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Foreword

In 1999 we began holding the Cracow - Clausthal annual workshops devoted to un-
solved fundamental problems of quantum mechanics. The workshops were initiated
by Professor Heinz-Dietrich Doebner from the Arnold Sommerfeld Institute of Mathe-
matical Physics and the Technical University of Clausthal at Clausthal-Zellerfeld (Ger-
many), and by a our group at the Henryk Niewodniczafiski Institute of Nuclear Physics
at Krakéw (Poland). The first workshop was organized under the title Tunneling Effect
and Other Fundamental Problems of Quanium Physics and was held in Krakéw from
November 22 to 28 of that year. During all the discussions the participants came to
the conclusion that the framework of the workshops should be enlarged, and that the
appropriate name for all future workshops would be Extensions of Quantum Theory.
The second workshop was held in Krakéw from October 12 to 15, 2000, The third,
which was held from July 18 to 21, 2001 was associated with the 2nd International
Symposium Quantum Theory and Symmmelries, organized by us and hosted by the H.
Niewodniczanski Institute of Nuclear Physics.

Simultaneously, it was agreed that the results of the workshops should be published
in a collection of regular articles in special volumes. It is our pleasure to present the
first such a volume, which covers some topics discussed up to now. We are grateful to
the publisher of Apeiron, C. Roy Keys, for providing us this opportunity.

The present volume starts with a discussion of superluminal signal velocities in
tunneling experiments with microwaves, and a controversy connected with the locality
problem. Then we continue with the problem of localization for photons, which also
belongs to the list of unsolved problems of quantum theory. Closely related to these
topics are the problems of time of arrival in quantum physics and preferred reference
systems in Maxwell electrodynamics. A new look at the problem of superluminal
velocities 1s presented on the basis of spacetimes with multidimensional times. In
addition, the complicated problem of tunneling through many succesive bariers and
many-layer systems is discussed. The utility of lesser-known representations of quan-
tum physics in describing the tunneling effect is also presented.

Finally, we have decided to include in this volume a paper which discusses possible
use of quantum non-commutative geometries for constructing more realistic quantum
models of our Universe. In our view, newer emerging models will naturally incor-
porate more cbservational events and be fundamentally different from currently used
models of spacetime. In particular, we believe that in such models all the fundamental
cosmological observations which contradict the standard peint of view will find their
natural explanation.

Apart from fundamental problems, we also welcome new applications of standard
theories. This is why we have included here some papers containing interesting results
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obtained in traditional lrameworks.

We wish to express our deep gratitude to the Polish State Committee for Scientific
Research for providing the funding that made it possible to hold all the workshops, and
to all those who helped us in preparing the workshops, in particular to Professor An-
drzej Budzanowski, Director General of the H. Niewodniczaniski Institute of Nuclear
Physics and to our colleagues in the Institute. Last but not least, we extend special
thanks to all the contributors to this volume. We also hope our readers will find this
volume to be of interest, and that they will look forward to further installments.

December 2001, Andrze] Horzela and Edward Kapuscik
H. Niewodniczaiski Institute of Nuclear Physics

Krakow, Poland
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On Universal Properties of Tunneling

G. Nimtz, A. Haibel, A, A. Stahlhofen, and R —M. Vetter
II. Physikalisches Institut, Universitit zu Kéln,
D-50937 Kéln

Phutonic tunmeling violaes Einstein causality. Superluminal signal and energy ve-
locides have been measured in studies of photonic (unneling, The signal energy is
always linite; thus as a consequence of quanlum mechanics, signals musl be [re-
quency band limited. This result represents a fundamental physical property. We
conjecture (hat twnneling time is universal.

Kevwords: tunneling time, superluminal, signals

1. Introduction

First we will present some experimental results on photonic tunneling observed in
microwave and optical experiments. Experiments have revealed superluminal sig-
nal and energy velocities [1, 2, 3]. According to the textbooks, Einstein or “'strict”
causality means neither signals nor energy can travel faster than ¢, the speed of light
in vacuum. To resolve this sophisticated dilemma, the main part of the paper is de-
voted to a discussion of the properties of a signal and signal velocity. Surprisingly,
it follows that Einstein causality may be violated by photonic tunneling. The effect
can indeed follow the cause at superluminal velocity. However, this result does not
include the possibility of changing the past. Constructing a time machine is yet not
possible.

1.1 Photonic Tunnel Barriers

Three examples of photonic barriers are represented in Fig.1. showing an undersized
waveguide between two normal guides, a periodic dielectric heterostructure (often
called a one—dimensional photonic lattice), and a double prism with a gap of rarer
refractive index acting as a photonic barrier. The latter set—up is described as frus-
trated total internal reflection (FTIR). Dispersion relations for the transmission of the
lattice and the undersized waveguide are shown in the same figure.

Photonic barriers and wave mechanical barriers are characterized by a field mode
solution with an imaginary wave number called the evanescent mode in classical op-
tics. The evanescent field crossing the barrier decays exponentially with distance,
however, without changing its phase. The IEEE, for instance, summarized this prop-
erty in the following definition: An evanescent mode in an undersized waveguide is
a field configuration in a waveguide such that the amplitude of the field diminishes
along the waveguide but the phase is unchanged.
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Fig. 1. Examples (a) of a waveguide with an undersized central part, (b) a one—
dimensional periodic dielectric hetero—structure, and (¢) a double prism (FTIR)
with an evanescent gap. The graphs below show the dispersion relations for
transmission from structures (a) and (b); the double prism structure dispersion
is qualitatively the inverse of example (a). The dispersion of the periodic het-
erostructure displays a forbidden gap which corresponds to a tunneling regime.

1.2 Observed Superluminal Signal and Energy Velocity

A single digital pulse is shown in Fig. 2. This signal has crossed a photonic barrier
at the speed of 4.7¢ arriving at the observer 500 ps earlier than a waveguided copy
thereof which travelled the same distance at the vacuum speed of light [4]. The
observer received the tunnelled signal earlier, which means that the cause to effect
gap has been shortened.

Note, that the tunnelled signal is not markedly reshaped. This is due to its fre-
quency band limitation and the fact that it contains evanescent components only.
Comparing the same signals crossing either air or a barrier thus makes it possible
to measure the signal velocity independently of the preparation and of the detection
process.

Superluminal energy velocity became most obvious in a single photon experi-
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Fig. 2. Barrier traversal time of a microwave packet through the forbidden band
gap of a multilayer structure inside a waveguide (see Fig.1b). The center fre-
quency of the pulse was 8.7 GHz, the pulse width +0.5 GHz. The pulses are
normalized. The barrier length was 114.2 mm. The velocity of the tunnelled sig-
nal was 4.7 ¢. The slow pulse (1) traversed the empty waveguide, whereas the
fast one (2) has tunnelled the photonic barrier of the same length [4].

ment carried out by Steinberg ef al. [3]. In this experiment a photonic lattice barrier
was crossed by single photons, and a speed of 1.7¢ measured.

2. Signals

A signal is a detectable amount of energy that can be used to carry information [5].
Its essential properties will be discussed in this section.

A modern digital signal used in electronical communication is shown in Fig. 3a.
The carrier frequency of the signal determines the receiver’s address, and the signal
half—width represents the information. The signal has been sent 9 000 km along
a fiber, and noise is already seen after amplification to the original magnitude, as
displayed in the lower part of the figure [6]. A similar single digital signal with a
microwave carrier is shown above in Fig. 2. As mentioned above, this signal has
traversed a photonic barrier at a superluminal speed of 4.7c.

Fig. 3b shows a mathematical ideal and a frequency band limited sinusoidal sig-
nal. The Fourier transform of the frequency band limited signal has non—causal com-
ponents, i.e., there are already oscillations at negative times. As mentioned above,
all signals are frequency band limited. We will discuss the solution of the causality
dilemma below.
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Fig. 3. (a) Signal used in optical fiber communication. The signal half-width cor-
responds to the number of bits, i.e., to the transmitted information. The lower one
was recorded after a distance of 9 000 km and amplification. Some noise can be
seen. The carrier frequency is 2 - 101* Hz. The amplitude modulation is limited to
a band width of about 10'° Hz. (b) Sine wave signal non—frequency (dotted line)
and frequency band limited (solid line), frequency is 5 GHz + 0.5 GHz. In con-
sequence of the Fourier transform, the frequency band limited signal has signal
components at negative times, :.e., before it is switched on.

2.1 Signals are Fundamentally Frequency Band Limited

A single photon can be detected, and delivers information about its energy Aw. As-
tronomers determine the temperature of a cosmic event by measuring the energy of
the emitted photons, for instance in the case of a y—ray outburst. From the half-
width of the photon burst, the total energy involved in the cosmic process can be
determined. (Remember, a signal and, in this case, the half—width, are independent
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of the signal’s magnitude, i.¢., the cosmic signal may have travelled either one or a
million light years, while the half—width is still the same.)

When analyzing the meaning of the half—width in the present case, we concen-
trate on amplitude (AM) modulated signals. Let us take, for definiteness, the exam-
ple of Fig. 3a: the carrier frequency is near 2 - 10'4Hz, corresponding to the infrared
wavelength of 1.5 pm. The frequency band-width of this AM signal is four orders
of magnitude smaller than the carrier frequency.

2.2 Signal Velocity

‘With the help of Fig. 3a, the signal velocity, ¢.c., the number of digits, can easily be
defined: the complete envelope of the signal has to be detected in order to disentangle
the information. The velocity of this envelope defines the signal velocity. (This
definition comprises the velocity of the half—width representing the information.) It
is only at the end of the signal that the information is obtained, and the desired effect
achieved; the velocity of a signal is, loosely speaking, determined by the velocity of
both the [ront and the tail.

Let us now discuss two apparent features of signals that are often addressed in
the literature: (1) The infermation conveyed by a signal is contained in the half—
width, as elucidated above (in the case of AM). A signal does not depend on its
magnitude. If this were the case, any broadcasting station would rapidly face seri-
cus problems with increasing distance between receiver and transmitter. The digital
signal displayed in Fig. 3a illustrates this point: The half—width does not change as
long as the signal’s magnitude is above the noise level or the detector’s sensitivity.
(i1) If frequency band limited signals were given by analytical functions, the com-
plete information would already be contained in the rising edge of the signal. This
assumption, extremely difficult to check in the paradigm of a modern signal shown
in Fig. 3a, entails strange effects: For instance, when I switch on my office light in
the morning, the information about my leaving my otfice again would be determined
al the same lime,

Any physical signal has to be frequency band limited. This is a fundamental
physical property, as was shown by Nimtz [7]. It is based on Planck’s finding that
the minimum energy of a field’s frequency component is given by fiw (see Fig. 4).
Thus, frequency band unlimited signals containing an infinite frequency spectrum
would have infinite energy, contrary to our experience in a finite world.

There is a wellknown dilemma with frequency band limited signals. The Fourier
transform of a frequency band limited signal has non—causal forerunners, i.¢., Fourier
components existing before the signal is switched on [8]. An example of a frequency
band limited signal exhibiting these forerunners is shown in Fig. 3b. This problem is
solved by the same argument from quantum mechanics used above: the non—causal
photon components of a frequency band limited signal are not measurable, since
their energy is less than fuw.
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Fig. 4. The detectable part of the signal is the part above the straight line rep-
resenting the limit £ = 7 w; frequency components below this line, especially the
non—causal forerunners, do not have enough energy to be detectable.

2.3 Tunneling Velocity

The superluminal propagation of signals or of single photons with purely evanescent
modes measured in different experiments can be adequately described either by the
time dependent Schrédinger equation [9, 10] or by the Maxwell equations. This
assumption, based on analogies between particle and photonic tunneling [11], has
been verified by means of extensive computer simulations [12]. Quite often the
argument is given that the ideal mathematical front of a signal travels at the speed
¢, and cannot be overtaken by the strongly attenuated body of the tunnelled signal.
From the mathematical point of view, this is correct. The existence of an ideal front,
however, is based on the assumption of an unlimited frequency band required to form
the front; such a front necessarily leads to strong signal reshaping as shown in Fig. 5
and discussed in Ref. [13]. A physical signal, even a single photon, is frequency
band limited, as discussed above, and the front is not well defined, contrary to the
idealised assumptions needed to define a front. Due to the frequency band limitation
of a signal and a smooth barrier dispersion relation, no substantial pulse reshaping

occurs.

3. Tunneling Time is Universal

Analysis of various experimental data and calculations with different theoretical
models point to a universal property of the tunneling process. We have suggested
that in general the tunneling time is approximately equal to the reciprocal frequency
1/f of the corresponding tunneling wave packet’s frequency [18]. Experimental
data from several experimental studies and different photonic barriers are collected
in the Table 1. We conjecture that this very universality is valid for all tunneling
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Fig. 5. Comparison of normalized intensity vs. time of an airborne signal (solid
line) and a tunnelled signal (dotted line) moving from right to left. Both signals
have a sharp step at their beginning and the frequency spectrum is infinite. The
tunnelled signal is reshaped and attenuated. Moreover, although its maximum has
travelled at superluminal speed, both fronts have traversed the same distance with
the light velocity c¢. Here ¢ is the maximum of the tunnelled pulse, « is the shift of
the maximum, o is the variance of the tunnelled signal, and oq is the variance of
the incoming pulse. It is clearly seen that the latter is longer than the variance of
the tunnelled signal.

Photonic Barrier Reference Tunneling | Reciprocal
Time Frequency
FTIR Haibel/Nimtz [18] 117 ps 120 ps
at the Double—Prism Carey et al. [14] ~ 1 ps 3ps
Balcou/Dutriaux [15] 40 fs 11.3fs
Mugnai et al. [16] 134 ps 100 ps
Photonic Lattice Steinberg et al. [3] 1.47 fs 2.3f1s
Spielmann et al. [17] 2.7fs 2.7fs
Nimtz et al. [4] 81 ps 115ps
Undersized Waveguide | Enders/Nimtz [1] | 130 ps 115ps

Table 1. Tunneling time data obtained by investigating three types of photonic
barriers and measuring at quite different frequencies.

processes, for wave packets either with rest mass or without rest mass.

Data collected from several microwave and optical studies are presented in Ta-
ble 1. The experiments were carried out with the three different photonic barriers
shown in Fig. 1. The conjecture of a universal tunneling time is evident from the
data. This surprising property is supported by theoretical data obtained from the
Helmboltz and the Schrodinger equations.
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Summary and Conclusions

Einstein causality, which restricts the velocity of a signal to v; < ¢, is based on
the assumption of a frequency band unlimited signal with an ideal front travelling
with the speed of light in vacuum, which cannot be overtaken by the body of a
signal undergoing pulse reshaping. We have shown that this restriction is violated by
evanescent modes: a physical signal whose half—width represents the information is
frequency band limited and does not have a well defined front, while the pulse is not
markedly reshaped.

We conclude by summarizing the non—classical properties of evanescent modes

which were recognized only recently:

1) Signals have a finite energy content, and thus, as a consequence of quantum

mechanics, a limited frequency band. This is a fundamental physical prop-
erty [7].

2) Tunneling signals may travel at a superluminal speed, including superluminal

energy velocity. The superluminal signal reaches the receiver earlier than the
airborne signal. This results in a shortened time between cause and effect.
However, due to the finite signal length (duration), the past cannot be changed,
i.c., the construction of a time machine is not possible.

3) A tunneling barrier is traversed in no time. A barrier represents a space without

time. (In theology this is called eternity.) Since evanescent modes do not
accumulate phase, the predicted phase time velocity, which equals the group
and the signal velocities for evanescent modes, is zero. The finite velocity
seen in experiments is caused by the interference and resulting phase shift of
the incident and reflected wave packets at the barrier’s front boundary. In the
case of frustrated total internal reflection (FTIR) the tunneling time is due to
the Goos—Hiinchen shift, as has been shown by Stahlhofen [19, 18]. The phase
shift causes a time delay, and thus a finite tunneling time {being independent
of barrier length [9, 10].

4) Tunneling time is found to be a universal property. The tunneling time mea-

sured with opaque barriers equals roughly the reciprocal frequency of the tun-
neling wave packet [18].
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Particle Localization and the Notion of
Einstein Causality

Gerhard C. Hegerfeldt
Institut fiir Theoretische Physik, Universitit Gottingen
Bunsenstr. 9, 37073 Gottingen, Germany

The notion of Einstein causalily, i.e., the limiting role of the velocity of light in the
lransmission of signals, is discussed. Il is pointed out that Nimtz and coworkers
use the notion of signal velocity in a different sense from Einstein, and that their
experimental results are in full agreement with Einstein causality in its ordinary
sense, We also show that under quite general assumptions instantaneous spreading
of particle localization oceurs in quanwum theory, relativistic or not, with fields or
without, We discuss i€ this affects Einstein causality,

Kevwords: superluminal, signal, localization

1. Introduction

The notion of ‘Einstein causality’ refers to the limiting role of the velocity of light in
the transmission of signals. Einstein’s principle of finite signal velocity is of funda-
mental importance for the foundations of physics, both in classical and in quantum
physics. If signal velocities could be arbitrarily high, this would either lead to the
possibility of absolute clock synchronization and to a change of special relativity,
or to the possible existence of superluminal tachyons, with their associated acausal
effects [1]. Hence the name Einstein causality.

To be more precise, in this context a signal means the experimental creation of
any sort of “disturbance” at some space point or small space region and its influence
on a measuring device further away. For example, one could produce an electromag-
netic pulse and then measure the field strength at some other point. The start time of
the signal is the time when the experiment is set into motion, i.¢., when the button is
pressed. The arrival time of the signal is the first instance a measuring device can or
does respond. The limiting role of light velocity means that the corresponding time
difference divided by the distance cannot exceed ¢.

Nimtz and coworkers [2] have reported superluminal signal velocities in tun-
neling experiments with microwaves. These experiments and their interpretation,
advocated, for example, in the article of Nimtz ef ¢l. appearing in this issue, has
given rise to considerable controversy [3]. It will be shown further below that the
controversy is easily resolved by a careful analysis of the notions used by ditferent
authors. Nimtz and coworkers employ a definition of signal velocity which is differ-
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ent from the one Einstein had in mind. Using the old definition, it will be seen that
the experimental results of Nimtz and coworkers, sophisticated as they are, do not
contradict Einstein causality in the original sense, but rather, are in full agreement
with it. Thus a conceptual confusion lies at the heart of the matter, which explains a
lot of the controversy.

Are there superluminal phenomena in the quantum realm? For a free nonrela-
tivistic particle instantaneous spreading of the wave function is well known. If, at
time ¢ = 0, the wave function vanishes outside some finite region ¥, then the particle
is localized in V' with probability 1. Instantaneous spreading implies that the proba-
bility of finding the particle arbitrarily far away from the initial region is nonzero for
any t > (. In a nonrelativistic theory, however, this superluminal propagation is of
no great concer.

It the localization of a free relativistic particle is described by the Newton-Wigner
position operator, then instantaneous spreading also occurs, as noted in Refs. [4] and
[5] (cf. also Ref. [6]). This also happens for a proposed photon position operator
[7]. In 1974 the present author [8] showed that this phenomenon of instantaneous
spreading is quite general for a free relativistic particle, irrespective of the particular
notion of localization, whether in the sense of Newton-Wigner or some other sense.
Later, an alternative proof of this result was given [9], and the result was extended to
the center-of-mass motion of relativistic systems with possibly more than one parti-
cle [10]. Ruijsenaars and the author [11] then showed that instantaneous spreading
occurs for quite general, relativistic or nonrelativistic, interactions. The main re-
sult of Ref. [11] was that this instantaneous spreading is mainly due to positivity
of the energy plus translation invariance. More recently, it was shown by the author
[12] that translation invariance is also not needed. Hilbert space and positivity of
the Hamiltonian (energy) suffice to ensure either instantaneous spreading or, alter-
natively, continement in a fixed region for all times. Another extension was given
by the author [13] for free relativistic particles and for relativistic systems which
have exponentially bounded tails in their localization outside some region V. It was
shown that the state spreads out to infinity faster than allowed by a probability flow
with finite propagation speed. Probably the most astonishing part of our results is the
fact that so little is needed to derive them. They hold with and without field theory
and with and without relativity. Only Hilbert space and positivity of the energy are
needed.

What do these results mean for Einstein causality? This will be discussed in the
following, where we concentrate on the role played by positivity of the energy for
instantaneous spreading. We also briefly discuss Fermi’s two-atom model [14, 15].
But first we turn to the Nimtz controversy
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2. Resolution of the Nimtz controversy

Nimtz et al. [2] define in Section 2.2 of their paper in this issue what they mean by
signal velocity and arrival time. Their definition is motivated by usage in modern
engineering. In particular, their notion of arrival time is connected to the read-out
time of the signal. However, Einstein had a different meaning in mind when he for-
mulated his principle of the limiting role of the velocity of light for signal velocities,
and this has been explained in the Introducticn. Definitions are of course neither
right nor wrong, but clearly the meaning of a statement as well as its truth depend
on the definition of the notions employed in the formulation of the statement. So
what do the Nimtz experiments have to say on the question of Einstein causality in
its original sense? Are they compatible with it?

In these experiments, typically, a rapid sequence of microwave pulses is gener-
ated. Each pulse is split into two and sent over different paths of the same length to
a receiver. Calibration of the path length is achieved by displaying the two pulse se-
quences stroboscopically as still pictures on an oscillograph. Then a photonic tunnel
barrier is inserted into one of the paths, which attenuates the corresponding pulses
and reshapes them. To compare tunneled and non-tunneled pulses, the former are re-
amplified to their original amplitude height at the receiving end and again displayed
stroboscopically on the oscillograph. The effect is dramatic. Upon insertion of the
tunnel barrier, the still picture of the tunneled pulses makes a jump to earlier times,
seemingly indicating that they are arriving earlier than the non-tunneled pulses. With
the definition of signal velocity and arrival time used by Nimtz and coworkers, this
is indeed true,

To see, however, whether this has anything to do with superluminal signal ve-
locities in the Einstein sense, it is astonishing to look at the tunneled pulses with-
cut amplification. Experimentally it has been verified by Nimtz and coworkers that
the amplitudes of the tunneled pulses are always below the amplitude of the non-
tunneled pulses [22]. In these experiments, the maxima as well as the half widths
of the tunneled pulses are ahead of those of the non-tunneled pulses, and therefore
arrive earlier. This is graphically depicted in Fig. 1 by the pulses traveling from left
to right. The figure is not to scale, and and does not represent experimental curves,
but is just for illustration.

For the signal velocity in the Einstein sense, however, the arrival time of the pulse
maximum and the read-out time of the half width are not relevant, since they are not
used for clock synchronization. What is relevant is the first possible response time of
the measuring device, as explained in the Introduction. Now, since experimentally
the tunneled pulses are always below the non-tunneled pulses in amplitude, any mea-
suring device will respond first to the non-tunneled pulses and then to the tunneled
ones, or at most simultaneously to both. Thus the limiting role of the speed of light
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Fig. 1. Typical behavior of airborne pulse (solid line) and tunneled pulse (dashed
line), traveling from left to right (not to scale). In the experiments, the amplitude
of the latter is always smaller than that of the non-tunneled pulse, although its
maximum arrives at an earlier time.

as signal velocity in the sense of Einstein is not violated in the experiments.

What, then, is superluminal here? Let us consider the group and the phase veloc-
ity of light. Both are mathematical constructs useful for the description of electro-
magnetic phenomena. It is well known that both can be larger than ¢ [16], but this
cannot be used for superluminal signals in the Einstein sense. Similarly, it has been
shown in Ref. [17] that in a somewhat idealized situation the tunneling pulse can
be fully described within Maxwell theory by means of another mathematically intro-
duced auxiliary phase-time velocity notion. Again, this auxiliary velocity cannot be
used for superluminal signal transmission in the Einstein sense.

So it seems that the controversy about the interpretation of Nimtz’s experiments
arises from an indiscriminate use of terminology. Terms like signal velocity and ar-
rival time are used by Nimtz and coworkers in a sense different from that of Einstein.
When the notions are used in the original sense the experiments are fully compatible
with Einstein causality as ordinarily understood.

3. Fermi’s two-atom model

To check the speed of light in quantum electrodynamics, Fermi [14] considered two
atoms, separated by a distance 2 and with no photons initially present. One of the
atoms was assumed to be in its ground state, the other in an excited state. The latter
could then decay with the emission of a photon. Fermi calculated the excitation
probability of the atom which had initially been in its ground state. Using standard
approximations, he found the excitation probability to be zero for t < R/c. In Ref.
[15] the following mathematical result was proved and applied to the Fermi problem.
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Theorem: Let H be a self-adjoint operator, positive or bounded from below, in
a Hilbert space H. For given @y € H let 1, ¢ € IR, be defined as

iy = ef"‘H"‘yﬂl‘” . 4]
Let A be a positive operatorin H, A > 0, and let pa(#) be defined as
jUA(t) = ('q‘",’.n,, A.'l,{’g{) . 2)

Then either
palt) #0 foralmostall ¢ €)

and the set of such ¢'s is dense and open, or

p4(t) =0 forall ¢. )

For the proof, which is based on an analyticity argument, the positivity of both
H and A is needed. Positivity means that all expectation values of the operator are
nonnegative. Positivity of H alone is not enough. If A is not positive the theorem
does not hold. In Eq. (2) one can replace pa(#) by

palt) = trde i pettlt,

where p is a positive trace-class operator.

If one takes for v in the theorem the initial state considered by Fermi and for A
the operator describing the excitation probability, €.g., the projector onto the excited
states, then p 4 (f) becomes the excitation probability, and the theorem states that this
probability is immediately nonzero. In [15] it was discussed how to avoid a possible
conflict with causality, and this was continued in more detail, for example in [18, 19,
20, 21]. The conclusion was that the immediale excilation could be understood in a
field-theoretic context as vacuum fluctuations due to virtual photons. The part of the
excitation due to the second atom behaves causally [20, 21]. Causality then holds for
expectation values after the spontaneous part has been subtracted. This corresponds
to the notion of weak causality, i.c., for expectation values, introduced in [6], which
contrasts to the notion of strong causality, i.c., causality for individual events, as
discussed in [18]. Fermi seems to have had strong causality in mind.

4. Particle localization and spreading

Let us suppose that it makes sense to speak of the probability of finding a particle at
a given time inside a region of space 7. This is a highly nontrivial assumption. In
a quantum theory the probability of finding a particle or system inside V' should be
given by the expectation of an operator, N(V), say. Since probabilities lie between
0 and 1, one must have

0< NIy <1, (3)
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Now let us assume that the systemn, with state 4 at # = (), is strictly localized in
aregion Vo, i.€., with probability 1, so that (¢, IV (V5 )t ) = 1 or, equivalently,

(v, (1 = N (Vo)) = 0. ©

From Eq. (3) one has 1 — N (V) > 0 and hence the thecrem can be applied, with

A=1-N(W). (N
As a consequence one either has
(i, N(Vo)un) =1 forall ¢ (8)
or
(0, N(Vo)hu) < 1 for almost all . )]

The alternative in Eq. (8) means that the particle or system stays in ¥4 at all times,
as might happen for a bound state in an external potential.

