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Preface

A new English translation of the Almagest needs no apology. As one of the most
influential scientific works in history, and a masterpiece of technical exposition
in its own right, it deserves a much wider audience than can be found amongst
those able to read it in the original. The existing English translation by R.
Catesby Taliaferro," besides being difficult to acquire, is such that silence is the

kindest comment one can make. The French translation by N. Halma, virtually -

unobtainable, suffers from excessive literalness, particularly where the text is
difficult. The other modern version, Karl Manitius’ German translation, is on
an entirely different level from these. It was done by a man who had studied the
text and made a strenuous and on the whole successful effort to understand
Ptolemy’s meaning and methods. I have used it constantly for twenty years, and
those to whom it is familiar will recognise how much I owe to it. Nevertheless, it
is not free from mistakes, and, to my taste, errs in the direction of paraphrasing
where it should be translating. Most important, one can no lohger assume that
those with a serious interest in history are able to read German with ease. I have
been able to improve on Manitius’ translation, in part because of work
published since he made it, in part because I had independent access to much of
the textual evidence. notably the mediaeval Arabic translations. I have drawn
attention to a few passages where I have noticed that he is in error, but I have
made no svstematic comparison between my translation and his or any other
version.

Every translator, and especially one dealing with an ancient language, is
confronted with the dilemma of being faithful to the original and at the
same time comprehensible to his readers. My intention was that this trans-
lation should serve both those who know no Greek, as a substitute for the
text, and those who do, as an aid to reading it. This has inevitably led to
compromises. On the whole, I have kept closely to the meaning and structure of
the Greek, even, on occasion, where this entailed abandoning idiomatic
English. But I have usually broken up Ptolemy’s enormously long sentences
(characteristic of Hellenistic scientific prose) into shorter units more suitable for
English, and I have frequently substituted mathematical symbols (=, + etc.} and
a symmetric presentation for the continuous rhetorical exposition of the ancient
text. I have been liberal with explanatory additions, which are marked as such

by enclosure within square brackets. Wherever the need to be intelligible forced

me to a paraphrase, I give the literal translation in a footnote.

It would have made what is an already big book impossibly unwieldy if I had‘

!For full references here and elsewhere see the Bibliography.



viii Preface

provided a full technical and historical commentary on the Almagest.
Fortunately two recent works, by Neugebauer (H4AMA) and Pedersen, are
excellent guides to the technical content, and the former is also of considerable
help on the numerous historical problems which arise from it. I have therefore
confined my own commentary to footnotes on points of detail (referring to the
above works for expository treatments), and to an introduction giving the
minimum of information necessary to understand and use the translation.

In the course of making the translation I recomputed all the numerical results
in the text, and all the tables (the latter mostly by means of computer
programs). The main purpose of this was to detect scribal errors (in which I
have been moderately successful). But my calculations incidentally revealed a
number of computing errors or distortions committed by Ptolemy himself.
Where these are explicable as the result of rounding in the course of
computation they are ignored, since to list some thousands of slightly more
accurate results which I have found with modern mechanical aids would invite
Ptolemy’s own sardonic remark: ‘Scrupulous accuracy about such a small
amount is a sign of vain conceit rather than love of truth’. However, I have
noted every computing error of a significant amount, and also those cases where
the rounding errors are not random, but seem directed towards obtaining some
‘neat’ result. I hope that this will shed some light on the problem of Ptolemy’s
manipulation of his material (both computational and observational) in order
to present an appearance of rigor in his theoretical treatment which he could
never have found in his actual experience. The problem is an interesting one,
which deserves an informed and critical discussion. Unfortunately. the recent
book on this subject by R. R. Newton provides nothing of the kind. but rather
tends to bring the whole topic into disrepute. The only detailed discussion
which is usetul is that by Britton [1].* This, however, is confined to certain
classes of the observations. My own inferences from the computations tend to
confirm Britton's conclusions about the nature and purpose of Ptolemy’s
manipulations of his data.

This book owes much to the help of numerous people and institutions, which
I gratefully acknowledge here. The Bibliothéque Nationale, Paris, the
Biblioteca Apostolica Vaticana and the Biblioteca de El Escorial provided me
with microfilms of various Greek and Arabic manuscripts of the Almagest
(detailed on pp. 3-4). I thank my colleague, David Pingree, Prot. Dr. Fuat
Sezgin and Prof. Dr. Paul Kunitzsch for providing me with other microfilms
and photocopies which I needed. Mr. Colin Haycraft not only gave me the
necessary encouragement actually to embark on a project which I had been
contemplating for a long time, but also bore patiently with the repeated delays
until the book was ready for publication. When B. R. Goldstein, who was
already engaged in preparing an English version of the Almagest, heard that I
had decided to make this translation, he generously abandoned the project and
turned over his materials to me. I owe to these and to him several ideas about
format and notation. My pupil, Don Edwards, detected a number of slips and

*It is regrettable that this has never heen formally published. It is available in Xerox copy from
University Microfilms International, Ann Arbor, Michigan 48106.
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typing errors in my preliminary version, and performed many useful services in
comparing the translation with the Greek text. Michele Wilson drew Fig. F for
me. Janet Sachs provided invaluable help in preparing the typescript for
publication and eliminating numerous mistakes. Several of my footnotes on
difficult problems have been influenced by my discussions with Noel Swerdlow.
Rather than trying to disentangle his contribution at each place, I here record,
with thanks, the stimulus he has given to my thinking. N. G. Wilson answered
my questions on points of Greek palaeography and went out of his way to
examine manuscripts at my request. My colleague, A. J. Sachs, gave me the
benefit of his unrivalled expertise on several points of Babylonian astronomy
and Mesopotamian history. To my colleague O. Neugebauer Lowe more than I
can express here. Let me say only that it was he who first introduced me to the
Almagest more than twenty years ago, that his own investigations of it (only
part of which have been published in his monumental A History of Anctent
Mathematical Astronomy) have been invaluable to me as an aid and as a model,
and that many will recognize his draughtsmanship in several of the supple-
mentary diagrams. As an inadequate token I dedicate this book to him.

Providence, 1982 G.J.T.






Introduction

1. Ptolemy

For a detailed discussion of what little is known of the life of the author of the
Almagest, and an account of his numerous other works, on astronomy,

astrology, geography, optics and other mathematical subjects, I refer the reader

to my article in the Dictionary of Scientific Biography (Toomer [5]). Here I
mention only that his name was Claudius Ptolemaeus (KAa6diog [Trolepaiog),
that he lived from approximately A.D. 100 to approximately A.D. 175, and that
he worked in Alexandria. the principal city of Greco-Roman Egypt, which
possessed, among other advantages, what was probably still the best library in
the ancient world.

2. The Almagest

The Almagest is firmly dated to the reign of the Roman emperor Antoninus
(A.D. 138-161). The latest observation used initis from 141 February 2 (IX 7 p.
450), and Ptolemy takes the beginning of the reign of Antoninus as the epoch of
his star catalogue (VII 4 p. 340). Although it is clear that Ptolemy had spent
much time on it and that it is a work of his maturity (his own observations
recorded in it range from A.D. 127 to 141), it has always been considered as his
earliest extant work, because of the changes from it and references back to it in
other works by him (for details see Toomer [5] p. 187). However, a recent
discovery by Norman T. Hamilton (see IV n.51 p. 205) has shown that the
‘Canobic Inscription’ represents a stage in the development of Ptolemy’s
astronomical theory earlier than the Almagest. Since Ptolemy erected that
dedication in the tenth yvear of Antoninus (A.D. 146/7), the Almagest can hardly
have been published earlier than the year 150.

As is implied by its Greek name, paOnuatixn ovvtagig, ‘mathematical
systematic treatise’, the Almagest is a complete exposition of mathematical
astronomy as the Greeks understood the term. Whether there were any
comparable works (i.e. comprehensive astronomical treatises) before it is not
known. In any case, its success contributed to the loss of most of the work of

Ptolemy’s scientific predecessors, notably Hipparchus, by the end of aﬁtiquity, .
because, being obsolete, they ceased to be copied. Whereas Hipparchus’ works .

are still used by Ptolemy’s younger contemporaries, Galen and Vettius Valens,'

'E.g. Galen, On Seven-month Children, ed. Walzer 347, 350; Commentary on Hippocrates® dirs
Waters and Places (see GAS VI 98). Vettius Valens, Anthologiar 354.




2 Introduction: History of the Almagest

by the early fourth century (and probably much earlier),? when Pappus wrote
his commentary on it, the Almagest had become the standard textbook on
astronomy which it was to remain for more than a thousand years. Thus its
importance for us lies not only in its value as a historical source for earlier
theories and observations, but also, and perhaps chiefly, in its influence on all
later astronomy in antiquity and the middle ages (in both Islamic and Christian
areas) down to the sixteenth century. It was dominant to an extent and for a
length of time which is unsurpassed by any scientific work except Euclid’s
Elements.

No attempt can be made here to sketch even an outline of the history of its
influence.? I mention only some points to which I will make reference in the
notes to the translation. The position of the Almagest as the standard textbook
in astronomy for ‘advanced students’ in the schools at Alexandria (and no
doubt at Athens and Antioch t0o) in late antiquity is amply demonstrated by
the partially extant commentaries on it by Pappus (c. 320) and by Theon of
Alexandria (¢. 370). In the late eighth and ninth centuries, with the growth of
interest in Greek science in the Islamic world, the Almagest was translated, first
into Syriac, then, several times, into Arabic. In the middle of the twelfth
century no less than five such versions weresstill available to the amateur ibn as-
Salah: a Syriac translation, two versions made under the Caliph al-Ma’min
(an older one by al-Hasan ibn Quraysh, and one dated 827/8 by al-Haj}jzj), a
version by the famous translator Ishaq ibn Hunayn (c. 879-90), and a revision of’
the latter by Thabit ibn Qurra (d. 901).* Two of these translations are still
extant, those of al-Hajjaj and Ishaq-Thabit. In them we find the title of
Ptolemy’s treatise given as ‘al-mjsty’ (consonantal skeleton only). This is
undoubtedly derived (ultimately) from a Greek form peyiotn (sc. oOvtagig),
meaning ‘greatest [treatise]’, but it is only later that it was incorrectly vocalised
as al-majasti, whence are derived the mediaeval Latin "almagesti’, ‘alma-
gestum’, the ancestors of the modern title ‘Almagest’. The available evidence
has been assembled and discussed by Kunitzsch, Der Almagest 115-25, where he
makes a good case for supposing that the Arabic form was derived, not directly
from the Greek, but from a middle Persian (Pahlavi) translation of the
Almagest. There is independent evidence for the existence of the latter, but
whether it was made as early as the reign of the Sassanid king Shahpuhr I (241-
272), as later Persian accounts maintain, seems very dubious to me.

While Ptolemy’s work in the original Greek continued to be copied and
studied in the eastern (Byzantine) empire, all knowledge of it was lost to western

2The evidence for the practice of astronomy in the third century is pitifully small, but there exists
a fragment of a text from about A.D.213 which isclosely related to the Almagest (see A.1.11.1 11 948-
49). and there are several third-century papyri related to the Handy Tables (ibid. 974-75, 979-80).
P. Ryl. 27 (written c. 260) quotes Ptolemy's solstice and equinox observations from Almagest I1I 1,
and in the late third century Porphyry (Comm. on Harmonica 2, p. 24,15 fI.) quotes Almagest 12 (H9,
11-16). The only evidence I have seen for knowledge of the Almagest in the second century, Galen,
Commentary on Hippocrates’ Airs Waters and Places 111 (ms. Cairo, Tal‘at tibb 550, p. 73a), where
Ptolemy is mentioned at the end of a list of authorities on astronomy, must be an interpolation in the
Arabic tradition, since Ptolemy is there characterized as ‘the king of Egypt’.

*1 know of no satisfactory account of this. I gave a very brief sketch, Toomer{5) 202.

*For a full account of this see Kunitzsch, Der Almagest, especially 15-71. Kunitzsch has also
published the work of ibn as-Saldh (see Bibliography).
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Europe by the early middle ages. Although translations from the Greek text
into Latin were made in mediaeval times,® the principal channel for the
recovery of the Almagest in the west was the translation from the Arabic by .
Gerard of Cremona, made at Toledo and completed in 1175.® Manuscripts of
the Greek text began to reach the west in the fifteenth century, but it was
Gerard’s text which underlay (often at several removes) books on astronomy as
late as the Peurbach-Regiomontanus epitome of the Almagest (see Biblio-
graphy under Regiomontanus). It was also the version in which the Almagest
was first printed (Venice, 1515). The sixteenth century saw the wide
dissemination of the Greek text (printed at Basel by Hervagius, 1538), and also
the obsolescence of Ptolemy’s astronomical system, brought about not so much
by the work of Copernicus (whichin form and concepts is still dominated by the
Almagest), as by that of Brahe and Kepler.

3. The translation

The basis of my translation is the Greek text established by Heiberg. 1 have,
however, found it necessary to make several hundred corrections to that text.
These are noted at the places in the translation where they occur,’” and are also
listed in Appendix B. In many cases (usually involving numerical computa-
tions), my correction consists of adopting the reading of the manuscript D.
unjustly spurned by Heiberg as descended from an archetype due to an
Alexandrian recension in late antiquity (Prolegomena, in Ptolemy. Opera
Minora CXXVI-VII). Whatever the truth about that, and despite the fact that
D itself is, as Heiberg says. ‘most negligently written’. I am convinced on
grounds of internal consistency that it represents a sounder tradition than that
of the mss. ABC, generally preferred by Heiberg. In many cases its obviously
correct readings are shared by all or part of the Arabic tradition. Nevertheless, I
have not deviated from Heiberg’s text except where it seemed essential for sense
or numerical consistency. In making corrections I have referred to photographs
of the following manuscripts. .
Greek (I use Heiberg’s notation)

Parisinus graecus 2389. Mainly uncial, ninth century

Vaticanus graecus 1594. Minuscule, ninth century

Vaticanus graecus 180. Several hands, but not, as Heiberg, 4/magest 1 p. V,

of the twelfth century, but rather of the tenth: see the Vatican Catalogue

by Mercati and Franchi de’ Cavaliert, I p. 206. N. G. Wilson has

confirmed this dating for me by personal inspection. (Heiberg himself

seems to have changed his opinion later: see Prolegomena LXXIX.)
Arabic (I have used the abbreviations ‘Ar’ to refer to the consensus of the

v

ow>

3See Haskins, Studies 103-112, 157-165.

®Kunitzsch, Der 4imagest 83-112, gives a valuable account of the evidence for this, and of
Gerard’s method of work: evidently he used more than one of the Arabic translations.

’I have acknowledged there all cases known to me where my correction has been anticipated by
others, notably Manitius.
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Arabic tradition, and ‘Is’ to the consensus of the mss. containing the Ishag-

Thabit version).

L  Leiden, or. 680. Eleventh century according to Kunitzsch, Der Almagest 38.
This is the only surviving manuscript of the version of al-Hajjaj.

T  Tunis, Bibliothéque Nationale, 07116 (see Kunitzsch, Der Almagest 38-40).
Completed October 1085. The Ishaq-Thabit version, complete.

P Paris, B.N. ar. 2482. Completed December 1221. See Kunitzsch, Der
Almagest 42-3. The Ishaq-Thabit version, Books I-VI 13.

Q Paris, B.N. ar. 2483. Fifteenth century. See Kunitzsch, Der Almagest 43.
The Ishaq-Thabit version, Books I-VII.

E  Escorial 914. See Kunitzsch, Der Almagest 43-4. The Ishaq-Thabit version,
Books V-IX.

F  Escorial 915. Completed September 1276. See Kunitzsch, Der 4{magest
44-5. The Ishaq-Thabit version, allegedly containing Books VII-XIII,
but in fact lacking large sections even of these, and bound in such disorder
as to be almost useless.

Ger The Latin translation of Gerard of Cremona, for which I have used only
the printed edition (Venice, Liechtenstein, 1515). For the complex
dependence of this on the various Arabic versions see Kunitzsch, Der
Almagest 97-104.

I did not undertake a complete collation of any of the above mss. For the
Greek mss. that would have been largely useless, since Heiberg’s reports are, as
in all his editions, very accurate (to judge from my sporadic verifications; I
remarked the rare exceptions in the notes to the translation). To collate the
Arabic translation would have delayed this book for several years, with no
commensurate gain. I have consulted the above mss. only in passages where 1
already considered Heiberg’s text wrong or suspect. Therefore no conclusions
should be drawn about the readings of the Arabic mss. where I do not explicitly
report them.

There are a number of places where, if I were to establish a Greek text, it
would differ from Heiberg’s, but which I have not bothered to record in this
book. Examples are:

mere orthography:

nupicxopev for ebpioxopev (imperfect) I 327,15
Kariinrog for Kamrog 1199,5

dueTdnerioTOV for aueramatov 16,18 (cf. Boll, Studien 74)
xpikog for kpikog 1196,8

changes in form not affecting the sense: &iv for ¢dv 1 393,11
reversals of letters referring to figures: ZK for KZ I 243, 22
obvious misprints:
GEAVIG A for onArivng I 406,25
dvopaiiag for dpopairiog I 462,19
(less obvious misprints, particularly those involving numbers, are recorded).

During the course of making the translation, I became convinced that the
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text contains quite a large number of interpolations, which must go back to
antiquity, since they are in the whole manuscript tradition, both Greek and
Arabic. I was first led to this conclusion by the discovery that there are places in
the text, nonsensical as they stand, which can be made to yield perfect sense by
the simple elimination of a clause or sentence, which must have been inserted as
‘explanation’ by someone who failed to understand Ptolemy’s meaning. A
notable example is V 1 (see p. 219 n.5). Cf also V 12, p. 245 with n.41. I later
realised that there are whole classes of textual matter which must also be
regarded as interpolations. One of these is the totals in the star catalogue (see pp.
16-17). The other is the chapter headings. Some of these (e.g. IX 2) are so inept as
descriptions of the actual content of the chapter that it is impossible to attribute
them to Ptolemy. In fact I do not believe that Ptolemy himselfused any chapter
divisions at all. It is obvious that he is responsible for the division into 13 books,
both from the summaries that are found at the beginning of most books, and .
from explicit references such as ‘in Book I' (8v & mp@to tfig ouvrdtews, 111 p.
75) and ‘in the preceding book’ (Ev T® npd tovtwV GuvTaypatt, VI 5 p. 283).
But he never refers to a chapter division. Furthermore, there is some
discrepancy in the manuscript tradition (especially between the branch
represented by D and that represented by A) as to the points of division between
chapters (e.g. at the beginning of Book III), and it is clear from Pappus’
commentary that although a division into chapters already existed in his time,
it was very different, at least in Book V,, from the present division.® If the chapter
division and headings are spurious, so too must be the table of contents
preceding each book. Nevertheless, since this method of subdividing the text is
useful for reference purposes, and appears in all editions, I have retained it,
merely marking the character of the chapter headings by enclosing them in
brackets thus: { }.

4. What is in the Almagest, and what is not

The order of treatment of topics in the Almagest (outlined in I 2) is completely
logical. In Book I, after a brief treatment of the nature of the universe (in o far
as it concerns the astronomer), Ptolemy develops the trigonometrical theory
necessary for the work as a whole. In Book II he discusses those aspects of
spherical astronomy which are related to the observer’s position on earth (rising-
times, length of daylight, etc.). Book III is devoted to the theory of the sun. This
is a.necessary preliminary for the treatment of the moon in Book IV, since the
use of lunar eclipses there depends on one’s ability to calculate the solar
position. Book V treats the advanced lunar theory, which is a refinement of that
in Book IV, and also lunar and solar parallax. Book VI is on eclipses, and thus
requires a knowledge of both solar and lunar theory, and also of parallax. Books
VII and VIII treat the fixed stars: since the moon is used as a ‘marker’ to
determine the position of some crucial fixed stars, lunar theory must precede
this, and since some planetary observations are made with respect to fixed stars,

%See the note in Rome{1] I p. 106, and cf. (for Theon) II p. 448 n. (1).
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the establishment of a star catalogue (VII 5 and VIII 1) must precede the
planetary theory. The last five books are devoted to the planets. Books IX-X1
develop the theory of their longitudinal motion, Book XII treats retrograda-
tions and greatest elongations (which depend only on longitude), while Book
XIII deals with planetary latitude and those phenomena (the ‘phases’) which
are partially dependent on it. Ptolemy occasionally anticipates later results for
the sake of convenience (see IV 3 p. 179 and IX 3 p. 423, where the mean motion
tables of moon and planets incorporate some later corrections), but in general
the order of presentation, within books as well as in the treatise as a whole, is
dictated by the logic of the didactic method.

There are, however, certain topics which Ptolemy does not discuss either
because he takes it for granted that they are already known to his readers, or
because it seemed superfluous to go into details (here I am referring especially to
chronological matters). He says specifically (I 1 p. 37 with n.13) that the work
is for “those who have already made some progress in the field’. This means, in
practice, that he assumes a knowledge of elementary geometry (‘Euclid’) and
“logistic’ (thus he does not consider it necessary to explain how to extract a
square root)}, and also of ‘spherics’. The latter is illustrated by the extant works
of Autolycus, Euclid (Phaenomena) and Theodosius (Sphaerica), which deal with
the phenomena arising from the rotation of stars and sun about a central,
spherical earth, e.g. their risings, settings, first and last visibilities, periods of
invisibility etc., using elementary geometry, but arriving mainly at qualitative
rather than quantitative results.” These results are mostly irrelevant to
Ptolemy’s work, but he does use much of the terminology and concepts of
spherics without explanation.

5. WWhat the reader of the Almagest needs to know

The modern reader, too, is likely to be familiar with elementary geometry. Sol
have not burdened the translation with references to Euclid except where the
theorems assumed are not immediately obvious. However, in what follows I
give a brief explanation of methods, concepts and facts not explained by
Ptolemy which the reader of the Almagest needs to know, but which mayv be less
familiar. On Ptolemy’s mathematical methods in general one may profitably
consult Pedersen 47-56.

(a) The sexagesimal system

This was taken over by the Greeks (one mayv guess by the Hellenistic
astronomers) from the Babylonians as a convenient way of expressing fractions
and (to a lesser extent) large numbers, and of performing calculations with
them. It is the first place-value system in history. In the translation and notes I
use the convenient modern ‘comma and semi-colon’ notation, in which

® For more detail see HAMA 11 755-71.
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6,13;10,0,58 represents 6 x 60 + 13+ 10x60™' +0x 6072 + 58 x 60™°. Ptolemy uses
the system only for fractions, and represents whole numbers, even when
combined with sexagesimal fractions, by the standard Greek (alphabetic)
notation. The translation follows this mixed notation (thus the above number
would be written 373;10,0,58 in the translation, and 67 T o V7] in Greek).

(b) Fractions

Except where it is necessary to be precise, Ptolemy prefers the traditional Greek
fractional system to the sexagesimal. In this, although it is possible to express
proper fractions as e.g. ‘4 5ths’, preference is given to unit fractions, so that, e.g.
‘¥ is expressed as the sum of § and 1 (written Z°8”, i.e. ‘11"). There is a special
sign for 3. In the translation I have usually converted these sums of unit fractions
to proper fractions without comment. However, I have always retained the’
fractional form where Ptolemy has it since it gives a misleading appearance of’
precision to convert to sexagesimals (as Manitius often does, putting an exact
number of minutes instead of a fraction of a degree). This is particularly true of

the star catalogue.

(¢) Trigonometry
‘ s

The sole trigonometrical function used by Ptolemy is the chord. The derivation
and structure of his chord table are fully explained in I 10. However, Ptolemy
does not give explicit instructions for its use in trigonometrical calculations,
although his method is obvious enough from the worked examples. In what
follows I give a literal translation, with commentary, of a typical calculation
involving trigonometry.

See Fig. A, and, for my conventions, compare the translation pp. 163-4. In the
given situation arc ©H is 30°, AD is 60°, AH is 2;30°, and it is required to find
the angle ADH (the ‘equation’). In modern trigonometry we would use the
cosine formula. Ptolemy has no equivalent, so he drops the perpendicular HK,
thus transforming the problem into one of solving only right triangles, which is
his standard procedure.'? .
‘Then since arc ®H is again 30 degrees, angle ® AH would be 30 of those [units]
of which 4 right angles are 360, and 60 of those [units] of which 2 right angles are
360. So the arc on HK is 60 of the units of which the circle {circumscribed]
about the right-angled [triangle] HKA is 360, and the arc on AK is 120, the
supplement making up the semi-circle. And so, of the chords subtended by
them, HK will be 60 of the units of which hypotenuse AH is 120, and AK 103;55
of the same [units].’ -
'®He knows the equivalent of the sine formula, namely that in the general triangle the sides are

proportional to the chords of the doubles of the opposite angles, but uses it surprisingly infrequently.
An example is IX 10 p. 462 (cf. n.96 there).
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G

Fig. A

To solve a right-angled triangle (here HKA), Ptolemy imagines a circle
circumscribed about it. Then the hypotenuse of the triangle is the diameter of
the circle, and is taken (initially) as 120 parts (R = 60 being the standard on
which Ptolemy’s chord table is constructed). The two acute angles of the
triangle being given, the other two sides can now be expressed in the same units:
they are the chords of the arcs of the circumscribed circle, which are the doubles
of the angles of the triangle (since they are equal to the angles at the centre).
Instead of explicitly doubling these angles, Ptolemy always first expresses them
in ‘units of which 2 right angles are 360’. (Following the convention invented by
B. R. Goldstein, I indicate these ‘demi degrees’ by the notation °°, reserving ©
for the standard degree of which there are 90 in a right angle.) This enables him
to switch smoothly from the triangle to the circle (and hence to the chord table,
which gives him the actual numbers 60° and 103;55°): an angle of size 8° is
20°°, and hence the arc of the circumscribing circle which corresponds to that
angle is 20°.

‘Therefore in those [units] of which line AH is 2;30, and the radius AD is 60, HK
will be 1;15 and AK, likewise, 2;10, and KD, the remainder, 57;50.’

The sides of triangle AKH are converted to the norm representing their actual
size (AH = 2;30°, hence they are multiplied by 2;30/120). This gives two sides of
the next right triangle to be solved, DHK:HK and (by subtraction of AK from
the given AD) KD.

‘And since the squares on these added together make the square on DH, the
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latter will be, in length, approximately 57;51 of the units of which line KH was
[found to be] 1;15.

Since Ptolemy has no tangent function, he has to use ‘Pythagoras’ theorem’ to
find the hypotenuse of the right triangle in question. He uses the word pijket, ‘in
length’, to indicate that he is taking the square root (considered as the side of a
square, hence a line length).

‘And so of those [units] of which hypotenuse DH is 120, line HK will be 2;34 and
the arc on it [HK, will be] 2;27 of those [units] of which the circle about DHK is
360. So that angle HDK is 2;27 of those [units] of which 2 right angles are 360,
and about 1;14 of those of which 4 right angles are 360.

The sides of triangle DHK are now converted to the standard in which the ,
hypotenuse is 120°, thus enabling Ptolemy to use the chord table to determine
the size of the arc corresponding to the side opposite the angle to be determined,
HDK. The latter, being at the circumference of the circumscribed circle, is half
the arc. Ptolemy again expresses this relationship by saying that it is the same
number of ‘demi degrees’ as the arc is ‘single degrees’, and then converting the
‘demi degrees’ to ‘single degrees’ by halving. Note that I frequently translate
expressions like ‘30 degrees of the kind of which the great circle is 360’ simply as
30°.

(d) Chronology and calendars

Ptolemy’s own chronological system is very simple. He uses the Egyptian year and
the era Nabonassar. The Egyptian vear is of unvarying length of 365 days,
consisting of twelve 30-day months and 5 extra (‘epagomenal’) days at the end.
Ptolemy uses the Greek transliterations of the Egyptian month names. For the
reader’s convenience, I usually add a Roman numeral indicating the number of
the month. The order of the months is:

I Thoth VII Phamenoth
I Phaophi VIII Pharmouthi
I Athyr IX Pachon
IV Choiak X Payni
V  Tybi XI Epiphi
VI Mechir XII Mesore.

The reason for choosing the era Nabonassar is given by Ptolemy at ITI 7 (p.
166: the earliest (Babylonian) observations available to him were from the
reign of King Nabonassar. Ptolemy’s epoch, Nabonassar 1, Thoth 1 cor-
responds to —746 February 26 in our reckoning.'! >

" Throughout this hook I use the ‘astronomical’ system of dating according to the Christianera,

since it is far simpler for calculating intervals than the ‘B.C./AD.’ system. In this, year -1
corresponds to 2 B.C., year 0 to 1 B.C, year | to A.D. 1, etc.
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Even when he refers to other calendars, Ptolemy usually gives the equivalent
date in his own system, so there is no uncertainty. Sometimes, however, he
gives, not the running date in the era Nabonassar, but only the regnal year of a
king. It is clear that there already existed, in some form, a ‘king-list’ enabling
one to relate the regnal year of a given king to a standard epoch.? Later, in his
‘Handy Tables’, Ptolemy published such a king-list (known as ‘Canon
Basileon’), and it survives, in a considerably augmented form, in Byzantine
versions of Theon of Alexandria’s revision of the Handy Tables. From these I
have excerpted and ‘reconstructed’ the table on p. 11, which makes no
historical pretensions, but is intended solely as an aid to readers of this
book. The basis of the table is Usener’s edition of the two versions in the
manuscript Leidensis gr. 78, in Monumenta Germaniae Historica, Auctores Antiquis-
stmi XIII (Chronica Minora Saec. IV.V. VL. VII, ed. Th. Mommsen), Vol. I1I, 447-
53, supplemented by my own reading of the version in the ms. Vaticanus gr.
1291, 16'-17". The names of the Babylonian and Assyrian kings are obviously
very corrupt, and I have made no attempt to emend them, but have chosen
those manuscript variants which seem closest to the forms now known from the
cuneiform sources, which are listed in the second column (supplied to me by A.
Sachs).

For the purposes of astronomical chronology. an integer number of vears is
assigned to each reign. As far as can be checked from independent sources,
‘Year 1’ of each reign was assumed to begin on the Thoth 1 preceding the
historical date on which the king began to reign.'> Thus, to use the table to go
from a given regnal vear to the era Nabonassar. one simply adds the number of
the regnal year to the total listed (in the fourth column) for the previous king.'®
E.g. to find the second vear of Mardokempad in the era Nabonassar (cf. IV 8 p.
204), we add 2 to the total of 26 given for his predecessor, Ilulai, and get the
twenty-eighth year in the era Nabonassar.

Although I supply in the translation the modern equivalent of all dates in the
Almagest, I have added, for the use of those readers who wish to check them, a
filth column listing the Julian equivalent of the first day of each king’s reign. If
one bears in mind that every Julian year divisible by 4 is a leap-vear, while the
Egyptian year is constant, this is a sufficient basis for the calculation. However,
I recommend as an easier alternative the use of Schram’s Kalendariographische
Tafeln: from pp. 182-9 of that one can find the Julian day number of any date in

'2 Papyrus tragments of such king-lists are found in P. Oxv. 1.35 and Sattler, Studien 39-30. These
are, however, later than Ptolemy. P. Oxy, 19.2222, a list of the Ptolemies of Egypt, is earlier than the
Almagest, but is very different in format from Ptolemy's king-list.

Y1t is not known why these two kings are combined. In cuneiform sources (e g. the king-list
translated in Pritchard, Ancient Near Eastern Texts 272 (iv), they appear consecutively, Ukin-zér
being assigned 3 years and Piilu 2.

'*This must be a corruption in the Greek tradition of Arses ("Apaomng), the usual form of this king's
name (also known as *Oapong)..

5This was recognised long ago. See Usener, MGH XIIL3 p. 441, with references to older
literature in his n.5.

' In the Handy Tables Ptolemy adopted the "era Philip’ (which already occurs in the Almagest as
‘death of Alexander’); hence in the mss. the totals for era Nabonassar go only as far as Alexander the
Macedonian (no. 31), and a new totalling system begins with Philip (no. 32). I have converted all
these later totals to the era Nabonassar by the addition of 424 to each. Cf. Schram p. 173.
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Introduction: Reconstructed king-list

Ruler

Kings [of Assyria
and Babvlonia)
Nabonassar
Nadi
Chinzer and Por
Tlulai
Mardokempad
Arkean
First interregnum
Belib
Aparanad
Regebel
Mesesemordak
Second interregnum
Asaridin
Saosdonchin
Kiniladan
Nabopolassar
Nabokolassar
Iloaroudam
Nerigasolassar
Nabonadi

13

Kings ol the Perstans
Cyrus

Kambyses

Darius [

Xe
Artaxerxes [
Darius 11
Artaxerxes 11
Ochus
Arogos'?

Darius 111

Alexander the Macedonian

Kings of the Macedonians
Philip who succeeded
Alexander the tounder
Alexander 11
Ptolemy son of Lagos
Ptolemy Philadelphos
Prolemy Euergetes
Ptolemy Philopator
Proiemy Epiphanes
Ptolemy Philometor
Ptolemy Euergetes II
Ptolemy Soter
Ptolemy Neos Dionyvsus
Cleopatra

Kings of the Romans
Augustus
Tiberius
Gaius
Claudius
Nero
Vespasian
Titus
Domitian
Nerva
Trajan
Hadrian
Antoninus

Correct form

Nabu-nasir

Nadin

Ukin-zér; Piilu
Elulai
Marduk-apla-iddin
Sarru-ukin

Bel-ibni
ABur-nadin-Sumi
Nergal-usezib
MusSezib-Marduk

ARur-aga-iddina
Samasi-Suma-ukin
Kandalanu
Nabu-apla-usur
Nabdi-kudurra-usur
Amil-Marduk
Nergal-Rarra-usur
Nabdi-na'id

Kurul
KambuZiva
Daravava'u
Lravaria
Artayiadra
Daravava’u
Artagiadra
Vahauka
Hawarka
Daravava u
TALEZavipog

dukinnos
‘AREZavdpog Etepog
Mrtoiepdiog Adyou
Diradelpog
Evepyétng
Pironarwp
‘Emgavig
Driopuntwp
Evepyétng B’
Totp

A6vvoog vEog
KXeonatpa

Augustus
Tiberius
Gaius
Claudius
Nero
Vespasianus
Titus
Domitianus
Nerva
Traianus
Hadrianus
Aelius Antoninus

Years of
reign

36
21
+1
19
16
21
R4

22

Total years to
end of reign

218
226
262
283
324
343
389
110
412
416
424

1

Julian date of
beginning of reign

-746 Feb. 26
-732 Feb. 23
-730 Feb. 22
-725 Feb. 21
~720 Feb: 20
-708 Fcb. 17
~703 Feb. 15
-701 Feb. 15
-698 Feb. 14
-692 Feb. 13
~691 Feh. 12
~-687 Feb. il
-679 Feb. 9

-666 Feb. 6

-646 Feb. |

-624 Jan. 27
-603 Jan. 21
=360 Jan. 11
-538 Jan. 10
554 Jan. Y

=537 Jan. 5
-528 Jan. 3
=520 Jan. 1
=485 Dee. 23
-64 Dec. 17
-423 Dee. 7
-404 Dee. 2
=358 Nov. 21
=337 Nov. 16
Nov. 15
=331 Nov. 14

-323 Nov. 12
-316 Nov. 10
-304 Nov. 7
-284 Nov. 2
-246 Oct. 24
-221 Ocf. 18
-204 Oct. 13
-180 Oct. 7
-145 Sept. 29
-116 Sept. 21,
-80 Sept. 12
-51 Sept. 5

-29 Aug. 31
- 14 Aug. 20
36 Aug. 14
40 Aug. 13
54 Aug. 10
68 Aug. 6
78 Aug. 4
81 Aug. 3
96 July 30
97 July 30
116 July 25
137 July 20

1
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the era Nabonassar in a few seconds, and hence (from his other tables) the
equivalent date in any standard calendar.

The only other aspect of Ptolemy’s own chronology requiring remark is the
‘double dates’. He frequently characterises the day of an observation by
expressions like [Tay@v 1{’ €ig v 1n’, translated ‘Pachon 17/18’, but literally
‘Pachon, the seventeenth towards the eighteenth’. Modern commentators have
made unnecessarily heavy weather of this. Ptolemy himself uses a noon epoch,
but this is an artificial starting-point (the reason for which he explains at 111 9 pp.
170-1), and has nothing to do with numbening the day. In antiquity the ‘civil epoch’
of the dav was either dawn (as in Egypt) or sunset (as in Babylon). In either
system, an event which took place in the daylight would be on the same ‘day’,
but one which took place in the night would be on ‘day n’ for those using dawn
epoch and ‘day n+l’ for those using sunset epoch. Hence ambiguity was
possible. Ptolemy uses double dates (which are found only for night-time
observations) tc avoid this ambiguity. The form he uses implies the Egyptian,
i.e. dawn epoch (cf. the long form 111 1 p. 138,17 1@’ T00 Mecopn peta p dpag
gyyUg tob gig v 1’ pnecovuktiov (literally ‘on the eleventh of Mesore,
approximately two hours after the midnight towards the tweifth’), but it would
be clear even to someone using sunset epoch {who would date the above event to
*Mesore 12°) what day he means.

In using the observations of his predecessors Ptolemy often has occasion to
refer to other systems of chronology and calendars. Although in such cases one
can always readily derive the equivalent date in Ptolemy’s own system (he
almost alwavs gives it explicitly), I shall describe them briefly here.

The most frequently mentioned is the Kallippic Cycles. To explain this, we
must go back to Meton, who in -431 devised a 19-vear ‘cvcle’, i.e. a fixed
scheme of intercalation of months containing 6940 days (thus the average
length of a year was 365f + % days).!” Since he was an Athenian, he used the
month names of the Athenian civil calendar for the months of his artificial
‘calendar’. A hundred vears later an associate of Aristotle, Kallippos, produced
a revision of this, based on the more accurate year-length of 365; days. In order
to achieve this, he eliminated one day from 4 Metonic cycles, thus producing
the ‘Kallippic cycle’ of 76 years and 27759 days. What was later known as the
‘First Kallippic Cvcle’ began at the summer solstice (probably June 28th) of the
vear —329. In the Almagest we find references also to the Second and Third
Kallippic Cycles, which began in =253 and =177 respectively. To judge from
the Almagest, this chronological system was the one most used by earlier
Hellenistic astronomers.'® In VII 3 four observations by Timocharis (Alexan-
dria, third century B.C)) are given according to the year of the First Kallippic
Cycle and ‘Athenian’ month and day. On the basis of these, several attempts
have been made to reconstruct the whole ‘Kallippic calendar’, with discrepant
results. Since the above constitute the whole evidential basis, apart from the

'7For a detailed discussion see Toomer{7]. I give there the arguments for supposing that Meton’s
purpose was not to reform the Athenian calendar, but to establish an ‘astronomical chronology’.

'®The dates of the three eclipses in IV 11 (p. 211, cf. n.63 there) which, though observed in
Babylon, are given according to Athenian archon and Athenian month, are presumably in the
Metonic calendar.
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passage in Geminus, Eisagoge VIII, which I regard as fiction, and two dubious
equivalences in the Milesian parapegma, any reconstruction is academic.'®
Here I note only that Kallippos evidently retained the peculiar Athenian method
of counting the days of the month by decads, and in the last decad counting
backwards, so that VII 3 p. 336 t1j ¢” ¢Bivovtog, literally ‘on the sixth [day] of
the waning [moon]’, means ‘the sixth day from the end of the last decad’, i.e. the
twenty-fifth.? ’

Hipparchus too used the Kallippic cycles for astronomical dating, but
combined them, not with Kallippos’ ‘Athenian’ calendar, but with the
Egyptian calendar (i.e. he used the cycles simply as a year count), at least as far
as we can tell from the Almagest. This seems to have led to ambiguities, since
the ‘Kallippic’ year began at or near the summer solstice, while the Egyptian
year is a ‘wandering.year’, which in Hipparchus’ time began about the end of
September. Thus there arose the possibility of a discrepancy of 1 in the year
count, for certain stretches of the year (whether it is +1 or -1 depends on
Hipparchus’ choice). Such a discrepancy is firmly attested in Almagest IV 11
(see p. 214 n. 72), and cannot plausibly be removed by emendation, though this
has been done (by Ideler and others) in the interest of consistency. In fact it is
impossible to make all of Hipparchus’ ‘Kallippic cycle’ dates in the Almagest
consistent with one another (see p. 224 no. 13), and we must allow for the
possibility that Hipparchus used different systems in different works.

Three planetary observations in the Almagest are dated xatd Xakdatoug,
‘according to the Chaldaeans’, with a year number and a Macedonian month
name and day number. The year numbers show that the era used is that known
in modern times as the Seleucid Era (dating from the year which Seleucus I
counted as the first of his reign, -311/10), which was common throughout the
Seleucid empire. Since the observations are undoubtedly Babylonian, the
particular epoch used in them is, as one would expect, that known from the
surviving Babylonian astronomical texts, 1 Nisan (April) -310 (Greeks under
the Seleucid empire commonly used an epoch of autumn -311). The use of
Macedonian month names has rightly been taken to show that the Babylonian
lunar months were simply called by the names of the Macedonian months by
the Greeks under the Seleucid empire: if one computes the date of the first day of
the ‘Macedonian’ month from the equivalent date in the era Nabonassar given
by Ptolemy, it coincides (with an error of no more than one day) with the
computed day of first visibility of the lunar crescent at Babylon.? There is other
evidence for the assimilation of the month names,? but this is the strongest.

Unattested outside the Almagest is the Calendar of Dionysius. This had a

!9 Those who care to may consult Ginzel 11 409-19 and Samuel, Greek and Roman Chronology, 42-9
for details and literature.

® For this system see Samuel, Greek and Roman Chronology 59-60. I do not know why it is not used
for the other three ‘Kallippic’ dates in which the days are simply numbered consecutively.

3'These are conveniently listed in Parker-Dubberstein. )

22 For details see Samuel, Greek and Roman Chronology 140-2. However, Samuel is wrong in saying
that the Almagest evidence proves that the assimilation was made as early as the date of the earliest
observation (Nov. -244). In the cuneiform record from which this was derived the Babylonian
names must have been used. It was only when this was translated into Greek (which may have been
as much as a century later) that the Macedonian names were substituted.
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running year count and months named after the signs of the zodiac
(corresponding, at least approximately, to the period of the year when the sun
was in the sign in question). The months Tauron (8 ), Didymon (IT), Leonton
(£1), Parthenon (m), Skorpion (m ), Aigon (I») and Hydron (<) are attested.
From analysis of the Almagest evidence Bockh, Sonnenkreise 286-340, showed
that the epoch of the calendar was the summer solstice of -284. Since Thoth 1
(Nov. 2) of -284 is the beginning of the first regnal year of Ptolemy
Philadelphos, it is plausibly concluded that Dionysius observed in Egypt.
Béckh’s further conclusions, that the calendar was similar to the Egyptian one
in having 12 months of 30 days, but was modified by introducing a sixth
epagomenal day every four years, cannot be regarded as certain, especially
since this requires ‘emending’ some of the Almagest dates. Here, as for the
Kallippic calendar, ‘reconstruction’ seems pointless when the evidence is so
scanty and the likelihood of verification utterly remote.?

One observation is dated in the Bithynian calendar of the imperial period. Like
a number of other contemporary calendars in Asia Minor, this was simply the
Julian calendar, with different month-names, and with the first day of the year
Augustus’ birthday, Sept. 23. For details and literature see Samuel, Greek and
Roman Chronology 174-5.

(e) Ptolemy’s star catalogue

The list of the coordinates and magnitudes of the principal fixed stars visible to
Ptolemy poses special problems to the translator. In particular, there are
numerous manuscript variants in the coordinates, and while one must put some
number in the translation, it is often diflicult to be certain about one’s choice.
The solution I have adopted is {in the star catalogue only) to append an asterisk
to any element (longitude, latitude, magnitude, description or identification)
where there is reason to suppose that it may be incorrect (i.e. not what Ptolemy
wrote or intended),** either because there is a plausible ms. variant, or because
of some gross inconsistency with the astronomical facts. In such cases I give all
significant variants known to me in a footnote. I have made no eflort to record
all variants, since most are obviously wrong. The reader who wishes to go
further must still consult Peters-Knobel, on which I have drawn heavily, and
which is still the best treatment of the catalogue as a whole, though badly in
need of updating and revision in certain respects.”

Ptolemy lists the stars under 48 constellations, and gives for each star (1) a
description of its location on the ‘figure’ and (sometimes) of its brightness and
colour; (2) its longitude; (3) its latitude and direction (north or south of the
ecliptic); and (4) its magnitude. I have followed my predecessors (notably
Manitius) in adding to these: (a) an initial column giving a running number to

% The interested reader may consult H4M A 111 1067 n.2 and Samuel, Greek and Roman Chronology
50, n.6 for further literature. .

# The lack of an asterisk does not imply that I regard the reading adopted as Ptolemy's beyond
any question, but only that I have no good reason to doubt it.

*See the strictures of Kunitzsch, Der Almagest 46.
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the star within its constellation (stars listed at the end of some constellations by
Ptolemy as ‘outside the constellation’, i.e. not part of the imaginary figure, are
numbered continuously with those preceding them); (b) a final column giving
the modern identification of the star. For those stars which have them, thisisthe
Bayer letter or Flamsteed number. Certain fainter stars have neither; for these I
give the number in the Yale Bright Star Catalogue (abbreviated as ‘BSC’).
From that publication those interested can find the corresponding number in
the Durchmusterung and the Henry Draper and Boss General Catalogues. I
have abandoned all references to the antiquated Piazzi catalogue (still used by
Peters-Knobel).

I have used Roman numerals to number the constellations, and refer to
individual stars (throughout the translation) by the combination of Roman and
Arabic numerals (thus ‘catalogue XXXIX 2’ refers to the second star in the
thirty-ninth constellation (Canis Minor), namely Procyon).

The star descriptions pose numerous individual problems. only a few of
which are touched on in the footnotes. Ideally one should provide a
reconstruction of the outline of each constellation as it appears on Ptolemy's
star-globe. Unfortunately no one has done the necessary work of assembling
and comparing all the literary and iconographic evidence from antiquity and
from the derivative Arabic tradition (notably as-Sif1). This would be an
interesting and valuable enterprise. Meanwhile, for the reader who needs some
visual illustration, I can recommend only the old work of Baver, { ranometria,
with the warning that in many cases his positioning of the stars on the figures,
and the outlines of the figures themselves. are certainly difterent from
Ptolemy’s.? On the matter of the orientation of the figures, I have satistied
myself that Ptolemy describes them as if they were drawn on the inside of a globe,
as seen by an observer at the centre of that globe, and facing towards him. This
is in agreement with what Hipparchus says (Comm. in Arat. 14 5): *for all the stars
are described in constellations (jotépiotat) from our point of view, and as if
they were facing us. except for such of them as are drawn in profile’
(xatdypagov, as interpreted by Manitius, whom I follow dubiously). It is in
this sense that we must interpret "left hand’, "right leg’, etc. This has to be said,
since on the actual star globes the constellations were necessarily drawn ¢n the
outside. Hence the orientation of the figures was (at least in some cases) reversed,
which could lead to confusion.”” I have rendered the prepositions used by
Ptolemy in indicating the positions of stars with respect to parts of the figures
consistently, as follows:

o

in:v
on = &nt .

over = Onép

M

% The work of Thiele, Antike Himmelsbilder, is very little help, although I have referred 1o it to
illustrate some particulars. ~

*1CK. the scholion on Aratus, Maass. Comm. in Aral. p. 384 no. 251: “the signs look inward with
respect to the heavens . . . but they have their backs to the globe, so that their faces may be seen.
Hence, if he says “right hand” or *‘left hand™ and we find the opposite on the globe, we should not
be confounded.’
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above = éndvw
under = Onéd
below = brokdre
just over = xatd + genitive
advance, in advance = nponyoduevog
rear, to the rear = Enduevog

On the meaning of the last two terms see below p. 20. Note that ‘rear’ is never
used in a sense other than directional. To indicate the back parts of an animal
figure I use ‘hind’.

Both longitudes and latitudes are given, not in degrees and minutes, but in
degrees and fractions of a degree. I have retained this in the translation (see p.
7). With very few exceptions, the longitudes are not given more accurately
than to £°. (This has been taken to imply that the ecliptic ring of Ptolemy’s
instrument was graduated only every 10’). However, one frequently finds the
fractions 1° and i° for the latitudes.

The latitudes in Ptolemy’s list are preceded by the direction (fo = Béperog,
‘northern’; vo = votiog, ‘southern’). I have rendered these by + and -
respectively.

The magnitudes range (according to a system which certainly precedes
Ptolemy. but is only conjecturally attributed to Hipparchus) from 1 to 6.
Ptolemy indicates intermediate magnitudes by adding (after the number)
peilwv, ‘greater’ or Ehdoowv, ‘less’ (abbreviated in the mss.). I have rendered
these by > and < (before the number) respectively. One occasionally finds for
the magnitude, instead of a number, the remark duavpog (rendered ‘f.° for
‘faint’) or vegel. (for vepehoeldrig), ‘nebulous’, abbreviated as ‘neb.’

For the identifications. wherever Peters-Knobel and Manitius are in
agreement, I have usually been content to adopt their opinion. Where they
differ (and even when they agree, in some special cases),”® I have checked the
possibilities as carefully as I could, using the large-scale Atlas of the Heavens by
Betvaf, and transforming Ptolemy’s coordinates to right ascension and
declination at the modern epoch, where necessary. However, I have made no
attempt to redo the work of Peters and Knobel, namely to compute the
longitude and latitude of the relevant stars for Ptolemy’s time from modern
data (in particular using the most up-to-date values for the proper motions). This
might be worth while, though I doubt whether the degree of improvement over
Peters-Knobel would justify the large amount of computation. In anv case, itis
unlikely that it would eliminate the doubts that remain about the identification
of many of the fainter stars.

At the end of each constellation in the mss. are listed the total number of'stars
in the constellation, and the sub-totals of each magnitude. These in turn are
added up at various intermediate points (the northern segment, the zodiac, and
the southern segment), and the grand totals are given at the end. I am

*8 Notably, where Ptolemy describes a star as a ‘nebulous mass’ (ve@elo€11ig ouotpoeri), [ have
preferred to give the globular cluster (abbreviated ‘*CGlo’) or galactic cluster (abbreviated 'CGal’)
rather than some particular star inside it.



Introduction: Geometrical terms 17

convinced that this was not done by Ptolemy (who makes no mention of it in his
description of the catalogue, VII 4 pp. 339-40). Another indication of the
spuriousness of these passages is that no separate count is made in the totals of

the stars which are greater (>) or less (<) than a certain magnitude: all are

lumped in with the stars of that magnitude. I have translated the passages in
question, but enclosed them in brackets thus: { }.

(f) Explanations of special terms

(1) Geometrical

by subtraction (howmdg -1y -Ov): literally “the remaining [part)’, ‘remainder’
(I have on occasion so rendered it).

by addition (6Log -n -ov): literally "the total’.

Crd x: chord of the angle x° (R = 60°). Greek has no word with the specific
meaning ‘chord’, but uses the generic e08eta, ‘straight line’. ‘Crd x’ renders 1
Tag x poipag broteivovoa £UBeTa, “the straight line subtending x degrees’.

In connection with the Menelaus Theorem (see - 18), an expression of the
type ‘Crd arc 2AB’ represents ] Urd thv SirA{v thig AB nepupspsmg, literally
‘the [line] subtended by the double of arc AB.

supplement, supplementary arc (1 Aetnovoa [Aotmy] €1g 10 IKOKALOV REPIPEPELQ):
literally ‘the arc which is the remainder to the semi-circle’.

complement (howmny €ig 10 teraptnudéptov): literally. ‘the remainder to the
quadrant’.

|| literally, ‘is similar to’. Used of arcs of different-sized circles. Arc AB|| arc GD
if each arc is the same fraction of its circle.

Il Gooydwvidv éoti): literally, *has[all] its angles equal to’, i.e. is similar to (used
only of triangles).

= (io6mhevpdv EoTt): literally ‘has its sides equal to’, i.e. is congruent to. Used
only of spherical triangles. Sometimesicoy®viov kGt icdmhevpdv éott, ‘hasits
angles and sides equal to’.

Q.E.D. (6nep Eder deifau): literally ‘which is what it was required to prove’.

componendo (cuvOévtt). Expresses the operation of addition of ratios: if
a:b=c:d, then (a + b)b=(c+d):d -

dividendo (S1€MévTL, xata draipectv) (1) Usually expresses the operation of
subtraction of ratios: ifa: b=c:d, then(a=b):b=(c-d):d
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(2) Once, at XII 1 (see p. 558 n.4) S1eA6vtL expresses division of members of
ratios. fa: b=c:d, thend:b=%:d

Menelaus Configuration and Menelaus Theorem (used only in the footnotes and
explanatory additions). Cf. H4MA 26-9. Fig. B represents a Menelaus
Configuration. m,n,r and s are four great circle arcs on the surface of the sphere,
intersecting each other as shown, and divided by the intersections into the parts
m,;, my etc. (thus m = m; + m, etc.) In I 10 Ptolemy proves the theorems

I Crd2m  Crd 2r y Crd 2s,
Crd 2m; = Crd 2r, Crd 2s

11 Crd2r, Crd2m, Crd2n
Crd 2r, ~ Crd 2m, « Crd 2n,

Since it is known that these were discovered by Menelaus, Neugebauer has
named them ‘Menelaus Theorem I' and ‘Menelaus Theorem II’ respectively,
and [ follow him, abbreviating to ‘M.T.I.” and ‘M. T.IT".

(i1) Spherical astronomy

(at) sphaera recta (Em’ OpBfig THg oeaipag) and (al) sphaera obliqgua (Em’
gyxexhpévng tfig opaipag). These mediaeval Latin terms are the literal
translations of the Greek, meaning ‘on the upright sphere’ and ‘on the inclined
sphere’ respectively. Probably taken from the use of celestial globes, they refer
to the phenomena which occur when the celestial equator is perpendicular to
the local horizon (sphaera recta) or inclined to it at an acute angle (sphaera
obliqua). In particular, we use rising-time at sphaera recta -or right ascension, and
rising-time at sphaera obliqua or oblique ascension to designate the arc of the equator
which crosses the horizon together with a given arc of the ecliptic (e.g. one
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zodiacal sign) at sphaera recta (i.e. at the terrestrial equator), and at sphaera
obliqua (i.e. any other terrestrial latitude) respectively.

equator represents ionuepvog (kbxAog), literally ‘circle of equal day’, so called
for the reason Ptolemy gives in I 8 (pp. 45-6).

meridian represents peonufpivog (kOkrog), literally ‘midday circle’ (défined
and explained at I 8 p. 47). Meridian passage of a heavenly body is called
culmination. The Greek terms for culminate and culmination, pecovpavely,
pecovpdvnoig, mean literally ‘being in the middle of the heaven’. upper and lower
culmination are expressed by Ontép yfjv and O70 yfjv, meaning ‘above the earth’
and ‘below the earth’ respectively, and sometimes so translated.

An altitude circle is any circle drawn through the zenith perpendicular to the,
horizon. Ptolemy has no special term for this in the Almagest, merely saying
‘the (great) circle drawn through the zenith (through the poles of the horizon)’,
e.g. II 12, HI 166, 20-1.

colure. This term is used by Prolemy only once, at II 6 p. 83. I translate part of
Manitius’ note on that passage: Two of the circles of declination threugh the
poles of the equator are named ‘colure’ (k6Aovpog): the solsticial colure, which
goes through the solstices and hence carries the poles of the ecliptic, and the
equinoctial colure. These two colures divide the sphere intd four equal parts
and divide both ecliptic and equator into four quadrants. so that one quadrant
corresponds to each season of the year. Ptolemy counts the solsticial colure as
boundary of the daily revolution [I8 pp. 46-7, where however the term ‘colure’
is not used], but never explicitly mentions the equinoctial colure. Both colures
were already defined by Eudoxus (Hipparchus, Comm. in Arat. 117 fI.) The term
is explained by Achilles, Isagoge 27 (Maass, Comm. in Arat. 60) as follows: ‘They
are called colures because they appear to have their tails cut off as it were
(xexohoVoBat domep tdg ovpdg), since we cannot see the parts of them
beginning at the antarctic, always invisible parallel’.

It is unfortunate that we have to use the same word /atitude to refer both to the
celestial coordinate (vertical to the ecliptic) and to the unrelated terrestrial
coordinate. Ptolemy uses, for the former ntidtog, and for the latter kAipa,
literally ‘inclination’. When necessary I gloss this e.g. as ‘[terrestrial] latitude’.
kAipa, however, does not refer to the coordinate as such (for which Ptolemy uses
Eyxhpa, HI 68,9, Eyxhiowg, HI 101,23 or, once, mhdtog, HI 188,4), but to a
specific ‘band’ of the earth where the same phenomena (e.g. length of longest
daylight) are found. Hence in early Hellenistic times arose the notion of the
division of the known world (the oikovpévn) into 7 standard climata (see
HAMA 334 1., 11 727 ff. and Honigmann, Die sieben Klimata). Thisis reflected in .
several places in the Almagest, e.g. in Table IT 13. I refer to these seven standard~
parallels by Roman numerals, e.g. Clima IV = the parallel through Rhodes,
longest day 144 hours. .
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(iii) Referring to the heavenly bodies

As Ptolemy explains in I 8, in his system the whole heavens are conceived as
rotating from east to west, making one revolution daily. The direction defined
by this motion, and the direction counter to it, are called &ig td nponyodpeva
(‘;owards the leading [parts]’) and €ig ta Emdpueva (‘towards the following
[parts]’) respectively. The corresponding adjectives mponyovuevog and
gnopevog are also found, particularly in the star catalogue, and Ptolemy
frequently uses the phrases eig 1@ mponyovueva (Emdueva) tdv Lwdiev,
‘towards the leading (following) [parts] of the zodiacal signs’, to indicate the
direction of motion in the ecliptic. A modern reader may find this confusing:
since the normal motion of bodies in the ecliptic is from west to east, what we
regard as forward motion, e.g. of a planet, is described as ‘towards the following
[parts]’ (‘towards the rear’ in my translation). No version of these terms in a
modern language is satisfactory. One cannot use ‘west’ and ‘east’ because these
must be reserved for Ptolemy's duopai and dvatokai, which are confined to
situations where a terrestrial observer is implied. It is a distortion to translate
{with Manitius) *in the reverse order of the signs’ and ‘in the order of the signs’,
since this implies that the terms define ecliptic coordinates, whereas they are in
the equatorial system, and while it is usually true that a celestial object which
nponyeitat (‘leads’) another will have a lesser ecliptic longitude, if their
latitudes difler greatly the reverse may be true, especially at very high ecliptic
latitudes. Precisely this situation occurs in the star catalogue, despite Ptolemy’s
own statement at VII 4 p. 340 that the terms in the catalogue define ecliptic
coordinates (see n.93 there). Although I am aware that my choice 100 has its
drawbacks, I have settled on in advance for gig 10 tponyovueva, and lowards the
rear for €ig 1a Endpeva. These always imply ‘with respect to the daily motion
from east to west’, with the paradoxical consequence, as remarked above, that
in the ecliptic a body which is ‘in advance’ of another has a lesser longitude.
However, I have committed an inconsistency in translating the derived noun
nponyNGig as retrogradation. This is used only for the portion of the courses ot the
five planets in which they reverse their normal direction of motion, and it would
be too conltusing to render this by ‘motion in advance’.

ecliptic. Ptolemy never refers to this circle by the term £xAeintikog (which he con-
fines strictly to the meaning ‘having to do with eclipses’). His normal term is6 14
péoov v Lwdiov (kvkhog), ‘the (circle) through the middle of the zodiacal
signs’ (e.g. HI 18,23-4); more fully, 6 Aé€0¢ xai Sra pécov t@v {mdimv kikrog,
‘the inclined circle through the middle of the signs’ (HI 64,4). Occasionally,
when the context is clear, simply A6€o¢g kOkAog, ‘inclined circle’ (HI 8,22).
However, the latter can be used for other things, notably the moon’s orbit
(which is ‘inclined’ to the ecliptic). I normally use ‘ecliptic’ throughout.

{z0diacal] sign. The conventional subdivision of the ecliptic into twelve 30°
stretches named Aries, Taurus, etc. For this Ptolemy uses, not {@dtov (‘animal
sign’), but dwdexatnudopov (‘twelfth’), presumably because he wishes to
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distinguish the ecliptic, a notional circle, from the zodiac, a band of actual
constellations.

star. The Greek term dotfp really means ‘heavenly body’, and can be used
indifferently for a star (in the modern sense), a planet, or even the sun and
moon. When Ptolemy wishes to distinguish what we call stars, he says “fixed
stars’. I have normally translated dat1ip according to the context, as ‘planet’,
‘star’ or ‘body’. However, in I 3-8, where Ptolemy uses the term to include all
heavenly bodies, I too have used star in this special sense. When naming the five
planets, Ptolemy almost always uses the periphrasis ‘star of . . ’, thus 6 100
Kpovou [dotrip], ‘[star] of Kronos’. I always translate simply ‘Saturn’ etc.

latitude (celestial). mhatog (literally ‘breadth’) refers not only to ‘the direction .
orthogonal to the ecliptic’, but to any ‘vertical’ direction, e.g. that normal to the *

equator. In such cases I use, not ‘latitude’, but another appropriate term (see I
12 p. 63 with n. 74). In VII 3, however, I have been forced to use ‘latitude’ to
express the more general meaning of the Greek (see p. 329 n.55).

Ptolemy uses Exxevtpog as both adjective and noun. It may be that in the latter
case one has alwavs to understand £xKkevTpog KUKAOG, ‘eccentric circle’.
However, to avoid ambiguity, I have (following mediaeval usage) consistently
denoted the noun by eccentre and the adjective by eccentric. An ‘egcentre’ is simply
an eccentric circle. Similarly for concentre and concentric.

I have occasionally used the convenient mediaeval term deferent to denote the
circle on which an epicycle is ‘carried’. Ptolemy has no one-word equivalent,
but uses phrases like ‘the concentric carrying the epicycle’, ‘the circle carrying

1.

anomaly. As noted e.g. by Pedersen (139 with n.9), dvopadia in the Almagest
has a number of different meanings. Despite the ambiguity, I have generally
rendered dvopalia and the adjective from which it is derived, dvéparog, by
‘anomaly’, ‘anomalistic’, although where necessary I have translated the latter
literally as ‘non-uniform’. Besides referring to non-uniform motion, ‘anomaly’
is also used for the mean (hence uniform) motion of the moon and planets on
their epicycles (because the motion on the epicycle produces the appearance of
‘non-uniformity’). For the planets Ptolemy distinguishes between the synodic
anomaly (1) mpdg tov fAtov dvowpalria, ‘the anomaly with respect to the sun’,
HII 255,8), which produces the phenomena of retrogradation and varies with
the planet’s elongation from the sun, and the ecliptic anomaly ({eSrax
dvopalia, HII 258,11), which varies according to the planet’s position in the
ecliptic.

equation. I use this convenient mediaeval term for the angle (or arc) to be applied
10 a mean motion to ‘correct’ it to account for a particular feature of the
geometric model. Ptolemy uses the vaguer terms t6 Suapopov ‘difference’ (which
is also used for many other things) and tpocBagpaipeoig (‘amount to be added

it il
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or subtracted’). equation of anomaly refers to the correction for the varying
position of a body on its epicycle, and equation of centre (only in the footnotes, not
the text) to the correction due to the eccentricity of a planet’s deferent.

centrum. | have occasionally used this mediaeval term in the footnotes to denote
the angular distance from apogee (see below) to the centre of the epicycle.

elongation (&mox) is the angular distance along the ecliptic between two bodies
or points. It is used particularly, but not exclusively, for the ecliptic distance
between sun and moon.

apogee and perigee are simply transcriptions of dréyelov and nepiyeiov, literally
‘[point] far from earth’ and ‘[point] near to earth’. These are the usual terms for
the points on a body’s orbit which are respectively farthest from and nearest to
the terrestrial observer. Ptolemy also uses the superlative forms droygidtatov
(repryerdtatov) onuelov (‘point farthest from (nearest to) earth’), with no
obvious difference in meaning. However, in the case of Mercury, translation of
both by ‘perigee’ generates an ambiguity. For all other bodies, in Ptolemy's
models. the perigee is diametrically opposite the apogee. but for Mercury the
point of closest approach is about 120° from apogee. Ptolemy still refers to the
point 180° from apogee as the ‘perigee’ (neptyeiov) for Mercury, and when he
wants to refer to the point of that planet’s closest approach uses the superlative
(mepryeidtarog). I have mitigated the ambiguity by translating the latter, not
as "perigee’. but as "closest to earth’ {(for Mercury alone).

phase. Used for the fixed stars and planets, this is simply a transcription of doig,
and is a general term including all the significant “configurations with respect to
the sun’ (listed by Ptolemy at VIII 4 pp. 409- 10. and exemplitied in his partially
extant work doeirg dmhavdv actépwv, ‘Phases of the Fixed Stars’), such as first
visibility at sunset, or last visibility just before dawn. But the literal meaning of
@doig is ‘appearance’, and Ptolemy also uses it to mean specifically ‘first
visibility’ of a body after a period of invisibility. To avoid ambiguity, I have
translated the latter case by ‘first visibility’, reserving ‘phase’ for the general
term.

(iv) Referring to sun and moon

conjunction is a fairly literal rendering of ohvodog (‘meeting’), but apposition
renders tavoéAnvog (literally ‘full moon’, which occurs when sun and moon
are in opposition). syzygy is a transcription of the convenient cuuyia (literally
‘voking together’), a general term to denote either or both conjunction and
opposition. In eclipses the partial phases are denoted by immersion (Euntwoig,
‘falling in’, the phase from the beginning of the eclipse to totality) and emersion
(@vaniripwoig, ‘filling up again’, the phase from the end of totality to the end of
the eclipse). The total phase is denoted by povij (‘remaining’) and rendered by
duration (uf totality).
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(v) Time-reckoning

Ptolemy often uses the term vuy8rjpepov, which combines the Greek words for
night and day, to mean the ‘solar day’ of 24 hours. There is no such convenient
term in English. I have generally translated it 2y when no ambiguity is pos-
sible, but have occasionally resorted to periphrasis (e.g. II 3 p. 79= HI 96, 7-9).
Since we use clocks, we reckon time by the mean solar day of uniform length,
the average time taken by the sun to go from one meridian crossing to the next.
In antiquity, where the normal means of telling time was the sundial, it was
usually reckoned by the true solar day, of varying length, the time taken by the
sun to go from one meridian crossing to the next on a specific day. In III 9
Ptolemy explains why they are different, and how to transform one into the
other. He uses the terms opald vuydnuepa (‘uniform days’) and avopaia
vuy8ripepa (‘non-uniform days’) for mean and true solar days respectively.
When he is talking about intervals, he often refers to those measured in true °
solar days as ‘reckoned simply’, and those measured in mean solar days as
‘reckoned accurately’.

