
reals, since {1, i} is a basis. The field of complex numbers is an infinite 
extension of the rationals. 

 EXAMPLE 2 If a is algebraic over F and its minimal polynomial 
over F has degree n, then, by Theorem 20.3, we know that {1, a, . . . , 
an21} is a basis for F(a) over F; and, therefore, [F(a):F] 5 n. In this 
case, we say that a has degree n over F. 

 Theorem 21.4 Finite Implies Algebraic

If E is a finite extension of F, then E is an algebraic extension of F.
 

PROOF Suppose that [E:F] 5 n and a [ E. Then the set {1, a, . . . , an} 
is linearly dependent over F; that is, there are elements c0, c1, . . . , cn in F, 
not all zero, such that

cna
n 1 cn21a

n21 1 ? ? ? 1 c1a 1 c0 5 0.

Clearly, then, a is a zero of the nonzero polynomial

 f (x) 5 cnx
n 1 cn21x

n21 1 ? ? ? 1 c1x 1 c0. 
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21 | Algebraic Extensions 379

The converse of Theorem 21.4 is not true, for otherwise, the de-
grees of the elements of every algebraic extension of E over F would 
be bounded. But Q(22, 23 2, 24 2, . . .) is an algebraic extension of Q 
that contains elements of every degree over Q (see Exercise 3).

The next theorem is the field theory counterpart of Lagrange’s Theo-
rem for finite groups. Like all counting theorems, it has far-reaching 
consequences.

 Theorem 21.5 [K:F] 5 [K:E][E:F]

Let K be a finite extension field of the field E and let E be a finite 

extension field of the field F. Then K is a finite extension field  

of F and [K:F] 5 [K:E][E:F].

PROOF Let X 5 {x1, x2, . . . , xn} be a basis for K over E, and let 
Y 5 {y1, y2, . . . , ym} be a basis for E over F. It suffices to prove that

YX 5 {yj xi | 1 # j # m, 1 # i # n}

is a basis for K over F. To do this, let a [ K. Then there are elements 
b1, b2, . . . , bn [ E such that

a 5 b1x1 1 b2x2 1 ? ? ? 1 bnxn

and, for each i 5 1, . . . , n, there are elements ci1, ci2, . . . , cim [ F  
such that

bi 5 ci1y1 1 ci2y2 1 ? ? ? 1 cimym.

Thus,

a � g
n

i�1
 bixi � g

n

i�1
a gm

j�1
 cijyjb xi � g

i, j
 cij1yjxi2.

This proves that YX spans K over F.
Now suppose there are elements cij in F such that

0 � g
i,j

cij(yjxi) � g
i
1g

j
(cijyj)2xi.

Then, since eachg
j

cijyj  [ E and X is a basis for K over E, we have

g
j

 
cijyj � 0

for each i. But each cij [ F and Y is a basis for E over F, so each cij 5 0. 
This proves that the set YX is linearly independent over F. 

Using the fact that for any field extension L of a field J, [L:J] 5 n if 
and only if L is isomorphic to Jn as vector spaces (see Exercise 29), we 
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may give a concise conceptual proof of Theorem 21.5, as follows. Let 
[K:E] 5 n and [E:F] 5 m. Then K < En and E < Fm, so that K < En < 
(Fm)n < Fmn. Thus, [K:F] 5 mn.

The content of Theorem 21.5 can be pictured as in Figure 21.2. Ex-
amples 3, 4, and 5 show how Theorem 21.5 is often utilized.

 EXAMPLE 3 Since {1, 23} is a basis for Q(23, 25) over Q(25)  
(see Exercise 7) and {1, 25} is a basis for Q(25) over Q, the proof of 
Theorem 21.5 shows that {1, 23, 25, 215} is a basis for Q(23, 25) over 
Q. (See Figure 21.3.) 

 EXAMPLE 4 Consider Q(23 2, 24 3). Then [Q(23 2, 24 3):Q] 5 12. For, 
clearly, [Q(23 2, 24 3):Q] 5 [Q(23 2, 24 3):Q(23 2)][Q(23 2):Q] and [Q(23 2,  
24 3):Q] 5 [Q(23 2, 24 3):Q(24 3)][Q(24 3):Q] show that both 3 5 [Q(23 2): 
Q] and 4 5 [Q(24 3):Q] divide [Q(23 2, 24 3):Q]. Thus, [Q(23 2, 24 3):Q]  
$ 12. On the other hand, [Q(23 2, 24 3):Q(23 2)] is at most 4, since 24 3 is a  
zero of x4 2 3 [ Q(23 2)[x]. Therefore, [Q(23 2, 24 3):Q] 5 [Q(23 2, 24 3): 
Q(23 2)][Q(23 2):Q] # 4 ? 3 5 12. (See Figure 21.4.) 

Q(√3,√5 )

Q(√3) Q(√5)

2 2

2 2

4

Q

Q(√2, √3)

Q(√2) Q(√3)

4 3

3 4

12

Q

4

43

3

Figure 21.3 Figure 21.4

nm

n

m

K

E

F

[K:F ]  =  [K:E ][E:F ]

Figure 21.2
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21 | Algebraic Extensions 381

Theorem 21.5 can sometimes be used to show that a field does not 
contain a particular element. 

 EXAMPLE 5 Recall from Example 7 in Chapter 17 that h(x) 5 15x4 2 
10x2 1 9x 1 21 is irreducible over Q. Let b be a zero of h(x) in some ex-
tension of Q. Then, even though we don’t know what b is, we can still
prove that 23 2 is not an element of Q(b). For, if so, then Q , Q(23 2) # 
Q(b) and 4 5 [Q(b):Q] 5 [Q(b):Q(23 2)][Q(23 2):Q] implies that 3   
divides 4. Notice that this argument cannot be used to show that 22 is  
not contained in Q(b). 

 EXAMPLE 6 Consider Q(23, 25). We claim that Q(23, 25) 5  
Q(23 1 25). The inclusion Q(23 1 25) # Q(23, 25) is clear. 
Now note that since 

(23 1 25)21 5 
1

23 � 25
  .  
23 � 25

23 � 25
 5 �

1

2 
(23 2 25), 

we know that 23 2 25 belongs to Q (23 1 25). It follows that  
[(23 1 25) 1 (23 2 25)]/2 5 23 and [(23 1 25 ) 2 (23 2 25)]/2 
5 25 both belong to Q(23 1 25), and therefore Q(23, 25) #  
Q(23 1 25). 

 EXAMPLE 7 It follows from Example 6 and Theorem 20.3 that the 
minimal polynomial for 23 1 25 over Q has degree 4. How can we 
find this polynomial? We begin with x 5 23 1 25. Then x2 5 3 1  
2215 1 5. From this we obtain x2 2 8 5 2215 and, by squaring both 
sides, x4 2 16x 1 64 5 60. Thus, 23 1 25 is a zero of x4 2 16x 1 4. 
We know that this is the minimal polynomial of 23 1 25 over Q since 
it is monic and has degree 4. 

Example 6 shows that an extension obtained by ad joining two ele-
ments to a field can sometimes be obtained by adjoining a single  
element to the field. Our next theorem shows that, under certain condi-
tions, this can always be done.

 Theorem 21.6 Primitive Element Theorem (Steinitz, 1910)

If F is a field of characteristic 0, and a and b are algebraic over F, 

then there is an element c in F(a, b) such that F(a, b) 5 F(c).

PROOF Let p(x) and q(x) be the minimal polynomials over F for a and 
b, respectively. In some extension K of F, let a1, a2, . . . , am and b1, b2,  
. . . , bn be the distinct zeros of p(x) and q(x), respectively, where a 5 a1 
and b 5 b1. Among the infinitely many elements of F, choose an 
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 element d not equal to (ai 2 a)/(b 2 bj) for all i $ 1 and all j . 1. In 
particular, ai 2 a 1 d(b 2 bj) for j . 1.

We shall show that c 5 a 1 db has the property that F(a, b) 5 F(c). 
Certainly, F(c) # F(a, b). To verify that F(a, b) # F(c), it suffices to prove 
that b [ F(c), for then b, c, and d belong to F(c) and a 5 c 2 bd. Con-
sider the polynomials q(x) and r(x) 5 p(c 2 dx) [that is, r(x) is  obtained 
by substituting c 2 dx for x in p(x)] over F(c). Since both q(b) 5 0 and 
r (b) 5 p(c 2 db) 5 p(a) 5 0, both q(x) and r (x) are divisible by the 
minimal polynomial s(x) for b over F(c) (see Theorem 21.3). Because s(x) 
[ F(c)[x], we may complete the proof by proving that s(x) 5 x 2 b. Since 
s(x) is a common divisor of q(x) and r(x), the only possible zeros of s(x) in 
K are the zeros of q(x) that are also zeros of r(x). But r(bj) 5 p(c 2 dbj) 5 
p(a 1db 2 dbj) 5 p(a 1 d(b 2 bj)) and d was chosen such that a 1  
d(b 2 bj) 2 ai for j . 1. It follows that b is the only zero of s(x) in K[x] 
and, therefore, s(x) 5 (x 2 b)u. Since s(x) is irreducible and F has charac-
teristic 0, Theorem 20.6 guarantees that u 5 1. 

In the terminology introduced earlier, it follows from Theorem 21.6 
and induction that any finite extension of a field of characteristic 0 is a 
simple extension. An element a with the property that E 5 F(a) is 
called a primitive element of E.

Properties of Algebraic Extensions
 Theorem 21.7 Algebraic over Algebraic Is Algebraic

If K is an algebraic extension of E and E is an algebraic extension  

of F, then K is an algebraic extension of F.

PROOF Let a [ K. It suffices to show that a belongs to some finite 
extension of F. Since a is algebraic over E, we know that a is the zero 
of some irreducible polynomial in E[x], say, p(x) 5 bnx

n 1 ? ? ? 1 b0. 
Now we construct a tower of extension fields of F, as follows:

F0 5 F(b0),

F1 5 F0(b1), . . . , Fn 5 Fn21(bn).

In particular,

Fn 5 F(b0, b1, . . . , bn),

so that p(x) [ Fn[x]. Thus, [Fn(a):Fn] 5 n; and, because each bi is alge-
braic over F, we know that each [Fi11:Fi] is finite. So,

[Fn(a):F ] 5 [Fn(a):Fn][Fn:Fn21] ? ? ? [F1:F0][F0:F ]

is finite. (See Figure 21.5.) 
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 Corollary Subfield of Algebraic Elements

Let E be an extension field of the field F. Then the set of all elements 

of E that are algebraic over F is a subfield of E.

PROOF Suppose that a, b [ E are algebraic over F and b 2 0. To 
show that a 1 b, a 2 b, ab, and a/b are algebraic over F, it suffices to 
show that [F(a, b):F] is finite, since each of these four elements be-
longs to F(a, b). But note that

[F(a, b):F ] 5 [F(a, b):F(b)][F(b):F ].

Also, since a is algebraic over F, it is certainly algebraic over F(b). 
Thus, both [F(a, b):F(b)] and [F(b):F ] are finite. 

For any extension E of a field F, the subfield of E of the elements 
that are algebraic over F is called the algebraic closure of F in E.

One might wonder if there is such a thing as a maximal algebraic 
 extension of a field F—that is, whether there is an algebraic extension E 
of F that has no proper algebraic extensions. For such an E to exist, it is 
necessary that every polynomial in E[x] splits in E. Otherwise, it follows 
from Kronecker’s Theorem that E would have a proper algebraic exten-
sion. This condition is also sufficient. If every member of E[x] splits in E, 
and K is an algebraic extension of E, then every member of K is a zero of 
some element of E[x]. But the zeros of elements of E[x] are in E. A field 
that has no proper algebraic extension is called algebraically closed. In 
1910, Ernst Steinitz proved that every field F has a unique (up to isomor-
phism) algebraic extension that is algebraically closed. This field is 
called the algebraic closure of F. A proof of this result requires a sophis-
ticated set theory background.

K

Fn(a)

Fn

F1

F0

F

Fn 21

E

Figure 21.5
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In 1799, Gauss, at the age of 22, proved that C is algebraically  
closed. This fact was considered so important at the time that it was 
called the Fundamental Theorem of Algebra. Over a 50-year period, 
Gauss found three additional proofs of the Fundamental Theorem.  
Today more than 100 proofs exist. In view of the ascendancy of abstract 
algebra in the 20th century, a more appropriate phrase for Gauss’s result 
would be the Fundamental Theorem of Classical Algebra.

Exercises

It matters not what goal you seek
Its secret here reposes:
You’ve got to dig from week to week 
To get Results or Roses.

edgar guest

  1. Prove Theorem 21.2 and Theorem 21.3.
  2. Let E be the algebraic closure of F. Show that every polynomial in 

F[x] splits in E.

  3. Prove that Q(22, 23 2, 24 2, . . .) is an algebraic extension of Q but 
not a finite extension of Q. (This exercise is referred to in this 
chapter.)

  4. Let E be an algebraic extension of F. If every polynomial in F[x] 
splits in E, show that E is algebraically closed.

  5. Suppose that F is a field and every irreducible polynomial in F[x] 
is linear. Show that F is algebraically closed.

  6. Suppose that f (x) and g(x) are irreducible over F and that deg f (x) 
and deg g(x) are relatively prime. If a is a zero of f (x) in some ex-
tension of F, show that g(x) is irreducible over F(a).

  7. Let a and b belong to Q with b 2 0. Show that Q(2a) 5 Q(2b) if 
and only if there exists some c [ Q such that a 5 bc2.

  8. Find the degree and a basis for Q(23 1 25) over Q(215). Find 
the degree and a basis for Q(22, 23 2, 24 2) over Q.

  9. Suppose that E is an extension of F of prime degree. Show that, for 
every a in E, F(a) 5 F or F(a) 5 E.

 10. Let a be a complex number that is algebraic over Q. Show that  
2a is algebraic over Q. Why does this prove that 2n2

a is algebraic 
over Q?

 11. Suppose that E is an extension of F and a, b [ E. If a is algebraic 
over F of degree m, and b is algebraic over F of degree n, where m 
and n are relatively prime, show that [F(a, b):F ] 5 mn.
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 12. Find an example of a field F and elements a and b from some 
 extension field such that F(a, b) 2 F(a), F(a, b) 2 F(b), and 
[F(a, b):F] , [F(a):F ][F(b):F ].

 13. Let K be a field extension of F and let a [ K. Show that  
[F(a):F(a3)] # 3. Find examples to illustrate that [F(a):F(a3)] can 
be 1, 2, or 3.

 14. Find the minimal polynomial for 2� 3 1 22 over Q.

 15. Let K be an extension of F. Suppose that E1 and E2 are contained 
in K and are extensions of F. If [E1:F ] and [E2:F ] are both prime, 
show that E1 5 E2 or E1 > E2 5 F.

 16. Find the minimal polynomial for 23 2 1 23 4 over Q.

 17. Let E be a finite extension of R. Use the fact that C is algebraically 
closed to prove that E 5 C or E 5 R.

 18. Suppose that [E:Q] 5 2. Show that there is an integer d such that  
E 5 Q(2d) where d is not divisible by the square of any prime.

 19. Suppose that p(x) [ F[x] and E is a finite extension of F. If p(x) is 
irreducible over F, and deg p(x) and [E:F ] are relatively prime, 
show that p(x) is irreducible over E.

 20. Let E be an extension field of F. Show that [E:F ] is finite if and only 
if E 5 F(a1, a2, . . . , an), where a1, a2, . . . , an are algebraic over F.

 21. If a and b are real numbers and a and b are transcendental over Q, 
show that either ab or a 1 b is also transcendental over Q.

 22. Let f (x) be a nonconstant element of F[x]. If a belongs to some 
 extension of F and f (a) is algebraic over F, prove that a is alge-
braic over F.

 23. Let f (x) 5 ax2 1 bx 1 c [ Q[x]. Find a primitive element for the 
splitting field for f (x) over Q.

 24. Find the splitting field for x4 2 x2 2 2 over Z3.

 25. Let f (x) [ F[x]. If deg f (x) 5 2 and a is a zero of f (x) in some 
 extension of F, prove that F(a) is the splitting field for f (x) over F.

 26. Let a be a complex zero of x2 1 x 1 1 over Q. Prove that  
Q(2a) 5 Q(a).

 27. If F is a field and the multiplicative group of nonzero elements of 
F is cyclic, prove that F is finite.

 28. Let a be a complex number that is algebraic over Q and let r be a 
rational number. Show that ar is algebraic over Q.

 29. Prove that, if K is an extension field of F, then [K:F ] 5 n if and 
only if K is isomorphic to Fn as vector spaces. (See Exercise 27 in  
Chapter 19 for the appropriate definition. This exercise is referred 
to in this chapter.)
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 30. Let a be a positive real number and let n be an integer greater than 1. 
Prove or disprove that [Q(a1/n):Q] 5 n.

 31. Let a and b belong to some extension field of F and let b be alge-
braic over F. Prove that [F(a, b):F(a)] # [F(a, b):F].

 32. Let f (x) and g(x) be irreducible polynomials over a field F and let  
a and b belong to some extension E of F. If a is a zero of f (x) and  
b is a zero of g(x), show that f (x) is irreducible over F(b) if and 
only if g(x) is irreducible over F(a).

 33. Let b be a zero of f(x) 5 x5 1 2x 1 4 (see Example 8 in Chapter 17). 
Show that none of 22, 23 2, 24 2 belongs to Q(b).

 34. Prove that Q(22, 23 2) 5 Q(26 2).
 35. Let a and b be rational numbers. Show that Q(2a, 2b) 5  

Q(2a 1 2b).
 36. Let F, K, and L be fields with F 8 K 8 L. If L is a finite extension of F 

and [L:F] 5 [L:K], prove that F � K.
 37. Let F be a field and K a splitting field for some nonconstant poly-

nomial over F. Show that K is a finite extension of F.
 38. Prove that C is not the splitting field of any polynomial in Q[x].
 39. Prove that 22 is not an element of Q1p2.
 40. Let a �  cos 

2p
7 � i sin 

2p
7  and b �  cos 

2p
5 � i sin 

2p
5 . Prove that b  

is not in Q1a2.
 41. Suppose that a is algebraic over a field F. Show that a and 1 � a�1 

have the same degree over F.
 42. Suppose K is an extension of F of degree n. Prove that K can be 

written in the form F(x1, x2, ), xn) for some x1, x2, ), xn in K.

Suggested Readings

R. L. Roth, “On Extensions of Q by Square Roots,” American Mathematical 
Monthly 78 (1971): 392–393.

In this paper, it is proved that if p1, p2, . . . , pn are distinct primes, 
then [Q(2p1,2p2, . . . , 2pn):Q] 5 2n.

Paul B. Yale, “Automorphisms of the Complex Numbers,” Mathematics  
Magazine 39 (1966): 135–141.

This award-winning expository paper is devoted to various results on  
automorphisms of the complex numbers.
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Irving Kaplansky

He got to the top of the heap  
by being a first-rate doer and  
expositor of algebra.

 paul r. halmos, I Have a  
Photographic Memory

Irving Kaplansky was born on March 22, 
1917, in Toronto, Canada, a few years after 
his parents emigrated from Poland. Al-
though his parents thought he would pursue 
a career in music, Kaplansky knew early on 
that mathematics was what he wanted to do. 
As an undergraduate at the University of  
Toronto, Kaplansky was a member of the 
winning team in the first William Lowell 
Putnam Competition, a mathematical con-
test for United States and Canadian college 
students. Kaplansky received a B.A. degree 
from Toronto in 1938 and an M.A. in 1939. In 
1939, he entered Harvard University to earn 
his doctorate as the first recipient of a Putnam 
Fellowship. After receiving his Ph.D. from 
Harvard in 1941, Kaplansky stayed on as 
Benjamin Peirce Instructor until 1944. After 
one year at Columbia University, he went to 
the University of Chicago, where he remained 
until his retirement in 1984. He then became 
the director of the Mathematical Sciences 
 Research Institute at the University of Cali-
fornia, Berkeley.

Kaplansky’s interests were broad, includ-
ing areas such as ring theory, group theory, 
field theory, Galois theory, ergodic theory, 
algebras, metric spaces, number theory, sta-
tistics, and probability.

Among the many honors Kaplansky 
 received are election to both the National 
Academy of Sciences and the American 
Academy of Arts and Sciences, election to 
the presidency of the American Mathemati-
cal Society,  and the 1989 Steele Prize for 
cumulative influence from the American 
Mathematical Society. The Steele Prize cita-
tion says, in part, “. . . he has made striking 
changes in mathematics and has inspired 
generations of younger mathematicians.” 
Kaplansky died on June 25, 2006, at the age 
of 89.

For more information about Kaplansky, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Finite Fields

This theory [of finite fields] is of considerable interest in its own right and it 
provides a particularly beautiful example of how the general theory of the 
preceding chapters fits together to provide a rather detailed description of 
all finite fields.

richard a. dean, Elements of Abstract Algebra

22

Classification of Finite Fields
In this, our final chapter on field theory, we take up one of the most 
beautiful and important areas of abstract algebra—finite fields. Finite 
fields were first introduced by Galois in 1830 in his proof of the unsolv-
ability of the general quintic equation. When Cayley invented matrices a 
few decades later, it was natural to investigate groups of matrices over 
 finite fields. To this day, matrix groups over finite fields are among the 
most important classes of groups. In the past 50 years, there have been 
important applications of finite fields in computer science, coding the-
ory, information theory, and cryptography. But, besides the many uses of 
finite fields in pure and applied mathematics, there is yet another good 
reason for studying them. They are just plain fun!

The most striking fact about finite fields is the restricted nature of 
their order and structure. We have already seen that every finite field 
has prime-power order (Exercise 51 in Chapter 13). A converse of sorts 
is also true.

 Theorem 22.1 Classification of Finite Fields

For each prime p and each positive integer n, there is, up to 

isomorphism, a unique finite field of order pn.

PROOF Consider the splitting field E of f(x) 5 xpn 2 x over Zp. We  
will show that |E| 5 pn. Since f(x) splits in E, we know that f(x) has ex-
actly pn zeros in E, counting multiplicity. Moreover, by Theorem 20.5, 
every zero of f(x) has multiplicity 1. Thus, f(x) has pn distinct zeros in E. 
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22 | Finite Fields 389

On the other hand, the set of zeros of f(x) in E is closed under addition, 
subtraction, multiplication, and division by nonzero elements (see 
Exercise 37), so that the set of zeros of f(x) is itself an extension field of  
Zp in which f(x) splits. Thus, the set of zeros of f(x) is E and, therefore, 
|E| 5 pn.

To show that there is a unique field for each prime-power, suppose 
that K is any field of order pn. Then K has a subfield isomorphic to Zp 
(generated by 1), and, because the nonzero elements of K form a multi-
plicative group of order pn 2 1, every element of K is a zero of f (x) 5 
xpn 2 x (see Exercise 27). So, K must be a splitting field for f (x) over Zp. 
By the corollary to Theorem 20.4, there is only one such field up to 
 isomorphism. 

The existence portion of Theorem 22.1 appeared in the works of 
Galois and Gauss in the first third of the 19th century. Rigorous proofs 
were given by Dedekind in 1857 and by Jordan in 1870 in his classic 
book on group theory. The uniqueness portion of the theorem was 
proved by E. H. Moore in an 1893 paper concerning finite groups. The 
mathematics historian E. T. Bell once said that this paper by Moore 
marked the beginning of abstract algebra in America.

Because there is only one field for each prime-power pn, we may un-
ambiguously denote it by GF( pn), in honor of Galois, and call it the 
Galois field of order pn.

Structure of Finite Fields
The next theorem tells us the additive and multiplicative group struc-
ture of a field of order pn.

 Theorem 22.2 Structure of Finite Fields

As a group under addition, GF(pn) is isomorphic to

Z
p
 % Z

p
 % ? ? ? % Z

p
.

n factors

As a group under multiplication, the set of nonzero elements of 

GF( pn) is isomorphic to Z
pn21 (and is, therefore, cyclic).

PROOF Since GF( pn) has characteristic p (Theorem 13.3), every  
nonzero element of GF( pn) has additive order p. Then by the Funda-
mental Theorem of Finite Abelian Groups, GF( pn) under addition is 
isomorphic to a direct product of n copies of Zp.

99708_ch22_ptg01_hr_388-398.indd   389 06/06/12   9:25 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



390 Fields

To see that the multiplicative group GF( pn)* of nonzero elements of 
GF(pn) is cyclic, we first note that by the Fundamental Theorem of  
Finite Abelian Groups (Theorem 11.1), GF(pn)* is isomorphic to a direct 
product of the form Zn1

 % Zn2
 % ? ? ? % Znm

. If the orders of these compo-
nents are pairwise relatively prime, then it follows from Corollary 1 of 
Theorem 8.2 that GF(pn)* is cyclic. Hence we  may assume that there is 
an integer d . 1 that divides the orders of two of the components. From 
the Fundamental Theorem of Cyclic Groups (Theorem 4.3) we know that 
each of these components has a subgroup of order d. This means that 
GF(pn)* has two distinct subgroups of order d, call them H and K. But 
then  every element of H and K is a zero of xd 2 1, which contradicts the 
fact that a polynomial of degree d over a field can have at most d zeros 
(Corollary 3 of Theorem 16.2).  

Some students misinterpret Theorem 22.2 to mean that Zp % Zp  
% ? ? ? % Zp is a field of order pn. Since any element of Zp % Zp % ? ? ? % 

Zp that has at least one coordinate equal to 0 cannot have an inverse, it 
is not a field.

Since Zp % Zp % ? ? ? % Zp is a vector space over Zp with {(1, 0, 
. . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} as a basis, we have the 
 following useful and aesthetically appealing formula.

 Corollary 1

[GF(pn):GF(p)] 5 n

 Corollary 2 GF(pn) Contains an Element of Degree n

Let a be a generator of the group of nonzero elements of GF( pn) 
under multiplication. Then a is algebraic over GF( p) of degree n.

PROOF Observe that [GF( p)(a):GF( p)] 5 [GF( pn):GF( p)] 5 n. 

 EXAMPLE 1 Let’s examine the field GF(16) in detail. Since x4 1  
x 1 1 is irreducible over Z2, we know that

GF(16) < {ax3 1 bx2 1 cx 1 d 1 kx4 1 x 1 1l | a, b, c, d [ Z2}.

Thus, we may think of GF(16) as the set

F 5 {ax3 1 bx2 1 cx 1 d | a, b, c, d [ Z2},
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22 | Finite Fields 391

where addition is done as in Z2[x], but multiplication is done modulo  
x4 1 x 1 1. For example,

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x3 1 x2,

since the remainder upon dividing

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x6 1 x5 1 x2 1 x

by x4 1 x 1 1 in Z2[x] is x3 1 x2. An easier way to perform the same 
calculation is to observe that in this context x4 1 x 1 1 is 0, so

x4 5 2x 2 1 5 x 1 1,
 x5 5 x2 1 x,

x6 5 x3 1 x2.

Thus,

x6 1 x5 1 x2 1 x 5 (x3 1 x2) 1 (x2 1 x) 1 x2 1 x 5 x3 1 x2.

Another way to simplify the multiplication process is to make use of 
the fact that the nonzero elements of GF(16) form a cyclic group of 
order 15. To take advantage of this, we must first find a generator of this 
group. Since any element F* must have a multiplicative order that di-
vides 15, all we need to do is find an element a in F* such that a3 2 1 
and a5 2 1. Obviously, x has these properties. So, we may think of 
GF(16) as the set {0, 1, x, x2, . . . , x14}, where x15 5 1. This makes mul-
tiplication in F trivial, but, unfortunately, it makes addition more diffi-
cult. For example, x10 ? x7 5 x17 5 x2, but what is x10 1 x7? So, we face 
a dilemma. If we write the elements of F* in the additive form ax3 1 
bx2 1 cx 1 d, then addition is easy and multiplication is hard. On the 
other hand, if we write the elements of F* in the multiplicative form xi, 
then multiplication is easy and addition is hard. Can we have the best of 
both? Yes, we can. All we need to do is use the relation x4 5 x 1 1 to 
make a two-way conversion table, as in Table 22.1.

So, we see from Table 22.1 that

x10 1 x7 5 (x2 1 x 1 1)  1 (x3 1 x 1 1)
 5 x3 1 x2 5 x6

and

 (x3 1 x2 1 1)(x3 1 x2 1 x 1 1) 5 x13 ? x12

  5 x25 5 x10 5 x2 1 x 1 1. 

Don’t be misled by the preceding example into believing that the 
 element x is always a generator for the cyclic multiplicative group  
of nonzero elements. It is not. (See Exercise 19.) Although any two
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Table 22.1  Conversion Table for Addition and Multiplication in GF(16)

 Multiplicative Additive Form to
 Form to  Multiplicative
 Additive Form Form

1 1 1 1
x x x x
x2 x2 x 1 1 x4

x3 x3 x2 x2

x4 x 1 1 x2 1 x x5

x5 x2 1 x x2 1 1 x8

x6 x3 1 x2 x2 1 x 1 1 x10

x7 x3 1 x 1 1 x3 x3

x8 x2 1 1 x3 1 x2 x6

x9 x3 1 x x3 1 x x9

x10 x2 1 x 1 1 x3 1 1 x14

x11 x3 1 x2 1 x x3 1 x2 1 x x11

x12 x3 1 x2 1 x 1 1 x3 1 x2 1 1 x13

x13 x3 1 x2 1 1 x3 1 x 1 1 x7

x14 x3 1 1 x3 1 x2 1 x 1 1 x12

irreducible polynomials of the same degree over Zp[x] yield isomorphic 
fields, some are better than others for computational purposes.

 EXAMPLE 2 Consider f(x) 5 x3 1 x2 1 1 over Z2. We will show how 
to write f(x) as the product of linear factors. Let F 5 Z2[x]/kf(x)l and let a 
be a zero of f(x) in F. Then |F| 5 8 and |F*| 5 7. So, by Corollary 2 to 
Theorem 7.1, we know that |a| 5 7. Thus, by Theorem 20.3,

 F 5 {0, 1, a, a2, a3, a4, a5, a6}
  5 {0, 1, a, a 1 1, a2, a2 1 a 1 1, a2 1 1, a2 1 a}.

We know that a is one zero of f(x), and we can test the other elements 
of F to see if they are zeros. We can simplify the calculations by using 
the fact that a3 1 a2 1 1 5 0 to make a conversion table for the two 
forms of writing the elements of F. Because char F 5 2, we know that  
a3 5 a2 1 1. Then,

a4 5 a3 1 a 5 (a2 1 1) 1 a 5 a2 1 a 1 1,
a5 5 a3 1 a2 1 a 5 (a2 1 1) 1 a2 1 a 5 a 1 1,
a6 5 a2 1 a,  
a7 5 1.

Now let’s see whether a2 is a zero of f(x).

f (a2) 5 (a2)3 1 (a2)2 1 1 5 a6 1 a4 1 1
     5 (a2 1 a) 1 (a2 1 a 1 1) 1 1 5 0.
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22 | Finite Fields 393

So, yes, it is. Next we try a3.

 f (a3) 5 (a3)3 1 (a3)2 1 1 5 a9 1 a6 1 1
  5 a2 1 (a2 1 a) 1 1 5 a 1 1 2 0.

Now a4.

 f (a4) 5 (a4)3 1 (a4)2 1 1 5 a12 1 a8 1 1 
 5 a5 1 a 1 1 5 (a 1 1) 1 a 1 1 5 0.

So, a4 is our remaining zero. Thus, f(x) 5 (x 2 a)(x 2 a2)(x 2 a4) 5  
(x 1 a)(x 1 a2)(x 1 a4), since char F 5 2.

We may check this factorization by expanding the product and using 
a conversion table to obtain f(x) 5 x3 1 x2 1 1. 

Subfields of a Finite Field
Theorem 22.1 gives us a complete description of all finite fields. The 
following theorem gives us a complete description of all the subfields 
of a finite field. Notice the close analogy between this theorem and 
Theorem 4.3, which describes all the subgroups of a finite cyclic group.

 Theorem 22.3 Subfields of a Finite Field

For each divisor m of n, GF( pn) has a unique subfield of order pm. 

Moreover, these are the only subfields of GF( pn).

PROOF To show the existence portion of the theorem, suppose that 
m divides n. Then, since

pn 2 1 5 ( pm 2 1)( pn2m 1 pn22m 1 ? ? ? 1 pm 1 1),

we see that pm 2 1 divides pn 2 1. For simplicity, write pn 2 1 5  
(pm 2 1)t. Let K 5 {x [ GF(pn) | xpm 5 x}. We leave it as an easy exer-
cise for the reader to show that K is a subfield of GF(pn) (Exercise 25). 
Since the polynomial xpm 2 x has at most pm zeros in GF(pn), we have 
|K| # pm. Let kal 5 GF(pn)*. Then |at| 5 pm 2 1, and since (at)pm21 5 1, 
it follows that at [ K. So, K is a subfield of GF(pn) of order pm. 

The uniqueness portion of the theorem follows from the observation 
that if GF(pn) had two distinct subfields of order pm, then the polyno-
mial x pm 2 x would have more than pm zeros in GF(pn). This contra-
dicts Corollary 3 of Theorem 16.2.
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Finally, suppose that F is a subfield of GF( pn). Then F is isomorphic to 
GF( pm) for some m and, by Theorem 21.5,

 n 5 [GF( pn):GF( p)]
 5 [GF( pn):GF( pm)][GF( pm):GF( p)]
 5 [GF( pn):GF( pm)]m.

Thus, m divides n. 

Theorems 22.2 and 22.3, together with Theorem 4.3, make the task 
of finding the subfields of a finite field a simple exercise in arithmetic.

 EXAMPLE 3 Let F be the field of order 16 given in Example 1. Then 
there are exactly three subfields of F, and their orders are 2, 4, and 16. 
Obviously, the subfield of order 2 is {0, 1} and the subfield of order 16 
is F itself. To find the subfield of order 4, we merely observe that the 
three nonzero elements of this subfield must be the cyclic subgroup of 
F* 5 kxl of order 3. So the subfield of order 4 is

 {0, 1, x5, x10} 5 {0, 1, x2 1 x, x2 1 x 1 1}. 

 EXAMPLE 4 If F is a field of order 36 5 729 and a is a generator of 
F*, then the subfields of F are

 1. GF(3) 5 {0} < ka364l 5 {0, 1, 2},
 2. GF(9) 5 {0} < ka91l,
 3. GF(27) 5 {0} < ka28l,
 4. GF(729) 5 {0} < kal. 

 EXAMPLE 5 The subfield lattice of GF(224) is the following.

 

GF(28)

GF(24)

GF(22)

GF(23)

GF(26)

GF(212)

GF(224)

GF(2)  
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Exercises

No pressure, no diamonds.
mary case

  1. Find [GF(729):GF(9)] and [GF(64):GF(8)].
  2. If m divides n, show that [GF(pn):GF( pm)] 5 n/m.
  3. Draw the lattice of subfields of GF(64).
  4. Let a be a zero of x3 1 x2 1 1 in some extension field of Z2. Find 

the multiplicative inverse of a 1 1 in Z2[a].
  5. Let a be a zero of f (x) 5 x2 1 2x 1 2 in some extension field of Z3. 

Find the other zero of f (x) in Z3[a].
  6. Let a be a zero of f (x) 5 x3 1 x 1 1 in some extension field of Z2. 

Find the other zeros of f (x) in Z2[a].
  7. Let K be a finite extension field of a finite field F. Show that there 

is an element a in K such that K 5 F(a).
  8. How many elements of the cyclic group GF(81)* are generators?
  9. Let f (x) be a cubic irreducible over Z2. Prove that the splitting field 

of f (x) over Z2 has order 8.
 10. Prove that the rings Z3[x]/kx2 1 x 1 2l and Z3[x]/kx2 1 2x 1 2l are  

isomorphic.
 11. Show that the Frobenius mapping f: GF(pn) S GF( pn), given by  

a S ap, is a ring automorphism of order n (that is, fn is the identity 
mapping). (This exercise is referred to in Chapter 32.)

 12. Determine the possible finite fields whose largest proper subfield  
is GF(25).

 13. Prove that the degree of any irreducible factor of x 8 2 x over Z2 is  
1 or 3.

 14. Find the smallest field that has exactly 6 subfields.
 15. Find the smallest field of characteristic 2 that contains an element 

whose multiplicative order is 5 and the smallest field of character-
istic 3 that contains an element whose multiplicative order is 5.

 16. Verify that the factorization for f (x) 5 x3 1 x2 1 1 over Z2 given in 
Example 2 is correct by expanding.

 17. Show that x is a generator of the cyclic group (Z3[x]/kx3 1 2x 1 1l)*.
 18. Suppose that f (x) is a fifth-degree polynomial that is irreducible  

over Z2. Prove that x is a generator of the cyclic group (Z2[x]/ 
k f (x)l)*.
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 19. Show that x is not a generator of the cyclic group (Z3[x]/kx3 1  
2x 1 2l)*. Find one such generator.

 20. If f (x) is a cubic irreducible polynomial over Z3, prove that either x 
or 2x is a generator for the cyclic group (Z3[x]/kf (x)l)*.

 21. Prove the uniqueness portion of Theorem 22.3 using a group 
 theoretic argument.

 22. Suppose that a and b belong to GF(81)*, with |a| 5 5 and |b| 5 16. 
Show that ab is a generator of GF(81)*.

 23. Construct a field of order 9 and carry out the analysis as in Exam - 
ple 1, including the conversion table.

 24. Show that any finite subgroup of the multiplicative group of a field 
is cyclic.

 25. Show that the set K in the proof of Theorem 22.3 is a subfield.
 26. If g(x) is irreducible over GF( p) and g(x) divides x pn

 2 x, prove 
that deg g(x) divides n.

 27. Use a purely group theoretic argument to show that if F is a field  
of order pn, then every element of F* is a zero of x pn

 2 x. (This ex-
ercise is referred to in the proof of Theorem 22.1.)

 28. Draw the subfield lattices of GF(318) and of GF(230).
 29. How does the subfield lattice of GF(230) compare with the subfield 

lattice of GF(330)?
 30. If p(x) is a polynomial in Zp[x] with no multiple zeros, show that 

p(x) divides xpn 2 x for some n.
 31. Suppose that p is a prime and p 2 2. Let a be a nonsquare in  

GF(p)—that is, a does not have the form b2 for any b in GF(p). 
Show that a is a nonsquare in GF(pn) if n is odd and that a is a  
square in GF(pn) if n is even.

 32. Let f (x) be a cubic irreducible over Zp, where p is a prime. Prove 
that the splitting field of f (x) over Zp has order p3 or p6.

 33. Show that every element of GF( pn) can be written in the form ap 
for some unique a in GF(pn).

 34. Suppose that F is a field of order 1024 and F* 5 kal. List the ele-
ments of each subfield of F.

 35. Suppose that F is a field of order 125 and F* 5 kal. Show that  
a62 5 21.

 36. Show that no finite field is algebraically closed.
 37. Let E be the splitting field of f(x) 5 x pn

 2 x over Zp. Show that the 
set of zeros of f(x) in E is closed under addition, subtraction, mul-
tiplication, and division (by nonzero elements). (This exercise is 
referred to in the proof of Theorem 22.1.)
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22 | Finite Fields 397

 38. Suppose that L and K are subfields of GF(pn). If L has ps elements 
and K has pt elements, how many elements does L > K have?

 39. Give an example to show that the mapping a S ap need not be an 
automorphism for arbitrary fields of prime characteristic p.

 40. In the field GF(pn), show that for every positive divisor d of n, 
xpn

� x has an irreducible factor over GF(p) of degree d.
 41. Let a be a primitive element for the field GF(pn), where p is an odd 

prime and n is a positive integer. Find the smallest positive integer 
k such that ak 5 p 2 1.

 42. Let a be a primitive element for the field GF(5n), where n is a posi-
tive integer. Find the smallest positive  integer k such that ak 5 2.

 43. Let p be a prime such that p mod 4 5 1. How many elements of 
order 4 are in GF(pn)*?

 44. Let p be a prime such that p mod 4 5 3. How many elements of 
order 4 are in GF(pn)*?

Computer Exercises

Software for the computer exercises in this chapter is available at the 
website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Judy L. Smith and J. A. Gallian, “Factoring Finite Factor Rings,” 
 Mathematics Magazine 58 (1985): 93–95.

This paper gives an algorithm for finding the group of units of the ring 
F[x]/kg(x)ml.
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L .E. Dickson

One of the books [written by L. E.  Dickson] 
is his major, three-volume History of the 
Theory of Numbers which would be a life’s 
work by  itself for a more ordinary man. 

a. a. albert,  
Bulletin of the American  

Mathematical Society

Leonard Eugene Dickson was born in 
Independence, Iowa, on January 22, 1874. 
In 1896, he received the first Ph.D. to be 
awarded in mathematics at the University of 
Chicago. After spending a few years at the 
University of California and the University 
of Texas, he was appointed to the faculty at 
Chicago and remained there until his retire-
ment in 1939.

Dickson was one of the most prolific 
mathematicians of the 20th century, writing 
267 research papers and 18 books. His prin-
cipal interests were matrix groups, finite 
fields, algebra, and number theory.

Dickson had a disdainful attitude toward 
applicable mathematics; he would often say, 
“Thank God that number theory is unsullied 
by any applications.” He also had a sense of 

humor. Dickson would often mention his 
honeymoon: “It was a great success,” he 
said, “except that I only got two research 
 papers written.”

Dickson received many honors in his 
 career. He was the first to be awarded the 
prize from the American Association for the 
Advancement of Science for the most  notable 
contribution to the advancement of science, 
and the first to receive the Cole Prize in alge-
bra from the American Mathematical Society. 
The University of Chicago has research in-
structorships named after him. Dickson died 
on January 17, 1954.

For more information about Dickson, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Geometric 
Constructions

At the age of eleven, I began Euclid. . . . This was one of the great events  
of my life, as dazzling as first love.

bertrand russell

Historical Discussion 
of Geometric Constructions

The ancient Greeks were fond of geometric constructions. They were 
 especially interested in constructions that could be achieved using only a 
straightedge without markings and a compass. They knew, for example, 
that any angle can be bisected, and they knew how to construct an equi-
lateral triangle, a square, a regular pentagon, and a regular hexagon. But 
they did not know how to trisect every angle or how to construct a regu-
lar seven-sided polygon (heptagon). Another problem that they at-
tempted was the duplication of the cube—that is, given any cube, they 
tried to construct a new cube having twice the volume of the given one 
using only an unmarked straightedge and a compass. Legend has it that 
the ancient Athenians were told by the oracle at Delos that a plague 
would end if they constructed a new altar to Apollo in the shape of a cube 
with double the volume of the old altar, which was also a cube. Besides 
“doubling the cube,” the Greeks also attempted to “square the circle”—to 
construct a square with area equal to that of a given circle. They knew 
how to solve all these problems using other means, such as a compass 
and a straightedge with two marks, or an unmarked straightedge and a 
spiral, but they could not achieve any of the constructions with a compass 
and an unmarked straightedge alone. These problems vexed mathemati-
cians for over 2000 years. The resolution of these perplexities was made 
possible when they were transferred from questions of geometry to ques-
tions of algebra in the 19th century.

The first of the famous problems of antiquity to be solved was that of 
the construction of regular polygons. It had been known since  Euclid that 
regular polygons with a number of sides of the form 2k, 2k ? 3, 2k ? 5, and 
2k ? 3 ? 5 could be constructed, and it was believed that no others were 

23
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possible. In 1796, while still a teenager, Gauss proved that the  
17-sided regular polygon is constructible. In 1801, Gauss asserted that a 
regular polygon of n sides is constructible if and only if n has the form 
2kp1p2 ? ? ? pi, where the p’s are distinct primes of the form 22s

 1 1. We 
provide a proof of this statement in  Theorem 33.5.

Thus, regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, and 20 
sides are possible to construct, whereas those with 7, 9, 11, 13, 14,  
18, and 19 sides are not. How these constructions can be effected is an-
other matter. One person spent 10 years trying to determine a way to 
construct the 65,537-sided polygon.

Gauss’s result on the constructibility of regular n-gons eliminated 
another of the famous unsolved problems, because the ability to trisect 
a 60° angle enables one to construct a regular 9-gon. Thus, there is no 
method for trisecting a 60° angle with an unmarked straightedge and a 
compass. In 1837, Wantzel proved that it was not possible to double 
the cube. The problem of the squaring of a circle resisted all attempts 
until 1882, when Ferdinand Lindemann proved that p is transcenden-
tal, since, as we will show, all constructible numbers are algebraic.

Constructible Numbers
With the field theory we now have, it is an easy matter to solve the following 
problem: Given an unmarked straightedge, a compass, and a unit length, what 
other lengths can be constructed? To begin, we call a real number a construct-
ible if, by means of an unmarked straightedge, a compass, and a line segment 
of length 1, we can construct a line segment of length |a| in a finite number of 
steps. It follows from plane geometry that if a and b (b 2 0) are constructible 
numbers, then so are a 1 b, a 2 b, a ? b, and a/b. (See the  exercises for 
hints.) Thus, the set of constructible numbers contains Q and is a subfield of 
the real numbers. What we desire is an algebraic characterization of this field. 
To derive such a characterization, let F be any subfield of the  reals. Call  
the subset {(x, y) [ R2 |  x, y [ F} of the real plane the plane of F, call  
any line joining two points in the plane of F a line in F, and call any circle 
whose center is in the plane of F and whose radius is in F a circle in F. Then a 
line in F has an equation of the form

ax 1 by 1 c 5 0,    where a, b, c [ F,

and a circle in F has an equation of the form

x2 1 y2 1 ax 1 by 1 c 5 0,    where a, b, c [ F.

In particular, note that to find the point of intersection of a pair of lines 
in F or the points of intersection of a line in F and a circle in F, one 
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23 | Geometric Constructions 401

need only solve a linear or quadratic equation in F. We now come to 
the crucial question. Starting with points in the plane of some field F, 
which points in the real plane can be obtained with an unmarked 
straightedge and a compass? Well, there are only three ways to con-
struct points, starting with points in the plane of F.

 1. Intersect two lines in F.
 2. Intersect a circle in F and a line in F.
 3. Intersect two circles in F.

In case 1, we do not obtain any new points, because two lines in F in-
tersect in a point in the plane of F. In case 2, the point of intersection is 
the solution to either a linear equation in F or a quadratic equation in  
F. So, the point lies in the plane of F or in the plane of F(2a), where  
a [ F and a is positive. In case 3, no new points are obtained, because, 
if the two circles are given by x2 1 y2 1 ax 1 by 1 c 5 0 and  
x2 1 y2 1 a9x 1 b9y 1 c9 5 0, then we have (a 2 a9)x 1 (b 2 b9)y 1  
(c 2 c9) 5 0, which is a line in F. So, the points of intersection are in F.

It follows, then, that the only points in the real plane that can be 
constructed from the plane of a field F are those whose coordinates 
lie in fields of the form F(2a), where a [ F and a is positive. Of 
course, we can start over with F1 5 F(2a) and construct points 
whose coordinates lie in fields of the form F2 5 F1(2b), where b [ 
F1 and b is positive. Continuing in this fashion, we see that a real 
number c is  constructible if and only if there is a series of fields Q 5 
F1 # F2 # ? ? ? # Fn # R such that Fi11 5 Fi(2ai), where ai [ Fi 
and c [ Fn. Since [Fi11:Fi] 5 1 or 2, we see by Theorem 21.5 that if 
c is constructible, then [Q(c):Q] 5 2k for some nonnegative integer k.

We now dispatch the problems that plagued the Greeks. Consider dou-
bling the cube of volume 1. The enlarged cube would have an edge of 
length 23 2. But [Q(23 2):Q] 5 3, so such a cube cannot be constructed. 

Next consider the possibility of trisecting a 60° angle. If it were pos-
sible to trisect an angle of 60°, then cos 20° would be constructible. (See 
Figure 23.1.) In particular, [Q(cos 20°):Q] 5 2k for some k. Now, using 
the trigonometric identity cos 3u 5 4 cos3 u 2 3 cos u, with u 5 20°, we 

Figure 23.1

(0, 0) (1, 0)

(cos 20°, sin 20°)
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see that 1/2 5 4 cos3 20° 2 3 cos 20°, so that cos 20° is a zero of  
8x3 2 6x 2 1. But, since 8x3 2 6x 2 1 is irreducible over Q (see 
Exercise 13), we must also have [Q(cos 20°):Q] 5 3. This contradiction 
shows that trisecting a 60° angle is impossible.

The remaining problems are relegated to the reader as Exercises 14, 
15, and 17.

Angle-Trisectors and Circle-Squarers
Down through the centuries, hundreds of people have claimed to have 
achieved one or more of the impossible constructions. In 1775, the Paris 
Academy, so overwhelmed with these claims, passed a resolution to no 
longer examine these claims or claims of machines purported to exhibit 
perpetual motion. Although it has been more than 100 years since the last 
of the constructions was shown to be impossible, there continues to be a 
steady parade of people who claim to have done one or more of them. 
Most of these people have heard that this is impossible but have refused 
to believe it. One person insisted that he could trisect any angle with a 
straightedge alone [2, p. 158]. Another found his trisection in 1973 after 
12,000 hours of work [2, p. 80]. One got his from God [2, p. 73]. In 
1971, a person with a Ph.D. in mathematics asserted that he had a valid 
trisection method [2, p. 127]. Many people have claimed the hat trick: 
trisecting the angle, doubling the cube, and squaring the circle. Two men 
who did this in 1961 succeeded in having their accomplishment noted in 
the Congressional Record [2, p. 110]. Occasionally, newspapers and 
magazines have run stories about “doing the impossible,” often giving 
the impression that the construction may be valid. Many angle-trisectors 
and circle-squarers have had their work published at their own expense 
and distributed to colleges and universities. One had his printed in four 
languages! There are two delightful books written by mathematicians 
about their encounters with these people. The books are full of wit, 
charm, and humor ([1] and [2]).

Exercises

Only prove to me that it is impossible, and I will set about it this very  
evening.

Spoken by a member of the audience after De Morgan gave a 
lecture on the impossibility of squaring the circle.

  1. If a and b are constructible numbers and a $ b . 0, give a geomet-
ric proof that a 1 b and a 2 b are constructible.
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23 | Geometric Constructions 403

  2. If a and b are constructible, give a geometric proof that ab is con-
structible. (Hint: Consider the following figure. Notice that all seg-
ments in the figure can be made with an unmarked straightedge and a 
compass.)

b

a

1

  3. Prove that if c is a constructible number, then so is 2|c|. (Hint: 
Consider the following semicircle with diameter 1 1 |c|.) (This ex-
ercise is referred to in Chapter 33.)

α

α

d

⏐c⏐1

  4. If a and b (b 2 0) are constructible numbers, give a geometric proof 
that a/b is constructible. (Hint: Consider the following figure.)

a

b

0
1

  5. Prove that sin u is constructible if and only if cos u is constructible.
  6. Prove that an angle u is constructible if and only if sin u is con-

structible.
  7. Prove that cos 2u is constructible if and only if cos u is con-

structible.
  8. Prove that 30° is a constructible angle.
  9. Prove that a 45° angle can be trisected with an unmarked straight-

edge and a compass.
 10. Prove that a 40° angle is not constructible.
 11. Show that the point of intersection of two lines in the plane of a 

field F lies in the plane of F.
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 12. Show that the points of intersection of a circle in the plane of a field 
F and a line in the plane of F are points in the plane of F or in the 
plane of F(2a), where a [ F and a is positive. Give an example  
of a circle and a line in the plane of Q whose points of intersection 
are not in the plane of Q.

 13. Prove that 8x3 2 6x 2 1 is irreducible over Q.
 14. Use the fact that 8 cos3(2p/7) 1 4 cos2(2p/7) 2 4 cos(2p/7) 2 1 5 0 

to prove that a regular seven-sided polygon is not constructible with 
an unmarked straightedge and a compass.

 15. Show that a regular 9-gon cannot be constructed with an unmarked 
straightedge and a compass.

 16. Show that if a regular n-gon is constructible, then so is a regular 
2n-gon.

 17. (Squaring the Circle) Show that it is impossible to construct, with 
an unmarked straightedge and a compass, a square whose area 
equals that of a circle of radius 1. You may use the fact that p is 
transcendental over Q.

 18. Use the fact that 4 cos2(2p/5) 1 2 cos(2p/5) 2 1 5 0 to prove that 
a regular pentagon is constructible.

 19. Can the cube be “tripled”?
 20. Can the cube be “quadrupled”?
 21. Can the circle be “cubed”?
 22. If a, b, and c are constructible, show that the real roots of ax2 1 

bx 1 c are constructible.

References

 1. Augustus De Morgan, A Budget of Paradoxes, Dover Publications, 1954, 
books.google.com.

 2. Underwood Dudley, A Budget of Trisections, New York:  
Springer-Verlag, 1987.

Suggested Website

http://en.wikipedia.org/wiki/Squaring_the_circle

This website provides an excellent account of efforts to square the  
circle, and links for articles about trisecting the angle and doubling 
the cube.
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Supplementary Exercises for Chapters 19–23 405

Supplementary Exercises for Chapters 19–23

Difficulties strengthen the mind, as labor does the body.
seneca

True/false questions for Chapters 19–23 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

  1. Show that x50 2 1 has no multiple zeros in any extension of Z3.
  2. Suppose that p(x) is a quadratic polynomial with rational coeffi-

cients and is irreducible over Q. Show that p(x) has two zeros in 
Q[x]/kp(x)l.

  3. Let F be a finite field of order q and let a be a nonzero element in 
F. If n divides q 2 1, prove that the equation xn 5 a has either no 
solutions in F or n distinct solutions in F.

  4. Without using the Primitive Element Theorem, prove that if [K:F] 
is prime, then K has a primitive element.

  5. Let a be a zero of x2 1 x 1 1. Express (5a2 1 2)/a in the form c 1 
ba, where c and b are rational.

  6. Describe the elements of the extension Q(24 2) over the field Q(22).
  7. If [F(a):F] 5 5, find [F(a3):F]. Does your argument apply equally 

well if a3 is replaced with a2 or a4?
  8. If p(x) [ F[x] and deg p(x) 5 n, show that the splitting field for 

p(x) over F has degree at most n!.
  9. Let a be a nonzero algebraic element over F of degree n. Show that 

a21 is also algebraic over F of degree n.
 10. Prove that p2 2 1 is algebraic over Q(p3).
 11. If ab is algebraic over F and b 2 0, prove that a is algebraic over F(b).
 12. Let E be an algebraic extension of a field F. If R is a ring and E $ 

R $ F, show that R must be a field.
 13. If a is transcendental over F, show that every element of F(a) that 

is not in F is transcendental over F.
 14. What is the order of the splitting field of x5 1 x4 1 1 5 (x2 1 x 1 1) ? 

(x3 1 x 1 1) over Z2?
 15. Show that a finite extension of a finite field is a simple extension.
 16. Let R be an integral domain that contains a field F as a subring. If 

R is finite dimensional when viewed as a vector space over F, prove 
that R is a field.
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 17. Show that it is impossible to find a basis for the vector space of  
n 3 n (n . 1) matrices such that each pair of elements in the  basis 
commutes under multiplication.

 18. Let Pn 5 {anx
n 1 an21x

n21 1 ? ? ? 1 a1x 1 a0 | each ai is a real 
number}. Is it possible to have a basis for Pn such that every ele-
ment of the basis has x as a factor?

 19. Find a basis for the vector space { f [ P3 | f (0) 5 0}. (See Exercise 18 
for notation.)

 20. Given that f is a polynomial of degree n in Pn, show that { f, f 9,  
f 0, . . . , f (n)} is a basis for Pn. ( f (k) denotes the kth derivative of f.)

 21. Suppose that K is an extension field of a field F of characteristic  
p 2 0. Let L 5 {a [ K |  apn [ F for some nonnegative integer n}. 
Prove that L is a subfield of K that contains F.

 22. In which fields does xn 2 x have a multiple zero?
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Sylow Theorems

Generally these three results are implied by the expression “Sylow’s 
Theorem.” All of them are of fundamental importance. In fact, if the 
theorems of group theory were arranged in order of their importance 
Sylow’s Theorem might reasonably occupy the second place—coming next 
to Lagrange’s Theorem in such an arrangement.

g. a. miller, Theory and Application  

of Finite Groups

24

Conjugacy Classes
In this chapter, we derive several important arithmetic relationships 
 between a group and certain of its subgroups. Recall from Chapter 7 
that Lagrange’s Theorem was proved by showing that cosets of a sub-
group partition the group. Another fruitful method of partitioning the 
elements of a group is by way of conjugacy classes.

Definition Conjugacy Class of a
Let a and b be elements of a group G. We say that a and b are 
 conjugate in G (and call b a conjugate of a) if xax21 5 b for some x 
in G. The  conjugacy class of a is the set cl(a) 5 {xax21 | x [ G}.

We leave it to the reader (Exercise 1) to prove that conjugacy is an 
equivalence relation on G, and that the conjugacy class of a is the equiva-
lence class of a under conjugacy. Thus, we may partition any group into 
disjoint conjugacy classes. Let’s look at one example. In D4 we have

cl(H) 5 {R0HR0
21, R90HR90

21, R180HR180
21, R270HR270

21,
 HHH21, VHV21, DHD21, D9HD921} 5 {H, V}.

Similarly, one may verify that

     cl(R0) 5 {R0},
 cl(R90) 5 {R90, R270} 5 cl(R270),
 cl(R180) 5 {R180},
  cl(V) 5 {V, H} 5 cl(H),
  cl(D) 5 {D, D9} 5 cl(D9).
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410 Special Topics

Theorem 24.1 gives an arithmetic relationship between the size of 
the conjugacy class of a and the size of C(a), the centralizer of a.

 Theorem 24.1 Number of Conjugates of a

Let G be a finite group and let a be an element of G. Then,  

|cl(a)| 5 |G:C(a)|.

PROOF Consider the function T that sends the coset xC(a) to the 
 conjugate xax21 of a. A routine calculation shows that T is well-defined, is 
one-to-one, and maps the set of left cosets onto the conjugacy class of a. 
Thus, the number of conjugates of a is the index of the centralizer of a. 

 Corollary 1 |cl(a)| Divides |G|

In a finite group, |cl(a)| divides |G|.

The Class Equation
Since the conjugacy classes partition a group, the following important 
counting principle is a corollary to Theorem 24.1.

 Corollary 2 Class Equation

For any finite group G,

|G| 5 S|G:C(a)|,

where the sum runs over one element a from each conjugacy class of G.

In finite group theory, counting principles such as this corollary are 
powerful tools.† Theorem 24.2 is the single most important fact about 
finite groups of prime-power order (a group of order pn, where p is a 
prime, is called a p-group).

 Theorem 24.2 p-Groups Have Nontrivial Centers

Let G be a nontrivial finite group whose order is a power of a prime p. 

Then Z(G) has more than one element.

†“Never underestimate a theorem that counts something.” John Fraleigh, A First Course 
in Abstract Algebra.
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24 | Sylow Theorems 411

PROOF First observe that cl(a) 5 {a} if and only if a [ Z(G) (see 
 Exercise 4). Thus, by culling out these elements, we may write the 
class equation in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where the sum runs over representatives of all conjugacy classes with 
more than one element (this set may be empty). But |G:C(a)| 5 
|G|/|C(a)|, so each term in S|G:C(a)| has the form pk with k $ 1. Hence,

|G| 2 S|G:C(a)| 5 |Z(G)|,

where each term on the left is divisible by p. It follows, then, that p also 
divides |Z(G)|, and hence |Z(G)| 2 1. 

 Corollary Groups of Order p2 Are Abelian

If |G| 5 p2, where p is prime, then G is Abelian.

PROOF By Theorem 24.2 and Lagrange’s Theorem, |Z(G)| 5 p or p2. 
If |Z(G)| 5 p2, then G 5 Z(G) and G is Abelian. If |Z(G)| 5 p, then 
|G/Z(G)| 5 p, so that G/Z(G) is cyclic. But, then, by Theorem 9.3, G is 
Abelian. 

The Probability That Two  
Elements Commute

Before proceeding to the main goal of this chapter, we pause for an in-
teresting application of Theorem 24.1 and the class equation. (Our dis-
cussion is based on [1] and [2].) Suppose we select two elements  
at random (with replacement) from a finite group. What is the proba-
bility that these two elements commute? Well, suppose that G is a   fi- 
nite group of order n. Then the probability Pr(G) that two elements 
 selected at random from G commute is |K|/n2, where K 5 {(x, y) [  
G % G | xy 5 yx}. Now notice that for each x [ G we have (x, y) [ K 
if and only if y [ C(x). Thus,0K 0 � a

x[G
 0C1x2 0 .

Also, it follows from Theorem 24.1 that if x and y are in the same  
conjugacy class, then |C(x)| 5 |C(y)| (see Exercise 71). If, for exam-
ple, cl(a) 5 {a1, a2, . . . , at}, then

 |C(a1)| 1 |C(a2)| 1 ? ? ? 1 |C(at)| 5 t|C(a)|
 5 |G:C(a)||C(a)| 5 |G| 5 n.
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So, by choosing one representative from each conjugacy class, say, x1, 
x2, . . . , xm, we have0K 0 � a

x[G
 0C1x2 0 � a

m

i�1
0G:C1xi2 0 0C1xi2 0 � m # n.

Thus, the answer to our question is mn/n2 5 m/n, where m is the num-
ber of conjugacy classes in G and n is the number of elements of G.

Obviously, when G is non-Abelian, Pr(G) is less than 1. But how much 
less than 1? Clearly, the more conjugacy classes there are, the larger Pr(G) 
is. Consequently, Pr(G) is large when the sizes of the conjugacy classes 
are small. Noting that |cl(a)| 5 1 if and only if a [ Z(G), we obtain the 
maximum number of conjugacy classes when |Z(G)| is as large as possi-
ble and all other conjugacy classes have exactly two elements in each. 
Since G is non-Abelian, it follows from Theorem 9.3 that |G/Z(G)| $ 4 
and, therefore, |Z(G)| # |G|/4. Thus, in the extreme case, we would have 
|Z(G)| 5 |G|/4, and the remaining (3/4)|G| elements would be distributed 
in conjugacy classes with two elements each. So, in a non-Abelian group, 
the number of conjugacy classes is no more than |G|/4 1 (1/2)(3/4)|G|, 
and Pr(G) is less than or equal to 5/8. The dihedral group D4 is an exam-
ple of a group that has probability equal to 5/8.

The Sylow Theorems
Now to the Sylow theorems. Recall that the converse of Lagrange’s 
Theorem is false; that is, if G is a group of order m and n divides m, 
G need not have a subgroup of order n. Our next theorem is a partial 
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first 
proved by the Norwegian mathematician Ludwig Sylow (1832–1918). 
Sylow’s Theorem and Lagrange’s Theorem are the two most important 
results in finite group theory.† The first gives a sufficient condition for 
the existence of subgroups, and the second gives a necessary condition.

  Theorem 24.3 Existence of Subgroups of Prime-Power Order  
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If pk divides |G|, then G 

has at least one subgroup of order pk.

†My candidate for the third most important result is the Fundamental Theorem of  
Finite Abelian Groups.
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24 | Sylow Theorems 413

PROOF We proceed by induction on |G|. If |G| 5 1, Theorem 24.3 is 
trivially true. Now assume that the statement is true for all groups of 
order less than |G|. If G has a proper subgroup H such that pk divides 
|H|, then, by our inductive assumption, H has a subgroup of order pk 
and we are done. Thus, we may henceforth assume that pk does not 
 divide the order of any proper subgroup of G. Next, consider the class 
equation for G in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where we sum over a representative of each conjugacy class cl(a), where 
a o Z(G). Since pk divides |G| 5 |G:C(a)||C(a)| and pk does not divide 
|C(a)|, we know that p must divide |G:C(a)| for all a o Z(G). It then fol-
lows from the class equation that p divides |Z(G)|. The Fundamental 
Theorem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then 
guarantees that Z(G) contains an element of order p, say x. Since x is in 
the center of G, kxl is a normal subgroup of G, and we may form the fac-
tor group G/kxl. Now observe that pk21 divides |G/kxl|. Thus, by the 
 induction hypothesis, G/kxl has a subgroup of order pk21 and, by Exer-
cise 51 in Chapter 10, this subgroup has the form H/kxl, where H is a 
subgroup of G. Finally, note that |H/kxl| 5 pk21 and |kxl| 5 p imply that 
|H| 5 pk. Thus, we have produced a subgroup of order pk, which con-
tradicts our assumption that no such subgroup exists. Therefore, we 
must have originally had a subgroup of order pk, and we can apply the 
induction hypothesis to that subgroup. 

Let’s be sure we understand exactly what Sylow’s First Theorem 
means. Say we have a group G of order 23 ? 32 ? 54 ? 7. Then Sylow’s 
First Theorem says that G must have at least one subgroup of each 
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the 
other hand, Sylow’s First Theorem tells us nothing about the possible 
existence of subgroups of order 6, 10, 15, 30, or any other divisor of 
|G| that has two or more distinct prime factors. Because certain sub-
groups guaranteed by Sylow’s First Theorem play a central role in the 
theory of finite groups, they are given a special name.

Definition Sylow p-Subgroup
Let G be a finite group and let p be a prime. If pk divides |G| and pk11 
does not divide |G|, then any subgroup of G of order pk is called a  
Sylow p-subgroup of G.†

†Note that it follows from Sylow’s First Theorem and the definition that the trivial sub-
group {e} is a Sylow p-subgroup of G if and only if p does not divide |G|.
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So, returning to our group G of order 23 ? 32 ? 54 ? 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or- 
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow  
p-subgroup of G is a subgroup whose order is the largest power of 
p consistent with Lagrange’s Theorem.

Since any subgroup of order p is cyclic, we have the following gen-
eralization of Theorem 9.5, first proved by Cauchy in 1845. His proof 
ran nine pages!

Corollary Cauchy’s Theorem

Let G be a finite group and let p be a prime that divides the order 

of G. Then G has an element of order p.

Sylow’s First Theorem is so fundamental to finite group theory that 
many different proofs of it have been published over the years [our proof 
is essentially the one given by Georg Frobenius (1849–1917) in 1895]. 
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite 
Abelian Groups and Sylow’s First Theorem show that the converse of 
Lagrange’s Theorem is true for all finite Abelian groups and all finite 
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable 
tools in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups
Let H and K be subgroups of a group G. We say that H and K are 
 conjugate in G if there is an element g in G such that H 5 gKg21.

Recall from Chapter 7 that if G is a finite group of permutations on a 
set S and i [ S, then orbG(i) 5 {f(i) | f [ G} and |orbG(i)| divides |G|.

 Theorem 24.4 Sylow’s Second Theorem

If H is a subgroup of a finite group G and |H| is a power of a prime p, 

then H is contained in some Sylow p-subgroup of G.

PROOF Let K be a Sylow p-subgroup of G and let C 5 {K1, K2, . . . , Kn} 
with K 5 K1 be the set of all conjugates of K in G. Since conjugation is an 
automorphism, each element of C is a Sylow p-subgroup of G. Let SC 
denote the group of all permutations of C. For each g [ G, define  
fg: C S C by fg(Ki) 5 gKig

21. It is easy to show that each fg [ SC.
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24 | Sylow Theorems 415

Now define a mapping T: G S SC by T(g) 5 fg. Since fgh(Ki) 5 
(gh)Ki(gh)21 5  g(hKih

21)g21 5  gfh(Ki)g21 5  fg(fh(Ki)) 5  
(fgfh)(Ki), we have fgh 5 fgfh, and therefore T is a homomorphism 
from G to SC.

