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Foreword

Pierre Maurice Marie Duhem1 (1861–1916)—an accomplished physicist,2 philos-
opher of physics,3 and historian of physics4—ranked first in his class at the École
Normale Supérieure (Jaki 1984, 36) France’s most prestigious university, and first
on the national physics concours exam for agrégation in 1885 (Chervel 2011). In
his third year at the École Normale, he was the first student ever in France’s
grandes ecoles to present himself for the doctor’s degree (Jaki 1984, 47). The
thesis, later reprinted as The Thermodynamic Potential and its Applications to
Chemical Mechanics and to the Study of Electrical Phenomena,5 was rejected
because it disproved the “principle of maximum work” of Berthelot, who had great
influence over French academic politics. Undiscouraged, Duhem presented a sec-
ond thesis, On Magnetization by Induction (Duhem 1988), this time in mathe-
matics. It was accepted by a committee including Poincaré and Tannery. Tannery
cataloged the thesis under the title: A Novel Theory of Magnetization by Induction

1Jaki (1984); Maiocchi (1985); Miller (1970); Ariew (2011); Duhem (1936)
2Jaki (1984, 259–317). For a physicist’s perspective on Duhem (1902), see de Moura and
Sarmento (2013).
3Jaki (1984, 319–373). Duhem’s greatest, most well-known work in the philosophy of physics is
Duhem (1906), translated as Duhem (1991); it even influenced Einstein (Howard 1990). For a
philosophical perspective on Duhem (1902), see Ariew and Barker (1986). For how Duhem’s
philosophy of physics relates to his cosmological, thermodynamical, and even religious views, see
Kragh (2008).
4Jaki (1984, 375–436). Duhem (1990b) and Duhem (1990a) are his own summaries of his phi-
losophy and history of physics for his candidacy in the Académie des Sciences, originally pub-
lished as Duhem (1913, 151–157) and Duhem (1913, 158–169), respectively. Duhem’s ten
volume Système du monde (Duhem 1913–1959), partially translated as Duhem (1985), initiated the
field of the history of medieval physics. It also demonstrates Duhem’s “continuity thesis” of
scientific development (Hannam 2009). For how Duhem’s historiography influenced his episte-
mology, see Bordoni (2013b).
5Le potentiel thermodynamique et ses applications à la mécanique chimique et à l’étude des
phénomènes électriques (Duhem 1886)
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Founded on Thermodynamics6; by including the term “thermodynamics,” he
emphasized that this thesis is very similar in content to Duhem’s rejected thesis.

The subject of Duhem’s theses reflects his grand vision for physics: to subject all
branches of physics—mechanics, chemistry, electromagnetism, etc.—to thermo-
dynamic first principles.7 Drawing inspiration from the “energetics program”
(Rankine 1855) of Rankine (Parkinson 2008), Duhem subjected mechanics and
chemistry to thermodynamic first principles in works such as his Commentary on
the Principles of Thermodynamics (Duhem 2011), one of Duhem’s few scientific
works translated into English, and the Treatise on Energetics or General
Thermodynamics (Duhem 1911), which Duhem considered his greatest scientific
achievement.8

Duhem’s Philosophy of Physics

Duhem was a moderate realist (Brenner et al. 2011, 7–12) who argued that physical
theories are classifications of experimental laws. This is a key aspect of Duhem’s
philosophy of physics:

A physical theory…is an abstract system whose aim is to summarize and classify logically a
group of experimental laws without claiming to explain these laws.9

Duhem (1991 19) gives a more specific definition of physical theory in terms of the
“abstract system” of mathematics:

A physical theory is not an explanation. It is a system of mathematical propositions,
deduced from a small number of principles, which aim to represent as simply, as com-
pletely, and as exactly as possible a set of experimental laws.10

Just as there are many ways to classify seashells or bodily organs, so there are
also many ways to classify classification physical laws; and just as classifications
per se do not explain what they classify, so also physical theories do not explain
physical laws. Physical theories are not, as Newton thought about his theory of

6Théorie nouvelle de l’aimantation par influence fondée sur la thermodynamique (cf. Jaki 1984,
79).
7For how Duhem partially accomplished this task, see Bordoni (2012a,b,c, 2013a). Needham
(2013) is a review of Bordoni (2012a).
8For a translation of the introduction of Duhem’s Treatise, see Maugin (2014, 172–175).
9Duhem (1991, 7), a translation of Duhem (1906, 3):

Une théorie physique. est un systéme abstrait qui a pour but de résumer et de classer
logiquement un ensemble de lois expérimentales, sans prétendre expliquer ceslois.

10Original from Duhem (1906, 24):
Une théorie physique n’est pas une explication. C’est un systeme de propositions
mathématiques, déduites d’un petit nombre de principes, qui ont pour but de représenter
aussi simplement, aussi completement et aussi exactement que possible, un ensemble de
lois expérimentales.
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gravitation or Amperé about his force law, “uniquely deduced from experience;”
other theories (e.g., Einstein’s theory of gravitation) can equally, if not better, “save
the phenomena save the phenomena”11 of experience. In the history of physics,
Duhem sees—from as far back as Aristotle to the present day—a long, steady, and
continuous process asymptotically approaching the best, “natural classification.”

All of Duhem’s philosophy of physics—the under-determination of theory by
fact, confirmation holism,12 the strict separation between physics and metaphys-
ics,13 and the continuity of scientific development—is rooted in his understanding
of physical theory as a classification.

One reason Duhem preferred Helmholtz’s electromagnetic theory over that of
others,14 in addition to its being in “continuity with tradition,” is because of what
Buchwald calls Helmholtz’s “taxonomy of interactions” between “laboratory
objects.”15 Helmholtz’s approach to electromagnetism was to classify the unique
interaction energies between the various combinations of charged and current-
carrying “laboratory objects.” Thus, Helmholtz explicitly classified experimental
laws, forming a true theory in the Duhemian sense.

Reception of Duhem’s Physics

Lorentz (1926, 65), an article on Maxwell’s electromagnetic theory, cites Duhem
(1902), of which the present work is the translation, and classifies Duhem’s treat-
ment of electrodynamics under the heading “43. Thermodynamische Behandlung”
(“Thermodynamic Treatment”), saying: “P. Duhem represents, in particular, the
thermodynamic viewpoint.”16 He cites Duhem’s Lessons on Electricity and
Magnetism (Duhem 1891–1892), his accepted thesis (Duhem 1888), and his article
in the American Journal of Mathematics (Duhem 1895b); however, Lorentz thought
it would take him too far afield to discuss Duhem’s treatment in detail.

Louis Roy, a student of Boussinesq and Professor of physics at the University of
Toulouse (Jaki 1984, 298), promoted Helmholtz-Duhem electrodynamics in great
detail in a book (Roy 1923a) and several articles (Roy 1915, 1918, 1923b). He
writes17:

11Duhem (1908), translated as Duhem (1969).
12i.e., that there are no “crucial experiments crucial experiment;” cf. the related Duhem-Quine
thesis: Ariew (1984).
13Duhem (1893), translated as Duhem (1996, 29–49).
14See this volume p. xx.
15Buchwald (1994, 11–12); cf. Buchwald’s article “Electrodynamics in Context: Object States,
Laboratory Object States, and Anti-Romanticism” (Cahan 1993, 334–373).
16“Den thermodynamischen Standpunkt hat insbesondere P. Duhem vertreten.” (Lorentz 1926,
140-1).
17Roy (1923a, 7; 87), translated in O’Rahilly (1938, 178).
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Maxwell kept his eyes fixed on his object, which was to establish a theory inclusive of
electrical and optical phenomena; unfortunately none of the paths he successively followed
could lead him thereto. Then, when logic barred the way, he evaded the inconvenient
obstacle by a flagrant fault of reasoning or calculation, certain that his objective was true.
… The best way of recording our admiration for such a genius, is to reformulate his work
with the help of the ordinary laws of logic.… An excessive admiration for Maxwell’s work
has led many physicists to the view that it does not matter whether a theory is logical or
absurd, all it is required to do is to suggest experiments. … A day will come, I am certain,
when it will be recognised … that above all the object of a theory is to bring classification
and order into the chaos of facts shown by experience. Then it will be acknowledged that
Helmholtz’s electrodynamics is a fine work and that I did well to adhere to it. Logic can be
patient, for it is eternal.

[The Helmholtz-Duhem exposition is] the only real demonstration of Maxwell’s equations
which has hitherto been given.

In 1938, Alfred O’Rahilly devoted a whole chapter of his two-volume
Electromagnetic Theory: A Critical Examination of Fundamentals to Helmholtz-
Duhem theory (O’Rahilly 1938, 161–180), citing Duhem (1902) copiously.18 He
concludes (O’Rahilly 1938, 177):

We have just shown that it is impossible to admit that Helmholtz’s theory, as just
expounded, really re-establishes the tradition of writers like Weber and C. Neumann, not to
speak of the contemporary electron theory. Nevertheless Duhem’s work is of permanent
value, and his protest against the complaisant acceptance of contradictory standpoints is
still apposite.

That it “is still apposite” is evidenced by the fact that, very recently, Maugin
(2014, 104–107) discusses Helmholtz-Duhem theory in the context of “incorpo-
rating electricity and magnetism, including nonlinear dissipative effects such as
hysteresis, in his broad energetic view.” (Maugin 2014, 104). Duhem never
accomplished this in his great Treatise; thus, it remains an open problem for young
physicists to tackle (cf. Wipf 2011).

Note on the Translation

Page numbers in [•] brackets, refer to the pages of the original (Duhem 1902). Page
numbers in [•] brackets in the citations in the footnotes refer to the page numbers
of the English version of the citation.

Sierra Vista, Arizona Alan Aversa
March 2015

18O’Rahilly (1938, 36; 79–80; 83; 90; 95–96; 177; 182; 210).
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Chapter 1
Introduction

In the middle of this century,1 electrodynamics seemed established in all its
essential parts. Awaken by the experience of Oersted, the genius of Ampère had
created and brought to a high degree of perfection the study of forces acting between
two currents or between a current and amagnet; Arago had discoveredmagnetization
by currents; Faraday had highlighted the phenomena of electrodynamic induction and
electromagnetic induction; Lenz had compared the sense of electromotive actions [2]
of currents to the sense of their ponderomotive actions. This comparison provided
to F.E. Neumann the starting point of a theory of induction. W. Weber proposed
this theory, in relying on hypotheses of the general laws of electric forces. Finally,
H. Helmholtz, then W. Thomson, attempted to pass from the laws of Ampère to the
laws discovered by F.E. Neumann and W. Weber, taking the newly asserted law of
the conservation of energy as an intermediary principle.

Only two objects seemed to offer themselves to the study of the physicist eager
to work in the progress of electrodynamics and electromagnetism.

The first of these objects was the development of the consequences implicitly
contained in the principles that had been posed. To pursue this object, the geometers
employed the resources of their analysis; experimenters began implementing their
most accurate measurement methods; industrials lavished their inventive ingenuity;
and, soon, the study of electricity became the richest and largest chapter of all of
physics.

The second of these objects, of a more speculative and more philosophical nature,
was the reduction to a common law of the principles of electrostatics and electrody-
namics. Ampère himself had proposed it to the efforts of physicists. He said2:

It is therefore completely demonstrated that one cannot make sense of the phenomena pro-
duced by the action of two voltaic conductors, assuming that electric molecules acting

1[The 19th century].
2Ampère. Théorie mathématique des phénomènes électrodynamiques uniquement déduite de
l’expérience, Paris, 1826. Deuxième édition (Paris, 1883), pp. 96 et sqq. [English translation:
Ampère (2015)].
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2 1 Introduction

inversely to the square of the distance were distributed on the conductive wires in such a way
so as to remain fluxed and can, therefore, be viewed as invariably linked among themselves.
It must be concluded that these phenomena are due to that the two electrical fluids roam
continually the conductive wires with an extremely fast movement, [3] meeting and parting
alternately in the gaps of the particles of these wires…

It is only in the case where one assumes the electric molecules at rest in the body,
where they manifest their presence through the attractions or repulsions produced by them
between these bodies, that it is shown that a uniformly accelerated movement neither can
result from the forces exerted by the electric molecules in this state of rest nor depend only
on their mutual distances. When it is assumed, instead, that, put in motion in the wires by
the action of the battery, they are continually changing place, gather at every moment in
neutral fluid, separate again, and will meet in other fluid molecules of the opposite nature,
it is not more contradictory to admit that from the actions in inverse ratio of the squares
of the distances which exert on each molecule, a force can arise between two elements of
conductive wires which depends not only on their distance, but also on the directions of
the two elements whereby electric molecules move, gather in the molecules of the opposite
species, and separate the next moment to unite with others…

If it were possible, starting from this consideration, to prove that the mutual action
of the two elements is, indeed, proportional to the formula by which I represented it, this
explanation of the fundamental fact of the theory of electrodynamic phenomena should
obviously be preferred to any other…

To the question that Ampère only posed, Gauss3 formulates a response that he
did not publish: the mutual repulsive action of two electrical charges does not only
depend on their distance, but also on the speed of relative motion of the one with
respect to the other; when two charges are at relative rest, this action reduces to the
force inversely proportional to the square of the distance, known since Coulomb;
when, on the contrary, two conductive wires are, the one and the other, the seats of
two electrical currents leading in opposite directions, with equal [4] speed, one the
positive electricity and the other the negative electricity, these two wires attract one
another according to Ampère’s law.

Gauss merely put on paper a formula that answered the question of Ampère; his
illustrious pupil, W. Weber,4 imagined a similar formula and deduced all the conse-
quences. According to Weber, the mutual action of two electrical charges depends
not only on their distance, but also on the first two derivatives of this distance with
respect to time. Reproducing Coulomb’s law when applied to electrostatic phenom-
ena, the formula ofWeber indicates that both current elements attract according to the
formula of Ampère. In addition, it provides a complete mathematical theory of elec-
trodynamic induction, a theory consistent at all points to that which F.E. Neumann
discovered at the same time, inspired by the methods of Ampère.

Thedoctrine ofWeberwas, first of all, great;most physicists considered, according
to the words of Ampère, that “this explanation of the fundamental fact of the theory
of electrodynamic phenomena should be preferred to any other.”

3C.F. Gauss, Werke, Bd. V, p. 616.
4Weber, Elektrodynamische Maassbestimmungen, I, Leipzig, 1846.
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However, this doctrine did not justify the hopes it first raised, although
G. Kirchhoff5 deduced, for induction within conductors of finite extent in all dimen-
sions, a theory that served as a precursor to the research of Helmholtz, it did not
lead to the discovery of any new fact; and, little by little, desperate by the sterility of
the speculations regarding the actions that carry electric charges in motion, physi-
cists diverted their attention, which could not be brought back by the hypotheses of
B. Riemann, nor by the researches of R. Clausius. [5]

So, electrodynamics appeared in 1860 as a vast country whose daring explorers
recognized all the frontiers; the exact scope of the region seemed known. It only
remained to study carefully each of its provinces and exploit the riches it promised
for industry.

However, in 1861, to this science that seemed so completely master of its domain,
a new and vast area was opened; and so one could believe, many think today, that
this sudden extension should not only increase electrodynamics, but also upset parts
of this doctrine that are regarded as established in an almost final manner.

This revolution was the work of a Scottish physicist, James Clerk Maxwell.
Taking up and developing the old ideas of Aepinus and Cavendish, Faraday cre-

ated, besides the electrostatics of conductive bodies, the electrostatics of the insulat-
ing body or, in the words he introduced in physics, dielectric bodies; but no one had
taken these bodies into in account in the speculations of electrodynamics. Maxwell
created the electrodynamics of the dielectric body. He imagined that the properties
of dielectrics, at any given time, depended not only on the polarization of this body
at this moment, but also on the speed with which the polarization varies from one
moment to the next; he assumed that this speed causes ponderomotive and electro-
motive forces similar to those that cause the flow of electricity. To the conduction
current he compared the polarization current or, in his words, the displacement
current.

Not only do displacement currents exert, in conductive bodies, inducing actions
similar to those of the conduction current, but also the electromotive forces of these
two kinds of current, giving rise to a current in a conductive body, polarize the
dielectrics in which they act. The equations, which derived from these hypotheses a
method where only the electrodynamic properties of the body come [6] into account,
offer surprising characteristics. According to these equations, the laws that govern
the propagation of displacement currents in a dielectric medium are exactly those
which obey the infinitely small displacement of a perfectly elastic body; in particular,
uniformlymoving currents behave absolutely like vibrations of the etherwhich optics
then attributed to the light phenomena.

But there is more. The velocity of the displacement current in a vacuum can
be measured by purely electrical experiments; and this speed, thus determined, is
numerically equal to the speed of light in a vacuum. Therefore, it is only a simple
analogy between uniform displacement flux and luminous vibration which imposes
itself on the spirit of the physicist; immediately, he is led to believe that light vibrations

5G. Kirchhoff, Ueber die Bewegung der Elektricität in Leitern (Poggendorff’s Annalen, Bd.
CII, 1857). [English translation: Graneau and Assis (1994)].
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do not exist. To periodic displacement currents, he attributes the phenomena that these
vibrations were used to explain, often in a less than fortunate way; thus creating the
electromagnetic theory of light, Maxwell made optics a province of electrodynamics.

Surprising for its consequences, the electrodynamics that Maxwell inaugurated
was even more so by the unusual way that it followed its author into science.

Physical theory is a symbolic construction of the human mind intended to give
a representation—a synthesis as complete, as simple, and as logical as possible—of
the laws that experience has discovered. To each new quality of bodies, it matches a
quantity where the various values are used to identify the various states, the various
intensities of this quality. Among the different quantities that he considers, he estab-
lishes connections using mathematical propositions that seem to translate the simple
properties and most essential qualities of which these quantities are the signs; then,
deducing from these hypotheses, by rigorous reasoning, the consequences that they
implicitly contain, he compares these consequences to the laws that the experimenter
has uncovered. When a large number of these theoretical consequences represent, in
a very approximate way, a large number of experimental laws, the theory is good. [7]

The theory must give of the physical world a description as simple as possible;
it must therefore restrict as far as possible the number of properties that it regards
as irreducible qualities and that it describes by means of particular quantities, the
number of laws it regards as primary and of which it makes hypotheses. It must
appeal to a new quantity, accept a new hypothesis, only when inescapable necessity
compels it.

When the physicist discovers facts unknown to him, when his experiences have
allowed him to formulate laws that the theory did not foresee, hemust first searchwith
great care if these laws can be presented, to the required degree of approximation,
as consequences of the accepted hypotheses. It is only after having acquired the
certainty that the quantities previously handled by the theory can serve as symbols to
the observed qualities, that the received hypotheses can result from the established
laws, that he is allowed to enrich physics with a new quantity, to the complicating of
a new hypothesis.

These principles are the essence itself of our physical theories. If one were to
miss it, the difficulty which is often encountered is whether or not a law, discovered
by observation, following accepted hypotheses or not, too frequently attached to
a laziness of the mind, would lead physicists to look at each new property as an
irreducible quality, each new law as a first hypothesis, and our science would soon
deserve all the reproaches that contemporaries of Galileo and Descartes addressed
to the physics of the School.6

The founders of electrodynamics are carefully conformed to these principles. To
represent the properties of electrified bodies, it was sufficient for Coulomb and Pois-
son to make use of a single quantity, electric charge, to impose on electric charges
a single hypothesis, Coulomb’s law. When Ampère discovered that attractive or
repulsive actions are exerted between wires carrying electric currents, physicists

6[Who, for example, explained why a sleeping pill makes one sleep by saying it has the “irreducible
quality” of “vis dormitiva” or “sleeping power”].
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sought first whether they could represent these actions by electrical charges properly
distributed on wires and repelling each other according to [8] Coulomb’s formula.
Ampère attempted this. He did not deny that some facts of experience, and in partic-
ular the phenomena of electromagnetic rotation, discovered by Faraday, were proof
that he could succeed; then he only wanted that the intensity of the electrical current
take place with the electric charge. So, he only proclaimed the laws of electrody-
namics were first laws, in the same way as Coulomb’s law.

To create the electrodynamics of the dielectric body, Maxwell took a back-step.
At the time when Maxwell introduced in electrodynamics a new quantity, the

displacement current, at the moment where he marked, as key hypotheses, the math-
ematical formof the laws towhich this quantity shouldbe submitted, nodulyobserved
phenomenon required the extension of the theory of currents. It was enough to rep-
resent, if not all phenomena until then known, at least all those whose experimental
study had arrived at a sufficient degree of sharpness. No logical necessity urged
Maxwell to imagine a new electrodynamics. For guides, he had only analogies, the
desire to provide the work of Faraday with an extension similar to what the work of
Coulomb and Poisson received from the electrodynamics of Ampère, and possibly
also an instinctive sense of the electrical nature of light. It tookmany years of research
and engineering for Hertz to discover phenomena that reflected his equations, so his
theory happened to be a form devoid of any material. With incredible imprudence,
Maxwell reversed the natural order according to which theoretical physics evolves;
he did not live long enough to see the discoveries of Hertz transform his imprudent
boldness in prophetic divination.

Entering into science by an unusual route, Maxwell’s electrodynamics does not
seem less strange when one follows the developments in the writings of its author. [9]

We note at the outset that the writings of Maxwell describe not a single electro-
dynamics, but at least three distinct electrodynamics.

The first writing by Maxwell7 is intended to establish in clear light the analogy
between the equations that govern various branches of physics, an analogy which
seemed to suggest new inventions. “By a physical analogy I mean that partial similar-
ity between the laws of one science and those of another which makes each of them
illustrate the other.”8 The analogy, already noticed by Huygens, between acoustics
and optics, contributed greatly to the progress thereof. Maxwell takes as his starting
point the theory of heat conductivity, or rather the theory of the motion of a fluid in
a resistant medium, a simply changing the notation, which does not alter the form of
the equations. From these equations, by way of analogy, Ohm had earlier derived the
laws of electric motion in conductive bodies; by a similar process, Maxwell deduced
a theory of polarization of dielectric bodies.

7J. ClerkMaxwell, On Faraday’s Lines of Force, read at the Philosophical Society of Cambridge on
10 December 1855 and 11 February 1856 (Transactions of the Cambridge Philosophical

Society, vol. X, part. I, pp. 27–83.—The Scientific Papers of James Clerk Maxwell, t. I,
pp. 156–219; Cambridge, 1890).
8[ibid. p. 156].
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The first memoir of Maxwell intended only to illustrate the theory of dielectrics
by comparing the equations that govern it with the equations that govern other parts
of physics. The second9 aims to be amechanical model that describes or explains (for
an English physicist, the two words have the same meaning)10 electric and magnetic
action.

Weknow the constitution that, in thismemoir,Maxwell [10] assigns to every body:
cells—whose very thin walls are formed from a perfectly elastic and incompressible
solid and contain a perfect, equally incompressible fluid—that animate rapid vortical
movements. These vortical movements represent the magnetic phenomena; at each
point, the instantaneous axis of vortical motionmarks the direction of magnetization.
The live force11 of the rotational motion of the fluid that fills a volume element is
proportional to the magnetic moment of this volume element. As for the elastic solid
that forms thewalls of the cells, the forces acting upon it distort it in variousways. The
displacements that the various parts experience represent the polarization introduced
by Faraday to account for the properties of the dielectric media.

To leave aside any presumption on the mechanical constitution of media where
electric and magnetic events occur; to take as a unique starting point for the laws
that experience has firmly established and that all physicists accept; to transform,
then, by mathematical analysis the consequences of these laws so that the formulas
are, so to speak, modeled on the equations to which the hypothesis of cells led;
thus, to highlight the absolute equivalence between this mechanical interpretation
and the commonly accepted electrical theories; to admit this doctrine to the highest
degree of likelihood that can attain such an explanation: this appears to have been
the purpose of Maxwell in his later publications concerning electricity. Likewise,
it seems to be the main purpose of the large memoir entitled: A Dynamical Theory
of the Electromagnetic Field12 and of the Treatise on Electricity and Magnetism13

which, in a certain way, this memoir outlines. [11]
He writes in the preface of the first edition14:

In the following Treatise I propose to describe the most important of these phenomena, to
shew how they may be subjected to measurement, and to trace the mathematical connex-
ions of the quantities measured. Having thus obtained the data for a mathematical theory
of electromagnetism, and having shewn how this theory may be applied to the calculation
of phenomena, I shall endeavour to place in as clear a light as I can the relations between

9J. Clerk Maxwell, On Physical Lines of Force (Philosophical Magazine, 4th series, t. XXI,
pp. 161–175, 281 291, 338 à 348; 1861. Tome XXIII, pp. 12–24, 85–95; 1862.—The Scientific

Papers of James Clerk Maxwell, vol. I, pp. 451–513; Cambridge, 1900).
10L’École anglaise et les Théories physiques (Revue des Questions Scientifiques, 2e série,
tome II, 1893).
11[Force vive or mv2, related to the kinetic energy mv2/2].
12J. Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, read at the Royal Society of
London on 8 December 1864 (Philosophical Transactions, vol. CLV, pp. 459 à 512; 1865.—
The Scientific Papers of James Clerk Maxwell, t. I, pp. 526 à 597; Cambridge, 1890).
13J. ClerkMaxwell, Treatise on Electricity and Magnetism, 1st edition, London, 1873.—2o edition,
London, 1881.—Traduit en français par G. Seligmann-Lui, Paris, 1885–1889.
14[ibid. p. v–vi].
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the mathematical form of this theory and that of the fundamental science of Dynamics, in
order that we may be in some degree prepared to determine the kind of dynamical phe-
nomena among which we are to look for illustrations or explanations of the electromagnetic
phenomena.

Comparing mathematical forms, by which the various branches of physics are
symbolized; constructing mechanisms to imitate the effects that he seems hard-
pressed to reduce to figure and movement; grouping the experimental laws into
theories composed in the image of dynamics; as many methods that it is legitimate
to follow, provided that he does so with rigor and precision; as long as he desires
to put the well-established laws into the form that algebraic analogy or mechanical
interpretation provides, he will never cause the alteration or the rejection of a part,
however small it may be, of these laws. These methods, moreover, appear to be
particularly suitable to illuminate the part of physics to which all three are applied,
when their conclusions merge in a harmonious agreement.

This agreement, unfortunately, does not occur in thework ofMaxwell. The various
theories of the Scottish physicist are irreconcilable with the traditional doctrine; they
are irreconcilable with each other. At each time, between the best established, most
universally accepted laws of electricity, of magnetism, and the equations that the
algebraic analogy or mechanical interpretation imposes, disagreement breaks out,
shouting; at each moment, it seems that subsequently even his reasonings and his
calculations corner Maxwell in an impossibility, in a contradiction; but at the time
when the contradiction will [12] become manifest, when the impossibility will jump
out to all eyes,Maxwellmade a troublesome termdisappear, changed anunacceptable
sign, transformed the meaning of a letter; then, the dangerous step passed, the new
electric theory, enriched with a fallacy, continued its deductions.

The word of “encouragement” on the subject of demonstrative methods used
by Maxwell has been prounounced15; we do not wish to subscribe to this judg-
ment. Maxwell’s mistakes in logic were, we must believe, unconscious mistakes;
but, admittedly, a renowned physicist has never been, more than Maxwell, blindly
infatuated with his own hypotheses, increasingly deaf to denials of acquired truths.
No one has more completely disregarded the laws governing the rational develop-
ment of physical theories. “I have therefore taken the part of an advocate rather than
that of a judge,” the author of the Treatise on Electricity and Magnetism wrote.16 He
was, for his dynamical explanation of electrical phenomena, an advocate stubbornly
convinced of the right of his client; he strictly disregarded witnesses; he has forgot-
ten that at the time of submitting a hypothesis to the sovereign control of laws that
experience has verified, the physicist must be to his own ideas the most impartial and
most severe of judges.

In the preface to one of the books17 that he dedicated to the work of Maxwell,
H. Poincaré expressed himself thus:

15H. Poincaré, Comptes Rendus, t. CXVI, p. 1020; 1893.
16J. Clerk Maxwell, Treatise on Electricity and Magnetism. Preface of the first edition [p. xii].
17H. Poincaré, Électricité et Optique. I. Les théories de Maxwell et la théorie électromagnétique
de la lumière, préface, p. v; Paris, 1890.
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The first time a French reader opens Maxwell’s book, a sense of unease, and often even
defiance, merges initially with his admiration. It was only after prolonged business and the
price of many efforts that this feeling dissipates. Some eminent minds remain the same
forever. [13]

Why do the ideas of the English scholar have so much trouble acclimating here? It is
without doubt that the education received by most of the enlightened French are disposed to
taste precision and logic before anything else.

The old theories of mathematical physics gave us in this respect complete satisfaction.
All of our masters, from Laplace to Cauchy, proceeded in the same way. Starting from
clearly stated hypotheses, they deduce the consequences with mathematical rigour and then
compare them with experience. They seem to want to give each of the branches of physics
the same rigour as celestial mechanics.

For a mind accustomed to admire such models, a theory is hardly satisfactory. Not only
will he not tolerate any appearance of contradiction, but he will require that its various parts
be logically linked to each other and that the number of hypotheses be reduced to aminimum.

…The English scholar does not seek to build a building unique, definitive, and well
ordered edifice. It seems rather that he raises a large number of provisionary and independent
constructs, between which communications are difficult and sometimes impossible.

…We should therefore not boast to avoid any contradiction; but we must come to terms
with it. Two conflicting theories can, indeed—provided they do not mix and that are not
seeking the bottom of things—be both useful instruments of research, and perhaps reading
Maxwell would be less suggestive if it had not opened both new and divergent pathways.

We are among those who cannot take their side of the contradiction.
Of course—andwe agreewith the opinion ofH. Poincaré on this point—we do not

regard theoretical physics as a branch of metaphysics; for us, it is only a schematic
representation of reality. Using mathematical symbols, it classifies and directs the
laws that experience has revealed; it condenses these laws into a small number of
hypotheses; but the knowledge it gives us from the outside world is [14] neither more
penetrating nor of a different nature than the knowledge provided by experience.

However, he does not conclude that theoretical physics is beyond the laws of
logic. It deserves the name of science on the condition of being rational. He is free to
choose its hypotheses as he pleases, provided that these hypotheses are not redundant
or contradictory; and the chain of deductions that connects to the hypotheses the truths
of the experimental order must contain no link of dubious strength.

A single physical theory which, from the smallest possible number of compat-
ible hypotheses between them, would derive, by impeccable reasoning, all known
experimental laws is obviously an ideal perfection which the human mind will never
reach; but if it cannot reach this limit, it must constantly be directed. If various parts
of physics are represented by theories unconnected with each other, or even by the-
ories that contradict each other when they meet in a common domain, the physicist
must regard this disparity and contradiction as transitory evils; he must endeavour
to substitute unity for the disparate, logical agreement for contradiction; he should
never have to take sides.

Without a doubt, one should not ask a genius physicist about the road that has
led him to a discovery. Some, of which Gauss is the perfect model, always linked
their thoughts in a perfect order and offer to our reason no new truth that they do
not support with the most rigorous demonstrations. Others, like Maxwell, proceed
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by leaps and bounds, and if they deign to support the views of their imagination with
some evidence, such evidence is, too often, insecure and outdated. Some others are
entitled to our admiration. But if the unforeseen intuitions of the latter surprise us
more than the majestically ordered deductions of the first, it would be wrong to see
in them, more than they, the mark of a genius. If the Maxwells are more “suggestive”
than the Gausses, it is because they have not bothered to complete their inventions;
after having affirmed new propositions, they have often left us with the difficult task
of transforming them into truth. [15]

We especially should carefully preserve ourselves from an error that is in fashion
today in a certain school of physicists. It consists in regarding illogical and inconsis-
tent theories as better working instruments, as the more fecund methods of discovery
than logically constructed theories. This error would with difficulty be allowed in the
history of science. I do not know whether Maxwell’s electrodynamics contributed
more to the development of the physics than the electrodynamics than Ampere’s
electrodynamics, this perfect model of the theories that geniuses from the elevated
school of Newton at the beginning of the century built.

When, therefore, we find ourselves in the presence of a theory that offers contra-
dictions, this theory being the work of a man of genius, our task is to analyze and
discuss until we manage to distinguish clearly, on the one hand, the propositions
likely to be logically demonstrated and, on the other hand, statements that offend
logic and which must be transformed or rejected. In pursuing this task of criticism,
we must guard against the narrowness of mind and petty corrections which would
make us forget themerit of the inventor; but, more importantly, wemust guard against
this blind superstition which, for admiration of the author, would hide the serious
defects of the work. He is not so great a genius that he surpasses the laws of reason.

These are the principles that have guided us in the critique of thework ofMaxwell.



Part I
The Electrostatics of Maxwell



Chapter 2
The Fundamental Properties of Dielectrics.
The Doctrines of Faraday and Mossotti

2.1 The Theory of Magnetization by Induction,
Precursor to the Theory of Dielectrics

The theory of magnetism has influenced to such a point the development of our
knowledge regarding dielectric bodies that we must, first of all, say a few words
about this theory.

Aepinus represented magnets as bodies on which two magnetic fluids, equal in
amount, are separated such that the one fluid is at one end of the bar, the other fluid
at the other end. Coulomb1 changed this way, universally accepted in his time, of
seeing things. [18] He said:

I believe that one could reconcile the result of experiments with the calculations by making a
few changes to the hypotheses; here is one that seems to explain all the magnetic phenomena
of which the preceding tests give accurate measurements. It consists in assuming, in the
system of Aepinus, that the magnetic fluid is withdrawn in each molecule or integral part of
the magnet or steel; that fluid can be transported from one end to the other of this molecule,
giving each molecule two poles, but this fluid may not move from one molecule to another.
Thus, for example, if a magnetic needle were very small in diameter, or if each molecule
could be regarded as a small needle whose north end would be united to the south end of the
needle that precedes it, then there are only the two ends, n and s, of the needle that would
give signs of magnetism; thus it would only be at both ends where one of the poles of the
molecules would not be in contact with the opposite pole of another molecule.

If such a needle were cut into two parts after having been magnetized, in a for example,
the end a of part na would have the same force as the end s the whole needle had, and the
end s of the part sa would also have the same force that the end n of the whole needle had
before being cut.

1Coulomb, Septième Mémoire sur l’Électricité et le Magnétisme.—Du Magnétisme (Mémoires de

l’Académie des Sciences pour 1789, p. 488.—Collection de Mémoires relatifs a la

Physique, publiés par la Société française de Physique, t. I: Mémoires de Coulomb).
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This fact is very accurately confirmed by experience; because if a very long, thin needle is
cut into two parts after having been magnetized, each part, tested on a balance, is magnetized
to saturation, and although it is magnetized again, it will not acquire a larger force.

Poisson read this passage. He said2:

Before the works of Coulomb, one assumed the two transported fluids, in the process of mag-
netization, traveled to both ends of compass needles and accumulated at their poles; while,
following this illustrious physicist, boreal and austral fluid only experience [19] infinitely
small displacements and do not escape from the molecule of the magnetized body to which
they belong.

The concept of a magnetic element, thus introduced into physics by Coulomb, is
the basis on which the theory given by Poisson, the magnetic induction of the soft
iron, rests; here, indeed, is how Poisson sets out3 the basic hypotheses of this theory:

Consider a bodymagnetized by induction, of any shape anddimensions, inwhich the coercive
force is zero and which we will call A, for brevity.

From the foregoing, we will look at this body as an assemblage of magnetic elements,
separated from each other by gaps inaccessible to magnetism, and behold, with respect to
these elements, the various hypotheses resulting from the discussion in which we have just
entered:

1. The dimensions of the magnetic elements, and those spaces that insulate them, are unaf-
fected and can be treated as infinitely small relatively to the body A.

2. The material of this body places no obstacle to the separation of the two boreal and
austral fluids in the interior of the magnetic elements.

3. Portions of the two fluids that the magnetization separates in an any element are still very
small relative to the neutral fluid that contains this element, and this neutral fluid is never
exhausted.

4. These portions of fluid, so separated, travel to the surface of the magnetic element where
they form a layer whose thickness, variable from one point to another, is everywhere
very small and can also be considered infinitely small, even compared to the dimensions
of the element.

The theory of magnetization founded by Poisson on these hypotheses is far from
perfect, more than a key argument, it lacks rigor or sins against exactitude.4 But these
flaws, to which it was possible to remedy, [20] must not make us forget the results
of paramount importance that the theorist definitively introduced into science. Let
us recall some of these results, of which we will have to make use in what follows:

Let dω be a volume element cut out of any magnet. If it is straight and directed in
the magnetic axis of this element, carrying a length equal to the ratio of its magnetic
moment by its volume, we get a directed quantity which is the intensity of magneti-
zation at a point on the element dω; M is this size and A, B, C are the components.

2Poisson, Mémoire sur la théorie du Magnétisme, lu à l’Académie des Sciences, le 2 février 1824
(Mémoires de l’Académie des Sciences pour les années 1821 et 1822, t. V. p. 250).
3Poisson, loc. cit., p. 262.
4Étude historique sur l’aimantation par influence (Annales de la Faculté des Sciences de

Toulouse, t. II, 1888).
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The components X , Y , Z of the magnetic field, at a point (x, y, z) outside the
magnet, are given by the formulas

X = −∂V

∂x
, Y = −∂V

∂y
, Z = −∂V

∂z
,

V being the magnetic potential function of the magnet; this function is defined by
the equality:

V =
∫ (

A1
∂ 1

r

∂x1
+ B1

∂ 1
r

∂y1
+ C1

∂ 1
r

∂z1

)
dω1, (2.1)

(x1, y1, z1) being a point of the element dω1,
A1, B1, C1, the components of magnetization at this point,
r , the distance of two points (x, y, z) and (x1, y1, z1),
and the integration extending over the entire magnet.

This potential function is identical to that which comes from a fictional distrib-
ution of magnetic fluid, a density distribution, at each point (x, y, z) of the mass of
the magnet,

ρ = −
(

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
, (2.2)

and, at each point of the surface of the magnet, where Ni is the normal directed to
the inside of the magnet, having surface density

σ = −[A cos (Ni , x) + B cos (Ni , y) + C cos (Ni , z)]. (2.3)

[21] At each point inside the magnet, we have

ΔV = −4πρ = 4π

(
∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
. (2.4)

At each point of the surface of the magnet, we have

∂V

∂ Ni
+ ∂V

∂ Ne
= −4πσ = 4π [A cos (Ni , x) + B cos (Ni , y) + C cos (Ni , z)] (2.5)

If a perfectly soft body is subjected to the influence of a magnet, it is magnetized
so that the components of magnetization at each point (x, y, z) of the magnet are
linked by the following equalities to the potential function of both the inducing and
the induced magnetization:

A = −K
∂V

∂x
, B = −K

∂V

∂y
, C = −K

∂V

∂z
. (2.6)
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In these equalities, K is a constant amount for a given body at a given temperature;
it is called coefficient of magnetization of the body.

This starting point is sufficient to put the problem of magnetization by induction
on bodies devoid of a coercive force completely into equations.

These various results, we said, remained committed to science; only equalities
(2.6) have been changed. To account for various phenomena presented by highly
magnetic bodies, such as soft iron, and, in particular, the phenomenon of saturation,
G. Kirchhoff proposed5 replacing the coefficient of magnetization K by a magnetiz-
ing function f (M) which varies not only with nature and the body temperature, but
[22] also with intensity M of the magnetization. Equalities (2.6) are then replaced
by the equalities

A = − f (M)
∂V

∂x
, B = − f (M)

∂V

∂y
, C = − f (M)

∂V

∂z
. (2.7)

For weakly magnetic bodies, this magnetizing function is reduced, as Poisson
wanted, to a coefficient of magnetization.

One can, as indicated by Émile Mathieu6 and later, by H. Poincaré,7 remove the
inaccuracies in reasoningwhichmar the theory of Poisson and avoid the experimental
difficulties which militate against it. However, the same hypotheses on which this
theory is based have something naive which shocks the habits of contemporary
physicists. W. Thomson said8:

[I]n the present state of science, no theory founded on Poisson’s hypothesis of “twomagnetic
fluids” moveable in the “magnetic elements” could be satisfactory, as it is generally admitted
that the truth of any such hypothesis is extremely improbable. Hence it is at present desirable
that a complete theory of magnetic induction in crystalline or non-crystalline matter should
be established independently of any hypothesis of magnetic fluids, and, if possible, upon a
purely experimental foundation.With this object, I have endeavoured to detach the hypothesis
of magnetic fluids from Poisson’s theory, and to substitute elementary principles deducible
from it as the foundation of a mathematical theory identical with Poisson’s in all substantial
[23] conclusions.

5G. Kirchhoff, Ueber den inducirten Magnetismus eines unbegrenzten Cylinders von weichem
Eisen (Crelle’s Journal für reine und angewandte Mathematik, Bd. XLVIII, p. 348,
1853.—G. Kirchhoff’s Abhandlungen, p. 103, Berlin, 1882).
6É. Mathieu, Théorie du Potentiel et ses applications à l’Électrostatique et Magnétisme; 2e partie:
Applications (Paris, 1886).
7H. Poincaré, Électricité et Optique, I.—Les théories de Maxwell et la théorie électromagnétique
de la lumière, leçons professées à la Sorbonne pendant le second semestre 1888–1889, p. 44 (Paris,
1890).
8W. Thomson, On the Theory of Magnetic Induction in Crystalline and Non-Crystalline Substances
(Philosophical Magazine, 4th series, vol. I, pp. 177–186, 1851.—Papers on Electrostatics

and Magnetism, art. XXX, Sect. 604; London, 1872).
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Instead of imagining a magnet as a cluster of magnetic particles equally charged
by austral and boreal fluid, and embedded in a medium impermeable to magnetic
fluids, Sir W. Thomson treats this magnet as a continuous body whose properties
depend on the value taken at each point, by a certain directed quantity, the inten-
sity of magnetization. The fundamental hypotheses that characterize this quantity in
magnets in general and in bodies devoid of coercive force in particular are equivalent
to the diverse equations that are generally admitted today; it makes the developments
of the theory of magnetism easier and more elegant, and at the same time satisfying
more our desire to make physical hypotheses independent of any supposition about
the existence or properties of molecules.

It is, in the study of magnetism, a special point that has certainly influenced the
theory of dielectrics and, in particular, has contributed to introducing the idea of
Faraday that the ether, empty of all ponderable matter, is endowed with dielectric
properties. This point is the study of diamagnetic bodies.

Faraday acknowledged that a bar of bismuth tookon, at eachpoint, amagnetization
directed not as the magnetic field, but in the direction opposite of this field; bismuth
is diamagnetic.