The kind of hours normally used in the ancient world were seasonal hours (Gpat

xatpixai), sometimes known as ‘civil hours’. An hour was isth of the actual

length of davlight or night-time at a given place, and hence the length of an
hour varied according to terrestrial latitude and time of year, and a day-hour

was of different length from a night -hour except at equinox. For astronomical

purposes, however, the uniform ith of a day was used; these were known as

equinoctial hours (mpal lonuepwvai), because they were the same length as the

seasonal hour at equinox. If an ordinal number is attached to an hour, it

indicates a seasonal hour, counted from dawn (or sunset, if specified by "of
night’ or by the context). Thus ‘the sixth hour’ is the same as noon.

time-degrees. Another way of measuring time was by the amount of the celestial
equator which had passed a bound (horizon or meridian). This was often con-
nected with the rising-times of ecliptic arcs (see pp. 18-19). This measurement
was in degrees. Since 360° of the equator cross the meridian in about one day,
one “time-degree’ equals fsth of an equinoctial hour or 4 minutes. The Greek
term is ypdévor ionuepivoi (‘equatorial times’), sometimes abbreviated to
xpévou (‘times’).

-

{vi) Other

mean (u€cog) can imply ‘of average length’ (as in ‘mean synodxc month’) or
‘uniform’ (as in ‘mean motion in longitude’).

hypothesis. With some hesitation, I have used this to translate dnéBeoig,
although the connotation in the Almagest never really coincides with the
modern one. Whereas we use ‘hypothesis’ to denote a tentative theory which
has still to be verified, Ptolemy usually means by bn68go1g something more like
‘model’, ‘system of explanation’, often indeed referring to ‘the hypotheses
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which we have demonstrated’. The word still retains much of the etymological
meaning of ‘basis on which something else is constructed’. The corresponding
verbal forms are bnotibetar, Oroxeltar, which I have frequently translated,
not only as ‘assume’, but even as ‘it is given’. They are standard terms of Greek
geometry in this sense at least as early as Euclid.

6. Editorial procedures

Since the translation is based principally on the Teubner text of Heiberg (see p.
3), it is keyed to that edition by the addition of Heiberg’s page numbers in the
margin. There and elsewhere references to Heiberg are preceded by ‘H’. Thus
HI 236,15 means ‘Heiberg’s edition, Vol. I p. 236 line 15’. Where the context
makes it unnecessary the volume number is omitted.

Brackets are used as follows. Square brackets [ ] enclose explanatory
additions to or expansions of the Greek text by the translator. Curved brackets
{ }enclose passages which I believe to be later additions to Ptolemy’s original
text. Parentheses () are used merely for clarity, better to express the author’s
sequence of thought.

As explained on p. 5, I believe the list of chapter headings preceding each
book to be a later addition. Nevertheless, since these serve a useful purpose, I
have grouped them together at the beginning (pp. 27-32) to serve as a table of
contents.

I have made no effort to provide a continuous commentary, but refer the
reader to the relevant sections in Olaf Pedersen’s d Survey of the Almagest
(abbreviated ‘Pedersen’) and O. Neugebauer's 4 History of Ancient Mathematical
Astronomy (abbreviated HAMA). My footnotes are confined to particulars not
treated by them, or requiring some elaboration, and to textual corrections. In
Appendix A, however, I have provided worked examples of every type of
problem (including, where it is not utterly trivial, the use of the tables) which
arises in the Almagest, except where Ptolemy himself gives a worked example.
Where possible, my example is taken from a calculation or observation actually
occurring in the Almagest. Appendix B lists all my corrections to Heiberg’s text.
Appendix C discusses the problem of the derivation of Ptolemy’s planetary
mean motions, which has never been adequately treated.

The index includes all proper names occurring in the text, and certain
selected topics (mostly taken from the Introduction and footnotes). It also
contains all observations recorded in the Almagest, under the topic or body
concerned (e.g. ‘equinox’, ‘moon’). For a list of the observations in chrono-
logical order the reader is referred to Pedersen’s Appendix A.

In drawing the diagrams I have tried to reproduce the manuscript tradition,
while at the same time making the figures as clear as possible by marking the
points unambiguously.. Since there is often considerable variation in the
manuscript representations, I have been forced to make many choices; but I
have not ‘modernized’ the figures. Where a figure seemed inadequate, I have
not changed it, but have added an explanatory one of my own. Such
explanatory (and other supplementary) figures are distinguished by alpha-
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betical numbering (‘Fig. A’ etc.), whereas figures reproduced from the
manuscripts are numbered according to the book and the order within that
book (thus ‘Fig. 3.10’ indicates that this is the tenth diagram in Book IIJ; in the
manuscripts they are not usually numbered, but where they are, they are
numbered separately in each book). I have represented the Greek letters of the
figures by the following system:

Text Trans. Text Trans. Text Trans.
A A 1 J 1 P
B B K K P R
r G A L ) S
A D M M T T
E E N N Y Y
Z Z = X 0] F
H H (0] (6] X Q
(0] (0] ¥ \Y

7. Other conventional symbols and abbreviations

eccentricity ° .
radius of epicycle or body

length of longest day in hours

length of shortest day in hours

radius of principal circle {(e.g. of deferent)

{1) right ascension (see p. 18)

(2) anomaly (see p. 21)

celestial latitude

declination

obliquity of ecliptic

elongation

equation

inclination of orbit (of moon or planet)
‘centrum’, i.e. distance from apogee (see p. 22)
longitude

(1) oblique ascension (see p. 18)

(2) geocentric distance

[0} terrestrial latitude

o  distance from northpoint on orbit

Rmy g

V>R TDOI M O™

A bar over a letter denotes ‘mean’, thus X = ‘mean longitude’.

The following are used in a raised position (e.g. 2°) to denote units:

d days
h equinoctial hours




o

co

%

In the star catalogue only, * indicates some doubt about the reading. For other
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months
years

‘parts’, i.e. the arbitrary units in trigonometrical calculations (see pp.

7-9)
degrees

demi degrees (2°° = 1°, see p. 8)

degrees per day

abbreviations particular to the star catalogue see p. 341 n.95.

Lodiacal signs

Aries
Taurus
Gemini
Cancer
Leo

Virgo
Libra
Scorpius
Sagittarius
Capricornus
Aquarius
Pisces

XKUS»ah3aoligx-3

Planetary symbols

Other astronomical symbols

P 0°= 0° in longitude
8 0°= 30°
II 0° = 60°
= 0°= 90°
N 0°=120°
m 0° = 150°
== 0° = 180°
m, 0° = 210°
I 0°=240°
W 0°=270°
= 0°=300°
> 0° = 330°

h Saturn

Y Jupiter

& Mars

Q@ Venus

§ Mercury

©® Sun

Y Moon

€ Earth

§ ascending node
¥ descending node

On ‘sexagesimal’ representations such as 6,13;10,0,58 see pp. 6-7.

For the mathematical symbols)| and ||| (both meaning ‘is similar t0’) and = (“is

congruent to’) see p. 17.

For ‘M. T. I' and ‘M. T. II’ see p.. 18.

For manuscript abbreviations see pp. 3-4.



NSOk LN

10.
1.
12.
13.
14.
15.
16.

—

5.

6.

Contents of the Almagest’

page
BOOK I
Preface 35
On the order of the theorems 37
That the heavens move like a sphere 38
That the earth, too, taken as a whole, is sensibly spherical 40
That the earth is in the middle of the heavens 41
That the earth has the ratio of a point to the heavens 43
That the earth does not have any motion from place to place,
either . 43
That there are two different primary motions in the heavens 45
On the individual concepts 47
On the size of chords ’ 48
Table of chords 57
On the arc between the solstices 61
Preliminaries for spherical proofs 64
On the arcs between the equator [and the ecliptic] 69
Table of inclination 72
On rising-times at sphaera recta 71
BOOK II

On the general location of our part of the inhabited world 75
Given the length of the longest day, how to find the arcs of the
horizon cut off between the equator and the ecliptic .76
If the same quantities be given, how to find the elevation of the
pole, and vice versa 77
How to compute for what regions, when, and how often the sun
reaches the zenith . 80
How one can derive the ratios of the gnomon to the equinoctial
and solsticial noon shadows from the above-mentioned quantities 80
Exposition of the special characteristics, parallel by parallel 82

* These lists of the chapter headings are found in the mss. at the beginning of each book preceded
by the words ‘The following are the contents of Book 7 of Ptolemy’s mathematical treatise’. [ believe
that the division into chapters and the chapter headings are later additions (see Introduction p.

5).
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Contents: Books II-1V

. On simultaneous risings of arcs of the ecliptic and equator at

sphaera obliqua

. Layout of the tables of rising-times from parallel to parallel?
. On the particular features which follow from the rising-times
10.
11.
12.

On the angles between the ecliptic and the meridian

On the angles between the ecliptic and the horizon

On theangles and arcs formed with the same circle [the ecliptic]
by a circle drawn through the poles of the horizon

. Layout of the proposed angles and arcs, parallel by parallel

BOOK IiI

. On the length of the year

. Layout of the tables of the mean motions of the sun
. On the hypotheses for uniform circular motion

. On the apparent anomaly of the sun

On the construction of a table for individual subdivisions of the
anomaly

. Table of the sun’s anomaly

On the epoch of the sun’s mean motion

. On the calculation of the solar position
. On the inequality in the [solar] days

BOOK IV

The kind of observations which one must use to examine lunar
phenomena

. On the periods of the moon

On the individual mean motions of the moon

. Layout of the tables comprising the mean positions of the moon

That in the simple hypothesis of the moon, too, the same
phenomena are produced by both eccentric and epicyclic
hypotheses :

. Demonstration of the first, simple anomaly of the moon
. On the correction of the mean positions of the moon in

longitude and anomaly

. On the epoch of the mean motions of the moon in longitude

and anomaly

. On the correction of the mean positions in latitude of the moon,

and their epoch

page

100

105
110

114
122

131
142
141

153

157
167
166
169
169

173
174
179
182

180

190

204

204

205

? Most mss., followed by Heiberg, read at H86,20 xavoviov t@v katd Sekapotpiav napdAiniov,
which is untranslatable. I read with D xavoviev t@v xara napdiiniov. Someone who compared
the text at II 8 (H 134,1), xavoviov tdv xatd dexapotpiav dvagop@v, imported Sexaporpiav
here and tried to combine the two inconsistent descriptions.
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16.
17.
18.
19.
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Contents: Books IV-VI

[Method of] calculation and table of the first, simple anomaly of
the moon®

That the difference in the size of the lunar anomaly according to
Hipparchus is due not to the different hypotheses employed, but
to his calculations

BOOK V

. On the construction of an ‘astrolabe’ instrument
. On the hypothesis for the double anomaly of the moon

On the size of the moon’s anomaly which is related to the sun
On the ratio of the eccentricity of the moon'’s circle

On the ‘direction’ of the moon’s epicycle

How the true position of the moon can be calculated
geometrically {rom the periodic motions

Construction of a table for the complete lunar anomaly
Table of the complete lunar anomaly

On the complete calculation of the moon'’s position -

. That the difference at the syzygies due to the moon’s

eccentre is negligible

. On the moon’s parallaxes ’
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Book I

1. {Preface}*

The true philosophers, Syrus,® were, I think, quite right to distinguish the
theoretical part of philosophy from the practical. For even if practical
philosophy, before it is practical, turns out to be theoretical,® nevertheless one
can see that there is a great difference between the two: in the first place, it is
possible for many people to possess some of the moral virtues even without being
taught, whereas it is impossible to achieve theoretical understanding of the
universe without instruction; furthermore, one derives most benefit in the first
case [practical philosophy] from continuous practice in actual affairs, but in the
other [theoretical philosophy] from making progress in the theory. Hence we
thought it fitting to guide our actions (under the impulse of our actual ideas[of H5
what is to be done])) in such a way as never to forget, even in ordinary affairs, to
strive for a noble and disciplined disposition, but to devote most of our time to
intellectual matters, in order to teach theories, which are so many and
beautiful, and especially those to which the epithet ‘mathematical’ is particu-
larly applied. For Aristotle divides theoretical philosophy too, very fittingly,
into three primary categories, physics, mathematics and theology.” For
everything that exists is composed of matter, form and motion; none of these
[three] can be observed in its substratum by itself, without the others: they can
only be imagined. Now the first cause of the first motion of the universe, if one-
considers it simply, can be thought of as an invisible and motionless deity; the
division {of theoretical philosophy] concerned with investigating this {can be
called] ‘theology’, since this kind of activity, somewhere up in the highest
reaches of the universe, can only be imagined, and is completely separated from

-

*This ‘philosophical’ preface and its relationship to Ptolemy’s attitude to philosophy is discussed
by Boll, Studien 68-76, to which the reader is referred for the relevant passages in ancient literature.
The general standpoint is Aristotelian.

3Syrus is also the addressee of a number of other works by Ptolemy (see Toomer{5] 187). Nothing
is known about him. The name is very common in (but not confined 10) Greco-Roman Egypt. The
statement in a scholion to the Tetrabiblos (quoted by Boll, Studien 67, n. 2) that some say he was a
fictitious person, others that he was a doctor, merely reveals that he was equally unknown in late
antiquity.

6 '(I]‘hcon in his commentary (Rome I 320, 13-14) givespnoi . . . cupPefnxévarl 18 mpaxnikd 1o
np6TEPOV aLTOD 1oL BewpnTikoD twydvelv. Thisisa paraphrasc rather than a different reading, -
but shows thzt he understood the text as 1 have translated it. By this obscure expression I take
Ptolemy to mean that before actually practising virtues one must have some concept of them (even
though this is innate rather than taught)

’E. g Metaphysics E 1, 1026a 18 fI., dote tpeigav €iev priocogial Bewpntikai, padnparix,

puowkt, Beoloyiky.
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perceptible reality. The division [of theoretical philosophy] which investigates
material and ever-moving nature, and which concerns itself with ‘white’, ‘hot’,
‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’; such an order of
being is situated (for the most part) amongst corruptible bodies and below the
lunar sphere. That division [of theoretical philosophy] which determines the
nature involved in forms and motion from place to place, and which serves to
investigate shape, number, size, and place, time and suchlike, one may define as
‘mathematics’. Its subject-matter falls as it were in the middle between the
other two, since, firstly, it can be conceived of both with and without the aid of
the senses, and, secondly, it is an attribute of all existing things without
exception, both mortal and immortal: for those things which are perpetually
changing in their inseparable form, it changes with them, while for eternal
things which have an aethereal® nature, it keeps their unchanging form
unchanged.

From all this we concluded:’® that the first two divisions of theoretical
philosophy should rather be called guesswork than knowledge, theology
because of its completely invisible and ungraspable nature, physics because of
the unstable and unclear nature of matter; hence there is no hope that
philosophers will ever be agreed about them; and that only mathematics can
provide sure and unshakeable knowledge to its devotees, provided one
approaches it rigorously. For its kind of proof proceeds by indisputable
methods, namely arithmetic and geometry. Hence we were drawn to the
investigation of that part of theoretical philosophy, as far as we were able to
the whole of it, but especially to the theory concerning divine and heavenly
things. For that alone is devoted to the investigation of the eternally
unchanging. For that reason it too can be eternal and unchanging (which is a
proper attribute of knowledge) in its own domain, which is neither unclear nor
disorderly. Furthermore it can work in the domains of the other [two divisions
of theoretical philosophy] no less than they do. For this is the best science to help
theology along its way, since it is the only one which can make a good guess at
[the nature of] that activity which is unmoved and separated: [it can do this
because] it is familiar with the attributes of those beings'® which are on the one
hand perceptible, moving and being moved, but on the other hand eternal and
unchanging, [I mean the attributes] having to do with motions and the
arrangements of motions. As for physics, mathematics can make a significant
contribution. For almost every peculiar attribute of material nature becomes
apparent from the peculiarities of its motion from place to place. [ Thus one can
distinguish] the corruptible from the incorruptible by [whether it undergoes]
motion in a straight line or in a circle, and heavy from light, and passive from
active, by [whether it moves] towards the centre or away from the centre. With

8-aethereal’ (aiBepwdng) has a precise meaning in Aristotelian physics: everything above the
sphere of the moon is composed of an *incorruptible’ substance, unlike anything known on earth in
its consistency (very thin) and in its natural motion (circular). See I 3 p. 40. One of the names for
this substance is "aether’, another ‘fifth essence’. See Campanus IV n. 56, pp. 394-5.

°In this exaltation of mathematics above the other two divisions of philosophy Ptolemy parts
company with Aristotle, for whom theology was the most noble pursuit for the human mind.

"®The heavenly bodies.
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regard to virtuous conduct in practical actions and character, this science,
above all things, could make men see clearly; from the constancy, order,

symmetry and calm which are associated with the divine, it makes its followers.

lovers of this divine beauty, accustoming themn and reforming their natures, asit
were, to a similar spiritual state.

It is this love of the contemplation of the eternal and unchanging which we
constantly strive to increase, by studying those parts of these sciences which
have already been mastered by those who approached them in a genuine spirit
of enquiry, and by ourselves attempting to contribute as much advancement as
has been made possible by the additional time between those people and
ourselves.!' We shall try to note down'? evervthing which we think we have
discovered up to the present time; we shall do this as concisely as possible and in
a manner which can be followed by those who have already made some progress
in the field."® For the sake of completeness in our treatment we shall set out
everything useful for the theory of the heavens in the proper order, but to avoid
undue length we shall merely recount what has been adequately established by
the ancients. However. those topics which have not been dealt with [by our
predecessors] at all, or not as usefully as they might have been, will be discussed
at length, to the best of our ability.

2. {On the order of the theorems}
In the treatise which we propose, then, the first order of business is to grasp the
relationship of the earth taken as a whole to the heavens taken asa whole.!* In
the treatment of the individual aspects which follows, we must first discuss the
position of the ecliptic'’ and the regions of our part of the inhabited world and
also the features differentiating each from the others due to the [varying]
latitude at each horizon taken in order.'® For if the theory of these matters is
treated first it will make examination of the rest easier. Secondly, we have to go
through the motion of the sun and of the moon, and the phenomena
accompanying these [motions);'” for it would be impossible to examine the
theory of the stars'® thoroughly without first having a grasp of these miatters.
Our final task in this way of approach is the theorv of the stars. Here too it
would be appropriate to deal first with the sphere of the so-called ‘fixed stars’,'®

" This notion of the advancement of science, and particularly astronomy. by the additional time
available is one to which Ptolemy recurs in the epilogue (XIII 11 p. 647), and also. in a specifically
astronomical context, at VII 1 p. 321 and VII 3 p. 329.

" ropvnpaticacbar. A Lmépvnua is a ‘memoir’. usually implying summary brevity. Ptolemy
recurs to this t0o in the cpilogue (XIII 11 p. 647).

13 Ptolemy assumes that his readers will have a certain competence. See Introduction p. 6.

'*1 3-8. On the logic of Ptolemy's order see Introduction pp. 5-6.

151 12-16. The mathematical section I 10-11 is not specifically mentioned here.

's Book IL

'7Books III-VI.

'8‘Stars’ here and throughout chs. 3-8 includes both fixed stars and planets (see Introduction p.
21) and also, sometimes, sun and moon.

9 Books VII-VIIL
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and follow that by treating the five ‘planets’, as they are called.?’ We shall try to
provide proofs in all of these topics by using as starting-points and foundations,
as it were, for our search the obvious phenomena, and those observations made
by the ancients and in our own times which are reliable. We shall attach the
subsequent structure of ideas to this [foundation] by means of proofs using
geometrical methods.

The general preliminary discussion covers the following topics: the heaven is
spherical in shape, and moves as a sphere; the earth too is sensibly spherical in
shape, when taken as a whole; in position it lies in the middle of the heavens very
much like its centre; in size and distance it has the ratio of a point to the sphere of
the fixed stars; and it has no motion from place to place. We shall briefly discuss
each of these points for the sake of reminder.

3. {That the heavens move like a sphere}®!

It is plausible to suppose that the ancients got their first notions on these topics
from the following kind of observations. They saw that the sun, moon and other
stars were carried from east to west along circles which were always parallel to
each other, that they began to rise up from below the earth itself, as it were,
gradually got up high, then kept on going round in similar fashion and getting
lower, until, falling to earth, so to speak, they vanished completely, then, after
remaining invisible for some time, again rose afresh and set; and [they saw] that
the periods of these [motions], and also the places of rising and setting, were, on
the whole, fixed and the same.

What chiefly led them to the concept of a sphere was the revolution of the
ever-visible stars, which was observed to be circular, and always taking place
about one centre, the same [for all]. For by necessity that point became [for
them] the pole of the heavenly sphere: those stars which were closer to it
revolved on smaller circles, those that were farther away described circles ever
greater in proportion to their distance, until one reaches the distance of the stars
which become invisible. In the case of these, too, they saw that those near the
ever-visible stars remained invisible for a short time, while those farther away
remained invisible for a long time, again in proportion [to their distance]. The
result was that in the beginning they got to the aforementioned notion solely
from such considerations; but from then on, in their subsequent investigation,
they found that everything else accorded with it, since absolutely all
phenomena are in contradiction to the alternative notions which have been
propounded.

For if one were to suppose that the stars’ motion takes place in a straight line
towards infinity, as some people have thought,”? what device could one

% Books IX-XIII.

' See Pedersen 36-7. .

2 According to Theon's commentary (Rome II 338) this belief was Epicurean, but I know of no
other evidence. The only other relevant passage appears to be Xenophanes, Diels-Kranz A4la (the
sun really moves towards infinity).
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conceive of which would cause each of them to appear to begin their motion
from the same starting-point every day? How could the stars turn back if their

motion is towards infinity? Of, if they did turn back, how could this not be

obvious? [On such a hypothesis], they must gradually diminish insize until they
disappear, whereas, on the contrary, they are seen to be greater at the very
moment of their disappearance, at which time they are gradually obstructed
and cut off, as it were, by the earth’s surface.

But to suppose that they are kindled as they rise out of the earth and are
extinguished again as they fall to earth is a completely absurd hypothesis.?* For
even if we were to concede that the strict order in their size and number, their
intervals, positions and periods could be restored by such a random and chance
process; that one whole area of the earth has a kindling nature, and another an
extinguishing one, or rather that the same part [of the earth] kindles for one set
of observers and extinguishes for another set; and that the same stars are already
kindled or extinguished for some observers while they are not yet for others:
even if, I say, we were to concede all these ridiculous consequences, what could
we say about the ever-visible stars, which neither rise nor set? Those stars which
are kindled and extinguished ought to rise and set for observers everywhere,
while those which are not kindled and extinguished ought always to be visible
for observers everywhere. What cause could we assign for the fact that this is not
so? We will surely not say that stars which are kindled and extinguished for
some observers never undergo this process for other observers. Yet it is utterly
obvious that the same stars rise and set in certain regions [of the earth] and do
neither at others.

To sum up, if one assumes any motion whatever, except spherical, for the
heavenly bodies, it necessarily follows that their distances, measured from the
earth upwards, must vary, wherever and however one supposes the earth itself
to be situated. Hence the sizes and mutual distances of the stars must appear to
vary for the same observers during the course of each revolution, since at one
time they must be at a greater distance, at another at a lesser. Yet we see that no
such variation occurs. For the apparent increase in their sizes at the horizons®* is
caused, not by a decrease in their distances, but by the exhalations of moisture
surrounding the earth being interposed between the place from which we
observe and the heavenly bodies, just as objects placed in water appear bigger
than they are, and the lower they sink, the bigger they appear.

The following considerations also lead us to the concept of the sphericity, of
the heavens. No other hypothesis but this can explain how sundial constructions
produce correct results; furthermore, the motion of the heavenly bodies is the
most unhampered and free of all motions, and freest motion belongs among

‘2 Theon (Rome I1 340) ascribes this to Heraclitus. Otherwise it is attested for Xenophanes (Diels-
Kranz A38), and was admitted as one possible explanation by Epicurus (e.g. Letter to Pythocles 92)
and his followers.

2 Ptolemy refers to the well-known phenomenon that the sun and moon appear larger when closé-
to the horizon. He gives an incorrect physical and optical explanation here. In a later work (Optics
111 60, ed. Lejeune p. 116) he correctly explains it as a purely psychological phenomenon. No doubt
instrumental measurement ofthe apparent diameters had convinced him that the enlargement is
entirely illusory.
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plane figures to the circle and among solid shapes to the sphere; similarly, since
of different shapes having an equal boundary those with more angles are greater
[in area or volume], the circle is greater than[all other] surfaces, and the sphere
greater than [all other] solids;? [likewise] the heavens are greater than all other
bodies. .

Furthermore, one can reach this kind of notion from certain physical
considerations. E.g., the aether is, of all bodies, the one with constituent parts
which are finest and most like each other; now bodies with parts like each other
have surfaces with parts like each other; but the only surfaces with parts like each
other are the circular, among planes, and the spherical, among three-
dimensional surfaces. And since the aether is not plane, but three-dimensional,
it follows that it is spherical in shape. Similarly, nature formed all earthly and
corruptible bodies out of shapes which are round but of unlike parts, but all
aethereal and divine bodies out of shapes which are of like parts and spherical.
For if they were llat or shaped like a discus®® they would not always display a
circular shape to all those observing them simultaneously from different places
on earth. For this reason it is plausible that the aether surrounding them, too,
being of the same nature, is spherical, and because of the likeness of its parts
moves in a circular and uniform fashion.

4. {That the earth 100, taken as a whole, is sensibly spherical}®’

That the earth, too, taken as a whole,?® is sensibly spherical can best be grasped
from the following considerations. We can see, again, that the sun, moon and
other stars do not rise and set simultaneously for evervone on earth, but do so
earlier for those more towards the east, later for those towards the west. For we
find that the phenomena at eclipses, especially lunar eclipses,?® which take
place at the same time [for all observers], are nevertheless not recorded as
occurring at the same hour (that is at an equal distance from noon) by all
observers. Rather, the hour recorded by the more easterly observers is always
later than that recorded by the more westerly. We find that the differences in
the hour are proportional to the distances between the places [of observation].
Hence one can reasonably conclude that the earth’s surface is spherical,
because its evenly curving surface {for so it is when considered as a whole) cuts
off [the heavenly bodies] for each set of observers in turn in a regular fashion.

If the earth’s shape were any other, this would not happen, as one can see
from the following arguments. If it were concave, the stars would be seen rising
first by those more towards the west; if it were plane, they would rise and set

% These propositions were proved in a work by Zenodorus (carly second century B.C, see
Toomcr[l]) from which extensive excerpts are given by (among others) Theon (Rome Il 355-79).
There is a good summary in Heath HGM 11 207-13.

% The only relevant passage I know is Empedocies, Diels-Kranz A60, who maintained that the
moon is disk-shaped.

*"See Pedersen 37-9.

28‘taken as a whole™: ignoring local irregularities such as mountams, which are negligible in
comparison to the total mass.

#The timings for solar eclipses are complicated by parallax.
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simultaneously for everyone on earth; if it were triangular or square or any-
other polygonal shape, by a similar argument, they would rise and set simul-
taneously for all those living on the same plane surface. Yet it is apparent that
nothing like this takes place. Nor could it be cylindrical, with the curved surface
in the east-west direction, and the flat sides towards the poles of the universe,
which some might suppose more plausible. This is clear from the following: for
those living on the curved surface none of the stars would be ever-visible, but
either all stars would rise and set for all observers, or the same stars, for an equal
[celestial] distance from each of the poles, would always be invisible for all
observers. In fact, the further we travel toward the north, the more® of the
southern stars disappear and the more of the northern stars appear. Hence it is
clear that here too the curvature of the earth cuts off {the heavenly bodies] in a
regular fashion in a north-south direction. and proves the sphericity [of the
earth] in all directions.

There is the further consideration that if we sail towards mountains or

elevated places from and to any direction whatever, they are observed to
increase gradually in size as if rising up from the sea itself in which thev had
previously been submerged: this is due to the curvature of the surface of the
water.

5. {That the earth is in the middle of the heavens}*'

Once one has grasped this, if one next considers the position of the earth, one
will find that the phenomena associated with it could take place only if we
assume that it is in the middle of the heavens. like the centre of a sphere. For if
this were not the case, the earth would have to be either

[a] not on the axis [of the universe] but equidistant from both poles, or
[b] on the axis but removed towards one of the poles, or
[c] neither on the axis nor equidistant from both poles.

Against the first of these three positions militate the following arguments. If
we imagined [the earth] removed towards the zenith or the nadir of some
observer, then, if he were at sphaera recta, he would never experience equinox,
since the horizon would always divide the heavens into two unequal parts, one
above and one below the earth; if he were at sphaera obliqua, either, again,
equinox would never occur at all, or, [if it did occur,] it would not be at a
position halfway between summer and winter solstices, since these intervals
would necessarily be unequal, because the equator, which is the greatest of all
parallel circles drawn about the poles of the [daily] motion, would no longer be
bisected by the horizon; instead [the horizon would bisect] one of the circles
parallel to the equator, either to the north or to the south of it. Yet absolutely
everyone agrees that these intervals are equal everywhere on earth, since
[everywhere] the increment of the longest day over the equinoctial day at the

% Reading hgiova (with D) for 1 mieiova at H16,9. Corrected by Manitius.
31See Pedersen 39-42.
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summer solstice is equal to the decrement of the shortest day from the
equinoctial day at the winter solstice. But if, on the other hand, we imagined the
displacement to be towards the east or west of some observer, he would find that
the sizes and distances of the stars would not remain constant and unchanged at
eastern and western horizons, and that the time-interval from rising to
culmination would not be equal to the interval from culmination to setting.
This is obviously completely in disaccord with the phenomena.

Against the second position, in which the earth is imagined to lie on the axis
removed towards one of the poles, one can make the following objections. If this
were so, the plane of the horizon would divide the heavens into a part above the
earth and a part below the earth which are unequal and always different for
different latitudes,’? whether one considers the relationship of the same part at
two different latitudes or the two parts at the same latitude. Only at sphaera recta
could the horizon bisect the sphere; at a sphaera obliqua situation such that the
nearer pole were the ever-visible one, the horizon would always make the part
above the earth lesser and the part below the earth greater: hence another
phenomenon would be that the great circle of the ecliptic would be divided into
unequal parts by the plane of the horizon. Yet it is apparent that this is by no
means so. Instead, six zodiacal signs are visible above the earth at all times and
places, while the remaining six are invisible; then again [at a later time] the
latter are visible in their entirety above the earth, while at the same time the
others are not visible. Hence it is obvious that the horizon bisects the zodiac,
since the same semi-circles are cut ofl by it, so as to appear at one time
completely above the earth, and at another [completely] below it.

And in general, if the earth were not situated exactly below the [celestial]
equator, but were removed towards the north or south in the direction of one of
the poles, the result would be that at the equinoxes the shadow of the gnomon at
sunrise would no longer form a straight line with its shadow at sunset in a plane
parallel to the horizon, not even sensibly.? Yet this is a phenomenon which is
plainly observed everywhere.

It is immediately clear that the third position enumerated is likewise
impossible, since the sorts of objection which we made to the first [two] will both
arise in that case.

To sum up, if the earth did not lie in the middle {of the universe], the whole
order of things which we observe in the increase and decrease of the length of
daylight would be fundamentally upset. Furthermore, eclipses of the moon
would not be restricted to situations where the moon is diametrically opposite
the sun (whatever part of the heaven [the luminaries are in]), since the earth
would often come between them when they were not diametrically opposite,
but at intervals of less than a semi-circle.

32 The word translated here and elsewhere as {terrestrial] latitude’ is kAipa, for the meaning of
which see Introduction p. 19.

3 The caveat ‘sensibly’ is inserted because the equinox is not a date but an instant of time.
Therefore on the day of equinox the sun does not rise due east and set due west (as is implied by the
rising and setting shadows lying on the same straight line). However, the difference would be
‘imperceptible to the senses’.
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6. {That the earth has the ratio of a point to the heavens}**

Moreover, the earth has, to the senses, the ratio of a point to the distance of the
sphere of the so-called fixed stars.?> A strong indication of this is the fact that the
sizes and distances of the stars, at any given time, appear equal and the same
from all parts of the earth everywhere, as observations of the same [celestial]
objects from different latitudes are found to have not the least discrepancy from
each other. One must also consider the fact that gnomons set up in any part of
the earth whatever, and likewise the centres of armillary spheres,*® operate like
the real centre of the earth; that s, the lines of sight [to heavenly bodies] and the
paths of shadows caused by them agree as closely with the [mathematical]
hypotheses explaining the phenomena as if they actually passed through the real
centre-point of the earth.

Another clear indication that this is so is that the planes drawn through the,
observer’s lines of sight at any point {on earth], which we call *horizons’, always
bisect the whole heavenly sphere. This would not happen if the earth were of
perceptible size in relation to the distance of the heavenly bodies; in that case
only the plane drawn through the centre of the earth could bisect the sphere,
while a plane through any point on the surface of the earth would always make
the section [of the heavens] below the earth greater than the section above it.

7. {That the earth does not have any motion from place to place, either}*’

One can show by the same arguments as the preceding that the earth cannot
have any motion in the aforementioned directions, or indeed ever move at all
from its position at the centre. For the same phenomena would result as would if
it had any position other than the central one. Hence I think it is idle to seek for
causes for the motion of objects towards the centre, once it has been so clearly
established from the actual phenomena that the earth occupies the middle
place in the universe, and that all heavy objects are carried towards the earth.
The following fact alone would most readily lead one to this notion [that all
objects fall towards the centre]. In absolutely all parts of the earth, which, as we
said, has been shown to be spherical and in the middle of the universe, the
direction®® and path of the motion (I mean the proper, [natural] motion) of all
bodies possessing weight is always and everywhere at right angles to the rigid
plane drawn tangent to the point of impact. It is clear from this fact that, if

3See Pedersen 42-3.

% Ptolemy qualifies the traditional terminology for the fixed stars as ‘so-called’ (xaAovpévev)
because they do in fact, according to him, have a motion (the modern ‘precession’). He develops the
point further at VII 1 p. 321, q.v. In general, however, he uses the traditional terminology without
qualification.

% An example of an armnllary sphere (xpixoth o@atpa) is the ‘astrolabe’ described in V 1. For
references to the term in other works see LS] s.v. xpixw1dg.

¥ See Pedersen 43-4.

* tpéovevoig, which I have translated ‘the direction of motion’ here, means basically dm:cnon
in which something points’ (for astronomical usages see V 5 p. 227 n. 19 and V1 11 p. 313 n. 77).
Thus it would also include here the direction of a plumb-line (cf. I 12 p. 62).
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44 1 7. Immobility of the earth

(these falling objects] were not arrested by the surface of the earth, they would
certainly reach the centre of the earth itself, since the straight line to the centre is
also always at right angles to the plane tangent to the sphere at the point of
intersection [of that radius] and the tangent.

Those who think it paradoxical that the earth, having such a great weight, is
not supported by anything and yet does not move, seem to me to be making the
mistake of judging on the basis of their own experience instead of taking into
account the peculiar nature of the universe. They would not, I think, consider
such a thing strange once they realised that this great bulk of the earth, when
compared with the whole surrounding mass [of the universe], has the ratio of a
point to it. For when one looks at it in that way, it will seem quite possible that
that which is relatively smallest should be overpowered and pressed in equally
from all directions to a position of equilibrium by that which is the greatest of all
and of uniform nature. For there is no up and down in the universe with respect
to itself,*® any more than one could imagine such a thing in asphere: instead the
proper and natural motion of the compound bodies in it is as tollows: light and
rarefied bodies drift outwards towards the circumference, but seem to move in
the direction which is ‘up’ for each observer, since the overhead direction for all
of us, which is also called ‘up’. points towards the surrounding surface;* heavy
and dense bodies, on the other hand, are carried towards the middle and the
centre, but seem to fall downwards, because, again, the direction which is for all
us towards our feet, called ‘down’, also points towards the centre of the earth.
These heavy bodies, as one would expect, settle about the centre because of
their mutual pressure and resistance, which is equal and uniform from all
directions. Hence, too, one can see that it is plausible that the earth, since its
total mass is so great compared with the bodies which fall towards it, can remain
motionless under the impact of these very small weights (for they strike it from
all sides), and receive, as it were, the objects falling on it. If the earth had a single
motion in common with other heavy objects, it is obvious that it would be
carried down faster than all of them because of its much greater size: living
things and individual heavy objects would be left behind, riding on the air, and
the earth itself would very soon have fallen completely out of the heavens. But -
such things are utterly ridiculous merely to think of.

But certain people,*! {[propounding] what they consider a more persuasive
view, agree with the above, since they have no argument to bring against it, but
think that there could be no evidence to oppose their view if, for instance, they
supposed the heavens to remain motionless, and the earth to revolve from west
to east about the same axis [as the heavens], making approximately one
revolution each day;* or if they made both heaven and earth move by any
amount whatever, provided, as we said, it is about the same axis, and in such a

* Reading avtév (with D, Is) for abtriv at H23,1.

#1¢ is not clear to me whether Ptolemy means the outmost boundary of the universe or merely the
surface (of the ‘aether’) surrounding the earth.

*! Heraclides of Pontos (late fourth century B.C.) is the earliest certain authority for the view that
the earth rotates on its axis. See HAMA 11 694-6. It was also adopted by Aristarchus as part of his
more radical heliocentric hypothesis.

* ‘approximately’ because one revolution takes place in a sidereal, not a solar day.
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way as to preserve the overtaking of one by the other. However, they do not
realise that, although there is perhaps nothing in the celestial phenomena
which would count against that hypothesis, at least from simpler considerations,
nevertheless from what would occur here on earth and in the air, one can see
that such a notion is quite ridiculous. Let us concede to them [for the sake of
argument] that such an unnatural thing could happen as that the most rare and
light of matter should either not move at all or should move in 2 way no different
from that of matter with the opposite nature (although things'in the air, which
are less rare [than the heavens] so obviously move with a more rapid motion
than any earthy object); [let us concede that] the densest and heaviest objects
have a proper motion of the quick and unilorm kind which they suppose
(although, again, as all agree, earthy objects are sometimes not readily moved
even by an external force). Neverthcless, they would have to admit that the
revolving motion of the earth must be the most violent of all motions associated
with it, seeing that it makes one revolution in such a short time; the result would
be that all objects not actually standing on the earth would appear to have the
same motion, opposite to that of the earth: neither clouds nor other flying or
thrown objects would ever be seen moving towards the east, since the earth’s
motion towards the east would always outrun and overtake them, so that all
other objects would seem to move in the direction of the west and the rear. But if
they said that the air is carried around in the same direction and with the same
speed as the earth, the compound objects in the air would none the less always
seem to be left behind by the motion of both [earth and air]‘; or if those objects
too were carried around, fused, as it were. to the air, then they would never
appear to have any motion either in advance or rearwards: they would always
appear still, neither wandering about nor changing position, whether they were
flving or thrown objects. Yet we quite plainly see that they do undergo all these
kinds of' motion, in such a way that they are not even slowed down or speeded up
at all by any motion of the earth.

8. {That there are tico different primary motions in the heavens}**

It was necessary to treat the above hypotheses first as an introduction to the
discussion of particular topics and what follows after. The above summary
outline of them will suffice. since they will be completely confirmed and further
proven by the agreement with the phenomena of the theories which we shall
demonstrate in the following sections. In addition to these hypotheses, it is
proper, as a further preliminary, to introduce the following general notion, that
there are two different primary motions in the heavens. One of them is that
which carries everything from east to west: it rotates them with an unchanging
and uniform motion along circles parallel to each other, described, as is
obvious, about the poles of this sphere which rotates everything uniformly. The
greatest of these circles is called the ‘equator’,** because it is the only [such

*3See Pedersen 45.
*‘equator’: ionuepvdg, literally ‘of equal day’ or ‘equinoctial’. See Introduction p. 19.
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46 [ 8. Two primary motions in the heavens

parallel circle] which is always bisected by the horizon (which is a great circle),
and because the revolution which the sun makes when located on it produces
equinox everywhere, to the senses. The other motion is that by which the
spheres of the stars perform movements in the opposite sense to the first motion,
about another pair of poles, which are different from those of the first rotation.
We suppose that this is so because of the following considerations. When we
observe for the space of any given single day, all heavenly objects whatever are
seen, as far as the senses can determine, to rise, culminate and set at places
which are analogous and lie on circles parallel to the equator; this is
characteristic of the first motion. But when we observe continuously without
interruption over an interval of time, it is apparent that while the other stars
retain their mutual distances and (for a long time) the particular characteristics
arising from the positions they occupy as a result of the first motion,* the sun,
the moon and the planets have certain special motions which are indeed
complicated and different from each other, but are all, to characterise their
general direction, * towards the east and opposite to [the motion of] those stars
which preserve their mutual distances and are, as it were, revolving on one
sphere.

Now if this motion of the planets too took place along circles parallel to the
equator, that is, about the poles which produce the first kind of revolution, it
would be suflicient to assign a single kind of revolution to all alike, analogous to
the first. For in that case it would have seemed plausible that the movements
which they undergo are caused by various retardations, and not by a motion in
the opposite direction. But as it is. in addition to their movement towards the
east, they are seen to deviate continuously to the north and south [of the
equator]. Moreover the amount of this deviation cannot be explained as the

result of a uniformly-acting force pushing them to the side: from that point of

view it is irregular, but it is regular if considered as the result of [motion on} a
circle inclined to the equator. Hence we get the concept of such a circle, which is
one and the same for all planets, and particular to them. It is precisely defined
and, so to speak, drawn by the motion of the sun. but it is also travelled by the
moon and the planets. which always move in its vicinity, and do not randomly
pass outside a zone on either side of it which is determined for each body. Now
since this too is shown to be a great circle, since the sun goes to the north and
south of the equator by an equal amount, and since, as we said. the eastward
motion of all of the planets takes place on one and the same circle, it became
necessary to suppose that this second. different motion of the whole takes place
about the poles of the inclined circle we have defined [i.e. the ecliptic], in the
opposite direction to the first motion.

If, then, we imagine a great circle drawn through the poles of both the above-
mentioned circles, (which will necessarily bisect each of them, that is the
equator and the circle inclined to it [the ecliptic]. at right angles), we will have
four points on the ecliptic: two will be produced by [the intersection of] the

*These characteristics of the fixed stars are e.g. dates of first and last visibility. They are
unchanged ‘for a long time' because the eflect of precession is very slow.
**The qualification is inserted here to allow for the retrogradations of the planets.
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equator, ‘diametrically opposite each other; these are called ‘equinoctial’
points. The one at which the motion [of the planets] is from south to north is

called the ‘spring’ equinox, the other the ‘autumnal’. Two [other points] will be -
produced by [the intersection of] the circle drawn through both poles; these too,

obviously, will be diametrically opposite each other; they are called ‘tropical’
[or ‘solsticial’) points. The one south of the equator is called the ‘winter’
[solstice], the one north, the ‘summer’ [solstice}.

We can imagine the first primary motion, which encompasses all the other
motions, as described and as it were defined by the great circle drawn through
both poles [of equator and ecliptic] revolving, and carrying everything else with
it, from east to west about the poles of the equator. These poles are fixed, so to
speak, on the ‘meridian’ circle, which differs from the aforementioned [great]
circle in the single respect that it is not drawn through the poles of the ecliptic
too at all positions of the latter. Moreover, it is called ‘meridian’ because it is,
considered to be always orthogonal to the horizon.*’ For a circle in such a
position divides both hemispheres, that above the earth and that below it, into
two equal parts, and defines the midpoint of both day and night.

The second. multiple-part motion is encompassed by the first and encom-
passes the spheres of all the planets. As we said, it is carried around by the
aforementioned [first motion], but itself goes in the opposite direction about the
poles of the ecliptic, which are also fixed on the circle which produces the first
motion, namely the circle through both poles [of ecliptic and equator].
Naturally they [the poles of the ecliptic] are carried around ‘with it [the circle
through both poles]. and. throughout the period of the second motion in the
opposite direction, they always keep the great circle of the ecliptic. which is
described by that [second] motion, in the same position with respect to the

equator.®

9. {On the individual concepts}

Such, then are the necessary preliminary concepts which must be summarily set
out in our general introduction. We are now about to begin the individual
demonstrations, the {irst of which, we think, should be to determine the size of
the arc between the aforementioned poles [of the ecliptic and equator] along the
great circle drawn through them. But we see that it is {irst necessary to explain
the method of determining chords:* we shall demonstrate the whole topic
geometrically once and for all.

7 See Introduction p.19.

*My translation follows the interpretation of Theon (Rome II 447). Manitius (p. 24 n. a
wrongly considers to0 ypagopuévou 81° altig peyicTov xdt LoEoD kixAov interpolated, partly
because he misinterprets cuvtnpototv (which is used here in a way similar to cuvtnpoUoav at HI
6,10).

#<chords’: literally ‘straight lines in a circle’. On this term see Introduction p. 17.

'~
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48 1 10. Calculation of chord table
10. {On the size of chords}>®

For the user’s convenience, then, we shall subsequently set out a table of their
amounts, dividing the circumference into 360 parts, and tabulating the chords
subtended by the arcs at intervals of half a degree, expressing each as a number
of parts in a system where the diameter is divided into 120 parts. [We adopt this
norm] because of its arithmetical convenience,®' which will become apparent
from the actual calculations. But first we shall show how one can undertake the
calculation of their amounts by a simple and rapid method, using as few
theorems as possible, the same set for all. We do this so that we may not merely
H32 have the amounts of the chords tabulated unchecked, but may also readily’
undertake to verify them by computing them by a strict geometrical method. In
general we shall use the sexagesimal system for our arithmetical computations,
because of the awkwardness of the [conventional] fractional system. Since we
always aim at a good approximation, we will carry out multiplications and
divisions only as far as to achieve a result which differs from the precision
achievable by the senses by a negligible amount.
First, then, [see Fig. 1.1] let there be a semi-circle ABG about centre D and on
diameter ADG. Draw DB perpendicular to AG at D. Let DG be bisected at E,
join EB, and let EZ be made equal to EB. Join ZB.

B

L
0 E G

Fig. 1.1

Do
™~

I say that ZD is the side of the [regular] decagon, and BZ the side of the
[regular] pentagon.
[Proot:] Since the straight line DG is bisected at E. and a straight line DZ is
adjacent to it,
H33 GZ.ZD + ED? = EZ%.*2
But EZ? = BE? (EB = ZE),
and EB? = ED? + DB2
. GZ.ZD + ED? = ED? + DB

5On Ptolemy’s calculation of his chord table see HAMA 21-4, Pedersen 56-63.
%! The principal convenience is that the radius is 60 parts, or 1,0 in the sexagesimal system. Hence
in some ways this resembles a sine table with R = 1.

* Euclid I1 6.
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> GZ.ZD = DB? (subtracting ED? common).
~ GZ.ZD = DG~ ’

So ZG has been cut in extreme and mean ratio at D.

Now since the side of the hexagon and the side of the decagon, when both are
inscribed in the same circle, make up the extreme and mean ratios of the same
straight line,* and since GD, being a radius, represents the side of the
hexagon,>® DZ is equal to the side of the decagon.

Similarly, since the square on the side of the pentagon equals the sums of the
squares on the sides of the hexagon and decagon when all are inscribed in the
same circle,* and, in the right-angled triangle BDZ, the square on BZ equals
the sum of the squares on BD, which is the side of the hexagon, and on DZ,
which is the side of the decagon, it follows that BZ equals the side of the
pentagon.

Since, then, as I said, we set the diameter of the circle as 120 parts, it follows
from the above that

DE = 30° (DE half the radius)
and DE? = 900°;
BD = 60° (BD a radius)
and BD*® = 3600°.
And EZ? = EB? = 4500, the sum [of DE? and BD?]
. EZ=67:4,55°
and by subtraction [of DE from EZ], DZ = 37;4,55".
So the side of the decagon, which subtends 36°, has 37;4.55" where the diameter
has 120°.
Again, since DZ = 37:4.55",
DZ* = 1375:4.15%"
and DB? = 3600°.
so BZ? = DZ? + DB’ = 4975:4.15".
- BZ=170;32,3".

Therefore the side of the pentagon. which subtends 72°, contains 70;32,3"
where the diameter has 120°.

It is immediately obvious that the side of the [inscribed] hexagon, which
subtends 60° and is equal to the radius, contains 60°.

Similarly, since the side of the [inscribed] square, which subtends 90° i
equal, when squared, to twice the square on the radius, and since the side of the
(inscribed] triangle, which subtends 120°, is equal, when squared, to three times
the square on the radius, and the square on the radius is 36007, we compute that

the square on the side of the square is 7200°

and the square on the side of the triangle is 10800°.

53 Euclid VI Def. 3 states that ‘a straight line has been cut in extreme and mean ratio when. as the
whole line is to the greater segment, so is the greater to the less’; i.e. here ZG:DG = DG:ZD.

5¢Euclid XIII 9.

%5 Euclid IV 15 porism.

% Euclid XIII 10.

5" The reading 14 (for 15) occurs as a marginal variant, in the Greek mss., here and at related
places (see apparatus at H34,16; 34,18; 36.4 and 36,7), and, in the Arabic, in T, and was adopted in
Hajjaj’s translation. It is more accurate. but makes no difference to the final result.
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50 I 10. Chord of the supplement; Ptolemy’s Theorem

. 0 . g
an d"Ci;dl ggoz lggjg;’;_g,} where the diameter is 120°.

We can, then, consider the above chords as established individually by the
above straightforward procedures. It will immediately®® be obvious that if any
chord be given, the chord of the supplementary arc is given in a simple fashion,
since the sum of their squares equals the square on the diameter. For instance,
since the chord of 36° was shown to be 37;4,55°, and the square of this is
1375;4,15°, and the square on the diameter is 14400, the square on the chord of
the supplementary arc (which is 144°) will be the difference, namely
13024;55,45, and so

Crd 144°=~ 114;7;37".

Similarly for the other chords [of the supplements].

We shall next show how the remaining individual chords can be derived from
the above [chords], first of all setting out a theorem which is extremely useful for
the matter at hand.

[See Fig. 1.2.] Let there be a circle with an arbitrary quadrilateral ABGD
inscribed in it. Join AG and BD.

G

Fig. 1.2

We must prove that

AG.BD = AB.DG + AD.BG.*®
[Proof:] Make £ ABE = £ DBG.

Then, if we add £ EBD common,
/ ABD = £/ EBG.

8 Reading avt68ev (with D) for vtedBev at H35,18.

*This proposition, commonly known as ‘Ptolemy’s Theorem’, is not in fact attested before him.
It remains uncertain whether any of the earlier chord tables (e.g. Menelaus’) used any geometrical
basis beyond the half-angle theorem (see n. 60 and Toomer{2] 18-19).



1 10. Chord of the difference , 51

But £ BDA = £ BGE also, since they subtend the same segment. H37
~. triangle ABD||| triangle BGE.
~. BG:GE = BD:DA.
~ BG.AD = BD.GE.
Again, since £ ABE = £ DBG,
and £ BAE = £ BDG,
triangle ABE ||| triangle BGD.
~. BA:AE = BD:DG.
.~ BA.DG = BD.AE.
But it was shown that
BG.AD = BD.GE.
Therefore, by addition, AG.BD = AB.DG + AD.BG.
Q.E.D.
Having established this preliminary theorem, we draw [Fig. 1.3] semi-circle
ABGD on diameter AD, and draw from A two chords, AB, AG, each given in H38
size in terms of a diameter of 120°. Join BG.
I say that BG too is given.
[Proof:] Join BD,GD.

Fig. 1.3 -

.

Then, clearly, BD and GD too will be given, since they are chords of [arcs]

supplementary [to the arcs of the given chords AB and AG].
Now since ABGD is a cyclic quadrilateral, ' .
AB.GD + AD.BG = AG.BD.
But AG.BD and AB.GD are given.
. AD.BG is given by subtraction.
And AD is a diameter.

Therefore chord BG is given.

And we have shown that, if two arcs and the corresponding chords are given,
the chord of the difference between the two arcs will also be given.

It is obvious that by means of this theorem we shall be able to enter [in the.
table] quite a few chords derived from the difference between the individually
calculated chords, and notably the chord of 12°, since we have those of 60°and H39
72°.
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Let us now consider the problem of finding the chord of the arc which is half
that of some given chord.®

Let{Fig. 1.4] ABG be a semi-circle on diameter AG.LetGB be a given chord.
Bisect arc GB at D, join AB, AD, BD, DG, and drop perpendicular DZ fromD
on to AG.

B

Fig. 1.4

I say that
ZG =1(AG ~ AB).
{Proof:] Let AE = AB, and join DE.
Then since [in the triangles ABD. ADE]
AB = AE, and AD is common,
the two pairs of sides AB, AD, and AE, AD are equal.
Furthermore £ BAD = Z EAD.
-+ base BD = base DE.
But BD = DG {by construction]
- DG = DE.
So, since, in the isosceles triangle DEG, perpendicular DZ has been drawn
from apex to base
EZ = ZG.
But EG = {AG - AE = ] AG - AB.
5 ZG = 3(AG - AB).
Now, if the chord of arc BG is given, the supplementary chord AB is
immediately given.
Therefore ZG, which is 3(AG - AB), is also given.
But, since, in the right-angled triangle AGD, the perpcnd:cular DZ has been
drawn,
triangle ADG ||| triangle DGZ (both right-angled).®!
~ AG:GD = GD:GZ.
~ AG.GZ = GD2

% Although Ptolemy’s formula for the chord of the half-angle can casily be derived from his
general theorem (see Toomer{2] 16-17), he introduces instead another theorem, which goes back to
Archimedes {(see HAMA 23-4). It is a plausible inference that this is because the latter theorem was
lhe'solc basis of earlier chord tables, notably Hipparchus’. as I have argued, Toomer{2] 18-19.

5! Euclid V1 8.
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But AG.GZ is given.
Therefore GD? is given, and so chord GD, which subtends an arc halfof [the arc
of the given chord] BG, is also given.

By means of this theorem too a large number of chords will be derived by
halving [the arcs of] the previously determined chords, and notably, from the
chord of 12°, the chords of 6°, 3°, 13° and i°. By calculation we find the chord of
14° to be approximately 1;34,15” where the diameter is 120, and the chord of 1°
to be approximately 0;47,8° in the same units.

Again, [see Fig. 1.5] let there be a circle ABGD on diameter AD, withcentre

Z. From A let there be cut off in succession two given arcs, AB, BG. Join the
corresponding chords AB, BG; they too will be given.

G

Fig. 1.5

I say, that if we join AG, that [chord] too will be given.

[Proof:] Draw through B diameter BZE, and join BD,DG,GE.DE. It is
immediately clear that from BG one can derive GE, and from AB one can
derive BD and DE [all as chords of the supplementary arc]. By an argument
similar to the preceding [p. 51], since BGDE is a cyclic quadrilateral, in which
BD and GE are diagonals, the product of the diagonals will be equal to the sum
of the products of the opposite sides [i.e. BD.GE = BG.DE + BE.GD]. There-
fore, since (BD.GE) and (BG.DE) are both given, (BE.GD) is also given. But
BE also is given, being a diameter: therefore the remaining® part, GD, will also
be given, and hence GA, the {chord of the] supplement.

Therefore, if two arcs and the corresponding chords are given, the chord
corresponding to the sum of these two arcs will be given by means of this
theorem.

It is obvious that by combining [in this way] the chord of 1° with all the
chords we have already obtained, and then computing successive chords, we
will be able to enter [in the table] all chords {of arcs] which when doubled are

6 Reading 1} Aourn (with A) at H42,1 for Aoumn (‘by subtraction’).
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divisible by three {i.e. muitiples of 14°]. Then the only chords remaining to be
determined will be those between the 14° intervals, two in each mterval since
our table is made at 1° intervals. If, therefore, we can find the chord of3°, this
will enable us to compiete {the table with] all the remaining intermediate
chords, by finding the sum or difference {of 1°] from the given chords at either
end of the {1§°] intervais. Now, if a chord, e.g. the chord of 14°, is given, the
chord corresponding to an arc which is one-third of the previous one cannot be
found by geometrical methods.®® (If this were possible, we should immediately
have the chord of1°). Therefore we shall first derive the chord of 1° from those of
11° and 3°. {We shall do this] by establishing a lemma which, though it cannot
in general exactly determine the sizes {of chords], in the case of such very small
quantities can determine them with a negligibly small error.

I say, then, that if two unequal chords be given, the ratio of the greater to the
lesser is less than the ratio of the arc on the greater to the arc on the lesser.

(See Fig. 1.6] Let there be a circle ABGD, in which there are drawn two
unequal chords, the lesser AB and the greater BG.

D

Fig. 1.6

I say that
GB:BA < arc BG: arc BA.
[Proof:] Let £ ABG be bisected by [chord] BD. Join AEG, AD and GD. Then,
since Z ABG is bisected by chord BED,
GD = AD
and GE >EA.%*

% This is true: the problem of finding Crda from given Crd 3a can be reduced to a cubic equation
of the kind which cannot (except for a few particular values of a) be solvcd by Euclidean geometry
(using straight line and circle). See Toomer{3] 138.

# Derivable from Euclid VI 3, which states that the bisector of the anglc at the apex of a triangle
divides the base in the ratio of the two sides enclosing the angle. Here, since BG > BA, GE > EA.
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So drop perpendicular DZ from D on to AEG.

Then, since AD > ED and ED > DZ, a circle drawn on centre D with radius
DE will cut AD and pass beyond DZ. Let it be drawn as HE®, and let DZ be
produced to ®. Now, since sector DE® is greater than triangle DEZ, and
triangle DEA is greater than sector DEH,

triangle DEZ: triangle DEA < sector DE®: sector DEH.
But triangle DEZ: triangle DEA = EZ:EA,%
and sector DE®: sector DEH = Z ZDE:Z EDA.
~ ZE:EA</ ZDE:/ EDA.
So, componendo,
ZA:EA</ ZDA:/ ADE.
And, doubling the first members [of the ratios],
GA:AE</ GDA:Z EDA.

Then, dividendo,

GE:EA</ GDE:Z EDA.

But GE:EA = GB:BA,%
and £ GDB:£ BDA = arc GB:arc BA.
~.GB:BA < arc GB:arc BA.

Having established this, let us draw {Fig. 1.7] circle ABG, and in it two

chords, AB and AG. Let us suppose, first, that AB is the chord of i° and AG the
chord of 1°. Then, since

B ,

Fig. 1.7

AG:BA < arc AG:arc AB

4 arc AB
and arc AG = —r;—,

ca<ti®.

% Euclid VI 1.
% Euclid VI 3. -

H45
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But, in units of which the diameter contains 120, we showed that
AB = 0;47,8°.
5~ GA< 1;2,50° (for 1;2,50 = 1.0;47,8).
H46 Again, using the same figure, let us set AB as the chord of 1° and AG as the
chord of 14°. By the same argument, since .

2
GA <3—];ﬁ.

But, in units of which the diameter contains 120, we showed that
AG = 1;34,15".
=~ AB >1;2,50° (for 1;34,15 = 1.1;2,50).

Therefore, since the chord of 1° was shown to be both greater and less than the
same amount, we can establish it as approximately 1;2,50° where the diameter
is 120°. By the preceding propositions we can also establish the chord of 1°,
which we find to be approximately 0;31,25°. The remaining intervals can [now]
be completed, as we said [p. 54]. For example, in the first [11°] interval, we can
calculate the chord of 2° by using the addition formula for the chord of 1° applied
to the chord of 11°, while the chord of 24° is given by using the difference formula
for [the chord of $°] applied to the chord of 3°. Similarly for the remaining
chords.

Such, then, I think, is the easiest way to undertake the calculation of the

H47 chords. But. as I said. in order that we may have the actual amounts of the
chords readily available for every occasion, we shall set out tables [for that
purpose] below. They will be arranged in sections of 45 lines®’ to achieve a
symmetrical appearance. The first column [in each section] will contain the
arcs tabulated at intervals of $°, the second the corresponding chords in units of
which the diameter contains 120, and the third the thirtieth part of the
increment in the chord for each interval. [This last] is so that we may have the
average increment corresponding to one minute [of arc], which will not be
sensibly dillerent from the true increment [for each minute]. Thus we can easily
calculate the amount of the chord corresponding to fractions which fall between
the [tabulated] half-degree intervals.

It is easy to see that, if we suspect some scribal corruption in one of the values
for the chord in the table, the same theorems which we have already set out will
enable us to test and correct it easily, either by taking the chord of double the
arc [of that] of the chord in question, or from the difference with some other
given chord, or from the chord of the supplement.

The layout of the table is as follows.

H48—63 11. { Table of Chords}®®
[See pp. 57-60.]

%745 lines is the standard height of tables throughout the .{/magest. It is presumably chosen to
conform to some standard height of papyrus roll (on papyrus standards see Lewis, Papyrus in Classical
Antiguity, 36-9, 56. on Pliny .\H 13, 78). Various consequences flow from it, notably the 18-year
interval in mean motion tables (see III 1 p. 140 with n. 28).
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TABLE OF CHORDS

Arcs Chords Sixtieths Arcs Chords Sixtieths

4 03125 1- 250 23 23 55 27 1133
1 1 250 1 250 234 24 26 13 1130
14 13415 1 250 24 24 56 58 1.126
2 2 540 1 250 241 25 27 41 1122
24 237 4 1 248 25 25 58 22 1 119
3 3 828 1 248 254 26 29 1 1 115
34 3 39 52 1 248 2 26 59 38 1 111
4 41116 1 247 264 27 30 14 11 8
41 442 40 1 247 27 28 0 48 1 1 4
5 514 4 1 246 274 28 31 20 110
5% 5 45 27 1 245 28 29 150 1 056
6 6 16 49 1 2 284 29 32 18 1 052
61 6 48 11 1 243 29 30 2 44 1 048
7 719 33 1 242 294 3033 8 1 044
74 7 50 54 1 24 30 31 330 1 040
8 89215 1 240 304 3133 30 1 035
8i 853 35 1 239 31 32 4+ 8 1 031
9 9 24 34 1 238 314 2 34 92 1 027
94 9 56 13 1 237 392 33 435 1 022
10 10 27 32 1 235 394 33 34 46 1 017
104 10 38 49 1 233 33 34 455 1 012
11 11 30" 5 1 232 334 3435 | 1 0 8
5 12 121 1 230 34 35 5 53 1 0 3
12 12 32 36 1 2928 344 3535 6 0 59 57
124 13 330 1 227 35 36 5 5 0 59 52
13 1335 4 1 295 351 36 35 1 059 48
13} 14 6 16 1 223 36 37 435 059 43
14 14 37 27 1 221 361 37 34 47 0 59 38
144 15 8 38 1 219 37 38 4 36 0 59 32
15 15 39 47 1 217 374 38 34 22 0 59 27
154 16 10 36 1 215 38 39 4 5 059 22
16 16 42 3 1 213 384 39 33 46 0 59 16
164 1713 9 1 210 39 40 325 059 11
17 17 4 14 1 27 394 4033 0 059 5
174 18 15 17 1 2 5 10 41 233 05 0
18 18 46 19 1 2 2 104 41 32 3 0 58 54
18} 19 17 21 1 20 41 42 130 0 58 48
19 19 48 21 1 157 414 42 30 54 058 42"
194 2019 19 1154 12 43 015 0 58 36
20 20 50 16 1 151 423 43 29 33 0 58 31
201 21 21 11 1 148 13 43 38 49 058 25
21 21 52 6 1 145 434 44 28 1 0 58 18
214 22 22 58 1 142 44 44 57 10 0 58 12
22 22 53 49 1139 144 15 26 16 058 6
224 23 24 39 1 136 45 45 55 19 058 0

% Ptolemy’s chord table has been recomputed, using a computer program which reproduces, as
far as possible, Ptolemy’s own methods of calculation, by Glowatzki and Géttsche. Although much
of their book is superfluous (see my review, Toomer] 4]), it contains some interesting results, notably
that Ptolemy must have carried out his calculations to five sexagesimal places to achieve the
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Arcs Chords Sixtieths Arcs Chords Sixtieths
454 46 24 19 0 57 54 68 67 612 052 1
46 46 53 16 0 57 47 681 67 32 12 0 51 52
464 4722 9 0 57 41 69 67 58 8 051 43
47 4751 0 057 34 694 68 23 59 0 51 33
474 48 19 47 057 27 70 68 49 45 051 23
48 48 48 30 057 21 704 69 15 27 051 14
484 49 17 11 057 14 71 69 41 4 051 4
49 49 45 48 057 7 714 70 6 36 0 50 55
494 50 14 21 057 0 72 70 32 3 0 50 45
50 50 42 51 0 56 53 724 70 57 26 0 50 35
504 51 11 18 0 56 46 73 71 22 44 0 50 26
51 51 39 42 0 56 39 731 71 47 56 050 16
514 52 8 0 0 56 32 74 7213 4 050 6
52 52 36 16 0 56 25 744 72 38 7 0 49 36
521 53 429 056 18 75 73 3 5 0 49 46
532 53 32 38 056 10 754 73 27 58 0 49 36
534 5¢ 0 43 05 3 76 73 52 46 049 26
5% 5¢ 28 44 0 55 55 764 74 17 29 049 16
541 54 56 42 G 55 48 77 7442 7 049 6
55 55 24 36 055 40 774 75 639 0 48 55
554 55 52 26 055 33 78 7531 7 0 48 45
56 56 20 12 055 25 784 75 55 29 0 48 34
564 56 47 54 055 17 79 76 19 46 0 48 24
57 57 15 33 055 9 794 76 43 38 048 13
574 57 43 7 055 1 80 77 8 5 048 3
58 58 10 38 0 54 53 80} 7732 6 0 47 52
584 58 38 5 054 45 8l 77 56 2 0 47 41
59 59 5 97 0 54 37 814 78 19 52 0 47 31
594 59 32 45 0 54 29 82 78 43 38 0 47 20
60 60 0 0 0 54 21 821 79 718 047 9
604 60 27 11 054 12 83 79 30 52 0 46 58
61 60 54 17 05+ 4 834 79 54 21 0 46 47
614 61 21 19 0 53 36 84 80 17 45 0 46 36
62 61 48 17 0 33 47 841 80 41 3 0 46 25
624 62 15 10 053 39 85 81 415 0 46 14
63 62 42 0 0 53 30 851 81 27 22 046 3
631 63 8 15 053 22 86 81 50 24 0 45 52
64 63 35 25 05313 864 82 13 19 045 40
644 64 2 2 053 4 87 82 36 9 0 45 29
65 64 28 34 0 52 55 87} 82 58 54 0 45 18
654 64 55 1 0 32 46 88 83 21 33 045 6
66 65 21 24 0 52 37 i 83 44 4 0 44 55
664 65 47 43 052 28 89 84 632 0 44 43
67 66 13 57 05219 894 84 28 54 0 44 31
674 66 40 7 05210 9 84 51 10 044 20

accuracy he does in the third place. The book also enables one to make a number of corrections of
scribal errors in the table. Before seeing it I had already made those given below. None of the ather
corrections (all of 1 in the last place) suggested by the authors seem likely to me, although some are
possible. '

Corrections to Heiberg's text:

Crd 9, seconds, vd (with D, Ar) for va (51) at H48,20 (corrected by Hultsch, Sehnentafeln 52)
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Arcs Chords - Sixtieths Arcs Chords Sixtieths
904 85 13 20 04 8 113 100 3 59 0 34 34
91 85 35 24 0 43 57 © 1134 100 21 16 0 34 20
913 85 57 23 0 43 45 114 180 38 26 034 6
92 86 19 15 043 33 1144 100 55 28 0 33 52
921 86 41 2 043 21 115 101 12 25 033 39
93 87 242 043 9 1154 101 29 15 03325
934 87 24 17 0 42 57 116 101 45 57 033 11
94 87 45 45 0 42 45 1164 102 2 33 0 32 57
944 88 7 7 0 42 33 117 102 19 1 032 43
95 88 28 24 0 42 21 1174 102 35 22 032 29
951 88 49 34 042 9 118 102 51 37 03215
9 89 10 39 0 41 57 1184 103 7 44 032 0
964 89 31 37 0 4l 45 119 103 23 44 031 46
97 89 52 29 0 41 33 1194 103 39 37 031 32
974 90 13 15 0 41 21 120 103 55 23 03118
98 90 33 55 041 8 1204 104 11 2 031 4
984 90 54 29 0 40 55 121 104 26 34 0 30 49
99 91 14 56 010 42 1213 104 41 39 030 35
994 91 35 17 0 40 30 122 104 57 16 0 30 21
100 91 55 32 040 17 122} 105 12 26 030 7
1004 92 15 40 040 4 123 105 27 30 029 52
101 923542 | 03952 1234 105 42 26 0 29 37
1014 92 5538 03939 124 105 57 14 029 93
102 93 15.27 | 03926 1244 106 11 55 029 8
1024 933511 | 03913 125 106 26 29 0 28 54
103 93 54 47 039 0 125} 106 40 36 098 39
103} 94 14 17 0 38 47 126 106 55 15 0 28 24
104 9+ 33 41 0 38 34 1264 107 927 028 10
104} 94 52 58 0 38 21 127 107 23 32 0 27 56
105 9512 9 038 8 1274 107 37 30 0 27 40
1054 95 31 13 0 37 55 128 107 51 20 027 25
106 95 50 11 0 37 42 1284 108 5 2 027 10
1064 9% 9 2 037 29 129 108 18 37 0 % 356
107 96 97 47 037 16 1294 108 32 5 0 26 41
1074 96 46 24 037 3 130 108 45 25 02 2
108 97 455 0 36 50 1304 108 58 38 0 26,11
108} 97 23 20 0 36 36 131 109 11 +4 0 25 56
109 97 41 38 0 36 23 1314 109 24 42 0 25 41
1094 97 59 49 03 9 132 109 37 32 025 2
110 98 17 54 0 35 56 1324 109 50 15 025 11
1104 98 35 52 0 35 42 133 110 2 50 0 24 56
111 98 53 43 03529 1334 110 15 18 0 24 41
1114 99 11 27 03515 134 110 27 39 024 26
112 99 29 5 035 1 1344 110 39 52 024 10
112} 99 46 35 0 34 48 135 110 51 57 023 55

Crd 72°, seconds, y (with all mss. except D) for 3 (4) at H54,10 (cf. H35,1 and p. 81 n. 19; corrected

by Manitius)
Crd 88#°, minutes, pd (with Ar) for pa (41) at H55,43.
Crd 97°, seconds. k8 (with D, Ar) for x{ (27) at H56.15
Crd 1089, seconds, ve (with D, Ar) for vg (56) at H57,37
Crd 118J°, seconds, ud (with Ar) for pa (41) at H58,13
Crd 143°, seconds, v¢ (with D, Ar) for xg (26) at H60,17.

