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Foreword 

In 1999 we began holding the Cracow - Clnusthal annual workshops devoted to un- 
solved fundamental problems of quantum mechanics. The workshops were initiated 
by Professor Heinz-Dietrich Doebner from the Arnold Sommerfeld Institute of Mathe- 
matical Physics and the Technical University of Clausthal at Clausthal-Zellerfeld (Ger- 
many), and by a our group at the Henryk Niewodniczaliski Institute of Nuclear Physics 
at Krakdw (Poland). The first workshop was organized under the title Einneling Effect 
nnd Otlzer Fundar~zrntal Proh1rnl.s ($Quantum Phy.sics and wa!, hcld in Krakdw from 
November 22 to 28 of that year. During all the discussions the participants came to 
the conclusion that the framework of the workshops should be enlarged, and that the 
appropriate name for all future workshops would be E.~tensiorzs of Quarzt~irn Theory. 
The second workshop was held in Krakdw from October 12 to 15, 2000. The third, 
which was held from July 18 to 21, 2001 was associated with the 2nd International 
Syrnposiurn Qlianttrnr Theory and Symmetries, organized by us and hosted by the H. 
Niewodniczaliski Institute of Nuclear Physics. 

Simultaneously, it was agreed that the results of the workshops should be published 
in a collection of regular articles in special volumes. It is our pleasure to present the 
first such a volume, which covers some topics discussed up to now. We are grateful to 
the publisher of Apeiron, C. Roy Keys, for providing us this opportunity. 

The present volume starts with a discussion of superlurninal signal velocities in 
tunneling experiments with microwaves, and a controversy connected with the locality 
problern. Then we continue with the problem of localization for photons, which also 
belongs to the list of unsolved problems of quantum theory. Closely related to these 
topics are the problems of time of arrival in quantum physics and preferred reference 
systems in Maxwell electrodynamics. A new look at the problem of superluminal 
velocities is presented on the basis of spacetimes with multidimensional times. In 
addition, the complicated problem of tunneling through many succesive bariers and 
many-layer systems is discussed. The utility of lesser-known representations of quan- 
tum physics in describing the tunneling effect is also presented. 

Finally, we have decided to include in this volume a paper which discusses possible 
use of quantum non-commutative geometries for constructing more realistic quantum 
models of our Universe. In our view, newer emerging models will naturally incor- 
porate more observational events and be fundamentally different from currently used 
models of spacetime. In particular, we believe that in such models all the fundamental 
cosmological observations which contradict the standard point of view will find their 
natural explanation. 

Apart from fundamental problems, we also welcome new applications of standard 
theories. This is why we have included here some papers containing interesting results 
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oblained in traditional lrameworka. 
We wish to express our deep gratitude to the Polish State Committee for Scientitic 

Research for providing the funding that made it possible to hold all the workshops, and 
to all those who helped us in preparing the workshops, in particular to Professor An- 
drzej Budzanowski, Director General of the H. Niewodniczanski Institute of Nuclear 
Physics and to our colleagues in the Institute. Last but not least, we extend special 
thanks to all the contributors to this volume. We also hope our readers will tind this 
volume to be of interest, and that they will look forward to further installments. 

December 2001, Andrzej Horzela and Edward KapuScik 

H. Niewodniczanski Institute of Nuclear Physics 
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On Universal Properties of Tunneling 

G. Nimtz. A. Haibel. A. A. Stahlhofen. and R.-M. Vetter 
11. Physikalisches Institut, Universitit zu Koln, 
D-50937 Koln 

Photonic tunneling violale, Einllcin cau,alily. Supsrluminal signal and snergy ve- 
luci~ie, havs hccn msalored in \lodie, orphu~onic lunnsling. The lignal cnsrgy i,  
always finile: Lhus as a consequence of quanlum mechanics, signals musl he Tre- 
quency hand limited. This resull represenls a rundamenla1 physical propeny. We 
conjecture (ha1 lunneling lime is universal. 

K<,yicurds: lunneling lirne, auprrlurninal, signals 

1. Introduction 
First we will present some experimental results on photonic tunneling observed in 
microwave and optical experiments. Experiments have revealed superlurninal sig- 
nal and energy velocities [I ,  2, 31. According to the textbooks, Einstein or "strict" 
causality means neither signals nor energy can travel faster than c,  the speed of light 
in vacuum. To resolve this sophisticated dilemma, the main part of the paper is de- 
voted to a discussion of the properties of a signal and signal velocity. Surprisingly, 
it follows that Einstein causality may be violated by photonic tunneling. The effect 
can indeed follow the cause at superlurninal velocity. However, this result does not 
include the possibility of changing the past. Constructing a time machine is yet not 
possible. 

1.1 Photonic Tunnel Barriers 
Three examples of photonic barriers are represented in Fig. I. showing an undersized 
waveguide between two normal guides, a periodic dielectric heterostructure (often 
called a one-dimensional photonic lattice), and a double prism with a gap of rarer 
refractive index acting as a photonic barrier. The latter set-up is described as frus- 
trated total internal reflection (FTIR). Dispersion relations for the transmission of the 
lattice and the undersized waveguide are shown in the same tigure. 

Photonic barriers and wave mechanical barriers are characterized by a tield mode 
solution with an imaginary wave number called the evanescent mode in classical op- 
tics. The evanescent field crossing the barrier decays exponentially with distance, 
however, without changing its phase. The IEEE, for instance, summarized this prop- 
erty in the following definition: An evanescent mode in an urrdersiied waveguide is 
ufield co~~ jgur (~r ion  in N ivaveg.gllide SILCII  that the urnplitl~rle of the field dirrzini.she.s 
ulong the ivuveguide hut the phnse is unchnnged. 

t r ie, is ions olC)iin,iliii~i I 'hyr i rs 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 



Frequency (GHz) 

Fig. 1. Examples (a) of a waveguide with an undersized central part, (b) a one- 
dimensional periodic dielectric hetero-structure, and (c) a double prism (FTIR) 
with an evanescent gap. The graphs below show the dispersion relations for 
transmission from structures (a) and (b); the double prism structure dispersion 
is qualitatively the inverse of example (a). The dispersion of the periodic het- 
erostructure displays a forbidden gap which corresponds to a tunneling regime. 

1.2 Observed Superluminal Signal and Energy Velocity 

A single digital pulse is shown in Fig. 2. This signal has crossed a photonic barrier 
at the speed of 4 . 7 ~  arriving at the observer 500 ps earlier than a waveguided copy 
thereof which travelled the same distance at the vacuum speed of light [4]. The 
observer received the tunnelled signal earlier, which means that the cause to effect 
gap has been shortened. 

Note, that the tunnelled signal is not markedly reshaped. This is due to its fre- 
quency band limitation and the fact that it contains evanescent components only. 
Comparing the same signals crossing either air or a barrier thus makes it possible 
to measure the signal velocity independently of the preparation and of the detection 
process. 

Superluminal energy velocity became most obvious in a single photon experi- 
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Fig. 2. Barrier traversal time of a microwave packet through the forbidden band 
gap of a multilayer structure inside a waveguide (see Fig.1 b). The center fre- 
quency of the pulse was 8.7 GHz, the pulse width *0.5 GHz. The pulses are 
normalized. The barrier length was 114.2 mm. The velocity of the tunnelled sig- 
nal was 4.7 C .  The slow pulse (1) traversed the empty waveguide, whereas the 
fast one (2) has tunnelled the photonic barrier of the same length [4]. 

ment carried out by Steinberg et al. [3]. In this experiment a photonic lattice barrier 
was crossed by single photons, and a speed of 1 . 7 ~  measured. 

2. Signals 

A signal is a detectable amount of energy that can be used to carry information [5]. 
Its essential properties will be discussed in this section. 

A modern digital signal used in electronical communication is shown in Fig. 3a. 
The carrier frequency of the signal determines the receiver's address, and the signal 
half-width represents the information. The signal has been sent 9 000 km along 
a fiber, and noise is already seen after amplification to the original magnitude, as 
displayed in the lower part of the figure [6]. A similar single digital signal with a 
microwave carrier is shown above in Fig. 2. As mentioned above, this signal has 
traversed a photonic barrier at a superluminal speed of 4 . 7 ~ .  

Fig. 3b shows a mathematical ideal and a frequency band limited sinusoidal sig- 
nal. The Fourier transform of the frequency band limited signal has non-causal com- 
ponents, i.e., there are already oscillations at negative times. As mentioned above, 
all signals are frequency band limited. We will discuss the solution of the causality 
dilemma below. 
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Fig. 3. (a) Signal used in optical fiber communication. The signal half-width cor- 
responds to the number of bits, i.e., to the transmitted information. The lower one 
was recorded after a distance of 9 000 km and amplification. Some noise can be 
seen. The carrier frequency is 2 .  1014 Hz. The amplitude modulation is limited to 
a band width of about 10l0 Hz. (b) Sine wave signal non-frequency (dotted line) 
and frequency band limited (solid line), frequency is 5 GHz * 0.5 GHz. In con- 
sequence of the Fourier transform, the frequency band limited signal has signal 
components at negative times, i.e., before it is switched on. 

2.1 Signals are Fundamentally Frequency Band Limited 

A single photon can be detected, and delivers information about its energy hw. As- 
tronomers determine the temperature of a cosmic event by measuring the energy of 
the emitted photons, for instance in the case of a y-ray outburst. From the half- 
width of the photon burst, the total energy involved in the cosmic process can be 
determined. (Remember, a signal and, in this case, the half-width, are independent 



of the signal's magnitude, i .e . ,  the cosmic signal may have travelled either one or a 
million light years, while the half-width is still the same.) 

When analyzing the meaning of the half-width in the present case, we concen- 
trate on amplitude (AM) modulated signals. Let us take, for definiteness, the exam- 
ple of Fig. 3a: the can-ier fi-equency is near 2 .  101%z, con-esponding to the infi-ared 
wavelength of 1.5 pm. The frequency band-width of this AM signal is four orders 
of magnitude smaller than the carrier frequency. 

2.2 Signal Velocity 

With the help of Fig. 3a, the signal velocity, i f . ,  the number of digits, can easily be 
defined: the complete envelope of the signal has to be detected in order to disentangle 
the information. The velocity of this envelope detines the signal velocity. (This 
definition comprises the velocity of the half-width representing the information.) It 
is only at the end of the signal that the information is obtained, and the desired effect 
achieved; the velocity of a signal is, loosely speaking, determined by the velocity of 
both the konr and the tail. 

Let us now discuss two apparent features of signals that are often addressed in 
the literature: (i) The information conveyed by a signal is contained in the half- 
width, as elucidated above (in the case of AM). A signal does not depend on its 
magnitude. If this were the case, any broadcasting station would rapidly face seri- 
ous problems with increasing distance between receiver and transmitter. The digital 
signal displayed in Fig. 3a illustrates this point: The half-width does not change as 
long as the signal's magnitude is above the noise level or the detector's sensitivity. 
(ii) If frequency band limited signals were given by analytical functions, the corn- 
plete information would already be contained in the rising edge of the signal. This 
assumption, extremely difticult to check in the paradigm of a modem signal shown 
in Fig. 3a, entails strange effects: For instance, when I switch on my office light in 
the morning, the information about my leaving my office again would be determined 
aL the aame Lime. 

Any physical signal has to be frequency band limited. This is a fundamental 
physical property, as was shown by Nirntz [7]. It is based on Planck's tinding that 
the minimum energy of a field's fi-equency component is given by h w (see Fig. 4). 
Thus, frequency band unlimited signals containing an intinite frequency spectrum 
would have intinite energy, contrary to our experience in a tinite world. 

There is a wellknown dilemma with frequency band limited signals. The Fourier 
transform of a frequency band limited signal has nonxausal forerunners, i f . ,  Fourier 
components existing before the signal is switched on [S]. An example of a frequency 
band limited signal exhibiting these forerunners is shown in Fig. 3b. This problem is 
solved by the same argument from quantum mechanics used above: the nonxausal 
photon components of a frequency band limited signal are not measurable, since 
their energy is less than hw. 
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Fig. 4. The detectable part of the signal is the part above the straight line rep- 
resenting the limit E = f i  w; frequency components below this line, especially the 
non-causal forerunners, do not have enough energy to be detectable. 

2.3 Tunneling Velocity 

The superluminal propagation of signals or of single photons with purely evanescent 
modes measured in different experiments can be adequately described either by the 
time dependent Schrodinger equation [9, 101 or by the Maxwell equations. This 
assumption, based on analogies between particle and photonic tunneling [I  11, has 
been verified by means of extensive computer simulations [12]. Quite often the 
argument is given that the ideal mathematical front of a signal travels at the speed 
c, and cannot be overtaken by the strongly attenuated body of the tunnelled signal. 
From the mathematical point of view, this is correct. The existence of an ideal front, 
however, is based on the assumption of an unlimited frequency band required to form 
the front; such a front necessarily leads to strong signal reshaping as shown in Fig. 5 
and discussed in Ref. [13]. A physical signal, even a single photon, is frequency 
band limited, as discussed above, and the front is not well defined, contrary to the 
idealised assumptions needed to define a front. Due to the frequency band limitation 
of a signal and a smooth barrier dispersion relation, no substantial pulse reshaping 
occurs. 

3. Tunneling Time is Universal 
Analysis of various experimental data and calculations with different theoretical 
models point to a universal property of the tunneling process. We have suggested 
that in general the tunneling time is approximately equal to the reciprocal frequency 
1 / f of the corresponding tunneling wave packet's frequency [IS]. Experimental 
data from several experimental studies and different photonic barriers are collected 
in the Table 1. We conjecture that this very universality is valid for all tunneling 
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Fig. 5. Comparison of normalized intensity U S .  time of an airborne signal (solid 
line) and a tunnelled signal (dotted line) moving from right to left. Both signals 
have a sharp step at their beginning and the frequency spectrum is infinite. The 
tunnelled signal is reshaped and attenuated. Moreover, although its maximum has 
travelled at superluminal speed, both fronts have traversed the same distance with 
the light velocity C .  Here E is the maximum of the tunnelled pulse, a is the shift of 
the maximum, u is the variance of the tunnelled signal, and 00 is the variance of 
the incoming pulse. It is clearly seen that the latter is longer than the variance of 
the tunnelled signal. 

Table 1. Tunneling time data obtained by investigating three types of photonic 
barriers and measuring at quite different frequencies. 

Photonic Barrier 

FTIR 
at the Double-Prism 

Photonic Lattice 

processes, for wave packets either with rest mass or without rest mass. 

Data collected from several microwave and optical studies are presented in Ta- 
ble I .  The experiments were carried out with the three different photonic barriers 
shown in Fig. 1. The conjecture of a universal tunneling time is evident from the 
data. This surprising property is supported by theoretical data obtained from the 
Helmholtz and the Schrodinger equations. 

Reference 

Haibelmimtz [18] 
Carey et al. [I 41 
Balcou/Dutriaux [I 51 
Mugnai et al.  [16] 

Steinberg et al. [3] 
Spielmann et al.  [I 71 
Nimtz et al. 141 

Tunneling 
Time 

117 ps 
z I ps 
40 fs 
134ps 

1.47 fs 
2.7 fs 
81 ps 

Reciprocal 
Frequency 

120 ps 

3 PS 

11.3fs 
100 ps 

2.3 fs 
2.7 fs 
115 ps 



4. Summary and Conclusions 
Einstein causality, which restricts the velocity of a signal to v ,  c, is based on 
the assumption of a frequency band unlimited signal with an ideal front travelling 
with the speed of light in vacuum, which cannot be overtaken by the body of a 
signal undergoing pulse reshaping. We have shown that this restriction is violated by 
evanescent modes: a physical signal whose half-width represents the information is 
frequency band limited and does not have a well defined front, while the pulse is not 
markedly reshaped. 

We conclude by summarizing the non-classical properties of evanescent modes 
which were recognized only recently: 

I )  Signals have a finite energy content, and thus, as a consequence of quantum 
mechanics, a limited frequency band. This is a fundamental physical prop- 
erty [7]. 

2) Tunneling signals may travel at a superluminal speed, including superlurninal 
energy velocity. The superluminal signal reaches the receiver earlier than the 
airborne signal. This results in a shortened time between cause and effect. 
However, due to the finite signal length (duration), the past cannot be changed, 
i .~,., the construction of a time machine is not possible. 

3) A tunneling barrier is traversed in no time. A barrier represents a space without 
time. (In theology this is called eternity.) Since evanescent modes do not 
accumulate phase, the predicted phase time velocity, which equals the group 
and the signal velocities for evanescent modes, is zero. The finite velocity 
seen in experiments is caused by the interference and resulting phase shift of 
the incident and reflected wave packets at the barrier's front boundary. In the 
case of frustrated total internal reflection (FTIR) the tunneling time is due to 
the Goos-Hiinchen shift, as has been shown by Stahlhofen [19, 181. The phase 
shift causes a time delay, and thus a finite tunneling time (being independent 
of barrier length [9, lo]. 

4) Tunneling time is found to be a universal property. The tunneling time mea- 
sured with opaque barriers equals roughly the reciprocal frequency of the tun- 
neling wave packet [I 81. 
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Particle Localization and the Notion of 
Einstein Causality 

Gerhard C. Hegerfeldt 
Institnt fur Theoretische Physik, Universitat Gottingen 
Bunsenstr. 9, 37073 Gijttingen, Germany 

The nolion ol Einslein causalily, i r . ,  [he limiling role ol the velocily or lighl in [he 
lransmission or signals, is discussed. I1 is poinled oul lhal Niml, and coworkers 
use [he nolion ol signal velocily in a dirlerenl sense from Einslein, and [ha1 [heir 
experimmlal resulls are in lull agreemml wilh Einslein causalily in ils ordinary 
sense. We al\o ,how ihal under iluitc eencral ab\orniilionb in\vanlaneou\ \~rcadine 

K<,yicurds: auprrlurninal, signal, locolirnlion 

1. Introduction 
The notion of 'Einstein causality' refers to the limiting role of the velocity of light in 
the transmission of signals. Einstein's principle of finite signal velocity is of funda- 
mental importance for the foundations of physics, both in classical and in quantum 
physics. If signal velocities could be arbitrarily high, this would either lead to the 
possibility of absolute clock synchronization and to a change of special relativity, 
or to the possible existence of superlurninal tachyons, with their associated acausal 
effects [I]. Hence the name Einstein causality. 

To be more precise, in this context a sigrral means the experimental creation of 
any sort of "disturbance" at some space point or small space region and its influence 
on a measuring device further away. For example, one could produce an electromag- 
netic pulse and then measure the field strength at some other point. The start time of 
the signal is the time when the experiment is set into motion, i.e., when the button is 
pressed. The arrival time of the signal is thejirsf insfarrce a measuring device can or 
does respond. The limiting role of light velocity means that the corresponding time 
difference divided by the distance cannot exceed c. 

Nimtz and coworkers [2] have reported superluminal signal velocities in tun- 
neling experiments with microwaves. These experiments and their interpretation, 
advocated, for example, in the article of Nimtz ef a/. appearing in this issue, has 
given rise to considerable controversy [3] .  It will be shown further below that the 
controversy is easily resolved by a careful analysis of the notions used by different 
authors. Nirntz and coworkers employ a definition of signal velocity which is differ- 

t r ie, is ions olC)iin,iliii~i I 'hyr i rs 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 



ent from the one Einstein had in mind. Using the old detinition, it will be seen that 
the experimental results of Nimtz and coworkers, sophisticated as they are, do not 
contradict Einstein causality in the original sense, but rather, are in full agreement 
with it. Thus a conceptual confusion lies at the heart of the matter, which explains a 
lot of the controversy. 

Are there superluminal phenomena in the quantum realm'? For a free nonrela- 
tivistic particle instantaneous spreading of the wave function is well known. If, at 
time t = 0, the wave function vanishes outside sorne finite region I., then the particle 
is localized in 1. with probability I. Instantaneous spreading implies that the proba- 
bility of finding the particle arbitrarily far away from the initial region is nonzero for 
any t > 0. In a nonrelativistic theory, however, this superluminal propagation is of 
no great concern. 

If the localization of a free relativistic particle is described by the Newton-Wigner 
position operator, then instantaneous spreading also occurs, as noted in Refs. [4] and 
[S] (cf .  also Ref. [6]). This also happens for a proposed photon position operator 
[7]. In 1974 the present author [8] showed that this phenomenon of instantaneous 
spreading is quite general for a free relativistic particle, irrespective of the particular 
notion of localization, whether in the sense of Newton-Wigner or sorne other sense. 
Later, an alternative proof of this result was given [9], and the result was extended to 
the center-of mass motion of relativistic systems with possibly rnore than one parti- 
cle [lo]. Ruijsenaars and the author [I I] then showed that instantaneous spreading 
occurs for quite general, relativistic or nonrelativistic, interactions. The main re- 
sult of Ref. [I I ]  was that this instantaneous spreading is mainly due to positivity 
of the energy plus translation invariance. More recently, it was shown by the author 
[I21 that translation invariance is also not needed. Hilbert space and positivity of 
the Hamiltonian (energy) suffice to ensure either instantaneous spreading or, alter- 
natively, continernent in a fixed region for all times. Another extension was given 
by the author [I31 for free relativistic particles and for relativistic systems which 
have exponentially bounded tails in their localization outside sorne region 1.. It was 
shown that the state spreads out to intinity faster than allowed by a probability flow 
with finite propagation speed. Probably the most astonishing part of our results is the 
fact that so little is needed to derive them. They hold with and without field theory 
and with and without relativity. Only Hilbert space and positivity of the energy are 
needed. 

What do these results mean for Einstein causality'! This will be discussed in the 
following, where we concentrate on the role played by positivity of the energy for 
instantaneous spreading. We also briefly discuss Fermi's two-atom model [14, IS]. 
But first we turn to the Nimtz controversy 
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2. Resolution of the Nimtz controversy 

Nimtz ef a/ .  [2] define in Section 2.2 of their paper in this issue what they mean by 
signal velocity and arrival time. Their detinition is motivated by usage in modern 
engineering. In particular, their notion of arrival time is connected to the read-out 
time of the signal. However, Einstein had a different meaning in mind when he for- 
mulated his principle of the limiting role of the velocity of light for signal velocities, 
and this has been explained in the Introduction. Definitions are of course neither 
right nor wrong, but clearly the meaning of a statement as well as its truth depend 
on the detinition of the notions employed in the formulation of the statement. So 
what do the Nimtz experiments have to say on the question of Einstein causality in 
its original sense'? Are they compatible with it'? 

In these experiments, typically, a rapid sequence of microwave pulses is gener- 
ated. Each pulse is split into two and sent over different paths of the same length to 
a receiver. Calibration of the path length is achieved by displaying the two pulse se- 
quences stroboscopically as still pictures on an oscillograph. Then a photonic tunnel 
barrier is inserted into one of the paths, which attenuates the corresponding pulses 
and reshapes them. To compare tunneled and non-tunneledpulses, the former are re- 
amplified to their original amplitude height at the receiving end and again displayed 
stroboscopically on the oscillograph. The effect is dramatic. Upon insertion of the 
tunnel barrier, the still picture of the tunneled pulses makes a jump to earlier times, 
seemingly indicating that they are arriving earlier than the non-tunneled pulses. With 
the detinition of signal velocity and arrival time used by Nirntz and coworkers, this 
ia indeed true. 

To see, however, whether this has anything to do with superluminal signal ve- 
locities in the Einstein sense, it is astonishing to look at the tunneled pulses with- 
out amplification. Experimentally it has been veritied by Nimtz and coworkers that 
the amplitudes of the tunneled pulses are always below the amplitude of the non- 
tunneled pulses [22]. In these experiments, the maxima as well as the half widths 
of the tunneled pulses are ahead of those of the non-tunneled pulses, and therefore 
arrive earlier. This is graphically depicted in Fig. I by the pulses traveling from left 
to right. The figure is not to scale, and and does not represent experimental curves, 
but is just for illustration. 

For the signal velocity in the Einstein sense, however, the arrival time of the pulse 
maximum and the read-out time of the half width are not relevant, since they are not 
used for clock synchronization. What is relevant is the first possible response time of 
the measuring device, as explained in the Introduction. Now, since experimentally 
the tunneled pulses are always below the non-tunneledpulses in amplitude, any mea- 
suring device will respond first to the non-tunneled pulses and then to the tunneled 
ones, or at most simultaneously to both. Thus the limiting role of the speed of light 



Fig. 1. Typical behavior of airborne pulse (solid line) and tunneled pulse (dashed 
line), traveling from left to right (not to scale). In the experiments, the amplitude 
of the latter is always smaller than that of the non-tunneled pulse, although its 
maximum arrives at an earlier time. 

as signal velocity in the sense of Einstein is not violated in the experiments. 
What, then, is superluminal here? Let us consider the group and the phase veloc- 

ity of light. Both are mathematical constructs useful for the description of electro- 
magnetic phenomena. It is well known that both can be larger than c [16], but this 
cannot be used for superluminal signals in the Einstein sense. Similarly, it has been 
shown in Ref. [17] that in a somewhat idealized situation the tunneling pulse can 
be fully described within Maxwell theory by means of another mathematically intro- 
duced auxiliary phase-time velocity notion. Again, this auxiliary velocity cannot be 
used for superluminal signal transmission in the Einstein sense. 