At first, diamagnetism seems scarcely compatible with the theory of magnetism
by Poisson; magnetic particles can be magnetized only in the direction of the field.
The contradiction disappears assuming a hypothesis by Edmond Becquerel.9

According to this hypothesis, all bodies, even bismuth, would be magnetic; but
ether, deprived of any othermaterial, would also bemagnetic.Under these conditions,
the bodies we call magnetic would be more magnetic than [24] ether; the bodies less
magnetic than ether would seem diamagnetic.

The impossibility of properly diamagnetic bodies, manifest in the hypothesis of
Poisson, is no longer sowhen it exposes the foundations of the theory ofmagnetism as
suggested byW. Thomson; nothing, it seems, prevents one from assigning a negative
value to the magnetizing function in Eq. (2.7), which becomemere hypotheses. Also,
in many places in his writings on magnetism, W. Thomson does not bother to treat
actual diamagnetic bodies.

The contradictions that would lead to the existence of such bodies appear again
when comparing the laws of magnetism to the principles of thermodynamics.

These contradictions were seen for the first time byW. Thomson, in the testimony
of Tait10:

The commonly received opinion, that a diamagnetic body in a field of magnetic force takes
the opposite polarity to that produced in a paramagnetic body similarly circumstanced, is thus
attacked by Thomson by an application of the principle of energy. Since all paramagnetic
bodies require time for the full development of their magnetism, and do not instantly lose it
when the magnetising force is removed, we may of course suppose the same to be true for
diamagnetic bodies; and it is easy to see that in such a case a homogeneous non-crystalline
diamagnetic sphere rotating in a field of magnetic force would, if it always tended to take the
opposite distribution of magnetism to that acquired by iron under the same circumstances,

9Edmond Becquerel, De l’action du Magnétisme sur tous les corps (Comptes Rendus, t. XXXI,
p. 198; 1850.—Annales de Chimie et de Physique, 3e série t. XXVIII, p. 283, 1850).
10Tait, Sketch of Thermodynamics [p. 88].
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be acted upon by a couple constantly tending to turn it in the same direction round its centre,
and would therefore be a source of the perpetual motion.

John Parker,11 by similar reasoning, has shown that the existence of the diamag-
netic body would be inconsistent with the principle of Carnot. [25]

Finally, E. Beltrami12 and ourselves13 arrived at the conclusion that if we can
find, on a diamagnetic body placed in a given field, a magnetic distribution that
satisfies Eq. (2.7), this distribution corresponds to a state of unstable equilibrium. It
is therefore impossible to admit the existence of a diamagnetic body properly so-
called and necessary for the hypothesis of EdmondBecquerel: the ether is susceptible
to being magnetized.

2.2 The Polarization of Dielectrics

If the hypotheses of Coulomb and Poisson on the constitution of magnetic bodies
extremely deviate from the principles in favor with physicists today, their sharp-
ness, their simplicity, the ease with which the imagination could grasp them, should
be, for theorists of the beginning of the century, one of the most alluring hypothe-
ses of physics. All properties that we represent today by directed quantities were
then attributed to polarized molecules, i.e. with molecules, at both ends, of opposite
qualities; one sought for analogues of magnetic polarization.

The idea of comparing to iron, under the influence of the magnet, the insulating
substances, such as glass, sulfur or shellac, subject to the action of electrified bodies,
has no doubt offered itself to the minds of physicists. Already Coulomb, in the
passage following what we already cited, the following14 this: [26]

The hypothesis thatwe justmade seems very similar to thiswell-known electrical experience:
when one charges a pane of glass covered with two metal planes; however thin the planes
are, if one is away from the glass pane, they give very considerable signs of electricity;
the surfaces of the glass, after one discharges the electricity of the linings, are themselves
steeped in two contrary currents and form a very good electrophorus; this phenomenon is
related somewhat to the thickness that one gives to the glass plane; thus the electric fluid,
albeit of a different nature on both sides of the glass, penetrates the surface to an infinitely

11John Parker, On Diamagnetism and Concentration of Energy (Philosophical Magazine, 5th,
vol. XXVII, p. 403, 1889).
12E. Beltrami,Note fisico-matematiche, lettera al prof. Ernesto Cesàro (Rendiconti del Circolo

matematico di Palermo, t. III, meeting of 10 March 1889).
13Sur l’aimantation par influence (Comptes Rendus, t. CV, p. 798, 1887)—Sur l’aimantation
des corps diamagnétiques (Comptes Rendus, t. CVI, p. 736, 1888).—Théorie nouvelle de
l’aimantation par influence fondée sur la thermodynamique (Annales de la Faculté des

Sciences de Toulouse, t. II, 1888).—Sur l’impossibilité des corps diamagnétiques (Travaux
et Mémoires des Facultés de Lille, mémoire no 2, 1889).—Leçons sur l’Électricité et le
Magnétisme, t. II, p. 221, 1892.
14Coulomb,Septième Mémoire sur l’Électricité et le Magnétisme (Mémoires de l’Académie des

Sciences de Paris pour 1789, p. 489. Collection de Mémoires relatifs a la Physique,
publiés par la Société française de Physique; t. I: Mémoires de Coulomb).
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small distance, and this pane looks exactly like a magnetised molecule of our needle. And if
now one placed on the other a series of panes in such a way that, in the meeting of the panes,
the positive side forms the surface of the first pane located several inches away from the
negative surface of the last pane, each surface of the extremities, as experience also proves,
will produce, at fairly considerable distances, effects as sensitive as our magnetic needles;
although the fluid of each surface of the panes on the extremities penetrates these tiles to
an infinitesimally small depth and electrical fluids from all surfaces in contact balance each
other, since one of the faces is positive, the other negative.

A fewyears later,Avogadro15 also admitted that themolecules of a non-conductive
body of electricity are polarized under the influence of a charged conductor. In the
terms of Mossotti,16 “Professor Orioli used induction exercised by one molecule on
another, or one thin disk of glass on another, to explain the mode of action of the
electrical machine.” [27]

But it is to Faraday that we owe the first extensive developments on the electrifi-
cation of insulating bodies.

Faraday was careful to specify the following about the thoughts that led him to
imagine his hypotheses about the constitution of the dielectric bodies17:

In the long-continued course of experimental inquiry in which I have been engaged, this
general result has pressed uponme constantly, namely, the necessity of admitting two forces,
or two forms or directions of a force…, combined with the impossibility of separating these
two forces (or electricities) from each other, either in the phenomena of statical electricity
or those of the current. In association with this, the impossibility under any circumstances,
as yet, of absolutely charging matter of any kind with one or the other electricity only, dwelt
on my mind, and made me wish and search for a clearer view than any that I was acquainted
with, of the way in which electrical powers and the particles of matter are related; especially
in inductive actions, upon which almost all others appeared to rest.

Two theories have, by way of analogy, guided Faraday in his hypotheses affecting
the polarization of the dielectric body: the theory of magnetism and the theory of
electrolytic actions.

Everyone knows about the representation, imagined by Grotthuss, of the state in
which a current traversing an electrolyte is situated; each molecule is oriented in
the direction of the current, the electrically positive atom on the side of the negative
electrode and the electrically negative atom on the side of the positive electrode. But
Faraday is struck18 by the resemblance a voltmeter has with a capacitor. Put a plate
of ice between two sheets of platinum; charge one of the leaves of positive electricity
and other with negative electricity; you will have a dielectric plate capacitor; [28]

15Avogadro, Considérations sur l’état dans lequel doit se trouver une couche d’un corps non con-
ducteur de l’électricité lorsqu’elle est interposée entre deux surfaces douées d’électricité de dif-
férente espèce (Journal de Physique, t. LXIII, p. 450, 1806).—Second Mémoire sur l’Électricité
(Journal de Physique, t. LXV, p. 130, 1807).
16Mossotti, Recherches théoriques sur l’induction électrostatique envisagée d’après les idées de
Faraday (Bibliothèque universelle, Archives, t. VI, p. 193, 1847).
17Faraday, On Induction, read at the Royal Society of London, 21 December 1837 (Philosophical
Transactions of the Royal Society of London, 1838, p. 1.—Faraday’s Experimental
Researches in Electricity, series I, vol. I, no 1163, p. 361).
18Faraday, loc. cit. (Experimental Researches, 1. 1, p. 361).
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now melt the ice; the water will be electrolyzed; you will have a voltameter. From
where does this difference come? Simply, from the liquid state of water allowing
ions to travel on the two electrodes; as to the electric polarization of particles, one
must assume it pre-exists their mobility and that it already occurred in the ice.

…as the whole effect in the electrolyte appeared to be an action of the particles thrown into
a peculiar or polarized state, I was led to suspect that common induction itself was in all
cases an action of contiguous particles, and that electrical action at a distance (i.e. ordinary
inductive action) never occurred except through the influence of the intervening matter.

How will these contiguous particles influence each other? Faraday repeatedly
describes this action.

Induction appears19 to consist in a certain polarized state of the particles, into which they
are thrown by the electrified body sustaining the action, the particles assuming positive and
negative points or parts, which are symmetrically arranged with respect to each other and
the inducting surfaces or particles.

The theory20 assumes that all the particles, whether of insulating or conducting matter,
are as wholes conductors. That not being polar in their normal state, they can become so
by the influence of neighbouring charged particles, the polar state being developed at the
instant, exactly as in an insulated conducting mass consisting of many particles.

…The particles of an insulating dielectric whilst under induction may be compared to
a series of small magnetic needles, or more correctly still to a series of small insulated
conductors. If the space round a charged globe were filled with a mixture of an insulating
dielectric, as oil of turpentine or [29] air, and small globular conductors, as shot, the latter
being at a little distance from each other so as to be insulated, then these would in their
condition and action exactly resemble what I consider to be the condition and action of the
particles of the insulating dielectric itself. If the globe were charged, these little conductors
would all be polar; if the globe were discharged, they would all return to their normal state,
to be polarized again upon the recharging of the globe.

It is clear that Faraday imagines the constitution of dielectric bodies in the exact
likeness of what Coulomb and Poisson assigned tomagnetic bodies; it does not, how-
ever, appear that Faraday thought about bringing to his ideas on electric polarization
the consequences to which the theory of magnetization by induction led Poisson.

This reconciliation is shown for the first time, in a succinct but clear manner, in
one of the early writings of W. Thomson.21 He said:

It is therefore necessary that there be a very special action in the interior of solid dielectric
bodies to produce this effect. It is likely that this phenomenon would be explained by giving
the body an action similar to that which would occur if there were no action in the insulating
dielectric medium and if there were a very large number of small conducting spheres uni-
formly distributed in the body. Poisson showed that the electric action, in this case, would be

19Faraday, loc. cit. (Experimental Researches, vol. I, p. 409).
20Faraday, Nature of the Electric Force or Forces, read at the Royal Society of London, on 21 June
1838 (Philosophical Transactions of the Royal Society of London, 1838, pp. 265 à
282.—Experimental Researches, série XIV, vol. I,. p. 534).
21W. Thomson, Note sur les lois élémentaires de l’électricité statique (Journal de Liouville, t.
X, p. 220, 1845.—Reproduced, with some developments, under the title: On the Elementary Laws
of Statical Electricity, in Cambridge and Dublin Mathematical Journal, nov. 1845, and
in Papers on Electrostatics and Magnetism, art. II, Sect. 25).
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quite similar to the action of soft iron magnet under the influence of the magnetized bodies.
Based on the theorems he gave with respect to this action, it is easily able to show that if the
space between A and B is filled with a mixture thus constituted, the surfaces of equilibrium
are the same as when there is only an insulating dielectric medium without dielectric power,
but the potential in the interior of A will be smaller than in the latter case, in a ratio that it
is easy to determine from the data [30] related to the state of the insulating medium. This
conclusion seems to be sufficient to explain the facts that Faraday has observed with respect
to dielectric media…22

Around the same time, the Italian Society of Sciences, inModena, began to contest
the following question:

Taking as a starting point the ideas of Faraday on electrostatic induction, give a physico-
mathematical theory of the distribution of electricity on conductors of various shapes.

It suffices forMossotti23 to resolve the problem, tomake a kind of transposition of
the formulas that Poisson had obtained in the study of magnetism; this transposition
was then completed by Clausius.24

To accept the ideas of Faraday, Mossotti, and Clausius on the constitution of
the dielectric body seems as difficult today as to admit the hypotheses of Coulomb
and Poisson about the magnetic body; but it is easy to subject to the polarization
theory a theory analogous to what W. Thomson did for the theory of magnetization;
it is a theory thus stripped of any consideration of the polarized molecules of which
H. von Helmholtz made use.25

We note the foundations of this theory.
At the beginning of the study of electrostatics, two types of undirected [31] quanti-

ties are enough to define the distribution of electricity on a body; these two quantities
were the solid electric density σ at each point inside the body and the surface electric
density Σ at each point on the surface of the body. Even the founders of electrostatics
took this notion for that one; they regarded the surface of bodies as having a very
thin, but not infinitely thin, electrical layer.

22[Translated from the French].
23Mossotti, Discussione analitica sull’influenza che l’azzione di un mezzo dielettrico ha sulla dis-
tribuzione dell’eleitricità alla superfizie dei piu corpi elettrici disseminati in esso (Mémoires de

la Société italienne de Modène, t. XXIV, p. 49, 1850).—Extraits du même (Bibliothèque
universelle, Archives, t. VI, p. 357, 1847).—Recherches théoriques sur l’induction électro-
statique envisagée d’après les idées de Faraday (Bibliothèque universelle, Archives, t. VI,
p. 193; 1847).
24R. Clausius, Sur le changement détat intérieur qui a lieu, pendant la charge, dans la couche
isolante d’un carreau de Franklin ou d’une bouteille de Leyde, et sur l’influence de ce changement
sur le phénomène de la décharge (Abhandlungensammlung über die mechanische Théorie

der Warme, Bd. II, Zusatz zu Abhandl. X, 1867.—Théorie mécanique de la Chaleur,
traduite en français par F. Folie, t. II, Addition au Mémoire, X, 1869).
25H. Helmholtz, Ueber die Bewegungsgleichungen der Elektrieitat für ruhende leitende Körper,
§8 (Borchardt’s Journal für reine und angewandte Mathematik, Bd. LXXII, p. 114,
1870.—Wissenschaftliche Abhandlungen, Bd. I, p. 611).
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Later, the study of abrupt drops of the potential level in contact with two different
conductors led to the introduction of a third directed quantity, irreducible to previous
ones: the moment of a double layer at each point of the surface of contact of the two
conductors.

These three species of quantities no longer suffice to represent fully the distribution
of electricity on a system when this system contains poorly conductive bodies; to
complete the representation of a similar system, it is necessary to make use of a new
quantity, a directed magnitude that is assigned to each point of a dielectric body and
called the intensity of polarization at this point.

A dielectric body is thus a body in which there is an intensity of polarization
at each point, defined in magnitude and direction, as a magnetic body is a body
in which there is an intensity of magnetization, defined in magnitude and direction
at each point. The hypotheses to which the intensity of polarization are subjected,
moreover, are modeled after the basic hypotheses that characterize the intensity of
magnetization. A single hypothesis—essential, it is true—is proper to the intensity
of polarization. This hypothesis, to which one is necessarily led by how Faraday and
his successors have represented the constitution of dielectrics, is as follows:

A dielectric element, with volume dω, whose intensity of polarization has com-
ponents A, B, C , exerts on an electric charge, placed at a finite distance, the same
action as two equal electric charges, the one having μ, the other having −μ, placed
first at a point M of the element dω, the second at a point M ′ of the same element,
so that the direction M ′M is that of the polarization; and so we have the equality

M.M M ′ =
(

A2 + B2 + C2
) 1

2
dω.

[32] On the contrary, it is recognized that a magnetic element is not on an electric
charge.

Before summing up the consequences that can be drawn from these hypotheses,
let us insist a moment still on the transformation that the hypotheses made by the
founders of electrostatics have undergone.

Four species of quantities—the solid electric density, the surface electric den-
sity, the moment of a double layer, the intensity of polarization—are used today to
represent the electrical distribution on a system. The founders of electrostatics—
Coulomb, Laplace, and Poisson—made use of only one of these quantities, solid
electric density; they admitted it willingly in their theories because they succeeded
without difficulty to imagine the density as of a certain fluid; they reduced the other
three quantities to this one. Instead of regarding the electrical layer that covers a
body as lacking thickness and assigning it a surface density, they imagined it as
a finite, though very small, thickness in which electricity has a finite, though very
large, solid density; two such layers, identical in sign near the electricity which they
are formed, placed a small distance from the each other other, replaced our present
double layer, without thickness. Finally, instead of conceiving, at each point of a
dielectric, an intensity of polarization of set magnitude and direction, they placed a
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conductive particle coveredwith an electrical layer which contained asmuch positive
as negative fluid.

Today, we no longer require of physical theories a simple and easy-to-imagine
mechanism which explains the phenomena. We look at them as rational and abstract
constructs that are intended to symbolize a set of experimental laws; therefore, to
represent the qualities that we are studying, we accept without difficulty in our the-
ories quantities of any nature, provided only that these quantities are clearly defined,
regardless of whether or not the imagination seizes the properties served by these
quantities. For example, the concepts of intensity of magnetization or intensity of
polarization remain inaccessible to the imagination, which captures very well, on the
contrary, the magnetic particles of Poisson, the [33] electric corpuscles of Faraday,
covered at both ends, by fluid layers of opposite signs. But the concept of intensity
of polarization involves a much smaller number of arbitrary hypotheses than the
notion of a polarized particle; it is more completely cleared of any hypothesis on the
constitution of matter. Substituting continuity for discontinuity, it lends to simpler
and more rigorous calculations; we owe it preference.

2.3 Key Propositions of the Theory of Dielectrics

The principles we have analyzed allow the development of a complete theory of
the electrical distribution on systems of conductive bodies and dielectric bodies. We
briefly indicate, and without any demonstration,26 the key proposals which we will
have to use later.

We imagine two small bodies, placed at the distance r the one from the other
and carrying quantities q and q ′ of electricity; we conceive these two small bodies
placed not in ether, i.e. in what would contain a container where one would have
made the physical vacuum, but in the absolute vacuum, i.e. in a medium identical
to the space of the geometers, having length, width and depth, but devoid of any
physical property, in particular the power to magnetize or polarize. The distinction
is important; indeed, we have seen that the existence of diamagnetic bodies would
be contradictory if the faculty of magnetizing were not attributed to ether, according
to the hypothesis admitted by Edmond Becquerel; and, since Faraday, all physicists
agree to assign dielectric polarization to the ether.

By an extension of Coulomb’s laws (experience verifies these laws for a body
placed in the air, but it is not conceivable for a body placed in the absolute vacuum),
we assume that these two small bodies repel with a force

F = ε
qq ′

r2
, (2.8)

ε being some positive constant.

26The reader may find these demonstrations in our Leçons sur l’Électricité et le Magnétisme, t. II,
1892.



24 2 The Fundamental Properties of Dielectrics. The Doctrines of Faraday and Mossotti

[34] Suppose that an ensemble of electrified bodies is placed in space and let

V =
∑ q

r
(2.9)

be their potential function. At any one point (x, y, z) outside the charged conductor,
or inside one of them, an electric charge μ undergoes an action whose components
are μX , μY , μZ , and we have

X = −ε
∂V

∂x
, Y = −ε

∂V

∂y
, Z = −ε

∂V

∂z
. (2.10)

Now imagine a set of polarized dielectric bodies. Let dω1 be a dielectric element,
(x1, y1, z1) a point of this element, and A1, B1, C1 the components of polarization
at the point (x1, y1, z1).

V (x, y, z) =
∫ (

A1
∂ 1

r

∂x1
+ B1

∂ 1
r

∂y1
+ C1

∂ 1
r

∂z1

)
dω1, (2.11)

where the integration extends over the ensemble of polarized dielectrics. This formula
defines, at the point (x, y, z), the potential function of this set. In formula (2.11),
which recalls exactly the expression (2.1) of the magnetic potential function, r is the
mutual distance of two points (x, y, z), (x1, y1, z1).

The electrostatic field created by the dielectric at the point (x, y, z) has for
components

X = −ε
∂V

∂x
, Y = −ε

∂V

∂y
, Z = −ε

∂V

∂z
. (2.12)

The potential function V , defined by equality (2.11), is identical to the electro-
static potential function that formula (2.9), applied to a certain fictitious electrical
distribution, defines; in this [35] fictitious distribution, each point (x, y, z) inside the
polarized dielectric is assigned a solid density

e = −
(

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
, (2.13)

and every point on the surface of two different polarized bodies, designated by indices
1 and 2, corresponds to a surface density

E = −[A1 cos (N1, x) + B1 cos (N1, y) + C1 cos (N1, z)

+A2 cos (N2, x) + B2 cos (N2, y) + C2 cos (N2, z)]. (2.14)

If one of the two bodies, body 2 for example, is incapable of dielectric polarization,
it is sufficient, in the previous formula, to suppress the terms in A2, B2, C2.
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We see that at any point inside a continuous dielectric, we have

ΔV = −4πe = 4π

(
∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
, (2.15)

while at any point on the surface of two dielectrics, we have

∂V

∂ N1
+ ∂V

∂ N2
= −4π E (2.16)

= 4π [ A1 cos (N1, x) + B1 cos (N1, y) + C1 cos (N1, z)

+ A2 cos (N2, x) + B2 cos (N2, y) + C2 cos (N2, z)] .

Consider a system where all bodies likely to be charged are good conductive
bodies, homogeneous and non-decomposable by electrolysis, and where all the bod-
ies likely to be polarized are perfectly soft dielectrics; on such a system, electrical
equilibrium will be ensured by the following conditions:

1. In each of the conductive bodies, we have

V + V = const. (2.17)

2. [36] At each point of a dielectric, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A = −εF(M)
∂

∂x
(V + V ),

B = −εF(M)
∂

∂y
(V + V ),

C = −εF(M)
∂

∂z
(V + V ).

(2.18)

In these formulas,

M =
(

A2 + B2 + C2
) 1

2

is the intensity of polarization at the point (x, y, z) and F(M) is an essentially
positive function of M ; this function depends on the nature of the dielectric at the
point (x, y, z); from one point to the other, it varies continuously or intermittently
depending on whether the nature and the state of the bodies vary in a continuous or
discontinuous manner.

In general, as a first approximation,we are content to replace F(M) by a coefficient
of polarization F , independent of the intensity M of the polarization; with this
approximation, equalities (2.18) become
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A = −εF
∂

∂x
(V + V ),

B = −εF
∂

∂y
(V + V ),

C = −εF
∂

∂z
(V + V ).

(2.19)

This immediately leads to two relationships that will have, in this study, a great
importance.

In the first place, compared to equality (2.13), equalities (2.19) show that we have,
at any point of a continuous dielectric medium, the equality

ε
∂

∂x

[
∂(V + V )

∂x

]
+ ε

∂

∂y

[
∂(V + V )

∂y

]
+ ε

∂

∂z

[
∂(V + V )

∂z

]
= e. (2.20)

[37] In the second place, compared to equality (2.14), equalities (2.19) show that
at any point on the surface of two different media, we have

εF1
∂(V + V )

∂ N1
+ εF2

∂(V + V )

∂ N2
= E . (2.21)

From these equalities we draw some important consequences. In the case where
it is applied to a homogeneous dielectric, the formula (2.20) becomes

εFΔ(V + V ) = e.

This equality, combined with equalities (2.15) and

ΔV = 0,

satisfied at any point where there is no real electricity, gives the equality

(1 + 4πεF)Δ(V + V ) = 0,

and since F is essentially positive, this equality is, in turn,

Δ(V + V ) = 0, (2.22)

and
e = 0. (2.23)

Hence the following proposition, demonstrated by Poisson in the case of the
magnetic induction and transposed by W. Thomson and Mossotti to the case of
dielectrics:
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When a dielectric, homogeneous, and perfectly soft body is polarized by induction,
the fictitious electric distribution that would equal the polarization of this body is a
purely superficial distribution.

Imagine now that dielectric 1 is in contact along an area with a charged body 2, but
incapable of any polarization. To each point on this surface, [38] two electric surface
densities correspond: a real density Σ and a fictitious density E ; with equalities
(2.16) et (2.21), we can attain the well known equality

∂V

∂ N1
+ ∂V

∂ N2
= −4πΣ

and also the equality
∂V

∂ N2
+ ∂V

∂ N2
= −4πΣ,

which derives from the condition (2.17). We thus obtain equality

4πεF1Σ + (1 + 4πεF1)E = 0. (2.24)

On the surface of contact of a conductor and a dielectric, the density of the actual
electrical layer Σ is to the density of the fictitious electrical layer E in a negative
ratio

(− 1+ 4πεF
4πεF

)
, larger than 1 in absolute value and only dependent on the nature

of the dielectric.
The formulas and theorems we have just quickly reviewed pertain to placing into

equations the issues raised by the study of dielectrics. Two of these issues will play
a major role in the discussions that will follow; it is important to recall the solution
in a few words.

The first of these problems concerns capacitors.
Imagine an enclosed capacitor. At any point of the internal armature, the sum (V +

V ) has the same valueU1, while at any point of the external armature, it has the value
U0. The gap between the two armatures is occupied by a homogeneous dielectric D
where F is the coefficient of polarization. It is shown without difficulty that, in these
circumstances, the internal armature becomes covered with a real electric charge Q
given by the formula

Q = 1 + 4πεF

4π
A(U1 − U0),

A being a quantity that depends only on the geometric shape [39] of the space between
the two armatures. The capacitance of the capacitor, i.e. the ratio

C = Q

ε(U1 − U0)
,

has the value

C = 1 + 4πεF

4πε
A. (2.25)
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Take a capacitor of identical shape to the previous one and place between the
armatures of this capacitor a new dielectric D’, having a coefficient of polarization
F ′; the capacitance of this second capacitor will have the value

C ′ = 1 + 4πεF ′

4πε
A.

As Cavendish did it, in 1771, in some researches27 that remained unpublished
for one hundred years, so Faraday28 did it again as early as 1837, experimentally
determining the ratio of the capacitance of the second capacitor to the capacitance
of the first; the result of this measurement will be the number

C ′

C
= 1 + 4πεF ′

1 + 4πεF
. (2.26)

This number will only depend on the nature of two dielectrics D and D’; this
number is given the name of specific inductive capacity of the dielectric D’, relative
to the dielectric D.

By definition, the absolute specific inductive capacitance of a dielectric D is the
number (1 + 4πεF); for a non-polarizable medium, it is equal to 1. [40]

The consideration of the second problem is more strictly needed when one con-
siders ether as susceptible to dielectric polarization.

Electrostatics as a whole is built assuming that conductive or dielectric bodies
are isolated in the absolute vacuum. If one accepts the hypothesis that we have
just discussed, such electrostatics is a pure abstraction, unable to give a picture of
reality; but, by a fortunate circumstance, one can easily transform this electrostatics
into another where unlimited space, which was empty in the first, is filled by a
homogeneous, incompressible, and polarizable ether.

Let F0 be the coefficient of polarization of the medium in which the studied
bodies are immersed. These bodies are of homogeneous conductors of electricity and
perfectly soft dielectric. What will the distribution of electricity on such a system in
equilibrium be? What forces will the various bodies of which it consists produce?

The following rule reduces the solution of these questions to classical
electrostatics:

Replace the polarizable vacuum for the ether; for each conductive body, leave the
total electrical charge it bears in reality; to each dielectric, attribute a coefficient ϕ

of fictitious polarization, equal to the excess of its real coefficient of polarization F
over the coefficient of polarization F0 of the ether:

ϕ = F − F0; (2.27)

27The electrical Researches of the honourable Henry Cavendish, F. R. S., written between 1771
and 1781; edited by J. Clerk Maxwell (Cambridge).
28Faraday,Experimental Researches in Electricity, seriesXI,On Induction; §5.On Specific
Induction, OnSpecific InductiveCapacity. Read at theRoyal Society of London, 21December 1837.
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finally, replace the constant e by a fictitious constant

ε′ = ε

1 + 4πεF0
. (2.28)

You will get a fictitious system corresponding to the actual given system.
The electrical distribution on the conductive bodies will be the same in the fictional

system as in the actual system.
The ponderomotive actions will be the same in the fictional system as in the actual

system.
As for the polarization at each point of one of the dielectric bodies [41] other than

the ether, it has the same direction in the fictional system and in the actual system;
but, to obtain its value in the second system, the value that it has in the former must
be multiplied by F

F−F0
.

2.4 The Particular Idea of Faraday

From the ideas of Faraday on the polarization we have extracted so far what is more
general, what gave birth to the theory of dielectrics. These general ideas are far from
representing, in their fullness, the thought of Faraday. Faraday professed, in addition,
a very particular opinion on the relationship that exists between the electric charge
comprising a conductor and the polarization of the dielectric medium in which the
conductor is immersed. This opinion of Faraday did not escape Mossotti, which
he adopted; on the other hand, it seems to have struck no contemporary physicist.
Heinrich Hertz29 has exhibited this opinion, observing that it is a limiting case of the
theory of Helmholtz, already reported by the great physicist; but neither Helmholtz,
nor Hertz, attributed it to Faraday and Mossotti.

For him who reads Faraday with careful attention, it is clear that he admitted the
following law:

When a dielectric medium is polarized under the action of charged conductors, at
each point on the surface of contact of a conductor and dielectric, the density of the
fictitious surface layer that covers the dielectric is equal and opposite in sign

to the density of the actual electrical layer that covers the conductor:

E + Σ = 0. (2.29)

Faraday wrote to Dr Hare30:

29Heinrich Hertz, Untersuchungen über die Aushreitung der elektrischen Kraft: Einleitende Ueber-
sicht; Leipzig, 1892. [English translation: Hertz(1893)]—Traduit en français par M. Raveau (La
Lumière électrique, t. XLIV, pp. 285, 335 et 387; 1892).
30Faraday, An Answer to Dr Hare’s Letter on Certain Theoretical Opinions (Sillimann’s
Journal, vol. XXXIX, p. 108; 1840.—Experimental Researches in Electricity, vol. II,
p. 268; London, 1844).
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Using the word charge in its simplest meaning, I think that a body can be [42] charged
with one electric force without the other, that body being considered in relation to itself
only. But I think that such charge cannot exist without induction, or independently of what
is called the development of an equal amount of the other electric force, not in itself, but
in the neighbouring consecutive particles of the surrounding dielectric, and through them
of the facing particles of the uninsulated surrounding conducting bodies, which, under the
circumstances, terminate as it were the particular case of induction.

It is the existence, in the immediate vicinity of each other, of these two layers,
equal in density and opposite in sign, that the possibility is due, for Faraday, of
maintaining an electrical layer at the surface of a conductor.

Since the theory assumed the medium which surrounds conductive bodies to be
perfectly insulating, it does not seek what force keeps the electrical layer adhering
to the surface of the conductor; what maintains it is the property attributed to the
medium for not allowing the passage of electricity. If we can talk about the pressure
that the medium exerts on the electricity for maintaining it, it is in the sense where we
talk about mechanical strength of binding; this pressure is the electromotive action
that should be applied to the electrical layer so that it remains on the surface of the
conductor, if the medium ceased to be insulated. This idea seems to have been clearly
perceived by Poisson31; he said:

The pressure that the fluid exerts against the air that contains it is partly composed of the
repulsive force and the thickness of the layer; and since one of these elements is proportional
to the other, it follows that pressure changes on the surface of an electrified body and is
proportional to the square of the thickness or the amount of electricity accumulated at each
point on this surface. The air impermeable to electricity must be regarded as a vessel whose
shape is determined by that of the electrified body; the fluid contained in this vessel exerts
against the walls different pressures [43] at different points, so the pressure that occurs at
certain points is sometimes very big and infinite compared to what others experience. In
places where the pressure of the fluid overcomes the resistance of the air that opposes it, the
air yields, or, if desired, the tank bursts, and fluid flows through such an opening. It is what
happens at the end points and sharp edges of angular bodies.

Faraday does not understand the thought of Poisson; he confuses the resistance
that the air opposes to the escape of electricity, in virtue of its non-conductibility, with
the atmospheric pressure, i.e. with the resistance that this same air opposes to the
movement of the material masses, under gravity and inertia; and, easily interpreted
as the explanation, he draws advantage for his theory which attributes to the action of
the layer spread on the dielectric the equilibrium of the layer covering the conductor.
He said32:

Here I think my view of induction has a decided advantage over others, especially over that
which refers the retention of electricity on the surface of conductors in air to the pressure of
the atmosphere. The latter is the view which, being adopted by Poisson and Biot is also, I
believe, that generally received; and it associates two such dissimilar things, as the ponderous

31S. D. Poisson, Mémoire sur la distribution de l’électricité à la surface des corps conducteurs, lu
à l’Académie des sciences le 9 mai et le 3 août 1812 (Mémoires de la classe des sciences

mathématiques et physiques in the year 1811, Mémoires des savants étrangers, p. 6).
32Faraday, Experimental Researches in Electricity, series XII, On Induction, vol. I, p. 438.
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air and the subtile and even hypothetical fluid. …Hence a new argument arises33 proving
that it cannot be mere pressure of the atmosphere which prevents or governs discharge, but
a specific electric quality or relation of the gaseous medium. It is, hence, a new argument
for the theory of molecular inductive action.

Moreover, an attentive reader ofThe Experimental Researches in Electricity easily
recognizes, in the hypothesis that we develop [44] at this time, what Faraday intends
to articulate when he says that electric action is not exercized at a distance, but only
between contiguous particles; he certainly wants to say that no amount of electricity
can develop on the surface of a material molecule without a charge of equal and
opposite sign developing on the surface facing another extremely close molecule.

Mossotti has also understood the thought of Faraday well. He said34:

This physicist, considering the state of molecular electric polarization, thinks that there must
be two systems of opposing forces which alternate rapidly and hide alternately in the interior
of the dielectric, but that they must manifest two special effects opposed to the ends of the
same body. On one side, with the simultaneous action of the two systems of forces that
develop in the dielectric body, a force equal and opposite to that with which the same layer
tends to expel its atoms is born at each point of the electrical layer that covers the excited
body; and the opposition of these two forces makes the fluid that makes up the layer to stay
on the surface of the electric body. On the opposite side, where the dielectric body touches
or envelopes the surfaces of other surrounding electrical bodies, it exerts a force of a species
analogous to that of the electrified body and by means of which these surfaces are brought
to the contrary electric state.

Mossotti, having demonstrated the existence of surface layers which are equivalent
to a dielectric polarized by induction, adds35:

These layers that represent, for the limits of the dielectric body, effects not neutralized by two
reciprocal systems of internal forces, exercise, on the surface surrounding the conductive
body, actions equivalent to those that these same electrical layers of these same bodies
exercise directly between them without the intervention of the dielectric body. This theorem
gives us the main conclusion of the question that we proposed. [45] The dielectric body, by
means of the polarization of the atmospheres of its molecules, only transmits from one body
to the other the action between the conductive bodies, neutralizing the electrical action on
one and conveying to the other an action equal to that which the first would have exercised
directly.

If it is observed that for Faraday and Mossotti the words electric action, electric
force are at every moment taken as synonyms of electric charge or electric density,
one cannot recognize, in the passages that we have just quoted, the hypothesis that
reflects equality (2.29). So, we can say that this equality expresses the particular
Faraday and Mossotti hypothesis.

33Faraday, ibid., p. 445.
34Mossotti, Recherches théoriques sur l’induction électrostatique envisagée d’après les idées de
Faraday (Bibliothèque universelle, Archives, t. VI, p. 194; 1847).
35Mossotti, Ibid., p. 196.
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Taken strictly, this hypothesis is not consistent with the principles on which the
theory of dielectric polarization is based. We have seen, in effect, as a result of
Eq. (2.24), that the density of the actual electrical layer spread on the surface of a
conductive body still had a higher absolute value than the density, at the same point,
of the fictitious electrical layer which would be equivalent to the polarization of the
adjacent dielectric.

But this same equality (2.24) teaches us that the hypothesis of Faraday and
Mossotti, unacceptable if taken strictly, can be approximately true; it is what happens
if εF1 is very large compared to 1

4π .
So, we can say that the hypothesis of Faraday and Mossotti will represent an

approximate law if the abstract number εF has, for all dielectrics, an extremely
large numeric value.

Let us examine the consequences to which this hypothesis leads.
The capacitance of a variable capacitor varies little when, in this capacitor, a

vacuum is made as perfect as possible; one can therefore admit that the specific
inductive capacity of air compared to the ether hardly surpasses unity or that the
number (1 + 4FπεF) relative to the air can be substituted for the number (1 +
4FπεF) relative to the ether.

Take two electrical charges Q and Q′ placed in the ether [46] (practically in the
air) and let r be the distance between them; these charges repel with a force which
has the value

R = ε

1 + 4πεF0

Q Q′

r2
. (2.30)

If one accepts the hypothesis of Faraday andMossotti, this value differs little from

R = 1

4π F0

Q Q′

r2
. (2.31)

Suppose that one uses the C. G. S. system of electromagnetic units; that the num-
bers Q, Q′, r—which measure, in this system, the charges and their distances—be
numbers of moderate magnitude; and that, for example, they be, all three, equal to
1. Experience shows us that the repulsive force is not measured by a very small
number, but, on the contrary, by a large number; the coefficient of polarization F0
of the ether cannot therefore be regarded as having a very high value in the C. G. S.
electromagnetic system. The hypothesis of Faraday then entails the following propo-
sition:

In the C. G. S. electromagnetic system, the constant ε has an extremely large
value; each formula can be replaced by the limiting form that one gets when ε is
made to grow and surpass any limit.
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The experience which we have just discussed tells us, moreover, about the value
of F0. The repulsion of two charges represented by the number 1 in the C. G. S.
electromagnetic system, placed at one centimeter of distance the one from the other,
is measured approximately by the same number as the square of the speed of light,
i.e. the number 9 × 1022; so, if one accepts the hypothesis of Faraday, we roughly
have

1

4π F0
= 9 × 1022

or

F0 = 1

36π × 1022
.

[47] εF0 being extremely large compared to 1
4π , we see that, in the C. G. S.

electromagnetic system, ε must be measured by a very large number compared to
1022.

The specific inductive capacity relative to the ether (practically to the air) of a

dielectric is the ratio 1+ 4πεF
1+ 4πεF0

; for all dielectrics known, it has a finite value; it varies

between 1 (ether) and 64 (distilled water).
Now, in the theory of Faraday, the specific inductive capacity of a dielectric

D’compared to another dielectric D is approximately equal to the ratio between
coefficient of polarization F ′ of the first dielectric and the coefficient of polarization
F of the second:

1 + 4πεF ′

1 + 4πεF
= F ′

F
. (2.32)

So, for all dielectrics, the ratio F
F0

is understood to be between 1 and 64; in other
words, for all dielectrics, the coefficient of polarization F , measured in C. G. S.
electromagnetic units, is at most on the order of 10−22.

Helmholtz, having developed a very general electrodynamics, suggested,36 to find
various consequences of Maxwell’s theory, an operation that amounts to taking the
limit of the equations obtained when εF grows beyond any limit. This supposition,
it is seen, immediately reduces to the hypothesis of Faraday and Mossotti. [48]

36H.Helmholtz,Ueber die Gesetze der inconstanten elektrischen Ströme in körperlich ausgedehnten
Leitern (Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg,
21 January 1870; p. 89.—Wissenschaftliche Abhandlungen, Bd. I, p. 513).—Ueber die
Bewegungsgleichungen der Elektricität für ruhende leitende Körper (Borchardt’s Journal für

reine und angewandte Mathematik, Bd. LXXII, p. 127 et p. 129.—Wissenschaftliche

Abhandlungen, Bd. I, p. 625 et p. 628).—See also: H. Poincaré. Électricité et Optique; II. Les
théories de Helmholtz et les expériences de Hertz, p. vi et p. 103; Paris, 1891.



Chapter 3
The First Electrostatics of Maxwell

3.1 Reminder of the Theory of Heat Conductivity

Before going further and addressing the presentation of the ideas of Maxwell, we
pause for a moment to study heat conductivity.

We consider a homogeneous or heterogeneous but isotropic substance.
Let (x, y, z) be a point within this substance.
T , the temperature at this point;
k, the coefficient of heat conductivity at that point.
The flow of heat at this point will have, for the components along the coordinate

axes:

u = −k
∂T

∂x
, v = −k

∂T

∂y
, w = −k

∂T

∂z
. (3.1)

We consider a continuous part of a conductor; an element of volume

dω = dx dy dz,

carved in this region contains a heat source that emits, in time dt , a quantity of heat
j dω dt ; we can designate j as the intensity of the source. We have, according to this
definition,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= j

[49] or, in virtue of equalities (3.1),

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ j = 0. (3.2)

Now let S be the surface separating two substances, 1 and 2, of different conduc-
tivities. The element d S of this surface contains a superficial heat source which in
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time dt emits a quantity of heat J d S dt ; J is the surface intensity of the source.
Then we will have

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) = J

or, in virtue of equalities (3.1),

k
∂T

∂ N1
+ k2

∂T

∂ N2
+ J = 0. (3.3)

These are the fundamental equations, givenbyFourier, that govern the propagation
of heat by conduction. We know how the work of G.S. Ohm, later completed by
G. Kirchhoff, helped to understand the propagation of electrical current within the
conductive bodies. To pass from the first problem to the second, it suffices to replace
the heat flowby the flowof electricity, the heat conductivity by electrical conductivity,
temperature T by the product εV of the constant of Coulomb’s laws and of the
electrostatic potential function; finally, to substitute for j and J the ratios ∂σ

∂t ,
∂Σ
∂t ,

where σ , Σ designate solid and surface electric densities.
A similar extension of the equations of heat conductivity can be used to deal with

the diffusion of a salt in an aqueous solution, according to the well known remark of
Fick.

An analytical analogy may also be established between certain problems relating
to the conductivity of heat and some electrostatics problems.

For example, consider the following problem:
A body C is immersed in a space E. Body C and space E are both homogeneous,

isotropic, and conducting, but they have [50] different conductivities: k2 is the con-
ductivity of the body G, and k is the conductivity of the space E. Body G is assumed
to be maintained at a constant temperature, the same in all its points, which we will
refer to by A. The various elements of the space E do not contain any other cause of
their release or absorption of heat than what comes from their specific heat γ . Each
element dω, of density ρ, thus releases in time dt a quantity of heat −ρ dω γ T

t dt ,
ensuring that

j = −ργ
T

t
.

Finally, the state of the medium E is assumed to be stationary. T has, at each point,
a value independent of t , which turns the previous equality into

j = 0.

How, to achieve a similar state, should the sources of heat distribute on the surface
of the body G? At various points in space E, what will the value of the temperature
T be?
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The temperature T , continued throughout the space, shall take, at any point of the
body G and the surface which confines it, the constant value A; at any point of space
E, it should verify the equation

ΔT = 0,

to which (3.2) is reduced, when
j = 0

and k is assumed to be independent of x , y, z. T being thus determined, Eq. (3.3),
which will be reduced to

k2
T

N2
+ J = 0,

will determine the value of J for every point on the surface that bounds the body
C. [51]

This problem is analytically similar to the following one:
A homogeneous and electrified conductor G is immersed in an insulating medium

E.What is the distributionof electricity at the surfaceof this conductor in equilibrium?
To pass from the first issue in the second, it is sufficient to replace, in the solution,

the temperature T by the electric potential function V and the quotient J
k2

by the
product 4πΣ , whereΣ designates the surface density of the electric layer that covers
the conductor C.