Now, if the particle or system is strictly localized in Vj at ¢ = O it is, a fortiori,
also strictly localized in any larger region V' containing V5. It the boundaries of 17
and Vp have a finite distance and if finite propagation speed holds, then the probabil-
ity of finding the system in V" would also have to be 1 for sufficiently small times,
e.g.. 0 <t < e. But then the theorem, with 4 = 1 — N(V/), states that the system
stays in V" at all times. Now we can make 17 smaller and smaller and let it approach
Vo. Thus we conclude that if a particle or system is strictly localized in a region Vj at
time ¢ — 0, then finite propagation speed implies that it stays in ¥ at all times, and
therefore prehibits metion to infinity. Or put conversely, if there exist particle states
which are strictly localized in some finite region at ¢ — ( and later move towards
infinity, then finite propagation speed cannot hold for localization of particles.

This can be formulated somewhat more strongly as follows. If at # = 0 a particle
is strictly localized in a bounded region V4 then, unless it remains in 15 at all times,
it cannot be strictly localized in a bounded region V', however large, for any finite
time interval thereafter, and the particle localization immediately develops infinite
"tails.” The spreading is over all space except possibly for "holes™ which, if any, will
persist permanently, by the same arguments as before. If the theory is translation
invariant, then there can be no holes, as shown in Ref. [11] under some mild spectrum
conditions.

5. Counterexample Dirac equation?

At first sight, the Dirac equation might seem to be a counterexample to our results
on instantaneous spreading. Indeed, this wave equation is hyperbolic, implying fi-
nite propagation speed. For the localization operator N {1') one might take the char-
acteristic function yv (2}, just as in the nonrelativistic case and in contrast to the
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Newton-Wigner operator. Then, for a wave function initially vanishing outside a fi-
nite region, i.c., of finite support, the localization does evolve with finite propagation
speed! Doesn’t this contradict the results of the preceding section?

This example is instructive since it shows the importance of the positive-energy
condition. The Dirac equation contains positive and negative energy states. Now,
consider a solution of the Dirac equation, which vanishes outside some finite region,
and make the additional assumption that it is composed of positive-energy sclutions
only. Then one gets a contradiction to our results, and therefore the additional as-
sumption must be wrong, ¢.e., a solution with finite support at some time must con-
tain negative-energy contributions. This means that positive-energy solutions of the
Dirac equation always have infinite support to begin with! This is phrased as a math-
ematical result, for instance in the book by Thaller [23].

Thus the results of the preceding section do not apply if there are no strictly
localized states in the theory! Strict localization of a state ¥ in a region V" means that
{iy, N(V)¢) = 1, and this gives

0= {,(1— N(V)w) = [|(1 = N(V) 2|2,
where the root exists by positivity of N (V7). This implies
N = 4. (10)

Hence ' is an eigenvector of N (V') for the eigenvalue | if ¢ is strictly localized in
V', and vice versa. The eigenvalue () means strict localization outside 1.

The existence or nonexistence of strictly localized states depends on the form of
N (V). For example, if one has a self-adjoint position operator X with commuting
components, then N {17) is a projection operator from the spectral decomposition of
X, and thus has eigenvalues 1 and 0. Hence in this case there are strictly localized
states for any region V', and the result of the previous section implies instantaneous
spreading.

This instantaneous spreading also occurs for position operators with self-adjoint
but ror-commuting components X;. Each X; has a spectral decomposition whose
projection operators give the localization operators for infinite slabs. Eigenvectors
for the eigenvalue 1 represent states strictly localized in these slabs, and there is
instantaneous spreading in this case, too.

To avoid instantaneous spreading one therefore has to consider localization oper-
ators N (V') which are not projectors, for example positive operator-valued measures.
However, if one insists on arbitrarily good localization, i.c., on tails which drop off
arbitrarily fast, then one runs into our results in Ref. [13] .

Discussion. Could instantaneous spreading be used for the transmission of sig-
nals if it occurred in the framework of relativistic one-particle quantum mechanics?
Let us suppose that at time ¢ = 0 one could prepare an ensemble of strictly localized
{non-interacting) particles by laboratory means, e.g., photons in an oven. Then one
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could open a window and observe some of them at time ¢ = £ later on the moon. Or
for repetition, suppose one could successively prepare strictly localized individual
particles in the laboratory. Preferably this should be done with ditferent, distinguish-
able, particles in order to be sure when a detected particle was originally released.
Such a signaling procedure would have very low efficiency, but could nevertheless
be used for synchronization of clocks or, for instance, for betting purposes.

Field-theoretic aspects of our results have been discussed in detail in Ref. [24].
Permanent infinite tails in field theory can be understood intuitively through clouds
of virtual particles due to renormalization { ‘dressed states’ ). Also, counters could be
influenced by vacuum fluctuations.
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Locality of Quantum Electromagnetic
Radiation

Alexander S. Shumovsky
Physics Department, Bilkent University,
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We construct the local representation of the Weyl-Heisenberg algebra of multipole
photons using the three-dimensional properties of polarization. Itis shown that (his
representation is compatible with the operational approach 1o photon localization.

Keywords: quantum electrodynamics, electromagnetic radiation, localization

1. Introduction

In spite of the great success of quantum electrodynamics (QED), there remain a num-
ber of major unresolved problems (e.g., see [1, 2, 15]). Leaving aside the detailed
discussion of foundations of QED, we shall concentrate here on the problem of local-
ization of photons, which has attracted a great deal of interest. The point is that the
photon creation and annihilation operators are defined in QED as nonlocal objects.
In other words, the photon number cperator gives the total number of phetons in
the volume of quantization without specification of their space-time location [2, 15].
Moreover, it has been proven by Newton and Wigner [16] that no position operator
can exist for the photon. There is a widespread belief that the maximum precise
localization appears in the form of a wavefront [5]. At the same time, the specific
fall-off of the photon energy density and photodetection rate can be interpreted as
photon localization in space [6].

Perhaps, the most evident and best example of photon localization is provided
by the photodetection process, when a photon is transmitted into an electronic sig-
nal in the sensor element of the detecting device [7]. This localization is usvally
described operationally (in terms of what can be measured by a macroscopic detec-
tory by means of the so-called configuration number operator, which determines the
number of photens in the cylindrical volume oeAt, where o denotes the area of the
sensor element, ¢ is the light velocity, and At is detector exposure time [2, 7].

We now stress that, in the usual treatment of photon localization, the radiation
field is considered to consist of the plane waves of photons [2, 15]. In reality, the
quantum electromagnetic radiation emitted by the atomic and molecular transitions
corresponds to multipole photons [8] represented by quantized spherical waves [9].
Although the classical plane and spherical waves are equivalent in the sense that
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they both form complete orthogonal sets of solutions of the homogeneous Helmholtz
wave equation [10], there is a strong qualitative difference between the two quan-
tum representations. The plane waves of photons correspond to the running-wave
solution in empty space with translational symmetry, which leads to states of pho-
tons with given linear momentum. In turn, the solution in terms of spherical waves
assumes the existence of a singular point, corresponding to an atom (source or ab-
sorber of radiation) whose size is small with respect to the wavelength. In this case,
the boundary conditions correspond to the rotational symmetry, and lead to states of
photons with given angular momentum. Since the components of linear and angular
momenta do not commute, the two representations of the quantum electromagnetic
field correspond to physical quantities which cannot be measured at the same time.

The main objective of this paper is to show that the use of the multipole pho-
ton representation leads to an adequate description of localization in the atom-field
interaction process. The paper is arranged as follows. In Section 2 we briefly dis-
cuss the difference between the spatial properties of plane and spherical waves of
photons. In Section 3 we introduce the local representation of the multipole photon.
Then, in Section 4, we discuss the problem of measurement and causality. A general
conclusion and the implications of this work are presented in Section 5.

2. Plane and spherical waves of photons

An arbitrary free quantum electromagnetic field can be described by the operator
vector potential whose positive-frequency part has the following form

1

AN E ) = Y (DX Y View(Pe ™ agy, (1)
pn=— k.l
where the unit vectors
&, £1iéy
v. = gl o = &, >
X+ =7F NG Xo (2)

form the so-called helicity or spin basis of the three-dimensional space [9, 11],
Vieew (7) is the mode function, and ag, is the photon annihilation operator, which
obey Weyl-Heisenberg commutation relations

[ake, agp] = Okr Seer- ©)

Here £ is a cumulative index. By construction, the vector potential components
Au=+1(7,t) in (1) describe the circularly polarized transversal components of the
field with positive and negative helicity respectively, while A,—q(7,t) gives the lin-
early polarized longitudinal component [11]. In the case of plane waves of photons

—

Xo =

?

oy
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and projection of spin of the photon on this axis is forbidden, so that there are only
two transversal components of the field. In this case, index £ = ¢ = + describes the
circular polarization of the field.

Unlike the plane waves of photons, the quantum multipole radiation has all three
spatial components [9, 11], and index £ = {\, j,m} gives the parity A\ = E, M
(type of radiation, either electric or magnetic), angular momentum of photons j; =
1,2,--., and projection of the angular momentum on the quantization axis m =
—7,---,4. It should be stressed that plane and multipole photons have different
numbers of quantum degrees of freedom. In fact, a monochromatic radiation field
has only two degrees of freedom, described by the polarization index o = = in the
case of plane photons. At the same time, a monochromatic multipole field of a given
type A at given j > 1is specified by (25 + 1) > 3 degrees of freedom. Moreover, the
polarization is not a quantum number and, thus, the global property of the multipole
radiation changes from point to point [12].

The spatial properties of the field are described by the mode functions in (1). In
the case of plane photons, the mode function has the simple form of plane waves
(e.g., see [2])

B 2rhe

Vi () = 7™, T=EN T

where V is the volume of quantization. It is seen that this expression leads to the
spatially homogeneous density of intensity of a monochromatic plane wave

](plcme) - E’(—)(*) -EE ()

Cy)

= () - A )2 Z ata,. (5)
In turn, the multipole radiation is specified by the mode functions [9, 11]
VEkjmu = ’YEk][\/;f]Jrl(kr)(lv] + 17:U/7m - :U/|jm>yvj+1,mf,u(9¢)
V .7 + 1fj—1(kr)<1a.] - 1a M, T — M'jm>)/}'—1,m—u(97 ¢)]’
VMkjmu = ’YMk]f](kT)<17]7N7m _M|Jm>)/}m(97¢) (6)

in the case of A = F and A = M, respectively. Here (- - - |jm} denotes the Clebsch-
Gordon coefficient of vector addition of spin and orbital parts of the angular momen-
tum, Yy, is the spherical harmonics, and

[ v/V2i+T, atA=E
™= y at A= M.

The radial dependence in (6) is defined as follows [10]
hgl (kr), outgoing spherical wave
(

felkr) = hf (kr), incoming spherical wave (7)
Je(kr), standing spherical wave,
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(1,
¢

spectively and j, is the spherical Bessel function. Tt is clear that, unlike (5), the
density of intensity of a monochromatic pure j-pole multipole radiation of a given

type

where 1% denotes the spherical 1lankel function of the first and sccond kind re-

J
I(mu“’l) (F) = Z Z I"r)\*kjnm (F)kajm',u (F)a;fjm xkjm! (8)

pommi=—j

shows a certain position dependence with respect to the source location at the origin
of the reference frame spanned by the helicity basis (2). This spatial inhomogeneity
of the density of intensity of multipole radiation can be used to introduce the local
representation of the Weyl-Heisenberg algebra of multipole photons [12].

3. Local photon operators

In contrast to (5), the density of intensity (8) is represented by a non-diagonal form
in the photon operators which can be represented as follows

T (7 = 3V, (Pakal,, @

m,m’

where 1/{) is the Hermitian (2 4+ 1) x (2j 4+ 1) matrix with the elements

1
vmm’(ﬂ — k"z Z 1;;”(7_“)1;&’#(7) (10)

u=-1

To simplify the notations, hereafter we omit the indexes A, k, and j. It is seen that
V() = Vi (7) = KA (), A (7)), (1)
m

so that the trace of (10) describes the electric-field contribution into the energy den-
sity of the zero-point oscillations [14] of the multipole field. Then

;
Wu(®) =8 Y [Vinu (7 (12)

m=—j

gives the contribution of spatial components with different polarization g into the
zero-point energy of the multipole field. Since the polarization is the three-dimension-
al property of the multipole radiation [13, 14], it seemns to be reasonable to define the
spatial properties of multipole photons by means of polarization.

Consider for definiteness the electric type pure j-pole monochromatic radiation.
Then, the operator polarization matrix takes the form [13]

Paw () = B ME ) = BATNAL (7). a3)
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By definition, this is the (3 x 3) Hermitian matrix with the operator elements written
in the normal order. In addition, one can define the anti-normal operator polarization
matrix. Then, the difference between the anti-normal and normal matrices defines
the zero-point oscillations of polarization [15] with the elements

PO = KA (), AL (7] = kY Vi (Vi (7). (14)

It is easily seen that the diagonal elements of (14) coincide with (12). It is intu-
itively clear that the spatial properties of the zero-point oscillations of polarization
described by (14) should be determined by distance r from the source independent of
the spherical angles. In other words, the vacuum noise should have a homogeneous
angular distribution, which can change with the distance.

The (3 x 3) Hermitian matrix (14) can be diagonalized by a proper transformation
of the reference frame spanned by the helicity basis (2)

CHPOAUH = PO, UHOU) = 1. is)
As a result of this transformation,
Xo = Xp = T/T.

It is then a straightforward matter to arrive at the conclusion that

PT(’I“) 0 0
PO(r) = 0 Pr(r) 0 ; (16)
0 0 Pr(r)
where
Pr(r) = K|Vuu(M?, atp==*1,
Pr(r) = KV, (7% atp=0. a7n

In other words, the diagonal elements in (16) describe the transversal and longitudi-
nal (with respect to Xj,) vacuum noise of polarization as a function of distance from
the source.

The use of the same unitary transformation (15) allows the operator polarization
matrix (13) to be cast in the form

P(7) = U(APAUT (), (18)
where

PED(R) = K2 ALy, () Apkjw (7), (19)
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and

1 i
Apkjun(®) = D Un(®) D" Vakjmu (Fagkjm- (20)

p=-1 m=—j
In view of (3), the operators (20) obey the commutation relations

Pr(r)y atp==+1

[Ajin (P AS o jo e (] = Saxs B 8550 Opapr X { Po(r) atp=0 2D

where Pr,, Pr are the diagonal elements (17). Similar results can also be obtained in
the case of the magnetic multipole radiation.

We now note that the only difference between (3) and (21) is the presence of
position-dependent factors in the right-hand side of (21). It seems to be tempting to
introduce the normalized local operators

A (7)
P/’

which obey the standard Weyl-Heisenberg commutation relations
[k (75 050 o 500 ()] = Oxx b 8 Opupe (23)

at any point 7. Hence, the transformation (15) can be interpreted as a local Bogol-
ubov canonical transformation [17], conserving the Weyl-Heisenberg commutation
relations. In fact, the equations (15) and (22) describe the transformation of global
multipole photon operators @, with givenm = —j,---, 4, 5 > 1, into the local
photon operators by, () with given polarization g at any point of the space.

4. Measurement and locality

In the operational approach to photon localization [7] (also see [2, 15]), the local
absorption operator

Oarjp(F) = (22)

1
a0 =7y, TN g ar, 24)

is defined in the case of plane waves of photons. Here summation is taken over a
finite set of modes to which a detector responds. Then, the so-called configuration
space number operator is defined by the relation

NV, ) = / ) - G

= 72 Z Z ékU ’ ék’u’e_i(k_k ).F)ei(k_k )CtaZaaklal’ 25)

k,o k', o'

where the integral is taken over the volume of photon localization (cylinder with
base corresponding to the sensitive area of the detector and height proportional to
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the exposure time). It is clear that the operators (24) and (25) obey the following
commutation relations

NV, H),NV' )] =0 (26)

and

—d(7,1), ifFeV

0, otherwise, @7

[@(7, 1), N(V,1)] ~ {
where V denotes the volume of localization (detection). Let us stress that (27) has
an approximate sense.

There is a principal difference which makes difficult the direct use of the op-
erational approach to the problem of localizing photons in the case of multipole
radiation. The point is that the multipole photons are in the state with given angular
momentum, and therefore they have no well defined direction of propagation. At the
same time, these photons are localized initially inside the source.

Let us now note that the operators (22) describe the local properties of the multi-
pole radiation, and that the density of intensity operator (9) can be represented by

1
Il (@) =y by (Pbu(7). (28)
pu=—1
Under the condition that the we have a strictly monochromatic field, the operator
(28) can be considered as an analog of (25) at a given point 7, while (22) is similar
to (24). The principal difference between the two local representations is that

[k (), 030 g1 ()] = Soxe St 0551 frapr (F,7), (29)

where f,, (7, 7) is, perhaps, a sharp function but f,,,,/ (7, ) # 6,/ 6(F — 7). Such
a violation of the Weyl-Heisenberg commutation relations reflects the causal depen-
dence between the multipole radiation fields at different points.

Nevertheless, the operators (22) can be used for description of a real measure-
ment. Consider a model of a Hertz-type experiment on emission and detection of
multipole photons in the system of two identical atoms separated by a distance d.
If we assume that a photon is first emitted by the atom number one (source) and
then absorbed by the atom number two (detector), it is most natural to consider the
field as a superposition of outgoing and incoming spherical waves focused on the
source and detector respectively. This superposition should obey the boundary con-
ditions for the real radiation field, so that only one multipole photon can exist in the
space. Then, in direct analogy to (24), we can construct a configuration space photon
absorption operator

5(7?, t) = Z(—l)”)z_uzkkjm‘/}\kjmu(ﬁeiikcaxk]’m. (30)
o
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Here the sum is taken over the modes allowed by the selection rules for the atom-
field interaction under consideration. The volume of detection is defined in this case
as follows

V= TfeAr) ~rd],

where AT is the atomic "exposure time” defined by the natural breadth of the spectral
line, and r, denotes the atomic radius. Then, the configuration space multipole
photon number operator takes the form

NV =Y [ @ onEoR@d (1)
"

where the definition of b, (7, ¢) differs from (22) by summation over all allowed
modes, which induces the time dependence. It is straightforward to show that the
operators (30) and (31) obey commutation relations of the type (26) and (27). Thus,
the picture of measurement in the source-detector system of two identical atoms ex-
pressed in terms of the local operators (22) is compatible with Mandel’s operational
approach to the photon localization.

The above picture, based on the superposed state of outgoing and incoming
waves of photons, completely eliminates an enquiry concerning the trajectory of
photons between the atoms. In fact, the quantum mechanical path of a photon is not
a well-defined notion [17]. The most that we can state about the path of a quantum
particle in many cases is that it is represented by a nondifferentiable, statistically
self-similar curve [17]. For example, the path of a tunneling electron and time spent
in the barrier are not still defined unambiguously [18]. Moreover, recent experi-
ments on photonic tunneling and transmission information show the possibility of
superluminal motion of photons inside an opaque barrier [19].

We now note that, according to the principles of quantum theory, not the path, but
causality in the transmission of information from one object to another, is important.
In the above considered Hertz experiment with two atoms separated by empty space,
this means that the detecting atom cannot be excited earlier than d/c seconds after
the emission of a photon by the first atom. Such a causality has been proven in [20].

5. Conclusion

Let us briefly discuss the results obtained here. It has been shown that the clear-cut
distinction between the properties of plane and spherical waves leads to a qualitative
difference in the spatial behaviour of the corresponding photons as well as of the
zero-point oscillations. The successive use of the spatial inhomogeneity of multi-
pole radiation permits us to construct a local representation of the Weyl-Heisenberg
algebra of multipole photons based on the properties of polarization. Let us stress
once more that the polarization defined to be the spin state of photons has a one-to-
one correspondence with the spatial properties of radiation. The local representation
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of multipole photons obtained in Sec. 3 is compatible with Mandel’s operational
definition of photon localization [7]. It permits us to describe a complete Hertz-type

experiment with two identical atoms used as the emitter and detector. The two-atom

Hertz experiment can be realized for the trapped Rydberg atoms [21]. Finally, we

stress the fact that this measurement is closely connected with the problem of engi-
neered atomic entanglement discussed in [22].
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Time of Arrival in Classical and
Quantum Mechanics
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The time of arrival al an arbitrary posilion in configuration space can be given as a
function of the phase space variables for the Liouville integrable systems of clas-
sical mechanics, but only for them. We review the Jacobi-Lie (ransformation that
explicitly implements this function of positions and momenta. We then discuss the
recently developed quanm formalism for the tme of arrival. We first analyze the
case of [ree particles in ong and three space dimensions. Then, we apply (he quan-
Lum version ol the Jacobi-Lie transformation to work out Lhe time of arrival operator
in the presence of interactions. We discuss the formalism and its interpretation. We
finish by disclosing the presence (absence) of “instanlaneous” wunneling for thin
{thick) barriers.

Kevwords: time; phase space; Hilbert space; posilive operator valued measures; tunneling

1. Introduction

Classical and Quantum Mechanics use the notion of Newtonian time, a universal
parameter that rules the evolution of all the dynamical systems of the universe. New-
tonian time is “a priori” external to everything, physical systems and observers alike.
However, in many instances there are true time-like properties in the physical sys-
tems under study. In general, the answers to questions like: How long will 1t take
to...7 or, When will it ...7, etc. come in the form of a time that genuinely depends
of the very system. The crux of the matter is finding the time (the time elapsed, or
the instant in time) in which some property of the system will take a specific value,
something that could be generically termed as “the time of arrival at that value.” In
the next section we deal with the formulation of this question in classical dynamics.
The much more involved case of translating a time parameter into an operator on
the Hilbert space, as required by the quantum treatment, is worked out in sections 2
and 3 for free and interacting particles respectively. In section 4 we point out some
eccentric properties of the time of arrival at places that are classically forbidden.

2. Deriving time in phase space

The treatment of time as a phase space variable is a time-honored procedure. The
term extended phase space was coined for the approach in which, to the n pairs
{q,p) of the phase space variables of mechanical systems with n degrees of freedom,
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one adds the additional conjugate pair (¢, p,), which requires the constraint p, +
H{g,p) = 0 for consistency. It seems possible to dismantle this construction by
replacing the pair (¢, p;) by another canonical pair {¢, p). Naively, one would single
out one of the phase space variables (g; for instance) and make it equal to some
parametric value (i.e. ¢; = x}. Then, its canonical conjugate (the momentum p;
in this example), would be fixed by the constraint, giving p; = qb(.}c; 4o, P2 .. ,1},).
The phase space would now be given in terms of {{g2.p2)... ., (gn.pPn). (t. 1)},
with z acting as an external evolution-like parameter. Hence, t(x) or in words, “the
time of arrival at ™ would be a legitimate question to ask. In spite of its apparent
generality, it is seldom possible to accomplish this program, not because of its very
difficulty, but due to the non-tulfillment of some of the many conditions necessary
for the existence of solutions. Here we will discuss the case of integrable systems
for which there is a global construct for #(x), that we will describe explicitly.

In the modern approach to classical dynamics (a standard reference is [1], a very
readable text can be found in [2]), a Hamiltonian system is called completely inte-
grable (@ @ Liouville) when it satisfies the conditions @ and b below:

a. There are n compatible conservation laws
Ci(qr,e s Gy P1 . P t) = Ch i =1,...,n, that s
al. &, ={®, H}+ 22 =0, Vi=1,...n
a2 {®;,®;} =0, Vi,j=1,...,n

b. The conservation laws define n isolating integrals that can be written as:

b.l. &, =} :>I)i.:¢i(01,---,(ln.,01 ----- Cth),

Yi=1,...,m
Do 885 gy g
b.2. Doy = Ta Yi,j=1....,n.

In these conditions, the solution to the Hamilton equations is an integrable flow,
described by a system of holonomic coordinates (¢(¢), p(t)) in phase space for each
instant of time:

a(t) =qgo,post), i=1,...,n ()
pilt) =pilgo,poit), i=1,...,m

In particular, given the set of initial conditions (g, pg ), the system arrives at the point
{q(t), p(t)) of the phase space in the path independent instant ¢. Conversely, these
points define the corresponding times of arrival. In this case, time meets the require-
ments to qualify as a derived variable in phase space, whose explicit construction
occupies the rest of this section.

For integrable flows there is a special choice of phase space coordinates that
mathematically eliminates the effects of interactions (because the new positions are
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ignorable coordinates). In other words, integrable systems are canonically equivalent
to a set of translations (or of circular motions) at constant speed. It is customary to
denote the variables that determine these translations as action-angle variables, a
name which strictly is appropriate only for the case of periodic systems, where the
(closed) flow lines are topologically equivalent to circles. For these integrable flows,
there is a canonical transformation W (the Jacobi-Lie transformation) to free-like
variables

{a,p; H(a,p)} —> {Q, Py Ho(P)}, @)

where H{q,p) = Ho(P). The most useful form of this transformation is W (g, P),
that is, a function of the old positions and the new momenta, so that
oW (g, P) oW (g, P)

i:77 7/:7 .:1""’ bl
Q oP, P Ba; i n 3)

The choice Ho(P) = 3, 5; relates the free coordinates F;(t) = P; and Q;(t) =
%t + @); of the translation flow to the positions and momenta (g;(t), p;(t)) of the

actual flow generated by H(q,p) = >, 217; + V(g). In this work we shall only
consider unbound systems with positive energy H = Hy > 0. For this reason we
choose, as constant variables, the conserved momenta P; instead of the usual actions
over a period ¢ pdg that are more apt for bounded motions. Notice however that
the P; are different from the momenta appearing in perturbative calculations, even
if both sets may coincide asymptotically or in some set of R”. Coming back to
our problem, the function W would be given explicitly as a complete integral of the

following Hamilton-Jacobi equation:

W(q,P), <~ P
H(g;, ————=) = . 4
(@ =3, ; o @)
Due to the relations b.1 and b.2 above, it is permitted to write W as the path-
independent integral:

n

i—1 v 40

where g is a constant configuration space point, and the C; (that remain fixed dur-
ing the integration) are functions of the P; whose determination is necessary to solve
the problem explicitly. We are not concerned here with the search for specific solu-
tions, but with the fact that integrability ensures their global existence. In fact, the
equations (3) can be written in the form

(7 Opiq, P
po(0P) = 0a0.C), Qula.P)= Y. [ @D oo @)

i=1 v 40
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The first equation is simply the definition of the isolating integrals (b.1). As a bonus,
time can be given as a function of phase space in two alternative ways: either in
terms of the old variables, or equally in terms of the new ones. Consider that a
particle initially at (q, p) arrives at the position q(t) = x in the instant {(x) = {,
then:

X

- Opi(q, P
t():g(x ~Qq) = PZ/ dqi%,azl,...,n, (7

i—174a

where X, = 0W(x,P)/0P, (obviously, X, = Q,(t(x)) by construction). Note
that in (7) there is no summation over the index a. In fact, integrability can be envi-
sioned as the simultaneous existence of n independent flows, each of them contained
in a different phase space plane. The requirement of integrability was noticed by
Einstein [3], who analyzed its implications for the old Bohr-Sommerfeld quantiza-
tion conditions, which he reformulated accordingly giving a new condition that was
criticized by Epstein [4]. Integrability [5] allows n different expressions to define
the unique time of arrival. Only a pair ((,, P,) appears in each of them, and they
all are equivalent. This holds even when there is no separable solution to the original
Hamilton-Jacobi equation (4) due to the presence of the potential V' (q) in the Hamil-
tonian. Only for some well known cases [6] the problem is separable in the original
variables. Independently of this, notice that as (Q(¢), P) defines a straight line in the
phase space, it is simple to lay one of the axes (the n*” say) along it. This amounts
to defining Hy(P) = P,, which gives P,(t) = E and Q,(t) = t + @y, while the
other variables remain constant ();(t) = @Q;, P;(t) = P;, j =1,...,n — 1. With
this choice, one can write:

- N 8pl(q1qn7P1Pn717E)
= dg; 3 3
;/q g 0 (8)

with the p;’s given in (6). This is the standard equation of time that appears in
the literature. The rest of the relations would give the time independent geometric
properties of the trajectories Note that for central potentials only p, depends on E,
so that (8) reduces to ¢(r,) f” dr(0p, /OF).