So it seems that the controversy about the interpretation of Nimtz's experiments 
arises from an indiscriminate use of terminology. Terms like signal velocity and ar- 
rival time are used by Nimtz and coworkers in a sense different from that of Einstein. 
When the notions are used in the original sense the experiments are fully compatible 
with Einstein causality as ordinarily understood. 

3. Fermi's two-atom model 
To check the speed of light in quantum electrodynamics, Fermi [I41 considered two 
atoms, separated by a distance R and with no photons initially present. One of the 
atoms was assumed to be in its ground state, the other in an excited state. The latter 
could then decay with the emission of a photon. Fermi calculated the excitation 
probability of the atom which had initially been in its ground state. Using standard 
approximations, he found the excitation probability to be zero for t < Rlc. In Ref. 
[15] the following mathematical result was proved and applied to the Fermi problem. 
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Theorem: Let H be a self-adjoint operator, positive or bounded from below, in 
a Hilhert space R. For given I)" t R let l h t .  f t lR, he defined as 

Let A be a positive operator in 'fi, A > 0, and let PA (t) be defined as 

Then eilher 
j ~ . ~ . ( f )  # 0 for almost all t (3) 

and the set of such t's is dense and open, or 

11.4 ( f )  = 0 for all f . (4) 

For the proof, which is based on an analyticity argument, the positivity of both 
H and '4 is needed. Positivity means that all expectation values of the operator are 
nonnegative. Positivity of H alone is not enough. If A is not positive the theorem 
does not hold. In Eq. (2) one can replace 11.4 (t) by 

where p is a positive trace-class operator. 
If one takes for 'Qo in the theorern the initial state considered by Ferrni and for '4 

the operator describing the excitation probability, e.y., the projector onto the excited 
states, then p a ( t )  becomes the excitation probability, and the theorem states that this 
probability is immediately nonzero. In [I51 it was discussed how to avoid apossible 
conflict with causality, and this was continued in more detail, for example in [I 8, 19, 
20, 211. The conclusion was ihai ihc immcdialc cxcilalion could be undcrslood in a 
field-theoretic context as vacuum fluctuations due to virtual photons. The part of the 
excitation due to the second atom behaves causally [20, 211. Causality then holds for 
expectation values after the spontaneous part has been subtracted. This corresponds 
to the notion of weak causality, i f . ,  for expectation values, introduced in [6], which 
contrasts to the notion of strong causality, i f . ,  causality for individual events, as 
discussed in [18]. Fermi seems to have had strong causality in mind. 

4. Particle localization and spreading 
Let us suppose that it makes sense to speak of the probability of tinding a particle at 
a given time inside a region of space 1.. This is a highly nontrivial assumption. In 
a quantum theory the probability of finding a particle or system inside 1~ should be 
given by the expectation of an operator, N(l:), say. Since probabilities lie between 
O and 1, one must have 

0<N(1. . )  < 1 (5) 



Now let us assume that the system, with state $1" at t = 0, is stl-ictly Iocali7ed i n  
a region T o ,  i . ~ . ,  with probability 1, so that (U':~,N(I,~)U':~) = 1 or, equivalently, 

From Eq. (5) one has 1 - N(1:") > O and hence the theorem can he applied, with 

As a consequence one either has 

or 

I ,  ( I )  < 1 for almost all t . (9) 

The alternative in Eq. (8) means that the particle or system stays in i b  at all times, 
as might happen for a bound state in an external potential. 

Now, if the particle or system is strictly localized in i b  at t = O it is, a fortiori, 
also strictly localized in any larger region 1. containing i b .  If the boundaries of 1. 
and i b  have a tinite distance and if finite propagation speed holds, then the probabil- 
ity of tinding the systern in 1'' would also have to be 1 for sufticiently small times, 
r .g . ,  O < t < t. But then the theorem, with .'I = 1 - N(1..), states that the systern 
stays in 1. at all times. Now we can make 1" smaller and smaller and let it approach 
1 b. Thus we conclude that if a particle or systern is strictly localized in a region i b  at 
time t = O , then finite propagation speed implies that it stays in i b  at all times, and 
therefore prohibits motion to intinity. Or put conversely, if there exist particle states 
which are strictly localized in some tinite region at t = O and later move towards 
infinity, then finite propagation speed cannot hold for localization of particles. 

This can be formulated somewhat more strongly as follows. If at t = O a particle 
is strictly localized in a bounded region i b  then, unless it remains in i b  at all times, 
it cannot be strictly localized in a bounded region I., however large, for any finite 
time interval thereafter, and the particle localization immediately develops infinite 
"tails." The spreading is over all space except possibly for "holes" which, if any, will 
persist permanently, by the same arguments as before. If the theory is translation 
invariant, then there can be no holes, as shown in Ref. [I I] under some mild spectrum 
condilions. 

5. Counterexample Dirac equation? 
At tirst sight, the Dirac equation might seem to be a counterexample to our results 
on instantaneous spreading. Indeed, this wave equation is hyperbolic, implying fi- 
nite propagation speed. For the localization operator N(1'~) one might take the char- 
acteristic function X V ( X ) ,  just as in the nonrelativistic case and in contrast to the 
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Newton-Wigner operator. Then, for a wave function initially vanishing outside a fi- 
nite region, i f . ,  of tinite support, the localization does evolve with finite propagation 
speed! Doesn't this contradict the results of the preceding section'! 

This example is instructive since it shows the importance of the positive-energy 
condition. The Dirac equation contains positive and negative energy states. Now, 
consider a solution of the Dirac equation, which vanishes outside some finite region, 
and make the additional assumption that it is cornposed of positive-energy solutions 
only. Then one gets a contradiction to our results, and therefore the additional as- 
sumption must be wrong, i f . ,  a solution with finite support at some time rnust con- 
tain negative-energy contributions. This means that positive-energy solutions of the 
Dirac equation always have injinite support to begin with! This is phrased as a math- 
ematical result, for instance in the book by Thaller [23]. 

Thus the results of the preceding section do not apply if there are no strictly 
localized states in the theory! Strict localization of a state <I in a region V means that 
(Q, N(~'~) ' I /J )  = 1, and this gives 

where the root exists by positivity of IV(T. ) .  This implies 

Hence (., is an eigenvector of N(1.) for the eigenvalue I if (', is strictly localized in 
I,', and vice versa. The eigenvalue 0 means strict localization outside 1". 

The existence or nonexistence of strictly localized states depends on the form of 
N(1:). For example, if one has a self-adjoint position operator X with cornmuting 
components, then N(1'~) is a projection operator from the spectral decomposition of 
X, and thus has eigenvalues I and 0. Hence in this case there are strictly localized 
states for any region I,-, and the result of the previous section implies instantaneous 
spreading. 

This instantaneous spreading also occurs for position operators with self-adjoint 
but non-commuting components ki. Each ki has a spectral decomposition whose 
projection operators give the localization operators for intinite slabs. Eigenvectors 
for the eigenvalue I represent states strictly localized in these slabs, and there is 
instantaneous spreading in this case, too. 

To avoid instantaneous spreading one therefore has to consider localization oper- 
ators A7(V) which are not projectors, for example positive operator-valued measures. 
However, if one insists on arbitrarily good localization, i f . ,  on tails which drop off 
arbitrarily fast, then one runs into our results in Ref. [I31 . 

Discussion. Could instantaneous spreading be used for the transmission of sig- 
nals if it occurred in the framework of relativistic one-particle quantum mechanics'! 
Let us suppose that at time t = O one could prepare an ensemble of strictly localized 
(non-interacting) particles by laboratory means, c3.g., photons in an oven. Then one 
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could open a window and observe some of them at time t = E later on the moon. Or 
for repetition, suppose one could successively prepare strictly localized individual 
particles in the laboratory. Preferably this should be done with different, distinguish- 
able, particles in order to be sure when a detected particle was originally released. 
Such a signaling procedure would have very low efticiency, but could nevertheless 
be used for synchronization of clocks or, for instance, for betting purposes. 

Field-theoretic aspects of our results have been discussed in detail in Ref. [24]. 
Permanent intinite tails in field theory can be understood intuitively through clouds 
of virtual particles due to renormalization ('dressed states'). Also, counters could be 
influenced by vacuum fluctuations. 
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Locality of Quantum Electromagnetic 
Radiation 

Alexander S. Shumovsky 
Physics Department, Bilkent University, 
Bilkent, Ankara, 06533, Turkey 

Wc conblruct ihc local rsprcsenlation of ihe Weyl-Hcisenhsrg algehra of rnullipolc 
pholons using [he ihree-dimensional properlies olpolari/alion. I i  is shown ihal lhis 
represenlalion is compalihle wilh the operational approach lo pholon locali,,alion. 

1. Introduction 
In spite of the great success of quantum electrodynamics (QED), there remain a nun-  
ber of major unresolved problerns (e.y., see [ I ,  2, IS]). Leaving aside the detailed 
discussion of foundations of QED, we shall concentrate here on the problem of local- 
ization of photons, which has attracted a great deal of interest. The point is that the 
photon creation and annihilation operators are defined in QED as nonlocal objects. 
In other words, the photon number operator gives the total number of photons in 
the volume of quantization without specification of their space-time location [2, IS]. 
Moreover, it has been proven by Newton and Wigner [I61 that no position operator 
can exist for the photon. There is a widespread belief that the maximum precise 
localization appears in the form of a wavefront [S]. At the same time, the specitic 
fall-off of the photon energy density and photodetection rate can be interpreted as 
photon localization in space [6]. 

Perhaps, the most evident and best example of photon localization is provided 
by the photodetection process, when a photon is transmitted into an electronic sig- 
nal in the sensor element of the detecting device [7]. This localization is usually 
described operationally (in terms of what can be measured by a macroscopic detec- 
tor) by means of the so-called contiguration number operator, which determines the 
number of photons in the cylindrical volume ocAt,  where o denotes the area of the 
sensor element, c i s  the light velocity, and A t  is detector exposure time [2,7]. 

We now stress that, in the usual treatment of photon localization, the radiation 
field is considered to consist of the plane waves of photons [2, IS]. In reality, the 
quantum electromagnetic radiation emitted by the atomic and molecular transitions 
corresponds to nrultipole photons [8] represented by quantized spherical waves [9]. 
Although the classical plane and spherical waves are equivalent in the sense that 
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they both form complete orthogonal sets of solutions of the homogeneous Helmholtz 
wave equation [ l o ] ,  there is a strong qualitative difference between the two quan- 
tum representations. The plane waves of photons correspond to the running-wave 
solution in empty space with translational symmetry, which leads to states of pho- 
tons with given linear momentum. In turn, the solution in terms of spherical waves 
assumes the existence of a singular point, corresponding to an atom (source or ab- 
sorber of radiation) whose size is small with respect to the wavelength. In this case, 
the boundary conditions correspond to the rotational symmetry, and lead to states of 
photons with given angular momentum. Since the components of linear and angular 
momenta do not commute, the two representations of the quantum electromagnetic 
field correspond to physical quantities which cannot be measured at the same time. 

The main objective of this paper is to show that the use of the multipole pho- 
ton representation leads to an adequate description of localization in the atom-field 
interaction process. The paper is arranged as follows. In Section 2 we briefly dis- 
cuss the difference between the spatial properties of plane and spherical waves of 
photons. In Section 3 we introduce the local representation of the multipole photon. 
Then, in Section 4, we discuss the problem of measurement and causality. A general 
conclusion and the implications of this work are presented in Section 5. 

2. Plane and spherical waves of photons 
An arbitrary free quantum electromagnetic field can be described by the operator 
vector potential whose positive-frequency part has the following form 

where the unit vectors 

form the so-called helicity or spin basis of the three-dimensional space [9, 111, 
Vke,(F) is the mode function, and ake is the photon annihilation operator, which 
obey Weyl-Heisenberg commutation relations 

Here e is a cumulative index. By construction, the vector potential components 
A,,*l (r', t )  in ( 1 )  describe the circularly polarized transversal components of the 
field with positive and negative helicity respectively, while A,,o (r', t )  gives the lin- 
early polarized longitudinal component [I 11. In the case of plane waves of photons 
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and projection of spin of the photon on this axis is forbidden, so that there are only 
two transversal components of the field. In this case, index e = a = & describes the 
circular polarization of the field. 

Unlike the plane waves of photons, the quantum multipole radiation has all three 
spatial components [9, 111, and index e = { A ,  j ,  m )  gives the parity X = E, M 
(type of radiation, either electric or magnetic), angular momentum of photons j  = 

1 , 2 ,  . . ., and projection of the angular momentum on the quantization axis m  = 

- j , .  . . , j .  It should be stressed that plane and multipole photons have different 
numbers of quantum degrees of freedom. In fact, a monochromatic radiation field 
has only two degrees of freedom, described by the polarization index CJ = & in the 
case of plane photons. At the same time, a monochromatic multipole field of a given 
type X at given j  > 1 is specified by ( 2 j  + 1 )  > 3 degrees of freedom. Moreover, the 
polarization is not a quantum number and, thus, the global property of the multipole 
radiation changes from point to point [12]. 

The spatial properties of the field are described by the mode functions in (1). In 
the case of plane photons, the mode function has the simple form of plane waves 

(e.g.9 see PI) 

where V is the volume of quantization. It is seen that this expression leads to the 
spatially homogeneous density of intensity of a monochromatic plane wave 

In turn, the multipole radiation is specified by the mode functions [9, 111 

in the case of X = E and X = M, respectively. Here (. . . I jm)  denotes the Clebsch- 
Gordon coefficient of vector addition of spin and orbital parts of the angular momen- 
tum, Yln is the spherical harmonics, and 

The radial dependence in (6) is defined as follows [I 01 

hi1) ( k r )  , outgoing spherical wave 

h y )  ( k r )  , incoming spherical wave 

je ( k r )  , standing spherical wave, 



(1 .2)  whcrc tri denotes thc spherical llanhcl function of Lhc first and second hind rc- 
spectively and ju is the spherical Bessel function. It is clear that, unlike (S), the 
density of intensity of a monochromatic pure j-pole rnultipole radiation of a given 

type 

shows a certain position dependence with respect to the source location at the origin 
of the reference frame spanned by the helicity basis (2). This spatial inhomogeneity 
of the density of intensity of rnultipole radiation can be used to introduce the local 
representation of the Weyl-Heisenberg algebra of multipole photons [IZ]. 

3. Local photon operators 
In contrast to (S), the density of intensity (8) is represented by a non-diagonal form 
in the photon operators which can be represented as follows 

where V ( 3  is the Hermitian (2j + 1) x ( 2 j  + 1) matrix with the elements 

To simplify the notations, hereafter we omit the indexes A; k ,  and j .  It is seen that 

t r V ( 3  E V ,,,,,, (3 = k2[.i(+) (3, .$(-I (31: (1 1) 
In 

so that the trace of (10) describes the electric-field contribution into the energy den- 
sity of the zero-point oscillations [I41 of the multipole tield. Then 

gives the contribution of spatial components with different polarization p into the 
zero-point energy of the multipole field. Since the polarization is the three-dimension 
al property of the rnultipole radiation [I 3, 141, it seems to be reasonable to define the 
spatial properties of rnultipole photons by means of polarization. 

Consider for definiteness the electric type pure j-pole monochromatic radiation. 
Then, the operator polarization matrix takes the form [I31 
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By definition, this is the (3 x 3) Hermitian matrix with the operator elements written 
in the normal order. In addition, one can define the anti-normal operator polarization 
matrix. Then, the difference between the anti-normal and normal matrices defines 
the zero-point oscillations of polarization [I 51 with the elements 

It is easily seen that the diagonal elements of (14) coincide with (12). It is intu- 
itively clear that the spatial properties of the zero-point oscillations of polarization 
described by (1 4) should be determined by distance r from the source independent of 
the spherical angles. In other words, the vacuum noise should have a homogeneous 
angular distribution, which can change with the distance. 

The (3 x 3) Hermitian matrix (14) can be diagonalized by a proper transformation 
of the reference frame spanned by the helicity basis (2) 

As a result of this transformation, 

It is then a straightforward matter to arrive at the conclusion that 

where 

In other words, the diagonal elements in (16) describe the transversal and longitudi- 
nal (with respect to j&) vacuum noise of polarization as a function of distance from 
the source. 

The use of the same unitary transformation (15) allows the operator polarization 
matrix (1 3) to be cast in the form 

where 
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and 

In view of (3), the operators (20) obey the commutation relations 

PT(T) a t p  = 
[ A ~ k j p  (r') , ATrkjjrpr (31 = b A A 1 b k k !  b j j ~  bppl { pL a t p = O  (21) 

where PL, PT are the diagonal elements (17). Similar results can also be obtained in 
the case of the magnetic multipole radiation. 

We now note that the only difference between (3) and (21) is the presence of 
position-dependent factors in the right-hand side of (21). It seems to be tempting to 
introduce the normalized local operators 

which obey the standard Weyl-Heisenberg commutation relations 

at any point r'. Hence, the transformation (15) can be interpreted as a local Bogol- 
ubov canonical transformation [17], conserving the Weyl-Heisenberg commutation 
relations. In fact, the equations (15) and (22) describe the transformation of global 
multipole photon operators u x k j ,  with given m = - j ,  . . . , j ,  j  > 1, into the local 
photon operators b x k j p  (r') with given polarization p at any point of the space. 

4. Measurement and locality 
In the operational approach to photon localization [7] (also see [2, 15]), the local 
absorption operator 

is defined in the case of plane waves of photons. Here summation is taken over a 
finite set of modes to which a detector responds. Then, the so-called conjguration 
space number operator is defined by the relation 

where the integral is taken over the volume of photon localization (cylinder with 
base corresponding to the sensitive area of the detector and height proportional to 
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the exposure time). It is clear that the operators (24) and (25) obey the following 
commutation relations 

and 

[ Z ( r ' , t ) , N ( V , t ) ]  o { -"r',t), 
i f ? €  V  

0 ,  otherwise, 

where V  denotes the volume of localization (detection). Let us stress that (27) has 
an approximate sense. 

There is a principal difference which makes difficult the direct use of the op- 
erational approach to the problem of localizing photons in the case of multipole 
radiation. The point is that the multipole photons are in the state with given angular 
momentum, and therefore they have no well defined direction of propagation. At the 
same time, these photons are localized initially inside the source. 

Let us now note that the operators (22) describe the local properties of the multi- 
pole radiation, and that the density of intensity operator (9) can be represented by 

Under the condition that the we have a strictly monochromatic field, the operator 
(28) can be considered as an analog of (25) at a given point r', while (22) is similar 
to (24). The principal difference between the two local representations is that 

+ [bAkjP (F ) ,  b X , p  j!,' ( ? ) I  = S X X ' S ~ ~ '  S j j 1  f P p 1  (F, ?), (29) 

where f,,~ (r', ?") is, perhaps, a sharp function but f,,~ (r', ?") # S,,! 6(r ' -  ?"). Such 
a violation of the Weyl-Heisenberg commutation relations reflects the causal depen- 
dence between the multipole radiation fields at different points. 

Nevertheless, the operators (22) can be used for description of a real measure- 
ment. Consider a model of a Hertz-type experiment on emission and detection of 
multipole photons in the system of two identical atoms separated by a distance d. 
If we assume that a photon is first emitted by the atom number one (source) and 
then absorbed by the atom number two (detector), it is most natural to consider the 
field as a superposition of outgoing and incoming spherical waves focused on the 
source and detector respectively. This superposition should obey the boundary con- 
ditions for the real radiation field, so that only one multipole photon can exist in the 
space. Then, in direct analogy to (24), we can construct a configuration space photon 
absorption operator 



Here the sum is taken over the modes allowed by the selection rules for the atom- 
field interaction under consideration. The volume of detection is defined in this case 
as follows 

where AT is the atomic "exposure time" defined by the natural breadth of the spectral 
line, and r ,  denotes the atomic radius. Then, the configuration space multipole 
photon number operator takes the form 

where the definition of b,(r', t )  differs from (22) by summation over all allowed 
modes, which induces the time dependence. It is straightforward to show that the 
operators (30) and (31) obey commutation relations of the type (26) and (27). Thus, 
the picture of measurement in the source-detector system of two identical atoms ex- 
pressed in terms of the local operators (22) is compatible with Mandel's operational 
approach to the photon localization. 

The above picture, based on the superposed state of outgoing and incoming 
waves of photons, completely eliminates an enquiry concerning the trajectory of 
photons between the atoms. In fact, the quantum mechanical path of a photon is not 
a well-defined notion [I 71. The most that we can state about the path of a quantum 
particle in many cases is that it is represented by a nondifferentiable, statistically 
self-similar curve [17]. For example, the path of a tunneling electron and time spent 
in the barrier are not still defined unambiguously [la]. Moreover, recent experi- 
ments on photonic tunneling and transmission information show the possibility of 
superluminal motion of photons inside an opaque barrier [19]. 

We now note that, according to the principles of quantum theory, not the path, but 
causality in the transmission of information from one object to another, is important. 
In the above considered Hertz experiment with two atoms separated by empty space, 
this means that the detecting atom cannot be excited earlier than d / c  seconds after 
the emission of a photon by the first atom. Such a causality has been proven in [20]. 

5. Conclusion 
Let us briefly discuss the results obtained here. It has been shown that the clear-cut 
distinction between the properties of plane and spherical waves leads to a qualitative 
difference in the spatial behaviour of the corresponding photons as well as of the 
zero-point oscillations. The successive use of the spatial inhomogeneity of multi- 
pole radiation permits us to construct a local representation of the Weyl-Heisenberg 
algebra of multipole photons based on the properties of polarization. Let us stress 
once more that the polarization defined to be the spin state of photons has a one-to- 
one correspondence with the spatial properties of radiation. The local representation 
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1. Introduction 
Classical and Quantum Mechanics use the notion of Newtonian time, a universal 
parameter that rules the evolution of all the dynarnical systems of the universe. New- 
tonian time is "a priori" external to everything, physical systems and observers alike. 
However, in many instances there are true time-like properties in the physical sys- 
tems under study. In general, the answers to questions like: How long will it take 
to ...Y or, When will it ...?, err. come in the form of a time that genuinely depends 
of the very system. The crux of the matter is finding the time (the time elapsed, or 
the instant in time) in which some property of the system will take a specific value, 
something that could be generically termed as "the time of arrival at that value." In 
the next section we deal with the formulation of this question in classical dynamics. 
The much more involved case of translating a time parameter into an operator on 
the Hilbert space, as required by the quantum treatment, is worked out in sections 2 
and 3 for free and interacting particles respectively. In section 4 we point out some 
eccentric properties of the time of arrival at places that are classically forbidden. 

2. Deriving time in phase space 
The treatment of time as a phase space variable is a time-honored procedure. The 
term e.~tended phase space was coined for the approach in which, to the n pairs 
( q ,  p )  of the phase space variables of mechanical systems with 71 degrees of freedom, 

L.rtensiu,iu of Quonruni Ph~sicu 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 



one adds the additional conjugate pair ( t , p l ) ,  which requires the constraint pr + 
H ( q , p )  = 0 for consistency. It seems possible to dismantle this construction by 
replacing the pair ( t , p r )  by another canonical pair (q .  11). Naively, one would single 
out one of the phase space variables (yl for instance) and make it equal to some 
parametric value (i.e. ql = x). Then, its canonical conjugate (the mornenturn pl 
in this example), would be fixed by the constraint, giving jll = @(.x; q2,p2.. . . . j ) , ) .  
The phase space would now be given in terms of {(q,:p,). . . . ; (q,,.p,): ( t 7 p f ) ) ,  
with z acting as an external evolution-like parameter. Hence, f ( z )  or in words, "the 
time of arrival at x" would be a legitimate question to ask. In spite of its apparent 
generality, it is seldom possible to accomplish this program, not because of its very 
difficulty, but due to the non-fulfillment of some of the many conditions necessary 
for the existence of solutions. Here we will discuss the case of integrable systems 
for which there is a global construct for t(.r;), that we will describe explicitly. 

In the modern approach to classical dynamics (a standard reference is [I] ,  a very 
readable text can be found in [2]), a Hamiltonian system is called completely inte- 
grable (a lh Liouville) when it satisfies the conditions n and b below: 

a. There are n compatible conservation laws 
a i ( q l , .  . . , q,,,pl . . . ,p>,;  t )  = Ci,  i  = 1 , .  . . , ir, that is: 

b. The conservation laws define 71 isolating integrals that can be written as: 

In these conditions, the solution to the Hamilton equations is an integrable flow, 
described by a system of holonornic coordinates ( q ( t ) , p ( t ) )  in phase space for each 
inslanl of lime: 

q i ( f )  = q i ( q n , p o ; t ) ,  i = l ,  . . . ,  n,. (1) 

j l i ( f )  = pi(qn, po; t ) .  i  = 1, . . . , n,. 

