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Foreword

Professor Jean-Pierre Vigier is a living link to that glorious generation of physicists that
included Einstein, De Broglie, Shrodinger, Pauli and others. In fact, Einstein wanted the young
Vigier to be his personal assistant. Given Vigier’s political positions and the onset of the Cold
War, it was not possible for him to obtain a visa to go to Princeton to work with Einstein.
Physics and politics have dominated Vigier’s life. His philosophical approach has been
consistently materialist and accordingly he has sided with Einstein against Bohr in the great
disputes over the interpretation of quantum mechanics.

This volume includes a review of the de Broglie-Bohm-Vigier approach to quantum
mechanics written by Lev Chebotarev. Many of the papers referenced in this review and which
were authored or co-authored by Professor Vigier are reproduced. This volume also includes an
extensive listing of Professor Vigier’s publications.

This volume is a salute to Professor Vigier on the occasion of his 80th birthday. He has
had a long and productive career which continues to this day. The Preface comprises reflections
on his life compiled by one of us (S.J.) from a series of interviews with Professor Vigier in Paris
during the summer of 1999.

We would like to acknowledge and thank the following for permission to re-print articles:
Elsevier Science Publishers, ITPS Ltd., The American Physical Society, the Societa Italiana di
Fisica and Kluwer Academic/Plenum Publishers.

Stanley Jeffers, Department of Physics and Astronomy, York University, Toronto
Bo Lehnert, Professor Emeritus, Royal Institute of Technology, Stockholm

Nils Abramson, Professor Emeritus, Royal Institute of Technology, Stockholm
Lev Chebotarev, D.Sc., Ph.D., Professor of Physics
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Jean-Pierre Vigier and the Stochastic Interpretation of
Quantum Mechanics

A Volume in Honour of the 80th Birthday of Jean-Pierre Vigier

Sponsored by the Royal Swedish Academy

Compiled by:
Stanley Jeffers, Department of Physics and Astronomy, York University, Toronto, Ontario,
Canada
Bo Lehnert, Professor Emeritus, Royal Institute of Technology, Stockholm, Sweden
Nils Abramson, Professor Emeritus, Royal Institute of Technology, Stockholm, Sweden
Lev Chebotarev, D.Sc., Ph.D., Montreal, Quebec, Canada.

“Great Physicists Fight Great Battles”

“Great physicists fight great battles’>—so wrote Professor Vigier in an essay he penned in
tribute to his old friend and mentor Louis de Broglie. However, this phrase could equally well
be applied to Vigier himself. He has waged a battle on two fronts—within physics and within
politics. Now 80 years of age, he continues to battle.

He was born on January 16, 1920 to Henri and Frangoise (née Dupuy) Vigier. He was one
of three brothers, Phillipe (deceased) and Francois, currently Professor of Architecture at
Harvard University. His father was Professor of English at the Ecole Normale Supérieure—hence
Vigier’s mastery of that language. He attended an international school in Geneva at the time of
the Spanish Civil War. This event aroused his intense interest in politics, as most of his school
friends were both Spanish and Republicans. At the age of 14 he dreamt of going to Spain to help
with the Republican cause. While still a teenager, he discovered the works of Marx and Engels
and welcomed the victory of the Popular Front in France in 1936. He felt acutely at this time
that Europe was heading towards a major conflagration as Hitler developed his plans for
European domination. He recalls vividly the treason of Doddier and Chamberlain in the
notorious Munich agreement. At the French International Exposition held in Paris in 1936, the
German and Russian pavilions were arranged opposite each other, and the sense of impending
war was in the air.

Vigier was intensely interested in both physics and mathematics, and was sent by his
parents to Paris in 1938 to study both subjects. For Vigier, mathematics is more like an abstract
game, his primary interest being in physics as it rests on two legs, the empirical and the
theoretical. At the start of the war, it was clear to the young Vigier that large segments of the
ruling class in several European countries including England, France and Italy actually
sympathized with the Nazi programme. The French army soon fell apart due to a leadership
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which was not terribly interested in confronting the German army. The French political
leadership now comprised open sympathizers to the German cause, such as Marshall Pétain.

All the young soldiers were sent to Les Chantiers de la Jeunesse, and it was here that he
joined the Communist Party. The young radicals were involved in acts of sabotage near the
Spanish border, such as oiling the highways to impede the progress of the fascists. At this time
the French Communist Party was deeply split concerning the level of support to be given to the
Resistance. A few leaders went to the Resistance immediately while others, like Thorez,
wavered. In the period before the Nazi attack on the Soviet Union, the party equivocated with
respect to the Resistance. At this time Vigier was in a part of France controlled by a famous
communist leader, Tillion who had participated in the revolt of the sailors in the Black Sea in
1918. Tillion immediately organized groups of resistance fighters called the Organisation
Spéciale. Vigier was involved in bombing campaigns against both the Nazis and Vichy
collaborators in the Free Zone.

He was able to travel relatively freely within Europe as his parents were now retired and
living in Switzerland. This meant that Vigier could travel on Swiss documents and transport
material of the Third International from the French Communist Party to the Soviet Union. In
Russia he met with a group of German communists dubbed the Red Orchestra, a group
including Hadow and Vigier’s future mother-in-law Rachel Dubendorfer. He met his future
wife, Tamara, in a communist group in Geneva. Now divorced, they had two children, both
girls, Maya and Corne. He has since re-married to Andrée Jallon, with whom he has a son,
Adrien. In Geneva, Vigier was involved in communicating between the French communist
military staff and Russia until he was arrested at the French border in the spring of 1942 and
taken to Vichy. Here the French police interrogated him, as he was carrying coded documents.
Two policemen took him by train from Vichy to Lyon to be delivered into the hands of the
notorious Klaus Barbie. Fortunately, the train was bombed by the English. Vigier managed to
jump through the window, escaped to the mountains and resumed his activities with the
Resistance until the end of the war. He became an officer in the FTP movement. When De
Gaulle returned to France, part of the Resistance forces were converted to regular army units.
The famous Communist officer Colonel Fabien, the first man to kill an enemy officer, headed
one. He himself was killed by a landmine explosion at the time the French army went over the
Rhine. Vigier was part of the French forces which crossed the Rhine near Alsace in the Spring
of 1945 almost at the same time as the American forces. Part of the French army comprised
former communist Resistance forces, and they faced an army across the Rhine that comprised
French Vichy collaborators. During this action Vigier was shot and sent back to Paris for
recovery.

The communist forces were very proud of the role they had played during the war and at
the time of Liberation. They supported Russia unconditionally, not knowing anything of the
Gulags and believing much of the propaganda from Russia. The French government after the
war had significant communist representation. The Cold War started almost immediately after
the defeat of the Germans. Vigier was still a member of the French General Staff while
completing the requirements for a Ph.D. in Mathematics in Geneva. Then the communists were
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kicked out of the General Staff and Vigier went to work for Joliot-Curie. He in turn lost his job
for refusing to build an atomic bomb for the French Government.

Vigier became unemployed for a while, but learned through an accidental meeting with
Joliot-Curie that Louis de Broglie was looking for an assistant. When he met de Broglie the only
questions asked were “Do you have a Ph.D. in Mathematics?”” and “Do you want to do physics?”.
He was hired in 1948 immediately, with no questions asked about his political views. Although
Secretary of the French Academy of Science, de Broglie was marginalized within physics circles
given his well-known opposition to the Copenhagen Interpretation of Quantum Mechanics.
Notwithstanding his Nobel Prize, de Broglie had difficulty in finding an assistant. Vigier entered
the CNRS and worked with de Broglie until his retirement. Vigier’s political involvement at this
time included responsibility for the French Communist Student movement.

In 1952 a visiting American physicist named Yevick, gave a seminar at the CNRS on the
recent ideas of David Bohm. Vigier reports that upon hearing this work de Broglie became
radiant and commented that these ideas were first considered by himself a long time ago. Bohm
had gone beyond de Broglie’s original ideas, however. de Broglie charged Vigier with reading
all of Bohm’s works in order to prepare a seminar. As a result, de Broglie returned to his old
ideas and both he and Vigier started working on the causal interpretation of quantum mechanics.
At the 1927 Solvay Congress de Broglie had been shouted down, but now due to the work of
Bohm there was renewed interest in his idea that wave and particle could co-exist, eliminating
the need for dualism.

Vigier recalls that at this time the Catholic Archbishop of Paris, who exclaimed that
everyone knew that Bohr was right, upbraided de Broglie demanding to know how de Broglie
could believe otherwise. Although a devout Christian, he was inclined to materialist philosophy
in matters of physics. Vigier comments on his days with de Broglie that he was a very timid man
who would meticulously prepare his lectures in written form; in fact his books are largely
compendia of his lectures. He recalls one particular incident, which illustrates de Broglie’s
commitment to physics. Vigier was in the habit of meeting with de Broglie weekly to receive
instructions as to what papers he should be reading and what calculations he should be
focussing on. On one of these occasions he was waiting in an anteroom for his appointment with
de Broglie. Also waiting was none other than the French Prime Minister, Edgar Faure, who had
come on a courtesy visit in order to discuss his possible membership in the French Academy.
When the door finally opened, de Broglie called excitedly for Monsieur Vigier to enter as he had
some important calculations for him to do; as for the Prime Minister—he could come back next
week! For de Broglie, physics took precedence over politicians, no matter how exalted.

de Broglie sent Vigier to Brazil to spend a year working with David Bohm on the renewed
causal interpretation of quantum mechanics. Thereafter, Yukawa got in touch with de Broglie,
and Vigier subsequently went to Japan for a year to work with him. Vigier comments that about
the only point of disagreement between him and de Broglie was over non-locality. de Broglie
never accepted the reality of non-local interactions, whereas Vigier himself accepts the results of
experiments such as Aspect’s, which clearly imply that such interactions exist.



Looking back on his political commitments, he now regards the October Revolution in
Russia as an historical accident. He credits Stalin as a primary instigator of the Cold War along
with Truman. He views the former Soviet society as the only third world country that became a
world power under communism. The former Soviet regime is now regarded as having some
decidedly negative aspects, such as the intervention in Czechoslovakia, but also some worthy
aspects such as the support given to Third World countries such as Cuba. Professor Vigier has
known personally some of the world leaders such as Fidel Castro and Ho Chi Min.

He still regards himself as a communist, but not a member of any organised group. His
response to the question “why do we do science?” is that in part it is to satisfy curiosity about
the workings of nature, but also to contribute to the liberation of humanity from the necessity of
industrial labour. With characteristic optimism, he regards the new revolution of digital
technology as enhancing the prospects for a society based on the principles enunciated by Marx:
a society whose members are freed from the necessity of arduous labour as a result of the
application of technological advances made possible by science.

Stanley Jeffers
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The de Broglie-Bohm-Vigier approach in
guantum mechanics

Basic concepts of the Causal Stochastic Interpretation of Quantum Mechanics

L. V. Chebotarev

(Montreal, Canada)

1. Introduction

Quantum mechanics is one of the most beautiful physical theories developed in the 20 t"
century, if not the most elegant. As a mathematical tool, it works impeccably—all of
the quantitative results established by quantum mechanics have so far been confirmed by
experiment, sometimes with unprecedented accuracy, and not a single experimental fact is
available at present that is contrary to the predictions of quantum mechanics.

At the same time, the conceptual situation in quantum mechanics appears to be the most
disturbing in modern physics. In the 70 years following the advent of quantum theory, in
spite of considerable effort, it has not been possible to achieve a satisfactory understanding
of the fundamental physics underlying the mathematical scheme of quantum mechanics.
There is still no clear idea as to what its mathematics is actually telling us. Nor is there a
satisfactory answer to the question of the physical nature of the wave function; in fact, we
are still far from a clear understanding of what it actually describes.

The conventionally accepted (yet rather formal and incomplete) interpretation of quan-
tum mechanics, as formulated by the Copenhagen and Gottingen schools led by Bohr,
Heisenberg, Born, and Pauli was strongly opposed by Einstein, Planck, Schrédinger, and
de Broglie. The disagreement over the fundamental concepts of quantum mechanics, of-
ten referred to as the Bohr-Einstein controversy, appeared as early as the beginnings of
quantum physics, at Solvay conferences in 1927, and it is still not resolved. Moreover, as
Heisenberg noted, “the paradoxes of quantum theory did not disappear during this process
of clarification; on the contrary, they became even more marked and more exciting.”

The basic views shared by Planck, Einstein, Schrédinger, and de Broglie rest upon “the
idea of an objective real world whose smallest parts exist objectively in the same sense
as stones or trees exist, independently of whether or not we observe them” (according to
Heisenberg). The development of this idea gave rise to the Stochastic Interpretation of
Quantum Mechanics, also referred to as the de Broglie-Bohm-Vigier approach, which, to
an appreciable extent, owes its conceptual coherence to the works of Prof. J. P. Vigier and
his co-workers.

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics Page 1



2. Origins of the idea and its development
2.1 The basic idea of the de Broglie-Bohm-Vigier approach

The central idea of the Stochastic Interpretation of Quantum Mechanics consists in treating
a microscopic object exhibiting a dual wave-particle nature as composed of a particle in the
proper sense of the word (a small region in space with a high concentration of energy), and
of an associated wave that guides the particle’s motion. Both the particle and the wave are
considered to be real, physically observable, and objectively existing entities.

The following analysis will trace the origins of the idea and its development.

2.2 A. Einstein

The above-mentioned interpretation of quantum mechanics goes back to Einstein’s discov-
ery of the wave-particle duality for photons:

“When a ray of light expands starting from a point, the energy does not dis-
tribute on ever increasing volumes, but remains constituted of a finite number
of energy quanta localized in space and moving without subdividing them-
selves, and unable to be absorbed or emitted partially” [1].

In other words, Einstein regarded the radiation field as constituted of indivisible par-
ticles (carrying energy and momentum) along with the field of an accompanying electro-
magnetic wave. The latter was considered by Einstein to be an ‘empty wave’, that is, a
wave propagating in space and time but devoid of energy-momentum. In 1909, Einstein
proposed to treat light quanta as singularities surrounded and guided in their motion by a
continuous wave phenomenon.

The difficulties with the concept of empty waves (if the wave is empty, then it cannot
produce any physical changes, so there is no way to observe it—then how should we speak
about its existence?) so annoyed Einstein (he called them Gespensterfelder - “ghost fields”)
that he wrote:

“I must look like an ostrich hiding always his head in the relativistic sand for
not having to face the ugly quanta.” [Quoted by Louis de Broglie [2].]

2.3 L.deBroglie

Einstein’s idea of duality was extended by de Broglie to electrons and other particles with
non-zero rest mass [3].

In contrast to Einstein, de Broglie considered the particle and its associated wave to be
both real, i.e., both existing objectively in space and time:

“For me a particle is a very small object which is constantly localized in
space and a wave is a physical process [italics by L.Ch.] which propagates
in space” [4].

Later he wrote:

“The particle is a very small region of high concentration of energy which is
embodied in the wave in which it constitutes some kind of singularity generally
in motion.”

Page 2 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics



The evolution of physics was such that nearly 30 years later, de Broglie’s represen-
tation of quantum particles was incorporated, along with some additional new ideas, into
Bohm’s theory of hidden variables (1952), thus giving rise to the de Broglie-Bohm-Vigier
interpretation of quantum mechanics (1954).

2.4 D.Bohm

The probabilistic (Copenhagen) interpretation of quantum mechanics was criticized by Ein-
stein, who believed that even at the quantum level there should exist precisely definable
dynamic variables determining, as in classical physics, the actual behavior of each individ-
ual particle, not merely its probable behavior. Following this course of thinking, D. Bohm
developed an alternative interpretation, conceiving of each individual quantum system as
being in a precisely definable state, whose changes with time are determined by definite
(causal) laws analogous to the classical equations of motion [5].

Similar proposals for an alternative interpretation of the quantum theory had been put
forward earlier by de Broglie [6]. As de Broglie himself related,

“For nearly twenty five years, | remained loyal to the Bohr-Heisenberg view,
which has been adopted almost unanimously by theorists, and | have adhered
to it in my teaching, my lectures, and my books. In the summer of 1951, |
was sent the preprint of a paper by a young American physicist David Bohm,
which was subsequently published in the January 15, 1952 issue of the Phys-
ical Review. In this paper, Mr. Bohm takes up the ideas | had put forward
in 1927, at least in one of the forms | had proposed, and extends them in an
interesting way on some points. Later, J.-P. Vigier called my attention to the
resemblance between a demonstration given by Einstein regarding the motion
of particles in General Relativity and a completely independent demonstration
I had given in 1927 in an exercise | called the ‘theory of the double solution™”
[7,8].

Within this interpretation, called the Causal Interpretation of Quantum Mechanics,
quantum-mechanical probabilities were regarded much like their counterparts in classi-
cal statistical mechanics, that is, as merely a practical necessity, not a manifestation of an
inherent lack of complete knowledge at the quantum level. The physical results obtained
with this alternative interpretation, suggested by Bohm, were shown to be precisely the
same as those obtained with the usual interpretation.

This approach laid emphasis on the possibility of interpreting quantum mechanics in
terms of a hidden-variable theory. However, at the time Bohm’s paper appeared, any kind
of “hidden-variable” theory seemed to be excluded by von Neumann’s theorem, which was
unanimously accepted. No wonder that Bohm’s attempt at reviving a causal approach to
quantum mechanics was generally met with scepticism. Pauli, who had been among the
most strident critics of de Broglie’s views at the 5" Solvay Congress in 1927, raised cutting
arguments against Bohm’s approach as well, which he regarded as a direct development of
de Broglie’s theory.

An essential feature of Bohm’s approach, in addition to representing an electron as a
particle following a continuous and causally defined trajectory with a well-defined posi-
tion, £(¢), and accompanied by a physically real wave field ¢ (x,t), [cf. the views of de
Broglie given above] was the assumption that the probability distribution in an ensemble
of electrons having the same wave function, 1, is P = |y|2.

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics Page 3



Pauli regarded this assumption as the most significant flaw in Bohm’s theory on the
grounds that such a hypothesis is not appropriate in a theory that seeks to provide a causal
explanation of quantum mechanics. Instead, one should be free in choosing an arbitrary
probability distribution that is (at least in principle) independent of the ¢ field (as P =
d(x — =), for instance) and dependent only on the incompleteness of our information
concerning the location of the particle.

In order to solve this problem, in his next paper D. Bohm introduced the idea of a
random collision process that is responsible for establishing the relation P = |+|2 [9].
In this paper, a simple specific model was proposed to show that a statistical ensemble of
guantum mechanical systems with an arbitrary initial probability distribution decays in time
to an ensemble with P = |12 (which is equivalent to a proof of Boltzmann’s H-theorem in
classical statistics). However, due to mathematical difficulties, an extension of these results
to an arbitrary system was found to be very difficult. Besides, in its original formulation,
the theory contained nothing to describe the actual location &(t) of the particle, which is
indispensable if one wishes to have a consistent causal theory.

Hence the next step in developing Bohm’s approach was to supplement it by introducing
two new concepts, as formulated in 1954 by D. Bohm and J. P. Vigier [10], namely,

1. the idea of irregular fluctuations affecting the motion of the particle due to its inter-
action with an underlying stochastic medium, and

2. the concept of an extended particle core in the form of a highly localized inhomo-
geneity that moves with an average local velocity v(x, t).

The first of these, that is, the idea of “subquantal medium” as a source of randomness in
quantum motion, was considered by de Broglie to be of capital importance, comparable in
significance to Boltzmann’s hypothesis of “molecular chaos” [11]. Moreover, as de Broglie
noted, he himself had followed the same line of thinking:

“Soon, it appeared to me with growing evidence that this concept [the guid-
ance principle in de Broglie’s theory of the double solution - L. Ch.] is not
sufficient, and that the regular, in a sense, “average” movement of the particle,
as defined by the formula of the guidance, should be superposed by a kind of
a “Brownian” movement of random nature” [11].

In fact, both these concepts had their precursors in quantum mechanics.

2.5 The Schrédinger equation and classical mechanics

The appearance of Schradinger’s paper (1926), where he proposed his famous equation,
immediately triggered a discussion about the meaning and physical content of the equation.
It was noted that in some respects, the Schrddinger equation showed a remarkable affinity
to classical mechanics.

2.5.1 The Madelung fluid

In 1926, E. Madelung [12], called attention to the fact that Schrodinger’s equation allowed
a hydrodynamical interpretation of quantum mechanics. Introducing a special representa-
tion for the wave function ) = Rexp(iS/h) (which would be reproduced later in Bohm’s
paper), Madelung was able to interpret Schrddinger’s equations as describing a “fluid’ hav-
ing a density p = |+|? and composed of identical particles of mass m, each moving with a
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velocity v = V.S/m. This was an attempt to give the quantum motion a classical interpre-
tation. However, following Schrédinger, who viewed the wave function of an electron as a
real field that represented the electron’s charge spread continuously over space, Madelung
regarded the fluid as a dynamical model of this spatially distributed charge. It was diffi-
cult, however, for him to explain the local nature of ‘quantum forces’ (the term ““quantum
potential” would be introduced by de Broglie later on), which depended only on the local
density p rather than on the properties of the distribution as a whole.

2.5.2 The Brown-Markov interpretation of quantum mechanics

Another remarkable feature of the Schrodinger equation resides in its close affinity to the
Fokker-Planck equation, which describes diffusion processes in classical stochastic me-
chanics, such as Brownian motion. This fact was noticed shortly after the equation was
suggested; Schrodinger himself was aware of the similarity. Later on, in 1933, R. Firth
[13] in his paper “Uber einige Beziehungen zwischen klassischer Statistik und Quanten-
mechanik”?! investigated this resemblance in more detail. He showed that the effective
diffusion coefficient D relative to the quantum motion of a particle with a mass m, should
be written as D = h/(2m). Furth observed that the stochastic nature of a Brownian-like
process imposed restrictions upon the accuracy with which positions = and velocities v of
particles could be measured. Namely, the respective uncertainties Az and Av were shown
to be subjected to an inequality Az - Av > D, that is, exactly the same as Heisenberg’s
uncertainty relation.

This approach was given a more rigorous form by I. Fényes [14] in the paper “Eine
wahrscheinlichkeitstheoretische Begriindung und Interpretation der Quanten Mechanik” 2
published in 1952. Fényes was able to derive the Schrddinger equation within the frame-
work of the general mathematical theory of stochastic Brown-Markovian processes, thus
confirming Furth’s conclusions. In particular, the expression D = 7/(2m) for the diffusion
coefficient D and the Brown-Markovian uncertainty relation Az - Av > D were rederived
by Fényes on a rigorous mathematical basis.

Still later, the Brownian interpretation of quantum mechanics was developed in papers
by E. Nelson “Derivation of the Schrodinger equation from Newtonian mechanics” [15] and
L. de La Pefia-Auerbach “New formulation of stochastic theory and quantum mechanics”
[16].

2.6 De Broglie's “theory of the double solution”

As mentioned above in Sec. 2.3, an essential feature of de Broglie’s picture of the wave-
particle duality lay in regarding the particle and its associated wave as simultaneously exist-
ing, physically real entities. Much like Einstein’s representation of photons as singularities
within an electromagnetic wave field, de Broglie’s idea was to represent electrons as math-
ematical singularities in the field of the wave function «» which moved under the “guiding”
action of this wave. According to the “principle of the double solution”, as formulated by
de Broglie in 1927, to every linear solution ) = Rexp(iS/h) of the wave equation there
should correspond a singular solution ¢ = U exp(iS’/h) representing the motion of the
singularity associated with the particle’s core. Later on [8], de Broglie came to the conclu-
sion that this singular solution ¢ should be governed by a non-linear equation which would

1“On some Relationships between Classical Statistics and Quantum Mechanics” - (L.Ch.)
2 Probability-Theory Justification and Interpretation of Quantum Mechanics” - (L.Ch.)
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support a non-dispersive wave packet as an adequate representation for the particle’s core.
However, in his papers on the theory of the double solution de Broglie did not specify the
non-linear equation for singular waves, while restricting himself to analyzing the physical
properties of these waves.

Assuming that the amplitude U of the singular wave decreased with distance r as U ~
r—1, and that the particle’s core moved as a whole with the velocity v/ = V.S'/m, de
Broglie concluded that v’ should coincide with the velocity v associated with the phase S
of the linear wave ) viav = V.S/m, v' = v, thus requiring the phases of the two waves
to coincide. The relation S’ = S is an expression of de Broglie’s “guiding” principle,
meaning that the particle beats in phase and coherently with its pilot wave. This coherence
ensures that the energy exchange (and thus coupling) between the particle and its pilot
wave is most efficient. As a result, the singularity of type » ~' moves along the lines of
flow determined by the linear wave 1.

2.7 The Bohm-Vigier model

In order to explain the fact that the equilibrium relation P = |¢|? is established for ar-
bitrary quantum motion, Bohm and Vigier [10] proposed a hydrodynamic model supple-
mented with a special kind of irregular fluctuations. They observed that there are always
random perturbations of any quantum mechanical system which arise outside that system.
Moreover, one can “also assume that the equations governing the ¢ field have nonlineari-
ties, unimportant at the level where the theory has thus far been successfully applied, but
perhaps important in connection with processes involving very short distances. Such non-
linearities could produce, in addition to many other qualitatively new effects, the possibility
of irregular turbulent motion.” Furthermore one “may conceive of a granular substructure
of matter ... analogous to (but not necessarily of exactly the same kind as) the molecular
structure underlying ordinary fluids.”

The authors assumed that for any or all of these reasons, or perhaps for still other
reasons, the fluid undergoes a more or less random type of fluctuation about its mean (po-
tential) flow. As a result, Bohm and Vigier were able to prove that an arbitrary probability
density ultimately decays into |)|2. The proof was extended to the Dirac equation and to
the many-particle problem.

The difference between the de Broglie-Bohm-Vigier approach, on the one hand, and
the usual (Copenhagen) interpretation of quantum mechanics, on the other hand, is this:

“In the usual interpretation, the irregular statistical fluctuations in the observed
results obtained... when we make very precise measurements on individual
atomic systems are assumed, so to speak, to be fundamental elements of real-
ity, since it is supposed that they cannot be analyzed in more detail, and that
they cannot be traced to anything else. In the model that we have proposed...,
the statistical fluctuation in the results of such measurements are shown to be
ascribable consistently to an assumed deeper level of irregular motion in the ¢
field” [10].

It is worth noting that in the first paper by Bohm and Vigier, the idea of a nonlinear
equation governing the ¢ field was introduced, and the importance of its possible soliton-
like solutions was pointed out:

“Such nonlinear equations can lead to many qualitatively new results. For ex-
ample, it is known that they have a spectrum of stable solutions having local-
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ized pulse-like concentrations of field, which could describe inhomogeneities
such as we have been assuming in this paper” [10].

Hence, in this first paper by Bohm and Vigier we already find the ideas and concepts
that, when further developed in subsequent works by Prof. J.-P. Vigier and his co-workers,
would result in the formulation of the Stochastic Interpretation of Quantum Mechanics.

2.8 Picture of quantum motion in the Bohm-Vigier representation

The paper by Bohm and Vigier (1954) forms a conceptual basis for all further evolution
of the de Broglie-Bohm-Vigier approach. In fact, the physical associations and images
incorporated in this approach, as they were introduced in this first paper (although modified
in the course of subsequent development), have not undergone substantial changes so far as
their basic sense is concerned. Only specific mechanisms have been changed or their nature
specified—not, however, their main effects. Therefore, in order to elucidate subsequent
modifications to the approach, it is important to analyze in more detail the physical picture
of quantum motion as proposed by Bohm and Vigier.

As mentioned above, in the first paper by D. Bohm [5], an electron was represented
as a point-like particle following a continuous and causally defined trajectory with a well-
defined position, &£(t). Moreover, this particle was accompanied by a physically real wave
field, ¥ (r,t). The agreement with the usual (Copenhagen) interpretation of quantum me-
chanics was achieved by making the following supplementary assumptions:

1. ¢ (r,t) satisfies the Schrodinger equation.

2. d&(t)/dt = VS/m, where S is related to the phase ¢ of ¢y = Re” by S(r,t) =
he(r, t).

3. The probability distribution in an ensemble of electrons described by the wave func-
tion 1, is P = |y|%.

Hydrodynamic picture. A hydrodynamic model with just a potential, or Madelung, flow
is obtained from these assumptions on writing the Schrodinger equation for ¢ in terms of
the variables R and S, where ¢ = R exp(iS/h):

2 2
O | div <R—vs> =0, 1)
ot m
s 1 , R VR
5 T (VS =g~ +V =0 @)

Indeed, if we interpret p(r) = R? as the density of a continuous fluid that has the stream
velocity v = V.S/m, then Eq. (1) will express the conservation of fluid, while Eq. (2)
will determine the evolution of the “velocity potential” S under the combined effect of the
classical potential, V, and the “quantum potential”, @,

V_%_1<@>2
p 2\ p

W V'R _ W
2m R~ 4m

Q= ®)

Equations (1) and (2) do not contain the actual location of the particle, £(t), which is
required if one wants to arrive at a causal interpretation of the quantum theory.
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Idea of a particle’s extended core. For this reason, the model was completed by Bohm
and Vigier [10] “by postulating a particle, which takes the form of a highly localized in-
homogeneity that moves with the local fluid velocity, v(r,t).” The precise nature of this
inhomogeneity was not specified. “It could be, for example, a foreign body, of a density
close to that of the fluid, which was simply being carried along with the local velocity of
the fluid as a small floating body is carried along the surface of the water at the local stream
velocity of the water. Or else it could be a stable dynamic structure existing in the fluid,;
for example, a small stable vortex or some other stable localized structure, such as a small
pulse-like inhomogeneity. Such structures might be stabilized by some nonlinearity that
would be present in a more accurate approximation to the equations governing the fluid
motions than is given by (1) and (2).” [Bohm and Vigier, 1954]

Idea of fluctuations. Fluctuations were introduced in the model by assuming that the
“fluid undergoes a more or less random type of fluctuation about the Madelung motion
as a mean. Thus, the velocity will not be exactly equal to V.S/m, nor will the density,
p, be exactly equal to |¢|2.” It was required, however, that “the relations p = |¢|? and
v = VS/m be valid as averages.” As a result, the exact velocity is not derivable from
a potential, and so the flow is no longer a potential one. Instead, one has d&(t)/dt =
VS'/m+V x A, with (V x A)ay, =0and (VS')a, = (VS)ay Where (...) s, means
averaging over fluctuations. Consequently, the Schrédinger equation does not apply to
fluctuations. However, the conservation equation dp/9dt + div(pv) = 0 is assumed to hold
even with fluctuations present.

Random walks of particle-like inhomogeneities between different lines of flow (trajec-
tories). It was further assumed that even in a fluctuation, the particle-like inhomogeneity
“follows the fluid velocity v(r,¢).” The reasons for this assumption were clarified by ob-
serving that “such a behavior would result if the inhomogeneity were a very small dynamic
structure in the fluid (e.g., a vortex, or a pulse-like inhomogeneity) or if it were a foreign
body of about the same density as the fluid, provided that the wavelength associated with
the fluctuations were appreciably larger than the size of the particle. For in this case, he
inhomogeneity would have to do more or less as the fluid did, since t would act, for all
practical purposes, like a small element of fluid.”

Consequently, “if we followed a given fluid element, we would discover that it under-
goes an exceedingly irregular motion, which is able in time to carry it from any speci-
fied trajectory of the mean Madelung motion to practically any other trajectory [italics by
L.Ch.]. Such a random motion of the fluid elements would, if it were the only factor oper-
ating, lead eventually to a uniform mean density of the fluid. For it would on the average
carry away more fluid from a region of high density than it carried back. The fact that the
mean density remains equal to |¢)|?, despite the effects of the random fluctuations, implies
then that a systematic tendency must exist for fluid elements to move toward regions of
high mean fluid density, in such a way as to maintain the stability of the mean density,
p = |[¢|>” Bohm and Vigier did not discuss the origins of this tendency, but mentioned,
among possible mechanisms, “the internal stresses in the fluid” such that “whenever p de-
viates from |¢|?, a kind of pressure arises that tends to correct the deviation automatically.
Such a behavior is analogous to what would happen, for example, to a gas in irregular
turbulent motion in a gravitational field, in which the pressures automatically adjust them-
selves in such a way as to maintain a local mean density close to p = pg e~ "9%/*T if the
temperature 7' is constant.”

As a consequence of the above assumptions, “it is evident that the inhomogeneity will
undergo an irregular motion, analogous to the Brownian motion.”
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3. The Vigier model

For the subsequent development of the de Broglie-Bohm-Vigier approach, two concepts
introduced by Dirac were of special importance, namely, “Dirac’s aether” and “Dirac’s
extended electron”.

3.1 Dirac’s aether

In 1952, in a short note “Is there an Ather?” published in Nature [17], P. A. M. Dirac
pointed out that, in the light of the present-day knowledge, not only the notion of an zether
is no longer ruled out by relativity®, but moreover “good reasons can now be advanced
for postulating an aether.” Assuming the 4-vector v, of the velocity of the zther to be
distributed uniformly over the hyperboloid v3 — v? — v3 — v3 = 1 (with vo > 0), Dirac
observed that the wave function representing a state where all ather velocities are equally
probable should be independent of v’s, and so it must be a constant over the hyperboloid. As
aresult, “we may very well have an aether, subject to quantum mechanics and conforming to
relativity, provided we are willing to consider the perfect vacuum as an idealized state, not
attainable in practice. From the experimental point of view, there does not seem to be any
objection to this.” However, “we must make some profound alterations in our theoretical
ideas of the vacuum. It is no longer a trivial state, but needs elaborate mathematics for its
description” [17].

The idea was developed further by C. Petroni and J. P. Vigier (1983). In their pa-
per “Dirac’s Ather in Relativistic Quantum Mechanics” [18] they pointed out that one
should distinguish between the notions of Dirac’s vacuum and Dirac’s aether. The notion
of vacuum was originally introduced by Dirac for the spin- 1/ » particles in order to resolve
the problem with negative energies. It implied that all single-particle states with nega-
tive energies are filled, while those with positive energies are empty. To comply with the
general requirements of special relativity (invariance under Lorentz’s transformations), the
notion of Dirac’s vacuum would have to be supplemented with an additional hypothesis.
Namely, one must assume that the 4-momenta p = (po, p) of particles with negative en-
ergies are distributed uniformly over the lower (filled) mass shell defined by the equation
ps — p? = m3c?, with my the rest mass of the particles. If the Dirac vacuum satisfies
the latter condition, it is referred to as Dirac’s aether. Later on, J. P. Vigier [19] formulated
an advanced model of Dirac’s ather, treating the latter as built up of superfluid states of
particle-antiparticle pairs (see also Refs. [20]).

3.2 Dirac’s extended electron

In the paper “Classical theory of radiating electrons” [21], Dirac proposed to set up (within
the framework of the classical theory) a self-consistent scheme of equations describing the
interaction of electrons with radiation. Initially, the electron was treated as a point charge,
which led to the difficulties of the infinite Coulomb energy. To avoid these, Dirac used
a procedure of subtracting divergent terms similar to what was used in the theory of the
positron. The result was remarkable. The equations so obtained were found to have the

31t iis interesting to note that, contrary to the often expressed opinion, Einstein himself also did not deny the
existence of the ether. In his lecture given at the University of Leyden (1920), Einstein stressed that “the negation
of ether is not necessarily required by the principle of special relativity. We can admit the existence of ether, but
we have to give up attributing it to a particular motion ... The hypothesis of the ether as such does not contradict
the theory of special relativity.” In fact, what Einstein rejected completely was only the existence of the absolute
frame of reference.
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same form as those currently in use, but in their physical interpretation “the final size of the
electron reappeared in a new sense.” Namely, the interior of the electron appeared as a re-
gion of space through which signals could be transmitted faster than light. More precisely,
Dirac’s conclusion was that “the interior of the electron” was “a region of failure, not of
the field equations of electromagnetic theory, but of some of the elementary properties of
space-time” [21].

3.3 Bell's inequalities and quantum nonlocality

It is not rare in physics that certain assumptions appear to be so obvious and natural that
their very plausibility seems to rule out any need for further discussion or justification. The
hypothesis (sometimes even called the principle) of the spatial suppression of correlation
belongs to such “natural” assumptions. According to this hypothesis, any kind of physical
connection between two (or more) spatially separated parts of a physical system should
vanish as soon as the distances separating these parts become large enough. In statistical
physics, this principle was formulated and successfully applied in the theory of many-body
systems by N. N. Bogolyubov and his co-workers.

In quantum mechanics, however, the situation was found to be more complicated. The
main physical reason for this lies in the fact that in quantum mechanics the phases of the
wave functions, while deeply involved in the formation of quantum correlations in physical
systems, impose qualitatively new features upon the nature of such correlations .

It turned out that the nature of phase correlations, as reproduced by local hidden-
variable theories, is different from that encoded in the wave functions. This remarkable
fact was pointed out in 1965 by J. S. Bell [22] in his studies on the problem of quantum
measurement. Bell came to the conclusion that any local hidden-variable theory, if applied
to subsystems of one and the same quantum system in a well-defined quantum state, should
lead to certain restrictions upon the relationships between the series of parallel measure-
ments, each one of the latter pertaining to a particular part of the system. Mathematically,
these restrictions were put by J. S. Bell into the form of special inequalities.

The physical meaning of Bell’s inequalities resides in the fact that they establish upper
bounds to possible correlation rates between spatially separated (and quite remote) parts
of a quantum system (such as an EPR pair, for example) attainable from the viewpoint of
any local hidden-variable theory. Hence, Bell’s inequalities are experimentally testable.
As a consequence, if experiments on some quantum systems showed higher correlation
rates than those allowed by Bell’s inequalities (thus violating the latter), then this would
provide experimental evidence for quantum mechanics being a non-local theory. All local
hidden-variable theories would thus have to be excluded.

By the end of 1980s, many different experiments were carried out in order to test Bell’s
inequalities, such as those by Freedman and Clauser [23], Clauser [24, 25], Fry and Thomp-
son [26], Aspect et al. [27, 28], Perrie et al. [29], Hassan et al. [30]. All these experiments
clearly showed that

e Bell’s inequalities are violated, and

¢ the gquantitative predictions of quantum mechanics are confirmed.

4Long-distance quantum correlations due to the specific nature of phase relations carried by the wave functions
are sometimes referred to as “quantum entanglement”.
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Similar conclusions were drawn about 20 years earlier by Bohm and Aharonov [31] by
analyzing the experiments of Wu and Shaknov [32] on double scattering of two photons
produced by the annihilation of an electron-positron pair.

Consequently, there now seems to be strong experimental evidence (with a probability
approaching 90% if one takes into account some details of the experimental setups which
might leave room for differing interpretations) in favor of the fact that quantum mechanics
is a non-local theory. Hence, in quantum mechanics we currently face a very disturbing
problem, i.e., how to understand the nature of this non-locality. Various solutions have been
suggested, including some that might appear rather unusual, such as, for instance, admit-
ting signals that propagate backwards in time, or various modifications of quantum theory,
including negative probabilities. In particular, the possibility of superluminal connections
between remote parts of a quantum system has been suggested and investigated. The Bohm
theory of "unbroken wholeness” furnishes an example of such approach. An altenative way
of thinking is represented by the Vigier model.

3.4 The Vigier model

The Vigier model [33] is an advanced implementation of the Bohm-Vigier approach which
suggests a solution to the problem of quantum nonlocality. This model is essentially rela-
tivistic.

In Vigier’s representation, the irregular fluctuations of the Bohm-Vigier model (1954)
are interpreted as being due to a “random subquantal level of matter”, in the sense of Dirac’s
“zether” or de Broglie’s “hidden thermostat” [34]. This idea reflects Einstein’s viewpoint
according to which quantum statistics should be due to a real subquantal physical vacuum
alive with fluctuations and randomness.

The notion of an extended particle, as introduced by Bohm and Vigier in 1954 (see
also Ref. [35]) has been developed further by Vigier. If Dirac’s picture of an extended
electron is accepted, then the motion of the core of the electron should be represented
in 4-spacetime not by a line, but by a time-like “hypertube” lying inside the light cone.
Accordingly, in the Vigier model particles are regarded as “extended time-like hypertubes”
that “move along time-like paths and can only transmit superluminal information localized
within their internal structure” (see Refs. [19, 36]).

In Vigier’s model, the stochastic jumps introduced by Bohm and Vigier (1954) as a
mechanism to carry particles from one line of flow to another, are interpreted as “stochastic
jumps on the light cone”, meaning that “the stochastic fluctuations occur at the veloc-
ity of light” [33]. Here, the relativistic extension of the continuity equation (1), namely,
Oug* = 0, is shown to be equivalent to the set of two (forward and backward) Fokker-
Planck equations
O Vi) £DOp=0,  (p=R?) @
where the diffusion coefficient D is obtained in exactly the same form, D = #/(2m), asin
Firth’s paper [13].

Lastly, the notion of “superluminal propagation of the quantum potential” was intro-
duced in the Vigier model [33]. Specifically, for a particle of rest mass m, the quantum
potential @, as defined by @ = log M with

R* Op'/2q1/2
_[o2
M =|m” + 2 )
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is a function of the density p = (1)*t)*/? alone, and propagates with superluminal ve-
locities within the drift current. The quantum potential is interpreted “as a real interaction
among the particles and the subquantal fluid polarized by the presence of the particles”
[37]. It is considered to be a “true stochastic potential” [38].

It is important to note that the quantum potential is essentially non-local, so that the
Vigier model, like Bohm’s theory, appears as a particular implementation of non-local
hidden-variable theories. Therefore, this model does not conflict with Bell’s inequalities.

An essential feature of the Vigier model is that it preserves Einstein’s causality in
experiments of the Einstein-Podolsky-Rosen type, while at the same time explaining the
guantum-mechanical nonlocality through a “nonlocal superluminal information” transfer.
The latter is not brought about by individual particles, but rather is due to the propagation of
collective excitations (considered to be real and physical) on top of the “material vacuum”
as described above in this section.

4. Stochastic interpretation of quantum mechanics

The ideas and concepts described above, make up the content of the so called (causal)
“stochastic interpretation of quantum mechanics” [36]. The differences between this ap-
proach and the conventional (Copenhagen) interpretation of quantum mechanics are sum-
marized below.

4.1 Stochastic interpretation of quantum mechanics versus the
Copenhagen interpretation

There are three principal (conceptual) differences between the two alternative interpreta-
tions of quantum mechanics [39].

1. Inthe Copenhagen interpretation, quantum waves are associated with individual par-
ticles and represent an ultimate, statistical knowledge. Micro-objects manifest them-
selves either as particles or as waves, but never both simultaneously.

In the Stochastic interpretation, quantum waves are considered to be real, physical
fields associated with individual particles as well as with ensembles of identically
prepared systems. Micro-objects are thus viewed as complexes involving both parti-
cles and waves that co-exist simultaneously.

2. In the Copenhagen interpretation, a measurement on a system implies a discontinu-

ous, instantaneous collapse of its quantum state, known as the reduction of the wave
function. No microphenomenon is a phenomenon until it is an observed phenomenon
[40].
In the Stochastic interpretation, quantum states, represented by particles along with
their associated real waves, evolve causally and continuously in time. No wave-
packet reduction occurs. Waves do not collapse, but rather are modified (or split)
when interacting with the measuring apparatus. As a result of the measurement, the
particle enters one of the apparatus’s measurable eigenstates.

3. Inthe Copenhagen interpretation, the uncertainty principle imposes restrictions upon
the simultaneous measurability of complementary observables.

In the Stochastic interpretation, the Heisenberg uncertainty principle does not restrict
the measurability of complementary observables, but represents dispersion relations
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resulting from (i) the dual nature (wave plus particle, both existing at the same time)
of micro-objects, and (ii) the associated subquantal stochastic motions.

In spite of these differences, it would be inappropriate to think that the Stochastic in-
terpretation seeks to re-establish classical views about the physical world. Indeed, even
though within this approach particles are considered to have definite values of all their
dynamical variables at every given moment, quantum forces due to the quantum poten-
tial bring about the dependence between these variables and the quantum state as a whole,
thereby mediating the influence of the environment on quantum dynamics.

4.2 Structure of the quantum particle in the de Broglie-Bohm-Vigier
approach

In the Stochastic interpretation, a quantum particle with a rest mass m g is represented as
consisting of the sum @ + U of two different waves ® and U such that

e the pilot wave ®, or P-wave, is a linear wave described by ® = R exp(iS/h), with
real-valued R and S, satisfying linear equations of quantum theory; for a particle
with zero spin, this is the Klein-Gordon equation

(O —m3c?/h?)® =0, ()
whereas

o the soliton wave U, or S-wave, is nonlinear, highly localized, and nondispersive.
This wave is described by U = H exp(iS/h) with the same phase S as the P-wave.
The S-wave describes the core of a quantum particle, the latter being regarded as an
extended entity.

The conventional wave function of quantum mechanics, 4, which is an associated probabil-
ity wave, is proportional to the P-wave, that is, v = C'® with C' the normalizing constant.
The basic properties of the P- and S-waves are specified in such a way that de Broglie’s as-
sumption about the “guiding” action which the “pilot” wave exerts on the quantum particle
is implemented in the theory.

Specifically, the P-waves have the following properties.

1. The P-wave is a superposition of de Broglie’s plane waves
B(z,t) = a exp[2miv(t — 2 /V)] (6)

where v is the observed frequency, V' = ¢2 /v is the phase velocity, and v is the ve-
locity of the particle. The original idea of de Broglie was that, since any particle at
rest has the mass m and hence the energy E = mc?, there should be a definite fre-
quency vo connected with the particle through hvg = moc?. He then associated with
the particle a monochromatic wave (6), which de Broglie considered to be real. If
the particle is at rest, then its internal frequency v coincides with the frequency v of
the wave B(z,t) (6). De Broglie always believed that the frequency v corresponds
to real physical oscillations occurring inside the particle, thus admitting an extended
structure of all micro-objects and, inevitably, some local hidden variables.
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2. The P-wave defines the particle’s drift motion along the lines of flow in the 4-
spacetime. The direction of the drift is determined by the 4-vector u,, = 9,,S/M§
where 2 OR
|

2R ()

represents de Broglie’s and Bohm’s quantum potential that appears in the relativistic

Jacobi equation 9,,S9"S + Mg c* = 0, the latter obtained as the real part of Eq. (5).

2 _ .2
My =mg —

3. The P-wave carries a density p = /—g(Mo/m)R? that is conserved in the drift
motion according to dp/dr = 0 (derivation along the line of flow).

4. The P-wave, having the dispersion relation w = (¢?k% + m3c*/h*)'/2, where kp
is the wave vector, necessarily disperses with time.

5. The P-wave can be regarded as a Brown-Markov stochastic wave propagating on a
random covariant thermostat.

On the other hand, the soliton S-wave is governed by a non-linear covariant equation
(of the Klein-Gordon type for zero-spin particles). Representing the core of the particle,
the S-wave carries an energy £ = hw and momentum pg = hkp. It can be shown [41]
that in its motion this soliton wave follows the lines of flow as determined by the P-wave,
provided that the phases of the S- and P-waves coincide. Under the effect of random
subquantal fluctuations, the center of the soliton S-wave moves randomly from one line
of flow to another, which establishes the quantum mechanical probability distribution ) *.
As was shown by Mackinnon [42], for a particle traveling in the z-direction with a constant
velocity v, the S-wave takes the form

sinkr
U 1) = i(wt—kox) 8
(0,5 8) = =" ®
with k& = moc/h, ko = mv/h and
1/2
mo v (x —vt)> 5
vy A ©

The spatial distance (in the 2 direction) between the first two zeros of the S-wave (the
effective diameter of the particle) is thus equal to h/(mc) = [h/(moc)]\/1 — B2, i.e,
to the Compton wavelength contracted due to the usual relativistic (Lorentz) mechanism.
Ph. Gueret and J.-P. Vigier [43] showed that this soliton-like wave function is a solution of
a non-linear equation written (for zero-spin particles) as
me? . [OU U]
B2 - (U*U)1/2

where the non-linearity has the form of a quantum potential @ ~ O|U|/|U|. The same
equation was obtained in a quite different way by F. Guerra and M. Pusterla [44] and
A. Smolin [45] They derived the non-linear Schrédinger equation and the Klein-Gordon
equation containing a non-linearity of the quantum-potential type by following Nelson’s
stochastic approach (see Sec. 2.5.2).

From Eqgs. (8) and (9) it follows that in the non-relativistic approximation, the S-wave
disappears. At the same time, it can be shown that, as ¢ — oo, equation (5) for the P-wave
goes over into the corresponding Schrodinger equation.

au —

U (10)
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4.3 Theoretical consequences and possible experimental tests

A comprehensive review of the Stochastic interpretation of quantum mechanics, along with
many of its noteworthy applications, was given by J. P. Vigier and co-authors in Essays in
Honour of David Bohm [46]. They demonstrated that the de Broglie-Bohm-Vigier ap-
proach is able to explain, among others, the basic double-slit experiments, the EPR para-
dox [37], as well as various experiments on neutron interferometry [47] (and references
therein). Moreover, this approach was shown to be successful in suggesting plausible solu-
tions to such difficult problems of quantum theory as the negative probabilities associated
with relativistic Klein-Gordon equation [46, 48]. The approach was extended to include
particles having a non-zero spin s, namely, particles with spin s = 1 [33, 49, 50, 51] as
well as particles with spin s = /5 [52].

In its essence, the de Broglie-Bohm-Vigier approach represents an advanced model
of de Broglie’s wave-particle duality, and so invokes explicit experiments that are likely
to suggest a choice between this approach and the Copenhagen interpretation. The basic
idea underlying such experiments is to prove the reality of de Broglie’s pilot waves. One
possible test of this reality (in the double-slit experiments on neutrons) was proposed by
J. P. Vigier [53]. Other experimental setups suitable for detecting the real existence of the
P-waves have been proposed and discussed (but not yet performed) for photons [39, 54,
55], neutrons [56, 57, 58], and intersecting laser beams [59]. Further discussion can be
found in Ref. [60].

5. Conclusions

As we have seen, the de Broglie-Bohm-Vigier approach originated from the basic ideas
of Einstein and de Broglie concerning the relationship between two fundamental proper-
ties of a quantum object—its wave and particle aspects. Moreover, the de Broglie-Bohm-
Vigier approach rests upon the same philosophical foundations as those to which Planck,
Schrodinger, Einstein, and de Broglie adhered—all of them sharing the belief in the objec-
tive reality of the physical world as well as man’s ability to understand it correctly in its
most subtle details. “Physical theories try to form a picture of reality [italicized by L.Ch.]
and to establish its connection with the wide world of sense impressions” [61]. For this
reason, the Stochastic interpretation of quantum mechanics is sometimes also referred to
as the Einstein-de Broglie-Bohm interpretation [53]. However, in the opinion of the au-
thor, referring to it as the de Broglie-Bohm-Vigier theory would be a better reflection of the
actual state of things.

What can be expected in terms of further developments in the de Broglie-Bohm-Vigier
approach in quantum mechanics? It is hardly possible to summarize the outlook better
than Prof. J. P. Vigier did himself. “In my opinion the most important development to be
expected in the near future concerning the foundations of quantum physics is a revival,
in modern covariant form, of the ether concept of the founding fathers of the theory of
light (Maxwell, Lorentz, Einstein, etc.). This is a crucial question, and it now appears
that the vacuum is a real physical medium which presents surprising properties (superfluid,
i.e. negligible resistance to inertial motions), so that the observed material manifestations
correspond to the propagation of different types of phase waves and different types of in-
ternal motions within the extended particles themselves. The transformation of particles
into each other would correspond to reciprocal transformations of such motions. The prop-
agation of phase waves on the top of such a complex medium, first suggested by Dirac
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in his famous 1951 paper in Nature, yields the possibility to bring together relativity the-
ory and quantum mechanics as different aspects of motions at different scales. This ether,
itself being built from spin one-half ground-state extended elements undergoing covariant
stochastic motions, is reminiscent of old ideas at the origin of classical physics proposed by
Descartes and in ancient times by Heraclitus himself. The statistics of quantum mechanics
thus reflects the basic chaotic nature of ground state motions in the Universe.

Of course, such a model also implies the existence of non-zero mass photons as pro-
posed by Einstein, Schrodinger, and de Broglie. If confirmed by experiment, it would
necessitate a complete revision of present cosmological views. The associated tired-light
models could possibly replace the so-called expanding Universe models. Non-velocity red-
shifts could explain anomalous quasar-galaxy associations, etc., and the Universe would
possibly be infinite in time. It could be described in an absolute spacetime frame cor-
responding to the observed 2.7 K microwave background Planck distribution. Absolute
4-momentum and angular momentum conservation would be valid at all times and at every
point in the Universe” [62].
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In this paper, we propose a physical model leading to the causal interpretation of the quantum theory.
In this model, a set of fields which are equivalent in many ways to a conserved fluid, with density {¢]3 and
local stream velocity, d§/dt=VS/m, act on a particle-like inhomogeneity which moves with the local stream
velocity of the equivalent fluid. By introducing the hypothesis of a very irregular and effectively random
fiuctuation in the motions of the fluid, we are able to prove that an arbitrary probability density ultimately
decays into |y |%. Thus, we answer an important objection to the causal interpretation, made by Pauli and
others. This result is extended to the Dirac equation and to the many-particle problem.

1. INTRODUCTION

A CAUSAL interpretation of the quantum theory
has been proposed,!? involving the assumption
that an electron is a particle following a continuous and
causally defined trajectory with a well-defined position,
£(1), accompanied by a physically real wave field,
¥(x,0). To obtain all of the results of the usual inter-
pretation, the following supplementary assumptions
had to be made:

1. ¢(x,t) satisfied Schrédinger’s equation.
2. d§/dt=VS/m, where =R exp(iS/h).
3. The probability distribution in an ensemble of
electrons having the same wave function, is P= |

These assumptions were shown to be consistent.
Assumption (3), however, has been criticized by
Pauli® and others* on the ground that such a hypothesis
is not appropriate in a theory aimed at giving a causal
explanation of the quantum mechanics. Instead, they
argue it should be possible to have an arbitrary prob-
ability distribution [a special case of which is the
function P=3(x—Xo), representing a particle in a well-
defined location], that is at least in principle inde-
pendent of the ¢ field and dependent only on our degree
of information concerning the location of the particle.
In a more recent paper,® one of us has proposed a
means of dealing with this problem by explaining the
relation, 2= |/|? in terms of random collision processes.
It was shown in a simplified case that a statistical
ensemble of quantum-mechanical system with an arbi-
trary initial probability distribution decays in time to
an ensemble with P= |¢|2 This is equivalent to a proof
of Boltzmann’s H theorem in classical mechanics. Thus,

1 L. de Broglie, Compt. rend. 183, 447 (1926); 184, 273 (1927);
185, 380 (1927).

tD. Bohm, Phys. Rev. 85, 166, 180 (1952).

3 Les Savants et le Monde, Collection dirigée par André George,
Louis de Broglie, Physicien ¢t Penseur (Editions Albin Michel,
Paris, 1953).

4J. B. Keller, Phys. Rev. 89, 1040 (1953).

+D. Bohm, Bhys. Rev. 89, $158 (1953).

we can answer the objection of Pauli, for no matter
what the initial probability distribution may have been
(for example, a delta function), it will eventually be
given by P={¢[%

In the work cited above, however, certain mathe-
matical difficulties make a generalization of the results
to an arbitrary system very difficult. (The difficulties
are rather analogous to these appearing in classical
statistical mechanics when one tries rigorously to treat
the approach of a distribution to equilibrium, by means
of demonstrating a quasi-ergodic character of the
motion). In the present paper, we shall avoid these
difficulties by taking advantage of the fact that the
causal interpretation of the quantum theory permits
an unlimited number of new physical models, of types
not consistent with the usual interpretation, which lead
to the usual theory only as an approximation, and
which may lead to appreciably different results at new
levels (e.g., 107 cm). The model that we shall propose
here furnishes the basis for a simple deduction of the
relation, P=|¢|?; and in addition, gives a possible
physical interpretation of the relation df/di=VS/m
(postulate 2), which follows rather naturally from the
model. This model is an extension of the causal inter-
pretation of the quantum theory already proposed,
which provides a more concrete physical image of the
meaning of our postulates than has been available
before, and which suggests new properties of matter
that may exist at deeper levels.

2. THE HYDRODYNAMIC MODEL

The model that we shall adopt in this paper is an
extension of a hydrodynamic model, originally proposed
by Madelung® and later developed further by Taka-
bayasi? and by Schenberg.? To obtain this model, we
first write down Schrédinger’s equation in terms of the

¢ E. Madelung, Z. Physik 40, 332 (1926).

7T. Takabayasi, Progr. Theoret. Phys. (Japan) 8, 143 (1952);
9, 187 (1953).

8 M. Schenberg, Nuovo cimento (to be published).
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variables, R and S, where y =R exp(iS/h):

AR/ At+div(RVS/m) =0, 1)
as (vS)r K VR

+ ——— +V=0. (2)
al 2m  2m R

Now Madelung originally proposed that R? be inter-
preted as the density p(x) of a continuous fluid, which
had the stream velocity v=V.S5/m. Thus, the fluid is
assumed to undergo only potential flow. Equation (1)
then expresses the conservation of fluid, while Eq. (2)
determines the changes of the velocity potential S in
terms of the classical potential V, and the “quantum
potential”:

— VIR —hVp I(Vp 2
2m R 4m[p 2 p)]

As shown by Takabayasi’ and by Schenberg,® the
quantum potential may be thought of as arising in the
effects of an internal stress in the fluid. This stress
depends, however, on derivatives of the fluid density,
and therefore is not completely analogous to the usual
stresses, such as pressures, which are found in macro-
scopic fluids.

The above model is, however, not adequate by itself;
for it contains nothing to describe the actual location,
£(1), of the particle, which makes possible, as we have
seen In previous papers,®® a consistent causal inter-
pretation of the quantum theory. At this point, we
therefore complete the model by postulating a particle,
which takes the form of a highly localized inhomo-
geneily that moves with the local fluid velocity, v(x,t).
The precise nature of this inhomogeneity is irrelevant
for our purposes. It could be, for example, a foreign
body, of a density close to that of the fluid, which was
simply being carried along with the local velocity of
the fluid as a small floating body is carried along the
surface of the water at the local stream velocity of the
water. Or else it could be a stable dynamic structure
existing in the fluid; for example, a small stable vortex
or some other stable localized structure, such as a small
pulse-like inhomogeneity. Such structures might be
stabilized by some nonlinearity that would be present
in a more accurate approximation to the equations
governing the fluid motions than is given by (1) and (2).

3. FLUCTUATIONS OF THE MADELUNG FLUID

Thus far we have been assuming that the Madelung
fluid undergoes some regular motion, which can in
principle be calculated by solving Schrodinger’s equa-
tion with appropriate boundary conditions. We know,
however, that in all real fluids ever met with thus far
(and indeed, in all physically real fields also) the motions
never take precisely the forms obtained by solving the
appropriate equations with the correct boundary con-
ditions. For there always exist random fluctuations.

These fluctuations may have many origins. For ex-
ample, real fluids may be subject to irregular disturbance
originating outside the fluid and transmitted to it at
the boundaries. Moreover, because the equations of
motion flow of the fluid are, in general, nonlinear, the
fluid motion may be unstable, so that irregular tur-
bulent motion may arise within the fluid itself. And
finally, because of the underlying constitution of the
fluid in terms of molecules in random thermal motion,
there may exist a residual Brownian movement in the
fluid, even for fluid elements that are large enough to
contain a great many molecules. Thus, in a real fluid,
there are ample reasons why the usual hydrodynamical
equations will, in general, describe only some mean or
average aspect of the motion, while the actual motion
has an addition some very irregular fluctuating com-
ponents, which are effectively random.

Since the Madelung fluid is being assumed to be some
kind of physically real fluid, it is therefore quite natural
to suppose that it 100 undergoes more or less random
fluctuations in its motions. Such random fluctuations
are evidently consistent within the framework of the
causal interpretation of the quantum theory. Thus,
there are always random perturbations of any quantum
mechanical system which arise outside that system.
(Indeed, as we have already shown in a previous paper,®
the effects of such perturbations are by themselves
capable of explaining the probability distribution,
P=|y|? at least for certain simple systems.) We may
also assume that the equations governing the ¢ field
have nonlinearities, unimportant at the level where the
theory has thus far been successfully applied, but
perhaps important in connection with processes in-
volving very short distances. Such nonlinearities could
produce, in addition to many other qualitatively new
effects, the possibility of irregular turbulent motion.
Moreover, we may conceive of a granular substructure
of matter underlying the Madelung fluid, analogous to
(but not necessarily of exactly the same kind as) the
molecular structure underlying ordinary fluids.

We may therefore assume that for any or all of these
reasons, or perhaps for still other reasons not mentioned
here, our fluid undergoes a more or less random type of
fluctuation about the Madelung motion as a mean.
Thus, the velocity will not be exactly equal to VS/m,
nor will the density, p, be exactly equal to |¥[2. All that
we require is that the relations p=[¢|? and v=V5/m
be valid as averages. Indeed, it is not even necessary
that the exact velocity be derivable from a potential.
Thus, we would have d§/dt=VS'/m+ VXA, more gener-
ally,™® where (VXA),=0 and (V5)=(VS)w. Hence
Schrodinger’s equation will not apply to the fluctua-

? Such vortex components of the velocity may also explain the
appearance of “spin” provided that they could have a regular
component as well as a random component. Indeed, in another
paper, the Pauli equation will be treated from this point of view.
But here we concern ourselves only with a level of precision in
which the spin can be neglected, so that Schrédinger’s equation
is a good approximation for the mean behavior of the fluid.



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 21

tions. However, the conservation equation 8p/d!
+div{pv)=0 will be assumed to hold even during a
fluctuation. Such an equation is implied almost by the
very concept of a fluid ; for if there were no conservation,
then the model of a fluid would lose practically all of
its content.

From the above assumptions, it is clear that if we
followed a given fluid element, we would discover that
it undergoes an exceedingly irregular motion, which is
able in time to carry it from any specified trajectory of
the mean Madelung motion to practically any other
trajectory. Such a random motion of the fluid elements
would, if it were the only factor operating, lead even-
tually to 2 uniform mean density of the fluid. For it
would on the average carry away more fluid from a
region of high density than it carried back. The fact
that the mean density remains equal to [¢|?, despite
the effects of the random fluctuations, implies then
that a systematic tendency must exist for fluid elements
to move toward regions of high mean fluid density, in
such a way as to maintain the stability of the mean
density, 5= [¢|%. As for the origin of such a tendency,
the question is, of course, not important for the problem
that we are treating in this paper. We may, however,
suggest by way of a possible explanation that the inter-
nal stresses in the fluid are such that whenever p devi-
ates from [¥]? a kind of pressure arises that tends to
correct the deviation automatically. Such a behavior is
analogous to what would happen, for example, to a gas
in irregular turbulent motion in a gravitational field,
in which the pressures automatically adjust themselves
in such a way as to maintain a local mean density close
to p=poe ™¢*/ET if the temperature T is constant. (In
this connection, note that as shown in theoretical
treatments of turbulence, theirregular turbulent motions
themselves raise the effective “pressure’ in the fluid, so
that the effective “temperature” T is equal to the sum
of the mean kinetic energy of random molecular motion
and that of irregular turbulent motion.)

We must now make some assumptions concerning the
behavior of the particle-like inhomogeneity. We assume
that even in a fluctuation, it follows the fluid velocity
v(x,!). Such a behavior would result if the inhomo-
geneity were a very small dynamic structure in the
fluid (e.g., a vortex, or a pulse-like inhomogeneity) or if
it were a foreign body of about the same density as the
fluid, provided that the wavelengths associated with
the fluctuations were appreciably larger than the size
of the particle. For in this case, the inhomogeneity
would have to do more or less as the fluid did, since it
would act, for all practical purposes, like a small element
of fluid.

The presence of fluctuations with wavelengths smaller
than the size of the body could complicate the problem,
especially if we were considering inhomogeneities, such
as vortices and pulses, which were dynamically main-
tained structures in the fluid itself. For, such fluctua-
tions would treat different parts of the inhomogeneity

differently, and thus, in general, would tend to lead to
a dispersal of the inhomogeneity. Let us recall, however,
that we are by hypothesis considering only equations
having such nonlinearities in them as to lead to stable
inhomogeneities. It is true that the equations of ordi-
nary hydrodynamics do not do this. But it is not
necessary that the sub-quantum-mechanical Madelung
fluid should have exactly the same kinds of properties
as are possessed by ordinary fluids. Indeed, we have
already seen that instead of the usual classical pressure
term, it has a quantum-mechanical internal stress,
which depends on the derivatives of the fluid density,
rather than on the density itself. Thus, we may reason-
ably postulate that it also has some characteristically
new kind of nonlinear term which leads to stable
inhomogeneities. Hence, small fluctuations of wave
length much less than the size of the body will merely
cause irregular oscillations in the inhomogeneities, the
effects of which will, for practical purposes, cancel out.
Large fluctuations may destroy the inhomogeneity or
transform it into new kinds of inhomogeneity. This
could, however, represent certain aspects of the “crea-
tion,” “destruction,” and transformation of “ele-
mentary’’ particles, which is characteristic of phenomena
connected with very high energies and very short
distances. But in the low-energy domain, which we are
treating now, where Schrodinger’s equation is a goed
enough approximation, such processes will not occur.

We see then that if there are fluctuations of wave-
length a great deal shorter than the size of the body,
they will have a negligible effect on the over-all motions
of the body (whether it be a foreign body or a stable
dynamic structure in the fluid). In this case, the body
will follow the mean velocity of the fluid in a small
region surrounding it. To take into account the possi-
bility that such fluctuations may exist, we shall there-
fore hereafter let v(x,f) and p(x,f) represent respectively
the mean velocity and mean density in a small neigh-
borhood surrounding the body, while VS(x) and
p(x,!) represent the means of these quantities in a region
that is much larger than the size of the body, but still
small enough so that ¢(x,f) does not change appreciably
within this region. The consistency of these assumptions
evidently requires that the body be very small; but
with a choice, for example, of something of the order of
102 cm for its size, one obtains ample opportuni‘y to
satisfy the above assumptions in a consistent way.

It is clear, of course, that fluctuations having a
wavelength close to the size of the body will neither
cancel out completely, nor will they necessarily cause
the body to move exactly with the mean of the fluid
velocity in a small neighborhood surrounding it. We
may assume, however, that the magnitude of the
longer-wavelength fluctuations is so great that we can
neglect the effects of fluctuations of these intermediate
wavelengths. Thus, a rather wide range exists of kinds
of fluctuations that could lead to the type of motion
that we are assuming for the inhomogeneity.
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On the basis of the above assumptions, it is evident
that the inhomogeneity will undergo an irregular
motion, analogous to the Brownian motion.” Let us
now consider a statistical ensemble of fluids, each having
in it an inhomogeneity, and let us denote the prob-
ability density of such inhomogeneities in the ensemble
by P(x,). Let us further assume that the fluid motion
is so irregular that in time a fluid element initially
in an arbitrary region dx’ in the domain in which the
mean fluid density |¢(x,!)|? is appreciable, has a non-
zero probability of reaching any other region dx in
this domain. We can then quite easily see in qualitative
terms that the probability density P(x,Y) must
approach [¢(x,/)]* as an equilibrium value.

First of all, it is clear that if, for any reason whatever,
the distribution P=|¢|%, is once established, then it
will be maintained for all time, despite the random
fluctuations in the fluid motion. For the inhomogeneities
simply follow the fluid velocity in a small neighborhood
surrounding the body. Now by hypothesis the fluid
fluctuations are just such as to preserve the equilibrium
mean density of P=|¢|2 Therefore, they must also
preserve the equilibrium probability density of par-
ticles in the same way.

Let us now consider what happens when P is not
equal to {¢[% Suppose, for example, that there were a
larger number of particles in a specified element of
volume than is given by P=]|y|2 Now, the random
maotions carry particles away from such an element at
a rate proportional to their density in this element. The
systematic tendency for particles to come back to the
element, which results from their following the fluid, as
it drifts back at a rate sufficient to maintain the mean
equilibrium density of 5=[¢|?% will however be just
large enough to cancel the loss that would have taken
place if the probability density of particles had been
P=y,% Since the densitly was actually greater than
this, more particles are lost than are compensated by
the drift back and the density therefore approaches
P=|y!% If the probability density of particles in this
element had been less than P= |¢|?, the element would,
of course, have tended to gain particles until it had a
density of |¢|2

In the next section, we shall give a mathematical
demonstration of the above result, the correctness of
which should however, already be evident from the
qualitative considerations cited above.

Finally, we may mention that the picture of a fluid
undergoing random motion about a regular mean is
only one out of an infinite number of possible models
leading to the same general type of theory. Indeed, ali
the properties that we have assumed for our fluid could
equally well belong to some 4-vector field (p,j) which
was conserved, and which underwent random fluctua-

10 Brownian motion models of the quantum theory have already
been proposed elsewhere, but on a very different basis. See,
I. Fenyes, Z. Physik 132, 81 (1952); W. Weizel, Z. Physik 134,
264 (1933); 135, 270 (1953).

tions about a mean given (in the nonrelativistic limit)
by p=|¥|? and j= (h/2mi) (P*VY—VY*) = RVS/m,
where ¢ is a solution of Schridinger’s equation. And if
p and j were assumed to satisfy sufficiently nonlinear
equations, there could also exist pulse-like solutions'
for p and j that moved with a 4-velocity parallel to
(p,J)-

Although it is important to keep in mind these more
general possibilities when one is actually trying to
formulate a more detailed theory, we have found it
convenient in this paper to express our assumptions
and results in terms of a hydrodynamical model,
because this model not only provides a very natural
and vivid physical image of the behavior of the ¢ field,
but also a simple explanation of the formula, d&/dt
=VS/m, (postulate 2} expressing the velocity of an
inhomogeneity in terms of the local mean stream
velocity.

4. PROOF THAT PROBABILITY DENSITY APPROACHES
FLUID DENSITY IN RANDOM FLUCTUATIONS
OF A FLUID

We shall now prove the following theorem. Suppose
that we have a conserved fluid that undergoes random
fluctuations of the velocity, v(x,t), and of the density,
o(x,t), about respective mean values vo(x,f) and po(x,)
[so that 9p/d!-+div(pv)=0 and dpo/di+div(peve)=0].
Suppose in addition that there is an inhomogeneity that
follows the fluid motions, with the local stream velocity,
v(x,f). Then if the fluctuations are such that a fluid
element starting in an arbitrary element of volume, dx’,
in the region where the fluid density is appreciable has
a nonzero probability of reaching any other element of
volume dx in this region, it follows that an arbitrary
initial probability density of inhomogeneities will in
time approach P = po(x,1).

