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Preface

Dear Sir or Madam, will you read my book, it took me years to write, will you
take a look?

John Lennon and Paul McCartney, “Paperback Writer,” single, 1966*

Although I wrote the first edition of this book more than 25 years ago,
my goals for it remain the same. I want students to receive a solid intro-
duction to the traditional topics. I want readers to come away with the
view that abstract algebra is a contemporary subject—that its concepts
and methodologies are being used by working mathematicians, com-
puter scientists, physicists, and chemists. I want students to see the
connections between abstract algebra and number theory and geom-
etry. I want students to be able to do computations and to write proofs.
I want students to enjoy reading the book. And I want to convey to the
reader my enthusiasm for this beautiful subject.

Educational research has shown that an effective way of learning
mathematics is to interweave worked-out examples and practice prob-
lems. Thus, I have made examples and exercises the heart of the book.
The examples elucidate the definitions, theorems, and proof techniques.
The exercises facilitate understanding, provide insight, and develop the
ability of the students to do proofs. The exercises often foreshadow
definitions, concepts, and theorems to come. Many exercises focus on
special cases and ask the reader to generalize. Generalizing is a skill
that students should develop but rarely do. Even if an instructor chooses
not to spend class time on the applications in the book, I feel that hav-
ing them there demonstrates to students the utility of the theory.

Changes for the eighth edition include 200 new exercises, new ex-
amples, and a freshening of the quotations, historical notes, and biogra-
phies. These changes accentuate and enhance the hallmark features that
have made previous editions of the book a comprehensive, lively, and
engaging introduction to the subject:

* Extensive coverage of groups, rings, and fields, plus a variety of
nontraditional special topics

*Copyright © 1966 (Renewed) Stony/ATV Tunes LLC. All rights administered by
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights
reserved. Used by permission.

xi
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Preface

* A good mixture of nearly 2000 computational and theoretical exer-
cises appearing in each chapter and in Supplementary Exercise sets
that synthesize concepts from multiple chapters

» Back-of-the-book skeleton solutions and hints to the odd-numbered
exercises

* Worked-out examples—now totaling nearly 300—ranging from
routine computations to quite challenging problems

» Computer exercises, which utilize interactive software available on
my website, that stress guessing and making conjectures

* A large number of applications from scientific and computing fields,
as well as from everyday life

* Numerous historical notes and biographies that spotlight the people
and events behind the mathematics

* Lines from popular songs, poems, and quotations

* Scores of photographs, hundreds of figures, numerous tables and
charts, and reproductions of stamps and currency that honor
mathematicians

* Annotated suggested readings and media for interesting further
exploration of topics

To make room for the new material, the computer exercises from
previous editions are available at www.d.umn.edu/~jgallian or through
Cengage’s book companion site at www.cengage.com/math/gallian.
The first website also offers a wealth of additional online resources
supporting the book, including:

* True/false questions with comments

* Flash cards

* Essays on learning abstract algebra, doing proofs, and reasons why
abstract algebra is a valuable subject to learn

* Links to abstract algebra—related websites and software packages
and much, much more

Additionally, Cengage offers the following student and instructor
ancillaries to accompany the book:

* A Student Solutions Manual, available for purchase separately, with
detailed solutions to the odd-numbered exercises in the book
(ISBN:978-1-133-60853-0)

 Solution Builder, an online instructor database that offers complete,
worked-out solutions to all exercises in the text, which allows you to
create customized, secure solutions printouts (in PDF format)
matched exactly to the problems you assign in class. Sign up for
access at www.cengage.com/solutionbuilder.
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Preface xiii

* An Instructor’s Solutions Manual with solutions to all the exercises
in the book and additional test questions and solutions

* An online laboratory manual, written by Julianne Rainbolt, with
exercises designed to be done with the free computer algebra system
software GAP

* Online instructor answer keys to the book’s computer exercises and
the exercises in the GAP lab manual

Special thanks go to my copy editor for this edition, Jeff Anderson,
and the accuracy checker, Roger Lipsett. I am grateful to each for their
careful attention to the manuscript. My appreciation also goes to Molly
Taylor, Shaylin Hogan, and Alex Gontar from Cengage Learning, as
well as Katie Costello and the Cengage production staff.

The thoughtful input of the following people, who served as re-
viewers for the eighth edition, is also sincerely appreciated: Homer
Austin, Salisbury University; David Barth-Hart, Rochester Institute
of Technology; Bret Benesh, College of St. Benedict and St. John’s
University; Daniel Daly, Southeast Missouri State University; Paul
Felt, University of Texas of the Permian Basin; Donald Hartig,
California Polytechnic State University, San Luis Obispo; Nancy
Ann Neudauer, Pacific University; Bingwu Wang, Eastern Michigan
University; Dana Williams, Dartmouth College; and Norbert Youmbi,
Saint Francis University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition
better. I owe many thanks to my UMD colleague Robert McFarland for
giving me numerous exercises and comments that have been included
in this edition. Douglas Dunham, another UMD colleague, has gener-
ously provided the spectacular cover image for this edition. For an ex-
planation of the mathematics underlying this image see www.d.umn
.edu/~jgallian/Dunhamimage. Please send any comments and sugges-
tions you have to me at jgallian @d.umn.edu

Joseph A. Gallian
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Preliminaries

The whole of science is nothing more than a refinement
of everyday thinking.

ALBERT EINSTEIN, Physics and Reality

Properties of Integers

Much of abstract algebra involves properties of integers and sets. In this
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the
so-called Well Ordering Principle. Since this property cannot be proved
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of
numbers. We say a nonzero integer ¢ is a divisor of an integer s if there
is an integer u such that s = fu. In this case, we write ¢ | s (read “¢
divides s’). When ¢ is not a divisor of s, we write ¢ + s. A prime is a
positive integer greater than 1 whose only positive divisors are 1 and
itself. We say an integer s is a multiple of an integer ¢ if there is an in-
teger u such that s = tu or, equivalently, if ¢ is a divisor of s.

As our first application of the Well Ordering Principle, we establish
a fundamental property of integers that we will use often.

§ Theorem 0.1 Division Algorithm

Let a and b be integers with b > 0. Then there exist unique integers q
and r with the property that a = bq + r, where 0 = r < b.

PROOF We begin with the existence portion of the theorem. Consider
the set S = {a — bk | kis an integer and a — bk = 0}. If 0 € S, then b

3
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divides a and we may obtain the desired result with ¢ = a/b and r = 0.
Now assume O € S. Since S is nonempty [ifa > 0,a — b -0 € S;ifa <
0,a — b(2a) = a(l — 2b) € S; a # 0 since 0 & S], we may apply the
Well Ordering Principle to conclude that S has a smallest member, say
r=a — bq. Thena = bg + rand r = 0, so all that remains to be proved
is that » < b.

Ifr=b,thena —b(g+1)=a—bg—b=r—>b =0, so that
a—blg+1)€e S. Buta —blg+ 1) <a— bg, and a — bq is the
smallest member of S. So, r < b.

To establish the uniqueness of ¢ and r, let us suppose that there are
integers ¢, ¢', r, and r’ such that

a=bg+r, 0=r<b, and a=bqg' +7r, 0=r <b.

For convenience, we may also suppose that ¥ = r. Then bg + r =
bg' +r andblg —¢q') =7+ —r.So,bdivides ¥ —rand0 =r — r=
r" < b. It follows that 7' — r = 0, and therefore v’ = rand g = ¢'. |

The integer ¢ in the division algorithm is called the guotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

B EXAMPLE 1 For ¢ = 17 and b = 5, the division algorithm gives
17=5-3 + 2; fora = —23 and b = 6, the division algorithm gives
—23 =6(—4) + 1. |

Definitions Greatest Common Divisor, Relatively Prime Integers

The greatest common divisor of two nonzero integers a and b is the
largest of all common divisors of a and b. We denote this integer by
gcd(a, b). When ged(a, b) = 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the
Well Ordering Principle.

I Theorem 0.2 GCD Is a Linear Combination
For any nonzero integers a and b, there exist integers s and t such that

gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer
of the form as + bt.

PROOF Consider the set S = {am + bn | m, n are integers and
am + bn > 0}. Since S is obviously nonempty (if some choice of m
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and n makes am + bn < 0, then replace m and n by —m and —n), the
Well Ordering Principle asserts that S has a smallest member, say,
d = as + bt. We claim that d = gcd(a, b). To verify this claim, use the
division algorithm to write a = dgq + r, where 0 = r < d. If r > 0,
thenr=a —dg =a — (as + bt)g = a — asq — btqg = a(1 — sq) +
b(—tq) € S, contradicting the fact that d is the smallest member of S.
So, r = 0 and d divides a. Analogously (or, better yet, by symmetry),
d divides b as well. This proves that d is a common divisor of @ and b.
Now suppose d’ is another common divisor of a and b and write a =
d'hand b = d'k. Thend = as + bt = (d'h)s + (d'k)t = d'(hs + kt),
so that d’ is a divisor of d. Thus, among all common divisors of a and
b, d is the greatest. |

The special case of Theorem 0.2 when a and b are relatively prime is
so important in abstract algebra that we single it out as a corollary.

1 Corollary

If a and b are relatively prime, then there exist integers s and t such
that as + bt = 1.

B EXAMPLE 2 gcd(d, 15) = 1; ged(d, 10) = 2; ged(22 - 32 - 5,2 - 33 -
7%) = 2 - 3. Note that 4 and 15 are relatively prime, whereas 4 and 10 are
not. Also,4 -4 + 15(—1)=1land4(—2) + 10- 1 = 2. |

The next lemma is frequently used. It appeared in Euclid’s Elements.

I Euclid’sLemma p | abImpliesplaorplb

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We
must show that p divides b. Since p does not divide a, there are
integers s and ¢ such that 1 = as + pt. Then b = abs + ptb, and since
p divides the right-hand side of this equation, p also divides b. |

Note that Euclid’s Lemma may fail when p is not a prime, since
61(4-3)but6+4and6+ 3.

Our next property shows that the primes are the building blocks for
all integers. We will often use this property without explicitly saying so.
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B Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This

product is unique, except for the order in which the factors appear.

Thatis, ifn = p,p,---p,andn = q,q, - - - q, where the p’s and q’s

are primes, then r = s and, after renumbering the q’s, we have p, = q,
foralli.

We will prove the existence portion of Theorem 0.3 later in this
chapter (Example 11). The uniqueness portion is a consequence of
Euclid’s Lemma (Exercise 31).

Another concept that frequently arises is that of the least common
multiple of two integers.

Definition Least Common Multiple

The least common multiple of two nonzero integers a and b is the
smallest positive integer that is a multiple of both a and b. We will
denote this integer by lcm(a, b).

We leave it as an exercise (Exercise 10) to prove that every common
multiple of a and b is a multiple of lcm(a, b).

I EXAMPLE 3 Iem(4, 6) = 12; lem(4, 8) = 8; lem(10, 12) = 60;
lem(6, 5) = 30; lem(22 - 32-5,2-33-72) = 22-33.5 . 72, I

Modular Arithmetic

Another application of the division algorithm that will be important to
us is modular arithmetic. Modular arithmetic is an abstraction of a
method of counting that you often use. For example, if it is now
September, what month will it be 25 months from now? Of course, the
answer is October, but the interesting fact is that you didn’t arrive at the
answer by starting with September and counting off 25 months.
Instead, without even thinking about it, you simply observed that
25 =2-12 + 1, and you added 1 month to September. Similarly, if it
is now Wednesday, you know that in 23 days it will be Friday. This
time, you arrived at your answer by noting that 23 = 7 - 3 + 2, so you
added 2 days to Wednesday instead of counting off 23 days. If your
electricity is off for 26 hours, you must advance your clock 2 hours,
since 26 = 2 - 12 + 2. Surprisingly, this simple idea has numerous
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important applications in mathematics and computer science. You will
see a few of them in this section. The following notation is convenient.

When a = gn + r, where ¢ is the quotient and r is the remainder
upon dividing a by n, we write @ mod n = r. Thus,

3mod2=1since3=1-2+1,
6mod2 =0since6=3-2+0,
11mod3 =2since 11 =3-3 + 2,
62 mod 85 = 62 since 62 = 0 - 85 + 62,
—2mod 15 = 13 since —2 = (—1)15 + 13.

In general, if a and b are integers and n is a positive integer, then
amod n = b mod n if and only if n divides a — b (Exercise 7).

In our applications, we will use addition and multiplication mod #.
When you wish to compute ab mod n or (¢ + b) mod n, and a or b
is greater than n, it is easier to “mod first.”” For example, to compute
(27 - 36) mod 11, we note that 27 mod 11 = 5 and 36 mod 11 = 3, so
(27 -36)mod 11 = (5-3)mod 11 = 4. (See Exercise 9.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We
present two such applications.

B EXAMPLE 4 The United States Postal Service money order shown
in Figure 0.1 has an identification number consisting of 10 digits together
with an extra digit called a check. The check digit is the 10-digit number
modulo 9. Thus, the number 3953988164 has the check digit 2, since

&,

39539881642 BAL0LA 558041 xRLxDE

i Fom
— N

Eﬁ w. YEAR MONTH g:”-u: 9%1 orrcE us m;
aa (R] =
e LN R 2 ey STATE F
Re
1100000800 21 3953988 46L 2

Figure 0.1
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3953988164 mod 9 = 2.7 If the number 39539881642 were incorrectly
entered into a computer (programmed to calculate the check digit) as,
say, 39559881642 (an error in the fourth position), the machine would
calculate the check digit as 4, whereas the entered check digit would be
2. Thus, the error would be detected. |

B EXAMPLE 5 Airline companies, the United Parcel Service, and
the rental-car companies Avis and National use the mod 7 values of
identification numbers to assign check digits. Thus, the identification
number 00121373147367 (see Figure 0.2) has the check digit 3 appended

» PASSENGER REEEIFT -~ & xm
MOIFTHWEST ALRIL THES me W C . ATBRFI2a0d WCMJJBGEPH R
BREFBESTREE TUL U STORM LARE - VSTREGSDSRARSS W o '[
BATTIRN/JOSERH DR GFMEHY An ptepE s QToTET? wmmulm i
=0T VALID FORs% “THYE 15°%%bR RECE PT™ 0SUL NETIT H ITHOWRE !
"uxTRANGPORTATION® ﬁm. -_m_mnma :

/REFUND. T
FF CHECK /FCTILH MW XANEF Nu BUX179. omza N xmsP M
W DLH224, '54!‘26 403 63 EHD XFHBP3H5P3 : ;

FFHHHHH S H H R
- ¥ H

i1 m{illllil‘il“lmlmi‘lllm i;

UBD 403 ﬁa' i 5 IS o R R : Frrees
NS amas T [ e 171 ValTo For™TRIVEL
PXE 600 20692567618 0 012 13731473L7 3 0. 047 15373147367 @
%0 450,00 AAL67 12373
Figure 0.2
§ £%53 United Parcel Service |, STAMP YOUR UPS SHIPPER NUMBER BELOW
[ 7 7 ¢ ] 7681139992
ENTER EACH PACKAGE ON A SEPARATE LINE. IF RECORD IS VOIDED, PLEASE GIVE TO DRIVER. [—ovrc SERVICE samo
INCREASE FRACTIONS OF A POUND TO NEXT FULL'POUND. Elmeed an o] oo (ol SRHE
ReFERENCE RO | NAVE = STREET = [k 7P CoDE | stne |Gt | ** [0 ] o5 oo | o [hojem

7
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q
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¥
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3
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111
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SN
Lt
Ll
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L1l

Recoio ov

’m.,nm "o In I :
s [ous | -
>

oriz0T 1048 1200k 8 we1x

Figure 0.3

"The value of N mod 9 is easy to compute with a calculator. If N = 9¢ + r, where r is
the remainder upon dividing N by 9, then on a calculator screen N + 9 appears as
q.rrrrr . . ., so the first decimal digit is the check digit. For example, 3953988164 <+ 9 =
439332018.222, so 2 is the check digit. If N has too many digits for your calculator,
replace N by the sum of its digits and divide that number by 9. Thus, 3953988164
mod 9 = 56 mod 9 = 2. The value of 3953988164 mod 9 can also be computed by
searching Google for “3953988164 mod 9.”
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to it because 121373147367 mod 7 = 3. Similarly, the UPS pickup re-
cord number 768113999, shown in Figure 0.3, has the check digit 2
appended to it. |

The methods used by the Postal Service and the airline companies
do not detect all single-digit errors (see Exercises 41 and 45). However,
detection of all single-digit errors, as well as nearly all errors involving
the transposition of two adjacent digits, is easily achieved. One method
that does this is the one used to assign the so-called Universal Product
Code (UPC) to most retail items (see Figure 0.4). A UPC identification
number has 12 digits. The first six digits identify the manufacturer, the
next five identify the product, and the last is a check. (For many items,
the 12th digit is not printed, but it is always bar-coded.) In Figure 0.4,
the check digit is 8.

€— OPEN AT TOP OF SIDE

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(@, Ay ovosa) - W, Wy, oo ,w) =aw, +aw, + - +aw,.

An item with the UPC identification number a,a, ‘- a,, satisfies the
condition

(A dyy oo ya) - (3,1,3,1,...,3,1)mod 10 = 0.

To verify that the number in Figure 0.4 satisfies this condition, we
calculate

©0-3+2-1+1:3+0-1+0-3+0:1+6-3+5-1
+8:3+9-1+7-3+8-1)mod 10 =90 mod 10 = 0.

The fixed k-tuple used in the calculation of check digits is called the
weighting vector.

Now suppose a single error is made in entering the number in
Figure 0.4 into a computer. Say, for instance, that 021000958978 is
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entered (notice that the seventh digit is incorrect). Then the computer
calculates

0-3+2:-1+1:-3+40:-1+0:-3+40-1+9-3
+5-1+8:3+9-1+7-3+8-1=099.

Since 99 mod 10 # 0, the entered number cannot be correct.

In general, any single error will result in a sum that is not 0 modulo 10.

The advantage of the UPC scheme is that it will detect nearly all
errors involving the transposition of two adjacent digits as well as all
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice
that the last two digits preceding the check digit have been transposed.
But by calculating the dot product, we obtain 94 mod 10 +# 0, so we
have detected an error. In fact, the only undetected transposition
errors of adjacent digits @ and b are those where la — bl = 5. To
verify this, we observe that a transposition error of the form

aa, - -aa ---a12—>ala2---a

i1 a---a

i+1 12

is undetected if and only if
(a,a,,...,a, ,a,...,a,)3,1,3,1,...,3,1)mod 10 = 0.

»dipp dp
That is, the error is undetected if and only if

@y .. sa, pay. .. ay) - (3,1,3,1,...,3,1) mod 10
Say) - G,1,3,1,...,3, 1)ymod 10.

=(al,a2,...,ai,al.+l,..

This equality simplifies to either
(3a;,, + a) mod 10 = (3a; + a,, ) mod 10
or

(a,,, + 3a) mod 10 = (a, + 3a,,,) mod 10,

i+1
depending on whether i is even or odd. Both cases reduce to 2(a, |, — a,)
mod 10 = 0. It follows that la,, |, — al = 5,ifa, , #a,

In 2005, United States companies began to phase in the use of a 13th
digit to be in conformance with the 13-digit product identification num-
bers used in Europe. The weighting vector for 13-digit numbers is (1, 3,
1,3,...,3, D).

Identification numbers printed on bank checks (on the bottom left
between the two colons) consist of an eight-digit number a,a, - - - a
and a check digit a,, so that

S ag) - (7,3,9,7,3,9,7,3,9) mod 10 = 0.

8

(a,,a

2 -
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As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits
a and b except when la — bl = 5. But it also detects most errors of the
form: - -abc--+— -+ -cba- - -, whereas the UPC method detects no
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as
73245018 and you would like to be sure that if even a single mistake
were made in entering this number into a computer, the computer
would nevertheless be able to determine the correct number. (Think of
it. You could make a mistake in dialing a telephone number but still get
the correct phone to ring!) This is possible using two check digits. One
of the check digits determines the magnitude of any single-digit error,
while the other check digit locates the position of the error. With these
two pieces of information, you can fix the error. To illustrate the idea, let
us say that we have the eight-digit identification number a,a, - - - a,. We
assign two check digits a, and a, so that

(@, +a,+ -+ +ay+a,)modll =0
and
(a,ay,...,a4a,) " (1,2,3,...,10)mod 11 = 0

are satisfied.
Let’s do an example. Say our number before appending the two
check digits is 73245018. Then a, and a,, are chosen to satisfy

(T+3+2+4+5+0+1+8 +a,+a,)mod11=0 (1)

and

(7-1+3:2+2:3+4-4+5-5+0-6 )
+1-7+88+ay-9+ay,-10)mod 11 =0.

Since7+3+2+4+5+0+1+8 =30 and 30 mod 11 = 8,
Equation (1) reduces to

(8 + a, + a,y) mod 11 = 0. (1"

Likewise, since (7 -1 + 3 -2 + 2 -3 +4 -4+ 5- -5+
0-6+1-7+8:-8) mod11 = 10, Equation (2) reduces to

(10 + 9a, + 10a,,) mod 11 = 0. )
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Since we are using mod 11, we may rewrite Equation (2") as
(=1 —2ay—a;p)) mod 11 =0

and add this to Equation (1') to obtain 7 — a, = 0. Thus a, = 7. Now
substituting a, = 7 into Equation (1’) or Equation (2'), we obtain
a,, = 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into
a computer programmed with our encoding scheme as 7824501877
(an error in position 2). Since the sum of the digits of the received
number mod 11 is 5, we know that some digit is 5 too large (assum-
ing only one error has been made). But which one? Say the
error is in position i. Then the second dot product has the form a, - 1 +
a2+ ... +@+Si+ta, -G(+D+...+a, 10=
(a,a,, ....,a, (1,2, ...,10) + 5i.S0,(7,8,2,4,5,0,1,8,7,7) -
(1,2,3,4,5,6,7,8,9,10) mod 11 = 5i mod 11. Since the left-hand
side mod 11 is 10, we see that i = 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Modular arithmetic is often used to verify the validity of statements
about divisibility regarding all positive integers by checking only
finitely many cases.

B EXAMPLE 6 Consider the statement, “The sum of the cubes of any
three consecutive integers is divisible by 9.” This statement is equiva-
lent to checking that the equation (n* + (n + 1)* + (n + 2)>) mod 9 = 0
is true for all integers n. Because of properties of modular arithmetic, to
prove this, all we need do is check the validity of the equation for n = 0,
1,...,8 |

Modular arithmetic is occasionally used to show that certain equa-
tions have no rational number solutions.

# EXAMPLE 7 We use mod 3 arithmetic to show that there are no
integers a and b such that > — 6b = 2. To see this, suppose that there
are such integers. Then, taking both sides modulo 3, there is an integer
solution to @> mod 3 = 2. But trying a = 0, 1, and 2 we obtain a contra-
diction. |
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A a+ bi

>» Re

Figure 0.5

Complex Numbers

Recall that complex numbers are expressions of the forma + bV —1,
where a and b are real numbers. The number VvV —1 is defined to have
the property V. —12 = —1. It is customary to use i to denote \/ —1.
Then, i> = —1. Complex numbers written in the form a + bi are said to
be in standard form. In some instances it is convenient to write a com-
plex number a + bi in another form. To do this we represent a + bi as
the point (a,b) in a plane coordinatized by a horizontal axis called the
real axis and a vertical i axis called the imaginary axis. The distance
from the point @ + bi to the origin is r = Va’> + b* and is often
denoted by la + bil. If we draw the line segment from the origin to
a + bi and denote the angle formed by the line segment and the positive
real axis by 6, we can write a + bi as r(cos 6 + i sin 6) (see Figure 0.5).
This form of a + bi is called the polar form. An advantage of the polar
form is demonstrated in parts 5 and 6 of Theorem 0.4.

I Theorem 0.4 Properties of Complex Numbers

1. Closure under addition: (a + bi) + (¢ + di) = (a + ¢) + (b + d)i

2. Closure under multiplication: (a + bi) (¢ + di) = (ac) + (ad)i +
(bo)i + (bd)i* = (ac — bd) + (ad + bc)i

(a + bi) (a+ bi)(c—di)

(c +di) (c+di)(c—di)

(ac + bd) + (bc — ad)i _ (ac + bd) = (bc — ad)i

3. Closure under division (¢ + di # 0) :

A+ d A+ & A+ d
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4. Complex conjugation: (a + bi) (a — bi) = a*> + b?

S. Inverses: For every nonzero complex number a + bi there is a
complex number ¢ + di such that (a + bi) (¢ + di) = 1. (That is,
(a + bi) ' exists in C.)

6. Powers: For every complex number a + bi = r(cos 6 + i sin 6) and
every positive integer n, we have (a + bi)* = [r(cos 6 + isin 0)]" =
r'*(cosn @ + isinn6).

7. Radicals: For every complex number a + 1bi = r(cos 6 + isin 6) ?nd
every positive integer n, we have (a + bi)* = [r(cos 0 + i sin 6)]r =

1 ..
rn (cos % + isin %).

PROOF Parts 1 and 2 are definitions. Part 4 follows from part 2. Part 6
is proved in Example 10 in the next section of this chapter. Part 7 fol-
lows from Exercise 25 in this chapter. |

The next example illustrates properties of complex numbers.

B EXAMPLE 8 (3 + 5i) + (=5 + 2i) = —2 + 7i;
(3 + 5i)(—=5 + 2i) = =25 + (—19)i = —25 — 19i;

345 _ 345 2-7 _29-31i_29 31,
247 247 -2 -7 53 53 53 ©
(3 +5)(3—5i) =9 + 25 = 34;

35
34507 = — —i.
G507 =5 3,

To find (3 + 5i)* and (3 + Si)i’ we first note that if 6 = arctan %,

3 5
then cos # = ——and sin # = ——. Thus, (3 + 5i)* = ((V34(cos 6 +
V34 V34 ( (

i sin 0))* = \V/34* (cos 40 + i sin 46) and (3 + 5i)i = (V/34(cos O +
i sin 0))1’ =\V34° (cosg + isin g).

Mathematical Induction

There are two forms of proof by mathematical induction that we will
use. Both are equivalent to the Well Ordering Principle. The explicit
formulation of the method of mathematical induction came in the
16th century. Francisco Maurolico (1494—1575), a teacher of Galileo,
used itin 1575 to prove that 1 + 3 +5 + - - - + (2n — 1) = n?, and
Blaise Pascal (1623-1662) used it when he presented what we now
call Pascal’s triangle for the coefficients of the binomial expansion.
The term mathematical induction was coined by Augustus De Morgan.
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I Theorem 0.5 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
whenever some integer n = a belongs to S, then the integer n + 1 also
belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 33). |

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for
the integer n and use this assumption to prove that the statement is true
for the integer n + 1.

Our next example uses some facts about plane geometry. Recall that
given a straightedge and compass, we can construct a right angle.

B EXAMPLE 9 We use induction to prove that given a straightedge, a
compass, and a unit length, we can construct a line segment of length
\/n for every positive integer n. The case when n = 1 is given. Now we
assume that we can construct a line segment of length /. Then use the
straightedge and compass to construct a right triangle with height 1 and
base V/n. The hypotenuse of the triangle has length \n + 1. So, by
induction, we can construct a line segment of length \/z for every posi-
tive integer n. |

# EXAMPLE 10 DeMOIVRE'STHEOREM We use induction to prove
that for every positive integer n and every real number 6, (cos 6§ +
i sin )" = cos nf + i sin nf, where i is the complex number vV —1.
Obviously, the statement is true for n = 1. Now assume it is true for n.
We must prove that (cos 6 + i sin 0)""! = cos(n + 1) + i sin(n + 1)6.
Observe that

(cos O + isin 8! = (cos @ + i sin 6)*(cos O + i sin §)
(cos nB + isin nB)(cos 6 + i sin 6)
= cos n# cos 0 + i(sin nf cos 0

+ sin 6 cos n6) — sin nf sin 6.

Now, using trigonometric identities for cos(a + ) and sin(a + 8), we
see that this last term is cos(n + 1)8 + i sin(n + 1)6. So, by induction,
the statement is true for all positive integers. |

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true
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for the integer n + 1. In such cases, the following equivalent form of
induction may be more convenient. Some authors call this formulation
the strong form of induction.

I Theorem 0.6 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
n belongs to S whenever every integer less than n and greater than or
equal to a belongs to S. Then, S contains every integer greater than or
equal to a.

PROOF The proof is left to the reader. |

To use this form of induction, we first show that the statement is true
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

B EXAMPLE 11 We will use the Second Principle of Mathematical
Induction with @ = 2 to prove the existence portion of the Fundamental
Theorem of Arithmetic. Let § be the set of integers greater than 1 that
are primes or products of primes. Clearly, 2 € S. Now we assume that
for some integer n, S contains all integers k with 2 = k < n. We must
show that n € S. If n is a prime, then n € S by definition. If n is not a
prime, then n can be written in the form ab, where 1 <a <mnand 1 <b
< n. Since we are assuming that both a and b belong to S, we know that
each of them is a prime or a product of primes. Thus, 7 is also a product
of primes. This completes the proof. |

Notice that it is more natural to prove the Fundamental Theorem of
Arithmetic with the Second Principle of Mathematical Induction than
with the First Principle. Knowing that a particular integer factors as a
product of primes does not tell you anything about factoring the next
larger integer. (Does knowing that 5280 is a product of primes help you
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of
the January 1988 issue of the science magazine Discover. *

B EXAMPLE 12 The Quakertown Poker Club plays with blue chips
worth $5.00 and red chips worth $8.00. What is the largest bet that
cannot be made?

*“Brain Boggler” by Maxwell Carver. Copyright © 1988 by Discover Magazine. Used
by permission.
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To gain insight into this problem, we try various combinations of
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25,
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the
answer is 27. But how can we be sure? Well, we need only prove that
every integer greater than 27 can be written in the form a - 5 +
b - 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red
chips needed to make a bet of a - 5 + b - 8. For the purpose of contrast,
we will give two proofs—one using the First Principle of Mathematical
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form
a-5+ b -8, where a and b are nonnegative. Obviously, 28 € S. Now
assume that some integer n € S, say,n = a -+ 5 + b - 8. We must show
that n + 1 &€ S. First, note that since n = 28, we cannot have both a and
b less than 3. If a = 3, then

ntl=(@ 5+b-8)+(-3-5+2-8)
=(@—3)5+@b+2)-8

(Regarding chips, this last equation says that we may increase a bet
from n to n + 1 by removing three blue chips from the pot and adding
two red chips.) If b = 3, then

n+t+l=@-5+b-8+(5:-5-3-8)
=@+5-5+®b—-3)-8

(The bet can be increased by 1 by removing three red chips and adding
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that
for some integer n > 32, § contains all integers k with 28 = k < n.
We must show that n € §. Since n — 5 € §, there are nonnegative
integers a and b such that n — 5 = a - 5 + b - 8. But then
n=(@+1)-5+b-8 ThusnisinS. [ |

Equivalence Relations

In mathematics, things that are considered different in one context may
be viewed as equivalent in another context. We have already seen one
such example. Indeed, the sums 2 + 1 and 4 + 4 are certainly different
in ordinary arithmetic, but are the same under modulo 5 arithmetic.
Congruent triangles that are situated differently in the plane are not the
same, but they are often considered to be the same in plane geometry.
In physics, vectors of the same magnitude and direction can produce
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different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these
distinctions precise is an appropriate generalization of the notion of
equality; that is, we need a formal mechanism for specifying whether or
not two quantities are the same in a given setting. This mechanism is an
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of
elements of S such that

1. (a,a)€ Rforalla € S (reflexive property).
2. (a, b) € R implies (b, a) € R (symmetric property).
3. (a,b) € Rand (b, c) € Rimply (a, c) € R (transitive property).

When R is an equivalence relation on a set S, it is customary to write
aRb instead of (a, b) € R. Also, since an equivalence relation is just a
generalization of equality, a suggestive symbol such as =, =, or ~ is
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a ~ a; a ~ b implies
b ~a;anda ~ band b ~ ¢ imply a ~ c. If ~ is an equivalence relation
on a set S and a € S, then the set [a] = {x € S | x ~ a} is called the
equivalence class of S containing a.

B EXAMPLE 13 Let S be the set of all triangles in a plane. If a, b € S,
define a ~ b if a and b are similar—that is, if @ and b have correspond-
ing angles that are the same. Then ~ is an equivalence relation on S. 1

I EXAMPLE 14 Let S be the set of all polynomials with real coeffi-
cients. If f, g € S, define f ~ g if f' = g’, where f' is the derivative of
J- Then ~ is an equivalence relation on S. Since two polynomials with
equal derivatives differ by a constant, we see that for any fin S, [f] =
{f+ clcisreal}. |

B EXAMPLE 15 Let S be the set of integers and let n be a positive inte-
ger. Ifa, b € §, definea = b if amod n = b mod n (that is, if a — b is
divisible by n). Then = is an equivalence relation on S and [a] = {a +
kn | k € S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence
relation. Certainly, @ — a is divisible by 7, so that a = a for all a in S.
Next, assume that a = b, say, a — b = rn. Then, b — a = (—r)n, and
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therefore b = a. Finally, assume thata = b and b = ¢, say,a — b = rn
andb — ¢ = sn. Then,wehavea —c=(@—b)+ (b —c)=m+sn=
(r + s)n, so thata = c. |

B EXAMPLE 16 Let = be as in Example 15 and let n = 7. Then we
have 16 =2;9 = —5;and 24 = 3. Also, [1] = {..., =20, —13, =6, 1,
8,15, ...}and [4] ={..., —17,—10, =3,4,11, 18, .. .}. |

B EXAMPLE 17 Let S = {(a, b) | a, b are integers, b # 0}. If
(a, b), (c,d) € S, define (a, b) = (c, d ) if ad = bc. Then = is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b
and c/d are equal.]

To verify that = is an equivalence relation on S, note that (a, b) = (a, b)
requires that ab = ba, which is true. Next, we assume that (a, b) = (c, d),
so that ad = bc. We have (c, d) = (a, b) provided that cb = da, which is
true from commutativity of multiplication. Finally, we assume that (a, b)
=~ (c,d ) and (c, d) = (e, f) and prove that (a, b) = (e, f). This amounts to
using ad = bc and cf = de to show that af = be. Multiplying both sides
of ad = bc by f and replacing cf by de, we obtain adf = bcf = bde. Since
d # 0, we can cancel d from the first and last terms. |

Definition Partition
A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is S. Figure 0.6 illustrates a partition of a set into four

subsets.
Figure 0.6 Partition of S into four subsets.
B EXAMPLE 18 The sets {0}, {1,2,3,...},and {..., =3, =2, —1}
constitute a partition of the set of integers. |

B EXAMPLE 19 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0. 1

Copyright 2012 Cengage Learning
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The next theorem reveals that equivalence relations and partitions
are intimately intertwined.

I Theorem 0.7 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S
constitute a partition of S. Conversely, for any partition P of S, there
is an equivalence relation on S whose equivalence classes are the
elements of P.

PROOF Let ~ be an equivalence relation on a set S. For any a € S, the
reflexive property shows that a € [a]. So, [a] is nonempty and the union
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct
equivalence classes. We must show that [a] N [b] = 0. On the contrary,
assume ¢ € [a] N [b]. We will show that [a] C [b]. To this end, let x € [a].
We then have ¢ ~ a, ¢ ~ b, and x ~ a. By the symmetric property, we
also have a ~ c. Thus, by transitivity, x ~ ¢, and by transitivity again,
x ~ b. This proves [a] C [b]. Analogously, [b] C [a]. Thus, [a] = [b],
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint
subsets of S whose union is S. Define a ~ b if a and b belong to the
same subset in the collection. We leave it to the reader to show that ~ is
an equivalence relation on S (Exercise 61). |

Functions (Mappings)

Although the concept of a function plays a central role in nearly every
branch of mathematics, the terminology and notation associated with
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)

A function (or mapping) ¢ from a set A to a set B is a rule that assigns
to each element a of A exactly one element b of B. The set A is called
the domain of ¢, and B is called the range of ¢. If ¢ assigns b to a, then
b is called the image of a under ¢. The subset of B comprising all the
images of elements of A is called the image of A under ¢.

We use the shorthand ¢: A — B to mean that ¢ is a mapping from
A to B. We will write ¢p(a) = b or ¢p: a — b to indicate that ¢ carries
atob.

There are often different ways to denote the same element of a set. In
defining a function in such cases one must verify that the function
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values assigned to the elements depend not on the way the elements
are expressed but on only the elements themselves. For example, the
correspondence ¢ from the rational numbers to the integers given by
¢(a/b) = a + b does not define a function since 1/2 = 2/4 but ¢p(1/2) #
¢(2/4). To verify that a correspondence is a function, you assume that
x, = x, and prove that ¢(x,) = ¢ (x,).

Definition Composition of Functions

Let ¢: A — B and : B — C. The composition ¢ is the mapping from
A to C defined by (¢)(a) = y(¢(a)) for all a in A. The composition
function ¢s¢p can be visualized as in Figure 0.7.

| ﬁ w
R
Figure 0.7 Composition of functions ¢ and .

In calculus courses, the composition of f with g is written ( fo g)(x) and
is defined by (fo g)(x) = f(g(x)). When we compose functions, we omit
the “circle.”

B EXAMPLE 20 Letf(x) = 2x + 3 and g(x) = x> + 1. Then ( fg)(5) =
f(&(5) = f(26) = 55; (g/)(5) = g (f(5)) = g (13) = 170. More generally,
(f)x) = f(gx)) =f( + 1) =20 + 1) + 3 = 2¢* + 5 and (gf)(x) =
g(f))=g2x+3)=2x+3)2+1 =4+ 12x+9+ 1 =45+
12x + 10. Note that the function fg is not the same as the function gf. 1

There are several kinds of functions that occur often enough to be
given names.

Definition One-to-One Function
A function ¢ from a set A is called one-to-one if for every a,, a, € A,
d(a,) = ¢(a,) implies a, = a,.

The term one-to-one is suggestive, since the definition ensures that
one element of B can be the image of only one element of A. Alternatively,
¢ is one-to-one if a, # a, implies ¢(a,) # ¢(a,). That is, different ele-
ments of A map to different elements of B. See Figure 0.8.
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Yy
—
® ¢(a) —

®¢(ay)

1 is not one-to-one

¢ is one-to-one

Figure 0.8

Definition Function from A onto B
A function ¢ from a set A to a set B is said to be onto B if each element

of B is the image of at least one element of A. In symbols, ¢: A — B is
onto if for each b in B there is at least one a in A such that ¢(a) = b.

See Figure 0.9.

4 %
— —

T |
¢ is onto 1 is not onto

Figure 0.9

The next theorem summarizes the facts about functions we will need.

I Theorem 0.8 Properties of Functions

Given functions o: A — B, B: B— C, and y: C — D, then
1. y(Ba) = (vB)x (associativity).
2. If a and B are one-to-one, then Ba is one-to-one.
3. If a and B are onto, then Ba is onto.
4. If a is one-to-one and onto, then there is a function o~ ' from B
onto A such that (a 'a)(a) = a forall a in A and (aa™')(b) = b
forall bin B.

PROOF We prove only part 1. The remaining parts are left as exercises
(Exercise 57). Let a € A. Then (y(Ba))(a) = v((Ba)(a)) = v(B(ala))).
On the other hand, ((yB)a)(@) = (yB)(a(@)) = y(B(a(a))). So, y(Ba) =

(vBa. ]
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It is useful to note that if « is one-to-one and onto, the function a~!
described in part 4 of Theorem 0.8 has the property that if a(s) = ¢,
then @~ !(r) = 5. That is, the image of 7 under o ! is the unique element s
that maps to ¢ under a. In effect, ™' “undoes” what « does.

B EXAMPLE 21 Let Z denote the set of integers, R the set of real
numbers, and N the set of nonnegative integers. The following table il-
lustrates the properties of one-to-one and onto.

Domain Range Rule One-to-One Onto
Z Z x—x Yes No
R R x—x Yes Yes
Z N x — Ixl No Yes
Z Z x—=x2 No No

To verify that x — x* is one-to-one in the first two cases, notice that if
x* = y3, we may take the cube roots of both sides of the equation to ob-
tain x = y. Clearly, the mapping from Z to Z given by x — x* is not onto,
since 2 is the cube of no integer. However, x — x* defines an onto func-
tion from R to R, since every real number is the cube of its cube root
(that is, Vb — b). The remaining verifications are left to the reader. 1§

I was interviewed in the Israeli Radio for five minutes and | said that more
than 2000 years ago, Euclid proved that there are infinitely many primes.

Immediately the host interrupted me and asked: “Are there still infinitely

many primes?”

NOGA ALON

1. Forn = 5, 8, 12, 20, and 25, find all positive integers less than n
and relatively prime to n.

2. Determine ged(2* - 32-5-72,2-3%-7-11)and lem(23 - 3% - 5,
2-33.7-11).

3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 - 73)
mod 7, (51 + 68) mod 7, (35 - 24) mod 11, and (47 + 68) mod 11.

4. Find integers s and f such that 1 = 7 - s + 11 - #. Show that s and ¢
are not unique.

S. Show that if @ and b are positive integers, then ab = lcm(a, b) -
gcd(a, b).

6. Suppose a and b are integers that divide the integer c. If @ and b are
relatively prime, show that ab divides c. Show, by example, that if
a and b are not relatively prime, then ab need not divide c.
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7.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.
22,

23.
24.

25.

26.

If @ and b are integers and n is a positive integer, prove that a mod n =
b mod n if and only if »n divides a — b.

Letd = ged(a, b). If a = da’ and b = db’, show that ged(a’, b') = 1.

. Let n be a fixed positive integer greater than 1. If a mod n = a’ and

bmod n = b', prove that (¢ + b)y mod n = (a’ + b") mod n and (ab)
mod n = (a'b") mod n. (This exercise is referred to in Chapters 6,
8,10, and 15.)

Let a and b be positive integers and let d = gcd(a, b) and m =
lem(a, b). If ¢ divides both @ and b, prove that ¢ divides d. If s is a
multiple of both a and b, prove that s is a multiple of m.

Let n and a be positive integers and let d = gcd(a, n). Show that the
equation ax mod n = 1 has a solution if and only if d = 1. (This
exercise is referred to in Chapter 2.)

Show that 5n + 3 and 7n + 4 are relatively prime for all n.

Suppose that m and n are relatively prime and r is any integer. Show

that there are integers x and y such that mx + ny = r.

Let p, g, and r be primes other than 3. Show that 3 divides p*> +
2 + 2

g+ re.

Prove that every prime greater than 3 can be written in the form

6n + 1or6n + 5.

Determine 7' mod 6 and 6'°°! mod 7.

Let a, b, s, and t be integers. If @ mod st = b mod st, show that a
mod s = b mod s and a mod ¢ = b mod z. What condition on s and
t is needed to make the converse true? (This exercise is referred to
in Chapter 8.)

Determine 842 mod 5.

Show that gcd(a,bc) = 1 if and only if ged(a,b) = 1 and
gcd(a, ¢) = 1. (This exercise is referred to in Chapter 8.)

Letp,, p,, ..., p,be primes. Show that p, p, - - - p, + 1 is divisible
by none of these primes.

Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
Express (—7 — 3i)~! in standard form.

+2i |
Express 41— in standard form.
i

Express (cos 360° + i sin 360°)"”® in standard form without trig
expressions. (Note that cos 360° + i sin 360° = 1.)

o 8
Prove that for any positive integer n, (cos § + i sin 6)"" = cos 3; +
i sin 3.
For every positive integer n, prove that 1 + 2 + - - - + n =

n(n + 1)/2.
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34.

35.

36.

37.

38.
39.
40.

41.
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For every positive integer n, prove that a set with exactly n elements
has exactly 2" subsets (counting the empty set and the entire set).

Prove that 232" — 1 is always divisible by 17.

Prove that there is some positive integer n such that n, n + 1,
n+2,...,n+ 200 are all composite.

(Generalized Euclid’s Lemma) If p is a prime and p divides
a,a, -+ - a,, prove that p divides a, for some i.

Use the Generalized Euclid’s Lemma (see Exercise 30) to establish
the uniqueness portion of the Fundamental Theorem of Arithmetic.

What is the largest bet that cannot be made with chips worth $7.00
and $9.00? Verify that your answer is correct with both forms of
induction.

Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, .. . . In gen-
eral, the Fibonacci numbers are defined by f, = 1, f, = 1, and for
n=3, f,=f _, + [ _, Prove that the nth Fibonacci number f, sat-
isfies f, << 2".

Prove by induction on n that for all positive integers n, n® +
(n + 1) + (n + 2)* is a multiple of 9.

Suppose that there is a statement involving a positive integer
parameter n and you have an argument that shows that whenever
the statement is true for a particular # it is also true for n + 2. What
remains to be done to prove the statement is true for every positive
integer? Describe a situation in which this strategy would be
applicable.

In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 X 8 X 8 = 4. Find all integers n for which this
statement is true, modulo 7.

Prove that for every integer n, n* mod 6 = n mod 6.
If it is 2:00 A.M. now, what time will it be 3736 hours from now?

Determine the check digit for a money order with identification
number 7234541780.

Suppose that in one of the noncheck positions of a money order
number, the digit O is substituted for the digit 9 or vice versa. Prove
that this error will not be detected by the check digit. Prove that all
other errors involving a single position are detected.

Suppose that a money order identification number and check digit
of 21720421168 is erroneously copied as 27750421168. Will the
check digit detect the error?
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43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

5S.

56.

A transposition error involving distinct adjacent digits is one of the
form...ab...—...ba...with a # b. Prove that the money
order check-digit scheme will not detect such errors unless the
check digit itself is transposed.

Determine the check digit for the Avis rental car with identification
number 540047. (See Example 5.)

Show that a substitution of a digit g, for the digit a, (¢, # a,) in
a noncheck position of a UPS number is detected if and only
ifla, = a/'l # 7.

Determine which transposition errors involving adjacent digits are
detected by the UPS check digit.

Use the UPC scheme to determine the check digit for the number
07312400508.

Explain why the check digit for a money order for the number N is
the repeated decimal digit in the real number N + 9.

The 10-digit International Standard Book Number (ISBN-10)
a,a,a,a,a,a,a.4a, a,a, . has the property (a,, a,, . .., a,,) - (10,9,8, 7,
6,5,4,3,2, 1) mod 11 = 0. The digit a, is the check digit. When
a,, 1s required to be 10 to make the dot product 0, the character X is
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

Suppose that an ISBN-10 has a smudged entry where the question
mark appears in the number 0-716?-2841-9. Determine the missing
digit.

Suppose three consecutive digits abc of an ISBN-10 are scrambled as
bca. Which such errors will go undetected?

The ISBN-10 0-669-03925-4 is the result of a transposition of two
adjacent digits not involving the first or last digit. Determine the
correct ISBN-10.

Suppose the weighting vector for ISBN-10s were changed to (1, 2,
3,4,5,6,7,8,9, 10). Explain how this would affect the check digit.
Use the two-check-digit error-correction method described in this
chapter to append two check digits to the number 73445860.
Suppose that an eight-digit number has two check digits appended
using the error-correction method described in this chapter and it is
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

The state of Utah appends a ninth digit a, to an eight-digit driver’s
license number a,a, . . . ag so that (9a, + 8a, + Ta, + 6a, + Sag +
da, + 3a, + 2a4 + ay) mod 10 = 0. If you know that the license
number 149105267 has exactly one digit incorrect, explain why the
error cannot be in position 2, 4, 6, or 8.
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. Complete the proof of Theorem 0.8.
. Let S be the set of real numbers. If a, b € S, definea ~ bifa — b

is an integer. Show that ~ is an equivalence relation on S. Describe
the equivalence classes of S.

. Let S be the set of integers. If a, b € S, define aRb if ab = 0. Is R an

equivalence relation on S?

Let S be the set of integers. If a, b € S, define aRb if a + b is even.
Prove that R is an equivalence relation and determine the equiva-
lence classes of S.

Complete the proof of Theorem 0.7 by showing that ~ is an equiva-
lence relation on S.

Prove that 3, 5, and 7 are the only three consecutive odd integers
that are prime.

What is the last digit of 3'%°? What is the last digit of 2'%0?

Prove that none of the integers 11, 111, 1111, 11111, .. .1is a square
of an integer.

(Cancellation Property) Suppose «, 3, and y are functions. If ay =
By and vy is one-to-one and onto, prove that « = .

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal
8 (1987): 9-29.

This well-written article describes several ways in which modular
arithmetic can be used to code secret messages. They range from a
simple scheme used by Julius Caesar to a highly sophisticated scheme
invented in 1978 and based on modular n arithmetic, where n has more
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics
Magazine 64 (1991): 13-22.

Copyright 2012 Cengage
e third party content

This article describes various methods used by the states to assign driv-
er’s license numbers. Several include check digits for error detection.
This article can be downloaded at http://www.d.umn.edu/~jgallian/
license.pdf
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J. A. Gallian, “The Mathematics of Identification Numbers,” The College
Mathematics Journal 22 (1991): 194-202.

This article is a comprehensive survey of check-digit schemes that are
associated with identification numbers. This article can be downloaded
at http://www.d.umn.edu/~jgallian/ident.pdf

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,”
The American Mathematical Monthly 95 (1988): 548-551.

This article provides a more detailed analysis of the check-digit
schemes presented in this chapter. In particular, the error detection
rates for the various schemes are given. This article can be downloaded
at http://www.d.umn.edu/~jgallian/marketplace.pdf
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Introduction

to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies
at its root, and it would be hard to find a better one on which to
demonstrate the working of the mathematical intellect.

HERMANN WEYL, Symmetry

Symmetries of a Square

Suppose we remove a square region from a plane, move it in some way,
then put the square back into the space it originally occupied. Our goal
in this chapter is to describe all possible ways in which this can be
done. More specifically, we want to describe the possible relationships
between the starting position of the square and its final position in
terms of motions. However, we are interested in the net effect of a mo-
tion, rather than in the motion itself. Thus, for example, we consider a
90° rotation and a 450° rotation as equal, since they have the same net
effect on every point. With this simplifying convention, it is an easy
matter to achieve our goal.

To begin, we can think of the square region as being transparent
(glass, say), with the corners marked on one side with the colors blue,
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now
in a position to describe, in simple fashion, all possible ways in which a
square object can be repositioned. See Figure 1.1. We now claim that
any motion—no matter how complicated—is equivalent to one of these
eight. To verify this claim, observe that the final position of the square
is completely determined by the location and orientation (that is, face
up or face down) of any particular corner. But, clearly, there are only
four locations and two orientations for a given corner, so there are
exactly eight distinct final positions for the corner.
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R, =Rotation of 0° (no change in position)

Ry, =Rotation of 90° (counterclockwise)

R,., = Rotation of 180°

180

R,,, = Rotation of 270°

H =Flip about a horizontal axis

V' =Flip about a vertical axis

D = Flip about the main diagonal

D' = Flip about the other diagonal

Figure 1.1

Let’s investigate some consequences of the fact that every motion is
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 90° followed by a flip about the horizontal axis

of symmetry.
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Thus, we see that this pair of motions—taken together—is equal to
the single motion D. This observation suggests that we can compose
two motions to obtain a single motion. And indeed we can, since the
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eight motions may be viewed as functions from the square region to
itself, and as such we can combine them using function composition.

With this in mind, we write H Ry, = D because in lower level math
courses function composition f o g means “g followed by f” The eight
motions Ry, Ry R g0 Ry H, 'V, D, and D', together with the operation
composition, form a mathematical system called the dihedral group of
order 8 (the order of a group is the number of elements it contains). It is
denoted by D,. Rather than introduce the formal definition of a group
here, let’s look at some properties of groups by way of the example D,.

To facilitate future computations, we construct an operation table or
Cayley table (so named in honor of the prolific English mathematician
Arthur Cayley, who first introduced them in 1854) for D, below. The
circled entry represents the fact that D = HR,,. (In general, ab denotes
the entry at the intersection of the row with a at the left and the column
with b at the top.)

R, 90 Rig Ry H 14 D D’
R, R, Ry, Rig Ry H/ 4 D D’
Ry, Ry, Rig Ry R, D D H ) 4
Rigy | Rig Ry R, Ry, 4 H ) D D
Ryp | Ryp R, Ry, R 180 D D v H
H H @) 4 D R, Rig Ry, Ry
\%4 Vv D' H D R s R, R, Ry,
D D Vv D' H Ry Ry, R, R,
D’ D' H D Vv R R R R

o
=1

180

=3

Notice how orderly this table looks! This is no accident. Perhaps the
most important feature of this table is that it has been completely filled
in without introducing any new motions. Of course, this is because, as
we have already pointed out, any sequence of motions turns out to be
the same as one of these eight. Algebraically, this says that if A and B
are in D, then so is AB. This property is called closure, and it is one of
the requirements for a mathematical system to be a group. Next, notice
that if A is any element of D, then AR, = R)A = A. Thus, combining
any element A on either side with R yields A back again. An element
R, with this property is called an identity, and every group must have
one. Moreover, we see that for each element A in D, there is exactly
one element B in D, such that AB = BA = R, In this case, B is said to
be the inverse of A and vice versa. For example, R, and R, are
inverses of each other, and H is its own inverse. The term inverse is a
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther order produce R, representing no change. Another striking feature
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of the table is that every element of D, appears exactly once in each
row and column. This feature is something that all groups must have,
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D, deserves special comment. Observe that
HD # DH but RyR, o) = R ¢ Ry, Thus, in a group, ab may or may not
be the same as ba. If it happens that ab = ba for all choices of group
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel).
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D,, three of the four con-
ditions that define a group—namely, closure, existence of an identity,
and existence of inverses. The remaining condition required for a group
is associativity; that is, (ab)c = a(bc) for all a, b, ¢ in the set. To be sure
that D, is indeed a group, we should check this equation for each of the
8% = 512 possible choices of a, b, and c in D,. In practice, however,
this is rarely done! Here, for example, we simply observe that the eight
motions are functions and the operation is function composition. Then,
since function composition is associative, we do not have to check the
equations.

The Dihedral Groups

The analysis carried out above for a square can similarly be done for
an equilateral triangle or regular pentagon or, indeed, any regular n-gon
(n = 3). The corresponding group is denoted by D, and is called the
dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the
decorative designs used on floor coverings, pottery, and buildings have
one of the dihedral groups as a group of symmetry. Corporation logos
are rich sources of dihedral symmetry [1]. Chrysler’s logo has D as a
symmetry group, and that of Mercedes-Benz has D,. The ubiquitous
five-pointed star has symmetry group D,. The phylum Echinodermata
contains many sea animals (such as starfish, sea cucumbers, feather
stars, and sand dollars) that exhibit patterns with D, symmetry.

Chemists classify molecules according to their symmetry. Moreover,
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH,), depicted in Figure 1.2, is D,.
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<=2

Figure 1.2 A pyramidal molecule with symmetry group D..

Mineralogists determine the internal structures of crystals (that is,
rigid bodies in which the particles are arranged in three-dimensional
repeating patterns—table salt and table sugar are two examples) by
studying two-dimensional x-ray projections of the atomic makeup
of the crystals. The symmetry present in the projections reveals the
internal symmetry of the crystals themselves. Commonly occurring
symmetry patterns are D, and D, (see Figure 1.3). Interestingly, it is
mathematically impossible for a crystal to possess a D, symmetry pat-
tern withn = S5orn > 6.

» 1 o -
Nl
0 ' — - .-
et BY o
. T - .
Ad . -
-

Tibor Zoltai

Figure 1.3 X-ray diffraction photos revealing D, symmetry patterns in crystals.

The dihedral group of order 2 is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a
plane is a function from the plane to itself that carries F' onto F and
preserves distances; that is, for any points p and ¢ in the plane, the
distance from the image of p to the image of ¢ is the same as the
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distance from p to q. (The term symmetry is from the Greek word
symmetros, meaning “of like measure.”) The symmetry group of a
plane figure is the set of all symmetries of the figure. Symmetries in
three dimensions are defined analogously. Obviously, a rotation of a
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional
space. Similarly, any translation of a plane or of three-dimensional
space is a symmetry. A reflection across a line L is that function that
leaves every point of L fixed and takes any point ¢, not on L, to the point
q' so that L is the perpendicular bisector of the line segment joining
g and ¢’ (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 180° rota-
tion about a line L in three dimensions to a plane containing L is a
reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D') are reflections across lines in two
dimensions. Just as a reflection across a line is a plane symmetry that
cannot be achieved by a physical motion of the plane in two dimen-
sions, a reflection across a plane is a three-dimensional symmetry that
cannot be achieved by a physical motion of three-dimensional space. A
cup, for instance, has reflective symmetry across the plane bisecting
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

Figure 1.4

Many objects and figures have rotational symmetry but not reflective
symmetry. A symmetry group consisting of the rotational symmetries of
0°, 360°n, 2(360°%/n, . . ., (n — 1)360°/n, and no other symmetries, is
called a cyclic rotation group of order n and is denoted by <R360/n>. Cyclic
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic
rotation groups of orders 2, 3,4, 5, 6, 8, 16, and 20.

A study of symmetry in greater depth is given in Chapters 27 and 28.
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Figure 1.5 Logos with cyclic rotation symmetry groups.

The only way to learn mathematics is to do mathematics.
PAUL R. HALMOS, A Hilbert Space Problem Book

1. With pictures and words, describe each symmetry in D, (the set of
symmetries of an equilateral triangle).

2. Write out a complete Cayley table for D,. Is D, Abelian?
3. InD - find all elements X such that

a. X°=V;
b. X* = R,;
c. X’ =R
d. X> =R
e. X>2=H.

4. Describe in pictures or words the elements of D (symmetries of a
regular pentagon).

S. For n = 3, describe the elements of D, . (Hint: You will need to
consider two cases—n even and n odd.) How many elements
does D have?

6. In D , explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

7. In D, explain geometrically why a rotation followed by a rotation
must be a rotation.

8. In D , explain geometrically why a rotation and a reflection taken
together in either order must be a reflection.

9. Associate the number 1 with a rotation and the number —1 with a
reflection. Describe an analogy between multiplying these two
numbers and multiplying elements of D .
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10. If r}, r,, and r, represent rotations from D and f,, f,, and f3 represent
reﬂectlons from D, determine whether r (o i3 /o f3r5 18 a rotation
or a reflection.

11. Find elements A, B, and C in D, such that AB = BC but A # C.
(Thus, “cross cancellation” is not valid.)

12. Explain what the following diagram proves about the group D, .

1 1

/?\ F /\ Riygoin /\
1

n 2 2 n
1 2

/\ Rssorn /?\ /\

—_— H *>
n 2 1 3

13. Describe the symmetries of a nonsquare rectangle. Construct the
corresponding Cayley table.

14. Describe the symmetries of a parallelogram that is neither a rect-
angle nor a rhombus. Describe the symmetries of a rhombus that is
not a rectangle.

15. Describe the symmetries of a noncircular ellipse. Do the same for
a hyperbola.

16. Consider an infinitely long strip of equally spaced H’s:

Describe the symmetries of this strip. Is the group of symmetries
of the strip Abelian?

17. For each of the snowflakes in the figure, find the symmetry group
and locate the axes of reflective symmetry (disregard imperfections).

Photographs of snowflakes from the Bentley and Humphreys atlas.
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18.

19.

20.

21.

22,

23.

24.
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Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

Does a fan blade have a cyclic symmetry group or a dihedral sym-
metry group?

Bottle caps that are pried off typically have 22 ridges around the
rim. Find the symmetry group of such a cap.

What group theoretic property do uppercase letters F, G, J, L, P, Q, R
have that is not shared by the remaining uppercase letters in the
alphabet?

What symmetry property does the word “zoonosis” have when
written in uppercase letters? (It means a disease of humans acquired
from animals.)

What symmetry property do the words “mow,” “sis,” and “swims”
have when written in uppercase letters?

For each design below, determine the symmetry group (ignore
imperfections).
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Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford
University Press, 1992.

This book has many beautiful symmetric designs that arise in
chaotic dynamic systems.

Suggested Website

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous
activities and links to many other sites on related topics. It is a wonderful
website for K—12 teachers and students.
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Niels Abel

He [Abel] has left mathematicians
something to keep them busy for five
hundred years.

CHARLES HERMITE

A 500-kroner bank note first issued
by Norway in 1948.

NieLs HENRIK ABEL, one of the foremost
mathematicians of the 19th century, was
born in Norway on August 5, 1802. At the
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange,
and Gauss. When Abel was 18 years old, his
father died, and the burden of supporting the
family fell upon him. He took in private pu-
pils and did odd jobs, while continuing to do
mathematical research. At the age of 19,
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years.
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic
problem laid the groundwork for many of
these subjects. Just when his work was be-
ginning to receive the attention it deserved,
Abel contracted tuberculosis. He died on
April 6, 1829, at the age of 26.

Stock Montage

La a A a B & & b 8 J

p. EUROPA

This stamp was issued in 1929
to commemorate the 100th
anniversary of Abel’s death.

In recognition of the fact that there is no
Nobel Prize for mathematics, in 2002 Norway
established the Abel Prize as the “Nobel Prize
in mathematics” in honor of its native son. At
approximately the $1,000,000 level, the Abel
Prize is now seen as an award equivalent to a
Nobel Prize.

To find more information about Abel, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Groups

A good stock of examples, as large as possible, is indispensable
for a thorough understanding of any concept, and when | want
to learn something new, | make it my first job to build one.

PAUL R. HALMOS

Definition and Examples of Groups

42

The term group was used by Galois around 1830 to describe sets of
one-to-one functions on finite sets that could be grouped together to
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walther von Dyck in
1882, it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to
yield a new member of G. This condition is called closure. The most
familiar binary operations are ordinary addition, subtraction, and
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not
be an integer.

The binary operations addition modulo » and multiplication mod-
ulo n on the set {0, 1,2, ..., n — 1}, which we denote by Z , play an
extremely important role in abstract algebra. In certain situations we
will want to combine the elements of Z by addition modulo n only;
in other situations we will want to use both addition modulo n and
multiplication modulo n to combine the elements. It will be clear
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from the context whether we are using addition only or addition and
multiplication. For example, when multiplying matrices with entries
from Z , we will need both addition modulo n and multiplication
modulo .

Definition Group

Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if
the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc) for
alla, b, cin G.

2. Identity. There is an element e (called the identity) in G such that
ae = ea = aforallain G.

3. Inverses. For each element a in G, there is an element b in G
(called an inverse of a) such that ab = ba = e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any
pair of elements can be combined without going outside the set. Be
sure to verify closure when testing for a group (see Example 5). Notice
that if a 1s the inverse of b, then b is the inverse of a.

If a group has the property that ab = ba for every pair of elements a
and b, we say the group is Abelian. A group is non-Abelian if there is
some pair of elements a and b for which ab # ba. When encountering
a particular group for the first time, one should determine whether or
not it is Abelian.

Now that we have the formal definition of a group, our first job is
to build a good stock of examples. These examples will be used
throughout the text to illustrate the theorems. (The best way to grasp
the meat of a theorem is to see what it says in specific cases.) As we
progress, the reader is bound to have hunches and conjectures that
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the
missing details.

B EXAMPLE 1 The set of integers Z (so denoted because the German
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is O and the inverse of a is —a. |
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B EXAMPLE 2 The set of integers under ordinary multiplication is not
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 56 = 1. |

B EXAMPLE 3 The subset {1, —1, i, —i} of the complex numbers
is a group under complex multiplication. Note that —1 is its own inverse,
whereas the inverse of i is —i, and vice versa. |

B EXAMPLE 4 The set Q" of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a = a™ . |

B EXAMPLE 5 The set S of positive irrational numbers together with 1
under multiplication satisfies the three properties given in the definition
of a group but is not a group. Indeed, V2 - V2 = 2, so § is not closed
under multiplication. |

b
I EXAMPLE 6 A rectangular array of the form [a d} is called a

c
2 X 2 matrix. The set of all 2 X 2 matrices with real entries is a group
under componentwise addition. That is,

{al bl} n [az b2] B [al +a b + bz}
Cq d] Cy d2 Cq + Cy d] + dz

B EXAMPLE7 ThesetZ = {0,1,...,n — 1} forn=1is a group
under addition modulo n. For any j > 0 in Z , the inverse of jis n — j.
This group is usually referred to as the group of integers modulo n. 1

As we have seen, the real numbers, the 2 X 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate
addition. But what about multiplication? In each case, the existence of
some elements that do not have inverses prevents the set from being a
group under the usual multiplication. However, we can form a group in
each case by simply throwing out the rascals. Examples 8, 9, and 11
illustrate this.

B EXAMPLE 8 The set R* of nonzero real numbers is a group under
ordinary multiplication. The identity is 1. The inverse of a is 1/a. |

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2 | Groups 45

b
B EXAMPLE 9t The determinant of the 2 X 2 matrix [a d] is the
¢

number ad — bc. If A is a 2 X 2 matrix, det A denotes the determinant
of A. The set

a b
GL22,R) = {L d}

of 2 X 2 matrices with real entries and nonzero determinants is a non-
Abelian group under the operation

[al bl][az bz] _ {alaz + bic, ab, + bldz}
¢ dille, d, ca, +dicy, cby +did, ]|’

a,b,c,dER,ad—bc#O}

The first step in verifying that this set is a group is to show that the
product of two matrices with nonzero determinants also has a nonzero
determinant. This follows from the fact that for any pair of 2 X 2
matrices A and B, det (AB) = (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

. P I B . a b,
tions. The identity is ; the inverse of is
01 c d

d —b
ad — bc ad — bc
—c a

ad — bc ad — bc

(explaining the requirement that ad — bc # 0). This very important
non-Abelian group is called the general linear group of 2 X 2 matrices
over R. |

B EXAMPLE 10 The set of all 2 X 2 matrices with real entries is not a
group under the operation defined in Example 9. Inverses do not exist
when the determinant is 0. |

Now that we have shown how to make subsets of the real numbers
and subsets of the set of 2 X 2 matrices into multiplicative groups, we
next consider the integers under multiplication modulo 7.

For simplicity, we have restricted our matrix examples to the 2 X 2 case. However,
readers who have had linear algebra can readily generalize to n X n matrices.
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B EXAMPLE 11 (L. EULER, 1761) By Exercise 11 in Chapter 0, an
integer a has a multiplicative inverse modulo # if and only if @ and n are
relatively prime. So, for each n > 1, we define U(n) to be the set of all
positive integers less than n and relatively prime to n. Then U(n) is a
group under multiplication modulo n. (We leave it to the reader to check
that this set is closed under this operation.)

For n = 10, we have U(10) = {1, 3, 7, 9}. The Cayley table for
U(10) is

mod 10 ‘ 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(Recall that ab mod n is the unique integer r with the property a + b =
ng + r, where 0 = r < n and a - b is ordinary multiplication.) In the
case that n is a prime, U(n) = {1,2,...,n — 1}. |

In his classic book Lehrbuch der Algebra, published in 1895, Heinrich
Weber gave an extensive treatment of the groups U(n) and described
them as the most important examples of finite Abelian groups.

B EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2
do not. |

B EXAMPLE 13 The set of integers under subtraction is not a group,
since the operation is not associative. |

With the examples given thus far as a guide, it is wise for the reader
to pause here and think of his or her own examples. Study actively!
Don’t just read along and be spoon-fed by the book.

# EXAMPLE 14 The complex numbers C + {a + bi | a, b € R,
i> = —1} are a group under the operation (a + bi) + (¢ + di) =
(a + ¢) + (b + d)i. The inverse of a + bi is —a —bi. The nonzero

complex numbers C* are a group under the operation (a + bi)
1
(¢ +di) = (ac — bd) + (ad + bc)i. The inverse of a + bi is T bi =
a i
1 a-—1bi 1 1

= a— bi. |
a+bi a—bi a+b a> + b?
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# EXAMPLE 15 For all integers n = 1, the set of complex nth roots
of unity

k-360° . k-360°
COST +zsmT k=0,1,2,...,n—1

(i.e., complex zeros of x” — 1) is a group under multiplication. (See
DeMoivre’s Theorem—Example 10 in Chapter 0.) Compare this group
with the one in Example 3. |

Recall from Chapter O that the complex number cos 6 + i sin 6 can
be represented geometrically as the point (cos 6, sin 6) in a plane coor-
dinatized by a real horizontal axis and a vertical imaginary axis, where
0 is the angle formed by the line segment joining the origin and the
point (cos 6, sin 6) and the positive real axis. Thus, the six complex
zeros of x® = 1 are located at points around the circle of radius 1, 60°
apart, as shown in Figure 2.1.

Imaginary
103,
2 T
| -1 I 1 Real
_1_\3
2 2!

Figure 2.1

B EXAMPLE 16 The set R" = {(al, Ay, ooy an) Ay, Ay, .., a, € R}
is a group under componentwise addition [i.e., (a;, a,, . . ., a,) +
(b, by, ....,b)=(a, +b,a,+b,,...,a, +b). |

B EXAMPLE 17 For a fixed point (a, b) in R?, define 7 ,: R* — R?
by (x,y) > (x + a,y + b). Then G = (T, abER}lsagroup
under function composition. Stralghtforward calculations show that
T, bTL =T, .p+q From this formula we may observe that G is closed,
To 0 is the 1dent1ty, the inverse of T, is T b and G is Abelian.
Function composition is always ass001at1ve The elements of G are
called translations. |
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B EXAMPLE 18 The set of all 2 X 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Z}7 (p a prime)
is a non-Abelian group under matrix multiplication. This group is called
the special linear group of 2 X 2 matrices over Q, R, C, or Zp, respectively.
If the entries are from F,, where F is any of the above, we denote this group
by SL(2, F). For the group SL(2, F'), the formula given in Example 9 for

b
the inverse of “ J simplifies to { ] When the matrix
c

—c a
entries are from Zp, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Zj),

3 4
consider the element A = [4 4]. ThendetA =3 -4—4-4)mod>5 =

. . 4 —4 4 1
—4 mod 5 = 1, and the inverse of A is 4 3 = | 3 . Note

3414 1 1 0 . o
that = when the arithmetic is done modulo 5. 1
4 41|11 3 0 1

Example 9 is a special case of the following general construction.

§ EXAMPLE 19 Let F be any of O, R, C, or Zp (p a prime). The set
GL(2, F) of all 2 X 2 matrices with nonzero determinants and entries
from F is a non-Abelian group under matrix multiplication. As in
Example 18, when F is Z, modulo p arithmetic is used to calculate
determinants, matrix products, and inverses. The formula given in
a b

c
GL(2, Zp), provided we interpret division by ad — bc as multiplication
by the inverse of (ad — bc) modulo p. For example, in GL(2, Z,),

Example 9 for the inverse of { } remains valid for elements from

45
consider {6 3}. Then the determinant (ad — bc) mod 7 is (12 — 30)

mod 7 = —18 mod 7 = 3 and the inverse of 3 is 5 [since (3 - 5)
4 5 3:52-5 13

d7 = 1]. So, the i f i = .
mo ]. So, the inverse o [6 3:|IS [1.5 4_5} [5 6}
1 0

4 5|11 3
[The reader should check that 6 = 0 1

215 6 }in GL(2,Z)]. 1

The group GL(n, F) is called the general linear group of n X n
matrices over F.

# EXAMPLE 20 The set {1,2,...,n — 1} is a group under multipli-
cation modulo 7 if and only if # is prime. |

B EXAMPLE 21 The set of all symmetries of the infinite ornamental
pattern in which arrowheads are spaced uniformly a unit apart along
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e .
Vo —

- -
> >

a line is an Abelian group under composition. Let 7' denote a translation
to the right by one unit, 7! a translation to the left by one unit, and H
a reflection across the horizontal line of the figure. Then, every member
of the group is of the form xx, - - - x, where each x, €

172 n’
{T, T, H}. In this case, we say that 7, T, and H generate the group. 1

Table 2.1 summarizes many of the specific groups that we have
presented thus far.

As the previous examples demonstrate, the notion of a group is a
very broad one indeed. The goal of the axiomatic approach is to find
properties general enough to permit many diverse examples having
these properties and specific enough to allow one to deduce many inter-
esting consequences.

The goal of abstract algebra is to discover truths about algebraic
systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows
or needs to know is that these operations, whatever they may be, have

Table 2.1 Summary of Group Examples (F can be any of Q, R, C, or Zp; L is areflection)

Form of
Group Operation Identity Element Inverse Abelian
Z Addition 0 k —k Yes
ot Multiplication 1 m/n, n/m Yes
m,n >0
Z, Addition mod n 0 k n—k Yes
R* Multiplication 1 X 1/x Yes
1 1

C* Multiplication 1 a + bi Z+ 5 a— 2 bi Yes
GL(22,F) Matrix { 1 0} a b d —b

multiplication 0 1 { c d} ad — be ad — be

’ . u No
ad — bc #0 ad — bc ad — bc

U(n) Multiplication 1 k, Solution to Yes

mod n ged(k, n) =1 kxmodn =1
R" Componentwise (0,0, ..., 0) (a,,a,, ..., an) (=a,, —a, ..., —an) Yes

addition
SL(2, F)  Matrix 1 0 a b d —b No

multiplication L) 1 } [ c d}, { —c a}

ad — bc =1

D, Composition R, R, L Ryo_ oL No
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certain properties. We then seek to deduce consequences of these
properties. This is why this branch of mathematics is called abstract
algebra. It must be remembered, however, that when a specific group
is being discussed, a specific operation must be given (at least
implicitly).

Elementary Properties of Groups

Now that we have seen many diverse examples of groups, we wish to
deduce some properties that they share. The definition itself raises
some fundamental questions. Every group has an identity. Could a
group have more than one? Every group element has an inverse. Could
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique
identity by looking at examples, because each example inherently has
properties that may not be shared by all groups. We are forced to
restrict ourselves to the properties that all groups have; that is, we must
view groups as abstract entities rather than argue by example. The next
three theorems illustrate the abstract approach.

I Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both ¢ and e’ are identities of G. Then,

1. ae = afor all a in G, and
2. ¢a=aforallainG.

The choices of @ = ¢ in (part 1) and a = e in (part 2) yield e'e = ¢’
and e'e = e. Thus, e and e’ are both equal to e¢'e and so are equal to
each other. |

Because of this theorem, we may unambiguously speak of “the iden-
tity” of a group and denote it by ‘e’ (because the German word for
identity is Einheit).

B Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,
ba = ca implies b = c, and ab = ac implies b = c.
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PROOF Suppose ba = ca. Let a’ be an inverse of a. Then multi-
plying on the right by a' yields (ba)a’ = (ca)a’. Associativity yields
b(aa") = c(aa"). Then be = ce and, therefore, b = ¢ as desired. Simi-
larly, one can prove that ab = ac implies b = ¢ by multiplying by a’ on
the left. |

A consequence of the cancellation property is the fact that in a
Cayley table for a group, each group element occurs exactly once in
each row and column (see Exercise 31). Another consequence of the
cancellation property is the uniqueness of inverses.

I Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G
such that ab = ba = e.

PROOF Suppose b and c are both inverses of a. Then ab = e and
ac = e, so that ab = ac. Canceling the a on both sides gives b = c, as
desired. |

As was the case with the identity element, it is reasonable, in view
of Theorem 2.3, to speak of “the inverse” of an element g of a group;
in fact, we may unambiguously denote it by g~ !. This notation is sug-
gested by that used for ordinary real numbers under multiplication.
Similarly, when n is a positive integer, the associative law allows us to
use g" to denote the unambiguous product

gg g

-
n factors

We define g = e. When n is negative, we define g" = (g~ )" [for ex-
ample, g2 = (g~ 1)?]. Unlike for real numbers, in an abstract group we
do not permit noninteger exponents such as g'’?. With this notation, the
familiar laws of exponents hold for groups; that is, for all integers m and
n and any group element g, we have g”g" = g™*" and (g")" = g"".
Although the way one manipulates the group expressions g"g" and
(g™)" coincides with the laws of exponents for real numbers, the laws
of exponents fail to hold for expressions involving two group elements.
Thus, for groups in general, (ab)" # a"b" (see Exercise 23).

The important thing about the existence of a unique inverse for each
group element a is that for every element b in the group there is a unique
solution in the group of the equations ax = b and xa = b. Namely,
x = a~'b in the first case and x = ba~! in the second case. In contrast,
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in the set {0, 1, 2, 3, 4, 5}, the equation 2x = 4 has the solutions x = 2
and x = 5 under the operation multiplication mod 6. However, this set
is not a group under multiplication mod 6.

Also, one must be careful with this notation when dealing with a
specific group whose binary operation is addition and is denoted by
“+.” In this case, the definitions and group properties expressed in
multiplicative notation must be translated to additive notation. For
example, the inverse of g is written as —g. Likewise, for example, g3

Table 2.2

Multiplicative Group Additive Group
a-borab Multiplication a+b Addition
eorl Identity or one 0 Zero
a! Multiplicative inverse of a —a Additive inverse of a
a’ Power of a na Multiple of a
ab™! Quotient a—>b Difference

means g + g + g and is usually written as 3g, whereas g3 means
(—g) + (—g) + (—g) and is written as —3g. When additive notation
is used, do not interpret “ng” as combining n and g under the group
operation; n may not even be an element of the group! Table 2.2 shows
the common notation and corresponding terminology for groups under
multiplication and groups under addition. As is the case for real num-
bers, we use @ — b as an abbreviation for a + (—b).

Because of the associative property, we may unambiguously write
the expression abc, for this can be reasonably interpreted as only (ab)c
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or
deleted at will without affecting the value of a product involving any
number of group elements. Thus,

a*(bedb?) = a*b(cd)b* = (a*b)(cd)b* = a(abedb)b,

and so on.
Although groups do not have the property that (ab)" = a"b", there is
a simple relationship between (ab) ' and a~ ! and b~ .

I Theorem 2.4 Socks-Shoes Property
For group elements a and b, (ab)™' = b~ la™ L.

PROOF Since (ab)ab)™' = e and (ab)(b~'a~!) = a(bb Ha~! =
aea”' = aa”' = e, we have by Theorem 2.3 that (ab)™! = b~ la™ .. |
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Historical Note

We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was
replete with annoying and puzzling ambiguities. It was Werner
Heisenberg who recognized the cause. He observed that the product of
the quantum-theoretical analogs of the classical Fourier series did not
necessarily commute. For all his boldness, this shook Heisenberg. As
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift fiir Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved
in it that I thought about it for the whole day and could hardly sleep at night. For I
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light:
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas
in terms of matrices, but it was Heisenberg who was credited with the
formulation. In his autobiography, Born lamented [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study
them.

Upon learning in 1933 that he was to receive the Nobel Prize
with Dirac and Schrodinger for this work, Heisenberg wrote to Born
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your
congratulations, it was partly because of my rather bad conscience with respect to
you. The fact that I am to receive the Nobel Prize alone, for work done in Géttingen
in collaboration—you, Jordan, and [—this fact depresses me and I hardly know
what to write to you. I am, of course, glad that our common efforts are now appreci-
ated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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“For example” is not proof.
JEWISH PROVERB

1. Which of the following binary operations are closed?
a. subtraction of positive integers
b. division of nonzero integers
c. function composition of polynomials with real coefficients
d. multiplication of 2 X 2 matrices with integer entries
2. Which of the following binary operations are associative?
a. multiplication mod n
b. division of nonzero rationals
c. function composition of polynomials with real coefficients
d. multiplication of 2 X 2 matrices with integer entries

3. Which of the following binary operations are commutative?
a. substraction of integers
b. division of nonzero real numbers
c. function composition of polynomials with real coefficients
d. multiplication of 2 X 2 matrices with real entries

4. Which of the following sets are closed under the given operation?
a. {0,4,8, 12} addition mod 16
b. {0, 4, 8, 12} addition mod 15
c. {1,4,7, 13} multiplication mod 15
d. {1, 4,5, 7} multiplication mod 9
5. In each case, find the inverse of the element under the given
operation.
a. 13inZ,,
b. 13in U(14)
c. n—1in Un) (n > 2)
d. 3—2iin C*, the group of nonzero complex numbers under mul-
tiplication
6. In each case, perform the indicated operation.
a. In C*, (7 + 5)( —3 + 2i)

7 4
b. In GL(2.Z,,). det | |
6 3}‘1

. InGL (2, R),
c. In ( )[82

6 3]
d. In GL(2, Z,), {8 2}

Copyright 2012 Cengage
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7. Give two reasons why the set of odd integers under addition is not
a group.

8. Referring to Example 13, verify the assertion that subtraction is not
associative.

9. Show that {1, 2, 3} under multiplication modulo 4 is not a group
but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

10. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-

hibiting a pair of matrices A and B in GL(2, R) such that AB # BA.

2 6
11. Find the inverse of the element {3 5] in GL(2, Z,,).

12. Give an example of group elements a and b with the property that
a 'ba # b.

13. Translate each of the following multiplicative expressions into its
additive counterpart. Assume that the operation is commutative.

a. a’b’
b. a %(b~'c)?
c. (abH)3ct=e

14. For group elements a, b, and c, express (ab)® and (ab™? ¢)~? with-
out parentheses.

15. Let G be a group and let H = {x~' | x € G}. Show that G = H
as sets.

16. Show that the set {5, 15, 25, 35} is a group under multiplication
modulo 40. What is the identity element of this group? Can you see
any relationship between this group and U(8)?

17. (From the GRE Practice Exam)* Let p and ¢ be distinct primes.
Suppose that H is a proper subset of the integers that is a group un-
der addition that contains exactly three elements of the set {p, p + ¢,
pq, p?, ¢”}. Determine which of the following are the three elements
in H.

a. pq,pt, ¢’

b. p+ g, pq, p?
¢. p,p+4q.pq
d. p,p% ¢

e. p,pq, pf

18. List the members of H = {x?Ix € D,} and K = {x € D, |x* = e}.

19. Prove that the set of all 2 X 2 matrices with entries from R and
determinant +1 is a group under matrix multiplication.

20. For any integer n > 2, show that there are at least two elements in
U(n) that satisfy x> = 1.

21. An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead,

*GRE materials selected from the GRE Practice Exam, Question 9 by Educational Testing
Service. Reprinted by permission of Educational Testing Service, the copyright owner.
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22.

23.

24.

25.

26.
27.

28.
29.

30.

31.

32.
33.

one of the nine integers was inadvertently left out, so that the list
appeared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out?
(This really happened!)

Let G be a group with the property that for any x, y, z in the group,
xy = zx implies y = z. Prove that G is Abelian. (“Left-right cancel-
lation” implies commutativity.)

(Law of Exponents for Abelian Groups) Let a and b be elements of
an Abelian group and let n be any integer. Show that (ab)" = a"b".
Is this also true for non-Abelian groups?

(Socks—Shoes Property) Draw an analogy between the statement
(ab)~!' = b~'a ! and the act of putting on and taking off your socks
and shoes. Find distinct nonidentity elements a and b from a
non-Abelian group such that (ab)~! = a~! b~!. Find an example
that shows that in a group, it is possible to have (ab) ™2 # b 2a 2.
What would be an appropriate name for the group property
(abc)y ' =c bt a1?

Prove that a group G is Abelian if and only if (ab)~! = a~'b~! for
allaand b in G.

Prove that in a group, (a~")~! = a for all a.

For any elements a and b from a group and any integer n, prove
that (a~'ba)* = a~'ba.

Ifa,,a,...,a, belong to a group, what is the inverse of a,a, - - - a,?

The integers 5 and 15 are among a collection of 12 integers that
form a group under multiplication modulo 56. List all 12.

Give an example of a group with 105 elements. Give two examples
of groups with 44 elements.

Prove that every group table is a Latin square'; that is, each ele-
ment of the group appears exactly once in each row and each
column.

Construct a Cayley table for U(12).
Suppose the table below is a group table. Fill in the blank entries.
e a b c d
e |e _ = = —
a |— b — — e
b | — ¢ d e —
c |— d — b
d |— — - - _

Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.




34.
35.

36.
37.

38.

39.

40.
41.
42,

43.

44.

45.

46.

47.

48.
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Prove that in a group, (ab)> = a?b? if and only if ab = ba.

Let a, b, and ¢ be elements of a group. Solve the equation axb = ¢
for x. Solve a~'xa = ¢ for x.

Let a and b belong to a group G. Find an x in G such that xabx™!' = ba.
Let G be a finite group. Show that the number of elements x of G
such that x> = ¢ is odd. Show that the number of elements x of G
such that x*> # e is even.

Give an example of a group with elements a, b, ¢, d, and x such
that axb = cxd but ab # cd. (Hence “middle cancellation” is not
valid in groups.)

Suppose that G is a group with the property that for every choice
of elements in G, axb = cxd implies ab = cd. Prove that G is
Abelian. (“Middle cancellation” implies commutativity.)

Find an element X in D, such that Ry, VXH = D'.

Suppose F| and F, are distinct reflections in a dihedral group D,.
Prove that F'\F, # R,,.

Suppose F| and F, are distinct reflections in a dihedral group D,
such that F\F, = F,F. Prove that F|F, = R .

Let R be any fixed rotation and F any fixed reflection in a dihedral
group. Prove that R*FRK = F.

Let R be any fixed rotation and F any fixed reflection in a dihedral
group. Prove that FR'F = R~ Why does this imply that D is
non-Abelian?

In the dihedral group D, let R = R, and let F' be any reflection.
Write each of the following products in the form R’ or R'F, where
0=i<n.

a. In D,, FR™*FR°

b. In D, R3FR*FR?

¢. In D, FROFR™*F

Prove that the set of all rational numbers of the form 36", where m
and n are integers, is a group under multiplication.

Prove that if G is a group with the property that the square of every
element is the identity, then G is Abelian. (This exercise is referred
to in Chapter 26.)

Prove that the set of all 3 X 3 matrices with real entries of the form

b

1 a
01
00

_— 0
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49.

50.

S1.

S2.

53.

54.

is a group. (Multiplication is defined by

1 a b 1 a b’ 1 a+a b +ac’ +b
01 ¢ 01 ¢ |=1]0 1 ¢ +c
001 0 0 1 0 0 1

This group, sometimes called the Heisenberg group after the Nobel
Prize—winning physicist Werner Heisenberg, is intimately related to
the Heisenberg Uncertainty Principle of quantum physics.)

Prove the assertion made in Example 20 that the set {1, 2, . . .,
n — 1} is a group under multiplication modulo # if and only if 7 is
prime.

In a finite group, show that the number of nonidentity elements
that satisfy the equation x> = ¢ is a multiple of 5. If the stipulation
that the group be finite is omitted, what can you say about the
number of nonidentity elements that satisfy the equation x> = e?

List the six elements of GL(2, Z,). Show that this group is non-
Abelian by finding two elements that do not commute. (This exer-
cise is referred to in Chapter 7.)

Let G = {{a a}|a eER a# 0}. Show that G is a group under
a a

matrix multiplication. Explain why each element of G has an inverse
even though the matrices have 0 determinants. (Compare with
Example 10.)

Suppose that in the definition of a group G, the condition that there
exists an element e with the property ae = ea = a for all a in G is
replaced by ae = a for all a in G. Show that ea = a for all a in G.
(Thus, a one-sided identity is a two-sided identity.)

Suppose that in the definition of a group G, the condition that for
each element a in G there exists an element b in G with the prop-
erty ab = ba = e is replaced by the condition ab = e. Show that
ba = e. (Thus, a one-sided inverse is a two-sided inverse.)

Computer Exercises

Software for the computer exercises in this chapter is available
at the website:

http://www.d.umn.edu/~jgallian

Copyright 2012 Cengage
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As we will soon discover, finite groups—that is, groups with finitely
many elements—have interesting arithmetic properties. To facilitate
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order,
whereas the group U(10) = {1, 3, 7, 9} under multiplication modulo
10 has order 4.

Definition Order of an Element

The order of an element g in a group G is the smallest positive integer
n such that g" = e. (In additive notation, this would be ng = 0.) If no
such integer exists, we say that g has infinite order. The order of an
element g is denoted by Igl.

So, to find the order of a group element g, you need only compute the
sequence of products g, g%, g°, . . ., until you reach the identity for the
first time. The exponent of this product (or coefficient if the operation is
addition) is the order of g. If the identity never appears in the sequence,
then g has infinite order.

B EXAMPLE 1 Consider U(15) = {1, 2, 4, 7, 8, 11, 13, 14} under
multiplication modulo 15. This group has order 8. To find the order of
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the element 7, say, we compute the sequence 7' = 7, 72 = 4, 73 = 13,
74 = 1, so |71 = 4. To find the order of 11, we compute 11' = 11,
112 =1, so |11 = 2. Similar computations show that |11 = 1, 12| = 4,
4] = 2, 181 = 4, [131 = 4, 114] = 2. [Here is a trick that makes these
calculations easier. Rather than compute the sequence 13!, 132, 133,
134, we may observe that 13 = —2 mod 15, so that 132 = (—2)? = 4,
133=—2-4=—8 13*=(=2)(-8) = L' N

B EXAMPLE 2 Consider Z,, under addition modulo 10. Since 1 - 2 = 2,
2:2=43-2=6,4-2=28,5-2 =0, we know that |2| = 5. Similar
computations show that [0l = 1, 171 = 10, I5I = 2,161 = 5. (Here 2 - 2 is
an abbreviation for 2 + 2, 3 - 2 is an abbreviation for2 + 2 + 2, etc.) 1

B EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero
element has infinite order, since the sequence a, 2a, 3a, . . . never includes
Owhena # 0. |

The perceptive reader may have noticed among our examples of
groups in Chapter 2 that some are subsets of others with the same
binary operation. The group SL(2, R) in Example 18, for instance, is a
subset of the group GL(2, R) in Example 9. Similarly, the group of
complex numbers {1, —1, i, —i} under multiplication is a subset of the
group described in Example 15 for n equal to any multiple of 4. This
situation arises so often that we introduce a special term to describe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we
say that H is a subgroup of G.