We have focused the discussion of this section on the dual definition of the time
of arrival, that can be given in terms of the original phase space variables, or of the
free translation variables. This duality is a foundation stone for the quantum method
presented in this paper. We will obtain the time of arrival operator of interacting par-
ticles £(2) by applying a quantum version of the canonical transformation W (g, P)
to the well known operator for the time of arrival of free particles g (). The proper-
ties of the latter have been extensively analyzed in the literature. For completeness,
and to fix the notation, we present a summary of them in the next section.
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3. Time of arrival of free quantum particles

In one space dimension Eq. (7) gives the time of arrival at z of a free particle initially
at (¢, p) as a function of the phase space variables that depends on z parametrically:
tolg, p; z) = m(z — q)/p. In spite of its simplicity, this expression presents serious
quantization difficulties, [7, 8, 9, 10, 11], whose solution we outline here [10, 12,
13, 14, 15]. First of all, it requires a decision about operator ordering, the simplest
one being symmetrization:

o) = s = 50 5e) = —W¢_ /:e ©)

Notice the proliferation of carets above. It is a reminder that we now deal with op-
erators acting on the Hilbert space of the free particle states. From now on, we will
drop the operator carets, simplifying the notation as much as possible, wherever this
will not produce confusion between operators and c-number variables. The eigen-
states |tzs0) of this operator to(z) in the momentum representation can be given as
(h=1)

ltast) = 8 2 expi ) o, (10)

where ¢ is the time eigenvalue, z the arrival position, and where we use s = r for
right-movers (p > 0), and s = [ for left-movers (p < 0.) The label 0 stands for free
particle case. Finally, the argument sp of the step function that appears on the rhs is
+p for s = r, and —p for s = [, so that

o0 0
wwzédmmmmwmzl dplp) o). (11

The degeneracy of the energy with respect to the sign of the moment is explicitly
shown by means of a label s = r,[ in the energy representation, where

(Bs0|tzs0) = 6,1y (%)1/46% (Es0|a). (12)

Summarizing, there is a representation for the time of arrival at z spanned by the
eigenstates

2H -
jtes0) = (=) e o M0 |a), (13)
m

where Il projects on the subspace of right-movers (s = r), or of left-movers (s =

D), ie.,
I,y = / dE|Es0)(Es0| = 8(sp). (14)

0

These time eigenstates are not orthogonal. This gave rise in the past to serious

doubts about their physical meaning. The origin of the problem can be traced back to
the fact that (9) is not self-adjoint, that is, that {p|to(x)¢) # (to(z)p|®¥). This was
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pointed out by Pauli [7] along time ago and is due to the lower bound on the energy
spectrum that prevents the applicability of the Stone theorem [16]. The problem
emerges as soon as one attempts integration by parts in the energy representation.

Not being self-adjoint or orthogonal, this operator poses an interpretation prob-
lem that can be solved by considering it in terms the Positive Operator Valued Mea-
sures (POVM). This is a class of operators less restrictive than the traditional pro-
jector valued measures. The POV measures only requires the hermiticity of ¢ (x)
(i.e. to(z) = (to(2))* ) to assure the positivity of the measure. Now, instead of a
Projector Valued spectral decomposition of the identity operator, one has the POV
measure

Py(I(x);t1, t2) / dt |tzs0) (txs0|
2
= Z/ dt(@)l/4 e Hot TT o TI(z) TL,o e*iHot(@)l/‘*, (15)
1 m m

whose notation indicates the arrival interval and that the dependence on the arrival
position comes through the projector II(z) = |z} (x| on the position eigenstate. For
the above measure Py(1,2)2 # Py(1,2) because |tzs0)(tzs0| is not a projector, as
the states are not orthogonal. However, the limit as ¢ — oo of Po(—t,+1) is the
identity as can be checked explicitly. The time operator obtained is well suited for
interpretation. This solution was introduced in [14], and extensively analyzed in
refs. [17, 18]. It has been recently reviewed in [19] and criticized in [20].

In this formulation the time of arrival is given by the first moment of the measure

+oo
to(Ho, I Z/ dtt |txs0) (txs0]

+o0o
— / dtt(iﬂﬂ)l/ﬁl eiHot P()(.T) e—z’Hot (%)1/47 (16)

—o0 m

where Po(z) = >, o [I(z) 11,0, which is not a projector. We now have the tools

necessary for the physical interpretation of the formalism: Given an arbitrary state
att = 0, its time of arrival at a position z has to be, according to (16),

+oo
Wlto() Z [ detleso a7

with the standard interpretation of Y |(tzs0[¢)|* like the (as yet unnormalized)
probability density that the state |’(/J> arrives at z in the time ¢. The probability of
arriving at  at any time is then Py(z) = [dt 3, |(tzs0[¢)|?, giving a normalized
probability density in times of arrwal

Py(t, ) Z| (tzs0|p)|? (18)
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the normalization that has been used in (17).

The above equations (17,18) can be given forms that are very useful for compu-
tation and that throw some light on the physical meaning of the different quantities
involved. By using explicitly (13), one gets

) = S a8 e Es0) B0

X

(far (%E)l/‘%mE'soxE'sow)}/dte—“E—E’)t
= oY [anEy el Bs0) B0l (19)

The use of a similar procedure in (17) leads to
s 2F . .
) guint 1/2 E E *
Ay 2 [ EC (alEs0) s0le)

—

x o {{al Bs0) (Bs0ly)}

_2m 2E 11201 B0V Es0]0) 2
- ;/dﬂ )2 | Bs0) (B 501

(@lto(@)[¢) = -

X %{arg(ﬂEsO) + arg(FEs0ly)}. (20)

This expression is easy to understand. In fact it involves two ingredients: the plane
wave amplitude (z[Fs0) = /57 exp(ispz), along with the bracket (Es0[y) =

m@@(sp) where 1/; is the Fourier transform of the initial state in momentum space,
2

and p = v/ 2mE. This gives for the arrival amplitude

{ts0ly) = % /0 dp \/ge“’ﬂ“”)d?(sp). 1)

This is a free case, so that the probability of ever arriving at = has to be one. In fact

[o%] N “+oo N )
R =X [ il = [ aper-1 e
s=r1 70 —oe
where we used that in our notation rp = +p and Ip = —p. We also have:
0 m 9 arg(t(sp))
— E E = — - ), 2
5 (arele] £50) + arg(Es0]) } ) (sz op ) (23)

There are initial wave packets centered around the values (go, po) for which QZJ(p) =
| (p)| exp(—ipgo) with the amplitude ¢)(p) peaked around pg. Then,

(0/0p) arg P (sp) = sqo,
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and the time of arrival at z reduces to

> /OOO dp [(sp)? 2= %)

(Wlto (@)) -

s=r,l

-/ " 1) e~ ) 1)

which is the time of arrival of the classical free particle averaged over its initial state.

The generalization to the case of three space dimensions [13] is not straightfor-
ward. The reason is that to begin with, there are three equivalent equations (7) for
the time of arrival. To be compatible, they have to satisfy the constraints

L=(q—-x)Ap=0, (25)

where we drop the distinctions made in (7) between upper and lower case letters, as
they are the same objects for free particles. Classically, the constraints correspond
to the fact that x has to be a point of the particle’s trajectory, therefore the angular
momentum can be written as L = xAp. In other words, the angular momentum with
respect to x, that is £, has to vanish. We now show that the constraints (25) are first
class. First of all, they are closed as their components £, = €45 (¢ — 2)p pc satisfy
the algebra of 3-D rotations, namely {L,, L3} = €45c L. Then, the total Hamil-
tonian is Hy = % + A - L, where A is a vector multiplier, so that {L,, Hr} =
€abe My L. Therefore, the constraints form a first class system that depends paramet-
rically on x, one for each arrival position x. Not all the x’s can be reached from an
arbitrary set (q, p) of phase space variables. Only those x that satisfy the constraints
are positions where the particles with these dynamical variables can eventually be
detected. A detector placed somewhere else will miss them.

The above translates into quantum mechanics as it is: Not all the states in the
Hilbert space of free particle states H with Hamiltonian Hy can be detected at a
specific position x. Only the subspace Hy of the states that satisfy the constraints
(25) (where now q and p are operators) qualify as the Hilbert space of detected states
(at x). This subspace is spanned by the states |¢; x) € H of the form |i; x) =
Y(Hy) | x). Here, 1(Hy) is an arbitrary function of Hy, that may also depend on
other parameters, | x) is the eigenstate q|x) = x|x) of the arrival position. In
particular, the detected subspace Hy is obtained from Hg by a translation of amount
x, as required by covariance.

The value of £ comes from the equation of motion in the subspace orthogonal
to the constraints, namely p - x = p - (2 #o(x)+q), that in spherical coordinates
where |p) = |p,8p, ¢p) and g = id% can be written as x = P #,(x) + ¢. This can
be readily inverted to give

to(X) — _% efipxp71/2 qp1/2 eipx. (26)
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Notice the characteristic powers of p to the right and to the left of ¢. This operator
ordering makes of £y, a maximally symmetric operator with respect to the measure
d®p, making integration by parts a straightforward task. In d space dimensions we
would have £y zﬁ (—i%)p” with n = (d — 2)/2 [13]. The eigenfunctions of
to are given in the momentum representation by:

. _ 1 iFpt
(plt; x, 0) =4/ prem—_ (p|x), (27)

where t € R is the time eigenvalue, and Ep, = p*>/2m. One can define a time of
arrival representation given by

1 1
Varm (2mH0

These eigenstates are not orthogonal. They correspond to a POV measure defined by
the spectral decomposition

lt; x, 0y = )1/4eiH°t [ x). (28)

+oo
1 = / dt|t; x, 0){t; x, 0. (29)

—

It can be immediately seen that for any state |1; X} € Hx, and for arbitrary momen-
tum p

(P|1x|¥;x) = (p|Y;x) VpeR?. (30)

Therefore, the operator 1 is a decomposition of the identity within the subspace of
detected states Hx. The fact that 1, < 1, so that the decomposition is uncompleted,
is the quantum version of the classical case where only a part of the incoming parti-
cles will (reach and) be detected at x. From here it is clear that our formalism is finer
than that provided by the so-called screen operators [22], that would describe the
arrival at a two dimensional plane put across the particle trajectories. In fact, these
screen operators would correspond to a coarse graining of the present formalism,
whose interpretation is analyzed in some detail in [13].

The time of arrival can be given through the first momentum of the POV measure
29):

to((x) = /dt £t x, )t x, 0] =

1 1 : 1 ;
dtt 1/4 iHot 1/4 —iHpt 31
47rm/ (ZmHo) ¢ |X><X|(2mH0) ¢ ’ D
whose similarity with the 1-D case (16) is evident, and can be used as a guide to get
the average time of arrival an other quantities of interest that were worked on in one
space dimension.
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4. The arrival of interacting particles

In this secticn we want to determine the effect on the times of arrival of a position
dependent interaction between the particle and the medium, that we describe by a
potential energy V'(g). For instance, we want to consider the case of a barrier placed
between the detector and the initial state. We would put a detector at x (at the other
side of the barrier), and prepare the initial state |¢} of the particle at ¢ = 0 (at this
side of the barricr). We would then record with a clock the time # when the deteclor
clicks. Repeating this procedure with identically prepared initial states, we would
get the probability distribution F(#, ) in times of arrival at x. This is the same
procedure used for the free particle case, the differences coming from the presence
of the potential energy V' (g).

To find the quantum time of arrival we will use what we know from the clas-
sical casc: There is a canonical transformation from the free (Hy = %) transla-
tion variables (). P) to the actual variables (g, p) of the interacting situation where
H = % + V{g). Time can be given equally in any of these two versions, and we
did already quantize the free version £y in the previous section. Now, in successive
steps, we do the following [21]: We first construct the quantum canonical trans-
formation I’ that connects the free-particle states to the eigenstates of the complete
Hamiltonian. This is the quantum version of the (inverse of the) Jacobi-Lie canon-
ical transformation (2,3). We will see later on that &7 is given by the Méller wave
operator. We will then apply U to ¢, to define the time of arrival ¢ in the presence
of the interaction potential V' {q) in terms of #5. We will work out the details of
this transformation ¢ = 7 t, Uf. Finally, we will also address some questions of
interpretation of the resulting formalism.

Dirac introduced canonical transformations in quantum mechanics in a number
of different places [23] by means of unitary transformations [/ (Ut =0t =1).
To tix the notation, we assume in what follows that the operators ¢ and p are given in
the coordinate representation of the Hilbert space L?(z) by ¢ = x and p = —ih%.
If the operators 4 and  are the result of an arbitrary canonical transtormation applied
to ¢ and p, then there is a unitary transformation {7 such that

g=UlqU, p=U'pU = g, 5] = lg. p| = —ih. (32)

One can also define implicitly the quantum canonical transformations as is done in
classical mechanics, a possibility that has been thoroughly analyzed and developed.
The main resulls of the method are collecied in |24, which also includes refer-
ences to other relevant literature. The definition of 7 is given implicitly by the two
conditions

F{g, p) = Folg, p), and G(g, p) = Golq, p), (33)

where F', &, Fy and Gy are functions of the operators shown explicitly as their argu-
ments. They cannot be chosen arbitrarily, the necessary and sufficient condition for
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the canonicity of the transformation being [F, G| = [Fo, Go]. The dependence of
(33) on U can be explicitly given by using (32) in it:

U F(q,p)U = Fy(q,p), and U G(q,p) U = Go(q,p), (34)

that comes from the straight application of (32) to the first members. In addition,
U is unitary so that the spectra of the original and transformed operators have to
coincide. We now assume that F and Fj are self-adjoint operators whose eigenvalue
problems are solved by the states | f s) and | f s 0) (both corresponding to the same
eigenvalue), that form orthogonal and complete bases of the Hilbert space satisfying

Flfs)y=Xf|fs), Folfs0)=As|fs0). (35)

We are accepting here the presence of degeneracy indicated by the discrete index s,
something that we will need later. Assuming now a continuous spectrum (the case
we will be interested in), the operator U that satisfies the first row of (35) is given by

U= Es:/m) dXs|f s)(f50]. (36)

It is straightforward to verify that it is unitary. We can now give the definition of G
in terms of Gg using U, thatis G = U Gy U, which in full detail reads

G =Y [ P (2 0Ga(a Il S O  3D

ss'

This is the main result of our procedure. The fact that we can define an operator G,
canonically conjugate to F, if we know G and U.

We will now apply this to the case where Fy is the free Hamiltonian Hy, I the
complete Hamiltonian H and Gy the time of arrival ¢y of the free particle Eqs.(9), or
(16). Then, we have Hy = UT H U and Ily(z) = UT II(z) U. Associated to the free
particle there was the positive operator valued measure Py of Eq.(15). Accordingly,
the POV measure P of the interacting case will be given by (c¢f (34))

P(H(.’E);tl,tz) = U_Po(Ho(.’E);tl,tg)UT, (38)

and the time of arrival operator in the presence of interactions (the G of (37)) is given
by
t(H, T (x)) = Uto(Ho, To(z))UT. (39)

We noticed above that the spectra of the original and transformed operators had to
coincide. Now, 0(Hy) = R so that not all the Hamiltonians can be obtained from
Hj by this procedure. In general, some fixing will be required to make the spectra
coincide. Here we will only consider well behaved potentials (V' (¢) > 0 V¢ € R),
vanishing appropriately at spatial infinity. This ensures the required coincidence of
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the spectra, but introduces two solutions for U due to the existence of two indepen-
dent sets of eigenstates of H:

Usy =), /0 dE|Es(£)){Es0] = Q). (40)

These are the Moller operators connecting the free particle states to the bound and
scattering states. In the presence of bound states these operators would only be
isometric, because the correspondence between eigenstates of H and free states
could not be one-to-one. In our case V(g) > 0, there is one free state for each
scattering state and conversely. Thence, the Moller operators are unitary. In this
case, the intertwining relations H{}1y = €(4)Ho can be put in the more desir-
able form H = ) H, QI 1) We will also follow the standard sign conventions,
choosing Q) in (40) that, when F = lim o+ (F + i€), gives signal propaga-
tion forward in time. The results that would be obtained with {2y would corre-
spond to the time reversal of this situation. If 7 is the time reversal operator, then
Py(I(z);t1,t2) = 7 Py (I(z); —t2, —t1) 7', For notation simplicity, we will
omit these labels (£) wherever possible.

The parameter x that appears in (37) and (39) is the actual detection position in
the interacting case, the place whose time of arrival at we want to know. Therefore,
the arguments of ¢ in (39) have to be II(z) = |z){z| and H. Hence, the argument
of o will be an object Ilp(z) = QII(z)Q which collects all the states of the free
particle that add up to produce the actual position eigenstate |z) by the canonical
transformation. Much of the difference between the classic and quantum cases is
hidden here. In particular, the quantum capability to undergo classically forbidden
jumps in phase space has much to do with the fact that II(x) and ITy(x) cannot be
position projection operators simultaneously.

We have now at hand all the tools necessary to answer the questions about the
time of arrival of interacting particles. Given a particle that was initially (at ¢ = 0)
prepared in the state |¢0), we can compute the predictions for the average time of
arrival (¢|t(x)]%), the probability distribution in times of arrival P(¢,z) and the
probability of ever arriving at z, P(x). Instead of writing more equations, we refer
the reader to Eqgs. (16,17), (15,18) and (19). By simply erasing the label 0 from
them, one gets the correct expressions for the interacting case, with the caveat that
— to be of practical use — they require the knowledge of the scattering states and
Mpoller operator. It is worth recalling here that the expression (20) for the average
time remains valid after dropping the 0’s. So, {(|t(x)]¢} is still the sum of two
independent pieces, one containing (9/0F) arg(E s |¢) that only depends of the
initial state, the other that contains (9/0F) arg{x |E s) and only depends of the
position of arrival.

We now consider the case where there is a finite potential energy starting at the
origin (V(g) = 0, Yg < 0), which is so smooth that the quasi-classical approxima-
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tion is valid. Then for £ > V(z) the exponentially small reflection amplitude can
be neglected, giving the scattering states

~O(—z) | gipe m__ i [7 dap(a)
(|Er) =~ 0(—x) 27rpe + 6(x) 27rp(m)e , 41

with p(q) = /2m(E — V(g)), that are normalized to an incoming right-moving
particle by time unit. We now consider the physically interesting case where the

initial wave packet is normalized to 1, (i.e. that [ dp|)(p)|? = 1 with)(p) = (p|1h)),
also, that it is localized around a position gy well to the left of the origin, and that
it has a mean momentum py > V(z). Then, to this order the probability of ever
arriving at z (c.f. (19)) gives

[ee)

Pla) % 6(—a) +0() P (o), where Po(@) = [ dp—Ls 00 42)
so that ﬁ |v)(p)|? is the (unnormalized) probability of arrival at the point z with
momentum p(z), as corresponds to the quasiclassical case. Notice that to the left of
the origin the result is the same as in the free case. This comes about because the
approximation neglects reflection, thus missing at ¢ < 0 any information about the
existence of a finite V' at ¢ > 0. For the time probability distribution one gets
2

Ps) ~ 0 / " dpeP (p)
QT) 0 . (43
9733 ~ mo *i(Et*fow dq p(a))
< wrml B oy VP € :

which, not surprisingly, is the same as that of free particles for z < 0. Finally,

[ee]

Wltald) ~ O(-a) / & D) 2Hr - w)

O@) [ b e M m [ 4
Sh ), oty PR e [y

Therefore, we recover the time of arrival of the free particles for negative z. On the

(44)

other hand, for z > 0 we get the classical time of arrival at « for initial conditions
(g0, D), f;z (m/p(q)) dg, weighted by the probability of these conditions.

5. Advanced or delayed arrival?

What is the effect of putting a quantum barrier in the path of the arriving particle?
Hartman [25] studied this question a long time ago, reaching the conclusion that
tunneled particles should appear instantaneously on the other side of the barrier. Our
formalism supports this result, but only for thin enough barriers.
The time of arrival at a point = in the presence of a barrier will be given through
a probability amplitude
(tasly) = [ dECD) e B GBS ESH). @)
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In the case where z is at the right of the barrier, the amplitude can be approximately
given by [21]

(tws|y) ~ o) e EPIT ()Y (p), (46)

\/_

where T'(p) is the transmission amplitude for momentum p. Now, the total proba-
bility of eventually arriving at = in any time ¢ is P(z) ~ [dp [T(p) ¢(p)|* that
is independent of  in cases like this, where z is beyond the range of the potential.
After a straightforward calculation we get for the average time of arrival at the other
side of the barrier the corresponding version of (20)

1 /°° o darg(T(p))
— dp |T(p)v(p)|"—{z — g + ————=}. 47
By IO O (= g0 + S )
It is the value of the Wigner time [26] averaged over the transmitted state.
Consider a simple square barrier of height V' and width a. The transmission

coefficient is in this case:

(]ta]Y) =

—1 ( - (p2 plz) ! ) - !

Tp)=e " |1 —i———tanp'a secp'a, (48)
2pp
where p' = \/p? — p},, that is imaginary for p below py. Notice the contribution
—pa to arg(T'(p)). This will subtract a term « to the path length z — go that ap-
pears in (47). The barrier has effective zero width or, in other words, it is traversed
instantaneously. This is the Hartman effect for barriers. To be precise, the effect
is not complete, it is compensated by the other dependences in p'a present in the
phase of T'(p). In fact, it disappears for low barriers (py /p) — 0, where all the
a dependences of the phase cancel out, as was to be expected because the barrier
effectively vanishes in this limit. In the opposite case of high barriers (p/py) — 0
the effect saturates and there is a decrease — 7 in the time of arrival of transmitted
plane waves, which emerge almost instantaneously at the other side of the barrier.

The averaging of the Wigner time over the transmitted state, present in (47) as
a consequence of the formalism, has dramatic effects, because it effectively forbids
the transmission of the wave components with low momenta. In fact, it produces
the exponential suppression (by a factor exp(—2|p’|a)) of the tunneled components.
Therefore, only the components with momentum above py have a chance of sur-
mounting thick barriers, being finally transmitted. But these components are delayed
by the barrier (for them (%Z(p))) > 0), whose overall effect transmutes from ad-
vancement into retardation [21] at a definite predictable thickness that depends on
the barrier height and also on the properties of the incoming state.
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Superluminal Phenomena and the
Phenomenological Maxwell Equations

Jakub Rembielifski
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Motivated by a number of recent experiments |1, 2, 3, 4, 3], in this paper we dis-
cuss solutions of effective Maxwell-like equations describing the propagation of an
electromagneltic field in a medium that “feels” a quantum preferred lrame.

Kevwords: preferred [rame, superluminal, absolule synchronization

1. Introduction

As is well known, from the “orthodox™ point of view there is a “peaceful coexis-
tence” between SR and QM if a physical meaning is attributed to final probabilities
only [6, 7, 8]. However, such a restrictive approach is unsatisfactory for many physi-
cists, for whom also the notion of a physical state, its time evolution, localization of
quantum events, etc. should have a “real” and not just a technical meaning.

According to this second approach to understanding QM we encounter a number
of theoretical problems on the borderline between QM and SR. The most important
ones are related to the apparent nonlocality of QM and lack of a manifest Lorentz co-
variance of quantum mechanics of systems with finite degrees of freedom. Recently,
several authors have suggested that a proper formulation of QM needs the introduc-
tion of a preferred frame (PF) [9, 10, 11, 12]. In particular, introduction of a PF can
solve some dilemmas relating to the causal description of quantum collapse in the
EPR-like experiments with moving reference frames [13]. Tt is important to stress
that the notion of a PF used here is completely different from the traditional notion,
linked to the ether, and is in agreement with classical experiments. Most recent EPR
experiments performed in Geneva [14] do not contradict the PF hypothesis and give
a lower bound for the speed of “quantum information” in the cosmic background
radiation frame (CBRF) at 1.5 x 10%¢,

A conceptual difficulty related to the PF notion lies in an apparent contradic-
tion with the Lorentz symmetry. But as was shown in the [12, 15, 16] this is not
the case: it is possible to arrange the Lorentz group transformation in such a way
that the Lorentz covariance survives while the relativity principle (democracy be-
tween inertial frames) is broken. Moreover, such approach is consistent with the
classical phenomena. Recall also that attention was recently devoted to the PF as a
Extensions of Quantun Physics 45
edited by A. Horzela and E. Kapuscik (Montreal: Apeiron 2002)
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consequence of a possible breaking of the Lorentz invariance [17, 18] in high en-
ergy physics. We are not so “radical” in this paper because it is enough to break the
relativity principle only in order to extend the causality notion and consequently to
reconcile QM with the Lorentz covariance.

We introduce and discuss a direct generalization of the macroscopic (phenomeno-
logical) Maxwell equations which are both Lorentz-covariant and “feel” the pre-
ferred frame. We show that, according to these equations, the electromagnetic field
propagates faster than light in vacuum, i.e., the effective mass of the photon is tachy-
onic. Although our derivation is purely classical, it is motivated by the fact that in a
medium, light propagation is mainly a quantum phenomenon; therefore the influence
of the PF (if it really exists) can in principle be observed. In the following we make
simplifying assumptions, such as homogeneity and isotropy of the medium.

Because a “folk theorem” which states that local Lorentz covariance implies rel-
ativity (i.e., democracy between inertial frames) is commonly used, we begin with a
brief review of the formalism introduced in [12, 15, 16]. Obviously, if we try to real-
ize the Lorentz group as a linear transformation of the Minkowski coordinates only,
the above mentioned “theorem” is necessarily true. However, if a PF is distinguished,
we have at our disposal an additional set of parameters, namely the four-velocity of
the PF with respect to each inertial observer. Using this freedom we can realize the
Lorentz group in a nonstandard way [15, 16]. Physically, such a realization of the
Lorentz transformations corresponds to a nonstandard choice of the synchronization
scheme for clocks [19]. In [12] this scheme was applied to formulating the mani-
festly covariant QM.