-
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Arcs Chords Sixtieths Arcs Chords Sixtieths
1354 111 3 54 023 40 158 117 47 43 011 51
136 111 15 44 02325 1584 117 53 39 0 11 35
1364 111 27 26 023 9 159 117 59 27 01119
137 111 39 1 0 22 54 1594 118 5 7 ol 3
1374 111 50 28 0 22 39 160 118 10 37 010 47
138 12 147 022 24 1604 118 16 1 010 31
1384 112 12 59 022 8 161 18 21 16 010 14
13 112 24 3 021 53 1614 118 26 23 0 958
1394 11235 6 0 21 37 162 118 31 22 0 942
140 112 45 48 021 22 1624 118 36 13 0 992
1404 112 36 29 021 7 163 118 40 35 09 9
141 s 7 2 0 20 51 1634 | 118 45 30 0 853
1413 13172 | 02 36 164 118 49 356 0 837
142 113 27 44 0 20 20 1644 118 54 15 0 82
1424 113 37 54 02 4 165 118 58 25 0 8

143 1347356 | 01949 1651 19 2 2% 0 748
143} 1135750 | 019 33 166 119 620 0 731
144 s 737 L 01917 166! 1 11910 6 0 715
1444 114 17 15 019 2 167 119 13 +4 0 639
145 114 26 46 018 46 1674 19 17 13 0 6 42
145! 114 36 9 018 30 168 119 20 3+ 0 6 2%
146 114 45 24 018 14 1688 119 23 47 0 510
146% 114 34 31 017 59 169 . 119 26 52 0 553
147 H5 33 017 43 1698+ 11929 49 | 0 537
1474 312020 017 27 170§ 119 32 37 ﬂ 0 520
148 15 21 6 017 It 170 1 n9ssar L 0 05 4
148 115 29 41 016 33 17 1937 | 0 +48
149 11538 9 016 40 1718 1 1y 40 13 0 431
1494 115 46 29 016 24 172 0 1194228 1 0 4 14
150 15 54 40 016 8 1728 | 19+ 35 | 0 358
1504 116 2 44 015 52 1731 119 46 35 | 0 342
151 116 10 40 015 36 1738 1 119 48 2 0 32
1514 116 18 28 015 20 174 | 11950 8 039
152 116 %6 8 015 4 174 | 11951 43 0 253
1524 116 33 40 0 14 48 175 | 11953 10 0 236
133 116 41 4 014 32 175 | 119 54 27 0 29
1534 116 48 20 014 16 176 | 119 55 38 0 2 3
154 116 55 28 014 0 1764 119 36 39 0 147
1544 17 298 013 44 177 119 57 32 0 130
155 17 92 013 28 1774 119 58 18 0 114
1554 117 16 4 013 12 178 119 58 55 0 057
156 117 22 40 0 12 56 1784 119 59 24 0 04l
1564 11729 8 012 40 179 119 59 44 0.025
157 117 35 28 012 24 179} 119 59 56 00 9
1574 117 41 40 012 7 180 120 0 0 000
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12. {On the arc between the solstices}®

Now that we have tabulated the chords, our first task, as we said, is to determine
the inclination of the ecliptic to the equator, that is, the ratio of the great circle
through the poles of both to the arc intercepted between the poles. It is obvious
that this is equal to the distance from the equator to either of the solsticial
points. This quantity can be determined directly by an instrumental method,
using the following simple apparatus.” [See Fig. C.]

Fig. C

We make a bronze ring of a suitable size, turned on the lathe so that its surface
is accurately squared off [i.e. has a rectangular cross-section]. We use this as a
meridian circle, by dividing it into the normal 360° of a great circle, and
subdividing each degree into as many parts as {the size of the instrument]
allows. Then we take another smaller ring, and fit it inside the first in such a

¥ On Ptolemy’s determination of the obliquity of the ecliptic see Britton(2].

" On the instruments described by Ptolemy here see Price, Precision Instruments, 587-9. Thereisa
very detailed ancient description of the construction and use of the ring instrument by Proclus,
Hypotyposis 111 5-27 (ed. Manitius pp. 42-52).

Hé64
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62 1 12. Construction of meridian ring and plaque

manner that the lateral faces of both are in the same plane, while the smaller
ring can rotate freely inside the larger, with a north-south motion, [always] in
the same plane. At two diametrically opposite points on one lateral face of the
smaller ring we fix [two] little plates, of equal size, pointing towards each other
and the centre of the rings, and exactly in the middle of the width of each
plate we fix small pointers, which graze the surface of the larger, graduated
ring. To serve all the necessary purposes we fix this ring firmly on a pillar of
appropriate size, and set it up in the open air, so that the base of the pillar is
on a foundation which is not inclined to the plane of the horizon. We take
care that the [lateral] plane of the rings is perpendicular to the plane of the
horizon and parallel to the plane of the meridian. The first of these [desiderata]
is achieved by suspending a plumb-line from a point [on the outer ring] chosen
as zenith, and adjusting supporting elements™ until the plumb-line points
towards the point diametrically opposite [the zenith-point]. The second is
achieved by marking a meridian line’ clearly in the plane below the pillar and
moving the rings laterally until one can sight their [lateral] plane as parallel to
that line. Having set the instrument up in that way, we observed the sun's
movement towards the north and south by turning the inner ring at noon until
the lower plate was completely enshadowed by the upper one. When this was
the case, the tips of the pointers indicated to us the distance of the sun from the
zenith in degrees.”® measured along the meridian.

We lound an even handier way of making this kind of observation bv
constructing, instead of the vings, a plaque [see Fig. D] of stone or wood, square

/
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Fig. D N

! Reading UnoBepartiwv (with D) lor brroBepdtov at H65.13. CL. H67,7. Both readings are found
in mss. of Proclus, Hypotyposts p. 50.10.

" Prolemy assumes that one can draw a meridian line, without explaining how. Diodorus of
Alexandria (first century B.¢.) in his (lost) treatise Analemma, gave an ingenious method for
determining the meridian line from any three gnomon shadows (see HANMA 1T 841-2).

“tuRuata, literally ‘divisions', and it could be so interpreted here ("divisions of the graduated
arc’), cf. p. 61. But there are many places in the Almagest where it means simply “degrees’.
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and rigid, with one of its faces smooth and accurately squared off. On this we
drew a quadrant, using as centre a point near one of the corners, and drew from
the centre to the inscribed arc the lines enclosing the right angle forming the

quadrant. We divided the arc, as we had [the other instrument), into 90 degrees -
and subdivisions of those degrees. Next, on that line which was chosen to be -

perpendicular to the plane of the horizon and towards the south, we fixed two
small cylindrical pegs, with their sides at right angles to their bases and exactly
circular, machined to be of equal size: one of them we fixed on the centre-point
itself, positioning the mid-point of the peg precisely on it, the other at the lower
end of the line. Then we set this inscribed face of the plaque up along the
meridian line which we had drawn on the foundation-plane, so as to be parallel
to the plane of the meridian, and, using a plumb-line suspended between the
pegs, set up the line between them precisely at right angles to the plane of the
horizon, again correcting any deficiency by adjusting thin supporting elements
underneath. In the same way as before, we observed the shadow cast at midday’
by the peg at the centre. In order to determine its position more accurately, we
placed some object on the inscribed arc[where the shadow crossed it]. Marking
the mid-point of the shadow, we took that division of the quadrant as indicating
the position of the sun on the meridian in the north-south direction.™

From observations of this kind, and especially from comparing observations
near the actual solstices, which revealed that, over a number of returns [of the
sun], the distance from the zenith was in general the same number of degrees of
the meridian circle at the [same] solstice, whether summer or winter, we found
that the arc between the northernmost and southernmost points, whichisthearc
between the solstitial points, is always greater than 471° and less than 47i°.
From this we derive very much the same ratio as Eratosthenes, which
Hipparchus also used. For [according to this] the arc between the solstices is
approximately 11 parts where the meridian is 83.7

From the preceding kind of observation it is easy to derive immediately the
latitude of the region in which the observation is made, wherever it is: one takes
the point halfway between the two extrema; this point lies on the equator; then
one takes the distance between this point and the zenith, which is the same,
obviously, as the distance of the poles from the horizon. ,

™xatd mhdrog, literally ‘in latitude’. Ptolemy. following common Greek usage, uses TAdGtog for
any ‘vertical’ direction, including that normal to the equator, as here. See Introduction p. 21.

H of 360° = 47;42,39,2° = 2, hencee == 23;51,20°, which is what Ptolemy actually adopts (his 2¢
lies between 47;40° and 47;45°, but is not the mean).

The text could equally well mean, not that Eratosthenes and Hipparchus used the ratio 11:83,
but that the ratio 11:83 is Ptolemy’s value, which is close to the actual ratio used by them [namely
2:15, i.e. € = 24°]. That interpretation has the advantage of agreeing with the only value otherwise
attested for Eratosthenes (in his Geography, see Berger Frg. I1 B23, Strabo 2.5.7) and Hipparchus (in
his Geography and in his Commentary on Aratus, ed. Manitius p. 96,20; cf. HAMA 303, 335). It was
proposed by Berger, Eratosthenes 131, followed by Heath, Aristarchus 131 n. 4. I prefer the traditional
interpretation, since [ find it inconceivable that Ptolemy would not mention what the ratio was to
which his own was close, and also because of his expression at I 14 (p. 70). Eratosthenes’ peculiar
ratio is due not to a perverse division of the circle into 83rds, as Theon supposes (Rome I1529), but
to a pre-trigonometrical defivation from gnomon measurements, as I shall show elsewhere.

H67

H68
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13. {Preliminaries for spherical proofs}’®

Our next task is to demonstrate the sizes of the individual arcs cut offbetween the
equator and the ecliptic along a great circle through the poles of the equator. As
a preliminary we shall set out some short and useful theorems which will enable
us to carry out most demonstrations involving spherical theorems in the
simplest and most methodical way possible.

H69 [See Fig. 1.8.] Let two straight lines, BE and GD, which are drawn to meet
two straight lines. AB and AG, cut each other at point Z.

A

Fig. 1.8

I say that
GA:AE = (GD:DZ).(ZB:BE).””
[Proof:] Let EH be drawn through E parallel to GD.
Then, since GD and EH are parallel,
GA:AE = GD:EH.
If we bring ZD in [as auxiliary],
GD:EH = (GD:DZ).(DZ:HE).
~ GA:AE = (GD:DZ).(DZ:HE).
But DZ:HE = ZB:BE (EH parallel to ZD).
~» GA:AE = (GD:DZ).(ZB:BE). (13.1]
Q.E.D.
In the same way, dividendo, we shall prove that
GE:EA = (GZ:DZ).(DB:BA).

On the spherical trigonometry in this chapter see HAMA 26-30, Pedersen 72-8.
" Literally (here and in general) this kind of ratio is expressed as ‘the ratio of GA to AE is
combined from (cuviinrtat &k, ouykettat £x) the ratio of GD to DZ and the ratio of ZB to BE’.
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[See Fig. 1.9.] Draw a line through A parallel to EB and produce GD tocut it at
H. Again, since AH is parallel to EZ, H70
GE:EA = GZ:ZH.
But, if we bring in ZD [as auxiliary],
GZ:ZH = (GZ:2ZD).(DZ:ZH).

A

Fig. 1.9

But DZ:ZH = DB:BA (BA and ZH drawn to meet the parallel lines AH and
ZB).
~ GZ:ZH = (GZ:DZ).(DB:BA).
But GZ:ZH = GE:EA.
- GE:EA = (GZ:DZ).(DB:BA). [13.2]
Q.E.D.
Again (Fig. 1.10] on circle ABG, with centre D, take any three points A,B,G,
on the circumference, provided that each of the arcs AB and BG is less than a
semi-circle (let the same condition be understood to apply to all subsequent arcs
we take). Draw AG and DEB.
I say that H71
Crd arc 2AB:Crd arc 2BG = AE:EG.
[Proof:] Drop perpendiculars AZ and GH from points A and G on to DB. Then,
since AZ is parallel to GH, and they meet line AEG,
AZ:GH = AE:EG.
But AZ:GH = Crd arc 2AB : Crd arc 2BG
(for AZ = } Crd arc 2AB and GH = } Crd arc 2BG).
% AE:EG = Crd arc 2AB:Crd arc 2BG. [13.3]
Q.E.D.
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Fig. 1.10

It immediately follows that if we are given the whole of arc AG and the ratio
(Crd arc 2AB:Crd arc 2BG), both arc AB and arc BG will be given.
For, repeating the same figure [see Fig. 1.11], join AD, and drop perpendicu-
lar DZ from D on to AEG.
H72 It is obvious that, if arc AG be given, £ ADZ. which subtends halfarc AG, will
be given, and hence the whole triangle ADZ.” Now. since the whole chord AG is

Fig. 1.11

? For one already knows £ AZD, a right angle, and AD, a radius.
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given, and (AE:EG) is given (for it equals (Crd arc 2AB:Crd arc 2BG)), AE will
be given,” and so will ZE, by subtraction [of AZ from AE]. Hence, since DZ too

is given, in the right-angled triangle EDZ, Z EDZ will be given, and hence the -

whole angle ADB. Hence arc AB will be given and (by subtraction) arc BG.

Q.E.D.

Again {see Fig. 1.12] on circle ABG with centre D take three points on the
circumference, A,B,G.%° Join DA and GB and produce them to meet at E.

G

Fig. 1.12

I say that

Crd arc 2GA:Crd arc 2AB = GE:BE.

By a similar argument to the previous theorem, if we drop perpendiculars
BZ and GH from B and G on to DA, since they are parallel, :

GH:BZ = GE:EB.
~ Crd arc 2GA:Crd arc 2AB = GE:EB. [13.4]
Q.E.D.

In this case too it follows immediately that if we are given just the arc GB and
the ratio (Crd arc 2GA:Crd arc 2AB), arc AB will also be given.

For, if we repeat the same figure [see Fig. 1.13], and join DB and drop DZ
perpendicular to BG, then ZBDZ, which subtends half arc BG, will be given.
Hence the whole of the right-angled triangle® BDZ will be given. Now, since
the ratio (GE:EB) and line GB are given, EB will be given, and hence, by
addition, line EBZ. So, since DZ is given, in the right-angled triangle EDZ,

" Euclid Data 7 (if a given magnitude is divided in a given ratio, each part is given).
_ ®Omitting (with D, Is), at H72, 13-15, Gote txatépav 1@v AB, AT neprpeperllv EAdoocova
elvar Huxvkdiov. kai ém t8v éETig 3¢ AapPavoucvov nepipeperdv to Spolov HaKoLEGH®;:
which is an otiose repetition of H70, 21-5.

¥ Here (H74,3) and clsewhere (e.g. H74,7) D has the fuller form épBoysviov tpiywvov for
Heiberg's pBoydwviov. This may be right, but I have not recorded it as a correction, following the
principle enunciated Introduction p. 4.
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G
%
E U

Fig. 1.13

£ EDZ is given. and. by subtraction [of the givenZ BDZ] £ EDBis given. Hence
arc AB will be given.

Having established these preliminary theorems, let us draw [Fig. 1.14]%2 the
following arcs of great circles on a sphere: BE and GD are drawn to meet AB
and AG, and cut each other at Z. Let each of them be less than a semi-circle
(and let the same condition be understood to apply to all the figures).

I say that
Crd arc 2GE:Crd arc 2EA =
(Crd arc 2GZ:Crd arc 2ZD). (Crd arc 2DB:Crd arc 2BA).
[Proof:] Let us take the centre of the sphere, H, and draw from it to the inter-
sections of the circles, B, Z, E, lines HB, HZ, HE. Join AD and produce it to
meet HB, also produced, at ®@. Similarly, join DG and AG, and let them cut HZ
and HE at points® K and L.

Fig. 1.14

®2 For an adaptation of this figure useful in visualizing the various ph.mcs involved see HAMA Fig.

17 p. 1213.
% Reading td . . . onpegia (with D) at H75,2 for 10 . . . onpeilov. Corrected by Manitius.
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Then O, K and L lie on a straight line, since they all lie simultaneously in
two planes, the plane of triangle AGD, and the plane of circle BZE.

Draw this line [@KL]. The result will be that there are two straight lines,
OL and GD, drawn to meet two straight lines, ®A and GA, and intersecting
each other at K.

- GL:LA = (GK:KD).(D®:0A). [from 13.2]
But GL:LA = Crd arc 2GE:Crd arc 2EA  [from 13.3]
and GK:KD = Crd arc 2GZ:Crd arc 2ZD [from 13.3]
and D®:OA = Crd arc 2DB:Crd arc 2BA. [from 13.4]
. Crd arc 2GE:Crd arc 2EA =
(Crd arc 2GZ:Crd arc 2ZD).(Crd arc 2DB:Crd arc 2BA). [13.5}

In the same way, corresponding to the straight lines in ‘the plane figure [Fig.

1.8}, it can be shown that
Crd arc 2GA:Crd arc 2EA =

(Crd arc 2GD:Crd arc 2DZ).(Crd arc 2ZB:Crd arc 2BE).% [13.6]=

Q.ED.

14. {On the arcs between the equator and the ecliptic}®

Having set out this preliminary theorem, we shall first of all demonstrate the
amounts of the arcs we set ourselves to determine,® as follows.

[See Fig. 1.15.] Let the circle through both poles, that of the equator and that
of the ecliptic, be ABGD; let the semi-circle representing the equator be AEG,
and that representing the ecliptic BED, and let point E be the intersection of the
two at the spring equinox, so that B is the winter solstice and D the summer
solstice. On arc ABG take the pole of the equator AEG: let it be point Z. Cut off
arc EH on the ecliptic: let us suppose it to be 30°, and draw throughZ and Han
arc of a great circle ZH®. Our problem, obviously, is to determine HO. Let us
take for granted both here and in general for all such demonstrations (to avoid
repeating ourselves on each occasion), that when we speak of the sizes of arcs or
chords in terms of ‘degrees’ or ‘parts’ we mean (for arcs) those degrees of which
the circumference of a great circle contains 360, and (for chords) those parts of
which the diameter of the circle contains 120.

Now since, in the figure, the two great circle arcs Z© and EB are drawn to
meet the two great circle arcs AZ and AE, and intersect each other at H,

Crd arc 2ZA:Crd arc 2AB =
(Crd arc 20Z:Crd arc 20H). (Crd arc 2HE:Crd arc 2EB).  [M.T.I]

8 The theorem connecting six great circle arcs on the surface of the sphere in a Menelaus
Configuration (see Introduction p. 18), of which the enunciations 13.5 and 13.6 are examples, is
due to Menelaus, whom Ptolemy mentions in the Almagest only as an observer (sce indexs.v.). It
appears (in both forms) as Prop. II1 1 of his Sphaerica (ed. Krause pp. 194-7). These two forms have
been labeiled by Neugebauer (HAMA 28) as Theorem I (= 13.6), where four inner parts of the
Menelaus Configuration are related to two outer parts, and Theorem II (= 13.5), where four outér
parts are related to two inner parts. We shall use this terminology in what follows (M.T.Iand M.T.
I for brevity).

8 See HAMA 30-1, Pedersen 95-6.

% Reference back to I 13 p. 64.
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Fig. 1.15

But arc 2ZA = 180°, so Crd arc 2ZA = 120°,
and arc 2AB = 47;42,40° (according to the ratio 11:83, with
which we agreed [p. 63]).
so Crd arc 2AB = 48;31,55°.
H78 Again, arc 2HE = 60°, so Crd arc 2HE = 60°,
and arc 2EB = 180°, so Crd arc 2EB = 120"
~ Crd arc 2Z0:Crd arc 20H = (120 : 48:31,55)/(60 : 120)
=120 : 24;15,57.
And arc 2Z® = 180°, so Crd arc 2ZO = 120°.
~ Crd arc 20H = 24;15,57".
- arc 20H = 23;19,59°.
and arc O H= 11;40°.
Again, let arc EH be taken as 60°. Then the other magnitudes will remain
unchanged, but
arc 2EH = 120°, so Crd arc 2EH = 103;55,23°.
.+ Crd arc 2Z20:Crd arc 20H = (120 : 48;31,55)/(103;55,23 : 120)
= 120 : 42;1,48.
But Crd arc 2Z0 = 120°.
~ Crd arc 20H = 42;1,48".
- arc 20H = 41:0,18°,
and arc OH = 20;30,9°.
Q.E.D.
H79 In the same way we shall compute the sizes of [the other] individual arcs, and
set out a table giving for each degree of the quadrant the arc corresponding to
those computed above. The table is as follows.
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15. {Table of Inclination}®? H80—6

[See p. 72.]

16. {On rising-times at sphaera recta}®®

Our next task is to show how to compute the size of an arc of the equator
determined by a circle drawn through the poles of the equator and a given point
on the ecliptic. In this way we can find how long, in equinoctial time-degrees, it
takes a given section of the ecliptic to cross the meridian at any point on earth
and the horizon at sphaera recta (for only in that situation does the horizon pass
through the poles of the equator).

Repeat the previous figure [see Fig. 1.16]. Let the ecliptic arc EH again be

given, first as 30°. We have to find arc E® of the equator.

Fig. 1.16

By the same argument as the preceding, .
Crd arc 2ZB:Crd arc 2BA =
(Crd arc 2ZH:Crd arc 2HO). (Crd arc 20E:Crd arc 2EA). [M.T.II}
But arc 2ZB = 132;17,20°,
so Crd arc 2ZB = 109;44,53".

87 Corrections to Heiberg in Table I 15:
45°, seconds, a (with D, Ar) for x (20) at H81,50 (computed: 2)
69°. seconds, a (with D, Ar) for wa (I1) at H81,29 (computed: 10,59 for 11,1).
Possible emendations are: ~
27°, seconds u§ (47) for v§ (57) (computed: 48). No ms. authority.
51°, seconds € (5) for 1€ (15) (computed: 7). No ms. authority.
5%, seconds a (1) for 8 (4) (computed: 0). Only variant is ‘0’ in L.
8 See HAMA 31-2, Pedersen 97-9.
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1 15. Declination table

TABLE OF INCLINATION

ARCS ARCS
of the of the of the of the
Ecliptic Meridian Ecliptic Meridian
1 02416 46 16 54 47
2 0 48 31 47 17 12 16
3 112 46 48 17 29 27
4 137 0 49 17 46 20
5 2 112 50 18 253
6 225 22 51 18 19 15
7 2 49 30 52 18 35 5
8 313 35 53 18 50 41
9 337 37 54 19 557
10 4 138 55 19 20 56
11 425 32 56 19 35 28
12 449 24 57 19 49 42
13 513 11 58 20 3 31
14 5 36 53 59 20 17 4
15 6 031 60 20 30 9
16 624 1 61 20 42 58
17 6 47 26 62 20 55 24
18 710 45 63 21 721
19 7 33 57 64 21 18 58
20 757 3 65 21 30 11
21 820 0 66 21 41 ©
22 8 42 50 67 21 51 25
23 9 532 68 22 125
24 928 5 69 2211 1
25 950 29 70 2220 11
26 10 12 46 71 22 28 57
27 10 34 57 72 22 37 17
28 10 56 44 73 22 45 11
29 11 18 25 74 22 52 39
30 11 39 59 75 22 59 41
31 12 120 76 23 617
32 12 22 30 77 23 12 27
33 12 43 28 78 23 18 11
34 13 414 79 23 23 28
35 13 24 47 80 23 28 16
36 1345 6 81 23 32 30
37 14 511 82 23 36 35
38 1425 2 83 2340 2
39 14 44 39 84 23 43 2
40 15 4 4 85 23 45 34
41 15 23 10 86 23 47 39
42 1542 2 87 23 49 16
43 16 0 38 88 23 50 25
44 16 18 58 89 23 51 6
45 16 37 1 90 23 51 20
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And arc 2BA = 47;42,40°,
so Crd arc 2BA = 48;31,55". H83
Again, arc 2ZH = 156;40,1° [180° - arc 20H, p. 70}
so Crd arc 2ZH = 117;31,15°,
and arc 2HO = 23;19,59°,
so Crd arc 2H® = 24;15,57°. _
. Crd arc ©E:Crd arc 2EA = (109;44,53 : 48;31,55)/(117;31,15 : 24;15,57)
= 54;52,26 : 117;31,15 = 56;1,53 : 120.
But arc 2EA = 180°, so Crd arc 2EA = 120°.
> Crd arc 20E = 56;1,53°.%°
So arc 20E= 55;40° and arc ®E = 27;50°.
Again, let arc EH be taken as 60°. Then the other magnitudes will remain
unchanged, but
arc 2ZH = 138;59,42°, [180° ~ arc 20H, p. 70}
so Crd arc 2ZH = 112:23,56".
And arc 20H = 41;0,18°.
so Crd arc 20H = 42;1,48°.
. Crd arc 20E:Crd arc 2EA = (109;44,53 : 48;31,55)/(112;23,56 : 42;1,48)
=95;2,40 : 112;23,56 HB84
= 101;28,20 : 120.
But Crd arc 2EA = 120°.
~ Crd arc 20E = 101;28,20"
~ arc 20E =~ 115;28°.
. arc OE= 57;44°
Thus it has been shown that the first sign of the ecliptic, counted from the
equinox,” rises in the aforementioned manner [i.e. at sphaera recta) in the same
time as 27;50° of the equator; and that the second sign rises with 29;54° (for the
sum of both arcs was shown to be 57;44°). It is obvious that the third sign will
rise at sphaera recta in the same time as 32:16° (which is the complement [of
57,44°]), since each whole quadrant of the ecliptic® rises in the same time as the
corresponding quadrant of the equator as defined by circles drawn through the
poles of the equator.
Following the same method as demonstrated above, we calculated the arc of
the equator which rises in the same time as each 10-degree section of the
ecliptic. (The [true] rising times of arcs smaller than 10° are not noticeably
different from those derived by linear interpolation [from those of 10° arcs]). We
shall set these too out, then, in order to be able to reckon conveniently the time
which each arc takes, as we said, to cross the meridian at any point on earthand H85
the horizon at sphaera recta. We begin with the 10° arc starting at [either]
equinoctial point.

% Here and just above (H83,13 and 10) Heiberg's text gives 56;1,25 (K& for ¥y). The correct
reading is given by D and Is.

* From considerations of symmetry, it makes no difference which equinox one starts from.

91 A ‘quadrant’ here is understood to start at equinox or solstice.

B -



74 1 16. Rising-times at sphaera recta

Time-degrees

Ist 9;10°
2nd ten-degree section rises in 9;15°
3rd 9;25°
For Ist sign sum is 27;50°.
4th 9;40°
5th ten-degree section rises in 9,58°
6th 10;16°
For 2nd sign sum is 29;54°
7th 10;34°
8th ten-degree section rises in 10;47°
9th 10;55°.

For 3rd sign, ending at either solstice, sumis  32;16°.
The sum for the whole quadrant is 90°, as it should be.*?
It is immediately obvious that the arrangement [of the rising-times] is the
same for the other [three] quadrants, since the same relationships hold in each

at sphaera recta, that is when the equator has no inclination to the horizon [i.e. is
vertical to it}.

2 These data are repeated in tabular form in the table of rising-times, II 8.



Book II

L. {On the general location of our part of the inkabited world}

In Book T of our treatise we discussed such preliminary notions about the
situation of the universe as had to be summarily disposed of, and such theorems
concerning sphaera recta as might be thought useful for the investigations which
we propose. In what follows we shall try to develop the more important
theorems concerning sphaera obliqua too, in the most convenient way possible.

On that topic, then, we must first make the following general introductory
remark. If one considers the earth to be divided into four quarters by the
equator and a circle drawn through the poles of the equator, our part of the
inhabited world! is approximately bounded by one of the two.northern
quarters. The main proof of this in the case of latitude (that is in the north-south
direction) is that the noon shadows of gnomons at equinox always point towards
the north and never towards the south. In the case of longftude (that is in the
east-west direction) the main proof is that observations of the same eclipse
(especially a lunar eclipse) by those at the extreme western and extreme eastern
regions of our part of the inhabited world (which occur at the same [absolute]
time). never differ’ by more than twelve equinoctial hours [in local time];* and
the quarter [of the earth] contains a twelve-hour interval in longitude, since it is
hounded by one of the two halves of the equator.

The individual points [concerning sphaera obligua] which might be considered
most appropriate to study for the subject we have undertaken are the more
important phenomena which are particular to each of the northern parallels to
the equator and to the region of the earth directly beneath each. These are
[1] the distance of the poles of the first motion {i.e. the equator] from the
horizon, or [in other words] the distance of the zenith from the equator,
measured along the meridian;*

-

! So one must translate 1) ka8’ fiudc oikovpévn : xad’ fudg can mean “in our neighbourhood’ or
*in our time’. Manitius takes the expression to be temporal (e.g. here, 58,17 ‘des zurzeit bewohnten
Gebietes der Erde’). Thisimplausible interpretation is contradicted by V16 (p. 294) where Ptolemy
talks about ‘different parts of the inhabited world’ (¢ni Siapopov oixovpévng, H498.2), and
mentions the “so-called antipodes’ (t@v dvtiy86vev xahovpévwv). In using the expression he is
implicitly allowing the possibility of an inhabited zone in the southern hemisphere. On the meaning
and history of the concept oixovpévn see Campanus 396-7.

?tdiffer’: literally ‘are earlier or later’.

3One should not infer that Ptolemy possessed records of lunar eclipses observed simultaneously at
eastern and western ends of the known world. In fact it seems probable that the only eclipse obseried
at places widely separated in longitude for which he had records of both observations was that of
- 330 Sept. 20 (cf. HAMA 668 n.30), observed at Arbela and Carthage.

*In modern terms, the t&rrestrial latitude, in antiquity usually known as E&apua t0d néAov,
‘elevation of the pole’.
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76 11 1. Topics to be dealt with

{2) for those regions where the sun reaches the zenith, when and how often this
oceurs; _

[3] the ratios of the equinoctial and solsticial noon shadows to the gnomon;
{4] the size of the difference of the longest and shortest day from the equinoctial
day;® and all other additional phenomena which are [commonly] studied
concerning

{5] the individual increases and decreases in the length of the days and nights,®
[6] and the arcs of the equator which rise or set with [given] arcs of the ecliptic,’
[7] and the particulars and quantities of angles between the more important
great circles.?

2. {Given the length of the longest day, how to find the arcs of the horizon
cut off between the equator and the ecliptic}?

Let us take as a general basis for our examples the parallel circle to the equator
through Rhodes, where the elevation of the pole is 36°, and the longest day 14
equinoctial hours. Let [Fig. 2.1] ABGD represent the meridian, BED the
eastern half of the horizon, AEG, likewise, the [eastern] halfof the equator, with
its south pole at Z. Let us suppose that the winter solstice on the ecliptic is rising
at H. Draw through Z and H the great circle quadrant ZHO.

G

Fig. 2.1

® Details of [1] to [4] are given for numerous parallels in II 6.
*See 119.

"See 11 7-8.

“See 11 10-13.

“On chapters 2 and 3 sce HAM 37-8. Pedersen 101-4.
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First of all let the length of the longest day be given, and let the problem be to
find arc EH of the horizon.'

Now, since the revolution of the [heavenly] sphere takes place about the poles
of the equator, it is obvious that points H and © will be on the meridian ABGD
at the same time. Thus the time from the rising of H to its upper culmination is
given by the equatorial arc ©@A, and the time from its lower culmination to its
rising is given by [the equatorial arc] G@. It follows that the length of daylight is
twice the time corresponding to arc @A, and the length of night twice the time
corresponding to arc GO. For every parallel circle to the equator has both
sections alike, that above the earth and that below it, bisected by the meridian.

Therefore arc E®, which is half the difference between longest or shortest day
and equinoctial day, is 14" at the parallel in question, or 18;45 time-degrees.
Hence its complement, arc ©A, is 71;15 time-degrees. :

Then since, in accordance with the previous theorems, the two great circle ,

arcs EB and ZO have been drawn to meet the two great circle arcs AE and AZ,
and intersect each other at H,
Crd arc 20 A:Crd arc 2AE =
(Crd arc 20Z:Crd arc 2ZH). (Crd arc 2HB:Crd arc 2BE). M.T.])
But arc 20A = 142:30°,
so Crd arc 20A = 113:37.54°
and arc 2AE = 180°,
so Crd arc 2AE = 120°.
Again, arc 20Z = 180°, so Crd arc 20Z = 120°.
- and arc 2ZH = 132;17.20°, so Crd arc 2ZH = 109:44.53".
> Crd arc 2HB:Crd arc 2BE = (113:37.54 : 120)/(120 : 109;44,53)
= 103:55.26 : 120.
But arc 2BE = 120°, since arc BE is a quadrant.
% Crd arc 2HB = 103:55.26"."!
~ arc 2HB= 120°,
and arc HB= 60°.
. arc HE, its complement, is 30° where the horizon is 360°.

Q.E.D.

3. {If the same quantities be given, how to find the elevation of the pole,
and vice versa}

Next let the problem be, given the same quantity [i.e. the length of the longest
day] again, to find the elevation of the pole, that is arc BZ of the meridian [in
Fig. 2.1]. Now, in the same figure,
Crd arc 2E@:Crd arc 20A =
(Crd arc 2EH:Crd arc 2HB). (Crd arc 2BZ:Crd arc 2ZA). [M.T.IT]

'""In modern terms, arc EH is the ortive amplitude of the sun.

' Here and just above (H92,11 and 8) Heiberg's text gives 103:55,23 (K¥ for Kg). The correct
reading is given by ACDAr at H92,8 and by all mss. at H92,11. Heiberg prefers the reading "23’
because it is given by all mss. at H93,10. But the comparison is illegitimate, since there the amount is
taken from the chord table. whereas here it is derived by calculation.
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But arc 2E® = 37;30°,
so Crd arc 2E© = 38;34,22°,
and arc 20A = 142;30°,
so Crd arc 20A = 113;37,54°.
Furthermore arc 2EH = 60°,
so Crd arc 2EH = 60°,
and arc 2HB = 120°,
so Crd arc 2HB = 103;55,23°.
.. Crd arc 2BZ:Crd arc 2ZA = (38;34,22 : 113;37,54)/(60 : 103;55,23)
=~ 70;33 : 120.
And again. Crd arc 2ZA = 120,
so Crd arc 2BZ = 70;33°.
S arc 2BZ = 72;1°
and arc BZ = 36°.
To do the reverse, in the same figure again [Fig. 2.1] let BZ, the arc of the
H94 pole’s elevation. be given, having been observed to be 36°. Let the problem be
to tind the difference between the shortest or longest day and the equinoctial
day. i.e. arc 2EO.
Now, from the same considerations,
Crd arc 2ZB:Crd arc 2BA =
{Crd arc 2ZH:Crd arc ZHO). (Crd arc 20E:Crd arc 2EA).  [M.T.II)
But arc 2ZB = 72°
so Crd arc 2ZB = 70;32,3".
and arc 2BA = 108°,
so Crd arc 2BA = 97;4.56".
Furthermore arc 2ZH = 132:17,20°,
so Crd arc 2ZH = 109:44,53°,
and arc 2HO = 47;42.40°,
so Crd arc 2HO = 48:31.55°.
% Crd arc 20E:Crd arc 2EA = (70;32.3 : 97;4,56).(109;44,53 : 48;31,55)
= 31;11,23 : 97;4,56
=~ 38;34 : 120.
H95 But Crd arc 2EA = 120°,
. Crd arc 2EO® = 38;34°.
. arc 2E@ = 37,30°, or 2} equinoctial hours.'?
Q.E.D.
In the same way arc EH of the horizon can be determined. For
Crd arc 2ZA:Crd arc 2AB =
(Crd arc 2Z0:Crd arc 20H). (Crd arc 2HE:Crd arc 2EB), [M.T.1]
and (Crd arc 2ZA:Crd arc 2AB) is a given ratio,
and so is (Crd arc 2Z20:Crd 20H),
s0, since arc EB is given, so is the amount of arc EH.
It is obvious that if we suppose H to be, instead of the place of the winter
solstice, any other degree of the ecliptic, by similar reasoning both of the arcs

"2There has been selective rounding at different stages of this calculation to achieve this nice
result. Accurate calculation of arc 2E@ would give (to the nearest minute) 37;29°.
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E® and EH will be given, since we have already set out, in the “Table of
Inclination’, the arc of the meridian intercepted between ecliptic and equator
for every degree of the ecliptic: this arc'® corresponds to HO [in Fig. 2.1].

It immediately follows that points on the ecliptic cut by the same parallel H96
circle, i.e. points equidistant from the same solstice, cut off [between ecliptic
and equator] arcs of the horizon which are equal and on the same side of the
equator. They also make the length of the day equal to that of the day [at the
corresponding point], and the length of the night equal to that of the
[corresponding] night.

It likewise follows that points [on the ecliptic] cut by equal parallel circles,
that is points equidistant from the same equinox, cut off arcs of the horizon
which are equal. but on opposite sides of the equator. They also make the length
of the day equal to the length of the night at the opposite [ corresponding] point,
and the length of the night equal to that of the [corresponding] day.

For, in the tigure alreadv drawn [see Fig. 2.2], we put K as the point in which
the parallel circle equal to the parallel through H cuts the semi-circle BED of
the horizon; we draw in arcs HL and KM of the parallel circles: these will,
clearly, be cqual and opposite. We draw through K and the north pole the
[great circle] quadrant NKX. Then

arc @A = arc XG (arc @A || arc LH, and arc XG || arc MK).
% arc E@ = arc EX {complements [of arc @A and arc XG]).

Then. in the two similar spherical triangles'* EHO and EKX we have two  H97
pairs of corresponding sides equal. E© to EX. and H® to KX, and both of
the angles at © and X are right. so the base EH equals the base KE.

‘ |

o M

Fig. 2.2

3 Reading npoextefeipévav (with D) for tpoextiBepévav at H95.18, ano TEPLPEPEIDV with
DL, adopted by Manitius), for nepipepeig at H95,22.
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80 11 4. How to compute when the sun reaches zenith

4. {How to compute for what regions, when, and how often the sun reaches the zenith}'®

Once the above quantities are given, it is a straightforward computation to
determine for what regions, when, and how often the sun reaches the zenith.
For it is immediately obvious that for those beneath a parallel which is farther
away [rom the equator than the 23;51.20° (approximately), which represents
the distance of the summer solstice [{rom the equator], the sun never reaches the
zenith at all, while for those beneath the parallel which is exactly that distance
[from the equator], it reaches the zenith once {a vear], precisely at the summer
solstice. It is turthermore clear that for those beneath a parallel less far [from the
equator] than the above-mentioned amount the sun reaches the zenith twice [a
vear]. The time when this happens is readily supplied from the Table of
Inclination which we have set out [I 15]. For we take the distance from the
equator, in degrees, of the parallel in question {which must, obviously, lie
within the [parallel of the] summer solstice), and enter with it the second set of
columns; we take the corresponding argument. in degrees from 1°1090°, in the
first set of columns; this gives us the distance of the sun from each of the
cquinoxes towards the summer solstice when itis in the zenith for those beneath
the parallel in question.

5. {How one can dertve the ratios of the gnomon o the equinoctial and solsticial noon
shadowes from the aboive-mentioned quantities}'’

The required ratios of shadow to gnomon'® can be found quite simply once one
is given the arc between the solstices and the arc between the horizon and the
pole: this can be shown as follows.

[See Fig. 2.3.] Let the meridian circle be ABGD, on centre E. Let A be taken
as the zenith, and draw the diameter AEG. At right angles to this, in the plane
of the meridian, draw GKZN: clearly, this will be parallel to the intersection of’
horizon and meridian. Now, since the whole earth has, to the senses, the ratio of
a point and centre to the sphere of the sun, so that the centre E can be
considered as the tip of the gnomon, let us imagine GE to be the gnomon, and
line GKZN to be the line on which the tip of the shadow falls at noon. Draw
through E the equinoctial noon ray and the [two] solsticial noon rays: let BEDZ
represent the equinoctial ray, HE@K the summersolsticial ray, and LEMN the
winter solsticial rav. Thus GK will be the shadow at the summer solstice, GZ
the equinoctial shadow, and GN the shadow at the winter solstice.

Then, since arc GD, which is equal to the elevation of the north pole from the
horizon, is 36° (where meridian ABG is 360°) at the latitude in question, and

" The word Ptolemy uses for “spherical triangle’, tpinmhevpov, was, according to Pappus Syragoge
VI 2, Hultsch p. 476, 16-7, the term used by Menelaus.
5 Arc HO = arc KX because they are the declinations of points equidistant from an equinox.

1% See Pedersen 104-5 and Appendix A, Example la.
"See Pedersen 105-6.
'"® Reference back to I 1 [3] p. 76. They are the equinoctial and solsticial noon shadows.
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Fig. 2.3

both arc ©D and arc DM are 23:51.20°, by subtraction arc GO =12:8,40°, and
by addition arc GM = 59:51.20°.
Therefore the corresponding angles

£ KEG = 12:8,40°
£ ZEG = 36° } where 4 right angles = 360°
£ NEG = 59;51,20°
and
£ KEG = 24:17,20°°
L ZEG = 72°° where 2 right angles = 360°°.

Z NEG = 119:42,40°¢ E
Therefore in the circles about right-angled triangles KEG, ZEG, NEG, HI100
arc GK = 24:17,20°
and arc GE = 155;42,40° (supplement),
arc GZ = 72°
and arc GE = 108°, similarly [as supplement],
arc GN = 119;42,40°
and arc GE = 60;17,20° (again as supplement).
Therefore where Crd arc GK = 25;14.43°, Crd arc GE = 117;18,51°,
and where Crd arc GZ = 70;32,4"'%, Crd arc GE = 97;4,56°,
and where Crd arc GN = 103;46,16°, Crd arc GE = 60;15,42°.
Therefore, where the gnomon GE has 60°, in the same units
the summer [solsticial] shadow, GK = 12;55,
the equinoctial shadow, GZ = 43;36°
and the winter [solsticial] shadow, GN = 103;20°.
!*The chord table gives. for 72°, 70:32.3° (wrongly changed to 70:32,4° by Heibergon the basis of

this passage). All mss. (including the Arabic tradition, except for Gerard, who has 3) have 4 here.
The inconsistency probably goes back 10 Ptolemy. It has no eflect on the linal resuit. CI. p. 93.



H101

H102

82 II 6. Characteristics of parallel M = 12

It is immediately clear that the reverse process is possible. That is, provided
only that any two of the three above ratios of the gnomon GE to the shadow be
given, the elevation of the pole and the arc between the solstices are determined.
For if any two of the angles at E are given, so is the third, since arcs ® D and DM
are equal. However, in so far as accuracy of the observation is concerned, the
former quantities [elevation of the pole and 2e] can be exactly determined in the
way we explained; but the ratios of the shadows in question to the gnomon
cannot be determined with equal accuracy, since the moment of the equinoxes
is, in itself, somewhat indeterminate, and the tip of the shadow at winter solstice
is hard to discern.

6. {Erposition of the special characteristics, parallel by parallel}*®

By the same method we also found the above-mentioned general characteristics
for the other parallels [to the equator). We calculated for latitudes at intervals
of i-hour [of longest daylight), considering that suflicient. Before we deal with
particulars,”! we shall set out these general characteristics.

I. We begin with the parallel beneath the equator itself, which forms,
approximately. the southern boundary of the {earth’s] quarter which comprises
our part of the inhabited world. This is the only parallel which has every day
equal to every night, since only in that case [i.e. at the equator] are all parallel
circles bisected by the horizon. so that every section above the earth is an arc of
the same size. and is eqqual to the corresponding section below the earth. This
does not occur at any other latitude:** [elsewhere] only the equator is bisected at
every place on earth by the horizon, so that it makes the night sensibly equal to
the day {when the sun is] in it. For the equator too is a great circle. All the other
[paralleis] are divided [by the horizon] into unequal parts.” As the sphere is
inclined in our part of the inhabited world. parallels south of the equator make
the sections above the earth smaller than those below the earth, and the days
shorter than the nights, while the northern [parallels], on the contrary, make
the sections above the earth larger, and the days longer.

This parallel [of the equator] also has the shadow going both ways:** the sun

*The inlormation given in this chapter is a gesture towards the traditional topics of Hellenistic
geography. Most of it is irrelevant to the rest of the Almagest and is never mentioned or used again.
In particular. the definition of latitude by the gnomon-shadow ratio at equinox or solstices is known
to have been much used in earlier works (see HAAL4 II 746-8). and. to judge tfrom Sanskrit
astronomical works. had important applications in earlier Hellenistic astronomy, but is a mere fossil
in the Almagest (although Ptolemy probably introduced the norm of 60° for the gnomon).

The shadow lengths in this chapter are all rounded to the nearest neat fraction or whole number.
For higher latitudes there are considerable inaccuracies.

2 By *particulars’ he refers to rising-times at sphaera obliqua and other matters treated in the latter
part of Book II.

*2‘at any other latitude’: literally ‘at any of the inclinations’. See Introduction p. 19.

# Proved Theodosius, Sphaerica 11 19.
Hapgioxiog, mcamng that the noon shadow is to the south for part ol the year. This term, and the
corresponding ETepookiog and nepioxiog (see p. 85 n.36 and p. 89 n.67) were used by Posidonius
(early first century B.C.) in his geographical work (Edelstein-Kidd frs. 49,44-8 and 208) as reported
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comes into the zenith twice [a year] for those living beneath it, when it reaches
the intersections of ecliptic and equator; only at those [two times] do the
gnomons cast no shadow at noon; while the sun is traversing the northern semi-
circle [of the ecliptic] the shadows of the gnomons point towards the south, and
while it is traversing the southern semi-circle they point towards the north. In
that region a gnomon of 60° has a shadow of 26§ at both summer and winter
solstices. (When we say ‘shadow’ we mean, in general, the noon shadow; it
makes no significant difference that the equinoxes and solstices do not, in
general, take place exactly at noon.)

For those who live beneath the equator those stars come into the zenith which
revolve on the equator itself, but all stars are seen to rise and set, since the poles H103
of the sphere are exactly on the horizon, and thus it is impossible for any of the
parallel circles to appear always visible or always invisible, or for any meridian
to be a colure® [i.e. always partly invisible]. It is said that the regions beneath |
the equator could be inhabited, since the climate must be quite temperate. For
the sun does not stay long in the neighbourhood of the zenith, since its motion in
declination is swilt round about the equinoctial points, and hence the summer
would be temperate; furthermore, it is not very far from the zenith at the
solstices, so the winter would not be harsh. But what these inhabited regions are
we have no reliable grounds for saying. For up to now they are unexplored by
men from our part of the inhabited world, and what people say about them must
be considered guesswork rather than report. In any case, such in sum, are the
characteristics of the parallel beneath the equator.

As for the other parallels. which. according to some authorities, comprise the
inhabited regions, we shall make the following general observations, to avoid
repeating ourselves in every case. For each of them in order those stars come
into the zenith whose distance from the equator, measured along the circle H104
through the poles of the equator, is equal to the distance of the parallel in question
[from the equator]. Furthermore the circle which has the north pole of the
equator as its pole, and the elevation of the pole [at that parallel} asits radius, is°
always visible, and all stars within that circle are always visible. [Likewise], the
circle which has the south pole as its pole, and the same radius [as the former], is
always invisible, and the stars within it are always invisible. .

2. The second is the parallel with a longest day of 12f equinoctial hours. This is
41° from the equator, and passes through the island Taprobane.?® This too is one
of the parallels with the shadow going both ways: the sun comes into the zenith
for those beneath it twice [a year], and makes the gnomons shadowless at noon,
when it is 79° distant from the summer solstice on either side. Thus while it is
traversing these 159°, the gnomon shadows point towards the south; and while

by Swrabo 2.2.3 and 2.5.43. Whether Posidonius actually coined the terms, as Strabo implies
(¢xdAecev, wrongly denied by me, Toomer{3] 146) seems improbable, but we have no earlier -
attestation. ~
3 On this term see Introduction p. 19.
26 Ceylon. For this and the rest of the geographical data in this chapter help is prov:ded by
Kiepert's reconstruction of Ptolemy’s world map, ‘Orbis Terrarum secundum Cl. Ptolemaeum’,
Formae Orbis Antiquae no. XXXVI, 1911.
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it is traversing the other 201°, they point towards the north. In this region, fora
gnomon of 60°, the equinoctial shadow is 473, the summer [solsticial] shadow
214°, and the winter [solsticial] shadow 32°.

3. The third is the parallel with a longest day of 124 equinoctial hours. This is
8;25° from the equator and goes through the Avalite gulf.?” This too is one of the
parallels with the shadow going both ways: the sun comes into the zenith for
those beneath it twice [a year], and makes the gnomons shadowless at noon,
when it is 69° distant from the summer solstice on either side. Thus while it is
traversing these 138°, the gnomon shadows point towards the south; and while
it is traversing the other 222°, they point towards the north. In this region, for a
gnomon of 60°, the equinoctial shadow is 8°, the summer [solsticial] shadow

TS . .. -9
16137,%® and the winter [solsticial] shadow 3715°.

4. The fourth is the parallel with a longest day of 12} equinoctial hours. This is
12{° from the equator, and goes through the Adulitic gulf.?® This too is one of
the parallels with the shadow going both ways: the sun comes into the zenith
twice [a year] for those beneath it, and makes the gnomons shadowless at noon,
when it is 57§° from the summer solstice on either side. Thus while it is
traversing these 1 154° the gnomon shadows point towards the south, and while
it is traversing the remaining 2441° they point towards the north. In this region.
for a gnomon of 60°, the equinoctial shadow is 131°, the summer [solsticial]
shadow 12°, and the winter [solsticial] shadow 444°.

5. The fifth is the parallel with a longest day of 13 equinoctial hours. This is
16:27° from the equator, and goes through the island of Meroe.?° This too is one
of the parallels with the shadow going both ways: the sun comes into the zenith
for those beneath it twice [a year], and makes the gnomons shadowless at noon,
when it is 45° from the summer solstice on eitherside. Thus while it is traversing
these 90° the gnomon shadows point towards the south, and while it is
traversing the remaining 270° they point towards the north. In this region, for a
gnomon of 60°, the equinoctial shadow is 174%, the summer [solsticial] shadow
73, and the winter [solsticial]) shadow 51°.3!

6. The sixth is the parallel with a longest day of 134 equinoctial hours. This is

¥ Avalites was a trading-post on the African coast just outside the mouth of the Red Sea. It is
ideniified with the mediaeval and modern Zeila, just south of Djibouti. The *Avalite gulf' is surely
the nearby Gulf of Tajura, rather than the Gulf of Aden, as asserted by Tomaschek (R-E s.v.
Aualites).

B ReadingTC £/ 18’ (with Is) for T £’ ¥’ (16) at H105.13. Computed: 16:34,28.

** Adule or Adulis was a town on the Aethiopic coast of the Red Sea. The gulf is the modern
Gulf of Zula {formerly Annesley. Bay).

*Meroe is not an island in the modern sense, but was so called bv the Greek geographers because
it was roughly bounded by the rivers Nile, Atbara (ancient Astaboras), Blue Nile (ancient Astopus)
and possibly some of their tributaries. CL. Ptolemy, Geography 1V 7 20 (vnoorowEitar Meroe.
bounded by Nile to the west and Astaboras to the east), and the contused account of Strabo, 17.2.2.

" Computed: 50:53.4. 51 is probably correct as a rounding to the nearest whole number, but one
might vonsider D's 50;51 or s 5305 (H106.18).
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20;14° from the equator, and goes through Napata.’® This too is one of the
parallels with the shadow going both ways: the sun comes into the zenith for
those beneath it twice [a year], and makes the gnomons shadowless at noon,
when it is 31° from the summer solstice on either side. Thus while it is traversing
these 62° the gnomon shadows point towards the south, and while it is
traversing the remaining 298° they point towards the north. In this region, for a
gnomon of 60°, the equinoctial shadow is 224°, the summer [solsticial] shadow
3%, and the winter [solsticial] shadow 584°.%°

7. The seventh is the parallel with a longest day of 134 equinoctial hours. This is
23;51° from the equator** and goes through Soene.*® This is the first of the so-
called ‘one-way-shadow’3® parallels. For in this region the noon shadows of the
gnomon never point towards the south. Only at the actual summer solstice does
the sun come into the zenith for those beneath this parallel, so that the gnomons

appear shadowless. For they are exactly the same distance from the equator as’

the summer solstice is. At every other time the shadows of the gnomons point
towards the north. In this region, for a gnomon of 60°, the equinoctial shadow is
2647, the winter [solsticial] shadow is 658", and the summer [solsticial] shadow is
zero.’” Furthermore, all parallels north of this up to the northern boundary of
our part of the inhabited world have the shadows going one way. For in those
regions the gnomons at noon neither become shadowless nor point theirshadows
towards the south: they always point them towards the north, since the sun
never comes into the zenith for them, either. .

8. The eighth is the parallel with a longest day of 133 equinoctial hours. This is
27;12° from the equator, and goes through Ptolemais in the Thebaid, which is
called Ptolemais Hermeiou. In this region, for a gnomon of 60°, the summer
[solsticial] shadow is 3#*, the equinoctial shadow 308°,® and the winter
[solsticial] shadow 744°.

9. The ninth is the parallel with a longest day of 14 equinoctial hours. This is
30:22° from the equator, and goes through lower Egypt. In this region, for a
gnomon of 60°, the summer [solsticial} shadow is 6", the equinoctial shadow
357", and the winter [ solsticial] shadow 83;12°.%°

*Napata is the modern Gebel Barkal. near Merowe in the Sudan.

”Computtd 22:6.7 Iorlhe equinoctial shadow. and 58:5.55 tor the winter solsticial shadow. One
would expect 15 instead of § in both places. Perhaps one should interpret ¢” as . i.e. 6 minutes: but
this would normally be written as an aliquot [raction (1%).

* Computed: 23:48,20. The discrepancy is interesting, because it isdue, not to rounding, but to the
desire to make the parallel with M = 133" exactly coincide with the parallel with a latitude equal to
the obliquity of the ecliptic. i.e. where the sun is in the zenith at summer solstice. The ditference is
negligible, but instead of saying so Ptolemy fudges the result.

4 Also known as Syene: the modern Assuan in upper Egypt.

*E1ep60K106, the opposite of dugiokiog; see p. 82 n.24.

*" Literally “shadowless'.

“’Readxng X £’y (with D, Is) for k¢ £ v’ (365) at H108,13. Compulcd 30,48.36.

¥ Reading 7y t -B (with L) for &y 1B’ (i.e. 12 minutes mslcad of 1¥) at H108,20. Computed:
83;10,39. Piolemy does not often use the aliquot fraction g’ (}).

H107

H108
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10. The tenth is the parallel with a longest of 144 equinoctial hours. This is
33;18° from the equator, and goes through the middle of Phoenicia. In this
region, for a gnomon of 60°, the summer [solsticial] shadow is 10, the
equinoctial shadow 394", and the winter [solsticial] shadow 93:4”.*

11. The eleventh is the parallel with a longest day of 144 equinoctial hours. This
is 36° from the equator, and goes through Rhodes. In this region, for a gnomon
of 60°, the summer [solsticial] shadow is 1213, the equinoctial shadow 43,

and the winter [solsticial] shadow 103,

12. The twelfth is the parallel with a longest day of 143 equinoctial hours. This
is 38;35° from the equator, and goes through Smyrna. In this region, for a
gnomon of 60°, the summer {solsticial] shadow is 153”, the equinoctial shadow is
47#", and the winter [solsticial] shadow is 114%.

13. The thirteenth is the parallel with a longest day of 15 equinoctial hours.
This is 40;56° from the equator, and goesthrough the Hellespont. In thisregion,
for a gnomon of 60°, the summer [solsticial] shadow is 184°, the equinoctial

shadow 523", and the winter [solsticial] shadow 12737.*

14. The fourteenth is the parallel with a longest day of 15i equinoctial hours.
This is 43:1°* from the equator, and goes through Massalia.** In this region. for
a gnomon of 60°, the summer [solsticial] shadow is 20:”, the equinoctial shadow
551°. and the winter {solsticial] shadow 140{”.%

15. The fifteenth is the parallel with a longest day of 153 equinoctial hours. This
is 45:1° from the equator, and goes through the middle of Pontus.* In this
region. for a gnomon of 60°. the summer {solsticial] shadow is 23i°, the
equinoctial shadow 607, and the winter [solsticial] shadow 1557°.%

%Al the values for the shadow at this parallel are rather inaccurate. For M = 14" one finds
9:57.43. 39:23.11 and 92:52.51. Prolemy’s figures fit a latitude of 33{° much better.

' Reading [T7 £° V' (with Av) for i £’ 77 (438) at H109,9. Corrected by Manitius. Ct. 43;36 at 115
p- 81.

*There is a strange discrepancy here. For M =15", one finds ¢ = 40:52.21°. However, the
shadow lengths [it neither M = 15" nor ¢ = 40;56°, but ¢ = 41°. Computations:

M = 15" @ = 40:56° @ = 41° text
summer shadow 18:21.47 18;25,58 18:30.34 18:30
equinoctial shadow  51;55.23 52:2,5 52;9.26 52:10
winter shadow 127:5.30 127:26.32 127:49,41 127:50

The parallel through the Hellespont is Clima V in the traditional ‘7 climata’ (see Introduction p.
19). Possibly. an older round number for the latitude underlies Prolemy’s values here.

“ Reading 1y @ for [I7 & (43;4) at H110.3. Although not supported by any ms. reading {Ar has
433). 43:1 is confirmed by the values for the shadow lengths. Furthermore. 4’ would normally be
written as an aliquot fraction, 1’ (but ef. HI11,6 where 50:4 is certainly correct. and is written v 8.
i.e. 50:4 and not 50%).

*Modern Marseilles. _—

¥ Reading 8’ (with BCIs) tor pud (144) at H110,6. Computed: 140:31.31. One might also
consider PTG (141}, as a rounding to the nearest whole number, but this has no ms. support.

*The Black Sea.

" Computed: 155:10,32. Possibly one should read 155;12 {with L, f tor t"1. CL. p. 85 n.39.
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16. The sixteenth is the parallel with a longest day of 15 equinoctial hours.
This is 46;51° from the equator and goes through the sources of the river Istros.*®
In this region, for a gnomon of 60°, the summer [solsticial] shadow is 254, the
equinoctial shadow 631", and the winter [solsticial} shadow 1718,

17. The seventeenth is the parallel with a longest day of 16 equinoctial hours.
This is 48;32° from the equator, and goes through the mouths of the
Borysthenes.* In this region, for a gnomon of 60°, the summer [solsticial]
shad70w is 274°, the equinoctial shadow 67¢°, and the winter [solsticial] shadow
188 P 50

18. The eighteenth is the parallel with a longest day of 16: equinoctial hours.
This is 50;4° from the equator, and goes through the middle of the Maiotic
lake.?' In this region, for a gnomon of 60°, the summer [solsticial] shadow is
2975 52 the equinoctial shadow 713°, and the winter [solsticial] shadow 208{°.>

19. The nineteenth is the parallel with a longest day of 164 equinoctial hours.
This is 513°* from the equator and goes through the southernmost parts of
Brittania. In this region, for a gnomon of 60°, the summer [solsticial]
shadow is 311", the equinoctial shadow 7573°, and the winter [solsticial] shadow

2294°.

20. The twentieth is the parallel with a longest day of 16§ equinoctial hours.
This is 52;50° from the equator and goes through the mouths of the Rhine. In this
vegion, for a gnomon of 60°, the summer [solsticial] shadow is 334", the
equinoctial shadow 797%°, and the winter {solsticial] shadow 253¢".%

21. The twenty-first is the parallel with a longest day of 17 equinoctal hours. -

This is 54;1° from the equator,*® and goes through the mouths of the Tanais.>’
In this region, for a gnomon of 60°, the summer [solsticial] shadow is 341", the
equinoctial shadow 821°, and the winter [solsticial] shadow 2783".

*#The Danube.

**The modern river Dnieper.

50 These shadow lengths accord better with a fatitude of 481°. However, ¢ = 48; 32° isabundantly
attested for this parallel, which is Clima VII of the 7 climata. There are variants 188 (T) and 188%
(= 188:38. L) for the winter shadow. Computed: 188:44.49.

5 Modern Sea of Azov.

2Reading kB £’ (B’ (with Ar) for k8 £’ v’ 1B’ (29H) at HI11,9. Compulcd 29;31.31.

» Computed: 208;2,32. Perhaps one should read 208;3 (interpreting ¥’ as ¥, i.e. 3 minutes, at
HI11,10).

5*Reading ¥ £’ (with D, Ar) for ¥d £’ ¢’ (514 + §) at H111,13. Computed: 51;28.54. Corrected
by Manitius.

For @ = 52:50° one finds the winter shadow as 253;35.53. L has 253;36. Hence one might

H111

H112

consider emending¢’ toZ’1” at H111, 23. However, there are increasing inaccuracies in the winter -
[2N

shadows from_here on.

56 Reading v® & (with BCDAr) for v % (54;30) at H112,3. Computed: 54:0,18. Corrected by
Manitius.

57The modern river Don. For_the great error in the latitude assigned to this region here and in the
Geography see Toomer({3] 148.
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22. The twenty-second is the parallel with a longest day of 174 equinoctial
hours. This is 55° from the equator®® and goes through Brigantium-in Great
Brittania.>® In this region, for a gnomon of 60°, the summer [solsticial] shadow is
364", the equinoctial shadow is 85%°, and the winter [solsticial] shadow is 3044°.