Next consider T(H), the image of H under T. Since |H| is a power  
of p, so is |T(H)| (see property 6 of Theorem 10.2). Thus, by the  Orbit- 
Stabilizer Theorem (Theorem 7.3), for each i, |orbT(H)(Ki)| divides 
|T(H)|, so that |orbT(H)(Ki)| is a power of p. Now we ask: Under what 
condition does |orbT(H)(Ki)| 5 1? Well, |orbT(H)(Ki)| 5 1 means that 
fg(Ki) 5 gKig

21 5 Ki for all g [ H; that is, |orbT(H)(Ki)| 5 1 if and 
only if H # N(Ki). But the only elements of N(Ki) that have orders that 
are powers of p are those of Ki (see Exercise 13). Thus, |orbT(H)(Ki)| 5 1 
if and only if H # Ki.

So, to complete the proof, all we need to do is show that for some i, 
|orbT(H)(Ki)| 5 1. Analogous to Theorem 24.1, we have |C| 5 |G:N(K)| 
(see Exercise 5). And since |G:K| 5 |G:N(K)||N(K):K| is not divisible 
by p, neither is |C|. Because the orbits partition C, |C| is the sum of 
powers of p. If no orbit has size 1, then p divides each summand and, 
therefore, p divides |C|, which is a contradiction. Thus, there is an orbit 
of size 1, and the proof is complete. 

 Theorem 24.5 Sylow’s Third Theorem

Let p be a prime and let G be a group of order pkm, where p does not 

divide m. Then the number n of Sylow p-subgroups of G is equal to 

1 modulo p and divides m. Furthermore, any two Sylow p-subgroups 

of G are conjugate.

PROOF Let K be any Sylow p-subgroup of G and let C 5 {K1, 
K2, . . . , Kn}, with K 5 K1, be the set of all conjugates of K in G. We 
first prove that n mod p 5 1.

Let SC and T be as in the proof of Theorem 24.4. This time  
we consider T(K), the image of K under T. As before, we have  
|orbT(K)(Ki)| is a power of p for each i and |orbT(K)(Ki)| 5 1 if and only  
if K # Ki. Thus, |orbT(K)(K1)| 5 1 and |orbT(K)(Ki)| is a power of p 
greater than 1 for all i 2 1. Since the orbits partition C, it follows that, 
modulo p, n 5 |C| 5 1.

Next we show that every Sylow p-subgroup of G belongs to C. To do 
this, suppose that H is a Sylow p-subgroup of G that is not in C. Let  
SC and T be as in the proof of Theorem 24.4, and this time consider 
T(H). As in the previous paragraph, |C| is the sum of the orbits’ sizes 
under the action of T(H). However, no orbit has size 1, since H is not  
in C. Thus, |C| is a sum of terms each divisible by p, so that, modulo p, 
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n 5 |C| 5 0. This contradiction proves that H belongs to C, and that 
n is the number of Sylow p-subgroups of G.

Finally, that n divides m follows directly from the fact that n 5 
|G:N(K)| (see Exercise 5) and n is relatively prime to p. 

It is convenient to let np denote the number of Sylow p-subgroups of 
a group. Observe that the first portion of Sylow’s Third Theorem is a 
counting principle.† As an important consequence of Sylow’s Third 
Theorem, we have the following corollary.

 Corollary A Unique Sylow p-Subgroup Is Normal

A Sylow p-subgroup of a finite group G is a normal subgroup of G if 

and only if it is the only Sylow p-subgroup of G.

We illustrate Sylow’s Third Theorem with two examples.

 EXAMPLE 1 Consider the Sylow 2-subgroups of S3. They are  
{(1), (12)}, {(1), (23)}, and {(1), (13)}. According to Sylow’s Third 
Theorem, we should be able to obtain the latter two of these from the 
first by conjugation. Indeed,

(13){(1), (12)}(13)21 5 {(1), (23)},
 (23){(1), (12)}(23)21 5 {(1), (13)}. 

 EXAMPLE 2 Consider the Sylow 3-subgroups of A4. They are {a1, a5, 
a9}, {a1, a6, a11}, {a1, a7, a12}, and {a1, a8, a10}. (See Table 5.1.) Then,

a2{a1, a5, a9}a2  
21 5 {a1, a7, a12},

a3{a1, a5, a9}a3  
21 5 {a1, a8, a10},

a4{a1, a5, a9}a4  
21 5 {a1, a6, a11}.

Thus, the number of Sylow 3-subgroups is 1 modulo 3, and the four 
Sylow 3-subgroups are conjugate. 

Figure 24.1 shows the subgroup lattices for S3 and A4. We have con-
nected the Sylow p-groups with dashed circles to indicate that they be-
long to one orbit under conjugation. Notice that the three subgroups of 
order 2 in A4 are contained in a Sylow 2-group, as required by Sylow’s 
Second Theorem. As it happens, these three subgroups also belong to 
one orbit under conjugation, but this is not a consequence of Sylow’s 
Third Theorem.

†“Whenever you can, count.” Sir Francis Galton (1822–1911), The World of 
 Mathematics.
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24 | Sylow Theorems 417

In contrast to the two preceding examples, observe that the  
dihedral group of order 12 has seven subgroups of order 2, but that 
conjugating {R0, R180} does not yield any of the other six. (Why?)

Applications of Sylow Theorems
A few numerical examples will make the Sylow theorems come to life.

 EXAMPLE 3 Say G is a group of order 40. What do the Sylow theo-
rems tell us about G? A great deal! Since 1 is the only divisor of 40 that 
is congruent to 1 modulo 5, we know that G has exactly one subgroup of 
order 5, and therefore it is normal. Similarly, G has either one or five 
subgroups of order 8. If there is only one subgroup of order 8, it is nor-
mal. If there are five subgroups of order 8, none is normal and all 
five  can be obtained by starting with any particular one, say H, and 
computing xHx21 for various x’s. Finally, if we let K denote the nor-
mal subgroup of order 5 and let H denote any subgroup of order 8, then 

A3 = <(123)>

S3

<(1)>

<(12)>

<(23)>

<(13)>

A4

   2α 

   1α 

  3α 

   4α 

   7α 

   6α 

   5α 

   8α {  1,    2,    3,   4}α    α     α     α  

<     >

<     >

<      >

<      >

<      >

<      >

<     >

<      >

Figure 24.1 Lattices of subgroups for S3 and A4.
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G 5 HK. (See Example 5 in Chapter 9.) If H happens to be normal, we 
can say even more: G 5 H 3 K. 

 EXAMPLE 4 Consider a group of order 30. By Sylow’s Third 
Theorem, it must have either one or six subgroups of order 5 and one or 
10 subgroups of order 3. However, G cannot have both six subgroups of 
order 5 and 10 subgroups of order 3 (for then G would have more than 
30 elements). Thus, the subgroup of order 3 is unique or the subgroup 
of order 5 is unique (or both are unique) and therefore is normal in G. It 
follows, then, that the product of a subgroup of order 3 and one of order 
5 is a group of order 15 that is both cyclic (Exercise 33) and normal 
(Exercise 9 in Chapter 9) in G. [This, in turn, implies that both the sub-
group of order 3 and the subgroup of order 5 are normal in G (Exercise 
59 in Chapter 9).] So, if we let y be a generator of the cyclic subgroup 
of order 15 and let x be an element of order 2 (the existence of which is 
guaranteed by Cauchy’s Theorem), we see that

 G 5 {xiy j | 0 # i # 1, 0 # j # 14}. 

 EXAMPLE 5 We show that any group G of order 72 must have a 
proper, nontrivial normal subgroup. Our arguments are a preview of 
those in Chapter 25. By Sylow’s Third Theorem, the number of Sylow 
3-subgroups of G is equal to 1 mod 3 and divides 8. Thus, the number  
is 1 or 4. If there is only one, then it is normal by the corollary of 
Sylow’s Third Theorem. Otherwise, let H and H9 be two distinct Sylow 
3-subgroups. By Theorem 7.2, we have that |H H9| 5 |H||H9|/|H y H9| 5  
81/|H y H9|. Since |G| 5 72 and |H y H9| is a subgroup of H and  
H9, we know that |H y H9| 5 3. By the corollary to Theorem 24.2,  
N(H y H9) contains both H and H9. Thus, |N(H y H9)| divides 72, is 
divisible by 9, and has at least |H H9|’ 5 27 elements. This leaves only 
36 or 72 for |N(H y H9)|. In the first case, we have from Exercise 9 of 
Chapter 9 that N(H y H9) is normal in G. In the second case, we have 
by definition that H y H9 is normal in G. 

Note that in these examples we were able to deduce all of this infor-
mation from knowing only the order of the group—so many conclusions 
from one assumption! This is the beauty of finite group theory.

In Chapter 7 we saw that the only group (up to isomorphism) of 
prime order p is Zp. As a further illustration of the power of the Sylow 
theorems, we next give a sufficient condition that guarantees that a 
group of order pq, where p and q are primes, must be Zpq.
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24 | Sylow Theorems 419

 Theorem 24.6 Cyclic Groups of Order pq

If G is a group of order pq, where p and q are primes, p , q, 

and p does not divide q 2 1, then G is cyclic. In particular, G is 

isomorphic to Z
pq

.

PROOF Let H be a Sylow p-subgroup of G and let K be a Sylow  
q-subgroup of G. Sylow’s Third Theorem states that the number of Sylow 
p-subgroups of G is of the form 1 1 kp and divides pq. So 1 1 kp 5 1,  
p, q, or pq. From this and the fact that p B q 2 1, it follows that k 5 0, and 
therefore H is the only Sylow p-subgroup of G.

Similarly, there is only one Sylow q-subgroup of G. Thus, by the 
corollary to Theorem 24.5, H and K are normal subgroups of G. Let  
H 5 kxl and K 5 kyl. To show that G is cyclic, it suffices to show that x 
and y commute, for then |xy| 5 |x||y| 5 pq. But observe that, since H 
and K are normal, we have

xyx21y21 5 (xyx21)y21 [ Ky21 5 K

and

xyx21y21 5 x(yx21y21) [ xH 5 H.

Thus, xyx21y21 [ K > H 5 {e}, and hence xy 5 yx. 

Theorem 24.6 demonstrates the power of the Sylow theorems in 
classifying the finite groups whose orders have small numbers of prime 
factors. Similar results exist for groups of orders p2q, p2q2, p3, and p4, 
where p and q are prime.

For your amusement, Figure 24.2 lists the number of nonisomorphic 
groups with order at most 100. Note in particular the large number of 
groups of order 64. Also observe that, generally speaking, it is not the size 
of the group that gives rise to a large number of groups of that size but the 
number of prime factors involved. In all, there are 1047 nonisomorphic 
groups with 100 or fewer elements. Contrast this with the fact that there are 
49,487,365,422 groups of order 1024 5 210. The number of groups of any 
order less than 2048 is given at http://oeis.org/A000001/b000001.txt.

As a final application of the Sylow theorems, you might enjoy seeing 
a determination of the groups of order 99, 66, and 255. In fact, our ar-
guments serve as a good review of much of our work in group theory.
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Order

Number

Order

Number

Order

Number

Order

Number

Order

Number

1 2 3 4 5 6 7 8 9 10

1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

2 2 1 15 2 2 5 4 1 4 1 51 1 2 1 14 1 2 2 14

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

1 6 1 4 2 2 1 52 2 5 1 5  1 15 2 13 2 2 1 13

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

1 2 4 267 1 4 1 5 1 4 1 50 1 2 3 4 1 6 1 52

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

15 2 1 15 1 2 1 12 1 10 1 4 2 2 1 230 1 5 2 16

91 92 93 94 95 96 97 98 99 100

Figure 24.2 The number of groups of a given order up to 100.

 EXAMPLE 6 Determination of the Groups of Order 99
Suppose that G is a group of order 99. Let H be a Sylow 3-subgroup 
of G and let K be a Sylow 11-subgroup of G. Since 1 is the only posi-
tive divisor of 99 that is equal to 1 modulo 11, we know from Sylow’s 
Third Theorem and its corollary that K is normal in G. Similarly, 
H is normal in G. It follows, by the argument used in the proof of 
 Theorem 24.6, that elements from H and K commute, and therefore 
G 5 H 3 K. Since both H and K are Abelian, G is also Abelian. Thus, 
G is isomorphic to Z99 or Z3 % Z33. 

 EXAMPLE 7 Determination of the Groups of Order 66
Suppose that G is a group of order 66. Let H be a Sylow 3-subgroup of 
G and let K be a Sylow 11-subgroup of G. Since 1 is the only positive 
divisor of 66 that is equal to 1 modulo 11, we know that K is normal in  
G. Thus, HK is a subgroup of G of order 33 (see Example 5 in Chapter 9 
and Theorem 7.2). Since any group of order 33 is cyclic (Theorem 
24.6), we may write HK 5 kxl. Next, let y [ G and |y| 5 2. Since kxl 
has index 2 in G, we know it is normal. So yxy21 5 xi for some i from 
1 to 32. Then, yx 5 xiy and, since every member of G is of the form 
xsyt, the structure of G is completely determined by the value of i. We 
claim that there are only four possibilities for i. To prove this, observe 
that |xi| 5 |x| (Exercise 5, Sup plementary Exercises for Chapters 1–4). 
Thus, i and 33 are relatively prime. But also, since y has order 2,

 x 5 y21( yxy21)y 5 y21xiy 5 yxiy21 5 (yxy21)i 5 (xi)i 5 x i2.

So xi221 5 e and therefore 33 divides i2 2 1. From this it follows that 
11 divides i 6 1, and therefore i 5 0 6 1, i 5 11 6 1, i 5 22 6 1, or 
i 5 33 6 1. Putting this together with the other information we have 
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about i, we see that i 5 1, 10, 23, or 32. This proves that there are at 
most four groups of order 66.

To prove that there are exactly four such groups, we simply observe 
that Z66, D33, D11 % Z3, and D3 % Z11 each has order 66 and that no two 
are isomorphic. For example, D11 % Z3 has 11 elements of order 2, 
whereas D3 % Z11 has only three elements of order 2. (See Exercises 
27–30 of the Supplementary Exercises for Chapters 5–8.) 

 EXAMPLE 8 The Only Group of Order 255 is Z255
Let G be a group of order 255 5 3 ? 5 ? 17, and let H be a Sylow 17-sub-
group of G. By Sylow’s Third Theorem, H is the only Sylow 17-subgroup 
of G, so N(H) 5 G. By Example 15 in Chapter 10, |N(H)/C(H)| divides 
|Aut(H)| 5 |Aut(Z17)|. By Theorem 6.5, |Aut(Z17)| 5 |U(17)| 5 16. Since 
|N(H)/C(H)| must divide 255 and 16, we have |N(H)/C(H)| 5 1. Thus, 
C(H) 5 G. This means that every element of G commutes with every ele-
ment of H, and, therefore, H # Z(G). Thus, 17 divides |Z(G)|, which in 
turn divides 255. So |Z(G)| is equal to 17, 51, 85, or 255 and |G/Z(G)| is 
equal to 15, 5, 3, or 1. But the only groups of order 15, 5, 3, or 1 are the 
cyclic ones, so we know that G/Z(G) is cyclic. Now the G/Z Theorem 
(Theorem 9.3) shows that G is Abelian, and the Fundamental Theorem of 
Finite Abelian Groups tells us that G is cyclic. 

Exercises

I have always grown from my problems and challenges, from the things that 
don’t work out. That’s when I’ve really learned.

carol burnett

  1. Show that conjugacy is an equivalence relation on a group.
  2. Calculate all conjugacy classes for the quaternions (see Exercise 4, 

Supplementary Exercises for Chapters 1–4).
  3. Show that the function T defined in the proof of Theorem 24.1 is 

well-defined, is one-to-one, and maps the set of left cosets onto the 
conjugacy class of a.

  4. Show that cl(a) 5 {a} if and only if a [ Z(G).
  5. Let H be a subgroup of a group G. Prove that the number of con-

jugates of H in G is |G:N(H)|. (This exercise is referred to in this 
chapter.)

  6. Let H be a proper subgroup of a finite group G. Show that G is not 
the union of all conjugates of H.

  7. If G is a group of odd order and x [ G, show that x21 is not in cl(x).
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  8. Determine the class equation for non-Abelian groups of orders 39 
and 55.

  9. Determine which of the equations below could be the class equa-
tion given in the proof of Theorem 24.2. For each part, provide 
your reasoning.

 a. 9 5 3 1 3 1 3
 b. 21 5 1 1 1 1 3 1 3 1 3 1 3 1 7
 c. 10 5 1 1 2 1 2 1 5
 d. 18 5 1 1 3 1 6 1 8
 10. Exhibit a Sylow 2-subgroup of S4. Describe an isomorphism from 

this group to D4.
 11. Suppose that G is a group of order 48. Show that the intersection 

of any two distinct Sylow 2-subgroups of G has order 8.
 12. Find all the Sylow 3-subgroups of S4.
 13. Let K be a Sylow p-subgroup of a finite group G. Prove that if x [ 

N(K) and the order of x is a power of p, then x [ K. (This exercise 
is referred to in this chapter.)

 14. Suppose that G is a group of order pnm, where p is prime and p does 
not divide m. Show that the number of Sylow p-subgroups divides m.

 15. Suppose that G is a group and UGU 5 pnm, where p is prime and  
p 7 m. Prove that a Sylow p-subgroup of G must be normal in G.

 16. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow  
p-subgroup of G contained in N(H).

 17. Suppose that G is a group of order 168. If G has more than one 
 Sylow 7-subgroup, exactly how many does it have?

 18. Show that every group of order 56 has a proper nontrivial normal  
subgroup.

 19. What is the smallest composite (that is, nonprime and greater than 1) 
integer n such that there is a unique group of order n?

 20. Let G be a noncyclic group of order 21. How many Sylow 3-  
subgroups does G have?

 21. Prove that a noncyclic group of order 21 must have 14 elements of 
order 3.

 22. How many Sylow 5-subgroups of S5 are there? Exhibit two.
 23. How many Sylow 3-subgroups of S5 are there? Exhibit five.
 24. What are the possibilities for the number of elements of order 5 in 

a group of order 100?
 25. What do the Sylow theorems tell you about any group of order 100?
 26. Prove that a group of order 175 is Abelian.
 27. Let G be a group with UGU 5 pnm, where p is a prime that does not di-

vide m and p $ m. Prove that the Sylow p-subgroup of G is normal.
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24 | Sylow Theorems 423

 28. Determine the number of Sylow 2-subgroups of D2m, where m is an 
odd integer at least 3.

 29. Let K be a Sylow 2-subgroup of D2m, where m is an odd integer at 
least 3. Prove that N(K) 5 K.

 30. Generalize the argument given in Example 6 to obtain a theorem 
about groups of order p2q, where p and q are distinct primes.

 31. What is the smallest possible odd integer that can be the order of a 
non-Abelian group?

 32. Prove that a group of order 375 has a subgroup of order 15.
 33. Without using Theorem 24.6, prove that a group of order 15 is  

cyclic. (This exercise is referred to in the discussion about groups 
of order 30.)

 34. Prove that a group of order 105 contains a subgroup of order 35.
 35. Prove that a group of order 595 has a normal Sylow 17-subgroup.
 36. Let G be a group of order 60. Show that G has exactly four ele-

ments of order 5 or exactly 24 elements of order 5. Which of these 
cases holds for A5?

 37. Show that the center of a group of order 60 cannot have order 4.
 38. Suppose that G is a group of order 60 and G has a normal sub-

group N of order 2. Show that
  a. G has normal subgroups of orders 6, 10, and 30.

  b. G has subgroups of orders 12 and 20.

  c. G has a cyclic subgroup of order 30.
 39. Let G be a group of order 60. If the Sylow 3-subgroup is normal, 

show that the Sylow 5-subgroup is normal.
 40. Show that if G is a group of order 168 that has a normal subgroup 

of order 4, then G has a normal subgroup of order 28.
 41. Suppose that p is prime and |G| 5 pn. Show that G has normal sub-

groups of order pk for all k between 1 and n (inclusive).
 42. Suppose that G is a group of order pn, where p is prime, and G has 

exactly one subgroup for each divisor of pn. Show that G is cyclic.
 43. Suppose that p is prime and |G| 5 pn. If H is a proper subgroup of G, 

prove that N(H) . H. (This exercise is referred to in Chapter 25.)
 44. If H is a finite subgroup of a group G and x [ G, prove that  

|N(H )| 5 |N(xHx21)|.
 45. Let H be a Sylow 3-subgroup of a finite group G and let K be a 

Sylow 5-subgroup of G. If 3 divides |N(K)|, prove that 5 divides 
|N(H)|.

 46. If H is a normal subgroup of a finite group G and |H| 5 pk  
for some prime p, show that H is contained in every Sylow  
p- subgroup of G.
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 47. Suppose that G is a finite group and G has a unique Sylow p-subgroup 
for each prime p. Prove that G is the internal direct product of its  
nontrivial Sylow p-subgroups. If each Sylow p-subgroup is cyclic, is 
G cyclic? If each Sylow p-subgroup is Abelian, is G Abelian?

 48. If Gp is a Sylow p-subgroup of a group G and Hp is a Sylow p- 
subgroup of a group H, prove that Gp % Hp is a Sylow p-subgroup 
of G % H.

 49. Let G be a finite group and let H be a normal Sylow p-subgroup 
of G. Show that a(H) 5 H for all automorphisms a of G.

 50. If H is a Sylow p-subgroup of a group, prove that N(N(H)) = N(H).
 51. Let p be a prime and H and K be Sylow p-subgroups of a group G. 

Prove that |N(H)| 5 |N(K)|.
 52. Let G be a group of order p2q2, where p and q are distinct primes,  

q B p2 2 1, and p B q2 2 1. Prove that G is Abelian. List three pairs 
of primes that satisfy these conditions.

 53. Let H be a normal subgroup of a group G. Show that H is the union 
of the conjugacy classes in G of the elements of H. Is this true 
when H is not normal in G?

 54. Let p be prime. If the order of every element of a finite group G is 
a power of p, prove that |G| is a power of p.

 55. For each prime p, prove that all Sylow p-subgroups of a finite 
group are isomorphic.

 56. Suppose that K is a normal subgroup of a finite group G and S  
is  a Sylow p-subgroup of G. Prove that K > S is a Sylow p- 
subgroup of K.

 57. Show that a group of order 12 cannot have nine elements of order 2.
 58. If |G| 5 36 and G is non-Abelian, prove that G has more than one 

Sylow 2-subgroup or more than one Sylow 3-subgroup.
 59. Suppose G is a finite group and p is a prime that divides |G|. Let n 

denote the number of elements of G that have order p. If the Sylow 
p-subgroup of G is normal, prove that p divides n 1 1.

 60. Determine the groups of order 45.
 61. Show that there are at most three nonisomorphic groups of order 21.
 62. Prove that if H is a normal subgroup of index p2 where p is prime, 

then G9 # H (see Exercise 3 in the Supplementary Exercises for 
Chapters 5–8 for a description of G9).

 63. Show that Z2 is the only group that has exactly two conjugacy 
classes.

 64. What can you say about the number of elements of order 7 in a 
group of order 168 5 8 ? 3 ? 7?
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 65. Explain why a group of order 4m where m is odd must have a sub-
group isomorphic to Z4 or Z2 % Z2 but cannot have both a subgroup 
isomorphic to Z4 and a subgroup isomorphic to Z2 % Z2. Show that 
S4 has a subgroup isomorphic to Z4 and a subgroup isomorphic to 
Z2 % Z2.

 66. Let p be the smallest prime that divides the order of a finite group 
G. If H is a Sylow p-subgroup of G and is cyclic, prove that N(H) 5 
C(H).

 67. Let G be a group of order 715 5 5 ? 11 ? 13. Let H be a Sylow 
13-subgroup of G and K be a Sylow 11-subgroup of G. Prove that 
H is contained in Z(G). Can the argument you used to prove that H 
is contained in Z(G) also be used to show that K is contained in 
Z(G)?

 68. Let G be a group of order 1925 5 52 ? 7 ? 11 and H be a subgroup of 
order 7. Prove that |C(H)| is divisible by 385. What can you say 
about Z(G) if the Sylow 5-subgroup is not cyclic? 

 69. Let G be a group with UGU 5 595 5 5 ? 7 ? 17. Show that the Sylow 
5-subgroup of G is normal in G and is contained in Z(G).

 70. What is the probability that a randomly selected element from D4 
commutes with the vertical reflection V?

 71. Prove that if x and y are in the same conjugacy class of a group, 
then |C(x)| 5 |C(y)|. (This exercise is referred to in the discussion 
on the probability that two elements from a group commute.)

 72. Let G be a finite group and let a [ G. Express the probability that 
a randomly selected element from G commutes with a in terms of 
orders of subgroups of G.

 73. Find Pr(D4), Pr(S3), and Pr(A4).
 74. Prove that Pr(Dn) 5 (n 1 3)/4n if n is odd and Pr(Dn) 5 n (n + 

6)/4n if n is even.
 75. Prove that Pr(G % H) 5 Pr(G) ? Pr(H).
 76. Let R be a finite noncommutative ring. Show that the probability 

that two randomly chosen elements from R commute is at most 5/8. 
[Hint: Mimic the group case and use the fact that the additive  
group R/C(R) is not cyclic.]

Computer Exercises

Software for the computer exercises in this chapter is available at the 
website:

http://www.d.umn.edu/~jgallian
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Ludwig Sylow

Sylow’s Theorem is 100 years old. In the 
course of a century this remarkable theo-
rem has been the basis for the construc-
tion of numerous theories.

l. a. shemetkov

Ludwig Sylow (pronounced “SEE-loe”) 
was born on December 12, 1832, in Chris-
tiania (now Oslo), Norway. While a student 
at Christiania University, Sylow won a gold 
medal for competitive problem solving. In 
1855, he became a high school teacher; de-
spite the long hours required by his teaching 
duties, Sylow found time to study the papers 
of Abel. During the school year 1862–1863, 
Sylow received a temporary appointment at 
Christiania University and gave lectures 
on  Galois theory and permutation groups. 
Among his students that year was the great 
mathematician Sophus Lie (pronounced 
“Lee”), after whom Lie algebras and Lie 
groups are named. From 1873 to 1881, 
Sylow, with some help from Lie, prepared a 
new edition of Abel’s works. In 1902, Sylow 
and Elling Holst published Abel’s corre-
spondence.

Sylow’s spectacular theorems came in 
1872. Upon learning of Sylow’s discovery, 
C. Jordan called it “one of the essential 
points in the theory of permutations.” The 
results took on greater importance when the 
theory of abstract groups flowered in the late 
19th century and early 20th century.

In 1869, Sylow was offered a professor-
ship at Christiania University but turned it 
down. Upon Sylow’s retirement from high 
school teaching at age 65, Lie mounted a 
successful campaign to establish a chair for 
Sylow at Christiania University. Sylow held 
this position until his death on September 7, 
1918.

To find more information about Sylow, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history
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Finite Simple Groups

It is a widely held opinion that the problem of classifying finite simple 
groups is close to a complete solution. This will certainly be one of the great 
achievements of mathematics of this century.

nathan jacobson

25

Historical Background
We now come to the El Dorado of finite group theory—the simple 
groups. Simple group theory is a vast and difficult subject; we call it 
the El Dorado of group theory because of the enormous effort put forth 
by hundreds of mathematicians over many years to discover and 
 classify all finite simple groups. Let’s begin our discussion with the 
 definition of a simple group and some historical background.

Definition Simple Group
A group is simple if its only normal subgroups are the identity 
 subgroup and the group itself.

The notion of a simple group was introduced by Galois about 180 years  
ago. The simplicity of A5, the group of even permutations on five  
symbols, played a crucial role in his proof that there is not a solution by 
radicals of the general fifth-degree polynomial (that is, there is no “quintic 
formula”). But what makes simple groups important in the  theory of 
groups? They are important because they play a role in group theory 
somewhat analogous to that of primes in number theory or the elements  
in chemistry; that is, they serve as the building blocks for all groups. 
These building blocks may be determined in the following way. Given a 
finite group G, choose a proper normal subgroup G1 of G 5 G0 of largest 
order. Then the factor group G0/G1 is simple, and we next choose a proper 
normal subgroup G2 of G1 of largest order. Then G1/G2 is also simple, and 
we continue in this fashion until we arrive at Gn 5 {e}. The simple groups 
G0/G1, G1/G2, . . . , Gn21/Gn are called the composition factors of  
G. More than 100 years ago, Jordan and Hölder proved that these   
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25 | Finite Simple Groups 429

factors are independent of the choices of the normal subgroups made in 
the process described. In a certain sense, a group can be reconstructed 
from its composition factors, and many of the properties of a group are 
determined by the nature of its composition factors. This and the fact that 
many questions about finite groups can be reduced (by induction) to ques-
tions about simple groups make clear the importance of determining all 
finite simple groups.

Just which groups are the simple ones? The Abelian simple groups  
are precisely Zn, where n 5 1 or n is prime. This follows  directly from the 
corollary in Chapter 11. In contrast, it is extremely difficult to describe the 
non-Abelian simple groups. The best we can do here is to give a few 
 examples and mention a few words about their discovery. It was Galois in 
1831 who first observed that An is simple for all n $ 5. The next 
 discoveries were made by Jordan in 1870, when he found four infinite 
families of simple matrix groups over the field Zp, where p is prime. One 
such family is the factor group SL(n, Zp)/Z(SL(n, Zp)),  except when n 5 2 
and p 5 2 or p 5 3. Between the years 1892 and 1905, the American 
mathematician Leonard  Dickson (see Chapter 22 for a  biography) gener-
alized Jordan’s results to arbitrary finite fields and discovered several new 
infinite families of simple groups. About the same time, it was shown by 
G. A. Miller and F. N. Cole that a family of five groups first described by 
E. Mathieu in 1861 were in fact simple groups. Since these five groups 
were constructed by ad hoc methods that did not yield infinitely many 
possibilities, like An or the matrix groups over  finite fields, they were 
called “sporadic.”

The next important discoveries came in the 1950s. In that decade, 
many new infinite families of simple groups were found, and the initial 
steps down the long and winding road that led to the complete classifi-
cation of all finite simple groups were taken. The first step was Richard 
Brauer’s observation that the centralizer of an element of order 2 was an 
important tool for studying simple groups. A few years later, John 
Thompson, in his Ph.D. dissertation, introduced the crucial idea of 
studying the normalizers of various subgroups of prime-power order.

In the early 1960s came the momentous Feit–Thompson Theorem, 
which says that a non-Abelian simple group must have even order. This 
property was first conjectured around 1900 by one of the pioneers of 
modern group theoretic methods, the Englishman William Burnside 
(see Chapter 29 for a biography). The proof of the Feit–Thompson 
 Theorem filled an entire issue of a journal [1], 255 pages in all (see 
 Figure 25.1). This result provided the impetus to classify the finite sim-
ple groups—that is, a program to discover all finite simple groups and 
prove that there are no more to be found. Throughout the 1960s, the 
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430 Special Topics

 

Oh, what are the orders of all simple 
groups?
I speak of the honest ones, not of the loops.
It seems that old Burnside their orders has 
  guessed
Except for the cyclic ones, even the rest.

CHORUS:  Finding all groups that are sim-
ple is no simple task.

Groups made up with permutes will  
   produce some more:
For An is simple, if n exceeds 4.
Then, there was Sir Matthew who came into 
  view
Exhibiting groups of an order quite new.

Still others have come on to study this thing. 
Of Artin and Chevalley now we shall sing. 
With matrices finite they made quite a list 
The question is: Could there be others  
  they’ve missed?

Suzuki and Ree then maintained it’s the  
  case 

Figure 25.1

That these methods had not reached the end  
  of the chase. 
They wrote down some matrices, just four by 
  four. 
That made up a simple group. Why not make  
  more?

And then came the opus of Thompson and  
  Feit
Which shed on the problem remarkable light.
A group, when the order won’t factor by two,
Is cyclic or solvable. That’s what is true.

Suzuki and Ree had caused eyebrows to raise,
But the theoreticians they just couldn’t faze.
Their groups were not new: if you added a  
  twist,
You could get them from old ones with a  
  flick of the wrist.

Still, some hardy souls felt a thorn in their  
  side.
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25 | Finite Simple Groups 431

methods introduced in the Feit–Thompson proof were generalized and 
improved with great success by many mathematicians. Moreover, be-
tween 1966 and 1975, 19 new sporadic simple groups were discovered. 
Despite many spectacular achievements, research in simple group the-
ory in the 1960s was haphazard, and the decade ended with many peo-
ple believing that the classification would never be completed. (The 
pessimists feared that the sporadic simple groups would foil all at-
tempts. The anonymously written “song” in Figure 25.1 captures the 
spirit of the times.) Others, more optimistic, were predicting that it 
would be accomplished in the 1990s.

The 1970s began with Thompson receiving the Fields Medal for his 
fundamental contributions to simple group theory. This honor is among 
the highest forms of recognition that a mathematician can receive 
(more information about the Fields Medal is given near the end of this 
chapter). Within a few years, three major events took place that ulti-
mately led to the classification. First, Thompson published what is re-
garded as the single most important paper in simple group theory—the 
N-group paper. Here, Thompson introduced many fundamental tech-
niques and supplied a model for the classification of a broad family of 
simple groups. Second, Daniel Gorenstein produced an elaborate out-
line for the classification, which he delivered in a series of lectures at 
the University of Chicago in 1972. Here a program for the overall  
proof was laid out. The army of researchers now had a battle plan and  
a commander-in-chief. But this army still needed more and better 
weapons. Thus came the third critical development: the involvement of 
Michael Aschbacher. In a dazzling series of papers, Aschbacher com-
bined his own insight with the methods of Thompson, which had been 

For the five groups of Mathieu all reason  
   defied;
Not An, not twisted, and not Chevalley,
They called them sporadic and filed them  
  away.

Are Mathieu groups creatures of heaven or  
  hell?
Zvonimir Janko determined to tell.
He found out [a new sporadic simple group] 
that nobody wanted to know:
The masters had missed 1 7 5 5 6 0.

The floodgates were opened! New groups  
  were the rage!

(And twelve or more sprouted, to greet the  
  new age.)
By Janko and Conway and Fischer and Held,
McLaughlin, Suzuki, and Higman, and Sims.

No doubt you noted the last lines don’t  
  rhyme.
Well, that is, quite simply, a sign of the time.
There’s chaos, not order, among simple  
  groups;
And maybe we’d better go back to the loops.   
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432 Special Topics

generalized throughout the 1960s, and a geometric approach pioneered 
by Bernd Fischer to achieve one brilliant result after another in rapid 
succession. In fact, so much progress was made by Aschbacher  
and others that by 1976, it was clear to nearly everyone involved that 
enough techniques had been developed to complete the classification. 
Only details remained.

The 1980s were ushered in with Aschbacher following in the foot-
steps of Feit and Thompson by winning the American Mathematical 
Society’s Cole Prize in algebra (see the last section of this chapter).

A week later, Robert L. Griess made the spectacular announcement 
that he had constructed the “Monster.”† The Monster is the largest of the 
sporadic simple groups. In fact, it has vastly more elements than there 
are atoms on the earth! Its order is

808,017,424,794,512,875,886,459,904,961,710,757,005,754, 
368,000,000,000

(hence, the name). This is approximately 8 3 1053. The Monster is a 
group of rotations in 196,883 dimensions. Thus, each element can be 
expressed as a 196,883 3 196,883 matrix.

At the annual meeting of the American Mathematical Society in 1981, 
Gorenstein announced that the “Twenty-Five Years’ War” to classify all the 
finite simple groups was over. Group theorists at long last had a list of all 
finite simple groups and a proof that the list was complete. The proof was 
spread out over hundreds of papers—both published and unpublished—
and ran more than 10,000 pages in length. Because of the proof’s extreme 
length and complexity, and the fact that some key parts of it had not been 
published, there was some concern in the mathematics community that the 
classification was not a certainty. By the end of the decade, group theorists 
had concluded that there was indeed a gap in the unpublished work that 
would be difficult to rectify. In the mid-1990s, Aschbacher and Stephen 
Smith began work on this problem. In 2004, at the annual meeting of the 
American Mathematical Society, Aschbacher announced that he and Smith 
had completed the classification. Their monograph is over 1200 pages 
in length. Ronald Solomon, writing in Mathematical Reviews, called it 
“an amazing tour de force” and a “major milestone in the history of fi-
nite group theory.” Aschbacher concluded his remarks by saying that 
he would not bet his house that the proof is now error free.

Several people who played a central role in the classification are work-
ing on a “second generation” proof that will be much shorter and more 
comprehensible.

†The name was coined by John H. Conway. Griess called the group the “Friendly Gi-
ant.” In 2010 the American Mathematical Society awarded Griess the Leroy P. Steele 
Seminal Contribution to Research Prize for his construction of the Monster.
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25 | Finite Simple Groups 433

Nonsimplicity Tests
In view of the fact that simple groups are the building blocks for all 
groups, it is surprising how scarce the non-Abelian simple groups are. 
For example, A5 is the only one whose order is less than 168; there are 
only five non-Abelian simple groups of order less than 1000 and only 
56 of order less than 1,000,000. In this section, we give a few theorems 
that are useful in proving that a particular integer is not the order of a 
non-Abelian simple group. Our first such result is an easy arithmetic 
test that comes from combining Sylow’s Third Theorem and the fact 
that groups of prime-power order have nontrivial centers.

 Theorem 25.1 Sylow Test for Nonsimplicity

Let n be a positive integer that is not prime, and let p be a prime 

divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p, 

then there does not exist a simple group of order n.

PROOF If n is a prime-power, then a group of order n has a nontrivial 
center and, therefore, is not simple. If n is not a prime-power, then  
every Sylow subgroup is proper, and, by Sylow’s Third Theorem, we 
know that the number of Sylow p-subgroups of a group of order n is 
equal to 1 modulo p and divides n. Since 1 is the only such number, the 
Sylow p-subgroup is unique, and therefore, by the corollary to Sylow’s 
Third Theorem, it is normal. 

How good is this test? Well, applying this criterion to all the  
non prime integers between 1 and 200 would leave only the following 
integers as possible orders of finite non-Abelian simple groups: 12, 24, 
30, 36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 
160, 168, 180, and 192. (In fact, computer experiments have revealed 
that for large intervals, say, 500 or more, this test eliminates more than 
90% of the nonprime integers as possible orders of simple groups. See [2] 
for more on this.)

Our next test rules out 30, 90, and 150.

 Theorem 25.2 2 ? Odd Test

An integer of the form 2 ? n, where n is an odd number greater than 1, 

is not the order of a simple group.

PROOF Let G be a group of order 2n, where n is odd and greater 
than 1. Recall from the proof of Cayley’s Theorem (Theorem 6.1) 
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that the mapping g S Tg is an isomorphism from G to a permutation 
group on the elements of G [where Tg(x) 5 gx for all x in G]. Since 
|G| 5 2n, Cauchy’s Theorem guarantees that there is an element g in 
G of order 2. Then, when the permutation Tg is written in disjoint 
 cycle form, each cycle must have length 1 or 2; otherwise, |g| 2 2. 
But Tg can contain no 1-cycles, because the 1-cycle (x) would mean x 5 
Tg(x) 5 gx, so g 5 e. Thus, in cycle form, Tg consists of exactly n 
transpositions, where n is odd. Therefore, Tg is an odd permutation. 
This means that the set of even permutations in the image of G is a 
normal subgroup of index 2. (See Exercise 23 in Chapter 5 and Exercise 9 
in Chapter 9.) Hence, G is not simple. 

The next theorem is a broad generalization of Cayley’s Theorem. 
We will make heavy use of its two corollaries.

 Theorem 25.3 Generalized Cayley Theorem

Let G be a group and let H be a subgroup of G. Let S be the group 

of all permutations of the left cosets of H in G. Then there is a 

homomorphism from G into S whose kernel lies in H and contains 

every normal subgroup of G that is contained in H.

PROOF For each g [ G, define a permutation Tg of the left cosets
of H by Tg(xH) 5 gxH. As in the proof of Cayley’s Theorem, it is easy to 
verify that the mapping of a: g S Tg is a homomorphism from G into S.

Now, if g [ Ker a, then Tg is the identity map, so H 5 Tg(H) 5 gH, 
and, therefore, g belongs to H. Thus, Ker a # H. On the other hand, if 
K is normal in G and K # H, then for any k [ K and any x in G, there 
is an element k9 in K such that kx 5 xk9. Thus,

Tk(xH) 5 kxH 5 xk9H 5 xH

and, therefore, Tk is the identity permutation. This means that k [ Ker a. 
We have proved, then, that every normal subgroup of G contained in H 
is also contained in Ker a. 

As a consequence of Theorem 25.3, we obtain the following very 
powerful arithmetic test for nonsimplicity.

 Corollary 1 Index Theorem

If G is a finite group and H is a proper subgroup of G such that |G| 
does not divide |G:H|!, then H contains a nontrivial normal subgroup 

of G. In particular, G is not simple.
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25 | Finite Simple Groups 435

PROOF Let a be the homomorphism given in Theorem 25.3. Then 
Ker a is a normal subgroup of G contained in H, and G/Ker a is 
 isomorphic to a subgroup of S. Thus, |G/Ker a| 5 |G|/|Ker a| divides 
|S| 5 |G:H|!. Since |G| does not divide |G:H|!, the order of Ker a must 
be greater than 1. 

 Corollary 2 Embedding Theorem

If a finite non-Abelian simple group G has a subgroup of index n, 

then G is isomorphic to a subgroup of A
n
.

PROOF Let H be the subgroup of index n, and let Sn be the group 
of all permutations of the n left cosets of H in G. By the Generalized 
Cayley Theorem, there is a nontrivial homomorphism from G into Sn. 
Since G is simple and the kernel of a homomorphism is a normal sub-
group of G, we see that the mapping from G into Sn is one-to-one, so 
that G is isomorphic to some subgroup of Sn. Recall from Exercise 23 
in Chapter 5 that any subgroup of Sn consists of even permutations only 
or half even and half odd. If G were isomorphic to a subgroup of the 
latter type, the even permutations would be a normal subgroup of in-
dex 2 (see Exercise 9 in Chapter 9), which would contradict the fact 
that G is simple. Thus, G is isomorphic to a subgroup of An. 

Using the Index Theorem with the largest Sylow subgroup for H 
 reduces our list of possible orders of non-Abelian simple groups still 
further. For example, let G be any group of order 80 5 16 ? 5. We may 
choose H to be a subgroup of order 16. Since 80 is not a divisor of 5!, 
there is no simple group of order 80. The same argument applies to 12, 
24, 36, 48, 96, 108, 160, and 192, leaving only 56, 60, 72, 105, 112, 
120, 132, 144, 168, and 180 as possible orders of non-Abelian simple 
groups up to 200. Let’s consider these orders. Quite often we may use  
a counting argument to eliminate an integer. Consider 56. By Sylow’s 
Third Theorem, we know that a simple group of order 56 5 8 ? 7 would 
contain eight Sylow 7-subgroups and seven Sylow 2-subgroups. Now, 
any two Sylow p-subgroups that have order p must intersect in only the 
identity. So the union of the eight Sylow 7-subgroups yields 48 ele-
ments of order 7, and the union of any two Sylow 2-subgroups gives at 
least 8 1 8 2 4 5 12 new elements. But there are only 56 elements in 
all. This contradiction shows that there is not a simple group of order 56. 
An analogous argument also eliminates the integers 105 and 132.

So, our list of possible orders of non-Abelian simple groups up to 
200 is down to 60, 72, 112, 120, 144, 168, and 180. Of these, 60 and 
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168 do correspond to simple groups. The others can be eliminated with 
a bit of razzle-dazzle.

The easiest case to handle is 112 5 24 ? 7. Suppose there were a sim-
ple group G of order 112. A Sylow 2-subgroup of G must have index 7. 
So, by the Embedding Theorem, G is isomorphic to a subgroup of A7. 
But 112 does not divide |A7|, which is a contradiction.

Another easy case is 72. This case was done in Example 5 in  
Chapter 24 but we eliminate it using the Index Theorem. Recall from 
Exercise 5 in Chapter 24 that if we denote the number of Sylow  
p-subgroups of a group G by np, then np 5 |G:N(H)|, where H is any  
Sylow p-subgroup of G, and np mod p 5 1. It follows, then, that in a 
simple group of order 72, we have n3 = 4, which is impossible, since 72 
does not divide 4!.

Next consider the possibility of a simple group G of order 144 5 9 ? 16. 
By the Sylow theorems, we know that n3 5 4 or 16 and n2 $ 3. The Index 
Theorem rules out the case where n3 5 4, so we know that there are  
16 Sylow 3-subgroups. Now, if every pair of Sylow 3-subgroups had  
only the identity in common, a straightforward counting argument would 
produce more than 144 elements. So, let H and H9 be a pair of Sylow 
3-subgroups whose intersection has order 3. Then H > H9 is a subgroup 
of both H and H9 and, by the corollary to Theorem 24.2 (or by Exercise 43 
in Chapter 24), we see that N(H > H9) must contain both H and H9 and, 
therefore, the set HH9. (HH9 need not be a subgroup.) Thus,

|N(H > H9)| $ |HH9| 5 
0H 0 0H� 00H >H� 0 � 9 ? 9

3
 5 27.

Now, we have three arithmetic conditions on k 5 |N(H > H9)|. We 
know that 9 divides k; k divides 144; and k $ 27. Clearly, then, k $ 36, 
and so |G :N(H > H9)| # 4. The Index Theorem now gives us the de-
sired contradiction.

Finally, suppose that G is a non-Abelian simple group of order 180 5 
22 ? 32 ? 5. Then n5 5 6 or 36 and n3 5 10 (n3 5 4 is ruled out by the  
Index Theorem). First, assume that n5 5 36. Then G has 36 ? 4 5 144  
elements of order 5. Now, if each pair of the Sylow 3-subgroups inter-
sects in only the identity, then there are 80 more elements in the group, 
which is a contradiction. So, we may assume that there are two Sylow 
3-subgroups L3 and L39 whose intersection has order 3. Then, as was the 
case for order 144, we have

|N(L3 > L39)| $ |L3L39| 5 
9 . 9

3
 5 27.

Thus,

|N(L3 > L39)| 5 9 ? k,
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where k $ 3 and k divides 20. Clearly, then,

|N(L3 > L39)| $ 36

and therefore

|G :N(L3 > L39)| # 5.

The Index Theorem now gives us another contradiction. Hence, we 
may assume that n5 5 6. In this case, we let H be the normalizer of a 
Sylow 5-subgroup of G. By Sylow’s Third Theorem, we have 6 5 
|G:H|, so that |H| 5 30. In Chapter 24, we proved that every group of 
order 30 has an element of order 15. On the other hand, since n5 5 6,  
G has a subgroup of index 6 and the Embedding Theorem tells us that 
G is isomorphic to a subgroup of A6. But A6 has no element of order 15. 
(See Exercise 9 in Chapter 5.)

Unfortunately, the argument for 120 is fairly long and complicated. 
However, no new techniques are required to do it. We leave this as an 
exercise (Exercise 17). Some hints are given in the answer section.

The Simplicity of A5

Once 120 has been disposed of, we will have shown that the only inte-
gers between 1 and 200 that can be the orders of non-Abelian simple 
groups are 60 and 168. For completeness, we will now prove that A5, 
which has order 60, is a simple group. A similar argument can be used 
to show that the factor group SL(2, Z7)/Z(SL(2, Z7)) is a simple group 
of order 168. [This group is denoted by PSL(2, Z7).]

If A5 had a nontrivial proper normal subgroup H, then |H| would be 
equal to 2, 3, 4, 5, 6, 10, 12, 15, 20, or 30. By Exercise 61 in Chapter 5, 
A5 has 24 elements of order 5, 20 elements of order 3, and no elements 
of order 15. Now, if |H| is equal to 3, 6, 12, or 15, then |A5/H| is rela-
tively prime to 3, and by Exercise 61 in Chapter 9, H would have to 
contain all 20 elements of order 3. If |H| is equal to 5, 10, or 20, then 
|A5/H| is relatively prime to 5, and, therefore, H would have to con-
tain the 24 elements of order 5. If |H| 5 30, then |A5/H| is relatively 
prime to both 3 and 5, and so H would have to contain all the elements 
of orders 3 and 5. Finally, if |H| 5 2 or |H| 5 4, then |A5/H| 5 30 or  
|A5/H| 5 15. But we know from our results in Chapter 24 that any group 
of order 30 or 15 has an element of order 15. However, since A5 contains 
no such element, neither does A5/H. This proves that A5 is simple.

The simplicity of A5 was known to Galois in 1830, although the first 
formal proof was done by Jordan in 1870. A few years later, Felix 
Klein showed that the group of rotations of a regular icosahedron is 
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simple and, therefore, isomorphic to A5 (see Exercise 27). Since then it 
has frequently been called the icosahedral group. Klein was the first to 
prove that there is a simple group of order 168.

The problem of determining which integers in a certain interval are 
possible orders for finite simple groups goes back to 1892, when 
Hölder went up to 200. His arguments for the integers 144 and 180 
alone used up 10 pages. By 1975, this investigation had been pushed  
to well beyond 1,000,000. See [3] for a detailed account of this en-
deavor. Of course, now that all finite simple groups have been classi-
fied, this problem is merely a historical curiosity.

The Fields Medal
Among the highest awards for mathematical achievement is the Fields 
Medal. Two to four such awards are bestowed at the opening session of 
the International Congress of Mathematicians, held once every four 
years. Although the Fields Medal is considered by many mathemati-
cians to be the equivalent of the Nobel Prize, there are great differences 
between these awards. Besides the huge disparity in publicity and mon-
etary value associated with the two honors, the Fields Medal is re-
stricted to those under 40 years of age.† This tradition stems from John 
Charles Fields’s stipulation, in his will establishing the medal, that the 
awards should be “an encouragement for further achievement.” This re-
striction precluded Andrew Wiles from winning the Fields Medal for his 
proof of Fermat’s Last Theorem.

More details about the Fields Medal can be found at http://www 
.wikipedia.com.

The Cole Prize
Approximately every five years, beginning in 1928, the American 
Mathe matical Society awards one or two Cole Prizes for research in 
 algebra and one or two Cole Prizes for research in algebraic number 
theory. The prize was founded in honor of Frank Nelson Cole on the 
occasion of his retirement as secretary of the American Mathematical 
Society. In view of the fact that Cole was one of the first people inter-
ested in simple groups, it is interesting to note that no fewer than six 

†“Take the sum of human achievement in action, in science, in art, in literature— 
subtract the work of the men above forty, and while we should miss great treasures, 
even priceless treasures, we would practically be where we are today. . . . The effec-
tive, moving, vitalizing work of the world is done between the ages of twenty-five and 
forty.” Sir William Osler (1849–1919), Life of Sir William Osler, vol. I, chap. 24 (The 
Fixed Period).
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recipients of the prize—Dickson, Chevalley, Brauer, Feit, Thompson, 
and Aschbacher—have made fundamental contributions to simple 
group theory at some time in their careers. Recently the time between 
Cole Prizes was reduced to three years.

Exercises

If you don’t learn from your mistakes, there’s no sense making them.
herbert v. prochnow

  1. Prove that there is no simple group of order 210 5 2 ? 3 ? 5 ? 7.
  2. Prove that there is no simple group of order 280 5 23 ? 5 ? 7. 
  3. Prove that there is no simple group of order 216 5 23 ? 33.
  4. Prove that there is no simple group of order 300 5 22 ? 3 ? 52.
  5. Prove that there is no simple group of order 525 5 3 ? 52 ? 7.
  6. Prove that there is no simple group of order 540 5 22 ? 33 ? 5.
  7. Prove that there is no simple group of order 528 5 24 ? 3 ? 11.
  8. Prove that there is no simple group of order 315 5 32 ? 5 ? 7.
  9. Prove that there is no simple group of order 396 5 22 ? 32 ? 11.
 10. Prove that there is no simple group of order n, where 201 # 

n # 235 and n is not prime.
 11. Without using the Generalized Cayley Theorem or its corollaries, 

prove that there is no simple group of order 112.
 12. Without using the 2 ? Odd Test, prove that there is no simple group 

of order 210.
 13. You may have noticed that all the “hard integers” are even. Choose 

three odd integers between 200 and 1000. Show that none of these 
is the order of a simple group unless it is prime.

 14. Show that there is no simple group of order pqr, where p, q, and r 
are primes ( p, q, and r need not be distinct).

 15. Show that A5 does not contain a subgroup of order 30, 20, or 15.
 16. Show that S5 does not contain a subgroup of order 40 or 30.
 17. Prove that there is no simple group of order 120 5 23 ? 3 ? 5. (This 

exercise is referred to in this chapter.)
 18. Prove that if G is a finite group and H is a proper normal subgroup 

of largest order, then G/H is simple.
 19. Suppose that H is a subgroup of a finite group G and that |H| and  

(|G:H| 2 1)! are relatively prime. Prove that H is normal in G. What 
does this tell you about a subgroup of index 2 in a finite group?

 20. Suppose that p is the smallest prime that divides |G|. Show that 
any subgroup of index p in G is normal in G.
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 21. Prove that the only nontrivial proper normal subgroup of S5 is A5. 
(This exercise is referred to in Chapter 32.)

 22. Prove that a simple group of order 60 has a subgroup of order 6 
and a subgroup of order 10.

 23. Show that PSL(2, Z7) 5 SL(2, Z7)/Z(SL(2, Z7)), which has order 
168, is a simple group. (This exercise is referred to in this chapter.)

 24. Show that the permutations (12) and (12345) generate S5.
 25. Suppose that a subgroup H of S5 contains a 5-cycle and a 2-cycle. 

Show that H 5 S5. (This exercise is referred to in Chapter 32.)
 26. Suppose that G is a finite simple group and contains subgroups H 

and K such that |G:H| and |G:K| are prime. Show that |H| 5 |K|.
 27. Show that (up to isomorphism) A5 is the only simple group of  order 

60. (This exercise is referred to in this chapter.)
 28. Prove that a simple group cannot have a subgroup of index 4.
 29. Prove that there is no simple group of order p2q, where p and q are 

odd primes and q 7 p.
 30. If a simple group G has a subgroup K that is a normal subgroup of 

two distinct maximal subgroups, prove that K 5 {e}.
 31. Show that a finite group of even order that has a cyclic Sylow 2- 

subgroup is not simple.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Suggested Readings

G. Cornell, N. Pele, and M. Wage, “Simple Groups of Orders Less Than 
1000,” Journal of Undergraduate Research 5 (1973): 77–86.

In this charming article, three undergraduate students use slightly more 
theory than was given in this chapter to show that the only integers less 
than 1000 that could be orders of simple groups are 60, 168, 320, 504, 
660, and 720. All but the last one are orders of simple groups. The 
proof that there is no simple group of order 720 is omitted because it is 
significantly beyond most undergraduates.

K. David, “Using Commutators to Prove A5 Is Simple,” The American 
Mathematical Monthly 94 (1987): 775–776.

This note gives an elementary proof that A5 is simple using commutators.

J. A. Gallian, “The Search for Finite Simple Groups,” Mathematics Maga-
zine 49 (1976): 163–179.

A historical account is given of the search for finite simple groups. 
This article can be downloaded at http://www.d.umn.edu/~jgallian/
simple.pdf

Martin Gardner, “The Capture of the Monster: A Mathematical Group with a 
Ridiculous Number of Elements,” Scientific American 242 (6) (1980): 20–32.

This article gives an elementary introduction to groups and a discus-
sion of simple groups, including the “Monster.”

Daniel Gorenstein, “The Enormous Theorem,” Scientific American 253 
(6) (1985): 104–115.

You won’t find an article on a complex subject better written for the 
layperson than this one. Gorenstein, the driving force behind the classi-
fication, uses concrete examples, analogies, and nontechnical terms to 
make the difficult subject matter of simple groups accessible.

Sandra M. Lepsi, “PSL(2, Z7) Is Simple, by Counting,” Pi Mu Epsilon  
Journal 9 (1993): 576–578.

The author shows that the group SL(2, Z7)/Z(SL(2, Z7)) of order 168 is 
simple using a counting argument.
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Michael Aschbacher

Fresh out of graduate school, he 
[Aschbacher] had just entered the field, 
and from that moment he became the 
 driving force behind my program. In rapid 
succession he proved one astonishing 
 theorem after another. Although there 
were many other major contributors to 
this final assault, Aschbacher alone was 
 responsible for shrinking my projected   
30-year timetable to a mere 10 years.

daniel gorenstein, Scientific American

Michael Aschbacher was born on April 8, 
1944, in Little Rock, Arkansas. Shortly after 
his birth, his family moved to Illinois, where 
his father was a professor of accounting 
and  his mother was a high school English 
teacher. When he was nine years old, his fam-
ily moved to East Lansing, Michigan; six 
years later, they moved to Los Angeles.

After high school, Aschbacher enrolled at 
the California Institute of Technology. In ad-
dition to his schoolwork, he passed the first 
four actuary exams and was employed for a 
few years as an actuary, full-time in the sum-
mers and part-time during the academic year. 
Two of the Caltech mathematicians who in-
fluenced him were Marshall Hall and Donald 
Knuth. In his senior year, Aschbacher took 
abstract algebra but showed little interest 
in  the course. Accordingly, he received a 
grade of C.

In 1966, Aschbacher went to the Univer-
sity of Wisconsin for a Ph.D. degree. He 
completed his dissertation in 1969, and, after 
spending one year as an assistant professor 
at the University of Illinois, he returned to 
Caltech and quickly moved up to the rank of 
professor.

Aschbacher’s dissertation work in the 
area of combinatorial geometries had led 
him to consider certain group theoretic 
questions. Gradually, he turned his atten-
tion more and more to purely group theo-
retic problems, particularly those bearing 
on the classification of finite simple groups. 
The 1980 Cole Prize Selection Committee 
said of one of his papers, “[It] lifted the 
subject to a new plateau and brought the 
classification within reach.” Aschbacher 
has been elected to the National Academy 
of Sciences, the American Academy of Sci-
ences, and the vice presidency of the Amer-
ican Mathematical Society. In 2011, Asch-
bacher received the $75,000 Rolf Schock 
Prize from the Royal Swedish Academy of 
Sciences for “his fundamental contributions 
to one of the largest mathematical projects 
ever, the clasification of finite simple 
groups.” In 2012, he shared the $100,000 
Wolf Prize for his work in the theory of  
finite groups and shared the American 
Mathematical Society’s Steele Prize for  
Exposition.
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Daniel Gorenstein

Gorenstein was one of the most influential 
mathematicians of the last few decades.

michael aschbacher, 
Notices of the American Mathematical 

 Society

Daniel Gorenstein was born in Boston 
on  January 1, 1923. Upon graduating from 
Harvard in 1943 during World War II, 
Gorenstein was offered an instructorship at 
Harvard to teach mathematics to army person-
nel. After the war ended, he began graduate 
work at Harvard. He received his Ph.D. de-
gree in 1951, working in algebraic geometry 
under Oscar Zariski. It was in his dissertation 
that he introduced the class of rings that is 
now named after him. In 1951, Gorenstein 
took a position at Clark University in 
Worcester, Massachusetts, where he stayed 
until moving to Northeastern University in 
1964. From 1969 until his death on August 26, 
1992, he was at Rutgers University.

In 1957, Gorenstein switched from al-
gebraic geometry to finite groups, learning the 
basic material from I. N. Herstein while col-
laborating with him over the next few years. A 
milestone in Gorenstein’s development as a 
group theorist came during 1960–1961, when 
he was invited to participate in a “Group 
Theory Year” at the University of Chicago. 

It was there that Gorenstein, assimilating the 
revolutionary techniques then being developed 
by John Thompson, began his fundamental 
work that contributed to the classification of 
finite simple groups.

Through his pioneering research papers, 
his dynamic lectures, his numerous personal 
contacts, and his influential book on finite 
groups, Gorenstein became the leader in the 
25-year effort, by hundreds of mathemati-
cians, that led to the classification of the  
finite simple groups.

Among the honors received by Gorenstein 
are the Steele Prize from the American 
Mathematical Society and election to mem-
bership in the National Academy of Sciences 
and the American Academy of Arts and 
Sciences.

To find more information about Goren-
stein, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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John Thompson

There seemed to be no limit to his power.
daniel gorenstein

John G. Thompson was born on October 13, 
1932, in Ottawa, Kansas. In 1951, he entered 
Yale University as a divinity student, but he 
switched to mathematics in his sophomore 
year. In 1955, he began graduate school at the 
University of Chicago, he obtained his Ph.D. 
degree four years later. After one year on the 
faculty at Harvard, Thompson returned to 
Chicago. He remained there until 1968, when 
he moved to Cambridge University in 
England. In 1993, Thompson accepted an ap-
pointment at the University of Florida.

Thompson’s brilliance was evident early. 
In his dissertation, he verified a 50-year-old 
conjecture about finite groups possessing a 
certain kind of automorphism. (An article 
about his achievement appeared in The New 
York Times.) The novel methods Thompson 
used in his dissertation foreshadowed the 
revolutionary ideas he would later introduce 
in the Feit–Thompson paper and the classifi-
cation of minimal simple groups (simple 
groups that contain no proper non-Abelian 
simple subgroups). The assimilation and ex-
tension of Thompson’s methods by others 
throughout the 1960s and 1970s ultimately 

led to the classification of finite simple 
groups.

In the late 1970s, Thompson made sig-
nificant contributions to coding theory, the 
theory of finite projective planes, and the 
theory of modular functions. His recent 
work on Galois groups is considered the 
most important in the field in the last half of 
the 20th century.

Among Thompson’s many honors are the 
Cole Prize in algebra and the Fields Medal. 
He was elected to the National Academy of 
Sciences in 1967, the Royal Society of 
London in 1979, and the American Academy 
of Arts and Sciences in 1998. In 2000, 
President Clinton presented Thompson the 
National Medal of Science. In 2008, he was a 
cowinner of the $1,000,000 Abel Prize given 
by the Norwegian Academy of Science and 
Letters.

To find more information about Thompson, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Generators  
and Relations

One cannot escape the feeling that these mathematical formulae have an 
independent existence and an intelligence of their own, that they are 
wiser than we are, wiser even than their discoverers, that we get more 
out of them than we originally put into them.

heinrich hertz

26

Motivation
In this chapter, we present a convenient way to define a group with cer-
tain prescribed properties. Simply put, we begin with a set of elements 
that we want to generate the group, and a set of equations (called rela-
tions) that specify the conditions that these generators are to satisfy. 
Among all such possible groups, we will select one that is as large as 
possible. This will uniquely determine the group up to isomorphism.

To provide motivation for the theory involved, we begin with a  concrete 
example. Consider D4, the group of symmetries of a square. Recall that  
R 5 R90 and H, a reflection across a horizontal axis, generate the group. 
Observe that R and H are related in the following ways:

 R4 5 H2 5 (RH)2 5 R0    (the identity). (1)

Other relations between R and H, such as HR 5 R3H and RHR 5 H, 
also exist, but they can be derived from those given in Equation (1). For 
example, (RH)2 5 R0 yields HR 5 R21H21, and R4 5 H2 5 R0 yields 
R21 5 R3 and H21 5 H. So, HR 5 R3H. In fact, every relation between 
R and H can be derived from those given in Equation (1).

Thus, D4 is a group that is generated by a pair of elements a and b 
subject to the relations a4 5 b2 5 (ab)2 5 e and such that all other rela-
tions between a and b can be derived from these relations. This last 
stipulation is necessary because the subgroup {R0, R180, H, V} of D4 is 
generated by the two elements a 5 R180 and b 5 H that satisfy the rela-
tions  a4 5 b2 5 (ab)2 5 e. However, the “extra” relation a2 5 e satisfied by 
this subgroup cannot be derived from the original ones (since R90

2 2 R0). It 
is natural to ask whether this description of D4 applies to some other group 

99708_ch26_ptg01_hr_445-460.indd   445 06/06/12   9:26 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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as well. The answer is no. Any other group generated by two elements a 
and b satisfying only the relations a4 5 b2 5 (ab)2 5 e, and those that 
can be derived from these relations, is isomorphic to D4.

Similarly, one can show that the group Z4 % Z2 is generated by two el-
ements a and b such that a4 5 b2 5 e and ab 5 ba, and any other rela-
tion between a and b can be derived from these relations. The purpose of 
this chapter is to show that this procedure can be reversed; that is, we 
can begin with any set of generators and relations among the generators 
and construct a group that is uniquely described by these generators and 
relations, subject to the stipulation that all other relations among the 
generators can be derived from the original ones.

Definitions and Notation
We begin with some definitions and notation. For any set S 5 {a, b, c, . . .} 
of distinct symbols, we create a new set S21 5 {a21, b21, c21, . . .} by re-
placing each x in S by x21. Define the set W(S) to be the collection of all 
formal finite strings of the form x1x2 ? ? ? xk, where each xi [ S < S21. 
The elements of W(S) are called words from S. We also permit the string 
with no elements to be in W(S). This word is called the empty word and 
is denoted by e.

We may define a binary operation on the set W(S) by juxtaposition; 
that is, if x1x2 ? ? ? xk and y1y2 ? ? ? yt belong to W(S), then so does x1x2  
? ? ? xky1y2 ? ? ? yt. Observe that this operation is associative and the 
empty word is the identity. Also, notice that a word such as aa21 is not 
the identity, because we are treating the elements of W(S) as formal 
symbols with no implied meaning.

At this stage we have everything we need to make a group out of 
W(S) except inverses. Here a difficulty arises, since it seems reasonable 
that the inverse of the word ab, say, should be b21a21. But abb21a21 is 
not the empty word! You may recall that we faced a similar obstacle 
long ago when we carried out the construction of the field of quotients 
of an integral domain. There we had formal symbols of the form a/b 
and we wanted the inverse of a/b to be b/a. But their product, ab/(ba), 
was a formal symbol that was not the same as the formal symbol 1/1, 
the identity. So, we proceed here as we did there—by way of equiva-
lence classes.

Definition Equivalence Classes of Words
For any pair of elements u and v of W(S), we say that u is related to v if v 
can be obtained from u by a finite sequence of insertions or deletions of 
words of the form xx21 or x21x, where x [ S.
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We leave it as an exercise to show that this relation is an equivalence 
relation on W(S). (See Exercise 1.)

 EXAMPLE 1 Let S 5 {a, b, c}. Then acc21b is equivalent to ab; 
aab21bbaccc21 is equivalent to aabac; the word a21aabb21a21 is 
equivalent to the empty word; and the word ca21b is equivalent to 
cc21caa21a21bbca21ac21b21. Note, however, that cac21b is not equiva-
lent to ab. 

Free Group
 Theorem 26.1 Equivalence Classes Form a Group

Let S be a set of distinct symbols. For any word u in W(S), let u 

 denote the set of all words in W(S) equivalent to u (that is, u is the 

equivalence class containing u). Then the set of all  equivalence 

classes of elements of W(S) is a group under the  operation  

u ? v 5 uv.

PROOF This proof is left to the reader. 

The group defined in Theorem 26.1 is called a free group on S. 
 Theorem 26.2 shows why free groups are important.

 Theorem 26.2 Universal Mapping Property

Every group is a homomorphic image of a free group.

PROOF Let G be a group and let S be a set of generators for G. (Such 
a set exists, because we may take S to be G itself.) Now let F be the free 
group on S. Unfortunately, since our notation for any word in W(S) also 
denotes an element of G, we have created a notational problem for our-
selves. So, to distinguish between these two cases, we will denote the 
word x1x2 ? ? ? xn in W(S) by (x1x2 ? ? ? xn)F and the product x1x2 ? ? ? xn in 
G by (x1x2 ? ? ? xn)G. As before, x1x2 

. . . xn denotes the equivalence class
in F containing the word (x1x2 ? ? ? xn)F in W(S). Notice that x1x2 

. . . xn  
and (x1x2 ? ? ? xn)G are entirely different elements, since the operations 
on F and G are different.