In particular, given the set of initial conditions (qn,  po) ,  the system arrives at the point 
( q ( t ) , p ( t ) )  of the phase space in the path independent instant t .  Conversely, these 
points define the corresponding times of arrival. In this case, time meets the require- 
ments to qualify as a derived variable in phase space, whose explicit construction 
occupies the rest of this section. 

For integrable flows there is a special choice of phase space coordinates that 
mathematically eliminates the effects of interactions (because the new positions are 
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ignorable coordinates). In other words, integrable systems are canonically equivalent 
to a set of translations (or of circular motions) at constant speed. It is customary to 
denote the variables that determine these translations as action-angle variables, a 
name which strictly is appropriate only for the case of periodic systems, where the 
(closed) flow lines are topologically equivalent to circles. For these integrable flows, 
there is a canonical transformation W (the Jacobi-Lie transformation) to free-like 
variables 

(4 ,  P;  H(q ,  PI)  3 { Q ,  P ;  Ho(P) ) ,  (2) 

where H  (q, p) = Ho ( P ) .  The most useful form of this transformation is W (q, P ) ,  
that is, a function of the old positions and the new momenta, so that 

The choice Ho(P)  = Ci relates the free coordinates Pi(t)  = Pi and Qi( t )  = 

E t  m + Qi of the translation flow to the positions and momenta (qi ( t ) ,  pi ( t ) )  of the 

actual flow generated by H(q,  p) = xi & + V ( q ) .  In this work we shall only 
consider unbound systems with positive energy H  = Ho > 0. For this reason we 
choose, as constant variables, the conserved momenta Pi instead of the usual actions 
over a period $pdq that are more apt for bounded motions. Notice however that 
the Pi are different from the momenta appearing in perturbative calculations, even 
if both sets may coincide asymptotically or in some set of Rn. Coming back to 
our problem, the function W would be given explicitly as a complete integral of the 
following Hamilton-Jacobi equation: 

Due to the relations b.1 and b.2 above, it is permitted to write W as the path- 
independent integral: 

where qo is a constant configuration space point, and the Ci (that remain fixed dur- 
ing the integration) are functions of the Pi whose determination is necessary to solve 
the problem explicitly. We are not concerned here with the search for specific solu- 
tions, but with the fact that integrability ensures their global existence. In fact, the 
equations (3) can be written in the form 



The first equation is simply the definition of the isolating integrals (b. I ) .  As a bonus, 
time can be given as a function of phase space in two alternative ways: either in 
terms of the old variables, or equally in terms of the new ones. Consider that a 
particle initially at (q ,  p) arrives at the position q(t)  = x  in the instant t ( x )  = t ,  
then: 

where X a  = dW ( x ,  P )  /dP, (obviously, X a  = Q, ( t ( x ) )  by construction). Note 
that in (7) there is no summation over the index a. In fact, integrability can be envi- 
sioned as the simultaneous existence of n independent flows, each of them contained 
in a different phase space plane. The requirement of integrability was noticed by 
Einstein [3], who analyzed its implications for the old Bohr-Sommerfeld quantiza- 
tion conditions, which he reformulated accordingly giving a new condition that was 
criticized by Epstein [4]. Integrability [5] allows n different expressions to define 
the unique time of arrival. Only a pair (Q,, P,) appears in each of them, and they 
all are equivalent. This holds even when there is no separable solution to the original 
Hamilton-Jacobi equation (4) due to the presence of the potential V(q)  in the Hamil- 
tonian. Only for some well known cases [6] the problem is separable in the original 
variables. Independently of this, notice that as (Q( t ) ,  P )  defines a straight line in the 
phase space, it is simple to lay one of the axes (the nth say) along it. This amounts 
to defining Ho(P) = P,, which gives P,(t) = E and Q,(t) = t  + Qn, while the 
other variables remain constant Q ( t )  = Q j ,  Pj ( t )  = Pj , j = 1, . . . , n - 1. With 
this choice, one can write: 

with the pi's given in (6). This is the standard equation of time that appears in 
the literature. The rest of the relations would give the time independent geometric 
properties of the trajectories. Note that for central potentials only p, depends on E,  
so that (8) reduces to t ( rx )  = STY dr(apT/aE). 

We have focused the discussion of this section on the dual definition of the time 
of arrival, that can be given in terms of the original phase space variables, or of the 
free translation variables. This duality is a foundation stone for the quantum method 
presented in this paper. We will obtain the time of arrival operator of interacting par- 
ticles t ^ ( ~ )  by applying a quantum version of the canonical transformation W(q ,  P )  
to the well known operator for the time of arrival of free particles io (z). The proper- 
ties of the latter have been extensively analyzed in the literature. For completeness, 
and to fix the notation, we present a summary of them in the next section. 
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3. Time of arrival of free quantum particles 
In one space dimension Eq. (7 )  gives the time of arrival at z  of a free particle initially 
at (q ,  p) as a function of the phase space variables that depends on z parametrically: 
t o (q ,p ;  x )  = m ( x  - q) /p .  In spite of its simplicity, this expression presents serious 
quantization difficulties, [7,  8, 9, 10, 1 1 1 ,  whose solution we outline here [ I  0 ,  12, 
13, 14, 151. First of all, it requires a decision about operator ordering, the simplest 
one being symmetrization: 

^ z l l  
t o ( q , p ; r )  = m(: - -14, :I+) = - e P i e x E  6 e e x .  

P 2 P  
(9 )  

Notice the proliferation of carets above. It is a reminder that we now deal with op- 
erators acting on the Hilbert space of the free particle states. From now on, we will 
drop the operator carets, simplifying the notation as much as possible, wherever this 
will not produce confusion between operators and c-number variables. The eigen- 
states ItzsO) of this operator t o  ( z )  in the momentum representation can be given as 
(h, = 1) 

where t  is the time eigenvalue, z the arrival position, and where we use s  = r  for 
right-movers (p > 0) ,  and s  = 1 for left-movers (p < 0.) The label O stands for free 
particle case. Finally, the argument sp of the step function that appears on the rhs is 
+p for s  = r ,  and -p for s  = 1, so that 

The degeneracy of the energy with respect to the sign of the moment is explicitly 
shown by means of a label s  = r,  1 in the energy representation, where 

Summarizing, there is a representation for the time of arrival at z spanned by the 
eigenstates 

2 H ~  l / l $ H g l n  ItzsO) = (-) 
m so lz), (13) 

where I I S o  projects on the subspace of right-movers ( s  = r ) ,  or of left-movers ( s  = 

These time eigenstates are not orthogonal. This gave rise in the past to serious 
doubts about their physical meaning. The origin of the problem can be traced back to 
the fact that ( 9 )  is not self-adjoint, that is, that (p i to  ( z ) $ )  # ( to  (z)cpl$). Th' is was 



pointed out by Pauli [7] a long time ago and is due to the lower bound on the energy 
spectrum that prevents the applicability of the Stone theorem [16]. The problem 
emerges as soon as one attempts integration by parts in the energy representation. 

Not being self-adjoint or orthogonal, this operator poses an interpretation prob- 
lem that can be solved by considering it in terms the Positive Operator Valued Mea- 
sures (POVM). This is a class of operators less restrictive than the traditional pro- 
jector valued measures. The POV measures only requires the hermiticity of t o ( x )  
(i.e. to ( x )  = ( t o  ( x ) ) *  T, to assure the positivity of the measure. Now, instead of a 
Projector Valued spectral decomposition of the identity operator, one has the POV 
measure 

whose notation indicates the arrival interval and that the dependence on the arrival 
position comes through the projector n ( x )  = lx) (xi on the position eigenstate. For 
the above measure Po (1,  2)2 # Po ( l , 2 )  because ltxs0) (txs01 is not a projector, as 
the states are not orthogonal. However, the limit as t + cc of Po(-t, f t )  is the 
identity as can be checked explicitly. The time operator obtained is well suited for 
interpretation. This solution was introduced in [14], and extensively analyzed in 
refs. [17, 181. It has been recently reviewed in [19] and criticized in [20]. 

In this formulation the time of arrival is given by the first moment of the measure 

where Po(x)  = C, I I S o  n ( x )  n S o ,  which is not a projector. We now have the tools 
necessary for the physical interpretation of the formalism: Given an arbitrary state $ 
at t = 0, its time of arrival at a position x has to be, according to (1 6), 

with the standard interpretation of Cs I (txsOl$) l 2  like the (as yet unnormalized) 
probability density that the state I $ )  arrives at x in the time t .  The probability of 
arriving at x at any time is then Po ( x )  = / dt C, I (txsOl$) 12, giving a normalized 
probability density in times of arrival 
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the normalization that has been used in (1 7). 
The above equations (1 7,18) can be given forms that are very useful for compu- 

tation and that throw some light on the physical meaning of the different quantities 
involved. By using explicitly (1 3), one gets 

The use of a similar procedure in (17) leads to 

This expression is easy to understand. In fact it involves two ingredients: the plane 

wave amplitude (xlEsO) = &rxp( i spx ) ,  along with the bracket ( E s O d )  = 

f i G ( s p )  where 4 is the Fourier transform of the initial state in momentum space, 

and p = m. This gives for the arrival amplitude 

This is a free case, so that the probability of ever arriving at x has to be one. In fact 

where we used that in our notation r p  = +p and lp  = -p. We also have: 

There are initial wave packets centered around the values (qo,  po) for which G(p)  = 

lG(p) 1 exp(-ipqo) with the amplitude G(p)  peaked around po. Then, 



and the time of arrival at x reduces to 

which is the time of arrival of the classical free particle averaged over its initial state. 
The generalization to the case of three space dimensions [ I  31 is not straightfor- 

ward. The reason is that to begin with, there are three equivalent equations (7) for 
the time of arrival. To be compatible, they have to satisfy the constraints 

where we drop the distinctions made in (7) between upper and lower case letters, as 
they are the same objects for free particles. Classically, the constraints correspond 
to the fact that x has to be a point of the particle's trajectory, therefore the angular 
momentum can be written as L = x Ap. In other words, the angular momentum with 
respect to x, that is C ,  has to vanish. We now show that the constraints (25) are first 
class. First of all, they are closed as their components C ,  = cabc  ( q  - x ) b  pc satisfy 
the algebra of 3-D rotations, namely {C,, C b )  = cabc  L C .  Then, the total Hamil- 

tonian is HT = & + A .  C ,  where A is a vector multiplier so that {C,, H T }  = 

cabc X b  LC.  Therefore, the constraints form a first class system that depends paramet- 
rically on x, one for each arrival position x. Not all the x's can be reached from an 
arbitrary set (q, p) of phase space variables. Only those x that satisfy the constraints 
are positions where the particles with these dynamical variables can eventually be 
detected. A detector placed somewhere else will miss them. 

The above translates into quantum mechanics as it is: Not all the states in the 
Hilbert space of free particle states ?f with Hamiltonian Ho can be detected at a 
specific position x. Only the subspace ?fx of the states that satisfy the constraints 
(25) (where now q and p are operators) qualify as the Hilbert space of detected states 
(at x). This subspace is spanned by the states I $ ;  x) E 'R of the form I $ ;  x) = 

$(Ho) I x). Here, $(Ho) is an arbitrary function of Ho, that may also depend on 
other parameters, I x) is the eigenstate q I x ) = x I x ) of the arrival position. In 
particular, the detected subspace ?fx is obtained from 'No by a translation of amount 
x, as required by covariance. 

The value of t comes from the equation of motion in the subspace orthogonal 
to the constraints, namely p . x = p . (E to ( x ) + ~ ) ,  that in spherical coordinates 
where Ip) = Ip, O,, 4,) and q = id can be written as x = 2 to(x) + q. This can 

d p  
be readily inverted to give 
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Notice the characteristic powers of p to the right and to the left of q. This operator 
ordering makes of to a maximally symmetric operator with respect to the measure 
d3p,  making integration by parts a straightforward task. In d space dimensions we 
would have to cx (-i&,) pn with n = ( d  - 2 ) / 2  [I 31. The eigenfunctions of 
to are given in the momentum representation by: 

where t E R is the time eigenvalue, and E, = p 2 / 2 m .  One can define a time of 
arrival representation given by 

1 
It; x, 0) = - 1.). 

These eigenstates are not orthogonal. They correspond to a POV measure defined by 
the spectral decomposition 

It can be immediately seen that for any state I $ ;  x) E U,, and for arbitrary momen- 
tum p 

( ~ I l x I $ ; x )  = (pl$;x) 'V'p€R3. (30) 

Therefore, the operator 1, is a decomposition of the identity within the subspace of 
detected states Ux. The fact that 1, < 1, so that the decomposition is uncompleted, 
is the quantum version of the classical case where only a part of the incoming parti- 
cles will (reach and) be detected at x. From here it is clear that our formalism is finer 
than that provided by the so-called screen operators [22], that would describe the 
arrival at a two dimensional plane put across the particle trajectories. In fact, these 
screen operators would correspond to a coarse graining of the present formalism, 
whose interpretation is analyzed in some detail in [13]. 

The time of arrival can be given through the first momentum of the POV measure 
(29): 

whose similarity with the 1-D case (16) is evident, and can be used as a guide to get 
the average time of arrival an other quantities of interest that were worked on in one 
space dimension. 



4. The arrival of interacting particles 
In this section we want to determine the effect on the times of arrival of a position 
dependent interaction between the particle and the medium, that we describe by a 
potential energy I '~ (q) .  For instance, we want to consider the case of a barrier placed 
between the detector and the initial state. We would put a detector at x (at the other 
side of the barrier), and prepare the initial state I?,) of the particle at t = O (at this 
aidc ol Lhc harrier). Wc would Lhcn record with a clock the timc t  when Lhc dctcclor 
clicks. Repeating this procedure with identically prepared initial states, we would 
get the probability distribution P ( t ,  z )  in times of arrival at .x. This is the same 
procedure used for the free particle case, the differences corning from the presence 
of the potential energy i..(q). 

To find the quantum time of arrival we will use what we know from the clas- 
sical casc: Thcrc is a canonical transformation from thc frcc (Ho = g )  transla- 
tion variables (Q. P) to the actual variables (q ,p)  of the interacting situation where 
H = g + I . (  

Lin q). Time can be given equally in any of these two versions, and we 
did already quantize the free version to in the previous section. Now, in successive 
steps, we do the following [21]: We tirst construct the quantum canonical trans- 
formation U that connects the free-particle states to the eigenstates of the complete 
Hamiltonian. This is the quantum version of the (inverse of the) Jacobi-Lie canon- 
ical transformation (2,s). We will see later on that Lr is given by the Moller wave 
operator. We will then apply Lr to to to detine the time of arrival t in the presence 
of the interaction potential I '~ (q)  in terms of to .  We will work out the details of 
this transformation t = L T t o  LT'. Finally, we will also address some questions of 
interpretation of the resulting formalism. 

Dirac introduced canonical transformations in quantum mechanics in a number 
of different places [23] by means of unitary transformations LT (UUt = Ut L' = 1 ). 
To tix the notation, we assume in what follows that the operators q  andp  are given in 
the coordinate representation of the Hilbert space L y z )  by q = .x and 11 = -ih&. 
If the operators q andp are the result of an arbitrary canonical transformation applied 
to q  andp, then there is a unitary transformation Lr such that 

One can also detine implicitly the quantum canonical transformations as is done in 
classical mechanics, a possibility that has been thoroughly analyzed and developed. 
The main rcsulls of Lhc mclhod arc collcclcd in 1241, which alao includes rcfcr- 
ences to other relevant literature. The definition of L' is given implicitly by the two 
condilions 

F(q. 1,) = Fo(q, p ) ,  and G(q.  1,) = Go(q. p ) ,  (33) 

where F. G .  Fo and Go are functions of the operators shown explicitly as their argu- 
ments. They cannot be chosen arbitrarily, the necessary and sufticient condition for 
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the canonicity of the transformation being [F, GI = [Fo, Go] .  The dependence of 
(33) on U  can be explicitly given by using (32) in it: 

that comes from the straight application of (32) to the first members. In addition, 
U  is unitary so that the spectra of the original and transformed operators have to 
coincide. We now assume that F  and Fo are self-adjoint operators whose eigenvalue 
problems are solved by the states I f  s) and I f  s 0) (both corresponding to the same 
eigenvalue), that form orthogonal and complete bases of the Hilbert space satisfying 

We are accepting here the presence of degeneracy indicated by the discrete index s, 

something that we will need later. Assuming now a continuous spectrum (the case 
we will be interested in), the operator U  that satisfies the first row of (35) is given by 

It is straightforward to verify that it is unitary. We can now give the definition of G  
in terms of Go using U ,  that is G  = U  Go ~ t ,  which in full detail reads 

This is the main result of our procedure. The fact that we can define an operator G ,  
canonically conjugate to F ,  if we know Go and U .  

We will now apply this to the case where Fo is the free Hamiltonian Ho, F  the 
complete Hamiltonian H  and Go the time of arrival to of the free particle Eqs.(9), or 
(16). Then, we have Ho = ~ t  H  U  and n o ( x )  = ~ t  n ( x )  U .  Associated to the free 
particle there was the positive operator valued measure Po of Eq.(15). Accordingly, 
the POV measure P  of the interacting case will be given by (cf (34)) 

and the time of arrival operator in the presence of interactions (the G  of (37)) is given 

by 
t ( H , n ( x ) )  = U t o ( H o , n o ( x ) ) ~ ~ .  (39) 

We noticed above that the spectra of the original and transformed operators had to 
coincide. Now, cr(Ho) = R+ so that not all the Hamiltonians can be obtained from 
Ho by this procedure. In general, some fixing will be required to make the spectra 
coincide. Here we will only consider well behaved potentials ( V ( q )  > 0 V q E R),  
vanishing appropriately at spatial infinity. This ensures the required coincidence of 



the spectra, but introduces two solutions for U due to the existence of two indepen- 
dent sets of eigenstates of H: 

These are the Moller operators connecting the free particle states to the bound and 
scattering states. In the presence of bound states these operators would only be 
isometric, because the correspondence between eigenstates of H and free states 
could not be one-to-one. In our case V ( q )  > 0, there is one free state for each 
scattering state and conversely. Thence, the Moller operators are unitary. In this 
case, the intertwining relations HR(*) = R(*)Ho can be put in the more desir- 

able form H = R(*)H~R!,).  We will also follow the standard sign conventions, 
choosing R(+) in (40) that, when E = (E + i c ) ,  gives signal propaga- 
tion forward in time. The results that would be obtained with R(- )  would corre- 
spond to the time reversal of this situation. If 7 is the time reversal operator, then 
P(-) ( I I ( x ) ;  t l ,  t 2 )  = 7 P(+) ( I I ( x ) ;  - t2 ,  - t l )  7 t .  For notation simplicity, we will 
omit these labels (&) wherever possible. 

The parameter x that appears in (37) and (39) is the actual detection position in 
the interacting case, the place whose time of arrival at we want to know. Therefore, 
the arguments of t  in (39) have to be II(x)  = Ix)(xl and H .  Hence, the argument 
of to will be an object IIo(x)  = RtI I (x )R  which collects all the states of the free 
particle that add up to produce the actual position eigenstate 1 % )  by the canonical 
transformation. Much of the difference between the classic and quantum cases is 
hidden here. In particular, the quantum capability to undergo classically forbidden 
jumps in phase space has much to do with the fact that II(x)  and I Io  ( x )  cannot be 
position projection operators simultaneously. 

We have now at hand all the tools necessary to answer the questions about the 
time of arrival of interacting particles. Given a particle that was initially (at t = 0) 
prepared in the state I$), we can compute the predictions for the average time of 
arrival ($It ( x )  I$), the probability distribution in times of arrival P ( t ,  x )  and the 
probability of ever arriving at x ,  P ( x ) .  Instead of writing more equations, we refer 
the reader to Eqs. (1 6,17), (1 5,18) and (1 9). By simply erasing the label 0 from 
them, one gets the correct expressions for the interacting case, with the caveat that 
- to be of practical use - they require the knowledge of the scattering states and 
Moller operator. It is worth recalling here that the expression (20) for the average 
time remains valid after dropping the 0's. So, ($lt(x)l$) is still the sum of two 
independent pieces, one containing ( d / d E )  arg(E s I $ )  that only depends of the 
initial state, the other that contains ( d / d E )  arg(x IE s ) and only depends of the 
position of arrival. 

We now consider the case where there is a finite potential energy starting at the 
origin ( V ( q )  = 0, Vq 5 0), which is so smooth that the quasi-classical approxima- 
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tion is valid. Then for E > V ( x )  the exponentially small reflection amplitude can 
be neglected, giving the scattering states 

with p(q)  = J 2 m ( ~  - V ( q ) ) ,  that are normalized to an incoming right-moving 
particle by time unit. We now consider the physically interesting case where the 
initial wave packet is normalized to I ,  (i.e. that S d P l 4 ( p )  l 2  = 1 with 4 ( p )  = ( p i g ) ) ,  
also, that it is localized around a position qo well to the left of the origin, and that 
it has a mean momentum po >> V ( x ) .  Then, to this order the probability of ever 
arriving at x  (c.5 (1 9)) gives 

CO 

P ( x )  i; 8 ( - x )  + B ( x )  P> ( x ) ,  where P> ( x )  = 1 d p L  q ( p )  1' (42) 
P ( Z )  

so that & 4 ( p ) 1 2  is the (unnormalized) probability of arrival at the point x  with 
momentum p ( x ) ,  as corresponds to the quasiclassical case. Notice that to the left of 
the origin the result is the same as in the free case. This comes about because the 
approximation neglects reflection, thus missing at q  < 0 any information about the 
existence of a finite V at q  > 0. For the time probability distribution one gets 

which, not surprisingly, is the same as that of free particles for x  < 0. Finally, 

Therefore, we recover the time of arrival of the free particles for negative x .  On the 
other hand, for x  > 0 we get the classical time of arrival at x  for initial conditions 
(qo ,  p ) ,  d,: ( m / p ( q ) )  dq,  weighted by the probability of these conditions. 

5. Advanced or delayed arrival? 
What is the effect of putting a quantum barrier in the path of the arriving particle? 
Hartman [25] studied this question a long time ago, reaching the conclusion that 
tunneled particles should appear instantaneously on the other side of the barrier. Our 
formalism supports this result, but only for thin enough barriers. 

The time of arrival at a point x  in the presence of a barrier will be given through 
a probability amplitude 



In the case where x  is at the right of the barrier, the amplitude can be approximately 
given by [21] 

where T ( p )  is the transmission amplitude for momentum p. Now, the total proba- 

bility of eventually arriving at z in any time t is P ( x )  = Sp IT ( p )  $ ( p )  l 2  that 
is independent of x  in cases like this, where z is beyond the range of the potential. 
After a straightforward calculation we get for the average time of arrival at the other 
side of the barrier the corresponding version of (20) 

It is the value of the Wigner time [26] averaged over the transmitted state. 
Consider a simple square barrier of height V and width a. The transmission 

coefficient is in this case: 

where p' = Jw, that is imaginary for p  below p v .  Notice the contribution 
-pa to a r g ( T ( p ) ) .  This will subtract a term a  to the path length x  - qo that ap- 
pears in (47). The barrier has effective zero width or, in other words, it is traversed 
instantaneously. This is the Hartman effect for barriers. To be precise, the effect 
is not complete, it is compensated by the other dependences in p'a present in the 
phase of T ( p ) .  In fact, it disappears for low barriers ( p v / p )  + 0, where all the 
a  dependences of the phase cancel out, as was to be expected because the barrier 
effectively vanishes in this limit. In the opposite case of high barriers ( p / p v )  + 0 
the effect saturates and there is a decrease - in the time of arrival of transmitted 
plane waves, which emerge almost instantaneously at the other side of the barrier. 

The averaging of the Wigner time over the transmitted state, present in (47) as 
a consequence of the formalism, has dramatic effects, because it effectively forbids 
the transmission of the wave components with low momenta. In fact, it produces 
the exponential suppression (by a factor exp(-2Ip'Ia)) of the tunneled components. 
Therefore, only the components with momentum above p v  have a chance of sur- 
mounting thick barriers, being finally transmitted. But these components are delayed 
by the barrier (for them > O), whose overall effect transmutes from ad- 
vancement into retardation [21] at a definite predictable thickness that depends on 
the barrier height and also on the properties of the incoming state. 
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Mulivaled by a numhsr or rcccnl sxperimsnk 1 1 ,  2, 3, 4, 51, in ihi\  papsr wc di\- 
cuss solulions or elkclive Maxwell-like equalions describing Lhe propagalion of an 
elec[romagneLic lield in a medium 1haL "kels" a quanlum prererred rrame. 