This theorem is seen to apply to our problems as a
special case, in which we set po=[¢(x,{)|? and vo(x,!)
=VS(x,0)/m, where ¢(x,!) satisfies Schrédinger’s equa-
tion, provided that we regard p(x,) and v(x,!) as the
mean fluid density and velocity in a small region sur-
rounding the inhomogeneity. This theorem is a general-
zation of a well-known theorem concerning the approach
to equilibrium in a Markow process.”? Essentially, we
have generalized the theorem to treat the time-de-
pendent probabilities of transition and time-dependent
limiting distributions with which we have to deal in
our problem. .

To prove this theorem, we note that, as shown in the
previous section, a given fluid element follows an
extremely irregular trajectory, in which its density
p(x,t) fluctuates near the mean density po(x,f). Now
because the volume of a given fluid element is always

41 See L. de Broglie, La Physigue Quantique, Restera-t-elle Inde-
terministe (Gauthier-Villars, Paris, 1953), where the idea of L. de
Broglie and J. P. Vigier on this subject are discussed.

W, Feller, Probability Theory and Iis Applications (John
Wiley and Sons, Inc., New York, 1950).
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changing in accordance with the changing mean fluid
density in the new regions that it enters, it is rather
difficult in rectangular coordinates to keep track of
how much fluid is transferred on the average from
one element of volume to another. To facilitate the
treatment of the problem, we shall therefore take
the preliminary step of introducing a new set of coor-
dinates, £ (x), £2(x), £3(x), which are so defined that an
elementary cell in the space of £y, £, £ always contains
a mean quantity of fluid proportional to its volume.
Such a set of coordinates is easily defined. For the
mean quantity of fluid in a given volume element is

0= po(x,0)dx=po(x,1)J (8,/ 3,)db:dkndEs
= podbrdbaits/ To(98,/0%,),

where J(9¢./0x,) is the Jacobian of the transformation.
Now we want to have J(38§,/3%,)=cpo(x,f) (where we
shall choose ¢ to be unity for convenience).

Since there is only one equation, it is clear that only
one of the £ can be defined in this way, so that the
other two can be chosen according to what is convenient.
Thus, if we fix the forms of £, and £;, we see that the
above equation becomes a linear differential equation
defining £,, in terms of £, £, and po. Such an equation
always has solutions wherever &, &3, and po are regular.
There may exist singular points or curves, but we shall
later show how these are to be dealt with.

As an example, consider a cylindrically symmetric
density function p(R)=¢"R/R. We first express the
volume element in cylindrical polar coordinates (with
Ri=X1V?):

p(R)RARd$dZ = e PdRdpdZ.

Now we want e BdR=4d§,, or {1=¢"%. As for {, and &,
we can in this case leave them equal to ¢ and 7 respec-
tively.

Here we see that when R goes from 0 to o, & goes
from unity to zero. This is an example of a charac-
teristic property of the £, space to be limited in volume
when the function pg(R) is appreciable only in a limited
domain. Such a property is to be expected, because we
are mapping the x, on the £ in just such a way that
each region maps into a new volume proportional to
the amount of fluid originally in that region. Thus even
infinite regions of x, space may map onto negligible
regions of £, space, if they contain negligible quantities
of fluid.

The solution of the differential equation for &, will
lead in general to multiple-valued functions. This,
however, causes no trouble, as we need merely establish
a convenient cut somewhere which defines which branch
of the function that we are using. Thus the transition
to cylindrical polar coordinates, R?= X2+ ¥?; ¢=tan™!
X (¥/X), leads to a multiple valued function for ¢,
but we deal with this problem by establishing a cut,
say at ¢=0, and then defining the range of variation
of ¢ as being from zero to 2x. In order to cover the

entire XV plane only once, a similar definition can be
made with any multiple-valued function.

If po(x,f) vanishes at certain points, then at those
points we cannot solve for all the ¢, in terms of the #,
(as, for example, in cylindrical polar coordinates we
cannot solve for ¢ at R=0). As long as po(x,f) vanishes
only at a set of isolated points, or at most, on a set of
one-dimensional curves, where will be no real difficulty.
For the vanishing of po(x,!) means only (as in the case
of cylindrical polar coordinates) that some of the £, are
not defined along these curves. To avoid any ambiguities
arising from the lack of definition, we may surround
each of these curves with a tube, as small in radius as
we please, and thus exclude them from the region
under consideration without excluding any significant
physical effects.

If, however, there are two-dimensional surfaces where
po(x,0)=0, this creates more serious mathematical dif-
ficulties. Since such surfaces do not, in fact, arise in any
real problem of interest to us,”* we shall assume that
po(x,!) vanishes at most on a set of one-dimensional
curves.

Finally, let us note that since po changes with time,
our ¢, will change with time correspondingly. Thus, we
are adopting a moving set of coordinates (but not in
general one that moves with the mean motion of the
fluid elements).

In the space of the £, the mean fluid density will be
a constant which also does not change with time. As a
result, the problem of describing the fluctuations will
be greatly simplified. For in the £, space there is no
tendency for the fluctuation to favor any special
region since the equilibrium density, which was po(x,f) in
rectangular coordinate, is now a constant. Thus, in the
£, space, the fluctuations have a truly random character,
independent of the fluid density at any particular point.

We are now ready to set up the equations governing

3]0 the case of interest Lo us, po= [¢(X,!)|®. At first sight, it
may seem that we shall have to be concerned with surfaces on
which po vanished, because in a perfectly stationary state, y(x,()
can be zero on certain nodal surfaces. In the case of a perfectly
stationary state, ¥ can be real [or more generally, writing
¥= U(x,t{—i—iV(x,t), we may bave a functional relationship
between U(x,¢) and V(x,!) permitting both to vanish on some
two-dimensional surface]. However, for the general complex
function ¥, which we obtain in a nonstationary state, it may be
shown that there is no such functional relation between U and V,
so that ¢ can vanish at most on a set of one-dimensional curves.

Now a perfectly stationary state is an abstraction that never
really exists. For all systems that have ever been dealt with are
perturbed to some extent by interactions with other systems. Thus,
in a gas, a hydrogen atom suffers 10" collisions per second. In a
metal, the electrons suffer a correspondingly large number of
collisions with each other and with the cores. In the nucleus, there
is a continual process of perturbation due to the fluctvating elec-
tronic and jonic fields acting on the spin and quadripole moments
of the nuclei. Even in interstellar space, atoms undergo at least
one collision with electrons in 107 seconds. Thus, all states are
slightly nonstationary, and no perfectly nodal planes of the ¢
function ever really appear in nature.

A set of perfectly nodal surfaces could interfere with our proof
that P—|y|*; for they would represent surfaces that would never
be crossed so that the regions on different sides of these surfaces
could be completely isolated from each other.
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the changes of the probability density P(x,f) for the
inhomogeneities. We first transform to the £, space,
writing

P(x,)d¥  P(x,t)

T(06./0%)  po(x)

where we have defined the vector ¥= (£1,£5,£5) in the
%, space, with the volume element, df=d¢dédEs. The
probability density for the space of the &, is clearly
F=P/p,. To prove that P—p,, we then merely have
to show that in £, space, F(Z,f) approaches a constant.

We now define the probability that fluid in an element
8%, centered at the point £ at the time {, has in the
process of fluctuation come from an element 8%’ at
an earlier time ¢ with its center ¥ lying in a region d¥f'.
(Note that 8¢’ is the magnitude of the volume element,"
whereas d,é, is the size of the cell in which the center of
the volurfie element was located at the time ¢). This
probability is

P(x,t)dx= dE=F(§0dE, (3)

dP=KEE' dy. @

Clearly, by definition,
[raeuna=1. )

Now the exact form of K (£,¥,.,(') will depend on the
precise nature of the fluctuations that are taking place
in the fluid. We shall see, however, that in order to
prove that F(£/)—1, it is sufficient to assume that
K(&¥,1l') fails to be zero over the part of ¥ space
corresponding to the region of x space in which po(x,/)
is appreciable. This is clearly just a mathematical
expression of the assumption appearing in the first part
of this section that there is a nonzero probability that
an element starting at any point x in this region has
a nonzero probability of arriving at any other point a’
in the region.

Note, however, that the region of x space in which pe
is appreciable will include, for practical purposes, the
whole of the ¥ space (except for a region of negligible
dimensions). Thus, we may postulate that K (£ /)
fails to be zero in the whole of £ space (except possibly
along some one-dimensional curves where po(X,f) may
be zero, which we can exclude by means of tubes of
negligible dimensions).

As for other properties of K, they are irrelevant for
our purposes here, although we shall discuss some of
them in Sec. 6, in another connection.!®

“ On the average, 5¢ will not change as the fluid element moves
because the fluid density fluctuates near & constant volume in space.

15 It may be noted at this point that the kernel K(f,g’),‘;,t’)
already contains implicit within it a description of the mean fluid
velocity VS/m. To show this, consider {—¢ =5 to be a small
interval of time. Then K (x,2’,,¢'—5¢) will be large in only a small
region of & space corresponding in x space to a region centered
around {(z—x'—VSst/m)==0. The motion of the center of this
region describes the mean fluid velocity. The spread of this region
describes the random deviations from the mean. In a typical
random diffusion process, this width is given by (Ax)~i, for

Let us now discuss the motions of the inhomoge-
neities. Since these latter follow the fluid in its fluctua-
ations, it is easily seen that the probability density of
inhomogeneities, F(,), is just the average of F(¥' /')
weighted with the probability K (§,,4,t'). Thus,

FEd= [ KEELORE O, (©)

Now, let £x(¢) represent the value of ¥ for which #(£,4)
is a maximum, £,(f) the value for which it is 2 minimum.
(X there is more than one pair of such points, let us
consider any single pair.) We also let Fuax(§6)=M{1),
and Fon () =m(t). Setting ¥=£y(f) in Eq. (6), and
using (5), we obtain

M= [ K0 a0P@NaE

2 [Ren@EpnmOar =y O
and with £=£,(¢) in Eq. (6), we get similarly
m)= [ KO LOPE N

s f K (Bl 2 L m(E)aE =m(l). (8)

Thus,
MOZ M), (Ya)

m{)S m(!'). (9b)

In order for the equal sign to hold in Eq. (9a), it is
necessary that F(¥,t') be a constant. For by hypothesis,
K (£,¢t,t') fails to vanish anywhere in the ¥ space; and
if F(¥',') is nol a constant, then the integral (7) must
obtain contributions from regions in which F(¥' ) <M.
Similarly, we can show that the equal sign can hold in
(9b) only if F(¥'t) is a constant. But if F(£'t) is a
constant in f space, then by (6) we have

(&)= F(E ) f K5 L0 =FE D).

Thus, F(¥ ') = constant is also an equilibrium solution,
since it does not change with the passage of time. The
result, of course, is more or less to be expected from
the physical argument given at the beginning of this
section showing that P=py(x,!) is an equilibrium solu-
tion, so that F= P/po=constant must likewise be one.
We conclude then that if F(¥’,t') is not a constant, Eqs.
(9a) and (9b) must be written as

M@ <M, (10a)
m()>m(l). (10b)
short times, For longer times, the functional form of K is deter-

mined in a complicated way, which is however of no concern to
us in this paper.
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Now we can show that Egs. (102) and (10b) imply
that F(x,?) must approach a constant, with the passage
of time. To do this, let us consider a series of times,

t1, b2, Is- * “tu, tnsr- - . We apply (10a) and (10b) from

one element of the series of times to the next, Thus
M (tn) <M (ta-), (11s)
m(lp)>m(tny). (11b)

It is clear that M (f,) and m(t..) must each approach
constant limits. For M(t,) is always decreasing and
yet remains greater than some fixed number, m(%),
where 4, is any element of the series such that {,> 4.
Similarly m(¢,) is always increasing and yet less than
M(t,). Now there are just two possibilities: (a) The
two constant limits are different; (b) they are the same.
We. easily see that alternative (a) is self-contradictory.
To do this, we denote the two limits by M and m, respec-
tively. Then M —m=Hm{M (¢,)—m(t,)]. But by (11a)
and (11b), we have

M-—m<li_xg M (tnor) —m(tn)]
='132 [M{t)—m(t)]=M—m.

Because this is a contradiction, alternative (b) must
hold. Then F(¥,f) must approach a constant limit, and
P(x,f) must approach ap(x,), where & is a constant.
If, as happens in quantum theory, the integral of
po(x,?) is normalized to unity, then since by definition
the integral of P is also normalized to unity, we must
have a=1, and

P(x,)—po(x,0). (12)

S. APPLICATION TO DIRAC EQUATION AND
EXTENSION TO MANY-PARTICLE
PROBLEM

We may apply the preceding results to the causal
interpretation of the Dirac equation,'® where, as in the
Schrodinger equation, we have a stream velocity,
vo=y*a/Y*, and a conserved density, pe=y¥*y. If
we assume a fluid of the same kind as that treated in
Sec. 4, and replace VS/m by y*ad/¢*¥ and |¢|® by
Y*, then according to the results of Sec. 4, the prob-
ability density will ultimately approach ¢*¢.

Our results can also be extended very readily to the
case of many particles. We first discuss this extension
in a purely formal way. We have a wave function,
Y(X1,X2- - -Xn,t), defined in a 3N-dimensional config-
uration space. Writing =R exp(iS/%), we have a set
of 3N velocity fields, Vo= V.S(x1,X2,- - -Xn,f), where V,
refers to differentiation with respect to the coordinates
of the nth particle. We have a conservation equation
in the configuration space.”” We may now assume that
each particle follows the line of flow given by
Va(X1,Xs, - -Xn,). Thus, our model is formally just a

18D, Bohm, Progr. Theoret. Phys. (]apan)9 273 (1953).
1 See reference 2, Paper I, Eq. (16

3N-dimensional extension of the model given previ-
ously. Hence, if we assume random fluctuations of the
3N-dimensional velocity field, we shall obtain the
result that the probability density in configuration
space, P(x1,Xs,- - -Xn,0), approaches [y (x1,Xz,- - -Xn0) |2

To obtain a possible physical picture of the meaning
of this model, we may use the causal interpretation of
the N-particle problem recently proposed by de Broglie®
De Broglie has shown that the usual formulation in
terms of a wave function in the 3N-dimensional con-
figuration space can be replaced by an equivalent
formulation, according to which each particle is accom-
panied by its own 3-dimensional wave field, which
depends on the precise locations of the other (N—1)
particles. Since each wave field satisfies its own
Schrédinger’s equation, the preceding demonstration
still applies.

The above model would imply that each particle
moves in its own fluid, and that the fluids interpene-
trate each other. For the case of equivalent particles,
however, de Broglie has suggested that all particles can
be regarded as moving in a common three-dimensional
fluid, the velocity of which, at any point x, is dependent
on the locations of all the particles, x,. Thus, we would
merely need as many fluids as there are types of par-
ticles.

6. ON THE RELATION BETWEEN THE THEORY OF
MEASUREMENTS AND FLUCTUATIONS
IN THE { FIELD

We have demonstrated that with time, the limiting
distribution, P= |¢|?, will be established for any func-
tional form of K (£,¥',1,'), at least within a region which
is such that K(£,E,4,¢), does not vanish for any pair of
points & and £ in the region in question. But without
a further specification of the K(£¥,,), the rate of
approach to the limiting distribution cannot be esti-
mated.

The very fact that no conclusion drawn from the
assumption that P= |2 has as yet been contradicted
experimentally, suggests, however, that at least to a
falrly high degree of approximation, P is equal to |¢|*
in all quantum-mechanical systems which have thus
far been investigated. Hence, we are led in our model
to assume that the existing fluctuations are at least
rapid enough to insure the approximate maintenance
of the relation, P=[¢|? in the very wide variety of
systems which has thus far been studied.

In connection with the theory of measurements,
however, there arises an important case in which the
rate of approach to the equilibrium distribution must
be quite slow, if the theory as a whole is to be con-
sistent. This is the case of two wave packets separated
by a classical order of distance, throughout which the
mean density |¥|? is completely negligible.

To show why this case is important, let us recall

18 See reference 11; also Compt. rend. 235, 1345, 1372 (1953)-
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briefly some results of the theory of measurements
given in a previous paper.?

It was shown that in a measurement process, the
interaction between measuring apparatus and observed
system breaks the wave function into a series of clas-
sically separated packets, corresponding to the various
possible results of the measurement. The particle,
however, enters one of the packets and thereafter
remains in it. It is important that the particle remain
in this packet; because if it does, the other packets will
never play any physical role, so that they can thereafter
be neglected and the complete wave function replaced
by a simplified one corresponding to the actual result
of the measurement. Thus, we understand how a
measurement can come to have a definite result, despite
the spread of the wave function over a range of possi-
bilities.

Now, if the introduction of a random fluctuation of
the ¢ field led to an appreciable diffusion of the particle
from one of these classically separated packets to
another, the above definiteness of the result of a meas-
urement would be destroyed. It is essential therefore
for the over-all consistency of the theory that the prob-
ability that the particle diffuse across a large region
where po(x,!) is verv small shall be negligible.*

It is easy to see, however, that almost any reasonable
assumptions concerning the fluctuations will lead to
this result. For the mean current of particles is (pV)a.
Now p is everywhere of the order of magnitude of
po(x,{), which is by hypothesis very small in the region
between the wave packets. Thus a large probability of
a fluctuation that would carry a particle across this
space would mean an enormous fluctuation velocity in
this region. The mere assumption that fluctuation
velocities do not differ by large orders of magnitude in
different parts of the fluid is therefore sufficient to
insure that the probability of diffusion across this space
be very small.

7. CONCLUSION

The essential result of this paper has been to show
that the probability density P=]|¢|? follows from
reasonable assumptions concerning random fluctuations
of the ¢ field. Now, it has already been demonstrated®
that once the probability distribution P=[¢|? has,
for any reason whatever, been set up in a statistical
ensemble of quantum-mechanical systems, then the
results predicted for all measurement processes will be
precisely the same in the causal interpretation as in

" Note that the slowness of this particular type of diffusion
does not interfere with the validity of the relation P= [y (2, for
the wave function as a whole (i.e., over a whole set of wave
packets). For the relation P=[y|? will already have been estab-
lished by random fluctuations before the measurement took
place; and as we have seen, once established, the relationship
persists and is not thereafter altered by the Aluctuations no matter
what happens. But what we have been discussing is another
probability ; namely, the probability that if a particle has entered
a given packet, it will within a given time diffuse to another packet.
It is this probability that is negligible.

the usual interpretation. The difference between the
two points of view, however, is this: in the usual inter-
pretation, the irregular statistical fluctuations in the
observed results® obtained in general when we make
very precise measurements on individual atomic systems
are assumed, so to speak, to be fundamental elements
of reality, since it is supposed that they cannot be
analyzed in more detail, and that they cannot be traced
to anything else? In the model that we have proposed
here, however, the statistical fluctuation in the results
of such measurements are shown to be ascribable con-
sistently to an assumed deeper level of irregular motion
in the ¥ field.

In this paper we have proposed as a possible picture
of this deeper level the more specific model of a fluid,
undergoing a random fluctuation of its velocity and
density about certain mean values determined from
Schridinger’s equation, and having in it an inhomo-
geneity that follows the local stream velocity of the
fluid. Of course, this proposal has not yet reached a
definitive stage, since we have given only a very general
description of the assumed fluctuations and of the
properties of the inhomogeneity. Nevertheless, such a
model, incompletely defined in character as it is, already
suggests a number of interesting questions.

For example, the fluid may have vortex motion. In
another paper® it will be shown that such vortex
motion provides a very natural model for the non-
relativistic wave equation of a particle with spin (the
Pauli equation). Work now in progress indicates that a
generalization of such a treatment to relativity may
yield a model of the Dirac equation.

Another interesting problem to be studied is the
possible effects of the assumption of nonlinear equa-
tions for the ¢ field, which could, as we have seen in
Sec. 2, explain the existence of the irregular fluctuations
that lead to P=|¢|% Such nonlinear equations can
lead to many qualitatively new results. For example,
it is known that they have a spectrum of stable solu-
tions having localized pulse-like concentrations of
field,® which could describe inhomogeneities such as we

2 Let us recall that as discussed in reference S, Sec. 3, there
exist real observable large-scale phenomena obtained in a measure-
ment process, which depend on the properties of individual atoms
(e.g., clicks of a Geiger counter, tracks in a Wilson chamber, etc.)

* For example, they cannot in general be ascribed to the uncon-
trollable actions of the measuring apparatus, as demonstrated by
Einstein, Rosen, and Podolsky, Phys. Rev. 47, 774 (1933) and
also D. Bohm Quanlum Theory (Prentice Hall Pubhcatmns New
York, 1951), p. 614. As Bohr has made clear {Phys. Rev. 48, 696
(1933)] the measuring apparatus plus observed object must be
regarded as a single indivisible system which yields a statistical
aggregate of irregularly fluctuating observable phenomena. It
would be incorrect, however, to suppose that these fluctuations
originate in anything at all. They must simply be accepted as
fundamental and not further analyzable elements of reality, which
do not come from anything else but just exist in themselves. For
a complete discussion of this problem, see, Albert Einslein,
Philosopher-Scientisl, Paul Arthur Schilpp, Editor (Library of
Living Philosophers, Evanston, 1949).

2 Bohm, Tiomno, and Schiller (to be published).

( ”F;nkelstem LeLevner, and Ruderman, Phys. Rev. 83, 326
1951



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 27

have been assuming in this paper. Such pulse-like con-
centrations of field would also tend, for many types of
field equations, to follow the local stream velocity.
The transitions between different possible forms of the
inhomogeneous pulse-like part of the solution, combined
with transitions between various modes of vibration in
the rest of the fluid, could perhaps describe changes
from one type of particle to another. Thus, we see that

at least in its qualitative aspects, the model seems to
have possibilities for explaining some of the kinds of
phenomena that are actually found experimentally at
the level of very small distances.

" The authors would like to express their gratitude to
the Conselho Nacional de Pesquisas of Brazil and the
Section des Relations Culturelles of France, which
provided grants that made this research possible.
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Dirac’s Aether in Relativistic
Quantum Mechanics
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The introduction by Dirac of a new aether model based on a stochastic
covariant distribution of subquantum motions (corresponding to a “vacuum
state” alive with fluctuations and randomness) is discussed with respect to the
present experimental and theoretical discussion of nonlocality in EPR situations.
It is shown (1) that one can deduce the de Broglie waves as real collective
Markov processes on the top of Dirac’s aether; (2) that the quantum potential
associated with this aether’s modification, by the presence of EPR photon pairs,
vields a relativistic causal action at a distance which interprets the superluminal
correlations recently established by Aspect et al.; (3) that the existence of the
Einstein-de Broglie photon model (deduced from Dirac’s aether) implies
experimental predictions which conflict with the Copenhagen interpretation in
certain specific testable interference experiments.

1. INTRODUCTION

Among all great physicists who founded quantum theory, Professor P. A. M.
Dirac stands apart with Einstein and de Broglie. Indeed, once he had given
(in a famous book‘"’) the best known axiomatic presentation of the
Copenhagen interpretation of this theory, he never stopped exploring new
“strange” ideas, even when they were likely to destabilize an interpretation
he had himself put in orbit with his crucial discoveries in electron-positron
theory. In a paper written in his honor it is thus only fitting that one should
discuss two of Dirac’s famous “strange” ideas, i.e.,
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® his departure from a pointlike model of particles to justify the
propagation of possible superluminal interactions;

@ his contribution to the revival (in a new form, of course) of the old aether
concept.

Since we want to concentrate essentially on the second idea, we shall only
briefly recall the first idea as a possible basis for an interpretation of the
experimental confirmation of nonlocal correlations in EPR experiments in
photon pair emitted in the singlet state.'®

Clearly the idea that extended particles are nonlocal in nature, i.e., that
they can propagate in their interior superluminal interactions and/or infor-
mation goes back to Dirac. He was the first to notice that if one treats the
classical extended electron as a point charge imbedded in its own radiating
electromagnetic field, the equations obtained are of the same form as those
already in current use, but that in their physical interpretation the finite size
of the electron reappears in a new sense: the interior of the electron being a
region of space through which signals can be transmitted faster than light.
Physically this can be understood as follows. If we send out a pulse from a
point A and a receiving apparatus for electromagnetic waves is set up at a
point B, and if we suppose that there is an extended electron on the straight
line joining A to B, then the disturbed electron will be radiating appeciably
at a time a/c before the pulse has reached its center, so that this emitted
radiation will be detectable at B at a time 2a/c earlier than when the pulse,
which travels from A to B with the velocity of light, arrives (here, of course,
a is the electron radius). In this way a signal could be sent from 4 to B
faster than light through the interior of an electron.

This pessibility of superluminal transmission of signals, of course, is a
problem of this model of extended electron in the same sense as the nonlocal
correlations in an EPR experiment. As we will discuss later (see Section 3),
in order to preserve the Einsteinian causality we must use the concept of
relativistic action at a distance, as developed in the predictive mechanics.‘”’
Indeed we will be able to explain causally the nonlocal correlations by
means of a nonlocal quantum potential which satisfies the compatibility
conditions of the relativistic action at a distance.

This idea has engineered a long set of researches starting for example
with Yukawa’s bilocal particle model” and Bohm and Vigiier’s liquid
droplet model.® The essential point is that, independently of the internal
motions which yield a classical model of spin,'® it has generally been
demonstrated by Souriau er al.!” that any extended particle model yields an
internal rotation of the particle’s center of matter density around its center of
mass with the exact frequency of de Broglie’s relation vy =mgyc?/h. Of
course, such extended particle models have received (until now) no direct
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experimental support. They open nevertheless interesting paths of research
since:

@ they offer the possibility to interpret the particle’s newly discovered
quantum numbers (7, Y, C, B, L,..) in terms of internal oscillations®;

@ they can contain (as suggested before) nonlocal hidden variables which
can be utilized to support the nonlocal character of the quantum potential
and lead to a causal action-at-a-distance interpretation of nonlocal
correlations of EPR paradox.

Let us now come to the second idea, i.e., the reintroduction by Dirac of
new possible aether models. As we shall see, this might well turn out to be
one of Dirac’s main contributions to the new era opened (in the author’s
opinion) by Aspect’s confirmation of the real existence of superluminal
correlations in the physical world.® In Dirac’s own words®:

“In the last century, the idea of an universal and all pervading aether was
popular as a foundation on which to build the theory of electromagnetic
phenomena. The situation was profoundly influenced in 1905 by Einstein’s
discovery of the principle of relativity, leading to the requirement of a four-
dimensional formulation of all natural laws. It was found that the existence
of an aether could not be fitted in with relativity, and since relativity was
well established, the aether was abandoned.

Physical knowledge has advanced very much since 19085, notably by the
arrival of quantum mechanics, and the situation has again changed. If one
reexamines the question in the light of present-day knowledge, one finds that
the aether is no longer ruled out by relativity, and good reasons can now be
advanced for postulating an aether.

Let us consider in its simpler form the old argument for showing that
the existence of an aether is incompatible with relativity. Take a region of
space-time which is a ‘perfect vacuum,’ that is, there is no matter in it and
also no fields. According to the principle of relativity, this region must be
isotropic in the Lorentz sense—all directions within the light cone must be
equivalent to one another. According to the aether hypothesis, at each point
in the region there must be an aether, moving with some velocity,
presumably less than the velocity of light. This velocity provides a preferred
direction within the light-cone in space-time, which direction should show
itself up in suitable experiments. Thus we get a contradiction with the
relativistic requirement that all directions within the light cone are
equivalent.

This argument is unassailable from the 1905 point of view, but at the
present time it needs modification, -because -we have to apply quantum
mechanics to the aether. The velocity of the aether, like other physical
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variables, is subject to uncertainty relations. For a particular physical state,
the velocity of the aether at a certain point of space-time will not usually be
a well defined quantity, but will be distributed over various possible values
according to a probability law obtained by taking the square of the modulyg
of a wave function. We may set up a wave function which makes all valyeg
for the velocity of the aether equally probable. Such a wave function may
well represent the perfect vacuum state in accordance with the principle of
relativity ... .

Let us assume the four components v, of the velocity of the aether at
any point of space-time commute with one another. Then we can set up a
representation with the wave functions involving the v’s. The four v’s can be
pictured as defining a point on a three-dimensional hyperboloid in a four-
dimensional space, with the equation:

vi—vi—-vl-vi=1, V>0 (1)

A wave function which represents a state for which all aether velocities are
equally probable must be independent of the v’s, so it is a constant over the
hyperboloid (1). If we form the square of the modulus of this wave function
and integrate over the three-dimensional surface (1) in a Lorentz-invariant
manner, which means attaching equal weights to elements of the surface
which can be transformed into one another by a Lorentz transformation, the
result will be infinite. Thus this wave function cannot be normalized.”

In other words, Dirac has bypassed all former relativistic objections to
a static aether’s existence by introducing a chaotic random moving
subquantal aether behavior: a step subsequently revived and developed by
Bohm and Vigier,"*"'® de Broglie,""" Sudarshan et al.,"'® Cufaro Petroni
and Vigier."'?

To stress and clarify this essential point, we shall briefly recall a few
evident resuits in a simplified case. One can see that Dirac’s aether can be
easily connected with the original “negative energy sea,” which still remains
the essential basis for the second quantization formalism as well as for all
subsequent field theories. Indeed this negative energy sea can be considered
as the first reintroduction of a material vacuum in relativistic quantum
mechanics. As one knows,"'*’ Dirac’s original vacuum is characterized (for
spin-1/2 particles) by the fact that all positive energy states are not filled
whereas all negative energy states are filled. In order to turn this vacuum
into Dirac’s aether it must be made covariant, i.e., not detectable with a
Michelson and Morley experiment. As stated by Dirac,”® we can satisfy
such a condition if we consider that the four-momenta of the particles of
Dirac’s vacuum are uniformly distributed on the lower mass hyperboloid
(see Fig. 1). Indeed, with a Lorentz transformation the equation of the hyper-
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Fig. 1. Two-dimensional representation of Dirac’s aether in
momentum space: four-momenta are uniformly distributed on
the lower filled mass shell.

boloid remains the same and, if the state distribution was uniform along this
spacelike surface, 1.e., if

dN = K \/|ds?| (2)

(where dN is the number of states in a section ds of the hyperboloid and X is
a constant), the new observer will see the same uniform distribution of states
on his hyperboloid.

Of course, the distribution in energy is not constant in this case. We can
compute this distribution starting from the obvious statement that in a
section dp, of the p, axis (around a point p,) we have a number of states
p(py) dp, which equals the number of states in the corresponding ds on the
hyperboloid (we fix here p, > 0, p, < —mc < 0), so that

K ds = dN = p(p,) dp, (3)
and hence

_ |ds’|
p(po) =K “dp “)
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Fig. 2. Plot of the density p of states along the energy axis in
Dirac’s aether.

so that from the explicit expression of ds we have

p(po)=1<\/(§1’%)2—1=¢—;g—'<__i"__# s)

0

We have plotted the curve p(x) with x = p,/mc in Fig. 2, and we can remark
that our density diverges for x— —1 and tends to zero for x— —o0.
Nevertheless, we can prove that, if we take a fixed x, € ]—oo, —1[, the
number n of states between x, and —1 is always finite; on the contrary, the
number N of the remaining states between —oo and x, always diverges.
Indeed, we have

n= j_ l p(x) dx = arc cosh(x,)
A 6)
N=| " px)dx =+

This proves that in Dirac’s aether distribution the weight of the almost light-
like four-momenta must be predominant.

The main poblem now raised by this exposition is: How does Dirac’s
aether interact with a positive energy particle put in it? Beyond the precise
mechanism of this interaction, what about the conservation laws? We can
make here some remarks: It is clear that the theory of Dirac’s equation
requires only that all negative energy levels must be filled with just one
particle for each level. Then, if we consider the four-momentum of this
particle (for example of energy E), we see that we have an infinity of
possibilities for the p* direction (at least two for the two-dimensional case,
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Fig. 3. Three-dimensional representation of Dirac’s aether in
momentum space: for each p, value there is an infinity of
equiprobable possible directions of the corresponding four-
momentum p“.

but infinite in the other cases; see Fig. 3). So, if the level E is filled by only
one particle, its p# is not completely determined and is uniformly distributed
on the corresponding section of the hyperboloid. In this case, even if all the
energy levels are filled, a vacuum particle can interact with a positive energy
particle by exchanging momentum but no energy at all (with the obvious
exception of the case of pair creation or annihilation). Hence we can say that
in our subquantal medium a positive energy particle can travel without loss
of energy (without “friction”) but it can change the direction of its
momentum p by interacting with the aether particles or produce pair
creations and annihilations. As we will see in the subsequent section, these
are exactly the possible interactions we need in order to describe the
quantum statistics of the Klein—~Gordon equation as a stochastic process.
Of course this transition from “hole theory” to Dirac’s aether is too
simple. In order to interpret the relativistic wave equations of quantum
mechanics, Sudarshan er al."? and Vigier’¥ had to complexify Dirac’s
aether model, i.e., introduce aether models built as superfluid states of
particle-antiparticle .pairs. In such model, the de Broglie waves are
considered as real collective motions in which localized soliton-like energy-
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carrying particles''®’ are surrounded by real physical “pilot waves” which
interpret interference phenomena as well as nonlocal quantum correlations in
configuration space. One is thus now confronted with the possible confron-
tation of the offsprings of Dirac’s aether with present experimental
possibilities.

The preceding discussion determines the plan of our paper. In the
second section we shall illustrate in a simplified model how random
stochastic jumps at the velocity of light yield (in a particle—antiparticie
mixture) the basic relativistic second order equation of wave mechanics, i.e.,
the Klein—-Gordon equation, which, as we will see, contains action at a
distance tied to the quantum potential of Bohm"'” and de Broglie."'" In the
third section we shall discuss in terms of such a causal action at a distance
the nonlocal quantum interactions which result from the experiments of
Aspect.? In the fourth section we shall confront the conflicting predictions
of the Copenhagen interpretation and of the stochastic interpretation of
quantum mechanics in a particular situation in which Bohr’s wave-packet-
collapse concept conflicts with Maxwell’s (i.e., Einstein’s and de Broglie’s)
theory of light.

2. STOCHASTIC DERIVATION OF THE RELATIVISTIC QUANTUM
EQUATIONS

According to our plan, we now utilize the concept of Dirac’s chaotic
aether (which assumes that the particles imbedded in it undergoes random
jumps at the velocity of light) as a physical basis for the construction of the
so-called stochastic interpretation of quantum mechanics. From this
standpoint, the probabilistic character of quantum mechanics is not an
irreducible limit of human knowledge but (following Einstein and de Broglie)
appears as a natural consequence of the random character of the irregular
deviations from the deterministic movement of a classical particle induced by
the action of Dirac’s chaotic aether. The explicit derivation of the relativistic
quantum equations from such a stochastic process is, of course, very
important in this type of model, because it materializes the link between the
quantum and subquantum features of the microscopic world, so that all the
correct predictions of the quantum mechanics can be reproduced in principle
in this stochastic interpretation. This, evidently, realizes a hidden-variable
theory, but (as we will later see) not a local one, as required by Bell’s
theorem. (!9

From the beginning of this line of thought®'!® many demonstrations
were published in the nonrelativistic!” as well as in the relativistic'®
domain, both for spinless and spinning particles.!!® In such stochastic
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models the nature of the subjacent chaotic medium was not always clearly
defined. In the authors’ opinion, we are now left with only two lines of
research in which this problem is clearly discussed, i.e., (1) the stochastic
electrodynamics,*® which consider charged particles imbedded in covariant
electromagnetic vacuum; (2) the stochastic model based on Dirac’s aether.
In the later case one can deduce''® from the features of this chaotic
relativistic aether the fact that our particle must jump at the velocity of light,
and (as we will also see later'®) this is a fundamental characteristic in
deducing the relativistic quantum equations. To show this explicitely we will
give here an example of the derivation of the relativistic quantum equation
for spinless particles (the Klein—-Gordon equation) based on the hypothesis
that the stochastic jumps are made at the velocity of light.?"

To simplify our demonstration, we will limit ourselves to the case in
which we assume that the random walks occur on a square lattice in a two-
dimensional space-time (see Fig. 4) with coordinates x°, x'. We will describe
a limit process where in each step we will suppose that our particle, starting
from an arbitrary point Py(x° x'), can only make jumps of fixed length,
always at the velocity of light. Of course, this prescription completely
determines the lattice of all possible particle positions. On such a lattice the
particle can follow an infinity of possible trajectories. In our calculation we
will consider first a lattice with fixed dimensions: Indeed for each jump we
pose

Ax° =1z, Ax' =st (¢,s=x1) (7)

x|

Fig. 4. Space-time lattice of dimension 7 and
starting point P,. For each possible direction of the
first jump we marked the corresponding value of the
couple (1, s).
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so that for the velocity we always have (for A=c=1)
Ax'

U=
Ax°

===zl ®)

Here t is the parameter which fixes the lattice dimensions: Of course, in
order to recover the quantum equations, we will consider later the limit
= 0. Moreover, it is clear from (7) and Fig. 4 that on this lattice we also
consider the possibility of trajectories running backward in time: We will
interpret them as trajectories of antiparticles running forward in time,
following the usual Feynman interpretation.‘*?

In order to describe random walks on this lattice, let we consider the
following Markov process on the set of the four possible velocities of each
jump: We define two sets of stochastic variables {¢;}, {n;}, with jE N, in
such a way that the only possible values of each ¢; and 7; are + 1, following
this prescription:

1 : : . {doesn’t change
&=, if in the (j + 1)th jump the sign of velocity changes &
1
ny= 3 I if in the (j + 1)th jump the direction
doesn’t ch
of the time oesnt change
changes

with respect to the preceding jth jump. It means that the realization of the
signes of ¢;, 1, determines one of the four possible directions of the (j + 1)th
jump on the ground of the direction of the jth jump, as we can see in Fig. 5.

Of course, a sequence {¢;, #7;}, with j € N, of values of these stochastic
variables completely determines one of the infinite possible trajectories,
except for the first jump, because there is no “preceding” jump for it. Thus,
starting from Py(x° x'), in the first jump we can get one of the four possible
points P (x® + ¢z, x' + s7), and after N jumps, as we can easily see by direct
calculation, one of the points Py(x® + tTy, x' + sD,), where

Ty=t(l+n,+mn+ - +mny,--ny_y)

9
Dy=t(l+emn +e&;mn+ - +66 ey MMy Ny_1)

We come now to the problem of the assignment of a statistical weight
to each trajectory. In order to do that, we introduce for each (j + 1)th jump
a probability for each realization of the signs of the corresponding jth couple
€;, 1;. In Table 1 we have listed these probabilities for a general ¢;, 17, couple.
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Fig. 5. An example of the four possible
successions of two jumps. For each possible
(j + 1)th jump we marked the value of the couple
(&;+ 17;) and the corresponding probability.

Moreover, we suppose that A, B, C, D are constant over all the space-
time.

Among these four constants we can also posit the usual relation
A+B+C+ D=1 (10)

In order to derive the Klein—-Gordon equation, we consider a function
S(x% x') defined over all the space-time and, generally speaking, with
complex values, and then we define the following set of functions:

F*(x% x") = (f(Py)) = (f(x° + (Ty, x" + sDy)) (11)

Table 1.  Probabilities for the Four Possible Successions
of Two Jumps

€ n, Probability
-1 -1 At
1 -1 Bt
-1 1 Cr

1 1 Dt

39
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Here (-) indicates an average for all the possible points P, attained,
following trajectories constituted by N jumps, starting from P,(x° x') with a
first jump made in the direction fixed by (¢, s).

In fact, it is clear that the terminal point P, is not uniquely determined
by the initial point P, and the number of jumps N, because the possibility to
choose different trajectories of N jumps. Of course, on the average, the
statistical weight of each P, is calculated from the probabilities associated
with the trajectories which lead to P,, as stated in the previous section. We
remark finally that, because the arbitrariness of the starting point P, the
function Fy° is defined over all space-time.

We can start to make this average from the first jump so that, remem-
bering (9) and (11):

F/l\;s(xovxl)‘_‘ <f[x0+"+t"71(1 + 0yt Ny e Nyy),
x! +st+ste (L +e0+ -+ €y Ey_ Ny eee ']N-l)])

=(f(x*+ua+mTy_,,x" +st+se,n,Dy_,))

= DtF (x® + 11, x" + s7) + ATF(x° + 11, x' + s7)
+BrF (X + i, xt +51) + CtERZi(x° + it x' +57) (12)

and using (10), that is Dt=1— (4 + B + C)r, we get
Fii(x® x')y = F5 (x° + 1, x" + 57)
+ AT[F755(x° + 1o, x' + 51) — F55 (x° + 17, x* + 57)]
+ Br[Fyi s (x® + e, x' + s7) — F§* (x® + 17, x' + 57)]
+ Ct[FLTi(x® +tr, x' +51) = F§* ((x® + 1r, x' + 57)) (13)

We pass now to the limit N — oo (and t fixed): If we indicate with F"° the
functions for ¥ —» co we have, from (13),

F*5(x% x') = F*5(x° + tr, x' + s7)
+ At[F75(x° + tr, x' + 51) — F*5(x° + 17, x' + 57)]
+ Br[F " 75(x% + 11, x' + 57) — F*(x° + 11, x" + 57))

+ Cr|F"~5(x® + 11, x" + 51) — F*5(x° + 17, x" + 57)] (14)
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and then
~[F*5(x° + 17, x") — F*(x% x"))/rr
= (s/O)|F"*(x% x! + s1) — F"5(x% x!)] /st

+ [F*"(° + tr, x" — s1) — F**(x% x' + s7))/1z

— |F"5(x® + 1, x) — F*5(x% x"}/tr

+ (A/O[F5(x® + tr, x' + 51) — F"5(x® + 17, x' + 57)]

+ B/O[F " 5(x* + 11, x" +51) — F5(x° + 11, x" + 57)]

+ (C/O[F" 5 (x° + tr, x" + s7) — F*(x° + 17, x| + s57)] (15)

In the limit 7 — 0, when our lattice tends to recover all of space-time, we get
the following set of four partial differential equations (one for each possible
value of the couple ¢, s of the first jump):

oF'* OF"* A B
s +__(F—1s Fr.s)+T(F-r.—s__Fr.5)

+_(t:_(Fr.—s_Fl.s) (]6)

where we neglected the arguments (x° x') of the functions.
If we define now the following four linear combinations of the four
functions F**:
¢=Fl.l +F—l.—l +Fl.—l +F—l.l

=Fl'l+F_l'_l—Fl'_l—F_l'l
1.1 —1,~1 1.-1 —1.1 (17)

x=—F"+F "7l —F-"l 4 F

w=_Fl.|+F—|.—I+Fl.—l_F—l_]

we can build a new equivalent set of equations by combining Egs. (16):

»
6x 3 - ——2(A + B)y
oy 0
a°+a¢'__2(c+3)‘”
(18)
oy oJw
ax® Tt 0
dw oy
w0 T - A O
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By derivation and successive linear combination of equations (18), we have:

06 = -2(4 +B) 375 +2(C+B):—=—2(A +2B+C)%5

ow ox ow
w_—Z(C+B)—3-;O—+2(A +B)a—xT_——2(A +ZB+C)-5C-;,-
—4(4 + B)(A4 +Cy

Oy = 2(4 +C)%=——2(A +C)%—4(A +C)A + By

8 P
Ow = ~2(4 +C)5)%=2(A JFC)aT"‘1

+4(4 + C)(C + By

(where O is a two-dimensional d’Alembert operator); and if we pose

A+C
—B= “; . 241 -C)=m?
we finally get
C+mhy=0
O¢ =0
o9

@A+ miy=-24+C) P

O+mHw=2(4+ C) ¢

We now make the following remarks:

(19)

(20)

2

(a) We can interpret the first equation of (21) as a Klein—-Gordon equation.
The function y, which satisfies this Klein—~Gordon equation, is the
average of a function f over all the possible final points reached
following all the possible trajectories of infinite jumps. In this average,
as we can see from (17), we consider also the first jump by supposing

that the four possibilities for the signes of ¢, s are equiprobables.

(b) The functions y, ¢, w which satisfies the remaining equations in (21)
have no direct physical interpretation and seem to us to constitute only a
formal tool in the deduction of the equation for the complete average v.
However, we see that in (21) the equation for y is not coupled at all
with the other equations for y, ¢, w, so that the solution of the Klein—



(c)

(d)
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Gordon equation is absolutely independent of the solutions of the rest of
the system.

The previous derivation of (21) from (18) shows that each solution
(9, x, w, w) of (18) is a solution of (21), but it is possible to show that
not all the solutions of (21) are solutions of (18). Indeed, for example,
we can verify by direct calculation that

w = explip - x] (with p? =m?) a2)
x=¢=w=0

is a solution of (21), but it is not a solution of (18). Therefore, it is
important to analyze the following question: We proved the statement

-“the function y defined as a stochastic average in (17) and satisfying the

system (18) always is a solution of a Klein—Gordon equation.” What
about the inverse statement “all the solutions of a Klein—Gordon
equation are interpretable as stochastic averages satisfying a system like
(18)?” We will show here that this inverse statement holds in the
following sense: If v is an arbitrary solution of the Klein—Gordon
equation always, we can determine the functions y, ¢, w in such a way
that (¢, x, v, w) is a solution of (18). In fact, if v is an arbitrary solution
of the Klein—-Gordon equation in (21), we can choose ¢ as an arbitrary
solution of O¢ = 0, and then we determine y and w as follows:

| op Oy
X=C"4 [EWW]
(23)
we_ L [ov 9
T A—C |ox° ' ox!

It is only a question of calculation to show now that our (¢, x, v, w) is a
solution of (18) (with —B = (4 + C)/2) and of (21).

We are confronted here with an old problem characteristic of relativistic
quantum mechanics,'*” namely the existence of negative probabilities.
Indeed, we can immediately see from (20) that 4, B, C, D cannot be
simuitaneously positive if we want to get the system (21). If, for
example, we choose 4, C < 0, we have

A+C l 1 A4+4C

= = _ 0
5—>0 and D=—-(A+B+C)=— o>

B=-—

so that the probabilities of the inversion of the sign of the velocity (4, C)
have an opposite sign with respect to the probabilities (B, D) of the
noninversion of the sign of the velocity (see Fig. 5). This choice of the
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signs is also coherent with the definition (17) of y as an average, where
F"! and F~"~' are considered with the same probability but with
opposite sign with respect to F!*~' and F~"!'. Of course, we have no
final answer to the question “what is a negative probability?”: We can
only quote a proposition for his interpretation®® in which the negative
sign of the probability distribution is interpreted as reflecting the
opposite ‘“‘charge” values of antiparticles in a particle-antiparticle
distribution. We further remark that this is a problem which arises every
time we are dealing with particles and antiparticles, and hence that it
would be very strange not to meet it here where the possibility of trajec-
tories running backward in time on our lattice are interpreted with the
presence of pair creation and annihilation.?® On the other hand, it is
clear that if we had not assumed the possibility of the trajectories
running backward in time (i.e., the antiparticle behavior) all our
statistics would be different since it is possible to show?* that one
obtains in this case a classical diffusion equation that one can not reduce
to the quantum Klein—-Gordon equation.

3. DETERMINISTIC NONLOCAL INTERPRETATION OF THE
ASPECT-RAPISARDA EXPERIMENTS ON THE EPR PARADOX

In this section we are going to utilize the hydrodynamical-stochastic
interpretation of the quantum mechanics, physically based on the real
existence of a chaotic Dirac’s aether, as a starting point for a deterministic
interpretation of the recent results of the Aspect—Rapisarda experiments on
correlated photon pairs. As is well-known, the paradoxical features of the
quantum mechanical description of correlated systems first discussed by
Einstein, Podolsky, and Rosen‘®*® are now experimentally tested, in the form
established by Bohm®” for discrete variables. Recent discussions have
convinced physicists that an essential property of the EPR paradox lies in
the nonlocal character of quantum correlations, which seem to be in striking
contradiction with Einstein’s relativistic causal description of nature—and
imply causal anomalies.?® Indeed, in the EPR paper the hypothesis of the
noninteraction between two correlated system at a great distance is essential
in order to achieve the demonstration of the incompleteness of the quantum
mechanics,?” and Bell’s theorem!'® states that there is a measurable
difference between the predictions of quantum mechanics and any local
hidden-variable theory for correlated particles.

To illustrate this, we briefly recall a typical experimental set-up to
check Bell’s inequalities. Let us consider a pair of photons (1 and 2) issuing
from a cascade source S in a single state of polarization, so that they move
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in opposite directions parallel to the same x axis. These photons are
successively detected through two linear polarizers (L and N) with
polarization directions 4 and B perpendicular to the x axis (see Fig. 6). We
know'" that a photon impinging upon a linear polarizer either passes or is
stopped, thus answering yes or no (1 or 0) to the question: “Is your linear
polarization found parallel or perpendicular to the direction 4(B) of the
polarizer L(N)?” We can thus compute the probability of the four possible
answers to the composite question: “Does the photon 1 pass the polarizer L
and the photon 2 the polarizer N?” For this calculation we need only the
initial and final states |{) and | /) of our composite system, so that, denoting
by (1,1), (1,0), (0, 1), and (0,0) the probabilities of the four possible
answers, we compute the probabilities as |[(i | /)%
Of course, if our initial state is

1= /N 2)y.) |y +12,) |22)) (24)

in terms of state vectors polarized along two orthogonal axes y and z in an
x = const. plane, the final state is, for example, for the case (1, 1),

|f)=(cosA|y,)+sind|z,))cos B|y,) +sin B|z,)) (25)
so that we have
(L, D= = (1/2)(cos 4 cos B +sin A sin B)! =(1/2)cos’a  (26)
if a =4 — B. In an analogous way we get immediately
(0,0)=(1/2)cos’a (1,0)=(0,1)=(1/2)sin’*a (27)

The crux of the new situation now lies in Bell’s proof''®! that this quantum
mechanical predictions on the two photon coincidences cannot resuit from

Fig. 6. Schematic view of an EPR-Bohm experiment.
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the correlation functions obtained in a local hidden-variable theory. The
same result was attained, with another example, in a recent paper by
Feynman.??

As one knows, despite the almost general confirmation of such quantum
predictions in EPR experiments©®? (i.e., of the violation of Bell’s inequality)
a supplementary device with four photon coincidences was needed to
definitely prove the nonlocal character of this quantum correlation.”’” This
set-up essentially rests on the use of calcite crystals acting as random
switches on the photon paths which orient them, with a 1/2-probability, in
the ordinary (O) or extraordinary (E) rays. The photon thus pick at random
four possible paths and are subsequantly detected through two pairs of linear
polarizers L, L', N, N’ (see Fig. 7). The recent result of this experiment,‘?
obtained by Aspect’s group, confirms the quantum mechanical prediction
with great precision for separation of 12 m between the polarizers L(L') and
N(N’). If the forthcoming Rapisarda experiment also confirms this result, we
will be faced with the problem of the interpretation of nonlocal correlations
in the microscopic domain.

Two remarks can be made at this stage of the discussion:

(1) There is no possibility left by these experiments, to construct a local
hidden-variable theory for quantum mechanics,!'® but it is still possible
in principle to build a nonlocal one coherent with a characteristic feature
of the hydrodynamical-stochastic interpretation—since the quantum
potential for correlated systems is always nonlocal.®? The problem, as
we will now see, is how to construct a coherent causal covariant
nonlocal theory.

(2) There is no possibility (as claimed by the authors in another paper?)
for a observer in L to use this EPR experiment to send macroscopic
superluminal signals to the observer in N, because they are always
dealing with coincidence experiments. However, we can deduce®®’ from

Fig. 7. Schematic view of the Aspect—Rapisarda experiment.
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an “a posteriori” analysis of the experimental results the existence of
past superluminal “exchange of information” between the two photons,
in the sense that we can explain by a closed causal chain the existence of
correlations and any other variation of that induced by operations on the
polarizers only by a sort of nonlocal link between spatially separated
events.

In this section we will extend the analysis of the nonlocal character of
the quantum potential to the case of spinning particles, in order to show that,
for correlated systems, also the spins (and polarizations) are nonlocally con-
nected.

We start with a non-zero mass photon model (m,# 0). This is justified:
(1) by the well-known fact® that the zero-mass limit of a nonzero mass
spin-1 Proca particle cannot be physically distinguished from a Maxwell
wave, since the so-called transverse waves just correspond to J, = 1 (i.e., to
opposite circular polarizations), while the longitudinal solutions J;=10
(pratically decoupled from transverse waves when m,— 0) describes the
Coulomb field when m,— 0; (2) by the theoretical result that (with m,# 0)
one has found a classical counterpart (i.e., the Weyssenhoff particle) to the
photon field,**’ so that one can determine a classical counterpart of spin for
isolated “classical” photons which is distributed®® in the hydrodynamical
representation of the Proca wave equation.

Both in the usual quantum mechanical theory'”"’ and in the stochastic
interpretation of quantum mechanics®® a system of two correlated photons
(m,# 0) can be represented by a second rank tensor 4. As one knows, this
compound state of two spin-1 particles can be split {as a consequence of the
group representation relation D(1)® D(1)=D(2)® D(1)® D(0)| into a
symmetric part 4,,, a skew part 4,,, and a trace 4, representing respec-
tively the J =2, J = 1, and J = 0 compound states. Since the aforementioned
experiments utilize 0-1-O singlet states cascades, we shall limit ourselves to
the 4,,, D(0), J = 0 singlet case.

Denoting by 1 and 2 the two photons (with coordinates x} and x%), we
represent our compound state by a scalar field

37)

Plxy, xy)=A,,(x)A7(x;) = exp[R(x,, x,) + iS(x,, x,)]
where A=c=1

(3.39

As one knows, such a scalar field satisfies the system of relations

@, +0,-2m)® =0

@, -0)e =0 (28)
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or, equivalently,

N —
(El,——m;)di-—o 29)
Q,—m)®=0
along with the transverse gauge conditions 8,,4% = ,,4% = 0, the second
relation (28) representing the causality constraint in the so-called predictive
mechanics with action at a distance.® In this case, the Lagrangian of our
pair will be

L =miO*® +0,, O*P +8,, ¥ P (30)

A classical relativistic hydrodynamical analysis***® then allows one to
build the energy-momentum tensor for each single photon (from now on,
because of the 1 & 2 symmetry, we will calculate only the quantities relative
to the photon 1), i.e.,

cY
Huo = A(C T ‘) 8,uA" + c.c. —yém,
=8, 0%0,,® + 0,99, 0% — L5, 31)

From Belinfante's tensor,"*?

et
S = TA?)}Z"A 1+ Cc.
=1l PN Ay A, —A4,,4,,) +cc. (32)
where 257 =13(6,,0,,—9,, 5,,), the spin density tensor becomes (if u¥ are

the unitary four-velocity of the photons)

%Sl —u flul\ (A AZ!'_All'AZM) Ufa“‘(p* +C.C. (33)

and the spin vector can be written

i

Slu —i' :nBu

uSaB (34)

Moreover, denoting now by a dot the derivative along a current line, we can
show that, because of the ¢,, symmetry, we have*?

‘S:lurz61.\(“?51;“7):tluv_tlvu:O (35)
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From this results that:“"

(1) S,, has a constant length in the sense that S? = 0; indeed we see that*®

S1=8,,8%=15,a557 because of the properties of £,,,,, the antisym-
metry of S,,,, uiu,,=—1, and u, A% =u, A4=0. Hence S}=0,
because we showed that §,,, =0.

(2) The derivative of S, is S, = (i/2)€,a5, S *2(u?d,,u"), so that it depends
in a nonlocal way from the 4,(x,) contained in S%°.

(3) The elements of the photon pairs interact permanently not by exchanging
tachyons but through action at a distance, which reflects the disturbance
of Dirac’s covariant stochastic aether.’**!'* In present experiments the
photons are “holding hands™ over 12 meters an any disturbance of one
is carried superluminally to the other by a phase-like disturbance of the
stochastic quantum potential—which includes a quantum torque.

Despite the presence of an action at a distance, it is possible to show**"

that this system is relativistically deterministic, in the sense that we shall
now show:

® The system of two J =1 particles can be solved in the forward (or
backward) time direction in the sense of the Cauchy problem.

® The paths of the two particles are time-like.
@ The formalism is invariant under the Poincaré group P=T® 2.

Indeed, writing P} =dS/dq,;, (i=1,2), we can split internal from external
variables by  writing P*=p{+ p}; Y =/2)(pY—py); Q*=
(1/2)(qY + q%); z* =q% —q%; g%, and p} representing pairs of canonical
variables. Splitting (29) into real and imaginary parts, we obtain, for the real
parts,

(1/2)8,,S4S + U, =(1/2) m} (36)

(1/2)8,,805S + U, =(1/2) m}
where we have U;=-—(1/2)(O;R + 9¥R9,,R). This separation can be
performed in the rest frame of the center of mass of the two photons, where
we consider the case of an eigenstate of P,, ie., @ =¢p(z")
explik,(x* + x4)/2], where k* is a constant timelike vector. In that case we
have (0 + 09)R =0 and (9% + 3%)S = k*, so that, subtracting Eq. (36), we
get k*(0R/0z*) =0, and hence R only depends on z4 = z* — (z,k*)k*/k?. In
order to satisfy the condition {y-P,U}=0 for the existence of causal
timelike world lines,”**® we must now make the substitution z* — 7* =
z* + (z,P")P*/P?, so that (8% + 05)R =0 and U, = U, = U(Z,). In that case
the relations (36) represent a pair of causally bound photons connected by a
causal action at a distance. Moreover:



50 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

(1) The causality condition P - y =0 implies that the Poisson bracket of the
two photon Hamiltonians {H,, H,} is zero, i.e., that their corresponding
proper times 7, and 7, are independent.

(2) ¢# = x¥ in the rest frame of the center of mass X, (k,=0).

(3) Subtracting Eq. (36) with U, = U,, we get®® P. y=0, so that P, =0,
where the dot denotes the operation (1/2)(é/dr, + 9/dt,). This yields
P - y =0, which shows that no energy can be exchanged between the
photons in X, so that no causal anomaly results from this particular
type of action at a distance.

(4) We have p, - P =0, so that the paths of both photons remain timelike.

(5) The formalism shows that“* our causal covariant action at a distance is
instantaneous only in Z,, and its velocity n can thus be calculated in
any other frame X by the X, » Z corresponding Lorentz transformation.
In the particular case of the Aspect—Rapisarda experiment, this
immediately yields n = 7,57c in the laboratory frame.

This analysis implies that the hydrodynamical-stochastic interpretation
of the quantum mechanics based on the physical existence of a chaotic
Dirac’s aether can provide all the essential elements needed to build a
nonlocal hidden-variable theory, since the nonlocal quantum potentials and
quantum torques satisfy the compatibility conditions'® required by the
predictive mechanics in order to have a relativistically deterministic theory.
This also implies that both EPR paradox and the experimentally confirmed
violation of Bell’s inequality can be completely interpreted in a model that
does not imply mysterious retrodictions*®’ or a priori limitations of our
comprehension*’—since quantum mechanics appears as a statistical
manifestation of a subquantum classical, relativistic and deterministic world
in which there is also place for actions at a distance whose physical basis is
the nonlocal quantum potential or, in other words, the physical existence of
de Broglie’s waves on Dirac’s aether.

The importance of causal action at a distance is now evident. Despite
the fact that we are dealing with a nonlocal theory, we claim that there is no
possibility left for causal anomalies.®® Indeed, a perfectly deterministic
nonlocal theory is not at all a theory in which we can send superluminal
signals in contradiction to relativity and causality,*® since the existence of
such “signals” requires the existence of a “free will,” i.e., of somebody who
“decides” at a given time to send something to somebody else. If, as claimed
in our model, absolutely everything (bodies, men, “free will,” etc.) are
completely determined, all events are fixed somewhere in space-time, so that
we cannot properly speak of “signals.” In this scheme, the world is thus
describable by a causal ensemble of particle in mutual interaction, the
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causality implied in it being absolute. The measuring processes themselves
and the observers satisfy the same causal laws and are real physical
processes with antecedents in time. The measuring process (observer plus
apparatus plus observed object) can now be considered as a set of particles
which belong to an overall causal process, so that the intervention of a
measurement contains no extranatural “free will” or ‘“observer
consciousness.” Quantum measuring devices now act as spectral
analysers'® which split into subpackets the real de Broglie’s waves
associated with particles: The particle entering in one of them according to
its random causal motion."*’ In brief, there is no “free will” signal
production and thus no possible causal paradoxes: Nothing exists beyond the
motion and interactions of material particles in a random stochastic aether.

4. HOW DOES A PHOTON INTERFERE WITH ITSELF?

We conclude this paper with a brief discussion of the present theoretical
and experimental status of Professor Dirac’s initial views on the nature of
quantum mechanics illustrated in the first pages of his famous book on
quantum mechanics.'” As every physicist knows, this book contain the
deepest and clearest exposition ever made of the basic concepts underlying
the Copenhagen interpretation of quantum mechanics. It is thus very
important that the physical gedanken experiment discussed by him (based on
the theory of light in single photon eases) are now about to become testable
directly (a natural consequence of technical progress in the field of detection
of single photons) and that explicit, realisable (in the author’s opinion)
experiments are now proposed and discussed in the literature in order to test
the validity of the said concepts.“®

Dirac starts his discussion of the principles of quantum mechanics by a
discussion of the principle of superposition of states which he analyzed in the
case of isolated photons both for polarization and interference. Since the
present experiments are really built to test the validity and signifiance of his
analysis for interference, we shall quote him at some length:‘"

“We shall discuss the description which quantum mechanics provides of
the interference of photons. Let us take a definite experiment demonstrating
interference. Suppose we have a beam of light which is passed through some
kind of interferometer, so that it gets split up into two components and the
two components are subsequently made to interfere. We may, as in the
preceding section, take an incident beam consisting of only a single photon
and inquire what will happen to it as it goes through the apparatus. This will
present to us the difficulty of the conflict between the wave and corpuscular
theories of light in an acute form.
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Corresponding to the description that we have in the case of the
polarization, we must now describe the photon as going partly into each of
the two components into which the incident beam is split. The photon is
then, as we may say, in a translational state given by the superposition of the
two translational states associated with the two components. We are thus led
to a generalization of the term ‘translational state’ applied to a photon. For a
photon to be in definite translational state it need to be associated with one
single beam of light, but may be associated with two or more beams of light
which are the components into which one original beam has been split. Tran-
slational states are thus superposable in a similar way to wave functions.

Let us consider now what happens when we determine the energy in one
of the components. The result of such a determination must be either the
whole photon or nothing at all. Thus the photon must change suddenly from
being partly in one beam and partly in the other to be entirely in one of the
beams. This sudden change is due to the disturbance in the translational state
of the photon which the observation necessarily makes. It is impossible to
predict in which of the two beams the photon will be found. Only the
probability of either result can be calculated from the previous distribution of
the photon over the two beams.

One could carry out the energy measurement without destroying the
component beam by, for example, reflecting the beam from a movable mirror
and observing the recoil. Our description of the photon allows us to infer
that, gfter such an energy measurement, it would not be possible to bring
about any interference effects between the two components. So long as the
photon is partly in one beam and partly in the other, interference can occur
when the two beam are superposed, but this possibility disappears whe the
photon is forced entirely into one of the beams by an observation. The other
beam then no longer enters into the description of the photon, so that it
counts as being entirely in one beam in the ordinary way for any experiment
that may subsequantly be performed on it.

On these lines quantum mechanics is able to effect a reconciliation of
the wave and corpuscular properties of light.”

This justifies Dirac’s famous sentence: “The new theory, which connect
the wave function with probabilities for one photon, gets over the difficulty
by making each photon go partly into each of the two components. Each
photon then interferes only with itself. Interference between two different
photons never occurs.”

To summarize, this analysis evidently rests (1) on the idea that
individual photons interfere only with themselves; (2) on the assumption that
one cannot tell through which branch of the interference device the photon
goes (i.e., through which slit it passes in the Young hole experiment), since
any such detection in one branch would collapse the probability wave of the
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other branch thus annihilating the interference pattern—even when built by
photons coming one by one in independent wave packets; (3) on the
description of photons as either waves or particles—never the two
simultaneously.

As one knows, the only alternative interpretation for the photon case
rests on Einstein’s'*” and de Broglie’s'‘®’ suggestion that individual photons
are waves and particles, i.e., that there are real Maxwell waves (practically
devoid of energy and momentum) which carry (pilot) localized nondispersive
concentrations of energy-momentum which correspond to individual photons.
In an interference device, for example, the real wave goes through both
branches (both slits in the double slit experiment) the photon going throught
one slit only. An individual photon is thus influenced by the wave of both
slits in the interference observation region—so that it is distributed according
to Maxwell’s wave superposition principle. This yields in this case the
quantum mechanical prediction—since Maxwell’s wave are then equivalent
to the probabilistic y field of quantum mechanics.

Clearly the only experimental way to distinguish between these two
interpretation would be:

(a) to discover a means for detecting through which branch (slit) the photon
goes without destroying the subsequent interference region;

(b) to utilize such a means to construct a specific precise experimental set-
up in which the two preceding interpretations yield conflicting testable
predictions.

Let us first discuss point (a). Curiously, the discovery of a possible
mean to follow a photon path without destroying its interference properties
rests on a typical consequence of wave mechanics itself, i.e., the possibility
of duplicating photons by using a 3-photon resonance mechanism initially
suggested by Bassini, Cagnac, et al."*’’ and developed by Gozzini*®—since
the use of such a photon duplicator on one of the interference branches
would tell us (by absorbing one of them) by which path it has gone, while
the remaining one could still be used for interference detection. The principle
of Gozzini’s duplicator is simple. Before it, all known laser amplifiers were
difficult to use due to parasitic light, specially when one wants to act with
highly directional light. Moreover the “copies” of an indident photon are
generally emitted in a sample of excited cells, i.e., are not in phase with the
exciting photon, even when inserted in a coherent wave packet. The Pisa
duplicator rests on the idea that one can stimulate with three photons the
transition from the level 3°S,,, to the level 3°P,, of the sodium (separated
by an energy E,,) by irradiating sodium vapor with two lasers of frequency
v, and incident photons v, such that 2v, —v, = E ,/h, according to the
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Fig. 8. Scheme of level transitions in
Gozzini’s duplicator.

scheme of Fig. 8, where the incident absorbed photons are represented by |
and the emitted photons by |. If this process satisfies the relations v, =
vo—d4v and v,=v,— 2d4v, v, being the resonance frequency, it is then
possible to induce a transition through two intermediate virtual states B and
B*: The absorption of two photons of frequency v, combined with an
incoming stimulating photon v, induces the production of two photons Av, of
equal phases (since theoretically built in the laser-like process B* — B) and
one luminescence photon hv,. This duplication process presents the great
interest of eliminating any Doppler contribution, since it does not depend on
the sodium atom’s momentum if the three photons satisfy the geometry of
Figs. 9 and 10, where the relation #k, + hk, — hk, =0 implies total
momentum conservation—so that all excited atoms enter resonance indepen-
dently of their velocity. Since one can operate with the set-up of Fig. 11, one
can localize the process at the point P, eliminate the fluorescence hv, with a
Fabry-Perot device and, by pulsing the incoming hv, packets, individualize
the time of copy creation in the duplicator.

Of course, following an argument of Selleri®"’ (who has played a
pioneer role in this type of proposals“®’), the use of such a duplicator as
path detector implies a simple preliminary test to check that the duplication
process is really associated with a passage of a photon hv, through the
duplicator. It goes as follows: let us consider (see Fig. 12) the arrival of

Fig. 9. Geometry of the duplicator’s
interactions.
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X

Fig. 10. Memomentum conser-
vation in Gozzini’s duplicator.

photons Av, one by one on a semitransparent mirror M of transmission coef-
ficient 1/2. As one knows,"*? two photo multipliers PM1 and PM2 then
necessarily detect anticoincidences, since the photon enters the reflected or
the transmitted beam. If one then introduces Gozzini’s duplicator on one of
the beams (say the transmitted), two possibilities arise, i.e.:

(a) Coincidences appear, which would imply that the duplicator D is excited
only by an empty wave.

(b) Anticoincidences persist, which show that D is only excited when hit by
a photon Av,.

Amplified Light

s ‘ ’ | [\ -h“} P AAAS
‘ l l \ 1 e N\;\;’
Fabry-Perot 2
Absorber
DA
] =~
Laser Dye Laser

Fig. 11. Schematic representation of Gozzini’s photon duplicator D. Two
photons hv, emitted in the laser criss-cross at P with a sodium molecule and a
photon Av, emitted at S.
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Fig. 12. Representation of Selleri’s set-up to test the
relation of Gozzini's duplicator D with de Broglie’s waves.
The semitransparent mirror M (with transmission coefficient
1/2) acting on photons coming one by one lies on the
transmitted path. The existence (nonexistence) of
anticorrelations between the photomultipliers PM1 and PM2
ensures the triggering (nontriggering) of D by the passage of
a real photon on the transmitted path.

If case (a) is true (an unlikely possibility in the author’s opinion), this would
imply a direct argument for the real existence of the Einstein—de Broglie
waves. If case (b) is verified (in conformity with the usual laser theory) then
the appearence of two hv, photons is correlated with the impact of one Av,
on the duplicator, and no photon exists in the reflected wave.

With the duplicator in hand we can now discuss possible set-ups which
satisfy B. Various proposals have been made to that effect. The latest, by
Garuccio. Rapisarda, and Vigier,"*® rests on the assumption (which can also
be checked by experiment*®’) that the two outgoing photons Av, have the
same frequency and the same phase as the incoming photon hv,. This
assumption. theoretically justified by the similarity of the B* - R decay with
the usual laser mechanism, is of course not established experimentally and it
is quite possible that it would turn out that the two outgoing photons present
a random phase fluctuation with respect to the incoming wave packet, so
that the use of the duplicator apparently prevents the use of the outgoing Av,
photons in interference devices. It is thus important (still in our opinion) that
Andrade e Silva, Selleri, and Vigier®® have been able to construct a
proposal which modifies the Garuccio, Rapisarda, and Vigier proposal in
such a way that one can compare the antagonistic predictions of the
Copenhagen and the causal stochastic interpretations of quantum mechanics,
i.e., show, independently of the phases of the duplicator’s photons, that in the
limit of one photon only the Bohr-Dirac model of purely probabilistic waves
yields a different prediction from the Einstein—de Broglie real Maxwell wave
model—so that their merit can be assessed by experiment.