We use the notation H = G to mean that H is a subgroup of G. If we
want to indicate that H is a subgroup of G but is not equal to G itself,
we write H < G. Such a subgroup is called a proper subgroup. The
subgroup {e} is called the trivial subgroup of G; a subgroup that is not
{e} is called a nontrivial subgroup of G.

Notice that Z under addition modulo 7 is not a subgroup of Z under
addition, since addition modulo 7 is not the operation of Z.

Subgroup Tests

When determining whether or not a subset H of a group G is a sub-
group of G, one need not directly verify the group axioms. The next

" The website http://www.google.com provides a convenient way to do modular arith-
metic. For example, to compute 13* mod 15, just type “13°4 mod 15” in the search box.
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three results provide simple tests that suffice to show that a subset of a
group is a subgroup.

I Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab~'is in H
whenever a and b are in H, then H is a subgroup of G. (In additive
notation, if a — b is in H whenever a and b are in H, then H is a
subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear
that this operation is associative. Next, we show that e is in H. Since H
is nonempty, we may pick some x in H. Then, lettinga = x and b = x
in the hypothesis, we have e = xx~! = ab~ ! is in H. To verify that x~!
is in H whenever x is in H, all we need to do is to choose a = e and
b = x in the statement of the theorem. Finally, the proof will be com-
plete when we show that H is closed; that is, if x, y belong to H, we
must show that xy is in H also. Well, we have already shown that y~! is
in H whenever y is; so, lettinga = xand b = y~!, we have xy = x(y " )~! =
ab'isin H. |

Although we have dubbed Theorem 3.1 the One-Step Subgroup Test,
there are actually four steps involved in applying the theorem. (After
you gain some experience, the first three steps will be routine.) Notice
the similarity between the last three steps listed below and the three
steps involved in the Second Principle of Mathematical Induction.

1. Identify the property P that distinguishes the elements of H; that is,
identify a defining condition.

2. Prove that the identity has property P. (This verifies that H is
nonempty.)

3. Assume that two elements a and b have property P.

4. Use the assumption that a and b have property P to show that
ab~ ! has property P.

The procedure is illustrated in Examples 4 and 5.

I EXAMPLE 4 Let G be an Abelian group with identity e. Then H =
{x € G | x* = ¢} is a subgroup of G. Here, the defining property of H
is the condition x> = e. So, we first note that > = e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a*> = e
and b?> = e. Finally, we must show that (ab~')*> = e. Since G is
Abelian, (ab™")? = ab lab™' = a*(b™")? = A?(B?) ' = ee”! = e.
Therefore, ab™! belongs to H and, by the One-Step Subgroup Test, H
is a subgroup of G. |
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In many instances, a subgroup will consist of all elements that have
a particular form. Then the property P is that the elements have that
particular form. This is illustrated in the following example.

B EXAMPLE 5 Let G be an Abelian group under multiplication with
identity e. Then H = {x* | x € G} is a subgroup of G. (In words, H is
the set of all “squares.”’) Since e? = e, the identity has the correct form.
Next, we write two elements of H in the correct form, say, a® and b*>. We
must show that a*(b?)~! also has the correct form; that is, a?(b?) ! is the
square of some element. Since G is Abelian, we may write a’(b*)~! as
(ab~")?, which is the correct form. Thus, H is a subgroup of G. ]

Beginning students often prefer to use the next theorem instead of
Theorem 3.1.

I Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H
whenever a and b are in H (H is closed under the operation), and a™'
is in H whenever a is in H (H is closed under taking inverses), then H
is a subgroup of G.

PROOF By Theorem 3.1, it suffices to show that a, b € H implies
ab™! € H. So, we suppose that a, b € H. Since H is closed under
taking inverses, we also have b~! € H. Thus, ab~! € H by closure un-
der multiplication. |

When applying the Two-Step Subgroup Test, we proceed exactly as
in the case of the One-Step Subgroup Test, except we use the assump-
tion that a and b have property P to prove that ab has property P and
that a~! has property P.

B EXAMPLE 6 Let G be an Abelian group. Then H = {x € G | Ix| is
finite} is a subgroup of G. Since ¢! = e, H # 6. To apply the Two-Step
Subgroup Test we assume that a and b belong to H and prove that ab
and a~ ! belong to H. Let lal = m and 1bl = n. Then, because G is
Abelian, we have (ab)™ = (a™)"(b")" = "™ = e. Thus, ab has finite
order (this does not show that labl = mn). Moveover, (a~)" = (a™)~! =
e~ ! = e shows that ! has finite order. |

We next illustrate how to use the Two-Step Subgroup Test by intro-
ducing an important technique for creating new subgroups of Abelian
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groups from existing ones. The method will be extended to some sub-
groups of non-Abelian groups in later chapters.

I EXAMPLE 7 Let G be an Abelian group and H and K be subgroups
of G. Then HK = {hk | h € H, k € K} is a subgroup of G. First note
that e = ee belongs to HK because e is in both H and K. Now suppose
that a and b are in HK. Then by definition of H there are elements 7,
h, € H and k|, k, € K such that @ = h k, and b = h,k,. We must prove
that ab € HK and a~! € HK. Observe that because G is Abelian and H
and K are subgroups of G, we have ab = h k,h.k, = (h h,)(kk,) € HK.
Likewise,a™! = (h k)" =k, ~'h, "' = h,~'k,~' € HK. |

How do you prove that a subset of a group is not a subgroup? Here
are three possible ways, any one of which guarantees that the subset is
not a subgroup:

1. Show that the identity is not in the set.
2. Exhibit an element of the set whose inverse is not in the set.
3. Exhibit two elements of the set whose product is not in the set.

I EXAMPLE 8 Let G be the group of nonzero real numbers under
multiplication, H = {x € G | x = 1 or x is irrational} and K =
{x € G| x=1}. Then H is not a subgroup of G, since V2eEeH
bu‘[l V2 -V2 =2 ¢& H. Also, K is not a subgroup, since 2 € K but
27T K. |

When dealing with finite groups, it is easier to use the following
subgroup test.

I Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under
the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that a~! € H
whenever a € H. If a = e, then a~! = a and we are done. If a + e,
consider the sequence a, a?, . . .. By closure, all of these elements
belong to H. Since H is finite, not all of these elements are distinct. Say
a'=d and i > j. Then, a’/ = e; and since a # e, i — j > 1. Thus,
aa’ 7' = a7 = e and, therefore, a7 ! =a L Buti —j —1=1
implies a'/~! € H and we are done. ]
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Examples of Subgroups

The proofs of the next few theorems show how our subgroup tests
work. We first introduce an important notation. For any element a from
a group, we let (a) denote the set {a" | n € Z}. In particular, observe
that the exponents of a include all negative integers as well as 0 and the
positive integers (a’ is defined to be the identity).

1 Theorem 3.4 (a) Is a Subgroup

Let G be a group, and let a be any element of G. Then, {a) is a sub-
group of G.

PROOF Since a € (a), (@) is not empty. Let a", a" € {(a). Then,
a'(@™~! = a" " € {a); so, by Theorem 3.1, {(a) is a subgroup of G. 1§

The subgroup (a) is called the cyclic subgroup of G generated by a. In
the case that G = (a), we say that G is cyclic and a is a generator of G.
(A cyclic group may have many generators.) Notice that although the
list...,a 2 a',d, a', a% ... has infinitely many entries, the set
{a" | n € Z} might have only finitely many elements. Also note that,

since d'a/ = a't/ = o/t = d/a!, every cyclic group is Abelian.

B EXAMPLE 9 In U(10), (3) = {3,9, 7, 1} = U(10), for 3! = 3
32=9,3=73=1,3=3-3=1-3,3=3".32=9,...;3!=
(since 3-7=1),32%2=9,33=323%=1,35=3"%.3"
1-7,376=3%.32=1-9=9,....

m

B EXAMPLE 10 In Z,, (2) = {2, 4, 6, 8, 0}. Remember, a" means na
when the operation is addition. |

B EXAMPLE 11 In Z, (—1) = Z. Here each entry in the list . . .,
—2(—1), —1(—1),0(—1), 1(—1),2(—1), . . . represents a distinct group
element. |

8 EXAMPLE 12 In D, the dihedral group of order 2n, let R denote a
rotation of 360/n degrees. Then,

n — — n — n+2 — p2
R'=Ry.=e, R'=R R'"=PR,. .

Similarly, R°!' = R*",R"2=R"2,...,sothat (R) = {e, R, . . .,
R"1}. We see, then, that the powers of R “cycle back™ periodically
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with period n. Visually, raising R to successive positive powers is the
same as moving counterclockwise around the following circle one
node at a time, whereas raising R to successive negative powers is the
same as moving around the circle clockwise one node at a time.

R'=e

R =R R ! =R!

R'2=R? & o2 -2

In Chapter 4 we will show that [{a)| = lal; that is, the order of the
subgroup generated by a is the order of a itself. (Actually, the definition
of lal was chosen to ensure the validity of this equation.)

For any element a of a group G, it is useful to think of (a) as the
smallest subgroup of G containing a. This notion can be extended to
any collection § of elements from a group G by defining (S) as the
subgroup of G with the property that (S) contains S and if H is any
subgroup of G containing S, then H also contains (S) Thus, (S) is the
smallest subgroup of G that contains S. The set (S) is called the sub-
group generated by S. We illustrate this concept in the next example.
The verifications are left to the reader (Exercise 40).

B EXAMPLE 13 InZ,,(8,14) = {0,2,4,..., 18} = (2);in Z (8, 13) =
Z;in D, (H,V) = {H H. V,HV} = {R, Ry, H, V}:in D, Ry, V) =
{Rgp» Rog% Roy*s Ry, V. RV, Ry ?V, Ry *V} = D,; in C*, the group of
nonzero complex numbers under multiplication, (1, i) = {1, —1,i,—i} =
(i); in C, the group of complex numbers under addition, (1, i) = {a + bi
| a, b € Z} (This group is called the “Gaussian integers”); in R, the
group of real numbers under addition, (2, 7, \/2) = {2a + b + ¢\/2
| a, b, c € Z}; in a group in which a, b, ¢, and d commute, {a, b, ¢, d) =
{a'b’c*d" | q, 1, 5, t € Z}. ]

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G), of a group G is the subset of elements in G that
commute with every element of G. In symbols,

Z(G) = {a € G | ax = xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for
center is Zentrum. The term was coined by J. A. de Séguier in 1904.]
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I Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.

PROOF For variety, we shall use Theorem 3.2 to prove this result.
Clearly, e € Z(G), so Z(G) is nonempty. Now, suppose a, b € Z(G).
Then (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) for all x in G;
and, therefore, ab € Z(G).

Next, assume that ¢ € Z(G). Then we have ax = xa for all x in G.
What we want is a~'x = xa~! for all x in G. Informally, all we need do
to obtain the second equation from the first one is simultaneously to
bring the a’s across the equals sign:

¥\
ax = xa

N A

becomes xa~! = a~'x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a~! on the left, and the a on the
right comes across as a~! on the right.) Formally, the desired equation
can be obtained from the original one by multiplying it on the left and
right by a™!, like so:

a ax)a ' =a Y(xa)a ",
(a'a)xa ' = a 'x(aa™ "),
exa ! = a lxe,
xa ' =a lx.
This shows that a~! € Z(G) whenever a is. |

For practice, let’s determine the centers of the dihedral groups.

§ EXAMPLE 14 For n = 3,

ZD,) = { {Ry, Rigy} when nis even,
! {Ro} when 7 is odd.

To verity this, first observe that since every rotation in D, is a power
of R, ., rotations commute with rotations. We now investigate when a
rotation commutes with a reflection. Let R be any rotation in D, and let
F be any reflection in D . Observe that since RF is a reflection we have
RF = (RF) ' = F 'R~ = FR™!. Thus, it follows that R and F commute
if and only if FR = RF = FR™'. By cancellation, this holds if and only
if R=R™".ButR =R 'only when R = R,or R = R, and Ry is in
D, only when n is even. So, we have proved that Z(D,) = {R} when n
isodd and Z(D,) = {R, R 4,} when n is even. |
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Although an element from a non-Abelian group does not necessarily
commute with every element of the group, there are always some
elements with which it will commute. For example, every element a
commutes with all powers of a. This observation prompts the next defi-
nition and theorem.

Definition CentralizerofainG

Let a be a fixed element of a group G. The centralizer of a in G, C(a), is
the set of all elements in G that commute with a. In symbols, C(a) =

{g € Glga=ag}

I EXAMPLE 15 In D,, we have the following centralizers:

C(R) =D, = C(R,y),
C(Ryy) = (R, Rypy R g Ry} = C(Ryy),
C(H) = {Ry, H, R 5, V} = C(V),
C(D) = (Ry, D, Ry, D'} = C(D"). N

Notice that each of the centralizers in Example 15 is actually a sub-
group of D,. The next theorem shows that this was not a coincidence.

I Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to
supply (Exercise 41). |

Notice that for every element a of a group G, Z(G) C C(a). Also,
observe that G is Abelian if and only if C(a) = G for all a in G.

The purpose of proof is to understand, not to verify.
ARNOLD ROSS

1. For each group in the following list, find the order of the group
and the order of each element in the group. What relation do you
see between the orders of the elements of a group and the order of
the group?

Z, U0, U2, UQR0), D

4
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10.
11.

12.
13.

14.

15.

. In the group Z

. What can you say about a subgroup of D, that contains R

. What can you say about a subgroup of D, that contains R
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. Let Q be the group of rational numbers under addition and let O*

be the group of nonzero rational numbers under multiplication.
In Q, list the elements in (3). In Q*, list the elements in ().

. Let Q and Q* be as in Exercise 2. Find the order of each element in

Q and in Q*.

. Prove that in any group, an element and its inverse have the same

order.

. Without actually computing the orders, explain why the two ele-

ments in each of the following pairs of elements from Z,; must
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

1»» find lal, 1b1, and la + bl for each case.

a.a=6>b=2
b.a=3,b=38
c.a=5b=4

Do you see any relationship between lal, |bl, and la + b1?

. If a, b, and c are group elements and lal = 6, |bl = 7, express

(a*c™2b%~! without using negative exponents.

H4 and a
reflection F? What can you say about a subgroup of D, that con-
tains two reflections?

70 and a
reflection? What can you say about a subgroup of D, that contains
H and D? What can you say about a subgroup of D, that contains H
and V?

How many subgroups of order 4 does D, have?

Determine all elements of finite order in R*, the group of nonzero
real numbers under multiplication.

If a and b are group elements and ab # ba, prove that aba # e.
Suppose that H is a nonempty subset of a group G that is closed
under the group operation and has the property that if a is not in H
then @~ ! is not in H. Is H a subgroup?

Let G be the group of polynomials under addition with coefficients
from Z, . Find the orders of f(x) = 7x? + 5x + 4, g(x) = 4x* + 8x
+ 6, and f(x) + gx) = x> + 3x. If A(x) = a x" + a,—1x""' + -
+ a, belongs to G, determine |(x)! given that ged (a,, a,, ..., a,) = 1;
ged(ay, a,, ..., a) = 2; ged(ay, a,, ..., a)) = 5; and ged(a,, a,, ...,
a) = 10.

If a is an element of a group G and lal = 7, show that a is the cube
of some element of G.




70

Groups

16.

17.

18.

19.

20.

21.
22,

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

Suppose that H is a nonempty subset of a group G with the prop-
erty that if @ and b belong to H then a~'b~! belongs to H. Prove or
disprove that this is enough to guarantee that H is a subgroup of G.
Prove that if an Abelian group has more than three elements of
order 2, then it has at least 7 elements of order 2. Find an example
that shows this is not true for non-Abelian groups.

Suppose that a is a group element and a® = e. What are the possi-
bilities for lal? Provide reasons for your answer.

If a is a group element and « has infinite order, prove that a™ # a"
when m # n.

Let x belong to a group. If x> # e and x° = ¢, prove that x* # e and
x> # e. What can we say about the order of x?

Show that if a is an element of a group G, then lal = IGl.

Show that U(14) = (3) = (5). [Hence, U(14) is cyclic.] Is
U(14) = (11)?

Show that U(20) # (k) for any k in U(20). [Hence, U(20) is not
cyclic.]

Suppose n is an even positive integer and H is a subgroup of Z .
Prove that either every member of H is even or exactly half of the
members of H are even.

Prove that for every subgroup of D , either every member of the
subgroup is a rotation or exactly half of the members are rotations.
Prove that a group with two elements of order 2 that commute must
have a subgroup of order 4.

For every even integer n, show that D has a subgroup of order 4.

Suppose that H is a proper subgroup of Z under addition and H
contains 18, 30, and 40. Determine H.

Suppose that H is a proper subgroup of Z under addition and that H
contains 12, 30, and 54. What are the possibilities for H?

Prove that the dihedral group of order 6 does not have a subgroup
of order 4.

For each divisor k > 1 of n, let U (n) = {x € U(n) | x mod k = 1}.
[For example, U,(21) = {1, 4, 10, 13, 16, 19} and U,(21) = {1, 8}.]
List the elements of U,(20), U,(20), U4(30), and U, (30). Prove that
U,(n) is a subgroup of U(n). Let H = {x € U(10) | xmod 3 = 1}.Is
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)

If H and K are subgroups of G, show that H N K is a subgroup of
G. (Can you see that the same proof shows that the intersection
of any number of subgroups of G, finite or infinite, is again a
subgroup of G?)




33.

34.
3s.

36.

37.

38.

39.
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Let G be a group. Show that Z(G) = N __,C(a). [This means the
intersection of all subgroups of the form C(a).]

Let G be a group, and let a € G. Prove that C(a) = C(a™ ).

For any group element a and any integer k, show that C(a) C C(a*).
Use this fact to complete the following statement: “In a group, if x
commutes with a, then . . . .” Is the converse true?

Complete the partial Cayley group table given below.

1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 34 2 1 7 8 6 5
4 |4 3 1 2 8 7 5 6
5 5 6 & 7 1
6 ' 6 5 7 8 1
717 8 5 6 1
8 8§ 7 6 5 1

Suppose G is the group defined by the following Cayley table.
3 4 5 6 17

p—

O N NN AW
[ I o N N N SO O
N0 LW R = NN
N = A QW0 Ww
N W oo — N A
A WN = 00 30 W
WA = D0 W O
D Lo WO = A
— N N A LD W oo | oo

a. Find the centralizer of each member of G.

b. Find Z(G).

c. Find the order of each element of G. How are these orders arith-
metically related to the order of the group?

If a and b are distinct group elements, prove that either a> # b* or

a’ # b,

Let S be a subset of a group and let H be the intersection of all sub-

groups of G that contain S.

a. Prove that (S) = H.

b. If § is nonempty, prove that (S) = {s1s52 ... s"mIm= 1,5, E S,
n, € Z}. (The s, terms need not be distinct.)
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40.

41.
42,

43.
44.
45.

46.

47.

48.

49.

50.

51.

52,

In the group Z, find

a. (8, 14);

b. (8, 13);

c. (6, 15);

d. (m, n);

e. (12,18, 45).

In each part, find an integer k such that the subgroup is (k).
Prove Theorem 3.6.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G | xh = hx for all h € H}. Prove that C(H) is a sub-
group of G.

Must the centralizer of an element of a group be Abelian?
Must the center of a group be Abelian?

Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation
x" = e is a subgroup of G. Give an example of a group G in which the
set of all elements of G that satisfy the equation x> = e does not form
a subgroup of G. (This exercise is referred to in Chapter 11.)

Suppose a belongs to a group and lal = 5. Prove that C(a) = C(a?).
Find an element a from some group such that lal = 6 and C(a) #
C(a®).

Let G be the set of all polynomials with coefficients from the set
{0, 1, 2, 3}. We can make G a group under addition by adding the
polynomials in the usual way, except that we use modulo 4 to com-
bine the coefficients. With this group operation, determine the or-
ders of the elements of G. Determine a necessary and sufficient
condition for an element of G to have order 2.

In each case, find elements a and b from a group such that lal =
bl = 2.

a. labl =3 b. labl =4 c. labl =5

Can you see any relationship among lal, |bl, and labl?

Suppose a group contains elements @ and b such that lal = 4,
Ibl = 2, and a*b = ba. Find labl.

Suppose a and b are group elements such that lal = 2, b # e, and
aba = b?. Determine |bl.

Let a be a group element of order n, and suppose that d is a posi-
tive divisor of n. Prove that la?l = n/d.

—1 1
Consider the elements A = [(1) 0] and B = {_? _ 1] from

SL(2, R). Find |Al, IBI, and |IABI. Does your answer surprise you?




53.

54.

5S.

56.

57.
S8.
59.
60.

61.

62.

63.
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11
Consider the element A = [O ] ] in SL(2, R). What is the order of

11
01 } as a member of SL(2, Zp) (p is a prime),

what is the order of A?

For any positive integer n and any angle 6, show that in the group
SL(2, R),

A?If weview A = {

[cos@ —sinf]" {cos nh — sin ne}

sinf  cos 6] sinnf  cos nd

Use this formula to find the order of
{cos 60° — sin 60° | cos V2° — sin \f2°}
sin 60°  cos 60° | sin V2°  cos V2° |

and {

cos 6 — sin 0

(Geometrically, { ] represents a rotation of the plane

sinf  cos
0 degrees.)

Let G be the symmetry group of a circle. Show that G has elements
of every finite order as well as elements of infinite order.

Let x belong to a group and |x| = 6. Find [x?I, Ix3], Ix*], and |x°|. Let
y belong to a group and |yl = 9. Find ly'l fori = 2,3, ..., 8. Do
these examples suggest any relationship between the order of the
power of an element and the order of the element?

D, has seven cyclic subgroups. List them.
U(15) has six cyclic subgroups. List them.
Prove that a group of even order must have an element of order 2.

Suppose G is a group that has exactly eight elements of order 3.
How many subgroups of order 3 does G have?

Let H be a subgroup of a finite group G. Suppose that g belongs to
G and n is the smallest positive integer such that g” € H. Prove that
n divides Igl.

Compute the orders of the following groups.

a. U(3),U4), U(12)

b. U(5), U(7), U(35)

c. U4), U(S), U20)

d. UQ3), U(5), U15)

On the basis of your answers, make a conjecture about the relation-
ship among 1U(r)!, 1U(s)!, and U(rs)!.

Let R* be the group of nonzero real numbers under multiplication
and let H = {x € R*| x?is rational }. Prove that H is a subgroup of
R*. Can the exponent 2 be replaced by any positive integer and still
have H be a subgroup?
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64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Compute [U(4)!, IU(10)1, and 1U(40)I. Do these groups provide a
counterexample to your answer to Exercise 62? If so, revise your
conjecture.

Find a cyclic subgroup of order 4 in U(40).
Find a noncyclic subgroup of order 4 in U(40).

o= {7

b
{{a d}EG la+b+c+d= O}. Prove that H is a subgroup of G.
c

What if O is replaced by 1?

Let H= {A € GL(2, R) | det A is an integer power of 2}. Show that
H is a subgroup of GL(2, R).

Let H be a subgroup of R under addition. Let K = {29 | a € H}.
Prove that K is a subgroup of R* under multiplication.

Let G be a group of functions from R to R*, where the operation
of G is multiplication of functions. Let H = {f € G | f(2) = 1}.
Prove that H is a subgroup of G. Can 2 be replaced by any real
number?

0
Let G = GL(2, R) and H = {[g b]

a,b,c,d EZ} under addition. Let H =

a and b are nonzero inte-

gers} under the operation of matrix multiplication. Prove or

disprove that H is a subgroup of GL(2, R).

Let H = {a + bila, b &R, ab = 0}. Prove or disprove that H is a
subgroup of C under addition.

Let H= {a + bila,b € R, a* + b> = 1}. Prove or disprove that
H is a subgroup of C* under multiplication. Describe the elements
of H geometrically.

Let G be a finite Abelian group and let @ and b belong to G. Prove
that the set (a, b) = {a'b/| i, j € Z} is a subgroup of G. What can
you say about l(a, b)l in terms of lal and |b1?

Let H be a subgroup of a group G. Prove that the set HZ(G) =
{hz| h € H, z € Z(G)} is a subgroup of G. This exercise is referred
to in this chapter.

Let G be a group and H a subgroup. For any element g of G, define
gH = {gh | h & H}.If Gis Abelian and g has order 2, show that the
set K = H U gH is a subgroup of G. Is your proof valid if we drop
the assumption that G is Abelian and let K = Z(G) U gZ(G)?

Let a belong to a group and lal = m. If n is relatively prime to m,
show that a can be written as the nth power of some element in the

group.
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78. Let F be a reflection in the dihedral group D, and R a rotation in
D,. Determine C(F) when n is odd. Determine C(F) when n is
even. Determine C(R).

79. Let G = GL(2, R).

e[ 1)
wruse( [

¢. Find Z(G).
80. Let G be a finite group with more than one element. Show that G
has an element of prime order.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78
(2005): 45-438.

In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some & in U(n). Such groups have identities
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical
Monthly 100 (1993): 580-582.

A set S is called Abelian forcing if the only groups that satisfy (ab)" =
a"b" for all a and b in the group and all n in § are the Abelian ones.
This paper characterizes the Abelian forcing sets. It can be downloaded
at http://www.d.umn.edu/~jgallian/forcing.pdf

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216
(1982): 505-506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an
undergraduate student as part of a programming course.
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Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,
consists of 14 group labs, 13 ring labs, and documentation for the
Abstract Algebra software on which the labs are based. The software uses
the Mathematica language, and only a basic familiarity with the program
is required. The software can be freely downloaded at http://www
.central.edu/eaam/ and can be used independently of the book.
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Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome of
sophistication, is today one of the mathematical concepts most widely
used in physics, chemistry, biochemistry, and mathematics itself.

ALEXEY SOSINSKY, 1991

Properties of Cyclic Groups

Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G = {a" | n € Z}. Such an element a is called a
generator of G. In view of the notation introduced in the preceding
chapter, we may indicate that G is a cyclic group generated by a by
writing G = (a).

In this chapter, we examine cyclic groups in detail and determine
their important characteristics. We begin with a few examples.

B EXAMPLE 1 The set of integers Z under ordinary addition is cyclic.
Both 1 and —1 are generators. (Recall that, when the operation is addi-
tion, 1" is interpreted as

T+ 1+ +1

n terms
when 7 is positive and as

(D D+ (D)

Inl terms
when 7 is negative.) |
B EXAMPLE 2 The set Z = {0, 1,...,n — I} forn = 11is a
cyclic group under addition modulo n. Again, 1 and —1 = n — 1 are
generators. |

77
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Unlike Z, which has only two generators, Z may have many genera-
tors (depending on which n we are given).

B EXAMPLE 3 Z, = (1) = (3) = (5) = (7). To verify, for instance, that
Z, = (3), we note that (3) = {3,3 + 3,3 + 3 + 3,.. .} is the set {3, 6,
1,4,7,2,5,0} = Z,. Thus, 3 is a generator of Z,. On the other hand, 2
is not a generator, since (2) = {0, 2,4, 6} # Z. |

# EXAMPLE 4 (See Example 11 in Chapter 2.)
U10) = {1, 3, 7,9} = {39 31 33, 32} = (3). Also, {1, 3, 7,9} =
{79, 73, 7', 7%} = (7). So both 3 and 7 are generators for U(10). |

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8)
serves this purpose; that is, U(8) is not a cyclic group. How can we
verify this? Well, note that U(8) = {1, 3, 5, 7}. But

(= {1},

(3)=1{3,1}
(5) =151}
(7 =17, 1},

so U(8) # (a) for any a in U(8).
With these examples under our belts, we are now ready to tackle
cyclic groups in an abstract way and state their key properties.

I Theorem4.1 Criterionfora = a/

Let G be a group, and let a belong to G. If a has infinite order, then
a’ = d/ ifand only if i = j. If a has finite order, say, n, then {(a) =
{e,a,a? ..., a" ) and a’ = & if and only if n divides i —j.

PROOF If a has infinite order, there is no nonzero n such that a” is the
identity. Since @’ = a/ implies a'/ = e, we must have i — j = 0, and the
first statement of the theorem is proved.

Now assume that lal = n. We will prove that {a) = {e, a, ..., a" '}.
Certainly, the elements e, a, . . ., a"~ ! are in (a).

Now, suppose that a* is an arbitrary member of (a). By the division
algorithm, there exist integers g and r such that

k=gn+r with 0=r<n.
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Then a* = a?'" = a?a” = (a")%a” = ea” = a’, so that a* € {e, a,
a’,...,a" '}. This proves that {a) = {e, a,d?, ..., a" '}.

Next, we assume that a’ = a/ and prove that n divides i — j. We
begin by observing that @’ = a’ implies @'/ = e. Again, by the division
algorithm, there are integers g and r such that

i—j=qgn+r with 0=r<n

Then a'~7 = a9""", and therefore e = a'/ = a9"" = (a")%a" = ela” =
ea” = a’. Since n is the least positive integer such that a" is the identity,
we must have r = 0, so that n divides i — .

Conversely, if i — j = ng, then @'~/ = a"1 = ¢7 = ¢, so that
a = al. |

Theorem 4.1 reveals the reason for the dual use of the notation and
terminology for the order of an element and the order of a group.

1 Corollary 1 Ial = K{a)|

For any group element a, lal = Ka)!.

One special case of Theorem 4.1 occurs so often that it deserves
singling out.

1 Corollary 2 a* = elImplies That |al Divides k

Let G be a group and let a be an element of order nin G. If a* = e,
then n divides k.

PROOF Since a* = e = a° we know by Theorem 4.1 that n divides
k— 0. |

Theorem 4.1 and its corollaries for the case lal = 6 are illustrated in
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says
that multiplication in {a) is essentially done by addition modulo n. That
is, if (i + j) mod n = k, then a'a’ = a*. Thus, no matter what group G
is, or how the element a is chosen, multiplication in (@) works the same
as addition in Z whenever lal = n. Similarly, if a has infinite order,
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a®=a’=a®
-1_ ,5_ 11
aS—a=d a'=a’=a
-2_ 4 _ 10
PR J .a’=a*=a
wal=d=ad’.
Figure 4.1

then multiplication in {a) works the same as addition in Z, since a'a’
= @'/ and no modular arithmetic is done.

For these reasons, the cyclic groups Z and Z serve as prototypes for
all cyclic groups, and algebraists say that there is essentially only one
cyclic group of each order. What is meant by this is that, although
there may be many different sets of the form {a" | n € Z}, there is
essentially only one way to operate on these sets. Algebraists do not
really care what the elements of a set are; they care only about the
algebraic properties of the set—that is, the ways in which the elements
of a set can be combined. We will return to this theme in the chapter
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing la
knowing only lal, and its first corollary provides a simple way to tell
when {a’) = (a’).

K

B Theorem 4.2 (a*) = (a&d™h) and lak| = n/gcd(n, k)

Let a be an element of order n in a group and let k be a positive
integer. Then (a*) = (a®4™k) and |a¥| = n/gcd(n, k).

PROOF To simplify the notation, let d = gcd(n, k) and let k = dr.
Since a* = (a?)", we have by closure that {(a*) C (a“). By Theorem 0.2
(the gcd theorem), there are integers s and ¢ such that d = ns + kt. So,
ad — ans+kt - ansakt - (a”)s(ak)’ — e(ak)t — (ak)t [ <ak>. This
proves (a?) C (a*). So, we have verified that (a¥) = (qgcd"b),

We prove the second part of the theorem by showing first that la¢l =
n/d for any divisor d of n. Clearly, (a?y"? = a" = e, so that la?l = n/d. On
the other hand, if i is a positive integer less than n/d, then (a?)’ # e by de-
finition of lal. We now apply this fact with d = ged(n, k) to obtain la*l =
{db)| = Kagdmh)| = |gedeR| = p/ged(n, k). |

The advantage of Theorem 4.2 is that it allows us to replace one
generator of a cyclic subgroup with a more convenient one. For example,
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if lal = 30, we have {(a*®) = (a?), (a®) = (a), (a**) = (a?), (a*') = (a®).
From this we can easily see that |a*}| = 30 and |a**| = 15. Moreover, if
one wants to list the elements of, say, (a*'), it is easier to list the elements
of {(@®) instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order
of an element in a finite cyclic group and the order of the group.

I Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order
of the group.

1 Corollary 2 Criterion for (a’) = (a/) and |d'| = |a/I

Let lal = n. Then {(a’y = {aJ) if and only if gcd(n, i) = ged(n, j),
and |d'| = \dJ| if and only if gcd(n, i) = ged(n, j) .

PROOF Theorem 4.2 shows that (a) = (@24} and {a’/) = (aed)),
so that the proof reduces to proving that (q&d)) = (geed)y if and
only if ged(n, i) = gcd(n, j). Certainly, ged(n, i) = gcd(n, j) implies
that (q2d®)) = (qged(=D) On the other hand, (q&dD) = (qged(n))
implies that |q2ed)| = |q2ed)| g0 that by the second conclusion of
Theorem 4.2, we have n/gcd(n, i) = n/ged(n, j), and therefore ged(n, i) =

gcd(n, j). |
The second part of the corollary follows from the first part and
Corollary 1 of Theorem 4.1.
The next two corollaries are important special cases of the preceding
corollary.

I Corollary 3 Generators of Finite Cyclic Groups

Let lal = n. Then {(a) = {a’) if and only if gcd(n, j) = 1, and
lal = I{a)| if and only if gcd(n, j) = 1.

I Corollary 4 Generatorsof Z,

An integer k in Z is a generator of Z, if and only if gcd(n, k) = 1.

The value of Corollary 3 is that once one generator of a cyclic group has
been found, all generators of the cyclic group can easily be determined.
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For example, consider the subgroup of all rotations in D,. Clearly, one
generator is Ry And, since IR | = 6, we see by Corollary 3 that the only
other generator is (R.,)° = Rj,. Of course, we could have readily de-
duced this information without the aid of Corollary 3 by direct calcula-
tions. So, to illustrate the real power of Corollary 3, let us use it to find all
generators of the cyclic group U(50). First, note that direct computations
show that |U(50)! = 20 and that 3 is one of its generators. Thus, in view of
Corollary 3, the complete list of generators for U(50) is

3 mod 50 = 3, 3 mod 50 = 47,
33 mod 50 = 27, 313 mod 50 = 23,
37 mod 50 = 37, 37 mod 50 = 13,
39 mod 50 = 33, 3% mod 50 = 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed
much less work than finding all the generators by simply determining
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries
apply only to elements of finite order.

Classification of Subgroups
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has
and how to find them.

1 Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if |{a)| = n,
then the order of any subgroup of {a) is a divisor of n; and, for each
positive divisor k of n, the group {(a) has exactly one subgroup of
order k—namely, {a™'¥).

Before we prove this theorem, let’s see what it means. Understand-
ing what a theorem means is a prerequisite to understanding its proof.
Suppose G = (a) and G has order 30. The first and second parts of the
theorem say that if H is any subgroup of G, then H has the form (a***) for
some k that is a divisor of 30. The third part of the theorem says that G
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and
no others. The proof will also show how to find these subgroups.

PROOF Let G = (a) and suppose that H is a subgroup of G. We must
show that H is cyclic. If it consists of the identity alone, then clearly H is
cyclic. So we may assume that H # {e}. We now claim that H contains
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an element of the form a', where ¢ is positive. Since G = (a), every
element of H has the form a'; and when a’ belongs to H with ¢ < 0, then
a '"belongs to H also and —t is positive. Thus, our claim is verified. Now
let m be the least positive integer such that ™ € H. By closure, (a™) C H.
We next claim that H = (a™). To prove this claim, it suffices to let b be an
arbitrary member of H and show that b is in (a™). Since b € G = (a), we
have b = a* for some k. Now, apply the division algorithm to k and m to
obtain integers ¢ and r such that k = mq + r where 0 < r < m. Then " =
am™tr = @™g’, so that a” = a "ia*. Since a* = b € H and a1 =
(a™)~1is in H also, a” € H. But, m is the least positive integer such that
a" € H, and 0 < r < m, so r must be 0. Therefore, b = ak = g™ =
(@™ € (a™). This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that I{a)l = n and
H is any subgroup of {(a). We have already shown that H = (a™), where
m is the least positive integer such that @” € H. Using e = b = a@" as in
the preceding paragraph, we have n = mgq.

Finally, let k be any positive divisor of n. We will show that (a"/¥) is
the one and only subgroup of (@) of order k. From Theorem 4.2, we see
that (a"*) has order n/gcd(n, n/k) = n/(n/k) = k. Now let H be any
subgroup of (a) of order k. We have already shown above that H = (a™),
where m is a divisor of n. Then m = ged(n, m) and k = la™| = |g&cd®m| =
n/ged (n, m) = n/m. Thus, m = n/k and H = (a"¥). |

Returning for a moment to our discussion of the cyclic group (a),
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of {a) are precisely those of the form (a™), where m is a divisor
of 30. Moreover, if k is a divisor of 30, the subgroup of order & is
(@®%). So the list of subgroups of {a) is:

(a)y ={e,a,a’ ...,ad*"°} order 30,
(@) = {e,a* a*, ..., a*) order 15,
(@) = {e,a’, ab ..., a"} order 10,
(@) = {e,a’, a'* a®, a*®,a®}  order 6,
(@® = {e, ab a'?, a'®, a®*} order 5,
(@) = {e, a'’, a*} order 3,
(@) = {e, a'} order 2,
(@) = {e} order 1.

In general, if (a) has order n and k divides n, then (a"/) is the unique
subgroup of order k.

Taking the group in Theorem 4.3 to be Z and a to be 1, we obtain
the following important special case.
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I Corollary SubgroupsofZ,

For each positive divisor k of n, the set (n/k) is the unique subgroup
of Z,, of order k; moreover, these are the only subgroups of Z .

B EXAMPLE 5 The list of subgroups of Z, is

(1)=1{0,1,2,...,29} order 30,
2y =1{0,2,4,...,28} order 15,
(3)=1{0,3,6,...,27} order 10,
(5) = {0, 5, 10, 15, 20, 25} order 6,
(6) = {0, 6,12, 18,24} order 5,
(10) = {0, 10, 20} order 3,
(15) = {0, 15} order 2,
(30) = {0} order 1. ]

Theorems 4.2 and 4.3 provide a simple way to find all the generators
of the subgroups of a finite cyclic group.

I EXAMPLE 6 To find the generators of the subgroup of order 9 in
Z,., we observe that 36/9 = 4 is one generator. To find the others, we
have from Corollary 3 of Theorem 4.2 that they are all elements of Z,,

of the form 4j, where gcd(9, j) = 1. Thus,
@-1H)=@4-2)=@U-49=4-5=A-7)=4-8).

In the generic case, to find all the subgroups of {(a) of order 9 where
lal = 36, we have

(@) = (@?) = (@) = (@) = (@) = (@"®).
In particular, note that once you have the generator @’ for the subgroup

of order d where d is a divisor of lal = n, all the generators of (a¢) have
the form (a?)/ where j € U(d). 1

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience,
we introduce an important number-theoretic function called the Euler
phi function. Let ¢p(1) = 1, and for any integer n > 1, let ¢p(n) denote
the number of positive integers less than n and relatively prime to n.
Notice that by definition of the group U(n), |U(n)l = ¢(n). The first 12
values of ¢(n) are given in Table 4.1.

Table 4.1 Values of ¢(n)
n ‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

¢(n)‘1‘1‘2‘2‘4‘2‘6‘4‘6‘4 ‘10‘4‘
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I Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in
a cyclic group of order n is ¢(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of
order d—call it (a). Then every element of order d also generates the
subgroup (@) and, by Corollary 3 of Theorem 4.2, an element a* gener-
ates (a) if and only if gcd(k, d) = 1. The number of such elements is
precisely ¢(d). |

Notice that for a finite cyclic group of order n, the number of elements
of order d for any divisor d of n depends only on d. Thus, Z, Z,, and
Zg 000 €ach have ¢(8) = 4 elements of order 8.

Although there is no formula for the number of elements of each
order for arbitrary finite groups, we still can say something important

in this regard.

1 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is a multiple

of ¢(d).

PROOF If a finite group has no elements of order d, the statement is
true, since ¢(d) divides 0. Now suppose that ¢« € G and lal = d. By
Theorem 4.4, we know that (a) has ¢(d) elements of order d. If all
elements of order d in G are in {(a), we are done. So, suppose that there
is an element b in G of order d that is not in {a). Then, (b) also has ¢(d)
elements of order d. This means that we have found 2¢(d) elements of
order d in G provided that (a) and (b) have no elements of order d in
common. If there is an element ¢ of order d that belongs to both (a) and
(b), then we have (a) = {c¢) = (b), so that b € {a), which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of
order d in a finite group is a multiple of ¢(d). |

On its face, the value of Theorem 4.4 and its corollary seem limited
for large values of n, because it is tedious to determine the number of
positive integers less than or equal to n and relatively prime to n
by examining them one by one. However, the following properties of the
¢ function make computing ¢ (n) simple: For any prime p, ¢ (p") =
p" — p" ! (see Exercise 85) and for relatively prime m and n, ¢(mn)
= ¢(m)d(n). Thus, $40) = ¢®)p(5) = 44 = 16; ¢(75) =
¢ (5HP(3) = (25 —5) - 2 = 40.
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The relationships among the various subgroups of a group can be
illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one
level to a subgroup K at a higher level with a sequence of line segments
if and only if H is a proper subgroup of K. Although there are many
ways to draw such a diagram, the connections between the subgroups
must be the same. Typically, one attempts to present the diagram in an
eye-pleasing fashion. The lattice diagram for Z, , is shown in Figure 4.2.
Notice that (10) is a subgroup of both (2) and (5), but (6) is not a sub-
group of (10).

//////////<1>\\\\\\\\\\
<2> <5>
<3>
<10>
<6> <I5>
<0>

Figure 4.2 Subgroup lattice of Z .

The precision of Theorem 4.3 can be appreciated by comparing the
ease with which we are able to identify the subgroups of Z, ) with that of
doing the same for, say, U(30) or D,,. And these groups have relatively
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3
extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite
group need not have exactly one subgroup corresponding to each divisor
of the order of the group. For some divisors, there may be none at all,
whereas for other divisors, there may be many. Indeed, D,, the dihedral
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite
groups, we will see in Chapter 11 that they play the role of building
blocks for all finite Abelian groups in much the same way that primes
are the building blocks for the integers and that chemical elements are
the building blocks for the chemical compounds.
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It is not unreasonable to use the hypothesis.

10.

11.
12.

13.

14.
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. Find all generators of Z, Z, and Z,,,.
. Suppose that {a), (b), and {c) are cyclic groups of orders 6, 8, and

20, respectively. Find all generators of {a), (b), and {(c).

. List the elements of the subgroups (20) and (10) in Z, . Let a be a

group element of order 30. List the elements of the subgroups (a*)
and (a'%).

. List the elements of the subgroups (3) and (15) in Z,;. Let a be a

group element of order 18. List the elements of the subgroups (a*)
and (a®d).

. List the elements of the subgroups (3) and (7) in U(20).
. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.

. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.

. Let a be an element of a group and let lal = 15. Compute the or-

ders of the following elements of G.

a. @, a% a°, a'?

b. a°, a'%

c. a2 a*, a8, a'

. How many subgroups does Z,, have? List a generator for each of

these subgroups. Suppose that G = (@) and lal = 20. How many
subgroups does G have? List a generator for each of these sub-
groups.
In Z,,, list all generators for the subgroup of order 8. Let G = (a)
and let lal = 24. List all generators for the subgroup of order 8.
Let G be a group and let a € G. Prove that (@™ ') = (a).

In Z, find all generators of the subgroup (3). If a has infinite order,
find all generators of the subgroup (a?).

In Z,,, find a generator for (21) N (10). Suppose that lal = 24. Find
a generator for (a*') N (a'?). In general, what is a generator for the
subgroup (@™) N {(a")?

Suppose that a cyclic group G has exactly three subgroups: G itself,
{e}, and a subgroup of order 7. What is |G|? What can you say if 7
is replaced with p where p is a prime?

dlor eChapter(s). Edit
right
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Let G be an Abelian group and let H = {g € G | Igl divides 12}.
Prove that H is a subgroup of G. Is there anything special about 12
here? Would your proof be valid if 12 were replaced by some other
positive integer? State the general result.

Find a collection of distinct subgroups (a,), {a,), . . ., {a,) of Z,,,
with the property that (a,) C {a,) C - - - C (a,) with n as large as
possible.

Complete the following statement: lal = a2l if and only if lal . . . .

If a cyclic group has an element of infinite order, how many ele-
ments of finite order does it have?

List the cyclic subgroups of U(30).

Suppose that G is an Abelian group of order 35 and every element
of G satisfies the equation x> = e. Prove that G is cyclic. Does
your argument work if 35 is replaced with 33?

Let G be a group and let a be an element of G.

a. If a'> = ¢, what can we say about the order of a?

b. If " = e, what can we say about the order of a?

¢. Suppose that |G| = 24 and that G is cyclic. If a® # e and a'? # e,
show that {a) = G.

Prove that a group of order 3 must be cyclic.

Let Z denote the group of integers under addition. Is every sub-
group of Z cyclic? Why? Describe all the subgroups of Z. Let a be
a group element with infinite order. Describe all subgroups of {(a).

For any element a in any group G, prove that (@) is a subgroup of
C(a) (the centralizer of a).

If d is a positive integer, d # 2, and d divides n, show that the num-
ber of elements of order d in D, is ¢(d). How many elements of
order 2 does D, have?

Find all generators of Z. Let a be a group element that has infinite
order. Find all generators of (a).

Prove that C*, the group of nonzero complex numbers under multi-
plication, has a cyclic subgroup of order n for every positive integer 7.

Let a be a group element that has infinite order. Prove that {(a’) =
(a’) if and only if i = =

List all the elements of order 8 in Z,,,,- How do you know your
list is complete? Let a be a group element such that lal = 8000000.
List all elements of order 8 in {(a). How do you know your list is

complete?

Suppose a and b belong to a group, a has odd order, and aba™! =
b~!. Show that b* = e.
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37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.
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Let G be a finite group. Show that there exists a fixed positive integer
n such that a" = e for all a in G. (Note that n is independent of a.)

Determine the subgroup lattice for Z,,.

Determine the subgroup lattice for Z,
primes.

Determine the subgroup lattice for Z.

Determine the subgroup lattice for Z,., where p is a prime and n is
some positive integer.

:,» Where p and g are distinct

Prove that a finite group is the union of proper subgroups if and
only if the group is not cyclic.

Show that the group of positive rational numbers under multiplica-
tion is not cyclic.

Consider the set {4, 8, 12, 16}. Show that this set is a group under
multiplication modulo 20 by constructing its Cayley table. What
is the identity element? Is the group cyclic? If so, find all of its
generators.

Give an example of a group that has exactly 6 subgroups (including
the trivial subgroup and the group itself). Generalize to exactly n
subgroups for any positive integer n.

Let m and n be elements of the group Z. Find a generator for the
group (m) N (n).

Suppose that a and b are group elements that commute and have
orders m and n. If (@) N (b) = {e}, prove that the group contains an
element whose order is the least common multiple of m and n.
Show that this need not be true if @ and b do not commute.
Suppose that a and b belong to a group G, a and b commute, and
lal and 15! are finite. What are the possibilities for labl?

Suppose that a and b belong to a group G, a and b commute, and lal
and |b| are finite. Prove that G has an element of order Ilcm(lal, 1bl).
Let F and F' be distinct reflections in D,,. What are the possibili-
ties for |FF'1?

Suppose that H is a subgroup of a group G and I1HI = 10. If a
belongs to G and a® belongs to H, what are the possibilities for lal?
Which of the following numbers could be the exact number of
elements of order 21 in a group: 21600, 21602, 21604?

If G is an infinite group, what can you say about the number of
elements of order 8 in the group? Generalize.

Suppose that K is a proper subgroup of D, and K contains at least
two reflections. What are the possible orders of K? Explain your
reasoning.
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49.

50.

51.

52.

53.

54.

SS.

56.

57.

58.

59.

60.

61.
62.

63.

64.

For each positive integer n, prove that C*, the group of nonzero
complex numbers under multiplication, has exactly ¢(n) elements
of order n.

Prove or disprove that H = {n € Z | n is divisible by both 8 and 10}
is a subgroup of Z.

Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D, and D). If Z(G)
is not trivial, prove that every nonidentity element of G has the
same order.

Prove that an infinite group must have an infinite number of
subgroups.

Let p be a prime. If a group has more than p — 1 elements of order p,
why can’t the group be cyclic?

Suppose that G is a cyclic group and that 6 divides |G|. How many
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list
the other elements of order 8.

List all the elements of Z, that have order 10. Let IxI = 40. List all
the elements of {x) that have order 10.

Reformulate the corollary of Theorem 4.4 to include the case when
the group has infinite order.

Determine the orders of the elements of D,, and how many there
are of each.

If G is a cyclic group and 15 divides the order of G, determine the
number of solutions in G of the equation x'> = e. If 20 divides the
order of G, determine the number of solutions of x2° = e.
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 5, what other sizes of cyclic subgroups must G contain?
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 6, what other sizes of cyclic subgroups must G contain?
Generalize.

Prove that no group can have exactly two elements of order 2.
Given the fact that U(49) is cyclic and has 42 elements, deduce the
number of generators that U(49) has without actually finding any of
the generators.

Let a and b be elements of a group. If lal = 10 and 16| = 21, show
that {a) N (b) = {e}.

Let a and b belong to a group. If lal and 15! are relatively prime,
show that (a) N (b) = {e}.
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Let a and b belong to a group. If lal = 24 and |bl = 10, what are
the possibilities for I{a) N (b)I?
Prove that U(2") (n = 3) is not cyclic.

Suppose that G is a group of order 16 and that, by direct computa-
tion, you know that G has at least nine elements x such that
x® = e. Can you conclude that G is not cyclic? What if G has at
least five elements x such that x* = ¢? Generalize.

Prove that Z has an even number of generators if n > 2. What
does this tell you about ¢(n)?

If la’l = 12, what are the possibilities for lal? If la*l = 12, what
are the possibilities for lal?

Suppose that Ix| = n. Find a necessary and sufficient condition on
r and s such that (x") C (x*).

Suppose a is a group element such that1a®®| = 10 and la**| = 20.
Determine |a|.

Let a be a group element such that lal = 48. For each part, find a
divisor k of 48 such that

a. (@*') = (a");

b. (@) = (a*);

c. (a'® = (d").

Let p be a prime. Show that in a cyclic group of order p" —1, every
element is a pth power (that is, every element can be written in the
form a? for some a).

1 n
Prove that H = {{ }

01
GL(2, R).
Let a and b belong to a group. If lal = 12, Ibl = 22, and {(a) N (b) #
{e}, prove that a® = b'!.

(2008 GRE Practice Exam) If x is an element of a cyclic group of
order 15 and exactly two of x3, x°, and x° are equal, determine |x'3].

n & Z} is a cyclic subgroup of

Determine the number of cyclic subgroups of order 4 in D ..

If n is odd, prove that D, has no subgroup of order 4.

If n = 4 and is even, show that D has exactly n/2 noncyclic
subgroups of order 4.

If n = 4 and n is divisible by 2 but not by 4, prove that D has
exactly n/2 subgroups of order 4.

How many subgroups of order n does D, have?

Let G be the set of all polynomials of the form ax? + bx + ¢ with
coefficients from the set {0, 1, 2}. We can make G a group under
addition by adding the polynomials in the usual way, except that
we use modulo 3 to combine the coefficients. With this operation,
prove that G is a group of order 27 that is not cyclic.
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83. Let a and b belong to some group. Suppose that lal = m, |bl = n,
and m and n are relatively prime. If ¥ = b* for some integer &,
prove that mn divides k.

84. For every integer n greater than 2, prove that the group U(n* — 1)
is not cyclic.

85. Prove that for any prime p and positive integer n, ¢(p") =
pn _ pnfl‘

86. Give an example of an infinite group that has exactly two elements
of order 4.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Deborah L. Massari, “The Probability of Generating a Cyclic Group,”
Pi Mu Epsilon Journal 7 (1979): 3-6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the
group depends only on the set of prime divisors of the order of the
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon paper contest.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the éBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


http://www.d.umn.edu/~jgallian

James Joseph Sylvester

| really love my subject.

J. ). SYLVESTER

JAMES JOSEPH SYLVESTER was the most influ-
ential mathematician in America in the 19th
century. Sylvester was born on September 3,
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied
under De Morgan and won several prizes for
his mathematics, and at the unusually young
age of 25, he was elected a fellow of the
Royal Society.

After receiving B.A. and M.A. degrees
from Trinity College in Dublin in 1841,
Sylvester began a professional life that was
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly
founded Johns Hopkins University. During
his seven years at Johns Hopkins, Sylvester
pursued research in pure mathematics
with tremendous vigor and enthusiasm.
He also founded the American Journal of
Mathematics, the first journal in America
devoted to mathematical research. Sylvester
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his
death on March 15, 1897.

Sylvester’s major contributions to math-
ematics were in the theory of equations,
matrix theory, determinant theory, and in-
variant theory (which he founded with
Cayley). His writings and lectures—flowery
and eloquent, pervaded with poetic flights,
emotional expressions, bizarre utterances,
and paradoxes—reflected the personality of
this sensitive, excitable, and enthusiastic

Stock Montage

man. We quote three of his students.” E. W.
Davis commented on Sylvester’s teaching
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal
Algebra,” he would say; then, “The course
must be extended to twelve.” It did last all the
rest of that year. The following year the course
was to be Substitutions-Theorie, by Netto. We
all got the text. He lectured about three times,
following the text closely and stopping sharp
at the end of the hour. Then he began to think
about matrices again. “I must give one lecture
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture
a week. Two weeks were passed, and Netto
was forgotten entirely and never mentioned
again. Statements like the following were not
infrequent in his lectures: “I haven’t proved
this, but I am as sure as I can be of anything
that it must be so. From this it will follow,
etc.” At the next lecture it turned out that what
he was so sure of was false. Never mind, he
kept on forever guessing and trying, and
presently a wonderful discovery followed,
then another and another. Afterward he would
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then
made another leap in the dark, more treasures
were discovered, and so on forever.

F. Cajori, Teaching and History of Mathematics in the United States, Washington: Government

Printing Office, 1890, 265-266.
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Sylvester’s enthusiasm for teaching and his
influence on his students are captured in the
following passage written by Sylvester’s first
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . .
Sylvester’s capacious head was ever lost in
the highest cloud-lands of pure mathematics.
Often in the dead of night he would get his
favorite pupil, that he might communicate

the very last product of his creative thought.
Everything he saw suggested to him some-
thing new in the higher algebra. This transmu-
tation of everything into new mathematics
was a revelation to those who knew him
intimately. They began to do it themselves.

Another characteristic of Sylvester, which
is very unusual among mathematicians, was
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

94

Sylvester had one remarkable peculiarity. He
seldom remembered theorems, propositions,
etc., but had always to deduce them when he
wished to use them. In this he was the very
antithesis of Cayley, who was thoroughly
conversant with everything that had been
done in every branch of mathematics.

I remember once submitting to Sylvester
some investigations that I had been engaged
on, and he immediately denied my first state-
ment, saying that such a proposition had never
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in
which he had proved the proposition; in fact,
I believe the object of his paper had been the
very proof which was so strange to him.

For more information about Sylvester,

visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Supplementary Exercises for Chapters 1-4

If you really want something in this life, you have to work for it. Now quiet,
they’re about to announce the lottery numbers!

HOMER SIMPSON

True/false questions for Chapters 1—4 are available on the Web at:

1.

http://www.d.umn.edu/~jgallian/ TF

Let G be a group and let H be a subgroup of G. For any fixed x in
G, define xHx™ ! = {xhx~' | h € H}. Prove the following.

a. xHx!is a subgroup of G.

b. If H is cyclic, then xHx™ ! is cyclic.

c. If H is Abelian, then xHx~! is Abelian.

The group xHx ! is called a conjugate of H. (Note that conjuga-
tion preserves structure.)

Let G be a group and let H be a subgroup of G. Define N(H) =
{x € G | xHx™' = H}. Prove that N(H) (called the normalizer of
H) is a subgroup of G.*

Let G be a group. For each a € G, define cl(a) = {xax~!' | x € G}.
Prove that these subsets of G partition G. [cl(a) is called the
conjugacy class of a.]

The group defined by the following table is called the group of
quaternions. Use the table to determine each of the following.

a. The center

b. cl(a)

c. cl(b)

d. All cyclic subgroups

e a a? a b ba ba®>  ba?
e e a a? a b ba ba®>  ba’®
a a a? a’ e ba’ b ba ba?
a? a? a e a ba? ba® b ba
a a’ e a a? ba ba? ba®> b
b b ba ba? ba’ a? al e a
ba ba ba? ba® b a? a e
ba? ba? ba? b ba e a? a’
ba? ba? b ba ba?* a’ e a a?

"This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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(Conjugation preserves order.) Prove that, in any group, Ixax™
lal. (This exercise is referred to in Chapter 24.)

Prove that, in any group, labl = |bal.
If @ and b are group elements, prove that labl = la~ b1
Prove that a group of order 4 cannot have a subgroup of order 3.

If a, b, and c are elements of a group, give an example to show that
it need not be the case that labcl = Icbal.

Let a and b belong to a group G. Prove that there is an element x in
G such that xax = b if and only if ab = ¢? for some element ¢ in G.
Prove that if a is the only element of order 2 in a group, then a lies
in the center of the group.

Let G be the plane symmetry group of the infinite strip of equally
spaced H’s shown below.

H H H H H

1 1

1 1

i i
Axis 1 Axis2

1 1

1 1

Let x be the reflection about Axis 1 and let y be the reflection about
Axis 2. Calculate IxI, Iyl, and lxyl. Must the product of elements
of finite order have finite order? (This exercise is referred to in
Chapter 27.)

What are the orders of the elements of D,,? How many elements
have each of these orders?

Prove that a group of order 4 is Abelian.

Prove that a group of order 5 must be cyclic.

Prove that an Abelian group of order 6 must be cyclic.

Let G be an Abelian group and let n be a fixed positive integer. Let
G" = {g" | g € G}. Prove that G" is a subgroup of G. Give an ex-
ample showing that G" need not be a subgroup of G when G is
non-Abelian. (This exercise is referred to in Chapter 11.)

LetG = {a + b\fZ}, where a and b are rational numbers not both
0. Prove that G is a group under ordinary multiplication.

(1969 Putnam Competition) Prove that no group is the union of
two proper subgroups. Does the statement remain true if “two” is
replaced by “three”?

Prove that the subset of elements of finite order in an Abelian
group forms a subgroup. (This subgroup is called the forsion sub-
group.) Is the same thing true for non-Abelian groups?

Let p be a prime and let G be an Abelian group. Show that the set
of all elements whose orders are powers of p is a subgroup of G.
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Suppose that a and b are group elements. If |6l = 2 and bab = a*,
determine the possibilities for lal.

Suppose that a finite group is generated by two elements a and b
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a*= b*> = e and ba®> = ab, construct
the Cayley table for the group. We have already seen an example
of a group that satisfies these conditions. Name it.

If a is an element from a group and lal = n, prove that C(a) =
C(d*) when k is relatively prime to 7.

Let x and y belong to a group G. If xy € Z(G), prove that xy = yx.
Suppose that H and K are nontrivial subgroups of Q under addi-
tion. Show that H N K is a nontrivial subgroup of Q. Is this true if
Q is replaced by R?

Let H be a subgroup of G and let g be an element of G. Prove that
N(gHg™") = gN(H)g ™. See Exercise 2 for the notation.

Let H be a subgroup of a group G and let Igl = n. If g” belongs to
H, and m and n are relatively prime, prove that g belongs to H.
Find a group that contains elements a and b such that lal = 2,
bl =11, and labl = 2.

Suppose that G is a group with exactly eight elements of order 10.
How many cyclic subgroups of order 10 does G have?

(1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy = xz implies
y = z, and yx = zx implies y = z). Assume that for every a in S the
set {a"ln=1,2,3,...}is finite. Must S be a group?

Let H|, H,, H,, . . . be a sequence of subgroups of a group with the
property that H, C H, C H, . . . . Prove that the union of the se-
quence is a subgroup.

Let n be an integer greater than 1. Find a noncyclic subgroup of
U (4n) of order 4 that contains the element 2n — 1.

Let G be an Abelian group and H = {x € G | x" = e for some odd
integer n (n may vary with x)}. Prove that H is a subgroup of G. Is H
a subgroup if “odd” is replaced by “even”?

Let H = {A € GL(2, R) | det A is rational }. Prove or disprove that
H is a subgroup of GL(2, R). What if “rational” is replaced by “an
integer”?

Suppose that G is a group that has exactly one nontrivial proper
subgroup. Prove that G is cyclic and |G| = p?, where p is prime.
Suppose that G is a group and G has exactly two nontrivial proper
subgroups. Prove that G is cyclic and |G| = pg, where p and g are
distinct primes, or that G is cyclic and |G| = p?, where p is prime.
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38. If la®l = 1b?l, prove or disprove that lal = 1bl.
39. (1995 Putnam Competition) Let S be a set of real numbers that is

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

closed under multiplication. Let 7 and U be disjoint subsets of S
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of 7 is in T and that the product of any
three elements of U is in U, show that at least one of the two sub-
sets T"and U is closed under multiplication.

If p is an odd prime, prove that there is no group that has exactly p
elements of order p.

Give an example of a group G with infinitely many distinct sub-
groups H,H,,H,, .. .suchthat H, C H, C H,. . ..

Suppose a and b are group elements and b # e. If a~'ba = b* and
lal = 3, find 1b]. What is 101, if lal = 5?7 What can you say about |5l
in the case where lal = k?

Let a and b belong to a group G. Show that there is an element g in
G such that g~ abg = ba.

Suppose G is a group and x%y* = y3x3 for every x and y in G. Let
H = {x € G| x| is relatively prime to 3}. Prove that elements of H
commute with each other and that H is a subgroup of G. Is your
argument valid if 3 is replaced by an arbitrary positive integer n?
Explain why or why not.

Let G be a finite group and let S be a subset of G that contains
more than half of the elements of G. Show that every element of G

can be expressed in the form s,s, where s, and s, belong to S.

Let G be a group and let f be a function from G to some set. Show
that H = {g € G | f(xg) = f(x) for all x € G} is a subgroup of G. In
the case that G is the group of real numbers under addition and
f(x) = sin x, describe H.

Let G be a cyclic group of order n and let H be the subgroup of
order d. Show that H = {x € G | Ix| divides d}.

Let a be an element of maximum order from a finite Abelian group
G. Prove that for any element b in G, |bl divides lal. Show by
example that this need not be true for finite non-Abelian groups.

Define an operation * on the set of integersbya«b =a + b — 1.
Show that the set of integers under this operation is a cyclic group.
Let n be an integer greater than 1. Find a noncyclic subgroup of
U(4n) of order 4 that contains the element 2n — 1.




Permutation Groups

Wigner's discovery about the electron permutation group was just the
beginning. He and others found many similar applications and nowadays
group theoretical methods—especially those involving characters and
representations—pervade all branches of quantum mechanics.

GEORGE MACKEY, Proceedings of the
American Philosophical Society

Definition and Notation

In this chapter, we study certain groups of functions, called permutation
groups, from a set A to itself. In the early and mid-19th century, groups
of permutations were the only groups investigated by mathematicians.
It was not until around 1850 that the notion of an abstract group was
introduced by Cayley, and it took another quarter century before the
idea firmly took hold.

Definitions Permutation of A, Permutation Group of A

A permutation of a set A is a function from A to A that is both one-
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects
exist, we will focus on the case where A is finite. Furthermore, it is
customary, as well as convenient, to take A to be a set of the form
{1,2,3,...,n} for some positive integer n. Unlike in calculus, where
most functions are defined on infinite sets and are given by formulas,
in algebra, permutations of finite sets are usually given by an explicit
listing of each element of the domain and its corresponding functional
value. For example, we define a permutation « of the set {1, 2, 3,4} by
specifying

a(l) =2, a2) =3, a3) =1, a4) = 4.

99
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A more convenient way to express this correspondence is to write « in
array form as
{1 2 3 4]
a = .
231 4

Here «a(j) is placed directly below j for each j. Similarly, the permuta-
tion 3 of the set {1, 2, 3, 4, 5, 6} given by

B) =5, p2)=3, BB =1 BAH =6, BO) =2 p6)=4
is expressed in array form as

{123456}

P=1ls31624

Composition of permutations expressed in array notation is carried
out from right to left by going from top to bottom, then again from top
to bottom. For example, let

_{12345]
24351
and
{12345}
Y= ;
54123
then

-------- GG

12345112345
yo = l l _{12345]
42135
54123][24351

On the right we have 4 under 1, since (yo)(1) = y(a(1)) = y(2) = 4,
so yo sends 1 to 4. The remainder of the bottom row yo is obtained in
a similar fashion.

We are now ready to give some examples of permutation groups.

B EXAMPLE 1 Symmetric Group S, Let S, denote the set of all
one-to-one functions from {1, 2, 3} to itself. Then S, under function
composition, is a group with six elements. The six elements are

[123} [123} 5 {123}
E = s o = s o = ,
123 2 31 312
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1 2 3 1 23 1 2 3
32[1 32}’ aﬁ:[z 1 3}’ a25:[32 1]'

1 3
Note that Ba = {3 ) 1] = a’B # af,sothat S, isnon-Abelian.

The relation Ba = a8 can be used to compute other products in S,
without resorting to the arrays. For example, Ba? = (Ba)a = (a*B)a =
a*(Ba) = a*(@’P) = a'B = ap.

Example 1 can be generalized as follows.

B EXAMPLE 2 Symmetric Group S, LetA = {1,2,...,n}. The set
of all permutations of A is called the symmetric group of degree n and is
denoted by S . Elements of S have the form

1 2 n
a = .
a(l) a) ... a)

It is easy to compute the order of S,. There are n choices of a(1). Once
a(1) has been determined, there are n — 1 possibilities for a(2) [since
« is one-to-one, we must have a(1) # «(2)]. After choosing «(2), there
are exactly n — 2 possibilities for «(3). Continuing along in this fashion,
we see that S hasn(n — 1) - - - 3 -2 - 1 = n! elements. We leave it to the
reader to prove that S is non-Abelian when n = 3 (Exercise 45). |

The symmetric groups are rich in subgroups. The group S, has 30
subgroups, and S, has well over 100 subgroups.

I EXAMPLE 3 Symmetries of a Square As a third example, we
associate each motion in D, with the permutation of the locations of each
of the four corners of a square. For example, if we label the four corner
positions as in the figure below and keep these labels fixed for reference,
we may describe a 90° counterclockwise rotation by the permutation

3 2

{1234}
2 3 4 1/

he)
|
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whereas a reflection across a horizontal axis yields

1 23 4
¢_{2143}'

These two elements generate the entire group (that is, every element is
some combination of the p’s and ¢’s).

When D, is represented in this way, we see that it is a subgroup
of §,. |

Cycle Notation

There is another notation commonly used to specify permutations. It is
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permutation

1 23456
21465 3]/

o =

This assignment of values could be presented schematically as follows.

1 3 5
o o
o o
6 4
) \/
o o

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write « = (1, 2)
(3.4, 6)(5). As a second example, consider

|1 23456

53162 4]

In cycle notation, B8 can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2),
since both of these unambiguously specify the function 8. An expres-

sion of the form (a,, a,, . . . , a,) is called a cycle of length m or an
m-cycle.

B
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A multiplication of cycles can be introduced by thinking of a cycle
as a permutation that fixes any symbol not appearing in the cycle.
Thus, the cycle (4, 6) can be thought of as representing the

2 3456

1 23654
by thinking of them as permutations given in array form. Consider the
following example from S.. Let @ = (13)(27)(456)(8) and B =
(1237)(648)(5). (When the domain consists of single-digit integers, it is
common practice to omit the commas between the digits.) What
is the cycle form of aB8? Of course, one could say that a8 =
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that (5) fixes 1; (648) fixes 1;
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13)
fixes 7. So the net effect of o is to send 1 to 7. Thus, we begin
af = (17---)---.Now, repeating the entire process beginning with 7,
we have, cycle by cycle, right to left,

permutation . In this way, we can multiply cycles

To>T->T>1->1->1—>1->3,

so that o = (173 - - -) - - - . Ultimately, we have a8 = (1732)(48)(56).
The important thing to bear in mind when multiplying cycles is to “keep
moving” from one cycle to the next from right to left. (Warning: Some authors
compose cycles from left to right. When reading another text, be sure to
determine which convention is being used.)

To be sure you understand how to switch from one notation to the
other and how to multiply permutations, we will do one more example
of each.

If array notations for a and 3, respectively, are

{12345} {12345]
and s
21354 54123

then, in cycle notation, @ = (12)(3)(45), B = (153)(24), and af3 =
(12)(3)(45)(153)(24).

To put af in disjoint cycle form, observe that (24) fixes 1; (153)
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, @ sends
1 to 4. Continuing in this way we obtain a3 = (14)(253).

One can convert a3 back to array form without converting each
cycle of a3 into array form by simply observing that (14) means 1 goes
to 4 and 4 goes to 1; (253) means 2 - 5,5 — 3,3 — 2.
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One final remark about cycle notation: Mathematicians prefer not to
write cycles that have only one entry. In this case, it is understood that any
missing element is mapped to itself. With this convention, the permutation
a above can be written as (12)(45). Similarly,

_[12345}
*“132415

can be written & = (134). Of course, the identity permutation consists
only of cycles with one entry, so we cannot omit all of these! In this
case, one usually writes just one cycle. For example,

_{12345}
7112345

can be written as € = (5) or € = (1). Just remember that missing
elements are mapped to themselves.

Properties of Permutations

We are now ready to state several theorems about permutations and
cycles. The proof of the first theorem is implicit in our discussion of
writing permutations in cycle form.

I Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a
product of disjoint cycles.

PROOF Let a be a permutation on A = {1, 2, . .., n}. To write « in
disjoint cycle form, we start by choosing any member of A, say a,, and let

a, = a(a,), a, = a(a(a)) = a’(a,),

and so on, until we arrive at a, = a"(a,) for some m. We know that such
an m exists because the sequence a,, a(a,), az(al), . . . must be finite;
so there must eventually be a repetition, say a'(a,) = a/(a,) for some
i and j with i <j. Then a, = a"(a,), where m = j — i. We express this

relationship among a,, a,, . . ., a, as

a=(a;,a,...,a,)" "".

The three dots at the end indicate the possibility that we may not have

exhausted the set A in this process. In such a case, we merely choose
any element b, of A not appearing in the first cycle and proceed to
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create a new cycle as before. That is, we let b, = a(b)), b, = az(bl), and
so on, until we reach b, = ak(bl) for some k. This new cycle will have
no elements in common with the previously constructed cycle. For, if
so, then a(a,) = a/(b,) for some i and j. But then a’~(a,) = b,, and
therefore b, = a, for some 7. This contradicts the way b, was chosen.
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a=(a;,a,...,a)b,b,y....,b) (c,Cy...,C).

In this way, we see that every permutation can be written as a product
of disjoint cycles. 1

I Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a = (a, a,, ..., a,)and B = (b.,b,, ..., b,)
have no entries in common, then o3 = Ba.

PROOF For definiteness, let us say that @ and 8 are permutations of
the set

S={a,ay...,a,b,b,....b,c,c,...,c},

where the ¢’s are the members of S left fixed by both « and B (there
may not be any ¢’s). To prove that 8 = Ba, we must show that (a8)(x) =
(Ba)(x) for all x in S. If x is one of the a elements, say a,, then

(aB)(a) = a(B(a)) = ala) = a;,,

since B fixes all a elements. (We interpret @, | as a, if i = m.) For the
same reason,

(Ba)(a) = Bla(a)) = Bla;,) = a,,,.

Hence, the functions of @3 and Ba agree on the a elements. A similar
argument shows that a3 and Ba agree on the b elements as well.
Finally, suppose that x is a ¢ element, say c,. Then, since both @ and B
fix c elements, we have

(aﬁ)(ci) = a(B(Ci)) = a(ci) = Ci
and
(Ba)(c) = Bla(c)) = B(c) = c,
This completes the proof. |
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In demonstrating how to multiply cycles, we showed that the product
(13)(27)(456)(8)(1237)(648)(5) can be written in disjoint cycle form as
(1732)(48)(56). Is economy in expression the only advantage to writ-
ing a permutation in disjoint cycle form? No. The next theorem shows
that the disjoint cycle form has the enormous advantage of allowing us
to “eyeball” the order of the permutation.

B Theorem 5.3 Order of a Permutation (Ruffini, 1799)

The order of a permutation of a finite set written in disjoint cycle
form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this
yourself.) Next, suppose that o and 3 are disjoint cycles of lengths m
and n, and let k be the least common multiple of m and n. It follows from
Theorem 4.1 that both o and ¥ are the identity permutation £ and, since
a and B commute, (aB)* = a*B¥ is also the identity. Thus, we know by
Corollary 2 to Theorem 4.1 (a* = e implies that lal divides k) that the
order of @3—Ilet us call it ~—must divide k. But then (a8) = /B’ = ¢,
so that o' = B7". However, it is clear that if @ and 8 have no common
symbol, the same is true for o’ and 3/, since raising a cycle to a power
does not introduce new symbols. But, if o’ and 87 are equal and have
no common symbol, they must both be the identity, because every sym-
bol in &’ is fixed by 87 and vice versa (remember that a symbol not ap-
pearing in a permutation is fixed by the permutation). It follows, then,
that both  and n must divide . This means that k, the least common
multiple of m and n, divides # also. This shows that k = 1.

Thus far, we have proved that the theorem is true in the cases
where the permutation is a single cycle or a product of two disjoint
cycles. The general case involving more than two cycles can be han-
dled in an analogous way. |

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permutations and the number of permutations of a particular
order. We demonstrate this in the next two examples.

# EXAMPLE 4 To determine the orders of the 7! = 5040 elements of
S;, we need only consider the possible disjoint cycle structures of the
elements of ;. For convenience, we denote an n-cycle by (n). Then,
arranging all possible disjoint cycle structures of elements of S
according to longest cycle lengths left to right, we have
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Now, from Theorem 5.3 we see that the orders of the elements of S,
are 7,6, 10,5,12,4, 3,2, and 1. To do the same for the 10! = 3628800
elements of S, would be nearly as simple. |

B EXAMPLE 5 We determine the number of elements of S, of order 3.
By Theorem 5.3, we need only count the number of permutations of
the forms (a,a,a,) and (a,a,a,) (a,asa). In the first case consider the
triple a,a,a,. Clearly there are 7 - 6 - 5 such triples. But this product
counts the permutation (a,a,a,) three times (for example, it counts 134,
341, 413 as distinct triples whereas the cycles (134), (341), and (413)
are the same group element). Thus, the number of permutations in S, for
the form (a,a,a,) is (7 - 6 - 5)/3 = 70. For elements of S, of the form
(a,a,a,) (aasa,) there are (7 - 6 - 5)/3 ways to create the first cycle and
(4 - 3 - 2)/3 to create the second cycle but the product of (7 - 6 - 5)/3 and
(4 -3 -2)/3) counts (a,a,a,) (a,asa,) and (a,a.a.)(a,a,a,) as distinct when
they are equal group elements. Thus, the number of elements in S, for the
form (a,a,a,) (a,asa,) is (7 - 6 - 5)(4 - 3 - 2)/(3 - 3 - 2) = 280. This gives
us 350 elements of order 3in S.. |

As we will soon see, it is often greatly advantageous to write a per-
mutation as a product of cycles of length 2—that is, as permutations of
the form (ab) where a # b. Many authors call these permutations trans-
positions, since the effect of (ab) is to interchange or transpose a and b.

Example 6 and Theorem 5.4 show how this can always be done.
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I EXAMPLE 6

(12345) = (15)(14)(13)(12)
(1632)(457) = (12)(13)(16)(47)(45) |

1 Theorem 5.4 Product of 2-Cycles

Every permutation in S,, n > 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(alaZ .. ak)(ble o e bt) . o (CICZ P Cs)'
A direct computation shows that this is the same as

(a,a)(a,a,_,) - - (a,a,)(bb)(b\b, ) - -+ (b)b,)

nree)ee )t (eey).

This completes the proof. |

The decomposition of a permutation into a product of 2-cycles given
in Example 6 and in the proof of Theorem 5.4 is not the only way a per-
mutation can be written as a product of 2-cycles. Although the next
example shows that even the number of 2-cycles may vary from one
decomposition to another, we will prove in Theorem 5.5 (first proved by
Cauchy) that there is one aspect of a decomposition that never varies.

I EXAMPLE?7

(12345) = (54)(53)(52)(51)
(12345) = (54)(52)(21)(25)(23)(13) |

We isolate a special case of Theorem 5.5 as a lemma.
I Lemma

Ife = B,B, - - - B,, where the ’s are 2-cycles, then r is even.

PROOF Clearly, r # 1, since a 2-cycle is not the identity. If r = 2, we
are done. So, we suppose that »r > 2, and we proceed by induction.
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Suppose that the rightmost 2-cycle is (ab). Then, since (i) = (ji), the
product B,_,B, can be expressed in one of the following forms shown
on the right:

e = (ab)(ab),
(ab)(bc) = (ac)(ab),
(ac)(cb) = (bc)(ab),
(ab)(cd) = (cd)(ab).

If the first case occurs, we may delete 8,8, from the original product
to obtaine = B,, - - - B,_,, and therefore, by the Second Principle of
Mathematical Induction, » — 2 is even. In the other three cases, we
replace the form of B,_, B, on the right by its counterpart on the left to
obtain a new product of r 2-cycles that is still the identity, but where
the rightmost occurrence of the integer «a is in the second-from-the-
rightmost 2-cycle of the product instead of the rightmost 2-cycle. We now
repeat the procedure just described with 8,8, |, and, as before, we
obtain a product of (r — 2) 2-cycles equal to the identity or a new product
of r 2-cycles, where the rightmost occurrence of « is in the third 2-cycle
from the right. Continuing this process, we must obtain a product of
(r — 2) 2-cycles equal to the identity, because otherwise we have a prod-
uct equal to the identity in which the only occurrence of the integer a is in the
leftmost 2-cycle, and such a product does not fix a, whereas the identity
does. Hence, by the Second Principle of Mathematical Induction, » — 2 is
even, and r is even as well. |

I Theorem 5.5 Always Even or Always Odd

If a permutation « can be expressed as a product of an even (odd)
number of 2-cycles, then every decomposition of « into a product of
2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a=BB, "B, and a=yy, Y,

where the B’s and the y’s are 2-cycles, then r and s are both even or
both odd.

PROOF Observe that 8,3, - - B, = vy,Yy, * * - v, implies
e=YY, Y8, By B!
=YY, ,),SBV e '32'31’
since a 2-cycle is its own inverse. Thus, the lemma on page 108 guar-

antees that s + r is even. It follows that r and s are both even or both
odd. |
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Definition Evenand Odd Permutations

A permutation that can be expressed as a product of an even number
of 2-cycles is called an even permutation. A permutation that can

be expressed as a product of an odd number of 2-cycles is called an
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be
unambiguously classified as either even or odd. The significance of
this observation is given in Theorem 5.6.

I Theorem 5.6 Even Permutations Form a Group

The set of even permutations in S, forms a subgroup of S,.

PROOF This proof is left to the reader (Exercise 17). |

The subgroup of even permutations in S, arises so often that we give
it a special name and notation.

Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by A, and is
called the alternating group of degree n.

The next result shows that exactly half of the elements of § (n > 1)
are even permutations.

B Theorem 5.7

Forn> 1, A, has order n!/2.

PROOF For each odd permutation «, the permutation (12)« is even and,
by the cancellation property in groups, (12)a # (12)8 when a # . Thus,
there are at least as many even permutations as there are odd ones. On the
other hand, for each even permutation «, the permutation (12)« is odd and
(12)a # (12)8 when a # B. Thus, there are at least as many odd permuta-
tions as there are even ones. It follows that there are equal numbers of
even and odd permutations. Since IS, | = n!, we have IA | = n!/2. |

The names for the symmetric group and the alternating group of degree
n come from the study of polynomials over n variables. A symmetric
polynomial in the variables x, x,, . . ., x_is one that is unchanged under
any transposition of two of the variables. An alternating polynomial is
one that changes signs under any transposition of two of the variables. For
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example, the polynomial x, x,x; is unchanged by any transposition of two
of the three variables, whereas the polynomial (x; —x,)(x, = x3)(x, = x;)
changes signs when any two of the variables are transposed. Since every
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the
product of an even number of transpositions, the alternating polynomials
are those that are unchanged by members of the alternating group.

The alternating groups are among the most important examples of
groups. The groups A, and A, will arise on several occasions in later
chapters. In particular, A has great historical significance.

A geometric interpretation of A, is given in Example 8, and a multi-
plication table for A, is given as Table 5.1.

I EXAMPLE 8 Rotations of a Tetrahedron

The 12 rotations of a regular tetrahedron can be conveniently described
with the elements of A,. The top row of Figure 5.1 illustrates the identity
and three 180° “edge” rotations about axes joining midpoints of two
edges. The second row consists of 120° “face” rotations about axes joining
a vertex to the center of the opposite face. The third row consists of —120°
(or 240°) “face” rotations. Notice that the four rotations in the second row
can be obtained from those in the first row by left-multiplying the four in
the first row by the rotation (123), whereas those in the third row can be
obtained from those in the first row by left-multiplying the ones in the first
row by (132). |

Table 5.1 The Alternating Group A, of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A, are designated as o, @, . . . ,
the table represents «,. For example, a; ag = «.)

a,, and an entry k inside

@ o a @ & & @ G & G G G

MW=a, | 1 2 3 4 5 6 7 8 9 10 11 12
(12)(34) = a, 2 1 4 3 6 5 8 7 10 9 12 11
aHedH=ea, | 3 4 1 2 7 8 5 6 11 12 9 10
aHe)H=e, | 4 3 2 1 8 7 6 5 12 11 10 9
23)=e, | 5 8 6 7 9 12 10 1 1 4 2 3
(243) = a 6 7 5 8 10 11 9 12 2 3 1 4
(142) = a, 7 6 8 5 11 10 12 9 3 2 4 1
B4)=a, | 8 5 7 6 12 9 11 10 4 1 3 2
32)=e, | 9 11 12 10 1 3 4 2 5 7 8 6
4)=a, 10 12 11 9 2 4 3 1 6 8 7 5
@4)=a,| 11 9 10 12 3 1 2 4 7T 5 6 8
249)=a, 12 10 9 11 4 2 1 3 8 6 5 17
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1 1 1 1
) (12)(34) (13)(24) (14)(23)
— A “' \\
5 4 5 b 4 N 4 5 4
3 3 3 3

Figure 5.1 Rotations of a regular tetrahedron.

Many molecules with chemical formulas of the form AB,, such as
methane (CH,) and carbon tetrachloride (CCl,), have A, as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

s

Figure 5.2 Atetrahedral AB, molecule.
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§ EXAMPLE 9 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

By sliding disks from one position to another along the lines indicated
without lifting or jumping them, can we obtain the following arrangement?

To answer this question, we view the positions as numbered in the
first figure above and consider two basic operations. Let r denote the
following operation: Move the disk in position 1 to the center position,
then move the disk in position 6 to position 1, the disk in position 5 to
position 6, the disk in position 4 to position 5, the disk in position 3 to
position 4, then the disk in the middle position to position 3. Let s
denote the operation: Move the disk in position 1 to the center position,
then move the disk in position 2 to position 1, then move the disk in po-
sition 3 to position 2, and finally move the disk in the center to position 3.
In permutation notation, we have r = (13456) and s = (132). The
permutation for the arrangement we seek is (16523). Clearly, if we can
express (16523) as a string of r’s and s’s, we can achieve the desired
arangement. Rather than attempt to find an appropriate combination of
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see
Suggested Software at the end of this chapter). With GAP, all we need to
do is use the following commands:

gap> G := SymmetricGroup(6);
gap>r:= (1,3,4,5,6); s := (1, 3, 2);
gap> K := Subgroup(G,[r,s]);
gap> Factorization(X,(1,6,5,2,3));
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The first three lines inform the computer that our group is the
subgroup of S generated by r = (13456) and s = (132). The fourth
line requests that (16523) be expressed in terms of r and s. If we in-
clude the command

gap> Size (K)

we would find that the order of the subgroup generated by r and s is 360.
Then, observing that r and s are even permutations and that IA | = 360,
we deduce that r and s can achieve any arrangement that corresponds to
an even permutation. |

B Rubik's Cube

The Rubik’s Cube made from 48 cubes called “facets” is the quintes-
sential example of a group theory puzzle. It was invented in 1974 by the
Hungarian Err6 Rubik. By 2009 more than 350 million Rubik’s Cubes
had been sold. The current record time for solving it is under 7 seconds;
under 31 seconds blindfolded. Although it was proved in 1995 that
there was a starting configuration that required at least 20 moves to
solve, it was not until 2010 that it was determined that every cube could
be solved in at most 20 moves. This computer calculation utilized about
35 CPU-years donated by Google to complete. In early discussions
about the minimum number of moves to solve the cube in the worst
possible case, someone called it “God’s number,” and the name stuck.
A history of the quest to find God’s number is given at the website at
http://www.cube20.org/.

The set of all configuration of the Rubik’s Cube form a group of
permutations of order 43,252,003,274,489,856,00. This order can be
computed using GAP by labeling the faces of the cube as shown here.

1 2 3
4 top 5
6 7 8
9 10 11 17 18 19 25 26 27 33 34 35
12 left 13 20 front 21 28 right 29 36 rear 37
14 15 16 22 23 24 30 31 32 38 39 40
41 42 43
44 bottom 45
46 47 48
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The group of permutations of the cube is generated by the following
rotations of the six layers.

top = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)

left = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)

front = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)

right = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)

rear = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)

bottom = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
(16,24,32,40)

A Check-Digit Scheme Based on D,

In Chapter 0, we presented several schemes for appending a check digit
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all
single-digit errors and all transposition errors involving adjacent digits.
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the
dihedral group of order 10 that detects all single-digit errors and all
transposition errors involving adjacent digits without the necessity of
avoiding certain numbers or introducing a new character. To describe
this method, consider the permutation o = (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0
through 4 for the rotations, 5 through 9 for the reflections, and * for the
operation of Ds.)

Table 5.2 Multiplication for D,

* 0 1 2 3

F N
9]
=)}
=2
oo
\©

O 0 1 O N A WN RO
O 00 1 O AW = O
00 N N L\ OO B~ W=
~N N O 00— O B W
AN O 0= O R W
N O 00 1 O\ W~ O B
B LW N = O 0O 0N W
W N = O B O 0
N = O B~ LW O W O 0
— O R WO O o
O B WD = 00 JO WO
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Verhoeff’s idea was to view the digits 0 through 9 as the elements of
the group D, and to replace ordinary addition with calculations done in
Dj. In particular, to any string of digits a,a, . . . a,_,, we append the
check digit a_ so that o (a)) * 0*(a,) * - - - * " a,_,)* 0" a, _,)*
o"(a,) = 0. [Here 0%(x) = o (0 (x)), 0°(x) = o(0?(x)), and s0 on.]
Since o has the property that o/(a) # oi(b) if a # b, all single-digit er-
rors are detected. Also, because

a* o) #bx*o(a) ifa # b, (D)

as can be checked on a case-by-case basis (see Exercise 67), it follows
that all transposition errors involving adjacent digits are detected [since
Equation (1) implies that oi(a) * o'*(b) # oi(b) * " (a) if a # b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeft’s check-digit scheme to append a check digit to the
serial numbers on German banknotes. Table 5.3 gives the values of the
functions o, o2, . . ., o'° needed for the computations. [The functional
value o/ (j) appears in the row labeled with o/ and the column labeled j.]
Since the serial numbers on the banknotes use 10 letters of the alphabet in
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in
Table 5.4.

Table 5.3 Powers of o

0 1 2 3 4 5 6 7 8 9
o 1 5 7 6 2 8 3 0 9 4
o? 5 8 0 3 7 9 6 | 4 2
ol 8 9 1 6 0 4 3 5 2 7
ot 9 4 5 3 1 2 6 8 7 0
o’ 4 2 8 6 5 7 3 9 0 1
ot 2 7 9 3 8 0 6 4 1 5
o’ 7 0 4 6 9 1 3 2 5 8
ob 0 1 2 3 4 5 6 7 8 9
o’ 1 5 7 6 2 8 3 0 9 4
ol 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

A D G K L N S U Y zZ

0 1 2 3 4 5 6 7 8 9
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To any string of digits a,a, . . . a,, corresponding to a banknote serial
number, the check digit a,, is chosen such that o (a,) * 0'2(a2) LIRIEIRNE
a’(ay) * 0'%a,,) * a,, = 0 [instead of o°(a) * 0%(a,) * - -+ * 0'%a,,) *
o'(a,,) = 0 as in the Verhoeff scheme].

To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that o (0) * g2(2) * 03(8) * *(5) * °(3) * d®(6) * g’(8) *
o83 x (N x0T T =1%0%2%2%x6x6%x5%x2%(0*]x*
7 = 0, as it should be. [To illustrate how to use the multiplication table
for Dy, we compute 1 * 0 * 2 %2 = (1 *0)*2%2=1%2%2=
(1%2)x2=3%2=0.]

HE MARK

e
.

ZEHN DEUTS

Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not
distinguish between a letter and its assigned numerical value. Thus, a
substitution of 7 for U (or vice versa) and the transposition of 7 and U
are not detected by the check digit. Moreover, the banknote scheme
does not detect all transpositions of adjacent characters involving the
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by
using the Verhoeff method with D, the dihedral group of order 36, to
assign every letter and digit a distinct value together with an appropri-
ate function o [1]. Using this method to append a check character, all
single-position errors and all transposition errors involving adjacent
digits will be detected.
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When you feel how depressingly
slowly you climb,

it's well to remember that
Things Take Time.

1.

2.