It would be difficult to quote the geometer who first noticed this analogy; the
mathematicians at the beginning of the century were so perfectly accustomed to
handling differential equations which lead to the various theories of physics that a
similar analogy was, so to speak, jumping out at them. In any case, it is stated in
some previous works of Chasles1 and W. Thomson.2

3.2 Theory of Dielectric Media, Constructed by Analogy
with the Theory of the Conduction of Heat

They sought, in the properties of the dielectric media, a deeper analogy with the laws
of heat conductivity.

Having dealt with any problemof conductivity, onewould pass to the similar prob-
lem of electrostatics by retaining the same equations and by changing the meaning
of the letters contained therein according to the following rules:

1M. Chasles, Énoncé de deux théorèmes généraux sur l’attraction des corps et la théorie de la
chaleur (Comptes Rendus, t. VIII, p. 209; 1839).
2W. Thomson,On the Uniform Motion of Heat in Homogeneous Solid Bodies and its Connexion with
the Mathematical Theory of Electricity (Cambridge and Dublin Mathematical Journal,
February 1842.—Reprinted in the Philosophical Magazine in 1854 and in the Papers on

Electrostatics and Magnetism, Art. 1).
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The temperature T would be replaced by a certain function Ψ ; [52] this function
Ψ would determine the components P , Q, R of the electrostatic field at the point
(x, y, z) according to the formulas

P = −∂Ψ

∂x
, Q = −∂Ψ

∂y
, R = −∂Ψ

∂z
. (3.4)

The coefficient of conductivity k would be replaced by a factor K characterizing
the dielectric properties of the medium and that would be called its specific inductive
capacity.

The components of the flow of heat w, v, w would be replaced by the components
f , g, h of a vector that would be called the polarity at the point (x, y, z), so that it
would be ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f = KP = −K
∂Ψ

∂x
,

g = KQ = −K
∂Ψ

∂y
,

h = KR = −K
∂Ψ

∂z
.

(3.5)

The intensity j of the heat source would be replaced by 4π K e, e being the solid
electric density, so that Eq. (3.2) would become

∂

∂x

(
K

∂Ψ

∂x

)
+ ∂

∂y

(
K

∂Ψ

∂y

)
+ ∂

∂z

(
K

∂Ψ

∂z

)
+ 4πKe = 0. (3.6)

In the memoir where he deals with the theory that we now present, Maxwell will
never consider the surfaces of discontinuity that separate the various bodies with
each other. We can indeed, if you will, suppose that the passage of the various bodies
into each other is done in a continuous manner through a very thin layer; physicists
have often used this process.

These various rules, if they existed on their own, could be regarded as a simple
set of formulas, as purely arbitrary conventions; they lose that character, to take that
of an electrostatics, of a physical theory that could be confirmed or contradicted by
experience, when joined to the following hypothesis: [53]

The system is the seat of actions that admit for potential the quantity

U = 1

2

∫
Ψ e dω, (3.7)

the integral extending over the entire system.
Some connections of this new electrostatics lie in the researches of Faraday. It is,

admittedly, not about dielectric bodies, but about the magnetic bodies that he traces;
but we know the intimate links between the development of the theory of magnets
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to the development of the theory of dielectric bodies. Various phenomena, Faraday
said,3

ledme to the idea that if bodies posses a different degree of conductive power for magnetism,
…I only state the case hypothetically, and use the phrase conductive power as a general
expression of the capability which bodies may possess of the transmission of magnetic
force; implying nothing as to how the process of conduction is carried on.

Certain bodies have a greater conductive power than the surrounding medium; these
would be magnetic bodies properly so-called. Others would conduct less than the
medium; these would be diamagnetic bodies. Faraday also seems to have glimpsed4

that this theory was not at every point in agreement with the classical theory of the
polarization of magnets.

Already, a few years ago, the same ideas of Faraday on electric induction had
suggested to W. Thomson5 some similar insights. He wrote:

It is, no doubt, possible that such forces at a distance may be discovered to be produced
entirely by the action of contiguous particles of some intervening medium, and we have an
analogy for this in the [54] case of heat, where certain effects which follow the same laws
are undoubtedly propagated from particle to particle.

But if a few vestiges of the idea that we just described can be suspected in the
writings of some authors, it is not doubtful that Maxwell has first developed them
into a genuine theory; he devoted the first part of his oldest memoir on electricity to
this theory.6

Maxwell begins by proclaiming the fruitful role of physical analogy. He said: “By
a physical analogy I mean that partial similarity between the laws of one science and
those of another which makes each of them illustrate the other,” and he shows how
the physical analogy between acoustics and optics has contributed to the progress of
the latter science.

He then developed not the theory of the propagation of heat in a medium, but a
theory of the motion of a fluid in a durable medium; it only differs from it by the
meaning of the letters he employs; but in both, these letters are grouped according
to the same formulas.

3Faraday, Experimental Researches in Electricity, XXVIth series, read at the Royal Society of
London on 28 Nov. 1850 (Experimental Researches, vol. III, p. 200).
4Faraday, loc. cit., p. 208.
5W. Thomson, On the Elementary Laws of Statical Electricity (Cambridge and Dublin Math-

ematical Journal. 1845.—Papers on Electrostatics, Art. II, no 50 [p. 37]).
6J. Clerk Maxwell, On Faraday’s Lines of Force, read at the Philosophical Society of Cambridge,
10 December 1855 and 11 February 1856 (Transactions of the Cambridge Philosophical

Society, vol. X, part, I p. 27; 1864.—Scientific Papers of James Clerk Maxwell, vol. 1,
p. 156; Cambridge, 1890).
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Maxwell extended these formulations to electricity, in accordance with what we
indicate.7 He says8:

The electrical induction exercised on a body at a distance depends not only on the distribution
of electricity in the inductric, and the form and position of the inducteous body, but on the
nature of the interposed medium, or dielectric. Faraday expresses this by the conception [55]
of one substance having a greater inductive capacity, or conducting the lines of inductive
action more freely than another. If we suppose that in our analogy of a fluid in a resisting
medium the resistance is different in different media, then by making the resistance less we
obtain the analogue to a dielectric which more easily conducts Faraday’s lines.

3.3 Discussion of the First Electrostatics of Maxwell

When Maxwell, in the explanatory statement that we analyzed, speaks of polarity,
electric charge, or potential function, did he intend to deprive these words of the
meaning they previously received in electrostatics? Did he mean to define new quan-
tities, essentially distinct from those which bore the same names before him, and
intend to replace them in a theory irreducible to the old electrostatics? Many pas-
sages of his memoir clearly prove that this is not so; he intends to use the words
electric charge, potential function, and polarity in the sense accepted by all. He does
not claim to create a new electrostatics, but, by comparison, to illustrate the tradi-
tional electrostatics, the theory of polarization of dielectrics such as Faraday and
Mossotti have conceived, in imitation of theory of magnetism given by Poisson.

First, speaking of the state of electrostatics at the time when he wrote, Maxwell
does not seem topropose altering anything in the accepted formulas; then, he indicates
bywhat change in themeaning of the letters of the formulaswe pass from the problem
of the movement of a fluid in a resistant medium to the “ordinary” electric problem,
an epithet whose employment excludes any intention to revolutionize this branch
of physics. Regarding magnets, Maxwell clearly remarks that the two theories in
question are, for him, mathematically equivalent. He said9:

A magnet is conceived to be made up of elementary magnetized particles, each of which has
its ownnorth and south poles, the actionofwhichuponother north and south poles is governed
by laws mathematically identical with those of electricity. Hence the same application of

7To reconcile our notation with that used by Maxwell in the cited memoir, we need to replace

Ψ by −V,

e dω by dm,

K by
1

K
,

f, g, h by u, v, w,

P, Q, R by X, Y, Z .

8[p. 177].
9[ibid., p. 178].
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[56] the idea of lines of force can be made to this subject, and the same analogy of fluid
motion can be employed to illustrate it.

Maxwell develops this analogy and applies it to magnetic bodies considered more
conductive than the ambient medium and to diamagnetic bodies regarded as less
conductive than this medium, and he adds10:

It is evident that we should obtain the same mathematical results if we had supposed that the
magnetic force had a power of exciting a polarity in bodies which is in the same direction
as the lines in paramagnetic bodies, and in the reverse direction in diamagnetic bodies.

It is palpable that Maxwell, in relying on an analogy with the equations of heat,
simply claimed to give a theory of dielectrics different from the point of view of
physical hypotheses but identical with the mathematical equations to the theory that
dominates the hypothesis of polarized molecules.

Also, Maxwell does not hesitate to admit11 that the function Ψ is analytically
identical to the electrostatic potential function:

Ψ =
∫

e

r
dω. (3.8)

There was only discussion thus far in Maxwell’s theory of dielectric bodies; how
does Maxwell represent conductive bodies? He said12:

If the conduction of the dielectric is perfect or nearly so for the small quantities of electricity
with which we have to do,…The dielectric is then considered as a conductor, its surface is a
surface of equal potential, and the resultant attraction near the surface itself is perpendicular
to it. [57]

Thus, for Maxwell, there is not, strictly speaking, a conductive body; all bodies
are dielectrics, which only differ from one to another by the value assigned to K .
For the ether of the vacuum, K is equal to 1; for other dielectrics, K is greater than
1; for some, K has a very high value; those are the conductors.

Therefore, the electrostatic problem is as follows:
The function Ψ that defines equality (3.8) must satisfy in all space equality (3.6);

once this function Ψ is determined, equalities (3.5) will provide, at each point, the
state of the polarization of the medium.

However, equality (3.8), which is a definition, causes the identity

ΔΨ = 4πe,

10[ibid., p. 179–80].
11J. Clerk Maxwell, Scientific Papers, vol. I, p. 176; Maxwell wrote the equality

V = −
∑ dm

r

which, with his notation, is equivalent to the previous one.
12[ibid., p. 178].
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so that equality (3.6) can also be written

∂K

∂x

∂Ψ

∂x
+ ∂K

∂y

∂Ψ

∂y
+ ∂K

∂z

∂Ψ

∂z
= 0. (3.9)

This condition is all that the first electrostatics of Maxwell gives us to determine
the function Ψ ; however, it is clear that it is insufficient for this purpose. First of all,
in a homogeneous medium, where K is independent of x , y, z, it is reduced to an
identity and leaves the function Ψ entirely indeterminate in a similar medium. But,
even in the event that, to avoid this difficulty, we would reject the existence of any
homogeneous medium, or would not take a step to determine Ψ , since if a function
Ψ verifies Eq. (3.9), the function λΨ , where λ is a constant, may also satisfy it.

The first electrostatics of Maxwell, thus, has only the appearance of a physical
theory; when one follows it closely, it vanishes. [58]



Chapter 4
The Second Electrostatics of Maxwell

4.1 The Hypothesis of Electrical Cells

Thefirst electrostaticswas forMaxwell but amereblueprint; the secondelectrostatics,
which we now explain, is, instead, a developed theory, to which its author returned
on several occasions. More closely than the first theory, it is inspired by views of
Faraday and especially Mossotti on the constitution of dielectrics.

Faraday considered a dielectric subjected to induction as composed of particles
whose two ends carry equal and contrary charges; but he avoided any determined
hypothesis on the intrinsic nature of this electricity possessed by the material parti-
cles, and by which they can be either polarized or left in the neutral state; he likes to
insist on the fact that his theory of induction is independent of any hypothesis about
the nature of electricity.

He said1:

My theory of induction makes no assertion as to the nature of electricity, or at all questions
any of the theories respecting that subject. It does not even include the origination of the
developed or excited state of the power or powers; but taking [59] that as it is given by
experiment and observation, it concerns itself only with the arrangement of the force in its
communication to a distance in that particular yet very general phenomenon called static
induction. It is neither the nature nor the amount of the force which it decides upon, but
solely its mode of distribution.

Mossotti did not imitate the caution with which Faraday kept away from any
hypothesis on the nature of electricity and avoided deciding between the theory
which posits two electrical fluids and that which admits a single fluid. A staunch
supporter of the ideas of Franklin, he transports them into his exposition of the
doctrine of Faraday. He admits that electricity consists of a single fluid, which he
calls the ether. This fluid exists, to a certain degree of density, in bodies in the

1M. Faraday,An Answer to Dr Hare’s Letter on Certain Theoretical Opinions (Sillimann’s Jour-

nal, vol. XXXIX, p. 108 à 120; 1840.—Faraday’s Experimental Researches in Electric-

ity, vol. II, p. 262).

© Springer International Publishing Switzerland 2015
P.M.M. Duhem, The Electric Theories of J. Clerk Maxwell,
Boston Studies in the Philosophy and History of Science 314,
DOI 10.1007/978-3-319-18515-6_4

43



44 4 The Second Electrostatics of Maxwell

neutral state; if it condenses into a region, this region is charged positively; it is
charged negatively when the ether is rare; in a dielectric in the neutral state, the ether
forms an atmosphere around each of the material particles that cannot leave. When
the molecule is subjected to an inductive force, the “ethereal atmosphere2 condensed
at one end exerts a positive and rarefied electrical force at the opposite end, leaving
a negative electrical force uncovered.”

It is by allowing this passage of Mossotti that Maxwell wrote3 the following, at
the beginning of the presentation of his electrostatics:

Electromotive force acting on a dielectric produces a state of polarization of its parts similar
in distribution to the polarity of the particles of iron under the influence of a magnet, and,
like the magnetic polarization, capable of being described as a state in which every particle
has its poles in opposite conditions. [60]

In a dielectric under induction, we may conceive that the electricity in each molecule is
so displaced that one side is rendered positively, and the other negatively electrical, but that
the electricity remains entirely connected with the molecule, and does not pass from one
molecule to another.

The effect of this action on thewhole dielectricmass is to produce a general displacement
of the electricity in a certain direction…The amount of the displacement depends on the
nature of the body, and on the electromotive force; so that if h is the displacement, R the
electromotive force, and E a coefficient depending on the nature of the dielectric,

R = −4π E2h. (4.1a)

…These4 relations are independent of any theory about the internal mechanism of
dielectrics…

This passage, where the agreement of theory which will be developed is stated
so formally,—on the one hand, with the theory of magnetization by induction given
by Coulomb and Poisson, and, on the other hand, with the similar views of Mossotti
affecting the polarization of dielectrics—is a piece of information of primary impor-
tance on the views of Maxwell. We will find it, in fact, reproduced almost verbatim
in all what Maxwell will from now on write regarding electricity, and even in the first
chapters of the second edition of his Treatise, the last work to which he set his hands.

In thememoir:On Physical Lines of Force, whichwe propose to analyze,Maxwell
is not content to accept these results as “independent of any theory.” He seeks a com-
bination of fluid bodies and solid bodies that allows him to give a mechanical inter-
pretation; according to the honored word of English physicists, he built a mechanical
model of dielectrics.

Maxwell admits that any dielectric is a mechanism formed by the means of two
substances: an incompressible fluid that lacks [61] viscosity, which he calls ether,
and a perfectly elastic solid, which he calls electricity.

2Mossotti, Recherches théoriques sur l’induction électrostatique envisagée d’après les idées de
Faraday (Bibliothèque universelle, Archives, t. VI, p. 195, 1847).
3J. Clerk Maxwell, On Physical Lines of Force, Part III: The Theory of molecular Vortices applied
to statical Electricity (Philosophical Magazine, January and February 1862.—Scientific

Papers, vol. I, p. 491).
4The sign−, in the second member of Eq. (4.1a), comes, as we shall see later, from a clerical error.
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Electricity forms very thin cell walls and fills the ether. The ether is animated,
within each cell, with vertical movements that explain the magnetic properties of the
medium.

When the electric particles are urged in any direction, they will, by their tangential action on
the elastic substance of the cells, distort each cell, and call into play an equal and opposite
force arising from the elasticity of the cells.When the force is removed, the cells will recover
their form, and the electricity will return to its former position.5

In this depiction of the dielectric polarization, the displacement of the elastic
substance named electricity will play exactly the same role as the displacement of
the ethereal fluid of whichMossotti spoke; at each point, it will measure the intensity
of polarization.

The elastic cell walls are deformed by the forces that act on them. Let P , Q, R be
the components of the force at a point and f , g, h the components of the displacement
at the same point; the components f , g, h of displacement depend on the components
P , Q, R of the force. How do they depend?

The answer to this question depends on a problem of elasticity which would be
very complicated if the shape of the cells were given, and which cannot even be
put into equations as long as this form remains unknown; lacking an exact solution,
Maxwell was content with a rough approximate solution. He studied the deformation
of a single, spherically-shaped cell subjected to a force that is parallel to OZ and has
at all points the same value R. It is then that we have

R = 4π E2h, (4.1b)

E2 being a quantity which depends on both of the coefficients of elasticity of the
material forming the cells.

Generalizing this result, he admits thatwe have, in all circumstances, the equalities

P = 4π E2 f, Q = 4π E2y, R = 4π E2h. (4.2a)

[62] In reality, these formulas are not those given by Maxwell, but those that
would have provided a correct calculation. As a result of a manifest sign error,6 he
substitutes for these formulas the incorrect formulas

5[ibid., p. 492].
6J. Clerk Maxwell, Scientific Papers, vol. I, p. 495. From equations

R = −2πma(e + 2 f ), (100)

h = ae

2π
, (103)

Maxwell derives the equation

R = 4π2m
e + 2 f

e
h. (104)

Moreover, this whole memoir of Maxwell is literally riddled with sign errors.
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R = −4π E2h, (4.1a)

P = −4π E2 f, Q = −4π E2y, R = −4π E2h. (4.2b)

The formulas that we just wrote are general; they take a particular form when
electrical equilibrium is established on the system. In this case, indeed, the electro-
dynamic theories developed by Maxwell in the memoir that we analyze7 show that
there is a certain function Ψ (x, y, z), such that we have

P = −∂Ψ

∂x
, Q = −∂Ψ

∂y
, R = −∂Ψ

∂z
. (4.3)

Moreover, if the reasonings ofMaxwell demonstrate the existence of this function,
they do not inform us in any way of its nature, although Maxwell insinuates the
following: “The physical interpretation ofΨ is that it represents the electric potential
at each point of space.”8 [63]

4.2 The Preceding Principles in the Later
Writings of Maxwell

Before following the consequences of these principles and analyzing them further,
we will indicate in what form they are found in the writings published by Maxwell
after his memoir: On Physical Lines of Force.

In 1864, Maxwell published a new, very extensive memoir9 on electromagnetic
actions; there, he himself defined, in the following matter, the spirit which directed
the composition of this work. He said10:

I have on a former occasion attempted to describe a particular kind of motion and a particular
kind of strain, so arranged as to account for the phenomena. In the present paper I avoid any
hypothesis of this kind; and in using such words as electric momentum and electric elasticity
in reference to the known phenomena of the induction of currents and the polarization of
dielectrics, I wish merely to direct the mind of the reader to mechanical phenomena which
will assist him in understanding the electrical ones. All such phrases in the present paper are
to be considered as illustrative, not as explanatory.

Without making any hypotheses about the nature of the electrical phenomena, to
give to the laws that govern them analogous forms in all respects to cells that affect

7J. Clerk Maxwell, Scientific Papers, vol. I, p. 482.
8[ibid.].
9J. Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, read at the Royal Society of
London on 8 December 1854 (Philosophical Transactions, vol. CLV.—Scientific Papers,
vol. I, p. 526).
10J. Clerk Maxwell, Scientific Papers, vol. I, p. 563.
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the equations of dynamics, will precisely be the object of the Treatise on Electricity
and Magnetism, of which the memoir: A Dynamical Theory of the Electromagnetic
Field is the draft.

Maxwell shows himself no less respectful of the traditional hypotheses regarding
the polarization of dielectrics than in his previous memoir: On Physical Lines of
Force. He writes,11 citing Faraday and Mossotti:

…when electromotive force [64] acts on a dielectric it produces a state of polarization of its
parts similar in distribution to the polarity of the parts of a mass of iron under the influence of
a magnet, and like the magnetic polarization, capable of being described as a state in which
every particle has its opposite poles in opposite conditions.

In a dielectric under the action of electromotive force,wemay conceive that the electricity
in each molecule is so displaced that one side is rendered positively and the other negatively
electrical, but that the electricity remains entirely connected with the molecule, and does not
pass from one molecule to another. The effect of this action on the whole dielectric mass is
to produce a general displacement of electricity in a certain direction…In the interior of the
dielectric there is no indication of electrification, because the electrification of the surface
of any molecule is neutralized by the opposite electrification of the surface of the molecules
in contact with it; but at the bounding surface of the dielectric, where the electrification is
not neutralized, we find the phenomena which indicate positive or negative electrification.

The relation between the electromotive force and the amount of electric displacement
it produces depends on the nature of the dielectric, the same electromotive force producing
generally a greater electric displacement in solid dielectrics, such as glass or sulphur, than
in air.

If one denotes by K the ratio between electromotive force and displacement, there

P = Kf, Q = Kg, R = Kh. (4.4)

Moreover, in the case where equilibrium is established for the system, the com-
ponents P , Q, R of the electromotive force are given by the formulas

P = −∂Ψ

∂x
, Q = −∂Ψ

∂y
, R = −∂Ψ

∂z
, (4.3)

where Ψ is a function of x , y, z, the analytic form of which the electrodynamic
reasonings of Maxwell [65] tell us nothing. Maxwell said12:

Ψ is a function of x , y, z, and t , which is indeterminate as far as regards the solution of
the above equations, because the terms depending on it will disappear on integrating round
the circuit. The quantity Ψ can always, however, be determined in any particular case when
we know the actual conditions of the question. The physical interpretation of Ψ is that it
represents the electric potential at each point of space.

This passage differs little from the one Maxwell wrote about the quantity Ψ , in
his memoir: On Physical Lines of Force, but by the substitution of the words electric
potential for the words electrical voltage. But, despite the greater accuracy of the

11J. Clerk Maxwell, Ibid., vol. I, p. 531.
12J. Clerk Maxwell, Scientific Papers, vol. I, p. 558.
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new term, nothing in the reasonings of Maxwell justifies the analytical identification
of the function Ψ with the electrostatic potential function of Green; nothing more,
not one line of text, nor an equation, shows that Maxwell admitted this assimilation,
which is incompatible with many of the results that he reached.

The equations that we just wrote are obviously consistent with those that we have
borrowed from the memoir: On Physical Lines of Force; they differ only by the
substitution of the coefficient K for the product 4π E2. In addition, the sign error
which affected Eqs. (4.1a) and (4.2b) is corrected in Eq. (4.4).

4.3 The Equation of Free Electricity

By the letter e, Maxwell represents, in his memoir: A Dynamical Theory of the
Electromagnetic Field,13 “the quantity of free positive electricity contained in unit
of volume at any part of the field, then, since this arises from the electrification of
the different parts of the field not neutralizing each other.”

Paralleling the passage on the dielectric polarization which we have, for the pre-
vious section, borrowed from the same memoir, this definition leaves no doubt about
the meaning which Maxwell [66] attributes to the letter e; it is the solid density of
the fictitious electrical distribution which is equivalent to the dielectric polarization;
it is therefore the same as what in Chap.2 we designated by the letter e.

Secondly, as the displacement ( f, g, h) is surely, forMaxwell, the exact equivalent
of the intensity of polarization between the components of the displacement and the
quantity e, he does not hesitate towrite14 the relationship that Poisson had established
between the components of magnetization and the fictitious magnetic density, and
which Mossotti had extended to dielectrics:

e + ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
= 0. (4.5)

The former equation is completed by setting the density of free electricity in
the surface of separation of two dielectrics 1 and 2. In both memoirs that we now
analyze, Maxwell never speaks of surfaces of discontinuity; he therefore does not
write this equation; but the form is forced, once one accepts, on the one hand, the
previous equation and, on the other hand, the equivalence between a surface of
discontinuity and a layer of very thin passage. One can added to the previous equation
the relationship

E + f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z)

+ f2 cos (N2, x) + g2 cos (N2, y) + h2 cos (N2, z) = 0. (4.6)

13Ibid., vol. 1, p. 561.
14J. Clerk Maxwell, Scientific Papers, vol. I, p. 561, equality (G).

http://dx.doi.org/10.1007/978-3-319-18515-6_2
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With Eq. (4.4), Eq. (4.6) becomes

E + 1

K1
[P1 cos (N1, x) + Q1 cos (N1, y) + R1 cos (N1, z)]

+ 1

K2
[P2 cos (N2, x) + Q2 cos (N2, y) + R2 cos (N2, z)] = 0, (4.7)

while Eq. (4.5) becomes

e + ∂

∂x

P

K
+ ∂

∂y

Q

K
+ ∂

∂z

R

K
= 0, (4.8)

[67] and, in the case where the medium is homogeneous,

e + 1

K

(
∂ P

∂x
+ ∂ Q

∂y
+ ∂ R

∂z

)
= 0. (4.9)

Maxwell did not write this equation in his memoir: A Dynamical Theory of the
Electromagnetic Field, but it immediately results from Eqs. (4.4) and (4.5) that he
did write.

In the memoir: On Physical Lines of Force, he obtains it by different considera-
tions, hardly different from the previous ones, which we need to relate.

The part15 of this principle [is] that “a variation of displacement is equivalent to

a current” such that ∂ f
∂t ,

∂g
∂t ,

∂h
∂t are the components of a current, the displacement

current, which should be respectively added to the components of the conduction
current to form components p, q, r of the total current.

If e be the quantity of free electricity in unit of volume, then the equation of continuity will be

∂p

∂x
+ ∂q

∂y
+ ∂r

∂z
+ ∂e

∂t
= 0.

But, by the considerations we will encounter when we study the electrodynamics
of Maxwell, he assigns to the components of the conduction current the form

− 1

4π

(
∂γ

∂y
− ∂β

∂z

)
, − 1

4π

(
∂α

∂z
− ∂γ

∂x

)
, − 1

4π

(
∂β

∂x
− ∂γ

∂y

)
,

where α, β, γ are three functions of x , y, z. It follows that the previous equation
remains exact if we substitute for p, q, r the only components of the displacement
current, and that it can be written

∂

∂t

(
∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z

)
+ ∂e

∂t
= 0

15J. Clerk Maxwell, Scientific Papers, vol. I, p. 496.
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[68] or, in virtue of equalities (4.2a),

∂

∂t

[
∂

∂x

P

4π E2 + ∂

∂y

Q

4π E2 + ∂

∂z

R

4π E2

]
+ ∂e

∂t
= 0, (4.10)

and, in the case of a homogeneous medium,

1

4π E2

∂

∂t

(
∂ P

∂x
+ ∂ Q

∂y
+ ∂ R

∂z

)
+ ∂e

∂t
= 0. (4.11)

Until this point of reasoning, one could doubt whether by e Maxwell simply
means the density of the fictitious electrical distribution equivalent to the dielectric
polarization, or if it includes some real electrification communicated in the medium;
a phrase resolves the issue. He said16:

e = 0 when there are no electromotive forces. (4.1)

It is therefore clear that e has the same meaning as in the memoir: A Dynamical
Theory of the Electromagnetic Field. In addition, from Eqs. (4.11) and (4.11), it is
permissible to derive the equations

∂

∂x

P

4π E2 + ∂

∂y

Q

4π E2 + ∂

∂z

R

4π E2 + e = 0, (4.12)

1

4π E2

(
∂ P

∂x
+ ∂ Q

∂y
+ ∂ R

∂z

)
+ e = 0, (4.13a)

nearly identical in notation to Eqs. (4.8) and (4.9).
We indicate in passing that instead of writing Eq. (4.13a), Maxwell, as a result of

the sign error that affects equalities (4.2b), wrote17

1

4π E2

(
∂ P

∂x
+ ∂ Q

∂y

∂ R

∂z

)
= e. (4.13b)

[69]

4.4 The Second Electrostatics of Maxwell is Illusory

The various equalities that we just wrote are general; in the case where equilibrium
is established for the system, P , Q, R are related to the function Ψ by equalities
(4.3), which give

16J. Clerk Maxwell, Scientific Papers, vol. I, p. 497.
17Ibid., vol. I, p. 497, equality (115).
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⎧⎪⎨
⎪⎩

f = − 1
4π E2

∂Ψ
∂x , g = − 1

4π E2
∂Ψ
∂y , h = − 1

4π E2
∂Ψ
∂z ,

or
f = − 1

K
∂Ψ
∂x , g = − 1

K
∂Ψ
∂y , h = − 1

K
∂Ψ
∂z .

(4.14)

For equalities (4.3), equalities (4.12) and (4.8) become

⎧⎪⎪⎨
⎪⎪⎩

∂

∂x

(
1

4π E2

∂Ψ

∂x

)
+ ∂

∂y

(
1

4π E2

∂Ψ

∂y

)
+ ∂

∂z

(
1

4π E2

∂Ψ

∂z

)
− e = 0

∂

∂x

(
1

K

∂Ψ

∂x

)
+ ∂

∂y

(
1

K

∂Ψ

∂y

)
+ ∂

∂z

(
1

K

∂Ψ

∂z

)
− e = 0.

(4.15)

Equalities (4.13a) and (4.9) become

1

4π E2ΔΨ − e = 0,
1

K
ΔΨ − e = 0. (4.16a)

Finally, equality (4.7) becomes the second of the equalities

⎧⎪⎪⎨
⎪⎪⎩

1

4π E2
1

∂Ψ

∂ N1
+ 1

4π E2
2

∂Ψ

∂ N2
− E = 0,

1

K1

∂Ψ

∂ N1
+ 1

K2

∂Ψ

∂ N2
− E = 0.

(4.17)

If the function Ψ were known, relations (4.14) would determine the components
of displacement at each point of the dielectric medium. But how will the function
Ψ be determined? By themselves, equalities (4.15), (4.16a) and (4.17) teach us
nothing more about this function than equalities (4.14), from which they [70] result.
It would be otherwise if some theory, independent from that which provides us Eqs.
(4.14), allowed us to express e, E using partial differentials of Ψ , by the relations
irreducible to relations (4.15), (4.16a), and (4.17); then, by eliminating e, E among
relations (4.15), (4.16a), and (4.17) and these new relations, one would obtain the
conditions under which the partial derivatives of the function Ψ would be subject,
either at any point of the dielectric medium, or on the surface of separation of the
two different dielectrics.

It is by this method that the theory of magnetic induction given by Poisson is
developed, the theory of the dielectric polarization conceived in imitation of the
previous one by Mossotti.

When in this last theory, we posed the equations of polarization in the form
[Chap.2, equalities (2.19)]

A = −εF
∂

∂x
(V + V ),

http://dx.doi.org/10.1007/978-3-319-18515-6_2
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B = −εF
∂

∂y
(V + V ),

C = −εF
∂

∂z
(V + V ),

when we derived, for any point of a continuous medium, the relationship [Chap.2,
equality (2.20)]

ε
∂

∂x

[
F

∂(V + V )

∂x

]
+ ε

∂

∂y

[
F

∂(V + V )

∂y

]
+ ε

∂

∂z

[
F

∂(V + V )

∂z

]
− e = 0,

(4.18)

analogous to our equalities (4.15), and, on the surface of separation of two dielectric
media, the relation [Chap.2, equality (2.21)]

εF1
∂(V + V )

∂ N1
+ εF2

∂(V + V )

∂ N2
− E = 0, (4.19)

analogous to our relations (4.17). But this does not end the solution. The function
(V + V ) contained in these formulas is not simply [71] a uniform and continuous
function of x , y, z; it is a function whose analytical expression is given in a very
precise manner when the electric distribution is given, real or fictitious; and from this
analytical expression, in virtue of the theorems of Poisson, two previous independent
relationships result. The one [Chap.2, equality (2.15)], satisfied at any point of a
polarized but not electrified continuous dielectric,

Δ(V + V ) = −4πe; (4.20)

the other [Chap.2, equality (2.16)], satisfied on the surface of separation of two such
dielectrics,

∂(V + V )

∂ N1
+ ∂(V + V )

∂ N2
= −4π E . (4.21)

If then we compare, on the one hand, equalities (4.18) and (4.20), and, on the other
hand, equalities (4.19) and (4.21), we find that the partial derivatives of the function
(V + V ) must satisfy, at any point of a continuous dielectric, the relation

∂

∂x

[
(1+ 4πeF)

∂(V + V )

∂x

]
+ ∂

∂y

[
(1+ 4πeF)

∂(V + V )

∂y

]

+ ∂

∂z

[
(1+ 4πeF)

∂(V + V )

∂z

]
= 0

http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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and, at the surface of separation of the two dielectric media, the relation

(1+ 4πεF1)
∂(V + V )

∂ N1
+ (1+ 4πεF2)

∂(V + V )

∂ N2
= 0.

It is precisely these partial differential equations which will be used to determine
the function (V + V ) and, as a result, the state of polarization of dielectrics.

The same circumstances occur in all analogous problems that mathematical
physics provides. Take, for example, the problem of the conductivity of the [72]
heat in an isotropic medium. Arising from the hypotheses of Fourier, by designat-
ing the solid or surface intensity of the sources of heat by j , J , equation [Chap.3,
Eq. (3.2)]

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ j = 0,

satisfied at any point of a continuous medium, and the equation [Chap.3, Eq. (3.3)]

k1
∂T

∂ N1
+ k2

∂T

∂ N2
+ J = 0,

satisfied on the surface of separation of two media, results.
The problem of determining the distribution of heat on the system is not put

into equations as long as new hypotheses have not connected the intensities j , J
at temperature T . Further, we must assume, for example, that the medium does not
contain other sources of heat or cold than its own heat capacity, which will in turn
be written

j = −ργ
∂T

∂t
, J = 0,

ρ being the density of the body and γ its specific heat. The previous equations
become, then, for the function T , the partial differential equations

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ j = 0,

k1
∂T

∂ N1
+ k2

∂T

∂ N2
= 0,

which will be used to determine the distribution of temperature on the system.
There is nothing analogous in the electrostatics of Maxwell. Of the function Ψ

appearing in Eqs. (4.15), (4.16a) and (4.17), he knows nothing [73] apart from these
equations, if it is not uniform and continuous. He does not have the right to write,
regarding this function, any equality that is not a consequence of those which are
already given, and, indeed, hewrites onlywhat he claims to derive from those. He has
therefore no way to eliminate e, E and get an equation that can be used to determine
the function Ψ .

http://dx.doi.org/10.1007/978-3-319-18515-6_3
http://dx.doi.org/10.1007/978-3-319-18515-6_3
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It must therefore be recognized that the second electrostatics of Maxwell does not
even put into equations the problem of the polarization of a given dielectric medium.

4.5 Determination of the Electrostatic Energy

Nevertheless, Maxwell strives to draw a few conclusions from this incompletely
posed problem; that is, it must be admitted, in this essay on the constitution of a
capacitor, that his imagination, logically carefree, is given the freest career.

The first problem he treats is the formation of electrostatic energy or potential
actions that are produced in a polarized dielectric.

In his memoir: On Physical Lines of Force, Maxwell admits purely and simply18

that this energy has a value

U = 1

2

∫
(P f + Qg + Rh)dω. (4.22)

Then, invoking the formulas (4.2b) and (4.3), he finds that U may put in the form

U = 1

2

∫
1

4π E2

[(
∂Ψ

∂x

)2

+
(

∂Ψ

∂y

)2

+
(

∂Ψ

∂z

)2
]

dω. (4.23a)

Formulas (4.2b) are affected by a sign error; if we use the correct formulas (4.2a),
we would find

U = −1

2

∫
1

4π E2

[(
∂Ψ

∂x

)2

+
(

∂Ψ

∂y

)2

+
(

∂Ψ

∂z

)2
]

dω. (4.23b)

[74] The formula (4.23a) can be transformed using integration by parts; since
Maxwell denies the existence of surfaces of discontinuity,19 it can be put in the form

U = 1

2

∫
Ψ

[
∂

∂x

(
1

4π E2

∂Ψ

∂x

)
+ ∂

∂y

(
1

4π E2

∂Ψ

∂y

)

+ ∂

∂z

(
1

4π E2

∂Ψ

∂z

)]
dω. (4.24)

18J. Clerk Maxwell, Scientific Papers, vol. I, p. 497.
19In this passage, Maxwell reasons always as if E2 had the same value throughout all of space; but
one can easily free his reasonings from this hypothesis.
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Thence, by equalities (4.3) and equality (4.13b), Maxwell, affected by a sign error
similar to that which affects Eqs. (4.2b), derives the equality

U = 1

2

∫
Ψ e dω. (4.25)

This would be achieved if, for the correct equality (4.23b), one applied the correct
relation (4.12).

Maxwell also arrives at an expression of the electrostatic energy similar in form
to the expression (3.7) that he admitted in his first theory. But, along the way, he
met with equality (4.23a), which, once corrected of the sign error that affects the
equations of the memoir: On Physical Lines of Force, takes the form (4.23b).

However, equality (4.23b) leads to a disturbing result.
The electrostatic energy of the system, zero in a depolarized system, would be

negative in a polarized system; it would decrease because of the polarization. A set
of dielectrics in the neutral state would be in an unstable state; once this state is
disturbed, it would be polarized with ever-increasing intensity.

When Maxwell composed his memoir: A Dynamical Theory of the Electromag-
netic Field, he resumed the equations given in the previous memoir, only after having
cleared them of the sign errors that altered them. Therefore, the result that we just
mentioned could appear. Is this the reason [75] why he, in this new work, changed
the expression of the electrostatic energy? Still, instead of keeping, for the definition
of this quantity, equality (4.22), he now defines this quantity by the equality20

U = 1

2

∫
(P f + Qg + Rh)dω. (4.26)

In truth, this equality is not given here as a definition or a postulate, but arises
from reasoning that we will reproduce:

Energymay be stored up in the field in a different way, namely, by the action of electromotive
force in producing electric displacement. The work done by a variable electromotive force,
P , in producing a variable displacement, f , is got by integrating

∫
P d f

from
P = 0

up to the given value of P .

Since P = Kf, …, this quantity becomes
∫

K f d f = 1

2
K f 2 = 1

2
P f.

20J. Clerk Maxwell, Scientific Papers, vol. I, p. 563.

http://dx.doi.org/10.1007/978-3-319-18515-6_3
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Hence the intrinsic energy of any part of the field, as existing in the form of electric dis-
placement, is

1

2

∫
(P f + Qg + Rh)dω.

It seems to us that this reasoning should rather justify the opposite conclusion
and force Maxwell to retain the expression [76] of electric energy given by equality
(4.22), which he adopted at the outset.

It seems quite clear that, in the reasoning above, P , Q, R must be regarded
as components of an electromotive force internal to the system, and not as the
components of an exterior electromotive force generated in the system by bodies
that are foreign to it.

Indeed, we can notice, first, that Maxwell never decomposes the ensemble of
bodies he studies into two groups, of which one is viewed as arbitrarily given, while
the other, subject to the action of the first, experiences changes which the physicist
analyzes. It seems rather that his calculations are applicable to the entire universe,
likened to an isolated system, such that all the actions that he considers are internal
actions.

Secondly, if, in the above reasoning, P , Q, R were the components of an exter-
nal electromotive force, Maxwell should have added the components of the inner
electromotive force arising from the very fact of the polarization of the dielectric
medium; the omission of this last force would make his calculation incorrect.

We must therefore think that work evaluated by Maxwell is for him an internal
work; but then this work is equivalent to a decrease and not to an increase in the
internal energy, such that the conclusion of Maxwell should be reversed.

Maxwell, however, retains it and, in a field where the equilibrium is established,
where there is, therefore,

P = −∂Ψ

∂x
, Q = −∂Ψ

∂y
, R = −∂Ψ

∂z
, (4.3)

he writes21 Eq. (4.26) in the form

U = −1

2

∫ (
∂Ψ

∂x
f + ∂Ψ

∂y
g + ∂Ψ

∂z
h

)
dω

[77] which an integration by parts transforms into

U = 1

2

∫
Ψ

(
∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z

)
dω

or, in virtue of equality (4.5),

U = −1

2

∫
Ψ e dω. (4.27)

21J. Clerk Maxwell, Scientific Papers, vol. I, p. 568.
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4.6 On the Forces Exerted Between Two Small
Charged Bodies

From the expression of the electrostatic energy, Maxwell will seek to deduce the
laws of ponderomotive forces exerted on a charged system.

We first study this solution in the memoir: On Physical Lines of Force.22

The starting point is the expression of the electrostatic energy given by the for-
mula (4.25).

Maxwell, who in the memoir in question will never consider surfaces of dis-
continuity, includes there no surface electrification; nevertheless, to avoid certain
objections that may be made to the following considerations, it will be good to take
account of such electrification and put the electrostatic energy in the form

U = 1

2

∫
Ψ e dω + 1

2

∫
Ψ E d S, (4.28)

the second integral extending over the charged surfaces.
We imagine that all of space is filled with a homogeneous dielectric; E2 will be

in all respects the same value.23 [78]
The solid electric density will be given by the equality

1

4π E2ΔΨ − e = 0, (4.16a)

which Maxwell should write, due to the sign error that affects equalities (4.2b),

1

4π E2ΔΨ + e = 0. (4.16b)

On the other hand, on a point of a surface of discontinuity where the normal has
two directions Ni , Ne, the surface density will be, according to the first equality
(4.17), the value given by the equality

1

4π E2

(
∂Ψ

∂ N1
+ ∂Ψ

∂ Ne

)
− E = 0, (4.29a)

which Maxwell should write

1

4π E2

(
∂Ψ

∂ N1
+ ∂Ψ

∂ Ne

)
+ E = 0. (4.29b)

A surface of discontinuity S1 is supposed to separate the dielectric medium across
a portion 1 that we regard as likely to bemoved in this medium, like a solid in a liquid.

22J. Clerk Maxwell, Scientific Papers, vol. I, p. 497, 498.
23The reader will easily avoid any confusion between the coefficient E2 and the surface density E .
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The function Ψ , which we will designate by Ψ1, will be supposed to be harmonic
throughout space, except in region 1; in this region there will be a solid density
e1. The surface S1 may carry, in addition, the surface density E1. The electrostatic
energy of the system will be

U1 = 1

2

∫
Ψ1e1 dω1 + 1

2

∫
Ψ1E1 d S1.

If body 1 is moved by causing its polarization, U1 will remain invariable.
By a surface S2, we likewise isolate another part 2 of the dielectric. Let Ψ2 be

a harmonic function outside of region 2; it corresponds to a solid density e2 at any
point of the [79] region 2 and to a solid density E2 at all points of the surface S2. If
this electrification existed only in the medium, the electrostatic energy would be

U2 = 1

2

∫
Ψ2e2 dω2 + 1

2

∫
Ψ2E2 d S2.