Now consider the mapping from F into G given by

f( x1x2 
. . . xn) 5 (x1x2 ? ? ? xn)G.
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[All we are doing is taking a product in F and viewing it as a product in 
G. For example, if G is the cyclic group of order 4 generated by a, then

f(aaaaa) 5 (aaaaa)G 5 a.]

Clearly, f is well-defined, for inserting or deleting expressions of the 
form xx21 or x21x in elements of W(S) corresponds to inserting or delet-
ing the identity in G. To check that f is operation-preserving, observe 
that

 f(x1x2 . . . xn)(y1y2 . . . ym) 5 f(x1x2 . . . xny1y2 . . . ym)
 5 (x1x2 ? ? ? xny1y2 ? ? ? ym)G
 5 (x1x2 ? ? ? xn)G(y1y2 ? ? ? ym)G.

Finally, f is onto G because S generates G. 

The following corollary is an immediate consequence of Theorem 26.2 
and the First Isomorphism Theorem for Groups.

 Corollary Universal Factor Group Property

Every group is isomorphic to a factor group of a free group.

Generators and Relations
We have now laid the foundation for defining a group by way of genera-
tors and relations. Before giving the definition, we will illustrate the 
basic idea with an example.

 EXAMPLE 2 Let F be the free group on the set {a, b} and let N be 
the smallest normal subgroup of F containing the set {a4, b2, (ab)2}. We 
will show that F/N is isomorphic to D4. We begin by observing that the 
mapping f from F onto D4, which takes a to R90 and b to H (horizontal 
reflection), defines a homomorphism whose kernel contains N. Thus, 
F/Ker f is isomorphic to D4. On the other hand, we claim that the set

K 5 {N, aN, a2N, a3N, bN, abN, a2bN, a3bN}

of left cosets of N is F/N itself. To see this, notice that every member 
of F/N can be generated by starting with N and successively multiply-
ing on the left by various combinations of a’s and b’s. So, it suffices  
to show that K is closed under multiplication on the left by a and b. It 
is trivial that K is closed under left multiplication by a. For b, we will 
do only one of the eight cases. The others can be done in a similar 
fashion. Consider b(aN). Since b2, abab, a4 [ N and Nb 5 bN, we 
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have baN 5 baNb2 5 babNb 5 a21(abab)Nb 5 a21Nb = a21a4Nb 5 
a3Nb 5 a3bN. Upon completion of the other cases (Exercise 3), we 
know that F/N has at most eight elements. At the same time, we know 
that F/Ker f has exactly eight elements. Since F/Ker f is a factor 
group of F/N [indeed, F/Ker f < (F/N)/(Ker f/N)], it follows that F/N 
also has eight elements and F/N 5 F/Ker f < D4. 

Definition Generators and Relations
Let G be a group generated by some subset A 5 {a1, a2, . . . , an} and let 
F be the free group on A. Let W 5 {w1, w2, . . . , wt

} be a subset of F and 
let N be the smallest normal subgroup of F containing W. We say that G 
is given by the generators a1, a2, . . . , an and the relations w1 5 w2 5 ? ? ? 5 
wt 5 e if there is an isomorphism from F/N onto G that carries a

i
N to a

i
.

The notation for this situation is

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el.

As a matter of convenience, we have restricted the number of gen-
erators and relations in our definition to be finite. This restriction is 
not necessary, however. Also, it is often more convenient to write a 
relation in implicit form. For example, the relation a21b23ab 5 e is 
often written as ab 5 b3a. In practice, one does not bother writing 
down the normal subgroup N that contains the relations. Instead, one 
just manipulates the generators and treats anything in N as the iden-
tity, as our notation suggests. Rather than saying that G is given by

ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el,

many authors prefer to say that G has the presentation

ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el.

Notice that a free group is “free” of relations; that is, the equivalence 
class containing the empty word is the only relation. We mention in 
passing the fact that a subgroup of a free group is also a free group.  
Free groups are of fundamental importance in a branch of algebra 
known as combinatorial group theory.

 EXAMPLE 3 The discussion in Example 2 can now be summed up 
by writing

 D4 5 ka, b | a4 5 b2 5 (ab)2 5 el. 

 EXAMPLE 4 The group of integers is the free group on one letter; that 
is, Z < kal. (This is the only nontrivial Abelian group that is free.) 
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The next theorem formalizes the argument used in Example 2 to 
prove that the group defined there has eight elements.

 Theorem 26.3 Dyck's Theorem (1882)

Let

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el

and let

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5
wt11 5 ? ? ? 5 wt1k 5 el.

Then G is a homomorphic image of G.

PROOF See Exercise 5. 

In words, Theorem 26.3 says that if you start with generators and rela-
tions for a group G and create a group G by imposing additional  
 relations, then G is a homomorphic image of G.

 Corollary Largest Group Satisfying Defining Relations

If K is a group satisfying the defining relations of a finite group G 

and |K| $ |G|, then K is isomorphic to G.

PROOF See Exercise 5. 

 EXAMPLE 5 Quaternions Consider the group G 5 ka, b | a2 5  
b2 5 (ab)2l. What does G look like? Formally, of course, G is isomor-
phic to F/N, where F is free on {a, b} and N is the smallest normal sub-
group of F containing b22a2 and (ab)22a2. Now, let H 5 kbl and S 5 
{H, aH}. Then, just as in Example 2, it follows that S is closed under 
multiplication by a and b from the left. So, as in Example 2, we have 
G 5 H < aH. Thus, we can determine the elements of G once we know 
exactly how many elements there are in H. (Here again, the three rela-
tions come in.) To do this, first observe that b2 5 (ab)2 5 abab implies 
b 5 aba. Then a2 5 b2 5 (aba)(aba) 5 aba2ba 5 ab4a and therefore 
b4 5 e. Hence, H has at most four elements, and therefore G has at most 
eight—namely, e, b, b2, b3, a, ab, ab2, and ab3. It is conceivable, how-
ever, that not all of these eight elements are distinct. For example, Z2 % Z2 
satisfies the  defining relations and has only four elements. Perhaps it is 
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the largest group satisfying the relations. How can we show that the eight 
elements listed above are distinct? Well, consider the group G generated 
by the  matrices

 
A � c 0 1

�1 0
d   and  B � c0 i

i 0
d ,

where i 5 2�1. Direct calculations show that in G, the elements e, B, B2, 
B3, A, AB, AB2, and AB3 are distinct and that G satisfies the relations  
A2 5 B2 5 (AB)2. So, it follows from the corollary to Dyck’s Theorem 
that G is isomorphic to G and therefore G has order 8. 

The next example illustrates why, in Examples 2 and 5, it is neces-
sary to show that the eight elements listed for the group are distinct.

 EXAMPLE 6 Let

G 5 ka, b | a3 5 b9 5 e, a21ba 5 b21l.

Once again, we let H 5 kbl and observe that G 5 H < aH < a2H. Thus,

G 5 {aib j | 0 # i # 2, 0 # j # 8},

and therefore G has at most 27 elements. But this time we will not be 
able to find some concrete group of order 27 satisfying the same rela-
tions that G does, for notice that b21 5 a21ba implies

b 5 (a21ba)21 5 a21b21a.

Hence,

b 5 ebe 5 a23ba3 5 a22(a21ba)a2 5 a22b21a2

 5 a21(a21b21a)a 5 a21ba 5 b21.

So, the original three relations imply the additional relation b2 5 e. But 
b2 5 e 5 b9 further implies b 5 e. It follows, then, that G has at most 
three distinct elements—namely, e, a, and a2. But Z3 satisfies the defin-
ing relations with a 5 1 and b 5 0. So, |G| 5 3. 

We hope Example 6 convinces you of the fact that, once a list of the 
elements of the group given by a set of generators and relations has 
been obtained, one must further verify that this list has no duplications. 
Typically, this is accomplished by exhibiting a specific group that satis-
fies the given set of generators and relations and that has the same size 
as the list. Obviously, experience plays a role here.

Here is a fun example adapted from [1].
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 EXAMPLE 7 Let G be the group with the 26 letters of the alphabet 
as generators. For relations we take strings A 5 B, where A and B are 
words in some fixed reference, say [2], and have the same pronuncia-
tion but different meanings (such words are called homophones). For 
example, buy 5 by 5 bye, hour 5 our, lead 5 led, whole 5 hole. From 
these strings and cancellation, we obtain u 5 e 5 h 5 a 5 w 5 /0 (/0 is 
the identity string). With these examples in mind, we ask, What is the 
group given by these generators and relations? Surprisingly, the answer 
is the infinite cyclic group generated by v. To verify this, one must show 
that every letter except v is equivalent to  /0 and that there are no two ho-
mophones that contain a different number of v’s. The former can easily 
be done with common words. For example, from inn 5 in, plumb 5 
plum, and knot 5 not, we see that n 5 b 5 k 5 /0. From too 5 to 
we  have o 5 /0. That there are no two homophones in [2] that have  
a  different number of v’s can be verified by simply checking all  
cases. In contrast, the reference Handbook of Homophones by W. C. 
Townsend (see http://members.peak.org/~jeremy/dictionaryclassic/
chapters/homophones.php) lists felt/veldt as  homophones. Of course, 
including these makes the group trivial. 

Classification of Groups  
of Order Up to 15

The next theorem illustrates the utility of the ideas presented in this 
chapter.

 Theorem 26.4 Classification of Groups of Order 8 (Cayley, 1859)

Up to isomorphism, there are only five groups of order 8: Z8, Z4 % Z2, 

Z2 % Z2 % Z2, D4, and the quaternions.

PROOF The Fundamental Theorem of Finite Abelian Groups takes 
care of the Abelian cases. Now, let G be a non-Abelian group of order 
8. Also, let G1 5 ka, b | a4 5 b2 5 (ab)2 5 el and let G2 5 ka, b | a2 5 
b2 5 (ab)2l. We know from the preceding examples that G1 is isomor-
phic to D4 and G2 is isomorphic to the quaternions. Thus, it suffices to 
show that G must satisfy the defining relations for G1 or G2. It follows 
from Exercise 47 in Chapter 2 and Lagrange’s Theorem that G has an 
element of order 4; call it a. Then, if b is any element of G not in kal, we 
know that

G 5 kal < kalb 5 {e, a, a2, a3, b, ab, a2b, a3b}.
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Consider the element b2 of G. Which of the eight elements of G can it 
be? Not b, ab, a2b, or a3b, by cancellation. Not a, for b2 commutes with  
b and a does not. Not a3, for the same reason. Thus, b2 5 e or b2 5 a2. 
Suppose b2 5 e. Since kal is a normal subgroup of G, we know that 
bab21 [ kal. From this and the fact that |bab21| 5 |a|, we then conclude 
that bab21 5 a or bab21 5 a21. The first relation would mean that G is 
Abelian, so we know that bab21 5 a21. But then, since b2 5 e, we have 
(ab)2 5 e, and therefore G satisfies the defining relations for G1.

Finally, if b2 5 a2 holds instead of b2 5 e, we can use bab21 5 a21  

to conclude that (ab)2 5 a(bab21)b2 5 aa21b2 5 b2, and therefore G sat-
isfies the defining relations for G2. 

The classification of the groups of order 8, together with our results  
on groups of order p2, 2p, and pq from Chapter 24, allows us to classify 
the groups of order up to 15, with the exception of those of order 12. We 
already know four groups of order 12—namely, Z12, Z6 % Z2, D6, and A4. 
An argument along the lines of Theorem 26.4 can be given to show that 
there is only one more group of order 12. This group, called the dicyclic 
group of order 12 and denoted by Q6, has presentation ka, b | a6 5 e,  
a3 5 b2, b21ab 5 a21l. Table 26.1 lists the groups of order at most 15. 
We use Q4 to denote the quaternions (see Example 5 in this chapter).

Table 26.1   Classification of Groups of Order Up to 15

Order Abelian Groups Non-Abelian Groups

 1 Z1
 2 Z2
 3 Z3
 4 Z4, Z2 % Z2
 5 Z5
 6 Z6 D3
 7 Z7
 8 Z8, Z4 % Z2, Z2 % Z2 % Z2 D4, Q4
 9 Z9, Z3 % Z3
 10 Z10 D5
 11 Z11
 12 Z12, Z6 % Z2 D6, A4, Q6
 13 Z13
 14 Z14 D7
 15 Z15
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Characterization of Dihedral Groups
As another nice application of generators and relations, we will now 
give a characterization of the dihedral groups that has been known for 
more than 100 years. For n $ 3, we have used Dn to denote the group of 
symmetries of a regular n-gon. Imitating Example 2, one can show that 
Dn < ka, b | an 5 b2 5 (ab)2 5 el (see Exercise 9). By analogy, these 
generators and relations serve to define D1 and D2 also. (These are also 
called dihedral groups.) Finally, we define the infinite dihedral group  
D` as ka, b | a2 5 b2 5 el. The elements of D` can be listed as e, a, b, ab, 
ba, (ab)a, (ba)b, (ab)2, (ba)2, (ab)2a, (ba)2b, (ab)3, (ba)3, . . . .

 Theorem 26.5 Characterization of Dihedral Groups

Any group generated by a pair of elements of order 2 is dihedral.

PROOF Let G be a group generated by a pair of distinct elements of 
order 2, say, a and b. We consider the order of ab. If |ab| 5 `, then G is 
infinite and satisfies the relations of D`. We will show that G is isomor-
phic to D`. By Dyck’s Theorem, G is isomorphic to some factor group 
of D`, say, D`/H. Now, suppose h [ H and h 2 e. Since every element 
of D` has one of the forms (ab)i, (ba)i, (ab)ia, or (ba)ib, by symmetry, 
we may assume that h 5 (ab)i or h 5 (ab)ia. If h 5 (ab)i, we will show 
that D`/H satisfies the relations for Di given in Exercise 9. Since (ab)i is 
in H, we have

H 5 (ab)iH 5 (abH)i,

so that (abH)21 5 (abH)i21. But

(ab)21H 5 b21a21H 5 baH,

and it follows that

aHabHaH � a2HbHaH � eHbaH � baH � 1abH2�1
.

Thus,

D`/H 5 kaH, bHl 5 kaH, abHl

(see Exercise 7), and D`/H satisfies the defining relations for Di (use 
Exercise 9 with x 5 aH and y 5 abH). In particular, G is finite—an 
 impossibility.

If h 5 (ab)ia, then

H 5 (ab)iaH 5 (ab)iHaH,
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and therefore

(abH)i 5 (ab)iH 5 (aH)21 5 a21H 5 aH.

It follows that

kaH, bHl 5 kaH, abHl # kabHl.

However,

(abH)2i 5 (aH)2 5 a2H 5 H,

so that D`/H is again finite. This contradiction forces H 5 {e} and G to 
be isomorphic to D`.

Finally, suppose that |ab| 5 n. Since G 5 ka, bl 5 ka, abl, we can 
show that G is isomorphic to Dn by proving that b(ab)b 5 (ab)21, which 
is the same as ba 5 (ab)21 (see Exercise 9). But (ab)21 5 b21a21 5 ba, 
since a and b have order 2. 

Realizing the Dihedral Groups  
with Mirrors

A geometric realization of D` can be obtained by placing two mirrors 
facing each other in a parallel position, as shown in Figure 26.1. If we 
let a and b denote reflections in mirrors A and B, respectively, then ab, 
viewed as the composition of a and b, represents a translation through 
twice the distance between the two mirrors to the left, and ba is the 
translation through the same distance to the right.

aba bab babaab a b bae

A B

FF FF FF FF

Figure 26.1 The group D`—reflections in parallel mirrors

The finite dihedral groups can also be realized with a pair of mirrors. 
For example, if we place a pair of mirrors facing each other at a 45° 
 angle, we obtain the group D4. Notice that in Figure 26.2, the effect of 
reflecting an object in mirror A, then mirror B, is a rotation of twice the 
angle between the two mirrors (that is, 90°).
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FFF F
F F

FF

aba

bab

ba b

e

baba = abab

ab

a

A

B

Figure 26.2 The group D4—reflections in mirrors at a 45° angle

In Figure 26.3, we see a portion of the pattern produced by reflections 
in a pair of mirrors set at a 1° angle. The corresponding group is D180. In 
general, reflections in a pair of mirrors set at the angle 180°/n correspond 
to the group Dn. As n becomes larger and larger, the mirrors approach a 
parallel position. In the limiting case, we have the group D`.

aba ab a b ba bab baba
e

FFFF FFFF

Α Β

Figure 26.3 The group D180—reflections in mirrors at a 1° angle

We conclude this chapter by commenting on the advantages and dis-
advantages of using generators and relations to define groups. The prin-
cipal advantage is that in many situations—particularly in knot theory, 
algebraic topology, and geometry—groups defined by way of genera-
tors and relations arise in a natural way. Within group theory itself, it is 
often convenient to construct examples and counterexamples with gen-
erators and relations. Among the disadvantages of defining a group by 
generators and relations is the fact that it is often difficult to decide 
whether or not the group is finite, or even whether or not a particular 
 element is the identity. Furthermore, the same group can be defined with 
entirely different sets of generators and relations, and, given two groups 
defined by generators and relations, it is often extremely difficult to 
 decide whether or not these two groups are isomorphic. Nowadays, 
these questions are frequently tackled with the aid of a  computer.
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Exercises

It don’t come easy.
ringo starr, “It Don't Come Easy,” single

  1. Let S be a set of distinct symbols. Show that the relation defined on 
W(S) in this chapter is an equivalence relation.

  2. Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to Dn/2.
  3. Verify that the set K in Example 2 is closed under multiplication 

on the left by b.
  4. Show that ka, b | a5 5 b2 5 e, ba 5 a2bl is isomorphic to Z2.
  5. Prove Theorem 26.3 and its corollary.
  6. Let G be the group {61, 6i, 6j, 6k} with multiplication defined 

as in Exercise 54 in Chapter 9. Show that G is isomorphic to ka, b | 
a2 5 b2 5 (ab)2l. (Hence, the name “quaternions.”)

  7. In any group, show that ka, bl 5 ka, abl. (This exercise is referred 
to in the proof of Theorem 26.5.)

  8. Let a 5 (12)(34) and b 5 (24). Show that the group generated by 
a and b is isomorphic to D4.

  9. Prove that G 5 kx, y | x2 5 yn 5 e, xyx 5 y21l is isomorphic to Dn. 
(This exercise is referred to in the proof of Theorem 26.5.)

 10. What is the minimum number of generators needed for Z2 % Z2 % 
Z2? Find a set of generators and relations for this group.

 11. Suppose that x2 5 y2 5 e and yz 5 zxy. Show that xy 5 yx.
 12. Let G 5 ka, b | a2 5 b4 5 e, ab 5 b3al.
 a.  Express a3b2abab3 in the form bia j, where 0 # i # 1 and  

0 # j # 3.
 b. Express b3abab3a in the form biaj, where 0 # i # 1 and 0 # j # 3.
 13. Let G 5 ka, b | a2 5 b2 5 (ab)2l.
 a. Express b2abab3 in the form bia j.
 b. Express b3abab3a in the form bia j.
 14. Let G be the group defined by the following table. Show that G is  

isomorphic to Dn.

  1 2 3 4 5 6 ? ? ? 2n

 1 1 2 3 4 5 6 ? ? ? 2n
 2 2 1 2n 2n 2 1 2n 2 2 2n 2 3 ? ? ? 3
 3 3 4 5 6 7 8 ? ? ? 2
 4 4 3 2 1 2n 2n 2 1 ? ? ? 5
 5 5 6 7 8 9 10 ? ? ? 4
 6 6 5 4 3 2 1 ? ? ? 7
 : : : : : : : : :

 2n 2n 2n 2 1 2n 2 2 2n 2 3 2n 2 4 2n 2 5 ? ? ? 1
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 15. Let G 5 kx, y | x8 5 y2 5 e, yxyx3 5 el. Show that |G| # 16. As-
suming that |G| 5 16, find the center of G and the order of xy.

 16. Confirm the classification given in Table 26.1 of all groups of 
 orders 1 to 11.

 17. Let G be defined by some set of generators and relations. Show 
that every factor group of G satisfies the relations defining G.

 18. Let G 5 ks, t | sts 5 tstl. Show that the permutations (23) and (13) 
satisfy the defining relations of G. Explain why this proves that G 
is non-Abelian.

 19. In D12 5 kx, y | x2 5 y12 5 e, xyx 5 y21l, prove that the subgroup  
H 5 kx, y3l (which is isomorphic to D4) is not a normal subgroup.

 20. Let G 5 kx, y | x2n 5 e, xn 5 y2, y21xy 5 x21l. Show that Z(G) 5  
{e, xn}. Assuming that |G| 5 4n, show that G/Z(G) is isomorphic 
to Dn. (The group G is called the dicyclic group of order 4n.)

 21. Let G 5 ka, b | a6 5 b3 5 e, b21ab 5 a3l. How many elements 
does G have? To what familiar group is G isomorphic?

 22. Let G 5 kx, y | x4 5 y4 5 e, xyxy21 5 el. Show that |G| # 16. As-
suming that |G| 5 16, find the center of G and show that G/ky2l is 
isomorphic to D4.

 23. Determine the orders of the elements of D`.

 24. Let G � • £10
0

a

1

0

b

c

1

§  †  a, b, c [ Z2¶ . Prove that G is isomorphic  

  to D4.
 25. Let G 5 ka, b, c, d | ab 5 c, bc 5 d, cd 5 a, da 5 bl. Determine |G|.
 26. Let G � ka, b � a2 � e, b2 � e, aba � babl. To what familiar 

group is G isomorphic?
 27. Let G � ka, b � a3 � e, b2 � e, aba�1b�1 � el. To what familiar 

group is G isomorphic?
 28. Give an example of a non-Abelian group that has exactly three 

 elements of finite order.
 29. Referring to Example 7 in this chapter, show as many letters as you 

can that are equivalent to ~.
 30. Suppose that a group of order 8 has exactly five elements of order 2. 

Identify the group.
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helped to turn the tide of the war. After the 
war, Hall had faculty appointments at the 
Ohio State University, Caltech, and Emory 
University. He died on July 4, 1990.

Hall’s highly regarded books on group  
theory and combinatorial theory are classics. 
His mathematical legacy includes more than 

Professor Hall was a mathematician in the 
broadest sense of the word but with a  
predilection for group theory, geometry 
and combinatorics.

hans zassenhaus, Notices of  
the American Mathematical Society

120 research papers on group theory, coding 
theory, and design theory. His 1943 paper on 
projective planes ranks among the most cited 
papers in mathematics. Several fundamental 
concepts as well as a sporadic simple group  
are identified with Hall’s name. One of Hall’s 
most celebrated results is his solution to the 
“Burnside Problem” for exponent 6—that is, 
his proof that a finitely generated group in 
which the order of every element divides 6 
must be finite. Hall influenced both John 
Thompson and Michael Aschbacher, two of fi-
nite group theory’s greatest contributors. It was 
Hall who suggested Thompson’s Ph.D. disser-
tation problem. Hall’s Ph.D. students at Caltech 
included Donald Knuth and Robert McEliece.

To find more information about Hall, 
visit:

http://www–groups.dcs.st–and 
.ac.uk/~history/
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27

Isometries
In the early chapters of this book, we briefly discussed symmetry 
groups. In this chapter and the next, we examine this fundamentally 
important concept in some detail. It is convenient to begin such a dis-
cussion with the definition of an isometry (from the Greek isometros, 
meaning “equal measure”) in Rn.

Definition Isometry
An isometry of n-dimensional space Rn is a function from Rn onto Rn 

that preserves distance.

In other words, a function T from Rn onto Rn is an isometry if, for 
every pair of points p and q in Rn, the distance from T(p) to T(q) is the 
same as the distance from p to q. With this definition, we may now 
make precise the definition of the symmetry group of an n-dimen-
sional figure.

Definition Symmetry Group of a Figure in Rn

Let F be a set of points in Rn. The symmetry group of F in Rn is the set 
of all isometries of Rn that carry F onto itself. The group operation is 
function composition.

It is important to realize that the symmetry group of an object de-
pends not only on the object, but also on the space in which we view it. 
For example, the symmetry group of a line segment in R1 has order 2, 
the symmetry group of a line segment considered as a set of points in 
R2 has order 4, and the symmetry group of a line segment viewed as a 
set of points in R3 has infinite order (see Exercise 9).

Symmetry Groups

I’m not good at math, but I do know that the universe is formed with 
mathematical principles whether I understand them or not, and I am 
going to let that guide me.

bob dylan, Chronicles, Volume One
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462 Special Topics

Although we have formulated our definitions for all finite dimen-
sions, our chief interest will be the two-dimensional case. It has been 
known since 1831 that every isometry of R2 is one of four types:  
rotation, reflection, translation, and glide-reflection (see [1, p. 46]). 
Rotation about a point in a plane needs no explanation. A reflection 
across a line L is that transformation that leaves every point of L fixed 
and takes every point Q, not on L, to the point Q9 so that L is the per-
pendicular bisector of the line segment from Q to Q9 (see Figure 27.1). 
The line L is called the axis of reflection. In an xy-coordinate plane, the 
transformation (x, y) S (x, 2y) is a reflection across the x-axis,  
whereas (x, y) S (y, x) is a reflection across the line y 5 x. Some au-
thors call an axis of reflective symmetry L a mirror because L acts like 
a two-sided mirror; that is, the image of a point Q in a mirror placed on 
the line L is, in fact, the image of Q under the reflection across the line 
L. Reflections are called opposite isometries because they reverse ori-
entation. For example, the reflected image of a clockwise spiral is a 
counterclockwise spiral. Similarly, the reflected image of a right hand 
is a left hand. (See Figure 27.1.)

L

Q

Q'

  Axis of reflection   Axis of reflection

Figure 27.1 Reflected images

A translation is simply a function that carries all points the same dis-
tance in the same direction. For example, if p and q are points in a plane 
and T is a translation, then the two directed line segments joining p to 
T( p) and q to T(q) have the same length and direction. A glide-reflection 
is the product of a translation and a reflection across the line containing 
the translation line segment. This line is called the glide-axis. In  
Figure 27.2, the arrow gives the direction and length of the translation, 
and is contained in the axis of reflection. A glide-reflection is also an  
opposite isometry. Successive footprints in wet sand are related by a 
glide-reflection.

p T(p)

Figure 27.2 Glide-reflection
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27 | Symmetry Groups 463

Classification of Finite Plane  
Symmetry Groups

Our first goal in this chapter is to classify all finite plane symmetry 
groups. As we have seen in earlier chapters, the dihedral group Dn is 
the plane symmetry group of a regular n-gon. (For convenience, call 
D2 the plane symmetry group of a nonsquare rectangle and D1 the 
plane symmetry group of the letter “V.” In particular, D2 < Z2 % Z2 and 
D1 < Z2.) The cyclic groups Zn are easily seen to be plane symmetry 
groups also. Figure 27.3 is an illustration of an organism whose plane 
symmetry group consists of four rotations and is isomorphic to Z4. The 
surprising fact is that the cyclic groups and dihedral groups are  
the  only finite plane symmetry groups. The famous mathematician 
Hermann Weyl attributes the following theorem to Leonardo da Vinci 
(1452–1519).

  Figure 27.3 Aurelia insulinda, an organism  
whose plane symmetry group is Z4

 Theorem 27.1 Finite Symmetry Groups in the Plane

The only finite plane symmetry groups are Z
n
 and D

n
.

PROOF Let G be a finite plane symmetry group of some figure. We 
first observe that G cannot contain a translation or a glide-reflection, 
because in either case G would be infinite. Now observing that the 
composition of two reflections preserves orientation, we know that 
such a composition is a translation or rotation. When the two reflections 

Sy
m

m
et

ry
 in

 S
cie

nc
e 

an
d 

Ar
t b

y 
A

. 
V.

 S
hu

bn
ik

ov
 &

 V
/A

. 
K

op
st

ik
 ©

 1
97

4 
Pl

en
um

 

Pu
bl

is
hi

ng
 C

om
pa

ny

99708_ch27_ptg01_hr_461-468.indd   463 06/06/12   9:26 AM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



464 Special Topics

have parallel axes of reflection, there is no fixed point (see Exercise 12 
in the Supplementary Exercises for Chapters 1–4), so the composition 
is a translation. Thus, every two reflections in G have reflection axes 
that intersect in some point. We claim that all reflections intersect in 
the same point. Suppose that f and f 9 are two distinct reflections in G. 
Then because f f9 preserves orientation, we know that f f9 is a rotation. 
We use the fact from geometry [2, p. 366] that a finite group of rota-
tions must have a common center, say P. This means that any two  
reflections must intersect at point P. So, we have shown that all the ele-
ments of G have the common fixed point P.

For convenience, let us denote a rotation about P of s degrees 
by Rs. Now, among all rotations in G, let b be the smallest positive 
angle of rotation. (Such an angle exists, since G is finite and R360 be-
longs to G.) We claim that every rotation in G is some power of Rb. 
To see this, suppose that Rs is in G. We may assume 0° , s # 360°. 
Then, b # s and there is some integer t such that tb # s ,  
(t 1 1)b. But, then Rs2tb 5 Rs(Rb)2t is in G and 0 # s 2 tb , b. 
Since b represents the smallest positive angle of rotation among the 
elements of G, we must have s 2 tb 5 0, and therefore, Rs 5 (Rb)t. 
This verifies the claim.

For convenience, let us say that |Rb| 5 n. Now, if G has no reflec-
tions, we have proved that G 5 kRbl < Zn. If G has at least one reflec-
tion, say f, then

f, fRb, f (Rb)2, . . . , f (Rb)n21

are also reflections. Furthermore, this is the entire set of reflections of G. 
For if g is any reflection in G, then fg is a rotation, and so fg 5 (Rb)k for 
some k. Thus, g 5 f21(Rb)k 5 f(Rb)k. So

G 5 {R0, Rb, (Rb)2, . . . , (Rb)n21, f, fRb, f (Rb)2, . . . , f(Rb)n21},

and G is generated by the pair of reflections f and fRb. Hence, by our 
characterization of the dihedral groups (Theorem 26.5), G is the dihe-
dral group Dn. 

Classification of Finite Groups  
of Rotations in R3

One might think that the set of all possible finite symmetry groups in 
three dimensions would be much more diverse than is the case for two 
dimen sions. Surprisingly, this is not the case. For example, moving to 
three dimensions introduces only three new groups of rotations. This 
observation was first made by the physicist and mineralogist Auguste 
Bravais in 1849, in his study of possible structures of crystals.
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 Theorem 27.2 Finite Groups of Rotations in R3

Up to isomorphism, the finite groups of rotations in R3 are Z
n
, D

n
, 

A4, S4, and A5.

Theorem 27.2, together with the Orbit-Stabilizer Theorem (Theo-
rem 7.3), makes easy work of determining the group of rotations of an 
object in R3.

 EXAMPLE 1 We determine the group G of rotations of the solid in 
Figure 27.4, which is composed of six congruent squares and eight con-
gruent equilateral triangles. We begin by singling out any one of the 
squares. Obviously, there are four rotations that map this square to itself, 
and the designated square can be rotated to the location of any of the 
other five. So, by the Orbit-Stabilizer Theorem (Theorem 7.3), the rota-
tion group has order 4 ? 6 5 24. By Theorem 27.2, G is one of Z24, D12, 
and S4. But each of the first two groups has exactly two elements of 
order 4, whereas G has more than two. So, G is isomorphic to S4. 

 
 Figure 27.4

The group of rotations of a tetrahedron (the tetrahedral group) is 
isomorphic to A4; the group of rotations of a cube or an octahedron (the 
octahedral group) is isomorphic to S4; the group of rotations of a do-
decahedron or an icosahedron (the icosahedral group) is isomorphic to 
A5. (Coxeter [1, pp. 271–273] specifies which portions of the polyhedra 
are being permuted in each case.) These five solids are illustrated in 
Figure 27.5.
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Figure 27.5 The five regular solids as depicted by Johannes Kepler  
in Harmonices Mundi, Book II (1619)

Exercises

Perhaps the most valuable result of all education is the ability to make  
yourself do the thing you have to do, when it ought to be done, whether 
you like it or not .

thomas henry huxley, “Technical Education”

  1. Show that an isometry of Rn is one-to-one.
  2. Show that the translations of Rn form a group.
  3. Exhibit a plane figure whose plane symmetry group is Z5.
  4. Show that the group of rotations in R3 of a 3-prism (that is, a prism 

with equilateral ends, as in the following figure) is isomorphic to D3.

  5. What is the order of the (entire) symmetry group in R3 of a 3-prism?
  6. What is the order of the symmetry group in R3 of a 4-prism (a box 

with square ends that is not a cube)?
  7. What is the order of the symmetry group in R3 of an n-prism?
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27 | Symmetry Groups 467

  8. Show that the symmetry group in R3 of a box of dimensions 20 3 
30 3 40 is isomorphic to Z2 % Z2 % Z2.

  9. Describe the symmetry group of a line segment viewed as
 a. a subset of R1.
 b. a subset of R2.
 c. a subset of R3.
  (This exercise is referred to in this chapter.)
 10. (From the “Ask Marilyn” column in Parade Magazine, December 11, 

1994.)* The letters of the alphabet can be sorted into the following 
categories:

 1. FGJLNPQRSZ
 2. BCDEK
 3. AMTUVWY
 4. HIOX
  What defines the categories?
 11. Exactly how many elements of order 4 does the group in Example 1 

have?
 12. Why is inversion [that is, f 1x, y2 � 1�x, �y2] not listed as one of 

the four kinds of isometries in R2?
 13. Explain why inversion through a point in R3 cannot be realized by 

a rotation in R3.
 14. Reflection across a line L in R3 is the isometry that takes each 

point Q to the point Q9 with the property that L is a perpendicular 
bisector of the line segment joining Q and Q9. Describe a rotation 
that has this same effect.

 15. In R2, a rotation fixes a point; in R3, a rotation fixes a line. In R4, 
what does a rotation fix? Generalize these observations to Rn.

 16. Show that an isometry of a plane preserves angles.
 17. Show that an isometry of a plane is completely determined by the 

image of three noncollinear points.
 18. Suppose that an isometry of a plane leaves three noncollinear 

points fixed. Which isometry is it?
 19. Suppose that an isometry of a plane fixes exactly one point. What 

type of isometry must it be?
 20. Suppose that A and B are rotations of 180° about the points a and b, 

respectively. What is A followed by B? How is the composite mo-
tion related to the points a and b?

*Copyright © 1994. Reprinted with permission of the author and the publisher from 
PARADE, December 11, 1994.
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28

The Frieze Groups
In this chapter, we discuss an interesting collection of infinite symme-
try groups that arise from periodic designs in a plane. There are two 
types of such groups. The discrete frieze groups are the plane symmetry 
groups of patterns whose subgroups of translations are isomorphic 
to Z. These kinds of designs are the ones used for decorative strips and 
for patterns on jewelry, as illustrated in Figure 28.1. In mathematics, 
familiar examples include the graphs of y 5 sin x, y 5 tan x, y 5 |sin x|, 
and |y| 5 sin x. After we analyze the discrete frieze groups, we exam-
ine the discrete symmetry groups of plane patterns whose subgroups of 
translations are isomorphic to Z % Z.

In previous chapters, it was our custom to view two isomorphic 
groups as the same group, since we could not distinguish between them 
algebraically. In the case of the frieze groups, we will soon see that, al-
though some of them are isomorphic as groups (that is, algebraically 
the same), geometrically they are quite different. To emphasize this 
 difference, we will treat them separately. In each of the following  
cases, the given pattern extends infinitely far in both directions.  
A proof that there are exactly seven types of frieze patterns is given in 
the appendix to [6].

Frieze Groups  
and Crystallographic 
Groups

Symmetry, considered as a law of regular composition of structural objects, 
is similar to harmony. More precisely, symmetry is one of its components, 
while the other component is dissymmetry. In our opinion the whole 
esthetics of scientific and artistic creativity lies in the ability to feel this 
where others fail to perceive it.

a. v. shubnikov and v. a. koptsik,  
Symmetry in Science and Art
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Figure 28.1 Frieze patterns

The symmetry group of pattern I (Figure 28.2) consists of transla-
tions only. Letting x denote a translation to the right of one unit (that  
is, the distance between two consecutive R’s), we may write the sym-
metry group of pattern I as

F1 5 {xn | n [ Z}.

R R R R

Figure 28.2 Pattern I
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28 | Frieze Groups and Crystallographic Groups 471

The group for pattern II (Figure 28.3), like that of pattern I, is infi-
nitely cyclic. Letting x denote a glide-reflection, we may write the 
symmetry group of pattern II as

F2 5 {xn | n [ Z}.

R R RRR R R

Figure 28.3 Pattern II

Notice that the translation subgroup of pattern II is just kx2l.
The symmetry group for pattern III (Figure 28.4) is generated by a 

translation x and a reflection y across the dashed vertical line. (There 
are infinitely many axes of reflective symmetry, including those mid-
way between consecutive pairs of opposite-facing R’s. Any one will 
do.) The entire group (the operation is function composition) is

F3 5 {xnym | n [ Z, m 5 0 or 1}.

RRRRRRRRRR

Figure 28.4 Pattern III

Note that the two elements xy and y have order 2, they generate F3, 
and their product (xy)y 5 x has infinite order. Thus, by Theorem 26.5, 
F3 is the infinite dihedral group. A geometric fact about pattern III 
worth mentioning is that the distance between consecutive pairs of ver-
tical reflection axes is half the length of the smallest translation vector.

In pattern IV (Figure 28.5), the symmetry group F4 is generated by a 
translation x and a rotation y of 180° about a point p midway between 
consecutive R’s (such a rotation is often called a half-turn). This group, 
like F3, is also infinite dihedral. (Another rotation point lies between a 
top and bottom R. As in pattern III, the distance between consecutive 
points of rotational symmetry is half the length of the smallest transla-
tion vector.) Therefore,

F4 5 {xnym | n [ Z, m 5 0 or m 5 1}.

R R R RRRRR

p

Figure 28.5 Pattern IV
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RRRR RR RRRR RR
p

Figure 28.6 Pattern V

The symmetry group F5 for pattern V (Figure 28.6) is yet another 
 infinite dihedral group generated by a glide-reflection x and a rotation y 
of 180° about the point p. Notice that pattern V has vertical reflection 
symmetry xy. The rotation points are midway between the vertical reflec-
tion axes. Thus,

F5 5 {xnym | n [ Z, m 5 0 or m 5 1}.

The symmetry group F6 for pattern VI (Figure 28.7) is generated by 
a translation x and a horizontal reflection y. The group is

F6 5 {xnym | n [ Z, m 5 0 or m 5 1}.

Note that, since x and y commute, F6 is not infinite dihedral. In fact, F6 
is isomorphic to Z % Z2. Pattern VI is invariant under a glide-reflection 
also, but in this case the glide-reflection is called trivial, since the axis 
of the glide-reflection is also an axis of reflection. (Conversely, a glide-
reflection is nontrivial if its glide-axis is not an axis of reflective sym-
metry for the pattern.)

R R R RR R R R

Figure 28.7 Pattern VI

The symmetry group F7 of pattern VII (Figure 28.8) is generated by 
a translation x, a horizontal reflection y, and a vertical reflection z. It is 
isomorphic to the direct product of the infinite dihedral group and Z2. 
The product of y and z is a 180° rotation. Therefore,

F7 5 {xnymzk | n [ Z, m 5 0 or m 5 1, k 5 0 or k 5 1}.

RR RR RR RRRR RR RR RR

Figure 28.8 Pattern VII

The preceding discussion is summarized in Figure 28.9. Figure 28.10 
provides an identification algorithm for the frieze patterns.

In describing the seven frieze groups, we have not explicitly said 
how multiplication is done algebraically. However, each group element 
corresponds to some isometry, so multiplication is the same as function 
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x =  translation

x =  glide-reflection

Z

Z

x =  translation
y =  vertical reflection

x =  translation
y =  rotation of 180°

x =  glide-reflection
y =  rotation of 180°

Generators

Group
isomorphism
classPattern

x =  translation
y =  horizontal reflection

x =  translation
y =  horizontal reflection
z =  vertical reflection

D

D

D

D

Z Z
2

Z
2

Figure 28.9 The seven frieze patterns and their groups of symmetries

composition. Thus, we can always use the geometry to determine the 
product of any particular string of elements.

For example, we know that every element of F7 can be written in the 
form xnymzk. So, just for fun, let’s determine the appropriate values for 
n, m, and k for the element g 5 x21yzxz. We may do this simply by 
looking at the effect that g has on pattern VII. For convenience, we will 
pick out a particular R in the pattern and trace the action of g one step 
at a time. To distinguish this R, we enclose it in a shaded box. Also, we 
draw the axis of the vertical reflection z as a dashed line segment. See 
Figure 28.11.

Now, comparing the starting position of the shaded R with its final 
position, we see that x21yzxz 5 x22y. Exercise 7 suggests how one may 
arrive at the same result through purely algebraic manipulation.

R R R RI

x21 x2xe

II R R
R R

R
x22

x21 x

x2e

III RR RRRR
x21y  x21 xy xy  e

IV R R

R R R

R
x21

x2y xy

e x

y

V RRRR
RR

  x21y xy x2e

y x

  x21y

VI R R
R R R

R
x21

y

e x

xy

VII RRRR RR
RR RRRR

  x21z x21

  x21yz  x21y

xz xz e

xyz xyyz y
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*Adaptation of figure from Dorothy K. Washburn and Donald W. Crowe. Symmetries 
of Culture: Theory and Practice of Plane Pattern Analysis. Copyright © 1988 by the 
University of Washington Press. Used by permission.
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The Crystallographic Groups
The seven frieze groups catalog all symmetry groups that leave a   
design invariant under all multiples of just one translation. However, 
there are 17 additional kinds of discrete plane symmetry groups that 
arise from infinitely repeating designs in a plane. These groups are the 
symmetry groups of plane patterns whose subgroups of translations are 
isomorphic to Z % Z. Consequently, the patterns are invariant under 
linear combinations of two linearly independent translations. These 
17 groups were first studied by 19th-century crystallographers and are 
often called the plane crystallographic groups. Another term occasion-
ally used for these groups is wallpaper groups.

Our approach to the crystallographic groups will be geometric. It 
is adapted from the excellent article by Schattschneider [5] and the 
monograph by Crowe [1]. Our goal is to enable the reader to determine 
which of the 17 plane symmetry groups corresponds to a given peri-
odic pattern. We begin with some examples.

RRRR RRRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RR RRR RRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

z

x

z

y

x�1

Figure 28.11 
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The simplest of the 17 crystallographic groups contains translations 
only. In Figure 28.12, we present an illustration of a representative 
pattern for this group (imagine the pattern repeated to fill the entire 
plane). The crystallographic notation for it is p1. (This notation is ex-
plained in [5].)

The symmetry group of the pattern in Figure 28.13 contains transla-
tions and glide-reflections. This group has no (nonzero) rotational or 
reflective symmetry. The crystallographic notation for it is pg.

Figure 28.14 has translational symmetry and threefold rotational 
symmetry (that is, the figure can be rotated 120° about certain points 
and be brought into coincidence with itself). The notation for this  
group is p3.

Representative patterns for all 17 plane crystallographic groups, 
 together with their notations, are given in Figures 28.15 and 28.16. 
 Figure 28.17 uses a triangle motif to illustrate the 17 classes of sym-
metry patterns.

 Figure 28.12 Fish3 by Makoto Nakamura, adapted by Kevin Lee. Design with 
symmetry group p1 (disregarding shading). The inserted arrows are translation 
vectors.
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 Figure 28.13 Fish5 by Makoto 
Nakamura, adapted by Kevin 
Lee. Design with symmetry 
group pg (disregarding shading). 
The solid arrow is the transla-
tion vector. The dashed arrows 
are the glide-reflection vectors.

 Figure 28.14  
Horses1 by Ma-
koto Nakamura, 
adapted by Kevin 
Lee. Design with 
symmetry group 
p3 (disregarding 
shading). The in-
serted arrows are 
translation vec-
tors.
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478 Special Topics

Figure 28.15 The plane symmetry groups

All designs in Figures 28.15 and 28.16 except pm, p3, and pg are 
found in [2]. The  designs for p3 and pg are based on elements of Chinese 
lattice designs found in [2]; the design for pm is based on a weaving pat-
tern from Hawaii, found in [3].  
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Figure 28.16 The plane symmetry groups
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Figure 28.17 The 17 plane periodic patterns formed using a triangle motif
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Identification of Plane  
Periodic Patterns

To decide which of the 17 classes any particular plane periodic pattern 
belongs to, we may use the flowchart presented in Figure 28.18. This is 
done by determining the rotational symmetry and whether or not the 
pattern has reflection symmetry or nontrivial glide-reflection symmetry. 
These three pieces of information will narrow the list of candidates to at 
most two. The final test, if necessary, is to determine the locations of the 
centers of rotation.

For example, consider the two patterns in Figure 28.19 generated in a 
hockey stick motif. Both patterns have a smallest positive rotational sym-
metry of 120°; both have reflectional and nontrivial glide-reflectional 
symmetry. Now, according to Figure 28.18, these patterns must be of 
type p3m1 or p31m. But notice that the pattern on the left has all its three-
fold centers of rotation on the reflection axis, whereas in the pattern on 
the right the points where the three blades meet are not on a reflection 
axis. Thus, the left pattern is p3m1, and the right pattern is p31m.

Table 28.1 (reproduced from [5, p. 443]) can also be used to deter-
mine the type of periodic pattern and contains two other features that 
are often useful. A lattice of points of a pattern is a set of images of any 
particular point acted on by the translation group of the pattern. A lat-
tice unit of a pattern whose translation subgroup is generated by u and 
v is a parallelogram formed by a point of the pattern and its image   
under u, v, and u 1 v. The possible lattices for periodic patterns in a  
plane, together with lattice units, are shown in Figure 28.20. A generat-
ing region (or fundamental region) of a periodic pattern is the smal lest 
portion of the lattice unit whose images under the full symmetry group of 
the pattern cover the plane. Examples of generating regions for the 
 patterns represented in Figures 28.12, 28.13, and 28.14 are given in 
Figure 28.21. In Figure 28.21, the portion of the lattice unit with vertical 
bars is the generating region. The only symmetry pattern in which the 
lattice unit and the generating region coincide is the p1 pattern illustrated 
in Figure 28.12. Table 28.1 tells what proportion of the lattice unit consti-
tutes the generating region of each plane periodic pattern.

Notice that Table 28.1 reveals that the only possible n-fold rotational 
symmetries occur when n 5 1, 2, 3, 4, and 6. This fact is commonly 
called the crystallographic restriction. The first proof of this was given 
by the Englishman W. Barlow over 100 years ago. The information in 
Table 28.1 can also be used in reverse to create patterns with a specific 
symmetry group. The patterns in Figure 28.19 were made in this way.
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p3m1 p31m

Figure 28.19 Patterns generated in a hockey stick motif

Parallelogram

Square Hexagonal
(Equilateral triangles)

Rectangular Rhombic

Figure 28.20 Possible lattices for plane periodic patterns

In sharp contrast to the situation for finite symmetry groups, the transi-
tion from two-dimensional crystallographic groups to three-dimensional 
crystallographic groups introduces a great many more possibilities, since 
the motif is repeated indefinitely by three independent translations. Indeed, 
there are 230 three-dimensional crystallographic groups (often called space 
groups). These were independently determined by Fedorov, Schönflies, and 
Barlow in the 1890s. David Hilbert, one of the leading mathematicians of 
the 20th century, focused attention on the crystallographic groups in his 
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484 Special Topics

 famous lecture in 1900 at the International Congress of Mathematicians in 
Paris. One of 23 problems he posed was whether or not the number of 
crystallographic groups in n dimensions is always  finite. This was an-
swered affirmatively by L. Bieberbach in 1910. We mention in passing that 
in four dimensions, there are 4783 symmetry groups for infinitely repeat-
ing patterns.

As one might expect, the crystallographic groups are fundamentally 
important in the study of crystals. In fact, a crystal is defined as a rigid 
body in which the component particles are arranged in a pattern that 
repeats in three directions (the repetition is caused by the chemical 

Table 28.1 Identification Chart for Plane Periodic Patternsa

  Highest  Nontrivial  Helpful
  Order of  Glide- Generating Distinguishing
Type Lattice Rotation Reflections Reflections Region Properties

p1 Parallelogram 1 No No 1 unit
p2 Parallelogram 2 No No 1

2 unit
pm Rectangular 1 Yes No 1

2 unit
pg Rectangular 1 No Yes 1

2 unit
cm Rhombic 1 Yes Yes 1

2 unit
pmm Rectangular 2 Yes No 1

4 unit
pmg Rectangular 2 Yes Yes 1

4 unit Parallel reflection

        axes
pgg Rectangular 2 No Yes 1

4 unit
cmm Rhombic 2 Yes Yes 1

4 unit Perpendicular

        reflection axes
p4 Square 4 No No 1

4 unit
p4m Square 4 Yes Yes 1

8 unit Fourfold centers

        on reflection

        axes
p4g Square 4 Yes Yes 1

8 unit Fourfold centers

        not on

        reflection axes
p3 Hexagonal 3 No No 1

3 unit
p3m1 Hexagonal 3 Yes Yes 1

6 unit All threefold

        centers on

        reflection axes
p31m Hexagonal 3 Yes Yes 1

6 unit Not all threefold

        centers on

        reflection axes
p6 Hexagonal 6 No No 1

6 unit
p6m Hexagonal 6 Yes Yes 1

12 unit

aA rotation through an angle of 360°/n is said to have order n. A glide-reflection is nontrivial if its glide-axis is not 
an axis of reflective symmetry for the pattern.
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bonding). A grain of salt and a grain of sugar are two examples of 
common crystals. In crystalline materials, the motif units are atoms, 
ions, ionic groups, clusters of ions, or molecules.

Perhaps it is fitting to conclude this chapter by recounting two  
episodes in the history of science in which an understanding of symme-
try groups was crucial to a great discovery. In 1912, Max von Laue, a 
young German physicist, hypothesized that a narrow beam of x-rays di-
rected onto a crystal with a photographic film behind it would be 

Figure 28.21 A lattice unit and generating region for the patterns in 
Figures 28.12, 28.13, and 28.14. Generating regions are shaded with bars.   
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486 Special Topics

 deflected (the technical term is “diffracted”) by the unit cell (made up of 
atoms or ions) and would show up on the film as spots. (See Figure 1.3.) 
Shortly thereafter, two British scientists, Sir William Henry Bragg and 
his 22-year-old son William Lawrence Bragg, who was a student, noted 
that von Laue’s diffraction spots, together with the known information 
about crystallographic space groups, could be used to calculate the shape 
of the internal array of atoms. This discovery marked the birth of mod-
ern mineralogy. From the first crystal structures deduced by the Braggs 
to the present, x-ray diffraction has been the means by which the internal 
structures of crystals are determined. Von Laue was awarded the Nobel 
Prize in physics in 1914, and the Braggs were jointly awarded the  
Nobel Prize in physics in 1915.

Our second episode took place in the early 1950s, when a handful of 
scientists were attempting to learn the structure of the DNA molecule—
the basic genetic material. One of these was a graduate student named 
Francis Crick; another was an x-ray crystallographer, Rosalind Franklin. 
On one occasion, Crick was shown one of Franklin’s research reports 
and an x-ray diffraction photograph of DNA. At this point, we let Horace 
Judson [4, pp. 165–166], our source, continue the story.

Crick saw in Franklin’s words and numbers something just as important,  
 indeed eventually just as visualizable. There was drama, too: Crick’s  
insight began with an extraordinary coincidence. Crystallographers distin-
guish 230 different space groups, of which the face-centered monoclinic 
cell with its curious properties of symmetry is only one—though in biologi-
cal substances a fairly common one. The principal experimental subject of 
Crick’s dissertation, however, was the x-ray diffraction of the crystals of a 
protein that was of exactly the same space group as DNA. So Crick saw at 
once the symmetry that neither Franklin nor Wilkins had comprehended, 
that Perutz, for that matter, hadn’t noticed, that had escaped the theoretical 
crystallographer in Wilkins’ lab, Alexander Stokes—namely, that the 
 molecule of DNA, rotated a half turn, came back to congruence with itself. 
The structure was dyadic, one half matching the other half in reverse.

This was a crucial fact. Shortly thereafter, James Watson and Crick 
built an accurate model of DNA. In 1962, Watson, Crick, and Maurice 
Wilkins received the Nobel Prize in medicine and physiology for their 
discovery. The opinion has been expressed that, had Franklin correctly 
recognized the symmetry of the DNA molecule, she might have been 
the one to unravel the mystery and receive the Nobel Prize [4, p. 172].
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Exercises

You can see a lot just by looking.
yogi berra

  1. Show that the frieze group F6 is isomorphic to Z % Z2.
  2. How many nonisomorphic frieze groups are there?
  3. In the frieze group F7, write x2yzxz in the form xnymzk.
  4. In the frieze group F7, write x23zxyz in the form xnymzk.
  5. In the frieze group F7, show that yz 5 zy and xy 5 yx.
  6. In the frieze group F7, show that zxz 5 x21.
  7. Use the results of Exercises 5 and 6 to do Exercises 3 and 4  

through symbol manipulation only (that is, without referring to the 
pattern). (This exercise is referred to in this chapter.)

  8. Prove that in F7 the cyclic subgroup generated by x is a normal 
subgroup.

  9. Quote a previous result that tells why the subgroups kx, yl and 
kx, zl must be normal in F7.

 10. Look up the word frieze in an ordinary dictionary. Explain why the 
frieze groups are appropriately named.

 11. Determine which of the seven frieze groups is the symmetry group 
of each of the following patterns.

  a. 

  b. 

  c. 

  d. 
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488 Special Topics

  e. 

  f. 

 12. Determine the frieze group corresponding to each of the following  
patterns.

  a. y 5 sin x
  b. y 5 |sin x|
  c. |y| 5 sin x
  d. y 5 tan x
  e. y 5 csc x

 13. Determine the symmetry group of the tessellation of the plane ex-
emplified by the brickwork shown.

 

 14. Determine the plane symmetry group for each of the patterns in 
Figure 28.17.

 15. Determine which of the 17 crystallographic groups is the symme-
try group of each of the following patterns.

  a.       b. 

  c.       d. 
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28 | Frieze Groups and Crystallographic Groups 489

 16. In the following figure, there is a point labeled 1. Let a be the 
translation of the plane that carries the point labeled 1 to the point 
labeled a, and let b be the translation of the plane that carries the 
point labeled 1 to the point labeled b. The image of 1 under the 
composition of a and b is labeled ab. In the corresponding fash-
ion, label the remaining points in the figure in the form aib j.

  

β αβ

α1

 17. The patterns made by automobile tire treads in the snow are frieze 
patterns. An extensive study of automobile tires revealed that only 
five of the seven frieze patterns occur. Speculate on which two pat-
terns do not occur and give a possible reason why they do not.

 18. Locate a nontrivial glide-reflection axis of symmetry in the cm pat-
tern in Figure 28.16.

 19. Determine which of the frieze groups is the symmetry group of 
each of the following patterns.

  a. ? ? ? D D D D ? ? ?
  b. ? ? ? V 

V
 V 

V
 ? ? ?

  c. ? ? ? L L L L ? ? ?
  d. ? ? ? V V V V ? ? ?
  e. ? ? ? N N N N ? ? ?
  f. ? ? ? H H H H ? ? ?
  g. ? ? ? L

L

 L

L

 ? ? ?
 20. Locate a nontrivial glide-reflection axis of symmetry in the pattern 

third from the left in the bottom row in Figure 28.17.
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Suggested Readings

S. Garfunkel et al., For All Practical Purposes, 9th ed., New York: W. H. 
Freeman, 2012.

This book has a well-written, richly illustrated chapter on symmetry in 
art and nature.

W. G. Jackson, “Symmetry in Automobile Tires and the Left-Right Prob-
lem,” Journal of Chemical Education 69 (1992): 624–626.

This article uses automobile tires as a tool for introducing and explain-
ing the symmetry terms and concepts important in chemistry.

C. MacGillivray, Fantasy and Symmetry—The Periodic Drawings of  
M. C. Escher, New York: Harry N. Abrams, 1976. 

This is a collection of Escher’s periodic drawings together with a math-
ematical discussion of each one.

D. Schattschneider, Visions of Symmetry, New York: Harry Abrams, 2004.

A loving, lavish, encyclopedic book on the drawings of M. C. Escher.

H. von Baeyer, “Impossible Crystals,” Discover 11 (2) (1990): 69–78.

This article tells how the discovery of nonperiodic tilings of the plane led 
to the discovery of quasicrystals. The x-ray diffraction patterns of qua-
sicrystals exhibit fivefold symmetry—something that had been thought to 
be impossible.
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Suggested Websites

http://www.mcescher.com/

This is the official website for the artist M. C. Escher. It features many of 
his prints and most of his 136 symmetry drawings.

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous ac-
tivities and links to many other sites on related topics. It is a wonderful 
website for K–12 teachers and students.
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M. C. Escher

M. C. Escher was born on June 17, 1898, in 
the Netherlands. His artistic work prior to 
1937 was dominated by the representation 
of visible reality, such as landscapes and 
buildings. Gradually, he became less and 
less interested in the visible world and be-
came increasingly absorbed in an inventive 
approach to space. He studied the abstract 
space-filling patterns used in the Moorish 
mosaics in the Alhambra in Spain. He also 
studied the mathematician George Pólya’s 
paper on the 17 plane crystallographic 
groups. Instead of the geometric motifs used 
by the Moors and Pólya, Escher preferred to 
use animals, plants, or people in his space-
filling prints.

Escher was fond of incorporating various 
mathematical ideas into his works. Among 
these are infinity, Möbius bands, stellations, 

I never got a pass mark in math. The funny 
thing is I seem to latch on to mathematical 
theories without realizing what is happening.

m. c. escher

deformations, reflections, Platonic solids, 
spirals, and the hyperbolic plane.

Although Escher originals are now quite 
expensive, it was not until 1951 that he de-
rived a significant portion of his income 
from his prints. Today, Escher is widely 
known and appreciated as a graphic artist. 
His prints have been used to illustrate ideas 
in hundreds of scientific works. Despite this 
popularity among scientists, however, 
 Escher has never been held in high esteem 
in traditional art circles. Escher died on 
March 27, 1972, in the Netherlands.

To find more information about Escher 
and his art, visit the official website of M. C. 
Escher:

http://www.mcescher.com/
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George Pólya

Thank you, Professor Pólya, for all your 
beautiful contributions to mathematics, to 
science, to education, and to humanity.

A toast from frank harary on the  
occasion of Pólya’s 90th birthday 

George Pólya was born in Budapest, 
Hungary, on December 13, 1887. He received 
a teaching certificate from the University of 
Budapest in languages before turning to phi-
losophy, mathematics, and physics.

In 1912, he was awarded a Ph.D. in math-
ematics. Horrified by Hitler and World War 
II, Pólya came to the United States in 1940. 
After two years at Brown University, he went 
to Stanford University, where he remained 
until his death in 1985 at the age of 97.

In 1924, Pólya published a paper in a crys-
tallography journal in which he classified the 
plane symmetry groups and provided a full-
page illustration of the corresponding 17 peri-
odic patterns. B. G. Escher, a geologist, sent a 
copy of the paper to his artist brother, M. C. 
Escher, who used Pólya’s black-and-white 
geometric patterns as a guide for making his 
own interlocking colored patterns featuring 
birds, reptiles, and fish.

Pólya contributed to many branches of 
mathematics, and his collected papers fill four 
large volumes. Pólya is also famous for his 
books on problem solving and for his teach-
ing. One of his books has sold more than 
1,000,000 copies. The Society for Industrial 
and Applied Mathematics, the London Mathe-
matical Society, and the Mathematical Asso-
ciation of America have prizes named after 
Pólya.

Pólya taught courses and lectured around 
the country into his 90s. He never learned to 
drive a car and took his first plane trip at 
age 75. He was married for 67 years and had 
no children.

For more information about Pólya, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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John H. Conway

He’s definitely world class, yet he has this 
kind of childlike enthusiasm.

ronald graham

John H. Conway ranks among the most 
original and versatile contemporary mathe-
maticians. Conway was born in Liverpool, 
England, on December 26, 1937, and grew 
up in a rough neighborhood. As a youngster, 
he was often beaten up by older boys and 
did not do well in high school. Nevertheless, 
his mathematical ability earned him a schol-
arship to Cambridge University, where he 
excelled.

A pattern that uses repeated shapes to 
cover a flat surface without gaps or overlaps 
is called a tiling. In 1975, Oxford physicist 
Roger Penrose invented an important new 
way of tiling the plane with two shapes. 
Unlike patterns whose symmetry group is 
one of the 17 plane crystallographic groups, 
Penrose patterns can be neither translated nor 
rotated to coincide with themselves. Many of 
the remarkable properties of the Penrose pat-
terns were discovered by  Conway. In 1993, 

Conway discovered a new prism that can be 
used to fill three- dimensional space without 
gaps or overlaps.

Conway has made many significant con-
tributions to number theory, group theory, 
game theory, knot theory, and combinator-
ics. Among his most important discoveries 
are three simple groups, which are now 
named after him. (Simple groups are the 
basic building blocks of all groups.) Conway 
is fascinated by games and puzzles. He in-
vented the game Life and the game Sprouts. 
Conway has received numerous prestigious 
honors. In 1987 he joined the faculty at 
Princeton University, where his title is John 
von Neumann Distinguished Professor of 
Mathematics.

For more information about Conway, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Symmetry  
and Counting29

Motivation
Permutation groups naturally arise in many situations involving sym-
metric designs or arrangements. Consider, for example, the task of col-
oring the six vertices of a regular hexagon so that three are black

and three are white. Figure 29.1 shows the a6
3
b 5 20 possibilities.

However, if these designs appeared on one side of hexagonal ceramic 
tiles, it would be nonsensical to count the designs shown in Figure 
29.1(a) as different, since all six designs shown there can be obtained 
from one of them by rotating. (A manufacturer would make only one of 
the six.) In this case, we say that the designs in Figure 29.1(a) are 
equivalent under the group of rotations of the hexagon. Similarly, the 
designs in Figure 29.1(b) are equivalent under the group of rotations, as 
are the designs in Figure 29.1(c) and those in Figure 29.1(d). And, since 
no design from Figure 29.1(a)–(d) can be obtained from a design in a 
different part by rotation, we see that the designs within each part of the 
figure are equivalent to each other but nonequivalent to any design in 
another part of the figure. However, the designs in Figure 29.1(b) and  
(c) are equivalent under the dihedral group D6, since the designs in 
Figure 29.1(b) can be reflected to yield the designs in Figure 29.1(c). 
For example, for purposes of arranging three black beads and three 
white beads to form a necklace, the designs shown in Figure 29.1(b) and 
(c) would be considered equivalent.

In general, we say that two designs (arrangements of beads) A and B 
are equivalent under a group G of permutations of the arrangements if 
there is an element f in G such that f(A) 5 B. That is, two designs are 
equivalent under G if they are in the same orbit of G. It follows, then, 

Let us pause to slake our thirst one last time at symmetry’s bubbling spring.
timothy ferris, Coming of Age in the Milky Way
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that the number of nonequivalent designs under G is simply the number 
of orbits of designs under G. (The set being permuted is the set of all 
possible designs or arrangements.)

Notice that the designs in Figure 29.1 divide into four orbits under 
the group of rotations but only three orbits under the group D6, since 
the designs in Figure 29.1(b) and (c) form a single orbit under D6. Thus, 
we could obtain all 20 tile designs from just four tiles, but we could 
 obtain all 20 necklaces from just three of them.

Burnside’s Theorem
Although the problems we have just posed are simple enough to 
solve by observation, more complicated ones require a more sophis-
ticated approach. Such an approach was provided by Georg Frobenius 
in 1887. Frobenius’s theorem did not become widely known  until it 
appeared in the classic book on group theory by William Burnside 
in 1911. By an accident of history, Frobenius’s theorem has come to 
be known as Burnside’s Theorem. Before stating this theorem, we 
recall some notation introduced in Chapter 7 and introduce new 

(b)

(c)

(d)

Figure 29.1   

(a)
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29 | Symmetry and Counting 497

 notation. If G is a group of permutations on a set S and i [ S, then 
s tab G( i )  5  {f  [  G  |  f ( i )  5  i} and orbG( i )  5  {f ( i )  |  
f [ G}. For any set X, we use |X| to denote the number of elements in X.

Definition Elements Fixed by F
For any group G of permutations on a set S and any f in G, we let 
fix(f) 5 {i [ S | f(i) 5 i}. This set is called the elements fixed by f (or 
more simply, “fix of f”).

 Theorem 29.1 Burnside's Theorem

If G is a finite group of permutations on a set S, then the number  

of orbits of elements of S under G is

10G 0 af[G
0 fix1f2 0 .

PROOF Let n denote the number of pairs (f, i), with f [ G, i [ S, 
and f(i) 5 i. We begin by counting these pairs in two ways. First, for 
each particular f in G, the number of such pairs is exactly |fix(f)|. So,

 n � a
f[G
0 fix1f2 0 . (1)

Second, for each particular i in S, observe that |stabG(i)| is exactly the 
number of pairs (f, i) for which f(i) 5 i. So,

 
n � a

i[S
0stabG1i2 0 . (2)

It follows from Exercise 43 in Chapter 7 that if s and t are in the same 
orbit of G, then orbG(s) 5 orbG(t), and thus by the Orbit-Stabilizer The-
orem (Theorem 7.3) we have |stabG(s)| 5 |G|/|orbG(s)| 5 |G|/|orbG(t)| 5 
|stabG(t)|. So, if we choose s [ S and sum over orbG(s), we have

 a
t[orbG1s2 0stabG1t2 0 � 0orbG1s2 0 0stabG1s2 0 � 0G 0 . (3)

Finally, by summing over all the elements of G, one orbit at a time, it 
follows from Equations (1), (2), and (3) that

a
f[G
0  fix1f2 0 � a

i[S
0stab1i2 0 � 0G 0 . 1number of orbits2,

and the result follows. 
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Applications
To illustrate how to apply Burnside’s Theorem, let us return to the  ceramic 
tile and necklace problems. In the case of counting hexagonal tiles with 
three black vertices and three white vertices, the objects  being permuted 
are the 20 possible designs, whereas the group of permutations is the 
group of six rotational symmetries of a hexagon. Obviously, the identity 
fixes all 20 designs. We see from Figure 29.1 that rotations of 60°, 180°, 
or 300° fix none of the 20 designs. Finally, Figure 29.2 shows fix(f) for 
the rotations of 120° and 240°. These data are collected in Table 29.1.

Figure 29.2 Tile designs fixed by 120°  
rotation and 240° rotation

 

Figure 29.3 Bead arrangements fixed  
by the reflection across a diagonal

Table 29.1

 Number of Designs
Element Fixed by Element

Identity 20
Rotation of 60° 0
Rotation of 120° 2
Rotation of 180° 0
Rotation of 240° 2
Rotation of 300° 0

So, applying Burnside’s Theorem, we obtain the number of orbits 
under the group of rotations as

1

6
 (20 1 0 1 2 1 0 1 2 1 0) 5 4.

Now let’s use Burnside’s Theorem to count the number of necklace 
arrangements consisting of three black beads and three white beads. (For 
the purposes of analysis, we may arrange the beads in the shape of a reg-
ular hexagon.) For this problem, two arrangements are equivalent if they 
are in the same orbit under D6. Figure 29.3 shows the arrangements fixed 
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by a reflection across a diagonal. Table 29.2 summarizes the information 
needed to apply Burnside’s Theorem.