PIET HEIN, “T. T. T.,” Grooks (1966)"*

Let
1 23456 1 23456
“:{213546} and 32[612435}'
Compute each of the following.
a. a!
b. Ba
c. af
Let

_{12345678]%{13_{12345678}
23451786 1387652 4]

Write a, 8, and of3 as
a. products of disjoint cycles;
b. products of 2-cycles.

. Write each of the following permutations as a product of disjoint

cycles.

a. (1235)(413)

b. (13256)(23)(46512)
c. (12)(13)(23)(142)

. Find the order of each of the following permutations.

a. (14)

b. (147)

c. (14762)

d. (aay- - - ap)

. What is the order of each of the following permutations?

. (124)(357)

. (124)(3567)

. (124)(35)

. (124)(357869)
. (1235)(24567)
f. (345)(245)

o0 T

"Hein is a Danish engineer and poet and is the inventor of the game Hex.

*Piet Hein, “T.T.T.,” Grooks (1966) Copyright © Piet Hein Grooks. Reprinted with
kind permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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. What is the order of each of the following permutations?

3{123456]
121546 3

{1234567}

7612345

What is the order of the product of a pair of disjoint cycles of
lengths 4 and 6?

Show that A8 contains an element of order 15.

. What are the possible orders for the elements of S, and A,? What

about A,? (This exercise is referred to in Chapter 25.)

What is the maximum order of any element in A,?

Determine whether the following permutations are even or odd.

a. (135)

b. (1356)

c. (13567)

d. (12)(134)(152)

e. (1243)(3521)

Show that a function from a finite set S to itself is one-to-one if and
only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

Suppose that « is a mapping from a set S to itself and a(a(x)) = x
for all x in S. Prove that « is one-to-one and onto.

Find eight elements in S, that commute with (12)(34)(56). Do they
form a subgroup of S,?

Let n be a positive integer. If n is odd, is an n-cycle an odd or an
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

If « is even, prove that o~ ! is even. If « is odd, prove that ™! is odd.
Prove Theorem 5.6.

In S , let @ be an r-cycle, B an s-cycle, and y a t-cycle. Complete
the following statements: a3 is even if and only if r + sis ... ;
afyisevenifandonlyifr + s + tis....

Let a and B belong to S, . Prove that af3 is even if and only if «
and S are both even or both odd.

Associate an even permutation with the number +1 and an odd
permutation with the number —1. Draw an analogy between the
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers +1 or —1.
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21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.
33.

34.
3s.

36.

37.

38.

Let o be the permutation of the letters A through Z that takes each
letter to the one directly below it in the display following. Write o
in cycle form.
ABCDEFGHIJ KLMNOPQRSTUVWXYZ
HDBGJ ECMILONP FKRUSAWQTVZXY
If @ and B are distinct 2-cycles, what are the possibilities for la831?
Show that if H is a subgroup of § , then either every member of H
is an even permutation or exactly half of the members are even.
(This exercise is referred to in Chapter 25.)
Suppose that H is a subgroup of S _of odd order. Prove that H is a
subgroup of A .
Give two reasons why the set of odd permutations in S, is not a
subgroup.
Let a and 3 belong to S, . Prove that a '8~ 'aB is an even
permutation.
Use Table 5.1 to compute the following.
a. The centralizer of a; = (13)(24)
b. The centralizer of a, = (124)
How many elements of order 5 are in S,?
How many elements of order 4 does S, have? How many elements
of order 2 does S, have?
Prove that (1234) is not the product of 3-cycles.
Let B € S, and suppose B* = (2143567). Find B. What are the
possibilities for B if B € S,?
Let B = (123)(145). Write 8% in disjoint cycle form.
Find three elements o in §, with the property that o’ =
(157)(283)(469).
What cycle is (a,a, - - - a,)~"?
Let G be a group of permutations on a set X. Let a € X and define
stab(a) = {a € G | a(a) = a}. We call stab(a) the stabilizer of a in
G (since it consists of all members of G that leave a fixed). Prove
that stab(a) is a subgroup of G. (This subgroup was introduced by
Galois in 1832.) This exercise is referred to in Chapter 7.
Let B = (1,3,5,7,9,8,6)(2,4,10). What is the smallest positive inte-
ger n for which g* = 737
Let a = (1,3,5,7,9)(2,4,6)(8,10). If ™ is a 5-cycle, what can you
say about m?
Let H= {B € S;1 B(1) = 1 and B(3) = 3}. Prove that H is a sub-
group of S.. How many elements are in H? Is your argument valid
when S is replaced by S, for n = 3?7 How many elements are in H
when S is replaced by A forn = 47
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How many elements of order 5 are there in A?

In S, find a cyclic subgroup of order 4 and a noncyclic subgroup
of order 4.

Suppose that 3 is a 10-cycle. For which integers i between 2 and
10 is B’ also a 10-cycle?

In S, find elements « and B such that lal = 2, I8l = 2, and lafl = 3.
Find group elements « and B in S, such that lal = 3, I8l = 3, and
lafl = 5.

Represent the symmetry group of an equilateral triangle as a group
of permutations of its vertices (see Example 3).

Prove that S, is non-Abelian for all n = 3.

Prove that A is non-Abelian for all n = 4.

Forn=3,let H={B €S, I B(1) =1or2and B(2) = 1 or 2}.
Prove that H is a subgroup of § . Determine |H].

Show that in S, the equation x> = (1234) has no solutions but the
equation x* = (1234) has at least two.

If (ab) and (cd) are distinct 2-cycles in S , prove that (ab) and (cd)
commute if and only if they are disjoint.

Let a be a 2-cycle and B be a t-cycle in S,. Prove that aBa is a
t-cycle.

Use the previous exercise to prove that, if @ and 8 belong to S, and
B is the product of k-cycles of lengths n,, n,, . . ., n,, then aBa!is
the product of k-cycles of lengths n,, n,, . . . n,.

Let o and 3 belong to S . Prove that Ba8~! and « are both even or
both odd.

What is the smallest positive integer n such that S has an element
of order greater than 2n?

Let n be an even positive integer. Prove that A has an element of
order greater than »n if and only if n = 8.

Let n be an odd positive integer. Prove that A has an element of
order greater than 2n if and only if n = 13.

Let n be an even positive integer. Prove that A has an element of
order greater than 2n if and only if n = 14.

Viewing the members of D, as a group of permutations of a square
labeled 1, 2, 3, 4 as described in Example 3, which geometric sym-
metries correspond to even permutations?

Viewing the members of D as a group of permutations of a regular
pentagon with consecutive vertices labeled 1, 2, 3, 4, 5, what geo-
metric symmetry corresponds to the permutation (14253)? Which
symmetry corresponds to the permutation (25)(34)?
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Let n be an odd integer greater than 1. Viewing D, as a group of
permutations of a regular n-gon with consecutive vertices labeled
1,2,...,n, explain why the rotation subgroup of D, is a sub-
group of A .

Let n be an integer greater than 1. Viewing D, as a group of permu-
tations of a regular n-gon with consecutive vertices labeled 1, 2, . . .,
n, determine for which n all the permutations corresponding to re-
flections in D, are even permutations. Hint: Consider the fours
cases for n mod 4.

Show that A has 24 elements of order 5, 20 elements of order 3, and
15 elements of order 2. (This exercise is referred to in Chapter 25.)

Find a cyclic subgroup of A, that has order 4.
Find a noncyclic subgroup of A that has order 4.

Compute the order of each member of A,. What arithmetic rela-
tionship do these orders have with the order of A,?

Show that every element in A for n = 3 can be expressed as a
3-cycle or a product of 3-cycle.

Show that for n = 3, Z(S,) = {e}.

Verify the statement made in the discussion of the Verhoeff check
digit scheme based on D, that a s o(b) # b * o (a) for distinct a and
b. Use this to prove that oi(a) = o*'(b) # oi(b) + o' (a) for all i.
Prove that this implies that all transposition errors involving adjacent
digits are detected.

Use the Verhoeff check-digit scheme based on D to append a
check digit to 45723.

Prove that every element of § (n > 1) can be written as a product
of elements of the form (1k).

(Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order
in which they were given to it. All of the hearts arranged in order
from ace to king were put into the machine, and then the shuffled
cards were put into the machine again to be shuffled. If the cards
emerged in the order 10, 9, Q, 8, K, 3,4, A, 5, J, 6, 2, 7, in what
order were the cards after the first shuffle?

Show that a permutation with odd order must be an even permutation.

Let G be a group. Prove or disprove that H = {g? | g € G} is a sub-
group of G. (Compare with Example 5 in Chapter 3.)
LetH={a’la€S,} and K = {&? | « € S,}. Prove H = A, and
K= A,

LetH = {? | a € §}. Prove H# A,
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Determine integers n for which H = {@ € A, | & = &} is a sub-
group of A,,.

Given that B and 7 are in S, with By = (1432), yB = (1243), and
B(1) = 4, determine 3 and 7.

Why does the fact that the orders of the elements of A, are 1, 2, and
3 imply that IZ(A )l = 1?7

Find five subgroups of S, of order 24.

Find six subgroups of order 60 in S,.

For n > 1, let H be the set of all permutations in S that can be
expressed as a product of a multiple of four transpositions. Show
that H = A .

Shown below are four tire rotation patterns recommended by the
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S, and find the smallest subgroup of S,
that contains these four patterns. Is the subgroup Abelian?

X Tires to
the Driven Axle
Rear Wheel Drive Front Wheel Drive
Vehicles Vehicles
ll ronT ) | oM |
Modified Modified X
X
4 Wheel Drive
Vehicles Alternate Pattern
ll ronT ) | oM |
X Normal

Label the four locations of tires on an automobile with the labels
1,2, 3, and 4, clockwise. Let a represent the operation of switching
the tires in positions 1 and 3 and switching the tires in positions
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is.
Let G be the group of all possible combinations of @ and . How
many elements are in G?

What would be wrong with using the 2-cycle notation (11) instead
of the 1-cycle (1) to indicate that a cycle sends 1 to 1?
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Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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1. J. A. Gallian, “The Mathematics of Identification Numbers,” The College
Mathematics Journal 22 (1991): 194-202.

2. J. Verhoeff, Error Detecting Decimal Codes, Amsterdam: Mathematisch
Centrum, 1969.

Suggested Readings

Douglas E. Ensley, “Invariants Under Actions to Amaze Your Friends,” Math-
ematics Magazine, Dec. 1999: 383-387.

This article explains some card tricks that are based on permutation
groups.
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Dmitry Fomin, “Getting It Together with ‘Polyominoes,”” Quantum,

Nov./Dec. 1991: 20-23.

In this article, permutation groups are used to analyze various sorts of
checkerboard tiling problems.

J. A. Gallian, “Error Detection Methods,” ACM Computing Surveys 28
(1996): 504-517.

This article gives a comprehensive survey of error-detection methods that
use check digits. This article can be downloaded at http://www.d.umn
.edu/~jgallian/detection.pdf

I. N. Herstein and 1. Kaplansky, Matters Mathematical, New York: Chelsea,
1978.

Chapter 3 of this book discusses several interesting applications of permu-
tations to games.

Douglas Hofstadter, “The Magic Cube’s Cubies Are Twiddled by Cubists and
Solved by Cubemeisters,” Scientific American 244 (1981): 20-39.

This article, written by a Pulitzer Prize recipient, discusses the group the-
ory involved in the solution of the Magic (Rubik’s) Cube. In particular,
permutation groups, subgroups, conjugates (elements of the form xyx~!),
commutators (elements of the form xyx~'y™!), and the “always even or
always odd” theorem (Theorem 5.5) are prominently mentioned. At one
point, Hofstadter says, “It is this kind of marvelously concrete illustration
of an abstract notion of group theory that makes the Magic Cube one of
the most amazing things ever invented for teaching mathematical ideas.”
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John O. Kiltinen, Oval Track & Other Permutation Puzzles & Just Enough
Group Theory to Solve Them, Washington, D.C.: Mathematical Association
of America, 2003.

This book and the software that comes with it present the user with an array
of computerized puzzles, plus tools to vary them in thousands of ways. The
book provides the background needed to use the puzzle software to its fullest
potential, and also gives the reader a gentle, not-too-technical introduction to
the theory of permutation groups that is a prerequisite to a full understanding
of how to solve puzzles of this type. The website http://www-instruct.nmu
.edu/math_cs/kiltinen/web/mathpuzzles/ provides resources that expand
upon the book. It also has news about puzzle software—modules that add
functionality and fun to puzzles.

Vladimir Dubrovsky, “Portrait of Three Puzzle Graces,” Quantum, Nov./Dec.
1991: 63-66.

The author uses permutation groups to analyze solutions to the 15 puzzle,
Rubik’s Cube, and Rubik’s Clock.

A. White and R. Wilson, “The Hunting Group,” Mathematical Gazette 79
(1995): 5-16.

This article explains how permutation groups are used in bell ringing.

S. Winters, “Error-Detecting Schemes Using Dihedral Groups,” UMAP
Journal 11, no. 4 (1990): 299-308.

This article discusses error-detection schemes based on D, for odd n.
Schemes for both one and two check digits are analyzed.

Suggested Software

GAP is free for downloading. Versions are available for Unix, Windows,
and Macintosh at:

http://www.gap-system.org
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Augustin Cauchy

You see that little young
man? Well! He will supplant
all of us in so far as we are
mathematicians.
Spoken by Lagrange
to Laplace about the
11-year-old Cauchy

AuGUSTIN Louis CAuCHY was born on
August 21, 1789, in Paris. By the time
he was 11, both Laplace and Lagrange had
recognized Cauchy’s extraordinary talent
for mathematics. In school he won prizes for
Greek, Latin, and the humanities. At the age
of 21, he was given a commission in
Napoleon’s army as a civil engineer. For the
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant
mathematical research on the side.

In 1815, at the age of 26, Cauchy was
made Professor of Mathematics at the Ecole
Polytechnique and was recognized as the
leading mathematician in France. Cauchy
and his contemporary Gauss were among
the last mathematicians to know the whole
of mathematics as known at their time, and
both made important contributions to nearly
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Stock Montage

This stamp was issued by France
in Cauchy’s honor.

every branch, both pure and applied, as well
as to physics and astronomy.

Cauchy introduced a new level of rigor
into mathematical analysis. We owe our
contemporary notions of limit and continu-
ity to him. He gave the first proof of the
Fundamental Theorem of Calculus. Cauchy
was the founder of complex function theory
and a pioneer in the theory of permutation
groups and determinants. His total written
output of mathematics fills 24 large volumes.
He wrote more than 500 research papers
after the age of 50. Cauchy died at the age of
67 on May 23, 1857.

For more information about Cauchy,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Isomorphisms

The basis for poetry and scientific discovery is the ability to comprehend
the unlike in the like and the like in the unlike.

JACOB BRONOWSKI

Motivation

Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . . . ,” whereas the
German says, “Eins, zwei, drei, vier, flinf, . . . ” Are the two doing differ-
ent things? No. They are both counting the objects, but they are using dif-
ferent terminology to do so. Similarly, when one person says, “Two plus
three is five” and another says, “Zwei und drei ist fiinf,” the two are in
agreement on the concept they are describing, but they are using different
terminology to describe the concept. An analogous situation often occurs
with groups; the same group is described with different terminology. We
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R,,), whereas in Chapter 5 we
described the same group by way of permutations of the corners. In both
cases, the underlying group was the symmetries of a square. In Chapter 4,
we observed that when we have a cyclic group of order n generated by «,
the operation turns out to be essentially that of addition modulo #, since
a'a* = d", where k = (r + s) mod n. For example, each of U(43) and U(49)
is cyclic of order 42. So, each has the form (a), where a’a® = a" * 9md42,

Definition and Examples

In this chapter, we give a formal method for determining whether two
groups defined in different terms are really the same. When this is the
case, we say that there is an isomorphism between the two groups. This
notion was first introduced by Galois about 180 years ago. The term
isomorphism is derived from the Greek words isos, meaning “same” or
“equal,” and morphe, meaning “form.” R. Allenby has colorfully
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defined an algebraist as “a person who can’t tell the difference between
isomorphic systems.”

Definition Group Isomorphism -

An isomorphism ¢ from a group G to a group G is a one-to-one map-
ping (or function) from G onto G that preserves the group operation.
That is,

@(ab) = p(a)p(b) for alla, bin G.

If there is an isomorphism from G onto G, we say that G and G are
isomorphic and write G = G.

This definition can be visualized as shown in Figure 6.1. The pairs
of dashed arrows represent the group operations.

P(@)p(b)

Figure 6.1

It is implicit in the definition of isomorphism that isomorphic
groups have the same order. It is also implicit in the definition of
isomorphism that the operation on the left side of the equal sign is that
of G, whereas the operation on the right side is that of G. The four
cases involving - and + are shown in Table 6.1.

Table 6.1
G Operation G Operation Operation Preservation
: ¢la-b) = da) - H(b)
: + ¢la - b) = ¢P(a) + ¢p(b)
+ : ¢la + b) = $(a) - Pp(b)
+ + ¢la +b) = ¢a) + d(b)

There are four separate steps involved in proving that a group G is
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function ¢ from G to G.

Step 2 “1-1.” Prove that ¢ is one-to-one; that is, assume that ¢(a) =
¢(b) and prove that a = b.
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Step 3 “Onto.” Prove that ¢ is onto; that is, for any element g in G,
find an element g in G such that ¢p(g) = g.

Step 4 “O.P.” Prove that ¢ is operation-preserving; that is, show that
¢(ab) = ¢p(a)p(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear
novel is the fourth one. It requires that one be able to obtain the same
result by combining two elements and then mapping, or by mapping
two elements and then combining them. Roughly speaking, this says
that the two processes—operating and mapping—can be done in either
order without affecting the result. This same concept arises in calculus
when we say
lim (f (x) . g(x)) = lim f (x) lim g(x)

or

fg+gw=J3w+J;w.

a a a

Before going any further, let’s consider some examples.

B EXAMPLE 1 Let G be the real numbers under addition and let Gbe
the positive real numbers under multiplication. Then G and G are iso-
morphic under the mapping ¢(x) = 2*. Certainly, ¢ is a function from
G to G. To prove that it is one-to-one, suppose that 2* = 2”. Then log, 2* =
log, 2%, and therefore x = y. For “onto,” we must find for any positive
real number y some real number x such that ¢(x) = y; that is, 2* = y.
Well, solving for x gives log, y. Finally,

P(x +y) =27 =27 2 = h(0)d(y)

for all x and y in G, so that ¢ is operation-preserving as well. |

I EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed, if
a is a generator of the cyclic group, the mapping a* — k is an
isomorphism. Any finite cyclic group (a) of order n is isomorphic
to Z under the mapping a* — k mod n. That these correspondences are
functions and are one-to-one is the essence of Theorem 4.1. Obviously,
the mappings are onto. That the mappings are operation-preserving
follows from Exercise 9 in Chapter O in the finite case and from the
definitions in the infinite case. |
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B EXAMPLE 3 The mapping from R under addition to itself given by
¢(x) = x* is not an isomorphism. Although ¢ is one-to-one and onto, it
is not operation-preserving, since it is not true that (x + y)* = x3 + 3
for all x and y. 1

B EXAMPLE 4 U(10) = Z, and U(5) = Z,. To verify this, one need
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2. |

B EXAMPLE 5 U(10) % U(12). This is a bit trickier to prove. First,
note that x> = 1 for all x in U(12). Now, suppose that ¢ is an isomor-
phism from U(10) onto U(12). Then,

$9) = o3 - 3) = $(3)p(3) = 1

and

d(1) = @1 - 1) = d(Hep(1) = 1.

Thus, ¢(9) = ¢(1), but 9 # 1, which contradicts the assumption that
¢ is one-to-one. |

B EXAMPLE 6 There is no isomorphism from Q, the group of rational
numbers under addition, to Q”, the group of nonzero rational numbers
under multiplication. If ¢ were such a mapping, there would be a ra-
tional number a such that ¢(a) = —1. But then

—1 = ¢(a) = d(za + 30) = dGAPGa) = [dGa).
However, no rational number squared is —1. |

B EXAMPLE 7 Let G = SL(2, R), the group of 2 X 2 real matrices
with determinant 1. Let M be any 2 X 2 real matrix with determinant 1.
Then we can define a mapping from G to G itself by ¢, (A) = MAM ™!
for all A in G. To verify that ¢,, is an isomorphism, we carry out the
four steps.

Step 1 ¢,, is a function from G to G. Here, we must show that ¢, (A) is
indeed an element of G whenever A is. This follows from properties of
determinants:

det (MAM ™) = (det M)(det A)(detM) ' =1-1-1""=1.

Thus, MAM~!is in G.

Step 2 ¢,, is one-to-one. Suppose that ¢, (A) = ¢,(B). Then MAM ™! =
MBM ™! and, by left and right cancellation, A = B.
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Step 3 ¢,, is onto. Let B belong to G. We must find a matrix A in G
such that ¢, (A) = B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM~! = B. But this tells us exactly
what A must be! For we can solve for A to obtain A = M~ 'BM and
verify that ¢, (A) = MAM™' = M(M~'BM)M~' = B.

Step 4 ¢,, is operation-preserving. Let A and B belong to G. Then,

b, (AB) = M(ABYM~" = MA(M~'M)BM~!
= (MAM"YMBM™") = ¢,(A),(B).

The mapping ¢,, is called conjugation by M. |

Cayley’s Theorem

Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

I Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of
permutations that we believe is isomorphic to G. Since G is all we have
to work with, we will have to use it to construct G. For any g in G,
define a function T, from G to G by

7;(x) = gx for all x in G.

(In words, T, is just multiplication by g on the left.) We leave it as an
exercise (Exercise 33) to prove that Tg is a permutation on the set of
elements of G. Now, let G = {7;, | ¢ € G}. Then, G is a group under
the operation of function composition. To verify this, we first observe
that for any g and / in G we have Y;El(x) = Y;(Y;L(x)) = 7;,(hx) = g(hx) =
(gh)x = Tgh(x), so that TgTh = 7;);1- From this it follows that 7, is the
identity and (7;)*1 = 7;,,, (see Exercise 9). Since function composition
is associative, we have verified all the conditions for G to be a group.

The isomorphism ¢ between G and G is now ready-made. For every
g in G, define ¢(g) = T,. If 7; = T,, then 7;(@ = T,(e) or ge = he.
Thus, g = h and ¢ is one-to-one. By the way G was constructed, we
see that ¢ is onto. The only condition that remains to be checked is that
¢ is operation-preserving. To this end, let @ and b belong to G. Then

$(ab) = T, = T.T, = $(a)d(D). i
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The group G constructed previously is called the left regular repre-
sentation of G.

B EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation U(12) for U(12) = {1, 5, 7, 11}. Writing the permutations of
U(12) in array form, we have (remember, 7 is just multiplication by x)

[15711} [15 711}
T1: 5 T5: ’
157 11 51 11 7
1 57 11 157 11
I; = ) I, = .
7 11 1 5 1175 1

It is instructive to compare the Cayley tables for U(12) and its left regu-
lar representation U(12).

vaz | 1 5 7 11 uiz) | T, T, T, T,
1 1 5 7 11 T, | T, T, T, T,
5 5 1 11 7 TS TS Tl Tll T7
7 7 11 1 5 T, | T, T, T, T,
11 11 7 5 1 T, T, T, T, T,

It should be abundantly clear from these tables that U(12) and U(l2)
are only notationally different.

Cayley’s Theorem is important for two contrasting reasons. One is
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted
for a group is the correct abstraction of its much earlier predecessor—a
group of permutations. Indeed, Cayley’s Theorem tells us that abstract
groups are not different from permutation groups. Rather, it is the
viewpoint that is different. It is this difference of viewpoint that has
stimulated the tremendous progress in group theory and many other
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the
case may be, that two particular groups are isomorphic. For example, it
requires somewhat sophisticated techniques to prove the surprising fact
that the group of real numbers under addition is isomorphic to the
group of complex numbers under addition. Likewise, it is not easy to
prove the fact that the group of nonzero complex numbers under
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says that,
as groups, the punctured plane and the unit circle are isomorphic [1].
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Properties of Isomorphisms

Our next two theorems give a catalog of properties of isomorphisms
and isomorphic groups.

I Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢ carries the identity of G to the identity of G.

2. For every integer n and for every group element a in G, ¢(a") =
[¢(@)]".

3. For any elements a and b in G, a and b commute if and only if

¢(a) and ¢(b) commute.

. G = {a) ifand only if G = (¢(a)).

. lal = I¢(a)l for all a in G (isomorphisms preserve orders).

6. For a fixed integer k and a fixed group element b in G, the
equation x* = b has the same number of solutions in G as does
the equation x* = ¢(b) in G.

7. If G is finite, then G and G have exactly the same number of
elements of every order.

wn A

PROOF We will restrict ourselves to proving only properties 1, 2, and 4,
but observe that property 5 follows from properties 1 and 2, property 6
follows from property 2, and property 7 follows from property 5. For
convenience, let us denote the identity in G by e and the identity in G
by e. Then, since e = ee, we have

P(e) = d(ee) = P(e)p(e).

Also, because ¢(¢) € G, we have ¢(e) = e (e), as well. Thus, by can-
cellation, e = ¢(e). This proves property 1.

For positive integers, property 2 follows from the definition of an

isomorphism and mathematical induction. If n is negative, then —n is
positive, and we have from property 1 and the observation about the
positive integer case that e = ¢(e) = P(g"g") = Pp(g)NP(g™) =
b (g")(d(g))~". Thus, multiplying both sides on the right by (¢(g))", we
have (¢(g))" = ¢(g"). Property 1 takes care of the case n = 0.
__ To prove property 4, let G = (a) and note that, by closure, (¢(a)) C
G. Because ¢ is onto, for any element b in G, there is an element a* in
G such that ¢(a*) = b. Thus, b = (¢(a))* and so b € (¢p(a)). This
proves that G = (¢p(a)).

Now suppose that G = (¢(a)). Clearly, (a) C G. For any element
b in G, we have ¢(b) € (¢p(a)). So, for some integer k we have
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d(b) = (Pp(a))f = ¢(d¥). Because ¢ is one-to-one, b = ak. This proves
that (a) = G. |

When the group operation is addition, property 2 of Theorem 6.2 is
¢(na) = ne(a); property 4 says that an isomorphism between two
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C*
and R*. Because the equation x* = 1 has four solutions in C* but only
two in R*, no matter how one attempts to define an isomorphism from
C* to R*, property 6 cannot hold.

I Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢~ 'is an isomorphism from G onto G.

2. G is Abelian if and only if G is Abelian.

3. Gis cyclic if and only if G is cyclic.

4. If K is a subgroup of G, then ¢(K) = {¢p(k) |k E K} isa
subgroup of G.

5. IfK is a subgroup of G, then ¢! (K) = {g € G | p(g) € K} is
a subgroup of G.

6. 4(Z(G)) = Z(G).

PROOF Properties 1 and 4 are left as exercises (Exercises 31 and 32).
Properties 2 and 6 are a direct consequence of property 3 of Theorem 6.2.
Property 3 follows from property 4 of Theorem 6.2 and property 1 of
Theorem 6.3. Property 5 follows from properties 1 and 4. |

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so
that isomorphic groups have all group theoretic properties in common.
By this we mean that if two groups are isomorphic, then any property
that can be expressed in the language of group theory is true for one if
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such
groups equivalent, rather than the same, might be more appropriate, but
we bow to long-standing tradition.

Automorphisms

Certain kinds of isomorphisms are referred to so often that they have
been given special names.
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Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism
of G.

The isomorphism in Example 7 is an automorphism of SL(2, R).
Two more examples follow.

B EXAMPLE 9 The function ¢ from C to C given by ¢(a + bi) =
a — bi is an automorphism of the group of complex numbers under
addition. The restriction of ¢ to C* is also an automorphism of the
group of nonzero complex numbers under multiplication. (See
Exercise 35.) |

B EXAMPLE 10 Let R?> = {(a, b) | a, b € R}. Then ¢(a, b) = (b, a)
is an automorphism of the group R? under componentwise addition.
Geometrically, ¢ reflects each point in the plane across the line y = x.
More generally, any reflection across a line passing through the
origin or any rotation of the plane about the origin is an automor-
phism of R?. |

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of
its own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a € G. The function ¢, defined by ¢ (x) =
axa~! for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that ¢, is actually an automor-
phism of G. (Use Example 7 as a model.)

B EXAMPLE 11 The action of the inner automorphism of D, induced
by R, is given in the following table.

<
B

x — Ry xRy

Ry, — RyRRy' =R,
Ryy = RyRyRoy ' = Ry,
Rigy = RyRigoRoo ' = Ry,
Ryy = RyRyyoRoy ™' = Ry
H - R9OHR907' =V

% - RQOVRQ(;1 =H

D - R90DR9071 =D’

D -

RyD'Ryy ™' =D |
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When G is a group, we use Aut(G) to denote the set of all auto-
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by
the next theorem.

1 Theorem 6.4 Aut(G) and Inn(G) Are Groups’

The set of automorphisms of a group and the set of inner
automorphisms of a group are both groups under the operation of
function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).
|

The determination of Inn(G) is routine. If G = {e, a, b, c. . . .}, then
Inn(G) = {¢,, ¢, ¢, &, .. .}. This latter list may have duplications,
however, since ¢, may be equal to ¢, even though a # b (see Exercise
43). Thus, the only work involved in determining Inn(G) is deciding
which distinct elements give the distinct automorphisms. On the other
hand, the determination of Aut(G) is, in general, quite involved.

I EXAMPLE 12 Inn(D4)
To determine Inn(D,), we first observe that the complete list of inner
automorphisms is ¢ . ¢, b, by . by, Py, G, and ¢ .. Our job is
to determine the repetitions in this list. Since Ry, € Z(D,), we have
br (X)) = RigoxR g "' = x, so that ¢, = ¢, . Also, ¢, (x) =
170%Ry70"" = RogR 150X R 150 'Roy ™! = RygxRy ™! = b (x). Similarly,
since H = R o,V and D' = Ry ,D, we have ¢,, = ¢, and ¢, = ¢,,.
This proves that the previous list can be pared down to quO, (bRgO, by
and ¢,. We leave it to the reader to show that these are distinct
(Exercise 13). |

B EXAMPLE 13 Aut(Z))

To compute Aut(Z, ), we try to discover enough information about an
element a of Aut(Z, ) to determine how a must be defined. Because Z
is so simple, this is not difficult to do. To begin with, observe that once
we know «a(1), we know «a(k) for any k, because

"The group Aut(G) was first studied by O. Holder in 1893 and, independently, by E. H.
Moore in 1894.
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ak)=a(l+1+---+1)

k terms
a(l) + a(l) + -+ - + a(l) = ka(1).

k terms

So, we need only determine the choices for a(1) that make « an
automorphism of Z,,. Since property 5 of Theorem 6.2 tells us that
la(1)l = 10, there are four candidates for a(1):

a(l) =1, a(l) =3, a(l) =17, a(l) =09.

To distinguish among the four possibilities, we refine our notation by
denoting the mapping that sends 1 to 1 by «;, 1 to 3 by a5, 1 to 7 by a,
and 1 to 9 by a,. So the only possibilities for Aut(Z, ) are «,, a;, ,, and
a,. But are all these automorphisms? Clearly, «, is the identity. Let us
check 3. Since x mod 10 = y mod 10 implies 3x mod 10 = 3y mod 10,
a; is well defined. Moreover, because a;(1) = 3 is a generator of Z,, it
follows that a; is onto (and, by Exercise 12 in Chapter 5, it is also one-
to-one). Finally, since a;(a + b) = 3(a + b) = 3a + 3b = ay(a) + a,(b),
we see that «, is operation-preserving as well. Thus, a; € Aut(Z, ). The
same argument shows that «, and «, are also automorphisms.

This gives us the elements of Aut(Z,,) but not the structure. For in-
stance, what is aya,? Well, (a,a;)(1) = a;(3) = 3 -3 =9 = a,(1), so
a,a, = a,. Similar calculations show that «,> = a, and o' = a, s0
that la;| = 4. Thus, Aut(Z, ) is cyclic. Actually, the following Cayley
tables reveal that Aut(Z,) is isomorphic to U(10).

U(10) ‘ 1 3 7 9 Aut(Z,) ‘ a, a, a, a,
1 1 3 7 9 a, a, a, a, a,
3 3 9 1 7 a, a, a, a, a,
7 7 1 9 3 a, a, a, a, a,
9 9 7 3 1 a, a, a a, a,

|

With Example 13 as a guide, we are now ready to tackle the group
Aut(Z)). The result is particularly nice, since it relates the two kinds of
groups we have most frequently encountered thus far—the cyclic
groups Z and the U-groups U(n).

I Theorem 6.5 Aut(Z) =~ U(n)

For every positive integer n, Aut(Z,) is isomorphic to U(n).
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PROOF As in Example 13, any automorphism « is determined by the
value of a(1), and a(1) € U(n). Now consider the correspondence
from Aut(Z ) to U(n) given by T: a — a(1). The fact that a(k) = ka(1)
(see Example 13) implies that 7 is a one-to-one mapping. For if @ and
B belong to Aut(Z)) and a(1) = B(1), then a(k) = ka(1l) = kB(1) =
B(k) for all k in Z , and therefore a = .
To prove that T is onto, let » € U(n) and consider the mapping «

from Z to Z defined by a(s) = sr (mod n) for all s in Z . We leave it as
an exercise to verify that « is an automorphism of Z (see Exercise 27).
Then, since T(«) = (1) = r, Tis onto U(n).

Finally, we establish the fact that 7 is operation-preserving. Let «,
B € Aut(Z)). We then have

T(aB) = (@B)(1) = a(B()) = a(l + 1+ -+ -+ 1)
B()
=a(l) + a(l) + -+ -+ a(l) = a(1)B(1)
B()
= T()T(P).
This completes the proof. |

Being a mathematician is a bit like being a manic depressive: you spend
your life alternating between giddy elation and black despair.
STEVEN G. KRANTZ, A Primer of Mathematical Writing

1. Find an isomorphism from the group of integers under addition to
the group of even integers under addition.
Find Aut(Z).

3. Let R* be the group of positive real numbers under multiplication.
Show that the mapping ¢(x) = Vx is an automorphism of R*.

4. Show that U(8) is not isomorphic to U(10).
Show that U(8) is isomorphic to U(12).

6. Prove that isomorphism is an equivalence relation. That is, for any
groups G, H,and K, G = G, G = Himplies H = G, and G = H and
H = K implies G = K.

7. Prove that S, is not isomorphic to D,,.

g

i

8. Show that the mapping a — log,, a is an isomorphism from R*
under multiplication to R under addition.

9. In the notation of Theorem 6.1, prove that 7 is the identity and
that (Tg)‘1 =T,
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11.
12.
13.

14.
15.
16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

6 | Isomorphisms 139

Let G be a group. Prove that the mapping a(g) = g~ ! forall gin G
is an automorphism if and only if G is Abelian.

If g and h are elements from a group, prove that q’)gq& = (bgh.

Find two groups G and H such that G # H, but Aut(G) = Aut(H).
Prove the assertion in Example 12 that the inner automorphisms
q’)RO, d)R%, ¢,,, and ¢, of D, are distinct.

Find Aut(Z,).

If G is a group, prove that Aut(G) and Inn(G) are groups.

If a group G is isomorphic to H, prove that Aut(G) is isomorphic to
Aut(H).

Suppose ¢ belongs to Aut(Z) and a is relatively prime to n.
If ¢(a) = b, determine a formula for ¢(x).

Let H be the subgroup of all rotations in D, and let ¢ be an auto-
morphism of D . Prove that ¢(H) = H. (In words, an automor-
phism of D, carries rotations to rotations.)

LetH={Be€ S, 1B(1)=1}and K = {B € S, | B(2) = 2}. Prove
that H is isomorphic to K. Is the same true if S is replaced by S ,
where n = 37

Show that Z has infinitely many subgroups isomorphic to Z.

Let n be an even integer greater than 2 and let ¢ be an automor-
phism of D . Determine ¢(R ).

Let ¢ be an automorphism of a group G. Prove that H = {x € G |
¢(x) = x} is a subgroup of G.

Give an example of a cyclic group of smallest order that contains a
subgroup isomorphic to Z,, and a subgroup isomorphic to Z,,. No
need to prove anything, but explain your reasoning.

Suppose that ¢: Z,) — Z, is an automorphism and ¢(5) = 5. What
are the possibilities for ¢(x)?

Identify a group G that has subgroups isomorphic to Z for all pos-
itive integers n.

Prove that the mapping from U(16) to itself given by x — x3 is an
automorphism. What about x — x> and x — x’? Generalize.

Let r € U(n). Prove that the mapping a: Z — Z defined by a(s) =
srmod n for all s in Z is an automorphism of Z . (This exercise is
referred to in this chapter.)

1 a
The group {L) J

ae Z} is isomorphic to what familiar

group? What if Z is replaced by R?
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29.

30.

31.
32.
33.

34.
35.

36.

37.
38.

39.

40.

41.

If ¢ and vy are isomorphisms from the cyclic group <a> to some
group and ¢(a) = y(a), prove that ¢ = 1.

Suppose that ¢: Zs, — Zs, is an automorphism with ¢(11) = 13.
Determine a formula for ¢(x).

Prove property 1 of Theorem 6.3.

Prove property 4 of Theorem 6.3.

Referring to Theorem 6.1, prove that 7;, is indeed a permutation on
the set G.

Prove or disprove that U(20) and U(24) are isomorphic.

Show that the mapping ¢(a + bi) = a — bi is an automorphism of
the group of complex numbers under addition. Show that ¢ pre-
serves complex multiplication as well—that is, ¢(xy) = d(x)d(y)
for all x and y in C. (This exercise is referred to in Chapter 15.)
Let

G = {a + b\V/2 | a, b are rational }

o=l %]

Show that G and H are isomorphic under addition. Prove that G
and H are closed under multiplication. Does your isomorphism
preserve multiplication as well as addition? (G and H are examples
of rings—a topic we will take up in Part 3.)

and

a, b are rational}.

Prove that Z under addition is not isomorphic to Q under addition.
Prove that the quaternion group (see Exercise 4, Supplementary Exer-
cises for Chapters 1-4) is not isomorphic to the dihedral group D,.
Let C be the complex numbers and

=

Prove that C and M are isomorphic under addition and that C* and
M*, the nonzero elements of M, are isomorphic under multiplication.
Let R" = {(a, a,, ..., a,) | a, € R}. Show that the mapping ¢:
(a,,ay, ...,a)— (—a,, —a,, ..., —a,) is an automorphism of
the group R” under componentwise addition. This automorphism
is called inversion. Describe the action of ¢ geometrically.
Consider the following statement: The order of a subgroup divides
the order of the group. Suppose you could prove this for finite
permutation groups. Would the statement then be true for all finite
groups? Explain.

a,bER}.




42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5S.

56.
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Suppose that G is a finite Abelian group and G has no element of
order 2. Show that the mapping g — g? is an automorphism of G.
Show, by example, that there is an infinite Abelian group for which
the mapping g — g is one-to-one and operation-preserving but not
an automorphism.

Let G be a group and let g € G. If z € Z(G), show that the inner
automorphism induced by g is the same as the inner automorphism
induced by zg (that is, that the mappings qﬁg and qﬁzg are equal).
Show that the mapping a — log,, a is an isomorphism from R*
under multiplication to R under addition.

Suppose that g and 4 induce the same inner automorphism of a
group G. Prove that h~'g € Z(G).

Combine the results of Exercises 43 and 45 into a single “if and
only if” theorem.

If x and y are elements in S, (n = 3), prove that ¢ = d)y implies
x = y. (Here, ¢ is the inner automorphism of S induced by x.)

Let ¢ be an isomorphism from a group G to a group G and let a
belong to G. Prove that ¢(C(a)) = C(d(a)).

Suppose the ¢ and y are isomorphisms of some group G to the
same group. Prove that H = {g € G | ¢(g) = y(g)} is a subgroup
of G.

Suppose that 3 is an automorphism of a group G. Prove that H =
{g € GIB*(g) = g} is asubgroup of G. Generalize.

Suppose that G is an Abelian group and ¢ is an automorphism of
G. Prove that H = {x € G | ¢(x) = x~ '} is a subgroup of G.

Given a group G, define a new group G* that has the same
elements as G with the operation * defines by a * b = ba for all
a and b in G*. Prove that the mapping from G to G* defined by
¢(x) = x~ ! for all x in G is an isomorphism from G onto G*.

Let a belong to a group G and let lal be finite. Let ¢, be the auto-
morphism of G given by ¢ (x) = axa™'. Show that I¢ | divides lal.
Exhibit an element a from a group for which 1 <'I¢ | < lal.

Let G = {0, £2, =4, =6, ...} and H = {0, £3, =6, £9, .. .}.
Show that G and H are isomorphic groups under addition. Does
your isomorphism preserve multiplication? Generalize to the case
when G = (m) and H = (n), where m and n are integers.

Suppose that ¢ is an automorphism of D, such that ¢(Rqy) = Ry
and ¢(V) = V. Determine ¢(D) and ¢(H).

In Aut(Z,), let «; denote the automorphism that sends 1 to i where
ged(i, 9) = 1. Write a and ag as permutations of {0, 1, ..., 8} in
disjoint cycle form. [For example, o, = (0)(124875)(36).]




142 Groups

57.

S8.

59.

60.

61.

62.

63.

Write the permutation corresponding to Ry, in the left regular rep-
resentation of D, in cycle form.

Show that every automorphism ¢ of the rational numbers Q under
addition to itself has the form ¢(x) = x¢p(1).

Prove that Q, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

Prove that Q, the group of rational numbers under addition, is not
isomorphic to a proper subgroup of itself.

Prove that every automorphism of R*, the group of nonzero real
numbers under multiplication, maps positive numbers to positive
numbers and negative numbers to negative numbers.

Let G be a finite group. Show that in the disjoint cycle form of the
right regular representation T,(x) = xg of G, each cycle has
length |g|.

Give a group theoretic proof that Q under addition is not isomor-
phic to R* under multiplication.

Reference

1.

J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit
Circle,” Journal of Number Theory 1 (1969): 500-501.

Computer Exercises

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

Copyright 2012 Cengage Learning. All Rights Reserved. May not be cop
e third party content may be suppressed from the eBook and/or eChapter(s).



http://www.d.umn.edu/~jgallian

Arthur Cayley

Cayley is forging the weapons for future
generations of physicists.

PETER TAIT

ARTHUR CAYLEY was born on August 16,
1821, in England. His genius showed itself at
an early age. He published his first research
paper while an undergraduate of 20, and in
the next year he published eight papers.
While still in his early 20s, he originated the
concept of n-dimensional geometry.

After graduating from Trinity College,
Cambridge, Cayley stayed on for three years
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period,
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent
the rest of his life in that position. One of his
notable accomplishments was his role in the
successful effort to have women admitted to
Cambridge.

The Granger Collection, New York

Among Cayley’s many innovations in
mathematics were the notions of an abstract
group and a group algebra, and the matrix
concept. He made major contributions to
geometry and linear algebra. Cayley and his
lifelong friend and collaborator J. J. Sylvester
were the founders of the theory of invariants,
which was later to play an important role in
the theory of relativity.

Cayley’s collected works comprise 13
volumes, each about 600 pages in length.
He died on January 26, 1895.

To find more information about Cayley,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Cosets and Lagrange’s

Theorem

It might be difficult, at this point, for students to see the extreme
importance of this result [Lagrange’s Theorem]. As we penetrate the subject
more deeply they will become more and more aware of its basic character.

I. N. HERSTEIN, Topics in Algebra

Properties of Cosets

144

In this chapter, we will prove the single most important theorem in finite
group theory—Lagrange’s Theorem. In his book on abstract algebra,
I. N. Herstein likened it to the ABC’s for finite groups. But first we in-
troduce a new and powerful tool for analyzing a group—the notion of a
coset. This notion was invented by Galois in 1830, although the term
was coined by G. A. Miller in 1910.

Definition Cosetof Hin G

Let G be a group and let H be a nonempty subset of G. For any a € G,
the set {ah | h € H} is denoted by aH. Analogously, Ha = {ha | h € H}
and aHa™ ! = {aha™! | h € H}. When H is a subgroup of G, the set aH is
called the left coset of H in G containing a, whereas Ha is called the right
coset of H in G containing a. In this case, the element a is called the coset
representative of aH (or Ha). We use laH| to denote the number of ele-
ments in the set aH, and |Hal to denote the number of elements in Ha.

B EXAMPLE1 Let G = §;and H = {(1), (13)}. Then the left cosets of
Hin G are

(DH = H,
(12)H = {(12), (12)(13)} = {(12), (132)} = (132)H,
(I13)H = {(13), (D} = H
(23)H = {(23), (23)(13)} = {(23), (123)} = (123)H. |
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B EXAMPLE 2 Let ¥ = {R, R ,} in D,, the dihedral group of order 8.
Then,

R =K,
Ryl = {Rgy Ryzo} = Ryt
R oK = {R g0 R)} = K,

VIt = [V, H} = HY,
D¥ = {D,D'} = D'¥. N

B EXAMPLE3 Let H = {0, 3, 6} in Z, under addition. In the case that
the group operation is addition, we use the notation a + H instead of
aH. Then the cosets of H in Z, are

0+H=1{0,3,6)=3+H=6+H,
l+H={1,4,7)=4+H=7+H,
2+ H=1{2,58=5+H=8+H. I

The three preceding examples illustrate a few facts about cosets that
are worthy of our attention. First, cosets are usually not subgroups.
Second, aH may be the same as bH, even though a is not the same as b.
Third, since in Example 1 (12)H = {(12), (132)} whereas H(12) =
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does
aH = bH? Do aH and bH have any elements in common? When does
aH = Ha?? Which cosets are subgroups? Why are cosets important? The
next lemma and theorem answer these questions. (Analogous results
hold for right cosets.)

I Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

a € aH.

aH = H ifand only ifa € H.

(ab)H = a(bH) and H(ab) = (Ha)b.

aH = bH if and only if a € bH.

aH = bH or aH N bH = .

aH = bH if and only if a~'b € H.

laH| = |bH|.

aH = Ha if and only if H = aHa .

aH is a subgroup of G if and only if a € H.

=

LRAANLE LD

PROOF

1. a = ae € aH.
2. To verify property 2, we first suppose that aH = H. Then a =
ae € aH = H. Next, we assume that ¢ € H and show that aH C H
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and H C aH. The first inclusion follows directly from the closure of
H.To show that H C aH, let h € H. Then, sincea € Hand h € H, we
know that a='h € H. Thus, h = eh = (aa"Yh = a(a™'h) € aH.

. This follows directly from (ab)h = a(bh) and h(ab) = (ha)b.

. If aH = bH, then a = ae € aH = bH. Conversely, if a € bH we have

a = bh where h € H, and therefore aH = (bh)H = b(hH) = bH.

5. Property 5 follows directly from property 4, for if there is an ele-
ment ¢ in aH N bH, then cH = aH and cH = bH.

6. Observe that aH = bH if and only if H = a~'bH. The result now
follows from property 2.

7. To prove that laH| = |bH|, it suffices to define a one-to-one map-
ping from aH onto bH. Obviously, the correspondence ah — bh
maps aH onto bH. That it is one-to-one follows directly from the
cancellation property.

8. Note that aH = Ha if and only if (aH)a™! = (Ha)a™' = H(aa™") =
H—that is, if and only if aHa™' = H.

9. If aH is a subgroup, then it contains the identity e. Thus, aH N
eH # (J; and, by property 5, we have aH = eH = H. Thus, from
property 2, we have a € H. Conversely, if a € H, then, again by
property 2, aH = H. |

=~ W

Although most mathematical theorems are written in symbolic form,
one should also know what they say in words. In the preceding lemma,
property 1 says simply that the left coset of H containing a does contain a.
Property 2 says that the H “absorbs” an element if and only if the element
belongs to H. Property 3 says that the left coset of H created by multiply-
ing H on the left by ab is the same as the one created by multiplying H on
the left by b then multiplying the resulting coset bH on the left by a (and
analogously for multiplication on the right by ab). Property 4 shows that a
left coset of H is uniquely determined by any one of its elements. In par-
ticular, any element of a left coset can be used to represent the coset.
Property 5 says—and this is very important—that two left cosets of H are
either identical or disjoint. Thus, a left coset of H is uniquely determined
by any one of its elements. In particular, any element of a left coset can be
used to represent the coset. Property 6 shows how we may transfer a ques-
tion about equality of left cosets of H to a question about H itself and vice
versa. Property 7 says that all left cosets of H have the same size. Property
8 is analogous to property 6 in that it shows how a question about the
equality of the left and right cosets of H containing a is equivalent to a
question about the equality of two subgroups of G. The last property of the
lemma says that H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 5, and 7 of the lemma guarantee that the
left cosets of a subgroup H of G partition G into blocks of equal size.
Indeed, we may view the cosets of H as a partitioning of G into
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equivalence classes under the equivalence relation defined by a ~ b
if aH = bH (see Theorem 0.7).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is
3-space R® and H is a plane through the origin, then the coset (a, b, ¢) +
H (addition is done componentwise) is the plane passing through the
point (a, b, ¢) and parallel to H. Thus, the cosets of H constitute a parti-
tion of 3-space into planes parallel to H. If G = GL(2, R) and
H = SL(2, R), then for any matrix A in G, the coset AH is the set of all
2 X 2 matrices with the same determinant as A. Thus,

2
[0 (1)] H is the set of all 2 X 2 matrices of determinant 2

and

21

Property 5 of the lemma is useful for actually finding the distinct
cosets of a subgroup. We illustrate this in the next example.

1 2
[ } H is the set of all 2 X 2 matrices of determinant —3.

B EXAMPLE 4 To find the cosets of H = {1, 15} in G = U(32) =
{1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, we begin with
H = {1, 15}. We can find a second coset by choosing any element not
in H, say 3, as a coset representative. This gives the coset 3H = {3, 13}.
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset SH =
{5, 11}. We continue to form cosets by picking elements from U(32)
that have not yet appeared in the previous cosets as representatives of
the cosets until we have accounted for every element of U(32). We then
have the complete list of all distinct cosets of H. |

Lagrange’s Theorem and Consequences

We are now ready to prove a theorem that has been around for more
than 200 years—Ilonger than group theory itself! (This theorem was not
originally stated in group theoretic terms.) At this stage, it should come
as no surprise.

B Theorem 7.1 Lagrange’s Theorem': |H| Divides |G|

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover, the number of distinct left (right) cosets of H in G is |G|/|1H|.

fLagrange stated his version of this theorem in 1770, but the first complete proof was
given by Pietro Abbati some 30 years later.
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PROOF LetaH, a,H, ..., aH denote the distinct left cosets of H in
G. Then, for each a in G, we have aH = a,H for some i. Also, by prop-
erty 1 of the lemma, a € aH. Thus, each member of G belongs to one
of the cosets a,H. In symbols,

G=aqHU:---UaH.
Now, property 5 of the lemma shows that this union is disjoint, so that
|Gl = la,H! + la,Hl + -+ -+ la HI.

Finally, since la,H| = |H| for each i, we have |G| = rlHI. |

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of
the subgroups of a group. Thus, a group of order 12 may have subgroups
of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse of La-
grange’s Theorem is false. For example, a group of order 12 need not
have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of
left (or right) cosets of a subgroup in a group. The index of a subgroup
H in G is the number of distinct left cosets of H in G. This number
is denoted by IG:HI. As an immediate consequence of the proof of
Lagrange’s Theorem, we have the following useful formula for the
number of distinct left (or right) cosets of H in G.

1 Corollary 1 |G:H| = |G|/|H]|
If G is a finite group and H is a subgroup of G, then |G:H| = |G|/|H|.
1 Corollary 2 |a| Divides |G|

In a finite group, the order of each element of the group divides the
order of the group.

PROOF Recall that the order of an element is the order of the subgroup
generated by that element. |

1 Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.




7 | Cosetsand Lagrange’s Theorem 149

PROOF Suppose that G has prime order. Let a € G and a # e. Then,
I{a)| divides |G| and I{a)! # 1. Thus, I{a)l = |G| and the corollary
follows. |

i Corollary 4 al°l=¢

Let G be a finite group, and let a € G. Then, a'°' = e.

PROOF By Corollary 2, |G| = lalk for some positive integer k. Thus,
aIG\ — alalk — ek =e. |

I Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, a’? mod p = a mod p.

PROOF By the division algorithm, a = pm + r, where 0 = r < p.
Thus, a mod p = r, and it suffices to prove that ¥’ mod p = r. If r = 0,
the result is trivial, so we may assume that r € U(p). [Recall that
U(p) = {1,2,...,p — 1} under multiplication modulo p.] Then, by the
preceding corollary, r»~! mod p = 1 and, therefore, r” mod p = r. |

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the
number p = 2?7 — 1. If p is prime, then we know from Fermat’s Little
Theorem that 10” mod p = 10 mod p and, therefore, 107*! mod p =
100 mod p. Using multiple precision and a simple loop, a computer
was able to calculate 107! mod p = 10 mod p in a few seconds.
The result was not 100, and so p is not prime.

B EXAMPLE 5 The Converse of Lagrange’s Theorem Is False.t
The group A, of order 12 has no subgroups of order 6. To verify this,
recall that A, has eight elements of order 3 (a; through «,,, in the notation
of Table 5.1) and suppose that H is a subgroup of order 6. Let a be any
element of order 3in A,. If a is notin H, then A, = H U aH. But then
a?isin H or a?is in aH. If a? is in H then so is (a?)* = a* = a, so this case
is ruled out. If @? is in aH, then a> = ah for some A in H, but this also im-
plies that @ is in H. This argument shows that any subgroup of A, of order
6 must contain all eight elements of A, of order 3, which is absurd. |

"The first counterexample to the converse of Lagrange’s Theorem was given by Paolo
Ruffini in 1799.
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Lagrange’s Theorem demonstrates that the finiteness of a group im-
poses severe restrictions on the possible orders of subgroups. The next
theorem also places powerful limits on the existence of certain sub-
groups in finite groups.

B Theorem 7.2 |HKI| = |HIIKI/IH N K|

For two finite subgroups H and K of a group, define the set
HK = {hk | h € H, k € K}. Then |HK| = |HIIK|/\H N K.

PROOF Although the set HK has |HIIK| products, not all of these
products need represent distinct group elements. That is, we may have
hk = h'k’ where h # h' and k # k'. To determine |HKI, we must find
the extent to which this happens. For every # in H N K, the product hk
= (ht)(t"'k), so each group element in HK is represented by at least
|H N K| products in HK. But hk = h’k’ implies t = h™'h' = kk' ' € H
N K, so that i’ = hr and k' = ¢~ 'k. Thus, each element in HK is repre-
sented by exactly IH N K| products. So, |[HK| = |HIIKI/N H N K. |

B EXAMPLE 6 A group of order 75 can have at most one subgroup of
order 25. (It is shown in Chapter 24 that every group of order 75 has a
subgroup of order 25). To see that a group of order 75 cannot have two
subgroups of order 25, suppose H and K are two such subgroups. Since
I[H N Kl divides |HI = 25 and |[H N Kl = 1 or 5 results in |HK| =
IHIIKIN HN Kl =25-25/ HN Kl = 625 or 125 elements, we have
that |[H N K| = 25 and therefore H = K. |

For any prime p > 2, we know that Z,, and D are nonisomorphic
groups of order 2p. This naturally raises the question of whether there
could be other possible groups of these orders. Remarkably, with just
the simple machinery available to us at this point, we can answer this
question.

I Theorem 7.3 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then
G is isomorphic to Z, » OT D -

PROOF We assume that G does not have an element of order 2p and
show that G = Dp. We begin by first showing that G must have an
element of order p. By our assumption and Lagrange’s Theorem, any
nonidentity element of G must have order 2 or p. Thus, to verify our as-
sertion, we may assume that every nonidentity element of G has order 2.
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In this case, we have for all « and b in the group ab = (ab)™' = b~ 'a™' = ba,
so that G is Abelian. Then, for any nonidentity elements a, b € G with
a # b, theset {e, a, b, ab} is closed and therefore is a subgroup of G of
order 4. Since this contradicts Lagrange’s Theorem, we have proved
that G must have an element of order p; call it a.

Now let b be any element not in {(a). Then by Lagrange’s Theorem
and our assumption that G does not have an element of order 2p, we
have that 15| = 2 or p. Because I{a) N (b)| divides [{a)| = p and {(a) # {(b)
we have that I{a) N (b)| = 1. But then Ibl = 2, for otherwise, by Theorem
7.2 KaXb)l=Ka)l{b)l = p> > 2p = IGI, which is impossible. So, any
element of G not in {(a) has order 2.

Next consider ab. Since ab & (a), our argument above shows that
labl = 2. Then ab = (ab)™' = b~'a™!' = ba~!. Moreover, this relation
completely determines the multiplication table for G. [For example,
a*(ba*) = a¥(ab)a* = a*(ba Ya* = a(ab)a® = a(ba™"a® = (ab)a®> =
(ba—"a* = ba.] Since the multiplication table for all noncyclic groups
of order 2p is uniquely determined by the relation ab = ba™!, all
noncyclic groups of order 2p must be isomorphic to each other. But of
course, D , the dihedral group of order 2p, is one such group. |

As an immediate corollary, we have that the non-Abelian groups S,
the symmetric group of degree 3, and GL(2, Z,), the group of 2 X 2
matrices with nonzero determinants with entries from Z, (see Example
19 and Exercise 51 in Chapter 2) are isomorphic to D,.

An Application of Cosets
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the
fruitfulness of the coset concept. We next consider an application of
cosets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stab (i) =
{$ € G 1 ¢() = i}. We call stab (i) the stabilizer of i in G.

The student should verify that stab,(i) is a subgroup of G. (See
Exercise 35 in Chapter 5.)

Definition Orbit of a Point

Let G be a group of permutations of a set S. For each s in S, let orb(s) =
{$(s) | ¢ € G}. The set orb(s) is a subset of S called the orbit of s
under G. We use lorb (s)| to denote the number of elements in orb (s).
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Example 7 should clarify these two definitions.
I EXAMPLE 7 Let

G = {(1), (132)(465)(78), (132)(465), (123)(456),
(123)(456)(78), (78)}.

Then,

orb,(1) = {1, 3,2}, staby(1) = {(1), (78)},
orb,(2) = {2, 1, 3}, stab,(2) = {(1), (78)},
orb,(4) = {4,6,5}, stab(4) = {(1), (78)},
orb,(7) = {7, 8}, stab,(7) = {(1), (132)(465), (123)(456)}. &
B EXAMPLE 8 We may view D, as a group of permutations of a

square region. Figure 7.1(a) illustrates the orbit of the point p under D,,
and Figure 7.1(b) illustrates the orbit of the point g under D,. Observe

that stab,, (p) = {R,, D}, whereas stab,, (¢) = {R,}. |
4 4
P ° L] [ ] .
L) L]
L Y] °
(a) (b)
Figure 7.1

The preceding two examples also illustrate the following theorem.
I Theorem 7.4 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for
any i from S, |G| = lorb(i)! Istab(i)!.

PROOF By Lagrange’s Theorem, IGl/Istab(i)! is the number of dis-
tinct left cosets of stab(i) in G. Thus, it suffices to establish a one-
to-one correspondence between the left cosets of stab,(i) and the
elements in the orbit of i. To do this, we define a correspondence T
by mapping the coset ¢stab(i) to ¢(i) under 7. To show that T'is a well-
defined function, we must show that astab (i) = Bstab (i) implies a(i) =
B(i). But astab,(i) = Bstab,(i) implies a’'B e stab,(i), so that
(a”'B) (i) = i and, therefore, B(i) = a(i). Reversing the argument from
the last step to the first step shows that 7 is also one-to-one. We conclude
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the proof by showing that Tis onto orb,(i). Let j € orb(i). Then a(i) = j
for some a € G and clearly T(astab(i)) = a(i) = j, so that T'is onto.

We leave as an exercise the proof of the important fact that the orbits
of the elements of a set S under a group partition S (Exercise 43).

The Rotation Group of a Cube
and a Soccer Ball

It cannot be overemphasized that Theorem 7.4 and Lagrange’s Theorem
(Theorem 7.1) are counting theorems.” They enable us to determine the
numbers of elements in various sets. To see how Theorem 7.4 works, we
will determine the order of the rotation group of a cube and a soccer ball.
That is, we wish to find the number of essentially different ways in
which we can take a cube or a soccer ball in a certain location in space,
physically rotate it, and then have it still occupy its original location.

B EXAMPLE 9 Let G be the rotation group of a cube. Label the six
faces of the cube 1 through 6. Since any rotation of the cube must carry
each face of the cube to exactly one other face of the cube and different
rotations induce different permutations of the faces, G can be viewed as
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is
some rotation about a central horizontal or vertical axis that carries face
number 1 to any other face, so that lorb, (1)l = 6. Next, we consider
stab(1). Here, we are asking for all rotations of a cube that leave face
number 1 where it is. Surely, there are only four such motions—
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to
the face and passing through its center (see Figure 7.2). Thus, by
Theorem 7.4, |Gl = lorb(1)! Istab (1)l = 6 - 4 = 24. |

A
I
I
I

P

Figure 7.2 Axis of rotation of a cube.
Now that we know how many rotations a cube has, it is simple to de-

termine the actual structure of the rotation group of a cube. Recall that
S, is the symmetric group of degree 4.

“People who don’t count won’t count” (Anatole France).
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I Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S,,.

PROOF Since the group of rotations of a cube has the same order as
S,, we need only prove that the group of rotations is isomorphic to a
subgroup of §,. To this end, observe that a cube has four diagonals and
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations
correspond to different permutations. To see that this is so, all we need
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious
that there is a 90° rotation that yields the permutation o = (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields
the permutation 8 = (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup
(e, a, &2, o, B2, BPa, B*a?, B*a’} (see Exercise 63) and af3, which has
order 3. Clearly, then, the rotations yield all 24 permutations, since the
order of the rotation group must be divisible by both 8 and 3. |

B EXAMPLE 10 A traditional soccer ball has 20 faces that are regular
hexagons and 12 faces that are regular pentagons. (The technical term
for this solid is truncated icosahedron.) To determine the number of ro-
tational symmetries of a soccer ball using Theorem 7.4, we may choose
our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is
the set of 12 pentagons. Since any pentagon can be carried to any other

|
2 t 1
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Figure7.3
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pentagon by some rotation, the orbit of any pentagon is S. Also, there
are five rotations that fix (stabilize) any particular pentagon. Thus, by
the Orbit-Stabilizer Theorem, there are 12 - 5 = 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is
isomorphic to Ag.) |

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto
caused tremendous excitement in the scientific community when they
created a new form of carbon by using a laser beam to vaporize graphite.
The structure of the new molecule was composed of 60 carbon atoms
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery
“buckyballs.” Buckyballs are the roundest, most symmetric large mole-
cules known. Group theory has been particularly useful in illuminating
the properties of buckyballs, since the absorption spectrum of a molecule
depends on its symmetries and chemists classify various molecular states
according to their symmetry properties. The buckyball discovery spurred
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto
received the Nobel Prize in chemistry for their discovery.

An Application of Cosets
to the Rubik’s Cube

Recall from Chapter 5 that in 2010 it was proved via a computer com-
putation, which took 35 CPU-years to complete, that every Rubik’s
cube could be solved in at most 20 moves. To carry out this effort, the
research team of Morley Davidson, John Dethridge, Herbert Kociemba,
and Tomas Rokicki applied a program of Rokicki, which built on early
work of Kociemba, that checked the elements of the cosets of a sub-
group H of order (8! - 8! - 4!)/2 = 19,508,428,800 to see if each cube in
a position corresponding to the elements in a coset could be solved
within 20 moves. In the rare cases where Rokicki’s program did not
work, an alternate method was employed. Using symmetry consider-
ations, they were able to reduce the approximately 2 billion cosets of H
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to about 56 million cosets for testing. Cosets played a role in this effort
because Rokicki’s program could handle the 19.5+ billion elements in
the same coset in about 20 seconds.

I don’t know, Marge. Trying is the first step towards failure.

o

10.

11.

12.

13.

14.

HOMER SIMPSON

. Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of

Hin A, (see Table 5.1 on page 111).

Let H be as in Exercise 1. How many left cosets of H in §, are
there? (Determine this without listing them.)

Let H= {0, £3, £6, £9, .. .}. Find all the left cosets of H in Z.
Rewrite the condition @~ 'b € H given in property 5 of the lemma on
page 145 in additive notation. Assume that the group is Abelian.

Let H be as in Exercise 3. Use Exercise 4 to decide whether or not
the following cosets of H are the same.

a. 11+ Hand 17 + H

b. -1 +Hand5+ H

¢. 7+ Hand23 + H

Let n be a positive integer. Let H = {0, £n, *=2n, £3n, .. .}. Find
all left cosets of H in Z. How many are there?

Find all of the left cosets of {1, 11} in U(30).

Suppose that a has order 15. Find all of the left cosets of (a°) in {a).
Let lal = 30. How many left cosets of (a*) in (a) are there? List them.
Give an example of a group G and subgroups H and K such that
HK = {h € H, k € K} is not a subgroup of G.

If H and K are subgroups of G and g belongs to G, show that
g(HN K)=gHN gk.

Let a and b be nonidentity elements of different orders in a group

G of order 155. Prove that the only subgroup of G that contains
a and b is G itself.

Let H be a subgroup of R, the group of nonzero real numbers un-
der multiplication. If R* C H C R, prove that H = R* or H = R".
Let C” be the group of nonzero complex numbers under multiplica-
tion and let H = {a + bi € C*| a®> + b*> = 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the
coset (¢ + di)H.
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20.
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22.
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24,

25.

26.

27.

28.

29,

30.
31.

32,
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Let G be a group of order 60. What are the possible orders for the
subgroups of G?

Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If IK| = 42 and |G| = 420, what are the possible orders
of H?

Let G be a group with |G| = pg, where p and g are prime. Prove
that every proper subgroup of G is cyclic.

Recall that, for any integer n greater than 1, ¢p(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove
that if @ is any integer relatively prime to n, then a®* mod n = 1.
Compute 5 mod 7 and 7"3 mod 11.

Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove
that the order of U(n) is even when n > 2.

Suppose G is a finite group of order n and m is relatively prime to n.
If g € Gand g" = e, prove that g = e.

Suppose H and K are subgroups of a group G. If [Hl = 12 and
Kl = 35, find IH N KI. Generalize.

Suppose that H is a subgroup of §, and that H contains (12) and
(234). Prove that H = §,.

Suppose that H and K are subgroups of G and there are elements
a and b in G such that aH < bK. Prove that H € K.

Suppose that G is an Abelian group with an odd number of elements.
Show that the product of all of the elements of G is the identity.
Suppose that G is a group with more than one element and G has
no proper, nontrivial subgroups. Prove that |Gl is prime. (Do not
assume at the outset that G is finite.)

Let IGI = 15. If G has only one subgroup of order 3 and only one
of order 5, prove that G is cyclic. Generalize to |G| = pq, where p
and g are prime.

Let G be a group of order 25. Prove that G is cyclic or g° = e for
all g in G. Generalize to any group of order p?> where p is prime.
Does your proof work for this generalization?

Let IGl = 33. What are the possible orders for the elements of G?
Show that G must have an element of order 3.

Let IG| = 8. Show that G must have an element of order 2.

Can a group of order 55 have exactly 20 elements of order 117
Give a reason for your answer.

Determine all finite subgroups of C*, the group of nonzero com-
plex numbers under multiplication.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

Let H and K be subgroups of a finite group G with H C K C G.
Prove that IG:HI = |G:K| IK:H|.

Suppose that a group contains elements of orders 1 through 10.
What is the minimum possible order of the group?

Give an example of the dihedral group of smallest order that con-
tains a subgroup isomorphic to Z,, and a subgroup isomorphic to
Z,,- No need to prove anything, but explain your reasoning.

Show that in any group of order 100, either every element has order
that is a power of a prime or there is an element of order 10.

Suppose that a finite Abelian group G has at least three elements of
order 3. Prove that 9 divides IGl.

Prove that if G is a finite group, the index of Z(G) cannot be prime.
Find an example of a subgroup H of a group G and elements a and
b in G such that aH # Hb and aH N Hb # ¢. (Compare with prop-
erty 5 of cosets.)

Prove that a group of order 63 must have an element of order 3.

Let G be a group of order 100 that has a subgroup H of order 25.
Prove that every element of G of order 5 is in H.

Let G be a group of order n and k be any integer relatively prime to
n. Show that the mapping from G to G given by g — g* is one-to-
one. If G is also Abelian, show that the mapping given by
g — ¢*is an automorphism of G.

Let G be a group of permutations of a set S. Prove that the orbits of
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

Prove that every subgroup of D, of odd order is cyclic.

Let G = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13),
(14)(23), (24)(56)}.

a. Find the stabilizer of 1 and the orbit of 1.

b. Find the stabilizer of 3 and the orbit of 3.

c. Find the stabilizer of 5 and the orbit of 5.

Prove that a group of order 12 must have an element of order 2.
Show that in a group G of odd order, the equation x> = a has a
unique solution for all a in G.

Let G be a group of order pgr, where p, g, and r are distinct primes.
If H and K are subgroups of G with |HI = pqg and IK| = gr, prove
that |[H N KI = q.

Prove that a group that has more than one subgroup of order 5 must
have order at least 25.

Prove that A, has a subgroup of order 12.
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Prove that Ag has no subgroup of order 30.
Prove that A5 has no subgroup of order 15 to 20.

Suppose that « is an element from a permutation group G and one
of its cycles in disjoint cycle form is (a,a,---a,). Show that {a,,
Ay, ..., i} Corbg(a)forl =1,2,... k.

Let G be a group and suppose that H is a subgroup of G with the
property that for any a in G we have aH = Ha. (That is, every ele-
ment of the form ah where & is some element of H can be written in
the form h,a for some h, € H.) If a has order 2, prove that the set
K = HU aH is a subgroup of G. Generalize to the case that lal = k.

Prove that A is the only subgroup of S of order 60.

Why does the fact that A, has no subgroup of order 6 imply that
IZAPI = 17

Let G = GL(2,R) and H = SL(2, R). Let A € G and suppose that
det A = 2. Prove that AH is the set of all 2 X 2 matrices in G that
have determinant 2.

Let G be the group of rotations of a plane about a point P in
the plane. Thinking of G as a group of permutations of the plane,
describe the orbit of a point Q in the plane. (This is the motivation
for the name “orbit.”)

Let G be the rotation group of a cube. Label the faces of the cube
1 through 6, and let H be the subgroup of elements of G that carry
face 1 to itself. If o is a rotation that carries face 2 to face 1, give a
physical description of the coset Ho.

The group D, acts as a group of permutations of the square regions
shown below. (The axes of symmetry are drawn for reference pur-
poses.) For each square region, locate the points in the orbit of the
indicated point under D,. In each case, determine the stabilizer of
the indicated point.
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61. Let G = GL(2, R), the group of 2 X 2 matrices over R with nonzero
determinant. Let H be the subgroup of matrices of determinant *1.
If a, b € G and aH = bH, what can be said about det (a¢) and
det (b)? Prove or disprove the converse. [Determinants have the
property that det (xy) = det (x)det (y).]

62. Calculate the orders of the following (refer to Figure 27.5 for
illustrations).

a. The group of rotations of a regular tetrahedron (a solid with four
congruent equilateral triangles as faces)

b. The group of rotations of a regular octahedron (a solid with
eight congruent equilateral triangles as faces)

¢. The group of rotations of a regular dodecahedron (a solid with
12 congruent regular pentagons as faces)

d. The group of rotations of a regular icosahedron (a solid with
20 congruent equilateral triangles as faces)

63. Prove that the eight-element set in the proof of Theorem 7.5 is a
group.

64. A soccer ball has 20 faces that are regular hexagons and 12 faces
that are regular pentagons. Use Theorem 7.4 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through
the centers of two opposite hexagonal faces.

65. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

Computer Exercises

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Lagrange is the Lofty Pyramid of the
Mathematical Sciences.
NAPOLEON BONAPARTE

JosepH Louis LAGRANGE was born in Italy of
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early
age when he read an essay by Halley on
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of
mathematics and physics, among them the
theory of numbers, the theory of equations,
ordinary and partial differential equations,
the calculus of variations, analytic geometry,
fluid dynamics, and celestial mechanics. His
methods for solving third- and fourth-degree
polynomial equations by radicals laid the
groundwork for the group theoretic approach
to solving polynomials taken by Galois.
Lagrange was a very careful writer with a
clear and elegant style.

At the age of 40, Lagrange was appointed
head of the Berlin Academy, succeeding
Euler. In offering this appointment, Frederick
the Great proclaimed that the “greatest king
in Europe” ought to have the “greatest math-
ematician in Europe” at his court. In 1787,
Lagrange was invited to Paris by Louis XVI
and became a good friend of the king and his
wife, Marie Antoinette. In 1793, Lagrange
headed a commission, which included
Laplace and Lavoisier, to devise a new system

The Granger Collection, New York
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This stamp was issued by
France in Lagrange’s honor
in 1958.

of weights and measures. Out of this came
the metric system. Late in his life he was
made a count by Napoleon. Lagrange died on
April 10, 1813.

To find more information about Lagrange,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/

161

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall leaning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it


http://www-groups.dcs

External Direct

Products

The universe is an enormous direct product of representations
of symmetry groups.

STEVEN WEINBERG '

Definition and Examples
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In this chapter, we show how to piece together groups to make larger
groups. In Chapter 9, we will show that we can often start with one
large group and decompose it into a product of smaller groups in much
the same way as a composite positive integer can be broken down into
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product

Let G, G,, ..., G, be afinite collection of groups. The external direct
product of G, G, ..., G, writtenas G, ® G, D - - - @ G, is the set of
all n-tuples for which the ith component is an element of G, and the
operation is componentwise.

In symbols,
GPGD DG =18  --.8)8€EG]},

where (g, &5, - - - > 8)(&/>» &> - - ., &,) is defined to be (g g/,
8,85+ - - » &,8,)- It is understood that each product g,g; is performed
with the operation of G,. Note that in the case that each G, is finite, we
have by properties of sets that IG, @ G, D --- B G, | = |G,lIG,| --- |G I.
We leave it to the reader to show that the external direct product of
groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or
physics. Indeed, R> = R @ R and R?* = R @ R © R—the operation being
componentwise addition. Of course, there is also scalar multiplication, but

"Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus
Salam for their construction of a single theory incorporating weak and electromagnetic
interactions.
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we ignore this for the time being, since we are interested only in the group
structure at this point.

I EXAMPLE 1

U®) @ U0y = {1, 1), (1,3),(1,7),(1,9), 3, 1), 3, 3),
(3.7, 3,9),65,1,(5,3), 5,7, 5, 9),
(7, 1).(7,3), (7,7, (7,9)}.

The product (3, 7)(7,9) = (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are
combined by multiplication modulo 10. |

I EXAMPLE 2
Z,®Z, = {(0,0),(0, 1),(0,2),(1,0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z,? Consider the
subgroup of Z, © Z, generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) = (1, 1), 2(1, 1) = (0, 2), 3(1, 1) =
(1, 0),4(1, 1) = (0, 1), 5(1, 1) = (1, 2), and 6(1, 1) = (0, 0). Hence
Z, ® Z, is cyclic. It follows that Z, @ Z, is isomorphic to Z. 1

In Theorem 7.3 we classified the groups of order 2p where p is an
odd prime. Now that we have defined Z, @ Z,, it is easy to classify the
groups of order 4.

I EXAMPLE 3 Classification of Groups of Order 4

A group of order 4 is isomorphic to Z, or Z, @ Z,. To verify this, let G =
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem
that lal = 1bl = labl = 2. Then the mapping ¢ — (0, 0), a — (1, 0),
b— (0, 1), and ab — (1, 1) is an isomorphism from G onto Z, ® Z,. |

We see from Examples 2 and 3 that in some cases Z @ Z is isomor-
phic to Z  and in some cases it is not. Theorem 8.2 provides a simple
characterization for when the isomorphism holds.

Properties of External Direct Products

Our first theorem gives a simple method for computing the order of an
element in a direct product in terms of the orders of the component
pieces.
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B Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of
finite groups is the least common multiple of the orders of the
components of the element. In symbols,

55 000 ped )l Sl i o o o o g T

PROOF Denote the identity of G, by e,. Let s = lem(lg |, Ig,l, . . ., Ig 1)
and t =I(g,, &, - - - » g,)!. Because the fact that s is a multiple of each Ig||
implies that (g, g,,...,8) = (g}, 8% ...,8) = (e, e, ...,e), weknow
that # = 5. On the other hand, from (g', g% ..., 8") = (8. 8»---.8) =
(¢, e, ...,e,) we see that  is a common multiple of Ig,l, Ig,l, ..., Ig I
Thus, s = . |

The next two examples are applications of Theorem 8.1.

I EXAMPLE 4 We determine the number of elements of order 5 in
Z,s © Z,. By Theorem 8.1, we may count the number of elements
(a, b) in Z,, ©® Z with the property that 5 = I(a, b)| = lem(lal, 1bl).
Clearly this requires that either lal = 5 and |bl = 1 or 5, or Ibl = 5 and
lal = 1 or 5. We consider two mutually exclusive cases.

Case 1 lal = 5 and 1bl = 1 or 5. Here there are four choices for a
(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 lal = 1 and |1bl = 5. This time there is one choice for a and four
choices for b, so we obtain four more elements of order 5.

Thus, Z, D Z, has 24 elements of order 5. |

B EXAMPLE 5 We determine the number of cyclic subgroups of order
10in Z,,, © Z,.. We begin by counting the number of elements (a, b) of
order 10.

Case 1 lal = 10 and Il = 1 or 5. Since Z, , has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators
(Theorem 4.4), there are four choices for a. Similarly, there are five
choices for b. This gives 20 possibilities for (a, b).

Case 2 lal = 2 and 16l = 5. Since any finite cyclic group of even order
has a unique subgroup of order 2 (Theorem 4.4), there is only one
choice for a. Obviously, there are four choices for . So, this case yields
four more possibilities for (a, b).
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Thus, Z,,, © Z,; has 24 elements of order 10. Because each cyclic
subgroup of order 10 has four elements of order 10 and no two of the
cyclic subgroups can have an element of order 10 in common, there
must be 24/4 = 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs
and dividing by 4.) |

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

B EXAMPLE 6 For each divisor r of m and s of n, the group Z © Z,
has a subgroup isomorphic to Z @ Z_(see Exercise 19). To find a sub-
group of, say, Z,, @ Z,, isomorphic to Z, @ Z,, we observe that (5) is a
subgroup of Z,, of order 6 and (3) is a subgroup of Z,, of order 4, so
(5) @ (3) is the desired subgroup. |

The next theorem and its first corollary characterize those direct
products of cyclic groups that are themselves cyclic.

I Theorem 8.2 Criterion for G ® H to be Cyclic

Let G and H be finite cyclic groups. Then G © H is cyclic if and only
if |G| and |H| are relatively prime.

PROOF Let |Gl = mand |HI = n, so that |G & HI = mn. To prove the
first half of the theorem, we assume G @ H is cyclic and show that
m and n are relatively prime. Suppose that gcd(m, n) = d and (g, h) is a
generator of G @ H. Since (g, h)"™"* = ((g™)"4, (K")") = (e, e), we
have mn = (g, h)| = mn/d. Thus, d = 1.

To prove the other half of the theorem, let G = (g) and H = (h) and sup-
pose ged(m, n) = 1. Then, I(g, h)l = lem(m, n) = mn = |G D HI, so that
(g, h) is a generator of G D H. |

As a consequence of Theorem 8.2 and an induction argument, we
obtain the following extension of Theorem 8.2.

I Corollary 1 CriterionforG, ®G,®D - - - © G, to Be Cyclic

An external direct product G, © G, D - - - @ G, of a finite number
of finite cyclic groups is cyclic if and only if |G| and IG}.I are relatively
prime when i # j.
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B Corollary2 Criterionforz, = =~2Z ©Z ©---®Z,

Letm = mn, - - - n. Then Z, is isomorphicto Z, S ZnZEB 000 GBan
if and only if n,and n;are relatively prime when i # j.

By using the results above in an iterative fashion, one can express
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

2,02, DZ2,DZ,~72,DZ,DZ,~7Z,DZ,,
Similarly,
Z,BZ,®Z, D72, ~7,DZ DZ
~72,82,DZ,DZ ~ZDZ,
Thus, Z, ® Z,, = Z, ® Z,,. Note, however, that Z, D Z, ) # Z.

The Group of Units Modulo n as
an External Direct Product

The U-groups provide a convenient way to illustrate the preceding
ideas. We first introduce some notation. If & is a divisor of n, let

Um) ={xeUmn | xmodk=1}.

For example, U,(105) = {1, 8, 22, 29, 43, 64, 71, 92}. It can be readily
shown that U,(n) is indeed a subgroup of U(n). (See Exercise 31 in
Chapter 3.)

I Theorem 8.3 U(n) as an External Direct Product
Suppose s and t are relatively prime. Then U(st) is isomorphic to the
external direct product of U(s) and U(t). In short,
U(st) = U(s) ® U(@).

Moreover, U (st) is isomorphic to U(t) and U (st) is isomorphic to U(s).

PROOF An isomorphism from U(s?) to U(s) @ U(r) is x — (x mod s,
x mod 7); an isomorphism from U(s?) to U(7) is x — x mod #; an isomor-
phism from U (st) to U(s) is x — x mod 5. We leave the verification that
these mappings are operation-preserving, one-to-one, and onto to the
reader. (See Exercises 9, 17, and 19 in Chapter 0; see also [1].) |

As a consequence of Theorem 8.3, we have the following result.

Copyright 2012 Cer
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Corollary

Letm = nin, - - - n,, where gcd(n,, nj) = 1fori # j. Then,

U@m) =~ Un,) © U(n,) ®© - - - O U(ny).

To see how these results work, let’s apply them to U(105). We obtain

U(105) = U(7) ® U(15),
U(105) = UQ21) ® U(5),
U(105) = UB3) ® UG) D U(7).

Moreover,

U(T) = U,,(105) = {1, 16, 31, 46, 61, 76},
U(15) = U(105) = {1, 8, 22,29, 43, 64, 71, 92},

UQ1) = U(105) = {1, 11, 16, 26, 31, 41,46, 61, 71, 76, 86, 101},
U(5) = U,,(105) = {1, 22,43, 64},

UB) = U,,(105) = {1,71}.

Among all groups, surely the cyclic groups Z have the simplest
structures and, at the same time, are the easiest groups with which to
compute. Direct products of groups of the form Z are only slightly
more complicated in structure and computability. Because of this, alge-
braists endeavor to describe a finite Abelian group as such a direct
product. Indeed, we shall soon see that every finite Abelian group can
be so represented. With this goal in mind, let us reexamine the
U-groups. Using the corollary to Theorem 8.3 and the facts (see
[2, p. 93]), first proved by Carl Gauss in 1801, that

u2)y={0}, UH=2z, U2Y=Z,DZ,. forn=3,
and

uip" =2

—— for p an odd prime,

we now can write any U-group as an external direct product of cyclic
groups. For example,

U(105) =U@B-5-7)=UB)D UB) D U
~72,DZ,DZ
and

U(720) = U(16 - 9 - 5) = U(16) @ U(9) ® U(5)
~2,®2,®7,DZ,
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What is the advantage of expressing a group in this form? Well, for one
thing, we immediately see that the orders of the elements U(720) can
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an
element from Z, ® Z, © Z, @ Z, has the form (a, b, c, d), where
lal =1or2,1bl =1,2,0r4,lcl=1,2,3,0r6,and Idl = 1, 2, or 4, and
that I(a, b, c, d)I = lem(lal, 1bl, Icl, Idl). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has.
Because U(720) is isomorphic to Z, © Z, ® Z, D Z,, it suffices to cal-
culate the number of elements of order 12in Z, ® Z, ® Z, © Z,. But
this is easy. By Theorem 8.1, an element (a, b, ¢, d) has order 12 if and
only if Ilem(lal, 161, Icl, Idl) = 12. Since lal = 1 or 2, it does not matter
how a is chosen. So, how can we have lem(lbl, Icl, Idl) = 12?7 One way
is to have |bl = 4, Icl = 3 or 6, and d arbitrary. By Theorem 4.4, there
are two choices for b, four choices for ¢, and four choices for d. So, in
this case, we have 2 - 4 - 4 = 32 choices. The only other way to have
Iem(1bl, Icl, Idl) = 12 is for Idl = 4, Icl = 3 or 6, and |bl = 1 or 2 (we
exclude bl = 4, since this was already accounted for). This gives 2 - 4 -
2 = 16 new choices. Finally, since a can be either of the two elements in
Z,, we have a total of 2(32 + 16) = 96 elements of order 12.

These calculations tell us more. Since Aut(Z,, ) is isomorphic to
U(720), we also know that there are 96 automorphisms of Z.,, of
order 12. Imagine trying to deduce this information directly from
U(720) or, worse yet, from Aut(Z,,,)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Z,) and U(n). After all, theorems are labor-
saving devices. If you want to convince yourself of this, try to prove
directly from the definitions that Aut(Z,,,) has exactly 96 elements of
order 12.

20

Applications

We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components,
it is natural to represent information as strings of Os and 1s called
binary strings. A binary string of length n can naturally be thought of
as an element of Z, ® Z, ® - - - @ Z, (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string
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11000110 corresponds to the element (1, 1,0, 0,0, 1, 1,0)in Z, D Z, S5,
2,072, D72, D7, Z, D Z, Similarly, two binary strings a,a, - - - a,
and bb, - - - b, are added componentwise modulo 2 just as their
corresponding elements in Z, & Z, @ - - - @ Z, are. For example,

11000111 + 01110110 = 10110001

and

10011100 + 10011100 = 00000000.
The fact that the sum of two binary sequences a\a, - - - a, + bb, - - -
b, =00 - - - 0if and only if the sequences are identical is the basis for

a data security system used to protect Internet transactions.

Suppose that you want to purchase a compact disc from http://www
.amazon.com. Need you be concerned that a hacker will intercept
your credit-card number during the transaction? As you might expect,
your credit-card number is sent to Amazon in a way that protects the
data. We explain one way to send credit-card numbers over the Web
securely. When you place an order with Amazon, the company sends
your computer a randomly generated string of 0’s and 1’s called a key.
This key has the same length as the binary string corresponding to
your credit-card number and the two strings are added (think of this
process as “locking” the data). The resulting sum is then transmitted
to Amazon. Amazon in turn adds the same key to the received string,
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string
such as s = 10101100 to Amazon (actual credit-card numbers have
very long strings) and Amazon sends your computer the key
k = 00111101. Your computer returns the string s + k£ = 10101100 +
00111101 = 10010001 to Amazon, and Amazon adds £ to this string to
get 10010001 + 00111101 = 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number
s + k= 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly
generated and used only one time. You can tell when you are using an en-
cryption scheme on a Web transaction by looking to see if the Web ad-
dress begins with “https” rather than the customary “http.” You will also
see a small padlock in the status bar at the bottom of the browser window.

Public Key Cryptography

Unlike auctions such as those on eBay, where each bid is known by
everyone, a silent auction is one in which each bid is secret. Suppose
that you wanted to use your Twitter account to run a silent auction.



http://www

170

Groups

How could a scheme be devised so that users could post their bids in
such a way that the amounts are intelligible only to the account holder?
In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman
devised an ingenious method that permits each person who is to receive
a secret message to tell publicly how to scramble messages sent to him
or her. And even though the method used to scramble the message is
known publicly, only the person for whom it is intended will be able to
unscramble the message. The idea is based on the fact that there exist
efficient methods for finding very large prime numbers (say about
100 digits long) and for multiplying large numbers, but no one knows
an efficient algorithm for factoring large integers (say about 200 digits
long). The person who is to receive the message chooses a pair of large
primes p and ¢ and chooses an integer e (called the encryption expo-
nent) with 1 < e < m, where m = lcm (p — 1, ¢ — 1), such that e
is relatively prime to m (any such e will do). This person calculates
n = pq (n is called the key) and announces that a message M is to be
sent to him or her publicly as M° mod n. Although e, n, and M° are
available to everyone, only the person who knows how to factor n as pg
will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the messages “YES.”
We convert the message into a string of digits by replacing A by 01, B
by 02, ..., Zby 26, and a blank by 00. So, the message YES becomes
250519. To keep the numbers involved from becoming too unwieldy,
we send the message in blocks of four digits and fill in with blanks
when needed. Thus, the messages YES is represented by the two blocks
2505 and 1900. The person to whom the message is to be sent has
picked two primes p and g, say p = 37 and ¢ = 73, and a number e that
has no prime divisors in common with lem (p —1, ¢ —1) = 72, say
e = 5, and has published n = 37 - 73 = 2701 and e = 5 in a public
forum. We will send the “scrambled” numbers (2505)° mod 2701 and
(1900)° mod 2701 rather than 2505 and 1900, and the receiver will un-
scramble them. We show the work involved for us and the receiver only
for the block 2505. We determine (2505)° mod 2701 = 2415 by using a
modular arithmetic calculator such as the one at http://users.wpi
.edu/~martin/mod.html."”

"Provided that the numbers are not too large, the Google search engine at http://www
.google.com will do modular arithmetic. For example, entering 25052 mod 2701 in
the search box yields 602. Be careful, however: Entering 25055 mod 2701 does not
return a value, because 25055 is too large. Instead, we can use Google to compute
smaller powers such as 25052 mod 2701 and 2505”3 mod 2701 (which yields 852)
and then enter (852 X 602) mod 2701.
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Thus, the number 2415 is sent to the receiver. Now the receiver must
take this number and convert it back to 2505. To do so, the receiver
takes the two factors of 2701, p = 37 and ¢ = 73, and calculates the
least common multiple of p — 1 = 36 and ¢ — 1 = 72, which is 72.
(This is where the knowledge of p and ¢ is necessary.) Next, the re-
ceiver must find e~ = d (called the decryption exponent) in U(72)—
that is, solve the equation 5 - d = 1 mod 72. This number is 29. See
http://www.d.umn.edu/~jgallian/msproject06/chap8.html
#chap8exS5 or use a Google search box to compute 5* for each divisor k
of IU(72)1 = ¢(9) - $(8) = 24 starting with 2 until we reach 5 mod 72
= 1. Doing so, we obtain 5° mod 72 = 1, which implies that 5° mod 72
=29is 57 "in U(72).