We shall rediscuss this later proposal here not only to satisfy B, but
also to show how the Einstein—de Broglie model, which rests on Dirac’s



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 57

PMB

PMA

; m (3)
)4
g o
O ) PMC
s AV AV AU A\IA AV
" N M, @

Fig. 13. Representation of the Andrade e Silva, Selleri, and Vigier set-up.
M,.M,.. and M, are semitransparent mirrors with transmission coefficient
1/2. PMA and PMB are photo multipliers connected with half-wave receivers
coinciding with the maximum and the minimum of the interference fringes of
the interference pattern of paths (1) and (2). They are put in coincidence with
PMC so that one is sure that two photons have effectively emerged from the
duplicator D.

aether, yields a new interpretation of Dirac’s famous statement that each
photon interferes only with itself. As in the Garuccio, Rapisarda, and Vigier
proposal,”*®’ one starts (see Fig. 13) from a set of successive packets (which
are issued from an incoherent source) which impinge on a semitransparent
mirror M,. If the experiment has confirmed assumption (b) (i.e., if in this
experiment no coincidences have been observed), the appearance of
correlated photons in PMC and in PMA and PMB implies that the
duplicator D has been excited by a transmitted photon from M,—and that
no energetic photon is propagating on the M, reflected path (3). Following
Dirac, this implies that no probability wave exists along the reflected path
(3). No use can further be made of path (3). On the contrary, following
Einstein and de Broglie (and also Maxwell’s concept of unquantized real
existing light waves), a real energy empty pilot wave propagates along (3)
which can be reflected by two mirrors into an interference region /R, on
which also converge the two beams (1) and (2) generated by the further
splitting (by a semitransparent mirror M,) of one of the two photon beams
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generated by a semitransparent mirror M, which splits (in 1/3 of the
cases*® selected by the PMA, PMB, and PMC coincidence) the two photons
issuing from D into the respective paths (4) and (5). Following Dirac, this
experiment clearly predicts interferences (independent of the phases produced
in D) which can be detected (following Pfleegor and Mandel’s device®*") op
a pile of half wave detectors connected with the photo multipliers PMA and
PMB. Following Einstein, de Broglie, and Maxwell, the device predicts
something else, since we can write for the overall intensity I observed in /R

I=1,+1,+1s+2\/I,1,cos89,, 37

where [, is the intensity of the ith beam and &, is the relative phase shift of
the ith and jth beam. In the preceding relation we have suppressed terms in
cos d,; and cosd,;, since their phase shifts assume different values in
different events. As stressed by Andrade e Silva, Selleri, and Vigier,*? this
implies that the term 7, is always present (unless one suppresses m) and has
an observable effect on the fringe visibility parameter

v=2y1 1,/ +1,+1) (38)

which can be measured by dividing the coefficient of cosd,, by the
nonoscillating term in the interference region. Of course, one could further
check the existence of an empty pilot wave on (3) by a stroboscoping device
on path (3). In other words, we are now

(1) in a position to check the existence of the Einstein—de Broglie-Maxwell
wave;

(2) in a situation where the concept of wave packet collapse (really induced
by D in our case) yields for the Copenhagen School predictions which
contradict the one-photon limit of Maxwell’s theory of light.

The answers to the experiment will be interesting to observe. If it
confirms Maxwell, then one can only conclude that the presence of real pilot
waves which accompany real photons justify Dirac’s statement that photons
interfere only with themselves. This statement, however, does not preclude
the possibility, used by de Broglie and Andrade e Silva,"*® that for coherent
beams waves which belong to different photons can interfere, as shown in
their interpretation of the Pfleegor and Mandel experiment.

5. CONCLUSIONS

We conclude this paper with some remarks. As a consequence of the
results of Aspect’s experience (i.e., as a consequence of the violation of Bell’s
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inequality) we are now confronted with the following question: How can we
interpret the correlations between spacelike separated events? We think that
two different attitudes are possible:

1. Assume that the violation of Bell’s inequality proves the existence of
correlations between spatially separated events and hence the existence of
interactions (or signals) exchanged between such events. In this case the
problem is to know if the correct interpretation of this new fact lies (a) in
a signal exchange made via Feynman’s zig-zag (with all the consequences
of the possibility to really travel backward in time), as claimed by
Wigner®® and Costa de Beauregard,'*” or (b) in a completely deter-
ministic theory based on the relativistic action at a distance of a quantum
potential interpreted in the frame of Dirac’s aether, as explained in
Section 3.

2. Assume a no-problem attitude in the sense that, from a standpoint based
only on the directly observed facts, the violation of Bell’s inequality
cannot directly prove the existence of a signal exchange between two
spatially separated events: the necessity to choose a causal chain on a
nonlocal correlation is no reason to assume the existence of nonlocal
interactions. This no-problem attitude, which reflects Bohr’s attitude
toward the EPR paradox,** draws its justification from the fact, already
remarked, that we cannot use an EPR mechanism to send any
superiuminal macroscopic signal.

It is an open question which of these two attitudes is the correct one.
This makes clear that the Aspect-Rapisarda experiment, despite the impor-
tance of finally completely testing the existence of the quantum nonlocal
correlations, is not a crucial epistemological experiment in the sense that it
does not completely impose a choice between the various standpoints. For
this reason, we think that this experiment (comparable in its importance to
Michelson’s experiment) only opens a new era of theoretical and
experimental research. The future choice really depends on the results of the
proposed experiments on the direct testing of the existence of the Broglie’s
waves on Dirac’s aether, since only these new forthcoming results can shed
new light on the old question of the real nature of the y field in wave
mechanics.
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Superluminal Propagation of the Quantum Potential

in the Causal Interpretation of Quantum Mechanics.

J. P. VicIER

Lguipe de Recherche Associée aw ("N.R.S. no. 533
Institut Henri Poincaré - 11 rue Pierre el Marie Curie, 75231 DParis Cedex 05

{ricevuto il 9 Novembre 1978)

The theoretical controversy and subscquent experiments which started with Bell's
discovery (*) that local hidden variable theories (LIIV) imply testable consequences
which differ from the standard predictions of quantum mechanies (QM) have cvidently
reached a eritical stage. Its experimental issuc might prove as important for the future
evolution of physics as the negative result of the Michelson-Morley experiment. Indeed
the theorctical discussion started by BELL (2) has shown that a positive experimental
test of the truth of quantum-mechanical measurement predictions in the case of cor-
related particles (in latter versions of the Einstein-Podolsky-Rosen type of experiments)
has far reaching consequences which go beyond Bohr’s initial statcments on the con-
servation of macroscopic causality. They imply a destruction of the Einsteinian concept
of material causality in the evolution of Nature, since they would cstablish the physical
reality of nonlocal interactions between spacelike separated instruments o fmeasure-
ment, t.e. two polarizers measuring the relative-spin orientations of a pair of correlated
particles emitted in the singlet state.

Indeed preliminary results which favour Bohr’s interpretation of QM will be defi-
nitely established by the cxperiment of Asvect (?) if its results confirm Bohr’s prediction.

The present situation can be summarized as follows:

a) if the present trend of experiments persists (as believed by many people includ-
ing the author of this letter) to support (except in special conditions which we shall
discuss later) the experimental predictions of quantum mechanies e¢ven in the ease of
spacelike separated measurements;

b) if one accepts the Copenhagen interpretation of QM as a complete theory
describing the behaviour of pointlike particles;

(') J. 8. BELL: Physics, 1, 195 (1964).

(*) See for example the discussion between BELL, D’ ESPAGNAT, SHIMONY and COSTA DE BEAURLEGARD
in Epistemological Lelters from 1970 to 1978.

(*) A, ASPECT: Phys. Lelf., 54 A, 117 (1975); Progr. in Sci. Cullure, 1, 139 (1976); Phys. Rer. D,
14, 1944 (1976).
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d) if one recalls the fact that trigger meehanism can transform (by cascade types
of processer) individual microscopic phenomena into maeroscopie events in gpace-time,
one must:

AA) diseard the LIV version of the causal interpretation in the initial form given
by pE BroauLie (}), Bouy (3) and various authors including myself (8) as well as Bohm's
non local interpretation (7-8).

B) drop causality in the physical world since (to ulilize Stapp’s statemoent (%))
«if the statistical predictions of quantum theory are true in general and if the macro-
scopic world is not radically diffcrent from what is observed, then what happens mia-
croscopically in one space-time region must in some cases depend on variables that are
coutrolled by cxperimenters in far awayv spacclike separated regions ». This statement
valid for fermions and bosons (photons) (19) results from the new established fact that
quantum mechaniceal predictions necessarily result from the use of state veetor swhich
are the superposition of the products of the cigenvectors corresponding to the two
opposite polarizations (i.e. to mixtures of the second kind) which imply this space-
like conncetion.

The devastating character of a result in favour of QM is its contradiction with (¢))
sinee it evidently implies a noncausal nonmaterial perception of information hetween
spacelike separated domains.

At this stage only two interpretations scem to be left. The first is to maintain (¢))
and according to Costa de Beauregard accept the possibility of Feynman zigzags along the
light cone with advanced potentials. This allows information to travel backward into
time ... a concept on which he has based a belicf into psychokinesis and paranorinal
phenomena (1), The second is to accept real material propagation of particles (of the
tachyon type) between spacelike separated regions, a concept which evidently con-
tradicts the conservation of energy and Carnot’s principle.

The aim of the present letter is to show that a third interpretation is possible based
on a slightly modified version of the model of the causal interpretation of QM in terus
of a fluid with regular fluctuations developed by Behm and the author (17) (B.V.).
This new model:

ferd

) preserves Einstein’s concept of causality (e¢)) in the sense that individual
particles now considered as extended timelike hypertubes (**14), move along time-
like paths and can only transmit superluminal information localized within their in-
ternal structure;

() L. piz BRoOGLIE: La physique quantique restera-t-elle indélerministe (Paris, 1953).
(*) D. BouM: Phys. Rev., 85, 166, 180 (1952).
(¢) J. P. VIGIER: Siructure des microobjels dans Uinlerprélation causale de la théoric des quuante

(Paris, 1956).

() D. Boux and B. J. HiLEY: Found. Phys., 5, 93 (1974).

() F. SELLERI and G. TARROZI: Extension of the domain of validity of Bell’s inequalily, University
of Bari, preprint (1978).

(*) H. P. STAPP: Nuove Cimenio, 40 B, 191 (1977).

(19) J. F. CLAUGSER, M. A. HORNE, A. SunMoNyY and R. A. Hovr: Phys. Rev. Lett., 26, 880 (1969).
(') O. C0STA DL BEAUREGARD: Epistemological Lett., 18 (January 1978).

(**) D. BouM and J. P. VIGIER: Phys. Rev., 96, 208 (1854).

(**) D. BonM and J. . VIGIER: Phys. Rev.,, 109, 882 (1958).

(M) F. HaLswacus, J. M. Souriav and J. P, VIGIER: Journ. Phys. Radiwm, 22, 26 (1961).
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I3y earries nonlocal superluminal information which is not transmitted by indi-
vidual particles (limited to timelike motions) but result from the superluminal propa-
gation of a real physical eollective excitation (i.e. a density wave) which propagates
like a phase phenomenon (analogous to the successive lighting of eleetrie bulbs on a
christmas tree) on the top of a continuous thermostat of such extended elements ...
which corresponds to the material vacwum which supporls the real phiysical ¢ waves
associated to individual particles in the B.V. particular version of the causal interpreta-
tion of quantum mechanices,

In this paper we shall limit our demonstration to the simple case of a spin zero
isolated particle for which we shall cstablish that information starting on the » wave's
boundary (such as the opening or closing of a slit in the double slit Young hole inter-
ference experiment) reacts with superluminal velocity (via the quantum potential) on
the particle motions which move with infraluminal group velocities along the lines
of flow of the said y waves. As will be shown in a subsequent letter this saves
causality (and allows a detailed realistie causal interpretation) in the EPR experiments.

The interpretation of maeroscopic local interactions (at least up to distances of the
order of the coherent lengths of wave paekets) which seem to appear in the Einstein-
Podolsky-Rosen type of experiments thus implies a new theoretical step. We must
modifv the causal model of quantum statistics introduced by Bohm and Vigier (12)
by adding three new assumptions:

1) the fluid clements (and the particles) which follow the lines of flow of the fluid
with irregular fluctuations are built from cxtended «rigid » clenients in the sense
discussed later;

I1) the stochastic fluetuations occur at the velocity of light;

II1) the fluid is a mixture of extended particles (1314) (and antiparticles); the
latter being mathematically equivalent to particles moving backward in time (13-16).

With the help of these assumptions it has been shown independently (using different
methods) by LENr and PaArk (1?) and by ViGIer ('8) that the corresponding statistics
is correctly described by the Klein-Gordon equation. This is interesting since it shows
that one can deduce one of the basic equations of wave mechanies from the stochastie
theory of ultra-relativistic Brownian motion in space-time.

Assumption 4) is now easily cstablished. Indeed the idea that cxtended particles
are nonlocal in nature i.e. that they can propagate in their interior superluminal inter-
action andjor information is not new in the literature. Dirac (!*) was the first to notice
that if one treats the classical extended electron as a point charge imbedded in its own
radiating e.n. field the equations obtained are of the same form as those already in
current use, but that in their physical interpretation the finite size of the electron reap-
pears in a new sense: the interior of the electron being a region of space through which
signals can be transmitted faster than light. Physically this can be understood as fol-
lows. If we send out a pulse from a point A and a receiving apparatus for eleetro-
magnetic waves is set up at a point B and if we suppose there is an extended clectron

(**) M. FrLito, G. RIDEAU and J. P. VIGIER: Nuel. Phys., 61, 250 (1965).

(**) Ya. P. TeErLETSKI and J. P. ViGier: Zurn. Eksp. Teor. Fiz., 13, 356 (1961).

(*") W. Leur and J. PARk: Journ. Math. Phys., 18, 1235 (1977).

('*) J. P. VIGIuR: Model of quantum statistics in lerms of a fluid with {rreqular slochastic fluctuations
propagating at the velocily of light: a derivation of Nelson's equations, preprint Inst. H. Poincaré
(July 1978), to be published.

(1*) I’. A. M. Digac: Proc. Roy. Soc., 167 A, 448 (1938).
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on the straight line joining .1 to B then the disturbed clectron will be radiating ap-
preciably at o time a ' before the pulse has reached its centre o that this cmitbed ra-
diation will be detectable at /8 at a time e~ carlier than when the pulse which travels
from s to I3 with the velocity of light arrives. In this way a signal can be sent from A
to B faster than light so that it is possible for a signal to be transmitted faster than light
through the interior of an cleetron; the whole theory being of cause perfeetly Lorentz
invariant and causal in Einstein’s sense since no particle travels faster than light.
The <ame result can be obtained from the relativistic generalization of the motion
of extended rigid body. As one knows there is no such thing as a perfectly classical
extended rigid hody in relativity sinee the distance between two arbitrary subelements
depends on the spacelike cross-section of the timelike hivpertube defined by the ob-
scrver. However if we consider in any such arbitrary spacelike region a given chain
of contiguous subelements and assume that the corresponding strings caunot cross at
any time another chain built with different clements we arrive at the relativistie coneept
of an clastic solhid i.e. to the closest possible analogue of a rigid body in classical theory.
This has bheen utilized by GUTKOWSKY et al. (29) to construct the classical counterpart
of Dirae’s electron. If we then add to this concept the idea that we are dealing with
a spherically =hell of matter with a current J,= g, such that with v-v = —¢2;

1) o vanishes everywhere at any fixed time exeept at the surface of sphere of
centre = and radius r where o # 0 is constant;

2) r is econstant;
3) vu depends on time but at any time is constant on the surface of the sphere;

4) conditions a), b), ¢) hold with respect to every proper inertial frame of the
charged sphere and with respeet to a particular external inertial frame, we fall ex-
actly on the well-known rigidity conditions introduced by Born (2!) in relativity the-
ory. In this scnse such a rigid body las only three degrees of freedons: the remaining
three degrees of freedom of the spherical shell being determined as shown by Pound-
er (*?), by requiring that Born’s rigidity condition are satisfied on the surface.

Born’s rigid shell evidently implics transmission of superluminal interaction and;or
information since such a shell travelling at (or very close to) the velocity of light implics
knowledge and interactions which crosses the surface of the light conce. Indeed knowl-
edge of the position -1 on the shell (or of its centre = implies as shown in fig. 1 knowledge
of B on the opposite end of a diameter and a collision (or interaction) at .1’ which switches
the hypertube (and the path of z) back into the forward light cone (into . and 1)
implies a deflection of the path of B’ beyond the light cone’s surface. i.e. a nonlocal
modification of the physical situation at B’. Of course such nonlocal interactions ¢an be
neglected in classical relativity theory since the actual size of the particles’ eross-sections
have been shown to be very small (perhaps of the order of Planck’s length, ie.
~10-* em so that the introduction of extended structures can be approximated by
the statement that their centre-of-mass and centre-of-matter density aszociated with
extended particle models are restricted to the forward light cone.

To demonstrate B) we shall not discuss the detail of the demonstration of ref. (17:18)
here but just recall the elements necessary to show that they imply that the associated
quantum potential ¢ of stochastic origin propagates within our fluid with <uperluminal
velocity; a fact overlooked in ref. (17:18),

»

(**) D. GuTKowsKY, M. MoLES and J. P. VIGIER: Nwove Cimenlo, 39 B. 193 (1977).
(*) M. Bomr~: dAnn. der Phys., 30, 1 (1909).
(3?) J. IR. PouxNpiEr: Comm. of Dublin Inst. jor Advanced Studies, 11 A, 1 (1954).
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A;t

5.
N
.

Fig. 1. - In this model a particle whose boundaries are denoted by ” and centre motion = by -+ -+ —
moves adong the drift average four velocity vy, It undergoes stochastic jumps at the veloeity of light o
from point 1 to point 2. after which it reintegrates the drift flow. - and I3 (as AL and 1" BY
repeesent the opposite extremitios of a pacticle's diauneter.

To show thix, we just recall that the particles (and relativistic fluid clements) follow
the fluid average lines of flow characterized by a four-veetor drift velocity v, parallel
to VS with ¢ = grexp [i8/4] and Oy — — (m2e*A*)w. This correspouds to the w
wave's group velocity and delines an average conserved drift curreut J = ov, which
has been shown (12) to represent a limiting equilibrium distribution for particles earried
by the fluid. The stochastic jumps on the light cone which pass partieles (or fluid
clements) from one line of flow to another are represented by zero-length four vectors w
(with w-20 = 0) which can be decomposed into the sum of two vectors, i.e. w = v+ U,
with vyv,= —¢? and u,u, > 0. If the spacelike veetor 8k then represents (18) space-
like stochastic jumps which carry our extended fluid elements from one drift ecurrent
timelike hypertube into another, one of the main points of the demonstration of ref. (17-18)
is that if we denote by u, the corresponding spacelike stochastic veloeity one finds

1
" BT 73
2Ar ¢ 0

N

where the symbol ( » denotes averages taken over elementary domains, Ar the proper
time differential along the drift lines of flow parallel to v, and D the relativistic general-
ization of the diffusion coefficient i.e. D = ¢(3x,)(8x,4)>/2 Ar. One deduces there from
that the particles (fluid clements) are submitted to a drift force of stochastie origin,
t.e. the quantum potential @ = log )/ of the causal interpretation (*3). This appears
in the drift fluids’ Hamilton-Jacobi equation of motion,

VS-VS = — M2e2

so that we obtain (33)

d(dlvy)jfdr = VI,

(**) L. pu Brogri: Une fentulive d’interprétation causale ef non lineaire de la mécaniqire ondidaloire
(Paris, 1956); J. P. VIGIER: Compt. Roy. Acad. Sci., 166, 598 (1968).
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which yiclds finally per unit of « mass» M the stochastic force I, i.c.

(2) I = VQ s
where @ = —c¢?log W is a function of p only.
We know also that dw,/dr is spacelike since v,-v, = —ec2.

The cssential conclusion of relation (2) (though not explicitly formulated in
ref. (171923)) is that the gradient VQ = VM/M is spacclike (since parallel to the
spacelike drift acceleration) so that v,-V@Q >0. This implies that the quantum po-
tential (described as a function of the scalar density ¢ in our model) propagates with
superluminal velocitics within our drift current. This is casily understood since one
has scen that

(3) de/dr = V(gVS8) =0,

so that ¢ remains constant along the drifting tubes of flow.

The Iast step of our demonstration is to show how this superluminal propagation
of @ is a natural consequence of the nonlocal character of our fluid elements.

As an example, we discuss the propagation of a defect in the g distribution in the
spacclike direction. Tor clarity, we shall limit ourselves to the simplified case of a
two-dimensional description since it can evidently be generalized. We start with a set
of hypertubes (labelled 1, 2, 3 ... in fig. 2) which follow the drift lines of flow before they

0

Fig. 2. — Two dimensional schematic model of a spacelike decompression density wave. The sto-
chastic movements (parallel to the light cone represented by the lines — — —) tollowed by a return
to the average timelike drift motions —.—. - open successive holes v,, vs, v;... which propagate
along the spacelike arrow 4. All particles have timelike motions.

reach the constant phase surface S,. These particles undergo quantum jumps at 8
at the velocity of light from one drift line to another as a consequence of collisions. If one
then follows particle ¥ and if for some exicrnal reason (modification of the boundary
condition, cte.) it shifts its motion in the timelike direction in a, then a, (which is space-
like separated from a,) interacts with its neighbourhood and leaves open a hyper-
volume v, equivalent to a g defect. This can be filled by a space displacement of
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particle 2 which in turns can be repeated and one sces that the successive set of hyper-
volumes vy, v,, vy, cte. move along a spacelike arrow A and correspond to a decom-
pression wave equivalent to a spacelike gradient of ¢ in this dircetion. The same reason-
ing applics of course to a g exeess (i.e. to a pressure wave) so that both mechanisms
arc analogous to the mechanism of propagation of sound waves (or pressure waves)
in a fluid except that the propagation is now superluminal. Tt c¢xplains how distant
boundary modifications can influence individual particle behaviour and statisties. The
interconnectedness between boundary conditions and particle, carried by a super-
luminal modification of the y wave, is comparable to the loug-range correlation of
helium atoms in a superfluid state. In a stable situation (with stable boundaries) the
stochastic jumps are random but if they are modified then a co-ordinated movement
propagates superluminaly over the chaos, modifying the orientation and density of
the regular drift motion.

We shall conelude this letter with two restrictive remarks:

The first is that even if this model explains how an individual particle « knows»
about the modification of ncighbouring boundary conditions (such as the opening of
a distant slit) it must be enlarged to spinning particles and to the case of correlated
particles (represented in configuration space) in order to interpret EPR experiments.
This implies of course (as noted by Bohm and Hiley (7)) superluminal propagation of
a many-body quantum potential: a question which will be discussed in a subscquent
work. In principle however it is not astonishing that even limited internal departure
from LHYV should lead as shown by FLATO et al. () to a breakdown of Bell’s inequalities.

The second remark is that the price to pay for this supcerluminal propagation of ¢
in the ¥ waves in the existence of a random subquantum level of matter (the BV
vacuum (!2) de Broglic’s hidden thermostat (25)) invariant in Dirac’s sense (*¢) which
modifies the ¥ waves in a way comparable to superconductivity (7). This opens new
lines of rescarch (including the real physical range of our collective superluminal
interactions) which could be tested in future E.P.R. experiments.

(**) M. FLaToO, C. PIRON, J. GREA, D. STERNHEIMER and J. P. VIGIER: Helv. Phys. Acta, 48, 219 (1975).
{(**) L. pE BROGLIE: La thermodynamique de la particule isolée (Paris, 1964).
(%) P. A. M. DIrAC: Nature, 168, 906 (1951).
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Model of Quantum Statistics in Terms of a Fluid with Irregular Stochastic
Fluctuations Propagating at the Velocity of Light: a Derivation of Nelson’s

Equations.

J. . Vicigr

Equipe de Recherche .lssociée, au C.N.I1.S. no. 533
Institut Ienri Poicaré, 11 rue Pierve et Marie Curie - 75231 Paris Cedexr 05

(ricevuto i1 9 Novembre 1978)

Within the frame of the general dixenssion on the prineiples and physical content
of quantum mechanies (QM) onc the most interesting branches since 1852 deals with
the possible stochastic nature of its associated statistics. An increasing sct of results (2-3)
have now established striking formal sumilarities with classical models of stochastie
theory such as Markov processes (4:9).

Two basic obstacles remain however, which have prevented until now the complcetion
of the main statistical interpretation of QM in terms of real physical stechastic motions.

The first obstacle is the existence of a wrong sign (from the classical point of view)
in the stochastic version of Newton’s second law: a sign which is clearly necessary to
derive Schrodinger-type wave equations. For example in the notations of de la Pefia
and Cetto (3) Newton’s law takes the form

(1) m(D,v + D)= I+

for Brownian motion: in contrast with the form given by NELsoN (%) i.e.

(2) (Do — Dyu) = F+,

from whicl he has deduced (combined with the continuity equation) a remarkable
derivation of Schrodinger’s equation.

The second obstacle is the relativistic generalization of these stochastic models.
Indeed 1Iaxim (%) has shown that it is not enough to write a relativistic generalization

() D. BouMm and J. P. VIGIER: Phys. Rer.. 96, 208 (1954).

() E. NewLsoxN: Phys. Rev., 150, 1079 (1966).

(*) L. pE 1A PERA and A. M. CrTTg: Found. Phys., 3, 355 (1975).

() 1. FENTYES: Zeils. Phys., 132. 81 (1952); W. WEIZEL: Zeils. Phys., 134, 264 (1%53); N. WILENER
and A. SIEGEL: Phys. Rev., 91, 1551 (1953).

¢y F. Guerra and P. RuccGitro: Phys. Rev. Letl., 31, 1022 (1973).
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a

of (2) since if At—0 the ouly value for the diffusion constant v, (in (dw)? ~ 2v,d¢)
compatible with relativistic invariance is vo= 0. As a consequence LENR and PARK (%)
have been led to add to eq. (2) two supplementary axioms i.e. @) the discretization of time
in the stochastic model; 0) the attribution of the speed oflight ¢ to the stochastic particle
between interactions with the thermostat. Under these conditions they do indeed
recover the Klein-Gordon cquation provided antiparticles are considered as particles
moving backward in time.

The aim of the present letter is to derive Nelson's cquation and quantum statisties
from a relativistic gencralization of the hydrodynamical model of QM developed by
MapELUNG (), TaAkABAYASI (°) and extended to spinning particles by various authors (19).

This classical relativistic mnodel generalizes the nonrelativistic stochastic hydro-
dyunamical model of QM of Bohmn and Vigier on terms of a fluid with irregular
fluctuations (). It countains three new physical features.

I) the fluid elements (and the particles) which follow the lines of flow of the
fluid with irregular {fluctuations are built from extended clements in the sense discussed
by Bohm (**) and Souriau (12).

II) The stochastic {luctuations occur ab the veloeity of light.

ITI) The fluid is a mixturc of extended particles (and antiparticles): the latter
being mathematically equivalent to particles moving backward in time ('314).

The existence of such fluctuations (which induee in the particle a Markov type of
Brownian motion) has been shown () to lead any initial distribution of the particles
in the fluid into a limiting cquilibrium distribution const-p(z,(r)) proportional to the
fluid’s average conserved drift density g(u(r)). This means that the fluctuations of
our Madclung fluid induce on our particles stochastic jumps at the velocity of light
(from one line of flow to another) and that such jumps can be decomposed into the
regular drift motion v, plus an apparent spacelike random part u, with v, = dz.(z)/dr,
7 representing the proper time along the drift lines: so that vg-vy= —¢

Indeed any velocity w represented by a point P (with w,w, = 0) of the light cone
can be decomposed into the sum of two four-velocities vy, and u, i.e. w = v+ u, with
u, -u, > 0. Since the three indeprendent components of w determine the four com-
ponents of i,. As a consequence if one considers a particle of the preceding type it
undergoes two independent types of motions: a) regular motions along the fluid’s drift
lines of flow with the fluids own velocity v, b) stochastic jumps in any direction with
the veloeity of light with a four velocity w satisfying w-w = 0.

To establish (a)) let us first recaldl that a particle or a regular fluid clement (which
can be compared with the stochastic particle and the thermostat’s elements in the
usual Brownian motion) are now represented in four dimensional space-time by time like
hypertubes instead of timelike lines. These hypertubes can be naturally assumed to
have a minimum spacclike radius 7#/2 which yields the minimum distance 7 which
separates two continuous particles in any spacelike section passing through their centre
of mass. Independently of the stochastic jumps our drifting fluid is thus comparable

.

(") Y. LEHR and J. PARK: Journ. Malh. Phys., 18, 1235 (1977).

(*) E. MADELUNG: Zeils. Phys., 40, 332 (1926).

(®) T. TAKABAYASIL: Prog. Theor. Phys. (Japan), 8, 143 (1952); 9, 187 (1953).

(**) Summarized in F. HALBWACHS: Theorie des fluides a spin (Paris, 1960).

(') D. BouMm and J. P. ViGIer: Phys. Rev., 109, 882 (19358).

(**) F. HALBWACHS, J. M. SOURIAU and J. P, VIGIER: Journ. Phys. Radium, 22, 26 (1961).‘
(**) M. Frato, G. Ripgau and J. P. VigIier: Nucl. Phys., 61, 250 (1965).

() Ya. P. TerieTsk and J. P. Victer: Zurn., Eksp. Teor. Fiz., 13, 356 (1961).
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with a timelike get of extended fibers and the minimum time needed to pass from one
of these hypertubes to the next is thus »/e = At since the jumps occur at the vel-
ocity of light. This implies that the proper-time variable which corresponds to adjacent
events in our stochastie model have nonzero minimuin temporal separation Af.

The sceond step is just to generalize to our relativistic model the average velocities
utilized by de la Pein and Cetto (3) to discuss the nonrelativistic theory of classical
and quantum-mechanical systems. Let us start (fig. 1) from a four dimensional volume
limited on the side by the fluid’s regular lines of flow and, at both extremities, by two
spacclike constant phase surfaces (%) 8, and ;. If the domain is small enough such
surfaces are separated by an interval 2Az: an interval - Ar separating 8; and S,
from a median scetion 8,0 Of course [A7] - AT,

Fig. 1.

As o consequence of the assumed stochastic equilibrium we can treat on the same
footing the fluid behaviour and an ensemble of similarly prepared particles character-
ized by the density go(x, v) in configuration space where x represents a point in four
dimensional space-time.

We shall now establish that the preceding model leads to the correct quantum-
mechanical statistics (governed in our simplified case by the Klein-Gordon equation)
in the simple case of a charged sealar particle. The simplification is justified since the
introduction of spin cowplicates, but does not modify significantly, the various steps
of our demonstration.

We can deseribe the average local motions of the clements of the ensemble by the
sclection of all particles that at proper time v =7, are containcd in a small four-
dimensional volume element around the point r = r, with co-ordinates (r,),. This is
neeessary in our model, since if one starts from a particle in its local drift rest frame
(2.e. the frame in which the ncighbouring fluid elewment is practically at rest) its stochastic
jumps along the light cone can bring it into any neighbouring line of flow: both in the
forward and backward proper time direction. As a consequence our gencral stochastic
model implies the use of a four-dimensional stochastic space-time volume element to
recover all possible stochastie jumps of cach drifting particle. We have thus made the
new.theoretical step of introducing along with the average space positions the new
concept of an average time in a four dimensional volume element.

In order to deseribe the global motion of this element we select the particles that
at proper time 7, arc contained on a small scction (space-volume clement) of S, limited
by the hypertubes boundary. According to our model it is possible to distinguish two dif-
ferent kinds of motion of this volume clement during a short interval Ar. Besides its

('*) J. P. ViGier: Compt. Rend., 266, 598 (1968).
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motion as a whole in the hypertube (whicl preserves the fluid’s scalar density o) the
clement will suffer variations of p due to the stochastic jumps which move matter
from one line of flow to anoiher and will bring fluid across the hvpertubes” boundary.
Generalizing de la Pefia and Cetto (?)’s ideas we can obtain a shimplified description in
terms of two quasilocal statistical velocities. If we take any one of the particles of our
volume eclement and call r; and r, its average mean position at r,= 7,— At and
7, = 1,4+ At we can ealculate the average of ry—ry, over the subensemble defined by
the particles which belong to our small volume element. We call these average values
the mean and denote them with 7 > We thus write
(3) ry—ry,={ry—r,,=38,r and r,—ri=d{,—r>+3_r.

Since one must assume (in our model) the homogeneity, isotropy and time in(lupl-nd-
ence of our stochastic mechanism the change variable §ir; must satisfy {(3.r,)>
= {(3_r;)> so what we can omit the indexes from such expressions and write in gen-
eral (3r)> = 0.

We can now derive from (3) two different velocities i.e.

b (2)=((ry—ry)/Ar} and b (2)= ((ry—r)/A7),
whose mean values
v,(2) = b2 = (((ry— r)/AT)>  and  v(2) =<b_(2)> = (((r,—r)/AT),
arce the relativistic generalization of the mean forward and backward veloeities. From

these one can derive the regular fluid’s velocity vy and a stochastic belocity g, through
the relations

(4) v4(2) = {({ry—1))/247)) = Hv, + v))
(5) u,(2) = {{ry—ry) — (ro—r))]/2A0) = {(v.—v)
‘r:t1 T:!'3
oy Or &3 &3
. - —
—_
-~ —
—
Ny n_ n. — n,
—
—_— -
— —_—
—
-— —_—
X=Xy =% iR X3 =X X
=7, T=Ty
Fig. 2. - x,1(xp) is the average position of the n,(n-) particles at Ty =T, —Ar and xyplxgy) 1s the

average position of the same particle at Ty =Ty + At ey (ey) being the densities of pacticles to the
left (right) of x = 2y .

Now the stochastic velocity u, can be determined in any spaeclike direction by
calculating the flow between 7, and 7, of all elements which cross a drift timelike plane
passing through r, and orthogonal to a spacelike direction z. Indeed let us consider
(see fig. 2) an ensembie of fluid elements (particles) which are at 7, in the neighbourhood
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of x. If pyp(o,n) then represents the scalar densities in the ncighbourood of 7, () at
T = 1; We see that these densities are related to #, and u. through

Hy = (Bap — &) Q3 = (T2 — 11) 011 and o= (ry —1,) 0, = (7 — #yy) 231 -
This yields

zy + 23— 2z, =

= (1, + 0 ))— o1{®s— 21 + oyl — ,)* 4+ 03r(Tar — F2)* — Qg ~— 7137)7)

which can be averaged over the ensemble. Since each of the parentheses then become

{(3z)*> we can write to the first approximation (with n, -+ n_= 2g(r,)Az):
T, + x,— 2z, dr)H 1 \Y/
(6) u, = ,<,},+ =l ;2 — _(., ,_,) ,Z_V[, =T xe ,
2Ar 2At ¢ 0

if we define as usual the diffusion coefficient as D = (3r,)*>/2 Az and negleet higher-
order terms in Az. 1) is always > 0 since our quantum jumps are spacelike.

This is exactly the relativistic generalization of Einstein’s definition ('%) of the
stochastic velocity in Brownian motion. We have further vy = v, = u, which con-
neet out forward (particle) and backward (antiparticle) veloeities with the fluids regular
drift velocity vy and its stochastic velocity u,.

The second step is to associate the two velocities needed to deseribe our motion to
four accelerations required to describe the forward and backward changes of these
velocities. To do this we require the existence of our minimum proper time interval Az
which allows us to define the four accelerations

b.(3)—b.(2)= ai +3,b,,

b (3)—b_(2)=aX+8.b_,
(7)
b.(2)—b(l)=a;+35.b,,

b_(2)—b (1) =a~+35_b_,

which evidently lead to systematic drift and stochastic derivative operators. Indeed
if we define as D, and D, the following operations on a general function f(r) of the
stochastic variable r, i.e.

Daf(ry) = <[fr) —f(r)1/287>  and  D,f(ry) = <[f(ry) + f(r) —2f(ry)}/2 Ar>

which are evidently related with the forward (D+) and backward (D7) derivative oper-
ators through the relation: Df= D, + D, we sce they thus correspond to scalar
(proper time type) derivatives in timelike and spacelike directions... and yield the
drift and stochastic velocities through vy= Dyr and u, = D,r: where the dumnmy
index 2 has been omitted. This gencralizes v, = dx,/dr and lead to the preceding
mean accelerations through the expressions al = D*v, and ai = D v,.

’

(**) A. EINSTEIN: Investigations on the Theory of Brownian Movement {(New York, N. Y., 1956).
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Morcover a development in Taylor series yiclds

Ddf=:—f+ g VY f+ e,y
(8) T
])uf: (ua'v)f l( “(VV)f + aee g

wliere the diffusion coefficient 1) is given as before by the relation
8 8r, /2 ATy = Ddyy,

in the drift rest frame: diffusion in time representing, as hefore, particle-antiparticle
transition: 8, and 8r; denoting any pair of Cartesian components of 3. ... which are
assunied to be statistically independent if ¢ 3 j.

The third (essential) step is to derive the covariant generalization of Nelson's
cquation, in our model. To do that we recall that any detailed deseription must start
from the general equation

wi = fo  fo

where f; represents the drift spacelike forces and f, the purely random effects the *
denoting proper-time derivatives. The corresponding statistical theory must, according
to our model, start from the ensemble of particles which at any proper time 7, lie in
the neighbourhood of r,. The mecan of the preceding velation thus becomes

(9) miry = Fy+ F,=F, where Fy=/f> with F,={f>=0.

Since the mean value of r is taken over the same ensemible utilized to define our
average velocities and accelerations in the preceding steps, it must be expressed as a
linear combination of ai. To determine these combinations, we remark that <rd and
{f4> can be split into two parts i.e. a part >+ (or (fOF) which is invariant under proper
time reversal i.e. 1, —7,—1,—1, and a part {r)>” (or {f;> ) that changes sign under
this discrete symmetry which changes v, but conserves u,. Combining equation (9)
with its counterpart obtained through a proper-time reversal operation we obtain the
new set of equations

(10) m(ryt = Ff .

We now make the final step in our demonstration of Nelson's cquation (2) by
examining the implications of eq. (10). The first implication is the importance of the
proper-time relation m{r>* = FF which evidently represents the stochastic generaliza-
tion, of Newton's law for our model. Indeed the usual four-dimensional acceleration x
of a classical point a satisfies xx =0 (since x-x= —¢?) and is invariant under
proper-time reversal. The same holds for our stochastic case sinee: «) the drift accel-
eration ¥, is orthogonal to vy; d) the stochastic spacelike velocity u, is loecally ortho-
gonal to v, so that the corresponding stochastic accelerations (which vanish on the
average since (F,> = 0) arg thus always orthogonal to v,.

The second implication is that (F>* must be expressed by just the linear combina-
tion of relations (7) which are proper-time—inversion invariant i.e. (¥ + a3) or (a} + al)
or a linear combination therefrom.
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The third implication is that a nican acceleration (which corresponds mathemaltically
to secoud-order proper-time derivatives) should be defined physically only by the motions
of fluid elements surrounding r, i.e. enclosed within the four-dimensional volume clement
limited by 8, and S, utilized to define mean quantities. We deduce therefrom and from
the explicit form of the a’s given in e¢q. (13), that the only quantity of this type in-
variant under v ——7 is (@ + a7). Indeed the definition of (af - @7} implies knowl-
edge of the behaviour of fluid elements which lie outside our volunie since it contains
four-veloeities of elements which are crossing 8; and 8 in the backward and forward
directions i.e. are leaving this volume. Morcover one sees that the combination
(Y = (a¥ + a3) evidently represents the relativistic definition of the sum of the mean
accelerations of antiparticles (af) and particles (a7} passing through r, at =17,

As a consequence we must write relation (10) in the form

(11) tmiat + a3) = F*,
+

whieh is exactly the relativistie generalization of the form given by de la Pefia and
Cetto (*) to Nelson's cquation. Clearly eq. (11) contains particle-antiparticle symmetry.

The same argument applies to the — part of (10). Indeed the only combinations
of a% that change sign under proper-time reversal are (@l —aZ) and (@t —a3) and
the second only is exelusively defined by the motion of fluid cletents between S and S;.
We thus have lm(al—a7)= '~ which satisfies the continuity equalion and is
compatible witl the introduction of the Lorentz foree for charged fluid elements.
Morcover these relations can be rewritten with the hielp of the definitions of Iy and D,
into the form

(12a) m(Dyvy— Dou,) = F+
and
(120) m(Dyu, + Dyvy) = F~.

In eq. (12b) both sides tend (as they should) to zero in the noustochastic limit.

The last step of our demonstration is, of course, the derivation of the integrated
stochastic equations which result from (11) and (12). This can evidently be done in
two ways. The first is to start from the drift rest frame at r, and define as usual Smolu-
chowski's densities ¢ and Pp. The interested reader can then check immediately that
since we have demonstrated a) and Nelson’s equation (11) one can just follow Lehr’s
and Park’s demonstration (7) to recover Klein-Gordon's equation.

The second way (which we will choose instead since it throws some interesting new
light on the physics of the problem) is so complete the relativistic generalization of
de la Pefia’s work (3).

In order to integrate (12a) and (12b) we define the quantities

(13) Dy=Dy+eD,, v,=v4+eu, and F,=F++F
\\'ith‘a = i
Relations (12¢) and (12b) can thus be combined into the complex cgs. (14) t.e.

mD, v, = F, which can be integrated if one assumes that F_ is just the general Lorentz
force applied to our fluid of spinless charged particles 7.e.

,(Fq)u = (efe)(Oud,— F/ulu)(l'q)u
with V-A=2,4,=0.

77
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Indeed if we then write the relation (15) §.¢. vy = D - VS — (¢/me) A, where D = #i/2m,
V and A denoting the four-veetors 8, and A, and S, = const representing the surfaces
orthogonal to the four velocity vy, If we then utilize the Taylor developments (8) and
substitute (15) and (16) into (14) we obtain the general relation

(16) V(Qsml)Sq + tmogv -+ emDV-v) =0,
whicli admits as first integral eq. (17) 7.e.
— 2emiSy = 2e*m DA VS VS + V-VS ] —2eD(efe) A- VS, —eD(efe) VA + (e2/2mex) A-A .
Introducing further the wave function @(r, T) = cxp [eme2 /20 y(r) i.e.
@(r, T) = exp [eme27/2/i] 0} (r) exp [e8 ().

we obtain from (7) the usual relativistic generalization of the Schridinger equation, i.e.
(18) 2mDep = (1/m)[2mDeV — (efe) A2 ,
which reduces to the Klein-Gordon equation
(19) (fy —elefe) Ap)2yp — (m2eftYy = 0.

Relation (19) yields (%) the relations

(20) dofdr=¢=0 and d(Mwv,)/dr = —V(Ic?)
with

M2= {m*—(i2/c)(OR/R)}, w*y=R* and o= (M/m)R?.
* % %

The author wants to express his thanks to Profs. .. pE Brocuir, D. Bonx and
M. Frato for long and helpful past discussions stressing the possible importance of
Einstein's views on Brownian motion in the interpretation of QM. He is especially
grateful to Prof. Luis pe rLa PENA-AUERBACH and A. M. CETTO not only for crucial
suggestions but also for help in the preparation of this work. Without this help, it
would not have been completed.
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Relativistic Hydrodynamics of Rotating Fluid Masses
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With the aid of the new notion of center of matter density, we give a relativistic treatment of the behavior
of finite-size masses of rotating fluid. This treatment is based on an analysis of the relative motion of this
center of matter density and the more familiar center of mass. In this way, we obtain a clear physical inter-
pretation of the equations studied by Mathisson, Weysenhoff, and Moller. We also show that more general
types of motions are possible, related to additional degrees of freedom of the relativistic fluid droplet. These
degrees of freedom provide a framework for a theory of the quantum numbers of the elementary particles
(isotopic spin, strangeness, etc.) which will be developed in a subsequent paper.

I INTRODUCTION

N a series of very interesting papers, Mathisson,!
Moller,® Weysenhoff,® and Pryce? have developed a

relativistic theory of the motions of rotating masses of
matter. Their equations are deduced from the con-
servation of energy-momentum and angular-momentum
tensors. From these conservation assumptions they
demonstrate the possibility of qualitatively new types
of motion resulting from the coupling of a mean velocity
with the total angular momentum of the system.
However, they do not make it clear to what this mean
velocity refers. In fact, Moller suggested that these new
motions are purely formal, or in other words, that the
mean velocity defined in these theories refers only to
the behavior of fictitious and purely mathematical
“center of gravity” points.

I M. Mathisson, Acta Phys. Polon. 6, 163 (1937).

2 C. Méller, Ann. inst, Henri Poincaré 11, 251 (1949)

3] Weysenhoﬁ Acta Phys. Polon. 9, 7(
4M, H. L. Pryce, Proc. Roy. Soc. (London) A195 62 (1948).

Moreover, in all these papers, the deduction of the
equations of motion is based in a very essential way on
the assumption that the time-like components of a
certain angular momentum vanish in the mean rest
frame of the body, or in other words, that:

E}Tlagu‘*:O; (1)

where M. is the antisymmetric tensor for the total
internal angular momentum, and . is the four-velocity
with #.u*=1. This assumption however has not been
justified by any specific physical arguments; so that it
constitutes a further somewhat arbitrary mathematical
restriction on the theory.

In the present paper, we shall give a relativistic
treatment of the general problem of the behavior of a
mass of conserved fluid that is in some kind of rotational
motion. We shall begin by giving a clear physical
interpretation of the meaning of the time components
of the angular momentum. Then with the aid of the

Jean-Pierre 1Vigier and the Stochastic Interpretation of Quantum Mechanics
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new concepts of center of matter density, defined along
with the already well-known concept of center of mass,
we shall see that the ambiguity of the meaning of the
motions described in the above quoted papers can be
removed. Indeed, it will become clear that in our
interpretation of the theory, the equations of Weysen-
hoff, Moller, etc., refer to the relative motion of the
center of mass and center of matter density. Further-
more, we shall see that motions are possible which are
more general than those treated by Weysenhoff and
Mgoller, with the result that Eq. (1) need no longer be
satisfied. We then obtain a set of equations for these
more general cases, and we show that the motion cannot
be fully determined without further physical assump-
tions replacing Eq. (1).

In another paper we develop an example of one of
these more general theories, leading to a classical motion
equation of the same form as the Dirac relativistic
equation in quantum mechanics. When this classical
equation is quantized in the usual way, one obtains a
set of quantum numbers similar to those which have
been proposed recently® for the elementary particles.

II. RELATIVISTIC FLUID MASSES

The difficulty of treating rotating masses in the theory
of relativity is connected with the impossibility of
defining a relativistic rigid body in a consistent way.
We may, however, overcome these difficulties of formu-
lation by considering instead relativistic fluid masses,
which are kept together by appropriate internal tensions
that tend to hold these masses in some stable forms.”
Relative to such stable forms, the body of fluid may be
subjected to all kinds of internal movements, such as
rotations, vibrations, creation and destruction of inner
closed-vortex structures, elc., each corresponding to
different possible physical motions.

At first sight, a general treatment of the problem of
describing the behavior of such masses raises in-
superable difficulties. If we attempted to treat of all
the details of these possible complex motions, we would
find .ourselves blocked not only by mathematical difh-
culties, but also by the fact that we do not even know
in general what the fluid equations are. Fortunately
another point of view is possible if we are willing to
restrict ourselves to an over-all average description.
In this case, if we suppose that however complicated

* See for example, J. Schwinger, Phys. Rev. 104, 1161 (1956) or
B. D’Espagnat and J. Prentki, Nuclear Phys. 1, 33 (1956). A
promising attempt has been made to consider elemeatary particles
as stable excited states of our model of fluid masses; see P. Hillion
and J. P. Vigier, Compt. rend. 246, 399, 564 (1958) and Hillion,
Lochak, and Vigier, Compt. rend. 246, 710, 896 (1958).

¢ Many authors have discussed this problem and have proposed
various solutions, but these proposals are in any case very com-
plicated and it is not yet clear whether they are completely free
of contradictions. See, for example, J. L. Synge, in Studies Pre-
sm% to R. von Mises (Academic Press, Inc., New York, 1954),
p. 217,

7 H. Poincaré [Acta Math. 7, 239 (1885)] has shown that rotat-
ing fluid masses with interna] tensions tend to go into stable
equilibrium forms, one of which is a rotating torus.

the motion may be, there is a conserved energy-
momentum tensor density 7', (which of course contains
the tensions that hold the body of fluid together), it is
possible to define certain average properties of the
motion, independently of the complex details that we
ignore. These average properties can be treated mathe-
matically and lead to a description of the general
features of the motions of relativistic rotating fluid
masses.

The assumption of a conserved energy-momentum
tensor density takes the form

8'T,,=0. (2

We assume further that the energy-momentum tensor
is symmetric (as has been the case for all fluids treated
so far). This means that

Ty=T 3)
As a result, the angular-momentum tensor
Lyn=2Tn—%Tn 4)
satisfies the conservation equation
PLpr=0 V)]

(where the bracket, [ur], indicates an antisymmetric
pair of indices).

On the basis of Eq. (2) one can easily show® that if
the fluid body is localized (so that T',, vanishes outside
a space-like three-dimensional limited region) the total
energy and momentum integrated over all space in any
specified Lorentz frame are constants. In other words,

Q= fT,odV=constant (6)

and
dG,/dt=0, "

where dV represents the element of volume.

Moreover, it also follows from Eq. (2) that G,
transforms as a 4-vector under Lorentz transformations.
On physical grounds we suppose that G, is a time-like
vector; otherwise there would have to be a Lorentz
frame in which the fluid had momentum but no energy.

We shall assume further that we can define at each
point of the fluid mass a 4-vector density j, satisfying
the conservation equation

3#§,=0. ®
This 4-vector density can be written
ju=Duy,

where u, (#4*=1) represents the components of the
local unitary 4-velocity and D= (j*j,)! the invariant
matter density.

8 Moller, reference 2. We use Moller’s notation where Greek
indices such as g vary from zero to three, and Latin indices é

vary from one to three only. However, we are using the metric
{a,-1,-1,-0.
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The “matter density” jo is proportional to the
quantity of matter in a given region, which could, for
example, be the number of molecules, while the vector
j: represents the rate of flow of this matter across a
unit area in the direction of the coordinate vector ¢. If
the fluid consists of charged particles with a constant
ratio of ¢/m, then the density of charge will be p= jee.
But whether the fluid is charged or not, there will be a
set of quantities 7, satisfying Eq. (8).

The quantities j, clearly will be important for the
determination of the way in which the body of fluid will
change its shape, size, position, and orient ition in space.
Indeed, one can in principle deduce all these properties
on the basis of the fundamental hydrodynamic equa-
tions satisfied by the local flow velocity,® which is just

v.-(x,t) = j.»(x,l)/jg(x,t).

Hence, if we wish to treat any of these properties of
the motion of the fluid, we shall evidently have to study
the behavior of the j,.

In the nonrelativistic limit, the mass density Tqo/c?
and the matter density jo are proportional. But in the
relativistic domain these two quantities may be dif-
ferent. For if the fluid is in motion, the kinetic energy
E contributes a term E/¢? 1o the mass; and in any case
the internal tensions which are contained in the tensor
T, may make a similar contribution.

The essential features of the distinction between mass
density and matter density arising in the theory of
relativity may be brought out most clearly in terms of
the conceptions of center of mass and center of matter
density. We shall discuss the center of matter density
in the next section; and here we shall consider only the
center of mass which is defined as

SOX:‘:fTOOdeVy 9

where Qo= f TodV is the total energy of the body (the
Latin subscript 1 refers to space-like indices).

The most interesting property of the center of mass
is that it moves at a constant velocity proportional to
the total momentum. To prove this, we write

dX; 8T o0
Go—= | —adV. (¢L0)]
dt a
But by the conservation equation (2) we have
dX.' 6T0i 6x.~
go—°=-f x.dV=fTo,~—dV=9.-, (11)
dt ax; ax;

where we have integrated 9Tq; by parts and used the
vanishing of To; outside the fluid body. This gives

dX/dt=G:/Gs, 12)

? A number of such sets of equations have already been pro-
posed ; see A. Lichnerowicz, Théorie de la gravitation et de L’ Eleciro-
magnétisme (Masson et Cie, Paris, 1935), Chapt. IIT and IV.

which is the usual relativistic relation between the
velocity of a particle and its momentum.

If we integrate the time components of the angular-
momentum density Lga= .7 — . T, over the total
volume of the liquid droplet, we obtain the total angular

momentum,
L,‘.=fffL[,.,]odV.

In the same way, we can show that L,, is a constant,
For

d a3 ad
Lo [ [ [“tiwtv=— [ [ [—Lunav=o,
dt Pl Ax;

(14)

since L,,;»n=0 on the surface of the droplet. From the
conservation of L., it follows that L,, is a tensor.

The center of mass has a close relationship to the
time-like components of the angular momentum. To
see this, we obtain from Eqs. {13) and (4)

(13)

Lijo= fL[iCIOdv= f(xx‘Tou— quo")dV-

If we integrate at a constant value of the time coordi-
nate x¢ we obtain [using Eqgs. (12) and (6)]

Lio=GoX:—GiXo. (15)

If we choose X,=0 then the time component of the
angular momentum is proportional to the center-of-
mass coordinate. More generally, we have, by inte-
grating Eq. (12),

GoXi=GiXotay,

where a; is a constant. We then obtain
L,‘o:d;.

Thus, we verify the constancy of the time component
of the angular momentum which we have already
derived from the conservation law directly.

The space components of the angular momentum are,
of course, just the usual moments of the momenta:

Lh:j (%:Tj0— x0T 10)dV. (16)

It can be seen from Eq. (15) that the center of mass
varies from one Lorentz frame to another.® For
example, let us choose the origin of our space-time
coordinate system such that Xo=0 and X;=0 (so that
the origin is at the center of mass and Ly; is zero). If
Xo, X, were a four vector, then evidently under a
Lorentz transformation we would obtain for the new
coordinates Xo'=X/=0 and Lo/ would also have to
be zero. To show that this cannot be true consider the

¥ See p. 2 Papapetrou, Moller, etc. .
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infinitesimal Lorentz transformation (which consists
only of a change of velocity with no rotation):

X =Xo—e0:X,

X{=X:—¢uX,,
with €= —€o;. We obtain immediately
Ly =LiotenLa=eula,

since Lo=0. Now L,; is just the space-like part of the
angular momentum. Hence, if the fluid body is spinning
(so that L;#0), then L’ will not be zero.

We conclude from the above that the center-of-mass
coordinates do not transform as a four-vector, and that
in different Lorentz frames, the center of masses cor-
respond to physically different points.

III. CENTER OF MATTER DENSITY

We shall now define the center of matter density. In
analogy with what was done with the center of mass,
one would be led to assume that this center (V) is
given by

ViJe= f GoxdV, an

where Jo= /" jodV is the total amount of matter in the
droplet (which is a scalar constant because of the
conservation equation). The time derivative d¥;/d!
would then be given by

a¥:  (dde

aje
Jo—= —-xidV=—f(——)x.dV=fj,dV. (18a)
(1/ al ka

Thus, the velocity wy. of the center-of-mass density is

dYy f]de JL
Wy=——= (18b)
dt Jo Jo

szfjkdv.

The difficulty with this definition is that the quantities
Je, Ji do not form a four-vector, because J depends on
the volume element corresponding to the chosen
Lorentz frame. (On the other hand, we recall that the
velocity of the center of mass is proportional to a four-
vector.) As a result, we cannot, obtain for example an
unambiguous definition of the frame in whlch the center
of matter density is at rest.

We can remove this ambiguity by defining the total
current J and the center of matter density ¥ ac-
cordmg to Eq. (18), but in the specxal Lorentz frame
I, in which the center of mass is at rest"! (so that
G;=0). This frame does have a unique meaning because
the total momentum is a four vector. Then if we wish
to know J; and ¥, in another frame I we simply take

where

11 We are here using a suggestion of 'T. Takabayasi.

their values in the frame Il and Lorentz transform them
according to the transformation laws of a four vector.
In other words J; and ¥, are defined by (18) enly by
integration over the volume element associated with
the frame IT,.

To express this definition of (¥,) in more detail, we
first denote by the superscript zero all quantities which
refer to the frame I, in which the total momentum G;
is zero. The velocity of the center of mass in the frame

is then
wd () =T 2L /T L. (19a)

From this we can define a four-velocity (where we
choose units such that c=1):

1,2(0)=J.2(2)/D(E), (19b)
with
D) =[—T () () D,

(where J,=1J0o). The four-velocity 9,0 is then evidently
unitary; that is %% =1.

On the other hand, the four-velocity of the center of
mass will be

U= gu/M(l)

Mi=— GuG

To go to an arbitrary frame, for example the laboratory
frame Z, one simply makes a Lorentz transformation
with the velocity «,. This transformation is defined by

(20)
with

=Dy s, (21a)
with
1
<71'j:6|'j+ s
142
(21b)
Qro= — Qor =18,
doo= Ug.

Then in the frame Z the center of matter density has
the coordinates

uku;Y;"(t“)
V=1 (f)————wu,l, (22a)
1o
and
Vo= ud®— w4, V01 (22b)

where ¥ represents the time coordinate of the center
of matter density in the frameé Z. The above equations
provide a parametric representation of the trajectory
of the center of matter density in Z, the parameter
being £.

The velocity of matter density in £ can be obtained
by Lorentz transformation of (19b). This gives

GG =M
'u(Yo)———{ o 20T TN (23a)
Dy Go(Mot+Go)
A
(V)= (23b
=D, )
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Notice that the time parameter appearing in the above
equations is still £, We could transform to the parame-
ter =Y, with the aid of Eq. (22b). However, it will be
more convenient to use the proper time r of the center
of matter density as a parameter. Then r is defined by
the relation

dr 1

ave Vo

MDy(%)
gy
IV. INTERNAL ANGULAR MOMENTUM

Thus far we have defined the angular momentum
relative to points fixed in space. We wish now to define
an internal angular momentum analogous to the non-
relativistic angular momentum relative to the center of
mass. In the relativistic theory, the center of mass
varies from one Lorentz frame to another. Moreover,
the center of mass and the center of matter density are
not in general the same. Thus there is an ambiguity
with regard to the point relative to which the inner
angular momentumn of the fluid droplet ought to be
defined. This ambiguity could be removed for example
by choosing as the point relative to which the inner
angular momentum is to be taken the center of mass
(X,). This is in fact one of the possibilities that Méller!
considered. However, as we shall see in Sec. 8 such a
choice leads to results having little physical significance
w.th regard to the motion of the droplet as a whole.
We shall choose instead for this purpose the center of
matter density (V,); for this point reflects in a better
way the average velocity of the droplet. If the angular
momentum relative to this point is taken, then the
resulting equations will, as we shall see, describe the
fluctuating motion of the droplet as a whole, relative to
that of the center of mass which moves at a constant
velocity. Thus, a general description of the over-all
motion of the fluid droplet is obtained.

In accordance with these considerations, we define
the inner angular momentum of the fluid droplet as

oM, = f [(tam V) T (10— V) ToddV.  (29)

We can express M, in terms of L,, with the aid of
Eq. (13). We have

L= f (2 Tyo—2,Tuo)dV

=f[(xu_ Yn) Tw—(x,-V.) Tuﬂ]dV
+ f (Y, Tyw~Y,T)dV,

since ¥, is a constant in the integration, we then obtain
va=3nu-+ Yug"‘ Y,g,.- (25)

As Ly, is a tensor, it follows from (25) that 91,, is alsy
a tensor. By differentiating (25) with respect to the
proper time + and by noting that dg,/dr=0 we obtaiy

dfm,../ =Gt~ Gl (26)

This is one of the basic equations postulated by
Weysenhoff.

It is particularly instructive to consider Eq. (26) in
the special frame 2, in which v;=0. This we shall call
the rest frame of the particle, because it is the frame in
which the center of matter density is at rest. In that
frame we choose a set of axes such that ¥;=0 ang
Yo=0 for the moment of interest. Then we have
d¥/di=1. We then obtain for the time component of
the angular momentum:

Lo=Mio+ Y. Go—VG:

=M 0— 91‘1 3
since
Lio=GoX,— Gil.
This yields
GoXi—Gd =M, 0—Git,
and thus @n

M= X Go.

The above relation shows that in the frame 2, the
time component of inner angular momentum is pro-
portional to the vector joining the center of mass and
the center of matter density. This interpretation of
Mo will be seen Lo play an important role in the further
development of the theory.

V. BRIEF REVIEW OF WEYSENHOFF'S THEORY

We now proceed to give a briel review of the
Weysenhoff theory, in order to lay the foundations for
a discussion of its physical significance in terms of our
fluid model.

The basic starting point is Eq. (26). Now Eq. (26)
consists of six equations determining the antisymmetric
tensor d91,,/dr in terms of G, and z,. Moreover, there
are four more equations coming from the conservation
of the total momentum, viz.:

dg’u/d1=0.

There are still, however, no equations to determine the
time variation of the v, (of which only three are
independent, since v#v,=1). In order to determine
those equations, some further hypothesis is needed.
Such a hypothesis is essentially a supplementary as-
sumption connecting the center of mass and the center-
of-matter density.
In the Weysenhoff theory, the supplementary
assumption is
¢Y)

By going to the rest frame of the particle £, (where
v*=0, v=1), we see that the above reduces to the
three conditions,

Mypv*=0.

NMo;= 0. (28)
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Thus, Eq. (1) which at first sight seems to contain four
conditions, is seen actually to contain only three. And
by Eq. (27) it follows that, in this frame,

X.*=0.

Thus, Weysenhoff’s assumption implies, in our theory,
that in the rest frame Z, the center of mass and the
center of matter density coincide. It is clear from this
that Weysenhoff’s assumption serves to complete the
definition of the equations of motion of the particle.
To obtain the equations of motion in detail, we first
multiply (26) by v". This gives (with v*2,=1):

Gu= (va")v,,—i—v”dﬂ'r(“,/dr

Now because 91,,2*=0 we have

(29)

dv”
+,,—=0.
dr dr

am,,
fis

Equation (29) then becomes (writing G,2*=m):
G =mr,~ M, dv"/dr,
which gives, when multiplied by dv*/dr,
dv» dv* dvt dv*

Gu—=mr,——W,(,—

r dr dr dr

But because #v,=1, the first term on the right-hand
side vanishes; while because of the antisymmetry of
9M,, the second term also vanishes. Thus we obtain
(d/d7)(G¥*t,)=0; and G*v,=constant. In fact G*», plays
just the role of a rest mass. Thus we have, from (29),

dv*
Gu=mv,—M,—.
dr

(30)

This is one of Weysenhoff’s set of equations.

To obtain the other set of Weysenhoff’s equations,
we differentiate Eq. (30) with regard to 7 noting that
4G,/dr=0. This yields

de,  dW,, dv* d*”
m-—— ——M,,,—=0.
dr dr dr dr?

By applying (28) and G,(dv*/d7) =0, we obtain

and are left with
dvy dw’
m—=IMu—.

dr dr? G

The physical meaning of these relations can be further
clarified by the introduction of a spin vector'? s, defined

12 The need for the introduction of a spin 4-vector density,
instead of a tensor density 9, has been stressed by De Broglie

by the relation
$u= M, 0 =3 €40 aptINE,

The vector s, is a space-like vector, for we have
evidently
sa*=0,

In the rest frame we get
Si=3eiM* (ern= €ijn0),

which implies that the spin is the space dual of the
angular momentum in the rest frame.
Reciprocally we can write Mg in terms of s and v.
The preceding relation gives evidently
ik = 61'“-5",

which can be written in the covariant form:

N = €urapS°Te. (32)
The above implies the identity
€apu I =2 (Sa05—Sg%). (33

From Eq. (19), it is then possible to calculate the
derivatives of s,. We find immediately;

ds, dvr dme?
—- ;e“,aﬂ(snmﬂA+ 'u”)
dr dr dr

dz”
= %éyyag(ﬂltad—+g“l'51"— gﬁ'l""'l)")
dr
dov*
=} €prag M 23—,

l{T

By utilizing the decomposition (32) of 9M*#, we obtain:

ds, dv*
—=—(s50,—50%)
dr dr

dv*
()
dr

where we have also used v*(dv,/d7) =0.
In terms of the spin components s,, Eq. (29) then
becomes

39

dv*
Gu= My~ €uuaps“vP—,
T
which can be written as
Gu=mry—pu, (35)
if we introduce the four-vector
dv”
Pu= €uag—505 (36)
dr

[ Théorie des Particules de spin 4 (Gauthiers-Villars, Paris), p. 54].
It has also been introduced independently of us by F. Halbwachs,
Compt. rend. 243, 1022, and 243, 1098 (1956).
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orthogonal to s, and v, The quantity p, evidently
represents the usual energy momentum of rotation in
the rest frame.

The Weysenhofl equations (31) can then be ex-
pressed in a simplified form. We obtain, after a simple
calculation,

dp}‘ dT“
— =
dr dr
d*v* dv* ds=
= €uvap—5VP+ €uag— —°. 37
dr? T dr
Multiplying (37) by s,, we then obtain:
dv,
m—s+t=0, (38)
dr
which, when inserted into (34) yields the relation:
ds,/dr=0Q. (39)

This shows that the spin s, of the droplet is a constant,
according to the Moller-Weysenhoff theory.
From (37) and (38), we then obtain

de, dv’
M= €uyag——S V.
T dT?

(40)

Equation (40) constitutes a set of second-order
differential equations for the velocity. These equations
imply that, unlike what happens with Newton’s laws
of motion, not only are the initial values of ¥; and
dY,/dr arbitrary, but so also are those of dv./dr
=d1";/dr*. As a result, new motions are possible that
are not contained within the framework of Newton’s
laws. These new motions must, however, be consistent
with (30) and (35) from which they were derived by
differentiation.

To investigate the solutions to (40), it will be
adequate to consider what happens in a special frame,
namely that in which the space components G, of the
momentum are zero. For because of the Lorentz in-
variance of the theory, another solution of these
equations corresponding to a nonzero value of G; can
always be obtained by Lorentz transforming the solu-
tion corresponding to G;=0. R

As the velocity of the center of mass corresponding
to each frame Z is given by the relation dX;/dr=G./Gs,
we see that in the frame IIy where G;,=0 (inertial rest
frame of Weysenhoff) the center of mass is at rest. In
11, the space components v; are then the components of
a space vector v which represents the velocity of the
center of matter relative to the center of mass.

The velocity v, also has a time component vo=Jo/D.
Since dJo/dr=dD/dr=0, we obtain dve/dr=0.

We see also that in the special frame II, the acceler-
ation of the center of matter is a space-like vector

dv/dr and the general relation v,(dv*/dr)=0 can be
written »;(dv'/dr=0; which implies that the two vectors,
v and dv/dr are orthogonal.

In I, the components of the four-vector p, are

pi=mvi, po=mu—Go.

The relation p,s*=0 which follows from (36) can be
written as —mu;s°4pos®=0. From u,54=0 we then
deduce v;s*= —vgso, S0 that we find

— 05 post =0,

or equivalently:
s"(pq-—mvo) = —-s°go=0

As Go7#0 we see finally that s°=0 in Il which implies
that s, is a space-like vector in that frame, Then
v#s,=0 becomes 2s°=0 and we get s*(dv./dr)
=g.(dv,/d7) =0 (because of dvo/dr=0). This shows that
the three vectors v, dv/dr and 8 form an orthogonal
instantaneous system of axes which generalizes, to our
case, the Darboux-Freinet moving system of axes. The
integration of the laws of motion results immediately
from these considerations. The space-like components
of p, in the frame Il can be written as

v dv dv’
Pi= ;= oSV + e €00—sM°
dr dr dr
dv?
= eij——s",

Ad

since d*/dr and s? are zero. In ordinary vector notation,
this relation becomes

dv
mv=v°(—><s).
dr
The above equation implies that the motion of the
center of matter remains in a plane orthogonal to s,.
As s and v are constants in IT, (since ds,/dr=dvy/dr
=0), this motion reduces to a circular uniform motion
with an angular velocity w=m/{s|. If we multiply (41)
vectorially by s, we obtain

dv
vas=vo(-—-Xs) Xs
dr

dv dv

- (s._)s_ iad
dr dr
dv

=t
dr

(41)

since, by Eq. (37), s is orthogonal to dv/dr. This shows
that:

v m
—=—sXV.
dr ¢
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Weysenhoff’s equations therefore completely determine
the time rate of change of v (once the momentum, p,,
is determined).

We conclude that in IT, Weysenhoff’s equations imply
that the center-of-matter density executes the above-
mentioned uniform circular motion around a fixed
center of mass. This gives a clear physical meaning to
the motions described by the Weysenhoff equations.

Finally we remark that if the external forces are
acting on the fluid droplet, their effect can be taken
into account by adding them to the energy-momentum
conservation equation (2), so that we have 8'T,,=F,,
where F,, is the applied force. External torques can be
taken into account in a similar way. This, in fact, has
already been done by Moller.

VI. PHYSICAL MEANING OF THE
WEYSENHOFF MOTIONS

Thus far we have seen in Sec. IV that Weysenhoff’s
assumption 91,,2"=0 leads to interesting new kinds of
circular motion. Mathematically speaking, the new
motions are possible because Eq. (40) permits arbitrary
initial values of dv#/dr as well as of v* and Y*. But in
Newtonian mechanics de#/dr can differ from zero only
if there is an applied force. We must now see what are
the physical conditions in the fluid which could lead to
nonzero values of dv*/dr even in the absence of an
applied force.

We can obtain a better understanding of this problem
by going to the Lorentz frame Zo in which the space-like
parts ¢; of the velocity are zero (while vy is unity).
Equation (29) then takes the form

G.= — M, dv/dr.

Thus a nonvanishing acceleration will imply that the
momentum and velocity are not collinear, so that even
when the mean matter current is zero, there is still some
momentum.

To show how this situation could come about,
consider a mass of fluid in its rest {frame (so that the
total current is zero). Now suppose that this fluid is,
to begin with, in a symmetrical and uniform rotational
motion about its center of matter density. Then, as is
evident from the symmetrical distribution of the energy,
the center of mass will coincide with the center of matter
density and Weysenhoff’s condition will be satisfied.
However, there will be no acceleration since the mean
momentum is zero because of the symmetry. Thus the
fluid will simply continue to rotate about a fixed point.

If this fluid is viewed from another Lorentz frame in
which the body of the fluid moves with a velocity v,
the part of the body in which rotational and transla-
tional velocities add will then be moving faster than
the part in which they substract. Thus the energy
density will be higher on the former side than on the

latter; and as a result, the center of mass will move
away from the center of matter density.®

In this way, we see qualitatively, the origin of the
relation dv/dr= (m/s))sXv since dv/dl is just pro-
portional to the difference between these two centers.

However, it is clear that as long as the distribution
of velocity in the rest frame is symmetrical, there will
be no net acceleration. We may however, suppose 2
further disturbance in the rotating mass of fluid; for
example, localized vortices which do not contribute to
the net current, but which do contribute to the energy
density. Such a vortex would have two effects on the
net motion.

First, it would displace the center of mass away from
the center of matter density. Secondly, it would con-
tribute to the mean momentum, since it would place a
high mass density in a region of high velocity. Thus the
mean momentum could fail to be zero even when the
mean current was zero.