To be concrete, in that approach the Lorentz group is realized in a standard way
insofar as it is restricted to rotations, while for boosts we have

0 _ L 0
z = wox,
(D
x = x-wl2°+v(u-x) - —F X ),
( 1++v1+w2
and
[V — L 0
U = wou,
(2)

1 u-w
v = u-w|H5-—Fir—),
(O 1+\/1+w2)

<

0 u) and w* = (w?, w) is the (timelike) four-velocity of the PF and

[2'#], respectively as observed from the inertial frame [2#]. The four-vectors u# and

where u¥ = (u
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w* are related to three-velocities via the following formulae

— u
v = ’f_?ﬁ
v = X,
Wb (K)]
win = V(1 +uu- V)2 -V

The explicit relationship to the standard (Einstein—Poincaré) synchronization is given
by % = 2 + u%u - x, xp = x, so the time lapse at a space point is the same
in both synchronizations. Furthermore, the average light speed over closed loops
is constant and equal to the speed of light in vacuum (here ¢ = 1) in agreement
with Michelson-like experiments. It is important to stress that both synchronizations
{Einstein Poincaré and the nonstandard one) lead 1o the same resulis for velocities
less than or equal to the speed of light, but only the nonstandard synchronization
scheme can be used for a consistent description of possible superluminal phenom-
ena [16]. This is because (as we see from (1)—(2) in the nonstandard synchronization
the Lorentz transformations have a triangular form, so the zeroth component of a
covariant four-vector is rescaled by a positive factor only. Consequently, an absolute
notion of causality can be introduced in this framework. Moreover, if superlumi-
nal propagation of information does exist in reality, a PF wmiust be distinguished, and
consequently, a convention of synchronization as well as the relativity principle are
broken. An exhaustive discussion ol the nonstandard formulation of Lorentz covari-
ance in this language is given in [12, 16].

2. Effective Maxwell equations

In a homogeneous and isotropic medium the fields D and H are related to E and B
via permittivity e~ and permeability p, respectively, where ¢ and u are nonlinear
functionals of E* — B? and E - B, in a nonlocal way. To simplify our considerations
as far as possible, let us assume that in some range of field intensity € and g vary
slowly, so they can be treated approximately as constants. Therefore, in our equa-
tions we will use only E and B, i.¢., the electromagnetic field tensor F'#* and its dual
Fiv — %5‘“"” Fya. Morcover, we assume that the possible (quantum) responsc of
the medium, related by preference by QM of a PF, is roughly speaking proportional
to B and B. Under such extremelly simplified assumptions our phenomenological
Maxwell-like equations take the form

B P8 + au, F*Y = Y, )

FuFH + Bu, b = 0, (3)

where «v and 5 are constants. In the following we will omit the induced current 3¥ to
concentrate on the consequences of the influence of the PF only. It is not difficult to
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check that equations (4-5) with 7 = 0 have nontrivial solutions, admitting a Fourier

expansion, only for 3 = —a, so (4—5) must be replaced by!
OuF™ + au, F* = 0, ©)
Buﬁl“’ — au”F’“’ = 0, N

with o depending on the properties and the state of the medium. Of course, we
can choose a > 0. Notice that (7) cannot be transformed to the form 8MF”" =0
by a duality transformation. Obviously (6 — 7) are covariant under transformations
(1)—(2). Furthermore (6 — 7) necessarily leads to the tachyonic wave equation

QF* = o FHv, (8)

where O = g’“’(u)@,ﬁ,,. In the vacuum o, = 0 (more precisely cuyae < 2 X
10718 eV [20]). However in a “PF feeling” medium « should be different from
ZErO0.

As was shown in [16] Eq. (8) can be consistently quantized in the nonstandard
synchronization, and the resulting theory is not plagued by pathologies relating to
quantization of tachyonic field in the SR. In particular, in this framework the vacuum
is stable [16]. It is related to the fact that the spectral condition k° > 0 is invariant
also for the space-like dispersion relation k? < 0 (see transformation law (1)). A
covariant construction of the Fock space can also be made [16].

It is easy to see that, using (7) F'*¥ can be expressed by four-potential A* as

Fr = gAY — 9" A* — a(uM AY — u” AM), C)]
and the gauge transformations of A# are of the form A# — A* + (0% — au*)x.
Therefore, the above field equations can be derived from the Lagrangian density

1 1
L= =B P 4+ 2F [0 A7 = 0V A" —a(u" 4" — " A", (10)

For a general field F*¥ and under standard identification of F'*” with E and B
(F% = EF F% = ¢'* B¥) the Lorentz invariants F'F and F? are

F*F, = —4E-B,
FwE, = =Tr(gFgF)= (11)
=2(B? - E?) + 4u%u- (B x E) — 2(u%)%(u x B)2.

Now let us examine the monochromatic plane wave solutions f#* of (6)and (7). Let

f;u/ — e;w(k)eikw + e*uy(k)efikz’ (12)

! This can be done equivalently by an appropriate redefinition F#¥ — exp{yuz)F*¥.



Superluminal Phenomena and the Phenomenological Maxwell Equations 49

where kx = k,2#. Therefore, by (6)and (7) we find

(tk, + auy)et” = 0,
(tk, — auy)é™” = 0, (13)
and (13) lead to the tachyonic dispersion relation k2 = —a?. The solution of the

system (13) has the form

x (E*u” — EYu*) — (B*n” — k"n") —ia(ufn” — u’n?),

where k*,utn# and e g, u ) span a basis, un = u,n#, etc. and n* can be
complex in general.

It is convenient to consider our plane wave solution in the preferred frame. If the
PF is realized as the cosmic background radiation frame, this choice is reasonable
from our point of view because vsolay & 369.3 £ 2.5 km/s < ¢ with respect to
CBREF [21]. For PF, v* = (1, 0) so in this frame g, = diag(1,—-1,—1,—1). Now
we can putn = —(a+ ib)e /2, where a and b are real and a L b. Thus from (14)
we have the following form of the electromagnetic wave in the preferred frame

E = ﬁkx{k><[—cos(kx+cp+£)a+sin(km+cp+£)b]}, s
B = k x[cos(kx+ p)a—sin(kzx + ¢)b]

where ¢ = arccos (k°/|k|), |k| > o, k° = 1/|k|? — 2. Evidently, we can choose
a 1l kand b L k. Therefore in the PF

1.
—;FF =E-B = ala[b||k (16)

and

%FQ =B? - E? = a(a® — b?)|k|sin (2kzx + 2p + &) (17)
Therefore, contrary to the massless case, FF and F? cannot vanish simultaneously
except in the case E = B = 0. However, both E and B are perpendicular to k so the
wave front propagates along k. Moreover, the angle between E and B is constant in
time. The linear polarization is obtained fora = O orb = 0; in thiscase E | B. The
elliptical polarization is obtained for a and b simultaneously different from zero; in
this case E - B # 0. Notice that for o going to zero we obtain the standard vacuum
solution.

Now, the group velocity of the electromagnetic wave (15) is superluminal

/103 3
vy = Viw(k) = <%) % (18)
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while the phase propagates subluminally

Vph = ( s ) k (19)
EA\VEE a2 k[
A very important question is the energy transport associated with the electro-

magnetic wave. The locally conserved canonical energy-momentum tensor, derived
from the Lagrangian (10), is of the form

1
Ty =700 F" - F\F* — aF, ANt (20)

It is evidently neither gauge-invariant, nor is 7, symmetrical in zz and v. While this
second deficiency is not serious, the first one is very unpleasant and the question of
how to remedy this problem is unclear because the standard procedure fails in this
case. However the field four-momentum

P, := / do"T,, = / d*xTo,, 1)
t—=const

is gauge-invariant. We can define the covariant four-momentum per volume as well
as the gauge-invariant average density

P = Jim z /V > xTY (22)
Now, for the monochromatic plane wave (15) in the PF, Eq. (22) leads to
] 23)
p = Hlaib)
Thus, in the PF
) —p? = —a? (0 RS 24)

1 <
1.e., the energy transport is superluminal in this case also. Of course, the statements
resulting from (18), (19) and (24) are true in all inertial frames, by Lorentz covari-
ance.

3. Conclusions

Our discussion shows that a possible influence of the quantum preferred frame on
an appropriate medium can cause tachyonic-like propagation for electromagnetic
waves. It is interesting that solutions for the effective Maxwell equations (6) and (7)
are very regular and similar to the usual ones. Therefore, this model appears to offer
an alternative to standard proposals for explaining superluminal phenomena.

Acknowledgment

I acknowledge discussion with Piotr Kosifiski and Wactaw Tybor. This paper was
financially supported by the University of Lodz.




Superluminal Phenomena and the Phenomenelogical Maxwell Equations

References

I
121
(3]
(41
151
(6]
(7]
(8]
19l
[10]
[
[12]
[13)
[14]
[15)
[16]
[17
[18]
(1]
(207
[21

A. M. Steinberg, P. Gi. Kwiat, and R. 7. Chian, Phys. Rev. Ler. T1, 708 (1993).
A. M. Steinberg and R. 7. Chian, Pliys. Rev A 51, 3525 (1995).

G. Nimtz, Gen, Rel. Grav. 31, 737 (1999).

G. Nimtz, Eur. Phys. J. BT, 523 (1999).

L. ). Wang, A. Kvzmich, and A. Dogariu, Nature 406, 277 (2000).

Y. Aharonov and D. Z. Albert, fhys. Rev. £ 24, 359 (1981).

A. Peres, Phys. Rev: A 61, 022117 (2004).

A. Peres. Quanuum Theory: Concepts and Methods, (Kluwer, Dordrecht, 1993).
L. Hurdy, Phys. Rev. Len. 68, 2981 (1992).

1. C. Percival, Proc. R, Soc. London Ser. A 456, 25 (2000).

I. C. Percival, Phys. Lett. A 244, 495 (1998).

P. Caban and J. Rembielifiski, Phys. Rev. A 59, 4187 (1999).

A. Suarez, quant-ph/0006033 {unpublished).

V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, Phys. Leit. A 276, 1 {2000).
1. Rembielinski, Phys. Ler. A 78, 33 (1980).

1. Rembielidski, far. J. Mod. Phvs. 12, 1677 (1997).

§. Coleman and S. L. Glashow, hep-ph/0808446 {unpublished).

D. Colladay and V. A. Kostelecky, Phyvs. Rev. [ 58, 11600 (1998).

R. Anderson, [. Vetharaniam, and G. E. Stedman, Phys. Rep. 295, 93 (1998).
D. E. Groem et al. (Particle Data Group), £us. Phys. 4. C 15, 1 (2000).

C. H. Lineweaver er al., Asirophys. J. 470, 28 (1996).






Sub- and Superluminal Velocities in
Space with Vector Time
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Within (he bounds of the known relativistic theory the hypothesis of superluminal
velocities allows one to influence the past, which leads to acausal paradoxes. We
should like 1o stress, however, that this conclusion is based on the contradictory
extension of the customary Lorentz transformations beyond the light barrier. Since
atl present no other prohibitions for faster-than-light signals carrying energy and
information are known, the answer w the question does exisl: such signals may
or may not be oblained only from an experiment or from a more general theory,
A generalization of a theory with vector lime is considered, which allows some
superluminal phenomena compatible with the principles of relativity and causality.
Spreading of signals in the multitime world is characterized by peculiarides which
can be used for an experimental determination of the time dimensionality of our
world,

Keywords: superluminal

1. Is the hypothesis of superluminal speeds at variance
with the experiment?

Lel us consider the Lorentz transformation of a time interval Af between two evenls
separated by a space interval Az:

At = (At — Az -ufc?)y = At{1 —un /™)y <0, n

if the product of the moving body’s speed v = Az/At and the relative velocity of
the reference frame u exceeds unity, i.e., ws/c® > 1 (u can be still smaller than ¢ and
the factor v = /1 — 12 /2 well defined). The possibility of turning back the flow of
time by considering the sequence of events from a moving body leads to difficulties
of two types:

» Acausal phenomena contradicting our ideas about the time order of events
appear when, for example, a bullet flies not from a hunter’s gun to a target-
crow but, on the contrary, the crow emits the bullet and it runs back up the gun
barrel.
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¢ Using superluminal signals one can change the past. In particular, an effect
can destroy its cause: e.g., by a faster-than-light signal we can prevent our
birth or kill curselves in the cradle and then the [act of our existence becomes
an unexplicable puzzle.

At present there are two main viewpoints of this difficulty. Some authors (e.g.,
E. Recami, see his review [1]) consider the phenomena with time reversals as really
observable but apparently illusory events for which one can always find a genuine
cause, just as we do when we hear the roar of a supersonic jet. However, this cannot
explain or forbid suicide in the cradle, since it is not apparent, but can be actually be
accomplished by a faster-than-light ray.

Another point of view shared by the majority of physicists (see the review [2]
where a more detailed bibliography can be found) considers the difficulties as a proof
of the obvicus contradictoriness of the superluminal hypothesis and generally rejects
the existence of superluminal signals carrying energy and information. Though we
also share the latter opinion, it nevertheless appears to be insufficiently grounded.
Indeed, as mentioned above, time reversal occurs, even if events are observed from
a subluminal reference frame (e.g., from a conventional bicycle!). The existence of
bodies with » > ¢ assumes the possibility of using them as superluminal reference
frames {(i.c., with w > ¢). A consistent generalization of Lorentz transformation in
four-dimensional space-time , as proved in paper [15], is impossible '. The set of
the equalities (1) is obviously true up to the last relation when wv > 1 is assumed.
In four-dimensional space-lime x = (:f:l,mg,;r;g,r:t)T. This, as il was shown in
paper [15], at once turns the Lerentz group inte an equivalent group of linear trans-
lormations ;EL = A(‘t)),,y.‘n”, withDetA = 1. Successive use ol several sub- and
superluminal Lorentz transformations results in some symmetries which do not exist
un our world — in a space dilation x — Ax, in the time inversion t — —f, efc. This
means thal the relations (1) at v > 1 are not reliable and conclusions based on them
are doubtlul.

Of course, no superluminal phenomena carrying energy have been observed as
yet. However, these results are related to the region of the phenomena described
by known physics, and one cannot exclude the existence of inaccessible regions of
events, outside the known ones, with in principle new laws where information can be
carried with a faster-than-light speed without any violation of relativity and causality.
Omne must also take into account that superluminal objects appear in various string
models, in theories with high-order Lagrangians, by supersymmetrical generaliza-
tions etc., and one may suspect that this fact is not only a disappoeinting theoretical

!One should note thal this difficulty is present in any theory with non-local interaction. For example,
in a field theory with a form-lactor where space- and time-like poinls enter into the interaction term
f Gl yh{as ) Alwa)d* e waas quite equivalenily the reference frames tied 1o ihese points ean be both
Lypes — sub- and superluminal. A formal relativistic invariant form of equations by itself does not provide
complete Lorentz invariance of the theory.
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failing, but is a reflection of some reality 2

To answer the question as to the existence of faster-than-light motions, one must
go into regions of unstudied phenomena where one can develop a consistent theory
of relativity with velocities v > c.

2. Multitime velocity

In this respect interesting possibilities are provided by the theory of multidi-
mensional time. Taking into account the apparent tendency of a symmetrization of
physical theory with respect to the space and time co-ordinates, we assume that our
world has the six-dimensional space-time structure

%= (x,0)1 = (21,72, 23,1, t2,t3) 7. (2)

(In what follows the tree-dimensional vectors in z- and ¢-subspaces will be de-
noted, respectively, by bold symbols and by a “hat”, six-dimensional vectors will
be marked, accordingly, by bold symbols with a hat).

The six-dimensional velocity vector is defined now as

dx

ds 0x _dx_ o
dr

= = (v,c?

= (FV)x :Tiﬁti ="

; 3)

v =

where V = (8/0t,,0/dta,d/dt3) and the unity vector 7 = di /dt with proper time
t along the considered time trajectory.

If we notice that a differential of the squared length in the six-dimensional space-
time

ds® = 2(di)? — (dx)* = (dt)? [1 — ¢~ 2(dx/dt)?] = dt*c* [+, 4)

where v = [1 — (v/c)?]'/2, then the velocity vector can be written in the covariant
form

0 =dx/ds = (y/c)dx/dt = vV /ec. 3)
As in the customary onetime case the scalar product
fl2:’}/2\72/62:’}/2(02%2—V2/C2):]_ (6)

and a light wave front always has a spherical form:

2In paper [16] the superluminal solutions for the Maxwell equations were discovered. Such solutions
can be interpreted as describing “phase phenomena” which do not carry any information, like a bun-
dle of sunbeams in a mirror. If we suppose that these solutions describe transportation of energy, then
superluminal co-ordinate frames can be tied with bundles of such rays and the above mentioned difticul-
ties appear. The discovered solutions can describe information carrying signals in a space-time with the
dimensionalities N > 3 @ 1.
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ta
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/

Fig. 1. An observer moves along the axis ¢;. From his viewpoint the speed of
the body can exceed the light velocity.

> Az} - PAG) = AP Z = At?(v? - ?) =0, (7)
i.e., in any direction of the m—subspace the body’s speed does not exceed light ve-
locity. Nevertheless, in a multitime world we can observe faster-than-light speeds of
bodies.
3. Superluminal velocities

It is very important to emphasize that the body’s speed v is defined with respect
to an increment At along the body’s time trajectory ¢. If it is unknown and an
observer uses instead of A¢ his own proper time At, = Atcosé where § is the
angle between the body and observer’s time trajectories, then the “speed” v, =
Ax/At, = v/cosf defined in this way may turn out to be larger than the light
velocity. In this case the considered body behaves, from the observer’s viewpoint,
like a tachyon. For example, if § ~ /2, it passes any finite distance practically
instantaneously and “grows old” straight away. However, as it was shown in the
papers [5]-[7], Lorentz transformations depend on v but not on vp; therefore, in
the multitemporal world no accausal effects can be observed by transformations to
moving reference frames, contrary to true tachyons which transfer information to
the new frame, judged by the observer, backwards in time (if the relations (1) are
correct [2]). Superluminal velocities can also be observed in a more general case
when the observer’s time trajectory is, like a body, inclined with respect to the ¢;
axis.

At the same time one should take into account that, as the onetime world with
parallel trajectories 7(¢) is a particular case of the multitime world, the forbidding
theorem on the superluminal generalization of the Lorentz transformations proved in
paper [1] is also valid.

The discovery of any superluminal motions in experiments would be a serious
indication of the multidimensionality of world time. As is known, faster-than-light
objects are indeed observed by astronomers. Though up to now they have succeeded
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t

Fig. 2. The creation of a component with the energy £/ = 7/E > 0 is accom-
panied, without fail, by the creation of a compensating component moving back
in time with the energy £ = 7"/ E < 0. The energy vector is parallel to the time
vector:E = E7.

in interpreting such phenomena within the limits of onetime notions as optical illu-
sions (see, e.g., [8, 9] where there are more detailed references), one cannot exclude
that among such “superluminal objects” there are bodies moving along distinct time
directions. We need more experimental information to identify such a possibility.

However, one must bear in mind that the creation of an object moving along time
trajectories different from ours is possible only in exceptional cases when the known
energy conservation law has vanished — in some cosmic cataclysm where new types
of gravitation and electromagnetic waves can be produced or in very small space and
time intervals (see Fig. 2). [10]- [12] 3,

Now let us consider some interesting peculiarities of signals spreading in the
multitime world which can be used for an experimental determination of time di-
mensionality.

4. Detection of signals

As a simple example illustrating the peculiarities of the detection of signals in
a multitime world, Cole and Starr considered a case when, under certain circum-
stances a splitting of time trajectories of a luminous body motionless in x-subspace
and the observer occurs suddenly (Fig. 3) [13]. In the variant of a theory symmetrical
with respect to every possible time direction considered by these authors, the light
source gradually losing its energy (displacing into infrared region) remains visible
some time after the moment of splitting. However, if time-reverse motions are for-
bidden (as is indeed observed in Nature), we come to quite a different conclusion. In
particular, if the observer’s time trajectory coincides with the ¢; axis, the luminous
body becomes invisible at a given time because it occurs in the future with respect

3In paper[10] it was proposed that gravitational waves evolving along time trajectories different from
ours could be detected by observing correlations of gravitation detector oscillations in two perpendicular
directions. Another possibility for discovering motion along a distinct time trajectory may be based on the
fact that the new components of the electromagnetic field created in the multitime world have longitudinal
polarization and can be detected when the transversal components are excluded by any absorber.
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to

7

1/t1

Fig. 3. Atatime t, a splitting of time trajectories of an observer and a luminous-
body 7 occurs. After that time (t; > ¢,) the body becomes invisible.

to the detector. The body can remain visible for some time after splitting only if the
observer’s trajectory has some inclination with respect to the #; axis.

A more complicated case is shown on the Fig. 4. One can see there that when the
emitted light spreads in the plane (#1, t2) from the past to the future then the duration
of observable luminescence is equal to

TE(tf—tC):(tf—tp)—R/c:E(M—1>. ®)

C S @
Here ¢, is the time of the splitting, ¢, is the observer’s proper time when the light
signal trajectory becomes parallel to the axis ¢;. Att > t; the time light signal
propagates backward in time ¢». R is a constant distance between the light source
and the detector and ¢ is the angle between £ and 7. The inclination of the observer’s
trajectory with respect to the ¢; axis is denoted by 6.

If the time trajectory of a luminous body intersects the observer’s trajectory (at
the time ¢ = ¢., see Fig. 4), the detector holds the light fixed in an interval from ¢,
when it fixes the ray emitted at a right angle to the ¢, axis up to the arrival time of the
last visible signal £¢. For ¢ < 4 the body is too remote in the past and connection
to it is possible only by means of subluminal signals (v < ¢). The rays emitted at
t > ty cannot be observed by virtue of the causality principle. So, the duration of
the visible light expressed throughout the observer’s proper time is

_ Rsin(yp + 0)

T=ty—ts=(ty —tc)+ (tc —t5) = zW[l +cot{p+6)]. O

As in the model considered by Cole and Starr [13, 14] the value of 7 is significant
only for remote cosmic objects. For example, if R = I mand ¢ = 6 = 1',1°,40°,
it is equal, respectively, to 2.107%,4.10~7, 10~ 8¢. In a multitime world a large num-
ber of invisible time displaced bodies may be present around any observer. In this
respect this world is much like a hypothetical tachyon theory world where there are
also plenty of nonabsorbable objects [15]. One might imagine that an intersection
of t-trajectories of the bodies between which a space distance is smaller than their
dimensions must result in dramatic destruction of bodies. As such phenomena are
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t,

Fig. 4. At an observer’s proper time ¢. the luminous body’s time trajectory 7 is
split off from the observer’s trajectory . The light is seen in the interval ¢, <+ t;.
Light spheres (£ — 7)2 = (B/c)? from which the observer can receive signals at
different times ¢ are dotted. The dotted lines with arrows show the trajectories of
the first and last visible signals.

not observed in a our part of universe, this proves that time flow is single-directed
in this region. The duration of the visible light from a light source a moving in -
subspace depends on the value and direction of its velocity. However, qualitatively
the picture remains the same as in the above considered static case. Particularly, if
the observer’s ¢-trajectory coincides with the ¢; axis and the light source moves in
z-subspace with zero impact parameter (a head-on collision), then the luminescence
becomes visible at a time

ts = &tang) = (& + ﬂt5> tan ¢, 10y
c c

where R; = R(t;) is the distance of the luminous body from the detector at the time
ts, R, is the respective distance at the time when their ¢-trajectories intersect (¢ = 0),
 is the angle between these trajectories (Fig. 5A), § = v/c is the relative velocity
of the luminous body and the observer. Solving this equation, we obtain

R./c
tg = —————.
tang — 3
If at ¢ = 0, the source and the detector come together and the velocity § is small
(8 < tan, Fig. 2A), then the light is seen in an interval from ¢, to ty = R./c:

(11)

T:%[1+1/(tancp+ﬂ)]. (12)

By increasing the velocity (8 > tany) we can stretch the time interval over
all the left half-axis from t; = —oo up to ;. In the case when the light source
moves away from the detector at time ¢ = 0 and its velocity § < tan ¢ the light
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Fig. 5. The bold tracks on the t; axis are the intervals of visible light from a
moving light source. The intersection of time trajectories is chosen as ¢t = 0. The
observer’s light spheres are dotted. In case A the luminous body with velocity
S < tan ¢ comes close to the observer at time ¢ = 0. In case B the luminous
body with hight velocity 8 > tan ¢ moves away from the observer at ¢t = 0.

is observed, as before, in the interval from ¢, to {y. However, by 8 > tan ¢ (Fig.
5B) one more interval of the visible light beginning at ¢, = —oo appears. The
asymmetry of the cases of an approaching and receding light source is stipulated by
detector asymmetry with respect to signals from the past and future.

5. Conclusion

In the limits of the commonly used superluminal generalizations of the Lorentz
transformations, the hypothesis of faster-than-light velocities creates inadmissible
paradoxes. However, this conclusion is doubtful since all the generalizations used
are contradictory, and we cannot be fully confident that the basic relations (1) are
correct. One cannot exclude the possibility that slices of reality exist where events
developing with faster-than-light velocities and carrying energy can be observed. Is
this statement right or wrong — it is now a question for experiment. Theories have
been proposed, e.g., multitime generalizations, which permit superlight processes
without any violation of causality and relativity.
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We study the phenomenon of one-dimensional non-resonant tunneling through two
successive (opaque) potential barriers, separated by an intermediate free region R,
by analyzing the relevant solutions to the Schroedinger equation. We find that
the total traversal time does depends nor only on the barrier widths (the so-called
“Hartman effect”), but also on the R width: so that the effective velocity in the
region R, between the two barriers, can be regarded as infinite. This agrees with
the results known from the corresponding waveguide experiments, which simulated
the tunneling experiment considered here due to the known formal identity between
the Schroedinger and the Helmholtz equation. Finally, in an Appendix, we provide
some general information (especially bibliographical) about the various sectors of
science in which Superluminal motions seem to appear

Keywords: tunneling, tunneling time, superluminal

In this note we show that —when studying an experimental setup with two rectan-
gular (opaque) potential barriers (Fig. 1)— the (total) tunneling phase time through
the two barriers depends neither on the barrier widths nor on the distance between
the barriers.