Then the receiver takes the number received, 2415, and calculates
(2415)* mod 2701 = 2505, the encoded number. Thus, the receiver cor-
rectly determines the code for “YE.” On the other hand, without know-
ing how pgq factors, one cannot find the modulus (in our case, 72) that is
needed to determine the decryption exponent d.

The procedure just described is called the RSA public key encryption
scheme in honor of the three people (Rivest, Shamir, and Adleman) who
discovered the method. It is widely used in conjunction with web servers
and browsers, e-mail programs, remote login sessions, and electronic fi-
nancial transactions. The algorithm is summarized below.

Receiver

1. Pick very large primes p and ¢ and compute n = pq.

2. Compute the least common multiple of p — 1 and ¢ — 1; let us call
it m.

3. Pick e relatively prime to m.

4. Find d such that ed mod m = 1.

5. Publicly announce n and e.

Sender

1. Convert the message to a string of digits.
2. Break up the message into uniform blocks of digits; call them M,

M,,..., M,.

3. Check to see that the greatest common divisor of each M, and n is 1.
If not, n can be factored and our code is broken. (In practice, the
primes p and q are so large that they exceed all M, so this step may
be omitted.)

4. Calculate and send R, = M mod n.
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Receiver

1. For each received message R, calculate R mod .
2. Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) = U(p) D
Ulg) = prl D Zq, ,- Thus, an element of the form x™ in U(n) corre-
sponds under an isomorphism to one of the form (mx,, mx,) in Z,_, D
Z, Since m is the least common multiple of p — 1 and ¢ — 1, we may
write m = s(p — 1) and m = t(g — 1) for some integers s and . Then
(mx,, mx,) = (s(p — Dx,, t(g — )x,) = (0, 0) in Zp_l S Zq_l, and it
follows that x™ = 1 for all x in U(n). So, because each message M, is an
element of U(n) and e was chosen so that ed = 1 + km for some k, we

have, modulo n,
Rid — (Mie)d - Mied - Mi I+km — Mi(Mim)k = Milk = Mi‘

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received
the Association for Computing Machinery A. M. Turing Award, which
is considered the “Nobel Prize of computing,” for their contribution to
public key cryptography.

An RSA calculator that does all the calculations is provided at http://
www.d.umn.edu/~jgallian/msproject06/chap8.html#chap8ex5. A list
of primes can be found by searching the Web for “list of primes.”

Digital Signatures

With so many financial transactions now taking place electronically, the
problem of authenticity is paramount. How is a stockbroker to know that
an electronic message she receives that tells her to sell one stock and buy
another actually came from her client? The technique used in public key
cryptography allows for digital signatures as well. Let us say that person
A wants to send a secret message to person B in such a way that only B
can decode the message and B will know that only A could have sent it.
Abstractly, let E, and D, denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let E, and D, denote the algo-
rithms that B uses for encryption and decryption, respectively. Here
we assume that E, and E, are available to the public, whereas D, is
known only to A and D, is known only to B, and that D E, and E,D,
applied to any message leaves the message unchanged. Then A sends
a message M to B as E, (D,(M)) and B decodes the received message
by applying the function E,D, to it to obtain

(E,Dp) (Ex(D,(M)) = E,(DzEp)(D,(M)) = E(D,(M)) = M.
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Notice that only A can execute the first step (i.e., create D,(M)) and
only B can implement the last step (i.e., apply E,D, to the received
message).

Transactions using digital signatures became legally binding in the
United States in October 2000.

The genetic code can be conveniently modeled using elements of Z, ©
Z,® - - - D Z, where we omit the parentheses and the commas and
just use strings of 0’s, 1°s, 2’s, and 3’s and add componentwise modulo
4. A DNA molecule is composed of two long strands in the form of a
double helix. Each strand is made up of strings of the four nitrogen
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each
base on one strand binds to a complementary base on the other strand.
Adenine always is bound to thymine, and guanine always is bound to
cytosine. To model this process, we identify A with 0, T with 2, G with 1,
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and
21302212332. Noting thatinZ,,0 +2=2,2+2=0,1 + 2 = 3,and
3 + 2 = 1, we see that adding 2 to elements of Z, interchanges 0 and 2
and I and 3. So, for any DNA segment a,a, - - - a, represented by ele-
ments of Z, DZ, © - - - © Z,, we see that its complementary segment
is represented by a,a, - - - a, + 22+ - 2.

Electric Circuits

Many homes have light fixtures that are operated by a pair of switches.
They are wired so that when either switch is thrown, the light changes
its status (from on to off or vice versa). Suppose the wiring is done so
that the light is on when both switches are in the up position. We can
conveniently think of the states of the two switches as being matched
with the elements of Z, @ Z,, with the two switches in the up position
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the
corresponding component in the group Z, © Z,. We then see that the
lights are on when the switches correspond to the elements of the sub-
group {(1, 1)) and are off when the switches correspond to the elements
in the coset (1, 0) + ((1, 1)). A similar analysis applies in the case of
three switches, with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1,0, 1)}
corresponding to the lights-on situation.

"This discussion is adapted from [3].
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What's the most difficult aspect of your life as a mathematician, Diane
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove
theorems,” she said. And the most fun? “Trying to prove theorems.”

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Prove that the external direct product of any finite number of
groups is a group. (This exercise is referred to in this chapter.)
Show that Z, © Z, © Z, has seven subgroups of order 2.

Let G be a group with identity ¢, and let H be a group with iden-
tity e,,. Prove that G is isomorphic to G © {e,,} and that H is iso-
morphic to {e;} ® H.

Show that G @ H is Abelian if and only if G and H are Abelian.
State the general case.

Prove or disprove that Z & Z is a cyclic group.

Prove, by comparing orders of elements, that Z, © Z, is not iso-
morphic to Z, ® Z,.

Prove that G, @ G, is isomorphic to G, © G,. State the general
case.

Is Z, ® Z, isomorphic to Z,,? Why?

Is Z, © Z, isomorphic to Z,;? Why?

How many elements of order 9 does Z, @ Z, have? (Do not do this
exercise by brute force.)

How many elements of order 4 does Z, © Z, have? (Do not do this
by examining each element.) Explain why Z, © Z, has the same
number of elements of order 4 as does Zg;,1000 P Z,90000- GeNeEral-
izetothecase Z D Z .

Give examples of four groups of order 12, no two of which are
isomorphic. Give reasons why no two are isomorphic.

For each integer n > 1, give examples of two nonisomorphic
groups of order n?.

The dihedral group D, of order 2n (n = 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why D, cannot be iso-
morphic to the external direct product of two such groups.

Prove that the group of complex numbers under addition is iso-
morphic to R ® R.

Suppose that G, = G, and H, = H,. Prove that G, ® H, = G, ©
H,. State the general case.

If G @ H is cyclic, prove that G and H are cyclic. State the general
case.

InZ,dZ

50 find two subgroups of order 12.
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If ris a divisor of m and s is a divisor of n, find a subgroup of Z ©
Z that is isomorphic to Z © Z_.

Find a subgroup of Z, © Z that is isomorphic to Z, © Z,.

Let G and H be finite groups and (g, 7) € G D H. State a necessary
and sufficient condition for {(g, h)) = (g) D (h).

Determine the number of elements of order 15 and the number of
cyclic subgroups of order 15in Z,, @ Z,,..

What is the order of any nonidentity element of Z, ® Z, © Z.?
Generalize.

Let m > 2 be an even integer and let n > 2 be an odd integer. Find
a formula for the number of elements of order 2in D, @ D, .

Let M be the group of all real 2 X 2 matrices under addition. Let
N =R ® R @ R D R under componentwise addition. Prove that
M and N are isomorphic. What is the corresponding theorem for
the group of m X n matrices under addition?

The group S, @ Z, is isomorphic to one of the following groups:
Z,, Zg DZ,A, D,. Determine which one by elimination.

Let G be a group, and let H = {(g, g) | g € G}. Show that H is a
subgroup of G @ G. (This subgroup is called the diagonal of
G @ G.) When G is the set of real numbers under addition,
describe G ® G and H geometrically.

Find a subgroup of Z, @ Z, that is not of the form H ® K, where H
is a subgroup of Z, and K is a subgroup of Z,.

Find all subgroups of order 3 in Z, @ Z..

Find all subgroups of order 4in Z, @ Z,.

What is the largest order of any element in Z,, © Z,?

What is the order of the largest cyclic subgroup of Z, @ Z,, ® Z,.?
What is the order of the largest cyclic subgroupof Z ©Z & -
®Z 2 I
Findkthree cyclic subgroups of maximum possible order in Z, ©
Z,, D Z, of the form (a) @ (b) ® (c), wherea € Z, b € Z,, and
cE€EZs

How many elements of order 2 are in Z,;,,000 @ Z,5000007 Generalize.
Find a subgroup of Zy,, @ Z,,, that is isomorphic to Z, ® Z,.

Find a subgroup of Z , © Z, ® Z,, that has order 9.

Prove that R* © R* is not isomorphic to C*. (Compare this with
Exercise 15.)

Let

10°

=
Il
O =

a b
1 0||la b€ 2z
0 1

0
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50.
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52,
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57.
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(See Exercise 48 in Chapter 2 for the definition of multiplication.)
Show that H is an Abelian group of order 9. Is H isomorphic to Z,
orto Z, ®Z,?

Let G = {3"6" | m, n € Z} under multiplication. Prove that G is isomor-
phic to Z D Z. Does your proof remain valid if G = {3"9" | m,n € Z}?
Let(a;,ay...,a)EG DG, D - DG, Give anecessary and
sufficient condition for I(a,, a,, . . ., a )l = .

Prove that D, ® D, # D ,® Z,.

Determine the number of cyclic subgroups of order 15 in Z,, ® Z, .
Provide a generator for each of the subgroups of order 15.

List the elements in the groups U,(35) and U,(35).
Prove or disprove that U(40) @ Z, is isomorphic to U(72) © Z,.
Prove or disprove that C* has a subgroup isomorphic to Z, @ Z,.

Let G be a group isomorphicto Z, ©Z, @ ---DZ . Letx be the
product of all elements in G. Describe all possibilities for x.

If a group has exactly 24 elements of order 6, how many cyclic
subgroups of order 6 does it have?

For any Abelian group G and any positive integer n, let G" = {g" |
g € G} (see Exercise 17, Supplementary Exercises for Chapters
1-4). If H and K are Abelian, show that (H & K)* = H" @D K".

Express Aut(U(25)) inthe formZ © Z .
Determine Aut(Z, ® Z,).

Suppose that n, n,, . . . , n, are positive even integers. How many
elements of order 2does Z, ®Z, ©--- Z, have ? How many are
there if we drop the requirement that n 1» s - - -, 1y Must be even?

82, 92,2 ~2,DZ,DZ?

52, 92,2,~2.,9Z2,DZ,?

Find an isomorphism from Z , to Z, @ Z..

How many isomorphisms are there from Z,, to Z, ® Z,?

Suppose that ¢ is an isomorphism from Z, © Z; to Z,; and
¢(2, 3) = 2. Find the element in Z, @ Z, that maps to 1.

If ¢ is an isomorphism from Z, ® Z; to Z,,, what is ¢(2, 0)? What
are the possibilities for ¢(1, 0)? Give reasons for your answer.
Prove that Z, © Z; has exactly six subgroups of order 5.

Let (a, b) belong to Z © Z . Prove that I(a, b)| divides lcm(m, n).
Let G = {ax* + bx + ¢ | a, b, c € Z,}. Add elements of G as you

would polynomials with integer coefficients, except use modulo 3
addition. Prove that G is isomorphic to Z; © Z, @ Z,. Generalize.
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Determine all cyclic groups that have exactly two generators.
Explain a way that a string of length » of the four nitrogen bases A,
T, G, and C could be modeled with the external direct product of n
copies of Z, © Z,.

Let p be a prime. Prove that Z, D Z, has exactly p + 1 subgroups
of order p.

Give an example of an infinite non-Abelian group that has exactly
six elements of finite order.

Give an example to show that there exists a group with elements a
and b such that lal = o0, |bl = %, and labl = 2.

Express U(165) as an external direct product of cyclic groups of
the form Z .

Express U(165) as an external direct product of U-groups in four
different ways.

Without doing any calculations in Aut(Z,,), determine how many
elements of Aut(Z,) have order 4. How many have order 2?
Without doing any calculations in Aut(Z,,)), determine how many
elements of Aut(Z,,)) have order 6.

Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

What is the largest order of any element in U(900)?

Let p and g be odd primes and let m and n be positive integers.
Explain why U(p™) @ U(g") is not cyclic.

Use the results presented in this chapter to prove that U(55) is
isomorphic to U(75).

Use the results presented in this chapter to prove that U(144) is
isomorphic to U(140).

For every n > 2, prove that U(n)*> = {x*> | x € U(n)} is a proper
subgroup of U(n).

Show that U(55)* = {x* | x € U(55)} is U(55).

Find an integer n such that U(n) contains a subgroup isomorphic to
Z, D Z,.

Find a subgroup of order 6 in U(700).

Show that there is a U-group containing a subgroup isomorphic
toZ, D Z..

Find an integer n such that U(n) is isomorphic to Z, ® Z, © Z,.
What is the smallest positive integer k such that x* = e for all x in
U(7 - 17)? Generalize to U(pg) where p and ¢ are distinct primes.
If k divides m and m divides n, how are U, (n) and U,(n) related?
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83. Let p,, py...,p, be distinct odd primes and n,, n,,...,n, be
positive integers. Determine the number of elements of order 2 in
U(p?1 pfz- - p,’fk). How many are there in U(2”pi11 pznz- - p,’}k) where
n is at least 3?

84. Show that no U-group has order 14.

85. Show that there is a U-group containing a subgroup isomorphic
t0oZ,

86. Show that no U-group is isomorphic to Z, © Z,.

87. Show that there is a U-group containing a subgroup isomorphic to
7,02,

88. Using the RSA scheme with p = 37, g = 73, and e = 5, what num-
ber would be sent for the message “RM”?

89. Assuming that a message has been sent via the RSA scheme with
p =37,q =73, and e = 5, decode the received message “34.”

Computer Exercises

Computer exercises in this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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“DNA computing.”
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My mind rebels at stagnation. Give me problems, give me work, give me
the most obstruse cryptogram, or the most intricate analysis, and | am in
my own proper atmosphere.

SHERLOCK HOLMES, The Sign of Four

True/false questions for Chapters 5—8 are available on the Web at:
www.d.umn.edu/~jgallian/TF

1. A subgroup N of a group G is called a characteristic subgroup if
¢(N) = N for all automorphisms ¢ of G. (The term characteristic
was first applied by G. Frobenius in 1895.) Prove that every sub-
group of a cyclic group is characteristic.

2. Prove that the center of a group is characteristic.

3. The commutator subgroup G' of a group G is the subgroup gener-
ated by the set {x 'y~ 'xy | x, y € G}. (That is, every element of G’
has the form a,"a,” - - - a*, where each g, has the form x y~lxy,
each ij = *1, and k is any positive integer.) Prove that G’ is a char-
acteristic subgroup of G. (This subgroup was first introduced by
G. A. Miller in 1898.)

4. Prove that the property of being a characteristic subgroup is transi-
tive. That is, if N is a characteristic subgroup of K and K is a char-
acteristic subgroup of G, then N is a characteristic subgroup of G.

5.Let G = Z, ® Z, ® Z, and let H be the subgroup of SL(3, Z,)
consisting of

1 a b
H = 0 1 ¢ a,b,cEZ3
0 0 1

(See Exercise 48 in Chapter 2 for the definition of multiplication.)
Determine the number of elements of each order in G and H. Are G
and H isomorphic? (This exercise shows that two groups with the
same number of elements of each order need not be isomorphic.)

6. Let H and K be subgroups of a group G and let HK = {hk | h € H,
k€ K} and KH = {kh | k € K, h € H}. Prove that HK is a group if
and only if HK = KH.

7. Let G be a finite Abelian group in which every nonidentity element
has order 2. If |G| > 2, prove that the product of all the elements in
G is the identity.
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11.
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13.

14.

15.
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17.

18.

19.

20.

21.
22,

23.
24,

25.

Prove that S, is not isomorphic to D, © Z,.
Let G be a group. For any element g of G, define gZ(G) = {gh | h
€ Z(G)}. If ais an element of G of order 4, prove that H = Z(G) U
aZ(G) U a’Z(G) U a*Z(G) is a subgroup of G. Generalize to the
case that lal = k.

The exponent of a group is the smallest positive integer n such that
x" = e for all x in the group. Prove that every finite group has an ex-
ponent that divides the order of the group.

Determine all U-groups of exponent 2.

Suppose that H and K are subgroups of a group and that |H| and K]
are relatively prime. Show that H N K = {e}.

Let R™ denote the multiplicative group of positive real numbers and
let T = {a + bi € C* | a*> + b*> = 1} be the multiplicative group of
complex numbers on the unit circle. Show that every element of C*
can be uniquely expressed in the form rz, where r € R* and z € T.
Prove that O* under multiplication is not isomorphic to R* under
multiplication.

Prove that Q under addition is not isomorphic to R under addition.
Prove that R under addition is not isomorphic to R* under
multiplication.

Show that Q™ (the set of positive rational numbers) under multipli-
cation is not isomorphic to Q under addition.

Suppose that G = {e, x, x2, y, yx, yx*} is a non-Abelian group with
IxI = 3 and |yl = 2. Show that xy = yx>.

Let p be an odd prime. Show that 1 is the only solution of x?2 = 1
in U(p).

Let G be an Abelian group under addition. Let n be a fixed positive
integer and let H = {(g, ng) | ¢ € G}. Show that H is a subgroup of
G @ G. When G is the set of real numbers under addition, describe
H geometrically.

Find a subgroup of Z , @ Z,, that is isomorphic to Z, ® Z..
Suppose that G = G, © G, @ - - - © G,. Prove that Z(G) =
Z(G)DZLUG,)D - - - DZG).

Exhibit four nonisomorphic groups of order 18.

What is the order of the largest cyclic subgroup in Aut(Z,
It is not necessary to consider automorphisms of Z,

20)? (Hint:

Y

20

Let G be the group of all permutations of the positive integers. Let
H be the subset of elements of G that can be expressed as a product
of a finite number of cycles. Prove that H is a subgroup of G.
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Let G be a group and let g € G. Show that Z(G)(g) is a subgroup of G.
Show that D, © Z, # D, © Z,,. (This exercise is referred to in
Chapter 24.)

Show that D, # D, D Z,. (This exercise is referred to in Chapter 24.)
Show that D, # D, © Z,,. (This exercise is referred to in Chapter 24.)
Exhibit four nonisomorphic groups of order 66. (This exercise is
referred to in Chapter 24.)

Prove that Inn(G)! = 1 if and only if G is Abelian.

Prove that x'% = 1 for all x in U(1000).

Find a subgroup of order 6 in U(450).

List four elements of Z,, @ Z, © Z , that form a noncyclic
subgroup.

In§,,, let B = (13)(17)(265)(289). Find an element in § , that com-
mutes with 8 but is not a power of .

Prove or disprove that Z, ® Z,. = Z D Z, .

Prove or disprove that D, = Z, ® D,.

Describe a three-dimensional solid whose symmetry group is iso-
morphic to D..

Let G = U(15) ® Z,, D S,. Find the order of (2, 3, (123)(15)). Find
the inverse of (2, 3, (123)(15)).

LetG=Z®Z andlet H= {gE€ G| Igl =>orlgl = 1}. Prove
or disprove that H is a subgroup of G.

Find a subgroup H of Z > © Z » such that (Z » © Z »)/H is isomor-
phictoZ ©Z .

Find three subgroups H,, H,, and H, of Z» © Z » such that (Z» &
sz)/Hi is isomorphic to sz fori=1,2,3.

Find an element of order 10 in A,.

In the left regular representation for D,, write T}, and T}, in matrix
form and in cycle form.

How many elements of order 6 are in S,?

Prove that S, @ S, is not isomorphic to a subgroup of S.

Find a permutation 3 such that 8> = (13579)(268).

In R @ R under componentwise addition, let H = {(x, 3x) | x € R}.
(Note that H is the subgroup of all points on the line y = 3x.) Show
that (2, 5) + H is a straight line passing through the point (2, 5) and
parallel to the line y = 3x.

In R @ R, suppose that H is the subgroup of all points lying on a
line through the origin. Show that any left coset of H is a line par-
allel to H.
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Let G be a group of permutations on the set {1, 2, ..., n}. Recall
that stab (1) = {&¢ € G I a(1) = 1}. If y sends 1 to k, prove that
v stab (1) = {B € G| B(1) = k}.

Let H be a subgroup of G and let a, b € G. Show that aH = bH if
and only if Ha™! = Hb™".

Suppose that G is a finite Abelian group that does not contain a
subgroup isomorphic to Z, ¥ Z, for any prime p. Prove that G is
cyclic.

Let p be a prime. Determine the number of elements of order p in
Zy ©® Zy.

Show that Z,» © Z,» has exactly one subgroup isomorphic to Z © Z .
Let p be a prime. Determine the number of subgroups of Z,. @ Z
that are isomorphic to Z.

Find a group of order 32 - 5% - 72 - 23 that contains a subgroup iso-
morphic to Ag.

Let p and g be distinct odd primes. Let n = lem(p — 1, ¢ — 1).
Prove that x* = 1 for all x € U(pq).

Give a simple characterization of all positive integers n for which
Z ~ H® Z /H for every subgroup H of Z .

Prove that the permutations (12) and (123 . .. n) generate S, . (That
is, every member of S can be expressed as some combination of
these elements.)

Suppose that n is even and o is an (n — 1)-cycle in S, . Show that o
does not commute with any element of order 2.

Suppose that 7 is odd and o is an n-cycle in S,. Prove that o does
not commute with any element of order 2.

Let H= {a € § | a maps the set {1, 2} to itself}. Prove that
C((12)) = H.

Let m be a positive integer. For any n-cycle o, show that o™ is the
product of gcd(m, n) disjoint cycles, each of length n/gcd(m, n).




Normal Subgroups

and Factor Groups

It is tribute to the genius of Galois that he recognized that those subgroups
for which the left and right cosets coincide are distinguished ones. Very
often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

1. N. HERSTEIN, Topics in Algebra

Normal Subgroups

As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not
always true that aH = Ha for all a in G. There are certain situations where
this does hold, however, and these cases turn out to be of critical impor-
tance in the theory of groups. It was Galois, about 180 years ago, who first
recognized that such subgroups were worthy of special attention.

Definition Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH =
Ha for all a in G. We denote this by H < G.

You should think of a normal subgroup in this way: You can switch
the order of a product of an element a from the group and an element £
from the normal subgroup H, but you must “fudge” a bit on the element
from the normal subgroup H by using some 4’ from H rather than h.
That is, there is an element 4’ in H such that ah = h'a. Likewise, there
is some 4" in H such that ha = ah”. (It is possible that A" = hor h" = h,
but we may not assume this.)

There are several equivalent formulations of the definition of nor-
mality. We have chosen the one that is the easiest to use in applications.
However, to verify that a subgroup is normal, it is usually better to use
Theorem 9.1, which is a weaker version of property 8 of the lemma in
Chapter 7. It allows us to substitute a condition about two subgroups of
G for a condition about two cosets of G.

185

d. in whole or in part. Du
med that any suppressed c
an sequ

Copyright 2012 Cengage Learning. All Rights Reserved. May not be cop
some third party content may be suppressed from the eBook and/or eChapter(s).
affect the over:




186 Groups

§ Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if xHx ! C H
forallxinG.

PROOF If His normal in G, then for any x € G and h € H there is an i’
in H such that x4 = h'x. Thus, xhx~! = k', and therefore xHx~' C H.
Conversely, if xHx~! C H for all x, then, letting x = a, we have
aHa™' C H or aH C Ha. On the other hand, letting x = a~!, we have
a 'Ha "Y' =a '"Ha C Hor Ha C aH. |

I EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this
case, ah = ha for a in the group and 4 in the subgroup.) |

B EXAMPLE 2 The center Z(G) of a group is always normal. [Again,
ah = ha for any a € G and any h € Z(G).] |

B EXAMPLE 3 The alternating group A of even permutations is a nor-
mal subgroup of S . [Note, for example, that for (12) € § and (123) €
A, we have (12)(123) # (123)(12) but (12)(123) = (132)(12) and
(132) e A ] |

B EXAMPLE 4 Every subgroup of D, consisting solely of rotations is
normal in D,. (For any rotation R and any reflection F, we have FR =
R™'F and any two rotations commute.) |

The next example illustrates a way to use a normal subgroup to cre-
ate new subgroups from existing ones.

B EXAMPLE 5 Let H be a normal subgroup of a group G and K be any
subgroup of G. Then HK = {hk | h € H, k € K} is a subgroup of G.
To verify this, note that e = ee is in HK. Then for any a = h k, and
b = hk,, where h, h, are in H and k,, k, are in K, there is an element h
in H such that ab™! = hkk,”'h,”" = h (kk,”Yh, ™" = (hh")(kk,™ ).
So, ab™!is in HK. |

Be careful not to assume that for any subgroups H and K of a group
G, the set HK is a subgroup of G. See Exercise 57.
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Combining Examples 4 and 5, we form a non-Abelian subgroup of
Dy of order 8.

B EXAMPLE 6 In D, let H = {R, Ry, R g
where F is any reflection. Then HK = {R, R
R 4F, Ry, F'} is a subgroup of Dy,

R,,,} and K = {R, F'},
000 Rigor Rz Rof's Rgol” .’

180 270

B EXAMPLE 7 If a group G has a unique subgroup H of some finite
order, then H is normal in G. To see that this is so, observe that for any
g € G, gHg 'is a subgroup of G and IgHg ™'l = |H|. |

B EXAMPLE 8 The group SL(2, R) of 2 X 2 matrices with determinant
1 is a normal subgroup of GL(2, R), the group of 2 X 2 matrices with
nonzero determinant. To verify this, we use the Normal Subgroup Test
given in Theorem 9.1. Let x € GL(2, R) = G, h € SL(2, R) = H, and
note that det xhx~! = (det x)(det h)(det x)~' = (det x)(det x) ! = 1. So,
xhx~! € H, and, therefore, xHx~! C H. ]

B EXAMPLE9 Referring to the group table for A, given in Table 5.1 on
page 111, we may observe that H = {«a, a,, as, a,} is a normal
subgroup of A,, whereas K = {a,, a,, a,} is not a normal subgroup
of A,. To see that H is normal, simply note that for any Bin A,, BHB™'is
a subgroup of order 4 and H is the only subgroup of A, of order 4
(see Table 5.1). Thus, BHB ™' = H. In contrast, a,aa,! = a, so that
a,Ka,”' K. |

Factor Groups

We have yet to explain why normal subgroups are of special significance.
The reason is simple. When the subgroup H of G is normal, then the set
of left (or right) cosets of H in G is itself a group—called the factor group
of G by H (or the quotient group of G by H). Quite often, one can obtain
information about a group by studying one of its factor groups. This
method will be illustrated in the next section of this chapter.

I Theorem 9.2 Factor Groups (O. Hélder, 1889)

Let G be a group and let H be a normal subgroup of G. The set
G/H = {aH | a € G} is a group under the operation (aH)(bH) = abH."

"The notation G/H was first used by C. Jordan.
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PROOF Our first task is to show that the operation is well-defined; that
is, we must show that the correspondence defined above from G/H X
G/H into G/H is actually a function. To do this, we assume that for
some elements a, a’, b, and b’ from G, we have aH = a’'H and bH =
b'H, and verify that aHbH = a'Hb'H. That is, verify that abH = a'b'H.
(This shows that the definition of multiplication depends on only the
cosets and not on the coset representatives.) From «H = a'H and bH =
b'H , we have a' = ah, and b’ = bh, for some h, h, in H, and therefore
a'b’H = ah,bh,H = ah,bH = ah Hb = aHb = abH. Here we have made
multiple use of associativity, property 2 of the lemma in Chapter 7, and
the fact that H < G. The rest is easy: eH = H is the identity; a'H is the
inverse of aH; and (aHbH)cH = (ab)HcH = (ab)cH = a(bc)H =
aH(bc)H = aH(bHcH). This proves that G/H is a group. |

Although it is merely a curiosity, we point out that the converse of
Theorem 9.2 is also true; that is, if the correspondence aHbH = abH
defines a group operation on the set of left cosets of H in G, then H is
normal in G.

The next few examples illustrate the factor group concept.

B EXAMPLE 10 Let 4Z = {0, =4, =8, ...}. To construct Z/4Z, we
first must determine the left cosets of 4Z in Z. Consider the following
four cosets:

0+4Z=147Z= {0, 4, =8, ...},

1+472={1,5,9,...; =3, -7, —11,...},
2+472=1{2,6,10,...; -2, -6, —10,...},
3+47=1{3,7,11,...;—1,-5,-9,...}.

We claim that there are no others. For if kK € Z, then k = 4¢ + r, where
0 = r < 4; and, therefore, k + 4Z = r + 4g + 4Z = r + 4Z. Now that
we know the elements of the factor group, our next job is to determine
the structure of Z/4Z. Its Cayley table is

‘ 0+ 47 1+47 2+47 3+4Z
0+ 47 0+4z 1+4Z 2+ 47 3+47
1+4Z 1+47 2+47Z 3+4Z 0+4z
2+4Z 2+47 3+4Z 0+4z 1+47
3+47Z 3+47 0+ 47 1+4Z 2+ 47

Clearly, then, Z/4Z =~ Z,. More generally, if for any n > 0 we let nZ =
{0, £n, £2n, £3n, .. .}, then Z/nZ is isomorphic to Z . |
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B EXAMPLE 11 Let G = Zgand let H = (6) = {0, 6, 12}. Then G/H =
{0O+H,1+H2+H 3+ H, 4+ H,5+ H}. To illustrate how the
group elements are combined, consider (5 + H) + (4 + H). This
should be one of the six elements listed in the set G/H. Well, (5 + H) +
4+H)=5+4+H=9+H=3+6+ H=23+ H, since H ab-
sorbs all multiples of 6. |

A few words of caution about notation are warranted here. When H
is a normal subgroup of G, the expression laH| has two possible inter-
pretations. One could be thinking of aH as a set of elements and laH|
as the size of the set; or, as is more often the case, one could be think-
ing of aH as a group element of the factor group G/H and laH| as the
order of the element aH in G/H. In Example 11, for instance, the set
3 + H has size 3, since 3 + H = {3, 9, 15}. But the group element
3+ Hhasorder2,since 3+ H)+ 3+ H) =6+ H=0+ H.Asis
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

B EXAMPLE 12 Let X = {R,, R q,}, and consider the factor group of
the dihedral group D, (see the back inside cover for the multiplication
table for D,)

D% = {3, Ry, HI, D).

The multiplication table for D,/J{ is given in Table 9.1. (Notice that
even though R,,H = D', we have used DJ in Table 9.1 for Ry HHK
because D'H = DX.)

Table 9.1

K Ry K HX DX
X H Ry K HX DY
Ry X Ry K H DX HY
HX HX DX H Ry K
DX DX HX Ry N

D,/J provides a good opportunity to demonstrate how a factor
group of G is related to G itself. Suppose we arrange the heading of the
Cayley table for D, in such a way that elements from the same coset of
J{ are in adjacent columns (Table 9.2). Then, the multiplication table
for D, can be blocked off into boxes that are cosets of K, and the sub-
stitution that replaces a box containing the element x with the coset xX
yields the Cayley table for D /XK.
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For example, when we pass from D, to D,/J{, the box

H Vv
Vv H

in Table 9.2 becomes the element HX in Table 9.1. Similarly, the box

D D
D" D

becomes the element DI, and so on.

Table 9.2

R, Ryg Ry, Ry H v D D’
RO RO RISO RQO R270 H 14 D , D’
R180 R 180 RO R270 R9O 14 H D D
R90 R9O R270 RISO RO D’ D/ H 14
Ry, Ry Ry, R, Rig D D 4 H
H H 14 D D’ R, Rig Ry, Ry
14 14 H D’ D Ryg R, Ry Ry,
D D D’ 14 H Ry Ry, R, Ryg
D' D’ D H 14 Ry, Ry Ry R,

In this way, one can see that the formation of a factor group G/H
causes a systematic collapse of the elements of G. In particular, all the
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

B EXAMPLE 13 Consider the group A, as represented by Table 5.1
on page 111. (Here i denotes the permutation a.) Let H = {1, 2, 3, 4}.
Then the three cosets of H are H, 5SH = {5, 6,7, 8}, and 9H = {9,
10, 11, 12}. (In this case, rearrangement of the headings is unneces-
sary.) Blocking off the table for A, into boxes that are cosets of H
and replacing the boxes containing 1, 5, and 9 (see Table 9.3) with
the cosets 1H, 5SH, and 9H, we obtain the Cayley table for G/H given
in Table 9.4.
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Table 9.3
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 10 9 12 11
3 3 4 1 2 7 8 5 6 11 12 9 10
4 | 4 3 2 1 8 7 6 5 12 11 10 9
5 5 8 6 7 9 12 10 11 1 4 2 3
6 | 6 7 5 8 10 11 9 12 2 3 1 4
7 7 6 8 5 11 10 12 9 3 2 4 1
8 8 5 7 6 12 9 11 10 4 1 3 2
9 9 11 12 10 1 3 4 2 5 7 8 6
10 | 10 12 11 9 2 4 3 1 6 8 7 5
11 |11 9 10 12 3 1 2 4 7 5 6 8
12 |12 10 9 11 4 2 1 3 8 6 5 7
Table 9.4
1H 5SH 9H
1H 1H S5H 9H
SH 5H 9H 1H
9H OH 1H 5H

This procedure can be illustrated more vividly with colors. Let’s say
we had printed the elements of H in green, the elements of 5H in red,
and the elements of 9H in blue. Then, in Table 9.3, each box would
consist of elements of a uniform color. We could then think of
the factor group as consisting of the three colors that define a group

table isomorphic to G/H.

Green Red Blue
Green Green Red Blue
Red Red Blue Green
Blue Blue Green Red

It is instructive to see what happens if we attempt the same proce-
dure with a group G and a subgroup H that is not normal in G—that is,
if we arrange the headings of the Cayley table so that the elements
from the same coset of H are in adjacent columns and attempt to block
off the table into boxes that are also cosets of H to produce a Cayley
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table for the set of cosets. Say, for instance, we were to take G to be A,
and H = {1, 5, 9}. The cosets of H would be H, 2H = {2, 6, 10},
3H = {3,7,11}, and 4H = {4, 8, 12}. Then the first three rows of the
rearranged Cayley table for A, would be the following.

1 5 9 2 6 10 3 7 11 4 8 12
1 1 5 9 2 6 10 3 7 11 4 8§ 12
5 9 1 12 4 6 10 2 7 11 3
9 9 1 5 11 3 7 12 4 8 10 6

But already we are in trouble, for blocking these off into 3 X 3 boxes
yields boxes that contain elements of different cosets. Hence, it is im-
possible to represent an entire box by a single element of the box in the
same way we could for boxes made from the cosets of a normal sub-
group. Had we printed the rearranged table in four colors with all
members of the same coset having the same color, we would see multi-
colored boxes rather than the uniformly colored boxes produced by a
normal subgroup. 1

In Chapter 11, we will prove that every finite Abelian group is
isomorphic to a direct product of cyclic groups. In particular, an
Abelian group of order 8 is isomorphic to one of Z,, Z, ® Z,, or Z, ©
Z, ® Z,. In the next two examples, we examine Abelian factor groups
of order 8 and determine the isomorphism type of each.

§ EXAMPLE 14 LetG = U(32)={1,3,5,7,9,11,13,15,17,19, 21,
23,25,27,29,31}and H = U,((32) = {1, 17}. Then G/H is an Abelian
group of order 16/2 = 8. Which of the three Abelian groups of order 8
is it—Z,, Z, ® Z,, or Z, © Z, ® Z,? To answer this question, we need
only determine the elements of G/H and their orders. Observe that the
eight cosets

1H={1,17}, 3H= (3,19}, SH=1{521), 7H={7,23},
9H = {9,25}, 11H = {11,27}, 13H = {13,29}, 15H = {15, 31}

are all distinct, so that they form the factor group G/H. Clearly,
(3H)> = 9H # H, and so 3H has order at least 4. Thus, G/H is not
Z,® Z, @ Z,. On the other hand, direct computations show that both
7H and 9H have order 2, so that G/H cannot be Z either, since a cyclic
group of even order has exactly one element of order 2 (Theorem 4.4).
This proves that U(32)/U,(32) = Z, D Z,, which (not so incidentally!)
is isomorphic to U(16). |




9 | Normal Subgroups and Factor Groups 193

B EXAMPLE 15 Let G = U(32) and K = {1, 15}. Then IG/KI| = 8,
and we ask, which of the three Abelian groups of order 8 is G/K? Since
(3K)* = 81K = 17K # K, I13K| = 8. Thus, G/K ~ Z,. 1

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H
to be the identity. Thus, in Example 12, we are making R, i = J{ the
identity. Likewise, R,, J{ = Ry R o = Ry J{. Similarly, in Example 10,
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This
iswhyS5+4Z=1+4+4Z =1+ 4Z, and so on. In Example 14, we
have 3H = 19H, since 19 = 3 - 17 in U(32) and going to the factor
group makes 17 the identity. Algebraists often refer to the process of
creating the factor group G/H as “killing” H.

Applications of Factor Groups

Why are factor groups important? Well, when G is finite and H # {e},
G/H is smaller than G, and its structure is usually less complicated than
that of G. At the same time, G/H simulates G in many ways. In fact, we
may think of a factor group of G as a less complicated approximation
of G (similar to using the rational number 3.14 for the irrational
number 7). What makes factor groups important is that one can often
deduce properties of G by examining the less complicated group G/H
instead. We illustrate this by giving another proof that A, has no sub-
group of order 6.

B EXAMPLE 16 A, hasno subgroup of order 6.

The group A, of even permutations on the set {1, 2, 3, 4} has no sub-
group H of order 6. To see this, suppose that A, does have a subgroup H
of order 6. By Exercise 9 in this chapter, we know that H <l A 4 Thus,
the factor group A,/H exists and has order 2. Since the order of an
element divides the order of the group, we have for all @ € A, that
o’H = (aH)* = H. Thus, o € H for all a in A,. Referring to the main
diagonal of the group table for A, given in Table 5.1 on page 111, how-
ever, we observe that A, has nine different elements of the form o?, all
of which must belong to H, a subgroup of order 6. This is clearly
impossible, so a subgroup of order 6 cannot exist in A,." |

The next three theorems illustrate how knowledge of a factor group
of G reveals information about G itself.

T“How often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth.” Sherlock Holmes, The Sign of Four
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B Theorem 9.3 G/ZTheorem

Let G be a group and let Z(G) be the center of G. If GIZ(G) is cyclic,
then G is Abelian.

PROOF Since G is Abelian is equivalent to Z(G) = G, it suffices to
show that the only element of G/Z(G) is the identity coset Z(G). To this end,
let G/Z(G) = (gZ(G)) and let a € G. Then there exists an integer i such that
aZ(G) = (gZ(G))' = g'Z(G). Thus, a = g'z for some z in Z(G). Since both
g'and z belong to C(g), so does a. Because a is an arbitrary element of G
this means that every element of G commutes with g so g € Z(G). Thus,
gZ(G) = Z(G) is the only element of G/Z(G). |

A few remarks about Theorem 9.3 are in order. First, our proof shows
that a better result is possible: If G/H is cyclic, where H is a subgroup of
Z(G), then G is Abelian. Second, in practice, it is the contrapositive of
the theorem that is most often used—that is, if G is non-Abelian, then
G/Z(G) is not cyclic. For example, it follows immediately from this
statement and Lagrange’s Theorem that a non-Abelian group of order
pq, where p and g are primes, must have a trivial center. Third, if G/Z(G)
is cyclic, it must be trivial.

I Theorem9.4 G/Z(G) = Inn(G)

For any group G, G/Z(G) is isomorphic to Inn(G).

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by
T: gZ(G) —> d)g [where, recall, qbg(x) = gxg~ ! for all x in G]. First, we
show that 7 is well defined. To do this, we assume that
8Z(G) = hZ(G) and verify that ¢, = ¢,. (This shows that the image
of a coset of Z(G) depends only on the coset itself and not on the ele-
ment representing the coset.) From gZ(G) = hZ(G), we have that
h~'g belongs to Z(G). Then, for all x in G, h~'gx = xh~'g. Thus,
gxg~ ! = hxh™! for all x in G, and, therefore, ¢, = ¢,. Reversing this
argument shows that 7 is one-to-one, as well. Clearly, 7T is onto.

That T is operation-preserving follows directly from the fact that
qbgth = qﬁgh for all g and /1 in G. |

As an application of Theorems 9.3 and 9.4, we may easily determine
Inn(D,) without looking at Inn(D,)!
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# EXAMPLE 17 We know from Example 14 in Chapter 3 that
IZ(Dg)! = 2. Thus, ID,/Z(D)| = 6. So, by our classification of groups
of order 6 (Theorem 7.3), we know that Inn(Dy) is isomorphic to D,
or Z.. Now, if Inn(D,) were cyclic, then, by Theorem 9.4, D /Z(D,)
would be also. But then, Theorem 9.3 would tell us that D is Abelian.
So, Inn(D,) is isomorphic to D,. |

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of
factor groups and induction.

B Theorem 9.5 Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the
order of G. Then G has an element of order p.

PROOF Clearly, this statement is true for the case in which G has
order 2. We prove the theorem by using the Second Principle of Math-
ematical Induction on |GI. That is, we assume that the statement is true
for all Abelian groups with fewer elements than G and use this assump-
tion to show that the statement is true for G as well. Certainly, G has
elements of prime order, for if Ix| = m and m = gn, where ¢ is prime,
then Ix"l = g. So let x be an element of G of some prime order ¢, say. If
q = p, we are finished; so assume that ¢ # p. Since every subgroup of
an Abelian group is normal, we may construct the factor group G =
G/{x). Then G is Abelian and p divides |G|, since |G| = |Gl/q. By
induction, then, G has an element—call it y(x)—of order p.

Then, (y{x))? = y?(x) = (x) and therefore y? € (x). If y? = e, we are
done. If not, then y” has order ¢ and y? has order p. |

Internal Direct Products

As we have seen, the external direct product provides a method of put-
ting groups together to get a larger group in such a way that we can
determine many properties of the larger group from the properties of
the component pieces. For example: If G = H @ K, then |Gl = |HIIKI;
every element of G has the form (h, k) where h € H and k € K; if |Al
and |kl are finite, then (A, k)| = lcm(lAl, 1kl); if H and K are Abelian,
then G is Abelian; if H and K are cyclic and |H| and IK]| are relatively
prime, then H & K is cyclic. It would be quite useful to be able to reverse
this process—that is, to be able to start with a large group G and break
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it down into a product of subgroups in such a way that we could glean
many properties of G from properties of the component pieces. It is oc-
casionally possible to do this.

Definition Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write
G = H X K if H and K are normal subgroups of G and

G=HK and HNK = {e}.

The wording of the phrase “internal direct product” is easy to justify.
We want to call G the internal direct product of H and K if H and K are
subgroups of G, and if G is naturally isomorphic to the external direct
product of H and K. One forms the internal direct product by starting
with a group G and then proceeding to find two subgroups H and K
within G such that G is isomorphic to the external direct product of H
and K. (The definition ensures that this is the case—see Theorem 9.6.)
On the other hand, one forms an external direct product by starting with
any two groups H and K, related or not, and proceeding to produce the
larger group H @ K. The difference between the two products is that the
internal direct product can be formed within G itself, using subgroups
of G and the operation of G, whereas the external direct product can be
formed with totally unrelated groups by creating a new set and a new
operation. (See Figures 9.1 and 9.2.)

Figure 9.1 For the internal direct product,
H and K must be subgroups of the same group.

H K
Figure 9.2 For the external

direct product, H and K can
be any groups.
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Perhaps the following analogy with integers will be useful in clar-
ifying the distinction between the two products of groups discussed
in the preceding paragraph. Just as we may take any (finite) collec-
tion of integers and form their product, we may also take any collec-
tion of groups and form their external direct product. Conversely,
just as we may start with a particular integer and express it as a prod-
uct of certain of its divisors, we may be able to start with a particular
group and factor it as an internal direct product of certain of its sub-
groups.

B EXAMPLE 18 In D, the dihedral group of order 12, let F denote
some reflection and let R, denote a rotation of k degrees. Then,

Dg = {Rp, Ri5p Ryygr Fs RipoF's RyyoF'} X (R, R g} i

120 7 "240°

Students should be cautioned about the necessity of having all con-
ditions of the definition of internal direct product satisfied to ensure
that HK ~ H @ K. For example, if we take

G=S, H=(123), and K={(12),

then G = HK, and H N K = {(1)}. But G is not isomorphic to H &® K,
since, by Theorem 8.2, H & K is cyclic, whereas S, is not. Note that K
is not normal.

A group G can also be the internal direct product of a collection of
subgroups.

Definition Internal Direct ProductH X H, X - - - X H_

LetH,, H,, ..., H, be a finite collection of normal subgroups of G. We
say that G is the internal direct product of H, H,, . . ., H and write
G=H XH,X:--XH,if

I.G=HH, ---H ={hh,---h 1h €H}
2.(HH,---H)NH,  ={ejfori=1,2,...,n— 1.

This definition is somewhat more complicated than the one given for
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem
shows, the conditions in the definition of internal direct product were
chosen to ensure that the two products are isomorphic.
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B Theorem9.6 H X H, X -+ XH ~H ®OH,®---DH,

If a group G is the internal direct product of a finite number of
subgroups H, H,, . .., H , then G is isomorphic to the external
direct productof H;, H,, . .. , H .

n

PROOF We first show that the normality of the H’s together with the
second condition of the definition guarantees that 4’s from different
H_’s commute. For if 7, € H, and h. S H. with i # j, then

(hhh,Dh~' € Hh™' = H,
and

h(hh,'h"") € hH, = H,.

Thus, hh}h lh/_l EH N H {e} (see Exercise 5), and, therefore,
h.h. = hh,. We next clalm that each member of G can be expressed
un1que1y in the form h,h, - - - h,, where h, € H,. That there is at least one

such representation is the content of COIldlthIl 1 of the definition. To
prove uniqueness, suppose that g = hh, - -~ h andg = h/h, - - - h/,

where i, and hl.’ belong to H fori = 1, ..., n. Then, using the fact that
the A’s from different H;’s commute, we can solve the equation
hhy - h, =hh-h ()

for hn’ hl;l to obtain
-1 _ ’ —
h''h =" = (h))~ Ih (hy)™ lh (R ) 1hn_1

But then
h'h~'€HH,---H_ NH ={e},

n—1

so that i hrfl = e and, therefore, 2/ = h . At this point, we can cancel
h, and h' from opposite sides of the equal sign in Equation (1) and repeat
the preceding argument to obtain 4 _, = h' . Continuing in this fash-
ion, we eventually have h, = h/ fori = 1, ..., n. With our claim estab-
lished, we may now define a function ¢ fromGto H, O H,D - - D H,
by ¢(hh, -+ - h) = (h,h,, ..., h). Weleave to the reader the easy ver-
ification that ¢ is an isomorphism. |

The next theorem provides an important application of Theorem 9.6.
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§ Theorem 9.7 Classification of Groups of Order p?

Every group of order p?, where p is a prime, is isomorphic to Z, or
Z DZ.
P P

PROOF Let G be a group of order p* where p is a prime. If G has an
element of order p* then G is isomorphic to Z,. So, by Corollary 2 of
Lagrange’s Theorem, we may assume that every nonidentity element of
G has order p. First we show that for any element a, the subgroup (a) is
normal in G. If this is not the case, then there is an element b in G such
that bab~ ! is not in {a). Then (a) and {bab~ ') are distinct subgroups of
order p. Since {a) N {bab~') is a subgroup of both {a) and (bab™ '),
we have that (¢) N (bab~ 'y = {e}. From this it follows that the distinct
left cosets of (bab™ ') are (bab™'), albab™'y, a*bab™'), . . . ,
a’~"(bab™'). Since b~! must lie in one of these cosets, we may write
b~ "in the form b~' = d'(bab™'Y = d'ba’b" for some i and j. Cancel-
ing the b~! terms, we obtain e = a'ba’ and therefore b = a~' "/ € (a).
This contradiction verifies our assertion that every subgroup of the form
(a) is normal in G. To complete the proof, let x be any nonidentity ele-
ment in G and y be any element of G not in (x). Then, by comparing or-
ders and using Theorem 9.6, we see that G = (x) X (y) = Z,®Z,. 1

As an immediate corollary of Theorem 9.7, we have the following
important fact.

1 Corollary

If G is a group of order p?, where p is a prime, then G is Abelian.

We mention in passing thatif G = H, @ H,® - - - @ H , then G can
be expressed as the internal direct product of subgroups isomorphic to
H, H,, ..., H,. Forexample, if G = H ® H,, then G = H, X H,,
where H; = H, © {e} and H, = {e} D H,.

The topic of direct products is one in which notation and terminol-
ogy vary widely. Many authors use H X K to denote both the internal
direct product and the external direct product of H and K, making no
notational distinction between the two products. A few authors define
only the external direct product. Many people reserve the notation
H © K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always Abelian
groups under addition.
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The U-groups provide a convenient way to illustrate the preceding

ideas and to clarify the distinction between internal and external direct
products. It follows directly from Theorem 8.3, its corollary, and
Theorem 9.6 thatif m = n\n, - - - n,, where ged(n, nj) = 1 fori # j, then

)
U(m) = Um,nl(m) X Um/nz(m) X -+ X Um,nk(m)
~Un)DUmny) DD Un,).

Let us return to the examples given following Theorem 8.3.

U(105) = U(15 - 7) = U,{(105) X U,(105)
= (1,16, 31,46, 61,76} X {1,8, 22,29, 43, 64,71, 92}
~ U(T) D U(15),
U(105) = U5 - 21) = U4(105) X U,,(105)
= {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
X {1,22,43, 64} ~ UQ21) D U(S),
U(105) = UGB - 5+ 7) = U,,(105) X U,,(105) X U,(105)
= (1,71} X {1,22, 43,64} X {1, 16, 31, 46, 61, 76}
~ UB3) D UGS) D UT).

The heart of mathematics is its problems.

g

Paul Halmos

Let H = {(1), (12)}. Is H normal in §,?
Prove that A is normal in S .
In D, let K = {R,, Ry R g Rypo - Write HR,, in the form xH,
where x € K. Write DR270 in the form xD, where x € K. Write R90V
in the form Vx, where x € K.

Write (12)(13)(14) in the form a(12), where a € A,. Write (1234)
(12)(23), in the form «(1234), where @ € A,.

Show that if G is the internal direct product of H,, H,, . . ., H and
i#jwithl=i=n1=j=n,then H N Hj = {e}. (This exercise
is referred to in this chapter.)

(2

group of GL(2, R)?

Let G = GL(2, R) and let K be a subgroup of R*. Prove that H =
{A € GldetA € K} is a normal subgroup of G.

Viewing (3) and (12) as subgroups of Z, prove that (3)/(12) is iso-
morphic to Z,. Similarly, prove that (8)/(48) is isomorphic to Z.
Generalize to arbitrary integers k and n.

a,b,d € R, ad?ﬁO}. Is H a normal sub-

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied,
hird be ssed from d/or eChapter(s). Edi
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. Prove that if H has index 2 in G, then H is normal in G. (This exer-

cise is referred to in Chapters 24 and 25 and this chapter.)
Let H = {(1), (12)(34)} in A,.
a. Show that H is not normal in A,.

b. Referring to the multiplication table for A, in Table 5.1 on page
111, show that, although aH = aH and aH = o, H, it is not
true that agayH = ) H. Explain why this proves that the left
cosets of H do not form a group under coset multiplication.

Let G =Z2,® U4), H={(2,3)), and K = ((2, 1)). Show that G/H

is not isomorphic to G/K. (This shows that H ~ K does not imply

that G/H =~ G/K.)

Prove that a factor group of a cyclic group is cyclic.

Prove that a factor group of an Abelian group is Abelian.

What is the order of the element 14 + (8) in the factor group

Z,,/(8)?

What is the order of the element 4U,(105) in the factor group

U(105)/U4(105)?

Recall that Z(Dy) = {R,, R,4,}. What is the order of the element

R Z(D,) in the factor group D /Z(D,)?

Let G = Z/(20) and H = (4)/{20). List the elements of H and G/H.

What is the order of the factor group Z,/(15)?

What is the order of the factor group (Z,, © U(10))/(2, 9))?

Construct the Cayley table for U(20)/U,(20).

Prove that an Abelian group of order 33 is cyclic.

Determine the order of (Z & Z)/{(2, 2)). Is the group cyclic?

Determine the order of (Z ©® Z)/{(4, 2)). Is the group cyclic?

The group (Z, ® Z,,)(2, 2)) is isomorphic to one of Z, Z, ® Z,, or

Z,® Z, ® Z,. Determine which one by elimination.

Let G = U(32) and H = {1, 31}. The group G/H is isomorphic to

one of Z,, Z, ©® Z,, or Z, ® Z, © Z,. Determine which one by

elimination.

Let G be the group of quaternions given by the table in Exercise 4

of the Supplementary Exercises for Chapters 1-4, and let H be the

subgroup {e, a*}. Is G/H isomorphic to Z, or Z, ® Z,?

Let G = U(16), H = {1, 15}, and K = {1, 9}. Are H and K iso-

morphic? Are G/H and G/K isomorphic?

LetG=2,9Z,H={(0,0),(2,0),(0,2),(2,2)},and K = ((1, 2)).

Is G/H isomorphic to Z, or Z, © Z,? Is G/K isomorphic to Z, or

Z,DZ?

Prove that A, € Z; has no subgroup of order 18.

ning. All Rights
ssed from the
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31.
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Express U(165) as an internal direct product of proper subgroups
in four different ways.

Let R* denote the group of all nonzero real numbers under multi-
plication. Let R* denote the group of positive real numbers under
multiplication. Prove that R* is the internal direct product of R*
and the subgroup {1, —1}.

Prove that D, cannot be expressed as an internal direct product of
two proper subgroups.

Let H and K be subgroups of a group G. If G = HK and g = hk,
where 4 € H and k € K, is there any relationship among Igl, IAl,
and 1k1? What if G = H X K?

In Z,let H = (5) and K = (7). Prove that Z = HK. Does Z = H X K?
Let G = {396”10¢ | a, b, ¢ € Z} under multiplication and H =
{3%6%12¢ | a, b, ¢ € Z} under multiplication. Prove that G = (3) X
(6) X (10), whereas H # (3) X (6) X (12).

Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2.

Let G be a finite group and let H be a normal subgroup of G. Prove
that the order of the element gH in G/H must divide the order
of gin G.

Let H be a normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and |H| =10, what are the
possibilities for the order of a?

If H is a normal subgroup of a group G, prove that C(H), the cen-
tralizer of H in G, is a normal subgroup of G.

Let ¢ be an isomorphism from a group G onto a group G. Prove
that if H is a normal subgroup of G, then ¢(H) is a normal sub-
group of G.

Show that Q, the group of rational numbers under addition, has no
proper subgroup of finite index.

An element is called a square if it can be expressed in the form b?
for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of
G/H is a square, prove that every element of G is a square. Does
your proof remain valid when ““square” is replaced by “nth power,”
where 7 is any integer?

Show, by example, that in a factor group G/H it can happen that
aH = bH but lal # |bl.

Observe from the table for A, given in Table 5.1 on page 111 that
the subgroup given in Example 9 of this chapter is the only sub-
group of A, of order 4. Why does this imply that this subgroup
must be normal in A,? Generalize this to arbitrary finite groups.
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Let p be a prime. Show that if H is a subgroup of a group of order
2p that is not normal, then H has order 2.

Show that D5 is isomorphic to Inn(D, ).

Suppose that N is a normal subgroup of a finite group G and H is a

subgroup of G. If |G/N| is prime, prove that H is contained in N or

that NH = G.

If G is a group and |G: Z(G)| = 4, prove that G/Z(G) =~ Z, D Z,.

Suppose that G is a non-Abelian group of order p?, where p is a

prime, and Z(G) # {e}. Prove that IZ(G)l = p.

If IGI = pgq, where p and ¢q are primes that are not necessarily dis-

tinct, prove that 1Z(G)l = 1 or pq.

Let N be a normal subgroup of G and let H be a subgroup of G. If

N is a subgroup of H, prove that H/N is a normal subgroup of G/N

if and only if H is a normal subgroup of G.

Let G be an Abelian group and let H be the subgroup consisting of

all elements of G that have finite order. (See Exercise 20 in the

Supplementary Exercises for Chapters 1-4.) Prove that every non-

identity element in G/H has infinite order.

Determine all subgroups of R* that have finite index.

Let G = {*1, *i, *j, ¥k}, where i> = j2 = k?> = —1, —i = (—1)i,

12=(-12=1,ij= —ji=k jk= —kj=i,and ki = —ik = j.

a. Construct the Cayley table for G.

b. Show that H = {1, —1} <G.

c. Construct the Cayley table for G/H. Is G/H isomorphic to Z, or
Z,DZ,?

(The rules involving i, j, and k can be remembered by using the cir-

cle below.

Going clockwise, the product of two consecutive elements is the third
one. The same is true for going counterclockwise, except that we ob-
tain the negative of the third element.) This is the group of quaterni-
ons that was given in another form in Exercise 4 in the Supplementary
Exercises for Chapters 1-4. It was invented by William Hamilton
in 1843. The quaternions are used to describe rotations in three-
dimensional space, and they are used in physics. The quaternions can
be used to extend the complex numbers in a natural way.
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InD,letK = {R;,,D}andletL = {R),D,D’, R .,}. Show that K <]
L <ID,, but that K is not normal in D,. (Normality is not transitive.
Compare Exercise 4, Supplementary Exercises for Chapters 5-8.)
Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

Give an example of subgroups H and K of a group G such that HK
is not a subgroup of G.

If N and M are normal subgroups of G, prove that NM is also a
normal subgroup of G.

Let N be a normal subgroup of a group G. If N is cyclic, prove that
every subgroup of N is also normal in G. (This exercise is referred
to in Chapter 24.)

Without looking at inner automorphisms of D , determine the num-
ber of such automorphisms.

Let H be a normal subgroup of a finite group G and let x € G. If
gcd(lxl, IG/Hl) = 1, show that x € H. (This exercise is referred to
in Chapter 25.)

Let G be a group and let G’ be the subgroup of G generated by the

set S = {x"'y"xy I x, y € G}. (See Exercise 3, Supplementary

Exercises for Chapters 5-8, for a more complete description of G'.)

a. Prove that G’ is normal in G.

b. Prove that G/G’ is Abelian.

c. If G/N is Abelian, prove that G' = N.

d. Prove thatif H is a subgroup of G and G’ = H, then H is normal
in G.

If N is a normal subgroup of G and |IG/NI = m, show that X" € N

for all x in G.

Suppose that a group G has a subgroup of order n. Prove that the

intersection of all subgroups of G of order » is a normal subgroup

of G.

If G is non-Abelian, show that Aut(G) is not cyclic.

Let |Gl = p"m, where p is prime and gcd(p, m) = 1. Suppose that

H is a normal subgroup of G of order p”. If K is a subgroup of G of

order p¥, show that K C H.

Suppose that H is a normal subgroup of a finite group G. If G/H

has an element of order n, show that G has an element of order n.

Show, by example, that the assumption that G is finite is necessary.

Recall that a subgroup N of a group G is called characteristic if
¢(N) = N for all automorphisms ¢ of G. If N is a characteristic
subgroup of G, show that N is a normal subgroup of G.




9 | Normal Subgroups and Factor Groups 205

69. In D, let J{ = {R, H}. Form an operation table for the cosets Jt,
DI, VX, and D'J. Is the result a group table? Does your answer
contradict Theorem 9.2?

70. Prove that A, is the only subgroup of S, of order 12.

71. If |G| = 30 and |Z(G)| = 5, what is the structure of G/Z(G)?

72. If H is a normal subgroup of G and |H| = 2, prove that H is con-
tained in the center of G.

73. Prove that A; cannot have a normal subgroup of order 2.

74. Let G be a finite group and let H be an odd-order subgroup of G of
index 2. Show that the product of all the elements of G (taken in
any order) cannot belong to H.

75. Let G be a group and p a prime. Suppose that H = {g” | g € G} is
a subgroup of G. Show that H is normal and that every nonidentity
element of G/H has order p.

76. Suppose that H is a normal subgroup of G. If IH| = 4 and gH has
order 3 in G/H, find a subgroup of order 12 in G.

77. Let G be a group and H an odd-order subgroup of G of index 2.
Show that H contains every element of G of odd order.

78. A proper subgroup H of a group G is called maximal if there is no
subgroup K such that H C K C G (that is, there is no subgroup K
properly contained between H and G). Show that Z(G) is never a
maximal subgroup of a group G.

79. Let G be a group of order 100 that has exactly one subgroup of
order 5. Prove that it has a subgroup of order 10.

Michael Brennan and Des MacHale, “Variations on a Theme: A, Defi-
nitely Has No Subgroup of Order Six!,” Mathematics Magazine 73
(2000): 36-40.
The authors offer 11 proofs that A, has no subgroup of order 6. These
proofs provide a review of many of the ideas covered thus far in this
text.

J. A. Gallian, R. S. Johnson, and S. Peng, “On Quotient Structures of
7" Pi Mu Epsilon Journal 9 (1993): 524-526.

The authors determine the structure of the group (Z ® Z)/(a, b)) and
related groups.
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Tony Rothman, “Genius and Biographers: The Fictionalization of Evariste
Galois,” The American Mathematical Monthly 89 (1982): 84-106.

The author argues that many popular accounts of Galois’s life have
been greatly embroidered.

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music 34 (1996): 140-161.
The author discusses how group theoretic notions such as subgroups,

cosets, factor groups, and isomorphisms of Z,, and Z, relate to musical
scales, tuning, temperament, and structure.
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Evariste Galois

Galois at seventeen was making discover-
ies of epochal significance in the theory of
equations, discoveries whose conse-
quences are not yet exhausted after more
than a century.

E. T. BELL, Men of Mathematics

REPUBLIQUE
FRANCAISE
—'—""1' .

This French stamp was issued as part of
the 1984 “Celebrity Series” in support of
the Red Cross Fund.

EVARISTE GALoIS (pronounced gal-WAH)
was born on October 25, 1811, near Paris.
Although he had mastered the works of
Legendre and Lagrange at age 15, Galois
twice failed his entrance examination to the
Ecole Polytechnique. He did not know
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the
annoyance of the examiner.

At 18, Galois wrote his important research
on the theory of equations and submitted it to
the French Academy of Sciences for publica-
tion. The paper was given to Cauchy for ref-
ereeing. Cauchy, impressed by the paper,
agreed to present it to the academy, but he
never did. At the age of 19, Galois entered a

The Granger Collection, New York

paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics,
given by the French Academy of Sciences.
The paper was given to Fourier, who died
shortly thereafter. Galois’s paper was never
seen again.

Galois spent most of the last year and a
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted
suicide and prophesied that he would die in a
duel. On May 30, 1832, Galois was shot in a
duel; he died the next day at the age of 20.

Among the many concepts introduced by
Galois are normal subgroups, isomorphisms,
simple groups, finite fields, and Galois theory.
His work provided a method for disposing
of several famous constructability problems,
such as trisecting an arbitrary angle and dou-
bling a cube. Galois’s entire collected works
fill only 60 pages.

To find more information about Galois,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Homomorphisms

When it comes to laws, there is absolutely no doubt that symmetry and
group theory are extremely useful concepts. Without the introduction of
symmetry and the language of groups into particle physics the description
of the elementary particles and their interactions would have been an
intricate nightmare. Groups truly flesh out order and identify patterns like
no other mathematical machinery.

MARIO LIVIO, The Equation That Couldn't be Solved

Definition and Examples

208

In this chapter, we consider one of the most fundamental ideas of
algebra—homomorphisms. The term homomorphism comes from the
Greek words homo, “like,” and morphe, “form.” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that
there is an intimate connection between factor groups of a group and
homomorphisms of a group. The concept of group homomorphisms
was introduced by Camille Jordan in 1870, in his influential book Traité
des substitutions.

Definition Group Homomorphism

A homomorphism ¢ from a group G to a group G is a mapping
from G into G that preserves the group operation; that is, ¢(ab) =
d(a)p(b) for all a, b in G.

Before giving examples and stating numerous properties of
homomorphisms, it is convenient to introduce an important subgroup
that is intimately related to the image of a homomorphism. (See
property 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism

The kernel of a homomorphism ¢ from a group G to a group with
identity e is the set {x € G | ¢(x) = e}. The kernel of ¢ is denoted by
Ker ¢.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied,
some third party content may be suppressed from the éBook and/or eChapter(s). Edit
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B EXAMPLE 1 Any isomorphism is a homomorphism that is also onto
and one-to-one. The kernel of an isomorphism is the trivial subgroup. 1

B EXAMPLE 2 Let R* be the group of nonzero real numbers under
multiplication. Then the determinant mapping A — det A is a
homomorphism from GL(2, R) to R*. The kernel of the determinant
mapping is SL(2, R). |

B EXAMPLE 3 The mapping ¢ from R* to R*, defined by ¢(x) = Ixl,
is a homomorphism with Ker ¢ = {1, —1}. |

I EXAMPLE 4 Let R[x] denote the group of all polynomials with real
coefficients under addition. For any fin R[x], let f* denote the deriva-
tive of f. Then the mapping f— f” is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant
polynomials. |

B EXAMPLE 5 The mapping ¢ from Z to Z , defined by ¢(m) = m
mod 7, is a homomorphism (see Exercise 9 in Chapter 0). The kernel of
this mapping is (n). 1

B EXAMPLE 6 The mapping ¢(x) = x> from R*, the nonzero real
numbers under multiplication, to itself is a homomorphism, since
¢(ab) = (ab)* = a’b* = ¢(a)p(b) for all a and b in R*. (See Exercise 5.)
The kernelis {1,-1}. |

B EXAMPLE 7 The mapping ¢(x) = x> from R, the real numbers
under addition, to itself is not a homomorphism, since ¢(a + b) =
(a + b)> = a®> + 2ab + b?, whereas ¢(a) + ¢(b) = a®> + b*. |

When defining a homomorphism from a group in which there are
several ways to represent the elements, caution must be exercised to
ensure that the correspondence is a function. (The term well-defined is
often used in this context.) For example, since 3(x + y) = 3x + 3y in
Z, one might believe that the correspondence x + (3) — 3x from Z/(3) to
Z is a homomorphism. But it is not a function, since 0 + 3)=3+
(3)inZ/3)but3 -0 #3-3inZ,

For students who have had linear algebra, we remark that every
linear transformation is a group homomorphism and the null-space is
the same as the kernel. An invertible linear transformation is a group
isomorphism.
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Properties of Homomorphisms

I Theorem 10.1 Properties of Elements Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let g be
an element of G. Then

1. ¢ carries the identity of G to the identity of G.

. d(g") = (Pp(g)" forallnin Z.

. If gl is finite, then |$(g)| divides Ig|.

. Ker ¢ is a subgroup of G.

. ¢(a) = ¢(b) if and only if aKer ¢ = bKer ¢.

- Ifdp(g) =g, then d™'(g') = {x E G| d(x) = g'} = gKer ¢.

AUt A W

PROOF The proofs of properties 1 and 2 are identical to the proofs of
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3,
notice that properties 1 and 2 together with g” = e imply that e =
d(e) = d(g") = (¢p(g))". So, by Corollary 2 to Theorem 4.1, we have
lp(g)! divides n.

By property 1 we know that Ker ¢ is not empty. So, to prove prop-
erty 4, we assume that a, b € Ker ¢ and show that ab™!' € Ker ¢.
Since ¢(a) = e and ¢p(b) = e, we have Pp(ab™") = Pp(a)p(b™!) =
d(a)(p(b) ' = ee ! =e.So,ab™ ! € Ker ¢.

To prove property 5, first assume that ¢(a) = ¢(b). Then
e = (b)) 'd(a) = d(b~Hp(a) = d(b~'a), so that b~ 'aE Ker ¢.
It now follows from property 6 of the lemma in Chapter 7 that
bKer ¢ = aKer ¢. Reversing this argument completes the proof.

To prove property 6, we must show that ¢~'(g") C gKer ¢ and that
gKer ¢ C ¢ !(g’). For the first inclusion, let x € ¢~ !(g’), so that
¢(x) = g'. Then ¢(g) = ¢(x) and by property 5 we have gKer ¢ =
xKer ¢ and therefore x € gKer ¢. This completes the proof that
¢ (g") C gKer ¢. To prove that gKer ¢ C ¢ !(g’), suppose that k €
Ker ¢. Then ¢(gk) = P(g)p(k) = g'e = g'. Thus, by definition, gk €
(8. I

Since homomorphisms preserve the group operation, it should not be
a surprise that they preserve many group properties.
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I Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let H be
a subgroup of G. Then
1. ¢(H) = {¢(h) | h € H} is a subgroup of G.
. If H is cyclic, then ¢(H) is cyclic.
If H is Abelian, then ¢(H) is Abelian.
If H is normal in G, then ¢(H) is normal in ¢(G).
. If IKer ¢| = n, then ¢ is an n-to-1 mapping from G onto ¢(G).
If |IH| = n, then |¢p(H)! divides n.
. IfK is a subgroup of G, then ¢ '(K) = {k € G | $(k) € K}
is a subgroup of G.
8. IfK is a normal subgroup of G, then $~'(K) = {k € G |
¢(k) € K} is a normal subgroup of G.
9. If ¢ is onto and Ker ¢ = {e}, then ¢ is an isomorphism
from G to G.

S I N R NIV Y

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem
6.3, since those proofs use only the fact that an isomorphism is an
operation-preserving mapping.

To prove property 4, let ¢p(h) € ¢(H) and ¢(g) € H(G). Then
d(@)p(M)Pp(g) ! = Pp(ghg™") € dp(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the
fact that all cosets of Ker ¢ = ¢~ !(e) have the same number of elements.

To prove property 6, let ¢, denote the restriction of ¢ to the
elements of H. Then ¢, is a homomorphism from H onto ¢(H).
Suppose [Ker ¢,| = 1. Then, by property 5, ¢,, is a t-to-1 mapping. So,
lp(H)It = |HI.

To prove property 7, we use the One-Step Subgroup Test. Clearly,
e € ¢~ (K), so that ¢~!(K) is not empty. Let k,, k, € ¢~'(K). Then,
by the definition of ¢~'(K), we know that ¢(k,), ¢(k,) € K. Thus,
$(k,)"' € K as well and ¢(kk, ) = $k)pk,)"" € K. So, by the
definition of ¢~ '(K), we have k k, ' € ¢~'(K).

To prove property 8, we use the normality test given in Theorem 9.1.
Note that every element in x¢p~'(K)x~" has the form xkx~!, where ¢ (k) €
K. Thus, since K is normal in G, ¢p(xkx™") = p(x)p(k)(p(x))~! € K,
and, therefore, xkx~! € ¢~ 1(K).

Finally, property 9 follows directly from property 5. |
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A few remarks about Theorems 10.1 and 10.2 are in order. Students
should remember the various properties of these theorems in words. For
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic
image of a cyclic group is cyclic and the homomorphic image of an
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho-
momorphic image of a normal subgroup of G is normal in the image of
G. Property 5 of Theorem 10.2 says that if ¢ is a homomorphism from
G to G, then every element of G that gets “hit” by ¢ gets hit the same
number of times as does the identity. The set ¢~ !(g’) defined in prop-
erty 6 of Theorem 10.1 is called the inverse image of g’ (or the pullback
of g"). Note that the inverse image of an element is a coset of the kernel
and that every element in that coset has the same image. Similarly, the
set ¢~ !(K) defined in property 7 of Theorem 10.2 is called the inverse
image of K (or the pullback of K).

Property 6 of Theorem 10.1 is reminiscent of something from linear
algebra and differential equations. Recall that if x is a particular solu-
tion to a system of linear equations and S is the entire solution set of the
corresponding homogeneous system of linear equations, then x + S is
the entire solution set of the nonhomogeneous system. In reality, this
statement is just a special case of property 6. Properties 1 and 6 of
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1. B

The special case of property 8 of Theorem 10.2, where K = {e}, is
of such importance that we single it out.

I Corollary Kernels Are Normal

Let ¢ be a group homomorphism from G to G. Then Ker ¢ is a nor-
mal subgroup of G.

The next two examples illustrate several properties of Theorems 10.1
and 10.2.

B EXAMPLE 8 Consider the mapping ¢ from C* to C* given by
d(x) = x* Since (xy)* = x*y* ¢ is a homomorphism. Clearly,
Ker ¢ = {x | x* =1} = {1, —1, i, —i}. So, by property 5 of Theorem
10.2, we know that ¢ is a 4-to-1 mapping. Now let’s find all elements
that map to, say, 2. Certainly, $(V/2) = 2. Then, by property 6 of
Theorem 10.1, the set of all elements that map to 2 is V2 Ker ¢ =
(2,32 Vi, 21},




10 | Group Homomorphisms 213

Kerg =¢7'(e) gKer g =¢7'(g")

Figure 10.1

Finally, we verify a specific instance of property 3 of Theorem 10.1
and of properties 2 and 6 of Theorem 10.2. Let H = (cos 30° + i sin
30°). It follows from DeMoivre’s Theorem (Example 10 in Chapter 0)
that |Hl = 12, ¢(H) = (cos 120° + i sin 120°), and I$p(H)| = 3. |

8 EXAMPLE 9 Define ¢: Z, — Z,, by ¢(x) = 3x. To verify that ¢ is a
homomorphism, we observe that in Z,,, 3(a + b) = 3a + 3b (since the
group operation is addition modulo 12). Direct calculations show that
Ker ¢ = {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that
¢ is a 3-to-1 mapping. Since ¢(2) = 6, we have by property 6 of
Theorem 10.1 that ¢~ '(6) = 2 + Ker ¢ = {2, 6, 10}. Notice also that (2)
is cyclic and ¢((2)) = {0, 6} is cyclic. Moreover, 12| = 6 and 1$(2)| =
161 = 2, so l(2)I divides 12l in agreement with property 3 of Theorem
10.1. Letting K= {0, 6}, we see that the subgroup ¢~ '(K) = {0, 2, 4, 6,
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case. il

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

B EXAMPLE 10 We determine all homomorphisms from Z , to Z,,.
By property 2 of Theorem 10.1, such a homomorphism is completely
specified by the image of 1. That is, if 1 maps to @, then x maps to xa.
Lagrange’s Theorem and property 3 of Theorem 10.1 require that lal di-
vide both 12 and 30. So, lal = 1, 2, 3, or 6. Thus, a = 0, 15, 10, 20,
5, or 25. This gives us a list of candidates for the homomorphisms. That
each of these six possibilities yields an operation-preserving, well-
defined function can now be verified by direct calculations. [Note that
gcd(12, 30) = 6. This is not a coincidence!] |
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B EXAMPLE 11 The mapping from S, to Z, that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2
illustrates the telescoping nature of the mapping. |

Figure 10.2 Homomorphism from S, to Z,.

The First Isomorphism Theorem

In Chapter 9, we showed that for a group G and a normal subgroup H,
we could arrange the Cayley table of G into boxes that represented the
cosets of H in G, and that these boxes then became a Cayley table for
G/H. The next theorem shows that for any homomorphism ¢ of G and
the normal subgroup Ker ¢, the same process produces a Cayley table
isomorphic to the homomorphic image of G. Thus, homomorphisms,
like factor groups, cause a systematic collapse of a group to a simpler
but closely related group. This can be likened to viewing a group
through the reverse end of a telescope—the general features of the
group are present, but the apparent size is diminished. The important
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relationship between homomorphisms and factor groups given below is
often called the Fundamental Theorem of Group Homomorphisms.

I Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

Let ¢ be a group homomorphism from G to G. Then the mapping
Jrom G/Ker ¢ to ¢(G), given by gKer ¢ — ¢(g), is an isomorphism.
In symbols, G/Ker ¢ ~ ¢(G).

PROOF Let us use ¢ to denote the correspondence gKer¢ — ¢(g).
That ¢ is well-defined (that is, the correspondence is independent of
the particular coset representative chosen) and one-to-one follows
directly from property 5 of Theorem 10.1. To show that ¢ is operation-
preserving, observe that ¢s(xKer ¢ yKer ¢) = y(xyKer ¢p) = ¢p(xy) =
d(x) d(y) = P(xKer p)p(yKer ). i

The next corollary follows directly from Theorem 10.3, property 1 of
Theorem 10.2, and Lagrange’s Theorem.

1 Corollary

If ¢ is a homomorphism from a finite group G to G, then |p(G)|
divides |G| and |G|.

B EXAMPLE 12 To illustrate Theorem 10.3 and its proof, consider the
homomorphism ¢ from D, to itself given by the following.

R R 180 R90 R270 H 14 D D’

\ /N /NN

R, H R v

Then Ker ¢ = {R,, R}, and the mapping ¢ in Theorem 10.3 is
R,Ker ¢ — R, RyKer ¢ — H, HKer ¢ — R, DKer ¢ — V. It is
straightforward to verify that the mapping ¢ is an isomorphism. |

180

Mathematicians often give a pictorial representation of Theorem
10.3, as follows:

9(G)

4 v
G/Ker ¢
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where y: G — G/Ker ¢ is defined as y(g) = gKer ¢. The mapping y
is called the natural mapping from G to G/Ker ¢. Our proof of
Theorem 10.3 shows that )y = ¢. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various
factor groups of G. For example, we know that the homomorphic image of
an Abelian group is Abelian because the factor group of an Abelian group
is Abelian. We know that the number of homomorphic images of a cyclic
group G of order n is the number of divisors of n, since there is exactly one
subgroup of G (and therefore one factor group of G) for each divisor of n.
(Be careful: The number of homomorphisms of a cyclic group of order n
need not be the same as the number of divisors of n, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few
examples.

B EXAMPLE 13 Z/(n)~Z
Consider the mapping from Z to Z defined in Example 5. Clearly, its
kernel is (n). So, by Theorem 10.3, Z/n) = Z . |

I EXAMPLE 14 Wrapping Function

Recall the wrapping function W from trigonometry. The real number
line is wrapped around a unit circle in the plane centered at (0, 0) with
the number 0 on the number line at the point (1, 0), the positive reals
in the counterclockwise direction and the negative reals in the
clockwise direction (see Figure 10.3). The function W assigns to each
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the
circle group (the group of complex numbers of magnitude 1 under
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) = cos x + i sin x and W(x + y) = W(x)W(y). Since W is
periodic of period 27, Ker W = (27). So, from the First Isomorphism

Theorem, we see that R/(27) is isomorphic to the circle group. |
w(2) WD)
W(3) (1,0)| W(©0)
0,0
w(—1)

Figure 10.3
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Our next example is a theorem that is used repeatedly in Chapters 24
and 25.

§ EXAMPLE 15 N/CTheorem

Let H be a subgroup of a group G. Recall that the normalizer of H in
Gis N(H) = {x € G | xHx™' = H} and the centralizer of H in G is
C(H) = {x € G | xhx~! = hfor all h in H}. Consider the mapping from
N(H) to Aut(H) given by g — qbg, where qbg is the inner automorphism of
H induced by g [that is, qbg(h) = ghg~ ! for all h in H]. This mapping is a
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is
isomorphic to a subgroup of Aut(H). |

As an application of the N/C Theorem, we will show that every group
of order 35 is cyclic.

B EXAMPLE 16 Let G be a group of order 35. By Lagrange’s
Theorem, every nonidentity element of G has order 5, 7, or 35. If
some element has order 35, G is cyclic. So we may assume that all
nonidentity elements have order 5 or 7. However, not all such
elements can have order 5, since elements of order 5 come 4 at a time
(if IxI = 5, then Ix3l = Ix3| = Ix* = 5) and 4 does not divide 34.
Similarly, since 6 does not divide 34, not all nonidentity elements can
have order 7. So, G has elements of order 7 and order 5. Since G has
an element of order 7, it has a subgroup of order 7. Let us call it H. In
fact, H is the only subgroup of G of order 7, for if K is another sub-
group of G of order 7, we have by Theorem 7.2 that IHK| = |HIIKI/I|
HN Kl =17-7/1=49. But, of course, this is impossible in a group of
order 35. Since for every a in G, aHa™! is also a subgroup of G of
order 7 (see Exercise 1 of the Supplementary Exercises for Chapters
1-4), we must have aHa ' = H. So, N(H) = G. Since H has prime
order, it is cyclic and therefore Abelian. In particular, C(H) contains
H. So, 7 divides |C(H)| and IC(H)! divides 35. It follows, then, that
C(H) = Gor C(H) = H.If C(H) = G, then we may obtain an element
x of order 35 by letting x = hk, where / is a nonidentity element of H
and k has order 5. On the other hand, if C(H) = H, then |IC(H)| = 7 and
IN(H)/C(H)I = 35/7 = 5. However, 5 does not divide [Aut(H)l =
|Aut(Z,)I = 6. This contradiction shows that G is cyclic. |

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude
this chapter by verifying that the converse of this statement is also true.
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I Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor-
phism of G. In particular, a normal subgroup N is the kernel
of the mapping g — gN from G to G/N.

PROOF Define y: G — G/N by y(g) = gN. (This mapping is called the
natural homomorphism from G to G/N.) Then, y(xy) = (xy)N = xNyN =
v(x)y(y). Moreover, g € Ker vy if and only if gN = y(g) = N, which is
true if and only if g € N (see property 2 of the lemma in Chapter 7). 1

Examples 13, 14, and 15 illustrate the utility of the First Isomorphism
Theorem. But what about homomorphisms in general? Why would one
care to study a homomorphism of a group? The answer is that, just as
was the case with factor groups of a group, homomorphic images of a
group tell us some of the properties of the original group. One measure
of the likeness of a group and its homomorphic image is the size of the
kernel. If the kernel of the homomorphism of group G is the identity,
then the image of G tells us everything (group theoretically) about G (the
two being isomorphic). On the other hand, if the kernel of the homomor-
phism is G itself, then the image tells us nothing about G. Between these
two extremes, some information about G is preserved and some is lost.
The utility of a particular homomorphism lies in its ability to preserve
the group properties we want, while losing some inessential ones. In this
way, we have replaced G by a group less complicated (and therefore eas-
ier to study) than G; but, in the process, we have saved enough informa-
tion to answer questions that we have about G itself. For example, if G is
a group of order 60 and G has a homomorphic image of order 12 that is
cyclic, then we know from properties 5, 7, and 8 of Theorem 10.2 that G
has normal subgroups of orders 5, 10, 15, 20, 30, and 60. To illustrate
further, suppose we are asked to find an infinite group that is the union
of three proper subgroups. Instead of attempting to do this directly, we
first make the problem easier by finding a finite group that is the union
of three proper subgroups. Observing that Z, © Z, is the union of H, =
(1,0), H, = (0, 1), and H, = (1, 1), we have found our finite group. Now
all we need do is think of an infinite group that has Z, © Z, as a homo-
morphic image and pull back H,, H,, and H,, and our original problem is
solved. Clearly, the mapping from Z, ® Z, © Z onto Z, @ Z, given by
¢(a, b, c) = (a, b) is such a mapping, and therefore Z, D Z, @ Zis the
union of ¢~ '(H)) = {(a,0,¢,)la €EZ,,c €EZ},$"'(H,) = {(0,b,0) | b
€Z,c€Z},anddp '(H) = {(a,a,c) |la EZ, c EZ}.
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Although an isomorphism is a special case of a homomorphism, the
two concepts have entirely different roles. Whereas isomorphisms
allow us to look at a group in an alternative way, homomorphisms act as
investigative tools. The following analogy between homomorphisms
and photography may be instructive.” A photograph of a person cannot
tell us the person’s exact height, weight, or age. Nevertheless, we may
be able to decide from a photograph whether the person is tall or short,
heavy or thin, old or young, male or female. In the same way, a homo-
morphic image of a group gives us some information about the group.

In certain branches of group theory, and especially in physics and
chemistry, one often wants to know all homomorphic images of a group
that are matrix groups over the complex numbers (these are called group
representations). Here, we may carry our analogy with photography one
step further by saying that this is like wanting photographs of a person
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

The greater the difficulty, the more glory in surmounting it. Skillful pilots
gain their reputation from storms and tempests.
EPICURUS

1. Prove that the mapping given in Example 2 is a homomorphism.

2. Prove that the mapping given in Example 3 is a homomorphism.

3. Prove that the mapping given in Example 4 is a homomorphism.

4. Prove that the mapping given in Example 11 is a homomorphism.

S. Let R* be the group of nonzero real numbers under multiplication,
and let r be a positive integer. Show that the mapping that takes x to
x" is a homomorphism from R* to R* and determine the kernel.
Which values of r yield an isomorphism?

6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each f'in G, let [f denote the antiderivative of f that passes
through the point (0, 0). Show that the mapping f — [ffrom G to G is
a homomorphism. What is the kernel of this mapping? Is this map-
ping a homomorphism if [ denotes the antiderivative of f that passes
through (0, 1)?

T“All perception of truth is the detection of an analogy.” Henry David Thoreau, Journal.
Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,

some third party content may be suppressed from the éBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
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7.

10.

11.
12.
13.
14.

15.

16.
17.
18.

19.

20.

21.

If ¢ is a homomorphism from G to H and ¢ is a homomorphism
from H to K, show that o¢ is a homomorphism from G to K. How
are Ker ¢ and Ker o¢ related? If ¢ and o are onto and G is finite,

describe [Ker o¢:Ker ¢] in terms of |H| and IK].

. Let G be a group of permutations. For each o in G, define

{—f—l if o is an even permutation,

sgn(o) = e .

—1 if o is an odd permutation.

Prove that sgn is a homomorphism from G to the multiplicative
group {+1, —1}. What is the kernel? Why does this homomor-
phism allow you to conclude that A, is a normal subgroup of S, of
index 2? Why does this prove Exercise 23 of Chapter 57

. Prove that the mapping from G @ H to G given by (g, h) — g is a

homomorphism. What is the kernel? This mapping is called the
projection of G & H onto G.

Let G be a subgroup of some dihedral group. For each x in G, define

o= |

Prove that ¢ is a homomorphism from G to the multiplicative
group {+1, —1}. What is the kernel? Why does this prove Exercise
25 of Chapter 3?

Prove that (Z©® Z)/({(a, 0)) X {(0, b))) is isomorphic to Z & Z,.
Suppose that & is a divisor of n. Prove that Z /(k) ~ Z,.
Prove that (A € B)/(A © {e}) ~B.

Explain why the correspondence x — 3x from Z, to Z,, is not a
homomorphism.

+1 if x is a rotation,
—1 if x 1s a reflection.

Suppose that ¢ is a homomorphism from Z, to Z, ) and Ker ¢ =
{0, 10, 20}. If p(23) = 9, determine all elements that map to 9.

Prove that there is no homomorphism from Z; @ Z, onto Z, © Z,.
Prove that there is no homomorphism from Z,, @ Z, onto Z, © Z,.
Can there be a homomorphism from Z, ® Z, onto Z? Can there be
a homomorphism from Z,; onto Z, © Z,? Explain your answers.
Suppose that there is a homomorphism ¢ from Z,, to some group
and that ¢ is not one-to-one. Determine ¢.

How many homomorphisms are there from Z,, onto Z,? How many
are there to Z,?

If ¢ is a homomorphism from Z,, onto a group of order 5, deter-
mine the kernel of ¢.




22.

23.

24.

25.

26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

36.
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Suppose that ¢ is a homomorphism from a finite group G onto G
and that G has an element of order 8. Prove that G has an element
of order 8. Generalize.

Suppose that ¢ is a homomorphism from Z, to a group of order 24.

a. Determine the possible homomorphic images.

b. For each image in part a, determine the corresponding kernel of ¢.

Suppose that ¢: Z,, — Z  is a group homomorphism with ¢(7) = 6.

a. Determine ¢(x).

b. Determine the image of ¢.

c¢. Determine the kernel of ¢.

d. Determine ¢~ '(3). That is, determine the set of all elements
that map to 3.

How many homomorphisms are there from Z,, onto Z,,? How

many are there to Z,,?

Determine all homomorphisms from Z, to Z, © Z,.

Determine all homomorphisms from Z to itself.

Suppose that ¢ is a homomorphism from S, onto Z,. Determine
Ker ¢. Determine all homomorphisms from §, to Z,.

Suppose that there is a homomorphism from a finite group G onto
Z,, Prove that G has normal subgroups of indexes 2 and 5.

Suppose that ¢ is a homomorphism from a group G onto Z, © Z,
and that the kernel of ¢ has order 5. Explain why G must have nor-
mal subgroups of orders 5, 10, 15, 20, 30, and 60.

Suppose that ¢ is a homomorphism from U(30) to U(30) and
that Ker ¢ = {1, 11}. If ¢(7) = 7, find all elements of U(30) that
map to 7.

Find a homomorphism ¢ from U(30) to U(30) with kernel {1, 11}
and ¢(7) = 7.

Suppose that ¢ is a homomorphism from U(40) to U(40) and that
Ker ¢ = {1,9, 17, 33}. If ¢(11) = 11, find all elements of U(40)
that map to 11.

Find a homomorphism ¢ from U(40) to U(40) with kernel {1, 9,
17,33} and ¢(11) = 11.

Prove that the mapping ¢: ZD Z — Z given by (a, b) > a — bisa
homomorphism. What is the kernel of ¢? Describe the set ¢~ 1(3)
(that is, all elements that map to 3).

