
FOURIER ANALYSIS 
ON GROUPS 



FOURIER ANALYSIS 
ON GROUPS 

WALTER RUDIN 
University of Wisconsin, Madison, Wisconsin 

Wiley Classics Library Edition Published 1990 

WILEY 

A WILEY-INTERSCBENCE PUBLICATION 

JOHN WILEY & SONS 
New York · Chichester · Brisbane · Toronto · Singapore 



A NOflETO THE READER: 
This book has been electronically reproduced from digital 
information stored at John Wiley A Sons. Inc. We are 
pleased that the use of this new technology will enable us 
to keep works of enduring scholarly value in print as long 
as there is a reasonable demand for them. The content of 
this book is identical to previous printings. 

FIRST PUBLISHED 1962 

ALL RIGHTS RESERVED 

LIBRARY OF CONGRESS CATALOG CARD NUMBER 62—12211 

ISBN 0-471-52364-X (pbk.) 

10 9 8 7 6 5 



PREFACE 

In classical Fourier analysis the action takes place on the unit 

circle, on the integers and on the real line. During the last 25 or 30 

years, however, an increasing number of mathematicians have 

adopted the point of view that the most appropriate setting for the 

development of the theory of Fourier analysis is furnished by the 

class of all locally compact abelian groups. The relative ease with 

which the basic concepts and theorems can be transferred to this 

general context may be one of the factors which contributes to the 

feeling of some that this extension is a dilution of the classical 

theory, that it is merely generalization for the sake of generali-

zation. 

However, group-theoretic considerations seem to be inherent in 

the subject. They are implicit in much of the classical work, and 

their explicit introduction has led to many interesting new analytic 

problems (it is one of the aims of this book to prove this point) as 

well as to conceptual clarifications. To cite a very rudimentary 

example: In discussing Fourier transforms on the line it helps to 

have two lines in mind, one for the functions and one for their 

transforms, and to realize that each is the dual group of the other. 

Also, there are classical subjects which lead almost inevitably 

to this extension of the theory. For instance, Bohr (1) noticed 

almost 50 years ago that the unique factorization theorem for 

positive integers allows us to regard every ordinary Dirichlet series 

as a power series in infinitely many variables. The boundary values 

yield a function of infinitely many variables, periodic in each, that 

is to say, a function on the infinite-dimensional torus Γ
ω
. It then 

becomes of interest to know the closed subgroups of Τω, and it 

turns out that these comprise all compact metric abelian groups. 

Once we agree to admit these groups we have to admit their duals, 

i.e., the countable discrete abelian groups, and since the class of all 

locally compact abelian groups can be built up from the compact 

ones, the discrete ones, and the euclidean spaces, it would seem 

M 
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artificial to restrict ourselves to a smaller subclass. 

The principal objects of study in the present book are the group 

algebras V-lfi) and M(G); Σ>τ(0) consists of all complex functions 

on the group G which are integrable with respect to the Haar 

measure of G, M(G) consists of all bounded regular Borel measures 

on G, and multiplication is defined in both cases by convolution. 

Although certain aspects of these algebras have been studied f orn on-

commutative groups G, I restrict myself to the abelian case. Other 

Lv- spaces appear occasionally, but are not treated systematically. 

The development of the general theory, given in Chapter 1, is 

based on some simple facts concerning Banach algebras; these, as 

well as other background material, are collected in the Appendices 

at the end of the book. It seems appropriate to develop the material 

in this way, since much of the early work on Banach algebras was 

stimulated by Fourier analysis. Chapter 2 contains the structure 

theory of locally compact abelian groups. These two chapters are 

introductory, and most of their content is well known. 

The material of Chapters 3 to 9, on the other hand, has not 

previously appeared in book form. Most of it is of very recent 

vintage, many of the results were obtained only within the last 

two or three years, and although the solutions of some of the prob-

lems under consideration are fairly complete by now, many open 

questions remain. 

My own work in this field has been greatly stimulated by con-

versations and correspondence with Paul J. Cohen, Edwin Hewitt, 

Raphael Salem, and Antoni Zygmund, and by my collaboration 

with Henry Helson, Jean-Pierre Kahane, and YitzhakKatznelson. 

It is also a pleasure to thank the Alfred P. Sloan Foundation for 

its generous financial support. 

Madison, Wisconsin 

November 1960 

WALTER RUDIN 
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CHAPTER 1 

The Basic Theorems of Fourier Analysis 

The material contained in this chapter forms the core of our 
subject and is used throughout the later part of this book. Various 
approaches are possible; the same subject matter is treated, from 
different points of view, in Cartan and Godement [1], Loomis [1], 
and Weil [1]. 

Unless the contrary is explicitly stated, any group mentioned in 
this book will be abelian and locally compact, with addition as 
group operation and 0 as identity element (see Appendix B). The 
abbreviation LCA will be used for "locally compact abelian." 

/ . / . Haar Measure and Convolution 

1.1.1. On every LCA group G there exists a non-negative regular 
measure m (see Appendix E), the so-called Haar measure of G, 
which is not identically 0 and which is translation-invariant. That 
is to say, 

(1) tn(E + x)= m(E) 

for every x € G and every Borel set E in G. 
For the construction of such a measure, we refer to any of the 

following standard treatises: Halmos [1], Loomis [1], Montgo-
mery and Zippin [1], and Weil [1]. The idea of the proof is to 
construct a positive translation-invariant hnear functional T on 
Ce(G), the space of all continuous complex functions on G with 
compact support. This means that Tf ^ 0 if / ^ 0 and that 
T(fx) = Tf, where fx is the translate of / defined by 

(2) ÍM=fÜ-x) 13/*G). 

As soon as this is done, the Riesz representation theorem shows 
that there is a measure m with the required properties, such that 
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2 FOURIER ANALYSIS ON GROUPS 

(3) Tf = jGfdm (/eCe(G)). 

1.1.2. If V is a non-empty open subset of G, then m(V) > 0. 
For if m(V) = 0 and K is compact, finitely many translates of V 

cover K, and hence m(K) = 0. The regularity of m then implies 
that m(E) = 0 for all Borel sets E in G, a contradiction. 

1.1.3. We have spoken of the Haar measure of G. This is justi-
fied by the following uniqueness theorem: 

/ / m and m' are two Haar measures on G, then m' — km, where λ 

is a positive constant. 

Proof: Fix geCe(G) so that j gdm = 1. Define λ by 

¡Gg{-x)dm'{x)=X. 

For any f€Cc(G) we then have 

jGfdm' = ¡Gg{y)dm{y) jGf(x)dm'(x) 

= ¡Gg{y)dfn{y) ¡Gf(z + y)dm\x) 

= jGdm'(x) ¡Gg(y)f(x + y)dm{y) 

= lG
d™>'(?) jGg(y - x)f(y)<*™{y) 

= \G1{y)dm{y) \Gg(y - x)dm,{x) = λ ¡J dm. 

Hence m' = Xm. Note that the use of Fubini's theorem was legi-
timate in the preceding calculation, since theintegrandsg(y)/(a;+y) 
and g(y — x)f(y) are in Ce(G X G). 

Thus Haar measure is unique, up to a multiplicative positive 
constant. If G is compact, it is customary to normalize m so that 
m(G) = 1. If G is discrete, any set consisting of a single point is 
assigned the measure 1. These requirements are of course contra-
dictory if G is a finite group, but this will cause us no difficulty. 

Having established the uniqueness of m, we shall now change our 
notation, and write / c f(x)dx in place of /G fdm. Thus dx, dy, . . . 
will always denote integration with respect to Haar measure. 
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1.1.4. For any Borel set E in G, m(— E) = m(E). For if we 
set m'(E) = w(— E), m' is a Haar measure on G, and so there is 
a constant λ such that w(— E) = Xm(E) for all Borel sets E. 

Taking E so that — E = £ , we see that λ = 1. 

1.1.5. Translation in LP(G). If G is a LCA group and 1 ^p 

fg oo, we shall write LP(G) in place of Lp(m) (see Appendix E7). 
It is clear that the Z,*-norms are translation invariant, i.e., that 

(i) ll/.IL = 11/11, (*<G), 

where, we recall, fx is the translate of / defined by 

(2) fM = fiy - x) (yeG). 

THEOREM. Suppose 1 ^ p < oo awrf feL'(G). The map 

(3) x ^ / x 

is a uniformly continuous map of G into LP(G). 

Proof: Let ε > 0 be given. Since Ce(G) is dense in LP(G) (Appen-
dix E8) there exists g € Ce(G), with compact support K, such that 
II? — /lip < £ /3, and the uniform continuity of g (Appendix B9) 
implies that there is a neighborhood V of 0 in G such that 

w iig~gjioo<J[^(^)r
i/p 

for all a; € F. Hence ||g — gx\\p < ε/3, and so 

11/ - fm\\9 ̂  11/ - ffll, + II* - ff.ll, + I Iff. - / . l l , < B 

iixtV. Finally, / , - fy = (/ - / , _ ) „ so that ||/. - / J | , < ε if 
y — a; € F, and the proof is complete. 

Note that the same theorem (with the same proof) is true with 
C0(G) in place of Lp(G)t but that it is false for L°°(G), unless G 
is discrete. 

1.1.6. Convolutions. For any pair of Borel functions / and g 
on the LCA group G we define their convolution / * g by the 
formula 

0) (/**)(*) =Je/(*-y)g(y)«íy 
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provided that 

(2) \G\f{*-y)g{y)\dy< oo. 

Note that the integral (1) can also be written in the form 

(3) \GfA*)ziy)dy 

so that / * g may be regarded as a limit of linear combinations of 
translates of /; this statement may be made precise, but we assign 
it only heuristic value at present. (See Theorem 7.1.2.) 

THEOREM, (a) / / (2) holds for some zeG, then (/ * g) (x) = 

fe */)(*)-
(b) IffeL1 (G) and g e L°°(G), then f* gis bounded and uniformly 

continuous. 
(c) / / / and g are in CC(G), with compact supports A and B, then 

the support of f * g lies in A + B, so that f * g eCe(G). 
(d) Ifl<p< oo, lip + \\q = 1, / e L»(G)f and g e L«(C)f then 

f*geC0(G). 
(e) If / and g are in Ll(G), then (2) holds for almost all xeG, 

f * geL1^), and the inequality 

ll/*slli^ll/llillglli 
holds. 

(f) / / /, g, h are in V{G), then (/* g) * h = / * (g*h). 
Proof: Replacingybyy + xin(l) and applying 1.1.4, we obtain 

(/ * g)(x) = jGf(- y)g(y+x)dy = jGf(y)g(- y+x)dy= {g * /)(*), 

and (a) is proved. 
Under the hypotheses of (b), it is clear that 

\(f*g){x)\£MiM~ (*«G) 

so that / * g is bounded. For x € G, z € G, we have 

\V*g)i*) - (f*g)(*)\ ̂ ¡G\f{* -»)-/(* - y)My)\dy 
^ \\U -/-.llxltelL·· 
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Theorem 1.1.5 shows that the last expression can be made arbi-

trarily small by restricting x — z to lie in a suitably chosen neigh-

borhood of 0 and (b) follows. 

If / vanishes outside A and g vanishes outside J5, then f(x—y)g{y) 

= 0 unless y e B and x — y e A, i.e., unless x e A + B. Thus 

/ * g vanishes outside A + B, and (c) is proved. 

To prove (d), choose sequences {/n} and {gn} in Ce(G) such that 

11/» - /lip -* ° and llSn — £lU -* ° as
 w

 -* °°· Holder's inequality 

shows that fn*gn-+f* g uniformly. By (c), fn*gn€ CC{G). Hence 

/ * g € C0(G), and (d) follows. 

The proof of (e) will depend on Fubini's theorem, and we first 

have to show that the integrand in (1) is a Borel function on 

G x G. Fix an open set V in the plane, put E = ^(V), E' = 

E x G, and let E" = {(x, y) : x — y <r E}. Then E' is a Borel set 

in G x G, and since the homeomorphism of G x G onto itself 

which carries (x, y) to (x -+- 3/» y) maps £' onto £", E" is also a 

Borel set. Since f(x — y) eV if and only if (x, y) € E", we see that 

f(x — y) is a Borel function on G x G, and so is the product 

/(* ~ y)g(3f)· 
By Fubini's theorem, 

jeje\f(*-v)gm*"iv = \\n\M\i· 
Setting φ(χ) = Jc |/(a; - y)gly)\dy, it follows that <¿ e L1^)· In 
particular, (̂a;) < oo for almost all x, and so (/ * g)(x) exists for 
almost all x. Finally, | ( /* g)(x)\ ^<f>(x), and the proof of (e) is 
complete. 

The proof of (f) is also an application of Fubini's theorem, justi-
fied by (e) for almost all x: 

(/ * fe * A)) (*) = Je/(* -*)(g* h) (z)dz 

= ÍJGf(x - z)g(z - y)hWv dz 

= /«,/„/(* ~Z~ y)z(z)hWdy dz 

= Sa (/ *g)(*- yWWy = ( ( / * ? ) * * ) (*)· 
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1.1.7. THEOREM. For any LCA group G, LX(G) is a commutative 
Banach algebra, if multiplication is defined by convolution. If G is 
discrete, ^(G) has a unit. 

Proof: The first statement follows from parts (e), (f), and (a) of 
Theorem 1.1.6, since the distributive law holds: / * (g + h) = 
/ * g + f * A. 

If G is discrete and the Haar measure is normalized as indicated 
in Section 1.1.3, then 

0**)(*) = 2/(*-y)*W. 
V€G 

and if ¿(0) = 1 but e(x) = 0 for all x φ 0, then e*U{G) and 
/ * e = /. Thus e is the unit of Ll(G). 

1.1.8. If G is not discrete, then LX(G) has no unit (see Section 
1.7.3), but approximate units are always available. 

THEOREM. Given f € L}(G) and ε > 0, there exists a neighborhood 

V of 0 in G with the following property: if u is a non-negative Bor el 

function which vanishes outside V, and if fGu(x)dx = 1, then 

Ι Ι / - / · « Ι Ι ι < « . 

Proof: By Theorem 1.1.5, we can choose V so that \\f — fv\\t < ε 

for all y € V. If u satisfies the hypotheses, we have 

(/ * u)[x) - /(*) = joV(z - y ) - f(x)]u(y)dy 

so that 

||/ * u - f\\x 5g jG\u(y)\dyjG\f(x - y) - f(x)\dx 

= JFll/-/vlli«(y)^<^ 

1.2. The Dual Group and the Fourier Transform 

1.2.1. Characters. A complex function γ on a LCA group G is 
called a character of G if \γ(x)\ = 1 for all x c G and if the functional 
equation 

(1) γ(χ + y) = γ(χ)γ(ν) (*, y * G) 
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is satisfied. The set of all continuous characters of G forms a group 

Γ, the dual group of G, if addition is defined by 

(2) (7i + Yt)(x) = Yi{*)v%{?) (* € G; 7i> y2 « Γ). 

Throughout this book, the letter Γ will denote the dual group of 

the LCA group G. 

In view of the duality between G and /'which will be established 

in Section 1.7, it is customary to write 

(3) (*, y) 

in place of γ(x). With this notation, (1) and (2) become 

(4) {x + y, γ) = (a?, y)(y, γ) and (*, y i + yt) = (*, n ) ( ^ y*)· 

It follows immediately that 

(5) (0 ,y)= (*.0) = 1 ( s c G . y c r ) 

and 

(6) ( - x, γ) = (*, — y) = (*, y)"
1
 = (*, y). 

We shall presently endow Γ with a topology with respect to 

which Γ will itself be a LCA group. But first we identify Γ with 

the maximal ideal space of LX(G) (Appendix D). 

1.2-2. THEOREM. If γ * Γ and if 

(i) /(r)=Je/(*)(-*.y)<fe (/«^(G)). 

¿Ä£w ¿Ae wa^ / ->/(y) *s # complex homomorphism of LX(G), and is 
not identically 0. Conversely, every non-zero complex homomorphism 
of L1 (G) is obtained in this way, and distinct characters induce distinct 
homomorphisms. 

Proof: Suppose /, g c LX(G), and k = / * g. Then 

Hr) = /<>(/ * £)(*)(- *> y)¿* = Je(— *> y)dzfGf(z - y)g(y)dy 

= j0g{jf) ( - y> v)*y JG/(* - y) ( - * + y. y)d* = ¿M/(y)· 

Thus the map /->/(y) is multiphcative on the Banach algebra 
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Z,1^), and since it is clearly linear, it is a homomorphism. Since 
| ( - z, y)\ = 1, /(y) φ 0 for some / c ¿ l (G) . 

For the converse, suppose A is a complex homomorphism of 
Lx{G)t A Φ 0. Then A is a bounded linear functional of norm 1 
(Appendix D4), so that 

(2) h(f) = iGf(z)<l>(z)dx (/cL*(G)) 

for some φ € L°°(G) with H^H«, = 1 (Appendix E10). If / and g are 
in Lx{G)t we have 

¡GHf)sM(y)dy = *(/)*fe) = M/ * S) = J*c (/ * ?) {χ)φ(χ)άχ 

= Jc?(í/)% Je/(* - y)j>{x)dx = jGg(y)h(fv)dy, 

so that 

(3) A(M(y) = A(/v) 

for almost all y eG. By Theorem 1.1.5 and the continuity of A, the 
right side of (3) is a continuous function on G, for each / e L1(G). 
Choosing / so that A(/) Φ 0, (3) shows that <f>(y) coincides with a 
continuous function almost everywhere, and hence we may assume 
that φ is continuous, without affecting (2). Then (3) holds for 
all y € G. 

If we replace y by x + y and then / by fx in (3), we obtain 

*(/)*(* + y) = * ( ω = *((/.),) = *(/.)*(y) = *W*(*)*(y). 
so that 

(4) Φ(* + y) = Φ(*)Φ(ν) (x.ycG). 

Since |^(x)| ^ 1 for all a; and since (4) implies that φ(—x) = ^(tf)"1, 
it follows that |¿(*)| = 1. Hence φ*Γ. 

Finally, if j ^ ) = /(y2) for aU fe^iG), (1) implies that 
(— x, ^!) = (— a;, y2) for almost all x e G, and since >Ί and y2 are 
continuous, 1.1.2 shows that the equality holds for all a;eG, so 
that y t = y2. 

1.2.3. The Fourier transform. For all / e L ^ G ) , the func-
tion / defined on Γ by 
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fb>)=fef(*)(-*.v)á* (y<r) 
is called the Fourier transform of /. The set of all functions / so 
obtained will be denoted throughout by Α(Γ). 

By Theorem 1.2.2, / is precisely the Gelfand transform of /. If 

we give Γ the weak topology induced by Α(Γ) (Appendix A10), 

the basic facts of the Gelfand theory (Appendix D4) show that 

A (Γ) is a separating subalgebra of C0 (/"*). We summarize some of 

the properties of Α(Γ). 

1.2.4. THEOREM, (a) Α(Γ) is a separating self-adjoint sub-

algebra of 00(Γ), so that A (Γ) is dense in 00(Γ), bytheStone-Weier-

strass theorem. 

(b) The Fourier transform of / * g is fg. 

(c) A (Γ) is invariant under translation and under multiplication 

ty {χ> Y)> for anV zeG. 

(d) The Fourier transform, considered as a map of Ll(G) into 

€0(Γ), is norm-decreasing and therefore continuous: ||/!loo= ll/lli· 

(e) For fcL*(G)andy,r, (/ * y)(x) = (x, y)/(y). 
Proof: For feLl(G), define / by 

The Fourier transform of/ is the complex conjugate of/, and (a) 

follows; (b) is implicit in Theorem 1.2.2. If γ0€Γ and g(x) = 

(x, y0)f{z)> then ¿(γ) = / (y — γ0), so that Α(Γ) is translation in-

variant. If g = fx, then 

g(y) = ¡Gf{y - * ) ( - y> y)dy 

= (— *> 7) jGf(y — *)(* — y, y)dy = ( - x, γ)/(γ). 

This proves (c); (d) and (e) are trivial; (e) allows us to interpret 
the Fourier transform as a convolution: 

/(y) = (/*y)(o) {f€lMß),y*r). 

1.2.5. THEOREM. If G is discrete, Γ is compact. If G is compact, 
Γ is discrete. 
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Proof: If G is discrete, then Ll(G) has a unit (Theorem 1.1.7) 
and its maximal ideal space jPis therefore compact (Appendix D4). 

If G is compact and its Haar measure is normalized so that 
m(G) = 1, the orthogonality relations 

(i) Í fey)*-!1 ^ = ° 
W JG 10 i f y # 0 
hold. The case y = 0 is clear. If y ^ 0, then (a?0, y) ^ 1 for some 
x0 € G, and 

j G (*> r ) ¿ * = («β. y) J c (* ~ *o> y ) ¿ * = («o» y) jG (*. y)¿». 

so that (1) is proved. If /(a:) = 1 for all x e G, then / e LX{G) since 
G is compact, and/(0) = l,/(y) = 0, if γ # 0, by (1). Since/is 
continuous, the set consisting of 0 alone is open in Γ, and so Γ is 
discrete. 

1.2.6· The topology of Γ. So far, Γ is a group and a locally 
compact Hausdorff space. We shall now prove that these two 
structures fit together so as to make Γ a LCA group. Our proof 
depends on an alternative description of the topology of Γ: 

THEOREM, (a) (x, γ) is a continuous function on G x Γ. 

(b) Let K and C be compact subsets of G and Γ, respectively, let 

Ur be the set of all complex numbers z with 11 — z\ < r, and put 

N(K, r) = {γ: (χ, γ) € Ur for all x eK), 

N(C, r) = {x: (x, γ) e Ur i or all γ € C}. 

Then N(K, r) and N(C, r) are open subsets of Γ and G, respectively. 
(c) The family of all sets N(K, r) and their translates is a base for 

the topology of Γ. 
(d) Γ is a LCA group. 
Proof: Equation (3) of Section 1.2.2, rewritten in the form 

(i) / M ( * . y ) = / . ( y ) (x*G,y€r) 

implies (a), as soon as it is proved that fx(y) is a continuous func-
tion on G x Γ, for every /cL1(G). 
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Fix z0, γ0, and ε > 0. There are neighborhoods V of x0 and W 

of γ0 such that 

(2) 11/, - fXo\\r < ε and \}φ) - / χ > 0 ) | < ε 

for all xeV, ye W, by Theorem 1.1.5 and the continuity of fx . 
Since ¡/.(y) - 4 ( y ) | ^ ||/. - fH\\lt it follows that |/.(y) - / X e (y 0 ) | 
< 2ε if x € F and yeK^, and (a) is proved. 

Choose a compact set if in G, choose r > 0, and fix y0 c iV(if, r). 

To every x0 e K there correspond neighborhoods F of x0 and W of 
γ0 such that (a:, y) c Í7r, if a; e V and γ eW; this follows from (a). 
Since /£ is compact, finitely many of these sets V cover K, and if 
W* is the intersection of the corresponding sets W, then 
W* C Ν(Κ, r). Since W* is a neighborhood of y0,2V(1£, r) is open. 

The same proof applies to N(C, r). 

To prove (c), assume that V is a neighborhood of γ0. We have to 
show that γ0 + N(K, r) CV for some choice of K and r. Take 
γ0 = 0, without loss of generality. The definition of the Gelfand 
topology on Γ shows that there exist functions flt . . ., fn € LX{G) 

and ε > 0 so that 

(3) h{y'\ft{y)-fi(0)\<e}cv. 

Since Ce(G) is dense in Ll{ß)t we may assume that fl9 . . ., fn 

vanish outside a compact set K in G. If 

(4) r<6/max| | / l . | |1 
i 

and if γ €N(K,r), then 

(5) \}fy) — Λ(0)| ^ ¿ K - * . y) - 1||/<(*)|& ^ΙΙΛΙΙχ < ε. 

Hence iV(X, r) C 7, and (c) follows. 
Given / , γ" € Γ and N(K, r)t the obvious relation 

(6) [/ + N(K, r/2)] - \y" + N(K, r/2)] C / - y" + N{K, r) 

shows, by (b) and (c), that the map ( / , y") - » / - / Ό ί Γ χ Γ 
onto 71 is continuous. This completes the theorem. 
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1.2.7. EXAMPLES. The "classical groups" of Fourier analysis 

are: 

(a) the additive group R of the real numbers, with the natural 

topology of the real line; 

(b) the additive group of the reals modulo 2π, or, equivalently, 

the circle group Γ, the multiplicative group of all complex numbers 

of absolute value 1; 

(c) the additive group Z of the integers. 

The circle group is of particular importance to us, since charac-

ters are nothing but homomorphisms into T. 
Suppose G = R and fix γ e Γ. Write γ(χ) instead óf (z, γ), for 

the moment; there exists δ > 0 such that 

(1) j'oy(t)dt = oL φθ. 

The functional equation 

(2) Y[x + t) = y(*M0 (*.<€*) 

then implies that 

(3) a - y(z) = γ(χ) fcy(t)dt = £y(z + t)dt = ^y{f)éU. 

Since γ is continuous, the last expression is differentiable, and so γ 

has a continuous derivative γ'. Differentiate (2) with respect to t 

and then set t = 0. The result is the differential equation 

(4) / (*) = Ay{z), A = y'(0). 

Since y(0) = 1 and since γ is bounded, (4) implies that 

(5) γ(χ) = e»~ 

for some y € R. The correspondence γ <-► y is an isomorphism be-
tween Γ and R. Thus: The dual group of R is R. 

We still have to check that the natural topology of R is the same 

as the Gelfand topology of the dual group. For r > 0 and n = 
1, 2, 3, . . ., let V{n, r) be the set of all y such that |1 — e*»\ < r if 

|x| ^ n. By Theorem 1.2.6, the sets V(n, r) form a neighborhood 

base at 0 with respect to the Gelfand topology. But y € V(nf r) if 
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and only if \y\ < (2/w) arc sin (r/2). Thus the two topologies 

coincide. 

If G = T, the same computation as above shows that every 

character of T must be of the form (5), but now we also must have 

γ(χ + 2π) = y(x). Hence y must be an integer, and / ' i s identified 

as the discrete group Z (compare Theorem 1.2.5). 

If G = Z and y e Γ, then (1, γ) = eia for some real a, and it 

follows tha t (n, γ) = eina. The correspondence y<->eia is an iso-

morphism between Γ and T, and we conclude that T is the dual 

group of Z (the two topologies coincide, as in the case G = R). 

The Fourier transforms, in these three cases, have the following 

forms: 

G = R: f(y) 

G = T: / (») 

G = Z: / > * ) 

1.3. Fourier-Stieltjes Transforms 

1.3.1. Convolutions of m e a s u r e s . Suppose G is a LCA group, 

and μ, λ are members of M(G) (Appendix E l ) , i.e., bounded regular 

complex valued measures on G. Let μ χ λ be their product meas-

ure on the product space G2 = G x G, and associate with each 

Borel set E in G the set 

(1) Ei2) = {(x,y)€G*:z + yeE}. 

Then 2s(2) is a Borel set in G2 (see the proof of Theorem 1.1.6(d)) 

and we define μ * λ by 

(2) Gu*a)(£) = &ixA) (E ( 1 ) ) . 

The set function μ * λ so defined is called the convolution of μ and A. 

1.3.2. THEOREM, (a) / / μςΜ^) and X€M(G), then 

μ* λ € M(G). 

= Γ f(x)e-»*dx (yeR)f 

J — OO 

71=»—OO 
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(b) Convolution is commutative and associative. 

(C) \\μ * λ|| ^ ||μ|| · ||λ||. 

COROLLARY. M(G) is a commutative Banach algebra with unit, 

if multiplication is defined by convolution. 

Proof: The Jordan decomposition theorem shows that in the 

proof of (a) it is enough to consider non-negative measures only. 

Since μ X λ is a measure on G
2
, it is clear that (μ * λ) (Ε) = 

2 (μ * X)(E%) if E is the union of the disjoint Borel sets E{ (i = 

1, 2, 3, . . .). If £ is a Borel set in G and if e > 0, the regularity of 

μ x λ shows that there is a compact set K C Ei2) such that 

(μΧλ)(Κ)> (μΧλ)(Ε{2))-ε. 

If C is the image of K under the map (x, y) -+ x + y, then C is a 

compact subset of E, K C C(2), and hence 

(μ * X)[C) = [μ X A)(C(2)) ^ 0- X A)(X) > (μ * A)(JB) - ε. 

This establishes one half of the requirement that μ * λ be regular. 

The other half follows by complementation, and (a) is proved. 

(This argument applies to more general situations; see Stromberg 

[1]·) 
Since G is commutative, the condition x + y € E is the same as 

the condition y + x € E, and hence μ * λ = λ * μ. 

The simplest way to prove associativity is to extend the defini-

tion of convolution to the case of n measures μΐ9 . . ., μη e M(G): 

with each Borel set E in G associate the set 

(1) En = {(xlf ...,zn)€&:x1 + ...+xn€E}, 

and put 

(2) ( f t » A » . . . ^ ) ( £ ) = ( f t X A X . . - X /0(£<n>)> 

where the measure on the right is the ordinary product measure 

on the product space Gn. Associativity now follows from Fubini's 

theorem, and (b) is proved. 

Let χΕ be the characteristic function of the Borel set E in G. 
The definition of (μ * λ) (Ε) is equivalent to the equation 
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(3) ¡GZ**fr * λ) = UGZ*i* + ν)αμ{χ)αλ(ν). 

Hence if / is a simple function (a finite linear combination of 

characteristic functions of Borel sets), we have 

(4) ¡¿ά(μ * λ) = ¡Jef{x + ν)άμ(χ)αλΜ, 

and since every bounded Borel function is the uniform limit of a 

sequence of simple functions, (4) holds for every bounded Borel 

function /. (One could use (4) as the definition of μ * λ.) If 

\f{x)\ ^ 1 for all x c G , then \¡Gf(x + ν)άμ(χ)\ ^ ||μ|| for all 

y € G, and hence the right side of (4) does not exceed \\μ\\ · ||A||. 

This proves' part (c) of the theorem. 

As to the Corollary, it only remains to be shown that M(G) has a 

unit. Let <50 be the unit mass concentrated at the point x = 0; 

i.e., δ0(Ε) = 1 if 0 € £ and δ0(Ε) = 0 otherwise. Then μ * δ0 = μ 

for all μ€Μ(Θ), and the proof is complete. 

1.3.3. Fourier-Stieltjes transforms. If μ€Μ(6), the func-

tion μ defined on Γ by 

(1) Ϊ{γ)=\σ(-Χ,γ)άμ(χ) (γ 6 Γ) 

is called the Fourier-Stieltjes transform of μ. The set of all such 

functions μ will be denoted by Β(Γ). \ 

THEOREM, (a) Each μ € Β(Γ) is bounded and uniformly contin-

uous. 

(b) If σ = μ * λ, then σ = μ · λ· Hence the map μ->μ(γ) is, for 

each γ e Γ, a complex homomorphism of M(G). 

(c) Β(Γ) is invariant under translation, under multiplication by 

(xt γ) for any x e G, and under complex conjugation. 

Proof: The definition of μ shows immediately that \μ(γ)\ ^ \\μ\\ 

for all γ € Γ. Given δ > 0, the regularity of \μ\ shows that there is 

a compact set K in G such that \μ\ (Κ') < <5, where K' is the com-

plement of K. For any yXi y2c Γ we have 

\μ(νι) - μ(7χ)\ ̂  Jcli - (*. Yi - y,)l<*H(*) = jK+ / K , 
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If yx — γ2€Ν(Κ, <5), as defined in Theorem 1.2.6, the above inte-
grand is less than ó for a: €K, hence jK does not exceed δ\\μ\\. The 
second integral is less than 2\μ\(Κ') < 2δ. Hence μ is uniformly 
continuous. 

Suppose a = μ * A. Formula (4) in the proof of Theorem 1.3.2 
then implies that 

°W = SG(~ Z* y^d^ * λ ) ^ = !σ!ο(~ x~y> y)d^x)dkiv) 

= J G ( - x. yW{*) jG(- y> v)¿m = P(y)3(y). 

and (b) is proved. 
The proof of (c) is quite similar to that of the analogous part of 

Theorem 1.2.4. If άλ(χ) = (x, γ0)άμ(χ), then λ(γ) = μ(γ — y0). 

If A(£) = ^ ( £ - x), then J(y) = (z, γ)μ(γ). If /ϊ(£) = μ(- Ε), 

then the Fourier-Stieltjes transform of β is the complex conjugate 

of μ. 

1.3.4. IMfi) as a subalgebra of M(G). Every feL1(G) gen-
erates a measure μ^Μ{β), defined by 

(1) μ,(Ε)= jBf(x)dx, 

and which is absolutely continuous with respect to the Haar meas-
ure of G. Conversely, the Radon-Nikodym theorem (Appendix 
E9) shows that every absolutely continuous μ*Μ(β) is μί for 
some / € ¿^(G). Since we identify functions in L1«?) which differ 
only on a set of Haar measure 0, the correspondence between / and 
μ1 is one-to-one, and we may therefore regard LX(G) as a subset of 
M[G). It is easily seen that f(y) = %[y) for all y e Γ and that 
\\f\\x = | l^l | . Hence we may use / in place of μ/ without causing 
confusion. For instance, we may write / * σ if f€L1(G) and 
σ € M(G), instead of μ/ * σ. 

1.3.5. Let Me(G) and Md(G) denote the sets of all continuous 
and discrete members of M(G), respectively (Appendix E6). 

THEOREM, (a) LX(G) and Me(G) are closed ideals in M(G). 

(b) Md(G) is a closed subalgebra of M(G). 
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Proof: If we apply the Fubini theorem to the definition of μ * A, 

we obtain, for any Borel set E in G, 

(1) {μ*λ)(Ε)=\βμ(Ε-ν)άλ(3,). 

If μ is absolutely continuous and m(E) = 0, then m(E — y) = 0 

for all y, hence μ(Ε — y) = 0, and so (μ * λ) (£) = 0 for every 

λ € M (G). This says that μ * λ is absolutely continuous, and hence 

L^G) is an ideal in M(G). Since \\f\\x = ΙΙμ,ΙΙ and since LX(G) is 

complete, ¿^(G) is closed in M(G). If E is countable, μΛ € Me(G), 

and IIJB — jKn|| -► 0, then 

\μ(Ε)\ = |(μ - / / n)(£) | ^ \ μ - μη\(Ε) ^ \\μ - μη\\, 

so that μ(£) = 0 and μ e M C(G). Thus Afc(G) is closed, and part 

(a) is proved. Part (b) follows from the observation tha t the con-

volution of two point-measures is a point-measure. 

1.3.6. A uniqueness theorem. We shall see later tha t μ de-

termines μ, i.e. if μ € M(G) and μ = 0, then μ = 0. At present, 

we can prove this for the inverse transform: 

THEOREM. If μ€Μ(Γ) and if 

¡Γ(χ,γ)άμ(γ) = 0 

for every x e G, then μ = 0. 

Proof: For every feL1(G), 

J ^ O W r ) = friGn*)(- x> y)dxd^r) 
= jGf{z)dxjr(-z,y)dß(y) = 0. 

Since Α(Γ) is dense in ϋ0(Γ) (Theorem 1.2.4), it follows that 

¡Γφάμ = 0 for every φ c C0(r)t and hence μ = 0. 

/.<#. Positive-Definite Functions 

1.4.1. A function <£, defined on G, is said to be positive-definite if 

the inequality 

U) Σ <^(z» - *J ̂  0 
n,m«=l 
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holds for every choice of xlf . . ., xN in G and for every choice of 
complex numbers cl9. . ., cN. 

If φ is positive-definite, the following three relations hold: 

(2) * ( - x) = W): 

(3) \φ(χ)\£φ{0); 

(4) \φ(χ) - φ(ν)\* ^ 2φ(0) Re [φ(0) - φ(χ - y)]. 

We conclude from (3) that ^(0) >̂ 0 and that φ is bounded; (4) 
implies that φ is uniformly continuous if φ is continuous at 0. 

To prove these relations, take N = 2 in (1); xx = 0, x2 = x\ 

cx = 1, c2 = c. This gives 

(5) {1 + \ο\*}φ(0) + οφ(χ) + δφ(- χ) ^ 0. 

Taking c = 1, we see that φ(χ) + φ(— x) is real; c = i shows that 
ί(φ(χ) — φ(— χ)) is real. Hence (2) holds. 

If c is chosen so that οφ(χ) = — \φ{χ)\, (5) impb'es (3). To prove 
(4), take N = 3 in (1); xx = 0, a;2 = a?, s3 = y; cx = 1, λ real, 

= λ\φ(ζ)-φ<],)\ 
2 φ{*)-φ{ν) ' 

and c3 = — c2. Then (1) simplifies to 

(6) φ(0) (1 + W) + 2λ\φ(χ) - φ(ν)\ - 2λ* Re φ(χ - y) ^ 0. 

The discriminant of the quadratic polynomial (6) in λ can therefore 
not be positive, and this gives (4). 

1.4.2. Examples of positive-definite functions, (a) Suppose 
f € L2(G) and φ = / */. Then φ is positive-definite and continuous 
on G. 

The convolution of any two functions in L2(G) is continuous 
(Theorem 1.1.6(d)) and 

Σ°η^φ{Χη - * J = Σ
 CnCm [¿(*η ~ *m ~ V) / ( - 2/) ¿!f 

= Σ cnZ \Gf{*n - v)f(*m - y)dy = J 12 cj{xn - y)|2¿y ^ο. 
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(b) Every character is positive-definite, hence so is every finite 

linear combination of characters if the coefficients are positive. 

More generally, if μ e Μ(Γ), if μ ^ 0, and if 

(1) φ(χ) = ¡r{x, γ)αμ(γ) (zeG), 

then φ is continuous and positive definite. 

Indeed, (1) shows that 

Jr n,m 

= ί\Σ^(χ„,γ)\*άμ(γ)>0, 
Jr n 

so that φ is positive-definite. Since the sets N(C, r) of Theorem 
1.2.6 are open in G, our proof of the continuity of μ (Theorem 1.3.3) 
shows equally well that φ is continuous if φ is defined by (1). 

1.4.3· The previous example (1.4.2(b)) establishes the trivial 
half of the following important characterization of positive-def-
inite functions: 

BOCHNER'S THEOREM. A continuous function φ onG is positive-

definite if and only if there is a non-negative measure μ€ Μ(Γ) such 

that 

(1) Φ{*)=ΙΓ{χ.γ)αμ(Υ) (x*G). 

For G = Z> this is due to Herglotz [1]; for G = Ä, to Bochner 
[1]; for the general case, to Weil [1]. Bochner was the first to rec-
ognize the key role which this result plays in harmonic analysis. 
By 1.3.6, the above representation (1) is unique. 

Proof: Suppose φ is continuous and positive-definite. By 1.4.1 (3) 
we may assume, without loss of generality, that ^(0) = 1. 

If / € CC(G) and has support K, then f{x)f{yW(x — y) is uniform-
ly continuous on K x K, and K can be partitioned into disjoint 
sets El9 . . ., En such that the sum 

<2) Σ f{*iWM{*i - x,)m[Et)m{Et) (x<, Et) 
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differs from the integral 

^ JJe/(*)7(y)#(*-*)<**<& 

by as little as we please. Since φ is positive-definite, (2) is always 

non-negative, and hence so is (3). Since Ce(G) is dense in L
1
(G), it 

follows that (3) is non-negative for every f€&{G). 
Define a functional Τφ by 

(4) Τφ(/) = fGf(z)4>(x)dx (/*L»(G)) 

and put 

(5) U.g] = T4{f*i) (f,geV(G)). 

We recall that g(x) = g(— x), so that 

(6) U, g] = JJ^/WÉfoW* - V)dx dy. 

Hence [/, g] is linear in /, [g, f] is the complex conjugate of [/, g], 
and [/, /] ^ 0. These are just the properties of the Hilbert space 
inner product which are needed for the standard proof of the 
Schwarz inequality. In our case, the inequality is 

(?) i[/,g]i2^ \i.m.ii 
Take for g the characteristic function of a symmetric neighbor-

hood V of 0, divided by m(V). By (6), 

[Λ ?] - Ttf) = f f{x) -}- ί [φ(χ -y)- φ(χ)]άν ix 
JG nt(V)jv 

and 

b.rf-1 = -¿T,f f mx-y)-l]**dy. 
m\y )*JyJy 

Since φ is uniformly continuous, these expressions can be made 

arbitrarily small by taking V small enough, and then (7) yields the 

inequality 

(8) |7V0)|« =£[/ . /] = T4<f * / ) (/«IMG))· 
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Put A = / * / and hn = A»-1 * A (w = 2, 3, 4, . . .). Since 
I M L = 1, we have | |T, | | = 1, and if we apply (8) with A, A2, h\ . . . 
in place of /, we obtain 

ir,(/)i» ^ r,(*) ̂  {Γ,(Α«)}* ^ ^ {Γ,(Α**)}2~Λ <g ι ι*ηιρ . 

As w -> oo, the last expression converges to the spectral radius of 
A, i.e. to UAH«,. (See Appendix D 6 and Theorem 1.2.2.) Hence 

(9) \T+(f)\2 ^ WML = II/IIL or \τφ(/)\ <: u / iu (/cL*(G)). 

This means that Γ^ may be regarded as a bounded linear func-
tional on Α(Γ), with respect to the supremum norm. (We have 
not yet proved that fx = / 2 implies fx = /2, but (9) shows that 
^ = / 2 implies Γ^(/χ) = Τφ(ί2), and this is sufficient.) We can 
extend Τφ to a bounded linear functional on C0(JT), preserving its 
norm, and the Riesz representation theorem then implies that 
there is a μ€Μ(Γ), with \\μ\\ ^ 1, such that 

(10) T,(f) = fj(- γ)άμ(γ) = \Qf{x)ix jp (*, y^(y) . 

Comparison of (10) and (4) shows that (1) holds for almost all 
xeG, hence for all x, since both sides of (1) are continuous. 
Finally, taking x = 0 in (1), we have 

1 = Φ(0) = ¡Γαμ(γ) = μ(Γ) ^ \\μ\\ = 1; 

hence μ(Γ) = ||μ||, and this implies that /¿ ^ 0. 

/•J. TAe Inversion Theorem 

1.5.1. We let J5(G) be the set of all functions f on G which are 
representable in the form 

(1) ηχ)=[Γ{ζ,γ)άμ(γ) (*«G). 

Bochner's theorem implies, in combination with the Jordan de-
composition theorem, that B(G) is exactly the set of all finite linear 
combinations of continuous positive-definite functions on G. 
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THEOREM, (a) / / / c L^G) n 5(G), then / e £
ι
(Γ). 

(b) If the Haar measure of G is fixed, the Haar measure of Γ 
can be so normalized that the inversion formula 

(2) t{*)=lrfo){*.vW (*«G) 

is valid for every f eL1(G) n B(G). 

Proof: Let us write B1
 in place of L

2
(G) n £(G), and if μ is 

associated with / as in (1) above, let us write μ = μ1. (This notation 

has nothing to do with our earlier use of the symbol μ1 in Section 

1.3.4.) If / € B1
 and h e ^(G), we then have 

(3) (A * /) (0) = JeA(- *)/(*)&; = JrA(y)¿^(y), 

and if g is also in B1, (3) impHes that 

frWfr=((h*g)*f)(0) = ((*./) *i-)(0) = f r % · 

Since ^(T1) is dense in C0(r), it follows that 

(4) Εάμ,=ίαμ,. (f,g€&). 

We shall now define a positive linear functional T on 0€(Γ). 
Suppose K is the support of some ψ € CC{T). To every y0 e K there 

corresponds a function ueCc(G) with w(y0) # 0, since CC(G) is 

dense in /^(G). The Fourier transform of u * w is positive at y0, 

and is nowhere negative. Since K is compact, there is a finite num-

ber of such functions, say w2,.. ., wn such that the function 

g = ux * % + . . . + un * wn has £ > 0 on X. Since g € Ce(G), 
1.4.2(a) shows that g c B1. Put 

(5) Τψ = ΙΓ(Ψϋ)άμ,. 

Note that Ty is well defined: if g were replaced by another 

function / in Bl
 whose Fourier transform has no zero on K, the 

value of Tip would not be changed, since (4) implies that 

<e)
 / / > · = / / > ' · 
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It is clear that T is linear. The function g in (5) is positive-def-
inite, hence μ9 ^ 0, and it follows that Τψ ^ 0 if ψ ¡^ 0. There 
exists xp and μ1 such that j ψάμ, Φ 0, and if g is as in (5), we have 

(7) T(vf) = Jr (W7¿)¿//, = ¡Γγάμ, Φ 0. 

Thus Γ φ 0. 
Fix y € Ce(r) and y0 e J1. Construct g as above, so that g > 0 on 

if and also on i£ + γ0. Setting f(x) = (— x, y0)g(x), we have 

fir) = ¿(y + yo) an<* M £ ) = /**(£ - y0)·
 If %(y) = v>(y - y0). 

then 

r ^ ° = L ^ ~ yo)ls(y)¥Mg(y) = J r My)lf(y)]fyf(y) = 2>. 

Thus Γ is translation-invariant, and it follows that 

(8) zv = jrw(y)dy (ycCe(r)), 

where dy denotes a Haar measure on Γ. 

If now / € B1 and ψ e 06{Γ), (7) and (8) show that 

(9) ¡ρψαμ, = Tixpf) = ¿Way, 

and since (9) holds for every y>eCc(jT), we conclude that 
(10) }άγ = άμ, (/efi1). 

Since μί is a finite measure, it follows tha t /* &(Γ), and substi-
tution of (10) into (1) gives the inversion formula (2). 

This completes the proof. 

1.5.2. Consequences of the inversion theorem. Let V be a 
neighborhood of 0 in G, choose a compact neighborhood W of 0 
such that W — W C V, let / be the characteristic function of W, 
divided by m(W)^, and put g = / */. Then g is continuous, posi-
tive-definite (by 1.4.2(a)), and 0 outside W — W. The inversion 
theorem therefore applies to g. Hence g = |/|2 ^ 0, 

(i) ¡ré(y)*y = *(0) = i. 
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and it follows that there is a compact set C in Γ such that 

(2) Scé(y)dr>* 
If X€N(C, 1/3) (in the notation of Theorem 1.2.6), we write 

(3) g(*) = (jc+lc.)é{y){*,r)dr> 

for γ € C, |1 — (x, γ)\ < 1/3, hence Re (x, γ) > 2/3, and the in-
tegral over C is at least 2/3 ¡cg > 4/9. Since |JC,| < 1/3, we see 
that g(z) > 1/9 if Z€N(C, 1/3), and our conclusion is: iV(C, 1/3) 
CV. 

Since the sets N(C, r) are open in G (Theorem 1.2.6(b)), we now 
have the following analogue of 1.2.6(c): 

The family of all sets N(C, r) and their translates is a base for the 
topology of G. 

If x0 € G, x0 Φ 0, we can choose V in the preceding paragraph so 
that x04V, and we conclude that (χ0,γ) φ 1 for some γ € Γ. 

Hence Γ separates points on G: If χλ Φ x2, then [xx — x2, γ) φ 1 
for some y, and so (xlt γ) Φ (χ2, γ). 

Any function of the form 

n 

f(x) = ΣαΛχ>7ι) (X*G) 

is called a trigonometric polynomial on G. The set of all trigono-
metric polynomials on G is an algebra over the complex field, with 
respect to pointwise multiplication, and is closed under complex 
conjugation. Since Γ separates points on G, the Stone-Weierstrass 
theorem yields the following result: 

/ / G is compact, the trigonometric polynomials on G form a dense 
subalgebra of C(G). 

It follows that the trigonometric polynomials are also dense in 
LV(G), 1 ^ p < oo, if G is compact (see Appendix E8). 

1.5.3. Normalization of Haar measure. If the Haar measure 
of G is given, the inversion theorem singles out a specific Haar 
measure of Γ, adjusted so that the inversion formula holds. In 
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Section 1.1.3 we introduced standard normalizations for the Haar 
measures of compact and discrete groups. Since Γ is compact 
[discrete] if G is discrete [compact] (Theorem 1.2.5) the question 
arises whether these normalizations are "correct," i.e., whether 
the inversion formula holds for them. 

To prove that this is so, it suffices to consider just one function 
(not identically 0) and its Fourier transform. 

If G is compact and m(G) = 1, take f(x) = 1. Then (see 1.2.5) 
/(0) = 1 and /(y) = 0 if γ Φ 0. If mr is the Haar measure of Γ, 

adjusted in accordance with the inversion theorem, then 

(1) l= / (0) = Jr/bO¿y = »r({0}). 

and so tnr assigns measure 1 to each point of Γ. 

If G is discrete and each point has measure 1, take /(0) = 1, 
f(x) = 0 if x φ 0. Then f(y) = 1, and 

(2) m[r)=jrfo)dy = f(0) = l 

if the inversion theorem holds. 
To consider a non-trivial case, take G = R (see 1.2.7) so that 

Γ = J?, and let cudx, ßdt be Haar measures on G and Γ; here dx 

and dt denote ordinary Lebesgue measure on the real line. Since 
¿-I'1 > 0, the easily verified formula 

(3) ΤΤ-2-Γ e~mgixtßdt 

shows that (1 + x2)-1 is positive-definite, and the uniqueness of 
the inverse transform, combined with the inversion theorem, 
shows that 

oo ¿—ixt 

dx. (4) *-W = 2<x£ f -
V ^ T o o 1 + & 

With t = 0, (4) becomes 

f°° dx 
(5) 1 = 2a/? — — · = 2π*β, 

J-oo
 l

 "Γ
 x 
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and this is the normalization condition which a and ß must satisfy. 
Two of the possible choices are frequently used: a = 1/2π, β = 1 

or a = β = (2η)"1/2. 

From now on, it will allways be tacitly assumed that the Haar 

measures of G and Γ are so adjusted that the inversion theorem holds, 

1.6. The Plancherel Theorem 

1.6.1. THEOREM. The Fourier transform restricted to (LtnL^fi), 

is an isometry (with respect to the L2-norms) onto a dense linear sub-

space of L2(T). Hence it may be extended, in a unique manner, to an 

isometry of L2(G) onto L2(T). 

Proof: If / € (L1 n L2) (G) and g = / * / , then g € L^G), g is con-

tinuous and positive definite, \g\ = |/ |2 , and the inversion theorem 

gives 

¡G\f(x)\2dx = jQf{z)f(- x)dx = g(0) = ¡rg(y)dy = J r l / (y) |2¿y, 

or¡|/|i2==||/||2. 
Let Φ be the set of all Λ Λ ( Γ ) with / e (L1 nL2)(G). Since 

(L1 n L2) (G) is translation invariant, Φ is invariant under multi-

plication by (x, y), for any xeG. Thus if ψ € L2(T) and $Γφφάγ 

= 0 for all ψ € Φ, then also 

J rMMy) (*. y)<*y = ° (Φ*Φ, x*G). 

Since ^y € ̂ (Γ), the uniqueness theorem 1.3.6 implies that ^ = 0 

almost everywhere, for every φ e Φ. But (L1 n L2) (G) is invariant 

under multiplication by (x, y), for any γ € Γ, and so Φ is translation 

invariant. Hence to every γ0 there corresponds a φ € Φ which is 

different from 0 in a neighborhood of y0. It follows that ψ = 0 

almost everywhere. Thus 0 is the only element of L2(T) which is 

orthogonal to Φ, and hence Φ is dense in L2(T) (see Appendix C12). 

1.6.2. The above extension of the Fourier transform to L2(G) 

is sometimes referred to as the Plancherel transform; the symbol 

/ will be used in this context as well. An important part of the 

theorem is the assertion that each function in L2(T) is the Plan-
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cherel transform of some / € L2(G). For compact G this is a special 
case of the Riesz-Fischer theorem about orthogonal systems of 
functions (Zygmund [1], vol. I, p. 127). 

If / and g are in L2(G), the identity 

4/g = 1/ + g|2 - 1/ - g\2 + %\f + ig? - i\f - ig\\ 

combined with the isometric character of the Plancherel transform, 
yields the Parseval formula 

¡ßf(x)W)d* = ¡JivWW 
1.6.3. THEOREM. Α(Γ) consists precisely of the convolutions 

Fx * F2, with Fx and F2 in L2(T). 

Proof: Suppose f, g e L2(G). Replacing g by g, the Parseval 

formula assumes the form 

(1) jGf(x)g(x)dx = ¡J(y)¿(- y)dy, 

and if we replace g(x) by (-— z, y0)g{z) in (1), we obtain 

(2) \j(x)g{x)(- *. Yo)d* = jjMéivo - v)iy = (/*!)(ye)· 

On the one hand, every AejL1(G) is a product h = /g, with 
/, g € L2(G), and (2) shows that h = / * ¿, with/, g e ϋ

2
(Γ), by the 

Plancherel theorem. On the other hand, we can start with 

/ ,g€Ι
2
(Γ) , and see from (2) that f*g€A(Γ). 

1.6.4. THEOREM. / / E is a non-empty open set in Γ, there exists 
f€A(r)t f φ 0, such that /(y) = 0 outside E. 

Proof: Let i£ be a compact subset of E, with m(K) > 0, let V be 

a compact neighborhood of 0 such that K + V C E, and set 

/ = g * h, where g and h are the characteristic functions of K 
and V, respectively. Then f(y) = 0 outside K + V, f e A (Γ) by 

Theorem 1.6.3, and ¡Γ/(γ)άγ = m(K)m(V) > 0, so that / is not 

identically 0. 

1.7. The Pontryagin Duality Theorem 

1.7.1. If G is a LCA group, we have seen (Theorem 1.2.6) that 
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Λ. 

its dual Γ is also a LCA group. Hence Γ has a dual group, say Γ, 

and everything we have proved so far for the ordered pair (G, Γ) 

holds equally well for the pair (Γ, Γ). The value of a character 

y € Γ at the point y c .Γ will be written (y, y). (This notation is 

temporary, and will be abandoned as soon as we prove that 

T = G . ) 

By Theorem 1.2.6(a) every x e G may be regarded as a continu-
A 

ous character on Γ, and thus there is a natural map a of G into Γ, 

defined by 

(1) (* ,y )=(y ,a (a ; ) ) (* c G, yejT). 

1.7,2. THEOREM. TAe αόον^ ma^ a ¿s an isomorphism and a 

homeomorphism of G onto Γ. 
Λ. 

Thus jTmay be identified with G, and a more informal statement 

of the result would be: 

Every LCA group is the dual group of its dual group. 

This is the Pontryagin duality theorem. 

Proof: For x,y € G and γ € Γ, we have 

(y. * ( * + if)) = (* + y. y) = (*. y)öf· y) 

= (r> *(*))(?. «(y)) = (y. *(*) + a(y))· 

Hence a(x + y) = a(x) + a(y), and a is a homomorphism. Since 
Γ separates points on G (Section 1.5.2), a is one-to-one, and so a 

is an ismorphism of G into Γ. 

The rest of the proof may be broken into three steps: >\ 
(a) a is a homeomorphism of G into Γ. 

/\ 
(b) a(G) is closed in Γ. 
(c) oc(G) is dense in Γ. 
Choose a compact set C in JT, choose r > 0, and put 

F = {a: € G: |1 — (a:, y)| < r for all γ c C}, 

(
X)

 Ŵ  = {y e Γ: |1 - (y, ̂ ) | < r for all y € C}. 

By 1.5.2 and 1.2.6(c), these sets V form a neignborhood base at 0 

in G, and the sets W form a neighborhood base at 0 in Γ. The 
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definition of a shows that 

(2) a(K) = ffna(G), 

It follows that botn a and its inverse are continuous at 0, and since 

a is an isomorphism, the same result holds, by translation, at any 

other point of G or of a(G). 

This proves step (a), and so oc(G) is locally compact, in the 

relative topology which a(G) has as a subset ot Γ. Suppose y0 is in 

the closure of a(G), and let U be a neighborhood of 7q_whose closure 

U is compact. Since a(G) is locally compact, a(G) Π U is compact,* 

and hence closed in Γ. But y0 is in the closure of oc(G) n U, and it 

follows that γ0 e a(G). Thus a(G) is closed, and step (b) is proved. 
A A 

If a(G) is not dense in Γ, there is a function F c A (Γ) which is 0 

at every point of a(G) but is not identically 0 (see Theorem 1.6.4). 

For some φ€Σ1(Γ)ί we have 

(3) ir(y)=J>(y)(-y,y)¿y (γ*Η 

Since F(*(z)) = 0 for all x e G, it follows that 

(4) | / ( y ) ( - ^ y ) ¿ y = / r<^(}')(-}' .«(*))á7 = o (*«G.) 

and so ^ = 0, by the uniqueness theorem 1.3.6. Hence F = 0, by 
(3), and this contradiction proves step (c) and completes the proof. 

1.7.3. S o m e consequences of the duality theorem. The 
symmetry between G and Γ which is now established shows that 

every theorem proved for the ordered pair (G, Γ) also holds for 

(Γ, G), and this enables us to complete some of the results which 

were previously established in provisional form only. 

(a) Every compact abelian group is the dual of a discrete abelian 

group, and every discrete abelian group is the dual of a compact abelian 

group. This follows from Theorem 1.2.5. 

(b) / / μ € M(G) and μ (γ) = 0 for all γ € Γ, then μ = 0. This is 

the dual of Theorem 1.3.6. 

(c) M(G) and Ll{G) are semi-simple Banach algebras. (See Ap-

pendix D5). Since the map μ —> u (γ) i:· a complex homomorphism 

* This statement is corrected on page 285. 
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of M(G), for each y € Γ, the semi-simplicity of M(G) follows from 

the uniqueness theorem (b). The same uniqueness theorem evi-

dently holds for LMG), and so LX(G) is semi-simple. 

(d) / / G is not discrete, then L1(G) has no unit. Hence £a(G) = 

M(G) if and only if G is discrete. 

For if G is not discrete, then Γis not compact, by (a), and since 

A (Γ) C Ο0(Γ), A (Γ) contains no non-zero constants, hence has no 

unit. Since A (Γ) is isomorphic. as an algebra, to Ll{G)t the proof 

is complete. 

(e) / / μ€Μ(&) and μ eLl(r), there exists feL1(G) such that 

άμ(χ) = f(x)dx, and 

(1) f(x)=jr¿(?)(x,YW (xeG). 

By hypothesis, μ € Ll(r) n Β(Γ); hence if / i s defined by (1), the 

inversion theorem (applied to the pair (Γ, G) instead of (G, Γ)), 

shows that f€L1(G) and 

(2) μ{γ)=\βΙ{χ){-χ,γ)άχ (γ e Γ). 

Since μ(γ) = J c (— x, γ)άμ(χ), the uniqueness theorem now im-

plies that άμ = fdx, and the proof is complete. 

1.8. The Bohr Compactification 

1.8.1. Suppose -Tis the dual of the LCA group G, Γά is the group 

Γ with the discrete topology, and G is the dual of ΓΛ. Then G is 

a compact abelian group which we call the Bohr compactification 

of G (Anzai and Kakutani [1]). Let β be the map of G into G 

defined by 

(1) (χ,γ) = (γ,β(χ)) ( x c C y e T ) . 

1.8.2. THEOREM, β is a continuous isomorphism of G onto a dense 

subgroup ß(G) of G. 
This theorem allows us to regard G as a dense subgroup of G, so 

that G is indeed a compactification of G. Note, however, that 
ß(G) is not a locally compact subset of G and that ß is not a 
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homeomorphism, unless G is compact, in which case G = G and 

r=rd. 
Proof: Since Γ separates points on G, ß is one-to-one, and it is 

easy to verify, as in the beginning of the proof of the Pontryagin 
duality theorem, that ß is an isomorphism. 

Let W be a neighborhood of 0 in G. Since a subset of ΓΛ is com-

pact if and only if it is finite, Theorem 1.2.6 shows that there exist 

7i> · · ·> Ύη € Γ a n (
i
 r > 0, such that W contains the set 

{z€Ö:\l - (yi9x)\ <r\ i = 1, . . ., n} 

which is a neighborhood of 0 in G. Let 

V = {z€G:\l- (ζ,γ{)\<τ; i = 1 , . . . ,«} . 

Then V is a neighborhood of 0 in G, and z € V implies β(ζ) € W. 
Thus β is continuous at 0, and hence at all points of G, by transla-

tion. 

Finally, let H be the closure in G of ß{G). If H φ G, then GfH 
is a non-trivial compact group, and hence there is a character φ on 

GjH which is not identically 1. The map z -> φ(ζ + H) is then 

a continuous character on G, not identically 1, which is 1 if z € H. 
Consequently there exists y0 e Γ, γ0 Φ 0, such that (z, γ0) = 

(yo» ßix)) = 1 f°r a^ x € C. This last equation implies that y0 = 0, 
and this contradiction completes the proof. 

1.8.3. We may interpret the theorem in the following way: G 
and Γ are given, G is the group of all continuous characters on Γ, 
G is the group of all characters on Γ, and the fact that G (or ß{G)) is 
dense in G leads to an approximation theorem (Hewitt and 
Zuckerman [1]): 

THEOREM. Given γΐ9 . . ., γη € Γ, given ε > 0, and given any 
character φ on Γ, there is a continuous character ψ on Γ such that 

(1) I v W - W K e (¿=l,...,n). 

Proof: φ € G, and the set of all ψ e G satisfying (1) is open in Q, 
hence intersects ß(G). 
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1.8.4. A function / on a LCA group G is almost periodic if and 
only if it is a uniform limit of trigonometric polynomials on G. 

(This is not the usual definition, but is equivalent to it). The al-
most periodic functions on G are precisely those which have con-
tinuous extensions to G; in other words, they are the restrictions 
to G of the continuous functions on G, and so G may also be ob-
tained as the maximal ideal space of the Banach algebra whose 
members are the almost periodic functions on G (Loomis [1]). 
These relations between almost periodicity and G are the reason for 
associating Bohr's name with G. We shall not use these relations 
and omit their proof. 

1.9. A Characterization of Β{Γ) 

1.9.1. We recall that B (Γ) is the set of all functions μ on Γ which 
are Fourier-Stieltjes transforms of measures μ€Μ{&), We norm 
Β(Γ) by defining | | ¿ | | = |M|. 

We already know one characterization of Β(Γ): φ € Β(Γ) if and 
only if φ is a finite linear combination of continuous positive-defi-
nite functions. It seems difficult to apply this, however, whereas 
the following criterion will be very useful to us. It was proved by 
Bochner [2] on the real line; an integral analogue is due to Schoen-
berg [1]; for the general case, see Eberlein [1]. 

THEOREM. Each of the following two statements about a function <f>, 

defined on Γ, implies the other: 

(a) φ€Β{Γ) and \\φ\\ ^Α. 

(b) φ is continuous, and 

(i) l i ^ M l ^ l l / I L 

for every trigonometric polynomial f on G, of the form 

(2) Ηχ)=ΣΦ,γ(). 

Proof: If (a) holds, then φ = μ, \\μ\\\^,]Α, and 

(3) 2 cj(yt) = lc<jG ( - *. VtWi*) = J e / (- »)αμ(χ). 
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Hence (a) implies (b). 
To prove the converse, we pass to the Bohr compactification 

G of G. In the notation of Section 1.8, the formula 

extends each trigonometric polynomial / on G to a trigonometric 
polynomial on G, and since G is dense in Ö, the norm WfW^ is not 
altered by this extension. The linear functional T defined on the 
space of all trigonometric polynomials / of the form (4) by 

(5) Γ/ = 2>**(Λ) 

thus satisfies the inequality 

(6) \Tf\ ^ A\\f\U 

thus T can be extended to a bounded linear functional on C(G), of 

norm not exceeding A, and the Riesz representation theorem im-

plies that there is a measure μ*Μ{&) such that \\μ\\ ^Α and 

(?) l*t<Hy*) = jGn-*W(*) 

for all / of the form (4). Taking f{x) = (γ, x), for some γ e Γ, we 

obtain 

(8) φ(γ)=ί0(-γ,χ)αμ{χ) (γ c Γ). 