Imagine now that these two charged bodies exist simultaneously in the dielectric
medium and that the function Ψ has the value (Ψ1+Ψ2). The electrification of each
of the two bodies will be the same as if there were only one. As to the electrostatic
energy of the system, it will obviously be according to equality (4.28):

U = 1

2

∫
(Ψ1 + Ψ2)e1 dω1 + 1

2

∫
(Ψ1 + Ψ2)E1 d S1

+ 1

2

∫
(Ψ1 + Ψ2)e2 dω2 + 1

2

∫
(Ψ1 + Ψ2)E2 d S2

or

U = U1 + U2 + 1

2

∫
Ψ2e1 dω1 + 1

2

∫
Ψ2e1 d S1

+ 1

2

∫
Ψ1e2 dω2 + 1

2

∫
Ψ1e2 d S2. (4.30)

But Green’s theorem easily gives the equality

∫
Ψ1ΔΨ2 dω2 +

∫
Ψ1

(
∂Ψ2

∂ N2i
+ ∂Ψ2

∂ N2e

)
d S2

=
∫

Ψ2ΔΨ1 dω1 +
∫

Ψ2

(
∂Ψ1

∂ N1i
+ ∂Ψ1

∂ N1e

)
d S2.

Whether we make use of Eqs. (4.16a) and (4.29a) or we make use of Eqs. (4.16b)
and (4.29b), this equality can be written

∫
Ψ1e2 dω2 +

∫
Ψ1E2 d S2 =

∫
Ψ2e1 dω1 +

∫
Ψ2E1 d S1
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[80] and transforms equality (4.30) into

U = U1 + U2 +
∫

Ψ2e1 dω1 +
∫

Ψ2E1 d S1. (4.31)

Leaving body 2 stationary, move body 1. U1, U2 remain invariable and U expe-
riences an increase

∂U = ∂

∫
Ψ2e1 dω1 + ∂

∫
Ψ2E1 d S1. (4.32)

Maxwell notes that ∂U represents the work that should be carried out to move
body 1 or, in other words, the resistant work generated by the actions of body 2 on
body 1. The work carried out by these actions is therefore

−∂U = −∂

∫
Ψ2e1 dω1 − ∂

∫
Ψ2E1 d S1.

Suppose that body 1 is a very small body and that ∂x1, ∂y1, ∂z1 are the components
of the displacement of this body. Let

q1 =
∫

e1 dω1 +
∫

E1 d S1 (4.33)

be its total electric charge. We will have

−∂U = −q1

(
∂Ψ2

∂x1
∂x1 + ∂Ψ2

∂y1
∂y1 + ∂Ψ2

∂z1
∂z1

)
.

Body 2 therefore exerts on the small body 1 a force whose components are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X21 = −q1
∂Ψ2

∂x1
= q1P2,

Y21 = −q1
∂Ψ2

∂y1
= q1Q2,

Z21 = −q1
∂Ψ2

∂z1
= q1R2.

(4.34)

[81] In virtue of the equalities (4.16b) and (4.29b), we can write

Ψ2 =
∫

E2e2
r

dω2 +
∫

E2E2

r
d S2

= E2
∫

e2
r

dω2 + E2
∫

E2

r
d S2.
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If body 2 is very small, and referred to as

q2 =
∫

e2 dω2 +
∫

E2 d S2, (4.33b)

we will have its total electric charge at the point (x1, y1, z1),

Ψ2 = E2 q2
r

. (4.35)

Equalities (4.34) will then become

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X21 = E2 q1q2
r2

∂r

∂x1
,

Y21 = E2 q1q2
r2

∂r

∂y1
,

Z21 = E2 q1q2
r2

∂r

∂z1
.

(4.36)

They teach us that body 2 exerts on body 1 a repulsive force

F = E2 q1q2
r2

. (4.37)

But this result is obtained by equalities (4.16b) and (4.29b), which are affected
by a sign error.24 If we make use of [82] equalities (4.16a) and (4.29a), where this
sign error is corrected, we would find that equality (4.35) should be replaced by the
equality

Ψ2 = −E2 q2
r

, (4.35b)

and body 2 would exert on body 1 an attractive force

A = E2 q1q2
r2

. (4.37b)

This consequence, that would have certainly surprisedMaxwell, will not be found
in the memoir: A Dynamical Theory of the Electromagnetic Field, due to the change
of sign suffered by the expression of the electrostatic energy.

In this memoir,25 Maxwell deals very briefly with the mutual actions of charged
bodies causes in directing the reader wishing to follow the details of the reasoning,
to the theory of the magnetic forces that he had given.

24In fact, Maxwell did not write Eq. (4.16b), but Eq. (4.16a) [op. cit., equality (123)]; but then he
admits the expression (4.35) of Ψ2 as if he had written Eq. (4.16b).
25J. Clerk Maxwell, Scientific Papers, vol. I, pp. 566 à 568.
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This reasoning is, moreover, led exactly according to the approach we have just
described; only, instead of taking expression (66) of the electrostatic energy as a
point of departure, he takes as a point of departure expression (4.27) of this energy
or, better, expression

U = −1

2

∫
Ψ e dω − 1

2

∫
Ψ E d S. (4.38)

From this change of sign of the electrostatic energy, the replacement of equalities
(4.34) by equalities ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X21 = q1
∂Ψ2

∂x1
= −q1P2,

Y21 = q1
∂Ψ2

∂y1
= −q1Q2,

Z21 = q1
∂Ψ2

∂z1
= −q1R2.

(4.39)

results. [83]
According to these equations, the ponderomotive field created by body 2 at the

point (x, y, z)wouldhave components−P2,−Q2,−R2,while the electromotive field
created by the same body, at the same point, would have the components P2, Q2,
R2; these two fields would therefore be equal, but of contrary sense. Maxwell, who
wrote26 equalities (4.39), does not stop at this paradoxical conclusion. Replacing27

Ψ2 by the expression

Ψ2 = − K

4π

q2
r

, (4.40)

analogous to equality (4.35), he finds the equalities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X21 = K

4π

q1q2
r2

∂r

∂x1
,

Y21 = K

4π

q1q2
r2

∂r

∂y1
,

Z21 = K

4π

q1q2
r2

∂r

∂z1
,

(4.41)

F = K

4π

q1q2
r2

, (4.42)

analogous to equalities (4.36) and (4.37).

26Loc. cit., p. 568, equalities (D).
27In reality, Maxwell wrote

Ψ2 = K

4π

q2
r

,

[loc. cit., equality (43)]; but this sign error is offset by a sign error in equality (44).
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Maxwell thus achieves a law analogous to Coulomb’s law, but on the condition
of making the rather strange and singularly peculiar hypothesis that charged bodies
have the same dielectric power as the medium between them.

Moreover, this conclusion is obtained, in the memoir: On Physical Lines of Force,
only by means of a clerical sign error and, in the memoir: A Dynamical Theory of the
Electromagnetic Field, it is deduced from an expression of the electrostatic energy
whose sign is obviously wrong. [84]

4.7 On the Capacitance of a Capacitor

Another problem of electrostatics concerned Maxwell in the two memoirs that we
analyzed in this chapter: it is the calculation of the capacitance of a capacitor.

We follow, first of all, the solution of this particular problem28 in the memoir: On
Physical Lines of Force.

Imagine a flat dielectric plate of thickness θ placed between two conductive plates
1 and 2. Maxwell admits that the function Ψ takes inside the conductive plate 1 the
constant value, Ψ1 and inside conductive plate 2 the invariable value Ψ2; he implies
that in the dielectric Ψ is a linear function of the distance to one of the armatures.

To calculate the electrical distribution on such a system, Maxwell made use, both
for conductors and dielectrics, of Eq. (4.13b); he needs to join to it, to make his
reasoning rigorous, the analogous equation for the surface charge of surfaces of
discontinuity. He deduced that the charge is localized to the surfaces of separation
of the armatures and the dielectric. For the surface of separation of armature 1 and
the dielectric, the surface density will be

E = − 1

4π E2

∂Ψ

∂ Ni
, (4.43)

Ni being the normal towards the interior of the dielectric.
Besides,

∂Ψ

∂ Ni
= Ψ2 − Ψ1

θ
.

So if S is the surface area of each frame in contact with the dielectric, armature 1
will carry a charge

Q = ES = S

4π E2

Ψ1 − Ψ2

θ
. (4.44)

[85] Armature 2 will carry a charge equal and opposite in sign.

28J. Clerk Maxwell, Scientific Papers, vol. I, p. 500.
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Maxwell defines the capacitance of the capacitor by the formula

C = Q

Ψ1 − Ψ2
. (4.45)

Equality (4.44) will then give

C = 1

4π E2

S

θ
, (4.46)

which allows us to consider 1
4π E2 as the specific inductive capacity of the dielectric.

But this result was obtained by use of equality (4.43), tainted by the same sign
error of equality (4.13b). If we were to make use of the correct equality

E = 1

4π E2

∂Ψ

∂ Ni
, (4.43b)

to which the first equality (4.7) would lead us, we would find for the capacitance of
the capacitor the negative value

C = − 1

4π E2

S

θ
. (4.46b)

The sign error that affects equalities (4.2b) and, hence, so many equalities in the
memoir: On Physical Lines of Force, disappeared in the memoir: A Dynamical The-
ory of the Electromagnetic Field. Does the theory of the capacitor that this memoir29

contains therefore lead to the paradoxical result that a capacitor has a negative capac-
ity? Rather than allowing himself to be dead-ended, Maxwell commits here a new
sign error, [86] even in the memoir: On Physical Lines of Force, and he wrote30

∂Ψ

∂x
= K f,

while a few pages before, it was written31

P = K f

and also32

P = −∂Ψ

∂x
.

[87]

29J. Clerk Maxwell, Scientific Papers, vol. I, p. 572.
30Loc. cit., p. 572, equality (48).
31Loc. cit., p. 560, equalities (E).
32Loc. cit., p. 568.



Chapter 5
The Third Electrostatics of Maxwell

5.1 Essential Difference Between the Second and the Third
Electrostatics of Maxwell

The sign errors that we just pointed out can only hide the inevitable contradiction
which the theory of a given capacitor faces in the second electrostatics of Maxwell.

In this electrostatics, the electric density e is taken into account. This density arises
because the electrification of some polarized corpuscle, of whichMaxwell admits the
existence, like Faraday and Mossotti, is not exactly neutralized by the electrification
of the neighboring corpuscles; this density is the analogue of the fictional density
that Poisson taught us to substitute for the magnetization of a piece of iron. In any
case, there is no question of an electric density other than that one. Maxwell takes
into account an electrification that is not reducible to the polarization of dielectrics,
of an electrification proper to conductive bodies. What is clearer, for example, than
the following passage1 that we read in the memoir: A Dynamical Theory of the
Electromagnetic Field?

Electric Quantity

Let e represent the quantity of free positive electricity contained in unit of volume at any
part of the field, then, since this arises from the electrification of the different parts of the
field not neutralizing [88] each other, we may write the equation of free electricity:

e + ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
= 0.

Admitting this fundamental principle of the theories of Maxwell, we resume the
study of a flat capacitor made of two conductive sheets 1 and 2 that a dielectric
separates.

1J. Clerk Maxwell, Scientific Papers, vol. I, p. 561.
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66 5 The Third Electrostatics of Maxwell

Suppose that the inner side of plane 1 is positively charged and the inner side of
plane 2 is negatively charged; within the dielectric plane, the electromotive field is
directed from plane 1 to plane 2.

If, according to the sign error committed by Maxwell in his memoir: On Physical
Lines of Force and contained in the part of the memoir: A Dynamical Theory of the
Electromagnetic Field where he considers the theory of the capacitor, we suspected
the displacement headed in the opposite direction of the electromotive field, the
displacement would be within the dielectric plane, directed from conductor 2 toward
conductor 1.

But, except where we just pointed out,Maxwell has never reproduced this opinion
in his writings after the memoir: On Physical Lines of Force. Everywhere, he admits
that the displacement, proportional to the electromotive force, is directed parallel
to it.

He wrote in 18682:

If we admit that the energy of the system so electrified resides in the polarized dielectric,
we must also admit that within the dielectric there is a displacement of electricity in the
direction of the electromotive force…

He repeated in his Treatise3:

The displacement is in the same direction as the force, and is numerically equal to the
intensity [89] multiplied by K

4π , where K is the specific inductive capacity of the dielectric.

He said further on4:

In this treatise, static electric induction is measured by what we have called the electric
displacement, a directed quantity or vector which we have denoted byD, and its components
by f , g, h.

In isotropic substances, the displacement is in the same direction as the electromotive
force which produces it, and is proportional to it, at least for small values of this force. This
may be expressed by the equation:

Equation of Electric Displacement, D= K

4π
E,

where K is the dielectric capacity of the substance.

2J. Clerk Maxwell, On a Method of Making a Direct Comparison of Electrostatic with Electro-
magnetic Force: With a Note on the Electromagnetic Theory of Light (Read at the Royal Society
of London on 18 June 1868. Philosophical Transactions, vol. Society of London on 18 June
1868. Philosophical Transactions, vol. CLVIII.—Scientific Papers, vol. II, p. 139).
3J. Clerk Maxwell, A Treatise on Electricity and Magnetism; Oxford, 1873, vol. I, p. 63.—Traité
d’Électricité et de Magnétisme, translated from English in the 2nd edition, by G. Seligmann-Lui;
Paris, 1885–1887; Volume I, p. 73 [65].—We will cite the Treatise of Maxwell according to the
French translation whenever no changes have been made to the 1st English edition.
4Treatise. . ., vol. II, p. 287 [232].
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If we designate, with Maxwell, by P , Q, R the components of the electromotive
force E, the preceding symbolic equality will be equal to the three equalities5

f = K

4π
P, g = K

4π
Q, h = K

4π
R. (5.1)

Finally, in the book which Maxwell was preparing the publication shortly before his
death, in one of the chapters that are entirely of his hand, we read6:

According to the theory adopted in this book, when an electromotive force acts on a dielectric
it causes the electricity to be displaced within it in the direction of the electromotive force,
the amount of the displacement being proportional to the electromotive force, but depending
also on the nature of the dielectric…

Therefore, if a dielectric plate is between the two [90] armatures of a condenser
of which one is electrified positively and one negatively, the displacement will be,
at each point, directed from the positive armature to the negative armature. Maxwell
admits this law without hesitation; he writes in his Note on the Electromagnetic
Theory of Light7:

When a dielectric is acted on by electromotive force it experiences what we may call electric
polarization. If the direction of the electromotive force is called positive, and if we suppose
the dielectric bounded by two conductors, A on the negative, and B on the positive side, then
the surface of the conductor A is positively electrified, and that of B negatively.

If we admit that the energy of the system so electrified resides in the polarized dielectric,
we must also admit that within the dielectric there is a displacement of electricity in the
direction of the electromotive force…

He repeats in his great Treatise:

8The positive electrification of A and the negative electrification of B will produce a certain
electromotive force acting from A towards B in the dielectric stratum, and this will produce
an electric displacement from A towards B within the dielectric.

He later wrote9:

The displacements across any two sections of the same tube of displacement are equal. At
the beginning of each unit tube of displacement there is a unit of positive electricity, and at
the end of the tube there is a unit of negative electricity.

5The comparison of the equalities (5.1) with equalities (4.4) shows that the quantity K
4π introduced

here by Maxwell is what is designated by 1
K in his memoir A Dynamical Theory of the

Electromagnetic Field.
6J. ClerkMaxwell,An Elementary Treatise on Electricity, edited byW.Garnett.—Traité élémentaire
d’Électricité, translated from English by Gustave Richard. Paris 1884, p. 141 [108].
7J. Clerk Maxwell, Scientific Papers, vol. II, p. 339.
8J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 71 [63].
9J. Clerk Maxwell, An Elementary Treatise on Electricity, p. 71 [53].
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What exact meaning does Maxwell attribute, in his final works, to the words
electric displacement?

In the memoir A Dynamical Theory of the Electromagnetic Field, where he intro-
duced this term for the first time, Maxwell, we saw, was inspired by Mossotti. For
Mossotti, the electromotive force, meeting one of the corpuscles of which the dielec-
tric body is comprised, drives out the ethereal fluid from the parts of the surface
where it enters the corpuscle, to accumulate on the regions where it was released.
The thought of Maxwell, in the two memoirs we analyzed in the previous chapter, is
fully consistent with that of Mossotti. Is it the same in his most recent writings? [91]

We cannot doubt; the displacement remains, forMaxwell, a driving of the positive
electricity that the electromotive force produced in its own direction, a driving that
is limited to each small portion of the dielectric:

The electric polarization of an elementary portion of a dielectric10 is a forced state into
which the medium is thrown by the action of electromotive force, and which disappears
when that force is removed. We may conceive it to consist in what we may call an electrical
displacement, produced by the electromotive intensity.When the electromotive force acts on
a conductingmedium it produces a current through it, but if themedium is a non-conductor or
dielectric, the current cannot flow through the medium, but the electricity is displaced within
the medium in the direction of the electromotive intensity, the extent of this displacement
depending on the magnitude of the electromotive intensity, so that if the electromotive
intensity increases or diminishes, the electric displacement increases and diminishes in the
same ratio.

The amount of the displacement is measured by the quantity of electricity which crosses
unit of area, while the displacement increases from zero to its actual amount. This, therefore,
is the measure of the electric polarization.

The following passage is, if possible, even more formal11:

To make our conception of what takes place more precise, let us consider a single cell
belonging to a tube of induction proceeding from a positively electrified body, the cell being
bounded by two consecutive equipotential surfaces surrounding the body.

We know that there is an electromotive force acting outwards from the electrified body.
This force, if it acted on a conducting medium, would produce a current of electricity
which [92] would last as long as the force continued to act. The medium however is a
non-conducting or dielectric medium, and the effect of the electromotive force is to produce
what wemay call electric displacement, i.e., the electricity is forced outwards in the direction
of the electromotive force, but its condition when so displaced is such that, as soon as the
electromotive force is removed, the electricity resumes the position which it had before
displacement.

The idea that Maxwell indicates, in his final works, by these words: electric
displacement, is therefore consistent with what he means when speaking about the
same words in his first memoirs, starting with the conception of Mossotti, with the

10J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 69 [61–62].
11J. Clerk Maxwell, An Elementary Treatise on Electricity, p. 61 [48–49].
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theory of magnetic induction that the genius of Poisson created. Moreover, Maxwell
carefully noted this agreement12:

Since, as we have seen, the theory of direct action at a distance is mathematically identical
with that of action by means of a medium, the actual phenomena may be explained by the
one theory as well as by the other…13 Thus, Mossotti has deduced the mathematical theory
of dielectrics from the ordinary theory of attraction merely by giving an electric instead of a
magnetic interpretation to the symbols in the investigation by which Poisson has deduced the
theory of magnetic induction from the theory of magnetic fluids. He assumes the existence
within the dielectric of small conducting elements, capable of having their opposite surfaces
oppositely electrified by induction, but not capable of losing or gaining electricity on the
whole, owing to their being insulated from each other by a non-conducting medium. This
theory of dielectrics is consistent with the laws of electricity, and may be actually true. If
it is true, the specific inductive capacity of a dielectric may be greater, but cannot be less,
than that of a vacuum. No instance has yet been found of a dielectric having an inductive
capacity less than that of a vacuum, but if such should be discovered, Mossotti’s physical
theory must be abandoned, although his formulas [93] would all remain exact, and would
only require us to alter the sign of a coefficient.

[In the theory that I propose to develop, the mathematical methods are founded on the
smallest possible number of hypotheses]14; inmanyparts of physical science, equations of the
same form are found applicable to phenomena which are certainly of quite different natures,
as, for instance, electric induction through dielectrics, conduction through conductors, and
magnetic induction. In all these cases the relation between the force and the effect produced
is expressed by a set of equations of the same kind, so that when a problem in one of these
subjects is solved, the problem and its solution may be translated into the language of the
other subjects and the results in their new form will still be true.

From all these citations, a consequence seems to flow logically, between the
components f , g, h of displacement and the solid or surface electrical densities e,
E , we must establish the relations

e + ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
= 0, (4.5)

E + f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z) (4.6)

+ f2 cos (N2, x) + g2 cos (N2, y) + h2 cos (N2, z) = 0.

These equations, indeed, agree with what Maxwell said on electric displacement;
they are among the essential formulas of Mossotti’s theory, which Maxwell declared
mathematically identical to his own. They are, moreover, in this theory, the trans-
position of equations that Poisson introduced into the theory of magnetic induction
and which Maxwell15 keeps in his exposition of this latter theory; finally, Maxwell
adopted them in his early writings.

12J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. 1, p. 74 [66–67].
13[Duhem omits the rest of the sentence: “provided suitable hypotheses be introduced when any
difficulty occurs”].
14[The French translation adds this, which is not found here in the original English.].
15J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. II, p. 11 [10].
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We are again led to recognize that the ideas of Maxwell lead logically to
equalities (4.5) and (4.6) by analysing what he says about displacement currents.
[94]

The variations of electric displacement evidently constitute electric currents.16 These cur-
rents, however, can only exist during the variation of the displacement…

One of the chief peculiarities of this treatise17 is the doctrine which it asserts, that the
true electric current C(u, v, w) that on which the electromagnetic phenomena depend, is not
the same thing as K(p, q, r), the current of conduction, but that the time-variation of D,
the electric displacement, must be taken into account in estimating the total movement of
electricity, so that we must write,

Equation of true currents, C= K+ ∂D

∂t

or, in terms of the components,

u = p + ∂ f

∂t
,

v = q + ∂g

∂t
,

w = r + ∂h

∂t
.

Thus, at any point of a non-conducting dielectric whose polarization varies, a
displacement current varies, whose components are

p′ = ∂ f

∂t
, q ′ = ∂g

∂t
, r ′ = ∂h

∂t
. (5.2)

Yet,

whatever electricitymay be,18 andwhateverwemay understand by themovement of electric-
ity, the phenomenon which we have called electric displacement is a movement of electricity
in the same sense as the transference of a definite quantity of electricity…

Either the sentence does not mean anything, or it requires that the components
[95] p′, q ′, r ′ of the displacement current are linked to electric densities e, E by the
equations of continuity

∂p′

∂x
+ ∂q ′

∂y
+ ∂r ′

∂z
+ ∂e

∂t
= 0,

∂ E

∂t
+ p′

1 cos (N1, x) + q ′
1 cos (N1, y) + r ′

1 cos (N1, z)

+ p′
2 cos (N2, x) + q ′

2 cos (N2, y) + r ′
2 cos (N2, z) = 0,

16J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 69 [62].
17Ibid., t. II, p. 288 [232–233].
18Ibid., t. I, p. 73 [66].
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which can be written, in virtue of equalities (5.2),

∂

∂t

(
∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
+ e

)
= 0,

∂

∂t
[E + f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z)

+ f2 cos (N2, x) + g2 cos (N2, y) + h2 cos (N2, z)] = 0.

Integrated between the times when the system was in the neutral state and the
current state, these equations give Eqs. (4.5) and (4.6); this reasoning is, moreover,
given by Maxwell in his memoir: On Physical Lines of Force.

Examine the consequences of these equations and, in particular, Eq. (4.6); apply
it to the surface of separation of a dielectric 1 and a non-polarizable conductor 2.
Letting the displacement ( f2, g2, h2) be zero in this latter medium, Eq. (4.6) reduces
to

E + f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z) = 0. (5.3)

The terminal surface of the dielectric is electrified negatively at the points where
the direction of displacement or, what amounts to the same, the direction of the
electromotive force, enters the dielectric; it is positively electrified at the points
where this same direction exits the dielectric.

Applying this proposition, which naturally follows from the [96] principles laid
down by Maxwell, to our dielectric plate between two charged conductors, the one
of positive electricity, the other of negative electricity, we obtain the following con-
clusion:

The side of the dielectric which is in contact with the positively electrified con-
ductor carries negative electricity; the side that is in contact with the negatively
electrified conductor carries positive electricity. It is therefore impossible to identify
the electrical charge that a conductor carries with the charge taken by the adjacent
dielectric.

Will Maxwell therefore abandon the hypothesis, implied in his early writings,
that there is no such thing as the proper electrification of the conductive bodies; that,
alone, the polarization of the dielectric media is a real phenomenon, producing, by
the apparent electrification to which it is equivalent, the effects that the old theories
attribute to electrical charges spread over conductive bodies? Quite to the contrary;
he outlines more clearly this hypothesis and affirms its legitimacy:

He said19:

We may conceive the physical relation between the electrified bodies, either as the result of
the state of the intervening medium, or as the result of a direct action between the electrified
bodies at a distance.

19J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 67 [59–60].
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…If we calculate on this hypothesis the total energy residing in the medium, we shall
find it equal to the energy due to the electrification of the conductors on the hypothesis of
direct action at a distance. Hence the two hypotheses are mathematically equivalent.

In the interior of the medium20 where the positive end of one cell is in contact with the
negative end of the next, these two electrifications exactly neutralise each other, but where
the dielectric medium is bounded by a conductor, the electrification is no longer neutralised,
but constitutes the observed electrification at the surface of the conductor.

According to this view of electrification, we must regard electrification as a property of
the dielectric medium rather than of the conductor which is bounded by it. [97]

In the case of the Leyden jar21 of which the inner coating is charged positively, any portion
of the glass will have its inner side charged positively and its outer side negatively. If this
portion be entirely in the interior of the glass, its surface charge will be neutralized by the
opposite charge of the parts in contact with it, but if it be in contact with a conducting body,
which is incapable of maintaining in itself the inductive state, the surface charge will not be
neutralized, but will constitute that apparent charge which is commonly called the Charge
of the Conductor.

The charge therefore at the bounding surface of a conductor and the surrounding dielec-
tric, which on the old theory was called the charge of the conductor, must be called in the
theory of induction the surface charge of the surrounding dielectric.

According to this theory, all charge is the residual effect of the polarization of the dielec-
tric.

Since Maxwell formally maintains this hypothesis, how will he remove the con-
tradiction that we have reported? The simplest way: in Eqs. (4.5) and (4.6), which
render this contradiction glaring, he will change the sign of e and E and write22

e = ∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z
, (5.4)

E = f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z)

+ f2 cos (N2, x) + g2 cos (N2, y) + h2 cos (N2, z). (5.5)

Equality (5.3), which made known the surface charge of a dielectric in contact
with a conductor—i.e. in the hypothesis of Maxwell, the charge of the the conductor
itself—will be replaced by equality

E = f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z). (5.6)

20J. Clerk Maxwell, An Elementary Treatise on Electricity, p. 63 [49].
21J. Clerk Maxwell, Treatise on Electricity and Magnetism, [t. I,] p. 175 [155].
22Ibid., [t. II,] p. 289 [233].
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[98] The charge will be positive where the direction of displacement or the elec-
tromotive field penetrates inside the dielectric and negative where the direction of
displacement or the electromotive field exits the dielectric.

In the case of the charged conductor23 let us suppose the charge to be positive, then if the
surrounding dielectric extends on all sides beyond the closed surface there will be electric
polarization, accompanied with displacement from within outwards all over the closed sur-
face, and the surface-integral of the displacement taken over the surface will be equal to the
charge on the conductor within.

How should the elementary masses of a dielectric be polarized, if it is desired that
the electrification in opposite sense of their two ends agreeswith equalities (5.4), (5.5)
and (5.6)?

Let us take the example of a planar dielectric plate placed between two conductive
plates. It is assumed that within the plate the electrical charges that are at the two ends
of a molecule are exactly neutralized by the charges of the molecule that precedes it
and by the molecule that follows it. Only the electric charge of the molecules at the
ends produces appreciable effects.

The face of the dielectric through which the electromotive force enters into the
mediummanifests a state of electrification; it is due to the charge that themolecules of
the first layer take in one of their extremities through which the electromotive force
penetrates them. The face of the dielectric through which the electromotive force
exits the medium also manifests a state of electrification. It is caused by the charge
that, in one of their extremities through which the electromotive force leaves, the
molecules of the last layer take. However, according to the propositions thatMaxwell
comes to state, the first electrification is positive, the last negative. Therefore, when
an electromotive force meets a dielectric molecule, it polarizes it; the end of the
molecule through which the electromotive force enters is responsible for positive

electricity; the end of the molecule through which the electromotive force is released
is responsible for negative electricity.

This is the proposition24—contrary towhatCoulombandPoisson admitted in their
study of magnetism, contrary to Faraday and Mossotti in their study of dielectrics,
and contrary to the view he himself professed in his early writings—that Maxwell
formally outlines in his final treaties.

That the surface of any elementary portion into which we may conceive25 the volume of
the dielectric divided must be conceived to be charged so that the surface-density at any
point of the surface is equal in magnitude to the displacement through that point of the
surface reckoned inwards. If the displacement is in the positive direction, the surface of the
element will be charged negatively on the positive side of the element, and positively on the
negative side. These superficial charges will in general destroy one another when consecutive

23J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 72 [64].
24I do not believe that any physicist has paid attention to the paradoxical nature of this proposition of
Maxwell beforeH.Hertz exposed it in a particularly clear and striking form (H.Hertz,Gesammelte
Werke, Bd. II:Untersuchungen über die Aushreitung der elektrischen Kraft: Einleitende Uebersicht
[English translation [99]: Hertz (1893)], p. 27).
25J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 73 [65–66].
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elements are considered, except where the dielectric has an internal charge, or at the surface
of the dielectric.

In the case of the Leyden jar26 of which the inner coating is charged positively, any portion
of the glass will have its inner side charged positively and its outer side negatively.

The displacement27 across any section of a unit tube of induction is one unit of electricity
and the direction of the displacement is that of the electromotive force, namely, from places
of higher to places of lower potential.

Besides the electric displacement within the cell we have to consider the state of the
two ends of the cell which are formed by the equipotential surfaces. We must suppose that
in every cell the end formed by the surface of higher potential is coated with one unit of
positive electricity, the opposite [100] end, that formed by the surface of lower potential,
being coated with one unit of negative electricity.

In the Treatise on Electricity and Magnetism as in the Elementary Treatise on
Electricity, a few pages, sometimes a few lines only, separate the passages that we
just quoted from statements such as these:

…the effect of the electromotive force28 is to producewhatwemaycall electric displacement,
i.e. the electricity is forced outwards in the direction of the electromotive force…

When induction29 is transmitted through a dielectric, there is in the first place a displacement
of electricity in the direction of the induction. For instance, in a Leyden jar, of which the inner
coating is charged positively and the outer coating negatively, the displacement of positive
electricity in the substance of the glass is from within outwards.

When the electromotive force acts on a conducting medium30 it produces a current through
it, but if the medium is a non-conductor or dielectric, the current cannot flow through the
medium, but the electricity is displaced within the medium in the direction of the electro-
motive intensity…

That whatever electricity may be,31 and whatever we may understand by the movement of
electricity, the phenomenon which we have called electric displacement is a movement of
electricity in the same sense as the transference of a definite quantity of electricity through
a wire is a movement of electricity…

Either this language does not mean anything, or it means the following: when an
electromotive force is an elementary part of the dielectric, the state of electrical neu-
trality of this part is disturbed; electricity moves in the direction of the electromotive
force; it accumulates in excess at the end where the electromotive force exits out of the
particle, so that this end is electrified positively, while it leaves the end where the
electromotive force enters into the particle, and this end is electrified negatively.
[101]

26Ibid., t. I, p. 175 [155].
27J. Clerk Maxwell, An Elementary Treatise on Electricity, p. 63 [49].
28J. Clerk Maxwell, An Elementary Treatise on Electricity, p. 62 [49].
29J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 174 [154].
30Ibid., p. 69 [61–62].
31Ibid., p. 73 [66].
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How can two so clearly contradictory propositions occur at the same time for the
mind of Maxwell and, both at once, cause his assent? This is a strange problem of
scientific psychology that we deliver to the meditations of the reader.

5.2 Development of the Third Electrostatics of Maxwell

If one condemns this first contradiction, if one accepts equalities (5.4), (5.5) and (5.6),
the equations of the third electrostatics of Maxwell unfold, through the course of his
Treatise, free from the continual changes of sign that interrupted the course of the
second electrostatics.

If P , Q, R are the components of the electromotive force, the components f , g,
h of displacement are given by equalities32

f = K

4π
P, g = K

4π
Q, h = K

4π
R, (5.7)

where K is the specific inductive capacity of the dielectric.
The electrostatic energy of the medium is given by the following proposition33:

The most general expression for the electric energy of the medium per unit of volume is
half the product of the electromotive intensity and the electric polarization multiplied by the
cosine of the angle between their directions.

In all fluid dielectrics the electromotive intensity and the electric polarization are in the
same direction…

For these latter bodies,34 the electrostatic energy is therefore

U = 1

2

∫
(P f + Qg + Rh)dω. (5.8)

[102] It is also for the same bodies that Eq. (5.7) are valid, thereby giving the elec-
trostatic energy these two other expressions35:

U = 1

8π

∫
K (P2 + Q2 + R2)dω, (5.9)

U = 2π
∫

f 2 + g2 + h2

K
dω. (5.10)

32J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 73 [65]; t. II, p. 287 [232].
33Ibid., t. I, p. 67 [60].
34Ibid., t. I, p. 176 [156]; t. II, p. 304 [246].
35J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 176 [156].
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where the system is in electrical equilibrium, the laws of electrodynamics show that
there is a certain function Ψ (x, y, z) such that36

P = −∂Ψ

∂x
, Q = −∂Ψ

∂y
, R = −∂Ψ

∂z
. (5.11)

The expressions (5.8) and (5.9) of the internal energy of a system in equilibrium
can then be written37:

U = −1

2

∫ (
∂Ψ

∂x
f + ∂Ψ

∂y
g + ∂Ψ

∂z
h

)
dω, (5.12)

U = 1

8π
K

∫ [(
∂Ψ

∂x

)2

+
(

∂Ψ

∂y

)2

+
(

∂Ψ

∂z

)2
]

dω. (5.13)

An integration by parts can turn equality (5.12) into equality

U = 1

2

∫
Ψ

(
∂ f

∂x
+ ∂g

∂y
+ ∂h

∂z

)
dω

+ 1

2

∫
Ψ [ f1 cos (N1, x) + g1 cos (N1, y) + h1 cos (N1, z)

+ f2 cos (N2, x) + g2 cos (N2, y) + h2 cos (N2, z)]d S,

[103] the last integral extending to various surfaces of discontinuity.
By the use of formulas (5.4), (5.5) and (5.6), this equality becomes38

U = 1

2

∫
Ψ e dω + 1

2

∫
Ψ E d S. (5.14)

Moreover, in virtue of equalities (5.7) and (5.11), we have

f = − K

4π

∂Ψ

∂x
, g = − K

4π

∂Ψ

∂y
, h = − K

4π

∂Ψ

∂z
, (5.15)

and relations (5.4) and (5.5) become

∂

∂x

(
K

∂Ψ

∂x

)
+ ∂

∂y

(
K

∂Ψ

∂y

)
+ ∂

∂z

(
K

∂Ψ

∂z

)
+ 4πe = 0, (5.16)

K2
∂Ψ

∂ N1
+ K2

∂Ψ

∂ N2
+ 4π E = 0. (5.17)

36Ibid., t. II, p. 274 [221], equation (B).
37Ibid., t. II, p. 303 [246].
38J. Clerk Maxwell, Treatise on Electricity and Magnetism t. I, p. 108 [96]; t. II, p. 303 [246].
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Maxwell introduced these equalities39 in his Treatise not by the above reasoning,
but by a strange and little-known analogy between these equalities and the relations
of Poisson

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
+ 4πe = 0, (5.18a)

∂V

∂ N1
+ ∂V

∂ N2
+ 4π E = 0, (5.19a)

which satisfy the function

V =
∫

e

r
dω +

∫
E

r
dω. (5.20a)

[104] In a note40 added to the French translation of the Treatise of Maxwell, Potier
has already done justice to this approximation; it is good to emphasize what of it is
fallacious.

Equalities (5.18a) and (5.19a) are purely algebraic consequences of the analytical
form of the function V , as given by equality (5.20a); on the contrary, the analytical
form of the function Ψ is unknown, and equalities (5.16) and (5.17) are the result of
physical hypotheses.

5.3 A Return to the First Electrostatics of Maxwell

The equations we have just written offer a profound analogy with the equations
which guides the heat conductivity theory. In his Treatise on Electricity and Mag-
netism, Maxwell does not resume this analogy, which had been the starting point of
his research on dielectric media; but he insists on it in his Elementary Treatise on
Electricity.41 And indeed, one easily passes from the formulas of the theory of heat,
given in Chap.3, to the formulas that Maxwell gives in his Treatise on Electricity
and Magnetism if, between the quantities that appear in these formulas, the following
correspondence table is established:

Theory of heat Electrostatic
T , temperature Ψ

u, v, w, components of heat flux f , g, h, components of the electric
displacement

k, coefficient of heat conductivity K
4π , specific inductive capacity K

j , intensity of a solid heat source e, solid electrical density
J , surface intensity of a heat source E , electric surface density

39Ibid., t. I, p. 104 [94].
40J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 106.
41J. Clerk Maxwell, Treatise on Electricity and Magnetism, p. [51,] [§] 64.

http://dx.doi.org/10.1007/978-3-319-18515-6_3
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[105] Therefore, equalities (3.1), (3.2) and (3.3) turn into equalities (5.15), (5.16)
and (5.17).

But in developing his first electrostatics, Maxwell, we have seen, admitted that
the function Ψ is expressed analytically, as the potential function V used in classical
electrostatics, by the formula

Ψ =
∫

e

r
dω +

∫
E

r
d S.

In his Treatise on Electricity and Magnetism,42 on the contrary, he puts his reader
on guard against this confusion; by apparent distribution of electricity means a
distributionwhose solid density e′ and the surface density E ′ wouldmake the function
Ψ known by the formula

Ψ =
∫

e′

r
dω +

∫
E ′

r
d S. (5.20b)

According to the theorems of Poisson, we would then have equalities

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
+ 4πe = 0, (5.18b)

∂Ψ

∂ N1
+ ∂Ψ

∂ N2
+ 4π E ′ = 0. (5.19b)

By comparing these equalities to equalities (5.16) and (5.17), we see that the
densities e′, E ′ cannot be equal to densities e, E . In particular, equalities (5.16) and
(5.18b) give,

4π(K e′ − e) = ∂K

∂x

∂Ψ

∂x
+ ∂K

∂y

∂Ψ

∂y
+ ∂K

∂z

∂Ψ

∂z
. (5.21)

[106] Equalities (5.17) and (5.19b) give43

⎧⎪⎪⎨
⎪⎪⎩
4π(K2E ′ − E) = (K1 − K2)

∂Ψ

∂ N1
,

4π(K1E ′ − E) = (K2 − K1)
∂Ψ

∂ N2
.

(5.22)

The place would be here, it seems, to judge this electrostatics of Maxwell and see
if it can agree with known laws; but we lack one thing to complete this discussion;
this thing is the concept of displacement current, which belongs to electrodynamics.

42J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. I, p. 104 [94–95].
43These equalities (5.22) are, in all editions of the Treatise of Maxwell, replaced by erroneous
equalities. In the French translation, the term K e′ of equality (5.21) is replaced by e′; this error is
not in the first English edition.

http://dx.doi.org/10.1007/978-3-319-18515-6_3
http://dx.doi.org/10.1007/978-3-319-18515-6_3
http://dx.doi.org/10.1007/978-3-319-18515-6_3
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The Electrodynamics of Maxwell



Chapter 6
Conduction Current and Displacement
Current

6.1 On Conduction Current

The theorist tries to give physical laws a representation constructed using
mathematical symbols; this representation should be as simple as possible. The dis-
tinct quantities that serve to signify the qualities regarded as first and irreduciblemust
be as few as possible. Then, so that new facts are discovered, of which experience has
determined the laws, the physicist must strive to express these laws by means of the
signs already in use in the theory, to formulate them by means of the already-defined
quantities. It is only when he recognizes the vanity of such an attempt, the impos-
sibility of making the new laws fit in the old theories, that he decides to introduce
into physics some rarely-used quantities, to fix the properties of these quantities by
hypotheses that had not yet been uttered.

Thus, when Oersted, then Ampère, discovered and studied [108] electrodynamic
and electromagnetic actions, physicists endeavored tomake lawswithout introducing
other quantities that had sufficed until then to represent all electrical and magnetic
phenomena known in science: the electric density and intensity of magnetization. The
exact knowledge of the distribution that affects the electricity spread on a conductor,
at a given time, was, they thought, sufficient to determine the actions that this con-
ductor has at this moment. Ampère did not believe these endeavors unworthy of his
genius; but having finally recognized that they were condemned to ineffectualness,
he imagined defining the properties of a wire at a given time by indicating not only
what is, at this time and at each point of the wire, the value of the electric density,
but also what the value of a new quantity, the intensity of current running through
the wire, is.

If one takes the point of view of pure logic, the operation that involves introducing
into a physical theory new quantities to represent new properties is entirely arbitrary;
in fact, the theorist can be guided, in this operation, by loads of considerations
extraneous to the field of physics, particularly by hypotheses that the philosophical
doctrines on which he relies suggest regarding the nature of the phenomena studied,
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82 6 Conduction Current and Displacement Current

explanations that are held in his time and country. Thus, to define the quantities to
reduce theoretically the laws of attraction and electrical repulsion, physicists were
inspired by the opinion which attributed these actions to a fluid or to two fluids.
Similarly, to define quantities to represent electrodynamic phenomena, they allowed
themselves to be guided by the idea that a current of an electric fluid running through
the interpolar conductor, and they have imitated the formulaswhich, sinceEuler,were
used to study the flow of a fluid.

The hydrodynamic analogy had already provided for Fourier the system of math-
ematical symbols by which he is able to represent the propagation of heat by con-
duction; it has provided for G.S. Ohm, Smaasen, and G. Kirchhoff the means for
complementing, in the sense shown by Ampère, the mathematical representation of
electrical phenomena. [109]

In imitation of the speed that, at each point, a flowing fluid offers, we imagine,
at each point of the conductive body and at every moment, a directed quantity, the
electric current.

Between the components of the speed of a moving fluid and the fluid density is
a relationship, the continuity relation; in imitation of this relationship, one admits—
among the components u, v, w of electrical current which relates to point (x, y, z)
of the conductor at time t , and solid electrical density σ at the same point and at the
same time—the existence of the equality

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂σ

∂t
= 0. (6.1)

To this relationship we add one concerning the surface density Σ at a point on the
surface of two separate media 1 and 2:

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) + ∂Σ

∂t
= 0. (6.2)

In the spirit of the first physicists who considered them, the quantities u, v, w rep-
resented, at each point and at every moment, the components of the speed with which
the electric fluid moves; we must not hesitate, today, to leave aside any hypothesis
of this kind and simply regard u, v, w as three certain quantities varying with the
coordinates and with the time and satisfying equalities (6.1) and (6.2).