Of course, to satisfy the Weysenhoff condition
without reducing to the trivial case of rectilinear
motion, it is necessary to bring the center of mass back
to the center of matter density, without bringing the
momentum back to zero. This could be done by sup-
posing further vortices on the opposite side of the body
which lead to an energy density that cancels the
moments of the original vortices in the determination
of the center of mass, without canceling their mo-
mentum completely. To show that this is possible,
consider two vortices on opposite sides of a diameter of
the body. Let 7; be the distance of the first vortex from
the center of matter density, r, that of the second. Let
W, be the energy of the first vortex, Wz that of the
second. Then we choose Wyr;= Wy, in order to satisfy
to the Weysenhoff condition. Now the momentum of
the first vortex will be p;=1¥u, where u, is the local
mean stream velocity around the vortex, while that of
the second vortex will be po=Wau,. If the angular
velocity w were a constant throughout the body (so
that it was rotating as if it were rigid), then we would
have u;=wr; and u;=wry so that p4p: would be
w(Wyri+Wars)=0. But suppose w were a function of
7. This would imply, of course, a nonrigid rotation (of
a type which is evidently quite common in fluids).
Then we would have

Pt pr=o(r)Wiri—w(r) W= [w(r)—w(r) JW s,

which is in general not zero. We see then that the
Weysenhoff condition would be satisfied by suitable
distribution of motions in the fluid. Of course, it could
also be satisfied with much more complex distributions,
but the principle is essentially the same.

We can now easily see qualitatively the reason for
the Weysenhoff motion; for the velocity of the center
of mass is proportional to the total momentum. Thus,

13 The center of matter density will also be displaced, (because

it too is not a four-vector). But a simple calculation shows that
it will suffer a smaller displacement than that of the center of mass.
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in the frame where v;=0, G; is not zero, so that the
center of mass will move and separate from the center
of matter density. Since the fluid body tends to main-
tain a certain shape, this process cannot continue
indefinitely without some change in the pattern of the
fluid motion and internal tensions, which leads to
acceleration of the center of matter density. Indeed,
if the fluid satisfies the Weysenhoff condition (1) for
all times, then the distribution of motion will be such
as to lead to an acceleration of the center of matter
density which satisfies the Weysenhoff equations. Thus,
the Weysenhoff assumption implies certain restrictions
on the general features of the internal motions of the
fluid body.

VII. EXTENSION TO MORE GENERAL MOTIONS NOT
SATISFYING THE WEYSENHOFF CONDITION

We have seen that the Weysenhoff condition .(1)
represents a certain state of the internal motion of the
fluid. The most general state of motion evidently need
not satisfy this condition. We shall now formulate the
problem of how to treat this more general type of
motion.

First of all, we no longer require that the time
component of the angular momentum vanish in the
rest frame. It then becomes convenient to split the
angular momentum into two parts, one of which is
purely space like, and the other which is purely time
like. To do this, we first define the four-vectors:

- -
1,=M,,2%,

P R ) (42)

where 91, is the dual of 91,,.
We note that because of the antisymmetry of 9,,,
we have
v e =0, (43a)
and similarly
(43b)

Thus, /, and s, are both vectors whose time component
vanish in the rest frame. Hence they have a total of six
independent components. Since 9M,, also has six
independent components, this suggests that it should
be possible to express 917,, completely in terms of s,
and /,.. This is indeed possible, and the expression is

E)TZM=[“z',—{,v“-f—%gwag(s‘“‘&lﬂ—sﬁl"'). (44)

To verify this, one need merely to go to the rest
frame (where 7;=0 and ro=1 while ¢y and s, are zero).
For since (44) is a tensor relation it will be true in
every frame if it is true in any one frame. But in the
rest frame we have, from (42),

255 =0.

Myo=1,.

Since Jeo,ap(Sas—s5sva) =0 in the rest frame, the time-
like components of (44) are identical.
To deal with the space-like components, we take the
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dual of both sides of (29). This gives
3 €uragM*P = €4yapl VP4 5,0, — 5,0,

In the rest frame, the time components of this relation

reduce to:
FeoipdU*=—s;

which is also an identity. Thus Eq. (44) is proved.

The Weysenhoff theory then corresponds to the
choice ¢,=0.

If we wish to make a more general choice, we are
then faced with the problem of determining the equa-
tion of motion of the 4,; for as we saw the original
equations (26) on which the Weysenhoff theory is
based are just sufficient to determine the equations of
motion when {, is chosen equal to zero. To proceed
further we shall therefore need some additional physical
hypothesis. In terms of the model of the fluid droplet,
such a hypothesis implies that in the rest frame, the
center of mass and center of matter density are no
longer the same. It is evident that by means of a suitable
distribution of vortex motions, any conceivable relation
between {, and s, is possible. In a later paper, we shall
consider a specific model leading to the relationship,
t.=\s,, where X is a pseudoscalar. Tt will be seen that
this relationship leads to a particularly significant
generalization of the Weysenhoff equations, which when
quantized can be applied to the treatment of many
different elementary particles as different states of the
same rotating fluid mass.

VIII. COMPARISON WITH TREATMENTS OF
OTHER AUTHORS

We shall now compare our treatment of this problem
with that used by others.

First of all, an essential new step proposed here was
the introduction of the concept of center of matter
density. We recall that because this center is not a
four-vector, it was necessary to evaluate it in a definite
Lorentz frame; namely IT,, the one in which the quanti-
ties G; vanished.

As we have already pointed out in Sec. IV, however,
there exists another natural center, namely the center
of mass. Previous work on this problem has been based
on defining the point ¥, of Eqgs. (25) and (26) as the
“center of gravity” which is the center of mass evalu-
ated in the rest frame. .

However, as we have seen from Eq. (12), the velocity
of the center of mass is proportional to the momentum.
If we evaluate the angular momentum relative to the
“center of gravity,” Eq. (26) then reduces to
dIM,,/dr=0. Thus, all components of the angular
momentum remain constant; the center of gravity
moves at a constant rate; and Weysenhoff’s equations
reduce to the trivial case of uniform rectilinear motion.
Hence, the whole treatment loses its interest, and
nothing qualitatively new is learned about the motion
from the Weysenhoff equations.
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In order to give more physical relevance to the
Weysenhoff equations, two types of proposals have
been made.

(a) Moller® has shown that these equations could
describe the motion of a certain set of purely mathe-
matically defined “pseudo centers of gravity,” whose
connection with any aspect of the motion of the body
has not been defined,

(b) Tt has been shown that under suitable conditions
points fixed in the body will undergo the Weysenhoff
motions.

Possibility (a) is evidently not satisfactory, since it
describes no real physical properties of the motion.
Passibility (b) also is not entirely satisfactory, especially
for a fluid where elements undergo complex motions
and where it is arbitrary to choose a particular element
to describe the behavior of the mass of fluid.

Our proposal of a center of matter density provides
a natural reference point to describe the behavior of the
fluid; for the matter current determines the general
motion of the fluid, while the center of mass is a point
which moves at a constant rate. By studying the motion
of the center-of-matter density relative to that of the
center of mass, we obtain a general idea of how the
fluid motion differs from uniform rectilinear motion,
without the need for going into a detailed treatment of
all the complex motions inside the fluid body."*

We also give a clear interpretation of the Weysenhoff
condition M,,2*=0 for it means that in the Lorentz
frame in which the spatial components of the mean
velocity are zero, there is no time component to the
internal angular momentum, so that in this frame the
center of mass and the center of matter density are the
same. As we have seen in the previous sections, this is a
possible state of motion of the fluid droplet, and one
which could readily be set up. As we have also seen,

14 These details could for example be treated by considering
moments of the first energy-momentum and current densities
higher than the first. But since such moments are not conserved
in general, their effects tend to belost by random mixing processes
analogous to collisions in the Boltzmann equation in statistical
mechanics. Thus, the conserved moments not only satisfy equa-
tions that are independent of the higher moments, but also
describe the major part of the “bulk” propertics of the fluid
averaged over some period of time.

however, more general states of motion are possible.
Thus our physical interpretation of these equations
opens up the possibility for studying a broader range of
motions. Indeed, as we shali show in a later paper, some
of these new possibilities correspond to a set of classical
equations which, when quantized, lead to a generali-
zation of the Dirac equation. In these generalized
equations, there is a new set of quantum numbers very
similar to those (such as isotopic spin and strangeness)
which have been used recently for classifying the various
types of elementary particles. Thus, the new quantum
numbers can be interpreted as representing states of
rotation and internal excitation of a relativistic liquid
droplet.

This general theory of rotating relativistic droplets
is also interesting from another point of view. It
provides a clear physical model for the “molecules”
which could constitute relativistic fluids with spin,
that is, fluids characterized at the macroscopic level
by a continuous distribution of internal angular mo-
mentum. By adding to G, and 9%,, suitable tensions
© ., representing interactions between the rotating
droplets which constitutes such fluids (so that the total
energy-momentum tensor of such a fluid can be repre-
sented by DG+ 0,, where the total current is Dy,
and the internal angular momentum DJN,,), we can
formulate new types of relativistic hydrodynamics.
The theory of these types is now being developed.
Indeed, it has already been shown that they provide a
model for the hydrodynamical representation of the
Dirac and Kemmer wave equations,'® thus furnishing
a physical basis for the causal interpretation of rela-
tivistic wave equations.
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In three recent papers (1) o possible causal interpretation of the EPR paradox has
been suggested in terms of the superluminal propagation of de Broglie’s () and Bohm's (3)
quantum potential in the causal interpretation of quantum mechanics. Indeed non-
loeal interactions now scem unavoidable in quantum theory if aspect’s forthcoming
experiment confirms (as believed by the authors) the experimental predictions of
quantum mechanics and disproves the validity of Bell’s inequalities.

The aim of the present letter is double. We first want to present a quantitative
description of this model in some detail for the simple case of two identical, correlated,
sealar particles and thus interpret in this context the first form of the EPR paradox
(i.e. the simultaneous mneasurement of their positions and momenta) discussed within
the frame of the ecausal interpretation, by Bohm and Hiley (f). We then want to analyse
briefly the evident connection (and discrepancies) between our point of view and the
well-known superluminal tachyonic interactions introduced in the literature by Sudar-
shan, Feinberg, Recami ef al. (3). We show in particular that superluminal, phaselike,
phononlike, collective motions of the quantum potential in Dirac’s «ether» do not
induce the well-known causal paradoxes (%) of tachyon theory.

Our starting point is just the two-particle generalization in configuration space of
our one-particle model (). Indeed let us assume two identical scalar particles labelled 1

() J. P. ViGIER: Lett. Nuovo Cimenlo, 24, 258, 265 (1979); N. CuFaro PETRONI and J. P. VIGIE:
Lell. Nuovo Cimenio, 25, 151 (1979).

(*) L pt BROGLIE: La physique quantique restera-t-elle indeterminisle? (Paris, 1953).

(*) D. BowyM: Phys. Rer., 85, 166, 180 (1952).

(* D. Bonym and B. HILEY: in Quanium Mechanics a Half Cenlury Later, cdited by J. LEITE-LOPES
and M PaTyY (1975). ,

(*) 0. M. P. BILaNIUK, V. K. DESHPANDE and E. C. G. SupARSHAN: 4m. J. Phys., 30, 718 (1962);
G. FEINBERG: Phys. Rev., 159, 1089 (1967); E. ReEcaMI and R. MiaNaANI: Riv. Nuovo Cimenio, 4,
209, 398 (1974); E. ReEcAaMI: Found. Phys., 8, 329 (1978).
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and 2 imbedded in Dirac’s stochastic « ether » (°). The pair’s motions along any world
line, in configuration space-time, build a fluid in this space-time. These motions are
not independent (since the prescnce of particle 1 disturbs the « ether » i.e. the motion
of particle 2 and vice-versa) and one assumes that we are dealing (as in the onc-particle
case) with stochastic jumps at the velocity of light (in physical space-time) which pass
the pair 1, 2 from onc drift line of flow (in configuration space) to another. Physically
this amounts (in the hydrodynamical model of Bohm and Vigier) to the superposition
in space-time of two interacting fluids 1 and 2 which undergo lightlike internal stochastic
motions, particle-antiparticle transitions and possible number-preserving transfers
from one fluid to another ... so that we have a conserved scalar fluid particle density
in configuration space.

Mathematically this model can thus be described by in an eight-dimensional con-
figuration space where a pair position is defined by an eight-component vector X¢
(t =1, ..., 8) where

(1) {Xi}i=1,...,8 == {-77!1‘, z;};‘,v=0....,3

with z{', x; four-vectors of the position of cach body. The metric is defined by

1 0 0 0 0 0 0 0
0 —1 0 0 0 0 0 0
0 0 —1 0 0 0 0 0

2) g, = 0 0 0 —1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 —1 0 o0
0 0 0 0 0 0 —1 0
0 0 0 0 0 0 0 —1

s0 that

3) X=X X' =g, XX = (z)* + ()°.

If #(x,), ;(1,) are the trajectories for the two particles, the trajectory in configuration
space will be an X¥(t;,7,). As a consequence of Nelson’s equations (!) we can now
generalize the differential operators defined by Guerra and Rugciero (?) for the
single-particle case to a system of two identical particles

D + ° bia 3D = 8b, & A 4
T or 8r2+ P e om
(4) a~fi O=2¢0¢=0+0 : i=1 8
i—aXiv | - 1 k3 - 3 ey Oy
b, = DX,; 3b, = 8DX,.

Now a direct extension of Guerra and Ruggiero (7) formulae gives the following de-

(*) P. M. A. DIrAC: Nalure (London), 168, 906 (1951).
("} F. GUuERRA and P. RUGGIERO: Lelt. Nuovo Cimento, 23, 529 (1978).
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pendence of 8b; on a density (X%, 1., 1.):

I
(5) 8b; = — — 8, log o},
mn

where for the density we lave as continuity cquations

6 A a 2y (0D
(6) E_: = — op,(edbf) an o, = - ‘2,;(9’2) >
with
a 0
(N Wy =Daf, V=D, &= _"-, = -
0%y, ey,

In our model, as a gencralization of the assumption (?) that p is independent of the
proper time in the one-body case, we make the physical hypothesis that the total
number of particles (i.e. pair in the real space-time) is conscrved, and thus we write

Gl G
2 % _,
dr, 01,

(8)

’

so that our continuity cquations in configuration space is
(9) 2(eb") = 0.

We assume as before (7) that our fluid motion is irrational, so that

1
(10) b= —0¢,
m

where @(X', 7,, 7,) is a phase function, and, if we look for a steady state (i.e. proper
time independent) equation,

. me? .
(11) DX 1y, 7,) = 7 (ty + 15) + S(XY).

Now it is clear that (as generally assumed and later demonstrated by CTFARO PETRONI
and VIGIER (18)) Newton’s equations for the two free particles can be written in the
compact form

(12) (DD — 8D SD)X* = 0.

Sta.rfing from (9), (12) and using (5), (10), (11) we obtain an Hamiltonian-Jacobi-type
equation (R = g?) for our two-body system i.c.:

8,8 9'S 2p2
(13) (ma— : —2ﬁi)R=o

k At

(*) N. Curaro PETRONI and J. P. VIGIER: 4 Markov process at the velocity of light: the Klein-Gordon
stalistic, preprint Inst. H. Poincaré, Paris (June 1979).
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which vields for the continnity equation the form
(14) 29,R &S 4 Re;6°8 = 0.

Finally if we consider (13) as the real part and (14) as the imaginary part the total
cquation for y = LK exp [i8/h] is

(15)

From relation (13) one evidently deduces, in the nonrelativistic limit, the usual two-
particle  Schridinger equation which (writing  w(xy, 2y, 8) - H(x;, x,, 1) eXp {i8/h])
splits into real and imaginary parts i.e.:

‘\'1) V AS V A\v
(16) i v1<r : ) v, (p f ) ~ 0
ct m m
with P = R? .- p*y and
"AS' V AS’ 2 Vn‘q : -
(7 L MGSE LS
ct " m
with ¢ = — (B2/2m)[(VIR/R) + (ViR/R)]. Clearly relation (16) represents the couser-

vation of the probability P = y*¢ in configuration space (x,, x,) while relation (17)
as diseussed by Boum and HILEY (*) corresponds to a lHamilton-Jacobi equation for
two particles which interact through a nonlocal quantum potential @ with which they
have interpreted the first form of the EPR paradox in its original position-momentum
formulation. In the causal interpretation of this situation one adds of course that our
particle momenta are described in real space by ¥y = Vi S/m on F, = V,8/m as the
mapping of configuration space into real space suggests (%).

According to plan we conclude this letter with a brief discussion of the physical
implications of nonlocality, since this guestion is now strongly reproposed by recent
developments of the analysis of measurement process for correlated systemus (*9). The
first implieation is the possibility of time inversions of such events under specific Lorentz
transformations. As one knows the question of the time exchange of two causally cor-
related events has already been discussed (for tachyons) by several authors on the basis
of the reinterpretation principle (8) and rests on the remark that a Lorentz transforma-
tion whiech exchanges time co-ordinates of two spacelike events also exchanges energy
signs and henee (on the basis of the particle-antiparticle symmetry (1)) also exchanges
the causc-effect role: so that the cause always precedes the effect. Finally we can
preserve the right time succession of causes and effects if we abandon the independence
from the observer of what is eause and what is effeet. (For a detailed discussion
see ref. (3).)

(*) J. ANDRADE E SILVA: La théorie des systémes de particles dans Uinterprétation causale de la méca-
nique ondulatoire (Paris, 1960).

(%) A. Garvceolo and F. SELLERIL: .dction af distance in quantum mechanics, in Communication at
Einstein’s Cenlenary Commemoration {Puris, June 1379); N. CUuFaro PETRONI, A. GaRrvcclo, F. SEL-
LERI and J. P. VIGIER: Sur la confradiction d Einstein-Bell enlre les théories de la mésure quantique
et la théorie locale de la rélativilé restreinte, preprint Inst. I. Poincaré (June 1979).

(1Y) . P, FEYNMAN: Phys. Rev., 76, 749, 769 (1949).



Jeffers, Lehnert, Abramson & Chebotarev (eds.)

More care must be used to solve the second implication i.e. the so-called « causal
anomalies » which can be condensed in the following paradox (see fig. 1):

1.et us consider two relatively moving obscrvers O, , O, with respective rest frame 8, 8'.
At the event ¢, O, sends (in its relative future) a superluminal signal to O, which ab-
sorbs it at ¢;; after some time, at the event ¢, O, sends (in its relative future) another
superluminal signal to O, which absorbs it at ¢,. It is easy to verify (%) that we can always
arrange this experiment so that ¢ precedes ¢, ... so that we can use superluminal signals
in order to modify the absolute past of 0,!

te Light /cone
iworld lne tlc 7
toof 0, S
‘ S
S ' S} ;
2 o
|

! 7

/world line

/ of 0,
' /I
1 ,/
)
d P €,
' =) <€
€ 2 XV
T S
£ .
‘I ’
X .
t s
10, 0,

Fig. 1. — Causal anomaly.

Of course possible solutions of this causal paradox have already been proposed (%)
for the case of signals carried by tachyons: but it is significant to note that the problem
does not exist in our model where superluminal signals are not tachyons, since their
propagation is now carried by a collective motion of the extended particles of Dirac’s
vacuum (¢). This collective phaselike motion behaves like an heat flux (!) baving, as
it is known (}2) a superluminal diffusion velocity. In these models the causality is
first preserved in the sense that, although heat diffusion veloeity is infinite, the carrier
particles always remain within the light cone (!). However, as in the preceding ex-
ample, the possibility apparently remains in principle to send signals which can modify
the ‘absolute past of any physical system. To avoid this causal anomaly, one must
forbid the closed paths of fig. 1 which are evidently responsible of all causal paradoxes.
This is true, as we shall show, if superluminal signals are real collective motions carried
by extended vacuum particles. In that case we can require, indeed, that cach particle
has an intrinsic absolute flux of time (its own « proper » time) so that, with respect to
this time and for this particle, no causal effect can precede its cause. Since our vacuum

(**) R. HaRIM: Lett. Nuovo Cimento, 25, 108 (1979).
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particles are cxtended (*+13) the superluminal signal must always «cross» the world-
tube of these « carrier » particles in the positive sense of their own time flux (as in fig. 2).
So that the propagation of a signal from &, to ¢, is always possible provided that 7, < z,.

3
ct
- Light
A n one
L}
& 4
T
X
Fig. 2. — World tube of a vacuum particle with proper time 7 defined as proper time of the centre

of matter (*?). A signal between &,, €. always travels in the positive v direction.

Of course for superluminal signals the time succession of ¢ and ¢, can be reversed
for another Lorentz frame, but we can now show that this feature is irrelevant in order
to avoid causal anomalies. Indeed the condition 7, < 7, (locally verified for each signal
which crosses a world tube) is sufficient to forbid a path like that of fig. 1 because in
the event &, there are at least two criss crossing superluminal signals, so that at least
one of these two signals cannot satisfy the condition 7, < 7, ... provided that vacuum
particles always move with infraluminal veloeity. An analog analysis can be made
in the four-dimensional case if we consider superluminal signals to be «acoustical »
waves with associated quantum potential propagating in the vacuum in all space direc-
tions. It is interesting to note that this elimination of causal paradoxes is only pos-
sible in a subquantum model built on a Dirac’s vacuum and cannot be applied to theories
where superluminal signals are carried by tachyonic particles, and to theories of the
Costa de Beauregard (14) type where the causal connection between two spacelike
events is always possible in principle through time travel into the absolute past of
any physical system.

(**) D. BonyM and J. P. VIGIER: Phys. Rev., 109, 1882 (1958); D. GUTROWSKI, M. MOLES and J. P.
VIGIER: Nuovo Cimento B, 39, 193 (1977); F. HALBwWACES: Théorie relativislc des fluides y spin
(Paris, 1960).

(**) U. CoSTA DE BEAUREGARD: Phys. Letl. A, 67, 171 (1978); Ann. Fond. de Broglie, 2, 231 (1977)
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Since the results of the first stage of Aspeet’s experiment (without the switches) (1)
have 1) strongly confirmed quantum-mechanical predictions, 2) disproved Bell’s
inequalities (and thus eliminated the possibility of local hidden variables), it is now
probable that the second stage (with switches) will also confirm the existence of a non-
local correlation between distant polarizers (practically separated by 12 meters) measur-
ing the relative polarization of photon pairs emitted in the calcium 4p218,-4sdp1P,-45218,
transitions. It is thus to be expeccted that the same result will appear in any concrete
realization of the EPR gedanken-experiment (%) proposed by BARTELL (3) to test (with
Furry microscopes) the initial version of the EPR paradox on correlated p4 and ¢4
values in pairs of noninteracting scalar particles.

In brief we are nmow confronted with the very probable result that the forthcoming
experiment of Aspect and Rapisarda et al. (*) will confirm in the near future the nonlocality
predicted by quantum mechanics.

Phis is an important event, since many people still believe in the antagonistic
character of nonlocality and causality. This is understandable, since one knows that

(*) A. AsPEcCT, PH. GRANGIER and Q. RoOGER: Ezperimenlal test of realistic local theories via Bell 3
theorem, Orsay preprint (1981); A. ASPECT: Phys. Lell. 4, 67, 117 (1975); Prog. Sci. Cull., 1, 439
(1976); Phys. Rev. D, 14, 1944 (1978).

(*) A. EINSTEIN, B. PoDOLSKY and N. ROSEN: Phys. Rev., 47, 777 (1935).

(*) L. S. BARTELL: Phys. Rev. D, 22, 1352 (1980).
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unless one imposes particular restrictions on possible superluminal interactions one
faces causal paradoxes tied with possible retroaction in time (%).

The aim of the present letter is to discuss the relation of these two concepts in the
particular casc of two identical noninteracting quantum particles in order to interpret
causally the corresponding EPR sitnation analysed (in the nonrelativistic limit) by
Boum and IILEY ().

We first define what we mean with the word «causality » by three propertics:

a) the system of our two particles can be solved in the forward (or backward)
time direction in the sense of the Cauchy problem;

b) the paths of all material particles must be timelike;

¢) the formalism must be invariant under the Poincaré group P=T® £4.

As shown by onec of us (PDV) (%), one can have action at a distance between two
identical particles and preserve causality in the following casc: we start with the two
free Hamiltonians Hy, = p}/2 = m}/2, and H = pi/2 — m}/2, completed with additive
interaction terms 7, and V, which are nonlocal potentials (*). Note that

I) we shall call 7, 7, potentials for convenience, although they have not the
dimensions of energy: they must have the dimensions of squared masses;

IT) the Hamiltonians are not directly related with energy but related with half

the squared masses.

We thus get
(N H=Hy+V,, Hy=Hgp+V,

now defined in the sixteen-dimensional phase space ¢4, ¢4, %, p%5. One sees immediately
that the potentials cannot be chosen arbitrarly, since the existence of world-lines requires
for identical particles, the vanishing of Poisson’s brackets {H,, H,} (°). The phase space
has 16 dimensions and the standard brackets arc assumed among ¢4, ¢ and uncon-
strained p%, pf.

We now perform the following separation of internal and external variables:

o {P#:pi‘+p’z‘, ¥4 = }(p¥—ph),

Qs =1(gi+ q8), a=qi—qh,

so that, in the case that V,= V,=V, and m,= m,=m, we have

(3)

H,+ Hy= 4P> 4 y* 4 2V,
H,—H,=yP.

a4

(") C. MoLLER: The Theory of Relativity (Oxford, 1962), p. 52.

(*) D. BoeM and B. HILEY: in Quanium Mechanics a Half Cenfury Later, cdited by J, LEITE-LOPES
and M. Paty (1975).

(*) PH. DROZ-VINCENT: dnn. Insi. Henry Poincaré, 27, 407 (1977); Phys. Rev. D, 19, 702 (1979)
and references quoted therein. R

(*) Relativistic action-at-a-distance dynamics is generally nonlocal. However, it has been exhaus-
tively shown that also conventional local field theorics (electromagnetism and gravitation) can be
cast into this scheme: L. BEL, A. Sans and J. M. SANCHEZ: Phys. Rev. D, 7, 1099 (1973); L. BEL
and J. MARTIN: Phys, Rev., 8, 4347 (1973),
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The condition for the cxistence of causal timelike world-lines then reduces to the
relation

(4) {yP, Vi=0.

If we define the projector f7#, = 08,— PuP,/P? and 24 = [Tu,zv, ju = T4, yv, relation (4)
implies that V depends on 2%, P2, 42, 3j, yP, but does not depend on zP which is, in the
rest frame of the system, the relative time co-ordinaie up to a factor ||. Morcover,
onc finds {P#, II,} = {P4, I1,} = 0, so that the centre-of-mass momentum P* is con-
stant and onc can slice space-time with 3 planes orthogonal to I’# and counect the two
particles by spacelike lines in these Liyperplanes, )

We now come to the description of two quantum noninteracting particles. For a
system of two classical relativistic particles interacting at distance the evolution, in
our multitemporal formalism (%), is described by two parameters: Ty Ty, t.e. the proper
times of the two particles. The movement is generated in the phase space T( M) x T(M,)
in a symplectic way by the covariant Hamiltonians H, and H, analysed in the first
part of this letter. Of course we can build the canonical transformation theory in this
covariant framework (7). The transformation which solves the motion equation is
gencrated by Jacobi's principal function S, but it is simpler to consider the covariant
Hamiltonian-Jacobi characteristic function W = S— (m?/2)(r, + r,) which is determined
by the Hamiltonian-Jacobi system :

o "

o ou oW oW m? p cW ow m?
6)) H, | 4%, ¢4 = 219

A0 ~ o ? 1» ‘1’;3 NAR? ~ 2t
o °¢h) 2 21 o4y
One remarks here (in accordance with the well-known no-interaction theorem (°) that
the canonical variables ¢f, ¢5 are not coincident with the positions z%, x% except when
the interaction vanishes.

By straightforward quantization of this multitemporal canonical formalism we
obtain, for a system of two free particles, the Klein-Gordon system (for %= ¢ — 1)

(6) —LUhw(zy, @) = m2y(z, 7)) and  —(,p(my, 2,) = m2y(z,, z,) ,

where y is a two-point-dependent function. Out of (6) we can extract the usual main
equation

(7) (Uit Oe) (=, ) = 2my(ay, 7,)
completed by the so-called «subsidiary » condition:
(8) (O0,—0Oyw=0.

We now introduce in a relativistic way the concept of quantum potential (%).
Following the original de Broglic's method, we set y = exp [R 4-iW], where B, W are

(Y D. HIRONDEL: Thesis, Paris (1977).

(*) D. G. CorrIE: J. Math. Phys. (N.¥.), 4, 1470 (1963); Phys. Rev., 142, 817 (1966).

(*) L. DE BRoGLIE: Une inferprélation causale el non linéaire de la mécanique ondulafoire (Paris, 1972).
D. BoaM and J. P. VIGIER: Phys. Rev., 96, 208 (1954); 109, 1882 (1958).
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real functions. Separating eq. (7) into the real and the imaginary part, we get for the
rcal part

(0 WA W)+ U, = §m?,
)

L (2 Wk W) 4 U, = Jm?,

where we have

Uy=—§(LLR + 84 R34 R),
(10)

Uy= — (LR + 8 Ry ) .

In spite of an obvious analogy (*) the system (9) cannot be immediately identified
with eq. (5). To be more specific, we will consider the case of a y eigenstate of

Pu—= (84 1 8%):
"4+ xl
Yy = ¢xXp [i (I\'” ?3—2*"{:)] (f(:;t) B

where KA, is a constant timelike veetor: so we have

(11) (P4 YR =0, (F+ YW =1,.

Moreover, since the difference of cq. (9) gives
12 Ku 0 B=0
12) 1 @ v=0,

we sce that R only depends on z# = z{ — x4 and more precisely only through its spatial
part with respect to K#, namely 2% = s#— (2, K*)K#/K2 In this case from (11) we
have U, = U,= U = f(z"). But, as seen before, U has not a suitable expression because
it depends only on 2z, and it cannot satisfy the condition {yP, V}= 0. In fact this
process gives U as a function of z# and K¢ and not of z#, P&,

Making the substitution

(13) z_’f_—»i“

in U, we get finally V = f(#) which depends on P# in a correct way, so that we can
interpret it as a relativistic potential. Equations

1 m? 1 ; i . m?
(14) E (B WO W) 4+ V(&) = ? , 3 (Oo MWL) 4 V(2) = '2— ’

(*) Of course eqs. (5) are written in terms of g%, ¢% while eq. (9) involves &, x¥; but for the
original free system the position variables are canomical, so that we¢ can write without problems
gt =xf, ¢gf = 2% which makes the analogy between (5) and (9) manifest.
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are now coincident with (5) if ¢# = z#, i.e.

ri P
(15) H1:?‘+V, H2=55+V.

We remark here that the variables zf = ¢} and 2§ = ¢4 are canonical for the frec
quantum system as well as for the classical interacting system. Morcover, they are
also position variables for the quantum free system, but they do not represent the posi-
tions in the classical interacting system except in the particular rest frame system where
we recover the Hamilton-Jacobi equations for a classical system in interaction through
the potential V.

At this stage of our work, as was the case for the old de Broglie's derivation, we
have only exhibited a mathematical analogy between a system of two quantum free
particles and a system of «fictitious », but causally interacting particles. We are going
now to recall and summarize the physical interpretation of this fictitious system (in
the framework of the stochastic interpretation of quantum mechanics) in two points.

1) We can give a physical basis to our quantum potential only if we consider
the y-ficld of a quantum particle not as a pure mathematical tool but as a real wave
field on a subquantal medium (19). Indeed it is well known, since Dirac’s pioneer work (11),
that Einstein’s relativity theory (and Michelson's experiment) are perfeetly compatible
with an underlying relativistic stochastic aether model, so that quantum statistic will
reflect the real random fluctuations of a particle embedded in this aether (12). More
precisely the quantum potential, introduced at the beginning of this paper on the basis
of a pure formal analogy, is now interpreted as a real interaction among the particles
and the subquantal fluid polarized by the presence of the particles (13). The quantum
potential now represents a true stochastic potential. In this sense we can also under-
stand how, starting from classical free particles, we have obtained, through quantiza-
tion, two classical interacting (at a distance) particles. In fact the quantization pro-
cedure, which brought (5) into (6), is equivalent, in our aether interpretation, to add to
our original free system (described by eq. (5)) the action of the subquantal medium so
that finally the « free » quantum system (6) is equivalent to a system of classical inter-
acting (via Dirac’s aether) particles described by (14).

B) One has shown that the existence of the quantum aether allows one to deduce (12)
the relativistic quantum equations for single free particles (1214) and for systems of
two particles (*3) as describing the stochastic motion of classical particles in interaction
with the aether, if the random jumps are made at the velocity of light (12).

We conclude with the remark that the causality implied in our model is absolute
in the sensc that the measuring processes themselves (and the observers) satisfy the same
causal laws and are real physical processes with antecedents in time. The measuring
process {observer plus apparatus plus observed particles) is a set of particles which are
part of an overall causal process. In this scheme the intervention of a measuring process
contains no supranatural «free will» or «observer consciousness», since quantum

(%) J. P. VIGIER: Leit, Nuovoe Cimenio, 29, 467 (1980).

(') P. A. M. Dirac: Nature (London), 168, 906 (1951).

(**) W. LEar and J. Parx: J. Math! Phys. (N. ¥.), 18, 1235 (1977); F. GUERRA and P. RUGGIERO:
Lett. Nuovo Cimenlo, 23, 529 (1978); J. P. Vicigr: Lett. Nuovo Cimento, 24, 265 (1979).

(**) N. Curaro PETRONI and J. P, VIGIER: Lelf, Nuovo Cimento, 26, 149 (1979).

() N. Curaro PETRONI and J. P. VIGIER: Phys, Lell. 4, 73, 289 (1979); 81, 12 (1981).
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measuring devices act as spectral analysers which split into subpackets the rcal de
Broglie’s waves associated with particles (which behave as planes flying at Mach 1
within their own sound waves): the particle entering into one of them according to its
random causal motion (}3). In that scheme there is no «free will » signal production
and thus no possible causal paradoxes (12): nothing exists beyond the motion and inter-
actions of material particles in a random stochastic aether.

* X %

The authors would like to thank Prof. SELLERI for helpful discussions on the implica-
tions of nonlocality in quantum mechanics.

(%) M, CiNI, M. DE MaRrr1a, G. MaTTIOLI and F. NicoLo: Found. Phys., 9, 479 (1979).
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If one starts from de Broglie's basic relativistic assumptions, ie., that all
particles have an intrinsic real internal vibration in their rest frame, i.e.,
hvg = myc’; that when they are at any one point in space-time the phase of this
vibration cannot depend on the choice of the reference frame. then, one can show
(following Mackinnon'") that there exists a nondispersive wave packet of de
Broglie’s wares which can be assimilated to the nonlinear soliton wave U,
introduced by him in his double solution model of wave mechanics.'”® Since de
Broglie's linear pilot waves can be considered to be real waves propagating as
collective motions on a covariant subquantum chaotic “aether.”'” these new
soliton waves can be considered as describing the particle’s immediate
neighborhood. i.e.. the aether's reaction to the particle's motion in the stochastic
interpretation of quantum mechanics. The existence of such a physical aether
(which prorides a perfectly causal interpretation of the action-a-distance implied
by the Einstein—Podolsky—Rosen experiments) can now be proved by establishing
the reality of de Broglie's waves in realizable experiments.

L lNTRODUCTlON

As one knows, recent discussions on Aspect’s'” and Rapisarda’s®”
experiments to test nonlocal superluminal quantum correlations in Bohm’s
version® of the Einstein—Podolsky—Rosen experiments'” have led to the
development of two conflicting interpretations®* of the quantum

' Institut de Math. Pures et Appliquées de I'Université P. et M. Curie, 4, Place Jussieu,

75230 Paris Cedex 05.

? Equipe de Recherche Associée au C.N.R.S. no. 533, Institut Henri Poincare, 11, rue P. et M.

Curie, 75231 Paris Cedex 05.
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nonlocality suggested by preliminary results."” Both interpretations appear

as natural extensions of the antagonistic views of Bohr and Einstein in their
1927-1935 controversy, i.e., lead to renewed confrontation between the a-
causal Copenhagen Interpretation of Quantum Mechanics (CIQM) and the
causal Stochastic Interpretation of Quantum Mechanics (SIQM). Indeed, in
CIQM one has proposed real advanced potentials''” and in SIQM phase
like collective causal actions at a distance propagating superluminaly within
Dirac’s stochastic subquantal aether model.‘'"

Despite evident similarities (both interpretations utilize the same wave
equations and vyield, except for a few crucial cases,"'*'*'*" the same
statistical predictions), CIQM and SIQM differ on three essential points.

1. In CIQM the quantum states (waves) are associated with individual
systems and represent an ultimate statistical knowledge. Microphenomena
are particles or waves, never the two simultaneously.

In SIQM the quantum states correspond to real physical fields (waves)
associated with both individual particles and ensembles of identically
prepared systems. Microobjects are thus particles and waves simultaneously.
Indeed. it has been shown:

(a) that these waves represent (for spins J=0."" J=1/2,"""" and
J = 1"") collective motions on the top of a chaotic medium which induces
random stochastic jumps at the velocity of light.

(b) that the associated statistics is correctly represented by the ¥W¥*
distribution of these pilot ¥ waves.'”

2. In CIQM a measurcment on a system implics an unanalyzable
discontinuous instantaneous (for all observers) collapse of state (wave packet
reduction) so that no microphenomena is a phenomena until it is an observed
phenomena.‘"’

In SIQM these states (particles plus associated real waves) always
evolve causally in time. There is thus no wave packet reduction (i.e., no wave
collapse) but they are modified (split) by interactions with any real physical
macroscopic apparatus: the particle entering into one of the apparatus’s
measurable eigenwave states.

3. In CIQM the uncertainty principle restricts the simultaneous
measurability of noncommuting observables on individual systems.

In SIQM the Heisenberg uncertainty principle does not restrict
simultaneous measurability of noncommuting observables on individual
objects (since the corresponding extended localized particles follows world
lines in space-time) but represent dispersion relations on their measured
values resulting from their simultaneous dual (i.e.. wave plus particle)
character and the associated subquantal stochastic motion.
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The aim of the present paper is to present a new concrete model of
point 1 of SIQM in the scalar particle case, i.e.,, a new explicit, detailed
mathematical relativistic description of de Broglie’s wave particle duality in
the J = 0 case.

To clarify its physical meaning, we must briefly return to the origin of
wave mechanics. As one knows, the assumption 1 of SIQM (i.e., the real
existence of de Broglie’s waves) was first submitted in its simplified pilot
wave version by de Broglie himself at the 1927 Solvay Congress.

Following its enlargment with subquantal stochastic motions by Bohm
and Vigier,'® it was later given the form of the “double solution theory” by
de Broglie et al.,” with de Broglie’s waves propagating on a real subquantal
vacuum model.” Its essential characteristics are the following: in SIQM a
particle is represented:

(a) by a real physical wave (pilot wave henceforth denoted P wave)
V = R exp(iS/h) which propagates in space and satisfies the linear wave
equations of quantum mechanics, i.e., in the J =0 case

(O —mict/h)Y¥=0 (D
As one knows, these P waves:

(1) are built with an ensemble of de Broglie’s plane phase waves
(henceforth denoted B waves): W(x. 1) = a exp|2niv(t — x/V)| where v is the
observed frequency, V = c?/v the phase velocity (v denoting the particle’s
velocity) which also satisfies relation (1).

(2) define “drift” world lines of flow tangent to the unitary four vector
u,=¢,8/Mi (so that wu, u*=—c?) where M=m;— (h*/c’)(OR/R)
represents de Broglie’s and Bohm’s quantum potential which appears in the
relativistic Jacobi equation &, Sa“S + M, = 0 which represents the real part
of (1).

(3). carry a conserved density p= vV—g (M,/m)R* along the
preceding drift lines of flow. so that p = dp/dr = 0.

(4). necessarily disperse according to the well-known relation
w= +(c* |kp|* = mic*h~?)'? with |k,|=2al,;', k, representing the usual
wave vector.

(5) can be physically considered (as shown by Lehr and Park,”
Guerra—Ruggiero'"® and Vigier"”) as a Brown-Markov stochastic wave
propagating on a random covariant thermostat. The corresponding diffusion
coefficient D = #/2m results''® from the necessity of preserving the phase
locking of all its oscillating components in the subquantal random jumps at
the velocity of light, and the P wave satisfies''”’ the relativistic form given by
Eckart'?® to the basic principles of thermodynamics.
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(b) by a singular, extended, nonlinear and nondispersive wave packet
U, = H exp(iS/h) superposed on the P wave which characterizes the particle
aspect of matter. As one knows, for de Broglie, this moving localized region
contains an energy and four-momentum iE/c and p,=hk, equal to the
preceding P waves drift motion’s four-momentum. Moreover it has been
shown?!"2? that this soliton like wave packet U, (which we henceforth call
S wave) follow the drift lines of the P waves if their phases coincide, i.e., if
the S wave beats in phase with the P wave. The S wave is an evident
possible representation of Einstein’s “Nadelstrahlung” concept.*”

(c) by an associated probability wave, i.e., the ¥ wave of quantum
mechanics. As first suggested by Vigier in de Broglie’s model,"** this
associated stochastic probability wave (which describes the particle’s random
distribution on the P wave) can be written ¥ = Cv, C being a constant
normalizing factor. Indeed, as shown by Bohm and Vigier,'” the
introduction in this model of random subquantal Markov fluctuations, which
move in a random way the S wave form one P wave’s line of flow to
another, leads (for U,) to the quantum mechanical probability ¥¥*.

Despite its appealing character, the essential weakness of de Broglie’s
preceding model of wave particle duality resides in the failure of de Broglie'”’
and his followers to present an explicit form of the nonlinear equation which
would yield an § wave soliton moving along the P wave drift lines of flow.
As one knows,* there exist many such possible nonlinear terms (including
the sine Gordon equation) which open the way to a generalization of (1)
that contains solitons. How is one to choose between them in the absence of
a new physical idea? As stated in our abstract, the essential point of this
paper is to demonstrate that this choice is indeed possible if one develops an
idea introduced by Mackinnon in the discussion of this problem.‘"

Indeed in Sections 2 and 3 we shall show that if one starts from de
Broglie's basic relativistic assumptions, i.e.,

® (hat all particles have an intrinsic real internal vibration in their rest
frame;

® that when they are at any point in space-time, the phase of this
vibration cannot depend on the choice of the reference frame, then there
exists a unique nondispersive packet of de Broglie’s B waves which can be
assimilated to the soliton S wave, and that this choice determines the form of
the corresponding nonlinear equation.

In Section 2, we shall show how de Broglie’s phase equality principle
implies that this soliton § wave moves along the P wave’s drift lines, so that
they can be considered as describing physically the particle’s immediate
neighborhood, i.e., the aether’s reaction to the particle’s motion in the SIQM.
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In conclusion we shall re-analyse a proposal made with Garuccio and
Rapisarda”* to show that, far from being an abstract nontestable proposal,
this model of de Broglie’s wave particle duality leads to concrete explicit
experiments which can help us make a crucial choice between CIQM and
SIQM.

o

2. DE BROGLIE'S INTERNAL FREQUENCY AND SOLITON WAVE

To construct a nondispersive wave packet of de Broglie’s B waves, we
shall briefly rediscuss de Broglie’s thesis?® and its development by
Mackinnon."" As all physicist now knows, de Broglie’s essential starting
point cannot be reduced to the famous assumption of the dual aspect of
matter (i.e., the wave particle duality) but rests essentially

1. on the idea that, since any free particle at rest with respect to an
observer has mass m, and energy E = m,c® and its energy is equal to one
quantum hv,, it can be compared to a real physical oscillator with an
internal rest frequency

v X myct/h (2)

2. on the assumption that all particles are accompanied in real space-
time be real plane monochromatic phase waves (the preceding B waves),
which can be written

¥, =aexp 2mi(vt — x/A + 0) (3)

with well determined amplitudes @ and phase constant 6. As first remarked
by de Broglie,"*" these B waves cannot serve to locate the particle. As long
as the particle remain at rest, the particle’s internal frequency and the
frequency of the de Broglie waves remain the same.

Three coments can be made at this stage:

1. Point 1 raises immediately the question of the nature of the
oscillations described by (3).

Clearly de Broglie himself has always believed that (2) described real
physical internal oscillations, and thus departed from the pointparticle model
supported by a majority of relativists and quantum physicists.

This idea has engineered a long set of researches starting for example
with Yukawa’s bilocal particle model®” and Bohm and Vigier’s liquid
droplet mode.” The essential point is that, independently of the internal
motions which yield a classical model of spin,?® it has generally been
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demonstrated by Souriau et al.*® that any extended particle model yields an
internal rotation of the particle’s center of matter density around its center of
mass with the exact frequency of de Broglie’s relation. Of course, such
extended particle models have received (until now) no direct experimental
support. They open nevertheless interesting paths of research since.

@ they offer the possibility to interpret the particle’s newly discovered
quantum numbers (7, Y, C, B, L, etc...) in terms of internal oscillations.*®

@ they can contain in their interior (as suggested by Dirac’" and

Vigier'*) nonlocal hidden variables which have been utilized to support the
superluminal propagation of the quantum potential'*’ and lead to a perfectly
causal action-at-a-distance interpretation of nonlocal correlations suggested
by preliminary experiments” on the Einstein—Podolsky—Rosen paradox.‘”

2. As stressed by de Broglie himself, the ¥, (B waves) can be inter-
preted as real superluminal phase waves propagating in space-time on the
top of a continuous field of physical oscillators. Since, following Dirac’s
pioneer work,®"? one has now discovered random covariant possible
distributions of extended particles, one can consider these B waves as
propagating (according to relation (1)) on such a material subquantal
oscillating level of matter. This is all the more tempting since the possibility
of superluminal phase wave propagations (with large amplitudes) has been
recently considered on real physical plasmas."*?

Both these views justify immediately the next step of de Broglie’s
discoveries.

First, if one assumes that particles have nonzero mass (photon
included) the vacuum now acts as a dispersive medium which propagates
different frequencies with different velocities. Indeed, the relation Av =
myct/\/T—fB* (B =v/c) implies a dispersion of space with n = (1 — v*/v?)""%.

Second, this dispersive character justifies de Broglie’s identification of
particle velocity with wave group velocity. Indeed, if we transform the ¥,
wave in the particle’s rest frame X°, i.e., ¥, = a exp(2mivy¢,) into a frame X
moving with a velocity with regard to this particle, one knows that the wave
function becomes

¥ =aexp {2niv, <_t_—___lﬂTx;;) (4)

¢ is the time in Z. Relation (1) then now represents a ¥, wave of frequency
v =v,/1 — %, of wavelength A = h/p (p representing the momentum in X),
and of the phase velocity ¥ = vA = ¢*/v. From the point of view of Z, vy —
vo/1 — % so that the oscillation appears to slow down w.rt. XZ° A
combination of such waves yields a dispersive wave packet with a group
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velocity v =dv/d(1/A), a result which led de Broglie to assume that such
packets act like a “pilot wave” of the particle’s behavior. Indeed, as stressed
by Mackinnon, de Broglie’s guiding principle just represents the fact that the
internal vibration and the de Broglie P wave remain in phase where the
particle is located.

3. The third remark is that, if one considers particles as real
oscillators and P wave as real wave, then one should consider the phases
(and the phase constant 8, of relation (3) as real physical quantities. In other
words in particles and waves are real vibrations when the particle is at any
point in space-time the phase of this vibration cannot depend on the choice
of the reference frame. To quote Mackinnon,'” “If the particle has a
vibration which has a phase then the phase at any point in space-time cannot
by any reasonable process of logic depend for its value on the choice of
reference frame used to assign coordinates to that point.” De Broglie himself,
who did not mention this in his early work, later furnished®® strong indirect
evidence in favor of phase reality. For him (as for Einstein) a laser is just a
coherent wave packet carrying many photons which have a well determined
phase constant. Moreover, since a boson wave can carry an arbitrary
number n of photons in space-time, i.e., the so-called occupation number, it
can be written in the form (3), and in second quantization theory # and € are
canonically conjugated quantities, so that one can write (f),, = d/on and
(n)o, = —i8/36. Writing then (n,),, ¢(8,) = —io®(8,)/00,)/60, = n, $(6,), one
finds (up to a normalization constant) ¢(6,) = exp(in, 0,), and since 6, is a
variable with a 2x period, ¢, can only be uniform if n, is an integer number,
so that for any such number the phase constants is a physically measurable
quantity in Dirac’s sense, i.e., corresponds to a physical reality. The fact that
ondf@ > 1 shows that, for n— oo, 6 can be measured with an arbitrary
precision. The existence of @ is also confirmed by interference measurements
on single particles,*" despite the fact that its value is then undetermined
since the observed pattern only depends on the difference of march of
correlated paths.

3. CONSTRUCTION OF THE SOLITON WAVE

We now come to the essential point of this paper i.e., the idea that
instead of deducing the soliton’s form from an arbitrarily given nonlinear
equation, we shall show, following Mackinnon, that the very existence of a
physical phase implies

@ an explicit form for the S wave
® an explicit form of the nonlinear Klein—Gordon equation.
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To show this, let assume that in a Minkowski diagram space-time is
described by the axes (O;x,ct) of a stationary observer who watches a
particle of rest mass m,, moving with a constant velocity u in the (—x)-
direction. Its associated frame (O; x,, cty) is symetrical w.r.t. the second
bisectrix of the axes (O;x, cf) and—Ox, makes with—Ox an angle a with
tg a = ujc. (See Fig. 1.)

If the particle contains an intrinsic oscillation of frequency v,, an
observer tied to it will see it in the same state after equal time (1/c)OA,
(1/c)AB, etc... equal to the rest period T, = 1/v, = h/mc?

The parallel lines to Ox, passing through A4, B, etc... are “equal phase”
lines for the observer moving with the particle and the points a’, O, a,..
represent their intersections with the space axis of the observer at rest at time
O so that Oa = A represents de Broglie’s wavelength seen by the observer at
rest.

Let us now consider a second observer moving at uniform velocity v in
the x direction. Its associated frame (O; x’, ct’') is symetrical w.r.t. the first
bisectrix of the axes ((0; x, cf) and Ox’ makes an angle é with Ox such that
tg 6 = v/c. (See Fig. 2.) From the point of view of this second observer the de
Broglie’s wave length is changed and appears to the rest observer with the
value 4, = Od.

The velocity of the moving observers w.r.t. (O; x, ¢f) can vary from —¢
to +c¢ and this determines the boundaries between with all wavelengths can
vary in their turn. The observer’s frame which moves with velocity +c is
mapped in the rest frame with the first bisectrix of (O:x,ct) and the

\\7 ot
\ T
\\\ c .
— \\\ Q\\ _ T —
8
xo \ | \ \ \
\ a

\ a
Fig. 1. Minkowski diagram representing a particle moving in the —x direction with velocity
u. Its associated wavelength is given by Oa.
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ct

\ et

Fig. 2. Minkowski diagram representing the same moving particle and the motion of an
observer in the +x direction with velocity v. Oa still denotes the particle wavelength in the
rest frame, Ob denotes its wavelength for the moving observer, and Od the same wavelength
seen from the rest frame.

observer’s frame which moves at velocity —c is mapped in the rest frame
with the second bisectrix of (O; x, ct). In this way the de Broglie wavelengths
measured, respectively, by Oi and Oj in the frames which have the limiting
velocities +¢ and —c appear, respectively, as Om and O/ for an observer at
rest.

From the point of view of an observer at rest, there now appears a wave
packet associated with the particle. It is built from a superposition of B
waves moving in the (—x) direction with wavelengths greater than O/ and
from B waves moving in the x direction with wavelengths greater than Om.

Let us now calculate the limiting value O/ and Om. In fig. 3, one can
write

0j*=jI + O* =201*,  Oi* = jm* + Om* = 20m* (5)

The triangles j4O and {40 have two equal sides so j4 = A0 = Ai. Moreover
we have O0j’ =240°|1 — cos(90 + 2a)] and Oi* = 240?[1 — cos(90 — 2a)].
Replacing the Oj and Oi by their values deduced from (5) we obtain O/* =
AO*(1 +sin 2a) and Om® = AO*(1 —sin 2a). Since f=ufc=1ga we get
sin 2a=2B/(1+B*) so that O1’=A0(1 +p)*/(1 +F?) and Om?=
AO*(1 — B)*/(1 + B*). Noting that 40/c = h/m,c we then get finally

Ol = (h/moc)|(1 + B)/(1 = B)]'%,  Om = (hfmye)[(1 = B)/(1 +B)]'*  (6)
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Fig. 3. Minkowski diagram representing the triangles which yield the limit wavelengths O1
and Om.

We obtain in this way a wave packet (S wave) for which the wave vector
recovers the domain Ak = 2n(OI~' + Om~"') i.e., 4k = myc/h\/1 — B%. The
central wave vector k, from 4k can then be written k;=

0=
[2n(0m ' — 01" ")]/2 ie., kg=mou/h\/T =B If m=my/\/1—p7 is the
apparent mass for the observer at rest, 4k and k, can be finally written
dk =mc/h and k, = mu/h.

Let us now show that the S wave does not spread with time. If we come
back to fig. 2, we have seen that

Oa = A = de Broglie wavelength for the observer at rest.

Ob = 1' = de Broglie wavelength for a moving observer for which its
apparent value is Od = 4, for the observer at rest.

We obtain in the same way:

Oe = ¢T = de Broglie wave period for the observer at rest.
Of = ¢T” = de Broglie wave period for a moving observer for which the
apparent value is Og = cT, for the observer at rest.
We thus obtain through a simple geometric reasoning the relations
J8/0g =bd/0Od =1g 6 =v/c ie., fg/cT, = bd/(A — A,)=u/c
glifg=bdlad =tga=ujc=LFie,c(T—T,)/fg=bd/(A —4,)=u/c
Oe/Od =1g a = ufc =fi.e.,cT/A =ujc.

By eliminating of fg and bd in this system, and putting w(k)= 2x/T with
wlky) =2n/T,, k = 2n/4, ky = 2m/A,, we get w(k) — w(k,) = u(k — k). Since
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u, ko, and w(k,) are constants, it follows that (d/dk)[w(k)]=u for all w
and (d?/dk*)|w(k)] = 0. This is the necessary condition to ensure that the S
wave preserves its shape for all time.

We thus see that the S wave preserves its shape under Lorentz transfor-
mations and appear as a relativistic effect.

If we then utilize an inverse Fourier transform, we can express the S
wave's shape (up to a multiplicative constant) in space-time in the form

sin 4k{x — ut)

b= Ak(x — ut)

exp {i|w(ky)t — kox] (7

One notices that this form of the S wave is obtained without approx-
imation, that it implies its nondispersive character in time and that it is
directly deduced from the basic assumptions of wave mechanics. The spatial
distance between the two first zeros of the S wave is h/me = (h/myc) /1 -y
so that it is submitted to the usual relativistic contraction of length with
velocity.

In the system tied to the particle, u = 0, and the S wave’s amplitude is
proportional to (sin kx)/kx with k=myc/h so that the spatial distance
between the two first zeros of the S wave is just equal to Compton’s
wavelength h/m,c, i.e., 243 X 107" m for an electron and 1.32 X 107" m
for a proton.

One notes that the representations of F(x,1),_, given in fig. 4 can be
multiplied by an arbitrary constant factor. This has a physical meaning since
it has (as we shall see in the fourth section) consequences on the ratios F/R,
VF/VR, etc... whivh are multiplied by this factor. We have found no physical
criteria to determine its numerical value and must leave the question open.

Let us now deduce the form of the nonlinear equation which acepts F as
a soliton solution. Writing F(x, 1) = G(x, t) H(x, t) with G(x, t) and H(x, 1),
respectively. for  exp{i|w(ko)t —kox|} and  sin Ak(x — ut)/dk(x — ut)
calculating OF = F,_ — F,/c* one checks that the imaginary part in the
multiplier of G cancels, and that we obtain'’’ the modified Klein—Gordon
equation

OF — (myc*/h*)F = (1 — B*) GH (8)

Moreover one has 6(x. 1) = dk(x — ut) from which H(x,!) = H[6(x, )] and
one finds H,, = 4k*H,, = (m*c?/h?)Hy, so that H, depends on 6 but not
in the precise form in which 6 depends on x and £ Relation (8) can be
written more generally in the form

OF — (mkc?/h*)F = (mic’/h*) GHyg (9)



Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

112

"3[8ds AJeniqie ue Yim spnyjdwe saem § UONJOS dY) JO WUIIOj Ay} JO uonejuasaiday
oo_.c\ y

RARE

% rxyg




Jeffers, Lehnert, Abramson & Chebotarev (eds.) 113

or still more generally as
9,0,U— (mic?/hP)U = (mix?/h?) GH gq (10)

with U= U, + & in which

® U, is the S wave defined by U,(x, 1) = aF(x, f) = aH(x, 1) exp(iS/h),
a is a constant factor and S = m(c’t’ — ux) = Et — px.

® & is a P wave of some phase as U;: D(x, )= R(x,t)exp(iS/h)
which satisfies the Klein—-Gordon condition 8,0, @ = (mjc’/h*)@.

The covariant character of the first member of (10) is evident. The
covariance of the second nonlinear member results from the fact that Hg,
corresponds to Og = 8%/dy, oy* the dy* representing the space like distance
orthogonal to the drift lines VS on the surfaces S = constant.

One recorvers in this way de Broglie’s double solution model.? As it
has been shown by Mackinnon,®® in the four-dimensionnal space time, the
S wave traveling in the x direction takes the form

W = (sin kr/kr) expli(wt — kyx)] (11)
with k = myc/h and
AY 1/2
r= [————(xl _;’3 + 57 +z2J (12)

and ¥ is a solution of the equation 0¥ = 0.

The solution (11) is well-known to represent the superposition of two
spherically symetrical waves. one converging and one diverging, both having
phase velocity ¢.**’ If the waves are electromagnetic waves, ¥ behaves as a
phase locked cavity similar to those analyzed by Jennison“® and which
have inertial properties of classical particles.

In the nonrelativistic approximation sin Ak(x — ut)/4k(x — ut) so that
the S wave does not appear at that stage. As for the P wave equation, it
becomes, as shown by Kemble,*” a stationary Schrodinger equation.

In equation (8) one can express G and H,, as a function of F. Indeed
since H = (sgn H) |F| and G = (HG)/H = F/(sgn H) |F| with sgn H for sign
of H, one has GH,, = (F/|F})|F|,,.

As a consequence, if one accepts the physical reality of the B waves the
wave equation of de Broglie's double solution theory is

u

XX

_uu/Cz—(mf)Cz/hz)(l +|u|xx/|u|)u=0 (]3)
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which is a nonlinear Klein-Gordon equation in which U, describes a soliton,
or

(O — (mic? /R ¥ = (mgc?/h*) /W) ¥* Dg(/ ™) (14)

where O; is a Dalembertian on the surface S = constant.

4. DEMONSTRATION OF DE BROGLIE'S “GUIDING PRINCIPLE”
IN THE SIQM

Following our plan, we shall now study the associated motions of the
preceding S waves and P waves, i.e., analyse the nature and interpretation of
their relative physical behavior in the Stochastic interpretation of quantum
mechanics.

As one knows,® the deduction of relation (1) results in this inter-
pretation from a derivation of Nelson’s equation in the Guerra—Ruggiero
notations

m(D.V—DUy=F* (15)

i.e., from a relativistic stochastic model which assimilates the P waves to
fluids which satisfy three new physical structures:

(i) The fluid elements (and the particles) which follow the lines of
flow of the fluid with irregular fluctuations are built from
extended elements in the sense discussed by Bohm'” and
Sourtau.*”

(i) The stochastic fluctuations occur at the velocity of light.

(ili) The fluid is a mixture of extended particles (and antiparticles):
the latter being mathematically equivalent to negative energy
particles moving backward in time.

The existence of such fluctuations (which induce in the particle a
Markov type of Brownian motion) has been shown® to lead any initial
distribution of the particles “piloted” by the fluid into a limiting equilibrium
distribution constant ¥* ¥ proportional to the fluid’s average conserved drift
density p(x,, 7). This means that the fluctuations of our Madelung fluid
induce on our particles stochastic jumps at the velocity of light (from one
line of flow to another) and that such jumps can be decomposed into the
regular drift motion v, plus an apparent space like random part u_, with
v4 =dx*/dr, T representing the proper time along the drift lines so that
v U, = —C*. '
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Assuming then that the drift motions are irrotational (so that the drift
velocity is proportional to V§) one can show that the demonstration of (15)
and (1) rests on the definition of average velocities, and accelerations defined
in a four-dimensional volume dw limited on the side by the fluid’s regular
lines of flow and, at both extremities, by two space like constant phase
surfaces® S, and S,. If the domain is small enough such surfaces are
separated by an interval 24t an interval tAr separating S, and S, from a
median section S,. Of course |dt| > At (fig. 5).

As a consequence of the assumed stochastic equilibrium we can treat on
the same footing the fluid behavior and an ensemble of similary prepared
particles characterized by the density p(x,, ) in configuration space where x
represents a point in four-dimensional space-time. Indeed, if one assumes
(following Einstein’s famous treatment of Brownian motion) that the average
velocities and mean acceleration (which correspond mathematically to
second order proper time derivatives) should be defined physically only by
the motions of fluid elements surrounding i.e., enclosed within the four-
dimensional volume element limited by S, and S, to define mean quantities.
Then one obtains in Guerra—Ruggiero’s notation®®’

(DD, — 8D, 6D,)x, =0 (16)

where x (1) corresponds to the particle’s position in Minkowski’s space-time:
D.=d/dt + b0, and D = b0, — (h/2my)0 representing, respectively.
the drift derivative (w.r.t. the variable 7) and the stochastic derivative

X

Fig. 5. Representation of the particle neighborhood with its
drift lines.
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b* = D.x, is the drift four velocity (b*b,=—c’) and 6b* =dD x* the
stochastic velocity. If one then writes: Y|x, ()] =
exp{|P[x,(r)] + iS|x,(r)]]/A} one sees that (1) can be split into two
independent relations i.e.,

d,lexp(2P/h)\/—g £, 8]=0 (17)
g"'2,58,S +mict —hOP—-8,P8,P=0 (18)

which correspond, respectively, to a continuous equation (on the scalar
density p =exp(2R/h) and a generalized Jacobi equation in which the
“variable mass” is My = |m} — (h/c’)O P —(8,P3,P)/c*|'.

The drift four velocity and the stochastic velocity being written

Myb, =0, and 8b, = (h/2mgy) 8, log p = (1/mg) 8, P

one sees that our oscillator-particles cannot be considered as free particles.
We obtain for the unitary current: b, = (, S(/M, and for the scalar density:
p =v/—g exp(2P/R)My/m, with p=0,(pb*)=0 the quantum stochastic
force (per unit of M,) being written K, = —c’ &, log M,.

As one knows, the continuity equation is equivalent to a forward and
backward Fokker—Planck equation:

ap/ot + Vo, pF DOp=0 (19)

where D = #/2m to maintain the phase coherence in the quantum jumps at
the velocity of light. Since we have:

((4x)),{(du )y, > D =’ jam’ (20)

where the subscript means average over p in dw, we obtain Heisenberg's
relation Ax Amyv? = Ax Ap, > h/2 as stochastic dispersion relation.

One sees from (17) and (18) that the preceding derivation yields time
reversible linear equations to that ¥(x,t) = ¥(x,—t). This is an evident
result of the neglect in our model of possible frictional or dissipative forces
(added to F* in (16)) which would generalize to “Dirac vacuum” the terms
usualy introduced in Brownian motion theory. For example the addition to
F* of nonlinear of the form K = —2mDfV log ¥, destroys Brownian time
reversibility of Einstein's initial nonrelativistic linear treatment in the
classical relation*®

F2moD OV, )6t =2mD* V¥, +2myDBlog ¥, ¥, (21)

In the case of our model we are then justified to treat the nonlinear term
(mic? /R W/W*)2O,(P¥Y*)"? of (16) as a representation of time rever-
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sible frictional force term which are important in the U, region but can be
neglected outside a sphere of radius 4, in the P wave region.

We now study motion of § waves into associated P waves. In the four-
dimensional space-time, let us write in (11)

sin kr/kr if |ri<n/k

in kr/kr}, = 22
{sin kr/krlo 0 it |r| > n/k (22)

we have for such a “free” truncated S wave
{sin kr/kr}, exp i(wt — kox) = exp|(P, + iS)/h] (23)

with O{exp|(P, + iS)/h|} =0, i.e..

® areal part: 9,88"S +mge? =0
® animaginary part: 99,5 + 20,P,0*S =0

so that the center ¢, of the free soliton behaves exactly like a classical point
like relativistic free particle surrounded in its rest frame by a stable spherical
wave i.e., follows the geodetics of the external gravitational field.

From a stochastic point of view we can now describe the § wave in
SIQM as a combination of outgoing and ingoing B waves satisfying OU, =0
(i.e., corresponding to zero mass) centered on ¢,=r, in fig. 5. This is
equivalent physically to a set of particles moving out or into ¢, at the
velocity of light: a picture which fits nicely with out assumption of random
jumps at the velocity of light.

We then analyze the behavior of a general wave U=U,+ V=
exp|(P, + P + iS)/h| with exp(P,/h) = {sin kr/kr}, and V = exp|(P + iS)/h)]|
with R, = VV* =exp(2P/h), in the rest frame X° defined by b,=0,
i=1,2,3. If this regular P wave has around c, the same phase S as the
associated S wave, one realizes that everything goes as if the particle
described by U, is located at the center ¢, of a singularity of the amplitude
of a P wave which satisfies outside a small region of radius ry = #/2m to the
usual linear relation (1) which can be analyzed in the hydrodynamical
representation given by Halbwachs?" and Vigier."”’ One sees moreover that
the total wave U begins to differ from the P wave only inside a sphere of
radius r, (r, > r). In this sphere (in £°) one thus observes a singularity of the
density in the hydrodynamical representation and one assumes that within a
sphere of radius r < r, (in Z,) the phase S’ of V, its gradient, and those of R
are practically uniform. As we shall now see, this justifies de Broglie’s
guiding principle provided these variations can be neglected at the scale of
To-

Indeed, let us assume that inside r < r, the density p = exp|2(P, + P)/#]
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growth rapidly with 1/r (so that p/(ép/dr) =0) and that at the scale r, we
know from Section 3 that the motion of the total density’s singularity does
not vary with time so that all values of the singularity of P, (for r <r,)
move “as a block™ with the same four velocity u,. In order to establish the
wave behavior of u one can average all quantities of the wave equation
between two spherical surfaces of radii r, and r, (r, < r,) centered on ¢,.

Indeed, the essential point is that according to SIQM, the total wave
behavior of « is obtained by averaging over the infinitesimal four volume
dw, (see fig. 5) now characterized by S, and §,, and two cross-sections of
radii r, and r,. In such a domain we can consider (d,S), {0, P), (P), {P),
and (S) as being practically constant for r < r,. The total nonlinear wave
equation (14) now yields for U= U, + V:

@ a real part which can be written
8,58,S+(@P+¢&“P3,P)+ myc’ + {OP, + 8, Py 8Py} + 20, P 0*P,
= (m}c/h*)E [y, v )Py + P) = (mgc?/h?) Og(Py + P) (24)
® an imaginary part which yields
as +20%So,P+2¢S0,P,=0 (25)

To average over dw, we can go to the instantaneous rest frame Z° (V,S = 0)
where the P wave V is locally a plane wave and U, is spherically symmetric.
We thus have locally {OgP)=0 and 2{g, P)d*P, =0, and since the { } now
cancels the second member we get in a general frame from (24) in X°

F,SE4S +0P +8*Pé,P+mici =0 (26)

which shows that ¢, must follow the P wave's drift lines of flow. Moreover
the averaging of (25) vields

as+2045é¢,P=0 (27)

since (¢, S)c*P,=0 in Z° This implies the conservation of U, with the
drift’s tubes of flow. Relations (26) and (27) clearly demonstrate de Broglie’s
“guiding” of *“pilot”™ assumption. The preceding reasoning is evidently
inspired by the famous argument through which Einstein er a/****” showed
that if one considered the gravitational field of test particles as a singularity
of the gravitational field, these singularities would necessarily follow
geodetics path of the surrounding continuous gravitational field... which
thus necessarily “pilots™ them according to the assumptions of relativistic
mechanics. First suggested by one of us (J.P.V.)"" the analogy is more than
formal and can be turned into the following independent demonstration of de
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Broglie’s “guiding principle.” Indeed. writing the P waves equation in the
general relativistic form

(1/\/—g) &, 8" 6,\/—g &. ¥(r, 1) = (mjc?/h?) (28)

where g, represents the external gravitational field, one can show'*"

(a) that the drift lines are geodetics of the conformal metric g, =
(Mi/m}) g,... The scalar stochastic quantum potential can thus be mapped
into the gravitational potential of this new external conformal metric...
which be considered as describing the disturbance of space-time resulting
from the real existence of the P wave.

(b) that the frequency M2c?/\/1 — B represents exactly the frequency
m?c?/h modified by the action of the conformal gravitational potential.

Of course, the same arguments apply separately to the S wave which
satisfies 8,5 8,8 — Myc? =0 since in that case the drift lines are geodetics
of the metric g,,,..

Point (a) is important since one knows"*” that in general relativity the
only way to combine “external” and “internal” gravitation fields is along
time like geodetic surfaces ... as is exactly the case with hypertubes tangent
to S when S is the phase of both U, and V.

CONCLUSION

We conclude this paper with a brief estimate of the present theoretical
and experimented stage of the Bohr—Einstein controversy—in which de
Broglie always sided with Einstein.

As one knows, the root of the confrontation lies in Einstein’s and de
Broglie’s refusal to accept any ultimate limit to our understanding and
analysis of probabilities, and their belief in the causal character of all
phenomena—observers’ behavior and observations included. Indeed, when
Einstein and de Broglie (with “ghost waves” and “double solution”) first
suggested that microobjects were both particles and waves they wanted to
interpret the observed statistics of quantum theory in terms of subquantal
local hidden variables. The reason for their choice is now clear: they were
both realists and determinists in the relativistic sense of the word. This
explains, for example, the motivations behind Einstein’s attack against the
CIQM as being both incomplete and (as we now know since John Bell’s
1964 discovery) nonlocal. Their rejection of nonlocality was evidently tied to
their belief that causality implied locality.

This belief, evidently widely shared in the physics community, explains
the commotion caused by Bell’s discovery that any type of local hidden
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parameters vyields predictions in contradiction with quantum mechanical
predictions in Bohm’s version of EPR experiments. For the first time, it
seemed that relativistic causality could be contradicted by experiment—so
that Einstein’s world vision would have to be abandoned or drastically
transformed. This also explains the growing number of experimental efforts
to test quantum predictions in correlated measuring processes separated by
space-like separations."*+®

However, as seen for example in reference,'" this general opinion is
too drastic. Even (as is now practically certain) nonlocal superluminal
correlations between space like separated measuring devices are definitely
established, this does not imply Bohr’s ultimate victory, but only that both
Einstein’s and de Broglie’s followers as well as the present supporters of
CIQM will have to modify their theories to some extent.