To complete the proof, we have to show that μ is concentrated on 

G (more precisely, on ß(G), in the notation of 1.8). 
It follows from the Radon-Nikodym theorem (Appendix E9) 

that there is a Borel function g on G, ot absolute value 1, such that 
gdμ = ά\μ\, and since C(G) is dense in &(\μ\) (Appendix E8), 

there is a sequence of trigonometric polynomials /n on G such that 

(9) lim L \fn - ¿|4»| = 0. 
n-*oo J 

By (8), the transforms 

(10) φ.{γ) = j , . ( - y , Χ)ίη{χ)άμ(χ) (γ, Γ) 
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are finite linear combinations of translates of φ and hence are 

continuous on Γ (not merely on Γα\). By (9), {<£n} converges uni-

formly to 

(11) Φ(γ) - ¡e ( - y, χ)ά\μ\ (x) (γ*Γ), 

and Φ is continuous on Γ. The representation (11) shows that Φ 
is positive-definite, and so, by Bochner's theorem, Φ is the Fourier-

Stieltjes transform of a measure a on the dual group G of Γ. The 

uniqueness theorem for Fourier-Stieltjes transforms now implies 

that σ = \μ\, hence |μ| is concentrated on Gt and so is μ. 

1.9.2. THEOREM.7/<¿n € Β{Γ) and \\φη\\ ^ A forn = 1, 2, 3 , . . . , 

if <f>eC(r) and if 

(1) . φ(γ)=Κιηφη(γ) (γ e Γ), 
n-»oo 

then φ € Β(Γ) and \\φ\\ ^ A. 
This is a corollary of Theorem 1.9.1. 



CHAPTER 2 

The Structure of Locally Compact Abelian Groups 

This chapter contains those structure theorems which will be 

useful later. The proofs make strong use of the duality theorem. 

For results which go beyond what is presented here, the books by 

Montgomery and Zippin [1], Pontryagin [1], and Weil [1] may be 

consulted. Some material on local identities is also included. 

Theorems 2.6.1 to 2.6.6 use a device introduced by Helson [1] 

and Reiter [1]. 

2.1. The Duality between Subgroups and Quotient Groups 

2.1.1. Suppose H is a closed subgroup of the LCA group G, and 

A is the set of ally e Γ (the dual group of G) such that (x, y) = 1 

for all x c H. We call A the annihilator of H. 

For any fixed x e H, the continuity of (x, y) shows that the set 

of all y with {x, y) = 1 is closed, so that A is an intersection of 

closed sets. Since A is evidently a group, we conclude that A is a 

closed subgroup of Γ. 

2.1.2. THEOREM. With the above notation A and Γ\Α are (iso-

morphically homeomorphic to) the dual groups of G/H and H, 

respectively. 

Proof: Let h be the natural homomorphism of G onto G/H 

(Appendix B2). The equation 

(1) (*. y) = (*(*). *) (*cG) 

defines a one-to-one correspondence between the elements y € A 

and the continuous characters φ on GjH, and if y¿ corresponds to 
φί (i = 1,2), then yx + y2 corresponds to φχ + φ2, since 

(*. Ύι + Yi) = (*. ViK*. Y%) = (*(*), &)(*(*). Φ%) = (*(*). 1 + *·)· 
Hence (1) defines an isomorphism r between A and the dual 
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group of G/H. To every compact set Cx in G/H there corresponds a 

compact set C2 in G such that Cx = A(C2), since A is a continuous 

open map. If 

N(Clf r) = {φ: |1 - (h{z), φ)\ < r Íor aU h{x) c CJ 

and 

N(C2, r) = {y: |1 - (a;, y) | < r for all s e C2} n Λ, 

then it is clear that τ maps N(C2, r) onto i V ^ , r), and Theorem 

1.2.6 shows that τ is a homeomorphism. 

The second part of the theorem (that Γ/Λ is the dual group of H) 

follows from the first part by the Pontryagin duality theorem, as 

soon as the following lemma is proved: 

2.1.3. LEMMA. / / A is the annihilator of H, then H is the anni-

hilator of Λ. 

Proof: If x0 e H, the definition of Λ shows that (x0t γ) = 1 for 

all y € A. If x0 4 H, the argument used at the end of the proof of 

Theorem 1.8.2 shows that there exists γ e A such that (x0, γ) Φ 1. 

2.1.4. THEOREM. IfHis a closed subgroup ofG, every continuous 

character on H can be extended to a continuous character on G. 

Proof: If φ is a continuous character on H, then φ € Γ\Λ, in the 

notation used above, and if A is the natural homomorphism of Γ 

onto Γ\Α and h[y) = φ, then (x, γ) = (x, φ) for all a; € H. Hence 

γ is an extension of φ. 

2.2. Direct Sums 

2.2.1. The notions of direct sum and comphte direct sum of LCA 

groups are defined in Appendix B7. The direct sum of Gx and G2 

will be written C t Θ C2l and the direct sum of n copies of G will 

be denoted by G
n
. In particular, Tn

 is the «-dimensional torus, 

Rn
 is n-dimensional euclidean space, and Zn

 is the group of all 

lattice points in Rn, i.e., the group of all points in Rn
 with integral 

coordinates. (Compare Section 1.2.7). 

2.2.2. THEOREM. / / G = Gx Θ G2 Θ . . . Θ Gn and if Γ, is the 

dual group of G{ (1 ^ i ^ n), then Γ = Γτ Θ . . . θ Γη. 
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Proof: It is clearly enough to consider the case n = 2. If 

x = χχ -f χ2 is the unique representation of x cG as a sum of ele-

ments of G1 and G2, if yx e Γΐ9 y2 e Γ2, the pair ylt y2 determines a 

character γ e Γ by the formula 

( i ) (* ,y) = ( * i . y i ) ( ^ . y i ) · 

Since every y e Γ is determined by its action on the subgroups Gx 

and G2, (1) shows that P i s algebraically the direct sum of Γχ and 
Tg, Since J \ and Γ^ are the annihilators of G2 and G2, they are 
closed subgroups of Γ, and since Γ is thus algebraically the direct 
sum of two of its closed subgroups, the topology of Γ is identical 
with the product topology of J \ X Γ2. 

COROLLARY. Rn is its own dual; Tn and Zn are the duals of each 

other. 

2.2.3. THEOREM. If G is the complete direct sum of a family {Ga} 

of compact abelian groups, then Γ is the direct sum of the correspond-

ing dual groups Γα. 

Proof: Each x € G may be thought of as a string 

(1) x= ( . . . , * . , . . . ) , 

the group operating being componentwise addition. If 

(2) 7 = ( . . . , y . . . . . ) . 

with only finitely many γα Φ 0, then y is a continuous character 

on G, defined by 

(3) (*.y) = n(*. .y . ) . 
a 

since each factor in this product is a continuous character on G and 
only finitely many factors are different from 1. 

Conversely, for each index α, Γα is the dual of the subgroup Ga of 
G which consists of all elements of the form (. . ., 0, 0, xa, 0, 0, . . .). 
It follows that every y € Γis of the form (2), and that (x, y) is given 
by (3). It remains to be proved that only finitely many ya can be 
different from 0 for any y. 

Suppose infinitely many ya are different from 0 in (2), and let 
V be a neighborhood of 0 in G. The definition of the product topo-
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logy shows that V restricts only finitely many of the coordinates 
xa. Hence there exists a such that γα Φ 0 and V D Ga. Then 

(V,Y)D(GatY) = (Ga,ya), 

which is a non-trivial subgroup of the circle T. It follows that 
(V, γ) is not contained in {z: |1 — z\ < l} , and since V was chosen 
arbitrarily, the continuity of γ is contradicted. 

2.2.4. Let q be an integer, q ^ 2, and let Γ be the direct sum of 
countably many copies of the cyclic group ZQ of order q. Its dual 
G is compact, is the complete sum of countably many copies of 
ZQ, by Theorem 2.2.3 (since ZQ is its own dual), and is homeo-
morphic to the Cantor set. We shall denote this group G by Dq. 

2.2.5. Another interesting example is the infinite-dimensional 
torus Γω, the complete direct sum of countably many copies of Γ. 
Its dual is the direct sum Z°° of countably many copies of Z. 

Functions on Τω may be regarded as periodic functions in 
countably many variables. If feL1^"), then 

f(nlf n2> . . .) = JTe/(*i, *2> - · ·)
 e x

P {-i Σ n*xk} dx> 

where only finitely many of the integers nk are different from 0, 
and the xk are real numbers modulo 2π. The inversion formula has 
the form 

f[xlt x2, . . .) = 2/(
w

i>
 n2> · · ·)

 e x
P {* Σ "***}· 

Τω is metrizable, and is, in fact, a universal compact metric 
abelian group (we use metric synonymously with metrizable): 

2.2.6. THEOREM. In the class of all compact abelian groups G, the 
following three properties are equivalent: 

(a) G is metric. 

(b) Γ is countable. 
(c) G is a closed subgroup of Τω. 

Proof: If G is metric, then C(G) is separable. (Appendix A16). 

H y i ^ y i toi*?), then 

ΙΙΛ - y%\\l ^ Jel(*. Yi) - (*. Yi)\%dx = 2, 
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and so the presence of uncountably many y would contradict the 

separability of C(G). Hence (a) implies (b). 

Every countable Γ is a quotient group of Z°°, and so the implica-

tion (b) ->· (c) is a consequence of Theorem 2.1.2. 

Finally, the dual group of Τω is countable, the trigonometric 

polynomials on Τω are dense in 0(Τω), and hence C(T") is separ-

able and Τω is metric (Appendix A16). Thus (c) implies (a). 

2.3. Monothetic Groups 

2.3.1. A topological group G is called monothetic if it has a dense 

subgroup which is a homomorphic image of Z. In other words, G 

is to contain a dense set of points xn (n* Z) such that xn + xm = 

Zn+m (n,mcZ). 

2.3.2. THEOREM. Suppose G is a monothetic LCA group. If G is 

not compact, then G = Z. 

Proof: If G is discrete, then either G = Z or G is a finite cyclic 

group, hence is compact. Thus we have to prove that G is compact 

if G is not discrete. 

Let V be an open symmetric neighborhood of 0 in G, with com-

pact closure V. If y € G, then y e xk -f V for some A, where {xn} is 

the dense subset of G described in 2.3.1, and there is a symmetric 

neighborhood W of 0 in G such that y — xk + W CV. Since G is 

not discrete, W contains infinitely many of the points xn , and since 

W is symmetric, x_n € W if zn € W. Hence there exists / < k so 

that xi € W. Putting i — k — j , we have ¿ > 0, and 

y — x{ = y — xk + Xj € y — xk + W C V. 

This proves that 

(i) G = u fo + Π; 

the point is that it suffices to take positive subscripts in (1). 

Since V is compact, (1) shows that 

(2) V C ¡J (*, + V) 
t=-l 
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for some integer N. For y c G, let n = w(y) be the smallest positive 
integer such that y € zn + V. Then xn — y e a?¿ + V, for some í 
(1 ^ ¿ ^ N), by (2), so that y € *n_t. + V. Since i>0,n — i <n, 
and so « — ¿ ̂  0, by our choice of n. Thus * ^ t <* JV for all 
y e G, and so 

(3) G = ¡J (xt + V). 

Being a finite union of compact sets, G is compact, and the proof 
is complete. 

2.3.3. The compact monothetic groups have a simple charac-
terization in terms of their duals (Halmos and Samelson [1], Anzai 
and Kakutani [1]): 

THEOREM. A compact abelian group G is monothetic if and only 
if its dual Γ is a subgroup of Td, the circle group with the discrete 
topology. 

Proof: If G is monothetic, the continuous characters of G are 

evidently determined by fheir values on the dense homomorphic 

image of Z in G. Hence Γ is a subgroup of the dual T of Z. Since 

G is compact, Γ must be discrete. 

Conversely, if I
7
 is a subgroup of Td, then G is a quotient group 

of the dual of Td (by Theorem 2.1.2), i.e., of the Bohr compactifica-

tion Z of Z. Since Z is obviously monothetic, so is its continuous 

homomorphic image G. 

2.4. The Principal Structure Theorem 

2.4.1. THEOREM. Every LCA group G has an open subgroup Gx 

which is the direct sum of a compact group H and a euclidean space 
Rn (n ^ 0). 

Note that Gx is also closed (Appendix B5), and that GjGx is 

discrete, since the natural homomorphism of G onto G¡GX maps 
the open set Gx onto the 0 of G¡GX. 

We shall begin with some lemmas which are of independent 
interest. 
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2.4.2. LEMMA. / / G is generated by a compact neighborhood V of 0, 

then G contains a closed subgroup [isomorphic to) Zn, for some n ^ 0, 

such that G\Zn is compact, and such that V n Zn = {0}. 

Proof: Without loss of generality, assume V is symmetric. Put-

ting Vx = 7, Vn+1 = Vn + V, we have G = U K (n ^ 1). Since 

V2 is compact, there are points xlt . . ., xv c G such that V2C 
U (zt + V) (1 ^ i ^ p). Let H be the group generated by 

xx, . . ., xv. Assuming that VnCV + H (which is trivial forn = 1 

and true for n = 2, by our choice of xlt . . ., xp), we have 

7 n + 1 C 7 + F + i / = F2 + # C F + tf + # = F + # ; 

by induction, VnCV + H for all n ^ 1, and so G = F + H. 

Let i/ t be the closure in G of the group Hi generated by x{ 

(1 ^i ^p). If each H{ is compact, then H is compact, hence 

G = V + H is compact, and the lemma is true with w = 0. If G 
is not compact, it follows that one of the monothetic LCA groups 

H{ is isomorphic to Z (Theorem 2.3.2). In this case Hi = Hit 

and we conclude: 

If G = V + H, where H is a finitely generated group, and if G is 
not compact, then H contains a closed infinite cyclic subgroup of G. 

Since H is finitely generated, there is a largest integer n such that 

H contains a closed subgroup of G, say H', which is isomorphic to 

Ζ
Λ
. Since H' n V is a finite set, we may also assume (replacing H' 

by one of its subgroups of finite index, if necessary) that H' nV = 

{0}. Let φ be the natural homomorphism of G onto G' = GjH'. 
Then G' = <f>(V) + Φ(Η), our choice of n shows that <f>{H) con-

tains no closed infinite cyclic subgroup of G\ and the preceding 

italicized statement, applied to G' instead of G, implies that G' is 

compact. 

2.4.3. LEMMA. Suppose E is a compact open set in G. 

(a) There is a symmetric neighborhood W of 0 in G such that 
E+W = E. 

(b) ¿7 0 € E, then E contains a compact open subgroup of G. 
(c) E is a finite union of cosets of open subgroups of G. 
Proof: Since E is open, to every x c E is associated a symmetric 

neighborhood Vx of 0 such that x + Vx + Vx C E. Since E is 
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compact, there are points xlt . . ., xn e E such that E = (J {Xi+Vx ) 
(1 ^ ι^ n). PutW = f) VX{. If x € E and w € W, then x e ^ + Γ ^ 

for some z, and so 

x + W€Xi + Vmt + WCx{ + VXi + VX{ C £. 

This proves (a). 

To prove (b), choose W as in (a) and let H be the group generat-

ed by W. Then H C E,H is open, hence H is closed, and since E is 

compact, i/ is compact. Finally, (b) shows that E is a union of 

cosets of open subgroups of G, and since E is compact, (c) is proved. 

2.4.4. COROLLARY. / / G is totally disconnected, then every neigh-
borhood of 0 contains a compact open subgroup of G. 

This follows from 2.4.3(b), since the compact open sets form a 

base for the topology of G (Appendix A4). 

2.4.5. LEMMA. Suppose G is connected, locally isomorphic to Rk, 

for some k ^ 0, and G contains no infinite compact subgroup. Then 

G is RK 

Proof: To say that G is locally isomorphic to Rk
 means that there 

is a spherical neighborhood Q of 0 in Rk, a neighborhood V of 0 

in G, and a homeomorphism φ of Q onto V such that <f>(x + y) = 

φ(χ) + <f>(y) whenever x, y, and x + y are in Q. 

For each x € Rk, x\n € Q for all sufficiently large positive integers 

n. Define φ(χ) = ηφ(χ/η). Since 

ηφ(χ/η) = nnuf>(x¡nm) = nuf>(x¡m) 

provided x\n and x\m are in Q, φ is well defined; φ is clearly a con-

tinuous homomorphism of Rk
 into G; and ^ is one-to-one, for 

otherwise G would contain a compact subgroup isomorphic to Γ. 

Finally, <¿ is an open map, hence (̂J?*) is an open subgroup of G. 
Since G is connected, G = <£(#*), and the proof is complete. 

2.4.6. Proof of theorem 2.4.1. Let G0 be the component of 0 
in G, i.e., G0 is the largest connected subset of G which contains 0. 
Then G0 is closed, and if x e G0, then a: — G0 is connected and inter-
sects G0, so that x — G0 C G0. Thus G0 is a closed subgroup of G; 
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the quotient group G/G0 is LCA and totally disconnected and so 
has a compact open subgroup Kt by 2.4.4. Let φ be the natural 
homomorphism of G onto G¡G0 and put Gx = φ~ι(Κ). Since K 

is open, Gx is an open subgroup of G. 

Since K is compact, K has no open subgroup of infinite index 
(otherwise K would be the union of infinitely many disjoint open 
sets), and since every open subgroup of Gx contains G0, it follows 
that Gx has no open subgroup of infinite index. 

There is a compact neighborhood V in Gx such that φ(Υ) = K 

(compare Appendix A7). The group H generated by V is an 
open subgroup of Gx which intersects every coset of G0 in Gx, 

Since these cosets are connected, Är = G1. Thus Lemma 2.4.2 
implies that Gx contains a closed subgroup Zn, for some n ^ 0, 
such that G1¡Zn is compact. 

If 7\ is the dual of Glt Theorems 2.1.2 and 2.2.2 now show that 
rjD = Γη, where D is the discrete dual of GJZ". Thus Γτ is 
locally isomorphic to Rn and hence Γ0, the component of 0 in Γΐ9 

is open in J \ . Since G1 has no open subgroup of infinite index, 
Theorem 2.1.2 implies that i \ has no infinite compact subgroup. 
Thus Lemma 2.4.5 applies to Γ0 and shows that Γ0 = Rn. 

So far, then, we see that J \ has Rn as an open subgroup. If we 
can show that Γλ is the direct sum of Rn and a discrete group A, 

then Gx is the direct sum of Rn and the compact dual of A (by 
Theorem 2.2.2), and the proof is complete. 

Let A be a subgroup of i \ , maximal with respect to the property: 
A n Rn = {0}. Since A has at most one point in each coset of Rn, 
A is discrete. Also, the sum Rn + A is direct. Suppose, to reach a 
contradiction, that Rn + A ^ Γτ. Then there exists γ € Γΐ9 

γ 4 Rn + A, and the maximality of A shows that there exists 
γ0 € A such that γ0 + ky = x, for some integer k Φ 0 and some 
x € Rn, x φ 0. If y = x\k and γχ = γ — y, then kyx € A, γχ 4 Rn+Af 

and hence there exists γ2 € A such that γ2 + myx = z for some in-
teger m Φ 0 and some z <■ Rn, z Φ 0. This last relation may be 
rewritten in the form 

ky2 + kmy1 = kz Φ 0. 
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Since kyx and γ2 are in A, ky2 + kmyx € Λ; but kz € Rn, which 
contradicts the fact that Rn + Λ was a direct sum. 

Thus Γχ = Rn Θ Λ, and the proof is complete. 

2.4.7. EXAMPLE. AS will be apparent from the proof of Theorem 
2.4.1, several choices may be possible for Gx, and the question arises 
whether Gx can always be chosen so that G is the direct sum of Gx 

and a discrete group. The following example (communicated to 
the author orally by Kaplansky) shows that the answer is nega-
tive. 

Let G be the set of all sequences x = {ξη}, n = 1, 2, 3 , . . . , 
where ξη = 0, 1, 2, 3, only finitely many ξη are 1 or 3 for any zt 

and the group operation is componentwise addition modulo 4. Let 
K be the set of all x c G with 2x = 0 (i.e., ξn = 0 or 2); K is the 
complete direct sum of countably many groups of order 2. Give 
K the corresponding product topology, and declare K to be an 
open subgroup of G. Then G is a LCA group, and since G is totally 
disconnected, Gt must be compact. If Gx were a direct summand of 
G, then G would contain an infinite closed discrete subgroup, but 
this is impossible since every infinite subgroup of G has infinitely 
many elements in K: if x € G, then 2x € K. 

2.5. The Duality between Compact and Discrete Groups 

Since the compact abelian groups are precisely those whose 
duals are discrete (Section 1.7.3), purely algebraic properties of 
abelian groups give information about topological properties of 
compact ones. We begin with some algebraic preliminaries. 

2.5.1. An abelian group D is called divisible if to every xeD 
and to every integer n Φ 0 there corresponds at least one y € D 
such that ny = x. 

THEOREM (Kaplansky [2]). (a) Every abelian group G can be 
embedded in a divisible group D\ if G is countable, D may be chosen 
countable. 

(b) If φ is a homomorphism of a subgroup H of G into a divisible 
group D, then φ can be extended to a homomorphism of G into D. 
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Proof: Every G can be defined by specifying generators and 
relations. Thus G = FjH, where F is the direct sum of a certain 
number of copies of Z, and H is a subgroup of F which corresponds 
to the relations. F can be embedded in a direct sum E of copies 
of the additive group of the rational numbers. Since E is divisible, 
so is EjH, and it is clear that G is a subgroup of E/H. If G is 
countable, then F (hence E) may be chosen countable and (a) 
follows. 

To prove (b), choose x0*G so that xQ4H, and let H1 be the 
group generated by H and x0. If nx0 4 H for n = 1, 2, 3, . . ., let 
φ(χ0) be an arbitrary element of D. In the contrary case, let k be 
the smallest positive integer such that kx0 € H, and choose φ(χ) e D 

so that /ίφ(χ0) = φ{Ι*χ0)', since D is divisible, this choice is possible. 
In either case, extend φ to H' by defining 

φ{χ + nx0) = φ{χ) + ηφ(χ0) (x c H, n = 0, ± 1 , ± 2 , . . .). 

It is easily verified that φ is a homomorphism of H' into D. The 
proof is completed by transfinite induction (or Zorn's lemma), 
exactly as in the standard proof of the Hahn-Banach theorem. 

2.5.2. THEOREM. Every infinite compact abelian group G contains 

an infinite compact metric subgroup. 

Proof: A compact subgroup H of G is metric if and only if its 
dual is countable (Theorem 2.2.6). By Theorem 2.1.2, the result 
to be proved is therefore equivalent to the following algebraic 
proposition: 

Every infinite abelian group Γ can be mapped homomorphicatty 
onto a countably infinite group. 

If Γ is infinite, then Γ contains a countably infinite subgroup Λ 
which may be embedded in a countable divisible group D (Theo-
rem 2.5.1); this embedding is an isomorphism of Λ into D and can 
therefore be extended to a homomorphism φ of Γ into D. Since 
Λ = φ{Λ)€φ{Γ)€Ό, φ(Γ) is countable and infinite, and the 
proof is complete. 

(If the word „abelian" is omitted from the above proposition, 
a false statement results: Schreier and Ulam [1] have shown that 
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the group P of all permutations of a countable set has only two 
normal subgroups, the finite permutations and the even finite 
ones; hence every non-trivial homomorphic image of P has the 
power of the continuum.) 

2.5.3. THEOREM. / / G is compact and not of bounded order, then 

G contains a dense set of elements of infinite order. 

Proof: For n = 1, 2, 3, . . ., let En be the set of all x c G such 
that nx = 0, and assume that one of these sets En contains a non-
empty open set V. If W — V — V, then nx = 0 for all x e W. 

The group H generated by W is compact and open, hence GjH 

is finite. If GjH has q elements, it follows that qx € H and so 
nqx = 0, for every xeG. Hence G is of bounded order. 

This contradiction implies that none of the compact sets En 

has an interior, and the Baire theorem implies that the comple-
ment of U En is dense in G. 

2.5.4. THEOREM. A LCA group G is of bounded order if and only 

if its dual Γ is of bounded order. 

Proof: If nx = 0 for all x c G, then 

[x, ny) = [x, y)n = (nx, y) = (0, γ) = 1 

for all γ € Γ, so that ny = 0. 

2.5.5. We call a LCA group G an /-group if every neighborhood 
of 0 in G contains an element of infinite order. 

THEOREM, (a) Every I-group contains a closed subgroup which 
is a metric I-group. 

(b) If G is not discrete and is not an I-group, then G contains DQ 

as a closed subgroup, for some q > 1. 
Proof: (a) Let G be an /-group. If n > 0 in the structure theo-

rem 2.4.1, then G contains Rn, a metric /-group. If n = 0, then 
the open subgroup Gx of G is a compact /-group, and we may as 
well assume that G is compact. By Theorem 2.5.3, it is enough to 
show that G contains a compact subgroup H which is not of bound-
ed order, and Theorems 2.1.2 and 2.5.4 show that this is equivalent 
to the following algebraic proposition: 
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Every abelian group Γ which is not of bounded order can be mapped 

homomorphically onto a countable group which is not of bounded order. 

To prove this, note that Γ contains a countable group Λ which is 

not of bounded order, and proceed as in the proof of Theorem 2.5.2. 

(b) If G is not an /-group and is not discrete, Theorems 2.4.1 

and 2.5.3 show that G contains an infinite compact subgroup Gx of 

bounded order, whose dual / \ is also of bounded order, and hence 

(Appendix B8) is the direct sum of infinitely many finite cyclic 

groups. Some countable subset ot these has the same order, say q\ 

their direct sum is a direct summand of Γΐ9 hence is a quotient 

group of rit hence is the dual of a compact subgroup of G, iso-

morphic to DQ. 

2.5.6. THEOREM. Suppose G is compact. 

(a) If every element of Γ has finite order, then G is totally discon-

nected. 

(b) / / Γ contains an element of infinite order, then G contains a 
one-parameter subgroup. 

(c) G is connected if and only if Γ contains no element of finite 

order {except y = 0). 

A one-parameter subgroup of G is, by definition, a non-trivial 

subgroup H oiG which is the image of R under a continuous homo-

morphism <f>. For instance, for any real λ, the set of all points 

(eix, eikx) (— oo < x < oo) is a one-parameter subgroup H of the 

torus T2; it λ is rational, H is compact; if λ is irrational, H is dense 

in T
2
, and hence is not locally compact. 

Note that (b) asserts more than just the converse of (a). 

Proof: Let G0 be the component oí 0 in G; G0 is a closed subgroup 
of G, and if G0 consists of more than one point, then G0 has a non-
constant character, which may be extended to a continuous charac-
ter γ on G, by Theorem 2.1.4. Since γ maps G0 onto a connected 

subgroup oí 7\ we see that γ maps G0 onto T. 
If γ had order nt then (x, γ)η

 = (x, ηγ) = (x, 0) = 1 for each 

x € G, so that γ would map G onto a finite subgroup of T. This 

contradiction shows that γ has infinite order, and proves (a). 

If Γ contains an element of infinite order, then Γ contains Z as a 
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subgroup. The identity map of Z into Rd (the real numbers with 
the discrete topology) is an isomorphism which, by Theorem 2.5.1, 
can be extended to a homomorphism of Γinto Rd. Theorem 2.1.2 
now shows that G contains a compact subgroup H whose dual is a 
non-trivial subgroup of Rd> and that H is therefore the continuous 
image of the Bohr compactification R of R, under a homomorphism 
φ. Since R is a dense one-parameter subgroup of R, <f>(R) is a 
dense one-parameter subgroup of H, and (b) is proved. 

To prove (c), assume first that G is not connected. By Lemma 
2.4.3, G then contains a proper open subgroup H. The quotient 
G¡H is finite and its dual is a subgroup of Γ, by Theorem 2.1.2. 
Hence Γ contains a non-trivial finite subgroup. 

Conversely, if y € Γ has finite order and γ Φ 0, then γ maps G 

onto a non-trivial finite subgroup of Γ, and since γ is continuous, 
G cannot be connected. 

2.5.7. EXAMPLES. TO illustrate the preceding theorem, let G 

be the Bohr compactification of the discrete group G. The know-
ledge that G is discrete tells us nothing about the topology of G\ 

the algebraic structure of G is decisive: 

(i) If G is the discrete additive group of the rational numbers, 
then G has no subgroup of finite index, hence Γ has no element of 
finite order, hence G is connected and contains one-parameter sub-
groups. 

(ii) If G = Z, then Γ = Γ; Γ has elements of finite and infinite 
orders; hence Z is neither connected nor totally disconnected and 
contains one-parameter subgroups. 

(iii) If G is a discrete group of bounded order, then Γ is of 
bounded order, hence G is totally disconnected. 

2.6. Local Units in Α(Γ) 

In this section we gather some technical results which should be 
regarded as tools for our later work. 

2.6.1. THEOREM. Suppose C is a compact subset of Γ,Υ C Γ, and 
0 < m(V) < oo, where m is the Haar measure of Γ. Then there exists 
k € L1^) such that 
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(a) k(y) = 1 on C, k{y) = 0 outside C + V -V, andO<L k(y) 

^ 1 for all y e Γ. 

(b) 11*11, ^{m(C-V)lm(V)}i. 
Proof: Let g and A be the functions in L2(G) whose Plancherel 

transforms are the characteristic functions of V and C — V, re-

spectively, and define 

Then (see Section 1.6.3) ¿ = mfyy1^ * Ä), or 

(2) k(y) = ^Γ) Svh{y ~ Y'w {y e n 

If y e C , then % - γ') = 1 for all y' c F, hence ¿(y) = 1. If 

y ^ C + V — F . t h e n Ä ( y - y ' ) = 0 for ally' c F. SinceO ^ h^ 1, 
(a) follows. 

By the Plancherel theorem, ||g||2 = m{V)*, ||A||, = m(C - V)*, 
and the Schwarz inequality, applied to (1), shows that 
11*11, ^ m(V)-i\\g\\2\\h\\2- This implies (b). 

2.6.2. THEOREM. / / W is an open set in Γ which contains a com-

pact set C, then there exists f € ^(G) such thatf = 1 on C andf = 0 

outside W. 

Proof: Choose an eighborhood Voi 0 in .Tsuch that C+V—VCW, 

and apply Theorem 2.6.1. 

2.6.3. THEOREM. Suppose feL1^), γ«€Γ, f(y0) = 0, W is a 

neighborhood of y0, and ε > 0. There exists ÄcL1(G), such that 
(a) \\k\W < 2, 
(b) k = 1 ¿«Λ neighborhood of y0 and k = 0 outside W, 

(c) | | / * Ä | | 1 < e . 
Proof: Without loss of generality, we assume y0 = 0. Put 

(1) á = - . 
V 4(1 + U/H,) 
There exists a compact set E in G such that the integral of |/| over 
the complement E' of E is less than <5. We can find C and V, as 
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in Theorem 2.6.1, subject to these further conditions: (i) 0 is an 
interior point of C, (ii) m(C - V) < 2m{V)f (üi) C + V - V C W, 
and (iv) |1 — (x, γ)\ < <5 whenever X€ E and y c C + V — V. 
Define k as in the proof of Theorem 2.6.1. Then (a) and (b) hold, 

and since /(0) = 0, we have 

(2) (/ * k) (x) = ¡Gf(y){k(x -y)- k{x)}dy {x * G), 

so that 

(3) ||/ * k\\x ^ Jc | /(y)| · HA, - k^dy = fE+jE.-

The integral over E' is less than 

(4) 2 H J ^ 2<5{m(C - V)lm{V))i < 4<S, 

by (ii), and the integral over E does not exceed 

(5) ll/lli· sup| |*y-¿II, . 
V€E 

Hence the inequality 

(6) l l * , - * l l i < « (ycE) 

will complete the proof. 

In the notation of Theorem 2.6.1, 

(7) m(V)(k, -k) = g(h, -h) + (gv- g)hy. 

For y € E (iv) implies, by the Plancherel theorem, that 

(8) J>„ - g? = ¡v |1 - (if. γ)\*αγ < dhn(V), 

so that 

(9) lift - gll, < d{m{V)}i {yeE). 

Simüarly, ||AV - Ä||2 < 6{m(C - V)}*, and since ||g||, = m(7)* 
and ||*||a = m(C - V)i, we obtain 

(10) m(V)\\kv - k\\x < 26{m(V)m(C - V)f [y e E). 

By (ii), (10) implies (6), and the proof is complete. 
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2.6.4. THEOREM. Suppose f€Ll(G), γ^εΓ, /(y0) = 0, and 

£ > 0. Then there exists v e LX(G) such that v = 0 in a neighborhood 

of γ0> IWli < 3, and ||/ - / * v\\± < e. 

Proof: By Theorem 1.1.8, there exists U€L1(G) such that 

II«!!! = 1 and \\f — / * «||, < ε\2. Since (Ju){y0) = 0, Theorem 

2.6.3 applies to / * u, and so there exists k c LX(G) such that k = 1 

in a neighborhood of y0, \\k\\x < 2, and ||/ * u * Aid < ε\2. Put 

v = w — u * ¿. Then v = 0 when £ = 1, and 

11/ - / * »id a l l / - / · «Ik + 11/ * « * ¿Hi < *. 

2.6.5. THEOREM. Suppose f e Lx(G)f γ0€ T,W is a neighborhood 
of y0, and ε > 0. TÂ re #m¿s A € ^(G) swcA ¿Aa¿ UAId < ε, Ä = 0 
outside W, and 

/ (y)-A(y)=/(y e) 

¿n sow£ neighborhood of γ0. 

Proof: Choose g e ̂ (G) such that g(y) = /(y0)
 m

 some neighbor-

hood of γ0. Theorem 2.6.3 applies to / — g, and so there exists 

k € L}(G) such that k = 1 in a neighborhood of y0, £ = 0 outside 

TV, and \\{f - g) * k\\x < e. Put A = (/ - g) * A. T h e n ^ = 

(/ — g)£, and so there is a neighborhood of γ0 in which A = / — g 

2.6.6. THEOREM. Suppose f€L1(G) and ε > 0. Γ Α ^ &m¿s 
τ; € Ll(G) such that v has compact support and \\f — / * v\\x < ε. 

Proof: Let X be the set of all g € L2(G) such that g has compact 

support. By the Plancherel theorem, X is dense in L2(G). If 

v = gh, with g, he X, then í = g * ht hence ύ has compact support. 

Since X is dense in L2(G), the set of all such v is dense in ^(G). 

By 1.1.8, there exists u € L
l(G) such that ||/ — / * «Id < e/2, 

and we can choose v e L1 (G) such that ¿has compact support and 
Wu-v^K 6/(211/11,). Then 

||/ - ; * »Ik £ ||/ - / * «||x + ||/ * (u - t,)||x < ε. 

2.6.7. Theorems 2.6.1 to 2.6.6 did not depend on any structure 

theorems, but our next result does: 



52 FOURIER ANALYSIS ON GROUPS 

THEOREM. If C is a compact subset of Γ and if ε > 0, there exists 
a Borel set V in Γ, with compact closure, stich that 

m{C - V) < (1 + e)m(V). 

Proof: Let W be a compact neighborhood of 0 in Γ which con-

tains C — C in its interior, and let J\ be the group generated by 

W. Since J\ is open in Γ, we may assume, without loss of general-

ity, that 7\ = Γ. 

By Lemma 2.4.2, Γ has a closed subgroup Zk
 which has only 0 

in common with W, such that Γ/Ζ* is a compact group, say H. Let 

φ be the natural homomorphism of Γ onto H. Our choice of W 
and Zk

 shows that there is an open set X1 in Γ, with compact closure 

which contains C and on which φ is a homeomorphism. Put 

Y, = ¿(XJ. 
Since H is compact, finitely many translates of Yx, say Yl9..., Yr 

will cover # , and there are open sets X€ in Γ, with compact 

closure, such that φ maps Jf̂  homeomorphically onto Yt. If Y< 

is the part of Y{ not in Yx u . . . u Y<_i, if X\ = -XT< n ^(Y^) , 

and if £ = |J X'{ (1 ^ ¿ <¡ n), then £ is a Borel set in Γ, ^ is 

one-to-one on £, and ̂ (£) = H. In other words, each x e Γ has a 

unique representation x = e + n, with ¿ * E and w € Zk\ we may 
visualize Γ

1
 as being "paved" by the translates E + n of E. 

Note also that C CXt = X[C E and that E is compact. 

If n = (ΛΧ, . . ., Wjb) € Z*, set ||Λ|| = max, |n<|. Since E is com-

pact and Zk
 is discrete, Z* n (£ + J? — E) is a finite set, and so 

there is an integer s such that | \n\ | ^ s for all n e Zk
 n {E + E — E). 

For JV = 1, 2, 3, . . ., let VN = \J (E + n) (||*|| ^ JV). If 
Ä € PJV + £ the n * = w + ei + ¿2 = w' + e'> since ^+^""^ € Zk 

we have ||n' — n\\ ^ s; hence ||ηΊ| á¡ ||w|| + s ^ N + s, and so 
VN + ECVN+S. 

Since m(Fy) =. (22V + l)km(E)t we have 

™(C + VN) ^m(E + VN) ^m(VN+s) ^1 2s \k 

m(VN) - m(*V) - m(F^) l ^ 2 2 ν + ΐ Γ 

and the last expression tends to 1 as N -> oo. 
The theorem follows if we take V = — F^, with iV large enough. 



THE STRUCTURE OF LOCALLY COMPACT ABELIAN GROUPS 53 

REMARK. The conclusion can be strengthened: There is an open 

set V with compact closure for which the desired inequality holds. 

We shall not need this stronger result. 

2.6.8. THEOREM. Suppose C is a compact set in Γ, and ε > 0. 

Then there exists k cL
1
(G) such thai k = 1 on C, k has compact 

support, and \\k\\1<\ + ε. 

Proof: Combine Theorems 2.6.1 and 2.6.7. 

2.7. Fourier Transforms on Subgroups and on Quotient 

Groups 

Throughout this section, H will be a closed subgroup of G, and 

A will be the annihilator of H, as in 2.1.1. 

2.7.1. THEOREM. A measure μ€Μ(Θ) is concentrated on H if 

and only if μ is constant on the cosets of A. 

Proof: If μ is concentrated on H and y0 e A, then 

(1) (-χ,γ0)άμ{χ) = άμ(χ), 

since (x, γ0) = 1 on if, and so 

(2) μ(γ + y0) = kr) {Ύ»*Λ, Υ*Γ). 

Conversely, if (2) holds, then (1) holds by the uniqueness theo-

rem for Fourier-Stieltjes transforms, so that (x, γ0) = 1 almost 

everywhere with respect to \μ\, for all γ0 € A. This implies that the 

support of μ lies in H. 

2.7.2. THEOREM. The functions belonging to B(A) are presicely 
the restrictions to A of the functions belonging to B(T). 

Proof: Let φ be the natural homomorphism of G onto G/H. If 
μ €M(G), the map 

is a bounded linear functional on C0(GIH), and hence there is a 

unique measure a€M{G¡H), with ||σ|| ̂  ||μ||, such that 

(2) ¡¿(φ(χ))άμ(χ) = ¡G/Hfda (f e C0(G¡H)). 
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We write σ = πμ if (2) holds. In this case (2) albo holds for all 

bounded Borel functions on G/H, and in particular (2) holds for all 

continuous characters on G/H, i.e., for all γ*Λ. (Recall that A 
plays a double role: it is the dual group of GjH, and it is a subgroup 

of Γ.) Hence μ (γ) = σ(γ) if σ = πμ and if γ e Λ, and the proof of 

the theorem will be complete as soon as we show that π maps 

M(G) onto M(G/H). 

If V is a compact neighborhood of 0 in G/H, then, as in the proof 

of Lemma 2.4.2, the group generated by V is V + D, where D is a 

discrete subgroup of GjH. Hence GjH is covered by a collection 

{Va} of translates of V, such that every compact subset of G/H is 

covered by a finite subcollection of {Va}. To each Va there corre-

sponds a compact set EaCG such that φ(Εα) = Va. Put X = 

U £«. Then X is locally compact, φ(Χ) = G¡H, and φ^{Κ) η X 
is compact for every compact subset K of G/H. 

Let S be the subspace of all g e C0(X) which are constant on the 

intersections of X with the cosets oiH;S is isometrically isomorph-

ic to C0(G/H). If a*M(GIH) and f(x) = ξ(φ'1{χ))Β the map 

g-^ifdv is
 a

 bounded linear functional on S; extending it to 

C0(X), we find that there is a measure μ € M(X), with \\μ\\ g¡ ||σ||, 

such that (2) holds. 

This completes the proof. 

2.7.3. Suppose mG, mH, and mG¡H are the Haar measures of the 
indicated groups, and let ξ = ξ (x) be the coset of H (the element 

of G/H) which contains z, where xeG. For any f€CJG), the 

integral 

(1) ¡Hf{x + y)dmH{y) 

is not changed if x is replaced by x + A, where h c H. Hence (1) is 
a function of f, which belongs to CC(G/H). The Haar measures 
can be adjusted so that 

(2) j G fdmG = SG/H
dmG/H(£)jHf(* + y)dmH (y) 

for every / c CC(G), since the right side of (2) is a positive transla-
tion invariant linear functional on CC(G). 
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Suppose that the measures are so adjusted, and denote the inte-

gral (1) by -F(f). The map T defined by F = Tf is a bounded 

linear transformation of LX(G) into Ufi/H); it is easy to see that 

T is actually onto, and that T is nothing but the restriction of the 

map π of Theorem 2.7.2 to V(G). Hence f{y) =/(γ) if γ € Λ. 

Summarizing, we obtain the following result: 

2.7.4. THEOREM. The functions belonging to Α(Λ) are precisely 
the restrictions to A of the functions belonging to A (Γ). For f e L1 (G), 
f vanishes on A if and only if 

\HÍ{^ + y)dmH{y)^0 

for almost all x eG. 

2.7.5. THEOREM (Calderón [2]). / / geL1(G)t η>0, and g 

vanishes on Af then there exists μ c M(G), concentrated on H, such 

that \\μ\\ < 2, \\g * μ\\ < η, and μ = 1 on an open set containing Λ. 

Proof: By Theorem 1.1.8, there exists U€Ce(G), such that 

11/ —glli < Φ if / = £**· Since 

(1) jH\f(z + s)-f(x' + s)\dmH(s) 

^ \G\g{y)\d™>G{y)\H\u{x + s -y) -u(x' + s - y)|¿w^(s), 

the fact that u c Ce(G) shows that to each δ > 0 there corresponds 

a neighborhood Vs of 0 in G such that the left side of (1) is less 

than δ ii x — x' eV6. Put 

(2) *(e)=lH\f{x + s)\dmH(s), 

where ξ is the coset of H which contains x. like L1 (H), \ \ k\ \x < 2r 

and 

(3) ßM = ¡H | jHf(x + s)k(t - s)dmH(s)\dmH(t), 

then ßk <̂  2a, and if x' — x c Vs, we have 

l^(í)-^(r) |^{H /H l / (x+5)-/(x'+s) | |¿( /-s) |¿mA(s)¿mH(0 

^ 2 \ \f(x+s)-f(x'+s)\dtnH(s) < 26. 
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The proof of Theorem 2.6.3 can be modified so that it applies to 

a finite set of functions / , with /,(y0) = 0- Considering f(x + s), 

for fixed x e G, as a function <£($) on H, Theorem 2.7.4. shows that 

^(0) = 0, since}(y) = 0 for all y € Λ. Hence if δ > 0 and xx,..., x„ 

are points of G, we can find k € ! * ( # ) , so that | |Α||Χ < 2, k = 1 in 

a neighborhood of 0 in Γ\Λ, and 

(5) &(f,) < «5 (1 :£ / £ «)· 

Suppose 0 < ε < η/6. Since a c i 1 (G/ í í r ) , there is a compact 
set C in G/jy such that the integral of a over the complement of C 
is less than ε. Choose δ > 0 so that 35 · tnG/H(C) + 2ε < ??/3. 

There are finitely many ξί in C and there is a function ¿ of the 
above type, so that to each ξ in C there corresponds a f, for which 

IAk(f) - Äk(£i)l < 2á> as in (4), and so that βΜ(ξ,) < Í for all j . 
Then βι(ξ) < 3á on C, and our choice of ε and ó shows that 

(6) Je/e&(f)*»e/*(f) < fl/3· 

But the integral (6) is just ||/ * μ\\ΐ9 where άμ = k dmH. Finally, 

||f «μΙΙ, ^ | | / - ¿ U M + \\f * μ\\τ < 2η/Ζ + , / 3 = 7;. 

2.7·6. THEOREM. Suppose f is a function on the circle T, 

0 < δ < π, and f(eie) = 0 */ π ~ δ ^ 0 ^ π + ó. I d g 6¿ <fe/w¿¿ 
on ¿A¿ Zw£ ¿>y 

¿/ |χ| > π. 

TA¿w / € ̂ 4 (Γ) ¿/ aw¿ only if ge A (R). Moreover, there are positive 
numbers clf c2 (depending on δ) such that 

(2) cMl^tifU^CiUgU-

the norms being those of A(T) and A(R), respectively. 

Proof: Let A be a function on R with two continuous derivatives, 

such that h(x) = 1 on [— π + δ, π — δ] and h(x) = 0 if \x\ ^ n. 

The Fourier transform of A" is — y2h(y); it follows that 

(3) \Hy)\<T^—2 (-co<y<co) 
i + y 

(i) iM-{
/ f

? 
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for some constant a. The inversion theorem implies that h e A (R). 
If f€Á{T) and F{x) = f{eix) for all real x, then F e B{R), 

\\F\\ = 11/11, g = hF, and hence geA(R) and \\g\\ ^ \\h\\ - ||/||. 
If g € 4̂ (2?), then g = gh, and so 

(4) /(») = — j g{x)e~in*dx = — Í g{x)h(x)e-in* dx. 

By (3), the inversion formula holds for h; substitution into (4) 
yields 

(5) /(») = ¡~J(y)Hn - y)<*y (» c Z). 

By (3), there is a constant δ such that ^^ \h(n — y)\ < b ίοτ 

all y € R. Hence 

(6) ii/ii = S i/(»)i ^ * Γ i¿(y)i<& = « · 



CHAPTER 3 

Idempotent Measures 

A measure μ e M(G) is said to be idempotent if μ * μ =: μ. The 
set of all idempotents in M(G) will be denoted by J(G). The prob-
lem considered in this chapter is the determination of all members 
of J(G). 

Apart from its intrinsic interest, the solution of this problem 
turns out to be the crucial link in the description of the homo-
morphisms between group algebras (Chapter 4); it yields all 
bounded linear projections in X1(G) which commute with transla-
tion (Section 3.8); and it determines the class of all simple functions 
on Γ (i.e., those whose range is a finite set) which belong to Β(Γ). 

3.1. Outline of the Main Result 

3.1.1. If μ € J(G), then μ2 = μ, so that μ(γ) = 1 or 0 for all 
γ € Γ. Define 

S(M) = {y€r:¿(y) = l} fa*J{G)). 

The problem of finding all ^€ / (G) is obviously equivalent to the 
problem of finding all subsets of Γ whose characteristic function 

belongs to Β(Γ). 

3.1.2. Suppose Λ is an open subgroup of Γ and H is its annihila-
tor. Since Γ/Λ is discrete, H is compact, and if mH is the Haar 
measure of H, normalized so that mH(H) = 1, then mH may be 
regarded as a measure on G. The orthogonality relations 1.2.5 
show that rhH{y) = 1 if y € Λ and mH(y) = 0 otherwise. Hence 
Λ = S(mH). 

If E = A + γ0, it follows that E = S(//), where άμ(χ) = 
(z, Yo)dmH(x). Thus every open coset in JT is S(ji) for some 
μ € J(G). (We call a subset E of Γ a coset in Γ if E is a coset of 
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some subgroup of Γ; it is frequently of no interest to name the 

subgroup.) 

If μ and λ are in J(G), then so are the measures μ * λ and 

μνλ = μ + λ — μ*λ, as well as δ0 — μ, where δ0 is the point 

measure of norm 1 concentrated at the point 0 in G. Since 

S(j¿ * λ) = Sfa) n 5(A), Ξ(μ v *) = Sfo) u S(k), 

and S(ó0 — μ) is the complement of S(//), the family Ω of all sets 

Sfa) in jTis closed under the formation of finite unions, finite inter-

sections, and complements. In other words, Ω is a ring of sets, and 

the preceding remarks show that Ω contains the coset-ring of Γ; 
the latter is defined as the smallest ring of subsets of Γ which con-

tains all open cosets in Γ. 

The solution of our problem is simply that Ω is equal to the coset 

ring: 

3.1.3. THEOREM. A subset E of Tis Ξ(μ) for some μ e J(G) if and 

only if E belongs to the coset-ring of Γ. 

3.1.4. The result may also be stated without reference to Fourier-

Stieltjes transforms: 

Call μ an elementary idempotent if άμ(ζ) = (x, y0)dmH(x) where 

γ0 € Γ and H is a compact subgroup of G. Then every measure on 

G which can be obtained from the elementary idempotents by 

finitely many applications of the binary operations * and v (see 

Section 3.1.2) and of complementation (ό0 — μ is the ''comple-

ment" of μ) is idempotent; moreover (and this is the non-trivial 

part of the theorem) every μ € J(G) is obtained in this manner. 

3.1.5. If μ € M(G), the support group of μ is defined to be the 

smallest closed subgroup of G on which μ is concentrated. A 

closed subgroup if of a compact group H is called a singular sub-

group of H if H/K is infinite; this is equivalent to the requirement 

that mH(K) = 0. If \μ\ (K) = 0 for every singular subgroup K of 

the support group of μ, then we call μ irreducible. 

The proof of Theorem 3.1.3 proceeds in three major steps: 

(A) / / μ € J(G), then the support group of μ is compact. 



IDEMPOTENT MEASURES 61 

(B) / / μ c J(G), then μ = Λ1 / /1 + · · · +
 anMn> where the ai are 

integers and the μί are irreducible idempotents. 

(C) / / G is compact, if ^ / ( G ) , and if \μ\(Κ) = 0 for every 

singular subgroup K of G, then S(ji) is a finite subset of Γ. 

Once this is done, Theorem 3.1.3 follows easily: 

Suppose G is LCA, μ* J(G), and Hlt. . ., Hn are the support 

groups of the measures μΐ9 . . ., μη which appear in (B). Their an-

nihilators Λτ, . . ., Λη are open subgroups of Γ, since (A) implies 

that the groups H{ are compact. By (C), S(/¿¿) is a finite subset of 
r¡Ait the dual of Hi9 since μί € / ( # , · ) . Regardingμί as an element 

of J(G), Sfai) is thus a finite union of cosets of Ait hence belongs 

to the coset-ring of Γ. It follows that the set of all y € Γ at which 

any finite linear combination J a ^ j y ) assumes a given value 

belongs to the coset-ring of Γ, and this completes the proof, by (B). 

3.1.6. A subset E of the integer group Z is a coset in Z either if E 

consists of a single point or if E is an arithmetic progression, in-

finite in both directions. If S belongs to the coset-ring of Z, if 

A!,..., An are the arithmetic progressions involved in the forma-

tion of S, and if d is the least common multiple of the differences 

dt of the progressions Ai9 then it is clear that S differs from a set 

with period d in at most finitely many places. Thus we obtain the 

following special case of Theorem 3.1.3: 

A sequence {cn} (— oo < n < oo) of zeros and ones is the sequence 

of Fourier-Stieltjes coefficients of some measure on the unit circle if 

and only if {cn} differs from a periodic sequence in at most finitely 

many places. 

This result is due to Helson [4], [7]. The case G = Tn
 of 

Theorem 3.1.3 was proved by Rudin [13]; steps (A) and (B) of 

3.1.5 are also in that paper. P. J. Cohen [2] proved the general 

case of Theorem 3.1.3; in particular, the introduction of "pseudo-

periods," Lemma 3.5.5, and the combinatorial argument of 

Section 3.6 are due to him. 

3.2. Some Trivial Cases 

3.2.1. Since μ is continuous, S{ji) is open and closed, for every 

μ € /(G). Consequently, if Γ is connected, there are only two pos-
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sibilities for Sfa): S(ju) = Γ or S(j¿) is empty. In other words, <50 

and 0 are the only members of J(G). 

3.2.2. Every compact open subset of Γ belongs to the coset ring of 

Γ. This follows from Lemma 2.4.3. 

3.2.3. Suppose μ€ J(G), μ Φ 0 and μ ^ 0. Then μ is positive 

definite and μ(0) = 1. If y and γ' are in S(//), then — y € S(^), 

and the inequality 1.4.1(4) shows tha t 

\μ(? - Υ') - μ(γ)\ ^ 2^(0) Re [¿(0) - μ(- / ) ] = 0. 

Hence γ — y' € S(//), and we conclude tha t S(//) ¿s aw o£¿n swo-
group of Γ. 

3.2.4. If μ€J(G) and /* # 0, then \\μ\\ = 11/̂  * μ\\ ^ ||/*||2, so 

that ||μ|| ^ 1. Suppose ||μ|| = 1. Setting da(x) = (χ,γ)άμ(χ), 

proper choice of γ assures tha t <r(0) = 1. Then 

1 = £(0) = σ ( £ ) < ς | | σ | | = 1; 

hence a(G) = ||σ||, σ ^ 0, and the preceding result implies: / / 

μ € J(G) and \\μ\\ = 1, then S{ji) is an open coset in Γ. 

3.3. Reduction to Compact Groups 

3.3.1. For technical reasons which will become apparent in the 

proof of Theorem 3.4.3, it is convenient to enlarge the class J(G) 

somewhat. We let F(G) be the class of all μ e M(G) such that μ is 

an integer-valued function. Since μ is a bounded function, μ has 

only finitely many distinct values if μ € F(G). 

3.3.2. THEOREM. If μ c F(G), then the support group of μ is 

compact. 

Proof: Let H be the support group of μ. Since μ may be regarded 

as an element of F(H), we may assume tha t G = H\ i.e., that μ is 

not concentrated on any proper closed subgroup of G. By Theorem 

2.7.1 this means that μ is not invariant under any non-zero trans-

lation of Γ. If we define μγ by 

(1) ¿μγ(χ) = (x, γ)αμ(χ) (γ € Γ ) , 
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it follows that μγ Φ μ if γ Φ 0. Since μγ — μ is an integer-valued 

function, we have 

(2) H^ r - /« l l ^ l l iS y - iS lL^ i (y^o). 

There is a compact set C in G, with complement C , such that 

H ( C ) < 1/4. If V is the set of all y such that 

(3) | 1 - ( * .y ) |< (3 | | / i | | ) -
1
 (xcC) . 

then K is open in Γ, and for y € V we have 

(4) II,» - ^H ^ J j l - (χ,γ)\ά\μ\{χ) = J^ +J* ;g I + I < 1. 

Comparison of (2) and (4) shows that the open set V consists of 

0 alone. Hence Γ is discrete, G is compact, and the theorem is 

proved. 

We note that this contains step (A) of Section 3.1.5 as a special 

case. 

3.4. Decomposition into Irreducible Measures 

3.4.1. A h o m o m o r p h i s m of M(G). Let AT be a singular com-

pact subgroup of the compact group G, let {Ha} be the collection 

of all cosets of H in G, let μα be the restriction of μίοΗα> for any 

μ€Μ{β), and define 

ί
1
) π*μ = Σμ«· 

a 

At most countably many terms are different from 0 in this sum, so 

that πΗμ is well defined. Also, Σ ΙΙ/*«ΙΙ ^ IMI· Ή H w e r e n o t
 an-

gular, πΗ would be the identity operator. 

THEOREM. nH is a homomorphism of M(G) into M(G). 

Proof: It is clear that πΗ is a bounded linear map of M(G) into 

M(G). Let RH and NH be the range and null-space, respectively, 

of πΗ. 

If μ and λ are concentrated on Ha and Ηβ, then μ * λ is concen-

trated on Ha + Hßt which is again a coset of H. It follows that 
RH is a subalgebra of M(G). Also, πΗμ = μ if μ e Α#. 
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The null-space NH, on the other hand, is an ideal in M(G). 

For if πΗμ = 0, if σ = μ * A, and if E C Ha, then μ(Ε — x) = 

πΗμ(Ε — x) = 0 for all x e G, so that 

(2) a(E)=j^(E-z)dX(x) = 0, 

and so σα = 0. Consequently πΗσ = 0, and σ *ΝΗ. 

The formula μ = %// + (μ — πΗμ) represents μ as a sum of 

two measures, one in i?H , the other in NH, This representation is 

unique, for if μ = μχ + μ2, with μχ e RHt μ2€ΝΗ, then 

Finally, if μ, XeM (G), then 

μ * λ — (πΗμ) * (π#λ) = μ * (λ — π#^) + (μ — π#μ) * π#λ, 

and this lies in NH> since iV^ is an ideal; since RH is an algebra, 

{πΗμ) * (πΗλ) € RH. The uniqueness just established implies now 

that 

(3) πΗ(μ * λ) = (π#μ) * (πΗΛ), 

and the proof is complete. 

3.4.2. THEOREM. / / H and πΗ are as above, and if μ e F(G), then 

πΗμ € F(G), and πΗμ is concentrated on a singular compact subgroup 

K of G. 

Proof: Define μι = μ, μη
 = μη"1

 * μ, and if P is a polynomial, 

P(0 = I cJn> define Ρ(μ) = 2 <W
n
> where μ° = <50. 

Let alt . . ., αΛ be the distinct values of μ, where μ is our given 

measure in F(G), and put P{t) = 77(¿ - at). Then P(¿(y)) = 0 
for all γ € Γ, and so Ρ(μ) = 0. Since π Α is a homomorphism, 

Ρ(πΗμ) = πΗΡ(μ) = 0, so that the range of the Fourier-Stieltjes 

transform of πΗμ is a subset of the set {alt . . ., an}. Hence 

πΗμ € F{G). 

We now change the topology of G by adjoining to the original 

collection τ of open sets arbitrary unions of sets of the form 

(H + x) n V, where x € G and V €τ. The result is an LCA group 

GHt which differs from G only insofar as H is now a compact open 

subgroup of GH; within H the topology is unchanged. We may 

regard πΗμ as a member of M(GH). Since Ρ(πΗμ) = 0, 
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πΗμ € F(GH), and Theorem 3.3.2 implies that πΗμ is concentrated 
on a compact subgroup K oí GH. Since H is open in GH, K inter-
sects only finitely many cosets of H. Since H is a compact singular 
subgroup of G, it follows that K is also a compact singular sub-
group of G, and the proof is complete. 

3.4.3. THEOREM. Suppose Gis compact and μ € F(G). Then there 
exist integers alt . . .. an and irreducible measures μτ> . . ., μη€ J(G) 
such that 

(1) μ = αχμχ + . . . + αημη. 

Proof: The theorem is trivial if μ = 0. Suppose the theorem is 
true for all G and for all μ e F(G) with ||μ|| ^ p — 1, where p is a 
positive integer. 

Consider a fixed μ€ F(G) with \\μ\\ ^ p; without loss of general-
ity, we may assume that G is the support group of μ. 

If πΗμ = 0 for every singular subgroup H of G, let ax, . . ., an be 
the distinct non-zero values of fi, construct polynomials P , such 
that P,.(0) = P^) = 0 if i Φ j and P^a,·) = 1, and put μί = 
Ρ,.(μ). Then /¿¿(y) = 1 if μ(γ) = α< and β^γ) = 0 otherwise, so 
that μί *J{G), and (1) holds. Since πΗ is a homomorphism, we have 

*W* = ^ηΡΑμ) = P ¿ ( W ) = Pi(0) = 0 ( l g i á » ) 
for every singular subgroup H of G, and this proves that the meas-
ures μί are irreducible. 

If πΗμ Φ 0 for some singular subgroup H of G, then πΗμ is 
concentrated on a compact singular subgroup K of G, by Theorem 
3.4.2. Since G is the support group of μ, it follows that πΗμ Φ μ, 

and so μ1 = μ — π#μ ^ 0. By Theorem 3.4.2, πΗμ * F(G), and 
hence μχ e F(G); since both of these measures are different from 0, 
their norms are at least 1; since they are concentrated on disjoint 
sets, we have 

\\*Βμ\\ + \\μι\\ = \\μ\\£Ρ: 

consequently, \\πΗμ\\ ^ p — 1 and \\μτ\\ ^ p — 1. By our in-
duction hypothesis, both πΗμ and μχ are of the form (1), and so is 
their sum μ. 

This completes the proof. Step (B) of Section 3.1.5 follows. 
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3J>. Five Lemmas 

In this section we shall assume that G is compact and that Γ is 

countable. This latter assumption is merely a matter of con-

venience. It assures that C(G) is separable, so that the weak* 

topology of the unit ball in M(G) is metrizable (Appendix C8), and 

hence every infinite subset of this unit ball contains a convergent 

sequence. We thus avoid the use of directed sets. 

3.5.1. LEMMA. Suppose /¿€M(G) and {γη} is a sequence of 

distinct elements of Γ (n = 1, 2, 3, . . .). Define λη by 

dkn(z) = (x, γη)άμ(χ) (n = 1, 2, 3, . . .). 

If {λη} converges to o € M(G), in the weak* topology of M(G), then a 

is singular. In fact, if μ = μα + μ9 is the Lebesgue decomposition 

of μ with respect to the Haar measure of G, then \σ\ (Ε) 5g \μ8\ (Ε) 

for every Borel set E in G. 

Since {/ln} is a sequence of translates of μ, we shall refer to this 

as the translation lemma (Helson [5] [7]). 

Proof: Since μα is absolutely continuous, μα€Α(Γ), and so 

MaÍYn) -> 0 as w -> oo. Hence 

(1) lim f¿(χ)(χ,γη)αμα(χ) = 0 
n-*oo * 

for every trigonometric polynomial f on G and since every 

f € C(G) is a uniform limit of trigonometric polynomials, (1) holds 

for every / e C(G). 

It follows that a is the weak* limit of the measures defined by 

(z, γη)άμ3(χ). If V is open in G, if / e CfG), H/IU = 1, and / = 0 

outside V, then 

(2) | [fäa\ = Km { f /(*)(*, γη)άμ,{χ)\ ^ \μ,\(V), 
J
 n-»oo

 J 

so that \σ\(Υ) ^ |^β|(ϊ^). This inequality also holds for all Borel 

sets, by the regularity of the measures |σ| and \μ9\, and the lemma 

is proved. 

3.5.2. Suppose μ€ J(G). We call a set PCΓ a set of pseudo-

periods of S(JLI) if to every γ € Ξ(μ) there corresponds a / i ? such 

that γ + γ' €Ξ(μ). 
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LEMMA. / / S(/¿) is infinite and if E is a finite subset of Γ, then 

there exists a finite set P of pseudo-periods of S(jx) which does not 

intersect E. 

Proof: Let aclt a2, a3> . . . be an ordering of the elements of Γ 

which are not in E. If the lemma is false, then for each n > 0 

there exists yn€ S{ji) such that none of the sums yn + <zlf . . ., 

γη + αη lies in Sfa). If only finitely many yn were obtained in this 

way, then for one of them it would be true that yn + a¿ 4 Ξ(μ) 

for i = 1, 2, 3, . . ., and hence S(ju) would be finite. Thus there 

are infinitely many distinct γη, and there is a subsequence {ynJ 

of distinct elements such that the measures Xk defined by 

(1) dkk{x) = ( - x, γηι)άμ(ζ) 

converge to a measure oeM(G) in the weak* topology. 