So, there are

 

1

12
 (1 ? 20 1 1 ? 0 1 2 ? 2 1 2 ? 0 1 3 ? 4 1 3 ? 0) 5 3

nonequivalent ways to string three black beads and three white beads 
on a necklace.

Now that we have gotten our feet wet on a few easy problems, let’s 
try a more difficult one. Suppose that we have the colors red (R), white 
(W), and blue (B) that can be used to color the edges of a regular tetra-
hedron (see Figure 5.1). First, observe that there are 36 5 729 colorings 
without regard to equivalence. How shall we decide when two colorings 
of the tetrahedron are nonequivalent? Certainly, if we were to pick up a 
tetrahedron colored in a certain manner, rotate it, and put it back down, 
we would think of the tetrahedron as being positioned differently rather 
than as being colored differently ( just as if we picked up a die labeled in 
the usual way and rolled it, we would not say that the die is now differ-
ently labeled). So, our permutation group for this problem is just the 
group of 12 rotations of the tetrahedron shown in Figure 5.1 and is iso-
morphic to A4. (The group consists of the identity; eight elements of 
order 3, each of which fixes one vertex; and three elements of order 2, 
each of which fixes no vertex.) Every rotation permutes the 729 color-
ings, and to apply Burnside’s Theorem we must determine the size of 
fix(f) for each of the 12 rotations of the group.

Clearly, the identity fixes all 729 colorings. Next, consider the ele-
ment (234) of order 3, shown in the bottom row, second from the left in 
Figure 5.1. Suppose that a specific coloring is fixed by this element 

Table 29.2

  Number of Number of
  Elements Arrangements
  of This Fixed by Type
Type of Element Type of Element

Identity 1 20
Rotation of order 2 (180°) 1 0
Rotation of order 3 (120° or 240°) 2 2
Rotation of order 6 (60° or 300°) 2 0
Reflection across diagonal 3 4
Reflection across side bisector 3 0
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(that is, the tetrahedron appears to be colored the same before and after 
this rotation). Since (234) carries edge 12 to edge 13, edge 13 to edge 
14, and edge 14 to edge 12, these three edges must agree in color (edge 
ij is the edge joining vertex i and vertex j). The same argument shows 
that the three edges 23, 34, and 42 also must agree in color. So,  
|fix(234)| 5 32, since there are three choices for each of these two sets 
of three edges. The nine columns in Table 29.3 show the possible color-
ings of the two sets of three edges. The analogous analysis applies to 
the other seven elements of order 3.

Now consider the rotation (12)(34) of order 2. (See the second tetra-
hedron in the top row in Figure 5.1.) Since edges 12 and 34 are fixed, 
they may be colored in any way and will appear the same after the rota-
tion (12)(34). This yields 3 ? 3 choices for those two edges. Since edge 
13 is carried to edge 24, these two edges must agree in color. Similarly, 
edges 23 and 14 must agree. So, we have three choices for the pair of 
edges 13 and 24 and three choices for the pair of edges 23 and 14. This 
means that we have 3 ? 3 ? 3 ? 3 ways to color the tetrahedron that will 
be equivalent under (12)(34). (Table 29.4 gives the complete list of 81 
colorings.) So, |fix((12)(34))| 5 34, and the other two elements of order 
2 yield the same results.

Now that we have analyzed the three types of group elements, we 
can apply Burnside’s Theorem. In particular, the number of distinct 

Table 29.4 81 Colorings Fixed by (12)(34) (X and Y can be any of R, W, and B)

Edge Colorings

 12 X X X X X X X X X
 34 Y Y Y Y Y Y Y Y Y
 13 R R R W W W B B B
 24 R R R W W W B B B
 23 R W B W R B B R W
 14 R W B W R B B R W

Table 29.3 Nine Colorings Fixed by (234)

Edge Colorings

 12 R R R W W W B B B
 13 R R R W W W B B B
 14 R R R W W W B B B
 23 R W B W R B B R W
 34 R W B W R B B R W
 24 R W B W R B B R W
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colorings of the edges of a tetrahedron with three colors is

1

12
 (1 ? 36 1 8 ? 32 1 3 ? 34) 5 87.

Surely it would be a difficult task to solve this problem without Burn-
side’s Theorem.

Just as surely, you are wondering who besides mathematicians are in-
terested in counting problems such as the ones we have discussed. Well, 
chemists are. Indeed, one set of benzene derivatives can be viewed as 
six carbon atoms arranged in a hexagon with one of the three radicals 
NH2, COOH, or OH attached at each carbon atom. See Figure 29.4 for 
one example.

OH

OH

COOH

COOHCOOH

COOH

C

C

C

C

C

C

Figure 29.4 A benzene derivative

So Burnside’s Theorem enables a chemist to determine the number of 
benzene molecules (see Exercise 4). Another kind of molecule consid-
ered by chemists is visualized as a regular tetrahedron with a carbon 
atom at the center and any of the four radicals HOCH2 (hydroxymethyl), 
C2H5 (ethyl), Cl (chlorine), or H (hydrogen) at the four vertices. Again, 
the number of such molecules can be easily counted using Burnside’s 
Theorem.

Group Action
Our informal approach to counting the number of objects that are con-
sidered nonequivalent can be made formal as follows. If G is a group 
and S is a set of objects, we say that G acts on S if there is a homomor-
phism g from G to sym(S), the group of all permutations on S. (The 
 homomorphism is sometimes called the group action.) For conve-
nience, we denote the image of g under g as gg. Then two objects x and 
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y in S are viewed as equivalent under the action of G if and only if 
gg(x) 5 y for some g in G. Notice that when g is one-to-one, the ele-
ments of G may be regarded as permutations on S. On the other hand, 
when g is not one-to-one, the elements of G may still be regarded as 
permutations on S, but there are distinct elements g and h in G such 
that gg and gh induce the same permutation on S [that is, gg(x) 5 gh(x) 
for all x in S]. Thus, a group acting on a set is a natural generalization 
of the permutation group concept.

As an example of group action, let S be the two diagonals of a square 
and let G be D4, the group of symmetries of the square. Then gR0

, gR180
, 

gD, gD9 are the identity; gR90
, gR270

, gH, gV interchange the two diagonals; 
and the mapping g S gg from D4 to sym(S) is a group homomorphism. 
As a second example, note that GL(n, F), the group of invertible n 3 n 
matrices with entries from a field F, acts on the set S of n 3 1 column 
vectors with entries from F by multiplying the vectors on the left by the 
matrices. In this case, the mapping g S gg from GL(n, F) to sym(S) is a 
one-to-one homomorphism.

We have used group actions several times in this text without calling 
them that. The proof of Cayley’s Theorem ( Theorem 6.1) has a group G 
acting on the elements of G; the proofs of Sylow’s Second Theorem and 
Third Theorem ( Theorems 24.4 and 24.5) have a group acting on the set 
of conjugates of a Sylow p-subgroup; and the proof of the Generalized 
Cayley Theorem ( Theorem 25.3) has G acting on the left cosets of a 
subgroup H.

Exercises

The greater the difficulty, the more glory in surmounting it.
epicurus

  1. Determine the number of ways in which the four corners of a 
square can be colored with two colors. (It is permissible to use a 
single color on all four corners.)

  2. Determine the number of different necklaces that can be made us-
ing 13 white beads and 3 black beads.

  3. Determine the number of ways in which the vertices of an equilat-
eral triangle can be colored with five colors so that at least two col-
ors are used.

  4. A benzene molecule can be modeled as six carbon atoms arranged 
in a regular hexagon in a plane. At each carbon atom, one of three 
radicals NH2, COOH, or OH can be attached. How many such 
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29 | Symmetry and Counting 503

 compounds are possible? (Make no distinction between single and 
double bonds between the atoms.)

  5. Suppose that in Exercise 4 we permit only NH2 and COOH for the 
radicals. How many compounds are possible?

  6. Determine the number of ways in which the faces of a regular 
 dodecahedron (regular 12-sided solid) can be colored with three 
colors.

  7. Determine the number of ways in which the edges of a square can 
be colored with six colors so that no color is used on more than 
one edge.

  8. Determine the number of ways in which the edges of a square can 
be colored with six colors with no restriction placed on the number 
of times a color can be used.

  9. Determine the number of different 11-bead necklaces that can be 
made using two colors.

 10. Determine the number of ways in which the faces of a cube can be 
colored with three colors.

 11. Suppose a cake is cut into six identical pieces. How many ways can 
we color the cake with n colors assuming that each piece receives 
one color?

 12. How many ways can the five points of a five-pointed crown be 
painted if three colors of paint are available?

 13. Let G be a finite group and let sym(G) be the group of all permuta-
tions on G. For each g in G, let fg denote the element of sym(G) de-
fined by fg(x) 5 gxg21 for all x in G. Show that G acts on itself  under 
the action g S fg. Give an example in which the mapping g S fg is 
not one-to-one.

 14. Let G be a finite group, let H be a subgroup of G, and let S be the 
set of left cosets of H in G. For each g in G, let gg denote the ele-
ment of sym(S) defined by gg(xH) 5 gxH. Show that G acts on S 
under the action g S gg.

 15. For a fixed square, let L1 be the perpendicular bisector of the top 
and bottom of the square and let L2 be the perpendicular bisector of 
the left and right sides. Show that D4 acts on {L1, L2} and deter-
mine the kernel of the mapping g S gg.
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Suggested Readings

Norman Biggs, Discrete Mathematics, Oxford: Clarendon Press, 1989.
Chapter 20 of this book presents a more detailed treatment of the 
 subject of symmetry and counting.

Doris Schattschneider, “Escher’s Combinatorial Patterns,” Electronic 
Journal of Combinatorics 4(2) (1997): R17.

This article discusses a combinatorial problem concerning generating 
periodic patterns that the artist M. C. Escher posed and solved in an 
 algorithmic way. The problem can also be solved by using Burnside’s 
Theorem. The article can be downloaded free from the website http://
www.combinatorics.org/
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William Burnside

William Burnside was born on July 2, 
1852, in London. After graduating from 
Cambridge University in 1875, Burnside 
was appointed lecturer at Cambridge,  
where he stayed until 1885. He then ac-
cepted a position at the Royal Naval Col-
lege at Greenwich and spent the rest of his 
career in that post.

Burnside wrote more than 150 research 
papers in many fields. He is best remem-
bered, however, for his pioneering work in 
group theory and his classic book Theory of 
Groups, which first appeared in 1897. Be-
cause of Burnside’s emphasis on the abstract 
approach, many consider him to be the first 
pure group theorist.

One mark of greatness in a mathemati-
cian is the ability to pose important and 
challenging problems—problems that open 
up new areas of research for future genera-
tions. Here, Burnside excelled. It was he 

who first conjectured that a group G of odd 
order has a series of normal subgroups,  
G 5 G0 $ G1 $ G2 $ ? ? ? $ Gn 5 {e}, 
such that Gi/Gi11 is Abelian. This extremely 
important conjecture was finally proved 
more than 50 years later by Feit and Thomp-
son in a 255-page paper (see Chapter 25 for 
more on this). In 1994, Efim Zelmanov 
 received the Fields Medal for his work on a 
variation of one of Burnside’s conjectures.

Burnside was elected a Fellow of the 
Royal Society and awarded two Royal  
Medals. He served as president of the Coun-
cil of the London Mathemati cal Society and 
received its De Morgan Medal. Burnside 
died on August 21, 1927.

To find more information about Burn-
side, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

In one of the most abstract domains of 
thought, he [Burnside] has systematized 
and amplified its range so that , there, his 
work stands as a landmark in the widening 
expanse of knowledge. Whatever be the 
estimate of Burnside made by posterity,  
contemporaries salute him as a Master 
among the mathematicians of his own 
 generation.
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Cayley Digraphs  
of Groups

The important thing in science is not so much to obtain new facts as to 
discover new ways of thinking about them.

sir william lawrence bragg, Beyond Reductionism

30

Motivation
In this chapter, we introduce a graphical representation of a group given 
by a set of generators and relations. The idea was originated by Cayley 
in 1878. Although this topic is not usually covered in an abstract algebra 
book, we include it for five reasons: It provides a method of visualizing 
a group; it connects two important branches of modern mathematics—
groups and graphs; it has many applications to computer science; it 
gives a review of some of our old friends—cyclic groups, dihedral 
groups, direct products, and generators and relations; and, most impor-
tantly, it is fun!

Intuitively, a directed graph (or digraph) is a finite set of points, 
called vertices, and a set of arrows, called arcs, connecting some of the 
vertices. Although there is a rich and important general theory of di-
rected graphs with many applications, we are interested only in those 
that arise from groups.

The Cayley Digraph of a Group
Definition Cayley Digraph of a Group
Let G be a finite group and let S be a set of generators for G. We define 
a digraph Cay(S:G ), called the Cayley digraph of G with generating set 

S, as follows.

 1. Each element of G is a vertex of Cay(S:G).
 2. For x and y in G, there is an arc from x to y if and only if xs 5 y for 

some s [ S.

To tell from the digraph which particular generator connects two verti-
ces, Cayley proposed that each generator be assigned a color, and that the 
arrow joining x to xs be colored with the color assigned to s. He called the 
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resulting figure the color graph of the group. This terminology is still used 
occasionally. Rather than use colors to distinguish the different generators, 
we will use solid arrows, dashed arrows, and dotted arrows. In general, if 
there is an arc from x to y, there need not be an arc from y to x. An arrow 
emanating from x and pointing to y indicates that there is an arc from x to y.

Following are numerous examples of Cayley digraphs. Note that 
there are several ways to draw the digraph of a group given by a partic-
ular generating set. However, it is not the appearance of the digraph that 
is relevant but the manner in which the vertices are connected. These 
connections are uniquely determined by the generating set. Thus, dis-
tances between vertices and angles formed by the arcs have no signifi-
cance. (In the digraphs below, a headless arrow joining two vertices x 
and y indicates that there is an arc from x to y and an arc from y to x. 
This occurs when the generating set contains both an element and its 
inverse. For example, a generator of order 2 is its own inverse.)

 EXAMPLE 1 Z6 5 k1l.

  

 EXAMPLE 2 Z3 % Z2 5 k(1, 0), (0, 1)l.

  

0055

2233

44 11

Cay({1}:Z6)

0

1

2

3

4

5

1

Cay({1}:Z6 )

(0, 1)(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

Cay({(1, 0), (0, 1)}:Z
3 

⊕ Z
2
)

(0, 0)

(0, 1)

(2, 0) (1, 0)

(1, 0)

(1, 1)(2, 1)

Cay({(1, 0), (0, 1)}:Z
3 

⊕ Z
2
)
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508 Special Topics

 EXAMPLE 3 D4 5 kR90, Hl.

  

 EXAMPLE 4 S3 5 k(12), (123)l.

  
 

 EXAMPLE 5 S3 5 k(12), (13)l.

  

R90

H

R
90

H

R
180

H

R
270

H R
270

R
180

R
90

R
0

Cay({R
90

, H}:D
4
)

(12) (1)

(13)

(23) (132)(132)

(123)

(12)

Cay({(12), (123)}:S3)

(132)

(123)

(23)

(1) (123)

(13)(12)

Cay({(12), (123)}:S3)

(123)(13) (23)

(13)(12)

(12) (132)(1)

Cay({(12), (13)}:S
3
)

R
90

H

R
180

HR
270

H

R
180

R
270

R
90

R0R
0

H

H

Cay({R
90

, H}:D
4
)
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 EXAMPLE 6 A4 5 k(12)(34), (123)l.

  

 EXAMPLE 7 Q4 5 ka, b | a4 5 e, a2 5 b2, b21ab 5 a3l.

  

 EXAMPLE 8 D` 5 ka, b | a2 5 b2 5 el.

 

bab ba b e a

a b

ab aba abab

Cay({a, b}:D`)  

(123)(12)(34)

(123)

(1) (132)

(234)

(243)

(143)

(124) (14)(23)

(13)(24)

(142)

(12)(34)

(134)

Cay({(12)(34), (123)}:A
4
)

ba

b

a3

a2

a

e

ab

a2b

a3b

Cay({a, b}:Q4)
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510 Special Topics

The Cayley digraph provides a quick and easy way to determine the 
value of any product of the generators and their inverses. Consider, for 
example, the product ab3ab22 from the group given in Example 7. To re-
duce this to one of the eight elements used to label the vertices, we need 
only begin at the vertex e and follow the arcs from each vertex to the next 
as specified in the given product. Of course, b21 means traverse the b arc 
in reverse. (Observations such as b23 5 b also help.) Tracing the product 
through, we obtain b. Similarly, one can verify or discover other relations 
among the generators.

Hamiltonian Circuits and Paths
Now that we have these directed graphs, what is it that we care to know 
about them? One question about directed graphs that has been the object 
of much research was popularized by the Irish mathematician 
Sir William Hamilton in 1859, when he invented a puzzle called 
“Around the World.” His idea was to label the 20 vertices of a regular 
dodecahedron with the names of famous cities. One solves this puzzle 
by starting at any particular city (vertex) and traveling “around the 
world,” moving along the arcs in such a way that each other city is 
 visited exactly once before returning to the original starting point. One 
solution to this puzzle is given in Figure 30.1, where the vertices are 
visited in the order indicated.

Obviously, this idea can be applied to any digraph; that is, one starts 
at some vertex and attempts to traverse the digraph by moving along 

9

8

1

2

3

11

10

12
13

1718

19

20

1615

144

5

6

7

Figure 30.1 Around the World.
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30 | Cayley Digraphs of Groups 511

arcs in such a way that each vertex is visited exactly once before 
 returning to the starting vertex. (To go from x to y, there must be an arc 
from x to y.) Such a sequence of arcs is called a Hamiltonian circuit in 
the digraph. A sequence of arcs that passes through each vertex exactly 
once without returning to the starting point is called a Hamiltonian 
path. In the rest of this chapter, we concern ourselves with the existence 
of Hamiltonian circuits and paths in Cayley digraphs.

Figures 30.2 and 30.3 show a Hamiltonian path for the digraph given 
in Example 2 and a Hamiltonian circuit for the digraph given in 
Example 7, respectively.

Is there a Hamiltonian circuit in

Cay({(1, 0), (0, 1)}:Z3 % Z2)?

More generally, let us investigate the existence of Hamiltonian circuits in

Cay({(1, 0), (0, 1)}:Zm % Zn),

where m and n are relatively prime and both are greater than 1. Visualize 
the Cayley digraph as a rectangular grid coordinatized with Zm % Zn, as

(0, 0) (0, 1)

(1, 1)(1, 0)

(2, 0) (2, 1)

 Figure 30.2 Hamiltonian path in Cay({(1, 0), (0, 1)}:Z3 % Z2)  
from (0, 0) to (2, 1).

b

ab

a2b

a3b

a2

a3

a

e

Figure 30.3 Hamiltonian circuit in Cay({a, b}:Q4).
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512 Special Topics

in Figure 30.4. Suppose there is a Hamiltonian circuit in the  digraph and 
(a, b) is some vertex from which the circuit exits horizontally. (Clearly, 
such a vertex exists.) Then the circuit must exit (a 2 1, b 1 1) horizon-
tally also, for otherwise the circuit passes through (a, b 1 1) twice—see 
Figure 30.5. Repeating this argument again and again, we see that the 
circuit exits horizontally from each of the vertices (a, b), (a 2 1, b 1 1), 
(a 2 2, b 1 2), . . . , which is just the coset (a, b) 1 k(21, 1)l. But when 
m and n are relatively prime, k(21, 1)l is the entire group. Obviously, 
there cannot be a Hamiltonian circuit consisting entirely of horizontal 
moves. Let us record what we have just proved.

(0, 1)

(1, 0)(1, 0)

(1, 1)(1, 1)(1, 0)(1, 0)

(m – 1, 0) (m – 1, 1) (m – 1, 2) (m – 1, n – 1)

(1, n – 1)(1, 2)

(0, 1)(0, 1)(0, 0)(0, 0) (0, 2)(0, 2) (0, n – 1)

Figure 30.4 Cay({(1, 0), (0, 1)}:Zm % Zn).

(a, b)

(a 2 1, b 1 1)

Figure 30.5

 Theorem 30.1 A Necessary Condition

Cay({(1, 0), (0, 1)}:Z
m

 % Z
n
) does not have a Hamiltonian circuit 

when m and n are relatively prime and greater than 1.

What about when m and n are not relatively prime? In general, the 
answer is somewhat complicated, but the following special case is easy 
to prove.
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 Theorem 30.2 A Sufficient Condition

Cay({(1, 0), (0, 1)}:Z
m

 % Z
n
) has a Hamiltonian circuit when n 

divides m.

(0, 2 )(0, 1)(0, 0 )

(1, 0 )

(2, 0 ) (2, 1)

(3, 1)

(4, 1)

(5, 1)
(5, 2 )

(4, 0)

(5, 0)

(3, 0)

(0, 1)

(1, 0)

(1, 1)
(1, 2 )

(3, 2 )

(2, 2 )

(4, 2 )

First 3 3 3 block

kth 3 3 3 block

Repeat path used
in first block

Repeat path used
in first block

(3k – 1, 0)  (3k – 1, 1)  (3k – 1, 2)

Figure 30.6 Cay({(1, 0), (0, 1)}:Z3k % Z3).
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PROOF Say m 5 kn. Then we may think of Zm % Zn as k blocks of 
size n 3 n. (See Figure 30.6 for an example.) Start at (0, 0) and cover 
the vertices of the top block as follows. Use the generator (0, 1) to move 
horizontally across the first row to the end. Then use the generator (1, 0) 
to move vertically to the point below, and cover the remaining points in 
the second row by moving horizontally. Keep this process up until the 
point (n 2 1, 0)—the lower left-hand corner of the first block—has 
been reached. Next, move vertically to the second block and repeat the 
process used in the first block. Keep this up until the bottom block is 
covered. Complete the circuit by moving vertically back to (0, 0). 

Notice that the circuit given in the proof of Theorem 30.2 is easy to 
visualize but somewhat cumbersome to describe in words. A much 
more convenient way to describe a Hamiltonian path or circuit is to 
specify the starting vertex and the sequence of generators in the order 
in which they are to be applied. In Example 5, for instance, we may 
start at (1) and alternate the generators (12) and (13) until we return to 
(1). In Example 3, we may start at R0 and successively apply R90, R90, 
R90, H, R90, R90, R90, H. When k is a positive integer and a, b, . . . , c is  
a sequence of group elements, we use k p (a, b, . . . , c) to denote the 
concatenation of k copies of the sequence (a, b, . . . , c). Thus, 2 p (R90, 
R90, R90, H) and 2 p (3 p R90, H) both mean R90, R90, R90, H, R90, R90, 
R90, H. With this notation, we may conveniently denote the Hamilto-
nian circuit given in Theorem 30.2 as

m p ((n 2 1) p (0, 1), (1, 0)).

We leave it as an exercise (Exercise 11) to show that if x1, x2, . . . , xn 
is a sequence of generators determining a Hamiltonian circuit starting 
at some vertex, then the same sequence determines a Hamiltonian cir-
cuit for any starting vertex.

From Theorem 30.1, we know that there are some Cayley digraphs 
of Abelian groups that do not have any Hamiltonian circuits. But Theorem 
30.3 shows that each of these Cayley digraphs does have a Hamiltonian 
path. There are some Cayley digraphs for non-Abelian groups that do not 
even have Hamiltonian paths, but we will not discuss them here.

 Theorem 30.3 Abelian Groups Have Hamiltonian Paths

Let G be a finite Abelian group, and let S be any (nonempty†) gener-

ating set for G. Then Cay(S:G) has a Hamiltonian path.

†If S is the empty set, it is customary to define kSl as the identity group. We prefer to 
 ignore this trivial case.
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PROOF We use induction on |S|. If |S| 5 1, say, S 5 {a}, then the di-
graph is just a circle labeled with e, a, a2, . . . , am21, where |a| 5 m. 
Obviously, there is a Hamiltonian path for this case. Now assume that 
|S| . 1. Choose some s [ S. Let T 5 S 2 {s}—that is, T is S with s 
removed—and set H 5 ks1, s2, . . . , sn21l where S 5 {s1, s2, . . . , sn} and 
s 5 sn. (Notice that H may be equal to G.)

Because |T| , |S| and H is a finite Abelian group, the induction hy-
pothesis guarantees that there is a Hamiltonian path (a1, a2, . . . , ak) in 
Cay(T:H). We will show that

(a1, a2, . . . , ak, s, a1, a2, . . . , ak, s, . . . , a1, a2, . . . , ak, s, a1, a2, . . . , ak),

where a1, a2, . . . , ak occurs |G|/|H| times and s occurs |G|/|H| 2 1 
times, is a Hamiltonian path in Cay(S:G).

Because S 5 T < {s} and T generates H, the coset Hs generates the 
factor group G/H. (Since G is Abelian, this group exists.) Hence, the 
cosets of H are H, Hs, Hs2, . . . , Hsn, where n 5 |G|/|H| 2 1. Starting 
from the identity element of G, the path given by (a1, a2, . . . , ak) visits 
each element of H exactly once [because (a1, a2, . . . , ak) is a  
Hamiltonian path in Cay(T:H)]. The generator s then moves us to some 
element of the coset Hs. Starting from there, the path (a1, a2, . . . , ak) 
visits each element of Hs exactly once. Then, s moves us to the coset 
Hs2, and we visit each element of this coset exactly once. Continuing 
this process, we successively move to Hs3, Hs4, . . . , Hsn, visiting each 
vertex in each of these cosets exactly once. Because each  vertex of 
Cay(S:G) is in exactly one coset Hsi, this implies that we visit each ver-
tex of Cay(S:G) exactly once. Thus, we have a Hamiltonian path. 

We next look at Cayley digraphs with three generators.

 EXAMPLE 9 Let

D3 5 kr, f | r3 5 f 2 5 e, rf 5 fr 2l.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D3 % Z6)

is given in Figure 30.7. 
(f, 0)     (e, 0)     (f, 1)     (e, 1)     (f, 2)     (e, 2)     (f, 3)     (e, 3)     (f, 4)     (e, 4)     (f, 5)     (e, 5)

(rf, 0) (r, 5)

(r2f, 0) (r2, 5)

Figure 30.7
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516 Special Topics

Although it is not easy to prove, it is true that

Cay({(r, 0), ( f, 0), (e, 1)}:Dn % Zm)

has a Hamiltonian circuit for all n and m. (See [3].) Example 10 shows 
the circuit for this digraph when m is even.

 EXAMPLE 10 Let

Dn 5 kr, f | rn 5 f 2 5 e, rf 5 fr21l.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:Dn % Zm)

with m even is traced in Figure 30.8. The sequence of generators that 
traces the circuit is

 m p [(n 2 1) p (r, 0), ( f, 0), (n 2 1) p (r, 0), (e, 1)]. 

 

(e, 1)(e, 0)

(r, 0)(rf, 0)

(f, 0) (f, 1)

(r, 1)

(r2, 1)

(rn–1, 1)(rn –1f, 1)(rn –1, 0)(rn –1f, 0)

(r2 f, 0) (r2, 0)

...iterate

Figure 30.8

Some Applications
Cayley digraphs are natural models for interconnection networks in 
computer designs, and Hamiltonicity is an important property in rela-
tion to sorting algorithms on such networks. One particular Cayley di-
graph that is used to design and analyze interconnection networks 
of parallel machines is the symmetric group Sn with the set of all trans-
positions as the generating set. Hamiltonian paths and circuits in Cayley 
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digraphs arise in a variety of group theory contexts. A Hamiltonian path 
in a Cayley  digraph of a group is simply an ordered listing of the group 
elements without repetition. The vertices of the digraph are the group ele-
ments, and the arcs of the path are generators of the group. In 1948, R. A. 
Rankin used these ideas (although not the terminology) to prove that cer-
tain bell-ringing exercises could not be done by the traditional methods 
employed by bell ringers. (See [1, Chap. 22] for the group theoretic 
 aspects of bell ringing.) In 1981, Hamiltonian paths in Cayley digraphs 
were used in an algorithm for creating computer graphics of Escher-type 
repeating patterns in the hyperbolic plane [2]. This program can produce 
repeating  hyperbolic patterns in color from among various infinite classes 
of symmetry groups. The program has now been improved so that the user 
may choose from many kinds of color symmetry. The 2003 Mathematics 
Awareness Month poster featured one such image (see http://www 
.mathaware.org/mam/03/index.html). Two Escher drawings and their 
computer-drawn counterparts are given in Figures 30.9 through 30.12.

In this chapter, we have shown how one may construct a directed 
graph from a group. It is also possible to associate a group—called 
the automorphism group—with every directed graph. In fact, several 
of the 26 sporadic simple groups were first constructed in this way.

Figure 30.9 M. C. Escher’s Circle Limit I.
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518 Special Topics

Figure 30.10 A computer duplication of the pattern of M. C. Escher’s Circle  
Limit I [2]. The program used a Hamiltonian path in a Cayley digraph of the  
underlying symmetry group.

Figure 30.11 M. C. Escher’s Circle Limit IV.
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Figure 30.12 A computer drawing inspired by the pattern of  
M. C. Escher’s Circle Limit IV [2]. The program used a Hamiltonian  
path in a Cayley digraph of the underlying symmetry group.

Exercises

A mathematician is a machine for turning coffee into theorems.
paul erdo'' s

  1. Find a Hamiltonian circuit in the digraph given in Example 7 dif-
ferent from the one in Figure 30.3.

  2. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Z2).

  3. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Zm)

  where m is even.
  4. Write the sequence of generators for each of the circuits found in 

Exercises 1, 2, and 3.
  5. Use the Cayley digraph in Example 7 to evaluate the product  

a3ba21ba3b21.
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520 Special Topics

  6. Let x and y be two vertices of a Cayley digraph. Explain why two 
paths from x to y in the digraph yield a group relation—that is, an 
equation of the form a1a2 ? ? ? am 5 b1b2 ? ? ? bn, where the ai’s and 
bj’s are generators of the Cayley digraph.

  7. Use the Cayley digraph in Example 7 to verify the relation  
aba21b21a21b21 5 a2ba3.

  8. Identify the following Cayley digraph of a familiar group.

  9. Let D4 5 kr, f | r4 5 e 5 f 2, rf 5 fr21l. Verify that

6 p [3 p (r, 0), ( f, 0), 3 p (r, 0), (e, 1)]

  is a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D4 % Z6).

 10. Draw a picture of Cay({2, 5}:Z8).
 11. If s1, s2, . . . , sn is a sequence of generators that determines a 

Hamiltonian circuit beginning at some vertex, explain why the same 
sequence determines a Hamiltonian circuit beginning at any point. 
(This exercise is referred to in this chapter.)

 12. Show that the Cayley digraph given in Example 7 has a  
Hamiltonian path from e to a.

 13. Show that there is no Hamiltonian path in

Cay({(1, 0), (0, 1)}:Z3 % Z2)

  from (0, 0) to (2, 0).
 14. Draw Cay({2, 3}:Z6). Is there a Hamiltonian circuit in this  digraph?
 15. a.  Let G be a group of order n generated by a set S. Show that a se-

quence s1, s2, . . . , sn21 of elements of S is a Hamiltonian path in 
Cay(S:G) if and only if, for all i and j with 1 # i # j , n, we 
have sisi11 ? ? ? sj 2 e.

b.  Show that the sequence s1s2 ? ? ? sn is a Hamiltonian circuit if 
and only if s1s2 ? ? ? sn 5 e, and that whenever 1 # i # j , n, we 
have sisi11 ? ? ? sj 2 e.

 16. Let D4 5 ka, b | a2 5 b2 5 (ab)4 5 el. Draw Cay({a, b}:D4). Why 
is it reasonable to say that this digraph is undirected?
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 17. Let Dn be as in Example 10. Show that 2 p [(n 2 1) p r, f ] is a 
Hamiltonian circuit in Cay({r, f}:Dn).

 18. Let Q8 5 ka, b | a8 5 e, a4 5 b2, b21ab 5 a21l. Find a Hamiltonian 
circuit in Cay({a, b}:Q8).

 19. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q8 % Z5).

 20. Prove that the Cayley digraph given in Example 6 does not have a 
Hamiltonian circuit. Does it have a Hamiltonian path?

 21. Find a Hamiltonian circuit in

Cay({(R90, 0), (H, 0), (R0, 1)}:D4 % Z3).

  Does this circuit generalize to the case Dn11 % Zn for all n $ 3?
 22. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q8 % Zm) for all even m.

 23. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Z3).

 24. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Zm) for all odd m $ 3.

 25. Write the sequence of generators that describes the Hamiltonian 
circuit in Example 9.

 26. Let Dn be as in Example 10. Find a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D4 % Z5).

  Does your circuit generalize to the case Dn % Zn11 for all n $ 4?
 27. Prove that Cay({(0, 1), (1, 1)}:Zm % Zn) has a Hamiltonian circuit 

for all m and n greater than 1.
 28. Suppose that a Hamiltonian circuit exists for Cay({(1, 0), (0, 1)}: 

Zm % Zn) and that this circuit exits from vertex (a, b) vertically. 
Show that the circuit exits from every member of the coset  
(a, b) 1 k(1, 21)l vertically.

 29. Let D2 5 kr, f | r2 5 f 2 5 e, rf 5 fr21l. Find a Hamiltonian circuit 
in Cay({(r, 0), ( f, 0), (e, 1)}:D2 % Z3).

 30. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in Cay({(a, 0), 
(b, 0), (e, 1)}:Q8 % Z3).

 31. In Cay({(1, 0), (0, 1)}:Z4 % Z5), find a sequence of generators that 
visits exactly one vertex twice and all others exactly once and re-
turns to the starting vertex.
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522 Special Topics

 32. In Cay({(1, 0), (0, 1)}:Z4 % Z5), find a sequence of generators that 
visits exactly two vertices twice and all others exactly once and re-
turns to the starting vertex.

 33. Find a Hamiltonian circuit in Cay({(1, 0), (0, 1)}:Z4 % Z6).
 34. (Factor Group Lemma) Let S be a generating set for a group G, let 

N be a cyclic normal subgroup of G, and let

S 5 {sN | s [ S}.

  If (a1N, . . . , arN) is a Hamiltonian circuit in Cay(S:G/N) and the 
product a1 ? ? ? ar generates N, prove that

|N| p (a1, . . . , ar)

  is a Hamiltonian circuit in Cay(S:G).
 35. A finite group is called Hamiltonian if all of its subgroups are normal. 

(One non-Abelian example is Q4.) Show that Theorem 30.3 can be 
generalized to include all Hamiltonian groups.
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William Rowan  
Hamilton

William Rowan Hamilton was born on 
August 3, 1805, in Dublin, Ireland. At  
three, he was skilled at reading and arith-
metic. At five, he read and translated Latin, 
Greek, and Hebrew; at 14, he had mastered 
14 languages, including Arabic, Sanskrit, 
Hindustani, Malay, and Bengali.

In 1833, Hamilton provided the first 
modern treatment of complex numbers. In 
1843, he made what he considered his great-
est discovery—the algebra of quaternions. 
The quaternions represent a natural general-
ization of the complex numbers with three 
numbers i, j, and k whose squares are 21. 

After Isaac Newton, the greatest mathema-
tician of the English-speaking peoples is 
William Rowan Hamilton. 

sir edmund whittaker, 
Scientific American

With these, rotations in three and four di-
mensions can be algebraically treated. Of 
greater significance, however, is the fact that 
the quaternions are noncommutative under 
multiplication. This was the first ring to be 
discovered in which the com mutative prop-
erty does not hold. The essential idea for the 
quaternions suddenly came to Hamilton after 
15 years of fruitless thought!

Today Hamilton’s name is attached to sev-
eral concepts, such as the Hamiltonian func-
tion, which represents the total energy in a 
physical system; the Hamilton–Jacobi differ-
ential equations; and the Cayley–Hamilton 
Theorem from linear algebra. He also coined 
the terms vector, scalar, and tensor.

In his later years, Hamilton was plagued 
by alcoholism. He died on September 2, 
1865, at the age of 60.

For more information about Hamilton, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

This stamp featuring the quaternions was 
issued in 1983.
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Paul ErdO'' s

Paul Erdős is a socially helpless Hungarian 
who has thought about more mathemati-
cal problems than anyone else in history.

The Atlantic Monthly

Paul Erdo'' s (pronounced AIR-dish) was 
one of the best-known and most highly re-
spected mathematicians of the 20th century. 
Unlike most of his contemporaries, who 
have concentrated on theory building, Erdo'' s 
focused on problem solving and problem 
posing. The problems and methods of solu-
tion of Erdo'' s—like those of Euler, whose 
solutions to special problems pointed the 
way to much of the mathematical theory 
we have today—have helped pioneer new 
theories, such as combinatorial and probabilis-
tic number theory, combinatorial geometry, 
probabilistic and transfinite combinatorics, 
and graph theory.

Erdo'' s was born on March 26, 1913, in 
Hungary. Both of his parents were high 
school mathematics teachers. Erdo'' s, a Jew, 
left Hungary in 1934 at the age of 21 be-
cause of the rapid rise of anti-Semitism in 
Europe. For the rest of his life he traveled 
incessantly, rarely pausing more than a 
month in any one place, giving lectures for 

small honoraria and staying with fellow 
mathematicians. He had little property and 
no fixed address. All that he owned he car-
ried with him in a medium-sized suitcase, 
frequently visiting as many as 15 places in a 
month. His motto was, “Another roof, an-
other proof.” Even in his eighties, he put in 
19-hour days doing mathematics.

Erdo'' s wrote more than 1500 research pa-
pers. He coauthored papers with more than 
500 people. These people are said to have 
Erdo'' s number 1. People who do not have 
Erdo'' s number 1, but who have written a 
 paper with someone who does, are said to 
have Erdo'' s number 2, and so on, induc-
tively. Erdo'' s died of a heart attack on Sep-
tember 20, 1996, in Warsaw, Poland.

For more information about Erdo'' s, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/

http://www.oakland.edu/enp 
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Introduction 
to Algebraic 
Coding Theory

Damn it, if the machine can detect an error, why can’t it locate the position 
of the error and correct it?

richard w. hamming

31

Motivation
One of the most interesting and important applications of finite fields 
has been the development of algebraic coding theory. This theory, 
which originated in the late 1940s, was created in response to practical 
communication problems. (Algebraic coding has nothing to do with 
 secret codes.) Algebraic codes are now used in compact disc and DVD 
players, fax machines, digital televisions, and bar code scanners, and 
are essential to computer maintenance.

To motivate this theory, imagine that we wish to transmit one of two 
possible signals to a spacecraft approaching Mars. If the proposed 
landing site appears unfavorable, we will command the craft to orbit 
the planet; otherwise, we will command the craft to land. The signal for 
orbiting will be a 0, and the signal for landing will be a 1. But it is pos-
sible that some sort of  interference (called noise) could cause an incor-
rect message to be received. To decrease the chance of this happening, 
redundancy is built into the transmission process. For example, if we 
wish the craft to orbit Mars, we could send five 0s. The craft’s onboard 
computer is programmed to take any five-digit message received and 
decode the result by majority rule. So, if 00000 is sent and 10001 is re-
ceived, the computer decides that 0 was the intended message. Notice 
that, for the  computer to make the wrong decision, at least three errors 
must occur during transmission. If we assume that errors occur  
independently, it is less likely that three errors will occur than that two 
or fewer errors will occur. For this reason, this decision process is fre-
quently called the maximum-likelihood decoding procedure. Our par-
ticular situation is  illustrated in Figure 31.1. The general coding proce-
dure is illustrated in Figure 31.2.
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Figure 31.1 Encoding and decoding by fivefold repetition.
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channel

Figure 31.2 General encoding–decoding.

In practice, the means of transmission are telephone, radiowave, 
 microwave, or even a magnetic disk. The noise might be human error, 
crosstalk, lightning, thermal noise, or deterioration of a disk. Through-
out this chapter, we assume that errors in transmission occur indepen-
dently. Different methods are needed when this is not the case.

Now, let’s consider a more complicated situation. This time, assume 
that we wish to send a sequence of 0s and 1s of length 500. Further, 
suppose that the probability that an error will be made in the transmis-
sion of any particular digit is .01. If we send this message directly, with-
out any redundancy, the probability that it will be received error-free is 
(.99)500, or approximately .0066.

On the other hand, if we adopt a threefold repetition scheme by 
sending each digit three times and decoding each block of three digits 
received by majority rule, we can do much better. For example, the se-
quence 1011 is encoded as 111000111111. If the received message is 
011000001110, the decoded message is 1001. Now, what is the proba-
bility that our 500-digit message will be error-free? Well, if a 1, say, is 
sent, it will be decoded as a 0 if and only if the block received is 001, 
010, 100, or 000. The probability that this will occur is

(.01)(.01)(.99) 1 (.01)(.99)(.01) 1 (.99)(.01)(.01) 1 (.01)(.01)(.01)

 5 (.01)2[3(.99) 1 .01]

 5 .000298 , .0003.

Thus, the probability that any particular digit in the sequence will be 
decoded correctly is greater than .9997, and it follows that the proba-
bility that the entire 500-digit message will be decoded correctly is 
greater than (.9997)500, or approximately .86—a dramatic improvement 
over .0066.
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528 Special Topics

This example illustrates the three basic features of a code. There is a 
set of messages, a method of encoding these messages, and a method of 
decoding the received messages. The encoding procedure builds some 
redundancy into the original messages; the decoding procedure corrects 
or detects certain prescribed errors. Repetition codes have the advantage 
of simplicity of encoding and decoding, but they are too inefficient. In a 
fivefold repetition code, 80% of all transmitted information is redun-
dant. The goal of coding theory is to devise message encoding and 
 decoding methods that are reliable, efficient, and reasonably easy to 
 implement.

Before plunging into the formal theory, it is instructive to look at a 
sophisticated example.

 EXAMPLE 1 Hamming (7, 4) Code
This time, our message set consists of all possible 4-tuples of 0’s and 1’s 
(that is, we wish to send a sequence of 0’s and 1’s of length 4). Encod-
ing will be done by viewing these messages as 1 3 4 matrices with en-
tries from Z2 and multiplying each of the 16 messages on the right by 
the matrix

G �  ≥ 1 0
 0

 0

  0

  1

  0

  0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

1

1

¥ .

(All arithmetic is done modulo 2.) The resulting 7-tuples are called 
code words. (See Table 31.1.)

Table 31.1

 Message Encoder G Code Word Message Encoder G Code Word

 0000 → 0000000 0110 → 0110010
 0001 → 0001011 0101 → 0101110
 0010 → 0010111 0011 → 0011100
 0100 → 0100101 1110 → 1110100
 1000 → 1000110 1101 → 1101000
 1100 → 1100011 1011 → 1011010
 1010 → 1010001 0111 → 0111001
 1001 → 1001101 1111 → 1111111
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31 | Introduction to Algebraic Coding Theory 529

Notice that the first four digits of each code word constitute just the 
original message corresponding to the code word. The last three digits 
of the code word constitute the redundancy features. For this code, we 
use the nearest-neighbor decoding method (which, in the case that the 
errors occur independently, is the same as the maximum-likelihood de-
coding procedure). For any received word v, we assume that the word 
sent is the code word v9 that differs from v in the fewest number of po-
sitions. If the choice of v9 is not unique, we can decide not to decode or 
arbitrarily choose one of the code words closest to v. (The first option 
is usually selected when retransmission is practical.) 

Once we have decoded the received word, we can obtain the message 
by deleting the last three digits of v9. For instance, suppose that 1000 
were the intended message. It would be encoded and transmitted as u 5 
1000110. If the received word were v 5 1100110 (an error in the second 
position), it would still be decoded as u, since v and u differ in only one 
position, whereas v and any other code word would differ in at least two 
positions. Similarly, the intended message 1111 would be encoded as 
1111111. If, instead of this, the word 0111111 were received, our decod-
ing procedure would still give us the intended message 1111. 

The code in Example 1 is one of an infinite class of important codes 
discovered by Richard Hamming in 1948. The Hamming codes are the 
most widely used codes.

The Hamming (7, 4) encoding scheme can be conveniently illus-
trated with the use of a Venn diagram, as shown in Figure 31.3. Begin 
by placing the four message digits in the four overlapping regions I, II,

A B

C

A B

C

V VI

VII

I

II
III

IV

1
1

1

1

0

0
0

  Figure 31.3 Venn diagram of the message 1001 and the encoded   
message 1001101.
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530 Special Topics

III, and IV, with the digit in position 1 in region I, the digit in position 
2 in region II, and so on. For regions V, VI, and VII, assign 0 or 1 so that 
the total number of 1s in each circle is even.

Consider the Venn diagram of the received word 0001101:

A B

C

1 0

1

0

0
0

1

How may we detect and correct an error? Well, observe that each of the 
circles A and B has an odd number of 1s. This tells us that something is 
wrong. At the same time, we note that circle C has an even number of 1s. 
Thus, the portion of the diagram that is in both A and B but not in C is  
the source of the error. See Figure 31.4.

Quite often, codes are used to detect errors rather than correct them. 
This is especially appropriate when it is easy to retransmit a message.  
If a received word is not a code word, we have detected an error. For 
example, computers are designed to use a parity check for numbers. In-
side the computer, each number is represented by a string of 0’s and 1’s. 
If there is an even number of 1’s in this representation, a 0 is attached to 
the string; if there is an odd number of 1’s in the representation, a 1  
is attached to the string. Thus, each number stored in the computer 
memory has an even number of 1’s. Now, when the computer reads a 

A B

C

1 0

1

0

0
0

1

Figure 31.4 Circles A and B but not C have wrong parity.
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31 | Introduction to Algebraic Coding Theory 531

number from memory, it performs a parity check. If the read number 
has an odd number of 1’s, the computer will know that an error has been 
made, and it will reread the number. Note that an even number of errors 
will not be detected by a parity check.

The methods of error detection introduced in Chapters 0 and 5 are 
based on the same principle. An extra character is appended to a string 
of numbers so that a particular condition is satisfied. If we find that 
such a string does not satisfy that condition, we know that an error has 
occurred.

Linear Codes
We now formalize some of the ideas introduced in the preceding  
discussion.

Definition Linear Code
An (n, k) linear code over a finite field F is a k-dimensional subspace V 
of the vector space

Fn 5 F % F % ? ? ? % F
 
 n copies

over F. The members of V are called the code words. When F is Z2, the 
code is called binary.

One should think of an (n, k) linear code over F as a set of n-tuples 
from F, where each n-tuple has two parts: the message part, consisting 
of k digits; and the redundancy part, consisting of the remaining n 2 k 
digits. Note that an (n, k) linear code over a finite field F of order q has 
qk code words, since every member of the code is uniquely expressible 
as a linear combination of the k basis vectors with coefficients from F. 
The set of qk code words is closed under addition and scalar multipli-
cation by members of F. Also, since errors in transmission may occur 
in any of the n positions, there are qn possible vectors that can be 
 received. Where there is no possibility of confusion, it is customary to 
denote an n-tuple (a1, a2, . . . , an) more simply as a1a2 ? ? ? an, as we 
did in Example 1.

 EXAMPLE 2 The set

{0000000, 0010111, 0101011, 1001101, 
1100110, 1011010, 0111100, 1110001}

is a (7, 3) binary code.  
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532 Special Topics

 EXAMPLE 3 The set {0000, 0101, 1010, 1111} is a (4, 2) binary 
code. 

Although binary codes are by far the most important ones, other 
codes are occasionally used.

 EXAMPLE 4 The set

{0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220}

is a (4, 2) linear code over Z3. A linear code over Z3 is called a ternary 
code. 

To facilitate our discussion of the error-correcting and error- 
detecting capability of a code, we introduce the following terminology.

Definitions Hamming Distance, Hamming Weight
The Hamming distance between two vectors in Fn is the number of com-
ponents in which they differ. The Hamming weight of a vector is the 
number of nonzero components of the vector. The Hamming weight of a 
linear code is the minimum weight of any nonzero vector in the code.

We will use d(u, v) to denote the Hamming distance between the 
vectors u and v, and wt(u) for the Hamming weight of the vector u.

 EXAMPLE 5 Let s 5 0010111, t 5 0101011, u 5 1001101, and v 5 
1101101. Then, d(s, t) 5 4, d(s, u) 5 4, d(s, v) 5 5, d(u, v) 5 1; and 
wt(s) 5 4, wt(t) 5 4, wt(u) 5 4, wt(v) 5 5. 

The Hamming distance and Hamming weight have the following 
 important properties.

 Theorem 31.1 Properties of Hamming Distance and Hamming Weight

For any vectors u, v, and w, d(u, v) # d(u, w) 1 d(w, v) and d(u, v) 5 

wt(u 2 v).

PROOF To prove that d(u, v) 5 wt(u 2 v), simply observe that both 
d(u, v) and wt(u 2 v) equal the number of positions in which u and v 
differ. To prove that d(u, v) # d(u, w) 1 d(w, v), note that if u and v differ 
in the ith position and u and w agree in the ith position, then w and v 
 differ in the ith position. 

99708_ch31_ptg01_hr_526-552.indd   532 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



31 | Introduction to Algebraic Coding Theory 533

With the preceding definitions and Theorem 31.1, we can now 
 explain why the codes given in Examples 1, 2, and 4 will correct any 
single error, but the code in Example 3 will not.

 Theorem 31.2 Correcting Capability of a Linear Code

If the Hamming weight of a linear code is at least 2t 1 1, then the 

code can correct any t or fewer errors. Alternatively, the same code 

can detect any 2t or fewer errors.

PROOF We will use nearest-neighbor decoding; that is, for any re-
ceived vector v, we will assume that the corresponding code word sent is 
a code word v9 such that the Hamming distance d(v, v9) is a minimum.  
(If there is more than one such v9, we do not decode.) Now, suppose that 
a transmitted code word u is received as the vector v and that at most t 
errors have been made in transmission. Then, by the definition of dis-
tance between u and v, we have d(u, v) # t. If w is any code word other 
than u, then w 2 u is a nonzero code word. Thus, by assumption,

2t 1 1 # wt(w 2 u) 5 d(w, u) # d(w, v) 1 d(v, u) # d(w, v) 1 t,

and it follows that t 1 1 # d(w, v). So, the code word closest to the re-
ceived vector v is u, and therefore v is correctly decoded as u.

To show that the code can detect 2t errors, we suppose that a trans-
mitted code word u is received as the vector v and that at least one 
 error, but no more than 2t errors, was made in transmission. Because 
only code words are transmitted, an error will be detected whenever a 
received word is not a code word. But v cannot be a code word, since 
d(v, u) # 2t, whereas we know that the minimum distance between dis-
tinct code words is at least 2t 1 1. 

Theorem 31.2 is often misinterpreted to mean that a linear code with 
Hamming weight 2t 1 1 can correct any t errors and detect any 2t or 
fewer errors simultaneously. This is not the case. The user must choose 
one or the other role for the code. Consider, for example, the Hamming 
(7, 4) code given in Table 31.1. By inspection, the Hamming weight of 
the code is 3 5 2 ? 1 1 1, so we may elect either to correct any single 
error or to detect any one or two errors. To understand why we can’t do 
both, consider the received word 0001010. The intended message  
could have been 0000000, in which case two errors were made (like-
wise for the intended messages 1011010 and 0101110), or the intended 
message could have been 0001011, in which case one error was made. 
But there is no way for us to know which of these possibilities oc-
curred. If our choice were error correction, we would assume—perhaps 
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534 Special Topics

mistakenly—that 0001011 was the intended message. If our choice 
were error detection, we simply would not decode. (Typically, one 
would request retransmission.)

On the other hand, if we write the Hamming weight of a linear code 
in the form 2t 1 s 1 1, we can correct any t errors and detect any t 1 s 
or fewer errors. Thus, for a code with Hamming weight 5, our options 
include the following:

1. Detect any four errors (t 5 0, s 5 4).
2.  Correct any one error and detect any two or three errors (t 5 1,  

s 5 2).
3. Correct any two errors (t 5 2, s 5 0).

 EXAMPLE 6 Since the Hamming weight of the linear code given in 
Example 2 is 4, it will correct any single error and detect any two errors 
(t 5 1, s 5 1) or detect any three errors (t 5 0, s 5 3). 

It is natural to wonder how the matrix G used to produce the Ham-
ming code in Example 1 was chosen. Better yet, in general, how can 
one find a matrix G that carries a subspace V of Fk to a subspace of Fn 
in such a way that for any k-tuple v in V, the vector vG will agree with 
v in the first k components and build in some redundancy in the last 
n 2 k components? Such a matrix is a k 3 n matrix of the form

1
0
?
?
?
0

0
1
?
?
?
0

0
0
?
?
?
1

a11
?
?
?
?
ak1

a1n 2 k
?
?
?
?
akn 2 k

?
?

?

?
?

?

?
?

?

?

?

?

?

?

?

where the aij’s belong to F. A matrix of this form is called the standard 
generator matrix (or standard encoding matrix) for the resulting code.

Any k 3 n matrix whose rows are linearly independent will trans-
form Fk to a k-dimensional subspace of Fn that could be used to build 
redundancy, but using the standard generator matrix has the advantage 
that the original message constitutes the first k components of the  
transformed vectors. An (n, k) linear code in which the k information 
digits occur at the beginning of each code word is called a systematic 
code. Schematically, we have the following.

message message redundant digits

|←k digits→| |        k        ||          n 2 k          |

Encoder
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Notice that, by definition, a standard generator matrix produces a sys-
tematic code.

 EXAMPLE 7 From the set of messages

{000, 001, 010, 100, 110, 101, 011, 111},

we may construct a (6, 3) linear code over Z2 with the standard gene-
rator matrix

G � £ 1 0
 0

  0

  1

  0

  0

  0

 1

  1

  1

  1

 1

 0

 1

0

1

1

§ .
The resulting code words are given in Table 31.2. Since the minimum 
weight of any nonzero code word is 3, this code will correct any single 
error or detect any double error. 

Table 31.2

 Message Encoder G Code Word

 000 → 000000
 001 → 001111
 010 → 010101
 100 → 100110
 110 → 110011
 101 → 101001
 011 → 011010
 111 → 111100

 EXAMPLE 8 Here we take a set of messages as

{00, 01, 02, 10, 11, 12, 20, 21, 22},

and we construct a (4, 2) linear code over Z3 with the standard genera-
tor matrix

G �  c 1
 0

  0

  1

 2

 2

1

2
d .

The resulting code words are given in Table 31.3. Since the minimum 
weight of the code is 3, it will correct any single error or detect any 
double error. 

99708_ch31_ptg01_hr_526-552.indd   535 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



536 Special Topics

Table 31.3

 Message Encoder G Code Word

 00 → 0000
 01 → 0122
 02 → 0211
 10 → 1021
 11 → 1110
 12 → 1202
 20 → 2012
 21 → 2101
 22 → 2220

Parity-Check Matrix Decoding
Now that we can conveniently encode messages with a standard gener-
ator matrix, we need a convenient method for decoding the received 
messages. Unfortunately, this is not as easy to do; however, in the case 
where at most one error per code word has occurred, there is a fairly 
simple method for decoding. (When more than one error occurs in a 
code word, our decoding method fails.)

To describe this method, suppose that V is a systematic linear  
code over the field F given by the standard generator matrix G 5  
[Ik | A], where Ik represents the k 3 k identity matrix and A is the k 3  
(n 2 k) matrix obtained from G by deleting the first k columns of G. 
Then, the n 3 (n 2 k) matrix

H � c �  A

In�k
d  ,

where 2A is the negative of A and In2k is the (n 2 k) 3 (n 2 k) iden-
tity matrix, is called the parity-check matrix for V. (In the literature, the 
transpose of H is called the parity-check matrix, but H is much more 
convenient for our purposes.) The decoding procedure is:

1. For any received word w, compute wH.
2. If wH is the zero vector, assume that no error was made.
3.  If there is exactly one instance of a nonzero element s [ F and a 

row i of H such that wH is s times row i, assume that the sent word 
was w 2 (0 . . . s . . . 0), where s occurs in the ith component. If 
there is more than one such instance, do not decode.

39.  When the code is binary, category 3 reduces to the following: If 
wH is the ith row of H for exactly one i, assume that an error was 
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31 | Introduction to Algebraic Coding Theory 537

made in the ith component of w. If wH is more than one row of H, 
do not decode.

4.  If wH does not fit into either category 2 or category 3, we know that 
at least two errors occurred in transmission and we do not decode.

 EXAMPLE 9 Consider the Hamming (7, 4) code given in Example 
1. The generator matrix is

G � ≥ 1 0
 0

 0

  0

  1

  0

  0

 0

 0

 1

 0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

1

1

¥
and the corresponding parity-check matrix is

.H 5 G

1 1 0

1 0 1

1 1 1

0 1 1

1 0 0

0 1 0

0 0 1

W

Now, if the received vector is v 5 0000110, we find vH 5 110. Since this 
is the first row of H and no other row, we assume that an error has been 
made in the first position of v. Thus, the transmitted code word is as-
sumed to be 1000110, and the corresponding message is assumed to be 
1000. Similarly, if w 5 1011111 is the received word, then wH 5 101, 
and we assume that an error has been made in the second position. So, 
we assume that 1111111 was sent and that 1111 was the intended mes-
sage. If the encoded message 1001101 is received as z 5 1001011 (with 
errors in the fifth and sixth positions), we find zH 5 110. Since this 
matches the first row of H, we decode z as 0001011 and incorrectly 
 assume that the message 0001 was intended. On the other hand, nearest-
neighbor decoding would yield the same incorrect result. 

Notice that when only one error was made in transmission, the 
 parity-check decoding procedure gave us the originally intended mes-
sage. We will soon see under what conditions this is true, but first we 
need an important fact relating a code given by a generator matrix and 
its parity-check matrix.
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 Lemma Orthogonality Relation

Let C be a systematic (n, k) linear code over F with a standard 

generator matrix G and parity-check matrix H. Then, for any vector v 

in F n, we have vH 5 0 (the zero vector) if and only if v belongs to C.

PROOF First note that, since H has rank n 2 k, we may think of H as 
a linear transformation from F n onto F n2k. Therefore, it follows from 
the dimension theorem for linear transformations that n  5  
n 2 k 1 dim (Ker H), so that Ker H has dimension k. (Alternatively,  
one can use a group theory argument to show that |Ker H| 5 |F|k.) 
Then, since the dimension of C is also k, it suffices to show that  

C # Ker H. To do this, let G 5 [Ik | A], so that H 5 c �A

In�k
d . Then, 

GH 5 [Ik | A] c �A

In�k
d  5 2A 1 A 5 [0]    (the zero matrix).

Now, by definition, any vector v in C has the form mG, where m is a 
message vector. Thus, vH 5 (mG)H 5 m(GH) 5 m[0] 5 0 (the zero 
vector). 

Because of the way H was defined, the parity-check matrix method 
correctly decodes any received word in which no error has been made. 
But it will do more.

 Theorem 31.3 Parity-Check Matrix Decoding

Parity-check matrix decoding will correct any single error if and only 

if the rows of the parity-check matrix are nonzero and no one row is 

a scalar multiple of any other row.

PROOF For simplicity’s sake, we prove only the binary case. In this 
special situation, the condition on the rows is that they are nonzero and 
distinct. So, let H be the parity-check matrix, and let’s assume that this 
condition holds for the rows. Suppose that the transmitted code word w 
was received with only one error, and that this error occurred in the ith 
position. Denoting the vector that has a 1 in the ith position and 0’s else-
where by ei, we may write the received word as w 1 ei. Now, using the 
Orthogonality Lemma, we obtain

(w 1 ei)H 5 wH 1 eiH 5 0 1 eiH 5 eiH.

But this last vector is precisely the ith row of H. Thus, if there was ex-
actly one error in transmission, we can use the rows of the parity-check 
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matrix to identify the location of the error, provided that these rows are 
distinct. (If two rows, say, the ith and jth, are the same, we know that 
the error occurred in either the ith position or the jth position, but we 
do not know in which.)

Conversely, suppose that the parity-check matrix method correctly 
decodes all received words in which at most one error has been made 
in transmission. If the ith row of the parity-check matrix H were 
the zero vector and if the code word u 5 0 ? ? ? 0 were received as ei, 
we would find eiH 5 0 ? ? ? 0, and we would erroneously assume that 
the vector ei was sent. Thus, no row of H is the zero vector. Now, sup-
pose that the ith row of H and the jth row of H are equal and i 2 j. 
Then, if some code word w is transmitted and the received word is  
w 1 ei (that is, there is a single error in the ith position), we find

(w 1 ei)H 5 wH 1 eiH 5 ith row of H 5 jth row of H.

Thus, our decoding procedure tells us not to decode. This contradicts 
our assumption that the method correctly decodes all received words in 
which at most one error has been made. 

Coset Decoding
There is another convenient decoding method that utilizes the fact that 
an (n, k) linear code C over a finite field F is a subgroup of the additive 
group of V 5 Fn. This method was devised by David Slepian in 1956 
and is called coset decoding (or standard decoding). To use this 
method, we proceed by constructing a table, called a standard array. 
The first row of the table is the set C of code words, beginning in col-
umn 1 with the identity 0 ? ? ? 0. To form additional rows of the table, 
choose an element v of V not listed in the table thus far. Among all the 
elements of the coset v 1 C, choose one of minimum weight, say, v9. 
Complete the next row of the table by placing under the column headed 
by the code word c the vector v9 1 c. Continue this process until all the 
vectors in V have been listed in the table. [Note that an (n, k) linear code 
over a field with q elements will have |V:C| 5 qn2k rows.] The words  
in the first column are called the coset leaders. The decoding procedure 
is simply to decode any received word w as the code word at the head 
of the column containing w.

 EXAMPLE 10 Consider the (6, 3) binary linear code

C 5 {000000, 100110, 010101, 001011, 110011, 101101, 011110, 111000}.

The first row of a standard array is just the elements of C. Obviously, 
100000 is not in C and has minimum weight among the elements of 
100000 1 C, so it can be used to lead the second row. Table 31.4 is the 
completed table.
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540 Special Topics

Table 31.4  A Standard Array for a (6, 3) Linear Code

 Words
 Coset
 Leaders

 000000 100110 010101 001011 110011 101101 011110 111000
 100000 000110 110101 101011 010011 001101 111110 011000
 010000 110110 000101 011011 100011 111101 001110 101000
 001000 101110 011101 000011 111011 100101 010110 110000
 000100 100010 010001 001111 110111 101001 011010 111100
 000010 100100 010111 001001 110001 101111 011100 111010
 000001 100111 010100 001010 110010 101100 011111 111001
 100001 000111 110100 101010 010010 001100 111111 011001

If the word 101001 is received, it is decoded as 101101, since 
101001 lies in the column headed by 101101. Similarly, the received 
word 011001 is decoded as 111000. 

Recall that the first method of decoding that we introduced was the 
nearest-neighbor method; that is, any received word w is decoded as 
the code word c such that d(w, c) is a minimum, provided that there is 
only one code word c such that d(w, c) is a minimum. The next result 
shows that in this situation, coset decoding is the same as nearest-
neighbor decoding.

 Theorem 31.4 Coset Decoding Is Nearest-Neighbor Decoding

In coset decoding, a received word w is decoded as a code word c such 

that d(w, c) is a minimum.

PROOF Let C be a linear code, and let w be any received word. Suppose 
that v is the coset leader for the coset w 1 C. Then, w 1 C 5 v 1 C, so  
w 5 v 1 c for some c in C. Thus, using coset decoding, w is decoded  
as c. Now, if c9 is any code word, then w 2 c9 [ w 1 C 5 v 1 C, so  
that wt(w 2 c9) $ wt(v), since the coset leader v was chosen as a  vector 
of minimum weight among the members of v 1 C. 

Therefore,

d(w, c9) 5 wt(w 2 c9) $ wt(v) 5 wt(w 2 c) 5 d(w, c).

So, using coset decoding, w is decoded as a code word c such that  
d(w, c) is a minimum. 

Recall that in our description of nearest-neighbor decoding, we 
stated that if the choice for the nearest neighbor of a received word v is 
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not unique, then we can decide not to decode or to decode v arbitrarily 
from among those words closest to v. In the case of coset decoding, the 
decoded value of v is always uniquely determined by the coset leader 
of the row containing the received word. Of course, this decoded value 
may not be the word that was sent.

When we know a parity-check matrix for a linear code, coset decod-
ing can be considerably simplified.

Definition Syndrome
If an (n, k) linear code over F has parity-check matrix H, then, for any 
vector u in Fn, the vector uH is called the syndrome† of u.

The importance of syndromes stems from the following property.

 Theorem 31.5 Same Coset—Same Syndrome

Let C be an (n, k) linear code over F with a parity-check matrix H. 

Then, two vectors of Fn are in the same coset of C if and only if they 

have the same syndrome.

PROOF Two vectors u and v are in the same coset of C if and only if  
u 2 v is in C. So, by the Orthogonality Lemma, u and v are in the same 
coset if and only if 0 5 (u 2 v)H 5 uH 2 vH. 

We may now use syndromes for decoding any received word w:

1. Calculate wH, the syndrome of w.
2. Find the coset leader v such that wH 5 vH.
3. Assume that the vector sent was w 2 v.

With this method, we can decode any received word with a table that 
has only two rows—one row of coset leaders and another row with the 
corresponding syndromes.

 EXAMPLE 11 Consider the code given in Example 10. The parity-
check matrix for this code is

.H 5 F

1 1 0

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

V

†This term was coined by D. Hagelbarger in 1959.   
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542 Special Topics

The list of coset leaders and corresponding syndromes is the following.

Coset leader 000000 100000 010000 001000 000100 000010 000001 100001

Syndromes 000 110 101 011 100 010 001 111

So, to decode the received word w � 101001, we compute wH � 100. 
Since the coset leader v � 000100 has 100 as its syndrome, we assume that 
w � 000100 � 101101 was sent. If the received word is w� � 011001, 
we compute w�H � 111 and assume w� � 100001 � 111000 was 
sent because 100001 is the coset leader with syndrome 111. Notice that 
these answers are in agreement with those obtained by using the standard-
array method of Example 10. 

The term syndrome is a descriptive term. In medicine, it is used to 
designate a collection of symptoms that typify a disorder. In coset de-
coding, the syndrome typifies an error pattern.

In this chapter, we have presented algebraic coding theory in  
its simplest form. A more sophisticated treatment would make substan-
tially greater use of group theory, ring theory, and especially finite-field 
theory. For example, Gorenstein (see Chapter 25 for a biography) and 
Zierler, in 1961, made use of the fact that the multiplicative subgroup 
of a finite field is cyclic. They associated each digit of certain codes 
with a field element in such a way that an algebraic equation would be 
derived whose zeros determined the locations of the errors.

In some instances, two error-correcting codes are employed. The 
 European Space Agency space probe Giotto, which came within 
370 miles of the nucleus of Halley’s Comet in 1986, had two error- 
correcting codes built into its electronics. One code checked for 
indepen dently occurring errors, and another—a so-called Reed– 
Solomon code—checked for bursts of errors. Giotto achieved an error-
detection rate of 0.999999. Reed–Solomon codes are also used on 
 compact discs. They can correct thousands of consecutive errors.
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HISTORICAL NOTE

The Ubiquitous 
Reed–Solomon 
Codes*

We conclude this chapter with an adapted version of an article by Barry A. Cipra about 
the Reed–Solomon codes [1]. It was the first in a series of articles called “Mathematics 
That Counts” in SIAM News, the news journal of the Society for Industrial and Applied 
Mathematics. The articles highlight developments in mathematics that have led to 
products and processes of substantial benefit to industry and the public.

Irving Reed and Gustave Solomon 
monitor the  encounter of Voyager II 
with Neptune at the Jet Propulsion 
Laboratory in 1989.