To know completely the properties of a conductor at an isolated instant t , you
need to know, at any point of the conductor, the values of the variables u, v,w, σ , and,
furthermore, at any point of discontinuity of the surfaces, the value of the variable
Σ . When it is proposed to set the properties of a conductor at all times for a certain
period of time, it is only at the initial moment that the values of the five quantities
σ , Σ , u, v, w should be given; at other times, it suffices to give the values of the
variables w, v, w; σ , Σ are deduced by integrating Eqs. (6.1) and (6.2). [110]
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6.2 On the Displacement Current

To represent the known laws that govern the actions of dielectric bodies, Faraday,
Mossotti and their successors simply consider one directed quantity, varying from
one point to another and from one moment to the other: the intensity of polarization
of the components A, B, C .

Although no experience, at the time when he wrote, either justified or suggested
even a similar hypothesis, Maxwell admitted that knowledge, at an isolated instant t ,
of the duration, of three components A, B, C , and of the polarization does not com-
pletely determine the properties of the dielectric at this instant. This body possessed
properties, although unknown, which, at time t , depended not only on the intensity
of polarization or displacement, but also on the displacement current, the directed
quantity with components

u = ∂ A

∂t
, v = ∂ B

∂t
, w = ∂C

∂t
. (6.3)

The six variables A, B, C , u, v, w have values that can be chosen arbitrarily for an
isolated instant, but it is not the same for all the moments of a certain period of time;
if, for all these moments, we know the values of A, B, C , we know by the same fact
the values of u, v, w.

If we present it, as we have just done, as the purely arbitrary introduction of a new
quantity of which no experience demands its employment, the definition, given by
Maxwell, of the displacement current appears strange. On the contrary, it becomes
very natural and, so to speak, forced, after taking into account the historical and
psychological circumstances.

During his research on dielectrics,Maxwell, we have seen, constantly draws inspi-
ration from the hypotheses of Faraday and Mossotti. In imitation of what Coulomb
and Poisson had assumed for magnets, Faraday and Mossotti imagined a dielectric
as a cluster of small conductive grains embedded in an insulating cement, each small
conductive grain bearing [111] as much positive electricity as negative electricity;
surely Maxwell, in all his writings, regards this image, if not as a depiction of reality,
then at least as a model suggesting propositions that are always satisfied.

If, with Faraday and Mossotti, we regard a polarized dielectric as a set of conduc-
tive molecules on which electricity is distributed in a certain way, any change in the
state of polarization of the dielectric consists in a change in the electrical distribu-
tion on the conductive molecules; this change in the polarization of the dielectric is
therefore accompanied by real electric currents, each of which is located in a very
small space. Moreover, we see without difficulty that these currents correspond, at
each point of the dielectric, to an average current whose components are precisely
given by equalities (6.3). This average current is therefore something other than the
displacement current.
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In his memoir:On Physical Lines of Force, Maxwell wrote,1 by inviting his reader
to refer to the work of Mossotti:

Electromotive force acting on a dielectric produces a state of polarization of its parts similar
in distribution to the polarity of the particles of iron under the influence of a magnet, and,
like the magnetic polarization, capable of being described as a state in which every particle
has its poles in opposite conditions.

In a dielectric under induction, we may conceive that the electricity in each molecule is
so displaced that one side is rendered positively, and the other negatively electrical, but that
the electricity remains entirely connected with the molecule, and does not pass from one
molecule to another.

The effect of this action on the whole dielectric mass is to produce a general displace-
ment of the electricity in a certain direction. This displacement does not amount to a current,
because when it has attained a certain value it remains constant, but it is the commencement
of a current, and its variations constitute currents in the positive or [112] negative direction,
according as the displacement is increasing or diminishing. The amount of the displacement
depends on the nature of the body, and on the electromotive force; so that if h is the dis-
placement, R the electromotive force, and E a coefficient2 depending on the nature of the
dielectric,

R = −4π E2h;
and if r is the value of the electric current due to displacement,

r = ∂h

∂t
.

This passage, the first where Maxwell has mentioned the displacement current,
carries the indisputable mark of the ideas of Mossotti that led the Scottish physicist
to imagine this current.

He explains so exactly, moreover, the conception that Maxwell formulated of
this current, that we find it reproduced almost verbatim in the memoir: A Dynamical
Theory of the Electromagnetic Field.3 In the Treatise on Electricity and Magnetism,4

we read this very brief passage:

The variations of electric displacement evidently constitute electric currents. These currents,
however, can only exist during the variation of the displacement, and therefore, since the
displacement cannot exceed a certain valuewithout causing disruptive discharge, they cannot
be continued indefinitely in the same direction, like the currents through conductors.

Maxwell adds5:

That whatever electricity may be, and whatever we may understand by the movement of
electricity, the phenomenon which we have called electric displacement is a [113] movement
of electricity in the same sense as the transference of a definite quantity of electricity through
a wire is a movement of electricity….

1J. Clerk Maxwell, Scientific Papers, vol. I, p. 491.
2We have insisted [1st Part, Chap. 4] on the sign error that affects this equality.
3J. Clerk Maxwell, Scientific Papers, vol. I, p. 531.
4J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. I, p. 69 [62].
5J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. I, p. 73 [66].

http://dx.doi.org/10.1007/978-3-319-18515-6_4
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A displacement current is therefore essentially, and in the same way as a
conduction current, a flow of electricity; in any conductive body, dielectric or mag-
netic, it produces the same induction, the same magnetization, and the same electro-
dynamic or electromagnetic forces as a conduction current of the same magnitude
and direction. A current or a magnet exerts the same forces on a dielectric traversed
by a displacement current which, on a conductor, would occupy the place as the
dielectric and whose mass would be covered by a conduction current equal to the
displacement current.

So we should never include, in electrodynamic calculations, the conduction cur-
rent separately, whose components are u, v, w; still, will need to consider the total
current, the geometric sum of the conduction current and the displacement current,
of which u, v, w are the components. This principle is applied by Maxwell in his
various writings on electricity6; it constitutes one of the foundations of his electro-
dynamic doctrine, one of its boldest and most productive innovations, as he himself
remarks in this passage7:

One of the chief peculiarities of this treatise is the doctrine which it asserts, that the true
electric currentC, that onwhich the electromagnetic phenomena depend, is not the same thing
as K, the current of conduction, but that the time-variation of D, the electric displacement,
must be taken into account in estimating the total movement of electricity….

[114]

6.3 In Maxwell’s Theory, Is the Total Current
a Uniform Current?

Suppose that at each point taken within a continuous domain we have the equality

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (6.4)

and, at each point of a surface of discontinuity, that we have the equality

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) = 0. (6.5)

Then, we will have, at the first point, in virtue of equality (6.1),

∂σ

∂t
= 0,

6J. Clerk Maxwell, On Physical Lines of Force (Scientific Papers, vol. I, p. 496).—A Dynam-
ical Theory of the Electromagnetic Field (Scientific Papers, vol. I, p. 554).—Treatise on

Electricity and Magnetism, trad. française, t. II, p. 288 [232].
7J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. II, p. 288 [232–233].
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and, at the second point, in virtue of equality (6.2),

∂Σ

∂t
= 0.

The distribution of actual electricity on the system will remain invariable.
Wegive the nameuniform conduction current to conduction currentswhich satisfy

equalities (6.4) and (6.5).
Uniform displacement currents are displacement currents that satisfy equality

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (6.6)

at any point of a continuous medium and equality

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) = 0 (6.7)

at any point of a surface of discontinuity. [115]
If one accepts the definition of the fictitious electric densities e, E given by

equalities (2.13) and (2.14) of the first part:

e = −
(

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
, (6.8)

E = −[A1 cos (n1, x) + B1 cos (n1, y) + C1 cos (n1, z)

+A2 cos (n2, x) + B2 cos (n2, y) + C2 cos (n2, z)], (6.9)

we can write, in general, in virtue of equalities (6.3),

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂e

∂t
= 0, (6.10)

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) + ∂ E

∂t
= 0. (6.11)

The uniform displacement current therefore satisfies equalities

∂e

∂t
= 0,

∂ E

∂t
= 0;

hence, in any system, the invariability of the fictitious distribution of electricity
equivalent to the dielectric polarization results.

http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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It may happen that neither the conduction currents nor displacement currents are
separately uniform, but that the total current, whose components are (u +u), (v+v),
(w +w), is uniform; it will satisfy, at any point of a continuous medium, the equality

∂

∂x
(u + u) + ∂

∂y
(v + v) + ∂

∂z
(w + w) = 0, (6.12)

and, at any point of a surface of discontinuity, the equality

(u1 + u1) cos (N1, x) + (v1 + v1) cos (N1, y) + (w1 + w1) cos (N1, z)

+(u2 + u2) cos (N2, x) + (v2 + v2) cos (N2, y) + (w2 + w2) cos (N2, z) = 0.
(6.13)

[116] From these equalities (6.12) and (6.13), in virtue of equalities (6.1), (6.2),
(6.10), and (6.11), the equalities

∂

∂t
(σ + e) = 0, (6.14)

∂

∂t
(Σ + E) = 0 (6.15)

result.
The actual electric distribution may vary from one moment to another; it is the

same with the fictitious distribution equivalent to the dielectric polarization; but at
each point of a continuous medium, or a surface of discontinuity, the sum of the
actual electric density and fictitious electric density maintains a value independent
of time, such that the electrostatic actions that are exerted in the system remain the
same from one moment to the next moment.

To admit that the total current is always unchanging would be, for him who would
at the same time recognize the legitimacy of all the previous equations, to deny
the best-observed electrostatic phenomena; for example, it would be to deny that
a capacitor can discharge through a stationary conductor placed between the two
armatures.

The hypothesis that in any system, in any circumstances, the total current is always
unchanging is, according to all the commentators of Maxwell, one of the essential
principles underlying the doctrine of the Scottish physicist. Let us follow, in his
writings, the formation of this hypothesis.

In the memoir: On Faraday’s Lines of Force, the first that Maxwell devoted to
the theories of electricity, there is no question yet regarding displacement current:
the conduction current is only considered; what is said is easily consistent with
the general considerations that we have outlined in Sect. 6.1. In particular, Maxwell

admits8 that the sum

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
has a value, generally different from 0,

8J. Clerk Maxwell, Scientific Papers, vol. I, p. 192.
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[117] which he designates by −4πρ. He adds only these words: “In a large class of
phenomena, including all cases of uniform currents, the quantity ρ disappears.”.

On the following page, based on the well-known electromagnetic properties of a
closed9 current,10 Maxwell shows that the three components u, v,w of the conduction
current can be put in the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−u = ∂γ

∂y
− ∂β

∂z
,

−v = ∂α

∂z
− ∂γ

∂x
,

−w = ∂β

∂x
− ∂α

∂y
,

(6.16)

α, β, γ being three functions of x , y, z which he calls the components of the magnetic
intensity. From these equalities relationship (6.4) visibly follows; they therefore apply
only to uniform currents. This conclusion ought not be surprising, the uniformity of
the current being postulated in the same premises of the reasoning which gives
equalities (6.16).

Maxwell notes this conclusion, but he did not care to deduce the impossibility of
non-uniform currents. He said11:

We may observe that the above equations give by differentiation,

∂u

∂x
+ ∂u

∂x
+ ∂u

∂x
= 0,

which is the equation of continuity for closed currents. Our investigations are therefore for
the present limited to closed currents; and we know little of the magnetic effects of any
currents which are not closed.

[118] The distinction between the conduction and displacement currents is intro-
duced into the work of Maxwell in the memoir: On Physical Lines of Force.

At the point (x, y, z), the instantaneous rotational velocity of the ether has com-
ponents α, β, γ ; this speed represents,12 in the kinetic theory that Maxwell develops
in this memoir, the intensity of the magnetic field; then posing

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂γ

∂y
− ∂β

∂z
− 4πu,

∂α

∂z
− ∂γ

∂x
− 4πv,

∂β

∂x
− ∂α

∂y
− 4πw,

(6.17)

9[in the sense of “closed circuit”].
10We will return to this demonstration in Chap.7, Sect. 7.1.
11J. Clerk Maxwell, loc. cit., p. 195.
12J. Clerk Maxwell, Scientific Papers, vol. I, p. 460.

http://dx.doi.org/10.1007/978-3-319-18515-6_7
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Maxwell admits13 that u, v, w represent, at the point (x, y, z), the components of
the conduction current; the conduction current is therefore uniform by definition.
This proposition thus has nothing surprising in a writing where, implicitly, the true
electric density σ is always assumed to be equal to 0 and where only the fictitious
electric density e, equivalent to the dielectric polarization, is introduced.

It is related14 to the components of the total current by the continuity equation:

∂

∂x
(u + u) + ∂

∂y
(v + v) + ∂

∂z
(w + w) + ∂e

∂t
= 0, (6.18)

which can also be written, because of equality (6.17),

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂e

∂t
= 0.

If, therefore, in this memoir Maxwell defines conduction current [119] as being
essentially uniform, he only poses the same hypothesis regarding displacement cur-
rents.

It is similar in the memoir: A Dynamical Theory of the Electromagnetic Field.
Using the known lawsof electromagnetism, lawswhich essentially involve closed and
uniform currents, Maxwell establishes15 Eq. (6.17), which he considers as applying
to all conduction currents; so he admits there that these currents are always uniform.
But he is careful to extend this proposition to the total current; this satisfies16 equality
(6.18), resulting, for the displacement current, in equality (6.19).

When, in this same memoir, Maxwell develops the theory of the propagation of
displacement current in a dielectric medium, he is careful to claim that these currents
are always and necessarily transverse, subject to the condition

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0.

He admits, instead, that at each point the apparent densitymay vary fromonemoment
to the next, and he establishes17 the law which governs this variation; however, to
get rid of the longitudinal current which would thus be introduced and which would
hinder the electromagnetic theory of light, he adds these words: “Since themedium is
a perfect insulator, e, the free electricity, is immoveable…” Nothing in the ideas put
forward byMaxwell in the course of thismemoir or his previouswritings justified this
conclusion; the density e, linked to variations in the electric displacement, depends
in no way on the conduction current.

13J. Clerk Maxwell, loc. cit., vol. I, p. 462.
14J. Clerk Maxwell, loc. cit., equality (113), vol. I, p. 496.
15J. Clerk Maxwell, Scientific Papers, vol. I, p. 557.
16J. Clerk Maxwell, loc. cit., p. 561, equality (H).
17J. Clerk Maxwell, loc. cit., vol. I, p. 582.
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The electromagnetic theory of light, however, requires that the displacement
current in a non-conducting dielectric propagates according to the same laws as
small movements in an elastic and non-compressible solid; the principles laid down
by Maxwell in his memoirs do not meet this [120] requirement. It is not the same
for the singular theory that Maxwell develops in his Treatise on Electricity and
Magnetism and that we named his third electrostatics.

There is electrical charge nowhere else than the fictitious charge due to the dielec-
tric polarization, no density than the densities e, E ; it is to these densities that the
components of the conduction current will be linked by continuity relations taken in
their usual form. At any point of a continuous medium, we have18

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂e

∂t
= 0. (6.19)

At any point of a surface of discontinuity, we have19

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) + ∂ E

∂t
= 0. (6.20)

But, on the other hand, densities e, E are related to components A, B, C of the
intensity of the dielectric polarization, which Maxwell designates by f , g, h and
calls the components of displacement. The relationship between these quantities is
given by the following equalities, which we discussed in the first part of this work20

and which Maxwell is careful to recall21 with the equalities that we just wrote:

e = ∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z
, (6.21)

E = A1 cos (N1, x) + B1 cos (N1, y) + C1 cos (N1, z)

+ A2 cos (N2, x) + B2 cos (N2, y) + C2 cos (N2, z). (6.22)

[121] Differentiating these equalities with respect to t , and taking account of
equalities (6.3) that define displacement currents, we find

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
− ∂e

∂t
= 0, (6.23)

18J. ClerkMaxwell,Treatise on Electricity and Magnetism, trad. française, t. I, p. 506 [412], equality
(2). It should be noted that this passage contradicts what gives Maxwell on p. 470 [380], where he
seems to admit that any conduction current is uniform, in accordance with his old ideas.
19J. Clerk Maxwell, loc. cit., t. I, p. 510 [415], equality (5).
201st Part, equalities (5.4) and (5.5).
21J. ClerkMaxwell,Treatise on Electricity and Magnetism, trad. française, t. 1, p. 506 [412], equality
(1) and p. 510 [415], equality (4).

http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_5
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u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) − ∂ E

∂t
= 0. (6.24)

As was to be expected, these equalities differ by the sign of the terms in
∂e

∂t
,

∂ E

∂t
, of equalities (6.10) and (6.11), which stem from the usual theory of dielectric

polarization thatMaxwell admitted before having conceived the special electrostatics
that was developed in his Treatise.

Adding the terms of equalities (6.19) and (6.23), on the one hand, and equalities
(6.20) and (6.24), on the other hand, we find at any point of a continuous medium
the equality

∂

∂x
(u + u) + ∂

∂y
(v + v) + ∂

∂z
(w + w) = 0, (6.25)

and, at any point of a surface of discontinuity, equality

(u1 + u1) cos (N1, x) + (v1 + v1) cos (N1, y) + (w1 + w1) cos (N1, z)

+(u2 + u2) cos (N2, x) + (v2 + v2) cos (N2, y) + (w2 + w2) cos (N2, z) = 0.
(6.26)

So, therefore, the latest electrostatic theory adopted by Maxwell leads to the
following consequences:

Not only within a continuous medium do the components of the total current sat-
isfy the same relationship as the components of the current within an incompressible
fluid, but also, on the surface of separation of two different media, the total current
experiences no abrupt change, neither in magnitude nor direction. The total current
in any system corresponds to a closed and uniform current.

Since the moment Maxwell conceived his third electrostatics, he saw this conse-
quence, so favorable to his ideas on the electromagnetic theory [122] of light. In a
note,22 where he remarked that the polarization of a dielectric plate placed between
two conductors is directed from conductor A, positively electrified, to conductor B,
negatively electrified, noting that it led him necessarily to his third electrostatics,
since he admitted no other electrification than the fictitious electrification, he added:

Thus, if the two conductors in the last case are now joined by a wire, there will be a current
in the wire from A to B. At the same time, since the electric displacement in the dielectric
is diminishing, there will be an action electromagnetically equivalent to that of an electric
current from B to A through the dielectric. According to this view, the current produced in
discharging a condenser is a complete circuit…

22J. Clerk Maxwell, On a Method of Making a Direct Comparison of Electrostatic with Electro-
magnetic Force: With a Note on the Electromagnetic Theory of Light, read at the Royal Society
of London on 18 June 1868 (Philosophical Transactions, vol. CLVIII.—Scientific Papers,
vol. II, p. 139).
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Later, in his Treatise on Electricity and Magnetism, Maxwell takes up23 the same
considerations with more developments. He says:

…let us consider an accumulator formed of two conducting plates A and B, separated by a
stratum of a dielectric C. Let W be a conducting wire joining A and B, and let us suppose
that by the action of an electromotive force a quantity Q of positive electricity is transferred
along the wire from B to A. …at the same time that a quantity Q of electricity is being
transferred along the wire by the electromotive force from B towards A, so as to cross every
section of the wire, the same quantity of electricity crosses every section of the dielectric
from A towards B by reason of the electric displacement.

The displacements of electricity during the discharge of the accumulator will be the
reverse of these. In the wire the discharge will be Q from A to B, and in the dielectric the
displacement will subside, and a quantity of electricity Q will cross every section from B
towards A.

Every case of charge or discharge may therefore be considered as a motion in a closed
circuit, [123] such that at every section of the circuit the same quantity of electricity crosses
in the same time, and this is the case, not only in the voltaic circuit where it has always
been recognised, but in those cases in which electricity has been generally supposed to be
accumulated in certain places.

We are thus led to a very remarkable consequence of the theory which we are examining,
namely, that the motions of electricity are like those of an incompressible fluid…

This passage is followed, in the Treatise of Maxwell, by the following sentence:
“…Thus when the charged conductor is introduced into the closed space there is
immediately a displacement of a quantity of electricity equal to the charge.”

Bywriting this sentence,Maxwell forgets, for amoment, the very specialmeaning
which this proposition has in his latest theory: the total current is uniform, to restore
the meaning that it has in the minds of most physicists, which it had in his early
writings. But this is an apparent oversight. It is quite true that the components of the
total current satisfy relations (6.25) and (6.26), similar to those that characterize a
uniform current; but it is not true that the amount of electricity within a given space

is either always invariable, nor that the quantities
∂e

∂t
,

∂ E

∂t
are all equal to 0. It is

one of the paradoxical characters of Maxwell’s latest theory that the uniformity of
the total current does not entail the invariability of the electrical distribution nor of
electrostatic actions.

However, if it is not true that the amount of electricity in a closed surface always
remains invariable, this proposition being true when the closed surface contains
only displacement currents, without a trace of conduction current—or even that
conduction current, without a trace of displacement current; it suffices, to convince
oneself, to glance either at equalities (6.19) and (6.20), or at equalities (6.21) and
(6.22). So when Maxwell, developing in his treatise the electromagnetic theory of
light, writes24: “If themedium is a non-conductor,…the volume-density [124] of free
electricity, is independent of t ,” he affirms a necessary consequence of the doctrine
developed in this Treatise. Whereas in the same sentence written by him on the same

23J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. I, p. 71 [63–64].
24J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. II, p. 488 [385].
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occasion in his memoir: A Dynamical Theory of the Electromagnetic Field, there
was a fallacy, in contradiction with the ideas accepted in this memoir.

But if the electrical distribution can vary within a conductive non-dielectric body,
no more than within a non-conducting dielectric, this distribution can vary from
one moment to the next at the surface through which a conducting medium borders a
dielectric medium. These variations give rise to the charge and discharge phenomena
that are studied in electrostatics.

6.4 Return to the Third Maxwell Electrostatics. To What
Extent it Can Agree with Classical Electrostatics

Maxwell, we saw [1st part, Chap. 5, Sect. 5.3] avoids, in his third electrostatics,
establishing between the function Ψ and densities e, E only equalities (5.16) and
(5.18); therefore, one would believe that it is permissible to repeat here what we
said in the 1st part, Chap. 4, Sect. 4.4, denouncing as illusory the third electrostatics
of Maxwell, declaring that it does not contain the necessary elements to cast into
equations the least problem of electrical distribution.

One is all the more tempted to formulate a similar judgment that, in his Treatise on
Electricity and Magnetism, Maxwell makes no use of this electrostatics; he does even
adopt the very solution of the two problems that, in his memoirs: On Physical Lines
of Force and A Dynamical Theory of the Electromagnetic Field, he had attempted
to resolve. He treats neither the theory of capacitors nor the theory of forces exerted
between electrified bodies.

No doubt, in his Treatise we read chapters or portions of chapters dealing with
electrical distributions or electrostatic forces. But the reasoning that he develops, the
formulas that are used, are in no way particular to the electrostatics whose principles
we analyzed; [125] they both depend on the electrostatics founded on Coulomb’s
laws, on the classical electrostatics created by Poisson.

However, the judgment we just outlined would be unfair; we can, in the system
of Maxwell, obtain a casting into equations of the electrostatic problem. It suffices
to introduce suitable hypotheses that will replace the analytical expression of the
potential function deduced, in the ordinary theory, from Coulomb’s laws.

And first, inside a conductive body, the components of the conduction current are
proportional to the components of the electromotive force. So there is equilibrium,
it is necessary that the first vanish and, therefore the second, which the equalities

∂Ψ

∂x
= 0,

∂Ψ

∂y
= 0,

∂Ψ

∂z
= 0

express. On a same conductive mass, the function Ψ will have, at any point, the
same value.

http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_4
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Inside of a non-conductive body, the conduction current is everywhere zero. There-
fore, equalities (6.25) and (6.26) become

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
− ∂e

∂t
= 0,

u1 cos (N1, x) + v1 cos (N1, y) + w1 cos (N1, z)

+ u2 cos (N2, x) + v2 cos (N2, y) + w2 cos (N2, z) = 0

or else, in virtue of equalities (6.23) and (6.24),

∂e

∂t
= 0,

∂ E

∂t
= 0.

Inside a continuous insulating body or on the surface of contact between two
different insulating bodies, the distribution of electricity is invariable. It will be
assumed, in general, that the two densities are equal to 0:

e = 0, E = 0.

[126] Indeed, this hypothesis is not explicitly stated in thewritings ofMaxwell, but
we can say that it is there implicitly; every moment, Maxwell, we have seen, repeats
that the electric charge, a residual effect of polarization, does not feel outside of the
dielectric, but only on the surface of contact with the conductor and the dielectric;
also,we have quoted passages of Faraday andMossottiwhere these authors expressed
a similar opinion. We will therefore interpret the thought of Maxwell without bias
by expressing that both of the electrical densities are zero in any insulating medium.

In the classical theory, it should be noticed, we are compelled to introduce an
hypothesis which has analogies with the previous one; there, alongside the dielectric
polarization and the fictional electric charge that is equivalent to it, we considered a
true electric charge. On a non-conductive body, the latter creates an invariant distribu-
tion that, in each problem,must be regarded as given; and, inmost cases, one assumes
that the true electric charge is zero at any point of the insulating bodies considered;
but this hypothesis does not prejudge anything about the fictitious electrification and
polarization to which it is equivalent.

In the system of Maxwell, we do not encounter real electric charge next to the
apparent electrical charge which is equivalent to the dielectric polarization; only the
latter exists. To it belongs, on poorly conducting bodies, the character of invariability,
attributed by the classical theory to true electric charge; this is what must be regarded
as a given.
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If the densities e, E equal zero, equalities (5.16) and (5.17) of the first part are
transformed into equality

∂

∂x

(
K

∂Ψ

∂x

)
+ ∂

∂y

(
K

∂Ψ

∂y

)
+ ∂

∂z

(
K

∂Ψ

∂z

)
= 0,

satisfied at any point of a continuous insulating medium, and into equality

K1
∂Ψ

∂ N1
+ K2

∂Ψ

∂ N2
= 0,

[127] satisfied at the surface of separation of two separate insulating media.
One thus obtains the equations to determine the functionΨ ; and,most importantly,

these equations are what would be used to determine the electrostatic potential func-
tion, according to the classical theory, in a system where each dielectric would have
a specific inductive capacity proportional to K .

The analogy between Maxwell’s theory and classical theory is complete, where
conductors are immersed ina single homogeneous dielectric. In this case, the function
Ψ , constant within each conductor, must satisfy in the interposed space equality
ΔΨ = 0; once determined by these conditions, the function Ψ in turn determines
the surface density on the surface of each conductor by equality (5.16) of the first
part, which becomes

∂Ψ

∂ Ne
= −4π

K
E .

It is clear, therefore, that one can write

Ψ = 1

K

∫
E

r
d S,

the integral extending over all electrified surfaces. The electrostatic energy then has
the value

U = 1

2

∫
Ψ E d S

or
1

2K

∫∫
E E ′

r
d S d S′.

We compare these formulas with those that would give the classical theories,
whose principles are recalled in the Chap.2 of the first part.

Suppose that, in an non-polarizable medium, two electric charges q and q ′ sep-
arated by the distance r repel each other with a force ε

qq ′
r2

. We denote by F the
coefficient of polarization of the [128] dielectric medium and by V the total electro-
static potential function that the sum (V + V ), in the indicated chapter, signifies. Let

http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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Σ be the actual surface density of electricity; it corresponds to a total, both real and
fictitious, density

Δ = Σ

1 + 4πεF
.

Function V , constant on each conductive body, is harmonic in the dielectric; it is
obviously the same for the function εV

1+ 4πεF .
We then have, in the area of contact of a conductor and the dielectric,

∂V

∂ Ne
= −4πΔ,

which can be written

∂

∂ Ne

εV

1 + 4πεF
= − 4πε

(1 + 4πεF)2
Σ.

Finally, the electrostatic energy is set to

U = ε

2

∫∫
ΔΔ′

r
d S d S′,

which can be written

U = ε

2(1 + 4πεF)

2
∫∫

ΣΣ ′

r
d S d S′.

We see that we pass from the formulas of Maxwell to these ones if we replace

E by Σ,

Ψ ”
εV

1 + 4πεF
,

Ψ ”
(1 + 4πεF)2

ε
.

The analogy of the two theories is now complete. [129]
The analogy between Maxwell’s theory and the classical theory is also complete

where the system contains a heterogeneous dielectric or several separate dielectrics.
Suppose that conductors 1 are immersed in a uniform and undefined dielectric

medium 0, and that, in this medium, lies another dielectric and homogeneous body
2; to the dielectrics 0 and 2 correspond the values K0, K2 of the coefficient K .

The function Ψ , which is continuous throughout space and constant within each
of the conductors, satisfies the equation ΔΨ = 0 inside both of the dielectrics 0
and 2.
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At the surface of separation between dielectric 0 and dielectric 2, it satisfies the
relationship

K0
∂Ψ

∂ N0
+ K1

∂Ψ

∂ N1
= 0. (a)

At the surface of contact between body 1 and dielectric 0 is a surface density E10
given by the equality

E10 = − K0

4π

∂Ψ

∂ N0
. (b)

Finally, the electrostatic energy has the value

U = 1

2

∫
Ψ E10d S10. (c)

Compare these relationships with those given by the classical theory.
Function V , continuous throughout all space and constant inside conductors, is

harmonic in the dielectric.
At the surface of dielectric 0 and 2, we have

(1 + 4πεF0)
∂V

∂ N0
+ (1 + 4πεF2)

∂V

∂ N2
= 0. (α)

[130] At the the surface of contact of conductor 1 and the dielectric surface lies a
real surface density

Σ10 = −1 + 4πεF0

4π

∂V

∂ N0
. (β)

At the surface of contact between two dielectrics one finds a purely fictitious
surface density

Δ20 = − 1

4π

(
∂V

∂ N0
+ ∂V

∂ N2

)

= −ε(F2 − F0)

1 + 4πεF2

∂V

∂ N0
, (β ′)

and this density is non-zero, in general, if F2 is not equal to F0.
Finally, the electrostatic energy has the value

U = ε

2

∫
V Δ10 d S10 + ε

2

∫
V Δ20 d S20

or

U = ε

2(1 + 4πεF0)

∫
V Σ10 d S10 + ε

2

∫
V Δ20 d S20. (γ )
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Can we move from the first group of formulas to the second by replacing E10 by
Σ10 and Ψ by λV , λ being a suitably chosen constant?

Comparison of equalities (b) and (β) would give

1 + 4πεF2

1 + 4πεF0
= K2

K0
.

We therefore have, in a general way,

Kλ = (1 + 4πεF).

[131] Equality (c) would become

U = λ

2

∫
V Σ10 d S10.

If we put

λ = ε

1 + 4πεF0
,

we would find the first term of the expression (γ ), but not the second.
So we come to the following conclusion:
If 0 refers to the ethereal polarizable medium where all bodies are supposed to

be immersed; if F0 is the coefficient of dielectric polarization of the medium; if F2
is the coefficient of dielectric polarization of the body immersed in this medium; if,
finally, in the equations of the third electrostatics of Maxwell one replaces:

The electric density E on the surface of conductors by the actual electric density Σ ,
The function Ψ by the function εV

1+ 4πεF0
, where V is the

electrostatic potential function,

The coefficient K0 by (1+ 4πεF0)
2

ε
,

The coefficient K2 by (1+ 4πεF0)(1+ 4πεF2)
ε

,

Therefore, the ratio K2
K0

by 1+ 4πεF2
1+ 4πεF0

,

we find the formulas by which classical electrostatics determines the value of the
potential function in the entire system and the actual distribution of electricity on
conductors, so that, for these problems, the two electrostatics provide equivalent
solutions.

The equivalence continues if one wants to study ponderomotive forces produced
between electrified conductors in a system that does not contain the other dielectric
medium 0. [132]
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But if there is another dielectric 2, the previous transformation applied to the
electrostatic energy of Maxwell does not give the classical electrostatic energy. It
lacks the term

ε

2

∫
V Δ20 d S20 = − ε

8π

∫
V

(
∂V

∂ N0
+ ∂V

∂ N2

)
d S20

= − ε(F2 − F0)

1 + 4πεF2

∫
V

∂V

∂ N0
d S20,

which would also be written, in virtue of the above equivalences that we indicated,

− ε

8πλ2

∫
Ψ

(
∂Ψ

∂ N0
+ ∂Ψ

∂ N2

)
d S20 = − (1 + 4πεF0)

2)

8πε

∫
Ψ

(
∂Ψ

∂ N0
+ ∂Ψ

∂ N2

)
d S20

= − K0

8π

∫
Ψ

(
∂Ψ

∂ N0
+ ∂Ψ

∂ N2

)
d S20

= − K2 − K0

8π

∫
Ψ

∂Ψ

∂ N2
d S20

= K2 − K0

8π

∫
2

[ (
∂Ψ

∂x

)2

+
(

∂Ψ

∂y

)2

+
(

∂Ψ

∂z

)2
]

dω2.

We see that this term can be null if the electric field is not zero and dielectric 2
differs from the medium 0.

The presence or absence of this term will differentiate the law of ponderomotive
forces that are exerted in the system according to the traditional doctrine or the
doctrine of Maxwell.

However, the researches of Gouy25 which are also on this point a natural sequel
of ours,26 showed that the classical doctrine was fully aware of the actions observed
between conductors and dielectrics by various physicists, notably by Pellat. It must
be concluded that in general these actions do not agree with the electrostatics of
Maxwell. [133]

25Gouy, Journal de Physique, 3o série, t. V, p. 154, 1896.
26P. Duhem, Leçons sur l’Électricité et le Magnétisme, t. II, 1892.



Chapter 7
The Six Equations of Maxwell
and Electromagnetic Energy

7.1 The Three Relations Between the Components
of the Electric Field and the Components
of the Current

Suppose that a uniformelectrical current flows through awire disposed on the contour
C of an area A; we look at this area in such a way as to see current circulate in a
counterclockwise direction; we will look at the positive side of area A (Fig. 7.1).

If a magnetic pole, containing a unit of southern magnetism, is placed in the
presence of this current, it is subjected to a force whose components are α, β, γ ; this
is what Maxwell called the magnetic force, what, more precisely, is today called the
magnetic field.

Suppose that this unit pole describes a closed curve e, that this curve pierces once
and only once the area A, and that it pierces it [134] from the negative side to the
positive side; the force to which the pole is subject performs some work, which the
integral ∫

c
(α dx + β dy + γ, dz),

extended to the closed curve c, represents.
The laws of electromagnetism, established by Biot, Savart, Laplace, Ampère, and

Savary, make the properties of the magnitudes α, β, γ known. These laws lead to
the following result:

The work of which we just gave the expression depends neither on the shape of
the curve c nor on the shape of the curve C. It depends only on the current that runs
through the curve C; if this intensity J is measured in electromagnetic units, it is
4π J : ∫

c
(α dx + β dy + γ dz) = 4π J. (7.1)
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Fig. 7.1 Uniform electrical
current C of area A pierced
by a magnetic pole

This equality can be understood somewhat differently. Suppose that the curve c
is the contour of an area a. If we consider the area a such that we see the pole of
the magnet turn in an counterclockwise direction, we will say that we look at the
positive side of the area a.

It is clear that the current that runs through the wire G pierces the area a passing
from the negative side to the positive side; and as, through each section of the wire
G, it carries in the time dt , a quantity d Q = J dt of positive electricity, we can say
that the area a is crossed, during the time dt , from the negative side to the positive
side, by a quantity of positive electricity d Q = J dt . So equality (7.1) can be written

dt
∫

c
(α dx + β dy + γ dz) = 4π d Q. (7.2)

This equality easily extends to the case where the field contains any number of
wires with closed and uniform currents. If a closed curve c, traveling in a determined
direction, [135] is the outline of an area a and if d Q is the amount of positive
electricity which, in time dt , pierces the area a from the negative side to the positive
side, equality (7.2) remains exact.

The demonstration assumes that the curve c has no point in commonwith thewires
that carry electricity; to free equality (7.2) from this limitation, some precautionsmay
be necessary. Without delaying, Maxwell admits that equality (7.2) applies even in
the case where the closed curve c is drawn within a body whose electrical currents
flow continuously.

In this latter case, the amount d Q is simply related to these currents.
Let dσ be an element of area a; u, v, w the components of the electric current at

this point; N the normal to this element, oriented in the sense that it pierces the area
a from the negative side to the positive side. In the same direction, and during the
time dt , area dσ gives passage to a quantity of electricity

[u cos (N , x) + v cos (N , y) + w cos (N , z)]dσ dt
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and the whole area a to a quantity of electricity

dt
∫

a
[u cos (N , x) + v cos (N , y) + w cos (N , z)]dσ = d Q.

Equality (7.2) becomes

∫
(α dx + β dy + γ dz) − 4π

∫
a
[u cos (N , x) + v cos (N , y) + w cos (N , z)]dσ = 0.

(7.3)

However, a formula often used by Ampère, and whose general form is due to
Stokes, allows us to write

∫
(α dx + β dy + γ dz) = −

∫
a

[ (
∂γ

∂y
− ∂β

∂z

)
cos (N , x)

+
(

∂α

∂z
− ∂γ

∂x

)
cos (N , y)

+
(

∂β

∂x
− ∂α

∂y

)
cos (N , z)

]
dσ.

[136] Equality (7.3) can be written

∫
a

[(
∂γ

∂y
− ∂β

∂z
+ 4πu

)
cos (N , x) +

(
∂α

∂z
− ∂γ

∂x
+ 4πv

)
cos (N , y)

+
(

∂β

∂x
− ∂α

∂y
+ 4πw

)
cos (N , z)

]
dσ = 0.

This equality must be true for any area a drawn inside the body in which the
electrical currents flow. For this, one easily sees, it is necessary and right that there
be, at any point in this body, three equalities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂γ

∂y
− ∂β

∂z
= −4πu,

∂α

∂z
− ∂γ

∂x
= −4πv,

∂β

∂x
− ∂α

∂y
= −4πw.

(7.4)

These three equations, to which Maxwell assigns a key role, are established, in
his oldest memoir1 on electricity, by a demonstration differing from the previous

1J. Clerk Maxwell, On Faraday’s Lines of Force (Scientific Papers, vol. I, p. 194). Actually, in
this memoir, Maxwell omits the factor 4π ; further, the signs of the second members are changed
as a result of a different orientation of the coordinate axes.
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one by simple nuances; he reproduced this demonstration2 or sketched it3 in all his
subsequent writings.

In his memoir: On Faraday’s Lines of Force,4 Maxwell followed Eq. (7.4) with
the remark:

We may observe that the above equations give by differentiation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

[137] which is the equation of continuity for closed currents. Our investigations are therefore
for the present limited to closed currents; and we know little of the magnetic effects of any
currents which are not closed.

The condition of uniformity, imposed on currents in the premises of the reasoning,
is reflected in the consequences. Maxwell, who, at the time he wrote the previous
lines, professed, on electrical currents, the same ideas as all physicists, refrains from
concluding that all the currents are necessarily uniform, but only the application of
Eq. (7.4) is limited to uniform currents.

The same observation is found in the Treatise on Electricity and Magnetism; but,
according to the doctrine set out in this Treatise, if the conduction and displacement
currents can be separately non-uniform, the total flux, obtained by the composition
of the previous two, is always uniform; Eq. (7.4) will therefore be exempt from any
exception “if we take u, v, w as the components of that electric flow which is due to
the variation of electric displacement as well as to true conduction.”5 In other words,
we can, in any event, write the relations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂γ

∂y
− ∂β

∂z
= −4π(u + u),

∂α

∂z
− ∂γ

∂x
= −4π(v + v),

∂β

∂x
− ∂α

∂y
= −4π(w + w).

(7.5)

2J. Clerk Maxwell, On Physical Lines of Force (Scientific Papers, vol. I, p. 462).—Treatise on
Electricity and Magnetism, trad. française, t. II, p. 285 [230].
3J. Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field (Scientific Papers, vol. I,
p. 557 [458]).
4[p. 195].
5[vol. II, p. 231].
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7.2 The Electrotonic State and the Magnetic Potential
in the Memoir: ON FARADAY’S LINES OF FORCE

The group of three equations that we have studied does not alone constitute all of the
electromagnetics of Maxwell. It is complemented by a series of key propositions.
The form of these propositions, the series of deductions and inductions which [138]
it provides them, vary from one writing to another; we must therefore analyze suc-
cessively each of the memoirs composed on electricity by the Scottish physicist. In
chronological order, we will start with the memoir entitled: On Faraday’s Lines of
Force.

In this memoir, as in his other writings prior to the Treatise on Electricity and
Magnetism, Maxwell never takes into account the surfaces of discontinuity that the
system can have; it is thus necessary, to follow his thoughts, to assume that two
distinct media are always linked by a very thin but continuous layer of passage. It
suffices that the remark was made so that any difficulty is excluded on this side.

It is not the same as the difficulties caused by clerical errors in calculation and,
particularly, by the sign errors; they are constant in the passage which we propose to
analyze and cast some uncertainty on the thinking of the author.

To the components α, β, γ of the magnetic field that he calls sometimes magnetic
force, sometimes magnetic intensity, and sometimes effective magnetizing force,
Maxwell adds another quantity, with components A, B, C ,6 that he calls magnetic
induction; this word which, in more recent writings, will take another sense, means
surely here the quantity usually considered in the theory of magnetism under the
name ofintensity of magnetization. In accordance with the ideas of Poisson, it should
be [1st Part, equality (2.2)]

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z
= −ρ, (7.6)

ρ being the density of the fictitious magnetic fluid, which Maxwell names real
magnetic matter.7 [139]

Between the magnitudes A, B, C and components α, β, γ of the field exist the
relations

A = α

K
, B = β

K
, C = γ

K
, (7.7)

where K is the resistance to magnetic induction8; if we continue to reconcile the
theory of Maxwell’s theory of Poisson, it is recognized that this resistance is the
inverse of the coefficient of magnetization.

6We do not here keep notations of Maxwell.
7J. Clerk Maxwell, On Faraday’s Lines of Force (Scientific Papers, vol I, p. 192). Actually,
instead of ρ, Maxwell wrote 4πρ; in addition, in the passage indicated, the sign of the second
member of equality (7.6) is changed; but it is restored on p. 201.
8J. Clerk Maxwell, loc. cit., p. 192.

http://dx.doi.org/10.1007/978-3-319-18515-6_2
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Let V be a continuous function, zero to infinity, which is defined in the equation

ΔV + 4πρ = 0. (7.8)

This function will be nothing other than the magnetic potential function that Poisson
introduced into physics. Consider the differences

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = A − 1

4π

∂V

∂x
,

b = B − 1

4π

∂V

∂y
,

c = C − 1

4π

∂V

∂z
.