For 1 ^ / S. nhy ^(α,) = μ(χ, + yn¡) = 0, so that *(«,) = 0 for 
; = 1, 2, 3, . . .. Thus σ has its support in the finite set £ , and 

hence σ is absolutely continuous. By the translation lemma, a is 

singular, and so σ = 0. But 2fc(0) = fi{ynj) = 1, so that d(0) = 1, 

and a Φ 0. This contradiction proves the lemma. 

3.5.3. LEMMA. Suppose /¿€j (G) , and suppose that there are 
finite subgroups Λη of Γ (n = 1, 2, 3, . . .) such that An is a proper 

subgroup of Λη+1 and such that S(JA) contains a coset of each Λη. 

Then \μ\(Η) > 0 for some singular subgroup H of G. 

Proof: There is a sequence {yn} such that γη + Λη C Sfa) and 

such that infinitely many of the yn are distinct. A subsequence 

{yn } of these will be such that the measures Xk, defined as in the 

proof of Lemma 3.5.2, converge to a measure σ in the weak* 

topology. Since AnjeC S(Xk), S(a) contains the infinite group 

Λ = U~ Λη, so that σ * mH = mH, where mH is the Haar measure 

of Ht the annihilator of A. Hence 

1 = mH(H) = (σ * mH){H) = jHa{H - x)dmH{x) 

= ¡Ha(H)dmH(x) = σ(Η). 

By the translation lemma, \μ\(Η) ^ \σ\(Η) ^ <*{H) ^ L Since 

A is infinite its dual GfH is infinite and the lemma is proved. 
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3.5.4. LEMMA. Suppose μ c J(G) and \μ\ (Η) = 0 for every singu-

lar subgroup H of G. Suppose Λ is an infinite cyclic subgroup of Γ, 

generated by an element γ0 € Γ. Then there is an integer N, depending 

on μ and Λ, such that S(/¿) contains no arithmetic progression of the 
form 

7 + ) v Ύ + 2
7ο> · · ·> y + N7o (y * Γ). 

Proof: If the conclusion is false, then there exist infinitely many 

distinct γη€ Γ (n = 1, 2, 3, . . .) such that γη + ¿γ0 € S(j¿) for 
— w ^ ; ^ n. Setting dln(x) = (— x, γη)άμ(χ), a subsequence of 

{λη} converges in the weak* topology to a measure σ e J(G) such 

that S{a) contains the infinite group Λ, and we conclude that 

\μ\ (H) ^ 1, where H is the annihilator of Λ, as in the proof of 

Lemma 3.5.3. Since H is a singular subgroup of G, we have a 

contradiction. 

3.5.5. LEMMA. Suppose P and Q are real numbers such that 

1 < P <Q < P-\ =:. 

Then there exist positive numbers a and b, depending only on P and 

Q, with the following properties: If f, g, h are Bor el functions on G, 

if μ € M(G), and if 

(a) |/(*)| = 1, \g(x)\ ^ 1, \h(x)\ ^ 1 for all x e G, 

(b) jeh*ß = j0fhdß=P, ¡σξ*μ=1.. ¡α&μ = 0, 

(c) ψ = ah 4- aß + bg — bfgt 

then \tp{x)\ ^ 1 for all x e G and j G ψάμ = Q. 

Proof: Put 

_Q_ 9 P
2

- 1 ZQ 

a ~~ 2P * 9 P
2

+ 2 ' "" 9P
2
 + 2' 

Then ίοψάμ = 2aP + b = Q. Setting f(x) = e2ia, we have 

\ψ\ ^ a\l + f\ + b\l - / | = 2a|cos a| + 26|sin a| ^ 2(a2
 + 6

2
)*. 
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But 

VQ 9 P 2 + 1Ί2 Γ10Ρ2 + 1 9P 2 + l l 2 

4(a2 + 62) = — — < — . — < 1. 
* ^ ' IP 9 P 2 + 2J - L 10P2 9P 2 + 2j ~ 

Hence \y>(x)\ S. 1, and the proof is complete. 

3.6. Characterization of Irreducible Idempotents 

3.6.1. We are now ready to complete step (C) of Section 3.1.5: 

THEOREM. If G is compact, if μ€ J(G), and if \μ\{Κ) = 0 for 

every singular subgroup K of G, then S(/¿) is a finite subset of P. 

In other words, there are finitely many distinct characters 

7i> · · ·» Yn € Γ s u c h that 

άμ(χ) = [(«, γΎ) + . . . + (a?, y«)]¿r-

If the theorem is false, there exists a compact group G and an 
irreducible μ e J(G), whose support group is G, such that Ξ(μ) is 

infinite. Then P h a s a countable subgroup A such that S(/¿) n A is 
infinite. Let i i be the annihilator of Λ, let φ be the natural homo-

morphism of G onto G/H, and define <τ(Ρ) = μ(φ~1(Ε)) for every 

Borel set E in G//P Then a<-M{G¡H) and a(y) = μ(>>) if γ eA 

(see Theorem 2.7.2). Hence σ e J(G¡H), S(a) is infinite, and since 
Φ~Χ{Κ) is a singular subgroup of G for every singular subgroup K 

of G/#, σ is irreducible. Hence it is sufficient to prove the theorem 

under the additional assumption that P is countable. 

3.6.2. We now assume that the hypotheses of Theorem 3.6.1 hold, 

that P is countable, and that Sfa) is infinite. 

Under these (contradictory) assymptions we will be able to 

construct, for each non-negative integer /, a finite collection Uj of 

cosets of finite subgroups of P and a finite collection Φ5 of trigono-

metric polynomials φ on G, such that H^H«, ^ 1, with the following 

properties: 

(1) U,CUM and Φ^ΦΜ. 

(2) For every coset KaUjt y+KCSfa) for some y c S ^ ) . 

(3) With every γ € S(ji) there is associated a coset Ki y € £/,, a 

function φ^γ € Φ,, and an integer pjy, 0 ^ piy ^ /, such that 
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(a) y + KJt7CS(j¿); 

(b) ¡ο(-*.Ύ)Φ,,Ύ{χ)*Ι*(χ) = l + Pi,yll°M\l 
(c) There is a chain Ciy of cosets KP,KP+1,.. .,Κ,^,Κ,, 

where p = pyyt K¡ = Kj7, K€ c Ϊ7, {p <̂  ¿ <̂  j) and the subgroup 
of which K{ is a coset is a proper subgroup of the one which has 
Ki+1 as a coset. 

The existence of 17, and Φ5 for all positive integers / leads to an 

easy contradiction. By (3)(b), no pj y exceeds 10||μ||
2
. If q is an 

integer larger than 10||μ||
2
, then (3)(c) implies that there are ar-

bitrarily long chains which contain a certain K*9 e UQ, since Uq is 

finite. Similarly, there exist arbitrarily long chains, as in (3)(c), 

which contain K* and a certain coset K*+1c UQ+1. Continuing, we 

obtain an infinite chain of cosets K* which have translates in 

Sfa), such that the corresponding subgroups of Γ form a strictly 

increasing sequence. By Lemma 3.5.3 this is impossible. 

We now have to construct Uj and Φ,, under the assumptions 

3.6.2. We proceed inductively. UQ contains only the group con-

sisting of 0 alone, Φ0 contains only the function φ = 1. Taking 

ρ0 y = 0 in (3), U0 and Φ0 satisfy the requirements. 

Suppose Όj and Φ5 are constructed. Let a be an integer larger 

than 10||μ||
2
 + 1 times the number of elements of Φ,, and con-

struct pairwise disjoint finite sets Plt . . ., Pa of pseudo-periods of 

S(/¿), with the following additional property: if n Φ w, if y € Pn 

and y" e Pm, then / ' — / does not belong to any of the groups 

whose cosets are members of Uf. This is possible, by Lemma 3.5.2. 

Now fix γ € Sfa). If 1 ^ n ^ a, then γ + yn e Sfr) for some 

yn € Pn. Our choice of a implies that for some nx Φ n2 the same 

φ € Φύ and the same integer p are associated by (3) with the points 
U
 = Y + Υηχ

 an<Í V = Y + Ynt · ThUS 

(4) J ( - χ9 Ι4)φ{χ)άμ{χ) = j ( - x, v)*(*)4<(*) = 1 + j ^ 9 

where φ = φίΗ = φ5ν and p = piu = pjv. 

Put w = yn — γη = u — v. Our choice of {JPn} shows that 

w Φ 0. There are two possibilities: 

(i) y + rw + i£ i#y C S(//) for all integers r; 
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(ii) for some r, y + rw + Kr y is not a subset of Ξ(μ). 

In case (i), Lemma 3.5.4 shows that w must generate a finite 
cyclic subgroup A of Γ. Put Kj+1 y = K, γ + Λ, i>j+lt7 = P, 

Φί+ι,γ(χ) = ("" x> 7n )Φ(Χ)> a n ( i le t C¿+i.y b e the chain C i í r followed 
by if,+i,r. Our choice of {Pw} shows that w is not in the subgroup 
K oí Γ oí which Kjy is a coset, so that K is properly contained in 
K -\- Λ. Hence Cj+1 y has the required properties. 

In case (ii), there exists y0€Kjy and a smallest non-negative 
integer r0 such that 

(δ) y + r0w + y0€ S(j¿) but γ + (r0 + \)w + y04 Sfr); 

since γ + γ0€ ΞΙμ), this follows from Lemma 3.5.4. Put 

i> i> + 1 

(6) ρ=ι+_ί_, ρ=ι+ί_ϋ_. 
v
 ιοΐΗΓ loiHi 

By Í3)(b), P ^ \\μ\\, andso ρ = P + (10IHI)"1 ̂  P + (10P)-*. 
Choose positive numbers a and 6, in accordance with Lemma 3.5.5, 
put 

(7) f(x) = (-xt w), g(x)=(—x, r0w+Y0), h(x)=(-x,yn^(x) 

and 

(8) <f>j+lt7 = ah + afh + bg - bfg. 

Then (4), (5) and Lemma 3.5.5 imply that ||<£,+i,vlloo = * a n d that 

(») Je(-*.y)^+i.r( í , í)¿M*)=a 

If now Ä,+1>r = KUu + yni, if ¿>,+1,r = ¿> + 1, and if Ci+1§y is 
the chain obtained from Ci>tt by replacing Kj u by -K,+i,r> it is 
easily verified that the conditions (3) hold, with j + 1 in place of /. 

Define UJ+1 as the union of U5 and the collection of the cosets 
^i+i. y * k t Φ*·+ι be the union of Φ5 and the trigonometric polynomi-
als <£i+1>y, for all y € S ^ ) . To complete the induction, we must 
prove that J7i+1 and Φί+1 are finite collections. 

We had finitely many sets P n , hence only finitely many possibil-
ities for γη , γη , and ze>, and hence we defined only finitely many 
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cosets Kj+1 γ . I t is clear that only finitely many <f>j+lt7 arose in 

case (i). In case (ii), Lemma 3.5.4 shows tha t for each w and for 

each y0 there were only finitely many choices of r0 , and since Uj 

was a finite collection of finite cosets, there were only finitely 

many possibilities for γ0. Hence only finitely many <f>,+it7 were 

constructed by (8). 

This completes the proof. 

3.7. Norms of Idempotent Measures 

As we saw in Section 3.2.4, an idempotent measure μ has norm 1 

if and only if S{p) is a coset. A simple combinatorial characteriza-

tion of cosets leads to the curious result that | \μ 11 ̂  \ / 5 /2 ~ 1.118 

if \\μ\\ > 1. 

3.7.1. LEMMA. A set EC ris a coset in Tif and only ifE+E—ECE. 

Proof: If £ is a coset of a group A, then E — E = Λ, and hence 

E = E + A = E+E-E. 

Conversely, if E + E — E C E, put Λ = E — E and fix y0 e E, 

If y € E, then γ — γ0 € A} and so E = γ0 + A, since 

ECYo + A = yo+E-ECE. 

Consequently, A — A = (E — γ0) — (E — γ0) = E — E = A, 

so that A is a group. 

3.7.2. THEOREM. If ß*J(G) and \\μ\\> 1, then \\μ\\*£ yß\1. 
Proof: Since \\μ\\ > 1, S(/¿) is not a coset, and Lemma 3.7.1 

shows that there exist ylf γ2, γ2 € Sfa) so that γχ + γ2 — y3 4 Sfa). 

Put 

/(*) = 2 ( - a;, y i ) [ l + (x, γ ι - y8)] + Í - *, y2)[l - (*, y3 - n ) ] 

= 2 ( - *> yi) + 2 ( - *. y3) + f— *> y%) - (— *. yi + y2 - y 3 ) · 
The second expression for / shows that j G fdμ = 5. Setting 

(x, γχ — γζ) = ¿2 ία, the first expression for / shows that 

\f(x)\ ^ 2|1 + e2ia\ + |1 — ¿"2,*α| = 4|cos a| + 2|sin a| ^ 2 ^ 5 . 

Hence 

5 = J Afc ^ II/IIJIMII ^ 2VSINI. 
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3.7.3. It is not known whether the constant y/~h\2 is the best 
possible one in the preceding theorem. However, an example shows 
that it cannot be increased beyond (1 + y/2)¡2 ~ 1.207. . .. 

Let y be a character on a compact group G, γ Φ 0. If y has in-
finite order, then ||1 + ylli = 4/π. If y has finite order qf then 

| ΐ+?ΙΙι = - Σ \i + *wii»\ = 
q sin {n¡2q) 

2 

(q odd) 

(q even) 
^ t an (π/2?) 

For odd q, ||1 + y\\x decreases therefore to 4/π, as q-+ oo; for 
even y, ||1 -f- ylli increases to 4/π. The smallest value larger than 1 
is obtained when q — 4, and is (1 + y/2)¡2. 

3.7.4. If nlt n2, . . ., nk are distinct integers and 
k 

(1) ¿μ(#) = 2 *'"**&:, 
i = l 

then μ is an idempotent measure on the circle group Tf and 

(2) \\μ\\ = — f |^»i* + . . . + *"*»|ώ. 

It is an interesting problem to determine the order of magnitude of 
m(k)t the greatest lower bound of the numbers (2) for all possible 
choices of nXt . . ., nh. The best result in this direction so far is 
that 

where A is an absolute constant (Cohen [2]). If the integers 
nv . . ., nk are in arithmetic progression then (2) is asymptotic to 
A log k, and it is conceivable that this is the true order of magnitude 
of m(k). 

3.8. A Multiplier Problem 

3.8.1. THEOREM (Helson [3], Edwards [2]). Suppose φ is a 

function defined on Γ such that φ/e Β(Γ) for every f e A (JT). Then 

Φ « Β(Γ). 
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Proof: First we show that the linear map T which takes/to </>f 

is a continuous map of Α(Γ) into Β(Γ). Suppose fn - > / in the 
norm of Α(Γ) and φ/η-^μ in the norm of 5(.Γ). (We define 
ll/ll = | | / l k i f / e ^ ( ^ ) , and ||^|| = ||^|| if ^ ^ JB(J^).) For any y € 7̂  
we then have 

μ(γ) = lim φ{γ)!η{γ) = φ(γ)/(γ) = (T¡)(y). 
η-*οο 

Thus Tf — μ, and the continuity of T follows from the closed 
graph theorem (Appendix C6). Hence there is a constant K such 
that 

(1) \\φϊ\\^Κ\\/\\ (/€Α(Γ)). 

Given γν . . ., γη € Γ and ε > 0, Theorem 2.6.8 shows that there 

exists/c A (Γ) with | | / | | < 1 + ε, such tha t / fo) = 1 for l^i^n. 

If clt . . ., cn are complex numbers and if μ = </>/, 

\lc,<f>(yt)\ = 

' ΙΣ ^ ( y , ) l ^ INI · sup 12 c,.(*, y,)| ^ ^ ( 1 + e) sup £ c,(x, 7 , ) | . 
* xcG i xcG i 

Taking / constant on an open set V, it follows that φ is continuous 
on V, hence φ is continuous. Thus Theorem 1.9.1 applies and shows 
that ^ € β ( Γ ) , with \\φ\\ ^ K. 

3.8.2. COROLLARY. If μ€ M(G), the transformation f -> / * μ of 

LX(G) into LX(G) has norm \\μ\\. 

3.8.3. For a € G, let τα be the translation operator defined by 
*«/ = fa> where fa{z) = f{x - a). 

THEOREM. Suppose Ψ is a bounded linear transformation of L1
(G) 

into LX(G) which commutes with all translations) i.e., Ψτα = ταΨ for 
all a € G. Then there is a function φ on Γ such that 

(i) VKY) = <Hv)f(r) (/ « Ll(G), y * r), 

where Ψ/ is the Fourier transform of Wf. Conversely, if Ψ satisfies 
(1), then Ψτα = ταΨ. 

Proof: Fix b e L°°(G). The map / -*- J (Wf)b is a bounded linear 
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functional on Ll{G), and hence there exists ß€L°°(G) such that 

(2) J*c (¥>/)(x)b(x)dx = ¡ef(x)ß(x)dx (/ € L»(G)). 

If now ffgeL1(G), we obtain 

J c ((«7) * g) {x)b{x)dx = / J e (T,!P/) (x)*(y)6(z)<*yfe 

= J>(y)%/c (*V) (*)*(*)<** = J>(y)<*y | c (*,/)(*)/?(*)<** 

= jeit*g){*)ß{*)**· 

Since the last expression is unaltered if / and g are interchanged 
and since b was an arbitrary member of L°°(G), Ψ satisfies the 

identity 

(3) W) * g = f * Wg) if.g<L*(G)). 

Hence (Ψ/) - g = f - {Wg)t and this implies the existence of a 

function φ on Γ for which (1) holds. 

The converse is trivial, since / e (y) = (— a, γ)/(γ). 

3.8.4. Combining Theorems 3.8.1 and 3.8.3, we see that the 

bounded linear transformations of LX(G) into LX(G) which commute 

with all translations of G are precisely the transformations of the form 

where μ € M(G). 

Moreover, \\Ψ\\ = \\μ\\, and if ! f i s a projection, i.e., if Ψ2
 = Ψ, 

then μ * μ = μ. 



CHAPTER 4 

Homomorphisms of Group Algebras 

4.1. Outline of the Main Result 

4.1.1. Consider two LCA groups Glt G2 and their duals J \ , Γ2, 

and let ! ? b e a homomorphism of L1 (GJ into M (G2); that is to say, 
Ψ is a linear transformation of ¿1(G1) into M(G2) which is also 
multiplicative with respect to convolution: 

(1) V[f*g)=Vf)*Wg) (f.geViGJ). 

Since M(G2) is semi-simple, Ψ is bounded (Appendix D5). To 
avoid trivialities, we assume that Ψ is not identically zero. 

Associated with Ψ there is a homomorphism Ψ of A {Γχ) into 

i3(jT2), defined by the requirement that Ψ} be the Fourier-Stieltjes 

transform of Wf, for all fcA^). 
* A 

For every y e Γ2, the map /-> (Sjf)(y) is a complex homomor-
phism of L1 (GJ. Let Y be the set of all y e JT2 f° r which this homo-
morphism is not identically 0. If γ e Y, Theorem 1.2.2 shows that 

A
 A A 

there is a character a(y) € J \ such that (¥y)(y) =/(a(y))· 
77ms ¿acA homomorphism Ψ of ^[βλ) into M(G2) induces a map 

a of a subset Y of Γ2 into Γχ, such that 

(2) (¿ / ) (y)={{ ( a ( y ) ) 1Ύ
γ
€
4
Υ

γ V.IMfiJ. ye A). 

We shall abbreviate (2) by using the notation 

(3) £/ = /°*· 

The problem considered and solved in this chapter is the charac-
terization of all homomorphisms of L1(G1) intoM(G2). The above 
remarks show that this is equivalent to the problem of finding all 

77 

Fourier Analysis on Groups 

by Walter Rudin 

Copyright © 1962 Wiley-Interscience. 



78 FOURIER ANALYSIS ON GROUPS 

maps a of subsets Y of Γ2 into Γχ such that the transformation 

/ - > / o a carries Α(ΓΧ) into Β(Γ2). 

4.1.2. Affine and piecewise affine maps. If £ is a coset in 

Γ2 and if a is a continuous map of E into Γχ which satisfies the 

identity 

(l) «(y + / - / ' ) = «60 + «(/)-«(/') (y,/./'*£), 
then a is said to be affine; to justify the definition we refer to 

Lemma 3.7.1. 

Suppose tha t 

(a) Sx, . . ., Sn are pairwise disjoint sets belonging to the coset-

ring of Γ 2 ; 

(b) each S t is contained in an open coset Kt in Γ2; 

(c) for each i, af is an affine map of Ki into J \ ; 

(d) a is the map of Y = Sx u . . . u Sn into Γ^ which coincides 

on 5 t with a t . 

Then a is said to be a piecewise affine map of Y into Γχ. 

4.1.3. We can now state the main result of this chapter, in the 

terminology developed in Section 4.1.1: 

A THEOREM. / / Ψ is a homomorphism of ¿1(G1) into M(G2), then 
ψ} = / o a, where a is a piecewise affine map of Y into Γχ and Y 

belongs to the coset-ring of Γ2. 

Conversely, if Y belongs to the coset-ring of Γ2 and if a is a piece-

wise affine map of Y into Γχ, then μ o a € Β(Γ2) for every μ e Β(ΓΧ). 

We add that there are homomorphisms of M(GX) into M(G2) 

which are not of the above type. An example is the homomorphism 

πΗ described in Section 3.4.1 which maps M(G) into M(G), is not 

identically 0, but maps L1^) into 0. 

The general case of this theorem was proved by Cohen [2]; the 

proof depends on knowing the idempotent measures on Gx Θ G2. 

Special cases, obtained earlier by Helson [3], Beurling and Helson 

[1], Leibenson [1], Kahane [1], [2], and Rudin [3], [10] are de-

scribed in Section 4.7. 

We first prove the second part of the theorem (Theorem 4.2.3). 

Then, after some combinatorial preparation, we prove the first 



HOMOMORPHISMS OF GROUP ALGEBRAS 79 

part for compact Gx and G2 (Section 4.4); since the dual groups are 

now discrete, no topological considerations are involved in the 

characterization of a. The general case is deduced by passing to 

the Bohr compactifications of Gx and G2 (Section 4.5). 

4.2. The Action of Piecewise Affine Maps 

4.2.1. LEMMA. Suppose Λ is an open subgroup of Γ2, α is a con-

tinuous homomorphism of Λ into Γχ, μ € 2?(/\), and φ = μ ο α. 

Then φ*Β{Γ2), and \\φ\\ ^\\μ\\. 

Proof: The annihilator H of A is a compact subgroup of G2. Let 

P(y) =
 ΣΓ

 ci(y> Y%) ^
e a

 trigonometric polynomial on G2 and put 

Q = P*mH. Then \\Q\U ^ | | P | | J | m e | | = | |Ρ | | β . and Q(j,) = 

Σ
 ciX(Yt)(y> Yi)> where χ is the characteristic function of Λ. 

Since a is a homomorphism, the map y -► (z, <x(y)) is a character 
on Λ, for each x eGlf and so a induces a continuous homomorphism 

β of Gx into GJH for which 

(1) ( * . « ( ? ) ) = (ß(x).Y) (xcG^ytA). 

Then 

(2) ΣΦ,*(Υί))=<}(β{ζ)) (««GO, 

and so Theorem 1.9.1 implies that 

(3) I5>¿(y<)l = ΙΣ«<ί(«(*))Ι ^ IWI · 11011. ̂  \\μ\\ ■ IIPIL 

and hence that φ€Β{Γ2) and ||^|| g ||μ||. 

4.2.2. LEMMA. The conclusion of Lemma 4.2.1 holds also if A is 

an open coset in Γ2 and if a is an affine map of A into Γτ. 

Proof: Fix γ0*Λ and define ax(y) = a(y + γ0) — a(y0), for 

γ € A — γ0. Then ax is a continuous homomorphism of the open 

subgroup A — γ0 into 7 \ . Since both β(Γχ) and ¿?(Γ2) ^
0
 i

n
" 

variant under translation and since translations leave their norms 

invariant, the result follows from 4.2.1. 

4.2.3. THEOREM. / / Y belongs to the coset-ring of Γ2) if a is a 

piecewise affine map of Y into Tlt if μ € J B ( / \ ) and if φ = μ o a, 

then φ€Β(Γ2). 
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Proof: We use the symbols Sif Kit a t as in Section 4.1.2. If 

φ{ = μ o af and if χ{ is the characteristic function of Sif then 

φ = 2 %t^t· Since S t belongs to the coset-ring of Γ2, %i e Β(Γ2) 

(see Section 3.1.2); since a t isaffineonthe open coset Kit φί e Β(Γ2), 

by Lemma 4.2.2. Since Β(Γ2) is an algebra, it follows that 

φ€Β(Γ2). 

4.2.4. LEMMA. Suppose E is a coset in Γ2 and a is an affine map 

of E into ΓΧ. Then a can be extended to an affine map of the 

closure E of E, and OL(E) is a closed coset in 7 \ . 

Proof: F ix γ* c E. Since 

(1) « ( / ) - « ( / ' ) = oc(y* + / - y") - «(y*) ( / , γ" « £ ) . 

the continuity of a implies that a is uniformly continuous) i.e., to 

each neighborhood W of 0 in Γΐ9 there corresponds a neighborhood 

V of 0 in Γ2 such that a(y') - a(y") € W whenever / € £ , / ' € £ , 

and / - y " € V. 

Fix y0 € 5 , and let A be a subset of E, with -<i compact. If W 

is a compact neighborhood of 0 in Γτ, the uniform continuity of a 

shows t h a t there is an open neighborhood V of 0 in Γ2 such that 

*((y + F ) n i ) C a ( y ) + W, for all y e E. Since i C i + 7 , 

there exist γΐ9 . . .,γη€Α such that -<i C (J(y*· + Π · Hence 

a(^4) C Ua((y<) + W)> a n ( i s 0 aC<4) h ^ compact closure in 7 \ . 

I t follows tha t the closures FAr of the sets a(2? n 2V) are compact, 

where iV runs through the compact neighborhoods of y0. Hence 

ΓΙ Fj^ is not empty. The uniform continuity of a implies then that 

the sets FN have exactly one point in common, and we define 
a(y<>) *° t>e tha t point. 

I t is now a routine matter to verify that a, so extended to E, is 

continuous on E. Once this is done, the continuity of the group 

operations shows that the extension is affine. Since E is a coset, 

Lemma 3.7.1 shows that <x(£) is a coset and the uniform continuity 

of a implies that α(Ε) is closed. 

4.3. Graphs in the Coset Ring 

4.3.1. Assume that ΓΧ and Γ2 are discrete abelian groups and 

that Γ = Γτ θ Γ2 is their direct sum. A set E C Γ will be called 
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a graph if to every γ2 e Γ2 there is at most one γτ e J \ such that 

(Υι>7*)€Ε· 

THEOREM. Suppose Y C r2,ais a map of Y into Γτ, and E is the 

graph of a; i.e., E is the set of all points (a(y2), γ2) c Γ, with γ2 e Y. 

If E belongs to the coset-ring of Γ, then Y belongs to the coset-ring of 

Γ2 and a is piecewise affine. 

This will be proved in Section 4.3.4. 

4.3.2. If A is an abelian group and E is a coset of a subgroup 

A1 of Λ, we define the index of E to be the index of Ax in Λ, i.e., 

the number of elements in A\AX. If Ex and E2 are cosets in A, of 

the subgroups Ax and A2t the index of Ex in E2 is defined to be the 

index of Axr\ A2 in A2. 

4.3.3. LEMMA. An abelian group is not a finite union of cosets of 

infinite index. 

Proof: This can be proved by quite elementary means, but it 

may be of interest to use the analytical apparatus which is at our 

disposal. 

Suppose Elt . . ., En are cosets of infinite index in the discrete 

group A whose dual is H. The characteristic function of £ , is the 

Fourier-Stieltjes transform of a measure μί which is the Haar 

measure of an infinite compact subgroup of H, multiplied by a 

character of H (see Section 3.1.2) so tha t μί is continuous. Defin-

ing μ ν σ = μ- | -σ — μ*σ, the characteristic function of E = (J E{ 

is the Fourier-Stieltj es transform of the measure μ = μΎ ν μ2 ν . . . v μη, 

which is continuous. Hence μ Φ <50, μ is not identically 1 on A, 

and so E Φ A. 

4.3.4. Proof of Theorem 4.3.1. If Σ is a finite collection of 

subgroups of Γ, let R(E) be the ring generated by the cosets of the 

groups belonging to Σ; i.e., 1ϊ(Σ) is the smallest family of subsets 

of Γ which contains all cosets of the groups in Σ and which is 

closed under the formation of finite unions, finite intersections, 

and complements. 

Suppose now that the graph £ of a belongs to the coset-ring of 

Γ. Then E e i?(<T), for some finite collection Σ. We may enlarge 
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Σ so that Γ € Σ and so that the intersection of any two members of 
Σ belongs to Σ. 

We call H a minimal element of Σ if H e Σ and if Σ contains no 
proper subgroup of H which has finite index in H. Remove all 
non-minimal elements of Σ and let Σ' be the remaining collection 
of groups. Since Σ is finite, each H € Σ belongs to ϋ(Σ'). Hence 
E € i?(Z"). If H{ € Γ (i = 1, 2), the index of Hx in H2 is either 1 
or oo. 

It follows that E is a finite disjoint union of sets of the form 

(1) E{ = I , . n n Ki (1 ^ ¿ á n), 
i 

where La and Ma7 are cosets in Γ, Mf
{j is the complement of Mijf 

each Mis has infinite index in Lit and there are only finitely many 
Mif for each i. 

We claim that each Z,¿ is a graph. Without loss of generality, 
we may assume that Lt is a subgroup of Γ = Γχ θ Γ2. If 
(y0, 0) eZ,,· and y0 ^ 0, and if (ylt y2) c £ t , then the element 

(2) (y0, 0) + {ylt yt) = (y0 + yl9 γ2) 

belongs to at least one Mti, since E{ is a graph. It follows that £t. 
is covered by the union of the cosets Mu — (y0, 0), and so £,. is 
covered by a finite union of cosets of infinite index, in contradic-
tion to Lemma 4.3.3. 

Let π be the homomorphism (γΐ9γ2) -^-γ2 of Γ onto Γ2 and put 
Ki = π (£,·), Si = π (£,·). Since L,· is a graph, there is a uniquely 
defined map a, of Kt into 7\ such that 

(3) M y ) , ? ) « ! , ( y « ^ ) . 

This a, is affine. Since S¿ = ÜC¿ n f|i ^'u where NiS = n(Li n Afw), 
5 t is in the coset-ring of Γ2. 

Since Y = U S¿ and since at- coincides with a on S{ (1 ^ i ^ n), 
the proof is complete. 

-#.4. Compact Groups 

We now assume that Gx and G2 are compact, that Ψ is a homo-
morphism of L1(Gi) into M (G2), and that Y and a are associated 
with Ψ as in 4.1.1(2). 
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4.4.1. LEMMA. Ψ has a norm preserving extension to a homo-

morphism of M(GX) into M(G2), given by 

(1) (Ψμ)(?) = (μο«)(γ) (μ e M(G1)f y e Γ2). 

Proof: Fix μ c M(G^, put φ = μ o a, and let P{y) = JJ* c^y, γ{) 
be a trigonometric polynomial on G2. Given ε > 0, Theorem 2.6.8 

shows that there exists k€L1(G1) such that \\k\\Y < 1 + ε and 

£(a(yt·)) = 1 for those γ{ which lie in Y and which occur in the 

definition of P(y). If / = k * μ, then / e L
1
^ ) , 

(2) (fr/)(y) = (/o«)(y) = ( ¿ o « ) ( ^ ( r ) (y,r2) 

so that 

(3) ¿ Cf¿(y,.) = 2 '¿(afo))*(y,) = Σ ««(#/)(*). 

Theorem 1.9.1 now implies that 

(4) l i^(y , ) l^ 11*711 -\\P\L· 
¿«1 

and hence that φ€Β(Γ2), with 

(5) | |^| |^| |?'/ | |^| |«Ρ| | · | | / | |1^||^| | | |Λ | | · | |* | |1^(1+ ε) | |^| | · |Η|. 

Since ε was arbitrary, \\<f>\\ ^ \\Ψ\\ \\μ\\, and the proof is complete. 

4.4.2. If a* is the unit mass concentrated at the point xeG1 

and if Ψ is extended as in Lemma 4.4.1, put μχ = Ψδχ. Then 

μχ€Μ{βζ), \\μχ\\^\\Ψ\\, and 

(1)
 ^

y ) =
 (o (^Y). 

These are the only properties of the extended homomorphism 

that will be used in the proof of the next theorem. It may be of 

interest to note that the map x -> μχ is a bounded homomorphism 

of Gx into M(G2) since μχ+ν = μχ * μν> by (1). 

4.4.3. THEOREM. The graph E of a is a member of the coset-ring 
of Γχ θ Γ2. 
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Proof: Let G = Gx Θ G2, Γ = / \ θ Γ2. The graph of a was 

defined in Theorem 4.3.1. By Theorem 3.1.3, we have to show that 

the characteristic function χ of E belongs to Β(Γ). 
The letters x, y, z, γ', γ", γ will denote points of Gx, G2, G, Γΐ9 

Γ2, and Γ, respectively. If k is a trigonometric polynomial on G2, 

(i) *(*) = Σ «(/')<*/'). 

define k as a function on Γ by 

(2) ¿(y) = %{/, y") = «(/ ') , 

and put 

(3) Φ(χ,ν)= Σ *<y")(*.*(y"))(3f,7")' 
y"€Y 

Then φ is a trigonometric polynomial on G, whose Fourier trans-

form is k%. Defining μχ as in 4.4.2, we have 

φ(χ, y)=2 e(/')(y. / ' ) L ( - *. y")^-(0 

so that 

(5) JCs |¿(«, y)|¿y ^ IWULu-JI ^ ||%||¥ΊΙ (* e GJ. 

Integrating (5) with respect to x, we thus have 

(6) IWlx = jGiJGi l*(*. y)|*«*y ^ IWUI^Il· 

Now choose / j , . . ., γη e Γ, complex numbers clt . . ., cn, and 

ε > 0. By Theorem 2.6.8 there exists ¿ of the form (1) such that 
||A|li < 1 + « and k(yt) = 1 (1 ^ í ^ n). Setting P(x) = 
Xci(^7i)> w e then have 

ΙΣ ca(7i)\ = \hAyMvi)\ = ΙΣ *,¿(y<)l 
(7) i i i 

á i w i i i i P i L á a + ejiiyii-iiPiL· 
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Hence χ€ Β(Γ), by Theorem 1.9.1, and since ε was arbitrary, we 

also see that ||x|| ^ \\Ψ\\. 

4.4.4. Theorems 4.4.3 and 4.3.1 establish Theorem 4.1.3 for 
compact Gx and G2. 

4.5. The General Case 

4.5.1. We now turn to the proof of Theorem 4.1.3 for arbitrary 
LCA groups G1 and G2; IP is a homomorphism of ¿1(G1) into 
M(G2) and a is the induced map of Y into Γτ. We have to prove 
that Y belongs to the coset-ring of Γ2 and that a is piecewise affine. 

Let Gx and G2 be the Bohr compactifications of Gx and G2. Their 
duals are the discrete groups Γ1ά and Γ^ά. Choose μζΜβι), 

ε > 0, and γΧ, . . ., γη € Γ2. Since Gx is dense in Qx and since 
{?i> · · ·» Yn} is a finite set, there is a measure μ1€Μ(Θ1) with 
\\μλ\\ ^ IHI, such that 

(1) l(?i o a)(y<) - (¿ o «)(y,.)| < ε (1 ^ » á *)-

Replacing μχ by ¿ * μΐ9 where A € ¿1(G1) is as in Theorem 2.6.8, 
we see that there exists feLl(G1) with ||/||χ l£ (1 + ¿)||μ|1> such 
that (1) holds with / in place of μΧ. 

Setting φ = / o a, it follows that φ e Β(Γ2), 

\\φ\\^{\+ε)\\μ\\·\\Ψ\\, 

and 

(2) \ΦΜ- ( í o a ) W | < £ ( l á » á * ) . 

Since ylf . . ., yn and ε were arbitrary, these conditions imply, by 
Theorem 1.9.1, that μ ο one Β(Γ2ά) and that 

(3) Ι ΐ ί ο α | | ^ | | ! Ρ | | · | Η | . 

Thus a, regarded as a map of Yd (the set Y in the discrete topol-
ogy) into rid carries Β(Γ1ά) into Β(Γ2ά). Hence the result of 
Section 4.4 applies, and we conclude: 

The set Yd belongs to the coset-ring of Γ2ά and OL is a piecewise 
affine map of Υφ into Γ1ά. 
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4·5·2. To complete the proof of the theorem, we have to show 

tha t Y and a satisfy the topological requirements. In other words, 

we have to show that the conclusion of Section 4.5.1 remains true 

if the subscripts d are removed. 

If γ0 € Y and if V is an open neighborhood of a(y0) in Γΐ9 there 

exists / € Α(ΓΧ) whose support lies in V, such that / (a(y 0 ) ) Φ 0. 

If W = {γ € Γ2: (Jo a)(γ) φ θ}, then W is open in Γ 2 , γ0 e W, and 

OL(W) C V. Hence Y is open, and a is continuous. 

Gathering up the information obtained so far, we now have the 

following situation: 

There are finitely many cosets Kt and Ni}- in Γ2, and there are 

finitely many disjoint sets S¿ of the form 

(1) S4 = i f 4 n n ^ 
3 

where N£j has infinite index in K{ and N'{j is the complement of 
Ν„. The set Y = U S4 is open. To each Kt corresponds an affine 

map ocf of K{ into rit and af coincides with a on S€. 

By Lemma 4.2.4, each <xt· can be extended to an affine map of the 

closure K€ of Kt. Suppose this is done. Fix γ0 € Ϋ. Then y0 c S{ 

for some it and a¿(y0) c Γχ. Choose / € L 1 ^ ) so that / (a , (y 0 ) ) Φ 0. 

On Sit ( /oa ) (y) = / ( a < (y ) ) . Since a, a n d / o a are continuous, 

( / o α) (γ0) = / (α , (7 0 ) ) ^ 0. Hence y0 € Y, and so Y is closed in Γ2 . 

Let / be the set of all i such that S{ has non-empty interior. 

Then (J Si (i c / ) covers Y, since Y is open, and thus is equal to Y, 

since Y is closed. If N{j has non-empty interior, then Nif is open 

and hence does not intersect S^ Hence, for i el, 

(2) ^ ί , . η η ^ , 
3 

the intersection being taken over those N{j which are open. Since 

Kt is open and closed, it follows that /S¿ is open and closed and 
belongs to the coset ring of Γ2. Let Sx, . . ., 8n be an enumeration of 

these open and closed sets, and let E{ be the set of all points in ¿S£ 

which are not in Sx u . . . vj Ä,_2 (1 <¡ ¿ g¡ n). 
This completes the proof: Y is the disjoint union of the sets E¿ 

which belong to the coset-ring of JT2, each E{ lies in an open coset 
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Ki, and there are affine maps a, of K{ into J \ such that at coincides 

on Ei with a. 

4.6. Complements to the Main Result 

The map a and the set Y will be associated with the homo-
morphism W as in Section 4.1.1. 

4.6.1. THEOREM. Let W be a homomorphism of Ll{G,) into 

M(G2). 

(a) There is a norm-preserving extension of Ψ to a homomorphism 

of M{GX) into M{G2). 

(b) Suppose Gx is not discrete. Then Ψ has a unique extension to 

a homomorphism of M(GX) into M(G2) if and only if Y = Γ2. 

If Gx is discrete, then M(GX) = L1(G1)f and the extension prob-
lem does not arise. 

Proof: For compact Gx and G2, (a) was proved in Lemma 4.4.1. 
The same proof applies in the general situation, provided we know 
that the function φ used in that proof is continuous, so that Theo-
tem 1.9.1 applies. But we know now that a is continuous and that 
Y is open and closed, and the continuity of φ is then trivial. 

To prove (b), suppose Ψ has been extended to M(G1), choose 
/ € L1^), μ € MiGJ, and put σ=Ψί,λ=Ψμ. If g = / * μ, then 
g € Z,1 ((^), and hence the Fourier transform of Wg is 0 outside Y 

and is 

(i) (ίμ)(«(γ))=Μγ))ϊ(«Μ) 

on Y. But since Wg = {Wf) * (S^) = a * λ, this transform is also 
equal on Y to 

(2) Ä(y)2(y)»/(«(y))2(y). 

Since (2) holds for all / € Ζ , 1 ^) , we have λ (γ) = μ(<χ(γ)) for y e Y. 
Thus λ is uniquely determined on Y by a, i.e., by the action of 

W on L1(G1), and hence the extension of W is unique if Y = Γ2. 

If Y Φ Γ2, let h be a complex homomorphism of M{G1) which 
is identically 0 on LX{GX), and for any μ € M(G1), let Ψμ be the 
measure whose transform is 
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*H:r til 
Since ¿1(G1) is a proper closed ideal in M(G1)i there exists such an 
h which is not identically 0 on M(Gx)t and the extension of Ψ so 

obtained is different from the one with A = 0. 

It is also possible to define such an A explicitly: let πΗ be the 

homomorphism of M(G1) into itself defined in Section 3.4.1, fix 

γ € rif and put Α(μ) = σ(γ), where σ = πΗμ. 

4.6.2. THEOREM. The homomorphism Ψ of LX{GX) into M(G2) 
ma^ps ¿1(G1) into ¿1(G2) if and only if a-1(C) is compact for every 
compact subset C of J \ . 

Proof: If there is a compact set C in Γχ such that orx{C) is not 

compact, choose / e i
1
(G1) such that / = 1 on C. Then the set of 

all y € Y at which /(a(y)) = 1 contains the closed set OL~1(C) and 

hence is not compact, so that Wf4Ll(Gt). 

Conversely, if a"~
x
(C) is compact for every compact C and if 

/ € ¿1(G1), we can find fn e X1(G1) such that fn has compact support 
and such that fn -*■ f in the norm of L1(G1). Each fn o a then has 
compact support, so that ¥r/n€L1(G2). Since S7 is continuous, 
Wfn-> Wf in the norm of M(G2), and since L1fG2) is closed in 
M{G2)t y/cL*(G t). 

4.6.3. If we examine the proof of Theorem 4.1.3 and pay atten-
tion to the norms, we find: 

(a) If ||!P|| < 1, then Ψ == 0, by Appendix D5. 

(b) If ||!P|| = 1, then ||*|| = 1 in Lemma 4.4.3, hence the graph 

of a is a coset in 7\ θ Γ2 (Section 3.2.4), and this means that Y is 

an open coset in Γ2 and that a is affine on Y. By Lemma 4.2.2, 

this last condition in turn implies that ||?P|| = 1. 

(c) It follows from (b) and Theorem 3.7.2 that ||!Ρ|| ^ yfi¡2 
if ||!P|| > 1. 

4.6.4. We recall that an isomorphism is a homomorphism which 
is one-to-one. 

THEOREM. / / Ψ is an isomorphism of M(Gr) onto Af (G2), then Ψ 
maps Ẑ

1
(G1) onto L

1
(G2). Conversely, every isomorphism of ¿1iG1) 
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onto Ll(G2) has a unique extension to an isomorphism of M(GX) onto 

M(G2). 

Proof: If Ψ is an isomorphism of M(GX) onto M(G2), then the 

restriction of Ψ to Ll(Gx) is an isomorphism of ¿1(C1) into M(G2) 
and hence determines a and Y, as before. The proof of Theorem 
4.6.1(b) shows that if μ€ M(G1) and a = Ψμ, then 

(i) i(y) = ?(*<y)) (r*Y)· 
Since the range of Ψ covers M(G2), a must be one-to-one on Y. 

Since a is piecewise affine and Y is closed, a(Y) is closed in J \ . 

If <x(Y) # A it follows that there exists / € L^GJ such that / = 0 

on a(Y) but / ^ 0 at some point of J \ ; since / o a = 0, we have 

¥y = 0, and this contradicts the assumption that Ψ is one-to-one. 

If Y φ Γ2, there exists a € Af (G2), σ Φ 0, such that σ = 0 ο η 7 , 

and there exists μ € M(GX) such that σ = Ψμ\ by (1), μ = 0 on J \ f 

thus μ = 0; but ψμ = σ Φ 0, a contradiction. 

Summing up, a is a piecewise affine homeomorphism of Γ2 onto 

Γχ, and by Theorem 4.6.2 the first part of 4.6.4 is proved. 

If Ψ is an isomorphism of L1 (Gx) onto Ll (G2) then again Y = Γ2, 

α(Υ) = Γΐ9 and a is one-to-one. The extension of Theorem 4.6.1 

is thus an isomorphism of M(G*¡) onto M(G2). 

COROLLARY. / / Ψ is an automorphism of M(G), (i.e., an iso-

morphism of M(G) onto M[G)) then Ψ^β)) = L^G). 

This means that the ideal of all absolutely continuous measures 

in M(G) is algebraically distinguishable from all other ideals in 

M(G). 

4.6.5. The simplest isomorphisms of L1^) onto ν-(β2) are 

obtained by taking for a an affine homeomorphism (not merely 

a piecewise affine one) of Γ2 onto Γχ. Then there exists y0 c Γλ 

and an isomorphism τ of Γ2 onto J\ such that oc(y) = τ(γ — γ0)^ 

and τ induces an isomorphism β of Gx onto G2: 

(1) (*, T(y)) = (/?(x), y) ( « « ^ , ^ Γ , ) . 

The map 

(2) 1-+\ f^toWv 
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is a translation invariant linear functional on Ce(Gi); hence there 
is a positive constant k = k(ß), such that 

(3) kjGJ{ß-Hy))dy = ¡cJ(x)dx (/ e L^GJ). 

If / e L 1 ^ ) , the Fourier transform of k · (y, y0) •/(/3_1(y)) is 

(4) k JCj (y, y e ) / (^ - l ( | f ) ) í - y, y)¿jr = j6J(x)(ß(x), γ0 - Y)¿* 

= / C i / (x ) (x ,T(y 0 -y ) )¿a: = /(«(y)). 

Thus 

(5) Wf) (y) = *(y, ro)f(ß-i(y)) (/ e L ^ ) , y e Ct). 

We note that this Ψ is an isometry. 

4.6.6. Let us say that Ψ preserves positivity if Wf ^ 0 whenever 

/ ^ 0. Our next theorem characterizes the maps a such that 

φ o a is positive-definite on Γ2 whenever φ is positive-definite on J \ . 

THEOREM. / / Ψ preserves positivity, then Y is an open subgroup 

of Γ2 and a is a continuous hornomorphism of Y into J \ . 

Proof: Considering first the case of compact Gx and G2, the 

extension 4.4.1 of Ψ carries μ ^ 0 to Ψμ ^ 0, so that the measures 

μχ of Section 4.4.2 are non-negative. If Ψ Φ 0 then Y is not empty, 

hence μχ Φ 0 for all x € Glt and so μχ(0) = 1. This shows that 

0 € Y and that \\μχ\\ = 1, so that ||χ|| = 1 in the proof of Theorem 

4.4.3. Hence the graph of a is a coset, Y is a coset, and a is affine. 

Since 0 € Y, Y is a subgroup of Γ2; since μχ{0) = 1 for all x c Gl9 

a(0) = 0, and hence a is a hornomorphism. 

The general case follows; for if we pass to the Bohr compact) fica-

tions, the induced hornomorphism of Μ{βλ) into M(G2) also pre-

serves positivity. 

4.6.7. COROLLARY. If Ψ is an isomorphism of Ll(Gx) onto 

Ll(G2) which preserves positivity, then Ψ has the form described in 

Section 4.6.5, with γ0 = 0. 

4.6.8. THEOREM. / / Γ is an infinite LCA group, then A (Γ) is a 

proper subset of Ο0(Γ). 
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Proof: There is a homeomorphism a of Γ onto Γ which is not 

piecewise affine, and so there exists / c A (Γ) such that / ο α ^ ( Γ ) . 

But foaLcC0{T). 

A different proof of this theorem was given by Segal [3]; see also 

Hewitt [2] and Edwards [1]. 

4.6.9. This chapter is primarily devoted to a study of the effect 

of a map / - » / o a o n L
1
-norms. Similar problems can of course be 

posed for other norms. We will prove the analogue of Theorem 

4.1.3 for the L°°-norm. Section 5.7.8 contains a comment on other 

L
p
-spaces. 

THEOREM. Suppose Gx and G2 are compact, Y C Γ2, and a maps Y 

into J\ . The following two conditions are equivalent: 

(a) Y belongs to the coset-ring of Γ2, α is piecewise affine, and 

οΓι(γχ) is a finite set, for each γχ € Γχ; 

(b) to every f € C(G1) there corresponds a function g € L°°(G2) such 

that g = / o a . 

Proof: If a is a homomorphism of Γ2 onto Γχ with finite kernel A, 

then Γχ = Γ2\Λ, and so Gx may be regarded as the annihilator of A, 

i.e., as a compact open subgroup of G2, of index n, where n is the 

number of elements of A If / c C(G1) and if g = / o a, it is easily 

found (by first considering trigonometric polynomials) that 

g(y) = nf{y) if y € Gx and that g(y) = 0 at all other points of G2. 

Arguing as in Section 4.2, it follows from this special case that a 

carries C(G1) into C(G2) if (a) holds; we omit the details. Thus (a) 

implies (b). 

The proof that (b) implies (a) is more interesting. Let Ψ be the 

linear transformation of C(G1) into L°°(G2) defined by setting 

g=Wfiig = fooL. If γ1*Γ1 and f(x) = (x,7l), then ¿(γ) = 1 

for all γ € α^
1
^), and since g € 00(Γ2), it follows that a"

1
^) is 

finite. Also 

(i) WMy)= Σ {y. Y) Ü<G2). 
a(r)-=yx 

Suppose fn€C{G1) for n = 1, 2, 3, . . ., ||/n —/ll«,-> 0, and 
\mn - g\\oo ^ 0 for some g <r L~(G2). Then fn(y) -> /(>0 for all 
γ € 7\ and (/«oa)(y)->^(y) for all γ e Γ2. Hence g = /oa , or 
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g = Wf. We conclude from the closed graph theorem that IF is a 

bounded linear transformation. 

If F is a trigonometric polynomial on Gx Θ G2 and if we write 

Fy(x) for F(x,y), then Fv is a trigonometric polynomial on Gl9 

for every yeG2, and since a""1^) is finite for each γχ€Γχ, (1) 

shows that WFy is a trigonometric polynomial on G2. Setting 

<f>(y) = (iPF*)^), it follows tha t φ is a trigonometric polynomial 

on G2. Also, 

ll^llx ^ Halloo ^ sup H t f ^ l L ^ II1PII · sup HF-IL = ||!P|| · HFIL. 
V € Gt V€G2 

We conclude that there exists aeM(G1 θ G2) such that 

(2) ίβ,/β, F ( - * · ^*^*· ^ = L, ( ^ ^ 

for every trigonometric polynomial F on Gx Θ G2. 

Fix γχ€Γΐ9 y2€jT2, put Fía?, y) = (», yi)(—y, y2)·
 T h e l e f t 

side of (2) is then σ()Ί, y2)>
 a n ( i the integrand on the right side is 

Σ (y> 7 "~" ^ ) * the sum being extended over all y € Γ2 for which 

oc(y) = yx. Thus £(y l f y2) = 1 if a(y2) = y2 and is 0 otherwise. 

This means that 6 is the characteristic function of the graph of a. 

Theorem 3.1.3 shows tha t this graph belongs to the coset ring of 

J \ Θ JT2> and Theorem 4.3.1 completes the proof. 

4.7. Special Cases 

4.7.1. THEOREM. If Ψ is an isomorphism of L 1 ^ ) onto Ll(G2), 

and if \\Ψ\\ ^ 1, then Gx and G2 are isomorphic and Ψ is of the form 

4.6.5 (Helson [3]). 

Proof: By 4.6.3, | |IP|| = 1 and a is affine; by 4.6.4, a is an affine 

homeomorphism of Γ2 onto Γΐ9 and the result follows from 4.6.5. 

4.7.2. THEOREM. Suppose Γ2 is connected. If Ψ is an isomorph-

ism of ¿1(G1) onto LX{Q2) then Gx and G2 are isomorphic and Ψ is 

of the form 4.6.5. (Beurling and Helson [1]). 

Proof: Since Γ2 is connected, Γ2 is the only non-empty member of 

the coset ring of Γ2. Thus Y = Γ2, α is affine, and the proof is 

completed as in 4.7.1. 
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4.7.3. THEOREM. Suppose φ e Β(Γ), and suppose there is a 

constant C such that 

(1) WW^C (* = 0 , ± 1 , ± 2 , . . . ) . 

the norm being that of Β(Γ). Then φ is a piecewise affine map of Γ 

into the circle group T. 

COROLLARY (Beurling and Helson [1]). / / , in addition, Γ is con-

nected, then there is a complex number a with \a\ = 1, and an element 

x € G, such that 

(2) φ(γ) = α{χ,γ) (ycT) . 

Proof: The spectral radius formula shows that 

(3) \\φ\\„ ^ lim W||V« ^ lim C
1
/» = 1. 

n-»oo n-+oo 

The same holds for \\φ. Hence \φ(γ)\ = 1 for all γ e Γ; i.e., φ maps 

Γ into T. 

Let μ € M{G) be the measure such that φ = μ. For any / € L
1
^ ) , 

define 

(4) «7 =!/(»)?-. 
na~oo 

Then ΪΡ is a homomorphism of L
1
^ ) into M(G), since ||μ

η
|| 5j C 

for all ft c Z. The Fourier-Stieltjes transform of Wf is 

(5) ΣΗη)φ(γ)-» = ΗΦ(γ)) (γ*Γ)· 
n=—oo 

By Theorem 4.1.3, it follows that φ is piecewise affine. 

If Γ is connected, then <£ is affine, hence is a continuous homo-

morphism into T (i.e., a character) followed by a translation in Γ 

(i.e., by multiplication by a complex number of absolute value 1). 

REMARK. If Γ = R, the real line, the preceding result special-

izes to 

(6) φ(ί) = e«*'*» ( - oo < t < oo), 

where a and 6 are real numbers. 
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4.7.4. Piecewise affine maps of Γ into T can be described quite 

explicitly: Let Slt. . ., Sn be disjoint sets belonging to the coset-

ring of Γ, whose union is Γ; choose xlt..., xn c G, and choose 

complex numbers cl9 . . ., cn of absolute value 1. Put 

(1) Φ{γ)^οί{χίίγ) (ycS,). 

Then φ is piecewise affine, and every piecewise affine map of Pinto 

T is so obtained. 

In particular, the affine maps φ of T into T are of the form 

(2) φ(ε*θ) = ce«* 

where |c| = 1 and n is an integer. 

4.7.5. THEOREM (Leibenson [1], Kahane [1], [2]). Let φ be a 

map of T into T such that the Fourier series of /(φ) is absolutely 

convergent whenever the Fourier series of f is absolutely convergent. 

Then there is an integer n and a real number a such that 

φ(βίθ) = *«»* + «> (eieeT). 

Proof: The map / -> f{xf>) is a homomorphism Ψ of A (T) into 

A(T), or of L1(Z) into LX{Z), and φ is nothing but the map a 

induced by Ψ. Since T is connected, φ is affine. 

4.7.6. In the preceding special cases, Γ2 was either connected, 

in which case its coset-ring was trivial, or Ψ was an isomorphism 

of norm 1. In either case, a was affine on Γ2, and so neither coset-

rings nor piecewise affine maps appeared in these results. The role 

played by these two concepts in the homomorphism problem 

became apparent for the first time after the case Γτ = Γ2= Ζ 
had been settled; the problem, and the result, can here be stated 

quite concretely: 

Suppose Y is a subset of the integer group Z and a maps Y into 

Z. For which Y and a is it true that 

(i) Σ *(*(»))*"" 
n€Y 

is a Fourier series (of a function in LX(T)) whenever the series 

(2) 2 c(n)einff 

ncZ 
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is a Fourier series? Or, in our previous terminology, for which a 
does the map / -> / o a carry A (Z) into A (Z) ? 

THEOREM (Rudin [3]). Necessary and sufficient conditions for 
this are the existence of a positive integer q and of a map ß of Z into Z 
with the following properties: 

(a) If Alt . . ., Aq are the residue classes modulo q, then Y = 
SL u . . . u Sn where each St is either finite or is contained in some 
Aj from which it differs by a finite set, and the sets S¿ are pairwise 
disjoint. 

(b) α(η) = ß(n) for all ncY, with possibly finitely many excep-
tions, ß(n + q) Φ β(η) for all nc Z, and 

(3) ß(n + q) + ß{n - q) = 2ß(n) (n e Z). 

Proof: This is just a restatement of Theorem 4.1.3, adapted to the 
case Γ2 = Z. We saw in Section 3.1.3 that Y belongs to the coset-

ring of Z if and only if Y has the structure described in (a). 

A map β on Ai is affine if and only if it is of the form 

(4) ß(a + kq) = u + kv (— oo < k < oo), 

hence if and only if (3) holds. 
The condition ß(n + q) Φ β(η) assures that a is not constant 

on any infinite set (compare Theorem 4.6.2); if this condition is 

omitted, the remaining conditions are necessary and sufficient 

for a to carry Fourier series to Fourier-Stieltjes series. 

4.7.7. Suppose the algebras ¿1(G1) and Ll(G2) axe isomorphic. 
What can be said about the relation between Gx and G2? ^ n P a r~ 
ticular, does it follow that Gx and G2 are isomorphic? 

I t follows from Theorem 4.1.3 (see also the proof of Theorem 
4.6.4) that a necessary and sufficient condition for L 1 ^ ) and 
L1(G2) to be isomorphic is the existence of a piecewise affine horneo-
morphism of Γ2 onto Γτ. 

The following special case is an application of this remark: 

THEOREM (Rudin [10]). L1^) is isomorphic to ^(T) if and only 

if G = T Θ F, where F is a finite dbelian group. 
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Proof: If G = T Θ F then Γ = Z Θ F; if F has q elements 

flf . . .,fQ and if 

(1) oc(n? + A) = (n,/Ä) (ncZ, l á * ¿ í ) 

then a is a piecewise affine map of Z onto Γ and a is one-to-one. 

Hence LX{G) is isomorphic to I*
1
^). 

Conversely, if a is a piecewise affine map of Z into Γ then a has 

the structure described in part (b) of Theorem 4.7.6. In particular, 

if OL(Z) = Γ, then ß(Z) = J1, Γ is a union of finitely many arith-

metic progressions, hence Γ is finitely generated and so is a direct 

ßum of cyclic groups. Since Γ is the union of finitely many arith-

metic progressions, only one of these cyclic groups can be infinite. 

Thus r = Z 8 F and hence G = T Θ F, with JF finite. 



CHAPTER 5 

Measures a n d Fourier Transforms on T h i n Sets 

Measures concentrated on sets which are "thin" in a certain 
arithmetic (or group-theoretic) sense have some unexpected pathol-
ogical properties. In the present chapter, we study some of these 
phenomena; ai a by-product we obtain an easy proof of the asym-
metry of the Banach algebra M(G) for all non-discrete LCA 
groups G. We discuss the behavior of the Fourier-Stieltjes trans-
forms of measures concentrated on thin sets, as well as the restric-
tions of Fourier transforms to such sets. 

5./· Independent Sets and Kronecker Sets 

5.1.1. A subset E of an abelian group G is said to be independent 

if E has the following property: for every choice of distinct points 
zlf . . ., xh of E and integers nlt . . ., nki either 

(1) n1z1 = n2z2 = . . . = nkxk = 0 

or 

(2) ηλζχ + n2x2 + . . . + nkzk φ 0. 

In other words, no linear combination (2) can be 0 unless every 
summand is 0. 

5.1.2. A subset £ of a LCA group G will be called a Kronecker 
set if E has the following property: to every continuous function 
/ on E, of absolute value 1, and to every ε > 0, there exists y c Γ 
such that 

(1) s u p | / ( * ) - (* ,y ) |<e . 
X€ E 

This definition is motivated by the classical theorem of Kro-
necker which asserts, in the present terminology, that every finite 
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independent subset of the real line is a Kronecker set (see Theorem 
5.1.3). Since groups of bounded order contain no non-empty 
Kronecker sets, we state a modified definition which is applicable 
to that case. 

For any integer q ¡^ 2, let Zq be the set of all numbers 
exp {2nijlq}> 0 5^ / ^ q — 1; Zq is the cyclic subgroup of T whose 
order is q. A subset E of DQ (see Section 2.2.4 for the definition) is 
said to be of type Kq if E has the following property: every conti-
nuous function on E which maps E into Zq coincides on E with a 
continuous character of DQ. 

5.1.3. For x € G, pu t S(x) = T if x has infinite order; if x has 
order q, put S(s) = Z e . 

THEOREM. Suppose E is a finite independent set in a LCA group 
G, f is a function on E such that f{x) € S(x) for all x € E, and ε > 0. 

Then there exists y € Γ such that 

(i) l ( * . r ) - / ( * ) l < e ( * * £ ) . 

Proof'. Suppose E = {xlr . . ., xk}. The group H generated by E 

consists of all linear combinations 2 n&% wüh integral coefficients 
ni9 and the independence of E shows tha t each x e H has a unique 
representation x = 2 n&% · I t follows that the formula 

(2) *(2>Λ) = Π [/(*.·)]"' 
< - l t - 1 

defines a function ^ on i / ; also, ^(z¿) = /(#,·) (1 g¡ i ^ £), and 
φ is a character of if, i.e., a homomorphism of H into Γ. Since Γ 

is divisible, Theorem 2.5.1 shows that φ can be extended to a 

character of G, and by Theorem 1.8.3 there exists γ e Γ such that 

|(a?, γ) —- φ(χ)\ < ε for all a; e ¿s. This completes the proof. 
There are more elaborate approximation theorems which may 

be proved by this method with equal ease; see Hewitt and 
Zuckerman [1]. 

COROLLARY. Suppose E is a finite independent set in G. 
(a) / / every xe E has infinite order\ then E is a Kronecker set. 
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(b) If G = Dq and every x c E has order q, then E is of the type 

Part (a) is evident. Taking ε < sin (njq) in the theorem estab-

lishes (b), since both (x,γ) and f(x) are constrained to lie in Zq. 

5.1.4. THEOREM, (a) Kronecker sets are independent, and contain 

no elements of finite order. 

(b) Sets of type Kq are independent subsets of Dq, and contain only 

elements of order q. 

Proof: Suppose E is a Kronecker set in G, xlt . . ., xk are distinct 

points of £ , nlt . . ., nk are integers and 2
 ntxt =

 0. Then 

k k k 

(i) Π (*. > r)
B<

 = Π (»Λ. y) = (I « A . y) = i 
t«=l t = l 1 

for every y e -Γ, so that any function f on E which can be uniformly 

approximated on E by characters must satisfy the condition 

(2) f l M*i)ni
 = i. 

Since £ is a Kronecker set, (2) must hold for arbitrary complex 

numbers/(#,) of absolute value 1. Hence nx = n2 ==...== nk = 0, 

and (a) is proved. 

If E is of type KQ in Dq the same proof applies, except that now 

(2) holds for all choices of f{xi)€Zq. Hence nt = 0 (modq) 

(1 ^ i ig k), and this implies (b). 