Let us consider the (quantum-mechanical) stationary solution for the one-dimen-
sional (1D) tunneling of a non-relativistic particle, with mass m and kinetic energy
E = B’k*/2m = Imv?, through two equal rectangular barriers with height Vo
(Vo > E) and width a, quantity L — a > 0 being the distance between them. The

Schrodinger equation is
n 0
o 822 () + V(@) y(z) = Ey(a), (1)

where V () is zero outside the barriers, while V (x) = V} inside the potential bar-
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Vo Vo

I | II ITT v \Y
a L L+a

Fig. 1. The tunneling process, through two successive (opaque) potential bar-
riers, considered in this paper. We show that the (total) tunneling phase time
through the two barriers depends neither on the barrier widths nor on the dis-
tance between the barriers.

riers. In the various regions I (x
IV(L<z < L+a)andV (z
are the following

0), (0 <z <a),l(a <z <L),

<
> L + a), the stationary solutions to eq. (1)

1/11 — e+ikz +A1R efikz7 (2a)
Y = ape X + e‘”“, (2b)
Y = Arr [ + AogemT] (2¢)
Yrv = Arr [ape XD 4 gy etx@-D)] (2d)
Yv = Ajp AypettT (2e)

where x = /2m(Vy — E)/h, and quantities A1r, Asr, 417, 42T, @1, @2, 1 and
B are the reflection amplitudes, the transmission amplitudes, and the coefficients of
the “‘evanescent” (decreasing) and “anti-evanescent” (increasing) waves for barriers
1 and 2, respectively. Such quantities can be easily obtained from the matching
(continuity) conditions:

Y1(0) = 91(0)

| _ du o
oz |,_, T Oz 0

Yi(a) = Ym(a)

du| _ Om éjg;
O r=a S Oz aﬁza7

Yim(L) = yYrv(L)
O _ Oty

or |,_, Oz

(
; (5b)

z=L

'l,/JIV (L + a) = ’(/)V (L + a)
Oy Oy
Oz oz

z=L+a

z=L+a
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Equations (3-6) are eight equations for our eight unknowns (Ajr, Asr, A1,
Aor, ay, as, $1 and B2). First, let us obtain the four unknowns Asg, Aor, g, B2
from egs. (5) and (6) in the case of opaque barriers, i.e., when ya — 0o:

4

Gy — kL %7 (7a)
By — eikL—2xa %7 (7b)
Agp — ¥kL Zz%i, (7c)
Ao —> e Xogtka %, (7d)

\
We may then obtain the other four unknowns A;g, A1, a1, f1 from egs. (3)
and (4), again in the case xya — oo; one finds for instance that:

_ dixk
A — _e~2xa __ A
1T € (X — Zk)z y (8)
where ok
— X
A= 2xk cosk(L —a) + (x® — k?) sink(L — a) ©)

turns out to be real; and where, it must be stressed,

1k +x
are ik —x

is a quantity that does not depend on a or on L. This is enough to conclude that the
phase tunneling time (see, for instance, refs. [1-3])

5

Tph

tunEh

darg [A1p AppettLta)] 0 . { —4ikx
( >

OF = M55 8 | G = )?

(10)
while depending on the energy of the tunneling particle, does not depend on L + a
(since it is actually independent both of a and L).

This result not only confirms the so-called “Hartman effect” [1,3] for the two
opaque barriers —i.e., the independence of the tunneling time from the opaque bar-
rier widths—, but it also extends the effect by implying the total tunneling time to
be independent even of L (see Fig. 1): something that may be regarded as further
evidence of the fact that quantum systems seem to behave as non-local. It is im-
portant to stress, however, that the previous result holds only for non-resonant (nr)
tunneling: ¢.e., for energies far from the resonances that arise in region III due to
interference between forward and backward travelling waves (a phenomemon quite
analogous to the Fabry-Pérot phenomenon in the case of classical waves). Otherwise
it is known that the general expression for (any) time delay 7 near a resonance at E;
with half-width T would be 7 = AL[(E — E;)? + 2] + 7.
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The independence of tunneling-time from the width () of each one of the two
opaque barriers is itself a generalization of the Hartman effect, and may be a pri-
ori understood —tollowing refs. [4,5]— on the basis of the reshaping phenomenon
which takes place inside a barrier.

The even more interesting tunneling-time independence from the distance L — a
between the two barriers, can be understood on the basis of the interference be-
tween the waves leaving the first barrier (region IT) and traveling in region Il and
the waves reflected from the second barrier (region IV) back into the same region
IIL. Such interference has been shown [3] o cause an “advancement” (z.c., an ef-
fective acceleration) of the incoming waves, a phenomenon similar to the analogous
advancement expected even in region 1. Using wavepacket language, we noticed in
ref. [3] that the arriving wavepacket does interfere with the reflected waves that start
to be generated as soon as the packet’s forward tail reaches the (first) barrier edge: in
this way (already before the barrier) the backward tail of the initial wavepacket de-
creases —for destructive interference with those reflected waves— to a larger degree
than the forward one. This simulates an increase of the average speed of the entering
packet: hence, the effective (average) flight-time of the appreaching packet from the
source to the barrier does decrease.

Consequently, the phenomena of reshaping and “advancement” (inside the bar-
riers and to the left of the barriers) can qualitatively explain why the tunneling-time
is independent of the barrier widths and of the distance between the two barriers. It
remains impressive, nevertheless, that in region IIT —where no potential barrier is
present, the current is non-zero and the wavefunction is oscillatory— the effective
speed (or group-velocity} is practically infinite. Loosely speaking, one might say
that the considered two-barrier setup is an “(intermediate) space destroyer™. After
some straightforward but rather bulky calculations, one can, moreover, see that the
same effects (i.e., the independence from the barrier widths and from the distances
between the barriers) are still valid for any number of barriers, with different widths
and different distances between them.

Finally, let us mention that the known similarity between photon and (nonrela-
tivistic) particle tunneling [3-7] implies that our previous results hold also for photon
tunneling through successive “barriers”™: for example, for photons in the presence of
two successive band gap filters, such as two suitable gratings or two photonic crys-
tals. Experiments should be easily realizable; while indirect experimental evidence
seems to come from papers like [8].

At the classical limit, the (stationary} Helmholtz equation for an electromagnetic
wavepacket in a waveguide is known to be mathematically identical to the (station-
ary) Schroedinger equation for a potential barrier;* so that, for instance, the tun-

*These equations are, however, different (due to the different order of the time derivative) in the time-
dependent case, Nevertheless, it can be shown that they still have in commen classes of analogous solu-
lions, differing only in their spreading properties [3,7].



Suvperluminal Tunneling through Two Successive Barriers 67

neling of a particle through and under a barrier can be simulated [3-7,9-11] by the
traveling of evanescent waves along an undersized waveguide. Therefore, the re-
sults of this paper are to be valid also for electromagnetic wave propagation along
waveguides with a succession of undersized segments (the “barriers”} and of normal-
sized segments. This agrees with calculations performed, within the classical realm,
directly from the Maxwell equations[10,11], and has already been confirmed by a se-
ries of “tunneling” experiments with microwaves: see refs.[9] and particularly [12].
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APPENDIX

Some information about the experimental sectors of science
in which Snperluminal motions seem to appear

Introduction
The question of Super-luminal (V2 > ¢?) objects or waves [tachyons: a term coined
by G. Feinberg] has a long story, starting perhaps with Lucretius’ De Rerum Natura
(cf., book 4, line 201). Still in pre-relativistic times, we may recall e. g. , the papers
by A. Sommerfeld (quoted in refs. [Al, A2]). In relativistic times, our problem again
attracted attention essentially in the fifties and sixties, in particular after the papers by
E. C. George Sudarshan etal. , and later on by E. Recami, R. Mignani, e al. . [who
coined the term bradyons for slower-than-light objects, and brought the expressions
subluminal and superluminal into popular use through their works at the beginning
of the seventies], as well as by H. C. Corben and others (to confine ourselves to the
theoretical research). For references, one can check pages 162-178 in ref. [Al],
where about 600 citations are listed; pages 285-290 in ref. [A3]; pages 592-597
of ref. [A4] or pages 295-298 of ref. [AS]: as well as the large bibliographies by
V. E. Perepelitsa[A6] and as the book in ref. [A7]. In particular, for the causality
problems one can see refs. [Al,A8] and references therein, while for a model theory
for tachyons in two dimensions one can consult refs. [A1.A9]. The first experiments
to seek tachyons were performed by T. Alviger ef al. . ; citations about the early
experimental quest for superluminal objects may be found, e. g. . in refs. [A1,A10].

The subject of tachyons is now back in fashion, especially because of the fact
that at least four different experimental sectors of physics seem to indicate the exis-
tence of Superluminal objects [the old habit introducted by Mignani and Recami of
writing Superluminal with a capital §]. We wish to provide in the following some
information {mainly bibliographical) about the experimental results obtained in each
one of these 4 different sectors of physics.
FIRST: Negative Mass-Square Neutrinos
Since 1971 it has been known that the experimental square-mass of muon - neutri-
nos was negative (with low statistical significance, but systematically). If confirmed,
this would correspond (within the ordinary, naive approach to relativistic particles)
to an imaginary mass and, therefore, to a Superluminal speed; in a non-naive ap-
proach[Al], {.e., within a Special Relativity theory extended to include tachyons
[Extended Relativity (ER)], the free tachyon “dispersion relation” becomes E? —
p? = —m?2. Seee.g. E. V. Shrum & K. O. H. Ziock: Phys. Lert. B37(1971) 114;
D.C. Lueral. : Phys. Rev. Lers. 45 (1980) 1066; G. Backenstoss ef al. : Phys.
Lett. B 43 (1973) 539; H. B. Anderhub ef af. : Phys. Left. B 114 (1982) 76; R.
Abela et al. : Phys. Lett. B 146 (1984) 431; B. Jeckelmann ef al. : Phys. Rev. Lett.
56 (1986) 1444,

For the theoretical point of view, sece
E. Giannetto, G. D. Maccarrone, R. Mignani & E. Recami: Phys. Let. B 178 (1986}
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115-120, and references therein; and S. Giani’s work; see also E. Recami: “Classical
tachyons and possible applications”, Rivista Nuove Cim. 9 (1986), issue no. 6, and
relerences therein.

Recent experiments showed that electron-neutrinos also have negative mass-
square. Seee. g. R.G. H. Robertson ef al. . Phys. Rev. Leti. 67 (1991)
957; A. Burrows ef al. : Phys. Rev. Lert. 68 (1992) 3834; Ch. Weinhcimer ef
al. © Phys. Lett. B 300 (1993) 210; E. Hollzshuh e al. : Phys. Lert. B 287 (1992)
381; H. Kawakami et al. : Phys. Lert. B 256 (1991) 105, and s0 on. Sec also
the reviews or comments by M. Baldo Ceolin: "Review of neutrino physics,” invited
talk at the XX/ Int. Symp. on Multiparticle Dynamics (Aspen, CO; Sept. 1993)”;
E. W. Otlen: Nucl. Phys. News 5 (1995) 11.

SECOND: Galactic “Micro-Quasars”, etc.  (Apparent Superluminal expansions
observed inside quasars, some galaxies, and —as discovered very recently— in some
galactic objects, called “micro-quasars™)

Since 1971 apparent Superluminal expansions have ben observed in many quasars
(and even a few galaxies) [Nature, for instance, dedicated a cover to these observa-
tions on 2 Apr. 1981]. Such apparent Superluminal expansion was the consequence
of the experimentally measured angular separation rates, once the (large) distance of
the sources from the Earth was taken into account. From the experimental point of
view, a quote from the book Superluminal Radio Sources, ed. by J. A. Zensus & T.
J. Pearson (Cambridge Univ. Press; Cambridge, UK, 1987), and references therein,
is sufficient.

The distance those “Superluminal sources”, however, it is not well known; or, at
least, the (large) distances usually adopted have been strongly criticized by H. Arp
ef al. , who maintain that quasars are much nearer objects: so that all the above-
mentioned data can no longer be easily used to infer (apparent) Superluminal mo-
tions. However, very recently, GALACTIC objects have been discovered, in which
apparent Superluminal expansions occur; and the distances of galactic objects can
be more precisely determined. From the experimental point of view, see the papers
by L. E Mirabel & L.. F. Rodriguez. : “A superluminal source in the Galaxy,” Nature
371 (1994) 46 [with a Narure’s comment, “A galactic speed record,” by G. Gisler, on
page 18 of the same issue]; and by S.J. Tingay ef al. (20 authors): “Relativistic
motion in a nearby bright X-ray source.” Nature 374 (1995) 141.

From the theoretical point of view, both for quasars and “micro-quasars”, see
E. Recami, A. Castellino, G. D. Maccarrone & M. Rodond: “Considerations about
the apparent Superluminal expansions observed in astrophysics,” Nuove Cimento
B 93 (1986) 119. See also E. Recami: ref. [Al], and ¢f. R. Mignani & E.
Recami: Gen. Relat. Grav. 5 (1974) 615. In particular, let us recall that a
single Superluminal source of light would be observed: (i) initially, in the phase
of “optic boom™ (analogous to the acoustic “boom” by an aircraft that travels with
constant super-sonic speed) as an intense, suddenly-appearing source; (ii) later on,
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as a source which splits into two objects receding one from the other with velocity
v > 2¢ [see the quoted refs. ].

THIRD: Tunneling photons = Evanescent waves

This is the sector that has auracted the most attention from the scientific and non-
scientific press: it started in Scientific American in Aug. 1993 followed by Nature
{comment “Light faster than light?* by R. Landauver) on Oct. 21, 1993; then, New
Scientist (editorial *‘Faster than Einstein” on p. 3, plus an article by J. Brown on p.
26) in April 1995; and then Newsweek (19 June 1995, article by S. Begley, p. 44)
and all the newspapers and magazines of the world {(in Brazil, e.g., the folha de Sdo
Paulo, ete.; inltaly, e. g., La Stampa, La Repubblica, Focus, Panorama, ete.).

Evanescent waves were predicted by ER [¢f., page 158 in ref. [Al], and refer
ences therein] to be faster-than-light. Even more, they can be regarded as consisting
of tunneling photons, due te the known methematical identity of the Schroedinger
equaticn (in the presence of a potential barrier) and the Helmholtz equation (for
waves travelling, e.g., down a waveguide): and it has been known for some time [cf.
V. S. Olkhovsky & E. Recami: Phys. Reports 214 (1992) 339, and refs. therein]
that tunneling wave packets can move with Superluminal group velocities inside
the barrier. Therefore, due to the theoretical analogies between tunneling particles
(e.g., electrons) and tunneling photons, it was expected also on the basis of Quan-
tum Mechanics that evanescent waves could be Superluminal. This has actually
been confirmed in a series of famous experiments.

The first experiments were performed at Cologne, Germany, by Guenter Nimtz
ef al. , and published in 1992, Letus quote: A.Enders & G. Nimtz: /. de Physique-
I'2(1992) 1693; 3 (1993) 1089; Phys. Rev. B 47 (1993) 9605; Phys. Rew
E 48 (1993) 632; G. Nimtz, A. Enders & H. Spieker: J de Physigue-I 4 (1994)
1379; W. Heitmann & G. Nimtz: Phys. Letr. A 196 (1994) 154; G. Nimtz: Physik
Bl 49 (1993) 1119; “New knowledge of tunneling from photonic experiments,” in
Tunneling and its Implications (World Scient. ; Singapore, in press); G. Nimtz & W.
Heitmann: “Photonic bands and tunneling,” in Advances in Quantum Phenomena,
ed. by E. G. Beltrametti and J. -M. Lévy-Leblond (Plenum Press: New York, 1995),
p- 185; Prog. Quant. Electr. 21 (1997) 81; G. Nimtz, A. Enders and H. Spieker:
“Photonic tunneling experiments: Superluminal tunneling,” in Wave and Particle in
Light and Matter, ed. by A. van der Merwe & A. Garuccio (Plenum; New York,
1993); 1. de Physique-I 4 (1994) 565; H. Aichmann & G. Nimtz: “Tunneling of
a FM-Signal: Mozart 40, submitted for pub. These are important experimental
papers. Nimtz er ¢l.  also made similar simulations by computer (on the basis of
the Maxwell egs. ), reproducing the related experimental results, where they exist,
accurately: ¢f. H. M. Brodowsky, W. Heitmann & G. Nimtz, Phys. Lern. A 222
{1996) 125-129.

Other famous experiments have been performed at Berkeley; their results ap-
peared in 1993 in A. M. Steinberg, P. G. Kwiat & R. Y. Chiao: Phys. Rev. Lett. 71
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(1993) 708, and, simultaneously, in R. Y. Chiao, P. G. Kwiat & A. M. Steinberg:
Scientific American 269 (1993), issue no. 2, p. 38. {'f. also A. M. Steinberg & R.
Y. Chiao: Phys. Rev. A 51 (1995) 3525; P. G. Kwial etal.: Phys. Rev. A 48 (1993)
R867; E. L. Bolda ef al. : Phys. Rev. A 48 (1993) 3890,

Further experiments on Superluminal evanescent waves have been performed at
Florence: see, e.g., A. Ranfagni, P. Fabeni, G. P. Pazzi & D. Mugnai: Phys. Rev. £
48 (1993) 1453, The last experiments (as far as we know) were made at Vienna: Ch.
Spielmann, R. Szipocs, A. Stingl & F. Krausz: Phys. Rev. Lett. 73 (1994) 2308,
and at Rennes and Orsay: Ph. Balcou & L. Dutriaux: Phys. Rev. Lest. 78 (1997)
851; V. Laude & P. Tournois: J. Opt. Soc. Am. B 16 (1999) 194,

For the theoretical point of view, see the above-quoted V. S. Olkhovsky & E.
Recami: Phys. Reports 214 (1992) 339, and refs. therein; and V. S. Olkhovsky, E.
Recami, F. Raciti & A. K. Zaichenko: J. de Physique-1 5 (1995) 1351-1365. See
alsc pages 158 and 116-117 of the already quoted ref. [A1]; D. Mugnai et al. : Phys.
Lett. A 209 (1995) 227-234; E. Recami, F. Fontana & R. Garavaglia: [nt. J. Mod.
Phys. A 15 (2000) 2793-2812; and V. S. Olkhovsky, E. Recami & G. Salesi: Lanl
Archives # quant-ph/0002022.

The most interesting experiment of this type seems to be the one performed with
two “barriers” (for instance, with two segments of undersized waveguide separated
by a normal waveguide); for suitable frequency-band pulses —i.e., for non-resonant
“tunneling” —, it has been found that total crossing time does not depend on the
length of the intermediate (normal) waveguide: that is to say, the pulse speed along
the latter is infinite[A11]. This agrees once more with the predictions of Quantum
Mechanics for tunneling through two successive opaque barriers (the tunneling phase
time does not depend on the distance between the barriers[A12]). Such an impor-
tant experiment could and should be repeated, also taking advantage of the fact that
evanescence regions can be easily constructed in many different ways or by different
“photonic band-gap materials” and gratings (since one can use multilayer dielectric
mirrors, semiconductors, photonic crystals, erc. )

At this point, let us observe also the following. Even if in ER all the ordinary
causal paradoxes seem to be solvable[A1,A8], nevertheless, one ocught to bear in
mind that (whenever an object, O, is encountered travelling at Superluminal speed)
negative contributions should be expected to the tunneling times[A13]: and this
ought not to be regarded as unphysical[A1,A8]. In fact, whenever an “object” O
overconies the infinite speed with respect to a certain observer, it will afterwards
appear to the same observer as its “anti object” O travelling in the opposite space
direction[Al,A8]. For instance, when passing from the lab to a frame 7 moving in
the same direction as the particles or waves entering the barrier region, the objects
O penetrating through the final part of the barrier (with almost infinite speed[A14])
will appear in the frame J as anti-objects O crossing that portion of the barrier
in the opposite space—dirvection| A1,A8]. In the new frame F, therelore, such anti-
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objects m would yield a negatrive contribution to the tunneling time, which could
even turn out, in total, to be negative. What we want to stress here is that the ap-
pearance of such negative times is predicted by Relativity itself, on the basis of the
ordinary postulates[Al,A8,A13,A14]. From the theoretical point of view, besides
rels, [A13,A14,A8,A1], scc also R. Y. Chiao, A. E. Kozhekin A, E. , and G. Kurizki:
Phys. Rev. Letr. 77 (1996) 1254; C. G. B. Garrel & D. E. McCumber: Phys. Rev.
A 1(1970) 305. From the (quite interesting!) experimental point of view, see 5.
Chu & Wong W. : Phys. Rev. Letr. 48 (1982) 738; M. W. Mitchell & R. Y. Chiao:
Phys. Lett. A 230 (1997) 133-138; G. Nimtz: Europ. Phys. J. B (to appear as a
Rapid Note); L. Wang er al. : Nature 406 (2000) 277; further experiments are being
performed at Glasgow [D. Jaroszynski, private communication].

Finally, let us emphasize that faster-than-c propagation of light pulses can be
(and was, in same cases) observed also by taking advantage of anomalous dispersion
near an absorbing line, or nonlinear and linear gain lines, or nendispersive dielec-
tric media, or inverted two-level media, as well as of some parametric processes in
nonlinear optics (¢f. G. Kurizki ef al. ).

FOURTH: Superluminal motions in Electrical and Acoustical Engineering —
The “X-shaped waves”
This fourth sector is perhaps the most important one.

Starting with the pioneering work by H. Bateman, it gradually became known
that all the (homogeneous) wave equations —in a general sense: scalar, electromag-
netic and spinor— admit selutions with subluminal (v < ¢) group velocities [A15].
More recently, Super-luminal (V' > ¢) soluticns have also been constructed for those
homogeneous wave equations, in refs. [A16] and quite independently inrefs. [Al7]:
in some cases just by applying a Superluminal Lorentz “transformation™ [A1,A18].
It has been also shown that the same happens even in the case of acoustic waves, with
the presence in this case of “'sub-sonic™ and “Super-sonic” solutions [A19]. Particu-
lar attention has been attracted to the [act that some of the new solutions are “undis-
torted progressive waves” (namely, represent localized, non-diffractive waves). One
can expect all such solutions to exist, e.g., also for seismic wave equations. More
intriguingly, one might expect the same to be true in the case of gravitational waves
oo,

It is interesting to remark that the Super-senic and Super-luminal solutions put
forward in refs. [A20] —some of them already experimentally realized [A2]1]—
appear to be (generally speaking) X-shaped, just as predicted in 1980-1982 by A.
O. Barut, G. D. Maccarrone & E. Recami in ref. [A21]; so that they now have been
preliminarily called “X-waves. ”

In this regard, from the theoretical point of view, we may cite pages 1 [6-117, and
pages 59 (fig. 19)and 141 (fig. 42),in E. Recami: ref. [Al]. Even more, see the
abovementioned A. O. Barut, G. D. Maccarrone & E. Recami: “On the shape of
tachyons,” Nuove Cimento A 71 (1982) 509-533 (and refs. [A21]) where “X-shaped
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waves” are predicted and discussed; ¢f. also E. Recami [A20], which appeared in
Physica A. From the quoted papers it is also clear why the X-shaped waves keep
their form while travelling (non-dispersive waves): a property that has elicited high
interest from electrical and acoustical engineering. New experimental and theoreti-
cal work is going on {(¢.g., by F. Fontana et al. at the “Pirelli Cavi”, Milan, Italy, with
pulsed lasers; and by H. E. Hernandez F. et al. at the F. E. E. C. of Unicamp, Camp-
inas, 5. P. ). Let us mention in particular work by P. Saari, H. Sdnajalg et al. at Tartu,
Eslonia (sce, e.g., Opt. Lert. 22 (1997} 310; Laser Phys. 7 (1997) 32), who ex-
perimentally produced Superluminal X-shaped light waves[AZ22] in optics, and work
by D. Mugnai, A. Ranfagni and R. Ruggeri, who produced at IROE/CNR, Florence,
Superluminal X-shaped beams in the realm of microwaves. [A22] Simultaneously,
as expected on the basis of ER, also (non-truncated) X-shaped beams with finite
total energy have been constructed[A23]; while many new Localized Superluminal
Solutions to the Maxwell equations have been tound (some of them generalizing the
X-shaped beams)[A23].

Further {Numbered) References of the Appendix:

[A1] E. Recami: Rivista Nuova Cim, 9 (1986), issue no, 6, 1.

[A2] P. O. Froman: Arch. Hisi. Exact Sci. 48 (1994) 373.

[A3] R. Mignani & E. Recami: Rivista Nuovo Cim. 4 (1974) 209; E398.

|A4] E. Recami: in Albert Einstein 1879-1979: Relativity, Quanta and Cosmology, ed. by E
De Finis & M, Pantaleo, vol. 2 (Johnson Reprint Co. 5 New York, 1979), p. 337, This book
exists also in lialian and in Russian,

1AS] P. Caldirola & E. Recami: in ftalian Studies in the Philosophy of Science, ed. by M. L.
Dalla Chiara (Reidel: Boslon, 1980), p. 249,

1AG] V. F. Perepelilsa: Reports ITEF-100 and ITEF-163 (Institute of Theoretical and Experi-
mental Physics; Moscow, 1980).

[A7] E. Recami (ed. ): Tuchyons, Monopoles, and Related Topics (North-Hoelland; Amster-
dam, 1978).

[AB] E. Recami: Found. of Phys. 17 {1987y 239; Lett. N. Cim. 44 (1985) 587.

1A9] E. Recami & W. A, Rodrigues: in Gravitational Radiation and Relativity, ed. by ).
Weber & T. M. Karade (World Scient. ; Singapore, 19853, pp. 151,

[A10] Sccc. g. D. F. Bartlett ef al. ; Phys. Rev. D18 (1978) 2253; P.N. Bhat et al. : J. Phys.
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A short review is given of the original treatment of the dynamic image forces and
charge wnneling in (wo- and three-layer systems, Both metallic and semiconduct-
ing elecurodes are swdied. The linkage between plasma-like medium non-adiabatic
response and the notion of the lunneling time is demonstrated.

Kevwords: tunneling, dynamic image forces, dielectric permiltivity, plasmon damping

1. Introduction

The problem of the tunneling time 74, in quantum mechanics has turned out to
be extremely important and difficult [1, 2, 3, 4.5, 6.7, 8,9, 10, 11]. Tt emerged
[12, 13] soon after the tunneling concept itself was introduced for electronic [14,
15, 16], atomic [17, 18], and nuclear physics [19, 20, 21, 22, 23], as well as for
low-temperature chemistry [18, 24, 25, 26, 27]. Although far from being solved,
the problem has, nevertheless, provided some insight into condensed matter physics
[15]. Specifically, charged particles moving near interfaces and in thin interlayer
gaps excite virtual or real collective oscillations of the metal (semiconductor) plasma
[28,29, 30,31, 32, 33, 34]. In this case the polarization (image) forces differ from the
classical ones due to dynamic (nonadiabatic) renormalization [35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45]. For sub-barrier (tunnel) processes, two time scales are inherent
in the problem: 7,5, mentioned above and w;l, the inverse circular frequency of
surface plasmons. The dynamic corrections are essential if 7qunws < 1, i.e., when
the electrode plasma response is retarded with respect to the prejectile Coulomb
field action [41], 43, 46, 47]. Otherwise, only static corrections of a different origin
modify the classical result [32, 35, 39, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63].

In this article we summarize some of our recent results concerning dynamic im-
age forces and the related topic of electron interelectrode tunneling. Our perturbation-
based approach is set forth and justified by medel calculations. It is shown that for
small nonadiabatic corrections the explicit choice between different characteristic
tunneling times can be avoided. However, implicitly this choice should be made
Extensions of Quantun Physics 77
edited by A. Horzela and E. Kapuscik (Montreal: Apeiron 2002)
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Fig.1. The charge moving according to the z(t) law in the three-layer system with
dielectric permittivities ¢; (k,w).

while developing a future nonperturbative dynamic tunneling theory. The exist-
ing ones, although very complicated, are neither unambiguous nor self-consistent
[40, 41, 42, 44, 45, 58, 59, 60, 64, 65, 66, 67, 68, 69, 70, 71, 72], so that the chal-
lenge to theoreticians still persists.