1. Introduction 
As is well known, from the "orthodox" point of view there is a "peaceful coexis- 
tence" between SR and QM if a physical meaning is attributed to tinal probabilities 
only [6,7, 81. However, such a restrictive approach is unsatisfactory for many physi- 
cists, for whom also the notion of a physical state, its time evolution, localization of 
quantum events, etc. should have a "real" and not just a technical meaning. 

According to this second approach to understanding QM we encounter a number 
of theoretical problems on the borderline between QM and SR. The most important 
ones are related to the apparent nonlocality of QM and lack of a manifest Lorentz co- 
variance of quantum mechanics of systems with finite degrees of freedom. Recently, 
several authors have suggested that a proper formulation of QM needs the introduc- 
tion of a preferred frame (PF) [9, 10, I I, 121. In particular, introduction of a PF can 
solve some dilemmas relating to the causal description of quantum collapse in the 
EPR-like experiments with moving reference frames [13]. It is important to stress 
that the notion of a PF used here is completely different from the traditional notion, 
linked to the ether, and is in agreement with classical experiments. Most recent EPR 
experiments performed in Geneva [I41 do not contradict the PF hypothesis and give 
a lower bound for the speed of "quantum information" in the cosmic background 
radiation lramc (CBRF) a1 1.6 x 104c. 

A conceptual difticulty related to the PF notion lies in an apparent contradic- 
tion with the Lorentz symmetry. But as was shown in the [12, 15, 161 this is not 
the case: it is possible to arrange the Lorentz group transformation in such a way 
that the Lorentz covariance survives while the relativity principle (democracy be- 
tween inertial frames) is broken. Moreover, such approach is consistent with the 
classical phenomena. Recall also that attention was recently devoted to the PF as a 

L.rtensiu,iu of Quonruni Ph~sicu 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 



consequence of a possible breaking of the Lorentz invariance [I 7, 181 in high en- 
ergy physics. We are not so "radical" in this paper because it is enough to break the 
relativity principle only in order to extend the causality notion and consequently to 
reconcile QM with the Lorentz covariance. 

We introduce and discuss a direct generalization of the macroscopic (phenomeno- 
logical) Maxwell equations which are both Lorentz-covariant and "feel" the pre- 
ferred frame. We show that, according to these equations, the electromagnetic field 
propagates faster than light in vacuum, i.e., the effective mass of the photon is tachy- 
onic. Although our derivation is purely classical, it is motivated by the fact that in a 
medium, light propagation is mainly a quantum phenomenon; therefore the influence 
of the PF (if it really exists) can in principle be observed. In the following we make 
simplifying assumptions, such as homogeneity and isotropy of the medium. 

Because a "folk theorem" which states that local Lorentz covariance implies rel- 
ativity (i.e., democracy between inertial frames) is commonly used, we begin with a 
brief review of the formalism introduced in [I 2, 15, 161. Obviously, if we try to real- 
ize the Lorentz group as a linear transformation of the Minkowski coordinates only, 
the above mentioned "theorem" is necessarily true. However, if a PF is distinguished, 
we have at our disposal an additional set of parameters, namely the four-velocity of 
the PF with respect to each inertial observer. Using this freedom we can realize the 
Lorentz group in a nonstandard way [I 5, 161. Physically, such a realization of the 
Lorentz transformations corresponds to a nonstandard choice of the synchronization 
scheme for clocks [19]. In [I21 this scheme was applied to formulating the mani- 
festly covariant QM. 

To be concrete, in that approach the Lorentz group is realized in a standard way 
insofar as it is restricted to rotations, while for boosts we have 

= x - w  x O + u O ( u . x ) -  W ' X  ( 1+  JW ) ,  
and 

where up = (uO, u) and w p  = ( w O ,  w )  is the (timelike) four-velocity of the PF and 
[xl@], respectively as observed from the inertial frame [xp]. The four-vectors u@ and 
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w" are related to three-velocities uia the following forrnulae 

1 = J( l  + [ L O U .  V)' - V'. 
w 

The explicit relationship to the standard (Einstein-Poincark) synchronization is given 
by zg = zo + 11%. x, xc = x, so the time lapse at a space point is the same 
in both synchronizations. Furthermore, the average light speed over closed loops 
is constant and equal to the speed of light in vacuum (here c = 1) in agreement 
with Michelson-like experiments. It is important to stress that both synchronizations 
(Einstein PoincarL md thc nonstandard onc) lead to the same results for vclocitich 
less than or equal to the speed of light, but only the nonstandard synchronization 
scheme can be used for a consistent description of possible superluminal phenom- 
ena [16]. This is because (as we see from (1)-(2) in the nonstandard synchronization 
the Lorentz transformations have a triangular form, so the zeroth component of a 
covariant four-vector is rescaled by a positive factor only. Consequently, an absolute 
notion of causality can be introduced in this framework. Moreover, if superlurni- 
nal propagation of information does exist in reality, a PF must be distinguished, and 
consequently, a convention of synchronization as well as the relativity principle are 
broken. An exhauslive discusaion ol' lhe nonstandard Cormulalion of Loren l~  covari- 
ance in this language is given in [12, 161. 

2. Effective Maxwell equations 
In a homogeneous and isotropic medium the tields D and H are related to E and B 
via permittivity E-' and permeability p, respectively, where i and p are nonlinear 
functionals of E' - B' and E . B, in a nonlocal way. To simplify our considerations 
as far as possible, let us assume that in some range of tield intensity E and p vary 
slowly, so they can be treated approximately as constants. Therefore, in our equa- 
tions we will use only E and B, i.e., the electromagnetic tield tensor F"" and its dual 
k,<" = L-,<"OAF 

2 ,A. Moreover, we assume that the possible (quantum) response of 

the medium, related by preference by QM of a PF, is roughly speaking proportional 
to E and B. Under such extrernelly simplified assumptions our phenomenological 
Maxwell-like equations take the form 

where cu and !Y are constants. In the following we will omit the induced current j" to 
concentrate on the consequences of the influence of the PF only. It is not difticult to 



check that equations (4-5) with jV = 0 have nontrivial solutions, admitting a Fourier 
expansion, only for /3 = -a, so (4-5) must be replaced by' 

with a depending on the properties and the state of the medium. Of course, we 
can choose a > 0. Notice that (7) cannot be transformed to the form dp@pV = 0 
by a duality transformation. Obviously (6 - 7) are covariant under transformations 
(1)-(2). Furthermore (6 - 7) necessarily leads to the tachyonic wave equation 

where = gfi"(u)dpd,. In the vacuum a,,, = 0 (more precisely a,,, < 2 x 
10-l6 eV [20]). However in a "PF feeling" medium a should be different from 
zero. 

As was shown in [16] Eq. (8) can be consistently quantized in the nonstandard 
synchronization, and the resulting theory is not plagued by pathologies relating to 
quantization of tachyonic field in the SR. In particular, in this framework the vacuum 
is stable [I 61. It is related to the fact that the spectral condition k0 > 0 is invariant 
also for the space-like dispersion relation Ic2 < 0 (see transformation law (I)). A 
covariant construction of the Fock space can also be made [I 61. 

It is easy to see that, using (7) Fp"  can be expressed by four-potential A'" as 

and the gauge transformations of Ap are of the form Ap + Ap + (dp - a u p ) ~ .  
Therefore, the above field equations can be derived from the Lagrangian density 

For a general field Fp"  and under standard identification of F p "  with E and B 
(Po" E k ,  Fij = ~~j~ B k )  the Lorentz invariants F@ and F2 are 

Now let us examine the monochromatic plane wave solutions f p" of (6)and (7). Let 

 h his can be done equivalently by an appropriate redefinition Fp" + exp(yux)Ff iV.  
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where kx = k,xp. Therefore, by (6)and (7) we find 

and (13) lead to the tachyonic dispersion relation k2 = -a2. The solution of the 
system (13) has the form 

ePV = 
a(un) + i (kn) 

a + i(uIc) 

where kp,up,n, and ~fi""'k,u,nx span a basis, un = u,n,, etc. and n, can be 
complex in general. 

It is convenient to consider our plane wave solution in the preferred frame. If the 
PF is realized as the cosmic background radiation frame, this choice is reasonable 
from our point of view because v,,~,, z 369.3 & 2.5 km/s << c with respect to 
CBRF [21]. For PF, up = ( 1 , O )  so in this frame g,, = diag(1, -1, -1, -1). Now 
we can put n = -(a + ib)eiv/2, where a and b are real and a I b. Thus from (14) 
we have the following form of the electromagnetic wave in the preferred frame 

E = -k x {k x [ - c o s ( k x + p + ~ ) a + s i n ( I c x + p + ~ ) b ] ) ,  :I 
B = k x [cos (kz + p)a  - sin (kz + p)b] 

(15) 

where [ = arccos (kO/lkl), Ikl > a, k0 = d p .  Evidently, we can choose 
a I k and b I k. Therefore in the PF 

and 
1 
-F2 = B' - E~ = =(a2 - b2)lkl sin (2kz + 2p + [) 
2 (17) 

Therefore, contrary to the massless case, FP and F2 cannot vanish simultaneously 
except in the case E = B = 0. However, both E and B are perpendicular to k so the 
wave front propagates along k. Moreover, the angle between E and B is constant in 
time. The linear polarization is obtained for a = 0 o r b  = 0; in this case E I B. The 
elliptical polarization is obtained for a and b simultaneously different from zero; in 
this case E . B # 0. Notice that for a going to zero we obtain the standard vacuum 
solution. 

Now, the group velocity of the electromagnetic wave (1 5) is superluminal 



while the phase propagates subluminally 

A very important question is the energy transport associated with the electro- 
magnetic wave. The locally conserved canonical energy-momentum tensor, derived 
from the Lagrangian (1 O), is of the form 

It is evidently neither gauge-invariant, nor is T," symmetrical in p and u. While this 
second deficiency is not serious, the first one is very unpleasant and the question of 
how to remedy this problem is unclear because the standard procedure fails in this 
case. However the field four-momentum 

PP := S doVTV, = d3x~o ,  
t=const .I (21) 

is gauge-invariant. We can define the covariant four-momentum per volume as well 
as the gauge-invariant average density 

1 
P@ := lim - d 3 x ~ :  

v+o v 
Now, for the monochromatic plane wave (1 5 )  in the PF, Eq. (22) leads to 

i .e.,  the energy transport is superluminal in this case also. Of course, the statements 
resulting from (1 8), (19) and (24) are true in all inertial frames, by Lorentz covari- 
ance. 

3. Conclusions 
Our discussion shows that a possible influence of the quantum prefewed frame on 
an appropriate medium can cause tachyonic-like propagation for electromagnetic 
waves. It is interesting that solutions for the effective Maxwell equations (6) and (7) 
are very regular and similar to the usual ones. Therefore, this model appears to offer 
an alternative to standard proposals for explaining superluminal phenomena. 
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Within Lhe bounds or the known relalivislic theory Lhe hypothesis ol soperluminal 
velocities allows one to influence the pasl, which leads to acausal paradoxes. We 
should like to b~re,,, howsver, thal this conclu,ion i,  ba,sd on the contradictory 
exlension or the customary Lorent,. translormalions beyond the lighl barrier. Since 
at presenl no other prohihilions lor laster-lhan-light signals carrying energy and 
infurmation arc known, lhe anlwcr to lhe queblion doc, exibl: such signal, may 
or may not hi: ohvainsd only rrom an cxperimsnt or rrom a more gcnsral thsory. 
A generaliration ol a theory wilh vector lime is considered, which allows some 
superluminal phenomena compatihle wilh Lhe principles olrelalivity and causality. 
Spreading or bignals in ihe multitimc world is characLsri,.ed hy pcculiaritie, which 
can he used lor an experimental determination ol Lhe lime dimensionality 01' our 
world. 

1. Is the hypothesis of superluminal speeds at variance 
with the experiment? 

Ler ua consider rhe Lorenr~ Lranalormation of a lime inrerval At between two evenrs 
separated by a space interval Ax: 

~ t '  = ( a t  - AJ:. n~c ' ) r  = 1 t ( 1  nl;~c"9 < o. ( I )  

if the product of the moving body's speed v = I x J A t  and the relative velocity of 
the reference frame n exceeds unity, i.e., nl;Jc" 1 (u can be still smaller than c and 
the f a c l o r ~  = 4- well defined). The possihilily oTLurning hack the flow of 
time by considering the sequence of events from a moving body leads to difticulties 
of two types: 

Acausal phenomena contradicting our ideas about the time order of events 
appear when, for example, a bullet flies not from a hunter's gun to a target- 
crow but, on the contrary, the crow ernits the bullet and it runs back up the gun 

barrel. 

L.rtensiu,iu of Quonruni Ph~sicu 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 



Using superluminal signals one can change the past. In particular, an effect 
can destroy its cause: e.y., by a faster-than-light signal we can prevent our 
birlh or kill ourselves in Lhe cradle and [hen ihe racl or  our exislence becomea 
an unexplicable puzzle. 

At present there are two main viewpoints of this difticulty. Some authors (c3.g., 
E. Recami, see his review [I])  consider the phenomena with time reversals as really 
observable but apparently illusory events for which one can always find a genuine 
cause, just as we do when we hear the roar of a supersonic jet. However, this cannot 
explain or forbid suicide in the cradle, since it is not apparent, but can be actually be 
accomplished by a faster-than-light ray. 

Another point of view shared by the majority of physicists (see the review [2] 
where a more detailed bibliography can be found) considers the difficulties as aproof 
of the obvious contradictoriness of the superlurninal hypothesis and generally rejects 
the existence of superlurninal signals carrying energy and information. Though we 
also share the latter opinion, it nevertheless appears to be insufticiently grounded. 
Indeed, as mentioned above, time reversal occurs, even if events are observed from 
a subluminal reference frame (e.y., from a conventional bicycle!). The existence of 
bodies with 1; > c assumes the possibility of using them as superlurninal reference 
frames (i.~,., with u > c). A consistent generalization of Lorentz transformation in 
four-dimensional space-time , as proved in paper [IS], is impossible ' .  The set of 
the equalities ( I )  is obviously true up to the last relation when uv > 1 is assumed. 
In four-dimcnaional spacc-limc x = (x1,:c2,q, f:t)T. This, as il was shown in 
paper [IS], at once turns the Lorentz group into an equivalent group of linear trans- 
S r t t a l i ~ n a  .  = ;i(o),,,r". ~ i i t l ~ D l , t ~ i  = il. Succrssivt. uat.  CIS srvt.ral sub- and 

P 
superluminal Lorentz transformations results in some symmetries which do not exist 
un our world- in a space dilation x + Ax, in the time inversion t + t ,  err. This 
mcans lhal thc rclalions ( 1 )  a1 r io  > 1 arc not rcliablc and conclusions hascd on lhcm 
are doubllul. 

Of course, no superlurninal phenomena carrying energy have been observed as 
yet. However, these results are related to the region of the phenomena described 
by known physics, and one cannot exclude the existence of inaccessible regions of 
events, outside the known ones, with in principle new laws where information can be 
carried with a faster-than-light speed without any violation of relativity and causality. 
One must also take into account that superluminal objects appear in various string 
models, in theories with high-order Lagrangians, by supersymmetrical gener a I' iza- 
tions etc., and one may suspect that this fact is not only a disappointing theoretical 

'One should "ole [ha1 Ihih dillicully is prrhenl in any lheory wilh non~local invmclion, For example, 
in a field lheory wilh a lonn-laclor where space  and lirnr-like poinls e n e r  into the inleraclion lerrn 
S u ( ~ l ) u ( ~ A ) . ~ l ( a 3 ) d 4 ~ I ~ 1 ~ J  quilr equivolenlly rhe relerencr liurrtes tied lo lhrhe poinrs can be both 
lyprh - s u b  onil superlurninnl. A lorrrral reIaLivi\Lic invnrinnl lorrrl o l  equalion\ by ilsell does no[ provide 
cornplrle Lorenu inrorioncr o l  lhe iheory. 
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failing, but is a reflection of some reality 
To answer the question as to the existence of faster-than-light motions, one must 

go into regions of unstudied phenomena where one can develop a consistent theory 
of relativity with velocities v > c. 

2. Multitime velocity 
In this respect interesting possibilities are provided by the theory of multidi- 

mensional time. Taking into account the apparent tendency of a symmetrization of 
physical theory with respect to the space and time co-ordinates, we assume that our 
world has the six-dimensional space-time structure 

(In what follows the tree-dimensional vectors in x- and t-subspaces will be de- 
noted, respectively, by bold symbols and by a "hat", six-dimensional vectors will 
be marked, accordingly, by bold symbols with a hat). 

The six-dimensional velocity vector is defined now as 

dii aii dii o = - = ( ~ Q ) f  = T - = -  
d? I d t i  dt = (v, c q T ,  

where v = (d/dt l ,  d /dt2 ,  d /dts)  and the unity vector .i = dt^/dt with proper time 
t along the considered time trajectory. 

If we notice that a differential of the squared length in the six-dimensional space- 
time 

where y = [l - ( v / ~ ) ~ ] ~ / ~ ,  then the velocity vector can be written in the covariant 
form 

ii = djilds = (y/c)dji/dt = yG/c. ( 5 )  

As in the customary onetime case the scalar product 

~2 = y2+-2/c2 = y2(c2~2 - v2/c2) = 1 (6) 

and a light wave front always has a spherical form: 

'1n paper [I61 the superluminal solutions for the Maxwell equations were discovered. Such solutions 
can be interpreted as describing "phase phenomena" which do not carry any information, like a bun- 
dle of sunbeams in a mirror. If we suppose that these solutions describe transportation of energy, then 
superluminal co-ordinate frames can be tied with bundles of such rays and the above mentioned difficul- 
ties appear. The discovered solutions can describe information carrying signals in a space-time with the 
dimensionalities N > 3 $ 1. 
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Fig. 1. An observer moves along the axis tl . From his viewpoint the speed of 
the body can exceed the light velocity. 

i .e.,  in any direction of the z-subspace the body's speed does not exceed light ve- 
locity. Nevertheless, in a multitime world we can observe faster-than-light speeds of 
bodies. 

3. Superluminal velocities 
It is very important to emphasize that the body's speed v is defined with respect 

to an increment At along the body's time trajectory t^. If it is unknown and an 
observer uses instead of At his own proper time At, = At cos 0 where 0 is the 
angle between the body and observer's time trajectories, then the "speed v ,  = 
AxlAt, = v /  cos 0 defined in this way may turn out to be larger than the light 
velocity. In this case the considered body behaves, from the observer's viewpoint, 
like a tachyon. For example, if 0 -. 7r /2 ,  it passes any finite distance practically 
instantaneously and "grows old" straight away. However, as it was shown in the 
papers [5]-[7], Lorentz transformations depend on v but not on v,; therefore, in 
the multitemporal world no accausal effects can be observed by transformations to 
moving reference frames, contrary to true tachyons which transfer information to 
the new frame, judged by the observer, backwards in time (if the relations ( I )  are 
correct [2]). Superluminal velocities can also be observed in a more general case 
when the observer's time trajectory is, like a body, inclined with respect to the tl 
axis. 

At the same time one should take into account that, as the onetime world with 
parallel trajectories ?(t)  is a particular case of the multitime world, the forbidding 
theorem on the superluminal generalization of the Lorentz transformations proved in 
paper [I] is also valid. 

The discovery of any superluminal motions in experiments would be a serious 
indication of the multidimensionality of world time. As is known, faster-than-light 
objects are indeed observed by astronomers. Though up to now they have succeeded 
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Fig. 2. The creation of a component with the energy E' = ?'E > 0 is accom- 
panied, without fail, by the creation of a compensating component moving back 
in time with the energy E" = ?"E < 0 .  The energy vector is parallel to the time 
 vector:^ = E?. 

in interpreting such phenomena within the limits of onetime notions as optical illu- 
sions (see, e.g., [8,9] where there are more detailed references), one cannot exclude 
that among such "superluminal objects" there are bodies moving along distinct time 
directions. We need more experimental information to identify such a possibility. 

However, one must bear in mind that the creation of an object moving along time 
trajectories different from ours is possible only in exceptional cases when the known 
energy conservation law has vanished - in some cosmic cataclysm where new types 
of gravitation and electromagnetic waves can be produced or in very small space and 
time intervals (see Fig. 2). [lo]- [12] 3 .  

Now let us consider some interesting peculiarities of signals spreading in the 
multitime world which can be used for an experimental determination of time di- 
mensionality. 

4. Detection of signals 
As a simple example illustrating the peculiarities of the detection of signals in 

a multitime world, Cole and Starr considered a case when, under certain circum- 
stances a splitting of time trajectories of a luminous body motionless in z-subspace 
and the observer occurs suddenly (Fig. 3) [13]. In the variant of a theory symmetrical 
with respect to every possible time direction considered by these authors, the light 
source gradually losing its energy (displacing into infrared region) remains visible 
some time after the moment of splitting. However, if time-reverse motions are for- 
bidden (as is indeed observed in Nature), we come to quite a different conclusion. In 
particular, if the observer's time trajectory coincides with the tl axis, the luminous 
body becomes invisible at a given time because it occurs in the future with respect 

3 ~ n  paper[lO] it was proposed that gravitational waves evolving along time trajectories different from 
ours could be detected by observing correlations of gravitation detector oscillations in two perpendicular 
directions. Another possibility for discovering motion along a distinct time trajectory may be based on the 
fact that the new components of the electromagnetic field created in the multitime world have longitudinal 
polarization and can be detected when the transversal components are excluded by any absorber. 
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Fig. 3. At a time to a splitting of time trajectories of an observer and a luminous- 
body ? occurs. After that time ( t l  > t,) the body becomes invisible. 

to the detector. The body can remain visible for some time after splitting only if the 
observer's trajectory has some inclination with respect to the t l  axis. 

A more complicated case is shown on the Fig. 4. One can see there that when the 
emitted light spreads in the plane (tl , tZ)  from the past to the future then the duration 
of observable luminescence is equal to 

Here t, is the time of the splitting, t, is the observer's proper time when the light 
signal trajectory becomes parallel to the axis t l .  At t > tf the time light signal 
propagates backward in time tZ. R is a constant distance between the light source 
and the detector and cp is the angle between t^ and ?. The inclination of the observer's 
trajectory with respect to the t l  axis is denoted by 8. 

If the time trajectory of a luminous body intersects the observer's trajectory (at 
the time t = t,, see Fig. 4), the detector holds the light fixed in an interval from t, 
when it fixes the ray emitted at a right angle to the t l  axis up to the arrival time of the 
last visible signal t f .  For t < t, the body is too remote in the past and connection 
to it is possible only by means of subluminal signals (v < c). The rays emitted at 
t > tf cannot be observed by virtue of the causality principle. So, the duration of 
the visible light expressed throughout the observer's proper time is 

R sin(cp + 8) 
T = tf - t, = (tf - t,) + (t, - t,) = - 

c sin p 
[I + cot (9 + e)]. (9) 

As in the model considered by Cole and Starr [ I  3, 141 the value of T is significant 
only for remote cosmic objects. For example, if R = I m and p = 0 = l', lo, 40°, 
it is equal, respectively, to 2.10W5, 4.10W7, 10W8c. In a multitime world a large num- 
ber of invisible time displaced bodies may be present around any observer. In this 
respect this world is much like a hypothetical tachyon theory world where there are 
also plenty of nonabsorbable objects [15]. One might imagine that an intersection 
of t-trajectories of the bodies between which a space distance is smaller than their 
dimensions must result in dramatic destruction of bodies. As such phenomena are 
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Fig. 4. At an observer's proper time t ,  the luminous body's time trajectory .i is 
split off from the observer's trajectory t^. The light is seen in the interval t, + tf. 
Light spheres ( t ^  - .i)2 = ( R / c ) ~  from which the observer can receive signals at 
different times t are dotted. The dotted lines with arrows show the trajectories of 
the first and last visible signals. 

not observed in a our part of universe, this proves that time flow is single-directed 
in this region. The duration of the visible light from a light source a moving in x- 
subspace depends on the value and direction of its velocity. However, qualitatively 
the picture remains the same as in the above considered static case. Particularly, if 
the observer's t-trajectory coincides with the t l  axis and the light source moves in 
x-subspace with zero impact parameter (a head-on collision), then the luminescence 
becomes visible at a time 

where R, = R(t,) is the distance of the luminous body from the detector at the time 
t,, R, is the respective distance at the time when their t-trajectories intersect ( t  = 0), 
y is the angle between these trajectories (Fig. 5A), /I = v/c is the relative velocity 
of the luminous body and the observer. Solving this equation, we obtain 

If at t  = 0, the source and the detector come together and the velocity P is small 
(p  < tan cp, Fig. 2A), then the light is seen in an interval from t ,  to t f  = R,/c: 

By increasing the velocity (P > tan y) we can stretch the time interval over 
all the left half-axis from t ,  = -oo up to t f .  In the case when the light source 
moves away from the detector at time t  = 0 and its velocity P < tan y the light 
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Fig. 5. The bold tracks on the tl axis are the intervals of visible light from a 
moving light source. The intersection of time trajectories is chosen as t = 0 .  The 
observer's light spheres are dotted. In case A the luminous body with velocity 
p < tan p comes close to the observer at time t = 0. In case B the luminous 
body with hight velocity p > tan p moves away from the observer at t = 0. 

is observed, as before, in the interval from t ,  to t f .  However, by > tan p (Fig. 
5B) one more interval of the visible light beginning at t ,  = -cc appears. The 
asymmetry of the cases of an approaching and receding light source is stipulated by 
detector asymmetry with respect to signals from the past and future. 