5.2. Existence of Perfect Kronecker Sets 

5.2.1. We call a subset £ of a topological space perfect if E is 

compact and non-empty and if no point of £ is an isolated point 

of £. We call £ a Cantor set if £ is homeomorphic to Cantor's 

"middle third'' set on the line. A set is a Cantor set if and only if 

it is metric, perfect, and totally disconnected. Our present objec-

tive is the construction of Cantor sets which are Kronecker sets or 

sets of type Kqi respectively, and to show that this can be done in 

every non-discrete LCA group. We recall that if a non-discrete 

LCA group is not an /-group then it contains Dq (for some q ^ 2) 
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as a closed subgroup (Theorem 2.5.5). It will be convenient to 

separate these two cases: 

5.2.2. THEOREM, (a) Every I-group contains a Cantor set which 
is a Kronecker set. 

(b) The group DQ contains a Cantor set which is of type Kq. 

Our proof will imitate the usual construction of a Cantor set on 

the line as the intersection of a decreasing sequence of sets Er, 

each of which is the union of 2
r
 disjoint closed intervals. 

5.2.3. LEMMA. Suppose Vl9 . . ., Vk are disjoint non-empty open 

sets in G, and G is either an I-group orG = Dq. Then there are points 

x€ € Vt (1 ig i ig k) such that 

(a) {xlf . . ., xk) is a Kronecker set, if G is an I-group, 

(b) {xlf . . ., xh) is a set of type Kqt if G = Dq. 

Proof: Suppose first that G is an /-group. If y € G and if k is an 

integer, k Φ 0, then the set EKv of all x e G such that kx = y is 

closed and contains no open set; for if it did, then Eky — EKv 

would be a neighborhood W of 0; since kx = 0 for all x € W, this 

contradicts the definition of an /-group. 

By Baire's theorem, Vx is therefore not covered by the union of 

sets Ek 0 (k = 1, 2, 3, . . .), so that Vx contains an element xx of 

infinite order. Suppose xl9 . . ., xi are chosen, a?t· € Vt (1 ^ i ^ /), 

and the set {xlt . .., xs) is independent. Let H be the group gener-

ated by.x1, . . ., Xj. Since H is countable, Baire's theorem shows 

that Vj+1 is not covered by the union of the sets EKv (k = 1, 2, 3 , . . ; 

y € H); hence there exists xJ+1 c F i+1 such that none of the mul-

tiples kxi+1 (k Φ 0) lies in H. In a finite number of steps we thus 

obtain an independent set {xlf . . ., xk} each of whose elements has 

infinite order, with xi eFt·. 

HG = Dqt define Eky as above. Now Ekv contains no open set 

if 0 < k < q, since each neighborhood of 0 in Dq contains elements 

of order q. Having chosen independent elements xlt . . ., xj9 with 

xi € Vit of order q, it follows that Vj+1 contains a point x i+1 such 

that kxj+1 is not in the finite group generated by xlt . . ., xjt 

unless q divides k. 
The lemma now follows from the corollary to Theorem 5.1.3. 
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5.2.4. Proof of Theorem 5.2.2. Since every /-group has a 
closed subgroup which is a metric /-group (Theorem 2.5.5) and 
since every Kronecker set in a closed subgroup of G is a Kronecker 
set in G, we may assume in part (a) that G is metric. 

Let Pj be any compact neighborhood in G. Suppose r ^ 1, 
s = 2r~1, and suppose that disjoint compact neighborhoods 

(i) Pf1, ΡΓ1,..., ΡΓ1 

have been constructed. Let W2*-i a n ( i ^2i ^ e non-empty disjoint 
open sets in P p 1 (1 ^ / ^ s). By Lemma 5.2.3, there is a Kron-
ecker set {x[, . . ., xr

28} with x] c Wj (1 <̂  / ^ 2s). It follows that 
there is a finite set FrC Γ with the following property: to each 
choice of real numbers a, there exists at least one y € Fr which 
satisfies the simultaneous inequalities 

(2) I * * * - « , y ) l < i / ' ( l ^ / ^ n 

There exist disjoint compact neighborhoods PJ of x] (1 ^ / ^ 2r), 
such that P^CW,., such that 

(3) |(*. y) - (*;, 7)1 < 1/r (* e PJ. y e F r), 

and such that d(x, x]) < 1/r for zYLxep], where áis the metric of G. 
This completes the induction. We define 

w p = ñ ü JPJ. 
r-1 i - 1 

It is evident that P is a Cantor set. Suppose / e C(P), |/| = 1, 
and ε > 0. Since / is uniformly continuous, there exists r0 such 
that / maps each of the sets P n PJ° (1 ^ / ^ 2r°) into an arc on 
the unit circle (not onto the whole circle), and the Tietze extension 
theorem shows that / may be extended to a continuous map of 
U PJ° (1 <̂  / <J 2r·) into the unit circle; in particular, /(#J) will 
be defined if r ^ r0. We can choose r > r0,r > 3/ε, and such that 

(5) |/(«) - /(*J)| < e/3 (* 6 PJ, l g / g 2^. 

Our choice of F r shows that there exists y € Fr for which 
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(6) l / (*5)-(*5.y)l<i/ ' (i £ / £ * ) . 

If we add the inequalities (3), (5), and (6), we obtain 

(7) \f(x) - (x, y)\ < 2/r + ε/3 < ε 

for all x e \J PJ·, hence for all z € P, and part (a) is proved. 

If G = Dqf we proceed in almost the same fashion. Having con-

structed neighborhoods (1), we choose {Wt} as before; Lemma 5.2.3 

shows that there are points xj € Wt (1 ^ j ^ 2s) such that 

{z[, . . ., xj,} is a set of type Kq. Hence there is a finite set FrCT 

with the following property: to each choice of numbers zi c Zq 

there exists at least one y € Fr which satisfies the simultaneous 

equations 

(8) (*J. y) = z, (1 ^ ; S 2')· 

Choose disjoint compact neighborhoods PJ of x* (1 ^ / ^ 2
r
) such 

that PrtCW;f d(z, **) < 1/r for all a; c PJ, and 

(9) (*,y) = te>y) ( l á í á f ) ; 
this is possible, since each y is constant in a neighborhood of xj. 

Now define P by (4). If / is a continuous map of P into Zqt then 
P = 2?! u . . . u EQ, where / is constant on each £¿. There are 
open-closed sets K{ D E4 whose union is DQ. Extend / so that it is 
constant on each Kt. Then / is a continuous map of Dq into Zq. 
Choose r so large that / is constant on each of the sets PJ (1 <£j'^2r). 
Our choice of Fr shows that 

(10) /(*;) = (aj, γ) ( I á / á 2') 

for some y e Fr, and by (9) this implies that f(z) = {z, y) for all 
x € U -PJ» hence for all z € P. 

This completes the proof. 

5.2.5. REMARK. If μτ is the measure which is concentrated on 

the set {z[, . . ., x\¿ such that μτ{{ζ%) = 2~
r
 (1 ^ / ^ 2

r
), then 

the measures μτ have a weak*-limit μ € M(P) such that ||μ|| = 1, 

μ ^ 0, and μ is continuous. 

Hence there exist non-trivial continuous measures on each Can-

tor set. 
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5.2.6. THEOREM. Every non-discrete LCA group G contains an 

independent Cantor set. 

Proof: This is a corollary of Theorem 5.2.2. For if G is not an 

/-group, then G contains DQ as a closed subgroup (Theorem 2.5.5). 

Hence G either contains a Cantor set which is a Kronecker set, or 

one which is of type Kqt and the theorem follows from Theorem 

5.1.4. 

In some of our applications (for instance, in Section 5.3) this 

result is all that is needed. However, the proof of Theorem 5.2.2 

was no harder than a direct proof of Theorem 5.2.6 would have 

been. 

5.2.7. One might think that compact independent sets have to 

be totally disconnected. This is trivially true on the line, and is 

true in finite-dimensional groups (Theorem 5.2.9). However, it is 

not true in all cases: 

THEOREM. The infinite-dimensional torus Τω contains an arc 

which is a Kronecker set. 

Proof: Each x e Τω is of the form 

(1) x = (ξΐ9 ξ2ί f3, . . .) (£,· real mod 2π). 

Suppose 0 < α < β < 1, and let L be the set of all x(t) € Τω of the 

form 

(2) x(t) = (2nt, 2πΡ, 2πΡ, . . .) ( β ^ ί ^ ί ) . 

Then L is clearly an arc. If fe C(L) and |/| = 1, then there is a 

real continuous function h on [a,/?] such that f(x(t)) = 

exp {2nih(t)}. If nlf . . ., nk are integers and if γ is the character 

on Τω defined by 

(3) (x, γ) = exp {Hn^x + . . . + "*£*)}, 

then 

!/(*(*)) - (x(t), y)\ = |exp {2nih(t)} - exp {2mJ,nf)\ 
1 

^ 2n\h{t) - Σ V | ( a g i ^ β). 
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Hence the theorem is a consequence of the following lemma: 

5.2.8. LEMMA. / / 0 < a < /? < 1, then every real continuous 
function on [a, ß] can be uniformly approximated by polynomials 
^£nrt

T with integral coefficients nr. 
Proof: Let R be the set of all functions on [α, β] which can be so 

approximated. It is clear that R is closed under addition and mul-

tiplication, and since R contains the identity function, R separates 

points on [a, /?]. If we can show that R contains all constants, 

then the lemma follows from the Stone-Weierstrass theorem. 

So, choose a constant c, and define 

(i) s9(t) = j { i - p - (i - t n 

where p is a prime. Applying the binomial theorem to (1 — t)v, 

we see that Sv is a polynomial with integral coefficients. Also 

pSp(t) -> 1 uniformly on [α, /?], as p -> oo. For each />, there is an 

integer qv such that \c — qjp\ < 1/p, and it is clear that 

qvSp(t) -> c uniformly on [a,/?]. This completes the proof. 

A full discussion of approximation by polynomials with integral 

coefficients is given by Hewitt and Zuckerman [2]. 

5.2.9. THEOREM. IJ G is a metric LCA group, if dim G = 

n < oo, and if E is a compact independent subset of G, then E is 

totally disconnected. 

Proof: If E is not totally disconnected, then E contains n + 1 

disjoint compact connected sets Xlf . . ., Xn+1. If X = 

ΧΊ X X2 X . . . x Xn+lt then dim X ^ n + 1 (Hurewicz [1]). 

Since E is independent, the map 

(xlt . . ., xn+i) —> a?! + . . . + xn+i 

is a homeomorphism of X into G. Since dim G = n, we have a 

contradiction. 

5.3. TAe Asymmetry of M(G) 

5.3.1. A commutative semi-simple Banach algebra A is called 

symmetric or self-adjoint if, regarded as a function algebra on its 
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maximal ideal space, it is closed under complex conjugation. 
Without reference to the maximal ideal space, the condition may 
be expressed like this: it is required that to each x c A there 
corresponds an element x* € A such that 

(1) h(x*) = h{x) 

for every complex homomorphism A of A. 
In this section we prove the remarkable result (Theorem 5.3.4) 

that M(G) is not symmetric, unless G is discrete. (For discrete G 
there is no problem: M(G) = Ll(G), JTÍS the maximal ideal space 
of LX(G), and Α(Γ) is closed under complex conjugation.) For 

G = R, this was proved by Sreider [1]; Hewitt [3] extended it to 

/-groups, and Williamson [1] completed the theorem; see also 

Rudin [11], [14]. 

The asymmetry of M(G) seems so remarkable for the following 

reason: Define hyi for γ e Γ, by 

(2) Ηγ{μ)=μ(γ) (μ*Μ{0)). 

Then hy is a complex homomorphism of M(G), and if fi is the 

measure defined by fi(E) = μ(— Ε), then we do have 

(3) h7(ß)=h^T) (ytT). 

Thus the symmetry requirement is satisfied for the homomorph-
isms (2); moreover, these homomorphisms determine μ, by the 

uniqueness theorem for Fourier-Stieltjes transforms, and we are 

led to the following conclusion: 

/ / M(G) is symmetric, then μ* = β. 

5.3.2. THEOREM. Suppose G is not discrete, P is an independent 

compact set in Gf and Q = P u (— P). If μ e M{G) is a continuous 

measure concentrated on Q, then the measures δ0, μ, μ2, μζ, . . . are 

mutually singular. 

We recall that δ0 is the unit of M(G), and that μη
 =-· μη~τ * μ. 

Proof: Replacing μ by \μ\, we may assume, without loss of 

generality, that μ ^ 0. Since μη
 is concentrated on Qn, where 

Qi — Q a n (
i Qn = Qn-i + Q> ^ is enough to show that 
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(1) M*(Qm) = 0 (m< n). 

Fix m and n, m < n, and let S be the set of all points 

(xl9 . . ., xn) € Gn
 such that 

(2) Χχ € ρ, . . ., Xn € Q; XX + . . . + Xn « Qm-

Since μ is concentrated on Q, we have, by 1.3.2(2), 

(3) ß*(Qm) = M S ) 

where μ(1) = μ, μ{η) = μ X μ{η_ν; note that μ{η) €M(Gn). 

Suppose («x,.. ., xn) € S. By (2), there are points yl9..*,ymeQ 
such that 

fro· (4) *i + - . - + * » = !fi + · - · + y« 

The definition of Q shows that xt = ε ^ , where p{€ P and £¿ = ± 1. 
If £t. φ ρ. whenever i Φ j , then since n > m, (4) leads to a relation 

between elements of P which contradicts the independence of P. 
Hence x{ ±x$ = 0 for some i Φ j , and we conclude that S is con-

tained in the union of the sets E^ and E^ (i, j = 1, . . ., n\ i Φ j) 
which are defined by xi + xi = 0, xt — xf = 0. Since μ is continuo-

us, the Fubini theorem shows that μ(η)(Ε'ίί) = μ{η)(Ε'ύ) = 0 if 

i Φ j \ hence μ(η) (S) = 0, and the theorem follows from (3). 

5.3.3. COROLLARY. Suppose μ is a non-negative continuous 

measure concentrated on Q = P u (— P), where P is compact and 

independent in G. Then 

(a) llÍ«»¿K»ll = Í l«*HMI* 
fc-0 *«=0 

for arbitrary n ¡> 0 and arbitrary complex numbers a0, . . ., an\ 
(b) if eißt is defined by 

oo ¿fc 

t - o « ! 

then \\¿*\\ = eM. 
Proof: Since the μ* are mutually singular (μ° = d0) we have 

Ι ΙΣ^ΙΙ = Σ l«*l · INI* (Appendix E 2); since μ ^ 0, ||/i*|| = 

|HI*; (a) follows. 
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The series defining eift converges in the norm of M(G)t so that 
(a) implies 

llaMU = lim 112^11 = lim ¿ I |H* = e^\ 

and the proof is complete. 
We note that results analogous to (b) hold of course if the ex-

ponential function is replaced by any entire function. 

5.3.4. THEOREM. Suppose G is not discrete. Then 
(a) M(G) is not symmetric, 
(b) there exists a real function φ € Β(Γ) such that φ(γ) ^ 1 for all 

yeP, but 1/φ4Β(Γ). 

Proof: By Theorem 5.2.6, G contains an independent Cantor set 

P and (see 5.2.5) there is a non-negative continuous measure μΐ9 

concentrated on P, with \\μτ\\ = 1. If 

ί
1
) μ = i(/*i + Ai) 

then μ = /ϊ, μ is concentrated on Q = P u (— P), μ ^ 0, and μ 
is continuous. Put σ = ό0 — /A Applying 5.3.3, we obtain 

(2) ||cr-|| = l l Í ( j ) ( - l)V2fcll = ¿S ( j ) = 2» ( « - I . 2, 3, . . . ) , 

so that the spectral norm of a, lim ||<rT;1/n, is 2 (Appendix D6). 
Hence there is a complex homomorphism h of M(G) such that 
|Α(σ)| = 2. Since ||μ|| = 1 we have |λ(μ

2
)| ^ 1, and so the equa-

tion 

(3) II — A(^
2
)! = |A(or)| = 2 

is possible only if h(jjp) = — 1 and h{a) = 2. 

Since Α(μ)
2
 = Α(μ

2
), we have Α(μ) = ± i. Since μ = β, 

h(ß) = Α(μ). Hence Α(/Ζ) ^ Α(μ)>
 a n

d the conclusion of Section 

5.3.1 shows that M(G) is not symmetric. 

To prove (b), put τ = <J0 + μ2. Since /I = μ, μ is real on P, 

hence — 1 ^ ^ ^ 1, and thus 1 ^ f(y) ^ 2 for all γ € Γ. But 

h(r) = 1 + Α(μ
2
) = 0, so that τ

_1
 does not exist in M(G). 
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This proof is due to Williamson [1]. For G = R, (b) was proved 

by Wiener and Pitt [1]. 

5.3.5. COROLLARY. Γ is not a dense subset of Δ, the maximal 

ideal space of M(G), unless Γ is compact (in which case Γ = Δ), 

5.3.6. The proof of Theorem 5.3.2 can be adapted to show that 

independent sets are thin in terms of Haar measure: 

T H E O R E M . If P is a compact independent set in a non-discrete 

LCA group Gt and if H is the group generated by P, then m(H) = 0, 

where m is the Haar mesaure of G. 

Proof: If Q = Pu ( - P) and Qk = Qk_x + Q, then H = \JQk 

(k = 1, 2, 3, . . .) and it is enough to show tha t m(Qk) = 0 for all k. 

Suppose m(Qh) > 0 for some fixed k. If χ is the characteristic 

function of Qk a n d / = χ * χ, then/ is continuous, /(0) = m(Qk)>0, 

hence f(x) > 0 for all a; in a neighborhood V of 0. Hence 

VCQk + Qk = Q2k. 

Let S be the set of all points {plt . . ., ρ&+2) € G2**2 with pt € P , 

such tha t 2 €iPi l*es i n ^ f° r some choice of {ε{}, ε, = ± 1 

(1 ^ i ^ 2k + 2). For each fa}, the map (j>x . . ., pu+2) -^ J efo 

is continuous, and thus S is a non-empty open set in G2*4*2. 

But since V C Q&, the argument used in the proof of Theorem 

5.3.2 shows that S lies in the union of finitely many sets defined by 

by pi ± Pi == 0 (* Φ /)· Since G is not discrete, these sets.have no 

interior, and we have reached a contradiction. 

5.4. Multiplicative Extension of Certain Linear Functionals 

5.4.1. Let Me(X) denote the set of all continuous measures 

which belong to M (X), where X is a compact Hausdorff space. 

I t is easy to see that MC(X) is a closed linear subspace of M(X)\ if 

X is perfect, Me(X) is infinite-dimensional. The following theorem, 

due to Hewitt and Kakutani [1], is an elaboration of an earlier 

result of Sreider [2]: 

THEOREM. Every non-discrete LCA group G contains a Cantor set 

P such that every linear functional on Me(P), of norm <̂  1, can be 

extended to a complex homomorphism of M(G). 
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5.4.2. LEMMA. Suppose P is a compact independent set in G, 

μχ,. . ., μτ are non-negative continuous measures, concentrated on 

disjoint subsets El9 . . ., Er of P, and ||μ,|| = 1 (1 <¡ i ig r). If 
zx, . . ., zr are complex numbers satisfying \zt\ ^ 1, then there exists a 
complex homomorphism h of M(G) such that 

(1) Afo) = zt (1 £ * £ r). 

Proof: Let S(nx, . . ., nr) = nxEx + . . . + nrEr, where nE 
denotes the set of all xx + . . . + *n with x5 € E. Consider two 
fixed measures 

(1) X = μχ
η\ * . . . * μΓ

η
', ν = /4x

m
i * . . . * μ/**, 

with wx + . . . + nr ^ mx + . . . + mr. They are concentrated on 

S(nx,.. ., nr) and S ^ , . . . , mr), respectively. Put 

(2) S = S{nXf . . ., nr) n S(mx> . . ., mr). 

Every x c S has two representations 

(8) (*i + - · · + ¿ΐ
1
) + · · · + («5 + · · · + *M 

= (2/i + . ·. + 2/Γ
1
) + . · · + {y\ + · · · + ¡C). 

where xj e 2?, and y% € E{. 
Fix i, /, Ä, / ^ k, and let Z) be the set of all points represented 

by the left side of (3), with the restriction that x\ = x{. Then 

(4) λ(Ώ)^(μϊΧ . . . Χμϊ){Ώ') 

where Ώ' is the set of all points 

(5) (χ\,...>χϊ,...,χΙ,...,χη
/) 

in Gni+ - ··+nr
 such that x\ = x\\ since the measures /¿t are continuo-

us, Fubini's theorem shows that the right side of (4) is 0. Hence 
X(D) = 0. 

Thus, if X(S) > 0, it follows that for some x € S the a;* appearing 
on the left side of (3) are all distinct. Since J w f ^ Jm,·, the 
independence of P then implies that 2 n% = 2 m* * t*13* the yj are 
just a permutation of the x*, and hence that mi = w¿ for l ^ t g f . 
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This proves that λ and v are mutually singular, unless wt. = n{ 

for 1 ^ i <̂  r. Hence if / is any polynomial in r viarables, say 

(6) /(<, « = 2 « ( « i ^ - ^ 

we have 

(?) \Wx Λ)Ι Ι=Σΐβ(« ι . · · · .*Γ) Ι · 

Let us now assume that we have a special case, namely 

(8) |*,| = 1 (1 £ * £ r). 

We put σ = <50 + z1J«1 -f- . . . -f ζ,,μ,., express ση as a polynomial 
in μχ, .. ., μτ, and apply (7); the result is 

(9) ||<r«|l· = (r + 1)» (» = 1, 2, 3, . . .)· 

Hence the spectral norm of σ is r + *> and it follows that there is a 
complex homomorphism h of M(G) such that 

(10) |1 + ¿Μμ,) + . . . + ζΜμτ)\ = l*(")l = r + 1. 

Since |Α(μ,.)| ^ 1 for 1 ^ ί ^ r, (10) implies that ¿¿A(/0 = 1, or 

(11) *G«,) = zf ( l á ¿ ^ r). 

To remove the assumption (8), note that if \zt\ ^ 1 then 
zi = \(z\ + z'l), with \z\\ = |z¿'| = 1. The continuity of /¿¿ shows 
that £¿ = £¿ u £'/, where JEÍ¿(£¿) = μΛΕ'ί) = £ and £¿ n £'/ is 
empty: If μί9 μ[ are the restrictions of μί to 2¿¡, £¡', the special 
case applies to the measures 2μ\, 2μ'/, . . ., 2μ'τ, 2μ'τ and yields a 
homomorphism h such that 

(12) 2Η[μ\) = *;. 2A(¿ ' ) = z¡ (I ^ í á r). 

This is the A whose existence the lemma asserts. 

REMARK. We could equally well consider measures concen-
trated o n P u ( - P ) . The notation would be more complicated 
(± dl in place of οή, etc.) but the idea of the proof is unchanged. 

5·4.3. Proof of Theorem 5.4.1. By Theorem 5.2.6, G contains 
an independent Cantor set P . Let I be a linear functional on 
Me(P)t with ||L|| 5S 1. 
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For μ € MC[P) and ε > 0, let Η{μ, ε) be the set of all complex 

homomorphisms h of M(G) such that 

(1) |A0u)-£(/ /)! <S*. 

The definition of the Gelfand topology (Appendix D4) shows that 

each Η(μ, ε) is a compact subset of the maximal ideal space of 

M(G). If we can show that the collection of all sets Η(μ, ε) has the 

finite intersection property, it will follow that there is an h0 which 

belongs to all Η(μ,ε); this A0 must satisfy the equation 

(2) Η0(μ)=Σ(μ) 

for every μ e Me(P) and hence furnishes the desired extension of L. 
So, suppose μΐ9 . . ., μτ € Me(P), εχ > 0, . . ., ετ > 0. Put 

σ
 = Σ I/"*!* where, we recall, \μ€\ is the total variation of /*,. By the 

Radon-Nikodym theorem (Appendix E9) there are Borel functions 

fi such that άμ{ = /.¿σ, and there are simple Borel functions g{ 

on P such that 

(3) jp\fi-gi\da<eil2 (l£i£r). 

If dXi = gida, it follows that ||rt. — μ€\\ < eJ2. 

The set P is the union of finitely many disjoint Borel sets 

Alt . . ,,An such that gt is constant (equal to C&) on 4*, for 

1 ^¡ ¿ <¡ r, 1 f£ £ <¡ n. Let σ* be the restriction of a to Ak. Since 

||L|| ^ 1, Lemma 5.4.2 assures the existence of an h such that 

h(ak) = L(ak), for £ = 1, . . ., n. Since Tf = ]£* cikak, we have 

(4) *(T|) = Σ «**(**) = 2 cikL [ak) = L (T<) ( l g i á r)f 

and since ||L|| ^ 1 and ||A|| = 1, we conclude that 

(5) \h(Mi) -LfrM ^ \Η{μ, - τ,)| + |L(rf. - μί)\ ^ 2 | | Λ - τ<|| < β,. 

The sets Η(μ{, ε,), 1 ig ¿ ^ r, thus have non-empty intersection, 
and the proof is complete. 

5.4.4. As an illustration, suppose P is an independent Cantor 
set in D2 and μ is a real continuous measure on P, with ||μ|| = 1. 
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Then the Fourier-Stieltjes transform of μ is real, but the range of the 

Gelfand transform of μ (i. e.t the spectrum of μ\ see Appendix D6) 

consists of the whole closed unit disc. 

Since each x e D2 has order 2, the characters of D2 are homo-

morphisms into Z2 , hence have only ± 1 as values. Thus μ(γ) is 

real for all γ in the dual of D2. But if \z\ ^ 1, there exists a linear 

functional L on Me(P), such that (|L|| ^ 1 and L(ji) = z\ by 

Theorem 5.4.1, L extends to a complex homomorphism h of M(G). 

Thus h^) = zf and since z was arbitrary, the proof is complete. 

5.4.5. Theorem 5.4.1 is probably the first known example of an 

infinite-dimensional subspace X of a Banach algebra A such that 

every linear functional on X, of norm not exceeding 1, coincides 

on X with a complex homomorphism of A. However, this pheno-

menon may be fairly common. 

For instance, let A = L°°(Z), the algebra of all bounded func-

tions on the integers. Let a run through an index set which has 

the power of the continuum. There exist real numbers aat ba such 

that the set consisting of all aa, all ba, and π, is independent. Let 

X be the linear space generated by the functions fat where 

(1) fa(n) = {exp {majcos nba (n € Z), 

and let I be a linear functional on X, such tha t | |L| | ^ 1. 

By Kronecker's theorem (Section 5.1.2) there corresponds to 

each finite set a l f . . ., afc and to each ε > 0 an integeí n such that 

(2) I / « » - £ ( / . , ) ! < * (l^r^k). 

IfH(&lt...,&k,e)is the set of all complex homomorphisms h of A 
such that \h{faf) — L{fUr)\ < ε for 1 ^ r ^ *, it follows that these 

sets have the finite intersection property, and the proof is complet-

ed just as in 5.4.3. 

S.S. Transforms of Measures on Kronecker Sets 

5.5.1. LEMMA. Suppose X is a compact Hausdorff space and U 

is the set of all f € C(X) with |/| = 1. 

(a) / / μ € M(X), then \\μ\\ = sup \¡xfd^ (/ € U). 
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(b) / / μ€Μ€(Χ), the set of all numbers Jx/άμ, where f ranges 

over U, is dense in the disc \z\ ̂  \\μ\\. 

Proof: We first prove (b). Suppose ||μ|| = 1, without loss of 
generality, and fix z, \z\ ^ 1, and ε > 0. Then z = z1 -f z2, where 
izil = tal — h Since μ is continuous, X is the union of disjoint 
sets XlfX2 such that |μ|(.Χι) = H ( ^ ) = £· There is a Borel 
function φ on X, with |^| = 1, such that φάμ = ¿|μ|; this follows 
from the Radon-Nikodym theorem. It follows that there are Borel 
functions gk on Xkt 0 ^ gk ^ 2π, which satisfy the equations 

(1) L / ^ ^ = ^ (¿ = 1,2). 

If g == gfc on Xjb, then g is a Borel function on X, 0 ^ g ^ 2π, and 

(2) ^¿*ilA = Zm 

By Lusin's theorem (Appendix E8) there exists AeC(X), 
0 ^ A ^ 2π, such that h = g in the complement of a set E with 
|μ|(£) < ε/2. Putting / = ¿?ι\ we obtain 

(3) \\χίάμ - z\ = \jg (** - ε»)άμ\ ^ 2\μ\(Ε) < ε, 

and (b) follows. 

To prove (a), note that \\μ\\ = Jx βίσάμ for some Borel function 
g, 0 ^ g <* 2π, and apply Lusin's theorem, as above. 

5.5.2. THEOREM. Suppose P is a compact Kronecker set in G. 

(a) If μ€Μ(Ρ), then IjilL = ||/ι|Ι· 
(b) / / μ € MC(P), then μ maps Γ onto a dense subset of the disc 

\*\ ^ IHI. 
Proof: By Lemma 5.5.1(a) there exists f€C{P), with |/| = 1, 

such that J fdμ differs from \\μ\\ by as little as we please. Since P 
is a Kronecker set, \f(z) — (x, γ)\ can be made arbitrarily small 
for all x € P by proper choice of γ. Hence the difference between 
\μ{γ)\ and ||μ|| can be made arbitrarily small, and this proves (a). 
Part (b) follows similarly from 5.5.1(b). 

It is not known whether property (a) characterizes Kronecker 
sets. 
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5.5.3. THEOREM. Suppose P is a compact set of type Kq in DQ, 

and μ€Μ{Ρ). Then | | ? |L ^ *||/i||. 
Proof: Assume \\μ\\ = 1. There exist Borel functions a, g, and 

h = eiag on P such that |g| = 1, ξάμ = ά\μ\, —π/q ^ QL(X) ^ n¡q, 
and h maps P into ZQ. Hence 

(1) |JA<W = \jeiad^\\ ^ Jcosoc¿|/*| ^ cos (nfq). 

There are continuous functions fn on P whose range lies in Zq, such 
that J ίηάμ -> J Κίμ. Since P is of type l£a, each /n is the restric-
tion to P of a continuous character of G, and so 

(2) IIÍIL ^ cos (π/?). 

This proves the theorem for q ^ 3. 

If y = 2, put μ = μχ + χμ^ (/ai real). Since the characters are 
now real, μ = μχ + ίμ2 and ^ , μ2 are real. Fix/ (/ = 1 or 2) so that 
| \μ^\ | >̂ 1/2. There is a Borel function A, with values ± 1, such 
that Ηάμ^ = ¿1^1; hence J Aá/^ ^ 1/2. It follows, as above, that 
Ιΐί,ΙΙ«, ^ 1/2. Since \μ{γ)\ ^ |^(y)|, the proof is complete. 

5.6. tielson Sets 

5.6.1. We call a compact set P i n G a Helson set if every 
F € C(P) is the restriction to P of a member of -4(G), i.e., if to 
every F e C(P) there corresponds a function / € Ll(r) such that 

(1) F(x) = /(*) = ¡rf{y){x9 y)dy (x e P). 

The reason for this terminology is Theorem 5.6.10 (Helson [6]). 
Carleson [1] had previously studied sets with a similar property 
relative to absolutely convergent power series. See Wik [1]. 

Note that /, as defined by (1), is really the inverse transform of 
/, since we have written (x, γ) in (1), and not (— x, γ). This choice 
is imposed by the inversion theorem. 

5.6.2. For any compact set P, let 7(P) be the set of all functions 
in Σ*{Γ) such that f(x) = 0 for all x € P . It is clear that I(P) is 
a closed ideal in Ll(r). For / e Lx(r)t let nf be the restriction of / 
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to P. Since nf = 0 for all / c I{P), n may be regarded as a linear 

transformation of the quotient space Lx(r)fI{P) into C(P). The 

definition of the quotient norm (Appendix C2) shows that π is a 
bounded linear transformation, with ||π|| f£ 1; π is one-to-one on 
¿1(Γ)//(Ρ), and the Stone-Weierstrass theorem shows that the 
range of π is dense in C(P). Thus π satisfies the hypotheses of the 

theorem on adjoints (Appendix Cll). Let us compute π*. 

The dual space of L
1
(P)//(P) is the space Φ(Ρ) which consists 

of all φ€Σ°°(Γ) such that 

(i) / Γ / ω * ( - r)*y = ° (f€i{P)). 

If μ € M(P) and φ = π*μ, then φ € Φ{Ρ), and the definition of the 

adjoint of a linear transformation shows that 

(2) ¡ΓΗγ)Φ(- y)iy = ¡¿(χ)αμ(χ) V * ν(Γ)). 

The right side of (2) is equal to 

(3) JX/fr) (*. ν)*ν*μ{*) = SrfW SP ̂  rWV)*y 

= jrf(y)v(-y)dY' 

Comparison of (2) and (3) shows that φ = μ almost eveiywhere. 

Since we identify functions in Z,°°(P) which coincide almost every-

where, we have 

(4) π*μ = μ (μ€Μ{Ρ)). 

By definition, P is a Helson set if and only if the range of π 
covers C(P). Theorem 11 of Appendix C therefore yields the 

following equivalences: 

5.6.3. THEOREM. The following three properties of a compact set P 

in a LCA group G are equivalent: 

(a) P is a Helson set. 

(b) \\μ\\ and ΠΛ*1 loo
 are equivalent norms on M(P). 

(c) Each φ€Φ(Ρ) is (equal almost everywhere to) the Fourier-
StieUjes transform of a μ*Μ(Ρ). 
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Property (c) is of interest in connection with the problem of 
spectral synthesis (see Theorem 7.8.8). 

5.6.4. If P is a Helson set, then the transformation π intro-
duced in 5.6.2 has a continuous inverse (Appendix C6), and the 
definition of the quotient norm implies that there is a constant K 

with the following property: if F€C(P), there exists / C Z ^ J T ) 

such that F = / on P and H/IU ^KWFU^. 

It is interesting that an apparently much weaker interpolation 

property is in fact equivalent to this: 

5.6.5. THEOREM. Suppose P is compact in G, δ > 0, K < oo, 
and suppose that to every F € C(P) with \F\ = 1 there corresponds a 

function ftlMJT) such that \\f\\x <Z,K and such that 

(1) sup \f{x) - F(x)\ < 1 - á. 
X€P 

Then P is a Helson set. 
Proof: If F and / satisfy these conditions, and if μ e M(P), then 

(2) \\ρϊ{χ)άμ{χ)\ = | J r / ( y ) ¿ ( - y)dy\ =g H / H ^ I L ^ Κ\\μ\\^ 

so that 

(3) \\ρΡαμ\ < φ ί · - / | % | + \\ρμμ\ ^ (i - * ) | H I +AII Í IL-

The supremum of the left side of (3) is \\μ\\, by Lemma 5.5.1. 
Hence 

(4) δ\\μ\\^Κ\\μ\\οο (μ*Μ(Ρ)), 

which shows that P has property (b) of Theorem 5.6.3. 

5.6.6. The existence of perfect Helson sets in every non-dis-
crete LCA group G is now easily established: 

THEOREM. Every compact Kronecker set is a Helson set, and so is 

every compact set of type KQ in Dg. 

Proof: This follows immediately from Theorems 5.5.2(a), 5.5.3„ 
and 5.6.3(b). 
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5.6.7. THEOREM. / / P is a countable, compact, independent set 

in G, then P is a Helson set. 

Proof: Let E = {xlf. .., a:w} be a finite subset of P, let xlt.. ,txr 

be those points of E (if any) whose order is 2, and let μ be a 

measure concentrated on E, with ||μ|| = 1. We will show that 

there are numbers aj€S(xj)t (this notation was introduced in 

5.1.3) such that 

0) lÍ%"(K>)l^i 
i 

Since neither \\μ\\ nor the left side of (1) are changed if μ is 

multiplied by a scalar of absolute value 1, we may assume that 

(2) ΣΙΚβ^Ι^έίΐΛΙ. 
1 1 

where pj = μ{{χ^). For 1 ̂  / ^ r, put af = ± 1
 s o

 that 

ÄJ Re pi ^ 0. For r + 1 ̂  / <̂  n, choose δ,, |6i| = 1, so that 

bipi >̂ 0, and choose Θ,., — π/3 ̂  0, 5̂  π/3, so that a, = 

ei9'bi€S(xi). Then 

Re 1 α^ = t «, Re ft + Σ «* 0,|ft| ^ i £ |ft| = i 
i A r+1 1 

and (1) is proved. 

By Theorem 5.1.3, this means that 

(3) HÍIL ^ t lMI 
for every measure μ concentrated on E. Since every μ c M (P) is a 

limit, in the norm of M(P), of measures concentrated on finite sub-

sets of P, the inequality (3) persists for all μ € Af (P). Thus P has 

property (b) of Theorem 5.6.3, and the proof is complete. 

5.6.8. It is not true that every countable compact subset of a 

LCA group is a Helson set. For instance, a Helson set P on the line 

cannot contain arbitrarily long arithmetic progressions (Section 

6.8); a stronger result (Kahane and Salem [2]) is that no arith-

metic progression of N terms (N ̂  2) contains more than A logN 
terms of P, where A is a constant depending only on P. 
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It does not seem to be known whether the union of two Helson 

sets is a Helson set. 

5.6.9. We now insert a theorem which concerns the ' 'mean-

value" of a Fourier-Stieltjes transform. Suppose {Va} is a neigh-

borhood base of 0 in G, associate with each Va a continuous posi-

tive-definite function fa whose compact support lies in Vat such 

that /a(0) = 1, and define 

(1) AM = jrfa(Y)\fi(y)\2dY (μ*Μ{0)). 

Since fa ^ 0 and irfaM^Y = *> Αα(μ) may be regarded as an 

average of \β\2. 
We say that lima ΑΛ(μ) = A if to every e > 0 there exists a 

neighborhood V of 0 in G such that \Αα(μ) — A\ < ε for all 

vacv. 
THEOREM. For any μ e M(G), we have 

(2) lim¿eGu)=2lA«({*})|». 
a xeG 

Note that at most countably many terms of this sum are different 
from 0. For G = T, the theorem is due to Wiener; see Zygmund 
[1], vol. I, p. 108. 

Proof: Put σ = μ * fi, so that σ = |/¿|2. If we apply the inversion 
formula to fa, (1) becomes 

(3) J e / . ( - x)da(x) = Αα(μ), 

and this shows clearly that ]ίτηΑα{μ) = σ({0}). Since σ(Ε) = 

ίσμ{χ ~~ Ε)άμ{χ), we have 

(4) σ({0}) = jeMfäm*) = Σ l̂ (W)l2. 

and (2) follows. 

COROLLARIES, (a) / / fieC0(r)t then μ is continuous. 
(b) / / \fi\ = 1, then 2 liw({a:})|

2
 = 1 (Helson [3], Glicksberg [1]). 

To prove (a), choose ε > 0, let K be a compact set in ,Γ such 

that \fi\ < ε in the complement K' of K, and write (1) in the form 
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Jx + JJT- Since l/j 5S w c(FJ, the first integral is no larger than 

mG(Va) - tnr(K) * \\μ\\2, and the second is less than ε
2
. Hence 

lim Αα(μ) 5= 0 and so μ({χ}) = 0 for every x € G. 

Part (b) is an immediate consequence of the theorem. 

5.6.10. THEOREM. Suppose P is a Helson set in a LCA group G, 
σ € M(P), and σ^Ο. Then & is not in C0(P). That is to say, δ does 
not vanish at infinity. 

Proof: Let M0 be the set of all μ e M (P) such that fi c C0(P). 

Since \\μ\\ and WfiW^ are equivalent norms on M(P) (Theorem 

5.6.3), the map μ -> β carries M0(P) onto a closed subspace of 

C0(r) and has a continuous inverse. It follows that every T € M* 
(the dual space of M0) is of the form 

(1) Τμ=\Γβάλ (μ*Μ0) 

for some λ e Μ(Γ). But J r βαλ = ¡G Χάμ, so that every T € M* 

is of the form 

(2) Τμ=\ρίάμ (μ*Μ0), 

where f€C{P). 

If <£ is a bounded Borel function on P, then J ̂ ώμ is a bounded 

linear functional on M0, and it follows that there exists / € C(P) 

such that 

(3) ¡ρ(φ-ί)αμ = 0 (μ€Μ0). 

If αμγ(χ) = (x, y)¿//(x), then /2r is a translate of β, hence 

/¿r € C0(JT), and so 

W Jp(*(*) - /(*))(*, γ)αμ{χ) = 0 (p cM0, γ e Γ). 

The uniqueness theorem for Fourier-Stieltjes transforms thus 

implies: to every bounded Borel function φ on P there exists f e C(P) 
such that 

(5) φάμ = /άμ (jie M0). 
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Suppose now that a e M0 and σ Φ 0. By Theorem 5.6.9, a is 
continuous, and its support S is therefore a perfect subset of P. 

If S contains two disjoint open sets Vx and V2 (open relative to S!) 
which have a common boundary point, and if φ is the charac-
teristic function of Vlf then the measure φάσ is not equal to fda 

for any / e C(P), since \o\(V) > 0 for every non-empty relatively 
open subset of S. This contradicts (5). 

The proof will thus be complete if we can show that S contains 
two disjoint relatively open sets whose closures intersect; i.e., we 
have to show that S is not "extremally disconnected" (see Kelley 
[1]). Since & € 00(Γ), σ vanishes outside an open subgroup Λ of Γ 

which is generated by a compact neighborhood of 0 in Γ. The 
annihilator H of Λ is compact, and since a = a * mHt it is clear 
that σ(Ε) = σ(Ε — x) for all Borel sets E in G and all x c H. 

Thus S is a union of cosets of H. This implies that H is a Helson 
set in G, and hence (Theorem 2.7.4) A{H) = C(H). But then H 

is finite (Theorem 4.6.8), Λ has finite index in Γ, ΓΪ5 itself generat-
ed by a compact neighborhood of 0, and so every point of G has a 
countable neighborhood base (Theorem 1.2.6). If x e S, we now 
see that there is a simple countable sequence {a?n} in S, with χηφχ 

and xn Φ xm if n Φ m, such that lim xn = x, and there exist dis-
joint open neighborhoods En of xn. Put Vx = S n (J £2n-i> 
F2 = S n U £2n . Since these sets have a; as a common boundary 
point, the proof is complete. 

5.6.11. It is known that there exists an independent Cantor set 
on the line which carries a positive continuous measure whose 
Fourier-Stieltjes transform vanishes at infinity (Rudin [19]). 
Hence there exist independent Cantor sets which are not Helson sets 
and, a fortiori, are not Kronecker sets. 

5.7. Sidon Sets 

5.7.1. So far we have concentrated on compact sets, with parti-

cular emphasis on perfect sets, although the definitions of Kron-

ecker sets and of Helson sets can easily be extended to closed sets 

in LCA groups. The new phenomena which are caused by the loss 

of compactness are most conveniently studied by considering 
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closed discrete sets, and we shall actually restrict ourselves to 

subsets of discrete groups. 

For the remainder of this chapter, G will therefore be a compact 

abelian group and E will be a subset of its dual Γ. A function 

/ € X1(G) will be called an E-function if f(y) = 0 for all y not in E. 

A trigonometric polynomial on G which is an ^-function will be 

called an E-polynomial. 

5.7.2. We say that £ is a Sidon set if there is a constant B (de-

pending on E) such that 

(i) Σ l/(y)l ^ ¿ll/IL 

for every ¿s-polynomial / on G. We shall see that Sidon sets are the 
discrete analogues of Helson sets. The results which follow are 
generalizations (from the case G = Γ, Γ = Z) of theorems about 

lacunary trigonometric series. As references we cite Sidon [1], [2], 

Zygmund [1] (vol. I, pp. 208, 215, 247; vol. I I , p . 131), Kaczmarz 

and Steinhaus [1], Steckin [1], Hewitt and Zuckerman [3], and 

Rudin [17]. 

5.7.3. THEOREM. Each of the following five properties of a set E 

in the discrete group Γ implies the others: 

(a) E is a Sidon set. 

(b) Every bounded E-function f has ^\f(y)\ < oo. 

(c) Every continuous E-function f has ]T \f[y)\ < oo 

(d) To every bounded function φ on E there corresponds a measure 

μ € M(G) such that fi(y) = φ(γ) for all y e E. 

(e) To every φ e C0(E) there corresponds a function f e L1 (G) such 

that f(y) = φ(γ) for all y e E. 

Proof: Suppose E is a Sidon set, with constant B, and / is a 

bounded E-iunction. Given ε > 0 and ylt . . ., γη € Γ, Theorem 

2.6.8 shows tha t there is a trigonometric polynomial k on G such 

that \\k\\x < 1 + ε and kfa) = 1 (1 ^ z <¡ n). Since / * k is an 
is-polynomial, we have 

(i) Σ l/(y.)l = Σ l(/*)(y<)l ^ Σ \KY)HY)\ ^ B\\f * k\\m. 
t«=l t - s l γ€Γ 
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and since \\f * kW^ ^ l!/IUI*lli> w e conclude: 

(2) Σ ΐ / W l a Ä I I / I L . 

Thus (a) implies (b). It is trivial that (b) implies (c). 
Let CE(G) be the set of all continuous E-iunctions on G; CE(G) is 

a closed subspace of C(G), and if E has property (c), then the map 
/ -> / is an isomorphism of CE(G) onto Ll(E). Since U/H«, <¡ ||/|| lf 
the two norms are equivalent on CE(G) (Appendix C6) so that E 
is a Sidon set. 

Having proved the equivalence of (a), (b), (c), we now show 
that these conditions imply (d): If E is a Sidon set and |^(y)| ^ 1 
for all γ € E, then the map 

(3) f-+ltoM) 
γ€Ε 

is a bounded linear functional on CE(G) of norm ^ B which may 

be extended to C(G). by the Hahn-Banach theorem. Hence there 

is a measure ßeM(G) such that |MI ^ B and 

W Σ ίΜΦΜ = jji- *m*) (/«c,(C)). 

If γ € E and f(x) = (a;, y), (4) shows that φ(γ) = #(y), and so E 
has property (d). 

Suppose (d) holds and M' is the space of all μ € M(G) such that 
μ(γ) = 0 for all γ e E. Then M(G)/M' is continuously isomorphic 
to the space of all bounded functions on E, and the definition of 
the quotient norm shows that to each bounded function φ on E 
there corresponds a measure μ c M (G), with ft = ^ on E, such that 
I Ml ^ #IMIoo» where ^ is a constant depending only on E. If 
now φ € C0(£) and |^j ^ 1, let En be the (finite) subset of E at 
which 2~n < |^(y)| ^ 21-* (n = 1, 2, 3, . . .) and define <¿n(y) = 
φ(γ) on Ent φη(γ) = 0 at all other points of E. There are measures 
μη eM(G) such that fin — <¿n on £ and |(μη|| ^ 21~ηΖ?, and there 
are trigonometric polynomials kn on G such that kn = 1 on £Λ 

and ll^lli ^ 2. Put 

(5) / = ΣΚ*μη. 
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Since kn * μη is a trigonometric polynomial whose L1-norm is less 

than 22-"β, /eZ. 1^) · Also, if γ e En, then 

(6) to) = kWflnW = fin(y) = Φ(Υ), 

so that / = φ on E± u £2 u . . .. At all other points of E, f(y) = 0 
= φ(γ). Thus (d) implies (e). 

If (e) holds we see, as in the preceding paragraph, that to every 
φ€ϋ0(Ε) there is an f€Lx(G) such that ¡=φ on £ and 
H/llj ^ -Bll̂ lloo· Let g be an ^-polynomial, define φ so that 
4>{y)£(y) = IIMI i f ¿(y) Φ °> a ? d ¿(y) = O at all other points of E. 
and choose f €Ll(G) so that / = φ on £ and | | / ] | χ <£ B. Then 

(7) Σ \g(r)\ = I/(y)s(y) = (/**)(<>) ^ ll/lliltelL ^ *IML· 

and hence (a) holds. 
This completes the proof. 

5.7.4. THEOREM. A set E in the discrete group Γ is a Sidon set if 

there is a constant δ > 0 with the following property: To every func-

tion φ on E with φ(γ) = ± 1 there corresponds a measure μ e M(G) 

such that 

(1) s u p | / l ( y ) - ^ ( y ) | á l - í . 
ye£ 

In contrast to Theorem 5.6.5, no bound on ||μ|| is needed here. 
Comparison with property (d) of Theorem 5.7.3 leads to the follow-
ing interesting dichotomy: Either every bounded function on E 

coincides on E with a Fourier-Stieltjes transform, or there is a func-

tion φ on E, with φ(γ) = ± 1, such that 

(2) sup \μ(γ) - φ(γ)\ = 1 
γ€Ε 

for every μ € M(G). 

Proof: Let / be a continuous ^-function with / real, and define 
φ on Γ, so that φ = ± 1 and φ$ = |/|. By hypothesis, there is a 
measure μζΜ^β) which satisfies (1); if σ = \{μ + β), σ also 
satisfies (1), since d is the real part of fi, and we have 

(3) l/*-l/ll = l / l l* -* lá( i -*) l / | . 
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Hence, setting g = / * σ, we have 

(4) l = /»^«l/l-

Corresponding to any choice of y l f . . ., yn c J1 there is a trigono-
metric polynomial k on G such that |\k\\x < 2, £ ^ 0, and£(yt) = 1 
(1 ^ ¿ ^ w). Then k * g is a trigonometric polynomial, and 

<5Σ l/MI ^ 2 HviWi) ^ Ik{y)m = (* *g)(0) 
1 1 ycr 

áll*llillglLá2||a||-|l/ll··. 
Hence 2 | / (y) | < °°-

If / i s not real, put /x = / + / , /2 = ¿(/ — / ) . Then fx and /2 are 
continuous £-functions, ^ and f2 are real, and 2/ = /x — i/2. It 
follows that E has property (c) of Theorem 5.7.3. 

This completes the proof. We note that the introduction of the 
polynomials k amounts to applying a summability method to the 
Fourier series of g. 

5.7.5· We shall now apply the preceding theorem to exhibit a 
large class of infinite Sidon sets in any infinite discrete abelian 
group Γ. It is clear that £ is a Sidon set if and only if every 
countable subset of £ is a Sidon set. Hence we may restrict our 
attention to countable sets E, and therefore also to countable 
groups Γ. 

If E G Γ, let γ±, y2, y3, . . . be an enumeration of the elements 
of E, and for any γ e Γ and any positive integer s, let RS(E, γ) be 
the number of representations of γ in the form 

(1) γ = ±γηι ±γη% ± . . . ± γ^ [n± < tt2 < . . . < ns). 

THEOREM. Suppose E C Γ and E satisfies the following condi-
tions: 

(a) If γ € £ and 2γ φ 0, then — y i E. 
(b) There is a constant B and a decomposition of E into a union 

of disjoint sets Ex> . . ., Et such that 

(2) R8(EJt γ)^Β> (1 ̂  / ^ t; s = 1, 2, 3, . . .) 

for all γ € E and for γ = 0. 
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Then E is a Sidon set, 
Proof: Without loss of generality we assume that 0 4 E. Put 

ß = (StB2)"1, and let <f> be an arbitrary function on E such that 

Φ&) = ± ß-
Fix / (1 5* / ^ 0» ^et 7ι> ?2> Ύζ> · · · be an enumeration of the 

elements of Ejt put 

«n / ω = Í* + ^ ( r t ) (x'7i) + φ{Υί) {Xt
~~

y<) if 2y<
 ̂  °' 

U Tt{ } \ΐ+Φ(7<)(χ,γ<) if 2y¿ = 0, 
and define 

(4) pN(x) = π /,·(*) (*«G; N = 1 ,2 ,3 , . . .)· 

Multiplying out, we see that PN(x) equals 

(5) 1 + Σ ΦΜ (a?. y<) + Σ *iy,) (*. - Yi) + Σ cN(y) (x, y), 
t - 1 i - l y€«T 

where 

(6) My)l^íll¿(rBl).-.<¿(n,)l; 

the inner sum extends over all yn , . . ., yn winch satisfy (1) and 
hence has at most B* terms if y e E or if y = 0. Hence 

(7) feMláÍ^-ír|^¿ <M*.y-o). 

Since /? < £, PAT (a?) ^ 0, and so 

(8) ΙΙ-ΡΛΓΙΙΧ = 1 + %(0) ^ 1 + ¿ (tf = 1, 2, 3, . . .) 

by (7); in particular {||Ρ#ΙΙι} is bounded, and a subsequence of 
{PN} therefore converges, in the weak*-topology of M(G), to a 
measure μΊ€Μ(0; (5) and (7) imply that 

(9) { 
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We now put μ = μχ + . . . + μ%ί add the inequalities (9), and 
obtain 

(10) \fi(y) - φ(γ)\ ^ (6¿B*)-i ^ β/2 (γ e E). 

Hence E satisfies the hypothesis of Theorem 5.7.4, with <5 = 1/2, 
and the proof is complete. 

5.7.6. EXAMPLES, (a) Suppose yl9 . . ., γη are chosen, and Sn is 
the set of all γ € Γ of the form 

(1) γ=±Υίι...±Υίψ ( h < i , < . . . < f f ; l á ^ » ) . 

Then Sn is finite, and we can choose γη+1 outside Sn. Proceeding, 
we obtain an infinite set E = {yj which satisfies the hypotheses 
of Theorem 5.7.5 with / = 1, B = 1. Hence every infinite subset of 

a discrete group Γ contains an infinite Sidon set. 

(b) Similarly, every independent subset of Γ is a Sidon set. A 
case of special interest is obtained by taking G = D2. Every 
x € D2 can be expressed in the form 

(2) * = & . * , . f t . . . . ) (fn = 0, 1); 

the group operation is componentwise addition mod 2. Put 

(3) rn(x) = ( - 1)«· [x €D2, * = 1, 2, 3, . . .). 

The functions rn are continuous characters on Z)2. They form an 
independent subset of the dual group Γ (they also generate Γ). If 
we associate with each x of the form (2), the real number 

(4) * = Σ2-
Λ
£η> 

the map x -+1 is a measure-preserving map of D2 (with its Haar 
measure) onto [0, 1] (with Lebesgue measure) which is one-to-one 
except for a countable set, and if we identify x and t, our functions 
rn turn out to be the well-known Rademacher functions (Zyg-
mund [1]). 

(c) A set {nt} of positive integers is called a Hadamard set if there 
is a constant λ > 1 such that 
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(5) wi+1/nt. > λ {i = 1, 2, 3, . . .), 

in view of Hadamard's classical theorem concerning the natural 

boundary of power series of the form Σα£η*· 

If E is a Hadamard set with λ ¡> 3, then R8(n, E) ^ 1 for every 
ri€ Z. Since every Hadamard set is a finite union of sets with 
λ ^ 3, Theorem 5.7.5, implies: 

Every finite union of Hadamard sets is a Sidon set. 

The simplest known example of a Sidon set in Z which is not a 

finite union of Hadamard sets seems to be the following (Hewitt 

and Zuckerman [3]): 

For m = 0, 1, 2, . . ., set M = 2
m

, and let E be the set of all 

numbers 

(6) 3 ^ + 3
M

+> (j = 0, . . ., M - 1; m = 0, 1, 2, . . . ) . 

It is not hard to see that Rs(n, E) ^ 1, so that £ is a Sidon set. 

On the other hand, the number of elements which E has on the 

interval [x, 2x] is an unbounded function of x, and so £ is not a 

finite union of Hadamard sets. 

(d) Suppose Γ = Z
2
; consider Z

2
 as the set of all points in the 

plane whose coordinates are integers. Choose integers a, b, c, d, 
with ad — be = 1 and a + d > 2. Let A be the transformation of 

Z
2
 onto Z

2
 which carries each n = (nlt n2) to the point An = 

(anx + bn2, cnx + dn2). The orbit of n is the set of all points 

A*n (— oo < i < oo). 

The transformation A has two distinct eigenvectors vlfv2 in 

the plane; they do not lie in Z
2
; the corresponding eigenvalues 

Ax, Ag
 a r e

 positive, and λχ > 2. If w € Z
2
 (w # 0), the orbit of w 

lies on one branch of the hyperbola 

(7) ex2
 — (a — ¿)a;y — 6y2 = constant. 

THEOREM. IsacA /¿mfe union of such orbits is a Sidon set in Z2. 
Proof: If n = α ^ + α^ , then i4'» = ¿¿α^ + ^ α ^ ; since 

λχ > 2, we have Aj Φ ± Aj
l
 ± - · · ± Kk

 ^ h» · · ·» 4» * are distinct 

integers. Hence A*n Φ ± ^
1
'
1
« ± . . . ± 4̂»*», and it follows that 

each orbit satisfies the hypotheses of Theorem 5.7.5. 
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(e) It is not known in general whether the union of two Sidon 
sets is a Sidon set. 

5.7.7. If E is a Hadamard set, then every ¿"-function on the 
circle T belongs to LP(T) for all p < oo (Zygmund [1], vol. I, 
p. 215). Our next theorem implies that this property is shared by 
all Sidon sets. 

THEOREM. / / E is a subset of the discrete group Γ and if 

a) Σΐ/ωι^ιι/ιΐοο 
for every E-polynomial f on G> then we also have 

(2) H/IU ^ BVp\\ñ\t (2<P< oo). 

(3) U/H, ^ 2J5M/Ü1 
for every E-polynomial /. 

Proof: We use the fact that (2) is known for the Rademacher 
functions rn: if g(t) = 2>nrn( / ) , then 

W j] \g(t)\2mdt rg m - E \ak\*}™ (m = 1, 2, 3 . . .). 

This is usually proved for real ak (Zygmund [1], vol. I, p. 213), but 
the proof holds equally well for complex ak. Writing |g|2 = 
Ιδ12/3Ι?Ι4/3> Holder's inequality shows that 

(5) 11*11, ^ llgllfllfllf. 

Substituting (4) into (5), with m = 2, we obtain 

(6) {Σ l«*l
2
}

1/2 á 2¡l\g(t)\dt. 

Suppose now that / is an IT-polynomial on Gt and define 

(7) g,(x) = g[x, t)=l f<y)ry[t)(z, γ) (x *G, 0 f¿t ^ 1); 
7 

instead of writing rlf r2, . . ., we use the elements of Γ as indices. 
The proof that every Sidon set has property (d) of Theorem 5.7.3 
shows that we can associate to each t c [0, 1] a measure /i,eili(C) 
suchthat lililí ^ B and fitfy) = ry{t) for all y*E. Hence 
/ = St * Pt» a n ( ^ s o 
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(8) 11/11, á ΙΙΛΙΙ,ΙΙΛΙΙ á Bllgill, ( O á í ^ i ) . 

But we also have gt = / * μί9 so that 

(9) llftlli £ fill/Hi ( o ^ ^ i ) . 

With /> = 2m (8) becomes 

(10) JGI/WI
2W

 ^ B«-Je|f(*f /)|*-& (0 ^ * ^ 1). 

We integrate this over [0, 1] and apply (4), with coefficients 

/(y)(x, γ). The result is 

(11) jG \f(z)\*™dx ^ B»«m«{2 l/(y)l2}m. 

If now 2m — 2 ^ £ <̂  2m, then m ^p, since /> >̂ 2, and (11) 

implies 

(12) U/H, ^ |!/||2m 5S BV5ÍII/II. ^ ByftWfU,. 

This proves (2). Similarly, (6) gives 

(13) (Σ l/(y)IT
/2

 ^ 2 J*l«(*. 01* (*«C). 

If we integrate this over G and use (9) we obtain (3). 

REMARK. The term y/p in the inequality (2) cannot be replaced 
by anything whose order of magnitude is smaller. For if E is any 
infinite subset of Γ and if k is a positive integer, there is an E-

polynomial f on G such that 

(") ll/IU^VE 11/11·· 
4 

We refer to Rudin [17] for a proof of this statement, as well as 
for a more detailed discussion of problems concerning Lp-norms 
and lacunarity. 

5.7.8. Suppose G is compact. We saw in Chapter 4 that the 
only maps of Tinto Γ which carry LX(G) into £X(G) are the piece-
wise affine ones, and likewise for L°°(G). On the other hand, if 
1 < p < oo, there exist permutations of Γ (i.e., one-to-one maps 
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of Γ onto Γ) which cany LP(G) onto L*(G) but which are not so 

intimately related to the group structure of Γ. 
To see this, suppose 1 < p f£ 2, and let {yk} be an infinite Sidon 

set in Γ. If feLp(G), if h(x) = 2 ck(x, yt) is a trigonometric 

polynomial on G, and if l/p + l/q = 1, we have 

ΙΣ«*/(?*)Ι = [/β/(*)*(-*)<**| 

£ΙΙ/ΐυΐΑ||€£βν?ΙΙ/Ι!,{ΣΙ«*!·}*. 

by Theorem 5.7.7 (2). Hence 

{Σΐ/(η)Ι
2
}*^βν^ΙΙ/ΙΙ, 

for all f€Lv(G). If a is an arbitrary permutation of {yk}, if 

a(r) = y for all γ 4 {yk}, if / € L*(G), and if ¿(y) = /(a(y)), it fol-
lows that f — g €L2(G), so that geL*(G). Thus a carries LP(G) 
onto I*(G). 

Consideration of the adjoint map shows that a also carries Lq(G) 
onto Lq{G). 



CHAPTER 6 

Functions of Fourier Transforms 

6.1. Introduction 

6.1.1. Range transformations . Let Ω be a family of func-

tions, defined on some set S, and let F be a function defined on 

some set E in the complex plane. If the range of a function <f> e Ω 

lies in E, then F(<f>) denotes the function whose value at a point 

xcS is jF(<£(a;)). 

We say that F operates in Ω if JF(^) e Ω for every <f> e Ω whose 

range lies in E. Let (F) denote the map <f>-> F(<f>). If F operates 

in Ω, we call (F) a range transformation on Ω. Analogously, the 

maps pi -> μ ο α studied in Chapter 4 could be called domain trans-

formations. 

The topic of the present chapter is the determination of the range 

transformations of A (Γ) and B (Γ). The first result in this direction 

is due to Wiener [1] and Levy [1]. A simple proof, based on an idea 

of Calderón, is contained in Zygmund [1] (vol. I, pp. 245-246). 
This theorem asserts tha t if f e A (T) where T is the unit circle, and 
if F is analytic on the range of f, then F(f) € A (Γ). We shall see 

(Section 6.2) tha t the word "analyt ic" can be replaced by "real-

analytic", but (and this is one of the main results of this chapter) 

that the class of all real-analytic functions cannot be replaced by 

a larger one. 

Let JF be defined on the interval [— 1, 1] of the real axis. The 

following three theorems are prototypes of the more general re-

sults proved in Sections 6.6, 6.5, and 6.3. 

6.1.2. THEOREM. If F(f) *A(T) whenever f * A(T) and — 1 ^ 

/ ^ 1, then F is analytic on [— 1, 1]. (Katznelson [1].) 

6.1.3. THEOREM. / / {F(cn)} is a sequence of Fourier coefficients 

for every sequence {cn} of Fourier coefficients such that — 1 f£ cn 5g 1 
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(— oo < n < oo) (i.e., if F operates in A (Z)), then F is analytic in 
some neighborhood of the origin and F(0) = 0. (Helson and Kahane 
[1]·) 

6.1.4. THEOREM. / / {F(cn)} is a sequence of Fourier-Stielt jes 
coefficients for every sequence {cn} of Fourier-Stieltjes coefficients such 
that — l < £ c n ^ l ( — o o < n < o o ) (i.e., if F operates in B(Z)), 
then F can be extended to an entire function in the complex plane. 
(Kahane and Rudin [1].) 

The conclusions may be stated in terms of power series: in 6.1.4, 
F(t) = 2o° antn> a n < i ^ s series converges for all ¿; in 6.1.3, such a 
representation of F is valid in some neighborhood of the origin; in 
6.1.2, to each t0 in [— 1, 1] there corresponds a series 2J° an(t — t0) 
which converges to F(t) in some neighborhood of t0. 