Suppose that there is a homomorphism ¢ from Z & Z to a group G
such that ¢((3, 2)) = a and ¢((2, 1)) = b. Determine ¢$((4, 4)) in
terms of a and b. Assume that the operation of G is addition.
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37.

38.

39.

40.

41.

42,

43.

44.

45.
46.

47.

48.

49.

50.

Let H = {z € C* | Izl = 1}. Prove that C*/H is isomorphic to R*,
the group of positive real numbers under multiplication.

Let @ be a homomorphism from G, to H, and B be a homomor-
phism from G, to H,. Determine the kernel of the homomorphism
y from G, © G, to H, @ H, defined by y(g,, g,) = (a(g)). B(g,))-
Prove that the mapping x — x° from C* to C* is a homomorphism.
What is the kernel?

For each pair of positive integers m and n, we can define a homo-
morphism from Zto Z © Z, by x — (x mod m, x mod n). What is
the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) =
(6, 4)? Generalize.

(Second Isomorphism Theorem) If K is a subgroup of G and N is
a normal subgroup of G, prove that K/(K N N) is isomorphic
to KN/N.

(Third Isomorphism Theorem) If M and N are normal subgroups of
G and N = M, prove that (G/N)/(M/N) =~ G/M.

Let ¢(d) denote the Euler phi function of d (see page 85). Show
that the number of homomorphisms from Z to Z, is 2.¢(d), where
the sum runs over all common divisors d of n and k. [It follows
from number theory that this sum is actually gcd(n, k).]

Let k be a divisor of n. Consider the homomorphism from U(n) to
U(k) given by x — x mod k. What is the relationship between this
homomorphism and the subgroup U, (n) of U(n)?

Determine all homomorphic images of D, (up to isomorphism).

Let N be a normal subgroup of a finite group G. Use the theorems
of this chapter to prove that the order of the group element gN in
G/N divides the order of g.

Suppose that G is a finite group and that Z,, is a homomorphic
image of G. What can we say about IG|? Generalize.

Suppose that Z,, and Z,; are both homomorphic images of a finite
group G. What can be said about |G|? Generalize.

Suppose that for each prime p, Z is the homomorphic image of a
group G. What can we say about |G|? Give an example of such a
group.

(For students who have had linear algebra.) Suppose that x is a
particular solution to a system of linear equations and that S is the
entire solution set of the corresponding homogeneous system of
linear equations. Explain why property 6 of Theorem 10.1 guaran-
tees that x + S is the entire solution set of the nonhomogeneous
system. In particular, describe the relevant groups and the homo-
morphism between them.
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52,
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S8.

59.

60.
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63.

64.

65.
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Let N be a normal subgroup of a group G. Use property 7 of
Theorem 10.2 to prove that every subgroup of G/N has the form
HIN, where H is a subgroup of G. (This exercise is referred to in
Chapter 24.)
Show that a homomorphism defined on a cyclic group is com-
pletely determined by its action on a generator of the group.
Use the First Isomorphism Theorem to prove Theorem 9.4.
Let a and B be group homomorphisms from G to G and let H =
{g € Gla(g) = B(g)}. Prove or disprove that H is a subgroup of G.
Let Z[x] be the group of polynomials in x with integer coefficients
under addition. Prove that the mapping from Z[x] into Z given by
Jix) = f(3) is a homomorphism. Give a geometric description of
the kernel of this homomorphism. Generalize.
Prove that the mapping from R under addition to GL(2, R) that
takes x to

{ cosx  sin x}

—sinx  CcoSx

is a group homomorphism. What is the kernel of the homomorphism?
Suppose there is a homomorphism ¢ from G onto Z, © Z,. Prove
that G is the union of three proper normal subgroups.

If H and K are normal subgroups of G and H N K = {e}, prove that
G is isomorphic to a subgroup of G/H & G/K.

Suppose that H and K are distinct subgroups of G of index 2. Prove
that H N K is a normal subgroup of G of index 4 and that G/(H N K)
is not cyclic.

Suppose that the number of homomorphisms from G to H is n.
How many homomorphisms are there from Gto HEHD - - - O H
(s terms)? When H is Abelian, how many homomorphisms are there
fromGOB GD - - - D G (s terms) to H?

Prove that every group of order 77 is cyclic.

Determine all homomorphisms from Z onto §,. Determine all
homomorphisms from Z to .

Let G be an Abelian group. Determine all homomorphisms from
S;t0G.

If ¢ is an isomorphism from a group G under addition to a group G
under addition, prove that for any integer n, the mapping from G to
G defined by y(x) = n¢(x) is a homomorphism from G to G.
Prove that the mapping from C* to C* given by ¢(z) = 7% is a ho-
momorphism and that C*/ {1, —1} is isomorphic to C*.
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66. Let p be a prime. Determine the number of homomorphisms from
Z,® Z,into Z,.

67. Suppose G is an Abelian group under addition with the property
that for every positive integer n, the set nG ={ng | g € G} = G.
Show that every proper subgroup of G is properly contained in a
proper subgroup of G. Name two familiar groups that satisfy the
hypothesis.

Computer Exercise

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the éBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


http://www.d.umn.edu/~jgallian

Camille Jordan

Although these contributions [to
analysis and topology] would have been
enough to rank Jordan very high among
his mathematical contemporaries, it is
chiefly as an algebraist that he reached
celebrity when he was barely thirty; and
during the next forty years he was
universally regarded as the undisputed
master of group theory.

J. DIEUDONNE, Dictionary of
Scientific Biography

CAMILLE JORDAN was born into a well-to-do
family on January 5, 1838, in Lyons, France.
Like his father, he graduated from the Ecole
Polytechnique and became an engineer.
Nearly all of his 120 research papers in
mathematics were written before his retire-
ment from engineering in 1885. From 1873
until 1912, Jordan taught simultaneously at
the Ecole Polytechnique and at the College
of France.

In the great French tradition, Jordan was
a universal mathematician who published in
nearly every branch of mathematics. Among
the concepts named after him are the Jordan
canonical form in matrix theory, the Jordan
curve theorem from topology, and the
Jordan—-Holder Theorem from group theory.

The Granger Collection, New York

His classic book Traité des substitutions,
published in 1870, was the first to be de-
voted solely to group theory and its applica-
tions to other branches of mathematics.

Another book that had great influence
and set a new standard for rigor was his
Cours d’analyse. This book gave the first
clear definitions of the notions of volume
and multiple integral. Nearly 100 years
after this book appeared, the distinguished
mathematician and mathematical historian
B. L. van der Waerden wrote, “For me, every
single chapter of the Cours d’analyse is a
pleasure to read.” Jordan died in Paris on
January 22, 1922.

To find more information about Jordan,

visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Fundamental

Theorem of Finite
Abelian Groups

By a small sample we may judge of the whole piece.

MIGUEL DE CERVANTES, Don Quixote

The Fundamental Theorem

In this chapter, we present a theorem that describes to an algebraist’s
eye (that is, up to isomorphism) all finite Abelian groups in a stan-
dardized way. Before giving the proof, which is long and difficult, we
discuss some consequences of the theorem and its proof. The first proof
of the theorem was given by Leopold Kronecker in 1858.

I Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of
prime-power order. Moreover, the number of terms in the product
and the orders of the cyclic groups are uniquely determined by the

group.

Since a cyclic group of order n is isomorphic to Z , Theorem 11.1
shows that every finite Abelian group G is isomorphic to a group of
the form

Zplnl @ Zp2n2 @ T @ Zpknk’

where the p,’s are not necessarily distinct primes and the prime
powers p,", p,", ..., p/" are uniquely determined by G. Writing a
group in this form is called determining the isomorphism class of G.

The Isomorphism Classes
of Abelian Groups

226

The Fundamental Theorem is extremely powerful. As an application,
we can use it as an algorithm for constructing all Abelian groups of any
order. Let’s look at groups whose orders have the form p*, where p is
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prime and k =< 4. In general, there is one group of order p* for each set
of positive integers whose sum is k (such a set is called a partition of k);
that is, if k can be written as

k=n+n,+---+n,
where each n, is a positive integer, then
anl fa) anz PH---P an,

is an Abelian group of order p*.

Possible direct

Order of G Partitions of k& products for G
p 1 Z,
P’ 2 z,
1+1 z, ¥ A
P 3 Z,
2+1 Z, SY Z,
I+1+1 Zp@ZpEBZp
pt 4 Z,
3+1 Z, SY Z,
2+2 sz S sz
2+1+1 ZPZ@ZP@ZP
I+1+1+1 ZPEBZPEBZPEBZP

Furthermore, the uniqueness portion of the Fundamental Theorem
guarantees that distinct partitions of k yield distinct isomorphism
classes. Thus, for example, Z, @ Z, is not isomorphic to Z, © Z, © Z,.
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

ADB~ADC if and only if B~=C (see[l]).

Thus, Z, © Z, is not isomorphic to Z, © Z, @ Z,, because Z, is not
isomorphic to Z, ® Z,.

To appreciate fully the potency of the Fundamental Theorem, contrast
the ease with which the Abelian groups of order pf, k = 4, were
determined with the corresponding problem for non-Abelian groups.
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Theorem 26.4), and a description of the nine non-Abelian
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian
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groups of a certain order n, where n has two or more distinct prime
divisors. We begin by writing n in prime-power decomposition form
n = p/mp,"> - - - p,/x. Next, we individually form all Abelian groups of
order p,™, then p,", and so on, as described earlier. Finally, we form all
possible external direct products of these groups. For example, let n =
1176 = 23 - 3 - 72. Then, the complete list of the distinct isomorphism
classes of Abelian groups of order 1176 is

Z,®Z,® 7,

Z,82,®7,®7,,
2,82,92,072,07,,
Z,®2,8972,®Z,
72,82,02,072,®Z,
2,82,02,0Z,DZDZ,

If we are given any particular Abelian group G of order 1176, the
question we want to answer about G is: Which of the preceding six iso-
morphism classes represents the structure of G? We can answer this
question by comparing the orders of the elements of G with the orders of
the elements in the six direct products, since it can be shown that two fi-
nite Abelian groups are isomorphic if and only if they have the same
number of elements of each order. For instance, we could determine
whether G has any elements of order 8. If so, then G must be isomorphic
to the first or fourth group above, since these are the only ones with ele-
ments of order 8. To narrow G down to a single choice, we now need
only check whether or not G has an element of order 49, since the first
product above has such an element, whereas the fourth one does not.

What if we have some specific Abelian group G of order p,"ip,"
-+ - p,"x where the p’s are distinct primes? How can G be expressed as
an internal direct product of cyclic groups of prime-power order? For
simplicity, let us say that the group has 2" elements. First, we must
compute the orders of the elements. After this is done, pick an element
of maximum order 2, call it a,. Then {(a,) is one of the factors in the
desired internal direct product. If G # <a1>, choose an element a, of
maximum order 2° such that s = n — r and none of a,, a22, a24, e
azzrl is in {a ). Then (a,) is a second direct factor. If n # r + s, select
an element a, of maximum order 2’ such that = n — r — s and none of
a,, a?, at, ..., a32'71 is in (@) X {a,) = {a//a,/ 10 =i<2,0=
j < 2°}. Then (a,) is another direct factor. We continue in this fashion
until our direct product has the same order as G.

A formal presentation of this algorithm for any Abelian group G of
prime-power order p” is as follows.
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Greedy Algorithm for an Abelian Group of Order p”

1. Compute the orders of the elements of the group G.

2. Select an element a, of maximum order and define G, = (a,).
Seti=1.

. If IGI = 1G], stop. Otherwise, replace i by i + 1.

. Select an element a, of maximum order p¥ such that p* =
IGI/IG,_,l and none of @, a.”, a.”’, ..., a” 'isin G,_,, and define
G,=G,_, X{a).

5. Return to step 3.

~ W

In the general case where |Gl = p,"1p,"> - - - p "+, we simply use the
algorithm to build up a direct product of order p ", then another of
order p,"*, and so on. The direct product of all of these pieces is the
desired factorization of G. The following example is small enough that
we can compute the appropriate internal and external direct products
by hand.

B EXAMPLE1 LetG = {1,8,12,14, 18, 21,27, 31, 34, 38, 44,47, 51,
53, 57, 64} under multiplication modulo 65. Since G has order 16, we
know it is isomorphic to one of

Zl()’

Z, 92,
2,92,
2,872,872,
2,82,02,87,

To decide which one, we dirty our hands to calculate the orders of the
elements of G.

Element‘l‘8‘12‘l4‘l8‘21‘27‘31‘34‘38‘44‘47‘51‘53‘57‘64

oder 1144 2/alalalalalalalalalalala

From the table of orders, we can instantly rule out all but Z, D Z, and
Z,® Z, D Z, as possibilities. Finally, we observe that since this latter
group has a subgroup isomorphic to Z, ®@ Z, @ Z,, it has more than
three elements of order 2, and therefore we must have G ~ Z, D Z,.
Expressing G as an internal direct product is even easier. Pick an ele-
ment of maximum order, say the element 8. Then (8) is a factor in the
product. Next, choose a second element, say a, so that a has order 4 and
a and a® are not in (8) = {1, 8, 64, 57}. Since 12 has this property, we
have G = (8) X (12). [ |
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Example 1 illustrates how quickly and easily one can write an Abelian
group as a direct product given the orders of the elements of the group.
But calculating all those orders is certainly not an appealing prospect!
The good news is that, in practice, a combination of theory and calcula-
tion of the orders of a few elements will usually suffice.

§ EXAMPLE 2 Let G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,
64,71, 73, 82, 89,91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to
one of

Z,®Z,~7,,
Z,®2,D2,~7,DZ,
2,82,D2,0L~2 DL D2,

Consider the element 8. Direct calculations show that 8° = 109 and 8! = 1.
(Be sure to mod as you go. For example, 8 mod 135 = 512 mod
135 = 107, so compute 8* as 8 - 107 rather than 8 - 512.) But now we
know G. Why? Clearly, I8] = 12 rules out the third group in the list. At
the same time, 1091 = 2 = 1134 (remember, 134 = —1 mod 135) im-
plies that G is not Z,, (see Theorem 4.4). Thus, GX Z, S5 Z,,and G =
(8) X (134). |

Rather than express an Abelian group as a direct product of cyclic
groups of prime-power orders, it is often more convenient to combine
the cyclic factors of relatively prime order, as we did in Example 2, to
obtain a direct product of the foomZ, ©Z @ ---© Z , where n, di-
vides n,_,. For example, Z, ® Z, Z ‘D Z, EB Z, 69 Z would be written
as leo ED Z, D Z, (see Exer01se 11) The algorlthm above is easily
adapted to accomplish this by replacing step 4 by 4’: Select an element
a, of maximum order m such that m < IGI/IG,_,| and none of a,, aiz, e,
a 'isin G,_, and define G, = G,_, X {(a,).

As a consequence of the Fundamental Theorem of Finite Abelian
Groups, we have the following corollary, which shows that the converse
of Lagrange’s Theorem is true for finite Abelian groups.

I Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a
subgroup of order m.

It is instructive to verify this corollary for a specific case. Let us say
that G is an Abelian group of order 72 and we wish to produce a subgroup
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of order 12. According to the Fundamental Theorem, G is isomorphic to
one of the following six groups:

Z, D7, Z,DZ,®Z,
7,872,872, 7,87,DZ,®Z,
2,07,82,07, 2,0L0L0Z0Z,

Obviously, Z D Zy~Z,and Z, DZ D Z, D Z.~Z, D Z, both
have a subgroup of order 12. To construct a subgroup of order 12 in Z,
D Z, D Z,, we simply piece together all of Z, and the subgroup of order
3in Z,; that is, {(a,0,b) la€ Z,, b € {0, 3,6} }. A subgroup of order
12in Z, © Z, D Z, is given by {(a, b,0) 1 a € {0,2,4,6},b € Z,}. An
analogous procedure applies to the remaining cases and indeed to any
finite Abelian group.

Proof of the Fundamental Theorem

Because of the length and complexity of the proof of the Fundamental
Theorem of Finite Abelian Groups, we will break it up into a series of
lemmas.

I Lemmal

Let G be a finite Abelian group of order p"m, where p is a prime that
does not divide m. Then G = H X K, where H = {x € G | x?" = e}
and K = {x € G | x™ = e}. Moreover, |H| = p".

PROOF Itis an easy exercise to prove that H and K are subgroups of G
(see Exercise 45 in Chapter 3). Because G is Abelian, to prove that G =
H X K we need only prove that G = HK and H N K = {e}. Since we
have gcd(m, p") = 1, there are integers s and ¢ such that 1 = sm + p".
For any x in G, we have x = x! = x#" = xx" and, by Corollary 4
of Lagrange’s Theorem (Theorem 7.1), x** € H and x?" € K. Thus,
G = HK. Now suppose that some x € H N K. Then x?" = ¢ = x™ and,
by Corollary 2 of Theorem 4.1, Ix| divides both p" and m. Since p does
not divide m, we have |x| = 1 and, therefore, x = e.

To prove the second assertion of the lemma, note that p"m =
IHKI = |HIIKI/IH N Kl = |HIIKI (Theorem 7.2). It follows from
Theorem 9.5 and Corollary 2 to Theorem 4.1 that p does not divide |K]
and therefore |1Hl = p". |

Given an Abelian group G with IGl = p "p,"> - - - p, ", where the
p’s are distinct primes, we let G(p,) denote the set {x € G | xP" = e}.




232

I Lemma2

Groups

It then follows immediately from Lemma 1 and induction that G =
G(p,) X G(p,) X - -+ X G(p) and IG(p,)l = p,". Hence, we turn our
attention to groups of prime-power order.

Let G be an Abelian group of prime-power order and let a be an
element of maximum order in G. Then G can be written in the form
{a) X K.

PROOF We denote |G| by p" and induct on n. If n = 1, then G =
(a) X {e). Now assume that the statement is true for all Abelian
groups of order p¥, where k < n. Among all the elements of G, choose
a of maximum order p™. Then x?" = e for all x in G. We may assume
that G # (a), for otherwise there is nothing to prove. Now, among all
the elements of G, choose b of smallest order such that b & (a). We
claim that (a) N (b) = {e}. Since |1b?| = |bl/p, we know that b? E {a)
by the manner in which b was chosen. Say b” = a'. Notice that ¢ =
bP" = (bP)P"" = (a)?"', so lail = p™~!. Thus, a'is not a generator of
(a) and, therefore, by Corollary 3 to Theorem 4.2, gcd(p™, i) # 1.
This proves that p divides i, so that we can write i = pj. Then b? =
a' = a”. Consider the element ¢ = a/b. Certainly, ¢ is not in {a), for
if it were, b would be, too. Also, ¢? = aPb? = a~'bP = b PbP = e.
Thus, we have found an element ¢ of order p such that ¢ & (a). Since
b was chosen to have smallest order such that b & {(a), we conclude
that b also has order p. It now follows that (@) N (b) = {e}, because
any nonidentity element of the intersection would generate (b) and
thus contradict b & {(a). B

Now consider the factor group G = G/(b). To simplify the notation,
we let x denote the coset x(b) in G. If lal < lal = p™, then a”"' = e. This
means that (a(b))”" ' = a?" {b) = (b), so that " ' € (a) N (b) = {e},
contradicting the fact that lal = p™. Thus, lal = lal = p™, and therefore
a is an element of maximum order in G. By induction, we know that G
can be written in the form (a) X K for some subgroup K of G. Let K be
the pullback of K under the natural homomorphism from G to G (that
is, K = {x € G| x € K}). We claim that {(a) N K = {e}. For if x € (a)
N K,thenx € {(a) N K = {e} = (b) and x € (a) N {b) = {e}. It now
follows from an order argument (see Exercise 35) that G = (a)K, and
therefore G = {a) X K. |

Lemma 2 and induction on the order of the group now give the
following.
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I Lemma3

A finite Abelian group of prime-power order is an internal direct
product of cyclic groups.

Let us pause to determine where we are in our effort to prove the
Fundamental Theorem of Finite Abelian Groups. The remark following
Lemma 1 shows that G = G( p,) X G(p,) X - -+ X G(p, ), where each
G( p,) is a group of prime-power order, and Lemma 3 shows that each of
these factors is an internal direct product of cyclic groups. Thus, we have
proved that G is an internal direct product of cyclic groups of prime-
power order. All that remains to be proved is the uniqueness of the factors.
Certainly the groups G(p,) are uniquely determined by G, since they
comprise the elements of G whose orders are powers of p,. So we must
prove that there is only one way (up to isomorphism and rearrangement
of factors) to write each G(p,) as an internal direct product of cyclic
groups.

I Lemma4d

Suppose that G is a finite Abelian group of prime-power order. If
G=H XH,X:--XH_ andG =K, XK, X - XK, where the

H’s and K’s are nontrivial cyclic subgroups with |H|| = |H,| = - - - =
IH |and K| = IK,| = - - - =IK,|, then m = nand |H) = IK|
foralli.

PROOF We proceed by induction on |IGI. Clearly, the case where |G| =
p is true. Now suppose that the statement is true for all Abelian groups
of order less than |GI. For any Abelian group L, the set L? = {x” | x € L}
is a subgroup of L (see Exercise 17 in the Supplementary Exercises for
Chapters 1- 4) and, by Theorem 9.5, is a proper subgroup if p
divides [LI. It follows that G? = Hlp X H2P XX H,/P and G =
K7 X K,» X -+ X K ! where m' is the largest integer i such that
|H| > p, and n’ is the largest integer j such that IKJ.I > p. (This ensures
that our two direct products for G” do not have trivial factors.) Since |G?|
< IGI, we have, by induction, m" = n’ and |1H,”l = IK."| fori =1, ...,
m’. Since |H | = plH."l, this proves that |[H,| = |IK| foralli =1,...,m".
All that remains to be proved is that the number of H, of order p equals
the number of K. of order p; that is, we must prove that m — m =n—n'
(since n" = m"). This follows directly from the facts that |H |IH,] - - -
\H Ip"™™ =G| = IK,IIK,| - - - 1K Ip"™",IH| = |K],andm’ =n'. 1
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You know it ain’t easy, you know how hard it can be.

10.
11.

12.

13.

14.

JOHN LENNON AND PAUL McCARTNEY,
“The Ballad of John and Yoko”*

What is the smallest positive integer n such that there are two noni-
somorphic groups of order n? Name the two groups.

What is the smallest positive integer n such that there are three
nonisomorphic Abelian groups of order n? Name the three groups.
What is the smallest positive integer n such that there are exactly
four nonisomorphic Abelian groups of order n? Name the four
groups.

Calculate the number of elements of order 2 in each of Z , Z, D Z,
Z,®Z,and Z, D Z, D Z,. Do the same for the elements of order 4.
Prove that any Abelian group of order 45 has an element of order 15.
Does every Abelian group of order 45 have an element of order 97
Show that there are two Abelian groups of order 108 that have
exactly one subgroup of order 3.

Show that there are two Abelian groups of order 108 that have
exactly four subgroups of order 3.

Show that there are two Abelian groups of order 108 that have
exactly 13 subgroups of order 3.

Suppose that G is an Abelian group of order 120 and that G has
exactly three elements of order 2. Determine the isomorphism class
of G.

Find all Abelian groups (up to isomorphism) of order 360.

Prove that every finite Abelian group can be expressed as the
(external) direct product of cyclic groups of orders n, n,, ..., n,
where n,_ | divides n, fori = 1,2, ..., — 1. (This exercise is re-
ferred to in this chapter.)

Suppose that the order of some finite Abelian group is divisible by
10. Prove that the group has a cyclic subgroup of order 10.

Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

On the basis of Exercises 12 and 13, draw a general conclusion
about the existence of cyclic subgroups of a finite Abelian group.

*Copyright © 1969 (Renewed) Stony/ATV Tunes LLC. All rights administered by
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights
reserved. Used by permission.
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15. How many Abelian groups (up to isomorphism) are there
. of order 67

. of order 15?

. of order 42?7

. of order pg, where p and ¢ are distinct primes?

. of order pgr, where p, g, and r are distinct primes?

. Generalize parts d and e.

-0 26 T

16. How does the number (up to isomorphism) of Abelian groups of
order n compare with the number (up to isomorphism) of Abelian
groups of order m where
a.n=3%and m = 5%?

b. n =2*and m = 5*?

c. n = p"and m = ¢, where p and ¢ are prime?

d. n = p"and m = p’q, where p and ¢ are distinct primes?
e. n = p"and m = p'q* where p and ¢ are distinct primes?

17. Up to isomorphism, how many additive Abelian groups of order 16
have the property that x + x + x + x = O for all x in the group?

18. Letp,, p,, ..., p, be distinct primes. Up to isomorphism, how many

Abelian groups are there of order p} p3 . . . p2?

19. The symmetry group of a nonsquare rectangle is an Abelian group
of order 4. Is it isomorphic to Z, or Z, © Z,?

20. Verify the corollary to the Fundamental Theorem of Finite
Abelian Groups in the case that the group has order 1080 and the
divisor is 180.

21. Theset {1, 9, 16, 22, 29, 53, 74,79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.

22. Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of IGI. Show that G is cyclic.

23. Characterize those integers n such that the only Abelian groups of
order n are cyclic.

24. Characterize those integers n such that any Abelian group of order
n belongs to one of exactly four isomorphism classes.

25. Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

26. Let G = {1,7, 17, 23,49, 55, 65, 71} under multiplication modulo
96. Express G as an external and an internal direct product of cyclic

groups.
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27.

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.
39.

Let G = {1,7,43,49,51, 57,93, 99, 101, 107, 143, 149, 151, 157,
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

The set G = {1,4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.

Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one
needs to compute the order to determine the isomorphism class of
G? What if G has order 18? What about 16?

Suppose that G is an Abelian group of order 16, and in computing
the orders of its elements, you come across an element of order 8
and two elements of order 2. Explain why no further computations
are needed to determine the isomorphism class of G.

Let G be an Abelian group of order 16. Suppose that there are ele-
ments a and b in G such that lal = |b| = 4 and a*> # b?. Determine
the isomorphism class of G.

Prove that an Abelian group of order 2" (n = 1) must have an odd
number of elements of order 2.

Without using Lagrange’s Theorem, show that an Abelian group of
odd order cannot have an element of even order.

Let G be the group of all n X n diagonal matrices with =1 diago-
nal entries. What is the isomorphism class of G?

Prove the assertion made in the proof of Lemma 2 that G = (a)K.
Suppose that G is a finite Abelian group. Prove that G has order p”,
where p is prime, if and only if the order of every element of G is a
power of p.

Dirichlet’s Theorem says that, for every pair of relatively prime
integers a and b, there are infinitely many primes of the form at + b.
Use Dirichlet’s Theorem to prove that every finite Abelian group is
isomorphic to a subgroup of a U-group.

Determine the isomorphism class of Aut(Z, ® Z, ® Zy).

Give an example to show that Lemma 2 is false if G is non-Abelian.

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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groups of order k, and so on, up to 13 isomorphism classes.

G. Mackiw, “Computing in Abstract Algebra,” The College Mathematics
Journal 27 (1996): 136-142.

This article explains how one can use computer software to implement the
algorithm given in this chapter for expressing an Abelian group as an inter-
nal direct product.

Suggested Website

To find more information about the development of group theory, visit:

http://www-groups.dcs.st-and.ac.uk/~history/
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Every prospector drills many a dry hole, pulls out his rig, and moves on.

JOHN L. HESS

True/false questions for Chapters 9-11 are available on the Web at:

10.
11.

12.

http://www.d.umn.edu/~jgallian/TF

. Suppose that H is a subgroup of G and that each left coset of H in

G is some right coset of H in G. Prove that H is normal in G.

Use a factor group-induction argument to prove that a finite
Abelian group of order n has a subgroup of order m for every posi-
tive divisor m of n.

Let diag(G) = {(g, ) | g € G}. Prove that diag(G) I G D G if
and only if G is Abelian. When G is finite, what is the index of
diag(G) in G & G?

Let H be any group of rotations in D,. Prove that H is normal in D, .
Prove that Inn(G) << Aut(G).

Let H be a subgroup of G. Prove that H is a normal subgroup if and
only if, for all @ and b in G, ab € H implies ba € H.

The factor group GL(2, R)/SL(2, R) is isomorphic to some very
familiar group. What is the group?

Let k be a divisor of n. The factor group (Z/(n))/({k)/{n)) is isomor-
phic to some very familiar group. What is the group?

Let

1 a b
H = 0O 1 cl||labceEQ
0 0 1

under matrix multiplication.

a. Find Z(H).

b. Prove that Z(H) is isomorphic to Q under addition.

c¢. Prove that H/Z(H) is isomorphic to Q © Q.

d. Are your proofs for parts a and b valid when Q is replaced by
R? Are they valid when Q is replaced by Zp, where p is prime?

Prove that D,/Z(D,) is isomorphic to Z, ® Z,.

Prove that Q/Z under addition is an infinite group in which every

element has finite order.

Show that the intersection of any collection of normal subgroups of
a group is a normal subgroup.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.
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Let n > 1 be a fixed integer and let G be a group. If the set H =
{x € G | IxI = n} together with the identity forms a subgroup of
G, prove that it is a normal subgroup of G. In the case where such
a subgroup exists, what can be said about n? Give an example of
a non-Abelian group that has such a subgroup. Give an example
of a group G and a prime n for which the set H together with the
identity is not a subgroup.

Show that Q/Z has a unique subgroup of order n for each positive
integer n.

If H and K are normal Abelian subgroups of a group and H N K =
{e}, prove that HK is Abelian.

Let G be a group of odd order. Prove that the mapping x — x? from
G to itself is one-to-one.

Suppose that G is a group of permutations on some set. If |G| = 60
and orb,(5) = {1, 5}, prove that stab(5) is normal in G.

Suppose that G = H X K and that N is a normal subgroup of H.
Prove that N is normal in G.

Show that there is no homomorphism from Z, @ Z, © Z, onto
Z,D2z,

Show that there is no homomorphism from A, onto a group of
order 2, 4, or 6, but that there is a homomorphism from A, onto a
group of order 3.

Let H be a normal subgroup of S, of order 4. Prove that S,/H is iso-
morphic to §;.

Suppose that ¢ is a homomorphism of U(36), Ker ¢ = {1, 13, 25},
and ¢(5) = 17. Determine all elements that map to 17.

Let n = 2m, where m is odd. How many elements of order 2
does D /Z(D,) have? How many elements are in the subgroup
(R;40,2/Z(D,)? How do these numbers compare with the number
of elements of order 2in D ?

Suppose that H is a normal subgroup of a group G of odd order and
that |Hl = 5. Show that H C Z(G).

Let G be an Abelian group and let n be a positive integer. Let G, =
{glg"=e}and G" = {g" | g € G}. Prove that G/G, is isomorphic
to G".

Let R* denote the multiplicative group of positive reals and let 7 =
{a + bi € C|a* + b> = 1} be the multiplicative group of complex
numbers of norm 1. Show that C* is the internal direct product of R*
and 7.
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27.

28.

29.

30.

31.

32.

33.
34.

3s.

36.

37.

38.

Let G be a finite group and let p be a prime. If p> > |GI, show that
any subgroup of order p is normal in G.

Let G=Z® Zand H = {(x, y) | x and y are even integers}. Show
that H is a subgroup of G. Determine the order of G/H. To which
familiar group is G/H isomorphic?

Let n be a positive integer. Prove that every element of order n in
Q/Z is contained in (1/n + Z).

(1997 Putnam Competition) Let G be a group and let ¢: G — G be
a function such that

(8 )P(8,)P(83) = P(h)p(hy)d(hs)

whenever g,¢,¢, = e = h,h,h,. Prove that there exists an element a
in G such that ¢y(x) = a¢(x) is a homomorphism.

Prove that every homomorphism from Z € Z into Z has the form
(x, y) = ax + by, where a and b are integers.

Prove that every homomorphism from Z © Z into Z & Z has the
form (x, y) — (ax + by, cx + dy), where a, b, c, and d are integers.

Prove that Q/Z is not isomorphic to a proper subgroup of itself.

Prove that for each positive integer n, the group Q/Z has exactly
¢(n) elements of order n (¢ is the Euler phi function).

Show that any group with more than two elements has an automor-
phism other than the identity mapping.

A proper subgroup H of a group G is called maximal if there is no
subgroup K such that H C K C G. Prove that Q under addition has
no maximal subgroups.

Let G be the group of quaternions as given in Exercise 4 of the
Supplementary Exercises for Chapters 1-4 and let H = {(d?).
Determine whether G/H is isomorphic to Z, or Z, D Z,. Is G/H iso-
morphic to a subgroup of G?

Write the dihedral group Dy as {R), Rys, Rog, Ri35, Ri30> K225, Ro70,

Ryis, Fy, Fy, B3, Fy, Fs, F, F7, Fg} and let N = {R, Ry, R 40 Ry}

Prove that N is normal in Dg. Given that FN = {F), F,, F,, F,},
determine whether Dg/N is cyclic.
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1
39. Let G be the group {[0 Z} ’ where a, b € R, b;ﬁO} and

1
H= {{0 ﬂ ‘ where x € R}. Show that H is a subgroup of G. Is

H a normal subgroup of G? Justify your answer.

40. Find a subgroup H of sz D sz such that (sz D sz)/H is isomorphic
0Z SZ.

41. Recall that H is a characteristic subgroup of K if ¢(H) = H for
every automorphism ¢ of K. Prove that if H is a characteristic sub-
group of K, and K is a normal subgroup of G, then H is a normal
subgroup of G.
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Introduction

to Rings

Example is the school of mankind, and they will learn at no other.
EDMUND BURKE, On a Regicide Peace

Motivation and Definition

Many sets are naturally endowed with two binary operations: addition
and multiplication. Examples that quickly come to mind are the inte-
gers, the integers modulo 7, the real numbers, matrices, and polynomi-
als. When considering these sets as groups, we simply used addition and
ignored multiplication. In many instances, however, one wishes to take
into account both addition and multiplication. One abstract concept that
does this is the concept of a ring.” This notion was originated in the
mid-19th century by Richard Dedekind, although its first formal abstract
definition was not given until Abraham Fraenkel presented it in 1914.

Definition Ring
A ring R is a set with two binary operations, addition (denoted by
a + b) and multiplication (denoted by ab), such that for all a, b, c in R:

l.a+b=>b+a.

2.(a+b)+c=a+ b+c).

3. There is an additive identity 0. That is, there is an element 0 in R
such thata + 0 = a for all a in R.

4. There is an element —a in R such thata + (—a) = 0.

5. a(bc) = (ab)c.

6. a(b+c) =ab + acand (b + ¢c)a = ba + ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition.
Note that multiplication need not be commutative. When it is, we say
that the ring is commutative. Also, a ring need not have an identity

"The term ring was first applied in 1897 by the German mathematician David Hilbert
(1862-1943).
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under multiplication. A unity (or identity) in a ring is a nonzero element
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it
does, we say that it is a unit of the ring. Thus, a is a unit if ™! exists.

The following terminology and notation are convenient. If a and b
belong to a commutative ring R and a is nonzero, we say that a divides
b (or that a is a factor of b) and write a | b, if there exists an element ¢
in R such that b = ac. If a does not divide b, we write a + b.

Recall that if @ is an element from a group under the operation of
addition and # is a positive integer, na means a + a + - - - + a, where
there are n summands. When dealing with rings, this notation can cause
confusion, since we also use juxtaposition for the ring multiplication.
When there is the potential for confusion, we will use n - a to mean
a+a+ -+ a(nsummands).

For an abstraction to be worthy of study, it must have many diverse
concrete realizations. The following list of examples shows that the
ring concept is pervasive.

Examples of Rings

B EXAMPLE 1 The set Z of integers under ordinary addition and
multiplication is a commutative ring with unity 1. The units of Z are
1 and —1. |

B EXAMPLE 2 The set Z = {0, I, ..., n — 1} under addition and
multiplication modulo 7 is a commutative ring with unity 1. The set of
units is U(n). [ |

B EXAMPLE 3 The set Z[x] of all polynomials in the variable x with
integer coefficients under ordinary addition and multiplication is a
commutative ring with unity fix) = 1. |

B EXAMPLE 4 The set M,(Z) of 2 X 2 matrices with integer entries

10
is a noncommutative ring with unity [O | } |

B EXAMPLE 5 The set 2Z of even integers under ordinary addition
and multiplication is a commutative ring without unity. |

B EXAMPLE 6 The set of all continuous real-valued functions of a
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and
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multiplication [that is, the operations ( f + g)(a) = fla) + g(a) and
(f8)(a) = fla)g(a)]. |

B EXAMPLEZ7 LetR,R,, ..., R, berings. We can use these to con-
struct a new ring as follows. Let

ROR,D---®OR ={(aay...,a)la, ER}
and perform componentwise addition and multiplication; that is, define
(a,ay...,a)+ (b,b,...,b)=(a, +b,a,+b,...,a +b)

and
b).

(a,,ay, ...,a)b,b,...,b)=(ab,ab,, ...,ab,

This ring is called the direct sum of R, R,, ..., R,. |

n

20

Properties of Rings

Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b — c¢ to denote b + (—c).

I Theorem 12.1 Rules of Multiplication

Let a, b, and c belong to a ring R. Then

1. a0 = 0a = 0.

2. a(—=b) = (—a)b = —(ab).

3. (—a)(—b) = ab.’

4. a(b—c)=ab—ac and (b— c)a = ba — ca.
Furthermore, if R has a unity element 1, then

5. (—1a = —a.
6. (—1)(—1=1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises
(see Exercise 11). To prove statements such as those in Theorem 12.1, we
need only “play off ” the distributive property against the fact that R is a
group under addition with additive identity 0. Consider rule 1. Clearly,

0+ a0 =a0 = a0 + 0) = a0 + a0.

So, by cancellation, 0 = 0. Similarly, Oa = 0.

f“Minus times minus equals plus.
The reason for this we need not discuss.”
W. H. Auden, A Certain World: A Commonplace Book
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To prove rule 2, we observe that a(—b) + ab = a(—b + b) =
a0 = 0. So, adding —(ab) to both sides yields a(—b) = —(ab). The re-
mainder of rule 2 is done analogously. |

Recall that in the case of groups, the identity and inverses are unique.
The same is true for rings, provided that these elements exist. The proofs
are identical to the ones given for groups and therefore are omitted.

I Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multipli-
cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were
a group under multiplication. It is not. The two most common errors are
the assumptions that ring elements have multiplicative inverses—they
need not—and that a ring has a multiplicative identity—it need not. For
example, if a, b, and ¢ belong to a ring, a # 0 and ab = ac, we cannot
conclude that b = ¢. Similarly, if a> = a, we cannot conclude thata = 0
or 1 (as is the case with real numbers). In the first place, the ring need
not have multiplicative cancellation, and in the second place, the ring
need not have a multiplicative identity. There is an important class of
rings that contains Z and Z[x] wherein multiplicative identities exist and
for which multiplicative cancellation holds. This class is taken up in the
next chapter.

Subrings

In our study of groups, subgroups played a crucial role. Subrings, the
analogous structures in ring theory, play a much less prominent role than
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring
A subset S of a ring R is a subring of R if S is itself a ring with the
operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

I Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under
subtraction and multiplication—that is, ifa — b and ab are in S
whenever a and b are in S.
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PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that S
is an Abelian group under addition. Also, since multiplication in R is
associative as well as distributive over addition, the same is true for
multiplication in S. Thus, the only condition remaining to be checked
is that multiplication is a binary operation on S. But this is exactly what
closure means. |

We leave it to the student to confirm that each of the following ex-
amples is a subring.

I EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the
trivial subring of R. |

B EXAMPLE 9 {0, 2, 4} is a subring of the ring Z, the inte-
gers modulo 6. Note that although 1 is the unity in Z, 4 is the unity in
{0,2,4}. [
B EXAMPLE 10 For each positive integer n, the set

nZ = {0, *n, =2n, =3n, ...}

is a subring of the integers Z. |

B EXAMPLE 11 The set of Gaussian integers
Zlil]=f{a+bila,beEZ}

is a subring of the complex numbers C. |

B EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set S of R of functions whose graphs pass through the origin forms a
subring of R. |

§ EXAMPLE 13 The set
o 2]
0 b
of diagonal matrices is a subring of the ring of all 2 X 2 matrices
over Z. |

a,bEZ}

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the
rings we have already discussed.




250

Rings

C

R
Aid=la+bilapez) |
o
|

~N
/Q(ﬁ)z{a+bﬁla,beg}

Figure 12.1 Partial subring lattice diagram of C.

In the next several chapters, we will see that many of the fundamen-
tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

There is no substitute for hard work.

THOMAS ALVA EDISON, Life

1. Give an example of a finite noncommutative ring. Give an example
of an infinite noncommutative ring that does not have a unity.

2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo

10 has a unity. Find it.

3. Give an example of a subset of a ring that is a subgroup under

addition but not a subring.

4. Show, by example, that for fixed nonzero elements @ and b in a
ring, the equation ax = b can have more than one solution. How

does this compare with groups?
5. Prove Theorem 12.2.

6. Find an integer n that shows that the rings Z need not have the fol-

lowing properties that the ring of integers has.

a. > = aimpliesa = 0ora = 1.

b. ab = 0 impliesa = 0or b = 0.
¢. ab=acanda # 0imply b = c.
Is the n you found prime?
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16.
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18.
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20.

21.

22,

23.
24.

25.
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28.
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. Show that the three properties listed in Exercise 6 are valid for Zp,

where p is prime.

. Show that a ring is commutative if it has the property that ab = ca

implies b = ¢ when a # 0.

. Prove that the intersection of any collection of subrings of a ring R

is a subring of R.

Verify that Examples 8 through 13 in this chapter are as stated.
Prove rules 3 through 6 of Theorem 12.1.

Let a, b, and ¢ be elements of a commutative ring, and suppose that
a is a unit. Prove that b divides c if and only if ab divides c.
Describe all the subrings of the ring of integers.

Let a and b belong to a ring R and let m be an integer. Prove that
m -+ (ab) = (m - a)b = a(m * b).

Show that if m and n are integers and a and b are elements from a
ring, then (m - a)(n - b) = (mn) - (ab). (This exercise is referred to
in Chapters 13 and 15.)

Show that if n is an integer and a is an element from a ring, then
n-(—a)=—(n-a).

Show that a ring that is cyclic under addition is commutative.

Let a belong to aring R. Let S = {x € R | ax = 0}. Show that S is
a subring of R.

Let R be a ring. The center of R is the set {x € R | ax = xa for all
a in R}. Prove that the center of a ring is a subring.

Describe the elements of M,(Z) (see Example 4) that have multipli-
cative inverses.

Suppose that R, R, . . ., R, are rings that contain nonzero ele-
ments. Show that R, © R, @ - - - @ R, has a unity if and only if
each R, has a unity.

Let R be a commutative ring with unity and let U(R) denote the set
of units of R. Prove that U(R) is a group under the multiplication of
R. (This group is called the group of units of R.)

Determine U(Z[i]) (see Example 11).

If R, R,, ..., R, are commutative rings with unity, show that
URDR,D---DR)=UR)DUR,)D---DUR).
Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
Determine U(R[x]).

Show that a unit of a ring divides every element of the ring.
In Z,, show that 4 | 2; in Z, show that317;in Z

show that 9 | 12.

15°
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29,

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42,

43.

44.

Suppose that a and b belong to a commutative ring R with unity. If
a is a unit of R and b2 = 0, show that @ + b is a unit of R.

Suppose that there is an integer n > 1 such that x* = x for all elements
x of some ring. If m is a positive integer and @ = 0 for some a, show
thata = 0.

Give an example of ring elements a and b with the properties that
ab = 0 but ba # 0.

Let n be an integer greater than 1. In a ring in which x" = x for all x,
show that ab = 0 implies ba = 0.

Suppose that R is a ring such that x> = x for all x in R. Prove that
6x = 0 for all x in R.
2n — 2

Suppose that a belongs to a ring and a* = a*. Prove that a®* = a
foralln = 1.

Find an integer n > 1 such that @" = a for all a in Z.. Do the same
for Z, . Show that no such n exists for Z when m is divisible by the
square of some prime.

Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ N nZ = kZ.

Explain why every subgroup of Z under addition is also a subring
of Z .

Is Z, a subring of Z ,?

Suppose that R is a ring with unity 1 and a is an element of R such
that > = 1. Let S = {ara | r € R}. Prove that S is a subring of R.
Does S contain 1?

Let M(Z) be the ring of all 2 X 2 matrices over the integers and let R =
{ { a a+ b}
a-+b b

of M,(2).
Let M,(Z) be the ring of all 2 X 2 matrices over the integers and let R =

{[ a a—b}
a—>b b
of M,(Z).

s[5

of M,(2).
LetR=ZDZDZand S = {(a,b,c) ER|a + b = c}. Prove or
disprove that S is a subring of R.

a,be”z } . Prove or disprove that R is a subring

a,be”Z } Prove or disprove that R is a subring

a,be”z } Prove or disprove that R is a subring

Suppose that there is a positive even integer n such that a" = a for
all elements a of some ring. Show that —a = a for all a in the ring.




45.
46.
47.

48.
49.
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Let R be a ring with unity 1. Show that S = {n -1 1n € Z} isa
subring of R.

Show that 2Z U 3Z is not a subring of Z.

Determine the smallest subring of Q that contains 1/2. (That is,
find the subring S with the property that S contains 1/2 and, if 7 is
any subring containing 1/2, then 7 contains S.)

Determine the smallest subring of Q that contains 2/3.

Let R be a ring. Prove that > — b*> = (a + b)(a — b) for all a, b in
R if and only if R is commutative.

. Suppose that R is a ring and that a> = a for all a in R. Show that R

is commutative. [A ring in which a*> = a for all a is called a
Boolean ring, in honor of the English mathematician George Boole
(1815-1864).]

. Give an example of a Boolean ring with four elements. Give an ex-

ample of an infinite Boolean ring.

. If a, b, and c are elements of a ring, does the equation ax + b = ¢

always have a solution x? If it does, must the solution be unique?
Answer the same questions given that a is a unit.

Computer Exercises

So

ftware for the computer exercises in this chapter is available at the

website:

http://www.d.umn.edu/~jgallian

Suggested Reading

D.

B. Erickson, “Orders for Finite Noncommutative Rings,” American

Mathematical Monthly 73 (1966): 376-377.
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I. N. Herstein

A whole generation of textbooks and an entire
generation of mathematicians, myself
included, have been profoundly influenced

by that text [Herstein’s Topics in Algebral.

GEORGIA BENKART

1. N. HERSTEIN was born on March 28, 1923,
in Poland. His family moved to Canada
when he was seven. He grew up in a poor and
tough environment, on which he commented
that in his neighborhood you became either a
gangster or a college professor. During his
school years he played football, hockey, golf,
tennis, and pool. During this time he worked
as a steeplejack and as a barber at a fair.
Herstein received a B.S. degree from the
University of Manitoba, an M.A. from the
University of Toronto, and, in 1948, a Ph.D.
degree from Indiana University under the su-
pervision of Max Zorn. Before permanently
settling at the University of Chicago in 1962,
he held positions at the University of Kansas,
the Ohio State University, the University of
Pennsylvania, and Cornell University.
Herstein wrote more than 100 research
papers and a dozen books. Although his
principal interest was noncommutative ring
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theory, he also wrote papers on finite
groups, linear algebra, and mathematical
economics. His textbook Topics in Algebra,
first published in 1964, dominated the field
for 20 years and has become a classic.
Herstein had great influence through his
teaching and his collaboration with col-
leagues. He had 30 Ph.D. students, and
traveled and lectured widely. His nonmath-
ematical interests included languages and
art. He spoke Italian, Hebrew, Polish, and
Portuguese. Herstein died on February 9,
1988, after a long battle with cancer.

To find more information about Herstein,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Integral Domains

Don't just read it! Ask your own questions, look for your own examples,
discover your own proofs. Is the hypothesis necessary? Is the converse
true? What happens in the classical special case? Where does the proof
use the hypothesis?

PAUL HALMOS

Definition and Examples

To a certain degree, the notion of a ring was invented in an attempt to
put the algebraic properties of the integers into an abstract setting. A
ring is not the appropriate abstraction of the integers, however, for too
much is lost in the process. Besides the two obvious properties of com-
mutativity and existence of a unity, there is one other essential feature
of the integers that rings in general do not enjoy—the cancellation
property. In this chapter, we introduce integral domains—a particular
class of rings that have all three of these properties. Integral domains
play a prominent role in number theory and algebraic geometry.

A zero-divisor is a nonzero element a of a commutative ring R such

| Definition Zero-Divisors
that there is a nonzero element b € R with ab = 0.

Definition Integral Domain
| An integral domain is a commutative ring with unity and no

zero-divisors.

Thus, in an integral domain, a product is O only when one of the
factors is 0; that is, ab = 0 only when a = 0 or b = 0. The following
examples show that many familiar rings are integral domains and some
familiar rings are not. For each example, the student should verify the
assertion made.

B EXAMPLE 1 The ring of integers is an integral domain. |
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B EXAMPLE 2 The ring of Gaussian integers Z[i] = {a + bila,b € Z}
is an integral domain. |

B EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients
is an integral domain. |

B EXAMPLE 4 Thering Z[\/2] = {a + b\/2 | a, b € Z} is an integral
domain. |

B EXAMPLE 5 The ring Zp of integers modulo a prime p is an integral
domain. |

B EXAMPLE 6 The ring Z of integers modulo 7 is not an integral do-
main when 7 is not prime. |

B EXAMPLE 7 The ring M,(Z) of 2 X 2 matrices over the integers is
not an integral domain. |

B EXAMPLE 8 Z ® Zis not an integral domain. |

What makes integral domains particularly appealing is that they have
an important multiplicative group theoretic property, in spite of the fact
that the nonzero elements need not form a group under multiplication.
This property is cancellation.

B Theorem 13.1 Cancellation

Fields

Let a, b, and c belong to an integral domain. If a # 0 and ab = ac,
then b = c.

PROOF From ab = ac, we have a(b — ¢) = 0. Since a # 0, we must
have b — ¢ = 0. |

Many authors prefer to define integral domains by the cancellation
property—that is, as commutative rings with unity in which the cancel-
lation property holds. This definition is equivalent to ours.

In many applications, a particular kind of integral domain called a field
is necessary.

Definition Field
A field is a commutative ring with unity in which every nonzero
element is a unit.
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To verify that every field is an integral domain, observe that if a and
b belong to a field with a # 0 and ab = 0, we can multiply both sides
of the last expression by a™! to obtain b = 0.

It is often helpful to think of ab™! as a divided by b. With this in
mind, a field can be thought of as simply an algebraic system that
is closed under addition, subtraction, multiplication, and division
(except by 0). We have had numerous examples of fields: the complex
numbers, the real numbers, the rational numbers. The abstract theory of
fields was initiated by Heinrich Weber in 1893. Groups, rings, and
fields are the three main branches of abstract algebra. Theorem 13.2
says that, in the finite case, fields and integral domains are the same.

I Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any
nonzero element of D. We must show that ¢ is a unit. If a = 1, a is its
own inverse, so we may assume that a # 1. Now consider the following
sequence of elements of D: a, a?, @®, . . .. Since D is finite, there must
be two positive integers i and j such that i > j and @’ = a’. Then, by can-
cellation, @'/ = 1. Since a # 1, we know that i — j > 1, and we have
shown that a’/~! is the inverse of a. |

1 Corollary Z,lsa Field

For every prime p, Z ” the ring of integers modulo p is a field.

PROOF According to Theorem 13.2, we need only prove that Z, has
no zero-divisors. So, suppose that a, b € Z, and ab = 0. Then ab = pk
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p
divides a or p divides b. Thus, in Zp, a=0orb=0. |

Putting the preceding corollary together with Example 6, we see that
Z is a field if and only if n is prime. In Chapter 22, we will describe
how all finite fields can be constructed. For now, we give one example
of a finite field that is not of the form Z,

B EXAMPLE 9 Field with Nine Elements
Let ZJil={a+bila,beEZ}

={0,1,2,i, 1 +i,2+ 20,1+ 2i,2+ 2i},
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where i> = —1. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that
the coefficients are reduced modulo 3. In particular, —1 = 2. Table 13.1
is the multiplication table for the nonzero elements of Z,[i]. |

Table 13.1 Multiplication Table for ZS[i]*

1 2 i 1+i 2+i 2 1+2i 2+2i
1 1 2 i 1+i 24+i 2 1+2i 2+2i
2 2 1 2i 2+2i 1+2i i 2+ 1+
i i 2i 2 2+i 242 1 1+i 1+2i
1+ 1+ 2+2i 2+ 2i 1 1+2i 2 i
2+ 2+ 1+2i 2+2i 1 i 1+ 2 2
2i 2i i 1 1+2i 1+i 2 2+2i 2+
1+2i | 1+2i 2+ 1+ 2 2i 2+2i i 1
242 | 2+2i 1+ 1+2i i 2 2+ 1 2i

B EXAMPLE 10 Let Q[\V2] = {a + b\V2 | a, b € Q}. It is easy to see
that Q[\f2] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a + b\/2 is simply 1/(a +
b\V/'2). To verify that Q[V/2] is a field, we must show that 1/(a + b\/2)
can be written in the form ¢ + d\/2. In high school algebra, this process
is called “rationalizing the denominator.” Specifically,

1 _ 1 a—bV2 B a _ b 3
a+bV2 a+bNV2a—-bV2 & —20* -2
(Note that a + bV2 #0 guarantees that a — b\V2 # 0. |

Characteristic of a Ring

Note that for any element x in Z;[i], we have 3x = x + x + x = 0, since
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z,,,
we have 4x = x + x + x + x = 0 for all x. This observation motivates
the following definition.

Definition Characteristic of aRing

The characteristic of a ring R is the least positive integer n such that
nx = 0 for all x in R. If no such integer exists, we say that R has char-
acteristic 0. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Z_has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the
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ring Z,[x] of all polynomials with coefficients in Z, has characteristic 2.
(Addition and multiplication are done as for polynomials with ordinary
integer coefficients except that the coefficients are reduced modulo 2.)
When a ring has a unity, the task of determining the characteristic is
simplified by Theorem 13.3.

I Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under addition,
then the characteristic of R is 0. If 1 has order n under addition,
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such
that n - 1 = 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n - 1 = 0, and n is the least positive integer with this
property. So, for any x in R, we have

n-x=x+x+---+ x(nsummands)
= lx + 1x + - - - + 1x (n summands)
=1 +1+---+ Dx(nsummands)
=m-1x=0x=0.

Thus, R has characteristic 7. |

In the case of an integral domain, the possibilities for the character-
istic are severely limited.

I Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that n = sz,
where 1 = s, t = n. Then, by Exercise 15 in Chapter 12,

O=n-1=@H-1=(-D@E-1).

So,s-1=0or¢-1=0. Since n is the least positive integer with the
property that n - 1 = 0, we must have s = n or t = n. Thus, n is
prime. |

We conclude this chapter with a brief discussion of polynomials
with coefficients from a ring—a topic we will consider in detail in
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later chapters. The existence of zero-divisors in a ring causes unusual
results when one is finding zeros of polynomials with coefficients in
the ring. Consider, for example, the equation x> — 4x + 3 = 0. In the
integers, we could find all solutions by factoring

X—4x+3=x—-3)x—-1)=0

and setting each factor equal to 0. But notice that when we say we can
find all solutions in this manner, we are using the fact that the only way
for a product to equal 0 is for one of the factors to be 0—that is, we are
using the fact that Z is an integral domain. In Z ,, there are many pairs of
nonzero elements whose products are 0: 2 -6 =0,3- 4 =0,4-6 = 0,
6 - 8 = 0, and so on. So, how do we find a/l solutions of x> — 4x + 3 =10
in Z,,? The easiest way is simply to try every element! Upon doing so,
we find four solutions: x = 1, x = 3, x = 7, and x = 9. Observe that we
can find all solutions of x> — 4x + 3 = 0 over Z,, or Z,, say, by setting
the two factors x — 3 and x — 1 equal to 0. Of course, the reason this
works for these rings is that they are integral domains. Perhaps this will
convince you that integral domains are particularly advantageous rings.
Table 13.2 gives a summary of some of the rings we have introduced and
their properties.

Table 13.2 Summary of Rings and Their Properties

Integral
Ring Form of Element Unity Commutative Domain Field Characteristic
VA k 1 Yes Yes No 0
Z,,n composite  k 1 Yes No No n
Z,p prime k 1 Yes Yes Yes P
Z[x] ax"+ -+ fx) =1 Yes Yes No 0
ax+a,
nZ,n>1 nk None Yes No No 0
M,(Z) {“ b} {1 O} No No  No 0
c d 0 1
M,(22) {2“ Zb} None No No No 0
2c 2d
Z[i] a + bi 1 Yes Yes No 0
Z,[i] a+bisa, beZ, 1 Yes Yes Yes 3
Z[\@] a+ b\fZ; a,beZ 1 Yes Yes No 0
0[V2] a+bV2a,bEQ 1 Yes Yes Yes 0
VA VA (a, b) 1, 1) Yes No No 0
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It looked absolutely impossible. But it so happens that you go on worrying
away at a problem in science and it seems to get tired, and lies down and
lets you catch it.

10.
11.

12.

13.

14.

15.

WILLIAM LAWRENCE BRAGG'

Verify that Examples 1 through 8 are as claimed.

Which of Examples 1 through 5 are fields?

Show that a commutative ring with the cancellation property
(under multiplication) has no zero-divisors.

List all zero-divisors in Z,. Can you see a relationship between the
zero-divisors of Z,, and the units of Z,,?

Show that every nonzero element of Z is a unit or a zero-divisor.
Find a nonzero element in a ring that is neither a zero-divisor nor a
unit.

Let R be a finite commutative ring with unity. Prove that every
nonzero element of R is either a zero-divisor or a unit. What hap-
pens if we drop the “finite” condition on R?

Let a # 0 belong to a commutative ring. Prove that a is a zero-
divisor if and only if a®h = 0 for some b # 0.

Find elements a, b, and ¢ in the ring Z @ Z @ Z such that ab, ac,
and bc are zero-divisors but abc is not a zero-divisor.

Describe all zero-divisors and units of Z® Q © Z.

Let d be an integer. Prove that ZINVdl = {a +bVd\la, b€ Z} is
an integral domain. (This exercise is referred to in Chapter 18.)

In Z,, give a reasonable interpretation for the expressions 1/2,
—2/3,\/=3, and —1/6.

Give an example of a commutative ring without zero-divisors that
is not an integral domain.

Find two elements a and b in a ring such that both a and b are zero-
divisors, a + b # 0, and a + b is not a zero-divisor.

Let a belong to a ring R with unity and suppose that " = 0 for
some positive integer n. (Such an element is called nilpotent.)
Prove that 1 — a has a multiplicative inverse in R. [Hint: Consider
I-ad+a+a*+- - +a )]

"Bragg, at age 24, won the Nobel Prize for the invention of x-ray crystallography. He
remains the youngest person ever to receive the Nobel Prize.
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16.

17.
18.

19.

20.

21.

22,

23.

24,
25.
26.

27.
28.

29.

30.

31.

32.

33.

Show that the nilpotent elements of a commutative ring form a
subring.

Show that O is the only nilpotent element in an integral domain.

A ring element a is called an idempotent if a> = a. Prove that the
only idempotents in an integral domain are 0 and 1.

Let a and b be idempotents in a commutative ring. Show that each
of the following is also an idempotent: ab, a — ab, a + b — ab,
a-+ b — 2ab.

Show that Z has a nonzero nilpotent element if and only if n is di-
visible by the square of some prime.

Let R be the ring of real-valued continuous functions on [—1, 1].
Show that R has zero-divisors.

Prove that if a is a ring idempotent, then @" = a for all positive inte-
gers n.

Determine all ring elements that are both nilpotent elements and
idempotents.

Find a zero-divisor in Z [i] = {a + bila,b € Z}.

Find an idempotent in Z,[i] = {a + bi | a, b € Z}.

Find all units, zero-divisors, idempotents, and nilpotent elements
inZ, ®Z.

Determine all elements of a ring that are both units and idempotents.
Let R be the set of all real-valued functions defined for all real
numbers under function addition and multiplication.

a. Determine all zero-divisors of R.

b. Determine all nilpotent elements of R.

c. Show that every nonzero element is a zero-divisor or a unit.
(Subfield Test) Let F be a field and let K be a subset of I with at
least two elements. Prove that K is a subfield of F if, for any
a,b(b+#0)inK, a — b and ab™! belong to K.

Let d be a positive integer. Prove that Q[Vd] = {a + b\Vd |
a,b € Q} is afield.

Let R be a ring with unity 1. If the product of any pair of nonzero
elements of R is nonzero, prove that ab = 1 implies ba = 1.

Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo
10. Prove that R is a field.

Formulate the appropriate definition of a subdomain (that is, a
“sub” integral domain). Let D be an integral domain with unity 1.
Show that P = {n - 1 | n € Z} (that is, all integral multiples of 1)
is a subdomain of D. Show that P is contained in every subdomain
of D. What can we say about the order of P?




34.

3s.
36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.
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Prove that there is no integral domain with exactly six elements. Can
your argument be adapted to show that there is no integral domain
with exactly four elements? What about 15 elements? Use these ob-
servations to guess a general result about the number of elements in
a finite integral domain.

Let F be a field of order 2". Prove that char F' = 2.

Determine all elements of an integral domain that are their own

inverses under multiplication.

Characterize those integral domains for which 1 is the only ele-

ment that is its own multiplicative inverse.

Determine all integers n > 1 for which (n — 1)! is a zero-divisor

inZ,.

Suppose that a and b belong to an integral domain.

a. If @ = b’ and @® = b3, prove that a = b.

b. If @ = b™ and @" = b", where m and n are positive integers that
are relatively prime, prove that a = b.

Find an example of an integral domain and distinct positive inte-

gers m and n such that @ = b and a" = b", but a # b.

If a is an idempotent in a commutative ring, show that 1 — a is also

an idempotent.

Construct a multiplication table for Z,[i], the ring of Gaussian inte-

gers modulo 2. Is this ring a field? Is it an integral domain?

The nonzero elements of Z,[i] form an Abelian group of order 8 un-

der multiplication. Is it isomorphic to Z,, Z, ® Z,,or Z, ® Z, D Z,?

Show that Z.[V3] = {a + b\V3 | a, b € Z,} is a field. For any

positive integer k and any prime p, determine a necessary and suf-

ficient condition for Zp[\/l;] ={a+bVkla, b€ Zp} to be a field.

Show that a finite commutative ring with no zero-divisors and at

least two elements has a unity.

Suppose that a and b belong to a commutative ring and ab is a

zero-divisor. Show that either a or b is a zero-divisor.

Suppose that R is a commutative ring without zero-divisors. Show

that all the nonzero elements of R have the same additive order.

Suppose that R is a commutative ring without zero-divisors. Show

that the characteristic of R is O or prime.

Let x and y belong to a commutative ring R with prime character-

istic p.

a. Show that (x + y)? = x? + y”.

b. Show that, for all positive integers n, (x + y)?" = x?" + y»".

c. Find elements x and y in a ring of characteristic 4 such that
(x + y)* # x* + y*. (This exercise is referred to in Chapter 20.)
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50.

51.

52.

53.

54.

55.
56.
57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

Let R be a commutative ring with unity 1 and prime characteristic.
If a € R is nilpotent, prove that there is a positive integer k such that
(I +af=1.

Show that any finite field has order p”, where p is a prime. Hint: Use
facts about finite Abelian groups. (This exercise is referred to in
Chapter 22.)

Give an example of an infinite integral domain that has character-
istic 3.

Let R be aring and let M,(R) be the ring of 2 X 2 matrices with entries
from R. Explain why these two rings have the same characteristic.

Let R be a ring with m elements. Show that the characteristic of R
divides m.

Explain why a finite ring must have a nonzero characteristic.

Find all solutions of x> — x + 2 = 0 over Z,[i]. (See Example 9.)
Consider the equation x> — 5x + 6 = 0.

a. How many solutions does this equation have in Z,?

b. Find all solutions of this equation in Z.

c. Find all solutions of this equation in Z_,.

d. Find all solutions of this equationin Z .

Find the characteristic of Z, ® 4Z.

Suppose that R is an integral domain in which 20 - 1 = 0 and
12-1 =0. (Recall thatn - 1 meansthesum 1 + 1 + - - - + 1 with
n terms.) What is the characteristic of R?

In a commutative ring of characteristic 2, prove that the idempo-
tents form a subring.

Describe the smallest subfield of the field of real numbers that con-
tains /2. (That is, describe the subfield K with the property that K
contains V2 and if F is any subfield containing \/2, then F con-
tains K.)

Let F be a finite field with n elements. Prove that x*~! = 1 for all
nonzero x in F.

Let F be a field of prime characteristic p. Prove that K = {x € F |
x? = x} is a subfield of F.

Suppose that a and b belong to a field of order 8 and that a*> + ab +
b* = 0. Prove that a = 0 and b = 0. Do the same when the field has
order 2" with n odd.

Let F be a field of characteristic 2 with more than two elements.
Show that (x + y)* # x> + y? for some x and y in F.

Suppose that F'is a field with characteristic not 2, and that the non-
zero elements of F form a cyclic group under multiplication. Prove
that F is finite.
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67. Suppose that D is an integral domain and that ¢ is a nonconstant
function from D to the nonnegative integers such that ¢(xy) =
d(x)p(y). If x is a unit in D, show that p(x) = 1.

68. Let F be a field of order 32. Show that the only subfields of F are
Fitself and {0, 1}.

69. Suppose that F is a field with 27 elements. Show that for every
elementa € F, 5a = —a.

70. Let
{|:Cl _b:|
b a

with the usual matrix addition and multiplication and mod 7 addi-
tion and multiplication of the entries. Prove that R is a commutative
ring. How many elements are in R? Is R a field? What happens
when Z, is replaced by Z,?

Computer Exercises

Computer exercises for this chapter are available at the website:

a,bEZ7}

http://www.d.umn.edu/~jgallian

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154—155.
In this article, the author uses properties of logarithms and exponents
to define recursively an infinite family of fields starting with the real
numbers.
N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly
70 (1963): 736-738.
Here it is shown that a ring has nonzero characteristic » if and only
if n is the maximum of the orders of the elements of R.
K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical
Gazette 62 (1978): 94-104.

This article explores the interplay between various groups of integers un-
der multiplication modulo n and the ring Z . It shows how to construct
groups of integers in which the identity is not obvious; for example, 1977
is the identity of the group {1977, 5931} under multiplication modulo
7908.
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Nathan Jacobson

Few mathematicians have been as produc-
tive over such a long career or have had as
much influence on the profession as has
Professor Jacobson.

Citation for the Steele Prize
for Lifetime Achievement

NATHAN JACOBSON was born on September 8,
1910, in Warsaw, Poland. After arriving in
the United States in 1917, Jacobson grew up
in Alabama, Mississippi, and Georgia, where
his father owned small clothing stores. He
received a B.A. degree from the University of
Alabama in 1930 and a Ph.D. from Princeton
in 1934. After brief periods as a professor at
Bryn Mawr, the University of Chicago, the
University of North Carolina, and Johns
Hopkins, Jacobson accepted a position at
Yale, where he remained until his retirement
in 1981.

Jacobson’s principal contributions to al-
gebra were in the areas of rings, Lie algebras,
and Jordan algebras. In particular, he devel-
oped structure theories for these systems. He
was the author of nine books and numerous
articles, and he had 33 Ph.D. students.
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American Mathematical Society

Jacobson held visiting positions in
France, India, Italy, Israel, China, Australia,
and Switzerland. Among his many honors
were the presidency of the American
Mathematical Society, memberships in the
National Academy of Sciences and the
American Academy of Arts and Sciences, a
Guggenheim Fellowship, and an honorary
degree from the University of Chicago.
Jacobson died on December 5, 1999, at the
age of 89.

To find more information about Jacobson,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Ideals and Factor Rings

The secret of science is to ask the right questions, and it is the choice of
problem more than anything else that marks the man of genius in the
scientific world.
SIR HENRY TIZARD IN C. P. SNOW,
A postscript to Science and Government

Ideals

Normal subgroups play a special role in group theory—they permit us
to construct factor groups. In this chapter, we introduce the analogous
concepts for rings—ideals and factor rings.

Definition Ideal
A subring A of a ring R is called a (two-sided) ideal of R if for
every r € R and every a € A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements
from R—thatis,if rA = {rala €A} CAandAr = {arla €A} CA
for all » € R.

An ideal A of R is called a proper ideal of R if A is a proper subset
of R. In practice, one identifies ideals with the following test, which is
an immediate consequence of the definition of ideal and the subring
test given in Theorem 12.3.

B Theorem 14.1 ldeal Test

A nonempty subset A of a ring R is an ideal of R if

1. a — b € A whenevera, b € A.
2. raand ar are in A whenevera € A andr € R.
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B EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0}
is called the trivial ideal. |

B EXAMPLE 2 For any positive integer n, the set nZ = {0, *n,
*2n, ...} is an ideal of Z. |

B EXAMPLE 3 Let R be a commutative ring with unity and let a € R.
The set {(a) = {ra | r € R} is an ideal of R called the principal ideal
generated by a. (Notice that (a) is also the notation we used for
the cyclic subgroup generated by a. However, the intended meaning
will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example (see Exercise 31 in the Sup-
plementary Exercises for Chapters 12—14). |

B EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant
term 0. Then A is an ideal of R[x] and A = (x). [ |

B EXAMPLE 5 Let R be a commutative ring with unity and let a,,
a,, ..., a, belong to R. Then I = (a,, a,, ..., a) = {ra, + na, +
*+++ra | r, € R} is an ideal of R called the ideal generated by a,,
a,, . . ., a . The verification that [ is an ideal is left as an easy exercise
(Exercise 3). |

B EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let / be the subset of Z[x] of all polynomials with
even constant terms. Then 7 is an ideal of Z[x] and I = {x, 2) (see
Exercise 37). |

B EXAMPLE 7 Let R be the ring of all real-valued functions of a real
variable. The subset S of all differentiable functions is a subring of R
but not an ideal of R. |

Factor Rings

Let R be aring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group
R/IA = {r + A | r € R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care
of, and, by analogy with groups of cosets, we define the product of two
cosets of s + A and ¢ + A as st + A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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I Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets {r + A |
r € R} is a ring under the operations (s + A) + t + A)=s+t+ A
and (s + A)(t + A) = st + A if and only if A is an ideal of R.

PROOF We know that the set of cosets forms a group under addition.
Once we know that multiplication is indeed a binary operation on the
cosets, it is trivial to check that the multiplication is associative and
that multiplication is distributive over addition. Hence, the proof boils
down to showing that multiplication is well-defined if and only if A is
an ideal of R. To do this, let us suppose that A is an ideal and let s + A =
s'+Aandt + A = + A. Then we must show that st + A = st + A.
Well, by definition, s = s" + a and t = ¢’ + b, where a and b belong
to A. Then

st=("+a)t' +b)=s"t +at’' +s'b+ ab,
and so

st+A=s"t +at’' +s'b+ab+ A=5s't + A,

since A absorbs at’ + s'b + ab. Thus, multiplication is well-defined
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elements ¢ € A and r € R such that ar € A
or ra & A. For convenience, say ar & A. Consider the elements a + A =
0+ Aandr + A. Clearly, (a + A)(r + A) = ar + Abut (0 + A) -
(r+A)=0-r+A=A.Since ar + A # A, the multiplication is not
well-defined and the set of cosets is not a ring. |

Let’s look at a few factor rings.
B EXAMPLE8 7Z/4Z={0+ 47,1+ 47,2 + 47,3 + 4Z}. To see how
to add and multiply, consider 2 + 4Z and 3 + 4Z.

Q+42)+(B+42)=5+4Z=1+4+4Z=1+4Z,
Q+42)3+42) =6 +4Z=2+4 +4Z =2+ 4Z

One can readily see that the two operations are essentially modulo 4
arithmetic. |
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I EXAMPLE 9 27/6Z = {0 + 6Z,2 + 6Z,4 + 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 + 6Z) +
4+6Z2)=2+6Zand (4 + 62)(4 + 6Z2) =4 + 6Z. |

Here is a noncommutative example of an ideal and factor ring.

a a
B EXAMPLE 10 Let R =

as ay
subset of R consisting of matrices with even entries. It is easy to
show that I is indeed an ideal of R (Exercise 21). Consider the factor
ring R/I. The interesting question about this ring is: What is its size?

}-FI | r; €40, 1}}.
An example illustrates the typical situation. Which of the 16 elements

o [7 Mern v, owserve e [1 3 +1=] 9]«
18 5 3 ! ell, observe a 5 3 = 11

aiEZ} and let I be the

We claim R/I has 16 elements; in fact, R/I = { {rl 2
r3 Iy

6 8 1 0
L _4] + 1= {1 J + 1, since an ideal absorbs its own elements.

The general case is left to the reader (Exercise 23). |

B EXAMPLE 11 Consider the factor ring of the Gaussian integers
R = Z[i]/(2 — i). What does this ring look like? Of course, the elements
of R have the form a + bi + (2 — i), where a and b are integers, but the
important question is: What do the distinct cosets look like? The fact
that2 — i + (2 — i) = 0 + (2 — i) means that when dealing with coset
representatives, we may treat 2 — i as equivalent to 0, so that 2 = i. For
example, thecoset3 +4i+ 2 —i)=3+8+2—i) =11+ 2 —i).
Similarly, all the elements of R can be written in the form a + (2 — i),
where a is an integer. But we can further reduce the set of distinct coset
representatives by observing that when dealing with coset representa-
tives, 2 = i implies (by squaring both sides) that 4 = —1 or 5 = 0.
Thus,thecoset3 +4i+ 2 —H=11+2—-D=1+5+5+2 —-i)=
1 + (2 — i). In this way, we can show that every element of R is equal to
one of the following cosets: 0 + (2 — i), 1 + 2 —i),2 + (2 —i),3 +
(2 — i), 4 + (2 — i). Is any further reduction possible? To demonstrate
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 + (2 — i) has additive order 5. Since 5(1 + (2 — i)) =
5+42—-0)=0+ 2 —1i),1+ (2 —i)hasorder 1 or 5. If the order is
actually I, then 1 + 2 — ) =0+ (2 —i),s01 €2 — i). Thus, 1 =
2 =19 (a + bi) =2a + b + (—a + 2b)i for some integers a and b. But
this equation implies that 1 = 2a + band 0 = —a + 2b, and solving these
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simultaneously yields » = 1/5, which is a contradiction. It should be
clear that the ring R is essentially the same as the field Z.. |

§ EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let (x> + 1) denote the principal ideal generated by
x* + 1; that is,

@+ 1) = {fo? + 1) 1 fix) € R[x]}.
Then

RIxIKx* + 1) = {g(x) + (¥ + 1) | g(x) € R[x]}
={ax+b+ (x*+ 1)1a bER].

To see this last equality, note that if g(x) is any member of R[x], then
we may write g(x) in the form g(x)(x*> + 1) + r(x), where g(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x> + 1. In
particular, r(x) = O or the degree of r(x) is less than 2, so that r(x) =
ax + b for some a and b in R. Thus,

g+ @+ 1) =g+ 1) +rx) + &+ 1)
=r(x) + (x> + 1),

since the ideal (x> + 1) absorbs the term g(x)(x*> + 1).
How is multiplication done? Since

XH1+EEP+1D)=0+ &+ 1),

one should think of x> + 1 as 0 or, equivalently, as x> = —1. So, for
example,

G342+ 1) Qr+5+ G+ 1)
=22+ 1lx+ 15+ 2+ 1) =11x+ 13 + 2+ 1).

In view of the fact that the elements of this ring have the form ax +
b + (x> + 1), where x> + (x> + 1) = —1 + (x> + 1), it is perhaps not
surprising that this ring turns out to be algebraically the same ring as
the ring of complex numbers. This observation was first made by Cau-
chy in 1847. |

Examples 11 and 12 illustrate one of the most important applica-
tions of factor rings—the construction of rings with highly desirable
properties. In particular, we shall show how one may use factor rings to
construct integral domains and fields.




272

Rings

Prime Ideals and Maximal Ideals

Definition Prime Ideal, Maximal Ideal

A prime ideal A of a commutative ring R is a proper ideal of R such
thata,b € Rand ab € A implya € A or b € A. A maximal ideal of a
commutative ring R is a proper ideal of R such that, whenever B is an
idealof Rand A C BC R,then B = A or B = R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from
the integers.

B EXAMPLE 13 Letn be an integer greater than 1. Then, in the ring of
integers, the ideal nZ is prime if and only if n is prime (Exercise 9).
({0} is also a prime ideal of Z.) |

B EXAMPLE 14 The lattice of ideals of Z,, (Figure 14.1) shows that
only (2) and (3) are maximal ideals. |

B EXAMPLE 15 The ideal (x> + 1) is maximal in R[x]. To see this,
assume that A is an ideal of R[x] that properly contains (x> + 1). We will
prove that A = R[x] by showing that A contains some nonzero real
number c. [This is the constant polynomial 4(x) = ¢ for all x.] Then 1 =
(1/c)c € A and therefore, by Exercise 15, A = R[x]. To this end, let
fix) € A, but fix) & (x> + 1). Then

f) = g + 1) + r(x),

where r(x) # 0 and the degree of r(x) is less than 2. It follows that
r(x) = ax + b, where a and b are not both 0, and

ax + b = r(x) = fix) — gx)(x* + 1) € A.

/\/

e
NN
NN

N

\

Figure 14.1
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Thus,
a*x*> —b>=(ax + b)ax —b) EA and aA(x*+ 1) e A.
So,
0 # a*> + b?> = (@’ + a®) — (a** — b?) E A. 1

B EXAMPLE 16 The ideal (x> + 1) is not prime in Z,x], since it con-
tains (x + 1)2 = x2 + 2x + 1 = x2 + 1 but does not contain x + 1. |

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

I Theorem 14.3 R/A s an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is an integral domain and ab € A. Then
(a+ A)b + A) = ab + A = A, the zero element of the ring R/A. So,
eithera + A = Aorb + A = A; that is, eithera € A or b € A. Hence,
A is prime.

To prove the other half of the theorem, we first observe that R/A is a
commutative ring with unity for any proper ideal A. Thus, our task is
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (@ + A)(b + A) =0+ A = A. Thenab € A
and, therefore,a € A or b € A. Thus, one of a + A or b + A is the zero
coset in R/A. |

For maximal ideals, we can do even better.
I Theorem 14.4 R/Als a Field If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is a field if and only if A is maximal.

PROOF Suppose that R/A is a field and B is an ideal of R that properly
contains A. Let b € Bbut b & A. Then b + A is a nonzero element
of R/A and, therefore, there exists an element ¢ + A such that
b+ A -(c+ A =1+ A, the multiplicative identity of R/A. Since
b € B, we have bc € B. Because

1+A=0bB+A)(c+A)=bc+A,
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we have | —bc €A CB.So,1 = (1 — bc) + bc € B. By Exercise 15,
B = R. This proves that A is maximal.

Now suppose that A is maximal and let » € R but b & A. It suffices
to show that b + A has a multiplicative inverse. (All other properties
for a field follow trivially.) Consider B = {br + al r € R,a € A}. This
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B = R. Thus, 1 € B, say, | = bc + a’, where a’ € A.
Then

l+A=bc+a +A=bc+A=(b+ A+ A). |

When a commutative ring has a unity, it follows from Theorems
14.3 and 14.4 that a maximal ideal is a prime ideal. The next example
shows that a prime ideal need not be maximal.

B EXAMPLE 17 The ideal (x) is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that
(x) = {f(x) € Z[x] | f(0) = 0} (see Exercise 29). Thus, if g(x)h(x) E (x),
then g(0)2(0) = 0. And since g(0) and /(0) are integers, we have g(0) = 0

or h(0) = 0.
To see that (x) is not maximal, we simply note that (x) C (x, 2) C
Z|x] (see Exercise 37). |

Problems worthy of attack
prove their worth by hitting back.

PIET HEIN, “Problems,” Grooks*

1. Verify that the set defined in Example 3 is an ideal.

2. Verify that the set A in Example 4 is an ideal and that A = (x).

3. Verify that the set / in Example 5 is an ideal and that if J is any
ideal of R that contains q,, a,, . . ., a,, then I C J. (Hence, (al,
Ayy ooy an> is the smallest ideal of R that contains a, a,, . .., a,.)

4. Find a subring of Z € Z that is not an ideal of Z & Z.

5. LetS={a+bila, b€ Z biseven}. Show that S is a subring of
Z[i], but not an ideal of Z[i].

6. Find all maximal ideals in
a. Z,. b. Z,. c. Z,,. d. Z.

7. Let a belong to a commutative ring R. Show that aR = {ar | r € R} is
an ideal of R. If R is the ring of even integers, list the elements of 4R.

*Piet Hein, “Problems,” Grooks (1966) Copyright © Piet Hein Grooks. Reprinted with kind
permission from Piet Hein a/s, DK-5500 Middelfart, Denmark.
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. Prove that the intersection of any set of ideals of a ring is an ideal.
. If nis an integer greater than 1, show that (n) = nZ is a prime ideal

of Z if and only if n is prime. (This exercise is referred to in this
chapter.)

If A and B are ideals of a ring, show that the sum of Aand B,A + B =
{a+bla€A,b €& B},isanideal.

In the ring of integers, find a positive integer a such that

a. (a) = (2) + (3).

b. (a) = (6) + (8).

c. {a) = (m) + (n).

If A and B are ideals of a ring, show that the product of A and B,
AB = {ab, +ab, +---+ab |a €A,b, € B, n apositive
integer}, is an ideal.

Find a positive integer a such that

a. (a) = 3X4).

b. (a) = (6)8).

c. (a) = (m)n).

Let A and B be ideals of a ring. Prove that AB C A N B.

If A is an ideal of a ring R and 1 belongs to A, prove that A = R.
(This exercise is referred to in this chapter.)

If A and B are ideals of a commutative ring R with unity and A + B =R,
show that A N B = AB.

If an ideal I of a ring R contains a unit, show that / = R.

Suppose that in the ring Z, the ideal (35) is a proper ideal of J and J
is a proper ideal of 1. What are the possibilities for J? What are the
possibilities for /?

Give an example of a ring that has exactly two maximal ideals.
Suppose that R is a commutative ring and IRl = 30. If / is an ideal
of R and IRl = 10, prove that / is a maximal ideal.

Let R and / be as described in Example 10. Prove that / is an ideal
of R.

Let I = (2). Prove that I[x] is not a maximal ideal of Z[x] even
though 7 is a maximal ideal of Z.

Verify the claim made in Example 10 about the size of R/I.

Give an example of a commutative ring that has a maximal ideal
that is not a prime ideal.

Show that the set B in the latter half of the proof of Theorem 14.4
is an ideal of R. (This exercise is referred to in this chapter.)

If R is a commutative ring with unity and A is a proper ideal of R,
show that R/A is a commutative ring with unity.
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27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

Prove that the only ideals of a field F are {0} and F itself.

Show that R[x]/{x*> + 1) is a field.

In Z|x], the ring of polynomials with integer coefficients, let I =
{f(x) € Z[x] | f(0) = 0}. Prove that I = (x). (This exercise is re-
ferred to in this chapter and in Chapter 15.)

Show that A = {(Bx, y) | x, y € Z} is a maximal ideal of Z @ Z.
Generalize. What happens if 3x is replaced by 4x? Generalize.

Let R be the ring of continuous functions from R to R. Show that
A= {f€ RIf(0) =0} is a maximal ideal of R.

LetR = Z, S5 Z,, Find all maximal ideals of R, and for each maxi-
mal ideal /, identify the size of the field R/I.

How many elements are in Z[i]/(3 + i)? Give reasons for your
answer.

In Z[x], the ring of polynomials with integer coefficients, let I =
{f(x) € Z[x] | f(0) = 0}. Prove that [ is not a maximal ideal.
InZDZ, letl = {(a,0) | a € Z}. Show that I is a prime ideal but
not a maximal ideal.

Let R be a ring and let / be an ideal of R. Prove that the factor ring
R/I is commutative if and only if rs — s € [ for all r and s in R.

In Z[x], let I = {fix) € Z[x] | f(O) is an even integer}. Prove that
I = (x, 2). Is I a prime ideal of Z[x]? Is I a maximal ideal? How
many elements does Z[x]/I have? (This exercise is referred to in
this chapter.)

Prove that I = (2 + 2i) is not a prime ideal of Z[i]. How many
elements are in Z[{]/I? What is the characteristic of Z[i]/I?

In Z[x], let I = (x* + x + 2). Find the multiplicative inverse of 2x +
3+ Iin Z[x)/L

Let R be a ring and let p be a fixed prime. Show that Ip ={reRrl
additive order of r is a power of p} is an ideal of R.

An integral domain D is called a principal ideal domain if every
ideal of D has the form {(a) = {ad | d € D} for some a in D. Show
that Z is a principal ideal domain. (This exercise is referred to in

Chapter 18.)
ros
a,b,dEZ}andS={{ ]
0 t

= {[5

is even}. If S is an ideal of R, what can you say about r and ¢?

r,s,t€Z,s

If R and S are principal ideal domains, prove that R & S is a princi-
pal ideal ring. (See Exercise 41 for the definition.)
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Let a and b belong to a commutative ring R. Prove that {x € R |
ax € bR} is an ideal.

Let R be a commutative ring and let A be any subset of R. Show
that the annihilator of A, Ann(A) = {r € Rlra = 0forallain A},
is an ideal.

Let R be a commutative ring and let A be any ideal of R. Show that
the nil radical of A, N(A) = {r € R | r" € A for some positive in-
teger n (n depends on r)}, is an ideal of R. [N({0)) is called the nil
radical of R.]

Let R = Z,,. Find

a. N(0)). b. N((3)). c. N(9)).

Let R = Z,,. Find

a. N(0)). b. N({4)). c. N(6)).

Let R be a commutative ring. Show that R/N({0)) has no nonzero
nilpotent elements.

Let A be an ideal of a commutative ring. Prove that N(N(A)) = N(A).
Let Z,[x] be the ring of all polynomials with coefficients in Z, (that
is, coefficients are O or 1, and addition and multiplication of coef-
ficients are done modulo 2). Show that Z,[x]/(x* + x + 1) is a field.
List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

Show that Z,[x]/{x* + x + 1) is not a field.

Let R be a commutative ring without unity, and let ¢ € R. Describe
the smallest ideal / of R that contains a (that is, if J is any ideal that
contains a, then I C J).

Let R be the ring of continuous functions from R to R. Let A =
{f€ R |f(0)is an even integer}. Show that A is a subring of R,
but not an ideal of R.

Show that Z[i]/{1 — i) is a field. How many elements does this
field have?

If R is a principal ideal domain and [/ is an ideal of R, prove that
every ideal of R/I is principal (see Exercise 41).

How many elements are in Zs[i]/<1 + i)?

Let R be a commutative ring with unity that has the property that
a*> = afor all a in R. Let I be a prime ideal in R. Show that |R/I| = 2.

Let R be a commutative ring with unity, and let I be a proper ideal
with the property that every element of R that is not in / is a unit of R.
Prove that / is the unique maximal ideal of R.
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61. Let /[, = { flx) € Z[x] | f{0) = O}. For any positive integer n, show
that there exists a sequence of strictly increasing ideals such that
I,C1,CLC---CI CZx].

62. Let R = {(a, a,, a;, .. .)}, where each a;, € Z. Let I = {(a, a,,
as, . .. )}, where only a finite number of terms are nonzero. Prove
that / is not a principal ideal of R.

63. Let R be a commutative ring with unity and let a, b € R. Show that
(a, b), the smallest ideal of R containing a and b, is I = {ra + sb |
r, s € R}. That is, show that I contains a and b and that any ideal
that contains a and b also contains /.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Richard Dedekind

Richard Dedekind was not only
a mathematician, but one of the wholly
great in the history of mathematics, now
and in the past, the last hero of a great
epoch, the last pupil of Gauss, for four
decades himself a classic, from whose
works not only we, but our teachers and
the teachers of our teachers, have drawn.

EDMUND LANDAU,
Commemorative Address
to the Royal Society of Géttingen
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This stamp was issued by East Germany
in 1981 to commemorate the 150th
anniversary of Dedekind’s birth. Notice
that it features the representation of an
ideal as the product of powers of prime
ideals.

RicHARD DEDEKIND was born on October 6,
1831, in Brunswick, Germany, the birth-
place of Gauss. Dedekind was the youngest
of four children of a law professor. His early
interests were in chemistry and physics, but
he obtained a doctor’s degree in mathe-
matics at the age of 21 under Gauss at the
University of Gottingen. Dedekind contin-
ued his studies at Gottingen for a few years,
and in 1854 he began to lecture there.

Dedekind spent the years 1858—1862 as a
professor in Ziirich. Then he accepted a po-
sition at an institute in Brunswick where he
had once been a student. Although this
school was less than university level,
Dedekind remained there for the next
50 years. He died in Brunswick in 1916.

During his career, Dedekind made numer-
ous fundamental contributions to mathemat-
ics. His treatment of irrational numbers,
“Dedekind cuts,” put analysis on a firm,
logical foundation. His work on unique
factorization led to the modern theory of
algebraic numbers. He was a pioneer in the
theory of rings and fields. The notion of
ideals as well as the term itself are attributed
to Dedekind. Mathematics historian Morris
Kline has called him “the effective founder
of abstract algebra.”

To find more information about
Dedekind, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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... she discovered methods which have
proved of enormous importance in the
development of the present-day younger
generation of mathematicians.