5. Conclusion 
In the limits of the commonly used superluminal generalizations of the Lorentz 

transformations, the hypothesis of faster-than-light velocities creates inadmissible 
paradoxes. However, this conclusion is doubtful since all the generalizations used 
are contradictory, and we cannot be fully confident that the basic relations ( I )  are 
correct. One cannot exclude the possibility that slices of reality exist where events 
developing with faster-than-light velocities and carrying energy can be observed. Is 
this statement right or wrong - it is now a question for experiment. Theories have 
been proposed, e.g., multitime generalizations, which permit superlight processes 
without any violation of causality and relativity. 
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We study the phenomenon of one-dimensional non-resonant tunneling through two 
successive (opaque) potential barriers, separated by an intermediate free region R, 
by analyzing the relevant solutions to the Schroedinger equation. We find that 
the total traversal time does depends not only on the barrier widths (the so-called 
"Hartman effect"), but also on the R width: so that the effective velocity in the 
region R, between the two barriers, can be regarded as infinite. This agrees with 
the results known from the corresponding waveguide experiments, which simulated 
the tunneling experiment considered here due to the known formal identity between 
the Schroedinger and the Helmholtz equation. Finally, in an Appendix, we provide 
some general information (especially bibliographical) about the various sectors of 
science in which Superluminal motions seem to appear 

Ke~~words: tunneling, tunneling time, superluminal 

In this note we show that -when studying an experimental setup with two rectan- 
gular (opaque) potential barriers (Fig. 1)- the (total) tunneling phase time through 
the two barriers depends neither on the barrier widths nor on the distance between 
the barriers. 

Let us consider the (quantum-mechanical) stationary solution for the one-dimen- 
sional (ID) tunneling of a non-relativistic particle, with mass m and kinetic energy 
E = h2k2/2m = :mu2, through two equal rectangular barriers with height Vo 
(Vo > E )  and width a,  quantity L - a > 0 being the distance between them. The 
Schrodinger equation is 

h2 d2 
-- - 

2m .dz2 $(XI + V(x)$(x) = E $ ( x ) ,  (1) 

where V(z)  is zero outside the barriers, while V(z)  = Vo inside the potential bar- 
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Fig. 1. The tunneling process, through two successive (opaque) potential bar- 
riers, considered in this paper. We show that the (total) tunneling phase time 
through the two barriers depends neither on the barrier widths nor on the dis- 
tance between the barriers. 

riers. In the various regions I (x < 0), I1 (0 < x < a), I11 (a < x < L), 
IV (L < x < L + a) and V (x > L + a), the stationary solutions to eq. ( I )  
are the following 

I gI = e+i'cx + A~~ e-i'cx, ( 2 4  
gII = a1 eCXx + pl e+Xx, (2b) 
gIII = AIT [eikx + A 2 ~  eCikx] , PC] 
gIv = AIT [a2 e - ~ ( " - ~ )  + /la e + ~ ( ~ - ~ ) ]  , ( 2 4  
gV = A ~ T  A ~ T  eiLx , Pel 

where x = d m / h ,  and quantities AIR, A 2 ~ ,  AIT, A ~ T ,  al, a 2 ,  p1 and 
p2 are the reflection amplitudes, the transmission amplitudes, and the coefficients of 
the "evanescent" (decreasing) and "anti-evanescent" (increasing) waves for barriers 
1 and 2, respectively. Such quantities can be easily obtained from the matching 
(continuity) conditions: 
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Equations (3-6) are eight equations for our eight unknowns (AIR, A ~ R ,  A ~ T ,  
A ~ T ,  a l ,  a2,  P1 and pa). First, let us obtain the four unknowns AaR, A ~ T ,  a2,  P2 

from eqs. ( 5 )  and (6) in the case of opaque barriers, i.e., when XU t m: 

I 
2ik 

a 2  + eikL 
zk - x '  ( 7 4  

p2 + eik~-2xn. -2ik(ik + X) 
(ik - x ) ~  ' (7b) 

i k f x  AaR + e2i" - 
ik - X '  ( 7 ~ )  

+ e-xae-ika -4ikx 
(ik - x ) ~  ' ( 7 4  

We may then obtain the other four unknowns AIR, AIT, a l ,  P1 from eqs. (3) 
and (4), again in the case XU t oo; one finds for instance that: 

where 

A = 2xk 
2xk cos k(L - a)  + (x2 - k2) sin k(L - a)  (9) 

turns out to be real; and where, it must be stressed, 

is a quantity that does not depend on a or on L. This is enough to conclude that the 
phase tunneling time (see, for instance, refs. [l-31) 

a arg [ A ~ ~ A ~ T ~ ~ ~ ( ~ + ~ ) ]  8 -4ikx 
7phtun = n 

dE 
= n - arg [ ] , (10) 

dE (ik - x ) ~  

while depending on the energy of the tunneling particle, does not depend on L + a 
(since it is actually independent both of a and L). 

This result not only confirms the so-called "Hartman effect" [ I  ,3] for the two 
opaque barriers -i.e., the independence of the tunneling time from the opaque bar- 
rier widths-, but it also extends the effect by implying the total tunneling time to 
be independent even of L (see Fig. 1): something that may be regarded as further 
evidence of the fact that quantum systems seem to behave as non-local. It is im- 
portant to stress, however, that the previous result holds only for non-resonant (nr) 
tunneling: i.e., for energies far from the resonances that arise in region I11 due to 
interference between forward and backward travelling waves (a phenomemon quite 
analogous to the Fabry-PCrot phenomenon in the case of classical waves). Otherwise 
it is known that the general expression for (any) time delay 7 near a resonance at Er 
with half-width r would be 7 = W [ ( E  - E r ) 2  + r2Ip1 + 7,,. 
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The independence of tunneling-time from the width ( a )  of each one of the two 
opaque barriers is itself a generalization of the Hartman effect, and may be a pri- 
ori understood f o l l o w i n g  refs. [ 4 , 5 ]  on the basis of the reshaping phenomenon 
which takes place inside a barrier. 

The even more interesting tunneling-time independence from the distance L - a 
between the two barriers, can be understood on the basis of the interference be- 
tween the waves leaving the first barrier (region 11) and traveling in region I11 and 
the waves reflected from the second barrier (region IV) back into the same region 
111. Such intcrl'crcncc ha?, hccn shown 131 to cause an "advmccmcnt" ti.?., an cL 
fective acceleration) of the incorning waves, a phenomenon similar to the analogous 
advancement expected even in region I. Using wavepacket language, we noticed in 
ref. [3] that the arriving wavepacket does interfere with the reflected waves that start 
to be generated as soon as the packet's forward tail reaches the (tirst) barrier edge: in 
this way (already before the barrier) the backward tail of the initial wavepacket de- 
creases f o r  destructive interference with those reflected w a v e s  to a larger degree 
than the forward one. This simulates an increase of the average speed of the entering 
packet: hence, the effective (average) flight-time of the approaching packet from the 
aource Lo Lhe barrier does decrease. 

Consequently, the phenomena of reshaping and "advancement" (inside the bar- 
riers and to the left of the barriers) can qualitatively explain why the tunneling-time 
is independent of the barrier widths and of the distance between the two barriers. It 
remains impressive, nevertheless, that in region I11 w h e r e  no potential barrier is 
present, the current is non-zero and the wavefunction is o s c i l l a t o r y  the effective 
speed (or group-velocity) is practically infinite. Loosely speaking, one might say 
that the considered two-barrier setup is an "(intermediate) space destroyer". After 
some straightforward but rather bulky calculations, one can, moreover, see that the 
same effects (i.e., the independence from the barrier widths and from the distances 
between the barriers) are still valid for any number of barriers, with different widths 
and dilferenr diarances belween Lhem. 

Finally, let us mention that the known similarity between photon and (nonrela- 
tivistic) particle tunneling [3-71 implies that our previous results hold also for photon 
tunneling through successive "barriers": for example, for photons in the presence of 
two successive band gap tilters, such as two suitable gratings or two photonic crys- 
tals. Experiments should be easily realizable; while indirect experimental evidence 
seems to come from papers like [8]. 

At the classical limit, the (stationary) Helmholtz equation for an electromagnetic 
wavepacket in a waveguide is known to be mathematically identical to the (station- 
ary) Schroedinger equation for a potential barrier;' so that, for instance, the tun- 

'These equations are. however, different (due to the different order of the time derivative) in the time- 
dependen1 case. Nevrrlhrleas. il con be shown [ha1 lhey a l i l l  hare in corrurion clashes or analogous solu- 
lions. dillrring only in [heir hpreading properlies 13.71. 
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neling of a particle through and under a barrier can be simulated [3-7,9l  I] by the 
traveling of evanescent waves along an undersized waveguide. Therefore, the re- 
sults of this paper are to be valid also for electromagnetic wave propagation along 
waveguides with a succession of undersized segments (the "barriers") and of normal- 
sized segments. This agrees with calculations performed, within the classical realm, 
directly from the Maxwell equations[ 10,l I], and has already been confirmed by a se- 
ries of "tunneling" experiments with microwaves: see refs.[9] and particularly [12]. 
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A P P E N D I X  
Some information about the experimental sectors of science 

in which Superluminal motions seem to appear  

Introduction 
The question of Super-lurninal (I" > c') objects or waves [tachyons: a term coined 
by G. Feinberg] has a long story, starting perhaps with Lucretius' De Rerzirn Nattrra 
(cf .  , book 4, line 201). Still in pre-relativistic times, we may recall e. g. , the papers 
by A. Sornmerfeld (quoted in refs. [Al ,  A21). In relativistic times, our problem again 
attracted attention essentially in the fifties and sixties, in particular after the papers by 
E. C. Geol-ge Sudarshan efal. , and later on by E. Recami, R. Mignani, er ul. . [who 
coined the term bradyons for slower-than-light objects, and brought the expressions 
sublurninal and superluminal into popular use through their works at the beginning 
of the seventies], as well as by H. C. Corben and others (to contine ourselves to the 
theoretical research). For references, one can check pages 162-178 in ref. [All ,  
where about 600 citations are listed; pages 285-290 in ref. [A?]: pages 592-597 
of ref. [A41 or pages 295-298 of ref. [AS]; as well as the large bibliographies by 
V. F. Perepelitsa[A6] and as the book in ref. [A7]. In particular, for the causality 
problems one can see refs. [AI,A8] and references therein, while for a model theory 
for tachyons in two dimensions one can consult refs. [AI ,A9]. The first experiments 
to seek tachyons were performed by T. Alvager et al. . : citations about the early 
experimental quest for superlurninal objects may be found, e. g. , in refs. [AI,AIO]. 

The subject of tachyons is now back in fashion, especially because of the fact 
that at least four different experimental sectors of physics seem to indicate the exis- 
tence of Superlurninal objects [the old habit introducted by Mignani and Recarni of 
writing Superluminal with a capital S]. We wish to provide in the following some 
information (mainly bibliographical) about the experimental results obtained in each 
one of these 4 different sectors of physics. 
FIRST: Negative Mass-Square Neutrinos 
Since 1971 it has been known that the experimental square-mass of muon - neutri- 
nos was negative (with low statistical significance, but systematically). If confirmed, 
this would correspond (within the ordinary, naYve approach to relativistic particles) 
to an imaginary mass and, therefore, to a Superluminal speed; in a non-naYve ap- 
proach[Al], i f . ,  within a Special Relativity theory extended to include tachyons 
[Extended Relativity (ER)], the free tachyon "dispersion relation" becomes E' - 

p' = - 7 4 .  See e. g. E. V. Shrurn & K. 0. H. Ziock: Phys. Lett. B37 (1971) 114; 
D. C .  Lu er (11. : Phys. Rev. Lm.  45 (1980) 1066; G. Backcnstoas et 01. : P1q.s. 
Lett. B 43 (1973) 539; H. B. Andcrhuh et ul. : P1q.s. Lett. B 114 (1982) 76; R. 
Ahcla et ul. : Phys. Lett. B 146 (1984) 431; B. Jcckclmann et (11. : Phys. Rev. Lett. 
56 (1986) 1444. 

For the theoretical point of view, see 
E. Giannetto, G. D. Maccarrone, R. Mignani & E. Recami: Phys. Lett. B 178 (1986) 
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I I 5  120, and references therein; and S. Giani's work: see also E. Recami: "Classical 
tachyons and possible applications", Rivista Nuovo Cim. 9 (1986), issue no. 6, and 
relerencea [herein. 

Recent experiments showed that electron-neutrinos also have negative mass- 
square. See e. g. R. G. H. Robertson et 01. : Phys. Re11 Lett. 67 (1991) 
957; A. Burrows e t a / .  : P1q.s. Rev L m .  68 (1992) 3834; Ch. Wcinhcimcr et 
(11. : P1q.s. Left. B 300 (1993) 210; E. Holl~shuh er ul. : Phys. L m .  B 287 (1992) 
381; H. Kawaka~ni et ul. : P1q.s. L m .  B 256 (1991) 105, and a o  on. Scc also 
the reviews or comments by M. Baldo Ceolin: "Review of neutrino physics," invited 
talk at the XXIII Int. Synrp. on Multiparticle Dynanrics (Aspen, CO; Sept. 1993)"; 
E. W. Ollcn: NLK/.  Phys. News 5 (1995) I I.  

SECOND: Galactic "Micro-Quasars'', etc. (Apparent Superluminal expansions 
observed inside quasars, some galaxies, and a s  discovered very recently in some 
galactic objects, called "micro-quasars") 

Since 197 1 apparent Superluminal expansions have ben observed in many quasars 
(and even a few galaxies) [Nature, for instance, dedicated a cover to these observa- 
tions on 2 Apr. 19811. Such apparent Superluminal expansion was the consequence 
of the experimentally measured angular separation rates, once the (large) distance of 
the sources from the Earth was taken into account. From the experimental point of 
view, a quote from the book Sziperl~rnrir~al Radio Sources, ed. by 1. A. Zensus & T. 
1. Pearson (Cambridge Univ. Press; Cambridge, UK, l987), and references therein, 
is aulficienl. 

The distance those "Superlurninal sources", however, it is not well known: or, at 
least, the (large) distances usually adopted have been strongly criticized by H. Arp 
et a/. , who maintain that quasars are much nearer objects: so that all the above- 
mentioned data can no longer be easily used to infer (apparent) Superluminal mo- 
tions. However, very recently, GALACTIC objects have been discovered, in which 
apparent Superluminal expansions occur; and the distances of galactic objects can 
be more precisely determined. From the experimental point of view, see the papers 
by I. F. Mirabel & L. F. Rodriguez. : "A superluminal source in the Galaxy,"Nature 
371 (1994) 46 [with aNature's comment, "A galactic speed record," by G. Gisler, on 
page 18 of the same issue]; and by S. J. Tingay et a/ .  (20 authors): "Relativistic 
motion in a nearby bright X-ray source," Nature 374 (1995) 141. 

From the theoretical point of view, both for quasars and "micro-quasars", see 
E. Recami, A. Castellino, G. D. Maccarrone & M. Rodonb: "Considerations about 
the apparent Superlurninal expansions observed in astrophysics," Nziovo Cinrento 
B 93 (1986) 119. See also E. Recnmi: ref. [All ,  and cf.  R. Mignani & E. 
Recami: Gen. Relat. Grav. 5 (1974) 615. In particular, let us recall that a 
single Superluminal source of light would be observed: (i) initially, in the phase 
of "optic boom" (analogous to the acoustic "boom" by an aircraft that travels with 
constant super-sonic speed) as an intense, suddenly-appearing source; (ii) later on, 
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as a source which splits into t w o  objects receding one from the other with velocity 
v > 2c [see the quoted refs. 1. 

THIRD: Tunneling photons = Evanescent waves 

This is rhe secror that haa amacted rhe mosl auendon liom ihe scienrific and non- 
scientific press: it started in Scientrfic American in Aug. 1993 followed by Nature 
(comment "Light faster than light'!" by R. Landauer) on Oct. 21, 1993; then, New 
Scientist (editorial "Faster than Einstein" on p. 3, plus an article by J. Brown on p. 
26) in April 1995; and then Newsweek (19 June 1995, article by S. Begley, p. 44) 
and all the newspapers and magazines of the world (in Brazil, e.g., the Folha de Sdo 
Paulo, c3tc.; in Italy, e. g. , La Stamnpa, La Repubblica, Focus, Panorunra, etc.). 

Evanescent waves were predicted by ER [c .  f . ,  page 158 in ref. [All ,  and refer 
ences therein] to be faster-than-light. Even more, they can be regarded as consisting 
of tunneling photons, due to the known methematical identity of the Schroedinger 
equation (in the presence of a potential barrier) and the Helmholtz equation (for 
waves travelling, e.y., down a waveguide): and it has been known for some time [ c f .  

V. S. Olkhovsky & E. Recami: Phys. Reports 214 (1992) 339, and refs. therein] 
that tunneling wave packets can move with Superlurninal group velocities inside 
the barrier. Therefore, due to the theoretical analogies between tunneling particles 
(e.g., electrons) and tunneling photons, it was expected also on the basis of Quan- 
tum Mechanics that evanescent waves could be Superluminal. This has actually 
been confirmed in a series of famous experiments. 

The tirst experiments were performed at Cologne, Germany, by Guenter Nimtz 
er al. , and published in 1992. Let us quote: A. Enders & G. Nirntz: J.  de Physique- 
I 2 (1992) 1693; 3 (1993) 1089; Phys. Rcv. B 47 (1993) 9605; Plz)s. R e s  

E 48 (1993) 632: G. Nirntz, A. Enders & H. Spieker: J de Physique-14 (1994) 
1379; W. Hcitmann & G. Nimk: Phys. Lctr. A 196 (1994) 154; G. Nimk: Physik 
El. 49 (1993) I 119; "New knowledge of tunneling from photonic experiments," in 
Einneling and its Imnplications (World Scient. ; Singapore, in press); G. Nimtz & W. 
Heitmann: "Photonic bands and tunneling," in Advances in Qzianttrnr Phenonrena, 
ed. by E. G. Beltrametti and J. M .  Lkvy-Leblond (Plenum Press: New York, 1995) 
p. 185; Prog. Quant. Electr. 21 (1997) 81; G. Nimtz, A. Enders and H. Spieker: 
"Photonic tunneling experiments: Superlurninal tunneling," in Wuve and Particle in 
Light and Matter, ed. by A. van der Merwe & A. Garuccio (Plenum; New York, 
1993); J.  de Physique-l 4 (1994) 565: H. Aichmann & G. Nimtz: "Tunneling of 
a FM-Signal: Mozart 40," submitted for pub. These are important experimental 
papers. Nimtz er al. also made similar simulations by computer (on the basis of 
the Maxwell eqs. ), reproducing the related experimental results, where they exist, 
accurately: cf.  H. M. Brodowsky, W. Heitmann & G. Nimtz, Phys. Lett. A 222 
(1996) 125-129. 

Other famous experiments have been performed at Berkeley: their results ap- 
peared in I993 in A. M. Steinberg, P. G. Kwiat & R. Y. Chiao: Phys. R e ~ j  L m .  71 
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(1993) 708, and, simultaneously, in R. Y. Chiao, P. G. Kwiat & A. M. Steinberg: 
Scientific American 269 (19931, issue no. 2, p. 38. C f .  also A. M. Steinberg & R. 
Y. Chiao: P/1?..s. Rev. A 51  (1995) 3525; P. G. Kwial etnl . :  P/~?..s. Rev. A 48 (1993) 
R867; E.  L. Bolda et (11. : Phys. Rev. A 48 (1993) 3890. 

Further experiments on Superlurninal evanescent waves have been performed at 
Florence: see, e.y., A. Ranfagni, P. Fabeni, G. P. Pazzi & D. Mugnai: Phys. Rev. E 
48 (1993) 1453. The last experiments (as far as we know) were made at Vienna: Ch. 
Spielmann, R. Szipocs, A. Sting1 & F. Krausz: Phys. Rev. Lett. 73 (1994) 2308, 
and at Rennes and Orsay: Ph. Balcou & L. Dutriaux: Phys. R e ~ j  Lert. 78 (1997) 
851;  V. Laudc & P. Tournois: J. Opt. Soc. Am. B 16 (1999) 194. 

For the theoretical point of view, see the above-quoted V. S. Olkhovsky & E. 
Recami: Phys. Reports 214 (1992) 339, and refs. therein; and V. S. Olkhovsky, E. 
Recami, F. Raciti & A. K. Zaichenko: J. de Physique-15 (1995) 1351-1365. See 
also pages 158 and I I 6 1  I7 of the already quoted ref. [Al l ;  D. Mugnai er a[. : Phys. 
Lert. A 209 (1995) 227-234; E. Recami, F. Fontana & R. Garavaglia: Int. J. Mod. 
Phys. A 15 (2000) 2793-2812; and V. S. Olkhovsky, E. Recami & G. Salesi: Lanl 
Archives # quant-phl0002022. 

The most interesting experiment of this type seems to be the one performed with 
two "barriers" (for instance, with two segments of undersized waveguide separated 
by a normal waveguide); for suitable frequency-bandpulses i . ~ , . ,  for non-resonant 
"tunneling" , it has been found that total crossing time does nor depend on the 
length of the intermediate (normal) waveguide: that is to say, the pulse speed along 
the latter is infinite[Al I]. This agrees once more with the predictions of Quantum 
Mechanics for tunneling through two successive opaque barriers (the tunneling phase 
time does not depend on the distance between the barriers[Al2]). Such an impor- 
tant experiment could and should be repeated, also taking advantage of the fact that 
evanescence regions can be easily constructed in many different ways or by different 
"photonic band-gap materials" and gratings (since one can use rnultilayer dielectric 
mirrors, semiconductors, photonic crystals, etc. ) 

At this point, let us observe also the following. Even if in ER all the ordinary 
causal paradoxes seem to be solvable[AI,A8], nevertheless, one ought to bear in 
mind that (whenever an object, 0, is encountered travelling at Superlurninal speed) 
negative contributions should be expected to the tunneling times[A13]: and this 
ought not to be regarded as unphysical[Al,A8]. In fact, whenever an "object" 0 
overconres the intinite speed with respect to a certain observer, it will afterwards 
appear to the same observer as its "anti object" 6 travelling in the opposite space 
direction[Al ,AS]. For instance, when passing from the lab to a frame F moving in 
the same direction as the particles or waves entering the barrier region, the objects 
0 penetrating through the final part of the barrier (with almost infinite speed[A14]) 
will appear in the frame F as anti-objects C?J crossing that portion of the barrier 
in the opposite spuce-direcrion[Al,AXI. In thc ncw lramc 7, thcrcforc, auch anli- 



objects would yield a nexative contribution to the tunneling time, which could 
even turn out, in total, to be negative. What we want to stress here is that the ap- 
pearance of such negative times is predicted by Relativity itself, on the basis of the 
ordinary postulates[Al ,A8,Al3,A14]. From the theoretical point of view, besides 
rcfb. ~A13,Al4,A8,Al],sccalso R. Y. Chiao, A. E. Ko~hckin A. E . ,  andG. Kurizki: 
Phys. Rev Letr. 77 (1996) 1254; C. G. B. Garrcl & D. E. McCumhcr: Phys. Rev 
A 1 (1970) 305. From the (quite interesting!) experimental point of view, see S. 
Chu & Wong W. : Phys. R e ~ j  Lett. 48 (1982) 738; M. W. Mitchell & R. Y. Chiao: 
Phjs. Letr. A 230 (I 997) 133- 138; G. Nimtz: Europ. Phys. J.  B (to appear as a 
Rapid Note): L. Wang era[. : Nature 406 (2000) 277; further experiments are being 
performed at Glasgow [D. Jaroszynski, private communication]. 

Finally, let us emphasize that faster-than-t propagation of light pulses can be 
(and was, in same cases) observed also by taking advantage of anomalous dispersion 
near an absorbing line, or nonlinear and linear gain lines, or nondispersive dielec- 
tric media, or inverted two-level media, as well as of some parametric processes in 
nonlinear optics (c f .  G. Kurizki er 01. ). 