6.1.5. Throughout this chapter, G and Γ will be infinite LCA 

groups, to avoid trivialities. The symbols ΑΛ(Γ) and BR{T) will 
denote the subsets of A (Γ) and Β(Γ), respectively, which consist 
of real-valued functions. 

The principal references for this chapter are the paper by Hel-
son, Kahane, Katznelson and Rudin [1] and the thesis of Katznel-
son [3]. Earlier results (besides those already cited) were obtained 
by Kahane [1], [2], [4], [5] and Rudin [2], [4]. 

6.2. Sufficient Conditions 

6.2.1. Real-analytic and real-entire functions. A complex-

valued function F, defined on an open set E in the plane, is said to 

be real-analytic in E if to every point (s0, t0) in E there corresponds 

an expansion with complex coefficients 

(1) F(s, t)=2 ann(s - s0)"(t - t0)\ 
m, n—0 

which converges absolutely for all (s, t) in some neighborhood of 

(*οΛ)· 
A function i7, defined on some plane set E, is real-analytic on E, 

by definition, if F is real-analytic in some open set containing E. 
If £ is a subset of the real axis, then ''analytic on E" and "real-
analytic on E" mean the same thing. 
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If F is defined in the whole plane by a series 

(2) F(s,t)= 1 amns™t» 
m, n«=0 

which converges absolutely for every (s, t), then we call F real-

entire. The example 

(3 )
 ^ . « ) - ( 1 + ^ ( 1 + f t ) 

shows that a function may be real-analytic in the whole plane 

without being real-entire. 

6.2.2. THEOREM. Every real-entire function operates in Β(Γ). 

Proof: If φ€Β(Γ) and φ = φ1 + ίφ2 (φ1$ φ2 real), then 

φχ,φ2€ Β(Γ). If F(s, 0 = Σ
 amnsmtn

 converges absolutely for all 

(s, t), then the series J amn <^$? converges in the norm of B{T); its 

sum is F$lt φ2) = Ρ(φ). 

6.2.3. THEOREM. 7/ F is real-analytic in a neighborhood of the 
origin and if F(0) = 0, then F operates in Α(Γ) if Γ is discrete. 

Proof: Suppose F(s, ¿) = Σ
 amnsmtn> Äoo = ö> an(* the series 

converges absolutely if \s\ < δ, \t\ < δ. Suppose also, for simplicity, 

that F is defined in the rest of the plane, it does not matter how. 

Given / € ̂ (G), there is a trigonometric polynomial P on G such 

that ||/ — P\\x < <$. Setting g = / — P, it follows, as in the proof 

of Theorem 6.2.2, that F(g)€A{r). Since F(g(y)) differs from 

F(/(y)) for only finitely many γ e Γ, we also have F(/) eA (Γ). 

6.2.4. THEOREM. / / F is real-analytic in an open set E in the 
plane, if f € A (Γ) and if the closure of the range of f lies in E, then 
F(f) € A (JT). (If Fis not compact, we also require that F(0) = 0.) 

This could be proved by an appeal to a theorem concerning the 

action of an analytic function of two complex variables on a 

Banach algebra (see Arens and Calderón [1], for instance). How-
ever, we shall present a proof which is essentially that of Wiener 
[1] and Levy [1], since its technique will be useful to us later. 

6.2.5. Let / be an ideal in A (Γ) and let φ be a function defined 

on F. We say that φ belongs to I locally at a point γ0 e F if there is 
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a neighborhood V of γ0 and a function f el such that φ(γ) = f(y) 

for all γ e V. If Γ is not compact and if there is a compact set 

K C Γ and a function f el such that <£(y) = f(y) in the comple-

ment of K, then <£ is said to belong to I locally at infinity. 

At present we shall need the following lemma only for the case 

Ι = Α(Γ). 

6.2.6. LEMMA. If φ belongs to I locally at every point of Γ {includ-

ing the point at infinity if Γ is not compact), then φ el. 

We note that / is not required to be closed. 

Proof: Suppose first tha t φ has compact support C. Then there 

exist (i) open sets Vx, . . ., Vn and functions fl9 . . .,fnel such that 

φ == f. in Vi and Vx u . . . u Vn covers C, (ii) open sets Wx, . . ., Wn 

with compact closures Wt C Vt such that Wx u . . . u Wn covers 

C, and (iii) functions kt e A (Γ) such that k{ = 1 on Wt- and k{ = 0 

outside K,. (Theorem 2.6.2). 

Hence φ%{ = /t- k{ e I, since I is an ideal, and if 

(1) ψ = # 1 - (1 - ¿χ)(1 - k2) . . . (1 - ¿n)}, 

it follows that y> el. The multiplier of φ in (1) is 1 whenever one 

of the ¿¿is 1, and this happens at every point of C; outside C, 
φ = 0; hence tp = φ, and thus <£ β / . 

In the general case, φ belongs to I locally at infinity, so that 

there is a function gel which coincides with φ outside some com-

pact subset of Γ. Then φ — g has compact support and belongs to 

I locally at every point of Γ; by the first case, φ —gel, and so 

φ€Ι. 

6.2.7. Proof of theorem 6.2.4. By the preceding lemma it is 

enough to show that F ( / ) belongs to Α(Γ) locally at every point 

o f f u {oo} (Appendix A5). Fix γ0 e Γ u {oo}, put ¡(γ0) = s0 + it0, 

and choose δ > 0 such that the series 

(1) F(s, t) = F{s0, t0) + Σ amn{s - s0)
m(t - *o)n K o = 0) 

converges absolutely for \s — s0\ ^δ, \t — t0\ ^ δ. 
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There exists a function g e ¡^(G) such that \\g\\x < δ and such 

that 

(2) f(y)=f(yo)+i(y) 

in some neighborhood V of y 0 . If y0 € Γ, this follows from Theorem 

2.6.5; if y0 = oo, then /(y0) = 0, and we put g = / — / * v, where 

v is chosen as in Theorem 2.6.6. Put g = gx + /g2 (glf g2 real). 

Then llalli < δ and Hftlli < ¿·. T ^ e series 

(3) f ««.«TA 

therefore converges, in the norm of ̂ (G), to a function A 6 ^ ( C ) ; 
we recall that g™ = g^ * g™""1, etc. But if y e K, we have 

F ( / ( y ) ) « F ( s e + ¿1(y).<0 + &(}')) 

(4) = F(s0,*0) + I « . Α Μ ' ά Μ ' 
TO, n— 0 

=-Ρ(*οΛ) + *(?)· 

Thus F(/) belongs to 4̂ (Γ1) locally at y0 and the proof is complete. 

6.3. Range Transformations on Β(Γ) for Non-Compact Γ 

We begin by stating two theorems. The first of these evidently 

contains the second. We shall show, conversely, that the first 

follows from the second, and will then prove the second. 

6.3.1. THEOREM. Suppose F is defined on the interval [— 1, 1], 

Γ is a npn-compact LCA group, and F operates in Β(Γ). Then F 

can be extended to an entire function in the complex plane. 

6.3.2. THEOREM. Suppose F is defined on the real line, F has 

period 2π, Γ is discrete and countable, and F operates in B(T). 

Then F can be extended to an entire function in the complex plane. 

6.3.3. Reduction of t he o r em 6.3.1. to theorem 6.3.2. Sup-

pose the hypotheses of Theorem 6.3.1 are satisfied. The structure 

theorem 2.4.1 asserts tha t / " h a s an open subgroup Γ0 which is the 

direct sum of a compact group and a euclidean space Rv, for some 
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p ^ 0. If J \ = Γ/Γ0 is infinite, then F operates in the algebra of 

all functions in Β(Γ) which are constant on the cosets of F0 , and 

this means that F operates in 2?(/Ί). It follows (Theorem 2.7.2) 

that F operates in B(A) where A is any countable subgroup of J \ . 

If Γτ is finite, then p > 0, since Γ is not compact, and so Γ con-

tains Rp, and hence also Zv, as a closed subgroup. It follows 

(again by Theorem 2.7.2) that F operates in B(ZP). 

We have proved that F operates in Β(Λ), where Λ is a countable 

discrete group. Consider the functions F x and F2 defined by 

(1) F1(s) = F(r1sins) , F2(s) ==F(r2 sin s) (— o o < s < o o ) 

where 0 < r2 < r2 < 1. Then F x and F 2 operate in Β(Λ), and if 

Theorem 6.3.2 is true, then Fx and F2 are entire. The formula 

(2) F(s) = F^arc sin (s/rj) ( - ^ < s < r,) 

shows that F can be expanded in a power series about the origin, 

and that this power series can be analytically continued to a 

(possibly multi-valued) function in the finite plane, except for 

possible branch points at s = ± rx. Using F2 in place of Flt the 

same argument shows that s == ± r2 are the only possible singular 

points of F in the finite plane. Since rx Φ r2, the analytic extension 

of F is an entire function. 

Hence 6.3.1 follows from 6.3.2. 

6.3.4. LEMMA. Suppose F is defined on the real line, η > 0, Γ is 

discrete and countable, and F(f) c Β(Γ) whenever feAR(r) and 

H/lli < η. Then F is continuous at the origin. 

Proof: Replacing F by F — F(0), we may assume that F(0) = 0. 

If F is not continuous at 0, there exists a sequence {an} of real 

numbers such that 2 \an\ < η but |F(an) | > δ for some δ > 0 

(n = 1, 2, 3 , . . .). Choose a sequence {>>„} in Γ such that 

ί
1
) 7η Φ 7i + Ύί — Ύ* 

if ¿, /, k < n, and put 

(2) / ( * ) = ! « . ( * . * ) (*«G). 
i 
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The hypotheses of the lemma imply that there is a measure 

μ € M(G) such that β{γη) = F{an) (n = 1, 2, 3, . . .) and β(γ) = 0 

for all other y e Γ. Define μη€Μ(Θ) by 

(2) άμη{χ) = ( - x, γη)άμ{χ) (η = 1, 2, 3, . . .) 

and let σ be a weak* limit of a subsequence of {μη}. By the trans-

lation lemma 3.5.1, a is singular. 

Since 1/1.(0)1 = \β(γη)\ = |F(aJ| > <5, we have |*(0)| ^ <5, and 

hence σ ^ 0. 

Fix 7 ^ 0 . Since £n(y) = /2(y + y j , we see that ßn(y) Φ 0 only 

if y + 7n
 ==: 7m f ° r some m. Our choice (1) shows that n o y ^ O 

has more than one representation of the form y = γη — γη. 

Hence βη(γ) Φ 0 for at most one value of n. It follows that 6(y) = 0, 

and so a is absolutely continuous. 

This contradiction proves the lemma. 

6.3.5. COROLLARY. Under the hypotheses of Theorem 6.3.2, JF is 

continuous on the whole line. 

Proof: Apply the lemma to F(s + s0) in place of F(s). 

6.3.6. If F operates in Β(Γ), we write F O / Í for the measure 
whose Fourier-Stieltjes transform is F(fi). 

LEMMA. Suppose the hypotheses of Theorem 6.3.2 are satisfied. 
(a) If μ€ ΒΕ(Γ), there exists δ > 0 and C < oo such that the 

inequality 

(1) \\Fo^ + a)\\^C 

holds for all oeM(G) with d real and \\σ\\ < δ. 

(b) The map (F) carries each compact subset of Βη(Γ) into a 

bounded subset of Β(Γ). 

Proof: We recall tha t (F) maps φ e Βη(Γ) to F(<¿) € Β(Γ). 

Part (a) asserts tha t each φ € ΒΚ(Γ) has a neighborhood in ΒΗ(Γ) 

on which (F) is bounded, and this immediately implies (b). 

To prove (a), it is enough to show that for some δ > 0 and 

C < oo the inequality 

(2) | | F o O i + / ) | |<SC 
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holds whenever / is a trigonometric polynomial on G with \\/\\χ < δ 

and / real. For if this is proved and if | |σ| | < á, there exist trigono-
metric polynomials ki on G, such that kf is real, \\k} * σ\\ < <5, and 

kj = 1 on Ejt where {£,} is an expanding sequence of finite sets 

whose union is Γ; this follows from Theorem 2.6.8. By (2) we then 

have 

(3) UFofr + k,* σ)\\ ^C (j = 1, 2, 3, . . .). 

But 

(4) Um F(ßty) + Ä,(y)*(y)) = F(fi(y) + »(y)) (y c Γ) 

since, for each γ € Γ, ^(γ) = 1 for all but finitely many values of j . 

By (3) and (4), Theorem 1.9.2 implies that (1) holds. 

Thus, if the lemma is false, there is a sequence {/n} of trigono-

metric polynomials on G, with fn real, such that \\fj\x -> 0 but 

\\F o (μ + fn)\\-> co. 

Take nx = 1. If integers nl9 . . ., ni and trigonometric poly-

nomials klf. . ., ki_x are chosen, put 

and let kj be a trigonometric polynomial on G, with £, real and 

llalli <
 2

>
 s u c h t h a t 

(6) H*i*(FoA i ) | |> i | |FoA i | | ; 

this is possible, by Theorems 2.6.8 and 1.9.2. Then let nj+1 be an 

integer, so large that 

(?) ||/„,Jli <
 2

~' 

(8) \\Fo(Xs + fnJ\\^j+l 

(9) \\ki*(Fo^-Fo(kj + fnjJ)\\<2-> ( l á i á í ) . 

Observe that (8) can be achieved since \\F o (μ + fn)\\ -> co and 

since 3, differs from β at only a finite number of points; (9) can be 

achieved since /n(y) -> 0 as n -> oo, and since each k{ has finite 

support; note that F is continuous. 
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Having defined {»J and {£,} by induction, we put 

(10) ¿ = ,« + ! / „ , 
¿—1 

and τ = F o λ. 

We cannot yet assert that τ = lim F o λΝ in the norm of M(G), 

But we do assert that 

(11) lim ||*r * (T - F o λΝ)\\ = 0 (r = 1, 2, 3, . . .) 
N-oo 

since f (y) = lim F(XN(y)) and since kr has finite support. Hence 

N-l 

(12) kr * (τ — F o Ar) = Urn 2 *r * (í7 o ¿,+i — ̂  o λ,), 

and combined with (9) this implies 

(13) ||Ar * ( T - F O λΤ)\\ ^ 5 2~' ^ 1 (r = 1, 2, 3, . . .). 

Finally, (13), (6) and (8) yield the inequalities 

2 | | T | | ^ | | A r * T | | ^ | | Ä r * ( F o A r ) | | ~ l 

^ l | | F o J U | - l £ J r - 1 

for every positive integer r, which is absurd. 
The lemma follows. 

6.3.7. We are now ready to prove Theorem 6.3.2. Since F is 
continuous and periodic, F has a Fourier series 

(1) F ( s ) ~ Í > n ¿ * · -
—oo 

Let P be an independent perfect set in G and let μ be a positive 

continuous measure concentrated o n P u ( - P) with # real (i.e., 

such that μ = μ), as in the proof of Theorem 5.3.4. The set 

{μ + 0ÓO}, 0 ^ a ^ 2π, is a continuous image of [0, 2π] and is 

therefore compact in M(G), and Lemma 6.3.6(b) shows that there 

is a constant C < oo such that 

(2) | |Fo (μ + αδ0)\\ ^ C (0 ^ α ^ 2π); 
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we recall that <50 is the unit of M(G). Since F is continuous, (1) 

shows that 
/.27Γ 

(3) 

1 f2* 
c. exp {inftfy)} = —J F ( s + fi(Y))e-"-ds 

1 ^ /2izk \ 

for all w € Z and y e Γ. Since -F(/2(y) + 2nkfN) is the transform of 

F o ( / ¿ + αδ0) with α = 2π*/ΛΓ, (2), (3) and Theorem 1.9.2 imply 

that 

(4) \cn\-\\e*»»\\^C (* = 0. ± 1 , ± 2 , . . . ) . 

The special way in which μ was chosen shows, by 5.3.3(b), that 

(5) H ^ l l = *WMI (n = 0, ± 1 , ± 2 , . . .). 

By (4), the series 

(6) J?Cn*in{'*ii} 

—oo 

therefore converges absolutely in the strip \t\ < \\μ\\. Since \\μ\\ 

can be taken arbitrarily large, the sum of (6) is an entire function 

of s + it which coincides with F on the real axis. 

This completes the proof. 

6.4. Some Consequences 

6.4.1. THEOREM. Suppose G is not discrete and z0 is a complex 

number. Then there exists a measure μ*Μ{β) whose Fourier-

Stielt jes transform has its range in the interval [— 1, 1] and whose 

spectrum contains the point z0. 

Proof: If this were not so, then μ — z0 δ0 would have an inverse 

in M(G) provided that — 1 fg β(γ) ig 1 for all γ c Γ. This means 

that the function 

(1) F ( S ) = = _ L · ( - I g i g l ) 
s z0 

would operate in Β(Γ), in contradiction to Theorem 6.3.1. 
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6.4.2. We saw earlier (Theorem 5.3.4) that M(G) is not sym-

metric unless G is discrete, i.e., unless Γ is compact. In other 

words, the function F defined in the complex plane by F(z) = z 

does not operate in the algebra of all Gelfand transforms of M (G). 

This result can now be strengthened: 

6.4.3. THEOREM. Suppose G is not discrete. If F is defined in the 
complex plane and if F operates in the algebra of all Gelfand trans-
forms of M(G), then F is an entire function. 

The hypothesis may be restated without reference to the 

Gelfand transform: it is assumed that F associates with each 

μ € M(G) a measure σ e M(G) such that h(a) = F(hfa)) for every 

complex homomorphism h of M (G). 

Proof: Since the members of Β(Γ) are precisely the restrictions 

to Γ of the Gelfand transforms of M(G) (see 5.3.1), F operates in 

Β(Γ), and hence the restriction of F to the real axis operates in 

Β(Γ). By Theorem 6.3.1, there is an entire function Fx which 

coincides with F on the real axis. Being entire, Fx operates in 

Β(Γ), and so does F — Fa . Since F — Fx = 0 on the real axis, 

F — JFJ associates the zero-measure to each μ e M(G) with real £, 

by the uniqueness theorem for Fourier-Stieltjes transforms. Thus 

F(h(ß)) = F^hfji)) for every μ with fi real and for every complex 

homomorphism A, and Theorem 6.4.1 therefore implies that 

F(z) = F^z) for all z. 

6.5. Range Transformations on Α(Γ) for Discrete Γ 

6*5.1. THEOREM. Suppose F is defined on [— 1, 1] and Γ is an 
infinite discrete abelian group. If F operates in A (Γ), then F(0) = 0 

and F is analytic in some neighborhood of the origin. 
Since A (Γ) contains no constant except 0, it is clear that F(0) 

= 0. If / € A (Γ), then |/(y)| > 1 for only finitely many y; hence 

we may extend F from [—- 1, 1] to the whole real axis in any way 

whatever, and the extension will operate in A (Γ). We will assume 

that F is so extended. Finally, we may assume without loss of 

generality that Γ is countable, as in Section 6.3. 
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6.5.2. LEMMA. / / the hypotheses of Theorem 6.5.1 hold, there 

exists δ > 0 and C < oo with the following property: If a € M(G)t 

\\σ\\ < ó, and & is real, then F(&) € Β(Γ) and \\Foa\\ ^ C. 
Proof: If the lemma is false, then, as in the proof of Lemma 

6.3.6, there are trigonometric polynomials fn on G, with fn real, 
such that H/Jlx -> 0 but | |F o /J |x-> oo. By taking a subsequence, 
we may also assume that H/Jh < 2~n (n = 1, 2, 3 , . . . ) . Choose 
trigonometric polynomials kn on G, with kn real, HÄJh < 2 and 
¿n = 1 on the support of /n . Then translate the pairs fn, kn so that 
the supports of kn and km are disjoint if n Φ m. This changes none 
of the norms. Put 

(i) g = !L-

Since F(g(y)) = F(fn{y)) if γ is in the support of /n , and F(|(y)) = 0 

otherwise, we have 

(2) ¿ » * ( F o g ) = ¿ n * ( F o / n ) = F o / n ( n = l , 2 , 3 , . . . ) . 

Hence ||JF o /η||χ ^ 2||F o g||, which contradicts the assumption 

that HFo / J Ix -^oo . 

6.5.3. Proof of theorem 6.5.1. Suppose — δ < s0 < a, where 
<5 is as in Lemma 6.5.2, and put F^s) = F(s0 + s) — F(s0). Then 
Fx(/) € Β(Γ) for all / e i l Ä ( r ) such that ||/||x < δ - |s0|, so that 
Ft is continuous at the origin (Lemma 6.3.4); hence F is continu-
ous in (— δ, δ). Define 

(1) F2(s) = F(r sin s) (— oo < s < oo) 

where r is fixed, 0 < r < ó/¿. 
If β€ΒΕ{Γ) and |M| ^ 1, then 

||sin (β + a)\\ ^ |cos a\ · ||sin μ\\ + |sin a| · ||cos μ\\ 

(2)
 ^ Σ ^ ^ Ι Ι Α ^ Ι Ι +2~nll^llá-'W'á. 

for every real number a, and Lemma 6.5.2 implies that 

(3) \\F2 o (ji + αδ0)\\ ^ C ( - oo < a < oo). 
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The argument of Section 6.3.7 can now be repeated, with F2 in 

place of JF, and with μ restricted so that \\μ\\ ^ 1, and leads to the 

conclusion that F2 can be extended to a function which is analytic 

in a horizontal strip of width 2, bisected by the real axis. 

Hence F(s) = jF2(arc sin {s¡r)) is analytic in a neighborhood of 
the origin and the proof is complete. 

6.5.4. REMARK. The preceding proof actually yields a little 
more than Theorem 6.5.1, namely: 

THEOREM. / / F is defined in [— 1, 1], if Γ is an infinite discrete 

abelian group, and if F(f)€B(r) for all ftAiT) such that 

— 1 ^ / <̂  1, then F is analytic in a neighborhood of the origin. 

6.6. Range Transformations on Α(Γ) for Non-Discrete Γ 

6.6.1. THEOREM. Suppose F is defined on [— 1,1] and Γ is a non-

discrete LCA group. If F operates in A (Γ), then F is analytic on 

[— 1, 1]. Moreover, JF(0) = 0 if Γ is not compact. 

In Sections 6.3 and 6.5 we used the fact that if /Ms not compact 

then there exists μ€Βκ(Γ) such that 

||exp {ιημ}\\ = exp {\n\ \\μ\\) (n = 0, ± 1, ± 2, . . .) 

and that \\μ\\ may be taken arbitrarily large. This is not true for 

all Γ, but the following lemma will suffice: 

6.6.2. LEMMA. Suppose Γ is an infinite LCA group, r > 0, and 

Sr is the set of all μ e M(G) with μ real and \\μ\\ ^ r. Then 

(1) sup | |*"|| = e\ 
/ » € S r 

Proof: The left side of (1) cannot exceed the right, since 

(2) ||*"|| = 111 M > ! | | ^ Σ \\μ\\η!η\ ^ Í r > ! = e' 
0 0 0 

if \M^r. 
To prove the opposite inequality, we pass to the Bohr compacti-

fication G of G. There is a measure a eM(Ö) such that ||σ|| = r, 

a is real on Γά, and \\ei<T\\ = er. Fix yl9 . . ., γη € Γ and ε > 0. 
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Since G is dense in G there exists μ € M(G) with fi real and \\μ\\ f£ r 

such that 

(3) \fito) - *<y,)\ < * ( l á / á n ) . 

Hence 

(4) | 2 ci exp {#(y,)}| ^ sup | J c, exp {i/2(y,)}|, 
/i€S r 

for arbitrary constants cx, . . ., cn. If f(x) = 2 c,(#, 7¿), the right 
side of (4) does not exceed 

(5) supH^IHI/IL 
ß€Sr 

and hence Theorem 1.9.1. implies 

(6) ^ = | |*Ί| £ s u p l l ^ l . 
/ . € S r 

6.6.3. We shall now prove Theorem 6.6.1 under the additional 

assumption that Γ is compact. We shall also assume, without loss 

of generality, that F(0) = 0. 

Let us say that (F) is locally bounded at a point y € Γ if there 

exist two positive numbers η, K and a neighborhood V of y such 

that ||F(<£)|| ^ K for all φ e ΑΚ(Γ) whose support lies in V and 

which satisfy the inequality \\φ\\ ^ η. 

Since the map φ -> F(<£) commutes with all translations of F 

and since the norm of A (F) is translation-invariant, there are only 

two possibilities: either (F) is locally bounded at every point of Γ, 

or at no point of F. 

Suppose the second alternative occurs. Choose disjoint open 

sets Vn in Γ which contain non-empty open sets Wn, such that 

Wn C Vn, and choose φη e A (Γ) such that 0 ^ φη ^ 1, φη = 1 on 

Wnt φη = 0 outside Vn (n = 1, 2, 3, . . .). Since (F) is not locally 

bounded at any point, there is a sequence {/n} in ΑΚ(Γ) such that 

(i) the support of fn is in Wn, (ii) | | /J | < n-*f and (iii) | |F(/J¡! 

> *II*J|. 
If / = £ ~ / n , then fcA(r)$ - 1 < /(y) < 1 for all y € F, and 

(i) Φη{γ)ΠΚϊ)) = Φη{γ)Πίη{γ)) = F(/.(y)) (« = i, 2, 3 , . . . ) , 
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here we have used the properties of <f>n, property (i) of fnf and the 

assumption that F(0) = 0. Hence 

(2) 116,11 · \\F{f)\\ ^ 116. · F(f)\\ = \\F(fn)\\ > η\\φη\\ 

so that ||F(/)|| > n for every positive integer n, which is absurd. 

Thus (F) is locally bounded at every point of Γ, and the trans-

lation-invariance of the norms shows that the following statement 

is true: 

There exists a neighborhood V of 0 in Γ and two positive numbers 
η, K such that ||F(^)|| ^K for every φ e AR(T) with \\φ\\ ^η whose 
support lies in some translate of V. 

Now let U and W be neighborhoods of 0 in Γ such that 

WCUCÜCV, and choose *,β€Α{Γ) such that 0 ^ a ^ 1, 

O ^ j S ^ l , a = l o n l f , a = 0 outside U, β = 1 on U, β = 0 out-

side V. A finite union of translates of Wf say Wlf . . ., Wnt covers 

Γ. Let cLlf . . ., <xn and βν . . ., βη be the corresponding translates 

of a and β, and put 

(3) φ< = "' (l^i^n). 
«i + · - . + an 

Since ax + . . . + an > 0, Theorem 6.2.4 implies that φ{ € Αη(Γ); 

also, φ{ ^ 0, and 2 Φχ· = *· (The functions φί form a partition of 

unity.) 

Suppose f*AR(r) and ||/|| <í ηΙ\\β\\. Then the support of ßj 
lies in a translate of V and so ||F(/?,·/)|| ^ K. Since 

t = l i « l 

we have 

(5) 11 )̂11 £*ΣΙΙ6ΙΙ · 

Putting á = j?/||/?|| and C = ÜC 2 ll̂ <ll we have proved: / / 
f€ÄR{r), and U/H ^ 6, then \\F(f)\\ ^ C. In other words, (F) 
maps a certain neighborhood of 0 in ΑΚ{Γ) into a bounded subset 
of Α(Γ). 
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Now define 

(6) F^s) = F ( r s i n s ) (— oo < s < oo) 

where 0 < r < b\e. I t follows, exactly as in Section 6.5.3, that 

(7) l l^i( / + « ) I I ^ C ( - o o < a < oo) 

for all jtAR(T) with ||/ | | ^ 1. 

Since Γ is not discrete, F is continuous on [— 1, 1]; for if 

— 1 <¡ tn <* 1 and tn-+t, there exists / c ΑΚ{Γ) such tha t /(yn) = tn 

for some sequence {yn} which has a limit point γ e Γ, and the con-

tinuity of / and F(f) implies that 

(8) lim F(tn) = lim F(f(yu)) = F(f(y)) = F{t). 

Hence Fx is continuous and can be expanded in a Fourier series 

(9) F^^fc^". 
—OO 

The argument used in Section 6.3.7, combined with the in-

equality (7), now yields 

(10) \cn\ \\β*«'\\ ̂  C ( t t = 0 , ± 1 , ± 2 , . . . ) 

for all / € ΑΚ(Γ) such that ||/| | ^ 1. Fix n and take the supremum 

of the left side of (10); Lemma 6.6.2 implies that 

(11) | c n | ^ C - H * l (n = 0 , ± 1, ± 2 , . . . ) . 

Hence J cne
iMsJrit) converges absolutely if \t\ < 1, and so Fx can 

be extended to a function which is analytic in the strip \t\ < 1. 

By (6), we conclude that F is analytic in a neighborhood of 0. 

Translation shows that F is analytic at any interior point of 

[—1, 1]. To prove analyticity at the end-points, pu t 

(12) F2(s) = F ( l - s2) ( - 1 ^ s ^ 1). 

Then F2 operates in Α(Γ), and since F2 is an even function, we 

have, for some ε > 0, 

(13) F2(s) = 2«nS2n (-e<s<e). 
0 
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Hence 

(14) F( l - s) = f ans
n (0 ^ s < *2), 

o 
and so F is analytic at the right end-point. 

The other end-point can be treated similarly, and the proof is 
complete for compact Γ. 

6.6.4. The general case of Theorem 6.6.1 follows easily. If Γ 

contains an infinite compact subgroup Λ, and if F operates in A (Γ), 

then F also operates in Α(Λ), by Theorem 2.7.4, and so F is 
analytic on [— 1, 1]. 

If every compact subgroup of Γ is finite, then, since Γ is not 
discrete, Γ has a closed subgroup which is isomorphic to the real 
line 2?, by the structure theorem 2.4.1. Hence F operates in A (R). 

But this implies that F operates in A (T), and hence the problem 
is again reduced to the compact case: 

Choose f€A{T), such that — 1 ̂  f(eix) ^ 1, and put g(z) = f(eix) 

( - oo < x < oo). Then g € B(R), and if φ c A (2?), 0 ̂  φ ^ 1, 
φ = 1 on some interval / , then φg€A(R)f hence F^g) eA(R), 

hence F(g) belongs to ¿1(2?) locally at every point of / . Since / 
was arbitrary, F(g) belongs to A(R) locally at every point of 2?, 
hence (Theorem 2.7.6) F(f) belongs to A (T) locally at every point 
of T, and Lemma 6.2.6 implies that F(f)€A(T). 

This completes the proof. 

6.7. Comments on the Preceding Theorems 

6.7.1. In Theorems 6.3.1, 6.5.1, and 6.6.1, we strongly used the 
knowledge that the algebras in question contain real elements / 
such that H^ll = e^f or at least that the equality can be almost 
attained. The use of this fact is quite natural. For suppose A is a 
semi-simple self-adjoint Banach algebra, represented as an algebra 
of functions on its maximal ideal space, and suppose there is a 
sequence {ωη} such that 

<1) lk""||£<>, (n = 0, ±1,±2,. . . ) 
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for every real / c A, where Cf is a constant depending on /. If now 

Σ KK < °°
 and 

(2) F{s) = Σ *neins
 ( - oo < s < oo), 

—CO 

then F operates in A; unless ωη increases exponentially, we thus 

have operating functions which cannot be analytically extended 

to any open set containing the real axis. 

6.7.2. A major step in the preceding theorems was the proof that 

the map (F) has some boundedness properties. In the case of B (F), 

with Γ not compact, we first proved that (F) is bounded on each 

compact set. The conclusion was that F is entire, and hence we have 

the stronger result that (F) is bounded on every bounded subset of 

Β*(Γ). 

For A (Γ) the situation is different. We proved again that (F) 

must carry some sphere about the origin into a bounded subset of 

Α(Γ). Examination of the proof of Theorem 6.6.1 shows that if 

(F) is bounded on every bounded set, then F must be entire. But 

there are functions F on [— 1, 1] which operate in A (Γ) and which 

are not entire. Hence it may happen that (F) is unbounded on 

some sphere in AR(JT), although (F) must also be bounded on some 

sphere. This sort of behavior is of course impossible for linear 

transformations. 

Nevertheless, we can show that if F operates in A (F), then (F) 

is an analytic transformation, in the following sense: 

6.7.3. THEOREM. Suppose Γ is a non-discrete LCA group, F is 

defined on [— 1, 1], and F operates in Α(Γ). If f €Α(Γ), and 

— 1 <¡ / <* 1, there exists δ > 0 with the following property: if 

g€A(r)t- 1 ^f + g^l,and\\g\\<djhen 

(1) F{f + g)=Í^F^{f)g«. 

Here F ( n ) denotes the nth derivative of F, and the '"Taylor series" in 
(1) converges absolutely in the norm of Α(Γ). 

Proof: By Theorem 6.6.1, F can be extended so as to be analytic 
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in a simply connected region D which contains [— 1, 1]. Since 

F ( n ) is analytic on [— 1, 1], F{n) operates in A (Γ), and the terms 

of the series (1) are defined. Let C be a simple closed curve in D 

which surrounds [— 1, 1]. Then there exist constants <5 > 0, 

Kx < 1, K2 < oo, such that 

(2) 

We hav 

1
 g

 1 
μ-/ί 
e 

^Klt 
g 

! ( * - / ) ' 
^K2,ii\\g\\<d, A e C . 

<3) F^ymy)=^JcJ^^F{m (y . Γ). 

Approximating this integral by Riemann sums, (2) and Theorem 

1.9.2 show that 

(4) 
til 

^KtK,-1· sap \F(X)\-L, 

where L is the length of C, so tha t 

1 
(5) 

n\ 
Fln)(f)gr const. iC; ( n = 1,2, 3, . . .). 

Since Since K1< lt the series (1) converges absolutely in Α(Γ). 

the ordinary Taylor formula shows tha t 

(6) F(f(y) + g(y)) = | Iir<«>(/(y))g»(y) (γ € Γ), 
o ti\ 

provided that HgH«, is less than the distance from [— 1, 1] to the 

boundary of D, we see that the series (1) converges to F(f + g). 

6.7A. The same result holds for discrete JT, if we replace [— 1,1] 

by the interval J on which Fis analytic. Since F can be a perfectly 

arbitrary function outside / (F need not be bounded, for instance) 

it is clear that this restriction is needed. 

6.8. Range Transformations on Some Quotient Algebras 

6.8.1. Let £ be a compact set in Γ, and let A (E) be the set of all 

functions on E which are restrictions to E of functions belonging 
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to A (Γ). If J is the set of all / € A (Γ) such that f(y) = 0 on E, then 

A (E) is the quotient algebra A (-Γ)//. One may ask which functions 

operate in A (E). The following result is due to Kahane and Katz-

nelson [1]; see also Katznelson [3]. 

6.8.2. THEOREM. Suppose E is a compact set in R which contains 

arbitrarily long arithmetic progressions. If F is defined on the real 

axis and if F operates in A (E), then F is analytic on the real axis. 

If m(E) > 0, then our hypothesis is satisfied; for if g is the 

characteristic function of E and if 

(1) h(x) = j^g(t + x)g(t + 2x) . . . g(t + nx)dtt 

then h is continuous, A(0) = m(E) > 0, and so h(x) > 0 for some 

x > 0. For this x there exists t such that each of the points t + x, 

t + 2x, . . ., ¿ + nx lies in E. (The same argument shows that E 
contains an affine image of every finite subset of R.) 

Another example, which is perhaps more interesting, is obtained 
by taking for E the set of all points 1/n (« = 1, 2, 3, . . .) plus their 
limit point 0. This example illustrates the arithmetic nature of the 
theorem: there are arbitrarily small displacements of E which 
produce an independent compact set E'\ since E' is a Helson set 
(Theorem 5.6.7), A (£') = C(£'), and thus every continuous func-
tion operates in A(E'). 

No example is known which lies between these two extremes; 
i.e., no set E is known such that some non-analytic function opera-
ates in A(E) although A(E) Φ C(E). (Compare Katznelson [2], 

WO 

6.8.3. To prove the theorem, it is clearly enough to show that F 
is analytic at 0, and we may assume that F(0) = 0. The union of 

any collection of arbitrarily long arithmetic progressions in E has 

a limit point, and from this it follows that there are sets SN in 

E(N = 1, 2, 3, . . .) which consist of the points 

(l) VN + i*N ( - *N£j£ Ml *N > 0; yN € R), 

such that the intervals/# = [yN — 2NeN, yN + 2ΝεΝ] are disjoint. 
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Replacing E by one of its subsets, we may assume that EnIN = SN, 
for N = 1, 2, 3 , . ... 

The norm in A (E) is the usual quotient norm: If φ € A (E)t then 

11̂ | | = inf Ugld, the infimum being taken over all g€L1(R) such 

that g = φ on E. 

6.8.4. LEMMA. Suppose φ€ A(E), the support of φ lies in SN, and 

(1) Φ(ΡΝ + j*x) = "i ( - 2JV ^ / ^ 22V), 

where a5 = 0 if \j\ > N. Let P be the trigonometric polynomial de-
fined on T by 

(2) P(eie)=2aieij° (eieeT). 
- A T 

Then 

(3) \\φ\\ ̂  HPIIx ^ S|M|. 

Proof: Since affine transformations of R do not affect the norm 

in A(R), we may assume that yN = 0 and εΝ = 1. 

Define k(y) = max (1 — \y\, 0). Since k = u*u, where u is the 

characteristic function of the interval [— \t £], k is positive-def-

inite, and is therefore the Fourier transform of a non-negative 

function k€L
1(R).Uf{eix) = ^k{x + 2rn) (r € Z), then/cL

1
^) 

and 

1 Γπ
 1 Γ

00 

(4) fin) = — f(eix)e~inxdx = — k(x)e~inxdx 

w
 I 0 if n φ 0. 

Thus/(ö,x) = 1 for all a; el?. If now 

(5) éty) = í«Ay-i) (y«*)> 

then ¿€Α(Ρ),£ = φοηΕ, and g(z) = P(*ia:)Ä(:r) {x e J?). Hence 

(6) llgllx = ¿J0° |P(^)l*(^)^=¿J , f |Ρ(^)Ι/(^)ώ = Ι|Ρ|Ιι. 
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so that \\φ\\ ^ \\Ρ\\τ. 

To prove the other inequality in (3), suppose hcL1 (R) and 
A = φ on E, and define vN(y) = 2k(y/2N) — k(y/N). Then 
ύΝ€Α{Β), vN(y) = 1 if \y\ £N, \\νΝ\\, ^ 3, and 

(7) P(*'*) = | uN<j)k(j)e*>* = I (vN *h)(z + 2ηπ), 

so that 

(8) UPH^i-J0 0 K ^ » * ) ^ ) ^ ^ ^ * ! ! , . 

The lemma follows. 

6.8.5. We can now complete the proof of Theorem 6.8.2. Let us 
suppose, to get a contradiction, that there is a sequence {Pn} of 
trigonometric polynomials on T such that Pn is real, \\Pn\\\ -> 0, 
but \\F o P n | | 1 -> oo, where 

(1) ( P o P n ) ( ^ ) = I F ( a f ) ^ 

if pn(e
ie) =^α^θ. 

If we replace {Pn} by a suitable subsequence and apply Lemma 

6.8.4, we see that there is a sequence {φη} in A (E), with the follow-

ing properties: φη = 0 except on SN , ||<£n|| ^ n~2, and 

ITOJI I -* oo· If Φ = Σ Γ ^ η , then / c i4 (E) . Setting 

(2) *n(y)=vNn((y-yNn)leNn) {ye E; n = 1, 2, 3, . . .), 

where vN is the function used in the proof of Lemma 6.8.4, we obtain 

(3) anF(¿) = a n F ( ¿ J = JFfo.) (» = 1, 2, 3, . . .), 

so that 

(4) I I ^ J I I a l K I I - I I F W I I a S I I F W H , 

contradicting the assumption that ||F(^„)|| -> oo. 
Hence | |F o P| |x ^ C for all trigonometric polynomials P on T 

with JP real and ||Ρ||χ < <5, for some δ > 0, C < oo. This implies 
that F operates in A (Z), and thus Pis analytic in a neighborhood 
of the origin, by Theorem 6.5.1. 
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6.9* Operating Functions Defined in Plane Regions 

6.9.1. Since Α(Γ) and Β(Γ) are algebras of complex-valued 

functions, it may seem unnatural and unduly restrictive to have 

confined our attention to functions F defined on the real axis, or 

even on an interval. However, this was done primarily to simplify 

the exposition, and no difficulty is encountered in extending the 

results. 

Let us suppose that F is defined in an open plane region E which 

contains the origin. The analogues of Theorems 6.3.1, 6.5.1, and 

6.6.1 are then the precise converses of the sufficient conditions 

obtained in Section 6.2. 

6.9.2. THEOREM. If F operates in Β(Γ) and Γis not compact, then 

F can be extended to a real-entire function in the plane. If F operates 

in A (Γ) and Γ is discrete, then F is real-analytic in some neighbor-

hood of the origin; if Γ is not discrete, then F is real-analytic in E. 

Only one new device is needed in the proof: in place of the 

periodic functions F(r sin s) we now use the doubly periodic func-

tions 

^i(s> t) = F(r sin s, r sin t) 

which we expand in Fourier series of the form 

Σ Cnmei(n'+mt)> 

and we estimate the coefficients cnfn in the same way in which we 

previously estimated the coefficients cn. 

6.9.3. If £ is a closed convex set in the plane, if F is defined 

on Et and if F operates in A (Γ) for some non-discrete Γ, then the 

full analogue of Theorem 6.6.1 holds (Helson and Kahane [1]): 

F is real-analytic on E (not just in the interior of E). 

To prove this, suppose p is a boundary point of E. If τ is any 

affine transformation of the plane, then For operates in A (Γ), 

and since the class of all real-analytic functions is invariant under 

affine transformations, we may assume that p is the origin and 

that E contains the set of all (s, t) with s ^ 0, t ^ 0, s2 + t2 <: 1. 
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If now Fj (s, t) = F(s2, t2), then Fx operates in A (Γ), F1 is defined 
in a full neighborhood of the origin, and since Fx is an even func-
tion of s and t, Theorem 6.9.2 shows that F i ( s , / ) = 2 ^ n s 2 m P 
in some neighborhood of the origin. Hence there exists δ > 0 
such that 

(1) F(S, t) = 2 <*mn Smtn (S ^ 0, / ^ 0, S2 + t2 < Ö2). 

Finally, two real-analytic functions which coincide in an open set 
are identical, and since F is real-analytic in the interior of E, the 
equality in (1) holds for all (s, t) e E such that s2 + t2 < δ2. Thus 
F is real-analytic at (0, 0). 

6.9.4. We conclude this chapter with some open problems. 
(a) Which functions F operate in the set of all positive-definite 

functions o n f ? / / Γ = Z and if F is defined on [— 1, 1], a neces-

sary and sufficient condition is that 

(1) F(i) = 2<M" (e.^0, f*„<oo). 
n—0 0 

The proof (Rudin [15]) extends to any Γ which is not of bounded 
order. For groups of bounded order the problem is open. Also, the 
problem is open for every Γ if we assume that F is defined in the 
closed unit disc. One may conjecture that F must then be of the 
form 

(2) F(z) = Σ amnz
m¿n fa™. ^ 0, Σ *™ < oo). 

m, n-»0 

(b) For discrete Γ (or even for Γ = Z), which functions F have 
the property that F(f) is the Fourier transform of a function in 
L»(G) (or in C(G)) whenever f *L*(G) (or f€C(G))? The case 
p = 2 is trivial here; a necessary and sufficient condition is that 
\F(z)/z\ be bounded in a neighborhood of the origin, and F(0) = 0. 
In the other cases, only partial results are known (Rudin [16]). 

(c) Define Β0(Γ) = Β{Γ) π 00{Γ); i.e., Β0(Γ) consists of all 
Fourier-Stieltjes transforms on Γ which vanish at infinity. Let 
M0(G) be the set of all μ € M(G) with fi c Β0(Γ), and suppose Γ is 
discrete. If F, defined on [— 1, 1], operates in Β0(Γ), must F 
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coincide with an entire function in some neighborhood of 0, or is it 
enough for F to be analytic in some neighborhood of 0? 

The latter condition is necessary since Β0(Γ) D Α(Γ). Since 
there is an independent perfect set P in R which carries a measure 
μ € M0(R), (see 5.6.11) our proof of the asymmetry of M(G) ap-
plies to the algebras M0(Ä) and M0(T). It seems plausible that 
M0(G) is asymmetric for all non-discrete G, and this may imply 
that the entire functions are the only ones which operate in Βύ(Γ). 



CHAPTER 7 

Closed Ideals in L1 (G) 

7.1. Introduction 

7.1.1. In the group context, it is naturally of interest to study 
function spaces which are invariant under translation; the rele-
vance of the Fourier transform is illustrated by the fact that it con-
verts translation to multiplication by a character. The closed 
translation-invariant subspaces of L1 (G) can be very neatly charac-
terized in algebraic terms: they are exactly the closed ideals in 
L1(G). This may be regarded as one of the "reasons" for the close 
connection between Fourier analysis and the theory of Banach 
algebras. 

Let / be a translation invariant subspace of L1(G), and suppose 
<f>€L°°{G) annihilates J; that is to say, 

(i) \Gf{-ym)dy = o (/</). 

Since / contains every translate of / if / e l , we also have 

(2) ¡J(x - y)<j>{y)dy = 0 (/«/, x c G). 

Hence, to say that φ annihilates I is the same as to say that f * φ = 0 
for all fel. 

With the aid of this remark, it is easy to prove the equivalence 
stated above: 

7.1.2. THEOREM. Every closed translation-invariant sübspace of 
L1 (G) is an ideal; conversely, every closed ideal in L1 (G) is translation 
invariant. 

Proof: For f,geLl{G) and <¿€L°°(G) we have 

(i) SG(f*g)(-*m*)<ix = jGg(-y)(f*<f>)(y)Jy, 
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since each of these expressions is (/ * g * φ)(0). 

Suppose 7 is closed and translation-invariant, φ annihilates 7, 

and / el. Then / * φ = 0, the right side of (1) is 0, hence φ anni-

hilates f*g, for every geL1(G). Since this is true for every φ 

which annihilates 7, the Hahn-Banach theorem implies that 

/ * g € 7, and so 7 is an ideal. 

Suppose 7 is a closed ideal, φ annihilates 7, and / € 7. Then 

f*gelt the left side of (1) is 0, hence ¡*φ annihilates every 

g e ^ ( G ) , and so / * φ = 0. This says that φ annihilates every 

translate of /, and if we apply the Hahn-Banach theorem once 

more, we see tha t 7 contains every translate of /. 

7.1.3. For / € Lx(G)t we define Z(f) to be the set of all γ e Γ such 

that f(y) = 0, and if 7 is an ideal in Ll(G), we define the zero-set 

of 7 by 

(1) Z{I) = [\Z{f). 
fcl 

Thus γ € Z(I) if and only if /(y) = 0 for all f el. 

Since / is continuous on Γ, each Z{f) is closed, hence Z(I) is 

closed for every 7. Conversely, each closed set E in Γ is Z(I) for 

some closed ideal 7 of L1 (G): simply take for 7 the set of all f e L1 (G) 

such that ECZ(f). Since convolution in LX(G) corresponds to 

pointwise multiplication in ^4(7*), 7 is an ideal; since norm con-

vergence in U^iG) implies uniform (hence pointwise) convergence 

in Α(Γ), I is closed; if γ04Ε, there exists f€L1(G) such that 

f(Yo) = l, but E C Z(f)t and this shows that Z(I) =* E. 

This ideal is evidently the largest one with the property that 

Z(I) = E. We shall denote it by 1(E). 

7.1.4. We can now state the question to which the present chap-

ter is devoted: 

Can there be two distinct closed ideals 7X and 72 in L1(G) such that 

Z(IX) = Z(72)? Or does Z(I) determine 7? 

A set E C Γ such that E = Z(I) for a unique closed ideal 7 in 

L1^) will be called an S-set. The letter 5 stands for "spectral 

synthesis"; this will be discussed in Section 7.8. Our question can 

now be rephrased. 
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Is every closed set in Γ an S-set? 
The answer turns out to be affirmative if Γ is discrete. If Γ is 

not discrete, then Γ contains certain types of sets which are S-sets 
and also contains closed sets which are not S-sets. The examples 
described in the present chapter are of such diverse nature that the 
problem of finding structural conditions which are necessary and 
sufficient for a closed set to be an S-set seems hopelessly difficult. 

7.1.5. For discrete Γ, the problem is so simple that it is worth-
while to deal with this case separately, although the result is con-
tained in Theorem 7.2.4. The simplification is due to the fact that 
the continuous characters on G belong to ¿1(G) if G is compact. 

THEOREM. Suppose G is compact and I is a closed ideal in Ll{G). 
If f€L1{G) and Z(I)CZ(f)t then fel. 

Proof: If γ0 4 Z(I), there exists g c J with ¿(γ0) = 1, and hence 
g * y0 = y0> regarding γ0 as a member of LX(G). Since / is an ideal, 
g * γ0 € I, and so γ0 e I. It follows that I contains every trigono-
metric polynomial on G of the form 2 α

Ύ{χ> y)* provided that 
ay = 0 for all y e Z{I). If Z(f) D Z(I), then / * k satisfies this 
condition for every trigonometric polynomial k on G. Since 
11/ — / * ¿Hi can be arbitrarily small (Theorem 2.6.6) and since / 
is closed, we conclude that / e J . 

7.2. Wiener's Tauberian Theorem 

1.2A. Wiener's theorem has several equivalent formulations. 
One of these asserts that the empty set is an S-set; in other words, 
Lx[ß) is the only closed ideal / in LX(G) for which Z(I) is empty. 
The proof which follows is, in essence, that of Wiener, in spite of the 
fact that the terminology and the details are quite different; it has 
evolved through several stages (Wiener [1], Ditkin [1], Mandel-
brojt and Agmon [1], Kaplansky [1], Helson [1], Reiter [1], 
Loomis [1]) and now yields a considerably stronger result (Theo-
rem 7.2.4). 

In what follows, G is an arbitrary LCA group. If / is an ideal 
in L1(G)y Ϊ denotes the set of a l l / e A(Γ) with f el; Ϊ is then an 
ideal in Α{Γ). 
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7.2.2. LEMMA. Suppose f eL1(G)y I is an ideal in Ll(G)t and 

y0 e Γ. Then f belongs to 1 locally at y0 if either of the following con-

difions is satisfied: 

(a) y0 is not in Z(I); 

(b) y0 is in the interior of Z(f). 

Proof: If (a) holds, there exists gel with ¿(γ0) = 1, and Theo-

rem 2.6.5 shows that there exists h e LX(G) such that ||A|| < $ and 

%(y) = l — g(y) in some neighborhood F of y0. The series 

2S°/Än converges, in the norm of Α(Γ), to a function / e Α(Γ), 

and/ (y) = {1 - Ä(y)}~i/(y) for all y e Γ. liyeV, then ¿(γ\?(γ) = 

/ (y ) ; since gel and / is an ideal, ¿j el, and so / belongs to / locally 
at y0 . 

If (b) holds, then / = 0 in a neighborhood of y0, and since / 
contains the constant 0, / belongs to 1 locally at y0. 

7.2.3. LEMMA. Suppose feL1(G), I is a closed ideal in Lx(G)t 

Z(I) C Z(f), and Q is the set of all points of Γ at which f does not 

belong to 1 locally. Then Q is closed and has no isolated point. 

Proof: I t is trivial that the set of all points at which / belongs 

to / locally is an open set. Hence Q is closed. 

Suppose γ0 is an isolated point of Q. By Lemma 7.2.2. (a), 

γ0 e Z(I), hence/(y0) = 0. Let W be a compact neighborhood of 

y0 which contains no other point of Q, and choose k e LX(G) such 

that k = 0 outside W and k = 1 in some neighborhood of y0 . By 

Theorem 2.6.4 there is a sequence {vn} in L1(G) such that each vn 

is 0 in some neighborhood of y0 and such that 

Hm| | / - / **>n l l i = 0. 
n-*oo 

For each nt fkvn belongs to / locally at every point o f f u {oo}: 

at y0 , consider vn; at other points of W, consider/; and in the com-

plement of W, k = 0. Lemma 6.2.6 now implies that fkvn e lr for 

n = 1, 2, 3, . . .. Since / is closed in A (Γ), fk e 1\ and since k = 1 

in a neighborhood of y0, / belongs to / locally at y0. But this 

means that y*4Q, a contradiction. 

7.2.4. THEOREM. Suppose feL1(G),I is a closed ideal in L1(G), 
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and Z(I) C Z(f). If the intersection of the boundaries of Z(I) and 

Z(f) contains no perfect set, then f el. 

Proof: The symbol dE will denote the boundary of a set E in Γ. 

For n = 1, 2, 3, . . ., put fn = / * un, where wn € ¿¿(G) is so selected 
that un has compact support and ||/ — /n | |x -> 0 (Theorem 2.6.6). 
Since Z(I) C Z(f) C Z( / n ) , we have 

(1) Z ( / ) n dZ(fn) C Z(7) n 3Z(/) = 8Z(I) n δΖ(/). 

If γ0 e Γ, Lemma 7.2.2 shows that fn belongs to / locally at γ0 

unless γ0€ Z(I) n dZ(fn); by (1), this set contains no perfect sub-

set, and hence Lemma 7.2.3 shows that fn belongs to / locally at 

every γ0 e Γ. Since fn has compact support, fn belongs to / locally 

at infinity. Hence Lemma 6.2.6 implies that fn e I, for « = 1 , 2 , 3, 

. . ., and so f el, since I is closed. 

7.2.5. Corollaries of theorem 7.2.4. (a) If Z(I) is in the 

interior of Z(/), then f el. 

Or, if / = 0 in an open set containing Z(I), then f el. This has 

some interesting consequences: 

Let £ be a closed set in Γ, and let /<>(£) >̂e ^ e closure of the set 

of all / e L1(G) such tha t E is in the interior of Z( / ) . It follows 

from (a) that I0(E) is the smallest closed ideal / of ¿1(G) such that 
Z(I) = E. Thus each closed set E in Γ has a largest ideal 1(E) 

(Section 7.1.3) and a smallest closed ideal I0(E) associated with it, 

and E is an S-set if and only it 1(E) = I0(E). The question 

whether E is an S-set can therefore be restated in two ways: 

(i) If φ e L°°(G) and f * φ = 0 for every f e I0(E), does it follow 

that f * φ = 0 for every f-e 1(E)? 

(ii) If f e LX(G) and f = 0 on E, can f be approximated, in the 

norm of LX(G), by functions g e LX(G) such that g = 0 on an open set 

containing E? 

(b) / / the boundary of a closed set E in Γ contains no perfect set, 

then E is an S-set. 

Note that the hypothesis involves only the topological structure 

of £ as a subset of Γ. No stronger result of this type is known. 

•(c) / / / is a closed ideal in LX(G) and if Z(I) is empty, then 

I = LHG). 
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This is Wiener's theorem (note tha t its proof does not require 

Lemma 7.2.3). If I is a closed ideal in L^G) and I=£Ll{G), it 

follows that Z(I) is not empty, and hence / is contained in a closed 

ideal / such tha t Z(J) consists of just one point γ0 € Γ. Since / is 

the kernel of the homomorphism / -^/(y0)» J *s a regular maximal 

ideal (Appendix D3), and Wiener's theorem can be rephrased in 

the following terms: 

Every proper closed ideal in L1 (G) is contained in aregtdar maximal 

ideal. 

For discrete groups G, this statement is almost trivial, since 

L1(G) then has a unit , and every proper ideal in a commutative 

ring with unit is contained in a maximal one (Appendix D2; the 

word "regular" is redundant in rings with unit). Keeping Theo-

rem 7.1.5 in mind, we can therefore say that Wiener's theorem is 

most significant if G is neither compact nor discrete; the impor-

tance of the special case G = R thus becomes apparent. 

(d) If f € £X(G), the translates of f span LX(G) (i.e., the set of all 

finite linear combinations of translates of / is dense in L1 (G)) if and 

only if f has no zero in Γ. 

To see this, let / be the smallest closed ideal of L}[G) which 

contains /; by Theorem 7.1.2,1 is precisely the space spanned by 

the translates of / ; since Z(I) = Z(f) and since / = Ll{G) if and 

only if Z(I) is empty (by (c)), the proof is complete. 

7.2.6. The tauberian character of Wiener's theorem. A 

tauberian theorem is, roughly speaking, one which asserts that if 

certain averages of a function have a limit, then the function itself 

has a limit. The original form of Wiener's theorem is of this type, 

although the conclusion is not quite so strong. 

If φ € £°°(G), the s tatement "φ(χ) -> a as x -> oo" will mean tha t 

to every ε > 0 there exists a compact set K in G such that 

\φ(χ) — a\ < ε in the complement of K. If / € ^(G), the convolu-

tion (/ * φ){χ) may be regarded as an "average" of φ, obtained by 

assigning a weight factor f(x — y) to the value φ^)\ this terminol-

ogy is most appropriate if /(0) = 1. I t is easy to prove tha t 

(/ * Φ)(%) -> af(0) if Φ(Χ) - * a as x -> oo; we omit the proof, since 
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we will use this fact only for constant φ in which case it is quite 

trivial. 

THEOREM. Suppose φ € L°°(G), f e L^G), /(y) φ 0 for all γ e Γ, 

and 

(1) (/**)(*)**«/(<>) ( * - o o ) . 

ΓΑ η̂ /Aé /ím¿¿ relation 

(2) (***)(*)-*«É(0) (*->°o) 

AoZ¿s /or every g€L1(G). 
Proof: Replacing φ by φ — a, we may assume, without loss of 

generality, that a = 0. The set 7 of all gcLl(G) such that 

(g * φ){χ) -> 0 as a; -> oo is a linear subspace of LX(G) which is 

clearly translation-invariant; I is closed, for it \\gn — g)^ -> 0, then 

I |gn * <£ — g * <£| L -► 0; and f el. Hence 7 is a closed ideal in L1 (G) 
with Z(I) empty, and so I = Ll{G). 

7.2.7. If we impose slightly stronger conditions on φ, the con-

clusion of the preceding theorem may be replaced by the stronger 

assertion that φ(χ) -> a as x -> oo. 

Let us call a function φ e L°°(G) slowly oscillating if φ(χ) — φ^) 
-> 0 as a; ->■ oo and « — y -> 0. More explicitly, we require that to 
each ε > 0 there should exist a compact set i£ in G and a compact 

neighborhood V of 0 in G such that \φ(χ) — ΦΜ\ <eifx — yeV 
and x 4 K. For instance, uniformly continuous bounded functions 

are slowly oscillating; but slowly oscillating functions need not be 

continuous. 

THEOREM (Pitt [1]). Suppose φ € L°°(G), φ is slowly oscillating, 
f € ^(G), }{γ) φ 0 for all y e Γ, and 

(1) (/*M*)-W(0) (*»oo). 

TA n̂ ^(x) -> a as x -> oo. 

Proof: Given ε > 0, choose K and F as above, and let g be the 

characteristic function of V, divided by m(V). Then 

(2) φ(χ) - fe*^)(*)=—i-f #(x) - ¿(x - y)}¿yf 
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so that \φ(χ) — (g * φ)(χ)\ < ε in the complement of K. By 7.2.6, 
(g * <f>){x) -> a as x -> oo, and the desired conclusion follows. 

7.2.8. If G = R, we may consider the behavior of φ(χ) or of 
(/ * φ) (x) as x -> + oo or as a; -^ - oo. Theorems 7.2.6 and 7.2.7 
remain true (with the same proofs) if we replace "x -> oo" by 
"x -> + oo" or "x -> -— oo" in the hypotheses as well as in the 
conclusions. For applications one usually needs the results in this 
form (Wiener [1], Pitt [1]). 

7.2.9. To illustrate how much easier the L2-theory is, let us 
consider the analogue of Theorem 7.2.5(d) in L2(G): 

THEOREM. If f € L2{G), the translates of f span L2(G) if and only 

if f(y) φ 0 for almost all y e Γ. 

Proof: Note t ha t / now denotes the Plancherel transform of / and 
is defined as an element of Ι*2(Γ); as a point function,/is only de-
fined up to sets of Haar measure zero. Hence it is quite natural 
to have "almost all" in the statement. 

If g € L2(G) and J c fx g = 0 for every translate fx of /, the Parseval 
formula shows that 

(i) ¡rhv)W) (- *. rW = o (x e G). 
Since/and | are in L2(r), their product is in ΣΧ(Γ) and the unique-

ness theorem for Fourier transforms implies that fg = 0 almost 

everywhere on Γ. 

Iffz£0 almost everywhere, it follows that g = 0, and hence (by 
the Hahn-Banach theorem) that the translates of / span L2(G). 

If / = 0 on a set E in Γ with m(E) > 0, there exists g Φ 0, 

g € L2(G)t such that g = 0 outside E. Since fg = 0, the Parseval 

formula shows, as above, that jG fxg = 0 for every x eG. Hence g 

is orthogonal to the span of the translates of /. 

7.2.10. Arithmetic conditions can play a role in the problem 
of determining whether the translates of a function do or do not 
span ^(G). 

For example, take G = R, let f(x) = 2 if 0 < x < 1, f{x) = 1 
if 1 < x < a, where a is a given real number, and f(x) = 0 for all 
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others € R. Then /(y) is a constant multiple of (2—e"iv—e'iotv)ly, 

and hence /(y) = 0 if and only if y = 2ηπ and ay = 2WTT, where m, 

n are non-zero integers. 
We conclude that the translates of / span LX(R) if and only if a 

is irrational. They span L\R) for every a > 1. 

7.3. The Example of Schwartz 

The first and simplest example of a closed set which is not an 
S-set, as defined in Section 7.1.4, is the unit sphere in the euclidean 
space Rz. We take G = Rz, so that Γ = Rz (Theorem 2.2.2), and 
we let E be the set of all y e Γ whose distance from the origin is 1. 

7.3.1. THEOREM. (Schwartz [1]). E is not an S-set. 

Proof: Let Ω be the set of all infinitely difierentiable complex 
functions on Rz with compact support. If φ e Ω and / is the inverse 
transform of <f>, 

(1) f(x)=SRJ(y)eixydy (xeR*) 

where x · y = xx yx + x2 y2 + ^3 y* * then the inverse transform of 
d<f>¡dyh is — ixkf(x), etc.; since all derivatives of φ are in L 1 ^ 3 ) , it 
follows that \x\p\f(x)\ is in L°°(i?3), for p = 0, 1, 2, . . .. Hence 
f€L1(R3), and so QCA(RZ), by the inversion theorem 1.7.3 (e). 

Let / be the set of all / € LX(R3) such that / * Ω and /(y) = 0 
for all y e E. Let I be the set of all / e J such that ij\dyx = 0 on £. 
Then / and / are translation-invariant linear spaces, and their 
¿^closures / , J have Z(I) = Z(J) = E. We shall show that 
/ φ J by constructing a bounded linear functional in L1 (Rz) which 
annihilates / but not / . 

Let μ be the unit mass, uniformly distributed over E. The in-
verse transform of μ is 

(2) / } ( x ) = J ^ ' d J u ( y ) (xe/?3). 

Fix x € Rz, and introduce spherical coordinates on E, with pole at 
the point x\rt where r is the distance from 0 to x. Then 

i /·2ττ y»w ein V 

(3) £(χ) = άφ \ eirCO% β sin θαθ = . 
4π J0 J0 r 
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Hence \xtfi(x)\ ^ 1 for all x € Ä3, and the expression 

(4) Vf = !„f(*)*iß(-x)dz 

is a bounded linear functional on L 1 ^ 3 ) . If / e ß , then 
x1f(x)€L1(Rz)f and so 

(5) Wf = f *,/(*)£* f *-*■ ** ¿μ(y) = *(2π)
3
 f ^ αμ. 