In this “Age of Information,” no one need be 
reminded of the importance not only of 
speed but also of accuracy in the storage, re-
trieval, and transmission of data. Machines 
do make errors, and their non-man-made 
mistakes can turn otherwise flawless pro-
gramming into worthless, even dangerous, 
trash. Just as architects design buildings that 
will remain standing even through an earth-
quake, their computer counterparts have 
come up with sophisticated techniques ca-
pable of counteracting digital disasters.

The idea for the current error-correcting 
techniques for everything from computer 
hard disk drives to CD players was first in-
troduced in 1960 by Irving Reed and 
Gustave Solomon, then staff members at 
MIT’s Lincoln Laboratory. . . .

“When you talk about CD players and dig-
ital audio tape and now digital television, and 
various other digital imaging systems that are 
coming—all of those need Reed–Solomon 
[codes] as an integral part of the system,” says 
Robert McEliece, a coding theorist in the 
electrical engineering department at Caltech.

Why? Because digital information, vir-
tually by definition, consists of strings of 
“bits”—0s and 1s—and a physical device, 
no matter how capably manufactured, may 
occasionally confuse the two. Voyager II, 
for example, was transmitting data at in-
credibly low power—barely a whisper—
over tens of millions of miles. Disk drives 
pack data so densely that a read/write head 
can (almost) be excused if it can’t tell where 
one bit stops and the next 1 (or 0) begins. 
Careful engineering can reduce the error 
rate to what may sound like a negligible 
level—the industry standard for hard disk 
drives is 1 in 10 billion—but given the vol-
ume of information processing done these 
days, that “negligible” level is an invitation 
to daily disaster. Error- correcting codes are 
a kind of safety net—mathematical insur-
ance against the  vagaries of an imperfect 
material world.

In 1960, the theory of error-correcting 
codes was only about a decade old. The 
basic theory of reliable digital communica-
tion had been set forth by Claude Shannon 
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*Adapted version of an article called, “The Ubiquitous Reed-Solomon Codes” in SIAM News, the 
news journal of the Society for Industrial and Applied Mathematics, by Barry A. Cipra. Reprinted from 
SIAM News, Volume 26-1, January 1993.
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in the late 1940s. At the same time, Richard 
Hamming introduced an elegant approach to 
single-error correction and double-error 
 detection. Through the 1950s, a number of 
researchers began experimenting with a 
 variety of error-correcting codes. But with 
their SIAM journal paper, McEliece says, 
Reed and Solomon “hit the jackpot.”

The payoff was a coding system based on 
groups of bits—such as bytes—rather than  
individual 0s and 1s. That feature makes 
Reed–Solomon codes particularly good at 
dealing with “bursts” of errors: six consecu-
tive bit errors, for example, can affect at 
most two bytes. Thus, even a double-error-
correction version of a Reed–Solomon code 
can provide a comfortable safety factor. . . .

Mathematically, Reed–Solomon codes 
are based on the arithmetic of finite fields. 
Indeed, the 1960 paper begins by defining a 
code as “a mapping from a vector space of 
dimension m over a finite field K into a vec-
tor space of higher dimension over the same 
field.” Starting from a “message” (a0, a1, 
. . . , am21), where each ak is an element of 
the field K, a Reed–Solomon code produces 
(P(0), P(g), P(g2), . . . , P(gN21)), where N is 
the number of elements in K, g is a genera-
tor of the (cyclic) group of nonzero ele-
ments in K, and P(x) is the polynomial a0 1 
a1x 1 ? ? ? 1 am21x

m21. If N is greater than 
m, then the values of P over determine the 
polynomial, and the properties of finite 
fields guarantee that the coefficients of 
P—i.e., the original message—can be recov-
ered from any m of the values . . . .

In today’s byte-sized world, for example, 
it might make sense to let K be the field of 
order 28, so that each element of K corre-
sponds to a single byte (in computerese, there 
are four bits to a nibble and two nibbles to a 
byte). In that case, N 5 28 5 256, and hence 

messages up to 251 bytes long can be recov-
ered even if two errors occur in transmitting 
the values P(0), P(g), . . . , P(g255). That’s a 
lot better than the 1255 bytes required by the 
say-everything-five-times approach.

Despite their advantages, Reed–Solomon 
codes did not go into use immediately—
they had to wait for the hardware technol-
ogy to catch up. “In 1960, there was no such 
thing as fast digital electronics”—at least 
not by today’s standards, says McEliece. 
The Reed–Solomon paper “suggested some 
nice ways to process data, but  nobody knew 
if it was practical or not, and in 1960 it 
probably wasn’t practical.”

But technology did catch up, and nu- 
merous researchers began to work on im-
plementing the codes. . . . Many other bells 
and whistles (some of fundamental theo-
retic significance) have also been added. 
Compact discs, for example, use a version 
of a Reed–Solomon code.

Reed was among the first to recognize 
the significance of abstract algebra as the 
basis for error-correcting codes. “In hind-
sight it seems obvious,” he told SIAM News. 
However, he added, “coding theory was not 
a subject when we published that paper.” 
The two authors knew they had a nice result; 
they  didn’t know what impact the paper 
would have.

Three decades later, the impact is clear. 
The vast array of applications, both current 
and pending, has settled the question of the 
practicality and significance of Reed–
Solomon codes. “It’s clear they’re practical, 
because everybody’s using them now,” says 
Elwyn Berkekamp. Billions of dollars in 
modern technology depend on ideas that 
stem from Reed and Solomon’s original 
work. In short, says McEliece, “it’s been an 
extraordinarily influential paper.”
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Exercises

The New Testament offers the basis for modern computer coding theory, in 
the form of an affirmation of the binary number system.

“But let your communication be yea, yea; nay, nay: for whatsoever is 
more than these cometh of evil.”

anonymous

  1. Find the Hamming weight of each code word in Table 31.1.
  2. Find the Hamming distance between the following pairs of vec-

tors: {1101, 0111}, {0220, 1122}, {11101, 00111}.
  3. Referring to Example 1, use the nearest-neighbor method to de-

code the received words 0000110 and 1110100.
  4. For any vector space V and any u, v, w in Fn, prove that the 

 Hamming distance has the following properties.
 a. d(u, v) 5 d(v, u) (symmetry).
 b. d(u, v) 5 0 if and only if u 5 v.
 c. d(u, v) 5 d(u 1 w, v 1 w) (translation invariance).
  5. Determine the (6, 3) binary linear code with generator matrix

G �  £ 1 0
 0

  0

  1

  0

  0

  0

 1

  0

  1

  1

 1

 0

 1

1

1

0

§ .
  6. Show that for binary vectors, wt(u 1 v) $ wt(u) 2 wt(v) and 

equality occurs if and only if for all i the ith component of u is 1 
whenever the ith component of v is 1.

  7. If the minimum weight of any nonzero code word is 2, what can 
we say about the error-detecting capability of the code?

  8. Suppose that C is a linear code with Hamming weight 3 and that 
C9 is one with Hamming weight 4. What can C9 do that C can’t?

  9. Let C be a binary linear code. Show that the code words of even 
weight form a subcode of C. (A subcode of a code is a subset of 
the code that is itself a code.)

 10. Let

  C 5 {0000000, 1110100, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001}.

  What is the error-correcting capability of C? What is the error- 
detecting capability of C?
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 11. Suppose that the parity-check matrix of a binary linear code is

.H 5 E

1 0

0 1

1 1

1 0

0 1

U

  Can the code correct any single error?
 12. Use the generator matrix

G � c 1
 0

  0

  1

 1

 2

1

1
d

  to construct a (4, 2) ternary linear code. What is the parity-check 
 matrix for this code? What is the error-correcting capability of this 
code? What is the error-detecting capability of this code? Use parity-
check decoding to decode the received word 1201.

 13. Find all code words of the (7, 4) binary linear code whose genera-
tor matrix is

G � ≥ 1 0
 0

 0

  0

  1

  0

  0

 0

 0

 1

 0

0

0

0

1

1

1

1

0

1

0

1

1

1

1

0

1

¥ .
  Find the parity-check matrix of this code. Will this code correct 

any single error?
 14. Show that in a binary linear code, either all the code words end with 

0, or exactly half end with 0. What about the other components?
 15. Suppose that a code word v is received as the vector u. Show that 

coset decoding will decode u as the code word v if and only if u 2 v 
is a coset leader.

 16. Consider the binary linear code

C 5 {00000, 10011, 01010, 11001, 00101, 10110, 01111, 11100}.

  Construct a standard array for C. Use nearest-neighbor decoding to 
decode 11101 and 01100. If the received word 11101 has exactly 
one error, can we determine the intended code word? If the re-
ceived word 01100 has exactly one error, can we determine the in-
tended code word?
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 17. Construct a (6, 3) binary linear code with generator matrix

G � £ 1 0
 0

  0

  1

  0

  0

  0

 1

  1

  0

  1

 1

 1

 0

0

1

1

§ .
  Decode each of the received words

001001, 011000, 000110, 100001

  by the following methods:
a. Nearest-neighbor method.
b. Parity-check matrix method.
c. Coset decoding using a standard array.
d. Coset decoding using the syndrome method.

 18. Suppose that the minimum weight of any nonzero code word in a 
linear code is 6. Discuss the possible options for error correction 
and error detection.

 19. Using the code and the parity-check matrix given in Example 9, 
show that parity-check matrix decoding cannot detect any multiple 
errors (that is, two or more errors).

 20. Suppose that the last row of a standard array for a binary linear 
code is

10000  00011  11010  01001  10101  00110  11111  01100.

  Determine the code.
 21. How many code words are there in a (6, 4) ternary linear code? 

How many possible received words are there for this code?
 22. If the parity-check matrix for a binary linear code is

H 5 F

1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

V ,

  will the code correct any single error? Why?
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 23. Suppose that the parity-check matrix for a ternary code is

H 5 E

2 1

2 2

1 2

1 0

0 1

U.

  Can the code correct all single errors? Give a reason for your 
 answer.

 24. Prove that for nearest-neighbor decoding, the converse of Theo-
rem 31.2 is true.

 25. Can a (6, 3) binary linear code be double-error-correcting using the 
nearest-neighbor method? Do not assume that the code is systematic.

 26. Prove that there is no 2 3 5 standard generator matrix G that will 
produce a (5, 2) linear code over Z3 capable of detecting all possi-
ble triple errors.

 27. Why can’t the nearest-neighbor method with a (4, 2) binary linear 
code correct all single errors?

 28. Suppose that one row of a standard array for a binary code is
000100  110000  011110  111101  101010  001001  100111  010011.

  Determine the row that contains 100001.
 29. Use the field F 5 Z2[x]/kx2 1 x 1 1l to construct a (5, 2) linear 

code that will correct any single error.
 30. Find the standard generator matrix for a (4, 2) linear code over Z3 

that encodes 20 as 2012 and 11 as 1100. Determine the entire code 
and the parity-check matrix for the code. Will the code correct all 
single errors?

 31. Assume that C is an (n, k) binary linear code and that, for each posi-
tion i 5 1, 2, . . . , n, the code C has at least one vector with a 1 in the 
ith position. Show that the average weight of a code word is n/2.

 32. Let C be an (n, k) linear code over F such that the minimum weight 
of any nonzero code word is 2t 1 1. Show that not every vector of 
weight t 1 1 in Fn can occur as a coset leader.

 33. Let C be an (n, k) binary linear code over F 5 Z 2. If v [ Fn but 
v o C, show that C < (v 1 C) is a linear code.

 34. Let C be a binary linear code. Show that either every member of C 
has even weight or exactly half the members of C have even 
weight. (Compare with Exercise 23 in Chapter 5.)

 35. Let C be an (n, k) linear code. For each i with 1 # i # n, let Ci 5  
{v [ C | the ith component of v is 0}. Show that Ci is a subcode of C.
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Richard W. Hamming

For introduction of error-correcting codes, 
pioneering work in operating systems and 
programming languages, and the advance-
ment of numerical computation.
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Richard W. Hamming was born in Chicago, 
Illinois, on February 11, 1915. He graduated 
from the University of Chicago with a B.S. de-
gree in mathematics. In 1939, he received an 
M.A. degree in mathematics from the Univer-
sity of Nebraska and, in 1942, a Ph.D. in math-
ematics from the University of Illinois.

During the latter part of World War II, 
Hamming was at Los Alamos, where he was 
involved in computing atomic-bomb designs. 
In 1946, he joined Bell Telephone Laborato-
ries, where he worked in mathematics, com-
puting, engineering, and science.

In 1950, Hamming published his famous 
paper on error-detecting and error-correcting 
codes. This work started a branch of informa-
tion theory. The Hamming codes are used in 
many modern computers. Hamming’s work 
in the field of numerical analysis has also 
been of fundamental importance.

Hamming received numerous presti-
gious awards, including the Turing Prize 
from the Association for Computing Mach-
inery, the Piore Award from the Institute  
of Electrical and Electronics Engineers 
(IEEE), and the Oender Award from the 
University of Pennsylvania. In 1986 the IEEE 
Board of Directors established the Richard 
W. Hamming Medal “for exceptional con-
tributions to information sciences, systems 
and technology” and named Hamming as 
its first recipient. Hamming died of a heart 
attack on January 7, 1998, at age 82.

To find more information about Ham-
ming, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Jessie MacWilliams

She was a mathematician who was instru-
mental in developing the mathematical 
theory of error-correcting codes from its 
early development and whose Ph.D. thesis 
includes one of the most powerful theo-
rems in coding theory.

vera pless, SIAM News

An important contributor to coding theory 
was Jessie MacWilliams. She was born in 
1917 in England. After studying at  Cam- 
bridge University, MacWilliams came to  
the United States in 1939 to attend Johns 
Hopkins University. After one year at Johns 
Hopkins, she went to Harvard for a year.

In 1955, MacWilliams became a pro-
grammer at Bell Labs, where she learned 
about coding theory. Although she made a 
major discovery about codes while a pro-
grammer, she could not obtain a promotion 
to a math research position without a Ph.D. 
degree. She completed some of the require-
ments for the Ph.D. while working full-time 
at Bell Labs and looking after her family. 
She then returned to Harvard for a year 
(1961–1962), where she finished her degree. 
Interestingly, both MacWilliams and her 

daughter Ann were studying mathematics at 
Harvard at the same time.

MacWilliams returned to Bell Labs, 
where she remained until her retirement in 
1983. While at Bell Labs, she made many 
contributions to the subject of error-correcting 
codes, including The Theory of Error-
Correcting Codes, written jointly with Neil 
Sloane. One of her results of great theoretical 
importance is known as the MacWilliams 
Identity. She died on May 27, 1990, at the 
age of 73.

To find more information about 
MacWilliams, visit:

http://www.awm-math.org/ 
noetherbrochure/ 

MacWilliams80.html
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Vera Pless

Vera Pless is a leader in the field of coding 
theory.

Vera Pless was born on March 5, 1931, to 
Russian immigrants on the West Side of 
Chicago. She accepted a scholarship to attend 
the University of Chicago at age 15. The pro-
gram at Chicago emphasized great literature 
but paid little attention to physics and mathe-
matics. At age 18, with no more than one pre-
calculus course in mathematics, she entered 
the prestigious graduate program in mathe-
matics at Chicago, where, at that time, there 
were no women on the mathematics faculty 
or even women colloquium speakers. After 
passing her master’s exam, she took a job as a 
research associate at Northwestern Univer-
sity while pursuing a Ph.D. there. In 1957, 
she obtained her degree.

Over the next several years, Pless stayed 
at home to raise her children while teaching 

part-time at Boston University. When she 
decided to work full-time, she found that 
women were not welcome at most colleges 
and universities. One person told her out-
right, “I would never hire a woman.” Fortu-
nately, there was an Air Force Lab in the area 
that had a group working on error-correcting 
codes. Although she had never even heard of 
coding theory, she was hired because of her 
background in  algebra. When the lab discon-
tinued basic  research, she took a position as 
a research associate at MIT in 1972. In 1975, 
she went to the University of Illinois–Chicago, 
where she remained until her retirement.

During her career, Pless wrote more than 
100 research papers, authored a widely used 
textbook on coding theory, and had 11 Ph. D. 
students.
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32

Fundamental Theorem of Galois Theory
The Fundamental Theorem of Galois Theory is one of the most elegant 
theorems in mathematics. Look at Figures 32.1 and 32.2. Figure 32.1 
depicts the lattice of subgroups of the group of field automorphisms of 
Q(24 2 , i). The integer along an upward lattice line from a group H1 to 
a group H2 is the index of H1 in H2. Figure 32.2 shows the lattice of 
subfields of Q(24 2, i). The integer along an upward line from a field 
K1 to a field K2 is the degree of K2 over K1. Notice that the lattice in 
Figure 32.2 is the lattice of Figure 32.1 turned upside down. This is 
only one of many relationships between these two lattices. The Funda-
mental Theorem of Galois Theory relates the lattice of subfields of an 
algebraic extension E of a field F to the subgroup structure of the group 

An Introduction to 
Galois Theory

Galois theory is a showpiece of mathematical unification, bringing together 
several different branches of the subject and creating a powerful machine 
for the study of problems of considerable historical and mathematical 
importance.

ian stewart, Galois Theory

}

{e, a, a2, a3, b, ab, a2b, a3b}

e, a  , b, a b

e, a  be, b

{ {

{ {

}

} }

{e}

22 e, a  , ab, a b{ }32

e, a b{ }3e, ab{ }2 e, a  { }2

e, a, a   a2, 3

2

2 2 2 2 2

2 2222

2 2

22

Figure 32.1 Lattice of subgroups of the group of field automorphisms of  
Q(24 2, i), where a: i S i and 24 2 S 2i 24 2, b: i S 2i, and 24 2 S 24 2.
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554 Special Topics

of automorphisms of E that send each element of F to itself. This rela-
tionship was discovered in the process of attempting to solve a polyno-
mial equation f (x) 5 0 by radicals.

Before we can give a precise statement of the Fundamental Theorem 
of Galois Theory, we need some terminology and notation.

Definitions Automorphism, Galois Group, Fixed Field of H 
Let E be an extension field of the field F. An automorphism of E is a 
ring isomorphism from E onto E. The Galois group of E over F, 
Gal(E/F), is the set of all automorphisms of E that take every element 
of F to itself. If H is a subgroup of Gal(E/F ), the set

 E
H

 5 {x [ E | f(x) 5 x for all f [ H}

is called the fixed field of H.

It is easy to show that the set of automorphisms of E forms a group 
under composition. We leave as exercises (Exercises 3 and 5) the veri-
fications that the automorphism group of E fixing F is a subgroup of 
the automorphism group of E and that, for any subgroup H of  
Gal(E/F), the fixed field EH of H is a subfield of E. Be careful not to 
misinterpret Gal(E/F) as something that has to do with factor rings or 
factor groups. It does not.

The following examples will help you assimilate these definitions. In 
each example, we simply indicate how the automorphisms are defined. 
We leave to the reader the verifications that the mappings are indeed 
automorphisms.

 EXAMPLE 1 Consider the extension Q(22) of Q. Since

Q(22) 5 {a 1 b22 | a, b [ Q}

2

2

2

2 2 2 2

2 2

2

2 2 2

2 2

Q

Q(i)Q(√2)

Q(√2, i)

Q(√2, i)

Q((12 i)√2) Q((11 i)√2)

4

4 4
Q(√2)4

Q(i√2)4

Q(i√2)

 Figure 32.2 Lattice of subfields of Q(24 2, i).
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32 | An Introduction to Galois Theory 555

and any automorphism of a field containing Q must act as the identity 
on Q (Exercise 1), an automorphism f of Q(22) is completely deter-
mined by f(22). Thus,

2 5 f(2) 5 f(2222) 5 (f(22))2,

and therefore f(22) 5 622. This proves that the group Gal(Q(22)/Q) 
has two elements, the identity mapping and the mapping that sends a 1 
b22 to a 2 b22. 

 EXAMPLE 2 Consider the extension Q(23 2 ) of Q. An automor-
phism f of Q(23 2 ) is completely determined by f(23 2 ). By an argu-
ment analogous to that in Example 1, we see that f(23 2 ) must be a 
cube root of 2. Since Q(23 2 ) is a subset of the real numbers and 23 2  is 
the only real cube root of 2, we must have f(23 2 ) 5 23 2 . Thus, f is 
the identity automorphism and Gal(Q(23 2 )/Q) has only one element. 
Obviously, the fixed field of Gal(Q(23 2 )/Q) is Q (23 2 ). 

 EXAMPLE 3 Consider the extension Q(24 2 , i) of Q(i). Any auto-
morphism f of Q(24 2 , i) fixing Q(i) is completely determined by  
f(24 2 ). Since

2 5 f(2) 5 f((24 2 )4) 5 (f(24 2 ))4,

we see that f(24 2 ) must be a fourth root of 2. Thus, there are at most 
four possible automorphisms of Q(24 2 , i) fixing Q(i). If we define an 
automorphism a such that a(i) 5 i and a(24 2 ) 5 i24 2 , then a [ 
Gal(Q(24 2 , i)/Q(i)) and a has order 4. Thus, Gal(Q(24 2 , i)/Q(i)) is a 
cyclic group of order 4. The fixed field of {e, a2} (where e is the identity 
automorphism) is Q(22, i). The lattice of subgroups of Gal(Q(24 2 , i)/ 
Q(i)) and the lattice of subfields of Q(24 2 , i) containing Q(i) are shown 
in Figure 32.3. As in Figures 32.1 and 32.2, the integers along the lines 

}{e

}{e, a  2

2

2

}{e, a, a    a2,   3 Q(√2, i)4

Q(√2, i)

Q(i)

2

2

Figure 32.3 Lattice of subgroups of Gal (Q(24 2, i)/Q(i))  
and lattice of subfields of Q(24 2, i) containing Q(i).
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556 Special Topics

of the group lattice represent the index of a subgroup in the group 
above it, and the integers along the lines of the field lattice represent 
the degree of the extension of a field over the field below it. 

 EXAMPLE 4 Consider the extension Q(23, 25) of Q. Since

Q(23, 25) 5 {a 1 b23 1 c25 1 d2325 | a, b, c, d [ Q},

any automorphism f of Q(23, 25) is completely determined by the 
two values f(23) and f(25). This time there are four automorphisms.

 e a b ab

 23 S 23 23 S 223 23 S 23 23 S 223
 25 S 25 25 S 25 25 S 225 25 S 225

Obviously, Gal(Q(23, 25)/Q) is isomorphic to Z2 % Z2. The fixed 
field of {e, a} is Q(25), the fixed field of {e, b} is Q(23), and 
the fixed field of {e, ab} is Q(2325). The lattice of subgroups of 
Gal(Q(23, 25)/Q) and the lattice of subfields of Q(23, 25) are shown 
in Figure 32.4. 

e, a, b, ab

{ }e, b { }e, ab{ }e, a

{ }e 

{ }

222

2 2 2

2

2 2 2

2 2

Q(√5 )

Q(√3,√5 )

Q (√3) Q(√3√5 )

Q

Figure 32.4 Lattice of subgroups of Gal(Q (13, 15)/Q) and lattice of subfields  
of Q (13, 15).

Example 5 is a bit more complicated than our previous examples. In 
particular, the automorphism group is non-Abelian.

 EXAMPLE 5 Direct calculations show that v 5 21/2 1 i23/2 satis-
fies the equations v3 5 1 and v2 1 v 1 1 5 0. Now, consider the 
 extension Q(v, 23 2 ) of Q. We may describe the automorphisms of  
Q(v, 23 2 ) by specifying how they act on v and 23 2 . There are six in all.

    e a b b2 ab ab2

v S v     v S v2  v S v  v S v   v S v2 v S v2

   13 2 S 13 2   13 2 S 13 2   13 2 S v13 2    13 2 S v213 2    13 2 S v213 2   13 2 S v13 2
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32 | An Introduction to Galois Theory 557

Since ab 2 ba, we know that Gal(Q(v, 23 2 )/Q) is isomorphic to S3. 
(See Theorem 7.2.) The lattices of subgroups and subfields are shown 
in Figure 32.5.

e, a, b, b ,ab, ab{ 2}2

{e}

e,  b, b{ 2} e, a{ } e, ab{ } e, ab{ 2}

3 332

3 2 2 2

3

3 3 32

2 2 2

Q

Q(   ,√2)
3ω

Q(   √2)
3ω Q(    √2)

32ωQ(√2)
3

 ωQ(   )

Figure 32.5 Lattice of subgroups of Gal(Q(v, 23 2 )/Q) and lattice  
of subfields of Q(v, 23 2 ), where v 5 21/2 1 i 23/2.

The lattices in Figure 32.5 have been arranged so that each nontrivial 
proper field occupying the same position as some group is the fixed field 
of that group. For instance, Q(v23 2 ) is the fixed field of {e, ab}. 

The preceding examples show that, in certain cases, there is an inti-
mate connection between the lattice of subfields between E and F and 
the lattice of subgroups of Gal(E/F). In general, if E is an extension of F, 
and we let ^ be the lattice of subfields of E containing F and let & be 
the lattice of subgroups of Gal(E/F), then for each K in ^, the group 
Gal(E/K) is in &, and for each H in &, the field EH is in ^. Thus, we 
may define a mapping g: ^ S & by g(K) 5 Gal(E/K) and a mapping  
f : & S ^ by f (H) 5 EH. It is easy to show that if K and L belong to ^ 
and K # L, then g(K) $ g(L). Similarly, if G and H belong to & and 
G # H, then f (G) $ f (H). Thus, f and g are inclusion-reversing map-
pings between ^ and &. We leave it to the reader to show that for any K 
in ^, we have (fg)(K) $ K, and for any G in &, we have (gf )(G) $ G. 
When E is an  arbitrary extension of F, these inclusions may be strict. 
However, when E is a suitably chosen extension of F, the Fundamental 
Theorem of Galois Theory, Theorem 32.1, says that f and g are inverses 
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558 Special Topics

of each other, so that the inclusions are equalities. In particular, f and g 
are inclusion-reversing isomorphisms between the lattices ^ and &. 
A stronger result than that given in Theorem 32.1 is true, but our theo-
rem illustrates the fundamental principles involved. The student is 
 referred to [1, p. 285] for additional details and proofs.

 Theorem 32.1 Fundamental Theorem of Galois Theory

Let F be a field of characteristic 0 or a finite field. If E is the splitting 

field over F for some polynomial in F[x], then the mapping from the 

set of subfields of E containing F to the set of subgroups of Gal(E/F) 
given by K S Gal(E/K) is a one-to-one correspondence. Further-

more, for any subfield K of E containing F,

1.  [E:K] 5 |Gal(E/K)| and [K:F] 5 |Gal(E/F)| / |Gal(E/K)|. [The 

index of Gal(E/K) in Gal(E/F) equals the degree of K over F.]
2.  If K is the splitting field of some polynomial in F[x],  

then Gal(E/K) is a normal subgroup of Gal(E/F) and Gal(K/F) 
is isomorphic to Gal(E/F)/Gal(E/K).

3. K 5 EGal(E/K). [The fixed field of Gal(E/K) is K.]
4.  If H is a subgroup of Gal(E/F), then H 5 Gal(E/E

H
). [The 

 automorphism group of E fixing E
H

 is H.]

Generally speaking, it is much easier to determine a lattice of sub-
groups than a lattice of subfields. For example, it is usually quite  
difficult to determine, directly, how many subfields a given field has, 
and it is often difficult to decide whether or not two extensions are 
the same. The corresponding questions about groups are much more 
tractable. Hence, the Fundamental Theorem of Galois Theory can be 
a great labor-saving device. Here is an illustration. [Recall from 
Chapter 20 that if f (x) [ F[x] and the zeros of f (x) in some extension 
of F are a1, a2, . . . , an, then F(a1, a2, . . . , an) is the splitting field of 
f (x) over F.]

 EXAMPLE 6 Let v 5 cos(2p/7) 1 i sin(2p/7), so that v7 5 1, and 
consider the field Q(v). How many subfields does it have and what are 
they? First, observe that Q(v) is the splitting field of x7 2 1 over Q, so 
that we may apply the Fundamental Theorem of Galois Theory. A sim-
ple calculation shows that the automorphism f that sends v to v3 has 
order 6. Thus,

[Q(v):Q] 5 |Gal(Q(v)/Q)| $ 6.
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32 | An Introduction to Galois Theory 559

Also, since

x7 2 1 5 (x 2 1)(x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1)

and v is a zero of x7 2 1, we see that

|Gal(Q(v)/Q)| 5 [Q(v):Q] # 6.

Thus, Gal(Q(v)/Q) is a cyclic group of order 6. So, the lattice of sub-
groups of Gal(Q(v)/Q) is trivial to compute. See Figure 32.6.

2 3

3 2

φ

2 3

k l

φk l

{

φk l

e}

Figure 32.6 Lattice of subgroups of Gal(Q(v)/Q),  
where v 5 cos(2p/7) 1 i sin(2p/7).

This means that Q(v) contains exactly two proper extensions of Q: 
one of degree 3 corresponding to the fixed field of kf3l and one of de-
gree 2 corresponding to the fixed field of kf2l. To find the fixed field of 
kf3l, we must find a member of Q(v) that is not in Q and that is fixed 
by f3. Experimenting with various possibilities leads us to discover 
that v 1 v21 is fixed by f3 (see Exercise 9), and it follows that  
Q , Q(v 1 v21) # Q(v)kf3l. Since [Q(v)kf3l:Q] 5 3 and [Q(v 1 
v21):Q] divides [Q(v)kf3l:Q], we see that Q(v 1 v21) 5 Q(v)kf3l.  
A similar argument shows that Q(v3 1 v5 1 v6) is the fixed field  
of kf2l. Thus, we have found all subfields of Q(v). 

 EXAMPLE 7 Consider the extension E 5 GF(pn) of F 5 GF(p). Let 
us determine Gal(E / F). By Corollary 2 of Theorem 22.2, E has the form 
F(b) for some b where b is the zero of an irreducible polynomial p(x) of 
the form xn 1 an21x

n21 1 ? ? ? 1 a1x  1 a0, where an21, an22, . . . , a0 be-
long to F. Since any field automorphism f of E must take 1 to itself, it 
follows that f acts as the identity on F. Thus, p(b) 5 0 implies that 
p(f(b)) 5 0. And because p(x) has at most n zeros, we know that there 
are at most n possibilities for f(b). On the other hand, by Exercise 49 in 
Chapter 13, we know that the mapping s (a) 5 ap for all a [ E is an 
 automorphism of E, and it follows from the fact that E* is cyclic 
(Theorem 22.2) that the group ksl has order n (see Exercise 11 in 
Chapter 22). Thus, Gal(GF(pn)/GF(p)) < Zn. 
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560 Special Topics

Solvability of Polynomials by Radicals
For Galois, the elegant correspondence between groups and fields 
given by Theorem 32.1 was only a means to an end. Galois sought to 
solve a problem that had stymied mathematicians for centuries.  
Methods for solving linear and quadratic equations were known thou-
sands of years ago (the quadratic formula). In the 16th century, Ital-
ian mathematicians developed formulas for solving any third- or 
fourth-degree equation. Their formulas involved only the operations 
of addition, subtraction, multiplication, division, and extraction of 
roots (radicals). For example, the equation

x3 1 bx 1 c 5 0

has the three solutions

A 1 B,
2(A 1 B)/2 1 (A 2 B)2�3 /2,
2(A 1 B)/2 2 (A 2 B)2�3 /2,

where

A � 3B
�c
2

� A
b3

27
�

c2

4
  and  B � 3B

�c
2

� A
b3

27
�

c2

4
.

The formulas for the general cubic x3 1 ax2 1 bx 1 c 5 0 and the gen-
eral quartic (fourth-degree polynomial) are even more complicated, but 
nevertheless can be given in terms of radicals of rational expressions of 
the coefficients.

Both Abel and Galois proved that there is no general solution of a 
fifth-degree equation by radicals. In particular, there is no “quintic for-
mula.” Before discussing Galois’s method, which provided a group 
theoretic criterion for the solution of an equation by radicals and led to 
the modern-day Galois theory, we need a few definitions.

Definition Solvable by Radicals
Let F be a field, and let f (x) [ F[x]. We say that f (x) is solvable by radi-

cals over F if f (x) splits in some extension F(a1, a2, . . . , an
) of F and 

there exist positive integers k1, . . . , kn
 such that a1

k1 [ F and a
i
ki [ 

F(a1, . . . , ai21) for i 5 2, . . . , n.

So, a polynomial in F[x] is solvable by radicals if we can obtain all 
of its zeros by adjoining nth roots (for various n) to F. In other words, 
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32 | An Introduction to Galois Theory 561

each zero of the polynomial can be written as an expression (usually a 
messy one) involving elements of F combined by the operations of ad-
dition, subtraction, multiplication, division, and extraction of roots.

 EXAMPLE 8 Let v 5 cos( 2p/8) 1 i sin(2p/8) 522/2 1 i22/2. 
Then x8 2 3 splits in Q(v, 28 3 ), v8 [ Q, and (28 3 )8 [ Q , Q(v). 
Thus, x8 2 3 is solvable by radicals over Q. Although the zeros of  
x8 2 3 are  most conveniently written in the form 28 3 , 28 3  v, 28 3   
v2, . . . , 28 3  v7, the notion of solvable by radicals is best illustrated by 
writing them in the form

 6 28 3 , 6 2� 128 3 , 6 28 3  (22
2 1 2�122

2 ),

 6 28 3 (22
2 2 2�122

2 ). 

Thus, the problem of solving a polynomial equation for its zeros can 
be transformed into a problem about field extensions. At the same time, 
we can use the Fundamental Theorem of Galois Theory to transform a 
problem about field extensions into a problem about groups. This is ex-
actly how Galois showed that there are fifth-degree polynomials that 
cannot be solved by radicals, and this is exactly how we will do it. Be-
fore giving an example of such a polynomial, we need some additional 
group theory.

Definition Solvable Group
We say that a group G is solvable if G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , H
k
 5 G,

where, for each 0 # i , k, Hi is normal in H
i11 and H

i11/Hi
 is Abelian.

Obviously, Abelian groups are solvable. So are the dihedral groups 
and any group whose order has the form pn, where p is a prime  (see 
Exercises 28 and 29). The monumental Feit–Thompson Theorem (see 
Chapter 25) says that every group of odd order is solvable. In a certain 
sense, solvable groups are almost Abelian. On the other hand, it 
 follows directly from the definitions that any non-Abelian simple 
group is not solvable. In particular, A5 is not solvable. It follows from 
Exercise 21 in Chapter 25 that S5 is not solvable. Our goal is to con-
nect the notion of solvability of polynomials by radicals to that of 
solvable groups. The next theorem is a step in this direction.
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562 Special Topics

 Theorem 32.2 Splitting Field of xn 2 a

Let F be a field of characteristic 0 and let a [ F. If E is the splitting 

field of xn 2 a over F, then the Galois group Gal(E/F) is solvable.

PROOF We first handle the case where F contains a primitive nth root 
of unity v. Let b be a zero of xn 2 a in E. Then the zeros of xn 2 a are  
b, vb, v2b, . . . , vn21b, and therefore E 5 F(b). In this case, we claim 
that Gal(E/F) is Abelian and hence solvable. To see this, observe that 
any automorphism in Gal(E/F) is completely determined by its action 
on b. Also, since b is a zero of xn 2 a, we know that any element of 
Gal(E/F) sends b to another zero of xn 2 a. That is, any element 
of Gal(E/F) takes b to vib for some i. Let f and s be two elements 
of Gal(E/F). Then, since v [ F, f and s fix v and f(b) 5 v jb and 
s (b) 5 v kb for some j and k. Thus,

(sf)(b) 5 s (f(b)) 5 s (v jb) 5 s (v j)s (b) 5 v jv kb 5 v j1kb,

whereas

(fs)(b) 5 f(s(b)) 5 f(v kb) 5 f(v k)f(b) 5 v kv jb 5 v k1jb,

so that sf and fs agree on b and fix the elements of F. This shows 
that sf 5 fs, and therefore Gal(E/F) is Abelian.

Now suppose that F does not contain a primitive nth root of unity. 
Let v be a primitive nth root of unity and let b be a zero of xn 2 a in E. 
The case where a 5 0 is trivial, so we may assume that b ? 0. Since  
vb is also a zero of xn 2 a, we know that both b and vb belong to E, 
and therefore v 5 vb/b is in E as well. Thus, F(v) is contained in E, 
and F(v) is the splitting field of xn 2 1 over F. Analogously to the 
case above, for any automorphisms f and s in Gal(F(v)/F) we have 
f(v) 5 v j for some j and s (v) 5 v k for some k. Then,

(sf)(v) 5 s (f(v)) 5 s (v j) 5 (s (v)) j 5 (v k) j 
 5 (v j) k 5 (f(v)) k 5 f(v k) 5 f(s (v)) 5 (fs)(v).

Since elements of Gal(F(v)/F) are completely determined by their ac-
tion on v, this shows that Gal(F(v)/F) is Abelian.

Because E is the splitting field of xn 2 a over F(v) and F(v) con-
tains a primitive nth root of unity, we know from the case we have al-
ready done that Gal(E/F(v)) is Abelian and, by Part 2 of Theorem 32.1, 
the series

{e} # Gal(E/F(v)) # Gal(E/F)
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32 | An Introduction to Galois Theory 563

is a normal series. Finally, since both Gal(E/F(v)) and

Gal(E/F )/Gal(E/F(v)) < Gal(F(v)/F)

are Abelian, Gal(E/F) is solvable. 

To reach our main result about polynomials that are solvable by rad-
icals, we need two important facts about solvable groups.

 Theorem 32.3 Factor Group of a Solvable Group Is Solvable

A factor group of a solvable group is solvable.

PROOF Suppose that G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , Hk 5 G,

where, for each 0 # i , k, Hi is normal in Hi11 and Hi11/Hi is Abelian. 
If N is any normal subgroup of G, then

{e} 5 H0N/N , H1N/N , H2N/N , ? ? ? , HkN/N 5 G/N

is the requisite series of subgroups that guarantees that G/N is solvable. 
(See Exercise 31.) 

 Theorem 32.4 N and G/N Solvable Implies G Is Solvable

Let N be a normal subgroup of a group G. If both N and G/N are 

solvable, then G is solvable.

PROOF Let a series of subgroups of N with Abelian factors be

N0 , N1 , ? ? ? , Nt 5 N

and let a series of subgroups of G/N with Abelian factors be

N/N 5 H0 /N , H1/N , ? ? ? , Hs /N 5 G/N.

Then the series

N0 , N1 , ? ? ? , Nt 5 H0 , H1 , ? ? ? , Hs 5 G

has Abelian factors (see Exercise 33). 

We are now able to make the critical connection between solvability 
of polynomials by radicals and solvable groups.
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564 Special Topics

 Theorem 32.5 (Galois) Solvable by Radicals Implies Solvable Group

Let F be a field of characteristic 0 and let f(x) [ F[x]. Suppose that 

f(x) splits in F(a1, a2, . . . , at
), where a1

n1 [ F and a
i
ni [ F(a1, . . . , 

a
i21) for i 5 2, . . . , t. Let E be the splitting field for f(x) over F in 

F(a1, a2, . . . , at
). Then the Galois group Gal(E/F) is solvable.

PROOF We use induction on t. For the case t 5 1, we have F # E # 
F(a1). Let a 5 a1

n1 and let L be a splitting field of xn1 2 a over F. Then F 
# E # L, and both E and L are splitting fields of polynomials over F. 
By part 2 of Theorem 32.1, Gal(E/F) < Gal(L/F)/Gal(L/E). It follows 
from Theorem 32.2 that Gal(L/F) is solvable, and from Theorem 32.3 
we know that Gal(L/F)/Gal(L/E) is solvable. Thus, Gal(E/F) is solvable.

Now suppose t . 1. Let a 5 a1
n1 [ F, let L be a splitting field of  

xn1 2 a over E, and let K # L be the splitting field of xn1 2 a over F. 
Then L is a splitting field of (xn1 2 a) f (x) over F, and L is a splitting 
field of f (x) over K. Since F(a1) # K, we know that f (x) splits in  
K(a2, . . . , at), so the induction hypothesis implies that Gal(L/K) is 
solvable. Also, Theorem 32.2 asserts that Gal(K/F) is solvable, which, 
from Theorem 32.1, tells us that Gal(L/F)/Gal(L/K) is solvable. Hence, 
Theorem 32.4 implies that Gal(L/F) is solvable. So, by part 2 of Theo-
rem 32.1 and Theorem 32.3, we know that the factor group  
Gal(L/F)/Gal(L/E) < Gal(E/F) is solvable. 

It is worth remarking that the converse of Theorem 32.3 is true also; 
that is, if E is the splitting field of a polynomial f (x) over a field F of 
characteristic 0 and Gal(E/F) is solvable, then f (x) is solvable by radi-
cals over F.

It is known that every finite group is a Galois group over some field. 
However, one of the major unsolved problems in algebra, first posed  
by Emmy Noether, is determining which finite groups can occur as 
 Galois groups over Q. Many people suspect that the answer is “all of 
them.” It is known that every solvable group is a Galois group over Q. 
John Thompson has recently proved that certain kinds of simple 
groups, including the Monster, are Galois groups over Q. The article by 
Ian Stewart listed among this chapter’s suggested readings provides 
more information on this topic.

Insolvability of a Quintic
We will finish our introduction to Galois theory by explicitly exhibit-
ing a polynomial that has integer coefficients and that is not solvable 
by radicals over Q.
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32 | An Introduction to Galois Theory 565

Consider g(x) 5 3x5 2 15x 1 5. By Eisenstein’s Criterion (Theorem 
17.4), g(x) is irreducible over Q. Since g(x) is continuous and g(22) 5 
261 and g(21) 5 17, we know that g(x) has a real zero between 22 
and 21. A similar analysis shows that g(x) also has real zeros between 
0 and 1 and between 1 and 2.

Each of these real zeros has multiplicity 1, as can be verified by long 
division or by appealing to Theorem 20.6. Furthermore, g(x) has no 
more than three real zeros, because Rolle’s Theorem from calculus 
guarantees that between each pair of real zeros of g(x) there must be a 
zero of g9(x) 5 15x4 2 15. So, for g(x) to have four real zeros, g9(x) 
would have to have three real zeros, and it does not. Thus, the other two 
zeros of g(x) are nonreal complex numbers, say, a 1 bi and a 2 bi. 
(See Exercise 65 in Chapter 15.)

Now, let’s denote the five zeros of g(x) by a1, a2, a3, a4, a5. Since any 
automorphism of K 5 Q(a1, a2, a3, a4, a5) is completely determined by its 
action on the a’s and must permute the a’s, we know that Gal(K/Q) is iso-
morphic to a subgroup of S5, the symmetric group on five symbols. Since 
a1 is a zero of an irreducible polynomial of degree 5 over Q, we know that 
[Q(a1):Q] 5 5, and therefore 5 divides [K:Q]. Thus, the Fundamental 
Theorem of Galois Theory tells us that 5 also divides |Gal(K/Q)|. So, by 
Cauchy’s Theorem (corollary to Theorem 24.3), we may conclude that 
Gal(K/Q) has an element of order 5. Since the only elements in S5 of or-
der 5 are the 5-cycles, we know that Gal(K/Q) contains a 5-cycle. The 
mapping from C to C, sending a 1 bi to a 2 bi, is also an element of 
Gal(K/Q). Since this mapping fixes the three real zeros and interchanges 
the two complex zeros of g(x), we know that Gal(K/Q) contains a 2- cycle. 
But, the only subgroup of S5 that contains both a 5-cycle and a 2-cycle is 
S5. (See Exercise 25 in Chapter 25.) So, Gal(K/Q) is isomorphic to S5. 
 Finally, since S5 is not solvable (see Exercise 27), we have succeeded in 
exhibiting a fifth-degree polynomial that is not solvable by radicals.

Exercises

Seeing much, suffering much, and studying much are the three pillars 
of learning.

benjamin disraeli

  1. Let E be an extension field of Q. Show that any automorphism of E 
acts as the identity on Q. (This exercise is referred to in this chapter.)

  2. Determine the group of field automorphisms of GF(4).
  3. Let E be an extension field of the field F. Show that the automor-

phism group of E fixing F is indeed a group. (This exercise is referred 
to in this chapter.)
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566 Special Topics

  4. Given that the automorphism group of Q(22, 25, 27) is isomor-
phic to Z2 % Z2 % Z2, determine the number of subfields of Q(22, 
25, 27) that have degree 4 over Q.

  5. Let E be an extension field of a field F and let H be a subgroup of 
Gal(E/F). Show that the fixed field of H is indeed a field. (This 
 exercise is referred to in this chapter.)

  6. Let E be the splitting field of x4 1 1 over Q. Find Gal(E/Q). Find 
all subfields of E. Find the automorphisms of E that have fixed 
fields Q(22), Q(2�  2 ), and Q(i). Is there an automorphism of E 
whose fixed field is Q?

  7. Let f (x) [ F[x] and let the zeros of f (x) be a1, a2, . . . , an. If K 5 
F(a1, a2, . . . , an), show that Gal(K/F ) is isomorphic to a group of 
permutations of the ai’s. [When K is the splitting field of f (x) over F, 
the group Gal(K/F ) is called the Galois group of f (x).]

  8. Show that the Galois group of a polynomial of degree n has order  
dividing n!.

  9. Referring to Example 6, show that the automorphism f has order 6. 
Show that v 1 v21 is fixed by f3 and v3 1 v5 1 v6 is fixed by f2. 
(This exercise is referred to in this chapter.)

 10. Let E 5 Q(22, 25). What is the order of the group Gal(E/Q)? 
What is the order of Gal(Q(210)/Q)?

 11. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to  
Z20 % Z2, determine the number of subfields L of E there are such 
that L contains F and 
a. [L:F ] 5 4.
b. [L:F ] 5 25.
c. Gal(E/L) is isomorphic to Z5.

 12. Determine the Galois group of x2 2 10x 1 21 over Q. (See Exercise 7 
for the definition).

 13. Determine the Galois group of x2 1 9 over R. (See Exercise 7 for 
the definition).

 14. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to D6, 
prove that there are exactly three fields L such that E $ L $ F and 
[E:L] 5 6.

 15. Suppose that E is the splitting field for some polynomial over 
GF(p). If Gal(E/GF(p)) 5 p6, how many fields are there strictly 
between E and GF(p)?

 16. Let p be a prime. Suppose that |Gal(E/F )| 5 p2. Draw all possible 
subfield lattices for fields between E and F.
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 17. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to A4, 
show that there is no subfield K of E such that [K:F ] 5 2.

 18. Determine the Galois group of x3 2 1 over Q and x3 2 2 over Q. 
(See Exercise 7 for the definition.)

 19. Suppose that K is the splitting field of some polynomial over a field  
F of characteristic 0. If [K:F ] 5 p2q, where p and q are distinct 
primes, show that K has subfields L1, L2, and L3 such that [K:L1] 5 p, 
[K:L2] 5 p2, and [K:L3] 5 q.

 20. Suppose that E is the splitting field of some polynomial over a field F 
of characteristic 0. If Gal(E/F ) is isomorphic to D5, draw the subfield 
lattice for the fields between E and F.

 21. Suppose that F , K , E are fields and E is the splitting field of 
some polynomial in F[x]. Show, by means of an example, that K 
need not be the splitting field of some polynomial in F[x].

 22. Suppose that E is the splitting field of some polynomial over a field 
F of characteristic 0. If [E:F ] is finite, show that there is only a  
finite number of fields between E and F.

 23. Suppose that E is the splitting field of some polynomial over a field 
F of characteristic 0. If Gal(E/F ) is an Abelian group of order 10, 
draw the subfield lattice for the fields between E and F.

 24. Let v be a nonreal complex number such that v5 5 1. If f is the 
 automorphism of Q(v) that carries v to v4, find the fixed field of kfl.

 25. Determine the isomorphism class of the group Gal(GF(64)/GF(2)).
 26. Determine the isomorphism class of the group Gal(GF(729)/GF(9)).

Exercises 27, 28, and 29 are referred to in this chapter.

 27. Show that S5 is not solvable.
 28. Show that the dihedral groups are solvable.
 29. Show that a group of order pn, where p is prime, is solvable.
 30. Show that Sn is solvable when n # 4.
 31. Complete the proof of Theorem 32.3 by showing that the given 

 series of groups satisfies the definition for solvability.
 32. Show that a subgroup of a solvable group is solvable.
 33. Let N be a normal subgroup of G and let K/N be a normal sub-

group of G/N. Prove that K is a normal subgroup of G. (This exer-
cise is referred to in this chapter.)

 34. Show that any automorphism of GF( pn) acts as the identity on 
GF( p).
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Reference
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Suggested Readings

Tony Rothman, “The Short Life of Évariste Galois,” Scientific American, 
April (1982): 136–149.

This article gives an elementary discussion of Galois’s proof that the gen-
eral fifth-degree equation cannot be solved by radicals. The article also 
goes into detail about Galois’s controversial life and death. In this regard, 
Rothman refutes several accounts given by other Galois biographers.

Ian Stewart, “The Duellist and the Monster,” Nature 317 (1985): 12–13.
This nontechnical article discusses recent work of John Thompson per-
taining to the question of “which groups can occur as Galois groups.”

Suggested Website

http://www-groups.dcs.st-and.ac.uk/~history/

Find more information about the history of quadratic, cubic, and quartic 
equations at this site.
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Philip Hall

He [Hall] was preeminent as a group theo-
rist and made many fundamental discover-
ies; the conspicuous growth of interest 
in group theory in the 20th century owes 
much to him.

j. e. roseblade

Philip Hall was born on April 11, 1904, in 
London. Abandoned by his father shortly 
after birth, Hall was raised by his mother, a 
dressmaker. He demonstrated academic 
prowess early by winning a scholarship to 
Christ’s Hospital, where he had several out-
standing mathematics teachers. At Christ’s 
Hospital, Hall won a medal for the best 
English essay, the gold medal in mathemat-
ics, and a scholarship to King’s College, 
Cambridge.

Although abstract algebra was a field ne-
glected at King’s College, Hall studied 
Burnside’s book Theory of Groups and some 
of Burnside’s later papers. After graduating in 
1925, he stayed on at King’s College for fur-
ther study and was elected to a fellowship in 
1927. That same year, Hall discovered a 
major “Sylow-like” theorem about solvable 
groups: If a solvable group has order mn, 
where m and n are relatively prime, then 
every subgroup whose order divides m is con-
tained in a group of order m and all subgroups 
of order m are conjugate. Over the next three 
decades, Hall developed a general theory of 

finite solvable groups that had a profound in-
fluence on John Thompson’s spectacular 
achievements of the 1960s. In the 1930s, Hall 
also developed a general theory of groups of 
prime-power order that has become a founda-
tion of modern finite group theory. In addi-
tion to his fundamental contributions to finite 
groups, Hall wrote many seminal papers on 
infinite groups.

Among the concepts that have Hall’s name 
attached to them are Hall subgroups, Hall 
 algebras, Hall–Littlewood polynomials, Hall 
divisors, the marriage theorem from graph 
theory, and the Hall commutator collecting 
process. Beyond his own discoveries, Hall 
had an enormous influence on algebra  
through his research students. No fewer than 
one dozen have become eminent mathemati-
cians in their own right. Hall died on 
December 30, 1982.

To find more information about Hall, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Cyclotomic Extensions

“. . . To regard old problems from a new angle requires creative imagination 
and marks real advances in science.”

albert einstein

33

Motivation
For the culminating chapter of this book, it is fitting to choose a topic 
that ties together results about groups, rings, fields, geometric construc-
tions, and the history of mathematics. The so-called cyclotomic exten-
sions is such a topic. We begin with the history.

The ancient Greeks knew how to construct regular polygons of 3, 4, 
5, 6, 8, 10, 12, 15, and 16 sides with a straightedge and compass. And, 
given a construction of a regular n-gon, it is easy to construct a regular 
2n-gon. The Greeks attempted to fill in the gaps (7, 9, 11, 13, 14,   
17, . . .) but failed. More than 2200 years passed before anyone was 
able to advance our knowledge of this problem beyond that of the 
Greeks. Incredibly, Gauss, at age 19, showed that a regular 17-gon is 
constructible, and shortly thereafter he completely solved the problem 
of exactly which n-gons are constructible. It was this discovery of the 
constructibility of the 17-sided regular polygon that induced Gauss to 
dedicate his life to the study of mathematics. Gauss was so proud of 
this accomplishment that he requested that a regular 17-sided polygon 
be engraved on his tombstone.

Gauss was led to his discovery of the constructible polygons through 
his investigation of the factorization of polynomials of the form xn 2 1 
over Q. In this chapter, we examine the factors of xn 2 1 and show how 
Galois theory can be used to determine which regular n-gons are con-
structible with a straightedge and compass. The irreducible factors of  
xn 2 1 are important in number theory and combinatorics.
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Cyclotomic Polynomials
Recall from Example 2 in Chapter 16 that the complex zeros of xn 2 1 
are 1, v 5 cos(2p/n) 1 i sin(2p/n), v2, v3, . . . , vn21. Thus, the split-
ting field of xn 2 1 over Q is Q(v). This field is called the nth cyclo-
tomic extension of Q, and the irreducible factors of xn 2 1 over Q are 
called the cyclotomic polynomials.

Since v 5 cos(2p/n)1 i sin(2p/n) generates a cyclic group of order n 
under multiplication, we know from Corollary 3 of Theorem 4.2 that the 
genera tors of kvl are the elements of the form vk, where 1 # k # n and 
gcd(n, k) 5 1. These generators are called the primitive nth roots of 
unity. Recalling that we use f(n) to denote the number of positive inte-
gers less than or equal to n and relatively prime to n, we see that for 
each positive integer n there are precisely f(n) primitive nth roots  
of unity. The polynomials whose zeros are the f(n) primitive nth roots 
of unity have a special name.

Definition Cyclotomic Polynomial
For any positive integer n, let v1, v2, . . . , vf(n) denote the primitive nth 
roots of unity. The nth cyclotomic polynomial over Q is the polynomial 
F

n
(x) 5 (x 2 v1)(x 2 v2) ? ? ? (x 2 vf(n)).

In particular, note that Fn(x) is monic and has degree f(n). In 
 Theorem 33.2 we will prove that Fn(x) has integer coefficients, and in 
Theorem 33.3 we will prove that Fn(x) is irreducible over Z.

 EXAMPLE 1 F1(x) 5 x 2 1, since 1 is the only zero of x 2 1. F2(x) 5 
x 1 1, since the zeros of x 2 2 1 are 1 and 21, and 21 is the only primitive 
root. F3(x) 5 (x 2 v)(x 2 v2), where v 5 cos(2p/3) 1 i sin(2p/3) 5 (21 1  
i23)/2, and direct calculations show that F3(x) 5 x2 1 x 1 1. Since  
the zeros of x4 2 1 are 61 and 6i and only i and 2i are primitive, F4(x) 5 
(x 2 i)(x 1 i) 5 x2 1 1. 

In practice, one does not use the definition of Fn(x) to compute it. 
Instead, one uses the formulas given in the exercises and makes recur-
sive use of the following result.

 Theorem 33.1

For every positive integer n, xn 2 1 5 P
d|nF

d
(x), where the product 

runs over all positive divisors d of n.
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572 Special Topics

Before proving this theorem, let us be sure that the statement  
is clear. For n 5 6, for instance, the theorem asserts that x6 2 1 5  
F1(x)F2(x)F3(x)F6(x), since 1, 2, 3, and 6 are the positive divisors of 6.

PROOF Since both polynomials in the statement are monic, it suffices 
to show that they have the same zeros and that all zeros have multi- 
plicity 1. Let v 5 cos(2p/n) 1 i sin(2p/n). Then kvl is a cyclic group of  
order n, and kvl contains all the nth roots of unity. From Theorem 4.3 we 
know that for each j, |v j| divides n so that (x 2 v j) appears as a factor in 
F|v j|(x). On the other hand, if x 2 a is a linear factor of Fd(x) for some 
divisor d of n, then ad 5 1, and therefore an 5 1. Thus, x 2 a is a factor 
of xn 2 1. Finally, since no zero of xn 2 1 can be a zero of Fd(x) for two 
different d’s, the result is proved. 

Before we illustrate how Theorem 33.1 can be used to calculate 
Fn(x) recursively, we state an important consequence of the theorem.

 Theorem 33.2

For every positive integer n, F
n
(x) has integer coefficients.

PROOF The case n 5 1 is trivial. By induction, we may assume that 
g(x) 5 P

d6n
d|n Fd (x) has integer coefficients. From Theorem 33.1 we

know that xn 2 1 5 Fn(x)g(x), and, because g(x) is monic, we may 
carry out the division in Z[x] (see Exercise 49 in Chapter 16). Thus, 
Fn(x) [ Z[x]. 

Now let us do some calculations. If p is a prime, we have from The-
orem 33.1 that x p 2 1 5 F1(x)Fp(x) 5 (x 2 1)Fp(x), so that  
Fp(x) 5 (xp 2 1)/(x 2 1) 5 xp21 1 xp22 1 ? ? ? 1 x 1 1. From Theo-
rem 33.1 we have

x6 2 1 5 F1(x)F2(x)F3(x)F6(x),

so that F6(x) 5 (x6 2 1)/((x 2 1)(x 1 1)(x2 1 x 1 1)). So, by long  
division, F6(x) 5 x2 2 x 1 1. Similarly, F10(x) 5 (x10 2 1)/ 
((x 2 1)(x 1 1)(x4 1 x3 1 x2 1 x 1 1)) 5 x4 2 x3 1 x2 2 x 1 1.

The exercises provide shortcuts that often make long division unnec-
essary. The values of Fn(x) for all n up to 15 are shown in  Table 33.1. 
The software for the computer exercises provides the values for Fn(x) 
for all values of n up to 1000. Judging from Table 33.1, one might be 
led to conjecture that 1 and 21 are the only nonzero coefficients of the 
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33 | Cyclotomic Extensions 573

 cyclotomic polynomials. However, it has been shown that every integer 
is a coefficient of some cyclotomic polynomial.

The next theorem reveals why the cyclotomic polynomials are  
important.

 Theorem 33.3 (Gauss)

The cyclotomic polynomials F
n
(x) are irreducible over Z.

PROOF Let f (x) [ Z[x] be a monic irreducible factor of Fn(x). 
 Because Fn(x) is monic and has no multiple zeros, it suffices to show 
that every zero of Fn(x) is a zero of f (x).

Since Fn(x) divides xn 2 1 in Z[x], we may write xn 2 1 5 f (x)g(x), 
where g(x) [ Z[x]. Let v be a primitive nth root of unity that is a zero 
of f (x). Then f (x) is the minimal polynomial for v over Q. Let p be any 
prime that does not divide n. Then, by Corollary 3 of Theorem 4.2,  
v p is also a primitive nth root of unity, and therefore 0 5 (v p)n 2 1 5 
f (v p)g(v p), and so f (v p) 5 0 or g(v p) 5 0. Suppose f (v p) 2 0. Then 
g(v p) 5 0, and so v is a zero of g(xp). Thus, from Theorem 21.3, f (x) 
divides g(xp) in Q[x]. Since f (x) is monic, f (x) actually divides g(xp) 
in Z[x] (see Exercise 49 in Chapter 16). Say g(xp) 5 f (x)h(x), where 
h(x) [ Z[x]. Now let g(x), f (x), and h(x) denote the polynomials in 
Zp[x] obtained from g(x), f (x), and h(x), respectively, by reducing 
each coefficient modulo p. Since this reduction process is a ring ho-
momorphism from Z[x] to Z p[x] (see Exercise 11 in Chapter 16), we 

Table 33.1 The Cyclotomic Polynomials Fn(x) up to n 5 15

 n Fn(x)

 1 x 2 1
 2 x 1 1
 3 x2 1 x 1 1
 4 x2 1 1
 5 x4 1 x3 1 x2 1 x 1 1
 6 x2 2 x 1 1
 7 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 8 x4 1 1
 9 x6 1 x3 1 1
 10 x4 2 x3 1 x2 2 x 1 1
 11 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 12 x4 2 x2 1 1
 13 x12 1 x11 1 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 14 x6 2 x5 1 x4 2 x3 1 x2 2 x 1 1
 15 x8 2 x7 1 x5 2 x4 1 x3 2 x 1 1
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574 Special Topics

have g(x p) 5 f (x)h(x) in Z p[x]. From Exercise 33 in Chapter 16 and 
Corollary 5 of Theorem 7.1, we then have (g(x))p 5 g(x p) 5 f (x)h(x), 
and since Z p[x] is a unique factorization domain, it follows that g(x) 
and f (x) have an irreducible factor in Zp[x] in common; call it m(x). 
Thus, we may write f (x) 5 k1(x)m(x) and g(x) 5 k2(x)m(x), where 
k1(x), k2(x) [ Zp[x]. Then, viewing xn 2 1 as a member of Zp[x], 
we have xn 2 1 5 f (x)g(x) 5 k1(x)k2(x)(m(x))2. In particular, xn 2 1 
has a multiple zero in some extension of Zp. But because p does not 
 divide n, the derivative nx n21 of xn 2 1 is not 0, and so nx n21 and x n 2 1 
do not have a common factor of positive degree in Zp[x]. Since this 
contradicts Theorem 20.5, we must have f (v p) 5 0.

We reformulate what we have thus far proved as follows: If b is 
any primitive nth root of unity that is a zero of f (x) and p is any prime 
that does not divide n, then b p is a zero of f (x). Now let k be any inte-
ger between 1 and n that is relatively prime to n. Then we can write 
k 5 p1 p2 ? ? ? pt, where each pi is a prime that does not divide n (repeti-
tions are permitted). It follows then that each of v, v p1, (v p1) p2, . . . , 
(v p1 p2???pt–1) pt 5 vk is a zero of f (x). Since every zero of Fn(x) has the 
form v k, where k is between 1 and n and is relatively prime to n, we 
have proved that every zero of Fn(x) is a zero of f (x). This completes 
the proof. 

Of course, Theorems 33.3 and 33.1 give us the factorization of  
xn 2 1 as a product of irreducible polynomials over Q. But Theorem 33.1 
is also useful for finding the irreducible factorization of xn 2 1 over Zp. 
The next example provides an illustration. Irreducible factors of xn 2 1 
over Zp are used to construct error-correcting codes.

 EXAMPLE 2 We determine the irreducible factorization of x6 2 1 over 
Z2 and Z3. From Table 33.1, we have x6 2 1 5 (x 2 1)(x 1 1)(x2 1  
x 1 1)(x2 2 x 1 1). Taking all the coefficients on both sides mod 2, we 
obtain the same expression, but we must check that these factors are ir-
reducible over Z2. Since x2 1 x 1 1 has no zeros in Z2, it is irreducible 
over Z2 (see Theorem 17.1). Finally, since 21 5 1 in Z2, we have the 
 irreducible factorization x6 2 1 5 (x 1 1)2(x2 1 x 1 1)2. Over Z3,  
we  again start with the factorization x6 2 1 5 (x 2 1)(x 1 1)(x2 1  
x 1 1)(x2 2 x 1 1) over Z and view the coefficients mod 3. Then 1 is  
a zero of x2 1 x 1 1 in Z3, and by long division we obtain x2 1 x 1 1 5  
(x 2 1)(x 1 2) 5 (x 1 2)2. Similarly, x2 2 x 1 1 5 (x 2 2)(x 1 1) 5  
(x 1 1)2. So, the irreducible factorization of x6 2 1 over Z3 is (x 1 1)3 ? 

(x 1 2)3. 

We next determine the Galois group of the cyclotomic extensions of Q.
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33 | Cyclotomic Extensions 575

 Theorem 33.4  

Let v be a primitive nth root of unity. Then Gal(Q(v)/Q) < U(n).

PROOF Since 1, v, v2, . . . , v n21 are all the nth roots of unity, Q(v) 
is the splitting field of x n 2 1 over Q. For each k in U(n), v k is a primi-
tive nth root of unity, and by the lemma preceding Theorem 20.4, there 
is a field automorphism of Q(v), which we denote by fk, that carries v 
to v k and acts as the identity on Q. Moreover, these are all the auto-
morphisms of Q(v), since any automorphism must map a primitive nth 
root of unity to a primitive nth root of unity. Next, observe that for  
every r, s [ U(n),

(frfs)(v) 5 fr(v
s) 5 (fr(v))s 5 (v r)s 5 v rs 5 frs(v).

This shows that the mapping from U(n) onto Gal(Q(v)/Q) given by  
k S f k is a group homomorphism. Clearly, the mapping is an isomor-
phism, since v r 2 v s when r, s [ U(n) and r 2 s. 

The next example uses Theorem 33.4 and the results of Chapter 8 to 
demonstrate how to determine the Galois group of cyclotomic extensions.

 EXAMPLE 3 Let a 5 cos(2p/9) 1 i sin(2p/9) and let b 5 cos(2p/15) 
1 i sin(2p/15). Then

Gal(Q(a)/Q) < U(9) < Z6

and

 Gal(Q(b)/Q) < U(15) < U(5) % U(3) < Z4 % Z2. 

The Constructible Regular n-gons
As an application of the theory of cyclotomic extensions and Galois the-
ory, we determine exactly which regular n-gons are constructible with a 
straightedge and compass. But first we prove a technical lemma.

 Lemma

Let n be a positive integer and let v 5 cosA2p/nB 1 i sinA2p/nB. Then 

QAcosA2p/nBB # Q(v).

PROOF Observe that from (cos(2p/n) 1 i sin(2p/n))(cos(2p/n) 2  
i sin(2p/n)) 5 cos2(2p/n) 1 sin2(2p/n) 5 1, we have cos(2p/n) 2  
i sin(2p/n) 5 1/v. Moreover, (v 1 1/v)/2 5 (2cos( 2p/n))/2 5 
cos(2p/n). Thus, cos(2p/n) [ Q(v). 
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 Theorem 33.5 (Gauss, 1796)  

It is possible to construct the regular n-gon with a straightedge and 

compass if and only if n has the form 2kp1p2 ? ? ? pt
, where k $ 0 and 

the p
i
’s are distinct primes of the form 2m 1 1.

PROOF If it is possible to construct a regular n-gon, then we can con-
struct the angle 2p/n and therefore the number cos(2p/n). By the results 
of Chapter 23, we know that cos(2p/n) is constructible only if [Q 
(cos(2p/n)):Q] is a power of 2. To determine when this is so, we will use 
Galois theory.

Let v 5 cos(2p/n) 1 i sin(2p/n). Then |Gal(Q(v)/Q)| 5 [Q(v):Q] 5 
f(n). By the lemma on the preceding page, Q(cos(2p/n)) # Q(v), and  
by Theorem 32.1 we know that

[Q(cos(2p/n)):Q] 5 |Gal(Q(v)/Q)|/|Gal(Q(v)/Q(cos(2p/n)))|
 5 f(n)/|Gal(Q(v)/Q(cos(2p/n)))|.

Recall that the elements s of Gal(Q(v)/Q) have the property that  
s(v) 5 vk for 1 # k # n. That is, s(cos(2p/n) 1 i sin(2p/n)) 5 cos(2pk/n) 
1 i sin(2pk/n). If such a s belongs to Gal(Q(v)/Q(cos(2p/n))), then  
we must have cos(2pk/n) 5 cos(2p/n). Clearly, this holds only when  
k 5 1 and k 5 n 2 1. So, |Gal(Q(v)/Q(cos(2p/n)))| 5 2, and therefore 
[Q(cos(2p/n)):Q] 5 f(n)/2. Thus, if an n-gon is constructible, then 
f(n)/2 must be a power of 2. Of course, this implies that f(n) is a 
power of 2.