ALBERT EINSTEIN, The New York Time

EmMMY NOETHER was born on March 23,
1882, in Germany. When she entered the
University of Erlangen, she was one of
only two women among the 1000 students.
Noether completed her doctorate in 1907.
In 1916, Noether went to Gottingen and,
under the influence of David Hilbert and
Felix Klein, became interested in general
relativity. While there, she made a major
contribution to physics with her theorem
that whenever there is a symmetry in nature,
there is also a conservation law, and vice
versa. Hilbert tried unsuccessfully to obtain
a faculty appointment at Gottingen for
Noether, saying, “I do not see that the sex of
the candidate is an argument against her ad-
mission as Privatdozent. After all, we are a
university and not a bathing establishment.”
It was not until she was 38 that Noether’s
true genius revealed itself. Over the next
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13 years, she used an axiomatic method to
develop a general theory of ideals and non-
commutative algebras. With this abstract
theory, Noether was able to weld together
many important concepts. Her approach was
even more important than the individual
results. Hermann Weyl said of Noether,
“She originated above all a new and epoch-
making style of thinking in algebra.”

With the rise of Hitler in 1933, Noether,
a Jew, fled to the United States and took a
position at Bryn Mawr College. She died
suddenly on April 14, 1935, following an
operation.

To find more information about Noether,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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If at first you do succeed—try to hide your astonishment.
HARRY F. BANKS
True/false questions for Chapters 12—14 are available on the Web at:
http://www.d.umn.edu/~jgallian/TF

1. Find all idempotents in Z
potent if a*> = a.)

100 Zop» and Zy . (Recall that a is an idem-

2. If m and n are relatively prime integers greater than 1, prove that
7 has at least two idempotents besides 0 and 1.

3. Suppose that R is a ring in which a*> = 0 implies a = 0. Show that
R has no nonzero nilpotent elements. (Recall that b is nilpotent if
b" = 0 for some positive integer n.)

4. Let R be a commutative ring with more than one element. Prove
that if for every nonzero element a of R we have aR = R, then R is
a field.

5. Let A, B, and C be ideals of aring R. If AB C C and C is a prime
ideal of R, show that A C C or B C C. (Compare this with Euclid’s
Lemma in Chapter 0.)

6. Show, by example, that the intersection of two prime ideals need
not be a prime ideal.

7. Let R denote the ring of real numbers. Determine all ideals of R & R.
What happens if R is replaced by any field F?

8. Determine all factor rings of Z.

9. Suppose that n is a square-free positive integer (that is, n is not
divisible by the square of any prime). Prove that Z has no nonzero
nilpotent elements.

10. Let R be a commutative ring with unity. Suppose that a is a unit
and b is nilpotent. Show that a + b is a unit. (Hint: See Exercise 29
in Chapter 12.)

11. Let A, B, and C be subrings of aring R. If A C B U C, show that
ACBorACC.

12. For any element a in a ring R, define (a) to be the smallest ideal of
R that contains a. If R is a commutative ring with unity, show that
(a) = aR = {ar | r € R}. Show, by example, that if R is commuta-
tive but does not have a unity, then (a) and aR may be different.

13. Let R be a ring with unity. Show that (a) = {s,at, + s,at, + - - - +
s,at |'s, 1, € Rand nis a positive integer}.

14. Show that Z [x] has characteristic 7.
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15.

16.

17.

18.
19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Let A and B be ideals of aring R. If A N B = {0}, show thatab = 0
whena € Aand b € B.

Show that the direct sum of two integral domains is not an integral
domain.

Consider the ring R = {0, 2, 4, 6, 8, 10} under addition and multi-
plication modulo 12. What is the characteristic of R?

What is the characteristic of zZ, D Z? Generalize.

Let R be a commutative ring with unity. Suppose that the only ide-
als of R are {0} and R. Show that R is a field.

Suppose that / is an ideal of J and that J is an ideal of R. Prove that
if I has a unity, then / is an ideal of R. (Be careful not to assume that
the unity of / is the unity of R. It need not be—see Exercise 2 in
Chapter 12.)

Show that in the ring Z[x]/(2x + 1), the element x + (2x + 1)
is a unit.

Let a € Z. Show that (a) is not a maximal ideal in Z[x].

Recall that an idempotent b in a ring is an element with the property
that > = b. Find a nontrivial idempotent (that is, not 0 and not 1)
in Q[x)/{(x* + x?).

In a principal ideal domain, show that every nontrivial prime ideal
is a maximal ideal.

Find an example of a commutative ring R with unity such that a,
bE€R,a# b,a" = Db", and a" = b", where n and m are positive in-
tegers that are relatively prime. (Compare with Exercise 39, part b, in
Chapter 13.)

Let Q(72) denote the smallest subfield of R that contains Q and
72. [That is, Q(72) is the subfield with the property that Q(7?2)
contains Q and 72 and if F is any subfield containing Q and 7,
then F contains Q(}2).] Describe the elements of Q(}/2).

Let R be an integral domain with nonzero characteristic. If A is a
proper ideal of R, show that R/A has the same characteristic as R.
Let F be a field of order p". Determine the group isomorphism
class of F under the operation addition.

If R is a finite commutative ring with unity, prove that every prime
ideal of R is a maximal ideal of R.

Let R be a noncommutative ring and let C(R) be the center of R
(see Exercise 19 in Chapter 12). Prove that the additive group of
R/C(R) is not cyclic.
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32,

33.

34.

35.

36.

37.

38.

39.
40.
41.
42.

43.
44.
45.

Supplementary Exercises for Chapters 12—14 283

e {0 d
c d
with ordinary matrix addition and multiplication modulo 2. Show that

o {ly oo

is not an ideal of R. (Hence, in Exercise 7 in Chapter 14, the com-
mutativity assumption is necessary.)

Let

a, b, c,dEZz}

If R is an integral domain and A is a proper ideal of R, must R/A be
an integral domain?

LetA={a+bila, b& Z amod?2 = bmod2}. How many ele-
ments does Z[i]/A have? Show that A is a maximal ideal of Z[i].
Suppose that R is a commutative ring with unity such that for each
a in R there is a positive integer n greater than 1 (n depends on a)
such that @" = a. Prove that every prime ideal of R is a maximal
ideal of R.

State a “finite subfield test”; that is, state conditions that guarantee
that a finite subset of a field is a subfield.

Let F be a finite field with more than two elements. Prove that the
sum of all of the elements of F'is O.

Show that if there are nonzero elements a and b in Z_ such that a’+
b* = 0, then the ring Z [i] = {x + yi | x, y € Z } has zero-divisors.
Use this fact to find a zero-divisor in Z,,[i].

Suppose that R is a ring with no zero-divisors and that R contains a
nonzero element b such that »> = b. Show that b is a unity for R.
Find the characteristic of Z[i]/{(2 + i).

Show that the characteristic of Z[i]/{a + bi) divides a*> + b>.

Show that 4x* + 6x + 3 is a unit in Z[x].

For any commutative ring R, R[x, y] is the ring of polynomials in x
and y with coefficients in R (that is, R[x, y] consists of all finite sums
of terms of the form ax’y/, where a € R and i and j are nonnegative
integers). (For example, x* — 3x%y — y3 € Z[x, y].) Prove that (x, y)
is a prime ideal in Z[x, y] but not a maximal ideal in Z[x, y].

Prove that (x, y) is a maximal ideal in Z[x, y].

Prove that (2, x, y) is a maximal ideal in Z[x, y].

Let R and S be rings. Prove that (a, b) is nilpotent in R €@ S if and
only if both a and b are nilpotent.
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46.

47.
48.

49.

50.

S1.

52.

Let R and § be commutative rings. Prove that (a, b) is a zero-divisor
in R @ S if and only if a or b is a zero-divisor or exactly one of a or
bis0.

Determine all idempotents in Z s, where p is a prime.

Let R be a commutative ring with unity 1. Show that a is an idem-
potent if and only if there exists an element b in R such that ab = 0
anda + b= 1.

Let Zn[\@] ={a+b\V2lab€E Z }. Define addition and multi-
plication as in Z[\/2], except that modulo n arithmetic is used to
combine the coefficients. Show that Z3[\@] is a field but Z7[\@]
is not.

Let p be a prime. Prove that every zero-divisor in an is a nilpotent
element.

If x is a nilpotent element in a commutative ring R, prove that rx is
nilpotent for all r in R.

List the distinct elements in the ring Z[x]/(3, x* + 1). Show that this
ring is a field.
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Ring Homomorphisms

If there is one central idea which is common to
all aspects of modern algebra it is the notion of homomorphism.
1. N. HERSTEIN, Topics in Algebra

Definition and Examples

In our work with groups, we saw that one way to discover information
about a group is to examine its interaction with other groups by way of
homomorphisms. It should not be surprising to learn that this concept
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism ¢ from a ring R to a ring S is a mapping from
R to S that preserves the two ring operations; that is, for all @, b in R,

¢la+b) =@+ $b) and  d(ab) = H(a)p(b).

A ring homomorphism that is both one-to-one and onto is called a
ring isomorphism.

As is the case for groups, in the preceding definition the operations
on the left of the equal signs are those of R, whereas the operations on
the right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two
rings are algebraically identical; a homomorphism is used to simplify a
ring while retaining certain of its features.

A schematic representation of a ring homomorphism is given in
Figure 15.1. The dashed arrows indicate the results of performing the
ring operations.

The following examples illustrate ring homomorphisms. The reader
should supply the missing details.
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P(a) + ¢(b)

Figure 15.1

B EXAMPLE 1 For any positive integer n, the mapping k — k mod 7 is
a ring homomorphism from Z onto Z (see Exercise 9 in Chapter 0).
This mapping is called the natural homomorphism from Zto Z . |

B EXAMPLE 2 The mapping a + bi — a — bi is a ring isomorphism
from the complex numbers onto the complex numbers (see Exercise 35
in Chapter 6). |

# EXAMPLE 3 Let R[x] denote the ring of all polynomials with real
coefficients. The mapping f(x) — f(1) is a ring homomorphism from
R[x] onto R. |

B EXAMPLE 4 The correspondence ¢: x — 5x from Z, to Z,,
is a ring homomorphism. Although showing that ¢(x + y) =
d(x) + ¢(y) appears to be accomplished by the simple statement that
5(x + y) = 5x + 5y, we must bear in mind that the addition on the left is
done modulo 4, whereas the addition on the right and the multiplication
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that ¢ preserves multiplication. So, to verify that ¢ preserves both op-
erations, we write x + y = 4q, + r, and xy = 4q, + r,, where 0 = r, <4
and 0 = r, <4.Then ¢(x +y) = d(r)) = 5r, = 5(x + y —4q,) = 5x +
5y —20q, = 5x + 5y = ¢(x) + ¢(y) in Z,,. Similarly, using the fact that
55 =5inZ,, we have ¢(xy) = ¢(r,) = 5r, = S(xy — 4q,) = Sxy —
20g, = (5 - S)xy = 5x5y = p(x)p(y) in Z,,. |

B EXAMPLE 5 We determine all ring homomorphisms from Z , to Z, .
By Example 10 in Chapter 10, the only group homomorphisms from Z,,
to Z,, are x — ax, where a = 0, 15, 10, 20, 5, or 25. But, since 1 - 1 = 1
inZ,,, we must have a - a = a in Z,,. This requirement rules out 20 and 5
as possibilities for a. Finally, simple calculations show that each of the
remaining four choices does yield a ring homomorphism. |
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B EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then
the mapping a — a? is a ring homomorphism from R to R. |

B EXAMPLE 7 Although 2Z, the group of even integers under addi-
tion, is group-isomorphic to the group Z under addition, the ring 2Z is
not ring-isomorphic to the ring Z. (Quick! What does Z have that 2Z
doesn’t?) |

Our next two examples are applications to number theory of the nat-
ural homomorphism given in Example 1.

B EXAMPLE 8 Test for Divisibility by 9

An integer n with decimal representation a,a, _, * - * a, is divisible by 9
ifand only if @, + a,_, + - - - + q is divisible by 9. To verify this, ob-
serve that n = a, 10 + a,_ 10"! + - - - + q,. Then, letting « denote
the natural homomorphism from Z to Z [in particular, a(10) = 1], we
note that n is divisible by 9 if and only if

0 = a(n) = a(a)(@(10) + a(a,_)(a(10)"' + - - - + a(a,)
=a(a) + ala,_) + -+ ala)
=ala, +a,_, + - +ay).

But a(a, + a,_, + -+ -+ a,) = Oisequivalenttoa, + a,_, + - +

a, being divisible by 9. |

I EXAMPLE 9 Theorem of Gersonides

Among the most important unsolved problems in number theory is the
so-called “abc conjecture.” This conjecture is a natural generalization
of a theorem first proved in the fourteenth century by the Rabbi
Gersonides. Gersonides proved that the only pairs of positive integers
that are powers of 2 and powers of 3 which differ by 1 are 1, 2; 2, 3; 3,
4; and 8, 9. That is, these four pairs are the only solutions to the equa-
tions 2" = 3" = 1. To verify that this is so for 2” = 3" + 1, observe that
for all n we have 3 mod 8 = 3 or 1. Thus, 3" + 1 mod 8§ = 4 or 2. On
the other hand, for m > 2, we have 2" mod 8 = (. To handle the case
where 2" = 3" — 1, we first note that for all n, 3 mod 16 = 3,9, 11, or
1, depending on the value of n mod 4. Thus, (3" — 1) mod 16 = 2, 8, 10,
or 0. Since 2" mod 16 = 0 for m = 4, we have ruled out the cases where
nmod 4 = 1, 2, or 3. Because 3* mod 5 = (3*)*mod 5 = 1¥mod 5 =
1, we know that (3* — 1) mod 5 = 0. But the only values for 2" mod 5
are 2, 4, 3, and 1. This contradiction completes the proof. |
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Properties of Ring Homomorphisms

I Theorem 15.1 Properties of Ring Homomorphisms

Let ¢ be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.

1.

AU B W

PROOF The proofs of these properties are similar to those given in

For any r € R and any positive integer n, ¢(nr) = n¢(r) and

(") = (H(n)".

. ¢(A) = {¢p(a) | a € A} is a subring of S.

. If Ais an ideal and ¢ is onto S, then ¢(A) is an ideal.

. ¢~Y(B) = {r € R| ¢(r) € B} is an ideal of R.

. If R is commutative, then ¢(R) is commutative.

. If R has a unity 1, S # {0}, and ¢ is onto, then ¢(1) is the unity

of S.

. ¢ is an isomorphism if and only if ¢ is onto and Ker ¢ =

{freR I ¢(r) =0} = {0}

. If ¢ is an isomorphism from R onto S, then ¢~ is an

isomorphism from S onto R.

Theorems 10.1 and 10.2 and are left as exercises (Exercise 1).

The student should learn the various properties of Theorem 15.1
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback

of an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The
proofs are nearly identical to their group theory counterparts and are

left as exercises (Exercises 2, 3, and 4).

B Theorem 15.2 Kernels Are ldeals

Let ¢ be a ring homomorphism from a ring R to a ring S. Then Ker ¢
= {r € R | ¢(r) = 0} is an ideal of R.

I Theorem 15.3 First Isomorphism Theorem for Rings

Let ¢ be a ring homomorphism from R to S. Then the mapping from
R/Ker ¢ to ¢(R), given by r + Ker ¢ — ¢(r), is an isomorphism. In
symbols, R/Ker ¢ = ¢(R).
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B Theorem 15.4 ldeals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.
In particular, an ideal A is the kernel of the mappingr —r + A
Jrom R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that (x) is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.

# EXAMPLE 10 Since the mapping ¢ from Z[x] onto Z given by
¢(fix)) = f0) is a ring homomorphism with Ker ¢» = (x) (see Exercise 29
in Chapter 14), we have, by Theorem 15.3, Z[x]/(x) = Z. And because
Z is an integral domain but not a field, we know by Theorems 14.3 and
14.4 that the ideal (x) is prime but not maximal in Z[x]. [ |

I Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping ¢: Z — R givenbyn —n - 1
is a ring homomorphism.

PROOF Since the multiplicative group property ™" = a™a" translates to
(m + n)a = ma + na when the operation is addition, we have ¢p(m + n) =
m+mn)y-1=m-1+n-1.So, ¢ preserves addition.

That ¢ also preserves multiplication follows from Exercise 15 in
Chapter 12, which says that (m - a)(n - b) = (mn) - (ab) for all integers
m and n. Thus, ¢p(mn) = (mn) - 1 = (mn) - (1)(1)) =(m - D(n-1) =
d(m)p(n). So, ¢ preserves multiplication as well. |

i Corollary 1 A Ring with Unity Contains Z orZ

If R is a ring with unity and the characteristic of R is n > 0, then
R contains a subring isomorphic to Z,. If the characteristic of R is 0,
then R contains a subring isomorphic to Z.

PROOF Let 1 be the unity of Rand let S = {k- 1 | k € Z}. Theorem 15.5
shows that the mapping ¢ from Z to S given by ¢(k) = k - 1 is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have
ZIKer ¢ = S. But, clearly, Ker ¢ = (n), where n is the additive order of 1
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and, by Theorem 13.3, n is also the characteristic of R. So, when R
has characteristic n, S = Z/{(n) = Z,. When R has characteristic 0, § =
ZK0) = Z. |

I Corollary2 Z_IsaHomomorphic Image of Z

For any positive integer m, the mapping of ¢: Z — Z, given by x —
Xx mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5,
since in the ring Z , the integer x mod m is x - 1. (For example, in Z,, if
x=5 wehave5-1=1+1+1+1+1=2) |

I Corollary 3 A Field Contains Zp or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield
isomorphic to Z . If F is a field of characteristic 0, then F contains
a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Z, if F has
characteristic p, and F has a subring S isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T={ab 'la,b€S, b+0}.
Then T is isomorphic to the rationals (Exercise 63). |

Since the intersection of all subfields of a field is itself a subfield
(Exercise 11), every field has a smallest subfield (that is, a subfield
that is contained in every subfield). This subfield is called the prime
subfield of the field. It follows from Corollary 3 that the prime
subfield of a field of characteristic p is isomorphic to Z, whereas the
prime subfield of a field of characteristic 0 is isomorphic to Q. (See
Exercise 67.)

The Field of Quotients

Although the integral domain Z is not a field, it is at least contained in a
field—the field of rational numbers. And notice that the field of rational
numbers is nothing more than quotients of integers. Can we mimic the
construction of the rationals from the integers for other integral do-
mains? Yes. The field constructed in Theorem 15.6 is called the field of
quotients of D. Throughout the proof of Theorem 15.6, you should keep
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in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.

Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the
field of quotients of D) that contains a subring isomorphic to D.

PROOF LetS = {(a,b) |l a,b € D, b # 0}. We define an equivalence
relation on S by (a, b) = (¢, d) if ad = bc (compare with Example 17
in Chapter 0). Now, let F be the set of equivalence classes of S under
the relation = and denote the equivalence class that contains (x, y) by
x/y. We define addition and multiplication on F by

alb + c/d = (ad + be)/(bd) and alb - c/d = (ac)/(bd).

(Notice that here we need the fact that D is an integral domain to ensure
that multiplication is closed; that is, bd # 0 whenever b # 0 and d # 0.)

Since there are many representations of any particular element of F
(just as in the rationals, we have 1/2 = 3/6 = 4/8), we must show that
these two operations are well-defined. To do this, suppose that a/b = a'/b’
and ¢/d = ¢'/d’, so that ab’ = a'b and cd’' = ¢'d. It then follows that

(ad + be)b'd’ = adb'd’ + beb'd' = (ab')dd' + (cd')bb’
= (@'b)dd’ + (c'd)bb' = a'd’bd + b'c'bd
= (@'d" + b'c")bd.

Thus, by definition, we have
(ad + bo)/(bd) = (a'd" + b'cHI(b'd"),

and, therefore, addition is well-defined. We leave the verification that
multiplication is well-defined as an exercise (Exercise 55). That F'is a
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the
additive identity of F. The additive inverse of a/b is —a/b; the multipli-
cative inverse of a nonzero element a/b is b/a. The remaining field
properties can be checked easily.

Finally, the mapping ¢: D — F given by x — x/1 is a ring isomor-
phism from D to ¢(D) (see Exercise 7). |

B EXAMPLE 11 Let D = Z|x]. Then the field of quotients of D is {f(x)/
g(x) 1 f(x), g(x) € D, where g(x) is not the zero polynomial }. |

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).
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§ EXAMPLE 12 Let p be a prime. Then Zp(x) = {f()/gx) | f(x), gx)
€ Zp[x], g(x) # 0} is an infinite field of characteristic p. |

We can work it out.

kW

10.

11.

12.

13.

JOHN LENNON AND PAUL McCARTNEY,
“We Can Work It Out,” single*

Prove Theorem 15.1.

Prove Theorem 15.2.

Prove Theorem 15.3.

Prove Theorem 15.4.

Show that the correspondence x — Sx from Z; to Z,, does not pre-
serve addition.

Show that the correspondence x — 3x from Z, to Z,, does not pre-
serve multiplication.

Show that the mapping ¢: D — F in the proof of Theorem 15.6 is a
ring homomorphism.

Prove that every ring homomorphism ¢ from Z to itself has the
form ¢(x) = ax, where a”> = a.

Suppose that ¢ is a ring homomorphism from Z to Z . Prove that
if (1) = a, then a*> = a. Give an example to show that the converse
is false.

a. Is the ring 2Z isomorphic to the ring 32?

b. Is the ring 2Z isomorphic to the ring 4Z?

Prove that the intersection of any collection of subfields of a field F
is a subfield of F. (This exercise is referred to in this chapter.)

LetZ,[i] = {a + bil a, b € Z,} (see Example 9 in Chapter 13). Show
that the field Z,[i] is ring-isomorphic to the field Z,[x]/(x* + 1).
Let

—b a

Show that ¢p: C — S given by
b
ba + bi) = { “ }

—b a

is a ring isomorphism.

a,bER}.

*Copyright © 1965 (Renewed) Stony/ATV Tunes LLC. All rights administered by
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights
reserved. Used by permission.
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Let Z[V2] = {a + bNV2 1 a, b € Z} and

-]

Show that Z[\/2] and H are isomorphic as rings.

a,bEZ}.

b
Consider the mapping from M,(Z) into Z given by [a d} — a.
c

Prove or disprove that this is a ring homomorphism.

=1y ¢

b
ping [g } — a is a ring homomorphism.
c

a,b,ce”z } Prove or disprove that the map-

Is the mapping from Z; to Z,, given by x — 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image
but not the unity of Z, .

Is the mapping from Z , to Z,, given by x — 2x a ring homomor-
phism?
Describe the kernel of the homomorphism given in Example 3.

Recall that a ring element a is called an idempotent if > = a. Prove
that a ring homomorphism carries an idempotent to an idempotent.

Determine all ring homomorphisms from Z, to Z.. Determine all
ring homomorphisms from Z,, to Z, .

Determine all ring isomorphisms from Z_ to itself.

Determine all ring homomorphisms from Z to Z.

Suppose ¢ is a ring homomorphism from Z & Z into Z & Z. What
are the possibilities for ¢((1, 0))?

Determine all ring homomorphisms from Z € Z into Z D Z.

In Z, let A = (2) and B = (8). Show that the group A/B is isomor-
phic to the group Z, but that the ring A/B is not ring-isomorphic to
the ring Z,.

Let R be a ring with unity and let ¢ be a ring homomorphism from R
onto § where S has more than one element. Prove that S has a unity.
Show that (Z @ Z)/({a) © (b)) is ring-isomorphic to Z D Z,.
Determine all ring homomorphisms from Z & Z to Z.

Prove that the sum of the squares of three consecutive integers can-
not be a square.

Let m be a positive integer and let n be an integer obtained from m
by rearranging the digits of m in some way. (For example, 72345 is
a rearrangement of 35274.) Show that m — n is divisible by 9.




294

Rings

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

(Test for Divisibility by 11) Let n be an integer with decimal repre-
sentation a,a, _, * - * a,a,. Prove that n is divisible by 11 if and only
ifa, —a, + a, — - - (—1)a, is divisible by 11.

Show that the number 7,176,825,942,116,027,211 is divisible by 9
but not divisible by 11.

Show that the number 9,897,654,527,609,805 is divisible by 99.

(Test for Divisibility by 3) Let n be an integer with decimal repre-
sentation a,a - a,a,. Prove that n is divisible by 3 if and only

-1 "7
ifa, +a,_, + -+ a, + a,is divisible by 3.
(Test for Divisibility by 4) Let n be an integer with decimal repre-

sentation q,a, _, - * - a,a,. Prove that n is divisible by 4 if and only

if a,a, is divisible by 4.

Show that no integer of the form 111,111,111, ...,111 is prime.

Consider an integer n of the form ¢, 111,111,111,111,111,111,

111,111,12b. Find values for a and b such that # is divisible by 99.

Suppose n is a positive integer written in the form n = ak3k +

a,_3*'+ -+ a3+ a, where each of the ¢’s is 0, 1, or 2 (the

base 3 representative of n). Show that n is even if and only if a, +

a,_,+---+a +agiseven.

Find an analog of the condition given in the previous exercise for

characterizing divisibility by 4.

In your head, determine (2 - 1075 + 2)!%° mod 3 and (10'%° + 1)»°

mod 3.

Determine all ring homomorphisms from Q to Q.

Let R and S be commutative rings with unity. If ¢ is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove

that the characteristic of S divides the characteristic of R.

Let R be a commutative ring of prime characteristic p. Show that

the Frobenius map x — x” is a ring homomorphism from R to R.

Is there a ring homomorphism from the reals to some ring whose

kernel is the integers?

Show that a homomorphism from a field onto a ring with more

than one element must be an isomorphism.

Suppose that R and S are commutative rings with unities. Let ¢ be a

ring homomorphism from R onto S and let A be an ideal of S.

a. If A is prime in S, show that ¢ '(A) = {x E R | ¢p(x) € A} is
prime in R.

b. If A is maximal in S, show that ¢~ '(A) is maximal in R.
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A principal ideal ring is a ring with the property that every ideal

has the form (a). Show that the homomorphic image of a principal

ideal ring is a principal ideal ring.

Let R and S be rings.

a. Show that the mapping from R © S onto R given by (a, b) > a
is a ring homomorphism.

b. Show that the mapping from R to R & S given by a — (a, 0) is a
one-to-one ring homomorphism.

c. Show that R © S is ring-isomorphic to S & R.

Show that if m and n are distinct positive integers, then mZ is not

ring-isomorphic to nZ.

Prove or disprove that the field of real numbers is ring-isomorphic

to the field of complex numbers.

Show that the only ring automorphism of the real numbers is the

identity mapping.

Determine all ring homomorphisms from R to R.

Suppose that n divides m and that a is an idempotent of Z (that is,

a’ = a). Show that the mapping x — ax is a ring homomorphism

from Z t0Z. Show that the same correspondence need not yield a

ring homomorphism if n does not divide m.

Show that the operation of multiplication defined in the proof of

Theorem 15.6 is well-defined.

Let O[V2] = {a + b2 | a, b € Q} and O[V5] = {a + bV/5 |

a, b € Q}. Show that these two rings are not ring-isomorphic.

Let Z[i] = {a + bi | a, b € Z}. Show that the field of quotients of

Z[i] is ring-isomorphic to Q[i] = {r + si | r, s € Q}. (This exercise

is referred to in Chapter 18.)

Let F be a field. Show that the field of quotients of F is ring-

isomorphic to F.

Let D be an integral domain and let F' be the field of quotients of D.

Show that if E is any field that contains D, then E contains a

subfield that is ring-isomorphic to F. (Thus, the field of quotients

of an integral domain D is the smallest field containing D.)

Explain why a commutative ring with unity that is not an integral do-

main cannot be contained in a field. (Compare with Theorem 15.6.)

Show that the relation = defined in the proof of Theorem 15.6 is an

equivalence relation.

Give an example of a ring without unity that is contained in a field.

Prove that the set 7 in the proof of Corollary 3 to Theorem 15.5 is
ring-isomorphic to the field of rational numbers.
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64

65.

66.

67.
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69.
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. Suppose that ¢: R — § is a ring homomorphism and that the

image of ¢ is not {0}. If R has a unity and S is an integral domain,
show that ¢ carries the unity of R to the unity of S. Give an ex-
ample to show that the preceding statement need not be true if S
is not an integral domain.

Let f(x) € R[x]. If a + bi is a complex zero of f(x) (here i = \Fl),
show that a — bi is a zero of f(x). (This exercise is referred to in
Chapter 32.)

r= ;]

takes {a b] toa — b.
b a

a,b e Z}, and let ¢ be the mapping that

a. Show that ¢ is a homomorphism.

b. Determine the kernel of ¢.

c. Show that R/Ker ¢ is isomorphic to Z.

d. Is Ker ¢ a prime ideal?

e. Is Ker ¢ a maximal ideal?

Show that the prime subfield of a field of characteristic p is ring-
isomorphic to Z, and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in
this chapter.)

Let n be a positive integer. Show that there is a ring isomorphism
from Z, to a subring of Z, if and only if n is odd.

Show that Z is ring-isomorphic to Z © Z when m and n are rela-
tively prime.

Prove that every integer with decimal representation of the form
abcabc (for example, 916916) is divisible by 11.

Suggested Readings

J. A. Gallian and J. Van Buskirk, “The Number of Homomorphisms from

Zm

into Z " American Mathematical Monthly 91 (1984): 196-197.

In this article, formulas are given for the number of group homomor-
phisms from Z into Z and the number of ring homomorphisms from
Z into Z .
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Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are
Principal Ideal Rings,” Journal of Undergraduate Mathematics 23
(1991): 59-62.
In this article written by undergraduates, it is shown that R[x] is a
principal ideal ring if and only if R =R, ® R, ® - - - © R , where
each R, is a field.
Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms fromZ @©---®Z  intoZ, D ---DZ,” American Mathe-
matical Monthly 105 (1998): 259-260.

This article gives a formula for the number described in the title.

Suggested Website

http://www.d.umn.edu/~jgallian/puzzle

This site has a math puzzle that is based on the ideas presented in this
chapter. The user selects an integer and then proceeds through a series of
steps to produce a new integer. Finally, another integer is created by using
all but one of the digits of the previous integer in any order. The software
then determines the digit not used.
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Polynomial Rings

Wit lies in recognizing the resemblance among things which differ and the
difference between things which are alike.

MADAME DE STAEL

Notation and Terminology

One of the mathematical concepts that students are most familiar with
and most comfortable with is that of a polynomial. In high school,
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably
new—polynomials with coefficients from Z,. Notice that all of these
sets of polynomials are rings, and, in each case, the set of coefficients is
also a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R
Let R be a commutative ring. The set of formal symbols

Rlx] ={ax"+a,_x" '+ - +ax+ayla€ER,
n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.
Two elements

ax" + a,_x" 14+ +ax+a
and

bx™ + b,_x™ 1+ -+ bx + b,

of R[x] are considered equal if and only if a; = b, for all nonnegative
integers i. (Define a; = 0 when i > n and b; = 0 when i > m.)

298
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In this definition, the symbols x, x?, . .., x" do not represent
“unknown” elements or variables from the ring R. Rather, their purpose
is to serve as convenient placeholders that separate the ring elements
a,, a,_1, - - ., dyg. We could have avoided the x’s by defining a polyno-
mial as an infinite sequence a, a;, dy, . . ., a,, 0,0, 0, ..., but our
method takes advantage of the student’s experience in manipulating
polynomials where x does represent a variable. The disadvantage of our
method is that one must be careful not to confuse a polynomial with the
function determined by a polynomial. For example, in Zs[x], the poly-
nomials f(x) = x and g(x) = x> determine the same function from Z; to
Z,, since fla) = g(a) for all a in Z;." But f(x) and g(x) are different ele-
ments of Z;[x]. Also, in the ring Z,[x], be careful to reduce only the
coefficients and not the exponents modulo n. For example, in Z;[x],
5x = 2x, but x° # x%.
To make R[x] into a ring, we define addition and multiplication in
the usual way.

Definition Addition and Multiplication in R[x]
Let R be a commutative ring and let

fX) =ax"+a, x" '+ +ax+a
and

gx)=b,x"+ b, x" 14+ -+ bx+b,
belong to R[x]. Then

f(x) + g(x) = (as + bs)xs + (as—l + bs—l)xs_1
+"‘+(al+b1)x+ao+b0,

where s is the maximum of m and n, a; = 0 for i > n, and b; = 0 for
i > m. Also,

FO)Z(X) = CpynX™ " + Cpppp—rX™ 1+ -+ ox +
where

Cp = akbo + ak,1b1 + -+ albk,l + aobk

fork=0,...,m+ n.

Although the definition of multiplication might appear complicated,
it is just a formalization of the familiar process of using the distributive

In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula
for f{x). This substitution is a homomorphism from R[x] to R.
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property and collecting like terms. So, just multiply polynomials over a
commutative ring R in the same way that polynomials are always mul-
tiplied. Here is an example.

Consider f(x) = 2x* + x> + 2x + 2 and g(x) = 2x*> + 2x + 1 in Z;[x].
Then, in our preceding notation, as = 0,a, = 0,a3 = 2,a, = 1, a, = 2,
ay=2,and bs =0,b,=0,b3=0,b, =2,b, =2, by = 1. Now, using
the definitions and remembering that addition and multiplication of the
coefficients are done modulo 3, we have

fx)+gx) =2+ O +1+2)x*+R2+2x+Q2+1)
=234+ 02+ 1x+ 0
=2x3 +x
and

) g =0-1+0:2+2-2+1-04+2-0+2-00°
+0-1+2-2+1-24+2-0+2-0x*
+Q2-1+1-24+2-24+2-0)x°
A1 +2242- 9242 1+2-2x+2-1

=X+ + 23+ 0> +0x+2
=+ 233+ 2.

Our definitions for addition and multiplication of polynomials were
formulated so that they are commutative and associative, and so that
multiplication is distributive over addition. We leave the verification
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

fx)=ax"+a,_ X" 1+ +ax+ ag,

where a, # 0, we say that f(x) has degree n; the term a,, is called the
leading coefficient of f(x), and if the leading coefficient is the multipli-
cative identity element of R, we say that f(x) is a monic polynomial.
The polynomial f(x) = 0 has no degree. Polynomials of the form
f(x) = a, are called constant. We often write deg f(x) = n to indicate
that f(x) has degree n. As with polynomials with real coefficients, we
may insert or delete terms of the form Ox¥; 1x* is the same as x*; and
+(—ay)xk is the same as —ax*.

Very often properties of R carry over to R[x]. Our first theorem is a
case in point.
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§ Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

If D is an integral domain, then D|x] is an integral domain.

PROOF Since we already know that D[x] is a ring, all we need
to show is that D[x] is commutative with a unity and has no zero-divisors.
Clearly, D[x] is commutative whenever D is. If 1 is the unity element of
D, it is obvious that fix) = 1 is the unity element of D[x]. Finally, sup-
pose that

f=ax"+a,_x" '+ +aq
and

g(x) = b,xX™ + by, x™ 1+ - - - + by,

where a, # 0 and b,, # 0. Then, by definition, f(x)g(x) has leading co-
efficient a,b,, and, since D is an integral domain, a,b,, # 0. |

The Division Algorithm
and Consequences

One of the properties of integers that we have used repeatedly is the
division algorithm: If @ and b are integers and b # 0, then there exist
unique integers g and r such that a = bg + r, where 0 = r < |bl. The
next theorem is the analogous statement for polynomials over a field.

I Theorem 16.2 Division Algorithm for F[x]

Copyright 2012 Cer
me third party content m:

Let F be a field and let f(x), g(x) € F[x] with g(x) # 0. Then
there exist unique polynomials q(x) and r(x) in F[x] such that f(x) =
g2(x)q(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x).

PROOF We begin by showing the existence of g(x) and r(x). If
Jlx) = 0ordeg fix) < deg g(x), we simply set g(x) = 0 and r(x) = fix).
So, we may assume that n = deg f(x) = deg g(x) = m and let f{x) =
ax"+ ---+ ayand g(x) = b,x" + - - - + by. The idea behind this
proof is to begin just as if you were going to “long divide” g(x) into
f(x), then use the Second Principle of Mathematical Induction on
deg f(x) to finish up. Thus, resorting to long division, we let fj(x) =
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flx) — a,b,,” 'x"""g(x).T Then, f,(x) = 0 or deg f,(x) < deg f(x); so, by
our induction hypothesis, there exist ¢,(x) and r;(x) in F[x] such that
f®) = g@q(0) + ri(x), where ry(x) = 0 or deg ry(x) < deg g(x).
[Technically, we should get the induction started by proving the case
in which deg f(x) = 0, but this is trivial.] Thus,

f(X) = anbm_lxn_mg(x) +fl(x)
= a,b,”'x"7"g(x) + qi(x)g(x) + r1(x)
= layb,,~'x"™" + q(0)]g(x) + r(x).

So, the polynomials g(x) = a,b,,”'x" ™ + g,(x) and r(x) = r,(x) have
the desired properties.

To prove uniqueness, suppose that f{x) = g(x)g(x) + r(x) and fix) =
g(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x) and r(x) = 0
or deg r(x) < deg g(x). Then, subtracting these two equations, we obtain

0 = gW)lg(x) — g(0)] + [r(x) = r(x)]

or

r(x) = r(x) = gWlg(x) — g)].

Thus, r(x) — r(x) is 0, or the degree of r(x) — r(x) is at least that of
g(x). Since the latter is clearly impossible, we have r(x) = r(x) and
g(x) = g(x) as well. |

The polynomials g(x) and r(x) in the division algorithm are called
the quotient and remainder in the division of f(x) by g(x). When the
ring of coefficients of a polynomial ring is a field, we can use the long
division process to determine the quotient and remainder.

"For example,
(3/2)x>
2% + 2 )3 Fx+1
3t + 347
-3 +x+1

So,
32+ x+1=3x%+x+1— GB2)x*02x%+2)
In general,
a,b, X"
b X"+ - Jagx + oo
a4+
i)

So,

fl(x) = (an-x" + - ) - a”bm—lxn—m(bmxm + - )
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B EXAMPLE 1 To find the quotient and remainder upon dividing
flx) = 3x* + x> + 2x*> + 1 by g(x) = x> + 4x + 2, where f(x) and g(x)
belong to Zs[x], we may proceed by long division, provided we keep in
mind that addition and multiplication are done modulo 5. Thus,

3x% + 4x
P Ad+2 )3+ P+ 20 +1
3+ 28 + &P
4 + x* +1
4 + x* + 3x

2x + 1

So, 3x? + 4x is the quotient and 2x + 1 is the remainder. Therefore,

I+ 3+ 22+ 1 = (% + 4x + 2)(Bx2 + 4x) + 2x + 1. |

Let D be an integral domain. If f{x) and g(x) € D[x], we say that g(x)
divides f(x) in D[x] [and write g(x) | f(x)] if there exists an A(x) € D[x]
such that fix) = g(x)h(x). In this case, we also call g(x) a factor of f(x).
An element a is a zero (or a root) of a polynomial f(x) if f(a) = 0.
[Recall that f{a) means substitute a for x in the expression for f(x).]
When F'is a field, a € F, and fix) € F[x], we say that a is a zero of
multiplicity k (k = 1) if (x — a)* is a factor of f(x) but (x — a)**! is not
a factor of f(x). With these definitions, we may now give several impor-
tant corollaries of the division algorithm. No doubt you have seen these
for the special case where F is the field of real numbers.

I Corollary 1 Remainder Theorem

Let F be a field, a € F, and f(x) € F[x]. Then f(a) is the remainder in
the division of f(x) by x — a.

PROOF The proof of Corollary 1 is left as an exercise (Exercise 5). N

I Corollary 2 Factor Theorem

Let F be a field, a € F, and f(x) € F[x]. Then a is a zero of f(x) if
and only if x — a is a factor of f(x).

PROOF The proof of Corollary 2 is left as an exercise (Exercise 9). 1
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I Corollary 3 Polynomials of Degree n Have at Most n Zeros

A polynomial of degree n over a field has at most n zeros, counting
multiplicity.

PROOF We proceed by induction on n. Clearly, a polynomial of
degree O over a field has no zeros. Now suppose that f(x) is a polyno-
mial of degree n over a field and a is a zero of f(x) of multiplicity k.
Then, f(x) = (x — a)¥q(x) and g(a) # 0; and, since n = deg f(x) = deg
(x — a)fq(x) = k + deg g(x), we have k = n (see Exercise 19). If f(x)
has no zeros other than a, we are done. On the other hand, if b # a and
b is a zero of f(x), then 0 = f(b) = (b — a)*q(b), so that b is also a zero
of g(x) with the same multiplicity as it has for f(x) (see Exercise 21).
By the Second Principle of Mathematical Induction, we know that
g(x) has at most deg g(x) = n — k zeros, counting multiplicity. Thus,
f(x) has at most k + n — k = n zeros, counting multiplicity. |

We remark that Corollary 3 is not true for arbitrary polynomial rings.
For example, the polynomial x> + 3x + 2 has four zeros in Z,. (See
Exercise 3.) Lagrange was the first to prove Corollary 3 for polynomi-
als in Z,[x].

I EXAMPLE 2 The Complex Zeros of x" — 1

We find all complex zeros of x" — 1. Let w = cos(360°/n) +
i sin(360°/n). It follows from DeMoivre’s Theorem (see Example 10
in Chapter 0) that " = 1 and * # 1 for 1 < k < n. Thus, each of 1,
w, ®?, ..., " 'is azero of x" — 1 and, by Corollary 3, there are no

others. |

The complex number w in Example 2 is called a primitive nth root of

unity.
We conclude this chapter with an important theoretical application
of the division algorithm, but first an important definition.

Definition Principal Ideal Domain (PID)

A principal ideal domain is an integral domain R in which every ideal
has the form (@) = {ra | r € R} for some a in R.

B Theorem 16.3 F[x]IsaPID

Let F be a field. Then F|x] is a principal ideal domain.
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PROOF By Theorem 16.1, we know that F[x] is an integral domain.
Now, let I be an ideal in F[x]. If I = {0}, then I = {0). If / # {0}, then
among all the elements of 7, let g(x) be one of minimum degree. We will
show that I = (g(x)). Since g(x) € I, we have (g(x)) C I. Now
let fix) € I. Then, by the division algorithm, we may write f(x) =
g(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). Since r(x) = f(x) —
g(x)g(x) € I, the minimality of deg g(x) implies that the latter condition
cannot hold. So, r(x) = 0 and, therefore, fix) € (g(x)). This shows that

1C (g(x)). I
The proof of Theorem 16.3 also establishes the following.

1 Theorem 16.4 Criterion for | = (g(x))

Let F be a field, I a nonzero ideal in F[x], and g(x) an element of
Fx]. Then, I = (g(x)) if and only if g(x) is a nonzero polynomial of
minimum degree in 1.

As an application of the First Isomorphism Theorem for Rings
(Theorem 15.3) and Theorem 16.4, we verify the remark we made in
Example 12 in Chapter 14 that the ring R[x]/(x*> + 1) is isomorphic to
the ring of complex numbers.

# EXAMPLE 3 Consider the homomorphism ¢ from R[x] onto C given
by flx) — f(i) (that is, evaluate a polynomial in R[x] at 7). Then
x*> + 1 € Ker ¢ and is clearly a polynomial of minimum degree in Ker ¢.
Thus, Ker ¢ = (x> + 1) and R[x]/(x*> + 1) is isomorphic to C. |

If I feel unhappy, | do mathematics to become happy. If | am happy, | do
mathematics to keep happy.
PAUL TURAN

1. Let fix) = 4x* + 2x> + x + 3 and g(x) = 3x* + 3x> + 3x*> + x + 4,
where f(x), g(x) € Zs[x]. Compute fix) + g(x) and f(x) - g(x).

2. In Z;[x], show that the distinct polynomials x* + x and x> + x
determine the same function from Z; to Z;.

3. Show that x> + 3x + 2 has four zeros in Z. (This exercise is
referred to in this chapter.)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied. s
third party content may be ssed from the eBook and/or eChapter(s). Edit
right




306

Rings

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

If R is a commutative ring, show that the characteristic of R[x] is
the same as the characteristic of R.

Prove Corollary 1 of Theorem 16.2.

List all the polynomials of degree 2 in Z,[x]. Which of these are
equal as functions from Z, to Z,?

Find two distinct cubic polynomials over Z, that determine the
same function from Z, to Z,.

For any positive integer n, how many polynomials are there of
degree n over Z,? How many distinct polynomial functions from Z,
to Z, are there?

Prove Corollary 2 of Theorem 16.2.

Let R be a commutative ring. Show that R[x] has a subring isomor-
phic to R.

If ¢: R — S is a ring homomorphism, define & R[x] — S[x] by
(ax"+ -+ - + ayg) = Pp(a,)x" + - - - + ¢(a,). Show that ¢ is a ring
homomorphism. (This exercise is referred to in Chapter 33.)

If the rings R and S are isomorphic, show that R[x] and S[x] are
isomorphic.

Let flx) = 5x* + 3x> + 1 and g(x) = 3x> + 2x + 1 in Z,[x].
Determine the quotient and remainder upon dividing f{(x) by g(x).
Let fix) and g(x) be cubic polynomials with integer coefficients
such that f(a) = g(a) for four integer values of a. Prove that f(x) =
g(x). Generalize.

Show that the polynomial 2x + 1 in Z,[x] has a multiplicative in-
verse in Z,[x].

Are there any nonconstant polynomials in Z[x] that have multi-
plicative inverses? Explain your answer.

Let p be a prime. Are there any nonconstant polynomials in Z,[x]
that have multiplicative inverses? Explain your answer.

Show that Corollary 3 of Theorem 16.2 is false for any commuta-
tive ring that has a zero divisor.

(Degree Rule) Let D be an integral domain and f(x), g(x) € D[x].
Prove that deg (f(x) - g(x)) = deg f(x) + deg g(x). Show, by ex-
ample, that for commutative ring R it is possible that deg f(x)g(x) <
deg f(x) + deg g(x), where f(x) and g(x) are nonzero elements in
R[x]. (This exercise is referred to in this chapter, Chapter 17, and
Chapter 18.)

Prove that the ideal (x) in Q[x] is maximal.
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Let f(x) belong to F[x], where F is a field. Let a be a zero of f(x) of

multiplicity n, and write f(x) = (x — a)"q(x). If b # a is a zero of

q(x), show that b has the same multiplicity as a zero of g(x) as it

does for f(x). (This exercise is referred to in this chapter.)

Prove that for any positive integer n, a field /' can have at most a

finite number of elements of multiplicative order at most 7.

Let F be an infinite field and let fix) € F[x]. If fla) = 0O for infi-

nitely many elements a of F, show that f{x) = 0.

Let F be an infinite field and let f{x), g(x) € F[x]. If fla) = g(a) for

infinitely many elements a of F, show that f{ix) = g(x).

Let F be a field and let p(x) € Flx]. If fix), g(x) € F[x] and

deg fix) < deg p(x) and deg g(x) < deg p(x), show that fix) +

(p(x)) = gx) + (p(x)) implies fix) = g(x). (This exercise is

referred to in Chapter 20.)

Prove that Z[x] is not a principal ideal domain. (Compare this with

Theorem 16.3.)

Find a polynomial with integer coefficients that has 1/2 and —1/3

as zeros.

Let f(x) € R[x]. Suppose that f(a) = 0 but f’(a) # 0, where f'(x) is

the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

Show that Corollary 2 of Theorem 16.2 is true over any commuta-

tive ring with unity.

Show that Corollary 3 of Theorem 16.2 is true for polynomials

over integral domains.

Let F be a field and let
I={ax"+a,_x"'"+---+ayla,a,,...,a0EF and

a,+a,;+--++ay=0}.

Show that / is an ideal of F[x] and find a generator for /.

Let F be a field and let fix) = ax" + a,_x* ' + - - - + a, € Flx].

Prove that x — 1 is a factor of f(x) if and only ifa, + a,_; + - - - +

a, = 0.

Let m be a fixed positive integer. For any integer a, let a denote

a mod m. Show that the mapping of ¢: Z[x] — Z,[x] given by

(b(anxn + an*lxn_l toeeet a()) = anxn + an*lxn_1 +oeee a0

is a ring homomorphism. (This exercise is referred to in Chapters
17 and 33.)

Find infinitely many polynomials f{x) in Z;[x] such that f{a) = O for
all a in Z;.
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For every prime p, show that

¥ 1=E - DE-2) k= (p - D)
in Z,[x].
Let ¢ be the ring homomorphism from Z[x] to Z given by ¢(f(x)) =
J(1). Find a polynomial g(x) in Z[x] such that Ker ¢ = (g(x)). Is
there more than one possibility for g(x)? To what familiar ring is
Z[x)/Ker ¢ isomorphic? Do this exercise with Z replaced by Q.
Give an example of a field that properly contains the field of com-
plex numbers C.
(Wilson’s Theorem) For every integer n > 1, prove that (n — 1)!
mod n = n — 1 if and only if n is prime.
For every prime p, show that (p — 2)! mod p = 1.
Find the remainder upon dividing 98! by 101.
Prove that (50!)> mod 101 = —1 mod 101.
If I is an ideal of a ring R, prove that /[x] is an ideal of R[x].

Give an example of a commutative ring R with unity and a
maximal ideal 7 of R such that /[x] is not a maximal ideal of R[x].

Let R be a commutative ring with unity. If / is a prime ideal of R,
prove that /[x] is a prime ideal of R[x].

Let F be a field, and let f{x) and g(x) belong to F[x]. If there is no
polynomial of positive degree in F[x] that divides both f{x) and g(x)
[in this case, f(x) and g(x) are said to be relatively prime], prove that
there exist polynomials /(x) and k(x) in F[x] with the property that
Jo)h(x) + g(x)k(x) = 1. (This exercise is referred to in Chapter 20.)
Prove that Q[x]/{x> — 2) is ring-isomorphic to Q[V2] = {a +
bV2la,b € Q).

Let fix) € R[x]. If fla) = 0 and f'(a) = O [f'(a) is the derivative of
f(x) at a], show that (x — a)? divides f(x).

Let F be a field and let I = {fix) € Flx] | f(a) = O for all @ in F}.
Prove that [ is an ideal in F[x]. Prove that / is infinite when F is fi-
nite and / = {0} when F is infinite. When F is finite, find a monic
polynomial g(x) such that I = (g(x)).

Let g(x) and h(x) belong to Z[x] and let A(x) be monic. If A(x) di-
vides g(x) in Q[x], show that A(x) divides g(x) in Z[x]. (This exer-
cise is referred to in Chapter 33.)

Let R be a ring and x be an indeterminate. Prove that the rings R[x]
and R[x?] are ring-isomorphic.

Let f(x) be a nonconstant element of Z[x]. Prove that f(x) takes on
infinitely many values in Z.
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Let f(x) be a nonconstant element in Z[x]. Prove that (f(x)) is not
maximal in Z[x].

Let Z,[x] be the ring of polynomials in x with coefficients from Z,
and ordinary addition and multiplication. If n can be written in the
form #>m, show that tmx + 1 is a unit in Z,[x].

Let f(x) belong to Z,[x]. Prove that if f(b) = 0, then f(b”) = 0.
Suppose f(x) is a polynomial with odd integer coefficients and even
degree. Prove that f(x) has no rational zeros.

For any field F, recall that F(x) denotes the field of quotients of the
ring F[x]. Prove that there is no element in F(x) whose square is x.
Let F be a field. Show that there exist a, b € F with the property
that x> + x + 1 divides x* + ax + b.

Let f(x) = a,x™ + a,_x" '+ -+ +ayand gx) = b, + b,_x""' +
-+ + by belong to Q[x] and suppose that f(x)g(x) belongs to Z[x].
Prove that a;b; is an integer for every i and j.

Let f(x) belong to Z|x]. If a mod m = b mod m, prove that f(a)
mod m = f(b) mod m. Prove that if both f(0) and f(1) are odd, then
f has no zero in Z.

Find the remainder when x°! is divided by x + 4 in Z;[x].

Show that 1 is the only solution of x*> — 1 = 0 in Z,.
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Factorization

of Polynomials

The value of a principle is the number of things it will explain.
RALPH WALDO EMERSON

Reducibility Tests

In high school, students spend much time factoring polynomials and
finding their zeros. In this chapter, we consider the same problems in a
more abstract setting.

To discuss factorization of polynomials, we must first introduce the
polynomial analog of a prime integer.

Definition Irreducible Polynomial, Reducible Polynomial

Let D be an integral domain. A polynomial f(x) from D[x] that is
neither the zero polynomial nor a unit in D[x] is said to be irreducible
over D if, whenever f(x) is expressed as a product f{(x) = g(x)h(x), with
g(x) and h(x) from D[x], then g(x) or A(x) is a unit in D[x]. A nonzero,
nonunit element of D[x] that is not irreducible over D is called
reducible over D.

In the case that an integral domain is a field F, it is equivalent and more
convenient to define a nonconstant f{x) € F[x] to be irreducible if f{x) can-
not be expressed as a product of two polynomials of lower degree.

B EXAMPLE 1 The polynomial f{x) = 2x> + 4 is irreducible over Q
but reducible over Z, since 2x> + 4 = 2(x*> + 2) and neither 2 nor x> + 2
is a unit in Z[x]. |

B EXAMPLE 2 The polynomial f{x) = 2x> + 4 is irreducible over R
but reducible over C. |

B EXAMPLE 3 The polynomial x> — 2 is irreducible over Q but re-
ducible over R. |
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B EXAMPLE 4 The polynomial x* + 1 is irreducible over Z, but re-
ducible over Z.. |

In general, it is a difficult problem to decide whether or not a particu-
lar polynomial is reducible over an integral domain, but there are spe-
cial cases when it is easy. Our first theorem is a case in point. It applies
to the four preceding examples.

I Theorem 17.1 Reducibility Test for Degrees 2 and 3

Let F be a field. If f(x) € F[x] and deg f(x) is 2 or 3, then f(x) is
reducible over F if and only if f(x) has a zero in F.

PROOF Suppose that fix) = g(x)h(x), where both g(x) and h(x) belong
to F[x] and have degrees less than that of f(x). Since deg fix) = deg g(x) +
deg h(x) (Exercise 19 in Chapter 16) and deg f(x) is 2 or 3, at least one
of g(x) and h(x) has degree 1. Say g(x) = ax + b. Then, clearly, —a~'b
is a zero of g(x) and therefore a zero of f{x) as well.

Conversely, suppose that f{a) = 0, where a € F. Then, by the Factor
Theorem, we know that x — a is a factor of f(x) and, therefore, f(x) is
reducible over F. |

Theorem 17.1 is particularly easy to use when the field is Z , because
in this case we can check for reducibility of f{x) by simply testing
to see if la) = 0 fora =0, 1,..., p — 1. For example, since 2 is a
zero of x* + 1 over Z,, x* + 1 is reducible over Z,. On the other hand,
because neither 0, 1, nor 2 is a zero of x> + 1 over Z;, x* + 1 is irre-
ducible over Z,.

Note that polynomials of degree larger than 3 may be reducible over
a field even though they do not have zeros in the field. For example, in
Q[x], the polynomial x* + 2x*> + 1 is equal to (x> + 1)%, but has no
zeros in Q.

Our next three tests deal with polynomials with integer coefficients.
To simplify the proof of the first of these, we introduce some terminol-
ogy and isolate a portion of the argument in the form of a lemma.

Definition Content of a Polynomial, Primitive Polynomial

The content of a nonzero polynomial a x" + a, x""'+ - - - + a,,
where the a’s are integers, is the greatest common divisor of the
integersa,,a, ,,...,a, A primitive polynomial is an element of Z[x]
with content 1.
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B Gauss’s Lemma

The product of two primitive polynomials is primitive.

PROOF Let fix) and g(x) be primitive polynomials, and suppose that
Jflx)g(x) is not primitive. Let p be a prime divisor of the content of
fix)g(x), and let f(x), g(x), and fix)g(x) be the polynomials obtained
from fix), g(x), and fix)g(x) by reducing the coefficients modulo p.
Then, f (x) and g(x) belong to the integral domain Z [x] and fgkx) =
f(x)g(xl = 0, the zero element of Zp[x] (see Exercise 33 in Chapter 16).
Thus, f(x) = 0 or g(x) = 0. This means that either p divides every co-
efficient of f{x) or p divides every coefficient of g(x). Hence, either f(x)
is not primitive or g(x) is not primitive. This contradiction completes
the proof. |

Remember that the question of reducibility depends on which ring
of coefficients one permits. Thus, x> — 2 is irreducible over Z but
reducible over Q[V/2]. In Chapter 20, we will prove that every poly-
nomial of degree greater than 1 with coefficients from an integral
domain is reducible over some field. Theorem 17.2 shows that in the
case of polynomials irreducible over Z, this field must be larger than
the field of rational numbers.

I Theorem 17.2 Reducibility over Q Implies Reducibility over Z

Let f(x) € Z[x]. If f(x) is reducible over Q, then it is reducible over Z.

PROOF Suppose that f(x) = g(x)h(x), where g(x) and h(x) € Q[x].
Clearly, we may assume that f(x) is primitive because we can divide
both f(x) and g(x) by the content of f(x). Let a be the least common
multiple of the denominators of the coefficients of g(x), and b the least
common multiple of the denominators of the coefficients of 4(x). Then
abf(x) = ag(x) - bh(x), where ag(x) and bh(x) € Z[x]. Let c, be the con-
tent of ag(x) and let ¢, be the content of bh(x). Then ag(x) = c,g,(x) and
bh(x) = c,h,(x), where both g,(x) and h,(x) are primitive, and abf(x) =
¢,6,8,(x)h,(x). Since f(x) is primitive, the content of abf(x) is ab. Also,
since the product of two primitive polynomials is primitive, it follows
that the content of c,c,g,(x)h,(x) is ¢,c,. Thus, ab = c,c, and fix) =
g,(0)h,(x), where g,(x) and h (x) € Z[x] and deg g,(x) = deg g(x) and
deg h (x) = deg h(x). |
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B EXAMPLE 5 We illustrate the proof of Theorem 17.2 by tracing
through it for the polynomial f(x) = 6x* + x — 2 = (3x — 3/2)(2x +
4/3) = g(x)h(x). In this case we have a = 2,b = 3,¢, = 3,¢, = 2, g,(x) =
2x — 1,and i (x) = 3x + 2,so that 2 - 3(6x* +x — 2) =3 - 2(2x —
D@Bx+2)or6x>+x—2=2x— DH3x + 2). |

Irreducibility Tests

Theorem 17.1 reduces the question of irreducibility of a polynomial of
degree 2 or 3 to one of finding a zero. The next theorem often allows us
to simplify the problem even further.

I Theorem 17.3 Mod p Irreducibility Test

Let p be a prime and suppose that f(x) € Z[x] with deg f(x) = 1.

Let f(x) be the polynomial in Z X1 obtained from f(x) by reducing

all the coefficients of f(x) modulo p. If f(x) is irreducible over Z » and
deg f(x) = deg f(x), then f(x) is irreducible over Q.

PROOF It follows from the proof of Theorem 17.2 that if f{x) is re-
ducible over Q, then f(x) = g(x)h(x) with g(x), h(x) € Z|x], and both
g(x) and h(x) have degree less than that of f{(x). Let f(x), g(x), and h(x)
be the polynomials obtained from f(x), g(x), and h(x) by reducing all
the coefficients modulo p. Since deg fix) = deg f(x), we have deg
g(x) = deg g(x) < deg f(x) and deg h(x) = deg h(x) < deg f(x). But,
f(x) = g(x)h(x), and this contradicts our assumption that f(x) is irre-
ducible over Zp. |

B EXAMPLE 6 Let fix) = 21x*> — 3x*> + 2x + 9. Then, over Z,, we
have f(x) = x> + x> + 1 and, since f(0) = 1 and f(1) = 1, we see that
f(x) is irreducible over Z,. Thus, f(x) is irreducible over Q. Notice that,
over Z;, f(x) = 2x is irreducible, but we may nor apply Theorem 17.3 to
conclude that f(x) is irreducible over Q. |

Be careful not to use the converse of Theorem 17.3. If fix) € Z|x]
and f(x) is reducible over Zp for some p, fix) may still be irreducible
over Q. For example, consider f{ix) = 21x* — 3x?> + 2x + 8. Then, over
Z,, f(x) = x* + x* = x¥’(x + 1). But over Z, f(x) has no zeros and
therefore is irreducible over Z. So, f(x) is irreducible over Q. Note that
this example shows that the Mod p Irreducibility Test may fail for
some p and work for others. To conclude that a particular f(x) in Z[x] is
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irreducible over Q, all we need to do is find a single p for which the cor-
responding polynomial f(x) in Z, is irreducible. However, this is not al-
ways possible, since f{x) = x* + 1 is irreducible over Q but reducible
over Zp for every prime p. (See Exercise 29.)

The Mod p Irreducibility Test can also be helpful in checking for
irreducibility of polynomials of degree greater than 3 and polynomials
with rational coefficients.

B EXAMPLE 7 Let f(x) = (3/7)x* — (2/T)x* + (9/35)x + 3/5. We will
show that f(x) is irreducible over Q. First, let h(x) = 35f(x) = 15x* —
10x*> + 9x + 21. Then f(x) is irreducible over Q if h(x) is irreducible
over Z. Next, applying the Mod 2 Irreducibility Test to A(x), we get
h(x) = x* + x + 1. Clearly, h(x) has no zeros in Z,. Furthermore, h(x)
has no quadratic factor in Z,[x] either. [For if so, the factor would have
to be either x> + x + 1 or x> + 1. Long division shows that x> + x + 1
is not a factor, and x> + 1 cannot be a factor because it has a zero,
whereas /(x) does not.] Thus, A(x) is irreducible over Z,[x]. This guar-
antees that A4(x) is irreducible over Q. |

B EXAMPLE 8 Let f(x) = x> + 2x + 4. Obviously, neither Theorem
17.1 nor the Mod 2 Irreducibility Test helps here. Let’s try mod 3.
Substitution of 0, 1, and 2 into f(x) does not yield 0, so there are no linear
factors. But f(x) may have a quadratic factor. If so, we may assume it has
the form x*> + ax + b (see Exercise 5). This gives nine possibilities to
check. We can immediately rule out each of the nine that has a zero over
Z,, since f(x) does not have one. This leaves only x* + 1, x* + x + 2, and
x*> + 2x + 2 to check. These are eliminated by long division. So, since
f(x) is irreducible over Z,, f(x) is irreducible over Q. (Why is it unneces-
sary to check for cubic or fourth-degree factors?) |

Another important irreducibility test is the following one, credited to
Ferdinand FEisenstein (1823-1852), a student of Gauss. The corollary
was first proved by Gauss by a different method.

B Theorem 17.4 Eisenstein’s Criterion (1850)

Let

f=ax"+a, x*'+---+a,€Zx].

If there is a prime p such thatp t a,pla,_,,...,pla,andp* + a,,
then f(x) is irreducible over Q.
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PROOF If f(x) is reducible over Q, we know by Theorem 17.2 that
there exist elements g(x) and A(x) in Z[x] such that f(x) = g(x)h(x),
I = deg g(x), and 1 = deg h(x) < n. Say g(x) = b x" + - -+ + b, and
h(x) = ¢ x* + - -+ + c,. Then, since p | a,, p* 1 a,, and a, = bc,), it fol-
lows that p divides one of b, and c,, but not the other. Let us say p | b,
and p 1 ¢,. Also, since p ¥ a, = b ¢, we know that p 4 b . So, there is a
least integer 7 such that p + b,. Now, consider a, = bc, + b,_,c, + -~
+ b,c, By assumption, p divides a, and, by choice of 7, every summand
on the right after the first one is divisible by p. Clearly, this forces p to
divide b ¢ as well. This is impossible, however, since p is prime and p
divides neither b, nor c,,. |

B Corollary Irreducibility of pth Cyclotomic Polynomial

For any prime p, the pth cyclotomic polynomial

% =1l B -

D (x) = =xP 1+ xP 2+ +x+1

& 52 = 1l
is irreducible over Q.
PROOF Let

x+1)y—-1 _ (p> B (p> - p
=® (x + N=——"——=x""+[" )2+ )+ )

e 1 2 !

Then, since every coefficient except that of x*~! is divisible by p and
the constant term is not divisible by p?, by Eisenstein’s Criterion, f(x) is
irreducible over Q. So, if Cbp(x) = g(x)h(x) were a nontrivial factoriza-
tion of @p(x) over Q, then flx) = <I>p(x + 1D =gx+ 1) hx+1)
would be a nontrivial factorization of f{x) over Q. Since this is impossi-
ble, we conclude that CDp(x) is irreducible over Q. |

B EXAMPLE 9 The polynomial 3x° + 15x* — 20x* + 10x + 20 is
irreducible over Q because 5 + 3 and 25 + 20 but 5 does divide 15,
—20, 10, and 20. |

The principal reason for our interest in irreducible polynomials
stems from the fact that there is an intimate connection among them,
maximal ideals, and fields. This connection is revealed in the next theo-
rem and its first corollary.
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1 Theorem 17.5 (p(x)) Is Maximal If and Only If p(x) Is Irreducible

Let F be a field and let p(x) € F[x). Then {(p(x)) is a maximal ideal
in F[x] if and only if p(x) is irreducible over F.

PROOF Suppose first that (p(x)) is a maximal ideal in F[x]. Clearly,
p(x) is neither the zero polynomial nor a unit in F[x], because neither
{0} nor F[x] is a maximal ideal in F[x]. If p(x) = g(x)h(x) is a factor-
ization of p(x) over F, then (p(x)) C {g(x)) C F[x]. Thus, {p(x)) = (g(x))
or F[x] = (g(x)). In the first case, we must have deg p(x) = deg g(x). In
the second case, it follows that deg g(x) = 0 and, consequently, deg i(x) =
deg p(x). Thus, p(x) cannot be written as a product of two polynomials
in F[x] of lower degree.

Now, suppose that p(x) is irreducible over F. Let I be any ideal of
F[x] such that (p(x)) C I C F[x]. Because F[x] is a principal ideal do-
main, we know that I = (g(x)) for some g(x) in F[x]. So, p(x) € (g(x))
and, therefore, p(x) = g(x)h(x), where h(x) € F[x]. Since p(x) is irre-
ducible over F, it follows that either g(x) is a constant or A4(x) is a con-
stant. In the first case, we have I = F[x]; in the second case, we have
(p(x)) = (g(x)) = I. So, {p(x)) is maximal in F[x]. |

1 Corollary 1 F[x]/{p(x)) Is a Field

Let F be a field and p(x) be an irreducible polynomial over F. Then
F[x]Kp(x)) is a field.

PROOF This follows directly from Theorems 17.5 and 14.4. |

The next corollary is a polynomial analog of Euclid’s Lemma for
primes (see Chapter 0).

B Corollary 2 p(x) | a(x)b(x) Implies p(x) | a(x) or p(x) | b(x)

Let F be a field and let p(x), a(x), b(x) € F[x]. If p(x) is irreducible
over F and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

PROOF Since p(x) is irreducible, F[x]/{p(x)) is a field and, therefore, an
integral domain. From Theorem 14.3, we know that (p(x)) is a prime
ideal, and since p(x) divides a(x)b(x), we have a(x)b(x) € (p(x)). Thus,
a(x) € { p(x)) or b(x) € {p(x)). This means that p(x) | a(x) or p(x) | b(x). i

The next two examples put the theory to work.
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§ EXAMPLE 10 We construct a field with eight elements. By Theorem
17.1 and Corollary 1 of Theorem 17.5, it suffices to find a cubic polyno-
mial over Z, that has no zero in Z,. By inspection, x> +x + 1 fills the
bill. Thus, Z[x]Ax* + x + 1) = {ax? + bx + c + (P +x+ 1)l a, b, c
€ Z,} is afield with eight elements. For practice, let us do a few calcula-
tions in this field. Since the sum of two polynomials of the form ax? +
bx + c is another one of the same form, addition is easy. For example,

PHx+1+@P+Hx+1)+E@+H1+HE +Hx+ 1)
=x+ &3 +x+ 1)

On the other hand, multiplication of two coset representatives need not
yield one of the original eight coset representatives:

PHx+1+@E+x+1D) - @P+1+EE+x+1)
=X+ +x+ 1+ @ +Hx+ D=+ +x+ 1)

(since the ideal absorbs the last three terms). How do we express this in
the form ax?> + bx + ¢ + (x* + x + 1)? One way is to long divide x* by
x* + x + 1 to obtain the remainder of x> + x (just as one reduces
12 + (5) to 2 + (5) by dividing 12 by 5 to obtain the remainder 2).
Another way is to observe that x> + x + 1 + (xX* + x + 1) = 0 +
&+ x+ 1yimplies x> + (> +x + 1) =x + 1 + (* + x + 1). Thus,
we may multiply both sides by x to obtain

P +Hx+ D=2 +x+ & +x+1).
Similarly,

FPHx+ @ +x+ 1) - @+t +x+1)
=3+ + @ +x+1)
=x2+x+1+&3+x+1).

A partial multiplication table for this field is given in Table 17.1. To
simplify the notation, we indicate a coset by its representative only.

Table 17.1 A Partial Multiplication Table for Example 10

1 X x+1 x? x2+1 x2+x X+x+1
1 1 X x+1 x2 X2+ 1 X2+ x X2+ x+1
x X x2 X2+ x x+1 1 X+x+1 xX+1
x+1 |x+1 xK+x KP+1 X+x+1 X 1 X
x2 X2 x+1 xXX+x+1 xX+x X X2 +1 1
xX2+1 |x2+1 1 x2 X X+x+1 x+1 X2+ x
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(Complete the table yourself. Keep in mind that x* can be replaced by
x + 1 and x* by x? + x.) |

B EXAMPLE 11 Since x* + 1 has no zero in Z,, it is irreducible over
Z,. Thus, Z;[x]Kx* + 1) is a field. Analogous to Example 12 in Chapter 14,
Zxl/x* + 1) = {ax + b + (x> + 1) | a, b € Z,}. Thus, this field has
nine elements. A multiplication table for this field can be obtained from
Table 13.1 by replacing i by x. (Why does this work?) |

Unique Factorization in Z[x]

As a further application of the ideas presented in this chapter, we next
prove that Z[x] has an important factorization property. In Chapter 18,
we will study this property in greater depth. The first proof of Theorem
17.6 was given by Gauss. In reading this theorem and its proof, keep in
mind that the units in Z[x] are precisely fix) = 1 and fix) = —1 (see
Exercise 25 in Chapter 12), the irreducible polynomials of degree O
over Z are precisely those of the form f{ix) = p and fix) = —p where p is
a prime, and every nonconstant polynomial from Z[x] that is irreducible
over Z is primitive (see Exercise 3).

B Theorem 17.6 Unique Factorization in Z[x]

Every polynomial in Z|x] that is not the zero polynomial or a unit
in Z|[x] can be written in the form b.b, - - - b,p,(x)p,(x) - - - p,(X),
where the b;’s are irreducible polynomials of degree 0 and the p(x)’s
are irreducible polynomials of positive degree. Furthermore, if

bb, - bp,xX)p,(x) - - - p,(X) = cc, " - €,q(0)g,(X) - - q,(%),

where the b;’s and c,’s are irreducible polynomials of degree 0 and the
p{x)’s and q(x)’s are irreducible polynomials of positive degree, then

s = t, m = n, and, after renumbering the c’s and q(x)’s, we have b, =

*c fori=1,...,sandp(x) = £q(x) fori=1,..., m.

PROOF Let f(x) be a nonzero, nonunit polynomial from Z[x]. If
deg fix) = 0, then f(x) is constant and the result follows from the
Fundamental Theorem of Arithmetic. If deg fix) > 0, let b denote the
b, - - - b, be the factorization of b as a product

172

by + - b_f,(x), where f,(x) belongs to Z[x], is

content of f(x), and let b
of primes. Then, fix) = b
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primitive and deg f(x) = deg f(x). Thus, to prove the existence portion
of the theorem, it suffices to show that a primitive polynomial f{(x) of
positive degree can be written as a product of irreducible polynomials
of positive degree. We proceed by induction on deg f(x). If deg fix) = 1,
then f(x) is already irreducible and we are done. Now suppose that
every primitive polynomial of degree less than deg f{(x) can be written
as a product of irreducibles of positive degree. If f{x) is irreducible,
there is nothing to prove. Otherwise, flx) = g(x)h(x), where both g(x)
and A(x) are primitive and have degree less than that of f{x). Thus, by in-
duction, both g(x) and A(x) can be written as a product of irreducibles of
positive degree. Clearly, then, f{x) is also such a product.

To prove the uniqueness portion of the theorem, suppose that
fx) = bby - b p (P, - p ) = €iey (0,0
q,(x), where the b;’s and c,’s are irreducible polynomials of degree 0
and the p(x)’s and g,(x)’s are irreducible polynomials of positive degree.
Letb=bb, b and c = c,c, - - - ¢, Since the p(x)’s and g(x)’s are
primitive, it follows from Gauss’s Lemma that p,(x)p,(x) - - - p, (x) and
q,(x)q,(x) - - - q,(x) are primitive. Hence, both b and ¢ must equal plus
or minus the content of f{x) and, therefore, are equal in absolute value.
It then follows from the Fundamental Theorem of Arithmetic that s = ¢
and, after renumbering, b, = *c, fori = 1,2, ..., s. Thus, by cancel-
ing the constant terms in the two factorizations for f(x), we have
P XOpy(x) -+ p(x) = E£q,(x) g,(x) - -+ q,(x). Now, viewing the p(x)’s
and g(x)’s as elements of Q[x] and noting that p,(x) divides ¢, (x) - - -
q,(x), it follows from Corollary 2 of Theorem 17.5 and induction (see
Exercise 28) that p,(x) | g,(x) for some i. By renumbering, we may as-
sume i = 1. Then, since g,(x) is irreducible, we have g,(x) = (r/s)p,(x),
where r, s € Z. However, because both ¢, (x) and p,(x) are primitive, we
must have r/s = *1. So, q,(x) = £p,(x). Also, after canceling, we have
P(x) -+ - p,(X) = Eq,(x) - - - g,(x). Now, we may repeat the argument
above with p,(x) in place of p,(x). If m < n, after m such steps we
would have 1 on the left and a nonconstant polynomial on the right.
Clearly, this is impossible. On the other hand, if m > n, after n steps we
would have *1 on the right and a nonconstant polynomial on the left—
another impossibility. So, m = n and p(x) = *gq,(x) after suitable
renumbering of the g(x)’s. |

Weird Dice: An Application
of Unique Factorization

B EXAMPLE 12 Consider an ordinary pair of dice whose faces are
labeled 1 through 6. The probability of rolling a sum of 2 is 1/36, the
probability of rolling a sum of 3 is 2/36, and so on. In a 1978 issue of
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Scientific American [1], Martin Gardner remarked that if one were to
label the six faces of one cube with the integers 1, 2, 2, 3, 3, 4 and the six
faces of another cube with the integers 1, 3, 4, 5, 6, 8, then the probabil-
ity of obtaining any particular sum with these dice (called Sicherman
dice) would be the same as the probability of rolling that sum with ordi-
nary dice (that is, 1/36 for a 2, 2/36 for a 3, and so on). See Figure 17.1.
In this example, we show how the Sicherman labels can be derived, and
that they are the only possible such labels besides 1 through 6. To do so,
we utilize the fact that Z[x] has the unique factorization property.

T N ] IR Y

3 4 5 6 7 8 4 5 5 6 6 7

4 5 6 7 8 9 5 6 6 7 7 8

9 10 9

6 7 8 9 10 | 11

e e 5 A D
E3% e R [ D

7 8 9 10 | 11 | 12

Figure 17.1

To begin, let us ask ourselves how we may obtain a sum of 6, say, with
an ordinary pair of dice. Well, there are five possibilities for the two faces:
(5,1),(4,2),3,3),(2,4), and (1, 5). Next we consider the product of the
two polynomials created by using the ordinary dice labels as exponents:

O+ +xt+ 2+ 2+ 000+ 7+t + 8+ X2+ ).

Observe that we pick up the term x° in this product in precisely the fol-
lowing ways: x> - x!', x* - x2, x* - X3, 2% - x4, x! - X°. Notice the correspon-
dence between pairs of labels whose sums are 6 and pairs of terms
whose products are x°. This correspondence is one-to-one, and it is valid
for all sums and all dice—including the Sicherman dice and any other
dice that yield the desired probabilities. So, let a,, a,, a,, a,, a5, a, and
b, b,,bs, b,, b, b, be any two lists of positive integer labels for the faces
of a pair of cubes with the property that the probability of rolling any
particular sum with these dice (let us call them weird dice) is the same as
the probability of rolling that sum with ordinary dice labeled 1 through
6. Using our observation about products of polynomials, this means that

WO+ +x+ 2+ 2+ 00+ 7 +xt+ 2+ 52+ )
= (X + x% + x% + x% + x4 + xf) -
(xbr 4+ xP2 + xPs + xbs + xbs + xbs). (1)
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Now all we have to do is solve this equation for the a’s and b’s. Here is
where unique factorization in Z[x] comes in. The polynomial x® + x> +
x* 4+ x* + x? + x factors uniquely into irreducibles as

xx+ D +x+ D2 —x+1)
so that the left-hand side of Equation (1) has the irreducible factorization
2+ DA+ x+ D22 — x + 1D~

So, by Theorem 17.6, this means that these factors are the only possible
irreducible factors of P(x) = x% + x% + x% + x% + x% + x%. Thus,
P(x) has the form

xXi(x + 1Y+ x + 1)/(x2 — x + 1),

where 0 = g, r, t,u = 2.

To restrict further the possibilities for these four parameters, we evalu-
ate P(1) in two ways. P(1) = 14 + 12 + - -+ + 1% = 6 and
P(1) = 19231, Clearly, this means that » = 1 and ¢t = 1. What about ¢?
Evaluating P(0) in two ways shows that ¢ # 0. On the other hand, if
q = 2, the smallest possible sum one could roll with the corresponding
labels for dice would be 3. Since this violates our assumption, we have
now reduced our list of possibilities for ¢, r, t,and utog = 1, r = 1,
t=1,andu =0, 1, 2. Let’s consider each of these possibilities in turn.

When u = 0, P(x) = x* + x> + x> + x> + x* + x, so the die labels
are 4, 3, 3, 2, 2, 1—a Sicherman die.

When u = 1, P(x) = x° + x> + x* + x* + x2 + x, so the die labels
are 6, 5, 4, 3, 2, 1—an ordinary die.

When u = 2, P(x) = x% + x® + x> + x* + x> + x, so the die labels
are 8, 6, 5, 4, 3, 1—the other Sicherman die.

This proves that the Sicherman dice do give the same probabilities
as ordinary dice and that they are the only other pair of dice that have
this property. |

No matter how good you are at something, there’s always about a million
people better than you.

HOMER SIMPSON

1. Verify the assertion made in Example 2.

2. Suppose that D is an integral domain and F is a field containing D.
If f(x) € D[x] and f(x) is irreducible over F but reducible over D,
what can you say about the factorization of f(x) over D?

Rights Re:
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15.

16.
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. Show that a nonconstant polynomial from Z[x] that is irreducible

over Z is primitive. (This exercise is referred to in this chapter.)

. Suppose that f(x) = x" + a,_ x""' + - -+ + a, € Z[x]. If r is ra-

tional and x — r divides f{x), show that r is an integer.

. Let F' be a field and let a be a nonzero element of F.

a. If af(x) is irreducible over F, prove that f(x) is irreducible over F.

b. If flax) is irreducible over F, prove that f{x) is irreducible over F.

c. If fix + a) is irreducible over F, prove that f(x) is irreducible
over F.

d. Use part ¢ to prove that 8x> — 6x + 1 is irreducible over Q.

(This exercise is referred to in this chapter.)

. Let F be a field and f(x) € F[x]. Show that, as far as deciding upon

the irreducibility of f(x) over F is concerned, we may assume that
Jf(x) is monic. (This assumption is useful when one uses a computer
to check for irreducibility.)

. Explain how the Mod p Irreducibility Test (Theorem 17.3) can be

used to test members of Q[x] for irreducibility.

. Suppose that f{x) € Zp[x] and f(x) is irreducible over Zp, where p is

a prime. If deg f(x) = n, prove that Zp[x]/( f(x)) is a field with p”
elements.

. Construct a field of order 25.
10.
11.

Construct a field of order 27.

Show that x> + x> + x + 1 is reducible over Q. Does this fact con-
tradict the corollary to Theorem 17.47

Determine which of the polynomials below is (are) irreducible
over Q.

ax +o*+ 1242+ 6

b.x*+x+1

c.x*+3x*+3

d. x>+ 52+ 1

e. (5/2)x° + (92)x* + 15x3 + (3/7)x% + 6x + 3/14

Show that x* + 1 is irreducible over Q but reducible over R. (This
exercise is referred to in this chapter.)

Show that x> + x + 4 is irreducible over Z,,.

Letfix) =x* + 6 € Z.[x]. Write f(x) as a product of irreducible
polynomials over Z.

Let flx) = x* + x> + x + 1 € Z,[x]. Write f(x) as a product of ir-
reducible polynomials over Z,.
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17.

18.

19.
20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

Let p be a prime.

a. Show that the number of reducible polynomials over Zp of the
form x> + ax + bis p(p + 1)/2.

b. Determine the number of reducible quadratic polynomials over Z,

Let p be a prime.

a. Determine the number of irreducible polynomials over Z, of the
form x> + ax + b.

b. Determine the number of irreducible quadratic polynomials
over Zp.

Show that for every prime p there exists a field of order p?.

Prove that, for every positive integer 7, there are infinitely many
polynomials of degree n in Z|x] that are irreducible over Q.

Show that the field given in Example 11 in this chapter is isomor-
phic to the field given in Example 9 in Chapter 13.

Let f(x) € Zp[x]. Prove that if f{x) has no factor of the form x> +
ax + b, then it has no quadratic factor over Zp.

Find all monic irreducible polynomials of degree 2 over Z,.

Given that 7 is not the zero of a nonzero polynomial with rational
coefficients, prove that 7 2 cannot be written in the form am + b,

where a and b are rational.
2

Find all the zeros and their multiplicities of x° + 4x* + 4x% — x
4x + 1 over Z..

Find all zeros of f(x) = 3x> + x + 4 over Z., by substitution. Find
all zeros of f{x) by using the quadratic formula (—b = Vb% — 4ac) -
(2a)~! (all calculations are done in Z,). Do your answers agree?
Should they? Find all zeros of g(x) = 2x* + x + 3 over Z, by sub-
stitution. Try the quadratic formula on g(x). Do your answers
agree? State necessary and sufficient conditions for the quadratic
formula to yield the zeros of a quadratic from Z [x], where p is a
prime greater than 2.

(Rational Root Theorem) Let
f=ax"+a_x""'+ - +a,€Zx

and a, # 0. Prove that if r and s are relatively prime integers and
Sf(rls) = 0,thenrlajands|a,.

Let F be a field and let p(x), a,(x), ay(x), . . ., a,(x) € F[x], where
p(x) is irreducible over F. If p(x) | a,(x)a,(x) - - - a,(x), show that
p(x) divides some a (x). (This exercise is referred to in the proof of
Theorem 17.6.)

Show that x* + 1 is reducible over Zp for every prime p. (This ex-
ercise is referred to in this chapter.)
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36.

37.
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40.
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If p is a prime, prove that x* ! — x*»"2 + x»3 — - -« —x + 1is
irreducible over Q.

Let F be a field and let p(x) be irreducible over F. If E is a field
that contains F and there is an element a in E such that p(a) = 0,
show that the mapping ¢: F[x] — E given by f(x) — f(a) is a ring
homomorphism with kernel (p(x)). (This exercise is referred to in
Chapter 20.)

Prove that the ideal (x> + 1) is prime in Z[x] but not maximal in Z[x].
Let F be a field and let p(x) be irreducible over F. Show that {a +
(p(x)) | a € F} is a subfield of F[x]/{p(x)) isomorphic to F. (This
exercise is referred to in Chapter 20.)

Let F be a field and let f{x) be a polynomial in F[x] that is reducible
over F. Prove that (f(x)) is not a prime ideal in F[x].

Example 1 in this chapter shows the converse of Theorem 17.2 is
not true. That is, a polynomial f{x) in Z[x] can be reducible over Z
but irreducible over Q. State a condition on f{x) that makes the con-
verse true.

Suppose there is a real number r with the property that r + 1/r is
an odd integer. Prove that r is irrational.

In the game of Monopoly, would the probabilities of landing on
various properties be different if the game were played with
Sicherman dice instead of ordinary dice? Why?

Carry out the analysis given in Example 12 for a pair of tetrahe-
drons instead of a pair of cubes. (Define ordinary tetrahedral dice
as the ones labeled 1 through 4.)

Suppose in Example 12 that we begin with n (n > 2) ordinary dice
each labeled 1 through 6, instead of just two. Show that the only
possible labels that produce the same probabilities as n ordinary
dice are the labels 1 through 6 and the Sicherman labels.

Show that one two-sided die labeled with 1 and 4 and another 18-
sided die labeled with 1, 2, 2, 3, 3,3,4,4,4,5,5,5,6,6,6,7,7, 8
yield the same probabilities as an ordinary pair of cubes labeled
1 through 6. Carry out an analysis similar to that given in Example
12 to derive these labels.

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Lang’s Algebra changed the way graduate
algebrais taught .. .. It has affected all
subsequent graduate-level algebra books.
Citation for the Steele Prize

SERGE LANG was a prolific mathematician,
inspiring teacher, and political activist. He
was born near Paris on May 19, 1927. His
family moved to Los Angeles when he was a
teenager. Lang received a B.A. in physics
from Caltech in 1946 and a Ph.D. in mathe-
matics from Princeton in 1951 under Emil
Artin (see the biography in Chapter 19). His
first permanent position was at Columbia
University in 1955, but in 1971 Lang re-
signed his position at Columbia as a protest
against Columbia’s handling of Vietnam an-
tiwar protesters. He joined Yale University in
1972 and remained there until his retirement.
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number theory, algebraic geometry, differ-
ential geometry, and analysis. He wrote more
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his graduate-level Algebra. Lang was a

Bogdan Oporowski

prize-winning teacher known for his ex-
traordinary devotion to students. Lang often
got into heated discussions about mathemat-
ics, the arts, and politics. In one incident, he
threatened to hit a fellow mathematician
with a bronze bust for not conceding it was
self-evident that the Beatles were greater
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Divisibility in

Integral Domains

Give me a fruitful error anytime, full of seeds, bursting with its own
corrections. You can keep your sterile truth for yourself.
VILFREDO PARETO

Irreducibles, Primes

328

In the preceding two chapters, we focused on factoring polynomials
over the integers or a field. Several of those results—unique factoriza-
tion in Z[x] and the division algorithm for F[x], for instance—are natu-
ral counterparts to theorems about the integers. In this chapter and the
next, we examine factoring in a more abstract setting.

Definition Associates, Irreducibles, Primes

Elements a and b of an integral domain D are called associates if

a = ub, where u is a unit of D. A nonzero element « of an integral
domain D is called an irreducible if a is not a unit and, whenever b,

¢ € D with a = bc, then b or c is a unit. A nonzero element a of an
integral domain D is called a prime if a is not a unit and a | bc implies
alboralc.

Roughly speaking, an irreducible is an element that can be factored
only in a trivial way. Notice that an element a is a prime if and only if
(a) is a prime ideal.

Relating the definitions above to the integers may seem a bit confus-
ing, since in Chapter 0 we defined a positive integer to be a prime if it
satisfies our definition of an irreducible, and we proved that a prime in-
teger satisfies the definition of a prime in an integral domain (Euclid’s
Lemma). The source of the confusion is that in the case of the integers,
the concepts of irreducibles and primes are equivalent, but in general, as
we will soon see, they are not.

The distinction between primes and irreducibles is best illustrated by
integral domains of the form ZIVd) = {a + bNdla,b€E Z}, where d is
not 1 and is not divisible by the square of a prime. (These rings are of
fundamental importance in number theory.) To analyze these rings, we
need a convenient method of determining their units, irreducibles, and
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primes. To do this, we define a function N, called the norm, from Z[\/ZZ]
into the nonnegative integers by N(a + b\/d) = 1a*> — db*|. We leave it
to the reader (Exercise 1) to verify the following four properties: N(x) = 0
if and only if x = 0; N(xy) = N(x)N(y) for all x and y; x is a unit if and
only if N(x) = 1; and, if N(x) is prime, then x is irreducible in Z[\Vd).

B EXAMPLE 1 We exhibit an irreducible in Z[\/T3] that is not prime.
Here, N(a + b\/—3) = a* + 3b% Consider 1 + \/—3. Suppose that we
can factor this as xy, where neither x nor y is a unit. Then N(xy) =
N@X)N(y) = N(1 + V/=3) = 4, and it follows that N(x) = 2. But there are
no integers a and b that satisfy a®> + 3b> = 2. Thus, x or y is a unit and
1 + V=3 is an irreducible. To verify that it is not prime, we observe that
(1+V=3)(1 —V—=3)=4=2-2,50that | +\/—3divides2 - 2. On the
other hand, for integers a and b to exist so that 2 = (1 + Vj3)(a +
bV =3) = (a — 3b) + (a + b)\/—3, we must havea — 3b = 2 and a +
b = 0, which is impossible. |

Showing that an element of a ring of the form Z[\/d] is irreducible is
more difficult when d > 1. The next example illustrates one method of
doing this. The example also shows that the converse of the fourth
property above for the norm is not true. That is, it shows that x may be
irreducible even if N(x) is not prime.

B EXAMPLE 2 The element 7 is irreducible in the ring Z[\/5]. To verify
this assertion, suppose that 7 = xy, where neither x nor y is a unit. Then
49 = N(7) = N(x)N(y), and since x is not a unit, we cannot have N(x) =
1. This leaves only the case N(x) = 7. Letx = a + b\V/5. Then there are
integers a and b satisfying la> — 5b*| = 7. This means that a*> — 5b* =
*7. Viewing this equation modulo 5 and trying all possible cases for a
reveals that the only solution is @ = 0. But this means that a is divisible
by 5, and this implies that la®> — 5b*| = 7 is divisible by 5, which is
false. |

Example 1 raises the question of whether or not there is an integral
domain containing a prime that is not an irreducible. The answer: no.

I Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.
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PROOF Suppose that a is a prime in an integral domain and a = bc.
We must show that b or ¢ is a unit. By the definition of prime, we know
thatal boralc. Say at = b. Then 1b = b = at = (bc)t = b(ct) and,
by cancellation, 1 = ct. Thus, c is a unit. |

Recall that a principal ideal domain is an integral domain in which
every ideal has the form (a). The next theorem reveals a circumstance
in which primes and irreducibles are equivalent.

I Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, an element is an irreducible if and only
if it is a prime.

PROOF Theorem 18.1 shows that primes are irreducibles. To prove the
converse, let a be an irreducible element of a principal ideal domain D
and suppose that a | bc. We must show thata | b or a | c. Consider the
ideal I = {ax + by | x,y € D} and let {(d) = I. Since a € I, we can write
a = dr, and because a is irreducible, d is a unit or r is a unit. If d is a
unit, then / = D and we may write 1 = ax + by. Then ¢ = acx + bcy,
and since a divides both terms on the right, a also divides c.

On the other hand, if  is a unit, then {a) = {(d) = I, and, because b € I,
there is an element 7 in D such that ar = b. Thus, a divides b. |

It is an easy consequence of the respective division algorithms for Z
and F[x], where F is a field, that Z and F[x] are principal ideal domains
(see Exercise 41 in Chapter 14 and Theorem 16.3). Our next example
shows, however, that one of the most familiar rings is not a principal
ideal domain.

B EXAMPLE 3 We show that Z[x] is not a principal ideal domain.
Consider the ideal I = (2, x). We claim that [ is not of the form (h(x)). If
this were so, there would be f{x) and g(x) in Z[x] such that 2 = A(x)f(x)
and x = h(x)g(x), since both 2 and x belong to /. By the degree rule
(Exercise 19 in Chapter 16), 0 = deg 2 = deg h(x) + deg f(x), so that
h(x) is a constant polynomial. To determine which constant, we observe
that 2 = A(1)f(1). Thus, h(1) = =1 or *£2. Since 1 is not in /, we must
have h(x) = =2. But then x = *£2g(x), which is nonsense. |

We have previously proved that the integral domains Z and Z[x] have
important factorization properties: Every integer greater than 1 can be
uniquely factored as a product of irreducibles (that is, primes), and
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every nonzero, nonunit polynomial can be uniquely factored as a prod-
uct of irreducible polynomials. It is natural to ask whether all integral
domains have this property. The question of unique factorization in in-
tegral domains first arose with the efforts to solve a famous problem in
number theory that goes by the name Fermat’s Last Theorem.

Historical Discussion
of Fermat’s Last Theorem

There are infinitely many nonzero integers x, y, z that satisfy the equa-
tion x> + y?> = z2. But what about the equation x* + y* = z? or, more
generally, X" + y" = 7", where n is an integer greater than 2 and x, y, z
are nonzero integers? Well, no one has ever found a single solution of
this equation, and for more than three centuries many have tried to
prove that there is none. The tremendous effort put forth by the likes of
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker,
and Hilbert to prove that there are no solutions to this equation has
greatly influenced the development of ring theory.

About a thousand years ago, Arab mathematicians gave an incorrect
proof that there were no solutions when n = 3. The problem lay dor-
mant until 1637, when the French mathematician Pierre de Fermat
(1601-1665) wrote in the margin of a book, “. .. it is impossible to
separate a cube into two cubes, a fourth power into two fourth powers,
or, generally, any power above the second into two powers of the same
degree: I have discovered a truly marvelous demonstration [of this gen-
eral theorem] which this margin is too narrow to contain.”

Because Fermat gave no proof, many mathematicians tried to prove
the result. The case where n = 3 was done by Euler in 1770, although
his proof was incomplete. The case where n = 4 is elementary and was
done by Fermat himself. The case where n = 5 was done in 1825 by
Dirichlet, who had just turned 20, and by Legendre, who was past 70.
Since the validity of the case for a particular integer implies the valid-
ity for all multiples of that integer, the next case of interest was n = 7.
This case resisted the efforts of the best mathematicians until it was
done by Gabriel Lamé in 1839. In 1847, Lamé stirred excitement by
announcing that he had completely solved the problem. His approach
was to factor the expression x” + y”, where p is an odd prime, into

(x+yx+ay): - @+arly),
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where « is the complex number cos(2w/p) + i sin(2mw/p). Thus, his
factorization took place in the ring Z[a] = {q, + & + - -+ +
ap_laf’_1 | a, € Z}. But Lam¢ made the mistake of assuming that, in
such a ring, factorization into the product of irreducibles is unique. In
fact, three years earlier, Ernst Eduard Kummer had proved that this is
not always the case. Undaunted by the failure of unique factorization,
Kummer began developing a theory to “save” factorization by creat-
ing a new type of number. Within a few weeks of Lamé’s announce-
ment, Kummer had shown that Fermat’s Last Theorem is true for all
primes of a special type. This proved that the theorem was true for all
exponents less than 100, prime or not, except for 37, 59, 67, and 74.
Kummer’s work has led to the theory of ideals as we know it today.

Over the centuries, many proposed proofs have not held up under
scrutiny. The famous number theorist Edmund Landau received so many
of these that he had a form printed with “On page , lines ____to
___, you will find there is a mistake.” Martin Gardner, ‘“‘Mathematical
Games” columnist of Scientific American, had postcards printed to
decline requests from readers asking him to examine their proofs.

Recent discoveries tying Fermat’s Last Theorem closely to modern
mathematical theories gave hope that these theories might eventually
lead to a proof. In March 1988, newspapers and scientific publications
worldwide carried news of a proof by Yoichi Miyaoka (see Figure 18.1).
Within weeks, however, Miyaoka’s proof was shown to be invalid. In
June 1993, excitement spread through the mathematics community
with the announcement that Andrew Wiles of Princeton University had
proved Fermat’s Last Theorem (see Figure 18.2). The Princeton math-
ematics department chairperson was quoted as saying, “When we
heard it, people started walking on air.” But once again a proof did not
hold up under scrutiny. This story does have a happy ending. The math-
ematical community has agreed on the validity of the revised proof
given by Wiles and Richard Taylor in September of 1994.

In view of the fact that so many eminent mathematicians were un-
able to prove Fermat’s Last Theorem, despite the availability of the
vastly powerful theories, it seems highly improbable that Fermat had a
correct proof. Most likely, he made the error that his successors made
of assuming that the properties of integers, such as unique factoriza-
tion, carry over to integral domains in general.
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Fermat’s last theorem: A promising approach
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Figure 18.2 Andrew Wiles

Unique Factorization Domains

We now have the necessary terminology to formalize the idea of
unique factorization.

Definition Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

1. every nonzero element of D that is not a unit can be written as a
product of irreducibles of D; and

2. the factorization into irreducibles is unique up to associates and
the order in which the factors appear.

Another way to formulate part 2 of this definition is the following:
If p'p,"> =+ - p,-and g, ™1q,"™ - - - g /™ are two factorizations of some
element as a product of irreducibles, where no two of the p.’s are asso-
ciates and no two of the qj’s are associates, then r = s, each p, is an
associate of one and only one q;,and n;=m.

Of course, the Fundamental Theorem of Arithmetic tells us that the
ring of integers is a unique factorization domain, and Theorem 17.6
says that Z[x] is a unique factorization domain. In fact, as we shall soon
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see, most of the integral domains we have encountered are unique fac-
torization domains.

Before proving our next theorem, we need the ascending chain con-
dition for ideals.

I Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chain of ideals
I, C I, C - - - must be finite in length.

PROOF Let/, C I, C - - - be a chain of strictly increasing ideals in
an integral domain D, and let / be the union of all the ideals in this chain.
We leave it as an exercise (Exercise 3) to verify that / is an ideal of D.
Then, since D is a principal ideal domain, there is an element a in D
such that I = (a). Because a € I and I = UI,, a belongs to some mem-
ber of the chain, say a € I . Clearly, then, for any member /; of the
chain, we have I, C I = {(a) C I , so that / must be the last member of
the chain. |

I Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.

PROOF Let D be a principal ideal domain and let a, be any nonzero
nonunit in D. We will show that a is a product of irreducibles (the
product might consist of only one factor). We begin by showing that
a, has at least one irreducible factor. If a, is irreducible, we are done.
Thus, we may assume that a, = b,a,, where neither b, nor a, is a unit
and a, is nonzero. If a, is not irreducible, then we can write a, = b,a,,
where neither b, nor a, is a unit and a, is nonzero. Continuing in this
fashion, we obtain a sequence b, b,, . . . of elements that are not units
in D and a sequence q, a,, a,, . . . of nonzero elements of D with a, =
b, a,,, foreachn Hence,{(q, C(a,) C - - -is a strictly increasing
chain of ideals (see Exercise 5), which, by the preceding lemma, must
be finite, say, (a,) C (a,) C - - - C {a,). In particular, a_is an irre-
ducible factor of a,. This argument shows that every nonzero nonunit
in D has at least one irreducible factor.

Now write a, = p,c,, where p, is irreducible and c, is not a unit. If ¢,
is not irreducible, then we can write ¢, = p,c,, where p, is irreducible
and ¢, is not a unit. Continuing in this fashion, we obtain, as before, a
strictly increasing sequence (a,) C {(c,) C {c,) C - - -, which must end

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



336

Rings

in a finite number of steps. Let us say that the sequence ends with {c ).
Then c_is irreducible and a, = p p, - - - p.c,, where each p;, is also irre-
ducible. This completes the proof that every nonzero nonunit of a prin-
cipal ideal domain is a product of irreducibles.

It remains to be shown that the factorization is unique up to associ-
ates and the order in which the factors appear. To do this, suppose that
some element a of D can be written

a:plpz...pr:qlqz...qs’

where the p’s and ¢’s are irreducible and repetition is permitted. We use
induction on r. If r = 1, then a is irreducible and, clearly, s = 1 and
P, = ¢,- S0 we may assume that any element that can be expressed as a
product of fewer than r irreducible factors can be so expressed in only
one way (up to order and associates). Since D is a principal ideal
domain, by Theorem 18.2, each irreducible p, in the product p,p, - -
p,1s prime. Then because p, divides q,q, - - * g, p, must divide some g,
(see Exercise 33), say p, | q,. Then, g, = up,, where u is a unit of D.
Since

up\p, " p,=uqq, - q, = q,(uq,) - q,

and

up, = 4y,

we have, by cancellation,

Pz"'pr:(”qz)"'qs-

The induction hypothesis now tells us that these two factorizations are
identical up to associates and the order in which the factors appear.
Hence, the same is true about the two factorizations of a. |

In the existence portion of the proof of Theorem 18.3, the only
way we used the fact that the integral domain D is a principal ideal
domain was to say that D has the property that there is no infinite,
strictly increasing chain of ideals in D. An integral domain with this
property is called a Noetherian domain, in honor of Emmy Noether,
who inaugurated the use of chain conditions in algebra. Noetherian
domains are of the utmost importance in algebraic geometry. One
reason for this is that, for many important rings R, the polynomial
ring R[x] is a Noetherian domain but not a principal ideal domain.
One such example is Z[x]. In particular, Z[x] shows that a UFD need
not be a PID (see Example 3).

As an immediate corollary of Theorem 18.3, we have the follow-
ing fact.
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Corollary F[x]Isa UFD

Let F be a field. Then F[x] is a unique factorization domain.

PROOF By Theorem 16.3, F[x] is a principal ideal domain. So, F[x] is
a unique factorization domain, as well. |

As an application of the preceding corollary, we give an elegant
proof, due to Richard Singer, of Eisenstein’s Criterion (Theorem 17.4).

B EXAMPLE4 Let
f(X) = anx" + an—l'xn71 4+ ...+ ao e Z[X],
and suppose that p is prime such that
p*an’planfl""’plao and pz*ao.

We will prove that f(x) is irreducible over Q. If f(x) is reducible over Q,
we know by Theorem 17.2 that there exist elements g(x) and A(x) in Z[x]
such that f(x) = g(x)h(x), 1 = deg g(x) <n, and 1 = degh (x) < n. Let
f(x), gx), and h(x) be the polynomials in Z [x] obtained from f(x),
g(x), and h(x) by reducing all coefficients modulo p. Then, since p di-
vides all the coefficients of f(x) except a , we have a x" = f(x) = g(x)-
h(x). Since Z is a field, Z [x] is a unique factorization domain. Thus,
x| g(x) and x [ A(x). So, g(0) = h(0) = 0 and, therefore, p | g(0) and p | h(0).
But then p? | g(0)A(0) = £(0) = a,, which is a contradiction. |

Euclidean Domains

Another important kind of integral domain is a Euclidean domain.

Definition Euclidean Domain (ED)

An integral domain D is called a Euclidean domain if there is a
function d (called the measure) from the nonzero elements of D to
the nonnegative integers such that

1. d(a) = d(ab) for all nonzero a, b in D; and
2. ifa, b € D, b # 0, then there exist elements q and r in D such
that a = bq + r, where r = 0 or d(r) < d(b).

B EXAMPLE 5 The ring Z is a Euclidean domain with d(a) = lal (the
absolute value of a). |
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B EXAMPLE 6 Let F be a field. Then F[x] is a Euclidean domain with
d(f(x)) = deg f(x) (see Theorem 16.2). |

Examples 5 and 6 illustrate just one of many similarities between the
rings Z and F[x]. Additional similarities are summarized in Table 18.1.

Table 18.1 Similarities Between Z and F[x]

VA Flx]
Euclidean domain: “— Euclidean domain:
d(a) = lal d(fx)) = deg flx)
Units: Units:
a is a unit if and only if lal = 1 f(x) is a unit if and only if deg fix) = 0
Division algorithm: > Division algorithm:
Fora,b € Z, b # 0, there exist g, r € Z For f(x), g(x) € F[x], g(x) # 0O, there
such thata = bg + r,0 = r < |bl exist g(x), r(x) € F|[x] such that f(x)

= g(Wq() + r(x), 0 = deg r(x) <
deg g(x) or r(x) = 0

PID: “ PID:

Every nonzero ideal I = {(a), where Every nonzero ideal I = (f(x)), where
a # 0 and lal is minimum deg f(x) is minimum

Prime: > Irreducible:

No nontrivial factors No nontrivial factors

UFD: “ UFD:

Every element is a “unique” product of Every element is a “unique” product of
primes irreducibles

B EXAMPLE 7 The ring of Gaussian integers
Zlil={a+bila,beZ}

is a Euclidean domain with d(a + bi) = a®> + b>. Unlike the previous
two examples, in this example the function d does not obviously sat-
isfy the necessary conditions. That d(x) = d(xy) for x, y € Z[i] follows
directly from the fact that d(xy) = d(x)d(y) (Exercise 7). To verify that
condition 2 holds, observe that if x, y € Z[i] and y # 0, then xy™!' €
Qli], the field of quotients of Z[i] (Exercise 57 in Chapter 15). Say
xy~! = s + ti, where s, t € Q. Now let m be the integer nearest s, and
let n be the integer nearest 7. (These integers may not be uniquely
determined, but that does not matter.) Thus, Im — sl = 1/2 and In — ¢l
= 1/2. Then

xyl=s+ti=(m—m+s)+mn—n+1oi
=m+ ni)+ [(s —m) + (t — n)l.
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So,
x = (m+ ni)y + [(s —m) + (¢t — n)i]y.

We claim that the division condition of the definition of a Euclidean
domain is satisfied with ¢ = m + ni and

r=[(s —m)+ (t — n)ily.
Clearly, g belongs to Z[i], and since r = x — gy, so does r. Finally,
d(r) = d([(s — m) + (t — n)i])d(y)
= [(s — m)* + (r — n)*1d(y)
1

1
= (4 + 4> d(y) < d(). 1

I Theorem 18.4 ED Implies PID

Every Euclidean domain is a principal ideal domain.

PROOF Let D be a Euclidean domain and / a nonzero ideal of D. Among
all the nonzero elements of /, let a be such that d(a) is a minimum. Then
I = {a). For, if b € I, there are elements ¢ and r such that b = aqg + r,
where r = 0 or d(r) < d(a). But r = b — ag € I, so d(r) cannot be less
than d(a). Thus, r = 0 and b € (a). Finally, the zero ideal is (0). |

Although it is not easy to verify, we remark that there are principal
ideal domains that are not Euclidean domains. The first such example
was given by T. Motzkin in 1949. A more accessible account of
Motzkin’s result can be found in [2].

As an immediate consequence of Theorems 18.3 and 18.4, we have
the following important result.

I Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.

We may summarize our theorems and remarks as follows:

ED = PID = UFD;
UFD #% PID % ED.
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(You can remember these implications by listing the types alphabetically.)

In Chapter 17, we proved that Z[x] is a unique factorization domain.
Since Z is a unique factorization domain, the next theorem is a broad
generalization of this fact. The proof is similar to that of the special
case, and we therefore omit it.

I Theorem 18.5 D a UFD Implies D[x] a UFD

If D is a unique factorization domain, then D[x] is a unique
factorization domain.

We conclude this chapter with an example of an integral domain that
is not a unique factorization domain.

B EXAMPLE 8 The ring Z[\V/—5] = {a + b\/—5 | a, b € Z} is an inte-
gral domain but not a unique factorization domain. It is straightforward
that Z[\ﬁS] is an integral domain (see Exercise 11 in Chapter 13). To
verify that unique factorization does not hold, we mimic the method
used in Example 1 with N(a + b\/—5) = a® + 5b2. Since N(xy) = N(x)
N(y) and N(x) = 1 if and only if x is a unit (see Exercise 1), it follows
that the only units of Z[\fS] are =1.

Now consider the following factorizations:
46 =2 - 23,
46 = (1 + 3V =501 — 3V -5).

We claim that each of these four factors is irreducible over Z[\fS].
Suppose that, say, 2 = xy, where x, y € Z[\/TS] and neither is a unit.
Then 4 = N(2) = N(x)N(y) and, therefore, N(x) = N(y) = 2, which is
impossible. Likewise, if 23 = xy were a nontrivial factorization, then
N(x) = 23. Thus, there would be integers a and b such that a*> + 5b* =
23. Clearly, no such integers exist. The same argument applies to 1 *=

3V =5. ]

In light of Examples 7 and 8, one can’t help but wonder for which d < 0
is Z[\V/d] a unique factorization domain. The answer is only when d = —1
or —2 (see [1], p. 297). The case where d = —1 was first proved, naturally
enough, by Gauss.
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| tell them that if they will occupy themselves with the study of mathemat-
ics they will find in it the best remedy against lust of the flesh.

10.

11.

12.

13.

14.

15.

16.

THOMAS MANN, The Magic Mountain

. For the ring Z[\V/d] = {a + b\/d | a, b € Z}, where d # 1 and d is

not divisible by the square of a prime, prove that the norm N(a +
b\Vd) = la® — db? satisfies the four assertions made preceding
Example 1. (This exercise is referred to in this chapter.)

. In an integral domain, show that @ and b are associates if and only

if (@) = (b).

. Show that the union of a chain I, C I, C - - - of ideals of aring R is

an ideal of R. (This exercise is referred to in this chapter.)

. In an integral domain, show that the product of an irreducible and a

unit is an irreducible.

. Suppose that @ and b belong to an integral domain, b # 0, and a is

not a unit. Show that (ab) is a proper subset of (b). (This exercise is
referred to in this chapter.)

. Let D be an integral domain. Define a ~ b if a and b are associates.

Show that this defines an equivalence relation on D.

. In the notation of Example 7, show that d(xy) = d(x)d(y).

Let D be a Euclidean domain with measure d. Prove that u is a unit
in D if and only if d(u) = d(1).

. Let D be a Euclidean domain with measure d. Show that if ¢ and b

are associates in D, then d(a) = d(b).

Let D be a principal ideal domain and let p € D. Prove that (p) is a
maximal ideal in D if and only if p is irreducible.

Trace through the argument given in Example 7 to find ¢ and r in
Z[i] such that 3 — 4i = (2 + 5i)g + rand d(r) < d(2 + 5i).

Let D be a principal ideal domain. Show that every proper ideal of
D is contained in a maximal ideal of D.

In Z[\V/—5], show that 21 does not factor uniquely as a product of
irreducibles.

Show that 1 — i is an irreducible in Z[i].

Show that Z[\/—6] is not a unique factorization domain. (Hint:
Factor 10 in two ways.) Why does this show that Z[\/T6] is not a
principal ideal domain?

Give an example of a unique factorization domain with a subdo-
main that does not have a unique factorization.
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18.
19.

20.
21.
22.

23.
24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

In Z[i], show that 3 is irreducible but 2 and 5 are not.

Prove that 7 is irreducible in Z[\/6], even though N(7) is not prime.
Prove that if p is a prime in Z that can be written in the form a® + b?,
then a + bi is irreducible in Z[{]. Find three primes that have this
property and the corresponding irreducibles.

Prove that Z[\@] is not a principal ideal domain.

In Z[\/—5], prove that 1 + 3\/—5 is irreducible but not prime.

In Z[\V/5], prove that both 2 and 1 + \/5 are irreducible but not
prime.

Prove that Z[\@] is not a unique factorization domain.

Let F be a field. Show that in F[x] a prime ideal is a maximal ideal.
Let d be an integer less than —1 that is not divisible by the square
of a prime. Prove that the only units of Z[V/d] are +1 and —1.

In Z[\f2] ={a+ b2 | a, b € Z}, show that every element of the
form (3 + 2\V/2)" is a unit, where 7 is a positive integer.

If @ and b belong to Z[\/a], where d is not divisible by the square
of a prime and ab is a unit, prove that a and b are units.

For a commutative ring with unity we may define associates, irre-
ducibles, and primes exactly as we did for integral domains. With
these definitions, show that both 2 and 3 are prime in Z,, but 2 is
irreducible and 3 is not.

Let n be a positive integer and p a prime that divides n. Prove that p
is prime in Z . (See Exercise 28).

Let p be a prime divisor of a positive integer n. Prove that p is ir-
reducible in Z if and only if p? divides n. (See Exercise 28).

Prove or disprove that if D is a principal ideal domain, then D[x] is
a principal ideal domain.

Determine the units in Z[{].

Let p be a prime in an integral domain. If p | a,a, - - - a,, prove that
p divides some a,. (This exercise is referred to in this chapter.)
Show that 3x> + 4x + 3 € Zi[x] factors as (3x + 2)(x + 4) and
(4x + 1)(2x + 3). Explain why this does not contradict the corol-
lary of Theorem 18.3.

Let D be a principal ideal domain and p an irreducible element of D.
Prove that D/(p) is a field.

Show that an integral domain with the property that every strictly

decreasing chain of ideals /; D I, D - - - must be finite in length is
a field.

An ideal A of a commutative ring R with unity is said to be finitely
generated if there exist elements a,,

5 -, a, of A such that
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A ={a, ay ..., a) An integral domain R is said to satisfy the
ascending chain condition if every strictly increasing chain of ide-
als I, C I, C - - - must be finite in length. Show that an integral
domain R satisfies the ascending chain condition if and only if
every ideal of R is finitely generated.

Prove or disprove that a subdomain of a Euclidean domain is a
Euclidean domain.

Show that for any nontrivial ideal / of Z[i], Z[i]/1 is finite.

Find the inverse of 1 + /2 in Z[\f2]. What is the multiplicative
order of 1 + \/2?

In Z[\V/—7], show that N(6 + 2\/=7) = N(1 + 3\V/=7) but 6 + 2
V=7 and 1 + 3V =7 are not associates.

LetR =Z@Z® - - - (the collection of all sequences of integers
under componentwise addition and multiplication). Show that R
has ideals 1,, I,, I, . . . with the property that [, C I, C I, C - - -
(Thus R does not have the ascending chain condition.)

Prove that in a unique factorization domain, an element is irreduc-
ible if and only if it is prime.

Let F be a field and let R be the integral domain in F[x] generated by
x* and x°. (That is, R is contained in every integral domain in F[x] that
contains x* and x.) Show that R is not a unique factorization domain.
Prove that for every field F, there are infinitely many irreducible
elements in Fx].

Find a mistake in the statement shown in Figure 18.2.

Computer Exercise

Software for a computer exercise is available at the website:

http://www.d.umn.edu/~jgallian
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Sophie Germain

One of the very few women to overcome
the prejudice and discrimination that
tended to exclude women from the pursuit
of higher mathematics in her time was
Sophie Germain.

SoPHIE GERMAIN was born in Paris on April 1,
1776. She educated herself by reading the
works of Newton and Euler in Latin and the
lecture notes of Lagrange. In 1804, Germain
wrote to Gauss about her work in number
theory but used the pseudonym Monsieur
LeBlanc because she feared that Gauss would
not take seriously the efforts of a woman.
Gauss gave Germain’s results high praise and
a few years later, upon learning her true iden-
tity, wrote to her:

Stock Montage

themselves only to those who have the
courage to go deeply into it. But when a
person of the sex which, according to our
customs and prejudices, must encounter
infinitely more difficulties than men to
familiarize herself with these thorny re-
searches, succeeds nevertheless in surmount-
ing these obstacles and penetrating the most
obscure parts of them, then without doubt she
must have the noblest courage, quite extraor-
dinary talents, and a superior genius.*

Germain is best known for her work on

Fermat’s Last Theorem. She died on June
27, 1831, in Paris.

For more information about Germain,
visit:

But how to describe to you my admiration

and astonishment at seeing my esteemed cor-
respondent Mr. LeBlanc metamorphose him-
self into this illustrious personage who gives

such a brilliant example of what I would find
it difficult to believe. A taste for the abstract
sciences in general and above all the myster-
ies of numbers is excessively rare: it is not a
subject which strikes everyone; the enchant-
ing charms of this sublime science reveal

http://www-groups.dcs
.st-and.ac.uk/~history

*Quote from Math’s Hidden Woman, Nova Online, http://www.pbs.org/wgbh/nova/proot/germain

.html (accessed Nov 5, 2008).
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Andrew Wiles

For spectacular contributions to number
theory and related fields, for major
advances on fundamental conjectures,
and for settling Fermat’s Last Theorem.
Citation for the Wolf Prize

PIERRE DE FERMAT 1670

» 2000 SVETOVY ROK MATEMATIKY,

Postage stamp issued by the
Czech Republic in honor of
Fermat’s Last Theorem.

IN 1993, ANDREW WILES of Princeton electri-
fied the mathematics community by announc-
ing that he had proved Fermat’s Last Theorem
after seven years of effort. His proof, which
ran 200 pages, relied heavily on ring theory
and group theory. Because of Wiles’s solid
reputation and because his approach was
based on deep results that had already shed
much light on the problem, many experts in
the field believed that Wiles had succeeded
where so many others had failed. Wiles’s
achievement was reported in newspapers and
magazines around the world. The New York
Times ran a front-page story on it, and one TV
network announced it on the evening news.
Wiles even made People magazine’s list of the
25 most intriguing people of 1993! In San
Francisco a group of mathematicians rented a
1200-seat movie theater and sold tickets for
$5.00 each for public lectures on the proof.
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Princeton University

Scalpers received as much as $25.00 a ticket
for the sold-out event.

The bubble soon burst when experts
had an opportunity to scrutinize Wiles’s
manuscript. By December, Wiles released a
statement saying he was working to resolve
a gap in the proof. In September of 1994, a
paper by Wiles and Richard Taylor, a former
student of his, circumvented the gap in the
original proof. Since then, many experts
have checked the proof and have found no
errors. One mathematician was quoted as
saying, “The exuberance is back.” In 1997,
Wiles’s proof was the subject of a PBS Nova
program.

Wiles was born in 1953 in Cambridge,
England. He obtained his bachelor’s degree at
Oxford and his doctoral degree at Cambridge
University in 1980. He was a professor at Har-
vard before moving to Princeton in 1982. In
2011, he became a research professor at
Oxford. He has received many prestigious
awards.

To find more information about Wiles,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Supplementary Exercises for Chapters 15-18 347

The intelligence is proved not by ease of learning, but by understanding
what we learn.

JOSEPH WHITNEY

True/false questions for Chapters 15-18 are available on the Web at:
http://www.d.umn.edu/~jgallian/TF

1. Suppose that F'is a field and there is a ring homomorphism from Z
onto F. Show that F'is isomorphic to ZI , for some prime p.

2. Let Q[V2] = {r + s\/2 | r, s € Q}. Determine all ring automor-
phisms of Q[\/Z].

3. (Second Isomorphism Theorem for Rings) Let A be a subring
of R and let B be an ideal of R. Show that A N B is an ideal of A
and that A/(A N B) is isomorphic to (A + B)/B. (Recall thatA + B =
fa+bla€ A, beE B}.)

4. (Third Isomorphism Theorem for Rings) Let A and B be ideals of a
ring R with B C A. Show that A/B is an ideal of R/B and
(R/B)/(A/B) is isomorphic to R/A.

5. Let f(x) and g(x) be irreducible polynomials over a field F. If f(x)
and g(x) are not associates, prove that F[x]/{ f(x)g(x)) is isomorphic
to Flx]fx)) @ Flx]Kg(x)).

6. (Chinese Remainder Theorem for Rings) If R is a commutative
ring and / and J are two proper ideals with I + J = R, prove that
R/(I N J) is isomorphic to R/I & R/J. Explain why Exercise 5 is a
special case of this theorem.

7. Prove that the set of all polynomials whose coefficients are all even
is a prime ideal in Z[x].

8. LetR = Z[V—-5]and let] = {a + bN~51a,b € Z,a — b is
even}. Show that I is a maximal ideal of R.

9. Let R be a ring with unity and let a be a unit in R. Show that the map-
ping from R into itself given by x — axa ™! is a ring automorphism.

10. Leta + bV -5 belong to Z[\ﬁS] with b # 0. Show that 2 does
not belong to (a + b\/—5).

11. Show that Z[i]/(2 + i) is a field. How many elements does it have?

12. Is the homomorphic image of a principal ideal domain a principal
ideal domain?

13. For any fix) € Zp[x], show that f(x”) = (f(x))”.
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14.

15.

16.

17.

18.

19.
20.

21.

22,

23.
24,
25.

26.

27.
28.

29.

30.
31.

32.

Let p be a prime. Show that there is exactly one ring homomor-
phism from Z_ to Zpk if p¥ does not divide m, and exactly two ring
homomorphisms from Z  to Z, if p* does divide m.

Recall that a is an idempotent if a> = a. Show that if 1 + k is an
idempotent in Z , then n — k is an idempotent in Z .

Show that Z (where n > 1) always has an even number of idempo-
tents. (The number is 29, where d is the number of distinct prime
divisors of n.)

Show that the equation x> + y?> = 2003 has no solutions in the
integers.

Prove that if both k and k + 1 are idempotents in Z and k # 0, then
n = 2k.

Prove that x* + 15x3 + 7 is irreducible over Q.

For any integers m and n, prove that the polynomial x* + (5m + 1)x +
5n + 1is irreducible over Z.

Prove that (\/2) is a maximal ideal in Z[\/2]. How many elements
are in the ring Z[\V/2]/(\/2)?

Prove that Z[\V/ —2] and Z[\/2] are unique factorization domains.
(Hint: Mimic Example 7 in Chapter 18.)

Is (3) a maximal ideal in Z[i]?

Express both 13 and 5 + i as products of irreducibles from Z[i].
LetR={a/bla, b€ Z 3 + b}. Prove that R is an integral domain.
Find its field of quotients.

Give an example of a ring that contains a subring isomorphic to Z
and a subring isomorphic to Z,.

Show that Z[i]/(3) is not ring-isomorphic to Z, © Z,.

0 b} a,be Z,,} is ring-

For any n > 1, prove that R = { {a
isomorphicto Z © Z .

Suppose that R is a commutative ring and / is an ideal of R. Prove
that R[x]/I[x] is isomorphic to (R/D)[x].

Find an ideal I of Zy[x] such that the factor ring Z,[x]/I is a field.

Find an ideal I of Z,[x] such that the factor ring Z,[x]/I is an integral
domain but not a field.

Find an ideal I of Z[x] such that Z[x]/I is ring-isomorphic to Z.
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Vector Spaces

Still round the corner there may wait
A new road or a secret gate.

J. R R. TOLKIEN, The Fellowship of the Ring

Definition and Examples

Abstract algebra has three basic components: groups, rings, and fields.
Thus far we have covered groups and rings in some detail, and we have
touched on the notion of a field. To explore fields more deeply, we need
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space

A set Vis said to be a vector space over a field F if V is an Abelian
group under addition (denoted by +) and, if for each a € F and

v € V, there is an element av in V such that the following conditions
hold for all @, bin F and all u, vin V.

1. alv + u) =av + au
2. (a+ by =av+ bv
3. a(bv) = (ab)v

4. lv=vy

The members of a vector space are called vectors. The members of
the field are called scalars. The operation that combines a scalar a and
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet,
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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B EXAMPLE 1 The set R" = {(a,, a,, ..., a) | a, € R} is a vector
space over R. Here the operations are the obvious ones:

(al,az,...,an) + (b, b,,...,Db) = (q +b1,a2+b2,...,an+bn)
and
b(a,,a,,...,a) = (ba,, ba,, ..., ba). |

B EXAMPLE 2 The set M(Q) of 2 X 2 matrices with entries from Q is
a vector space over Q. The operations are

|:a1 (,12:| + |:b1 b2:| _ |:a1 + bl a, + b2:|
as ay by by az+b; a, + by

and
a ba, ba
fo-lsl
as day ba3 ba4
I EXAMPLE 3 The set Zp[x] of polynomials with coefficients from Z,
is a vector space over ZI » Where p is a prime. |

# EXAMPLE 4 The set of complex numbers C = {a + bi | a, b € R}
is a vector space over R. The vector addition and scalar multiplication
are the usual addition and multiplication of complex numbers. |

The next example is a generalization of Example 4. Although it ap-
pears rather trivial, it is of the utmost importance in the theory of fields.

B EXAMPLE 5 Let E be a field and let F' be a subfield of E. Then E'is a
vector space over F. The vector addition and scalar multiplication are
the operations of E. |

Subspaces

Of course, there is a natural analog of subgroup and subring.

Definition Subspace
Let V be a vector space over a field F and let U be a subset of V. We
say that U is a subspace of V if U is also a vector space over F under
the operations of V.

B EXAMPLE 6 The set {a,x* + ax + a, | a, a,, a, € R} is a sub-
space of the vector space of all polynomials with real coefficients
over R. |
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19 | Vector Spaces 353
B EXAMPLE 7 Let Vbe a vector space over Fand letv,v,,...,v be
(not necessarily distinct) elements of V. Then the subset
Vg sv)y=H{ay, tay,+---+ay la,a,...,a EF)

is called the subspace of V spanned by v, v,, ..., v,. Any sum of
the form a,v, + a,v, + - - - + a,v is called a linear combination of
Vis Vos oo s v (v, vy oo v ) =V, we say that (v, v,, ...,V }
spans V. |

Linear Independence

The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent
A set S of vectors is said to be linearly dependent over the field F if
there are vectors v, v,, ..., v, from S and elements a, a,, . . . , a, from

F, not all zero, such thatav, + a,v, + - - - + a,v, = 0. A set of vectors
that is not linearly dependent over F is called linearly independent
over

In other words, a set of vectors is linearly dependent over F if there
is a nontrivial linear combination of them over F equal to 0.

B EXAMPLE 8 In R3 the vectors (1, 0, 0), (1, 0, 1), and (1, 1, 1) are lin-
early independent over R. To verify this, assume that there are real
numbers a, b, and ¢ such that a(1, 0, 0) + b(1, 0, 1) + ¢(1, 1, 1) =
(0,0,0). Then(a + b + c¢,c,b + ¢) = (0, 0, 0). From this we see that
a=b=c=0. |

Certain kinds of linearly independent sets play a crucial role in the
theory of vector spaces.

Definition Basis

Let V be a vector space over F. A subset B of V is called a basis for V
if B is linearly independent over F and every element of V is a linear
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for
a vector space V, then every member of V is a unique linear combina-
tion of the elements of B (see Exercise 19). Second, with every vector
space spanned by finitely many vectors, we can use the notion of basis
to associate a unique integer that tells us much about the vector space.
(In fact, this integer and the field completely determine the vector space
up to isomorphism—see Exercise 31.)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



354 Fields

a a-+ b}
at+b b
is a vector space over R (see Exercise 17). We claim that the set

B EXAMPLE 9 Theset V = {[ a, b e R}

11 01
B = {L O]’ L 1]} is a basis for V over R. To prove that the set

B is linearly independent, suppose that there are real numbers a and b

such that
11 01 00
1ol =20 1]=16 o
1 0 11 00
+b 0 0
Thisgives{ “ “ ]:[ },sothatazbzo. On the other
a+b b 0 0

hand, since every member of V has the form
[ a a+b]_ {1 1}“9[0 1]
atb b ] ‘10 1)
we see that B spans V. |

We now come to the main result of this chapter.

§ Theorem 19.1 Invariance of Basis Size

If{u,u,...,u,}and{w,w,, ..., w,| are both bases of a vector
space V over a field F, then m = n.

PROOF Suppose that m # n. To be specific, let us say that m < n.
Consider the set {w,, u,, u,,..., u, }. Since the u’s span V, we
know that w, is a linear combination of the u’s, say, w, = au, +
au, + - -+ +a, u ,where the a’s belong to F. Clearly, not all the a’s are
0. For convenience, say a, # 0. Then {w, u,, ..., u, } spans V (see
Exercise 21). Next, consider the set {w, w,, u,, ..., u,}. This time, w,
is a linear combination of wy, u,, . . . , u,, say, w, = byw, + byu, +

+ b u,, where the b’s belong to F. Then at least one of b, ..., b, is
nonzero, for otherwise the w’s are not linearly independent. Let us say
b, # 0. Then w,, w,, u,, . . ., u, span V. Continuing in this fashion, we
see that {w,, w,, ..., w, } spans V. But then w,__ is a linear combina-
tion of w, w,, ..., w,_ and, therefore, the set {w ..., w } is not
linearly independent. This contradiction finishes the proof. |

2

Theorem 19.1 shows that any two finite bases for a vector space have
the same size. Of course, not all vector spaces have finite bases.
However, there is no vector space that has a finite basis and an infinite
basis (see Exercise 25).
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Definition Dimension

A vector space that has a basis consisting of n elements is said

to have dimension n. For completeness, the trivial vector space {0} is
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of

this text, it can be shown that every vector space has a basis. A vector
space that has a finite basis is called finite dimensional; otherwise, it is
called infinite dimensional.

Somebody who thinks logically is a nice contrast to the real world.

10.

Copyright 2012 Cengage
e third party ¢

THE LAW OF THUMB

. Verify that each of the sets in Examples 1-4 satisfies the axioms

for a vector space. Find a basis for each of the vector spaces in
Examples 1-4.

. (Subspace Test) Prove that a nonempty subset U of a vector space

V over a field F is a subspace of Vif, for every # and u’ in U and
everyain F,u + u' € U and au € U. (In words, a nonempty set U
is a subspace of V'if it is closed under the two operations of V.)

. Verify that the set in Example 6 is a subspace. Find a basis for this

subspace. Is {x> + x + 1,x + 5, 3} a basis?

. Verify that the set (v,, v,, .. ., v ) defined in Example 7 is a sub-

space.

. Determine whether or not the set {(2, —1, 0), (1, 2, 5), (7, —1,5)} is

linearly independent over R.

. Determine whether or not the set

ol 2}

is linearly independent over Z..

. If {u, v, w} is a linearly independent subset of a vector space, show

that {u, u + v, u + v + w} is also linearly independent.

. If {v,,v,,...,v }isalinearly dependent set of vectors, prove that

one of these vectors is a linear combination of the other.

. (Every spanning collection contains a basis.) If {v,, v,, ..., v } spans

a vector space V, prove that some subset of the v’s is a basis for V.

(Every independent set is contained in a basis.) Let V be a finite-
dimensional vector space and let {v, v,, ..., v } be a linearly

tmay be st
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11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

24.

independent subset of V. Show that there are vectors w, w,, . .
such that {v,v,,..., v ,w,...,w }isabasis for V.

If Vis a vector space over F of dimension 5 and U and W are sub-
spaces of V of dimension 3, prove that U N W # {0}. Generalize.

LW,

Show that the solution set to a system of equations of the form
ax, +---+ax =0
nn
ayx, + - +a,x =0
a x, +--++a x =0,

ml™1 mn’n

where the a’s are real, is a subspace of R".

Let V be the set of all polynomials over Q of degree 2 together
with the zero polynomial. Is V a vector space over Q?

Let V=R3and W = {(a, b, c) €E VI a* + b> = ¢?}. Is W a sub-
space of V? If so, what is its dimension?

Let V=R’and W = {(a,b,c) E VlIa+ b = c}. Is W a subspace
of V? If so, what is its dimension?

v

over O, and find a basis for V over Q.

a, b, c e Q}. Prove that V is a vector space

Verify that the set V in Example 9 is a vector space over R.

LetP = {(a,b,c)la,b,c €R,a =2b + 3c}. Prove that P is a sub-
space of R3. Find a basis for P. Give a geometric description of P.
Let B be a subset of a vector space V. Show that B is a basis for V if
and only if every member of V is a unique linear combination of
the elements of B. (This exercise is referred to in this chapter and
in Chapter 20.)

If U is a proper subspace of a finite-dimensional vector space V,
show that the dimension of U is less than the dimension of V.
Referring to the proof of Theorem 19.1, prove that {w,, u,, ..., u,_}
spans V.

If Vis a vector space of dimension n over the field Z, how many
elements are in V?

LetS = {(a,b,c,d)a,b,c,d€ER,a=c,d=a+ b}. Finda
basis for S.

Let U and W be subspaces of a vector space V. Show that U N Wis
asubspace of Vandthat U+ W={u+wlu€e U,we& W}isa
subspace of V.




25.

26.

27.

28.

29.

30.

31.

32.
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If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements.
(This exercise is referred to in this chapter.)
Letu=(2,3,1),v=(1,3,0),and w = (2, =3, 3). Since (1/2)u —
2/3)v — (1/6)w = (0, 0, 0), can we conclude that the set {u, v, w}
is linearly dependent over Z,?

Define the vector space analog of group homomorphism and ring
homomorphism. Such a mapping is called a linear transformation.
Define the vector space analog of group isomorphism and ring iso-
morphism.

Let T be a linear transformation from V to W. Prove that the image
of Vunder T is a subspace of W.

Let T be a linear transformation of a vector space V. Prove that
{v € VIT(v) = 0}, the kernel of T, is a subspace of V.

Let T be a linear transformation of V onto W. If {v,, v,, ..., v }
spans V, show that {7(v,), T(v,), ..., T(v,)} spans W.

If Vis a vector space over F of dimension n, prove that V is isomor-
phic as a vector space to F" = {(a,, a,, ..., a,) | a, € F}. (This
exercise is referred to in this chapter.)

Let V be a vector space over an infinite field. Prove that V is not the
union of finitely many proper subspaces of V.
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Emil Artin

For Artin, to be a mathematician meant to
participate in a great common effort, to
continue work begun thousands of years
ago, to shed new light on old discoveries,
to seek new ways to prepare the develop-
ments of the future. Whatever standards
we use, he was a great mathematician.

RICHARD BRAUER,
Bulletin of the American
Mathematical Society

EMIL ARTIN was one of the leading mathe-
maticians of the 20th century and a major
contributor to linear algebra and abstract al-
gebra. Artin was born on March 3, 1898, in
Vienna, Austria, and grew up in what was
recently known as Czechoslovakia. He re-
ceived a Ph.D. in 1921 from the University
of Leipzig. From 1923 until he emigrated
to America in 1937, he was a professor at
the University of Hamburg. After one year
at Notre Dame, Artin went to Indiana
University. In 1946 he moved to Princeton,
where he stayed until 1958. The last four
years of his career were spent where it
began, at Hamburg.

Artin’s mathematics is both deep and
broad. He made contributions to number the-
ory, group theory, ring theory, field theory,
Galois theory, geometric algebra, algebraic
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Michael Artin

topology, and the theory of braids—a field
he invented. Artin received the American
Mathematical Society’s Cole Prize in number
theory, and he solved one of the 23 famous
problems posed by the eminent mathemati-
cian David Hilbert in 1900.

Artin was an outstanding teacher of
mathematics at all levels, from freshman
calculus to seminars for colleagues. Many
of his Ph.D. students as well as his son
Michael have become leading mathemati-
cians. Through his research, teaching, and
books, Artin exerted great influence among
his contemporaries. He died of a heart at-
tack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Olga Taussky-Todd

“Olga Taussky-Todd was a distinguished
and prolific mathematician who wrote
about 300 papers.”

EDITH LUCHINS AND MARY ANN McLOUGHLIN,

Notices of the American
Mathematical Society, 1996

OLGA Taussky-TopD was born on August 30,
1906, in Olmiitz in the Austro-Hungarian
Empire. Taussky-Todd received her doctoral
degree in 1930 from the University of Vienna.
In the early 1930s she was hired as an assis-
tant at the University of Gottingen to edit
books on the work of David Hilbert. She also
edited lecture notes of Emil Artin and as-
sisted Richard Courant. She spent 1934 and
1935 at Bryn Mawr and the next two years
at Girton College in Cambridge, England.
In 1937, she taught at the University of
London. In 1947, she moved to the United
States and took a job at the National Bureau
of Standards’ National Applied Mathematics
Laboratory. In 1957, she became the first
woman to teach at the California Institute of
Technology as well as the first woman to
receive tenure and a full professorship in
mathematics, physics, or astronomy there.
Thirteen Caltech Ph.D. students wrote their
Ph.D. theses under her direction.

MaryAnn McLoughlin

In addition to her influential contribu-
tions to linear algebra, Taussky-Todd did
important work in number theory.

Taussky-Todd received many honors and
awards. She was elected a Fellow of the
American Association for the Advancement
of Science and vice president of the American
Mathematical Society. In 1990, Caltech estab-
lished an instructorship named in her honor.
Taussky-Todd died on October 7, 1995, at the
age of 89.

For more information about Taussky-
Todd, visit:

http://www-groups.dcs
.st-and.ac.uk/~history

http://www.agnesscott
.edu/lriddle/women/women.htm
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Extension Fields

In many respects this [Kronecker’s Theorem] is the
fundamental theorem of algebra.
RICHARD A. DEAN, Elements of Abstract Algebra

The Fundamental Theorem
of Field Theory

In our work on rings, we came across a number of fields, both finite
and infinite. Indeed, we saw that Z, [x]/{x* + 1) is a field of order 9,
whereas R[x]/(x> + 1) is a field isomorphic to the complex numbers.
In the next three chapters, we take up, in a systematic way, the subject
of fields.

Definition Extension Field
A field E is an extension field of a field F if F C E and the operations
of F are those of E restricted to F.

Cauchy’s observation in 1847 that R[x]/(x*> + 1) is a field that con-
tains a zero of x> + 1 prepared the way for the following sweeping
generalization of that fact.

I Theorem 20.1 Fundamental Theorem of Field Theory
(Kronecker’s Theorem, 1887)

360

Let F be a field and let f(x) be a nonconstant polynomial in F[x].
Then there is an extension field E of F in which f(x) has a zero.

PROOF Since F[x] is a unique factorization domain, f(x) has an irre-
ducible factor, say, p(x). Clearly, it suffices to construct an extension
field E of F in which p(x) has a zero. Our candidate for E is F[x]/{p(x)).
We already know that this is a field from Corollary 1 of Theorem 17.5.
Also, since the mapping of ¢: F — E given by ¢(a) = a + (p(x)) is
one-to-one and preserves both operations, E has a subfield isomorphic
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to F. We may think of E as containing F'if we simply identify the coset
a + (p(x)) with its unique coset representative a that belongs to F [that
is, think of a + (p(x)) as just a and vice versa; see Exercise 33 in
Chapter 17].

Finally, to show that p(x) has a zero in E, write

p(x) — anxn + an71x11—1 + ...+ aO'
Then, in E, x + (p(x)) is a zero of p(x), because

P(X + (p(X)>) = an(x + <p(x)>)” + an—l(x + <p(_x)>)nfl R a,
a,(x"+ (p))) +a, _ &+ (px)) + - +a,
=ax"+a_x""+ - +a,+ (pK))

= p(x) + (p(x)) = 0 + (p(x)). 5

B EXAMPLE 1 Let f(x) = x> + 1 € Q[x]. Then, viewing f(x) as an
element of E[x] = (Q[x]/{x*> + 1))[x], we have

fa+ P+ =@+ +1)2+1
X+HE+1D+1
¥H+1+E+ 1)
0+ x>+ 1).

Of course, the polynomial x> + 1 has the complex number \V—1 as a
zero, but the point we wish to emphasize here is that we have con-
structed a field that contains the rational numbers and a zero for the
polynomial x* + 1 by using only the rational numbers. No knowledge
of complex numbers is necessary. Our method utilizes only the field we
are given. |

B EXAMPLE 2 Let f(x) = x° + 2x? + 2x + 2 € Z,[x]. Then, the irre-
ducible factorization of f(x) over Z, is (x* + 1)(x* + 2x + 2). So, to find
an extension E of Z, in which f(x) has a zero, we may take E = Z[x]/
(x* + 1), a field with nine elements, or E = Z,[x]Xx* + 2x + 2), a field
with 27 elements. |

Since every integral domain is contained in its field of quotients
(Theorem 15.6), we see that every nonconstant polynomial with coef-
ficients from an integral domain always has a zero in some field con-
taining the ring of coefficients. The next example shows that this is not
true for commutative rings in general.

B EXAMPLE 3 Let f(x) = 2x + 1 € Z [x]. Then f(x) has no zero in any
ring containing Z, as a subring, because if 8 were a zero in such a ring,
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then 0 = 2B + 1, and therefore 0 = 2238 + 1) = 2(2B) + 2 =
2-2B+2=0-B+2=2.But0#2inZ, |

Splitting Fields

To motivate the next definition and theorem, let’s return to Example 1 for
a moment. For notational convenience, in Q[x]/{(x*> + 1), let a =
x + (x> + 1). Then, since o and —« are both zeros of x> + 1 in (Q[x]/
(x*> + 1))[x], it should be the case that x> + 1 = (x — a)(x + «). Let’s
check this out. First note that

x—a)xt+a)=x*—a?=x>—(x*+ &2+ 1))
At the same time,
X+ +D)=—1+E*+1)
and we have agreed to identify —1 and —1 + (x*> + 1), so
x—a)x+a)y=x*—(—1)=x>*+1.

This shows that x> + 1 can be written as a product of linear factors in
some extension of Q. That was easy and you might argue coincidental.
The polynomial given in Example 2 presents a greater challenge. Is
there an extension of Z, in which that polynomial factors as a product
of linear factors? Yes, there is. But first some notation and a definition.

Let F be a field and let @, a,, . . ., a, be elements of some exten-
sion E of F. We use F(a.a,, . . ., a,) to denote the smallest subfield
of E that contains F and the set {a,, a,, ..., a,}. We leave it as an
exercise (Exercise 35) to show that F(a,, a,, . . ., a,) is the intersec-
tion of all subfields of E that contain F and the set {a,, a,, ..., a,}.

Definition Splitting Field
Let E be an extension field of F and let f{x) € F[x] with degree at least
1. We say that f(x) splits in E if there are elementsa € Fand a, a,, .. .,
a, € E such that

f)=akx—a)x—ay)---(x —a).
We call E a splitting field for f(x) over F if

E =Fa,a,, - a).

Note that a splitting field of a polynomial over a field depends not
only on the polynomial but on the field as well. Indeed, a splitting field
of f(x) over F is just a smallest extension field of F in which f(x) splits.
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The next example illustrates how a splitting field of a polynomial f(x)
over field F depends on F.

B EXAMPLE 4 Consider the polynomial f(x) = x> + 1 € Q[x]. Since
X+1=x+ le)(x - le), we see that f(x) splits in C, but a splitting
field over Q is Q(i) = {r + si | r, s € Q}. A splitting field for x> + 1 over
Ris C. Likewise, x> — 2 € Q[x] splits in R, but a splitting field over Q is
ONV2) = {r+sV2irs€EQ). ]

There is a useful analogy between the definition of a splitting field and
the definition of an irreducible polynomial. Just as it makes no sense to
say “f(x) is irreducible,” it makes no sense to say “FE is a splitting field for
Jf(x).” In each case, the underlying field must be specified; that is, one must
say “f(x) is irreducible over F” and “E is a splitting field for f(x) over F.”

Our notation in Example 4 appears to be inconsistent with the nota-
tion that we used in earlier chapters. For example, we denoted the set
{a +bV21a,b€EZ) byZ[\/Z] and the set {a + b\/2 1 a, b € Q) by
Q(V2). The difference is that Z[\/2] is merely a ring, whereas Q(\/2) is
a field. In general, parentheses are used when one wishes to indicate
that the set is a field, although no harm would be done by using, say,
O[V2] to denote {a + b\V2 | a, b € Q} if we were concerned with its
ring properties only. Using parentheses rather than brackets simply
conveys a bit more information about the set.

1 Theorem 20.2 Existence of Splitting Fields

Let F be a field and let f(x) be a nonconstant element of F[x]. Then
there exists a splitting field E for f(x) over F.

PROOF We proceed by induction on deg f(x). If deg f(x) = 1, then
f(x) is linear. Now suppose that the statement is true for all fields and
all polynomials of degree less than that of f(x). By Theorem 20.1,
there is an extension E of F in which f(x) has a zero, say, a,. Then we
may write f(x) = (x — a,)g(x), where g(x) € E[x]. Since deg g(x) <
deg f(x), by induction, there is a field K that contains E and all the
zeros of g(x), say, a,, ..., a,. Clearly, then, a splitting field for f(x)
over Fis F(a, a,, ..., a). |

B EXAMPLE 5 Consider
f)=x*—x>=2=u>—-2)x>+1)
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over Q. Obviously, the zeros of f(x) in C are =\/2 and *i. So a split-
ting field for f(x) over Q is

O(V2,i) = Q(V2)(i) = {a + Bil a, B € O(V2)}
={(a+bV2)+(c+d\V2ilab,c,dEQ}. 1

B EXAMPLE 6 Consider f(x) = x> + x + 2 over Z,. Then Z,(i) =
{a + bila, b € Z} (see Example 9 in Chapter 13) is a splitting field
for f(x) over Z, because

J=x—-—0A+d]x—A—-D]

At the same time, we know by the proof of Kronecker’s Theorem that
the element x + (x> + x + 2) of

F = Z[xlI/(x* + x + 2)

is a zero of f(x). Since f(x) has degree 2, it follows from the Factor
Theorem (Corollary 2 of Theorem 16.2) that the other zero of f(x) must
also be in F. Thus, f(x) splits in F, and because F is a two-dimensional
vector space over Z,, we know that F is also a splitting field of f(x) over
Z,. But how do we factor f(x) in F? Factoring f(x) in F is confusing be-
cause we are using the symbol x in two distinct ways: It is used as a
placeholder to write the polynomial f(x), and it is used to create the coset
representatives of the elements of F. This confusion can be avoided by
simply identifying the coset 1 + (x* + x + 2) with the element 1 in Z, and
denoting the coset x + (x> + x + 2) by 8. With this identification, the field
Z,[x)x* + x + 2) can be represented as {0, 1,2, 3,28, 8 + 1,28 + 1,
B+ 2,28 + 2}. These elements are added and multiplied just as polyno-
mials are, except that we use the observation that x> + x + 2 + (> +
x+2)=0impliesthat 3>+ 8+ 2 =0,sothat > = - —2 =28+ 1.
For example, 28 + 1)(B +2) =282+ 58 +2 =228+ 1) + 58 +
2 =98 + 4 = 1. To obtain the factorization of f(x) in F', we simply long
divide, as follows:

x+ (B+1)

x—BIx*+x+2

x> — Bx

B+ Dx+2

B+ DHx— B+ 1B

B+1HB+2=p+B+2=0.

So, x> + x + 2 = (x — B)(x + B + 1). Thus, we have found two split-
ting fields for x> + x + 2 over Z,, one of the form F(a) and one of the
form F[x]/(p(x)) [where F = Z, and p(x) = x* + x + 2]. |




20 | Extension Fields 365

The next theorem shows how the fields F(a) and F[x]/{p(x)) are
related in the case where p(x) is irreducible over F and a is a zero of
p(x) in some extension of F.

I Theorem 20.3 F(a) = F[x]/{p(x))

Let F be a field and let p(x) € F[x] be irreducible over F. If a is a
zero of p(x) in some extension E of F, then F(a) is isomorphic to
F[x]/{p(x)). Furthermore, if deg p(x) = n, then every member of F(a)

can be uniquely expressed in the form
-1 24 ...
c, a" " tc, ,a" "+ & ¢, a k¢,

S

n—1

where G Cpocos @,

PROOF Consider the function ¢ from F[x] to F(a) given by ¢(f(x)) =
f(a). Clearly, ¢ is a ring homomorphism. We claim that Ker ¢ = (p(x)).
(This is Exercise 31 in Chapter 17.) Since p(a) = 0, we have {p(x)) C
Ker ¢. On the other hand, we know by Theorem 17.5 that (p(x)) is a
maximal ideal in F[x]. So, because Ker ¢¢ # F[x] [it does not contain
the constant polynomial f(x) = 1], we have Ker ¢ = (p(x)). At this
point it follows from the First Isomorphism Theorem for Rings and
Corollary 1 of Theorem 17.5 that ¢p(F[x]) is a subfield of F(a). Noting
that ¢p(F[x]) contains both F and a and recalling that F(a) is the small-
est such field, we have F[x]/{p(x)) = ¢(F[x]) = F(a).

The final assertion of the theorem follows from the fact that every
element of F[x])/{p(x)) can be expressed uniquely in the form

c,_ X"l g+ (p),

where ¢, ..., ¢,_, € F (see Exercise 25 in Chapter 16), and the
natural isomorphism from F[x]/{p(x)) to F(a) carries c,x* + (p(x))
to c,a. |

As an immediate corollary of Theorem 20.3, we have the following
attractive result.

I Corollary F(a) = F(b)

Let F be a field and let p(x) € F[x] be irreducible over F. If a is a
zero of p(x) in some extension E of F and b is a zero of p(x) in some
extension E' of F, then the fields F(a) and F(b) are isomorphic.

PROOF From Theorem 20.3, we have
F(a) = F[x]/(p(x)) = F(b). |
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Recall that a basis for an n-dimensional vector space over a field F
is a set of n vectors v, v,, ..., v with the property that every member
of the vector space can be expressed uniquely in the form av, +
ay, + -+ +ayv ,where the a’s belong to F (Exercise 19 in Chapter 19).
So, in the language of vector spaces, the latter portion of Theorem 20.3
says that if @ is a zero of an irreducible polynomial over F' of degree n, then
the set {1,a,...,a" '} is a basis for F(a) over F.

Theorem 20.3 often provides a convenient way of describing the
elements of a field.

B EXAMPLE 7 Consider the irreducible polynomial f(x) = x® — 2
over Q. Since V2 is a zero of f(x), we know from Theorem 20.3 that the
set {1, 216, 2216 23/6 24/6 256} ig 3 basis for Q(\/2) over Q. Thus,

6, —
O(V2) = {a, + a2"0 + a2%0 + a 2%0 + a 2% + a 2% | a. € Q).
This field is isomorphic to Q[x]/{x% — 2). |

In 1882, Ferdinand von Lindemann (1852-1939) proved that 7 is
not the zero of any polynomial in Q[x]. Because of this important re-
sult, Theorem 20.3 does not apply to Q(7) (see Exercise 11). Fields of
the form F(a) where a is in some extension field of F but not the zero
of an element of F(x) are discussed in the next chapter.

In Example 6, we produced two splitting fields for the polynomial
x2 + x + 2 over Z,. Likewise, it is an easy exercise to show that both
O[x)/{x* + 1) and Q(i) = {r + si | r, s € Q} are splitting fields of the
polynomial x> + 1 over Q. But are these different-looking splitting fields
algebraically different? Not really. We conclude our discussion of split-
ting fields by proving that splitting fields are unique up to isomorphism.
To make it easier to apply induction, we will prove a more general result.

We begin by observing first that any ring isomorphism ¢ from F
to F’ has a natural extension from F[x] to F'[x] given by ¢ x" +
c X+ s+t ex + g > ple)x” + ple,_Jxm+ e+
¢d(c,)x + ¢(c,). Since this mapping agrees with ¢ on F, it is conve-
nient and natural to use ¢ to denote this mapping as well.

Let F be a field, let p(x) € F[x] be irreducible over F, and let a be a
zero of p(x) in some extension of F. If ¢ is a field isomorphism from
F to F' and b is a zero of ¢(p(x)) in some extension of F', then there
is an isomorphism from F(a) to F'(b) that agrees with ¢ on F and
carries a to b.
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PROOF First observe that since p(x) is irreducible over F, ¢(p(x)) is
irreducible over F'. Tt is straightforward to check that the mapping

from F[x]/{p(x)) to F'[x]/{¢p(p(x))) given by
f&) + (p(x) = d(fx) + (d(p(x)))

is a field isomorphism. By a slight abuse of notation, we denote this
mapping by ¢ also. (If you object, put a bar over the ¢.) From the proof
of Theorem 20.3, we know that there is an isomorphism « from F(a) to
F[x]/{p(x)) that is the identity on F and carries a to x + (p(x)). Simi-
larly, there is an isomorphism B from F'[x]/{¢(p(x))) to F’(b) that is the
identity on F’ and carries x + (¢p(p(x))) to b. Thus, Boa is the desired

mapping from F(a) to F'(b). See Figure 20.1. 1
F(a) Flx]/(p(x) Flxl/(¢(p () F'(b)
® ®
o ¢ B
J L
F ¢ F'
Figure 20.1

1 Theorem 20.4 Extending ¢: F — F’

Let ¢ be an isomorphism from a field F to a field F' and let
f(x) € Flx]. If E is a splitting field for f(x) over F and E' is a
splitting field for ¢(f(x)) over F', then there is an isomorphism
Jrom E to E' that agrees with ¢ on F.

PROOF We use induction on deg f(x). If deg f(x) = 1, then E = F
and E' = F', so that ¢ itself is the desired mapping. If deg f(x) > 1,
let p(x) be an irreducible factor of f(x), let a be a zero of p(x) in E, and
let b be a zero of ¢(p(x)) in E’. By the preceding lemma, there is an
isomorphism « from F(a) to F'(b) that agrees with ¢ on F and carries
a to b. Now write f(x) = (x — a)g(x), where g(x) € F(a)[x]. Then E is a
splitting field for g(x) over F(a) and E’ is a splitting field for a(g(x))
over F'(b). Since deg g(x) < deg f(x), there is an isomorphism from E
to E’ that agrees with « on F(a) and therefore with ¢ on F. |
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I Corollary Splitting Fields Are Unique

Let F be a field and let f(x) € F[x]. Then any two splitting fields
of f(x) over F are isomorphic.

PROOF Suppose that E and E’ are splitting fields of f(x) over F. The
result follows immediately from Theorem 20.4 by letting ¢ be the
identity from F to F. |

In light of the corollary above, we may refer to “the” splitting field
of a polynomial over F' without ambiguity.

Even though x® — 2 has a zero in Q(\6f2), it does not split in Q(\GfZ).
The splitting field is easy to obtain, however.

I EXAMPLE 8 The Splitting Field of x" — a over Q
Let a be a positive rational number and let @ be a primitive nth root of
unity (see Example 2 in Chapter 16). Then each of

1/n 1/n 1/n
9 9 ..

a'" wa', w3a 7 !

is a zero of X" — a in Q(%, ). |

Zeros of an Irreducible Polynomial

Now that we know that every nonconstant polynomial over a field
splits in some extension, we ask whether irreducible polynomials must
split in some special way. Yes, they do. To discover how, we borrow
something whose origins are in calculus.

Definition Derivative

Letf(x)=ax"+a, x"'+---+ax+ a,belong to F[x]. The
derivative of f(x), denoted by f'(x), is the polynomial na x"~! +
(n—Da, x"2+---+a,inFlx].

Notice that our definition does not involve the notion of a limit. The
standard rules for handling sums and products of functions in calculus

carry over to arbitrary fields as well.

I Lemma Properties of the Derivative

Let f(x) and g(x) € F[x] and let a € F. Then
L (f(x) + gx)" = f'(x) + g'(x).
2. (af(x))" = af'(x).
3. (f(x)gx)" = f(x)g'(x) + gLo)f'(x).
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PROOF Properties 1 and 2 follow from straightforward applications
of the definition. Using property 1 and induction on deg f(x), property 3
reduces to the special case in which f(x) = a x". This also follows di-
rectly from the definition. |

Before addressing the question of the nature of the zeros of an irre-
ducible polynomial, we establish a general result concerning zeros of
multiplicity greater than 1. Such zeros are called multiple zeros.

I Theorem 20.5 Criterion for Multiple Zeros

A polynomial f(x) over a field F has a multiple zero in some
extension E if and only if f(x) and f'(x) have a common factor of
positive degree in F[x].

PROOF If a is a multiple zero of f(x) in some extension E, then
there is a g(x) in E[x] such that f(x) = (x — a)’g(x). Since f'(x) =
(x — a)’g’ (x) + 2(x — a)g(x), we see that f'(a) = 0. Thus, x — a is a fac-
tor of both f(x) and f'(x) in the extension E of F. Now if f(x) and f"(x)
have no common divisor of positive degree in F[x], there are polynomials
h(x) and k(x) in F[x] such that f(x)h(x) + f'(x)k(x) = 1 (see Exercise 45
in Chapter 16). Viewing f(x)h(x) + f’(x)k(x) as an element of E[x], we
see also that x — a is a factor of 1. Since this is nonsense, f(x) and f'(x)
must have a common divisor of positive degree in F[x].

Conversely, suppose that f(x) and f”(x) have a common factor of posi-
tive degree. Let a be a zero of the common factor. Then a is a zero of f(x)
and f’(x). Since a is a zero of f(x), there is a polynomial g(x) such that
J(&x) = (x = a)q(x). Then f'(x) = (x — a)qg'(x) + g(x) and 0 = f"(a) =
g(a). Thus, x — a is a factor of g(x) and a is a multiple zero of f(x). |

B Theorem 20.6 Zeros of an Irreducible

Let f(x) be an irreducible polynomial over a field F. If F has
characteristic 0, then f(x) has no multiple zeros. If F has charac-
teristic p + 0, then f(x) has a multiple zero only if it is of the
Jorm f(x) = g(xP) for some g(x) in F[x].

PROOF If f(x) has a multiple zero, then, by Theorem 20.5, f(x) and
f'(x) have a common divisor of positive degree in F[x]. Since the only
divisor of positive degree of f(x) in F[x] is f(x) itself (up to associates),
we see that f(x) divides f'(x). Because a polynomial over a field cannot
divide a polynomial of smaller degree, we must have f'(x) = 0.
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Now what does it mean to say that f'(x) = 0? If we write f(x) = a x" +
a,_x"'+ - +ax+a,thenf'(x) =nax"'+ @n— Da,_x""?+
-+ + a,. Thus, f'(x) = O only when ka, = Ofork =1,...,n.

So, when char F = 0, we have f(x) = a,, which is not an irreducible
polynomial. This contradicts the hypothesis that f(x) is irreducible over
F. Thus, f(x) has no multiple zeros.

When char F = p # 0, we have g, = 0 when p does not divide k. Thus,
the only powers of x that appear in the sum a x" + - - - + ax + a, are
those of the form x? = (x?)/. It follows that f(x) = g(x?) for some
g(x) € F[x]. [For example, if f(x) = x* + 3x% + x? + 1, then g(x) =
X432+ x+ 1] |

Theorem 20.6 shows that an irreducible polynomial over a field of
characteristic 0 cannot have multiple zeros. The desire to extend this re-
sult to a larger class of fields motivates the following definition.

Definition Perfect Field
A field F is called perfect if F has characteristic 0 or if F has
characteristic pand F¥ = {a” | a € F} = F.

The most important family of perfect fields of characteristic p is the
finite fields.

B Theorem 20.7 Finite Fields Are Perfect

Every finite field is perfect.

PROOF Let F be a finite field of characteristic p. Consider the map-
ping ¢ from F to F defined by ¢(x) = x” for all x € F. We claim that
¢ is a field automorphism. Obviously, ¢(ab) = (ab)? = aPb? =

¢(a)p(b). Moreover, ¢p(a + b) = (a + b)P = a? + <117> a-1p +

(g) a’=2p: + - - -+ < p | )abl’1 + b? = a? + bP, since each
p—
i

Thus, ¢ is one-to-one and, since F is finite, ¢ is onto. This proves that
FP =F. |

(p> is divisible by p. Finally, since x* # 0 when x # 0, Ker ¢ = {0}.
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I Theorem 20.8 Criterion for No Multiple Zeros

If f(x) is an irreducible polynomial over a perfect field F, then f(x) has
no multiple zeros.

PROOF The case where F has characteristic 0 has been done. So
let us assume that f(x) € F[x] is irreducible over a perfect field F of
characteristic p and that f(x) has multiple zeros. From Theorem 20.6
we know that f(x) = g(x”) for some g(x) € F[x], say, g(x) = a x" +
an_lx"‘1 + -+ +ax + a, Since F? = F, each a, in F can be written
in the form b” for some b, in F. So, using Exercise 49a in Chapter 13,
we have l

f(x) = g(xl’) = bnl’xpn + bn_l”xl’("*l) + ..+ blﬁxp 4 bop
= (bnxn =+ b xn—l + e+ blx + bo)p — (h(x))p,
where h(x) € F[x]. But then f(x) is not irreducible. 1

n—1

The next theorem shows that when an irreducible polynomial does
have multiple zeros, there is something striking about the multiplicities.

I Theorem 20.9 Zeros of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x) over F. Then all the zeros of f(x) in E have the
same multiplicity.

PROOF Leta and b be distinct zeros of f(x) in E. If @ has multiplicity m,
then in E[x] we may write f(x) = (x — a)”g(x). It follows from the
lemma preceding Theorem 20.4 and from Theorem 20.4 that there is a
field isomorphism ¢ from E to itself that carries a to b and acts as the
identity on F. Thus,

J) = d(f(x) = (x — b)"p(g(x)),

and we see that the multiplicity of b is greater than or equal to the mul-
tiplicity of a. By interchanging the roles of a and b, we observe that the
multiplicity of a is greater than or equal to the multiplicity of b. So, we
have proved that a and b have the same multiplicity. |

As an immediate corollary of Theorem 20.9 we have the following
appealing result.
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1 Corollary Factorization of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x). Then f(x) has the form

alx —a)'(x —a)" - - (x —a),

where a,, a,, . .., a are distinct elements of E and a € F.

We conclude this chapter by giving an example of an irreducible
polynomial over a field that does have a multiple zero. In particular,
notice that the field we use is not perfect.

B EXAMPLE 9 Let F = Z,(7) be the field of quotients of the ring Z,[7]
of polynomials in the indeterminate ¢ with coefficients from Z,. (We
must introduce a letter other than x, since the members of F are going to
be our coefficients for the elements in F[x].) Consider f(x) = x> — t €
F[x]. To see that f(x) is irreducible over F, it suffices to show that it has
no zeros in F. Well, suppose that a(7)/k(¢) is a zero of f(x). Then (h(t)/
k(1))* = t, and therefore (h(1))* = 1(k(r))*. Since h(1), k(1) € Z,[], we
then have h(1?) = tk(r*) (see Exercise 49 in Chapter 13). But deg h(#%) is
even, whereas deg k(%) is odd. So, f(x) is irreducible over F.

Finally, since ¢ is a constant in F[x] and the characteristic of F'is 2, we
have f'(x) = 0, so that f'(x) and f(x) have f(x) as a common factor. So, by
Theorem 20.5, f(x) has a multiple zero in some extension of F. (Indeed, it
has a single zero of multiplicity 2 in K = F[x]/(x> — 1).) ]

| have yet to see any problem, however complicated, which, when you
looked at it in the right way, did not become still more complicated.
PAUL ANDERSON, New Scientist

Describe the elements of Q( \3f5).
Show that Q(\V2, V3) = Q(V2 + V3).

3. Find the splitting field of x> — 1 over Q. Express your answer in
the form Q(a).

4. Find the splitting field of x* + 1 over Q.
5. Find the splitting field of

X+ +1=0+x+ D —x+1)

o=

over Q.
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15.

16.

17.

18.
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23.
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. Leta, b € R with b # 0. Show that R(a + bi) = C.
. Find a polynomial p(x) in Q[x] such that Q(\V'1 + \/5) is ring-

isomorphic to Q[x]/{p(x)).

. Let F = Z, and let f(x) = x> + x + 1 € F[x]. Suppose that a is a

zero of f(x) in some extension of /. How many elements does F(a)
have? Express each member of F(a) in terms of a. Write out a
complete multiplication table for F(a).

. Let F(a) be the field described in Exercise 8. Express each of a,

a2, and a'% in the form c,a® + ¢ a + c,,.

Let F(a) be the field described in Exercise 8. Show that @ and a> + a
are zeros of x> + x + 1.

Describe the elements in Q(77).

Let F = Q(7%). Find a basis for F() over F.

Write x” — x as a product of linear factors over Z,. Do the same for
10
x9—x

Find all ring automorphisms of Q( \3/5).

Let F be a field of characteristic p and let f(x) = x? — a € F[x].
Show that f(x) is irreducible over F or f(x) splits in F.

Suppose that B is a zero of f(x) = x* + x + 1 in some extension
field E of Z,. Write f(x) as a product of linear factors in E[x].
Find a, b, ¢ in Q such that

(1+ V&2 —-V2)=a+bV2+ cVa
Note that such a, b, ¢ exist, since
(14 V42 - N2)EQN2)={a+ b2+ cV4lab,cE Q).

Express (3 + 4\/2)‘1 in the form a + b\/2, where a, b € 0.
Show that Q(4 — i) = Q(1 + i), where i = \V/—1.

Let F be a field, and let a and b belong to F with a # 0. If ¢
belongs to some extension of F, prove that F(c) = F(ac + b).
(F “absorbs” its own elements.)

Let f(x) € F[x] and let a € F. Show that f(x) and f(x + a) have the
same splitting field over F.

Recall that two polynomials f(x) and g(x) from F[x] are said to be
relatively prime if there is no polynomial of positive degree in F[x]
that divides both f(x) and g(x). Show that if f(x) and g(x) are rela-
tively prime in F[x], they are relatively prime in K[x], where K is
any extension of F.

Determine all of the subfields of Q(\V/2).
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24,

25.

26.
27.
28.
29.
30.

31.

32.
33.

34.

35.

36.

37.

38.
39.

40.

Let E be an extension of F and let a and b belong to E. Prove that
F(a, b) = F(a)(b) = F(b)(a).

Write x3 4+ 2x + 1 as a product of linear polynomials over some
extension field of Z,.

Express x* — x as a product of irreducibles over Z,.

Prove or disprove that Q(\/g) and Q(\/T3) are ring-isomorphic.
For any prime p, find a field of characteristic p that is not perfect.
If B is a zero of x* + x + 2 over Z, find the other zero.

Show that x* + x + 1 over Z, does not have any multiple zeros in
any extension field of Z,.

Show that x?! + 2x® + 1 does not have multiple zeros in any
extension of Z,.

Show that x*! + 2x” + 1 has multiple zeros in some extension of Z..
Let F be a field of characteristic p # 0. Show that the polynomial
f(x) = xP" — x over F has distinct zeros.

Find the splitting field for f(x) = (x> + x + 2)(x*> + 2x + 2) over
Z,[x]. Write f(x) as a product of linear factors.

Let F be a field and E an extension field of F' that contains a,,
a,, ..., a, Prove that F(a, a,, . . ., a ) is the intersection of all
subfields of E that contain F and the set {a,, a,, . . ., a,}. (This ex-
ercise is referred to in this chapter.)

Suppose that a is algebraic over a field F. Show that a and
1 + a~ ! have the same degree over F.

Suppose that f{x) is a fifth-degree polynomial that is irreducible
over Z,. Prove that every nonidentity element is a generator of the
cyclic group (Z,[x)/{f(x)))".

Show that Q(\/7, i) is the splitting field for x* — 6x% —7.

Let p be a prime, F = Zp(t) (the field of quotients of the ring Zp[x]),
and fix) = x” — t. Prove that f(x) is irreducible over F and has a
multiple zero in K = F[x]/{(x" — 1).

Let f{x) be an irreducible polynomial over a field F. Prove that the
number of distinct zeros of f(x) in a splitting field divides deg f(x).




Leopold Kronecker

He [Kronecker] wove together the three
strands of his greatest interests—the
theory of numbers, the theory of equations
and elliptic functions—into

one beautiful pattern.

E. T. BELL

LeopoLD KRONECKER was born on December
7, 1823, in Liegnitz, Prussia. As a schoolboy,
he received special instruction from the great
algebraist Kummer. Kronecker entered the
University of Berlin in 1841 and completed
his Ph.D. dissertation in 1845 on the units in a
certain ring.

Kronecker devoted the years 1845-1853 to
business affairs, relegating mathematics to a
hobby. Thereafter, being well-off financially,
he spent most of his time doing research in al-
gebra and number theory. Kronecker was one
of the early advocates of the abstract approach
to algebra. He innovatively applied rings and
fields in his investigations of algebraic num-
bers, established the Fundamental Theorem of
Finite Abelian Groups, and was the first math-
ematician to master Galois’s theory of fields.

Kronecker advocated constructive meth-
ods for all proofs and definitions. He believed
that all mathematics should be based on rela-
tionships among integers. He went so far as
to say to Lindemann, who proved that 7 is
transcendental, that irrational numbers do
not exist. His most famous remark on the
matter was “God made the integers, all the
rest is the work of man.” Henri Poincaré
once remarked that Kronecker was able to
produce fine work in number theory and
algebra only by temporarily forgetting his
own philosophy.

Kronecker died on December 29, 1891,
at the age of 68.

For more information about Kronecker,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Algebraic Extensions

Banach once told me, “Good mathematicians see analogies between
theorems or theories, the very best ones see analogies between analogies.”
S. M. ULAM, Adventures of a Mathematician

Characterization of Extensions

376

In Chapter 20, we saw that every element in the field Q(\/2) has the
particularly simple form a + b\/2, where a and b are rational. On the
other hand, the elements of Q(7r) have the more complicated form

(am"+a,_ "'+ +a)bam+ b, 7w+ + by,

where the a’s and b’s are rational. The fields of the first type have a
great deal of algebraic structure. This structure is the subject of this
chapter.

Definition Types of Extensions

Let E be an extension field of a field F and let a € E. We call a
algebraic over F if a is the zero of some nonzero polynomial in F[x]. If
a is not algebraic over F, it is called transcendental over F. An exten-
sion E of F is called an algebraic extension of F if every element of E is
algebraic over F. If E is not an algebraic extension of F, it is called a
transcendental extension of F. An extension of F of the form F(a) is
called a simple extension of F.

Leonhard Euler used the term transcendental for numbers that are
not algebraic because “they transcended the power of algebraic meth-
ods.” Although Euler made this distinction in 1744, it wasn’t until 1844
that the existence of transcendental numbers over Q was proved by
Joseph Liouville. Charles Hermite proved that e is transcendental over
Q in 1873, and Lindemann showed that 77 is transcendental over Q in
1882. To this day, it is not known whether 77 + ¢ is transcendental over Q.
With a precise definition of “almost all,” it can be shown that almost all
real numbers are transcendental over Q.
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Theorem 21.1 shows why we make the distinction between elements
that are algebraic over a field and elements that are transcendental over
a field. Recall that F(x) is the field of quotients of F[x]; that is,

F(x) = {f(0)/gx) | f(x), gx) € Flx], g(x) # 0}.
B Theorem 21.1 Characterization of Extensions

Let E be an extension field of the field F and let a € E. If a is
transcendental over F, then F(a) = F(x). If a is algebraic over F, then
F(a) = F[x]/{p(x)), where p(x) is a polynomial in F[x] of minimum
degree such that p(a) = 0. Moreover, p(x) is irreducible over F.

PROOF Consider the homomorphism ¢: F[x] — F(a) given by
f(x) = f(a). If a is transcendental over F, then Ker ¢ = {0}, and so
we may extend ¢ to an isomorphism ¢: F(x) — F(a) by defining
d(fx)/gx) = fla)lg(a).

If a is algebraic over F, then Ker ¢ # {0}; and, by Theorem 16.4,
there is a polynomial p(x) in F[x] such that Ker ¢ = (p(x)) and p(x) has
minimum degree among all nonzero elements of Ker ¢. Thus, p(a) = 0
and, since p(x) is a polynomial of minimum degree with this property,
it is irreducible over F. |

The proof of Theorem 21.1 can readily be adapted to yield the next
two results also. The details are left to the reader (see Exercise 1).

§ Theorem 21.2 Uniqueness Property

If a is algebraic over a field F, then there is a unique monic irreduci-
ble polynomial p(x) in F[x] such that p(a) = 0.

The polynomial with the property specified in Theorem 21.2 is
called the minimal polynomial for a over F.

I Theorem 21.3 Divisibility Property

Let a be algebraic over E, and let p(x) be the minimal polynomial for
a over E If f(x) € F[x] and f(a) = 0, then p(x) divides f(x) in F[x].

If E is an extension field of F, we may view E as a vector space over F
(that is, the elements of E are the vectors and the elements of F' are the
scalars). We are then able to use such notions as dimension and basis in
our discussion.
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Finite Extensions

Definition Degree of an Extension

Let E be an extension field of a field F. We say that E has degree n
over F and write [E:F| = n if E has dimension n as a vector space
over F. If [E:F] is finite, E is called a finite extension of F; otherwise,
we say that E is an infinite extension of F.

Figure 21.1 illustrates a convenient method of depicting the degree
of a field extension over a field.

0(\2) 0A2) od2) E
2 3 6 { n
0 Q 19 F
[0(2):01=2 [0(2):01=3 [0(2):01=6 [E:Fl=n
Figure 21.1

B EXAMPLE 1 The field of complex numbers has degree 2 over the
reals, since {1, i} is a basis. The field of complex numbers is an infinite
extension of the rationals. |

B EXAMPLE 2 If a is algebraic over F and its minimal polynomial
over F has degree n, then, by Theorem 20.3, we know that {1, a, .. .,
a" '} is a basis for F(a) over F; and, therefore, [F(a):F] = n. In this
case, we say that a has degree n over F. |

I Theorem 21.4 Finite Implies Algebraic

If E is a finite extension of F, then E is an algebraic extension of F.

PROOF Suppose that [E:F| = nand a € E. Then the set {1, q, ..., d"}
is linearly dependent over F; that is, there are elements ¢, ¢, . .., ¢, in F,
not all zero, such that

ca +ec,_a '+ +catc,=0.
Clearly, then, a is a zero of the nonzero polynomial

f)=cx"+c _x" '+ +exte, |
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The converse of Theorem 21.4 is not true, for otherwise, the de-
grees of the elements of every algebraic extension of E over F would
be bounded. But Q(\/2, V2,V2, .. )is an algebraic extension of Q
that contains elements of every degree over Q (see Exercise 3).

The next theorem is the field theory counterpart of Lagrange’s Theo-
rem for finite groups. Like all counting theorems, it has far-reaching
consequences.

B Theorem 21.5 [K:F] = [K:E][E:F]

Let K be a finite extension field of the field E and let E be a finite
extension field of the field F. Then K is a finite extension field
of F and [K:F] = [K:E|[E:F].

PROOF Let X = {x, x,, ..., x,} be a basis for K over E, and let
Y=1{y,,5,...,y,} beabasis for E over F. It suffices to prove that

YX={iji|1Sj§m,1§i§n}

is a basis for K over F. To do this, let ¢ € K. Then there are elements
b, b,,...,b € Esuch that

a=bx +byx,+ - +bnxn

and, for each i = 1, ..., n, there are elements c;,, ¢,
such that

0y v e e

by=cyy, tepy,+ -ty
Thus,

7

a= X bx; = E( 21 c,»jyj) x; = 2c(yix;).
L]

i=1 i=1\j=

=

This proves that YX spans K over F.
Now suppose there are elements c; in F such that

0= %cij(iji) = ;(;(Cijyj))xi'
Then, since each ?c,-jyj € E and X is a basis for K over E, we have
chijyj =0
for each i. But each ¢, € F and Y is a basis for E over F, so each ;= 0.
This proves that the set YX is linearly independent over F. |

Using the fact that for any field extension L of a field J, [L:J] = n if
and only if L is isomorphic to J" as vector spaces (see Exercise 29), we
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nm L E

« F
[K:F] = [K:E][E:F]

Figure 21.2

may give a concise conceptual proof of Theorem 21.5, as follows. Let
[K:E] = nand [E:F] = m. Then K = E" and E = F", so that K = E" =
(F™* = ™" Thus, [K:F] = mn.

The content of Theorem 21.5 can be pictured as in Figure 21.2. Ex-
amples 3, 4, and 5 show how Theorem 21.5 is often utilized.

B EXAMPLE 3 Since {1, V/3} is a basis for Q(\V/3, V/3) over Q(\V/'5)
(see Exercise 7) and {1, V/5} is a basis for Q(\/5) over Q, the proof of
Theorem 21.5 shows that {1, V/3,V/5,V/15} is a basis for Q(\/3, V/5) over
Q. (See Figure 21.3.) |

B EXAMPLE 4 Consider Q(V/'2, V/3). Then [Q(V/2, V3):Q] = 12. For,
clearly, [Q(V2, V3):0] = [Q(V2, V3):0(V2)[Q(V2):0] and [Q(V2,
V3):0] = [0(V2, V/3):0(V3)][Q(V/3):0] show that both 3 = [Q(V2):
O] and 4 = [Q(V3):0] divide [Q(N/2, V/3):0]. Thus, [O(NV/2, V/3):0]
= 12. On the other hand, [Q(\%, \4/3):Q(\3@)] is at most 4, since V/3 is a
zero of ¥ — 3 € Q(V2)[x]. Therefore, [Q(V2, V3):0] = [0(V/2, V/3):

O(V2)[O(V2):0] = 4 - 3 = 12. (See Figure 21.4.) I
00B3.5) (2, 3)
2 2 4 3
o(3) 4 o3 0R2) 12 od3)
2 2 3 4
0 0

Figure 21.4

Figure 21.3
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Theorem 21.5 can sometimes be used to show that a field does not
contain a particular element.

B EXAMPLE 5 Recall from Example 7 in Chapter 17 that h(x) = 15x* —
10x* + 9x + 21 is irreducible over Q. Let B be a zero of h(x) in some ex-
tension of Q. Then, even though we don’t know what 3 is, we can still
prove that V/2 is not an element of Q(P). For, if so, then Q C Q(%) -
Q(B) and 4 = [Q(B):Q] = [Q(B):Q(V2)I[Q(V2):Q] implies that 3
divides 4. Notice that this argument cannot be used to show that V2 is
not contained in Q(3). |

B EXAMPLE 6 Consider Q(\/3, V/5). We claim that Q(\/3, \V/5) =
O(V3 + V/5). The inclusion Q(V3 + V/5) C Q(V3, V/5) is clear.

Now note that since

1 V3-V5S L s
VIENVIT= s Ve s T VATV
we know that V3 — \/5 belongs to Q (\/§ + \/5). It follows that
[(V3+V5) + (V3 =V5)2=V3and [(V3 +V5) — (V3 —V5)]2
= /5 both belong to O(V3 + V/5), and therefore Q(V/3, \V/5) C
0(V3 +\/5). i

# EXAMPLE 7 It follows from Example 6 and Theorem 20.3 that the
minimal polynomial for V3 + \/5 over Q has degree 4. How can we
find this polynomial? We begin with x = V3 + \/5. Then 22 = 3 +
2V/15 + 5. From this we obtain x> — 8 = 2\/15 and, by squaring both
sides, x* — 16x + 64 = 60. Thus, V'3 + \V/5 is a zero of x* — 16x + 4.
We know that this is the minimal polynomial of \/3 + \/5 over Q since
it is monic and has degree 4. i

Example 6 shows that an extension obtained by adjoining two ele-
ments to a field can sometimes be obtained by adjoining a single
element to the field. Our next theorem shows that, under certain condi-
tions, this can always be done.

§ Theorem 21.6 Primitive Element Theorem (Steinitz, 1910)

If F is a field of characteristic 0, and a and b are algebraic over F,
then there is an element c in F(a, b) such that F(a, b) = F(c).

PROOF Let p(x) and g(x) be the minimal polynomials over F for a and
b, respectively. In some extension K of F, leta,, a,, . .., a, and b, b,,
..., b, be the distinct zeros of p(x) and g(x), respectively, where a = a,

and b = b,. Among the infinitely many elements of F, choose an
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element d not equal to (a, — a)/(b — b].) foralli=1andallj > 1.In
particular, a, # a + d(b — bj) forj > 1.

We shall show that ¢ = a + db has the property that F(a, b) = F(c).
Certainly, F(c) C F(a, b). To verify that F(a, b) C F(c), it suffices to prove
that b € F(c), for then b, ¢, and d belong to F(c) and a = ¢ — bd. Con-
sider the polynomials g(x) and r(x) = p(c — dx) [that is, r(x) is obtained
by substituting ¢ — dx for x in p(x)] over F(c). Since both g(b) = 0 and
r(b) = p(c — db) = p(a) = 0, both g(x) and r(x) are divisible by the
minimal polynomial s(x) for b over F(c) (see Theorem 21.3). Because s(x)
€ F(c)[x], we may complete the proof by proving that s(x) = x — b. Since
s(x) is a common divisor of ¢g(x) and r(x), the only possible zeros of s(x) in
K are the zeros of g(x) that are also zeros of r(x). But r(bj) =p(c — dbj) =
pla +db — dbj) = pla + db — bj)) and d was chosen such that a +
dib — bj) # a, for j > 1. It follows that b is the only zero of s(x) in K[x]
and, therefore, s(x) = (x — b)". Since s(x) is irreducible and F has charac-
teristic 0, Theorem 20.6 guarantees that u = 1. |

In the terminology introduced earlier, it follows from Theorem 21.6
and induction that any finite extension of a field of characteristic O is a
simple extension. An element a with the property that £ = F(a) is
called a primitive element of E.