FOURTH: Superluminal motions in Electrical and Acoustical Engineering - 
The "X-shaped waves" 
This fourth sector is perhaps the most important one. 

Starting with the pioneering work by H. Bateman, it gradually became known 
that all the (homogeneous) wave equations i n  a general sense: scalar, electromag- 
netic and spinor- admit solutions with subluminal (v  < c) group velocities [AIS]. 
More recently, Super-luminal(1~ > c) solutions have also been constructed for those 
homogeneous wave equations, in refs. [A1 61 and quite independently in refs. [A17]: 
in some cases just by applying a Superluminal Lorentz "transformation" [AI,A18]. 
It has been also shown that the same happens even in the case of acoustic waves, with 
the presence in this case of "sub-sonic" and "Super-sonic" solutions [Al9]. Particu- 
lar auendon has been auracled lo [he lac1 lhal some or the new aolulions are "undis- 
torted progressive waves" (namely, represent localized, non-diffractive waves). One 
can expect all such solutions to exist, e.y., also for seismic wave equations. More 
intriguingly, one might expect the same to be true in the case of gravitational waves 
100. 

It is interesting to remark that the Super-sonic and Super-luminal solutions put 
forward in refs. [A201 s o m e  of them already experimentally realized [A21]- 
appear to be (generally speaking) X-shaped, just as predicted in 1980-1982 by A. 
0 .  Barut, G. D. Maccarrone & E. Recami in ref. [A21]; so that they now have been 
preliminarily called "X-waves. " 

In this regard, from the theoretical point of view, we may cite pages I 1 6  1 17, and 
pages 59 (fig. 19) and 141 (fig. 42), in E. Recami: ref. [All .  Even more, see the 
abovementioned A. 0 .  Barut, G. D. Maccarrone & E. Recarni: "On the shape of 
tachyons," Nuovo Cimerrto A 71 (1982) 509-533 (and refs. [A2l]) where "X-shaped 
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waves" are predicted and discussed; c. f .  also E. Recami [A20], which appeared in 

Physica A. From the quoted papers it is also clear why the X-shaped waves keep 

their form while travelling (non-dispersive waves): a property that has elicited high 

interest from electrical and acoustical engineering. New experimental and theoreti- 

cal work is going on (e.y., by F. Fontanaet al. at the "Pirelli Cavi", Milan, Italy, with 

pulsed lasers; and by H. E. Hernandez F. et al. at the F. E. E. C. of Unicamp, Camp- 

inas, S. P. ). Let us mention in particular work by P. Saari, H. Sdnajalg et al. at Tartu, 

Ealonia (scc, f ' .y . ,  Opt. Lm.  22 (1997) 310; Laser Phys. 7 (1997) 321, who e i -  

perinrentally p r o d ~ ~ c e d  S~~perlurninalX-shaped light waves[A22] in optics, and work 

by D. Mugnai, A. Ranfagni and R. Ruggeri, who produced at IROEICNR, Florence, 

Superlurninal X-shaped beams in the realm of microwaves. [A221 Simultaneously, 
as expected on the basis of ER, also (non-truncated) X-shaped beams with finite 

total energy have been constructed[A23]: while many new Localized Superlurninal 

Solutions to the Maxwell equations have been found (some of them generalizing the 

X-shaped bearns)[A23]. 

Further (Numbered) References of the Appendix: 
[All E. Rccami: Rii.i,m NLIOVO U m .  9 (1986). ~ S S U C  no. 6, 1. 
[A21 P. 0. Froman: A&. Hisl. Exact Sci. 48 (1994) 373. 
[All R. Mignani & E. Rccami: Ri~irluN~~ovo Cim. 4 (1974) 209; E398. 
IA41 E. Recami: in Albert Eitlstritl 1879.1979: Relutivitj, C)lmtltu and ('osnzology, ed. by F. 
De Finis & M. Panlalsu, vol. 2 (Juhnwn Reprinl Co. ; New Yurk, 1979), p. 537. Thi, hook 
exisls also in halian and in Russian. 
IA51 P Caldirola & E. Recami: in ltnlian Studips in the I'l~ilosopl~j of Sci~ncr, ed. hy M. L. 
Dalla Chiara (Reidel: Boslon, 1980), p. 249. 
IA6I V. F. Perepelilra: Reporlr ITEF-I00 and ITEF-I65 (Inrlilule oTTheorelical and Experi- 
menlal Physics: Moscow, 1980). 
[A71 E. Recami (ed. ): Ercl~juns, Monopoles, and Relcrted Topics (North-Holland; Amster- 
dam, 1978). 
[A81 E. Rccami: For~nd. oSPhyr. 17 (1987) 239; IAI. N. Ciri~. 44 (1985) 587. 
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A shon review is given or the original irealmml 01' [he dynamic image lorces and 
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1. Introduction 
The problem of the tunneling time T,,, in quantum mechanics has turned out to 
be extremely important and difficult [ I ,  2, 3, 4, 5, 6, 7, 8, 9, 10, I I]. It emerged 
[12, 131 soon after the tunneling concept itself was introduced for electronic [14, 
15, 161, atomic [17, 181, and nuclear physics [19, 20, 21, 22, 231, as well as for 
low-temperature chemistry [IS, 24, 25, 26, 271. Although far from being solved, 
the problem has, nevertheless, provided some insight into condensed matter physics 
[15]. Specifically, charged particles moving near interfaces and in thin interlayer 
gaps excite virtual or real collective oscillations of the metal (semiconductor) plasma 
[28,29, 30, 3 I ,  32, 33, 341. In this case the polarization (image) forces differ from the 
classical ones due to dynamic (nonadiabatic) renormalization [35, 36, 37, 38, 39,40, 
41, 42, 43, 44, 451. For sub-barrier (tunnel) processes, two time scales are inherent 
in the problem: T,,, mentioned above and w;l, the inverse circular frequency of 
surface plasmons. The dynamic corrections are essential if rtullws < 1, i .e . ,  when 
the electrode plasma response is retarded with respect to the projectile Coulomb 
field action [41, 43, 46, 471. Otherwise, only static corrections of a different origin 
modify the classical result [32, 35, 39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 
60,61, 62,631. 

In this article we summarize some of our recent results concerning dynamic im- 
age forces and the related topic of electron interelectrode tunneling. Our  perturbation^ 
based approach is set forth and justified by model calculations. It is shown that for 
small nonadiabatic corrections the explicit choice between different characteristic 
tunneling times can be avoided. However, implicitly this choice should be made 
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Fig. 1. The charge moving according to the z ( t )  law in the three-layer system with 
dielectric permittivities ~ ~ ( k ,  w). 

while developing a future nonperturbative dynamic tunneling theory. The exist- 
ing ones, although very complicated, are neither unambiguous nor self-consistent 
[40, 41, 42, 44, 45, 58, 59, 60, 64, 65, 66, 67, 68, 69, 70, 71, 721, so that the chal- 
lenge to theoreticians still persists. 

2. Formulation of the problem 
The energy of classical image forces for the charge q near a flat vacuum-metal inter- 
face (the subscript "surf") has the form (see, e.g., [39]) 

where T > 0  is the distance from the interface. At the same time, in the vacuum slab 
between two classical metallic electrodes the contributions of the infinite sequence 
of images converge into the following expression [73]: 

Here 21 is the slab width, +(z )  is the digamma function, y = 1.7810. . . is the Euler 
constant, the distance z is reckoned from the center of the interlayer (see Fig. I). 
W;',, ( z )  diverges at the interfaces z = &1 in the same manner as w,:,~ ( r  + 0 ) .  

To overcome these unphysical divergences we invoke the idea of finite-length 
screening. We apply the dielectric approach [32, 35, 50, 61, 62, 63, 72, 74, 75, 761, 
assuming infinite bawiers for electrode-constituent particles [35, 50, 75, 761 and 
charge-cawier specular reflection at the interfaces [32, 35, 61, 62, 63, 741. This 
means that (in the most general case) we have three ( i  = 1,2,3)  media described 
by bulk dielectric functions c i (k ,  w )  taking into account the spatial and temporal 
dispersions (see Fig. 1). Here k is the transferred wave vector and w is the frequency. 
We omit hereafter the spatial dispersion of the slab dielectric function € 2 ,  i.e. €2 = 

€2 ( w ) ,  to avoid the quantization of the quasiparticle spectrum in the interlayer. This 
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is true for all problems discussed below. The opposite situation for thin conducting 
films can be found in Refs. [63,77]. 

The problem consists in calculating the image force potential energy Wslab [ ~ ( t ) ]  

for the charge q in the slab moving normally to the interfaces, where t is the running 
time. In other words, the charge at any point of the trajectory z ( t )  induces the varying 
polarization charge densities on both interfaces, and interacts with them. The rele- 
vant polarization potential is xnd[x = y = 0 ,  z ( t ) ,  t ] .  Thus, Wslab [ z ( t ) ]  = + q ~ n +  
In the framework of the nonlocal electrostatic approach [35] using the conventional 
boundary conditions [73] for the electrostatic fields and inductions in the three me- 
dia concerned, one obtains [78,79] 

Here k l l  is the vector k component along the interface, z' = z ( t l ) ,  the blocks 

( i  = 1,3) are expressed through the so-called surface dielectric permittivities 

and kz = \/k2 - k ; .  Hereafter, the arguments t in z ( t )  in the three-layer case or in 

r ( t )  in the two-layer one will be omitted for brevity. 
It is readily seen from Eq. (3) that the response to the nonrelativistically mov- 

ing charge is inertial (nonadiabatic). Actually, Wslab ( t )  depends on the preceding 
trajectory z ( t l  < t )  due to the frequency dependences of ai ( J i l l ,  w ) .  In the limiting 
case w, t oo, when the temporal dispersion of the electrode dielectric functions is 
negligibly small, the expression (3) reduces to the sum with each term proportional 

00 to dw exp [ iw ( t  - t ' ) ]  = 27rS(t - t ' ) ,  S( t )  being the Dirac delta-function. Then 
the image forces can be considered as static. 

In this connection let us anticipate that the influence of the dielectric function 
frequency dependence is small. This speculation will be justified below by direct 
numerical calculations and the account of the plasmon impurity decay. Then any w- 
dependent quantity can be expanded into the series over w / w s .  Since the numerical 
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treatment [41] shows the minor role of dissipative processes for tunneling [they 
are described by Im ci(k, w)] and the dielectric formalism itself is not very suitable 
for the consideration of such processes [59], we shall restrict ourselves to the real 
ci(k, w). Thus the w-expansion includes only even terms [go]. For present purposes 
it is enough to retain only the first dynamic correction. 

Further simplification can be achieved for the most natural case of the vacuum or 
wide-gap insulating interlayer, when €2 (w) can be approximated by the dispersion- 
less constant. Then Eq. (3) takes the form 

where 

q'' Jdkll  
e -2k l l l  

wst ( Z )  = - - slab 
262 I - a l ( k ,  O)a3(kl l ,  0)e-~"1' 

0 

x [a3 (Jil l ,  0)e2'' + a1 (Jil l ,  ~ ) e - ~ ' '  - 2 a l  (Jill, 0 ) a 3 ( k l ,  ~ ) e - ~ ' ' ]  (7) 

is the main static image force energy term and 

is the dynamic correction. Here dotted and primed quantities mean time- and frequen- 
cy-derivatives, respective1 y. 

In the case 1 + cc the three-layer system decomposes into a couple of two 
independent two-layer systems each possessing only one interface. Then for each 
i-th electrode Eqs. (6)-(8) are transformed into the following: 
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It should be borne in mind that in actual fact the dispersionless dielectric constants 
differ from unity, such that our € 2  are artifacts of the electrostatic approximation 
because for any substance it should be ~ ( k  + m) + 1 [61, 62, 81, 821. This con- 
clusion stems from the fact that large k's correspond to small Ir - r'l's in the kernel 
~ ( r  - r') linking the electrostatic field and induction in the presence of the spatial 
dispersion [80]. Therefore, all divergences at the interfaces due to the differences 
between dielectric constants disappear for proper treatments, and only some smeared 
humps or dips of the image force energy may survive there [83]. This problem will 
be dealt with below in more detail for semiconducting electrodes, but hereafter in the 
specific calculations, to avoid further discussion of this issue, we restrict ourselves 
to the vacuum case € 2  = 1. 

3. Two-layer systems 
3.1 Metal-vacuum interface 
Expressions (9)-(11) enable numerical calculations to be carried out for any possible 
metallic ~ ( k ,  w ) ,  the exact form of which being unknown even in the structureless 
(jellium-like) case [84]. However, we confine ourselves in this section to the hydro- 
dynamical model of the plasma-like medium [85] 

and the uniformly accelerated motion 

under the action of the applied electrostatic field F .  Here w, = w,&' is the bulk 
electron plasma frequency and K is the inverse screening length. Then 

These dynamic corrections, calculated in the presence of the spatial dispersion, 
are estimated to be small [78]. Still, they lead to a substantial reduction of the field 
emission current density j for large (sub-threshold) F ,  so that the Fowler-Nordheim 
linear plot j / F 2  versus 1 / F  is violated in accordance with the experiment [86]. 

3.2 Semiconductor-vacuum interface 
The simplest possible model for the semiconductor dielectric permittivity, taking into 
account the existence of the band gap and the dependence of the dielectric function 
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on k and w ,  was introduced by Inkson [81]: 

where €0 is the static lattice dielectric constant, K and w, are the inverse screening 
length and the plasma frequency of the valent electrons. This formula reproduces 
well the plasma-like-medium limiting cases, static (Thomas-Fermi, w / k  t 0 and 
€0 t m) and dynamic ( w l k  t m and €0 t m). 

From Eqs. (9)-(11) and (16)  it comes about that for KT Jz << 1 

1 
W s u r f ( r )  M - 4 

tan - 
6 

and for ~r d I  €0 - 1 >> 1 

The asymptotics (14)-(15) stem from Eqs. (17)-(18) in the limit €0 t oo, i.e., for 
the infinite ionicity formally appropriate to a metal. One can see that the conventional 
description of the image forces near the semiconductor surface [29, 32, 38, 39, 871 
is recovered only at large distances. The dynamic corrections are of the same type 
as for the metal with itinerant electrons, although in the present case all the electrons 
are bound. This similarity resembles one for the electron plasma response in the 
energy-loss experiments for both metals and small-gap semiconductors [30, 32, 38, 
87, 88, 891. 

4. Three-layer systems 
4.1 Metal-vacuum-metal structures 
The calculations in the general case of a three-layer sandwich with metallic covers 
(M-I-M) can be carried out in the same manner as for the single interface, starting 
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Fig. 2. The image force potential barriers for the junctions Sb-vacuum-Sb with 
and without dynamic corrections. FIFO = 0.05 and Sb  =0.5,1, and 2 (curves 
1-3, respectively). See notations in the text. 

from the hydrodynamic approximation (12) and Eqs. (7) and (8). For thin symmet- 
rical sandwiches, i.e., for rcl = ~3 = rc, w,l = w,2 = w,, and 6 = ~1 << 1, it 
follows 

Here [ = z l l ,  and hence -1 < 1 5 1,  and the charge moves in the vacuum gap 
from the left to the right electrode forced by the applied electrostatic field F. The 
main static term is symmetrical about [, and for S t 0 tends to - q 2 ~ / 2  which is 
exactly the inner electrostatic potential energy in the Thomas-Fermi approximation 
[52]. This is the charge energy averaged over the crystal volume and reckoned from 
the vacuum level [90]. 

The dynamic correction is asymmetrical with respect to the origin and alternat- 
ing. The asymmetry is associated with the accelerated character of the motion. In 
particular, for uniform motion [35] Eq. (8) causes a symmetrical and positive dy- 
namic correction that suppresses the static image forces for all 5. Our calculations 
show [74] that in M-I-M structures the dynamic corrections are small for good met- 
als. On the contrary, for semimetallic Sb electrodes with w, % 4.15 . 1014 spl and 
K M 1.66 . lo6 cmpl the deviations from the static behavior may be conspicuous 
(see Fig. 2). Here F = V / 2 1  is measured in the units of Fo = 10' V cmpl typical 
for the given problem, V is the potential interelectrode difference. 
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4.2 Semiconductor-vacuum-semiconductor structures 
On the basis of Eqs. (7) and (8) it is possible to obtain the dynamic image force 
energy profiles in the slab between nondegenerate semiconductors with the dielec- 

tric permittivity (16). For thin symmetrical sandwiches with 6 4 5  << 1 the 

corresponding expressions take the form 

where 

These cumbersome expressions reduce to those for the metallic covers [Eqs. (19) 
and (20)] in the previously described limit €0 + cc. The value 2 for €0 is not the 
singular point, contrary to what might be expected, the quantity in brackets being 
quite smooth. On the contrary, it ranges from 11 for €0 + cc to 8 for €0 + 1. Once 
again, it should be noted that both static image forces and dynamic corrections are 
very similar for metallic and semiconducting heterostructures. 

5. Justification of the adopted approach 
The dynamic corrections appeared to be substantial but small enough to justify our 
perturbation approach, described in Section 2. and in more detail in Refs. [78, 791. 
However, some doubts may remain concerning the applicability of the perturbation 
procedure for the image forces in the case of the emitted projectiles when the real 
surface plasmon avalanche is left in the wake, according to the semiclassical theory 
[35, 66, 911. Then the image force energy includes long-range oscillating terms. 
This behavior is conserved in the quantum-mechanical theory when the recoil effect 
is small (the "above-threshold" situation) [59, 60, 71, 721. Such a treatment leads 

to a spatial decay proportional to rxp ( - I - - )  [71], where h is the Planck's 

constant. This decay is weak for electrodes with small current-carrier densities. Nev- 
ertheless, there is an important factor, namely, the collision plasmon damping, which 
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results in the restoration of the conventional image force energy power-law depen- 
dence in the asymptotic region [92]. 

Let us consider the uniform quasiclassical motion of a charge near the metal- 
vacuum interface [35] with the dielectric permittivity obtained in the framework of 
the kinetic equation [93] 

Here u  is the inverse relaxation time, and the spatial dispersion is neglected as being 
insignificant in this case. Incidentally, the problem of the rigorous introduction of 
the damping factor into the dielectric permittivity of the medium with temporal and 
spatial dispersions is both far from being solved and far from being unambiguously 
formulated [94, 951. 

The starting expression for the image force energy for a charge q moving in 
vacuum normally to the metal surface in accordance with the law r ( t )  has the form 
(compare with Ref. [35]) 

q2hs sin h,(t - t ' )  v  
W [ r ( t ) ]  = -- 

2 1, ' ' I  r ( t )  + r ( t l )  
exp [- - ( t  - t ' ) ]  , (25) 2 

where 

For the constant speed v  it is convenient to measure distances in units of L = 

2.irv/hS. Then the problem includes a single input dissipation parameter P = vlw,. 
The most "dangerous" set-up is the motion of the emitted particle. Consequently, 
elementary calculations lead to 

One sees that the saturated value of We,it(0) is almost unaltered by the plasmon 
damping, whereas the huge oscillations, totally distorting the image forces for r  + 
cc in the situation u  = 0  [35], are rapidly damped in the real case u  # 0. Asymp- 
totics (27) and (29) are complemented by numerical calculations shown in Fig. 3. It 
is remarkable that the damping factor does not depend on ws and becomes especially 
large for slow projectiles, e.g., protons [32, 881. 

The stabilizing role of the plasmon finite lifetime for image forces should mani- 
fest itself also for a slab geometry and other laws of charge motion. 
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Fig. 3. Dependences of the dimensionless image force energy w = ~ v w / ~ ~ G ,  
on the dimensionless distance $for the particle emitted from the metal with differ- 
ent plasmon dissipative parameters P.  See notations in the text. 

6. Tunnel currents in three-layer systems 
The energy level diagra~li for the electrically biased tunnel junction taking into ac- 
count the dynamic image forces is shown in Fig. 4. Bearing in mind the actual 

Fig. 4. Schematic tunnel barriers in a thin symmetrical M-I-M biased junction 
taking into account static and dynamic image forces. See notations in the text. 

smallness of the dynamic correctjons, we may carry out the whole analysis in the 
traditional manner [96], i.e., neglecting the temperature dependence of the Fermi- 
Dirac distribution function and employing the semiclassical approximation and the 
saddle point method. Then the electron tunnel current density j through a symmetric 
M-I-M junction can be written in the form 
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Here e is the elementary charge, I (E , )  is the tunneling exponent which determines 
the JWKB tunneling rate D(E,) = exp[-I(E,)] ,  E,  is the energy of the electron 
motion across the junction, and rj is the Fermi energy of the metal measured from its 
conduction band bottom. 

In the semiclassical approximation adopted here, the exponent I (E , )  is deter- 
mined by the co-ordinate dependence of the velocity v ( z )  = lil for the sub-barrier 
motion [ l ,  961: 

1 
- m v 2 ( z )  = U ( z )  - E,, 
2 (32) 

where U ( z )  is the potential electron energy in the interlayer, and z1,2 are the turning 
points at which v(zl,2) = 0. The tunneling time enters into consideration implicitly 
through Eq. (3 1) because the corresponding semiclassical tunneling time is r:;~'~'  = 

J,: v p l  ( 2 )  dz [97]. ~g," '~ '  is the time that a particle with a real velocity v ( z )  
would take to traverse the barrier [98]. Further subtleties, e.g., concerning different 
tunneling times [I, 2 ,3 ,4 ,5 ,8 ,  111 do not interfere, because the dynamic corrections 
are small. Rewriting Eq. (8) for the dynamic corrections in the following manner 

1 
A w ( z )  = -mi"pl ( z )  + mEzp2 ( z ) ,  

2 (33) 

i.e., introducing the functions pl ( z )  and p2(z) ,  the potential energy U ( z )  reads 

where p is the work function, W S t  ( z )  is obtained from Eq. (7) with a1 ( J i l l ,  0 )  = 

as ( J i l l ,  O ) ,  and pl ( z )  and pa ( z )  are even functions of z in the case of identical elec- 
trodes. The value of v2 can be immediately found from Eqs. (31) and (34). Differ- 
entiating of the kinetic energy +mu2 with respect to time, and making allowance for 
the small dynamic correction, leads to [79] 

mi, z -eF, (35) 

i.e., the sub-barrier "motion" is decelerated by the electric field. 
It should be stressed that this treatment of the electron in the classically forbid- 

den area as moving is not more bizarre or inconsistent than its "adiabatically immo- 
bile" version in the conventional semiclassical theory involving static image forces 
[39, 86, 961. The classical motion studied by us is analogous to that in the inverted 
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effective potential of the path-integral approach [44]. The introduction of the elec- 
trostatic field as a source of motion is our new key point [37, 78, 791 overlooked 
in other investigations of the electron tunneling [40, 41, 42, 44, 56, 67, 701. The 
only attempt [69] known to us to make allowance for the direct field influence on 
the image forces contains only a guess not brought to completion. 

Solving the system of Eqs. (29)-(35) for thin barriers ~1 << 1, when the functions 
pl (z) and pa (z) are independent of z, it is possible to obtain a formula similar to the 
classical Fowler-Nordheim formula [79] 

but with renormalized values of effective work function 

and external field 
1 + P2 F, F* = - 
1 - Pl 

wSt is the average of WSt across the junction 

I 
ri.st = A Ll dz WSt (z). 

Eq. (36) was obtained for strong electric fields, when 2eF*l > p*. The opposite 
case of small voltages (2eF*l <( p*) can be found elsewhere [79]. 

The diagram in Fig. 4 shows that the dynamic corrections increase the height and 
width of the tunnel barrier formed by the applied electrostatic field and static image 
forces. Therefore, the corresponding tunnel current is reduced. The field dependence 
of p* leads to deviations from the linear Fowler-Nordheim plot In ( j / F 2 )  - Fpl 
toward smaller current values. Similar deviations, observed for the cold emission 
from a metal to the vacuum [86], were explained in the same manner [78]. 

7. Conclusions 
The main conclusion consists in the important role of the dynamic character of the 
image forces in tunneling both for two- and three-layer systems. The nonadiabatic- 
ity is due to the close orders of the tunneling time and the inverse frequency of sur- 
face plasmons excited in electrodes by charges moving in external electric fields. 
Although small, the dynamic corrections are responsible for deviations from the 
Fowler-Nordheim law in cold emission, the latter being among the early manifes- 
tations of the tunneling phenomenon itself. 

This work was supported in part by the Ukrainian State Foundation for Funda- 
mental Research (grant 2.41100). 
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Tunneling in the Wigner Representation 

Bilha Segev 
Department of Chemistry, Ben-Gurion University of the Negev 
P.O.B. 653, Beer-Sheva 84105, Israel 

The Wigner function is used to study the purely quantum time evolution of wave 
packets. Wave packets incident on potential barriers or undergoing quantum tran- 
sitions between energy surfaces are studied, demonstrating in both cases the utility 
of the Wigner representation for describing pure quantum effects with no classical 
counterparts. 