Write n 5 2kp1
n1p2

n 2 ? ? ? pt
nt, where k $ 0, the pi’s are distinct  

odd primes, and the ni’s are positive. Then f(n) 5 |U(n)| 5 
|U(2k)||U( p1

n1)||U( p2
n2)| ? ? ? |U( pt

nt)| 5 2k21p1
n121( p1 2 1)p2

n221 

( p2 2 1)? ? ? pt
nt21( pt 2 1) must be a power of 2. Clearly, this implies 

that each ni 5 1 and each pi 2 1 is a power of 2. This completes the 
proof that the condition in the statement is necessary.

To prove that the condition given in Theorem 33.5 is also sufficient, 
suppose that n has the form 2kp1p2 ? ? ? pt , where the pi’s are distinct 
odd primes of the form 2m 1 1, and let v 5 cos(2p/n) 1 i sin(2p/n). 
By Theorem 33.3, Q(v) is a splitting field of an irreducible polyno-
mial over Q, and therefore, by the Fundamental Theorem of Galois 
Theory, f(n) 5 [Q(v):Q] 5 |Gal(Q(v)/Q)|. Since f(n) is a power of 2 
and Gal(Q(v)/Q) is an Abelian group, it follows by induction (see Ex-
ercise 15) that there is a series of subgroups

H0 , H1 , ? ? ? , Ht 5 Gal(Q(v)/Q),

where H0 is the identity, H1 is the subgroup of Gal(Q(v)/Q) of order 2 
that fixes cos(2p/n), and |Hi11:Hi| 5 2 for i 5 0, 1, 2, . . . , t 2 1. By the 
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Fundamental Theorem of Galois Theory, we then have a series of sub-
fields of the real numbers

Q 5 EHt
 , EHt–1

 , ? ? ? , EH1
 5 Q(cos(2p/n)),

where [EHi21
:EHi

] 5 2. So, for each i, we may choose bi [ EHi21
 such

that EHi21
 5 EHi

(bi). Then bi is a zero of a polynomial of the form  
x 2 1 bi x 1 ci [ EHi

[x], and it follows that EHi21
 5 EHi

(2b2
i � 4ci). 

Thus, it follows from Exercise 3 in Chapter 23 that every element of 
Q(cos(2p/n)) is constructible. 

It is interesting to note that Gauss did not use Galois theory in his 
proof. In fact, Gauss gave his proof 15 years before Galois was born.

Exercises

Difficulties should act as a tonic. They should spur us to greater exertion.
b. c. forbes

  1. Determine the minimal polynomial for cos(p/3) 1 i sin(p/3) over Q.
  2. Factor x12 2 1 as a product of irreducible polynomials over Z.
  3. Factor x8 2 1 as a product of irreducible polynomials over Z2, Z3, 

and Z5.
  4. For any n . 1, prove that the sum of all the nth roots of unity is 0.
  5. For any n . 1, prove that the product of the nth roots of unity is 

(21)n11.
  6. Let v be a primitive 12th root of unity over Q. Find the minimal 

polynomial for v4 over Q.
  7. Let F be a finite extension of Q. Prove that there are only a finite 

number of roots of unity in F.
  8. For any n . 1, prove that the irreducible factorization over Z of 

xn21 1 xn22 1 ? ? ? 1 x 1 1 is PFd (x), where the product runs 
over all positive divisors d of n greater than 1.

  9. If 2n 1 1 is prime for some n $ 1, prove that n is a power of 2. 
(Primes of the form 2n 1 1 are called Fermat primes.)

 10. Prove that Fn(0) 5 1 for all n . 1.
 11. Prove that if a field contains the nth roots of unity for n odd, then it 

also contains the 2nth roots of unity.
 12. Let m and n be relatively prime positive integers. Prove that the 

splitting field of xmn 2 1 over Q is the same as the splitting field of 
(xm 2 1)(xn 2 1) over Q.
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578 Special Topics

 13. Prove that F2n(x) 5 Fn(2x) for all odd integers n . 1.
 14. Prove that if p is a prime and k is a positive integer, then Fpk(x) 5 

Fp(x
p k 21). Use this to find F8(x) and F27(x).

 15. Prove the assertion made in the proof of Theorem 33.5 that there ex-
ists a series of subgroups H0 , H1 , ? ? ? , Ht with |Hi11:Hi| 5 2 
for i 5 0, 1, 2, . . . , t 2 1. (This exercise is referred to in this 
chapter.)

 16. Prove that x9 2 1 and x7 2 1 have isomorphic Galois groups over Q. 
(See Exercise 7 in Chapter 32 for the definition.)

 17. Let p be a prime that does not divide n. Prove that Fpn(x) 5  
Fn(x

p)/Fn(x).
 18. Prove that the Galois groups of x10 2 1 and x 8 2 1 over Q are not  

isomorphic.
 19. Let E be the splitting field of x 5 2 1 over Q. Show that there is a 

unique field K with the property that Q , K , E.
 20. Let E be the splitting field of x 6 2 1 over Q. Show that there is no 

field K with the property that Q , K , E.
 21. Let v 5 cos(2p/15) 2 i sin(2p/15). Find the three elements of 

Gal(Q(v)/Q) of order 2.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Carl Friedrich Gauss

He [Gauss] lives everywhere in 
 mathematics.

e. t. bell, Men of Mathematics

Carl Friedrich Gauss, considered by many 
to be the greatest mathematician who has ever 
lived, was born in Brunswick, Germany, on 
April 30, 1777. While still a teenager, he made 
many fundamental discoveries. Among these 
were the method of “least squares” for han-
dling statistical data, and a proof that a   
17-sided regular polygon can be constructed 
with a straightedge and compass (this result 

This stamp was issued by East Germany in 
1977. It commemorates Gauss’s construc-
tion of a regular 17-sided polygon with a 
straightedge and compass.

was the first of its kind since discoveries by the 
Greeks 2000 years earlier). In his Ph.D. dis-
sertation in 1799, he proved the Fundamental 
Theorem of Algebra.

Throughout his life, Gauss largely ig-
nored the work of his contemporaries and, in 
fact, made enemies of many of them. Young 
mathematicians who sought encouragement 
from him were usually rebuffed. Despite this 
fact, Gauss had many outstanding students, 
including Eisenstein, Riemann, Kummer, 
Dirichlet, and Dedekind.

Gauss died in Göttingen at the age of 77 on 
February 23, 1855. At Brunswick, there is a 
statue of him. Appropriately, the base is in the 
shape of a 17-point star. In 1989, Germany is-
sued a bank note (see page 117) depicting 
Gauss and the Gaussian distribution.

To find more information about Gauss, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Manjul Bhargava

We are watching him [Bhargava] very 
closely.
He is going to be a superstar.
He's amazingly mature mathematically.
He is changing the subject in a 
 fundamental way.

peter sarnak

Manjul Bhargava was born in Canada on 
August 8, 1974, and grew up in Long Island, 
New York. After graduating from Harvard in 
1996, Bhargava went to Princeton to pursue 
his Ph.D. under the direction of Andrew 
Wiles (see biography after Chapter 18). 
Bhargava investigated a “composition law” 
first formulated by Gauss in 1801 for com-
bining two quadratic equations (equations in 
a form such as x2 1 3xy 1 6y2 5 0) in a way 
that was very different from normal addition 
and revealed a lot of information about num-
ber systems. Bhargava tackled an aspect of 
the problem in which no progress had been 
made in more than 200 years. He not only 
broke new ground in that area but also dis-
covered 13 more composition laws and de-
veloped a  coherent mathematical framework 
to explain them. He then applied his theory 
of composition to solve a number of funda-
mental  problems concerning the distribu-
tion of  extension fields of the rational num-
bers and of other, related algebraic objects. 
What made Bhargava’s work especially  
remarkable is that he was able to explain  
all his revolutionary ideas using only ele-
mentary mathematics. In commenting on 
Bhargava’s results, Wiles said, “He did it in 

a way that Gauss himself could have under-
stood and appreciated.”

Despite his youth, Bhargava already has 
won many awards, including a Clay Research 
Fellowship, the Clay Research Award, the 
Blumenthal Award for the Advancement of 
Research in Pure Mathematics, the SASTRA 
Ramanujan Prize, the 2008 Cole Prize in num-
ber theory (see page 438), and the 2011 Fermat 
Prize. In 2002 he was named one of Popular 
Science magazine’s “Brilliant 10,” in celebra-
tion of scientists who are shaking up their fields. 
In 2003, Bhargava accepted a full professorship 
with tenure at Princeton at the age of 28.

In addition to doing mathematics, 
Bhargava is an accomplished tabla player 
who has studied with the world’s most 
 distinguished tabla masters. He performs 
 extensively in the New York and Boston 
areas. To hear him play the tabla, visit 

http://www.npr.org/templates/story/ 
story.php?storyId=4111253

To find more  information about Bhargava, 
visit 

http://www.wikipedia.org 

and

http:// www.d.umn.edu/~jgallian/ 
manjulMH4.pdf
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Supplementary Exercises for Chapters 24–33 581

Supplementary Exercises for Chapters 24–33

The road to wisdom?—Well it’s plain and simple to express:
Err
and err
and err again
but less
and less
and less.

piet hein, “The Road to Wisdom,” Grooks (1966)*

True/false questions for Chapters 24–33 are available on the Web at:

http://www.d.umn.edu/~jgallian/TF

  1. Let G 5 kx, y | x 5 (xy)3, y 5 (xy)4l. To what familiar group is G  
isomorphic?

  2. Let G 5 kz | z6 5 1l and H 5 kx, y | x2 5 y3 5 1, xy 5 yxl. Show 
that G and H are isomorphic.

  3. Show that a group of order 315 5 32 ? 5 ? 7 has a subgroup of  
 order 45.

  4. Let G be a group of order p2q2, where p and q are primes and p . q. 
If |G| 2 36, prove that G has a normal Sylow p-subgroup.

  5. Let H denote a Sylow 7-subgroup of a group G and K a Sylow  
5-subgroup of G. Assume that |H| 5 49, |K| 5 5, and K is a sub-
group of N(H). Show that H is a subgroup of N(K).

  6. Prove that no finite group of order greater than 6 has exactly three 
conjugacy classes.

  7. Suppose that K is a normal Sylow p-subgroup of H and that H is a 
normal subgroup of G. Prove that K is a normal subgroup of G. 
(Compare this with Exercise 55 in Chapter 9.)

  8. Show that the polynomial x 5 2 6x  1 3 over Q is not solvable by  
radicals.

  9. Let H and K be subgroups of G. Prove that HK is a subgroup of G 
if H # N(K).

 10. Suppose that H is a subgroup of a finite group G and that H con-
tains N(P), where P is some Sylow p-subgroup of G. Prove that 
N(H) 5 H.

 11. Prove that a simple group G of order 168 cannot contain an ele-
ment of order 21.

 12. Prove that the only group of order 561 is Z561.

*Piet Hein, “The Road to Wisdom,” Grooks (1966) Copyright © Piet Hein Grooks. 
Reprinted with kind permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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582 Special Topics

 13. Prove that the center of a non-Abelian group of order 105 has   
order 5.

 14. Let n be an odd integer that is at least 3. Prove that every Sylow 
subgroup of Dn is cyclic.

 15. Let G be the digraph obtained from Cay({(1, 0), (0, 1)}:Z3 % Z5) 
by deleting the vertex (0, 0). [Also, delete each arc to or from  
(0, 0).] Prove that G has a Hamiltonian circuit.

 16. Prove that the digraph obtained from Cay({(1, 0), (0, 1)}:Z4 % Z7) 
by deleting the vertex (0, 0) has a Hamiltonian circuit.

 17. Let G be a finite group generated by a and b. Let s1, s2, . . . , sn be 
the arcs of a Hamiltonian circuit in the digraph Cay({a, b}:G). We 
say that the vertex s1s2 ? ? ? si travels by a if si11 5 a. Show that if  
a vertex x travels by a, then every vertex in the coset xkab21l trav-
els by a.

 18. Recall that the dot product u ? v of two vectors u 5 (u1, u2, . . . , un) 
and v 5 (v1, v2, . . . , vn) from Fn is

u1v1 1 u2v2 1 ? ? ? 1 unvn

  (where the addition and multiplication are those of F). Let C be an 
(n, k) linear code. Show that

C> 5 {v [ Fn | v ? u 5 0 for all u [ C}

  is an (n, n 2 k) linear code. This code is called the dual of C.
 19. Find the dual of each of the following binary codes.
  a. {00, 11}
  b. {000, 011, 101, 110}
  c. {0000, 1111}
  d. {0000, 1100, 0011, 1111}
 20. Let C be a binary linear code such that C # C>. Show that wt(v) is 

even for all v in C.
 21. Let C be an (n, k) binary linear code. If v is a binary n-tuple, but  

v o C>, show that v ? u 5 0 for exactly half of the elements u in C.
 22. Suppose that C is an (n, k) binary linear code and the vector  

11 ? ? ? 1 [ C >. Show that wt(v) is even for every v in C.
 23. Suppose that C is an (n, k) binary linear code and C 5 C>. (Such a 

code is called self-dual.) Prove that n is even. Prove that 11 ? ? ? 1 
is a code word.
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Supplementary Exercises for Chapters 24–33 583

 24. If G is a finite solvable group, show that there exist subgroups of G

{e} 5 H0 , H1 , H2 , ? ? ? , Hn 5 G

  such that Hi11/Hi has prime order.

The end.

john lennon and paul mccartney, "The End," 
Abbey Road
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A1

Selected Answers
Don’t wait for answers  
Just take your chances  
Don’t ask me why

billy joel, “Don’t Ask Me Why,” Glass Houses*

For some exercises only partial answers are provided.
Many of the proofs given below are merely sketches. In these  
cases, the student should supply the complete proof.

Chapter 0

Things that hurt, instruct.
benjamin franklin

  1. {1, 2, 3, 4}; {1, 3, 5, 7}; {1, 5, 7, 11}; {1, 3, 7, 9, 11, 13, 17, 19}; {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 
14, 16, 17, 18, 19, 21, 22, 23, 24}

  3. 12, 2, 2, 10, 1, 0, 4, 5
  5. By using 0 as an exponent if necessary, we may write a 5 p1

m1 . . . pk
mk and b 5 p1

n1 . . . pk
nk, 

where the p’s are distinct primes and the m’s and n’s are nonnegative. Then lcm(a, b) 5 p1
s1 . . . pk

sk, 
where si 5 max(mi, ni), and gcd(a, b) 5 p1

t1 . . . pk
tk, where ti 5 min(mi, ni). Then lcm(a, b) ? 

gcd(a, b) 5 p1
m11n1 . . . pk

mk1nk 5 ab.
  7. Write a 5 nq1 1 r1 and b 5 nq2 1 r2, where 0 # r1, r2 , n. We may assume that r1 $ r2. Then  

a 2 b 5 n(q1 2 q2) 1 (r1 2 r2), where r1 2 r2 $ 0. If a mod n 5 b mod n, then r1 5 r2 and n 
 divides a 2 b. If n divides a 2 b, then by the uniqueness of the remainder, we have r1 2 r2 5 0.

  9. Use Exercise 7.
 11. Use Theorem 0.2.
 13. By Theorem 0.2 there are integers s and t such that ms 1 nt 5 1. Then m(sr) 1 n(tr) 5 r.
 15. Let p be a prime greater than 3. By the  division algorithm, we can write p in the form 6n 1 r, 

where r satisfies 0 # r , 6. Now  observe that 6n, 6n 1 2, 6n 1 3, and 6n 1 4 are not prime.
 17. Since st divides a 2 b, both s and t divide a 2 b. The converse is true when gcd(s, t) 5 1.
 19. Use Euclid’s Lemma and the Fundamental Theorem of Arithmetic.
 21. Use proof by contradiction.

 23. �30
41 �

�17
41  i

 25. Observe that cos u + i sin u 5 cos n1un 2 1 i sin n1un 2 5 1cos un � i sin un 2n.
 27. Let S be a set with n 1 1 elements and pick some a in S. By induction, S has 2n subsets that do not 

contain a. But there is a one-to-one correspondence between the subsets of S that do not contain a 
and those that do. So, there are 2 ? 2n 5 2n11 subsets in all.

 29. Consider n 5 200! 1 2.
 31. Say p1p2 

. . . pr 5 q1q2 
. . . qs, where the p’s and q’s are primes. By the Generalized  Euclid’s 

Lemma, p1 divides some qi, say q1 (we may relabel the q’s if necessary). Then p1 5 q1 and p2 
. . . 

pr 5 q2 
. . . qs. Repeating this argument at each step, we obtain p2 5 q2, . . . , pr 5 qr and r 5 s.

 33. Suppose that S is a set that contains a and whenever n $ a belongs to S, then n 1 1 [ S. We must 
prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater 

*“Don’t Ask Me Why,” by Billy Joel. © 1980 Impulsive Music. 
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A2 Selected Answers

than a that are not in S and suppose that T is not empty. Let b be the smallest integer in T (if T has 
no negative  integers, b exists because of the Well Ordering Principle; if T has negative integers, it 
can have only a finite number of them so that there is a smallest one). Then b 2 1 [ S, and there-
fore b 5 (b 2 1) 1 1 [ S.

 35. For n 5 1, observe that 13 1 23 1 33 5 36. Assume that n3 1 (n 1 1)3 + (n 1 2)3 5 9m for  
some integer m. We must prove that (n 1 1)3 1 (n 1 2)3 1 (n 1 3)3 is a multiple of 9. Using the 
induction  hypothesis we have that (n 1 1)3 1 (n 1 2)3 1 (n 1 3)3 5 9m 2 n3 1 (n 1 3)3 5 9m 2  
n3 1 n3 1 3 ? n2 ? 3 1 3 ? n ? 9 1 33 5 9m 1 9n2 1 27n 1 27.

 37. The statement is true for any divisor of 83 2 4 5 508.
 39. 6 p.m.
 41. Observe that the number with the decimal representation a9a8 . . . a1a0 is a9 ? 109 1 a8 ? 108 1 . . . 1 

a1 ? 10 1 a0. Then use Exercise 9 and the fact that ai10i mod 9 5 ai mod 9 to deduce that the check 
digit is (a9 1 a8 1 . . . 1 a1 1 a0) mod 9.

 43. For the case in which the check digit is not involved, see the answer to Exercise 41. If a transpo-
sition involving the check digit c 5 (a1 1 a2 1 . . . 1 a10) mod 9 goes unde tected, then a10 5  
(a1 1 a2 1 . . . 1 a9 1 c) mod 9. Substitution yields 2(a1 1 a2 1 . . . 1 a9 ) mod 9 5 0. Therefore, 
modulo 9, we have 10(a1 1 a2 1 . . . 1 a9) 5 a1 1 a2 1 . . . 1 a9 5 0. It follows that c 5 a10.  
In this case the transposition does not yield an error.

 45. Say the number is a8a7 . . . a1a0 5 a8 ? 108 1 a7 ? 107 1 . . . 1 a1 ? 10 1 a0. Then the error is 
 undetected if and only if (ai10i 2 ai910i) mod 7 5 0. Multiplying both sides by 5i and noting that  
50 mod 75 1, we  obtain (ai 2 ai9) mod 7 5 0.

 47. 4
 51. Cases where (2a 2 b 2 c) mod 11 5 0 are undetected.
 53. The check digit would be the same.
 55. 4302311568
 57. 2.  Since b is  one- to- one, b(a (a1)) 5 b(a (a2)) implies that a (a1) 5 a (a2); and since a is 

 one- to- one, a1 5 a2.
  3.  Let c [ C. There is a b in B such that b(b) 5 c and an a in A such that a(a) 5 b. Thus, (ba)(a) 5 

b(a(a)) 5 b(b) 5 c.
  4.  Since a is  one- to- one and onto, we may define a21(x) 5 y if and only if a( y) 5 x. Then 

a21(a(a)) 5 a and a(a21(b)) 5 b.
 59. No. (1, 0) [ R and (0, 21) [ R, but (1, 21) o R.
 61. a belongs to the same subset as a. If a and b belong to the subset A, then b and a also  belong to 

A. If a and b belong to the subset A and b and c belong to the subset B, then A 5 B, since the 
 distinct subsets of P are disjoint. So, a and c belong to A.

 63. The last digit of 3100 is the value of 3100 mod 10. Observe that 3100 mod 10 is the same as  
((34 mod 10)25 mod 10 and 34 mod 10 5 1. Similarly, the last digit of 2100 is the value of 2100  
mod 10. Observe that 25 mod 10 5 2 so that 2100 mod 10 is the same as (25 mod 10)20 mod  
10 5 220 mod 10 5 (25)4 mod 10 5 24 mod 10 5 6.

 65. Apply g�1 to both sides of ag � bg.

Chapter 1

Think of what you’re saying, you can get it wrong and still think that it’s all right .  
john lennon and paul mccartney,  

“We Can Work It Out,” single*

  1. Three rotations—08, 1208, 2408—and three  reflections across lines from vertices to  midpoints of 
opposite sides. See the back inside cover for a picture.

  3. a. V  b. R270  c. R0  d. R180, H, V, D, D9  e. none
  5. Dn has n rotations of the form k(3608/n), where k 5 0, . . . , n 2 1. In addition, Dn has n reflections. 

When n is odd, the axes of  reflection are the lines from the vertices to the midpoints of the opposite 

*Copyright © 1965 (Renewed) Stony/ATV Tunes LLC. All rights  administered by Sony/ATV Music 
Publishing, 8 Music Square West, Nashville, TN 37203. All rights reserved. Used by permission.
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Selected Answers A3

sides. When n is even, half of the axes of reflection are  obtained by joining  opposite vertices; the 
other half, by joining midpoints of opposite sides.

  7. A rotation followed by a rotation either fixes every point (and so is the identity) or fixes only the 
center of rotation. However, a  reflection fixes a line.

  9. Observe that 1 ? 1 5 1; 1(21) 5 21; (21)1 5 21; (21)(21) 5 1. These  relationships also hold 
when 1 is replaced by “rotation” and 21 is replaced by “reflection.”

 11. In D4, HD 5 DV but H 2 V.
 13. R0, R180, H, V
 15. See answer for Exercise 13.
 17. In each case, the group is D6.
 19. cyclic
 21. Their only symmetry is the identity.
 23. 1808 rotational symmetry

Chapter 2

There are no secrets to success. It is the result of preparation, hard work,  
and learning from failure.

colin powell

  1. c, d
  3. none
  5. 17; 13; n 2 1; 

3

13
�

2

13
 i

  7. Does not contain the identity; closure fails.
  9. Under multiplication modulo 4, 2 does not have an inverse. Under multiplication modulo 5, each 

element has an  inverse.

 11. c 9 9

10 8
d

 13. a. 2a 1 3b b. 22a 1 2(2b 1 c) c. 23(a 1 2b) 1 2c 5 0
 15. Since the inverse of an element in G is in G, H 8 G. Let g belong to G. Then g21 belongs to G 

and therefore (g21)21 5 g belongs to G. So, G 8 H.
 17. e
 19. Use the fact that det (AB) 5 (det A)(det B).
 21. 29
 23. For n $ 0, use induction. For n , 0, note that e 5 (ab)0 5 (ab)n(ab)2n 5 (ab)na2nb2n so that 

anbn 5 (ab)n. In a non-Abelian group (ab)n need not equal anbn.
 25. Use the Socks–Shoes Property.
 27. For the case n . 0, use induction. For n , 0, note that e 5 (a21ba)n(a21ba)2n 5 (a21ba)n 

(a21b2na) and solve for (a21ba)n.
 29. {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45}
 31. Suppose x appears in a row labeled with a twice; say, x 5 ab and x 5 ac. Then cancellation 

yields b 5 c. But we use distinct  elements to label the columns.
 33. Use Exercise 31.
 35. a21cb21; aca21

 37. If x3 5 e and x 2 e, then (x21)3 5 e and x 2 x21. So nonidentity solutions come in pairs.  
If x2 2 e, then x21 2 x and (x21)2 2 e. So solutions to x2 2 e come in pairs.

 39. Observe that aa21b 5 ba21a.
 41. If F1F2 5 R0, then F1F1 5 F1F2 and by cancellation F1 5 F2.
 43. Since FRk is a reflection we know that (FRk)(FRk) 5 R0. So Rk FRk 5 F21 5 F.
 45. a. R3 b. R c. R5F
 47. Since a2 5 b2 5 (ab)2 5 e, we have aabb 5 abab. Now cancel on the left and right.
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 49. If n is not prime, the set is not closed under multiplication modulo n. If n is prime, the set is 
closed and for every r in the set there are integers s and t such that 1 5 rs 1 nt 5 rs modulo n.

 51. The matrix c a b

c d
d  is in GL(2, Z2) if and only if ad Z bc. This happens when a and d are 1 and at 

least 1 of b and c is 0, and when b and c are 1 and at least 1 of a and d is 0. c 1 1

0 1
d  and c 1 0

1 1
d  do 

not commute.

 53. Let a be any element in G and write x 5 ea. Then a21x 5 a21(ea) 5 (a21e)a 5 a21a 5 e. Then 
solving for x we obtain x 5 ae 5 a.

 Chapter 3

Success is the ability to go from one failure to another with no loss of enthusiasm.
sir winston churchill

  1. |Z12| 5 12; |U(10)| 5 4; |U(12)| 5 4; |U(20)| 5 8; |D4| 5 8
  In Z12, |0| 5 1; |1| 5 |5| 5 |7| 5 |11| 5 12; |2| 5 |10| 5 6; |3| 5 |9| 5 4; |4| 5 |8| 5 3; |6| 5 2.
  In U(10), |1| 5 1; |3| 5 |7| 5 4; |9| 5 2.
  In U(12), |1| 5 1; |5| 5 2; |7| 5 2; |11| 5 2.
  In U(20), |1| 5 1; |3| 5 |7| 5 |13| 5 |17| 5 4; |9| 5 |11| 5 |19| 5 2.
  In D4, |R0| 5 1; |R90| 5 |R270| 5 4; |R180| 5 |H| 5 |V| 5 |D| 5 |D9| 5 2.
  In each case, notice that the order of the  element divides the order of the group.
  3. In Q, |0| 5 1 and all other elements have  infinite order. In Q*, |1| 5 1, |21| 5 2, and all other 

elements have infinite order.
  5. Each is the inverse of the other.
  7. (a4c22b4)21 5 b24c2a24 5 b3c2a2

  9. D4; D4; it contains {R0, R180, H, V}
 11. If n is a positive integer, the real solutions of xn 5 1 are 1 when n is odd and 61 when n is even. 

So, the only elements of finite order in R* are 61.
 13. H is a subgroup. To prove this we need only show that if a [ H then a21 [ H. But if a21 o H, 

then the given property says that a 5 (a 21)21 o H.
 15. Since |a| 5 7 we have a 5 a14a 5 a15 5 (a5)3.
 17. If a and b are distinct elements of order 2, then ab has order 2 and is distinct from a and b. If c  

is a fourth element of order 2, then ac, bc, and abc make at least 7 elements of order 2. D4 has 
exactly five elements of order 2.

 19. Suppose that m 6 n and am � an. Then e � ana�m � an�m. This contradicts the assumption that 
a has infinite order.

 21. If a has infinite order, then e, a, a2, . . . are all distinct and belong to G, so G is infinite.  
If |a| 5 n, then e, a, a2, . . . , an 2 1 are distinct and belong to G.

 23. By brute force, show that k4 5 1 for all k.
 25. Suppose that K is a subgroup of Dn that has at least one reflection F. Denote the rotations of K 

by R1 R2, . . . , Rm. Then R1F, R2 F, . . . , RmF are distinct reflections in K. If F' is any reflection  
in K, then F'F 5 Ri for some i. But then F' 5 RiF. Thus, K has exactly m reflections.

 27. Since n is even, Dn contains R180. Let F be any reflection in Dn. Then the set {R0, R180, F, R180F} 
is closed and therefore is a subgroup of Dn.

 29. k2l, k3l, k6l
 31. U4(20) 5 {1, 9, 13, 17}; U5(20) 5 {1, 11}; U5(30) 5 {1, 11}; U10(30) 5 {1, 11}. To prove that 

Uk(n) is a subgroup, it suffices to show that it is closed. Suppose that a and b belong to Uk(n). We 
must show that in U(n), ab mod k 5 1. That is, (ab mod n) mod k 5 1. Let n 5 kt and ab 5 qn 1 r 
where 0 # r , n. Then (ab mod n) mod k 5 r mod k 5 (ab 2 qn) mod k 5 (ab 2 qkt) mod k 5 ab 
mod k 5 (a mod k)(b mod k) 5 1 ? 1 5 1. H is not a subgroup because 7 [ H but 7 ? 7 5 9 is not  
1 mod 3.
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Selected Answers A5

 33. If x [ Z(G), then x [ C(a) for all a, so x [ >a[G C(a). If x [ >a[G C(a), then xa 5 ax for all a 
in G, so x [ Z(G).

 35. The case that k � 0 is trivial. Let x [ C1a2. If k is positive, then by induction on k, xak�1 � xaak� 
axak � aakx � ak�1x. The case where k is negative now follows from Exercise 34. In a group, if 
x commutes with a, then x commutes with all powers of a. If x commutes with ak for some k, 
then x need not commute with a.

 37. a. C(5) 5 G; C(7) 5 {1, 3, 5, 7}
  b. Z(G) 5 {1, 5}
  c. |2| 5 2; |3| 5 4. They divide the order of the group.
 39. a.  First observe that because kSl is a subgroup of G containing S, it is a member of the intersec-

tion. So, H 8 kSl. On the other hand, since H is a subgroup of G and H contains S, by defini-
tion kSl 8 H.

  b.  Let K 5 {s1
n1 s2

n2 … sm
nm | m $ 1, si [ S, ni [ Z}. Then because K satisfies the subgroup test 

and contains S, we have kSl 8 K. On the other hand, if L is any subgroup of G that contains S, 
then L also contains K by closure. Thus, by part a, H 5 kSl contains K.

 41. Mimic the proof of Theorem 3.5.
 43. No. In D4, C(R180) 5 D4.
 45. For the first part, see Example 4. For the second part, use D4.
47. Note that for any polynomial f (x) 5 anx

n 1 an21x
n21 1 . . . 1 a0 in G we have 4f (x) 5 4anx

n 1 
4an21x

n21 1 . . . 1 4a0 5 0. Thus, the orders of elements of G are at most 4. No element has  
order 3 because 3ai 5 0 mod 4 if and only if ai is 0. Since 2ai 5 0 mod 4 if and only if ai 5 0  
or 2, we have 2f (x) 5 2anx

n 1 2an21x
n21 1 . . . 1 2a0 5 0 if and only if a1 5 0 or 2 for all i.  

Excluding the identity, this condition is necessary and sufficient for an element to have order 2.
 49. 2
 51. First observe that (ad)n/d 5 an 5 e, so 0ad 0  is at most n/d. Moreover, there is no positive integer  

t , n/d such that 1ad2t � adt � e, for otherwise |a| Z n.

 53. Note that c 1 1

0 1
d n � c 1 n

0 1
d .

55. For any positive integer n, a rotation of 3608/n has order n. A rotation of 22° has  infinite order.
 57. kR0l, kR90l, kR180l, kDl, kD9l, kH l, kV l (Note that kR90l 5 kR270l.)
 59. Nonidentity elements of odd order come in pairs. So, there must be some element a of even  order, 

say |a| 5 2m. Then |am| 5 2.
 61. Let |g| 5 m and write m 5 nq 1 r, where 0 # r , n. Then gr 5 gm2nq  5 gm(gn)2q 5 (gn)2q be-

longs to H. So, r 5 0.
 63. 1 [ H. Let a, b [ H. Then (ab21)2 5 a2(b2)21, which is the product of two rationals. 2 can be 

 replaced by any positive integer.
 65. |k3l| 5 4

 67. Let c a b

c d
d  and c a� b�

c� d�
d
 
belong to H. It suffices to show that a 2 a9 1 b 2 b9 1 c 2 c9 1 d 2

  d9 5 0. This follows from a 1 b 1 c 1 d 5 0 5 a9 1 b9 1 c9 1 d9. If 0 is replaced by 1, H is 
not a subgroup.

 69. If 2a and 2b [ K, then 2a(2b)21 5 2a2b [ K, since a 2 b [ H.

 71. c 2 0

0 2
d�1

� c 1
2 0

0 1
2

d  is not in H.

 73. If a 1 bi and c 1 di [ H, then (a 1 bi)(c 1 di)21 5 (ac 1 bd) 1 (bc 2 ad)i and (ac 1 bd)2 1 
(bc 2 ad)2 5 1, so that H is a subgroup. H is the unit circle in the complex plane.

 75. Since ee 5 e is in HZ(G), it is nonempty. Let h1z1 and h2z2 belong to HZ(G). Then h1z1(h2z2)
21 5 

h1z1z2
21h2

21 5 h1h2
21z1z2

21 [ HZ (G).

 77. Use Theorem 0.2.
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A6 Selected Answers

 79. a. e c a b

b a � b
d 0  where a2 � ab � b2 ? 0; a,b [ R f

  b. e c a b

b a
d 0  a2 ? b2; a,b [ R f

  c. e c a 0

0 a
d 0  a ? 0; a [ R f

Chapter 4

There will be an answer, let it be.
john lennon and paul mccartney, “Let It Be,” single*

  1. For Z6, generators are 1 and 5; for Z8, generators are 1, 3, 5, and 7; for Z20, generators are 1, 3, 7, 
9, 11, 13, 17, and 19.

  3. k20l = {20, 10, 0}; k10l = {10, 20, 0}; ka20l = {a20, a10, a0}; ka10l = {a10, a20, a0]
  5. k3l 5 {3, 9, 7, 1}; k7l 5 {7, 9, 3, 1}
  7. U(8) or D3
  9. Six subgroups; generators are the divisors of 20. Six subgroups; generators are ak, where k is a 

divisor of 20. 
 11. By definition, a�1 [ kal. So, ka�1l 8 kal. By definition, a � 1a�12�1

 [ ka�1l. So, kal 8 ka�1l.
 13. k21l >  k10l � k18l � k6l. In the general case kaml >  kanl � kakl, where  

k 5 lcm (m, n) mod 24.
 15. |g| divides 12 is equivalent to g12 5 e. So, if a12 5 e and b12 5 e, then (ab21)12 5 a12(b12)21 5 

ee21 5 e. The general result is given in Exercise 45 of Chapter 3.
 17. is odd or infinite
 19. k1l, k7l, k11l, k17l, k19l, k29l
 21. a. |a| divides 12. b. |a| divides m. c. By Theorem 4.3, |a| 5 1, 2, 3, 4, 6, 8, 12, or 24. If |a| 5 2, 

then a8 5 (a2)4 5 e4 5 e. A  similar argument eliminates all other  possibilities except 24.
 23. Yes, by Theorem 4.3. The subgroups of Z are of the form knl � {0, 6n, 62n, 63n, . . .}, n 5 0, 

1, 2, 3, . . . . The subgroups of kal are of the form kanl for n 5 0, 1, 2, 3, . . . .
 25. For the first part, apply Theorem 4.3 to the subgroup of rotations; Dn has n elements of order 2 

when n is odd and n 1 1 elements of order 2 when n is even.
 27. See Example 15 of Chapter 2.
 29. 1000000, 3000000, 5000000, 7000000; by Theorem 4.3, k1000000l is the unique subgroup of or-

der 8, and only those on the list are generators. a1000000, a3000000, a5000000, a7000000; by Theorem 4.3, 
ka1000000l is the unique subgroup of order 8, and only those on the list are generators.

 31. Let G 5 {a1, a2, . . . , ak}. Now let |ai| 5 ni. Consider n 5 n1n2 
. . . nk.

 33. Mimic the lattice in Figure 14.1.
 35. The lattice is a vertical line with successive terms from top to bottom kp0l, kp1l, kp2l, . . ., kpn21l, k0l.
 37. Suppose a and b are relatively prime positive integers and ka/bl 5 Q1. Then there is some positive 

integer n such that (a/b)n 5 2. Clearly, n 2 0, 1, or 21. If n . 1, an 5 2bn, so that 2 divides a. But 
then 2 divides b as well. A similar contradiction occurs if n , 21.

 39. For 6, use Z25. For n, use Z2n21.
 41. Let t 5 lcm(m, n) and |ab| 5 s. Then (ab)t 5 atbt 5 e, and therefore s divides t. Also, e 5  

(ab)s 5 asbs, so that as 5 b2s, and therefore as and b2s belong to kal > kbl 5 {e}. Thus, m divides 
s and n divides s, and, therefore, t divides s. This proves that s 5 t. For the second part, try D3.

 43. Let |a| 5 m, b 5 n and d 5 gcd(m, n). Then lcm(m, n) 5 mnYd, |ad| 5 mYd, and |b| 5 n. Then 
by Exercise 41, |adb| 5 lcm(m, n).

 45. all divisors of 60
 47. The argument given in the proof of the corollary to Theorem 4.4 shows that in an infinite group, 

the number of elements of finite order n is a multiple of f(n) or there is an infinite number of  
elements of order n.

*Copyright © 1970 (Renewed) Stony/ATV Tunes LLC. All rights  administered by Sony/ATV Music 
Publishing, 8 Music Square West, Nashville, TN 37203. All rights reserved. Used by permission.
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Selected Answers A7

 49. It follows from Example 15 in Chapter 2 and Example 10 in Chapter 0 that the group  
H 5 kcos(3608Yn) 1 i sin(3608Yn)l is a cyclic group of order n and every member of this  
group satisfies xn 2 1 5 0. Moreover, since every element of order n satisfies xn 2 1 5 0  
and there can be at most n  such elements, all complex numbers of order n are in H. Thus,  
by Theorem 4.4, C* has exactly f(n) elements of order n.

 51. Let x [ Z(G) and |x| 5 p where p is prime. Say y [ G with |y| 5 q where q is prime. Then  
(xy)pq 5 e  and therefore |xy| 5 1, p, or q. If |xy| 5 1, then p 5 q. If |xy| 5 p, then e 5 (xy)p 5 yp 
and q divides p. Thus, q 5 p. A similar argument applies if |xy| 5 q.

 53. An infinite cyclic group does not have an  element of prime order. A finite cyclic group can have 
only one subgroup for each divisor of its order. A subgroup of order p has  exactly p 2 1 elements 
of order p. Another element of order p would give another  subgroup of order p.

 55. 1 ? 4, 3 ? 4, 7 ? 4, 9 ? 4; x4, 1x423, 1x427, 1x429
 57. 1 of order 1; 33 of order 2; 2 of order 3; 10 of order 11; 20 of order 33
 59. 1, 2, 10, 20. In general, if an Abelian group contains cyclic subgroups of order m and n where m 

and n are relatively prime, then it contains subgroups of order d for each divisor d of mn.
 61. Say a and b are distinct elements of order 2. If a and b commute, then ab is a third element  

of order 2. If a and b do not commute, then aba is a third element of order 2.
 63. Use Exercise 32 of Chapter 3 and Theorem 4.3.
 65. 1 and 2
 67. In a cyclic group there are at most n solutions to the equation xn 5 e.
 69. 12 or 60; 48
 71. Observe that a280 � e � a440. Thus 0 a 0  is a common divisor of 280 and 440, and therefore 0 a 0  

 divides gcd(280, 440) 5 40.
 73. Say b is a generator of the group. Since p and pn 2 1 are relatively prime, we know by Corollary 

3 of Theorem 4.2 that bp also  generates the group. Finally, observe that (bp)k 5 (bk)p.
 75. Use the fact that a cyclic group of even  order has a unique element of order 2.
 77. Since reflections have order 2, any cyclic subgroup of order 4 must be generated by a rotation. So, 

by Theorem 4.3 there is exactly one cyclic subgroup of order 4 if 4 divides n and 0 otherwise.
 79. Observe that Dn has nY2 noncyclic subgroups of order 4 of the form {R0, R180, F, R180 F}, where 

F is a reflection. By Exercise 25 of Chapter 3, these are the only noncyclic subgroups of order 4.
 81. First observe that the set of all rotations is the only cyclic subgroup of Dn of order n. It follows 

from Exercise 25 of Chapter 3 that when n is odd, Dn has no noncyclic subgroup of order n, and 
when n = 2m, the only noncyclic subgroups of Dn are of the form K 5 {R0, R, R2, . . . Rm21, F, 
RF, R2F, . . ., Rm21F} where |R| 5 m and F is a reflection. (That K is closed follows from Exercises 43 
and 44 in Chapter 2.) To find a second such subgroup let F9 be any reflection not in K. Then K9 5 
{R0, R, R2, . . . Rm 21, F9, RF9, R2F9, . . ., Rm 21F9} is also a subgroup. (For example, in D4, {R0, R180, 
H, R180H} and {R0, R180, D, R180D}.) Finally, by observing that for any reflection F0 in Dn we have 
K0 5 {R0, R, R2, . . . Rm 21, F0, RF0, R2F0, . . ., Rm 21F0} 5 K if F0 is in K and K 0 5 K9 if F0 is in 
K9 we know that K and K9 have no reflections in common. Since K and K9 account for all n reflec-
tions, we have proved that when n is even there are exactly three subgroups of order n.

 83. Since m and n are relatively prime, it suffices to show both m and n divide k. By Corollary 2 of 
Theorem 4.1, it is enough to show that ak � e. Note that ak [ kal >  kbl, and since kal >  kbl is a 
subgroup of both kal and kbl, we know that 0 kal >  kbl 0  must divide both 0 kal 0  and 0 kbl 0 . Thus, 0 kal >  kbl 0 � 1.

 85. Observe that among the integers from 1 to pn, the pn21 integers p, 2p, 3p, . . . , pn21p are exactly the 
ones that are not relatively prime to p.

Supplementary Exercises for Chapters 1–4

Four short words sum up what has lifted most successful individuals above the crowd: a little bit 
more. They did all that was expected of them and a little bit more.

a. lou vickery
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A8 Selected Answers

  1. a. Let xh1x
21 and xh2x

21 belong to xHx21. Then (xh1x
21)(xh2x

21)21 5 xh1h2
21x21 [ xHx21 also.

  b. Let khl 5 H. Then kxhx21l 5 xHx21. c. (xh1x
21)(xh2x

21) 5 xh1h2x
21 5 xh2h1x

21 5 (xh2x
21)

(xh1x
21)

  3. Suppose cl(a) > cl(b) 2 f. Say xax21 5 yby21. Then (y21x)a(y21x)21 5 b. Thus, for any ubu21 
in cl(b), we have ubu21 5 (uy21x)a(uy21x)21 [ cl(a). This shows that cl(b) # cl(a). By symme-
try, cl(a) # cl(b). Because a 5 eae21 [ cl(a), the union of the conjugacy classes is G.

  5. Observe that (xax21)k 5 xakx21. Thus, (xax21)k 5 e if and only if ak 5 e.
  7. By Exercise 4 of Chapter 3, Exercise 24 of Chapter 2, and the previous exercise, we have |ab| 5 

|(ab)21| 5 |b21a21| 5 |a21b21|.
  9. Try D4.
 11. By Exercise 5, for every x in G, |xax21| 5 |a|, so that xax21 5 a or xa 5 ax.
 13. 1 of order 1, 15 of order 2, 8 of order 15, 4 of order 5, 2 of order 3
 15. Let |G| 5 5. Let a 2 e belong to G. If |a| 5 5, we are done. If |a| 5 3, then {e, a, a2} is a sub-

group of G. Let b be either of the  remaining two elements of G. Then the set {e, a, a2, b, ab, a2b} 
consists of six different elements, a contradiction. Thus, |a| 2 3. Similarly, |a| 2 4. We may now 
assume that every nonidentity element of G has order 2. Pick a 2 e and b 2 e in G with a 2 b. 
Then {e, a, b, ab} is a subgroup of G. Let c be the remaining element of G. Then {e, a, b, ab, c, 
ac, bc, abc} is a set of eight distinct elements of G, a contradiction. It now follows that if a [ G 
and a 2 e, then |a| 5 5.

 17. an(bn)21 5 (ab21)n, so Gn is a subgroup. For the non-Abelian group, try D3.
 19. Suppose G 5 H < K. Pick h [ H with h o K. Pick k [ K, but k o H. Then, hk [ G, but hk o H 

and hk o K. U(8) is the union of the three subgroups.
 21. If |a| 5 pk and |b| 5 pr with k # r, say, then |ab21| divides pr.
 23. Note that ba2 5 ab and a3 5 b2 5 e imply ba 5 a2b. Thus, every member of the group can be 

written in the form aib j. Therefore, the group is {e, a, a2, b, ab, a2b}. D3 satisfies these conditions. 
The Cayley table can be obtained from the one for the dihedral group of order 6 shown in the  
inside back cover of the book by replacing R0 by e, R120 by a, R240 by a2, F by b, F9 by ab and F0 
by a2b.

 25. xy 5 yx if and only if xyx21y21 5 e. But, (xy)x21y21 5 x21(xy)y21 5 ee 5 e.
 27. Let x [ N(gHg21). Then x(gHg21)x21 5 gHg21. Thus, g21xgHg21x21g 5 g21xgH(g21xg)21 5 H. 

This means that g21xg [ N(H). So x [ gN(H)g21.  Reverse the argument to show gN(H)g21 # 
N(gHg21).

 29. Look at D11.
 31. Solution from Mathematics Magazine.† “Yes. Let a be an arbitrary element of S. The set {an | n 5 

1, 2, 3, . . .} is finite, and therefore am 5 an for some m, n with m . n 9 1. By cancellation we 
have ar(a) 5 a, where r(a) 5 m 2 n 1 1 . 1. If x is any element of S, then aar(a)21x 5 ar(a)x 5 ax, 
and this implies that ar(a)21x 5 x. Similarly, we see that xar(a)21 5 x, and the element e 5 ar(a)21 is 
an identity. The identity element is unique, for if e9 is another identity, then e 5 ee9 5 e9. If r(a) . 2 
then ar(a)22 is an inverse of a, and if r(a) 5 2 then a2 5 a 5 e is its own inverse. Thus S is a group.”

 33. {1, 2n 2 1, 2n 1 1, 4n 2 1}
 35. Use det (AB) 5 (det A)(det B) to prove H is a subgroup. H is not a subgroup when det A is an integer, 

since det A21 need not be an integer.
 37. Choose x 2 e and y o kxl. Then G 5 kxl < kyl. But then xy [ kyl, so that kxl # kyl and therefore 

G 5 kyl. To prove that |G| 5 pq or p3, use Theorem 4.3.
 39. If T and U are not closed, then there are elements x and y in T and w and z in U such that xy is not 

in T and wz is not in U. It  follows that xy [ U and wz [ T. Then xywz 5 (xy)wz [ U and xywz 5 
xy(wz) [ T, a contradiction.

 41. Let G be the group of all polynomials with integer coefficients under addition. Let Hk be the sub-
group of polynomials of degree at most k together with the zero polynomial (the zero polynomial 
does not have a degree).

†Mathematics Magazine 63 (April 1990): 136.
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Selected Answers A9

 43. Take g 5 a.
 45. Let S 5 {s1, s2, s3, . . . , sk} and let g be any element in G. Then the set {gs1

21, gs2
21, gs3

21, . . . , 
gsk

21} and S have at least one  element in common. Say gsi
21 5 sj. Then g 5 sjsi.

 47. Let K 5 {x [ G | |x| divides d}. By Exercise 15 of Chapter 4, K is a subgroup. Let x [ H. By  
Theorem 4.3, |x| divides d. So, H # K. Let y [ K, |y| 5 t, and d 5 tq. By  Theorem 4.3, H has a 
subgroup of order t and G has only one subgroup of order t. So, kyl # H.

 49. To check associativity, note (a * b) * c 5 ((a 1 b) 2 1) * c 5 a 1 b 2 1 1 c  2 1 5 a 1 b 1  
c 2 2 and a * (b * c) 5 a * (b 1 c 2 1) 5 a 1 (b 1 c 2 1) 2 1 5 a 1 b 1 c 2 2. To determine 
the identity e, we observe that a * e 5 a if and only if a 1 e 2 1 5 a. Thus, 1 is the identity (it is 
obvious that the operation is commutative). If a21 exists, we have must a * a21 5 a 1  
a21 2 1 5 1, and therefore a21 is �a � 2. To find a  generator, observe that for any  positive 
 integer k, ak 5 ka 2 (k 2 1). So, for positive k and a 5 2, we have 2k 5 k 1 1. One can also check 
that 2k 5 k 1 1 when k 5 0 or negative. Thus, 2 generates all integers.

Chapter 5

Mistakes are often the best teachers.
james a. froude

  1. a. a21 5 c 1 2 3 4 5 6

2 1 3 5 4 6
d   b. ba � c 1 2 3 4 5 6

1 6 2 3 4 5
d

  c. ab � c 1 2 3 4 5 6

6 2 1 5 3 4
d

  3. a. (15)(234)  b. (124)(35)(6)  c. (1423)
  5. a. 3  b. 12  c. 6  d. 6  e. 12  f. 2
  7. 12
  9. For S6, the possible orders are 1, 2, 3, 4, 5, 6; for A6, 1, 2, 3, 4, 5; for A7, 1, 2, 3, 4, 5, 6, 7.
 11. a. even  b. odd  c. even  d. odd  e. even
 13. Let a(x1) 5 a(x2). Then x1 5 a(a(x1)) 5 a(a(x2)) 5 x2. For any s in S, we have a(a(s)) 5 s.
 15. even; odd
 17. An even number of 2-cycles followed by an even number of 2-cycles gives an even number of  

2-cycles in all. So the Finite Subgroup Test is verified.
 19. Suppose that a can be written as a product of m 2- cycles and b can be written as a product of n  

2- cycles. Then ab can be written as a product of m 1 n 2- cycles. Now observe that m 1 n is 
even if and only if m and n are both even or both odd.

 21. (AHMPRS) (BDGC) (EJLNF) (I) (KO) (QU) (TWV) (XZY)
 23. Suppose H contains at least one odd permutation, say, s. Imitate the proof of Theorem 5.7 with 

s in place of (12).
 25. The identity is even; the set is not closed.
 27. a. C(a3) 5 {a1, a2, a3, a4}; b. C(a12) 5 {a1, a7, a12}
 29. 180; 75
 31. In S7, b 5 (2457136). In S9, b 5 (2457136) or b 5 (2457136)(89).
 33. (124586739), (142568793), (214856379)
 35. Let a, b [ stab(a). Then ab(a) 5 a(b(a)) 5 a(a) 5 a. Also, a(a) 5 a implies a21(a(a)) 5 

a21(a) or a 5 a21(a).
 37. m is a multiple of 6 but not a multiple of 30.
 39. 6!/5 5 144
 41. 3, 7, 9
 43. Let a 5 (123) and b 5 (145).
 45. (123)(12) 2 (12)(123) in Sn (n $ 3).
 47. The Finite Subgroup Test shows that H is a subgroup. |H| 5 2(n 2 2)!.
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 49. Theorem 5.2 shows that disjoint cycles commute. For the other half, observe that (ab)(ac) 5 (acb) 
whereas (ac)(ab) 5 (abc).

 51. Let b 5 b1b2 . . . bk, where each bi is a cycle. Because aba21 5 ab1b2 
. . . bka

21 5 (ab1a
21)

(ab2a
21) . . . (abka

21), the problem is reduced to showing that if g is a t-cycle for some t, then 
aga21 is a t-cycle. Now write a 5 a1a2 . . . as, where each ai is a 2-cycle. Then aga21 5 a1a2 . . . 

(asgas) . . . a2a1 since each ai has order 2. Now by Exercise 50 we can replace as gas by a cycle 
the same length as g. Repeated use of this argument finishes the proof.

 53. S9 has an element of order 20 and n 5 9 is the smallest integer that has the desired property.
 55. The cases where n 5 1, 3, 5, 7, 9, or 11 are done by examining cases as in Example 4 of this  

chapter. For n $ 13, observe that (1, 2, . . . , n 2 6) (n 2 5, n 2 4, n 2 3, n 2 2) (n 2 1, n) is in 
An and has order 4(n 2 6), which is greater than 2n when n $ 13.

 57. R0, R180, H, V
 59. The permutation corresponding to the rotation of 360/n degrees, (1, 2, . . . , n), is an even permuta-

tion so all rotations are even.
 61. Cycle decomposition shows that any nonidentity element of A5 is a 5-cycle, a 3-cycle, or a product of 

a pair of disjoint 2-cycles. Then, observe that there are (5 ? 4 ? 3 ? 2 ? 1)/5 5 24 group elements of the 
form (abcde), (5 ? 4 ? 3)/3 5 20 group elements of the form (abc), and (5 ? 4 ? 3 ? 2)/(2 ? 2 ? 2) 5 
15 group elements of the form (ab)(cd).

 63. One possibility is {(1), (12)(34), (56)(78), (12)(34)(56)(78)}.
 65. Hint: (13)(12) 5 (123) and (12)(34) 5 (324)(132).
 67. Verifying that a * s(b) 2 b * s(a) is done by examining all cases. To prove the  general case, 

 observe that si(a) * si11(b) 2 s i(b) * s i11(a) can be written in the form si(a) * s(si(b)) 2  
si(b) * s(si(a)), which is the case already done. If a transposition  were not detected, then  
s(a1) * . . . * si(ai) * si11(ai11) * . . . * sn(an) 5 s(a1) * . . . * si(ai11) * si11(ai) * . . . * sn(an), 
which  implies si(ai) * si11(ai11) 5 si(ai11) * si11(ai).

 69. By Theorem 5.4 it is enough to prove that every 2-cycle can be expressed as a product of elements 
of the form (1k). To this end, observe that if a ? 1, b ? 1, then (ab) 5 (1a)(1b)(1a).

 71. If a has odd order k and a is an odd permutation, then e 5 ak would be odd.
 73. Observe that every element of H is an even permutation, so H # A4. Elements of A4 have order 3, 

2, or 1. For any a in A4 of order 3, kal 5 ka2l , H. The only elements in A4 of order 2 are the 
products of two disjoint 2-cycles—(ab)(cd) 5 (acbd)2, which belong to H. A similar argument  
applies to K.

 75. By case-by-case analysis, H is a subgroup for n 5 1, 2, 3, and 4. For n $ 5, observe that (12)(34) 
and (12)(35) belong to H but their product does not.

 77. The product of an element of Z(A4) of order 2 and an element of A4 of order 3 would have order 6. 
The product of an element of Z(A4) of order 3 and an element of A4 of  order 2 would have order 6.

 79. In Exercise 35, let G be A6. Then, stab(1) is the subgroup of A6 consisting of the 60 even permu-
tations of the set {2,3,4,5,6}. Similarly, stab(2), stab(3), stab(4), stab(5), stab(6) are subgroups  
of order 60.

 81. Labeling the four tires 1, 2, 3, and 4 in clockwise order starting with 1 being the tire in the  
upper left-hand corner, we may represent the four patterns as

  a 5 (1324) top left-hand pattern,
  b 5 (1423) top right-hand pattern,
  g 5 (14)(23) bottom right-hand pattern,
  d 5 (13)(24) bottom left-hand pattern.
  Notice that a21 5 b and that d 5 a2g. Thus, we need only find the smallest subgroup of S4 

 containing a and g. To this end, observe that the set {e, a, a2, a3, g, ag, a2g, a3g} is closed  under 
multiplication on the left and right by both a and g. This implies that the set is closed  under multi-
plication and is therefore a group. Since ag 2 ga, the subgroup is non-Abelian.

 83. Then a permutation such as (23) in Sn for n $ 3 could also be written as (11)(23) so it would be 
both even and odd. In fact, (11) could be appended to every permutation written in cycle form, 
making them both even and odd.
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Chapter 6

Think and you won’t sink.
b. c. forbes, Epigrams

  1. Try n → 2n.
  3. f(xy) 5 2xy � 2x 2y �  f(x)f(y).
  5. Try 1 → 1, 3 → 5, 5 → 7, 7 → 11.
  7. D12 has elements of order 12 and S4 does not.
  9. Since Te(x) 5 ex 5 x for all x, Te is the  identity. For the second part, observe that Tg 8 (Tg)

21 5 Te 5 
Tgg21 5 Tg 8 Tg21 and cancel.

 11. For any x in the group, we have (fgfh)(x) 5 fg(fh(x)) 5 fg(hxh21) 5 ghxh21g21 5 (gh)x(gh)21 5 
fgh(x).

 13. fR90
 and fR0

 disagree on H; fR90
 and fH  disagree on R90; fR90

 and fD disagree on R90. The remain-
ing cases are similar.

 15. Let a [ Aut(G). We show that a21 is  operation-preserving: a21(xy) 5 a21(x)a21(y) if and only 
if a(a21(xy)) 5 a(a21(x)a21(y)), that is, if and only if xy 5 a(a21(x))a(a21(y)) 5 xy. So a21 is 
 operation-preserving. That Inn(G) is a group follows from the equation fgfh 5 fgh.

 17.  Since b 5 f(a) 5 af(1), it follows that f(1) 5 a21b and therefore f(x) 5 a21bx. [Here a21 is the 
multiplicative inverse of a mod n, which exists because a [ U(n).]

 19. Note that both H and K are isomorphic to the group of all permutations on four symbols,  
which is isomorphic to S4. The same is true when 5 is replaced by n, since both H and K are  
isomorphic to Sn21.

 21. Recall that, when n is even, Z(Dn) 5{R0, R180}. Since R180 and f(R180) are not the identity and  
belong to Z(Dn), they must be equal.

 23. Z60 contains cyclic subgroups of orders 12 and 20, and any cyclic group that has subgroups or orders 
12 and 20 must be divisible by 12 and 20. So, 60 is the smallest order of any cyclic group that has 
subgroups isomorphic to Z12 and Z20.

 25. See Example 15 of Chapter 2.
 27. That a is one-to-one follows from the fact that r21 exists modulo n. The operation-preserving condi-

tion is Exercise 9 in Chapter 0.
 29. Use property 2 of Theorem 6.2.
 31. The inverse of a one-to-one function is one-to-one. For any g [ G, we have f21(f(g)) 5 g, and 

therefore f21 is onto. To verify that f21 is operation-preserving, see the answer to Exercise 15 of 
this chapter.

 33. Tg(x) 5 Tg(y) if and only if gx 5 gy or x 5 y. This shows that Tg is a one-to-one function. Let y [ 
G. Then Tg(g

21y) 5 y, so that Tg is onto.
 35. Apply the appropriate definitions.
 37. Show that Q is not cyclic.

 39. Try a 1 bi → c a �b

b a
d .

 41. Yes, by Cayley’s Theorem.
 43. Observe that fg(y) 5 gyg21 and fzg(y) 5 zgy(zg)21 5 zgyg21z21 5 gyg21 since z [ Z(G). So,  

fg 5 fzg.
 45. fg 5 fh implies gxg21 5 hxh21 for all x. This implies h21gx(h21g)21 5 x, and therefore h21g [ Z(G).
 47. By Exercise 45, fx 5 fy implies y21 x is in Z(Sn); and by Exercise 66 in Chapter 5, Z(Sn) 5 {e}.
 49. Since both f and g take e to itself, H is not empty. Assume a and b belong to H. Then f(ab21) 

5 f(a)f(b21) 5 f(a)f(b)21 5 g(a)g(b)21 5 g(a)g(b 21) 5 g(ab21). Thus, ab21 is in H.
 51. Since f(e) 5 e 5 e21, H is not empty. Assume that a and b belong to H. Then f(ab) 5 f(a)f(b)  

5 a21b21 5 b21a21 5 (ab)21, and H is closed under multiplication. Moreover, because f(a21) 
5 f(a)21 5 (a21)21, we have that H is closed under inverses.
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 53. Say |a| 5 n. Then fa
n(x) 5 anxa2n 5 x, so that fa

n is the identity. For the example, take  
a 5 R90 in D4.

 55. Observe that D 5 R90V and H 5 R90D.
 57. (R0R90R180R270)(HD9VD).
 59. Consider the mapping f(x) 5 x2 and note that 2 is not in the image.
 61. Use the fact that if a . 0, then a 5 2a2a. For the second part, use the first part together with 

the fact that the inverse of an automorphism is an automorphism.
 63. Say f is an isomorphism from Q to R1 and f takes 1 to a. It follows that the integer r maps to ar 

and the rational r/s maps to ar/s. But ar/s 2 ap for any r/s.

Chapter 7

Use missteps as stepping stones to deeper  understanding and greater achievement.
susan taylor

  1. H 5 {a1, a2, a3, a4}, a5H 5 {a5, a8, a6, a7}, a9H 5 {a9, a11, a12, a10}
  3. H, 1 1 H, 2 1 H
  5. a. yes  b. yes  c. no
  7. 8/2 5 4, so there are four cosets. Let H 5 {1, 11}. The cosets are H, 7H, 13H, 19H.
  9. Since |a4| 5 15, there are two cosets: ka4l and aka4l.
 11. Let ga belong to g(H d K), where a is in H d K. Then by definition ga is in gH d gK. Now let  

x [ gH d gK. Then x 5 gh for some h [ H, and x 5 gk for some k [ K. Cancellation then gives  
h 5 k. Thus, x [ g(H d K).

 13. Suppose that h [ H and h , 0. Then hR1 # hH 5 H. But hR1 is the set of all negative real 
numbers. Thus, H 5 R*.

15. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
 17. Use Lagrange’s Theorem (Theorem 7.1) and Corollary 3.
 19. By Exercise 18, we have 56 mod 7 5 1 . So, using mod 7, we have 515 5 56 ? 56 ? 52 ? 5 5 1 ? 1 ? 

4 ? 5 5 6; 713 mod 11 5 2.
 21. Use Corollary 4 of Lagrange’s Theorem (Theorem 7.1) together with Theorem 0.2.
 23. By closure, (234)(12) 5 (1342) belongs to H so that |H| is divisible by 3 and 4 and  divides 24. 

But if |H| 5 12 then the even permutations in H would be a subgroup of A4 of order 6, which 
does not exist (see Example 5).

 25. Since G has odd order, no element can have order 2. Thus, for each x 2 e, we know that x 2 x21. 
So, we can write the product of all the elements in the form ea1a1

21a2a2
21 . . . anan

21 5 e.
 27. Let H be the subgroup of order p and K be the subgroup of order q. Then H < K has p 1 q 2 1 , 

pq elements. Let a be any  element in G that is not in H < K. By  Lagrange’s Theorem, |a| 5 p, q, 
or pq. But |a| 2 p, for if so, then kal 5 H. Similarly, |a| 2 q.

 29. 1, 3, 11, 33. If |x| 5 33, then |x11| 5 3. Elements of order 11 occur in multiples of 10.
 31. No. Observe that by Lagrange’s Theorem, the elements of a group of order 55 must have orders 

1, 5, 11, or 55; then use the corollary of Theorem 4.4.
 33. Observe that |G:H| = |G| / |H|, |G:K| = |G| / |K|, and |K:H| = |K| / |H|.
 35. Since the reflections in a dihedral group have order 2, the generators of the subgroups of orders 

12 and 20 must be rotations. The smallest rotation subgroup of a dihedral group that contains  
rotations of orders 12 and 20 must have order divisible by 12 and 20 and therefore must be a 
multiple of 60. So, D60 is the smallest such dihedral group.

 37. Let a have order 3 and b be an element of order 3 not in kal. Then kal kbl is a subgroup of G of 
order 9. Now use Lagrange's Theorem.

 39. Look at D3.
 41. Let a [ G and |a| 5 5. Then the set kalH has exactly 5?|H|/|kal d H| elements and |kal d H|  

divides |kal| 5 5. It follows that |kal d H| 5 5 and therefore kal d H 5 kal.
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 43. Certainly, a [ orbG(a). Now suppose that c [ orbG(a) > orbG(b). Then c 5 a(a) and c 5 b(b) for 
some a and b, and therefore (b21a)(a) 5 b. So, if x [ orbG(b), then x 5 g(b) 5 (gb21a)(a) for 
some g. This proves that orbG(b) # orbG(a). By symmetry, orbG(a) # orbG(b).

 45.  a.  stabG(1) 5 {(1), (24)(56)}; orbG(1) 5 {1, 2, 3, 4}
  b.  stabG(3) 5 {(1), (24)(56)}; orbG(3) 5 {3, 4, 1, 2}
  c.  stabG(5) 5 {(1), (12)(34), (13)(24), (14)(23)}; orbG(5) 5 {5, 6}
 47. Consider the mapping from G to G defined by f(x) 5 x2 and let |G| 5 2k 1 1. Use the observa-

tion that x 5 xe 5 xx2k11 5 x2k12 5 (x2)k11 to prove that f is one-to-one and Exercise 12 of 
Chapter 5 to show that f is onto.

 49. By Corollary 3 of Lagrange's Theorem, a group of order 5 is cyclic. Suppose G is a group with 
distinct subgroups kal and kbl of order 5. Because 5 is prime, the identity is the only element 
common to the two subgroups. This implies that the 25 elements of the form aib j where i,  
j [ {0, 1, 2, 3, 4}are distinct.

 51. Suppose that H is a subgroup of A5 of order 30. We claim that H contains all 20 elements of A5 
that have order 3. To verify this, assume that there is some a in A5 of order 3 that is not in H. 
Then A5 5 H < aH. It follows that a2H 5 H or a2 5 aH. Since the latter implies that a [ H, 
we have that a2H 5 H, which implies that a2 [ H. But then kal 5 ka2l # H, which is a  
contradiction of our assumption that a is not in H. The same argument, shows that H must  
contain all 24 elements of order 5. Since uHu 5 30, we have a contradiction.

 53. Observe that a(ai) 5 ai11, a
2(ai) 5 ai12, . . . , a

k(ai) 5 ai, where all subscripts are taken mod k.
 55. Suppose that H is a subgroup of S5 of order 60. An argument analogous to that given in Exercise 

51 in this chapter shows that H must contain all 24 elements in S5 of order 5 and all 20 elements 
in S5 of order 3. Since these 44 elements are also in A5, we know that ZA5 > H Z divides 60 and is 
greater than 30. So, H 5 A5.

 57. Suppose that B [ G and det (B) 5 2. Then det (A21B) 5 1, so that A21B [ H and therefore B [ 
AH. Conversely, for any Ah [ AH we have det (Ah) 5 det (A)det (h) 5 2 ? 1 5 2.

 59. It is the set of all permutations that carry face 2 to face 1.
61. aH 5 bH if and only if det (a) 5 6det (b).
 63. Closure of the set follows from using ab2 5 b2a3.
 65. 50

Chapter 8

Practice isn't the thing you do when you're good. It's the thing you do that makes you good.
malcolm gladwell

  1. Closure and associativity in the product follow from the closure and associativity in each compo-
nent. The identity in the product is the n-tuple with the identity in each component. The inverse 
of (g1, g2, . . . , gn) is (g1

21, g2
21, . . . , gn

21).
  3. Use g → (g, eH) and h → (eG, h).
  5. To show that Z % Z is not cyclic, note that  (a, b 1 1) o k(a, b)l.
 7. Use (g1, g2) → (g2, g1). In general, G1 % G2

 . . . % Gn is isomorphic to the external  direct product of 
any rearrangement of G1, G2, . . . , Gn.

  9. Yes, by Theorem 8.2.
 11. There are 12 elements of order 4. Observe by Theorem 4.4 that as long as d divides n, the number 

of elements of order  d in a cyclic group depends only on d. So, in both Z8000000 and Z4 there are 
f(4) 5 2 elements of order 4 and f(2) 5 1 element of order 2. Similarly for Zm % Zn.

 13.  Zn2 and Zn % Zn
 15. Try a 1 bi → (a, b).
 17. Use Exercise 3 and Theorem 4.3.
 19. km/rl % kn/sl
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 21. Since k(g, h)l # kgl % khl, a necessary and sufficient condition for equality is that 
lcm (|g|,|h|) 5 |(g, h)| 5 |kgl % khl)| 5 |g||h|. This is equivalent to gcd (|g|,|h|) 5 1.