23. The twenty-third is the parallel with a longest day of 17 equinoctial hours.
This is 56° from the equator, and goes through the middle of Great Brittania. In
this region, for a gnomon of 60°, the summer [solsticial] shadow is 378, the
equinoctial shadow 88*, and the winter [solsticial] shadow 3354°.

24. The twenty-fourth is the parallel with a longest day of 17} equinoctial
hours. This is 57° from the equator, and goes through Caturactonium in
Brittania.® In this region, for a gnomon of 60°, the summer [solsticial] shadow is
39%° 5! the equinoctial shadow is 9213°, and the winter [solsticial] shadow is
372§P.62

25. The twenty-fifth is the parallel with a longest day of 18 equinoctial hours.
This is 58° from the equator and goes through the southern part of Little
Brittania.® In this region, for a gnomon ot 60°, the summer [solsticial}shadow is
407, the equinoctial shadow 96°, and the winter [solsticial] shadow 4197".%*

26. The twenty-sixth is the parallel with a longest day of 18} equinoctial hours.
This is 593° from the equator. and goes through the middle of Little Brittania.

1 . . . .
From here on we no longer used i-hour increments. since [at intervals of

i-hour for the longest daylight] the parallels are now close together, and the
difference in the elevation of the pole is no longer as much as a whole degree.
Furthermore, for the points even further north there is not the same need for
detail. Hence we considered it superfluous to list the ratios of the shadows to the
gnomon, as if it were for some well-defined place.

27. The parallel where the longest day is 19 equinoctial hours is 61° from the
equator and goes through the northern parts of Little Brittania.

8 Computed: 55:7,16. From here on the roundings become much more drastic.

5By "Great Brittania’ and ‘Little Brittania’ Ptolemy refers to the two principal islands of the
British isles, namely modern ‘Great Britain’ (England. Wales and Scotland) and Ireland. None of
the places called Brigantium were in Britain. However, there was in Britain a tribe of Brigantes,
whose kingdom was sometimes known as Brigantia (which was further to the north than this
latitude would imply). Ptolemy presumably made an error here. He seems to have corrected it by
the time he came to write the Geography, which does mention the Brigantes, but no Brigantium in
Britain.

% Modern Catterick in Yorkshire. The usual Latin form is ‘Cataractonium’.

¢ Reading A8 ¢’ (with D, Is) for A8 v’ (39) at H113,4. Computed for ¢ = 57°% 39;10,48.

82 Reading Top [5 (with BD?, Ar) for top 1B’ (3725) at H113,5. Computed: for ¢ = 59°
372:44.27.

% Ireland: see above n.59.

‘;Computcd for ¢ = 58° 419;15,1. Perhaps one should emend 104194 (8 for 1’ at H113,11). CL.
‘1197, Ger.

S ———
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28. The parallel where the longest day is 194 equinoctial hours is 62° from the

equator and goes through the islands called ‘Eboudae’.5

29. The parallel where the longest day is 20 equinoctial hours is 63° from the
equator and goes through the island Thule.

30. The parallel where the longest day is 21 equinoctial hours is 644° from the
equator and goes through unknown Scythian peoples.

31. The parallel where the longest day is 22 equinoctial hours is 65° from the
equator.

32. The parallel where the longest day is 23 equinoctial hours is 66° from the
equator. :

33. The parallel where the longest day is 24 equinoctial hours is 66;8,40° from
the equator. This is the {irst of the [parallels] where the shadow goes full circle.”
For on that parallel, at the summer solstice (and then only), the sun does not set,
so the shadow of the gnomon points towards every part of the horizon [in turn).
There the parallel of the summer solstice is ever-visible, and the parallel of the
winter solstice is ever-invisible, since both are tangent to the horizon. on
opposite sides. And the ecliptic coincides with the horizon when the spring
equinoctial point on it is rising. '

If. purely theoretically, one were to investigate some of the general
characteristics of the latitudes even farther north, one would find the foliowing.

34. Where the elevation of the north pole is about 67°, the 15° of the eclipticon
either side of the summer solstice do not set at all. So the longest day and the
period when the shadow turns to point in all directions on the horizon is about a
month long. This too can easily be seen from the Table of Inclination set out
[above]. For we take a parallel, e.g. the parallel which cuts off[a segment of the
ecliptic] 15° either side of the solstice (at which point it is either ever-visible or
ever-invisible). The distance from the equator corresponding to that segment of
the ecliptic will, obviously, give the amount by which the elevation of the north
pole differs from the 90° of the quadrant. .

35. Thus, where the elevation of the pole is 691°, one would find that the 30° on
either side of the summer solstice do not set at all. So the longest day and the

¢ By this name (which possibly ought to be aspirated, as ‘Hebudae’ in Pliny. VH 4.30) Ptolemy
refers to the Hebrides, which he supposed to lie north of Ireland.

% By *Thule’ Ptolemy refers to the modern Shetlands, as is clear from his Geography (11 3 32). It has
been a matter of great dispute to what place (if any) the man who first introduced the name ‘Thule’
to the Greek world, Pytheas of Massalia, was referring. For ancient information on Pytheas’ voyage .
to Thule, a discussion of its identification and references to modern literature see Hennig, Terrae
Incognitae 1 119-24, 129-35.

“repioxiog. CI. p. 82 n.24.

% See Appendix A, Example 16.
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period when the gnomons throw shadows in all directions last about two
months.

36. Where the elevation of the pole is 731°, one would find that the 45° on either
side of the summer solstice do not set at all. So the longest day and the period
when the gnomons throw shadows in all directions last about three months.

37. Where the elevation of the pole is 78°, one would find that the 60° on either
side of the same solstice do not sct at all. So the longest day and the period when
the shadow turns through a full circle would last about four months.

38. Where the elevation of the pole is 84°, one would find that the 75° on either
side of the summer solstice do not set at all. So in this case the longest day wouid
be about five months long, and the gnomon would throw shadows in all
directions for the same period.

39. Where the north pole is elevated from the horizon through the 90° of the
complete quadrant, the whole semi-circle of the ecliptic which is north of the
equator never goes below the earth, and the whole semi-circle south of it never
comes above the earth. Therefore every year contains only one day and one
night, each about six months long, and the gnomons always throw shadows in
all directions. Further special characteristics of this latitude are that the north
pole is in the zenith, and that the equator coincides with the position of the ever-
visible circle, and also with that of the ever-invisible circle and with the horizon;
thus the whole hemisphere north of the equator is always above the earth, and
the whole hemisphere south of the equator is always below the earth.

7. {On simultaneous risings of arcs of the ecliptic and equator at sphaera obliqua}®®

After we have thus set out the general characteristics which can be theoretically
deduced for the [various] latitudes, our next task is to show how to calculate, for
each latitude, the arcs of the equator, measured as time-degrees, which rise
together with [given] arcs of the ecliptic. From this we shall systematically derive
all the other special characteristics {of the climata]. We shall use the names of
the signs of the zodiac for the twelve [30°-] divisions of the ecliptic, according to
the system in which the divisions begin at the solsticial and equinoctial points.”
We call the first division, beginning at the spring equinox and going towards the
rear with respect to the motion of the universe, ‘Aries’, the second ‘Taurus’, and
so on for the rest, in the traditional order of the 12 signs.
We shall first prove that arcs of the ecliptic which are equidistant from the

same equinox always rise with equal arcs of the equator.

®See HAMA 34-7, Pedersen 110-13.

"Le. the spring equinox defines ‘Aries 0°, etc. This specification was necessary because other
norms existed in antiquity, notably those where the spring equinox was at P 8° and P 10° (derived
from Babylonian practice). See HAMA 11 594-8.
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[See Fig. 2.4.] Let ABGD be a meridian, BED the semi-circle of the horizon,
AEG the semi-circle of the equator, and ZH and ©K two arcs of the ecliptic
such that points Z and © are each supposed to be the spring equinox, and equal
arcs have been cut off on opposite sides of [that equinox]: these are arcs ZH and
@K, which are rising at points K and H [respectively]. I say, that the arcs of the
equator which rise with them, namely ZE and OE respectively, are equal.
[Proof.] Let points L and M represent the poles of the equator, and draw HI119
through them the great-circle arcs LEM, L@, LK, ZM and MH. Then since

arc ZH = arc ©K,
and arc LK = arc MH| because the parallels -
through K and H are
equidistant from the -
equator on opposite
and arc EK = arc EH | sides,”
[spherical triangle] LK® = [spherical triangle] MHZ
and {spherical triangle] LEK = {spherical triangle] MEH.
& L KLE = £ HME,
and Z KLO = £ HMZ.
Therefore, by subtraction, £ EL® = £ EMZ. )
- EO = EZ, bases [of congruent triangles EL®, EMZ].
Q.E.D.
Again, we shall prove that if two arcs of the ecliptic are equal and are
equidistant from the same solstice, the sum of the two arcs of the equator whieh

NCE 1 3 (p. 79).
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rise with them is equal to the sum of the rising-times [of the same two arcs of the
ecliptic] at sphaera recta.

[See Fig. 2.5.] Let ABGD be a meridian, and let semi-circle BED represent
the horizon, and semi-circle AEG the equator. Draw two arcs of the ecliptic,
equal and equidistant from the winter solstice, ZH (where Z is taken as the
autumnal equinox) and @H (where © is taken as the spring equinox).

Fig. 2.5

Thus H is the point on the horizon which is common to the rising of both,
since arcs ZH and OH are both bounded by the same parallel circle to the
equator. Therefore, obviously, arc OE rises with arc ©H. and arc EZ with arc
ZH. Then it is immediately obvious that the whole arc @EZ is equal to the sum
of the rising-times of arc ZH and arc OH at sphaera recta.

[Proof.] For if we take K as the south pole of the equator, and draw through it
and H the great-circle quadrant KHL, which represents the horizon at sphaera
recta, then OL is the arc which rises with arc OH at sphaera recta, and similarly
LZ is the arc which rises with arc ZH. Thus the sum of the arcs (OL + LZ)
equals the sum of the arcs (OE + EZ), and both are comprised in the arc ©Z.

Q.E.D.

From the above we have shown that, if we can calculate the individual rising-
times at any latitude for just a single quadrant, we will simultaneously have
solved the problem for the remaining three quadrants as well.

This being the case, let us again take as a paradigm the parallel through
Rhodes, where the longest day is 14} equinoctial hours, and the elevation of the
north pole {rom the horizon is 36°.

[See Fig. 2.6.] Let ABGD be a meridian, BED the semi-circle of the horizon,
AEG the semi-circle of the equator, and ZH® the semi-circle of the ecliptic,
positioned so that H represents the spring equinox. Take K as the north pole of
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Fig. 2.6

the equator, and draw through K and L, which is the intersection of the ecliptic
and the horizon, the great-circle quadrant KLM.

Let the problem be, given arc HL, to find the arc of the equator which rises
with it, that is arc EH. .

First let arc HL comprise the sign of Aries.

Then since, in the diagram. the two great-circle arcs ED and KM are drawn
to meet the two great-circle arcs EG and GK, and intersect each other at L,

Crd arc 2KD:Crd arc 2DG =

(Crd arc 2KL:Crd arc 2LM). (Crd arc 2ME:Crd arc 2EG). [M.T. II] HI122
But arc 2KD = 72°, so Crd arc 2KD = 70;32.4°;"2
arc 2GD = 108°, so Crd arc 2GD = 97;4,56".
And arc 2KL = 156:40,1°,7% so Crd arc 2KL = 117;31,15%;
arc 2LM = 23;19.59°, so Crd arc 2LM = 24;15,57°.
. Crd arc 2ME:Crd arc 2EG = (70;32,4 : 97;4,56)/(117;31,15 : 24;15.,57)
= 18;0,5 : 120.
And Crd arc 2EG = 120°.
= Crd arc 2ME = 18;0,5°
- arc 2ME = 17;16°
and arc ME = 8;38°

And since the whole arc HM rises with the whole arc HL at sphaera recta, it is
27;50°, as was shown above. [p. 73.]

Therefore, by subtraction, EH is 19;12°.

We have simultaneously proved that the sign Pisces rises in the same time (in ~ H123

"Here (H122.4) and at H122,10 and H123,13 the Greek and Arabic ms. traditions give 70;32,4°
as the chord of 72°, whereas in the chord table it is 70;32,3" (found here only in Ger.). Is this an
indication that there was an earlier version of the chord table? Cf. p. 81 n.19.

" Reading PV 1 & (with B.Is) for PVg @@ (156:41) at H122,7. Corrected by Manitius.
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degrees) of 19;12° and that each of the signs Virgo and Libra rises in 36;28°,
which is the remainder [of 19;12° taken] from twice the rising-time at sphaera
recla.

Q.E.D.

Secondly, let arc HL, comprise the 60° of the two signs Aries and Taurus.
Then, from our assumptions, the other quantities will remain the same, but

arc 2KL = 138;59,42°, so Crd arc 2KL = 112;23,56",
and arc 2LM = 41;0,18°,"* so Crd arc 2LM = 42;1,48".
~ Crd arc 2ME:Crd arc 2EG = (70;32,4 : 97;4,56)/(112;23,56 : 42;1,48)
= 32;36,4 : 120.
And Crd arc 2EG = 120°.
. Crd arc 2ME = 32;36,4°.
& arc 2ME = 3],32°,
and arc ME = 15;46°.

But the whole arc MH"® was previously shown to be 57;44° [ p. 73.]

Therefore, by subtraction, arc HE = 41;58°.

Therefore the combined signs of Aries and Taurus rise in 41;58 time degrees,
of which 19;12° was shown to belong to the rising-time of Aries. Therefore the
sign of Taurus by itself rises in 22;46 time-degrees.

By the same reasoning as before, the sign of Aquarius will rise in the same
time of 22;46°, and each of the signs of Leo and Scorpio in 37;2°, which is the
remainder [of 22;46° taken] from twice the rising-time at sphaera recta.

Now since the longest day is 14 equinoctial hours, and the shortest 9
equinoctial hours, it is obvious that the semi-circle [of the ecliptic] from Cancer
to Sagittarius will rise with 217;30° of the equator, and the semi-circle from
Capricorn to Gemini with 142:30°. Therefore each of the quadrants on either
side of the spring equinox will rise in 71;15 time-degrees, and each of the
quadrants on either side of the autumnal equinox will rise in 108;45 time-
degrees. Therefore the remaining signs [in each quadrant], Gemini and
Capricorn, will ‘each rise in 29;17 time-degrees, which is the difference [of
19;12° + 22;46°] from the 71;15° in which the quadrant rises, and the
remaining signs Cancer and Sagittarius will each rise in 35;15 time-degrees,
which is the difference {of 36;28° + 37;2°] from the 108;45° in which that
quadrant rises.

It is obvious that we could also calculate the rising-times of smaller arcs of the
ecliptic [than whole signs] by exactly the same method. But we can also
compute them by another easier and more practical procedure, as follows.

[See Fig. 2.7.] First let ABGD represent a meridian, BED the semi-circle of
the horizon, AEG the semi-circle of the equator, and ZEH the semi-circle of the
ecliptic, with the intersection E taken as the spring equinox. Cut off an arbitrary
arc EO on[the ecliptic], and draw the segment © K of the parallel to the equator
through ©. Taking L as the [south] pole of the equator, draw through it the
great-circle quadrants LOM, LKN and LE.

“*Reading [T o M (with Ar and variants in Greek mss.) for i@ ] ™ (41:9,18) at HI23.11.
Corrected by Manitius.
7> Correcting the misprint *ME' at H123,21, with Manitius.
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Then it is immediately obvious that the segment E© of the ecliptic rises with
arc EM of the equator at sphaera recta, and with NM at sphaera obligua, since arc
KO of the parallel circle, with which segment E® rises [at sphaera obliqual, is
similar to arc NM of the equator and similar arcs of parallel circles rise in equal
times everywhere. Therefore arc EN is the difference between the rising-times
of segment EO at sphaera obliqua and at sphaera recta. Thus we have shown that,
tor arcs of the ecliptic bounded by point E and the parallel circle through K, in
every case, if the great-circle arc corresponding to LKN is drawn, segment EN
will comprise the difference between that arc’s rising-times at sphaera recta and at
sphaera obliqua.™

Q.E.D.

Having established this as a preliminary, let us draw [see Fig. 2.8]a diagram
containing only the meridian and the semi-circles of the horizon [BED] and of
the equator [AEG]; through Z, the south pole of the equator, let us draw the two
great-circle quadrants ZH® and ZKL. Let us take H as the intersection of the
horizon with the parallel circle through the winter solstice, and K as the
intersection [of the horizon] with the parallel circle through, e.g., the beginning
of Pisces, or any other given point on the quadrant [from the beginning of
Capricorn to the end of Pisces].

Then, again, the great-circle arcs ZKL and EKH are drawn to meet the
great-circle arcs Z@ and EQ, and intersect each other at K. Therefore

Crd arc 20H:Crd arc 2ZH =

(Crd arc 20E:Crd arc 2EL). (Crd arc 2KL:Crd arc 2KZ)  [M.T. II]

But at every latitude arc 20H is given and is the same, since it is the arc.

between the solstices. Hence arc 2HZ, its supplement, is also given. Similarly;

% This arc EN is known in mediaeval astronomy as the ‘ascensional difference’. See HAMA 36
and 980-2, and Neugebauer-Schmidt.
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Fig. 2.8

for the same arc of the ecliptic, arc 2LK is the same at all latitudes, and is given
from the Table of Inclination {1 15]; and thence again its supplement, arc 2KZ,
is given. Therefore, by division [of the above members), (Crd arc 20E:Crd arc
2EL) is found to be the same at all latitudes (for the same arc of that quadrant
[of the ecliptic]).

Since this is so, we take the different values of arc KL at every 10° [of the
ecliptic] through the quadrant from the spring equinox to the winter solstice
(for subdivision down to arcs of this size [10°] will be sufficient for practical
purposes). Then in every case

arc 20H = 47;42,40°, and Crd arc 20H = 48:31,55%,

arc 2HZ = 132;17,20°, and Crd arc 2HZ = 109;44,53"

Then, for the 10° {of the ecliptic] from the spring equinox towards the winter
solstice,

arc 2KL = 8;3,16°, and Crd arc 2KL = 8;25,39°,

arc 2KZ = 171;56,44°, and Crd arc 2KZ = 119;42,14".

For the arc 20° from the equinox

arc 2KL = 15;54,6°, Crd arc 2KL = 16;35,56°,

arc 2KZ = 164;5,54°, Crd arc 2KZ = 118;50,47°.
For the arc 30° from the equinox

arc 2LK = 23;19,58°, Crd arc 2LK = 24;15,56°,

arc 2KZ = 156;40,2°, Crd arc 2KZ = 117;31,15".
For the arc 40° from the equinox

arc 2LK = 30;8,8°, Crd arc 2LK = 31;11,43°.

arc 2KZ = 149;51,52°, Crd arc 2KZ = 115;52,19°.
For the arc 50° from the equinox

arc 2LK = 36;5,46°, Crd arc 2LK = 37;10,39°,

arc 2KZ = 143;54,14°, Crd arc 2KZ = 114;5,44".
For the arc 60° from the equinox
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arc 2LK = 41;0,18°, Crd arc 2LK = 42;1,48°,

arc 2KZ = 138;59,42°, Crd arc 2KZ = 112;23,57".
For the arc 70° from the equinox

arc 2LK = 44;40,22°, Crd arc 2LK = 45;36,18™

arc 2KZ = 135;19,38°, Crd arc 2KZ = 110;59,47°.
For the arc 80° from the equinox

arc 2LK = 46;56,32°, Crd arc 2LK = 47;47 40°,

arc 2KZ = 133;3,28°, Crd arc 2KZ = 110;4,16°.

From the above we find that if we divide the ratio (Crd arc 20H:Crd arc
2HZ), namely (48:31,55 : 109;44,53), by the ratio (Crd arc 2LK:Crd arc 2KZ),
as given above, at each of the 10° intervals, we will get the ratio (Crd arc
20E:Crd arc 2EL), which is the same at all latitudes.

For the 10° arc it is 60 : 9;33
for the 20° arc 60 : 18;57
for the 30° arc 60 : 28;1
for the 40° arc 60 : 36;3377
for the 50° arc 60 : 44:12
for the 60° arc 60 : 50;44
for the 70° arc 60 : 55:45
and for the 80° arc 60 : 58;55.

It is immediately obvious that for each latitude we will have arc 20E as a
given arc, since it is, in degrees, the difference in time-degrees of the equinoctial
day from the shortest day. Hence, from Crd arc 20E and 'the ratio (Crd arc
20E:Crd arc 2EL). Crd arc 2EL will be given, and [hence] arc 2EL. We will
subtract half of this, namely arc EL. which comprises the above-mentioned
difference [between rising-times at sphaera recta and sphaera obliqua], from the
rising-time of the ecliptic arc in question at sphaera recta, and thus obtain the
rising-time of the same arc at the given latitude.

As an example, let us again take the latitude of the parallel through Rhodes.
Here

arc 2EO@ = 37;30°, so Crd arc 2EO@ = 38;34°.
Then since 60 : 38;34 = 9:33 : 6;8

97

= 18;57 : 12;11
= 28;1:18;0

= 36;33 : 23;297¢
= 4412 : 28;25
= 50;44 : 32;37
= 55;45 : 35;527°
= 58;55 : 37,52,

" Computed from Ptolemy’s figures: 36;31,42. For the arc 40° above, a more accurate value for
Crd arc 2KZ would be 115;52,26°. However, substituting that leads to 36;31,40 here. In‘cither case,
36;32 would be the correct result to the nearest minute. This is the reading of Ger, but the rest of the

tradition is unanimous for 36;33.

8 Accurate computation with 36;33 here gives 23;29,36, while 36;32 (see n.77) gives 23;28,58.
This speaks in favour of the reading 36;32, but not decisively.
7 Computed: 35;50,6. However 35;52 is guaranteed by 17;24 for the seventh 10° arc below (35,50

leads to 17;23°).

H13(
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and since Crd arc 2EL equals the above amount [6;8%, etc.] at each of the above-
mentioned 10° intervals, half of the arc it subtends, namely arc EL, will assume

the following values:
for the first 10°

up to the end of the second
up to the end of the third
up to the end of the fourth
up to the end of the fifth
up to the end of the sixth
up to the end of the seventh
up to the end of the eighth

up to the end of the ninth, obviously,

2;56°
5;50°
8;38°
11;17°
13;42°
15;46°
17;24°
18;24°
18;45°.

Since the corresponding rising-times at sphaera recta are as follows:

for the first 10°
up to the end of the second
up to the end of the third
up to the end of the fourth
up to the end of the fifth
up to the end of the sixth
up to the end of the seventh
up to the end of the eighth
and up to the end of the ninth

9;10°
18;25°
27;50°
37;30°
47,28°
57;44°
68;18°
79;5°
90°  (the time-

degrees of the whole quadrant),
it is clear that by subtracting the difference, given by the arc EL, from the
corresponding rising-time at sphaera recta in each case, we get the rising-times of

the same arcs at the latitude in question. These are

for the first 10°

up to the end of the second
" up to the end of the third

up to the end of the fourth

up to the end of the fifth

up to the end of sixth

up to the end of the seventh

up to the end of the eighth

up to the end of the ninth

(i.e. for the whole quadrant)

6;14°
12;35°
19;12°
26;13°
33;46°
41;58°
50;54°
60;41°
71;15°
(which cor-
responds to the
length of halif of
the [shortest] day).

The ten-degree segments will rise in the following time-degrees:

Ist

2nd
3rd
4th
5th
6th
7th

6;14°
6;21°
6;37°

7;1°
7:33°
8;12°
8;56°



11 7. Computation of rising-time tables 99

8th 9;47°
9th 10;34°.

Once we have established the above, the corresponding rising-times of the
remaining quadrants will immediately be established on the same basis, by
means of the theorems set out above.

In the same way we calculated the rising-times at every 10° interval for all
other parallels which one might come upon in actual practice. For future use we
shall set these out in tabular form, beginning with the parallel directly beneath
the equator, and going as far as the parallel with a longest day of 17 hours. The
parallels are taken at intervals of 3-hour [of longest day], since the difference [of
exact computations] from results derived from linear interpolation [between
half-hour intervals] is negligible. In the first column we put the 36 ten-degree
intervals of the circle, in the next the corresponding time-degrees of the rising-

time of that 10-degree arc at the latitude in question, and in the third the

accumulated sum, as follows.

H133

8. {Table of rising-times at ten-degree intervals}®® H134—4l

[See pp. 100-3.]
9. {On the particular features which follow from the rising-times}®'

Now that we have set out the rising-times in the above maniner, all the other
problems associated with this subject will be easily soluble, and we shall not
need to go through geometrical proofs or construct special tables to solve each
problem. This will become clear from the actual methods described below.

First, one can {ind the length of a given day or night as follows. Take the
rising-times of the appropriate latitude; for the day, count from the degree in
which the sun is to the degree diametrically opposite, going towards the rear
through the signs; for the night, count from the degree opposite the sun to the
sun’s degree. Form the sum of the rising-times [of the relevant 180°}, and divide
by 15: this will give the relevant interval in equinoctial hours. Ifwe take ryth [of
the sum of the rising-times] we will have the length of the seasonal hour of that
interval [i.e. day or night] in time-degrees.

One can also find the length of the [seasonal] hour more conveniently by
taking, from the above Table of Rising-times [II 8], the total rising-time
corresponding to the sun’s degree for the day (or the degree opposite the sun for
the night) both at the parallel beneath the equator (i.e. sphaera recta] and at the
relevant latitude, and forming the difference. Take éth of the latter, and add it
to the 15 time-degrees of one equinoctial hour for points on the northern semi-
circle [of the ecliptic], or subtract it from 15° for points on the southern semi-
circle: the result will be the length of the relevant seasonal hour in time-
degrees.®?

% Correction to text: at H138,2 (latitude for M = 16") read ify XB (with Ar) for i (48°). Cf. 116 p.
87.

8 See HAMA 40-3 (with worked examples) and Pedersen 113-15.

82See Appendix A, Example 2.
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TABLE OF RISING-TIMES AT 10° INTERVALS

SPHAERA RECTA| AVALITE GULF MEROE
10° | 12 0° 124" 8:25° 13" 16:27°
SIGNS Inter- Accumulated Accumulated Accumulated
vals | © +Time-Degrees| o Time-Degrees| o -+ Time-Degrees
10 910 910 8 35 8 35 7 58 7 58
ARIES 20 915 18 25 8 39 17 14 8 5 16 3
30 9 25 27 50 8 52 26 6 817 24 20
10 9 40 37 30 9 8 35 14 8 36 32 56
TAURLUS 20 9 58 47 28 9 29 44 43 9 1 41 57
30 10 16 57 44 9 51 54 34 9 27 51 24
10 10 34 68 18 10 15 64 49 9 56 6l 20
GEMINI 20 | 10 47 79 5 10 35 75 24 10 23 7143
30 | 10 55 9% 0 10 51 86 15 10 47 82 30
10 10 55 100 55 10 59 97 14 I 3 93 33
CANCER 20 10 47 111 42 [0 59 108 13 11 11 104 44
30 10 34 122 16 10 53 1Y 6 12 115 56
10 10 16 132 32 10 41 129 47 I 5 127 1
LEO 20 9 58 142 30 10 27 140 14 10 53 137 56
30 9 4 152 10 10 12 150 26 10 44 148 40
10 i 9 25 161 35 9 58 160 24 10 33 159 13
VIRGO 20 915 170 50 9 51 170 15 10 23 169 38
30 9 10 180 0 9 45 180 0 10 22 180 0
10 9 10 189 10 9 45 189 45 10 22 190 22
LIBRA 20 915 198 25 9 51 199 36 10 25 200 47
30 925 207 50 9 58 209 34 10 33 211 20
10 9 40 217 30 10 12 219 16 10 44 222 4
SCORPIUS 20 9 58 227 28 10 27 230 13 10 55 232 59
30 10 16 237 10 41 240 54 i1 3 234 4

10 | 10 34 248 18 10 53 251 47 It 12 255 16
SAGITTARIUS | 20 | 10 47 259 5 10 59 262 46 111 266 27
30 | 10 55 270 0 10 59 273 45 3 277 30

10 | 10 55 280 55 10 51 284 36 10 47 288 17
CAPRICORNUS| 20 | 10 47 291 42 10 35 295 11 10 23 298 40
30 | 10 34 302 16 10 15 305 26 9 56 308 36

10 | 10 16 312 32 9 51 315 17 27 318 3
AQUARIUS 20 9 58 322 30 9 29 324 46 1 327

10 925 341 35 8 52 342 46 17 343 57
PISCES 20 915 350 50 8 39 351 25 3 352 2
30 910 360 0 8 : 58 360 0

9

9 4
30 9 40 332 10 9 8 333 54 8 36 335 40

8

8

7
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II 8. Rising-time tables: M = 13} to M = 14} 101
SOENE LOWER EGYPT RHODES
1° | 138" 23:51° 14 30;22° 144 36:0°
SIGNS Inter- Accumulated Accumulated Accumulated
vals | ° ‘Time-Degrees| ©° ’Time-Degrees| ° ' Time-Degrees
10 723 723 6 48 6 48 6 14 6 14
ARIES 20 729 14 52 6 55 13 43 6 21 12 35
30 745 22 37 710 20 53 6 37 19 12
10 8 4 30 41 7 33 28 26 7 1 26 13
TAURUS 20 8 31 39 12 8 2 36 28 7 33 33 46
30 9 3 48 15 8 37 45 5 8 12 41 58
10 9 36 57 51 917 54 22 8 56 50 54
GEMINI 20 10 11 68 2 10 0 64 22 9 47 60 41
30 10 43 78 45 10 38 75 0 10 34 7115
10 7 89 52 1112 86 12 11 16 82 31
CANCER 20 (1123 101 15 11 34 97 46 I 47 94 18
30 11 32 112 47 11 51 109 37 12 12 106 30
10 |11 29 124 16 11 35 121 32 12 20 118 50
LEO 20 11125 135 41 11 54 133 26 12 23 131 13
30 11 16 146 57 11 47 145 13 1219 143 32
10 I 5 158 2 11 40 156 33 12 13 155 45
VIRGO 20 {1t 1 169 3 11 35 168 28 129 167 3%
30 10 57 180 0 It 32 180 0 12 6 180 0
10 10 57 190 57 11 32 191 352 12 6 192 6
LIBRA 20 o1 201 58 11 35 203 7 12 9 204 15
30 15 213 3 11 ¥ 214 47 1213 216 28
10 Il 16 224 19 11 47 226 34 1219 208 47
SCORPIUS 20 11 25 235 ++ 11 54 238 28 12 23 241 10
30 1129 247 13 11 35 250 23 12 20 253 30
10 11 32 258 45 11 51 262 14 1212 265 42
SAGITTARIUS | 20 |11 23 270 8 I 34 273 48 I 47 277 29
30 |4 281 15 % W 4 285 0 e 288 45
10 10 43 291 58 10 38 295 38 10 34 299 19
CAPRICORNUS| 20 10 11 302 9 10 0 305 38 9 47 309- 6
30 9 36 311 45 9 17 314 55 8 56 318 2
10 9 3 320 48 8 37 323 32 8 12 326 14
AQUARIUS 20 8 31 329 19 8 2 331 34 7 33 333 47
30 8 4 337 23 733 339 7 7 1 340 48 -
10 745 345 8 710 346 17 6 37 347 25
PISCES 20 729 352 37 6 55 353 12 6 21 353 46
30 723 360 0 6 48 360 0 6 14 360 0

II 8. Rising-time tables: M = 16% and M =17



HELLESPONT MIDDLE OF MOUTHS OF
PONTUS BORYSTHENES
10 | 15" 40;56° 154 45;1° 16" 48:32°

SIGNS Inter- Accumulated Accumulated Accumulated

vals | © ’ Time-Degrees| © 7 Time-Degrees| °© ’ Time-Degrees
10 5 40 5 40 5 8 5 8 4 36 4 36
ARIES 20 5 47 11 27 5 14 10 22 443 919
30 6 5 17 32 533 15 55 5 1 14 20
10 6 29 24 | 5 58 21 53 5 26 19 46
TAURLUS 20 7 4 31 5 6 34 28 27 6 5 25 51
30 7 46 38 51 720 35 47 6 52 32 43
10 8 38 47 29 8 15 44 2 7 53 40 36
GEMINI 20 9 32 57 1 919 53 21 9 5 49 41
30 | 1029 67 30 10 24 63 45 10 19 60 0
10 |11 21 78 51 11 26 75 11 11 31 71 31
CANCER 20 112 2 90 53 12 15 87 26 12 29 84 0
30 |12 30 103 23 12 53 100 19 1315 97 15
10 |12 46 116 9 13 12 113 3t 13 40 110 55
LEO 20 |12 52 129 | 13 22 126 53 13 51 124 46
30 |12 51 141 52 13 22 140 15 13 54 138 40
10 |12 45 154 37 13 17 153 32 13 49 152 29
VIRGO 20 12 43 167 20 13 16 166 48 13 47 166 16
30 (12 40 180 0 13 12 180 0 13 44 180 0
10 12 40 192 40 13 12 193 12 13 44 193 44
LIBRA 20 |12 43 205 23 13 16 206 28 13 47 207 31
30 |12 45 218 8 13 17 219 45 13 49 221 20
10 | 12 51 230 59 13 22 233 7 13 54 235 14
SCORPIUS 20 |12 52 243 51 13 22 246 29 13 51 2499 5
30 |12 46 256 37 13 12 259 41 13 40 262 45
10 |12 30 269 7 12 53 272 34 13 15 276 0
SAGITTARIUS | 20 {12 2 281 9 12 15 284 49 12 29 288 29
30 1121 292 30 11 26 296 15 11 31 300 0
10 {10 2 302 59 10 24 306 39 10 19 310 19
CAPRICORNUS| 20 9 32 312 31 919 315 58 9 5 319 24
30 8 38 321 9 815 324 13 7 53 327 17
10 7 46 328 55 720 331 33 6 52 334 9
AQUARIUS 20 7 4 335 59 6 34 338 7 6 5 340 14
30 6 29 342 28 5 58 344 5 5 26 345 40
10 6 5 348 33 5 33 349 38 5 1 350 41
PISCES 20 5 47 354 20 5 14 354 52 4 43 355 24
30 540 360 0 5 8 360 0 4 36 360 0




SOUTHERNMOST MOUTHS OF
BRITTANIA TANAIS
10° | 164" 51:30° 17 54;1°
SIGNS Inter- Accumulated Accumulated
vals | © *  Time-Degreest ° “  Time-Degrees
10 4 5 4 5 3 36 336
ARIES 20 412 8 17 3 43 719
30 4 3t 12 48 + 0 1119
10 4 56 17 44 + 26 15 45
TAURLUS 20 5 34 23 18 5 4 20 49
30 6 25 29 43 5 56 26 45
10 729 37 12 75 33 50
GEMINI 20 8 19 6 1 8 33 42 23
30 10 14 56 15 1 7 52 30
10 | 11 36 67 51 11 43 64 13
CANCER 20 |12 45 80 36 13 1 7 14
30 |13 39 94 15 14 3 91 17
10 (14 7 108 22 14 36 105 53-
LEO 20 | 1422 122 44 14 52 120 45
30 | 14 24 . 137 8 14 54 135 39
. 10 14 19 151 27 1450 L0 15029
VIRGO 20 14 18 165 45 i+ 47 165 16
3 14+ 15 180 0 I+ 44 180 0
10 | 1+ 15 194 15 14+ 44 194 44
LIBRA 20 | 1418 208 33 447 209 31
30 11419 222 52 14 50 224 21
10 | 14 24 237 16 14 54 239 15
SCORPIUS 20 | 14 22 251 38 14 52 254 7
30 |14 7 265 15 14 36 268 43
10 | 13 39 279 24 4 3 282 46
SAGITTARIUS 20 (12 45 292 9 13 1 295 47
30 | 11 36 303 45 11 43 367 30
10 |10 14 313 59 10 7 317 37 1
CAPRICORNUS | 20 8 49 322 48 8 33 326 10
30 729 330 17 75 333 15
10 6 25 336 42 5 56 339 11
AQUARIUS 20 5 34 342 16 5 4 344 15
30 4 56 347 12 4 26 348 41
10 4 31 351 43 4 0 352 41
PISCES 20 412 355 55 343 356 24
30 4 5 360 0 3 36 360 0
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104 11 9. Applications of rising-time tables

Next, one can convert seasonal hours for a given date into equinoctial hours
by multiplying them by the length in time-degrees of the hour of the day in
question at the relevant latitude (if they are hours of the day), or by the length in
time-degrees of the hour of the night in question (if they are hours of the
night). Then division of that product by 15 will give the total of equinoctial
hours. Vice versa, one can convert equinoctial hours to seasonal by multiplying
by 15 and dividing by the length of the hour of the relevant interval in time-
degrees.®

Furthermore, given a date and any time whatever, expressed in seasonal
hours, on that date, we can find, first, the degree of the ecliptic rising at that
moment. We do this by multiplying the number of hours, counted from sunrise
by day, and from sunset by night, by the relevant length of the [seasonal] hour
in time-degrees. We add this product to the rising-time at the latitude in
question of the sun’s degree by day (or the degree opposite the sun by night): the
degree [of the ecliptic] with rising-time corresponding to the total will be rising
at that moment.®

[Secondly], if we want to find the point at upper culmination [at the given
moment), we take in every case [i.e. for both day and night] the total of seasonal
hours from the last midday to the given time, multiply it by the appropriate
length(s) of the hour(s) in time-degrees, and add the product to the rising-time
at sphaera recta of the sun’s degree: the degree [of the ecliptic] with rising-time at
sphaera recta equal to the total will be at upper culmination at that moment.?

Similarly, we can find the culminating point from the rising point as follows:
find from the table of rising-times for the relevant latitude the cumulative
rising-times corresponding to the degree which is rising. Subtract from it, in
every case, the 90° of the quadrant [of the equator between horizon and
meridian). The degree corresponding to the result in the column for rising-
times at sphaera recta will be at upper culmination at that moment.® Vice versa,
one can {ind the rising point from the culminating point by taking the degree
corresponding to the culminating point in the column for rising-times at sphaera
recta, adding to it, in every case, the above 90° and finding the degree
corresponding to the result in the column for rising-times for the latitude in
question: this degree will be rising at that moment.

It is also obvious that for those living beneath the same meridian the sun is the
same distance ffom noon or midnight, counted in equinoctial hours, while for
those living beneath different meridians the sun’s distance from noon or
midnight differs by an amount, counted in time-degrees, equal to the distance
of one meridian from the other in degrees.

% See Appendix A, Example 3.

34 This sentence, like the corresponding one in the next problem, is a paraphrase giving the sense
of Ptolemy’s ambiguous expression. Literally ‘we count off this product towards the rear through
the signs, beginning from the sun’s degree . . . by night, accordingtotherising-timesofthe latitude in
question: we say that whatever degree this amount reaches is the degree rising at that moment’. See
Appendix A, Example 4.

8 See Appendix A, Example 5.

% See Appendix A, Example 6.
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10. {On the angles between the ecliptic and the meridian}®’

The remaining topic in the present theory is the discussion of angles formed at
the ecliptic. We must first make clear that we define an angle between [two]
great circles as follows: we say that [two] great circles form a right angle whena
circle having as pole the intersection of the great circles and as radius any
distance whatever has [exactly] a quadrant intercepted between the segments
of the great circles forming the angle; in general, whatever ratio the intercepted
arc of a circle described in the above manner bears to the whole circle is the
same as the ratio of the angle between the planes {of the two great circles] to 4
right angles. Thus, since we set the circumference of the circle as 360°, the angle
subtending the intercepted arc will contain the same number of degrees as the
arc, in the system where one right angle contains 90°.

For the purposes of our present investigation, the most useful of the angles at
the ecliptic are those formed by
[1] the intersection of the ecliptic and the meridian,

[2] the intersection of the ecliptic and the horizon for all positions [of the
ecliptic], and.

[3] the intersection of the ecliptic and a great circle drawn through the poles of
the horizon [i.e. an altitude circle];

the process of finding the latter will also produce the arc of this [altitude] circle

cut off between its intersection with the ecliptic and the pole of the horizon, i.e.

the zenith. Computation of each of the above angles, besides being a most

suitable topic for the theory proper, also plays a very important part in the

requirements for lunar parallax: it is impossible to make any progress in that

subject without having first understood how to compute these angles.

Now there are four angles at the intersection of the two circles (I mean the
ecliptic and any of the [above] circles meeting it). Since we shall [always] discuss
only one of these, which always occupies the same relative position, we must
make the following preliminary definition. In general, when we demonstrate in
what follows the characteristics and size of an angle, we refer to that angle [of
the four possible] which lies to the rear of the intersection of the circles and to the
north of the ecliptic.® ’

The computation of the angles between the meridian and the ecliptic is
simpler, so we shall start with that, and first we shall show that points on the
ecliptic equidistant from the same equinox produce angles of the above kind
equal to each other.

{See Fig. 2.9.] Let ABG be an arc of the equator, DBE an arc of the ecliptic,
and Z the pole of the equator. Cut off equal arcs, BH and B®, on opposite sides
of the equinox B, and draw through pole Z and points H, © the meridian arcs
ZKH and ZOL. I say that

£ KHB = £/ ZOE. [10.1]
[Proof:] This is immediately obvious. For the spherical triangle BHK has all its

80On chapters 10 and 11 see HAMA 45-8, Pedersen 115-18.
8 Literally ‘that one of the two angles on the arc to the rear of the intersection of the circles which
is to the north of the ecliptic’. See HAMA 45 with Fig. 38.
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106 11 10. Angles between ecliptic and meridian: symmetries

Fig. 2.9

angles equal to the angles of spherical triangle BOL, since the three
corresponding sides in each triangle are equal, HB to B®, HK 1o ®L, and BK to
BL. All this has been proven previously.®
Therefore Z KHB = Z BOL = £ ZOE.
Q.E.D.

Secondly, we must prove that the sum of the angles between ecliptic and
meridian at points on the ecliptic equidistant from the same solstice is equal to
two right angles.

[See Fig. 2.10.] Let ABG be an arc of the ecliptic, with B taken as solstice. Let
equal arcs, BD and BE, be taken on opposite sides of it, and draw through Z, the
pole of the equator, and points D, E the meridian arcs ZD and ZE. Isay that

£ ZDB + £ ZEG = 2 right angles [10.2]
[Proof:] This too is immediately obvious. For since points D and E are
equidistant from the same solstice,
arc DZ = arc ZE.
£ ZDB =/ ZEB.
But £ ZEB + £ ZEG = 2 right angles.
~ £ ZDB + £ ZEG = 2 right angles.
Q.E.D.

Having established these preliminary theorems, let us draw [Fig. 2.11] the
meridian circle ABGD and the semi-circle of the ecliptic AEG (taking A as the
winter solstice); then with pole A and radius the side of the [inscribed] square
draw semi-circle BED. Then, since meridian ABGD goes through the poles of
AEG and the poles of BED, arc ED is a quadrant.®

*HB = BO by construction; HK = ©L, declinations of points equidistant from an equinox (cf. p.
80 n.15); BK = BL, cf. II 7 (arc E® = arc EZ p 91).
% Derivable from Theodosius Sphaerica 11 9.



I1 10. Angles between ecliptic and meridian 107

A

Fig. 2.10

Fig. 2.11

Therefore Z DAE is right.
And the angle at the summer solstice is also right, from the previous theorem
[10.2].
Q.E.D:
Again, [see Fig.2.12] let ABGD be a meridian circle, AEG a semi-circle of the
equator, and AZG a semi-circle of the ecliptic in such a position that A is the
autumnal equinox. Then with pole A and radius the side of the [inscribed]
square draw semi-circke BZED.
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B

Fig. 2.12

By the same reasoning [as above], since ABGD goes through the poles of
[circles] AEG and BED, AZ and ED are quadrants. Hence point Z is the winter
solstice, and

arc ZE = 23;51°, as was shown previously [I 12 p. 63].
‘I'herefore, by addition, arc ZED = 113:51°
and £ DAZ = 113;51° where one right angle = 90°.
And again, from the previous theorem [10.2], the angle at the spring
equinoctial point is the supplement, 66;9°.

Again [see Fig. 2.13] let ABGD be a meridian circle, AEG asemi-circle of the

equator, and BZD a semi-circle of the ecliptic in such a position that point Z is

Fig. 2.13
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the autumnal equinox, and arc BZ is (first of all) the length of one sign, that of
Virgo; thus point B, obviously, is the beginning of Virgo. Again, with pole Band
radius the side of the [inscribed] square, draw semi-circle HOEK.
Let the problem be to find Z KBO.
Now since meridian ABGD goes through the poles of [circles] AEG and
HEK, arc BH, arc BO® and arc EH are all quadrants. )
And, from the figure,
Crd arc 2BA:Crd arc 2AH =
(Crd arc 2BZ:Crd arc 20Z). (Crd arc 20E:Crd arc 2EH). [M.T. HI]
But, as was shown previously,” arc 2BA = 23;20°, so Crd arc 2BA = 24;16°,
arc 2AH = 156;40°, so Crd arc 2AH = 117;31°,
and arc 2ZB = 60°, so Crd arc 2ZB = 60°,
arc 2Z0O = 120°, so Crd arc 2Z© = 103;55,23".
~ Crd arc 20E:Crd arc 2EH = (24;16 : 117;31)/(60 : 103;55,23)
= 42,58 : 120.
But Crd arc 2EH = 120°.
> Crd arc 20E =~ 42;58°
. arc 20E = 42°
and arc @E =~ 2]°.%?
Therefore, by addition [of a quadrant] arc ®EK = Z KB® = 111°, and the
angle at the beginning of Scorpius is also 111°, and the angles at the beginning
of Taurus and Pisces are each 69°, the supplement, by the theorems proved
above [10.1 and 10.2]. ’
Q.E.D.
Next, in the same figure [2.13], let arc ZB represent two signs, so that point B
is the beginning of Leo. Then, with the [other] quantities remaining the same,
arc 2BA = [25(60°)=] 41°, so Crd arc 2BA = 42;2°
and arc 2AH = 139°, so Crd arc 2AH = 112;24°;
furthermore arc 2ZB = 120°, so Crd arc 2ZB = 103;55,23°
and arc 2ZO = 60°, so Crd arc 220 = 60°.
% Crd arc 20E:Crd arc 2EH = (42:2 : 112:24)/(103;55.23 : 60)
= 25;53 : 120.
> Crd arc 20E = 25;53°
. arc 20E = 25°
and arc @E =~ [2{° %
Therefore, by addition, arc ®EK = Z KB® = 1021°. .
Therefore the angle at the beginning of Sagittarius is also 1021°, and the angle
at both the beginning of Gemini and the beginning of Aquarius is the
supplement, 774°.
We have [thus] calculated what we set out to do. It is sufficient for practical
use to display [the results] for each sign, although the same procedure would
apply to even smaller sections of the ecliptic.

! Reference to Il 7 p. 93. The quantities are rounded here.
2 Accurate computation would give 20:58° to the nearest minute.
9 Accurate computation would give 12:28° to the nearest minute.
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H154 11. {On the angles between the ectiptic® and the horizon}

Next we shall show how to calculate, for any given latitude, the angles formed
by the ecliptic at the horizon. These too can be derived by a procedure which is
simpler than that for the remaining angles [between ecliptic and altitude
circles].

Now it is obvious that the angles [between ecliptic and] meridian are the
same as those [between ecliptic and] horizon at sphaera recta. But, in order to
calculate these angles also at sphaera obligua, we must first prove that points on
the ecliptic equidistant from the same equinox produce equal angles at the same
horizon.

[See Fig. 2.14.] Let ABGD be a meridian circle, AEG the semi-circle of the
equator and BED the semi-circle of the horizon. Draw two segments of the
eclipticc, ZHO and KLM, such that points Z and K both represent the
autumnal equinox, and arc ZH equals arc KL.

q M

Fig. 2.14

H155 I say that Z EHO = £ DLK.
[Proof:] This is immediately obvious.
For spherical triangle EZH= spherical triangle EKL,
since, from what was proven above, the corresponding sides are equal:
ZH =KL
HE = EL ([arcs cut off by] the intersection of the
horizon [with the ecliptic])
- EZ = EK (rising-time arcs).”
~ £ EHZ =/ ELK
. £ EHO = £ DLK (supplements).
: Q.E.D.

“ecliptic™: literally ‘the same inclined circle’.
**ZH = KL by hypothesis; HE = EL from II 3 (p. 79); EZ = EK from II 7 (p. 91).
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I also say that, if two points [of the ecliptic] are diametrically opposite, the
sum of the angles [between ecliptic and horizon] at the rising-point of one and
the setting-point of the other is equal to two right angles.

[Proof: see Fig. 2.15.] If we draw ABGD as the circle of the horizon, and AEGZ
as the circle of the ecliptic, so that they intersect at A and G, then

A

9.
G
Fig. 2.15 g

£ ZAD + £ DAE = 2 right angles.
But £ ZAD = £ ZGD
" £ ZGD + £ DAE = 2 right angles.
Q.E.D.
Since this is so, and since we have also proven that angles at the same horizon
formed by points [on the ecliptic] equidistant from the same equinox are equal,
a further consequence will be that, for points equidistant from the same solstice,
the sum of'the rising-angle at one and the setting-angle at the other will be equal
to two right angles.®® :
Hence, if we find the rising-angles from Aries to Libra [inclusive], we will
simultaneously have found the rising-angles on the other semi-circle and the
setting-angles on both semi-circles. We shall explain briefly how to do the
calculation, again taking as example the same parallel, at which the elevation of
the north pole from the horizon is 36°.
As for the angles between ecliptic and horizon at the equinoctial points, they
can be calculated simply. For if {see Fig. 2.16] we draw ABGD as the meridian
circle, AED as the eastern semi-circle of the horizon in question, EZ as a

% Proof: see Fig. E, in which the ecliptic EXT intersects the horizon SR in the setting-point S and -
the rising-point R. T is the solstice, E the equinox (hence ET = 90°) and the two points X and R are’

the same distance, d, from T. Then EX=TE - TX =90°~ d. ES= RS - RE = 180° ~ (90° + d)
=90° - d. .- EX = ES. Therefore setting-angle at X equals setting-angle at S (p. 110). But the sum
of the angles at the rising-point R and the setting-point S is 2 right angles (p. 111). Therefore the
sum ol the rising-angle at R and the setting-angle at X equals 2 right angles.
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E X

Fig. E

B

Fig. 2.16

quadrant of the equator, and EB and EG as two quadrants of the ecliptic such
that point E is the autumnal equinox with respect to EB, and the spring equinox
with respect to EG (thus B is the winter solstice and G the summer solstice), we
can conclude as follows.
Ex hypothesi, arc DZ = 54° [colatitude of 36°]
and arc BZ = arc ZG = 23;51°.
- arc GD = 30;9°
and arc BD = 77;51°.
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Thus, since E is the pole of meridian ABG,
£ DEG, the angle at the beginning of Aries, is 30;9° } where 1 right
and £ DEB, the angle at the beginning of Libra, is 77;51°f angle = 90°.

In order to explain the procedure for finding the angies at other points, let us
take, for example, the problem of finding the rising-angle formed at the
beginning of Taurus and the horizon.

[See Fig. 2.17.] Let ABGD be the circle of the meridian, and BED the eastern
semi-circle of the horizon in question. Draw semi-circle AEG of the ecliptic, so
that point E represents the beginning of Taurus. Now at this latitude, when the
beginning of Taurus is rising, <5 17;41° is at lower culmination (we have shown

Fig. 2.17

how such a problem can readily be solved by means of the tabulated rising-
times).*” Therefore arc EG is less than a quadrant. So with pole E and radius the
side of the [inscribed] square draw the great circle segment @ HZ, and complete
the quadrants EGH and ED®. Both DGZ and ZH® are also quadrants,
because the horizon BE® goes through the poles of meridian ZGD and of the
great circle ZH®. Furthermore, & 17:41° is 22,40° north of the equator,
measured along the great circle through the poles of the equator (we have set out
a table [I 15] for that too); and the equator is 36° from pole Z of the horizon,
measured along the same arc, ZGD. Therefore arc ZG = 58;40°. These
quantities being given, it then follows from the figure that
Crd arc 2GD:Crd arc 2DZ =
(Crd arc 2GE:Crd arc 2EH). (Crd arc 2H®:Crd arc 2Z0). [M.T.I]

But, from the above,

arc 2GD = 62;40°, so Crd arc 2GD = 62:24,

arc 2DZ = 180°, so Crd arc 2DZ = 120",

711 9 p. 104 (simply add 180° to the point of upper culmination, which is calculated for this
example in HAMA, 42).
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arc 2GE = 155;22°, so Crd arc 2GE = 117;14°,
arc 2EH = 180°, so Crd arc 2EH = 120°.
. Crd arc 20H:Crd arc 2Z0O = (62,24 : 120)/(117;14 : 120)
= 63,52 : 120.
And Crd arc 20Z = 120°.
= Crd arc 2HO = 63;52°
. arc 2HO = 64;20°
and arc HO = Z HE® = 32;10°.
Q.E.D.
To avoid lengthening the explanatory part of this treatise by continual
repetition of the procedure, we will take the same method for granted for the
remaining signs and latitudes.%®

12. {On the angles and arcs formed with the same circle [i.e. the ecliptic) by a
circle drawn through the potes of the horizon}®

It remains [to describe] the method by which we can compute the angles formed
between the ecliptic and a circle through the poles of the horizon [i.e. an
altitude circle] for any latitude and any position [of the ecliptic relative to the
altitude circle]. As we said. this method also produces the size of the arc of the
circle through the poles of the horizon cut off between the zenith and the
intersection of that circle with the ecliptic. We shall again set out the
preliminary theorems for this topic too: we shall prove. first. that if two points
of the ecliptic are equidistant from the same solstice, and cut off an equal
number of time-degrees on either side of the meridian, one to the east and the
other to the west, then the great circle arcs from the zenith to those two points
are equal, and the sum of the {two] angles at those points. chosen according to
our [previous] definition,'® is equal to two right angles.

[See Fig. 2.18.] Let ABG be a segment of the meridian, with point B on it
taken as the zenith, and point G as the pole of the equator. Draw two segments
of the ecliptic, ADE and AZH, such that points D and Z are equidistant from
the same solstice, and cut off, on either side of meridian ABG, equal arcs of the
parallel circle which passes through them. Furthermore, draw through points
D and Z the following great circle arcs: arc GD and arc GZ from the pole of the
equator G, and arc BD and arc BZ from the zenith B.

I say that

arc BD = arc BZ
and £ BDE + £ BZA = 2 right angles.
[Proof:] Since points D and Z cut off equal arcs of the parallel circle through
them on either side of meridian ABG,
£ BGD = £ BGZ.

% The angles between ecliptic and horizon are not explicitly tabulated by Ptolemy, but can be
derived from the angles between ecliptic and altitude circle at the rising-point tabulated in Table I
13. See HAMA 41, which also tabulates them explicitly.

9 See HAMA 48-52, Pedersen 118-2} (with my correction, Toomer{3] 139).

111 10 p. 105, with n.88.
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Fig. 2.18

Therefore, in the two spherical triangles BGD, BGZ
GD = GZ [D, Z equidistant from solstice]
BG = BG (common)
and £ BGD = £ BGZ,
so they have two sides and the included angle equal.
> BD = BZ (bases)
“and £ BZG = £ BDG. ’ H162

But since we showed just above that the sum of the two angles formed by a
circle through the poles of the equator at points [of the ecliptic] equidistant from
the same solstice is equal to two right angles [10.2],

£ GDE + £ GZA = 2 right angles.
But we proved that Z BDG = Z BZG.
. £ BDE + £ BZA = 2 right angles.'"!
Q.E.D.

Next we must prove that if we take the same point of the ecliptic at two ~
positions equidistant from the meridian (as measured in time-degrees) on
opposite sides of it, the great-circle arcs from the zenith to these two positions
are equal, and the sum of the two angles {between altitude circle and ecliptic]
east and west [of the meridian] is equal to twice the angle formed by the same
point [of the ecliptic] at the meridian, provided that for both positions [i.e.
when the point is east and west of the meridian] the points [of the ecliptic] which
are [then] culminating are either both north or both south of the zenith.

Let us suppose, first, that both are south. [See Fig. 2.19.] Let ABGD be a
segment of the meridian, with point G on it as the zenith, and D as the pole of
the equator. Draw two segments of the ecliptic, AEZ and BH®, such that points  H163
E and H represent the same point, and cut off equal arcs of the parallel circle
through that point on opposite sides of meridian ABGD. Again, draw through
them [points E and H] the great-circle arcs GE and GH from G, and DE and

' For £ BDE = £ GDE + £ BDG; £BZA = £ GZA - £/ BZG. So, by addition (since £ BDG =
£ BZG), £ BDE + £ BZA = £ GDE + £ GZA = 2 right angles.
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Fig. 2.19

DH from D. By the same reasoning as before, since points E and H generate the
same parallel circle and cut off equal arcs of it on either side of the meridian.
spherical triangle GDE = spherical triangle GDH.
-~ arc GE = arc GH. '
Then [ say that
£ GEZ+/ GHB=2/DEZ =2/ DHB.
[Proof:] Since Z DEZ is the same as £ DHB {E and H the same point}
and £ GED = £ DHG [from congruent spherical triangles],
£ GED + £ GHB{=4 DHG + £ GHB = Z DHB] = Z DEZ.
Therefore, by additionZ GEZ + £ GHB=2 / DEZ = 2 £/ DHB
Q.E.D.

Next, draw the same segments of the above circles again [Fig. 2.20], except
that points A and B should be north of point G. I'say that here too the same will
apply. namely

L KEZ + £/ LHB =2 £/ DEZ.
{Proot:] Since £ DEZ is the same as £ DHB.
and Z DEK = £ DHL [supplements of equal angles DEG, DHG],
by addition [of £ DHB to £ DHL], £ LHB = Z DEZ + Z DEK.
~ /Z LHB + £ KEZ = 2 £ DEZ.

Now again draw a similar ligure [Fig. 2.21], except that the culminating
point on the segment {of the ecliptic] east [of the meridian). namely A, should be
south ol the zenith G, while the culminating point on the segment west [of the
mevictian}, namely B, should be north of the zenith.
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1 say that
£ GEZ + £ LHB = 2 £ DEZ plus 2 right angles.
[Proof:] Since
£ DHG = £ DEG
and Z DHG + £ DHL = 2 right angles,
~ £ DEG + £ DHL = 2 right angles.
But £ DEZ is the same as Z DHB.
~ /. GEZ +/LHB[ = ({ DEZ + £ DEG) + (£ DHB + £ DHL)]
= (£ DEZ + £ DHB) + (£ DEG + £ DHL)
= (£ DEZ + £ DHB) plus 2 right angles
= 2 £ DEZ plus 2 right angles.
Q.E.D.
For the remaining case, draw a similar figure {Fig. 2.22], in which point A,
H166 which is culminating on the section east [of the meridian], is north of G, while B,
which is culminating on the section west [of the meridian]}, is south of [the
zenith].

Fig. 2.22

I say that
£ KEZ + £ GHB = 2 £ DEZ minus 2 right angles.
{Proof:] By the same reasoning as before
£ KEZ + £ GHB = (£ DEZ + £ DHB) - (£ DEK + Z DHG)
=2/ DEZ - (/ DEK + Z DHG).
But Z DEK + Z DHG = 2 right angles, since
£ DEK + £ DEG = 2 right angles, and Z DEG = Z DHG.
Q.E.D.
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Of'the angles and arcs formed in the way defined between the ecliptic and an
altitude circle, those at the meridian and the horizon can be computed readily,
as can be shown immediately in the following way.

Draw [Fig. 2.23] the meridian circle ABGD, the semi-circle of the horizon
BED, and the semi-circle of the ecliptic in any position, ZEH. Then if we
imagine the altitude circle through the zenith A and the culminating point of
the ecliptic Z, it coincides with the meridian ABGD, and £ DZE “will
immediately be given, since the point Z and the angle that [the ecliptic makes]
with the meridian at point Z are given.'® Arc AZ will also be given, since we
know the distance in degrees of point Z from the equator (measured along the
meridian), and the distance of the equator from the zenith A.'®

Z A

G

Fig. 2.23

Next, if we imagine the altitude circle AEG. drawn through the rising-point
of the ecliptic, E., and [the zenith] A, here too it is immediately obvious that arc
AE is always a quadrant, since point A is the pole of the horizon BED. For the
same reason, Z AED is always right; and since the angle which the ecliptic
makes with the horizon, namely Z DEH, is given,'® the sum, angle AEH, will
also be given.

Q.E.D.

Thus it is clear that, since the above relationships hold, if we compute, for
each latitude, just the angles and arcs before [i.e. to the east of] the meridian,
and just for the signs from the beginning of Cancer to the beginning of

Capricorn, we will simultaneously have found the angles and arcs for the same

1928y [1 10 (p. 109).
1038 and @ respectively, so arc AZ = ¢ - 3.
4By 11 11 (pp. 113-14). .

H167

H168
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signs [Cancer to Capricorn] after the meridian too, and also the angles and arcs
both before and after the meridian for the remaining signs. But in order to make
clear the procedure in this case too for any position [of the ecliptic], as an
example we shall display the general method by means of a single solution of the
problem.'% At the same latitude, namely where the elevation of the north pole
from the horizon is 36°, we suppose that the beginning of Cancer is, e.g., one
equinoctial hour to the east of the meridian. In this situation, at the above
latitude, IT 16;12° is culminating, and m¢ 17;37° is rising.
Then let (Fig. 2.24] ABGD be the meridian circle, BED the semi-circle of the
horizon, and ZH® the semi-circle of the ecliptic in such a position that point H
HI169 is the beginning of Cancer, while Z represents IT 16:12° and ® mp 17;37°. Draw
through A, the zenith, and H, the beginning of Cancer, segment AHEG of the
[altitude] great circle. Let the first problem be to [ind arc AH.

G

Fig. 2.24

Now it is clear that arc ZO = 91;25° [mp 17;37° - II 16;12°]
and arc HO® = 77;37° [mp 17;37° - < 0°].

Similarly, since IT 16;12° cut off 23;7° of the meridian to the north of the

equator, and the equator cuts off 36° [of the meridian] from the zenith A.
arc AZ = 12;53°

and arc ZB = 77;7° (complement).

When these quantities are given, from the figure

Crd arc 2ZB:Crd arc 2BA =
(Crd arc 2Z@:Crd arc 20H). (Crd arc 2HE:Crd arc 2EA).  [M.T. ]
But arc 2ZB = 154;14°, so Crd arc 2ZB = 116;59°
HI170 and arc 2BA = 180°, so Crd arc 2BA = 120°.

195 This example is worked through HAMA 49-50.
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Furthermore arc 2Z© = 182;50°, so Crd arc 220 = 119;58°
and arc 20H = 155;14°, so Crd arc 20H = 117;12°.
.. Crd arc 2EH: Crd arc 2EA = (116;59 : 120)/(119;58 : 117;12)
=~ 114;16 : 120.
But Crd arc 2EA = 120°
> Crd arc 2EH = 114;16°
.. arc 2EH =~ 144,26°
and arc EH = 72;13°.
> arc AH = 17;47° (complement).
Q.E.D.
Next we shall find Z AHO, as follows.
Draw the same figure [Fig. 2.25], and with pole H and radius the side of the
[inscribed] square draw the great circle segment KLM. -
Then, since circle AHE is drawn through the poles of EGM and KLM, both
EM and KM are quadrants. Again, from the figure

Fig. 2.25

Crd arc 2HE:Crd arc 2EK =

(Crd arc 2H®:Crd arc 20L). (Crd arc 2LM:Crd arc 2KM). [M.T. II}
But arc 2HE = 144;26° [above], so Crd arc 2HE = 114;16°

and arc 2EK = 35;34°, so Crd arc 2EK = 36;38°.

Furthermore arc 20H = 155;14°, so Crd arc 20H = 117;12°
and arc 20L = 24;46°, so Crd arc 20L = 25;44°.
~ Crd arc 2LM:Crd arc 2MK = (114;16 : 36;38)/(117;12 : 25;44)
= 82;11 : 120.
But Crd arc 2MK = 120°
~ Crd arc 2LM = 82;11°

" H171
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. arc 2LM = 86;28°
and arc LM = 43;14°.
~ arc LK = Z LHK = 46;46° (complement).
~ L AHO = 133;14° (supplement).

. Q.E.D.
H172 The same method as was used for finding the above also applies to the
remaining [arcs and angles]. But in order to have conveniently displayed all the
other arcs and angles which it is reasonable ‘to suppose we may need in our
particular investigations, we computed these too geometrically, beginning from
the parallel through Meroe, at which the longest day is 13 equinoctial hours,
and going up to the parallel above Pontus [the Black Seal], through the mouths
of the Borysthenes, where the longest day is 16 equinoctial hours.!” The
intervals which we used were half an hour {of length of longest day] between
parallels of latitude (as for the rising-times), one sign for the sections of the
ecliptic, and one equinoctial hour for the position {of the altitude circles] to east
and west of the meridian. We shall display the results in tabular form, one set of
tables for each parallel of latitude, and one table for each sign. In the first
column we put. first, the meridian situation, then the distance before or after
the meridian, measured in equinoctial hours. In the second column we put the
amount of the corresponding arc (as explained above) from the zenith to the
beginning of the sign in question. In the third and fourth columns we put the
H173 amount of the angles formed by the above-mentioned intersection [between
ecliptic and altitude circle], defined in the way we explained: the angles at
positions to the east of the meridian in the third column, and those at positions
to the west of the meridian in the fourth column. One must bear in mind that.
according to our original definition,'® we always took the angle which lies to
the rear of the intersection of the circles and to the north of the ecliptic, and
expressed its magnitude in the system in which one right angle is 90 [degrees].

The layout of the tables is as follows.

H174—87 13. {Layout of angles and arcs, parallel by parallel}'*®
[See pp. 123-9.]

H188 Now that the treatment of the angles [between ecliptic and principal circles]
has been methodically discussed, the only remaining topic in the foundations
[of the rest of the treatise] is to determine the coordinates in latitude and
longitude of the cities in each province which deserve note, in order to calculate

% The seven parallels selected here are in fact the canonical ‘7 climata’, for which see
Introduction p. 19.

711 10 p. 105 with n.88.