(7.9)

According to equalities (7.6) and (7.8), these differences will satisfy the
relationship

∂a

∂x
+ ∂b

∂y
+ ∂c

∂z
= 0. (7.10)

Now, a theorem of analysis, often employed by Stokes, Helmholtz, and
W. Thomson, shows that to three functions a, b, c, [140] related by relation (7.10),
one can always associate three other functions F , G, H , such that we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = − 1

4π

(
∂ H

∂y
− ∂G

∂z

)
,

b = − 1

4π

(
∂ F

∂z
− ∂ H

∂x

)
,

c = − 1

4π

(
∂G

∂x
− ∂ F

∂y

)
,

(7.11)

and
∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= 0. (7.12)

Therefore, equalities (7.9) can be written

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4π A = ∂V

∂x
−

(
∂ H

∂y
− ∂G

∂z

)
,

4π B = ∂V

∂y
−

(
∂ F

∂z
− ∂ H

∂x

)
,

4πC = ∂V

∂z
−

(
∂G

∂x
− ∂ F

∂y

)
.

(7.13)
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Borrowing a name whereby Faraday referred to a rather vague concept, Maxwell9

gives to the quantities F , G, H the name of components of the electrotonic state at
the point (x, y, z).

What will the physical role attributed to these quantities be? The study of the
electromagnetic potential of a system will tell us.

Let us return to Eq. (7.4).
In a system that contains no current, where, as a result, u, v, w are all equal to 0,

these equations show us that the components α, β, γ of the magnetic field are the
three partial derivatives of the same function; what is this [141] function? Guided
by the classical theory, Maxwell admits10 that it is the function −V , such that, in a
system that contains magnets and current, we have

α = −∂V

∂x
, β = −∂V

∂x
, γ = −∂V

∂x
. (7.14)

When a system of magnets moves, the forces exerted in this system, in accordance
with the classical laws that Maxwell admits and that reflect previous equalities,
perform some work; according to a well-known theorem, this work is the decrease
incurred by the expression

1

2

∫
Vρ dω,

where the integral extends to all elements of volume dω of the system. Why does
Maxwell11 omit the factor 1/2 and write these lines: “…the whole work done during
any displacement of a magnetic system is equal to the decrement of the integral

E =
∫

Vρ dω (7.15)

throughout the system…[which we] now call…the total potential of the system on
itself ”? We see no reason. The fact remains that it would be impossible to correct
this mistake and restore to E its true value without ruining, by the same token, any
deduction that we want to analyze. So let us pass sentence on this error and continue.

Equality (7.15) can still be written, in virtue of equality (7.6),

E = −
∫

V

(
∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z

)
dω

or

E =
∫ (

A
∂V

∂x
+ B

∂V

∂y
+ C

∂V

∂z

)
dω

9J. Clerk Maxwell, loc. cit., p. 203; the quantities F , G, H are designated by α0, β0, γ0.
10J. Clerk Maxwell, loc. cit., p. 202. In fact, in this passage, Maxwell said V ; but on the next page,
he restores a correct sign.
11J. Clerk Maxwell, loc. cit., p. 203.
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[142] or finally,12 in virtue of equalities (7.14),

E = −
∫

(Aα + Bβ + Cγ )dω. (7.16)

Maxwell admits13 that this expression of the potential extends to the case where the
system contains not only magnets, but also currents. Then making use of equalities
(7.13), equality (7.16) can be written

E = − 1

4π

∫ (
α

∂V

∂x
+ β

∂V

∂y
+ γ

∂V

∂z

)
dω

+ 1

4π

∫ [(
∂ H

∂y
− ∂G

∂z

)
α +

(
∂ F

∂z
− ∂ H

∂x

)
β +

(
∂G

∂x
− ∂ F

∂y

)
γ

]
dω.

(7.17)

We easily find, in virtue of equalities (7.14) and (7.8),

∫ (
α

∂V

∂x
+ β

∂V

∂y
+ γ

∂V

∂z

)
dω = −

∫ [(
∂V

∂x

)2

+
(

∂V

∂x

)2

+
(

∂V

∂x

)2
]

dω

=
∫

V ΔV dω = −4π
∫

Vρdω.

Secondly, taking into account equalities (7.4), we find

∫ [(
∂ H

∂y
− ∂G

∂z

)
α +

(
∂ F

∂z
− ∂ H

∂x

)
β +

(
∂G

∂x
− ∂ F

∂y

)
γ

]
dω

=
∫ [(

∂γ

∂y
− ∂β

∂z

)
F +

(
∂α

∂z
− ∂γ

∂x

)
G +

(
∂β

∂x
− ∂α

∂y

)
H

]
dω

= − 4π
∫

(Fu + Gv + Hw)dω.

[143] Equality (7.17) therefore becomes14

E =
∫

Vρ dω −
∫

(Fu + Gv + Hw)dω. (7.18a)

Having reached this formula, Maxwell proposes to derive from the principle
of conservation of energy the laws of electromagnetic induction, imitating, as he

12J. Clerk Maxwell, loc. cit., p. 203, changes the sign of the second member.
13J. Clerk Maxwell, loc. cit., p. 203.
14J. Clerk Maxwell, loc. cit., p. 203.
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acknowledges,15 the well-known reasoning of Helmholtz in his memoir: Ueber die
Erhaltung der Kraft.16

Imagine, he says, that external causes produce currents in the system. These causes
provide work in two forms.

In the first place, they overcome the resistance that the conductors oppose to
the passage of electricity; if we designate it by Ex , Ey , Ez , the components of the
electromotive field at a point, the work provided for this purpose, during the time
dt , is

−dt
∫

(Ex u + Eyv + Ezw)dω.

Secondly, they provide mechanical work that puts the system into motion; the
work thus provided during the time dt is, by hypothesis, equal to the increase in
the amount Q during the same time. Without justifying the omission of the term∫

Vρ dω, Maxwell reduced17 this increase to

−dt
d

dt

∫
(Fu + Gv + Hw)dω

or again, assuming u, v, w invariant, to

−dt
∫ (

d F

dt
u + dG

dt
v + d H

dt
w

)
dω.

[144] If we suppose that the external causes disappear, and that currents are
exclusively generated by the induction that the system exerts on itself, the work
provided by these external causes must equal 0, where the equality

dt
∫ (

d F

dt
u + dG

dt
v + d H

dt
w

)
dω + dt

∫
(Ex u + Eyv + Ezw)dω = 0,

which can also be written
∫ [(

d F

dt
+ Ex

)
u +

(
dG

dt
+ Ey

)
v +

(
d H

dt
+ Ez

)
w

]
dω = 0. (7.19)

Equality (7.19) is satisfied if

Ex = −d F

dt
, Ey = −dG

dt
, Ez = −d H

dt
. (7.20)

15J. Clerk Maxwell, loc. cit., p. 204.
16[English translation: Brush and Hall (2003, 90–110)].
17J. Clerk Maxwell, loc. cit., p. 204.
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These equalities, of which Maxwell18 admits the accuracy, connect the components
of the electromotive induction field to the components of the electrotonic state.

7.3 Review of the Previous Theory

Do these equalities agree with the known laws of induction?
Maxwell has not given the analytical expression of the functions F , G, H any

more than the function V and, therefore, has not developed equalities (7.20); but it
is easy to make up for his silence.

The function V is, according to his oft-repeated feeling, the magnetic potential
function, given by the equality

V (x, y, z) =
∫ (

A1
∂ 1

r

∂x1
+ B1

∂ 1
r

∂y1
+ C1

∂ 1
r

∂z1

)
dω1. (7.21)

[145] Therefore, the conditions imposed on the functions F , G, H determine
them unambiguously and give:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(x, y, z) =
∫ (

C1
∂ 1

r

∂y1
− B1

∂ 1
r

∂z1

)
dω1,

G(x, y, z) =
∫ (

A1
∂ 1

r

∂z1
− C1

∂ 1
r

∂x1

)
dω1,

H(x, y, z) =
∫ (

B1
∂ 1

r

∂x1
− A1

∂ 1
r

∂y1

)
dω1.

(7.22)

If, in Eq. (7.20), one plugs in these expressions of the functions F ,G, H , one finds,
for the electromotive field components, expressions that very exactly agree with the
known laws in the case where induction is produced by a change in magnetization,
without which the system experiences no movement. The agreement is less perfect
when the magnets and conductors move; a term is missing, that indeed it would
easily be restored by ceasing to treat u, v, w as invariable and leaving constant only
the electric flux of which these three quantities are components.

But a more serious objection stands against Maxwell’s theory.
If this theory, applied to a moving system, denotes the existence of electromotive

forces of induction, these electromotive forces all have this character of canceling
themselves out when the system contains no magnet; the movement of conductors
with currents passing through them would therefore be unable to cause any phenom-
enon of induction.

18J. Clerk Maxwell, loc. cit., p. 204.
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This single consequence suffices to condemn the theory described by Maxwell in
his essay: On Faraday’s Lines of Force.

We add a comment without which the reader would experience some trouble in
comparing the previous formulas to those of Maxwell.

In the first place,Maxwell, in writing equalities (7.4), omits in the secondmember
the factor 4π ; he introduces this factor 4π instead in the second member of equality
(7.6), and we need to indicate briefly how illogical this introduction is. [146]

Its starting point is what, in the memoir in question, Maxwell says regarding
electric currents.19

If u, v, w are the components of the current at a point S on a closed surface, the
amount of electricity that enters this surface during the time dt is

dt
∫

[u cos (Ni , x) + v cos (Ni , y) + w cos (Ni , z)]d S.

Integration by parts transforms this expression into

−dt
∫ (

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dω, (7.23a)

the integral extending over the volume that bounds the closed surface. By an evident
sign error, Maxwell writes

+dt
∫ (

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dω. (7.23b)

If e designates the electric density at a point inside surface S, the integral (7.23a)
must be equal to

dt
∫

∂e

∂t
dω,

which immediately gives the continuity equation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂e

∂t
= 0. (7.24)

Maxwell does not write this equality, but he does write equality20

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 4πρ (7.25)

without any explanation, if not that ρ is zero in the case of uniform currents. [147]

19J. Clerk Maxwell, loc. cit., pp. 191–192.
20J. Clerk Maxwell, loc. cit., p. 192, equality (C).
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He is obviously free to consider a quantity ρ defined by this equality; this quantity
ρ will be be equal to − 1

4π
∂e
∂t . Unfortunately, Maxwell seems to assume that the

quantity ρ is precisely equal to ∂e
∂t and reasons accordingly; it is likely that this

hypothesis guides him during the assimilation he establishes21 between electrical
conductivity and magnetization and leads him to connect the components of the
magnetic induction to the magnetic density by the equality

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z
= 4πρ, (7.26)

which he replaces, some pages further,22 by

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z
= −4πρ. (7.27)

We shall have occasion later to return to equality (7.26). For themoment, let us just
note that the use of equalities (7.4) and (7.6) in the form we gave provides formulas
which, sometimes, differ from those of Maxwell by the introduction or removal of a
factor of 4π ; but this amendment does not alter, we believe, the spirit of the theory.

It is, however, a last objection that could address the given interpretation of this
theory. We have accepted without discussion that the magnetic induction of which
Maxwell speaks should be identified here with the intensity of magnetization as it has
been defined at the beginning of this work; that, therefore, the magnetic resistance
K was the inverse of the coefficient of magnetization k considered by Poisson. This
assimilation needs to be discussed.

On the surface that separates a magnet and a non-magnetic medium, [148] the
magnetic potential function v satisfies the relation [1st Part, Chap. 2, equality (2.5)]

∂V

∂ Ni
+ ∂V

∂ Ne
= 4π [A cos (Ni , x) + B cos (Ni , y) + C cos (Ni , z)],

Ni and Ne being the normal directions inwards and outwards from the magnet.
If the laws of magnetism are those given by Poisson [Ibid., equalities (2.6)],
the second member of the previous equality becomes −4πk ∂K

∂ Ni
, so that previous

equality becomes
∂K

∂ Ne
+ (1 + 4πk)

∂V

∂ Ni
= 0. (7.28)

21J. Clerk Maxwell, loc. cit., p. 180.
22J. Clerk Maxwell, loc. cit., p. 201.

http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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Now, Maxwell clearly shows23 that the magnetic resistance K is equal to the ratio

−
∂V
∂ Ni

∂V
∂ Ne

.

One must therefore put

K = 1

1 + 4πk
. (7.29)

The quantity
μ = 1 + 4πk (7.30)

is what W. Thomson24 called the magnetic permeability.
The electrical resistance Maxwell considers must therefore be taken equal to

the inverse not of the coefficient of magnetization of Poisson, but of the magnetic
permeability of W. Thomson.

The components of the magnetic induction are obtained by dividing [149] com-
ponents α, β, γ of the field by the magnetic resistance or, what amounts to the same,
by multiplying by the magnetic permeability. The expressions of these quantities are

A = (1 + 4πk)α, B = (1 + 4πk)β, C = (1 + 4πk)γ, (7.31)

while the components A, B, C of the magnetization have the values

A = kα, B = kβ, C = kγ. (7.32)

Magnetic induction and magnetization are not the same; their components are bound
by the equalities

A = 1 + 4πk

k
A, B = 1 + 4πk

k
B, C = 1 + 4πk

k
C. (7.33)

When, therefore, we have identified the magnetic induction of Maxwell with the
intensity of magnetization, we have committed a serious confusion.

If we committed it, it is because it seemed consistent with the thought ofMaxwell,
and that the developed theory seemed intimately connected to this confusion.

Certainly, in the memoir that we are analyzing, Maxwell did not perceive the
distinction on which we insist; he proclaims25 the complete mathematical identity of
the formulas to which the classical theory of the magnetic polarity and the formulas
supplied by his theory of the propagation by conduction of the lines of magnetic
force led. Repeatedly, during his arguments, he carries the properties known about

23J. Clerk Maxwell, loc. cit., p. 179.
24W. Thomson, Papers on Electrostatics and Magnetism, art. 629; 1872.
25J. Clerk Maxwell, On Faraday’s Lines of Force (Scientific Papers, vol. I, p. 179).
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magnetization over to magnetic induction. In particular, the point here seems to be
very clear:

The confusion between the concept of magnetic induction and the concept of
intensity of magnetization that is considered in the classical theory of magnetism
has only led Maxwell when he determined a relationship between the variations that
the magnetic induction [150] feels from one point to another and the density of the
magnetic material. When, in his Treatise on Electricity and Magnetism, Maxwell
will manage to distinguish the two concepts of intensity of magnetization and mag-
netic induction, he will not establish any relationship between the derivatives of the
components of the latter and the magnetic density.

7.4 The Electrotonic State and the Electromagnetic Energy
in the Memoir: ON PHYSICAL LINES OF FORCE

Our intention is not to discuss here the mechanical problems that the theory outlined
in the memoir: On Physical Lines of Force poses. Accepting as demonstrated all the
dynamical laws that Maxwell states regarding the medium that he has imagined, we
will examine only how Maxwell carries these laws from the field of mechanics to
the field of electricity.

The fluid contained in the cells is driven by a whirling motion; let, at the point
(x, y, z) and time t , α, β, γ be the projections on the axes of a segment equal to the
angular speed of rotation and focused on the instantaneous axis of rotation of the
element dω; let, in addition, μ be a quantity proportional to the density of the fluid
that drives these vortical movements. According to Maxwell, an element of volume
dω of fluid is subjected to a force of which X dω, Y dω, Z dω are the components.
X has the following form26:

X = 1

4π

(
∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ

)
α + μ

8π

∂(α2 + β2 + γ 2)

∂x

+ μγ

4π

(
∂γ

∂x
− ∂α

∂z

)
− μβ

4π

(
∂α

∂y
− ∂β

∂x

)
− ∂Π

∂x
. (7.34)

Y et Z have analogous expressions.
Leaving aside the term −Π

x , where Π represents a certain pressure, Maxwell
strives to give an electromagnetic interpretation [151] of the other terms that form
the second member of equality (7.34).

The starting point of this interpretation is the following:
The magnitudes α, β, γ , components of rotation, represent the components of the

magnetic field at each point.

26J. Clerk Maxwell, On Physical Lines of Force, Scientific Papers, vol. I, p. 458.
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Therefore, if the element dω contains a mass m of magnetic fluid, it must be
subjected to a force with components αm, βm, γ m. Among the terms that form X ,
we must, in the first place, according to Maxwell, find the term αρ, ρ = m

dω
being

the density of the magnetic fluid at the point under consideration, and this term can
only be the first. Maxwell is also led to admit that the density of magnetic fluid at a
point is given by the equality

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 4πρ. (7.35a)

Maxwell, who again called the quantities μα, μβ, μγ the components of the
magnetic induction, is thus led to take up again equality (7.26)which he hadproposed,
then abandoned, in his previous memoir.

Does Maxwell seek to justify this relationship otherwise than by needing to find
a certain term for the second member of equality (7.34)? He only writes in this sense
these few lines27:

…so… (
∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ

)
dω = 4πρ dω,

which represents the total amount of magnetic induction outwards through the surface of the
element dω,28 represents the amount of “imaginary magnetic matter” within the element, of
the kind which points north.

But these lines are contrary to the purpose pursued by Maxwell, because they
would lead to writing ρ dω for the second member, and not 4πρdω. [152]

The influence on the mind of Maxwell by the strange equality (7.25), written in
his previous memoir, is very tangible here.

If α, β, γ represent the components of the magnetic field, the components u, v,
w of the electric current must satisfy equalities (7.4). For the second member of X ,
we have

μ

4π

(
∂γ

∂x
− ∂α

∂z

)
− μβ

4π

(
∂a

∂y
− ∂β

∂x

)
= μ(γ v − βw), (7.36)

which would represent the parallel component to Ox of the electromagnetic action.
It remains to interpret the term

μ

8π

∂

∂x
(α2 + β2 + γ 2). (7.37)

It represents the component parallel to Ox of a force that tends to lead the element
dω to the region of space where the field has the largest absolute value. Faraday29 had
already shown that you could regard a small diamagnetic body, i.e. a body for which

27J. Clerk Maxwell, loc. cit., p. 459.
28[dx dy dz in the original of Maxwell].
29Faraday, Experimental Researches, §2418 Philosophical Transactions, 1846, p. 21.
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μ is lower than in the surrounding medium, as if it were directed toward the region
of space where the field has lesser absolute value; and W. Thomson had shown30

that a small, perfectly soft body was somehow attracted to the point of space where
(α2 + β2 + γ 2) has the largest value. Maxwell does not hesitate to show in the term
(7.37) the component of this attraction parallel to Ox .

But a serious objection can be made to this interpretation.
When a perfectly soft body is subjected to magnetic induction, the magnetization

it takes can be represented by a certain distribution of magnetic fluid; the actions it
undergoes can be decomposed into forces that would act on the various elementary
masses of magnetic fluid. The apparent attraction exerted on the perfectly soft body
by the point where the [153] field reaches its largest absolute value is not an action
separate from the preceding and superposed on the previous ones; it is only the
result. The interpretation of Maxwell makes him find twice, for the second member
of equality (7.34), an action that the recognized laws of magnetism admit only once.

This difficulty is not the only one that faces the theory which we continue to
present.

Suppose31 that the systemcontains no electric current; the equalities, then verified,

u = 0, v = 0, w = 0,

will be transformed, according to equalities (7.4), into

∂γ

∂y
− ∂β

∂z
= 0,

∂α

∂z
− ∂γ

∂x
= 0,

∂β

∂x
− ∂α

∂y
= 0;

the components α, β, γ of the magnetic field will be the three partial derivatives of
the same function:

α = −∂V

∂x
, β = −∂V

∂y
, γ = −∂V

∂z
. (7.38)

Equality (7.35a) will become

∂

∂x

(
μ

∂V

∂x

)
+ ∂

∂y

(
μ

∂V

∂y

)
+ ∂

∂z

(
μ

∂V

∂z

)
= −4πρ, (7.39)

and, in a region where μ does not change value when one moves from one point to
the next point,

ΔV = −4π
ρ

μ
. (7.40)

30W. Thomson, Philosophical Magazine, October 1850.—Papers on Electrostatics and

Magnetism, no 647.
31J. Clerk Maxwell, loc. cit., p. 464.
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Imagine that μ has the same value throughout all of space. Suppose that a region
1 of this space contains the “imaginary [154] magnetic material” such that ρ differs
from 0, while ρ is zero in all the rest of the space; we will have

V = 1

μ

∫
1

ρ1

r
dω1. (7.41)

The magnetic field will therefore be calculated as if two masses m, m′, located at
the distance of r , are repelled with a force

1

μ

mm′

r2
.

In the vacuum where, by definition, μ = 1, this force has the expression mm′
r2

given by Coulomb, of which it also seems we have found the law, a conclusion
however that we should not rush to affirm, because the previous deduction is subject
to the hypothesis that μ has the same value within the magnetized masses and the
interposed medium, an unacceptable hypothesis when it comes to iron masses placed
in air.

We add this remark, well able to discredit any theory of magnetism given by
Maxwell. According to the classical theory, any magnet still contains as much boreal
magnetic fluid as austral magnetic fluid; so the total magnetic charge it contains is
always equal to 0. This conclusion no longer has force in the theory of Maxwell;
such that, according to this theory, it seems possible to isolate a magnet that would
contain only the boreal fluid or only the austral fluid.

The previous considerations play a large role in the determination of the form that
should be attributed to magnetic energy.32

The fluid, animated with vortical movements representing the magnetic field, has
a certain live force33; this live force has the value

E = C
∫

μ(α2 + β2 + γ 2)dω, (7.42)

[155] the integral extending over the entire system and C being a constant coefficient
whose value is to be determined.

To achieve this, Maxwell assumes that the system contains no current, in which
case equalities (7.38) are applicable. Equality (7.42) then becomes

E = C
∫

μ

[(
∂V

∂x

)2

+
(

∂V

∂y

)2

+
(

∂V

∂z

)2
]

dω.

32J. Clerk Maxwell, loc. cit., p. 472.
33[Force vive or mv2, related to the kinetic energy mv2/2].



118 7 The Six Equations of Maxwell and Electrosmagnetic Energy

He next assumes thatμ has the same value in all space, which allows him to transform
the previous equality into

E = −C
∫

μV ΔV dω. (7.43)

He finally assumes that the function V is the sum of two functions:

V = V1 + V2.

The first, V1, satisfies, at any point in the volume ω1, the equality

ΔV2 = −4πρ2

μ
,

and, at any other point, equality ΔV1 = 0. The second, V2, satisfies, at any point in
a volume ω2 not having any point in common with ω1, the equality

ΔV2 = −4πρ2

μ

and, at any other point, the equality ΔV2 = 0. Therefore, equality (7.43) can be
written

E = 4πC
∫

ω1

(V1 + V2)ρ1 dω1 + 4πC
∫

ω2

(V + V2)ρ2 dω2. (7.44)

Furthermore, Green’s theorem gives the equality

∫
V1ΔV2 dω =

∫
V2ΔV1 dω,

[156] where the integrals extend over the whole space. This equality is easily trans-
formed into the following,

∫
ω2

V1ρ2 dω2 =
∫

ω1

V2ρ1 dω1,

which transforms equality (7.44) into

E = 4πC
∫

ω1

V1ρ1 dω1 + 4πC
∫

ω2

V2ρ2 dω2 + 8πC
∫

ω2

V1ρ2 dω2. (7.45)

Suppose the volume ω1 and the value of ρ1, which corresponds to each of its
points, remain fixed. Suppose the volume ω2 moves as a rigid solid, each of its
points leading to the value of ρ2, which corresponds to it. We easily recognize that∫
ω1

V1ρ1 dω1 and
∫

V2ρ2 dω2 will keep the values invariable, while if we mean by
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∂x2, ∂y2, ∂z2 the components of the displacement of a point of the element dω2, we
will have

∂

∫
ω2

V1ρ2 dω2 =
∫

ω2

ρ2

(
∂V1

∂x2
∂x2 + ∂V1

∂y2
∂y2 + ∂V1

∂z2
∂z2

)
dω2

and

∂ E = 8πC
∫

ω2

ρ2

(
∂V1

∂x2
∂x2 + ∂V1

∂y2
∂y2 + ∂V1

∂z2
∂z2

)
dω2. (7.46)

This variation of the energymust be equal and opposite in sign to thework of apparent
forces that the magnet ω1 exerts on the magnet ω2.

Taking account of the first term of expression (7.34) of X and of the interpretation
that he gave, but completely forgetting the second term, Maxwell admits that this
work has the value

dT =
∫

ω2

ρ2(α1 ∂x2 + β1 ∂y2 + γ1 ∂x2)dω2

[157] or else, by virtue of equalities (7.38),

dT = −
∫

ω2

ρ2

(
∂V1

∂x2
∂x2 + ∂V1

∂y2
∂y2 + ∂V1

∂z2
∂z2

)
dω2.

By identifying the expression −dT with the expression ∂ E given by equality
(7.46), we find

8πC = 1,

such that equality (7.42) becomes

E = 1

8π

∫
μ(α2 + β2 + γ 2)dω. (7.47a)

Thus, the expression of the live force or electromagnetic kinetic energy is obtained.
This expression will play a significant role in the work of Maxwell.

Here is an important application.34

Imagine a stationary systemwhere α, β, γ vary from one moment to the next. The
systemwill be traversed by electrical currents generated by induction. The production
of these currents corresponds to a certain increase of energy of the system; and
Maxwell admits that if Ex , Ey , Ez are the components of the electromotive field,

34J. Clerk Maxwell, Scientific Papers, vol. I, p. 475.
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the increase of energy, within the system, in time dt , corresponding to the creation
of the electrical currents, has the value

dt
∫

(Ex u + Eyv + Ezw)dω.

The total energy of the system, which is assumed to subtract from all external
action, must remain invariant, the increase of which we just gave the expression
should be offset by an equal decrease in the electromagnetic live force. This decrease
has, moreover, the value

− dt

4π

∫
μ

(
α

∂α

∂t
+ β

∂β

∂t
+ γ

∂γ

∂t

)
dω.

[158] We will therefore have the equality

(Ex u + Eyv + Ezw)dω + 1

4π

∫
μ

(
α

∂α

∂t
+ β

∂β

∂t
+ γ

∂γ

∂t

)
dω = 0. (7.48)

But, in virtue of equalities (7.4),

∫
(Ex u + Eyv + Ezw)dω

= − 1

4π

∫ [(
∂γ

∂y
− ∂β

∂z

)
Ex +

(
∂α

∂z
− ∂γ

∂x

)
Ey +

(
∂β

∂x
− ∂α

∂y

)
Ez

]
dω

= − 1

4π

∫ [(
∂ Ez

∂y
− ∂ Ey

∂z

)
α +

(
∂ Ex

∂z
− ∂ Ez

∂x
)

)
β +

(
∂ Ey

∂x
− ∂ Ex

∂y

)
γ

]
dω.

Equality (7.48) then becomes

∫ [(
∂ Ez

∂y
− ∂ Ey

∂z
− μ

∂α

∂t

)
α +

(
∂ Ex

∂z
− ∂ Ex

∂x
− μ

∂β

∂t

)
β

+
(

∂ Ey

∂x
− ∂ Ex

∂y
− μ

∂γ

∂t

)
γ

]
dω = 0.

It will be obviously verified if, at each point,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ Ez

∂y
− ∂ Ey

∂z
= μ

∂α

∂t
,

∂ Ex

∂z
− ∂ Ez

∂x
= μ

∂β

∂t
,

∂ Ey

∂x
− ∂ Ex

∂y
= μ

∂γ

∂t
.

(7.49)
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The three equations that we just wrote are of great importance; together with the
three Eq. (7.4), they form what it is convenient to name—with Heaviside, Hertz, and
Cohn—the six equations of Maxwell.

Let Ψ (x, y, z, t) be the function, defined for a function near t , which satisfies in
all of space the relationship

ΔΨ + ∂ Ex

∂x
+ ∂ Ey

∂y
+ ∂ Ez

∂z
= 0. (7.50)

[159] We put ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ex = −∂Ψ

∂x
+ E ′

x ,

Ey = −∂Ψ

∂y
+ E ′

y,

Ez = −∂Ψ

∂z
+ E ′

z .

(7.51)

Equalities (7.49) and (7.50) will become

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ E ′
z

∂y
− ∂ E ′

y

∂z
= μ

∂α

∂t
,

∂ E ′
x

∂z
− ∂ E ′

z

∂x
= μ

∂β

∂t
,

∂ E ′
y

∂x
− ∂ E ′

x

∂y
= μ

∂γ

∂t
.

(7.52)

∂ E ′
x

∂x
+ ∂ E ′

y

∂y
+ ∂ E ′

z

∂z
= 0. (7.53)

These equations, verified throughout all of space, are treated by Maxwell in the
following manner35:

Let F , G, H be three functions that satisfy in all of space relations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −μα,

∂ F

∂z
− ∂ H

∂x
= −μβ,

∂G

∂x
− ∂ F

∂y
= −μγ,

(7.54a)

35Indeed, in the analyzed passage, Maxwell designates by −F , −G, −H the quantities which we
refer to here as F , G, H ; the change of sign we introduced restores the concordance among the
various writings of Maxwell.
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∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= 0. (7.55a)

[160] We will have

Ex = −∂ F

∂t
, Ey = −∂G

∂t
, Ez = −∂ H

∂t
,

and equalities (7.51) will become

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ex = −∂Ψ

∂x
− ∂ F

∂t
,

Ey = −∂Ψ

∂y
− ∂G

∂t
,

Ez = −∂Ψ

∂z
− ∂ H

∂t
.

(7.56a)

The functions F , G, H , which are contained in these formulas, are the components of
the electrotonic state, already considered by Maxwell in his memoir: On Faraday’s
Lines of Force. As for Ψ , it36

is a function of x , y, z, and t , which is indeterminate as far as regards the solution of
the original equations, but which may always be determined in any given case from the
circumstances of the problem. The physical interpretation of Ψ is, that it is the electric
tension at each point of space.37

In a system where the steady state is established, F , G, H no longer depend on
time; equalities (7.56a) reduce to

Ex = −∂Ψ

∂x
, Ey = −∂Ψ

∂y
, Ez = −∂Ψ

∂z
. (7.57)

The components of the electromotive field are respectively equal to three partial
derivatives of a function whose analytical form remains absolutely unknown. It is
one of the foundations of Maxwell’s second electrostatics.38

By exposing this calculation, Maxwell notes very precisely39 [161] that equations
(7.54a) cannot be written if we have at any point

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 0. (7.58a)

36In the study on induction in a stationary system, Maxwell has forgotten the terms in − ∂Ψ
∂x , − ∂Ψ

∂y ,

− ∂Ψ
∂z ; but he recovered them in the formulas pertaining to induction within a moving system.

37[t. I, p. 482].
38See 1st Part, Chap. 4.
39J. Clerk Maxwell, Scientific Papers, vol. I, p. 476, equality (57).

http://dx.doi.org/10.1007/978-3-319-18515-6_4
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Brought closer to equality (7.35a), this latter equality becomes

ρ = 0.

Equation (7.54a) can bewritten only if the fictitious magnetic material everywhere
has zero density. The theory of the electrotonic state that Maxwell developed here is
incompatible with the existence of magnetism; it is a restriction that Maxwell will
forget in his memoir: A Dynamical Theory of the Electromagnetic Field.

7.5 The Electrotonic State and Electromagnetic Energy
in the Memoir: A DYNAMICAL THEORY

OF THE ELECTROMAGNETIC FIELD

In the document entitled: On Physical Lines of Force, Maxwell has endeavoured to
create a mechanical assemblage whose properties could be regarded as the expla-
nation of electrical phenomena. In his later writings, while continuing to admit that
electric and magnetic actions are essentially mechanical, he no longer seeks to build
the machinery which produces them. According to the council of Pascal, he contin-
ues to “say in general: this happens through shape and motion;” but he no longer
tries “to say which and compose the machine.”40 To formulate the expression of
electrostatic energy and electromagnetic energy; to show that to these expressions
one can attach the laws of electrical phenomena, imitating the Lagrange’s method
of deriving the equations of motion of a system from expressions of the potential
and kinetic energies of the system; these are the objects of the memoir: A Dynamical
Theory of the Electromagnetic Field and the Treatise on Electricity and Magnetism.

The third part of the memoir: A Dynamical Theory of the Electromagnetic Field,
which interests us here, offers, [162] in an extremely concise form, the union of the
main formulas governing electrical phenomena.

One of the quantities that Maxwell introduces, firstly, is the electromagnetic
moment41; this vector, whose components he designates by F , G, H , plays exactly
the role he attributed to it in his previous memoirs on the electrotonic state; he readily
admits, in fact, that the components E ′

x , E ′
y , E ′

z of the electromotive induction field
in a stationary system are given by equalities

E ′
x = −∂ F

∂t
, E ′

y = −∂G

∂t
E ′

z = −∂ H

∂t
.

Maxwell gives no analytic expression to these quantities F , G, H , but he connects
them to the components α, β, γ of the magnetic field. Designating the components

40[Pascal (2004, p. 25, S118/L84)].
41J. Clerk Maxwell, Scientific Papers, vol. I, p. 555.
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of the magnetic induction by μα, μβ, μγ , he wrote the three relations42

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −μα,

∂ F

∂z
− ∂ H

∂x
= −μβ,

∂G

∂x
− ∂ F

∂y
= −μγ.

(7.54a)

These equalities, verified throughout all of space, are exactly the same as equalities
(7.54a); but to equalities (7.54a) the following relation is joined:

∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= 0, (7.55a)

such that the functions F , G, H were determined. In thememoir that we are currently
analyzing, Maxwell no longer admits [163] the accuracy of equality (7.55a); on the
contrary, he writes43

∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= J, (7.55b)

and he treats the quantity J as an unknown quantity, generally different from 0.
Therefore, the quantities F , G, H are no longer determined; you can add to them,

respectively, the three derivatives with respect to x , y, z of an arbitrary function of
variables x , y, z, t .

When, therefore, Maxwell wrote44 the components of the electromotive field
within a stationary system ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ex = −∂Ψ

∂x
− ∂ F

∂t
,

Ey = −∂Ψ

∂y
− ∂G

∂t
,

Ez = −∂Ψ

∂z
− ∂ H

∂t
,

(7.56b)

he can, in all circumstances, substitute forΨ any function of x , y, z, t . The functionΨ

is absolutely indeterminate and could logically agree with the following statement45:

Ψ is a function of x , y, z, and t , which is indeterminate as far as regards the solution of
the above equations, because the terms depending on it will disappear on integrating round
the circuit. The quantity Ψ can always, however, be determined in any particular case when
we know the actual conditions of the question. The physical interpretation of Ψ is, that it
represents the electric potential at each point of space.

42J. Clerk Maxwell, loc. cit., p. 556.
43J. Clerk Maxwell, Scientific Papers, vol. I, p. 578.
44J. Clerk Maxwell, loc. cit., p. 558 and p. 578.
45J. Clerk Maxwell, loc. cit., p. 558.
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In addition,whenMaxwell, in hismemoir:On Physical Lines of Force, hadwritten
Eq. (7.54a), he had taken care to note [164] that they would be absurd if on did not
have, in all of space, the equality

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 0. (7.58a)

In the present memoir, he fails to make this remark and, what is more, he reasons
as if equality (7.58a) were wrong; we will see in time an example.

As a result of considerations46 whose extreme brevitymakes it difficult to consider
as reasoning, Maxwell admits47 that the electromagnetic energy is given by the
formula

E = 1

2

∫
(Fu + Gv + Hw)dω, (7.59)

where u, v, w represent the components of the total current and where the integral
extends over all of space.

We will seek to clarify the considerations which led Maxwell to this expression.
In time dt , the system releases, according to Joule’s law, a quantity of heat given

in mechanical units by the expression

dt
∫

r(u2 + v2 + w2)dω,

where r is the specific resistance of the medium; in virtue of Ohm’s law, this amount
of heat can also be written

dt
∫

(Ex u + Eyv + Ezw)dω.

If the system, isolated and immobile, is subject only to the electromotive actions
that the fluctuations in the flow of electricity produce by induction, this amount of
heat output in [165] time dt is exactly equal to the reduction of electromagnetic
energy during the same time; so we have the equality

d E + dt
∫

(Ex u + Eyv + Ezw)dω = 0.

At the same time, the components Ex , Ey , Ez of the electromotive field are given
by equalities (7.56b), so that the previous equality becomes

46J. Clerk Maxwell, Scientific Papers, vol. I, p. 541.
47J. Clerk Maxwell, loc. cit., p. 562.
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d E − dt
∫ (

∂Ψ

∂x
u + ∂Ψ

∂y
v + ∂Ψ

∂z
w

)
dω

− dt
∫ (

∂ F

∂x
u + ∂G

∂y
v + ∂ H

∂z
w

)
dω = 0.

The term

−dt
∫ (

∂Ψ

∂x
u + ∂Ψ

∂y
v + ∂Ψ

∂z
w

)
dω

can be written ∫
Ψ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dω.

It is therefore equal to 0 if one considers only uniform currents for which

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0.

So we have

d E = dt
∫ (

∂ F

∂t
u + ∂G

∂t
v + ∂ H

∂t
w

)
dω. (7.60)

Is this equality compatible with the expression of E that equality (7.59) provides? It
gives equality

d E = 1

2
dt

∫ (
∂ F

∂x
u + ∂G

∂y
v + ∂ H

∂z
w

)

+ 1

2

(
F

∂u

∂x
+ G

∂v

∂y
+ H

∂w

∂z

)
dω.

[166] So that this equality is compatible with equality (7.60), it is necessary and
sufficient to have the equality

∫ (
∂ F

∂t
u + ∂G

∂t
v + ∂ H

∂t
w

)
dω

=
∫ (

F
∂u

∂t
+ G

∂v

∂t
+ H

∂w

∂t

)
dω. (7.61)

Is this equality satisfied? It is impossible to decide since, in the memoir that we
are analyzing, Maxwell gives no determinate analytic expressions to the functions
F , G, H .

We accept equality (7.59). Equalities (7.4) will give it the form

E = − 1

8π

∫ [(
∂γ

∂y
− ∂β

∂z

)
F +

(
∂α

∂z
− ∂γ

∂x

)
G +

(
∂β

∂x
− ∂α

∂y

)
H

]
dω



7.5 The Electrotonic State and the Electromagnetic Energy … 127

that an integration by parts will change into

E = − 1

8π

∫ [(
∂ H

∂y
− ∂G

∂z

)
α +

(
∂ F

∂z
− ∂ H

∂x

)
β +

(
∂G

∂x
− ∂ F

∂y

)
γ

]
dω.

Equalities (7.54b) will then give

E = 1

8π

∫
μ(α2 + β2 + γ 2)dω. (7.47a)

The electromagnetic energy, determined in the memoir: A Dynamical Theory of
the Electromagnetic Field by electrical considerations, thus takes the form, in the
memoir: On Physical Lines of Force, of mechanical hypotheses that he had attributed
to it.

The agreement between these forms of electromagnetic energy and those to which
Maxwell was led, in his memoir: On Faraday’s Lines of Force, is more difficult to
establish from the theory of magnetism.

The latter form is given by the equality

E =
∫

Vρ dω −
∫

(Fu + Gv + Hw)dω. (7.18b)

[167] The magnetic density ρ is related to the components of the magnetic induc-
tion by equality (7.35a)

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 4πρ

or, in virtue of equalities (7.54b),
ρ = 0.

Equality (7.18a) therefore reduces to

E = −
∫

(Fu + Gv + Hw)dω. (7.62)

This expression of electromagnetic energy differs from expression (7.59) of the
same quantity at once by the presence of the “−” sign and the lack of the factor 1

2 .
In truth, as we have remarked in Sect. 7.2, the absence of the factor 1

2 comes from
an omission, and this factor could be easily restored. But the contradiction that the
nature of the signs introduced between the two expressions of the electromagnetic
energy cannot be avoided.

It would disappear, however, if in the definition of the magnetic density, given
by equality (7.6), we changed the sign of ρ; Maxwell made this change in sign
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accidentally in the memoir: On Faraday’s Lines of Force, then normally in his
subsequent memoirs.

Does the expression (7.47a) of the electromagnetic energy agree with the laws
known tomagnetism?Whether the systemdoes or does not contain currents,Maxwell
admits that there exists a function Φ48 which he called magnetic potential, such that
one has

α = −Φ

x
, β = −Φ

y
, γ = −Φ

z
. (7.63)

[168] Expression (7.47a) then becomes

E = − 1

8π

∫ (
μα

∂Φ

∂x
+ μβ

∂Φ

∂y
+ μγ

∂Φ

∂z

)
dω

or, by integrating by parts,

1

8π

∫
Φ

(
∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ

)
dω. (7.64)

Without any further calculation, Maxwell would have noticed that equalities
(7.54b) immediately give

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 0, (7.58b)

which transforms equality (7.64) into

E = 0.

The electromagnetic energy would thus be identically zero in all circumstances;
such a consequence would have revealed to him that one cannot at the same time
accept equalities (7.54b) and equalities (7.63). Such a contradiction does not bother
Maxwell. He introduces in his calculations the quantity ρ defined by the equality

∂

∂x
μα + ∂

∂y
μβ + ∂

∂z
μγ = 4πρ; (7.35b)

he treats this quantity ρ as if it were not identically zero and replaces equality (7.64)
by the equality

E = 1

2

∫
Φρ dω. (7.65)

48J. Clerk Maxwell, Scientific Papers, vol. I, p. 566. In fact, Maxwell called the function −Φ the
magnetic potential.
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From this expression, by a reasoning of which we have already seen several
examples, Maxwell proposes to derive the law of the actions exerted between two
poles of magnets.

To achieve this, Maxwell implicitly assumes that μ has the same value through-
out all of space; the function Φ is the sum [169] two functions V1, V2 which are
respectively the potential functions of two magnetic masses 1 and 2. The function
V1 satisfies in all space the equation

ΔV1 = 0,

except inside the body 1 where it satisfies the equation

Δ1 = −4πρ1

μ
.

The function V2 satisfies, at all points in space, the equation

ΔV2 = 0,

except inside body 2, where it satisfies the equation

ΔV2 = −4πρ2

μ
.

The magnetic energy E can be written

E = − 1

8π

∫
(V1 + V2)(ΔV1 + ΔV2)dω.

But according to Green’s theorem,

∫
V1ΔV2 dω =

∫
V2ΔV1 dω,

we can therefore write:

E = − μ

8π

∫
V1ΔV1 dω − μ

8π

∫
V2ΔV2 dω − μ

4π

∫
V1ΔV2 dω

or, in virtue of the properties of the function V2,

E = − μ

8π

(∫
V1ΔV1 dω +

∫
V2ΔV2 dω

)
+

∫
V1Δρ2 dω.