 23. |(a, b, c)| 5 lcm (|a|,|b|,|c|) 5 3, unless a � b � c � e. In general, the order of every 
 nonidentity element of Zp % Zp % . . . % Zp, where p is prime, is p.

 25. Map c a b

c d
d  to (a, b, c, d). Let Rk denote R % R % ? ? ? % R (k factors). Then the group of m 3 

  n matrices under addition is isomorphic to Rmn.
 27. (g, g)(h, h)21 5 (gh21, gh21). When G 5 R, G % G is the plane and H is the line y 5 x.
 29. k(3, 0)l, k(3, 1)l, k(3, 2)l, k(0, 1)l
 31. 60
 33. k(1, 1, 1)l, k(5, 1, 1)l, k(1, 3, 1)l. (Others exist.)
 35. {0, 400} % {0, 50, 100, 150}
 37. Compare the number of elements of order 2 in each group.
 39. The mapping f13m6n2 � 1m, n2 is an isomorphism. The mapping f13m9n2 � 1m, n2
  is not well-defined, since f132902  ? f130 912.
 41. Compare the number of elements of order 6 in each group.
 43. U(35) L U(5)%U(7) L U7(35)3U5(35) 5 {1, 8, 22, 29}3{1, 6, 11, 16, 26, 31}
 45. C* has only one element of order 2, whereas Z2 % Z2 has three elements of order 2.
 47. 12
 49. Aut(U(25)) < Aut(Z20) < U(20) < U(4) % U(5) < Z2 % Z4
 51. 2k 2 1; 2t 2 1, where t is the number of the integers n1, n2, . . . , nk that are even.
 53. No. Z10 % Z12 % Z6 has seven elements of order 2, whereas Z15 % Z4 % Z12 has only three.
 55. Using the fact that an isomorphism from Z12 is determined by the image of 1 and the fact that a 

 generator must map to a generator, we determine that there are four isomorphisms.
 57. Since (2, 0) has order 2, it must map to an element in Z12 of order 2. The only such element in Z12 

is 6. The isomorphism defined by (1, 1) x → 5x with x 5 6 takes (2, 0) to 6. Since (1, 0) has order 
4, it must map to an element in Z12 of order 4. The only such elements in Z12  are 3 and 9. The first 
case occurs for the isomorphism defined by (1, 1) x → 7x with x 5 9 [recall that (1, 1) is a genera-
tor of Z4 % Z3]; the second case occurs for the isomorphism defined by (1, 1) x → 5x with x 5 9.

 59. Since a [ Zm and b [ Zn, we know that |a| divides m and |b| divides n. So, |(a, b)| 5 lcm(|a|, 
|b|) divides lcm(m, n).

 61. Z, Z3, Z4, Z6
 63. Observe that every nonidentity element of Zp % Zp has order p and each subgroup of order p 

 contains p 2 1 of them. So, there are exactly (p22 1)/(p 2 1) 5 p 1 1 subgroups of order p.
 65. Look at Z % Z2.
67. U(165) < U(11) % U(15) < U(5) % U(33) < U(3) % U(55) < U(3) % U(5) % U(11)
 69. Mimic the analysis for elements of order 12 in U(720) in this chapter.
 71. 60
 73. They are both isomorphic to Z10 % Z4.
 75. That U(n)2 is a subgroup follows from  Exercise 17 of the Supplementary Exercises  

for Chapters 1–4. 12 5 (n 2 1)2 shows that it is a proper subgroup.
 77. 275
 79. U(117) < U(9) % U(13) < Z6 % Z12, which contains k(2, 0)l % k(0, 4)l.
 81. Since U(pq) < U(p) % U(q) < Zp21 % Zq21, it follows that k 5 lcm(p21, q21).
 83. In the first case there are 2k 21; in the second case there are 2k12 21.
 85. Consider U(49).
 87. Consider U(65).
 89. NO.
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Supplementary Exercises for Chapters 5–8

All things are difficult before they are easy.
thomas fuller

 1. Consider the finite and infinite cases separately. In the finite case, note that |H| 5 |f(H)|. Now 
use Theorem 4.3. For the infinite case, use Exercise 2 in Chapter 6.

  3. Observe that f(x21y21xy) 5 (f(x))21(f(y))21f(x)f(y), so f carries the generators of G9 to the 
generators of G9.

  5. All nonidentity elements of G and H have order 3. G 2 H.
  7. Let a and b be distinct nonidentity elements in G of order 2. Let H1 5 {e, a, b, ab}. Note that H1 

is a subgroup of G and the product of all its elements is e. If H1 5 G, we are done. If not, then let 
c be an element of G not in H1. Then H2 5 H1 < cH1 is a subgroup of G and the product of all 
the elements in H2 is c4 5 e. If H2 5 G, we are done. If not, then let d be an element of G not in 
H2. Then H3 5 H2 < dH2 is a subgroup of G and the product of all the elements in H3 is d8 5 e. 
Continuing in this way finishes the proof.

  9. Let x and y belong to H. Then x 5 aiz1 and y 5 ajz2, where 0 # i, j , 4, and z1 and z2 are in 
Z(G). So, xy21 5 aiz1(a

jz2)
21 5 ai2jz1z2

21, where i2j mod 4 [ {0, 1, 2, 3} and z1z2
21 [ Z(G).  

In the general case, H 5 Z(G) < aZ(G) < a2Z(G) < . . . <ak21 Z(G) is a subgroup of G.
 11. U(n), where n 5 4, 8, 3, 6, 12, 24.

 13. Hint: 3 �  2i �  213 a 3

213
�  

2

213
 ib

 15. Suppose f: Q S R is an isomorphism. Let f(1) 5 x0. Show that f(a/b) 5 (a/b)x0 for all integers 
a, b with b 2 0.

 17. In Q, the equation 2x 5 a has a solution for all a. The corresponding equation x2 5 b in Q1 does 
not have a solution for all b.

 19. Suppose xp22 5 1. Since |U(p)| 5 p 2 1, we have that xp21 5 1 for all x [ U(p). So, by cancel-
lation, x 5 1.

 21. k3l % k4l
 23. Z18, Z2 % Z3 % Z3, D9, D3 % Z3
 25. Say a 5 a1a2 

. . . an and b 5 b1 
. . . bm, where the a’s and b’s are cycles. Then ab21 5 a1a2 

. . . 
anbm

21 . . . b1
21 is a finite number of cycles.

 27. Count elements of order 2.
 29. Count elements of order 2.
 31. x 5 fa(x) 5 axa21, so that xa 5 ax. Conversely, if G is Abelian, fa is the identity.
 33. U50(450)
 35. (4, 10)
 37. Count elements of order 2.
 39. 20; (8, 7, (3251))
 41. Let H � 5x [ Zp2 % Zp2 0  xp � 10, 026. Then �H� � p2 and every nonidentity element of  1Zp2 % Zp22 /H has order p.
 43. (12)(34)(56789)
 45. 1260
 47. b 5 (17395)(286)
 49. Say the points in H lie on the line y 5 mx. Then (a, b) 1 H 5 {(a 1 x, b 1 mx) | x [ R}. This 

set is the line y 2 b 5 m(x 2 a).
51. aH 5 bH implies a21b [ H. So (a21b)21 5 b21a [ H. Thus, Hb21a 5 H or Hb21 5 Ha21. 

These steps are reversible.
53. p2 � 1
55. p1p � 12
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57. By Theorem 8.3, U(pq) < U(p) % U(q), so an element xn in U1pq2 corresponds to an  element 1xn
1, x

n
22[U1p2 % U1q2. It follows from Corollary 4 of Theorem 7.1 that 1xn

1, x
n
22 � 11, 12, the  

identity of U1p2 % U1q2.
59. First observe that (n, n21, . . . 2, 1)(12)(123 . . . n) 5 (1n). Also, (1n)(123 . . . n) 5 (123 . . . n 2 1). 

So, by induction, 1122 and 1123 . . . n2 generate Sn�1. This means that every 2-cycle not involving n 
can be generated. Now note that (1k)(1n)(1k) 5 (kn), so all 2-cycles are generated.

 61. Let b have order 2. In disjoint cycle form, b is a product of transpositions, so there must be some i 
missing from this product. Thus, b(i) 5 i. Pick j such that b( j) 2 j. Since s is an n-cycle, some 
power of s, say st, takes i to j. If b commutes with s, it commutes with st as well. Then  
(stb)(i) 5 st(b(i)) 5 st(i) 5 j, whereas (bst)(i) 5 b(st(i)) 5 b( j) 2 j. This proves that  
stb 2 bst.

 63. Write s as (a1a2
 . . . an). Then for each entry ai in the cycle, sm takes ai to ai1m, where the sub-

script i 1 m is taken mod n. So, the cycle decomposition of sm has the cycle (a1, a11m, a112m, . . ., 
a11(r21)m), where r  is the smallest positive integer such that 1 5 (11rm) mod n. Thus, r is the 
smallest positive integer with the property that rm 5 0 mod n. But n / gcd (m, n) is the smallest 
such integer. The same argument applies to all the other cycles in sm. Since the sum of the lengths 
of the cycles in the decomposition of sm is n and each cycle in the decomposition of sm has 
length n / gcd (m, n), there must be gcd (m, n) cycles.

Chapter 9

There’s a mighty big difference between good, sound reasons and reasons that sound good.
burton hillis

  1. No.
  3. HR90 5 R270 H; DR270 5 R90D; R90V 5 VR270
  5. Say i , j and let h [ Hi > Hj. Then h [ H1H2 

. . . Hi 
. . . Hj21 > Hj 5 {e}.

  7. Recall that if A and B are matrices, then det (ABA21) 5 (det A)(det B)(det A)21.
  9. Let x [ G. If x [ H, then xH 5 H 5 Hx. If x o H, then xH is the set of elements in G, not in H. 

But Hx is also the set of elements in G, not in H.
 11. G/H < Z4, but G/K < Z2 % Z2.
 13. Observe that aHbH 5 abH 5 baH 5 bHaH.
 15. 2
 17. H 5 {0 1 k20l, 4 1 k20l, 8 1 k20l, 12 1 k20l, 16 1 k20l}; G/H 5 {0 1 k20l 1 H, 1 1 k20l 1 H, 

2 1 k20l 1 H, 3 1 k20l 1 H}
 19. 40/10 5 4
 21. By Theorem 9.5, the group has an element a of order 3 and an element b of order 11. Then 

|ab| 5 33.
 23. `; no, (6, 3) 1 k(4, 2)l has order 2.
 25. Z8
 27. Yes; no
 29. Mimic the argument given in Example 16 in this chapter.
 31. Certainly, every nonzero real number is of the form 6r, where r is a positive real number. Real 

numbers commute, and R1 > {1, 21} 5 {1}.
 33. No. If G 5 H 3 K, then |g| 5 lcm(|h|, |k|), provided that |h| and |k| are finite. If |h| or |k| is infi-

nite, so is |g|.
 35. For the first question, note that k3l > k6l 5 {1} and k3lk6l > k10l 5 {1}. For the second ques-

tion, observe that 12 5 32162.
 37. Say |g| 5 n. Then (gH)n 5 gnH 5 eH 5 H. Now use Corollary 2 to Theorem 4.1.
 39. Let x [ C(H), g [ G, and h [ H. We must show that gxg21h 5 hgxg21. Note that in the expres-

sion (gxg21)h(gxg21)21 5 gxg21hgx21g21, the terms x and x21 cancel since g21hg [ H and x 
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commutes with every element of H. Then we have (gxg21)h(gxg21)21 5 gxg21hgx21g21 5 
gg21hgg21 5 h. So, gxg21 [ C(H).

 41. Suppose that H is a proper subgroup of Q of index n. Then Q/H is a finite group of order n. By 
Corollary 4 of Theorem 7.1, we know that for every x in Q we have nx is in H. Now observe 
that the function f(x) 5 nx maps Q onto Q. So, Q # H.

 43. Take G 5 Z6, H 5 {0, 3}, a 5 1, and b 5 9.
 45. Use Lagrange’s Theorem and Exercise 9 of this chapter.
 47. Since N # NH # G, we have |G:N| 5 |G:NH| |NH:N|. Thus, |G:H| 5 1 or |NH:N| 5 1. It follows  

that G 5 NH or NH 5 N.
 49. Use the G/Z Theorem.
 51. If H is normal in G, then xNhN(xN)21 5 xhx21N [ H/N, so H/N is normal in G/N. Now assume 

H/N is normal in G/N. Then xhx21N 5 xNhN(xN)21 [ H/N. Thus, xhx21N 5 h9N for h9 [ H. So, 
xhx21 5 h9n for some n [ N.

 53. Say H has index n. Then (R*)n 5 {x n | x [ R*} # H. If n is odd, then (R*)n 5 R*; if n is even, 
then (R*)n 5 R1. So, H 5 R* or H 5 R1.

 55. Use Exercise 9 and observe that VK 2 KV.
 57. Look at S3.
 59. Let N 5 kal, H 5 kakl, and x [ G. Then, x(ak)mx21 5 (xamx21)k 5 (ar)k 5 (ak)r [ H.
 61. gcd(|x|, |G/H|) 5 1 implies gcd(|xH|, |G/H|) 5 1. But |xH| divides |G/H|. Thus |xH| 5 1 and 

therefore xH 5 H.
 63. Note that G/N is a group and use Corollary 4 of Theorem 7.1.
 65. Use Theorems 9.4 and 9.3.
 67. Say |gH| 5 n. Then |g| 5 nt (by Exercise 37) and |gt| 5 n. For the second part, consider Z/kkl.
 69. It is not a group table. No, because _ is not normal in D4.
 71. Use Theorem 9.3 and Theorem 7.3.
 73. By Exercise 72, A5 would have an element of the form (ab)(cd) that commutes with every ele-

ment of A5. Try (abc).
 75. To see that H is normal, observe that xgpx�1 � 1xgx�12p. To verify the second part, note that 1gH2p � gpH � H.
 77. Since H has index 2 in G, it is a normal subgroup of G and |G/H| 5 2. It follows that for every a 

in G, we have 1aH22 � H. If a is an element of G of order 2n � 1, then H � a2n�1H �1 1aH222naH � aH. Thus, a is in H.
 79. Let H be unique subgroup of order 5. By Example 7 H is normal. Now observe that G exactly 4 

elements of order 5 and elements of order 25 come in multiples of f(25) 5 20 (see the Corollary 
of Theorem 4.4). So, elements of order 1, 5 or 25 account for at most 85 elements of G. By  
Lagrange’s Theorem every other element of G must have order 2, 4, 10, 20, 50 or 100. It follows 
from Theorem 4.3 that G has a subgroup K of order 2. By Example 5 HK is a subgroup and by 
Theorem 7.2 |HK| 5 10.

Chapter 10

It’s always helpful to learn from your mistakes, because then your mistakes seem worthwhile.
garry marshall

  1. Note that det(AB) 5 (det A)(det B).
  3. Note that ( f 1 g)9 5 f 9 1 g9.
  5. Observe that (xy)r 5 xryr. Odd values of r yield an isomorphism. For even values of r the kernel 

is {1, 21}.
  7. (sf)(g1g2) 5 s(f(g1g2)) 5 s(f(g1)f(g2)) 5 s(f(g1))s(f(g2)) 5 (sf)(g1)(sf)(g2).  

Ker f is a normal subgroup of Ker sf. |H|/|K| 5 [Ker sf:Ker f].
 9. f((g, h) (g9, h9)) 5 f((gg9, hh9)) 5 gg9 5 f((g, h))f((g9, h9)). The kernel is {(e, h) | h [ H}.
 11. Consider f: Z % Z S Za % Zb given by f((x, y)) 5 (x mod a, y mod b) and use Theorem 10.3.
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 13. (a, b) S b is a homomorphism from A % B onto B with kernel A % {e}.
 15. 3, 13, 23
 17. Suppose f is such a homomorphism. By Theorem 10.3, Ker f 5 k(8, 1)l, k(0, 1)l, or k(8, 0)l. In 

these cases, (1, 0) 1 Ker f has order either 16 or 8. So, (Z16 % Z2) / Ker f is not isomorphic to  
Z4 % Z4.

 19. Since |Ker f| is not 1 and divides 17, f is the trivial map.
 21. k5l
 23. a.  The possible images are isomorphic to Z1, Z2, Z3, Z4, Z6, and Z12.
  b.  k1l < Z36, k2l < Z18, k3l < Z12, k4l < Z9, k6l < Z6, and k12l < Z3.
 25. 4 onto; 10 to
 27. For each k with 0 # k # n 2 1, the mapping 1 S k determines a homomorphism.
 29. Use Theorem 10.3 and properties 5, 7, and 8 of Theorem 10.2.
 31. f21(7) 5 7 Ker f 5 {7, 17}
 33. 11 Ker f
 35. f((a, b) 1 (c, d )) 5 f((a 1 c, b 1 d)) 5 (a 1 c) 2 (b 1 d ) 5 a 2 b 1 c 2 d 5 f((a, b)) 1 

f((c, d)). Ker f 5 {(a, a) | a [ Z}. f21(3) 5 {(a 1 3, a) | a [ Z}.
 37. Use the property of complex numbers that |xy| 5 |x||y| and the First Isomorphism Theorem.
 39. f(xy) 5 (xy)6 5 x6y6 5 f(x)f(y). Ker f 5 kcos 60° 1 i sin 60°l.
 41. Show that the mapping from K to KN/N given by k S kN is an onto homomorphism with kernel 

K > N.
 43. For each divisor d of k there is a unique subgroup of Zk of order d, and this subgroup is gener-

ated by f(d) elements. A homomorphism from Zn to a subgroup of Zk must carry 1 to a genera-
tor of the subgroup.  Furthermore, the order of the image of 1 must divide n, so we need con-
sider only those divisors d of k that also divide n.

 45. D4, {e}, Z2, Z2 % Z2
 47. It is divisible by 10. 10 can be replaced by any positive integer.
 49. It is infinite. Look at Z.
 51. Let g be the natural homomorphism from G onto G/N. Let H be a subgroup of G/N and let  

g21(H) 5 H. Then H is a subgroup of G and H/N 5 g(H) 5 g(g21(H)) 5 H.
 53. The mapping g S fg is a homomorphism with kernel Z(G).
 55. ( f 1 g)(3) 5 f(3) 1 g(3). The kernel is the set of elements in Z[x] whose graphs pass through the 

point (3, 0). 3 can be replaced by any integer.
 57. Let g belong to G. Since f1g2 belongs to Z2 % Z2 5 k(1, 0)l x k(0, 1)l x k(1, 1)l, it follows that 

G 5 f21(k(1, 0)l) x f21(k(0, 1)l) x f21(k(1, 1)l). Moreover, each of these three subgroups is 
proper and by property 8 of Theorem 10.2 normal.

 59. Use Exercise 56 in Chapter 9 and Exercise 41 above to prove the first assertion. To verify that  
G/(H > K) is not cyclic, observe that it has two subgroups of order 2.

 61. Mimic Example 16.
 63. Let f be a homomorphism from S3 to G. Since |f(S3)| must divide 6, we have that |f(S3)| 5 1, 

2, 3, or 6. In the first case, f maps every element to 0. If |f(S3)| 5 2, then n is even and f maps 
the even permutations to 0 and the odd permutations to an element of order 2. The case that 
|f(S3)| 5 3 cannot occur, because it implies that Ker f is a normal subgroup of order 2, whereas 
S3 has no normal subgroup of order 2. The case that |f(S3)| 5 6 cannot occur, because it implies 
that f is an isomorphism from a non-Abelian group to an Abelian group.

 65. f(zw) 5 z2w2 5 f(z) f(w). Ker f 5 {1, 21} and, because f is onto C* we have by Theorem 
10.3, C*/{1, 21} is isomorphic to C*.

 67. Suppose that H is a proper subgroup of G that is not properly contained in a proper subgroup of 
G. Then G/H has no nontrivial, proper subgroup. It follows from Exercise 26 in Chapter 7 that 
G/H is isomorphic to Zp for some prime p. But then for every coset g 1 H we have p(g 1 H) 5 H,  
so that pg [ H for all g [ G. But then G 5 pG # H. Both Q and R satisfy the hypothesis.
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Chapter 11

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.
Samuel Beckett

  1. n 5 4; Z4, Z2 % Z2
  3. n 5 36; Z9 % Z4, Z3 % Z3 % Z4, Z9 % Z2 % Z2, Z3 % Z3 % Z2 % Z2
  5. The only Abelian groups of order 45 are Z45 and Z3 % Z3 % Z5. In the first group, |3| 5 15; in the 

second one, |(1, 1, 1)| 5 15. Z3 % Z3 % Z5 does not have an element of order 9.
  7. Z9 % Z3 % Z4; Z9 % Z3 % Z2 % Z2
  9. Z4 % Z2 % Z3 % Z5
 11. By the Fundamental Theorem, any finite Abelian group G is isomorphic to some direct product of 

cyclic groups of prime-power  order. Now go across the direct product and, for each distinct prime 
you have, pick off the largest factor of the prime power. Next, combine all of these into one fac-
tor (you can do this, since the subscripts are relatively prime). Let us call the order of this new 
 factor n1. Now repeat this process with the remaining original factors and call the order of the 
 resulting factor n2. Then n2 divides n1, since each prime-power divisor of n2 is also a prime-
power divisor of n1. Continue in this fashion. Example: If 

  G < Z27 % Z3 % Z125 % Z25 % Z4 % Z2 % Z2,

  then

  G < Z27 ? 125 ? 4 % Z3 ? 25 ? 2 % Z2.

  Now note that 2 divides 3 ? 25 ? 2 and 3 ? 25 ? 2 divides 27 ? 125 ? 4.

13. Z2 % Z2
 15. a. 1  b. 1  c. 1  d. 1  e. 1  f. There is a unique Abelian group of order n if and only if n is 

not divisible by the square of any prime.
 17. This is equivalent to asking how many Abelian groups of order 16 have no elements of order 8. 

From the Fundamental Theorem of Finite Abelian Groups the only choices are Z4 % Z4, Z4 % Z2 
% Z2, and Z2 % Z2 % Z2 % Z2.

 19. Z2 % Z2
 21. Z3 % Z3
 23. n is square-free (no prime factor of n occurs more than once).
 25. Among the first 11 elements in the table, there are nine elements of order 4. None of the other 

isomorphism classes has this many.
 27. Z4 % Z2 % Z2; one internal direct product is k7l 3 k101l 3 k199l.
 29. 3; 6; 12
 31. Z4 % Z4
 33. Use Theorems 11.1, 8.1, and 4.3.
 35. |kalK| 5 |a||K|/|kal > K| 5 |a||K| 5 |a||K|p 5 |G|p 5 |G|
 37. By the Fundamental Theorem of Finite Abelian Groups, it suffices to show that every group of the 

form Zp1
n1 % Zp2

n2 % . . . % Zpk
nk is a subgroup of a U-group. Consider first a group of the form 

Zp1
n1 % Zp2

n2 ( p1 and p2 need not be distinct). By Dirichlet’s Theorem, for some s and t there are 
distinct primes q and r such that q 5 tp

1
n1 1 1 and r 5 sp

2
n2 1 1. Then U(qr) 5 U(q) % U(r) < 

Ztp1
n1 % Zsp2

n2, and this latter group contains a subgroup isomorphic to Zp1
n1 % Zp2

n2. The general 
case follows in the same way.

 39. Look at D4.

99708_ans_ptg01_hr_A01-A44.indd   19 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A20 Selected Answers

Supplementary Exercises for  Chapters 9–11

You cannot have success without the failures.
h. g. hasler, The Observer

  1. Say aH 5 Hb. Then a 5 hb for some h in H. Then Ha 5 Hhb 5 Hb 5 aH.

  3. Suppose diag(G) is normal. Then (e, a)(b, b)(e, a)21 5 (b, aba21) [ diag(G). Thus b 5 aba21. If 

G is Abelian, (g, h)(b, b)(g, h)21 5 (gbg21, hbh21) 5 (b, b). The  index of diag(G) is |G|.

  5. Let a [ Aut(G) and fa [ Inn(G). Then (afaa
21)(x) 5 (afa)(a

21(x)) 5 a(aa21(x)a21) 5  
a(a)x(a(a))21 5 fa(a)(x).

  7. R* (See Example 2 in Chapter 10.)

  9. a. Z(H) 5 • £ 1 0 b

0 1 0

0 0 1

§ ` b [ Q ¶
  b. The mapping 

    £ 1 0 b

0 1 0

0 0 1

§ S b 

   is an isomorphism.
  c. The mapping

  £ 1 a b

0 1 c

0 0 1

§ S 1a, c2 
    is a homomorphism with Z(H) as the kernel.
  d. The proofs are valid with R and Zp.
 11. b(a/b 1 Z) 5 a 1 Z 5 Z
 13. Use Exercise 5 of the Supplementary Exercises for Chapters 1–4. Such a set is possible only when n is 

prime. For the first example, consider Dp, where p is a prime. For the second  example, try D4.
 15. Observe that hkh21k21 5 (hkh21)k21 [ K and hkh21k21 5 h(kh21k21) [ H.
 17. Use Theorem 7.4 and Exercise 9 of Chapter 9.
 19. First observe that f((4, 0, 0)) 5 f(4(1, 0, 0)) 5 4f(1, 0, 0) 5 (0, 0), so that Ker f 5 {(0, 0, 0), 

(4, 0, 0)}. But then (Z8 % Z2 % Z2)/Ker f has more than three elements of order 2, whereas Z4 % Z4 
has only three.

 21. Use Theorem 7.3 together with the fact that S4 has no element of order 6.
 23. The number is m in all cases.
 25. The mapping g → gn is a homomorphism from G onto Gn with kernel Gn.
 27. Let |H| 5 p. Theorem 7.2 shows that H is the only subgroup of order p. But xHx21 is also a  

subgroup of order p. So, xHx21 5 H.
 29. Say a and b are integers and a/b 1 Z has  order n in Q/Z. Then na/b 5 m for some  integer m. 

Thus, a/b 1 Z 5 m/n 1 Z 5 m(1/n 1 Z) [ k1/n 1 Zl.
 31. If (1, 0) → a and (0, 1) → b, then (x, 0) → ax and (0, y) → by.
 33. First note that by Exercise 11, every element in Q/Z has finite order. For each positive integer n, let 

Bn denote the set of elements of order n, and suppose that f is an isomorphism from Q/Z to itself. 
Then, by property 5 of Theorem 6.2, f(Bn) # Bn. By Exercise 29 we know that Bn is finite, and 
since f preserves orders and is one-to-one, we must have f(Bn) 5 Bn. Since it follows from Exer-
cise 11 and Exercise 29 that Q/Z 5 < Bn, where the union is taken over all positive integers n, we 
have f(Q/Z) 5 Q/Z.

 35. If the group is not Abelian, for any element a not in the center, the inner automorphism induced by 
a is not the identity; if the group is Abelian and contains an element a with |a| . 2, then x → x21 
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works; if every nonidentity element has order 2, then G is isomorphic to a group of the form 
Z2 % Z2 % . . . % Z2 . In this case, the automorphism that takes (a1, a2, a3, . . . , ak) to (a2, a1, a3, . . . , 
ak) is not the identity.

 37. G/H is isomorphic to Z2 % Z2. G/H is not isomorphic to a subgroup of G, since G has only one 
 element of order 2.

 39. Observe that c 1 x

0 1
d c 1 y

0 1
d � c 1 x � y

0 1
d , so H is closed. Also, c 1 x

0 1
d�1

� c 1 �x

0 1
d ,

  which is in H. Thus, H is a subgroup of G. Since c 1 a

0 b
d c 1 x

0 1
d c 1 a

0 b
d�1

�  c 1 a

0 b
d c 1 x

0 1
d    

c 1 �ab�1

0 b�1 d 5 c 1 b�1x

0 1
d  belongs to H, we have that H is normal in G.

 41. Let g belong to G. Since gKg�1 � K, conjugation is an automorphism of K. Thus gHg�1 � H.

Chapter 12

Mistakes are the portals of discovery. 
james joyce

  1. For any n . 1, the ring M2(Zn) of 2 3 2 matrices with entries from Zn is a finite noncommutative 
ring. The set M2(2Z ) of 2 3 2 matrices with even integer entries is an infinite noncommutative 
ring that does not have a unity.

  3. In R, consider 5n12 0  n [ Z 6
  5. The proofs given for a group apply to a ring as well.
  7. In Zp, nonzero elements have multiplicative inverses. Use them.
  9. If a and b belong to the intersection, then they belong to each member of the intersection. Thus, 

a 2 b and ab belong to each member of the intersection. So, a 2 b and ab belong to the 
 intersection.

 11. Rule 3: 0 5 0(2b) 5 (a 1 (2a))(2b) 5 a(2b) 1 (2a)(2b) 5 2(ab) 1 (2a)(2b).  
So, ab 5 (2a)(2b).

  Rule 4: a(b 2 c) 5 a(b 1 (2c)) 5 ab 1 a(2c) 5 ab 1 (2(ac)) 5 ab 2 ac.
  Rule 5: Use rule 2.
  Rule 6: Use rule 3.
 13. Hint: Z is a cyclic group under addition, and every subgroup of a cyclic group is cyclic.
 15. For positive m and n, observe that (m ? a)(n ? b) 5 (a 1 a 1 . . . 1 a)(b 1 b 1 . . . 1 b) 5  

(ab 1 ab 1 . . . 1 ab), where the last term has mn summands. Similar arguments apply in the 
 remaining cases.

 17. From Exercise 15, we have (n ? a)(m ? a) 5 (nm) ? a2 5 (mn) ? a2 5 (m ? a)(n ? a).
 19. Let a, b belong to the center. Then (a 2 b)x 5 ax 2 bx 5 xa 2 xb 5 x(a 2 b). Also,  

(ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab).
 21. (x1, . . . , xn)(a1, . . . , an) 5 (x1, . . . , xn) for all xi in Ri if and only if xiai 5 xi for all xi in Ri and 

i 5 1, . . . , n.
 23. {1, 21, i, 2i}
 25. f (x) 5 1 and g(x) 5 21.
 27. If a is a unit, then b 5 a(a21b).
 29. Consider a21 2 a22b.
 31. Try the ring M2(Z).
 33. Note that 2x 5 (2x)3 5 8x3 5 8x.
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 35. For Z6, use n 5 3. For Z10, use n 5 5. Say m 5 p2t, where p is a prime. Then (pt)n 5 0 in Zm, 
since m divides (pt)n.

 37. Every subgroup of Zn is closed under  multiplication.
 39. ara 2 asa 5 a(r 2 s)a. (ara)(asa) 5 ara2sa 5 arsa. a1a 5 a2 5 1, so 1 [ S.
 41. The Subring Test is satisfied.
 43. Look at (1, 0, 1) and (0, 1, 1).
 45. Observe that n ? 1 2 m ? 1 5 (n 2 m) ? 1. Also, (n ? 1)(m ? 1) 5 (nm) ? ((1)(1)) 5 (nm) ? 1.
 47. {m/2n | m [ Z, n [ Z1}
 49. (a 1 b)(a 2 b) 5 a2 1 ba 2 ab 2 b2 5 a2 2 b2 if and only if ba 2 ab 5 0.
 51. Z2 % Z2; Z2 % Z2 % . . . (infinitely many copies)

Chapter 13

Work now or wince later.
b. c. forbes, Epigrams

  1. The verifications for Examples 1– 6 follow from elementary properties of real and complex num-
bers. For Example 7, note that c 1 0

0 0
d c 0 0

0 1
d � c 0 0

0 0
d .

  For Example 8, note that (1, 0)(0, 1) 5 (0, 0).
  3. Let ab 5 0 and a 2 0. Then ab 5 a ? 0, so b 5 0.
  5. Let k [ Zn. If gcd(k, n) 5 1, then k is a unit. If gcd(k, n) 5 d . 1, write k 5 sd. Then k(n/d) 5 

sd(n/d) 5 sn 5 0.
  7. Let s [ R, s 2 0. Consider the set S 5 {sr | r [ R}. If S 5 R, then sr 5 1 (the unity) for some r. 

If S 2 R, then there are distinct r1 and r2 such that sr1 5 sr2. In this case, s(r1 2 r2) 5 0. To see 
what happens when the “finite” condition is dropped, consider Z.

  9. Take a 5 (1, 1, 0), b 5 (1, 0, 1), and c 5 (0, 1, 1).
 11. (a1 1 b12d) 2 (a2 1 b22d) 5 (a1 2 a2) 1 (b1 2 b2)2d; (a1 1 b12d)(a2 1 b22d) 5   

(a1a2 1 b1b2d) 1 (a1b2 1 a2b1)2d. Thus, the set is a ring. Since Z[2d] is a subring of the  
ring of complex numbers, it has no zero- divisors.

 13. The even integers.
 15. (1 2 a)(1 1 a 1 a2 1 . . . 1 an21 ) 5 1 1 a 1 a2 1 . . . 1 an21 2 a 2 a2 2 . . . 2 an 5 1 

2 an 5 1 2 0 5 1.
 17. Suppose a 2 0 and an 5 0 (where we take n to be as small as possible). Then a ? 0 5 0 5 an 5 

a ? an21, so by cancellation, an21 5 0.
 19. If a2 � a and b2 � b, then 1ab22 � a2b2 � ab. The other cases are similar.
 21. Let f(x) 5 x on [21, 0], f(x) 5 0 on (0, 1], g(x) 5 0 on [21, 0], and g(x) 5 x on (0, 1]. Then f(x) 

and g(x) are in R and f(x)g(x) 5 0 on [21, 1].
 23. Suppose that a is an idempotent and an � 0. By the previous exercise, a � 0.
 25. (3 1 4i)2 5 3 1 4i.
 27. a2 5 a implies a(a 2 1) 5 0. So if a is a unit, a 2 1 5 0 and a 5 1.
 29. See Theorems 3.1 and 12.3.
 31. Note that ab 5 1 implies aba 5 a. Thus 0 5 aba 2 a 5 a(ba 2 1). So, ba 2 1 5 0.
 33. A subdomain of an integral domain D is a subset of D that is an integral domain under the opera-

tions of D. To show that P is a  subdomain, show that it is a subring and contains 1. Every 
 subdomain contains 1 and is closed under addition and subtraction, so every subdomain con-
tains P. |P| 5 char D when char D is prime and |P| is infinite when char D is 0.

 35. Use Theorems 13.3, 13.4, and 7.1 (Lagrange’s Theorem).
 37. By Exercise 36, 1 is the only element of an integral domain that is its own multiplicative inverse 

if and only if 1 5 21. This is true only for fields of characteristic 2.
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 39. a. Since a3 5 b3, a6 5 b6. Then a 5 b because we can cancel a5 from both sides (since a5 5 b5).
  b.  Use the fact that there exist integers s and t such that 1 5 sn 1 tm, but remember that you 

cannot use negative exponents in a ring.
 41. (1 2 a)2 5 1 2 2a 1 a2 5 1 2 2a 1 a 5 1 2 a.
 43. Z8
 45. Let S 5 {a1, a2, . . . , an} be the nonzero elements of the ring. First show that S 5 {a1a1, a1a2, . . . , 

a1an}. Thus, a1 5 a1ai for some i. Then ai is the unity, for if ak is any element of S, we have  
a1ak 5 a1aiak, so that a1(ak 2 aiak) 5 0.

 47. Say |x| 5 n and |y| 5 m with n , m.  Consider (nx)y 5 x(ny).
 49. a. Use the Binomial Theorem.
  b. Use part a and induction.
  c. Look at Z4.
 51. Use Theorems 13.4 and 9.5 and Exercise 47.

 53. n c a b

c d
d  5 c 0 0

0 0
d
 
for all members of M2(R) if and only if na 5 0 for all a in R.

 55. Use Exercise 54.
 57. a. 2  b. 2, 3  c. 2, 3, 6, 11  d. 2, 3, 9, 10
 59. 2
 61. See Example 10.
 63. Use Exercise 29 and part a of Exercise 49.
 65. Choose a 2 0 and a 2 1 and consider 1 1 a.
67. f(x) 5 f(x . 1) 5 f(x) . f(1), so f(1) 5 1. Also, 1 5 f(1) 5 f(xx21) 5 f(x) f(x21).

 69. Since a field of order 27 has characteristic 3, we have 3a 5 0 for all a. From this, we have  
6a 5 0 and 5a 5 2a.

Chapter 14

The paradox of excellence is that it is built upon the foundations of necessary failure.
matthew syed

  1. Let r1a and r2a belong to kal. Then r1a 2 r2a 5 (r1 2 r2)a [ kal. If r [ R and r1a [ kal, then 
r(r1a) 5 (rr1)a [ kal.

  3. Clearly, I is not empty. Now observe that (r1a1 1 . . . 1 rnan) 2 (s1a1 1 . . . 1 snan) 5 (r1 2 s1)a1 
1 . . . 1 (rn 2 sn)an [ I. Also, if r [ R, then r(r1a1 1 . . . 1 rnan) 5 (rr1)a1 1 . . . 1 (rrn)an [ I. 
That I # J follows from closure under addition and multiplication by elements from R.

  5. Let a 1 bi, c 1 di [ S. Then (a 1 bi) 2 (c 1 di) 5 a 2 c 1 (b 2 d)i and b 2 d is even. Also,  
(a 1 bi)(c 1 di) 5 ac 2 bd 1 (ad 1 cb)i and ad 1 cb is even. Finally, (1 1 2i)(1 1 i) 5  
21 1 3i o S.

  7. Since ar1 2 ar2 5 a(r1 2 r2) and (ar1)r 5 a(r1r), 4R 5 {. . . , 216, 28, 0, 8, 16, . . .}.
  9. If n is prime, use Euclid’s Lemma (Chapter 0). If n is not prime, say n 5 st where s , n and t , n; 

then st belongs to nZ but s and t do not.
 11. a. a 5 1  b. a 5 2  c. a 5 gcd(m, n)
 13. a. a 5 12
  b.  a 5 48. To see this, note that every  element of k6lk8l has the form 6t18k1 1 6t28k2 1 . . . 1 

6tn8kn 5 48s [ k48l. So, k6lk8l # k48l. Also, since 48 [ k6lk8l, we have k48l # k6lk8l.
  c. a 5 mn
 15. Let r [ R. Then r 5 1r [ A.
 17. Let u [ I be a unit and let r [ R. Then r 5 r(u21u) 5 (ru21)u [ I.
 19. Observe that k2l and k3l are the only  nontrivial ideals of Z6, so both are maximal. More gener-

ally, Zpq, where p and q are  distinct primes, has exactly two maximal ideals.
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 21. Clearly, I is closed under subtraction. Also, if b1, b2, b3, and b4 are even, then every 

  entry of c a1 a2

a3 a4
d c b1 b2

b3 b4
d  is even.

 23. Use the observation that every member of R can be written in the form c 2q1 � r1 2q2 � r2

2q3 � r3 2q4 � r4
d .

  Then note that c 2q1 � r1 2q2 � r2

2q3 � r3 2q4 � r4
d � I � c r1 r2

r3 r4
d � I.

 25. (br1 1 a1) 2 (br2 1 a2) 5 b(r1 2 r2) 1 (a1 2 a2) [ B; r9(br 1 a) 5 b(r9r) 1 r9a [ B since r9a 
is in A.

 27. Use Exercise 17.
 29. Since every element of kxl has the form xg(x), we have kxl # I. If f(x) [ I, then f(x) 5 anx

n 1 . . . 1 
a1x 5 x(anx

n21 1 . . . 1 a1) [ kxl.
 31. Suppose f(x) 1 A 2 A. Then f(x) 1 A 5 f(0) 1 A and f(0) 2 0. Thus,1 f1x2 �  A2�1 �  

1

f 102  �  A.

  This shows that R/A is a field. Now use  Theorem 14.4.
 33. Since (3 1 i)(3 2 i) 5 10, 10 1 k3 1 il 5 0 1 k3 1 il. Also, i 1 k3 1 il 5 23 1 k3 1 il 5 7 1 

k3 1 il. So, Z[i]/k3 1 il 5 {k 1 k3 1 il | k 5 0, 1, . . . , 9}, since 1 1 k3 1 il has additive order 10.
 35. Use Theorems 14.3 and 14.4.
 37. Since every f(x) in kx, 2l has the form f(x) 5 xg(x) 1 2h(x), we have f(0) 5 2h(0), so that f(x) [ I. 

If f(x) [ I, then f(x) 5 anx
n 1 ? ? ? 1 a1x 1 2k 5 x(anx

n21 1 ? ? ? 1 a1) 1 2k [ kx, 2l. I is prime 
and maximal. Z[x]/I has two elements.

 39. 3x 1 1 1 I
 41. Every ideal is a subgroup. Every subgroup of a cyclic group is cyclic.
 43. Let I be any ideal of R % S and let IR 5 {r [ R | (r, s) [ I for some s [ S} and IS 5 {s [ S | (r, s) [ I 

for some r [ R}. Then IR is an ideal of R and IS is an ideal of S. Let IR 5 krl and IS 5 ksl. Since, 
for any (a, b) [ I there are elements a9 [ R and b9 [ S such that (a, b) 5 (a9r, b9s) 5 (a9, b9)(r, s), 
we have that I = k(r, s)l.

 45. Say b, c [ Ann(A). Then (b 2 c)a 5 ba 2 ca 5 0 2 0 5 0. Also, (rb)a 5 r(ba) 5 r ? 0 5 0.
 47. a. k3l  b. k3l  c. k3l
 49. Suppose (x 1 N(k0l))n 5 0 1 N(k0l). We must show that x [ N(k0l). We know that xn 1  

N(k0l) 5 0 1 N(k0l), so that xn [ N(k0l). Then, for some m, (xn)m 5 0, and therefore x [ N(k0l).
 51. The set Z2[x]/kx2 1 x 1 1l has only four  elements and each of the nonzero ones has a multiplica-

tive inverse. For example,

(x 1 kx2 1 x 1 1l)(x 1 1 1 kx2 1 x 1 1l) 5 1 1 kx2 1 x 1 1l.
 53. x 1 2 1 kx2 1 x 1 1l is not zero, but its square is.

 55. If f and g [ A, then ( f 2 g)(0) 5 f (0) 2 g(0) is even and ( f ? g)(0) 5 f (0) ? g(0) is even.  

f(x) 5 12 [ R and g(x) 5 2 [ A, but f(x)g(x) o A.
 57. Hint: Any ideal of R/I has the form A/I, where A is an ideal of R.
 59. Use the fact that R/I is an integral domain to show that R/I 5 {I, 1 1 I}.
 61. kxl , kx, 2nl , kx, 2n21l , . . . , kx, 2l
 63. Taking r 5 1 and s 5 0 shows that a [ I. Taking r 5 0 and s 5 1 shows that b [ I. If J is any 

ideal that contains a and b, then it contains I because of the closure conditions.

Supplementary Exercises for  Chapters 12–14

One problem after another presents itself and in the solving of them we can find our greatest  
pleasure.

karl menninger

  1. In Z10, they are 0, 1, 5, and 6. In Z20, they are 0, 1, 5, and 16. In Z30, they are 0, 1, 6, 10, 15, 16, 
21, and 25.
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  3. We must show that an 5 0 implies a 5 0. First show this for the case when n is a power of 2.  
If n is not a power of 2, say 13, for example, note that a13 5 0 implies a16 5 0.

  5. Suppose A s C and B s C. Pick a [ A and b [ B such that a, b o C. But ab [ C and C is 
prime.

  7. {0} % {0}, R % R, R % {0}, and {0} % R. The ideals of F % F are {0} % {0}, F % F,  
F % {0}, and {0} % F.

  9. Suppose that am mod n 5 0. Since n divides am, every prime divisor p of n divides am. By Euclid’s 
Lemma (Chapter 0), p divides a, and since n is square-free, if follows that n divides a.

 11. Suppose a1, a2 [ A but a1 o B and a2 o C. Use a1 1 a2 to derive a contradiction.
 13. Clearly kal contains the right-hand side. Now show that the right-hand side contains a and is an 

ideal.
 15. Since A is an ideal, ab [ A. Since B is an ideal, ab [ B. So ab [ A > B 5 {0}.
 17. 6
 19. Use Exercise 4.
 21. Since 2x 1 1 1 k2x 1 1l = 0 1 k2x 1 1l, we have 22x 1 k2x 1 1l 5 1 1 k2x 1 1l. 
  So, (22 + k2x 1 1l) (x 1 k2x 1 1l) 5 1 1 k2x 1 1l.
 23. Consider x2 1 1 1 kx4 1 x2l.
 25. Consider Z8.
 27. Say char R 5 p (remember p must be prime). Then char R/A 5 the additive order of 1 1 A. 

But |1 1 A| divides |1| 5 p.
 29. Use Theorems 13.2, 14.3, and 14.4.

 31. Observe that A � e c a    b

0    0
d ` a, b [ Z2 f

 
but c 1 1

1 1
d c 1 0

0 0
d � c 1 0

1 0
d  is not in A.

 33. Z[i]/A has two elements. (From this it follows that A is maximal. See Theorem 14.4.)
 35. A finite subset of a field is a subfield if it contains a nonzero element and is closed under addi-

tion and multiplication.
 37. Observe that (a 1 bi) (a 2 bi) 5 a2 1 b2. In Z13[i], 2 1 3i is a zero-divisor.
 39. 5
 41. The inverse is 2x 1 3.
 43. Observe that Z5[x, y]/kx, yl < Z5 and use Theorem 14.4.
 45. Say (a,b)n 5 (0, 0). Then an 5 0 and bn 5 0. If am 5 0 and bn 5 0, then (a, b)mn 5 

((am)n, (bn)m) 5 (0, 0).
 47. If a2 5 a, then pk | a(a 2 1). Since a and a 2 1 are relatively prime, pk | a or pk | (a 2 1).  

So, a 5 0 or a 5 1.
 49. In Z3 3224, (a 1 b22)21 5 (a 2 b22)/(a2 2 2b2)  5 (a 2 b22)/(a2 1 b2). In Z7 3224, (1 1 222) 

(1 1 522) 5 0.
 51. If xn 5 0, then (rx)n 5 rnxn 5 0.

Chapter 15

For every problem there is a solution which is simple, clean and wrong.
h. l. mencken

  1. Property 3: f(A) is a subgroup because f is a group homomorphism. Let s [ S and f(r) 5 s. 
Then sf(a) 5 f(r)f(a) 5 f(ra) and f(a)s 5 f(a)f(r) 5 f(ar).

  Property 4: Let a and b belong to f21(B) and r belong to R. Then f(a) and f(b) are in B. So,  
f(a) 2 f(b) 5 f(a) 1 f(2b) 5 f(a 2 b) [ B. Thus, a 2 b [ B. Also, f(ra) 5 f(r)f(a) [ B 
and f(ar) 5 f(a)f(r) [ B. So, ra and ar [ f21(B).

  3. We already know the mapping is an isomorphism of groups. Let F(x 1 Ker f) 5 f(x). Note that 
F((r 1 Ker f)(s 1 Ker f)) 5 F(rs 1 Ker f) 5 f(rs) 5 f(r)f(s) 5 F(r 1 Ker f)F(s 1 Ker f). 

99708_ans_ptg01_hr_A01-A44.indd   25 06/06/12   4:56 PM

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A26 Selected Answers

  5. f(2 1 4) 5 f(1) 5 5, whereas f(2) 1 f(4) 5 0 1 0 5 0.
   7. Observe that (x 1 y)/1 5 x/1 1 y/1 and (xy)/1 5 (x/1)(y/1).
  9. a 5 f(1) 5 f(1·1) 5 f(1)f(1) 5 aa 5 a2. For the example look at Z6.
 11. If a and b (b 2 0) belong to every member of the collection, then so do a 2 b and ab21. Thus, 

by Exercise 29 in Chapter 13, the  intersection is a subfield.
 13. Apply the definition.
 15. Multiplication is not preserved.
 17. Yes.
 19. The set of all polynomials passing through the point (1, 0).
 21. For Z6 to Z6, 1 S 0, 1 S 1, 1 S 3, and 1 S 4 each define a homomorphism. For Z20 to Z30, 1 S 0, 

1 S 6, 1 S 15, and 1 S 21 each define a homomorphism.
 23. The zero map and the identity map.
 25. Use Exercise 24.
 27. Say 1 is the unity of R. Let s 5 f(r) be any element of S. Then f(1)s 5 f(1)f(r) 5 f(1r) 5 

f(r) 5 s. Similarly, sf(1) 5 s.
 29. Observe that an idempotent must map to an idempotent. So, (1, 0) and (0, 1) must map to 0 or 1. 

It follows that (a, b) S a, (a, b) S b, and (a, b) S 0 are the only ring homomorphisms.
 31. Say m 5 akak21 . . . a1a0 and n 5 bkbk21 . . . b1b0. Then m 2 n 5 (ak 2 bk)10k 1  

(ak21 2 bk21)10k21 1 . . . 1 (a1 2 b1)10 1 (a0 2 b0). Now use the test for divisibili ty by 9.
 33. Use the appropriate divisibility tests.
 35. Mimic Example 8.
 37. Use Exercise 35.
 39. Look at both sides mod 2.
 41. Observe that (2 ? 1075 1 2) mod 3 5 1 and (10100 1 1) mod 3 5 2 5 21 mod 3.
 43. This follows directly from Theorem 13.3 and Theorem 10.1, part 3.
 45. No. The kernel must be an ideal.
 47. a. Suppose ab [ f21(A). Then f(a)f(b) [ A, so that a [ f21(A) or b [ f21(A).
  b. Consider the natural homomorphism from R to S/A. Then use Theorems 15.3 and 14.4.
 49. a.  f((a, b) 1 (a9, b9)) 5 f((a 1 a9, b 1 b9)) 5 a 1 a9 5 f((a, b)) 1 f((a9, b9)), so f preserves 

addition. Also, f((a, b)(a9, b9)) 5 f((aa9, bb9)) 5 aa9 5 f((a, b))f((a9, b9)).
  b.  f(a) 5 f(b) implies that (a, 0) 5 (b, 0), which implies that a 5 b. f(a 1 b) 5 (a 1 b, 0) 5 

(a, 0) 1 (b, 0) 5 f(a) 1 f(b). Also, f(ab) 5 (ab, 0) 5 (a, 0)(b, 0) 5 f(a)f(b).
  c. Use (r, s) S (s, r).
 51. Observe that x4 5 1 has two solutions in R but four in C.
 53. Use Exercises 46 and 52.
 55. If a / b 5 a9/ b9 and c / d 5 c9 / d9, then ab9 5 ba9 and cd9 5 dc9. So, acb9d9 5 (ab9)(cd9) 5  

(ba9)(dc9) 5 bda9c9. Thus, ac / bd 5 a9c9/ b9d9 and therefore (a / b)(c / d) 5 (a9/ b9)(c9/ d9).
 57. First note that any field containing Z and i must contain Q[i]. Then prove (a 1 bi)/(c 1 di) [ Q[i].
 59. The subfield of E is {ab21 | a, b [ D, b 2 0}.
 61. Reflexive and symmetric properties follow from the commutativity of D. For transitivity, assume 

a/b ; c/d and c/d ; e/f. Then adf 5 (bc)f 5 b(cf ) 5 bde, and cancellation yields af 5 be.
 63. Try ab21 S a/b.
 65. The mapping a 1 bi S a 2 bi is a ring  isomorphism of C.
 67. Certainly the unity 1 is contained in every subfield. So, if a field has characteristic p, the subfield 

{0, 1, . . . , p 2 1} is contained in every subfield. If a field has characteristic 0, then {(m ? 1)(n ? 1)21 
| m, n [ Z, n 2 0} is a subfield contained in every subfield. This subfield is isomorphic to Q 
[map (m ? 1)(n ? 1)21 to m/n].

 69. The mapping f(x) 5 (x mod m, x mod n) from Zmn to Zm { Zn is a ring isomorphism.
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Chapter 16

You know my methods. Apply them!
sherlock holmes,

The Hound of the Baskervilles*

  1. f 1 g 5 3x4 1 2x3 1 2x 1 2; f ? g 5 2x7 1 3x6 1 x5 1 2x4 1 3x2 1 2x 1 2.
  3. 1, 2, 4, 5
  5. Write f(x) 5 (x 2 a)q(x) 1 r(x). Since deg (x 2 a) 5 1, deg r(x) 5 0 or r(x) 5 0. So r(x) is a 

constant. Also, f(a) 5 r(a).
  7. x3 1 1 and x3 1 x2 1x 11
  9. Use Corollary 1 of Theorem 16.2.
 11. Let f(x), g(x) [ R[x]. By inserting terms with the coefficient 0, we may write

f(x) 5 anx
n 1 . . . 1 a0

  and
g(x) 5 bnx

n 1 . . . 1 b0.

  Then

  f( f(x) 1 g(x)) 5  f(an 1 bn)x
n 1 . . . 1 f(a0 1 b0)

   5  (f(an) 1 f(bn))x
n 1 . . . 1 f(a0) 1 f(b0)

   5  (f(an)x
n 1 . . . 1 f(a0)) 1 (f(bn)x

n 1 . . . 1 f(b0))

   5 f( f(x)) 1 f(g(x)).

  Multiplication is done similarly.
 13. 4x2 1 3x 1 6 is the quotient and 6x 1 2 is the remainder.
 15. It is its own inverse.
 17. No. See Exercise 19.
 19. If f(x) 5 anx

n 1 . . . 1 a0 and g(x) 5 bmxm 1 . . . 1 b0, then f(x) ? g(x) 5 anbmxm1n 1 . . . 1 a0b0.
 21. Let m be the multiplicity of b in q(x). Then we may write f(x) 5 (x 2 a)n (x 2 b)m q9(x), where 

q9(x) is in F[x] and q9(b) Z 0. This means that b is a zero of f(x) of multiplicity at least m.  
If b is a zero of f(x) greater than m, then b is a zero of g(x) 5 f(x)/(x 2 b)m 5 (x 2 a)nq9(x). 
But then 0 5 g(b) 5 (b 2 a)n q9(b), and therefore q9(b) 5 0.

 23. Use Corollary 3 of Theorem 16.2.
 25. If f(x) 2 g(x), then deg[f(x) 2 g(x)] , deg p(x). But the minimum degree of any member of  

kp(x)l is deg p(x).
 27. Start with (x 2 1/2)(x 1 1/3) and clear fractions.
 29. “Long divide” x 2 a into f(x) and induct on deg f(x).
 31. By Theorem 16.4, I 5 kx 2 1l.
 33. Use Corollary 2 of Theorem 15.5 and Exercise 11 in this chapter.
 35. For any a in U(p), ap21 5 1, so every member of U(p) is a zero of xp21 2 1. Now use the Factor 

Theorem and a degree argument.
 37. C(x) (field of quotients of C[x])
 39. Use Exercise 38.
 41. Observe that, modulo 101, (50!)2 5 (50!)(21)(22) . . . (250) 5 (50!)(100)(99) . . . (51) 5 100! 

and use  Exercise 36.
 43. Take R 5 Z and I 5 k2l.
 45. Hint: F[x] is a PID. So kf(x), g(x)l 5 ka(x)l for some a(x) [ F[x]. Thus, a(x) divides both f(x) and 

g(x). This means that a (x) is a  constant.
 47. Write f(x) 5 (x 2 a)g(x). Use the product rule to compute f 9(x).
 49. Say deg g(x) 5 m, deg h(x) 5 n, and g(x) has leading coefficient a. Let k(x) 5 g(x) 2 axm2nh(x). 

Then deg k(x) , deg g(x) and h(x) divides k(x) in Z[x] by induction. So, h(x) divides k(x) 1 
axm2nh(x) 5 g(x) in Z[x].

*Copyright © 1968 (Renewed) Stony/ATV Tunes LLC. All rights  administered by Sony/ATV Music 
Publishing, 8 Music Square West, Nashville, TN 37203. All rights reserved. Used by permission.
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 51. If f(x) takes on only finitely many values, then there is at least one a in Z with the property that 
f(x) 5 a for infinitely many x in Z. But then g(x) 5 f(x) 2 a has infinitely many zeros. This  
contradicts Corollary 3 of Theorem 16.2.

 53. Observe that (1 1 tmx) (1 2 tmx) 5 1.
 55. Let f(x) = anx

n 1 an21x
n21 1 ) 1 a1x 1 a0 and assume that p/q is a zero of f(x), where p and q 

are integers and n is even. We may assume that p and q are relatively prime. Substituting p/q for 
x and clearing fractions, we have anp

n 1 an21p
n21 q 1 ) 1 a1pq 

n21 52a0q
n. If p is even, then 

the left side is even. If p is odd, then each summand on the left side is odd and since there is an 
even number of summands, the left side is still even. Because a0 is odd, we then have that q is 
even. It follows that anp

n 52 (an21p
n21 q 1 ) 1 a1pq 

n21 1 a0q
n) is even, since the right side is 

divisible by q. This implies that p is even. This contradicts the assumption that p and q are rela-
tively prime.

 57. Consider the remainder when x43 is divided by x2 1 x 1 1.
 59. Observe that every term of f (a) has the form cia

i and cia
i mod m 5 cib

i mod m. To prove the sec-
ond statement, assume that there is some integer k such that f (k) 5 0. If k is even, then because 
k mod 2 5 0, we have by the first statement 0 5 f(k) mod 2 5 f(0) mod 2 so that f(0) is even. 
This shows that k is not even. If k is odd, then k mod 2 5 1, so by the first statement f(k) 5 0 is 
odd. This contradiction completes the proof.

 61. A solution to x25 2 1 5 0 in Z37 is a solution to x25 5 1 in U(37). So, by Corollary 2 of  
Theorem 4.1, |x| divides 25. Moreover, we must also have that |x| divides |U(37)| 5 36.

Chapter 17

Experience enables you to recognize a mistake when you make it again.
franklin p. jones*

  1. Use Theorem 17.1.
  3. If f(x) is not primitive, then f(x) 5 ag(x), where a is an integer greater than 1. Then a is not a unit 

in Z[x] and f(x) is reducible.
  5. a. If f(x) 5 g(x)h(x), then af(x) 5 ag(x)h(x).
  b.  If f(x) 5 g(x)h(x), then f(ax) 5 g(ax)h(ax).
  c.  If f(x) 5 g(x)h(x), then f(x 1 a) 5 g(x 1 a)h(x 1 a).
  d. Try a 5 1.
  7. Use part a Exercise 5 and clear fractions.
  9. Find an irreducible polynomial p(x) of degree 2 over Z5. Then Z5[x]/kp(x)l is a field of order 25.
 11. Note that 21 is a zero. No, since 4 is not a prime.
 13. Let f (x) 5 x4 1 1 and g(x) 5 f (x 1 1) 5 x4 1 4x3 1 6x2 1 4x 1 2. Then f (x) is irreducible over 

Q if g(x) is. Eisenstein’s  Criterion shows that g(x) is irreducible over Q. To see that x4 1 1 is 
 reducible over R, observe that

  x82 1 5 (x4 1 1)(x42 1),

  so any complex zero of x4 1 1 is a complex zero of x82 1. Also note that the complex zeros  
of x4 1 1 must have order 8 (when considered as an element of C). Let v  5 22/2 1 i22/2. 
Then Example 2 in Chapter 16 tells us that the complex zeros of x4 1 1 are v, v3, v5, and v7,  
so x4 1 1 5 (x 2 v)(x 2 v3)(x 2 v5)(x 2 v7). But we may pair these factors up as ((x 2 v) 
(x 2 v7)) ((x 2 v3)(x 2 v5)) 5 (x2222 x 1 1) . (x2 1 22 x 11) to factor using reals (see 
DeMoivre’s Theorem, Example 7 in Chapter 0).

 15. (x 1 3)(x 1 5)(x 1 6)
 17. a.  Consider the number of distinct expressions of the form (x 2 c)(x 2 d).
  b.  Reduce the problem to the case considered in part a.
 19. Use Exercise 18, and imitate Example 10.
 21. Map Z3[x] onto Z3[i] by f (x) → f (i). This is a ring homomorphism with kernel kx2 1 1l.

*Copyright © 1968 (Renewed) Stony/ATV Tunes LLC. All rights  administered by Sony/ATV Music 
Publishing, 8 Music Square West, Nashville, TN 37203. All rights reserved. Used by permission.
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 23. x2 1 1, x2 1 x 1 2, x2 1 2x 1 2
 25. 1 has multiplicity 1, 3 has multiplicity 2.
 27. We know that an(r/s)n 1 an21(r/s)n21 1 . . . 1 a0 5 0. So anr

n 1 san21r
n21 1 . . . 1 sna0 5 0. 

This shows that s | anr
n and r | sna0. Now use Euclid’s Lemma and the fact that r and s are rela-

tively prime.
 29. If there is an a in Zp such that a2 5 21, then x4 1 1 5 (x2 1 a)(x2 2 a).
  If there is an a in Zp such that a2 5 2, then x4 1 1 5 (x2 1 ax 1 1)(x2 2 ax 1 1).
  If there is an a in Zp such that a2 5 22, then x4 1 1 5 (x2 1 ax 2 1)(x2 2 ax 2 1).
  To show that one of these three cases must occur, consider the group homomorphism from Zp* to 

itself given by x → x2. Since the kernel is {1, 21}, the image H has index 2 (we may assume that 
p 2 2). Suppose that neither 21 nor 2 belongs to H. Then, since there is only one coset other 
than H, we have 21H 5 2H. Thus, H 5 (21H)(21H) 5 (21H)(2H) 5 22H, so that 22 is in H.

 31. Since ( f 1 g)(a) 5 f(a) 1 g(a) and ( f ? g)(a) 5 f(a)g(a), the mapping is a  homomorphism. 
Clearly, p(x) belongs to the kernel. By Theorem 17.5, kp(x)l is a maximal ideal, so the kernel 
is kp(x)l.

 33. The mapping a → a 1 kp(x)l is an isomorphism.
 35. f(x) is primitive.
 37. Although the probability of rolling any particular sum is the same with either pair of dice, the 

probability of rolling doubles is different (1/6 with ordinary dice, 1/9 with Sicherman dice). Thus, 
the probability of going to jail is different. Other probabilities are also affected. For example, if 
in jail one cannot land on Virginia by rolling a pair of 2’s with Sicherman dice, but one is twice 
as likely to land on St. James with a pair of 3’s with the Sicherman dice as with ordinary dice.

 39. The analysis is identical except that 0 # q, r, t, u # n. Now, just as when n 5 2, we have q 5 r 5 
t 5 1, but this time 0 # u # n. However, when u . 2, P(x) 5 x(x 1 1)(x2 1 x 1 1)(x2 2 x 1 1)u 
has (2u 1 2)x2u13 as one of its terms. Since the coefficient of x2u13 represents the number of dice 
with the label 2u 1 3, the coefficient cannot be negative. Thus, u # 2, as before.

Chapter 18

If you have great talents, industry will improve them; if you have but moderate abilities, industry 
will supply their deficiency. 

sir joshua reynolds

  1. 1. |a2 2 db2| 5 0 implies a2 5 db2. Thus, a 5 0 5 b, since otherwise d 5 1 or d is divisible by 
the square of a prime.

  2. N((a 1 b2d)(a9 1 b92d)) 5 N(aa9 1 dbb9 1 (ab9 1 a9b)2d) 5 |(aa9 1 dbb9)2 2  
d(ab9 1 a9b)2| 5 |a2a92 1 d 2b2b92 2 da2b92 2 da92b2| 5 |a2 2 db2||a92 2 db92| 5  
N(a 1 b2d)N(a9 1 b92d).

  3. If xy 5 1, then 1 5 N(1) 5 N(xy) 5 N(x)N(y) and N(x) 5 1 5 N(y). If N(a 1 b2d) 5 1, then 
61 5 a2 2 db2 5 (a 1 b2d)(a 2 b2d) and a 1 b2d is a unit.

  4. This property follows directly from properties 2 and 3.
   3. Let I 5 <Ii. Let a, b [ I and r [ R. Then a [ Ii for some i and b [ Ij for some j. Thus, a, b [ Ik, 

where k 5 max{i, j}. So, a 2 b [ Ik # I and ra, ar [ Ik # I.
  5. Clearly, kabl # kbl. If kabl 5 kbl, then b 5 rab, so that 1 5 ra and a is a unit.
  7. Say x 5 a 1 bi and y 5 c 1 di. Then

xy 5 (ac 2 bd ) 1 (bc 1 ad )i.
  So

d(xy) 5 (ac 2 bd )2 1 (bc 1 ad )2 5 (ac)2 1 (bd )2 1 (bc)2 1 (ad )2.
  On the other hand,
  d(x)d(y) 5 (a2 1 b2)(c2 1 d2) 5 a2c2 1 b2d2 1 b2c2 1 a2d2.
  9. Suppose a 5 bu, where u is a unit. Then d(b) # d(bu) 5 d(a). Also, d(a) # d(au21) 5 d(b).
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 11.  m 5 0 and n 5 21 give q 5 2i, r 5 22 2 2i.
 13. 3 ? 7 and 11 � 22�52 11 � 22�52. Mimic Example 8 to show that these are  irreducible.
 15. Observe that 10 5 2 ? 5 and 10 5 12 � 2�62 12 � 2�62 and mimic  Example 8. A PID 

is a UFD.
 17. Suppose 3 5 ab, where a, b [ Z[i] and  neither is a unit. Then 9 5 d(3) 5 d(a)d(b), so that 

d(a) 5 3. But there are no integers such that a2 1 b2 5 3. Observe that 2 5 2i(1 1 i)2 and  
5 5 (1 1 2i)(1 2 2i).

 19. Use Exercise 1 with d 5 21. 5 and 1 1 2i; 13 and 3 1 2i; 17 and 4 1 i.
 21. Mimic Example 1.

 23. 1�1 � 252 11 � 252 5 4 5 2 ? 2. Now use Exercise 22.
 25. Use the fact that x is a unit if and only if N(x) 5 1.

 27. 1 5 N (ab) 5 N(a)N(b), so that N(a) 5 1 5 N(b).
 29. Suppose that bc 5 pt in Zn. Then there exists an integer k such that bc 5 pt 1 kn. This implies 

that p divides bc in Z, and by Euclid's Lemma we know that p divides b or p divides c.
 31. See Example 3.
 33. p | (a1a2 

. . . an21)an implies that p | a1a2 
. . . an21 or p | an. Thus, by induction, p divides some ai.

 35. Use Exercise 10 and Theorem 14.4.
 37. Suppose R satisfies the ascending chain  condition and there is an ideal I of R that is not finitely 

generated. Then pick a1 [ I. Since I is not finitely generated, ka1l is a proper subset of I, so 
we may choose a2 [ I but a2 o ka1l. As before, ka1, a2l is proper, so we may choose a3 [ I but 
a3 o ka1, a2l. Continuing in this fashion, we obtain a chain of infinite length ka1l , ka1, a2l , 
ka1, a2, a3l , . . ..

Now suppose every ideal of R is finitely generated and there is a chain I1 , I2 , I3 , . . .. 
Let I 5 <Ii. Then I 5 ka1, a2, . . . , anl. Since I 5 <Ii, each ai belongs to some member of the 
union, say Ii9. Letting k 5 max {i9 | i 5 1, . . . , n}, we see that all ai [ Ik. Thus, I # Ik and the 
chain has length at most k.

 39. Say I 5 ka 1 bil. Then a2 1 b2 1 I 5 (a 1 bi)(a 2 bi) 1 I 5 I and a2 1 b2 [ I. For any  
c, d [ Z, let c 5 q1(a

2 1 b2) 1 r1 and d 5 q2(a
2 1 b2) 1 r2, where 0 # r1, r2 , a2 1 b2. Then  

c 1 di 1 I 5 r1 1 r2i 1 I.
 41. N16 � 22�72 � 64 � N11 � 32�72. For the other part, use Exercise 25.
 43. Theorem 18.1 shows that primes are irreducible. So, assume that a is an irreducible in a UFD R 

and that a | bc in R. We must show that a | b or a | c. Since a | bc, there is an element d in R such 
that bc 5 ad. Now replace b, c, and d by their factorizations as a product of irreducibles and use 
uniqueness.