For example, even before Aspect’s and Rapisarda’s experiments
probably confirm the nonlocal predictions of quantum mechanics, CIQM
follows are already in the process of:

(a) modifying their conceptions of measurement in quantum theory

(b) introducing retroaction into time''”

(c) developing the nonlocal character of conscious measure-
ments®—at the expense of the existence of space and time.

For the same reasons, CIQM opponents are trying to destroy Bell’s
inequalities*” (a hopeless attempt in the author’s opinion) or have been led
to abandon point particle locality, i.e., to stress the nonlocal character of the
quantum potential. This later choice which rests either on nonlinear
subquantum fluctuations" and/or the nonlocal extended structure of the
elements which construct Dirac’s subquantal vacuum (or “aether”) had led
to the new result'V that superluminal actions-at-a-distance can be perfectly
causal provided they satisfy supplementary relativistic conditions—and that
is precisely the case for the quantum potential in configuration space.
Evidently this is only possible if one accepts de Broglie’s basic assumption
that a particle is surrounded by a real P wave field carrying real stochastic
quantum forces.

In other terms, an experimental proof of the existence of causal
nonlocality is tied in SIQM to proofs of the physical truth of de Broglie’s
conception of wave particle duality: the nonlocal quantum potential being
interpreted in the EPR paradoxon through perturbations of the subquantal
aether induced by correlated pairs of particles which disturb the vacuum
around them.

Since Selleri’s first proposal**’ various possible Gedanken experimental
tests of the existence of P waves have been proposed. one evidently reaches
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here a new stage of the Bohr—Einstein controversy, since it is the first time
(to our knowledge) that the nonlocal form of SIQM and CIQM predict
different testable experimental results. As well as for EPR experiments, the
proposed set-ups turn out to be limit experiments with individual quantas. To
break Bell’s inequalities (which are satisfied in all classical and almost every
quantum situation), one has to measure 100 couples of photons per
second.¥

To establish the possible existence of P waves, one has to reach very
low photon intensities where separation of CIQM and SIQM raises difficult
theoretical and experimental problems. To comment on this, we will
reanalyze the most recent proposal (made with Garuccio and Rapisarda)''*
to detect P waves. This set-up is described in Fig. 6.

A single very weakened pulsed source (i.e., an impulsed l.e.d.) produces,
one by one, independent wave packets which contain single photons at the
same frequency.

These successive wave packets containing 1 photon only, denoted
IW,=(n=1,2,.), are split by a semitransparent beam splitter (the
semitransparent mirror M, with a transmission coefficient 1/2) and one
knows from CIQM that the photons pass, one by one, either in the reflected
packets RW, or in the transmitted packets TW, with a probability 1/2; there
is a 100% anticorrelation between reflected and transmitted photons, as has
been recently verified experimentally by Mandel et al.“®.

Following a suggestion of Selleri,*® we then introduce along the path
of TW, an organic laser gain tube (L.G.T.) which multiplies the photon
number by two (on the average) and preserves the different phases of TW,."
This is perfectly feasible. As one knows, gain tubes amplify externally
introduced photons beams and preserve their phases with sharp temporal
correlation: so that one can expect this to hold in the one photon limit also.
Such amplifiers have been recently used (as will be discussed presently) in a
different context by Martinolli'*® in Prof. Gozzini’s laboratory in Pisa to
test for the two photons incoming case the outgoing distribution generated by
a semitransparent mirror.

Of course, the use of this multiplying gain tube implies a preliminary
test i.e., one should test if in the set-up of fig. 6, where incoming isolated
photon beams are split by M|, there is significant anticoincidences. If not
then the photon empty TW de Broglie wave packet would excite, without
photons, the LGT and, contrary to CIQM predictions induce a real physical
effect.

}The question of the phase conservation between the phases of separated incoming wave
packets and the corresponding outgoing photon pairs, theoretically valid because of the laser
character of LGT should be tested separately by verifying that the set-up of Fig. 6 maintains
an interference pattern at ordinary light intensity.
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If anticoincidences between PM, and PM, persist, then one can move a
step further since only a photon in TH can induce two photon wave packets
in LGT, which are split in their turn by a beam splitter M, identical to M.

If further tests confirm this, then one sees that the LGT outgoing
photons have a 1/3 probability of producing coincidences between the
photomultiplier PM, and the interference region (/R), where a detector
devised by Mandel and Pfleegor*” is built with a stack of thin glass plates
(see insert of Fig. 6 each of which has a thickness corresponding to a half
fringe width. The plates are cut and attanged so that any photons failing on
the odd plates are fed to one photomultiplier PM ,, while photons falling on
the even plate are fed to the other PMy. So the LGT outgoing photons have
a 1/3 probability of produring coincidences between PM, and one of two
photomultipliers PM, or PM.

The experiment is now to analyze the rate of observed coincidences
between PM., PM,, and PMy. Two perfectly conflicting results are now
theoretically possible.

A. According to CIQM no interferences should be observed, i.e., one
rate of observed coincidences should be equal to 1. Indeed, if 2 photons
appear at PM, no photons should appear at PM, or PM,. Moreover, if one
photon appears at PM_ and one in PM, or PM,. then since one now knows
that no photons have taken the M, - M, — IR path, then no interference
should appear. Indeed, the passage of a photon in the LGT path has
collapsed the RW packet.

B. According to Maxwell’s theory of light (or the SIQM)®’
interference fringes should appear with the maximum contrast, i.e., the rate
of observed coincidences should be different from 1, since one has I(RW) =
I(TW") = 1/2. Indeed, even if the incoming photons of /W have entered the
LGT. then a real physical de Broglie wave is moving with RW along the
path M, — M, — IR. This induces a stable interference pattern since the path
difference between M, — M, —IR and M, - LGT - M,—-M,—M,— IR is
constant, in the mean.

At first sight, this set-up presents evident advantages. Indeed, if LGT
(according to CIQM) needs real incoming photons to be excited, then no
photon in our coincidence scheme can travel along the M, — M, — IR path,
so that the detection of interferences (according to SIQM or Maxwell’s
theory) would really constitute a crucial contradiction between CIQM and
reality. Things however are more complex in a real measurement. As
remarked by a referee: “A laser gain tube works through stimulated
emission. The fundamental quantum mechanical rule here is that the
pobability of a photon appearing in a given state must be proportional to
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| + n where n is the number of photons already in that final state. In the
one-incoming-photon case. n will be equal to 1. This implies that the
stimulated emission rate cannot be greater than the spontaneous emission
rate, at best it can be qual to it. So, if one photon comes in the best that can
happen is three coming out, two in phase, the original one and one produced
by stimulated emission, and one produced by spontaneous emission (hence
not generally in phase with the incoming photon). However the spontaneous
emission ones will also be appearing throughout the period when there is no
incoming photon. It seems that they must therefore mask any expected inter-
ference pattern produced by the pairs which are in phase. This problem does
not show up in the many-incoming-photons case since there the ratio of n to
1 will be very large, so there is no need to have a rate of spontaneous
emission which is significant in relation to the rate of stimulated emission.
But I do not see how in the one-incoming-photon case there can be any way
round the difficulty: a whole series of such processes stimulated by a single
initial photon will still always produce 1/3 of outcoming photons not in
phase with the original photon, and this emission rate will be maintained
throughout the time there is no photon in in.”

Two remarks can be made to overcome this objection. The first remark
is that if one accepts the proceding theory that the rate of spontaneous noise
can be calculated by assuming one stimulating photon per mode continually
present, then between the noise spontaneous photon (phase decorrelated) and
the two phase correlated photons according to Scorle’s result, there is no
time correlation in excess of the Hanbury-Brown-Twiss effect: the three
photons can thus be concentrated within the gain tube’s transit time i.e., one
should try to reduce their size to the minimum and separate as much as
possible the time intervals of the incoming (one photon carrying) wave
packets.

The second remark is that, following Prof. Gozzini, if one uses the
three photon spectroscopy technique (based on Cagnac proposal**® to build
a LGT, this particular LGT produces two phase locked photons with the
same (incoming) frequency (one of them retarded in time w.r.t. the incoming
one) and one spontaneous photon with a different frequency. As suggested to
us by Prof. Gozzini, this is very interesting in our case since the “noise”
(spontaneous) photon can now be eliminated form measurement by an inter-
fering filter or a Fabry—Pérot device. Two cases thus only remain when one
measures the C — IR coincidences:

49)

1. The initial photon reaches /R and the delayed one C, so that one
observes interferences fringes in /R, in Maxwell’s or SIQM theories.

2. The delayed photons reach /R and the initial one C, in which case
one will obtained in /R a uniform spot without interferences fringes.
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The probability of (1) and (2) being equal, we can thus conclude that
the creation of delayed photons in LGT preserves a signal/noise ratio equal
to 1. i.e., does not destroy the proposed test. As one sees it is the coincidence
set-up of /R and PMC which suppresses observability of the permanent
emission of phase decorrelated photons when there is no photon coming in.
We therefore conclude on the experimental “falsifiable” character of this
model of de Broglie’s wave particle duality—so that its fate no rest, as it
should, in the hand of experimental physicists.

ACKNOWLEDGMENTS

The authors want to thank Prof. van der Merwe for the possibility to
publish this work in Foundations of Physics in honor of Prof. de Broglie on
his 90th birthday. One of us (J.-P.V.) is happy for this opportunity to thank
publicly Prof. de Broglie for many years of inspiration, support and common
work. Great physicists fight great battles; without men like Albert Einstein
and Louis de Broglie modern physics would be different. Their vision,
courage, and leadership have carried the epistemological discussion on the
Bohr-Einstein controversy to its present experimental level. Whatever its
final outcome, they have stuck to their minority convictions with fortitude,
an admirable example of the way scientific debate should be conducted. The
authors are also grateful to many colleagues, including Profs. D. Bohm, F.
Selleri, V. Rapisarda, A. Gozzini and Drs. J. Bell, A. Shimony, A. Garuccio,
and N. Cufaro-Petroni for helpful criticisms and suggestions. During the
completion of this work, they have been shocked by Prof. V. Rapisarda’s
tragic death. They share with his family, many friends and the Italian
physics community a sense of irretrievable loss.

REFERENCES

. L. Mackinnon, Found. Phys. 11, 907 (1981).

2. L. de Broglie, Une tentative dinterprétation causale et non-linéaire de la Mécanique
Ondulatoire (Gauthier-Villars, Paris, 1956).

3. P. A. M. Dirac, Nature (London), 168, 906 (1951). For a recent review, see J. P. Vigier,

Lett. al Nuovo Cimento 29, 467 (1980).

4. A. Aspect, Phys. Rev. D 14, 1944 (1978); Phys. Rev. Leu. 47, 480 (1980).

5. L. Pappalardo and V. A. Rapisarda, Lett. Nuovo Cimento 29, 221 (1980). A. Garuccio
and V. A. Rapisarda, Nuovo Cimento, A 65, 269 (1981).

6. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, N.J., 1951).

7. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

8. N. Bohr. Phys. Rer. 48, 696 (1935).

9. D. Bohm and J.-P. Vigier, Phys. Rev. 96, 208 (1954); L. de Broglie, Thermodynamique de



126

10.

11

12.
13.
14.

15.
16.

17
18.
19.
20.
21,
22.

23
24.
25.
26.
27,
28.
29.
30.

KR
32
33.
34.
3s.
36.
37.

38.
39.
40.
41.
42.

43.
44,

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

la particule isolée (Gauthier-Villars, Paris, 1964); W. Lechr and J. Park, J. Math. Phys.
18, 1235 (1977); E. Nelson, Phys. Rev. 150, 1079 (1966); J. P. Vigier, Lett. al Nuovo
Cimento 24, 258, 265 (1979).

0. Costa de Beauregard, Nuovo Cimento 42, B, 41 (1977); Nuovo Cimento 51, B, 267
(1979).

N. Cufaro-Petroni, Ph. Droz-Vincent, and J. P. Vigier, Lets. al Nuovo Cimento 31, 415
(1981).

A. Garuccio. K. R. Popper, and J.-P. Vigier, Phys. Lett. 86, A, 397 (1981).

E. E. Fitchard, Found. Phys. 9, 525 (1979).

A. Garuccio, V. A. Rapisarda, and J. P. Vigier, “New Experimental Set-up for the
Detection of the de Broglie Waves,” Phys. Ler:. (1982).

J. P. Vigier, Lett. Nuovo Cimento 24, 258, 265 (1979).

L. de la Pena Auerbach, J. Marh. Phys. 12, 453 (1971); N. Cufaro-Petroni and J.-P.
Vigier, Phys. Lett. 81, A, 12 (1981).

N. Cufaro-Petroni and J.-P. Vigier, Phys. Lett. 73A, 4, 289 (1979).

F. Guerra and P. Ruggiero, Lett. al Nuovo Cimento 23, 529 (1978).

J.-P. Vigier, Lett. Nuovo Cimento 29, 467 (1980).

C. Eckart, Phys. Rev. 58, 919 (1950).

F. Halbwachs, Théorie Relativiste des Fluides a Spin (Gauthier-Villars, Paris, 1960).
Ph. Gueéret and J. P. Vigier, Une équation non linéaire de Klein-Gordon en Mécanique
Ondulatoire, possédant une solution non dispersive du type soliton, IHP Preprint, March
1982.

A. Einstein, “Physik und Realitat,” Journ. of the Franklin Inst. 221, 313 (1936).

L. de Broglie, La Physique restera-t-elle indéterministe? (Gauthier-Villars, Paris, 1953).
A. C. Scott, F. Y. F. Chu, and D. Mc Laughlin, Proc. of the IEEE 61, 10 (1972).

L. de Broglie, Ann. Phys. (Paris) 3, 22 (1925).

H. Yukawa, Proc. of the International Conference on Elem. Particles (Kyoto, 1963).

C. Fenech, M. Moles, and J.-P. Vigier, Letr. al Nuovo Cimento 24, 56 (1979).

F. Halbwachs, J.-M. Souriau, and J.-P. Vigier, J. Phys. Radium 22, 26 (1981).

Ph. Gueret, M. Moles, P. Merat. and J.-P. Vigier, Lett. Math. Phys. 3, 47 (1979):. N.
Cufaro-Petroni, Z. Maric, Dj. Zivanovic, and J.-P. Vigier, J. Phys. A, Math. Gen. 14,
501-508 (1981); N. Cufaro-Petroni, Z. Maric, Dj. Zivanovic. and J.-P. Vigier, Leu. al
Nuovo Cimento 29, 17, 565 (1980).

A. M. Dirac, Proc. Roy. Soc. 167, A, 448 (1933).

C. Clemmow and R. D. Harding, J. Plasma Phys. 23, 71 (1980).

. de Broglie. Cahiers de Phys. 147, 1 (1962).

. Mackinnon, Lett. al Nuovo Cimento 32, 10 (1981).

. de Broglie. C. R. Acad. Sci. 180, 498 (1925).

. C. Jennison, J. Phys. A, Math. Gen. 11, 1525 (1978).

. C. Kemble, Fundamental Principles of Quantum Mechanics (McGraw-Hill, New York,
1937).

L. de la Pena and A. M. Cetto, Found. Phys. 5, 355 (1975).

A. Einstein and J. Grommer, Sitz. Preuss. Acad. Wiss. 1 (1927).

A. Einstein and L. Infeld, Ann. Math. 41, 455 (1940).

B. d’Espagnat, La Physique et le réel.

L. de Broglie, G. Lochak, J. A. Beswick, and }. Vassalo-Pereira, Found. Phys. 6, 1, 3
(1976).

D. Bohm and J. Hiley, Found. Phys. 11, 529 (1981).

F. Seclleri, “Can an Actual Existence be Guaranted on Quantum Waves?” Nuov.-Cim. (to
be published).

ol ol

m =



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 127

45. F. Selleri. Lett. al Nuovo Cimento, 9, 8 (1979).

46. R. Martinolli (Reporter A. Gozzini), Un esperimento in Ottica a Intensitd Molto Basse
(Tesi di Laurea, Universita di Pisa (October 1980).

47. L. Mandel and R. L. Pfleegor, Phys. Rev. 159, 1084 (1967): Journ. Opt. Soc. Amer. 58,
946 (1968).

48. L. Mandel and K. Dajenais, Phys. Rev. Lett. A18, 2217 (1978).

49. A. Gozzini, Programma di Ricerca (Universita di Pisa Preprint, 1982).

50. G. Grynberg, F. Biraben, M. Bassini, and B. Cagnac, Phys. Rev. Lett. 37, 284 (1976).

51. L. Mackinnon, Found. Phys. 11, 907 (1981).



This page is deliberately
left blank.



Reprinted from Lettere al Nuovo Cimento, Vol. 35, No. 8, pp. 256-259, Copyright (1982)
with permission from the Societa Italiana di Fisica.

Nonlinear Klein-Gordon Equation Carrying a Nondispersive Solitonlike
Singularity.

Pu. GUERET

Institut de Mathématique Pures et Appliquées de U Université P. et M. Curie
4 place Jussieu, 75230 Paris Cedex 05.

J. P, ViGIER

Institut Henri Poincaré, Laboratoire de Physique Théorique
IT rue P. et M. Curie, 75231 Paris Cedex 05.

(ricevuto il 16 Luglio 1982)

The aim of this letter is to show that, if one accepts the physical reality of the de
Broglie’s waves associated to particles and the relativistic covariance of the phase equality
of wave and particle at the point where it is localized, one can construct a nondispersive
wave packet tied to the particle, which constitutes a possible model of the singular wave
introduced by DE BROGLIE in his causal interpretation of wave mechanics. This soliton-
like wave, first constructed by MACKINNON, is a solution of a nonlinear Klein-Gordon
equation.

The basic idea of wave mechanics is that each particle with rest mass m, is endowed
at rest with a real physical oscillation v, = mye?/h (1) and that its uniform rectilinear
motion with velocity v in the z-direction of space-time is associated with real phase
plane waves (de Broglie’s B-waves) whose propagation is described by the function

(1) ¥Y(x,t) = aexp [2:1131: (t — —Ix;)] (a = const) ,

where v = v/ I—p2. V = ¢?/v represents its associated phase velocity. The cor-
responding wave-length is given by the well-known expression 1 = h/p, where p = | Pl
represents the relativistic impulsion of the said particle. It is this wave-length which
one .can measure in diffraction experiments (2).

If one now superimposes a set of such B-waves, one can construct (%) a wave packet
(henceforth denoted as P-wave) which presents the following characteristics:

(') L. DE BROGLIE: dnn. Phys. (Paris), 3, 22 (1925).

(*) L. MACKINNON: Found. Phys., 11, 907 (1981).

(*) D. BomM: Quanium Theory (Englewood Cliffs, N.J., 1951).

(Y} E. C. KEMBLE: Fundamenlal Principles of Quantum Mechanics (New York, N, Y., 1937).
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Its group velocity % is equal to the velocty v of the particle.

It spreads out without limit in a short time.

It differs from a Schridinger wave packet on its phase (*%) in spite of the fact
that the latter is also endowed with the two first properties.

As the B-waves, the P-wave satisfies the Klein-Gordon cquation

(2) O¥ + (mZhHW¥ =0,

As one knows, pE BROGLIE bas then introduced a supplementary assumption which
has played a leading part in the causal interpretation of wave mechanics (%), .e. the
« phase connection principle » which states that, in all points in which the particle is
located, the phase of its internal oscillation eoincides with the phase of the B-wave.
This assumption implies that this equality must be a covariant onc, identical for all
observers. MACKINNON has accordingly utilized this important property to construct
a new nondispersive wave packet (?) (henceforth denoted as S-wave). Indeed, if one
considers a particle moving with a constant uniform velocity » in the x-direction of a
fixed laboratory frame, one can superimpose the B-waves detected by a set of observers
also moving in the z-direction with velocities included between — ¢ and + ¢ with re-
spect to the laboratory frame. As a result, one obtains, following MACKINNON, the
nondispersive wave packet

_ sin Ak(z — wi)

3) Fa. 1) Ak(a: — ut)

exp [i[w(ky)t — ko],

where Ak = mefh = mye/fin/ I — B2, ky = mu/fh, wlky) = kyV = mc/hi.

This 8-wave packet conserves its shape under a Lorentz transform and appears as
essentially relativistic in its origin in spite of the fact that it does not satisfy relation (2).

In the particle rest frame (u = 0), the amplitude of the 8-wave packet becomes
(8in kx)/kx with k= m,c/h, where z is the distance from the centre of the wave packet.
The first zero of this function arises so that the foot of its central part is equal to the
Compton wave-length hjmge.

Let us now determine the wave equation which accepts solution (3) as solitary wave,
Writing

Flz,t) = G(z, t) H(x, t)
with

sin Ak(z — wt) . .
Hx, t) = m » Gz, t) = exp [i[w(k,) t — kow]] >

if one calculates [(JF = F_,— ¥, /c?, one checks that the imaginary part cancels and
that a possible wave equation, given by MACKINNOX (), is the modified Klein-Gordon’s
equation

(4) OF — (mi* /5 F = (1 — p2)GH,, .

*) E. MACRINNON: Am. J. Phys., 44, 1047 (1976),

) L. pE BRrogLIE:' Tentative d'interprétalion causale el non linéaire de la Mécanique Ondulatoire
Paris, 1956).

) L., MACEINNON: Found. Phys., 8, 157 (1978).
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Morcover, if one writes &(x,t) = Ak(x — ut), so that H(x,1) = H(&(x,t)], one finds
that H,, = (Ak):Hg, so that H,, depends on & but not in the precise form in which
¢ depends on z and t. Equation (4) can thus be written more generally as

(5) OF — (mge*/a*)F = (mgc®/h*) GHee
or still more generally
(6) 0u0u U — (m3c* B U = (mic?/h?) GH e

with U = U, + ®.

U, is the S-wave defined by Uy(z, t) = aF(z,t) = a((sin 5)/5) exp (iS/h], where ¢
is an arbitrary multiplicative constant and § = m(c2t — uz) = It—p-x.

@ is a P-wave with the same phase 8§ as U, i.e. ®(x,t) = R(z, t) exp [¢S/%] which
satisfies the Klein-Gordon condition 8,3, ® = (m2c?/h?).

The covariant featurc of the first member of (5) is obvious. The second member
is also covariant since the derivation which has given Hgg corresponds to 0%/0y, dy#,
where dy, denotes the spacelike normal distance taken from the drift lines parallel to
d.S along the surfaces S = const.

Thus one finds again de Broglie’s model of the double solution theory (5) with

the splitting (8)

(©) 2u(B22,8) = 0,
) 8488, 8 + myer — h((JR/R) = 0 .

the guiding theorem (%8). The fitting of the S-wave on the P-wave corresponds
to Einstein’s famous result (*1°) which shows that the singularities of the gravitational
field (test particles) necessarily follow, in the general relativity theory, the geodetics
of the external gravitational field.

At the nonrelativistic approximation (sin £)/& — 1, so that the S-wave does not ap-
pear at this level. As for the P-wave equation, it reduces to a time-independent Schro-
dinger equation, as shown by KEMBLE (4).

In a recent paper (}'), R. HORODECKI has shown the necessity to introduce the three
types of waves considered in this letter, but without giving an explicit form for the
S-wave,

As MACKINNON has shown (12), in the quadridimensional space-time the nondispersive
8-wave packet for a particle of rest mass m, travelling in the z-direction with velocity u
relative to the laboratory system takes the form

.

(7 F(r, 2, 1) = ((sin kr)/kr) exp [i[w(ky) t — kytz]],
(*) F. HALBWACHS: Theorie relativiste des fluides & spin (Paris, 1960).

(*) A, EINSTEIN and J. GROMME'B: Sitz. Preuss. dkad. Wiss., 1 (1927).
() A. EINsTEIN and L. INFELD: dnn. Math., 41, 455 (1940).

(*') R. HORODECKI: Phys. Lett., 87, no. 3, 95 (1981).

('*) L. MACEINNON: Leit. Nuovo Cimento, 31, 37 (1981); 32, 311 (1981).
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where 72 = ((z — ut)?/(1 — %)) + 4* 4 2% and k = mye/fi. By simple substitution, one
sees that this S-wave is solution of

(8) OF =0.

It is one form of the standard spherically symmetrical solution of (8) after it has been
subjected to a Lorentz transformation. In a more general form, this result was obtained
in the case of clectromagnetic waves by be BrRoGLIE himself (13), who has shown that this
solution represents the superposition of fwo spherically symmetrical waves, one con-
verging and one diverging, both having the phase velocity ¢. More recently, JENNI-
soN (1) has shown, still in the electromagncetic case, that this combination constitutes
a phase-locked cavity having the inertial properties of particles.

Now let us return to relation (4). If we express (¢ and H,, as functions of F:
H = |F|sgnIl and G = F/(|F|sgnH, where sgn H denotes sign of H, we have
GH,, = F|F|../iF|. In this way, if one accepts the physical reality of B-wave phase,
a nonlinear equation for the de Broglie S-wave, in the double-solution theory is, in
units i = ¢ =1,

2 kP
(9) Upy — Uy = Mo U I+ ’
|u]

i.e. a nonlinear Klein-Gordon equation for which Uj is a soliton-like solution (12 is a
homeogencity constant).

However, the solitonlike solution does not scrve to characterize this nonlinear
equation. Indeed let us consider a solution w(wx,t) = vexp [is] defined by its mod-
ulus |u| == v(x, t) and its phase s(z, ), eq. (9) splits into the real and imaginary parts:

(10) 8, v, — 8,0, =0,

(11) Vpe— Vg — V(82 — 87) = my(v + Bov,,) = 0.

Equation (11) for the modulus is a linear one, for which v=/|(sin &)/&| is only a peculiar
solution.

Let us remark to conclude, that if we put ¥=|(sin §)/§] exp [is], We can write
eq. (9) in the form

(12) (O—m2)¥ = m2VEw*0 Verw,

where [], denotes a Laplace-Beltrami operator taken on the curves s = const.

(**) L. DE BROGLIE: C. R. 4dcad. Sci., 180, 498 (1925).
(%) R. C. JENNISON: J. Phys. 4: Math., Nucl. Gen., 11, 1525 (1978).
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PACS. 11.10. - Tield theory.

It has been shown (}) that, by considering de Broglie’s waves from the point of view
.of all possible observers, it is possible to form a nondispersive de Broglic wave packet
for a free particle. More specifically, let it be supposed that a particle, of rest mass m,,
is travelling freely with uniform velocity v in the + z-direction. In such a case, the
nondispersive wave packet is given in two-dimensional space-time by

sin Ak&

(1) u(z,t) = 4 ALE

exp [i8],

where § = w(ky)t — kyx, Ak = mejk, ky = mv/hi, w(k,) = me?/ht, & = x —vt. ulx,1) is
a solution of the nonlinear Klein-Gordon equation

1 mgc? 12ul
{2) uu——c;u,,zh—z(l+ ™ )u

(12 is a homogeneity constant). This result has been shown (?) to be consistent with
.de Broglic's original hypothesis of his double-solution interpretation of wave mech-
anics (3). :

In this letter some extensions of eq. (2) are given. First, let it be considered a non-
disperive wave packet of arbitrary shape, exactly as in the case of a nonlinear quantum

14

(") L. MACEKINNON: Found. Phys., 8, 157 (1978).
(*) PH. GUERET and J. P. ViciER: Lett. Nuovo Cimenlo, 35, 256 (1982).
(*) L. pE BROGLIE: Nonlinear 1Wave Mechanics (Amsterdam, 1960).

Jean-Pierre 1Vigier and the Stochastic Interpretation of Quantum Mechanics
edited by Stanley Jeffers ez al. (Apeiron, Montreal, 2000) 133



134 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

Then, in eq. (2) the nonlincar term (1%|zz/|u|)u becomes Regexp [i8], with

kO
(4) By exp [iS] = P [—J:ILI
(4]

after trivial manipulations. So, eq. (2) exhibits a nonlinear quantum potential term
when it is written as
2 2 D\/_
Mg ¢ 0
5 Du~ i U= ——u,
(5) T Ve

where g = (u)t = |ul. This new ecquation satisfies the superposition principle in
conformity with the Guerra and Pusterla requirements (5) and describes the propaga-
tion of two-dimensional space-time kinks and solitons of arbitrary shape. However,
only the wave packet (I) is made of waves which will have the same phase at the same.
place where the particle is, in a covariant way.

In writing

02 1 o2
U=op408 = — - |
# oz? % of?
it can be shown that eq. (5) springs from the Lagrangian

2.2
nge?

(6) £ = l[g(aﬂ)(a“ﬁ) + “ (3uu)(3“u)]—l(auﬁ)(a“u)— U .
4% U 2 fi2

From this Lagrangian the same current as in the linear case can be derived, i.e.

i
1 Ty = —é’%[a(ayu)—u(aym]

and the energy-momentum tensor
1w _ u _ _
(8) Tyy = E l:% (6,%)(3,u) + 1: (Duu)(Byu) — (Buu)(0y) — (a“u)(ayu)] — 0 2.

In the four-dimensional space-time, instead of (3), the nondispersive wave packets
associated to a particle, of rest mass my, travelling in the +x-direction are defined by

(9) u(r, t) = E(r) exp[i8],

»

() R. W. Hasse: Z. Phys. B, 37, 83 (1980).
(*) F. GUERRA and M. PUSTERLA: Lell. Nuovo Cimenio, 34, 351 (1982),
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where

They are solutions of

(10) u~u:(R,,+ 2]&)exp[iS].
r

But a simple calculation shows immediately that for w given by (9)

D\{Q u = ([JR)exp[is] = (R" + 2 R—:’) exp[iS]

(n Ve

so that eqs. (10) and (5) are equivalent in four dimensions.
Among the solutions (9) there are solutions for which

2 Ove
(12) Ou=0 and mi = = —\—;/?0

arise simultancously, 7.e. with Ak, = mgye/k, the Eulerian differential cquation
R,

(13) Ry + 2= 4+ (Akp)2R = 0,
r

which adniits the general solution

sin Ak,r cos Ak,r
Akyr Akyr

(14) u(r, 1) = (A )exp [i8],

where A and B arc constants. If one now chooses to reject the cosine term by making
B = 0 on the grounds of the awkward infinity at » = 0, one is left with

(15) ; 1 sin Ak,r »
) =4d— e
u(r, t) ALy SXPL8],

0

this precisely defines the nondispersive wave packet built by MACKINNON (%) as gener-
alization of (I) to four-dimensional space-time. This solution is well known to represent
the superposition of two spherically symmetrical waves, one converging and one
diverging (3). In the electromagnetic case, it behaves as a phase locked cavity similar to
those analysed by JENNISON (7) and which have the inertial properties of classical par-
ticles.

Now, let it be supposed that a particle, of rest mass m, with charge e, is travelling
freely with uniform velocity v in the + z-direction in a region where a uniform electro-
magnetic potential A# exists. In such a case, eq. (5) becomes

. . 2.2 .
(16) (au_;_l_edu)(au_;_iilu)u%.m“c u=%u,
fic fic

h? )

[

(*) L. MAacKINNON: Lelt, Nuove Cimento, 31, 37 (1981).
() R. C. JEXNISON: J. Phys. 4, 11, 1525 (1978).
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it can be derived from the Lagrangian

1w w
(17) L =- [:(5“27)5“17)) + - (3uu)(5“u)] —
4|u u

e* mict
_ 0

A AHuu —

Au

h2c?

1 .
- (S, @) (dku) + ad AMu(e u) — u(0,u)] —
* he

4

1
uw + p L, Fwr

a
2

in conformity with the Guerra and Pusterla statements (5).
Three main implications result from physical conjectures introduced to build thig
mathematical model:

1) Asis pointed out in the first paragraph, the model is consistent with the double.
solution interpretation of wave mechanics. On account of the superposition principle,
to each solution (15) can be added, with the same phase S, a solution ¥ of the linear
Klicin-Gordon equation and it can be shown that the guiding principle is available (3),

2) According to the stochastic interpretation of quantum mechanics, the linear
waves can be considered as Brown-Markov stochastic waves on a random covariant
thermostat (Dirac aether) (#2%11), "The continuity equation 8,J% = 0 is equivalent to
a forward and backward Fokker-Planck equation, i.e. in Guerra-Ruggiero notation

ISl
(18) a—Q'JrV’Utgj:DDg:O.
T

The corresponding diffusion coefficient D = %/2m resulting (1) from the necessity of
preserving the phase coherence in the quantum jumps at the velocity of light.

The nonlinear quantum potential term can be associated to a time reversible frie-
tional force (important in the particle region, but negligible elsewhere) in a way
generalizing to Dirac’s vacuum Einstein-Smoluchowski treatment of Brownian motion.

3) The fact that an interference pattern is not dependent on the observer may be
explained by de Broglie’s waves, but cannot be explained by Schriodinger’s waves (12),
For this reason, if one accepts the physical reality of de Broglie’s waves, one must con-
sider relativistic waves, even in the nonrelativistic limit. :

(*) Pa. GUErReT and J. P. VIGIER: Found. Phys., 12, 1057 (1982).

(*) W. LEHR and J. Park: J. Math. Phys., 18, 1235 (1977).

{**) F. GUERRA and P. RUGGIERO: Lell. Nuovo Cimenlo, 23, 529 (1978).
(') J. P. VIGIER: Lelf, Nuovo Cimenfo, 29, 467 (1980),

(!*) L. MACKINNON: Found. Phys., 11, 907 (1981).
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Causal particle trajectories and
the interpretation of quantum

mechanics

J.-P. Vigier, C. Dewdney,
P. R. Holland and A. Kyprianidis Institut Henri Poincaré.

1 Introduction

The fundamental disagreement between Bohr and Einstein at the 1927
Solvay conferences concerned not only the interpretation of quantum
mechanics but also general philosophical orientations as to the nature
of physical theory. Although these two aspects of the debate can never
be fully separated, it is clear that, since quantum mechanics is after all
a theory about the behaviour of matter, specific claims of the various
interpretations can be more or less adequate in the face of experi-
mental evidence, and even shown to be false in certain cases''2.

In relation to this debate perhaps the greatest significance and
contribution of Bohm's causal interpretation of quantum mechanics?
is that it not only exposes the arbitrary philosophical assumptions
underlying the claims of the Copenhagen interpretation but also
brings into relief the essentially new content of quantum mechanics,
which is reflected in different ways in Bohr’s interpretation. Indeed
the claim that the quantum formalism itself requires us not only to
abandon the quest for explanation of quantum phenomena but also
the concepts of causality, continuity and the objective reality of
individual micro-objects, is shown to be false. However the existence
of the single counter-interpretation proposed by Bohm constitutes
sufficient grounds for rejecting the absolute and final necessity of
complementary description and indeterminacy, along with the in-
herent unanalysable and closed nature of quantum phenomena.

This in itself was a major contribution, but further than this, since
the possibility of alternative interpretations is not ruled out, specific
models may be proposed which allow a space-time description of
individual micro-events and the possibility of a deeper understanding,
perhaps leading to an approach which transcends current perceptions.
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Although the causal interpretation has in effect been in existence
since the very beginnings of quantum mechanics, in the form of the
pilot-wave model proposed by de Broglie, it has not been widely
adopted in the physics community, perhaps for reasons more ideo.
logical and metaphysical than physical, and many people remain ignor-
ant of it.

In this contribution we wish to reconsider Bohm’s interpretation in
the light of recent developments and to return to the question of the
interpretation of quantum mechanics. In particular we examine the
adequacy of the Copenhagen interpretation (CIQM), the causal
stochastic interpretation (SIQM — an extension of Bohm’s original
approach) and the statistical interpretation in accounting for quantum
interference phenomena and quantum statistics. We further demonstrate
that the assumption of the existence of particle trajectories entails the
elimination of negative probabilities from quantum mechanics.

Such phenomena are at the heart of quantum mechanics and inter-
ference experiments were crucial in the early stages of the Bohr-
Einstein debate, in which the discussion was centred on the two-slit
experiment. In fact they have become of central concern once again
since the recent neutron interferometry experiments present more
strikingly the same puzzling behaviour, and offer wider possibilities to
examine the adequacy of the various interpretations. However, let us
consider first the three interpretations of the two-slit experiment.

interpretation and the two-slit experiment

(i) Bohr and the Copenhagen interpretation

Although several versions of this approach to quantum mechanics
exist, the most consistent and coherent version was formulated by
Bohr.* For Bohr science is only possible through unambiguous
communication of results. A necessary condition for this is that a clear
distinction be possible between subject and object (system and in-
strument). The concepts and language of classical physics automatic-
ally entail such a distinction and we have to communicate within its
framework. If in any situation the subject/object distinction can be
made in alternative ways, then the descriptions arising are to be
termed complementary rather than simply contradictory. Bohr
regarded complementarity as a general relationship evident in all areas
of knowledge. The similarity between diverse domains regarding
complementary description was not based on a more or less vague
analogy, but on a thorough investigation of the conditions for the
proper use of our conceptual means of expression. Complementarity,
then, is not derived from quantum mechanics; it simply has a well-
defined application in this area of knowledge where the existence and
indivisibility of the quantum of action implies the unanalysability of
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the interaction between system and instrument. The placing of the
division between system and instrument becomes arbitrary and un-
ambiguous communication impossible. From Bohr’s philosophical
position the only possibility is to retreat to the classical description of
the results of experiments. Their classical nature is taken as given, but
then quantum phenomena become hermetically sealed. The funda-
mental unit for description in these terms is then the whole
‘phenomenon’ constituted by the system and experimental apparatus
which together form an indivisible and unanalysable whole. Altering
a part of the apparatus in order to define more closely the quantum
process, by elucidating a conjugate quantity, simply produces a com-
plementary phenomenon. In this view, “There is no quantum world,
there is only an abstract quantum physical description™.

Quantum mechanics only concerns the statistical prediction of the
results of well-defined experiments and nothing more; it represents an
ultimate limit to our knowledge. The wave function y is the most
complete description of an individual state; it is merely a probability
amplitude which states the odds on various results and is subject to
instantaneous changes during measurement. If some preparation
device (source, shutter, collimator) is designed to produce a wave
packet, then all we can say is that the wave packet represents the fact
that a single particle has a probability of appearing at a position x
given by {Y(x)}%, if a measurement is made. Until such a time it is not
legitimate even to conceive of a particle, let alone its properties.

In the specific case of the two-slit experiment (see Figure 9.1), what
happens between source and screen when interference is observed
cannot be described, even in principle. In fact the quantum system,
detected at the plate, cannot even be said to have an existence in the
usual sense. There is no possibility of defining the process giving rise
to the interference pattern. Either we design an apparatus to observe
interference, and hence the wave properties of matter, and forgo the

A B
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(i) The

description in terms of space-time co-ordination, or we design an ip.
compatible arrangement to determine more closely the space-time
motion, particle properties, and forgo the possibility of observing
interference. The two are complementary phenomena.

When Einstein® proposed a gedanken experiment which would
cnable the path of the particle to be determined by measuring the
momentum it transfers to the shts, Bohr argued that if a screen is to
be used in this way then its own momentum must be controlled with
such a precision that by application of the uncertainty relations is
position becomes uncertain by an amount sufficient to destroy the
interference. It is a curious fact that in order to arrive at this con-
clusion Bohr must assume rectilinear particle trajectories between
source and slits and slits and screen. The quanium object behaves
classically whereas the macroscopic slit system behaves quantum
mechanicallyv. Indeed. to be consistent it must be said that the screen
actually has no position; its existence has become ‘fuzzy’, not that its
definite position is just unknown. Greenberger’ has shown in detail
how the interaction with such a fuzzy’ object (in the neutron case)
destroys the coherence of the overlapping wave functions.

In proscribing the possible in quantum physical description. Bohr
has ruled out explanations in terms of determinate individual physical
processes taking place in space and time. This is not the task of
physics: the quantum theory is just an algorithm for predicting results
and its theoretical entities need no interpretation. In this way, by
cpistemological re-definition, Bohr can avoid all the problems and
paradoxes which arisc when an attempt 1s made to provide the
formalism and its rules with a physical interpretation in terms of the
behaviour of matter. In Bohr's view the ‘observer’ plays no more
special a role in quantum mechanics than in any other area of know-
ledge. and his or her consciousness of a given situation has no special
effect. This is the core of Bohr's position and the unambiguous basis
of the Copenhagen interpretation. Many other versions of the
Copenhagen interpretation exist and these have led to extended
discussions as a result of attempting to provide a physical, or psycho-
phvsical. interpretation of the entities and laws of quantum mechanics,
m terms of which the phenomena and the interphenomena may be
described and explained. These should really be distinguished from
RBohr's position, which does not constitute a physical interpretation in
the usual sensc.

In the following we separate Bohr's position from those versions of
CIQM which attempt to interpret the formalism physically.

statistical interpretation

As emphasized by Ballentine®, the statistical interpretation is to be
distinguished from the Copenhagen interpretation. He asserts that the
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wave function simply represents an ensemble of similarly prepared
systems and does not provide a complete description of an individual
system: ‘In general, quantum theory predicts nothing which is relevant
to a single measurement.’®

The interpretation of a wave packet is that, although each particle
has always a definite position r, each position is realized with relative
frequency |(r)|? in an ensemble of similarly-prepared experiments. It
follows that each particle has a well-defined trajectory, but its speci-
fication is beyond the statistical quantum theory; probabilities arising
in the predictions of the theory are to be interpreted as in classical
theory.

In the two-slit experiment this means that each particle in fact goes
through one or other of the slits. Clearly the interference of particles
is something new in quantum theory which this model must re-
produce. If the particle goes through one or other of the slits, the two
possibilities are in principle distinguishable; we should write a mixture
instead of a pure state and the interference disappears. In order to
explain the persistence of interference in this interpretation Ballentine
refers to the work of Duane® in 1927, more recently revived by
Landé'®. The result is obtained by considering the possibilities for
momentum transfer between the individual particle and the screen
containing the slits. The matter distribution of the screen is Fourier
analysed into a ‘three-fold infinity of sinusoidal elementary lattices of
spacings Iy, /5, /5 ... and amplitude A(/;). According to an extension
of the Bohr-Sommerfeld quantum conditions, each such lattice is
capable of changing its momentum in the direction of the periodicity
only by amounts;

Ap; = hjl;

The intensity of an / component in the harmonic analysis is propor-
tional to the statistical frequency of the corresponding momentum
transfer. Thus each particle does not simply interact locally with the
screen but non-locally with the matter distribution of the screen as a
whole. Now a change in this matter distribution, e.g. closing a slit,
results in an instantaneous change in the components of the harmonic
analysis and thus in a corresponding change in the possible mo-
mentum transfers, resuiting in a single-slit distribution of intensity.
We are bound to ask what, in this analysis, determines which of ali
the possible momentum transfers actually occurs in the individual
particle’s passage. There is no answer and so individual events are
inherently statistical.

It is not clear in this model why the matter distribution consisting
the screen should be Fourier analysed but not the matter distribution
which constitutes the particle. The screen is, after all, made of particles.
The physical status of the Fourier components which exist with certain
amplitudes is also unclear. Einstein originally denied that the wave

141



142

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

function gives a complete description of an individual because he saw
that this assumption contradicted the notion of locality**. If we assign
the wave function only a meaning in a statistical ensemble and resort
to the above arguments to explain interference and diffraction, thep
clearly non-locality is introduced, but in a way which is not intuitively
clear.

If we reconsider Einstein’s modification of the two-slit experiment
in this model then we see that the meaning of the uncertainty in the
position of the slits, resulting in the loss of interference, is to be
interpreted differently. In each experiment the screen has a definite
position (this position has a statistical dispersion in the ensemble, Ax)
and so in each individual case the particle is forbidden to land in the
positions of the minima of the pattern. (This incidently is a definite
prediction for the outcome of an individual experiment, in con-
tradiction to Ballentine’s statement above.) However, because the
position of the maxima and minima in each case is different, in the
ensemble interference is lost — a different explanation to that of the
Copenhagen interpretation but with the same results.

The statistical interpretation claims to be a minimal interpretation
which removes the ‘dead wood’ of the Copenhagen interpretation.
However, nothing is gained in the understanding of the quantum world
and the mysteries remain complete.

(it1) The causal interpretation

This interpretation was originally proposed by de Broglie!? and
independently by Bohm?3. It has recently been extended by Vigier'?
to include a sub-quantum Dirac ether as an underlying physical
model.

In fact it is the only known interpretation of quantum mechanics in
terms of which all quantum effects can be explained on the basis of
causal continuous motions in space and time. The quantum mech-
anical description of an individual through the wave-function is held
to be incomplete in the sense of Einstein. The description may be
supplemented with real physical motions of particles, without
ambiguity or contradiction, but in a manner which introduces severely
non-classical features. Bohr’s epistemological position is set-aside and
the task of physics is held to consist not only of the attempt to predict
the statistical frequency of results in ensembles but also to provide
explanations and descriptions of the individual processes between
source and detection. No problems arise in the analysis of ‘phenom-
ena’ into constituent parts, as the essential feature of their unity is
now manifested by the quantum potential which arises from the non-
locally correlated stochastic fluctuations of the underlying covariant
ether (see Introduction). The quantum potential exhibits radically new
properties. In the single-particle case its form depends on the state of
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the system as a whole, a feature which is the analogue of its non-local
character in the many-body system'?,

Clearly if we consider that individual particles really exist in the
interphenomena between source and screen and follow determinate
trajectories, then the motion of each particle must be inextricably
linked with the structure of its environment. Any change in the ap-
paratus affects the whole ensemble of possible trajectories. This
undivided connection is mediated by the quantum potential which
arises as an extra potential term in the Hamilton-Jacobi-like equation,
which may be derived by substituting = Re'S"# in the Schrodinger
equation and separating the real and imaginary parts, as Bohm did in
1952. In addition to the Hamilton-Jacobi equation:

aS  (VS)? h* V2R
_ = V— — —— 1
ot 2m + 2m R (1]

one finds a continuity equation with P = R%:

JP \A)
L V.(p_> ~0 [2]
Jt m

R and S are interpreted as the amplitude and phase of the real y field.
The possible real average motions of a particle may be represented by
trajectories derived from the relation that the particle momentum is
given by:

j=VS (3]

In the many-body case, particle motions are correlated by the
quantum potential in a non-local way, although in the scalar case this
action at-a-distance does not give rise to any special problems. Even
in the relativistic case, where non-locality may be thought to conflict
with the requirements of relativistic causality, it can be shown that
this connection is mediated superluminally, yet causally, and cannot
lead to any results conflicting with the predictions of special re-
lativity!319,

An exact calculation has been carried out in detail by Philippidis et
al'” in the causal interpretation of the ome-particle Schrodinger
equation description of the two-slit experiment. Here we represent the
form of the quantum potential and the associated trajectories in Figure
9.2 and Figure 9.3 respectively. The intensity distribution at the screen
depends on the density of trajectories along with their occupation
probability, and of course agrees in the Fraunhoffer limit with that
expected from the usual considerations.

The precise form of each trajectory is sensitive to changes in vari-
ables describing the particle’s environment. The distribution of tra-
jectories demonstrates that each particie travelling in the apparatus
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Figure 9.2 The quantum potential for two Gaussian slits viewed from a posi-
tion on the axis beyond screen B.

‘knows about’ or responds to the global structure of its environment
(e.g. the presence of two slits, not one) and so exhibits a wholeness
completely foreign to mechanistic models in classical conceptions.

The quantum potential approach provides a way of understanding
the feature of the quantum wholeness of phenomena emphasized by
Bohr. Yet we are not required to relinquish the attempt to explain the
interphenomena in terms of space-time co-ordination and causal
connection simultaneously.

The unity of system and environment, so clearly demonstrated in
the double-slit trajectories, is then revealed as the essentially new non-
classical feature of quantum mechanics. Of course the single-particle
description is an abstraction and this unity is really a reflection of the
non-local character of the correlations that arise in the many-body
case. The non-separability of quantum systems had been emphasized
by Schrédinger'® and Einstein, Podolsky and Rosen!! in 1935. That
such non-local correlations exist can no longer be doubted, as the
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siit 4 siit 8

Figure 9.3 Trajectories for two Gaussian slits with a Gaussian distribution
of initial positions at the slits.

results of Aspect’s experiment demonstrate!®. Indeed these experi-
ments find a perfectly causal explanation through the quantum po-
tential?®.

Reconsidering Einstein’s modified two-slit experiment, the ex-
planation of the loss of the interference pattern upon path de-
termination in an ensemble of results is similar to that of the statistical

145



146

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

interpretation, but now with precisely-definable individual particle
trajectories determined by the quantum potential. None of the tra-
jectories crosses the line of symmetry (a point confirmed by Prosser,
who calculated lines of energy flow in the electromagnetic case?!) and
this is a new macroscopic prediction.

(iv) Wave-packet collapse

In the Bohr-Einstein debate, Bohr was able to defend the comple-
mentarity principle by showing that attempts to use detailed energy
or momentum conservation in individual processes to determine
particle trajectories more closely requires a change of the experimental
arrangement which results in a loss of interference and the wave
aspect. Bohr never referred to wave-packet collapse in these argu-
ments. However, many of his supporters did and the concept is asso-
ciated with his interpretation. Using the concept of wave-packet
collapse to provide a physical interpretation of the quantum formalism
is contrary to the spirit of Bohr’s epistemological position. Never-
theless the argument is often put in the following way in CIQM. The
introduction of a device capable of determining through which slit a
particle passes induces a collapse of the wave function in the apparatus
and a consequent loss of interference. Such a collapse follows from
the assumption that the wave function provides a complete description
of an individual system. In fact it is an hypothesis added to the
quantum formalism and not an integral part of that formalism, al-
though this is not the impression given in most texts. Arguments
demonstrating the redundancy of this ad hoc postulate in quantum
theory have existed for a long time.

Bohm, followed more recently by Cini?Z, have argued that wave
packet collapse does not correspond to any objective real physical
change in the state of a system. By including the interaction with the
measuring device in the quantum description, it can be shown that
the interference between the components of a pure state is destroyed
as a result of the interaction between the system and the macroscopic
instrument, which 1s in effect irreversible. That is, there are no
observable differences between the description of the composite in
terms of the pure-state density matrix with vanishing interference
terms and that in terms of the mixture density matrix (with wave-
packet collapse). If we find out which component of the pure state is
actualized in the process, the others may be disregarded as they can
have no further influence on the behaviour of the system after the
(irreversible) interaction with the macroscopic instrument has taken
place. Wave-packet collapse is now simply a matter of convenience.
The physical interpretation of individual quantum processes in terms
of particle trajectories excludes the necessity of introducing wave
packet collapse.
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Consider the general case of particle interference with two wave
functions ¢, and ¥, (this could be a two-slit experiment with , from
slit 1 and ¢, from slit 2 or an interferometer with y, in path 1 and ¥,
in path 2). Also let the wave function of an apparatus introduced only
in path Il be ¢; initially and ¢, finally, then we have:

Y:.=oi + oy — V¥, = oiy + oy [4]

If, through its functioning the states,"¢; and ¢, become orthogonal
then interference is destroyed:

ViV, = oioW ¢ + of o i [5]

and the system (neutron, photon, electron) acts as a particle that goes
either on path I or path II. Observation of the measuring instrument

merely tells us which alternative took place and thus we replace ‘P,I

by @i, or ¢ . This is a collapse of the wave function which simply
represents a change of our knowledge and does not correspond to
any real physical changes in the state of the system. If ¢; and ¢, are
not orthogonal then interference persists:

ViV, =oployiy, + o7 oy + oo + Oy (6]

and the system acts as a wave in both paths.

If by observing the apparatus we could still in fact determine the
path of the particle, then in CIQM the act of observation would have
to cause real physical changes in the particle’s state as a consequence
of a wave-packet collapse, since, if neutrons, electrons and photons
are conceived as particles that go one way or the other, equation [6]
should reduce to equation [5].

Thus CIQM concludes that all measurements capable of de-
termining the particle’s path imply orthogonality of the apparatus
wave functions initially and finally. In SIQM, determination of particle
path need not imply orthogonality of apparatus wave functions in
order to exclude the intervention of consciousness in physical pro-
cesses. What appears as a ‘pseudo-collapse’ is the action of a macro-
scopic measuring device which makes the interference terms negligible,
as is consistently shown by Cini in a detailed application of the time-
dependent Schrodinger equation to the interaction between a system
and a measuring device. Thus there is no a priori impossibility of path
determination and persisting interference; one has only to find an
appropriate measuring device that during an interaction with the
micro-system does not undergo a change to an orthogonal state, i.e.
preserves the interference terms, and still offers a possibility to decode
this small quantum-number change. The use of SQUIDS and no-
demolition measurements could be considered in this context.

The possibility to go beyond CIQM was known to Bohm, in his
original paper?, albeit in a different context. He remarks, in relation
to the loss of interference properties on measurement: ‘In our inter-
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pretation, however, the destruction of the interference pattern could
in principle be avoided by means of other ways of making meas-
urements.’

3 Neutron interferometry

We propose now to take up these questions in relation to another
specific quantum interference situation, neutron interferometry?3,
Neutron interferometry has the advantage that it reproduces the
double-slit configuration with massive particles and introduces new
possibilities for interaction through the neutron spin, thus essentially
altering the situation.

(1) Spatial interference

To this purpose consider the experimental arrangement of Figure 9.4
with both spin flippers turned off. A simple calculation shows?# that if
an originally spin-up polarized beam ¥ = |1,> enters the interfero-
meter, it is subdivided in two partial beams ¢, = €X|,> and y;; = |1, >
that successively recombine and yield an intensity interference behind
the interferometer modulated with the phase shift factor y:

Detectors

Figure 9.4 The neutron interferometer with a spin-flip coil in each arm.

I=@ + Y)W + ¥y) = 2(1 + cos x) [7]
while the polarization remains in the z-direction, i..:
P = (0,0,1) [8]

Let us now turn to consider the interpretation of the results. For Bohr,
the concept of the interphenomena cannot be unambiguously applied,;
the phenomenon is unanalysable. All we can do is calculate the inter-
fering probability amplitudes associated with each path through the
apparatus. Neutron paths and ‘neutron waves’ are equally ambiguous
for Bohr. He states that descriptions in terms of photons and electron
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waves have the same ambiguity as other pictorial descriptions of the

interphenomena; only the classical concepts of material particles and

electromagnetic waves have an unambiguous field of application.

However, if we wish to discuss the interphenomena we must set Bohr’s

position aside (as in fact most physicists actually do). Then a clear

choice exists between two possible explanations. Either:

1 we say the neutron does not exist as a particle in the inter-
ferometer; or

2 we say the neutron actually travels along path I or IT only, but is
influenced by the physical conditions along both.

(a) The CIQM Suppose, with the usual interpretation of the quantum for-
malism, a particle were actually to travel along one path, then the
existence of the other would be irrelevant and interference cannot
occur. Interference arises not from our lack of knowledge of the path
but from the fact that the neutron does not have one. Any attempt to
reveal the particle between source and detector induces a wave-packet
collapse, i.e. localizes the particle in one beam, and interference effects
disappear. The wave and particle nature of matter are complementary
aspects. Since in this view the neutron is not to be conceived of as a
particle before detection localizes it, questions concerning which beam
a given neutron enters at the region of superposition cannot be formu-
lated and the question of explanation is summarily closed.

(b) The causal stochastic interpretation If, contrary to the usual interpretation
outlined in (a), we believe with Einstein®® and de Broglie'? that
neutrons are particles that really exist in space and time, then Rauch’s
statement, ruled out in the CIQM, can be made; namely that: ‘At the
place of superposition every neutron has the information that there
have been two equivalent paths through the interferometer, which
have a certain phase difference causing the neutron to join the beam in
the forward or deviated direction™?®.

It is then possible to suggest physical models to explain the caus-
ation of individual events, a non-existent option in CIQM. In the
SIQM neutrons can be thought of as particles accompanied by waves
simultaneously; the particle travels along one path through the
interferometer whilst its real wave is split and travels along both. The
waves interfere in the region of superposition and give rise to a
quantum potential which carries information concerning the whole
apparatus and determines the particle trajectories. The changing phase
relations between the waves in I and II lead to a changing quantum
potential structure that determines which beam each individual
neutron enters according to its initial position in the wave packet and
phase shift y. The detailed explanation provided for the two slit ex-
periment and square potential phenomena?’ may be easily extended
to this case. The details may be found in reference 28; here we simply
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represent the form of the effective potential (quantum potential plus
classical barrier) and the associated trajectories. The results of the
numerical calculation show that varying the phase shift factor y be-
tween 0 and 2 produces the correct type of interference figure. When
¥ = 0, =, the effective potential (quantum + classical), as shown in
Figure 9.5, is symmetric about the barrier centre. A series of violent
oscillations develops on each side of the barrier potential. These arise
when the incident wave interferes with the combination of its own
reflected wave and the in-phase transmitted wave from the other side.
Figure 9.6 shows the associated trajectories.
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Figure 9.5 The effective potential at the last ‘set of crystal planes’ with phase
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With y = n/2 the situation is very different. In this case the
quantum potential oscillations are greatly reduced on one side of the
potential barrier, in the region where the density of trajectories is
large, and this allows the particles to be transmitted (see upper section
of Figure 9.7). In the lower section notice that the quantum potential
oscillations are enhanced and occur at an earlier time, ensuring that
all the trajectories constituting beam Il are reflected (Figure 9.8).
Those constituting beam I now enter the potential barrier and
emerge after the reflection of those in beam II, both forming the
single emerging beam. In this case the reflected wave from beam I
is (almost completely) cancelled by the anti-phase transmitted wave
from beam II.
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Figure 9.8 Trajectories associated with y = n/2.

When y = 3n/2 the situation is essentially reversed (see Figures 9.9,
9.10), all the trajectories and any neutron emerging in the upper sec-
tion. The few trajectories which do not follow the others come from
the extreme tails of the packets and so have very low probability; here
they represent the effect of a finite potential width.

Time-dependent spin superposition

Now according to Badurek et al.2® a completely different physical
situation arises in the case of the time-dependent superposition of
linear spin states using a radio-frequency spin-flip coil. Indeed, ‘in that
case the total energy of the neutrons is not conserved’. The detailed
experimental arrangement can be schematically represented as follows.
The incident neutron beam containing one neutron at a time is sub-
sequently divided into beams I and II. On beam I acts a nuclear phase
shifter represented by the action of a unitary operator ¢'* on . Beam
II is subjected to the following combination of magnetic fields:

1 a static magnetic field in the +z direction B =

(070130);
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(a) The

2  aradio-frequency time-dependent magnetic field B = (B, cos w, ¢,
B, sin w, 1, 0) rotating in the xy plane with a frequency w,,
obeying the resonance condition, fiw,, = 2uB,, where u is the
magnetic moment of the neutron, i.e. it yields exactly the Zeeman
energy difference between the two spin eigenstates of the neutron
within the static field.

Neutrons passing through such a device (a spin flipper) reverse their

initial + z polarization into the — = direction, by transferring an energy

AE = 2uB, to the coil whilst maintaining their initial momentum

The wave function in beam I after passing through the phase shifter
is:

Yy = €M1 = () [9]
The corresponding wave function in II after the coil should be
written:
AE, AE,
n=e¢ D=6, [10]

since the rf-coil is shown to be almost 100 per cent efficient°.
Let the wave function of the coil initially be ¢; and finally be ¢,.
Then initially the wave function of the whole (neutron and coil) is:

¥, = oday, + byry) [11]
and the final state is:
¥, = oy, + (P/b‘/’u [12]

and the condition for the observation of interference is ¢; ~ ¢ that
is, the state of the coil is virtually unaltered and no measurement in
the usual sense takes place. Then:

¥, = oday, + bdy)

and intensity:

I=Y/y,=2

with polarization:

p = (cos (a, gt — ). sin(@,,1 — 1)0) (13}

entirely in the xy plane. These are the well-known results of Badurek
et al.?® which are experimentally verified.

Copenhagen interpretation Now how are these results
encompassed within the CIQM? The observation of interference
implies the wave aspect; hence the particle cannot even be said to
exist during the time between emission and absorption in the detector.
A particle cannot exist in one beam (or pass through one slit in the
double-slit experiment) and take part in interference. However in order
to describe the functioning of the coil we must use the complementary



(b) The

Jeffers, Lehnert, Abramson & Chebotarev (eds.)

localized particle aspect. The energy transfer that takes place giving
rise to the change of i is described by Rauch in terms of photon
exchange between the neutron and the field in the coil. Thus the
neutron is conceived as a particle in one beam to explain energy
transfer and simultaneously as a wave existing in both to explain
interference. The complementarity of wave and particle descriptions
is broken; both aspects must be used simuitancously in one and the
same experimental arrangement. Complementary description is thus
incomplete, or can energy be exchanged with a probability wave?

causal stochastic interpretation In the SIQM we use the Feynman—
Gell-Mann equation for spin half-particles as a second-order stoch-
astic equation for the collective excitations of the assumed underlying
covariant random vacuum, Dirac’s ether®!-32. A spin half-particle is
conceived as a localized entity surrounded by a real spinor wave due
to perturbation of the vacuum. While the particle really travels one
way (path I or II), the spinor wave propagates in both paths. In path
II the interaction with the rf spin-flipper inverts the spinor symmetry
of the wave while in path I the initial state is maintained. What
happens in the interference region can be now represented by the
action of a spin dependent quantum potential 0 and a quantum
torque t which can be shown to produce a time-dependent spinor
symmetry in the xy plane. The particle travelling, for example, in path
1 is constrained by the spinor symmetry in the interference region and
its +z spin is twisted into the xy plane by the quantum torque. If it
travels along path II it suffers an additional spin inversion due to the
tf coil, yielding this energy to the coil while in the intersection area its
-z spin is twisted again to the xy plane. Consequently, a coherent
picture is established which accounts for both particle and wave
aspects.

(iii) Measurement and time-dependent spin flippers

Now, Badurek et al., who performed the experiment, have stated: ‘This
experiment has shown explicitly that the interference properties of
beams can be preserved even when a real energy exchange takes place,
which is intuitively a measurement’?®. But does it constitute a mea-
surement? The situation must be analysed carefully.

Clearly if the functioning of the coil is a measurement in the
quantum mechanical sense, then ¢; would be orthogonal to ¢, and
interference would disappear. The reasons for considering such an
interaction as a quantum measurement process are the following.
First, there is an energy exchange taking place unidirectionally from
the passing neutron to the rf-circuit, since the energy of the initial
state differs by AE from that of the final state. This energy exchange,
if decoded and extracted from the resonator circuit, could reveal
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the passage of the neutron. Second, this energy transfer in the form of

a photon transition establishes a one-to-one correspondence between

the change of the neutron’s spin state from spin up to spin down.

If ¢, and ¢, are not orthogonal, then interference and spin
superposition persist, but in order to demonstrate the coexistence of
particle path and interference some means must be found to decode
the small quantum number change involved between @; and ¢,.

If, in spite of the non-orthogonality of ¢, and ¢, the particle path
could be observed, then in CIQM the act of observation itself (i.e. our
knowledge) would have to destroy the interference terms (wave-packet
collapse), whereas this is not ruled out a priori in the quantum po-
tential approach, in which particle path and interference are not ex-
clusive and the wave function of the apparatus does not provide a
complete description of an individual apparatus. Within the quantum
potential approach one could consider, as we have suggested, the pos-
sible adaptation of quantum non-demolition measurements to detect
the passage of a neutron.

Does the possibility exist of detecting the passage of a neutron from
the energy it transfers to the rf coil? For Bohr the question of an
individual energy transfer to the coil when it is part of the interfer-
ometer set-up cannot arise, as this amounts to an attempt to subdivide
the experiment. Actually changing the experiment to allow the de-
tection of the energy transfer results in a complementary phenomenon
in which interference would not be observed. In the quantum potential
approach there is no contradiction between energy transfer and inter-
ference. Consider the following possibilities.

1 If the single energy transfer is detectable with certainty by
inspecting the coil’s state, then its final state must not overlap
with the initial state. However the addition of a single photon
to the field in the coil does not, even under the most favourable
assumptions concerning the state of this coil, lead to any
observable change (consider the field to be in a coherent state,
for example).

2 If it is possible, by introducing a superconducting quantum inter-
ference device (SQUID)33, to detect the exchange of a single
photon, then according to the usual application of the quantum
formalism the implied orthogonality of SQUID states destroys
the interference. This experiment, if performed, would, if inter-
ference is not observed, confirm the non-separability of neutron
and SQUID states. If on the other hand interference persists, then
the experiment would contradict quantum non-separability; the
SQUID state would be decoupled from the neutron state.

3 If a single energy transfer is not detectable, can some device be
added that stores the individual unidirectional energy transfers
eventually leading to a detectable amount? Is so then this energy
can only have come from the passage of individual neutrons
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through the coil, which implies that each individual neutron
actually travels along one or the other of the paths through the
interferometer and takes part in interference.

(iv) Energy conservation and the double-coil experiment

Consider now the situation with two time-dependent rf coils, one in
each beam?% In this proposed experiment the doubts raised by
Badurek e¢f al.?® concerning the phase-number uncertainty do not
apply at all*4, since the resulting interference pattern is stationary. No
theoretical objection arises for a possible detection of single photon
transitions in the field of the tf spin flipper on this count.

Ignoring all common phase factors, the wave functions of the
superposed beams are:

¥ = e*}> [14]
du = 11D [15]
with polarization:

P =(00,—-1) [16]
and:

YW, =2(1 + cosy) [17]

Spatial interference is recovered. The results of this single apparatus
are:
I each emerging neutron has lost an energy AE; its spin is now
‘down’ in the guide field;

2 each neutron takes part in interference.
In order to explain the measured loss of energy, the neutron must
pass as a particle through one or the other coil and exchange a photon
with the field. In the quantum potential approach this is consistent
with the observation of interference; in a description based on
wave/particle duality it is not, as both particle (loss of energy) and
wave (interference) properties must be manifest simultaneously in one
and the same experimental arrangement. v

A measurement of the polarization of the neutron behind the
interferometer reveals that each neutron has suffered a spin flip. Each
emerging neutron has lost an amount of energy AE where AE = 2uB
represents the Zeeman splitting. If energy is to be conserved this -
energy must have gone to one or other of the coils. This is only pos-
sible if the neutron passes as a particle through one or other and
gives an indivisible photon of energy E = hw,; = AE to the ri-field.
The spatial interference can only be explained by assuming that the
neutron does not pass through one or other of the coils.
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Since here both interference and spin direction can be measured
simultaneously, according to CIQM the neutron actually travels path
I or IT and at the same time does not exist as a particle at all.

In the Bohr-Einstein debate the application of particle momentum
conservation in individual events always led to the consistency of
CIQM. Here the energy conservation leads to the inconsistency of
CIQM, since wave and particle aspects must be used together to ex-
plain the observed results. If it is insisted in CIQM that neutrons do
not travel one way or the other in this experiment, no energy can be
transferred to the coils and then there is no conservation of energy in
individual events. Further, if a statistical ensemble of individual
neutron passages is considered, we see that, even there, there is no
conservation of energy in CIQM when the interference is observed.

We are confronted by a stark alternative. Either:

1 we renounce any possibility of describing what happens in
the neutron interferometry experiments; there exists then no
possibility of explaining quantum phenomena, not even in terms
of a wave/particle duality which only leads to ambiguity, in-
dividual quantum phenomena are in principle and irreducibly
indeterminist in character and there can be no form of physical
determinism appropriate in the quantum domain; or

2 we adopt the quantum potential approach as the only known con-
sistent manner in which the quantum world can be conceived and
explained in terms of a physically determinist reality; then, even if
the quantum potential approach is not taken as the finally satisfac-
tory description of quantum mechanical reality, it at least shows in
a clear way the features that such a description must entail.

Consider the question of energy conservation in a more general way

in SIQM and CIQM. In CIQM, as emphasized by Bohr, we may

only consider the energy of a system to be definite when the system is
in a stationary state. The system may only be in a stationary state in
the absence of perturbing forces, such as those necessarily introduced
in a measuring process. Such interactions are necessary to localize the
system in order to allow a space-time description. Thus, in a transition
between stationary states, energy conservation can be applied to the

initial and final states but this excludes the conditions necessary for a

space-time description. Bohr would say that when we are in a position

to speak of space-time location there can be no question of energy
conservation and, when energy conservation can be applied, the con-
cepts of space-time co-ordination lose their immediate sense.

In SIQM a stationary state means the particle energy given by 95/0t
is a constant. The quantum potential is time independent and the
particle’s motion is conservative in that:

(vs)?

+Q0=— s = constant
2m

ot
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The particle can gain or lose kinetic energy at the expense of quantum
potential energy. For example in an S state of an H atom, the particle
is stationary with energy F, this energy being held as quantum po-
tential energy whilst the quantum force —VQ balances the Coulomb
force —VV. In a different example, when y is a plane monochromatic
wave, the particle energy is a constant since the quantum potential
vanishes. A more complex case is that of the double-slit experiment
discussed above.

For stationary states and systems which undergo changes between
them, conservation of energy may be established in both SIQM and
CIQM, but SIQM can also provide a space-time description.

The case in which ¥ is a superposition of stationary states is rather

different, as discussed by Bohm?®'3* and de Broglie'#*¢. Consider the
state:
Y= ;CKV’K (18]

where ¥ is a sum of stationary states with energy E,.

In CIQM we simply say that the energy of the individual system is
not well defined but that upon measurement the value E, will be found
with probability [C,|%. Thus any individual process that includes (as
part of its initial or final state) a superposition of states of different
energy cannot be described in terms of energy conservation. If we
insist that infinite plane waves represent an excessive abstraction and
the more realistic description of a free particle is a wave packet or
superposition of plane waves of different momenta, then we are led to
conclude that energy conservation cannot be applied even to the
motion of an individual free particle. The particle, in so far as it exists
in CIQM, has potentially all the energies E, with probabilities |C,|>.

In SIQM a particle represented by a superposition of stationary
states with different energies has a well-defined energy at each moment
(dependent on its initial position) in the wave packet but this energy
is continuously variable with time. (However, the mean particle energy
averaged over the ensemble is equal to the usual quantum mechanical
result for the energy operator.) The variation of energy is due to the
influence of the quantum potential which fluctuates with time. Thus
in a wave-packet representation of the free particle we find that energy
is not conserved for an individual particle since §S/0t # constant.

Let us reconsider from this point of view the neutron interferometer
experiment with one rf-coil in path II. Before entering the interfer-
ometer the neutron has a well-defined energy E corresponding to |T,).
On leaving it is a superposition of states of different energy £(1.) on
path I and (E — AE)(,) on path II. Thus the spin can be found in the
xy plane, by the measurement procedure described above, clearly
demonstrating the principle of spin superposition (interference), i.e.
the state is not a mixture of T, and |,. However this interference
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observation requires us to relinquish the possibility of a description in
terms of energy conservation. The attempt to apply energy conser-
vation would require the use of a definite spin state in the guide field;
that is, the state would have to be either T, or |, (a mixture). In that
case energy conservation could apply in individual processes since
superposition and interference is lost. A neutron in beam / with 1,
retains its original spin energy whilst one beam II exchanges AE with
the coil. Thus we may choose to measure the z component of the
spin and apply conservation of energy or observe the superposition
and deny energy conservation. The two are complementary.