2. Formulation of the problem

The energy of classical image forces for the charge ¢ near a flat vacuum—metal inter-
face (the subscript “surf”) has the form (see, e.g., [39])

Wele(r) = —¢*/4r, (1)

where r > 0 is the distance from the interface. At the same time, in the vacuum slab
between two classical metallic electrodes the contributions of the infinite sequence
of images converge into the following expression [73]:

2

Weito (2) = 81{2lnv+¢(2 )w( ;l)} @)

Here 21 is the slab width, 4 (z) is the digamma function, v = 1.7810. . . is the Euler
constant, the distance 2 is reckoned from the center of the interlayer (see Fig. 1).
WSL, (2) diverges at the interfaces z = =/ in the same manner as WS, ;(r — 0).
To overcome these unphysical divergences we invoke the idea of finite-length
screening. We apply the dielectric approach [32, 35, 50, 61, 62, 63, 72, 74, 75, 76],
assuming infinite barriers for electrode-constituent particles [35, 50, 75, 76] and
charge-carrier specular reflection at the interfaces [32, 35, 61, 62, 63, 74]. This
means that (in the most general case) we have three (¢ = 1,2,3) media described
by bulk dielectric functions ¢;(k, w) taking into account the spatial and temporal
dispersions (see Fig. 1). Here k is the transferred wave vector and w is the frequency.
We omit hereafter the spatial dispersion of the slab dielectric function €g, i.e. €3 =
e2(w), to avoid the quantization of the quasiparticle spectrum in the interlayer. This
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is true for all problems discussed below. The opposite situation for thin conducting
films can be found in Refs. [63, 77].

The problem consists in calculating the image force potential energy Wyap, [2(2)]
for the charge ¢ in the slab moving normally to the interfaces, where ¢ is the running
time. In other words, the charge at any point of the trajectory z(¢) induces the varying
polarization charge densities on both interfaces, and interacts with them. The rele-
vant polarization potential is Vipa[z = y = 0, 2(¢), t]. Thus, Wb [2(2)] = %qVind.
In the framework of the nonlocal electrostatic approach [35] using the conventional
boundary conditions [73] for the electrostatic fields and inductions in the three me-
dia concerned, one obtains [78, 79]

N
Wslab[z(t)] = —— dw

dr J_ e2(w)

/ dky| exp(—2ky) /t dt’ exp(iwt')
1—a1 kH, )ag(kH,w)exp(—éllﬂ”l) _ o

x{as(ky, w) exp[k) (z + 2)] + a1 (k| w) exp[—k) (z + 2')]
—2a1(k||,w)a3(k‘||,w) cosh [kH (Z — ZI)] eXp(—QkHl)} . (3)

exp(—iwt)

Here k| is the vector k component along the interface, 2’ = z(t'), the blocks

€si(ky|,w) — €2(w)
6sz‘(kH R w) + ez(w)

ai(k),w) = 4)

(7 = 1,3) are expressed through the so-called surface dielectric permittivities

-1

k o dk.
esi(ky,w) = [?/—00 m ) (5)

and k, = , /k? — kﬁ Hereafter, the arguments ¢ in z(t) in the three-layer case or in

r(t) in the two-layer one will be omitted for brevity.

It is readily seen from Eq. (3) that the response to the nonrelativistically mov-
ing charge is inertial (nonadiabatic). Actually, Wy .h(t) depends on the preceding
trajectory 2(t' < t) due to the frequency dependences of o (k),w). In the limiting
case ws — 00, when the temporal dispersion of the electrode dielectric functions is
negligibly small, the expression (3) reduces to the sum with each term proportional
to f dw exp [iw(t — t')] = 2n8(t — t"), 5(¢) being the Dirac delta-function. Then
the image forces can be considered as static.

In this connection let us anticipate that the influence of the dielectric function
frequency dependence is small. This speculation will be justified below by direct
numerical calculations and the account of the plasmon impurity decay. Then any w-
dependent quantity can be expanded into the series over w/w,. Since the numerical
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treatment [41] shows the minor role of dissipative processes for tunneling [they
are described by Im ¢;(k, w)] and the dielectric formalism itself is not very suitable
for the consideration of such processes [59], we shall restrict ourselves to the real
¢;(k,w). Thus the w-expansion includes only even terms [80]. For present purposes
it is enough to retain only the first dynamic correction.

Further simplification can be achieved for the most natural case of the vacuum or
wide-gap insulating interlayer, when €5 (w) can be approximated by the dispersion-
less constant. Then Eq. (3) takes the form

WSlab( ) Wslab( ) + AI/Vslab (Z), (6)

where
>

q
W [
slab( ) 262 H ].—Oél(k”, )Oég(kH ) —4kl
0

X [a3 (kH , O)e2k”z + ay (kH , 0)672]6”2 —2aq (kH ,0)a (k‘” , 0)67216”1] @)
is the main static image force energy term and

¢ 7 —2ky1
AWgan(2) = — / dk:
e - o (ky, 0)as (ky, 0)e= 1]
x {[a5 (R, 0) + a5 (ky, 0)af (ky, 0)e 1] &y [£ + ky 27] €20
- [al (kH’ ) + a%(kﬂaO)Cklgl(k||,0)€_4k”l] k‘” [z — k‘”z2] e_2kHZ

=2 [of (), 0)as(ky,0) + oz (ky, 0)a (ky,0)] kij%e QW} ®

is the dynamic correction. Here dotted and primed quantities mean time- and frequen-
cy-derivatives, respectively.

In the case I — oo the three-layer system decomposes into a couple of two
independent two-layer systems each possessing only one interface. Then for each
1-th electrode Eqs. (6)—(8) are transformed into the following:

Wsurf,i( ) Wsurf z( ) + AWsurf,i (7“), 9

2
Wsslgrfz (r) = —2(172 /dk‘” (;k,'(k‘H,O)e_zk\\r7 (10

9 >
AWSurfvi(r) = % /dkH k‘” (ka“Q — ) e~ 2k

y { k0 230k,0) } an
[esilly, 0 + @] [eailh,0) +e2]”
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It should be borne in mind that in actual fact the dispersionless dielectric constants
differ from unity, such that our e, are artifacts of the electrostatic approximation
because for any substance it should be e(k — o0) — 1 [61, 62, 81, 82]. This con-
clusion stems from the fact that large k’s correspond to small |r — r'|’s in the kernel
e(r — r') linking the electrostatic field and induction in the presence of the spatial
dispersion [80]. Therefore, all divergences at the interfaces due to the differences
between dielectric constants disappear for proper treatments, and only some smeared
humps or dips of the image force energy may survive there [83]. This problem will
be dealt with below in more detail for semiconducting electrodes, but hereafter in the
specific calculations, to avoid further discussion of this issue, we restrict ourselves
to the vacuum case €5 = 1.

3. Two-layer systems

3.1 Metal-vacuum interface

Expressions (9)—(11) enable numerical calculations to be carried out for any possible
metallic e(k,w), the exact form of which being unknown even in the structureless
(jellium-like) case [84]. However, we confine ourselves in this section to the hydro-
dynamical model of the plasma-like medium [85]

w2k
G(k,W) =1- m (12)

and the uniformly accelerated motion

r(t) = %qth (13)

under the action of the applied electrostatic field I'. Here w, = wsV/2 is the bulk
electron plasma frequency and « is the inverse screening length. Then

2K 9 3 5¢3K%F
Waurt (kr € 1) = —% (1 — EKT + Z/w‘ In 7m‘> — éém—wg’ (14)
q> 1 qF
Woat(kr > 1)~ -+ (1- — - L ). (15)
4r KT mwyr

These dynamic corrections, calculated in the presence of the spatial dispersion,
are estimated to be small [78]. Still, they lead to a substantial reduction of the field
emission current density j for large (sub-threshold) F, so that the Fowler-Nordheim
linear plot j/F? versus 1/F is violated in accordance with the experiment [86].

3.2 Semiconductor—vacuum interface

The simplest possible model for the semiconductor dielectric permittivity, taking into
account the existence of the band gap and the dependence of the dielectric function
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on k and w, was introduced by Inkson [81]:

~1
e(k,w) = 1+ © ERAY (16)
T4 (co—1) (X — &
+ (€0 )(Hz wf))

where ¢ is the static lattice dielectric constant, x and w,, are the inverse screening
length and the plasma frequency of the valent electrons. This formula reproduces
well the plasma-like-medium limiting cases, static (Thomas-Fermi, w/k — 0 and
€0 — 00) and dynamic (w/k — oo and ¢y — 00).

From Egs. (9)—(11) and (16) it comes about that for xr, / eoe—EI <1

*k/eo(eg — 1) e —1 4 1
Waure(r) 4 1- Veo Veo
0 0

n KT ln( or [ €0 )+ KT
60(60 - 1) 7 €0 — 1 2 60(60 - ].)

e +1
x[(e0 — 2) — (g — 1) In =—]}
€0
3,2 2 1
_IEER I3 e —ym et a7
16mw? | eo €0
€0
andformq/60 T >1
¢*(c0—1) Veoleo—1)  gF(eo—1)
Wsurf(r) = - - D) (18)
dr(eg + 1) kr(eo + 1) mw2r (e + 1)

The asymptotics (14)—(15) stem from Eqgs. (17)—(18) in the limit ¢y — o0, i.e., for
the infinite ionicity formally appropriate to a metal. One can see that the conventional
description of the image forces near the semiconductor surface [29, 32, 38, 39, 87]
is recovered only at large distances. The dynamic corrections are of the same type
as for the metal with itinerant electrons, although in the present case all the electrons
are bound. This similarity resembles one for the electron plasma response in the
energy-loss experiments for both metals and small-gap semiconductors [30, 32, 38,
87, 88, 89].

4. Three-layer systems

4.1 Metal-vacuum-metal structures

The calculations in the general case of a three-layer sandwich with metallic covers
(M-I-M) can be carried out in the same manner as for the single interface, starting
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Fig. 2. The image force potential barriers for the junctions Sb—vacuum-Sb with
and without dynamic corrections. F/Fy = 0.05 and b =0.5,1, and 2 (curves
1-3, respectively). See notations in the text.

from the hydrodynamic approximation (12) and Eqgs. (7) and (8). For thin symmet-
rical sandwiches, i.e., for kK1 = K3 = K, Wp1 = Wpz = wp, and 6 = wl K 1, it
follows

1.
Waian(§) A5 k{1 +0 (19)

X[In(257) ~ 1+ 2 (1~ )L~ &) + £ (1 +)ln(1 + )},

3F K25
AWqap () ~ q12mw2 (4 + 116). (20)
p

Here £ = z/I, and hence —1 < & < 1, and the charge moves in the vacuum gap
from the left to the right electrode forced by the applied electrostatic field F'. The
main static term is symmetrical about &, and for § — 0 tends to —q?#/2 which is
exactly the inner electrostatic potential energy in the Thomas-Fermi approximation
[52]. This is the charge energy averaged over the crystal volume and reckoned from
the vacuum level [90].

The dynamic correction is asymmetrical with respect to the origin and alternat-
ing. The asymmetry is associated with the accelerated character of the motion. In
particular, for uniform motion [35] Eq. (8) causes a symmetrical and positive dy-
namic correction that suppresses the static image forces for all £&. Our calculations
show [74] that in M—I-M structures the dynamic corrections are small for good met-
als. On the contrary, for semimetallic Sb electrodes with w,, ~ 4.15 - 10 ! and
Kk =~ 1.66 - 10° cm ™! the deviations from the static behavior may be conspicuous
(see Fig. 2). Here F' = V//2l is measured in the units of F; = 108 V cm™! typical
for the given problem, V' is the potential interelectrode difference.
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4.2 Semiconductor-vacuum—-semiconductor structures
On the basis of Eqgs. (7) and (8) it is possible to obtain the dynamic image force
energy profiles in the slab between nondegenerate semiconductors with the dielec-

. e . . . . . [
tric permittivity (16). For thin symmetrical sandwiches with 6, /60—_I < 1 the
corresponding expressions take the form

Wslab(f)
Pk [ [Jeo—1 [ \ e€—1 1 1
_T{ o +6{1n<76 60_1)—1— o <ln2—§>—§
+§<1—f)ln(l—f)+§<1+£>1n<1+f>]}, e
AWiiap (€) = 5112%2 ,/ L s 2 S[11} — 3463 + 63c
~48+ 660(60 1)(460 - 3)f(eo)} } , (22)
€9 — 2

where

\/26060 tan ~1 2260 (for 1 < €5 < 2),
fleo) = e 21 Vet Ve 2 (for eg > 2). *9
2 Vo — Veo —

These cumbersome expressions reduce to those for the metallic covers [Eqgs. (19)
and (20)] in the previously described limit g — oo. The value 2 for €y is not the
singular point, contrary to what might be expected, the quantity in brackets being
quite smooth. On the contrary, it ranges from 11 for ¢y — oo to 8 for g — 1. Once
again, it should be noted that both static image forces and dynamic corrections are
very similar for metallic and semiconducting heterostructures.

5. Justification of the adopted approach

The dynamic corrections appeared to be substantial but small enough to justify our
perturbation approach, described in Section 2. and in more detail in Refs. [78, 79].
However, some doubts may remain concerning the applicability of the perturbation
procedure for the image forces in the case of the emitted projectiles when the real
surface plasmon avalanche is left in the wake, according to the semiclassical theory
[35, 66, 91]. Then the image force energy includes long-range oscillating terms.
This behavior is conserved in the quantum-mechanical theory when the recoil effect
is small (the “above-threshold” situation) [59, 60, 71, 72]. Such a treatment leads

to a spatial decay proportional to exp (—m / QmT‘”) [71], where A is the Planck’s

constant. This decay is weak for electrodes with small current-carrier densities. Nev-
ertheless, there is an important factor, namely, the collision plasmon damping, which
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results in the restoration of the conventional image force energy power-law depen-
dence in the asymptotic region [92].

Let us consider the uniform quasiclassical motion of a charge near the metal—
vacuum interface [35] with the dielectric permittivity obtained in the framework of
the kinetic equation [93]

2
— P
elw)=1- ot (24)
Here v is the inverse relaxation time, and the spatial dispersion is neglected as being
insignificant in this case. Incidentally, the problem of the rigorous introduction of
the damping factor into the dielectric permittivity of the medium with temporal and
spatial dispersions is both far from being solved and far from being unambiguously
formulated [94, 95].
The starting expression for the image force energy for a charge ¢ moving in
vacuum normally to the metal surface in accordance with the law r(¢) has the form
(compare with Ref. [35])

O as [P sina(t—t) v ,
Wirn) = -5 /_Oo ar S e Y], e
where
N
Ws = 5 1 (26)

For the constant speed v it is convenient to measure distances in units of L =
27v/&,. Then the problem includes a single input dissipation parameter 5 = v/w,.
The most “dangerous” set-up is the motion of the emitted particle. Consequently,
elementary calculations lead to

2002 vr 5
Wemit(r—>0)z—q2vg [2 1n2—1—7 (2 1n2—1>} , 27
Wemit(r — o0) = (28)
2 - -
q vr WeT v 2. . Wer
——{1- ——)[2 —(1-— .
11— em(=5)Meos %L 21— 2 sin 2T

One sees that the saturated value of Wepn,it(0) is almost unaltered by the plasmon
damping, whereas the huge oscillations, totally distorting the image forces for r —
oo in the situation v = 0 [35], are rapidly damped in the real case v # 0. Asymp-
totics (27) and (29) are complemented by numerical calculations shown in Fig. 3. It
is remarkable that the damping factor does not depend on w, and becomes especially
large for slow projectiles, e.g., protons [32, 88].

The stabilizing role of the plasmon finite lifetime for image forces should mani-
fest itself also for a slab geometry and other laws of charge motion.
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Fig. 3. Dependences of the dimensionless image force energy w = 20W/q¢%@;
on the dimensionless distance ¢ for the particie emitted from the metal with differ-
ent plasmon dissipative parameters 3. See notations in the text.

6. Tunnel currents in three-layer systems

The energy level diagram for the electrically biased tunnel junction taking into ac-
count the dynamic image forces is shown in Fig. 4. Bearing in mind the actual
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Fig. 4. Schematic tunnel barriers in a thin symmetrical M—I-M biased junction
taking into account static and dynamic image forces. See notations in the text.

smallness of the dynamic corrections, we may carry out the whole analysis in the
traditional manner [96], i.e., neglecting the temperature dependence of the Fermi-
Dirac distribution function and employing the semiclassical approximation and the
saddle point method. Then the electron tunnel current density j through a symmetric
M-I-M junction can be written in the form

J=Jjo(n) — jo(n —eV), (29)
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. _em oI\ ? 7 30

ot = 5555 (), el 30)
Here e is the elementary charge, I(E.) is the tunneling exponent which determines
the JWKB tunneling rate D(E,) = exp[—I(E,)], E. is the energy of the electron
motion across the junction, and 77 is the Fermi energy of the metal measured from its
conduction band bottom.

In the semiclassical approximation adopted here, the exponent I(E.) is deter-

mined by the co-ordinate dependence of the velocity v(z) = |2| for the sub-barrier
motion [1, 96]:

I(E,) = 2Fm/dzv(z), (31)
%va(z) =U(z) - E., (32)

where U(z) is the potential electron energy in the interlayer, and 24 » are the turning
points at which v(z; ») = 0. The tunneling time enters into consideration implicitly
through Eq. (31) because the corresponding semiclassical tunneling time is Ttsl‘f;nid =
oTH(2)dz [97]. el s the time that a particle with a real velocity v(z)
would take to traverse the barrier [98]. Further subtleties, e.g., concerning different
tunneling times [1,2,3, 4, 5, 8, 11] do not interfere, because the dynamic corrections
are small. Rewriting Eq. (8) for the dynamic corrections in the following manner

AW (2) = %mz’zpl (z) + mZzpa(2), (33)

i.e., introducing the functions py (z) and p2(z), the potential energy U(z) reads

U)=n+p—eF(z+1)+W(2)+ %vapl () + mozpa(z), (34)
where p is the work function, W*'(z) is obtained from Eq. (7) with a;(k,0) =
az(ky,0), and p1(2) and py(2) are even functions of 2 in the case of identical elec-
trodes. The value of v? can be immediately found from Egs. (31) and (34). Differ-
entiating of the kinetic energy %mv2 with respect to time, and making allowance for
the small dynamic correction, leads to [79]

mv =~ —eF, (35)

1.e., the sub-barrier “motion” is decelerated by the electric field.

It should be stressed that this treatment of the electron in the classically forbid-
den area as moving is not more bizarre or inconsistent than its “adiabatically immo-
bile” version in the conventional semiclassical theory involving static image forces
[39, 86, 96]. The classical motion studied by us is analogous to that in the inverted
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effective potential of the path-integral approach [44]. The introduction of the elec-
trostatic field as a source of motion is our new key point [37, 78, 79] overlooked
in other investigations of the electron tunneling [40, 41, 42, 44, 56, 67, 70]. The
only attempt [69] known to us to make allowance for the direct field influence on
the image forces contains only a guess not brought to completion.

Solving the system of Eqs. (29)—(35) for thin barriers kI < 1, when the functions
p1(2) and p2(z) are independent of z, it is possible to obtain a formula similar to the
classical Fowler-Nordheim formula [79]

3F*2 4 2 *3
J(F) = ———exp <—7Vm’”‘> : (36)

(47)2hu* o 3heF*
but with renormalized values of effective work function

_ u+ W+ eFlp,

i (37
1—pm
and external field 1
pr=-tPp (38)
1-— P1
Wt is the average of WS¢ across the junction
. 1 rt
Wet = ﬂ/ dz W (z). (39)
-1

Eq. (36) was obtained for strong electric fields, when 2eF*] > pu*. The opposite
case of small voltages (2e '] < u*) can be found elsewhere [79].

The diagram in Fig. 4 shows that the dynamic corrections increase the height and
width of the tunnel barrier formed by the applied electrostatic field and static image
forces. Therefore, the corresponding tunnel current is reduced. The field dependence
of u* leads to deviations from the linear Fowler-Nordheim plot In (j/F?) ~ F~1
toward smaller current values. Similar deviations, observed for the cold emission
from a metal to the vacuum [86], were explained in the same manner [78].

7. Conclusions

The main conclusion consists in the important role of the dynamic character of the
image forces in tunneling both for two- and three-layer systems. The nonadiabatic-
ity is due to the close orders of the tunneling time and the inverse frequency of sur-
face plasmons excited in electrodes by charges moving in external electric fields.
Although small, the dynamic corrections are responsible for deviations from the
Fowler-Nordheim law in cold emission, the latter being among the early manifes-
tations of the tunneling phenomenon itself.

This work was supported in part by the Ukrainian State Foundation for Funda-
mental Research (grant 2.4/100).
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Tunneling in the Wigner Representation

Bilha Segev
Department of Chemistry, Ben-Gurion University of the Negev
P.O.B. 653, Beer-Sheva 84105, Israel

The Wigner function is used to study the purely quantum time evolution of wave
packets. Wave packets incident on potential barriers or undergoing quantum tran-
sitions between energy surfaces are studied, demonstrating in both cases the utility
of the Wigner representation for describing pure quantum effects with no classical
counterparts.

Keywords: tunneling, phase-space, causality, Wigner function, time

1. Introduction

In 1932 Wigner wrote a paper entitled “On the quantum corrections for thermody-
namics equilibrium” in which he introduced what later became known as the Wigner
function. In [1] Wigner writes:

“If a wave function ¥ (21, ..., &, ) is given one may build the following expression

P(xla ey Ty P1 7pn) =

1 (o]
(E)n/ /dyl...dyn\If(arl + Y1y T+ Yn)*

—o0

XU(Z] — Y1y ey Tro — Yn) 2Pyt EPayn) /R (D
and call it the probability-function of the simultaneous values of 1, ..., z,, for the
coordinates and py, ..., p, for the momenta”. “Of course P(x1,...,Tn;P1, ..., Pn)
cannot be really interpreted as the simultaneous probability for coordinates and mo-
menta, as is clear from the fact, that it may take negative values. But of course this
must not hinder its use in calculations as an auxiliary function which obeys many
relations we would expect from such a probability.”

Since then, the Wigner function has been used for various applications, and many
papers and reviews have been written about it, [2]-[12]. Traditionally, the similar-
ity to classical distributions has encouraged applications in semiclassical theories.
Here I take a complementary viewpoint, and review recent work by M.S. Marinov
and myself [13]-[14], as well as by E.J. Heller and myself [15] emphasizing the
application of the Wigner representation to purely quantum etfects with no classical
counterpart. This work includes applications to scattering, wave-packet propagation,
and tunneling time, and to energy transfer processes within a single molecule, includ-
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ing, in particular, nonclassical Frank Condon factors and radiationless transitions in
polyatomic molecules. What these different phenomena have in common is their
nonclassical nature, which is treated here within a phase-space Wigner approach to
tunneling.

2. The Wigner representation

In the Wigner Representation a quantum state given by the density matrix p; is rep-
resented by a phase-space quasi-distribution. (I use units with & = 1).

a Ny —i
pe(g;p) = /dn {a+glptla = e . )
All integrals are from £00. An operator Ais represented by its Weyl transform:

Alg,p) = /dn (g + glfilq - g)e‘““" . (3)

Expectation values are given by integration:

(A) Z%//dqdppt(q,p)fl(q,p) , 4)

and projection gives the probabilities in coordinate and momentum space:

I
=
2
S
I

o [ otan) (=10@P) . )
P = [dntan (=1E0F). ©

The expression for pure states is given in parentheses, but the discussion is not lim-
ited to pure states.

3. Dynamics in the Wigner representation

Time evolution in quantum mechanics is given by the time evolution operator:
pe=U®)poU' (1), U(t) = exp(—iHlt), %

with the Hamiltonian H. In the Wigner representation, this time evolution is given
by the phase-space propagator defined and applied in the following way:

1
pe(q,p) = %//dqodpoﬁt(q,p; 40, Po)po(go, Po) - (®)

The propagators are integrable and normalized:

1 1
%/dq/dp@:%/dqo/dpoﬁle, 9
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and are bilinear transforms of matrix elements of the evolution operator:
£ (4,3 90, p0) /dq/dp expli(q'p + qop’)]
.'. ].
X9 ‘U ‘po—gp po + p‘U ‘q+2q - (10)

The transition probability between an initial state p; at £ = 0 and a final state py at a
later time ¢ is:

1 2
wiy (t) <%> /dqdp/dqodpo p#(q,p)Li(q, 15 90, P0)Pi(qo, Po)
= Tr[p;U0HU ()], an

while the instantaneous transition probability is:
0 . 1
wiy = Trlpspi] = o [ dadp ps(a,p)pi(a;p)- (12)
The propagator in phase space is analogous to the Dirac propagator in coordinate

space, (¢|U]qo), and a similar propagator in momentum space, (p|U|po). Examples
of different evolution kernels include the propagators for free motion:

@0li) = /5o exp {’;Z(q—qo)], (13)

PlUpe) = e "55(p - po), (14)
£{(q,p;90,p0) = 3(p—po)dlg —tp/m — o) , (15)
pl(a,p) = polqg—tp/m,p), (16)

and the propagator of the harmonic oscillator with unit mass, m = 1, and unit fre-
quency, w = 1:

. t—2
WM>=mmm%mW+@$tWﬂ, a7

. t—2
(plUlpo) = (2misint)” exp { @’ +p°2) ;:I)nst ppo] : (18)
Li(q,p;90,p0) = (19

270(p — pocost + gosint)d(g — go cost — posint).

In the cases of both free propagation and the harmonic oscillator, the dynamics
in phase space is extremely simple. The propagator L;(q, p; go, po) is a ¢ function
defining a one-to-one correspondence between initial and final phase-space points.
The Wigner functions propagate in both cases in a completely classical manner, and
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each point of the Wigner function propagates on a classical trajectory. This, however,
is not the generic case. Two counter examples include: tunneling through a § poten-
tial barrier and tunneling through a modified P&schl-Teller barrier. The propagator
for the narrow potential barrier, V9 (q) = vgd(g), is:

L, = 5(17—170)5(1104—7?%—(1)

2
p Vo

X exp |:—U0 (qo + t% - q)]

X COS [Qp (qo + t£ — q) — arctan (U—(])]
m 4p

2

ya Yo
+ d(p+po)f (qo+tm+q) {213]

xexp [—vo (a0 +t2 +q)]sin [2p (0 + 2 +4)] . 0

m m

The propagator for a general one-dimensional potential barrier is:
Et(qap;q07p0) :T+R+S ’ (21)

where for the modified Poschl-Teller barrier, VFT (¢) = Vi#/ cosh®(q/s):
— §(p— —ao—t PN Zs(p — g —t2
T =6(p—po)d (q o tm) (p — po) (q o tm) F(v,w) . (22)

v =2pos,w =+/1/4—V3s? Fi(v,w), R, and S were given in Ref. [14].
4. Scattering of wave-packets: tunneling, superluminal
propagation and causality

In my work with M.S. Marinov we have shown that a description of wave packet
propagation simplifies considerably when considered in phase space. The usual anal-
ysis in coordinate space is given here first to set the stage for the discussion.

Consider the time evolution of a plane wave having momentum p scattered with
the scattering amplitude A(p) and the dispersion w(p):

lp) — U{|p) = exp[—iw(p)t] A(p) |p) - (23)

A wave packet is created from a superposition of plane waves:
vi(gt) = / dp ®(p) A(p) expli(pg — wt)] , 24)

T (qt) = / dp ®(p) expli(pg — wt)] , (25)
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where U7 (g; 1) is the scattered wave packet and ¥¥ (g;¢) is the freely propagating
wave-packet had there been no scattering.
Defining the phase shift ¢(p) of the scattering amplitude as follows:

A(p) = |A(p)| explid(p)] (26

and applying a stationary phase analysis, one finds the peaks of the freely propagat-
ing and scattered wave packets, respectively:

ap = ugt, 27
@y = vy(t—dg/dw) , (28)

where v, = dw/dk is the well known group velocity and d¢/dw is Wigner phase-
time delay. [16] Note, however, that the naive application of the stationary phase
argument is correct only if A(k) and ®(k) are slowly varying. Certainly, A(k) is not
slowly varying for deep tunneling, where the phase-time delay is often negative.