 45. See Exercise 21 in Chapter 0.

Supplementary Exercises for Chapters 15–18

Errors, like straws, upon the surface flow;  
He who would search for pearls must dive below.

john dryden

  1. Use Theorem 15.3, Supplementary Exercise 8 for Chapters 12–14, Theorem 14.4, and Exam-
ple 13 in Chapter 14.

  3. To show the isomorphism, use the First  Isomorphism Theorem.
  5. Use the First Isomorphism Theorem.
  7. Consider the obvious homomorphism from Z[x] onto Z2[x]. Then use the First Isomorphism 

 Theorem and Theorem 14.3.
  9. As in Example 7 in Chapter 6, the mapping is onto, is one-to-one, and preserves multiplication. 

Also, a(x 1 y)a21 5 axa21 1 aya21, so that it preserves addition as well.
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 11. Z[i]/k2 1 il 5 {0 1 k2 1 il, 1 1 k2 1 il, 2 1 k2 1 il, 3 1 k2 1 il, 4 1 k2 1 il}. Note that

 5 1 k2 1 il 5 (2 1 i)(2 2 i) 1 k2 1 il 
5 0 1 k2 1 il.

 13. Use the fact that ap 5 a for all a in Zp and Exercise 49 in Chapter 13.
 15. In Zn we are given (k 1 1)2 5 k 1 1. So, k2 1 2k 1 1 5 k 1 1 or k2 5 2k 5 n 2 k.  

Also, (n 2 k)2 5 n2 2 2nk 1 k2 5 k2, so (n 2 k)2 5 n 2 k.
 17. Observe that for any integer a, a2 mod 4 5 0 or 1.
 19. Use the Mod 2 Irreducibility Test.
 21. Use Theorem 14.4. The factor ring has two elements.
 23. Use Theorem 14.4.
 25. Say a/b, c/d [ R. Then (ad 2 bc)/(bd) and ac/(bd) [ R by Euclid’s Lemma. The field of 

 quotients is Q.
 27. Z[i]/k3l is a field and Z3 % Z3 is not.
 29. Consider the mapping from R[x] to (R/I)[x] given by anx

n 1 . . . 1 a0 → (an 1 I)xn 1 . . . 1  
(a0 1 I ).

 31. Let I 5 k2l[x]. Then Z8[x]/I is isomorphic to Z2[x].

Chapter 19

When I was young I observed that nine out of every ten things I did were failures, so I did ten times 
more work.

george bernard shaw

  1. Rn has basis {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}; M2(Q) has basis

  
e c 1 0

0 0
d , c 0 1

0 0
d , c 0 0

1 0
d , c 0 0

0 1
d f ;

  Zp[x] has basis {1, x, x2, . . .}; C has basis {1, i}.
  3. (a2x

2 1 a1x 1 a0) 1 (a2 9x
2 1 a1 9x 1 a0 9) 5 (a2 1 a2 9)x

2 1 (a1 1 a1 9)x 1 (a0 1 a09) and  
a(a2x

2 1 a1x 1 a0) 5 aa2x
2 1 aa1x 1 aa0. A basis is {1, x, x2}. Yes.

  5. Linearly dependent, since 23(2, 21, 0) 2 (1, 2, 5) 1 (7, 21, 5) 5 (0, 0, 0).
  7. Suppose au 1 b(u 1 v) 1 c(u 1 v 1 w) 5 0. Then (a 1 b 1 c)u 1 (b 1 c)v 1 cw 5 0. Since {u, v, w} 

are linearly independent, we obtain c 5 0, b 1 c 5 0, and a 1 b 1 c 5 0. So, a 5 b 5 c 5 0.
  9. If the set is linearly independent, it is a basis. If not, then delete one of the vectors that is a linear 

combination of the others (see Exercise 8). This new set still spans V. Repeat this process until you 
obtain a linearly independent subset. Since the set is finite, you will eventually obtain a linearly 
 independent set that still spans V.

 11. Let u1, u2, u3 be a basis for U and w1, w2, w3 be a basis for W. Use the fact that u1, u2, u3, w1, w2, 
w3 are linearly dependent over F. In general, if dim U 1 dim W . dim V, then U > W 2 {0}.

 13. no
 15. yes; 2

 
17. c a a � b

a � b b
d � c a� a� � b�

a� � b� b�
d  �

 
c a � a� a � b � a� � b�

a � b � a� � b� b � b�
d
 
and

  c c a a � b

a � b a
d � c ac ac � bc

ac � bc bc
d .

 19. Suppose B is a basis. Then every member of V is some linear combination of elements of B. If 
a1v1 1 . . . 1 anvn 5 a 91 v1 1 . . . 1 a 9n vn, where vi [ B, then (a1 2 a 91)v1 1 . . . 1 (an 2 an9)vn 5 0 
and ai 2 a 9i  5 0 for all i. Conversely, if every member of V is a unique linear combination of 
 elements of B, certainly B spans V. Also, if a1v1 1 . . . 1 anvn 5 0, then a1v1 1 . . . 1 anvn 5  
0v1 1 . . . 1 0vn and ai 5 0 for all i.
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 21. Since w1 5 a1u1 1 a2u2 1 . . . 1 anun and a1 2 0, we have u1 5 a1
21(w1 2 a2u2 2 . . . 2 anun), 

and therefore u1 [ kw1, u2, . . . , unl. Clearly, u2, . . . , un [ kw1, u2, . . . , unl. Hence every linear 
combination of u1, . . . , un is in kw1, u2, . . . , unl.

 23. {(1, 0, 1, 1), (0, 1, 0, 1)}
 25. Study the proof of Theorem 19.1.
 27. If V and W are vector spaces over F, then the mapping must preserve addition and scalar multi-

plication. That is, T: V → W must satisfy T(u 1 v) 5 T(u) 1 T(v) for all vectors u and v in V, and 
T(au) 5 aT(u) for all vectors u in V and scalars a in F. A vector space isomorphism from V to W 
is a one-to-one linear transformation from V onto W.

 29. Suppose v and u belong to the kernel and a is a scalar. Then T(v 1 u) 5 T(v) 1 T(u) 5 0 1 0 5 0 
and T(av) 5 aT(u) 5 a ? 0 5 0.

 31. Let {v1, v2, . . . , vn} be a basis for V. Map a1v1 1 a2v2 1 . . . 1 anvn to (a1, a2,. . . , an).

Chapter 20

Well here’s another clue for you all.
john lennon and paul mccartney,  

“Glass Onion,” The White Album

  1. Compare with Exercise 26 in the Supplementary Exercises for Chapters 12–14.
  3. Q12�32
  5. Q12�32
  7. Note that x 5 21 � 25 implies x4 2 2x2 2 4 5 0.
  9. a5 5 a2 1 a 1 1; a22 5 a2 1 a 1 1; a100 5 a2

 11. The set of all expressions of the form

  (anp
n 1 an21p

n21 1 . . . 1 a0)/(bmpm 1 bm21p
m21 1 . . . 1 b0),

  where bm 2 0.
 13. x7 2 x 5 x(x6 2 1) 5 x(x3 1 1)(x3 2 1) 5 x(x 2 1)3(x 1 1)3; x10 2 x 5 x(x9 2 1) 5 x(x 2 1)9 

(see Exercise 49 in Chapter 13).
 15. Hint: Use Exercise 49 in Chapter 13.
 17. a 5 4/3, b 5 2/3, c 5 5/6
 19. Use the fact that 1 1 i 5 2(4 2 i) 1 5 and 4 2 i 5 5 2 (1 1 i).
 21. If the zeros of f(x) are a1, a2, . . . , an, then the zeros of f(x 1 a) are a1 2 a, a2 2 a, . . . , an 2 a. Now 

use Exercise 20.
 23. Q and Q(22)
 25. Let F 5 Z3[x]/kx3 1 2x 1 1l and denote the cosets x 1 kx3 1 2x 1 1l by b and 2 1 kx3 1 2x 1 1l 

by 2. Then x3 1 2x 1 1 5 (x 2 b)(x 2 b 2 1)(x 1 2b 1 1).
 27. Suppose that f: Q(2�3) → Q(23) is an isomorphism. Since f(1) 5 1, we have f(23) 5 23.
  Then 23 5 f(23) 5 f( 2�32�3) 5 [f( 2�3)]2. This is impossible, since f( 2�3) is a real 

number.
 29. Use long division.
 31. Use Theorem 20.5.
 33. Use Theorem 20.5.
 35. Let K be the intersection of all subfields of E that contain F and the set {a1, a2, . . ., an}. It fol-

lows from the subfield test given in Exercise 29 Chapter 13 that K is a subfield of E and, by the 
definition, that K contains F and the set {a1, a2, . . ., an}. Since F (a1, a2, . . ., an) is the smallest 
such field we have F(a1, a2, . . ., an) # K. Moreover, since the field F(a1, a2, . . ., an) is one mem-
ber of the intersection we have K # F(a1, a2, . . ., an}. This proves that K 5 F(a1, a2, . . ., an}.

 37. Since |(Z2[x]/kf(x)l)*| 5 31, every nonidentity is a generator.
 39. Mimic the argument given in Example 9 of this chapter.
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Chapter 21

A good proof is one which makes us wiser.
yu. manin

  1. It follows from Theorem 21.1 that if p(x) and q(x) are both monic irreducible polynomials in 
F[x] with p(a) 5 q(a) 5 0, then deg p(x) 5 deg q(x). If p(x) 2 q(x), then ( p 2 q)(a) 5 p(a) 2 
q(a) 5 0 and deg (p(x) 2 q(x)) , deg p(x), contradicting  Theorem 21.1. To prove Theorem 21.3, 
use the Division Algorithm for F[x] (Theorem 16.2).

  3. Note that 3Q12n 22 :Q4 5 n and use Theorem 21.5.
  5. Use Exercise 4.
  7. Suppose Q(2a) 5 Q(2b). If 2b [ Q, then 2a [ Q and we may take c 5 2a/2b. If 2b o Q, 

then 2a o Q. Write 2a 5 r 1 s2b. It follows that r 5 0 and a 5 bs2. The other direction 
 follows from Exercise 20 in Chapter 20.

  9. Observe that [F(a):F] must divide [E:F].
 11. Note that [F(a, b):F] is divisible by both m 5 [F(a):F] and n 5 [F(b):F], and that [F(a,b):F] # mn.
 13. Note that a is a zero of x3 2 a3 over F(a3)[x]. For the second part, take F 5 Q, a 5 1; F 5 Q, a 5 1�1 � i232 /2; F � Q, a � 23 2.
 15. Suppose E1 > E2 2 F. Then [E1:E1 > E2][E1 > E2:F] 5 [E1:F] implies [E1:E1 > E2] 5 1, so that 

E1 5 E1 > E2. Similarly, E2 5 E1 > E2.
 17. E must be an algebraic extension of R, so that E # C. But then [C:E][E:R] 5 [C:R] 5 2.
 19. Let a be a zero of p(x) in some extension of F. First note [E(a):E] # [F(a):F] 5 deg p(x). Then 

observe that [E(a):F(a)][F(a):F ] 5 [E(a):E][E:F]. This implies that deg p(x) divides [E(a):E], 
so deg p(x) 5 [E(a):E].

 21. Hint: If a 1 b and ab are algebraic, then so is 21a � b22 � 4ab.
 23. 2b2 � 4ac
 25. Use the Factor Theorem.
 27. Say a is a generator of F*. If char F 5 0, then the prime subfield of F is isomorphic to Q. Since Q* 

is not cyclic, we have that F 5 Zp(a), and it suffices to show that a is algebraic over Zp. If a [ Zp,  
we are done. Otherwise, 1 1 a 5 ak for some k 2 0. If k . 0, we are done. If k , 0, then a2k 1  
a12k 5 1 and we are done.

 29. If [K:F] 5 n, then there are elements v1, v2, . . . , vn in K that constitute a basis for K over F. 
The mapping a1v1 1 . . . 1 anvn → (a1, . . . , an) is a vector space isomorphism from K to F n. If  
K is isomorphic to Fn, then the n elements in K corresponding to (1, 0, . . . , 0), (0, 1, . . . , 0), . . . ,  
(0, 0, . . . , 1) in F n constitute a basis for K over F.

 31. Observe that [F(a, b):F(a)] 5 [F(a)(b):F(a)] # [F(b):F] # [F(a)(b):F(b)] [F(b):F] 5  
[F(a)(b):F] 5 [F(a, b):F].

 33. Mimic Example 5.
 35. Mimic Example 6.
 37. Observe that K 5 F(a1, a2, . . . , an), where a1, a2, . . . , an are the zeros of the polynomial. Now 

use Theorem 21.5.
 39. Elements of Q(p) have the form (ampm 1 am21p

m21 1 . . . 1 a0)/(bnp
n 1 bn21p

n21 1 . . . 1 b0), 

  where the a’s and b’s are rational numbers. So, if 22 [ Q1p2, we have an  expression of the form 

  2(bnp
n 1 bn21p

n21 1  . . . 1 b0)
2 5 (ampm 1 am21p

m21 1 . . . 1 a0)
2. Equating the lead terms  

of both sides, we have 2b2
np

2n � a2
mp

2m. But then we have m � n, and 22 is equal to the rational 

number am/bn.

 41. Observe that F1a2 � F11 � a�12.
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Chapter 22

Tell me tell me tell me come on tell me the  answer.
john lennon and paul mccartney,  

“Helter Skelter,” The White Album*

  1. [GF(729):GF(9)] 5 3; [GF(64):GF(8)] 5 2
  3. The lattice of subfields of GF(64) looks like Figure 21.3 with GF(2) at the bottom, GF(64) at the 

top, and GF(4) and GF(8) on the sides.
 5. 2a 1 1
 7. Use Theorem 22.2.
 9. The only possibilities for f(x) are x3 1 x 1 1 and x3 1 x2 1 1. See Exercise 8 in Chapter 20 for the 

first case. See Example 2 in this chapter for the second case.
 11. Use Exercise 44 in Chapter 15 and Corollary 4 of Lagrange’s Theorem (Theorem 7.1).
 13. Use the fact that if g(x) is an irreducible factor of x8 2 x over Z2 and deg g(x) 5 m, then the field 

Z2[x]/kg(x)l has order 2m and is a subfield of GF(8). Now use Theorem 22.3.
 15. Since GF(pn)* is a cyclic group of order pn 2 1, we seek the smallest n such that pn 2 1 is divisible 

by 5. By observation, n 5 4 for p 5 2 or 3.
 17. Direct calculations show that given x3 1 2x 1 1 5 0, we have x2 2 1 and x13 2 1.
 19. Direct calculations show that x13 5 1, whereas (2x)2 2 1 and (2x)13 2 1. Thus, 2x is a generator.
 21. First observe that for any field F, the set F* is a group under multiplication. Now use Theorem 22.2 

and Theorem 4.3.
 23. Find a quadratic irreducible polynomial p(x) over Z3; then Z3[x]/kp(x)l is a field of order 9.

 25. Let a, b [ K. Then, by Exercise 49b in Chapter 13, (a 2 b)pm
 5 apm

 2 bpm
 5 a 2 b. Also,  

(ab)pm
 5 apm

 bpm
 5 ab. So, K is a subfield.

 27. Consider xpn21 2 1 and use Corollary 4 of Lagrange’s Theorem (Theorem 7.1).
 29. Structurally identical
 31. Consider g(x) 5 x2 2 a. Note that |GF(p)[x]/kg(x)l| 5 p2, so that g(x) has a zero in GF(p2). Now 

use Theorem 22.3.
 33. Use Exercise 11.
 35. Since F* is a cyclic group of order 124, it has a unique element of order 2.
 37. See the solution for Exercise 25.
 39. Consider the field of quotients of Zp[x]. The polynomial f(x) 5 x is not the image of any element.
 41. Observe that p 2 1 5 2 1 has multiplicative order 2 and a(pn21)/2 is the unique element in kal of 

order 2.
 43. Since p mod 4 5 1, we have pn mod 4 5 1, and GF(pn)* is a cyclic group of order pn 2 1.

Chapter 23

Why, sometimes I’ve believed as many as six impossible things before breakfast .
lewis carroll

 1. To construct a 1 b, first construct a. Then use a straightedge and compass to extend a to the 
right by marking off the length of b. To construct a 2 b, use the compass to mark off a length  
of b from the right endpoint of a line of length a.

 3. Let y denote the length of the hypotenuse of the right triangle with base 1, and let x denote the 
length of the hypotenuse of the right triangle with base |c|. Then y2 5 1 1 d2, y2 1 x2 5 (1 1 |c|)2, 
and |c|2 1 d2 5 x2. So, 1 1 2|c| 1 |c|2 5 1 1 d2 1 |c|2 1 d2, which simplifies to |c| 5 d2.

 5. Use sin2 u 1 cos2 u 5 1.
 7. Use cos 2u 5 2 cos2 u 21.
 9. Use sin(a 2 b) 5 sin a cos b 2 cos a sin b and Exercise 8.
 11. Solving two linear equations with coefficients from F involves only the operations of F.

*Quote from “While My Guitar Gently Weeps” by George Harrison. Copyright © 1968 Harrisong 
Limited. Used by permission. All rights reserved.
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 13. Use Theorem 17.1 and Exercise 27 in  Chapter 17.
 15. If so, then an angle of 40° is constructible. Now use Exercise 10.
 17. This amounts to showing that 2p is not constructible. But if 2p is constructible, so is p. 

 However, [Q(p):Q] is infinite.
 19. No, since [Q(23 3  ):Q] 5 3.
 21. No, since [Q( 32p):Q] is infinite.

Supplementary Exercises for Chapters 19–23

The things taught in colleges and schools are not an education, but the means of education.
  ralph waldo emerson, Journals

  1. Use Theorem 20.5.
  3. Suppose b is one solution of xn 5 a. Since F* is a cyclic group of order q 2 1, it has a cyclic 

subgroup of order n, say kcl. Then each member of kcl is a solution to the equation xn 5 1. It 
 follows that bkcl is the solution set of xn 5 a.

  5. (5a2 1 2)/a 5 5a 1 2a21. Now observe that since a2 1 a 1 1 5 0, we know that  
a(2a 2 1) 5 1, and so a21 5 2a 2 1. Thus, (5a2 1 2)/a 5 22 1 3a.

  7. 5
  9. Since F(a) 5 F(a21), we have degree of a 5 [F(a):F] 5 [F(a21):F] 5 degree of a21.
 11. If ab is a zero of cnx

n 1 . . . 1 c1x 1 c0 [ F[x], then a is a zero of cnb
nxn 1 . . . 1  

c1bx 1 c0 [ F(b)[x].
 13. Every element of F(a) can be written in the form f(a)/g(a), where f(x), g(x) [ F[x]. If f(a)/g(a) is 

algebraic and not in F, then there is some h(x) [ F[x] such that h( f (a)/g(a)) 5 0. By clearing 
fractions and collecting like powers of a, we obtain a polynomial in a with coefficients from F 
equal to 0. But then a would be algebraic over F.

 15. Use Corollary 2 to Theorem 22.2.
 17. If the basis elements commute, then so would any combination of basis elements. However, the 

 entire space is not commutative.
 19. {x, x2, x3}
 21. Use Exercise 49 in Chapter 13.

Chapter 24

Difficulty, my brethren, is the nurse of  greatness.
william cullen bryant

  1. a 5 eae21; cac21 5 b implies a 5 c21bc 5 c21b(c21)21; a 5 xbx21 and b 5 ycy21  imply  
a 5 xycy21x21 5 xyc(xy)21.

  3. Observe that T(xC(a)) 5 xax21 5 yay21 5 T(yC(a)) if and only if y21xa 5 ay21x, which is true 
if and only if y21x [ C(a), which in turn is true if and only if yC(a) 5 xC(a). This proves that  
T is well-defined and  one- to- one. T is onto by definition.

  5. Consider the correspondence T from the left cosets of N(H) in G to the conjugates of H in G 
given by T(xN(H)) 5 xHx21.

  7. Say cl(x) 5 {x, g1xg1
21, g2xg2

21, …, gkxgk
21}. If x21 5 gixgi

21, then for each gjxgj
21 in  

cl(x), we have (gjxgj
21)21 5 gjx

21gj
21 5 gj(gixgi

21)gj
21 [ cl(x). Because |G| has odd order, 

gjxgj
21 Z (gjxgj

21)21. It follows that |cl(x)| is even. But |cl(x)| divides |G|.
  9. Part a is not possible by the corollary of Theorem 24.2. Part b is not possible because it implies 

that the center would have order 2, and 2 does not divide 21. Part c is the class equation for D5. 
Part d is not possible because of Corollary 1 of Theorem 24.1.

 11. Use Theorem 7.2.
 13. Use Example 5 of Chapter 9 and Theorem 7.2.
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 15. By Lagrange we know that |H > K| 5 1, 3, 5 or 15. The first case is trivial. Corollary 3 of  
Theorem 7.1 handles the next two cases. Theorem 24.6 takes care of the last case.

 17. 8
 19. 15
 21. By Exercise 20, G has seven subgroups of order 3.
 23. 10; k(123)l, k(234)l, k(134)l, k(345)l, k(245)l
 25. A group of order 100 has 1, 5, or 25 subgroups of order 4; exactly one subgroup of order 25 

(which is normal); at least one subgroup of order 5; and at least one subgroup of order 2.
 27. By the corollary of Theorem 24.5, it suffices to show that there is only one Sylow p-subgroup.  

By Sylow's Third Theorem, np, the number of Sylow p-subgroups of G, has the form 1 1 kp and 
divides m. But if k . 0, 1 1 kp . p $ m. So k 5 0.

 29. By Sylow's Third Theorem and Exercises 5 and 28, we know |D2m: N(K)| 5 m. Also, |D2m:K| 5 m. 
Thus we have |N(K)| 5 |K|, and since K 8 N(K), we are done.

 31. 21
 33. Sylow’s Third Theorem implies that the Sylow 3- and Sylow 5-subgroups are unique. Pick any  

x not in the union of these. Then |x| 5 15.
 35. By Sylow’s Third Theorem, n17 5 1 or 35. Assume n17 5 35. Then the union of the Sylow  

17-subgroups has 561 elements. By Sylow's Third Theorem, n5 5 1. Thus, we may form a  
cyclic subgroup of order 85 (Exercise 57 in Chapter 9 and Theorem 24.6). But then there are  
64 elements of order 85. This gives too many  elements.

 37. Use the G/Z Theorem (Theorem 9.3).
 39 . Let H be the Sylow 3-subgroup and suppose that the Sylow 5-subgroups are not normal. By 

 Sylow, there must be six Sylow 5- subgroups, call them K1, . . . , K6. These subgroups have  
24 elements of order 5. Also, each of the cyclic subgroups HK1, . . . , HK6 has eight generators. 
Thus, there are 48 elements of order 15, which results in more than 60 elements in the group.

 41. By Theorem 24.2 and Theorem 9.5, Z(G) has an element x of order p. By induction, the group  
G/kxl has normal subgroups of order pk for every k between 1 and n 2 1, inclusively. Now use 
Exercise 51 in Chapter 9 and Exercise 51 of Chapter 10.

 43. Pick x [ Z(G) such that |x| 5 p. If x [ H, by induction, N(H/kxl) . H/kxl, say ykxl [ N(H/kxl) 
but not H/kxl. Now show y [ N(H) but not H. If x o H, then x [ N(H), so that N(H) . H.

 45. The hypotheses and G/Z(G) Theorem (Theorem 9.3) precludes all but |Z(G)| 5 1, p, q and r. If 
|Z(G)| 5 p, then |G/Z(G)| 5 qr and by Theorems 24.6 and 9.3 G/Z(G) is cyclic and G is Abelian. 
The same contradiction occurs if |Z(G)| 5 r. So, |Z(G)| 5 1 or q. If also p does not divide r 2 1 
then |Z(G)| 5 1.

 47. Sylow's Third Theorem shows that all the Sylow subgroups are normal. Then Theorem 7.2 and  
Example 5 of Chapter 9 ensure that G is the internal direct product of it Sylow subgroups. G is cy-
clic because of Theorem 9.6 and Corollary 1 of Theorem 8.2. G is Abelian because of Theorem 9.6  
and Exercise 4 in Chapter 8.

 49. Automorphisms preserve order.
 51. That |N (H)| 5 |N (K )| follows directly from the last part of Sylow's Third Theorem and Exercise 5.
 53. Normality of H implies cl(h) # H for h in H. Now observe that h [ cl(h). This is true only when 

H is normal.
 55. The mapping from H to xHx21 given by h → xhx21 is an isomorphism.
 57. Suppose that G is a group of order 12 that has nine elements of order 2. By the Sylow theorems, 

G has three Sylow 2-subgroups whose union contains the identity and the nine elements of order 
2. If H and K are both Sylow 2-subgroups, then by Theorem 7.2, |H y K| 5 2. Thus, the union 
of the three Sylow 2-subgroups has at most seven elements of order 2, since there are three in H, 
two more in K that are not in H, and at most two more that are in the third but not in H or K.

 59. First note that p divides n 1 1 is equivalent to n mod p 5 2 1. Let H be the unique Sylow  
p-subgroup of G and let |H| 5 pm. By Theorem 24.4, all the elements whose order is a power of  
p are contained in H. Since every element of G whose order is a power of p lies in H, we have that 
n 5 pm 2 (number of elements of order pm 1 number of elements of order pm21 1 . . . 1 number  
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of elements of order p2 1 number of elements of order p0). By the corollary of Theorem 4.4 and  
the fact that f(pk) is divisible by p for each k $ 2 (see page 167), each term on the right is divisible 
by p except p0 5 1. Thus, n mod p 5 2 1.

 61. Mimic Example 7.
 63. Say cl(e) and cl(a) are the only two conjugacy classes of a group G of order n. Then cl(a) has n 2 1 

elements all of the same order, say m. If m 5 2, then it follows from Exercise 47 in Chapter 2 
  that G is Abelian. But then cl(a) 5 {a} and so n 5 2. If m . 2, then cl(a) has at most n 2 2 

 elements, since conjugation of a by e, a, and a2 each yields a.
 65. Note that any subgroup of order 4 in a group of order 4m where m is odd is a Sylow 2-subgroup. 

By Sylow’s Third Theorem, the Sylow 2-subgroups are conjugate and therefore isomorphic. S4 
contains both the subgroups k(1234)l and {(1), (12), (34), (12) (34)}.

 67. By Sylow’s Third Theorem, the number of Sylow 13-subgroups is equal to 1 mod 13 and  
divides 55. This means that there is only one Sylow 13-subgroup, so it is normal in G. Thus 
|N(H)/C(H)| 5 715/|C(H)| divides both 55 and 12. This forces 715/|C(H)| 51 and therefore 
C(H) = G. This proves that H is contained in Z(G). Applying the same argument to K, we get 
that K is normal in G and |N(K)/C(K)| 5 715/|C(K)| divides both 65 and 10. This forces 
715/|C(K)| 5 1 or 5. In the latter case, K is not contained in Z(G).

 69. Let H be a Sylow 5-subgroup. Since the number of Sylow 5-subgroups is 1 modulo 5 and divides 
7 . 17, the only possibility is 1. So, H is normal in G. Then by the N/C  Theorem (Example 15 of 
Chapter 10), �G/C1H2� divides both 4 and �G�. Thus C1H2 � G.

 71. This follows directly from Theorem 24.1.
 73. Pr(D4) 5 5/8; Pr(S3) 5 1/2; Pr(A4) 5 1/3
 75. By the discussion in this chapter, Pr(G % H) 5 m/(|G||H|), where m is the number of conjugacy 

classes in G % H. Next prove that |C(g, h)| 5 |C(g)||C(h)|. Then use Theorem 24.1.

Chapter 25

Sweet are the uses of adversity.
william shakespeare, As You Like It

  1. Use the 2 ? Odd Test.
  3. Use the Index Theorem.
  5. Suppose G is a simple group of order 525. Let L7 be a Sylow 7-subgroup of G. It follows from 

Sylow’s theorems that |N(L7)| 5 35. Let L be a subgroup of N(L7) of order 5. Since N(L7) is  
cyclic (Theorem 24.6), N(L) $ N(L7), so that 35 divides |N(L)|. But L is contained in a Sylow  
5-subgroup (Theorem 24.4), which is Abelian (see the corollary to Theorem 24.2). Thus, 25 
 divides |N(L)| as well. It follows that 175 divides |N(L)|. The Index Theorem now yields a 
 contradiction.

  7. n11 5 12. Use the N/C Theorem (Example 15 in Chapter 10) to show that there is an element of 
order 22; then use the Embedding Theorem and observe that A12 has no element of order 22.

 9. Suppose that there is a simple group of order 396 and L11 is a Sylow 11-subgroup. Use the N/C 
Theorem given in Example 15 of Chapter 10 to show that C(L11) has an element of order 33, 
whereas A12 does not.

 11. If we can find a pair of distinct Sylow 2-subgroups A and B such that |A > B| 5 8, then  
N(A > B) $ AB, so that N(A > B) 5 G. Now let H and K be any distinct pair of Sylow 2-subgroups. 
Then 16 ? 16/|H > K| 5 |HK| # 112 (Theorem 7.2), so that |H > K| is at least 4. If |H > K| 5 8, 
we are done. So, assume |H > K| 5 4. Then N(H > K) picks up at least 8 elements from H and  
at least 8 from K (see Exercise 43 in Chapter 24). Thus, |N(H > K)| $ 16 and is divisible by 8. So, 
|N(H > K)| 5 16, 56, or 112. Since the latter two cases yield normal subgroups, we may assume 
|N(H > K)| 5 16. If N(H > K) 5 H, then |H > K| 5 8, since N(H > K) contains at least 8 elements 
from K. So, we may assume that N(H > K) 2 H. Then, we may take A 5 N(H > K) and B 5 H.

 15. Use the Index Theorem.
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 17. n5 5 6 and n3 5 10 or 40 (n3 5 4 is ruled out by the Index Theorem). If there are two  Sylow  
2-subgroups L2 and L29 whose intersection has order 4, show that N(L2 > L29) has index at most 5. 
Now use the Embedding Theorem. If n35 40, the union of all the  Sylow subgroups has more than 
120  elements. If n35 10, use the N/C Theorem to show that there is an element of order 6 and then 
use the Embedding Theorem and  observe that A6 has no element of order 6.

 19. Let a be as in the proof of the Generalized Cayley Theorem. Then Ker a # H and |G/Ker a| 
 divides |G:H|!. Now show |Ker a| 5 |H|. A subgroup of index 2 is normal.

 21. Since A5 is simple, if H is a proper normal subgroup of S5, then H > A5 5 A5 or {e}. But H > A5 
5 A5 implies H 5 A5, whereas H > A5 5 {e} implies H 5 {e} or |H| 5 2. (See Exercise 23 in 
Chapter 5.) Now use Exercise 72 in Chapter 9 and Exercise 66 in Chapter 5.

 23. By direct computation, show that PSL(2, Z7) has more than four Sylow 3-subgroups, more than 

  one Sylow 7-subgroup, and more than one Sylow 2-subgroup. Hint: Observe that c 1 4

1 5
d
 
has 

  order 3. Now use conjugation to find four other subgroups of order 3; observe that ` c 5 5

1 4
d ` � 7  

  and use conjugation to find another subgroup of order 7; observe that ` c 5 1

3 5
d ` � 4 and use 

  conjugation to find six more elements of order 4 (which guarantees that more than one Sylow 
2-subgroup exists). Now argue as we did to show that A5 is  simple. In the cases that the supposed 
normal subgroup N has  order 2 or 4, show that in G/N, the Sylow  7-subgroup is normal. But then, 
G has a  normal subgroup of order 14 or 28, which were already ruled out.

 25. Mimic Exercise 24.
 27. Suppose there is a simple group of order 60 that is not isomorphic to A5. The Index Theorem 

 implies n2 2 1 or 3, and the Embedding Theorem implies n2 2 5. Thus, n2 5 15. Counting shows 
that there must be two Sylow 2-subgroups whose intersection has order 2. Now mimic the argu-
ment used in showing that there is no simple group of  order 144 to show that the normalizer of 
this intersection has index 5, 3, or 1, but the Embedding Theorem and the Index Theorem rule 
these out.

 29. Suppose there is such a simple group G. Since the number of Sylow q-subgroups is 1 modulo q 
and divides p2, it must be p2. Thus there are p21q � 12 elements of order q in G. These elements, 

  together with the p2  elements in one Sylow p-subgroup, account for all p2q elements in G. Thus, 
there cannot be another Sylow p-subgroup. But then the Sylow p-subgroup is normal in G.

 31. Consider the right regular representation of G. Let g be a generator of the Sylow 2- subgroup and 
suppose that �G� � 2kn where n is odd. Then by Exercise 62 in Chapter 6, every cycle of the per-
mutation Tg in the right regular representation of G has length 2k. This means that there are ex-
actly n such cycles. Since each cycle is odd and there is an odd number of them, Tg is odd. This 
means that the set of even permutations in the regular representations has index 2 and is therefore 
normal. (See Exercise 23 in Chapter 5 and Exercise 9 in Chapter 9).

Chapter 26

If you make a mistake, make amends.
lou holtz

 1. u is related to u because u is obtained from itself by no insertions; if v can be obtained from u 
by inserting or deleting words of the form xx21 or x21x, then u can be obtained from v by re-
versing the procedure; if u can be  obtained from v and v can be obtained from w, then u can be 
obtained from w by obtaining first v from w and then u from v.

  3.  b(a2N) 5  b(aN)a 5 a3bNa 5 a3b(aN)  
       5 a3a3bN

                 5  a6bN 5 a6Nb 5 a2Nb 5 a2bN
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    b(a3N) 5  b(a2N)a 5 a2bNa 5 a2b(aN)  
       5 a2a3bN

                 5  a5bN 5 a5Nb 5 aNb 5 abN
      b(bN) 5 b2N 5 N
    b(abN) 5  baNb 5 a3bNb 5 a3b2N 5 a3N
  b(a2bN) 5  ba2Nb 5 a2bNb 5 a2b2N 5 a2N
  b(a3bN) 5  ba3Nb 5 abNb 5 ab2N 5 aN
  5. Let F be the free group on {a1, a2, . . . , an}. Let N be the smallest normal group containing  

{w1, w2, . . . , wt} and let M be the smallest normal subgroup containing {w1, w2, . . . , wt,  
wt11, . . . , wt1k}. Then F/N < G and F/M < G. The homomorphism from F/N to F/M given by 
aN → aM induces a  homomorphism from G onto G. To prove the corollary, observe that the the-
orem shows that K is a homomorphic image of G, so |K| # |G|.

  7. Clearly, a and ab belong to ka, bl, so ka, abl # ka, bl. Now show that a and b  belong to ka, abl.
  9. Show that |G| # 2n and that Dn satisfies the relations that define G.
 11. Since x2 5 y2 5 e, we have (xy)21 5 y21x21 5 yx. Also, xy 5 z21yz, so (xy)21 5 (z21yz)21 5 

z21y21z 5 z21yz 5 xy.
 13. a. b6  b. b7a
 15. Note that yxyx3 5 e implies that yxy21 5 x5 and therefore kxl is normal. So, G 5 kxl x ykxl and 

|G| # 16. Use y2 5 e and yxyx3 5 e, to prove that x2 [ Z(G). Then prove G is not Abelian and 
use Theorem 9.3 to show that |Z(G)| 2 8. Thus, Z(G) 5 kx2l. Finally, prove that (xy)2 5 x22,  
so that |xy| 5 8.

 17. Use the fact that the mapping from G onto G/N given by x → xN is a homomorphism.
19. For H to be a normal subgroup we must have yxy21 [ H 5 {e, y3, y6, y9, x, xy3, xy6, xy9}. But 

yxy21 5 yxy11 5 (yxy)y10 5 xy10.
 21. 6; the given relations imply that a2 5 e. G is isomorphic to Z6.
 23. 1, 2, and `
 25. ab 5 c 1 abc21 5 e
  cd 5 a 1 (abc21)cd 5 ae 1 bd 5 e 1 d 5 b21

  da 5 b 1 bda 5 b2 1 ea 5 b2 1 a 5 b2

  ab 5 c 1 b3 5 c
  So G 5 kbl.
  bc 5 d 1 bb3 5 b21 1 b5 5 e. So |G| 5 1 or 5.
  But Z5 satisfies the defining relations with a 5 1, b 5 3, c 5 4, and d 5 2.
 27. Z6

Chapter 27

If at first you don’t succeed—that makes you about average.
bradenton, [Florida] Herald

  1. If T is a distance-preserving function and the distance between points a and b is  positive, then the 
distance between T(a) and T(b) is positive.

  3. See Figure 1.5.
  5. 12
  7. 4n
  9. a. Z2  b. Z2 % Z2  c. G % Z2, where G is the plane symmetry group of a circle (see Exercise 

55 of Chapter 3).
 11. 6
 13. An inversion in R3 leaves only a single point fixed, whereas a rotation leaves a line fixed.
 15. In R4, a plane is fixed. In Rn, a hyperplane of dimension n 2 2 is fixed.
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A40 Selected Answers

 17. Create a coordinate system for the plane. Let T be an isometry; p, q, and r the three noncollinear 
points; and s any other point in the plane. Then the quadrilateral determined by T( p), T(q), T(r), 
and T(s) is congruent to the one formed by p, q, r, and s. Thus, T(s) is uniquely determined by 
T ( p), T(q), and T (r).

 19. a rotation

Chapter 28

The thing that counts is not what we know but the ability to use what we know.
leo l. spears

  1. Try xnym → (n, m).
  3. xy
  5. Use Figure 28.9.
  7. x2yzxz 5 x2yx21 5 x2x21y 5 xy; x23zxyz 5 x23x21y 5 x24y
  9. A subgroup of index 2 is normal.
 11. a. V  b. I  c. II  d. VI  e. VII  f. III
 13. cmm
 15. a. p4m  b. p3  c. p31m  d. p6m
17. The principal purpose of tire tread design is to carry water away from the tire. Patterns I and III do 

not have horizontal reflective  symmetry. Thus, these designs would not carry water away equally 
on both halves of the tire.

19. a. VI  b. V  c. I  d. III  e. IV  f. VII  g. IV

Chapter 29

With every mistake we must surely be learning.
george harrison, “While My Guitar Gently Weeps,” The White Album

  1. 6
  3. 30
  5. 13
  7. 45
  9. 126

 11. 
1

6
1n6 � 2 ? n � 2 ? n2 � n32

 13. For the first part, see Exercise 11 in Chapter 6. For the second part, try D4.
 15. R0, R180, H, V act as the identity and R90, R270, D, D9 interchange L1 and L2.

Chapter 30

I am not bound to please thee with my answers.  
shakespeare, The Merchant of Venice

  1. 4 * (b, a)
  3. (m/2) * {3 * [(a, 0), (b, 0)], (a, 0), (e, 1), 3 * (a, 0), (b, 0), 3 * (a, 0), (e, 1)}
  5. a3b
  7. Both yield paths from e to a3b.
 11. Say we start at x. Then we know the vertices x, xs1, xs1s2, . . . , xs1s2 

. . . sn21 are distinct and  
x 5 xs1s2 

. . . sn. So if we apply the same sequence beginning at y, then cancellation shows that  
y, ys1, ys1s2, . . . , ys1s2 

. . . sn21 are distinct and y 5 ys1s2 
. . . sn.

 13. If there were a Hamiltonian path from (0, 0) to (2, 0), there would be a Hamiltonian circuit in the 
 digraph, since (2, 0) 1 (1, 0) 5 (0, 0). This contradicts Theorem 30.1.
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Selected Answers A41

 15. a. If s1, s2, . . . , sn21 traces a Hamiltonian path and sisi11 
. . . sj 5 e, then the vertex s1s2 

. . . si21 
appears twice. Conversely, if sisi11 

. . . sj 2 e, then the sequence e, s1, s1s2,  . . . , s1s2 
. . . sn21 

yields the n  vertices (otherwise, cancellation gives a  contradiction).
  b. This follows directly from part a.
 17. The sequence traces the digraph in a  clockwise fashion.
 19. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuit is 4 * (4 * 1, a), 3 * a, b, 7 

* a, 1, b, 3 * a, b, 6 * a, 1, a, b, 3 * a, b, 5 * a, 1, a, a, b, 3 * a, b, 4 * a, 1, 3 * a, b, 3 * a, b, 3 * a, b.
 21. Abbreviate (R90, 0), (H, 0), and (R0, 1) by R, H, and 1, respectively. A circuit is 3 * (R, 1, 1), H, 

2 * (1, R, R), R, 1, R, R, 1, H, 1, 1.
 23. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuit is 2 * (1, 1, a), a, b,  

3 * a, 1, b, b, a, b, b, 1, 3 * a, b, a, a.
 25. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, and 1, respectively. Then the sequence is r, r, f, r, r, 1, 

f, r, r, f, r, 1, r, f, r, r, f, 1, r, r, f, r, r, 1, f, r, r, f, r, 1, r, f, r, r, f, 1.
 27. m * [(n 2 1) * (0, 1), (1, 1)]
 29. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, and 1, respectively. A circuit is 1, r, 1, 1, f, r, 1, r, 1, r, f, 1.
31. 5 * [3  * (1, 0), (0, 1)], (1, 0)
33. 12 * [(1, 0), (0, 1)]
 35. In the proof of Theorem 30.3, we used the hypothesis that G is Abelian in two places: We needed 

H to satisfy the induction hypothesis, and we needed to form the factor group G/H. Now, if we 
assume only that G is Hamiltonian, then H also is Hamiltonian and G/H exists.

Chapter 31

We must view with profound respect the  infinite capacity of the human mind to resist the 
 introduction of useful knowledge.

thomas r. lounsbury

  1. wt(0001011) 5 3; wt(0010111) 5 4; wt(0100101) 5 3; etc.
  3. 1000110; 1110100
  5. 000000, 100011, 010101, 001110, 110110, 101101, 011011, 111000
  7. By using t = 1/2 in the proof of Theorem 31.2 we have that all single errors can be detected.
  9. Observe that a vector has even weight if and only if it can be written as a sum of an even number 

of vectors of weight 1.
 11. No, by Theorem 31.3.
 13. 0000000, 1000111, 0100101, 0010110, 0001011, 1100010, 1010001, 1001100, 0110011, 

0101110, 0011101, 1110100, 1101001, 1011010, 0111000, 1111111;

;H 5 G

1 1 1

1 0 1

1 1 0

0 1 1

1 0 0

0 1 0

0 0 1

W

  yes.
 15. Suppose that u is decoded as v and that x is the coset leader of the row containing u. Coset decoding 

means v is at the head of the column containing u. So, x 1 v 5 u and x 5 u 2 v. Now suppose u 2 v 
is a coset leader and u is decoded as y. Then y is at the head of the column containing u. Since v is a 
code word, u 5 u 2 v 1 v is in the row containing u 2 v. Thus, u 2 v 1 y 5 u and y 5 v.
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 17. 000000, 100110, 010011, 001101, 110101, 101011, 011110, 111000;

H � G1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

W .

  001001 is decoded as 001101 by all four methods.
  011000 is decoded as 111000 by all four methods.
  000110 is decoded as 100110 by all four methods.
  Since there are no code words whose distance from 100001 is 1 and three whose distance is 2, 

the nearest-neighbor method will not decode or will arbitrarily choose a code word; parity-check 
matrix decoding does not decode 100001; the standard-array and syndrome methods decode 
100001 as 000000, 110101, or 101011, depending on which of 100001, 010100, or 001010 is a 
coset leader.

 19. For any received word w, there are only eight possibilities for wH. But each of these eight possi-
bilities satisfies condition 2 or the first portion of condition 39 of the decoding procedure, so 
 decoding assumes that no  error was made or one error was made.

 21. There are 34 code words and 36 possible received words.
 23. No; row 3 is twice row 1.
 25. No. For if so, nonzero code words would be all words with weight at least 5. But this set is not 

closed under addition.
 27. Use Exercise 24, together with the fact that the set of code words is closed under addition.
 29. Abbreviate the coset a 1 kx2 1 x 1 1l with a. The following generating matrix will produce the 

desired code: c 1 0 1 1 x

0 1 x x � 1 x � 1
d .

 31. Use Exercise 14.
 33. Let  c ,  c9  [  C .  Then,  c  1  (v  1  c9)  5  v  1  c  1  c9  [  v  1  C  and (v  1  c)  1  

(v 1 c9) 5 c 1 c9 [ C, so the set C < (v 1 C) is closed under addition.
 35. If the ith component of both u and v is 0, then so is the ith component of u 2 v and au, where a is 

a scalar.

Chapter 32

Wisdom rises upon the ruins of folly.
thomas fuller, Gnomologia

  1. Note that f(1) 5 1. Thus f(n) 5 n. Also, 1 5 f(1) 5 f(nn21) 5 f(n)f(n21) 5 nf(n21), so that 
1/n 5 f(1/n).

  3. If a and b are automorphisms of E fixing F, so are a21 and ab.
  5. If a and b are fixed by elements of H, so are a 1 b, a 2 b, a ? b, and a/b.
  7. It suffices to show that each member of Gal(K/F) defines a permutation on the ai’s. Let  

a [ Gal(K/F) and write

f(x) 5 cnx
n 1 cn21x

n21 1 . . . 1 c0
 5 cn(x 2 a1)(x 2 a2) 

. . . (x 2 an).

  Then f(x) 5 a(f(x)) 5 cn(x 2 a(a1))(x 2 a(a2)) ? ? ? (x 2 a(an)). Thus, f(ai) 5 0 implies  
ai 5 a(aj) for some j, so that a permutes the ai’s.
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Selected Answers A43

  9. Observe that f6(v) 5 v729 5 v whereas f3(v) 5 v27 5 v21 and f2(v) 5 v9 5 v2. f3(v 1 
v21) 5 v27 1 v227 5 v21 1 v; f2(v3 1 v5 1 v6) 5 v27 1 v45 1 v54 5 v6 1 v3 1 v5.

 11. a. Z20 % Z2 has three subgroups of order 10. b. 25 does not divide 40, so there are none.  
c. Z20 % Z2 has one subgroup of order 5.

 13. The splitting field over R is R (2�3). The Galois group is the identity and the mapping a 1 b 
2�3 S a 2 b2�3.

 15. Use Theorem 23.3.
 17. Recall that A4 has no subgroup of order 6. (See Example 16 in Chapter 9.)
 19. Use Sylow’s First Theorem.
 21. Let v be a primitive cube root of 1. Then Q , Q(23 2) , Q(v,23 2 and Q(23 2) is not the splitting 

field of a polynomial in Q[x].
 23. Use the lattice of Z10.
 25. Z6 (Be sure you know why the group is cyclic.)
 27. See Exercise 21 in Chapter 25.
 29. Use Exercise 41 in Chapter 24.
 31. Use Exercise 42 in Chapter 10.
 33. Since K/N v G/N, for any x [ G and k [ K, there is a k9 [ K such that k9N 5 (xN)(kN)(xN)21 5 

xNkNx21N 5 xkx21N. So, xkx21 5 k9n for some n [ N. And since N # K, we have k9n [ K.

Chapter 33

All wish to possess knowledge, but few, comparatively speaking, are willing to pay the price.
juvenal

  1. x2 2 x 1 1
  3. Over Z, x8 2 1 5 (x 2 1)(x 1 1)(x2 1 1)(x4 1 1). Over Z2, x

2 1 1 5 (x 1 1)2 and 
x4 1 1 5 (x 1 1)4. So, over Z2, x

8 2 1 5 (x 1 1)8. Over Z3, x
2 1 1 is irreducible, but x4 1 1 fac-

tors into irreducibles as (x2 1 x 1 2)(x2 2 x 2 1). So, x8 2 1 5 (x 2 1)(x 1 1) (x2 1 1)(x2 1  
x 1 2)(x2 2 x 2 1). Over Z5, x

2 1 1 5 (x 2 2)(x 1 2), x4 1 1 5 (x2 1 2)(x2 2 2), and these last 
two factors are irreducible. So, x8 2 1 5 (x 2 1)(x 1 1)(x 2 2)(x 1 2)(x2 1 2)(x2 2 2).

  5. Let v be a primitive nth root of unity. We must prove vv2 . . . vn 5 (21)n11. Observe that  
vv2 . . . vn 5 vn(n11)/2. When n is odd, vn(n11)/2 5 (vn)(n11)/2 5 1(n11)/2 5 1. When n is even, 
(vn/2)n11 5 (21)n11 5 21.

  7. If [F:Q] 5 n and F has infinitely many roots of unity, then there is no finite bound on their 
 multiplicative orders. Let v be a primitive mth root of unity in F such that f(m) . n. Then  
[Q(v):Q] 5 f(m). But F $ Q(v) $ Q implies [Q(v):Q] # n.

  9. Let 2n 1 1 5 q. Then 2 [ U(q) and 2n 5 q 2 1 5 21 in U(q) implies that |2| 5 2n. So, by 
 Lagrange’s Theorem, 2n divides |U(q)| 5 q 2 1 5 2n.

 11. Let v be a primitive nth root of unity. Then 2nth roots of unity are 61, 6v, . . . , 6vn21. These 
are distinct, since 21 5 (2vi)n, whereas 1 5 (v i)n.

 13. First observe that deg F2n(x) 5 f(2n) 5 f(n) and deg Fn(2x) 5 deg Fn(x) 5 f(n). Thus, it suf-
fices to show that every zero of Fn(2x) is a zero of F2n(x). But the fact that v is a zero of 
Fn(2x) means that |2v| 5 n, and because n is odd, this implies that |v| 5 2n.

15. Let G 5 Gal(Q(v)/Q) and H1 be the subgroup of G of order 2 that fixes cos(2p
n ). Then, by  

induction, G/H1 has a series of subgroups H1/H1 , H2/H1 , . . . , Ht/H1 5 G/H1, so that  
|Hi11/H1:Hi /H1| 5 2. Now observe that |Hi11/H1:Hi /H1| 5 |Hi11/Hi|.

17. Instead, prove that Fn(x)Fpn(x) 5 Fn(x
p). Since both sides are monic and have degree pf(n), it 

suffices to show that every zero of Fn(x)Fpn(x) is a zero of Fn(x
p). If v is a zero of Fn(x), then  

|v| 5 n. By Theorem 4.2, |vp| 5 n also. Thus, v is a zero of Fn(x
p). If v is a zero of Fpn(x), then 

|v| 5 pn and therefore |vp| 5 n.
 19. Use Theorem 33.4 and Theorem 32.1.
 21. v → v4, v → v21, v → v24
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A44 Selected Answers

Supplementary Exercises for Chapters 24–33

For those who keep trying, failure is temporary.
frank tyger

  1. Z6
  3. Let |G| 5 315 and let H be a Sylow 3-subgroup and K a Sylow 5-subgroup. If H v G, then  

HK 5 45. If H is not normal, then by Sylow’s Third Theorem, |G/N(H)| 5 7, so that |N(H)| 5 45.
  5. Observe that K # N(H) implies that HK is a group of order 245. Now, use Sylow’s Third Theorem.
 7. Note that gKg21 # gHg21 5 H. Now use the corollary to Sylow’s Third Theorem.
  9. Use the same proof as for Example 5 in Chapter 9.
 11. Since n7 5 8, we know by the Embedding Theorem (Chapter 25) that G # A8. But A8 does not 

have an element of order 21.
 13. Let G be a non-Abelian group of order 105. By Theorem 9.3, G/Z(G) is not cyclic. So |Z(G)| 2 3, 

7, 15, 21, or 35. This leaves only 1 or 5 for |Z(G)|. Let H, K, and L be Sylow 3-, Sylow 5-, and  
Sylow 7-subgroups of G, respectively. Now, counting shows that K v G or L v G. Thus,  
|KL| 5 35 and KL is a cyclic subgroup of G. But, KL has 24  elements of order 35 (since  
|U(Z35)| 5 24). Thus, a counting argument shows that K v G and L v G. Now, |HK| 5 15 and HK 
is a cyclic subgroup of G. Thus, HK # C(K ) and KL # C(K ). This means that 105 divides 
|C(K )|. So K # Z(G).

 15. 

 17. It suffices to show that x travels by a implies xab21 travels by a (for we may successively replace 
x by xab21). If xab21 traveled by b, then the vertex xa would appear twice in the circuit.

 19. a. {00, 11}
  b. {000, 111}
  c. { 0000, 1100, 1010, 1001, 0101, 0110, 0011, 1111}
  d. {0000, 1100, 0011, 1111}
 21. The mapping Tv: F

n → {0, 1} given by Tv(u) 5 u ? v is an onto homomorphism. So |F n/Ker Tv| 5 2.
 23. It follows from Exercise 18 that if C is an (n, k) linear code, then C> is an (n, n 2 k) linear code. 

Thus, in this problem, k 5 n 2 k. To prove the second claim, use Exercise 18,  Exercise 21, the 
 definition of C>, and the  hypothesis that C> 5 C.
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Algebraic
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Arc, 506
Ascending chain condition, 335, 343
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group, 136, 517
group of E over F, 554
inner, 135
of a group, 135
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for a group, 43
for a ring, 245
for a vector space, 351

Basis for a vector space, 353
Binary

code, 531
operation, 42
strings, 168

Boolean ring, 253
Burnside’s Theorem, 497

Cancellation
property for groups, 50
property for integral domains, 256

Cauchy’s Theorem, 195, 414
Cayley digraph, 506
Cayley table, 33
Cayley’s Theorem, 131

generalized, 434

Center
of a group, 66
of a ring, 251

Centralizer
of an element, 68
of a subgroup, 72

Characteristic of a ring, 258
Characteristic subgroup, 181
Check digit, 7
Check-digit scheme, 115
Chinese Remainder Theorem for 

Rings, 347
Circle in F, 400
Class equation, 410
Closure, 33, 42
Code

binary, 531
dual of, 582
Hamming, 528
(n,k) linear, 531
self-dual, 582
systematic, 534
ternary, 532
word, 528, 531

Color graph, 507
Cole Prize, 327, 358, 398, 432, 438, 

439, 442, 444, 580
Commutative diagram, 216
Commutative operation, 34
Commutator subgroup, 181
Complex numbers 

polar form, 13
standard form, 13 

Composition factors, 428
Composition of functions, 21
Conjugacy class, 95, 409
Conjugate

elements, 409
subgroups, 95, 414

Conjugation, 131
Constant polynomial, 300
Constructible number, 400

Index of Terms

A47
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Constructible regular n-gons, 575
Content of a polynomial, 312
Coset

decoding, 539
leader, 539
left, 144
representative, 144
right, 144

Crystallographic groups, 475
Crystallographic restriction, 481
Cube, rotation group of, 154
Cycle

m-, 102
notation, 102

Cyclic
group, 77
rotation group, 36
subgroup, 65

Cyclotomic
extension, 571
polynomial, 316, 571

Decoding
coset, 539
maximum-likelihood, 526
nearest-neighbor, 529
parity-check matrix, 536

Degree
of a over F, 378
of an extension, 378
of a polynomial, 300
rule, 306

DeMoivre’s Theorem, 15
Derivative, 368
Determinant, 45
Diagonal of G % G, 175
Digital signatures, 172
Dihedral groups, 33, 34
Dimension of a vector space, 355
Direct product of groups

external, 162
internal, 196, 197

Direct sum
of groups, 199
of rings, 247

Dirichlet’s Theorem, 236
Discrete frieze group, 469
Distance between vectors, 532
Divides, 246, 303

Division algorithm
for F[x], 301
for Z, 3

Divisor, 3
Domain

Euclidean, 337
integral, 255
Noetherian, 336
unique factorization, 334

Doubling the cube, 399, 401
Dual code, 582

Eisenstein’s Criterion, 315
Element(s)

algebraic, 376
conjugate, 409
degree of, 378
fixed by f, 497
idempotent, 262
identity, 33, 43, 246
inverse, 33, 43
nilpotent, 261
order of, 60
primitive, 382
square, 202
transcendental, 376

Embedding Theorem, 435
Empty word, 446
Equivalence class, 18
Equivalence relation, 18
Equivalent under group action,  

495
Euclidean domain, 337
Euclid’s Lemma, 5

generalization of, 25
Euler phi function, 84
Even permutation, 110
Exponent of a group, 182
Extension

algebraic, 376
cyclotomic, 571
degree, 378
field, 360
finite, 378
infinite, 378
simple, 376
transcendental, 376

External direct product, 162
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Factor
group, 187
of a ring element, 246
ring, 268

Factor Theorem, 303
Feit–Thompson Theorem, 429, 431, 

444, 505, 561
Fermat prime, 577
Fermat’s Last Theorem, 331–333
Fermat’s Little Theorem, 149
Field

algebraic closure of, 383
algebraically closed, 383
definition of, 256
extension, 360
fixed, 554
Galois, 389
of quotients, 290
perfect, 370
splitting, 362

Fields Medal, 431, 438, 444, 505
Finite dimensional vector space,  

355
Finite extension, 378
First Isomorphism Theorem

for groups, 215
for rings, 288

Fixed field, 554
Free group, 447
Frieze pattern, 469
Frobenius map, 294, 395
Function

composition, 21
definition of, 20
domain, 20
image under, 20
one-to-one, 21
onto, 22
range, 20

Fundamental region, 481
Fundamental Theorem

of Algebra, 384
of Arithmetic, 6
of Cyclic Groups, 82
of Field Theory, 360
of Finite Abelian Groups, 226
of Galois Theory, 558
of Group Homomorphisms, 215
of Ring Homomorphisms, 289

GAP, 113
G/Z Theorem, 194
Galois

field, 389
group, 554, 566

Gaussian integers, 249, 338
Gauss’s Lemma, 313
Generating region of a pattern, 481
Generator(s)

of a cyclic group, 65, 77
of a group, 49
in a presentation, 449

Geometric constructions, 399
Glide-axis, 462
Glide-reflection, 462

nontrivial, 472
trivial, 472

Greatest common divisor, 4
Group

Abelian, 34, 43
action, 501
alternating, 110
automorphism, 136, 517
automorphism of, 135
center of, 66
color graph of a, 507
commutative, 34
composition factors, 428
crystallographic, 475
cyclic, 36, 65, 77
definition, 43
dicyclic, 453, 458
dihedral, 33, 34
discrete frieze, 469
factor, 187
finite, 60
free, 447
frieze, 469
Galois, 554, 566
general linear, 45
generator(s), 49, 65, 77, 449
Hamiltonian, 522
Heisenberg, 58
homomorphism of, 208
icosahedral, 438, 465
infinite dihedral, 454
inner automorphism, 136
integers mod n, 44
isomorphic, 128
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A50 INDEX OF TERMS

isomorphism, 128
non-Abelian, 34, 43
octahedral, 465
order of, 60
p-, 410
permutation, 99
presentation, 449
quaternions, 95, 201, 203, 450
quotient, 187
representation, 219
simple, 428
solvable, 561
space, 483
special linear, 48
symmetric, 101
symmetry, 35, 36, 461
tetrahedral, 465
of units, 251
wallpaper, 475

Half-turn, 471
Hamiltonian

circuit, 511
group, 522
path, 511

Hamming
code, 528
distance, 532
weight of a code, 532
weight of a vector, 532

Homomorphism(s)
Fundamental Theorem of, 215, 289
kernel of, 208
of a group, 208
natural, 218, 289
of a ring, 285

Ideal
annihilator, 277
definition of, 267
finitely generated, 342
generated by, 268
maximal, 272
nil radical of, 277
prime, 272
principal, 268
product of, 275
proper, 267
sum of, 275

test, 267
trivial, 268

Idempotent, 261
Identity element, 33, 43, 246
Imaginary axis, 13
Index of a subgroup, 148
Index Theorem, 434
Induction

First Principle of, 15
Second Principle of, 16

Inner automorphism, 135
Integral domain, 255
Internal direct product, 196, 197
International standard book number, 

26
Inverse element, 33, 43
Inverse image, 212
Inversion, 140
Irreducibility tests, 312, 314
Irreducible element, 328
Irreducible polynomial, 311
ISBN, 26
Isometry, 461
Isomorphism(s)

class, 226
First Theorem for groups, 215
First Theorem for rings, 288
of groups, 128
of rings, 285
Second Theorem for groups, 222
Second Theorem for rings, 347
Third Theorem for groups, 222
Third Theorem for rings, 347

Kernel
of a homomorphism, 208
of a linear transformation, 357

Key, 169
Kronecker’s Theorem, 360

Lagrange’s Theorem, 147
Latin square, 56
Lattice

diagram, 86
of points, 481
unit, 481

Leading coefficient, 300
Least common multiple, 6
Left regular representation, 132
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Line in F, 400
Linear

code, 531
combination, 353
transformation, 357

Linearly dependent vectors, 353
Linearly independent vectors, 353

Mapping, 20
Mathematical induction

First Principle, 15
Second Principle, 16

Matrix
addition, 44
determinant of, 45
multiplication, 45
standard generator, 534

Maximal,
ideal, 272
subgroup, 205, 240

Maximum-likelihood decoding, 526
Measure, 337
Minimal polynomial, 377
Mirror, 462
Mod p Irreducibility Test, 314
Modular arithmetic, 6–7
Monic polynomial, 300
Monster, 432, 564
Multiple, 3
Multiple zeros, 369
Multiplication modulo n, 7
Multiplicity of a zero, 303

Natural homomorphism, 218, 286, 289
Natural mapping, 216
N/C Theorem, 217
Nearest-neighbor decoding, 529
Nil radical, 277
Nilpotent element, 261
Noetherian domain, 336
Norm, 329
Normal subgroup, 185
Normal Subgroup Test, 186
Normalizer, 95

Odd permutation, 110
Operation

associative, 43
binary, 42
commutative, 34

preserving mapping, 129
table, 33

Opposite isometry, 462
Orbit of a point, 151
Orbit-Stabilizer Theorem, 152
Order

of a group, 60
of an element, 60

Orthogonality relation, 538

Parity-check matrix, 536
Partition

of a set, 19
of an integer, 227

Perfect field, 370
Permutation

definition of, 99
even, 110
group, 99
odd, 110

p-group, 410
Phi function, Euler, 84
PID, 304
Plane of F, 400
Plane symmetry, 35
Polynomial(s)

alternating, 110
constant, 300
content of, 312
cyclotomic, 316, 571
degree of, 300
derivative of, 368
Galois group of, 566
irreducible, 311
leading coefficient of, 300
minimal, 377
monic, 300
primitive, 312
reducible, 311
relatively prime, 308
ring of, 298
splits, 362
symmetric, 110
zero of, 303

Prime
element of a domain, 328
ideal, 272
integer, 3
relatively, 4, 308
subfield, 290
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Primitive
element, 382
Element Theorem, 381
nth root of unity, 304, 571
polynomial, 312

Principal ideal domain, 276, 304
Principal ideal ring, 295
Projection, 220
Proper ideal, 267
Proper subgroup, 61
Pullback, 212

Quaternions, 95, 201, 203, 450
Quotient, 4, 302
Quotient group, 187
Quotients, field of, 290

Range, 20
Rational Root Theorem, 324
Reducible polynomial, 311
Reflection, 36, 462
Relation

equivalence, 18
in a presentation, 449

Relatively prime, 4, 308
Remainder, 4, 302
Remainder Theorem, 303
Ring(s)

Boolean, 253
center of, 251
characteristic of, 258
commutative, 245
definition of, 245
direct sum of, 247
factor, 268
homomorphism of, 285
isomorphism of, 285
of polynomials, 298
with unity, 246

RSA public encryption, 171
Rubik’s Cube, 114, 155

Scalar, 351
Scalar multiplication, 351
Self-dual code, 582
Sicherman dice, 321
Simple extension, 376
Simple group, 428
Socks–Shoes Property, 52, 56
Solvable by radicals, 560

Solvable group, 561
Spanning set, 353
Splitting field, 362
Squaring the circle, 399, 402
Stabilizer of a point, 120, 151
Standard array, 539
Standard decoding, 539
Standard encoding matrix, 534
Standard generator matrix, 534
Subcode, 545
Subfield Test, 262
Subgroup(s)

centralizer, 70
characteristic, 181
commutator, 181
conjugate, 95, 414
cyclic, 65
definition of, 61
diagonal, 175
Finite Test, 64
generated by a, 65
generated by S, 66
index of, 148
lattice, 86
maximal, 205, 240
nontrivial, 61
normal, 185
One-Step Test, 62
proper, 61
Sylow p-, 413
torsion, 96
trivial, 61
Two-Step Test, 63

Subring
definition of, 248
Test, 248
Trivial, 249

Subspace, 352
Subspace spanned by vectors,  

353
Subspace Test, 355
Sylow p-subgroup, 413
Sylow test for nonsimplicity, 433
Sylow Theorems, 412, 414, 415
Symmetric group, 101
Symmetries of a square, 31
Symmetry group, 35, 36, 461
Syndrome of a vector, 541
Systematic code, 534
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Torsion subgroup, 96
Transcendental element, 376
Transcendental extension, 376
Translation, 47, 462
Transposition, 107
Trisecting an angle, 399, 400, 401

UFD, 334
Unique factorization domain, 334
Unique factorization theorem

for a PID, 335
for D[x], 340
for F[x], 337
for Z, 6
for Z[x], 319
in a Euclidean domain, 339

Unity, 246
Universal Factor Group Property, 448
Universal Mapping Property, 447
Universal Product Code, 9

Vector, 351
Vector space

basis of, 353
definition of, 351

dimension of, 355
finite dimensional, 355
infinite dimensional, 355
spanned by a set, 353
trivial, 355

Vertex of a graph, 506

Wallpaper groups, 475
Weight of a vector, 532
Weighting vector, 9
Weird dice, 321
Well-defined function, 209
Well Ordering Principle, 3
Word

code, 528, 531
empty, 446
in a group, 446

Zero
multiple, 369
multiplicity of, 303
of a polynomial, 303

Zero-divisor, 255
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Cayley Table for the Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside  
the table represents ak. For example, a3 a8 5 a6.)

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

 (1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
 (12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
 (13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
 (14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9
 (123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
 (243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
 (142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
 (134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
 (132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
 (143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
 (234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
 (124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7

   e a a2 a3 b ba ba2 ba3

 e e a a2 a3 b ba ba2 ba3

 a a a2 a3 e ba3 b ba ba2

 a2 a2 a3 e a ba2 ba3 b ba
 a3 a3 e a a2 ba ba2 ba3 b
 b b ba ba2 ba3 a2 a3 e a
 ba ba ba2 ba3 b a a2 a3 e
 ba2 ba2 ba3 b ba e a a2 a3

  ba3 ba3 b ba ba2 a3 e a a2

Cayley Table for the Quaternion Group

Cayley Tables
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Cayley Tables

Cayley Table for the Dihedral Group of Order 6

 R0 R120 R240 F F' F''

R0 R0 R120 R240 F F' F''
R120 R120 R240 R0 F' F '' F
R240 R240 R0 R120 F '' F F'
F F F'' F' R0 R240 R120
F' F' F F'' R120 R0 R240
F'' F '' F' F R240 R120 R0

Cayley Table for the Dihedral Group of Order 8

 R0 R90 R180 R270 H V D D'

R0 R0 R90 R180 R270 H V D D'
R90 R90 R180 R270 R0 D' D H V
R180 R180 R270 R0 R90 V H D' D
R270 R270 R0 R90 R180 D D' V H
H H D V D' R0 R180 R90 R270
V V D' H D R180 R0 R270 R90
D D V D' H R270 R90 R0 R180
D' D' H D V R90 R270 R180 R0

F

F' F"

D D'

H

V
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