A similar situation exists in the two-slit experiments. If we wish to
consider conservation of momentum of an individual electron, then it
must be described as passing through one slit or the other in order to
exchange momentum. If it passes through one slit, or the other, then
interference is not possible.

In SIQM the particles have definite positions, momenta, energy and
spin at all times, their associated (spinor) waves producing interference
properties through the action of the (spin-dependent) quantum po-
tential. In the neutron interferometer experiment described above
there are then two possibilities depending on the path taken at the
first crystal plane when interference is observed, ie.:

incident beam (T)E
A‘

inlcﬂ'creAncc region
E
[E]1 -5

™~ AE

(T)Ew H-coil /(-’)E - 7‘
TAE AE AE
(VE - AE—[E— AE] + o~ = E— —

If we choose to measure the z component no superposition effects can
be observed and energy is conserved on both paths.

If interference is observed then a neutron which travels in path I has
an overall loss of energy AE/2 while a neutron which travels path I1
has an overall gain of energy of AE/2 (AE transfer to coil). Thus for
SIQM, in an ensemble, energy is conserved when interference occurs.
This is not the case in CIQM. Also in SIQM when we include the
possibility of energy exchange with the ether, through the action of
the quantum torque which rotates 1, and [, to —,, it is seen that
energy may be conserved even in the individual case.

In general we see that in CIQM there is no possibility of recovering
energy conservation in non-stationary situations; indeed, individual
processes have no real independent existence.

Such a possibility does exist in SIQM if we assume that the particle
exchanges energy with the sub-quantum Dirac ether. Indeed the re-
covery of conservation of energy in real individual processes is a
strong reason for accepting the existence of such an ether.
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We should note that the prediction of variable or non-constant
energy made by SIQM does not contradict any experimental results
of quantum mechanics. Indeed all the results of quantum mechanics
can be reproduced by SIQM. Thus, as Bohm points out, when des-
cribing the scattering of a particle wave-packet by an atom whilst the
interaction is still taking place and the wave packets overlap the
particle and atomic electron energies fluctuate violently and it is only
when the packets separate that the energies obtain a constant value.
The corresponding feature in CIQM is given by the uncertainty re-
lations AEA! > h, and the energy of each system can only become defi-
nite after a sufficient time has elapsed to complete the scattering.

Thus the prediction of the existence of variable energies in SIQM
does not contradict any result of quantum mechanics. In fact the
SIQM can provide detailed information concerning the energy vari-
ation along well-determined trajectories in space-time in particular
experimental situations. CIQM simply does not deny the possible exist-
ence of such energies if they are measured. The implication of this is
that SIQM can make predictions which do not contradict CIQM but,
in going beyond what CIQM allows to be possible, in the sense of
being more precise, clearly demonstrates its incomplete character. In
particular, some effects in non-linear optics experiments, ie. the
ejection of a photo-electron®’, photo-ionization of a gas®® and fluo-
rescence3®, occur even when the laser frequency is in fact below the
necessary threshold for the process (provided the beam is put in a
non-stationary state by focusing or by creation of a pulse). These
effects can be interpreted in both CIQM and SIQM. However, by
providing a detailed description of the individual trajectories and
particle energies involved, SIQM can make testable predictions which
are not possible in CIQM. In SIQM it is possible to predict at which
points the particles of increased energy will be found and hence exactly
where the effects should be observed*®. If such predictions can be
confirmed the CIQM would be shown to be incomplete in the original
sense of Einstein.

4 Quantum statistics

In orthodox theory the wavelike density fluctuations of collections of
like particles are described using Bose-Einstein or Fermi-Dirac sta-
tistics based solely on the notion of indistinguishability and the sym-
metry or antisymmetry of the wave function. However any inter-
pretation of quantum mechanics which asserts the existence of indi-
vidual particle trajectories is faced with a problem when the question
of quantum statistical behaviour arises. Brillouin*! had already in
1927 considered this problem. He argued that even if particles are
identical a priori, it is easy nevertheless to distinguish them by their
history. He then finds the auxiliary assumptions that enable quantum
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statistics to be obtained with distinguishability of elements. When the
elements are assumed to be independent classical statistics result, in
order to obtain quantum statistics some correlation between the dis-
tinguishable elements must be assumed. Further, as has been more
recently emphasized by Feynman*?, no classical model with local
interactions between the elements can ever reproduce all the results of
quantum mechanics. This represents a serious problem in the statis-
tical interpretation, and in SIQM.

In the derivation of the formulae of classical statistics with dist-
inguishability, the assumption that the elements are free between
random local collisions and that each distinct state has equal prob-
ability leads, for N elements distributed among M available discrete
states, to the result that the probability of a set of occupancies {n;}
i =1...M is proportional to the number of distinct configurations
corresponding to {n;}:

P{n} = M VNn,! ... ny! [19]

However, Tersoff and Bayer*? have shown that Bose-Einstein statistics
can be recovered with distinguishable particles if the assumption of
equal probability distribution among available states is replaced by
that of arbitrary probability weighting. It has also been shown** that
such an arbitrary probability weighting is a natural consequence of
the causal interpretation. In this interpretation the assumption of
random local collisions and independent particles no longer holds.
The average motions of N particles given by:

1
Vk=—0%S (K=1...N) [20]

are determined from the non-local action at-a-distance quantum
potential:

Q=%5- 4 =30, [21]

K

This potential acts instantaneously in the centre of mass rest-frame
and also implies that the interaction is causal (since the individual
Hamiltonians H, = LPi{P,, + Q, satisfy the causality constraints
{H\.H;} = 0) so that all colliding particles are permanently correlated
and can never be considered free. This implies that gach individual
state is not identical with all others, so that we should attribute to
each one a different probability weighting ; of course requiring
0 <€ w, < 1land fla)‘- = 1. This weight depends on all former possible
different real subquantal random motions in phase space, so that the
total statistics results from an averaging over all possible w; in all
possible configurations. Thus we should write:
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N! " .
P{n;} = Av[n————ll X (@ )" ... (wp) ]
1 1 N'
= J- j dw, 4..de——'———'{w)"‘ o ()™
o 0 nl....nM.
M
5(1 — Zw,) [22]

i=1
which, as shown by Tersoff and Bayer*?, leads to the Bose-Einstein
result:

NY(M — 1)

N+ M-—1) (23]

P{n} =

Fermi-Dirac statistics can also be reproduced*® in a similar way with
the constraint that n;, = O or L.

As an illustration we now show in a particular physical situation
how the individual motions of particles under the influence of the
many-body quantum potential lead to different statistical results
according to the type of wave function assumed*®. The causal inter-
pretation of quantum statistics can thus be shown to provide an intui-
tive understanding of quantum statistical results (in terms of cor-
related particle motions), classical statistics arising as a special case
when the particles are not correlated by the quantum potential. The
case examined here is the following. Consider a harmonic oscillator

potential:
V= kx?  mo*x?
-2 T2

and construct, by solving the Schrodinger equation, a wave-packet
solution®®:

Y(x,t) = exp (—iw?) exp [—%(x — Xo COS wt)z] exp

[%xésm 22 i 2xx, sin wt)} (24]

This wave-packet solution is non-dispersive and, depending on the
time parameter ¢, defines in the causal interpretation a set of possible
trajectories for a particle located at the position x, where x, is the
centre of a wave packet.

Now consider the case of two particles, one in each of the wave
packets i ,(x,,f) and Yg(x,,7) in the harmonic oscillator potential. The
packet 4(x,,?) is assumed to be centred at x, and, in order to simplify
the calculations, the packet Yy(x,,f) centred at — x,.

It is clear that, depending on the assumed statistics (MB, BE or
FD), three wave functions can be written. These are:

163



164

Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

Oup = aupWa(X DY R(X2,0) [25]
©pe = dpel¥a(X,OYp(x2.) + Yalx Y a(x2:1)] [26]
@ep = App[Yalx DY R(x2,0) — Ya(x 1, a(x2,0)] [27]

where the as are renormalization constants to be determined by the
condition [fpdx,;dx, = 1. A standard quantum mechanical calcu-
lation yields the mean squared separation of the particles and it can
be shown that the mean squared separation of the particles is in the
BE case decreased and in the FD case increased with respect to the
MB case.

In SIQM individual pairs of trajectories can be calculated from suit-
able initial positions in the wave packets and the results are shown in
Figure 9.11. This figure provides us with the basic physical features of
the process. The MB particles, being independent, possess trajectories
that cross one another. They propagate undisturbed and produce no
interference. This is not the case for BE or FD particles. They do not
cross but form interference patterns in which the two particles are on
the average closer together in the BE case than in the FD case.

The correlation effects mediated by the quantum potential between
the two particles determines their physical behaviour and conditions
their different statistical averages of physical variables or observables.
This can be easily understood in the SIQM, where particles obeying
quantum statistics are constantly submitted to the stochastic random
motions of the underlying subquantal medium, the Dirac ether. The
symmetric or antisymmetric character of the system’s wave function is
a consequence of the existence (or not) of local repulsive gauge fields
and not a first quantum mechanical principle.

Thus it can be seen that MB statistics (and independence) arise as a
special case of the more general quantum statistics (and correlation)
when the many-body quantum potential is separable in the particle
variables.

5 Negative probabilities

We have seen how accepting the physical idea of particle trajectories
in the quantum domain can lead to the formulation of new physical
questions which one would not be led to on the basis of the CIQM.
We end this paper by discussing an interpretative problem raised by
relativistic quantum mechanics, namely the mathematical existence of
negative probability density and negative energy solutions to second-
order wave equations, which, as in all other quantum processes, we
argue can only be coherently treated by assuming the real physical
existence of paths. Indeed, this is an important issue in the SIQM
since the very existence of paths in space-time implies positive pro-
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Figure 9.11 Ensemble of two particle trajectories x,(r), x,(r) with initial
positions such that x,(0) = —x,(0) and a concentration of particle trajectories

around the packet maxima. (a) Maxwell-Boltzman (b) Bose-Einstein (c)
Fermi-Dirac.

bability distributions and, moreover, in accordance with Einstein’s
basic principles, all material drift motions should be timelike and
propagate positive energy forward in time.

It is sometimes erroneously stated that the only way out of the
problem of negative probability solutions to the Klein-Gordon (KG)
equation is to reject the first quantized formalism in favour of second
quantization. In fact, this is not so and it is possible to show by a
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Hamiltonian method due to Feshbach and Villars*”*® that for certain
well-behaved external potentials the KG solutions may be split into
positive and negative energy parts associated respectively with positive
and negative probability.

To see this, let us start from the charged scalar wave equation:

(D, D* — m*) =0 [28]

where D, = 0, — ied,, e and m are the charge and mass of the par-
ticle moving in the external field A,, the metric has the signature
(— + + +) and the units are chosen so that # = ¢ = 1. [28] may be
expressed in the form:

WV = H(e)¥ [29]

where W is a two-component wave function and H is a 2 x 2 matrix
Hamiltonian. One can show that for the inner product

<OY¥> = J‘(D"‘a3‘~l-’d3x = Jj°d3x

where:
= X — iAW [30]

is the conserved current, the mean value of H in any state is positive:
<¥ H¥> > 0.1t follows that, with HW¥ = E'P, the space of solutions
of equation [29] splits into two disjoint subsets: {E >0,
<¥YW¥> >0} and {E <0, <¥,¥> <0}. The latter subset of
solutions may be mapped into positive-energy positive-probability
anti-particle solutions by means of the charge conjugation opera-
tion:

Y — ¥Y(x) = g, Y*x)
since from equation [29]:
H(—e)W* = —EW¥*and j§ = —J,

Thus, within the CIQM, one can show formally how, for stationary
states, the signs of energy and integrated probability are correlated
and that negative probability solutions may be physically interpreted.
Note though, that the local values of probability density may become
negative and that such motions remain interpreted. We shall now
show how in the causal interpretation we are able to prove a stronger
result than that just given, and in a way which is technically easier
and physically clearer. Our approach extends some brief remarks of
de Broglie*® concerning this problem.

Substituting ¢ = e**%, where P, S are real scalars, in [28] yields
the Hamilton-Jacobi and conservation equations:

(@S — eA")(,S — ed,) = —M> [31]
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a,j* =0 [32]
where

M? =m?> — QP — 0"PO,P

is de Broglie's variable rest mass and:

7 = 2e* ("5 — eA”)

is the current (equation [30]).
The assumption of the SIQM is that the KG particle has a drift
velocity

u* = dx*/dt

where 7 is the proper time along paths parallel to j*. In terms of the
momentum P* = *S — ed*, u* = M'P* with wu* = —1, from
equation [31].

Defining a scalar density p = Me®” we may express equation [32]
in the form3:

Dp _ " =
D‘r_.a“(pu)—O

From this it follows that along a line of flow:
wMe** = K [33]

where w is a volume element of fluid and K is a real or pure imaginary
constant (which, however, varies from one drift line to another). If on
an initial spacelike surface the motion is timelike, then from equation
[31] M is real and so is K. Now, in the rest frame, u°E = M where
the particle energy E = 3°S — eA®. It follows that if initially the
motion is future-pointing, with E > 0, then M > 0 which implies
K > 0 (since ¢** > 0 and w > 0 always) and we see from equation
[33] that the timelike and positive energy character of the motion
is preserved all along a trajectory. Moreover, the sign of the prob-
ability density j° = 2¢?’E is correlated with the sign of E and
will remain positive along a line of flow if the initial motion has
E > 0.

Identical arguments lead to an association of past-pointing
negative-energy motions with negative probability densities and this
coupling is preserved along a line of flow if initially £ < 0. Such solu-
tions may be mapped on to positive energy, positive probability
density anti-particle solutions by the charge conjugation given above:
Y=yt

These results, proved in the rest frame, evidently remain valid under
orthochronous Lorentz transformations.

We have thus succeeded in separating the solutions to the causal
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KG equation into two disjoint subsets {E > 0, j® > 0} and {E < 0,
j© < 0} and shown that the causal laws of motion prevent the de-
velopment of one type of solution into the other. This reasoning holds
for all external fields 4, which maintain the timelikeness of the
momentum P*. Should the external potential be strong enough, pair
creation may occur and the separation of the solutions breaks down.
In addition, we assume that the initial motion is associated with a
wave packet so that the initial total probability is unity. This is an
important point, since de Broglie'? has shown how, with a plane
KG wave incident on a partially reflecting mirror, superluminal
motions apparently occur in the region of the Wiener fringes. It seems
that these unphysical motions are a consequence of the excessive abstrac-
tion implied by the use of plane waves.

It is emphasized that we have only been able to overcome the diffi-
culty of negative probabilities by assuming that particles possess well-
defined space-time trajectories, and that they are subject to action by
the quantum potential (contained in M). With these assumptions, we
can immediately associate the sign of particle energy with the sign of
local probability density, an energy moreover which is well-defined
and continuously variable for all possible particle motions (and not
just for stationary states). The initial character of these motions is
preserved for all time by the Hamilton-Jacobi and conservation
equations.

If one accepts that the quantum mechanical formalism is complete
then one must accept Feynman’s statement®’ that there is no way of
eliminating negative probabilities from the intermediate stages of, for
example, an interference calculation. The problem of their physical
interpretation then cannot be avoided.

However, if one accepts the introduction of trajectories in the des-
cription, then our demonstration above shows how the positive
character of probability is preserved at every stage of the calculation.
The association of positive probabilities with positive energy is of
course in accordance with the principles of relativity theory.

We note finally that, although our discussion here has been confined
to a single KG particle®2, our method may be applied to the elim-
ination of negative probabilities from the theory of the many-body
KG system, the spin-1 Proca equation, and the spin—-} Feynman-—
Gell-Mann equation’3.

Finally, we wish to stress that the causal interpretation does not
reinstate the mechanistic classical world view. Particles may be de-
scribed as possessing definite values of physical variables but these
variables depend, through the quantum forces arising from the
quantum potential and torque, on the whole quantum state which
includes the influence of the environment.

The lessons of Bohm’s work are clear. We can adopt Bohr’s idealist
epistemology and deny the very possibility of analysing what happens
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within quantum phenomena, such as neutron interference. However
we should then be consistent and refuse to speak of the quantum
world as if it actually exists. The only other known alternative, which
is capable of reproducing all the results of quantum mechanics in
terms of a physically determinist reality, is the non-classical causal
interpretation. Far from returning to classical mechanics it shows
exactly how radical a revision of our concepts quantum mechanics
entails. Even if it is not taken as a fully satisfactory description of
quantum mechanical reality, it at least shows in a clear way the
features that such a description must entail. The interpretations of
Bohr and of de Broglie-Bohm-Vigier both emphasize that the fun-
damentally new feature exhibited by quantum phenomena is a kind of
wholeness completely foreign to the post-Aristotelean reductionist
mechanism in which all of nature in the final analysis consists simply
of separate and independently existing parts whose motions, deter-
mined by a few fundamental forces of interaction, are sufficient to
account for all phenomena. The difference arises in the methods for
dealing with the situation. One thing however is clear; the organ-
ization of nature at the fundamental level is far more complex than
mere mechanistic models can encompass. The ghost cannot be exor-
cized from the machine.

Conclusion

Throughout this contribution we have discussed various ‘interpreta-
tions’ of the quantum formalism, and what has emerged is that the
problem is not simply one of interpreting the same results in various
ways. In fact there are good reasons for the argument that CIQM and
SIQM are essentially different theories between which a choice can be
made in a no arbitrary manner. Moreover:

1 They have different ontologies since the real existents
are different. In SIQM individual processes are real, take
place in space and time and have well-defined properties. In fact
SIQM can account for all the quantum properties of matter, in-
cluding all the so-called paradoxes, within this framework without
conflicting with the requirements of special relativity. Further it
does this in terms of a model which is immediately intuitively
clear and which allows a visualization of the actual processes
taking place.

2 All events occurring in space and time can be attributed to material
causes which are also processes taking place in space-time, albeit
non-locally. In CIQM the behaviour of matter is irreducibly
indeterminate; for example, nothing causes the decay of an un-
stable nucleus.

3 In some versions of CIQM the behaviour of matter depends on
the cognizance of observers. Such a possibility does not exist in
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SIQM in which the material world has an existence independent
of the knowledge of observers.

Since SIQM allows a description of the causation of individua]
events, it enables a deeper analysis and understanding of phenom-
ena with the possibility of developing more penetrating theories
of these events which CIQM shrouds in mystery by the dogmatic
insistence in the absolute and final character of complementarity
and indeterminacy.

The possibility exists in SIQM to make testable predictions which
go beyond, by being more precise, but nevertheless do not con-
tradict those of quantum mechanics.

Complementarity is inadequate in the description of time-depen-
dent neutron interferometry and requires the renunciation of
energy conservation in interference situations, whereas the de-
scription of SIQM is consistent and apparent non-conservation
of energy may be explained through the possibility of energy
exchange with the ether.
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NEW THEORETICAL IMPLICATIONS OF NEUTRON INTERFEROMETRIC

DOUBLE RESONANCE EXPERIMENTS

J.P. VIGIER

Institut Henri Poincaré, Laboratoire de Physique Théorique, 11, rue P. et M. Curie, 75231 Paris Cedex 05, France

It is shown that if one accepts Einstein’s postulate that energy-momentum is conserved in all individual microprocesses,
the Grenoble experiments imply that individual neutrons are waves and particles simultaneously. If one rejects this
postulate (and thus accepts Heisenberg’s statement that they are only conserved statistically) new experiments are needed

to settle the Bohr—Einstein controversy.

The aim of the present contribution is to dis-
cuss some theoretical implications of the recent
double resonance interferometric neutron ex-
periments performed by Rauch’s group (i.e.
Badurek, Rauch and Tuppinger (BRT)) in Gren-
oble [1] (where two spin-flippers are present)
suggested by our group in Paris [2]. The set-up is
represented in fig. 1.

These imf)lications all rest on the observation
that the dlffercnce between the principle of com-
plementarlty of Bohr and Heisenberg (B-H);
where micro-objects correspond to probabilistic
Y(x, 1) waves or observed particles, never the
two simultancously and the Einstein—de Broglie
(E~de B) description where they are represented
by waves and a real particle aspect simultaneous-
ly . ... The later beating in phase (since E = hv)
with the surrounding wave.

Not everybody realizes that Bohr’s assumption
that quantum mechanics is a complete, final,
unsurpassable description of physical phenomena
implies the crucial statement that in the BRT
type neutron interferometry experiments in-
dividual particle-like neutrons do not travel in
space and time between the atomic pile and the
detectors . . . . Indeed such motions would imply
the existence of hidden variables (characterizing
the neutron’s paths) which would exist indepen-
dently beyond the usual purely probabilistic de-
scription of the quantum formalism... so that
the quantum mechanical description would be
incomplete. In the B-H interpretation, quantum

RESONANCE FLIPPER
4

Fig. 1. Schematic arrangement of the radio-frequency flip
coils within the skew symmetric neutron interferometer in the
double resonance experiment. In the radio frequency (rf)
resonance flip coil the spin-reversal process is associated with
a change of the total energy of the neutrons according to
emission or absorption of photons. As is also indicated, a
Heusler crystal allows an analysis of the polarization of the
0-beam. Neutrons travel separately one-by-one in the inter-
ferometer. The 1 denotes the associated wave packet with
the corresponding spin orientation. The individual neutrons
are detected one by one in the 0 or the H direction.

statistics do not result from some chaotic sub-
quantal behaviour of hidden variables.

From this observation, one deduces the first
consequence that in all types of Young’s double
slit interference experiments (of which the dou-
ble resonance spin-flipper experiment is a par-
ticular case) the difference between the Bohr—
Heisenberg (B-H) and Einstein—de Broglie (E-
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de B) points of view is that for B-H, the particle
does not pass through any coil while it passes
through one coil only in the E-de B point of
view. In other terms, if one could prove in a
direct or indirect way that in Rauch’s experi-
ments the neutrons pass through one or the
other slit, this would disprove the B-H point of
view.

The second consequence is that for B-H the
direct detection of the passage of the neutron
through one spin-flipper only or along one of the
paths, characterized by the waves ¥, and ¥,
implies a wave packet collapse of the other
wave . . . so that the interference pattern would
disappear on the detectors.

Before we discuss the implications of these
consequences on the interpretation of the BRT
results, let us briefly recall Einstein’s and Bohr’s
opposite views on the question of direct and
indirect physical knowledge of the properties of
MiCTOProcesses.

For B-H, there is no such thing as indirect
knowledge . of a physical property of a given
physical process (due for example to some neces-
sarily conserved law) but only direct knowledge
acquired; through actual measurement processes.

For E=de B there are both direct and indirect
knowledge. Direct knowledge results from the
observed (valid) predictions of the quantum for-
malism. Indirect knowledge implies that some
real but unobserved properties result from the
fact that specific physical laws (such as the con-
servation of four-momentum and angular
momentum) are assumed to be always satisfied,
even in the absence of any actual observer or
observation. This assumption (rejected by B-H)
is the logical foundation of the EPR paradox
[s].

We also remark here that the concept of wave
packet collapse (reduction) implied by the stan-
dard (6] (B-H) quantum theory of measurement
is not devoid of difficulties. It does not clearly
account for the information provided by the
so-called negative measurement results (NRM)
which imply (as discussed by Einstein and de
Broglie [8]) wave packet collapse (i.e. acquisi-
tion of information/knowledge) due to the fact
that a measurement device has not reacted (i.e.

interacted) with an observed particle. This is the
case for example of an interference filter on the
path of a photon wave packet. No direct mea-
surement is performed at the level of the filter
(constituted by a crystal slab) but the absence of
reflected photon detection implies that the trans-
mitted photon’s frequency band is confined
(whether it is measured or not) within the filter
frequency band 2Ay, ie. y,tAv<v<y +Av

We can now come back to the theoretical
implications of the double resonance neutron
interferometry measurements and results [1].

(1) In a first set of measurements the two
spin-flippers are simultancously working and
connected with the same rf oscillator (i.e. driven
at equal frequencies); then, the set-up of fig. 1
never contains more than neutron at a time. In
fact each time a neutron is detected, the next
one has not even left the atomic pile of Gre-
noble.

(2) Each neutron enters the interferometer
with its spin (magnetic moment) oriented up-
wards, i.e. parallel to the constant magnetic field
which bathes the whole set-up.

(3) Each neutron leaves the set-up (and is
detected by one of the detectors) with its spin
oriented downward i.e. antiparallel to the con-
stant magnetic field. As a consequence, accord-
ing to the well-known theory of spin flipping, it
has lost by resonance a quantum of energy AE =
fiw,: w, being confined to the harmonic oscil-
lator’s rf frequency band.

Of course, at this stage of the BRT experiment
this individual neutron’s loss of energy AE is still
indirectly known/derived as a consequence of
their spin-flip. However, as we will show later, it
can be established experimentally (with interfer-
ence filters) in a NRM type of measurement.

If one thus assumes

(a) with Einstein and de Broglie that the neut-

ron’s energy and impulsion (i.e. mass mul-
tiplied by velocity) are always conserved in
all microprocesses where thee is an ex-
change of energy ... i.e. in that case that
the quantum AE lost by the neutron must
be absorbed by the spin-flippers in a reso-
nance process;

(b) with Einstein and Bohr that all observable



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 175

(ex) change of quanta of enmergy is tied
with the “particle”” aspect of matter*.

Then one must accept (if one assumes absolute
energy-momentum conservations) that this ex-
change of energy, i.e. the presence of the neut-
ron’s particle aspect, has necessarily happened in
one or the other spin-flippers (i.e. in one spin-
flipper only) but not in both spin-flippers simul-
taneously . .. where no half quantum possible
resonance frequencies exist anyway in the corres-
ponding rf harmonic oscillators.

(4) Since the BRT experiment has shown that
each individual neutron localizes itself on an
interference pattern (i.e., according to point 1, it
interfers with itself in Dirac’s sense) one can
conclude, following BRT’s own terms [1]: “That
in the region where the waves interfere each
neutron disposes of the information that there
exist two associated paths ¥ and ¥ in the
interferometer i.e. two paths whose phase differ-
enge obliges the neutron to appear in one of the
détectors”.

:(5) From the combination of points 3 and 4
ohe deduces that between the source and the
detectors each neutron manifests itself as a wave
(because of the interference) and as a particle
(because of the loss of energy) simultaneously.
In other terms each peutron is a wave and a
particle.

From point 5 one deduces that between the
source and detector the description of the quan-
tum probabilistic distribution in terms of waves
¥, then ¥, and ¥, then ¥, and ¥, is correct but
not complete since it does not state that each
neutron -has manifested itself in one of the spin-
flippers. However to quote Rauch again {1}:

* In the standard quantum mechanical formalism particularly
in the emission/absorption of quantas every such exchange
behaves as if energy momentum was carried by particles
with directional motions. Compton scattering implies [9]
that each electron effective in the scattering scatters a
complete quantum and that these quantas of radiation are
received from definite directions and are received from
definite directions and are scattered in definite directions.
The same is true of the double Compton scattering {10]. To
quote Compton “we can find no interpretation of the
scattering except in terms of the defiection of corpuscules or
photons of radiation”. The same is true for particle emis-
sion or absorption.

“This experiment shows explicitly that the inter
ference properties of ¥; and ¥, can be preservec
even when real exchange of energy has occurred
which is intuitively a measuring process”.

The preceding argumentation is ever
strengthened by the quantum beat effects whick
result from a slight modification of the double
coil experiment. In this case, the frequencies v,
and v, of the two resonators (which drive the
coils) are chosen to be slightly different, i.c.
when both flip coils are operated at different
frequencies:

v, = 71.910.02kHz,
(1)
v, =7232+0.02kHz,

respectively.

As remarked by BRT [1] (and confirmed by
their experiment) “in spite of the rather large
frequency difference of 420 Hz the efficiencies of
both flip coils remained as high as about 98%
because of the broad resonance curve. By elec-
tronic means the period T=(y, —y,) ' was
subdivided synchronously into 8 consecutive time
intervals of equal width which were used to gate
inputs of 8 separate scalars. This stroboscopic
registration technique transforms the interfer-
ence eating into a stationary intensity distribu-
tion. As a function of the time ¢ each intervat is
shifted w.r.t. an arbitrary chosen reference
point”. The reason for the observed occurrence
of the beat effect can be described as a time-
dependent phase relation in the quasistatic
approximation®*. We thus have A(f)=(w, —
w,,)t between the two interfering beams and the
difference of the spin-flip energy-transfer
(hw,, #ho,,) due to the neutron wave’s reso-
nance with the two separated oscillatory fields.
This implies immediately, if one assumes

(i) absolute energy—-momentum conservation
in all individual microprocesses,
(ii) the fact that a neutron loses one quanta of

* As we shall see later, the causal interpretation provides a
more physical interpretation based on different energy
modifications in both beams where the time axis is related
to the time-dependent Hamiltonian of the oscillating field.
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energy (photon) to a coil when it flips its
spin through a resonance process with the
energy level difference of the rf oscillator
which drives the flipper,
(iii) the possibility of indirect and NRM know-
ledge,
that one must accept the fact that the all neut-
rons which have flipped their spin, (i.c. appear in
the beat process) have gone through one coil
only ... since we know from (1) that », is
significantly distant from »,, . . . so that a neutron
is a wave and a particle simultaneously.

This conclusion however must be qualified
with the following reservations and/or restric-
tions.

A) As stated above at the present experimen-
tal stage we only know indirectly that all neut-
rons in the interference pattern have lost a quan-
ta AE =Hho, because they have flipped their
spin. One can perfectly utilize the argument that
until one*has measured (in the B-H sense) the
passagé of each neutron through one coil only
one does not create any wave packet collapse on
the other path. Indeed such direct individual
energ)‘r loss measurements AE = fw, seem prac-
ucally impossible at present not only because of
the Hexsenberg uncertainty relation AN -A¢ =
but also because any imaginable direct measure-
ments device on individual neutrons would ap-
parently destroy the coherence of their as-
sociated ¥ field. However [1], “the energy trans-
fer that is induced on passage through the rf coil
can (at least in principle) be made larger than the
energetic width of the beam. Nevertheless, a
distinct phase relation between both rf fields is
required which can be considered as an equival-
ent constraint against a simultaneous phase and
particle number determination. Within the rf
coils only quanta Aw, within a narrow frequency
band Aw, are excited which suggests that the
energy exchange with an individual neutron
takes place in one coil but in its last consequence
even this statement could be in contradiction to
the complementary principle of quantum mech-
anics”.

At first sight since one cannot detect directly
(individually) this exchange in one coil it would
seem one cannot detect it at all. This is not true

however. As we shall now show, it is possible to
bypass this difficulty through the use of a specific
type of NMR process. Quantum theory shows
that such an experimental device is indeed poss-
ible (as will be discussed in detail in a subsequent
publication). Its principle is simple and is repre-
sented in fig. 2. If we consider an interference
filter built with a pure silicium plate which allows
the passage of incoming neutrons, we know its
reflectivity (i.e. transmitted frequency interval)
depends on the distance d of its Bragg planes,
i.e. on the wavelength A, =2d, sin 6g,,,, Which
depends on its temperature T,. This means (be-
cause we have d = d, + a AT) that one can prac-
tically shift its passing frequency band by heating
the slab by a raise AT of its temperature T, i.e.
create a transition Ay~ A, + AA = 2d sin bg,,,, in
such a way that the two passing bands A * € and
A+ AXx ¢ no longer overlap. C0n51dermg the
neutrons coherence length 3A/A ~ 10™° one sees
that one can indeed obtain such a result (with
AA > 38A) if one introduces into the coils a field
B,=20kG and AT ~ 15°C and use superconduc-
tive temperatures for the coils. This implies that
the heated interference filter no longer transmits
the observed neutrons of the incoming beam
unless they have lost a quanta AE =2uB, = haw,
in one or the other coil. In this way (through a
NRM) we can establish the existence of individu-
al neutron-energy losses in individual spin-flip

L J

Fig. 2. Schematic arrangement of the introduction of inter-
ference filters to show that each neutron has lost a quanta
AE = fhw, through the spin-flipping processes. Horizontal
lines in the slabs and filters represent Bragg planes and I, and
I,, the neutron detectors. IF, is the interference filter at
temperature T, with Bragg distance d, and IF is the heated
I-filter at temperature T > T, with Bragg distance d. RF are
the spin-flip coils at superconducting temperature and PS is
the phase shifter.
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processes. Of course this argument will be
strengthened if the time-beat survives once one
has limited the dimensions of the incoming in-
dividual neutron wave packets ¢, by a fast chop-
per so that one can be sure that the ¢; and yy;
wave packets do not overlap as will be done in
forthcoming Grenoble experiments.

Of course if one thinks (like B-H) that the
laws of conservation have only a statistical reali-
ty, then, at its present stage, the double reso-
nance Grenoble experiments do not distinguish
between B-H and E-de B since we cannot tell
directly (i.e. measure) simultaneously through
which slit the individual neutron has gone and
observe simultaneously interference properties
on the detectors.

As a consequence if one accepts energy-
momentum violation in individual microprocess
then one should perform new experiments, to
distinguish between the B—H and E—de B points
of view.

We’ conclude this discussion with three re-

marks.
Firsé remark: As stated above, the BRT results
strongly confirm the validity of the statistical
predictions deduced from the usual formalism of
quantum mechanics . .. a conviction shared by
B-H and E-de B supporters. They raise how-
ever two crucial questions for both the B—H and
E-de B supporters.

To quote BRT’s own comments [1] on the one
coil and the time beat (with two coils) ex-
perimental results:” How can each neutron in
the spin-superposition experiment be transferred
from an initial pure state in the z-direction into a
pure state in the x-direction behind the inter-
ferometer, if no spin turn occurs in one beam
and a complete spin reversal occurs in the other
beam path? How can every neutron have infor-
mation about which beam to join behind the
interferometer, when a slightly different energy
exchange occurs in both beams inside the inter-
ferometer and the time of flight through the
system?”

Evidently these are now new serious questions
for all possible interpretations of the quantum
formalism. As shown before it now looks as if

the B-H followers must reduce energy-momen-
tum (and angular momentum) conservation to
the status of a purely statistical property. ..
which is not satisfied in individual microproces-
ses. On the other hand as we shall now show, the
E—-de B followers can only maintain the absolute
character of these conservation laws if they ac-
cept that the real ( pilot) field is associated with a
real distribution of energy-momentum density
which surrounds and accompanies the particle’s
motions in space—time. This implies of course

(i) that the particles exchange in general
energy—momentum with the vacuum but con-
trolled by their own ¥ fields.

(ii) that the terms “empty-wave” or *“ghost
waves’’ introduced by Einstein are misleading
since they suggest that such waves not only are
empty of the particle aspect of micro-objects but
of energy momentum as well. As we shall now
show, this is evidently not possible if one wants
to preserve energy—momentum conservation in
the de Broglie-Bohm trajectories (and random
quantum jumps) where one knows that energy is
not a constant of the motion, even in the absence
of external fields of forces.

To clarify this point, let us first recall Ein-
stein’s distinction between the observability of
the energy—momentum tied to fields and to par-
ticles. For Einstein the fields’ energy-momen-
tum densities are not directly observable but
only detectable through modifications of the be-
haviour of test particles. In other terms what we
observe (detect) directly is only the disturbance
of the behaviour of “free” test particles imbed-
ded in the field which is an indirect measurement
in this sense. In other terms all observations are
finally made on (and reducible, to observations
of) the particle aspect of matter. As one knows,
within the frame of the causal stochastic inter-
pretation of quantum mechanics, the behaviour
of nonrelativistic spin 3 particles is described by
the relation

., OV
it g =HY , 2)
where the two-component Pauli spinor can be

written in terms of the usual Euler angles 6(x, 1),
¢(x,t) and ¢(x, ¢) in the form
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_ cos 6/2-expli(y + ¢)/2
¥(x, 1) = R(x, 1) (i sin 8/2 - exp[i(y — ¢)/2)

where R denotes a real amplitude (connected to
a density p = R*) with the Hamiltonian

—2

: 2
H=—(V—%A> +V+—eﬁ—

2m 2me ¢ H, C)

where the symbol A denotes the components of a
vector A. We then define
- a local drift velocity field 4)

A (VW -YVY e

2mi p mc
= (9t cos oVg) — <-4 (5)

— a local spin vector

=2 (BoE), ©)
2\ 7p

where a"; denote the three usual Pauli matrices
which tx;ansform like vector components.
From'the preceding equations one immediate-
ly deduces
—the (local) fluid energy
va ﬁZ Apl/l

= — 4+ _— ——
w 5 ev m pm

+{(V8)* + sin” (V) ]+ —ﬁ s H, (7

- the energy—impulse tensor density
2

= mpuy; + m

9;pd;p

2

. K
+ 1 0,69,6 + sin’ 63,49,6] . (8)

As stated above the fluid and particle exchange
energy in such a way that the geometric sum of
all forces is zero since we get

EV(—(//-FCOSG —%)—VW=O ’ 9

where VW represents the set of fluid forces
which imply an expense of energy and the cen-
trifugal force of the particle.

Moreover the existence of T; and pW imply
that a Pauli wave packet ¥ = (¥, ¥,) carries
energy-momentum and spin which are modified
by the boundary conditions and external fields.
The corresponding Madelung fluid can thus be
represented by a fluid of spinning tops where
neighbouring spins tend to become and remain
parallel [12].

The (localized) spinning particle associated
with this wave packet beats in phase with the
surrounding wave, has its spin aligned with the
spins of the surrounding wave and follows (on
the average) the drift lines defined by relation
(4).

Detailed calculations (utilizing computers)
have recently given concrete space—time causal
representations of all the quantum mechanical
solutions utilized in the Grenoble experiments
[12]. They show that an alternative consistent
space—time description of the neutron’s be-
haviour is a distinct possibility which does not
disprove but only completes the usual predic-
tions of quantum mechanics.

To conclude, what we now propose, within the
E~de B model, is

(1) to assume that the ¥-pilot field is as-
sociated with a real physical energy—-momentum
field distribution (tensor density) pW and T
which accompanies the particle’s motion,

(2) to assume that (except in special physical
situations plane waves etc.) there is a real con-
tinuous energy exchange between the vacuum
and the particles controlled by their ¥-fields.

(3) to assume that the particle (neutron) mov-
ing along the drift trajectories (defined) by (4)
not only beats in phase with the surrounding
wave but is also endowed with the same local
spin vector orientation.

Assumption (2) evidently yields [2] a simple
interpretation of Rauch’s questions which preser-
ves energy—-momentum (and angular momen-
tum) conservation. Indeed, this implies that in
the case of the double resonance experiments
(with o, # w,,)

—the wave packets ¥ and ¥, lose a different
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energy density when passing though the coils
since AE, =#w, #AE =H%w, and both waves
flip their spin,

—the neutron itself loses a different energy AE,
or AE, according to its path,

—in the interference region (i.e. the third slab)
the superposition of the two states with |z|) but
with different energies E—AE, and E—AE,
yields an energy dependence (fiw,, — fiw,;) which
generates the observed time-dependent oscilla-
tion. In other terms because both waves have
really lost different energies in both coils and the
neutron (which beats in phase with their super-
position) “knows” that there have been two
different paths and “adapts” itself to this super-
position: so that the conservation laws remain
valid at all times.

Second remark: The BRT experiments {1] com-
bined with the new experiment described in fig. 2
represént a step forward in the experimental
analysis: of the interferences of individual parti-
cles v;fith themselves. One knew of course that
one can combine cold neutron energy losses with
interferences by placing detectors higher than
their $ources. However one had never analyzed
this loss quantitatively or associated it with one
path only. The experiments analysed show in-
deed (i) not only that each neutron has flipped
its spin but also (ii) that (if the experiment of fig.
2 succeeds ... as predicted by quantum mech-
anics) each spin-flip is thus associated with the
loss of a single quanta AE =2u,B, = fiw,, corres-
ponding to a resonance with one spin-flipper
only - proviged of course that energy—momen-
tum is always conserved in all individual micro-
processes.

Third remark: These experiments on particles
interfering individually with themselves also rep-
resent an experimental improvement on the
known tests of the essential new property of
quantum mechanics (postulated long ago and
theorized by de Broglie and Dirac) that isolated
elementary particles interfere with themselves.
One knew already that one can obtain coherent
interferences from sets of bosons coming from
different coherent and incoherent sources (such

as the Handbury-Brown-Twiss effect) but one
had never done it for fermions appearing one by
one. This implies that the associated ¥ wave
describes not only a statistical distribution but
also real properties associated with each in-
dividual neutron. Indeed one sees that with a
probability 1 they never enter certain regions
(i.e. the dark fringes of the interference pattern)
which can only be calculated with the help of ¥
and ¥, of fig. 1. Following Einstein’s definition
[5] this implies that the ¥-field describes an
objective reality associated with individual
micro-objects.
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Summary. The effect of gravity on spin-0 particles is discussed in the
context of the causal stochastic interpretation of quantum mechanies
(S1QM). It is shown through the use of the quantum potential that, for
positive probabilitics which result from SIQM, the weak principle of
equivalence breaks down. The theory nevertheless remains compatible
with the geometrical character of quantum gravity.

PACS. 03.65. — Quantum theory; quantum mechanics.

1. — Introduction.

According to the de Broglie-Bohm (*2) causal interpretation of quantum
mechanics the wave function deseribes an objectively real field (the quantum
potential) which guides a particle along a irajeetory having simultancously
well-defined « true values » of position and velocity, the latter having reality
independent of any measurement. The statistical aspeets of quantum theory
according to the SIQM are assumed to come about through the uncontrollable
character of both subquantal fluctuations and initial conditions. They do not
primarily relate to the results of measurements (*). As a result, by recasting

(1) L. o BroGLIE: Non-Linear Wave Mechanics (Elsevier, Amsterdam, 1960).
() D. Boum: Phys. Rev., 85, 166 (1952).
(*) M. Cin1i: Nuovo Cimento B, 73, 27 (1983).
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the quantum-mechanical equations so that they take on the form of classical
cquations (e.g. Hamilton-Jacobi) one is able to interpret quantum phenomena
in terms of readily visualizable real space-time processes. The novel feature of
this theory in relation to classical mechanics and field theory presented in the
same language is the appearance of the quantum potential, a highly nonlocal
function of the parameters of extended particles and of their environments
(including boundary conditions). It is not the use of classical concepts as such
which is the virtue of this model but rather that it is able to provide an intuitive
picture of phenomena in the microdomain, something which is missing from
the usual approach. As a consequence the new nonlocal version of the causal
interpretation is able to make more detailed predictions (for example in relation
to the distribution of trajectories in the two-slit () and neutron interferometry (°)
experiments) than the Copenhagen interpretation. In faet, it is through the
use of the quantum potential that we can delincate the limits of usefulness
of the classical way of thinking in a way that does not forbid further enquiry
into actual quantum processes (as for example Bohr’s notion of wholeness
does). Thus, having a real space-time representation of the motion of particles
acted on by the quantum potential before us, it is possible to introduce further
assumptions as to underlying subquantum processes, for example Dirac’s
covariant random ether model (%).

In the following we shall discuss the causal theory of a spin-0 particle
moving in an external gravitational field, particularly in relation to the weak
equivalence principle (WEP). To do this consistently, however, we must first
discuss the problem of negative probability solutions which result mathematically
from the Klein-Gordon equation. Indeed the introduction of real particle
paths necessarily implies a physical limitation to positive probabilities (*9).

2. — The positive probability character of Klein-Gordon solutions.

Let us start from an arbitrary Riemannian space-time M, with line element
ds? = yedxedzr. By writing v = exp [P + i8/k], the Klein-Gordon equation

m2e? 1 L
m T4 Jr =00 O gmghevm = At

y (. Priuieeipis, C. DEwDNEY and B. IIiLey: Nuove Cimento B, 52, 15 (1979).
5) (. DewpNEY, Pu. GUERET, A. KypriaNipis and J. P. Vicier: Phys. Lett. A, 102,
291 (1984).

(®) J.P. ViGiEr: Astron. Nachr., 303, 55 (1982).

('} N. CurarRO-PETRONI, A. KYPRIANIDIS, Z. Marié, D. Sarperis and J. P. VIGIER:
Phys. Lett. A, 101, 4 (1984).

(8) A. Kyprianipis, D. Sarprris and J. P. Vicier: Phys. Lett. 4, 100, 228 (1984).
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may be written equivalently as

(2) 0,86, 8 = mPe?(1 + Q) == M2c® with @ = nZLc“ (P + 0, P03, P),
(3) du(v—mj#) =0  with j.= exp[2P]0,.8,

where the function @ denotes the quantum potential, M de Broglic’s « va-
riable rest mass» and j# is the probability density current. The assumption
introduced by the causal approach is that, together with a location ¢ — (¢, x),
a partielc has a well-defined 4-velocity
dx# oo

(4) Uk = ds — (Me) ‘ywd,S, fNuutw =1,

where s represents the proper time along paths parallel to j«. From tlie nod-
ified Hamilton-Jacobi equation (2) we obtain the equation of motion of a
quantum particle in Newtonian form:

g
ds

+ [ H ] wus— ) (prr—wrtur) oy log (1 4 Q) ,
v g

where [ # ] are the Christoffel symbols of ..

Working within the spirit of general relativity we may reformulate cq. (5)
in Myas a geodesic in a space-time of altered geometry, which we denote as ¢y,
with line element ds’2 == g, das dar (29),

To do this we note that the Hamillon-Jacobi equation (2) may be writ-
ten as an equation for a «freey particle of mass m in @y

((;) gl“' ?/1 S;”\v et ’
where
(7) gzzr - (l " (2),)]/”' )

Then in the geometry @4 we have a new causal veloeity

et

VH = ds’ = (1 BE (‘)) 5'll“, Vﬂ — Yur }oro (III(')"1 (A‘/(N
&

with g VeV — 1 and ds'— (1 - Q)fds. From (6) we find the equation of
motion cquivalent to (5):

dVw I
3 |- Fefo 0
(%) dy' ! {1' u} 1 ’

(") U Peswou and J. P, Vigmr: O R, Acad. Sei. Paris., 293, 249 (1981).




184 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

where { #
Y O

low the geodesics of the new g,, metric.

Now an objection may be raised against the above theory based on
the guidance formula (4). After all, during some physical process the factor
1+ @ may become negative so that it appears that a particle motion which
was initially timelike may become spacelike (for the remainder of this section
we assume for ease of discussion that 7., is globally Minkowskian). Indeed
DE BrOGLIE () has given a physical example in which real superluminal motions
apparently occur, in the region of the Wiener fringes of a plane Klein-Gordon
wave reflected from a partially reflecting mirror. Clearly, if the momentum
(0.8) in (2) resulting from a specific solution is spacelike, so is the current
j# (3) which implies a negative probability density (exp [2P] 2,8) accompanying
negative energy (9,8). However, such solutions result from the introduction
of nonphysical initial conditions associated with spacelike probability currents
and should, therefore, be excluded. Thus there remains the problem of time-
like initial probability currents having negative energies.

This dilemma may be resolved in the following way. Rr1zov et al. (*), fol-
lowing FESHBACH and VILLARS (1), have discussed recently how one may
decouple the positive- and negative-energy solutions of the XKlein-Gordon
equation. Starting from a solution to (1), construct a two-component wave
function

} are the Christoffel symbols deduced from g, and particles fol-

0,y +
:(Tm) . me
280'{’_‘7[’—’{’

(1) may then be written in Hamiltonian form as

., 0¥
(9) zhE:H’I’,

where H is a 2 X2 matrix operator. With respect to the indefinite inner product
(D,¥> =f<15*03 Y :f(p* z'ﬁg.,tp 4’z
it then follows that positive (negative) energy solutions of (9) have positive

(negative) probability. We suppose now that all physical states correspond
to those parts of the Klein-Gordon solutions which, following Einstein’s basic

(%) V. A. Rizov, U. SarpJ1aN and 1. T. TODOROV: On the Relativistic Quantum Mechanics
of Two Interacting Spinless Particles (Orsay preprint, 1984).
(*) H. FesuBacu and F. Vicrars: Rev. Mod. Phys., 30, 24 (1958).
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principles, have positive energy and probability for particles and antiparticles.

On the basis of the SIQM we shall now generalize, in a very simple manner,
the above result of Rizov et al. By using (4), conservation equation (3) may
be expressed in terms of a fluid density ¢ = Mcexp [2P] as (12)

D
T = dulouwr) =0,

From this it follows that wM exp [2P] = C, where w is a volume element
of fluid and C is a real constant along any line of flow (C varies from one
drift line to another). Thus, if initially M >0 (and exp [2P]>0), then
it remains so throughout a particle motion so that a positive-energy solution,
associated with positive probability density, develops into the same motion
—one cannot pass to a negative-energy solution. Rizov et al. show that
the decoupling of positive- and negative-energy solutions is maintained
when one inserts certain well-behaved potentials in the Klein-Gordon equa-
tion. Our demonstration, on the other hand, extends readily to the case
of any vector potential introduced into eqs. (2) and (3) (provided (Pu— (efe)Ay)
remains timelike) and this can also be extended to n-body systems. Moreover,
this separation of positive-energy, positive-density and negative-energy,
negative-density solutions is maintained in weak external gravitational ficlds.
A further discussion of these points will be given in a separate paper.

According to the causal stochastic interpretation any Klein-Gordon fluid
thus comprises particle and antiparticle motions (both being necessary in order
to deduce the Klein-Gordon equation and a H-theorem ('3)). These motions
are always timelike and of positive encergy and probability and the guidance
formula (4) refers to the average motion of an enscmble along a drift line. Any
spacelike solution does not describe real space-time motions associated with
real p waves since the latter result from Kiein-Gordon propagators acting
on realistic initial conditions containing no spacelike probability currents.
In addition, (7) is a relation which only holds on the average, the g.»’s being
subject to real random fluetuations which do not, however, destroy the actual
timelike geodesic motion of a particle in the fluid.

To summarize, we may say that we answer the objection anticipated above
by showing how initial timelike motions may be separated into positive-cnergy,
positive-density and negative-energy, negative-density subsets which are
preserved by the equations of motion. All physical motiong are thus associated
with positive-energy, positive-density particles and antiparticles, propagating
into the future and past, respectively.

(*?) F. HaLswacus: Théorie Relaliviste des Fluides a Spin (Gauthier-Villars, Paris,
1960).
(%) A. KypriaxIDIs and D. Sarpenis: Left. Nuovo Cimento, 39, 337 (1984).
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3. — The weak equivalence principle according to the causal interpretation.

We return now to the study of the KXlein-Gordon system for a gravitational
metric on the understanding that relations (4) and (7) hold only for weak
ficlds. Our remarks will also apply to a Schrodinger particle moving in an
cxternal gravitational potential V, the weak field nonrelativistic limit of (5)
being
dv
at

1 fit V2R , o
:—;’;V(VJ;‘Q), (‘?:_2_111#15_’ k=c".

(10)
We see immediately from eqgs. (5) and (10) that, in the absence of all external
fields (V= 0, 7, globally Minkowskian), a spin-0 quantum particle can never,
in general, be said to be «free» since it is always subject to a quantum foree.
Thus, if we study the motion of such a particle movingin an external gravitational
field, it is in fact subject to two forces. Morcover, the quantum force, derived
from the quantum potential @, is dependent on the mass of the particle, i.e.
the mass does not drop out of the problem as it does in classical gravitation
theory. The consequence of this, of course, is that all bodies in the quantum
domain do not fall with the same aceccleration in a gravitational field inde-
pondent of their constitution and, therefore, WEP breaks down, duc to the
intervention of the quantum potential.

The incompatibility of WEP with quantum mechanies (Copenhagen version)
has been noted previously, but in a different sense (14).

It is argued that the quantum formalism is inherently mass dependent
sinee it is formulated in terms of # and p and, therefore, wave phenomena are
direct functions of mass. Thus any classical effect which is independent of
mass cannot be extrapolated to the microdomain. Actually all that one can
conclude on the basis of the Copenhagen interpretation is that « for low quantum
states it is less true that the results violate equivalence than that equivalence
just doesn’t apply » (2*). This follows, of course, since the notion of particle
trajectory is absent and it is, therefore, unclear how one would formulate a
quantum analogue of WED. In the causal stochastic formulation, on the other
hand, it has meaning to pose an equivalence principle and it is then an open
question which can be unambiguously solved as to whether the principle
holds. For the first time we can see precisely the way in which the actual
particle acceleration depends on the mass in an external gravitational field,
a picture which the orthodox viewpoint cannot provide.

Inserting in (10) the Newtonian potential V= mg (assuming this is the
correct form to use in the quantum case), we see that the mass dependence of
acceleration is due just to @, that is it is entirely of quantum-mechanieal origin.

(*4) D.M. GREENBERGER: Rev. Med. Phys., 35, 875 (1983).
(1) D. GREENXBERGER: Ann. Phys. (N. Y.), 47, 116 (1968).
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solutions guide particles along trajectories which contradict the cquation of
motion (5) of a particle of negligible gravitational effect which follows from the
Klein-Gordon equation itself, once we have introduced the trajectory assump-
tion of the causal interpretation into the theory of the wave equation. More
generally, we may say that the simultancous use of Einstein’s cequations and
quantum wave equations implies that tho gravitational equations will hold
unmeodified in the small and, as we have seen, this leads to an inconsistency
since two conflicting equations of motion are in operation. What is suggested
here is that some modification of Einstein’s cquations may be called for in
order that they are consistent with the causal quantum equation of motion
when applied in the microdomain.

The fact that the motion of a quantum particle in a gravitational field
docs not depend solely on the particle’s environment is considered by Gue-
ENBERGER (M) to «lend a distinetly nongeometrical cast to quantum theory »
and indeed to undermine the geometrical approach to gravity. Such a con-
clusion is, however, not necessary if we broaden our coneept of geometry. As
we have seen, and in agreement with GREENBERGER, the notion of a « test
particle » which «feecls out» a force field without in any way imposing itself
on that field, a notion that is central to classical gravitation theory, does not
oxist in the quantum domain. The environment cannot be separated from
the characteristics of the particle. This fact, though, does not in itself imply
a nongeometrical aspect to quantum gravity. We have shown in sect. 2, for
example, how we may recover geodesic motion for a quantum particle in a
gravitational field. Thus, allowing that the metrical attributes of space-time
are functions of all the contributing parts of a process, we ean employ a geo-
metrical theory even in the quantum domain. This is so, of course, in the pure
quantum case when #,. is globally Minkowskian. Naturally, expressing the
motion in the form (8) does not reintroduce a weak principle of equivalence
since particles of different mass will move through regions having different
gw’s and, therefore, their motions will differ (%).

5. — Conclusion.

This result leads us to suspeet that the quantum field equations (2) and (3)
(or at least their derivatives) may be reformulated as geometrical relations.

.

{(*} Such a geometrization can be performed with other foree ficlds, e.g. clectro-
magnetic, and a notion similar to the wholeness diseussed above appears in an entirely
classical context (20:21),

(29) P.R. HorLraND: Phys. Lett. A, 91, 215 (1982).

(®1) P. R, IlorLanp and C. Puiniepipis: Anholonamic Deformations in the Ether:
A Significance for the Potentials in a New Physical Coneeption of EKlectrodynamics
(Institut Henri Poincaré, preprint, 1984).
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In the relativistic case, however, it may be seen from (2) and the right-hand
side of (5) that not only docs the quantum potential exert a nonclassical
force but also that it involves nu» and there is a coupling between 7. and @
so that we cxpeet gravity to have a direct mass-dependent effect itself. In
other words, it is a prediction of this model that in the relativistic regime
the deviation of a quantum particle from a geodesic will depend not only on
purely quantum parameters (including the mass) but alse on the external
field coupled to these parameters (whereas for weak fields and low velocities
this coupling may be neglected). As emphasized in an analogous disenssion (*€)
on the role of the clectromagnetic potentials in the Aharonov-Bohm effecet,
as causally treated, the quantum potential plays the role of a mediator and
so renders understandable the way in which a eclassical external potential
can have nonclassical effects when there is no sign of such cffects in the clas-
sical limit. In the present instance the gravitational field has a real physical
effect on a Klein-Gordon particle moving through it (when dassically no
such effect is to be expected) through the medium of the quantum potential
which provides a vehicle for such actions. As is easily seen, in the classical
limit (% ->0) @ wvanishes, the mass drops out and the weak principle of
equivalence is recovered, in both (5) and (190).

4. — Gravitation and the quantum potential approach.

That the Newtonian potential is indeed the eorrect one 1o insert in the
Sehrédinger equation has been demonstrated by the COW neutron inter-
ferometry experiment (7). Morcover, as shown in detail by GREENBERGER and
OVERHAUSER (%) and as follows from our equations (1)-(8), we expect thestrong
principle of equivalence to hold unaltered in quantum mechanics. Support
for this contention is provided in the Schrodinger case by the COW experi-
ment. The reasonableness of assuming a classical metrie potential in the Klein-
Gordon equation, however, is qualified by the following remarks. Itis considered
to be one of the virtues of Einstein’s field equations that they imply the equa-
tion of motion of a test particle (one with no other attribute than mass which
is of negligible gravitational effect), that is classical geodesic motion (7).

There appears to be some inconsistency, however, in inserting solutions to
Einstein’s equations into the Klein-Gordon equation, as is normally done
when one studies the Iatter in given classical gravitational fields, since these

(1%) C. Purviepipiz, D. Boun and R.D. Kayr: Nuocvo Cimento I, 71, 75 (1982).
(*) R. Corrrra, A. W, OveEriravser and 8. A, WERNER: Plys. Rev. Letl., 34, 1472
(1975).

(*8) D M. Greexpepcir and A, W. Overnavskr: Rev. Med. Phys., 51, 43 (1979).
(M CoWo Misxer, KO8, Tnorye and J. A, WarkLer: Gravitaticn (W, H. Freeman,
San Franeisco, 1973).
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Moreover, the conformally flat space-time metric (7) (neglecting gravity now)
may be a special case of a general quantum metric which would be subject
to a set of nonlinear field equations. In this conneetion it is interesting to note
that de Broglie’s variable rest mass (2) embodies a quantum analogue of Maeh’s
principle. That is, the inertia of a quantum particle is determined by a scalar
field which is a function of all relevant proeesses oceurring in the environment
of tho particle. @ then plays the vole of the field introduced by BrANs and
DIcKE () to supplement Einstein’s theory with an explicit statement of Mach’s
principle.

We conclude that the quantum potential model, through which we may
understand the irreducible coupling between particle and environment which
is the outstanding feature in the mierodomain, may be particularly suited
to a geometrical approach (whether gravity is present or not) sinee

a) the quantum potential acts to determine particle motion as a field
of foree, albeit one with nonclassical features, and

b) the quantum potential appears direetly in the conformal metrie of
space-time so that particle motion is a geodesic in @Q,.

One of us (PRH) thanks the Leverhulme Trast for financial support.
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Markov Process at the Velocity of Light: The
Klein—Gordon Statistic
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The Markovian random walk of a point at the velocity of light on a two-dimen-
sional invariant space-time lattice is shown to yield the quantum statistic
associated with the Klein-Gordon equation. Quantum mechanics thus appears
as a particular case of Markovian processes in velocity space: and one justifies
the introduction of Dirac’s invariant “ether” as a possible physical stochastic
subquantum level of matter which yields a realistic mechanical basis for recent
attempts to reinterpret quantum mechanics in terms of material, causal, random
behavior. -

1. INTRODUCTION

Recent discussions on the Einstein-Podolsky-Rosen paradox (1935)
have shown that quantum mechanics implies spacelike correlations be-
tween two linear polarizers which measure the rate of coincidence between
the relative orientations of pairs of photons emitted in the S state. If a
forthcoming crucial experiment of Aspect (1976) confirms this then the
only possible “causal” (i.e., which preserves the fundamental fact that no
individual particle can leave the light cone) way out of the resulting
contradiction between relativity and the quantum theory of measurement
seems to lie in the direction of an extension of the stochastic interpreta-
tions of quantum mechanics in terms of subquantum random fluctuations
resulting from the action of a stochastic “hidden” invariant thermostat.
Indeed these models (a) deduce the form of the quantum waves from the
physical assumption that the stochastic jumps occur at the velocity of
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light; (b) interpret the preceding superluminal interaction in terms of
superluminal propagation of a “quantum potential” (Vigier, 1979) which is
not carried by individual particles but results from phaselike collective
motions carried by the said thermostat.

The aim of the present paper is to analyze in a more precise way the
physical and mathematical implications of these stochastic interpretations
in the particular case of scalar particles.

In Section 2 we shall briefly discuss the physical properties of the only
possible invariant undetectable relativistic thermostat known in the litera-
ture—i.e., Dirac’s “ether” model: a model that provides a realistic physical
basis for the above-mentioned interpretations.

In Section 3 we shall discuss the mathematical significance of the
stochastic demonstrations already given in the literature starting among
others with Bohm and Vigier (1954), Nelson (1966), de Broglie (1961), and
the growing number of papers dealing with stochastic electrodynamics (De
la Peiia and Cetto, 1975).

2. THE SUBQUANTUM THERMOSTAT

All these models imply of course a modern revival of the old “ether”
idea: a concept apparently definitively destroyed by the negative result of
Michelson’s experiment. As one knows, however, Dirac (1951) has shown
that it is not so and that one can construct at least one material covariant
“ether” perfectly compatible with relativity. It rests on the idea that
through any point O passes a flow of stochastic particles and antiparticles
(described in Figure 1 as particles moving backwards in time) whose
momenta have the extremities of their four-vectors P* (with P"P#=m2c2)
distributed with a uniform surface density on the two three-dimensional
surfaces of the hyperboloids H, and H_. They will thus remain invariant
under all Lorentz transformations.

This stochastic relativistic distribution constitutes the only possible
model for a physical undetectable thermostat for spin-zero particles into
which we can study the relativistic analog of the classical nonrelativistic
Brownian motion. Dirac has derived this from the indeterminacy principle.
However, it differs from it by two new physical properties.

(a) Since the light cone behaves like an asymptotic accumulation
manifold of Dirac’s stochastic distribution we can assume that the corre-
sponding stochastic jumps of a Brownian particle, submitted to its random
action, occur practically at the velocity of light. Indeed, any given ex-
changed energy is statistically superseded by more energetic interactions.

(b) This ultrarelativistic Brownian motion includes the possibility of
pair creation and/or annihilation. This is important since the mixture of
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particles and antiparticles has been shown to provide a realistic interpreta-
tion (Terletski and Vigier, 1961) of possible, negative, probability distribu-
tions.

The concrete analysis of this particular covariant case of stochastic
motion can be carried along the two lines of demonstration utilized in
nonrelativistic stochastic theory. The first line is just a relativistic generali-
zation of the ideas introduced by Einstein and Smoluchowski into
Brownian motion theory. Assuming that our particles are (1) carried along
the lines of flow or a regular drift motion v of extended particles associated
with a collective motion on the top of Dirac’s thermostat, (characters in
boldface type) denoting four-vectors, (2) jump stochastically at the velocity
of light from one average drift line of flow to another and thus (for an
ensemble of identical particles with arbitrary initial positions) reach an
average mean conserved distribution p(x); one can immediately demon-
strate the stochastic force law first assumed by Nelson (1966), from which
one deduces (Lehr and Park, 1977; Vigier, 1979; Guerra and Ruggiero,
1978) a stochastic wave y(x)=[p(x)]'/?exp[(iS(x)/#] with v=(1/m)VS,
which satisfies the Klein—Gordon equation.

This demonstration, however, being based on averages taken over
four-dimensional volume elements, does not connect directly the underly-
ing particle behavior with known statistical models discussed in the
mathematical literature, such as Markovian processes.
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The aim of the present work is thus to extend to the preceding
relativistic case the second line of approach discussed in the nonrelativistic
literature, i.e., to study the random walk of a moving point on a lattice
discussed by Chandrasekhar (1943) in a famous paper and later extended
from elliptical to hyperbolical equations by Avez (1976). This will be done
in the next section.

3. RANDOM WALK ON A COVARIANT LATTICE

To simplify our demonstration we shall limit ourselves to the study of
a two-dimensional space—time case x°x'. Indeed, as will be shown later,
its extension to four dimensions presents no conceptual difficulty.

First one can check immediately that the points P, located at the
intersection of the set of curves

X% —xP=A2 >0, A, =Xe™, nm=0,*1,*2...

G.1)
x'=(tanhd,)x° 6,=0, 8,=ms  &§>0

build an invariant discrete lattice (see Figure 2) in which the relativistic
interval between P, ,, and each P,., ., is zero. The explicit expression
for the P, ,, coordinates is

x2,.=A,coshb,,  x,,=A,sinhd, 3.2)

The preceding lattice is clearly covariant since each point P, stands at
the intersection of three intrisically invariant lines (i.e., a spacelike hyper-
bola and two isotropic light-cone-defining lines) which are transformed
into themselves by any ortochronous Lorentz transformations.




Jeffers, Lehnert, Abramson & Chebotarev (eds.) 195

The (finite) coordinate differences A, x, .4, x,  between the two
points P, and P,,, ., (f==1;5s==1) connected by one stochastic

jump will satisfy
A, x!

L5 "n,m

A xP°

s n.m

==] (3.3)

- |t

In order to describe random walks on this lattice lct us now define
two sets of stochastic variables {¢;,&5,...5... }; {0, M. 7... } with =%
I,m, = 1 for every j,k. The sign of ¢ (n,) determines the fact that i m the
corresponding jump the velocity (the time orientation) has changed its
sign, g;= — 1 (1, = — 1) or has remained unchanged ¢;= +1 (9, = % 1) with
respect to the preceding jump.

One then checks immediately that the general expression for the
displacement Dy°(n,m), after N jumps from the initial point P, and a
first jump in the direction defined by (t,s), can be written as the develop-

ment

D‘J(n m) —(Ats nm+e Am M8 r?-H' m+s

0
+ El€2Amm;,mm2¢,¢,xn+r(l+v|.),m+.r(l+1|,¢,)+ ot ) (34)

The probabilities for the realization of the signs of ¢,n, (withj=k=1)
are given by Table 1.

The functions Fg*(n,m)=<{f(x, .+ Dy*(n,m))) are the mean values
of a function f (defined on the lattice) over all random walks of N jumps;
they satisfy the following system of recurrence relations [one for each value
of (¢,5)):

Ft’(n m) (1 —AA—I.: nt+i,m+s BA—:,—sx:?+t.m+s CAI —s n+t m+s)

XFgl (n+t,m+ s)+AA_,,,x,?+,,,,,+,F§_"i'(n +1,m+s)

+BA-—t -3 n+t m+s _-:,l—s("+t’m+s)
+CA, _ X2 e FuZi(n+t,m+5) 3.5)
TABLEI
Probability € L)

-1 -1

AA—(.I nt+i,m+s

BA—I - n-H' m+s
CA: —-1% 1?-0-: m+: ~1 1
l—AA—la n+t m4s BA__,'_,X,?.._,'M*_,—CA,'_,X,?_,,.,,H_, l l
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At the limit for § >0 (Heath, 1969; Kac, 1956) the lattice tends to
recover all the interior of the light cone, the function Ff’(n,m) goes into
the function F“*(x°x') and relations (3.5) can be shown to go into a
system of four differential equations (f,s= *1), i.e.,

1,5 1,5
881;0 -_—— % ?;.7 ___A(F—l..t__F!.s)_B(F—l,—J_Fl,s)+ C(Fr'—‘—F"’).

(3.6)
One then sees immediately that the function

q)=(F1,l+Fl.—l_F-l,l_F—l,—l)+i(Fl,l_Fl,—l+F—I,I_F-—l,])

3.7
1s a solution of the free Klein—Gordon equation
2 2 2.2
( o° _ 38 ,)—”‘C =0 (3.8)
ax®  ax! W

when one writes C=24 +4B and 2(4 + B)*=m?*/#* Q.E.D. (For details
of deduction see the Appendix.)

In the preceding demonstration f is not arbitrary since it is correlated,
through relation (3.7) with an average scalar density p and a scalar phase §
(see Vigier, 1979) by the relation ¢=p'/2exp(iS/h). Indeed, one can
demonstrate directly relation (3.8) with the help of a hydrodynamic picture
which also yields Nelson’s equation

m(D.o—Du)=F" 3.9)

This suggests three physical remarks.

(a) If one starts from a set of initial positions on a given hyperbola
the function ¢ now represents an average relativistic diffusion process
comparable to a sound wave (i.e., a regular collective motion) propagating
within Dirac’s “ether”-like vacuum and carrying a particle along v.

(b) Dirac’s “ether,” which creates stochastic jumps at the velocity of
light, is apparently the only way to obtain such a covariant diffusion
process.

(c) It also explains an essential characteristic of the said process, viz.,
its reversibility. As one knows, nonrelativistic stochastic processes are
fundamentally irreversible, being associated with a steady loss of informa-
tion about where the particle comes from. This situation is modified here
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by the minus sign in (3.9), which has been shown (Vigier, 1979) to result
from the particle-antiparticle mixture included both in Dirac’s “ether” and
in our random walk. Of course our time-reversing steps just describe
particle—antiparticle transitions and they both move forward in time; but
they are necessary to recover an essential feature (viz., reversibility) of
quantum mechanics.

4. GENERALIZATION AND CONCLUDING REMARKS

In order to achieve a generalization of our two-dimensional derivation
we must remark that the preceding demonstration remains unchanged if
we analyze a Markov process on simpler (not covariant) lattices. For
example we can reproduce all formulas for the displacements and their
consequences if we consider the following lattice:

— =1, nm=0,*1,+2,... 4.1

x? = nArt Al
Ar

Xp y=mAl

As a consequence the covariance of the formulation at each step of a
limiting process cannot be considered as a necessary requirement. How-
ever, the covariance of the result (Klein—Gordon equation) is obtained at
the end of the process. This observation allows us to discuss formally the
four-dimensional case as a straightforward generalization of lattices like
(4.1), a procedure that evidently avoids all complications resulting from the
construction of a four-dimensional covariant lattice.

To conclude, we want to make two remarks on the relation of the
preceding stochastic derivation to demonstrations utilized until now in the
literature.

(a) In opposition to the “classical” stochastic derivations of quantum
statistics (Bohm and Vigier, 1954) it is not necessary here to consider a
particle carried in a fluid wave described by the quantum mechanical
equations. Indeed, our corpuscule is now just located in a sort of covariant
“ether,” not described a priori by a particular wave equation. A simple
hypothesis on the stochastic behavior of the particle in this fluid is now
sufficient to demonstrate directly the Klein—Gordon equation.

(b) The model yields a physical insight into the observed difference
between classical Brownian motion and quantum Brownian motion
(De la Pena and Cetto, 1975).