Ke~~words: tunneling, phase-space, causality, Wigner function, time 

1. Introduction 
In 1932 Wigner wrote a paper entitled "On the quantum corrections for thermody- 
namics equilibrium" in which he introduced what later became known as the Wigner 
function. In [I] Wigner writes: 

"If a wave function Q(x1, ..., x,) is given one may build the following expression 

and call it the probability-function of the simultaneous values of XI, ..., x, for the 
coordinates and pl, ..., pn for the momenta". "Of course P(xl, ..., x,; pl, ..., p,) 
cannot be really interpreted as the simultaneous probability for coordinates and mo- 
menta, as is clear from the fact, that it may take negative values. But of course this 
must not hinder its use in calculations as an auxiliary function which obeys many 
relations we would expect from such a probability." 

Since then, the Wigner function has been used for various applications, and many 
papers and reviews have been written about it, [2]-[12]. Traditionally, the similar- 
ity to classical distributions has encouraged applications in semiclassical theories. 
Here I take a complementary viewpoint, and review recent work by M.S. Marinov 
and myself [13]-[14], as well as by E.J. Heller and myself [I51 emphasizing the 
application of the Wigner representation to purely quantum effects with no classical 
counterpart. This work includes applications to scattering, wave-packet propagation, 
and tunneling time, and to energy transfer processes within a single molecule, includ- 
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ing, in particular, nonclassical Frank Condon factors and radiationless transitions in 
polyatomic molecules. What these different phenomena have in common is their 
nonclassical nature, which is treated here within a phase-space Wigner approach to 
tunneling. 

2. The Wigner representation 
In the Wigner Representation a quantum state given by the density matrix fit is rep- 
resented by a phase-space quasi-distribution. (I use units with fL  = 1). 

All integrals are from &oo. An operator A is represented by its Weyl transform: 

Expectation values are given by integration: 

and projection gives the probabilities in coordinate and momentum space: 

The expression for pure states is given in parentheses, but the discussion is not lim- 
ited to pure states. 

3. Dynamics in the Wigner representation 
Time evolution in quantum mechanics is given by the time evolution operator: 

with the Hamiltonian H. In the Wigner representation, this time evolution is given 
by the phase-space propagator defined and applied in the following way: 

The propagators are integrable and normalized: 
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and are bilinear transforms of matrix elements of the evolution operator: 

The transition probability between an initial state pi at t = 0 and a final state p f  at a 
later time t is: 

while the instantaneous transition probability is: 

The propagator in phase space is analogous to the Dirac propagator in coordinate 
space, (ql u l q o ) ,  and a similar propagator in momentum space, (pi u l p o ) .  Examples 
of different evolution kernels include the propagators for free motion: 

and the propagator of the harmonic oscillator with unit mass, m = 1 ,  and unit fre- 
quency, w = 1: 

(q2 + q;) COS t - 2qqo ( q l ~ l q o )  = (27ri sin t)-4 exp 
2 sin t 

[ 
(p2  + pi) cos t - 2ppo 

(pi U lpo) = (27ri sin t)-4 exp i 
2 sin t 

C t (q ,p ;qo ,po )  = (19) 

2.irS(p - po cos t + qo sin t ) S ( q  - qo cos t - po sin t )  . 

In the cases of both free propagation and the harmonic oscillator, the dynamics 
in phase space is extremely simple. The propagator Lt  ( q ,  p; qo , po) is a S function 
defining a one-to-one correspondence between initial and final phase-space points. 
The Wigner functions propagate in both cases in a completely classical manner, and 
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each point of the Wigner function propagates on a classical trajectory. This, however, 
is not the generic case. Two counter examples include: tunneling through a 6 poten- 
tial barrier and tunneling through a modified Poschl-Teller barrier. The propagator 
for the narrow potential barrier, ~ " q )  = uob(q), is: 

exp [-uo (Yo + t; " - q ) I  
x cos 2p qo + tY - Y) - arctan (:)I [ (  m 

The propagator for a general one-dimensional potential barrier is: 

where for the modified Piischl-Teller barrier, VPT (q) = VO2/ cosh2 (Y/s): 

v = 2pos, w = d m .  Ft (v, w), R, and S were given in Ref. [14]. 

4. Scattering of wave-packets: tunneling, superluminal 
propagation and causality 

In my work with M.S. Marinov we have shown that a description of wave packet 
propagation simplifies considerably when considered in phase space. The usual anal- 
ysis in coordinate space is given here first to set the stage for the discussion. 

Consider the time evolution of a plane wave having momentum p scattered with 
the scattering amplitude A(p) and the dispersion w(p): 

A wave packet is created from a superposition of plane waves: 
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where @T(q;  t )  is the scattered wave packet and !PF(q; t )  is the freely propagating 
wave-packet had there been no scattering. 

Defining the phase shift 4 ( p )  of the scattering amplitude as follows: 

and applying a stationary phase analysis, one finds the peaks of the freely propagat- 
ing and scattered wave packets, respectively: 

where vg = dwldk  is the well known group velocity and d4 ldw  is Wigner phase- 
time delay. [16] Note, however, that the naive application of the stationary phase 
argument is correct only if A ( k )  and @ ( k )  are slowly varying. Certainly, A ( k )  is not 
slowly varying for deep tunneling, where the phase-time delay is often negative. 

It was found that the group velocity can sometimes exceed c and that the phase- 
time delay can be negative, which gives "superluminal" phenomena or "faster-than- 
light" effective velocities. Many works discuss these effects. [17]-[34] The different 
superluminal phenomena involve no violation of causality. 

In the time-independent formulation causality manifests itself in analytical prop- 
erties of the scattering amplitude: [ I  31 

A ( p )  + constant as lpl + oo, 

A ( p )  is analytic in the upper half of the complex p  plane. 

How do these properties manifest themselves in real space or in phase space? An 
argument of causality in coordinate space may assume the following form: define a 
propagator for scattering in coordinate space in the following way: 

For photons in vacuum (i.e., with no dispersion) w  = pc . Considering the integra- 
tion over p  as a contour integration in the complex p  plane and closing the contour 
in the upper half of the complex plane, one can see that the analytic properties of the 
amplitude result in the following causal restriction: 
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No information can be transferred faster than the speed of light in vacuum c. Unfor- 
tunately, this argument fails when w ( p )  # pc. 

Consider now a similar argument in phase space. The propagator for scattering in 
the Wigner representation in the elastic channel defined by the scattering amplitude 
A ( p )  is given by: 

An analysis based on an analytic continuation into the complex o plane reproduces 
the result for the dispersion relations of photons in vacuum, 

and also gives a new result for massive nonrelativistic particles: 

No similar condition exists for other dispersion relations, including in particular the 
relativistic, Klein-Gordon dispersion. 

Note that the propagator for free photons, with hw(p )  = cp, is 

while the propagator for free massive particles, with hw ( p )  = p 2 / 2 m ,  is 

5. Scattering from a potential barrier 
For one dimensional scattering from a potential barrier, H = p 2 / 2 m  + V(q) ,  there 
are two channels and two amplitudes: 

Transmission amplitude A ( p )  , 

Reflection amplitude B ( p )  

The evolution kernel for the Wigner function has three parts: 



Tunneling in the Wigner Representation 99 

and contributions from S are exponentially suppressed with time. A general form of 
the propagator for potential barriers is obtained by closing the contour of the integral 
and obtaining a sum over the S-matrix singularities, which are simple poles at K,, 

with Im rc, < 0. 

A simple interpretation of causality in tunneling is obtained: the barrier removes 
delayedparts from the freely propagating wave packet. 

The momentum probability distribution of the transmitted part is trivial: 

Using the notation: 

a new result is obtained for the coordinate probability distribution of the transmitted 
part. An expansion in (Apo/Po) gives: 

To first order in (Apo/Po) this reduces to: 

where the 1st derivative and 1st moment of the freely propagating distribution: 



are coupled to two real time parameters: 

which are the real and imaginary parts of the well known complex tunneling time. 
As an example, consider an initial Gaussian state: 

which for free propagation gives: 

The transmitted part after scattering is then given by: 

The peak is narrowed and advanced by AQ where 

AQ M -roPo/m for -roPo/m <( Aq , (60) 

4 Q  E 4 q  for roPo/m >> Aq . (61) 

The peak of the scattered wave packet is never advanced more than the width of 
the freely propagating wave packet. Note that the example of a Gaussian is just an 
example. The method is general enough to apply to any initial state. 

6. Nonclassical energy transfer processes within a single 
molecule 

A transition probability is given by the phase-space overlap integral between initial 
and final states: r 
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In relaxation processes, a given initial excited state bi relaxes into a manifold of all 
final states with a given energy p.f: 

where E is the final energy, and Hf is the final state quantum Hamiltonian operator. 
The transition probability for relaxation processes is thus: 

In our work we study the integrand: 

which in the leading-order semiclassical approximation is: 

While the integral gives an estimate for the transition rate, the integrand provides 
an indication for the preferred channels for the energy. By looking for accepting 
zones in phase space, i .e.,  regions of phase space where <if ( q ,  p) is large, we cal- 
culate propensity rules and chose between competing channels. The examples we 
have studied include model potentials of harmonic and nonharmonic oscillators and 
application to internal conversion in the benzene molecule. 

7. Conclusions 
Quantum mechanics can be studied in many different representations. The physical 
results of an experiment or the theoretical predictions for an observable effect do 
not depend on the representation chosen, but a clever choice often simplifies the 
analysis and sometimes helps our physical intuition. In this work several cases have 
been considered where fundamental or complicated problems considerably simplify 
in the Wigner representation. Applications to atom optics have not been discussed 
here for lack of space, but are a particularly important experimental field for which 
these methods may prove useful. 
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Geometric Structure of the Big Bang 

Michael Heller 
Vatican Observatory, V-00120 Vatican City State 

In the standard approach to Lhe investigation ol singularilies in general relativity, sin- 
gularilic, are trcaLcd as points oTa "5ingular boundary" rather than evcnl, of ,pace- 
Lime. To [real them as "internal elements" or a given space-lime, a generaliration 
or Lhe slandard geometric methods is required. A new approach Lo Lhe singularity 
problem, haled on the noncommurativc geometry, i ,  briefly prebcnted. From the 
results obtained so far an interestinn oicture ol Lhe early universe emerges. In the -. 
conceplual rramework olnoncommutative geometry, adistinction heLwem singular 
and nun-singular ,LaLc, or the univcr,c Lurn, out to be mcaninelcs,. "Cla,\ical sin- - 
gularilies" appear only when the universe passes through the Planck Lhreshold Lo its 
commutative phase. 

Ke?>vords: general relatilily, Big Bang, coarnology, nonco~rirnulnlire grornrlr) 

1. Introduction 
The "Big Bang" is rather a popular expression, its geometric counterpart being the 
"initial singularity." For the mathematician the singularity issue in general relativity 
constitutes a difficult but challenging problem. There are strong reasons to believe 
that the mathematical degree of difficulty of this problem reflects the dramatic char- 
acter of its physical counterpart - the beginning of the Universe. Let us consider 
the open Friedman universe, whose space extends to infinity. If we contemplate its 
evolution backwards in time the volume of the universe shrinks, but always remains 
intinite. To attain zero at the singularity, the volume would have, at one instant, to 
jump from infinity to zero. This would be both physically and mathematically un- 
acceptable. In view of the above it is clear that - contrary to general opinion - 
the singularity cannot be regarded as a point in space-time at which the volume of 
the universe vanishes and the matter density blows up to infinity. The singularity is, 
rather, a "place" at which the very concept of space-time breaks down. And here 
we have the problem in all its clarity: how to mathematically determine something 
which is beyond the model we have at our disposal'! 

There are essentially two methods to cope with this problem. The first method is 
to regard singularities as ideal or boundary points of space-time, and to investigate 
them from within a given space-time by using more or less standard geometric meth- 
ods. The second approach consists in generalizing the concept of space-time mani- 
fold in such a way that singularities could be regarded as "internal elements". Both 
these methods are, in a sense, complementary. The first, which is a paradigmatic 
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approach in studying classical (i.e., without taking into account quantum gravity e f  
fects) singularities in general relativity, is more effective in analyzing concrete singu- 
lar space-times. The second - still undere development, but already with significant 
successes - seems to be indispensable in disclosing a source of various "singular sit- 
uations". Both methods are useful in proving some general theorems concerning 
singularities. 

The goal of the present paper is to describe the second of these methods and its 
main results. The first approach will be only briefly summarized, in Section 2, to 
more clearly state the problem and to prepare the stage for further considerations. 
Section 3 is a brief interlude mentioning an intermediate step which led the present 
author and his co-workers from the standard approach to the noncornmutative mod- 
elling of singular space-times. The latter is, in some detail, described in Section 4, 
and applied to the analysis of the closed Friedrnan model in Section 5. The main 
results obtained so far with the help of the noncornmutative approach are reviewed 
in Section 6. And tinally, in Section 7, a general image of the "beginning of the 
universe" is discussed that emerges out of the proposed approach. In the whole of 
the paper we are more interested in conceptual issues than in technical problems. 

2. Space-time model and its breaking down 
In general relativity, space-time is modeled by the pair (M. y) where A'I is a 4 - 
dimensional smooth manil'old, and y a smooth Lorcn t~  mctric on A!I with thc +2 
signature. For the theoretical physicist "smooth" usually means "as smooth as re- 
quired-, and rarely is anything more than C2 is required. The Lorentz metric on Ai 
(one speaks also about the Lorenti strzicture) contains within itself several substruc- 
tures beautifully "synchronized" with each other, and this artful edifice is exactly 
what is needed in physics. The total collapse of the space-time structure in the initial 
singularity means not only breaking down of the space-time stage for physical pro- 
cesses, but also the complete loss of inforrnationconcerning those aspects of physics 
which are encoded in space-time geometry (such as: free fall of bodies, speed of 
light, space and time, gravitational field). A significant breakthrough in coping with 
the singularity problem was made by Robert Geroch [12, 131 who was able to for- 
mulate a clear geometric criterion determining what is meant by breaking down of 
the space-time structure. 

Let : I 7' 11'f be a non-constant geodesic in space-time (hf, g) .  Non-constant 
geodesic means a geodesic that fails to satisfy the condition: 7 ( t )  = 11, 11 E AI for 
all t E I. The following chain of detinitions leads to the Geroch criterion: 

A geodesic y is complete to thefuture (to the past) if I = [a; x] (if I = 

[-w: a]), a E R. y is said to be conrplete, if I = [-,x. ,x] (it can be shown 
that these detinitions are independent of the aftine reparametrization of ;t). 

Space-time (AI, g) is geodesically incomplete (g-inconrplete, for short) (to the 
firture, to the past) if in (M. g )  there exists at least one incomplete geodesic 
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(to the future, to the past). If there is no such geodesic, (hf, g) is said to be 
geodesicnll,~ cornplete (g-corrzplete). 

Space-time (hf, g) is rirnelike, null, or spacelike g-inconrplete ( to rhe,fiture, ro 
thepast) if the g-incomplete geodesic in question is timelike, null or spacelike 
(to the future, to the past), respectively. 

Correspondingly, one defines timelike, null or spacelike g-completeness of 
space-time (dl, g). 

As examples demonstrate, timelike, null and spacelike g - completeness (and g - 
incompleteness) of space-time are logically independent concepts, i .e . ,  none of these 
concepts either implies or excludes the others. 

Geroch's idea was to regard space-time (d'l, g) as singularity free if it is timelike 
and null g-complete, and vice versa, the timelike and null g-incompleteness of space- 
time (d'l, g) is to he regarded as the "minimum condition" for the existence of a 
singularity, provided that (d'1,g) is inextendible, i . ~ . ,  that there is no its smooth 
isometric embedding into a "larger" space-time (hi', g'). This criterion is physically 
reasonable, since in any timelike or null g-incomplete space -time (d'l, g) there exists 
at least one history of a particle or photon which suddenly emerges out of nothing 
(if (M. g) is incomplete to the past) or disappears into nothingness (if (d'1,g) is 
incomplete to the future). In cosrnological models with the initial singularity of 
the Big Bang type all timelike and null geodesics are past incomplete, but space- 
times are also known in which only certain classes of geodesic are (past or future) 
incomplete. 

The above criterion was used by Penrose [?I ]  to prove the tirst of the series 
of theorems known as the singularity theorems [17]. Since these theorems did not 
assume any symmetry postulates, they falsified a so far common belief that singu- 
larities in cosrnological models were merely by-products of too strong symmetries. 
The general method in proving singularity theorems consists in combining different 
kinematic and dynamic conditions so as to obtain the contradiction between these 
conditions and the assumption of the g-completeness of space-time. In some of the 
theorems, the assumptions are general enough to be believed to be valid in every 
univcrsc aimilar Lo ours (for morc dclaila scc 16, 341) . 

It was soon realized that the g - incompleteness criterion does not work for all 
situations which, from the physical point of view, could be regarded as singular. 
Timelike curves (which are not geodesics) represent histories of nonzero rest-mass 
particles moving with an acceleration, and if this acceleration is bounded, the mo- 
tion thus represented is physically realistic, and consequently, space-time should be 
regarded as singularity-free if it is "complete in the sense of bounded acceleration 
curves". It was Schmidt [33] who gave this idea an elegant geometric form. He first 
introduced a gener<~lizedafineparameter along any curve, and then detined a space- 
time (M. y) to be h-conrplete (after boundary, see below) if every curve in (d'l, g) 



has intinite length as measured by this parameter. Correspondingly, one speaks of a 
b-inconrplete space-time. If a given curve is a geodesic the generalized aftine pararn- 
eter reduces to the usual affine parameter. Every space-time which is b-complete is 
also g-complete. 

The "end-points" of b-incomplete curves were organized by Schmidt into a sin- 
gular boundary of space-time, called its b-boundary. We shall briefly present this 
construction. Let (AI, g) be a space-time, and OAI (the connected component) of 
the orthonormal frame bundle over M, n : O A l  7' M, with the Lorentz group 
SO(3,I) as its structural group. The Levi-Civita connection on .\I determines the 
family of Riernann (positive definite) metrics on the total space OAI of the frame 
hundlc ovcr AI. Wc sclccl onc of lhcsc mclrica (lhc furlhcr conalruclion doca no1 
depend of the particular choice), use it to determine the distance function on OM - 
and, in the usual way, construct the Cauchy completion OM of OAI. The right ac - 
tion of the group SO(3,I) on OM can be prolonged to O A l .  Now, we define the - 
quotient space AV := OhllSO(3.1) to be the b-conrpletion of space-time hl. It can 
be shown that AT is open and dense in .\I. We define the b-botmdarj o f  space-tinre 
as & A i  := .\I \ .\I. 

Schmidt's construction was soon commonly accepted as the best available defini- 
tion of singularities. Unfortunately, however, it was very difficult to effectively corn- 
pute b-boundaries for concrete space-times. Only a few years later Bosshard [ I ]  and 
Johnson 1261 wcrc ablc lo dcmonslralc lhal ihc h-bormtlarics of ihc closed Fricdman 
universe and of the Schwarzschild solution have strongly pathological properties: 
they are not Hausdorffseparated from the rest of space-time and, in both cases, they 
consist of a single point. This is very dramatic especially as far as the closed Fried- 
man world model is concerned since this model has two singularities - the beginning 
and the end of the universe. How could they be a single "point"'! 

There were some attempts to cure the situation (see [lo]), but the new propos- 
als were either less elegant than the original construction, or not general enough, 
and the b-boundary construction began slowly to disappear from scientific literature. 
One suspects that the source of the above difficulties with singularities is connected 
wirh rhe [act that the methoda used to deal with them have been in facr lormulaled 
for problems arising within the category of smooth manifolds, whereas space-times 
with singularities clearly go beyond this category. To cope with stronger types of 
singularities one must look for more general mathematical methods. 

3. Space-times with singularities as structured spaces 
Since the work by Koszul [27] it has been known that the geometry of a smooth 
manifold A1 can be reconstructed from the algebra C"(A1) of smooth functions on 
.\I. It turns out that it is possible to define a space, more general than a smooth rnani- 
fold, by repeating Koszul's strategy for any functional algebra (eventually satisfying 
some additional requirements). Such spaces, usually called diferential spaces, have 
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been studied by many authors (for a bibliography of differential spaces see [2]). If 
one uses a sheaf of functional algebras rather than a single functional algebra, one 
speaks of structural spaces; these have been studied in [22]. We have investigated 
space-times with various types of singularities in terms of differential and structured 
spaces (see, [14, 15, 18, 19, 21, 32]), and in particular space-times with malicious 
singularities [20, 221. The result is striking! 

Let 1\l = .\I U dbhl be a space-time 111 with its b-boundary &.\I. h l  is open 
and dense in AT (.\I is called a b-completed space-time). Let further C be a func- 
tional algehra defining M as a differential space. In such a case C ( U )  is said to 
he the di f f~r~nt in l  str~rctrrr~ on hl.  A prok~ngntion of the differential ?trllctllre C on 
A'1 to that of A? is defined to be an algehra on M such that C ( h I )  = C ( h I ) .  In 
[20, 221 we have demonstrated that if 111 is a space-time with at least one malicious 
singularity in its b-boundary, and C m ( h I )  the differential structure on M, then only 
constant functions can be prolonged to 1u. The same is true if the differential struc- 
ture on hf consists of a sheaf of functional algebras rather than a single algebra. The 
fact that only constant functions can be prolonged to A? explains why the space- 
time of the closed Friedman world model with its b-boundary collapses to a single 
point. Indeed, the differential structure of for this model consists only of constant 
functions, and constant functions do not distinguish points (the value of a constant 
function at each point is the same). This explains the difficulty, but does not remove 
it. To go further more powerful methods must be used. 

4. Space-time with malicious singularities as a 
noncommutative space 

The differential structures of differential or structured spaces are functional alge- 
bras, and as such they are always commutative. It seems natural, in the next step of 
generalizations, to look for noncornmutative (but still associative) algebras. It is the 
so-called noncornmutative geometry that we shall try to use in analysing malicious 
singularities. 

Good introductions to noncornmutative geometry are the books by Landi [28] 
and Madore [29]: one should also consult the monumental work by Connes [7]. 
Noncornmutative spaces often arise when one deals with quotient spaces X / R  where 
X is a space (which can be quite innocuous) and R an equivalence relation. The 
strategy is to organize X / X  into a smooth groupoid (called also a Lie groupoid), and 
then to consider the C*-algebra naturally associated with it. If this algebra turns out 
to be noncornmutative one treats it as a noncornmutative substitute of the algebra 
C m ( X / R ) .  A space defined by this algebra is called a aoaconrnr~rfative space. 

According to the above strategy, we shall change the b-completion of space- - 
time A i  defined as the quotient OAilSO(3:  1) into a suitable groupoid. The group - r = S O ( 3 , l )  acts to the right on the Cauchy completed space O M  of orthonormal - - 
frames over space-time A i ,  OM x r i O M .  This allows us to introduce the 
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- 
groupoid structure on G = OM x I?. Elements of G are pairs of orthonormal frames; 
they can be represented in the form y  = (p,  g )  (and regarded as an arrow beginning 
at p and ending at pg). Two elements of G,  yl = (p,  g l )  and 7 2  = (q, pa), can be 
composed if q = pgl (if the end of one arrow coincides with the beginning of the 
second arrow). The inverse of y  = (p, g )  is y-' = (pg, g P 1 ) .  We define the "set of 
units" G ( O )  = x { e ) ,  and two mappings s, r  : G t G ( O )  by s(p, g )  = pg and 
r(p, g )  = p, called the range and the source mappings, respectively. The set G ( ~ )  of 
composable elements of G is of course 

Two elements of G can be composed with each other if they lie in the same fibre 
Gp = r L ( p ) ,  p  E OM, where r~n/r : G t OM is the canonical projection. It 

onn 
can be easily checked that G, structured in this way, satisfies all groupoid axioms. 

- 
In what follows two sets are important: the set of all arrows that begin at p E OM 

GP = { (p ,g )  : g E r}, 
- 

and the set of all arrows that end at q E OM 

Both these sets can be equipped with the structure of the SO(3, I )  manifold. In- 
deed, these sets can be presented in the form GP = { p )  x SO(3, I )  and G, = 

{qg- l )  x SO(3, I ) ,  respectively, from which the bijection between these sets and 
the set S O ( 3 , l )  is evident. With the help of this bijection the manifold structure 
can be carried out from SO(3, I )  to GP and G,. This manifold structure is pre- 
served also if p and q are situated in the singular fiber, i. e., if p, q  E i ? ~ '  ( xo )  
where z o  E db M .  Of course, the pairs (p, pg) belonging to singular fibres are no 
longer pairs of orthonormal frames, but rather limits of equivalence classes of pairs 
of Cauchy sequences of orthonormal frames. From Schmidt's construction it follows 
that these limits always exist. 