Thus Wf = 0 if / € / . But it is clear that there are functions in / 

for which the last integral is not 0. 

7.3.2, The analogue of Theorem 7.3.1 holds if Rz
 is replaced by 

Rn (n ^ 3) (Schwartz [1]), but does not hold in R2
 (Herz [2]), and 

evidently not in R (see 7.2.5(b), for instance). 

7.4. The Examples of Herz 

Cantor's "middle third" set is an S-set on the real line. This 

was proved by Herz [1] and was the first example of a totally dis-

connected perfect set in R which is an S-set. The idea of the proof 

was later extended to other cases (Herz [3]). We shall present the 

construction for compact Γ. This simplifies some of the technical 

details, and, as we shall see in Section 7.6, the compact case has the 

most important features of the general case. 

7.4.1. LEMMA. Suppose A is a finite subgroup of the compact 

abelian group Γ. Then there is a Borel set Y in Γ with the following 

properties: 

(i) m{Y) = 1/n, where n is the number of elements of Λ and m 
is the Haar measure of Γ; 

(ii) the set V = Y — Y is open; 

(iii) V r\ A contains only one point, namely 0. 

Proof: Every finite abelian group is a direct sum of cyclic groups. 

Thus A is generated by independent elements γΐ9 . . ., yt, of order 

ql9 . . ., qk, and n = IIqr. There exist points xlf . . ., xk in G such 

that 
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( exp Í2mlqr) if s = r 

If y e/l, then y = 2 «»y», where αχ, . . ., a t are integers, and 

(2) (xr,Y) = Y[(xr,y,)"=(xrtYr)°r=exp{2maTlqr} (lgrgk). 

Let Yr be the set of all γ c Γ such that 0 g arg (xr, y) < 2n/qr, 

and put Y = Yt r\ . . . r\Yk. Then m(Yr) = l / j r . Since (1) shows 
that {xlt . . ., #*} is an independent set, it follows that 

(3) m(Y) = Π m(YT) = l/n. 

Since V is the set of all γ € Γ such that 

(4) - 2n¡qr < arg (zr, γ) < 2n\qr (1 ^ r ^ A), 

F is open, and (2) implies that V n A = {0}. 

7.4.2. We now suppose that {At} is a countable family of finite 
subgroups of Γ and we associate with each A{ two sets Yif Vt as 
in Lemma 7.4.1. We also assume that {Vt} forms a neighborhood 
base at 0. 

Suppose E is a compact subset of Γ such that 

(1) (E + VJnAiCE (i = 1, 2, 3 . . .); 

in other words, if γ € Ait then either γ € E οτ γ + V{ contains no 
point of E. 

THEOREM. Under these conditions, E is an S-set. 

To give a class of examples on the circle group T (regarded as the 
reals mod 2π), let {j>t} be a sequence of integers greater than 2, put 
»< = ¿1^2 - · · Pi (* = 1. 2, 3, . . . ) , let Ai = {2π//η,} (/ = l> · · ·> *<). 
Yi = [0, 2π/η<), F,· = (— 2n\nu 2π/η<), and take for E the set 
of all numbers of the form 

oo 

(2) x = 2π 2 ajni (α{ = 0 or at = />f — 1). 
¿ - 1 
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Then £ is a Cantor set, and every point of Λ{ which is not in E 

is at a distance from E which is at least 2π/Λ,·. 
There are compact groups Pin which this construction cannot be 

carried out. For instance, if P is the dual of the additive group R* 

of the rational numbers, then Γ has no non-trivial finite subgroup, 
since R* has no proper subgroup of finite index. 

7.4.3. Proof of theorem 7.4.2. Let g, be the characteristic 
function of Yt, and define ki€L1(G) by putting 

(1) *, = *5fe«*&) ( ¿ = 1 , 2 , 3 , . . . ) 

where wt is the number of elements of Λ{. Since kt is continuous 
and positive-definite, we verify easily that 

(2) kt 2; 0, Äf(0) = 1, ¿,.(0) = «,·. ¿,(y) = 0 if γ 4 Vt. 

For ^€L°°(G)( put 

(3) 0tfy) = X φ{χ)Κ{- * ) ( - x, γ) (γ*Γ) 
X€G 

and 

(4) * , ( * ) = - Σ *<(y)(*.r) (*«G). 

If i / t is the subgroup of G which annihilates Aif we have 

*.(*) = Σ MM-y)-li*-y,v)= 1 *&)*«(-y)· 
ycC Μίγ€Λ{ y-x€Hi 

or 

(5) φ^χ) = 2 ^(x + ?)*<(- x - y). 
V€Ht 

If now <£= 1, then <Pt(y) = ^(—y)· Since ¿, = 0 outside 7, 
and since Vi n Λ, = {0}, (4) shows that in this case φί: = 1. Hence 
(5) implies 

(6) 2 M - * - y) = 1 (xeG; * = 1, 2, 3, . . .). 
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Returning to a general ^€Z,°°(G), (5) and (6) imply that 

(7) II^IL^IWL (¿=i,2,3,...), 

since ki ^ 0. Since {Vt} is a neighborhood base at 0, the definition 
of k{ shows that ki (x) -> 1 for every x c G, as i -> oo. Hence 

(8) lim 2 * , ( - * - y ) = 0 (seG), 
¿-►OO V€Hf 

νΦϋ 

by (6), and we conclude from (5) that 

(9) lim φ4(ζ) = ¿(x) (x € G). 
t"-»oo 

Having proved (7) and (9), we choose <£€Z,°°(G) so that 
g * φ = 0 for every g€L1{G) which has g = 0 on an open set con-
taining E. Suppose / € L1(G) and / = 0 on E. We have to prove 
that /*<¿ = 0 (see 7.2.5(a) (i)). 

Put hi(x) = ki(x)(x, γ). Then ht = 0 outside F¿ + yy and so 
A¿ * φ = 0 if the closure of F t + γ does not intersect £. By (3), 
this means that <P,(y) = 0 if γ 4 E + V{. Since Φ, is continuous, 
we have 

(10) <My) = o (riE + vj. 

By (4) 

(ii) (/*φ{)(χ) = - 2 ΦΛΥ)ΗΥ)(*, γ) (i = i. 2,3,. . .) . 
w ¿ r e ^ 

Our hypothesis about the structure of E, combined with (10) and 
the fact that /(y) = 0 on £ , now shows that each term in the sum 
(11) is 0. Hence / * φί = 0 for i = 1, 2, It follows, by (7) and 
(9), that /*<£ = 0, and this completes the proof. 

7¿. Polyhedral Sets 

7.5.1. Suppose E is a closed subset of Γ, with the following 
property: if /€L1(G) t i f / = 0 on Et and if ε > 0, there exists 
g € LX(G) such that ||/ — / * g\\x < ε and such that g has compact 
support, disjoint from E. Under these conditions, we call E a 
C-set in Γ. 
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Since / * g €l0(E) (see 7.2.5(a)), it is clear tha t every C-set is 
an S-set. I t is not known whether the converse is true. 

This definition of C-sets is very similar to one introduced by 
Calderón [2] and the theorem which follows is analogous to his. 

7.5.2. THEOREM, (a) Every point of Γ is a C-set in Γ. 

(b) Finite unions of C-sets in Γ are C-sets in Γ. 

(c) If the boundary of E is a C-set in Γ, so is E. 

(d) Each closed subgroup of Γ is a C-set in Γ. 

(e) If E is a closed subset of a closed subgroup A of Γ, if dE is the 

boundary of E relative to A, and if dE is a C-set in Γ, then E is also 

a C-set in Γ. 

Before proving this, let us see what the theorem tells us if 

Γ = Rn. Note that (e) holds equally well if A is a coset rather 

than a subgroup, since the family of all C-sets is evidently in-

variant under translation. 

By (a), (b), and (e), each compact straight-line interval in Rn is 

a C-set, hence the union of any three of these intervals is a C-set, by 

(b), and if we apply (e) again, we see tha t each triangle is a C-set. 

Continuing in this way, we find that every rectilinear simplex, of 

dimension 1¡ n, is a C-set in Rn. So are hyperplanes (of all dimen-
sions 5g n — 1), by (d), and half-spaces, by (e), as well as quad-
rants in the plane (bounded by two closed half-lines), octants in 
Rz, etc. 

We conclude that every polyhedral set in Rn (i.e., any set which 
is a finite union of sets built up in the above manner) is a C-set in 
Rn. 

In particular, every polyhedral set is an S-set. 

7.5.3. Proof of theorem 7.5.2. (a) If /(y0) = 0 and e > 0, 
there exists v c i 1 (G) such that v = 0 in a neighborhood of y0 and 
11/ — / * *>lli < Φ> b y Theorem 2.6.4. Also, there exists k € LX(G) 

such that k has compact support and \\v — v * k\\x < e¡2 ||/||. 
If g = v * k, then g has compact support, disjoint from y0, and 

11/ - gilí á 11/ - / * »ΙΙχ + 11/ * (v - v * k)\\ < ε. 

(b) Suppose Ex and E2 are C-sets in Γ, E = ^ υ Εζ,ε > 0 , 
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f eL1(G)t and / = 0 on E. The definition of C-sets shows that 

there exist functions g t € L}(G)t (i = 1, 2) such that g{ has com-

pact support, disjoint from Eit and such that \\f — f * g^\x < ε/2 

and ||/ * gx - / * gx * ftll! < e/2. If g = gx * g2, then g = g ^ has 

compact support disjoint from E, and ||/ — / * g\\x < ε. 

Part (c) is a special case of (e) (A = .Γ), and so is (d) (E = A), 

since the empty set is a C-set in Γ (Theorem 2.6.6). 

(e) Suppose f €L1{G)> where / = 0 on Et e > 0, and E satisfies 

the hypotheses of (e). Since dE is a C-set in Γ, there exists 

g € L}(G) such that the support K of g is compact and disjoint from 

dEt and such that ||/ — / * g\\x < ε/2. Let E' be the complement 

of E, relative to A. Since K n E is compact and disjoint from the 

closure of £ ' , it follows that there exists h € Ll(G) such that % = 1 

on an open set containing K n £ and such that h = 0 on E'. Hence 

β = 0 on A 

By Theorem 2.7.5, there exists μ € M(G) such that ft = 1 on an 

open set containing Λ and ||/ * g * A * μ\\τ < ε/2. Since g = 0 

outside if and Ä = 1 on an open set containing K n E, the function 
£ — ghfr has compact support disjoint from £ , and 

1 1 / - / * fe-ff***A*)lli ^ l l / - / * g l l i + l l / * g r * A * ^ l l i < « · 

This completes the proof. 
We conclude Section 7.5 with a few other classes of sets which 

are easily seen to be S-sets. 

7.5.4. Star-shaped bodies. Let £ be a closed set in Rn which 
has an interior point p0 such that each straight line through p0 

intersects the boundary of E in at most 2 points. Such a set is called 
star-shaped. For example, every convex body is star-shaped. 

THEOREM. Every star-shaped body E in Rn is an S-set. 
Proof: Without loss of generality, we may assume that p0 is the 

origin of Rn. Choose f€L1(Rn) such t h a t / = 0 on E, suppose 
0 < a < 1, *β = 1, and put g(z) = f(ßx), x e Rn. Then ¿{y) = 
ocn/(ay). Since a < 1, g(y) = 0 on an open set containing E. 
Hence g e I0(E). As ß -> 1, ||g — f\\x -► 0, hence / is in the closure 
of I0(E) and the theorem follows. 
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7.5.5. In particular the closed unit ball in Rn
 is an S-set. The 

same proof shows that the closure of the exterior of the unit sphere 

is an S-set. The example of Schwartz thus shows that the inter-

section of two S-sets need not be an S-set. 

It is not known whether the union of any two S-sets is an S-set. 

7.5.6. A class of semigroups. A subset E of a group Γ is a 

semigroup if E + E C E. 

THEOREM. If E is a closed semigroup in Γ and if 0 is in the closure 

of the interior of E, then E is an S-set. 

Proof: Choose γ0 in the interior of E, and let V be a neighbor-

hood of 0 in 7̂  such that γ0 + V C E. Then V C E — y0, hence 

E + VCE + E — γ0 = Ε — γ0, and so E lies in the interior of 

E — )V 

Now if / € L1 (G) and / = 0 on £ , then f{y + y0) = 0 if y e Ε-γ0. 

Setting g(x) = f(x){— xt y0), it follows that g €l0(E). Since 0 is 

in the closure of the interior of E, \\f — g\\x can be made arbitrarily 

small by taking y0 sufficiently close to 0. Hence / € J0(£), and the 

theorem follows. 

7.6. Malliavin's Theorem 

7.6.1. Theorem 7.1.5 shows that every subset of a discrete 

abelian group Γ is an S-set in Γ. That this is false in every other 

case was proved by Malliavin [1], [2], [3]: 

THEOREM. / / Γ is a non-discrete LCA group, then Γ contains a 

closed set which is not an S-set. 

We divide the proof into two parts (7.6.3 and 7.6.4). The first 

part contains the main idea, in a form which is a little stronger than 

Malliavin's statement, although all the necessary ingredients are 

contained in his work. The second part consists of a construction 

which, though not simple, is merely a matter of technique, and 

several possibilities exist. Following Kahane [6] we use a method 

based on probability considerations; this simplifies the required 

computations and also shows that, in a certain sense, "randomly 

selected" compact sets fail to be S-sets. 
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But first of all we show that it is enough to consider compact 
groups Γ, 

7.6.2. LEMMA, (a) / / A is a closed subgroup of Γ and if E is a 

closed subset of A which is not an S-set in Λ, then E is not an S-set 

in Γ. 

(b) If the circle group T contains a closed set which is not an S-set, 

then so does the real line R. 

(c) / / the conclusion of Theorem 7.6.1 is true for every infinite 

compact Γ, then it is true for every non-discrete Γ. 

Proof: (a) follows from Theorem 2.7.4. For if^ is the restriction 

map of A (Γ) to A, then φ is a homomorphism of A (Γ) onto A (A); 

since A (A) is semi-simple, φ is continuous; hence if IlfI2 are 

distinct closed ideals in A (Λ), «^( /χ) and φ-1 (I2) are distinct closed 

ideals in Α(Γ); finally, / and φ'1^) have the same zero-set. 

To prove (b), let Ex be a closed subset of the circle T which is 

disjoint from an arc E2 C T; assume — 1 € E2. Let Kt be the set 

of all y € (— π, π) such that eiy
 € Ex. Let K2 consist of all 

y € (— π, π) such that eiy c E2, and of all y with \y\ ^ π. Put 

E = Ej u E2 and K = Kx u K2. 

If ¡€ A (T) and if / = 0 on E, then the set of points at which / 
does not belong locally t o / 0 ( £ ) is a perfect subset of the boundary 
of E (or is empty), by Lemma 7.2.3. Thus E is an S-set if and only 
if Ex is an S-set. Similarly, K is an S-set if and only if Kx is an 
S-set. 

Suppose f€A(T), / = 0 on Et and define g(y) = f(eiv) for 
\y\ á π, ¿(y) = 0 for \y\ > π. ΙίΚ is an S-set, there is a sequence 

gn € ̂ (R) such that \\g — g j ^ -> 0 and ¿n = 0 on an open set Vn 

containing K. By Theorem 2.7.6 it follows that £ is an S-set. The 
argument can be reversed, and shows that E is an S-set if and only 
if K is an S-set. 

We conclude that JÊ  is an S-set if and only if Kx is an S-set. 
The proof of (c) is now immediate. If Γ is not discrete, the 

structure theorem 2.4.1 shows that Γ either contains an infinite 

compact subgroup A, in which case we appeal to (a), or that Tcon-
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tains a closed subgroup isomorphic to R, in which case we appeal 

to (b) and (a). 

7.6.3. We now assume that Γ is compact and infinite. If 

/ € Ll{G), then exp (iuf) e A (Γ) for every real number u. We de-

fine ax(u), for x € G, by 

(1) exp { - iuf(y)} = £ * * M ( - *> 7)> 
xeG 

and put 

(2) Mn = sup— f \ax(u)u»\du {n = 1, 2,3, . . .). 

We shall see later that there exist real functions / e Α(Γ) such 

that 

(3) M n < o o (**= 1,2,3, . . . ) . 

THEOREM (Rudin [18]). If f satisfies the above conditions, there 
exists a real number ξ such that the closed ideals in A (Γ) which are 
generated by (/ — ξ)η (n = 1, 2, 3, . . .) are all distinct. 

Since all of these ideals have the same zero-set, Malliavin's 

theorem follows from this as soon as the existence of an appropriate 

/ is assured. 

Proof: The map 

(4) Φ^ΙΓΦ(Ηγ))(*,γ)αγ 

is, for each x € G, a bounded linear functional (of norm ^ 1) on the 

space C(Y), where Y is the range of /, a compact subset of the 

line 2?. The Riesz representation theorem implies that there are 

measures μχ€Μ^), concentrated on Y, such that 

(5) \ΓΦ{ΗΥ)){*. y)iy = J_°>(0<W) (* < G) 

for every continuous function φ on R. If we take <f>(t) = e~iut
t 

comparison of (4) and (1) shows that ax(u) = £«(«*). We infer 

from (2), (3), and the inversion theorem 1.7.3(e) that αμχ(ί) = 

mx(t)dt, where mx € C°° (the class of infinitely differentiable 

functions on R), and since 
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in r°° 
(6) (Dnmx){t) = — unax{u)eiut du, 

(2) implies that 

(7) \(D"tnx)(t)\ g Mn (x € G, t € R, n = 1, 2, 3, . . . ) . 

Here Dn
 denotes the nth derivative. We now rewrite (5) in the 

form 

(8) \ΓΦ{Κγ))(*,ν)*γ = j^(t)mx(t)dt. 

Taking u = 0 in (1), we see that aQ(0) = 1. But a0 is the 

Fourier transform of m0. It follows that 

(9) m0(f) φ 0, 

for some real number ξ. 

With this f, we define bounded linear functionals Tn on Α(Γ), 

for h = 1, 2, 3, . . .: 

(10) Γ„£ = 2 g( - *)(D*mJ(f) UcL»(C)). 

If / n is the closed ideal generated by (/ — ξ)
η
 we shall see that Tn 

annihilates / n + 1 but not / n , and this will complete the proof. We 

do this by first obtaining an alternative description of Tn¿ for a 
certain class of functions g. 

Suppose x € G, <f>{f) €A (Γ), and 

(ii) Ε(γ) = Φ{ί(γ))(*,γ) (γ*Γ). 

By (8), (11), and (1) the Fourier transform of <f>mx is 

l~J{t)mx{t)e-^dt = ¡Γφ(ί(γ)) exp { - iuf(y)}(x, γ)άγ 

= \ré(y) Σ *v(«)(- y. rW 
J J V€G 

= Σ g(- y)™>vW 
V€G 

so that 

(12) *(<)m.(0 = 2 g ( - y)m,(¿) (¿ * R). 
W€G 
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(Observe that the right side of (12) is in C°°. This means that 

φ € C°° on every segment on which one of the functions mx is 

different from 0. Hence φ(Ι)€Α(Γ) only for very smooth func-

tions φ. This remark establishes a connection with the problems 

treated in Chapter 6, and has been pursued further by Malliavin 

[4]·) 

By (7), the series in (12) may be differentiated term by term any 

number of times. Putting t = ξ, comparison with (10) then shows 

that 

(13) Tug = D*{fa){S) ( n = 1 , 2 , 3 , . . . ) 

if g is of the form (11). 

Taking φ(ί) = (/ - ξ)»+i and ¿(γ) = (f(y) - £)*+*(*, y). it fol-

lows that Tng is the nth derivative of (/ — ξ)n+1fnx(t), evaluated at 

/ = ξ, and this is 0. Hence Tn annihilates In+l. 

But Ίίφ[ί) = (¿ - £)" a n d | ( y ) = (/(y) - £ ) \ (13) implies that 
Tng is the wth derivative of (/ — ξ)ntn0(t), evaluated at t = ξ, and 

this is η\τη0(ξ). Since τη0(ξ) Φ 0, Tng Φ 0. 

Hence (/-— ξ)η is not in / n + 1 , and the proof is complete. 

The set Εξ which is thus shown not to be an S-set is the set of all 

y € Γ such that }{γ) = ξ. Since Ea and Efi are disjoint if β Φ α, 

we conclude that there are uncountably many pairwise disjoint com-

pact sets in Γ which are not S-sets and whose union is an open set. 

7.6.4. We now have to prove the existence of a real function 

/€ Α(Γ) which satisfies the hypotheses made in 7.6.3. Put 

(1) v(t) = —L-( e-"9<*du ( - o o < * < o o ) . 
V(2*)J-oo 

Let Ω be the Cartesian product of countably many copies of the 

segment (0, 1); the coordinates of a point ω e Ω are ωχ, ω2, co3, . . ., 

where 0 < G>,· < 1. Define 

(2) φ,(ω) = ¿(cofc) (co € Ω, k = 1, 2, 3, . . .), 

where φ is the inverse of ψ: ψ(φ(ή) = t for 0 < / < 1. In the lan-

guage of probability theory, the functions φΐ0 form an independent 

sequence of random variables, with the same Gaussian distribution. 
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THEOREM. / / Γ is compact and infinite, there is a sequence {xk} in 

G with the following property: for almost all ω c Ω, the function f 

defined on Γ by 

(3) f(y) =/(γ;<») = Σ *-Vk(») Re (xt, Y) 
fc-1 

belongs to A (Γ) and satisfies the hypotheses of 7.6.3. 

The measure on Ω with respect to which the phrase "almost all" 

is to be understood is the product measure, characterized as fol-

lows: if El9.. ., En are sets in (0, 1) and ECU is the "cylinder 

set" consisting of all ω such that ω, € E{ (1 ^ i ¿ n), the measure 
of E is E = Π?β1

 m(Ei)> where m is Lebesgue measure on (0, 1). 

Proof: By (1) and (2), we have 

(4) f F(<f,k(o>))da> = f F{<f>{x))dx = -L- Γ F{t)er*i* di 
JQ Jo V^J-oo 

for any function F for which these integrals exist as Lebesgue 

integrals. Taking F(t) = \t\, it follows that 

i 1^
2
Ι^*(ω)|^ω < oo ; 

by (3), this implies that f € Α(Γ) for almost all ω. 
If we define ax(u) = ax(u; ω) as in 7.6.3, then 

(5) f exp {iu[f(y + / ) - / ( / ) W = 2 \ax(u)\*(z, γ), 
J Γ x€G 

and if 

(6) B(u) = B(u; ω) = 2 I"*K ω)|
4
, 

xtG 

the Parseval formula gives 

B(u) = J J" j* exp {iu[f(y + -/) - / ( / ) 

(7)
 Γ Γ Γ -f(y + y") + f(y")]}dy dy' dy" 

=jJ j Π exp (^ φ*(ω)Ρ> (γ, y', y")) dy */ dy", 
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where 

(8) PAY, Y, y") = Re í(xk, γ + γ')- (**, γ') 
{ ' -(*>,Y + y") + (x>,r")l 

Let E be the expected value of B: 

(9) E(u)=jQB(u;co)da>. 

If we integrate (7) over Ω, (2) shows that jQ may be moved 

inside the product sign. Taking F(u) = eisu
 in (4), with s real, the 

well-known formula 

1—Í e^e-^du^e-*!* 
2π )}_„ 

therefore gives 

(io) E(u) =\JJrñexp{-¿ΡΚγ,y',/')}¿y¿/<*/'· 

Fix ü, |w| ^ 1, and let 2V be the largest integer such that 
N2 5̂  \u\. Since no factor in (10) exceeds 1, 

(11) E(u)<Z¡ f f Í T e x p { - in<Y>y',v")}dydY' dy". 

Two facts will be needed for our next estimate of E(u). First, 
there is a constant A < 1 such that 

(12) f f f exp{-*P!}<¿ 

whenever xk Φ 0 (compare (8)); secondly, {a:fc} can be so chosen in 

G that the right side of (11) is less than 

(13) 2 f lJ j jexp {- ¿Pf} (N = 1, 2, 3, . . .)· 

Once these are proved, it follows from (11) that 

(14) E(u) < 2 exp { - 6\u\l¡2} (— oo < u < oo) 
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for some δ > 0. If 0 < ε < ó, (9) and (14) imply that 

I dco i B(u; co) exp {e\u\y*\du 
(15) J* J-°° , « 

< 2 exp {(ε — <5)|«|*}á« < oo. 
J — OO 

The inner integral on the left side of (15) is therefore finite for 
almost all ω. For any such co, (6) shows, via Holder's equality, that 
/•OO ΛΟΟ 

\ax(u)un\du ^ B(u)y*\u\n du 
J — 00 J—OO 

^ {J B(«) exp {eVM}^} * · { j exp j - J v/M¡M4n/3 du) *· 

for w = 1, 2, 3 , . . . and a; € G. Thus the hypotheses of Theorem 
7.6.3 are satisfied. 

We now turn to the proof of (12) and (13). Define P on the 
torus Γ

3
 by 

(17) P(ei9\ eie\ ei6*) 

= cos (θχ + θ2) — cos 02 — cos (θ1 + 03) + cos03, 

put Q = exp { - ¿P2}, 

(18) Qk(y, / , y") = Q((xk, y), (xk, / ) , (**, / ' ) ) . 

and 

(19) Λ = ¡r Srjr QÁV> / · r")<*7 ¿ / <¥'· 

Since @λ = expf — \P$, Jk is the integral in (12). If xk has order 

n, then 

(20) Jk = J(n) = -3 ¿ ς(*"*/*,6*"«1», *'*'**), 

and if xk is of infinite order, we have 

Since P(e
i9

, trte, 1) > 0 if 0 < 0 < 2π, it follows that for » ^ 2 at 
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least one of the summands in (20) is less than 1. Hence J(n) < 1. 

Since /(oo) < 1 and since lim J(n) = J(oo), we have proved (12). 

Choose ek > 0 so that Π Γ Í1 + €k) < 2 · Choose xx €G9xx^ 0, 
and suppose xlf . . ., xN_t are selected and satisfy the induction 
hypothesis 

(22) f f f Π Q* ¿Y ¿Ϋ *Y" < A»-> Π (1 + «*). 

where A is as in (12). Put ΦΝ_Χ = Π ^
- 1 Qk· We will choose 

xNeG so that 

(23) / / / Φ ^ - Χ QN dY άγ' iy" ^ / / / Φ ^ ' / / / < ? * · (1 + «y)· 

Since P is a trigonometric polynomial, Q c A (T3), and 

(24) QAY, Y',Y")= 1 ",„(*Ν> tr + ÍY' + ry"), 
P, «, r—-oo 

where the numbers a9qr are the Fourier coefficients of Q. Note also 
that ΦΝ_1€Α(ΓΖ) and that ΦΝ_1=ι 0 outside GV-i» where G .̂̂  

is the subgroup of G generated by xx, . . ., ίΡ#_ι· To evaluate the 

integral on the left side of (23) we replace Φχ-χ and QN by their 

Fourier series, multiply the series, and integrate term by term. 

Case I. If G is of bounded order, then G is a direct sum of in-

finitely many cyclic groups, GN_t is finite, and we can find xN Φ 0 

so that the group generated by xN has only 0 in common with 

Gjyr-i· Then (23) holds with εΝ = 0, and the two sides are actually 

equal. 

Case II. If G is not of bounded order but contains no element of 

infinite order, then GN^ is again finite, and to every positive inte-

ger s there corresponds an element xNcG such that axN 4 GN_X 

for a = 1, 2,. . ., s. (Otherwise no x c G would have order greater 

than s times the number of elements of GN„lf a contradiction.) 

Given η > 0, we can choose s so that ]£ \aPQr\ < η, the summation 

being extended over all (p, q, r) with \p\ > s or |̂ | > s or 

\r\ > s. By (24), we then have 
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ooo <η. (25) UJ/ftr 

Our choice of xN shows that 

(26) IN**'1 QN = *~ΜΦ*~Χ 

+ Γ ^ / J J tf**· y) («»jr. / ) ( « * / ' )<*W 

where |£| > s, |y| > s, and |r| > s in 2 ' · This sum is less than η, 
since Φ^ν-ι á 1· Comparison of (25) and (26) shows that (23) holds 
if η is small enough. 

Case III. If G has an element x0 of infinite order, and if η > 0, 
then GN_X has a finite subset H such that 2 l^jv-ifo x'> x")\ < V» 

the sum being extended over all points (x, x', x") with at least one 
coordinate outside H. Let xN be a multiple of x0, so that axN 4 H 

unless a = 0. . Then j $ f QN = a^ and 

(27) / J J * * - i &r ^ «ββοJJJ*ir-i + 9· 

Taking ?? small enough, we again obtain (23). 
The proof is complete. 

7.7. Closed Ideals Which Are Not Self-Adjoint 

7.7.1. The work of Section 7.6 can be modified so as to yield the 
following result: 

THEOREM. / / Γ is not discrete, then A (Γ) contains a closed ideal 
which is not self-adjoint (i.e., which is not closed under complex 
conjugation). 

Proof: By an argument quite analogous to that used in Lemma 
7.6.2 we see that it is enough to prove the theorem for compact 
infinite Γ. 

Pick {fa} as in 7.6.4 (2), put 

AM - Σ *r*fa(«>) Re (xk, y), /2(r) = 2 k-*fa(m) Re (xh, y)9 
kodd keven 

define ax(ut v) for u, v real and x e G by 
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e X p { _ ¿ («¿(y ) + ν/2(γ))} = 2 UX(U, * ) ( - X, y), 

put 

X€G 

B(u, v) = B(«, v; ω) = 2 l**(w> *0I4 

X€G 

and 

£(w, a) = J B(u, v; co)dco. 

As in 7.6.4(10), we obtain 

and the final argument in 7.6.4 shows that {xÄ} can be so chosen in 
G that 

E(u, v) < 2 exp {- ¿(|i#|* + \v\*)}. 

A weak consequence of this is a condition analogous to 7.6.3(2): 

sup l^x(w, a)|(w2 + v2)Yt dudv = M < oo. 

We now define / = /x + i/2 and find, as in 7.6.3(8) that 

for every continuous function φ in the plane; the functions mx have 
compact support, and satisfy the inequalities 

M. 
8mx 

Bs 
£M, 

8mx 

dt 

Since mQ is not identically 0, we may, by adding a constant to /, 
assume that w0(0, 0) Φ 0. We now define a bounded linear func-
tional T on Α(Γ): 

xcG OZ 
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where 

dz 
= -(— — * — ) (z = s + t(). 

If ¿(γ) = <j>tf{y)){z, γ), with φφ « A (Γ) and x e G, we see, as 

in 7.6.3 (13), that 

7 * = | ( * » , ) ( 0 , 0 ) . 

Taking ψ(ζ) = z, x = 0, this gives 

Γ / = - (*m0)(0, 0) = m0(0, 0) # 0. 

But if φ(ζ) = z and a; c G, we get 

= 0. Γ ί - | ( * ^ ) ( 0 . 0 ) - ^ 
Ä"^) 

Thus Γ annihilates the ideal generated b y / w i t h o u t annihilating 

/. The theorem follows. 

7.7.2. One can produce other examples of this sort, based on 

other differential operators. However, the following result of 

Helson [2] shows that this does not exhaust all possibilities: 

THEOREM. / / Ix and I2 are distinct closed ideals in L}(G)t if 

Ιχα2, and if Ζ(Ιτ) = Z(I2)f then there exists a closed ideal I such 

that I φΙΐ9 I φ12ί and I1CICI2. 

7.8. Spectral Synthesis of Bounded Functions 

7.8.1. It often happens that a problem in a Banach space X 

can be replaced by an equivalent one in the dual space X*. For 

example, we shall see that the study of the closed ideals of Ll(G) 

is equivalent to the study of the translation-invariant subspaces of 

L°°(G) which are closed in the weak*-topology. This approach 

was suggested by Beurling [2], [3], and various aspects of it have 

been discussed by Segal [2], Godement [1], Pollard [1], and 

Herz [3]. 
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If I is a closed ideal in LX(G) and if Φ is a translation-invariant 

weak*-closed subspace of L°°(G)f define 

(1) a(7) = {¿€L°°(G): / * ¿ = 0 for all / * / } , 

(2) β(Φ) = {/ € Ll(G): f * φ = 0 for all φ e Φ}. 

The letters 7, Φ, a, /? will have these meanings throughout the 

remainder of this chapter. 

The spectrum of Φ, written σ(Φ), is defined as the set of all 

continuous characters of G which belong to Φ; if ^€L°°(G), its 

spectrum σ(φ) is defined to be σ(Φ(φ))> where Φ(φ) is the smallest 

Φ which contains φ. The problem of spectral synthesis in L°°(G) is 

the question whether each φ e Φ can be "synthesized" from σ(Φ). 

More precisely: Is every Φ identical with the weak*-closed subspace 

Φχ of L°°(G) which is generated by the continuous characters in Φ? 

Or can distinct Φ^ have the same spectrum? (It is clear that 

Φλ C 0 , that σ(Φ1) = σ(Φ), and that Φτ is the smallest weak*-

closed subspace of L°°(G) with this spectrum.) 

If a set E C Π$ the spectrum of a unique Φ, we say that spectral 

synthesis holds for E, or that E is an S-set. The equivalence of 

this definition with the one adopted in Section 7.1.4 is a conse-

quence of part (e) of the theorem which follows. 

7.8.2. THEOREM, (a) Each a {I) is a Φ, each β(Φ) is an I. 

(b) *(β{Φ)) = Φ and jS(a(J)) = I. 

(c) If Φ = a(7) then σ(Φ) = Z(I). 

(d) σ(Φ) is always closed, and every closed set E C Γ is σ(Φ) for 

some Φ. 

(e) A closed set EC Γ is σ(Φ) for a unique Φ if and only if 

E = Z(I) for a unique I. 

Proof: Part (a) follows from Theorem 7.1.2 and from the defini-

tion of the weak*-topology. 

The inclusions 

(1) α ( ί ( Φ ) ) 3 Φ and 0(a(/)) DI 

are obvious from the definitions of a and β. The Hahn-Banach 

theorem implies that α ^ ) = <x(J2) if and only if Ιτ = 72; its dual-
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space analogue (Appendix C9) shows similarly that β(Φλ) = /?(Φ2) 

if and only if Φτ = Φ2. The first of the relations (1) shows that 

(2) ß(*(ß(0)))Cß(0), 

and if we put I = β(Φ) in the second, we obtain the reverse of (2). 

Hence β(κ(β{Φ))) = β(Φ), and this implies that α(0(Φ)) = Φ. The 

second part of (b) is proved the same way. 

If φ = a(7), then y € σ(Φ) if and only if / * y = 0 for all / <·/. 

But (/ * y) (x) = (a;, y)f(y), and this is 0 for all x € G and all / € / 

if and only if y c Z(I). This proves (c). 

By (a) and (b), every Φ is a(J) for some J; hence (d) follows 

immediately from (c). 

Since σ(Φ) = Ζ(β(Φ)), by (c), and since β{Φ1) = β(Φ2) if and 

only if φ1=ζ Φ2, we see that (e) is true. 

7.8.3. We can now rephrase some of our earlier results. 

(a) / / V is an open set containing σ(Φ) and if Φι is the weak*-

closed subspace generated by the characters in V [not just those in 

σ{Φ)\) then Φτ D Φ. 

For if J = β(Φ) and Ix = β{Φ1), then Z(I) is in the interior of 

Z(IX)9 and so Ix CI, by 7.2.5(a). Hence Φχ = *(Ιλ) D &(I) = Φ. 

(b) If f € L
1
(G) and f = 0 on an open set containing σ(φ), then 

f * φ == 0. 

This is a special case of (a). 

(c) / / Φ contains a non-zero function, then σ(Φ) is not empty. 

Since we identify functions L°°(G) which differ only on sets of 

measure zero, the hypothesis means that Φ contains a function 

which differs from zero on a set of positive measure. Then β(Φ) Φ 

L}(G)y and so Ζ(β(Φ)) is not empty, by Wiener's theorem. But 

Ζ(β(Φ)) = σ(Φ), by Theorem 7.8.2. 

(d) If φ € L°°(G) and φ Φ 0, then at least one continuous character 

of G can be approximated, in the weak*-topologyt by linear combina-

tions of translates of φ. 

This follows from (c). 

(e) / / σ(Φ) = {ylf . . ., yn}, a finite set, then every φ*Φ is a 

trigonometric polynomial of the form 
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(1) Φ(*) = I Ct(x, yt). 
¿«1 

This is so since every finite set in Γ is an S-set and since the 

space of all polynomials (1) has {γχ, . . ., γη} as its spectrum. 

7.8.4. Although a space Φ may not be determined by the con-
tinuous characters which it contains, Φ is determined by the uni-
formly continuous members of Φ. 

For if φ € Φ and g e Lx(G)t then g * φ is bounded and uniformly 

continuous (Theorem 1.1.6(b)) and (a) g*φ€Φ (b) φ is in the 

weak*-closure of the set of all g*^ (g€L1(G)). 

To prove (a), take f e β(Φ). Since β(Φ) is an ideal, / * g e β(Φ), 

hence / * (g * φ) = 0, and so g * φ c χ(β(Φ)) = Φ. To prove (b), 

suppose / € Ll(G) and / * g * φ = 0 for all g c Ll{G). Taking {gn} 

so that 11/ — / * gjli -> 0, we see that / * φ = 0, and (b) follows 

from Appendix C9. 

7.8.5. Let us say that a function φ c L°°(G) admits spectral 
synthesis if φ is in the weak*-closed subspace of L°°(G) generated 

by σ(φ); in other words, if φ is in the weak*-closure of the set of all 

trigonometric polynomials / ot the form 

(1) f{x) = lCi(x,Y<) (xsG, γ<€σ{φ)). 

THEOREM. / / μ€Μ(Γ) and if 

(2) φ{χ)=1Γ(χ,γ)άμ{γ) (x c G), 

then σ(φ) is the support of μ, and φ admits spectral synthesis. 
(For any φ € L°°(G), σ(φ) may thus be regarded, heuristically, as 

the support of the "Fourier transform" of φ, although we have not 

defined any such transform on L°°{G).) 
Proof: Let Φ be the smallest weak*-closed translation-invariant 

subspace of L°°(G) which contains φ, and put / = β{Φ). If 

f€Lx(G), (2) implies 

(3) (/**)(*) =Jr(^y)/(y)*«(y). 
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and hence / e I if and only if / = 0 on the support E of μ. In other 

words, 7 is the largest ideal in i 1 (G) which has Z(I) = 2?. By 

Theorem 7.8.2, σ(φ) = σ(Φ) = Z(7), and so σ(^) = E. 

Since Φ = a (7), it also follows that Φ is the smallest subspace of 

L°°{G) with σ(Φ) = E, and the proof is complete. 

COROLLARY. If G is discrete, and if ^ cL 2 (G) , then φ admits 

spectral synthesis. (Note that L2(G) CL°°{G).) 

For if <^€L2(G), φ is the Plancherel transform of a function in 

7,2(Γ), and ¿ » ( r j C I ^ C M i j T ) since Γ is compact. 

7.8.6. With q > 2 in place of 2, the preceding corollary is false. 

THEOREM. If G is discrete and infinite and if q > 2, ¿A¿r£ #m¿s 
<^€Lff(G) ZÉ/AÍCA ¿oes wo/ aánwY spectral synthesis. 

Proof: We shall use the results, notation, and terminology of 
Sections 7.6.3 and 7.6.4. 

Let In be the ideals defined after 7.6.3(10), put ΦΛ = α(7η), and 

φη(χ) = (Dnmx)(£), for n = 1, 2, 3 and a: € G. We saw in 

7.6.3 that φη is in Φη+1 but not in Φη . Since ^Λ c Φ η + 1 , and since 

*(*«+i) = Z(J«-HL)> *0«) C Z(7n+1) = Z(7n). Hence every φ in 

the weak*-closed space generated by σ(φη) belongs to α(7η) = ΦΛ, 

and it follows that none of the functions φη admit spectral syn-

thesis. 

In the notation of 7.6.4, we had 

(i) Σ l«*(«)l
4
 = B(u), Σ Ι«χ(«)Ι

2
 = i. 

X€G X€G 

and Holder's inequality therefore gives 

(2) I \aM\q ^ B(uY«-W (2 < q < 4). 
Z€G 

By 7.6.3(6), we have 

2π|<Μ*)Ι ^ f K(u)u\du ^ (J~ ( J ^ L )
P

^ j
1 / P 

[J (1 + "2)q\«*W\9
 **} , 
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where \\j> + l/q = 1, and it follows from (2) that 

(3) Σ \Φι(χ)\9
 ^ const. f°° (1 + u*)«B{uy°-2)/2 du. 

X€G J
"°° 

Since $üB{u;a)yq-2)/2d(o ^ £(w)«-2>/2, 7.6.14 shows that the 
integral in (3) is finite for almost all ω. For any such ω, 

φτ € LQ(G) for every q > 2, and the proof is complete. 

7.8.7. Similarly, Theorem 7.2.9 becomes false if the exponent 2 is 

replaced by any p < 2 (Segal [1]). 

This can also be deduced from Sections 7.6.3 and 7.6.4. The 

remark at the end of 7.6.3 shows that for some ξ the set / ^ ( f ) has 

measure 0 and the various powers (/ — ξ)η
 generate distinct closed 

ideals in A (Γ). Put g = ( / - ξ)2. Then g e V(G), and since G is 

discrete, g€L*{G) for all p ^ 1. 

We saw in 7.8.6 that the construction used in the proof of Mal-

liavin's theorem yields a function φ\{φχ{χ) = w'x(f)) which belongs 

to Lq(G) for every q > 2. The conclusion of 7.6.3 shows that φΎ 

annihilates the ideal in A (Γ) generated by g; in other words 

(i) 1Φ-ν)ΦΛν) = ο (*«G). 
V€G 

Since φλ does not annihilate f — ξ,φχφ 0. Hence (1) implies that 

the set of all finite linear combinations of translates of g is not dense 

in LP(G) if p < 2, although Z(g) has measure 0. 

7.8.8. We end this chapter with the construction of another 

class of S-sets; for JT= T, this class was discovered by Kahane and 

Salem [1]. 

THEOREM. Every infinite compact abelian group Γ contains a 

perfect set E with the following property: if φ e L°°(G) and if σ(φ)ΟΕ, 

then φ € B(G). 

By Theorem 7.8.5, these sets are S-sets. They are also Helson 

sets, as may be seen by restating the theorem: if φ c L°°(G) and if 

f * φ = 0 for all f €l0(E), then φ € B(G); in particular, φ e B(G) 

under the stronger hypothesis that / * φ = 0 for all / el(E), and 

hence £ is a Helson set, by Theorem 5.6.3(c). It is not known 

whether every Helson set is an S-set. 
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It is also not known whether every Kronecker set is an S-set, but 

it seems quite possible that the Fourier-Stieltjes transforms on G 

are the only bounded functions whose spectrum can lie in a Kron-

ecker set in Γ. In any case, the construction by which we will prove 

the theorem shows that the sets obtained have no "arithmetic 

cohesion" at all, and thus differ radically from the S-sets con-

structed by Herz whose arithmetic structure is quite rigid. 

Proof: Suppose Λ is a closed subgroup of Γ, H is the annihilator 

of Λ, ¿€L°°(G), and σ(φ) C Λ. If yeH, /(0) = 1, f{y) = - 1, 

and / = 0 at all other points of G, then / = 0 on Λ, and since Λ is 

an S-set (Theorem 7.5.2) we have 

φ{ζ)-φ(χ-ν) = (/*<£)(*) = 0 

for all x € G. Thus φ is constant on the cosets of H, and φ may 

therefore be regarded as a member of L°°(GIH). 

We conclude that if the theorem is true for some closed subgroup 

of Γ it is also true for Γ. As in Section 5.2, the problem therefore 

reduces to two cases: (a) compact metric/-groups, and (b) groups 

Dqf with ? ^ 2 . 

Suppose Γ is a compact metric /-group. Since G is then count-

able (Theorem 2.2.6) we may arrange the elements of G in a 

sequence xl9z2,Xz, · · .· Fix r ^ 1, and suppose that disjoint 

compact neighborhoods £J
-1

 have been chosen (1 <¡ / <Ξ 2
r
~

1
), 

whose union is Er_x. By Lemma 5.2.3, there is a Kronecker set 

Kr> consisting of 2
r
 points, which has 2 points in the interior of 

each set £J~\ and since Kr is a Kronecker set, there is an integer 

Nr> r with the following property: If |a(y)| = 1 for all ye/Cr, 

the inequality 

(1) i n f R e [ a ( y ) ( s n ( y ) ] ; > ¿ 
V€Kr 

holds for some xn with I <Ln ^>Nr. If/^isa measure concentrated 
on Krt then άμ = <χ.ά\μ\ with |α| = 1, and it follows that 

(2) SUp \β(ζη)\^ί\\μ\\, 
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where 

(3) β{χ)=\Γ{χ,γ)άμ{γ) (xeG). 

By Theorem 2.6.1, we can associate a function fj el^G) with 

each point y, of Kr so that \\ft\\x < 2, so that/,(y) = 1 in a compact 

neighborhood V, of ys and so that the supports of the functions / , 

are disjoint and lie in the interior of Er_x. 

By Theorem 2.6.5, there are functions gn e L
X
(G), for 1 ^ n ^Nrt 

such that ¿η(γ) = (χη, γ,) in a compact neighborhood Wjn of each 

point γ^Κτ> and such that 

(4) |ft,(- *J - 1| + Σ l?n(- *)l < 3-'. 
χφχη 

Now put 

(5) £ ί = ^ π η ^ „ , ΕΤ=1)Ε^. 

(It should be borne in mind that the functions fj9 gn and the sets 

Vit Wi>n also depend on r.) The set ET is in the interior of Er_lf 

and £ = ΠΓ -̂ r is the desired set. 

Suppose φ € L°°{G), \\φ\\„ = 1, and σ(φ) C E. Fix r, let /,· be as 

above, define 

(6) *,= (W)(o) ( i ^ / ^ n 

and let μ,. be the measure, concentrated on KT, such that 

MiYi)) = Pi- T h e n 

(?) \\μτ\\ =s mtwwico ^2r+l 

and 

(8) p, = J / ^ r = (/,· * A,) (0) ( l g j ^ 2'). 

Since each of functions /,· and gn is constant on each of the sets 

E]t gn coincides on Er with a linear combination of the functions 

fjf and since Er contains E and Kr in its interior, our assumption 

that σ{φ) C E, together with (6) and (8), implies that (gn * ψ) (0) = 

0, where ψ = φ — ßr. Thus 
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(9) ~ ψ(χη) = [gn(~ Xn) - 1]ψ{Χη) + Σ gni- *)?>(*). 
χφχη 

and (4), (7), and (9) imply 

(10) \xp{xn)\ <Z 3-IML ^ 3 - ( l + *+i) (1 ^ * £Nr). 

It follows that 

(11) φ(χ) = lim flr(x) (xeG). 
r-»oo 

Since |£r| ^ 1 + |y>|, (10) and (2) imply 

(12) 11,01 ^ 2{1 + 3 - ( l + 2^)} (r = 1, 2, 3, . . .) 

so that {||μΓ||}
 ls

 bounded. Hence φ e B(G), by (11) and Theorem 

1.9.2. 

This completes the proof in case (a). In case (b), we use sets of 

type KQ in place of Kronecker sets. The argument is then so similar 

that we omit the details; the modifications are like those used in 

Sections 5.2 and 5.5. 



CHAPTER 8 

Fourier Analys is on Ordered G r o u p s 

The theory of analytic functions in the unit disc of the complex 
plane can be extended in several ways. In one type of extension, 
the unit disc is replaced by other plane domains (the Riemann 
mapping theorem plays an important role here), by domains on 
Riemann surfaces, and by domains in spaces of several complex 
variables. Another type of extension is based on the observation 
that every power series 2o° αηζ"> when restricted to the unit circle, 
is a trigonometric series Σ-οοαηβ*ηθ whose coefficients are 0 if 
» < 0. This suggests that one might replace the circle T by any 
LCA group G whose dual Γ is ordered (the definition is given below; 
Z is the simplest example of an ordered group) and study those 
functions on G whose Fourier transforms vanish on the negative 
half of Γ. 

The present chapter is devoted to extensions of the second type. 
G will play the role of the boundary T of the unit disc. Although 
it is possible to define an analogue of the interior of the disc when-
ever the dual of G is ordered (Arens [1], [2], Arens and Singer [1], 
Hoffman [1], Hoffman and Singer [1]), we shall restrict ourselves 
to problems which can be discussed and solved on the group itself. 
In the classical case (G = T) this amounts to proving theorems 
about functions analytic in the unit disc by studying only the 
boundary values of these functions; in some cases, the proofs so 
obtained are distinctly different from the more familiar ones. 
Sections 8.2 to 8.5 are to a large extent based on the work of 
Helson and Lowdenslager [1]. 

8.1. Ordered Groups 

8.1.1. Suppose P is a semigroup in a LCA group G (this means 
simply that P + PC P) which is closed and has two additional 
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properties: 

(1) P n ( - P ) = {0}, P u ( - P ) = G. 

Under these conditions, P induces an order in G. For if we define 
x ¡g; y to mean that x — y € P (it is understood that x, yt . . . are 
elements oí G), the axioms for a linear order are satisfied: if 
x — y 2s 0 and y —- z ^ 0, then x — z ^ 0 since P is a semigroup, 
so that the relation ^ is transitive, and (1) shows that each pair 
x, y satisfies one and only one of the relations x > y,x = yty > x. 
Also, if x > y, then x + z > y + z. 

The choice of a semigroup P with the above properties (i.e., the 
choice of an order in G which is compatible with the group opera-
tions) makes G into an ordered group. A given group G may have 
many different orders. 

An order is said to be archimedean if it has the following property: 
to every pair of elements x, y of G such that x > 0 and y > 0, 
there corresponds a positive integer n such that nx > y. 

8.1.2. THEOREM. Let G he a discrete abelian group. 
(a) G can be ordered if and only if G has no element of finite order. 
(b) If G has no element of finite order and if the cardinality of G 

does not exceed the power of the continuum, then G can be given an 
archimedean order. 

(c) / / G has an archimedean order, then there is an order-preserv-
ing isomorphism of G onto a subgroup of R. 

Proof: We begin with the observation that if G is the direct sum 
of ordered groups Ga, where a runs through an index set A, then 
G can be ordered. For we can well-order A; then every x € G 
has the form 

s = ( « i , * , , . . . , » . , . . . ) (»««G«), 

and \i x Φy and y € G, there is a first a e A for which χΛΦνΛ-

Define x < y if and only if xa < ya for this a. (This is usually 

called a lexicographic order). 

It is clear that no finite cyclic group can be ordered. Since every 

subgroup of an ordered group is ordered, it follows that an ordered 

group contains no element of finite order. Conversely, if G has no 



FOURIER ANALYSIS ON ORDERED GROUPS 195 

element of finite order, G can be embedded in a divisible group D 
of the same cardinality as G (Theorem 2.5.1) which has no element 

of finite order. Since D is a direct sum of copies of the rationals 

[Kaplansky [2]), D can be ordered, and the same is true of its sub-

group G. This proves (a). 

Under the assumptions of (b), the above group D is the direct 

sum of at most c copies of the rationals (where c is the power of the 

continuum) and since R is the direct sum of c copies of the ration-

als, G is isomorphic to a subgroup of R, and hence has an archi-

medean order. 

To prove (c), suppose G has an archimedean order, fix £0eG, 

x0 > 0, and if x e G, x > 0, let E(x) be the set of all rational num-

bers m/n (m, n positive integers) such that nx > mx0. If φ(χ) is 

the least upper bound of E{x)t and ii <f>(— x) = — φ(χ), it is a 

simple exercise to verify that φ is an isomorphism of G into R and 

that φ preserves the order of G. 

8.1.3. Let us say that P is a maximal semigroup in G if G is the 

only semigroup in G which contains P as a proper subset. 

THEOREM, (a) If P induces an archimedean order in G, then P is a 
maximal semigroup in G. (b) Conversely, if P is a closed maximal 
semigroup in G/ύΡφ {0} and if P n (— P) = {0}, then P defines 
an archimedean order in G. 

Proof: Fix x € P, x Φ 0, and let 5 be the semigroup generated 

by P and — x. If the order induced by.P is archimedean, then to 

every y e P there corresponds n > 0 such that nx — y € P. Hence 

— y € S, and so S = G. This proves (a). 

To prove that P induces an order in G, under the assumptions of 

(b), we have to show that G = P u (— P). If this is false, there 

exists y € G such that y 4 P and y 4 — P. Fix x' € P, x' Φ 0. 

Since P is maximal, the semigroup generated by P and y is G. 

Hence — x' = x" + ny, where x" c P, n > 0, and ny Φ 0, so that 

ny € — P. Since — P is also a maximal semigroup, the same 

argument shows that there is a positive integer r such that ry Φ 0 

and ry € P. Then nry € P r\ (— P), hence nry = 0. Now — ry c—P, 
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and — ry = (n — l)ry € P, contradicting the assumption that 
P n ( - P ) = {0}. 

Suppose now that a c P , b € P , b Φ 0. The semigroup generated 
by P and — b is G, and so — a = /> — ηδ for some p € P and 
n > 0. This says that n6 — a € P , and hence the order induced by 
P is archimedean. 

8·1.4. THEOREM. NO non-trivial compact abelian group G can 

be ordered. 

Proof: Suppose G is compact and P is a closed semigroup in G 

which induces an order in G. Let 5 be the intersection of the sets 
P + x, where x ranges over P . These sets are compact and have 
the finite intersection property, so that S is not empty. Fix x0 e S 

and X€ P. Since x0 € P + x, x0 — x € P; since x0 e P, we also 
have x0 + x € P . Thus x0 + G C P , or G = P. Hence G n (— G) 
= {0}. But - G = G, and so G = {0}. 

8.1.5. THEOREM. / / G is <w ordered LCA group, and if G is not 

discrete, then G = R 0 D, where D is a discrete ordered group. 

Proof: Since every subgroup of an ordered group is ordered, 
Theorem 8.1.4 shows that G has no non-trivial compact subgroups. 
Thus G has Rn as an open subgroup, for some n > 0, by the struc-
ture theorem 2.4.1, and Rn is ordered. In any ordered group, the 
set of all negative elements is open, and since the map x -> — x 

is a homeomorphism, so is the set of all positive elements; it follows 
that removal of 0 disconnects an ordered group; but Rn is dis-
connected by the removal of a point if and only if n = 1. Hence R 

is an open subgroup of G. The conclusion of the proof of Theorem 
2.4.1 shows that R is then a direct summand of G, and this com-
pletes the proof. 

8.1.6. THEOREM. / / G is an archimedean ordered LCA group, 
then G = R of G is a discrete subgroup of R. 

Proof: If G is discrete, we refer to Theorem 8.1.2(c). If G is not 
discrete, then G = R @ D, as in Theorem 8.1.5. Suppose D is not 
trivial. Let P be the semigroup which induces the order of G. 
Since P is closed and since removal of 0 from P leaves an open set, 
it follows that P contains all cosets of R (except R itself) which it 
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intersects. Hence there are cosets of R which are not intersected 

by P. It follows that P u R is a semigroup between P and G, 

which contradicts Theorem 8.1.3. Hence D is trivial and G = R. 

8.1.7. EXAMPLES. The group Z
2
, the dual of the torus Γ

2
, is 

simple enough to be easily visualized (regard it as the set of all 

points in the plane whose coordinates are integers) and yet it offers 

enough diversity to be interesting. 

If a and ß are real numbers and if a/ß is irrational, let P be the 
set of all (m, n) e Z2 such that 

(1) OLM + βη^ 0. 

The map (w, n) -^ aw -f βη is an isomorphism of Z2
 into R which 

preserves the order induces by P. Hence P induces an archimedean 

order in Z2. 

If a//? is rational, the map (m, n) -> aw + βη is no longer one-to-

one. Suppose a^O, and let (w, n) e P either if aw + βη > 0 or 

if aw + βη = 0 and n ^ 0. This order is not archimedean, and P 

is not a maximal semigroup: the set of all (w, n) with aw + βη 7> 0 

is a larger one. 

The case a = 1, β = 0 gives a simple lexicographic order; 

(w, w) > (w', w') if w > w' or if w = w' and w > w'. 

8.1.8. Suppose now that G is a compact abelian group. By 

Theorems 8.1.2(a) and 2.5.6(c), Γ can be ordered if and only if G 
is connected. Suppose this is so, and suppose that a certain order 

has been chosen for Γ. 

In this situation, we shall say that a function fcL1^) is of 

analytic type if /(y) = 0 for all y < 0; this terminology is suggested 

by the opening remarks of the present chapter. Similarly, if 

μ € M(G) and if β(γ) = 0 for all y < 0, we shall say that μ is a 

measure of analytic type. The set of all functions of analytic type 

which belong to LV(G) will be denoted by HP(G) (1 ^ p ^ oo). 

The continuous functions of analytic type will also be of interest 

to us, as will the trigonometric polynomials of analytic type. 

It should be realized that this nomenclature is not quite com-

plete. The class HV(G), for instance, does not depend on G alone, 
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but depends also on the particular order which is imposed on Γ. 

Since we will usually work with one fixed order, this will cause no 

difficulty. 

8.2. The Theorem of F. and M. Riesz 

8.2.1. THEOREM. If μ is a measure on the unit circle such that 

(1) ¡"¿"άμ(θ) = 0 ( « = 1 , 2 , 3 , . . . ) 

then μ is absolutely continuous with respect to Lebesgue measure. 

In other words, if μ c M(T) and if μ is of analytic type, then 

άμ(θ) = g(*$)de, for some g * &(T). Setting άλ(9) = ε«άμ{β), the 

hypothesis of the theorem is equivalent to the assumption that 

(2) j?wmo) = o 
for every / which is continuous on the closed unit disc and which is 

analytic in the interior of the disc. I t is thus not surprising that 

the theorem was originally proved by complex variable methods 

(F. and M. Riesz [1], Zygmund [1], vol. I, p . 285), particularly 

since its first applications lay in that direction. If the hypothesis is 

formulated as in (2), the theorem extends to multiply connected 

plane regions (Rudin [1]) and to regions on Riemann surfaces 

(Wermer [3]). 

Helson and Lowdenslager [1] discovered a different proof in 

which the integers can be replaced by any discrete ordered group 

(although the s ta tement of the theorem must be slightly altered 

if there is no smallest positive element). This proof is based on a 

minimizing process in a certain Hubert space which we now de-

scribe and which will be used in other situations as well. 

8.2.2. Suppose G is compact and connected, and an order has 

been selected for Γ. Suppose a€M(G), a ^ 0, and 

(1) do = das + wdx 

where σ, is singular with respect to the Haar measure of G and 

W€L1(G) (Appendix E3). 
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Let Ω be the set of all trigonometric polynomials Q on G, of the 

form 

(2) Q(x) = l*(yH*.r). 

let K be the set of all functions 1 + Q(Q c Ω\, and let K be the 

closure of K in the Hubert space L2(a). Since K is convex, there is 

a unique φ e K such that 

(3) | | * | | = inf 111+011; 
Q€Ü 

the norms in (3) are taken in L2(a). As a point function on G, φ 
is determined almost everywhere with respect to σ. 

LEMMA. In the above situation, φ has the following properties: 
(i) φ = 0 almost everywhere with respect to as. 

(ii) φw € L2(G) and \φ\Ην = c2 almost everywhere {with respect to 
Haar measure), where c = \\φ\\. 

(iii) If IÎ H > 0 and if A = l/φ, then h€H
2{G) and A(0) = 1. 

Proof: If g € L2(o) and if φ + ocg € 1£ for all scalars a, then φ and 

g are orthogonal, by the minimum property of 11*| |. This condition 

is satisfied, for γ > 0, if g(x) = (x, γ) and if g(x) = φ(χ)(χ, γ). 
Hence 

(5) J ^ ( * , y ) ¿ a ( : r ) = <> (γ > 0) 

and 

(6) Jel*(*)lf(*.y)áa(*) = 0 ( y > 0 ) . 

Since |*|2 is real, (6) is also true for all γ < 0. If άλ = \φ\2ασ, this 

says that Χ(γ) = 0 for γ φ 0, and 1(0) = c
2
. Hence 

(7) \φ\2άσ = c2ár. 

This implies that the singular part of \φ\2άα is 0 and (i) follows. 

Hence \φ\2άσ = \φ\^άχ, and so \φ\^ = c
2
 almost everywhere; since 

\φιν\2
 = chs) and ze> c ̂ (G), it follows that φιν € L2(G). 

If c> 0, then |A|
2
 = |<¿|-2 = c-2^, so that h e L2{G). For γ € Γ, 

we have 
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8
) J"GA(*)(*> γ)αχ = Γ*Ισφ(χ)υ>{ζ)(ζ,γ)άζ=:<Γ*Ισφ(ζ)(ζ, γ)άσ(ζ). 

By (5), the last integral is 0 if γ > 0. Hence Ä(y) = 0 if γ < 0, 

and h€H2{G). With γ = 0, (8) and (5) imply 

(9) *»λ(0) = ¡Qfda = JG (1 + Qu)fda (n = 1, 2, 3, . . .), 

where Qn*Q and 1 + ()n -* <£ in the norm of L2(a). Letting 
n -> oo, (9) becomes 

(10) ^ ( 0 ) sJj f l^ e |W | i e C i f 

and the proof is complete. 

8.2.3. We now come to the generalized version of the F. and M. 
Riesz theorem; we refer to Section 8.1.8 for the terminology used. 

THEOREM. Suppose G is compact and connected, Γ is ordered, 

μ€Μ(β), and μ is of analytic type. If 

(1) άμ = άμ8 + fdz 

where μ8 is singular and feL1{G)i then 
(a) both μ, and f are of analytic type, and 

(b) /2,(0) = 0. 

Proof: We may add any multiple of the Haar measure of G to μ 
without affecting either the hypothesis or the conclusion of the 

theorem. Hence we may assume, without loss of generality, that 

(2) inf f | 1 + ρ | « σ > 0 , 
Q€Q

JG 

where a = \μ\ and Ω is as in 8.2.2. Choose φ as in 8.2.2. Since 

φ = lim (1 + Qn) in the norm of L2(a), for some sequence {Qn} 

in fi, the hypothesis that β(γ) = 0 if γ < 0 implies 

(3) ¡ο(1+<2(ζ))φ(χ)(ζίγ)άμ(χ) = 0 (C€Í2,y > 0). 

Since σ, = \μ9\, part (i) of Lemma 8.2.2 shows that (3) is the same as 
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By part (iii) of the lemma there is a sequence {(?n} in Ω such that 

1 + Qn -> h in the norm of L2(G). Since <¡>f c L2(G), by part (ii) of 
the lemma, since (4) holds with Qn in place of Qt and since <f>h = 1, 
it follows that f(y) = 0 if γ < 0. Hence we also have fis(y) = 

fi(y) — /(y) = 0 if y < 0, and (a) is proved. 

To prove (b), we again apply Lemma 8.2.2, but this time with 

o = \μ9\. Then σ = σ$ and part (i) of the lemma implies that 

(5) l i m i J l + G,)|Uff = 0 
n-Kxr 

for a certain sequence {()n} in Ω. By the Schwarz inequality, it 

follows that 

(6) lim f (1 + <2η)άμ8 = 0. 
n-+ooJ 

But J" (¿αμ, = 0 for every (? e Í?, since /2,(y) = 0 if γ < 0. Hence 

J á/z, = 0, and the proof is complete. 