'% The table for Clima I {Meroe) has a peculiarity. Since, alone of the parallels tabulated, its
latitude is less than €, it is possible for the point of the ecliptic which is culminating to fall north of
the zenith. When this occurs at a tabulated position, the corresponding eastern or western angle is
marked ‘N’ (for ‘north’). This is a modification of the system in the mss., where BO (for B6petog) is
written above the first value in each column where the ecliptic is north of the zenith, and NO (for
vOT106) above the value where it changes back to south. Since Ptolemy makes no mention of this
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PARALLEL THROUGH MEROE 13" 16;27°
CANCER CAPRICORNUS
Houwr Are East Angle West Angle Hour Are East Angle West Angle
noon 7 24 9% 0N noon 40 18 90 0
1 15 55 25 16 N (53¢ 44 N 1 42 5¢ il 24 A8 36
29 3 915N 170 45 N 2 49 48 128 51 51 9
3 42 42 138N 178 22 N, 3 59 35 141 49 38 11
4 56 25 175 7 453 4 1 4 151 25 28 35
5 70 2 170 18 9 42 5 83 31 158 48 21 12
6 83 27 164 41 15 19 5 30 90 0 16t 57 18 3
6 30 9% 0 161 57 18 3
LEO AQUARIUS
Hour Are East Angle West Angle Hour Are East Angle West Angle
noon 4 3 102 36 N noon 36 57 7730
1 14 20 2 3N 178 57 N\ 1 39 46 100 12 54 48
2 28 +2 15 28 N 9 32 2 47 15 18 5 36 55
3 +2 43 0 5N 1435 3 537 33 1 3 2357
4 56 44 619 N 18 41 + 69 30 139 48 1512
3 70 38 233N 2020 5 B2 18 146 43 817
6 84 17 177 0 28 0 3 35 w v 49 51 59
b 25 Y o 17¢ 51 30 9
VIRGO PISCES
Hour Ave East Anule West Angle Houe Are Fast Angle Vest Angle
noon 147 noon 8 7 69 0
1 15 20 20 1 31 46 9 0 40
2 v 28 34 0 2 52 15 59 201
3 + 40 3 127 23 10 37
+ 38 13 + 134 41 519
5 3236 3 139 ’-H 178 19 N
b 86 41 36 23 546 W 142 4 173 51 N
6 14 w0 375
LIBRA ARIES
How Nie East Angle Waest Angle Hour RS East Angle West Angle
noon 16 27 noon e 27 (LY
1 228 545 PHaE N 1 208 107 11 RS
2 33 50 173 17 54 25 2 33 50 125 35 6 43
3 47 20 123N 6 1Y 3 47 20 155 4+
+ 6l 22 5 8N 42 34 + 6l 22 137 26
5 7539 79N H 33 5 PR 139 27
6 90 0 724N 18 6 .U 139 2
SCORPIUS TAURUS
Howr Are East Angle West Angle Houwr At East Angle Wese Angle
noon 8 7 Hr o noon + 47 64 0
1 31 46 139 ¢ 83 0 | 15 20 138 0 180 0 N
2 40 52 157 39 64 | 2 29 28 46 0 172 o N
3 32 30 169 23 52 37 3 43 40 147 15 170 45 N,
+ 63 40 176 4 15 14 + 58 13 146 39 171 21 N
5 7918 14N 1Y 5 230 144 53 173 TN
5 46 90 0 4+ 9N 37 51 [ 86 +1 143 37 174 23 N
514 %0 0 142 9 175 51 N
SAGITTARIUS GEMINI
Hour Are East Angle West Angle Hour Are. East Angle West Angle
noon 36 57 102 30 noon + 3 7730 N
1 39 16 125 12 9 8 i 14 20 ! 3N
2 47 15 143 5 61 55 2 28 42 170 28
3 57 33 156 3 48 57 3 42 43 65 5 ..
4 69 30 164 48 40 12 4 56 49 16l 19
5 82 18 171 43 3317 5 70 38 157 33
535 9% 0 174 51 30 9 84 17 152 0 30
625 90 0 149 51 59
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h
PARALLEL THROUGH SOENE 134 23;51°
CANCER CAPRICORNUS
Hour Arc East Angle West Angie Hour Are East Angle West Angle
noon 00 9 0 noon 47 42 2 0
§ 13 43 176 15 3 45 1 49 52 108 3 7 57
2 2723 173 51 6 9 2 55 52 123 31 56 29
3 41 20 168 15 11 45 3 64 37 135 37 44 23
4 54 27 166 51 13 9 4 75 12 144 57 35 3
5 67 42 162 42 17 18 5 B6 54 152 0 28 0
6 80 36 157 59 22 1 515 90 0 153 46 26 14
6 45 w0 0 153 46 26 14
LEO AQUARILS
Hour Are East Angle West Angle How Are East Angle West Angle
noon 321 102 30 noon “ 2 77 30
] 1418 176 4 28 56 ] 1 40 96 30 58 30
2 27 56 180 0 25 0 2 33 4 12 16 42 44
3 41 44 179 3 25 57 3 62 18 124 25 30 35
4 35 14 177 18 27 42 + 73020 132 58 20
5 68 43 173 40 31 20 3 85 23 139 46 1514
[ 81 52 168 56 36 4 522 90 141 33 137
6 38 90 166 53 B 7
VIRGO PISCES
How Are East Angle Want Angle Hour Are East Angle West Angle
nooun 12 11 (AR 1) noun 35 31 89 0
1 8 42 158 40 63 20 1 8 25 a1 15 45
2 30 57 173 44 16 2 2 108 18 29 42
3 + 22 178 3 43 57 3 36 50 1Y 41 1819
4 38 1 W o 20 + 68 31 127 5 0 35
3 D IR X 179 15 42 45 5 81 22 132 30 530
b 85 20 177 39 #4021 539 €N 0 134 41 319
6 21 9%0 0 176 4 +H 19
LIBRA ARIES
Howr Are East Angle West Anele Hour Are East Angie West Angle
noon 23 51 13 51 noon 23 51 b6 9
1 27 56 44 10 83 32 1 27 56 96 28 35 50
2 37 36 162 13 K5 29 2 37 36 114 3 \7 47
3 19 42 171 45 35 57 3 49 42 124 3 8 15
4 62 47 176 39 50 43 4 62 47 129 17 31
5 76 20 179 3 48 39 5 6 20 13121 0 37
b 9% 0 80 0 47 42 6 9% 0 13218 [U1]
SCORPILS TAURLS
Hour Are East Angie West Angle Howr Are East Angle West Angle
noos 35 31 in o noon 12 11 69 0
1 38 25 133 15 88 45 1 18 42 116 40 21 20
2 % 2 150 18 7l 42 2 30 57 131 44 6 i6
3 56 30 161 41 60 19 3 44 22 136 3 1 57
4 68 31 169 5 52 55 4+ 58 1 138 0 00
5 81 22 174 30 47 30 5 FANE 1 137 15 0 45
539 90 0 176 41 45 19 6 85 20 135 39 221
6 21 90 0 134 41 319
SAGITTARIUS GEMINI
Hour Are East Angle West Angie Hour Arc East Angic West Angle
noon 4“4 21 102 30 i noon 321 77 30
! 46 40 121 30 83 30 1 i4 18 151 ¢ 3 56
2 53 4 137 16 67 44 2 27 56 155 0 00
3 18 149 25 55 35 3 41 44 154 3 0 57
4 7320 157 58 47 2 4 55 14 152 18 2 42
5 85 23 164 46 40 14 5 68 43 © 148 40 6 20
522 9% 0 166 53 38 7 L] 81 52 143 56 "4
6 38 90 0 141 53 13 7
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h
PARALLEL THROUGH LOWER EGYPT 14 30,22°
CANCER CAPRICORNUS
Hour Are East Angle Wost Angle Hour Are East Angie West Angle
noon 6 31 90 0 noon 54 13 9 0
1 14 56 150 0 30 0 i 56 6 105 34 74 26
2 27 23 159 38 20 22 2 6t 22 19 23 60 37
3 40 19 160 30 19 30 3 69 17 130 46 49 14
4 53 14 158 51 21 9 + 78 59 139 30 40 30
5 65 55 156 0 24 0 3 90 0 146 28 33 32
6 8 15 151 49 28 11
7 9%0 0 146 28 33 32
LEO AQUARILS
Hour T Are East Angle West Angle How Are Eas Angle Weat Angle
noon 9 52 102 30 noon 50 52 7780
1 16 45 153 13 31 47 1 52 53 93 39 61 21
2 IR 44 166 22 38 34 2 58 27 107 51 Y
3 4 31 169 26 35 34 3 66 44 19 1
+ 54 27 169 8 35 52 + 76 5l 127 37
3 67 17 67 1 37 59 5 48 9 133 43
6 79 48 163 6 414 Y 90 O 134 49 20 11
EL w0 139 49 45 11
VIRGO PISCES
Howr Arg East Angle Wese Angle Hom Arc East Angle Wen Angle
noon 18 42 tHr o noon 42 2 69 ¢
] 23 18 {45 18 642 1 + 26 47 32 50 28
2 33 30 162 25 39 35 2 058 102 38 35 22
3 15 169 34 52 26 3 6 19 [ERIRH 04 27
+ 3421 N 172 10 450 + 120 120 5% 17 4
5 7105 172 28 4 32 5 BRI 125 54 12 8
“ 84 7 171 3 52 U] 127 55 05
6 28 90 0 69 55
LIBRA ARIES
Hour Are Fast Angle West Angie Howr Are East Anule Wea Angle
noon 30022 15 51 noan be Y
| 3335 157 32 w10 | 89 30 o
2 4l 39 154 1Y 73023 2 106 37 % 4l
3 52 25 o4 to 3 3225 it6 28 13 a0
4 64 28 169 47 + bt 28 122 5 10 13
5 776 172 21 K] 778 124 39 739
6 w0 173 3413 [} w0 125 47 6 3l
SCORPIUS FAURUS
Hour Are East Angle Wost Angle Houw Are Last Angle Wt Angle
noon 2 2 I o noon 8 42 659 0
1 + 26 129 32 92 28 1 2318 103 18 34 42
2 50 58 144 38 22 2 33 30 120 25 17 35
3 o 19 66 27 3 43 36 127 34 10 26»
4 il 20 39 4 38 21 130 10 750
5 83 19 3 b6 3 7115 130 28 732
5 32 90 0 169 55 32 5 6 84 7 129 5 8 35
6 28 B 127 55 10 5
SAGITTARIUS GEMINI
Hour Are East Angle West Angle Hour Are East Angle West Angle
noon 30 52 102 30 noon 9 52 77 30
I 52 53 118 39 86 21 1 16 45 128 13 26 47
2 58 27 132 51 29 2 28 44 141 22 13 38
3 66 44 44 1 60 59 3 41 3t 144 26 10 34 -«
4 76 51 152 37 532 23 4 34 27 144 8 10 52
5 8 9 158 43 %17 5 67 17 142 1 12 59
59 w0 0 159 49 45 11 ﬁ 79 48 138 46 16 14
6 51 90 0 134 49 20 1t
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PARALLEL THROUGH RHODES 144" 36°
CANCER CAPRICORNLS
Hour Arc East Angle West Angle Houw Arc East Angle West Angle
noon 12 9 90 0 noon 39 51 9% 0
1 17 47 133 14 46 46 | 61 30 103 45 76 15
2 28 22 147 45 3215 2 66 12 116 10 63 50
3 0 27 151 46 28 14 3 73 22 126 36 53 24
4 52 36 151 52 28 R 4 82 24 134 56 %5 4
5 64 36 149 54 30 6 + 45 9% 0 140 1 39 39
6 76 16 146 25 33 35
7 87.23 141 30 38 30
715 90 0 t40 | 39 59
LEO AQUARILS
Haur Are East Angle West Angle Hour Are East Angle West Angle
noon 15 30 102 30 noon 56 30 77 50
I 20 20 139 32 h5 28 [} 8 14 9l 39 3 21
2 30 28 155 19 19 H 2 63 13 104 23 37
3 2 6 160 37 3 70 H 114 47 40 13
+ 3412 162 11 + 8 2 122 47 3213
3 oa 17 6l 3 + 56 9% 0 118 36 26 24
6 b ) 158 10
7 89 27 153 39
74 9 0 153 36
VIRGO PISCES
Hour RS East Angle West Anele Hour Are East Angie West Angie
noon 2420 "m0 noon 47 40 60
1 2751 137 38 84 22 | 19 42 84 50 53 10
2 36 24 155 59 [ 2 55 26 9’ 20 R
3 47 14 162 1 3 Bl 48 108 54
1 39 0 165 ) h20 4 7355 115 51
3 il 5 166 34 35 26 5 B 5 120 28
(i 339 63 50 530 532 w0 22 7 15 33
[LRE] w0 ot 7 57 53
LIBRA ARIES
Hour Are East Angle Weat Angle Haow Ar Fast Angle | West Angle
noon a0 11351 noon 360 o6 9
t 38 37 133 23 Ex BN ! 38 37 85 41 0 37
2 H 31| 148 23 919 2 ESINT 100 41 3137
3 35 b 158 9 89 33 5 » 6 1o 27 21 51
+ [ 163 58 63 44 + o6 9 116 16 16 2
3 756 [RTRT LIS 5 77 3% 118 5% 13 2%
0 w0 0 167 51 59 5l 6 90 0 120 9 129
SCORPIUS TAURUS
Hour Are East Angle Went Angle Hour Are East Angle West Angle
noon +7 40 i o noon 24 20 69 0
1 49 42 126 50 95 10 1 27 51 95 38 +2 22
2 35 26 140 20 81 0 2 36 24 1 59 26 1
3 63 48 150 34 7126 3 17 14 120 10 17 50
4 73 35 157 51 o4 9 4 59 0 123 0 14 20
3 8 35 162 28 39 32 5 il 5 124 34 13 26
52 90 0 164 7 57 53 6 83 9 123 30 14 30
6 35 90 0 122 7 15 53
SAGITTARIUS GEMINI
Hour Are East Angle Wert Angle Hour Ave East Angle West Angle
noon 56 30 102 30 : noon 15 30 77 30
| 38 14 116 39 88 21 1 20 20 114 32 40 28
2 63 13 129 23 75 37 2 30 28 130 19 24 41
3 0 41 139 47 65 13 3 2 6 . 13537 19 23
4 80 2 147 47 57 13 4 54 12 137 1t 17 49
456 90 0 153 36 51 24 5 66 17 136 5 18 55
6 8 7 133 10 21 50
7 89 27 128 39 26 21
704 9% 0 128 36 26 24
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PARALLEL THROUGH THE HELLESPONT 15" 40:56°
CANCER CAPRICORNUS
Houwr Are East Angle West Angle Hour C Are East Angle West Angle
noon 17 5 90 0 noon 64 47 90 0
1 2118 122 32 57 28 1 66 15 102 27 77 33
2 30 17 138 29 41 31 2 70 30 113 35 66 25
3 41 37 144 18 35 42 3 774 122 55 57 5
+ 52 25 145 38 34 22 4 85 18 130 58 ¥ 2
5 63 47 144 28 35 32 4 30 90 0 134 16 5
4 7t 48 141 30 38 3
7 85 9 137 5 42 55
730 w0 134 16 5
LEO AQUARIUS
How Are East Angle West Angle Howr Are East Angle West Angle
noon 102 30 noon hl 26 7730
1 131 6 73 54 1 63 0 9 5 4 55
2 47 0 8 0 2 67 24 to1 29 33 31
3 13 8 3t 1o 3 718 1o 43 50
4 319 35 + 82 48 118 45 36 15 ’
] K5 36 49 52 4 44 90 0 123 o 3154
® 6 46 153,24
7 87 21 Y o
7 1o 9w 0 H8 6
V1RGO PISCES
Hour AVTS East Angle West Aangle Hour Are East Angle West Angle
noon noon 69 0
1 89 30 i 82 46 35 14
2 4 30 2 M55 43 5
3 3 156 0 [ 3 14 24 RRIS T
+ 3% 50 et 7 sl 353 + Wi 26 50
5 15 161 24 0 36 3 115 45 2105
6 2 202 160 40 6l 20 318 9 0 16 59 211
ho12 w0 158 3 63|
LIBRA ARIES
Hour Are East Angle West Angle Howr Are East Angle West Angle
noon H 56 113 51 noon H 56 nb 9
] 43 8 129 97 45 1 43 8 82 15 30 3
2 907 143 38 84 4 2 7 95 56 d6 22
3 32 153 8 RS N 3742 105 26 26 52
+ 67 50 158 47 68 55 + 67 50 1y s 21 U
5 8 45 1ol 39 65 43 5 FLIE] IRV 18 1 ~
6 9w 0 162 55 o4 47 6 90 L5 13 17 5
SCORPIUS TAURUS P
How Are East Angle Went Angle Hour Are East Angle West Angle
noon 32 36 1nt o noon 29 16 69 0
1 54 23 124 46 97 14 1 25 90 30 47 30
2 W 25 136 35 8 5 2 39 22 105 30 32 30
—
3 66 58 146 24 3 9 3 14 0 24 0
4 76 15 153 10 4 39 50 ng 7 19 53
5 86 38 157 45 5 s 119 24 18 36
5 i8 90 0 158 59 683 1 6 82 22 118 4 19 20
6 42 % 0 116 59 20 1
SAGITTARIUS GEMINI *
Hour Are East Angle West Angle Hour Are East Angle West Angle
noon 61 26 102 30 noon 20 2 77 30
1 63 0 15 3 89 55 | 245 106 6 48 54
2 67 24 126 29 78 31 32 37 122 0 330
3 7413 136 10 68 50 3 43 8 128 50 26 10
4 82 48 143 45 61 15 4 5¢ 19 131 5 23°55
4 4 9% 0 48 6 56 54 5 65 36 130 8 24 52
6 76 46 128 2¢ 26 36
- 7 87 24 124 6 30 54
716 9w 0 123 6 3154

—_
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PARALLEL THROUGH THE MIDDLE OF PONTUS 158"  45,°

TANCER CAPRICORNUS
Howr Are East Angle West Angle Hour Are East Angle West Angle
noon 21 10 9 0 noon 68 52 9% 0
1 24 32 116 5 63 55 1 70 14 101 11 78 49
2 3212 131 30 48 30 2 45 1 30 68 30
3 42 1 138 17 4l 43 3 80 6 120 29 59 31
4 52 29 140 31 39 29 4 87 42 128 13 51 47
5 63 4 140 2 39 58 415 9% 0 129 2 50 39
73 24 137 32 42 28
7 8317 133 26 46 34
745 9% 0 129 2} 30 39
LEO AQUARIUS
Hour Are East Angle West Angie Hour Are East Angle West Angle
noon 24 31 102 30 noon 65 31 7730
1 2729 i2¢ 9 | 66 53 88 50 o6 10
2 34 48 140 47 2 70 58 9y 21 3 39
3 + 20 148 5 3 7714 108 19 46 41
1 5% 37 15 5 4 85 10 115 20 39 40
5 65 13 151 7 $ 32 90 0 18 25 36 35
6 334 149 20 35 40
7 85 39 145 39 B2
728 90 0 [EX sl 35
VIRGO PISCES
Hour Are East Anule Went Angle Hour Arv Fast Angle West Angle
noon 33 21 [ Rt noon 6 4l 0
! 35 43 129 15 o245 § SR 8t 3t RO
2 24 42 0 pUNI 2 62 49 92 16h +5 +
3 S0 46 151 9 051 3 0y 42 w12
+ ) 44 [EERR1} B2y t FRUNTY o3 51
5 T 137 3 o 57 5 87 56 1 s
b 81 46 156 351 I b w0 12 43 25017
[OR] LTI 154 43
LIBRA ARIES
Howm Are East Angle West Angle Hour Are East Angle Wese Angle
noon 5 1 s 51 noon 4 a9
1 35 128 19 w23 1 6 55 H0 37 31 41
2 3207 4 2o 87 1o 2 3207 92 4+ 39 34
3 60 | 49 4 88 3 o0 | on 22 3056
+ 69 19 154 4 72 54 + by 1Y 107 6
> 79 28 137 35 ou 47 5 79 1o 13
6 o0 158 0 68 52 6 w0 i 8 21 1o
SCORPIUS TAURLUS
Hour Are East Anude West Angle Hour Are East Angle West Angle
noon 56 41 o noon 33 21 69 0
i 3819 123 31 98 29 | 35 43 87 13 30 45
2 62 49 134 16 87 + 2 2 4 100 50 37 10
3 89 42 143 12 88 3 30 46 109 9 28 5l
+ 816 149 31 2 + ol 44 113 3t 2429
3 87 56 154 6 67 54 5 7112 s 3 22 57
512 90 0 154 43 67 17 6 81 46 114 31 23 29
b6 48 w0 12 43 25 17
SAGITTARILS GEMINI
Hour Are East Angle West Angle Hour Are East Angle West Angle
noon 65 31 102 350 noon 24 31 77 30
i 6 53 113 50 9L 10 i 2729 9 49 35 11
2 70 58 124 21 80 39 2 34 48 115 47 39 13
3 7714 133 19 71 41 3 +“# 20 123 5
+ 85 10 140 20 40 4 5+ 37 126 5
+ 32 o0 0 143 25 6l 35 5 65 15 126 7
6 5 39 124 20
7 85 39 120 39
78 9o 0 118 25
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PARALLEL THROUGH BORYSTHENES
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CANCER CAPRICORNUS
Hour Are East Angle West Angle Hour Are East Angle Wost Angle
noon 24 4 9% 0 noon 72 23 %0 0
i 27 30 i 44 6816 I 73 38 100 15 79 45
2 34 9 126 7 53 53 2 T 109 47 70 13
3 43 2 133 18 4 42 3 82 44 1Hg 3 61 57
+ 52 44 136 6 +3 54 E] 9 0 124 58 35 2
5 62 40 136 4 43 36
6 72 24 134 0 46 0
7 8] 38 130 16
8 90 0 124 58
LEO AQUARIUS
Houwr Are Last Angle West Angle Howr Are Fast Angle West Angle
noos 2L 2 102 30 noon 6 2 77 30
1 k 1229 82 51 I 020 , 87T 49 o7
2 135 >4 o4 n 2 it 2 97 31 S
3 5 ol 32 3 TY 4 105 49 9 11
+ 33 SR + a7 14 122 +2 35
3 Ht 34 57 4 + 20 o0 14 20 4
6 R N}
7 8410 o2 33
740 o9 on 63 H)
VIRGO PISCES
Houwr Are Faw Ange | West e How e Eat Anhe West Anule
oo oo neon oo 12 (ST
1 126 45 95 15 1 6l 48 F (U 37 50
2 Ly 7 B2 53 2 By G LU 47 44
3 NIRE YR 7051 b PRI aR 26
4 131 36 TH 24 + - 104228
5 153 23 (I 5 B3 o9 2
o 8117 132 58 ny o2 S W loy 22 28 SR
6 34 W 151 22 08
LIBRA ARIES
Hour \re Lt Angle West Angle Hous Are East Angie West Angle
noon 48 32 13 510 noon W32 o9
H 30 21 12630 i 5 21 N4
2 54 349 137 40 2 54 89 58
3 (DL 143 4 81 5 K] 62 5 9R 4 REE)
+ 0 41 151 18 624 + 70 41 103 36 28 42
5 80 8 154 23 T3 5 808 106 41 25 57
6 w0 135 19 T2 6 w0 07 537 24 4
SCORPIUS FAURDES 4
Hout Are East Angle West Angle - Howr Are East Angle Wt Angle
noon 6o 12 1y oo noon a6 52 64 0
| 61 38 1225 55 1 38 36 3+ 45 533 15
2 65 36 132 16 89 H 2 + 31 97 7 055
3 5 140 26 3 a2 1w 9 42 51
+ 80 3 146 28 + 6l 109 36 28 24
5 8 3 151 2 7 2 26 37
56 920 o 151 22 7038 H 8117 110 58 202
: 6 54 W0 109 22 28 38
SAGITTARIUS GEMINI
Hour Are East Angle West Angle Hour Are East Angle Weou Angle
noon 69 2 102 30 noon w2 7730
1 70 20 12 49 €« n | 30 32 97 9 37 51
4 7402 122 31 82 2 2 36 55 110 54 6 .
3 79 48 130 49 7411 3 4 30 118 28 36 32
4 87 14 137 25 35 + 3503 121 50 3310
420 oW o 139 20 65 4 3 64 59 122 19 32 4
o 7t 47 120 46 34 14
7 B 10 17 27 37 33
T w0 14 20 W
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130 II 13. Geographical coordinates

the [astronomical] phenomena for those cities. However, the discussion of this
subject belongs to a separate, geographical treatise, so we shall expose it to view
by itself [in such a treatise), in which we shall use the accounts of those who have
elaborated this field to the extent which is possible. We shall [there] list for each
of the cities its distance in degrees from the equator, measured along its
meridian, and the distance in degrees of that meridian from the meridian
through Alexandria, to the east or west, measured along the equator (for that
{Alexandria] is the meridian for which we establish the times of the positions [of
the heavenly bodies]).'%

For the time being we take the locations [of the cities] for granted, and
[therefore] think it appropriate to add no more than the following. Whenever
we are given the time at some standard place, and we undertake to determine
what the corresponding time is at another place, then, if they lie on dilferent
meridians, we have to take the distance between the two places in degrees,
measured along the equator. and determine which of them is to the east or west.
and then increase or decrease the time at the standard place by the same
number of time-degrees. to get the corresponding time at the required place.
We increase if the required place is the further east, and decrease if the standard
[place is the further east).!'?

notation, it may be a later addition. but it is a usehul one. since it altects the sign of the parallax e V
19 p. 266). It is casy to verifv that Ptolemy's rules on pp. 115-18 hold good according as N is
appended to the eastern angle. the western angle, or both.

Because of the symmetries demonstrated in II 12 (see also HAM.1 51) we have a means of
checking most of the entries in these tables. The only entries which cannot be thus checked are the
zenith distances for the signs of Cancer and Capricorn. This shows that there are very few scribal
errors in Heiberg's.text here. However, recomputation of the data using modern formulas reveals
considerable inaccuracies in Ptolemy’s values. The zenith distances are generally correct to within
2’, although occasional errors of up to 10’ occur; but the angles regularly show errors of 10°. and
occasionally as muchas 1° (e.g. Parallef through Middle Pontus. Gemini. | hour from noon, castern
angle: text 99:49° computed 100:54°).

Corrections to Heiberg's text:

Clima I, Yp. 2" (H175.7) u6 v (49:58): 46 un, with BCDL (computed: 49;49).

Clima IV, P, 2" (H181.7) p uC (100;47), Aa Aa (31;31): p pa. Aa A with Ar. Cf. supplementary
angles at Libra: 148;23, 79:19. Corrected by Manitius.

Clima V, 8.2" (H183,17)AB (32): A8 A. CL. supplementary angle for Virgo: 167:30. This is simply a
misprint, corrected by Manitius.

Clima VIL. m, 2" (H186.17) pAB 1 (132:10). n8 v (89:50): pAB 1g, 1O wd, as Ger. CL. supple-
mentary angles at Pisces: 90:16, 47:44. Manitius noticed the discrepancy, but changed the Pisces
entries. My correction is closer to the accurately computed values (132;15°, 89;39°). Most of the
Arabic tradition agrees with Heiberg here: L has 47:50 at Pisces, 2", west angle.

1% This promise is fulfilled in Ptolemy’s Geography. However, by the time he came to write that, he
decided to give distances in longitude, not from the meridian through Alexandria, but from one at
the extreme west of the known world (through the Fortunate Isles), so that all longitudes could be
counted in the same direction. A remnant of the original plan survives in Geography V111, which
includes a summary of time differences from Alexandria to east or west.

112 Excising Suopikdrepog at H189,6. Heiberg's text would mean *and decrease if the standard
place is the further west’, which is the opposite of what is required. Manitius’ excision of &
vroxeipevog produces a good sense (*if the required place is the further west’), and the same sense is
found in part of the Arabic tradition (L, Ger, P, but not T, Q). But the word order favours my
correction.



Book III

{ Preface}’

In the preceding part of our treatise we have dealt with those aspects of heaven
and earth which required, in outline, a preliminary mathematical discussion;

also the inclination of the sun’s path through the ecliptic, and the resultant

particular phenomena, both at sphaera recta and at sphaera obliqua for every
inhabited region. We think that we should [now] discuss, as the subject which
appropriately follows the above, the theory of the sun and moon, and go
through the phenomena which are a consequence of their motions. For none of
the phenomena associated with the [other] heavenly bodies can be completely
investigated without the previous treatment of these [two]. Furthermore, we
find that the subject of the sun’s motion must take first place amongst these [sun
and moon], since without that it would, again, be 1mpossxble to give a complete
discussion of the moon's theory from start to finish.

1. {On the length of the year}*

The very first of the theorems concerning the sun is the determination of the
length of the year. The ancients were in disagreement and confusion in their
pronouncements on this topic, as can be seen from their treatises, especially
those of Hipparchus, who was both industrious and a lover of truth. The main
cause of the confusion on this topic which even he displayed is the fact that, when
one examines the apparent returns {of the sun] to [the same] equinox or solstice,
one finds that the length of the year exceeds 365 days by less than {-day, but when
one examines its return to [one of] the fixed stars it is greater [than 365} days].
Hence Hipparchus comes to the idea that the sphere of the fixed stars too has a
very slow motion. which, just like that of the planets, is towards the rear with
respect to the revolution producing the first {daily] motion, which is that of a
[great] circle drawn through the poles of both equator and ecliptic.?

As for us, we shall show this is indeed the case, and how it takes place, in
our discussion of the fixed stars* (the theory of the fixed stars, too, cannot be

' D and part of the Arabic tradition (L, P, but not Q, T) begin chapter 1 at this point. On such -

variations, and the conclusion to be drawn, see Introduction p. 5.

?See HAMA 54-5, Pedersen 128-34.

* This characterisation of the daily motion by means of the rotation of a great circle xhrough the
poles of equator and echpuc refers back to I 8 p. 47.

*VII 2-3.
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132 111 1. Definition of ‘year’

thoroughly investigated without previously establishing the theory of the sun
and moon). However, for the purposes of the present investigation, it is our
judgment that the only reference point we must consider when examining the
length of the solar year is the return of the sun to itself, that is [the period in

- which it traverses] the circle of the ecliptic defined by its own motion. We must

define the length of the year as the time the sun takes to travel from some fixed
point on this circle back again to the same point. The only points which we can
consider proper starting-points for the sun’s revolution are those defined by the
equinoxes and solstices on that circle. For if we consider the subject from a
mathematical viewpoint, we will find no more appropriate way to define a
‘revolution’ than that which returns the sun to the same relative position, both
in place and in time, whether one relates it to the [local] horizon, to the
meridian, or to the length of the day and night; and the only starting-pointson
the ecliptic which we can find are those which happen to be defined by the
equinoxes and solstices. And if] instead, we consider what is appropriate froma
physical point of view, we will not find anything which could more reasonably
be considered a ‘revolution’ than that which returns the sun to a similar
atmospheric condition and the same season: and the only starting-points one
could find [for this revolution] are those which are the principal means of
marking off the seasons from one another {i.e. solsticial and equinoctial points).
One might add that it seems unnatural to define the sun’s revolution by its
return to [one of] the fixed stars, especially since the sphere of the fixed stars is
observed to have a regular motion of its own towards the rear with respect to the
{daily] motion of the heavens. For. this being the case, it would be equally
appropriate to say that the length of the solar vear is the time it takes the sun to
go from one conjunction with Saturn, let us say, (or any other of the planets) to
the next. In this way many different ‘years’ could be generated. For the above
reasons we think it appropriate to define the solar year as the time {rom one
equinox or solstice to the next of the same kind, as determined by observations
taken at the greatest possible interval.

Now since Hipparchus is somewhat disturbed by the suspicion, derived from
a series of observations which he made in close succession, that this same
revolution {of the sun] is not of constant length, we shall try to show succinctly
that there is nothing to be disturbed about here. We became convinced that
these intervals [from solstice to solstice etc.] do not vary, from the successive
solstices and equinoxes which we ourselves have observed by means of our
instruments. For we find that [the times of the observed solstices etc.] do not
differ by a significant amount from those derivable from the [365}-day [year]®
(sometimes they differ by an amount roughly corresponding to the error which
is explicable by the construction and positioning of the intruments). But we also
guess from Hipparchus’ own calculations that his suspicion concerning the
irregularity [in the length of the tropical year] is an error due mainly to the
observations he used.

For, in his treatise ‘On the displacement of the solsticial and equinoctial
points’, he first sets out those summer and winter solstices which he considers to

* Literally ‘from the surplus due to the {-day’.



111 1. Hipparchus’ autumnal equinox observations 133

have been observed accurately, in succession, and himself admits that these do
not display enough discrepancies to allow one to use them to assert the existence
of any irregularity® in the length of the year. He comments on them as follows:
‘Now from the above observations it is clear that the differences in the year-
length-are very small indeed. However, in the case of the solstices, I have to
admit that both I and Archimedes may have committed errors of up to a
quarter of a day in our observations and calculations [of the time]. But the
irregularity in the length of the year can be accurately perceived from the
[equinoxes] observed on the bronze ring situated in the place at Alexandria
called the “Square Stoa”. This is supposed to indicate the equinox on the day
when the direction from which its concave surface is illuminated changes from
one side to the other’.”

Then he sets out, first, the times of autumnal equinoxes which he considers to
have been very accurately observed:

[1] Intheseventeenth year of the Third Kallippic Cycle, Mesore 30{-161 Sept.
27], about sunset.

[2] 3 years later, in the twentieth year. on the first epagomenal day [-158 Sept.
27}, at dawn. This should have been at noon, so there is a {-day discrepancy.

[3] 1 year later, in the twenty-first vear, [on the first epagomenal day, -157
Sept. 27], at the sixth hour. This was in agreement with the preceding
observation.®

[4] 11 years later, in the thirty-second year, at the midnight Between the third
and fourth epagomenal days [-146 Sept. 26/27]. This should have been at
dawn, so again there is a i-day discrepancy.

[5] 1 vear later, in the thirty-third vear, on the fourth epagomenal day [-145
Sept. 27], at dawn. This was in agreement with the previous observation.

[6] 3 vears later, in the thirty-sixth year, on the fourth epagomenal day [-142
Sept. 26], in the evening. Thisshould have been at midnight, so again there is
only a {-day discrepancy.

Next he sets out the spring equinoxes which have been observed with a
similar accuracy: .

¢ Manitius claims that the reading Gvic6TnTd Tiva for Gvicdtta at H194,21 is ‘absolutely
necessary’. It is Halma’s text, adopted from the editio princeps. However, it is not found in any of the
principal mss., and Heiberg's text as it stands can mean the same thing.

" For a diagram of this ‘equatorial armillary’ see Price, ‘Precision Instruments’ Fig. 343C on p.
589. It is simply a ring permanently fixed in the plane of the equator. From Ptolemy (p. 134) we
learn that there were two such rings at Alexandria in his time, in the Palaestra. Whether either was
identical with the one mentioned by Hipparchus cannot be discussed here. For what little is known
about the ‘Square Stoa’ and the Palaestra (presumably in the great gymnasium mentioned in Strabo
17.1.10) see Fraser{1] Il 98 n.222 and 223, [ 28-9, and Fraser{2] 144-5.

®While there is general agreement that all the other equinox observations reported from

Hipparchus were made by him in person, there is considerable dispute whether these three were -

observed by him or merely used by him. They are separated by an interval of 11 years from the next~
attested observation, which also falls into the period for which other types of observation by
Hipparchus are recorded (the lunar eclipse of - 145 Apr. 21, p. 135). My own view is that this group
of three early observations was not made by Hipparchus himself, but was simply adduced by him
for comparison. :
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134 111 1. Hipparchus® spring equinox observations

[1] In the thirty-second year of the Third Kallippic Cycle, Mechir 27 [-145
Mar. 24), at dawn. Furthermore, he says, the ring at Alexandria was
illuminated equally from both sides at about the f{ifth hour.® Thus we can
already see two different observations of the same equinox with a discrepancy
of approximately 5 hours.

[2 to 6] He says that the subsequent observations up to the thirty-seventh year
[-144 to -140] were all in agreement with the times derivable from the [365]i-
day [year].

[7] 11 years later [than 1], in the forty-third year, he says, the spring
equinox occurred after midnight Mechir 29/30 [-134 Mar. 23/24]. This was
in agreement'® with the observation [1] in the thirty-second year, and, he
says, again agrees with the observations [8 to 13, -133 to -128] in the
subsequent years up to the fiftieth year [14]. This took place on Phamenoth
1 [-127 Mar. 23}, about sunset. This is approximately 13 days later [in the
Egyptian year] than the [equinox] in the forty-third year. This also tits the
7-year interval.

Thus in these observations too there is no discrepancy worth noticing, even
though it is possible for an error ol up to a quarter of a day to occur not only in
observations of solstices, but even in equinox observations. For suppose that the
instrument, due to its positioning or graduation, is out of true by as little as

wowth of the circle through the poles of the equator: then, to correct an error of
that size in declination, the sun, [when it is] near the intersection [of the ecliptic]
with the equator, has to move {° in longitude on the ecliptic. Thus the
discrepancy comes to about{ of a day.!' The error could be even greater in the
case of an instrument which, instead of being set up for the specific occasion and
positioned accurately at the time of the actual observation, has been fixed once
for all on a base intended to preserve it in the same position for a long period:
[the error occurs when] the instrument is affected by a [gradual] displacement
which is unnoticed because of the length of time over which it takes place. One
can see this in the case of the bronze rings in our Palaestra, which are supposed
to be fixed in the plane of the equator. When we observe with them, the
distortion in their positioning is apparent, especially that of the larger and older

“of the two, to such an extent that sometimes the direction of illumination of the

concave surface in them shifts from one side to the other twice on the same
equinoctial day.'?

° This statement has occasionaily been used (most recently by Fraser{1] I 423) as evidence that
Hipparchus observed in Alexandria. On the contrary, Ptolemy's expression makes it clear that this
Alexandrian observation was different (and discrepant) from Hipparchus’ own. Whenever the
place of an observation by Hipparchus is known, it is Rhodes (except for his weather prognostica-
tions reported in Ptolemy’s Phaseis, for which the place was Bithynia, presumably Hipparchus’
native Nicaea).

!Reading dkéiovBov at H196,15 for the misprint dx6iovofov.

!! Ptolemy says that an obscrvational error of 6’ in declination corresponds, near equinox, to an
ecliptic motion of}° or (since the sun moves about 1° per day in the ecliptic) to an error of} day in the
time of observation. This is easily verified by linear interpolation in the declination table [ 15, where
the declination for 1° is 0;24,16°.

12 For the ring see p. 133 n.7. If the instrument was correctly set up, at the moment of equinox the
direction of illumination would shift from below the shadowing part to above it in spring (and vice
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However, Hipparchus himself does not think that there is anything in the
above observations which provides convincing support for his suspicion that
there is an irregularity in the length of the year. Instead he makes computations
on the basis of certain lunar eclipses, and declares that he finds that the
variation in the length of the year, with respect to the mean value, is no more
than 3 of a day. This would be sufficiently great to take some account of, if it
were indeed so; but it can be seen to be false from the very considerations which
he adduces [to support it]. For he uses certain lunar eclipses which were
observed to take place near {specific}] fixed stars to compare the distance of the
star called Spica in advance of the autumnal equinox at each feclipse]. By this
means he thinks he finds, on one occasion. a distance of 62°, the maximum in his
time, and on another a distance 01'541", the minimum {in his time}. Thence he
concludes that, since it is impossible for Spica [itself} to move so much insucha
short time, it is plausible to suppose that the sun. which Hipparchus uses to
determine the positions of the fixed stars, does not have a constant period of
revolution. But this kind of computation cannot be made without using the
sun’s position at the eclipse as a basis. Thus, though he does not realise it, at each
eclipse he is applying for this purpose [determination of the sun’s position] the
accurate observations of solstices and equinoxes which he himself has made'? in
these same years. By the very act of doing this he shows that. when one compares
the length of those years, there is no discrepancy from the [365}i-day interval.

To take a single example: from the eclipse observation in the thirty-second
year of the Third Kallippic Cycle which he adduces, he clairhs to find that Spica
is 62° in advance of the autumnal equinox. whereas from the eclipse observation
in the forty-third year of that cvcle he claims to find that it is 5{° in advance."*
Likewise,!* in order to carry out the computations for the above. he adduces the
spring equinoxes which he had accurately observed in those vears. This was in
order that from the latter he could find the position of the sun at the middle of
each eclipse, from these the positions of the moon, and from the positions of the
‘moon those of the stars. He says that the spring equinox in the thirty-second vear
took place on Mechir27 [-145 March 24} at dawn, and the one in the forty-third
vear on [Mechir] 29/30 [-134 March 23/24] after midnight, later [in the
Egyptian year] than that in the thirty-second by approximately 2 i days, which
is the same amount as is produced by the addition of precisely {-day in each of

versa in autumn). Manitius (I 427 n.21) explains the phenomenon reported here by Ptolemy as due
to the effect of refraction on a correctly placed ring. His argument is dismissed by Rome[5]1230-5
and [1] II p. 818 n., on the grounds that the true one of the two ‘equinoxes’ could easily be
determined by the direction of shift. This does not of course invalidate Manitius’ explanation. The
only good detailed discussion is Britton{1] 29-42, correcting both Manitius and Rome, and
concluding (p. 34) that multiple “equinoxes” on a well-aligned ring would be normal.

Y Reading g’ Eautod (with D, Ar) at H198,24 for ¢’ Eavtol (‘which were made in his time’).

" The eclipses in question are those of =145 Apr. 21 and - 134 Mar. 21 (misprinted March 31 in
Pedersen Appendix A, 414). We have no further data on Hipparchus’ observations of these eclipses.
For a deailed discussion of the procedures involved see Romef5] IL. From VII 2 (p. 327) it seems
that Hipparchus eventually settled on a compromise figure of 6° from the'autumnal equinox in his
own time.

'3 Meaning ‘as in the other similar calculations’. D's reading is Sutx, ‘however’, which makes
good sense, but is not supported by the Arabic tradition.

~
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136 111 1. Baselessness of Hipparchus® suspicion

the intervening 11 years. Since, then, the sun has been shown to complete its
revolution (as measured with respect to those equinoxes) in a time neither greater
nor less than the [365}-day interval, and since it is impossible for Spica to move
14° in such a small number of years, surely it is perverse to use calculations based
on the above foundations to impugn the very foundations on which they were
based. It is perverse to ascribe the reason for such an impossibly large motion of
Spica solely to the equinoxes on which the calculations are based (which entails
the simultaneous assumptions, both that they are accurately observed, and that
they have been inaccurately observed), when there are several possible causes
for so great an error. It is more plausible to suppose, either that the distances of
the moon from the nearest stars at the eclipses have been too crudely estimated.
or that there has been an error or inaccuracy in the determinations of the
moon’s parallax with respect to its apparent position, or of the motion of the sun
from the equinox to the time of mid-eclipse.

However, it is my opinion that Hipparchus himself realised that this kind of
argumentation provides no persuasive evidence for the attribution of a second
anomaly to the sun, but his love of truth led him not to suppress anything
which might in any way lead some people to suspect [such an anomaly}. Atany
rate, he himsell, in his theories of the sun and moon, assumes that the sun has a
single and invariable anomaly, the period of which is the length of the vear as
defined by [return to] solstices and equinoxes. Furthermore, when we assume
that the period of these revolutions of the sun is constant, we see that there is
never any significant difference between the phenomena observed at eclipses
and those calculated on the above assumption. Yet there would be a very
perceptible difference if there were some correction due to a variation in the
length of the year which we failed to take into account. even if that correction
were as little as a single degree, which corresponds to approximately two
equinoctial hours.'®

From all the above considerations, and from our own determination of the
period of the [solar] revolution; by means of a series of observations of the sun’s
position, we conclude that the length of the year is constant, provided that it is
always defined with respect to the same criterion, and not with respect to the
solsticial and equinoctial points at one time and to the fixed stars at another. We
also conclude that the most natural definition of the revolution is that in which
the sun, starting from one solstice or equinox or any point on the ecliptic,
returns to the same point again. And in general, we consider it a good principle
to explain the phenomena by the simplest hypotheses possible, in so far as there
is nothing in the observations to provide a significant objection to such a
procedure. "’

Now it was already clear to us from Hipparchus’ demonstrations that the
length of the year, defined with respect to the solstices and equinoxes, is less than
{-day in excess of 365 days. The amount by which it falls short [of{-day] cannot

'8 The time of an eclipse depends on the s of sun and moon. Assuming, with Ptolemy, round
figures of 17 for the sun’s motion and 13 for the moon’s, we get a relative motion of 12¥°, or i
per hour. Thusashift of 1° in the position of the sun at an eclipse leads to a shift of 2 hours in the time.

" This general principle of the desirability of simplicity in the hypotheses is repeated, but
modified, at XIII 2 p. 600. CL. also III 4 p. 153.
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be determined with absolute certainty, since the difference is so small that for
many years in succession the increment [over 365 days] remains sensibly the
same as a constant i-day increment. Hence it is possible, when comparing
observations taken over quite a long period, that the surplus days [over 365},
which have to be obtained by distributing [the total surplus] over the years of
the interval [between the observations], may appear to be the same whether one
takes [observations over] a greater or lesser number of years. However, the
longer the time between the observations compared, the greater the accuracy of
the determination of the period of revolution. This rule holds good not only in
this case, but for all periodic revolutions. For the error due to the inaccuracy
inherent in even carefully performed observations is, to the senses of the
observer, small and approximately the same at any [two] observations, whether
these are taken at a large or a small interval. However, this same error, when
distributed over a smaller number of years, makes the inaccuracy in the vearly
motion [comparatively] greater (and [hence increases] the error accumulated
over a longer period of time), but when distributed over a larger number of
years makes the inaccuracy [comparatively] less. Hence we must consider it
sufficient if we endeavour to take into account only that increase in the accuracy
of our hypotheses concerning periodic motions which can be derived from the
length of time between us and those observations we have which are both
ancient and accurate. We must not, if we can avoid it, neglect the proper
examination [of such records]; but as for assertions of validigy ‘for eternity’, or
even for a length of time which is many times that over which the observations
have been taken, we must consider such as alien to a love of science and truth.'?
Now, as far as concerns antiquity [of the observations], the summer solstices
observed by the school of Meton and Euktemon, and, later, the school of
Aristarchus, deserve to be compared with those of our own time.'® However,
since observations of solstices are, in general, hard to determine accurately, and
since, furthermore, the observations handed down by the above-mentioned
people were conducted rather crudely (as Hipparchus too seems to think), we
abandoned those, and have used instead, for the comparison we propose,
equinox observations, choosing amongst them, for the sake of accuracy, those
which Hipparchus especially noted as very securely determined by him, and
those which we ourselves have made with the greatest accuracy using the
instruments for such purposes described at the beginning of our treatise [I 12].
For these we find that the solstices and equinoxes occur earlier than [one would
expect from a year of 3654 days by one day in approximately 300 years.
For Hipparchus noted that in the thirty-second year of the Third Kallippic

8This remarkably sensible attitude towards the validity of mean motions derived from
observations was not imitated by most of Ptolemy’s successors throughout antiquity and the middle
ages. The contemptuous remark about ‘eternity’ may be a glance at the aidviol xavéveg
mentioned at IX 2 p. 422 (see n.12 there).

19The only solstices known to have been observed by these men are that of -431 June 27, ascribed

below (p. 138) to ‘the school of Meton and Euktemon’, and that of =279 (no further details known)
ascribed below (p. 138) to ‘the school of Aristarchus’. The latter is Aristarchus of Samos. now
famous mainly for his ‘heliocentric hypothesis’. See Heath, 4ristarchus. On Meton see Toomer{7].
By ‘the school of . . .’ I translate ot mept . . . The precise way to interpret the phrase here and
elsewhere in the Almagest remains obscure.
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138 111 1. Ptolemy’s equinox and solstice observations

Cycle he had made a very accurate observation of the autumnal equinox, and
says that he calculated that it occurred at midnight, third-fourth epagomenal
day [-146 Sept. 26/27]. The year is the 178th from the death of Alexander.?
285 years later, in the third year of Antoninus, which is the 463rd from the death
of Alexander, we observed, again very securely, that the autumnal equinox
occurred on Athyr 9 {139 Sept. 26], approximately one hour after sunrise.?'
Therefore the period of return comprised, over 285 complete Egyptian years
(that is years of 365 days), 704 days plus approximately 35th of a day, instead of
the 714 days corresponding to the -day surplus for the above [285] years. Thus
the return took place earlier than it would have with the [365)i-day year by one
day less about s5th day.

Similarly, Hipparchus says that the spring equinox in the same thirty-second
year of the Third Kallippic Cycle, which he observed most accurately, took
place on Mechir 27 [-145 Mar. 24] at dawn. The year is the 178th from the
death of Alexander. We find that the corresponding spring equinox 285 years
later, in the 463rd year from the death of Alexander, took place on Pachon 7
[140 Mar. 22], approximately 1 hour after noon. Thus this period too
comprised an increment [over 285 Egyptian years] of the same amount, 701 +
about 35 days, instead of the 714 days corresponding to the i-day surplus for the
285 years. Here too, then, the return of the spring equinox took place earlier
than it would have with the [365]i-day year by #ths of a day. Hence, since

1 day : % day = 300 : 285,
we conclude that the return of the sun to the equinoctial points takes place
earlier than it would for a [365}i-day year by approximately one day in 300
years.

Furthermore if, because of its antiquity, we compare the summer solstice
observed by the school of Meton and Euktemon (though somewhat crudely
recorded) with the solstice which we determined as accurately as possible, we
will get the same result. For that [solstice] is recorded as occurring in the vear
when Apseudes was archon at Athens, on Phamenoth 21 in the Egyptian
calendar [-431 June 27], at dawn.** We determined securely that the [summer
solstice] in the above-mentioned 463rd year from the death of Alexander
occurred on Mesore 11/12[140 June 24/25] about 2 hours after midnight. Now
there are 152 years (as Hipparchus too reckons) from the summer solstice
recorded in the archonship of Apseudes to the solstice observed by the school of
Aristarchus in the fiftieth year of the First Kallippic Cycle [-279], and from that
fiftieth year, which corresponds to the 44th year from the death ot Alexander, to
the 463rd year, in which our observation was made, is 419 vears. Therefore in

2 On this (~323, not -322, the actual year of Alexander’s death) see Introduction p. 10 n.16.
‘178th’ is inclusive reckoning.

# Notoriously, like Ptolemy's spring equinox and summer solstice observations below, this is
about | day later than the actual event. This is the strongest argument of those modern critics who
have maintained that Proiemy ‘faked’ observations. See Toomer{5] 189. The best discussion of this
difficult problem is Britton[1] Chapter I1.

2 The Egyptian date of this observation was not given by Meton himself, who dated it to
Skirophorion 13 in his calendar, but is a later conversion (found in the Milesian parapegma of the
late second century B.C., see Samuel, Greek and Roman Chronology 44 or Toomer{7] 338, but no doubt
already made by Hipparchus).
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the whole interval of 571 years, if the summer solstice observed by the school of
Euktemon took place around the dawning of Phamenoth 21, there is an
increment of approximately 140§ days over complete Egyptian years,? instead
of the 1421 days corresponding to the {-day surplus for 571 years. Thus the
return in question took place earlier than it would have with the [365]4-day
year by 11} days. Here too, then, it is clear that in a round 600 years the [true]
year-length accumulates a decrement of approximately 2 complete days
against the [365]i-day year.

We find the same result from a number of other observations of our own, and
we see that Hipparchus agrees with it on more than one occasion. For in his
work ‘On the length of the vear’ he compares the summer solstice observed by
Aristarchus at the end of the fiftieth vear of the First Kallippic Cycle[-279] with
the one which he himself had determined, again with accuracy, at the end of the

forty-third vear of the Third Kallippic Cycle {-134], and then says: ‘It is clear..

then, that over 145 vears the solstice occurs sooner than it would have with a
[365}i-day year by half the sum of the length of day and night’. Again, in"On
intercalary months and days’ also, after remarking that according to the
school of Meton and Euktemon the length of the vear comprises 3653 + % davs.
but according to Kallippos only 365 days,** he comments, in his own words, as
follows: *As for us. we find the number of whole months comprised in 19 years to
be the same as they found. but we ﬁnd the vear to be even less than i-[day
bevond 365]. by appr()ximalcl\' with of a day. Thus ,in 300 vears its
[accumulated] deficit is 5 days compared with Meton['s hquze} and ] day
compared with Kallippos'.” And when he more or less sums up his opinions in
his list of his own writings,? he says: ‘I have also composed a work on the length
of the vear in one book. in which I show that the solar vear (by which I mean the
time in which the sun goes {rom a solstice back to the same solstice, or from an
equinox ba(k to the same equinox) contains 365 davs, plus a fraction which is
less than i by about woth of the sum of one day and night. and not. as the
mathematicians?® suppose, exactly i-day beyond the above-mentioned number
[365] of days.’

Thus I think it appears plainly from the agreement of present-day
[observations] with earlier ones. that all phenomena observed up to the present

3 Ptolemy apparently reckons ‘dawn’ {mpwiag) in the earlier observation as 6 a.m. in equinoctial
hours (despite the fact that at Athens sunrise at summer solstice occurs at about 4:45 a.m.}, and
means "2 hours after midnight’ in his own observation tobe 2a.m.. i.e. c‘qumocual hours. Thcn the
increment over whole days between the observations is 20 equinoctial hours = { dav. If we were to
take the times as “precisely sunrise’ and ‘2 seasonal hours’. the interval would be closer o 21 hours.
or{ day.

*4 These accord with the Metonic and Kallippic cycles respectively. See Introduction pp. 12-13.

*This phrase. which appears to have been misunderstood by all earlier wanslators, but is
correctly interpreted by Rehm, *Hipparchos’ col. 1666. shows that Hipparchus published a
catalogue of his own works with a summary of the contents of each. An example of this kind of

publication which has come down to us is Galen’s “On his own Books’ (nepi t@v idiwv fiffkiov),

Seripta Minora I191 Y. From Galen’s work it is apparent that for a prolific writer of monographs, likg
Hlpparchus, such a catalogue was necessary as a check on the ascription of his works (pcrhaps
urculaung in unauthorised versions) to others.

%01 paBnpartikoi, which i inc ludes astronomers. One might almost think irom Hipparchus’ tone
that he means “astrologers’ (this is a standard meaning in later Greek). Ptolemy, however, does not
use the word in this sense (cf. pp. 175 and 421, where I have translated it ‘astronomers’).
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time having to do with the length of the solar year accord with the above-
mentioned figure for the return to solstices or equinoxes. This being so, if we
distribute the one day over the 300 years, every year gets 12 seconds of a day.
Subtracting these from the 365;15° of the {-day increment, we get the required
length of the year as 365;14,48". Such, then, is the closest possible approxima-
tion which we can derive from the available data.

Now, with regard to the determination of the positions of the sun and the
other [heavenly bodies] for any given time, which the construction of individual
tables is designed to provide in a handy and as it were readymade form: we
think that the mathematician’s task and goal ought to be to show all the
heavenly phenomena being reproduced by uniform circular motions. and that
the tabular form most appropriate and suited to this task is one which separates
the individual uniform motions from the non-uniform {anomalistic] motion
which [only] seems to take place, and is [in fact] due to the circular models; the
apparent places of the bodies are then displayed by the combination of these
two motions into one.?” In order to have this tvpe of table in a form which shall
be usable and ready to hand for the actual proofs [which are to come], we shall
now set out the individual uniform motions of the sun in the following manner.

Since we have shown that one revolution contains 365:14,48", dividing the
latter into the 360° of the circle, we find the mean daily motion of the sun as
approximately 0:59,8,17,13.12.31° (it will be sufficient to carry out divisions to
this number [i.e. 6] of sexagesimal places).

Next, taking #ith of the daily motion, we find the hourly motion as
approximately 0;2.27,50.43.3.1°.

Similarly, we multiply the daily motion by 30. the number of davs in one
month, and get as the mean monthly motion 29:34.8.36.36.15.30°;

and, multiplving it by 365. the number of days in one Egyptian vear. we get
the mean annual motion as 359:45.24.45.21.8,35°,

Then we multiply the vearly motion by 18 vears. since this number will
produce symmetry in the layout of the tables.*® and. after reduction of complete
circles, we lind the increment over 18 vears to be 355:37.25.36.20.34,30°.

So we have set out three tables for the uniform motion of the sun. each again
containing 45 lines, and each having two [vertical] sections. The first table will
contain the mean motions of the 18-year periods. the second will contain the

% This is an implicit polemic against the ephemeris kind of astronomical table which gives the
true positions of the planets (their “apparent places’). To judge tfrom the surviving papyri, the most
common kind of planetary table was that giving the entries of the heavenly bodies into the zodiacal
signs for a period of years (see HAMA 11 785 {I.). Prolemy was perhaps thinking of a kind of
‘perpetual almanac’ which gives the true positions of the planets at regular intervals over a whole
planetary period. His argument is that his approach (mean motion tables modified by equation
tables) gives a truer picture of the actual motions, which are uniform and circular.

* Despite Ptolemy’s clear statement here of his motivation for choosing the 18-vear period. it has
been the subject of much fruitless debate. Starting from a standard height of 45 lines (see I 10 p. 56
n.67), and allowing some space for headings, he is led by the combination of single years on the same
sheet with hours to 18 lines for that table (18 + 24 = 42 = 12 + 30 [months and days]). That is also
the reason why the table for 18-year periods goes up to only 810 years (45 x 18), even though this
does not reach Prolemy’s own time from his epoch. By the time he came to compose the Handy
Tables, he had realised the inconvenience of this arrangement. and switched to 25-year periods and
an epoch closer o his own time (Era Philip, -323 Nov. 12).
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yearly motions above and the hourly motions below, and the third will contain
the monthly motions above and the daily motions below. The numbers
representing time will be in the first [i.e. left-hand] section, and the
corresponding degrees, obtained by successive addition of the appropriate
amount for each [time-unit], in the second [i.e. right-hand] section. The tables
are as follows.

2. {Table of the mean motion of the sun}*® H210—15
[See pp. 142-3.]
3. {On the hypotheses for uniform circular motion}*® H216

Our next task is to demonstrate the apparent anomaly of the sun. But first we
must make the general point that the rearward displacements of the planets
with respect to the heavens are. in every case, just like the motion of the universe
in advance, by nature uniform and circular. That is to say, if we imagine the
bodies or their circles being carried around by straight lines, in absolutely every
case the straight line in question describes equal angles at the centre of its
revolution in equal times. The apparent irregularity [anomaly] in their motions
is the result of the position and order of those circles in the’ sphere of each by
means of which they carry out their movements, and in reality there is in essence
nothing alien to their eternal nature in the "disorder’ which the phenomena are
supposed to exhibit. The reason for the appearance of irregularity can be
explained by two hypotheses, which are the most basic and simple. When their
motion is viewed with respect to a circle imagined to be in the plane of the
ecliptic, the centre of which coincides with the centre of the universe (thus its

“centre can be considered to coincide with our point of view), then we can
suppose. either that the uniform motion of each [body] takes place on a circle
which is not concentric with the universe, or that they have such a concentric
circle, but their uniform motion takes place, not actually on that circle, but on
another circle, which is carried by the first circle, and [hence] is known as the
‘epicycle’. It will be shown that either of these hypotheses will enable [the
planets] to appear, to our eyes, to traverse unequal arcs of the ecliptic (which is
concentric to the universe) in equal times.

In the eccentric hypothesis: [see Fig. 3.1] we imagine the eccentric circle, on
which the body travels with uniform motion, to be ABGD on centre E, with
diameter AED, on which point Z represents the observer.*' Thus A is the
apogee, and D the perigee. We cut off equal arcs AB and DG, and join BE, BZ,
GE and GZ. Then it is immediately obvious that the body will traverse the arcs

2 Corrections to Heiberg’s text: H210, 23-5, column of fourths (for arguments 342, 360 and 378).
A misprint has disrupted the order, which should be A, va, 1, but has become va, 1B, A (51, 12, 30).
H215.38, thirds : e (35): Ag, as Is.

398ee HAMA 55-7, Pedersen 134-44.

1 ‘the observer’; literally ‘our point of view’.

H217
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[l 2. Solar mean motion table

TABLE OF THE SUN’S MEAN MOTION

Distance {in Anomaly] from the Sun’s Apogee in II 5;30° to its Mean
Longitude in the Ist Year ot Nabonassar, 3 0;45° : 265:15°

i8-Year
Periods o , '
18 355 37 25 36 20 34 30
36 351 14 51 12 41 9 0
54 346 52 16 19 1 43 30
72 342 29 42 25 22 18 0
90 338 7 8 1 42 52 30
108 333 44 33 38 3 27 0
126 329 21 59 14 24 1 30
144 324 59 24 50 14 36 0
162 390 36 50 97 5 10 30
180 316 14 16 3 25 15 0
198 311 51 41 39 46 19 30
216 307 29 7 16 & 54 0
234 303 6 32 52 a7 28 30
252 208 43 58 28, 48 3 0
270 204 o1 24 5 1 8 37 30
288 289 58 19 41 | o9 12 0
306 285 36 15 1 17 49 46 30
394 281 13 Wi 54 10 | 0
342 276 51 6 1 30 30 55 30
360 972 28 32 6 51 30 0
378 268 5 57 0 43 112 4 30
396 263 43 23 ‘ 9 32 39 0
14 259 20 # 1 53 | 33 13 30
432 254 58 4 ] 32 o 18 0
450 950 35 0 8 34 09 30
168 246 13 500 w4 54 57 0
186 241 50 32 15 31 30
504 937 97 56 57 36 6 0
592 233 3 20 33 36 40 30
540 998 ¥ 18 10 17 15 0
558 294 20 13 16 37 19 30
576 219 57 39 22 58 24 0
594 215 35 4 59 18 58 30
612 21l 12 30 35 39 33 0
630 206 19 36 12 0 7 30
648 202 27 2l 18 20 42 0
666 198 4 47 94 41 16 3
684 193 42 13 1 1 51 0
702 189 19 38 37 22 25 30
720 184 57 4 13 43 0 0
738 180 34 29 50 3 34 30
756 176 11 55 2% 24 9 0
774 171 49 21 2 44 43 30
792 167 2 46 39 5 18 0
810 163 4 12 15 25 52 30
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—
Single
Years o s e see e reese sesens Months ot e e e s
1 359 145124 {45 | 21 8135 30 29 | 34 8136 |36 15| 30
2 359 [ 30|49 {30421 17|10 60 59 8117131121} 31 0
3 359 116 | 14 | 16 3(25445 90 88 |42 125|149 {48 46| 30
4 359 139 17213412 120 118 | 16 [ 34| 26 |25 2 0
5 358 | 47 314645142155 150 147 | 50 { 43 3 1117(30
6 358 | 32128 |32 61 51130 180 177 124 { 51] 39 [ 37| 33 0
7 358 (171531728 0 5 210 206 | 59 016 |13 ] 48| 30
8 358 3|18 21| 49 8 | 40 240 236 | 33 8152 |50 4 0
9 357 |48 [ 42 148 | 10| 17 | 15 270 266 7117129261 19} 30
10 357 | 34 71331312550 300 295 [ 41 | 26 6 213,41 0
11 357 .19 132 18| 52| 34|25 330 325 | 15134 |42 {38 50| 30
12 357 41|57 41131 43 0 360 354 |49 | 43| 19 | 1S 6 0
13 356 | S0} 21 1491 34| S1 | 35
14 356 | 35|46 | 34 | S6 0110
15 356 | 21 1112014 17 81| 45 Days ° ’ 0 enerrerarne veren
16 356 6136 513817120 | 0 59 g1 17 |13} 127 3L
17 355 | 52 01505925155 2 1 58116341261 25 2
18 355 137125136120 3430 3 2 5712445139} 37} 33
4 3 56 | 33 8 52| 50 4
N 5 4 55 41| 26 6 21 35
Hours ° ! e 6 5 54 {49143 {191 IS5 6
1 0 2127150143 3 1 7 6 53 | 58 0(32]|27] 37
2 0 41554126 6 2 8 7 53 61|17 |45 40 8
3 0 712332 9 9 3 9 8 52 114 | 34 (58] 52} 39
4 0 9 [ S51{22]52]12 5 10 9 S1 12215212 5110
5 0 121191335} 15 6 11 10 50 | 31 9 25| 17| 41
6 0 14 | 47 4|18 18 7 12 11 49 | 39]26 {38301 12
7 0 17 { 14 | 55 12 9 13 12 48 | 47 | 43 | S1 | 42| 43
8 0 19 | 42 14534 24 | 10 14 13 47 | 56 1 41 55| WK
9 0 2110362727111 15 14 | 47 4118 |18 71 45
10 0 24 1 38 {27110 30| 12 16 15 46 | 12135 |31} 20 16
11 0 27 611715313314 17 16 45 | 20| 52 |44 | 32| 47
12 0 29 | 34 81361 3615 18 17 |44 {29 9 57|45 18
13 0 32 115119} 31!16 19 18 43 {37127 |10} 571 49
14 0 34129 |50 214218 20 19 14245 44 | 24 .10 20
15 0 36|57 |40]45| 45 19 21 20 | 41| 54 1137 22 51
16 0 39 |25 31128} 48| 20 22 21 41 2118 150|357 227F
17 0 41 | 53 |22 | 11| 5121 23 22 40 | 10| 36 3147 53
18 0 44 {21 [ 12154 54 1 23 24 23 39 (1853117 0} 24
19 0 46 | 49 313715724 25 24 38 |27-1 10 |30 12| 55
20 0 49 | 16 | 54 | 21 025 26 25 37 135(27 (43| 25| 26
21 0 511 44 | 4S5 4 327 27 26 36 143 44 |56 37| 57
22 0 54121351 47 6|28 28 27 3552 2 91 50| 28
23 0 5614026 30 9129 29 28 35 0f 19|23 2159
24 0 59 817 13]12] 31 30 29 | 34 8136 |36 15] 30
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A

0

Fig. 3.1

AB and GD in equal times. but will {in so doing] appear to have traversed
unequal ares of a circle drawn on centre Z. For
£ BEA = Z GED.
But £ BZA < £ BEA (or Z GED),
and £ GZD >/ GED (or £ BEA).

In the epicvclic hypothesis: we imagine [see Fig. 3.2] the circle concentric
with the ecliptic as ABGD on centre E. with diameter AEG. and the epicycle
carried by it, on which the body moves, as ZHOK on centre A.