Suppose that magnet 1 has fixed magnetization and position, and magnet 2 moves
as a rigid solid, by [170] causing its magnetization; we can equally say that it carries
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with it its potential function V2. Both integrals

∫
V1ΔV1 dω,

∫
V2ΔV2 dω,

extended to all space, clearly keep invariant values. If by dx2, dy2, dz2 we mean the
components of displacement of a point of the element dω2, belonging to body 2, we
will have

d E =
∫
2
ρ2

(
∂V1

∂x2
dx2 + ∂V1

∂y2
dy2 + ∂V1

∂z2
dz2

)
dω2.

Moreover, d E is equal to the internal work accomplished in the modification in
question, with a change in sign. Everything is therefore as if on each element dω2,
of body 2, body 1 exerted a force with components

X = −ρ2
∂V1

∂x2
dω2, Y = −ρ2

∂V1

∂y2
dω2, Z = −ρ2

∂V1

∂z2
dω2.

Moreover, the analytical characteristics attributed to the function V1 require that
we have

V1 = 1

μ

∫
1

ρ1

r
dω1.

The components of the force exerted by magnet 1 on an element dω2 of magnet
2 are therefore

X = − 1

μ
ρ2 dω2

∂

∂x2

∫
1

ρ1

r
dω1,

Y = − 1

μ
ρ2 dω2

∂

∂y2

∫
1

ρ1

r
dω1,

Z = − 1

μ
ρ2 dω2

∂

∂z2

∫
1

ρ1

r
dω1.

They are the same as if two magnetic masses m1 = ρ1 dω1 [171] and m2 =
ρ2 dω2, separated by a distance r , are repelled with a force

1

μ

m1m2

r2
.

This proposition seems to be consistent with the known laws of magnetism. In
reality, it is necessary to reproduce here the remark we already made: the previous
theory is intimately linked to an unacceptable hypothesis; it assumes that the coeffi-
cient μ has the same value for all bodies, both for the magnets as for the medium,
such as air, in which they are immersed.
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7.6 The Theory of Magnetism in the TREATISE

ON ELECTRICITY AND MAGNETISM

Maxwell said49:

In the following Treatise I propose to describe the most important of these [electric and
magnetic] phenomena, to shew how they may be subjected to measurement, and to trace the
mathematical connexions of the quantities measured. Having thus obtained the data for a
mathematical theory of electromagnetism, and having shewn how this theory may be applied
to the calculation of phenomena, I shall endeavour to place in as clear a light as I can the
relations between the mathematical form of this theory and that of the fundamental science
of Dynamics, in order that we may be in some degree prepared to determine the kind of
dynamical phenomena among which we are to look for illustrations or explanations of the
electromagnetic phenomena.

The object of the work thus being clearly defined, the following problem must
play an essential role:

From basic laws of electricity and magnetism, to derive the expression of the
electrostatic energy and electromagnetic energy; to show that these two energies can
[172] be put in the form that the memoir: On Physical Lines of Force has attributed
to the potential energy and to the live force50 of the medium whose mechanical
deformations imitate or explain the electromagnetic phenomena.

We have already seen51 how the part of this program which concerns electrostatic
energy is realized. Now let us examine the determination of electromagnetic energy.

Maxwell arrives at the expression of this energy by two different methods; one of
these methods involves the laws of electromagnetism, while the other, restricted to
systems that contain no currents, relies exclusively on the theory of magnetism.

The Treatise on Electricity and Magnetism, indeed, presents a complete theory of
magnetism. This theory forms the third part of the book.

The theory of magnetism Maxwell presents is the classical theory created by the
work of Poisson, F. E. Neumann, G. Kirchhoff, and W. Thomson, the theory whose
key proposals we have summarized previously.52 He considers, in particular, the
intensity of magnetization, defined as we defined it in the passage quoted.

Components A, B, C of this intensity of magnetization are used, by Maxwell as
by Poisson,53 to define the magnetic potential function by the formula

V =
∫ (

A1
∂ 1

r

∂x1
+ B1

∂ 1
r

∂y1
+ C1

∂ 1
r

∂z1

)
dω1. (7.66)

49J. Clerk Maxwell, Treatise on Electricity and Magnetism, Preface of the 1st edition; t. 1, p. IX de
la traduction française [pp. v–vi of the English original].
50[Force vive or mv2, related to the kinetic energy mv2/2].
511st Part, Chap.5, Sect. 5.2.
521st Part, Chap.2, Sect. 2.1.
531st Part, equality (2.1).—J. ClerkMaxwell, Treatise on Electricity and Magnetism, trad. française,
t. II, p. 10 [9], equality (8).

http://dx.doi.org/10.1007/978-3-319-18515-6_5
http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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Components α, β, γ of the field are linked to this function by the relations

α = −∂V

∂x
, β = −∂V

∂y
, γ = −∂V

∂z
. (7.67)

[173] This potential function can also be expressed by the means of two solid and
surface densities, ρ and σ , of the fictitious magnetic fluid by the equality

V =
∫

ρ1

r
dω1 +

∫
σ1

r
d S1,

and these densities are related to the components of magnetization by equalities54

∂ A

∂x
+ ∂ B

∂y
+ ∂C

∂z
= −ρ, (7.68)

A cos (Ni , x) + B cos (Ni , x) + C cos (Ni , x) = −σ, (7.69)

already given by Poisson.
In comparison to the intensity of magnetization, but without confusing it with it,

as he seems to have done in his early writings, Maxwell considers55 the magnetic
induction. The components A, B, C of this quantity are defined by the equalities

⎧⎪⎨
⎪⎩
A = α + 4π A,

B = β + 4π B,

C = γ + 4πC,

(7.70)

which equalities (7.67) also allow us to write

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A = 4π A − ∂V

∂x
,

B = 4π B − ∂V

∂y
,

C = 4πC − ∂V

∂z
,

(7.71)

In restoring the magnetic induction to its proper meaning, Maxwell drops the
relationship, under two different and [174] incompatible forms, that he intended to
establish between the components of the magnetic induction and the density of the
fictitious magnetic material. Hence, he implicitly denies all reasonings, so essential
in his previous writings, which invoked this relationship.

541st Part, equalities (2.2) and (2.3). — J. Clerk Maxwell, loc. cit., p. 11 [10].
55J. Clerk Maxwell, loc. cit., no 400, p. 28 [24].

http://dx.doi.org/10.1007/978-3-319-18515-6_2
http://dx.doi.org/10.1007/978-3-319-18515-6_2
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At any point of a continuous medium, we have56

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 4π

(
∂ A

∂x
+ ∂ B

∂x
+ ∂C

∂x

)
.

In virtue of equalities (7.71), this equality becomes57

∂A

∂x
+ ∂B

∂x
+ ∂C

∂x
= 0. (7.72)

From this last equality, it follows that one can find three functions F , G, H , such
that we have ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −A,

∂ F

∂z
− ∂ H

∂x
= −B,

∂G

∂z
− ∂ F

∂y
= −C.

(7.73a)

Maxwell writes these equations58 and calls quantity, of which F , G, H are the
components, the vector potential of magnetic induction. In this regard, we need
to repeat the observation that we have already made regarding equalities (7.54b):
equalities (7.73a) are not sufficient to determine the functions F , G, H , as long as
the value of the sum

∂ F

∂x
+ ∂ F

∂x
+ ∂ F

∂x

is left indeterminate.
[175] In a perfectly soft body where the magnetizing function is reduced to a

coefficient k independent of the intensity of magnetization, we have

A = kα, B = kβ, C = kγ. (7.74)

Equalities (7.70) then become

A = 1 + 4πk

k
A,B = 1 + 4πk

k
B,C = 1 + 4πk

k
C.

Among the components of magnetization and magnetic induction, we find rela-
tions (7.33). If we set

μ = 1 + 4πk, (7.75)

561st Part, equality (2.4).
57J. Clerk Maxwell, loc. cit., p. 57 [50], equality (17).
58J. Clerk Maxwell, loc. cit., no 405, p. 32 [28], equalities (21). In the Treatise of Maxwell, the sign
of the second member is changed as the result of a different choice of coordinate axes.

http://dx.doi.org/10.1007/978-3-319-18515-6_2
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equalities (7.70) and (7.74) give the equalities59

A = μα, B = μβ, C = μγ, (7.76a)

which, in the earlier writings ofMaxwell, were used to define themagnetic induction.
We come to the determination of the magnetic energy.
Magnet 1, of which (x1, y1, z1) is a point and dω1 an element, lies in the presence

of another magnet, whose magnetic potential function is V2. These two magnets are
rigid solids, and to each of their elements an intensity of magnetization is invariably
linked; while magnet 2 remains stationary, magnet 1 moves. The actions of magnet
2 on magnet 1 produce a certain work; according to the classical [176] doctrines of
magnetism, this work is equal to the decrease suffered by the quantity

W =
∫ (

A1
∂ 1

r

∂x1
+ B1

∂ 1
r

∂y1
+ C1

∂ 1
r

∂z1

)
dω1.

Maxwell demonstrates this proposition,60 which is universally accepted.
To take this proposition as starting point and conclude that the energy of any

system of magnetic bodies is given by the expression

E = 1

2

∫ (
A

∂V

∂x
+ B

∂V

∂y
+ C

∂V

∂z

)
dω, (7.77)

where V is themagnetic potential function of the entire system andwhere the integral
extends over the entire system, is obviously to make an hypothesis. This hypothesis
and the recent progress of thermodynamics show that it is not justified, but it must
have seemed natural at the time Maxwell wrote; also, Maxwell adopts it.61

Therefore, a classical transformation allows us to write

E = 1

8π

∫ [(
∂V

∂x

)2

+
(

∂V

∂y

)2

+
(

∂V

∂z

)]
dω

or, in virtue of equalities (7.67),

E = 1

8

∫
(α2 + β2 + γ 2)dω. (7.78)

This is the expression of the magnetic energy at which Maxwell arrives.62

59J. Clerk Maxwell, loc. cit., p. 57 [50], equalities (16).
60J. Clerk Maxwell, loc. cit., p. 18 [15], equality (3).
61J. Clerk Maxwell, loc. cit., p. 304 [247], expression (6).
62J. Clerk Maxwell, loc. cit., p. 305 [247], equality (11).
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This expression does not coincide with the expression (7.47a) that he wanted to
find; the factor μ is lacking in the integrand. [177] To find the expression of electro-
magnetic energy he wishes to reach, Maxwell must appeal to the theory of electro-
magnetism.

7.7 The Theory of Electromagnetism in the TREATISE

ON ELECTRICITY AND MAGNETISM

We briefly summarize the theory of electromagnetism, such as Maxwell presents it
in his Treatise.

He first introduces a vector, with components F , G, H , to which, in a stationary
system of variable electrical state, the components E ′

x , E ′
y , E ′

z of the electromotive
induction field should be linked by the equalities63

E ′
x = −∂ F

∂t
, E ′

y = −∂G

∂t
, E ′

z = −∂ H

∂t
. (7.79)

This vector is therefore what he had called, in his previous writings, the electro-
tonic state or electromagnetic moment; he now names it the quantity of electrokinetic
movement64; then, immediately, he issues this assertion65:

[This vector] is identical with the quantity which we investigated…under the name of the
vector-potential of magnetic induction.

In support of this assertion, Maxwell outlines a prima facie case.66 Expressions
(7.79) of the electromotive induction field, applied to a closed stationary wire, give
the following expression for the total electromotive force of induction which acts in
this wire:

−
∫ (

∂ F

∂t

dx

ds
+ ∂G

∂t

dy

ds
+ ∂ H

∂t

∂z

∂s

)
ds.

In this expression, the integral extends over all the linear elements ds into which
the wire can be divided. [178]

We take the wire to outline an area of which d S is an element and let N be a
normal to the element d S, directed in a suitable sense. We know that the previous
expression can be written

63J. Clerk Maxwell, loc. cit., p. 267 [214] and p. 274 [221], equalities (B).
64J. Clerk Maxwell, loc. cit., p. 267 [214].
65J. Clerk Maxwell, loc. cit., p 267 [214].
66J. Clerk Maxwell, loc. cit., p. 268 [215], no 592.
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∫ [
∂

∂t

(
∂ H

∂y
− ∂G

∂z

)
cos (N , x) + ∂

∂t

(
∂ F

∂z
− ∂ H

∂x

)
cos (N , y)

+ ∂

∂t

(
∂G

∂x
− ∂ F

∂y

)
cos (N , z)

]
d S,

the integral extending over the considered area.
But, secondly, if the wire is placed in a non-magnetic medium, it is known from

Faraday that the electromotive force is related to the variation of the magnetic field
by the formula

−
∫ [

∂α

∂t
cos (N , x) + ∂β

∂t
cos (N , y) + ∂γ

∂t

]
d S.

Equalities (7.79) will therefore agree with the laws of induction in a closed circuit,
in a non-magnetic medium, if we have

∂ H

∂y
− ∂G

∂z
= −α,

∂ F

∂z
− ∂ H

∂x
= −β,

∂G

∂x
− ∂ F

∂y
= −γ. (7.80)

Equalities (7.80) can be viewed as particular instances of equalities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −(α + 4π A) − A,

∂ F

∂z
− ∂ H

∂x
= −(β + 4π B) − B,

∂G

∂z
− ∂ F

∂y
= −(γ + 4πC) − C.

(7.73b)

They do not justify them, but theymake the hypothesis thatMaxwell made accept-
able, by adopting67 equalities (7.73b). [179]

When the magnetic medium is perfectly soft and where the magnetizing function
of this medium is reduced to a coefficient independent of the intensity of magneti-
zation,68 we have

A = μα, B = μβ, C = μγ, (7.76b)

67J. Clerk Maxwell, loc. cit., p. 268 [215], equalities (A).
68J. Clerk Maxwell, loc. cit., p. 289 [233], no 614.
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and equalities (7.73b) take the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −μα,

∂ F

∂z
− ∂ H

∂x
= −μβ,

∂G

∂x
− ∂ F

∂y
= −μγ,

(7.54b)

already given in the memoir: A Dynamical Theory of the Electromagnetic Field.
Along with the equalities69

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂γ

∂y
− ∂β

∂z
= −4π(u + u),

∂α

∂z
− ∂γ

∂x
= −4π(v + v),

∂β

∂x
− ∂α

∂y
= −4π(w + w),

(7.5)

equations (7.54b) form the now famous group of Maxwell’s six equations.
The functions F , G, H which are included in equations (7.54b) are not fully

defined. Twice already we have made this remark; to determine them, we need to
know the value of the quantity70

∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= J. (7.55b)

[180] Now, this quantity has an unknown value, which creates an obstacle in the
following calculation 71:

Equalities (7.54b) and (7.5) easily give the relations

ΔF = ∂ J

∂x
− 4πμ(u + u),

ΔG = ∂ J

∂y
− 4πμ(v + v),

ΔH = ∂ J

∂z
− 4πμ(w + w).

69J. Clerk Maxwell, loc. cit., p. 286 [231], equalities (E) and p. 290 [234].
70J. Clerk Maxwell, loc. cit., p. 290 [235], equality (2).
71J. Clerk Maxwell, loc. cit., p. 290 [234], no 616.—This calculation was already found almost
verbatim in the memoir: A Dynamical Theory of the Electromagnetic Field (J. Clerk Maxwell,
Scientific Papers, vol. I, p. 581).
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So if we put ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F ′ =
∫

μ1(u1 + u1)

r
dω1,

C ′ =
∫

μ1(v1 + v1)

r
dω1,

H ′ =
∫

μ1(w1 + w1)

r
dω1,

(7.81)

χ = − 1

4π

∫
J1
r

dω1, (7.82)

formulas where the integrations extend over all space, we will have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F = F ′ + ∂χ

∂x
,

G = G ′ + ∂χ

∂y
,

H = H ′ + ∂χ

∂z
.

(7.83)

[181] Maxwell adds 72:

The quantity χ disappears from the equations (A) [(7.54b)], and it is not related to any
physical phenomenon. Ifwe suppose it to be zero everywhere, J will also be zero everywhere,
and equations (5) [(7.81)], omitting the accents, will give the true values of the components
of…[the vector potential].

The quantity χ , certainly, disappears from equalities (7.54b); but it appears in
equalities (7.79). Is it thus so obvious that it has no influence on any physical phe-
nomenon? Without a doubt, the total electromotive force that acts in a closed circuit

−
∫ (

∂ F

∂t

∂x

∂s
+ ∂G

∂t

∂y

∂s
+ ∂ H

∂t

∂z

∂s

)
ds

can also be written

−
∫ (

∂ F ′

∂t

∂x

∂s
+ ∂G ′

∂t

∂y

∂s
+ ∂ H ′

∂t

∂z

∂s

)
ds,

and its value will be independent of the determination attributed to the function χ ;
but it does not follow that this would not interfere with any discussion of physics.
Asserting this would accuse Maxwell of an absurdity in a passage that he wrote73 in
all what preceded.

72J. Clerk Maxwell, loc. cit., p. 291 [235].
73J. Clerk Maxwell, loc. cit., p. 274 [221].
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The electromotive force which acts in a closed circuit is given by the expression

−
∫ (

∂ F

∂t

∂x

∂s
+ ∂G

∂t

∂y

∂s
+ ∂ H

∂t

∂z

∂s

)
ds.

Maxwell concluded that the electromotive field has components at each point

Ex = −∂Ψ

∂x
− ∂ F

∂t
, Ex = −∂Ψ

∂y
− ∂G

∂t
, Ex = −∂Ψ

∂z
− ∂ H

∂t
; (7.84)

and then he adds74:

The terms involving the new quantityΨ are introduced for the sake of giving generality to the
expressions for…[182] [Ex , Ey , Ez]. They disappear from the integral when extended round
the closed circuit. The quantity Ψ is therefore indeterminate as far as regards the problem
now before us, in which the total electromotive force round the circuit is to be determined.
We shall find, however, that when we know all the circumstances of the problem, we can
assign a definite value to Ψ , and that it represents, according to a certain definition, the
electric potential at the point (x, y, z).

If the function Ψ plays a role in the analysis of some problems of electricity, why
does not the function χ play any?

These two groups of equations, (7.54b) and (7.5), will provide for Maxwell the
expression of electromagnetic energy that he wants to obtain, by a calculation that is
similar to what is given in the memoir: A Dynamical Theory of the Electromagnetic
Field and what we presented in Sect. 7.5.

This energy, according to Maxwell’s first expression, is75

E = 1

2

∫
[F(u + u) + G(v + v) + H(w + w)] dω.

Equalities (7.5) transform it into

E = − 1

8π

∫ [(
∂γ

∂y
− ∂β

∂z

)
F +

(
∂α

∂z
− ∂γ

∂x

)
G +

(
∂β

∂x
− ∂α

∂y

)
H

]
dω.

Integration by parts gives

E = − 1

8π

∫ [(
∂ H

∂y
− ∂G

∂z

)
α +

(
∂ F

∂z
− ∂ H

∂x

)
β +

(
∂G

∂x
− ∂ F

∂y

)
γ

]
dω.

or, in virtue of equalities (7.73b),

E = 1

8π

∫
(Aα + Bβ + Cγ )dω. (7.85)

74[ibid.].
75J. Clerk Maxwell, loc. cit., p. 305 [248], no 634 to 636.



140 7 The Six Equations of Maxwell and Electrosmagnetic Energy

In the case of the system containing only a perfectly soft [183] magnetic body,
equalities (7.76b) transform equality (7.85) into

E = 1

8π

∫
μ(α2 + β2 + γ 2)dω. (7.47b)

Thus we find by an electrodynamic method the expression of electromagnetic
energy what the memoir: On Physical Lines of Force had obtained by the use of
mechanical hypotheses.

Both expressions (7.78) and (7.47b) of the electromagnetic energy do not agree;
this disagreement does not escape Maxwell and only embarrasses him. First, he
says,76 speaking of magnetic energy taken in the form (7.78), that “This part of
the energy, however, will be included in the kinetic energy in the form in which
we shall presently obtain it,” i.e. in the form (7.47b); but then he recognizes77 that
the expression obtained for electromagnetic energy, together with the hypothesis
that such energy represents the live force, cannot agree with the usual theory of
magnetism:

This mode of explaining magnetism requires us also to abandon the method followed in Part
III, in which we regarded the magnet as a continuous and homogeneous body, the minutest
part of which has magnetic properties of the same kind as the whole. We must now regard a
magnet as containing a finite, though very great, number of electric circuits…

In writing his treatise, Maxwell proposed to take as a point of departure the
well-established laws of electricity and magnetism and translate them by equations
whose form would leave transparent the relationships between these laws and the
principles of dynamics; but the reality remains very far removed from that promise,
and rather than give up a mechanical interpretation in which he above all holds,
Maxwell likes better to dispense with one of the most perfect branches of sound
physics, the theory of magnetism; thus we had seen him in our First Part leaving,
for the more adventurous hypotheses, the formerly most well-established electric
doctrine: electrostatics. [184]

Maxwell’s electrodynamics proceeds by following the unusual method that we
have already analyzed in studying electrostatics. Under the influence of hypotheses
that remain in his mind vague and imprecise,Maxwell drafts a theory that he does not
complete, from which he does not even bother to remove the contradictions. Then,
he constantly modifies this theory, imposing fundamental changes that he does not
report to his reader; and he makes vain efforts to fix his fleeting and elusive thinking.
At the moment he thinks he succeeds, he sees the same parts of the doctrine which
relate to the best-studied phenomena vanish.

This strange and disconcerting method is, however, what led Maxwell to the
electromagnetic theory of light. [185]

76J. Clerk Maxwell, loc. cit., p. 304 [247].
77J. Clerk Maxwell, loc. cit., p. 309 [251].



Chapter 8
The Electromagnetic Theory of Light

8.1 The Speed of Light and the Propagation of Electrical
Actions: The Research of W. Weber and G. Kirchhoff

It is to Wilhelm Weber that one must turn to find the first mention, in his study of
electrical phenomena, of the number that measures the speed of the propagation of
light in a vacuum.

Thefirst study published1 in 1846 byW.Weber, under the title:Elektrodynamische
Maassbestimmungen,2 contained an appendix entitled:

Ueber die Zusammenhang der elektrostatischen und der elektrodynamischen
Erscheinungen nebst Anwendung auf die elektrodynamischen Maassbestimmungen.

This appendix contained the famous law of Weber.
A wire carrying an electric current is actually the seat of two currents of opposite

direction: one, headed in the direction of the current, carries positive electricity; the
other headed in the opposite direction, carries negative electricity. When the current
is uniform, these two currents have an equal flow.

On the other hand, the law of mutual action of two electrical charges expressed by
Coulomb is an incomplete law; it applies only to charges that are in relative rest. If
two electrical charges e, e′ are separated by a distance r which varies with the [186]
time t , these two charges repel by force whose expression is

ee′

r2

[
1 − a2

16

(
dr

dt

)2

+ a2

8
r

d2r

dt2

]
.

Applied to the computation of electrodynamic actions, this law gives back the
elementary law of Ampère; applied to the phenomena of induction, it formulates the
mathematical law.

1W. Weber, Elektrodynamische Maassbestimmungen, Leipzig, 1846.
2[English translation: Weber (2007)].
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The constant a figures in each of these laws. Let us see, in particular, how it
appears in Ampère’s law.

Two elements of uniform current ds, ds′ are present. In the first, the current of
positive electricity and the current of negative electricity have a common value, i .
In the second, these two currents have a common value, i ′. The angle of the two
elements is ε; r is the distance that separates them; and θ , θ ′ are the angles that these
elements make with the line that goes from a point of the element ds to a point of
the element ds′. These two elements repel with a force

a2 i ds i ′ ds′

r2

(
cos ε − 3

2
cos θ cos θ ′

)
.

The intensities J , J ′ of the two currents are related to the partial currents i , i ′ by
the relations

J = 2i, J ′ = 2i ′.

The previous force can then also be written:

−a2

4

J ds J ′ ds′

r2

(
cos ε − 3

2
cos θ cos θ ′

)
.

Today, one usually writes this formula in the following manner:

−2A2 J d S J ′ ds′

r2

(
cos ε − 3

2
cos θ cos θ ′

)
,

A being the fundamental constant of electromagnetic actions [187] evaluated in
electrostatic units. Weber’s constant a2 is, one can see, related to the constant A2 by
the relation

A2 = a2

8
. (8.1)

W. Weber, moreover, soon changed the form of his law, writing

ee′

r2

[
1 − 1

c2

(
dr

dt

)2

+ 2

c2
r

d2r

dt2

]
.

The new constant c2, thus introduced, was linked to the constant a by the equality

1

c2
= a2

16
,
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and, therefore, in virtue of equality (8.1), it is linked to the constant A2 by the equality

A2 = 2

c2
. (8.2)

It is clear that c is a quantity of the same sort as a speed.
We imagine that the speed with which both charges e, e′ approach or move away

from each other, the speed whose absolute value is that of dr
dt , be a uniform speed;

d2r
dt2

will be equal to 0 and the two charges will repel each other with a force

ee′

r2

[
1 − 1

c2

(
dr

dt

)2
]

.

If we have (
dr

dt

)2

= c2,

these two forces will cancel themselves out; the electrodynamic force − 1
c2

ee′
r2

( dr
dt

)2
will balance the electrostatic force ee′

r2
. [188]

W.Weber and R. Kohlrausch, in a memoir that has remained classic,3 experimen-
tally determined the value of this constant c. They found that this value, evaluated in
millimeters per second, was:

c = 439 450 × 106.

Following this outcome of the review, they simply write:

This determination of the constant c thus proves that two electric masses must move with a
very high velocity relative to the other, if one wants the electrodynamic force to eliminate
the electrostatic force; namely, with a speed of 439 million meters [per second] or 59320
miles4 per second, which significantly surpasses the speed of light.5

3R. Kohlrausch and W. Weber, Elektrodynamische Maassbestimmungen, insbesondere Zurück-
führung der Stromintensitäts-Messungen auf mechanische Maass, Leipzig, 1856. [English transla-
tion: Weber and Kohlrauch (2003)].
4[≈3–6 English miles (Oxford English Dictionary, 2014)].
5Weber (1893, p. 652):

Aus dieser Bestimmung der Konstanten c ersieht man also, dass zweielektrischeMassen mit
sehr grosser Geschwindigkeit gegen einander bewegt werden müssen, wenn die elektrody-
namische Kraft die elektrostatische aufheben soll, nämlich mit einer Geschwindigkeit von
439 Millionen Meter oder 59320 Meilen in der Sekunde, welche die Geschwindigkeit des
Lichts bedeutend übertrifft.
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The following year, G. Kirchhoff6 proposed to deduce from Weber’s theory the
laws according to which electrodynamic induction propagates in a wire.

He remarked that the resistance of thewirewas included in the resulting equations,
but divided by a constant factor whose numeric value is extremely large; so that in a
copper wire of a few meters in length and a few millimeters in radius, the laws of the
variation of electric current were essentially the same as if the wire had no resistance.
In this limit, where the wire is assumed to be without resistance, the intensity J of
the electric current that runs through a closed conductor is expressed, at the moment
t , by the following formula:

J = − c

4
√
2
e−ht

[
f

(
s + c√

2
t

)
+ f

(
s − c√

2
t

)]
,

s being the length of the wire from a given origin to the point under consideration,
h a constant, and f an arbitrary function. [189]

This current can be regarded as the result of the superposition of two other currents
of respective intensities

J ′ = − c

4
√
2
e−ht

[
f

(
s + c√

2
t

)]
,

J ′′ = − c

4
√
2
e−ht

[
f

(
s − c√

2
t

)]
,

or of two damped waves that propagate in a contrary sense with a speed c√
2
.

Kirchhoff said:

The velocity of propagation of an electricwave is here equal to c√
2
; it is therefore independent

of the cross-section of the wire, of its conductivity, and, finally, of the electric density; its
value is 41950 miles per second; it is thus very near the speed of light in empty space.7

The analysis of themovement of electricity through awire, which ledG.Kirchhoff
to this remarkable result, was extended shortly thereafter8 by the same author to
conductors whose three dimensions are finite.

The result obtained by G. Kirchhoff could not fail to strike Weber. He undertook
to submit the oscillations of a varying electric current in a conductor to an in-depth

6G. Kirchhoff, Ueber die Bewegung der Elektricität in Drähten (Poggendorff’s Annalen), Bd.
C, 1857. [English translation: Kirchhoff (1857a)].
7Kirchhoff (1857b, p. 209–210):

Die Fortpflanzungsgeschwindigkeit einer elektrischen Welle hat sich hier = c√
2
ergeben,

also als unabhängig sowohl von demQuerschnitt, als von der Leitungsfähigkeit des Drahtes,
als endlich von der Dichtigkeit der Elektrizität; ihr Wert ist der von 41950 Meilen in einer
Sekunde, also sehr nahe gleich der Geschwindigkeit des Lichtes im leeren Raume.

8G. Kirchhoff, Ueber die Bewegung der Elektricität in Leitern (Poggendorff’s Annalen), Bd.
CII, 1857. [English translation: Graneau and Assis (1994)].
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theoretical and experimental study.9 This study confirms the researches of Kirchhoff.
Subject to certain hypotheses, among which is the low resistance of the wire, it is
recognized that

c√
2
is therefore the limiting value to which all the propagation velocities approach, and, for

the given value of c,

c = 439 450 × 106
millimeters

second
,

[190] this limit has the value

c√
2

= 310 740 × 106
millimeters

second
,

which is a speed of 41950 miles per second.10

G. Kirchhoff has already found this expression for the propagation speed of electric waves,
and he remarked “that it is independent of the cross-section of the wire, its conductivity, and
electric density; its value, which is 41950 miles per second, is very close to the speed of light
in a vacuum.” If this close match between electric wave propagation speed and the speed of
light could be regarded as an indication of an inner relationship between the two doctrines, it
will deserve the greatest interest, because finding such a relationship is of great importance.
But the true meaning that this speed has regarding electricity must, above all, be considered;
and this meaning does not appear to favor great expectations.11

9Wilhem Weber, Elektrodynamische Maassbestimmungen, insbesondere über elektrische
Schwingungen, Leipzig, 1864.
10Weber (1894, p. 157):

…ist daher c/
√
2 der gesuchte Grenzwerth, dem sich alle Fortpflanzungsgeschwindigkeiten

nähern, und dieser Grenzwerth ist, für den gegebenen Werth c = 439 450 × 106 Millime-
ter/Sekunde,

c√
2

= 310 740 × 106
Millimeter

Sekunde
,

d.i. eine Geschwindigkeit von 41950 Meilen in der Sekunde.
11Weber (1894, loc.cit.):

Diese Geschwindigkeit hat schon Kirchhoff für die Fortpflanzung elektrischer Wellen
gefunden und bemerkt: “dass sie sowohl unabhängig von dem Querschnitt, als auch von
der Leitungsfähigkeit des Drahts, als auch endlich von der Dichtigkeit der Elektricität wäre;
auch dass ihrWerth von 41950Meilen in einer Sekunde sehr nahe dem der Geschwindigkeit
des Lichts im leeren Raume gleichkommt”. Könnte diese nahe Uebereinstimmung der
Fortpflanzungsgeschwindigkeit elektrischer Wellen mit der des Lichts als eine Andeutung
eines innerenZusammenhangs beiderLehren angesehenwerden, sowürde sie bei der grossen
Wichtigkeit, welche die Erforschung eines solchen Zusammenhangs hat, das grösste Inter-
esse in Anspruch nehmen. Es leuchtet aber ein, dass dabei vor Allem die wahre Bedeutung,
die in Beziehung auf die Elektricität jener Geschwindigkeit zukommt, in Betracht gezogen
werden muss, welche nicht der Art zu sein scheint, dass sich grosse Erwartungen daran
knüpfen liessen.
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As we have shown above, so that the true speed of propagation approaches this limit which
coincides with the speed of light, it is necessary not only that the wire be very thin compared
to its length, but also that this long and thin wire have a very low resistance. It is quite clear
that the actual speed will only come near this limiting value and that, very frequently, it will
be quite far from it.12

8.2 The Speed of Light and the Propagation of Electrical
Actions: The Research of B. Riemann, C. Neumann,
and L. Lorenz

The, at least approximate, equality

A2 = 1

V 2 , (8.3a)

where V refers to the speed of light in a vacuum, is no less a consequence of the
experiments of Weber and Kohlrausch, [191] and, despite the approximations to
which the proposition demonstrated byG.Kirchhoff was submitted, this equality was
too striking so that we only see in it the mark of an intimate relationship between
light and electricity. From this moment onward, physicists tried to introduce into
electrical theories the idea of a propagation that would occur throughout space at the
speed of light.

On 10 February 1858, Bernhard Riemann read to the Society of Sciences of
Göttingen a note entitled: Ein Beitrag zur Elektrodynamik; this note was published13

after the death of the illustrious mathematician.
The point of departure adopted by Riemann is the following.
Suppose a point M carries, at time t , an electrical charge that can vary with t ,

q(t). It is generally assumed that at a point M ′, of which r is the distance to the point
M , this electric charge produces a potential function whose value, at the same time
t , is q(t)

r . At the instant t , the potential function at the point M ′ is

V ′ =
∑ q(t)

r
.

12Weber (1894, p. 157-8):

Denn die Annäherung der wahren Fortpflanzungsgeschwindigkeit an jenen Grenzwerth,
der mit der Geschwindigkeit des Lichts übereinstimmt, setzt, wie eben gezeigt worden,
nicht blos einen im Vergleich zu seiner Länge sehr dünnen Leitungsdraht voraus, sondern
auch, dass dieser lange und dünne Leitungsdraht einen sehr kleinen Widerstand besitze. Es
leuchtet hieraus ein, dass grössere Annäherung an jenen Grenzwerth nur selten, grössere
Abweichungen davon sehr häufig vorkommen werden.

13BernhardRiemann,Ein Beitrag zur Elektrodynamik,Poggendorff’s Annalen, Bd. CXXXI.—
Bernhard Riemann’s gesammelte mathematische Werke, p. 270; 1876.
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Riemann admits that at the moment t , the potential function caused in M ′ by
the charge of the point M is 1

r q
(
t − r

a

)
, a being a positive constant; the potential

function in M ′ at time t is

V ′ =
∑ q

(
t − r

a

)
r

.

One can clearly articulate this hypothesis by saying that the electrostatic poten-
tial function, instead of instantly propagating in space, as one usually admits, is
propagating through it with the finite speed a. [192]

Now, from this hypothesis Bernhard Riemann deducted, for the mutual electrody-
namic potential of both systems, a formula that coincides with what W. Weber gave,
provided that we take

a = c√
2
.

According to the determination of Weber and Kohlrausch, it is

c = 439 450 × 106
millimeters

second
.

The result is that a is equal to 41949 geographical miles per second, while the calculations
of Busch, from Bradley’s aberration observations, gives the speed of light to be 41994 miles
[per second], and Fizeau found it to be, by direct measurement, 41882 miles [per second].14

Riemann could thus summarize his contribution to electrodynamics as follows:

I found that one could explain the electrodynamic actions of electrical currents assuming
that the action of one electrical mass on another does not occur instantly, but propagates
with a constant speed; this speed is, within the limits of the observational errors, the speed
of light.15

14Riemann (1867, p. 243):

Nach der Bestimmung von Weber und Kohlrausch ist

c = 439 450 × 105
Millimeter

Secunde

woraus sich α zu 41949 geographischen Meilen in der Secunde ergiebt während für die
Lichtgeschwindigkeit von Busch aus Bradley’s Aberrationsbeobachtungen 41994 Meilen,
und von Fizeau durch directe Messung 41882 Meilen gefunden worden sind.

15Riemann (1867, p. 237):

Ich habe gefunden, dass die elektrodynamischen Wirhungen galvanischer Ströme sich
erklären lassen, wenn man annimmt, dass die Wirkung einer elektrischen Masse auf
die übrigen nicht momentan geschieht, sondern sich mit einer constanten (der Licht-
geschwindigkeit innerhalb der Gränzen der Beobachtungsfehler gleichen) Geschwindigkeit
zu ihnen fortpflanzt.
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Unfortunately, according to a remark by Clausius,16 the analysis of B. Riemann
was certainly inaccurate. The editor of the works of Riemann, H. Weber, guesses,
with all likelihood, that Riemann recognized the error, which prevented him from
delivering his note to print.

In 1868,while thework ofRiemannwas still unknown, theUniversity ofBonnwas
celebrating its fiftieth anniversary jubilee. As Gratulationsschrift of the University
of Tübingen, Carl Neumann presented a paper entitled: Theoria nova phænomenis
electricis applicanda; this writing contained a summary of a theory that was [193]
later published in extenso under this title17: Die Principien der Elektrodynamik.

The fundamental hypothesis of Carl Neumann essentially matched that of
Riemann; the author stated in these words:

A new supposition is introduced in making this motive cause, which we call potential,
not be immediately but gradually transmitted in time from one mass to another, and—like
light—to propagate with a great and constant speed.Wewill denote this speed by the letter c.

This supposition, together with the other, the supreme and sacrosanct principle principle
of Hamiltonmeeting no exceptions, is made fundamental to our theory, fromwhich (without
any further supposition) those well-founded laws of the celebrated Ampère,Neumann, and
Weber, on their own foundations, will spontaneously emanate.18

But if the essential hypothesis accepted by Carl Neumann agrees with what B.
Riemann issued, it immediately opposes it when its author translates it into formulas.

Consider, he says, two points M , M ′ carrying electric charges and acting on each
other. Let r be their distance at time t . Fromwhat we have said about the propogation
of the potential, we must distinguish two species of potential: the emissive potential
and the receptive potential.

The emissive potential of the point M is the potential that the point M emits at
time t , and which only reaches the point M ′ some time later. Its expression is

ω0 = ee′

r
.

16R. Clausius, Poggendorff’s Annalen, Bd. GXXXV, p. 606; 1869.
17C. Neumann, Die Principien der Elektrodynamik, Mathematische Annalen, Bd. XVII,
p. 400.
18Neumann (1868, p. 121)

Nova introducitur suppositio, statuendo, causam illam motricem, quam potentiale vocamus,
ab altéra massa ad alteram non subito sed progiediente tempore transmitti, atque—ad instar
lucis—per spatium propagari celeritate quadam permagna et constante. Quam celeritatem
denotabimus litera c.

Ista suppositio, conjuncta cum hac altera, principium Hamiltonianum normam exprimere
supremam ac sacrosanctam nullis exceptionibus obviam, fit suppositio in theoria nostra
fundamentalis, ex qua absque ulla ulteriore suppositione leges illæ notissimæ a celis,
Ampère, Neumann,Weber, conditæ sua sponte emanabunt.
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Carl Neumann defines the receptive potential as follows:

We will call the receptive potential that which any point receives at time t that had sometime
before been emitted by another point.Wherefore, it is clear that the receptive potential formed
with respect to any given time [194] is also the same as the emissive potential formed with
respect to any prior time.19

By considerations that would take too long to explain here, but can be found in
the paper entitled: Die Principien der Elektrodynamik, Carl Neumann arrives at the
expression of receptive potential ω which gives the following equalities:

ω = w + dπ

dt
,

w = ee′

r

[
1 + 1

c2

(
dr

dt

)2
]

,

π = ee′
[
log r

c
− 1

2c2

(
dr

dt

)2
]

.

From this expression of the emissive potential, Hamilton’s principle allows one
to derive the expression of the force that each point experiences at time t . This force
is directed along the line that joins two points, is repulsive, and has the magnitude

ee′

r2

[
1 − 1

c2

(
dr

dt

)2

+ 2

c2
r

d2r

dt2

]
.

This is the force given by Weber’s law.
So that Carl Neumann’s theory is consistent with the known laws of electrody-

namics, it will be necessary to give the constant c the value, determined by Weber
and Kohlrausch,

c = 439 450 × 106
millimeters

second
.

So, the potential does not propagate with a speed equal to the speed of light V in
a vacuum, but with a larger speed equal to V

√
2.

19Neumann (1868, p. 121):

Potentiale receptivum vocabimus id, quod utrumque punctum recipit tempore t , aliquanto
antea ab altero puncto emissum. Unde elucet potentiale receptivum respectu dati temporis
cujuslibet formatum idem esse ac potentiale emissivum respectu temporis cujusdam prioris
formatum.
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In the samevolumeof thePoggendorff’s Annalenwhere [195] the electrodynamics
of B. Riemann was printed for the first time, L. Lorenz published20 a theory that had,
with the thought of Riemann, and unbeknown to the author, a closer affinity with the
theory of C. Neumann.

In generalizing by induction the equations of the electrodynamics given by
W. Weber, G. Kirchhoff21 came to a system of equations governing the propaga-
tion of electric actions in conductive bodies.

LetV = ∑ q
r be the electrostatic potential function,where the summation extends

to all charges electrical charges q of the system.
This function can be expressed more explicitly.
At time t , at the point (x, y, z) of an electrified volume, the solid electrical density

is σ(x, y, z, t); at time t , at the point (x, y, z) of an electrified surface, the electric
surface density is Σ(x, y, z, t). We then have

V (x, y, z, t) =
∫

σ(x ′, y′, z′, t)

r
dω′ +

∫
Σ(x ′, y′, z′, t)

r
d S′, (8.3a)

the first integral extending over all the elements dω′ of the electrified volumes and
the second integral extending over all elements d S′ of the electrified surfaces.

Let
u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)

be the three components of the electric current22 at the point (x, y, z), at time t . [196]
Consider the functions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U (x, y, z, t) =
∫

x ′ − x

r3
[(x ′ − x)u(x ′, y′, z′, t)

+ (y′ − y)v(x ′, y′, z′, t)

+ (z′ − z)w(x ′, y′, z′, t)]dω′,
V (x, y, z, t) = . . . , W (x, y, z, t) = . . . .

(8.4)

20L. Lorenz, Sur l’identité des vibrations de la lumière et des courants électriques (cf. Selskabs.
Overs., 1867, p, 26.—Poggendorff’s Annalen, Bd. CXXXI, p. 243; 1867.—Œuvres sci-

entifiques de L. Lorenz, revised and annotated by H. Valentinier, t. 1, p. 173; 1896). [English
translation: Lorenz (1867)].
21G. Kirchhoff, Ueber die Bewegung der Elektricität in Leitern. (Poggendorff’s Annalen, Bd.
CII, 1857). [English translation: Graneau and Assis (1994)].
22In the memoir of G. Kirchhoff, u, v, w, have slightly different meanings, linked to particular
conceptions of Weber on the nature of power.
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The equations of motion of electricity in a conductive body, of which ρ is the
specific resistance, are written, according to G. Kirchhoff,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = − 1

ρ

(
∂V

∂x
+ 2

c2
∂U

∂t

)
,

v = − 1

ρ

(
∂V

∂y
+ 2

c2
∂v

∂t

)
,

w = − 1

ρ

(
∂V

∂z
+ 2

c2
∂w

∂t

)
.