8.2.4. We can now prove Theorem 8.2.1. For if μ e M(T) and 

fi(n) = 0 for all n < 0, Theorem 8.2.3 implies that fi8(n) = 0 if 

n ^ 0. If μ% Φ 0, there is a /*>$/ positive integer n0 such that 

ββ(η0) φ 0. Set I (n) = β8(η0 + n). Then A is singular, X(n) = 0 

for w < 0, and 3(0) = fis(n0) Φ 0, in contradiction to Theorem 

8.2.3. Hence μ3 = 0, and the proof is complete. 

In the general case, the following observation can be extracted 

from the preceding argument: 

If μ€ M(G), if μ is singular, and if β(γ) = 0 for all γ < 0, then 

there cannot be a first element γ0€ Γ at which β(γ0) φ 0. 

The word "first" is of course to be interpreted with respect to 

the given order of Γ. 

8.2.5. To give another application of Theorem 8.2.3, take 

G = T2; the dual group Z2 is the set of all lattice points in the plane 

(see Section 8.1.6). 

THEOREM (Bochner [4]). Suppose Y is a closed sector in the plane, 

whose opening is less than π radians. If μ € M (Γ2) and if μ = 0 

outside Y, then μ is absolutely continuous. 
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Proof: Y is contained in a sector of the same opening whose 

vertex is a lattice point, and by translation we may therefore 

assume that the vertex of Y is at (0, 0). 

The proof will involve three distinct orders of Z1. There are two 

distinct closed half-planes 77x, 772, bounded by lines of irrational 

slope, which contain Y. By Theorem 8.2.3, fi8 has its support in 

Ζ^ and also in 772, hence in Πχ η 772. Let 77 be a closed half-plane, 

bounded by a line of irrational slope through (0, 0), which con-

tains Πλ r\ 772 in its interior (except for (0, 0)). It is clear geo-

metrically that ΠΧΓ\ Π2Γ\ Ζ2 is well-ordered with respect to the 

order induced by 77. Hence the remark made in 8.2.4 shows that 

//s = 0. 

8.2.6. In general, however, the conclusion of Theorem 8.2.3 

cannot be strengthened to "μ8 = 0". For example, let T b e a dense 

subgroup of 7?, with the natural order, and give Γ the discrete 

topology. The function \p{y) = max (1 — \y\9 0) is positive-de-

finite on 7? (compare the proof of Lemma 6.8.4); if φ is the re-

striction of ψ to Γ, it follows that φ is positive-definite on Γ, and 

hence φ e Β(Γ). Since φ(γ) > \ at infinitely many points of 7", and 

since Γ is discrete, φ4 Α(Γ). 1ί γ0€ Γ and y0 > 1, the function 

φ(γ — γ0) is in Β(Γ), vanishes for all y ^ 0, but is not in A (Γ). 

8.2.7. Since T is a quotient group of 7?, we can transfer Theorem 

8.2.1 from T to 7?: 

THEOREM. If μ€Μ{Β) and if 

(1) Γ°° €τ***άμ(ζ) = 0 

for all y < 0, then μ is absolutely continuous. 

Proof: The change of variable x '-> ex, where c is a constant, does 

not affect the absolute continuity of any μ€Μ(ϋ). Hence, if the 

theorem is false it is false for some measure μ such that 

(2) ΐ Α ΐ ( [ - π . π ] ) > * | | Α | | . 

Define aeM(T) (as in the proof of Theorem 2.7.2) by 

(3) σ{Ε) =μ({χ:?*€Ε}). 
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Since (2) holds, σ has a non-zero singular component. But 
#(n) = β(η) for all n e Z. Hence &(n) = 0 if n < 0, and so σ must 
be absolutely continuous, by Theorem 8.2.1. This contradiction 
establishes the theorem. 

8.3. Geometric Means 

8.3.1. Suppose w € U^fi) and w ^ 0. The geometric mean of w is 
defined by 

(1) A(w) = expj logze>(a;)ar. 

If the integral in (1) is — oo, A(w) = 0. 

LEMMA. Suppose G is a compact abelian group, W€L1(G)f and 

w ^ 0. Then 

(2) e x P j ^og w(x)dz = inf j e,{x)w(x)dx, 

the infimum being taken over all real trigonometric polynomials f on 

G such that /(0) = 0. 
Proof: If /(0) = 0, then A(w) = A(efw)t and the familiar in-

equality between the arithmetic and geometric means shows that 

(3) A(w) ^jGef<x>w(x)dx 

for all real feL^G) with /(0) = 0. 
Suppose, temporarily, that J log wdx > — oo. Division of w 

by a positive constant does not affect (2). We may therefore as-
sume that 

(4) J log w(x)dx = 0 

and we decompose log w into its positive and negative parts: 
log w = u — v, u ^ 0, v ^ 0, uv = 0. Since J u = J v, there exist 
monotonically increasing sequences {wn}, {vn} of bounded non-
negative Borel functions on G such that un(x) -> u(x), vn(x) -► v(x) 
for all a; e G, and Jun = Jvn. Put ?n = vn — wn. Then gn(0) = 0, 
and 
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(U — Un ^ log W if W > 1, 
gn + logw = 1 n ö ~ δ
» ^

 δ
 ( _ v + Vn ^ o if ze> < 1. 

Hence exp {gn + log w) ^ max (w, 1). Since gn + log wn -> 0 

almost everywhere, Lebesgue's dominated convergence theorem 

yields, in conjunction with (4), 

(5) lim f w(x) exp {gn(x)}dx = 1 = A(w). 
n—ooJG 

Fix n. By Lusin's theorem (Appendix E8) there is a uniformly 

bounded sequence of real continuous functions h€ on G such that 

lim h{(x) = gn(x) for almost all x e G. Since £n(0) = 0, we have 

Α,(0) -> 0 as i -> oo. If *,· = At- — %¿(0), then At is continuous, 
^(0) = 0, £* (a?)->£*(*) for almost all x c G as *->oo, and 
{ll̂ lloo} *s bounded. The functions At- can be uniformly approxi-
mated by real trigonometric polynomials /, with /f(0) = 0, and 
we have 

(6) lim f w(x) exp {fi(x)}dx = ¡G^(x) exp {gn{x)}dx. 

If we combine (3), (5), and (6), we see that we have proved (2), 
provided that J log w(x)dx is finite. 

In the general case, we replace w by w + ε, where ε > 0. What 

we have just proved shows that 

(7) á(w + ε) = inf i ef(w + e)dx ^ inf J efw dx, 

where / ranges over all real trigonometric polynomials with /(Ö) = 0. 
Letting ε -> 0 in (7), comparison with (3) gives (2). 

8.3.2. We now come to a theorem of Szegö [1], generalized by 
Helson and Lowdenslager [1]: 

THEOREM. Suppose G is compact and connected, Γ is ordered, 
a €M(G), a ^ 0, and 

(1) da = das + wdx, 

where aa is singular and W€L1{G). Then 
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(2) exp Γ log w(x)dx = inf f 11 + Q(x)\2da(x), 

where Ω is the set of all trigonometric polynomials Q onG of the form 

(3) 0(*) = Σ«Μ(*.?)· 

Proof: Since every real trigonometric polynomial f on G with 
/(0) = 0 is of the form / = Q + Q = 2 Re Q, for some Q € Ω, 

Lemma 8.3.1 asserts that 

W A(w) = inf f \fi\ivfa 
Q€Q JG

l
 ' 

Note that eQ — 1 = Q + Q2/2\ + . . .. This series converges uni-
formly on G, and each of its partial sums belongs to Í?, if Q € Ω. 

Hence (4) implies 

(5) A(w) ^ i n f f |1 + Q\*wdz. 
Q€Q

JG 

This inequality holds for all non-negative W€L1(G)t and the op-
posite inequality can be deduced from it. Put w = |1 + P\2 for 
some P € Ω. Then (5) gives 

(6) A(\l + Ρ\η ^ inf f |1 + P + Q + PQ\Hx ^ 1; 
Q€Q

JG 

the last inequality follows from the Parseval formula, since PQ e Ω 
for every Q e Ω. Hence 

(7) A(w) £A(w)á(\l + P | 2 ) = Δ{\1 + P\*w) ̂ jQ\l + P\*wdx 

for every P e Ω, since the arithmetic mean is never less than the 
geometric mean. 

Thus equality holds in (5). Finally, part (i) of Lemma 8.2.2 
shows that the right side of (5) is equal to the right side of (2). 
This completes the proof. 

8.4. Factorization Theorems in H^G) and in H2(G) 

In this section, G is a compact connected abelian group, Γ is an 
ordered group, and the spaces HV(G) are defined with respect to 
this order. 
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8.4.1. THEOREM. If / e iP(G) , then 

(1) |/(0)| ^expjGlog\f(z)\dz; 

in particular, log |/| €U{G) if /(0) φ 0. 

COROLLARY. Let Ea = {x e G: /(a;) = a}. 7/ / e #*(£), /A¿« there 
is at most one number a for which Ea has positive Haar measure. 

Proof: Put fn = f *kn, where {kn} is a sequence of trigonometric 
polynomials on G with kn(0) = 1, so that ||/n — /Hi -> 0. Since 
each fn is a trigonometric polynomial of analytic type, the Parseval 
formula implies 

(2) |/(0)¡2 = |/„(0)|* ^ ¡e\(l + Q)fn\» dx 

for every Q € Ω. By Theorem 8.3.2, the greatest lower bound of the 
last expression in (2) is A(\fn\

2). Hence |/(0)| ^ J( | /J) . For any 
ε > 0, it follows that 

(3) log |/(0)| £ j e I o g ( | / J + «)<&. 

Since 

(4) |log (|/.| + *) - log (l/l + e)| ^ r* | / . - /|, 

the integral of the left side of (4) tends to 0 as n -> oo. Hence (3) 

implies that 

(5) log |/(0)| ^ J c l o g (1/1+ e)dx, 

and (1) follows from (5) as ε -> 0, by the monotone convergence 
theorem. 

8.4.2. If /(0) = 0 but if there is a first γ0 > 0 at which /(y0)#0, 
then we can still conclude that J log |/| > — oo; the argument is 
quite similar to that used in 8.2.4. In particular, we obtain the 
classical theorem that 

(1) J * l o g | / ( * ' ) | d 9 > - o o 

for every / e H1^), except when / is identically 0; 
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However, the assumption / (0) Φ 0 cannot be dropped altogether 
from the second statement in Theorem 8.4.1. This is very easily 
seen if the order of Γ is not archimedean. In that case Γ contains 
an element y0 and a non-trivial subgroup A such that y < y0 for all 
y €Λ, and there is a function ge A(G), not identically 0, of the 
form 

g{x) = 2 c7{z, y) 
γ€Λ 

which vanishes on a non-empty open subset V of G. If f(x) = 
(x, y0)g(x), then / = 0 on V, hence ¡G log |/| = — oo, although 
/ is of analytic type. 

The problem is more delicate if the order of Γ is archimedean. 
In this situation Arens [2] has proved that jG log |/| > — oo if 
/ is a continuous function of analytic type on G which does not 
vanish identically. Helson and Lowdenslager, on the other hand, 
have recently discovered that the word "continuous" cannot be 
replaced by "bounded" in Arens' theorem (the example is un-
published at the time of this writing). This difference between 
bounded functions and continuous functions is curious and quite 
unexpected. 

8.4.3. THEOREM. Suppose w e Ll(G) and w ^ 0. Then w = |/|2 

for some f e H2(G) with /(0) Φ 0 if and only if 

(1) j log w{x)dx > — oo. 

Proof: If w = |/|2 and f eH2(G), we obtain, as in the proof of 
Theorem 8.4.1, that 

(2) A(w) = J(|/ |2) = inf f 1(1 + Q)f\*dx ^ |/(0)|*. 
Q€Q

JG 

Hence (1) holds if /(0) Φ 0. 
Conversely, suppose (1) holds, and define c by 

(3) c2 = inf Γ |1 + Qlhvdx, c ^ 0. 
Q€Q

 JG 

By Theorem 8.3.2, c > 0, and Lemma 8.2.2 (with da = wdx) 
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therefore implies that there is a function heH2(G) with h(0) = 1 

and \ch\2 = w. To complete the proof, put / = ch. 

8.4.4. THEOREM. Suppose f e Hl{G) andf(0) Φ 0. Then there ate 

junctions a andß in H2(G) such thatf = a/3 and \\OL\\\ = \\ß\\\ = \\f\\v 

Proof: By Theorem 8.4.1, log |/| eL^G) . We put ¿σ = |/|ár, 
apply Lemma 8.2.2, and conclude, as in the proof of Theorem 8.4.3, 
tha t there is a function h€H2(G) such that |/| = \ch\2, where 
c > 0. Moreover, A = l/<£, and 

(1) l imf \φ- (1 + e.)|«|/|<fa = 0 
n-»oo 

for a certain sequence {@n} in ίλ 

Define a = ch, β = //a. Then / = a/S, |a|2 = \β\* = ¡/|, and it 
remains to be proved that β € H2(G). By (1), the Schwarz inequal-

i ty implies that 

(2) K m / W / - (1 + Qn)f\dx = 0. 

Since (1 + Qn)f eHx(G) and since HX(G) is a closed subspace of 

L*(G)9 it follows that <f>f € H^G). But <f>f = //A = c//a = cß. Thus 
0 € # * ( £ ) ; since |/S|2= |/|, ßeL2(G); hence ß€H2{G), and the 
proof is complete. 

This proof may be of interest even in the classical case, i.e., in 
the case G = T. There the theorem is usually proved by first 
factoring out a suitable Blaschke product; the remaining factor has 
no zero in the unit disc and hence has an analytic square root 
(Zygmund [1] vol. I, p . 275). 

8.4.5. If G = T, Theorem 8.4.3 has an analogue for trigonome-
tric polynomials, due to Fejér [1] and F. Riesz. It is interesting 
tha t this analogue, unlike the preceding theorems, does not even 
extend to the case G = T2: 

THEOREM, (a) / / p is a non-negative trigonometric polynomial on 
T, then p = |/|2, where f is of the form 

(1) f{eie)=Íake^. 
Jfc=0 
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(b) / / 0 < <5 < 1/4 and if w = 1 + S(eix + e'ix + eiv + e~iv), then 

w is positive on Γ2, but w is not a product of two trigonometric poly-

nomials on T2, unless one is a constant multiple of a character. 

Note that Z2 can be made into an ordered group in many ways, 
as was shown in 8.1.7. If Η^^Γ2) is defined with respect to any of 
these orderings, Theorem 8.4.3 implies that w = |/|2 for some 
/ € H2(T2); it follows from (b) that this / cannot be a trigonometric 
polynomial. 

Proof: Write P{eid) = ^lncke
ik0. Since p is real, c_k = ck, and 

we may therefore choose n so that cn Φ 0. Put F(z) = ^fckz
k. 

Then F is a rational function, F(z) ^ 0 if \z\ = 1, and the reflec-
tion principle implies that F(l/ä) = 0 if F(a) = 0. Since znF(z) 
is a polynomial of degree 2n, it has 2w zeros; any zeros on T have 
even order; hence 

(2) F(z) = cYl{z-zj){z-^-zi), 

where c is a positive constant. Since z_1 = z when \z\ = 1, (2) 
shows that 

(3) p{eie) = F(ei9) = c\ 
3 = 1 

and (a) follows. 
To prove (b), assume that w = fxf2i where fx and f2 are trigono-

metric polynomials on T2. Let Et be the set of all n e Z2 at which 
fi{n) Φ 0. Each E{ is finite and not empty. Similarly, let E be the 
set of all w € Z2 at which w(n) Φ 0; E consists of the points (0, 0), 
(1,0), (0,1), ( - 1 , 0 ) , ( 0 , - 1 ) . 

Regarding Z2 as the set of all lattice points in the plane, let 
ai\Pi\ ^ the highest [lowest] point among those points of £ t which 
are farthest to the right. Then the point ατ + a2 has no other rep-
resentation as a sum of an element of Ex and an element of E2. 
It follows that ax + a2e E, and hence ax + a2 = (1, 0). Similarly, 
*i + 2̂ = (!» 0)· Thus ax = 6X, a2 = 62, and each of the sets £¿ 
has only one point which is farthest to the right. The same is true 
of the other three directions. 
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Let p, plt p2 denote the horizontal widths of E, Elt E2. Then 

Pi + P2 = P = 2. If />! = 2, then p2 = 0, so that E2 lies on a 

vertical line; the preceding paragraph then implies that E2 con-

sists of a single point, hence f2 is a character on Γ
2
, and this is what 

(b) asserts. If (b) is false, we must therefore have px = p2 = 1, 

and the same must be true of the vertical widths. Combined with 

the preceding paragraph, this implies that each £,· consists of 2 

points. Since E C Ex + E2 and E has 5 points, we have a contra-

diction. 

8*5. Invariant Subspaces of H2(G). 

8.5.1. We return to the general situation (indiscrete and order-

ed). For any γ € Γ, we define the multiplication operator My on 

H2(G) by 

(1) (M7f)(z) = (zfy)f(z). 

A linear subspace of H2(G) is said to be invariant if 

(2) MyXCX 

for all y > 0. 

Adapting a definition of Beurling [4], we call a function 

/0 € H2(G) an inner function if |/0| = 1 (almost everywhere on G); a 

function f1eH2(G) is an outer function if 

(3) J > g \h(x)\dx = log| Je/X(*)<fc|. 

In other words, fx is outer if the geometric mean of \fx\ is equal to 

l/iWI· We recall that the left side of (3) is never less than the 

right side, by Theorem 8.4.1. 

For any / € H2(G), we let Xf denote the smallest closed invariant 

subspace of H2(G) which contains /. 

8.5.2. THEOREM. (Beurling [4], Helson and Lowdenslager {!]). 

Suppose f€H2(G) and 

(1) Jc log \f(z)\dz > - oo. 

Then f = f0flf where f0 is an inner function and ft is an outer func-
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lion. This factorization is unique, except for multiplication by con-

stants of absolute value 1. Furthermore, 

(2) X, = U-H*{G). 

The last assertion states, explicitly, that g e Xf if and only if 
g = f0h for some A € H2(G), and also that Xf = Xf . 

Proof: Let Kf be the closure (in H2(G)) of the set of all functions 
(1 + Q)f, where Q ranges over Ω. Since Kf is convex, it has a 
unique element ψ whose norm is a minimum. By Lemma 8.2.2 
(taking da = \f\2dx), we see that \\p\ = ct where 

(3) c2 = inf f | (1 + 0)/|» ¿x = exp f log |/|« & > 0. 
Q€QJG JG 

Here we used (1) and Theorem 8.3.2. Setting /0 = ψ/c, it is evident 
that /0 is inner, and since KfCXf, we have f0€Xf. If /x = ///0, 
part (iii) of Lemma 8.2.2 shows that fx€H2[G) and ^(0) = c. 

Since l/jl = |/|, we therefore conclude from (3) that ^(O) = Jfl/χΙ), 
and so / t is outer. 

Let us consider the case of an outer function / which satisfies (1). 
The preceding construction then yields 

(4) o < / 1 ( 0 ) = J ( | / 1 | ) = J(|/|) = |/(0)|. 

Approximating /0 and fx by trigonometric polynomials in H2(G), 
the equation f = f0fx is seen to imply that /(0) =/0(0)/1(0), so 
that |/o(0)| = l,by (4). Since |/0| = 1, the Parse val equation there-
fore shows that /0(y) = 0 for all γ Φ 0, and so /0 is a constant of 
absolute value 1. Since f0€Xf, it follows that Xf = H2(G). 

Returning to the general case, we thus have Xf = H2(G). Since 
|/0| = 1, multiplication by /0 is an isometry in H2(G), and so 
Xf = /0 · Xf . This proves (2). 

Finally, we prove the uniqueness of the factorization. Suppose 
f = gh with g inner and h outer. Since \h\ = |/|, A(\h\) > 0, and 
hence Xh = H2(G), by the preceding argument. As above, 
X, = g - XA, since |g| = 1. Thus /0 · #*(G) = g · J5P(G). This 
shows that both /0/g and its complex conjugate g/f0 belong to 
H2(G)t and therefore fjg must be constant. 

This completes the proof. 
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COROLLARY. If f € H2(G), then X, = H2(G) if and only if f is an 
outer function and the geometric mean of \f\ is positive, 

If -¿1(|/|) > 0, this follows from the preceding theorem. If 
A(\f\) = 0, then/(0) = 0, by Theorem 8.4.1, and so ¿(0) = 0 for 
every g c Xf; thus Xf φ H*(G). 

8.5.3. The proof of the next theorem is due to Helson and 

Lowdenslager and is unpublished at the time of this writing; it 

extends a theorem of Beurling [4] (whose proof used Nevanlinna's 

representation of analytic functions of bounded characteristic by 

means of Poisson-Stieltjes integrals), and its idea has been used by 

Wermer [5] in a study of function algebras. 

THEOREM. / / X is an invariant closed subspace of H2(G) which 

contains a function g withg(0) Φ 0, then there is an inner function f0 

such that X = Xf . 

Proof: Since ¿(0) Φ 0, the constant function 1 is not orthogonal 

to X in H2(G). Let ψ be the orthogonal projection of 1 into X. 

Then ψ Φ 0. Since X is invariant and since 1 — ψ is orthogonal to 

X, we have 

(i) ¡G{I -l¡&j}v>(x)(x,y)dx = o (γ ^ o). 

But J rp(x){x, y)dx = 0 for all y > 0, since ψ € H2{G). Hence 

(2) \σ\ν(χ)\%(χ.ν)αχ = ο ( y > o ) f 

and so |y>| = c, a constant. Put f0 = ψ/c. Then Xf = X#. 

Since ψ € X, it is clear that ΧΨ C X. Let h c X be orthogonal to 

Χψ. Then 

(3) \GWMX) (*, V)dx = 0 (γ ^ 0). 

Since 1 — ψ is orthogonal to X, we also have 

(4) ¡σ{1 - φ)}Η(χ) (ζ, γ)άχ = 0 (y ^ 0) 

and hence 

(5) Jev(*)A(*) (*. 7)dx = 0 (y > 0). 
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By (3) and (5), iph = 0, and so h = 0, since \ψ\ = c Φ 0. Thus 
X^ = Xt and the proof is complete. 

8.5.4. The conclusion of Theorem 8.5.3 holds for every invariant 
closed subspace X of H2(T) (except for X = {0}) since there is 
always a first n ^ 0 such that f(n) Φ 0 for some / € X (the argu-
ment is as in 8.2.4). However, if Γ contains no smallest positive 
element and if X is the set of all / e H2(G) with /(0) = 0, then X is 
an invariant closed subspace for which the conclusion of Theorem 
8.5.3 is false. 

Other results involving inner and outer functions may be found 
in Lax [1], de Leeuw and Rudin [1], and Rudin [7]. These papers 
are based on complex variable methods. 

8.6. A Gap Theorem of Paley 

We suppose again that G is compact and connected, so that Γ 

can be given an order which is compatible with its group structure. 
We fix such an order and define HX(G) with respect to this order. 
For each γ ^ 0, put 

(1) L y = { / : y ^ / < ; 2 y } , 

and if £ is a set of positive elements of Γ, let N {Ε,γ) be the number 

of terms of E in Ly. 

THEOREM. The following properties of E are equivalent: 

(a) N{E, γ) is a bounded function of y. 

(b) If feW(G), then2\f(Y)\*<oo. 

(c) If μ€ M(G) and fi(y) = 0 for γ < 0, then 2 \β(γ)\2 < oo. 
y€E 

For G = T, Paley [2] proved that (a) implies (b); for the con-
verse, see Rudin [8]. The theorem of F. and M. Riesz shows that 
(b) and (c) are identical statements if G = Γ, but in general (c) 
asserts more; this follows from the example in 8.2.6. 

Let (V) be the statement (b) with ^{G) in place of H^C). Then 
(b') is false for every infinite set E. For if (b') were true for some 
infinite E, it would also be true for every subset of £, hence for an 
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infinite Sidon set (see Example 5.7.6(a)) but this contradicts 
Theorem 5.7.3(e). 

Proof: We first show that (a) implies (b). Fix f€H1(G) and 
assume, without loss of generality, that /(0) Φ 0. By Theorem 
8.4.4, we then have / = aß, with α, β € H2(G) and ||oc||* = \\ß\\* = 
ll/lli· If Yi> ?2> 7z> · · · is a n enumeration of those elements of E at 
which / Φ 0, we have 

(2) /()>,·)= Σ &(Yi-y)ß(r) ( / = i ,2 ,3 , . . . ) . 
0£y£y, 

Let 5, = {y: yt € L7). If 0 ^ y ^ yt. and y ^ 5 i f then yt- > 2y, and 
so Yi — γ € Si. The sum in (2) can therefore be split in two; in one 
sum γ € Sit and in the other yt — y c S<. The Schwarz inequality, 
applied to each of these sums, yields 

(3) \f(Yi)\ ^ n«||J 2 \HvwT + l lf l l i i Σ lÄ(y)l2)H» 

and the inequality (a + b)2 g 2a2 + 2b2 transforms (3) into 

(4) \f(Yi)\
2
^211/11, Σ {\ß(y)\

2
 + \&(r)\

2
} (¿=1,2 ,3 , . . . ) . 

y«s< 

Since (a) holds and since y, c Ly if and only if y € St-, there is a 
constant K such that no γ is contained in more than K of the sets 
S¿. If we add the inequalities (4) we therefore obtain 

(5) Σ l / ( r ) l
2
^ 4*11/11?. 

yc£ 

Thus (a) implies (b). 
Next, let X be the set of all / e H^G) such that f(y) = 0 for all 

γ € E. If ψ is a function on £ andΣ l<A(y)l2 < °° (i.e., if φ € L2(E)), 
then there is an / c H2(G) such that / = φ on E, f = 0 outside £, 
and ll/Hi ^ ||/||2 = | |¿ | | s . Hence the norm (in W(G)¡X) of the 
coset Υφ of X which contains / does not exceed \\φ\\^ This says 
that the map φ -> Υφ of L2(E) into i/^GJ/X is continuous; it is 
clearly one-to-one. 

If now (b) holds, this map is onto, and hence has a continuous 
inverse (Appendix C6). Thus there is a constant K such that (5) 
holds for every / c ̂ (G). Fix μ € M(G) with β(γ) = 0 if γ < 0, 
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and choose γΐ9..., γη in 2¿. Given ε > 0, there exists g € ^(G) 

such that ¿(γι) = . . . = ¿(γη) = 1 and \\ξ\\χ <1 + ε (Theorem 

2.6.8). If / = g * μ, then / € H*{G), and so 

(6) i \ft{7i)? = Σ l/MI2 ^ 4XH/II2 ^ iK[l + εημ\\*. 
i i 

Since {ylt . . ., yn} was an arbitrary finite subset of E and since ε 

was arbitrary, (6) implies 

(7) Σ\(1(γ)\*^4Κ\\μ\\*. 

Thus (b) implies (c). 

Suppose now that (c) holds. Then (b) holds, and the preceding 

proof shows that the inequality (7) holds for some K and for all 

μ€ M(G) which are of analytic type. Fix an integer p > 16K. 

If E does not satisfy (a), then there exists γ0 such that L7o con-

tains more than p elements of E. Define 

S0 = {γ ^ 0: ηγ < γ0 for every positive integer «}, 

Sx = {γ >̂ 0: my0 > γ for some positive integer tn}, 

and let A0, Λχ be the groups generated by S0,S1. We may think of 

50 as the set ot all γ ^ 0 which are "infinitely small" relative to 

y0; similarly, Sx is the set of all γ ^ 0 which are not "infinitely 

large" relative to y0. It is easy to see that A0 = S0 u (— S0) and 

-4i = Sx u ( - Si). 

If h is the natural homomorphism of Ax onto Λ. = AJAQ, then 

A induces an order in Λ (A(y) > 0 means: γ > 0 and y ff Λ0), and 

this order of Λ is archimedean. We may therefore regard A as an 

order-preserving homomorphism of Λχ into R (i.e., h(y) ^ 0 if and 

only if γ ^> 0) such that A(y0) = 1. 

Define w(t) = max (2 — |¿ — 2|, 0),- for / € R. Then w is a 
translate of a positive-definite function on R, and if y(y) = 
w{h(y))> then y is a translate of a positive-definite function οηΛ^. 

Extend ψ to JT by setting >̂(y) = 0 outside Ax. Then ^ = ft for 

some //€Af(G), and we see that /2(y) = 0 if γ < 0 and that 

||/u|| = 2. Since ze>(¿) ¡̂  1 on [1, 2], it follows that ft(y) ^ 1 on 
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Ly o , and since Ly^ contains more than p elements of E, the sum in 
(7) exceeds p. Hence p < 4Κ||μ||2 = 16K, which contradicts our 
choice of p. 

8.7. Conjugate Functions 

8.7· 1. We again assume that G is compact and connected so 
that Γ can be ordered. With respect to any fixed order of Γ, one 
can define a notion of conjugacy. We first do this for trigonometric 
polynomials. If 

(i) *(*) = 2M*>y) (*«G) 

is a trigonometric polynomial on G, the conjugate function of u 

is the trigonometric polynomial 

(2) v(x) = - i2 c7(x, γ) + ίΣcy(x> Y) (X € G). 
7>0 7<0 

We also define 

(3) w{x) = u(x) + iv{x) = c0 + 2 2 c7{x, γ) 
y>0 

and 

(4) *(*)=ΣΜ*.7)· 

Then w and F are trigonometric polynomials of analytic type; 
we call F the analytic contraction of u, since it is obtained from u 

by simply suppressing the coefficients cy with γ < 0. If u is real, 
so is its conjugate v, and w is the unique trigonometric polynomial 
of analytic type which has u for its real part and which satisfies 
the condition w(0) = u(0). The equations 

(5) 0u = F, Wu = w 

define linear operators on the space of all trigonometric polynom-
ials on G. 

In general, if U€L1(G)t and if ύχ€Α(Γ), where χ(γ) = 1 for 
y ^ 0, χ(γ) = 0 for γ < 0, then the function F defined by the 
equation P == ύχ will be called the analytic contraction of ut and 
we will write F = Ou. 
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We shall prove an extension of a classical theorem of M. Riesz 
(Zygmund [1], vol. I, p. 253; see Bochner [3], [5] for generaliza-
tions) which asserts that Φ and Ψ are bounded linear operators on 
LP(G) if 1 < p < oo. Since iv = w — u, it follows that the map 
u -> v is also bounded in L9(G). 

8.7.2. THEOREM. Suppose 1 < p < co. ΓΑ τ̂̂  «rw/ constants 

Av and B9 {they do not depend on G) stich that the inequalities 

(1) ||Φ»||, fS A9\\u\\9, \\Wu\\9 ^ BP\\u\\p 

hold for every trigonometric polynomial u on G. Hence Φ and Ψ can 

be extended to bounded linear operators on L*(G). 

The operator Φ is a projection (i.e., Φ2 = Φ) which maps LP(G) 

onto H*(G). 

Since 2Φ# = ύ(0) -f Ψ**, it is enough to prove one of the in-
equalities (1). In fact, \B9 — 2A9\£1. 

We postpone the proof of the theorem to Section 8.7.4. 

8.7.3. Let CA(G) be the uniform closure of the set of all trigono-
metric polynomials on G which are of analytic type, i.e., which 
have the form 

(i) f{x)=2*(Y)(*.y)· 

It is clear that CA (G) is a Banach algebra, with respect to pointwise 
multiplication. 

For our present purpose, the following fact is not needed, but it 
is of interest for its own sake: CA(G) consists of all f c C(G) which 
are of analytic type. For if μ € M(G) and if J /(— χ)άμ(χ) = 0 for 
all /·€ CA(G)t then β(γ) = 0 for all γ ^ 0; hence, if g € C(G) and 
g(y) = 0 for all γ < 0, we have ¿fi = 0 and so g * μ = 0; by the 
Hahn-Banach theorem, g€CA(G). 

Helson [8] observed that some simple facts about CA(G) extend 
the classical proof of the M. Riesz theorem to our present context: 

If / = / i / 2 , where fx and /2 are of the form (1), then clearly 
/(0) = /!(0)/2(0). It follows that the map h0 defined by 

(2) A0(/)=/(0) 
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is a complex homomorphism of CA(G). 
We next claim that if f e CA(G) and if Re f(z) > 0 for all x e G, 

then Re h(f) > 0 for every homomorphism h of CA(G) onto the com-
plex field. 

Since h has norm 1 as a linear functional (Appendix D4), h can 
be extended to a linear functional on C (G) with the same norm, and 
therefore there exists /¿€Ílf(G) with \\μ\\ = 1, such that h(f) = 
fG ίάμ for all / € CA{G). But A(l) == 1, and so ) G άμ = \\μ\\. This 
implies that μ ^ 0. Hence 

Re h(f) = Re ¡¿άμ = j Q (Re ί)άμ > 0. 

Finally, suppose f cCA(G)t Re f(z) > 0 for all x € G, p is a real 

number, and g(x) = [f(x)]p (we take that branch of the pth power 

which is positive on the positive real axis). Then g€CA(G) and 

(3) |(0) = [/(0)]". 

Indeed, our preceding assertion shows that the function a.{z) = zp 

is analytic on the spectrum of./ (Appendix D6). Each xeG 

determines a homomorphism / ->/(#) of CA(G); this shows that 
CA(G) is semi-simple. Since g = a(/), it follows that g^C^G) 
(Appendix D7) and that h(g) = ot(A(/)) for every complex homo-
morphism A of C¿(G). Taking A = A0, as defined by (2), we obtain 
(3). 

8.7.4. We turn to the proof of Theorem 8.7.2. Assume first that 
1 < p ^ 2. Fix p in this range, choose δ = δρ such that 

0 < δ < π/2 < £<5, and put 

(1) a = a, = (cos^d)-1, β = βν= (cos ό)-*(1 + |a|). 

Then a < 0, and we claim that 

(2) 1 ^ a cos ρθ + β (cos 0)p (|0| ^ π/2). 

Indeed, if ó ^ |θ| 5j π/2, the right side of (2) is not less than 
a cos ρθ > a cos pd = 1, and if |0| <¡ <5, it exceeds 0 (cos δ)ρ— |α| 
= 1. The idea of using an equality of this type is due to Calderón 
£1]· 
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Suppose now that u is a positive trigonometric polynomial on 

G, and put w = Ψη. Then u = \w\ cos 0, where |0| < π/2, and (2) 

implies that 

(3) j \w\p
 ^ a J M* cos £0 + ßj \w\p(cos θ)ρ

 = a Re jwp
 + 0 J>. 

Since w(0) = w(0), the final assertion in 8.7.3 shows that 

(4) JV = (¡wf = (ju)P > 0, 

and since a < 0, (3) and (4) imply J \w\p <£ ß f up. In other words, 
we have proved that 

(5) \\Ψ»\\,£Ρ*\\«\\, 

and hence that 

(6) ll<MI, ^ i(i + M I N I , 

for all positive trigonometric polynomials w on G. 

If u ^ 0 and w € ¿'(G), some sequence {wn} of positive trigono-
metric polynomials converges to u in the norm of LP(G). By (6), 
the functions <Pun form a bounded set in Lp(G)t and a subsequence 
of them converges weakly to a function w € LP(G). The weak con-
vergence also implies that w is the analytic contraction of u, since 
the map / ->/(y) is a continuous linear functional on LP(G), for 
every γ e Γ. Hence (6) holds for every non-negative U€LP(G). 

If u is real and u eL
p
(G), then u = ux — w2, where «χ ^ 0, 

«2 2̂  0, and «!%
 ==

 0. Put w = Φ«χ — Φ«2. Then ze> is the ana-

lytic contraction Φη of u, and since |%| ^ \u\, \u2\ ^ |w|, and (6) 

holds for ux and u2, we obtain 

(7) ||Φ»||, rg ΙΙΦ^ΙΙ, + ||Φ«2||, £ (1 + /P")INIr 

Finally, (7) applies to the real and imaginary parts of every 

u€L
p(G), so that 

(8) \\to\\9£A,\\u\\9 (u*L»(G)), 

where Ap is twice as large as the constant in (7). 

To complete the theorem, suppose 2 <g q < oo. If w and / are 
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trigonometric polynomials on G, then / * Φη = u * Φ/. Letting / 

range over all trigonometric polynomials with ||/||p fg 1, where 

\\p + l/q = 1, we therefore obtain 

\\0u\\Q = sup \jf(x)(4>u){- x)dx\ = sup | \u{x)(0f){- x)dx\ 

^INU-II*/II,^^JWI. 
Hence the theorem holds for q, and AQ ^ Av. 

If we take the smallest admissible values for Av and AQ, the last 

computation can be reversed, and shows that AQ = Av. 

8.7.5. Theorem 8.7.2 becomes false if p = 1 (hence also if 

ρ = oo, by the last computation in 8.7.4) for every non-trivial 

compact connected G. For if it were true, and if χ(γ) = 1 for 

y ^ 0, χ(γ) = 0 for γ < 0, then χ would be in Β(Γ), by Theorem 

3.8.1. If Z denotes any infinite cyclic subgroup of Γ, it follows that 

the characteristic function of the set E of all non-negative integers 

belongs to B(Z). But this is false, since E is not a member of the 

coset ring of Z. (More direct proofs are also available.) 

However, a weaker form of Theorem 8.7.2 still holds: 

8.7.6. THEOREM. Suppose 0 < p < 1. There exist constants A» 
and Bv (they do not depend on G) such that the inequalities 

(1) H*»IU^i4,INIi. Wu\\v^B,\\u\\i 

hold for every trigonometric polynomial u on G. 

Proof, (Helson [8]): We again assume first that u > 0. Putting 

w = Wu, we have u = \w\ cos 0, with |0| < π/2. By 8.7.3, 

H l̂lf = (juy = (jwY = jwp
 = jRe w* = f\w\* cos ρθ, 

so that 

(2) | | ^ | | p ^ ( c o s ^ j INI,. 

If now u is a real trigonometric polynomial on G, then u = u'—u" 
where u\ u" are non-negative continuous functions on G such that 

u'u" = 0, and there are positive trigonometric polynomials uni 
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u„ such that un -+ u' and u„ -> u" uniformly. The inequality 

(3) j\f + g\p ¿Í j\f\p + j\g\* (/>·<!) 

which, for p < 1, takes the place of the triangle in equality, gives. 
setting un = u'n — i £ , 

(4) f\yun\> ^ (cos^)"1 {iKnf + iK'na, 

since y«* = y < - y « ; \ As * -*co . i K l U - ^ I K H i ^ l M l i . 
and similarly for w '̂. Since y is a bounded operator on L2(G), 
Wun -> y « in the norm of L2(G), hence also in LV(G) for any p < 2. 
This gives 

(5) 11^*11, £ * J M I i 

for every real trigonometric polynomial u on G, and if we apply (5) 
to the real and imaginary parts of any trigonometric polynomial, 
we obtain the second inequality asserted by the theorem. Since 

2\ΦΗ\ = \Ψα + ύ(0)\£\Ψη\ + \\ϋ\\1, 

the first inequality in (1) also holds, by (3). 

8.7.7. The inequality 

j\v\ ^A + Bj\u\ log* M, 

where A and B are absolute constants, can also be proved by the 
preceding methods in the present context. The main point to con-
sider is that iiw = u + w and if u > 0, then z log z is analytic on 
the spectrum of w, and hence 

\w log w = h0(w) log h0(w) = w(0) log w(0) = u(0) log ¿2(0). 

The rest of the proof is as in Zygmund [1], vol. I, p. 254; see also 
Helson [9]. 

8.7.8. Theorem 8.7.6 leads to a simple proof of a theorem which, 
for the case G = T, was proved by Paley [1]. Helson [8] extended 
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it to the case G = Tn, by a somewhat different method. We refer 

to 8.7.3 for the definition of CA(G). As before, G is an arbitrary 

compact connected abelian group, and CA(G) is defined with re-

spect to some given ordering of Γ. 

THEOREM. Suppose ω(γ) ^ 0 for all γ ^ 0, and suppose that 

(i) Σ l/(y)Mr) < » 

for all f€CA{G). Then 

(2) 2 "
2
( y ) < o o . 

The intuitive content of the theorem is that one cannot say any-

thing stronger about the order of magnitude of the Fourier coeffi-

cients /(y) of a function in CA(G) than that 2 \f(y)\* < °°· 

Proof: For i = 1, 2, 3 , . . . , let X,. be the set of all / € CA(G) for 

which the left side of (1) does not exceed i. Since the map 

/ -* l/(y)l i
s a

 continuous function on the Banach space CA(G), for 

each γ € Γ, the sets X{ are closed. Baire's theorem implies that one 

of the sets X{ has non-empty interior, and it follows from the 

linearity of the map / -> /a> that there is a constant K (depending 

on the function ω) such that 

(3) 2 l / ( y )My )á * l l / l L (f<cA(G)). 
y £ 0 

Fix non-negative elements γλ,. . ., γη € Γ, let r.lt..., rn be the 

first n Rademacher functions, put 

W *ι(«) = Σ ω(Λ)Γ,(0(*. y,) (* € G, 0 < í < 1). 

and let P be a trigonometric polynomial on G, with HPId < 2 and 
^(y,) = l f o r l á ¿ g w . 

By (3), the maps / -> 2/(7t)Cü(y¿)r*(íí) a r e bounded linear func-
tional on C¿ (G) whose norm does not exceed Kt for all /. Hence 
there are measures /¿¿eM(G), with ||/ej| ¿K, such that 

(5) Σ / ( y X t t M O = f / ( - *)«&»«(*) (/ < C„(C). 0 < t < l ) . 
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Taking a character for /, (5) shows that fit{yi) =: e>(y<)rf(¿) 
(1 ^ t5^ w), and that ßt(y) = 0 for all other γ ^ 0. Hence gf is 

the analytic contraction of P * μ%, and by Theorem 8.7.6 there is an 

absolute constant B such that 

(«) {J ΐΛ(*)Ι
κ
ώ}

1
 = ||Λ||Η^Β||Ρ·Λ||1^2ΒΑ' (0<*<!). 

We take square-roots in (6), integrate the resulting inequality 

with respect to t, interchange the order of the two integrations, 

and conclude that 

(7) ¡llgt(*o)\** ^ (*BK)* 

for some x0 c G. Writing h(t) = gt(x0), Holder's inequality, com-
bined with inequality (6) of 5.7.7, gives 

(8) IIAIIÍ £ P I * · \\h\\\^2BK-4:\\h\\\. 

and so 

(9) ||A||a ^ 2IIAH, ^ 16BK. 

By Parseval's formula, (9) implies that 

2>2(y,) = Σ \<»{VÍ){X«.VÍ)\* = 11*111 á 2565^2, 

and (2) follows, since γΐ9 . . ., γη were arbitrary. 

COROLLARY. Ify.^0(i = 1, 2, 3, . . .) and if ε > 0, there exists 

f*CA(G) such that £ |/(yf)|
2
-

€
 = oo. 

8.7.9. In the preceding theorem, the support of / was assumed 

to be in the positive half of Γ. If the support of / is more severely 

restricted, the theorem and its corollary may become false. The 

following interesting example is due to Bohr [1] (p. 468). 

Consider the infinite-dimensional torus Τω
 and its dual Z°° (see 

Section 2.2.5). The elements n of Z°° are of the form n = 

(**!, n2, n3, . . .) where the nt are integers, and only finitely many 

n¿ are different from 0 for any n. Let Y be the set of all n € Z°° 
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with nt ^ 0 for i = 1, 2, 3, . . .; Y is an analogue of the first 
quadrant in the set of all lattice points in the plane. 

Let E be the set of all n c Y with J ^ = 1. That is to say, E 

consists of all n e Z°° with one coordinate equal to 1 and all other 
coordinates equal to 0. 

THEOREM. If f e Σ°°(Τω) and if f(n) = 0 for all n not in Y, then 

(i) ΣΙ/WI^II/IL. 

Proof: Let Λ be the subgroup of Z°° consisting of all n with 
2 ni = 0. Then E = Y n Λχ, where Λχ is a coset of A There is a 
measure μ c M (Γω) such that £ is the characteristic function of 
A1; clearly ||μ|| = 1 (see Section 3.1.2). If / satisfies the hypoth-
eses of theorem and if g = / * μ, it follows that g is an E-function, 
in the terminology of 5.7.1, and WgW^ <: H/H .̂ 

Every ^-polynomial is of the form P(x) = Jc^*'*'*', and the 
supremum of this, as x ranges over Τω, is 2 \c¡\- Thus £ is a Sidon 
set in Z°°, with constant 1. This implies that ]£ \Í(n)\ = llffllo©· 
Since fi(n) = 1 on £, (1) follows. 

Bohr's theorem was stated for Dirichlet series: / / 

(2) ¿(s) = ! * * / * ' 

and if \<f>(s)\ t^ 1 for all s whose real part is positive, then 

(3) Σ \c,\ ^ 1, 
P 

the last sum being extended over all primes. 
The connecting link between these two statements is Bohr's 

observation that every Dirichlet series (2) can be regarded as a 
trigonometric series on Τω whose coefficients vanish outside Y. 
For if plfp2ypz* · · · is the sequence of the primes, then each 
positive integer k has a unique factorization 

(4) * = Π#Λ 
i=l 
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and if we replace each k by the corresponding sequence {n}) of 

exponents, the series (2) takes the form 

(5) 2 Φι>
 n%> . ..) exp I - s 2 *i log p\. 

n€Y \ i - i ; 

Writing zs = pj8, (5) becomes a power series in infinitely many 

variables, namely 

(6) 2 φ 1 ί % . . . ) ί 4 « . . . , 
ncY 

and if \Zj\ = 1, i.e. if s is pure imaginary, (6) is a trigonometric 

series on Τω. 

8·7.10. A closed subset S of the euclidean space Rk
 will be called 

a half-space in Rk
 if the boundary of 5 is a (k — l)-dimensional 

hyperplane Π. The intersection of S with the set Z* of all lattice 

points in Rk
 will be called a half-space in Z*. If Π contains 0 but 

no other point of Z*, then S defines an (archimedean) order in Z*, 

and the corresponding analytic contraction is a linear operator Φ8 

on Lp(Tk), for 1 < p < oo, whose norm does not exceed the con-

stant Ap of Theorem 8.7.2. 

Explicitly, if xs is the characteristic function of S and if f€Lp(Tk), 
then xsf is the Fourier transform of a function 0sf on Tk

f and the 

inequality 

(i) ΙΙΦ5/ΙΙ, á ¿,ΙΙ/ΙΙ, 

holds. The same inequality holds if S is replaced by the half-space 

S + n, for any n e Z*. 

Suppose now that S1,...,SN are half-spaces in Z*, that 

E = S1n . . . n SNt and that E is finite. Since E is finite, the 

boundaries 77t of the half-spaces S¿ can be so moved, if necessary, 
that (1) holds for each of the sets Sif and so that E is not affected. 
Then if <PEf is the trigonometric polynomial whose Fourier trans-
form is the product of / with the characteristic function of E, we 
have 

(2) \\ΦΕη\, ig 4*| | / | | , (/€¿*(G). Κ ρ < 00). 
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This enables us to prove a theorem about the convergence of the 
partial sums <PEf of the Fourier series of /: 

THEOREM. Let N be an integer. Suppose Elf E2> E3, . . . is a 
sequence of finite subsets of Zk stich that each Ej is the intersection ofN 
half-spaces in Zk, and such that each n e Zk lies in all but finitely many 
of the sets E¿. If 1 < p < oo and if f€Lv(Tk)y then 

(3) lim ||/ - ΦΒβ9 = 0. 
ί -οο 

Proof: Given ε > 0, there is a trigonometric polynomial g on T* 

such that ||/ — g\\v < ε. For all large enough /, we have ΦΕβ = g, 

and (2) implies therefore that 

||/ - Φφ, S. 11/ - gll, + \\ΦΕΜ - f)U, < (1 + A?)e. 

The theorem follows. 

8.7.11. We conclude this chapter with an extension of Theorem 
8.7.2 to Fourier transforms on Rk. 

Suppose 1 < ¿ > ^ 2 . If f€Cc(R
k)t then H/lL á ||/l!i and 

| j / | | 2 = ||/||2. The convexity theorem of M. Riesz and Thorin 
(see Zygmund [1], vol. II, pp. 95, 254) therefore shows that 

(i) 11/lLá 11/11, 
where l//> + \¡q = 1. Since Cc(R

k) is dense in L*(Rk), (1) allows 
us to extend the Fourier transform to a linear map of Lv(Rk) into 
Lq(Rk), with preservation of (1). 

THEOREM. Suppose 1 < p ^ 2. Let χ be the characteristic func-
tion of a half-space in Rk. If f €Lv{Rk), then %f is the Fourier-
transform of a function Φ/ such that 

(2) ¡l<P/ll,á¿,ll/ll„ 
where Av is as in Theorem 8.7.2. 

Proof: Since Lp(Rk) is invariant under rigid motions of Rk, so is 
the set of its Fourier transforms, and we may therefore assume, 
without loss of generality, that the boundary 77 of our half-space 
contains 0 but no other point of Zk. 
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We introduce an auxiliary function 

(3) J(y) = f l max (1 - \Vi\f 0) (y = (ylt . . ., yk)). 

Each factor in (3) is positive-definite. Hence/ is positive-definite, 
and since j has compact support, / is the Fourier-transform of a 
non-negative continuous function / e L1(Ä*). Identify Tk with the 
cube in Rk defined by the inequalities — π ^ xi < π (1 <*i<ik). 

The Fourier coefficients of the periodic function 

J(x) = 2 /'(* + 2πι») 
me Zk 

are, for n e Zk, 

(¿) ¡ jwe~in'x d z = ( ¿ ) 7 jwe~in'x dx=fw== 

( 1 if n = 0, 
I 0 if w φ 0. 

Thus 

(4) 2 /(* + 2π™>) = x (* € 22*). 

B y (3)> J7 = l> s o t h a t /(0) = 1, and hence (4) shows that 
j(2nm) = 0 if m e Zk and m Φ 0. A computation quite analogous 
to the preceding one therefore yields 

(5) Σ ; ( y - » ) = i &«*»). 

Now let / be an infinitely differentiate function on Rk with 
compact support. Define (Urf)(x) = ι*/(τχ), r = 1, 2, 3, . . .. 
Take r so large that the support of Urf lies in the above-mentioned 
cube. Then Urf may be regarded as a function on Tk, and Theorem 
8.7.2 shows that there exists g e Lp(Tk) (depending on r) such that 

(6) U») = /(»/')*(«) = Of/)(«/') («« ¿*) 

and 

(7) ! l g | | , ^ i l , | | ^ I U = i l ^ | | / | | , ( i + ^ = l ) . 
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Regard g a s a function on Rk, with period 2π in each of the 

variables xlt. . ., xk, and define 

(8) hr(x) = r~* g(xlr)i(x[r) (x e R*). 

By (4), / ^ 1, and 

j R t \hr(x)\> dx = r"«-'>¡Rk \g(x)j(x)\* dx ^ r*"-'>fRt \g(x)\'j(x)dx 

= **α-ρ)ST. l*(«)IV(*)«k = **
η
~

Λ
/,. If (*)|· <**· 

Thus (7) implies 

(9) \\hr\\v^r-*l<\\g\\v^Av\\f\\v 

By (6), our choice of / shows that the series 

g(*) = Ii(»Wnx 

nc Z 

converges absolutely; inserting it into 

K(y) = (2π)~* jRkg(x)j(x)e-»*·* dx (y e 7?*) 

we obtain 

(10) K{y) = 1 {xhWr)j{ry - n) (yeR*). 
n€Z* 

In particular, hT(n¡r) = (*/)(w/r) for all n*Zk. 
By (5) and (10), hr(y) is a convex combination of the values of 

xf at the vertices of a cube of edge 1/r which contains y. Since #/ 
is continuous, except possibly on the hyperplane 77 which bounds 
our half-space, we see that 

(ii) Hm K(y) = (xf)(y) 
r-»oo 

uniformly on every compact subset of 7?* which does not intersect 77. 
By (9), {Ar} has a subsequence {hr} which converges weakly in 

Lp(Rk) to a function h which also satisfies (9). For any w e L*(Rk), 
(1) implies that / hrw -> J hw. Since J hw = J Äw, it follows that 

(12) lim f K(yMy)dy = f Hy)w(y)dy (w€L*{R*)). 
i-oo JA* JA* 
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But (11), (9), and (1) imply that J hrw -^ J xfw for all w e L*(Rk), 
and comparison with (12) gives: h = %f. 

The inequality (2) is thus established for all infinitely differen-
tiable / with compact support. The set of these / is dense in 
Lv(Rk), and the theorem follows. 



CHAPTER 9 

Closed Subalgebras of LX{G) 

For non-compact LCA groups G, the ideal structure of LX(G) is 
so complicated (see Chapter 7) that the larger problem of classify-
ing or describing all closed subalgebras of LX(G) seems far beyond 
our reach. Even for compact G, where all closed ideals in L1 (G) are 
explicitly known (Theorem 7.1.5), our present information about 
closed subalgebras is very meager; it is contained in Section 9.1. 
Two types of maximal subalgebras are described in Section 9.2, 
and Section 9.3 deals with a problem suggested by the Stone-Weier-
strass theorem. 

9.1. Compact Groups 
Suppose G is compact and A is a closed subalgebra of ¿1(G). 

Write γχ ~ y2 ^
 a n d °nty if /(?i) = ffa) for all / € -4. The relation 

~ is an equivalence relation RA in Γ, induced by A. One dis-
tinguished equivalence class is the set E0 which consists of all 
y € Γ at which /(y) = 0 for all / e A; E0 may be infinite. The other 
equivalence classes, denoted by Ea, where a runs through a suitable 
index set, must be finite, since fe ϋ0(Γ) for each / e A and since Γ 
is discrete. 

The question arises whether the closed subalgebras ot L1(G) are 
characterized by the equivalence relations which they induce in Γ. 
The answer is unknown even for G = T. To obtain a counter 
example, one has to construct two distinct closed subalgebras of 
Ll(G) which induce the same equivalence relation in Γ. 

We can prove the following, however: If A is as above, there 
exists a closed subalgebra A0 of Ll(G) such that RA == RA and 
such that A0 C B for every closed subalgebra B of Ll(G) for which 
RB = RA. This minimal algebra A0 is the one which is generated 
by the trigonometric polynomials Pa whose transforms Pa are the. 
characteristic functions of the sets Ea (α Φ 0): 

231 

Fourier Analysis on Groups 

by Walter Rudin 

Copyright © 1962 Wiley-Interscience. 



232 FOURIER ANALYSIS ON GROUPS 

THEOREM. Each of the trigonometric polynomials Pa belongs to A. 

Our question can therefore be rephrased as an approximation 

problem: If / € £*(<£) and if / is constant on certain sets Ea, can 

/ be approximated in the norm of L
2
(G) by trigonometric poly-

nomials P such that P is constant on each of the sets EJ 
Proof: Fix a. By definition, there exists f € A with f{Ea) Φ 0. 

Let alf . . ., an be the other indices for which f(Ea ) = f(Ea). 
There can be. only finitely many of these. Since f(Ea) is an isolated 

point of f(r) and since ¡(Γ) has no limit point except possibly 0, 

there is a polynomial φ such that φ(0) = 0, <f>(f(Ea)) = 1, and 

\φ\ < \ on the rest of /(Γ). If g = <£(/), then g e A, and if P is the 

characteristic function of Ea\j Ea u . . . u Ea^t then \\g — Ρ\\^ 
< \. Since (g — P)n = gn — Pf the spectral radius formula im-

plies that |||
n
 — ̂ | | < 2~

n
 for all large enough n. Hence P e A. 

There exist functions hi c A with h€ = 1 on Ea and A, = 0 on 

EUi (1 ^ i ^ n), and the preceding construction yields trigono-

metric polynomials P^A such that Ρ{(Εα) = 1, Pi(Eai) = 0. 

Since Pa = P · Px- . . . · Pn, Pu € A, and the theorem is proved. 

COROLLARY. / / G is compact and if A is a closed subcdgebra of 

L
X
(G) such that the Fourier transforms of members of A separate 

points on Γ, then either A = L
1
(G) or A is a maximal ideal in ^(G). 

Proof: Each equivalence class now consists of exactly one point. 

If E0 is empty, the theorem shows that A contains every character 

on G, hence every trigonometric polynomial on G, and so A = 

L
1
(G). If E0 = {y0}. then A consists of all / *Ll(G) for which 

/(ye) = 0. 

9.2. Maximal Subalgebras 

9.2.1. Suppose B is a closed subalgebra of a Banach algebra A, 
B Φ Ay and the inclusions B C Bx C A (where Βτ is a closed sub-

algebra of A) imply that either Βτ = B or 2?2 = A. Under these 

conditions B is called a maximal subalgebra of A. 

For any Borel set S in a LCA group G let LX{S) be the set of all 

/ €LX(G) which vanish (almost everywhere) on the complement 

S' of 5. Thus i
1
(5) consists of those / c LX(G) for which j s , \f\ = 0. 
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It follows that L1(S) is a closed linear subspace of L}(G). If S is a 
semi-group and if fyg€V-(S), then (/ * g)(z) = 0 unless 
x € S + S C S; hence / * g € ^(S). 

Thus L1^) is a closed subalgebra of Ll(S) if S is a semi-group 
in G. 

Wermer [2], [4] has shown that L1^) is a maximal subalgebra of 
L}{G) if G has an archimedean order and if S is the set of all non-
negative elements of G (Theorems 9.2.2, 9.2.3) and Simon [1], [2] 
showed that these are essentially the only two situations in which 
¿1(5) is maximal (Theorem 9.2.5). 

9.2.2. THEOREM. Suppose G is a discrete subgroup of R, suppose 
that A is a semi-simple commutative Banach algebra whose maximal 
ideal space is Γ (so that A is an algebra of functions on Γ), and sup-

pose that the trigonometric polynomials on Γ are dense in A. If A+ 

is the set of all φ € A such that 

(1) ΙΓΦ(γ)(*.γ)*γ = 0 

for all positive x € G, then A+ is a maximal subalgebra of A. 

Special cases of this are of interest. Taking A = 0(Γ), we see 

that the algebra ϋΑ(Γ) (Section 8.7.3) is maximal in 0(Γ) (Wermer 

[1], Hoffman and Singer [1], [2]; the latter paper contains an 

account of our present knowledge of maximal subalgebras of 

C(X)). Taking A = Α(Γ), we see that L1^) is a maximal sub-

algebra of L
1
(G), where G+ is the set of all non-negative elements 

of GCR (Wermer [2]). 

Proof: The letters s, t, u will stand for elements of G (i.e., for real 

numbers) and it will be convenient to write the continuous charac-

ters on Γ in the form χδ; i.e., χ9(γ) = (5, y), for s c G and γ c Γ. 

Suppose A+C BC A, B Φ A, and B is a closed subalgebra of A. 

Since B D A+, %t € B for all t ¡> 0. Since B Φ A, there exists s > 0 

such that χ_9 4 B. Thus χ8 has no inverse in B, and it follows 

(Appendix D4(c)) that h(x8) = 0 for some homomorphism h of B 

onto the complex field. From now on, h will be so fixed. 

If t > 0, there is a positive integer n such that nt > s, and if 

u = nt — s, xu € B and 
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Hence 

(2) h(Xt) = 0 (t> 0). 

The norm of any φ € B is the same whether we regard φ as an 

element of B or as an element of A. The spectral radius formula 

therefore shows that 

(3) \h(<f>)\ 5£ lim |0"| |V = sup |¿(y)| (φ c B), 
η-·οο γ « Γ 

and so Η{φ) = J φάμ, where μ € ilf (G) and ||/i|| = 1. By (2), 

(4) J r(«.y)^(y) = o (<>o). 

Since ||μ|| ^ 1 = A(l) = \ άμ, μ must be non-negative, and so 

(4) also holds for all t < 0. Hence μ is the Haar measure of Γ, and 

(5) Ηφ)~\Γφ{γ)άγ (φ*Β). 

Ιί φ€ B and / > 0, then φ- χ%* Β, and 

(6) ΙΓΦ(Υ)(*. y)dv = ΗΦ · x.) = *(*)*(*«) = o 

by (5) and (2). Since (6) holds for all / > 0, φ c A+, and so B = Λ+. 

This completes the proof. 

9.2.3. THEOREM. Let R+ be the set of all non-negative real num-
bers. Then L1(R+) is a maximal sub algebra of L1(R). 

Proof: Wermer [4] showed that this can be reduced to Theorem 

9.2.2. We shall given an independent proof. 

Define a(x) = 2e-* for x >̂ 0, oc(x) = 0 for x < 0, and put 

β(ζ) = *(-ζ). Then 6t(y) = 2(1 + iy)-\ ß(y) = 2(1 - iy)-\ 
and so 

(1) α + /8 = α*/8. 

The derivatives of 6t are constant multiples of powers of St. Hence, 
writing a

1
 = a and α

Λ
 = α

η-1
 * a, we have 
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(2) oin(x) = cnx«-i φ) (n = 1, 2, 3, . . .), 

the constants cn being different from 0. 

Suppose φ € L°°(R), φ(χ) = 0 for x < 0, and J <x
n
^ = 0 for 

n = 1, 2, 3, . . .. The function 

(3) F(w) = Ι~€Γ-φ{ζ)άζ 

is then analytic in the right half-plane, and since 

F<»>(1) = (_ l)»f ««^¿(*)<ίτ 

(4)
 J

° 

= i — i - ****(ζ)φ(ζ)άζ = 0 (n = 0, 1, 2, . . .), 

F is identically 0. In particular, this is so for F(l + iy), the 

Fourier transform of β"χφ(χ). Hence φ = 0, and we conclude: 

The algebra generated by a is dense in L
a
(i?

+
). 

It follows that the algebra generated by a and ß is dense in LX(R). 
Suppose now that B is a closed subalgebra of L1(i?), B^L1(R)i 

and B D L1(2?+). If the spectrum of a, regarded as an element of 
B, did not contain the point 1, then the function (z — l ) - 1 would 
be analytic on the spectrum of a, and equation (1) would imply 
that ß € B (Appendix D7). Since the algebra generated by a and ß 
is dense in ̂ (R), this contradicts the assumption that B Φ ^(R). 

Hence there is a complex homomorphism h of B such that 

A(a) = 1. The algebra generated by a is dense in L^Ä*), and so 
the action of h on L1 (R+) is determined by the value of A (a). Since 
¿(— i) = 1, it follows that 

(5) h(f) = / ( - ·) = J" r*f(x)dx (f e Li(Ä+)). 

On the other hand, |A(/)| ^ lim \\Ιη\\χΐη
 = U/H«, for all / c B, 

and so A(/) = J/¿// , where μ *M(i?) and ||μ|| = 1. Comparison 

with (5) shows that the Fourier-Stieltjes transform of μ coincides 

with e~* on Ä+. Since \\μ\\ <: 1 and ft(0) = 1, we see that μ ^ 0, 

and so fi(x) = ¿-,XL Hence 



236 FOURIER ANALYSIS ON GROUPS 

(6) k(f)=j~J(x)e~Mdx (/«*). 

The equation h(f * g) = h(f)h(g) leads to the relation 

( 7 ) S-co S-oo /(*)*W (r",*Ml - ^ ,X,"U, | dz it = 0 (/, g € B). 

Suppose f ζ Β. Since (7) holds for all g€L1(R+)9 it follows that 

(8) J ^ /(«)(H*+*i - *-W-*j ¿r = 0 (* > 0). 

If we multiply (8) by e* and consider the two possibilities for the 
sign of \x + t\, (8) becomes 

(9) e™ f~* f{x)e* dx + f~°° f{x)e~x dx = f °° f(z)er^äz 
J— 00 J—t J— OO 

and if we differentiate (9) with respect to t we obtain 

(10) 2¿2t Í"' /(*)«· dx = 0 (<> 0) 
J—OO 

Hence /(#) = 0 almost everywhere on (— oo, 0). 
This implies that B = L^i?*) and completes the proof. 