It was found that the group velocity can sometimes exceed ¢ and that the phase-
time delay can be negative, which gives “superluminal” phenomena or “faster-than-
light” effective velocities. Many works discuss these effects. [17]-[34] The different
superluminal phenomena involve no violation of causality.

In the time-independent formulation causality manifests itself in analytical prop-
erties of the scattering amplitude: [13]

o A*(p) = A(-p"),
e A(p) — constant as |p| = oo,
e A(p) is analytic in the upper half of the complex p plane.

How do these properties manifest themselves in real space or in phase space? An
argument of causality in coordinate space may assume the following form: define a
propagator for scattering in coordinate space in the following way:

Ve = [di @07 ) ¥an.0), 29)
(@0 la0) = /dpA(p) exp [ip (q —qo— t%)] : (30)

For photons in vacuum (i.e., with no dispersion) w = pc . Considering the integra-
tion over p as a contour integration in the complex p plane and closing the contour
in the upper half of the complex plane, one can see that the analytic properties of the
amplitude result in the following causal restriction:

wp)=cp — {(gUFgo) =0 if gq>qo+tc. 31)
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No information can be transferred faster than the speed of light in vacuum ¢. Unfor-
tunately, this argument fails when w(p) # pc.

Consider now a similar argument in phase space. The propagator for scattering in
the Wigner representation in the elastic channel defined by the scattering amplitude
A(p) is given by:

1 : . ‘
T = dp—p)g- / doel?(1m10) =it (pra/2) —w(p=o/2)] (32)

xA(Z +P)A(G ).

An analysis based on an analytic continuation into the complex o plane reproduces
the result for the dispersion relations of photons in vacuum,

wp)=ep — T =0 1if g>qo+tc, (33)
and also gives a new result for massive nonrelativistic particles:
w(p) =p*/2m — T =0 if ¢>q+tp/m. (34)

No similar condition exists for other dispersion relations, including in particular the
relativistic, Klein-Gordon dispersion.
Note that the propagator for free photons, with fiw(p) = ¢p, is

Le=T =06(p—po)é(go+ct—q), (35)
while the propagator for free massive particles, with hiw(p) = p?/2m, is
Ly =T =06(p—po)d(qo +tp/m —q) . (36)
5. Scattering from a potential barrier

For one dimensional scattering from a potential barrier, H = p? /2m + V(q). there
are two channels and two amplitudes:

e Transmission amplitude A(p) ,
o Reflection amplitude B(p) .

The evolution kernel for the Wigner function has three parts:

L(g,p;90,p0) =T + R+ S, 37
1
T = 8-y [dedp+ Hacp+ ) (8)
x expli€(qg — go — t%)] ;
R = 8+ )y [ B+ HECp+ ) (9)

x exp[=i€(q + a0 + )]
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and contributions from § are exponentially suppressed with time. A general form of
the propagator for potential barriers is obtained by closing the contour of the integral
and obtaining a sum over the S-matrix singularities, which are simple poles at &y,
with Im &, < 0.

T = dp—po)s (q—qo—t%)—é(p—po)e (q—qo—t%)
xY Re{C (p) exp [i2 (q—qo—t%) (p—/@n)]}. 40)

A simple interpretation of causality in tunneling is obtained: the barrier removes
delayed parts from the freely propagating wave packet.
The momentum probability distribution of the transmitted part is trivial:

P = [dap™(ap) =AW Po(p). @)
Using the notation:

Py = (pho; (Apo)* =((p—Po)*o, (42)
Qo = (@o; (Ag)* = (G- Q0)*o, (43)

a new result is obtained for the coordinate probability distribution of the transmitted
part. An expansion in (Apg/Py) gives:

1 o0 (o0} .
PtT(q)—%/dppt @p) =3 iy N(g,1), (44)
7=01=0
NP(g,t) = — AN dp(p — Po)' po(q — tp/m, p) (45)
1 P = o 8(] - 0) po\d P »P)

= () er’ —3)!

r=0s=0
g\ (rte) g \ [GtD—(r+s)]
X (8—PO> A(Py) (8—PO> A" (Po)| . (46)
To first order in (Apg/Py) this reduces to:

P 0 P
Pr@ = A (Pl + 27 Zrl@ + 2l @) @

where the 1st derivative and 1st moment of the freely propagating distribution:

1

Pla) = %/dppo(q—tp/m,p), (48)
1

M@ = o [dr o= Rl —tp/m.p) “9)
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are coupled to two real time parameters:

o %[8(%%]110(130))} _ {&r%#ﬂ)}, (50)
A %{a(mgjj(fo)l)} _ {%}éﬂ)m} : (51)

which are the real and imaginary parts of the well known complex tunneling time.
As an example, consider an initial Gaussian state:

_ 1(a=QoY’ 1(p=PY\

po(qap) - Oexp l:_§ ( ACIQ ) :l €xp |:_§ ( Apo ) ’ (52)
which for free propagation gives:
1 B 2
Plla) = ep|—5 (%) : (53)
Q = Qo+th/m , 54
Ag = V(Ap)? + (tApe/m)® (55)
f [ t(Apo)® 1 (e-Q I

o = () 5 (50) M@ (56)

The transmitted part after scattering is then given by:

Py 1 -Q
T _ 2pf ot (4~
i = ARl i oy (52 o
2
o o= 2t (LAP‘)) ) -V (58)
m
The peak is narrowed and advanced by A() where
AQ _ AQQTOPO/m 7 (59)
Aq+/ro BoJm) + (D)2
AQ = ToPy/m for 1oPy/m < Ag (60)
AQ = Ag for 1o Py/m > Ag . (61)

The peak of the scattered wave packet is never advanced more than the width of
the freely propagating wave packet. Note that the example of a Gaussian is just an
example. The method is general enough to apply to any initial state.

6. Nonclassical energy transfer processes within a single
molecule

A transition probability is given by the phase-space overlap integral between initial
and final states:

1
Sif = o / dqdp ps(q,p) pi(q,p) - (62)
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In relaxation processes, a given initial excited state p; relaxes into a manifold of all
final states with a given energy p;:

py = Snltn(B))(Wn(E)| = 6(E — Hy) . (63)

where F is the final energy, and H t is the final state quantum Hamiltonian operator.
The transition probability for relaxation processes is thus:

Yip = /dqdp Alq,p) pi(g,p) = Te[6(E — Hy)pi] (64)
A( = i > n _f _ 0y —imn
q,p) = oy dnfq+ S10(E — Hy)lg — S)e ™" (65)

In our work we study the integrand:

which in the leading-order semiclassical approximation is:

H(q,p) = 0[E — Halg,p)lpi(¢,p) - (67)

While the integral gives an estimate for the transition rate, the integrand provides
an indication for the preferred channels for the energy. By looking for accepting
zones in phase space, i.e., regions of phase space where (;¢(g,p) is large, we cal-
culate propensity rules and chose between competing channels. The examples we
have studied include model potentials of harmonic and nonharmonic oscillators and
application to internal conversion in the benzene molecule.

7. Conclusions

Quantum mechanics can be studied in many different representations. The physical
results of an experiment or the theoretical predictions for an observable effect do
not depend on the representation chosen, but a clever choice often simplifies the
analysis and sometimes helps our physical intuition. In this work several cases have
been considered where fundamental or complicated problems considerably simplify
in the Wigner representation. Applications to atom optics have not been discussed
here for lack of space, but are a particularly important experimental field for which
these methods may prove useful.

Acknowledgments

I dedicate this paper to the memory of Prof. Michael Marinov. This work was
supported by the Isracl-USA Binational Science Foundation under grant number
9800460



102

B. Segev: Tunneling in the Wigner...

References

121
[3]
141
151
161
171
[8)
191

[10]
L1

112}
[13]
[14]

[15]
116
(17
[13]
[19]
120]

1211
[22]

[23

[24]
125]

[26]
127]
[28)

[29]
[30)
[31]
[32)
[33]
134]

E.P. Wigner, Phys. Rew 40, 749 (1932). Wigner gives the following footnote: “This expression was
found by L. Szilard and the present author some years ago for another purpose™.

LE. Muoyul, Proc. Cambridge Phitos. Soc. 45, 99 (1949).

E.I. Heller, Jour. Chem. Phys. 65 1289 (1976).

M.V. Berry, Philes. Trans. Roy. Soc. London A 287, 237 (1977).

H.W. Tee and M.O). Scully, Found. Phys. 13, 61 (1983).

N.I.. Balazs and B.K. Jennings, Phyes Rep. 104, 347 (1984).

M. Hillery, R.F. O'Connell, M.O. Scully, and B.P. Wigner, Pliys. Rep. 106, 121 (1984).

M.S. Marinov, Phys. Ler. A 153, 5 (1991).

1.G. Muga and R.E. Snider, Ewrophiys. Lett. 19, 569 (1992); R. Sala, 5. Brouard, and 1.G. Muga, J.
Cheni. Phys. 99, 2708, (1993}, J.G. Muga, R. Sala, and S. Brouard, Sofid State Commun. 94, 877
(1995).

H.W. Lee, Phys Rep. 259, 147 (1993).

K. Bunuseck, Ko Wodkiewics, and W.P. Schlcich, Laser Physics 10, 123 (2000); A. Ceirjaz, R.
Kopold, W. Becker, M. Kleber, and W.P. Schleich, Optics Communicarions 179, 29 (2000)).

M. Moshinsky and A. Sharma, Annals of Physics 282, 138 (2000).

M.S. Marinov and B. Scgev, /. Phvs, A: Math, Gen. 29, 2839 (1996).

M.S. Marinov and B. Scgev, Phyvs. Rev AS4, 4752 (1996): 55, 3580 (1997); Found. of Phys. 27,
113-132 (1997).

B. Scgev and E.J. Heller, Journal of Chemical Physies 112, 4004 (20000

E.P. Wigncr, Pliys. Rev. 98, 145 (1955),

M. Biittiker and R. Landaver, hys. Rev Leu. 49, 1739 (1982).

E. H. Hauge and J. A. Stgvneng, Rev. Mod. Phys. 61, 917 (1989).

C. R. Leavens and G. C. Aers, Phys. Rev. 839, 1202 (1989).

A. Ranfagni, D. Mugnai,. P. Fabeni, and G. P. Pazzi, Appl. Phys. Lerr 58, 774 (1991); A. Ranfagni,
D. Mugnai, P. Fubeni, G, P Puezi, G. Nuleuo, and C. Sozz, Physica 8 175, 283 (1991); A. Ranfagni,
P. Fabeni, G. P. Puzsi, and D. Mugnui, Phys. Rev. £ 48, 1433 (1993); L.S. Schulman, A. Ranfagni,
D. Mugnai, Physica Scripta 49, 536 (1994).

V.5.0lkhovsky and E.Rccami, Phiys. Rep.214, 339 (1992).

A. Enders and G. Nimtz, J. de Physique | France 2, 1693 (1992); 1089 (1993). Phys. Rev. B 47,
9605 (1993); f*hys. Rev. £ 48, 632 (1993),

J.G. Muga, 8. Brouard and R. Sula, Phys. Lerr. A 167, 24 (1992); L Phys.: Condensed Mairer 4,
L3579 (1992}. 8. Brouard, R. Sala, und 1.G. Mugu, Ewrophys. Lerr. 22, 139 (1993); Phys. Rev. A 49,
4312 (1994),

R. Y. Chino, Phvs. Rev. A 48(1) R34 (1993).

A. M. Steinherg, P. GG, Kwiat, and R. Y. Chian, Phys. Rew fetr. 71, 708 (1993); A. M. Steinherg and
R. Y. Chiaa, Phys. Rev: A 49, 3283 (1994); A. M. Steinberg, Phys. Rev. Lett. 74, 2405 (1995); Phys.
Rev. A 52, 32 (1995).

Y. Japha and G. Kurizki, Phys. Rev: A53, 586 (1996).

Ch. Spiclmann, R. Szipocs, A. Sting, and F. Kravsz, Phys. Rev. Lerr. 73, 2308 (1994).

Th. Martin and R. Landauer, Phys. Rev. A 47, 2023 (1993); R. Landaver and Th. Martin, Rev. Mod.
Phys. 66, 217 (1994).

G. Diener, Phys. Lett. A 223, 327 (1996).

R. Y. Chiao, A. E. Kozhekin and G. Kurizki, Phvs. Rev. Lett. 77, 1254 (1996)

M. W. Mitchell and R. Y. Chiao, Pliys. Leti. A 230, 133 (1997).

AM.Guabovich and A.1.Voitenko, Phys Rev. B 55, 1081 (1997).

Y. Aharonov, B. Reznik. and A. Stern, Phys. Rev. Letz. 81, 2190 (1998).

I'7. B. Segev, PW. Milanni, L.F. Babb and R.Y. Chiaa, Phys. Reix A 62 (2000).



Geometric Structure of the Big Bang

Michael Heller
Vatican Observatory, V-00120 Vatican City State

In the standard approach 1o the investigation of singularities in general relativity, sin-
gularities are tredled as points of a “singular boundary” rather than events of space-
lime. To treal them as “internal elements™ of a given space-lime, a generalization
of the standard geometric methods is required. A new approach Lo the singularity
problem, based on the noncommuuative geometry, is briefly presented. From the
results obtained so far an interesting picture of (he early universe emerges. In the
conceplual ramework of noncommutative geometry, a distinction hetween singular
and non-singular states of the universe urns out 1o be meaningless. “Classical sin-
gularities” appear only when the universe passes through the Planck threshold o its
commutative phase.

Kevwords: general relatitity, Big Bang, cosmology, noncommutative geometry

1. Introduction

The “Big Bang” is rather a popular expression, its geomeltric counterpart being the
“initial singularity.” For the mathematician the singularity issue in general relativity
constitutes a difficult but challenging problem. There are strong reasons to believe
that the mathematical degree of difficulty of this problem reflects the dramatic char-
acter of its physical counterpart - the beginning of the Universe. Let us consider
the open Friedman universe, whose space extends to infinity. If we contemplate its
evolution backwards in time the volume of the universe shrinks, but always remains
infinite. To attain zero at the singularity, the volume would have, at one instant, to
Jump from infinity to zero. This would be both physically and mathematically un-
acceptable. In view of the above it is clear that — contrary to general opinion —
the singularity cannot be regarded as a point in space-time at which the volume of
the universe vanishes and the matter density blows up to infinity. The singularity is,
rather, a “place™ at which the very concept of space-time breaks down. And here
we have the problem in all its clarity: how to mathematically determine something
which is beyond the model we have at our disposal?

There are essentially two methods to cope with this problem. The first method is
to regard singularities as ideal or boundary points of space-time, and to investigate
them from within a given space-time by using more or less standard geometric meth-
ods. The second approach consists in generalizing the concept of space-time mani-
fold in such a way that singularities could be regarded as “internal elements”. Both
these methods are, in a sense, complementary. The first, which is a paradigmatic
Extensions of Quantun Physics 103
edited by A. Horzela and E. Kapuscik (Montreal: Apeiron 2002)
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approach in studying classical (i.e., without taking into account quantum gravity ef-
fects) singularities in general relativity, is more effective in analyzing concrete singu-
lar space-times. The second — still undere development, but already with significant
successes — seems to be indispensable in disclosing a source of various “‘singular sit-
vations”. Both methods are uwseful in proving some general theorems concerning
singularities.

The goal of the present paper is to describe the second of these methods and its
main results. The first approach will be only briefly summarized, in Section 2, to
more clearly state the problem and to prepare the stage for further considerations.
Section 3 is a brief interlude mentioning an intermediate step which led the present
author and his co-workers from the standard approach to the noncommutative mod-
elling of singular space-times. The latter is, in some detail, described in Section 4,
and applied to the analysis of the closed Friedman model in Section 5. The main
results obtained so far with the help of the noncommutative approach are reviewed
in Section 6. And finally, in Section 7, a general image of the “beginning of the
universe” is discussed that emerges out of the proposed approach. In the whole of
the paper we are more interested in conceptual issues than in technical problems.

2. Space-time model and its breaking down

In general relativity, space-time is modeled by the pair {M, g) where M is a 4 -
dimensional smooth manifold, and g a smooth Lorentz metric on A with the +2
signature. For the theoretical physicist “smooth™ usually means “as smooth as re-
quired”, and rarely is anything more than C? is required. The Lorentz metric on A
(one speaks also about the Lorentz structure) contains within itself several substruc-
tures beautitully “synchronized™ with each other, and this artful edifice is exactly
what is needed in physics. The total collapse of the space-time structure in the initial
singularity means not only breaking down of the space-time stage for physical pro-
cesses, but also the complete loss of information concerning those aspects of physics
which are encoded in space-time geometry (such as: free fall of bedies, speed of
light, space and time, gravitational field). A significant breakthrough in coping with
the singularity preblem was made by Robert Geroch [12, 13] whe was able to for-
mulate a clear geometric criterion determining what is meant by breaking down of
the space-time structure.

Let v : I — M be a non-constant geodesic in space-time (1, g). Non-constant
geodesic means a geodesic that fails to satisfy the condition: 4{t) = p, p € M for
all t € I. The following chain of definitions leads to the Geroch criterion:

o A geodesic v is complete 1o the future (to the past) if I = [a,0c] (f I =
[0, a]), a € R. 7 is said to be complete, if I = [—ow, o] (it can be shown
that these definitions are independent of the affine reparametrization of ).

e Space-time (M, g) is geodesically incomplete (g-incomplete, for short) (fo the
future, to the past) it in (M, g) there exists at least one incomplete geodesic
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(to the future, to the past). If there is no such geodesic, (M, g) is said to be
geodesically complete (g-complete).

e Space-time (M, g) is timelike, null, or spacelike g-incomplere (1o the future, 10
the past) if the g-incomplete geodesic in question is timelike, null or spacelike
(to the future, to the past}, respectively.

» Correspondingly, one defines timelike, null or spacelike g-completeness of
space-time (M, g).

As examples demonstrate, timelike, null and spacelike g - completeness (and g -
incompleteness) of space-time are logically independent concepts, ¢.¢., none of these
concepts either implies or excludes the others.

Geroch’s idea was to regard space-time (M, g} as singularity free if it is timelike
and null g-complete, and vice versa, the timelike and null g-incompleteness of space-
time (M, g} is to be regarded as the “minimum condition” for the existence of a
singularity, provided that (M, g) is inextendible, i.e., that there is no its smooth
isometric embedding into a “larger” space-time (M, g’). This criterion is physically
reasonable, since in any timelike or null g-incomplete space -time (M, g) there exists
at least one history of a particle or photon which suddenly emerges out of nothing
(if (M, g) is incomplele to the past) or disappears into nothingness (if (M, g) is
incomplete to the future). In cosmological models with the initial singularity of
the Big Bang type all timelike and null geodesics are past incomplete, but space-
times are also known in which only certain classes of geodesic are (past or future)
incomplete.

The above criterion was used by Penrose [31] to prove the first of the series
of theorems known as the singularity theorems [17]. Since these theorems did not
assume any symmetry postulates, they falsified a so far common belief that singu-
larities in cosmological models were merely by-products of too strong symmetries.
The general method in proving singularity theorems consists in combining different
kinematic and dynamic conditions so as to obtain the contradiction between these
conditions and the assumption of the g-completeness of space-time. In some of the
theorems, the assumptions are general enough to be believed to be valid in every
universe sirmilar o ours (for more details sce |6, 34)) .

It was soon realized that the g - incompleteness criterion does not work for all
situations which, from the physical point of view, could be regarded as singular.
Timelike curves (which are not geodesics) represent histories of nonzero rest-mass
particles moving with an acceleration, and if this acceleration is bounded, the mo-
tion thus represented is physically realistic, and consequently, space-time should be
regarded as singularity-free if it is “complete in the sense of bounded acceleration
curves”. It was Schmidt [33] who gave this idea an elegant geometric form. He first
introduced a generalized affine parameter along any curve, and then detined a space-
time {M, g) to be b-complete (after boundary, see below) if every curve in (M, g)
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has infinite length as measured by this parameter. Correspondingly, one speaks of a
b-incomplete space-time. If a given curve is a geodesic the generalized affine param-
eter reduces to the usual affine parameter. Every space-time which is b-complete is
also g-complete.

The “end-points” of b-incomplete curves were organized by Schmidt inte a sin-
gular boundary of space-time, called its b-boundary. We shall briefly present this
construction. Let (A, g) be a space-time, and (M (the connected component) of
the orthonormal frame bundle over M, # : OM — M, with the Lorentz group
SO(3,1) as its structural group. The Levi-Civita connection on A{ determines the
family of Riemann (positive definite) metrics on the total space QA of the frame
bundle over M. We select one of these metrics (the further construction docs nol.
depend of the particular choice), use it to determine the distance function on OM
and, in the usual way, construct the Cauchy completion OM of OM. The right ac
tion of the group SO(3.1) on OM can be prolenged to OM. Now, we define the
quotient space A7 := OM /SO(3, 1) to be the b-completion of space-time M. It can
be shown that M is open and dense in M. We define the b-boundary of space-time
as 9 M = M\ M.

Schmidt’s construction was soon commonly accepted as the best available defini-
tion of singularities. Unfortunately, however, it was very difficult to effectively com-
pute b-boundaries for concrete space-times. Only a few years later Bosshard [1] and
Johngon |26] were able to demonstrate that the b-boundaries of the closed Fricdman
universe and of the Schwarzschild solution have strongly pathological properties:
they are not Hausdorff separated from the rest of space-time and, in both cases, they
consist of a single point. This is very dramatic especially as far as the closed Fried-
man world model is concerned since this model has two singularities — the beginning
and the end of the universe. How could they be a single “point”™?

There were some attempts tc cure the situation (see [10]), but the new propos-
als were either less elegant than the original construction, or not general enough,
and the b-boundary construction began slowly to disappear from scientific literature.
Ome suspects that the source of the above ditficulties with singularities is connected
with the fact that the methods used to deal with them have been in fact formulated
for problems arising within the category of smooth manifolds, whereas space-times
with singularities clearly go beyond this category. To cope with stronger types of
singularities one must look for more general mathematical methods.

3. Space-times with singularities as structured spaces

Since the work by Koszul [27] it has been known that the geometry of a smooth
manifold 34 can be reconstructed from the algebra C°° () of smooth functions on
M . It turns out that it is possible to define a space, more general than a smooth mani-
fold, by repeating Koszul’s strategy for any functional algebra (eventually satisfying
some additional requirements). Such spaces, usually called differential spaces, have
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been studied by many authors (for a bibliography of differential spaces see [2]). If
one uses a sheaf of functional algebras rather than a single functional algebra, one
speaks of structural spaces; these have been studied in [22]. We have investigated
space-times with various types of singularities in terms of differential and structured
spaces (see, [14, 15, 18, 19, 21, 32]), and in particular space-times with malicious
singularities [20, 22]. The result is striking!

Let A1 = M U 8, M be a space-time A with its b-boundary 8, A7. M is open
and dense in M (M is called a b-completed space-time). Let further €' be a func-
tional algebra defining M as a differential space. In such a case C{M) is said to
he the differential structure on M. A prolongation of the differential structure 7 on
M to that of 47 is defined to be an algebra C' on M such that (M) = C(M). In
[20, 22] we have demonstrated that if A is a space-time with at least one malicious
singularity in its b-boundary, and C° (M) the differential structure on M, then cnly
constant functions can be prolonged to 3. The same is true if the differential struc-
ture on A consists of a sheaf of functional algebras rather than a single algebra. The
fact that only constant functions can be prolonged to A explains why the space-
time of the closed Friedman world model with its b-boundary collapses to a single
point. Indeed, the differential structure of 7 for this model consists only of constant
functions, and constant functions do not distinguish points (the value of a constant
function at each point is the same). This explains the difficulty, but does not remove
it. To go further more powerful methods must be used.

4. Space-time with malicious singularities as a
noncommutative space

The differential structures of differential or structured spaces are functicnal alge-
bras, and as such they are always commutative. It seems natural, in the next step of
generalizations, to look for noncommutative (but still associative) algebras. It is the
so-called noncommutative geometry that we shall try to use in analysing malicious
singularities.

Good introductions to noncommutative geometry are the books by Landi [28]
and Madore [29]: one should also consult the monumental work by Connes [7].
Noncommutative spaces often arise when one deals with quotient spaces X /R where
X is a space (which can be quite innocuous) and 7t an equivalence relation. The
strategy is to organize X/ I? into a smooth groupoid (called also a Lie groupoid), and
then to consider the C™*-algebra naturally associated with it. If this algebra turns out
to be noncommutative one treats it as a noncommutative substitute of the algebra
C*(X/R). A space defined by this algebra is called a noncomnutative space.

According to the above strategy, we shall change the b-completion of space-
time M defined as the quotient O /S0(3,1) into a suitable groupoid. The group
[ = SO(3,1) acts to the right on the Cauchy completed space OM of orthonormal
frames over space-time M, OM x I' — OM. This allows us to introduce the
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groupoid structure on G = OM x T. Elements of G are pairs of orthonormal frames;
they can be represented in the form v = (p, g) (and regarded as an arrow beginning
at p and ending at pg). Two elements of G, v; = (p,g1) and v2 = (g, g=), can be
composed if ¢ = pg; (if the end of one arrow coincides with the beginning of the
second arrow). The inverse of v = (p, g) is v = (pg, g '). We define the “set of
units” G(©) = OM x {e}, and two mappings s, 7 : G — G by s(p, g) = pg and
r(p, g) = p, called the range and the source mappings, respectively. The set G® of
composable elements of G is of course

G = {(y1,72) € OM x OM : s(m1) = r(72)}.

Two elements of G can be composed with each other if they lie in the same fibre

Gy = W%(p), p € OM, where m577 : G — OM is the canonical projection. It
can be casily checked that G, structured in this way, satisfies all groupoid axioms.

In what follows two sets are important: the set of all arrows that beginatp € OM

G" ={(p,g): 9 €T},

and the set of all arrows thatend at ¢ € OM

Gy={(ag ", 9):g€T}.

Both these sets can be equipped with the structure of the SO(3,1) manifold. In-
deed, these sets can be presented in the form GP = {p} x SO(3,1) and G, =
{gg™1} x SO(3,1), respectively, from which the bijection between these sets and
the set SO(3,1) is evident. With the help of this bijection the manifold structure
can be carried out from SO(3,1) to G? and G,. This manifold structure is pre-
served also if p and ¢ are situated in the singular fiber, i. e., if p, ¢ € 7 (xq)
where o € 0,M. Of course, the pairs (p, pg) belonging to singular fibres are no
longer pairs of orthonormal frames, but rather limits of equivalence classes of pairs
of Cauchy sequences of orthonormal frames. From Schmidt’s construction it follows
that these limits always exist.