(8.5)

L. Lorenz rightly notes that in taking as point of departure not not the formulas
of induction that Weber gives, but other formulas that are strictly equivalent to them
in the only case hitherto studied, those of uniform linear currents, one cannot obtain
the preceding equations, but some other analogous equations, in particular these:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = − 1

ρ

(
∂V

∂x
+ 2

c2
∂ F

∂t

)
,

v = − 1

ρ

(
∂V

∂y
+ 2

c2
∂G

∂t

)
,

w = − 1

ρ

(
∂V

∂z
+ 2

c2
∂ H

∂t

)
,

(8.6a)

[197] where we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(x, y, z, t) =
∫

u(x ′, y′, z′, t)

r
dω′,

G(x, y, z, t) =
∫

v(x ′, y′, z′, t)

r
dω′,

H(x, y, z, t) =
∫

w(x ′, y′, z′, t)

r
dω′.

(8.7a)

This remarkwas soon to be picked up byHelmholtz23 and suggests to him to intro-
duce into the electrodynamic theories the numeric constant of such great importance,
which he designates by the letter k.

23Helmholtz, Ueber die Gesetze der inconstanten elektrischen Ströme in körperlich ausgedehnten
Leitern (Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg,
21 January 1870.—Wissenschaftliche Abhandlungen, Bd. I, p. 537).—Ueber die Bewegungs-
gleichungen der Elektrodynamik für ruhende leitende Körper (Borchardt’s Journal für reine

und angewandte Mathematik, Bd. LXXII, p. 57.—Wissenschaftliche Abhandlungen,
Bd. I, p. 545).
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These are Eq. (8.6a) that L. Lorenz takes as equations of motion of the electricity;
but instead of keeping the functions V , F , G, H defined by the equalities (8.3a) and
(8.7a), he substitutes for them the functions

V (x, y, z, t) =
∫

σ(x ′, y′, z′, t − r
a )

r
dω′

+
∫

Σ(x ′, y′, z′, t − r
a )

r
d S′, (8.3b)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F(x, y, z, t) =
∫

u(x ′, y′, z′, t − r
a )

r
dω′,

G(x, y, z, t) =
∫

v(x ′, y′, z′, t − r
a )

r
dω′,

H(x, y, z, t) =
∫

w(x ′, y′, z′, t − r
a )

r
dω′,

(8.7b)

[198] where

a = c√
2
. (8.8)

It is, we see, the hypothesis issued by B. Riemann, whereby the electric potential
function propagates with the speed a, that L. Lorenz admits, and that he extends to
the functions F , G, H , components of the electrotonic state.

Equation (8.6a) become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 1

ρ

(
∂U

∂x
+ 2

c2
∂ F

∂t

)
,

v = 1

ρ

(
∂V

∂x
+ 2

c2
∂G

∂t

)
,

w = 1

ρ

(
∂W

∂x
+ 2

c2
∂ H

∂t

)
.

(8.6b)

These equations only differ from Eq. (8.6a) by the substitution of (t − r
a ) for t .

Now, in all experiments r is equal to more than a few meters, while a represents a
velocity roughly equal to 300000km/s; (t − r

a ) thus differs extremely little from t
and Eqs. (8.6a) and (8.6b) can be viewed as also verified by experience.

It is easily checked that at any point of a continuous mass, we have

a2ΔV − ∂2V

∂t2
= −4πa2σ(x, y, z, t),

a2ΔF − ∂2F

∂t2
= −4πa2u(x, y, z, t),
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a2ΔG − ∂2G

∂t2
= −4πa2v(x, y, z, t),

a2ΔH − ∂2H

∂t2
= −4πa2w(x, y, z, t).

[199] Therefore, it is not difficult to see that Eqs. (8.6a) and (8.8) allow us to write
the equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu − 2

c2
∂2u

∂t2
= 4π

ρ

(
∂σ

∂x
+ 2

c2
∂u

∂t

)
,

Δv − 2

c2
∂2v

∂t2
= 4π

ρ

(
∂σ

∂y
+ 2

c2
∂v

∂t

)
,

Δw − 2

c2
∂2w

∂t2
= 4π

ρ

(
∂σ

∂z
+ 2

c2
∂w

∂t

)
,

(8.9)

to which must be joined the continuity equation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂σ

∂t
= 0.

One easily sees that each of the three quantities

ωx = w

y
− ∂v

∂z
, ωy = u

z
− ∂w

∂x
, ωz = v

x
− ∂u

∂y

satisfies the equation

Δω − 2

c2
∂2ω

∂t2
= 8π

ρc2
∂ω

∂t
.

If the medium under consideration is extremely resistant, so that ρ has a very
high value, the second member of this equation is negligible compared to the first
member; the equation reduces to the well-known form

Δω − 2

c2
∂2ω

∂t2
= 0,

which teaches us that, in the medium considered, the transverse electric current
propagates with speed c√

2
. We thus arrive at the following proposition:

In an extremely resistant medium, the transverse electric current propagates with
a speed equal to the speed of light in a vacuum. [200]

Encouraged by this important result, L. Lorenz did not hesitate to formulate an
electromagnetic theory of light: all transparent media are very poor conductors of
electricity, and the light that propagates in these media consists of periodic transverse
electric currents.
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The hypothesis is certainly seductive; it, however, faces great difficulties.
In the first place, the equations obtained do not exclude the possibility of longi-

tudinal electric currents, whose role will be difficult to explain.
Secondly, and this is the most serious objection: according to the previous theory,

in any very poor conductive medium, transverse electric currents always propagate
with a speed equal to the speed of light in a vacuum. On the contrary, in a transparent
medium, light travels with a speed that characterizes this medium and which is less
than the speed of light in a vacuum; and we see no easy way to change the hypothesis
of the previous theory so that this contradiction disappears.

This contradiction seems to condemn irrevocably the electromagnetic theory of
light proposed by L. Lorenz.

8.3 The Fundamental Hypothesis
of Maxwell—Electrodynamic Polarization of Dielectrics

An extremely deep logical difference separates the hypotheses of B. Riemann,
L. Lorenz, and C. Neumann from the hypotheses on the propagation of physical
actions thus far admitted.

The theory of the emission of light represented the propagation of light as like the
trajectory of a projectile; what propagated, in this theory, was a substance.

The propagation of sound occurs, on the contrary, without the substance serving
this propagation, air for example, undergoing significant displacements; but, while a
mass of air, initiallymoving, falls back to rest, a nearbymass, whichwas at rest, is put
in motion. In this case, there is propagation, not of a substance, but of an accident,24

of a movement. [201]
These two types are similar to most physical theories involving the notion of

propagation. In the theory of waves, the transmission of light is the propagation of a
movement; and when adopting the ideas ofWeber, Kirchhoff studies the propagation
of electricity in conductive bodies, he considers it as the flow of a certain substance.

We can obviously generalize further and conceive the propagation in a body of
an accident which would not be a movement of this body, but of some quality. For
a physicist who regards electricity neither as a fluid nor a movement, but simply a
certain quality, Kirchhoff’s equations represent a propagation of this quality through
conductive bodies.

But all these different ways of considering the concept of propagation have a
common character; substance or accident, it is something real that disappears in a
region of space in order to appear in a nearby area. It is not the case in the theories
of the propagation of electric actions proposed by B. Riemann, L. Lorenz, and Carl
Neumann; there is not a reality that travels through the space, but a fiction, a mathe-
matical symbol, such as the potential function or the components of the electrotonic
state.

24[A property in the Aristotelian sense].
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This character of the new theories, perhaps, was suspected by L. Lorenz. In any
case, it was clearly perceived by Carl Neumann; but he does not hesitate to consider
the potential function, whose propagation he assumes, as a reality. He said:

It is well known that for given forces there is a given potential, and vice versa, for a given
potential, there are given forces. Wherefore, nothing new appears in traditional mechanical
theory for causing, the potential being the principal cause, it to produce the forces; viz., the
potential is called the real cause of the motion, but forces only express the form or species
by the cause which produced them.25

This passage would allow us, I think, quite rightly to regard Carl Neumann as the
creator of the philosophical and scientific doctrine that is now in such great vogue
as the doctrine of the migration of energy (Wanderung der Energie).

The ideas of Maxwell have nothing in common with these doctrines; [202] math-
ematical symbols do not propagate. For example, the expression of the instantaneous
electrostatic potential function at the point (x, y, z) in amedium of dielectric strength
K is

V (x, y, z, t) = 1

K

∑ q(x ′, y′, z′, t)

r

and not, as the hypothesis of B. Riemann would have it,

V (x, y, z, t) = 1

K

∑ 1

r
q

(
x ′, y′, z′, t − r

a

)
.

What is propagating is a real quality: in conductive bodies, the conduction current;
in dielectric bodies, the displacement flux.

The consideration of dielectric bodies is, moreover, one of the essentially new
points ofMaxwell’s theory. B. Riemann, nor C.Neumann,made the slightest allusion
to the polarization of dielectrics; for L. Lorenz, insulating bodies are simply bodies
whose specific resistance is very large, poorly conducting bodies,26 and it is to the
conduction current propagating in similar bodies that he likens the light vibration.

On the contrary, for Maxwell, light that propagates in transparent bodies consists
essentially in displacement currents produced inside the dielectric body.

25Neumann (1868, p. 121)

Potentiis datis datum esse potentiale, ac vice versa, potentiali dato, datas esse potentias,
satis notum est. Unde apparet in traditam mechanices theoriam nil novi introduci statuendo,
potentiale principalem esse causam, ab isto procreari potentias, scilicet potentiale vocare
veram causam motricem, potentias vero tantummodo formam vel speciem exprimere ab illa
causa sibi paratam.

26The difference between the point of view of Maxwell and the point of view of Lorenz was very
well marked in a note added by H. Valentinier to the scientific works of the latter (L. Lorenz,
Œuvres scientifiques, revised and annotated by H. Valentiner, tome I, p. 204, note 16).
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These displacement currents, we know, produce the same ponderomotive and
electromotive actions as the the conduction current; but their generation is subject
to another law, and the invention of this law is one of the most powerful and most
productive of Maxwell’s ideas.

In a system where equilibrium is established, the components f , g, h [203] of the
displacement are related to the derivatives of the electrostatic potential function ψ

by the equalities [1st Part, equalities (5.15)]

f = − K

4π

Ψ

x
, g = − K

4π

Ψ

y
, h = − K

4π

Ψ

z
.

In a system that is not in equilibrium, the previous equalities should be replaced by

f = K

4π
Ex , g = K

4π
Ey, h = K

4π
Ez, (8.10)

where Ex , Ey , Ez are the components of the total electromotive field, as well as the
induction field and the static field.

We see this idea arises naturally from the hypotheses admitted byMaxwell regard-
ing the constitution of dielectrics.

We have recognized, in the course of this study, that Maxwell was almost con-
stantly guided, in his suppositions regarding dielectrics, by the hypotheses of Faraday
and Mossotti, themselves designed in imitation of the magnetic hypotheses of Pois-
son. According to these hypotheses, a dielectric is formed of small conductivemasses
embedded in an insulating cement. The action of an electromotive induction field
on a dielectric field will therefore result in actions that this field exerts on a large
number of open27 conductors.

However, in an open conductor, an electromotive induction field produces the
same effect as a static electromotive field; it requires electricity to be distributed so
that the positive charge builds up on one of the ends of the conductor and the negative
charge at the other end; in other words, this field polarizes the open conductor.

Maxwell insists repeatedly about this action that an induction field exerts on an
open conductor.

He already wrote in his memoir On Faraday’s Lines of Force28:

Let us take as another example the case of a linear conductor, not forming a closed circuit,
and let it be made to traverse the lines of magnetic [204] force, either by its own motion,
or by changes in the magnetic field. An electromotive force will act in the direction of the
conductor, and, as it cannot produce a current, because there is no circuit, it will produce
electric tension at the extremities.

From this passage, Maxwell makes, for the moment, no conclusion related to the
polarization of dielectrics, to which he is hardly attached in this first memoir on
electricity; it is otherwise in the memoir: On Physical Lines of Force.

27[In the sense of “open circuit”].
28J. Clerk Maxwell, Scientific Papers, vol. I, p. 186.

http://dx.doi.org/10.1007/978-3-319-18515-6_5
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He wrote29:

We know by experiment that electric tension is the same thing, whether observed in statical
or in current electricity; so that an electromotive force produced by magnetism may be made
to charge a Leyden jar, as is done by the coil machine.

…When a difference of tension exists in different parts of any body, the electricity passes,
or tends to pass, from places of greater to places of smaller tension.

The application of these considerations to small conductive bodies that contain a
dielectric is immediate; it imposes conclusions that Maxwell states in these terms30:

Electromotive force acting on a dielectric produces a state of polarization of its parts similar
in distribution to the polarity of the particles of iron under the influence of a magnet,31 and,
like the magnetic polarization, capable of being described as a state in which every particle
has its poles in opposite conditions.

In a dielectric under induction, we may conceive that the electricity in each molecule is
so displaced that one side is rendered positively, and the other negatively electrical, but that
the electricity remains entirely connected with the molecule, and does not pass from one
molecule to another.

The effect of this action on thewhole dielectricmass is to produce a general displacement
of the electricity in a certain direction…The amount of the displacement depends on the
nature of the [205] body, and on the electromotive force; so that if h is the displacement, R
the electromotive force, and E a coefficient depending on the nature of the dielectric,

R = −4π E2h;
and if r is the value of the electric current due to displacement,32

r = dh

dt
.

The same ideas are found, in a still sharper form, in the memoir: A Dynamical
Theory of the Electromagnetic Field.

Maxwell writes33:

When a body is moved across the lines of magnetic force it experiences what is called an
electromotive force; the two extremities of the body tend to become oppositely electrified,
and an electric current tends to flow through the body. When the electromotive force is suf-
ficiently powerful, and is made to act on certain compound bodies, it decomposes them, and
causes one of their components to pass towards one extremity of the body, and the other in
the opposite direction. [206]

Here we have evidence of a force causing an electric current in spite of resistance; elec-
trifying the extremities of a body in opposite ways, a condition which is sustained only by
the action of the electromotive force, and which, as soon as that force is removed, tends, with
an equal and opposite force, to produce a counter current through the body and to restore the

29J. Clerk Maxwell, Scientific Papers, vol. I, p. 490.
30J. Clerk Maxwell, loc. cit., p. 491.
31[Maxwell’s footnote:] See Prof. Mossotti, “Discussione Analitica,” Mem. della Soc. Italiana
(Modena), Vol. XXIV. Part 2, p. 49.
32Regarding the sign of the second member, see 1st Part, Eq. (4.1).
33J. Clerk Maxwell, Scientific Papers, vol. I, p. 530.

http://dx.doi.org/10.1007/978-3-319-18515-6_4
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original electrical state of the body; and finally, if strong enough, tearing to pieces chemical
compounds and carrying their components in opposite directions, while their natural ten-
dency is to combine, and to combine with a force which can generate an electromotive force
in the reverse direction.

This, then, is a force acting on a body caused by its motion through the electromagnetic
field, or by changes occurring in that field itself; and the effect of the force is either to produce
a current and heat the body, or to decompose the body, or, when it can do neither, to put the
body in a state of electric polarization, a state of constraint in which opposite extremities
are oppositely electrified, and from which the body tends to relieve itself as soon as the
disturbing force is removed.

…When electromotive force acts on a conducting circuit, it produces a current…But when
electromotive force acts on a dielectric it produces a state of polarization of its parts…

and Maxwell, also citing Faraday and Mossotti,34 who visibly inspired him, repro-
duced, on the subject of this dielectric polarization, the passage of the memoir: On
Physical Lines of Force that we have quoted above.

These are, in their natural sequence, the inductions which led Maxwell to pose
the general equations of the dielectric polarization35

f = K

4π
Ex , g = K

4π
Ey, h = K

4π
Ez .

In a homogeneous medium, the components Ex , Ey , Ez of the electromotive field
are given by equalities (7.56), such that equalities (8.10) become

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f = − K

4π

(
∂Ψ

∂x
+ ∂ F

∂t

)
,

g = − K

4π

(
∂Ψ

∂y
+ ∂G

∂t

)
,

h = − K

4π

(
∂Ψ

∂z
+ ∂ H

∂t

)
.

(8.11)

[207] Moreover, in this case, the components of the displacement current have
the values

u = ∂ A

∂t
, v = ∂ B

∂t
, w = ∂C

∂t
. (6.3)

34[Faraday, Experimental Researches, Series XI.; Mossotti, Mem. della Soc. Italiana (Modena),
Vol. XXIV. Part 2, p. 49.].
35J. Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, (Scientific Papers, vol.
I, p. 560.)—Treatise on Electricity and Magnetism, vol. II, p. 287 [232].

http://dx.doi.org/10.1007/978-3-319-18515-6_7
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We there have ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = − K

4π

∂

∂t

(
∂Ψ

∂x
+ ∂ F

∂t

)
,

v = − K

4π

∂

∂t

(
∂Ψ

∂y
+ ∂G

∂t

)
,

w = − K

4π

∂

∂t

(
∂Ψ

∂z
+ ∂ H

∂t

)
.

(8.12)

These equations are the basis of the electromagnetic theory of light.

8.4 First Draft of the Electromagnetic Theory
of Light of Maxwell

However, before developing an electromagnetic theory of light based on these equa-
tions, Maxwell obtained two essential laws of this theory by a completely different
method. This method, closely linked to the mechanical hypotheses contained in the
memoir: On Physical Lines of Force, is set out in this memoir.

We have seen (1st Part, Chap.4) how, in this memoir, Maxwell represents the
action of an electromotive field in a dielectric. The electromotive force is considered
as a push that is exerted on the perfectly elastic cell walls. If R is the electromotive
field, the walls undergo a displacement in the direction of this field; the average value
per unit of volume of this movement, that he designates with the letter h, is linked
to the electromotive field R by the relationship [1st Part, equality (4.1b)]

R = 4π E2h,

[208] E2 being a quantity that depends on the elasticity of the cell walls.
Without discussing, from the point of view of the theory of elasticity, the solution

of the problem addressed by Maxwell, we confine ourselves to indicate the relation-
ship that exists, according to him, between E2 and the coefficients of elasticity of
the substance.

Maxwell expresses36 E2 in terms of two coefficients that he designates by μ and
m and that, to avoid confusion, we will refer to by μ′ and m; this expression is as
follows:

E2 = πm
9μ′

3μ′ + 5m
. (8.13)

The coefficientμ′ is defined37 as the ratio of pressure to the cube of the contraction
in a uniformly pressed body; it is thus the reverse of what is usually called the cube

36J. Clerk Maxwell, Scientific Papers, vol. I, p. 495, equality (107).
37J. Clerk Maxwell, loc. cit., p. 493, equality (80).—To make this equality agree with the rest of
the presentation by Maxwell, he must change the sign of the second member.

http://dx.doi.org/10.1007/978-3-319-18515-6_4
http://dx.doi.org/10.1007/978-3-319-18515-6_4
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of the coefficient of compressibility. If we designate by Λ and M the coefficients
that Lamé designates by λ and μ, we will have38

μ′ = 3Λ + 2M

3
. (8.14)

As for the coefficient m, in comparing39 Maxwell’s equations to those of Lamé,
we find

m = 2M. (8.15)

In virtue of equalities (8.14) and (8.15), equality (8.13) becomes

E2 = πm
3Λ + 2M

Λ + 4M
. (8.16)

[209] If one accepts the theory of molecular elasticity as Poisson has developed it,
we have, as is known, the equality

Λ = M (8.17)

and equality (8.16) becomes
E2 = πm, (8.18)

which Maxwell accepts40 for the further development of his theory.
According to this theory, two electrical charges whose values in electromagnetic

units are q1, q2 are repelled at a distance r with a force [1st Part, equality (4.37)]

F = E2 q1q2
r2

, (8.19)

E2 having the appropriate value for the interposed dielectric.
If the dielectric is the vacuum, the value of E2 can be obtained from the famous

experience of Weber and Kohlrausch. We then find41 that E is a quantity of same
species as a speed whose numerical value is

E = 310 740 × 106
millimeters

second
. (8.20)

38Lamé, Leçons sur l’élasticité, 2nd edition, p. 74, equality (a).
39J. Clerk Maxwell, loc. cit., p. 493, equality (83) and Lamé, loc. cit., p. 65, equalities (1).
40J. Clerk Maxwell, loc. cit., p. 495, equality (108).
41J. Clerk Maxwell, loc. cit., p. 499, equality (131).

http://dx.doi.org/10.1007/978-3-319-18515-6_4
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Reaching this point, Maxwell continues42 in these terms:

To find the rate of propagation of transverse vibrations through the elastic medium of which
the cells are composed, on the supposition that its elasticity is due entirely to forces acting
between pairs of particles.43 [210]

By the ordinary method of investigation we know that

V =
√

m

ρ
, (8.21)

where m is the coefficient of transverse elasticity, and ρ is the density.

The density that must be included in this formula is the density of the elastic
mediumwhich forms thewalls of the cells.Without telling us about this transposition,
Maxwell assumes that ρ refers to the density of the fluid that fills the cells and then
admits the relationship

μ = πρ (8.22)

that he was led to establish44 between this density and the magnetic permeability μ.
He then found

μV 2 = πm

or, in virtue of equality (8.18),
E = V

√
μ. (8.23)

He comments45 on this result in these terms:

In air or vacuum μ = 1 and therefore

V = E

= 310 740 × 106 millimeters per second

= 193 088 miles per second.

The velocity of light in air, as determined by M. Fizeau,46 is 70843 leagues per second (25
leagues to a degree) which gives

V = 314 858 × 106 millimeters per second

= 195 647 miles per second.

42J. Clerk Maxwell, loc. cit., p. 499.
43By these words, Maxwell refers to the molecular theory of Poisson.
44J. Clerk Maxwell, loc. cit., pp. 456 and 457.
45J. Clerk Maxwell, loc. cit., pp. 499 and 500.
46[Maxwell’s footnote:] Comptes Rendus, Vol. MIX. (1849), p. 90. In Galbraith and Haughton’s
Manual of Astronomy, M. Fizeau’s result is stated at 169944 geographical miles of 1000 fathoms,
which gives 193118 statute miles; the value deduced from aberration is 192000 miles.
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The velocity of transverse undulations in our hypothetical medium, calculated from the
electro-magnetic experiments of MM. Kohlrausch and Weber, agrees so exactly with the
velocity of light calculated from the optical experiments of M. Fizeau, that we can scarcely
avoid the inference that light consists in the transverse undulations of the same medium
which is the cause of electric and magnetic phenomena.

The capacitance of a plane capacitor of surface S, whose armatures are separated
by a thickness θ of a given dielectric 1, has the value [1st part, equality (4.46)]

C1 = 1

4π E2
1

S

θ
.

If the space between the two plates of the capacitor is empty, this capacitor has,
similarly, capacitance

C = 1

4π E2

S

θ
.

The ratio

D1 = C1

C

is, by definition, the specific inductive capacity of dielectric 1. So we have

D1 = E2

E2
1

or, in virtue of equality (8.23),

D1 = V 2

V 2
1

1

μ1
. (8.24)

…so47 that the inductive capacity of a dielectric varies directly as the square of the index of
refraction, and inversely as the magnetic inductive capacity.

Thus, from 1862 until the note by Bernhard Riemann was published, while the
theories of L. Lorenz and C. Neumann were not yet conceived, Maxwell was already
in possession of the essential laws of the electromagnetic theory of light. Unfortu-
nately, the method by which it was reached, very [212] different from the one he has
since proposed, was tainted by a serious clerical error. In virtue of equality (8.15),
equality (8.21) would become

V =
√
2M

ρ
,

47J. Clerk Maxwell, loc. cit., p. 501.

http://dx.doi.org/10.1007/978-3-319-18515-6_4


8.4 First Draft of the Electromagnetic Theory of Light of Maxwell 163

an incorrect formula for which one must substitute the equality48

V =
√

M

ρ
.

8.5 Final Form of the Electromagnetic Theory
of Light of Maxwell

Twice Maxwell has explained, with variations in detail, the electromagnetic theory
of light in an accurate form free frommechanical hypotheses: first,49 in the memory:
A Dynamical Theory of the Electromagnetic Field; a second time,50 in the Treatise
on Electricity and Magnetism.

Consider the system of six equations of Maxwell

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂γ

∂y
− ∂β

∂z
= −4π(u + u),

∂α

∂z
− ∂γ

∂x
= −4π(v + v),

∂β

∂x
− ∂α

∂y
= −4π(w + w).

(7.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ H

∂y
− ∂G

∂z
= −μα,

∂ F

∂z
− ∂ H

∂x
= −μβ,

∂G

∂x
− ∂ F

∂y
= −μγ.

(7.54b)

We put (7.55b) [213]

∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂z
= J, (7.55b)

48Lamé, loc. cit., p. 142, equality (9).
49J. Clerk Maxwell, Scientific Papers, vol. I, pp. 577–588.
50J. Clerk Maxwell, Treatise on Electricity and Magnetism, trad. française, t. II, pp. 485–504
[383–398].
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supposing the medium is homogeneous. We will easily obtain three equalities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔF = ∂ J

∂x
− 4πμ(u + u),

ΔG = ∂ J

∂y
− 4πμ(v + v),

ΔH = ∂ J

∂z
− 4πμ(w + w).

(8.25)

These equations are general. Now suppose themedium is not conductive or dielectric.
We will have

u = 0, v = 0, w = 0,

while w, v, w will be given by equalities (8.12). Therefore, equalities (8.25) will
become ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ΔF − Kμ
∂2F

∂t2
= ∂ J

∂x
+ Kμ

∂2Ψ

∂x ∂t
,

ΔG − Kμ
∂2G

∂t2
= ∂ J

∂y
+ Kμ

∂2Ψ

∂y ∂t
,

ΔH − Kμ
∂2H

∂t2
= ∂ J

∂z
+ Kμ

∂2Ψ

∂z∂t
.

(8.26)

Together with equalities (7.54b), these relationships give us, in the first place, the
equalities ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δα − Kμ
∂2α

∂t2
= 0,

Δβ − Kμ
∂2β

∂t2
= 0,

Δγ − Kμ
∂2γ

∂t2
= 0.

(8.27)

[214] These three equations, whose form is well known, teach us that in a homoge-
neous dielectric, the three componentsα,β, γ of themagnetic field, which, according
to equality (7.54b), satisfy the relationship

∂α

∂x
+ ∂β

∂y
+ ∂γ

∂z
= 0 (8.28)

that characterizes the components of a transverse vibration propagating with a speed

V =
√

1

Kμ
. (8.29)
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The series of deductions of Maxwell is different in the memoir: A Dynamical
Theory of the Electromagnetic Field and in theTreatise on Electricity and Magnetism.
Let us adhere to the arguments expressed in the latter, which are more correct.

We differentiate the first equality (8.26) with respect to x , the second with respect
to y, the third with respect to z and add, member by member, the obtained results by
taking into account equality (7.55b); we find

Kμ

(
∂

∂t
ΔΨ + ∂2 J

∂t2

)
= 0. (8.30)

On the other hand, equality (5.16) from the 1st Part teaches us that, in a homoge-
neous medium, the electric density e is given by the equality

KΔΨ + 4πe = 0. (8.31)

Finally, the equality
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
+ ∂e

∂t
= 0. (6.19)

shows us that we have, in a non-conductive medium where

u = 0, v = 0, w = 0,

[215] the equality (8.32)
∂e

∂t
= 0. (8.32)

Equalities (8.30)–(8.32) give
∂2 J

∂t2
= 0. (8.33)

Hence51 J must be a linear function of t , or a constant, or zero, and we may therefore leave
J and Ψ out of account in considering periodic disturbances.

And Eq. (8.26) become, according to Maxwell,52

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔF − Kμ
∂2F

∂t2
= 0,

ΔG − Kμ
∂2G

∂t2
= 0,

ΔH − Kμ
∂2H

∂t2
= 0.

(8.34)

51J. Clerk Maxwell, Treatise on Electricity and Magnetism, t. II, p. 488 [385].
52J. Clerk Maxwell, loc. cit., p. 488 [385], Eq. (9).

http://dx.doi.org/10.1007/978-3-319-18515-6_5
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The sentence of Maxwell which we have cited, accurate with respect to the func-
tion J , is not for the function Ψ ; but, without departing too much from the essential
thought of Maxwell, one could reason as follows:

We differentiate equalities (8.26) twice with respect to t , taking into account
equality (8.33) and the equality

∂

∂t
ΔΨ = 0,

which results from equalities (8.31) and (8.32) and gives

Δ
∂2Ψ

∂x ∂t
= 0, Δ

∂2Ψ

∂y ∂t
= 0, Δ

∂2Ψ

∂z ∂t
= 0.

[216] We can write the obtained results as

Δ
∂

∂t

(
∂Ψ

∂x
+ ∂ F

∂t

)
− Kμ

∂3

∂t3

(
∂Ψ

∂x
+ ∂ F

∂t

)
= 0,

Δ
∂

∂t

(
∂Ψ

∂y
+ ∂G

∂t

)
− Kμ

∂3

∂t3

(
∂Ψ

∂y
+ ∂G

∂t

)
= 0,

Δ
∂

∂t

(
∂Ψ

∂z
+ ∂ H

∂t

)
− Kμ

∂3

∂t3

(
∂Ψ

∂z
+ ∂ H

∂t

)
= 0

or, in virtue of equalities (8.12),

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δu − Kμ
∂2u

∂t2
= 0,

Δv − Kμ
∂2v

∂t2
= 0,

Δw − Kμ
∂2w

∂t2
= 0.

(8.35)

Moreover, in virtue of equality (6.25), in a non-conductive medium where

u = 0, v = 0, w = 0,

the components u, v, w of the displacement current satisfy the equality

∂u

∂x
+ ∂ y

∂v
+ ∂w

∂z
= 0. (8.36)

http://dx.doi.org/10.1007/978-3-319-18515-6_6
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Thus, in a non-conductive medium, the displacement currents are of transverse
currents that propagate with the speed

V =
√

1

Kμ
. (8.29)

The preceding analysis is based on the use of equalities (6.19) and (6.25), natural
consequences of Maxwell’s third electrostatics; [217] one could therefore expect to
encounter it in the memoir: A Dynamical Theory of the Electromagnetic Field; it is
replaced there by another analysis that would be less easy to render accurate.

Maxwell ascertained a function χ , analogous to the function χ given by equality
(7.82), which he later considered in his Treatise, such that

Δχ = J. (8.37)

He puts ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F = F ′ + ∂χ

∂x
,

G = G ′ + ∂χ

∂y
,

H = H ′ + ∂χ

∂z
.

(7.83)

Equalities (7.55b), (8.37), and (7.83) obviously give

∂ F ′

∂x
+ ∂G ′

∂y
+ ∂ H ′

∂z
= 0, (8.38)

such that F ′, G ′, H ′ can be regarded as the transverse component of the electrotonic
state of which F , G, H are the components.

With equalities (7.83), equalities (8.26) become

ΔF ′ − Kμ
∂2F ′

∂t2
= Kμ

∂

∂x

(
∂Ψ

∂t
+ ∂2χ

∂t2

)
,

ΔG ′ − Kμ
∂2G ′

∂t2
= Kμ

∂

∂y

(
∂Ψ

∂t
+ ∂2χ

∂t2

)
,

ΔH ′ − Kμ
∂2H ′

∂t2
= Kμ

∂

∂z

(
∂Ψ

∂t
+ ∂2χ

∂t2

)
.

(8.39)

http://dx.doi.org/10.1007/978-3-319-18515-6_6
http://dx.doi.org/10.1007/978-3-319-18515-6_6
http://dx.doi.org/10.1007/978-3-319-18515-6_7
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[218] Differentiating these equalities with respect to x , y and z, respectively,
adding the obtained results member by member, and taking equality (8.38) into
account; we find

Δ

(
∂Ψ

∂t
+ ∂2χ

∂t2

)
= 0. (8.40)

Maxwell does this calculation53; but instead of concluding with equality (8.40),
he concludes, and this is not legitimate, with the equality

∂Ψ

∂t
+ ∂2χ

∂t2
= 0. (8.41)

Making use of this equality (8.41), he transforms equalities (8.39) into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔF ′ − Kμ
∂2F ′

∂t2
= 0,

ΔG ′ − Kμ
∂2G ′

∂t2
= 0,

ΔH ′ − Kμ
∂2H ′

∂t2
= 0.

(8.42)

The transverse part of the electrotonic state propagates with speed

V =
√

1

Kμ
. (8.29)

Moreover, equalities (8.37) and (8.41) give

∂

∂t
ΔΨ + ∂2 J

∂t2
= 0,

and asΔΨ is, in a homogeneousmedium, proportional [1st Part, equalities (4.16) and
(4.16b)] to the density of the free electricity, [219] ∂2 J

∂t2
is found to be proportional to

∂e
∂t . Maxwell said54: “Since the medium is a perfect insulator, e, the free electricity, is
immoveable;” this assertion does not logically follow from the electrostatics admitted
in the memoir: A Dynamical Theory of the Electromagnetic Field. Maxwell has to
admit, however, that ∂2 J

∂t2
is necessarily null and conclude that a periodic electrical

disturbance corresponds to a value in J different from 0.
The second electrostatics of Maxwell does not lend itself as well to the devel-

opment of the electromagnetic theory of light as the third electrostatics of the same
author.

53J. Clerk Maxwell, Scientific Papers, vol. I, p. 581, equality (77).
54J. Clerk Maxwell, Scientific Papers, vol. I, p. 582.

http://dx.doi.org/10.1007/978-3-319-18515-6_4
http://dx.doi.org/10.1007/978-3-319-18515-6_4
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There are two points on which55 all the electrostatics of Maxwell agree.
In the first place, two electric charges q1, q2, placed at a distance r from another

inside a certain dielectric 1, repel with a force [1st Part, equalities (4.37) and (4.42)]

F = 1

K1

q1q2
r2

.

Secondly, a flat capacitor whose plates of area S are separated by a thickness θ of
the same dielectric has a capacitance [1st Part, equality (4.46)]

C = K1

4π

S

θ
.

These two equalities, together with equality (8.29), immediately give these two
laws, already obtained byMaxwell in his memoir: On Physical Lines of Force [220]:

1st Law. In a vacuum, the transverse displacement currents propagate with the
same speed as light.

2nd Law. The specific inductive capacity compared to the vacuum is related
to propagation velocities V1 and V of the transverse displacement currents in the
dielectric and in the vacuum, and to the magnetic permeability μ1 of the dielectric
by the relation

D1 = V 2

V 2
1

1

μ1
. (8.24)

These are the two essential laws of the electromagnetic theory of light. [221]

55To recognize this agreement, it must be remembered that the same quantity is named K in the
Treatise on Electricity and Magnetism and here, 1

E2 in the memoir: On Physical Lines of Force, and
4π
K in the memoir: A Dynamical Theory of the Electromagnetic Field.

http://dx.doi.org/10.1007/978-3-319-18515-6_4
http://dx.doi.org/10.1007/978-3-319-18515-6_4
http://dx.doi.org/10.1007/978-3-319-18515-6_4


Chapter 9
Conclusion

The electromagnetic theory of light connects in such a fortunate way two disciplines
hitherto distinct; it so fullymeets the need, oftenmanifested byphysicists, to reconcile
optical and electrical doctrines, that few people today hold it as invalid.

On the other hand, unless being blinded by a biased admiration, we cannot ignore
the illogicalities and inconsistencies which render the reasonings of Maxwell unac-
ceptable to an equitable spirit. These illogicalities, these inconsistencies, are also
not, in the work of an English physicist, defects of minimal importance that are easy
to correct; many illustrious geometers have sought to bring order into this work and
had to give up.

Which side should we take, since we cannot resolve whether to accord a demon-
strative value to the reasonings of Maxwell or to abandon the electromagnetic theory
of light?

Many physicists today now lean toward the side that has been adopted by
O. Heaviside,1 by Hertz,2 and by Cohn,3 [222] of which Hertz4 has clearly for-
mulated the principle and claimed its legitimacy:

Since the reasonings and the calculations by whichMaxwell developed his theory
of electricity and magnetism are constantly undermined by non-accidental contra-
dictions, not easy to correct, but essential and inseparable from the body of the work,
let us leave aside these arguments and calculations. We simply take the equations to

1O. Heaviside. On the Electromagnetic Wave-Surface (Philosophical Magazine, 5th series vol.
XIX, p. 397; 1885.—Heaviside’s Electrical Papers, vol. II, p. 8).—On Electromagnetic Waves,
Especially in Relation to the Vorticity of the Impressed Forces and the Forced Vibrations of Electro-
magnetic Systems (Philosophical Magazine, 5th series, vol. XXV, p. 130; 1888.—Electrical

Papers, vol. II, p. 375).
2H. Hertz. Ueber die Grundgleichungen der Elektrodynamik für ruhende Körper (Wiedemann’s

Annalen. Bd. XL, p. 577; 1890.—Untersuchungen ü ber die Ausbreitung der elek-

trischen Kraft, p. 208; 1894).
3Cohn. Zur Systematik der Elektricitätslehre (Wiedemann’s Annalen, Bd. XL, p. 625; 1890).
4H. Hertz. Untersuchungen ü ber die Ausbreitung der elektrischen Kraft: Einleit-

ende Uebersicht [English translation: Hertz (1893)], p. 21.
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which they led Maxwell and, regardless of the processes by which these equations
have been obtained, accept them as fundamental, as postulates on which we rest the
whole edifice of the electrical theory. We will also keep, if not all the thoughts that
have agitated the spirit of Maxwell, at least everything that is essential and indestruc-
tible in these thoughts, because “what is essential in the theories of Maxwell are his
equations.”5

Do we have right to set aside both the old electric theories and new theories
by which Maxwell arrived at these equations and purely and simply to take these
equations as the starting point for a new doctrine?

An algebraist always has the right to take a any group of equations and combine
them according to the rules of calculation. The letters that certain relationships have
linked will be involved in other relationships algebraically equivalent to the first.

But a physicist is not an algebraist. An equation is not simply, for him, the letters;
these letters represent physical quantities which must be measurable experimentally
or formed fromothermeasurable quantities. Thus, if we are content to give a physicist
an equation, it does not teach him anything; he must, to this equation, attach an
indication of the rules by which he will make the letters of the equation correspond
to the physical values they represent. Now, these rules, which cause him to know,
[223] are all the hypotheses and reasonings by which he reached the equations in
question; this is the theory that these equations summarize in symbolic form: in
physics, an equation, detached from the theory which led it there, makes no sense.

According toH.Hertz, theories are identical when they lead to the same equations.

To the question6: “What is Maxwell’s theory?” I do not know any shorter and more precise
answer than this: “Maxwellz’s theory is Maxwell’s system of equations.” Any theory which
leads to the same equations, and, therefore, embraces the same set of possible phenomena,
I will regard a form or particular case of Maxwell’s theory; any theory which leads to other
equations and, therefore, provides for the possibility of other phenomena, will be for me
another theory.

This criterion is not sufficient to judge the equivalence of two theories. To be
equivalent, it is not sufficient that the equations that they propose be literally identical;
it is also necessary that the letters contained in these equations represent quantities
related in the sameway tomeasurable quantities, and to ensure this last characteristic,
it does not suffice to compare the equations. We must compare the reasonings and
hypotheses that constitute both theories.

So, one cannot adopt Maxwell’s equations unless he arrives at them as a conse-
quence of a theory of electric and magnetic phenomena; and since these equations
are not consistent with the work of Poisson from classical theory, he will be forced to
reject this classical theory, to break with the traditional doctrine, and to create with
new concepts, on new hypotheses, a new theory of electricity and magnetism.

This is what Boltzmann did. [224]

5[H. Hertz. ibid. p. 21].
6H. Hertz, Abhandlungen über die Aushreitung der elektrischen Kraft. Einleitende Uebersicht,
p. 23.
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In a book published from 1891 to 1893,7 he attempted in a prodigious effort to
forget the doctrines that the tradition and usage teach us and to build, using entirely
new concepts, a systemwhere the equations ofMaxwell are linked together logically.

There is no denying, in fact, that this book establishes a perfect link between the
various equations written by Maxwell in his Treatise on Electricity and Magnetism.
The contradictions and paralogisms of which Maxwell was so pleased, too often, to
sow along the way that leads to these equations were carefully removed. Is this to say
that the theory thus constructed is not open to criticism and satisfies all the desires
of physicists? There will be many. Thus, the electrostatics of L. Boltzmann is only
Maxwell’s third electrostatics. Like the latter, it does not appear to agree with the
actions that the charged conductors exert on dielectrics; the magnetism, copied from
the memoirs of Maxwell, seems unlikely to be identified with the fertile doctrines
of Poisson, F. Neumann, W. Thomson, and G. Kirchhoff—doctrines that Maxwell
himself included in his Treatise.

So if, to arrive logically at Maxwell’s equations, we follow the methods proposed
by L. Boltzmann, we are forced to give up in part the work of Poisson and his
successors on the distribution of electricity and magnetism, i.e. one of the the most
accurate and most useful parts of mathematical physics.

On the other hand, to save these theories,mustwe renounce all the consequences of
the doctrine ofMaxwell, and, in particular, themost appealing of these consequences,
the electromagnetic theory of light? As Poincaré noted somewhere, it would be
difficult to resolve.

Trapped in this dilemma: either to abandon the traditional theory of the electric
and magnetic distribution, or to renounce the electromagnetic theory of light, can
physicists adopt a third stance? Can they imagine a doctrine where the old electro-
statics and magnetism and the new doctrine of the propagation of electric actions
within dielectric media would be reconciled?[225]

This doctrine exists. It is one of the most beautiful works of Helmholtz8; a natural
extension of the doctrines of Poisson, Ampère, Weber, and Neumann, it leads logi-
cally from the principles laid down at the beginning of the XIXth century to the most
attractive consequences of Maxwell’s theories, from Coulomb’s laws to the elec-
tromagnetic theory of light; without losing any of the recent conquests of electrical
science, it restores the continuity of the tradition.

7L. Boltzmann, Vorlesungen über Maxwell’s Theorie der Elektricität und des Lichtes. Ie Theil:
Ableitung der Grundgleichungen für ruhende, homogeneous, isotropic Körper.—IIe Theil: Verhält-
niss zur Fernwirkungs-theory; specielle Fälle der Elektrostatik, stationaren Strömung und Induction.
Leipzig, 1891–1893.
8Helmholtz. Ueber die Bewegungsgleichungen der Elektrodynamik für ruhende leitende Körper
(Borchardt’s Journal fü r reine und angewandte Mathematik, Bd. LXXII, p. 57,
1870.—Wissenschaftliche Abhandlungen, Bd. I, p. 543).
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