As one knows, in order to obtain the Schriodinger equation (nonrela-
tivistic limit of Klein—~Gordon equation) or the classical equations of
Brownian motions, we must choose “a priori” a different sign in the
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dynamical equations obtained from Newton’s law (Vigier, 1979). The
present demonstration indicates that this choice has a physical basis: (1) in
the existence of a Markov process at the velocity of light in velocity space,
(2) in the simultaneous presence of particles and antiparticles (Feynman,
1948) in the observed statistics of quantum theory.

ACKNOWLEDGMENTS

The authors are grateful to Professors P. Malliavin and A. Avez for interesting mathe-
matical suggestions which helped to clarify Section 3.

APPENDIX

In order to demonstrate in detail the transition from relation (3.5) to
(3.8) we first remark that in the §—0 limit, the lattice tends to recover all
the surface of the forward light cone and the number N of the jumps in our
light velocity random walks becomes infinite: provided we keep fixed the
space—time limits of the initial diffusion process. In this way the discrete
function Fj*(n,m) becomes a continuous function depending on the initial
point coordinates, namely F**(x%x").

Starting from (3.5) on the x° axis (m=0), if we subtract from both
sides Fy* (n+1,0) and then we divide by the time intervals, we have

AFY s AF5

Ax° |(n0) I Ax' (0

X BB[ Fyty*(n+1,5)— F§Z (n+ t,s)]

+ aA[FN'_",’(n +1,5)— Fyt(n+ t,s)]

+YC[ FyZi(n+1,5)— FfL\(n+1,5) ] (A1)
where
Ar(xo)n.0= (xo)n+ 0 (xo)n.0=koena(e’6 - l)
A:(xl)n+t,0=(xl)n+t,s—_(xl)n+t.0=}‘0en8e’88inh(ss)
Ar,.r(xo)n,m = (xo)n+t,m+s - (xo)n,m = tkoenﬁet(ms-i- ha smh'd
A () pm= (st tomts ™ (X1) .= 5Age e ™+ D5inh §
. s As(x‘)n+t.0 s
with —p=— > -
! A(x%)g0 801
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AF}® F5* (n+1,0)— F§*(n,0) oF"*
= — 5 (A2)
Ax° |n0) A,(xo),,‘o 50 gx° [xt=o
AFy:, Fi ((n+1t,5)— Fft ((n+1,0) oF"*
= —_>
Axl (n+1,0) A_‘.(xl)n...,‘o §—-0 axl x'=0

= A—l,.\'(xo)n+l.:

At(xo)n,o §-0

A—l, —:(xo)n+(,s
- —1
At(xo)n.o §-0

— Al. —-:(xo)n+t,.r
=———
Ar(xo)n,ﬂ §-0

and -1

B=

H

so that, in the § —0 limit, (A.1) goes into (3.6) on the x© axis. From the four
equations (A.1) we can now construct two complex equations:

%:%l (n‘o)— - U'A—Z%—J‘ (nﬂp)_ [aA(q)N—l_ ixg-)+ BB(oy_1— ipn_1)
-YC(XN—I"‘PN—l)]l(nH,s)
_Ii_l(% (n.0)= VA)A(:;;' ('H_’,o)—[aA(XN—l—i<p1tl—l)+BB(XN—l—ix;I—l)
“'YC(‘PN—l‘“XN—l)]I(nH,s) (A-3)
with oy =Fy'+iFy"~!
and xv=Fy ' +iFg "'

Now, adding and subtracting (A.3) we obtain

% - o=t U (R L ) [
Myl __ B
Ax® [(n,0) Ax' |n+1,0
—[(ad + BB+ ¥C)ey_+(ad = BB)ith_ 11| nsrsy (A4
with Ev=ontXy

and Ev=9n—Xn.
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Then we take the difference between (A.4) and obtain respectively,

Al N
Ax° . Ax! .
(n+1,0) X (n+1471,0)
A L B
Ax® |(n,s Ax! .
(n,) x! Jgnans)

_ [(aA + ,BB)(fN—z_ ig;—z)] I(n+r+ .9

- [((IA +BB+YC)£N——I +(GA ~BB)i€lt'—l]|(n+t,:+s') (AS)

Finally we divide them respectively by 1.\,.(x°),,'0 and A,(x'),,_o; so we

have
\2 A2 *
;x°)2 (n.0) Ax Ax (n+1,0) X (n+1,5) Ax (n+1¢,
A2 AZ
og”l - ot -—d[(aA +BB+7C)§"—:‘
x°Ax’ |(n,0) (Axl)2 (n+2.0) Ax" |(n+15)
]
+i(ad — BB) A‘f”’;‘ } (A.6)
Ax' ln+19)
where
A% ALy _ 2
Nz =( Nol _ég_lz )/Ar’(xo)n.o - .Q._g;
(Ax°) .0) Ax? [@a+e0) Ax?|(n0) 5=0 3x" |xi-0
A2£ _ A€ N _ 2
Ll 21 =( Nll - MNII )/Al'(xl)ll+l,o —> a £2
(Axl) (n+1,0) Ax (n+1,5) Ax (n+1,0) 80 ! x!=C
A% 2
ONl =(&A{) _—A—gl )/A:’(x|)n0_> a e
Ax°Ax" [mo) \Ax%|ms)y AX°|no " 80 3x%x! [ 1mp
(A7)
(and similarly for NN ~L, Non+1).
A, 0 , 1
Moreover a= ,(X )n+l,0 - A.v (x )n-H.O -1

-
Ar'(xo)n,o 60

b= At’(xo)n+r,.r N l

Ar(xo)n,o 60

Ay(x")po &0

= A.r’(xl)n+ [ ¥4

...-)
A,,(x l)n,o 60
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relation (A.6) becomes of course

3% 9% 3 66")
S AR i
ax® [1—o Ax9x% |- ( )( ox° ‘ 3x°/|x1=0
2 2
e 3 P A e C) § via- B)
dx ox axl x'==0 x'=0
(A-8)
and subtracting them we obtain
2 2 *
(as—ai) (A+B)(§ iag)
ax®  ax"/| -0 ax%  9x%/|-0
*
[(A+B C) i - 13)8‘S J
x'=0
(A9)

In order to eliminate £ from (A.9) we observe that, in the limit §—0, the
first equation of (A.5) is

9

. +(A + B)(£—ig*) (A.10)

x' =0

x'=0 axl

so that we have

3% 9% ) a - ag*
—_— = 2B-C)— -2
( ax02 axlz x'=0 (2A " C) axO x'=0 B 3x° x'=0
+(A+B)(C-2B)¢— im0 (AdD)

Finally, subtracting from (A.11) the conjugate equation multiplied by i
( 261 2€¢ ) a¢
x®  ax”

—2B—
and requiring that

*

. 0§
=(24+2B-C)i—
( Vo

x'-o x'-O ax

—(A+B)(C—2B)(§—i€*)| =0 (A.12)

2.2
C=24+4B, 2(A+B)}=2L%

(A.13)
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2 2 2.2

( 3? @ )_ mc } ®
ax®  ax! "

which is the Klein—Gordon equation on the x° axis of a Lorentz frame.

This evidently implies that (A.14) is valid over all space-time. Indeed
if a scalar equation such as (A.14) is valid at a point in a given frame it
remains valid for the same point in all frames. Moreover, since our lattice
is covariant, if (A.14) is valid along a given line x'=0, it is also valid on
any lattice point of another of our lines (denoted x' =0) which also plays
the part of our x° axis in a different Lorentz frame, because we can

evidently repeat the preceding demonstration in any Lorentz frame along
any axis x'=0.

we have

=0 (A.14)

x'=0
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Description of Spin in the Causal Stochastic Interpretation

of Proca-Maxwell Waves: Theory of Einstein’s « Ghost Waves » (°).
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J. P. VIGIER
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(ricevato 'l Dicembre 1980)

Recent multiplication in the literature (%) of papers supporting the stochastic in-
terpretation of quantum mechanies (i.e. which favour Einstein's views in the Bohr-
Einstein controversy) cvidently confronts Einstein’s supporters with a challenge, i.e. to
interpret in a casual way the forthcoming Aspect (7)-Rapisarda (?) experiments, provided
of course (as believed by one (JPV) of the authors) that experimental results confirm
the nonlocal prediction of Quantum Mechanics. Since these experiments are based on
the measurement of correlated polarizations (spins) of photon pairs emitted in the singlet
state this clearly implies a casual stochastic analysis of the concept of spin (and polariza-
tion) in the theory of light. The aim of the present letter is to make a first step in this
direction, i.e. to describe the realistic foundation of the concept of photon spin (and its
measurement) in Proca and Maxwell waves in the stochastic interpretation of quantum
mechanics.

As indicated in the title, we start with nonzero-mass spin-1 particles. This is justi-
fied by the well-known fact (resulting from past works of de Broglic (°) Schraodinger (19)
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Deser (1Y) and Vigier et al. (1?)) that the zero-mass limit of a nonzero spin-1 Proca par-
ticle m, cannot be distinguished physically from a Maxwell wave. Indced the so-called
transverse waves just corresponds to J, — 4- 1, i.e. to opposite circular polarizations,
while the longitudinal solution J; = 0 (which decouples practically from transverse
waves when m, — 0) describes the Coulomb field when mi, — 0.

As onc knows the common classical counterpart of the I’roca-Maxwell field is the
‘extended classical Weyssenhoff particle (1) analysed in detail by Boum and Vicier ('),
I[aLBWACHS ('%), SOURIAN et al. (15).

This model describes its internal motions by two physical points (i.e. a centre of
mass (¢.m.) and a centre-of-matter density (c.c.)) scparated by a spacelike four-vector
Ry defined by (me)? Ry = 8up(dy, where (7, and Sy, define the particle energy-mio-
mentumn (G,G, = — m?%e?) and internal angular momentum (). By introducing the
{cc)’s unitary four-velocity Uu(U, U, = —¢*) and its proper time 7 (with * = d/dv)
the classical set of Weyssenhoff equations is written as

(1) Cu=10, Sp=0,U,—GU, and S,U =0.

They have been completely integrated by HarLswacus (**). They yield R, R, = const,
imply the constancy of the classical spin vector
3

(2 Sy = eprap UvSag = S/zv Uy

2

o

(s0 that 8,8, = $ 8,8y = o5 = coust) as well as that of Pauli’s spin veetor Sy = Sy G,
t.e. 848, = const. One secs also that the extremity of 4 moves along a cirele with a
constant angular velocity in the c.m. rest frame. The vector R, thus behaves like
the needle of a de Broglie « elock » which rotates with de Broglic’s frequency ayry = migc®:
a classical counterpart of Schridinger’s Zitterbewegung if 6, = h. Moreover, the constant.
length vectors Uy, Sy, R, and R, are orthogonal vectors (with R, = — (m2c®og)*Ry);
they define a Darboux-Frenet frame which rotates once when the (c.c.) deseribes one
circumference. In the (c.c.)’s rest frame one has Sy, = R,Gy— G, By,

The quantization of the Weyssenhoff particle’s motions can be (and has been) per-
formed in two independent ways.

A) The first is just (1?) the usual quantum procedure which substitutes com-
mutators to Poisson brackets. We briefly recall some of its aspects which will help to
clarify our subsequent results. Introducing as usual G, — ihd,, we see (1) that R, can
be generalized into the complex Proca-Maxwell field vector A, = R, exp [(mc?/h) 1]
proposed by pE BroGLIE and VIGIER (!?) and that relation G,S,, = (m?c*) R, becomes

m?e?

h?

(3) au(auilv*“avilu) =

Ay

which, completed by Gy,E,— 6,R, = 0, is equivalent to the Proca-Maxwell equations.
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B) The second which develops Einstein's stochastic point of view (12) derives
Proca’s cquations (3) from a fluid of classical Weyssenhoff tops endowed with random
fluctuations at the velocity of light. This has been done by Curaro-PrrroNi and
ViGikRr (2%). The demonstration rests on the idea that these tops arc imbedded into a
covariant distribution of similar tops which constitute the corresponding spin-1 Dirac
aether (31:2%),

Elc

Fig. 1.

We only want to add to this result a demonstration that the diffusion coefficient D
is indeed equal to #/2m. This can be shown (22) by the argument that in Vigicr's de-
monstration of Nelson’s cquation onc finds D = {38z, 8z,>/2 Ar, where 8x represents the
gtochastic spacelike part of the quantumn jump. If onc assumes that the Weyssenhoft
tops must turn by one (2r) internal rotation during these jumps (so that the tops remain
in phase according to de Broglie’s guiding principle), we sce that the distance travelled
in this jump is cqual to Compton wave-length i.e. i = li/me, so that we find (if this
distance is covered at the velocity of light) D = ¢*Ar¥/2Ar = 4/2m. Of course if
my—0, H* and H~ transform asymptotically into the light-conc and the limiting
energy density goes into the so-called zero-point electromagnetic cnergy density
I(v) = (4nh/c?)+?, which has been used as starting point for stochastic electrodynainies (32).

(1*) F. VASCHLURN: Einslein-Centenariunt, cdited by Akademie Verlag (Berlin, 1979), p. 173.

(**) N. Curaro PETRONI and J. P. Vicier: Phys. Lett. 4, 73, 289 (1979).

(*') P. A, M. DIRAC: Nature (Landon), 168, 906 (1951).

(") J. L. Viaikr: De Broglie waves on Dirac's either; a leslable ecperimental assumpiion, submitted
to Lett. Nuovo Cimenlo.

(*) T. W. MARSCHALL: Proc. Cambridge Philos. Soc., 61, 337 (1965).
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We now return to our initial purpose. Because of B we can assume, following
EINSTEIN (*) and DE BROGLIE (*?), that each individual photon is an extended Weyssen-
hoff top surrounded by a stochastic Proca spin wave materializing (Einstein’s « Gespen-
sterfeld » or de Broglie’s « pilot wave») and propagating on Dirac’s acther. It thus
behaves exactly like a plane flying at Mach 1 surrounded by its own sound wave. Its
constituent (extended) de Broglic clocks remain in phase between themsclves (and
with the particle), so that cach photon can thus be compared with a soliton (or singular
region) which follows the drift lines and jumps at random (with the velocity of light)
from one drift line to another. This « pilot wave » model implies of course an extension
to spin of Bohm's and de Broglie’s quantum potential. We shall calculate it in the
hydrodynamical model of the corresponding Proca-Maxwell wave, since a geueral analysis
has been fully developed by HaLBwacus (15).

Let us start from the Lagrangian

h?
(4) & = o Oy dudy i Al* Lo 4+ 2% 3y + A8 Ay -
n
-+ ;.*).Q + A all‘ a)n\(‘;au - o " N
where 4%, 1, g, 4, p' represent Lagrange multipliers. As will be shown later the three
Lagrange constraints are equivalent to the three Weyssenhoff conditions S0 = 0.

The field cquations deduced from (4) are

mie? 2
nmeec mie *

(5) O = oty and Oag=22,
along with the constraints
(6) Ouay = opSa, = 8,850,880, = 0.

As one knows (13) the photon drift current is

7 b= ifa, 22 0 = aaes = meas
—_ — v 1= —aya = s,
(7) =\ S dy) e A m PO = O

if we write aya, = R? and ay = R- R, with B, R, = 1.
One then sees immediately that the real and imaginary parts of (5) yield the Jacobi
and conservation equations, i.e.

Kt Or
(8) 2uS0,8 = (R2 2a,,[:|a,‘—m2) ot = h? 3 — B2, Ry, By — (ni-c)?
and
(9) 2u(R29,8) = 0.

Moreover, the current j, can be written in the classical form j, = %gU, (with
Uy Uy = —c?), t.e. g = (M/m)R?, if we introduce the quantum potential

R
(10) M2 = (m2 + h?3p Ry 2o Ry— 12 E‘]P )
th
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Morcover, the energy-monmentumn tensor
oL /A n:
by = | m=—— &% ida + ce. ) — 0 ¥ = — aua,a Cpyn + — 6, S — 8,7
Gl

c¢an be written in the elassical form

(11) how = pg Lvu U, ~— Pu U+ v l—fu + 0141'
with
1 . 1 R . R?
Hy — —luy Uul = — | dady + 2P 4+ — 11(-)' ,
ol et [\im m
| /S B . .
Pu = 1o U + St Uy = = ;(le(lgl,‘ + duagsd, |,
1 . N U i
P~ =t Us b Sl U= — — | —dody U,y + da,d,|,
2 me? | ¢*

Oy = Ly —po Uy Uy + pp Uy — i Uy =

h? A an e . hE B - .
= — Ot Optg — | Oup + )L+ ——dpdp Uy Uy + — dp(4a, Uy - 8pa,- Uy),
m c? ctm me? )

where the symbol ° denotes the operator U,8; and sy, pu, ¢ and 0,, represent, re-
spectively, Holbwach's proper mass density, transverse momentum, heat current and
tension tensor. The relation 8,4y, = 0 which results from the field equations (5) then
immediately vields

(12) Wby = Gu + {(gp Uu) + 0,0} = 0,

if we write the particle momentum density as g, = yo Uy — p, and the dot represent
the operator o; U,.

This is the quantumn counterpart of Weyssenhoff’s first classical relation G, = 0:
the last term representing (in Proca’s case) the new (stochastic) quantuin force. We
now define the Proca-wave internal-momentun density 8, with the help of Belinfante’s
tensor:

P

J“ﬂ lg + c.c.,

/ur}. = 86,,.4 ur

where
Z';“(", =} lS“‘ﬁ 3 (Oap gy — Oardgy) .
We thus obtain

.

h?

2_7‘"‘ (Brapa, — 0rayay) ,

furi. =

which yelds, for the angular-momentum tensor density S,,, the value §S,, =
= —(l/cz)fu,,)_ UA, z.e.

2 o
(13) Sur = 4 RYR R, — B, R, .
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As one knows, one can deduee the spin veetor density from Sy through the relation
: L y iht 5
Ny = —— fafu Uv‘gaﬁ = R'Evaﬁu Uy Ry R/i .
2¢ Im

Since, as a consequence of (13), we also have ¢, = (1/¢)8,, I’y = 0, we finally obtain
Spe = (8/20) epragSa Up, s0 that S,,8,, = SaSa = 2(A%/c2m)2 R4F, I, and

(14) ‘qm' Uv = 0,

which corresponds to Weyssenhoff’s third condition 1).

As a consequence of our nonzero rest masses we can use in each region a nonrcla-
tivistic limit and apply Bolun and Vigier’s demonstration (''5), so that the roca par-
ticle probability and density is 722 and we see that cach individual fluid clement {and
particle singularity) has an individual angular momentum S,, — (1/R*) S, and a spin
veetor Sy = (1/R%)8,, ie.

— [ (2]
(15) S = (123 m) e Uy Ra Ry

We thus have (because RaRa=1) UxSx =Uplg =U, By = Sg I's = Sy Rg = Ry BBy = 0

combined with féu = (R, (in the rest frame U; = 0) and ¢ =— ]é,, Ji’u = const. This yields
fiz \? o>
(16) S,‘é'u:—( )1%,,1{,,:0,
cim

which shows the spin S, is a constant length vector. Clearly the vectors Us, Sk, Ra
and E, now deseribe the individual Weyssenhoff tops which constitute our particle
and the associated spin wave elements.

Of course our angular mementum (and spin) no longer remain invariant along a
drift line. Since they are submitted to a gquantum torque of stochastic origin. An
evident calculation yields

(17) Sy = (6K2/c>m) euapy Ty Ru B
or
(18) Sw = quUy —qy Uy + Oy

with 6y = —q, Uy + ¢, Uy, + (21%/R)S,,,, which corresponds to Weyssenhoff’s second
relation 1): Ouy being interpreted as the torque produced by the heat flow plus a frie-
tion ‘torque.

This completes our deseription of the Proca-Maxwell field.

On the basis of the real existence of the pilot wave quantum potential and quantum
torque given above we can conclude this letter with a brief discussion of the photon
measurement theory in the Stochastic interpretation of quantum mechanies. First
we can summarize the contradiction between the Copenhagen (CIQM) and stochastic
(SIQM) interpretations of quantum mechanics in three antagonistic propositions which
sum up the opposite starting points of Bolr and Einstein.
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In CTQM

1) the quantumn states are associated with individual systems and represent an
ultimate statistical knowledge.; microphenomena are particles or waves: never them
both simmltancously;

2) a measurement on a system induces an instantancous discontinuous (space-
like) collapse of the state (wave packet reduction) on one of the eigenfunctions of the
measuring deviee;

3) the Heisenberg uncertainty principle restriets the simultancous measurability
of noncommuting observables on individual systems.
In SIQM

1) the quantum states represent real physical ficlds (waves) associated both
with individual particles and sets of identically prepared systems; micro-objeets are
thus particles and waves simultancously;

2y these states (particles plus waves) evolve causally in thme; there is no ware
packet reduction, but if (and when) the packet is split in an interaction with a real macero-
seopic physical system (i.e. a meuasuring deviee) into packets corresponding to given
cigenvalues, the partiele enters one of themn (aecording to its initial position in the
measurement) in which it is detected ;

3') the Heisenberg uncertainty prineiple does not restriet simultancous measur-
ability of noncommuting observables on individual objects (since particles follow space-
like paths in space time), but represent dispersion relations resulting from their dual
(wave plus particle) character and from their subquantal stochastic motions.

These later propositions suggest inferesting testable consequences. Proposition 3')
can be tested as shown by Fircuarp. Proposition 1), i.e. the real existence of Einstein’s
« gespenster Wellen » (de Broglie’s pilot waves), can be checked as proposed by the
authors (*") in a variant of Pflcegor and Mandel's experiment. Moreover, proposition 2')
suggests that, since macroscopic measuring devices always contain a random part
there is no purc wave packet splitting and all measurements imply a superposition ot
the apparatus cigenfunctions, i.e. a transition from Bohr’s to Wigners (*1), Araki
and Yanase’s (**) measurement theory. This is satisfactory, since it implies no viola-
tion of Linstein conservation laws (%) and no possibility to transmit superluminal
information, despite the real superluminal propagation () of the quantum potential.

The authors want to thank Prof. F. SELLERI and Dr. B. HiLey for helpful sug-
gestions. They gratefully acnowledge a financial support from the Italian CNR and
French CNRS which made this research possible,
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Possible Test of the Reality of Superluminal

Phase Waves and Particle Phase Space Motions
in the Einstein—de Broglie-Bohm Causal Stochastic
Interpretation of Quantum Mechanics

- J. P. Vigier'

Received July 7. 1993: revised August 2, 1993

: P
Y and their theoretical implications'='

Recent double-slit type neutron ¢xperiments
suggest that, since one can tell through which siit the individual neutrons travel,
coherent wave packets remain nonlocally coupled { with particles one by one ), cven
in the case of wide spatial separation. Following de Broglie's initial proposal.'™
this propertv can be derived from the existence of the persisting action of real
superluminal physical phase waves considered as building blocks of the real
subluminal wave ficld packets which surround individual particle paths in the
Einstein-de Broglie- Bohm interpretation of quanium mechanics.

0. INTRODUCTION

The observed i)hase space coupling in neutron interference‘?’ now evidently
strengthens the view that quantum mechanics implies nonlocal correlations/
interactions even in the single-particle case. Contrary to the purely local
hidden-parameters models. still defended by some followers of de Broglie
(Selleri, Lochak. Santos, etc.). the only known way to save realism and
causality within the frame of the Einstein—de Broglie model (which combines
real particle paths with real surrounding guiding fields) is to incorporate into
their model (as done by Bohm, Vigier, Bell, etc.) nonlocal quantum potential
type interactions carried by some new subquantal superluminal mechanism
somehow related to Dirac’s aether model."*’ Accordingly, the aim of the
present work is to use these experimental results of double-slit setups:

! Université Paris VI—CNRS/URA 769, Tour 22-12 Boite courrier 142, 4, place Jussicu,
75005 Panis, France.
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—(I) As evidence that individual neutrons have travelled through a
given specific slit, so that Rauch eral!" have opened the way for an
effective realizable “Welcherweg” (which-way) experiment in Einstein’s
sense, so that the particle aspect of individual microobjects follows real
trajectories in phase space.

—(II) As starting point of an alternative possible interpretation of
nonlocality based (as initially suggested by de Broglic himseif)®’ on the
real existence of superluminal phase waves related with the real particle
paths associated to the causal stochastic interpretation of quantum
mechanics: the variations of the nonlocal quantum potential being carried
by such phase waves.

The argument can be split in the following three steps:

I. WELCHERWEG BEHAVIOR IN NEUTRON INTERFEROMETRY

The question of the existence (or not) of particle motions (i.e., trajec-
tories) in the double-slit experiment has been widely discussed in the
literature since the origin of quantum mechanics.

Proponents of their existence have recently underlined (a) their conse-
quences on the probability coneept'® and (b)the possibility to test the
einweg (one-way) part version of Einstein’s reasoning'®’: a property which
results from the formalism of quantum mechanics itself when/if combined
with the assumption that energy-momentum conservation is always valid,
even when we do not perform a measurement.

In order to show that in this type of interferometers the neutrons
travel along one path only, a stroboscopic chopping of the initial wave
packet containing one neutron only is introduced, polarized upward along
with a macroscopic spatial separation between two coils which induce a
spin-flip with an energy loss AE = hw,. Hence the separate parts of the
chopped wave packet cross through coil I or coil I at different times.
Moreover, flippers can be switched on and off in such a way that one coil
only is working at any given time.

The frequency of the switching can be chosen such that when one
packet I (IT) goes through its coil, no packet goes through coil IT (I). Hence,
in the time interval 7,/v <1< /,/v (when packet [ has passed through coil |
and packet II has not yet reached coil I1) the wave function will have the
form

S K+ AK) e s b (71, ) et 1, (1)
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Fig. 1. Proposed experimental setup for simultaneous detection of interference and energy
exchange.

Behind coil I1 even the second part of this wave function changes as usual.
Hence, for the time interval mentioned, the energy exchange occurred in
beam path I only. With a special arrangement it is also possible to measure
this behavior directly.? We thus conclude that if experiment confirms that
the neutron’s energy loss is just 4E,, ie., confirms the prediction/validity
of the quantum mechanical formalism (as beliecved by the author) and if
one accepts Einstein's assumption that energy momentum is always locally
confirmed (even in unobserved situations), then the neutron has travelled
through one path only.’ With an added measurement this behavior
evidently leads to a welcherweg (which-way) experiment if one combines

? Although the authors claimed in a later comment (Phys. Let. 4 157, 311 (1991)] that inter-
ference disappears when the energy exchange becomes larger (and therefore measurable)
than the energy width of the beam. More recent results show also, in such cases, a persistent
coupling and interference properties.

* This experiment intended to prove that Einstein's einweg assumption is true if one combines
the predictions of the quantum mechanical formalism with absolute local energy-momentum
conservation has unfortunately been prevented by the failure of the atomic pile at Grenoble
and is now being considered elsewhere.
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the experiment of Fig. 1 with the probable results of an einweg (one-way)
experiment proposed some time ago by Rauch and the author.!®

The interest of Rauch er al’s recent experiments is that, as shown by
Rauch,® “In the course of several neutron interferometer experiments it
has been established that smoothed-out interference properties at high
interference order can be restored even behind the interferometer when a
proper spectral filtering is applied. This postselection of states demonstrates
that narrow plane-wave bands, which are components of the wave packet,
remain interacting even in those cases where the wave packets do not
overlap in space anymore due to a large phase shift applied to one of them.
A phenomenon which appears especially for less monochromatic and less
collimated beams in the same way has also been described for optical
experiments.”’ The interference pattern follows from the superposition of
the wave functions for both beam paths (7= |¥(I) + ¢(II)|?) and depends
on the relative phase shift (x = 4k) and on the momentum width dk of the
beam,

I(4) oc 1 +exp[ —1/2(48k)?] cos(dk) (2)

Here D represents the relative spatial shift of the wave trains (4=
2nNb_D/k?), N and D are the particle density and thickness of the phase
shifting material, and b, denotes the coherent neutron—nucleus scattering
length. The damping factor exp[ — 1/2(46k)*] can be interpreted as the
real part of the mutual coherence function of the interfering beams. The
corresponding experimental setup is presented in Fig. 2.

The spatially separated parts of the wave function can be interpreted
as the result of the quantum superposition of two macroscopically dis-
tinguishable states, that is, a Schrodinger-cat-like state. The associated
momentum distribution of the separated coherent wave packets is given by
the Fourier transform which exhibit at high interference order a marked
spectral modulation determined by the spatial shift of the wave trains,

I(k) = la(k)|* [1 + cos(dk)] (3)

where a(k) is the amplitude function of the wave packet centered around
ko. This behavior is shown in Fig.2 where a dimensionless quantity
m=D/D, (D; =ko/Nb, is the lambda thickness) is used as a measure for
the phase shift. This modulation becomes more pronounced and structured
for increasing phase shifts, indicating that the disappearance of the inter-
ference pattern in ordinary space is compensated by the appearance of the
spectral modulation effect in momentum space. Figure 2 also shows that an
interferometric spectral narrowing can be achieved which has the charac-
teristic features of a squeezing phenomenon where one conjugates quantity
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(dk) is below the related coherent-state value whereas the Aa value is
increased accordingly. The phenomenon of complete beam modulation
indicates that complete information exists at the place of beam superposi-
tion at the interferometer exit, guiding neutrons with distinct momentum
values into the forward or deviated beam, respectively. This formal and
experimentally proven behavior can be interpreted as the persistent action
of plane-wave components (exp(ikr)) outside the wave packet,
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Fig. 2. Neutron interference experiments at high order. Experimentai setup (above), loss of
contrast at higher order (middle), and spectral modification of the beam (below) in forward
(0) and deviated direction (H).
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and it shows that separation in ordinary space is not sufficient to ensure
separation in phase space. This far-reaching interconnection of plane wave
components has interesting consequences for EPR experiments t0o.”

As we shall now show, with an added measurement this “Einweg”
neutron particle behavior in Fig. 1 can also be interpreted in terms of
“Welcherweg” knowledge because in Fig. 2 the introduction of a slowing-
down phase shifter implies that the two parts labelled P; and Py of the
initial wave packet which result from the action of the first slab will no
longer superpose in space.

This implies that, if the dimension (length) of the initial packet is small
enough, the upper packet has a distinct separate entity, since it arrives in
detectors with a significant time difference 4//v; here v denotes the wave’s
group velocity and Al= —(D/2E)(2Mh*Nb/m), where E is the neutron’s
kinetic energy, b the scattering length, D the thickness, and m the neutron
mass. In other words, if one measures the neutron’s starting time with a
sufficient precision (with the help of a fast chopper), one can tell whether
the observed neutrons have been detected in the first P, (unretarded)
or the second (retarded) wave packets described in Fig. 2, i.e.,, whether
they have travelled in the phase-shifted part or not: an evident Welcherweg
knowledge.*

2. PARTICLE PHASE-SPACE MOTIONS IN THE
EINSTEIN-DE BROGLIE CAUSAL STOCHASTIC
INTERPRETATION OF QUANTUM MECHANICS

Along with possible Welcherweg measurements, the positive results of
Rauch eral’s experiments'’:?) thus raises new evident, epistemological
problems and properties of phase space in the classical stochastic relativistic
theory of quantum mechanics. For example, in the one-particle case, if the
probability of the presence of a particle is zero in a given configuration
space-region V, (p=0€V,) and no- supplementary particle interaction
exists, two separated wave packets should not influence each other within
the Copenhagen interpretation and (apparently) in the Einstein—de Broglie—
Bohm (E.d.B.) model. Indeed, if a particle has no position in space, it should
have no corresponding momentum space waves in momentum space, and
separated wave packets should thus be physically independent. The wave

“In Fig.2 the analyzed beam is built with two nonoverlapping distinct wave packets
(represented as circles in the Fig. 2); the elongated enclosing structure represents the overlap
of their increased momentum length width due to the reduction of their coherence length by
reducing the wavelength spread after the two packets have gone through the interferometer.
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solution, though formally correct, thus needs reinterpretation, as we shail
later see.

To clarify this point, let us first recall the peculiar character of phase
space 1n the causal (E.d.B.) stochastic interpretation of quantum mechanics.
This character has its origin in Einstein’s discovery'® that if one considers
a pointlike particle motion characterized in phase space by canonical coor-
dinates P (1) and Q,(t) depending on a scalar evolution parameter®’ t with
the canonical Hamilton equations

_dP,  ¢H o dQ, ¢H
odr oW " odr T Pt

defined by the scalar Hamiltonian H(P (1), Q, (1), 7), the only way to
obtain a ‘behavior which corresponds to the Bohr-Sommerfeld quantiza-
tion laws is to utilize the special set of Jacobi canonical coordinates p (1),
q,(1), where p,=cS(q,(1), 1)/dg,(t) and H =const = H(d,S(q(1), 4,(1)),
which corresponds to an evident physical constraint which states (1) that
quantum motions are tied to the irrotational character of the four
momentum, and (2) that in an ensemble of such phase space such motions
remain on a surface Q2(r) (denoted Einstein~Koopman"” (surface) defined
by the relation

P g,(1), 1) =¢,S(g,(1), 1)/ Cq"(t)=0,S (5)

The relation (5) implies, as we shall now see, an evident departure
from the usual classical phase space (as well as of Wigner's) formalism. In
the classical picture an ensemble of possible motions of identical particles
(of mass m) is described in phase space by the introduction of a scalar
phase-space density f(P, (1), 0,(1), t) which implies that

(a) the definition of average values of any arbitrary function
A(P, Q, 1) 1s given by the relation

CAY=[ S(P,. Qut) AP, 0, ) d*Pd*Q (6)

and one can define associated Q, P distributions in configuration and
momentum space by the relations [ (Q, 7)=] f(P, Q, 1) dP* and g(P, 1) =
jf(P, Q,1)d*Q.
(b) the phase-space density f(p, ¢, 1) satisfies Liouville’s equation
df &P, LoV df

dr+zm_zaQ“E=0 ()

{ 1
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for particles moving in an external scalar potential ¥ so that in a cloud of
representative points in phase space (whose boundary is defined by the
individual phase-space orbits) the volume and total number of the ensemble
elements in a volume are constant (i.e., df/dr =0) so that fis constant along
a phase-space path.

As one knows, it has not been possible (despite many attempts) to
extend this formalism to the nonrelativistic formulation of quantum
mechanics. The most famous (and effective) attempt is due to Wigner
(1932) who introduced the function F(Q, P, ¢) for classical phase space by
the relation

ro.pa=i [ vr(o+gz)u(o-gs)ema o

where (g, t) satisfies the Schrodinger equation. Its marginal densities are
just the usual quantum mechanical position and momentum distributions

[* Ro.PoaP=w@0? and [ FQ P0dQ=le(P.0F

and it satisfies an equation (induced by the Schrodinger equation) which
looks like a generalization of the classical Liouville equation. However, F
cannot be interpreted as a probability because it may take on negative
values in concrete physical situations.

The situation is different in the Einstein—de Broglie model as a conse-
quence of relation (5) which implies the irrotational character of the four
momentum vector.

If one restricts oneself to the Einstein—-Koopman surface 2 (defined by
p, = 0S8/dq") where now ¢,(7) denotes the configuration coordinates which
map the £ surface for a given value of the scalar evolution parameter t,
one can describe the phase-space motions on £2 in terms of real trajectories
invariantly characterized by their spacelike or timelike nature. This can be
conceived as a random process with conserved invariant density p(q,(t), 7)
on £, ie., p =dp/dt = dp/0t + d(pv,)/0q", where v, denotes an average unit
timelike drift velocity (v,v* = —c?) which, when combined with Einstein's
osmotic velocity u,= —D&(In p)/dg* = (h/2m) 3 (In p) (where D denotes
the diffusion coeflicient), yields the forward/backward derivatives b*, for
any function of a stochastic process g,(t), ie.,

0

Dy =5+b40,+ (h2m)0 (9)
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which imply that we can write for the drift and osmotic derivatives D
and éD:

| 0
= - —_ — H
D=>(D,+D_)=5+0", (10a)
1
D=3 (D, ~D_)=v",— (h2m)O (10b)

On all points on Q labelled by ¢,(7) (and with p, =3S/d¢*) the (E.d.B.)
phase-space distribution function f(q,, p,, t) can now be written

f(P,nqu)=P(‘I,n p;nt)'é(pu—as/aq“) (ll)

so that the average value of an arbitrary function A(p,, q,, t) on the phase
space is given by

<A>=J‘ A(pus qm T)f(p/n ql" T) d4p d4q

= [ 42,5, 4,,7) plg, 1) d% (12)
and the momentum distribution 1s given by

glpulr), t)= [f(ﬂ,,» 4. 1) d’q

o

= [ plgu(c), 1) 8(p, — 0S/3q* d*q (13)

Einstein's resuit can thus be formulated/summarized in the statement
that “all quanfum mechanical particle and wave motions in phase space
can be represented in terms of particles or waves propagating on the
Einstein-Koopman surfaces, i.e., satisfying a particle or a wave equation
written in the particular configuration space variables g,(t) which map
these surfaces, where p, = ¢S/0q*. Moreover, as noticed by John Bell, in
such a model these wave equations should contain both superiuminal
(phase) and subluminal (particle + wave) solutions. I one assumes
(neglecting spin), following Bohm and Vigier,"'*’ that

(1) An individual microobject is a (pilot) wave y and a particle
simultaneously,” the particle behaving like an oscillator which beats in
phase with the surrounding subluminal wave packet.

5 This point of view has recently been strengthened by the discovery by Aharonov et al.!'?
that one could measure the waves associated with the observation of single particles.
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(2) These particles follow on the average the drift lines of flow
tangents to the wave’'s momenta dS/0g* when one constructs a hydro-
dynamical representation of the wave field ¥ in terms of fluid elements
along the lines originally proposed by Madelung: Both particles and wave
elements moving along timelike paths.

(3) That these wave elements and the “piloted” particles (which can
be considered as solitons within the wave if one adds a specific nonlinear
term to the wave equations'*’) follow realist random Feynman-like
stochastic paths to which one can associate positive probability weights
which yield the [¢|? distribution as a consequence of an H theorem.!**

(4) The waves themselves can be analyzed as representing the
collective motion of Madelung-type elements following random paths in a
subquantal stochastic Dirac-type aether.!'> Following Schrodinger, they
can thus be considered as representing a diffusive Brownian type motion of
such ensemble of wave elements.!'®’

(5) One can justify the form given by Nelson to the stochastic process
associated with quantum mechanics, i.e., deduce quantum dynamics from
the Brownian recoil principle.!"”’

Indeed by demanding the validity of the momentum conservation law
on all conceivable scales adopted for the investigation of individual particle
scattering (collisions) on the medium constituents, we are forced to incor-
porate the environmental recoil effects in the formalism.!'®’ The Brownian
recoil principle thus elevates the individually negligible phenomena to the
momentum conservation law on the ensemble average. The resultant dyna-
mics of the statistical ensemble is governed by the relativistic Schrodinger
equation, once the diffusion constant D is identified with A/2m.

From these assumptions, it can be shown'? that:

—One can deduce the relativistic wave equation on Q in a generalized
Schrodinger form

o —~_'Hop"/l (14)

—One can immediately interpret/justify the usual quantum operator
formalism in Hilbert space in terms of real stochastic motions on the
Einstein-Koopman phase space surface 2.
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3. STOCHASTIC ORIGIN OF THE QUANTUM
OPERATOR ALGEBRA AND OF THE QUANTUM
POTENTIAL IN THE EINSTEIN-DE BROGLIE
INTERPRETATION OF QUANTUM MECHANICS

It has been known for a long time that the quantum second-order
equations, such as the relativistic Klein-Gordon equation, admit a hydro-
dynamical analysis as originally proposed by Madelung. To this end,
following de Broglie and Vigier,"'*’ one decomposes the Klein-Gordon
equation into real and imaginary parts, thereby obtaining a Hamilton—
Jacobi-type equation (with = R e’ =exp(P + iS/h),

2

1 P
5 0,80"S +m’ —— (OP+0,P6"P) =0 (15)

and a continuity equation
(0S8 +20,P3"S=0 (16)

The latter can also be written as é,(pu") =0, where we have introduced
a scaled scalar density p= R*(M/m) and the unitary 4-velocity wu,=
&, S/M(v*v, = —c*). The quantity M denotes the *“variable mass” of
de Broglie defined as

2

o
Mz=nr—%(DP+(7,,PE“P)=»12+Q (17)

where Q is the relativistic generalization of the quantum potential of Bohm.

It is interesting to note that the same hydrodynamical equations of
motion can be derived from a stochastic quantization procedure, along the
original lines of Nelson for the Schrédinger theory and the Vigier-Guerra—
Ruggiero''”" approach with an appropriate definition of a relativistic
Markov process''®’ which takes into account the possibility of apparent
spacelike motions. The process of stochastic quantization implies a con-
tinuity equation of the type of Eq. (2) and the Hamilton-Jacobi equation‘'*!
under the assumption that the mean drift velocity of the process is parallel
to the gradient field 4,(S). The analogies with standard Brownian motion
are straightforward, except for the fact that quantum stochastic diffusion
is frictionless, thus revealing the nondissipative character of quantum
fluctuations. It should also be noted that the quantum wave equations can
be equivalently derived from a stochastic variational principle in control
theory where, for example, the forward velocity b is considered as the
control field, as proposed by Guerra for the Schrodmger theory and in
Ref. 19 for the Klein-Gordon theory.
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It has been established*® that in Egs. (15) and (16) the hydrodynamical
fields p'? and S are canonical variables and constitute a phase space L of
these collective coordinates. This phase space L has therefore a symplectic
structure given by the 2-form

w3(5p, 35;5'p, 8'S) = [ [3p() &'S(q) - 8'p(q) 35(g)] dx

and it can be shown that Egs. (15) and (16) may be derived by Euler—
Lagrange variations with respect to p and S of the relativistic Lagrangian

— a_S _l_)__ M 2 K
.?’—pat-f-zm (0,50*S + h°0,Po*P) (18)
Note that (18) has an explicit T dependence (z is a scalar evolution param-
eter,.called, for simplicity, the “proper time”). The Klein—-Gordon limit of
this relativistic “Schrodinger” theory is obtained by the ansatz S(x, 1) =
S(x) —(1/2) mc*t. We can furthermore construct a field Hamiltonian as
a phase-space function for which the equations of motion appear in a
canonical form, namely*®

oS 0N op oN

— S’ .}{J = — —_—= = —-——

ot { } op ot »H ] oS (19)
More interesting, however, is a representation where the canonical variables
are ¥ and y* (with y = \/;CXp(iS/ft)) because the Hamiltonian becomes

linear and can be put in the form
H=HW %)= W Hop > = [*(x) HoW(g)dg  (20)

which can be used to define the H,, of the relativistic covariant Schrodinger
theory. Indeed, this reduces to H,,=(2/2m) and casts the Hamilton equa-
tion in a linear form:

Wy —1 6 1
FAR UL At il

Ho ¥ (21)

This reveals the fact that the Hamiltonian of the system is the generator of
infinitesimal proper-time translations.

What has been performed with the Hamilton operator can be trans-
posed in a general scheme that enables us to associate any observable with
the corresponding operator. In general, the observables relate to operators
in the (Y, Y*) representation according to the definition

#(p, S)=[[w*9) 4. 4) Wq") dg dg (22)
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where A% (q,q')=A(q, q’), and A(p, S) is real. The operator 4 is then
defined as

(4¥)a)= | 4lg, ¢) ¥(g) dg’ (23)

By establishing the result that Poisson Brackets are “quantum
averages” of commutators

(o, By == [[¥/(@) 4. B)a. 4) (g dg dy (24)

one can show that the algebra of the observables is closed under Poisson
pairing. Finally, in order to establish more characteristic examples of
observables and the corresponding operators, we note that an observable
A is the generator of an infinitesimal canonical transformation on any B
according to 6B =¢{BA}, where ¢ is a set of infinitesimal parameters. From
this, one immediately deduces the relations between hydrodynamical
phase-space variables and the quantum relativistic operator algebra, i.c.,

(a) Phase changes imply dp(q)=0 and 6S(q)= —a,g* This is
created by the generator Q, = j' Pq, a’q, which defines the operator g4, = ¢*

(b) Translations imply x'* = x* — g%, which induces dp(q) = —a,d*p.
The corresponding generator is P (p, S _[p@,,S dg, and this defines, in its
turn, ph = —iho*.

(c) Rotations are characterized by ¢'* = ¢* + ¢¢", ¢,, = —¢,,, which
induce dp(q) = (1/2) &*'(¢,0,—q,0,)p. Via determination of the generator
L,(p, S), we arrive at L% = —ih(q,0,—q.0,).

4. QUANTUM EVOLUTIONS IN PHASE SPACE
REPRESENTED IN HILBERT SPACE

Using the approach sketched above, one can proceed to construct a
relativistic Hilbert space in the frame of the relativistic proper time-depend-
ent formalism. This is a consequence of the fact that one can remove the
main obstacle consisting in the nonpositive-definite character of a vector
norm based on the Klein-Gordon scalar product {y, ¢> =ij' Y*joé d3q in
this more general formalism. In fact, the norm of a state vector is here
defined on the basis of the scalar product

W, 9>=| dqure (25)
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in complete analogy with the nonrelativistic Schrodinger theory. Note that
the integration is now extended to the four space-time variables, a fact
that poses no serious convergence problem for solutions ¢ and ¢ of the
relativistic Schrodinger equations, as shown in Ref. 20, and the norm of a
vector y, ie., |{|? becomes now a t-conserved quantity.

Let us consider now the evolution in phase space and associate it with
the evolution in the Hilbert space defined above. Following Koopman,®
we remark that the canonical equations of motion resulting from a scalar
relativistic Hamiltonian H(q,, p,) which governs a dynamical system with
n degrees of freedom (with g;, p, as canonical variables) corresponds to a
motion in a 2n-dimensional region R of the real (¢, p) space represented by
real analytic single-valued functions q, = f,(¢° p° 1), Px = £:(¢° P° 7).

The corresponding transformation in proper time S.: (g% p°) — (¢, p)
has the property S,,S.2=3S.,,:2, So =1/ If this motion satisfies the condi-
tion H(g, p)=m?, ie., if we pass to the usual Klein—-Gordon case, where
the Hamiltonian is constant on a mass shell, and £ is a variety of points
in R (i.e., a subspace in phase space, corresponding to the mass shell), then
S. on 2 represents a one-parameter group of analytic automorphisms of .
S. creates a path curve which remains in € if it has a starting point in
and leaves the integral {pdw invariant when taken over an arbitrary
region of Q, provided that p is positive single-valued analytic function
in Q. This is a consequence of the integral invariance of {dg,---dq,
dp,---dp,.

One should note here that in the Klein—-Gordon case of one spin-
zero particle we can associate with the quantum system a classical
free Hamiltonian with an additional nonlocal potential term, ie., H=
(1/2) p*+ U(q) = (1/2) m?, where U(q) corresponds to the quantum poten-
tial, U(x)= —(1/2) hz(au_P(?“P+ O P). This equation is mapped exactly on
the H-J type equation of the Madelung decomposition of the Klein-
Gordon equation under the condition p, = 4,8, which in fact reduces the
dimensions of the subspace Q to 4 (the four g variables). Now, according
to Koopman, S, leaves | p dw invariant. This, in the present case, reduces
to the invariance of | p d*g, which follows from the continuity equation of
the Madelung decomposition. The original Klein-Gordon spin-zero system
is thus consistently reproduced by the evolution in the Q subspace of the
classical phase space R, i.e., the “drift surface” or the “Koopman surface”
of the classical phase space.

Koopman’'s essential step is then to remark that, if ¢ =¢@(A4) is a
complex-valued measurable function of the point 4 on 2 such that the
Lebesque integrals | p || dw and | p |@|? dw are finite, then the totality of
such functions ¢ constitutes the aggregate points of a Hilbert space H, the
metric of which is defined by the “inner product” ((p,zﬁ)=ja pQY dw.
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If one defines transformations in Hilbert space U, with the property
U.p(A)=j(S,, A), these transformations are linear, continuous, and
unitary (i.e., preserve the form of the scalar product) for all ¢ € Q2 and all
real 7. This allows the following interpretation of the formalism: If t
represents the proper time, S, specifies the steady flow of a fluid of density
p occupying the space Q. If 2(4) is a value attached to the point 4 when
1=0, these values will be carried into those of the function Utp(A), so
that U, has at A the value which ¢ has at the point S, 4 in which 4
flows after the lapse of the proper time t. Canonical transformations in
phase space Q have thus been mapped on unitary transformations in Hilbert
space H.

Unitary transformations U_, which are automorphisms of Hilbert
space (and thus preserve the scalar product as a basic constituent element
in this space) are tied to the transformations S, in phase space, which can
be understood in terms of real motions in E, and are a manifestation of the
canonical Hamiltonian equations of motion, ie., the symplectic structure
underlying the phase space.

Along the same lines, we can develop a relativistic generalization of
the results of Heslot,"*!" where we can establish, in analogy with the
Schrodinger case, that the unitary transformations U, are a canonical
transformation since it preserves the Poisson brackets: U.({f, g})=
{Udf), Ug)}, and so the automorphisms of quantum mechanics are
canonical transformations. Hilbert space must thus possess an intrinsic
symplectic structure. This is a characteristic of a classical phase space.

A relativistic extension of Heslot’s calculations proves the identity of
the configuration space wave equation (21) and phase-space motions as
follows:

Starting from the relation

ihd | >/dt = H | > (26)

(where ~ denotes operators), let [|¢,>] be an orthonormal basis of the
Hilbert space, i.e.,

> =2 A 164> =exp(P + iS/h) (27)

Denoting by 4, the complex components of |y > on this basis, we
can then decompose these A,’s in real and imaginary parts; set A, =
(9« +ipi)/2"2, and write (26) as a set of equations for the canonically
conjugated variables p, and ¢, in terms of the Hamiltonian function H
defined as the mean value of H expressed in terms of the q:’s and p;’s.
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Assuming that {y > is normalized, we have H = (| H | >, and we show
immediately that

d dj o0H
dg. _oH and Pk _

= - 28
dt  Op, dt g, (28)

so that the space of states is now a classical phase space provided with
some complementary structures.

As shown by Heslot,?") the evolution of a classical system takes place
in its phase space. It is a space of even dimension, say 2n, which is in fact
the space of states of the system. In agreement with the experimental point
of view, this leads to defining an observable as a real-valued regular
function on that space.

The space of states is provided with a Poisson bracket, i.e.,, with an
operation f, g — { f, g} on the observables, which is linear, antisymmetric,
nondegenerate, and satisfies the Jacobi identity and a derivation-like
product formula. One can prove that there always exists (local) systems
of coordinates on the space of states, say, (q, p,), k=1,.,n, such
that {qk’ pl} =6kl’ {qk’ ‘I/} = {pIn pl} =0v k’ [= ]v'"’ n, where (Skl is the
Kronecker symbol, i.e., é,,= 1, for kK =/, and 0 otherwise. Such coordinates
are called canonical; they allow the Poisson bracket to be given the

familiar form
a dg of ag)
, &)= T (29)
U =2 (e

The physical meaning of the Poisson bracket structure on the space of
states is that the transformations of the states do not modify the nature of
the system, but merely correspond to a change of point of view; e.g., a
rotation, a translation, a change of inertial frame, or the time evolution,
preserve the Poisson bracket, i.e., are automorphisms of that structure.
More precisely, let ¢ be a transformation of the states; it induces naturally
a transformation f — £(f) of the observables. Then ¢ is an automorphism
of the space of states, provided with its Poisson bracket structure, if and
only if, for any two observables f and g, we have

Y g ={9(/) %)}

Since the correspondence between observables and infinitesimal auto-
morphism of the classical space of states rests on the properties of the
Poisson bracket, we are led to assume the existence. of some underlying
Poisson bracket structure on the space of states of our generalized classical
system. More precisely:
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(a) The space of states is provided with a structure whose physical
meaning 1s that the transformations of the states which correspond to a
change of point of view preserve that structure, i.e., are the automorphisms
of the space of states.

(b) We assume that this structure intrinsically induces a Poisson
bracket structure: The space of states is thus a classical phase space, provided
in the general case with some complementary structure.

(c) The word “intrinsically” in (b) means precisely that the auto-
morphisms of the space of states preserve the Poisson bracket, i.e., are
canonical transformations. The converse is not true in general: Not every
canonical transformation 1s an automorphism, i.e., also preserves the com-
plementary structure. We define then the observables as those real-valued
regular functions of the state, whose canonical transformations they generate
are automorphisms of the whole structure of the space of states.

The usual classical mechanics is characterized by the fact that there is
no complementary structure beside the Poisson bracket and, therefore, any
real-valued function of the state is an observable. This is not true in the
general case. It can be shown. however, that the set of observables is closed
under addition. product by a scalar, and the Poisson bracket. But the usual
product of two observables, defined by the product of their values, no
longer needs to be an observable.

The normalization condition means that part of the complementary
structure of the space of states consists of a supplementary constraint.
More precisely. using (25). we have

2 2
. P
Wiy =Y Il =y Bl
& % !
and the normalization condition (Yy*y)=11s
> (gi+ pi)=2h (30)

k
Let g be an observable. Since (30) is part of the structure of the space of

states, it must be preserved under the infinitesimal automorphism generated
by g. Now, using (29), we obtain the transformation law

Y (qi+ pi) Z(qA +pi)
k

g og
=3 (gi+pi)+2 (— - >6a
;qk pk % apqu aqkpk
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Thus, g may be an observable only if

Jg og

% (5Pk 9 99, pk) 0 G
Notice that the Hamiltonian function H is quadratic in the gx,’s and p,’s.
To reduce it to a simple form, take for {|#,>} a proper basis of H. Then
H=Y H,|4)*=Y HJp;i+q;)/2h, where the H,’s are the Hamiltonian
levels. H appears thus as a sum of Hamiltonian functions of harmonic
oscillators with pulsations w, = H,/h.

4. CONCLUSION

The preceding discussion evidently implies an extension of the Einstein-
de Broglie model/interpretration of quantum mechanics.
What is now suggested is

(a) That *“vacuum” is a real Dirac-type “aether” (along the lines
suggested by Dirac' ’ and Suddarshan er al.*?), which carries real excited
superluminal phase waves.

(b) That observed microobjects are built with subluminal wave
packets (0,50, 5 <0) which result from the superposition of superluminal
waves which also satisfy generalized relativistic Schrédinger equations
like (14).

(c) That these subluminal wave packets pilot/control oscillator type
particles (or solitons) which beat in phase with them and propagate under
the influence of stochastic nonlocal potentials along real Feynman-type
stochastic paths.

Such an extended model, strangely enough, represents a return to the
source of de Broglie’s initial discovery of wave mechanics.

To clarify this point, one can first revisit the famous paper”’ [pub-
lished in the C. R. Acad. Sci. ( Paris) 177, 507 (1923) by Louis de Broglie,
entitled “Ondes et quantas™] in which he linked relativity theory with the
physical reality of superluminal phase waves for the first time ... and thus
opened the way for the discovery of wave mechanics.

He starts with the idea that quantum particles of rest mass m, and
internal rest energy mgyc” can be considered as real clocks (moving with a
velocity v = fc (f < 1) with a rest-mass frequency v, satisfying

hvy = niyc? (32)
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According to relativity theory for an observer at rest the observed
particle’s/clock’s energy corresponds to a frequency v=mqyc?/(1 — f%)'?
and its observed (clock) frequency will be slowed down to a value v, =
vo(l — )2, ie., vary like sin 27v, ¢, ie., like a wave

exp(i2nv,t)

De Broglie then made the now famous assumption that at =0 the
clock is associated (ie., beats in phase) with a real superluminal phase
wave which propagates in the same direction with the velocity u = ¢/f and
carries no detectable energy (since, following Einstein, all observed energy
corresponds to absorption/emission of particlelike quantas) and that the
phase-locking process is preserved by the particle’s motion. Indeed, if at
¢t =0 the. particle is at a distance x = vt from the origin, its internal clocklike
motion is represented by a wave ¢ with ¢, _,=exp i[27v,(x/v)], while the
corresponding phase wave is represented by

#=exp [i2nv<1—%)}=exp [i2m-x<%—g>] (33)

so that they are equal (i.e., phase-locked) if
vi=v(l—f7)

an equality which results from the relativistic definitions of v and v,.

In other words, if one considers the phase wave as a real space filling
oscillation depending on v, 1, (t, being the proper time of an observer tied
to the clock), the Lorentz transformation yields

I X
o=t (%) oY

and if one applies to ¢ the operator O = (1/¢%) /0% — ¢/8x?, one obtains
for the phase waves the wave equation

Ue¢= ¢ (35)

which implies that they satisfy the Klein-Gordon equation which was
only discovered later as defining the relativistic subluminal propagation of
the scalar generalization of Schrodinger’s spinless waves. In the same text
de Broglie makes the assumption that photons are just ordinary quantum
particles (with 0 <m,=10"% gm) surrounded by superluminal phase
waves—a first step in the construction of the E.d.B. experimental phase
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waves and a first step in the construction of the E.d.B. theory of light. [For
a review of its present theoretical and experimental status, see J. P. Vigier,
ISQM 92, Tokyo, and /EEE 18, 64 (1990).] In this model, light particles
(i.e., photons moving along the de Broglie-Bohm trajectories) are con-
sidered as clocks which remain in phase with their surrounding subluminal
Maxwell-type waves as a consequence of the quantum potential, defined in
relation (17).

This is an important point. As one knows, relation (35) contains both
subluminal and superluminal solutions  =exp(P + iS/h) (where the four-
vector p,=0,S is timelike or spacelike, respectively), so that in the E.d.B.
model to a relativistic clocklike point particle moving with a velocity v with
a rest frequency given by (32) one can associate two wave fields which
satisfy the same equation (35), i.e., a real superluminal phase wave solution
‘propagating with p, p* [which, as shown by Bell® and discussed by
Kyprianidis eral,’® can result from the superposition of subluminal
solutions of (5)], which propagates with a velocity v=¢/f and remains in
phase with the particles oscillation during its motion, and a subluminal
plane wave  which propagates with the velocity v and thus is permanently
phase-locked with the particle oscillation.®

John Bell’'s argument has been discussed in detail by Kypnanidis
(Phys. Lett. A 111, 131 (1985)). The fact that the superposition of two
subluminal plane wave solutions of relation (35) yields a superluminal
impulsion current implies that one must impose initial constraints on a
subluminal wave packet if it is to remain subluminal in the future.

As one knows, these plane waves effectively correspond to narrow
frequency bands and, when integrated over the frequency distribution of a
quantum state, yield the subluminal wave packets (where p, p* <0 at all
points) which are utilized in both the usual (Copenhagen) and in the
causal stochastic (E.d.B.) interpretations.

Since both types of waves satisfy relation (5), one can develop each
type of solution on a sum of solutions of the other type, i.e., the usual
quantum mechanical subluminal wave packets ¢ which correspond to
probability distribution (or to a distribution of Madelung type particlelike
elements resulting from the superposition of real superluminal phase waves
which propagate on a subquantum ground-state vacuum or Dirac type
“aether.”‘*%?))

If one then recalls that an initial subluminal Madelung distribution
can split into two nonoverlapping regions, while the phase waves fill all

¢ Despite the fact that some solutions of Egs. (5) can correspond to superluminal waves,
de Broglie later rejected such solutions for his “pilot” waves since he considered bosons as
resulting from the fusion of two spin-1/2 Dirac particle components, a procedure which
excludes solutions corresponding to spacelike currents.
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space, one sees that one can construct subluminal wave packets as a sum
of superluminal phase waves filling all space associated with every
constitutive element of its Madelung hydrodynamical decomposition, a
property which justifies the use of Rauch’s relation (1) since such sums can
yield two (or more) regions where the total amplitude effectively vanishes
by superposition despite the fact that the corresponding constituting phase
waves still exist between these regions and are thus responsible (due to the
modification of their boundary conditions by external phenomena) for the
observed (nonlocal) interactions between them. In other words, momen-
tum phase waves can exist in regions where there are no subluminal
configuration space particle distributions. In the E.d.B. model the quantum
potential interactions are supported in empty space by real physical phase
waves, and one can interpret Rauch er al’s results as a consequence of the
modification (tied to measurement processes) of the boundary conditions
of the phase waves.’

As shown by de Broglie, the reality of the phase waves can be
considered justified by the fact that the Bohr-Sommerfeld (orbits and
quantization processes) can be derived from his model. This results from the
idea that when an electron turns on a Bohr orbit, starting from a point 0,
its associated phase wave (also starting from 0), travelling with a velocity
¢/B, catches up with him in a time t at a point 0’ such that 00’ = fict, so
that

2
T =g [Be(t+T,)], le, 1= i s T, (36)
c 1—-p

where T, denotes the period of revolution of the electron on its orbit. The
corresponding phase variation is

2 2
2nP,r=2nm(;1C T'(l-f}ﬂ)”z (37)

" In one of his last university lectures (on his interpretation of quantum mechanics) de Broglie
made two striking analogies:

(1) The relation of an oscillator-type particle with its pilot wave can be compared in
a sense to that of a plane flying at Mach 1 with is surrounding sound wave.

(2) The Fourier analysis of a state of vibration of the string of a violin in terms of
basic harmonics implies the reality of the total vibration and of the said harmonics since
both can be simultancously detected by resonance with suitable acoustic devices. In this
sense one can say that the waves utilized by Rauch in relation (4) exist despite the fact that
the total superposed amplitude cancels in certain space-time regions.
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and the locking assumption (which evidently implies the phase wave's
reality) then yields the quantum condition

mgy f3c?

(l__i)l;_i—)l_/z- T, =nh (38)
This reality of phase waves is also suggested by the fact that the simul-
taneous existence of particle and their surrounding phase wave distribution
(which constitute their usual  field wave packet) imply the identity of the
particle paths action (Maupertuis—Hamilton principle) and of the Fermat
trajectories associated with phase wave mechanics. Indeed, in its relativistic
form, the least action principle can be written as

5[ J,dxn=5[ Prdg,=0 (39)

where J, are the four vector components where J, is the particle’s energy
(divided by ¢) and J, (k=1,2, 3) represent its impulsion. Since, as one
knows, Fermat’s principle can be written in the form

5[0, dx*=0 (40)

where 0, = P/c and 0, (k= 1, 2, 3) denote a vector of length v/v tangent to
the rays of the wave field, the relation 0,=(l/h)J, thus implies the
equality of relations (39) and (40).

One can conclude with the remark that if one describes (following
Sudarshan er al.®® the subquantal “vacuum” or “aether” level as a real,
covariant, chaotic, fundamental, ground-state level of matter, which can
carry collective superfluid wavelike oscillations,® the preceding comments
suggest they could be considered as a superposition of the real super-
luminal phase waves introduced by de Broglie when he discovered wave-
mechanics. Despite his own later misgivings,? de Broglie was thus the first
to introduce nonlocal real phenomena in quantum theory.

¥ A possible connection with Dirac’s aether model is evident. If one represents the subquantal
level of matter as a quasi-continuous covariant stochastic distribution of harmonic
oscillators, a superluminal phase wave can travel on such a medium without covariant detec-
table particle/energy propagation, since it must be instantaneous {i.e, carry no energy) in
one frame at least, i.e., behaves like electromagnetic phase waves in real plasmas.

® De Broglie was initially reluctant to accept nonlocal quantum correlations because of their
possible contradiction with causality ... a problem which was later solved, in favor of
causality, by Sudarshan and Droz-Vincent et al.; see Refs. 16 and 22.



Jeffers, Lehnert, Abramson & Chebotarev (eds.) 233

ACKNOWLEDGMENTS

The author thanks Professor Rauch for drawing his attention to the
possible epistemological consequences of Ref. 1 and 2 and M. C. Combourieu
for stressing the possible importance of Ref.3, which has practically
disappeared from the literature.

REFERENCES

1. S. A. Werner, R. Clothier, H. Kaiser, H. Rauch, and H. Wélwitsch, Phys. Rev. Lert. 67,
683 (1991); H. Kaiser, R. Clothier, S. A. Werner, H. Rauch, and H. Walwitsch, Phys. Rer.
A 45, 31 (1992).

2. H. Rauch, “Phase space coupling in Interference and EPR experiments,” Phys. Lett. A
173, 240 (1993).

. L. de Broglie, C. R. Acad. Sci. 177, 507 (1923).

P. A. M. Dirac, Nature (London) 168, 906 (1951); 169, 702 (1952).

. M. Bozic, Z. Maric, and J. P. Vigier, Found. Phys. 27, 1325 (1992).

H. Rauch and J. P. Vigier, Phys. Lert. 4 151, 269 (1990).

. L. Mandel. J. Opt. Soc. Am. 51, 132 (1961}, D.F. V. James and E. Woll, Opt. Comm. 81,
150 (1991); D. F. V. James and E. Wolf, Phys. Letr. A 157, 6 (1991),

. A. Einstein, Sitz. Preuss Akad. Wiss.. 606 (1917) and Verhand. Deutsch. Phys. Ges. 19, 82
{1917). See also B. P. Koopman. Quantum Theory and the Foundations of Probability
(McGraw-Hill, New York, 1955).

9. The use of a universal scalar time evolution parameter has been recently reviewed in the
literature. For example, see Fanchi, Found. Phys. 23, 487 (1993). For a possible physical
interpretation of 7 within the E.d.B. theory of light, see M. C. Combourieu and J. P. Vigier,
Phys. Letr. A 175, 269 (1993).

10. For a review, see J. P. Vigier, Proceedings. 3rd Sympasium on the Foundations of Quantum
Mechanics (Physical Society of Japan, Tokyo, 1989), p. 1210.

1. D. Bohm and J. P. Vigier, Phys. Rer. 96, 208 (1954).

12. Y. Aharonov ard L. Vaidman, “Measurement of the Schrédinger wave of a singic
particle,” Phys. Lett. A, 1993, in press.

13. A. Kyprianidis and D. Sardelis, Lett. Nuovo Cimento 39, 337 (1984).

14. 1. P. Vigier, Found. Phys. 21, 125 (1991).

15. P. A. M. Dirac, Nature (London) 168, 906 (1951).

16. J. P. Vigier, Astr. Nachr. 303, 55 (1982).

17. P. Garbaczewski and J. P. Vigier. PAvs. Rev. A 46, 4634 (1992).

18. P. Garbaczewski and J. P. Vigier, Phys. Lett. A 167, 447 (1992).

19. P. Holland, A. Kyprianidis, and J. P. Vigier, Found. Phys. 17, 53 (1987).

20. N. Cufaro-petroni, C. Dewdney, P. Holland, A. Kyprianidis, and J. P. Vigier, Phys. Rev.

D 32, 1375 (1985).
21. A. Heslot, Phys. Rev. D 32, 1341 (1985).
22. E. C. G. Sudarshan, K. P. Sinha, and J. P. Vigier, Phys. Lett. A 114, 298 (1980).

N v AW

oc



This page is deliberately
left blank.



Reprinted from Lettere al Nuovo Cimento, Vol. 39, No. 11, pp. 225-233, Copyright (1983)
with permission from the Societa Italiana di Fisica.
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Summary. — A quantum analysis is presented of combined first-order/second-order
optical-interference experiments with or without the wave packet collapse concept.
It is shown that the Bohr-Heisenberg model yields testable predictions which differ
from those of the Einstein-de Broglie theory of light,

One of the starting points of the Bohr-Einstein controversy is evidently the wave
packet collapse concept introduced by Bour as a basis of quantum measurecment theory.
As one knows Einstein never accepted it, since he believed

1) that this process, assumed to be instantaneous in all frames, is evidently in
contradiction with relativity theory,

2) that it contradicts his realistic conception of the wave-particle dualism; for
him electromagnetic waves for example are considered to present simultancously wave
and particle (photons) aspects, while Bour holds that particles are waves or particles,
never the two simultaneously; for him the photons materialize in observation when
their probability waves collapse instantaneously.

Tworecent developments, however, have confirmed Einstein and de Broglie’s opinions.
The first is the discovery by Cini (1) that one can construct a quantum measurement
theory without wave packet collapse ... so that one of the pillars of the Copenhagen
interpretation is now endangered. The sccond is a set of recent proposals by Garuccro,

(*) On leave from the University of Crcte, Physics Department, Heraklian, Crete, Greece.
(") M. CiNI: Nuovo Cimenio B, T3, 27 (1983).
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PorPER (2) SELLERI (]) RAPISARDA () ANDRADE and VIGIER (5) to test the real inde-
pendent existenee of de Broglie's wave... in conflict with the wave paecket col-
lapse concept.

These proposals huve engineered a number of comments (8) and criticisms (%8),
The aim of the present letter is to present a complete quantum-mechanical treatment
of the proposed set-ups and to show that the Bohr-Heisenberg interpretation indeed
yields testable predictions which differ from those of the Einstein-de Broglie theory of
light in combined first-order/second-order optical-intererence experiments... which can
thus be considered as tests for or against the introduction of the wave packet collapse
in the interpretation of quantum theory.

We start with the Michelson device represented in fig. 1, The quantum theory of
such a device has been given by Loupon (7) in some detail. We shall rediscuss it here
in his formalism, sinee as we shall show, he incorrectly assumes the Maxwell-Bolizmann
statistics for incoberent beams.

1
y ____pl detector 1+2

Fig. 1.

We represent by af, a the creation, annihilation operators of the input light which
is split by the semi-transparent mirror into equal-amplitude components a,, a, (see
fig. 1). The aoutput beam at the detector d is given by the expression <dtd>, where

a = (@, + a,)0(n; + ny— N) ,

d = [ay exp [iKz] + a; exp [iK2,]]6(n, + ny— N)

and

n = <alay, i=1,2,
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() V. A. RAPISARDA, A. GaRvccio and J. P. VIGIER: Phys, Left. 4, 90, 17 (1982),

(*) J. ANDRADE E SILVA, F. SELLERI and J. P. VIGIER: Lelf. Nvovo Cimenlo, 36, 503 (1983).

(*) W. M. DE MUYNCK: Epistem. Lett., 33, 7, 13 (1982).

() R. LOUDON: Quantum theory of combined first order[second order optical inlerference experiments,
preprint to appear in Opt. Commun.

(*) O. Costa DE BEAUREGARD: Nuovo Cimenlo B, 42, 41 (1977); 51, 267 (1979).
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which yields the following result:

Kdidy =
= <[air exp[—ilz] -+ a;r oxp{—ihz]][a, cxp[iK2] + a exp[iKz]]8(n + ny— N)D> .

The restrietion imposed by the d-function, i.e. the definite number N of photons, can
be explicitly evaluated as a factor in the composition of the state veetor |y>. This
results in a weighing of the states, out of which |y> is composed, according to Bose-
Einstein statistics appropriate for correlated particles submitted to random stochastic
nonlocal actions at a distance (°). As we have shown (1?) this leads to different predie-
tions for the interferenee pattern. The Loudon formula for the intensity

I~ N(1 + cos¢),
which exhibits maximum fringe visibility has to be replaced by
I~N(1 4 A(N)cosg), AN,

Only for N =1 the two formulae coincide, A(1) being 1. For N = 2 one already
obtains a reduced fringe visibility corresponding to the §, §, } probability for the oe-
currence of the states [0,2>,]1,1> and [2,0). For ¥ — oo, A(N) approaches M/4,
and the intensity pattern exhibits a reduced fringe visibility.