Then here too it is immediately obvious that, as the epicycle traverses circle
ABGD with uniform motion, say from A towards B, and as the body traverses
the epicycle with uniform motion, then when the body is at points Z and ©. it
will appear to coincide with A, the centre of the epicycle, but when it is at other
points it will not. Thus when it is, e.g., at H, its motion will appear greater than
the uniform motion [of the epicycle] by arc AH, and similarly whenitisat K its
motion will appear less than the uniform by arc AK.

Now in this kind of eccentric hypothesis*® the least speed always occurs at the
apogee and the greatest at the perigee, since Z AZB [in Fig. 3.1] is always less
than £ DZG. But in the epicyclic hypothesis both this and the reverse are
possible. For the motion of the epicycle is towards the rear with respect to the
heavens, say from A towards B [in Fig. 3.2]. Now if the motion of the body on
the epicycle is such that it too moves rearwards from the apogee, that is from Z
towards H, the greatest speed will occur at the apogee, since at that point both

32 Prolemy is hinting at the existence of another kind of eccentric hypothesis, one which is
geometrically equivalent to that epicyclic hypothesis in which the sense of rotation is the same for
both planet and epicycle. But he does not discuss this until XII 1 (p. 555), where we learn that the
cquivalence was already known to Apollonius of Perge (c. 200 B.C.). See HAMA 149-
50. k
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G

Fig. 3.2

’

epicycle and body are moving in the same direction. But if the motion of the
body from the apogee is in advance on the epicycle, that is from Z towards K,
then the reverse will occur: the least speed will occur at the apogee, since at that
point the body is moving in the opposite direction to the epicycle.

Having established that, we must next make the additional preliminary
point that for bodies which exhibit a double anomaly both the above
hypotheses may be combined, as we shall prove in our discussions of such '
bodies, but for a body which displays a single invariant anomaly, a single one of
the above hypotheses will suffice; and [in this case] all the phenomena will be
represented, with no diflerence, by either hypothesis, provided that the same
ratios are preserved in both. By this I mean that the ratio, in the eccentric
hypothesis, of the distance between the centre of vision and the centre of the
eccentre to the radius of the eccentre, must be the same as the ratio, in the
epicyclic hypothesis, of the radius of the epicycle to the radius of the deferent;3

and furthermore that the time taken by the body, travelling towards therear, to  H220

traverse the immovable eccentre, must be the same as the time taken by the
epicycle, also travelling towards the rear, to traverse the circle with the observer
as centre [the deferent], while the body moves with equal [angular] speed about
the epicycle, but so that its motion at the apogee [of the epicycle] is in advance.

If these conditions are fulfilled, the identical phenomena will result from

either hypothesis. We shall briefly show this {[now] by comparing the ratios in™
abstract, and later by means of the actual numbers we shall assign to them for

$deferent’: see Introduction p. 21.
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the sun’s anomaly.?* I say then, first, that in both hypotheses, the greatest
difference between the uniform motion and the apparent, non-uniform motion
(which is also the notional position of the mean speed for the bodies)*® occurs
when the apparent distance from the apogee comprises a quadrant, and that
the time between apogee [position} and the above-mentioned mean speed
[position] is greater than the time between mean speed and perigee. Hence, for
the eccentric hypothesis always, and for the epicyclic hypothesis when the
motion at apogee is in advance, the time from least speed to mean is greater
than the time from mean speed to greatest; for in both hypotheses the slowest
motion takes place at the apogee. But [for the epicyclic hypothesis] when the
sense of revolution of the body is rearwards from the apogee on the epicycle, the
reverse is true: the time from greatest speed to mean is greater than the time
from mean to least, since in this case the greatest speed occurs at the apogee.

First, then, [see Fig. 3.3] let the body’s eccenter be ABGD on centre E, with
diameter AEG. On this diameter take the centre of the ecliptic, that is, the
position of the observer, at Z, and draw BZD through Z at right angles to AEG.
Let the positions of the body be B and D, so that, obviously, its apparent
distance {rom apogee A is a quadrant on cither side. We have to prove that the
greatest difference between mean and anomalistic motion takes place at points
B and D.

Join EB and ED.

It is immediately obvious that the ratio of £ EBZ to 4 right angles equals the

A

G

Fig. 3.3

H Reierence to 111 4 p. 157.

' Ptolemy never attempts to prove this statement about the position where the apparent motion
cquals the mean motion, but it is intuitively scen to be true from the epicyclic model. See HAMA 57,
Pedersen 143.
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ratio of the arc of the difference due to the anomaly*® to the whole circle; for
£ AEB subtends the arc of the uniform motion, and Z AZBsubtends the arcofthe
apparent, non-uniform motion, and the difference between them is Z EBZ..

I say, then, that no angle greater than these two {£ EBZ and £ EDZ] can be
constructed on line EZ at the circumference of circle ABGD.

[Proof: ] Construct at points © and K angles E®Z and EKZ, and join ®D, KD.
Then since, in any triangle, the greater side subtends the greater angle,*’
and ©Z >2ZD,
L L ODZ > £ DOZ.
But £ ED® = £ E®D, since E@ = ED [radiil].
Therefore, by addition, Z EDZ (=£ EBD) > £ E@Z.
Again, since DZ >KZ,
£ ZKD >/ ZDK.
But £ EKD = £ EDK, since EK = ED.
Therefore, by subtraction, £ EDZ (= £ EBZ) >/ EKZ.
Therefore it is impossible for any other angle to be constructed in the way
defined greater than those at points B and D. '

Simultaneously it is proven that arc AB, which represents the time from least
speed to mean, exceeds BG, which represents the time from mean speed to
greatest, by twice the arc comprising the equation of anomaly. For Z AEB
exceeds a right angle (£ EZB) by £ EBZ, and £ BEG falls short of a right angle
by the same amount.

To prove the same theorem again for the other hypothesis, let [Fig. 3.4] the
circle concentric with the universe be ABG on centre D and diameter ADB, and
let the epicycle which is carried around it in the same plane be EZH on centre
A. Let us suppose the body to be at H when its apparent distance from the
apogee is a quadrant. Join AH and DHG.

I'say that DHG is tangent to the epicycle; for that is the position in which the

difference between uniform and anomalistic motion is greatest.
[Proof:] The mean motion, counted from the apogee, is represented by Z EAH:
for the body traverses the epicycle with the same [angular] speed as the epicycle
traverses circle ABG. Furthermore the difterence between mean and apparent
motion is represented by £ ADH. Therefore it is clear that the amount by which
£ EAH exceeds £ ADH (namely £ AHD) represents the apparent distance of
the body from the apogee. But this distance is, by hypothesis, a quadrant.
Therefore £ AHD is a right angle, and hence line DHG is tangent to epicycle
EZH. Therefore arc AG, since it comprises the distance between the centre A
and the tangent, is the greatest possible difference due to the anomaly.

By the same reasoning, arc EH. which according to the sense of rotation on

*This expression is later used as a technical term for the angle corresponding to Z EBZ here, and
is usually translated ‘equation of anomaly’. See Introduction pp. 21-2.

*Precisely this statement, that the greater angle is subtended by the greater side, is the -
enunciation of Euclid I 19 (which Heiberg refers to ad loc.). But in fact what underlies Ptolemy'$*.

statement is that, if side a is greater than side 4, angle A is greater than angle B, which is Euclid I 18.
Perhaps we should adopt the reading of D, bnd thv peilova mhevpdv i peifov yovia droteiver
(‘the greater angle subtends the greater side’), and assume that the text has been assimilated to the
(wrong) Euclidean wording. '
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B

Fig. 3.4

the epicycle assumed here, represents the time from least speed to mean,
exceeds arc HZ, which represents the time from mean speed to greatest, by
twice arc AG. For if we produce DH to © and draw AK® at right anglesto EZ,
£ KAH = £ ADG,*
and arc KH = arc AG.»
And arc EKH is greater than a quadrant by arc KH,
while arc ZH is less than a quadrant by arc KH.
Q.E.D.
It is also true that the same effects will be produced by both hypotheses if one
takes a partial motion over the same stretch of time for both, whether one
considers the mean motion or the apparent, or the difference between them,
that is the equation of anomaly. The best way to see that is as follows.
[See Fig. 3.5.]* Let the circle concentric with the ecliptic be ABG on centre
D, and let the circle which is eccentric but equal to the concentre ABG be EZH
on centre ©. Let the common diameter through their centres D, @ and the

3 Euclid VI 8.

#To get a grammatical text I excise dpoia at H225,4. It was introduced (at an early period, since
it is reflected in the Arabic translations) as a correction of Ptolemy’s inaccurate (to the scholastic
mind) statement that arc KH equals arc AG. Since the arcs are on circles of different sizes, thcy are
technically only ‘similar’. An alternative correction would be icai pEv yiyvovra ai te b6 KAH
xai AAH yoviau (which is actually found in Theon's commentary ad loc., Rome I1I 868,8, but is
probably a paraphrase; it also seems to be behind L).

*The ligure in Heiberg (p. 225) wrongly omits the letter corrcspondmg to L (though this is found
in all mss.). Manitius, misied by this, ‘emended’ AA at H226,23 to the nonsensical ‘AB’.
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apogee E be EA®D. Cut off at random af arc AB on the concentre, and with
centre B and radius D@ draw the epicycle KZ. Join KBD.

I say that the body will be carried by both kinds of motion {i.e. according to -
both hypotheses] to point Z, the intersection of the eccentre and the epicycle, in

the same time in all cases (that is, the three arcs, EZ on the eccentre, AB on the

E

Fig. 3.5

concentre, and KZ on the epicycle, are all similar), and that the difference
between uniform and anomalistic motion, and the apparent positions of the
body, will turn out to be one and the same according to both hypotheses.
{Proof:] Join Z©, BZ and DZ.
Since, in the quadrilateral BDOZ, the opposite sides are equal, ZO to BD and
BZ 10 DO, BDOZ is a parallelogram.
Therefore £ EOZ = £ ADB = £ ZBK.

Therefore, since they are angles at the centre [of circles], the arcs subtended
by them are also similar, i.e.

-

Arc EZ of the eccentre || arc AB of the concentre || arc KZ of the epicycle.

Therefore the body will be carried by both kinds of motions in the same time
to the same point, Z, and will appear to have traversed the same arc AL of the
ecliptic from the apogee, and accordingly the equation of anomaly will be the
same in both hypotheses; for we showed that that equation is represented by
£ DZ® in the eccentric hypothesis and by Z BDZ in the epicyclic hypothesis, and
these two angles are alternate and equal, since, as we have shown, Z@ is parallcl -
to BD.

It is obvious that the same results will hold good for all distances [of the body
from the apogee]. For quadrilateral @ DZB will always be a parallelogram, and
[hence] the motion of the body on the epicycle will actually describe the

H226
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eccentric circle, provided the ratios*! are similar and their members equal in
both hypotheses.

Moreover, even if the members are unequal in size, provided their ratios are
similar, the same phenomena will resuit. This can be shown as follows.

As before {see Fig. 3.6] let the circle concentric with the universe be ABG on
centre D and the diameter, on which the body reaches apogee and perigee
positions. ADG. Let the epicycle be drawn on point B, at an arbitrary distance,
arc AB, from apogee A. Let the arc traversed by the body {on the epicycle] be
EZ, which is, obviously, similar to AB, since the revolutions on {both] circles
have the same period. Join DBE, BZ, DZ.

G

Fig. 3.6

Now it is immediately obvious that, according to this [epicyclic] hypothesis,
£ ADE will always equal Z ZBE, and the body will appear to lie on line DZ.

But I say that the body will also appear to lie on the same line DZ according
to the eccentric hypothesis, whether the eccentre is greater or smaller than the
concentre ABG, provided only that one assumes that the ratios are similar and
that the periods of revolution are the same.
[Proof:] Let the eccentre be drawn under the conditions we have described,
greater [than the concentre} as HO on centre K ([which must lie] on AG), and

*'The ratios are e:R and =R.
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smaller [than the concentre] as LM on centre N (this too [must lie on AGY).
Produce DZ as DMZ®, and DA as DLAH, and join ©K, MN.

Then since

DB:BZ = ©K:KD = MN:ND [by hypothesis],
and Z BZD = £ MDN (since DA is parallel to BZ); H229

the three triangles {ZDB,DOK,DMN] are equiangular,
and £ BDZ = £ DOK = £ DMN (angles subtended by corresponding sides).

Therefore DB, ®K and MN are parallel.

~ £ ADB =/ AKO =/ ANM.

Since these angles are at the centres of their circles, the arcs on them, AB, HO
and LM, will also be similar.

So it is true, not only that the epicycle has traversed arc AB in the same time
as the body has traversed arc EZ, but also that the body will have traversed arcs
HO and LM on the eccentres in that same time; hence in every case it will be
seen along the same line DMZ®, according to the epicyclic [hypothesis] at -
point Z, according to the greater eccentre at point ®. and according to the
smaller cccentre at point M. The same will hold true in all positions.

A further consequence is that where the apparent distance of the body from
apogee [at one moment] equals its apparent distance from perigee [at another],
the equation of anomaly will be the same at both positions.

{Proof:] In the eccentric hypothesis {see Fig. 3.7], we draw the eccentric circle

’

A

G

Fig. 3.7

ABGD on centre E and diameter AEG through apogee A. We suppose the, H230
observer to be located at Z, and draw an arbitrary {chord] BZD through Z, and
join EB and ED. Then the apparent positions [ of the body at B and D] will be
equal and opposite, that is the angle AZB from the apogee will be equal and
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opposite to angle GZD from the perigee; and the equation of anomaly will be
the same [in both cases), since
BE = ED, and £ EBZ = £ EDZ.
So the arc [AB] of mean motion counted from the apogee A will exceed the arc of
apparent motion (i.e. the arc subtended by angle AZB) by the same equation
[equal to Z EBZ] as the arc of mean motion counted from the perigee G is
exceeded by the arc of apparent motion (i.e. the [equal] arc subtended by
£ GZD). For
£ AEB >/ AZB, and £ GED < £ GZD.

In the epicyclic hypothesis [see Fig. 3.8] if, as before, we draw the concentre
ABG on centre D and diameter ADG, and the epicycle EZH on centre A, draw
an arbitrary line DHBZ, and join AZ and AH, then the arc AB representing the
equation of anomaly will be the same at both positions, i.e. whether the body is

G

Fig. 3.8

at Z or at H. And the distance of the body from the point on the ecliptic
corresponding to the apogee when it is at Z will be equal to its distance from the
point corresponding to the perigee when it is at H. For the arc of its apparent
distance from the apogee is represented by £ DZA, since, as we showed, this is
the difference between the mean motion and the equation of anomaly.*? And
the arc of its apparent distance from the perigee is represented by £ ZHA (for
this, too, is equal to the mean motion from the perigee plus the equation of
anomaly).
But £ DZA = £ ZHA, since AZ =-AH.

2/ DZA = £ EAZ-£ ADZ. Shown p. 147.
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Thus here toc we conclude that the mean motion exceeds the apparent near
the apogee (i.e. £ EAZ exceeds Z AZD) by the same equation (namely Z ADH)
as the mean motion is exceeded by the (same) apparent motion (i.e. Z HAD by
£ AHZ) near the perigee.

, Q.E.D.

4. {On the apparent anomaly of the sun}*®

Having set out the above preliminary theorems, we must add a further
preliminary thesis concerning the apparent anomaly of the sun. This hasto be a
single anomaly, of such a kind that the time taken from least speed to mean shall
always be greater than the time from mean speed to greatest, for we find that
this accords with the phenomena. Now this could be represented by either of the
hypotheses described above, though in case of the epicyclic hypothesis the
motion of the sun on the apogee arc of the epicycle would have to be in advance.
However, it would seem more reasonable to associate it with the eccentric
hypothesis, since that is simpler and is performed by means of one motion
instead of two.**

Our first task is to find the ratio of the eccentricity of the sun’s circle, that is,
the ratio which the distance between the centre of the eccentre and the centre of
the ecliptic (located at the observer) bears to the radius of the eccentre. We must
also find the degree of the ecliptic in which the apogee of the eccentre is located.
These problems have been solved by Hipparchus with great care.*> He assumes
that the interval from spring equinox to summer solstice is 94 days, and that the
interval from summer solstice to autumnal equinox is 92} days, and then, with
these observations as his sole data, shows that the line segment between the
above-mentioned centres [of eccentre and ecliptic] is approximately sith of the
radius of the eccentre, and that the apogee is approximately 244° (where the
ecliptic is divided into 360°) in advance of the summer solstice. We too, for our
own time, find approximately the same values for the times{taken by the sun to
traverse] the above-mentioned quadrants, and for those ratios. Hence it is clear
to us that the sun’s eccentre always maintains the same position relative to the
solsticial and equinoctial points.*®

In order not to neglect this topic, but rather to display the theorem worked
out according to our own numerical solution, we too shall solve the problem, for
the eccentre, using the same observed data, namely, as already stated, that the
interval from spring equinox to summer solstice comprises 944 days, and that

*$3See HAMA 57-8, Pedersen 144-9.

#On the desirability of simplicity in hypotheses see III 1 p. 136 with n.17.

* Reading peta ndong orovdfig (with D, Ar) at H233,1-2 for petd orouvdfig (‘with care’).

46 According to Ptolemy the sun’s apogee (unlike those of the five planets, as it later turns out, IX
7) does not share in the motion of precession. The reproaches that have been cast on Ptolemy (c.g.

by Manitius I 428-9) for failing to discover that the sun's apogee too has a motion through the:’

ecliptic are unjustified. To do that he would have needed observations of the time of equinox and
solstice far more accurate than those available (to the nearest §-day), and not only for his own time
but also for an ecarlier time. See the papers by Rome{3] and Petersen and Schmidt for a
mathematical demonstration of this.
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from summer solstice to autumnal equinox 92 days. For our own very precise
observations of the equinoxes and the summer solstice in the 463rd year from
the death of Alexander confirm the day-totals in these intervals: as we said,
[II1 1, p. 138], the autumnal equinox occurred on Athyr [III] 9, [139 Sept. 26],
after sunrise, the spring equinox on Pachon [IX] 7 [140 March 22], after noon
(thus the interval [between them] is 1784 days), and the summer solstice on
Mesore [XII] 11/12, [140 June 24/25], after midnight. Thus this interval, from
spring equinox to summer solstice, comprises 944 days, which leaves approxi-
mately 924 days to complete the year; this number represents the interval from
the summer solstice to the following autumnal equinox.*’

(See Fig. 3.9.] Let the ecliptic be ABGD on centre E. In it draw two
diameters, AG and BD, at right angles to each other, through the solsticial and
equinoctial points. Let A represent the spring [equinox], B the summer
[solstice], and so on in order.

G
Fig. 3.9

Y In I | the precise times of day given are *1 houraltersunrise’. ‘| hour after noon’ and "2 hours
after midnight’. Thus the precise intervals are 178} days and 94° 13", leading to corrected figures of
94" 13" and 92" 11" for the intervais used in the computation. But see p. 139 n.23 for the possibility
that the time of solstice is ‘2 seasonal hours’ (=11 equinoctial hours). Even as small a change as |
hour in an interval has an effect of about 1° in the location of the apogee (cf. Petersep and Schmidt
80-3 and Rome(3] 13-15).
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Now it is clear that the centre of the eccentre will be located between lines EA
and EB. For semi-circle ABG comprises more than half of the length of the year,
and hence cuts off more than a semi-circle of the eccentre; and quadrant AB too
comprises a longer time and cuts off a greater arc of the eccentre than quadrant
BG. This being so, let point Z represent the centre of the eccentre, and draw the
diameter through both centres and the apogee, EZH. With centre Z and
arbitrary radius draw the sun’s eccentre © KLM, and- draw through Z lines
NXO parallel to AG and PRS parallel to BD. Draw perpendicular © TY from
© to NXO and perpendicular KFQ from K to PRS.

Now since the sun traverses circle @ KLM with uniform motion, it will
traverse arc ®K in 94 days, and arc KL in 924 days. In 943 days its mean
motion is approximately 93;9°, and in 92} days 91;11°. Therefore

arc OKL = 184;20°
and, by subtraction of the semi-circle NPO [from arc ®KL},
arc NO + arc LO [= 184;20° - 180°] = 4;20°
So arc ONY = 2 arc ON = 4;20° also,
5 @Y = Crd arc ONY =~ ¢4;32° }where the diameter of
and EX = OT = 10Y =2:16" the eccentre = 120°,
Now since arc ©NPK = 93;9°,
and arc ON = 2;10° and quadrant NP = 90°,
by subtraction, arc PK = 0;59°,
and arc KPQ = 2 arc PK = 1:58°.
"~ . KFQ = Crd arc KPQ = 2:4". | whete the diameter
and ZX = KF = iKFQ = 1;2° [ of the eccentre = 120°.
And we have shown that EX = 2:16" in the same units.
Now since EZ? = ZX* + EX?,
EZ = 2:29%® where the radius of the eccentre = 60°.
Therefore the radius of the eccentre is approximately 24 times the distance
between the centres of the eccentre and the ecliptic.
Now. since EZ:ZX = 2:20 : 1,2,
ZX will be about 49;46° where hypotenuse EZ = 120°.
Therefore, in the circle about right-angled triangle EZX,
arc ZX = 49°,
.~/ ZEX = {49°° where 2 rigl'ft angles = 360°°
24;30° where 4 right angles = 360°°.
So, since £ ZEX is an angle at the centre of the ecliptic, arc BH, which is
the amount by which the apogee at H is in advance of the summer solstice
at B, is also 24;30°.
Furthermore, since quadrants OS and SN are each 90°,
and arc OL = arc ©N =2;10°,
and arc MS = 0;59°,
~ arc LM = 86;51°,
and arc MO = 88;49°.
But the sun in its uniform motion travels
86;51° in about 884 days,

and 88;49° in about~90é days.

Hence it is clear that the sun will traverse arc GD, which extends from the
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autumnal equinox to the winter solstice, in about 884 days, and arc DA, which
extends from the winter solstice to the spring equinox, in about 904 days. The
above conclusions are in agreement with what Hipparchus says.
Using these quantities, then, let us first see what the greatest difference
between mean and anomalistic motions is, and at what points it wiil occur.
[See Fig. 3.10.] Let the eccentric circle be ABG on centre D and diameter
ADG through the apogee A, on which E represents the centre of the ecliptic.
Draw EB at right angles to AG, and join DB.
Now since, where BD, the radius, equals 60°, DE, the eccentricity, equals
2;30° (according to the ration 24:1),
in the circle about right-angled triangle BDE,
DE = 5° where hypotenuse BD = 120°,
and arc DE = 4;46°.
Therefore Z DBE, which represents the greatest equation of anomaly,
_ 14;,46°° where 2 right angles = 360°°
~ 1 2;23° where 4 right angles = 360°.
In the same units, right angle BED = 90°,
and £ BDA = Z DBE + £ BED = 92;23°.

A

G

Fig. 3.10

Thus, since Z BDA is at the centre of the eccentre and Z BED is at the centre of the
ecliptic, we conclude that the greatest equation of anomaly is 2;23°, and the
position where it occurs is 92;23° from the apogee, measured along the eccentre
in uniform motion, and (as we proved earlier) a quadrant, or 90° [from the
apogee], measured along the ecliptic in anomalistic motion. It is obvious from
our previous results that in the opposite semi-circle*® the mean speed and the
greatest equation of anomaly will occur at 270° of apparent motion, and at
267;37° of mean motion on the eccentre.

*¥Reading NuikvxkAtov (with D,Ar) for tufijpa (‘segment’) at H239,12.
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We now want to use numerical computation, as we promised {pp. 145-6], to
show that one derives the same quantities from the epicyclic hypothesis too,
provided the same ratios are preserved in the way we explained.

[See Fig. 3.11.] Let the circle concentric to the ecliptic be ABG on centre D
and diameter ADG, and the epicycle circle EZH on centre A. From D draw a
tangent to the epicycle, DZB, and join AZ. Then, as before, in the right-angled
triangle ADZ, AD is 24 times AZ, so that, in the circle about right-angled
triangle ADZ, AZ is, again, 5° where hypotenuse AD is 120°, and the arcon AZ
is 4;46°.

. 4;46°° where 2 right angles = 360°°

"4 ADZ = {2;23° where 4 right angles = 360°.

G

Fig. 3.11

Therefore the greatest equation of anomaly, namely arc AB, has been found to
be 2:23° here too. in agreement with [the previous result]. and the arc of
anomalistic motion is 90°, since it is represented by the right angle AZD, while
the arc of mean motion. which is represented by £ EAZ, is again 92:23°.

5. {On the construction of a table for individual subdivisions of the anomaly}*

In order to enable one to determine the anomalistic motion over any

¥ R eading 1dv dvopaiidv xavovoroiiag at H240.16-17. with D (cf. all Greek mss. in the table
of contents, H190.9-10) for tig dvouahriag émokéyewg (‘investigation of the anomaly for partial
stretches’. which is the reading of Ar in both places).

On chs. 5 and 6 see HAM.1 58-60. Pedersen 149-51.

SR S
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subdivision {of the circle], we shall show, again for both hypotheses, how, given
one of the arcs in question, we can compute the others.

H241 [See Fig. 3.12.] First, let the circle concentric to the ecliptic be ABG on centre
D, the eccentre EZH on centre ®, and let the diameter through both centres
and the apogee E be EAODH. Cut off arc EZ, and join ZD, Z®. First, let arc
EZ be given, e.g. as 30°.

Fig. 3.12

Produce ZO® and drop the perpendicular to it from D, DK.
Then, since arc EZ is, by hypothesis, 30°,
_ _ 1 30° where 4 right angles = 360°
£ EOZ=/DOK = {60°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle DOK,
arc DK = 60°
and arc KO = 120° (supplement).
Therefore the corresponding chords
- P
and gg ; ?83;55,, } where hypotenuse DO = 120°.
Therefore, where DO = 2;30° and radius ZO = 60°,
DK = 1;15° and OK = 2;10".
H242 Therefore, by addition [of @K to radius Z®), KOZ = 62;10"
Now since DK? + KOZ? = ZD?,
the hypotenuse ZD= 62;11°.
Therefore, where ZD = 120°, DK = 2;25°,
and, in the circle about right-angled triangle ZDK,
arc DK = 2;18°.
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. _ 12;18° where 2 right angles = 360°°

* ¢ DZK = {1;9" where 4 right angles = 360°.

That [1;9°] will be the amount of the equation of anomaly at this position.
And £ E©®Z was taken as 30°. ’

Therefore, by subtraction, Z ADB (which equals arc AB of the ecliptic) equals

28;51°.

Furthermore, if any other of the [relevant] angles be given [instead of

£ E®Z], the remaining angles will be given, as is immediately obvious if, in the
same figure [see Fig. 3.13] we drop perpendicular ©L from © on to ZD.

Fig. 3.13

For suppose first that arc AB of the ecliptic, i.e. Z ®DL, is given. Then the
ratio D@:OL will be given.*® And since DO:OZ is also given, @Z:0OL will be
given.”' Hence £ ®ZL, the equation of anomaly, will be given.’? and so will
L EOZ, i.e. arc EZ of the eccentre.

Or suppose, secondly, that the equation of anomaly, i.e. Z ©®ZD, is given: we
will get the same results in reverse order. For from £ ©ZD the ratio®Z:©L will
be given, and ®Z:0D is given from the beginning. Hence DO:©@L will be given,
and hence Z ®DL, i.e. arc AB of the ecliptic, and [hence] £ EQZ, i.e. arc EZ of
the eccentre.

% Euclid Data 40: if the angles of a triangle are given, its sides are given in form (i.e. the ratio of the -

sides is given, cf. Data 3). -
5! Euclid Data 8: magnitudes having a given ratio to the same magnitude have a given ratio to
each other. D@:@Z is given as the ratio of eccentricity.
52 Euclid Data 43: if, ina right-angled triangle, the sides about one of the acute angles have a given
ratio, the triangle is given in form (cf. n.50).

H243
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Next [see Fig. 3.14] let the circie concentric with the ecliptic be ABG on
centre D and diameter ADG, and let the epicycle (in the same ratioto circle ABG
as the eccentricity to the eccentre]) be EZH® on centre A. Cut offarc EZ and join
ZBD and ZA. Let arc EZ again be taken in the same amount, 30°. Drop
perpendicular ZK from Z on to AE.

E
Fd

/o
/D

G

Fig. 3.14

Since arc EZ = 30°,

_ ] 30° where 4 right angles = 360°
£EAZ = {60°° where 2 right angles = 360°°,
Therefore in the circle about right-angled triangle AZK,
H244 arc ZK = 60°
and arc AK = 120° (supplement).
Therefore the corresponding chords
ZK = 60° .
and KA = 103:55° }where the diameter AZ = 120°.
Therefore where hypotenuse AZ = 2;30° and radius AD = 60°
ZK = 1;15°, KA = 2;10°,
and, by addition, KAD = 62;10".
And since ZK? + KD? = ZBD?,
ZD = 62;11°, where ZK = 1;15".
So where hypotenuse DZ = 120°, ZK = 2;25°,
and, in the circle about right-angled triangle DZK,
arc ZK = 2:18°. )
. _ 1 2;18° where 4 right angles = 360°°
* £ ZDK = { 1;9° where 2 right angles = 360°.
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This is, again, the amount of the equation of anomaly, which is represented by
arc AB.

And £ EAZ was taken as 30°.
Therefore, by subtraction, Z AZD, which represents the arc of apparent motion
on the ecliptic, is 28;51°.

These amounts are in agreement with what we found for the eccentric
hypothesis.

Here too, if any other angle be given [instead of £ EAZ], the remaining angles
will be given, [as can be seen] on the same figure [see Fig. 3.15] if the
perpendicular AL is dropped from A on to DZ.

G

Fig. 3.15

For if, as before, we first take the arc of apparent motion on the ecliptic, i.e.
£ AZD, as given, from this the ratio ZA: AL will be given. And since ZA:AD was
given from the beginning, DA: AL will be given. Hence Z ADB will be given, i.e.
arc AB, the arc of the equation of anomaly, and sowillZ EAZ, i.e. arc EZ of the
epicycle.

Of if, secondly, we take the equation of anomaly, i.e. ZADB, as given, then, in
the same way but in reverse order, from this AD:AL will be given; and since
DA:AZ was given from the beginning, ZA:AL will also be given; and hence

£ AZD will be given, which corrcsponds to the arc of apparent motion on the

ecliptic, and so will Z EAZ, i.e. arc EZ of the epicycle.

Let us again take the previous figure for the eccentre [see Flg 3.16], and cut
off from H, the perigee of the eccentre, arc HZ, which we again take as 30°. Join
DZB and Z®, and drop perpendicular DK from D on to ©®Z.

H245
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E

Fig. 3.16

Then since arc ZH = 30°,
_ J 30° where 4 right angles = 360°
¢ Z@H = { 60°° where 2 right angles = 360°°,
Therefore in the circle about right-angled triangle DOK,
arc DK = 60°
and arc KO = 120° (supplement).
Therefore the corresponding chords
- P
and gg ; ?83;559} where diameter DO = 120°.
Therefore where hypotenuse D® = 2;30° and radius ®Z = 60°,
DK = 1;15® and OK = 2;10°,
and KZ = 57;50° by subtraction [of ©K from ©Z]
And since DZ? = DK? + KZ?%
DZ = 57;51° where DK = 1;15".
Therefore where hypotenuse DZ = 120°, DK = 2;34°.%°
And, in the circle about right-angled triangle DZK,
arc DK = 2;27°.
-/ DZK = {2;2700 where 2 right angles = 360°°
1;14° (approximately) where 4 right angles = 360°.

5} Reading § A8 for B A8 Ag (2:34,36) at H247,6, with Ar. Accurate computation gives 2;35,34 (cf,
reading of D%), but Ptolemy gives his results here only to minutes, and 2;34 is correct. since Crd 2:27°
= 233,55 = 2;34". The 36 was presumably a marginal correction to the 34 (cf. veading of D at
H249,20), which was later mistakenly incorporated as an extra place. The same correction has to be
made at H249,20 (both made by Manitius).
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This [1;14°], then, is the equation of anomaly.

And since Z ZOH was taken as 30°,
by addition, £ BDG, i.e. arc GB of the ecliptic, equals 31;14°.

Here too, in the same way [as before], [see Fig. 3.17], we produce BD and
drop perpendicular ®L on to it.

Fig. 3.17

Then if, first, we take arc GB of the ecliptic, i.e. Z @ DL, as given, from this the
ratio D®:OL will be given. And since ®@D:®Z was also given from the
beginning, ZO:OL will be given. Hence we will have as given angles

Z OZD, i.e. the equation of anomaly

and £ ZOD, i.e. arc HZ of the eccentre.

Or if, secondly, we take the equation of anomaly, i.e. Z @ZD, as glven then
conversely, from this ZO:OL will be given. And since Z@:©D was also given
from the beginning, DO:OL will be given. Hence we will have, as given angles,

£ ®DL, which corresponds to arc GB of the ecliptic ’
and Z ZOH, i.e. arc HZ of the eccentre.

Similarly, on the previous figure of concentre and epicycle [see Fig. 3.18], we
cut off arc @H from the perigee, in the same amount of 30°, join AH and DHB,
and drop perpendicular HK from H on to AD. ’

Then since arc OH is again 30°,

_ } 30° where 4 right angles = 360°
£ OAH = {60°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle HKA,

arc HK = 60°

and arc AK = 120° (supplement).

H248

-~

H249
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G

Fig. 3.18

Therefore the corresponding chords
HK = 60°
and AK = 103;55°
Therefore where AH = 2;30° and radius AD = 60°,
HK = I;15°, AK =2;10° and KD = 57;50°, by subtraction.
and since HK? + KD? = DH?,
DH = 57;51° where KH = 1;15°.
Therefore where hypotenuse DH = 120°
) HK = 2;34°,
and, in the circle about DHK, arc HK = 2;27°.
- / HDK = {2;27"0 where 2 right angles = 360°°
H250 1;14° (approximately) where 4 right angles =360°.
Here too, then, that is the size of the equation of anomaly, i.e. arc AB.

And since Z KAH was taken as 30°, by addition, £ BHA, which represents
the apparent motion on the ecliptic [counted from perigee], is 31;14°. These
amounts agree with those found for the eccentric [hypothesis].

Here too, in the same way [as before], we drop perpendicular AL on to DB
[see Fig. 3.19].

Then if, first, we take the arc of the ecliptic, i.e. £ AHL, as given, from this the
ratio HA:AL will be given. And since HA:AD was given from the beginning,
DA:AL will be given. Thence we will have as given angles

£ ADB, i.e. arc AB, representing the equation of anomaly

and Z ®AH, 1.e. arc OH of the epicycle.

Or if, secondly, we take as given arc AB, representing the equation of

where hypotenuse AH = 120°.
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G

Fig. 3.19
anomaly, i.e. Z ADB, then, in the same way but in reverse order, from this the
ratio DA:AL will be given. And since DA:AH is given from the beginning,
HA:AL will also be given. Hence we will have as given angles
£ AHL, i.e. the arc of the ecliptic
and £ ©AH, i.e. arc ©H of the epicycle.
Thus we have proved what we set out to do.

In order to have conveniently available the amount of the correction for any
given position, [we want] to establish a table, subdivided into [appropriate]
sections, for the computation of the apparent positions from the anomaly. The
above theorems would allow a wide variety in the form of such a table,* but we
prefer that form in which the argument is the mean motion and the function is
the equation of anomaly.*® For this form accords well with the actual theories,
and it also provides a simple but highly practical way of computing any desired
result. So using the first set of theorems [i.e. with the eccentric hypothesis] which
we used in the numerical examples above, we computed geometrically, in the
way described, for the individual subdivisions [of the circle], the equation of
anomaly corresponding to the arc of mean motion. In general, both for the sun
and for the other bodies, we divided the quadrants near the apogee® into 15
subdivisions (thus in these quadrants the interval of tabulation is 6°), and the

5* Ptolemy means that theoretically one could take as argument either the mean motion (%), the’

true position (x), or the equation (0).
55 Literally ‘which contains the equations of anomaly corresponding to the arcs of mean motion’.
36 Reading ®pdg toig amoyeiolg (with all mss.) for 1pdg dnoyeiowg (misprint in Heiberg) at
H251.24. Corrected by Manitius.
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166 11 7. Epoch of solar mean motion

quadrants near the perigee into 30 subdivisions (thus in these the interval of
tabulation is 3°). The reason is that the differences between [successive}
equations of anomaly, for equal subdivisions [of the argument], are greater near
the perigee than near the apogee.

We shall set out the table of the sun’s anomaly, then, in 45 lines, as before, and
3 columns. The first two columns will contain the numbers of the mean motion
through 360°: the first 15 lines will comprise the two quadrants near the apogee,
the next 30 the two quadrants near the perigee. The third column will contain
the degrees of equation of anomaly to be added or subtracted, corresponding to
the appropriate mean motion. The table is as follows.

6. {Table of the sun’s anomaly}

[See p. 167.]

7. {On the epoch of the sun's mean motion}®

It remains to establish the epoch of the sun’s mean motion, in order to be able to
compute the particular position for any given time. In making our exposition of
that matter, we shall again use® those positions of the body which we ourselves
have observed most accurately (this is our general rule both for the sun and for
the other planets), but we use the mean motions we have derived to compute
back to the beginning of the reign of Nabonassar for the epochs we establish. For
that is the era beginning from which the ancient observations are, on the whole,
preserved down to our own time.>’

[See Fig. 3.20.] Let the circle concentric with the ecliptic be ABG on centre
D, and the sun’s eccentre EZH on centre ©, and let the diameter through both
centres and the apogee E be EAHG. Let B represent the autumnal equinox on
the ecliptic. Join BZD and Z©, and drop perpendicular @K from © on to ZD
produced.

Then since B, the autumnal equinox, is located at the beginning of Libra,
and G, the perigee, at 7 5°,

arc BG = 65;30°.
. _ _ 1 65;30° where 4 right angles = 360°
* £ BDG = £ ODK = { 131°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle DOK,
arc OK = 131°,
and its chord ®K = 109;12° where the diameter DO = 120°.

57See HAMA 58-60, Pedersen 151-3.

58 Reading mounooueda (with D) for Eroinodueda (‘we used’) at H254,5. It is unclear what
reading(s) lie behind the Arabic translations.

59 This statement is borne out not only by the Babylonian observations preserved in the Almagest
(the earliest of which is the lunar eclipse of ~720 Mar. 19, in the Ist year of Mardokempad, or the 27th
year of the era Nabonassar, IV 6 p. 191, but also by the extant cuneiform records: the earliest
surviving astronomical observations (apart from the special case of the Venus tablets of
Ammisaduqa) are from -651 (Sachs{1] 44).




1II 6. Table of solar equation

TABLE OF THE SUN’S

ANOMALY
1 2 3
Common Equati
Numbers quation
6 354 0 14
12 348 028
18 342 0 42
24 336 0 56
30 330 P9
36 324 121
42 318 b 32
48 312 } 43
54 306 1 53
60 300 2 1
66 294 2 8
72 288 2 14
78 282 218
84 276 2 2]
90 270 223
93 267 223
96 26+ 223
99 261 2 22
102 258 2 21
105 255 2 20
108 252 218
1l 249 216
114 246 213
117 243 210
120 240 2 6
123 237 2 2
126 234 58
129 231 1 54
132 228 1 49
135 225 1 44
138 222 1 39
141 219 133
144 216 127
147 213 121
150 210 114
153 207 1 7
156 204 1 0
159 201 0 53
162 198 0 46
165 195 0 39
168 192 0 32
171 189 0 24
174 186 0 16
177 183 0 8
180 180 00

167
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G

Fig. 3.20

Therefore where D® = 5° and the hypotenuse Z© = 120°,

OK = 4;33".
And, in the circle about right-angled triangle ®ZK,
arc OK = 4;20°.
) _ ] 4;20°° where 2 right angles = 360°°
"L OZK = {2;10° where 4 right angles = 360°.

And we found Z BDG = 65;30°.
Therefore, by subtraction, £ ZOH (i.e. arc ZH of the eccentre) = 63;20°.
Therefore, when the sun is at the autumnal equinox, it is 63;20° in mean motion
H256 in advance of the perigee (i.e. T 54°), and 116;40° in mean motion to the rear of
the apogee (i.e. II 5;30°).

Now that we have established that, among the first of the equinoxes observed
by us, one of the most accurately determined was the autumnal equinox which
occurred in the seventeenth year of Hadrian, on Athyr [III] 7 in the Egyptian
calendar [132 Sept. 25], about 2 equinoctial hours after noon. [From the above
computation] it is clear that at that time the sun, in its mean motion, was
116;40° to the rear of the apogee on the eccentre. Now from [the beginning of] the
reign of Nabonassar [-746 Feb. 26] to the death of Alexander [-323 Nov. 12] is
atotal of 424 Egyptian years, and from the death of Alexander to {the beginning
of] the reign of Augustus [-29 Aug. 31] 294 years, and from the first year of
Augustus, Thoth 1 in the Egyptian calendar, noon (for we establish all epochs at
noon), to the seventeenth year of Hadrian, Athyr 7, 2 equinoctial hours after
noon, is 161 years 66 days 2 equinoctial hours. Therefore the sum total from the
first year of Nabonassar, Thoth 1 in the Egyptian calendar, noon, up to the time
of the above autumnal equinox, is 879 Egyptian years 66 days and 2 equinoctial

H257  hours. In that interval the mean motion of sun is approximately 211;25° beyond
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compiete revolutions. Therefore, if to the 116;40°, which is the [sun’s] distance
from the apogee of the eccentre at the above autumnal equinox, we add the
360° of one revolution, and subtract from the result the 21 1;25° of the increment
in mean motion over the interval [in question}, we find for the epoch in mean
motion in the first year of Nabonassar, Thoth | in the Egyptian calendar, noon,
that the sun’s distance in mean motion is 265;15° to the rear of the apogee. Thus
its mean position is 3€ 0;45°.5

8. {On the calculation of the solar position}®

So whenever we want to know the sun’s position for any required time, we take
the time from epoch to the given moment (reckoned with respect to the local
time at Alexandria), and enter with it into the table of mean motion. We add up.
the degrees [and their subdivisions] corresponding to the various arguments
[18-vear periods, years, months, etc.], add to this the elongation [from apogee at
epoch],®? 265;15°, subtract complete revolutions from the total, and count the
result from I 5;30° rearwards through [i.e. in the order of] the signs. The point
we come to will be the mean position of the sun. Next we enter with the same
number, that is the distance from apogee to the sun’s mean position, into the
table of anomaly, and take the corresponding amount in the third column. If
the argument falls in the first column, that is if it is less than 180°, we subtract
the [equation] from the mean position: but if the argument falls in the second
coiumn, i.e. is greater than 180°, we add it to the mean position. Thus we obtain
the true or apparent [position of the] sun.

9. {On the inequality in the [solar} days}®

Such, then, we may say, are the theories concerning the sun alone. Following
this it seems appropriate to add a brief discussion of the subject of the inequality
of the solar day.® A grasp of this topic is a necessary prerequisite, since the mean
motions which we tabulate for each body are all arranged on the simple system
of equal increments, as if all solar days were of equal length. However, it can be
seen that this is not so. The revolution of the universe takes place uniformly
about the poles of the equator. The more prominent ways of marking that
revolution are by its return to the horizon, or to the meridian. Thus one
revolution of the universe is, clearly, the return of a given point on the equator
from some place on either the horizon or the meridian to the same place; and a
solar day, simply defined, is the return of the sun from some point either on the

% Literally ‘45 minutes of the first degree of Pisces’.

& See HAMA 58-61, Pedersen 153-4, and Appendix A, Example 7. .

2 The reading of D,Ar at H257,18, Eroxfig (for aroyflg) is possible. The meaning would be the
same, but one would have to understand ‘{the elongation from apogee] at epoch’, which is rather
obscure.

% See HAMA 61-8, Pedersen 154-8.

& vuyBripepov, literally ‘a night plus a day’. See Introduction p. 23.
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horizon or on the meridian to the same point. On this definition, a mean solar
day is the period comprising the passage of the 360 time-degrees of one
revolution of the equator plus approximately 0;59 time-degrees, which is the
amount of the mean motion of the sun during that period; and an anomalistic
solar day is the period comprising the passage of the 360 time-degrees of one
revolution of the equator plus that stretch of the equator which rises with, or
crosses the meridian with, the anomalistic motion of the sun [in that period].

This additional stretch of the equator, beyond the 360 time-degrees, which
crosses [the horizon or meridian] cannot be a constant, for two reasons: firstly,
because of the sun’s apparent anomaly; and secondly, because equal sections of
the ecliptic do not cross either the horizon or the meridian in equal times.
Neither of these effects causes a perceptible difference between the mean and
the anomalistic return for a single solar day, but the accumulated difference
over a number of solar days is quite noticeable.

As far as the effect of the solar anomaly is concerned, the greatest
[accumulated] difference occurs between the two positions of the sun where its
[true] speed equals its mean speed. The sum of the [anomalistic] solar days [over
either of the two such intervals] will differ from the sum of the mean solar days
[over the same interval] by about 41 time-degrees, and from the sum of
[anomalistic) solar days over the other [such] interval by twice that amount.
about 9 time-degrees. For the apparent motion of the sun over the semi-circle
containing the apogee is 41° less than the mean, and its apparent motion over
the semi-circle containing the perigee is the same amount [4i°] greater than the
mean.%

As far as the effect of the variation in the time taken to cross the horizon at
rising or setting is concerned, the greatest [accumulated) difference occurs
between the ends of the semi-circles bounded by the solsticial points. For here
too the rising-times of either of those semi-circles will differ from the 180° of the
mean interval by the amount by which the longest or shortest day differs from
the equinoctial day (measured in time-degrees); and they will differ from each
other by the amount by which the longest day (or night) differs from the
shortest. As far as the effect of the variation in the time taken to cross the
meridian is concerned, the greatest [accumulated] difference will occur
between two points enclosing two signs which are on either side of either a
solsticial or an equinoctial point. For the sum of [the rising-times at sphaera recta
of] the two such signs on either side of a solstice will differ from the mean interval
by about 4 time-degrees, and from [the sum of the rising-times of] the two signs
on either side of an equinox by 9 time-degrees, since the latter fall short of, and
the former exceed the amount for the mean by about the same quantity.* Hence
we estabiish the beginning of the solar day at [astronomical] epochs from the
meridian-crossing of the sun, and not from its rising or setting, since the [time-]
difference with respect to the horizon can reach several hours, and is not the
same everywhere but varies according to the difference in longest or shortest

% The sun’s maximum equation of anomaly is 2;23° (11 6). Thus from mean speed (90° or 270°
from apogee) to mean speed the mean motion is (2 x 2:23 = 41) greater or less than the true.

% From the table of rising-times at sphaera recta, 118, the sum of the rising-times of e.g. [T and 5 is
64;32 (= 60° + 41°), while that of e.g. T and 2= is 55;40 (=~ 60° - 44°).
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day at the different latitudes, whereas the {time-]difference with respect to the
meridian is the same at every place on earth, and is no greater than the time-
variation due to the sun’s anomaly.

The greatest®” [accumulated] difference [between mean and anomalistic
solar days] resulting from the combination of both these effects, namely that due
to the sun’s anomaly and that due to the [variation in the time of] meridian-
crossing, occurs over intervals where the above effects are either both additive
or both subtractive. Now the [maximum)] subtractive result from both effects
occurs over the interval from the middle of Aquarius to [the end of] Libra, and
the [maximum] additive one over the interval from [the beginning of]
Scorpio to the middle of Aquarius. Both of these intervals produce a maximum
additive or subtractive result which is composed of about 3§° due to the effect of
the solar anomaly, and about 4§° due to the [variation in the time of] meridian-
crossing.®® Thus the maximum difference arising from the combination of both
the above effects is 8} time-degrees, orjths of an hour, between the [true] solar
days over either of these intervals and the [corresponding] mean solar days, and
twice as much, 16§ time-degrees, or 13 hours, between the [true] solar days of
one such interval and those of the other. Neglect of a difference of this order
would, perhaps, produce no perceptible error in the computation of the
phenomena associated with the sun or the other [planets]; but in the case of the
moon, since its speed is so great, the resulting error could no longer be
overlooked, since it could amount 1o % of a degree.®

Therefore. to state once for all the rule for converting any interval whatever,
given in [true] solar days (by which [ mean days counted from noon to noon or
midnight to midnight), into mean solar days: we determine the ecliptic position
of the sun in both mean and anomalistic motion at the beginning and end of the
given interval of solar days; then we take the increment, in degrees, from [the
first] anomalistic (i.e. apparent) position to [the second] apparent position,
enter with it into the table of rising-times at sphaera recta, and [thus] determine
the time taken by this apparent distance {of the sun between the first and second
positions] to cross the meridian, measured in degrees of the equator. We then
take the difference between this number of time-degrees and the mean distance
[of the sun from first to second positions], measured in degrees, and convert this
difference, which is in time-degrees, to a fraction of an equinoctial hour. We
add the result to the number of [true] solar days given if the amount of the time-
degrees [corresponding to the rising-time of the apparent motion] was greater
than the mean motion, or subtract it if less. The interval we arrive at will be
corrected for expression in mean solar days. We shall use this type of interval
particularly in computing the mean motions of the moon from its tables. One
can immediately comprehend that, given mean solar days, one can find the
[corresponding] civil solar days, i.e. days defined by simple observation, by

% Reading to mAelotov didgpopov (with DB*Ar) at H261,14 for To Stdpopov (‘the difference’’.

® For a graphical verification of the amounts and positions given here by Prolemy see H4.MA I11
Fig. 57 on p. 1222.

% The hourly mean motion of the moon (IV 3 p. 179) is about 0;32,56. So in 13 hours it moves
0:36.36 = #°. -
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performing the above computation of addition or subtraction of time-degrees in
reverse.”®

At our epoch, that is, Year 1 of Nabonassar, Thoth 1 in the Egyptian
calendar, noon, the position of the sun was in mean motion, as we showed just
above, 3€ 0;45°, and in anomalistic motion about 3 3;8°."

" If we call the interval in true solar days between times t, and 1, At. and the interval in mean
solar days AT, then Ptolemy’s rule. expressed algebraically. is AT=At + E (E corresponds, in a
certain sense, to the modern ‘equation of time'), and E = {a {t,) - @ (;)) = {& {ts) = A {1,}}. For
proofs of the validity of this rule see H.4.V/4 65-6, Pedersen 156-7. Pedersen shows that the ruleisin
fact an approximation, since one should take the motion in mean longitude, not over the interval
(t2 = t,) = At, but over the interval in mean solar days AT (which is in practice impossible). Since,
however, the difference between At and AT never exceeds about 33 minutes, during which the sun
moves less than 2’, the error is utterly negligible. For examples of computation see H4M 4 63-5 and
Appendix A, Example 8. '

I Prolemy gives the data for era Nabonassar because they will be required every time one needs
to compute the lunar position accurately (i.e. in mean solar days) from his tables (e.g. for the seriesof
observations of fixed stars with respect to the moon in VII 3). Neugebauer notes (HAMA 63) that
the epoch value for the mean longitude, 3€ 0;45°, seems itself to be corrected for the equation of time,
since reckoning backwards ‘simply’ from Ptolemy’s observation would give >€ 0;44° to the nearest
mnute.



Book IV

1. {The kind of observations which one must use to examine lunar phenomena}'

In the preceding book we treated all the phenomena associated with the sun’s
motion. We now begin our discussion of the moon, as is appropriate to the
logical order. In doing so we think it our first duty not to take a naive or
arbitrary approach in our use of the relevant observations. Rather, to establish
our general notions [on this topic], we should rely especiallv on those
demonstrations which depend on observations which not only cover a long
period, but are actually made at lunar eclipses. For these are the only
observations which allow one to determine the iunar position precisely: all
others, whether they are taken from passages [of the moon] near fixed stars, or
from [sightings with] instruments, or from solar eclipses, can contain a
considerable error due to lunar parallax. It is only for particular further

developments [of the theory] that we should use these other kinds of

observations for our investigations. For the distance between the sphere of the
moon and the centre of the earth, unlike the distance to the ecliptic, is not so
great that the earth’s bulk has the ratio of a point to it. Hence it necessarily
follows that the straight line drawn from the centre of the earth (which is the
centre of the ecliptic) through the centre of the moon® to a point on the ecliptic,
which determines the true position ([as it does] for all bodies), does not in this
case always coincide, even sensibly, with the line drawn from some point on the
earth’s surface, that is, the observer’s point of view, to the moon’s centre, which
determines its apparent position. Only when the moon is in the observer’s
zenith do the lines from the earth’s centre and the observer’s eye through the
moon’s centre to the ecliptic coincide. But when the moon is displaced from the
zenith position in any way whatever, the directions of the above lines become
different, and hence the apparent position cannot be the same as the true, but
[differs from it], as the [line through] the observer’s eve assumes various
positions with respect to the line drawn through the centre of the earth, [by an
amount] proportional to the varying angle of inclination [between the two
lines].

This is the reason why in the case of solar eclipses, which are caused by the

'On Chs 1-3 see H4MA 68-73, 308-15, Pedersen 160-4.

?Reading ano tob K£VTpOD g yﬁg toutéont 100 {wdtaxoD Sid 100 kévrpou tfig oekrivng
(with D, Ar) for Gno 100 xévtpov Thg oehfivng (‘the straight line drawn from the moon’s centre’,
which is nonsense) at H266,5. The error in most Greek mss. is due to haplography, and isan important
indication that all except D and its descendants come trom a single (?Byzantine) ms. Corrected by
Manitius.
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moon passing below and blocking [the sun] (for when the moon falls into the
cone from the observer’s eye to the sun it produces the obscuration which lasts
until it has passed out [of the cone] again), the same® eclipse does not appear
identical, either in size or in duration,! in all places. For the moon does not
produce obscuration for all observers, for the reasons stated above, and [even
for those for whom it does produce obscuration] does not appear to obscure the
same parts of the sun [for all alike]. Whereas in the case of lunar eclipses there is
no such variation due to parallax, since the observer’s position is not a
contributory cause to what happens at a lunar eclipse. For the moon’s light is at
all times caused by the illumination from the sun. Thus when it is diametrically
opposite to the sun, it normally appears to us as lighted over its whole surface,
since the whole of its illuminated hemisphere s turned towards us as well {as
towards the sun] at that time. However, when its position at opposition is such
that it is immersed in the earth’s shadow-cone (which revolves with the same
speed as the sun, but opposite it), then the moon loses the light over a part of its
surface corresponding to the amount of its immersion, as the earth obstructs the
illumination by the sun. Hence it appears to be eclipsed for all parts of the earth
alike, both in the size [of the eclipse] and the length of the intervals [of the
various phases).

Now to establish our general theory we need to use true, and not apparent,
positions of the moon; for the ordered and regular must necessarily precede and
serve as a foundation for the disordered and irregular. So, for the above reasons,
we declare that we must not use. for this purpose, observations of the moon into
which the observer’s position enters, but only lunar eclipse observations, since
[only] in these does the observer’s position have no effect on the determination
of the moon’s position. For it is obvious that, if we find the point on the ecliptic
which the sun occupies at the time of mid-eclipse (which is, as accurately as we
can determine, the moment at which the moon’s centre is diametrically
opposite the sun’s in longitude). then at the same time of mid-eclipse the precise
position of the moon’s centre will be the point diametrically opposite.

2. On the periods of the moon

The above may serve as an outline of the kind of observations which must be
examined to determine the general theory of the moon. We shall now
endeavour to describe the method which was used by the ancients in their
attempts at establishing a [lunar] theory, and which we will find a most
convenient tool in deciding which hypotheses accord with the phenomena.
The moon’s motion appears anomalistic both in longitude and in latitude:
the time it takes to traverse the ecliptic is not constant, and neither is the time it

’Reading titg abtdg (with D, Ar) for tabtag (‘these eclipses’) at H267,4. Corrected by Manitius.

*duration’: the Greek has the vague ‘times’ (toig ypévorg). This is elucidated by H268,1 toig
v StacTdocwy X povorg, the duration of the intervals {of partial and total phases)'. Ptolemy may
also be alluding, in both places, to the fact that the actual moments of e.g. the beginning or middle
of a solar eclipse are different at different places, and by an amount which does not correspond
directly to the difference in longitude.
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takes to return to the same latitude.” Now unless one finds the period of its
return in anomaly it is, necessarily, impossible to determine the period of the
other motions [in longitude and latitude]. However, from individual observa-
tions it is apparent that the moon’s mean speed can occur in any part of the
ecliptic, as can its greatest speed and its least speed, and that it can reach its
greatest northern or southern latitude, or appear exactly in the ecliptic,
anywhere, t0o. Hence the ancient astronomers, with good reason, tried to find
some period in which the moon’s motion in longitude would always be the
same, on the grounds that only such a period could produce a return in
anomaly. So they compared observations of lunar eclipses (for the reasons

mentioned above), and tried to sce whether there was an interval, consisting of

an integer number of months, such that. between whatever points one took that
interval of months,® the length in time was always the same, and so was the
motion [of the moon] in longitude, [i.e.] either the same number of integer
revolutions, or the same number of revolutions plus the same arc.

The even more ancient [astronomers] used the somewhat crude estimate that
such a period could be found in 65851 days. For they saw that in that interval
occurred approximately 223 lunations, 239 returns in anomaly, 242 returns in
latitude, and 241 revolutions in longitude plus 103°, which is the amount the
sun travels bevond the 18 revolutions which it pertorms in the above time (that
is when the motion of sun and moon is measured with respect to the fixed stars).
They called this interval the *Periodic’. since it is the smallest single period
which contains (approximately} an integer number of returns of the various
motions.” In order to obtain a period with an integer number of davs, they
tripled the 65851 days. obtaining 19756 days, which they called ‘Exeligmos’.
Similarly, by tripling the other numbers, they obtained 669 lunations, 717
returns in anomaly, 726 returns in latitude, and 723 revolutions in longitude
plus 32°, which is the amount the sun travels beyond its 54 revolutions.”

However, Hipparchus already proved, by calculations from observations
made by the Chaldaeans and in his time, that the above relationships were not
accurate. For from the observations he set out he shows that the smallest
constant interval defining an ecliptic period in which the number of months
and the amount of [lunar] motion is always the same, is 126007 days plus 1
equinoctial hour. In this interval he finds comprised 4267 months, 4573
complete returns in anomaly, and 4612 revolutions on the ecliptic less about
74°, which is the amount by which the sun’s motion falls short of 345 revolutions
{here too the revolution of sun and moon is taken with respect to the fixed stars).
(Hence, dividing the above number of days by the 4267 months, he finds the

Reading xatd mhdtog (with D) for katd 1 mhdtog at H269.9.

S‘months’ here means ‘true synodic months’. This is generally true throughout the Almagest
(except where the context makes it obvious that the reference is strictly calendaric). In the
translation I usually make the meaning explicit.

"This period. generally, but wrongly, called ‘Saros’ in modern times (see Neugebauer{1]), was’

well-known in Babylonian astronomy. See HAM.1 497 {f. We do not know to whom Ptolemy rcters
by ‘the even more ancient people’, except that they are earlier than Hipparchus.

8 The £EeA1yndg (meaning “turn of the wheel’) is also mentioned by Geminus (Cap. XVIII, ed.
Manitius pp. 200-2), who giyes exactly the same numbers as Ptolemy, including the excer: i
sidereal longitude of 32°.
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mean length of the [synodic] month as approximately 29;31,50,8,20 days). He
shows, then, that the corresponding interval between two lunar eclipses is
always precisely the same when they are taken over the above period
[126007°1"]. So it is obvious that it is a period of return in anomaly, since [from
whatever eclipse it begins], it always contains the same number [4267] of
months, and 4611 revolutions in longitude plus 3524°, as determined by its
syzygies with the sun.

But if one were to look for the number of months [which always cover the
same time-interval], not between two lunar eclipses, but merely between one
conjunction or opposition and another syzygy of the same type, he would find
an even smaller integer number of months containing a return in anomaly, by
dividing the above numbers by 17 (which is their only common factor). This
produces 251 months and 269 returns in anomaly.

However, it was found that the above period [of 126007°1"] did not contain
an integer number of returns in latitude too. For it was apparent that the { pairs
of] corresponding eclipses exhibited equality only with respect to the interval
[between the pair] in time and revolution in longitude, but not with respect to
the size and type of the obscuration,? which is the criterion for [a return in]
latitude. Nevertheless, having already determined the period of return in
anomaly, Hipparchus again adduces intervals containing [an integer number
of] months which have at each end eclipses which were identical in every
respect, both in size and in duration [of the various phases}, and in which there
was no difference due to the anomaly. Thus it is apparent that there is a return
in latitude too. He shows that such a period is contained in 5458 months and
5923 returns in latitude.'®

That, then. is the method which our predecessors used for the determination
of such [periods]. It is not simple or easy to carry out, but demands a great deal
of extraordinary care, as we can see from the following considerations.!! Let us
grant that [two] intervals [between pairs of eclipses] are found to be precisely
equal in time. In the first place, this is no use to us unless the sun too exhibits no
eflect due to anomaly, or exhibits the same over both intervals: for if this is not
the case, but instead. as [ said. the equation of anomaly has some effect. the sun
will not have travelled equal distances over [the two] equal time-intervals, nor,
obviously. will the moon. For example. let us suppose that each of the two
intervals being compared comprises half a year bevond the same number of
complete years, and that in this time the motion of the sun in the first interval

By “tvpe’ Ptolemy means whether the olxcuration begins trom the north or south of the lunar
disk.

19 Prolemy's account here is not historically accurate. In fact Hipparchus took from Babylonian
sources the parameters (1] 1 synodic month = 29;31.50.8.20", [2] 25! synodic months = 269
anomalistic months, and [3] 5458 svnodic months = 5923 returns in latitude (Kugler, Babylonische
Mondrechnung 4-46). Multiplying [2] by 17. he consuructed an eclipse-period ( Aaboe{1955], whence
HAMA 310-2). An input of some value for the lenf;th of the year produced the solar motion over this
period. rounded by Hipparchus to the nearest s-sign (on which see Neugebauer(2], 251). Then
Hipparchus confirmed (not derived, as Plolemy says) the above by comparison of eclipses from his own
time with Babylonian ones 345 years earlier (see Toomer[11] for the method and identitication of
the eclipses he used).

' The following (1o p. 178) is well explained and illustrated by Neugebauer, HAMA T1-2.
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starts from the position of mean speed in Pisces, and in the second interval from
the position of mean speed in Virgo.'? Then over the first interval the sun will
have traversed about 41° less than a semi-circle [beyond complete revolutions],
but over the second about 4§° more than a semi-circle. Thus the moon too will
have traversed over the first intervai 175i° beyond complete revolutions and
over the second 1843°, although both intervals cover an equal time. Therefore
we define as the first necessary condition {for a return in lunar anomaly] that the
intervals must exhibit one of the following characteristics with respect to the
sun: '
[1] It must complete an integer number of revolutions [in both intervals]; or
[2] traverse the semi-circle beginning at the apogee over one interval and the
semi-circle beginning at the nerigee over the other; or
[3] begin from the same point [of the ecliptic] in each interval; or
[4] bethesamedistance fromapogee (or perigee) at the first eclipse of one interval
as it is at the second eclipse of the other interval, [but] on the other side.*
For only under one of these conditions will there be no effect due to the
anomaly, or the same effect over both intervals, so that the arc traversed beyond
complete revolutions over one interval is equal to that traversed over the other,
or even equal to the mean motion of the sun {over the intervals] as well.
Secondly, it is our opinion that we must pay no less attention to the moon’s
[varying] speed."* For if this is not taken into account, it will be possible for the
moon, in many situations, to cover equal arcs in longitude in equal times which
do not at all represent a return in lunar anomaly as well. This will come to pass
(1] if in both intervals the moon starts from the same speed (either both
increasing or both decreasing), but does not return to that speed: or
(2] il in one interval it starts from its greatest speed and ends at its least speed,
while in the other interval it starts from its least speed and ends at its greatest
speed; or

[3] if the distance of [the position of] its speed at the beginning of one interval is
the same distance from the [position of] greatest or least speed as [the position
of] its speed at the end of the other interval, [but] on the other side.'?

In each of these situations there will again be either no effect or the same effect
[in both intervals] of the lunar anomaly, and hence equal increments in
longitude will be produced [over both intervals], but there will be no return in
anomaly at all. So the intervals adduced must avoid all the above situations if

“That is. trom the positions where the equation of anomaly reaches its positive maximum
{Pisces) and negative maximum (V'irgo). Illustrated by H4.M.4 Fig. 59 p. 1223,

Y That is, il the sun has an anomaly of a° at the beginning of the first interval, it must have an
anomaly of (360-a)° at the end of the second interval. This situation (and the others listed here) is
illustrated by HAMA Fig. 60 p. 1223.

' 8popog is often used in early Greek astronomy for the (varying) amount which the moon travels
in one day. The earliest example seems to be the *Eudoxus’ papyvrus (ed. Blass p. 14). Where
Ptolemy uses 8popog for the moon (e.g. V' 2, H355,14; V 3, H361.16) "spred’ seems the best
translation. For a special use of the term by Hipparchus see V 3 p. 224 with n.14.

“Sllustrated (in the order (1], {3), [2]) by H4MA Fig. 61 p. 1224, which utilizes the lunar

epicycle model. One must presume that Ptolemy avoids talking in geometrical terms (which is the
most convenient way to visualize the situation) because he has not vet established a lunar model.
However, it is hard to give any sense to éxatépwBev (literally ‘on opposite sides’, translated here as
‘on the other side’) which does not involve an epicycle model.
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they are to provide us directly with a period of return in anomaly. On the
contrary, we should select intervals [the ends of which are situated] so as to best
indicate {whether the interval is or is not a period of anomaly], by displaying the
discrepancy [between two intervals] when they do not contain an integer
number of returns in anomaly. Such is the case when the intervals begin from
speeds which are not merely different, but greatly different either in size or in
effect. By ‘in size’ I mean when in one interval [the moon] starts from its least
speed and does not end at the greatest speed, while in the other it starts from its
greatest speed and does not end at its least speed. For in this case, unless the
intervals contain an integer number of revolutions in anomaly, the difference in
the increments in longitude over the two intervals will be very great; when the
increment in anomaly is about one or three quadrants of a revolution, the
intervals will differ by twice the [maximum] equation of anomaly. By ‘in effect’
I mean when [the moon] starts from mean speed in both positions, not,
however, from the same mean speed, but from the mean speed during the
period of increasing speed at one interval, and [rom that during the period of
decreasing speed at the other. Here too, if there is not a return in anomaly, there
will be a great difference in the increment in longitude [over the two intervals];
again, when the increment in anomaly is one or three quadrants of a revolution,
the difference will again amount to twice the [maximum] equation of anomaly,
and when the increment in anomaly is a semi-circle, the difference will be four
times that amount.'®

That is why. as we can see, Hipparchus too used his customary extreme care
in the selection of the intervals adduced for his investigation of this question: he
used [two intervals], in one of which the moon started from its greatest speed
and did not end at its least speed, and in the other of which it started from its
least speed and did not end at its greatest speed. Furthermore he also made a
correction. albeit a small one. for the sun’s equation of anomaly, since the sun
fell short of an integer number of revolutions by about i of a sign, and this sign
was different, and produced a different equation of anomaly. in each of the two
intervals.!”