Properties of Algebraic Extensions

I Theorem 21.7 Algebraic over Algebraic Is Algebraic

If K is an algebraic extension of E and E is an algebraic extension
of F, then K is an algebraic extension of F.

PROOF Let a € K. It suffices to show that a belongs to some finite
extension of F. Since a is algebraic over E, we know that a is the zero

of some irreducible polynomial in E[x], say, p(x) = b x" + - - - + b,
Now we construct a tower of extension fields of F, as follows:
F, = F(b,),

F,=Fb),....F,=F, _b).
In particular,
F =F(byb,,...,b),

so that p(x) € F [x]. Thus, [F (a):F,] = n; and, because each b, is alge-
braic over F, we know that each [F, :F] is finite. So,

[F (a):F] = [F (a):F I[F:F,_ 1 [F:F]F,F]
is finite. (See Figure 21.5.) |
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F(a) E

Figure 21.5

1 Corollary Subfield of Algebraic Elements

Let E be an extension field of the field F. Then the set of all elements
of E that are algebraic over F is a subfield of E.

PROOF Suppose that a, b € E are algebraic over F and b # 0. To
show that a + b, a — b, ab, and a/b are algebraic over F, it suffices to
show that [F(a, b):F] is finite, since each of these four elements be-
longs to F(a, b). But note that

[F(a, b):F] = [F(a, b):F(b)]I[F(b):F].

Also, since a is algebraic over F, it is certainly algebraic over F(b).
Thus, both [F(a, b):F(b)] and [F(b):F] are finite. |

For any extension E of a field F, the subfield of E of the elements
that are algebraic over F is called the algebraic closure of F in E.

One might wonder if there is such a thing as a maximal algebraic
extension of a field F—that is, whether there is an algebraic extension £
of F that has no proper algebraic extensions. For such an FE to exist, it is
necessary that every polynomial in E[x] splits in E. Otherwise, it follows
from Kronecker’s Theorem that £ would have a proper algebraic exten-
sion. This condition is also sufficient. If every member of E[x] splits in E,
and K is an algebraic extension of E, then every member of K is a zero of
some element of E[x]. But the zeros of elements of E[x] are in E. A field
that has no proper algebraic extension is called algebraically closed. In
1910, Ernst Steinitz proved that every field F has a unique (up to isomor-
phism) algebraic extension that is algebraically closed. This field is
called the algebraic closure of F. A proof of this result requires a sophis-
ticated set theory background.
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In 1799, Gauss, at the age of 22, proved that C is algebraically
closed. This fact was considered so important at the time that it was
called the Fundamental Theorem of Algebra. Over a 50-year period,
Gauss found three additional proofs of the Fundamental Theorem.
Today more than 100 proofs exist. In view of the ascendancy of abstract
algebra in the 20th century, a more appropriate phrase for Gauss’s result
would be the Fundamental Theorem of Classical Algebra.

It matters not what goal you seek
Its secret here reposes:
You've got to dig from week to week
To get Results or Roses.
EDGAR GUEST

1. Prove Theorem 21.2 and Theorem 21.3.

2. Let E be the algebraic closure of F. Show that every polynomial in
Flx] splits in E.

3. Prove that Q(V2, V2,32, .. .) is an algebraic extension of Q but
not a finite extension of Q. (This exercise is referred to in this
chapter.)

4. Let E be an algebraic extension of F. If every polynomial in F[x]
splits in E, show that E is algebraically closed.

S. Suppose that F is a field and every irreducible polynomial in F[x]
is linear. Show that F is algebraically closed.

6. Suppose that f(x) and g(x) are irreducible over F and that deg f(x)
and deg g(x) are relatively prime. If a is a zero of f(x) in some ex-
tension of F, show that g(x) is irreducible over F(a).

7. Let a and b belong to Q with b # 0. Show that Q(\Va) = Q(Vb) if
and only if there exists some ¢ € Q such that a = bc>.

8. Find the degree and a basis for Q(\/§ + \@) over Q(\V15). Find
the degree and a basis for o2, V2, V/2) over 0.

9. Suppose that E is an extension of F' of prime degree. Show that, for
every ain E, F(a) = F or F(a) = E.

10. Let a be a complex number that is algebraic ove{nQ. Show that
Va is algebraic over Q. Why does this prove that Va is algebraic
over Q?

11. Suppose that E is an extension of F and a, b € E. If a is algebraic
over F of degree m, and b is algebraic over F of degree n, where m
and n are relatively prime, show that [F(a, b):F] = mn.




12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

24,
25.

26.

27.

28.

29.
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Find an example of a field F and elements a and b from some
extension field such that F(a, b) # F(a), F(a, b) # F(b), and
[F(a, b):F] < [F(a):F1[F(b):F].

Let K be a field extension of F and let ¢ € K. Show that
[F(a):F(a®)] = 3. Find examples to illustrate that [F(a):F(a®)] can
be 1, 2, or 3.

Find the minimal polynomial for V=3 + \/2 over Q.

Let K be an extension of F. Suppose that £, and E, are contained
in K and are extensions of F. If [E:F] and [E,:F] are both prime,
show that £, = E,or E, N E, = F.

Find the minimal polynomial for /2 + V4 over Q.

Let E be a finite extension of R. Use the fact that C is algebraically
closed to prove that E = Cor E = R.

Suppose that [E:Q] = 2. Show that there is an integer d such that
E = Q(V/d) where d is not divisible by the square of any prime.
Suppose that p(x) € F[x] and E is a finite extension of F. If p(x) is
irreducible over F, and deg p(x) and [E:F] are relatively prime,
show that p(x) is irreducible over E.

Let E be an extension field of F. Show that [E:F] is finite if and only
if E= F(a,a,...,a,), wherea,, a,, . . ., a, are algebraic over F.
If @ and B are real numbers and « and S are transcendental over Q,
show that either a3 or & + 3 is also transcendental over Q.

Let f(x) be a nonconstant element of F[x]. If a belongs to some
extension of F and f(a) is algebraic over F, prove that a is alge-
braic over F.

Let f(x) = ax*> + bx + ¢ € Q[x]. Find a primitive element for the
splitting field for f(x) over Q.

Find the splitting field for x* — x> — 2 over Z,.

Let f(x) € F[x]. If deg f(x) = 2 and a is a zero of f(x) in some
extension of F, prove that F(a) is the splitting field for f(x) over F.

Let a be a complex zero of x> + x + 1 over Q. Prove that
0Va) = Q(a).

If F is a field and the multiplicative group of nonzero elements of
F is cyclic, prove that F is finite.

Let a be a complex number that is algebraic over Q and let r be a
rational number. Show that a” is algebraic over Q.

Prove that, if K is an extension field of F, then [K:F] = n if and
only if K is isomorphic to F” as vector spaces. (See Exercise 27 in
Chapter 19 for the appropriate definition. This exercise is referred
to in this chapter.)
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30.

31.

32,

33.

Let a be a positive real number and let n be an integer greater than 1.
Prove or disprove that [Q(a'"):Q] = n.

Let a and b belong to some extension field of F and let b be alge-
braic over F. Prove that [F(a, b):F(a)] = [F(a, b):F].

Let f(x) and g(x) be irreducible polynomials over a field F and let
a and b belong to some extension E of F. If a is a zero of f(x) and
b is a zero of g(x), show that f(x) is irreducible over F(b) if and
only if g(x) is irreducible over F(a).

Let B be a zero of f(x) = x° + 2x + 4 (see Example 8 in Chapter 17).
Show that none of \/2, \3/5, 2 belongs to Q(3).

34. Prove that 0(\/2, V2) = 0(\2).
35. Let a and b be rational numbers. Show that Q(\/&, \/I;) =

36.

37.

38.
39.
40.

41.

42,

o(Va +\Vb).

Let F, K, and L be fields with F < K < L. If L is a finite extension of F'
and [L:F] = [L:K], prove that F = K.

Let F be a field and K a splitting field for some nonconstant poly-
nomial over F. Show that K is a finite extension of F.

Prove that C is not the splitting field of any polynomial in Q[x].
Prove that \/2 is not an element of Q().

Let o = cosZ + isin®Z and B = cos®Z + isin’Z. Prove that 3
is not in Q(«).

Suppose that a is algebraic over a field F. Show thataand 1 + a!
have the same degree over F.

Suppose K is an extension of F' of degree n. Prove that K can be

written in the form F(x., x., ..., x ) for some x, x,,..., x_in K.
1272 n n
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Suggested Readings
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L. Roth, “On Extensions of Q by Square Roots,” American Mathematical

Monthly 78 (1971): 392-393.

In this paper, it is proved that if p,, p,, . . ., p, are distinct primes,

then [Q(Vp.Vpy. . .., Vp,):0] = 2"

Paul B. Yale, “Automorphisms of the Complex Numbers,” Mathematics
Magazine 39 (1966): 135-141.

This award-winning expository paper is devoted to various results on
automorphisms of the complex numbers.
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Irving Kaplansky

He got to the top of the heap
by being a first-rate doer and
expositor of algebra.

PAUL R. HALMOS, | Have a
Photographic Memory

IRVING KAPLANSKY was born on March 22,
1917, in Toronto, Canada, a few years after
his parents emigrated from Poland. Al-
though his parents thought he would pursue
a career in music, Kaplansky knew early on
that mathematics was what he wanted to do.
As an undergraduate at the University of
Toronto, Kaplansky was a member of the
winning team in the first William Lowell
Putnam Competition, a mathematical con-
test for United States and Canadian college
students. Kaplansky received a B.A. degree
from Toronto in 1938 and an M. A. in 1939. In
1939, he entered Harvard University to earn
his doctorate as the first recipient of a Putnam
Fellowship. After receiving his Ph.D. from
Harvard in 1941, Kaplansky stayed on as
Benjamin Peirce Instructor until 1944. After
one year at Columbia University, he went to
the University of Chicago, where he remained
until his retirement in 1984. He then became
the director of the Mathematical Sciences
Research Institute at the University of Cali-
fornia, Berkeley.

American Mathematical Society

Kaplansky’s interests were broad, includ-
ing areas such as ring theory, group theory,
field theory, Galois theory, ergodic theory,
algebras, metric spaces, number theory, sta-
tistics, and probability.

Among the many honors Kaplansky
received are election to both the National
Academy of Sciences and the American
Academy of Arts and Sciences, election to
the presidency of the American Mathemati-
cal Society, and the 1989 Steele Prize for
cumulative influence from the American
Mathematical Society. The Steele Prize cita-
tion says, in part, “. . . he has made striking
changes in mathematics and has inspired
generations of younger mathematicians.”
Kaplansky died on June 25, 2006, at the age
of 89.

For more information about Kaplansky,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Finite Fields

This theory [of finite fields] is of considerable interest in its own right and it
provides a particularly beautiful example of how the general theory of the
preceding chapters fits together to provide a rather detailed description of
all finite fields.

RICHARD A. DEAN, Elements of Abstract Algebra

Classification of Finite Fields

In this, our final chapter on field theory, we take up one of the most
beautiful and important areas of abstract algebra—finite fields. Finite
fields were first introduced by Galois in 1830 in his proof of the unsolv-
ability of the general quintic equation. When Cayley invented matrices a
few decades later, it was natural to investigate groups of matrices over
finite fields. To this day, matrix groups over finite fields are among the
most important classes of groups. In the past 50 years, there have been
important applications of finite fields in computer science, coding the-
ory, information theory, and cryptography. But, besides the many uses of
finite fields in pure and applied mathematics, there is yet another good
reason for studying them. They are just plain fun!

The most striking fact about finite fields is the restricted nature of
their order and structure. We have already seen that every finite field
has prime-power order (Exercise 51 in Chapter 13). A converse of sorts
is also true.

B Theorem 22.1 Classification of Finite Fields

388

For each prime p and each positive integer n, there is, up to
isomorphism, a unique finite field of order p".

PROOF Consider the splitting field E of f(x) = ¥ — x over Z, We
will show that |El = p". Since f(x) splits in E, we know that f(x) has ex-
actly p" zeros in E, counting multiplicity. Moreover, by Theorem 20.5,
every zero of f(x) has multiplicity 1. Thus, f(x) has p" distinct zeros in E.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied,
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On the other hand, the set of zeros of f(x) in E is closed under addition,
subtraction, multiplication, and division by nonzero elements (see
Exercise 37), so that the set of zeros of f(x) is itself an extension field of
Zp in which f(x) splits. Thus, the set of zeros of f(x) is E and, therefore,
IE| = pm.

To show that there is a unique field for each prime-power, suppose
that K is any field of order p". Then K has a subfield isomorphic to Zp
(generated by 1), and, because the nonzero elements of K form a multi-
plicative group of order p" — 1, every element of K is a zero of f(x) =
X" — x (see Exercise 27). So, K must be a splitting field for f(x) over Zp.
By the corollary to Theorem 20.4, there is only one such field up to
isomorphism. 1

The existence portion of Theorem 22.1 appeared in the works of
Galois and Gauss in the first third of the 19th century. Rigorous proofs
were given by Dedekind in 1857 and by Jordan in 1870 in his classic
book on group theory. The uniqueness portion of the theorem was
proved by E. H. Moore in an 1893 paper concerning finite groups. The
mathematics historian E. T. Bell once said that this paper by Moore
marked the beginning of abstract algebra in America.

Because there is only one field for each prime-power p”, we may un-
ambiguously denote it by GF(p"), in honor of Galois, and call it the
Galois field of order p".

Structure of Finite Fields

The next theorem tells us the additive and multiplicative group struc-
ture of a field of order p".

B Theorem 22.2 Structure of Finite Fields

As a group under addition, GF(p") is isomorphic to
2,92,9 --9Z,

n factors

As a group under multiplication, the set of nonzero elements of
GEF(p") is isomorphic to Zp,.f1 (and is, therefore, cyclic).

PROOF Since GF(p") has characteristic p (Theorem 13.3), every
nonzero element of GF( p") has additive order p. Then by the Funda-
mental Theorem of Finite Abelian Groups, GF( p") under addition is
isomorphic to a direct product of n copies of Zp.
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To see that the multiplicative group GF(p")* of nonzero elements of
GF(p") is cyclic, we first note that by the Fundamental Theorem of
Finite Abelian Groups (Theorem 11.1), GF(p")* is isomorphic to a direct
product of the form Z, © Z, @ - - - @ Z, . If the orders of these compo-
nents are pairwise relatively prime, then it follows from Corollary 1 of
Theorem 8.2 that GF(p™)* is cyclic. Hence we may assume that there is
an integer d > 1 that divides the orders of two of the components. From
the Fundamental Theorem of Cyclic Groups (Theorem 4.3) we know that
each of these components has a subgroup of order d. This means that
GF(p™)* has two distinct subgroups of order d, call them H and K. But
then every element of H and K is a zero of x — 1, which contradicts the
fact that a polynomial of degree d over a field can have at most d zeros
(Corollary 3 of Theorem 16.2). |

Some students misinterpret Theorem 22.2 to mean that Z @ Z
@ - DZ isafield of order p". Since any elementof Z ©Z @ - - -
Z, that has at least one coordinate equal to 0 cannot have an inverse, it
is not a field.

Since Z, s> z, b---D Z, is a vector space over Z with {(1, 0,
...,0,00,1,0,...,0),...,(0,0,..., 1)} as a basis, we have the
following useful and aesthetically appealing formula.

1 Corollary 1

[GE(p™):GF(p)] = n

1 Corollary 2 GF(p") Contains an Element of Degree n

Let a be a generator of the group of nonzero elements of GF( p")
under multiplication. Then a is algebraic over GF(p) of degree n.

PROOF Observe that [GF( p)(a):GF(p)] = [GF(p"):GF(p)] = n. |

B EXAMPLE 1 Let’s examine the field GF(16) in detail. Since x* +
x + 1is irreducible over Z,, we know that

GF(16) = {ax* + bx> + ex +d + (X* +x + 1) la, b, c,d € Z,).

Thus, we may think of GF(16) as the set
F={axX*+bx*+cx+dlab,c,dELZ},




22 | Finite Fields 391

where addition is done as in Z,[x], but multiplication is done modulo
x* + x + 1. For example,

(P +x2+x+ DO+ x) =2+ 42
since the remainder upon dividing
P+ +x+ D+ )=+ + % +x

by x* + x + 1in Z,[x] is x* + x. An easier way to perform the same
calculation is to observe that in this context x* + x + 11is 0, so

X*=—-x—1=x+1,
X =x+ x,
X0 = x3 + 1%

Thus,
B+ +2+x=@+D)+ @ +x)+ 2 +x=x+ 1%

Another way to simplify the multiplication process is to make use of
the fact that the nonzero elements of GF(16) form a cyclic group of
order 15. To take advantage of this, we must first find a generator of this
group. Since any element F* must have a multiplicative order that di-
vides 15, all we need to do is find an element « in F* such that o # 1
and o’ # 1. Obviously, x has these properties. So, we may think of
GF(16) as the set {0, 1, x, x2, . .., x4}, where x5 = 1. This makes mul-
tiplication in F trivial, but, unfortunately, it makes addition more diffi-
cult. For example, x'° - x7 = x!7 = x?, but what is x'° + x7? So, we face
a dilemma. If we write the elements of F* in the additive form ax® +
bx*> + cx + d, then addition is easy and multiplication is hard. On the
other hand, if we write the elements of F* in the multiplicative form x,
then multiplication is easy and addition is hard. Can we have the best of
both? Yes, we can. All we need to do is use the relation x* = x + 1 to
make a two-way conversion table, as in Table 22.1.

So, we see from Table 22.1 that

M+ = +x+1) +@E+x+1)
=3+ x2=x°
and

W@+ +DEE+2+x+1)=x3-x2
=xP=x0=x2+x+ 1. ]

Don’t be misled by the preceding example into believing that the
element x is always a generator for the cyclic multiplicative group
of nonzero elements. It is not. (See Exercise 19.) Although any two

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



392

Fields

Table 22.1 Conversion Table for Addition and Multiplication in GF(16)

Multiplicative Additive Form to
Form to Multiplicative

Additive Form Form

1 1 1 1
X X X X
x2 x2 x+1 x*
3 3 2 2
x* x+1 2+ x x5
X X2+ x 2+ 1 X8
X0 X3+ x? X2+x+1 x10
X X+ x+1 X x3
X8 X2+ 1 X+ a2 x6
X0 X+ x X3+ x X0
x10 X+x+1 X+ x4
X! B+t +x B+t +x X!
x!2 X+ +x+1 B+xr+1 x13
x3 X +x2+1 X +x+1 X!
x4 X+ 1 P+t +x+1 x12

irreducible polynomials of the same degree over Zp[x] yield isomorphic
fields, some are better than others for computational purposes.

B EXAMPLE 2 Consider f(x) = x> + x> + 1 over Z,. We will show how
to write f(x) as the product of linear factors. Let F = Z,[x]/f(x)) and let a
be a zero of f(x) in F. Then |FI = 8 and |F*| = 7. So, by Corollary 2 to
Theorem 7.1, we know that lal = 7. Thus, by Theorem 20.3,

F=10,1,a,d da, a*, a,a’)
={0,l,a,a+1,a>a>+a+1,a*>+1,a*> + a)}.

We know that a is one zero of f(x), and we can test the other elements
of F'to see if they are zeros. We can simplify the calculations by using
the fact that @®> + a*> + 1 = 0 to make a conversion table for the two
forms of writing the elements of F. Because char F' = 2, we know that
a® = a?> + 1. Then,

t=dd+a=0@+DH+a=a+a+1,
= +atta=@+ 1) +ad+a=a+1,
6=¢a2+ g,

7T=1.

Q] Q Q

Now let’s see whether a? is a zero of f(x).

f@ =@+ @?>+1=a+a*+1
=@+a)+@+a+1)+1=0.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



22 | Finite Fields 393

So, yes, it is. Next we try a’.

f@=@P+@?+1=a+a+1
=a*+@+a)+1=a+1=#0.

Now a*.

fay =@’ + @)’ +1=da%+a®+ 1
=a+a+l=@+1)+a+1=0.

So, a* is our remaining zero. Thus, f(x) = (x — a)(x — a®)(x — a*) =
(x + a)(x + a®)(x + a*), since char F = 2.

We may check this factorization by expanding the product and using
a conversion table to obtain f{x) = x* + x> + 1. |

Subfields of a Finite Field

Theorem 22.1 gives us a complete description of all finite fields. The
following theorem gives us a complete description of all the subfields
of a finite field. Notice the close analogy between this theorem and
Theorem 4.3, which describes all the subgroups of a finite cyclic group.

B Theorem 22.3 Subfields of a Finite Field

For each divisor m of n, GE(p") has a unique subfield of order p™.
Moreover, these are the only subfields of GF(p").

PROOF To show the existence portion of the theorem, suppose that
m divides n. Then, since

pr=1l=((p" =" "+p o+ D),

we see that p” — 1 divides p" — 1. For simplicity, write p" — 1 =
(p™ — Dt. Let K = {x € GF(p") | x*" = x}. We leave it as an easy exer-
cise for the reader to show that K is a subfield of GF(p") (Exercise 25).
Since the polynomial x”" — x has at most p™ zeros in GF(p"), we have
IKI < p™. Let {a) = GF(p")*. Then la'l = p™ — 1, and since (a")?" ! = 1,
it follows that a’ € K. So, K is a subfield of GF(p") of order p™.

The uniqueness portion of the theorem follows from the observation
that if GF(p") had two distinct subfields of order p™, then the polyno-
mial x?" — x would have more than p™ zeros in GF(p"). This contra-
dicts Corollary 3 of Theorem 16.2.
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Finally, suppose that F is a subfield of GF(p"). Then F is isomorphic to
GF(p™) for some m and, by Theorem 21.5,

n = [GF(p"):GF(p)]
= [GF(p"):GF(p™][GF( p™):GF(p)]
= [GF(p"):GF(p™)]m.

Thus, m divides n. |

Theorems 22.2 and 22.3, together with Theorem 4.3, make the task
of finding the subfields of a finite field a simple exercise in arithmetic.

B EXAMPLE 3 Let F be the field of order 16 given in Example 1. Then
there are exactly three subfields of F, and their orders are 2, 4, and 16.
Obviously, the subfield of order 2 is {0, 1} and the subfield of order 16
is F itself. To find the subfield of order 4, we merely observe that the
three nonzero elements of this subfield must be the cyclic subgroup of
F* = (x) of order 3. So the subfield of order 4 is

{0, 1,2, x19) = {0, 1, x> + x, x> + x + 1}. |

B EXAMPLE 4 If Fis a field of order 3° = 729 and « is a generator of
F*, then the subfields of F are

1. GF(3) = {0} U (o) = {0, 1, 2},

2. GF(9) = {0} U (1),

3. GF(27) = {0} U (a®®),

4. GF(729) = {0} U (a). |

B EXAMPLE 5 The subfield lattice of GF(2?*) is the following.

/GF(224)
AZIZ)

GF(2%) /

GF(2%)
GFQ2Y /
/ GF(2%)
GF(2?)

GF(2) 1
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No pressure, no diamonds.

L

10.

11.

12.

13.

14.

15.

16.

17.
18.

MARY CASE

Find [GF(729):GF(9)] and [GF(64):GF(8)].

If m divides n, show that [GF(p"):GF(p™)] = n/m.

Draw the lattice of subfields of GF(64).

Let a be a zero of x> + x? + 1 in some extension field of Z,. Find
the multiplicative inverse of a + 1 in Z,[«].

Let a be a zero of f(x) = x> + 2x + 2 in some extension field of Z,.
Find the other zero of f(x) in Z,[«].

. Let a be a zero of f(x) = x* + x + 1 in some extension field of Z,.

Find the other zeros of f(x) in Z,[«].

Let K be a finite extension field of a finite field . Show that there
is an element ¢ in K such that K = F(a).

How many elements of the cyclic group GF(81)* are generators?

. Let f(x) be a cubic irreducible over Z,. Prove that the splitting field

of f(x) over Z, has order 8.

Prove that the rings Z,[x]/(x* + x + 2) and Z,[x]/x* + 2x + 2) are
isomorphic.

Show that the Frobenius mapping ¢: GF(p") — GF(p"), given by
a — aP, is a ring automorphism of order n (that is, ¢" is the identity
mapping). (This exercise is referred to in Chapter 32.)

Determine the possible finite fields whose largest proper subfield
is GF(29).

Prove that the degree of any irreducible factor of x® — x over Z, is
1 or 3.

Find the smallest field that has exactly 6 subfields.

Find the smallest field of characteristic 2 that contains an element
whose multiplicative order is 5 and the smallest field of character-
istic 3 that contains an element whose multiplicative order is 5.

Verify that the factorization for f(x) = x* + x* + 1 over Z, given in
Example 2 is correct by expanding.

Show that x is a generator of the cyclic group (Z[x]/(x* + 2x + 1))*.
Suppose that f(x) is a fifth-degree polynomial that is irreducible
over Z,. Prove that x is a generator of the cyclic group (Z,[x]/

(FeN*.
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19.

20.

21.

22,

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

Show that x is not a generator of the cyclic group (Z3[x]/(x3 +
2x + 2))*. Find one such generator.

If f(x) is a cubic irreducible polynomial over Z,, prove that either x
or 2x is a generator for the cyclic group (Z,[x]/{f(x)))*.

Prove the uniqueness portion of Theorem 22.3 using a group
theoretic argument.

Suppose that a and 8 belong to GF(81)*, with lal = 5 and |81 = 16.
Show that a3 is a generator of GF(81)*.

Construct a field of order 9 and carry out the analysis as in Exam-
ple 1, including the conversion table.

Show that any finite subgroup of the multiplicative group of a field
is cyclic.

Show that the set K in the proof of Theorem 22.3 is a subfield.

If g(x) is irreducible over GF(p) and g(x) divides x?" — x, prove
that deg g(x) divides n.

Use a purely group theoretic argument to show that if F is a field
of order p”, then every element of F* is a zero of x?" — x. (This ex-
ercise is referred to in the proof of Theorem 22.1.)

Draw the subfield lattices of GF(3'®) and of GF(239).

How does the subfield lattice of GF(2*°) compare with the subfield
lattice of GF(33%)?

If p(x) is a polynomial in Z [x] with no multiple zeros, show that
p(x) divides x”" — x for some n.

Suppose that p is a prime and p # 2. Let a be a nonsquare in
GF(p)—that is, a does not have the form b? for any b in GF(p).
Show that a is a nonsquare in GF(p") if n is odd and that a is a
square in GF(p") if n is even.

Let f(x) be a cubic irreducible over Z , where p is a prime. Prove
that the splitting field of f(x) over Z has order p’or pb.

Show that every element of GF(p") can be written in the form a”
for some unique a in GF(p").

Suppose that F is a field of order 1024 and F* = (). List the ele-
ments of each subfield of F.

Suppose that F is a field of order 125 and F* = {(a). Show that
a®? = —1.

Show that no finite field is algebraically closed.

Let E be the splitting field of f(x) = x”" — x over Z . Show that the
set of zeros of f(x) in E is closed under addition, subtraction, mul-
tiplication, and division (by nonzero elements). (This exercise is
referred to in the proof of Theorem 22.1.)




38.

39.

40.

41.

42,

43.

44.

22 | Finite Fields 397

Suppose that L and K are subfields of GF(p"). If L has p® elements
and K has p’ elements, how many elements does L N K have?
Give an example to show that the mapping a — @” need not be an
automorphism for arbitrary fields of prime characteristic p.

In the field GF(p"), show that for every positive divisor d of n,
x*" — x has an irreducible factor over GF(p) of degree d.

Let a be a primitive element for the field GF(p"), where p is an odd
prime and 7 is a positive integer. Find the smallest positive integer
k such thatak = p — 1.

Let a be a primitive element for the field GF(5"), where n is a posi-
tive integer. Find the smallest positive integer k such that a* = 2.
Let p be a prime such that p mod 4 = 1. How many elements of
order 4 are in GF(p™")*?

Let p be a prime such that p mod 4 = 3. How many elements of
order 4 are in GF(p™)*?

Computer Exercises

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Judy L. Smith and J. A. Gallian, “Factoring Finite Factor Rings,”
Mathematics Magazine 58 (1985): 93-95.
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L .E. Dickson

One of the books [written by L. E. Dickson]
is his major, three-volume History of the
Theory of Numbers which would be a life’s
work by itself for a more ordinary man.

A. A. ALBERT,
Bulletin of the American
Mathematical Society

LEONARD EUGENE DICKSON was born in
Independence, Iowa, on January 22, 1874.
In 1896, he received the first Ph.D. to be
awarded in mathematics at the University of
Chicago. After spending a few years at the
University of California and the University
of Texas, he was appointed to the faculty at
Chicago and remained there until his retire-
ment in 1939.

Dickson was one of the most prolific
mathematicians of the 20th century, writing
267 research papers and 18 books. His prin-
cipal interests were matrix groups, finite
fields, algebra, and number theory.

Dickson had a disdainful attitude toward
applicable mathematics; he would often say,
“Thank God that number theory is unsullied
by any applications.” He also had a sense of

398

American Mathematical Society

humor. Dickson would often mention his
honeymoon: “It was a great success,” he
said, “except that I only got two research
papers written.”

Dickson received many honors in his
career. He was the first to be awarded the
prize from the American Association for the
Advancement of Science for the most notable
contribution to the advancement of science,
and the first to receive the Cole Prize in alge-
bra from the American Mathematical Society.
The University of Chicago has research in-
structorships named after him. Dickson died
on January 17, 1954.

For more information about Dickson, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Geometric

Constructions

At the age of eleven, | began Euclid. ... This was one of the great events
of my life, as dazzling as first love.
BERTRAND RUSSELL

Historical Discussion
of Geometric Constructions

The ancient Greeks were fond of geometric constructions. They were
especially interested in constructions that could be achieved using only a
straightedge without markings and a compass. They knew, for example,
that any angle can be bisected, and they knew how to construct an equi-
lateral triangle, a square, a regular pentagon, and a regular hexagon. But
they did not know how to trisect every angle or how to construct a regu-
lar seven-sided polygon (heptagon). Another problem that they at-
tempted was the duplication of the cube—that is, given any cube, they
tried to construct a new cube having twice the volume of the given one
using only an unmarked straightedge and a compass. Legend has it that
the ancient Athenians were told by the oracle at Delos that a plague
would end if they constructed a new altar to Apollo in the shape of a cube
with double the volume of the old altar, which was also a cube. Besides
“doubling the cube,” the Greeks also attempted to “square the circle”—to
construct a square with area equal to that of a given circle. They knew
how to solve all these problems using other means, such as a compass
and a straightedge with two marks, or an unmarked straightedge and a
spiral, but they could not achieve any of the constructions with a compass
and an unmarked straightedge alone. These problems vexed mathemati-
cians for over 2000 years. The resolution of these perplexities was made
possible when they were transferred from questions of geometry to ques-
tions of algebra in the 19th century.

The first of the famous problems of antiquity to be solved was that of
the construction of regular polygons. It had been known since Euclid that
regular polygons with a number of sides of the form 2%, 2% - 3, 2€ - 5, and
2k -3+ 5 could be constructed, and it was believed that no others were
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possible. In 1796, while still a teenager, Gauss proved that the
17-sided regular polygon is constructible. In 1801, Gauss asserted that a
regular polygon of n sides is constructible if and only if n has the form
2%p.p, * - p,, where the p’s are distinct primes of the form 22+ 1. We
provide a proof of this statement in Theorem 33.5.

Thus, regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, and 20
sides are possible to construct, whereas those with 7, 9, 11, 13, 14,
18, and 19 sides are not. How these constructions can be effected is an-
other matter. One person spent 10 years trying to determine a way to
construct the 65,537-sided polygon.

Gauss’s result on the constructibility of regular n-gons eliminated
another of the famous unsolved problems, because the ability to trisect
a 60° angle enables one to construct a regular 9-gon. Thus, there is no
method for trisecting a 60° angle with an unmarked straightedge and a
compass. In 1837, Wantzel proved that it was not possible to double
the cube. The problem of the squaring of a circle resisted all attempts
until 1882, when Ferdinand Lindemann proved that 7 is transcenden-
tal, since, as we will show, all constructible numbers are algebraic.

Constructible Numbers

With the field theory we now have, it is an easy matter to solve the following
problem: Given an unmarked straightedge, a compass, and a unit length, what
other lengths can be constructed? To begin, we call a real number « construct-
ible if, by means of an unmarked straightedge, a compass, and a line segment
of length 1, we can construct a line segment of length |« in a finite number of
steps. It follows from plane geometry that if o and 3 (8 # 0) are constructible
numbers, then so are @ + 8, « — 3, a * B, and o/f. (See the exercises for
hints.) Thus, the set of constructible numbers contains Q and is a subfield of
the real numbers. What we desire is an algebraic characterization of this field.
To derive such a characterization, let F' be any subfield of the reals. Call
the subset {(x, y) € R?> | x, y € F} of the real plane the plane of F, call
any line joining two points in the plane of F a line in F, and call any circle
whose center is in the plane of ' and whose radius is in F a circle in F. Then a
line in F has an equation of the form

ax + by +c¢c=0, where a, b, ¢ € F,
and a circle in F has an equation of the form
X+y+ax+by+c=0, where a, b, ¢ € F.

In particular, note that to find the point of intersection of a pair of lines
in F or the points of intersection of a line in F and a circle in F, one
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need only solve a linear or quadratic equation in F. We now come to
the crucial question. Starting with points in the plane of some field F,
which points in the real plane can be obtained with an unmarked
straightedge and a compass? Well, there are only three ways to con-
struct points, starting with points in the plane of F.

1. Intersect two lines in F.
2. Intersect a circle in F and a line in F.
3. Intersect two circles in F.

In case 1, we do not obtain any new points, because two lines in F' in-
tersect in a point in the plane of F. In case 2, the point of intersection is
the solution to either a linear equation in F or a quadratic equation in
F. So, the point lies in the plane of F or in the plane of F(\Va), where
a € F and «a is positive. In case 3, no new points are obtained, because,
if the two circles are given by x> + y?> + ax + by + ¢ = 0 and
X2 +y>*+ax+b'y+c =0,then we have (a —a')x + (b — b')y +
(¢ — ¢’) = 0, which is a line in F. So, the points of intersection are in F.
It follows, then, that the only points in the real plane that can be
constructed from the plane of a field /' are those whose coordinates
lie in fields of the form F(\/&), where a € F and « is positive. Of
course, we can start over with F; = F(\/&) and construct points
whose coordinates lie in fields of the form F, = F 1(\/B’), where 8 €
F, and B is positive. Continuing in this fashion, we see that a real
number c is constructible if and only if there is a series of fields Q =
F,CF,C---CF CRsuchthatF, 6 = Fi(\/&i), where a; € F,
and ¢ € F. Since [F,_:F)] = 1 or 2, we see by Theorem 21.5 that if
c is constructible, then [Q(c):Q] = 2* for some nonnegative integer k.
We now dispatch the problems that plagued the Greeks. Consider dou-
bling the cube of volume 1. The enlarged cube would have an edge of
length V2. But [Q(\3/2):Q] = 3, so such a cube cannot be constructed.
Next consider the possibility of trisecting a 60° angle. If it were pos-
sible to trisect an angle of 60°, then cos 20° would be constructible. (See
Figure 23.1.) In particular, [Q(cos 20°):Q] = 2 for some k. Now, using
the trigonometric identity cos 36 = 4 cos® 6 — 3 cos 6, with § = 20°, we

(cos 20°, sin 20°)

f |

0,0) (1,0)

Figure 23.1
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see that 1/2 = 4 cos® 20° — 3 cos 20°, so that cos 20° is a zero of
8x3 — 6x — 1. But, since 8x* — 6x — 1 is irreducible over Q (see
Exercise 13), we must also have [Q(cos 20°):Q] = 3. This contradiction
shows that trisecting a 60° angle is impossible.

The remaining problems are relegated to the reader as Exercises 14,
15, and 17.

Angle-Trisectors and Circle-Squarers

Down through the centuries, hundreds of people have claimed to have
achieved one or more of the impossible constructions. In 1775, the Paris
Academy, so overwhelmed with these claims, passed a resolution to no
longer examine these claims or claims of machines purported to exhibit
perpetual motion. Although it has been more than 100 years since the last
of the constructions was shown to be impossible, there continues to be a
steady parade of people who claim to have done one or more of them.
Most of these people have heard that this is impossible but have refused
to believe it. One person insisted that he could trisect any angle with a
straightedge alone [2, p. 158]. Another found his trisection in 1973 after
12,000 hours of work [2, p. 80]. One got his from God [2, p. 73]. In
1971, a person with a Ph.D. in mathematics asserted that he had a valid
trisection method [2, p. 127]. Many people have claimed the hat trick:
trisecting the angle, doubling the cube, and squaring the circle. Two men
who did this in 1961 succeeded in having their accomplishment noted in
the Congressional Record [2, p. 110]. Occasionally, newspapers and
magazines have run stories about “doing the impossible,” often giving
the impression that the construction may be valid. Many angle-trisectors
and circle-squarers have had their work published at their own expense
and distributed to colleges and universities. One had his printed in four
languages! There are two delightful books written by mathematicians
about their encounters with these people. The books are full of wit,
charm, and humor ([1] and [2]).

Only prove to me that it is impossible, and | will set about it this very
evening.
Spoken by a member of the audience after De Morgan gave a
lecture on the impossibility of squaring the circle.

1. If a and b are constructible numbers and a = b > 0, give a geomet-
ric proof that a + b and a — b are constructible.
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11.
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If @ and b are constructible, give a geometric proof that ab is con-
structible. (Hint: Consider the following figure. Notice that all seg-
ments in the figure can be made with an unmarked straightedge and a
compass.)

b
Prove that if ¢ is a constructible number, then so is V|c|. (Hint:

Consider the following semicircle with diameter 1 + Icl.) (This ex-
ercise is referred to in Chapter 33.)

o
a |4
1 |L|

If a and b (b # 0) are constructible numbers, give a geometric proof
that a/b is constructible. (Hint: Consider the following figure.)

Prove that sin 6 is constructible if and only if cos 6 is constructible.

Prove that an angle 6 is constructible if and only if sin 6 is con-
structible.

Prove that cos 260 is constructible if and only if cos 6 is con-
structible.

Prove that 30° is a constructible angle.

Prove that a 45° angle can be trisected with an unmarked straight-
edge and a compass.

Prove that a 40° angle is not constructible.

Show that the point of intersection of two lines in the plane of a
field F lies in the plane of F.
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12.

Show that the points of intersection of a circle in the plane of a field
F and a line in the plane of F are points in the plane of F or in the
plane of F(\Va), where @ € F and « is positive. Give an example
of a circle and a line in the plane of Q whose points of intersection
are not in the plane of Q.

. Prove that 8x> — 6x — 1 is irreducible over Q.
. Use the fact that 8 cos’(2m/7) + 4 cos*(2m/7) — 4 cos2m/7) — 1 =0

to prove that a regular seven-sided polygon is not constructible with
an unmarked straightedge and a compass.

. Show that a regular 9-gon cannot be constructed with an unmarked

straightedge and a compass.

. Show that if a regular n-gon is constructible, then so is a regular

2n-gon.

. (Squaring the Circle) Show that it is impossible to construct, with

an unmarked straightedge and a compass, a square whose area
equals that of a circle of radius 1. You may use the fact that 7 is
transcendental over Q.

. Use the fact that 4 cos?>(27/5) + 2 cos(2m/5) — 1 = 0 to prove that

a regular pentagon is constructible.

. Can the cube be “tripled”?

. Can the cube be “quadrupled”?

. Can the circle be “cubed”?

. If a, b, and ¢ are constructible, show that the real roots of ax> +

bx + c are constructible.
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Suggested Website

http://en.wikipedia.org/wiki/Squaring_the_circle

This website provides an excellent account of efforts to square the
circle, and links for articles about trisecting the angle and doubling
the cube.
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Difficulties strengthen the mind, as labor does the body.
SENECA

True/false questions for Chapters 19-23 are available on the Web at:
http://www.d.umn.edu/~jgallian/TF

1. Show that x°* — 1 has no multiple zeros in any extension of Z,.

2. Suppose that p(x) is a quadratic polynomial with rational coeffi-
cients and is irreducible over Q. Show that p(x) has two zeros in
Olx1/(p(x)).

3. Let F' be a finite field of order g and let @ be a nonzero element in
F. If n divides ¢ — 1, prove that the equation x" = a has either no
solutions in F or n distinct solutions in F.

4. Without using the Primitive Element Theorem, prove that if [K:F]
is prime, then K has a primitive element.

5. Let a be a zero of x> + x + 1. Express (54> + 2)/a in the form ¢ +
ba, where c and b are rational.

6. Describe the elements of the extension Q(\4/§) over the field Q(V'2).

7. If [F(a):F] = 5, find [F(a®):F]. Does your argument apply equally
well if a? is replaced with a? or a*?

8. If p(x) € F[x] and deg p(x) = n, show that the splitting field for
p(x) over F has degree at most n!.

9. Let a be a nonzero algebraic element over F of degree n. Show that
a~!is also algebraic over F of degree n.

10. Prove that 77> — 1 is algebraic over Q(7?).

11. If ab is algebraic over F and b # 0, prove that a is algebraic over F(b).

12. Let E be an algebraic extension of a field F. If R is aring and E D
R D F, show that R must be a field.

13. If a is transcendental over F, show that every element of F(a) that
is not in F'is transcendental over F.

14. What is the order of the splitting field of x> + x* + 1 = (x> + x + 1) -
( +x+ 1)overZ,)?

15. Show that a finite extension of a finite field is a simple extension.

16. Let R be an integral domain that contains a field F as a subring. If
R is finite dimensional when viewed as a vector space over F, prove
that R is a field.
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17. Show that it is impossible to find a basis for the vector space of
n X n (n > 1) matrices such that each pair of elements in the basis
commutes under multiplication.

18. LetP = {ax" +a,_x""'+---+ ax+ a,leachq, is a real
number}. Is it possible to have a basis for P, such that every ele-
ment of the basis has x as a factor?

19. Find a basis for the vector space { f € P;1f(0) = 0}. (See Exercise 18
for notation.)

20. Given that f'is a polynomial of degree n in P , show that {f, f’,
f", ..., f™} is abasis for P . (f™ denotes the kth derivative of f.)

21. Suppose that K is an extension field of a field F of characteristic
p#0.LetL = {a € K| a” € F for some nonnegative integer n}.
Prove that L is a subfield of K that contains F.

22. In which fields does x" — x have a multiple zero?
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Sylow Theorems

Generally these three results are implied by the expression “Sylow’s
Theorem.” All of them are of fundamental importance. In fact, if the
theorems of group theory were arranged in order of their importance
Sylow’s Theorem might reasonably occupy the second place—coming next
to Lagrange’s Theorem in such an arrangement.
G. A. MILLER, Theory and Application
of Finite Groups

Conjugacy Classes

In this chapter, we derive several important arithmetic relationships
between a group and certain of its subgroups. Recall from Chapter 7
that Lagrange’s Theorem was proved by showing that cosets of a sub-
group partition the group. Another fruitful method of partitioning the
elements of a group is by way of conjugacy classes.

Definition Conjugacy Class of a

Let a and b be elements of a group G. We say that a and b are
conjugate in G (and call b a conjugate of a) if xax~! = b for some x
in G. The conjugacy class of a is the set cl(a) = {xax™! | x € G}.

We leave it to the reader (Exercise 1) to prove that conjugacy is an
equivalence relation on G, and that the conjugacy class of a is the equiva-
lence class of a under conjugacy. Thus, we may partition any group into
disjoint conjugacy classes. Let’s look at one example. In D, we have

CI(H) - {ROHRO_ 1’ R9OHR9O_ 1’ Rl SOHR 1 80_ 1’ R27OHR27O_ 1’

HHH', VHV~', DHD~\, D'HD'~'} = (H, V).
Similarly, one may verify that
clRy) = {Ry}.
cl(Ry) = {Ryp, Ryyy} = cl(Ry5),
cl(Rg)) = (R}
cl(V) = {V, H} = cl(H),
cl(D) = {D, D'} = cl(D").
409
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Theorem 24.1 gives an arithmetic relationship between the size of
the conjugacy class of a and the size of C(a), the centralizer of a.

1 Theorem 24.1 Number of Conjugates of a

Let G be a finite group and let a be an element of G. Then,
Icl(a)l = 1G:C(a)l.

PROOF Consider the function T that sends the coset xC(a) to the
conjugate xax~ ! of a. A routine calculation shows that T is well-defined, is
one-to-one, and maps the set of left cosets onto the conjugacy class of a.
Thus, the number of conjugates of a is the index of the centralizer of a. 1l

1 Corollary 1 |cl(a)| Divides |G|

In a finite group, Icl(a)! divides 1G|.

The Class Equation

Since the conjugacy classes partition a group, the following important
counting principle is a corollary to Theorem 24.1.

I Corollary 2 Class Equation

For any finite group G,
IGl = 21G:C(a)|,

where the sum runs over one element a from each conjugacy class of G.

In finite group theory, counting principles such as this corollary are
powerful tools.” Theorem 24.2 is the single most important fact about
finite groups of prime-power order (a group of order p”, where p is a

prime, is called a p-group).

I Theorem 24.2 p-Groups Have Nontrivial Centers

Let G be a nontrivial finite group whose order is a power of a prime p.
Then Z(G) has more than one element.

T“Never underestimate a theorem that counts something.” John Fraleigh, A First Course
in Abstract Algebra.
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PROOF First observe that cl(a) = {a} if and only if a € Z(G) (see
Exercise 4). Thus, by culling out these elements, we may write the
class equation in the form

|Gl = 1Z(G)| + 21G:C(a),

where the sum runs over representatives of all conjugacy classes with
more than one element (this set may be empty). But 1G:C(a)l =
IGI/IC(a)l, so each term in 21G:C(a)! has the form p* with k = 1. Hence,

IGl — 31G:C(a)l = 1Z(G)l,

where each term on the left is divisible by p. It follows, then, that p also
divides |1Z(G)!, and hence 1Z(G)| # 1. |

I Corollary Groups of Order p? Are Abelian

If |G| = p?% where p is prime, then G is Abelian.

PROOF By Theorem 24.2 and Lagrange’s Theorem, |Z(G)| = p or p>.
If IZ(G)| = p?, then G = Z(G) and G is Abelian. If |Z(G)| = p, then
|G/Z(G)| = p, so that G/Z(G) is cyclic. But, then, by Theorem 9.3, G is
Abelian. |

The Probability That Two
Elements Commute

Before proceeding to the main goal of this chapter, we pause for an in-
teresting application of Theorem 24.1 and the class equation. (Our dis-
cussion is based on [1] and [2].) Suppose we select two elements
at random (with replacement) from a finite group. What is the proba-
bility that these two elements commute? Well, suppose that G is a fi-
nite group of order n. Then the probability Pr(G) that two elements
selected at random from G commute is |K|/n?, where K = {(x, y) €
G © G | xy = yx}. Now notice that for each x € G we have (x, y) € K
if and only if y € C(x). Thus,

K] = > IC()]-
xeG
Also, it follows from Theorem 24.1 that if x and y are in the same
conjugacy class, then IC(x)| = IC(y)| (see Exercise 71). If, for exam-
ple, cl(@) = {a,, a,, ..., a,}, then

IC(a)! + 1C(a)!l + - - - + 1C(a)! = tIC(a)
= 1G:C(a)lIC(a)l = IGl = n.
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So, by choosing one representative from each conjugacy class, say, x,,

Xy oo X, We have
K| = 2:,; [Cx)| = 21 |G:C(x)||C(x;)| = m-n.
xE i=

Thus, the answer to our question is mn/n* = m/n, where m is the num-
ber of conjugacy classes in G and n is the number of elements of G.

Obviously, when G is non-Abelian, Pr(G) is less than 1. But how much
less than 1? Clearly, the more conjugacy classes there are, the larger Pr(G)
is. Consequently, Pr(G) is large when the sizes of the conjugacy classes
are small. Noting that Icl(a)l = 1 if and only if a € Z(G), we obtain the
maximum number of conjugacy classes when 1Z(G)! is as large as possi-
ble and all other conjugacy classes have exactly two elements in each.
Since G is non-Abelian, it follows from Theorem 9.3 that |1G/Z(G)| = 4
and, therefore, |Z(G)| = |GI/4. Thus, in the extreme case, we would have
IZ(G)l = 1Gl/4, and the remaining (3/4)IGI elements would be distributed
in conjugacy classes with two elements each. So, in a non-Abelian group,
the number of conjugacy classes is no more than 1G1/4 + (1/2)(3/4)IGl,
and Pr(G) is less than or equal to 5/8. The dihedral group D, is an exam-
ple of a group that has probability equal to 5/8.

The Sylow Theorems

Now to the Sylow theorems. Recall that the converse of Lagrange’s
Theorem is false; that is, if G is a group of order m and n divides m,
G need not have a subgroup of order n. Our next theorem is a partial
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first
proved by the Norwegian mathematician Ludwig Sylow (1832-1918).
Sylow’s Theorem and Lagrange’s Theorem are the two most important
results in finite group theory.” The first gives a sufficient condition for
the existence of subgroups, and the second gives a necessary condition.

I Theorem 24.3 Existence of Subgroups of Prime-Power Order
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If p* divides |G|, then G
has at least one subgroup of order p*.

"My candidate for the third most important result is the Fundamental Theorem of
Finite Abelian Groups.
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PROOF We proceed by induction on IGl. If IGl = 1, Theorem 24.3 is
trivially true. Now assume that the statement is true for all groups of
order less than |Gl. If G has a proper subgroup H such that p* divides
|H|, then, by our inductive assumption, H has a subgroup of order p*
and we are done. Thus, we may henceforth assume that p* does not
divide the order of any proper subgroup of G. Next, consider the class
equation for G in the form

IGl = 1Z(G)! + 21G:C(a),

where we sum over a representative of each conjugacy class cl(a), where
a & Z(G). Since p* divides |G| = 1G:C(a)!|C(a)! and p* does not divide
IC(a)!, we know that p must divide 1G:C(a)! for all a & Z(G). It then fol-
lows from the class equation that p divides |1Z(G)l. The Fundamental
Theorem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then
guarantees that Z(G) contains an element of order p, say x. Since x is in
the center of G, (x) is a normal subgroup of G, and we may form the fac-
tor group G/(x). Now observe that p*~! divides |G/{x)!. Thus, by the
induction hypothesis, G/{x) has a subgroup of order p*~! and, by Exer-
cise 51 in Chapter 10, this subgroup has the form H/{x), where H is a
subgroup of G. Finally, note that |H/(x)| = p*~! and I{x)| = p imply that
|[H| = p*. Thus, we have produced a subgroup of order p*, which con-
tradicts our assumption that no such subgroup exists. Therefore, we
must have originally had a subgroup of order p*, and we can apply the
induction hypothesis to that subgroup. |

Let’s be sure we understand exactly what Sylow’s First Theorem
means. Say we have a group G of order 23 - 32 - 5% - 7. Then Sylow’s
First Theorem says that G must have at least one subgroup of each
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the
other hand, Sylow’s First Theorem tells us nothing about the possible
existence of subgroups of order 6, 10, 15, 30, or any other divisor of
|G| that has two or more distinct prime factors. Because certain sub-
groups guaranteed by Sylow’s First Theorem play a central role in the
theory of finite groups, they are given a special name.

Definition Sylow p-Subgroup

Let G be a finite group and let p be a prime. If p* divides |G| and p**!
does not divide |Gl then any subgroup of G of order p* is called a
Sylow p-subgroup of G.

"Note that it follows from Sylow’s First Theorem and the definition that the trivial sub-
group {e} is a Sylow p-subgroup of G if and only if p does not divide IGI.
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So, returning to our group G of order 23 - 32 - 5* - 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or-
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow
p-subgroup of G is a subgroup whose order is the largest power of
p consistent with Lagrange’s Theorem.

Since any subgroup of order p is cyclic, we have the following gen-
eralization of Theorem 9.5, first proved by Cauchy in 1845. His proof
ran nine pages!

Corollary Cauchy’s Theorem

Let G be a finite group and let p be a prime that divides the order
of G. Then G has an element of order p.

Sylow’s First Theorem is so fundamental to finite group theory that
many different proofs of it have been published over the years [our proof
is essentially the one given by Georg Frobenius (1849-1917) in 1895].
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite
Abelian Groups and Sylow’s First Theorem show that the converse of
Lagrange’s Theorem is true for all finite Abelian groups and all finite
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable
tools in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups
Let H and K be subgroups of a group G. We say that H and K are
conjugate in G if there is an element g in G such that H = gKg™ 1.

Recall from Chapter 7 that if G is a finite group of permutations on a
set Sand i € S, then orb (i) = {¢p(i) | ¢ € G} and lorb(i)! divides IGI.

I Theorem 24.4 Sylow’s Second Theorem

If H is a subgroup of a finite group G and |H| is a power of a prime p,
then H is contained in some Sylow p-subgroup of G.

PROOF Let K be a Sylow p-subgroup of Gand let C = {K|, K, ..., K }
with K = K be the set of all conjugates of K in G. Since conjugation is an
automorphism, each element of C is a Sylow p-subgroup of G. Let S,
denote the group of all permutations of C. For each g € G, define
ng: C— Cby q’>g(Ki) = gK,g~'. It is easy to show that each qbg SIS
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Now define a mapping 7: G — S by T(g) = d)g. Since d)gh(Ki) =
(gMK(gh)™' = g(hKh™Hg™' = gd(K)g™' = ¢,(¢,(K)) =
(qbgq,’)h)(Kl.), we have d)gh = d)gq,’)h, and therefore 7" is a homomorphism
from G to S,.

Next consider T(H), the image of H under 7. Since |H| is a power
of p, sois IT(H)! (see property 6 of Theorem 10.2). Thus, by the Orbit-
Stabilizer Theorem (Theorem 7.3), for each i, IorbT(H)(Kl.)l divides
IT(H)!, so that IorbT(H)(KI.)I is a power of p. Now we ask: Under what
condition does IorbT(H)(Ki)l = 1? Well, IorbT(H)(Kl.)l = 1 means that
qbg(Kl.) = gKl.g‘1 = K, for all g € H; that is, IorbT(H)(Ki)l = 1if and
only if H = N(K,). But the only elements of N(K,) that have orders that
are powers of p are those of K, (see Exercise 13). Thus, IorbT(H)(Ki)l =1
if and only if H = K.

So, to complete the proof, all we need to do is show that for some i,
IorbT(H)(Ki)I = 1. Analogous to Theorem 24.1, we have ICl = |G:N(K)I
(see Exercise 5). And since |G:KI = IG:N(K)IIN(K):K| is not divisible
by p, neither is |Cl. Because the orbits partition C, ICI is the sum of
powers of p. If no orbit has size 1, then p divides each summand and,
therefore, p divides |Cl, which is a contradiction. Thus, there is an orbit
of size 1, and the proof is complete. |

I Theorem 24.5 Sylow’s Third Theorem

Let p be a prime and let G be a group of order p*m, where p does not
divide m. Then the number n of Sylow p-subgroups of G is equal to
1 modulo p and divides m. Furthermore, any two Sylow p-subgroups
of G are conjugate.

PROOF Let K be any Sylow p-subgroup of G and let C = {K|,
K,, ..., K}, with K = K|, be the set of all conjugates of Kin G. We
first prove that n mod p = 1.

Let S and T be as in the proof of Theorem 24.4. This time
we consider T(K), the image of K under 7. As before, we have
IorbT( K)(K[)I is a power of p for each i and IorbT( K)(Ki)l = 1 if and only
if K = K,. Thus, IorbT(K)(Kl)l = 1 and IorbT(K)(Ki)l is a power of p
greater than 1 for all i # 1. Since the orbits partition C, it follows that,
modulo p,n = ICl = 1.

Next we show that every Sylow p-subgroup of G belongs to C. To do
this, suppose that H is a Sylow p-subgroup of G that is not in C. Let
S and T be as in the proof of Theorem 24.4, and this time consider
T(H). As in the previous paragraph, |C| is the sum of the orbits’ sizes
under the action of T(H). However, no orbit has size 1, since H is not
in C. Thus, ICl is a sum of terms each divisible by p, so that, modulo p,
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n = |ICl = 0. This contradiction proves that H belongs to C, and that
n is the number of Sylow p-subgroups of G.

Finally, that n divides m follows directly from the fact that n =
IG:N(K)| (see Exercise 5) and n is relatively prime to p. |

It is convenient to let n, denote the number of Sylow p-subgroups of
a group. Observe that the first portion of Sylow’s Third Theorem is a
counting principle.” As an important consequence of Sylow’s Third
Theorem, we have the following corollary.

I Corollary A Unique Sylow p-Subgroup Is Normal

A Sylow p-subgroup of a finite group G is a normal subgroup of G if
and only if it is the only Sylow p-subgroup of G.

We illustrate Sylow’s Third Theorem with two examples.

B EXAMPLE 1 Consider the Sylow 2-subgroups of S,. They are
{(D), (12)}, {(1), (23)}, and {(1), (13)}. According to Sylow’s Third
Theorem, we should be able to obtain the latter two of these from the
first by conjugation. Indeed,

(3D, 12)}A3) 7" = {(1), (23)},
@3){(D), 12}23)7" = {(1), (13)}. i

B EXAMPLE 2 Consider the Sylow 3-subgroups of A,. They are {«,, a,
ah, {a, ag, a }, {a, a, a,t, and {a, ag, a ,}. (See Table 5.1.) Then,

az{al’ asa ag}az_i = {a17a7’ a]z}a
a3{a19a5’ ag}a3_l = {apaga alo}’
afa;, as, el = {a), ag ay )

Thus, the number of Sylow 3-subgroups is 1 modulo 3, and the four
Sylow 3-subgroups are conjugate. |

Figure 24.1 shows the subgroup lattices for S, and A,. We have con-
nected the Sylow p-groups with dashed circles to indicate that they be-
long to one orbit under conjugation. Notice that the three subgroups of
order 2 in A, are contained in a Sylow 2-group, as required by Sylow’s
Second Theorem. As it happens, these three subgroups also belong to
one orbit under conjugation, but this is not a consequence of Sylow’s
Third Theorem.

f“Whenever you can, count.” Sir Francis Galton (1822-1911), The World of
Mathematics.
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/

Ay=<(123)> (1

Figure 24.1 Lattices of subgroups for S3 and A4.

In contrast to the two preceding examples, observe that the
dihedral group of order 12 has seven subgroups of order 2, but that
conjugating {R, R ¢,} does not yield any of the other six. (Why?)

Applications of Sylow Theorems

A few numerical examples will make the Sylow theorems come to life.

I EXAMPLE 3 Say G is a group of order 40. What do the Sylow theo-
rems tell us about G? A great deal! Since 1 is the only divisor of 40 that
is congruent to 1 modulo 5, we know that G has exactly one subgroup of
order 5, and therefore it is normal. Similarly, G has either one or five
subgroups of order 8. If there is only one subgroup of order 8, it is nor-
mal. If there are five subgroups of order 8, none is normal and all
five can be obtained by starting with any particular one, say H, and
computing xHx ! for various x’s. Finally, if we let K denote the nor-
mal subgroup of order 5 and let H denote any subgroup of order 8, then
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G = HK. (See Example 5 in Chapter 9.) If H happens to be normal, we
can say even more: G = H X K. |

I EXAMPLE 4 Consider a group of order 30. By Sylow’s Third
Theorem, it must have either one or six subgroups of order 5 and one or
10 subgroups of order 3. However, G cannot have both six subgroups of
order 5 and 10 subgroups of order 3 (for then G would have more than
30 elements). Thus, the subgroup of order 3 is unique or the subgroup
of order 5 is unique (or both are unique) and therefore is normal in G. It
follows, then, that the product of a subgroup of order 3 and one of order
5 is a group of order 15 that is both cyclic (Exercise 33) and normal
(Exercise 9 in Chapter 9) in G. [This, in turn, implies that both the sub-
group of order 3 and the subgroup of order 5 are normal in G (Exercise
59 in Chapter 9).] So, if we let y be a generator of the cyclic subgroup
of order 15 and let x be an element of order 2 (the existence of which is
guaranteed by Cauchy’s Theorem), we see that

G={xy10=i=10=j=14}). I

# EXAMPLE 5 We show that any group G of order 72 must have a
proper, nontrivial normal subgroup. Our arguments are a preview of
those in Chapter 25. By Sylow’s Third Theorem, the number of Sylow
3-subgroups of G is equal to 1 mod 3 and divides 8. Thus, the number
is 1 or 4. If there is only one, then it is normal by the corollary of
Sylow’s Third Theorem. Otherwise, let H and H' be two distinct Sylow
3-subgroups. By Theorem 7.2, we have that |[H H'l = |HIIH'|/[HN H'l =
81/IH N H'l. Since IGl = 72 and |[H N H'l is a subgroup of H and
H', we know that IH N H'l = 3. By the corollary to Theorem 24.2,
N(H N H') contains both H and H'. Thus, IN(H N H')| divides 72, is
divisible by 9, and has at least |[H H'I” = 27 elements. This leaves only
36 or 72 for IN(H N H")I. In the first case, we have from Exercise 9 of
Chapter 9 that N(H N H') is normal in G. In the second case, we have
by definition that H N H' is normal in G. |

Note that in these examples we were able to deduce all of this infor-
mation from knowing only the order of the group—so many conclusions
from one assumption! This is the beauty of finite group theory.

In Chapter 7 we saw that the only group (up to isomorphism) of
prime order p is Z, As a further illustration of the power of the Sylow
theorems, we next give a sufficient condition that guarantees that a
group of order pg, where p and ¢ are primes, must be Z,,
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1 Theorem 24.6 Cyclic Groups of Order pq

If G is a group of order pq, where p and q are primes, p < q,
and p does not divide q — 1, then G is cyclic. In particular, G is
isomorphic to qu.

PROOF Let H be a Sylow p-subgroup of G and let K be a Sylow
g-subgroup of G. Sylow’s Third Theorem states that the number of Sylow
p-subgroups of G is of the form 1 + kp and divides pg. So 1 + kp = 1,
P g, or pq. From this and the fact that p + ¢ — 1, it follows that £ = 0, and
therefore H is the only Sylow p-subgroup of G.

Similarly, there is only one Sylow g-subgroup of G. Thus, by the
corollary to Theorem 24.5, H and K are normal subgroups of G. Let
H = (x) and K = (y). To show that G is cyclic, it suffices to show that x
and y commute, for then Ixyl = Ixllyl = pg. But observe that, since H
and K are normal, we have

xyx ly Tl =(oxy teEKy =K
and

xyx ly M =x(yx"y""Y € xH = H.

Thus, xyx 'y~! € K N H = {e}, and hence xy = yx. |

Theorem 24.6 demonstrates the power of the Sylow theorems in
classifying the finite groups whose orders have small numbers of prime
factors. Similar results exist for groups of orders p?q, p>q*, p?, and p*,
where p and ¢ are prime.

For your amusement, Figure 24.2 lists the number of nonisomorphic
groups with order at most 100. Note in particular the large number of
groups of order 64. Also observe that, generally speaking, it is not the size
of the group that gives rise to a large number of groups of that size but the
number of prime factors involved. In all, there are 1047 nonisomorphic
groups with 100 or fewer elements. Contrast this with the fact that there are
49,487,365,422 groups of order 1024 = 2!°, The number of groups of any
order less than 2048 is given at http://oeis.org/A000001/b000001.txt.

As a final application of the Sylow theorems, you might enjoy seeing
a determination of the groups of order 99, 66, and 255. In fact, our ar-
guments serve as a good review of much of our work in group theory.
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Order L) 2| 3| 4] S| 6 7| 8| 9|10 |11 |12| 13|14 |15 1617 [18 [19| 20

Number 1| 1| 1| 2| 1| 2| 1| S| 2| 2| 1| S| 1| 2| 1|4 15| 1] 5

Order 21 22| 23| 24{25|26(27|28(29(30|31(32]33|34|35| 36[37 |38 [39] 40

Number 20 2 L[ I5) 2 2| 5| 4| 1| 4| L[S 1| 2| 1|14 1| 2| 2| 14

Order 41| 42| 43| 44| 45| 46|47 |48 |49|50 |51 |52|53|54|55]| 56|57 |58 |59 | 60

Number 1| 6| 1| 4| 2| 2| 1|52 2| 5| 1| S| 1|15 2|13 2| 2| 1|13

Order 61| 62| 63| 64| 65|66|67|68|69|70 (71 72|73|74 |75 | 76|77 |78 |79 | 80

Number 1| 2| 4267 1| 4| 1| 5| 1| 4| 1[50 1| 2| 3| 4] 1| 6] 1|52
Order 81 (82| 83| 84|85|86(87|88[89[90|91[92]93(94[95| 96|97 |98 |99 |100
Number IS) 2 1{ 150 1| 2| 1|12 1{10| 1| 4 2| 2| 1230 1| 5] 2] 16

Figure 24.2 The number of groups of a given order up to 100.

I EXAMPLE 6 Determination of the Groups of Order 99

Suppose that G is a group of order 99. Let H be a Sylow 3-subgroup
of G and let K be a Sylow 11-subgroup of G. Since 1 is the only posi-
tive divisor of 99 that is equal to 1 modulo 11, we know from Sylow’s
Third Theorem and its corollary that K is normal in G. Similarly,
H is normal in G. It follows, by the argument used in the proof of
Theorem 24.6, that elements from H and K commute, and therefore
G = H X K. Since both H and K are Abelian, G is also Abelian. Thus,
G is isomorphic to Zy, or Z, D Z,.. |

I EXAMPLE 7 Determination of the Groups of Order 66

Suppose that G is a group of order 66. Let H be a Sylow 3-subgroup of
G and let K be a Sylow 11-subgroup of G. Since 1 is the only positive
divisor of 66 that is equal to 1 modulo 11, we know that K is normal in
G. Thus, HK is a subgroup of G of order 33 (see Example 5 in Chapter 9
and Theorem 7.2). Since any group of order 33 is cyclic (Theorem
24.6), we may write HK = (x). Next, let y € G and |yl = 2. Since {(x)
has index 2 in G, we know it is normal. So yxy~! = x' for some i from
1 to 32. Then, yx = x'y and, since every member of G is of the form
x%y, the structure of G is completely determined by the value of i. We
claim that there are only four possibilities for i. To prove this, observe
that |x'| = Ix| (Exercise 5, Supplementary Exercises for Chapters 1-4).
Thus, i and 33 are relatively prime. But also, since y has order 2,

x=y oy y = y iy = iyt = gy = () = X
So x"~! = ¢ and therefore 33 divides i> — 1. From this it follows that

11 divides i = 1, and therefore i =0 = 1,i =11 = 1,i =22 £ 1, or
i = 33 *= 1. Putting this together with the other information we have
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about i, we see that i = 1, 10, 23, or 32. This proves that there are at
most four groups of order 66.

To prove that there are exactly four such groups, we simply observe
that Z., D,;, D, @ Z,,and D, ® Z,, each has order 66 and that no two
are 1s0m0rph1c For example D, 69 Z, has 11 elements of order 2,
whereas D; @ Z, | has only three elements of order 2. (See Exercises

27-30 of the Supplementary Exercises for Chapters 5-8.) |

I EXAMPLE 8 The Only Group of Order 255 is z,,

Let G be a group of order 255 = 3 - 5 - 17, and let H be a Sylow 17-sub-
group of G. By Sylow’s Third Theorem, H is the only Sylow 17-subgroup
of G, so N(H) = G. By Example 15 in Chapter 10, IN(H)/C(H)! divides
|Aut(H)| = |Aut(Z,,)l. By Theorem 6.5, |Aut(Z,,)| = IU(17)| = 16. Since
IN(H)/C(H)| must divide 255 and 16, we have IN(H)/C(H)| = 1. Thus,
C(H) = G. This means that every element of G commutes with every ele-
ment of H, and, therefore, H C Z(G). Thus, 17 divides |Z(G)!, which in
turn divides 255. So 1Z(G)! is equal to 17, 51, 85, or 255 and |G/Z(G)! is
equal to 15, 5, 3, or 1. But the only groups of order 15, 5, 3, or 1 are the
cyclic ones, so we know that G/Z(G) is cyclic. Now the G/Z Theorem
(Theorem 9.3) shows that G is Abelian, and the Fundamental Theorem of
Finite Abelian Groups tells us that G is cyclic. |

| have always grown from my problems and challenges, from the things that
don’t work out. That’s when I've really learned.
CAROL BURNETT

1. Show that conjugacy is an equivalence relation on a group.

2. Calculate all conjugacy classes for the quaternions (see Exercise 4,
Supplementary Exercises for Chapters 1-4).

3. Show that the function 7 defined in the proof of Theorem 24.1 is
well-defined, is one-to-one, and maps the set of left cosets onto the
conjugacy class of a.

4. Show that cl(a) = {a} if and only if a € Z(G).

5. Let H be a subgroup of a group G. Prove that the number of con-
jugates of H in G is |G:N(H)I. (This exercise is referred to in this
chapter.)

6. Let H be a proper subgroup of a finite group G. Show that G is not
the union of all conjugates of H.

7. If G is a group of odd order and x € G, show that x™! is not in cl(x).
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8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,
23.
24.

25.
26.
27.

Determine the class equation for non-Abelian groups of orders 39
and 55.

. Determine which of the equations below could be the class equa-

tion given in the proof of Theorem 24.2. For each part, provide
your reasoning.

a. 9=3+3+3

b.21=1+14+3+3+3+3+7

c. 10=1+2+2+5

d 18=1+3+6+38

Exhibit a Sylow 2-subgroup of §,. Describe an isomorphism from
this group to D,,.

Suppose that G is a group of order 48. Show that the intersection
of any two distinct Sylow 2-subgroups of G has order 8.

Find all the Sylow 3-subgroups of S,.

Let K be a Sylow p-subgroup of a finite group G. Prove that if x €
N(K) and the order of x is a power of p, then x € K. (This exercise
is referred to in this chapter.)

Suppose that G is a group of order p"m, where p is prime and p does
not divide m. Show that the number of Sylow p-subgroups divides m.
Suppose that G is a group and |G| = p"m, where p is prime and
p > m. Prove that a Sylow p-subgroup of G must be normal in G.
Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow
p-subgroup of G contained in N(H).

Suppose that G is a group of order 168. If G has more than one
Sylow 7-subgroup, exactly how many does it have?

Show that every group of order 56 has a proper nontrivial normal
subgroup.

What is the smallest composite (that is, nonprime and greater than 1)
integer n such that there is a unique group of order n?

Let G be a noncyclic group of order 21. How many Sylow 3-
subgroups does G have?

Prove that a noncyclic group of order 21 must have 14 elements of
order 3.

How many Sylow 5-subgroups of S, are there? Exhibit two.
How many Sylow 3-subgroups of S are there? Exhibit five.

What are the possibilities for the number of elements of order 5 in
a group of order 100?

What do the Sylow theorems tell you about any group of order 100?
Prove that a group of order 175 is Abelian.

Let G be a group with |G| = p"m, where p is a prime that does not di-
vide m and p = m. Prove that the Sylow p-subgroup of G is normal.
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29.

30.

31.

32.

33.

34.
35.
36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.
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Determine the number of Sylow 2-subgroups of D, , where m is an
odd integer at least 3.

Let K be a Sylow 2-subgroup of D, , where m is an odd integer at
least 3. Prove that N(K) = K.

Generalize the argument given in Example 6 to obtain a theorem
about groups of order p?q, where p and ¢ are distinct primes.

What is the smallest possible odd integer that can be the order of a
non-Abelian group?
Prove that a group of order 375 has a subgroup of order 15.

Without using Theorem 24.6, prove that a group of order 15 is
cyclic. (This exercise is referred to in the discussion about groups
of order 30.)

Prove that a group of order 105 contains a subgroup of order 35.
Prove that a group of order 595 has a normal Sylow 17-subgroup.

Let G be a group of order 60. Show that G has exactly four ele-
ments of order 5 or exactly 24 elements of order 5. Which of these
cases holds for A.?

Show that the center of a group of order 60 cannot have order 4.

Suppose that G is a group of order 60 and G has a normal sub-
group N of order 2. Show that

a. G has normal subgroups of orders 6, 10, and 30.

b. G has subgroups of orders 12 and 20.

¢. G has a cyclic subgroup of order 30.

Let G be a group of order 60. If the Sylow 3-subgroup is normal,
show that the Sylow 5-subgroup is normal.

Show that if G is a group of order 168 that has a normal subgroup
of order 4, then G has a normal subgroup of order 28.

Suppose that p is prime and |G| = p". Show that G has normal sub-
groups of order p* for all k between 1 and n (inclusive).

Suppose that G is a group of order p”, where p is prime, and G has
exactly one subgroup for each divisor of p”. Show that G is cyclic.
Suppose that p is prime and |G| = p". If H is a proper subgroup of G,
prove that N(H) > H. (This exercise is referred to in Chapter 25.)

If H is a finite subgroup of a group G and x € G, prove that
IN(H)| = IN(xHx 1)l

Let H be a Sylow 3-subgroup of a finite group G and let K be a
Sylow 5-subgroup of G. If 3 divides IN(K)I, prove that 5 divides
IN(H)!I.

k

If H is a normal subgroup of a finite group G and IHI = p
for some prime p, show that H is contained in every Sylow
p-subgroup of G.
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47.

48.

49.

50.
S1.

52,

53.

54.

5S.

56.

57.
S8.

59.

60.
61.
62.

63.

64.

Suppose that G is a finite group and G has a unique Sylow p-subgroup
for each prime p. Prove that G is the internal direct product of its
nontrivial Sylow p-subgroups. If each Sylow p-subgroup is cyclic, is
G cyclic? If each Sylow p-subgroup is Abelian, is G Abelian?

If G, is a Sylow p-subgroup of a group G and H, is a Sylow p-
subgroup of a group H, prove that G}7 8% H, is a Sylow p-subgroup
of G H.

Let G be a finite group and let H be a normal Sylow p-subgroup
of G. Show that «(H) = H for all automorphisms « of G.

If H is a Sylow p-subgroup of a group, prove that N(N(H)) = N(H).
Let p be a prime and H and K be Sylow p-subgroups of a group G.
Prove that IN(H)!I = IN(K)I.

Let G be a group of order p?g?, where p and ¢ are distinct primes,
g+ p*—1,and p + ¢* — 1. Prove that G is Abelian. List three pairs
of primes that satisfy these conditions.

Let H be a normal subgroup of a group G. Show that H is the union
of the conjugacy classes in G of the elements of H. Is this true
when H is not normal in G?

Let p be prime. If the order of every element of a finite group G is
a power of p, prove that |Gl is a power of p.

For each prime p, prove that all Sylow p-subgroups of a finite
group are isomorphic.

Suppose that K is a normal subgroup of a finite group G and S
is a Sylow p-subgroup of G. Prove that K N S is a Sylow p-
subgroup of K.

Show that a group of order 12 cannot have nine elements of order 2.
If IGI = 36 and G is non-Abelian, prove that G has more than one
Sylow 2-subgroup or more than one Sylow 3-subgroup.

Suppose G is a finite group and p is a prime that divides |Gl. Let n
denote the number of elements of G that have order p. If the Sylow
p-subgroup of G is normal, prove that p divides n + 1.

Determine the groups of order 45.

Show that there are at most three nonisomorphic groups of order 21.
Prove that if H is a normal subgroup of index p? where p is prime,
then G’ C H (see Exercise 3 in the Supplementary Exercises for
Chapters 5-8 for a description of G").

Show that Z, is the only group that has exactly two conjugacy
classes.

What can you say about the number of elements of order 7 in a
group of order 168 = 8 - 3 - 77
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Explain why a group of order 4m where m is odd must have a sub-
group isomorphic to Z, or Z, ® Z, but cannot have both a subgroup
isomorphic to Z, and a subgroup isomorphic to Z, ® Z,. Show that
S, has a subgroup isomorphic to Z, and a subgroup isomorphic to
Z,D7Z,

Let p be the smallest prime that divides the order of a finite group
G. If H is a Sylow p-subgroup of G and is cyclic, prove that N(H) =
C(H).

Let G be a group of order 715 = 5-11-13. Let H be a Sylow
13-subgroup of G and K be a Sylow 11-subgroup of G. Prove that
H is contained in Z(G). Can the argument you used to prove that H
is contained in Z(G) also be used to show that K is contained in
Z(G)?

Let G be a group of order 1925 = 5% - 7 - 11 and H be a subgroup of
order 7. Prove that IC(H)! is divisible by 385. What can you say
about Z(G) if the Sylow 5-subgroup is not cyclic?

Let G be a group with |G| = 595 =5 - 7 - 17. Show that the Sylow
5-subgroup of G is normal in G and is contained in Z(G).

What is the probability that a randomly selected element from D,
commutes with the vertical reflection V?

Prove that if x and y are in the same conjugacy class of a group,
then |C(x)l = IC(y)l. (This exercise is referred to in the discussion
on the probability that two elements from a group commute.)

Let G be a finite group and let a € G. Express the probability that
a randomly selected element from G commutes with a in terms of
orders of subgroups of G.

Find Pr(D,), Pr(S,), and Pr(A ).

Prove that Pr(D,) = (n + 3)/4n if n is odd and Pr(D,) = n (n +
6)/4n if n is even.

Prove that Pr(G & H) = Pr(G) - Pr(H).

Let R be a finite noncommutative ring. Show that the probability
that two randomly chosen elements from R commute is at most 5/8.
[Hint: Mimic the group case and use the fact that the additive
group R/C(R) is not cyclic.]

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian
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Ludwig Sylow

Sylow’s Theorem is 100 years old. In the
course of a century this remarkable theo-
rem has been the basis for the construc-
tion of numerous theories.

L. A. SHEMETKOV

LupwiG SyLow (pronounced “SEE-loe”)
was born on December 12, 1832, in Chris-
tiania (now Oslo), Norway. While a student
at Christiania University, Sylow won a gold
medal for competitive problem solving. In
1855, he became a high school teacher; de-
spite the long hours required by his teaching
duties, Sylow found time to study the papers
of Abel. During the school year 1862—1863,
Sylow received a temporary appointment at
Christiania University and gave lectures
on Galois theory and permutation groups.
Among his students that year was the great
mathematician Sophus Lie (pronounced
“Lee”), after whom Lie algebras and Lie
groups are named. From 1873 to 1881,
Sylow, with some help from Lie, prepared a
new edition of Abel’s works. In 1902, Sylow
and Elling Holst published Abel’s corre-
spondence.

Matematisk Unistitutt/Universitete | Oslo

Sylow’s spectacular theorems came in
1872. Upon learning of Sylow’s discovery,
C. Jordan called it “one of the essential
points in the theory of permutations.” The
results took on greater importance when the
theory of abstract groups flowered in the late
19th century and early 20th century.

In 1869, Sylow was offered a professor-
ship at Christiania University but turned it
down. Upon Sylow’s retirement from high
school teaching at age 65, Lie mounted a
successful campaign to establish a chair for
Sylow at Christiania University. Sylow held
this position until his death on September 7,
1918.

To find more information about Sylow,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history
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Finite Simple Groups

It is a widely held opinion that the problem of classifying finite simple
groups is close to a complete solution. This will certainly be one of the great
achievements of mathematics of this century.

NATHAN JACOBSON

Historical Background

428

We now come to the El Dorado of finite group theory—the simple
groups. Simple group theory is a vast and difficult subject; we call it
the El Dorado of group theory because of the enormous effort put forth
by hundreds of mathematicians over many years to discover and
classify all finite simple groups. Let’s begin our discussion with the
definition of a simple group and some historical background.

Definition Simple Group
A group is simple if its only normal subgroups are the identity
subgroup and the group itself.

The notion of a simple group was introduced by Galois about 180 years
ago. The simplicity of As, the group of even permutations on five
symbols, played a crucial role in his proof that there is not a solution by
radicals of the general fifth-degree polynomial (that is, there is no “quintic
formula”). But what makes simple groups important in the theory of
groups? They are important because they play a role in group theory
somewhat analogous to that of primes in number theory or the elements
in chemistry; that is, they serve as the building blocks for all groups.
These building blocks may be determined in the following way. Given a
finite group G, choose a proper normal subgroup G, of G = G, of largest
order. Then the factor group G /G, is simple, and we next choose a proper
normal subgroup G, of G, of largest order. Then G,/G, is also simple, and
we continue in this fashion until we arrive at G, = {e}. The simple groups
G/G,, G|/G,, ..., G, /G, are called the composition factors of
G. More than 100 years ago, Jordan and Holder proved that these
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factors are independent of the choices of the normal subgroups made in
the process described. In a certain sense, a group can be reconstructed
from its composition factors, and many of the properties of a group are
determined by the nature of its composition factors. This and the fact that
many questions about finite groups can be reduced (by induction) to ques-
tions about simple groups make clear the importance of determining all
finite simple groups.

Just which groups are the simple ones? The Abelian simple groups
are precisely Z , where n = 1 or n is prime. This follows directly from the
corollary in Chapter 11. In contrast, it is extremely difficult to describe the
non-Abelian simple groups. The best we can do here is to give a few
examples and mention a few words about their discovery. It was Galois in
1831 who first observed that A is simple for all n = 5. The next
discoveries were made by Jordan in 1870, when he found four infinite
families of simple matrix groups over the field Z, where p is prime. One
such family is the factor group SL(n, Zp)/Z(SL(n, Zp)), except whenn = 2
and p = 2 or p = 3. Between the years 1892 and 1905, the American
mathematician Leonard Dickson (see Chapter 22 for a biography) gener-
alized Jordan’s results to arbitrary finite fields and discovered several new
infinite families of simple groups. About the same time, it was shown by
G. A. Miller and F. N. Cole that a family of five groups first described by
E. Mathieu in 1861 were in fact simple groups. Since these five groups
were constructed by ad hoc methods that did not yield infinitely many
possibilities, like A, or the matrix groups over finite fields, they were
called “sporadic.”

The next important discoveries came in the 1950s. In that decade,
many new infinite families of simple groups were found, and the initial
steps down the long and winding road that led to the complete classifi-
cation of all finite simple groups were taken. The first step was Richard
Brauer’s observation that the centralizer of an element of order 2 was an
important tool for studying simple groups. A few years later, John
Thompson, in his Ph.D. dissertation, introduced the crucial idea of
studying the normalizers of various subgroups of prime-power order.

In the early 1960s came the momentous Feit-Thompson Theorem,
which says that a non-Abelian simple group must have even order. This
property was first conjectured around 1900 by one of the pioneers of
modern group theoretic methods, the Englishman William Burnside
(see Chapter 29 for a biography). The proof of the Feit-Thompson
Theorem filled an entire issue of a journal [1], 255 pages in all (see
Figure 25.1). This result provided the impetus to classify the finite sim-
ple groups—that is, a program to discover all finite simple groups and
prove that there are no more to be found. Throughout the 1960s, the
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Pacific
Journal of

Mathematics

Oh, what are the orders of all simple

groups?

I speak of the honest ones, not of the loops.

It seems that old Burnside their orders has
guessed

Except for the cyclic ones, even the rest.

CHORUS: Finding all groups that are sim-
ple is no simple task.

Groups made up with permutes will
produce some more:

For A is simple, if n exceeds 4.

Then, there was Sir Matthew who came into
view

Exhibiting groups of an order quite new.

Still others have come on to study this thing.

Of Artin and Chevalley now we shall sing.

With matrices finite they made quite a list

The question is: Could there be others
they’ve missed?

Suzuki and Ree then maintained it’s the
case

GROUPS OF ODD ORDER

JOHN G. THOMPSON  (University of Chicago)

SOLVABILITY
OF

by
WALTER FEIT (Cornell University)

and

With permission of the Pacific Journal of Mathematics

That these methods had not reached the end
of the chase.

They wrote down some matrices, just four by
four.

That made up a simple group. Why not make
more?

And then came the opus of Thompson and
Feit

Which shed on the problem remarkable light.

A group, when the order won’t factor by two,

Is cyclic or solvable. That’s what is true.

Suzuki and Ree had caused eyebrows to raise,

But the theoreticians they just couldn’t faze.

Their groups were not new: if you added a
twist,

You could get them from old ones with a
flick of the wrist.

Still, some hardy souls felt a thorn in their
side.

Figure 25.1
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For the five groups of Mathieu all reason (And twelve or more sprouted, to greet the
defied; new age.)
Not A , not twisted, and not Chevalley, By Janko and Conway and Fischer and Held,
They called them sporadic and filed them McLaughlin, Suzuki, and Higman, and Sims.
away.
No doubt you noted the last lines don’t
Are Mathieu groups creatures of heaven or rhyme.
hell? Well, that is, quite simply, a sign of the time.
Zvonimir Janko determined to tell. There’s chaos, not order, among simple
He found out [a new sporadic simple group] groups;
that nobody wanted to know: And maybe we’d better go back to the loops.

The masters had missed1 7 5 5 6 0.

The floodgates were opened! New groups
were the rage!

methods introduced in the Feit—-Thompson proof were generalized and
improved with great success by many mathematicians. Moreover, be-
tween 1966 and 1975, 19 new sporadic simple groups were discovered.
Despite many spectacular achievements, research in simple group the-
ory in the 1960s was haphazard, and the decade ended with many peo-
ple believing that the classification would never be completed. (The
pessimists feared that the sporadic simple groups would foil all at-
tempts. The anonymously written “song” in Figure 25.1 captures the
spirit of the times.) Others, more optimistic, were predicting that it
would be accomplished in the 1990s.

The 1970s began with Thompson receiving the Fields Medal for his
fundamental contributions to simple group theory. This honor is among
the highest forms of recognition that a mathematician can receive
(more information about the Fields Medal is given near the end of this
chapter). Within a few years, three major events took place that ulti-
mately led to the classification. First, Thompson published what is re-
garded as the single most important paper in simple group theory—the
N-group paper. Here, Thompson introduced many fundamental tech-
niques and supplied a model for the classification of a broad family of
simple groups. Second, Daniel Gorenstein produced an elaborate out-
line for the classification, which he delivered in a series of lectures at
the University of Chicago in 1972. Here a program for the overall
proof was laid out. The army of researchers now had a battle plan and
a commander-in-chief. But this army still needed more and better
weapons. Thus came the third critical development: the involvement of
Michael Aschbacher. In a dazzling series of papers, Aschbacher com-
bined his own insight with the methods of Thompson, which had been
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generalized throughout the 1960s, and a geometric approach pioneered
by Bernd Fischer to achieve one brilliant result after another in rapid
succession. In fact, so much progress was made by Aschbacher
and others that by 1976, it was clear to nearly everyone involved that
enough techniques had been developed to complete the classification.
Only details remained.

The 1980s were ushered in with Aschbacher following in the foot-
steps of Feit and Thompson by winning the American Mathematical
Society’s Cole Prize in algebra (see the last section of this chapter).

A week later, Robert L. Griess made the spectacular announcement
that he had constructed the “Monster.”” The Monster is the largest of the
sporadic simple groups. In fact, it has vastly more elements than there
are atoms on the earth! Its order is

808,017,424,794,512,875,886,459,904,961,710,757,005,754,
368,000,000,000

(hence, the name). This is approximately 8 X 1033. The Monster is a
group of rotations in 196,883 dimensions. Thus, each element can be
expressed as a 196,883 X 196,883 matrix.

At the annual meeting of the American Mathematical Society in 1981,
Gorenstein announced that the “Twenty-Five Years’ War” to classify all the
finite simple groups was over. Group theorists at long last had a list of all
finite simple groups and a proof that the list was complete. The proof was
spread out over hundreds of papers—both published and unpublished—
and ran more than 10,000 pages in length. Because of the proof’s extreme
length and complexity, and the fact that some key parts of it had not been
published, there was some concern in the mathematics community that the
classification was not a certainty. By the end of the decade, group theorists
had concluded that there was indeed a gap in the unpublished work that
would be difficult to rectify. In the mid-1990s, Aschbacher and Stephen
Smith began work on this problem. In 2004, at the annual meeting of the
American Mathematical Society, Aschbacher announced that he and Smith
had completed the classification. Their monograph is over 1200 pages
in length. Ronald Solomon, writing in Mathematical Reviews, called it
“an amazing tour de force” and a “major milestone in the history of fi-
nite group theory.” Aschbacher concluded his remarks by saying that
he would not bet his house that the proof is now error free.

Several people who played a central role in the classification are work-
ing on a “second generation” proof that will be much shorter and more
comprehensible.

"The name was coined by John H. Conway. Griess called the group the “Friendly Gi-
ant.” In 2010 the American Mathematical Society awarded Griess the Leroy P. Steele
Seminal Contribution to Research Prize for his construction of the Monster.
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Nonsimplicity Tests

In view of the fact that simple groups are the building blocks for all
groups, it is surprising how scarce the non-Abelian simple groups are.
For example, A, is the only one whose order is less than 168; there are
only five non-Abelian simple groups of order less than 1000 and only
56 of order less than 1,000,000. In this section, we give a few theorems
that are useful in proving that a particular integer is not the order of a
non-Abelian simple group. Our first such result is an easy arithmetic
test that comes from combining Sylow’s Third Theorem and the fact
that groups of prime-power order have nontrivial centers.

1 Theorem 25.1 Sylow Test for Nonsimplicity

Let n be a positive integer that is not prime, and let p be a prime
divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p,
then there does not exist a simple group of order n.

PROOF If n is a prime-power, then a group of order n has a nontrivial
center and, therefore, is not simple. If 7 is not a prime-power, then
every Sylow subgroup is proper, and, by Sylow’s Third Theorem, we
know that the number of Sylow p-subgroups of a group of order n is
equal to 1 modulo p and divides n. Since 1 is the only such number, the
Sylow p-subgroup is unique, and therefore, by