Now, one defines the involutive algebra A := @ A,; where AcOnst := - 
r&(CCO(OM)) and A, := C'," (G,  C) is the family of all smooth compactly sup- 
ported complex valued functions on G. Multiplication "*" in this algebra is defined 
to be the convolution of functions blonging to A whenever this definition is mean- 
ingful; if it is not, one uses the standard function multiplication. For instance, if 
a, b E A, then 

- 
for every y  E G,, p  E OM (integration is with respect to the left Haar measure); 
and if a, b E AcOnst then 

(a * b)  ( Y )  = 47)  . (7). 
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The involution is defined as 

- 
The algebra A, has, for each p E O M ,  a nondegenerate representation rp : A + 

End(?f) in the Hilbert space 'R = L2(Gp), given by 

where a, is a restricted to the fiber over p. The completion of A with respect to the 
norm 

I I  a 1 1 =  SUPPEoM I I  rp(a)  I I  
is a C*-algebra [7, p. 1021 which will be denoted by C * ( m ) .  This algebra is re- 
garded as a noncommutative substitute of the functional algebra determining a given 
space. In this sense, the algebra C*  (OM) contains all information about space-time 
M and its b-boundary d b M  considered as a noncommutative space. 

5. Nonlocal character of singularities 
Let M be a smooth manifold. The algebraic counterpart of a point z E M is the max- 
imal ideal of the algebra C w ( M )  of smooth functions on M consisting of all these 
functions of C w ( M )  that vanish at z .  Noncommutative algebras have, in principle, 
no such ideals; therefore the concept of point in the noncommutative geometry is, in 
principle, meaningless. This is also true as far as other local concepts are concerned 
such as that of a neighborhood of a point. 

Let C*  (OM)* be the dual of C*  (OM),  i .e.,  the space of continuous linear func- 
tional~ on A with the norm 

for every w E C * ( n ) * .  Each positive w (i.e., such that w(aa*) > 0 for all 
- 

a E C* (OM)) with the unit norm is called a state. The set of all states is convex; 
the extremal elements of this set are called pure states, the remaining ones - mixed 
states. 

Now let A be the commutative algebra Cb (V) of continuous functions on a com- 
pact space V. The states on this algebra are equivalent to a probability measure on 
V, and one can write 

for f E Co(V). The state w is a pure state if and only if it is equivalent to the 
Dirac measure concentrated at a point z E V; in such a case w, ( f )  = f (z).  It is 
therefore clear that pure states can be identified with points of V, and the algebra 
A can be regarded as an algebra of functions defined on them. Also in the case 



of a noncornrnutative space one can regard pure states of the corresponding non- 
commutative algebra as generalizations of the usual concept of point. 

Let us return to a noncommutative C*-algebra A, and let n be its representation 
in a Hilbert space 'fi, let also < E 3t. In such a case, rr H (?i(rr)<. <), a E A, is a 
positive form on A. This form is apure state if and only if n is a nonzero irreducible 
representation of A in X. Let further ?il and n a  be two representations of the algebra 
A in two Hilbert spaces XI and 'HZ, correspondingly. The representations nl and 
Q are said to be eqziivalent representations of A if there is an isomorphism between 
Xfll and X2 such that nl(rr) = na(rr) for every rr E A. 

Let us apply the above conceptual machinery to the space-time of the closed 
Friedrnan model with its b-boundary regarded as a noncornrnutative space. The ini- 
tial and tinal singularities are two distinct structures given by two representations 
(strictly speaking by two equivalence classes of representations, each consisting of 
only one element) 

ii,, : Cm,,(G, C )  i En<IL"Gp,). 

i = 1: 2, where pl is the single "lirnit frame" in the singular fibre over the initial 
singularity, and p, is the single "limit frame" in the singular fibre over the tinal 
singularity. Correspondingly, the two singularities can be given by two states s H 

s F C * ( O ~ Z I ) , E F L ~ ( ( ; ~ ~ ~ , ) ~ = ~ , ~ .  

6. Emergence of singularities 
- 

As should he expected, the algebra A = C*(OA'I) contains the information ahout 
space-time and its singularities. In this sense, we shall speak about the space-time 

- 
AI associated with the algebra A = C*(OA'I). In 1231 we have proved several 
theorems which give a nice overview of the emergence of singularities in various 
situations. We shall quote these results without proofs, but first let us introduce two 
useful concepts. 

We define the following subalgebra of A 

whcrc pr = nlii o TE i ~ u ,  is Lhc obvious projcclion. Thc subalgchra Al,,.,j 
consists of functions which are constant on the equivalence classes of fibres of G - 
where Lwo libres Gr, and Gy,  p. q E O ~ l f ,  arc equivalcnl, if Ll~erc cxihls y E r sucl~  
that y = pg. We evidently have Aproj C A ,,,, t .  

We also introduce the family of r-invariant,firnctions Ar C A, i .~,., the family 
of funcliona of A lhal are conslanl on the orhila of the action oTT. 

Let us remember that regular sir~gularities are those which originate from cutting 
off some parts of a space-time, and quasi-regularsingularities are those which orig- 
inate essentially from cutting off some parts of a space-time and gluing the resulting 
edges together (for details of the singularity classification see [I I]). Now, we can 
aummari~e our main reaulla: 
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I. In the space-time associated with the algebra A there is no singularity if and 
only if Aproj E Cx(.l.I; C ) .  

2. The space-time A i  associated with the algebra A contains at least one rnali- 
cious singularity if and only if Aproj ̂. C .  

3. In the space-time hl associated with the algebra A there is an elementary 
quasiregular singularity (but there are no stronger singularities) if and only 
if there exists a discrete group ro of isometries of 111 such that Aproj ̂. 
C S ( M ) r , .  

4. In the space-time hl associated with the algebra A there is a regular sin- 
gularity (but there are no stronger singularities) if and only if the groupoid 
G = OM x r is a subspace of a "larger" groupoid G = ,!? x r, where is 
a subspace (of constant dimension in the sense of Sikorski) of the space E.  In 
such a case Aproj is a localization of to G: Aproj is here the subalge- 
bra of projectible functions on c, i.e., Aproj = (Aproj)G where (Apvoj)G is 
the algebra of complex valued functions on C: which are local restrictions of 
functions belonging to (Aproj).  

Proofs of these statements can be found in [23]. In agreement with the nonlocal char- 
acter of the noncomrnutative algebra A, the above theorems convey the information 
about the structure of space-times with singularities rather than about the structure 
of singularities themselves. Let us notice that if in a given space-time there are sin- 
gularities of various kinds, the strongest singularity determines the structure of the 
algebra A. Regular singularities are very mild singularities (they can hardly be called 
singularities), they do not change the family A,,,j but only narrow its domain. 

7. Big Bang and quantum cosmology 
The algebra A, encoding in itself the information about the structure of space-time 
with singularities, is nonlocal and, consequently, singularities cannot be regarded 
as points in space-time. However, we can meaningfully speak of pure states of the 
algebra A. Each of them is represented by an operator algebra in a Hilbert space, 
and there is no distinction between singular and nonsingular states. This means 
that, in the noncomrnutative setting, the question on the existence or nonexistence of 
singularities does not even arise. 

Is this mathematical formalism only an artiticial tool to deal with classical singu- 
larities, or could it also somehow reflect physics of the quantum gravity regime'? The 
fact that the states on the algebra A are represented as operator algebras in a Hilbert 
space (a typically quantum structure!) could be a hint that the above presented math- 
ematical formalism is indeed somehow related to quantum phenomena in the early 
universe. In fact, there are several attempts to create a quantum gravity theory based 
on noncommutative geometry (see, for instance, [3, 4, 5 ,  8, 24, 25, 301). However, 



the following discussion is independent of any of these. We shall simply explore 
some consequences of the assumption that the algebra A contains information about 
the pre-Planck era of the universe. 

As we have seen, the algebra A can be completed to the (?algebra. This is im- 
portant because C* algebras are standard tools in the quantization of physical fields. 
Within the noncornrnutative framework, C* algebras also generalize the standard 
concept of topology, and the generalization is so powerful that even non-Hausdorff 
cases can be dealt with by using this method (see [7, p. 791). This could provide 
a rnathernatical basis for a noncornrnutative version of a "topological foam" sup- 
posedly reigning in the quantum gravity regime. However, this version of the idea 
is much more radical than, for example, the one developed by Hawking (see, e.y., 
[16]). It is not even a "foamy space-tirne'lhat we meet here, but rather a situation in 
which there is no space and no time in the usual meanings of these terms. In spite of 
this fact, there could be a true dynamics in the noncommutative regime; for instance, 
dynamical equations could be written in terms of derivations of the algebra A (see 

[9. 241). 
The transition from the noncornrnutative regime to the usual space-time georn- 

etry can be thought of as a kind of "phase transition"; rnathernatically it corre- 
sponds to the transition from the noncommutative algebra A to its center Z ( A )  (or 
to AProj c Z(A)) .  In this way, the usual space-time A i  together with it its sin- 
gular boundary abhl ti.'., with its singularities) is recovered. It is supposed that 
this happens when the universe passes trough the Planck threshold. Of course, the 
same can be - rnututis nrtrtur~dis - said about final singularities, for instance in 
the closed Friedman world model or in the gravitational collapse of a massive object 
(the Schwarzschild singularity is also malicious), but let us focus on the "Big Bang 
philosophy". We are confronted here with the completely new situation. So far peo- 
ple believed that there are only two possibilities: either the future quantum gravity 
theory will remove the initial singularity from the cosmological model, or not. If 
the proposal discussed in the present work is true, there is the third possibility. On 
the fundamental level, beyond the Planck threshold there is no distinction between 
singular and nonsingular states of the universe, and the question concerning the ex- 
istence or nonexistence of the initial singularity is meaningless. The singularity is 
produced in the process of the formation of macroscopic physics, when space-time 
emerges from the quantum "foarn" (geometry of this process has been studied in 
[23]). Consequently, it is only from the perspective of the macroscopic observer that 
the question about the "beginning of the universe" (and possibly about its "end") 
becomes meaningful. After all, if space-time is a macroscopic concept, its breaking 
down - the singularity - should also be a macroscopic catastrophe. 
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The Quantities c4/G and c5/G and the 
Basic Equations of Quantum 

Mechanics 
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University of Gdansk, 
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Thc quantitics (c4/G) and (cs/G) whcn introduced into thc classical cquations of 
Nswion and Coulomb have  he mcaning of ihc maximum rorcs and ihe maximum 
power, hul when we inlroduce them into the basic equalions olQuantum Mechanics 
we do no1 see [heir physical meaning clearly. 

K<,~icurds: special relativiiy, equalion\ olQunnlurn Mechanics 

1. Introduction 
In two recent papers [ I 2 1  the quantity c"/G was interpreted as the greatest possible 
force in Nature. In the third paper [3], following I.R. Kenyon [4], the quantity c"G 
was interpreted as the greatest possible power. In the three above papers I have lim- 
ited myself to classical considerations. I have shown, c3.g., that the classical Newton 
law and the classical Coulomb law can be rewritten in the following way: 
Newton l'orce 

FN = GmVR' = (c'l/G)(l:;/X') when 7nl = 7n2, 
and 

FF\: = Gnrlnla/R' = ( c ' l / ~ ) ( l ~ ~ ~ l ~ ~ / ~ "  when 7n1 # nr2. 
Coulomb l'orce 

Fc. = KQ~/R" KZ, ez2c/R2 = ( c 4 / G ) ( l ~ / R " ( Z ~  22) 
I also indicated that the quantities C"/G and c"G and their inverses appear in the 
equations of General Relativity [1,2,3], and Kenyon has given his interpretation [4] 
01" [his lac[. 

In my considerations I use the following constants and constant coefficients: c - 

velocity of light in vacuum; C: the gravitational constant; f i  Planck's constant; 
c3 t h e  elementary electrical charge; 7n t h e  mass of an elementary particle: K = 

l/4n;o. I take into account also the units of length, time and mass determined by 
the following set of constants (c,G,m), (c,G,e), (c,G,h), (c,G,gst,), (c,G, g~r . ) ,  where 
7n. c3; ysti.. ylr. are the charges of four fundamental interactions, respectively. Using 
dimensional analysis we obtain the following units: 

L.rtensiu,iu of Quonruni Ph~sicu 

rdileil by A. Hor~e ln  and E. Knpu<cik (Monlrrol: Apeiron 2002) 
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1 .  gravitational length ic, time tc:, and mass nic:: 

2. J.G. Stoney's length is, time ts, and mass 7ns  introduced by him in 1874 [5-61 

1. M. Planck's length l p ,  time t p ,  an11 mass 7np intr~xiuce~l hy h i ~ n  in 189') [7] 

4. Length lst,, time tst, and mass Inst ,  connected with the strong interactions 

5.  Length lrr. ,  time trr., and mass nzw connected with the weak interactions 

It is interesting to note that forces F and powers P connected with these units 
are all equal: 

Fc: = Fs = Fp = Fsrr = Fb$,- = c 4 / ~  = 1.210i:r1044N, 

PC = P.9 = Pp = PSt7. = PIV = C'/G = 3.63:r10"~1~~. 

2. The quantities c41Gand c5/ G and Einstein's Principle 
of mass and energy equivalence 

It is interesting to note that Einstein's Principle of mass and energy equivalence E = 

m c h a n  bc rewritten in the following way: 

E = nrc' = (c"/G)lc = (c"G)tc. 

This fact shows, perhaps once again, the dynamical nature of the matter. If an 
clcmcntary particlc could dclivcr its total cncrgy E = nrc' acting on thc path cqual 
to l c  during time tc, then it coul~l denote the pal-ticle's gl-eatest force ( r4 /G)  an11 
power ( r V G ) .  If this could happen then the maximum force ( r4 /G)  and maximum 
power (c"G)would be hidden in every particle. Perhaps in the future mankind will 
tind the circumstances in which this is possible. At the present time, however, we 
can only dare to interpret the two quanties as maxima. 
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4. The quantities c41G and c5IG and the Klein-Gordon 
equation 

We now consider the Klein-Gordon equation, written, e.y., for the n-mesons. 

Taking into consideration the quantities c"/G and c"G, the Klein-Gordon equation 
can be rewrilren: 

As we can see the Planck charge raised to the second power he is related to (cZ /G)  
as followa 

fiC = ( ~ ~ / C ) ( l ~ t ~ ) .  

Since 7r1,? = ( c ' ~ / G ) ~ ~ ; ~  = ( c 6 / G ) t ~ ,  the eq. ( 5 )  can be also written as follows 

Since lo,to, = (Iptp)no,  (where no, = Gm;/fi,c is the coupling constant of 
gravitational interactions between two particles of the same mass, in our case the 
coupling constant of gravitational interactions between two mesons n). Eq. (6) can 
be rewrilren aa follows 

Dividing both sides of eq. ( 7 )  by ( I p f p )  we obtain 

We must be aware, however, that this division changes the numerical value and di- 
mensions of both sides of the equation. 
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5. The quantities c4/G and c5/G and the Dirac equation 
The Dirac equation can be written as follows: 

~iL( f i / i ) (a@/C?~iL)  + 7rlC(I1 = 0.  

where the matrices ;;., have the following properties 

Y,lY,, + "l,>"l,l = S,l": 
, = " ; = , +  " 1 

where t means the hermitean conjugation. 
Taking the quantities c"/G and c"G into consideration, the Klein-Gordon equa- 

tion can be rewriuen: 
~ ~ ' [ ( ~ ~ / ~ ) t ; / i ) ] ( a ~ p / a ~ i " )  + ( c ~ / G ) ~ ~ I ~  = O. 

where t p  = ( f i G / ~ ' ) ~ / ~  is the Planck time and tc = Gndc3 is the gravitational time. 

6. Conclusion 
It was very easy to introduce the quantities (c"/G) and (c"/G) into the basic equa- 
tions of Quantum Mechanics (and we might even say that introducing them consti- 
tutes a very trivial operation), but it is very difticult to interprete the role they play in 
these equations. When we introduce the quantities (C"/G) and (cS/G), e..9., into the 
classical equations of Newton and Coulomb, we immediately see their meaning as 
limiting quantities, i f . ,  the maxirnum force and the maximum power, but when we 
introduce them into the basic equations of Quantum Mechanics we do not see their 
physical meaning clearly. They do, however, work in these equations, and therefore 
we might imagine that they play a role as constants as limiting quantities here also: 
the maximum force and the maximum power. 
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It is shown that the bell-shaped solitary waves in the asymmetric 44 field model are 
unstable and correspond to the saddle points of the potential energy. In the discrete 
model, the potential energy becomes rough: bell-shape configurations may appear 
stable. 

Ke~~words: molecular chains, soliton solutions, stability 

1. The model 
In this paper we study the stability properties of a model for a one-dimensional 
molecular chain. The model is described by the Hamiltonian 

which in the continuum limit transforms into 

1 
H = / dx [ ; l i ~ ( ~ ,  t )  + - u ~ ( x ,  t )  + u (u(x, t ) )  . 

2 I ( l b )  

This model is believed to reflect certain important properties of real systems: both 
strongly anisotropic 3-dimensional ones and strictly one-dimensional ones. An ex- 
ample of the latter is the DNA double helix (Fig. 1). 

A system with a symmetric double-well potential U ( u )  (Fig. 2a) appears in a 
variety of applications, and its dynamics has been extensively investigated [ l ,  2, 3, 
4, 51. Two forms of the on-site potential have been widely used: the 44 potential 

and the double-Morse potential 

It is known that this model supports localized topological excitations, kinks 
(Fig. 2b), described in the case (2) as 
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Base Pair 1 

Fig. 1. The DNA double helix - an example of a molecular chain 

which not only are stable but also to a certain extent preserve their identity in col- 
lisions. The effect of discreteness has also been studied for this model and for the 
closely related sine-Gordon model [2, 6, 7, 8, 9, 10, 1 1, 121 leading to the accurate 
description of the effective Peierls-Nabarro potential acting on a discrete kink and 
of the related kink trapping and radiation effects. 

Less work has been devoted to the asymmetric case 

(Fig. 3a; Bo = 3 / f i  corresponds to the symmetric model) which is also important 
in various applications [I 3, 14, 15, 16, 171. Gordon showed that in this system, 
stationary, localized bell-shaped solitary waves (Fig. 3b) exist [I 8, 191, 

a 
u ( z , t )  = 

b + cosh[y(x - vt)] ' 
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Fig. 2. The symmetric potential and the corresponding kink solution. 

Fig. 3. The asymmetric on-site potential and its solutions for various degrees of 
asymmetry. 

The same author has derived topological (kink) solutions which may move with con- 
stant velocity if damping is present [20, 211. Xu and Huang [22] and Xu and Zhou 
[23] have shown that in the continuum limit in a two-component model, where the 
anharmonic system (2) is coupled in a special way to another, harmonic system, 
the equations of motion may be reduced to a single-field problem and solved (see 
also [24]). The bell-shaped solution has been proposed as a transport mechanism in 
molecular chains. 

It has also been suggested that metastable configurational states are important for 
the conformational dynamics of the DNA macromolecule [25, 261. 

Whereas recently we have shown [27] that the bell-shaped solution is unstable 
in the asymmetric system in the continuum limit, thorough investigation suggested 
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that the discreteness might be essential in this case. In fact, it appears that this sort 
of excitation, corresponding in the continuum limit to a saddle point of the potential 
energy, becomes stabilized in the discrete lattices. 

2. Stability of the bell-shaped solitary wave 
It is clear that the energy of the bell-shaped solution is higher than the energy of 
both the false vacuum state, u = 0, and the true vacuum state, u = uI,,iI,. Since the 
bell-shaped solution is a non-topological solution, it may be continuously deformed 
to any of these two states. Therefore, it should not be expected to be stable [28, 291. 
Indeed, let us follow the standard linear stability analysis [3, 281 and write in the 
bell-shaped solution's resting frame, x = y (< - UT), s = y (< + UT), 

The equation of motion linearized in $ takes the form of a Schrodinger-like 
eigenvalue problem 

-a:4(~) + v(x)$(x) = w ~ ~ ( x ) ,  (5) 

where 

The characteristic shape of this potential is shown in the Fig. 4. The plot corresponds 
to a nearly degenerate potential, where the bell-shaped solitary wave separates into 
two kinks. Each of these generates a Poshl-Teller well in the stability potential (6). 

The function 

$G (2) = dzpb (x) (7) 

is a solution of (5) corresponding to w2 = 0. This is a characteristic excitation related 
to broken translational invariance: all of the bell-shape positions along the X axis 
correspond to the same value of energy. Had the broken continuous symmetry been 
an internal one this excitation would have been a gapless Goldstone boson; because 
the broken symmetry is translational one but not an internal one, a pseudo-Goldstone, 
separated, zero-frequency mode is observed. In the case of the symmetric system, the 
pseudo-Goldstone mode, w2 = 0, is nodeless, corresponding to the lowest-energy 
perturbation of the kink. However, for a bell-shaped solution p b ,  the function (7) 
has one node. Therefore, there is a ground state solution to (5) belonging to a lower 
eigenvalue, w2 < 0. Such a solution, as is clear from (4), has imaginary frequency, 
i .e.,  it explodes exponentially, destroying the original solution. For such a solution, 
lwlpl may be interpreted as the lifetime of the bell-shaped solitary wave. In the 
almost degenerate case (the potential in the Fig. 4) the negative eigenvalue may be 
obtained by semiclassical methods. 
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Fig. 4. The potential for stability analysis for almost degenerate minima of the 
on-site potential, B = Bo + l o p 6 .  

3. Stability in discrete models 
In the discrete model there is no translational continuous symmetry: at various posi- 
tions along the chain the kink or bell-shaped configurations have different potential 
energy. In the case of a kink, it is possible to determine this potential energy in a 
unique way and to define the so-called Peierls-Nabarro potential. 

Replacing the continuum translational symmetry with the discrete one results in 
shifting the zero-frequency Goldstone mode up. As a consequence, it turns into a 
positive-frequency oscillatory mode associated, in the symmetric case, with kink os- 
cillation around the minimum of the Peierls-Nabarro potential. In the asymmetric 
case the corresponding solution - the bell-shape - has both the zero-frequency mode 
and one imaginary-frequency mode. One might expect that for a strong enough 
discreteness this exploding mode will also be shifted up enough to become an os- 
cillatory one. Actually, numerical analysis of the small vibration spectrum around 
a bell-shaped configuration confirms this expectation. Stabilization may also be ex- 
pected on the grounds of the following argument. 

In the limit of independent oscillators ( I c  + O), any configuration with some 
nodes in the right and some in the left well is stable. In particular any bell-shaped 
configuration, i .e.,  one with a certain number of consecutive nodes placed exactly 
in the global minimum is stable. One may expect that for low values of k ,  all these 
configurations survive in a slightly changed form. Fig. 5 shows one of the stable 
bell-shaped configurations. Note that the central node lies closer to the global mini- 
mum than the corresponding part of the continuous system. Such configurations will 
become unstable when k is increased, since in the opposite, continuum limit there 
are only unstable saddle point configurations. 

The diagram of stable configurations is presented in Fig. 6. The diagram has the 
following meaning: the one-node configuration (i.e., with one node in the deeper 
well) is stable in the B-k below the 1st line, the two-node configuration is stable 
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Fig. 5. Stable system configuration corresponding to a bell-shape. 

below the 2nd line, etc. Kinks are stable below the dashed line. Note that for any 
n, there is an area of parameters where only the n-node configuration is stable. For 
potentials closer to symmetric (lower B), there appear such areas for higher n ,  cor- 
responding to more and more separated kinks. 

Fig. 6. Stable configurations of a discrete system (see the explanation in the 
text). The inset shows the diagram for a wider range of B. 

4. Final remarks 
We have studied the properties of non-topological, bell-shaped excitations in the 
system with asymmetric potential, both in the continuum limit and in the discrete 
system. The bell-shaped configuration in the continuum limit is a saddle point of 
the potential energy. Due to the continuous translational symmetry, there is a family 
of equivalent saddle points. This property is manifested through the presence of the 
pseudo-Goldstone mode. 

In the discrete system the potential energy around the configuration analogous to 
the bell-shape continuum limit becomes rough. For systems close to the continuum 
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limit this roughness consists simply in replacing the original continuum of equivalent 
saddle points with isolated saddle points separated by "hills" (saddle points with two 
negative curvatures). This might seem analogous to the Peierls-Nabarro potential 
for kinks, but unlike the latter, the potential energy for bell-shaped waves cannot 
be defined rigorously, and is of little importance, since such waves are not stable. 
For strongly discrete systems, the shape of the potential energy becomes essentially 
different: many saddle points and local minima may appear. These characteristic 
points may be numerically searched and classified. 
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