We have made the above remarks, not to disparage the preceding method of
determining the periodic returns, but to show that, while it canachieve its goal
if applied with due care and the appropriate kind of calculations, if any of the
conditions we set out above are omitted from consideration, even the least of
them, it can fail utterly in its intended effect; and that, if one does use the proper
criteria in making one’s selection of observational material, it is difficult to {ind
corresponding [pairs of eclipse] observations which precisely fulfil all the
required conditions.

In any case, when we take the above periodic returns, as determined by
Hipparchus' calculations, we find that the period [containing an integer
number] of months has, as we said, been calculated as correctly as possible, and
has no perceptible diflerence from the true value. But there is an error in the

"*These two situations (of maximum ettect due to the anomaly when there is not a return in
anomaly) ave illustrated by HAAA Fig. 62 p. 1225,
'"On the eclipses used by Hipparchus see Toomer{11].
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periods of anomaly and latitude, so considerable as to become quite apparent to
us from the procedures we devised to check these values in simpler and more
practical ways; we shall soon explain these, in connection with our demon-
stration of the size of the lunar anomaly. But first, for convenience [of
calculation] in what follows, we set out the individual mean motions [of the
moon] in longitude, anomaly and latitude, in accordance with the above
periods of their returns, and [aiso the mean motions) calculated on the basis of
the corrections which we shall derive later.'®

3. {On the individual mean motions of the moon}

If, then, we multiply the mean daily motion of the sun which we derived, ca.

0:59,8.17,13,12.31°¢, by the number of days in one [mean synodic} month,

29;31,50,8,20", and add to the result the 360° of one revolution, we will get the
mean motion of the moon in longitude during one synodic month as ca.
389;6,23,1,24,2,30,57°. Dividing this by the above number of days in a month,
we get the mean daily motion of the moon in longitude as ca.
13;10,34,58.33,30,30°.

Next, multiplying the 269 revolutions in anomaly by the 360° of one
revolution. we get 96840°. Dividing this by the number of days in 251 months.
7412:10,44,51.40", we get the mean daily motion in anomaly as
13:3.53,56,29.38.38°. '

Similarly, multiplying the 5923 returns in latitude by the 360° of one
revolution. we get 2132280°. Dividing this by the number of days in 5458
months, 161177;58.58.3.20°. we get the mean daily motion in latitude as
13;13.45.39.40.17.19°.
~ Next. subtracting the mean daily motion of the sun from the mean daily
motion of the moon in longitude, we get the mean daily motion in elongation as
12:11,26.41,20,17,59°.

However, from the methods which, as we said, we shall employ in what
follows for investigation of this topic, we find that the mean daily motion in
longitude (and hence, obviously. that in elongation), is practically identical to
the above, but the mean daily motion in anomaly is 0;0,0,0,11,46,39° less: thusit
is 13;3,53,56,17,51,59° and the mean daily motion in latitude is0;0,0,0,8,39,18°
more; thus it is 13;13,45,39,48,56,37°."°

Using the latter daily motions, and taking fith of each, we get the followmg
mean hourly motions:

in longitude: 0;32,56,27,26,23,46,15°
in anomaly: 0;32,39,44,50,44,39,57,30°
in latitude: 0;33.4,24,9,32,21,32,30°
in elongation: 0;30.28,36,43,20,44,57,30°.

'8 Ptolemy’s corrections to the mean motions in anomaly and latitude, given below, are.

justified at IV 7 (p. 204) and IV 9 (p. 207). -

19 All the above computations have been carried out very precisely, and are correct to the nearest
sixth (607 degree). In the following computations of the mean motions for the greater units,
however, Ptolemy operates as if the last place in the mean daily motions were precisely correct,
i.e. no account is taken of the accumulated error for months, years, etc.
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Multiplying the daily motions by 30 and subtracting complete revolutions,
we get the following monthly mean increments:

in longitude: 35;17,29,16,45,15°

in anomaly: 31,56,58,8,55,59,30°

in latitude: 36;52,49,54 .28 18,30°%°
in elongation: 5;43,20,40,8,59,30°.

Next, multiplying the daily motions by the 365 days of the Egyptian year,
and subtracting complete revolutions, we get the following yearly mean
increments:

in longitude: 129;22,46,13,50,32,30°
in anomaly: 88;43,7,28,41,13,55°
in latitude: 148;42,47,12,44,25,5°
in elongation: 129;37,21,28,29,23,55°,

Next, multiplying the yearly motions by 18 (this number is chosen, as we said,
for convenience in tabulation), after subtracting complete revolutions we get
the following mean increments over an eighteen-year period:

in longitude: 168;49.52.9.9.45°

in anomaly: 156:56,14,36.22,10,30°

in latitude: 156;50,9.49,19.31,30°

in elongation: 173;12,26,32,49,10,30°.

Asin the case of the sun, we will again set out three tables arranged in 45 lines,
with 5 columns in each. The first column will contain the time-divisions
appropriate to each table, in the first table the 18-vear periods, in the second the
vears, again followed by the hours, in the third the months, again followed by
the days. The remaining four columns will contain the degrees {and their
subdivisions] corresponding to the appropriate argument: the second column,
longitude, the third, anomaly, the fourth, latitude, and the fifth, elongation.
The layout of the tables is as follows.

H282-93 4.{ Tables of the mean motions of the moon}

H294

[See pp. 182-7.}

5. {That in the simple hypothesis of the moon, 100, the same phenomena are produced
by both eccentric and epicyclic hypotheses}®!

Our next task is to demonstrate the type and size of the moon’s anomaly. For the
time being we shall treat this as if it were single and invariant.? It is apparent
that this anomaly, namely the one with a period corresponding to the above
period of return, is the only one which our predecessors (just about all of them)

2 Reading X for Xa (‘31") in the last place at H280,5, with D, Ar {c{. also the tables IV 4).
Corrected by Manitius. .

! See Pedersen 166-7. :

*ZReading xat 1Hg avrh¢ (with BD) for tadtng (‘as if this were single’) at H294,6. Ar read
Tadng.
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have hit upon. Later, however, we shail show that the moon also has a second
anomaly, linked to its distance from the sun; this [second anomaly] reaches a
maximum round about both [waxing and waning} half-moons, and goes
through its period of return twice a month, [being zero} precisely at conjunction
and opposition.”? We adopt this order of procedure in our demonstration
because it is impossible to determine the second [anomaly} apart from the first,
which is always combined with it, whereas the first can be found apart from the
second, since it is determined from lunar eclipses, at which there is no
perceptible effect of the anomaly connected with [the distance from] the sun.

In this first part of our demonstrations we shall use the methods of establishing
the theorem which Hipparchus, as we see, used before us.2* We too, using three
lunar eclipses, shall derive the maximum difference from mean motion and the
epoch of the [moon’s position] at the apogee, on the assumption that only this
{first] anomaly is taken into account, and that it is produced by the epicyclic
hypothesis. It is true that the same phenomena would result from the eccentric
hypothesis, but we shall find the latter more suitable to represent the second
anomaly, which is connected with the sun, when we come to combine both
anomalies. However, the same phenomena will in all cases result from both the
hypotheses we have described, whether, as in the situation described for the sun,
the period of return in anomaly and the period of return in the ecliptic [i.e. in
longitude] are both equal, or whether, as in the case of the moon, they are
unequal, provided only that the ratios {of epicycle to deferent and eccentricity
to eccentre] are taken as identical. We can see this from the following, in which
we use the above-mentioned simple anomaly of the moon for our examination.

Since the moon completes its return with respect to the ecliptic sooner than its
return with respect to this anomaly, it is clear that, in the epicyclic hypothesis,
over a given period of time, the epicycle will always traverse a greater arc® of
the circle concentric to the ecliptic than the arc of the epicycle traversed by the
moon in the same time; in the eccentric hypothesis, the arc traversed by the
moon on the eccentre will be similar to the arc traversed by it on the epicycle [in
the epicyclic hypothesis], while the eccentre will move about the centre of the
ecliptic in the same direction as the moon by an amount equal to the increment
of the motion in longitude over the motion in anomaly [in the same time] (this
corresponds to the increment of the arc of the deferent over the arc of the
epicycle [in the epicyclic hypothesis]). In this way we can preserve the equality
of the periods of both motions [i.e. in longitude and anomaly], as well as
equality of the ratios, in both hypotheses.

With the above as a necessary basis (as is obvious from logic), let[Fig. 4.1] the
circle concentric with the ecliptic be ABG on centre D and diameter AD, and
let the epicycle be EZ on centre G. Let us suppose that when the epicycle was at
A, the moon was at E, the apogee of the epicycle, and that in the same time as
the epicycle has traversed arc AG, the moon has traversed arc EZ. Join ED, GZ.

# Reference to V 2-4.

#On Hipparchus' determination of the lunar parameters sce further IV 11, Toomer{8] and
Toomer({2}.

%a greater arc": literally ‘an arc greater than the one similar to [the arc]’.
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TABLES OF THE MOON'S MEAN MOTIONS

Increment in Longitude Increment in Anomaly
18-Year {Epoch Position:] 8 11;22° [Epoch Position:] 268;49°
Pc'riods o ’ 144 ’re A iy [+ ’ 4 rrs rerr 10017 120020

18 168 | 49521 9] 9145] 0 156 | 56 | 14|36 | 22| 10 |30
36 337 139(44118{191301 0 313 | 52129012 144121 | O
54 146 | 29136 127 1294150 10 | 48 | 43149 | 6] 31 |30
72 315 | 19128 (361391 010 267 | 44 |58 | 25 128142 | O
90 124 9120 (45148 |45 | 0 64 | 41 |13 1130} 52 |30
108 292 | 59|12 154 |58 (30 O 221 37 (2738 (13| 3] 0
126 101 { 49| 5| 4| 8 (15| 0 18 | 33 |42 |14 |35} 13 |30
144 270 | 38 (57 |13 ]18} 0| O 175 1 29 156 {50 {57 |24} O
162 79 | 28149 |22 |27 (45| 0 332 | 26 | 11|27 119 34 |30
180 248 | 18 | 41 |51 |37 {30} 0 129 | 22 {26 | 3 |41 |45 | O
198 37 8133 (40 |47 {151 0 286 | 18 140 | 40 | 3|35 |30
216 205 | 58 125 |49 [57 | 0| O 83 1415 |16 |26( 6| 0
234 34 | 48[ 17 |39 6 |45 1 0 240 | 117 9|52 {48 | I6 |30
252 203 | 38| 10| 8|16 {30 | 0 37 712412910127} 0
270 12 [ 281 2117 |26 {15 | 0 194 30391 5 (32|37 {30
288 181 17154126 (36| 00 350 1 39 {33141 |54} 48| 0O
306 350 71461357145 [+ ] 0 147 | 56 | 8 | 18 | 16 38 | 30
324 158 | 57|38 |+ |55 130 | 0 304 | 52122154139 9 0
342 327 | 47 {30 |54 5150 101 | 48 | 37 | 31 1119 130
360 136 | 37|23 5115 00 258 | 4452 7:235/30 ! 0
378 305 | 27 (15 |12 424 |45 ] 0 55 | 410 6 43 45| 40 |30
396 Mg 417 ) 7200340300 a2 L s7leria0] 7500
414 283 6139130 |+ [15]0 9 133135053 301 1|30
432 91 | 56 |51 |39 )54 00 166 | 291350 {32 {52]12] 0
450 20 | 46 (43 14| 3 |HB 10 323 126 5| 9 (14} 2230
468 69 | 36|35 |58 |13 {300 120 § 22119 |45 1361331 0
186 W8 | W{W T|WIIB]O0 277 | 18 |34 {21 |58 43 |30
504 47 | 1620 116 {33 ] 0] 0 74 | 14148158 20154 0
522 216 6112125 |42 (45 | 0 231 11 3 (34 (43 4|3
340 24 | 56 434152 30(0 28 71181 51151 0
558 193 | 45|56 {4 | 2115 0 185 313247 [27|25 130
576 2| 3| 48133112, 0}0 341 59 {47123 (49|36 | 0
594 170 | 25 41 | 2 {21 {45 | 0 138 | 56 { 2| 0|11 |46 |30
612 340 | 15|33 |11 |31 ;3010 205 | 52 116 |36 33|57} 0
630 149 512520 |41 |15(0 92 | 48 |31 |12 |36 7 |3
648 317 | 55| 1712941511 010 249 | 44 | 5|49 (18|18 | O
666 126 | 45 939 0|45 | 0 46 | 41 02540 | 28 |30
6584 295 | 35| 1 [48 (10|30} O 203 | 374{15]| 2| 2|39} 0
702 104 | 24153 (57120 (150 0| 33129382449 |30
720 973 f 14 46| 6130 0] 0 157 | 29 |44 |14 |47} O | O
738 82 4138 |15]39 (450 314 | 25 (58 |51 910 (30
756 250 | 54|30 [ 24149 {30 ] 0 11 | 2213127 {31121} 0
774 59 | 4422133159 |15]|0 268 | 18128 | 313331 {30
792 228 [ 34|14 (431 9 00 65 | 14142140 (15) 42 0
810 37 1 24| 65218 (45 (0 222 | 10 |57 | 16 [ 37 | 52 | 30
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Increment in Latitude

Increment in Elongation

18-Year [Epoch Position:] 354;15° [Epoch Position] 70;37°
Periods o ’ ” " sers  smer seem ° ’ ’” A A s
18 156 50 9149 {19 31| 30 173 121263249 |10 30
36 313 40119 |38 |39 3 0 346 24 | 53 5138 {21 0
54 110 30 {29 {27 {58 34| 30 159 3711938127 {3130
72 267 20 139 |17 |18 6] O 332 49 1 46|11 |16 (42} O
90 64 10 | 49 6 |37 1371 30 146 2112|144 5152130
108 221 0|58 |55 |57 9 0 319 141391 16|55 310
126 17 51 8 145 |16 | 40| 30 132 27 5(149 | 44 {13 ] 30
144 174 4] {18 |34 |36 | 12 0 305 39 [ 32 (2213324 0
162 331 31128 123 |55) 431 30 118 51 {58 | 55|22 13430
180 128 21 138 |13 [ 15[ 15 0 292 4125|2811 |[45] O
198 285 11| 48 2 (34| 4 30 105 16 | 52 1 013 1|30
216 82 1157 |51 [34] 18 0 278 29 | 18| 33 | 50 6| 0
234 238 52 7141 [ 13149 30 91 41 | 45 6139161 30
252 35 42117 |30 |33 |21 0 264 5411139128127 O
270 192 32127 119 [52]52] 30 78 6|38 1217 {37130
288 349 22 (37 9 |12 ] 24 0 251 19 41 45 6 | 48 0
306 146 12 ] 46 |58 {31 | 55| 30 64 3103117155158 30
324 303 256 |47 |51 | 27 0 237 43 { 57 ( 50 | 45 9 0
342 9 53 6 [ 37 |10 ] 58| 30 50 36 | 241 23341191 30
360 256 43 116 126 | 30 | 30 0 224 815015 (23,30 0
378 33 3312 |15 |50 1] 30 37 21 | 17|29 12 {40 | 30
396 210 23 1 36 5 91 33 0 210 331 44 2 I |51 0
114 7 13145 {54 |29 4 30 23 46 | 10| 34| 51 11 30
432 164 3155 |43 |48 36 0 196 58 | 37 740 |12 0
450 320 54 5 133 8 71 30 10 11 34029 |22 30
168 117 44 115 |22 {27 39 (1] 183 2313011318 |33 0
486 274 34125 {11 |47 | 10} 30 356 35| 56| 46 7143130
504 71 24 135 1 642 0 169 48 (23118156 (54| O
522 228 14144 150 | 26| 13] 30 343 0] 49| 51| 46 4130
540 25 4154139 |45 45 0 156 13116} 24135115 0
358 181 55 4129 5116 30 329 251 42157124 125] 30
576 338 45 [ 14 1 18 | 24| 48 0 142 38 93013136 0
594 135 351 24 71419 30 315 50 | 36 3 2146 30
612 292 251 33 |57 3151 0 129 3 2135]51 57| 0
630 89 15143 |46 | 23|22} 30 302 151 29 8| 41 7130
648 246 5153 {35 |42 54 0 115 27 1 551 41| 30 { 18 0.
666 42 56 37125 21254 30 288 401221 141191281 30
684 199 46 | 13 |14 | 21 ! 57 0 101 52| 48 | 47 8139 0
702 356 36| 23 3 141|281 30 275 5115|1957 149 30
720 153 26 | 32 |53 1 0 0 88 17 | 41 | 52| 47 0| 0
738 310 16 | 42 {42 | 20| 31| 30 261 30 8!25]3 |10/ 30
756 107 65231 |40 3 0 74 42| 34| 58| 25 {21 0
774 263 57 2120 (59| 34} 30 247 55 1]31) 1431} 30
792 60 47 112 110 | 19 6 0 61 7128 4 3142 0
810 217 37121 |59 |38 37| 30 234 19| 54| 36| 52152 30
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Increment in Longitude Increment in Anomaly
Single
\’can o ’ r” e o0, rreer 200272 o ’ iz 227 rr? 22227 212222
1 129 | 22 146 |13 |50 | 32 | 30 88 | 43| 7|28 |41 |13 |55
2 258 | 45 132 {27 [ 41 51 0 177 26 | 14| 57 {22 |27 |50
3 28 8 118 |41 {31]37]30 266 912226 | 3 |41 (45
4 157 | 31 | 4(55(|22|10]| O 354 | 52| 29| 54 |44 |55 | 40
5 286 | 53 |51 | 9 (12|42 30 83 | 35(37{23 {26 | 9|35
6 56 | 16 |37 |23} 3|15 O 172 | 18| 44|52 | 7 j23 )30
7 185 | 39 (23 {36 |53 |47 | 30 261 1152|20 [48 {37 {25
8 315 2] 9|5 |4]|20] O 349 | 4415949 {29 |51 |20
9 84 | 24 1561 4134 ]52]30 78 | 28 7118 111 5115
10 213 |47 |42 118 |25|25] O 167 | 11| 14| 46 {52 {19 |10
11 343 } 10 |28 |32 |15 57 | 30 255 | 54| 22115 {33 {33} 5
12 112 133 (14146 61301 0O 344 | 37129144 114 147! 0
13 241 56 | 0 |59 |57 2130 73 20| 37| 12 |56 0|55
14 1 18 147 (13 {4735} 0 162 3744 41 37 ;14530
15 140 | 41 {33 {27 (38 7130 250 | 46| 52| 10 | 18 |28 | 45
16 270 4119 |41 |28 740 O 339 | 29159 38 |59 |42 |40
17 39 |27 55 19712} 30 68 13 7 7140 {56 |35
18 168 | 49 152 | 9| 9)145] O 156 | 56 | 14 36 [ 22 |10 | 30
Increment in Longitude Increment in Anomaly
Hours ° ’ ’” soe aser ssrer t20ses ° , . ser sser teres sreees
] 0] 32 5627 262346 0 [ 32[391 44 [50 [44 | 40
2 1 552 |54 (5247 32 1 5119129 141 [29 |20
3 1 38149 (22191118 113715911432 |14 0
4 2 | 11 |45 |49 145(35] 5 21 10| 38|59 {22 |58 |40
5 2 44 |42 |17 | 11| 58} 51 2 43 | 18] 44 113 |43 | 20
6 3 17 138 | #4 | 38| 22| 37 3 15] 58! 29 4 /28| 0
7 3 50 |35 )12) 4] 46| 23 3 48| 381 13 155 |12 |40
8 4 (2331393110} 10 4 211 17] 58 |45 |57 |2
9 4 156 (281 6}57)33]56 4153574336 (42| 0
10 5 29 | 24 | 34 1 23| 57| 42 5] 26 37| 28 |27 |26 | 40
i1 6 2121 11521128 5 59117 13 ;18 |11 |2
12 6 35117 {29 16| 45| 15 6 311 36 ! 58 8 (56| 0
13 7 81315 43| 9 1 7 4136: 42 159 140 |39
14 7 41 |10 124 9| 321 47 7 371161 27 150 125119
15 8 144 651 [35]| 51| 33 8 9151 12 |41 9159
16 8 | 47 3119 2[2]20 8 | 42| 35{57 {31 [54]39
17 9 19159 |46 128 4%, 6 9 151 15] 42 ;22 139 |19
18 9 1 5256|1355 71 52 9| 47| 55| 27|13 123 |59
19 10 ) 25 152 |41 |21 31 38 10| 20]35]12) 4] 839
20 10 | 58149 | 8|47 55| 25 10 ] 53] 14 56 | 54 {53 | 19
21 11 31 {45 (36 {14 19] 11 11 25) 54 41 | 45 | 37 | 59
22 12 4142 3,40 42 57 11 | 58| 34| 26|36 |22]39
23 12 37 |38 1 31 71 6] 43 12 31 14 11 ) 27 7119
24 13 10 | 34 158 (33| 30( 30 13 3153]56 |17 |51 (59
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. Increment in Latitude Increment in Elongation
Single
YcalS o ’ r” e EIIP 220V P2PPFF o ’ r e PEPE PRIIP 220022
1 148 | 42 147 |12 |44 |25 ] 5 120 | 37 |21 |28 129 |23 |55
2 297 | 25 (34|25 |28 |50 |10 259 | 14 |42 |56 | 58 | 47 | 50
3 86 8 (21 {38 |13[15]15 28 | 52 4125 (28111 {45
4 234 | 51| 8|50 |57 |40 |20 158 | 29 {25 |53 |57 |35 |40
5 23 [ 33156 3142 5|25 288 6147 (221265935
6 172 16 |43 | 16 {26 |30 | 30 57 | 44| 850 |56 |23 (30
7 320 | 59130 129 |10 {55 |35 187 | 21 |30 119 )25(47 |25
8 109 | 42 |17 | 41 |55 |20 | 40 316 | 58 |51 |47 |55 |11 |20
Q 258 | 251 4154 139 145145 86 | 36 113 116124135115
10 47 7152 7124 |10 |50 216 13 134 |44 5315910
1l 195 | 50 {39 120 { 8 {35 |55 345 | 50 156 {13123 (23| 5
12 344 © 33 26132 ;53 1 0 115 ) 28 117 141 152 147! 0
13 133 16 113145137126 5 245 5(39 10|22} 10 {55
14 281 59| 038 (21 51|10 14 | 43| 03851 {345
15 70 | 41 | 48 | 11 6|16 |15 144 | 20 |22 | 7|20 [58]45
16 219 | 24 35|23 |50 |41 |20 273 | 57 |43 |35 |50 |22 |40
17 8 7122136 35| 625 43 | 35| 5| 4(19]46 (35
18 156 | 50 | 949 |19 |31 |30 173 12 126 132]49 10 |30
Increment in Latitude Increment in Elongation
Hours ° e e wser eses serers o ’ 1 ere e et seeers
1 0|33 4|24 93222 0| 302836 43 ]2 |45
2 1 6 848 [ 19| 4|43 1 0|57 {13[26 41 |30
3 1 39113 (122837 5 1 311251501101 2115
4 2 12117 (36 {38 | 9|26 2 15426153123 0
5 2 1 451221 0 |47 |41 | 48 2132123 3136{43 |45
6 3] 1812624157 (14| 9 3 2151 14020} 430
7 315130 |49 6|46 31 3133|2017} 3]25]15
8 4 | 24135113 {16 |18 | 52 4 3148|5346 (46| 0
9 4 | 57 {39 |371{25 |51 )14 4| 3417130130 ] 6|45
10 5] 30|44 1[35(23]35 5 4146 7113 {27 (30
tl 6 314825 |44 |55]57 51 351443 5 |48 | 15
12 6 ) 36 (5249542818 6 5(43120140} 9| O
13 7 9157114} 4| 040 6| 36|11 |57 )23 29|44
14 71 43 1[138(13133] 2 7 6140 34| 65029
15 8 16| 6| 2123 523 71 37| 9]10{50 |11 |14
16 8 | 49|10 |26 |32 |37 |45 8 7137|4733 |31159
17 9| 2214504210 6 81 38| 6124|1652 |44
18 9 | 55|19 (1451|4228 9 8|35 1|1 0{13129
19 10 | 28 (23391 11449 9] 39 3(37[43 34|14
20 11 1128 311047 |11 10 9132142 |54 59
21 11 | 343212720 |19]32 10 0|51 ]10(15]| 44
22 12 7136512951 |54 11 10 {29 127533629
23 12 | 40 |41 |15 (39|24 |15 11 40 158 | 436 (57|14
24 13 13145139 )48 |56 | 37 12 11 1261|4120 |17 |59
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Increment in Longitude Increment in Anomaly
Monlhs o ’ ’” I'II A A Y N N ) o ’ r” e PIPE 229P PPPIIS
30 35 1729164515 | 0 31 | 56 {58 | 815559 30
60 70 | 34(58]33{3030 0 63 | 53 15617151 59| 0
90 105 152127501545 (O 95 { 50 | 54| 26 ([ 47 | 58 30
120 141 9157 7 1 0} o 127 | 47 |52 (35|43 {58 0O
150 176 (2726 |23 46115 | 0 159 | 44 |50 | 44 | 39 | 57| 30
180 211 44 {55140 (311300 191 41 |48 |53 |35 |57 O
210 247 2124157 (16|45 | 0 223 | 38 |47 2|31 |5} 30
240 282 19154(t4( 2 01} 0 255 § 35 145 | 11 [ 27 {56 O
270 317 | 3723130 (4715 | 0 287 | 32 |43 |20 (23 {55} 30
300 352 | 54521473230} 0 319 | 29 | 41 |29 |19 (55 O
330 28 12122 417145 | 0 351 26 {3938 |15 54| 30
360 63 | 29512l 3100 23 | 23 {37 (47| 11|54 L 0
Increment in Longitude Increment in Anomaly

Da},s L4 ’ ’” st 14444 rreer sresrr o ’ ’” rre ey rreer trrers
1 13 10 3438|3330 [30 13 353561751} 59

2 26 | 21 9157 7 I 0 26 714715235 43| 58

3 39 (31| 44|55 40| 31 (30 39 11§41 { 48 | 33| 35| 57

4 32 | 4211915414 210 52 1513545 1 11 | 27| 56

5 65 | 521 54152 47 |32 |30 65 19 )29 ) 41 )29 19] 55

6 79 312915121 310 78 | 23123137 | 47| 11] 54

7 92 14 414954133 {30 91 27117134 5| 31533

8 105 | 241391487281 4| 0 104 | 3131130122055 32

9 118 | 35| 14 | 47 134 |30 117 | 351 5|26 40 | 47| 51
10 131 49|45 (35| 510 130 | 38 {59 {2258 39| 50
11 144 156 24|44 835 {30 143 | 42153319116 31| 49
12 158 6159 |42 ,42| 6 0 156 | 46 | 47 | 15| 34| 231 48
13 171 171 34 ) 41 | 15 ] 36 |30 169 | 50 | 41 | 11 | 52| 15| 47
14 18¢ [ 281 9/39|49) 71 0 182 | 34135 810} 7] 46
15 197 | 381 44} 38§ 22 | 37 |30 195 | 58 129 4|27 159] 45
16 210 |49 (1936|356 810 209 2123 014551 | 44
17 223 15954352938 {30 222 61657 3|43( 43
18 237 10129134 31 90 235 1011053421 }35] 42
19 250 | 21 4132|3639 [30 248 141 4149139 27] 41
20 263 131393110100 261 17 158 { 45 {37 | 19| 40
21 276 | 421 14} 29 | 43 | 40 | 30 274 | 21 (52| 42 {15 L1 | 39
22 289 | 52| 49128 (17| 11 0 287 | 2546|3833 | 3] 38
23 303 312426450 |4l 30 300 | 29|40 34450 | 55| 37
24 316 [ 135912524112 0 313 | 33| 34| 31 8147]| 36
25 329 [ 24| 3423 |57 |42 |30 326 | 372827126 39| 35
26 342 (35| 9122 (31|13 | 0 339 | 412212344 31| 34
27 355 [ 45| 44} 21 4143 |30 352 | 45|16 20| 2| 23| 33
28 8 |56]19[19]38|14 | 0 5] 4910} 16} 20| 15| 32
29 22 6| 54| 18| 11} 44 |30 18 [ 53| 4| 1238 7| 31
30 35 171291164515 ] 0 31 56| 581 8]55(59] 30
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Increment in Latitude Increment in Elongation

Mon‘hs o ’ rr 2 1227 PIPIL 22PIIPF (<3 ’ 7 rre rrre 22202 t22212
30 36 | 52 {49 | 54| 28 | 18| 30 5| 43120|40| 859130
60 73 | 451394856 |37 O 11 26 |41 1201171591 0
9 110 | 38 |29 (43|24 |55 30 17 16| 2 0{26|58]30
120 147 | 31 11913753 {14} O 221 53122140 (35|58 | 0
150 184 | 24} 9132] 21 {32]30 28 | 36|43 (20| 44|57 130
180 221 16 [ 59 | 26 | 49 | 51 0 34| 20 4 0({53(57| 0
210 258 94921} 18§ 930 40 312441 2|56 |30
240 295 2139|1546 (28 O 45 | 46 (45 (21 |11 |56 O
270 331 55129 110] 14 |46 | 30 51 301 6 112015530
300 8 | 48119} 4143 ]| 5] 0 57 13126)41 (29|55 ] 0
330 45 1 4l 8159 11123 30 62 | 56 | 47 | 21 | 38 | 54 | 30
360 82 | 33|58 |53 |39 |42} 0 68 | 40| 8 1 {47 (54| 0

Increment in Latitude Increment in Elongation

Dﬂ}'S ° re rrr rrsr rertr rrress o ’ , ey prre arerr rrises
1 13 13 145 [ 391 48 | 56 | 37 12 V126041 (21017159
2 26 1 27 +31 [ 19 37 1533} 14 24 ] 22153122140 |35 |58
3 39 { 41 16139126 |49 | 3] 36+ 341201 4] 0133157
+ 32 151 21391154628 180 45| 46 | 45 | 21 | 11 | 36
3 66 8148119 + {43/ 5 60 1 57 13126 )41 12935
6 79 22 133 158|533 |39 42 73 8|4 ) 8 1|47 | 54
7 92 1 36 119 | 38| 4213619 85 20| 6|49 |22 5}533
8 105 | 50 | 5 {18 31 [32] 36 97 | 31 |33 {30 |42 )23 {52
9 119 3150 (5820|2933 109 43 0|12 2141 |51
10 132 17 136 [38] 912610 121 54 126 )53 12215950
11 145 31 (22117 (58 | 22147 134 5153134143117 149
12 158 | 45§ 7 |57 47 | 19| 24 146 1712016 | 3|35 )48
13 171 58 133 37|36 {16 1 158 1 28 1 46 | 57 | 23 | 53 | 47
14 185 12 (39 {17 25 112 38 170 | 40 (13 | 38 | 44 | 11 | 46
15 198 | 26 124 |57 | 14| 915 1821 51 |40 |20 4129 |45
16 211 0710137 31 5152 195 31 7 1124147 | 44
17 224 1 33 |36 (16|52 | 2129 207 14 (33 [ 42145 5 (43
18 238 | T {41 |56]40 (39| 6 209 26| 0|24 5{2f |4
19 251 21 {27 {36129 |55 |43 231 37 1271 5125 41 | 4l
20 264 | 35|13 116} 18 |52 |20 243 | 48 |53 | 46 | 45 | 59 | 40
21 277 | 48 |58 | 56 | 7 | 48 | 57 256 012028, 6|17 |39
22 291 2044|3556 |45 | 34 268 11 | 47 ] 912613538
23 304 16 {30115 45 |42 | 11 280 23* 13 (50 |46 | 53 | 37
24 317 | 30 | 1555 34 {38 |48 292 | 34140 32| 7|111[36
25 330 | 44 1135)23 13525 304 | 46 71312712935
26 343 | 57 |47 | 1512 (32| 2 316 | 57 | 33 | 54 | 47 | 47 | 34
27 357 11 13255 11281 39 329 9) 0|36| 8} 533
28 10 ] 25 |18 ]34}50 {25] 16 341 20 (27|17 |28 23|32
29 231 39| 414|139 (2153 353 | 31|53 |58148 4t !3]

30 36 | 52 149 5428|181 30 5] 43|20{40| 859 |30.
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E

Fig. 4.1

Then, since arc AG >arc EZ,
cut off arc BG || arc EZ, and join BD.
Then it is clear that, in the same time, the eccentre will have moved through
£ ADB, which represents the difference between the two motions, and its centre
and apogee will lie along line BD.
This being so, let DH = GZ. Join ZH, and with centre H and radius HZ draw
the eccentre ZO.
I say, that
ZH:HD = DG:GZ,
and that in this hypothesis too the moon will be at point Z, i.e.
arc ZO || arc EZ.
[Proof:] Since Z BDG = £ EGZ, GZ is parallel to DH.
But GZ = DH [by construction].
Therefore ZH too is equal and parallel to GD.*
~ ZH:HD = DG:GZ.
Furthermore, since DG is parallel to HZ,
£ GDB = £ ZHO;
and, by hypothesis, Z GDB = £ EGZ.
~ arc ZO || arc EZ.
Therefore the moon has reached point Z in the same time according to either
hypothesis, since the moon itself has traversed arc EZ on the epicycle and arc
©®Z on the eccentre, which we have shown to be similar, while the epicycle

% Euclid I 33: straight lines joining equal and parallel lines are themselves equal and paraitel.
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centre has moved through arc AG, and the centre of the eccentre through arc
AB, which is the increment of arc AG over arc EZ.
Q.E.D.

Moreover, even if [the members of] the ratios are unequal, and the
eccentre is not the same size as the deferent, the same phenomena will result,
provided the ratios are similar, as will be clear from the following.

Draw each of the hypotheses in a separate figure. Let [Fig. 4.2] the circle
concentric to the ecliptic be ABG on centre D and diameter AD, and the
epicycle EZ on centre G. Let the moon be at Z. Let [Fig. 4.3] the eccentre be
HOK on centre L and diameter © LM, with the centre of the ecliptic at M. Let
the moon be at K. In the first figure join DGE,GZ,DZ, and in the second figure
join HM, KM, KL. .

Let DG:GE = ©L:LM.
Let us suppose that in the same time as the epicycle has moved through

£ ADG, the moon has again moved through £ EGZ, the eccentre through -

£ HM@, and the moon, again, through £ ©LK.
Therefore, because of the assumed relationship between the motions,

£ EGZ = £ OLK,

A

Fig. 4.2

and £ ADG = £ HM®O + £/ OLK.
This being so, I say that the moon will again appear to have traversed an equal
arc in the same time according to either hypothesis, i.e.
{ ADZ = £ HMK

(for at the beginning of the time-interval the moon was at the apogee and
appeared along lines DA and MH, while at the end it was at points Z and K and
appeared along lines ZD and MK). :
[Proof] Let arc BG again be similar to arc ®K (or arc EZ). Join BD.

Then, since DG:GZ = KL:LLM,

and the angles at G and L are equal,

H299

H300
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C)

Fig. 4.3

triangle GDZ ||| triangle KLM (sides about equal angles proportional), and the
angles opposite the corresponding sides are equal.
L GZD = £ LMK.
But £ BDZ = £ GZD.
for GZ is parallel to BD. since, by hypothesis. £ ZGE = Z BDG.
S £ ZDB = £ LMK.
But. by hvpothesis, Z ADB, the dilference between the motions{in longitude and
anomaly] equals £ HMO. the motion of [the centre of] the eccentre. Therctore,
by addition,
£ ADZ = Z KMH.
Q.E.D.

6. {Demonstration of the first. simple anomaly of the moon}*’

Let the preceding sulfice us as preliminary theory. We shall now demonstrate
the lunar anomaly in question, by means of the epicyclic hypothesis, for the
reason mentioned. [For this purpose] we shall use, first, among the most ancient
eclipses available to us, three {which we have selected] as being recorded in an
unambiguous fashion, and, secondly, (we shall repeat the procedure] using,
among contemporary eclipses, three which we ourselves have observed very
accurately. In this way our results will be valid over aslong a period as possible,
and in particular it will be apparent that approximately the same [maximum}
equation of anomaly results from both demonstrations, and that the increment
in the mean motions [between the two sets of eclipses] agrees?® with that
computed from the above periods (as corrected by us).

¥ See H.AMA 73-8, Pedersen 169-79:
8 Reading obppmvog (with D, Ar) for chppwvog ael (‘always agrees’) at H301,10.
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For the purposes of demonstrating the first anomaly, considered separately,
the epicyclic hypothesis which we mentioned can be described as follows.
Imagine a circle in the sphere of the moon which is concentric to and lies in the
same plane as the ecliptic. Inclined to this, at an angle corresponding to the
amount of its [maximum]} deviation in latitude, is another circle, which moves
uniformly in advance (with respect to the centre of the ecliptic) with a speed
equal to the difference between the motions in latitude and longitude. On this
inclined circle we suppose the so-called ‘epicycle’ to be carried, with a uniform
motion, towards the rear with respect to the heavens, corresponding to the
motion in latitude. (This motion, obviously, will represent the [mean] motion in
longitude with respect to the ecliptic). On the epicycle itself [we suppose] the
moon to move, in such a way that on the arc near the apogee its motion is in
advance with respect to the heavens, at a speed corresponding to the period of

return in anomaly. However, for the purposes of the present demonstration we

shall sufler no ill consequences if we neglect the advance motion in latitude and
the inclination of the moon’s orbit, since such a small inclination has no
noticeable eftect on the position in longitude.?

First, the three ancient eclipses which are selected from those observed in
Babylon.

The first is recorded as occurring in the first year of Mardokempad, Thoth [I]
29/30 in the Egyptian calendar [-720 Mar. 19/20]. The eclipse began, it says,
well over an hour after moonrise, and was total.

Now since the sun was near the end of Pisces. and [therefdre] the night was
about 12 equinoctial hours long, the beginning of the eclipse occurred, clearly,
4} equinoctial hours before midnight, and mid-eclipse (since it was total) 24
hours before midnight.>* Now we takeas thestandard meridian for all time deter-
minations the meridian through Alexandria, which is about § of an equinoctial
hour in advance {i.e. to the west] of the meridian through Babylon.*! So at
Alexandria the middle of the eclipse in question was 31 equinoctial hours before
midnight, at which time the true position of the sun, according to the [tables]
calculated above, was approximately Y 244°.

The second eclipse is recorded as occurring in the second year of the same
Mardokempad, Thoth [I] 18/19 in the Egyptian calendar [-719 Mar.-8/9].
The [maximum] obscuration, it says, was 3 digits*® from the south exactly at
midnight. So, since mid-eclipse was exactly at midnight at Babylon, it must

-

e for the purposes of computing the longitude the moon's orbit is treated as if it lay in the
plane of the ecliptic. The maximum resulting error (for 1 = 5°) is about 6 (cf. HAMA 83). Ptolemy
himself (VI 7 p. 297) estimates it as 5.

3 A total eclipse of the moon is assumed to last 4 hours from start to finish. This agrees fairly well
with the duration one derives from Ptolemy's own eclipse tables (VI 8) and with the actual
maximu%lzl possible duration. The duration of the eclipse in question (Oppolzer no. 741) was in fact
about 37",

3 This time difference corresponds to a longitudinal difference of 12 §°. The actual time difference

is about 58} minutes. In the Geography Ptolemy amended the difference, in the right direction but by -
far too much, to 14 hours (8.20.27), corresponding to the difference between the longitudes there.

assigned to Alexandria (604°, 4.5.9) and Babylon (79°, 5.20.6).

32 Modern calculations give a considerably smaller eclipse: Oppolzer (no. 743) 1.6 digits, P.V.
Neugebauer 1.5 digits. However Ptolemy’s own tables give about 2} digits: see Appendix A,
Example 11. -
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192 IV 6. Determination of intervals in anomaly and longitude

have been " before midnight at Alexandria, at which time the true position of
the sun was > 134°.

The third eclipse is recorded as occurring in the (same) second year of
Mardokempad, Phamenoth [VII] 15/16 in the Egyptian calendar [-719 Sept.
1/2]. The eclipse began, it says, after moonrise, and the [maximum]
obscuration was more than half {the disk] from the north. So, since the sun was
near the beginning of Virgo, the length of night at Babylon was about 11
equinoctial hours, and half the night was 54 [equinoctial] hours. Therefore the
beginning of the eclipse was about 5 equinoctial hours before midnight (since it
began after moonrise), and mid-eclipse about 34 hours before midnight (for the
total time for an eclipse of that size must have been about 3 hours).** So in
Alexandria mid-eclipse occurred 4} equinoctial hours before midnight, at
which time the true position of the sun was about np 34°.

Then it is clear that the motion of the sun (which is the same as that of the
moon apart from complete revolutions) is

from the middle of the first eclipse to the middle of the second: 349:15°

from the middle of the second eclipse to the middle of the third: 169:30°.

The time intervals are:
354‘2" reckoned simply
345° 243" reckoned in mean solar days
176°204" reckoned simply
176'204" reckoned in mean solar days.

Over such short intervals it will make no appreciable difference if one uses
approximate periods [to determine the moon’s mean motions].** The moon’s
mean motions are, then, (beyond complete revolutions), approximately

. d ol7h 306;25° in anomaly
in 354" 2 345;51° in longitude
. d onlh 150;26° in anomal

in 176" 20" { 17070 i1 longitude.

Thus it is clear that the motion on the epicycle of 306;25° over the first
interval has produced an increment of [349;15° - 345;51°=] 3;24° over the
mean motion, and the motion [on the epicycle] of 150;26° over the second
interval has produced a decrement from the mean motion of [169;30° -

from first to second

from second to third

170:7°=] 0:37°.

With the above as data, let [Fig. 4.4] the moon’s epicycle be [circle] ABG, on

** At a lunar eclipse the moon is diametrically opposite the sun. Therefore moonrise coincided
with sunset, which was 5} equinoctial hours before midnight. Ptolemy allows }-hour to account tor
‘alter moonrise’. He estimates a duration of 3 hours for an eclipse of more than 6 digits (according to
Oppolzer, no. 744, this eclipse had a magnitude of 6.4 digits and a duration of about 2;36"; P.V.
Neugebauer calculates 6.1 digits and 2.4"). Obviously this eclipse is hardly ‘recorded in an
unambiguous {ashion’ (p. 190).

*This is a point of methodology. Ptolemy’s mean motion tables are based, not on the exact
periods he took from Hipparchus, but (for the anomaly) on a correction applied to the number
derived from those periods (IV 7). Howcver, the correction is itself based in part on the parameters
derived here. It is therefore important to note that the correction makes no difference over the short
intervals considered here (between the first and second eclipses it is only about | second of arc).
From [V |1 it is clear that Hipparchus had already established the principle that it was necessary to
use an eclipse triple close in time, so that any long-term error in the mean motions would have a
minimal eflect.
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D

Fig. 4.4

which point A is the location of the moon at the middle of the first eclipse, B its
position at the middle of the second eclipse, and G its position at the middle of
the third eclipse. We must imagine the moon to move on the epicycle from B to
A and from A to G insuch a way that arc AGB, which is its increment in motion
between the first and second eclipses, is 306;25° and produces an increment of
3;24° over the mean motion, while arc BAG, which is its increment in motion
between the second and third eclipses, is 150;26°, and produces a decrement of
0:37° from the mean motion. Hence the motion from B to A is 53;352 and
produces a decrement of 3;24° from the mean motion, and the motion from A to
G is 96:51° and produces an increment of 2;47° over the mean motion.
Now the perigee of the epicycle cannot lie on arc BAG. This is clear because
this arc has a subtractive effect, and is less than a semi-circle, while the greatest
speed occurs at the perigee. Since, then, [the perigee] necessarily lies on arc
GEB,* let us take the centre of the ecliptic, which is also the centre of the
deferent, as point D, and draw lines DA, DEB and DG to the points
representing [ the positionsof the moonat]the three eclipses. Inorder tomake the
sequence of the proof readily transferable for computations of this kind,

whether we use the epicyclic hypothesis (as now) for our demonstration, or the

% For a detailed argument about the location of the observer with respect to the points on the
epicycle representing the three eclipses see HAMA 74.

H306
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eccentric hypothesis, in which case [see Fig. 4.5] centre D is taken inside the
circle, we give the following generally applicable description.
Produce one of the three straight lines drawn [DA,DB,DG] to the opposite
H307 circumference (in this case we already have DEB drawn to E from point B of the
second eclipse), and draw a line joining the points of the other two eclipses (here
AG). From the point where the first line produced cuts the circumference again
(here E) draw lines to the other two points (here EA, EG), and [from the same
point] drop perpendiculars on to the lines between the other two points and the
centre of the ecliptic (here EZ on to AD and EH on to GD). From one of these

B

. Fig. 4.5

two points (here G) drop a perpendicular on to the line drawn from the other
(here A) to the extra intersection [with the circumierence] (here E) resulting
from [the first straight line, DB,] being produced (in this case, we drop GO on to
AE). Whichever point we start drawing the figure from, we shall find that the
same ratios result from the numbers used in the demonstration. Our choice [of
starting-point] is guided merely by convenience.
So, since we found that arc BA subtends 3;24° of the ecliptic,

3;24° where 4 right angles =360°
. 6;48°° where 2 right angles = 360°°.
H308 Therefore in the circle about right-angled triangle DEZ.

arc EZ = 6;48°

and EZ = 7;7,0° where hypotenuse DE = 120°.

the angle at its centre, Z BDA =



i
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Similarly, since arc BA = 53,35,
the angle [it subtends] at the circumference,
£ BEA = 53;35° where 2 right angles = 360°°.
But, in the same units, Z BDA = 6;48°°. )
Therefore, by subtraction, Z EAZ = 46;47° in the same units,
Therefore in the circle about right-angled triangle AEZ,
arc EZ = 46;47°
and EZ = 47;38,30° where hypotenuse EA = 120°.
Therefore wherc EZ = 7;7,0° and ED = 120°,
AE = 17;55,32°.
Again, since arc BAG subtends 0;37° of the ecliptic,
0;37° where 4 right angles = 360°
1;14°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle DEH,
arc EH = 1;14°
and EH = 1;17,30° where hypotenuse DE = 120°.
Similarly, since arc BAG = 150;26°,
the angle [it subtends] at the circumference,
£ BEG = 150:26°° where 2 right angles = 360°°.
But £ BDG = 1;14°° in the same units.
Therefore, by subtraction, Z EGD = 149;12°°.
Therefore in the circle about right-angled triangle GEH,
© arc EH = 149;12° ’
and EH = 115:41.21%® where hvpotenuse GE = 120"
Therefore where EH = 1:17.30° and DE = 120°.
GE = 1;20.23°,
and, as we showed, EA = 17:55,32° in the same units.
Again since. as we showed, arc AG = 96;51°,
the angle [subtended by it] at the circumference,
£ AEG = 96;51°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle GEO,
arc GO = 96:51°
and arc E® = 83;9° (complement).
So the corresponding chords
= 89- P
and (E;g ; gg:;gz;gp} where hypotenuse GE = 120°. ’
Therefore where GE = 1;20,23°
GO = 1;0,8°
and E® = 0;53,21°,
And, in the same units, the whole line EA was found to be 17;55,32°.
Therefore, by subtraction, @A = 17;2,11° where GO = 1;0,8".
And the square on A@ is 290;14,19
while the square on GO is 1;0,17.

the angle at its centre, Z BDG =

But AG? = A@? + GO? = 291;14,36.

36115;41,24 (as L) may be correct at H309,10 (computed: 115;41,28). It makes no difference to
subsequent calculations whether one adopts 21, 24 or 28.

H309

H310
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Therefore AG = 17;3,57° where DE = 120° and GE = 1;20,23".
But, where the diameter of the epicycle is 120°, AG = 89;46,14°
(for it subtends arc AG, which is 96;51°).
Therefore where AG = 89;46,14° and the epicycle diameter is 120°,
DE = 631;13,48°
and GE = 7;2,50°.
Therefore arc GE of the epicycle = 6;44,1°.
And, by hypothesis, arc BAG = 150;26°.

Therefore, by addition, arc BGE = 157;10,1°,
so its chord, BE = 117;37,32° where the epicycle dlametcr is 120° and ED =
631;13,48".

Now if we had found BE equal to the diameter of the epicycle, the epicycie
centre wouid, obviously, lie on it, and we would immediately get the ratio
between the diameters [of epicycle and deferent]. Since, however, it is less than
the diameter, and also arc BGE is less than a semi-circle, it is clear that the
centre of the epicycle will fall outside segment BAGE.

Let it be [Fig. 4.6] in point K, and draw the line DMKL from D, the centre of

the ecliptic, through K. Thus point L represents the apogee of the epicycle and
M its perigee. Then
BD.DE = LD.DM;*

L B

o
0
Fig. 4.6

3 Euclid I1I 36: the rectangle contained by any line drawn from a point outside the circle and the
segment of that line outside the circle equals the square on the tangent to the circle from that point.
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and we have shown that where the epicycie diameter LKM = 120°,
BE = 117;37,32" and ED = 631;13,48°.
Therefore, by addition, BD = 748;51,20". H312
Therefore LD.DM = BD.DE = 472700;5,32".
Furthermore, since LD.DM + KM? = DK?3®
and the radius of the epicycle, KM = 60°,
KM? = 3600°,
and DK? = 472700;5,32° + 3600° = 476300;5,32°.
Therefore DK, the radius of the deferent circle concentric to the ecliptic, is
690;8,42° where KM, the radius of the epicycle, is 60°.
So, where the radius of the deferent, the centre of which coincides with the
observer. is 60, the radius of the epicycle is about 5:13. H313
Repeating the same figure [Fig. 4.7], drop perpendicular KNX from centre K
on to BE, and join BK.
Now, where DK = 690;8,42°,
we found that DE = 631;13,48°
and NE = {BE = 58;48,46".
Therefore, by addition, DEN = 690;2,34°.

L B

Q

D

Fig. 4.7

3 Euclid I1 6: if a straight line (LM) be bisected and astraight line (DM) added to it, the rectangle
contained by the whole plus the added line (LD) and the added line (DM), together with the square
on the half (KM?) is equal to the square on the line (DK) made up of the half (KM) and the added
line (DM).
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Therefore in the circle about right-angled triangle DNK,
DN = 119;58,57" where hypotenuse DK = 120°,
and arc DN = 178;2°.
. _ ] 178;2°° where 2 right angles = 360°°
~ & DKRN '—{ 89;1° where 4 right angles = 360°.
Therefore arc XM ol the epicycle = 89;1°,
and arc LBX = 90;59° (complement),
and arc XB = { arc BXE = 78;35° (for arc BE was determined [p. 196]
as about 157;10°).
Therefore, by subtraction, arc LB of the epicycle, which is the distance of the
moon from the apogee of the epicycle at the middle of the second eclipse in
question, s 12,24°.

Similarly, since, as we showed,

£ DKN = 89;1° where 4 right angles = 360°,
by subtraction, Z KDN, which represents the equation of anomaly (which is
subtractive with respect to the mean motion) corresponding to the epicycle arc
LB. is 0:59° (complement of Z DKN). Therefore the mean position of the moon
at the middle of the second eclipse was mp 14:44°. since its true position was T
13:45°. corresponding to the position of the sun in Pisces.

Let us now turn to the three eclipses which we have selected from those very
carefully observed by us in Alexandria.

The first occurred in the seventeenth year of Hadrian, Pauni[X]2021 in the
Egyptian calendar [133 May 6 7]. We computed the exact time of mid-eclipse
asi of an equinoctial hour before midnight. It was total.*® At that time the true
position of the sun was about 8 134e.

The second occurred in the nineteenth vear of Hadrian, Choiak [IV] 2.3 in
the Egyptian calendar (134 Oct. 20/21]. We computed that mid-eclipse
occurred 1 equinoctial hour before midnight. [The moon] was eclipsed # of its
diameter from the north.*® At that time the true position of the sun was about
2540,

The third eclipse occurred in the twentieth year of Hadrian, Pharmouthi
[VIII] 19720 in the Egyptian calendar [136 Mar. 5/6). We computed that mid-
eclipse occurred 4 equinoctial hours after midnight. [The moon} was eclipsed
half of its diameter from the north.*' At that time the position of the sun was
about ¥ 141+°.

It is clear that here too the mean motion [in longitude] of the moon, beyond
complete revolutions, is equal to that of the sun, and is:

from middle of the first eclipse to middle of the second: 161;55°

from middle of the second eclipse to middle of the third: 138;55°.

The length of the first interval is:
1 Egyptian year 166 days 231 equinoctial hours reckoned simply
1 Egyptian year 166 days 23§ equinoctial hours reckoned accurately.

*Oppolzer no. 2071, the circumstances of which agree well with Ptolemy’s report.

**Oppolzer no. 2074, the circumstances of which agree extremely well with Ptolemy'’s report.

"'Oppolzer no. 2075; circumstances: mid-eclipse 1;43 a.m. = 3} hours after midnight
Alexandria, magnitude 5.5 digits.
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The length of the second interval is:
1 Egyptian year 137 days 5 equinoctial hours reckoned simply
1 Egyptian year 137 days 5} equinoctial hours reckoned accurately.
The approximate mean motion of the moon (beyond complete revolutions) is:
. d onsh 110;2}1° in anomal
in 1" 166" 23§ 169;37° in longitugc
.y h 81;36° in anomaly
and in I 137" 5 {137;34" in longitude.

Therefore, clearly, the 110;21° of motion on the epicycle over the first
interval have produced a decrement from the mean motion of [161;55° -
169;37°=] 7;42°, while the 81;36° of motion on the epicycle over the second
interval have produced an increment to the mean motion of [138;55° -
137;34°=] 1;21°.

With the above data, let the moon’s epicycle [Fig. 4.8} be ABG. Let A be the .

point in which the moon was at the middle of the first eclipse, B its location at
the middle of the second eclipse, and G its position at the middle of the third.

D

Fig. 4.8

We must, again, imagine the motion of the moon taking place from A to B and"

then from B to G in such a way that, as we said, arc AB, which is 110;21°,
produces a decrement of 7;42° with respect to the mean motion, while arc BG,
which is 81;36°, produces an increment of 1;21° with respect to the mean

H316
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motion; thus the remaining arc GA is 168;3° and produces an increment to the
mean motion of 6;21°, which is the difference [between 7;42° and 1;21°].

It is clear that the apogee must lie on arc AB, since it can lie neither on arc BG
nor on arc GA, both of which produce an additive effect and are less than a
semi-circle. In the same way [as before],* take the centre of the ecliptic and the
circle carrying the epicycle as D, and draw from it, to the, points representing
the 3 eclipses, lines DEA,DB,DG. Join BG and draw from point E to Band G
lines EB and EG, and drop on to lines BD and DG perpendiculars EZ and EH.
Also drop perpendicular GO from G on to BE.

Then, since arc AB subtends 7;42° on the ecliptic, the angle at the centre of
the ecliptic,

7 ADB - { 7;42° where 4 right angles = 360°
15;24°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle*® DEZ,
arc EZ = 15;24°
and EZ = 16;4,42° where hypotenuse DE = 120°.
Similarly, since arc AB = 110;21°,
the angle [subtended by it] at the circumference,
£ AEB = 110;21°° where 2 right angles = 360°°.
But Z ADB = 15;24°° in the same units.
Theretore, by subtraction, £ EBD = 94;57°°.
Theretore in the circle about right-angled triangle** BEZ,
arc EZ = 94:57°
and EZ = 88:26,17° where hypotenuse BE = 120°.
Therefore where EZ = 16;4,42° and DE = 120°,
BE = 21;48,59".
Furthermore, since, as we showed, arc GEA subtends 6;21° of the ecliptic, the
angle at the centre of the ecliptic also,
_ ] 6:21° where 4 right angles = 360°
4 ADG ‘{ 12:42°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle DEH,
arc EH = 12;42°
and EH = 13;16,19° where hypotenuse DE = 120°.
Similarly, since arc ABG = 191;57°,
the angle {subtended by it] at the circumference,
£ AEG = 191:57°° where 2 right angles = 360°°.
But Z ADG was found to be 12;42° in the same units.
Therefore, by subtraction, Z EGD = 179;15°° in the same units.
Therelore in the circle about right-angled triangle GEH,
arc EH = 179;15°
and EH = 119;59,50° where hypotenuse GE = 120°.

*Reading opoiwg for Spwg dg piy Lrokewpévov tovtov at H317.4-5. This would mean
‘Nevertheless, without this as an assumption’; but the location of the apogee on arc ABis (and must
be) assumed in Fig. 4.8. I suppose that dpoiwg (‘similarly’) was corrupted to 8pwg (‘however’)
and the rest then added as an ancient gloss.

* Reading dpoydviov (with D, Ar) for Tpiyevov at H317,25. So too at H319,4 and 319,14.

*Reading BEZ 6pBoy@viov (with D, Ar) for BEZ at H318.8.
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Therefore where EH = 13;16,19” and DE*® = 120°,
GE = 13;16,20°.
And, as we showed, BE = 21;48,59” in the same units.
Furthermore, since arc BG = 81;36°,
the angle [subtended by it] at the circumference,
£ BEG = 81;36°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle GE®,
arc GO = 81;36°
and arc EO© = 98;24° (supplement).
Therefore the corresponding chords
GO = 78;24,37
and EO© = 90;50,22"
Therefore where GE = 13;16,20°,
GO = 8;40,20° and E® = 10;2,49°.
And the whole line EB was found to be 21;48.59” in the same units.
Therefore, by subtraction {of E® from EB},
OB = 11:46,10° where GO = 8;40,20°.
And ©B? = 138;31,11°, GO? = 75;12,27°, H320
and BG? = ©B? + GO? = 213;43,38".
Therefore BG = 14;37,10° where DE = 120° and GE = 13;16.20".
But where the diameter of the epicycle is 120°,
) BG = 78:24,37" (chord of arc BG, which is 81:36°).
Therefore where BG = 78;24,37° and the epicycle diameter is 120,
DE = 643;36.39° and GE = 71:11,4°.
Therefore arc GE of the epicycle = 72:46,10°.
And, by hypothesis, arc GEA = 168:3°.
Therefore, by subtraction, arc EA = 95;16,50°
and therefore its chord AE = 88;40,17°
where the epicycle diameter is 120° and where ED = 643;36,39".
Furthermore, since arc EA was shown to be less than a semi-circle, the centre
of the epicycle will, obviously, fall outside segment EA. Take the centre as point
K [Fig. 4.9], and draw line DMKL, so that, again. point L represents the
apogee and point M the perigee. Then
AD.DE = LD.DM, H321
and we have shown that, where the epicycle diameter LKM = 1207,
AE = 88;40,17° and ED = 643;36,39°
(thus, by addition, AD = 732;16,56").
~. LD.DM = AD.DE = 471304;46,17.

Again, since

}where hypotenuse EG = 120°.

LD.DM + KM? = DK?,
and KM, the radius of the epicycle, is 60°,
if we add the 3600° (of KM?)* to the above 471304;46,17°,
we find DK? = 474904;46,17".

* Reading 1} 8¢ AE X for 1) 8¢ AE £3¢eiy0n §X (all mss.) at H319,7. The latter would mean ‘where
DE, as was shown, equals 1207, which is nonsense, since this is assumed, not proven. D,Ar have the
same nonscnsxcal £3eiyOn at H318 1.

#6Reading 100 &nixvxlouv T@V adTdV oIV é, edv Ta 7Y o0 teETpaydvov (with D,Ar) for 105
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0

Fig. 4.9

Therefore the radius of the deferent, concentric with the ecliptic,
DK = 689;8” where the radius of the epicycle, KM =60°.
Therefore where the line joining the centres of ecliptic and epicycle is 60°,
the radius of the epicycle is 5;14°.
This ratio is very nearly the same as that derived just above from the more
ancient eclipses.
So, in the same figure [Fig. 4.10] drop perpendicular KNX from centre K on
to DEA, and join AK.
Then, as we showed, where DK = 689;8°, DE = 643:36,39;
and NE = 1AE = 44;20,8° in the same units.
Therefore, by addition, DEN = 687:56,47".
Therefore, where hypotenuse DK = 120°, DN = 119;47,36",
and in the circle about right-angled triangle DKN,
arc DN= 173;17°.
. _ ] 173;17°° where 2 right angles = 360°°
* £ DKN = 86;38,30° where 4 right angles = 360°.

Emxokhov EErjkovia MOLEL O &’ abTng TX, Eav & 7Y at H321,14-15. Heiberg excises E&fixovta
from the latter, but it is still very clumsy.
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D ’

Fig. 4.10

% arc MEX of the epicycle = 86:38,30°,
and arc LAX = 93;21,30° (supplement), H323
and arc AX =1 arc AE = 47;38,30°.
Therelfore, by subtraction, arc AL = 45;43°. :
But, by hypothesis. the whole arc AB = 110;21°. -
Theretore, by subtraction, arc LB = 64;38°.
This is the distance of the moon from the apogee at the middle of the second
eclipse determined above.
Similarly, as we showed,
£ DKN = 86;38°,
so Z KDN = 3;22° (complement),
and, by hypothesis, £ ADB = 7:42°.
Therefore, by subtraction, Z LDB = 4:20°.
This angle subtends the arc of the ecliptic representing the equation of
anomaly (which is subtractive with respect to the mean motion) resulting from
arc LB of the epicycle.
Therefore the mean position of the moon at the middle of the second eclipse.  H324
was T 29;30°, since its true pesition was T 25;10°, corresponding to the
position of the sun in Libra.
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7. {On the correction of the mean positions of the moon in longitude and anomaly}*’

Now we have shown that the mean position of the moon at the middle of the
second of the [threc] ancient eclipses was:

in longitude: np 14:44°

in anomaly: 12:24° from the apogee of the epicycle;
and at the second of the three eclipses in our time:

in longitude: P 29;30°

in anomaly:  64;38° from the apogee.
So it is clear that in the interval between the above two eclipses the mean
motion of the moon, beyond complete revolutions, was:

in longitude:  224;46°

in anomaly:  52;14°.
Now the time between Mardokempad 2, Thoth 18/19. 5 hour before midnight.
and Hadrian 19. Choiak 273, 1 hour belore midnight is

854 Egyptian years 73° 233 equinoctial hours reckoned simply
854 Egyptian years 73° 23} equinoctial hours reckoned accurately (in mean

solar days).
In davs this is 311783 days 23} equinoctial hours.
In this interval we find that the increment over complete revolutions, according
to the daily motions derived above trom the uncorrected hypotheses, is:

in longitude:  224:46°

in anomaly:  52;31°.%
Thus, as we said [p. 179], we find that the increment in longitude is identical
with what we derived from the above observations, but the increment in
anomaly is 1 7 minutes too great. Hence, before constructing the [mean motion]
tables, we corrected the daily motion in anomaly by dividing these 17 minutes
by the above total in days, and subtracting the resulting correction for 1 day (of
0,0,0.0.11.46.39°) from the uncorrected mean daily motion in anomaly. The
corrected motion is 13;3,53.56.17,51,59°, which is the basis of the other entries,
derived by accumulation. in the tables.

8. {On the epoch of the mean motions of the moon in longitude and anomaly}

In order to establish the epochs of these [mean motions] for the same first year of
Nabonassar, Thoth 1 in the Egyptian calendar, noon, we took the time-interval
from that moment to the middle of the second eclipse of the first trio (which is
the nearer {to the epoch]). This, as we said, took place in the second year of
Mardokempad, Thoth 18/19 in the Egyptian calendar, {th of an equinoctial
hour before midnight. This interval is computed as 27 Egyptian years, 17 days

*On chs 7 and 8 see HAMA 78-9, Pedersen 180-2.

* 1f one computes accurately with Prolemy’s mean daily motions (p. 179) one finds 224, 47, 15° (cf.
HAMA 79) and 52;32,18° respectively, i.e. in each case one minute more (not utterly negligible in
this context). I suspect that Ptolemy comruted, not for 23;20", but for 23;18", i.e. his correction for
the equation of time was not precisely - 4", but =32 mins. (accurate computation gives —284 mins.)
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and 11§ hours both by the simpie and (approximately) by the accurate
reckoning.*® To this interval corresponds (beyond complete revolutions)
123;22° in longitude, and
103;35° in anomaly.
Subtracting each of these vaiues from the corresponding one at the middle of
the second eclipse [ 14;44° and 12;24°, p. 198], we find for the mean positions
of the moon in the first year of Nabonassar, Thoth 1 in the Egyptian calendar,
noon:

in longitude: g811;22°
in anomaly: 268;49° from the apogee of the epicycle
in elongation: 70;37°  (for, as we showed, the [mean] position of

the sun at thesame moment was 3€ 0:45°).

9. {On the correction of the mean positions in lalilude of the moon, and their epochs}>®

By the above methods we have established the periodic motions and epochs [of
the moon] in longitude and anomaly. Concerning the corresponding amounts
for its latitude, we were formerly in error, because we too adopted Hipparchus’
assumptions that [the diameter of] the moon goes approximately 650 times into
its own orbit, and 2} times into [the diameter of] the earth’s shadow. when it isat
mean distance in the syzygies. For once these quantities and the size of the
inclination of the moon’s orbit are given, the limits of individual lunar eclipses
are given. So we took [pairs of] eclipses separated by a known interval.
computed ({from the magnitude of the obscuration at mid-eclipse) the true
distance [of the moon] from whichever of the two nodes [the eclipse was near}]
along its inclined circle in [argument of] latitude, determined the mean position
[in latitude] from the true by applying the equation of anomaly as already
determined, and thus found the mean position in latitude at the middle of each
eclipse, and hence the motion in latitude (as increment over complete
revolutions) during that interval.”!