9.2.4. The next lemma (due to Simon [2]) shows, for instance, 
why LX(S) is not a maximal subalgebra of L1(2?2) if S is the set of 
all (x, y) in R2 with x ^ 0, in spite of the fact that S is a maximal 
semi-group in J?2. 

LEMMA. If S is a Borel semi-group in G and if L1 (S) is a maximal 
subalgebra of Ll(G), then S n (— S) contains at most one point, 
namely 0. 

Proof: To get a contradiction, suppose there exists t € S, t Φ 0, 
such that — t € S. Then if x e G, the semi-group property of S 
shows that x c S if and only if x + / e S. Since the complement 
S' of S has positive measure, there exist disjoint sets E and E + t 
in S', of positive but finite measure. Define g(x) = 1 on £, 
g[x) = — l on E + ¿, and #(#) = 0 at all other points of G, and 
let u be the characteristic function of S'. For any ycGwe then 
have 

(1) j g(z-y)u(z)dz = m(S' n (E + y))-m(S' n (E + y + t)). 
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Since x € S if and only if x -f- t c S, the two sets whose measures 
appear in (1) are translates of each other, and so the integral in (1) is 
0 for all y c G. It follows that J (/ * g)(x)u(x)dx = 0 for every 
feL1{G). Since u evidently annihilates L1(S), we see that u 
annihilates the algebra B generated by L1 (S) and g, and so B is not 
dense in L1 (G). But B is larger than L1 (5), and this contradicts the 
maximality of L1(S). 

9.2.5. THEOREM. (Simon [2]). Suppose S is a Borel semi-group 
in G and Ll(S) is a maximal subalgebra of ¿1(G). Then S is con-
tained in a closed semi-group P of G which induces an archimedean 
order in G. 

Since L1(S) is maximal, it follows that L1(S) = Ll{P). Hence 
the structure theorem 8.1.6 shows that Theorems 9.2.2 and 9.2.3 
describe the only situations (up to isomorphisms) in which Ll(S) 
is maximal. 

Proof: Suppose, without loss of generality, that 0 c S. (If not, 
add 0 to S.) Since L1(S) contains a non-zero element of L1(G), S 
contains a set E with 0 < m(E) < oo. If χ is the characteristic 

function of £, then χ * χ € C(G), χ * χ = 0 outside S + S C S, 

and J χ * χ = m(E)2
 > 0. It follows that the interior of S is not 

empty. 

The same is true of — 5, and Lemma 9.2.4 implies that there is 

a non-empty open set V in — S which does not intersect S. 

Consider the family F of all semigroups of G which contain 5 and 

do not intersect V, partially order F by set inclusion and apply 

Zorn's lemma. We conclude that F contains a maximal element P; 

since V is open and since the closure of a semigroup is a semigroup, 

P is closed. 

Since Ll(S) is maximal, we must have ¿X(P) = ^(S). Lemma 
9.2.4 shows that P n (— P) = {0}. By Theorem 8.1.3, our proof 
will be complete as soon as we show that P u ( - P) = C and 
that P is a maximal semi-group in G. 

Suppose there exists x c G such that neither x nor — x are in P. 
Our choice of P shows that there exist positive integers n, and 
elements pt c P ( ¿ = 1 , 2 ) such that nxx + px = ντ € V and 
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— n¿c + p2 = v2€V. Multiply the first of these equations by n2, 
the second by nl9 and add. The result is 

(1) n£x + n¿>2 + n2(— vx) + nx(— v2) = 0. 

Each of these 4 summands is in P, and since P n ( - P ) = {0}, 
their sum can be 0 only if every summand is 0. Also, P contains 
no elements of finite order. Since vx (and v2) are different from 0, 
we have a contradiction, and we have proved that P u ( - P ) = C. 

Finally, fix t in the complement of P, and let Q be the semigroup 
generated by P and t; being a countable union of translates of P, 
Q is a Borel set. Since P u ( - P ) = C, —t€PCQ. Thus Q 
contains both t and — /, and since L1^) DLa(P), Lemma 9.2.4 
implies that LX(Q) = L1(G). Hence Q is dense in G, and since the 
interior of Q is not empty (see the first paragraph in this proof), it 
follows that Q = G. Hence P is a maximal semigroup in G, and 
the proof is complete. 

9.2.6. Theorems 9.2.2 and 9.2.3 exhibit "natural" examples of 
maximal subalgebras of LX{G). We shall now describe a class of 
pathological examples. 

Suppose G is not compact. Then Γ is not discrete, and so Γ 

contains a Cantor set E which is also a Helson set (Theorem 5.6.6). 

That is to say, there is a constant K such that to every φ e C(E) 

there corresponds an f€L1(G) such that /(y) = φ(γ) on E and 

suchthat | | / | |xátf| |*IL·. 
It is known (Rudin [5]) that C(E) has a maximal subalgebra A 

which contains the constants and which separates points on E. 
Let B be the set of all / e LX(G) such that / coincides on E with 

a member of A. If fn -> / in the norm of ^(G) then fn -> / uni-
formly, and since A is uniformly closed, it follows that B is a closed 
subalgebra of L1(G). Also, the transforms of the members of B 
separate points on Γ. We shall prove that B is a maximal subalgebra 
of V[G). 

Suppose Bx D B, ΒΧΦ Β, and Βτ is a closed subalgebra of 

^(G). Choose / € ^(G) and ε > 0. The restrictions to E of the 

transforms of the members of Βτ are dense in C(E), by the maxi-

mally of A. Hence there exists gcBx such that 
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(1) \ÍÍV) - Kr)\ < elK (yeE). 

Our choice of E shows t h a t there exists AeL1(G) such that 
HY) = EM — f(r) o n E and such that \\Η\\τ < ε. Since f+h—g 

= 0 on Et f + h — g € B, and since g € Bx, it follows that f+h c Bv 

Since \\h\\t < ε, and since Bx is closed, f € Blt and so £ x = ^(G). 

Thus 2? is a maximal subalgebra of Z , 1 ^) . 

5>.J. TAe S t one - Weiers trass Property 

9.3.1. Suppose A is a semi-simple commutative Banach algebra; 

we regard A as an algebra of functions on its maximal ideal space 

A (A). A subalgebra B of A is said to be self-adjoint if the complex 

conjugate of each member of B belongs to B. 

We say tha t A is a Stone-Weierstrass algebra (or simply an 

S-W algebra) if the following is t rue: every self-adjoint subalgebra 

B of A which separates points on A (A) and whose members do not 

all vanish at any one point of A (A) is dense in A. 

The origin of our terminology is clear: the Stone-Weiers trass 

Theorem says that C0(X) is an S-W algebra for every locally 

compact Hausdorff space X. 

We shall consider the question whether A (Γ) (or, equivalently, 

L^G)) is an S-W algebra. We find (Theorems 9.3.3 and 9.3.5) that 

this is so if and only if Γ is totally disconnected (Katznelson and 

Rudin [1]). For discrete Γ we already know this from Section 9.1. 

9.3.2. THEOREM. Every semi-simple commutative Banach algebra 

A which is spanned by its set of idempotents is a Stone-Weierstrass 

algebra. 

An element j € A is idempotent if j2 = ;, and our hypothesis as-

serts that the set of all finite linear combinations of the idempotents 

of A is dense in A. Note tha t it is not assumed that A is self-

adjoint; there are examples (Coddington [1], Katznelson and 

Rudin [1]) which show t h a t it need not be. 

Proof: We regard A as an algebra of functions on A (A). Let B 

be the closure of a separating self-adjoint subalgebra B0 of A 

whose members do not all vanish at any point of A (A). Associate 

with each complex homomorphism of A its restriction to B. This 
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allows us to consider Δ{Α) as a subset of Δ(Β); moreover, A (A) 
is closed in A(B) (Loomis [1], p. 76). 

The norm of any / e B is the same whether we regard / as an 

element of B or as an element of A. Hence the two spectral radii of 

/ (relative to A and to B) are the same, so that 

(1) sup |/(*)| = sup |/(*)| (feB). 
Χ€Δ{Β) Χ€Δ(Α) 

Suppose feB and / is real on A {A). For real /, put Ft = f 
exp{—itf). Then Ft€B, \Ft\ = |/| exp {/Im/}, and on A (A) we 

have \Ft\ = |/|. Hence (1) implies that 

(2) |/(*0)|exp{*Im/(s0)} ^sup| / (x) | (χ0*Δ(Β)). 
Χ€Δ{Α) 

Since (2) holds for all real /, we conclude that Im/(:r0) = 0. 

Now takege B0. There exists he B0 such that h = g on Δ(A). 
Since g + h is real on A (A), what we have just proved shows that 

g + h is real on all of Δ (B). Thus B0 is self-adjoint as an algebra 

of functions on A{B). 

Since B0 is dense in B, B0 separates points on A(B), and the 

Stone-Weierstrass theorem implies that every function inC0(A (B)) 
can be uniformly approximated on A(B) by members of B0. 
Hence (1) holds for every feC0(A(B)), and so A (A) is dense in 

Δ(Β). But A(A) is closed in Δ{Β), so that Δ(Β) = Δ(Α). 

Letj be an idempotent of A. Then j(x) = 0 or 1 on Δ(A), and 

the Stone-Weierstrass theorem shows that there exists / e B0 such 

that \f(x) — j(x)\ < 1/3, for all x eΔ(A). The function φ defined 

by φ{ζ) = 0 if |*| < 1/3, φ(ζ) = 1 if |1 — z| < 1/3 is therefore 

analytic on the spectrum of / (relative to B, since Δ (B) = Δ (A)), 

and hence φ(ί) e B (Appendix D7). But φ(/) = /. We have shown 

that B contains every idempotent element of A; the theorem 

follows. 

9.3.3. THEOREM. / / Γ is a totally disconnected LCA group, then 
Α(Γ) is a Stone-Weierstrass algebra. 

Proof: By Lemma 2.4.3, Γ has a compact open subgroup Γ0. 
Its annihilator G0 is a compact open subgroup of G. Since G/G0 is 
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the dual of Γ0 and since Γ0 is totally disconnected, G/G0 has no 

element of infinite order. Since every compact subset K of G is 

contained in the union of finitely many cosets of G0, it follows 

that K is contained in a compact open subgroup of G. 

Hence every feL1(G) can be approximated, in the norm of 

L
1
(G), by a sequence {/n}, where each fn has its support in a com-

pact open subgroup Hn of G, and the restriction of fn to Hn is a 

trigonometric polynomial on Hn. 

If φ is a function on G whose support lies in Hn and whose 

restriction to Hn is a continuous character of Hn, then φ is a con-

stant multiple of an idempotent in ¿^(G); the constant depends on 
the measure of Hn. Hence each of the above functions fn is a linear 
combination of idempotents in L1(G). 

It follows that A (Γ) is spanned by its set of idempotents, and 

Theorem 9.3.2 completes the proof. 

(If we also assume that Γ is compact, the preceding proof col-

lapses to a triviality.) 

9.3.4. LEMMA. There exists a bounded function β on R, which is 

positive on a set of positive measure, whose support is a totally dis-

connected compact set P, such that \yß{y)\ ^ 1 for all ycR. 
We normalize the Haar measures so that ß (y) = (2π)-

1 jß (x) e~iyx dx. 
Proof: Let Q be the set of all functions in A (R) whose derivative 

also belongs to A (R). It is clear that Q is a subalgebra of A (R) 
and that Q consists of the Fourier transforms of all / € LX(R) for 
which J \xf(x)\dx < oo. 

Choose a2 € Q so that 04 > 0 in (0, 1), 04 = 0 outside (0, 1), and 
ly*i(y)l < \ f o r a I 1 y € R- Choose ón > 0 (n = 1, 2, 3, . . .) so that 
Σ<*η=1/4. 

Suppose <xn is constructed so that 0 ^ an ^ 04, an c Q, and 

\V&n(y)\ < 1 - 2-
Λ
 for all y € R. li<f>n€Q and y>n = an¿n, then 

Ψη = &η*φη, SO that 

yt fUy) = J T L ( y - ')*n(2/ - *)tnW + /Γοο
 Ä n(y - < )*Ä.W*. 

or 

(1) |^ n (y ) | ^ H^IL . f °° \y&n(y)\dy + Γ \&ÁV)\dy · sup |#,(ί) | . 
J — 0 0 J—OO . 
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Let u be an odd function in Q whose support is [—2, —1] u [1, 2], 
which is positive in ( — 2 , - 1 ) and whose integral over ( — 2 , - 1 ) 
is 1. Put ur(x) = ru(rx). Then úr(y) = u{yjr). Since ώ(0) = 0, 

11̂ 1 loo < 1, w is continuous, and u(y) -> 0 as \y\ -> oo, it follows 

that there is a sequence of positive integers r,. which increases so 

rapidly that 

(2) \üTx{y) + . . . + üTk(y)\ < 1 (y * R; k = 1, 2, 3, . . .). 

Let xn be the midpoint of the largest interval on which an is positive. 
If 

(3) φη(χ) = I J"
 Xm

{«ri(s) + · . . + « Γ »}Λ. 

then <f>n€Qt 0 <Ξ <£n ^ 1, the support of <£n lies in [xn—2[rlf 

xn + 2/rJ, and^n(x) = 1 in [>n — l/rt, sn + 1/rJ. It follows that 

Il̂ ftlloo ^
 2

/(^
r
i)

a n d
- l^»(0l <

 llk> b
y (

2
)>

and h e n c e w e c a n t a k e 

rx and k so large that the support of <f>n lies in [xn — δη,χη + δη] 
and so that |yyn(y)| < 2-»-

1
 for all y c 1?, by (1). 

Now define an+1 = an · (1 — φη). Then 

Ij0*+i(y)l ^ ly*.(y)l + ly&(y)i < i - 2-
n
 + 2—1 = 1 - 2—*, 

and our induction hypothesis holds, with n + I in place of n. 
The sequence {<xn} converges monotonically to a non-negative 

bounded function β which vanishes outside (0, 1). Since ß(y) = 
lim&n(y)t we have \yß(y)\ ^ 1 for all yeR. 

Our construction of {<£„} shows that ß(x) = 0 on each of the 
intervals [xn — l¡rk,xn -f- l/rk]9 hence /S(a?) = 0 on a dense open 
subset of R, and its support P is totally disconnected. Finally, 
ß(x) = x^x) > 0 at those points on (0, 1) at which <f>n(x) = 0 for 
n = 1, 2, 3, . . ., i.e., at those points which are not in the union of 
the intervals [xn — δη, χη + <$«]· The measure of this union does 

not exceed 2 2 <5« = h Hence β(χ) > 0 on a set of measure i 

and the proof is complete. 

9.3.5. THEOREM. Suppose Γ is a LCA group which is not totally 
disconnected. Then Α(Γ) is not a Stone-W eierstrass algebra. 

Proof: If Γχ is a closed subgroup of Γ and if A (Γ^ is not an S-W 
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algebra, then it is clear that the same is true of A (Γ). If Pdoes not 

contain a closed subgroup which is isomorphic to R, then Γ con-

tains a compact connected subgroup which contains a one-para-

meter subgroup (Theorems 2.4.1, 2.5.6). Hence it is enough to 

prove the theorem in the following two cases: 

Case (a). Γ = R. Take ß and P as in Lemma 9.3.4, and let 
B[P] be the algebra of all functions belonging to Q (see the proof 
of Lemma 9.3.4) whose derivative vanishes on P. Then B[P] is a 
self-adjoint subalgebra of A (R) which separates points on R since 
P is totally disconnected. Since \yß(y)\ ^ 1, the equation 

(i) vf=Fmym*y 
J — oo 

defines a bounded linear functional Ψ on A(R); since ß is not 
identically 0, Ψ is not the zero functional. For f € Q, (1) may be 

written in the form 

(2) 
y/ = ¿ J ß(*)dzj" yf(y)e-***dy. 

The inner integral in (2) is a constant multiple of the derivative of 
/ at x. Hence Ψ} = 0 for all fe B[P]. This proves that B[P] is 

not dense in A(R), and so A(R) is not an S-W algebra. 

Case (b). Pis compact and has 3. dense one-parameter subgroup 

J. The proof of Theorem 2.5.6(b) shows that the dual group G of P 

is then an infinite subgroup of Rd; we may assume, without loss of 

generality, that G contains the integers. There is a continuous 

homomorphism φ of R onto / , with the following properties: if 

/ € A (P) and if /* = /(¿), then 

(3) /* (*) = Σ ct e«*t 2 \ct\ < 00 (x € R); 
t€G 

moreover, all series of the form (3) are obtained in this way. 

If P Φ Γ, then φ is one-to-one. If P = Γ, then G consists of the 

integers alone, and φ is one-to-one on [0, 2π). In any case, φ is 

one-to-one on P, the set constructed in Lemma 9.3.4. We also note 

that β(η) does not vanish for all integers n, since the support of β 
is in [0, 1]; hence ß(t) Φ 0 for some t e G. 
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Let B be the set of all / € A (Γ) such that J 1̂ *1 < °° and such 

that the derivative of /* is 0 at all points of P, i.e., such that 

2 tcte
itx

 = 0 for all x e P. Then B is a self-adjoint separating sub-

algebra of A (Γ) which contains the constants. Define 

(4) »7 = Σ * ·#(-<) {f*Mn). 

Then Ψ is a non-zero bounded linear functional on -4 (JT) . For f € B, 

Wf = — f j8(x) 2 *ct*
to

* ¿x = 0, 
2njp t€G 

so that B is not dense in Α(Γ). 

This completes the proof. 

9.3.6. Suppose / € ^(R) and [/] denotes the smallest closed sub-

algebra of ¿1(2?) which contains /. Under what conditions will [/] 
be a maximal subalgebra of L1(i?)? This can happen; an example 
is furnished by the function a which we used in the proof of Theo-
rem 9.2.3; we saw there that [a] = L1 (/?+). 

Suppose [/] is maximal. Put S = f(R) u {0}. If S does not 
separate the plane, then / must identify infinitely many pairs of 
points of R which contradicts the maximality of [/]. Hence S 
separates the plane, z cannot be uniformly approximated on S by 
polynomials in z, and so f 4 [/]. This implies: 

(a) / / [/] is a maximal subalgebra of L1(J??), then the algebra 
generated by f and f is dense in ^(R). 

If the complement of S has two bounded components, let z0 be 
a point in one of these. The set of all polynomials in z and zl(z—z0) 
is not dense in C(S). It follows that the algebra generated by / and 
(/ — ¿(A)""1 * / is n o t dense in ¿1(i?), so that [/] was not maximal. 
We conclude: 

(b) / / [/] is a maximal subalgebra of i1(-R), then f is one-to-one on 
R and f{y) φ 0 for all y c R. 

The converse of (b) is not true, even if very strong smoothness 

conditions are imposed on /. For example, let P be the totally dis-

connected compact set constructed in Lemma 9.3.4, and let φ be 
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an infinitely differentiate function on R such that <f> = 0 on P, 

φ > 0 in the complement of P, <f>(u) = ¿-,u| for all sufficiently 
large \u\, and \$(u)du = 2π. Put 

/(y) = 1 - exp {*£ *(«)**} (y
 €

 * ) · 

Then / and all its derivatives belong to L
1
(i?), and so / € A(R). 

Also, / is a one-to-one map of R onto the set of all z Φ 0 such that 

|1 — 2T| = 1. The derivative of / is 0 at every point of P, and the 

proof of Theorem 9.3.5 therefore shows that the algebra generated 

t>y / and/is not dense in L
1
(i?). By (a), [/] is therefore not maxi-

mal. 



Appendices 

The appendices are short descriptions of those parts of topology, 
group theory, and functional analysis which are used in this book. 
They are intended to provide an easily available reference and to 
convince the reader that an acquaintance with only the more 
elementary parts of these subjects will give him the necessary 
prerequisites. They also contain a record of the exact forms in 
which certain concepts are used; this is significant in those cases in 
which the terminology is not standardized. 

Since most of this material is quite familiar, it seemed super-
fluous to document each theorem with a reference to a specific 
source. Every item may be found in at least one of the following 
well-known texts: Dunford and Schwartz [1], Halmos [1], Hille 
and Phillips [1], Kaplansky [2], Kelley [1], Loomis [1], Mont-
gomery and Zippin [1], Pontryagin [1]. 

A. Topology 

Al. A family τ oí subsets of a set S is called a topology on S if 
(a) 5 and the empty set belong to τ, (b) τ is closed under the forma-
tion of finite intersections and arbitrary unions. If a topology T is 
defined on S, then S is called a topological space (it would be more 
accurate to reserve this name for the ordered pair (S, τ), but we 
shall ignore this distinction, as well as similar ones that occur later) 
and the members of τ are called open sets; their complements are 
closed. The largest open set contained in a set A C S is the interior 
of A. The smallest closed set containing A is the closure Ä of A. 
If B is the complement of A, then A r\ B is the boundary of A. 
If Ä = S, A is dense in S. If some countable set is dense in S, 
S is separable. If p is an interior point of A, then A is a neighbor-
hood of p. The set whose only element is p is written {/>}. If {p} is 
open, then p is an isolated point of S. If {p} is open for every p € S, 
then S is a discrete space. 
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A2. A family Ω of open subsets of a topological space S is a base 

if every open subset of S is a union of sets belonging to Ω. A family 
Ων of neighborhoods of a point p e S is a neighborhood base at p if 
every neighborhood of p contains a member of Ωφ. If to every pair 
plt p2 of distinct points of S there exist neighborhoods NltN2 of 
plt p2 which are disjoint (i.e., whose intersection is empty), then 5 
is called a Hausdorff space. 

A3. Any subset X of a topological space S is itself a topological 
space if the open sets of X are defined to be the intersections of the 
open sets of S with X. This topology is the relative topology induced 
in X by S. 

A4. A subset A of S (the case A = S is not excluded) is called 
compact if every family of open sets whose union contains A has a 
finite subfamily whose union contains A. If every point of S has 
a compact neighborhood, then 5 is locally compact. 

Every closed subset of a compact space is compact. Every com-
pact subset of a Hausdorff space is closed. In a locally compact 
Hausdorfi space, every point has a neighborhood base which con-
sists of compact sets. 

If Ω is a family of compact sets with the finite intersection 

property (i.e., every finite subfamily of Ω has non-empty inter-
section), then the intersection of all members of Ω is non-empty. 

A5. If S is a topological space, let oo denote a point not in S, put 
Soo = S u {oo}, and call a subset A of S^ open either if A is an 
open subset of S or if the complement of A is a compact subset of S. 
Then Soo is a compact space, and is called the one-point compactifi-
cation of S. If S is compact, {oo} is an isolated point of S^. US 
is a locally compact Hausdorff space, then S^ is a compact Haus-
dorff space. 

A6. A map / of a topological space X into a topological space Y 
is called continuous if f*1 (E) is open in X for every open set E in Y; 
here /-*(£) denotes the set of all p € X such that f(p) € E. UK 
is compact, KC X, and / is continuous, then f(K) is compact. 

If /(£) is an open subset of Y whenever E is an open set in X, 
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then / is called an open map. If / is one-to-one, if f(X) = Y, and 

if both / and /
_ 1

 are continuous, then / is a homeomorphism of X 

onto Y. 

A7. / / / is a continuous open map of a locally compact Hausdorff 

space X onto a Hausdorff space Y, and if K is a compact subset of 

Y, then there is a compact subset C of X such that K == f(C). 

It follows from the hypotheses that there are finitely many 

points plt . . ., pn in X with compact neighborhoods Nl9 . . ., Nn 

such that K C / ( N , ) u ...uf(Nn). Put C = f-*(K) n (J IN4. 

Since f~x{K) is closed and \J Nt is compact, C is compact. 

A8 . A set A in a topological space S is connected if it is not the 

union of two disjoint non-empty sets which are open in the relative 

topology induced in A by S. The component of a point p e S is the 

union of all connected subsets of S which contain p. Since the 

closure of a connected set is connected, components are closed sets. 

If no component of 5 contains more than one point, S is called 

totally disconnected. 

A9. In a locally compact totally disconnected Hausdorf f space, the 

compact open sets form a base. 

A10. If r and xx are two topologies on a set S and if τ C xx, then 

τ is said to be weaker than xx. This terminology does not exclude 

the case τ = τ1. 

If F is a family of maps of S into a topological space Y, the col-

lection of all finite intersections of sets of the form f~l{V) (f e F, 

V open in Y) forms a base for a topology xF on S. Each / c F is 

evidently continuous with respect to τ>, and xF is the weakest 

topology on S with this property; xF is called the weak topology 

induced in S by F. Of particular importance is the case in which F 

is a collection of complex-valued functions (i.e., Y is the complex 

plane). 

JF is said to separate points (or to be separating) on S if to every 

pair of distinct points px, p2 in S there corresponds an / c F such 

that f(p<i) Φ f(p2)' If F separates points and if Y is a Hausdorff 

space, then the weak topology induced by F on S is also a Haus-

dorff topology. 
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A l l . If S is a topological space, C(S) denotes the set of all 
bounded continuous complex-valued functions on S. The support 

of a complex function / on S is the closure of the set of all points p 

at which f(p) Φ 0. The set of all / c C(S) whose support is compact 
is denoted by CC(S). 

If, for each ε > 0, the inequality \f(p)\ < ε holds for all p in the 
complement of some compact set, then / is said to vanish at infinity, 

The set of all / € C(S) which vanish at infinity is denoted by C0(S). 

Each / € C0(S) may be extended to a continuous function on S^ by 
setting /(oo) = 0. If S is compact, then C(S) = C0(S) = Ce(S). 

A12. The spaces C(S), C0(S), Ce(S) are closed under pointwise 

addition, multiplication, and scalar multiplication: (/ + g)(P) = 

f{P) + g(PY. (fg)(P) - f(P)g(fi): (*f)(P) = *tiP)· Since the usual 
commutative, associative, and distributive laws hold, these spaces 
are algebras (over the complex field). If we introduce a norm in 
C(S) by setting 

II/lloo = sup|/(¿)| ( /cC(S)), 
P€S 

the metric ||/ — gW^ turns C(S) and C0(S) into complete metric 
spaces, since they are also closed under the formation of limits of 
uniformly convergent sequences. In fact, C (S) and C0 (S) are simple 
examples of Banach algebras (Appendix D). 

If S is a locally compact Hausdorff space, then CC(S) is dense in 
C.(S). 

A13. Tietze's Extension theorem. This theorem is usually 
stated for real-valued functions, but the following equivalent for-
mulation is better suited to our purpose; we recall that an arc is a 
homeomorphic image of a compact interval of the real line: 

Suppose K is a compact subset of the locally compact Hausdorff 
space S, and f is a continuous map of K into an arc L. Then there 
exists a continuous map g of S into L such that g(p) = f(p) for all 
PeK. 

A14. The Stone-Weierstrass theorem. Let S be a locally 
compact Hausdorff space and let A be a subalgebra of C0(S) which 
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separates points on 5, which is self-adjoint (i.e., / e A impl ies /c A, 

where/is the complex conjugate of /) and which contains, for each 

p0€ S, a function f such that f(p0) Φ 0. Then A is dense in C0(5). 

A15. Suppose A is an index set, and Sa is a set, for each a € A. 

The cartesian product S = J\a€A Sa is the set of all p which are 

functions on A such that ^ (a )cS a , for all a € A; p(a) may be 

regarded as the ath coordinate of the point p. If A is finite, say 

A = {1, 2 , . . ., ri}, the notation S = St X 5 2 x . . . X Sn is also 

used for S, and the points of S may be regarded as n-tuples 

Suppose now that each Sa is a topological space. For any finite 

choice of indices, say ax, . . ., <x„, and for any choice of open sets 

Va{CSai (1 ^ i ^ n), let V be the set of all p€S such that 

p(oLi) € Vai (1 ^ / ^ n), and declare a subset £ of 5 to be open if 

and only if it is a union of such sets V. Then S satisfies the axioms 

for a topological space, and is called the topological product of the 

spaces Sa. 

Each a € A can be regarded as a function on S whose value at a 

point peS is P(OL). If this is done, it becomes evident that the 

topology of S is exactly the weak topology induced on S by A. 

If each Sa is a Hausdorff space, it is trivial that S is also a 

Hausdorff space. The analogous statement for compact spaces lies 

deeper: 

THE TYCHONOFF THEOREM. The topological product of any 

collection of compact spaces is compact. 

A16. A topological space is metrizable if its topology is induced 

by a metric. For a compact Hausdorff space S, the following three 

properties are equivalent: 

(a) S is metrizable; 

(b) S has a countable base; 

(c) C(S) is separable. 

A17. If 5 is a locally compact Hausdorff space, or if 5 is a 

complete metric space, the Baire theorem holds: 5 is not the union 
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of countably many closed sets, unless one of them contains a non-
empty open set. 

B. Topological Groups 

Although many of the statements which follow apply to non-
commutative groups as well as to commutative (abelian) ones, we 
shall confine our attention to the latter class. 

B l . An abelian group is a set G in which a binary operation, + , 
is defined, with the following properties: 

(a) x + y = y + x for all xt y € G; 

(b) x + (y + z) = (x + y) + z for all xt y, z c G; 

(c) G contains an element 0 such that x + 0 = x for all x c G; 

(d) to each xeG corresponds an element — xc G such that 

x —- x = 0. (We write x — x in place of x + (— x).) 

If A and B are subsets of G, A + B denotes the set of all 
elements of the form a + b, with a c A, b € B. Similarly, — A is 
the set of all elements — a, where a ranges over A, and A — B = 
4̂ + (— B). If x € G, it is customary to write A + x instead of 

A + {x}. We call A -f x the translate of Λ by a:. 

A subset H of G which is itself a group, with respect to the same 
group operation, is a subgroup of G. For this it is necessary and 
sufficient that H — H CH. If / / Φ Gt then / / is a proper subgroup 
of G. If H = {0}, then # is the trivial group. 

B2. A homomorpkism of a group G into a group Gx is a map ^ 
of G into Gt such that 

φ(χ + y)= φ(χ) + <f>(y) (xf y € G). 

A homomorphism which is one-to-one is an isomorphism. If there 
is an isomorphism of G onto Glf then G and Gx are isomorphic 
groups, and for many purposes one need not distinguish between 
them. 

The kernel of a homomorphism ^ is the set ^"^(O); the kernel is 
always a subgroup. 
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If H is a subgroup of G, the sets H + x (xcG) are the cosets 
of H. Two cosets H + x and H + y are identical if and only if 

x — y cH; otherwise, H + x and H + y are disjoint. The set of 

all cosets of H is denoted by GjH, and G/# becomes an abelian 

group (the quotient group of G modulo H) if we define 

(H + z) + (H + y) = H + z + tf (*,ycG). 

The map a; -> if + x is a homomorphism of G onto G/ff, with 

kernel H. It is called the natural homomorphism of G onto GjH. 

Conversely, if φ is any homomorphism of G, the group <f>(G) may 

be regarded as a quotient group of G: ^(G) = G/̂ -^O). 

The ¿wd¿a; of a subgroup H of G is the number of elements of 
G[H; it is either a positive integer, or infinite. 

B3. If x € G and n is a positive integer, nx is the element 
x -f- x -+- · · · + # (# summands). If nx = 0 for some n, the 
smallest positive integer with this property is the order of x\ if 
nx Φ0 for all w > 0, then x has infinite order. If there is an 

integer q such that ya: = 0 for all x e G, then G is said to be of 

bounded order. 

If E C G and if no proper subgroup of G contains 2?, we say that 

G is generated by i?, or that £ is a set of generators. A group 

generated by one of its elements is cyclic. 

B4. A topological abelian group is a Hausdorff space G which is 

also an abelian group, provided the map (x, y) -> x — y is a 

continuous map of the product space G x G onto G. If, in addition, 

the topology of G is locally compact, then G is a locally compact 
abelian (LCA) group. 

(The proof of Theorem B6 (with H = {0}) shows that the 

Hausdorff separation axiom can be replaced by the weaker re-

quirement that every point be a closed set, without changing the 

class of groups so defined. But this is not important for our 

present purpose.) 

It follows that the translation map tx, defined by tx(y) = x + y, 

is a homeomorphism of G onto G, for each x c G, and so is the map 

x -> — x. If A is an open set of G and B CG, then A + B is a 
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union of translates of A and is therefore open. If A and B are 

compact, then A + B is compact, being the image of the compact 

set A x B under the continuous map (x, y) ->- x + y. 

A set E CG is symmetric if E = — E. Since E n (— E) is 

symmetric, it follows that in every LCA group G there is a neigh-

borhood base at 0 which consists of compact symmetric sets. Moreover, 

the continuity of addition shows that to every neighborhood W of 

0 in G there corresponds a neighborhood V of 0 (which may be 

taken compact and symmetric) such that V + V C W. 

B5. The closure of any subgroup of G is again a subgroup of G. 

Every closed subgroup of a LCA group is LCA. Every open sub-

group is closed; this is so since every coset of an open subgroup H 

is open, and since H is the complement of the union of all but one 

of its cosets. 

B6. THEOREM. Suppose G is LCA, φ is the natural homomorphism 

of G onto G/H, where H is a closed subgroup of G, and a subset of 

GjH is declared open if and only if it is the image under <f> of an open 

subset of G. Then GjH is a LCA group. 

Proof: By definition, φ is continuous and open, and hence GjH 

is locally compact. If x, y e G and x — y 4 Ht there is a neighbor-

hood W of 0 such that x + W does not intersect y + H, since 

y -f H is closed. There exists a symmetric compact neighborhood 

V of 0 such that V + V C W, and for this V the sets x + H + V 

and y + H + V do not intersect. In other words, the points x + H 

and y + H of GjH have disjoint neighborhoods, and so GjH is a 

Hausdorff space. The continuity of the group operation in GjH is 

easily verified. 

B7. If {Ga} is a collection of abelian groups, their complete direct 

sum is the group G defined as follows: G, as a set, is the cartesian 

product of the sets Gat and addition is performed coordinatewise: 

if x € G and y e G, x + y is the element of G whose ath coordinate is 

X(OL) + y(oL), in the notation of Appendix A15. 

The direct sum of the groups Ga is the subgroup of their complete 

direct sum which consists of all x which have a: (a) Φ 0 for only 

finitely many a. 
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If we now introduce the product topologies, the following facts 

emerge, via the Tychonoff theorem: 

The direct sum of any finite collection of LCA groups is a LCA 

group. The complete direct sum of any collection of compact abelian 

groups is a compact abelian group. 

If G = Hx + H2, where Hx and H2 are subgroups of G, then G 

is (isomorphic to) the direct sum Ητ φ H2 of these two subgroups 

if and only if H1nH2= {0}. 

B8 . THEOREM. If G is an abelian group of bounded order, then G 

is a direct sum of cyclic groups. 

Proof: Each prime p has a largest power pa (a ^ 0) which divides 

the order of some x c G. Hence G contains elements xv of order pa. 

If x* = 2 xP , the sum being taken over the distinct primes pi for 

which a i > 0, then x* has order JJ p*%
. Thus G contains an ele-

ment x* whose order is a multiple of the order of every x e G. 

Suppose H is a proper subgroup of G and 

(a) H is a direct sum of cyclic groups; 

(b) if n is an integer and if nx e H for some x e G, then nx0 € H 

for some x0 e H. 

The preceding paragraph, applied to G\Ht shows that there 

exists y* € G and an integer m such that mx € H for all x € G and 

such that ry* 4 H if 0 < r < m. By (b), my* = my for some 

y € H, and if z = y* — y then z has order m and the group K 

generated by H and z has property (a) and is larger than H. 

Suppose nx = y + tz, where x € G, y eH, and w, t are integers. 

Let d be the greatest common divisor of m and n. Then 

(mn/d)x € H, hence [mtjd)z e H, hence m divides m¿/¿, and so d 
divides t. The congruence ns == ¿ (mod *n) is therefore solvable for 
s. Put k = sz. Then nk — tz = (ns — ¿) z = 0. Hence n(x — k) 
= y = wy0, for some y0 € if, since (b) holds for if. We conclude: 
nx = n(y0 + sz). Thus (b) also holds for K. 

By Zorn's lemma, there is an H which is maximal with respect 
to (a) and (b), and the above argument shows that then H = G. 
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B9. Since the topology of a topological abelian group G is 
translation invariant, it is easy to introduce the notion of uniform 
continuity: A map / from a subset E oí G into a metric space with 
metric d is uniformly continuous on E if to every ε > 0 there exists 

a neighborhood V of 0 in G such that d(f(x), f(y))<e whenever 

x € E, y € E, and y — x € V. 

THEOREM. / / / is a continuous map of the compact set E in G into 
a metric space, then f is uniformly continuous on E. 

Proof: Given ε > 0, there corresponds to each x € E a neighbor-

hood Wx of 0 such that d(f(x), f{y)) < ε/2 if y € E n (x + Wm), 

and there are symmetric open neighborhoods Vx of 0 such that 

Vx + VxC Wx. Since E is compact, there is a finite set of points 

xlt . . ., xn in E such that the union of the sets x{ -f- VXi covers «E. 

If V is the intersection of these Vx , and y — x € V, x € E, y e E, 

then x € x{ + VXi for some i, and y ex + V Cx{ + Vx + 

VCxt + WXi. Hence 

d{f{x),f{y)) < *(/(*)./(*,)) + d{f{Xi)ff{y)) < ε. 

BIO. One proves similarly that every / € C0(G) is uniformly con-

tinuous on G if G is LCA. 

C. Banach Spaces 

Cl. A normed linear space X is a vector space over the complex 

field (i.e., an abelian group in which multiplication by complex 

numbers is also defined and satisfies the usual distributive laws) 

in which a non-negative real number | \x\ |, the norm of x, is associat-

ed to each x e X, with the following properties: 

(a) ||£|| == 0 if and only if x = 0; 

(b) ||* + y|| ^ llxll + ||y|| for all x.ytX; 

(c) ||αχ|| = |α| · \\χ\\ for all xeX and all complex numbers a. 

If X is complete with respect to the metric defined by d(x, y) 
= 11* — yll» i-

e
-> if every Cauchy sequence in X converges, then X 

is called a Banach space. 
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The topology induced by the above metric is the norm topology 

of X. The set of all x*X with ||x|| ^ 1 is the unit ball of X. 

C2. If M is a closed linear subspace of a normed linear space X, 

the quotient space X\M (see Appendix B2) becomes a normed 

linear space if we introduce the quotient norm 

||* + M | | = i n f | | * + y|| (xeX). 
ycM 

If X is a Banach space, so is X/M. 

C3. A map T of a normed linear space X into a normed linear 

space Y is a linear transformation if T(x + y) = Tx -{- Ty and 

T(OLX) = a · Tx for all x, y c X and all complex numbers a; in 

other words, linear transformations are vector-space homo-

morphisms. The kernel of a linear transformation T is a linear 

subspace. T is said to be bounded if there is a real number C such 

that ||Γχ|| ^ C||x|| for all x c X; the smallest C with this property 

is the norm \\T\\ of Γ. Note that ||Γ|| = sup ||Γχ||/||χ||. 

A linear transformation T is bounded if and only if it is con-

tinuous. The set L(X, Y) of all bounded linear transformations 

of X into Y is itself a normed linear space, and if Y is a Banach 

space, so is L(X, Y). 

If T € L(X0, Y), where X0 is a dense linear subspace of a normed 

linear space X and Y is a Banach space, then T has a unique ex-

tension to an element of L(X, Y),.with the same norm. This is a 

special case of the general metric space theorem which states that 

any uniformly continuous map into a complete space has a con-

tinuous extension to the completion of its domain. 

C4. The complex field K, normed by the absolute value, is a 

Banach space. A bounded linear transformation of X into K is 

called a bounded linear functional on X, and L(XtK) is the dual 

space of X, written X*. 

C5. THE HAHN-BANACH THEOREM. / / M is a linear subspace 

(not necessarily closed) of the normed linear space X, and if S is a 

bounded linear functional on M, then there exists T € X* such that 

Tx = Sx for all x € M, and such that \\T\\ = | |S|| . 
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COROLLARY. If X0€X and x0 is not in the closure of M, then there 

exists T € X* such that Tx = 0 for all x e M but Tx0 Φ 0. 

G6· The next theorem depends m an essential manner on the 

completeness of the spaces involved and is a consequence of the 

Baire theorem (Appendix A17): 

THEOREM. Suppose X, Y are Banach spaces, T €L(X, Y), T is 

one-to-one, and TX = Y. Then T^eLtf, X). 

COROLLARY. If a vector space X is a Banach space with respect to 

two norms, say \\ · || and || · ||', and if there is a constant C such that 

\\x\\' ^ C||x|| for all x*X, then there is a constant C such that 

||x|| ^C'llxll' for aU xeX. 

If these two inequalities hold, the two norms are called equiv-

alent. A further consequence is 

T H E CLOSED GRAPH THEOREM. If X and Y are Banach spaces, 

if T is a linear transformation of X into Y, and if the relations 

l i m ^ ^ l t a - x l l = 0 and l i m ^ ^ \\Txn - y\\ = 0 imply that 

y = Tx, then T is bounded. 

We need only apply the preceding corollary to the map 

x -> (x, Tx) of X onto the graph of T which is a Banach space 

with norm ||z|| + ||Γ*||. 

C7. Each X€X may be regarded as a function on X* whose 

value at a point T c X* is Tx. Then X is a separating family of 

functions on X*. The weak topology induced in X* by X (Appen-

dix A10) is called the weak* topology of X*. 

THEOREM. For any normed linear space X, the unit ball S* of X* 

is a compact Hausdorff space in the weak* topology of X*. 

Proof: Let Dx be the set of all complex numbers z with |*| ^ ||se||, 

where x c X. With X as index set, S* is then a subset of the topo-

logical product/) of the discs Dx (Appendix A15). By the Tychonoff 

theorem, D is a compact Hausdorff space, and since limits of linear 

functions are linear, S* is a closed subset of D. 

C8. If X is separable, then a countable subset of X separates 
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points on X*. It follows that the weak* topology of X* has a 

countable base. We conclude (see Appendix A16): 

/ / X is separable, then the weak* topology of the unit ball S* of 
X* is metrizable. 

C9. The following analogue of the corollary to the Hahn-Banach 

theorem is a direct consequence of the definition of the weak* 

topology: 

/ / M is a weak*-closed linear subspace of X* and if T0 4 M, then 

there exists xeX such that Τ0χφΟ but Tx = 0 for all TeM. 

C10. Suppose X and Y are Banach spaces, X* and Y* are their 

duals, and T € L(X, Y). For any y* e Y*, the map x -> y*(Tx) 
is a bounded linear functional on X; hence there is an element of 

X*, which we write T*y*, such that (T*y*)(x) = y*(Tx) for all 

x € X. The map T* of Y* into X* so defined is called the adjoint 
of T. It is easy to see that T* c L{Y*, X*). 

G i l . THEOREM. Suppose X, Y are Banach spaces, T eL(X, Y), 

T is one-to-one, and TX is dense in Y. Then each of the following 
three properties implies the other two: 

(a) TX = Y. 

(b) There exists δ > 0 such that \\T*y*\\ ^ <5||y*|| for all y* e Y*. 

(c) T*Y* = X*. 

Proof: Let Sr = {x e X: \\x\\ ̂  r}. If (a) holds, C6 shows Γ ^ ) 

contains all ye Y with ||y|| á¡ δ. Hence 

l i rVH = sup \(T*y*)(x)\ = sup \y*{Tx)\ ^ %*|| 
X€S% X€SX 

for all y* e Y*, and (b) holds. If (c) holds, one proves in the same 

way that ||7a;|| 5* OL\\X\\ for some a > 0 and all x € X; this implies 

that TX is norm-closed, and so (a) holds. It remains to show that 

(b) implies (c). 

If (b) holds, then Γ = Γ*Υ* is norm-closed in Y*. Moreover, 

T*-1 (E) is bounded for every bounded set E in Γ, and this implies, 

via C7, that the intersection of Γ with every closed ball in X* is 

weak*-compact. 
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Suppose Γ Φ X*. Then there exists x0* e X* whose distance 

from Γ exceeds 1. Put Γη = {x* € Γ: \\x* - V I I ^
 n}> an

<* if
 F 

is any finite subset of X, let F° be the set of all x* e X* such that 

|(«* - Xo*)[z)\ ^ 1 for all x € F. 

We claim that there exist finite sets Fn C S^ such that 

(1) F°Q n Fl n . . . F°n^ n Γη is empty (n = 1, 2, 3, . . .). 

Since Γτ is empty, F0 may be chosen arbitrarily. Suppose (1) 

holds for some n ^ 1, Wn = FJ n . . . n F ^ , and F ° n l f n n Γη + 1 

is not empty, no matter what finite set F C S ^ we take. Since 

Wn n Fn + 1 is weak*-compact and since the collection of all sets 

F° n Wn n F n + 1 has the finite intersection property, there exists 

x*€Wnn Γη + 1 such that \(x* — a?0*)(*)| ^ 1 for all a: € S l / n . 

But then ||x* — x0*\\ ^
 n

>
 ΟΓ

 s** ·^» which contradicts (1). 

Hence Fn exists, and the induction is complete. 

Arrange the elements of (J Fn in a sequence {#,}. Then 

| | x , | | - »0 , and 

(2) sup ¡ (x* - a;0*) (a:,)I > 1 (** £ Γ). 
i 

The map !P : x* -> {a;* (a;,)} is a bounded linear transformation of 

X* into the space of all sequences which converge to 0, and (2) 

shows that the distance from Ψ(χ0*) to Ψ(Γ) is positive. Hence 

there exists ( a j , with 2 |a,| < oo, so that, setting x = 2
 a

A » 

we have a;0*(a;) = 2 *ixo*{xi) =
 1

 ^
u t

 **(^) = Σ ^^*^*) = 0 if 

a;* € Γ. The latter condition implies that y*(Tx) = {T*y*) (x) = 0 

for all y* e Y*, so that jfa; = 0 and hence x = 0, which is im-

possible if a;0*(a;) = !· This contradiction proves that F = X*, 

so that (c) holds. 

C12. Suppose i f is a vector space over the complex field, and 

suppose that to each ordered pair x,y € H there is associated a 

complex number (x, y), called the inner product of x and y, with 

the following properties: (a) (xx + x2, y) = (xlf y) + (x2, y); 

(b) (oar, y) = <x.(x, y); (c) (2/, x) = (xf y)\ (d) (a:, a;) ¡> 0; 
(e) (a:, x) = 0 only if x = 0. Setting ||x|| = (xt x)v\ H then be-
comes a normed linear space. If H is complete in this norm. H is 
called a Hilbert space. 
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The Schwarz inequality \(x, y)| <£ ||z|| · |[y|| is a consequence of 
properties (a) to (d) of the inner product. It shows that the map 
# ->■ (x> y) is, for each y e Ht an element of H*. Conversely, to 
each T c H* there corresponds a unique y c H such that Tx = 
(x, y). Thus H is its own dual. 

A set K in H is convex if oca; + (1 — a)y e K whenever x cKt 

y eKt and 0 < a < 1. Each closed convex set K in a Hilbert space 
H has a unique element x0 of minimal norm. If x0 + M CK for 
some linear subspace M of Zf, then (x0, y) = 0 for all y € Λί; in 
other words, x0 is orthogonal to M. If 0 is the only element in H 

which is orthogonal to a linear subspace M, then M is dense in H, 

by the Hahn-Banach theorem and the above characterization of 
H*. 

D. Banach Algebras 

Dl . A vector space A over the complex field is a commutative 

algebra if a multiplication is defined in A which satisfies the usual 
commutative, associative and distributive laws. If a norm is 
defined in a commutative algebra A which makes A into a Banach 
space, and if the inequality \\xy\\ ^ \\x\\ · ||y|| holds for allx.yeA, 

then 4̂ is a commutative Banach algebra. 

In this appendix, the symbol 4̂ will always denote a commuta-
tive Banach algebra. 

There may or may not be a unit in A, i.e., an element e such that 
xe = x for 3ÜX€ A. 1ÍA has a unit, the norm of A can be replaced 
by an equivalent one (see Appendix C6) such that ||^|| --= 1. The 
element x € A is invertible if it has a multiplicative inverse, i.e., if 
there is an element x~l e A such that x~~xx = e. 

D2. A subalgebraI of A is an íá^o/ in Aiixy el whenever x e A 
and y € I. If 7 ^ ^4,1 is a proper ideal. Maximal ideals are proper 
ideals which are not contained in any larger proper ideals. 

THEOREM. / / A has a unit, then every proper ideal in A is con-
tained in a maximal ideal, and every maximal ideal is closed. 

This is an easy consequence of Zorn's lemma and the following 
three facts: (a) proper ideals contain no invertible elements, (b) the 
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set of all invertible elements is open, and (c) the closure of an ideal 
is an ideal. 

D3. If J is an ideal in A, a multiplication may be defined in the 
quotient space A ¡I by setting 

(z + I)(y + I)=xy + I (x.yeA); 

this makes A\I into an algebra, the so-called quotient algebra of A 
modulo / . 

If I is closed and if A ¡I is given the quotient norm [see Appendix 
C2), then A\I is a Banach algebra. 

An ideal / in A is said to be regular if A ¡I has a unit (if A has a 
unit, every ideal is regular). Theorem D2 has the following replace-
ment if A has no unit: 

Every proper regular ideal in A is contained in a regular maximal 
ideal, and every regular maximal ideal is closed. 

D4. A complex homomorphism h of A is a linear functional on A 
which is also multiplicative: h(xy) = h(x)h(y). Let A be the set of 
all complex homomorphisms of A which are not identically 0. 
The following statements contain the core of the theory of commu-
tative Banach algebras, as developed by Gelfand [1]: 

(a) If J is a regular maximal ideal in A, then A ¡I is (isometrically 
isömorphic to) the complex field, and so the canonical homo-
morphism of A onto A ¡I belongs to J . 

(b) Conversely, if he A, the kernel of A is a regular maximal 
ideal in A. 

(c) If A has a unit, then x e A is invertible if and only if h (x) Φ 0 

for all h € A. In any case, the equation xy = x + y is solvable in 

A if and only if h(x) φ \ for all he A. 

(d) Each he A is a bounded linear functional on A, of norm 1. 

Thus A is a subset of the unit ball S* in the dual space A* of the 

Banach space A. 

(e) Each x e A defines a function x on A, given by 

£{h) =A(x) (he A). 



APPENDICES 263 

The weak topology induced in Δ by the collection of all these func-
tions x is called the Gelfand topology of Δ. It coincides with the 
relative topology which Δ has as a subset of A* if A* is given the 
weak* topology. Since Δ C S*, since S* is weak*-compact (Ap-
pendix C7) and since Δ u {0} is easily seen to be a closed subset of 
5*, it follows that Δ is a locally compact Hausdorff space (usually 
called the maximal ideal space of A) and that each x is a member of 
C0(A) (Appendix Al l ) . 

(f) The map x -> x is a homomorphism of A onto a subalgebra Ä 
of C0(A), since 

( # ) (A) = *(ay) = * ( * ) * & ) = *(*)*(*) (*. y € i i ; A € J ) , 

and similarly for addition and scalar multiplication. Since ||A|| ^ 1 
the important inequality 

IPIL á 11*11 

holds. We call x the Gelfand transform of a;. 

(g) If A has a unit e, then ¿1 is compact, since S(h) = A(¿) = 1 
and 1 € C0(J) only if Δ is compact. 

D5. If the Gelfand transformation is an isomorphism, i.e., if 
x Φ 0 implies x Φ 0 (or, A(ar) ^ 0 for some A € Δ), then -4 is said 
to be semi-simple. 

THEOREM. / / A and B are commutative Banach algebras, if B is 
semi-simple, and if Ψ is a homomorphism of A into Bf then Ψ is con-
tinuous (i.e., ¡ P c L f ^ B ) ) . / / ΨφΟ, then \\Ψ\\ ^ 1. 

Proof: Suppose xn -> x0 in A and Ψχη -> y0 in Bt for some se-
quence {xn} in A. For each h € Δ, the maximal ideal space of Bt the 
map x -> h(Wx) is a complex homomorphism α ο η ^ . By D4(d), 
h and a are continuous, so that 

h{Wx0) « α(*0) = lim φη) = lim *(!RpJ = h(y0). 

Since -B is semi-simple, we conclude that y0 = Ψχ0, and the con-
tinuity of Ψ follows from the closed graph theorem. 

If Ψ Φ 0, the semi-simplicity of B implies that h(Wx) Φ 0 for 
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some X€ B, he A, and so α φ 0. By D4(d), ||!P|| = ||A|| · ||!P|| 

^ INI = 1. 

D6. The spectrum of an element x e A is defined to be the range 

of the function x (with 0 adjoined if A has no unit, so that the 

spectrum is always a compact subset of the complex plane). The 

number Hill«» is the spectral norm or the spectral radius of x. The 

equation 

(1) lim ||*·||ΐ/· = \\£\\„ (Χ€Λ) 
π-κχ> 

is known as the spectral radius formula. For Fourier transforms, it 

was discovered by Beurling [1], The general case is due to Gelfand 

[i]· 

Let a and β be the upper and lower limits of {||s
n
||

1/n
}. Since 

\h(x)\n
 = \h(xn)\ ^ ||χ

η
|| for all h e Δ, we have | |Í|L ^ β· If ¿ is 

not in the spectrum of x, D4(c) shows that there exists y = y (λ) e A 
such that — Xy + xy = x; also, y(k) is an analytic function of A, 

outside the spectrum of x. If |A| = C > ||&||, then y(X) = 

-Ii°(*M)
n
>so that 

(2) * » = - J L f A»-*y(A)<tt (* = 1, 2,3,. . .). 
^ » J|A|-C 

If ll^lloo<
 r

< ^ » ^ e path of integration in (2) can be shrunk to 

the circle |λ\ == r without changing the integral. Hence | |xn/¿?n|| -* 0, 
cc^R, and so a^lßH^. This proves (1). 

D7. A similar application of the Cauchy formula shows that 
analytic functions operate in Banach algebras: 

Suppose A is a commutative-semi-simple Banach algebra, xeA, 
and F is an analytic function defined on an open set which contains 
the spectrum of x; if A has no unit, we require that F(0) = 0. Then 
there exists a unique y € A such that y(h) = F(£(h)) for all heΔ. 

E. Measure Theory 

El. Our discussion will be confined to measures and integrals 

on locally compact Hausdorff spaces X. Let B be the smallest 

family of subsets of X which (a) contains all closed subsets of X, 
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(b) is closed under the formation of countable unions, and (c) is 

closed under complementation. Then B is also closed under the 

formation of countable intersections. The members of B are called 

the Borel sets of X. 
A measure on X is a set function μ, defined for all Borel sets of 

X, which is countably additive (i.e., μ(Ε) = £/*(£,) if E is the 

union of the countable family {£,.} of pairwise disjoint Borel sets 

of X), and for which μ(Ε) is finite if the closure of E is compact. 

With each measure μ on X there is associated a set function \μ\, 
the total variation of μ, defined by 

(1) M(£) = sup2X£,.)|, 

the supremum being taken over all finite collections of pairwise 

disjoint Borel sets E¡ whose union is E. Then \μ\ is also a measure 

on X (Hewitt [1]). If 

(2) H ( E ) = s u p H ( t f ) = infH(r), 

for every Borel set E, where K ranges over all compact subsets of E 

and V ranges over all open supersets of E, then μ is called regular. 

We put 

(3) \\μ\\ = \μ\(Χ) 

and define M(X) to be the set of all complex-valued regular measures 
on X for which \\μ\\ is finite. 

It is clear that M (X) is a normed linear space if addition and 

scalar multiplication are defined by 

W Oh + μ2)(Ε) = μλ(Ε) + A(JE), M ( £ ) = a ■ μ(Ε) 

for every Borel set E and every complex number a. 

We shall also consider non-negative regular measures on X; for 

these, + oo is an admissible value. 

E2. If μ is a measure on X and A is a Borel set, the restriction μΛ 

of μ to A is the measure defined by 

(1) Λι(£) = μ(Α n E). 
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If μ = μΑ, then μ is said to be concentrated on A. If two measures 

μχ and μ2 are concentrated on disjoint sets, the pair (μχ, μ2) is said 

to be mutually singular) in that case 

(2) IL«i + A«ill = llftll + !lAl|. 

If μ € M(X), then μ is concentrated on a σ-compact subset of X 

(i.e., on a set which is a countable union of compact sets) and 

among all closed subsets of X there is a smallest one, the support 

of μ, on which μ is concentrated. 

Every μ € M (X) has a unique decomposition of the form 

(3) μ = μχ — μ2 + ί>3 — *>4 

m which μί ^ 0, /ui € Μ ( Χ ) , ana /A¿ £a¿rs (μχ, μ2) an¿ (μ3, μ4) are 

mutually singular. This is the Jordan decomposition theorem. 

E3. A measure μ € M(X) is called discrete if it is concentrated 

on a countable set; μ is continuous if μ{Ε) = 0 for every countable 

set E. Every μ e M (X) has a unique decomposition μ = /¿¿ + μ,., 

where /¿d is discrete and μΰ is continuous. 

If μ € M(X), if w is a non-negative measure on X, and if μ(Ε) 

= 0 whenever w(Z?) = 0, then μ is said to be absolutely continuous 

with respect to m. 

THE LEBESGUE DECOMPOSITION THEOREM. / / μ€Μ(Χ) and 

m ¡> 0, ¿Aen μ has a unique decomposition μ = μα + μ8, where μα 

is absolutely continuous with respect to m and μ8 is singular with 

respect to m. 

E4. If μςΜ(Χ), the map f-J>Sχfdμ is a bounded linear 

functional on the Banach space C0(X) (see Appendix A l l ) . The 

converse of this statement is 

THE RIESZ REPRESENTATION THEOREM. TO each bounded linear 

functional T on C0(X) there corresponds a unique μ e M(X) such that 

(1) Tf = jxfdM ( /eC0(X)) . 

In this generality, the theorem was first proved by Kakutani [1]. 
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Its history is discussed in Dunford and Schwartz [1], pp. 373, 380. 

Since (Hewitt [1]) 

(2) sup |Γ/| = H/ill (/ € C.{X). ||/|U ^ 1), 

if T and μ are related by (1), we see that (I) establishes an iso-

metric isomorphism between M(X) and the dual of C0(X). In 

particular, M(X) is a Banach space. 

E5. Another useful version of the Riesz representation theorem 

is as follows (Halmos [1]): 

To each linear functional T on Ce(X) such that Tf ^ 0 if f ^ 0, 

there corresponds a unique regular non-negative measure monX stich 
that 

Tf-jTßm (f*C.(X)). 

E6. A complex function / defined on X is called a Borel function 
if f^iy) is a Borel set for every open set V in the complex plane. 
If μ€Μ(Χ), all bounded Borel functions on X are integrable 

with respect to μ, and the inequality 

|/x/¿/»|álWI-5up|/(*)l 

holds. 

E7. If m is a non-negative measure on X and if 0 < p < oo, 
Lv(m) denotes the set of all Borel functions / on X for which the 
norm 

(i) l!/ll„ = {Jx"l'H1/P 

is finite. If we identify functions which differ only on a set E with 
m(E) = 0, Lp(m) becomes a Banach space, normed by (1), if 
1 ^ p < oo. L2(m) is a Hubert space, with inner product 
{f,g) = itidm. 

L°°{m) is the space of all bounded Borel functions on X, normed 
by 

(2) ||/||00 = esssup|/(x)|; 
c«jr 
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the essential supremum of |/| is, by definition, the smallest number 

λ such that m({x : f(x) > A}) = 0. Again we identify any two 

members /, g of L°°(G) for which ||/ — gll«, = 0. 

E8. / / m is regular, then Ce(X) is dense in Ll(m). The set func-

tion μ defined by μ(Ε) = $B |/¡ dm belongs to M(X). Hence, given 
ε > 0, there is a compact set E such that μ(Ε') < ε, where Ε' is 

the complement of E. It follows that there is a bounded Borel 

function gt with compact support E, such that ||/ — g\\x < ε. 

A theorem of Lusin (Saks [1]) asserts that for every δ > 0 there 

exists A € Ce{X) such that h(x) = g(x) except possibly on a set S 
with m(S) < δ. We may also take h so that UAH«, ̂  llflloo· Thus 

I|g — Alk < 2ó||g||00, and hence ||/ — h\\x < ε if δ is small enough. 

Essentially the same proof holds for Lv(m), if 1 ^ j> < oo. 

E9. If /eL1(m) t the measure defined by μ(Ε) = lEjdm be-

longs to Af (X) and is absolutely continuous with respect to m. 

The converse of this proposition is 

THE RADON-NIKODYM THEOREM. / / μ € M(X), if m is a non-

negative measure on X, and if μ is absolutely continuous with respect 

to m, then there exists f e L
1
(w) such that 

M{E)=jBfdm 

for all Borel sets E in X. 

Also, |M|=JX 1/1^=11/11!. 

E10. Suppose m ^ 0, 1 < <p < oo, and l/p + 1/q = 1. The 

bounded linear functionals Ton Lp(m) are in one-to-one correspond-

ence with the members g of Lq(m): each T e {L*)* is of the form 

Tf = jfgdm (fcL*(m)),. 

and | |m = ||g||t. Thus £ · = (L*)*. 

If X is the union of a disjoint family of σ-compact sets Xa such 

that each σ-compact subset of X is contained in the union of a 

countable subfamily of {-X"a}, then we also have L°° = (L1)*. This 
condition is satisfied by every LCA group G. For if V is a compact 
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symmetric neighborhood of 0 in G, if Vx = V and Fn+1 = Vn -f K, 
then each Vn is compact, and JÍ = (JS£.i ^* *s a

 σ-compact open 

subgroup of G. The cosets of H have the properties required of 

the sets Xa in the preceding paragraph. 

EIL Suppose μ and λ are regular measures on locally compact 

Hausdorff spaces X and Y. For any set A x B in X x Y, where 

4̂ and 5 are Borel sets in X and Y, respectively, define 

(μ x A)(ii x Β)=μ{Α)λ{Β). 

The set function μ X λ so defined on "rectangles" has a unique 

extension to a regular measure μ χ λ on the product space X X Y. 

FUBINI'S THEOREM. If μ^Ο, λ^>0, f is a Borel function on 

X XY, and f ^0, then 

¡XXYfdfr X A) = J x { y /(*, ν)άλ(ν)άμ(χ) 

(1) =JrJx/(*.y)*(»)ÄW. 
/ / μ€Μ(Χ), A € M(Y), / ¿5 a Bore/ function X x Y, an¿ i/ 

JxJFl/(*.y)l¿W(y)¿H (*)<«>. 

¿Asw (1) a/so Ao/ás. 
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A Correction 

The proof of part (b)Aof the Pontryagin duality theorem (i.e., of the fact 

that a(G) is closed in Γ) is incomplete, because the local compactness of 

a(G) does not by itself guarantee that a(G) Π U is compact, as was asserted 

on p. 29. The following theorem bridges the gap: 

THEOREM. If H is a subgroup of a topological group G, and H is 

locally compact (in the topology induced by G), then H is closed in G. 

LEMMA. IfXisa Hausdorff space, and Y is a dense subset ofX which 

is locally compact (in the topology induced by X), then Y is open in X. 

Proof: To say that Y is locally compact means that every point of Y 

lies in an open set V such that the Y-closure of V Π Y is compact. In 

other words, the set K = Y Π (V Π Y) is compact, and is therefore closed 

inX. 

Let W be the set of all points of V that are not in K. The inclusions 

W H Y C V f l Y C K show that W Π Y is empty. Since W is open and 

Y is dense in X, it follows that W is empty. Thus V C K, hence V C Y, 

and therefore Y is open. _ 

To prove the theorem, let Y = H, X = H. The lemma shows that H is 

an open subgroup of H. Since open subgroups are closed (Appendix B5), 

H = H. 