We now pass to the sct-up of fig. 2. We introduce on arm 1, amplifier 4, which is
assumed to produce (when stimulated by one photon only) an outcoming photon with
the same phase, generally accompanied by a spontaneous photon with a random

1
6? ‘,l detector 142

amplifier A

Fig. 2.

(") A. EYPRIANIDIS, D. SARDELIS and J. P. VIGIER: Causal nonlocal characler of quantum statislics,
submitted to Phys. Rev. Leil. 4

(1} F. DE MARTINI, A, KYPRIANIDIS, D. SARDELIS and J. P. VIGIER: Quanium-mechanical causal
1clions-atl-a-distance correlations in optical-beam splilting devices and inlerference experiments, sub-
mitted to Nuove Cimento.
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phase (11). In the cohercnt state the photon operators are transformed according to

exp(— AJa, exp(A] =a; 4+ oy,
exp[— Alal exp[d] = al 4 of,

where

t *
A= ca, —ay a4y

and « is determined by the geometry of the amplifier and its effective current flow.

At this stage one must introduce the physical properties of the amplifier. There
are evidently two different models that can be applied to interpret the results. The
first model is the usual Bohr-type Copenhagen interprctation, which implics wave-
packet collapse when the photon is located somewhere, i.e. when it triggers the am-
plifier. This, however, implies the use of the amplifier explicitly as a measuring device,
by means of an observer. If the amplifier is not under observation, then according
to Bonr onc cannot know if it has been triggered or not, and consequently there is a
lack of information about the state of the system. Hence, the state of thc system
after the amplifier cannot be a pure state, but only a mixture of states with probabilities
of occurrence. The predictability of the experimental results restricts itself to statistical
predietions. On the other hand, the second model, the Einstein-de Broglic theory of
light, has no wave packet collapse, which is exactly the assumption made by CInz (1)
in his proposed description of quantum measurement theory. The Einstein-de Broglie
model considers photons to be waves and particles and consequently the amplifier does
change the state of the system in branch 1 of fig. 2, but does not affect our knowledge
of the system, bccause it does not create mutually exclusive states as the Bohr-CIQM
does. The systemis nowin a modified state with respect to the case examined previously,
but still in a pure state.

Apparently, the state of the wave ficld depends on the physical model used. The
wave packet collapse concept of Bobr introduces the following quantum mixture as
the appropriate way to account for the behaviour of the system:

[N

1
state [I) = \-/_Q{ll’ 0> + |0, 1>}, with probability p,,

state |2y = l {12,0> + «|170>},  with probability p,,
2

1
V14 |«
and with a density matrix

e = P> <1 + pa|23<2}, ntp=1,

where {.> denotes spontancous emission.

In the Einstein-de Broglie model, the amplifier has a nonzero probabilitr ¢ for
any given photon to pass through without being triggered and a probability 1 — ¢ to
double the photon (i.e. stimulated emission). This process is always accompanied by
spontaneous emission. The state of the system can be written now as a pure state |p)

(1) R. J. GLAUBER: Phys. Rev., 131, 2766 (1963).
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and takes the form

1
Py = —
V2 + |

|°{\/E|l’ 0> -+ vVI—¢2,0) + a]fT0> + 10, 1>}
22

with a density matrix of a pure state o = |y>{¥|.
We can proceed now to caleulate the interference intensity by cvaluating the fol-
lowing expression:

I~Tr [g{(a;r + o) exp [— iliz,] + al exp [—il(2,)} {(ag + o) exp [iKz]) + a, exp [ 17z,]}]

with cither of the proposcd models, respectively.

A) In the Bohr model a straightforward calculation yiclds the following result:

2p,
1+ |ef?

I~ |af?+ + pufl + cosg}.

This result is a statistical prediction of the interference pattern. It entails the predictions
a) that if the amplifier is triggered (p, = 0, p, = 1) no interference is obscrved;

b) that in the absence of the amplifier (p, = 0, x = 0), we recover the well-
known quantum-mechanical result I~ (1 + cosg).

B) In the Einstein-de Broglic model we obtain

o« +a* 3—¢ 2v¢e
I~ af2 4+ ———— /2 1— 1 ,
o] +2+ MZ\/ VE( e)+2+ 11|2{ +2~8005‘P}

which is a definite prediction depending on the efficiency of the amplifier, We can still
deduce some limiting cases e = 0 and ¢ = 1 and an intermediate situation ¢ = 1:

2
& = 1 (frce pass-through) I~laf24+ ——— {1 + cos ¢},
2+ |«f?

or with a=0 I~1+4 cosg,

which is the quantum-mechanical result with no amplifier;

3

= 0 (full ab ti I~ |+ —o,
£ (full absorption) || +2+|“12

i.e. absence of intereference, and

@+ a* V2 5 2v2
= 1/2 ~ 2 — .
e, I~ e S +2(2+|112){1+ 5 COS"’}

This, in our opinion, is an important result, since it shows that the Bohr and Einstein-
de Broglie models give different and testable predictions in some particular simple ex-
perimental set-ups,
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We conclude with a full quantum-mechanical treatment of the experiments proposed
by PoPpPER et al. (?) and GAruccIo et al. (1) and critisized by Loupox () and Costa pE
BEAUREGARD (8). The set-up is described in fig. 3 with an input of simple isolated
photons. Here also the Bohr and the Einstein-de Broglie models differ, respectively
in the utilized wave field, which is now represented as a three-state ket |a, b, ¢) cor-
responding to the branches 1, 2 and 3 of fig. 3.

1
+ detector 1

7/
7/ 2
V4 > detector 2+3
Ve <¢7 —
/

< 3

“

2

[N

=

€

g

’
7

v
I

Fig. 3.

The operators acting on the three states of the ket are, respectively,

+ a*
, a2+‘v—§

« t
a,+ — and  aglay.

V2

a.

a; +

x
le\/:2 vz

Evidently, this set-up now provides both interferences and correlations which can and
will be tested experimentally (12).

A4) In the Bohr model the state vector takes the form

state |15 = {[0 0,1 + |1 0,0 + = |o 1, 0>} with p,,
state ]f>>———1——{1 2,0,05 + =L, 1,0> + — 1020>+
. VI+ o2 V3T

11 0, 0> + 75 |o 1,05 with p,,
and
e = P L><1| + puf2> 2| with p, + p;= 1.

(**) A, GozzINI: Communication at the Symposium on Wave-Parlicle Dualism,. April 1982, Perugia.
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Thoe interference intensity calculated as

~ a — a. - a a =1d X P
I Tr 0 2 \/2 2 ‘\/2 g Qg 2 \/2 3 CXD [1, ] +

+ a} (az + 5 oxpl— im]}
yiclds the following result:

Joc}® 3

2v2 Py
I~— —<1 _—
2 +P14{ + 3 COS‘P}+

1+ ]a|2'

This formula for the intensity is again composed of one interference term where the
amplificr is not triggered (p,= 0, p; = 1) and a constant term. In the absence of
amplifier (p, = 0, x = 0), we obtain the quantum-mechanical result

7 3 1+2\/§
~— —— COB .
1 3 ¥

The predictions of this model are simply of statistical nature. The correlation between
two counters put on the outputs of beam 1 and beams 2 and 3 can be casily evaluated
by means of the correlation function

C T t a* t a* . + . .
~Trio|la, + :/-? a, + 73 exp[— iKz)] + a; exp [— 1K)

.{(% + \/ii) exp [1Kz,] + a;exp [iKza]} (a1 -+ 7%)]}

A lengthy but straightforward calculation yields

Jor|# 3aj? 1+ J«3(3 + 2v2) Joef?
CN -_— —_
: TP TR RO a P Ve

Cos Q.

In the absence of an amplfier we obtain, as expected, no correlation at all. In the general
case, this formula makes statistical predictions with the probability of getting an oscil-
latory behaviour with path length difference of beams 2 and 3.

B) The Einstein-de Broglie model has the following wave field for the arrange-
ment of fig. 3:

1
v = e 5110, 0> +[0,1,0] +

1
V2 + |a|2{
1
+ \/1—_—\7§[|2,0, 0> + {1,1,0> + {0,2,0>] +

o ~ ~
+ 73 []1,0,0> +]0,1,00] + 10,0, 1>}.
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The calculations can be performed a long similar lines as before and yield the following
pattern for the intensity:

[o|2 (o + o*) 1/e(l — &) 2 —¢/2 Ve
T~ 1 + V3 o) PR .
2 722 1 [a) g (L V2 + 2L er] | 2—ez Y

This gives for the special cases

! p a]? N 3 1 C2V2
£ = N o~ —— _ [ ,
2 ezt ap)) T T3 %7

[2[* 2
e=20, I~— ——e
2 2 + |«
1 22 1 4+ V2 (o + «¥) 7 4
e = —, {~— — 1 4 —cosqgy.
2 2 2vE6  2(2 + [22)  4(2 + |2?) 7

The result for the interference pattern of the Einstein de Broglic model without wave
packet collapse has some striking differences from the preceding one obtained with the
Bohr model: Instead of predicting probabilities of occurrence, we obtain here definite
predictions for the intensity depending on the amplifier characteristies £, Furthermore,
the interference term ~ cos ¢ differs essentially in the two models: while the Bohr
model gives always a probabi’ity of getting the pattern of the no-amplifier-case (.e.
(1 + (2v2/3) cosp) in addition to background terms, the Einstein model exhibits
an interference behaviour of varying amplitude (i.e. 1 4+ (v/Z¢/(2 — £/2)) cos @) in addi-
tion to different background terms. This is a testable prediction that could be sub-
mitied to expeiimentcl evidence.
Finally the corresponding counter correlations can be evaluated in a straight-

forward way. The result being rather lengthy we just quote the three interesting cases.

For ¢ = 1, we obtain as expected no correlation at all.

For ¢ = 0, the expression for ¢ can be written as follows:

C~

[a|4+ 3|af? 2v2 a2 1

iaN _ 0,),
T Tz ) T3y cos (¢ + B

1 2
- + o ~———
sz 1 ) T VER T
where a = |o| exp [16,].

For the ¢ = 1 case we obtain

[«[2  cose |«? cosg ||

0~“”*V§ﬂ2+wﬁ 42+ Jaft " VI(2 4 [a)

cos (¢ + 6,) .

From the above formulae for ¢ some striking differences compared with the Bohr
model can be easily pointed out: the oscillating terms ~ cos (¢ + 0,) are due to ex-
pectation values of the form

<1,1,0latala;«[0,0,1> .

s

These terms do not exist in the Bohr model. There, the oscillating term is connceted
with the probability P, aseribed to the state without wave packet collapse in the mix-
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turc. Here, the oseillating term is a natural consequence of the formalism always present
in the result, while in the Bohr model it is tied with the probability of oceurence of
oune state in the mixture. This cffeet manifests itself also in the general case (¢ % 0
or 1) where the oscillatory pattern of the correlation has a much more complex structure.

We thus conclude this letter with the remark that the correlation pattern in the
Linstein-de Broglie modcel without wave-packet collapse, exhibits in all cases examined
(apart from the ¢ = 1 casc where it vanishes) an overall oscillatory behaviour that does
not vanish as we come to the full absorption case. This is of course. an important
feature that yiclds the possibility to distinguish between the two models and should
and will be tested experimentally.

Finally, one last remark: The authors do not believe that the formalism of quantum
theory is crroncous, but only that the wave packet collapse concept introduced by
Bonn in the Copenhagen interpretation of quantum mechanics is not correet and
conflicts with experiment in certain specific situations, such as the experiments discus-
sed or Rauel’s et al. experiments on ncutron interference (13). This view does not
conflict with facts, since CINI has shown (1) that one could construet a realistic quantum
measurcment deviee without wave packet collapse, the latter being a concept which
cvidently conflicts with relativity theory.

The price to pay for the construction of such a reinterpretation of quantum theory
is evidently the introduction of subquantal random superfluid aether along Dirac's
initial suggestion (*). In this sensc of course, quantum theory would not be complete
and EINSTEIN would be right in the Bohr-Einstein controversy.

* * *k

Two of the authors (AK and DS) want to thank the French Government for a
grant which made this research possible.

(*) H. RAUCH: Proceedings of the Bari Conference on s Open Questions in Quantum Physics » (Dor-
drecht, 1983) and references quoted herein.
(*) P. A. M. DIRAC: Nalure, 168, 906 (1951); 169, 702 (1952).
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A modified version of the time-dependent neutron spinor superposition allows a possible simultaneous detection of
ncutron paths and intensity scif-interference. Previous theoretical doubts are removed and the Einstein—de Broglie version
of the wave—particle dualism now seems to be supported by Rauch’s experiment.

An important stage in single-neutron perfect-crys-
tal interferometry has been achieved with the verifica-
tion of the spinor 47-periodicity by measuring the in-
tensity variation behind the interferometer [1]. More-
over, recent progress in neutron interferometry has
demonstrated the quantum mechanical principle of
linear spin-state superposition for fermions [2]. By
inverting the spin state of one of the two initially
equally polarized coherent waves, propagating along
different paths, and by superposing them coherently,
one obtains a final spin state which lies in the plane
perpendicular to the initial spin direction of the single
neutron beam. Contrary to these experiments, where
the spin inversion was achieved by means of a static 8
field and the total energy of the neutron is a constant
of motion due to absence of a time-dependent inter-
action, a recent experiment has been performed by
Rauch et al. [3], where an explicitly time-dependent
interaction is introduced. Here, the spin state of one
of the partial beams is inverted by means of a radio-
frequency flipper. The total energy of the neutron is
not conserved and quantum theory shows that a pho-
ton is exchanged between the neutron and the field
which corresponds to the Zeeman energy difference -
of the spin eigenstates within an existing static field
By, i.e.ficog = 2uBy. At the same time one obtains a
time-dependent oscillating polarization

! European Exchange.
2 On leave from the University of Crete. Physics Department,
Heraklion, Crete, Greece.

P(t) = (cos (x — wypd), sin(x — wygt), 0),

where P, = (0,0, 1) and x is the nuclear phase shift
introduced in one beam. As one directly sees from
the above formula, P() is in the plane perpendicular
to the initial polarization, and can be detected by
means of stroboscopic registration.

The interesting feature of this experiment is that
one could in principle detect the path followed by
the neutron (since one has a measurement associated
with an energy exchange with the rf-spin flipping de-
vice [4]) and simultaneously observe the pattern of
a single particle polarization interference; contrary to
the customary point of view of Copenhagen quantum
mechanics. This possibility has been held as doubtful
by Rauch et al. [3]: For the stroboscopic detection,
needed for the registration of the oscillating polariza-
tion, the phase of the rf-field has to be known with
an accuracy A¢ < 27, a fact which combined with
the phase-number uncertainty relation ANA¢ > 2n
makes the number uncertainty AN > 1, so that single
photon transitions needed for the path observations
are in principle undetectable.

Since we have criticized this reasoning and the
consequences of this experiment elsewhere [S] we
will limit ourselves in this short letter to present a
possible experimental setup, i.e. propose slight modi-
fications of the latest Rauch experiment [3}, which,
in our opinion, bypass the theoretical problems and
questions (based on the phase number uncertainty re-
lation) raised by Rauch et al. [3].
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i <

Fig. 1.

This proposal consists of the following modified
experimental setup: The perfect crystal interferome-
ter now contains two rf-flippers, one in each neutron
path, the rest remaining exactly as realised by Rauch
et al. {3] (see fig. 1). The two partial single neutron
beams are now represented by the following wave
functions [6]

beam1: =eiX{lz)=eiX ((1)),

beam Il: = 14 = ().

In this representation all common phase factors have
been omitted and both beams possess an energy of Eiy
— AF where AE = 2uB, and the common wave vec-
tor k.

One could argue on this point that, since the ex-
change of energy with the rf-spin-flipper actually
constitutes a measuring process (because it modifies
both the state of the quantum system and of the mea-
suring device) the Bohr theory of measurement [7]
would suggest the explicit assumption of a wave pack-
2t collapse in the other path, whenever an energy ex-
change occurs in one of the rf-flippers: Since this
crucial aspect is discussed also in ref. [5] we com-
sletely omit this point in what follows and present
the correct quantum mechanical calculation without
wvave packet collapse [8].

If the two beams are superposed coherently so
‘hat they can interfere, we can calculate in this model
‘without wave packet collapse) the following expres-
iions for intensity and polarization [6] /g, = 12907
ind Py = Ig! ¥t ayg, withe: Pauli spin matrices.
Jur Ansatz for ¢ is the following

be=(elt )+ VT —eli) elX
+Velt)+V/T=elly,

where 1 —e is the efficiency of the rf-spin flipper, or
Ve =(L+eX) Vet + (1 +eX)VT—eld,).
With this the intensity is calculated to be

I =2(1 +cos )(VE)? +2(1 + cos Y)(VT = )2
=2(1 +cosx),

which, independent of the efficiency of the coil, ex-
hibits an oscillatory behaviour dependent on the nu-
clear phase shift factor y.

The polarization £ can now be written as

Pp=2071(1 + cos ){[Ve(1, 0) +/T—€ (0, 1)]
X (0y.0,,0) We(y) +V/T—e(D]}

which vields

Pi=([Ve(1,0) +VT=€(0, DI Ve()) +VT-€())l.
Ve, 0)+VT=e(, DI Ve +VT=e ()]
[Ve(1,0) + VT=€(0, DI [Ve(g) +VT=e( D)

=(2Ve(=6),0, -1 +26),

which does no more exhibit a time dependent rota-
tion in the xy-plane as in ref. [3] but has a constant
value mainly along the —z direction and a small part
in the x direction. For a perfect rf-flipper (¢ = 0) the
polarization thus reduces to a constant z-directed
magnitude

Pidcal =(0,0, ~1).

In this proposed experimental setup a very inter-
esting feature arises: Neutron paths can be detected
due 1o single photon energy transfer to the spin flip-
per while at the same time a time-independent con-
stant intensity interference pattern can be.observed.

One should immediately stress that in this proposed
experimental setup no doubts of the form presented by
Rauchet al. [3] can be raised for a simultaneous detec-
tion of interference and path followed by the neutrons.
Indeed since the resulting interference pattern isstation-
ary, the argument concerning the phase-number uncer-
tainty (which isin fact at least ambiguous [5] and
theoretically incorrect [9]) does not apply at all in
the present case: 50 that no theoretical objection
arises for a possible detection of single photon transi-
tions in the field of the rf-spin flipper. With this modi-
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fication all related objections are obviously removed,
and an energy transfer is in principle detectable, pos-
sibly with the use of a SQUID superconducting de-
vice [5]. Two more points, merely of practical con-
cern have still to be clarified. If the single photon en-
ergy transfer to the rf-flipper is not detectable due to
insufficient resolution capability of the instrument
then the following solution can be sought. After hav-
ing a passage of sufficient number of neutrons through
the interferometer the energy transferred to each coil
is summed up to an amount that has been shown to
be detectable [4]. One thus obtains statistical evi-
dence for the passage of a number of neutrons through
each path if the energy detected by the measuring de-
vice is an integral multiple of the Zeeman splitting en-
ergy difference, i.e.

Egetected = 21 By, nEN.

Since the coils can be made ~100% efficient [10]
one can obtain from this reasoning a number ny cor-
responding to the neutrons passed through path I and
a number ny for path Il and s + 1)) should equal to
the total neutron number measured on the interfe-
rometer. If in such a sétup the statistical information
concerning neutron paths in the interferometer still
coexist (as believed by the authors) with the persis-
tence of interference pattern of the intensity of the
beams containing one neutron at a time, this result is
clearly incompatible with the wave packet collapse
concept which would imply the use of mixtures [5]
and destroy possible interferences. Of course if we fi-
nally consider the case where a single photon transi-
tion to the rf-flipper is resolvable then one would ob-
tain direct accurate evidence for a single neutron pas-
sage obtaining at the same time an intensity interfer-
ence. This would yield, in our opinion, a direct proof
for the incompleteness of a quantum description using
the complementarity argument (particle or wave)
while it establishes the simultaneous existence of
both properties in the interferometer. If following
Rauch we really accept that neutron self-interference
establishes the fact that “every neutron in the area of
interference knows simultaneously what has hap-
pened in both paths” {10] then we would have to
conclude that our new proposed version of Rauch’s
experiment unambiguously establishes the real physi-
cal existence of the de Broglie waves [11].

If and when individual rf-photons are measured we

can finally add a slight “gedanken” modification of
the proposed experiment by adding an anticoinci-
dence counter between the two rf-flippers, which will
give information about the passage of a neutron
through the interferometer. If a 100% anticoinci-
dence is established, then one would have another di-
rect proof of the fact that, while the de Broglie waves
propagate on both paths in the interferometer, the
particle follows only one of the beams with a proba-
bility given by the reflexion transmission coefficient
in the first plane of the perfect crystal interferometer
(in the ideal case 1:1). In this case we would obtain
an experimental confirmation for the localized parti-
cle structure of every individual neutron involved in
the interference, in addition to the evidence for the
accompanying de Broglie pilot wave.

To conclude, the proposed modification of the
time dependent superposition of spinors has the basic
merit that it decouples the possibility of simultaneous
detection of the path followed by a neutron together
with interference phenomena from a possible contra-
diction with the (contested [5,9]) so-called fifth un-
certainty rejation, the phase-number uncertainty re-
lation. It thus enables in principle the separate exam-
ination of the “impossible™ simultaneous path/inter-
ference detection, strictly forbidden by the Copen-
hagen interpretation of quantum mechanics. It can
also be used (if this possibility is established by exper-
iment) along the lines indicated in this letter to check
the phase-number uncertainty relation: Indeed once
a single photon transition is measured, and if the in-
terference pattern of the intensity is not affected by
this measurement, this implies that one has directly
disproved by experiment the phase number uncer-
tainty: For single photon transitions would have AN
=0 as a consequence and an unaffected interference
pattern would imply well defined phase relations
within the beam and hence also in the rf-field, i.e.

Ag ~ 0. If one also considers that these types of ex-
periments represent a possible test of Bohr's wave
packet collapse concept [5], then one can really ap-
preciate the crucial possible contribution of neutron
interferometry in testing the foundations of quantum
mechanics.

The authors wish to thank Professor H. Rauch for
many discussions and helpful suggestions. One of the
authors (A.K.) wants to thank the French govern-
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the Royal Society for the European Exchange Fel-

lowship award which enabled him to do this research.
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The complementarity principle is shown to conflict with the cnergy conservation laws in neutron single crystal inter-
ferometry. Its shortcomings are revealed in specific performed or proposed neutron interferometry experiments.

The quantum formalism provides the correct pre-
dictions for the experiments performed in neutron
interferometry {1] but nevertheless fundamental ques-
tions, open since the Bohr—Einstein debate 50 years
ago, are raised again concerning their possible inter-
pretations. In a recent letter [2] we discussed the
problems related with time dependent neutron inter-
ferometry 3] and the possibility to consider the radio-
frequency spin flipper as a measuring device, a fact
that, if established, should enable the “impossible”
simultaneous path/interference detection. In this letter
we are mainly concerned with aspects of the comple-
mentarity principle and its contradiction with the
fundamental energy conservation law.

To this purpose we consider the experimental ar-
rangement of fig. 1 with both spin flippers turned off.
A simple calculation shows {4] that if an originally
spin up polarized beam y = [1,) enters the interferom-
ster, it is subdivided in two partial beams /| = eix|{t,)

t European Exchange Fellowship.
On leave from the University of Crete, Physics Departement,
Heraclion, Crete, Greece.
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Fig. 1.

and ;= [1,) that successively recombine and yield
an intensity interference behind the interferometer
modulated with the phase shift factor x.

1=+ () = 2(1 +cos x), (6]
while the polarization remains the z-direction.
P=(0,0,1). @)

This “double-slit™ like situation offers two possible
explanations:

(a) Either we say the neutron actually travels along
path Ior Il only, but is influenced by the physical
conditions along both;

(b) Or we say the neutron does not exist as a parti-
cle in the interferometer.

249



250 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

According to the Copenhagen interpretation of
quantum mechanics (CIQM) if the particle actually
travels along one path the existence of the other is
therefore irrelevant and interference cannot occur.
Interference arises not from our lack of knowledge of
the path but from the fact that the neutron does not
have one. Thus certain experimental apparatus make
the non-localized or wave nature of the neutron mani-
fest whereas other mutually exclusive apparatus make
its particle nature manifest. This is the complementari-
ty of wave and particle. .

The first option (a) was that favoured by Einstein

[5] and de Broglie [6] in the causal stochastic interpre-

tation of quantum mechanics (SIQM). The neutron
always travels along one path whilst its real guiding.
wave travels along both. In the region of superposition
the waves combine information about both paths and
guide the particle accordingly. Determinate individual
particle trajectories can be calculated in this model

in interference experiments (for a detailed calculation
of the particle trajectories in a two slit experiment see
ref. [7]).

In the original Bohr—Einstein debate Bohr was able
to defend the complementarity principle by showing
that attempts by Einstein, to use detailed energy or
momentum conservation in individual processes to
determine particle trajectories and give a fuller descrip-
tion, required a change of the experimental arrange-
ment which resulted in a loss of the wave aspect [8].

The argument is often put in the following way in
CIQM. The introduction of a device capable of deter-
mining the particle trajectory induces a collapse of the
wave function in the rest of the apparatus and a con-
sequent loss of interference. Such a collapse is a conse-
quence of the purely probabilistic interpretation of
the wave function and follows from the requirement
that wave and particle pictures are complementary. In
fact one should note that the collapse concept (projec-
tion postulate) need never be used in quantum calcula-
tions; whether or not observable interference persists
depends on the actual interaction that has taken place
with the apparatus, as shown by Cini [9]. For example
consider the wave function of an apparatus introduced
in one path to be ¢; initially and ¢ finally, then we
have:

Wi =o ¥yt ¥y > Ve =¥y + iy (3)

If through its functioning the states ¢; and ¢; become

orthogonal then interference is destroyed
Vi Ve = 67TV +reeViivr @

and the neutron acts as a particle that goes either on
path I or path 1. Observation of the measuring instru-
ment merely tells us which alternative took place and
thus we replace Wy by ¢;y; or ¢¢y;. This is a collapse
of the wave function which simply represents a change
of our knowledge and does not correspond to any real
physical changes in the state of the neutron. If ¢; and ¢
are not orthogonal then interference persists:

Ve = oo 0y vy + o dpdiidy + oot U
R AT )

and the neutron acts as a wave in both paths.

If by observing the apparatus we could still in fact
determine the path of the neutron then the act of ob-
servation in CIQM would have to cause real physical
changes in the neutron’s state as a consequence of a
wave packet collapse. Since if neutrons are conceived
as particles that go one way or the other, eq. (5) should
reduce to eq. (4).

Thus CIQM concludes that all measurements cap-
able of determining the neutron’s path imply ortho-
gonality of the apparatus wave functions initially and
finally. In SIQM determination of particle path need
not imply orthogonality of apparatus wave functions
in order to exclude the intervention of consciousness
in physical processes. What appears as a ““pseudo-col-
lapse” is the action of a macroscopic measuring device
which makes the interference terms negligible as is con-
sistently shown by Cini [9]. Thus, there is no a priori
impossibility of path determination and persisting in-
terference; one has only to find an appropriate mea-
suring device that during an interaction with the micro-
system does not undergo a change to an orthogonal
state, i.e. preserves the interference terms, and still
offers a possibility to decode this small quantum num-
ber change (e.g. one could envisage the possibility of
using a “‘quantum non-demolition measurement’ pro-
cess for such a purpose [10,11]).

Consider now the set up with the spin flip device
in path II operating (at 100% efficiency). The intensity
modulation in the emerging beams disappears, there is
no spatial interference. This lack of interference need
not however imply that the coil acts as measuring de-
vice localising the neutron in one beam since interfer-
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ence persists in the spin superposition yielding a final
polarization [3]

P = (cos{w,gt ~ x), sin(w et ~ x),0) .

Each neutron emerging from the interferometer is
polarized in the x—y plane. The spin up |1,) and

spin down [{,) states are superposed and hence it is
argued along CIQM lines that the neutron actually
does not exist as a particle with spin in either beam, if
it did a mixture of spin states would result. Now in or-
der to explain the change of spin state when the polar-
ized neutron acts with the rf coil it is argued [3] that
the neutron emits a photon of energy £ = fiw ¢ to the
time dependent field and hence the energy of the neu-
tron and the coil are altered. No description using the
purely wave-like aspect can explain these results. If
the neutron actually is only a wave (or in neither beam)
during the experiment no such energy exchange could
be described: How can the coil exchange a photon
with a neutron that does not exist! In order to ex-
plain the change of spin states produced by the coil
we require a localized particle, but a description in
terms of localized neutrons in one or other beam can-
not explain the superposition. It would seem that we
must use here wave and particle aspects of neutrons
simultaneously. Alternatively it may be argued that
when the neutron is said to behave like a wave we
should not imagine a physical wave, all we set in this
case is an interference of the probability amplitudes
for an event to happen in indistinguishable ways. The
amplitude to travel path I without spin flip “inter-
feres” with the amplitude to travel path II with spin
flip since the two are said to be indistinguishable. While
this pattern seems to be consistent it still maintains a
fundamental ambiguity: the neutron must exist in one
beam or another in order to exchange energy, while
this statement must be denied in order to preserve in-
terference.

One should note the implications of this contradic-
tion: If this scheme is extended from a recipe for pre-
dictions to an explanatory pattern, its failure becomes
evident. In order to preserve interference when having
energy transfer the rf-coil wave functions ¢; and ¢
must be indistinguishable from the interference point
of view and distinguishable concerning the energy trans-
fer omitting the case of orthogonality.

Now consider the apparatus with both spin flippers
operational. Since now a spin flip takes place in both

beams spatial interference is recovered. A measurement
of the polarization of the neutron behind the interfer-
ometer reveals that each neutron has suffered a spin flip.
Each emerging neutron has lost an amount of energy

AE where AE'=2uB, the Zeeman splitting. If energy is to
be conserved this energy must have gone to one or other
of the coils, this is only possible if the neutron passesas a
particle through one or other and gives an indivisible
photon of £ = fic,¢ = AE to the rf-field. The spatial
interference can only be explained by assuming that
the neutron does not pass through one or other of the
coils. The change of energy can only be explained by
the particle aspect.

Since both interference and spin direction can be
measured simultaneously, according to CIQM the
neutron actually travels path I or Il and at the same
time does not exist as a particle at all,

In the Bohr—Einstein debate the application of
particle momentum conservation in individual events
always led to the consistency of CIQM. Here the ener-
gy conservation leads to the inconsistency of CIQM
since wave/particle aspects appear together. If it is in-
sisted in CIQM that neutrons do not travel one way or
the other, no energy can be transferred to the coils
and then there is no conservation of energy in indivi-
dual events. Further if a statistical ensemble of indi-
vidual neutron passages is considered we see that, even
there, there is no conservation of energy in CIQM.

If we wish to consider the mechanism of spin flip
and the conservation of energy, then the neutrons
must travel on one path and through a coil. If we wish
to consider spin superposition then the neutrons
must travel along neither,

Is the consequence of the above presentation to
renounce complementarity for the CIQM? Probably
not, because the Heisenberg uncertainty relations could
provide a means to escape the conclusiveness of the
presented reasoning. In fact one could argue that since
the energy uncertainty §F introduced to the neutron
energy £ due to the Bragg scattering of the crystal is
greater than the energy transfer AE to the rf-coil
(1076 and 10~8 respectively) no energy conservation
could be established. Still a problem remains: Since
the final spin polarization (i.e. —z) is detectable, the
Zeeman energy loss of the neutron in B is known with
respect to its initial polarization (i.e. +z). Because of
this, the magnetic field energy of the neutron spin is
accurately known. One can now interpret the uncer-
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tainty in £ as inherent in the corresponding operator,
in which case the problem of a “hypothetical” energy
transfer to the rf-coil inferior to 8F is not legitimate
but the simultaneous sharp value of the Zeeman part
remains incomprehensible. One could then still escape
to a formulation of the kind: “the energy transfer
cannot be measured because AE < 8E". This opera-
tional aspect of the uncertainty clearly promotes an
existence of sharp instantaneous values which are
steadily perturbed. This explains the experimental de-
tection of a spin state but in CIQM fails to account for
interference because it yields a definite neutron path.
In both aspects/versions of the energy uncerfainty in-
terpretation in CIQM contradictions arise that do not
perhaps affect the complementarity principle as a use-
ful recipe in most of the cases but which do reveal its
shortcomings as an explanatory pattern in specific
situations as the performed or proposed experiments
on neutron interferometry.

The authors want to thank Professor Rauch for the
useful discussions. One of us (C.D.) wants to thank the
British Royal Society for a European Exchange Fel-
lowship, another (A.K.) the French Government for
a grant and another (A.G.) the Administration Council

of the University of Bari for a grant which made this
collaboration possible,
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Summary. — Time-dependent spinor superposition in neutron interferometry by
means of radio frequency spin flippers enables a possible simultaneous path and inter-
ference detection and provides evidence for the real physical existence of de Broglie
« pilot » waves.

The research of the Vienna group (!) on neutron interferometry opens new exciting
experimental possibilities to discuss the different interpretations of quantum statistics
and to answer the age-old question of whether the neutrons (or any other massive
particle) really travel along a path in space-time between their source and the observer
(as believed by EINSTEIN and DE BROGLIE) or if such a space-time co-ordination does
not exist (as believed by Bonr and HEISENBERG). For this reason we intend to discuss
the most recent experiment of the Vienna group (2) on the time-dependent neutron
interferometry.
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The experimental arrangement can be schematically represented as follows: an
incident neutron beam containing one neutron at a time (fig. 1) is subsequently divided
into beams I and IT. On beam I there acts a nuclear phase shifter represented by the
action of a unitary operator exp{iy] on y with y= — N-4:b_-D, where b,_is tho coberent
scattering length, A1 the neutron wave-length, D the thickness of the phase shifter
and N the number of lattice clements/volume element. Beam II is subjected to the
following combination of magnetic fields: a) a static magnetic field in the + 2 direction
B = (0,90, B,); b) a radiofrequercy time-dependent magnetic field B,, = (B, cosw, -1,
B,-sinw,, -t, 0) rotating in the zy-plane with a frequency w,,, obeying the resonance
condition fiw, , = 2uB,, where y is the magnetic moment of the neutron, i.c. it yields
exactly the Zeeman cnergy difference between the two-spin eigenstates of the neutron
within the static field. Neutrons passing through such a device (a spin flipper) reverse
their initial + 2 polarization into the — z direction, by transferring an energy AE = 2uB3,
to the coil, whilst maintaining their initial momentum (2).

e - ™~
e ~N
s N
// © 8, N\ N
/ phase shifter \\
/ I
{
/{//<
\
\ Gl‘eczo,\
\ Ir Z
AN /S
N rRFsF | 7
N Ve
~ e
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Fig. 1. — Sketch of the spin superposition experiment with a radiofrequency spin-flip device.

Thus, while a wave function of a neutron in beam I after passing through the nuclear
phase shifter is represented by (3)

1
¥p=exp[ix] |1.> = exp [ix] (O) )

the corresponding wave function in beam II after a spin-flip should be written as

W = exp [i 'ATE t] [{:> = exp [i Aﬁ—Et] ((l)) .

) G. EpER and A. ZEILINGER! Nuove Cimenlo B, 34, 76 (1976).
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If we assume a 1009 eflicient radio-frequency spin flipper (RFSP) (4) the polari-
zation behind the interferometer lies entirely in the zy-plane of fiz. 1 and has the
following pattern (2):

. 1
= 7 Yt oy, = (cos(w, -t — %), sin{w,t— ), 0),

while the final intensity is constant. Sinee P is time dependent, a stroboscopic registra-
tion is necded to convert the pattern stationary, and, by performing such a detection,
ono obtains the pattern of fig. 2 as a function of the nuclear phase shift .

200
bt
+
= of
1
et
—200+
2 1 e 1 4 N '
—300 —-200 -—100 o] 100 200 300
AD(pm)
Fig. 2. — Stroboscopic picturc of the interference pattern when the polarization component along

z-axis is measured. Observed intensity difference between two phase-locked subintervals separated
in time by half a period of r.f. ficld vs. the path difference AD of tho interfcring beams.

In the actual experiment it is not possible to measure the individual neutrons energy
transfer, but only a cumulative energy transfer which correspond to a well-known
(but different from one) number of « particles » travelling along the second path and
passing through the RFSF.

The interaction of a neutron with the RFSF constitutes a quasi-classical microscopic
measurement process because

a) it involves energy (signal) exchange,

b) it modifics in a predictable way the state of the measured and of measuring
device,

¢) the exchanged energy AF is small compared to the neutron rest energy.

The importance of these kinds of experiments is now evident, because they reproduce
the well-known situation of Young’s double slit set-up with additional information
derived from the interaction between the neutron and the RFSF. Because of this
additional fact it is of interest to test the explanatory ability of the different interpreta-
tions of quantum meochanics on the grounds of this recent experiment of the Vienna

() H. RAvcH: Z. Phys., 197, 373 (1966); W. G. WILLIAMS and J. PENFOLD: Measurement of the
¢fficiencies of Mezei thermal neutron spin flippers, NBRU, Jan. 1973; B. ALEFELD, G. BADUREK and
H. Ravucu: Z. Phys. B, 41, 231 (1981).
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group. We distinguish here three such approaches: the Copenhagen (5), the statistical (%)
and the Einstein-de Broglie model (7).

a) The Copenhagen interpretation. Adherents of the Copenhagen interpretation
argue that what happens between source and detection when intereference is observed
cannot be conceived in quantum description, which only concerns the statistical pre-
diction of results in well-defined experiments. The fundamental unit for desecription
in these terms is the whole « phonomenon », constituted by the system and the experi-
mental apparatus which together form an indivisible and unanalysable whole.

Thus in spinor superposition of neutrons either we design an apparatus to observe
interfercnce and forgo a deseription in terms of space-time co-ordination or we design
an incompatible arrangement to determine the space-time motion and forgo the pos-
sibility of observing interference. Any attempt to subdivide these phenomena leads
to ambiguities. The two are complementary phenomena. Complementary is to be
understood in this manner, not according to the dictum that matter never reveals its
particle and wave aspects together.

The quantum world has no independent real existence. The wave function 7 ig
the most complete description of an individual that can be given. It is merely a proba-
bility amplitude which states the odds on various results and is subject to instantaneous
changes on measurement. If some preparation device (source, shutter, collimator) is
designed to produce a wave packet then all we can say is that the wave packet represents
the fact that a single particle has a probability of appearing at a position 7 given hy
|¥(7)|? if a measurement is made. Until such a time it is not legitimate even to conceive
of a particle, let alone its properties. For the Copenhagen interpretation it is thus
impossible to use this experiment for a simultaneous detection of both a path of particle
and a self-interference pattern. This view is founded also on the grounds of the Heisen-
berg uncertainty relations, i.e. in the present case the so-called fifth, phase-number
uncertainty relation AN-Ag > 2a. Indeed, this argumentation claims that the know-
ledge of the accurate phase of the radio-frequency field needed for the stroboscopic
registration of the oscillating polarization pattern destroys the possibility of the
detection of a single-photon transition because AN becomes indeterminate.

b) The Statistical interpretation. As emphasized by BALLENTINE (6) the statistical
interpretation is to be distinguished from the Copenhagen interpretation. He asserts
that the wave function simply represents an ensemble of similarity systems and does
not provide a complete description of an individual system.

« In general, quantum theory predicts nothing which is relevant to a single measure-
ment » (%), ]

The interpretation of a wave packet is that although each particle hasalways a
definite pogition 7, each position is realized with relative frequency |¥(#}|? in an ensemble
of similarily prepared experiments. It follows that each particle has a well-defined
trajectory, but its specification is beyond the statistical quantum theory, probabilities
ariging in the predictions of the theory are to be interpretated as in classical theory.

¢) The Hinstein-de Broglie model. In this interpretation it is argued that the
quantum-mechanical description, through the wave function, of an individual is incom-
plete in the sense of Einstein. The entities of the micro-world are thought of as being
particles and waves, in the sense given by de Broglie in his model of oscillators accom-
pained by a real physical wave (the de Broglie « pilot » wave) beating in phase. Quantum

*

(*) N, BoBR: Alomic Physics and the Descriplion of Nalure, CUP (1934).
() L.E, BALLANTINE: Rev. Mod. Phys., 42, 358 (1970).
(") L. DE BROGLIE: Nonlinear Wave Mechanics (Elsevier Publ. Co., Houston, Tex., 1960).
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phenomena can be deseribed in this model by means of space-time pictures and the
neutron interference experiments can he conceived in a straightforward way: while
particles travel along one of the paths in the interferometer the « pilot » wave propagates
on both.

We now claim that the experimental facts established by the Vienna group indeed
support this interpretation, namely along the following lines of reasoning.

i) A detection of an energy amount E; , by the RI'SI implics that this amount
of energy has been transferred to the coil by the neutronsg involved in the experiment.

if) A coil absorb eunergy only at its reasonance frequency w.,, i.c. the energy
transfer has occurred as a series of single-energy transfers 7w, , = AFE, i.c. as a series
of energy transfers, corresponding to the Zeeman energy splitting. This implies that ¥,
is a sum of equal individual energy transfers corresponding to a spin-flip of each
individual neutron, i.c. E,,, = nAFE.

iii} Consequently the energy F,,, corresponds to a sum of n spin-flip, hence =
neutrons have passed through the path containing the RISI coil.

iv) Therefore, if ¥ ncutrons are successively involved in the experiment, N —u
neutrons have passed through the path without the RFSF coil.

v) By means of this measurement one cannot tell which neutron has gone through
which path, but one establishes the following: Out of N neutrons involved in the ex-
periment n neutrons pass through path II and N — » through path I. Every necutron
has a probability given by the transmission/reflection coefficient of the first incident
plane in the interferometer of going in I or I1, but it either goes through path I or through
path II.

vi) Since now neutron self-interference persists and shows that « each neutron
in the area of interference knows simultaneously what has happened in both paths » (8),
this implies that something which has a real physical existence independent of the
particle travels along both paths and contributes to the forming of the interference.

This at least prooves the incompleteness of the quantum-mechanical Copenhagen
description hecauso the persistence of an interference pattern is combined with the
existence of a definite trajectory for each particle, a fact forbidden in Copehangen
interpretation.

Of course the experiment only represent an indirect argument in favour of the Ein-
stein-de Broglie point of view and one can legitimately feel that a final proof of the
existence of such paths requires the individual detection of passage of each neutron
in the RFSF coil, i.e. the detection of photons of energies ~ 1 pev; this may indeed
be possible by using superconducting quantum interference detectors (SQUID).

If every individual neutron energy transfer is measured, the RFSF will behave as
a yes-no device and two conflicting results are possible.

The Copenhagen interpretation of quantum mechanics in this case implies the wave
packet collapse (?). This also implies the use of a mixture because each particle either
follows path I or path II which yields, for every individual case, either p; = 1,
pup =0 or p, =0, p;; = 1, with a relative frequency determinated by the reflexion/
transmission coefficient of the first incident plane, This means that, since each particle

(*) H. RaucH: Seminar given at the Instilut H. Poincaré, Paris, 21.2.1984.
(*) N. BoLEV: diomic Physics and Human Knowledge (Wiley and Sons, New York, N.Y., 1958).
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has a definite trajectory in the apparatus, the probability wave collapses in the other
path.

This situation is ealculated as follows. When encrgy is transferred to the coil,
the neutron has passed and the wave is described by the state ' = exp [{AE/A)] [{,>
with no wave corresponding to path I. When no energy is transferred, the wave is given
by " = exp[ix]|}.> with no wave corresponding to path II.

The corresponding probabilities are p', p'* with p* + p'= 1, and if the tirans-
mission/reflection coefficient in the first plate of the interferometer is equal, one has
to assume p' = p'* = 3. Under the assumption we can calculate this interference
intensity

I — pI<'/JIIV’I> JI_ 2)U<(I/Il|11/u> — pl + I)H
and correspondingly the polarization
P = 9%0, 0, 1) + p'™(0, 0, — 1) .

One can immediately see that, within this kind of Ansatz, the oscillating pattern of
the interference intensity vanishes completely and the polarization pattern consists
again of two constant contributions directed along the z-axis (in the + z and —z
directions). One should also notice that the theoretically predicted pattern exhibits no
interference effects (due to the lack of overlap between the wave functions on each path)
and consists of two distinct sets of points, the relative frequency of each set being
specified by the assumed probabilities p! and p™. Finally it should be stressed that
this complete destruction of any interference is a straightforward consequence of a
perfectly working measuring device (1009, efficient coil) in Bohr’s wave packet col-
lapse theory.

The Einstein-de Broglie model excludes the possibility of collapse of the real de
Broglie « pilot » wave and, therefore, in this second case predicts the detected inter-
ference (i.e. polarization in the zy-plane), and implies a simultaneous detection of
path and interference pattern (*).

As for the theoretical objections, based on the phase-number uncertainly, concerning
such a simultaneous detection, it is by no means clear that this fifth uncertainty
relation is correct. Indeed this relation, already contested by pr BrocGLi (!1), is shown
to be incorrect by CarruTHERS and NieTO (!2) and must be substituted by a more
complex one which does not reduce to AN-Ag >2xn in the case examined here (3).
Furthermore, following a suggestion presented elsewhere (14) we can by-pass this rela-
tion and the related problems.

(*) This problem remains in the statistical interpretation, which also admits definite (but unknown)
particle trajectories in each individual case, the wave referring only to ensemble probabilities,
statistical frequences. In Young’s double-slit experiment the same problem is rcsolved by refer-
ence to Duane’s extension (*°) of the Bohr-Sommerfeld theory. In the present case it is not clear
how a time ensemble of spin-up and spin-down particles resuits in an ensemble in which the polariza-
tion lles in the zy-plane.

(*) W. DUANE: Proc. Nall. Acad. Sci. US4, 9, 158 (1923).

(') L. pE BROGLIE: Wave Mechanics, the First 50 Years (Bathemorths, London, 1973), Chapt. 5.
(1*) P, CARRUTHERS and M. NIETHO: Rev. Mod. Phys., 40, 411 (1968).

() C. DEwWDNEY, A. Garucclo, PH. GUERET, A. KYPRIANIDIS and J.-P. VIGIER: Time-dependent
neulron inlerferomelry: Evidence Against Wave Packei Collapse, to be published.

(**) C. DEWDNEY, PH. GUERET, A. KYPRIANIDIS and J.-P. VIGIER: Testing W ave-Particle Dualisn
with Time Dependent Neulron Interferomelry, Phys. Lett. 4., 102, 291 (1984).
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We wish to conclude with the following remark. Even if the existing experimental
evidence has not directly proved the real physical existence of the de Broglie waves,
it has at least shown that neither the Copenhagen nor the statistical interpretation
provide an adequate description of neutron spinor superposition interferometry. On
the other hand, the Einstein-de Broglie model can provide a satisfactory intuitive
description and it seemns that further experiments will provide a positive confirmation
of this model.
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Summary. — The introduction of a causal quantum potential (which vanishes for
coherent light beams) in the Einstein-de Broglie theory of light implies an enhancement
of some photon individual energy £ = h» in the intersection region of coherent laser
beams. This property not only interprets nonlinear effects already observed in highly
focused laser beams, but also yields new predictions which can be tested in simple in-
tersecting coherent-laser-beam experiments.

As shown in a set of experiments (13) nonlincar effects have already been observed
in photoelectric emission and gas photoionization of highly focused laser beams. Indeed
everything goes as if some photons undergo an increase of energy due to the focusing
so that photoionization occurs even though the original energy of the photons before
focusing i3 below the photoionization potential of the target. Three interpretations of
these effects have been attempted

i) in terms of simultaneous multiphoton absorption (+3),

ii) in terms of Panarella’s «effective » photon assumption (8-8),

-
~

On leave from the University of Crete, Physics Department, Greece.

E. M. LoGoTHETIS and P. L, HARTMAN: Phys. Rev., 187, 460 (1969).

GY. FArRKa8B, I. KERTESZ, Z3. NARAY and P. VaArGo: Phys. Lett. 4, 21, 475 (1967).
K. PANARELLA: Lefl. Nuovo Cimenlto, 3, 417 (1972).

H. BarRrY BEDB and A. GOLD: Phys. Rev., 143, 1 (1966).

R. L. SmitH: Phys. Rev., 128, 2225 (1962).

E. PANARELLA: Phys. Rev. Lett., 33, 950 (1974).

E. PANARELLA: Found. Phys., 4, 227 (1974).

E. PANARELLA: Found. Phys., 7, 405 (1977).

u

w e
e N e o

e
-

Jean-Pierre 1Vigier and the Stochastic Interpretation of Quantum Mechanics
edited by Stanley Jeffers ez al. (Apeiron, Montreal, 2000) 261



262 Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics

iti) in ferms of the Heisenberg uncertainty relations hy ALLEN (?).
The aim of the present letter is

a) to propose a fourth interpretation in terms of the quantum potential’s action
which appears in the stochastic version of the Einstein-de Broglie theory of light (19)
(where photons are waves and particles simultaneously), since the energy K = hv of
the individual photons which follow various lines of flow is no longer constant along
these lines;

b) to propose and discuss simple experimental tests hased on observations per-
formed in the overlap region of intersecting coherent laser beams which could discrim-
inate between these various interpretations and eventually satisfy new specific pre-
dictions of the Einstein-de Broglie model.

Since all known data seemn to preclude strong photon-photon interactions, the first,
possible quantum explanation of how and why focussing should inecrement photon encrgy
is to utilize the quantum electrodynamical theory of multiphoton absorption processes.

This approach yields the following relations for the electron current i and the max-
imum kinetic energy of the emitted electrons E_, :

i~Im, B, =nh— 1T,
where I is the light power density, = is the number of photons of energy kv involved in
the process and W is the work function of the target material.

These predictions of the multi-photon QED are contested by PANARELLA on the
basis of an experiment produced with a highly focused laser beam (2) where the electron
current after subtracting the minor influence of a thermionic emission effect turns out
to be strictly proportional to the laser power density, i.e. i~ I. Furthermore, it was
verified that, by increasing the lager power density by means of focusing, the maximum
kinetic energy of the electrons E_,, is augmented in the same sense. These results seem
to establish unambiguously that the photoelectric effect is due to single-photon pro-
cesses and that the photon (and electron) energy depend on the focusing procedure.
Of course a final experimental test of the nonvalidity of this multiphoton process would
be to see if some above threshold processes are observed (when the laser’s E = hv << W)
even when the lager intensity is so reduced that simultaneous arrival of more than one
photon at a time becomes completely improbable.

Based on these results, PANARELLA proposed the so-called «effective photon » hy-
pothesis as a theoretical account for the observed energy increase of the photons in the
focused laser beam (7). He introduced an ad hoc modification of the photon energy
relation K = Ay in the form

Ly
E=lwexp{B,f(I)]]~ ————,
! L— (1)
which implies a frequency modulation with increasing light intensity. The origin of
this modulation lies in a not further specified ad hoc photon-photon interaction, signi-
ficant in high-density regions only (5). This scheme can be fitted well to deseribe the

»

(*) A. D. ALLEN: Found. Phys., 7, 609 (1977).
(**) L. DE BROGLIE: La Mécanique ondulaloire du phaton (Hermann, Paris, 1940): A. EINSTEIN: Ann.
Phys., 17, 132 (1903); 18, 639 (1905); Z. Phys., 18, 121 (1917).
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experimental results of hoth the photoelectric effect and the gas ionization by a focused
Inser beam.

Despite the reproduction of the experimental results, o severe theoretical objection
against this approach still exists. In fact, as ALLEN correctly points out: « If Panarella’s
equation is to replace lanck’s, then we must also change Einstein’s equation for photon
energy in order to have a de Broglie wave-length for photons, or, allernatively, we must
change de Broglie’s equation in order to continue to write I = me? » (®). Furthermore,
ALLEN shows that one can derive the energy increase of the photons from first quantum-
mechanical principles, namely as a consequence of the position-momentum uncertainty
relation which manifests itself in the focusing process, avoiding thus any introduction
of intensity modulation of the photon frequency. ALLEN concludes by proposing an
experiment where two lasers of the same photon energy, but different power are focused
i a way that both obtain the same intensity, but different beam cross-sections at the
focal point. Then the uncertainty principle predicts that the laser with the smaller
cross-section would produce photoionization, while the other one remains inactive.

In addition to Allen’s critique, we wish to argue that the new postulated photon-
photon interaction of Panarella is either a totally unknown ecffect or, if itis of the well-
known nature (i.e. pair creation/anihilation), it is completely irrelevant because it has
a vanishingly small cross-section for the given experimental conditions (1!). Here also
(as in the conventional multiphoton interpretation) the « effective photon » theory
predicts that all photoelectric phenomena (with an initial photon energy hv < W)
should disappear in the focal region when the initial laser intensity is sufficiently
reduced ... a prediction which ean (and should) evidently be tested with focused laser
beams or similar devices.

As initially stated, we wish now to show

a) that all such nonlinear effects can be simply interpreted in the frame of the
causal stochastic interpretation of the quantum theory of the Einstein-de Broglie
theory of light;

b) that we can deduce from this interpretation new experimental predictions which

1) are consistent but go beyond the usual statistical predictions of the Copenhaguen
interpretation now held to be incomplete in our point of view,

ii) can be tested in a simple realizable experimental set-up.

As one knows (12), in the Einstein-de Broglie theory of light the photon is considered
as an oscillating localized particle with a nonzero mass My 7% 0 (my < 10748 g), which
moves (on the average) along the lines of flow of a continuous wave field described by
the complex four.-vector wave field (13) 4, = exp [P + i(8/h)]a,, where P and § ure
real functions of the co-ordinates X, and a, is a real four-vector with agak = 1.
The motions can be derived from the spin-1 Lagrangian

(1) L=—4{FLF, —iu A} As

where one has added to the usual Maxwell term — }F;,,F,“, (with ¥, = 8,4,—2,4,)

A mass term (u, = met/fi) so that the field equations

(2) . 2, Fuy — y* A"

(*') EULER: 4nn. Phys., 26, 398 (1936); EULER and W. HEISENBERG: Z. Phys., 98, 714 (1936).
(**) M. Mores and J. P. VIGIER: Compi. Rend., 276, 697 (1973).
(**) A. Garvuccio and J. P, ViGier: Letf. Nuovo Cimento, 30, 57 (1981).
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imply the transverse gauge 9,4# = 0. It has recently been shown that, in this sto-
chastic interpretation of quantum mechanics (SIQM),

1) the individual photons (except when involved in random stochastic fluctua-
tions) move along paths tangent to the conserved four-current (2,j# = 0) deduced
from (2) given by the relation

(3) ] i{ A oL oL A¥ & [2P18,8
= Ay —_— y | 7= — ) .
=\ o) T 3(p, 40 m "

they have a velocity V very close to ¢ (if m, <« 10-% g), which satisfies the Einstein-
de Broglie relation

(4) E=lv= wLYcz/VTjw/cg

and a four-momentum P, = 2,8;

2) their stochastic motions induced by the real chaotic subquantum «vacuum »
level (i.e. Dirac’s aether (141%)) oceur at the velocity of light ¢ so that photons are sta-
tistically distributed (according to a relativistic H theorem (%)) with a probability
p= A;A“ = exp [2P]) and the uncertainty relations are now interpreted as real physical
dispersion relations;

3) the real part of the wave equation (2) contracted by A} immediately yields
the relativistic Hamilton-Jacobi equation

(5) 048048 + mic® + fi2d,ua, dua,—H2((IP + 8,Po#P) =0,
i.e.

PPt +mc*+Q+1=0,

where Q = — (2, P8, P + (JP) represents the usual de Broglie-Bohm quantum poten-
tial and v = 8,a,- 944, a spin-quantum torque which vanishes in any linearly polarized
beam, where a, = const.

This relation (5) is important, since it shows that the energy E = hv = 08/ér
is not, in general, a constant of the motion along a photon path in this theory except
when @ and t vanish like in the case of parts of linearly polarized beams, where neigh-
bouring current lines are both straight and parallel so that ¥ and thus » remains constant.

As an example we see that an unperturbed laser beam is characterized by the phase
coherence and can be represented by a plane-wave solution for which the quantum
potential ¢ vanishes. Hence, the photons in the plane-wave solution should yield a
constancy of their energy along the lines of flow represented by &,8 and, if the laser
frequency v is below the threshold W, no photoelectric effect should ocecur no matter
how high the intensity of the beam is.

The situation is completely different if we disturb the phase relations in the laser
beam, a fact that is produced by the focusing procedure. In fact, if we analyse the
focusing procedure, then we realize that it can be thought of as an interference of infini-

() P. A, M. DIRAC: Nature (London), 168, 306 (1951).

(1*) P. A. M. DIRAC: Nature (London), 169, 702 (1952).

(**) A. KYPRIANIDIS and D. SARDELIS: 4n H-theorem in the causal slochaslic inierprelation of quanium
mechanics, in Lelt. Nuovo Cimento, In press.
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tesimal parts of the beam symmetric with respect to the cental line of the lens. In that
case the physical boundary conditions on the phase relations are changed and the plane-
wave solution does no longer reproduce the experiment. The resulting interference
pattern is caleulated by DEWDNEY (17) and is shown in fig. la.
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Fig. la. — Trajectorics for interfering beams.

In this computer sinulation we clearly recognize that the originally parallel lines
in each beam are distorted and bent so as to form the fringe pattern and subsequently
rejoin in a scheme of parallel lines after a certain distance from the interference region.
In fact, it should be pointed out that this fringe pattern is independent of the number
of interfering photons, as shown by MANDEL and PFLEEGOR ('8) and persists even in
a highly attenuated laser light where only one photon at a time is involved in the ex-
periment.

»

(!’) C. DEwbNEY: Ph. D. Thesis, London (1983).
(**) L. MANDEL and R. L. PFLEEGOR: Phys. Rev., 159, 1084 (1967).
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Furthermore, since the quantum potential is no longer zero (¢ # 0), we know that
only the sum X, + @ is conserved, the photon energy is no more a constant of the
motion and depends on the value of the quantum potential which oscillates violently
in the interference region (see fig. 1b) and can accordingly cnhance or reduce, respec-
tively, the photon energy. Conclusively, although originally 4v <2 W the enhanced photon
at the minima of the quantum potential Q can still produce a photoelectric effect if
the enhanced photon energy now exceeds W.

From this reasoning we can readily deduce that the nonlinear photo-electric effect
is definitely not an intensity effect, as already suggested by ALLEN (?), but merely an
effect depending on the interference pattern, which is related to the focusing param-
eters of the lens. Hence, it would survive even at low intensities of the laser, provided
the interference pattern persists and the quantum potential could supply the photon
with the needed energy to produce the photoelectric effect. These conclusions lead
us to the following experimental proposal which is thought of as a test of our approach
and has the merit of decoupling this experiment from any association with over-
proportional intensity increase.

Fig. 1b. — Quantum potential in the interference region of the beant.

We propose a Michelson interferometer set-up of fiz. 2. An incident laser beam,
which 1s linearly polarized in order to exclude any spin effects, passes through a system
of filters F which enables us to vary the intensity of the beam at will. The photon
energy of the beam Ay should be well below the work function W of the target
material. The beam ig now split by a semi-transparent mirror 4 with equal reflection/
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transmission probability into {wo equal parts and these partial beams after passing
through the indicated system of mirrors are brought to interference and then diverge.
‘The mirror /) is, furthermore, allowed to turn around an axis perpendicular to the plane
of the figure so that the angle of incidence of the two beams 0 and the fringe pattern
hecomes variable. A target material is now successively put in the incident or partial
beams and interference region, at the indicated positions « to %, and should be com-
pletely insensitive to the beams with respect to photoelectric emission in all locations
except for the interference area f. Here the foregoing analysis predicts that an electron
current should be detected as a consequence of the enhanced photon energy due to the
oscillations of the quantum potential (see fig. 15). This set-up is favourable to eliminate
noise problems: if the signal obtained with two detectors blocked is S and with only
one blocked S + F, then we expect to observe a signal S + 5 with 5 » 2E when
neither of the two lasers is blocked. In the very low-intensity limit, this advantage is
very important.

- ~

/ \

‘\/\

~ - g

Fig. 2. — Proposed experimental sct-up for the test of laser-induced nonlinear photoelectric effect.

Furthermore, the effect should survive if we attenuate the laser light by means
of the filter system and there is even a chance of observing the effect in the highly
reduced laser intensity in which only one photon at a time is present in the apparatus.
The latter should happen when the photon reaches the target material in a position
of the interference region where the quantum potential has a sufficiently low value to
provide the photon with sufficient energy needed for the overcoming of the threshold W.

This last remark enablés us to make a definite prediction as to where the increased
energy photons arrive in the interference pattern and consequently from which areas
of the target material the photo-electrons should emerge. Since the photons gain energy
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in the regions between the quantum potential mnaxima, it is this area of lower luminosity
in the fringe system that can produce the nonlinear photoelectric effect and a refined
detection technique could help to test this definite prediction.

We conclude with a brief comment on the theoretical implicaticns of the preceding
analysis which can be summarized in three points. The first point is that the authors
do not believe that the formalism of quantum theory is erroncous, but only that the
wave packet collapse introduced by Bonr in the Copenhaguen interpretation of quantum
mechanics is not correct and conflicts with experiment in specific situations such as
certain experiments discussed on light (1°) and on neutron interference (2°). This view
does not conflict with facts, since Cint has shown that one could construct a realistic
quantum measurement model without wave packet collapse (?!), the latter being a
concept which evidently conflicts with relativity theory.

The second point is that the prediction that the focusing of laser beams (or their
convergence on an intersection region) pushed some photons above detection threshold
is not in contradiction with the CIQM, since this possibility arises if one considers the
introduction of a target (photocathode) as a measuring device. Indeed, as shown by
ALLEN (?), the Heisenberg uncertainty relations imply that some photons go above
threshold.

The third and last remark is that with respect to this prediction the SIQM (which
also predicts the rise above threshold) predicts something more, i.e. that the photons
which present frequency shifts appear on the edges of the bright fringes ... a fact which
can be tested with the set-up of superposed 4/2 plates with which MANDEL and PFLEEGOXR
have shown that interference occurs even when ouly one photon at a time is present in
the experiment. Alternatively a photographic plate can be used.

Photographic emulsions, being only blue sensitive, should be affected by the high-
energy photons produced in the interference of a split beam from a laser which has a
frequency lower than that of the cut-off sensitivity of the emulsion. Since only the
enhanced energy photons are recorded, an immediate record of their position in the
fringes is made in the emulsion which can be compared with the predictions of the ap-
proach advocated here.

Additionally we note what follows:

The photon frequency may be raised or lowered in the area of overlap, since the
total average energy remains constant and so intersecting laser beams may be used to
produce higher- or lower-frequency laser beams by simple triggering higher- or lower-
frequency lasers.

The substitution of an incoherent light source for the laser in this experiment
ghould make no difference to the effect, all other things being equal, according to the
interpretation given by ALLEN based on the Heisenberg uncertainty relation (*). How-
ever, the prediction of the causal stochastic theory is that such a substitution should
lead to a reduction in the observed effect, since the broadening of the fringes leads to
fewer enhanced energy photons. Clearly this can be tested by experiment.

Thus what we, in fact, claim is that the presented model is perfectly compatible with
quantum theory, but includes additional information with respect to it. In the usual

('*) K. A. POPPER, A. GARUCCIO, J. P. VIGIER: Phys. Leilt. 4, 86, 326 (1982); A. GARUCCIO, V. A. RAPI-
SARDA, J. P. VIGIER: Leil. Nuovo Cimenlo, 32, 451 (1981); A. GARUCCIO, A. KYPRIANIDIS, D. SARDELIS
and J. P. VIGIER: 4 possible experimenlal lest of the wave packet collapse, in Lett. Nuovo Cimenio, in press.
() G. BADUREK, H. Ravucsa, J. SUMMHAMMER: Phys. Rev. Lett., 51, 1015 (1983); D. DEWDENY,
PH. GUERET, A. KYORIANIDIS and J. P. VIGIER: T'ime dependent neutron interferomelry: evidence against
wave packet collapse (to be published). Testing wave particle dualism with time-dependent neutron inter-
feromelry: Phys. Letl. 4, in press.

(*') M. CINI: Nuove Cimenio B, 73, 27 (1983).
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quantum theory the effect is predicted as a consequence of the uncertainty relation,
but the presented model enables a detailed calculation of the path-by-path photon energy
distribution and the number and maximum kinetic energy of the emitted electrons
as well as the areas on the target material that contribute to the photoelectric current.
This is a fact that goes beyond ordinary quantum predictions and turns to be in favour
of Einstein's idea that the quantum-mechanical description of physical reality is not
complete (*).

* %k Xk
One of us (CD) wants to thank the Royal Sociely for the European Exchange Fel-

lowship which enabled him to carry out this work and another (AK) wants to thank
the French government for a grant which made this research possible.

(*) During the completion of this work we have learned that experiments along the same lines per-
formed in Limoges by Prof. FROEHLY have preliminary results that confirm our predictions.
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Fundamental Problems of Quantum Physics

Jean-Pierre Vigier

Laboratory for Relativistic Gravitation and Cosmology
University of Paris-Pierre and Marie Curie

75252 Paris Cedex 05

1. Quantum theory vs. hidden variables

It must be realized that quantum mechanics in its present state, as it is taught in
universities and utilized in laboratories, is essentially a mathematical formalism which
makes statistical predictions. In all known experiments, those statistical properties have
been confirmed. The interpretation of such a statistical formalism is a different matter.
The dominant, so-called Copenhagen interpretation of quantum mechanics states that
there are no hidden variables behind these statistical predictions. In other words, the
particle aspect of matter that appears in all experiments does not correspond to motions in
space and time. There is nothing behind quantum mechanics and the statistical
information provided by quantum mechanics represents an ultimate limit of all scientific
knowledge in the microworld.

Since 1927, with ups and downs, alternative interpretations of the formalism have
been developed in terms of real physical hidden parameters. It must be realized that these
alternative hidden variable models are of two different, conflicting natures. In one
version, the initial de Broglie-Bohm model, individual micro-objects are waves and
particles simultaneously, the individual particles being piloted by the waves. This realistic
model must of course be extended to many-body entangled particle systems. In this
situation, the so-called hidden variable models split into two. In the first, local model,
there is no such thing as superluminal correlations between the particles. This has led to
Bell’s research and the discovery of the so-called Bell inequality, which should be
violated by non-local hidden variable models. This position has been defended to his last
days by de Broglie himself, and some of his followers (Lochak, Selleri, Andrade da Silva,
etc.).

In the second version the hidden variables engender non-local interactions between
entangled particle states. This is the view defended by Bohm, myself, etc. These non-
local correlations (which, by the way also appear in the quantum mechanical formalism)
correspond to the superluminal propagation of the real phase wave packets which were
introduced by de Broglie as the basis of his discovery of wave mechanics.

The present situation is very exciting because for the first time one can make
experiments that detect photons and other particles one by one, and therefore, we are
going to be able to test in an unambiguous way, the existence or not of superluminal
correlations. In my opinion, the existence of these correlations has already been
established not only by Aspect’s experiments (I believe the improved version now
underway will confirm his initial results), but they have also been established by down-
converted photon pair experiments (Maryland experiments).

Jean-Pierre 1Vigier and the Stochastic Interpretation of Quantum Mechanics
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2. Most important unresolved issue in quantum physics today

There are two crucial questions in quantum physics today:

1. Do particles always travel in space and time along timelike trajectories? This of
course implies the existence of quantum potentials and variation of particle energy
along the path which results from the particle-wave gearing.

2. Do superluminal interactions conflict or not with relativity theory, in other words, are
the observed non-local correlations compatible with FEinstein’s conception of
causality?

Both points can now be answered by experiment. On the first point, experiments can
now be made with neutrons, one by one, to test Einstein’s einweg assumption in the
double-slit experiment. It is also now possible to perform photo-electric experiments to
show the existence of the quantum potential. On the second point, calculations started by
Sudarshan and other people have shown that non-local correlations preserve Einstein
causality provided the Hamiltonians of entangled particles commute, and it has been
shown that the quantum potential in the many-body system built by Bohm, myself, ezc.,
satisfies this causality condition. In other words, quantum non-locality can now be
considered as an experimental fact which satisfies Einstein’s causality in the non-local
realistic interpretation of hidden variables."

3. The earlier debate (Solvay 1927)

On the third question, the present debate is an extension of the Solvay controversy. At
that time, there was no possibility to realize in the laboratory, Einstein’s or Bohr’s
gedanken experiments. The situation is now different, so that the Bohr-Einstein
controversy and the discussion between proponents of local or non-local realistic
quantum mechanical models are going to be settled by experiments.

4. Future developments of foundations

In my opinion the most important development to be expected in the near future
concerning the foundations of quantum physics is a revival, in modern covariant form, of
the ether concept of the founding fathers of the theory of light (Maxwell, Lorentz,
Einstein, etc.). This is a crucial question, and it now appears that the vacuum is a real
physical medium which presents surprising properties (superfluid, ie. negligible
resistance to inertial motions) so that the observed material manifestations correspond to
the propagation of different types of phase waves and different types of internal motions
within the extended particles themselves. The transformation of particles into each other
would correspond to reciprocal transformations of such motions. The propagation of
phase waves on the top of such a complex medium first suggested by Dirac in his famous

! This non-locality rests on the idea that the particles and the wave constitutive

elements are not delta functions, but correspond to extended hypertubes (which contain real
clock-like motions) which can thus carry superluminal phase waves.

If the existence of a gravitational field which determines the metric is confirmed,
gravitational interactions could also correspond to spin-two phase waves moving faster than
light.
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1951 paper in Nature yields the possibility to bring together relativity theory and
quantum mechanics as different aspects of motions at different scales. This ether, itself
being built from spin one-half ground-state extended elements undergoing covariant
stochastic motions, is reminiscent of old ideas at the origin of classical physics proposed
by Descartes and in ancient times by Heraclitus himself. The statistics of quantum
mechanics thus reflects the basic chaotic nature of ground state motions in the Universe.

Of course, such a model also implies the existence of non-zero mass photons as
proposed by Einstein, Schrodinger, and de Broglie. If confirmed by experiment, it would
necessitate a complete revision of present cosmological views. The associated tired-light
models could possibly replace the so-called expanding Universe models. Non-velocity
redshifts could explain anomalous quasar-galaxy associations, efc., and the Universe
would possibly be infinite in time. It could be described in an absolute spacetime frame
corresponding to the observed 2.7 K microwave background Planck distribution.
Absolute 4-momentum and angular momentum conservation would be valid at all times
and at every point in the Universe.
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