But now, using more elegant methods which do not require any of the
previous assumptions for the solution of the problem, we have found that the
motion in latitude computed by the above method is faulty. Furthermore. from

¥ The equation of time between era Nabonassar (-746 Feb. 26) and the eclipse in question (-719
Mar. 18) is in fact about =3 mins. This would make the mean motions 1 minute less in each case
than Prolemy’s ligures.

*See HAM.A 80-2. Pedersen 181 is inadequate.

' Hipparchus' method was first explained by Schmidt, ‘Maanens Middelbevaegelse’. Cf.
HAALA 313. Norman T. Hamilton has discovered the relevance of this passage to the value of the
moon’s mean motion and position in latitude given in the Canobic Inscription, {Op. Min. 151-2, cf.
HAAL4 914). and shown that these were derived by application of the method outlined here to the
two eclipses Nabonassar 28 118 19 (IV 6, H303) and Nabonassar 882 IV 2/3 (IV 6, H315). The first
of these had already been used by Hipparchus (cf. VI 9. H526), who had found (by this method)
that the moon was 9° past the node. Applying Hipparchus’ mean motion in latitude to the interval
between the eclipses, Ptolemy found that the moon should have been 5° past the node at the second
eclipse. However, from the observed magnitude he computed that it must rather be 6° past the
node, and thus ‘corrected’ Hipparchus’ mean motion by adding 1°, to be distributed over the
intervening 311784 days. Cf. IV 7. This proauces exactly the value found in the Canobic Inscription.
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the motion in latitude computed from our new method without those
assumptions, we have proven that those very assumptions concerning sizes and
distance are false, and have corrected them. We have done something similar
with the hvpotheses for Saturn and Mercury, changing some of our earlier,
somewhat incorrect, assumptions because we later got more accurate obser-
vations. For those who approach this science in a true spirit of enquiry and love
of truth ought to use any new methods they discover, which give more accurate
results, to correct not merely the ancient theories, but their own too, if they need
it. They should not think it disgraceful, when the goal they profess to pursue is so
great and divine. even if their theories are corrected and made more accurate
by others beside themselves. As for those topics [corrections to the theories of
Saturn and Mercury], we will explain how we deal with them at the proper
places in the later part of our treatise.?® For the time being, to preserve the
proper order of procedure, we will turn to the demonstration of the position in
latitude, which is by the following method.

First, then. to correct the actual mean motion in latitude, we looked for [pairs
of} lunar eclipses (among those securely recorded) separated by as great an
interval as possible, at both of which
[1] the size of obscuration was equal,

[2} the eclipses took place near the same node,

[3] the eclipse was from the same side (either both from the north or both from
the south) and

[4] the moon was at about the same distance [from the earth].

It these conditions are fulfilled the moon’s centre must be the same distance

from the same node. and on the same side, at both eclipses, and hence its true

motion in latitude during the interval between the observations contains an

integer number of revolutions in latitude.

The tirst eclipse we used is the one observed in Babylon in the thirty-first vear
of Darius I, Tyvbi[V] 3.4 in the Egyptian calendar, [-490 Apr. 25 26] at the
middle of the sixth hour [of night]. It is reported that at this eclipse the moon
was obscured 2 digits from the south.>

The second eclipse we used is the one observed in Alexandria in the ninth
vear of Hadrian, Pachon [IX] 1718 in the Egyptian calendar [125 Apr. 5. 6],
34 equinoctial hours before midnight. At this eclipse too the moon was obscured
&th of its diameter from the south.’*

The position of the moon in latitude was near the descending node at each

52 There is nothing in the discussions of Mercury and Saturn (Bks. IX and XI) which gives a clue to
the changes which Ptolemy mentions, but Hamilton's discovery about the lunar latitude theory (see
n.51) makes it plausible that Ptolemy is referring to the different parameters for Mercury and
Saturn lound in the Canobic Inscription. These are: for Saturn. an eccentricity of 3;15" instead of
3:25°, ascending node 353;30° from Regulus instead of 327;30°; for Mercury, an eccentricity of2:30°
instead of 3-9°, inclination of deferent 0;40° instead of 0;45°, inclination of epicycle 7° instead of
6:15°, slant of epicycle 2,30° instead of 7° (cf. HAMA 908-17).

3 Oppolzer no. 1107: time 19;55" (= 10 p.m. Alexandria), magnitude 1.1 digits. P.V. Neugebauer
calculates ca. 22.7" Babylon (= 10;15 p.m. Alexandria), 1.7 digits.

* Oppolzer no. 2058: time 18;57" (= 9 p.m. Alexandria), magnitude 2 digits. Note that although
this eclipse was observed in Alexandria, Ptolemy does not say that he himself was the observer. We
may conjecture that it was observed by the Theon who ‘transmitted’ the planetary observations
recorded at IX 9, X 1 and X 2 (pp. 456, 469, 471) to Ptolemy.
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eclipse (such conclusions can be drawn even Irom quite crude hypotheses).>
The distance [of the moon] was about the same [at both eclipses], and a little
" closer to the perigee than the mean distance. This too can be shown from our
previous determination of the anomaly. Now, when the moon is eclipsed from
the south, its centre is north of the ecliptic. So it is clear that at both eclipses the
moon’s centre was an equal amount in advance of the descending node. In the
first eclipse the distance of the moon from the apogee of the epicycle was
100;19°. (For the time of mid-eclipse was $-hour before midnight at Babylon,
and [hence] 17 equinoctial hours before midnight at Alexandria;*® from the
Nabonassar epoch the time comes to
10% hours reckoned simply
256 years 122 days { 104 hours reckoned in t}:\ie solar days.)

Therefore the true position was 5° less than the mean.* In the second eclipse the

moon was 251:53° tfrom the apogee of the epicvcle. (For in this case the time.

from epoch to the middle of the eclipse comes to
. 83 equinoctial hours reckoned simply
871 years 256 days 5 qut . Py
: ’ 813 equinoctial hours reckoned accurately.)
Theretore the true position was 4;53° more than the mean. Therefore, in the
interval between the two eclipses, which comprises 615 Egyptian years. 133

8 the true motion of the moon in latitude

days and 213 equinoctial hours,?
comprises an integer number of revolutions. while its mean motion fell short of a
complete revolution by 9:53°, which is the sum ot both [equations of] anomaly.
But according to the mean motions derived from Hippar(‘hus‘lhypo(heses, as set
out above, in that interval it falls short ol a complete revolution by about 10:2°.
Thus the mean motion in latitude is greater than one would expect from his
hypotheses by 9 minutes.

We divided these 9 minutes by the total of days in the above interval
{(approximately 224609), and added the resulting 0:0,0.0.8.39,18° to the mean
daily motion {in latitude] derived above from those hvpotheses; thus we found

the corrected mean motion of 13:13.45.39.48,56.37°, which we again used as.

the basis for the other accumulated totals in the tables.

Having once, in this way, determined the mean motion in latitude, we next
proceeded to establish its epoch position. For this purpose we looked for ariother
pair of accurately observed eclipses at a known interval, in which all the same
conditions were fulfilled as in the previous pair (namely, for both eclipses the
distance of the moon was approximately equal. and [the magnitude ol] the
obscuration was equal and from the same side (either from the northor from the
south for both), except that here the eclipses were near opposite nodes instead of
ncar the same node.

3 For an example of how this can be done see HAAMA 81 n.4.
1t is not clear whether Ptolemy takes the time of the observation to be given in seasonal or

equinoctial hours. However, the sun is close enough to the equinox that (for i-hour) the difference is

minimal.

7 The simplest way to check this (and the corresponding amount at the second eclipse) is to use
the equation table (IV 10) with arguments 100:19° and 251;53°.

58 The corrections for equation of time are computed rather inaccurately, being about 4 minutes
100 great at both eclipses. However, these inaccuracies cancel out in the computation of the
interval.
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The first of these eclipses is the one which we aiso used for our demonstration
of the anomaly [p. 191]. It occurred in the second year of Mardokempad,
Thoth[I] 18/19 in the Egyptian calendar [-719 Mar. 8/9], at midnight in
Babylon, and { of an equinoctial hour before midnight at Alexandria; at this
eclipse it is recorded that the moon was obscured 3 digits from the south.

The second, which Hipparchus too used, occurred®® in the twentieth year of
that Darius who succeeded Kambyses, Epiphi [XI] 28/29 in the Egyptian
calendar [-501 Nov. 19/20], when 64 equinoctial hours of the night had passed;
at this eclipse the moon was, again, obscured from the south } of its diameter.
The middle of the eclipse was  of an equinoctial hour before midnight in
Babylon (for the length of half the night was about 6 equinoctial hours on that
date), and [hence] 15 equinoctial hours before midnight in Alexandria.®

Both of these eclipses occurred when the moon was near its greatest distance,
but the first was near the ascending node, while the second was near the
descending node. So here too the centre of the moon was an equal distance
north of the ecliptic at [both] eclipses.

Then let [Fig. 4.11] the moon’s inclined orbit be ABG on diameter AG. Let us
take point A as the ascending node, G as the descending node, and B as the

B

T m

Fig. 4.11

northern limit. Cut off equal arcs, AD and GE, from nodes A and G towards the
northern limit B. Then in the first eclipse the centre of the moon wasat D and in
the second at E.

Now the time from epoch to [the middle of] the first eclipse is 27 Egyptian
years, 17 days 114 equinoctial hours (reckoned both simply and accurately).
Hence the moon’s distance from the apogee of the epicycle was 12;24°, and the

* Reading yevopévn with CD for yevopévn at H332.14.
" Oppolzer no. 1090: time 21:24" (= 11:15 p.m. Alexandria). magnitude 2.1 digits.
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mean position was greater than the true by 59 minutes. Likewise, the time [from
epoch] to [the middle of] the second eclipse was
103 equinoctial hours reckoned simply
104 equinoctial hours reckoned accurately.
Hence the moon’s distance from the apogee of the epicycie was 2;44°, and the
mean position was greater than the true by 13 minutes. The interval between
the observations contains 218 Egyptian years, 309 days 231; equinoctial hours,
which produces, for the mean motion in latitude deduced above an increment
[over complete revolutions] of 160;4°.

So, because of the above, let the mean position of the centre of the moon be at
Z [in Fig. 4.11] at the first eclipse and at H in the second. Then since

arc ZBH = 160:4°
and arc DZ = 0,59° and arc EH = 0;13°,

245 Egyptian years, 327 days {

arc DE = [arc DZ + arc ZBH - arc EH = ] 160;50°. -

. (arc AD + arc EG) = 19;10° (supplement).

And, since they are equal, arc AD = arc EG = 9;35°.
That is the amount by which the true position oi'the moon at the first eclipse was
to the rear of the ascending node, and by which the true position of the moon at
the second eclipse was in advance of the descending node. Therefore, by
addition,

arc AZ = [arc AD + arc DZ = ] 10;34°
and, by subtraction,

arc HG = [arc EG - arc EH =] 9,22"".

Hence the mean position of the moon at the first eclipse was 10;34° to the rear of

the ascending node, and [therefore] was 280:34° from the northern limit B, and
at the second eclipse it was 9;22° in advance of the descending node, and
[therefore] its distance from the northern limit was 80;38°.

Next, since the time from epoch to the middle of the first eclipse produces an
increment [over complete revolutions] of [mean motion in] latitude of 286;19°,
we subtract this amount from the 280:34° for the position at the first eclipse and
(after adding 360°) find. for the first vear of Nabonassar, Thoth 1 in the
Egyptian calendar, noon: the mean position in latitude (counted from the
northern limit): 354;15°.

In order to be able to check calculations concerning conjunctions and
oppositions (since for those positions [of the moon] we have no need of the
second anomaly which we shall demonstrate later), we shall set out a table for
the individual [equations of anomaly]. We have calculated it geometrically, in
the same way as we already did for the sun. In this case we used the ratio 60:51
(as a basis], but, as [previously], we tabulate it at intervals of 6° for the apogee
quadrants, and of 3° for the perigee {quadrants]. Thus the layout of the table is
identical to that for the sun: it consists of 45 lines and 3 columns; the first two
columns contain the argument, in degrees of anomaly, while the third contains

the equation corresponding to each argument. In calculating the longitude and,

the latitude, this equation has to be subtracted when the anomaly, counted
from the apogee of the epicycle, is up to 180°, and added when the anomaly is
more than 180°. The table is as follows.
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210 1V 10. Table of lunar-equation (first anomaly)

H337 10. {Table of the first, simple anomaly of the moon}
1 2 3
Common E .
Numbers quation
6 354 029
12 348 0 57
18 342 125
24 336 153
30 330 219
36 324 2 44
42 318 3 8
48 312 3 31
54 306 3 51
60 300 4 8
66 294 + 24
72 288 4 38
78 282 4+ 49
84 276 4 56
90 270 4 59
93 267 5 0
Y6 | 2064 5 1
99 261 50

102 258
105 255

108 252
tH 249 19
114 246 +4
17 243
120 240 3l

123 237

2
x

126 234 16
129 231 7
132 228 57
135 225 46
138 222 335
141 219 323
144 216 310
147 213 257
150 210 248
153 207 228
156 204 213
159 201 1 57
162 198 1 41
165 195 125
168 192 I 9
171 189 0 52
174 186 035
177 183 018
180 180 00
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11. {That the difference in the size of the lunar anomaly, according to Hipparchus,
is due not to the different hypotheses employed, but to his calculations}®!

Now that we have demonstrated the above, it would be quite reasonable for
someone to ask why it is that the ratio [of the eccentricity ] found by Hipparchus
from the lunar eclipses which he adduced for the determination of this anomaly
is neither identical with the one determined by us, nor [consistent with itself,
since] the first ratio he found, using the eccentric hypothesis, differs from the
second, which was calculated from the epicyclic hypothesis. For in his first
demonstration he derives the ratio between the radius of the eccentre and the
distance between the centres of the eccentre and the ecliptic as about 3144:327}
(which is the same as 60:6;15), while in the second he finds the ratio between the
line joining the centre of the ecliptic to the centre of the epicycle, and the radius
of the epicycle, as 31224:2471 (which is the same as 60:4;46). Now the maximum
equation of anomaly for a ratio of 60:64 is 5:49°; for a ratio of 60:4;46 it is 4;34°,
while our ratio of 60:55 produces a maximum equation of about 5°.52

Such a discrepancy cannot, as some think, be due to some inconsistency
between the [epicyclic and eccentric] hypotheses. Not only have we shown this
by logical argument just above [IV 5], from the perfect agreement between the
phenomena resulting from both hypotheses, but numerically too, if we wanted
to carry out the calculations, we would find that the same ratio results from both
hypotheses. provided we use the same set of data for both, and not. like
Hipparchus, different sets. For in that case (if different sets of éclipses are used as
basis), the discrepancy can occur [through errors] in the actual observations or
in the computations of the intervals. At any rate, we will find that in the case of
those eclipses [used by Hipparchus] the syzygies were observed correctly, and
are in agreement with our proven theories for the mean and anomalistic
motions, but the computations of the intervals (on which the demonstration of
the size of the ratio depends) were not carried out as carefully as possible. We
shall demonstrate both of these assertions, beginning with the first three
eclipses.

He says that these three eclipses which he adduces are from the series brought
over from Babylon, and were observed there; that the first occurred-in the
archonship of Phanostratos at Athens, in the month Poseideon; a small section
of the moon’s disk was eclipsed from the summer rising-point [i.e. the north-
east] when half an hour of night was remaining. He adds that it was still eclipsed

51See HAM 1 317-19.

2There are some inaccuracies here: 3122} : 2474 = 60 : 4;45.21. The maximum equation
resulting from an eccentricity of 4;46 in 60 is not 4;34°, but 4;33° to the nearest minute. These
inaccuracies could be eliminated by changing 31224 to 3112} (cf. p. 215 n.75), but ms. authority is
unanimous at all places. Even more inaccurate is the 5;49° of the maximum equation resulting from
60 : 61. Correct (to the nearest minute) is 5;59°, and perhaps we should so emend it (vB for p8 at
H338.23). .

53 It is practically certain that this and the corresponding dates for the other two eclipses are in the
astronomical Metonic calendar (see Introduction p. 12) rather than the Athenian civil calendar, for
at the time when the Babylonian observations were ‘brought over’, the equation with the old
Athenian civil calendar could hardly have been determined, and certainly was of no interest to the
users of the observations.  *
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212 1V 11. Babylonian eclipse triple used by Hipparchus

when it set. Now this moment is in the 366th year from Nabonassar, in the
Egyptian calendar (as Hipparchus himself says) Thoth 26/27 [-382 Dec.
22/23), 5% seasonal hours after midnight (since half an hour of night was
remaining). When the sun is near the end of Sagittarius, 1 hour of night in
Babylon is 18 time-degrees {for the night is 14§ equinoctial hours long).® So 5}
seasonal hours produce 63 equinoctial hours. Therefore the beginning of the
eclipse was 184 equinoctial hours after noon on the 26th. And since a small
section [of the disk] was obscured, the duration of the whole eclipse must have
been about 11 hours, so the middle of the eclipse, obviously, must have been 19}
equinoctial hours after [noon]. Therefore mid-eclipse at Alexandria was 181
equinoctial hours after noon on the 26th.% The time from epoch in the first year
of Nabonassar to the moment in question is
. 184 equinoctial hours reckoned simply

365 Egyptian years 25 days{ 183 e:uinoctial hours reckoned accuprz;tely.

At this moment, using our hypotheses as set out above, we find

the true position of the sun as 7 28:18°,
the mean position of the moon asIT 24:20°,
and its true position as O 28:17°%

{for its distance in anomaly {rom the apogee of the epicycle is 227;43°).

He says that the next eclipse occurred in the archonship of Phanostratos at
Athens, in the month Skirophorion, Phamenoth 24/25 in the Egyptian
calendar, and that [the moon] was eclipsed from the summer rising-point [i.e.
the north-east] when the first hour {of night] was well advanced. This moment is
in the 366th year from Nabonassar, Phamenoth [VII] 24/25 [-38] June
18/19}, about 54 seasonal hours before midnight. When the sun is near the end
of Gemini, one hour of the night at Babylon is 12 time-degrees. Therefore the 53
seasonal hours produce 4§ equinoctial hours. So the beginning of the eclipse was
7% equinoctial hours after noon on the 24th. And since the duration of the whole
eclipse is recorded as three hours, mid-eclipse, obviously, occurred 95
equinoctial hours after [noon]. So in Alexandria it must have occurred about GH
equinoctial hours after noon on the 24th.®” The time from epoch is
8} equinoctial hours reckoned simply

365 Egyptian years 203 days {7% equinoctial hours reckoned accurately.

For this moment we find:
true longitude of the sun: IO 21;46°

** These figures agree well enough with those derivable from the rising-time table (I1 8} for Clima
IV (Rhodes, M = 144". ¢ = 36°), for A\@ = 7 28;18°. In the Geography (5.20.6) Ptolemy assigns
Babylon a latitude of 35°.

% Oppolzer no. 1275: time 5;5" (= 7 a.m. Alexandria), magnitude 2.6 digits. half-duration 52
mins. P.V. Neugebauer calculates . 8 a.m. Babylon (= 7 a.m. Alexandria), magnitude 3.0 digits,
duration 1.8"

%1Le. here (and in the other five eclipses) the true moon and true sun, as calculated from
Ptolemy’s hypotheses, are almost exactly 180° apart, thus giving further confirmation of those
hypotheses. In fact more accurate calculation gives rather worse agrecement (e.g. here the
discrepancy is about 44 minutes of arc rather than 1’), but in no case is the difference greater than
could be explained by the vagueness of the time given in the eclipse report.

¥ Oppolzer no. 1276: time 18;31" (=~ 8;30 p-m. Alexandria), half-duration 1;15". P.V".
Neugebauer calculates the beginning of the eclipse at Babylon as 19.8", mid-eclipse asca. 21.1" (=~ 8
p-m. Alexandria), duration 2.7".
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mean longitude of the moon: 1 23;58°
true longitude of the moon: T 21;48°
(for its distance from the apogee of the epicycle in anomaly was 27;37°).
The intervals between the first and second eclipses are:
[time:] 177* 13} equinoctial hours
motion of the sun in longitude: 173;28°,

whereas Hipparchus carried out his demonstration on the basis of the intervals:
[time:] 177° 13} equinoctial hours

[longitude:] 173° - §°. ,

He says that the third eclipse occurred in the archonship of Euandros at
Athens, in the month Poseideon I, Thoth 16/17 in the Egyptian calendar, and
that [the moon] was totally eclipsed, beginning from the summer rising-point
(i.e. the north-east], after 4 hours [of night] had passed.® This moment is in the
367th year from Nabonassar, Thoth [I] 16/17 [-381 Dec. 12/13], about 24
hours before midnight. Now when the sun is about two-thirds through
Sagittarius, one hour of night at Babylon is about 18 time-degrees. So
24 seasonal hours produce 3 equinoctial hours. Therefore the beginning of the
eclipse was 9 equinoctial hours after noon on the 16th. And since the eclipse was
total, its duration was about 4 equinoctial hours. So mid-eclipse, clearly, was
about 11 hours after noon. Therefore in Alexandria mid-eclipse must have
occurred 10¢ equinoctial hours after noon on the 16th.% The time from epoch
[to this moment] is (10}
L . 105 equinoctial hours reckoned simply
366 Egyptian years 15 days 1922 cq?jinoctial hours reckoned accu?a'tely.
For this moment we find:

true longitude of the sun: I 17,30°
mean longitude of the moon: II 17:21°
true longitude of the moon: I 17;28°

(for its distance from the apogee of the epicycle in anomaly was 181;12°).
The intervals from the second to the third eclipse are:
[in time:] 177" 2 equinoctial hours
[in longitude:] 175:44°,
whereas Hipparchus assumed the following intervals:
[in time:] 177° 11 hours
[in longitude:] 175§°.7°
Thus it is apparent that he committed errors in his computations of the intervals
of #th and ird of an equinoctial hour in time, and about 3 of a degree [in

%8 Prolemy interprets this below to mean 24 seasonal hours before midnight, i.e. after 34 seasonal
hours of night (he thus arrives at a time for the beginning of the eclipse at Babylon, 9 p.m., which
agrees fairly well with modern caiculations: P. V. Neugebauer gives 21.3"). But § dp@v
napeAnivbuiBy can only mean “after 4 hours had passed’. Hence Manitius suggests emending to
1i¢ 8’ dpag mpoeAniubuiag (‘when the fourth hour was well advanced’), comparing tHg npatng
dpag npoeAnivbuiag at H341. 13-14, which is interpreted (p. 212) to mean ‘half a seasonal hour

alter sunset’. A less violent emendation would be¥ for § (*when 3 hours had passed’), cf; pisi¢ dpag’

ixavidg raperBovong at H302,16-17, ‘when one hour was well past’, which is interpreted as "1 4
seasonal hours (after moonrise)’. But the whole ms. tradition is unanimous for ‘4’.

9 Oppolzer no. 1277; time 20;4" (= 10 p.m. Alexandria), half-duration 1;50".

"Reading pot kai i’ (with D,Ar) for pog 7 (175;8°) at H344,5.
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214 1V 11. Alexandrian eclipse triple used by Hipparchus

longitude] in each interval. Errors of this amount can produce a considerable
discrepancy in the size of the ratio {derived).

We will pass to the second set of three eclipses he set out, which he says were
observed in Alexandria. He says that the first of these occurred in the 54th
year of the Second Kallippic Cycle, Mesore [XII] 16 in the Egyptian
calendar {-200 Sept. 22]. In this eclipse the moon began to be obscured halfan
hour before it rose, and its full light was restored in the middle of the third hour
[of night}. Therefore mid-eclipse occurred at the beginning of the second hour,
5 seasonal hours before midnight, and also 5 equinoctial hours, since the sun
was near the end of Virgo. So mid-eclipse at Alexandria occurred 7 equinoctial
hours after noon on the 16th.”" And the time from epoch in the first year of
Nabonassar 1s

. 7 equinoctial hours reckoned simply
546 Egyptian years 345 days {6% gquinoctial hours reckoned acfu‘ratcl,\'.

For this moment we find:

true longitude of the sun: m 26:6°
mean longitude of the moon: > 22°
true longitude of the moon: ¥ 26;7°

(for its distance in anomaly from the apogee of the epicycle was 300:13°).
He savs that the next eclipse occurred in the 55th™ year of the same
cycle. Mechir [V1]9 in the Egyptian calendar (-199 Mar. 19]. that it began
when 51 hours ol night had passed. and was total. So the beginning of the eclipse
was 111 equinoctial hours after noon on the 9th (since the sun was near the
end ol Pisces), and mid-cclipse was 131 equinoctial hours after {noon}, {since the
whole moon was eclipsed).”™ The time from epoch to this moment is
547 Egyptian vears 158 davs 131 equinoctial hours, whether reckoned simply
or accurately.
For this moment we lind:

true longitude of the sun: 3 26;17°
mean longitude of the moon: = |.7°
true longitude of the moon: m 26:16°

{for its distance in anomaly from the apogee was 109;28°).
The intervals from first to second eclipse are:
[in time:] 178* 63 equinoctial hours
{in longitude}: 180;11°,

1 Oppolzer no. 1543: time 17;2" (= 7 p.m. Alexandria), halt-duration 1:29".

“ldeler, { ntersuchungen 216-17. emended "55th’ to *54th’ here (H345.12) and was consequently
torced to excise aUT® (‘the same’) in the vear designation of the third eclipse at H346,13. His
argument was that the vear begins at the summer solstice in the Kallippic calendar (see
Introduction p. 12). Since year | of Cycle I begins at the summer soistice of =329, year 54 of
Cycle IT goes from June -200 to June -199, and thus includes this eclipse of March -199. However.
the two passages H345,12 and 346,13 contirm one another, and we must allow the possibility that
Hipparchus, who was using the Egyptian calendar within the framework of the Kallippic cycle,
began the vear. not at the summer solstice. but at Thoth 1. Thus in his reckoning year 55 of Cycle 11
would run from Oct. of -200 to Oct. of -199, and would include both the second and third eclipses.
It is true that this kind of reckoning cannot be applied to the Kallippic years of the equinoxes listed
in 11 1. but that was in another work of Hipparchus, and there is no mention of the Egyptian
calendar there. See also V' 3 p. 224 with n.13.

“Oppolzer no. 1546: time 23;7" (= | a.m. Alexandria), halt-duration 1;48".
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whereas Hipparchus carried out his demonstration on the basis of the following
intervals: !
[in time:] 178 6 equinoctial hours

[in longitude:] 180;20°.

He says that the third eclipse occurred in the same (55th) year of the
Second Cycle, on Mesore [XII] 5 in the Egyptian calendar [-199 Sept. 11]and
that it began when 6% hours of the night had passed, and was total. He also'says
that mid-eclipse occurred at about 84 hours of night, that is 2} seasonal hours
after midnight. Now when the sun is near the middle of Virgo, one hour of the
night in Alexandria is 143 time-degrees. So 2} seasonal hours produce about 2}
equinoctial hours. So mid-eclipse was 141 equinoctial hours after noon on the
5th.™* The time from epoch to this moment is

. 144 equinoctial hours reckoned simpl
547 Egyptian years 334 days { 131 eguinoctial hours reckoned accu?aiely.
For this moment we find: '

true position of the sun: m 15;12°
mean position of the moon: > 10;24°
true position of the moon: > 15;13°

(for its distance in anomaly from the apogee of the epicycle was 249;9°).
The interval from second to third eclipse is:
[in time:] 176" § equinoctial hour

[in longitude:} 168;55°,

whereas Hipparchus assumed the following intervals: ’
[in time:] 176° 1§ equinoctial hours :

[in longitude:] 168;33°.

Here too, then, it is apparent that he committed errors of about 4° and 1°[in
longitude], and about § and” { + 15) equinoctial hours [in time]. These errors
too can result in a considerable discrepancy in the ratio calculated for the
[particular] hypothesis.

™ Oppolzer no. 1547: time Sept. 12 0;28" (= 2;30 a.m. Alexandria), half-duration 1;50". Note
that for Hipparchus the whole eclipse took place on Mesore 5, although it did not begin until after
midnight (what Ptolemy would call ‘the midnight which lies towards the sixth’). See Introduction
p- 12.

5 Reading fjpicet xai tpite xai fpice xat tpity xai Sexdty for Huioet xai tpity xai Sexdte
(‘4 and } and 16") at H347,16~17. The difference between Ptolemy’s and Hipparchus’ time intervals
are: I-1L: 63" = 6" = &"; II-1IL: 1§" - §* = }§" = (§ + 15)". The emendation is certain and simple, but
appears never to have been made. (In the Arabic tradition, T, Q, occurs the almost correct variamt
‘{+1and {+}+1%.) Manitus noticed the discrepancy, but was led astray by his misunderstanding
at H347, 13-14 of udg tpitov dpag, which he took to mean ‘a third of one hour’. Thus he supposed
the difference between Ptolemy’s and Hipparchus’ intervals (II-I11) to be (} - $) = 4 minutes = 1
hour, and emended Heiberg's Sexdto to dwdexdte (the reading of D). I carelessly followed his
interpretation and emendation in Toomer{2], in which I used Hipparchus’ intervals to recompute
the ratios for the eccentric and epicyclic models. The result was that, while I found fairly good
agreement with the ratio 3144:3273 for the eccentric model, using the first triple of eclipses, I could
derive a value close to the ratio 31224:247} for the epicyclic model and the second eclipse triple only
by attributing a computational error to Hipparchus. Now, however, using the correct time interval

of 1¥" for II-III, I find much better agreement with the above ratio, as I shall show in detail~

elsewhere. (If the ratio were 31124:2474, agreement would be almost perfect, and this also provides
a better fit with the equivalences given by Ptolemy.) These calculations not only vindicate
Hipparchus’ computational abilities, but cast doubt on my claim that he was operating with a
chord table with base R = 34387

H347
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Thus we have plainly displayed the reason for the above discrepancy, and it is
clear that we can have even more confidence than before in the correctness of
the ratio we deduced for the anomaly at lunar syzygies, since we have found
these very same eclipses agreeing closely with our hypotheses.




Book V

1. {On the construction of an ‘astrolabe’ instrument}’

As far as concerns the [moon’s] syzygies with the sun at conjunction and
opposition, and the eclipses which occur at such syzygies, we find that the
hypothesis set out above for the first, simple anomaly is sufficient, even if we
employ it just as it is, without any change. But for particular positions [of the
moon] at other sun-moon configurations one will find that it is no longer
adequate, since as we said [p. 181}, we have discovered that there is a second
lunar anomaly, related to its distance from the sun. This anomaly is reduced to
the first {i.e. becomes zero] at both syzygies, and reaches a maximum at both
quadratures. We were led to awareness of and belief in this {second anomaly] by
the observations of lunar positions recorded by Hipparchus.” and also by our
own observations, which were made by means of an instrument which we
constructed for this purpose. The makeup of the instrument is as follows.
We took two rings of an appropriate size, with theirsurtaces precisely turned
on the lathe so as to be squared off [i.e. with rectangular cross-sections], equal
and similar to each other in all dimensions. We joined them together at
diametrically opposite points, so that they were fixed at right angles to each
other, and their corresponding surfaces coincided: thus one of them [Fig.
F,3] represented the ecliptic, and the other [Fig. F,4] the meridian through the
poles of the ecliptic and the equator [i.e. a colure]. On the latter, using the side
of the [inscribed] square [as measure], we marked the points representing the
poles of the ecliptic, and pierced each point with a cylindrical peg [Fig. F,e,e]
projecting beyond both outer and inner surfaces. On the outer [projections] we
pivoted another ring [Fig. F,5] the concave [inner] surface of which fitted
closely on the convex [outer] surface of the two joined rings, in sucha way that it
could move freely about the above-mentioned poles of the ecliptic in the

'On the instrument described in this chapter the only good discussion is that of Rome{4], to
which the reader is referred for all details of its construction and use. My Fig. F is based on the
drawing there. The numbers and letters designating the rings and other parts of the instrument also
follow Rome’s notation. In modern terms, it is an "armillary sphere’. The adjective ‘astrolabe’
applied to it and to its parts simply means “for taking the [the position of] the stars’, and has nothing
to do with the instrument to which the name ‘astrolabe’ is now usually applied (on which see

HAMA 11 868-79). The latter was called the ‘small astrolabe’ by Theon of Alexandria: see
Rome[1] I 4 n.0; by Ptolemy it was apparently called ‘horoscopic instrument’ (see H4AMA I 866).

? Examples of these are preserved at V 3 p. 224 and V 5 pp. 227 and 230. It is notable that these
are the latest three known observations of Hipparchus. The obvious conclusion is that towards the
end of his career he suspected that the "simple’ lunar hypothesis was inadequate for positions outside
the syzygies, and was making observations to check this.
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218 V 1. Construction of armillary sphere

Fig. F

longitudinal direction. Similarly we pivoted another ring [Fig. F.2] on the inner
[projections]; this too fitted the two [joined] rings closely. its convex surface to
their concave. and, like the outer ring, moved frecly in longitude about the
same poles. We marked on this inner ring, and also on the ring representing the
ecliptic. the divisions indicating the standard 360 degrees of the circumference.
and as small subdivisions of a degree as was practical. Then we fitted snugly
inside the inner of the two [movable] rings another thin ring [Fig. F.1] with
sighting-holes {Fig. F.b.b] projecting from it at diametrically opposite points.
[This ring was constructed] so that it could move laterally in the plane of the
ring it was fitted into, towards cither of the above-mentioned poles. in order to
allow observation of the variation in latitude.

Having completed the above construction, we marked ofl from both poles of’
the ecliptic, on the ring representing the circle through both poles [Fig. F.4], an
arc equal to the distance between the poles of ecliptic and equator (as
determined above). At the ends of these arcs (which were, again, diametrically
opposite) we again inserted pivots {Fig. F.d,d], attaching them to a meridian
ring [Fig. F,6] similar to that’ described at the beginning of this treatise [pp. 61-2]
for making observations of the arc of the meridian between the solsticial points.
This meridian ring was set up in the same position as the earlier one,
perpendicular to the plane of the horizon and at an elevation of the pole
appropriate for the place in question, and also parallel to the plane of the actual
meridian [at that place]. Thus the inner rings [Fig. F,4 etc.] were set up so as to

*Reading 1@ &v apyf th¢ ouvvtdbewg anodederypive (with D,Ar) for w@v &v apyd tig
ouviatews brodedetypévov (which is untranslatable) at H353.1-2.
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revolve about the poles of the equator, from east to west, following the first
motion of the universe.

Once we had set up the instrument in the way described, whenever we had a
situation in which both sun and moon could be observed above the earth at the
same time, we set the outer astrolabe ring [Fig. F,5] to the graduation {on the
ecliptic ring, fig. F,3] marking, as nearly as possible, the position of the sun at
that moment. Then we rotated the ring through the poles [Fig. F,4] until the
intersection [of outer astrolabe ring and ecliptic ring] marking the sun’s position
was exactly facing the sun, and thus both the ecliptic ring [Fig. F,3] and the
{ring] which goes through the poles of the ecliptic {Fig. F,5] cast its shadow
exactly on itsell.* Or, if we were using a star as sighting [i.e. orienting] object, we
set the outer [astrolabe] ring to the position assumed for that star on the ecliptic-
ring, [and then rotated the ring Fig. F.4 10 such a position] that when we
applied one eve to one face of the outer ring [Fig. F,5] the star appeared

fastened, so to speak, to both [nearer and farther] surfaces of that face,” and thus °

was sighted in the plane through them. Then we rotated the other, inner
astrolabe ring [Fig. F.2] towards the moon (or any other object we desired) so
that the moon (or any other desired object) was sighted through both sighting-
holes on the inmost ring at the same time as the sun {or the other sighting-star)
was being sighted [as described above).

In this way we read off the position [of the moon or any other desired object]
in longitude on the ecliptic. from the graduation occupied by the inner
[astrolabe] ring [ Fig. F.2] on the ring representing the ecliptie| Fig. F.3), and its

deviation to north or south [of the ecliptic] along the circle through the poles of

the ccliptic. from the graduations of the inner astrolabe ring [Fig. F.2]: the
latter is given by the distance between the mid-point of the upper® sighting-hole
on the inmost rotating ring [Fig. F.1] and the line drawn through the cenue
of the ecliptic ring.

*According to Prolemy’s instructions, one has to compute the solar longitude. set the outer
astrolabe ring «Fig. F. 3 10 that position on the ecliptic ring (Fig. F. 3). and then. keeping the two in
that position relative to cach other, swing both until one can sight the sun along the outer astrolabe
ring. Both rings should then shade themselves. Theoretically. even without knowing the sun’s
position. one could set up the instrument by sighting the sun along the outer astrolabe ring and then
moving the ecliptic ring relative to the lauter until it shaded itself. CL p. 224 n.11. .

"Reading Gonep nexorAnuévog auepotépaig abvTfg talg Emgaveialg lor kat Sud tiig
anevavtiov xai rapaillov TOL KUKAOU TAELPTG (FOTEP KEKOAANUEVOG APPOTEPALG AU TRV TAlg
emeaveiarg at H353.24-354.1. The latter would mean "when we applied one eve to the [nearer]
tace of the outer ring and [looked] along the opposite. parallel face of the ring. the star appeared
fastened. so 10 speak. to the surfaces of both those taces”. The wordskat 8d . . . mheppdg are a foolish
explanatory interpolation by someone who misinterpreted dpu@otépatg talg Emgaveiaig to mean
“the opposite faces” of the ring instead ol the two parts of the same face nearer to and farther from
the eye'; then abtg (referring to T ét€pg 1AV TAeLp®V) was changed to abT@V (relerring to both
nhevpai), or possibly abt@v was simply interpolated. Quite apart from the technical problem. the
text as printed by Heiberg is extraordinarily clumsy. The interpolation is quite early, since it isalso
in the Arabic tradition. Pappus’ commentary to the passage betrays no hint that he read the
interpolation, but is not sulliciently close to the Almagest 1o allow us to say that he did not.

&*upper’: literally "above the earth’. Since the centre of all the rings represents the centre of the
earth, the sight nearer the observer’s eve is notionally “below the earth’. the other ‘above the earth’.
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L . 7
2. {On the hypothesis for the double anomaly of the moon}’

When this type of observation was made without further analysis, it was found,
both from the observations recorded by Hipparchus and from our own, that the
distance of the moon from the sun was somerimes in agreement with that
calculated from the above [simple} hypothesis, and sometimes in disagreement,
the discrepancy being at some times small and at other times great. But when
we paid more attention to the circumstances of the anomaly in question, and
examined it more carefully over a continuous period, we discovered that at
conjunction and opposition the discrepancy [between observation and calcula-
tion] is either imperceptible or small, the dilference being of a size explicable by
lunar parallax; at both quadratures, however, while the discrepancy is very
small or nothing when the moon is at apogee or perigee of the epicycle, it
reaches a maximum when the moon is near its mean speed and [thus] the
equation of the first anomaly is also a2 maximum; furthermore, at either
quadrature, when the first anomaly is subtractive the moon's observed position
is at an even smaller longitude than that calculated by subtracting the equation
of the first anomaly, but when the first anomaly is additive its true position is
even greater [than that calculated by adding the equation of the first anomaly ]
and the size of this discrepancy is closely related to the size of the equation of the
first anomaly. From these circumstances alone we could see that we must
suppose the moon's epicycle to be carried on an eccentric circle, being farthest
from the earth at conjunction and opposition. and nearest to the earth at both
quadratures. This will come about if we modify the first hypothesis along
somewhat the following lines.

Imagine the circle (in the inclined plane of the moon) concentric with the
ecliptic moving in advance, as before [p. 191], (to represent the {motion in]
latitude) about the poles of the ecliptic with a speed equal to the increment of
the motion in latitude over the motion in longitude. Imagine, again, the moon
traversing the so-cailed epicycle (moving in advance on its apogee arc) with a
speed corresponding to the return of the first anomaly. Now. in this inclined
plane, we suppose two motions to take place, in opposite directions, both
uniform with respect to the centre of the eliptic: one of these carries the centre of
the epicycle towards the rear through the signs with the speed of the motion in
latitude. while the other carries the centre and apogee of the eccentre, which we
assume located in the same [inclined] plane, {the centre of the epicycle will at all
times be located on this eccentre), in advance through [i.e. in the reverse order
of] the signs) by an amount corresponding to the difference between the motion
in latitude and the double elongation (the eiongation being the amount by
which the moon’s mean motion in longitude exceeds the sun’s mean motion).
Thus, to give an example, in one day the centre of the epicycle traverses about
13;14° in motion of latitude towards the rear through the signs, but appears to
have traversed 13;11° in longitude on the ecliptic, since the whole inclined
circle [of the moon] traverses the difference of 0;3° in the opposite direction,
(i.e.] in advance; [meanwhile] the apogee of the eccentre, in turn, travels 11;9°

“On chs, 2-4 see HAM.4 84-8, Pedersen 184-9.
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in the opposite direction, (again in advance): this is the amount by which the
double elongation, 24;23° exceeds the motion in latitude, 13;14°. The
combination of both of these motions, which take place in opposite directions,
as we said, about the centre of the ecliptic, will produce the result that the radius
carrying the centre of the epicycie and the radius carrying the centre of the
eccentre will be separated by an arc which isthesumof13;14°and 11;9°, and is
twice the amount of the elongation (which is approximately 12;114°). Hence the
epicycle will traverse the eccentre twice during a mean {synodic] month. We
assume that it returns to the apogee of the eccentre at mean conjunction and
opposition.

In order to illustrate the details of the hypothesis, imagine [Fig. 5.1] the circle
in the moon’s inclined plane concentric with the ecliptic'as ABGD on centre E
and diameter AEG. Let the apogee of the eccentre, the centre of the epicycle,
the northern limit, the beginning of Aries and the mean sun [all] be located at
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Fig. 5.1

(88

point A at the same moment. Then I say that in the course of one day the whole
[inclined] plane moves in advance from A towards D about centre E, by about
3’: thus the northern limit (which is [still represented by] A) reaches 3 29;57°.
The two opposite motions are carried out by the radius corresponding to EA
[moving] uniformly about E, the centre of the ecliptic. Thus I say that in the
course of one day the radius through the centre of the eccentre corresponding to
EA rotates uniformly in advance [i.e. in the reverse order] of the signs to the
position ED, carrying the apogee of the eccentre to D,® and making arc AD

¥Omitting kal ypdgev nep 10 Z kévipov 1ov AH éxxevipov after A at H358,20-21. This
would mean ‘and describing eccentre DH about centre Z'. This is nonsense: EA does not ‘describe
the eccentre’ (since it is not a radius of the eccentre), but merely marks the position of the apogee of
the eccentre. If Ptolemy wanted to refer to the eccentre here, he would presumably have written (as

»
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11;9°. [In the same time] the radius through the centre of the epicycle
[corresponding to EA] rotates uniformly, again about E, towards the rear
through the signs to the position EB, carrying the centre of the epicycle to H,
and making arc AB 13;14°. Thus the apparent distance of H, the centre of the
epicycle, is 13;14° (in motion of latitude) from the northern limit A, 13;11° (in
longitude) from the beginning of Aries (for the northern limit A has moved to 3
29;57° in the same time), and 24;23° (the sum of arc AD and arc AB, and twice the
mean daily elongation) from the apogee of the eccentre D. Since, in this way,
the motion through B and the motion through D meet each other once in halfa
mean [synodic] month, it is obvious that these motions will always be
diametrically opposite at intervals of a quarter and three-quarters of that
period, i.e. at the mean quadratures. At those times the centre of the epicycle,
located on EB, will be diametrically opposite the apogee of the eccentre, located
on ED, and [thus] will be at the perigee of the eccentre.

It is also clear that under these circumstances the eccentre itself (that is, the
fact that the arc DB is not similar to arc DH) will not produce any correction to
the mean motion. For the uniform motion of the line EB is counted, not along
arc DH of the eccentre, but along arc DB of the ecliptic, since it rotates, not
about the centre of the eccentre Z, but about E. The only [correction] which
will result is that due to the difference in the effect of the epicycle: as the
epicycle moves towards the perigee it produces a continuous increase in the
equation of anomaly (subtractive and additive alike), since the angle formed by
the epicvcle at the observer’s eye is greater at positions [of the epicycle] nearer
the perigee. On the other hand, there will, in general, be no difference from the
first hypothesis when the centre of the epicycle is at the apogee A, which is
the situation at the mean conjunctions and oppositions.

For if [Fig. 5.2]° we draw epicycle MN about point A, AE:AM is the same
ratio as that which we demonstrated from the eclipses. The greatest difference
will be when the epicycle reaches H, the perigee of the eccentre (as XO here).
This occurs at the mean quadratures. For the ratio XH:HE is greater than that
at any other posttion, since XH, the radius of the epicycle, is always a constant
length, while EH is the shortest of all lines drawn from the centre of the earth to
the eccentre.

3. {On the size of the anomaly of the moon which is related to the sun}

In order to see what the maximum equation of anomaly is when the epicycle
is at the perigee of the eccentre, we sought observations of the distance of the
moon from the sun under the following conditions:

docs Is.) xat ypapévrog nepl 16 Z kévtpov tob AH éxxévrpou ‘and if the eccentre DH is described
about centre Z°. However, it seems more likely that this is an interpolation by someone who wanted
an explicit reference to the drawing of the eccentre DH on centre Z, represented in Fig. 5.1 and
referred 10 by Prolemy below.

*The ligure given by Heiberg (p. 360), which is taken from the ms. tradition represented by A, is
wrong in making E the centre of the circle and adding a point K above it. My figure agrees with the

text and with part of the Arabic tradition (e.g. P, except that all Arabic mss. have the equivalent of

@ lor O. Manitius already made the same correction, except that he unnecessarily added the point
Z (unattested in the mss.) as the centre of the circle.
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X :

Fig. 5.2

[1] The moon’s speed was about at the mean (for that is when the equation

of anomaly is maximum).

[2] The mean elongation of the moon from the sun was about a quadrant
" (for then the epicycle was near the perigee of the eccentre).

(3] In addition to the above, the moon had no longitudinal parallax.

If these conditions are fulfilled, the apparent observed longitudinal distance is
the same as the true, and thus we can safely infer the size of the second anomaly
which we are seeking. When we investigate on the basis of the above kind of
observations, we find that, when the epicycle is closest to the earth, the greatest
equation of anomaly is about 73° with respect to the mean position (or 25°
different from [the corresponding equation of] the first anomaly). .
We will illustrate the way in which this kind of determination is made from
one or two observations by way of example. We sighted sun and moon in the
2nd year of Antoninus, Phamenoth [VII] 25 in the Egyptian calendar [139,
Feb. 9], after sunrise, and 54 equinoctial hours before noon. The sun was sighted
in= 18°, and 7 4 was culminating. The apparent position of the moon was m,
9%°, and that was its true position too, since when it is near the beginning of

Scorpius, about 11 hours to the west of the meridian at Alexandria, it has no -

noticeable parallax in longitude.'® Now the time {rom epoch in the first year of

"] e. at that situation the angle between ecliptic and altitude circle (derived from Table [ 13) is
about 90°, hence the parallax allects only the fatitude. not the longitude. Interpolation in the tables
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Nabonassar to the observation is
885 Egyptian years 203 days 18} equinoctial hours (whether reckoned simply or

. accurately).

For this moment we find:
mean position of the sun: & 16;27°
true position of the sun: = 18;50° {in accordance with its sighted position
according to the astrolabe).'!

From the first hypothesis we find the mean position of the moon at that
moment as W, 17;20° (thus its mean elongation from the sun was about a
quadrant), and the moon’s distance in anomaly from the apogee of the
epicycle as 87;19° (which is near the position of maximum equation). Thus
the true position of the moon was.less than the mean by 7#° (instead of the
5° of the first anomaly)."?

Again. to display the amount of the equation under similar conditions which
is derived {rom Hipparchus’ observations of such positions. we will adduce one
of these. He says that he made the observation in the fiftv-first year'> of the Third
Kallippic Cvcle, Epiphi [XI]16 in the Egyptian calendar - 127 Aug. 5], when{
of the first hour had passed. *“The speed was [that of day] 241°.'* he says, ‘and
while the sun was sighted in Leo 8{:° the apparent position of the moon was
Taurus 124°, and its true position was approximately the same’. So the true
observed distance between moon and sun was 86:15°. But when the sun is near
the beginning of Leo. at Rhodes (where the observation was made), 1 hour of
the day is 17} time-degrees. So the 5} seasonal hours {which make up the
interval to [the following] noon) produce 6# equinoctial hours. Therefore the

for Clima HI, my 9:40°. 11" west of the meridian, gives 83:5°. Exact computation for Alexandria
@ == 31°) gives 83:45°. For the computations here and at the other observations of V' 3 and ' 5 see
HAM.191-2.

''Is this meant as a contirmation of the accuracy of the observation? This would imply that
Ptolemy set up the instrument by using the shadow (ct. p. 219 n.4). It may, however. merely mean
that this computation is the basis ol the position to which Prolemy set the instrument.

'* Precise computation: mean clongation = & 16:27° - m, 17:20° = 89:7°: equation = m,
9:40° ~ m, 17:20° = -7:40°: equation from first hvpothesis (from Table I\" 10, @:87:19°Y — = +57°.
However, Ptolemy is operating with rounded numbers, quite properly here.

"* have. doubttully. accepted the emendation va’ forv’ (*fiitieth) at H363.16. The Julian date of
the observation. -127 Aug. 5. is guaranteed both by the astronomical data and by Ptolemy’s
reckoning in the era Nabonassar. Ideler : Historische Untersuchungen 217-18) made the emendation
because he calculated. correctly. from the known epoch of the Kallippic cycles that this must fall in
the tifty-lirst year. In this case ;cf. p. 214 n.72) using the Egyptian calendar makes no diflerence.
However. [ suspect that the error. if it is one. lies not with the scribes but with Ptolemy or even
Hipparchus. and that possibly there is no error. but another method of counting which eludes us.

** Literally “The true daily motion (8popog; was the 241st’. Hipparchus is referring to a table of
the true motion of the moon over 248 dayvs (= 9 anomalistic months). in which the moon was
supposed to return to the same velocity. Such a table is extant on a cuneiform tablet.
ACT no. 190 {111 p. 131). IfHipparchus was using that table the motion on day 241 would be 13:30°
or 13:31,10° according to whether one starts at the beginning or goes in reverse from the end). i.e.
close to the mean. as our passage requires. The historical interest of this passage has been missed
because “241° has hitherto been interpreted as “degrees of anomaly” (and hence “emended’. 10259
by Manitius and to pécog, “mean’. by Halma). I think it likely that Hipparchus was the channel
through which use of the 248-day lunar anomaly period was transmitted from Mesopotamia to the
Greek world (e.g. Vettius Valens [ 4-5, ed. Kroll 20-1. and P. Ryl. 27, on which see A.1.3/.1 808 {13,
and ultimately to India (the Vakya system, see HA.M1 817 II.) See provisionally Toomer [11]p. 108
nl2.
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observation occurred 6§ equinoctial hours hefore noon on the sixteenth, while
8 9° was culminating. Thus in this case the time from epoch to the observation

is
. { 17¢ equinoctial hours reckoned simply

619 Egyptian years 314 days ! 17{ equinoctial hours reckoned accurately.'s
For this moment we find from our hypotheses (since the meridian through
Rhodes is the same as that through Alexandria):'®

mean position of the sun: N 10;27°

true position of the sun: 1 8;20°

mean position of the moon in longitude: 8 4;25°

(thus the mean elongation was again nearly a quadrant)
mean distance of the moon from the apogee of the epicycle in anomaly: 257;47°
(which is again near the position of the maximum equation of the anomaly
due to the epicycle).
So the distance {from the mean moon to the true sun is calculated as93:55°. And
the observed distance from the true moon to the true sun was 86; 15° u
Therefore the true position of the moon was greater than the mean. againbv 7 73
instead of the 5° of the first hypothesis. And it is [further] evident, that of these
two observations taken near the second quadrature, ours was found to be less
than the position computed from the first anomaly by 21°. while Hipparchus’
was greater by the same amount. since the total equation of anomaly was
subtractive at our observation and additive at Hipparchus'.

From numerous other similar observations also we find that the greatest
equation of anomaly is about 7i° when the epicycle is at the perigee of the
eccentre.

4. {On the ratio of the eccentricily of the moon's circle}

With this as a datum, let[Fig. 5.3] the moon’s eccentric circle be ABG on centre
D and diameter ADG. on which E is taken as the centre of the ecliptic. Thus A is
the apogee of the eccentre and G the perigee. On centre G draw the moon's
epicycle ZHO, draw E®B tangent to it. and join GO.

Then since the greatest equation of anomaly occurs when the moon is at the
epicycle tangent, and we have shown that this amounts to 73°, the angle at the
centre of the ecliptic.
7:40° where 4 right angles=360°

£ GEO = { 15:20°° where 2 right angles = 360°°.

13 As Neugebauer remarks. the equation of time for a solar longitude of  8° should be - 16 mins.
rath-r than -5 mins. For this and other inaccuracies in Ptolemy’s computations see HAMA 92-3.
'® In fact Rhodes is about 1.7° west of Alexandria. The notion that they lay on the same meridian

was traditional: see Strabo 2.5.7, where the same meridian is supposed to pass through Meroe,

Svene, Alexandria. Rhodes. the Troad. Byzantium and the Borysthenes. This is probably derived
tfrom Eratosthenes via Hipparchus.

" Note that Ptolemy takes only the distance observed by Hipparchus (86:15°) as accurate. and
substitutes his own calculations of the positions of sun and moon tor those observed {or calculated) by
Hipparchus.
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Therefore in the circle about right-angled triangle GE@
arc GO = 15;20°
and the corresponding chord
GO =~ 16° where the hypotenuse GE = 120°.
So, where GO, the radius of the epicycle, is, as was shown, 5;15°
and EA, the distance from the centre of the ecliptic to the apogee of the
eccentre, is 60°,
EG, the distance from the centre of the ecliptic to the perigee of the eccentre,
is 39;22°.
Therefore, by addition, diameter AG = 99;22°,
and DA, the radius of the eccentre = 49;41°
and ED. the distance between the centres of the ecliptic and the eccentre =
10;19.°
Thus we have demonstrated the ratio of the eccentricity.

A

5. {On the ‘direction’ of the moon’s epicycle}'®

As far as concerns the phenomena at syzygies and at quadrature positions of the
moon, the preceding discussion would provide a full explanation of the
hypotheses elucidating the circles of the moon described above. But from
individual observations taken at distances of the moon [from the sun] when it is
sickle-shaped or gibbous (which occur when the epicycle is between the apogee

'8 See HAMA 88-91, Pedersen 189-95.
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and the perigee of the eccentre), we find that the moon has a peculiar
characteristic associated with the direction'® in which the epicycle points.
Every epicycle must, in general, possess a single, unchanging point defining the
position of return of revolution on that epicycle. We call this point the ‘mean
apogee’, and establish it as the beginning from which we count motion on the
epicycle. Thus point Z on the previous figure [5.3] is such a point. It is defined,
for the position of the epicycle at apogee or perigee of its eccentre, by the straight
line drawn through all the centres [of ecliptic, eccentre and epicycle] (DEG
here). Now in all other hypotheses [involving epicycle on eccentre], we see
absolutely nothing in the phenomena which would count against the following
[model}: in other positions of the epicycle [outside apogee and perigee of the
eccentre), the diameter of the epicycle through the above apogee, i.e. ZGH,
always keeps the same position relative to the straight line which carries the

epicycle centre round with uniform motion (here EG), and [thus] (asone would |

think appropriate) always points towards the centre of revolution, at which,
furthermore, equal angles of uniform motion are traversed in equal times. In
the case of the moon, however, the phenomena do not allow one to suppose that,
for positions of the epicycle between A and G, diameter ZH points towards E.
the centre of revolution, and keeps the same position relative to EG. We do
indeed find that the direction in which [diameter ZH] points is a single,
unchanging point on diameter AG, but that point is neither E, the centre of the
ecliptic, nor D, the centre of the eccentre, but a point removed from E towards
the perigee of the eccentre by an amount equal to DE. We shall show that this is
s0, again, by setting out. from among the numerous {relevant] observations, two
which are particularly suitable for illustrating our point, since the epicycle at
these observations was at distances halfway [between apogee and perigee of the
eccentre], and the moon was near apogee or perigee of the epicycle; for in these
situations occur the greatest eflects of the above direction [of the epicycle
diameter].

Now Hipparchus records that he observed the sun and the moon with his
instruments®® in Rhodes in the 197th year from the death of Alexander,
Pharmouthi [VIII] 11 in the Egyptian calendar {-126 May 2], at the beginning
of the second hour. He says that while the sun was sighted in 8 7%, the
apparent position of the centre of the moon was ¥ 213°, and its true position
was 3 21§ + §°[21;274°].2' Therefore at the moment in question the distance of
the true moon from the true sun was about 313;42°, [ counting] towards the
rear. Now the observation was made at the beginning of the second hour, about
5 seasonal hours (which correspond to about 53 equinoctial hours in Rhodes on

¥ rpdovevoig, used by Neugebauer and Pedersen as a technical term (‘prosneusis’) for this
element of Ptolemy’s lunar theory. However, it is hardly that for Ptolemy, as he applies the word in
many other contexts (see p. 43 n.38).

20t is usually assumed that by this is meant an armillary sphere similar to that described by

Ptolemy in V | (and often, that Hipparchus was the inventor of that instrument). That may be true, .

but the vague expression here certainly does not require it, and whether the data described below
do is doubtful. I consider it possible that Hipparchus used a dioptra of the type described by Heron
(‘Dioptra’, ed. Schone, 187 fT.).

21 On the correction for parallax made by Hipparchus here (which is fairly accurate) see H4M 4

92.
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that date) before noon on the lith. So the time from our epoch to the
observation is }l
. 185 equinoctial hours reckoned simply
620 Egyptian years 219 days{ 18 equinoctial hours reckoned accurately.
For this moment we find:
mean sun in 3 6;41°
true sun in 8 7;45°
in € 22;13° in longitude
at 185;30° from mean apogee of epicycle in anomaly.
Therefore the distance of the mean moon from the true sun was 314;28°.
With these data, let [Fig. 5.4] the moon’s eccentric circle be ABG on centre D
and diameter ADG, on which E represents the centre of the ecliptic. On centre
B draw the moon’s epicycle, ZH®. Let the sense ol motion of the epicycle be
towards the rear from B towards A, and the sense of motion of the moon on the
epicycle be from Z iowards H and {then] ©. Join DB and EOBZ.

mean meon {

A

Fig. 5.4

Now in a mean [synodic] month occur two revolutions of the epicycle on the
eccentre, and in the situation in question the elongation of mean moon from
mean sun was 315;32°. So if we double the latter and subtract [the 360° of] a
circle, we will get the elongation at that moment of the epicycle from the apogee
of the eccentre, [counting] towards the rear: this is 271;4°.

~ £ AEB = 88;56° (remainder [when 271;4° is subtracted] from 360°).

So drop perpendicular DK from D on to EB. '

- / DEB < {88;56° where 4 right angles = 360°
177;52°° where 2 right angles = 360°°.
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Therefore in the circie about right-angled triangle DEK,
arc DK = 177;52°
and arc EK = 2;8° (supplement).
Therefore the corrcspondmg chords
DK = 119391 1o hypotenuse DE = 120%
and EK = L,m] ypotenuse DL =
Therefore where DE, the distance between the centres, is 10;19°
and DB, the radius of the eccentre, is 49;41°,
DK = 10;19° also,
and EK = 0;12°.
But BK? = DB? - DK2 )
. BK = 48;36° in the same units,
and, by addition, BE [= BK + EK] = 48:48°.

Again, since the distance of the mean moon {rom the true sun was found to be H372

314;28°, and the distance of the true moon [from the true sun] was observed
to be 313:42°, the equation of anomaly is —0;46°. Now the mean position
of the moon is seen along the line EB. So let the moon be located at H (since
it is near the perigee), join EH and BH, and drop perpendicular BL from B
on to EH produced. Then, since £ BEL contains the moon’s equation of
anomaly,
/ BEL _{0 :46° where 4 right angles = 360°
1:32°° where 2 right angles = 360°°.
Theretore in the cxrclc about right-angled triangle EBL,
arc BL = 1;32°
and the corresponding chord
BL = 1;36" where the hypotenuse EB = 120°.
Therefore where BE = 48;48° and BH, the radius of the epicycle, is 5;15°,
BL = 0;39°.
Therefore where BH, the radius of the epicycle, is 120°,
BL = 14;52°
and, in the circle about right-angled triangle BHL,
arc BL = 14:14°
~ £ BHL = 14:14°° where 2 right angles = 360°°, -
and, by subtraction _ { 12:42°° where 2 right angles = 360°°
[of £ BEL], £ EBH ™ | 6:21° where 4 right angles = 360°.
That [6;21°], then, is the size of arc H® of the epicycle, which comprises the
distance from the moon to the true perigee [of the epicycle].

But since the distance of the moon from the mean apogee at the time of the
observation was 185;30° [p. 228), it is clear that the mean perigee is in advance
of the moon, i.e. of point H. Let [the mean perigee] be point M, draw line BMN,
and drop perpendicular EX on to it from point E.

Then since, as was shown,
arc OH = 6;21°,
and arc HM, the distance from the perigee, is given as 5;30°,
by addition, arc @M = 11;51°. )
_ ] 11;51° where 4 right angles = 360°
So LEBX = {23;42“ where 2 right angles = 360°.
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Therefore in the circle about right-angled triangle BEX,
arc EX = 23;42°
and EX = 24;39° where hypotenuse BE = 120°.
Therefore where BE = 48;48°
EX = 10;2°.
Again, since [p. 228]
Iy AA;fN':;;;i?;} where 2 right angles = 360°,
by subtraction, Z ENB = 154;10°°,
Therefore in the circle about right-angled triangle ENX,
arc EX = 154;10°
and EX = 116;58° where hypotenuse EN = 120°.
Therefore where EX = 10;2° and DE, the distance between the
centres, is 10;19°,
EN =10;18°.
Therefore the [radius of the epicycle] through the mean perigee, BM, points in a
direction such that, when produced to N, it cuts off a line EN which is very
nearly equal to DE.

Similarly, in order to show that we get the same result at the opposite sides of
eccentre and epicycle, we have again selected from the distances [between sun
and moon] observed by Hipparchus, as already mentioned, in Rhodes, the
observation he made in the same year [as the preceding one}, being the 197th
vear from the death of Alexander, Payni [X] 17 in the Egyptian calendar
[~126 July 7), at 94 hours. He says that while the sun was sighted at < 10 75° the
apparent position of the moon was §1 29°. And this was its true position too: for
at Rhodes, near the end of Leo, about one hour past the meridian, the moon has
no longitudinal parallax.? Therefore the distance of the true moon from the
true sun at the time in question was 48;6° towards the rear. Now since the
observation was 3} seasonal hours after noon on the 17th of Payni, which
correspond to about 4 equinoctial hours in Rhodes on that date, the time from
our epoch to the observation is

. 4 equinoctial hours reckoned simply
620 Egyptian years 286 days{ 33 gquinoctial hours reckoned ac?u‘ralely.
For this moment we find:
mean sun at% 12;5°
true sun at%s 10;40°
mean moon at{} 27;20° in longitude

(thus the distance of the mean moon from the true sun was 46;40°)

mean moon at 333;12° in anomaly from the apogee of the epicycle.?
With these data, let [Fig. 5.5] the moon’s eccentric circle be ABG on centre D

*For verification of this see HAMA 92.

* For 620'28631" I find: & p = 147;7° @ p = 333;1°. Since the dillerences from Ptolemy’s positions
represent the lunar motion over about 20 mins., it is obvious that he has carelessly calculated the
positions for 4 hours after noon, i.e. without making the correction for.the equation of time, which
he had given, correctly, as about 20 mins. This error has a not inconsiderable effect on the final
result, which would not agree nearly so neatly if the computation were carried out with the above
figures.
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A

Fig. 5.5

and diameter ADG, on which the centre of the ecliptic is represented by point
E. About point B draw the moon’s epicycle, ZH®, and join DB, E©BZ.
Then since twice the mean elongation of sun and moon is 90;30°, from the

theory already established

/ AEB = 90;30° where 4 right angles = 360°
181°° where 2 right angles = 360°°.
So if we produce BE and drop perpendicular DK on to it from D,

£ DEK = 179°° (supplement).
Therefore in the circle about right-angled triangle DEK

arc DK = 179°

and arc EK = 1° (supplement).

Therefore the corresponding chords

an dDé(K:-_-“gf:g: where hypotenuse DE = 120°.
Therefore where DE, the distance between the centres, is 10;19° .
and BD, the radius of the eccenter, is 49;41°,
DK = 10;19°
and EK = 0;5°.
Now since BK? = BD? - DK?,
BK = 48;36",

and, by subtraction [of EK], EB = 48;31°.

Furthermore, since the distance of mean moon from true sun was found to be

46;40°, and the distance of true moon [from true sun was observed as} 48;6°, the
equation of anomaly is +1;26°. So let the position of the moon be at H (since it is
near the apogee of the epicycle). Join EH, BH, and drop perpendicular BL from
B on to EH.
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Then since
/ BEL = { 1;26° where 4 right angles = 360°
2,52°° where 2 right angles = 360°°,
in the circle about right-angled triangle BEL,
arc BL = 2;32°
and BL = 2:59° where hypotenuse EB = 120°.
Therefore where EB = 48;31° and BH, the radius of the epicycle, is 5;15°,
BL = 1;12°.
So in the circle about right-angled triangle BHL,
BL = 27;34° where hypotenuse BH = 120°,%*
and arc BL = 26;34°.
> £ BHL = 26;34°° where 2 right angles = 360°°,
and, by addition [of £ BEL = 2;52°°],
/ ZBH = { 29;26° where 2 right angles = 360°°.
i 14;43° where 4 right angles = 360°.
That [14:43°] is the size of the arc HZ of the epicycle, which comprises the
distance from the moon to the true apogee. '

But since {the moon’s] distance {from the mean apogee at the time of the
observation was 333;12°, if we put the mean apogee at M, draw line MBN, and
drop perpendicular EX on to it from E, then

arc HZM = 26:48° (by subtraction [of 333;12°] from the circle),
and, by subtraction [of arc HZ = 14:43°], arc ZM = 12;5°.
., _ - _ J 12:5