Now, one defines the involutive algebra A := A onst @ Ac; where Aconst 1=
72 _(C®(OM)) and A, := C°(G, C) is the family of all smooth compactly sup-

oM
ported complex valued functions on GG. Multiplication “*” in this algebra is defined

to be the convolution of functions blonging to .4 whenever this definition is mean-
ingful; if it is not, one uses the standard function multiplication. For instance, if
a,b € A, then

(axb)(y) = /G a1 ),

p

for every v € G,, p € OM (integration is with respect to the left Haar measure);
andif a,b € A.ons then

(@xb)(v) = a(v) - (7):
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The involution is defined as

The algebra A4, has, for each p € OM, a nondegenerate representation 7, : A —
End(#) in the Hilbert space % = L?(G}), given by

(mp(@)E)(7) = (ap ¥ E)(7),

where ay, is a restricted to the fiber over p. The completion of .4 with respect to the
norm

I |l= suppcamr | 7pla) |

is a C*-algebra [7, p. 102] which will be denoted by C*(OM). This algebra is re-
garded as a noncommutative substitute of the functional algebra determining a given
space. In this sense, the algebra C*(OM) contains all information about space-time
M and its b-boundary 0, M considered as a noncommutative space.

5. Nonlocal character of singularities

Let M be a smooth manifold. The algebraic counterpart of a pointx € M is the max-
imal ideal of the algebra C*° (M) of smooth functions on M consisting of all these
functions of C*°(M) that vanish at z. Noncommutative algebras have, in principle,
no such ideals; therefore the concept of point in the noncommutative geometry is, in
principle, meaningless. This is also true as far as other local concepts are concerned
such as that of a neighborhood of a point.

Let C*(OM)" be the dual of C* (OM), i.e., the space of continuous linear func-
tionals on A with the norm

o lI= sup,ece @i flo(@l: ]l a 1< 13,

for every w € C*(OM)". Each positive w (i.e., such that w(aa*) > 0 for all
a € C*(OM)) with the unit norm is called a state. The set of all states is convex;
the extremal elements of this set are called pure states, the remaining ones — mixed
states.

Now let A be the commutative algebra Co (V') of continuous functions on a com-
pact space V. The states on this algebra are equivalent to a probability measure on
V', and one can write

ou(h = [ s

for f € Co(V). The state w is a pure state if and only if it is equivalent to the
Dirac measure concentrated at a point € V; in such a case w,(f) = f(x). Itis
therefore clear that pure states can be identified with points of V, and the algebra
A can be regarded as an algebra of functions defined on them. Also in the case
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of a noncommutative space one can regard pure states of the corresponding non-
commutative algebra as generalizations of the usual concept of point.

Let us return to a noncommutative C*-algebra A, and let = be its representation
in a Hilbert space #, let also £ € H. Insuch a case, a — (7(a)£.€),a € A, isa
positive form on .A. This form is a pure state if and only if 7 is a nonzero irreducible
representation of A in H. Let further 7 and - be two representations of the algebra
A in two Hilbert spaces H; and H3, correspondingly. The representations w; and
7y are said to be equivalent representations of A if there is an isomorphism between
Hy and Ha such that wy (@) = wa(a) forevery a € A.

Let us apply the above conceptual machinery to the space-time of the closed
Friedman model with its b-boundary regarded as a noncommutative space. The ini-
tial and final singularities are two distinct structures given by two representations
(strictly speaking by two equivalence classes of representations, each consisting of
only one element)

T 1 O% (G, C) = EndL?*(G,,),

i = 1,2, where p; is the single “limit frame” in the singular fibre over the initial
singularity, and ps is the single “limit frame” in the singular fibre over the final
singularity. Correspondingly, the two singularities can be given by two states s —
{np,£,8), s € C*(OM), £ € LAG,,)i=1,2.

6. Emergence of singularities

As should be expected, the algebra A = C*(0OM) contains the information about
space-time and its singularities. In this sense, we shall speak about the space-time
M associated with the algebra A = C*(OM). In [23] we have proved several
theorems which give a nice overview of the emergence of singularities in various
situations. We shall quote these results without proofs, but first let us introduce two
useful concepts.

We define the following subalgebra of A

Aproj = pr " C™ (M, C),

where pr = w51 © 7557 — M, is the obvious projection. The subalgebra Ay
consists of functions which are constant on the equivalence classes of fibres of G
where (wo libres Gp and Gq, my c W, are equivalenl, il there exists ¢ € I' such
that ¢ = pg. We evidently have Appo; C Aconst.

We also introduce the family of I'-invariant functions Ar C A, i.e., the family
of functions of 4 that are constant on the orbits of the action of T,

Let us remember that regular singularities are those which originate from cutting
off some parts of a space-time, and guasi-regular singularities are those which orig-
inate essentially from cutting off some parts of a space-time and gluing the resulting
edges together (for details of the singularity classification see [11]). Now, we can
summarize our main results:
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1. In the space-time associated with the algebra A there is no singularity if and
only if Apro; ~ € (M, C).

2. The space-time M associated with the algebra A contains at least one mali-
cious singularity if and only if Ag,..; = C.

3. In the space-time M associated with the algebra 4 there is an elementary
quasiregular singularity (but there are no stronger singularities) if and only
if there exists a discrete group 'y of isometries of Af such that Apq.; ~
C>{M)r,.

4. In the space-time M associated with the algebra A there is a regular sin-
gularity {but there are no stronger singularities) if and only if the groupoid
G = OM x I' is a subspace of a “larger” groupoid G = £ x T, where O} is
a subspace (of constant dimension in the sense of Sikorski) of the space E. In
such a case App,; is a localization of ﬁp.mj to G ./Ip,.oj is here the subalge-
bra of projectible functions on &, i.e., Apro; = (f_lpmj)g where (f_lpmj)g is
the algebra of complex valued functions on & which are local restrictions of
functions belonging to (Apyo;).

Proofs of these statements can be found in [23]. In agreement with the nonlocal char-
acter of the noncommutative algebra A, the above theorems convey the information
about the structure of space-times with singularities rather than about the structure
of singularities themselves. Let us notice that if in a given space-time there are sin-
gularities of various kinds, the strongest singularity determines the structure of the
algebra A. Regular singularities are very mild singularities (they can hardly be called
singularities), they do not change the family .Ap,,; but only narrow its domain.

7. Big Bang and quantum cosmology

The algebra 4, encoding in itself the information about the structure of space-time
with singularities, is nonlocal and, consequently, singularities cannot be regarded
as points in space-time. However, we can meaningfully speak of pure states of the
algebra A. Each of them is represented by an operator algebra in a Hilbert space,
and there is no distinction between singular and nonsingular states. This means
that, in the noncommutative setting, the question on the existence or nonexistence of
singularities does not even arise.

Is this mathematical formalism only an artificial tool to deal with classical singu-
larities, or could it also somehow reflect physics of the quantum gravity regime? The
fact that the states on the algebra .4 are represented as operator algebras in a Hilbert
space (a typically quantum structure!) could be a hint that the above presented math-
ematical formalism is indeed somehow related to quantum phenomena in the early
universe. In fact, there are several attempts to create a quantum gravity theory based
on noncommutative geometry (see, for instance, [3, 4, 5, 8, 24, 25, 30]). However,
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the following discussion is independent of any of these. We shall simply explore
some consequences of the assumption that the algebra .4 contains information about
the pre-Planck era of the universe.

As we have seen, the algebra .4 can be completed to the C'*-algebra. This is im-
portant because (' algebras are standard tools in the quantization of physical fields.
Within the noncommutative framework, C* algebras also generalize the standard
concept of topology, and the generalization is so powerful that even non-Hausdortf
cases can be dealt with by using this method (see [7, p. 79]). This could provide
a mathematical basis for a noncommutative version of a “topological foam™ sup-
posedly reigning in the quantum gravity regime. However, this version of the idea
is much more radical than, for example, the one developed by Hawking (see, ¢.g.,
[16]). It is not even a “foamy space-time”that we meet here, but rather a situation in
which there is no space and no time in the vsual meanings of these terms. In spite of
this fact, there could be a true dynamics in the noncommutative regime; for instance,
dynamical equations could be written in terms of derivations of the algebra A (see
[9. 24]).

The transition from the noncommutative regime to the usual space-time geom-
etry can be thought of as a kind of “phase transition”; mathematically it corre-
sponds to the transition from the noncommutative algebra A to its center Z(A) (or
to Aproj C Z(A)). In this way, the usual space-time M together with it its sin-
gular boundary 8, M (i.e., with its singularities) is recovered. It is supposed that
this happens when the universe passes trough the Planck threshold. Of course, the
same can be — mutatis mutandis — said about final singularities, for instance in
the closed Friedman world model or in the gravitational collapse of a massive object
(the Schwarzschild singularity is also malicious), but let us focus on the “Big Bang
philosophy”. We are confronted here with the completely new situation. So far peo-
ple believed that there are only two possibilities: either the future quantum gravity
theory will remove the initial singularity from the cosmological model, or not. If
the proposal discussed in the present work is true, there is the third possibility. On
the fundamental level, beyond the Planck threshold there is no distinction between
singular and nonsingular states of the universe, and the question concerning the ex-
istence or nonexistence of the initial singularity is meaningless. The singularity is
produced in the process of the formation of macroscopic physics, when space-time
emerges from the quantum “foam™ (geometry of this process has been studied in
[23]). Consequently, it is only from the perspective of the macroscopic observer that
the question about the “beginning of the universe” (and possibly about its *‘end”)
becomes meaningful. After all, if space-time is a macroscopic concept, its breaking
down — the singularity — should also be a macroscopic catastrophe.
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The Quantities ¢4/G and ¢%/G and the
Basic Equations of Quantum
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The quantitics (¢*/G) and (¢* /G) when introduced into the classical cquations of
Newton and Coulomb have the meaning of the maximum force and the maximum
power, bul when we introduce them into the basic equations of Quantum Mechanics
we do not see their physical meaning clearly.

Kevwords: special relalivity, equations ol Quantum Mechanics

1. Introduction

In two recent papers [1-2] the quantity ¢ /G was interpreted as the greatest possible
force in Nature. In the third paper [3], following LR. Kenyon [4], the quantity ¢ /G
was interpreted as the greatest possible power. In the three above papers T have lim-
ited myself to classical considerations. T have shown, ¢.g., that the classical Newton
law and the classical Coulomb law can be rewritten in the following way:
Newlon force
Fn =Gm?[R? = (¢'/G)(IZ,/R*) when my =ms,

and

Fn = Gmyma [/ R? = (Y GY{laalaz/R?) when my # my.
Coulomb force

Foo = KQg/R® = KZ\eZse[R? = (1 /G)(12/R*)(Z1 Zs)

I also indicated that the quantities ¢* /G and ¢® /G and their inverses appear in the
equations of General Relativity [1,2,3], and Kenyon has given his interpretation [4]
of this fact.

In my considerations I use the following constants and constant coefficients: ¢ —
velocity of light in vacuum; ¢ the gravitational constant; & Planck’s constant;
the elementary electrical charge; m — the mass of an elementary particle; K =
1/4meq. I take into account also the units of length, time and mass determined by
the following set of constants (c,G,m), (¢,G,€), {¢.G. 1}, (¢.G.gs¢r), (0.G, gw ), where
m, ¢, gstr, gw are the charges of four fundamental interactions, respectively. Using
dimensional analysis we obtain the following units:

(&
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1. gravitational length [, time #¢, and mass me:
lo=Gm/c® to=Gm/c®, mg =m.
2. L.G. Stoney’s length l g, time ¢ g, and mass g introduced by him in 1874 [5-6]
lg = (KGeg/c'l)l/‘z; ts = (KG(:‘2/C‘-6)1/2 ; mg = (Kez/G)1/2.
3. M. Planck’s length I p, time {5, and mass 1 p introduced by him in 1899 [7]
lp=(RG[)V? tp = (RGP ms = (he/G)H2.
4. Length gy, time tgy and mass m gy, connected with the strong interactions

Isty = (1/43 G ghy /e )% tsir = (1) 47 G ghy, [V
Mg =(1/4n g%”,/G)l/Q.

5. Length lsy, time ¢y, and mass my connected with the weak interactions

tw =(147 G g, [eW2,  tw = (147 G g8 [V,
mw = (1/4r gh, JGYV/2.

It is interesting to note that forces F' and powers P connected with these units
are all equal:

Fg =Fg=Fp=Fg, = Fiy = %G =1.2107210**N,
Pg = Pg = Pp = Py, = Py = /G = 3.63:10%W.

2. The quantities ¢4/G and ¢/ G and Einstein’s Principle
of mass and energy equivalence

It is interesting to note that Einstein’s Principle of mass and energy equivalence E =

me? can be rewritten in the following way:

E=mc* = (1 /Dlg = (P [Gig.

This fact shows, perhaps once again, the dynamical nature of the matter. If an
clementary particle could dcliver its total cnergy £ = me? acting on the path cqual
to I¢x during time ¢, then it could denote the particle’s greatest force (¢! /() and
power (¢ /). Tf this could happen then the maximum force (¢! /(7) and maximum
power (¢ /G')would be hidden in every particle. Perhaps in the future mankind will
find the circumstances in which this is possible. At the present time, however, we
can only dare to interpret the two quanties as maxima.
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3. The quantities ¢4/G and ¢3/G and Schrédinger
equation
As is well known, the Schridinger equation is the basic equation of non relativistic
Quantum Mechanics. In textbooks, it is written in the following way
(=R22m)[04(x,1)/0 x21+ V(x,1) h(x1) = ih[dp(x,1) /1),
where V = - Ke? /7 is the Coulomb potential. In these equations we find the constants
h,m, e and the coefficient K. Since the constants used in physics and the units
determined by them are correlated and interconnected, it is therefore not difficult to
rewrite the Schrédinger equation in such a way that the quantities ¢*/G and ¢® /G
and the considered units appear in it.
The Coulomb potential can be rewritien as follows

V = —Ke/r = —(c/G)(2/r) = (& /C)(Ists/r)

and the Schrodinger equation in the following way

—(h/2m)(c"/G)(Iptp)[0°¥(x, ) /02°]—
[(c®/G)(Usts/r))(, )dh(, 8) = i(c* /G)(Iptp)[Oep(x, ) /01 M

Since [gts = Iptpa (where a= Ke? [ hc is the fine siructure constant) we obtain also

= (h/2m)(c"/G)(Iptp)[0®¥(x, 1) /02*]— 2
[(c®/G)(Iptpa/r))(z, )z, 1) = i(c!/G)(Iptp)[0v(x,1)/1].

As we can see, in the Schrodinger equation written in this way, there appear not only
the quantities ¢* /G and ¢® /G but also the Planck length and time and Stoney’s length
and time. We see also that Planck’s constant 7 is related to the quantities ¢* /G and
c® /G as follows:

h= (1/G)Iptr) = (5)G)E3.
When we divide both sides of eq. (2) by (Iptp) we obtain

—(c*/G)(h/2m)[8%¢ (1) [02%] — [(® ) G) (ee/r))(, t)ip(2, 1) =
i(c*/ G0 (x, 1)/ Ot]. 3)

We must be aware, however, that this division changes the numerical value and di-
mensions of both sides of the equation. The three dimensional Hamilton operator
H = —(h*/2m) [(0%9]0 x2)+ (020 y*)+(0*) /D )] + V
can be rewritten by introducing c* /G and ¢® /G as follows
nHE
—(h/2m) (/@) (Iptp ) (9760 x2)+ (37460 y2)+(D%p /0 2)] + V.
[When|
V = —Ke2fr = —(c4/G)(12/r) = —(c* /@) (Usts /),
then we can write
nHE
— (b 2m) (e Q) (Lptp) (%) D2) + (824 0y?) + (920 /022)] - (/) It /1)-
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4. The quantities ¢4/G and ¢%/G and the Klein-Gordon
equation

We now consider the Klein-Gordon equation, written, ¢.g., for the w-mesons.

—h2 (8% 0t?) =
—R (002 + 820 [ dy* + 824 [922) + micly. (4)

Taking into consideration the quantities ¢! /G and ¢° /G, the Klein-Gordon equation
can be rewritlen:

—h( /G (Lptp) (D)0t =
—he(®/GY(Upt p) (0% 0a? + 8245 [ Oy* + 0240 /D22 )+
M2 (e [Nl b, {5)

As we can see the Planck charge raised to the second power fic is related to (¢®/G)
as follows

he = (5 /Y (iptp).
Since mye? = (C.’l/G)lGTr = ((15/(}')15(;1T the eq. (5) can be also written as follows

—he(c8 /G (Iptp) (%0 /022 + BP0 joy® + O%p[0%) + (6)
(/G [ Glgntany.

Since lgatan = (Iptp)acy (where ag, = Gm[he is the coupling constant of
gravitational interactions between two particles of the same mass, in our case the
coupling constant of gravitational interactions between two mesons 7). Eq. (6) can
be rewritten as follows

Ch(A G (Iptp) (020 )512) —
—he(c® /G (Iptp) (8% [0x? + 8%V [ y? + 8% [ 02°)+ (7)
(/GG Iptp)ag.

Dhividing both sides of eq. (7) by {Ip#p) we obtain

Bt ) (20 512) =
—he(e® ] GY 02 [0 + 82 [dy? + 8% [02%) + (¢ [GH PG )agat.

We must be aware, however, that this division changes the numerical value and di-
mensions of both sides of the equation.
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5. The quantities ¢4/ G and ¢5/G and the Dirac equation
The Dirac equation can be written as follows:

VH(RJH(0W [ 0x?) + mey =10,
where the matrices ,, have the following properties

YuYr + YYo= Guvs
Yo = H/’oTa = _7’;:
where T means the hermitean conjugation.
Taking the quantities ¢! /G and (?5 /G into consideratien, the Klein-Gordon equa-
1ion can be rewritten:
7'“[((:S/G)t;i/-i)}(61_;".'/(‘3:1:“) + (¢t /Gtap = 0,

where tp = (G /c”)'/? is the Planck time and ¢ = Gmi/c” is the gravitational time.

6. Conclusion

It was very easy to introduce the quantities (¢! /G) and (¢ /() into the basic equa-
tions of Quantum Mechanics (and we might even say that introducing them consti-
tutes a very trivial operation), but it is very difficult to interprete the role they play in
these equations. When we introduce the quantities (¢! /G) and (¢* /G), e.g., into the
classical equations of Newton and Coulomb, we immediately see their meaning as
limiting quantities, ¢.e., the maximum force and the maximum power, but when we
introduce them into the basic equations of Quantum Mechanics we do not see their
physical meaning clearly. They do, however, work in these equations, and therefore
we might imagine that they play a role as constants as limiting quantities here also:
the maximum force and the maximum power.
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Stability of the Bell-shaped Excitations
in Discrete Models of Molecular Chains
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It is shown that the bell-shaped solitary waves in the asymmetric ¢* field model are
unstable and correspond to the saddle points of the potential energy. In the discrete
model, the potential energy becomes rough: bell-shape configurations may appear
stable.

Keywords: molecular chains, soliton solutions, stability

1. The model

In this paper we study the stability properties of a model for a one-dimensional
molecular chain. The model is described by the Hamiltonian

1. k
#=) |00+ S na ) = 0 0F + U] (10
which in the continuum limit transforms into
1 1 .
H= /dm [guz(ar,t) + §u'2(a:,t) + U(u(w,t))} : (16)

This model is believed to reflect certain important properties of real systems: both
strongly anisotropic 3-dimensional ones and strictly one-dimensional ones. An ex-
ample of the latter is the DNA double helix (Fig. 1).

A system with a symmetric double-well potential U(w) (Fig. 2a) appears in a
variety of applications, and its dynamics has been extensively investigated [1, 2, 3,

4, 5]. Two forms of the on-site potential have been widely used: the ¢* potential
1 1 1
Uga(u) = —u* — —u® + ~u?, )

TR T

and the double-Morse potential
1
Upni(u) = 5 U {A cosh [a(u — up)] 13>, (3)

It is known that this model supports localized topological excitations, kinks
(Fig. 2b), described in the case (2) as

1 xz — vt
u(z,t) = — |1 + tanh(y e
V2 2
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Fig. 1. The DNA double helix — an example of a molecular chain.

which not only are stable but also to a certain extent preserve their identity in col-
lisions. The effect of discreteness has also been studied for this model and for the
closely related sine-Gordon model [2, 6, 7, 8, 9, 10, 11, 12] leading to the accurate
description of the effective Peierls—Nabarro potential acting on a discrete kink and
of the related kink trapping and radiation effects.
Less work has been devoted to the asymmetric case

Uu) = 11_;“4 - ?u?’ + %u2,
(Fig. 3a; By = 3/+/2 corresponds to the symmetric model) which is also important
in various applications [13, 14, 15, 16, 17]. Gordon showed that in this system,
stationary, localized bell-shaped solitary waves (Fig. 3b) exist [18, 19],

ul@,t) = b + cosh[y(z — vt)]’
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Fig. 2. The symmetric potential and the corresponding kink solution.

0,3 7
0.2
? | ’II \“
s O . fod
0,0 - I |
'0’1 L L AL DL L 0,0 L I/I/ TTT I\‘I T
-05 00 05 1,0 1,5 2, -10 -5 0 5 10
u X

Fig. 3. The asymmetric on-site potential and its solutions for various degrees of
asymmetry.

The same author has derived topological (kink) solutions which may move with con-
stant velocity if damping is present [20, 21]. Xu and Huang [22] and Xu and Zhou
[23] have shown that in the continuum limit in a two-component model, where the
anharmonic system (2) is coupled in a special way to another, harmonic system,
the equations of motion may be reduced to a single-field problem and solved (see
also [24]). The bell-shaped solution has been proposed as a transport mechanism in
molecular chains.

It has also been suggested that metastable configurational states are important for
the conformational dynamics of the DNA macromolecule [25, 26].

Whereas recently we have shown [27] that the bell-shaped solution is unstable
in the asymmetric system in the continuum limit, thorough investigation suggested



124 P. Machnikowski, P. Magnuszewski, and A. Radosz

that the discreteness might be essential in this case. In fact, it appears that this sort
of excitation, corresponding in the continuum limit to a saddle point of the potential
energy, becomes stabilized in the discrete lattices.

2. Stability of the bell-shaped solitary wave

It is clear that the energy of the bell-shaped solution is higher than the energy of
both the false vacuum state, v = 0, and the true vacuum state, 4 = upjs. Since the
bell-shaped solution is a non-topological solution, it may be continuously deformed
to any of these two states. Therefore, it should not be expected to be stable [28, 29].
Indeed, let us follow the standard linear stability analysis [3, 28] and write in the
bell-shaped solution’s resting frame, z = y(§ — vr), s = v(& + v7),

o(z,5) = pp () + Pp(z)e’™*. )

The equation of motion linearized in ¢ takes the form of a Schrédinger—like
eigenvalue problem

—82¢(x) + V(2)p(z) = wo(a), (5)
where ‘
v = | =i 2B ©®

The characteristic shape of this potential is shown in the Fig. 4. The plot corresponds

to a nearly degenerate potential, where the bell-shaped solitary wave separates into

two kinks. Each of these generates a P6shl-Teller well in the stability potential (6).
The function

pc () = Opion(z) (7

is a solution of (5) corresponding to w? = 0. This is a characteristic excitation related
to broken translational invariance: all of the bell-shape positions along the X axis
correspond to the same value of energy. Had the broken continuous symmetry been
an internal one this excitation would have been a gapless Goldstone boson; because
the broken symmetry is translational one but not an internal one, a pseudo-Goldstone,
separated, zero-frequency mode is observed. In the case of the symmetric system, the
pseudo-Goldstone mode, w? = 0, is nodeless, corresponding to the lowest-energy
perturbation of the kink. However, for a bell-shaped solution ¢y,, the function (7)
has one node. Therefore, there is a ground state solution to (5) belonging to a lower
eigenvalue, w? < 0. Such a solution, as is clear from (4), has imaginary frequency,
1.e., it explodes exponentially, destroying the original solution. For such a solution,
|w]~! may be interpreted as the lifetime of the bell-shaped solitary wave. In the
almost degenerate case (the potential in the Fig. 4) the negative eigenvalue may be
obtained by semiclassical methods.
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Fig. 4. The potential for stability analysis for almost degenerate minima of the
on-site potential, B = By + 109,

3. Stability in discrete models

In the discrete model there is no translational continuous symmetry: at various posi-
tions along the chain the kink or bell-shaped configurations have different potential
energy. In the case of a kink, it is possible to determine this potential energy in a
unique way and to define the so-called Peierls—Nabarro potential.

Replacing the continuum translational symmetry with the discrete one results in
shifting the zero-frequency Goldstone mode up. As a consequence, it turns into a
positive-frequency oscillatory mode associated, in the symmetric case, with kink os-
cillation around the minimum of the Peierls—Nabarro potential. In the asymmetric
case the corresponding solution — the bell-shape — has both the zero-frequency mode
and one imaginary-frequency mode. One might expect that for a strong enough
discreteness this exploding mode will also be shifted up enough to become an os-
cillatory one. Actually, numerical analysis of the small vibration spectrum around
a bell-shaped configuration confirms this expectation. Stabilization may also be ex-
pected on the grounds of the following argument.

In the limit of independent oscillators (k — 0), any configuration with some
nodes in the right and some in the left well is stable. In particular any bell-shaped
configuration, ¢.e., one with a certain number of consecutive nodes placed exactly
in the global minimum is stable. One may expect that for low values of k, all these
configurations survive in a slightly changed form. Fig. 5 shows one of the stable
bell-shaped configurations. Note that the central node lies closer to the global mini-
mum than the corresponding part of the continuous system. Such configurations will
become unstable when £ is increased, since in the opposite, continuum limit there
are only unstable saddle point configurations.

The diagram of stable configurations is presented in Fig. 6. The diagram has the
following meaning: the one-node configuration (i.e., with one node in the deeper
well) is stable in the B—k below the 1st line, the two-node configuration is stable
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Uu) n, X

Fig. 5. Stable system configuration corresponding to a bell-shape.

below the 2nd line, efc. Kinks are stable below the dashed line. Note that for any
n, there is an area of parameters where only the n-node configuration is stable. For
potentials closer to symmetric (lower B), there appear such areas for higher n, cor-
responding to more and more separated kinks.

05 03

0.4 <2
0,1
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Fig. 6. Stable configurations of a discrete system (see the explanation in the
text). The inset shows the diagram for a wider range of B.

4. Final remarks

We have studied the properties of non-topological, bell-shaped excitations in the
system with asymmetric potential, both in the continuum limit and in the discrete
system. The bell-shaped configuration in the continuum limit is a saddle point of
the potential energy. Due to the continuous translational symmetry, there is a family
of equivalent saddle points. This property is manifested through the presence of the
pseudo-Goldstone mode.

In the discrete system the potential energy around the configuration analogous to
the bell-shape continuum limit becomes rough. For systems close to the continuum
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limit this roughness consists simply in replacing the original continuum of equivalent
saddle points with isolated saddle points separated by “hills” (saddle points with two
negative curvatures). This might seem analogous to the Peierls—Nabarro potential
for kinks, but unlike the latter, the potential energy for bell-shaped waves cannot
be defined rigorously, and is of little importance, since such waves are not stable.
For strongly discrete systems, the shape of the potential energy becomes essentially
different: many saddle points and local minima may appear. These characteristic
points may be numerically searched and classified.
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