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PREFACE

In classical Fourier analysis the action takes place on the unit
circle, on the integers and on the real line. During the last 25 or 30
years, however, an increasing number of mathematicians have
adopted the point of view that the most appropriate setting for the
development of the theory of Fourier analysis is furnished by the
class of all locally compact abelian groups. The relative ease with
which the basic concepts and theorems can be transferred to this
general context may be one of the factors which contributes to the
feeling of some that this extension is a dilution of the classical
theory, that it is merely generalization for the sake of generali-
zation,

However, group-theoretic considerations seem to be inherent in
the subject. They are implicit in much of the classical work, and
their explicit introduction has led to many interesting new analytic
problems (it is one of the aims of this book to prove this point) as
well as to conceptual clarifications. To cite a very rudimentary
example: In discussing Fourier transforms on the line it helps to
have fwo lines in mind, one for the functions and one for their
transforms, and to realize that each is the dual group of the other.

Also, there are classical subjects which lead almost inevitably
to this extension of the theory. For instance, Bohr (1) noticed
almost 50 years ago that the unique factorization theorem for
positive integers allows us to regard every ordinary Dirichlet series
as a power series in infinitely many variables. The boundary values
yield a function of infinitely many variables, periodic in each, that
is to say, a function on the infinite-dimensional torus 7v. It then
becomes of interest to know the closed subgroups of 7%, and it
turns out that these comprise all compact metric abelian groups.
Once we agree to admit these groups we have to admit their duals,
i.e., the countable discrete abelian groups, and since the class of all
locally compact abelian groups can be built up from the compact
ones, the discrete ones, and the euclidean spaces, it would seem

vl
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artificial to restrict ourselves to a smaller subclass.

The principal objects of study in the present book are the group
algebras L1(G) and M (G); L*(G) consists of all complex functions

on the group G which are integrable with respect to the Haar
measure of G, M (G) consists of all bounded regular Borel measures
on (, and multiplication is defined in both cases by convolution.
Although certain aspects of thesealgebrashave beenstudied forn on-
commutative groups G, I restrict myself to the abelian case. Other
L7 - spaces appear occasionally, but are not treated systematically.

The development of the general theory, given in Chapter 1, is
based on some simple facts concerning Banach algebras; these, as
well as other background material, are collected in the Appendices
at the end of the book. It seems appropriate to develop the material
in this way, since much of the early work on Banach algebras was
stimulated by Fourier analysis. Chapter 2 contains the structure
theory of locally compact abelian groups. These two chapters are
introductory, and most of their content is well known.

The material of Chapters 3 to 9, on the other hand, has not
previously appeared in book form. Most of it is of very recent
vintage, many of the results were obtained only within the last
two or three years, and although the solutions of some of the prob-
lems under consideration are fairly complete by now, many open
questions remain. .

My own work in this field has been greatly stimulated by con-
versations and correspondence with Paul J. Cohen, Edwin Hewitt,
Raphael Salem, and Antoni Zygmund, and by my collaboration
with Henry Helson, Jean-Pierre Kahane, and YitzhakKatznelson.
It is also a pleasure to thank the Alfred P. Sloan Foundation for
its generous financial support.

Madison, Wisconsin WALTER RUDIN
November 1960
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Fourier Analysis on Groups
by Walter Rudin
Copyright © 1962 Wiley-Interscience.

CHAPTER 1

The Basic Theorems of Fourier Analysis

The material contained in this chapter forms the core of our
subject and is used throughout the later part of this book. Various
approaches are possible; the same subject matter is treated, from
different points of view, in Cartan and Godement [1], Loomis [1],
and Weil [1].

Unless the contrary is explicitly stated, any group mentioned in
this book will be abelian and locally compact, with addition as
group operation and 0 as identity element (see Appendix B). The
abbreviation LCA will be used for “locally compact abelian.”

1.1. Haar Measure and Convolution

1.1.1. On every LCA group G there exists a non-negative regular
measure m (see Appendix E), the so-called Haar measure of G,
which is not identically 0 and which is translation-invariant. That
is to say,

(1) m(E + z) = m(E)

for every z ¢ G and every Borel set E in G.

For the construction of such a measure, we refer to any of the
following standard treatises: Halmos [1], Loomis [1], Montgo-
mery and Zippin [1], and Weil {1]. The idea of the proof is to
construct a positive translation-invariant linear functional T on
C.(G), the space of all continuous complex functions on G with
compact support. This means that Tf =2 0 if f = 0 and that
T(f,) = T}, where f, is the translate of f defined by

(2) ) =1y—=2) ([H<GC).

As soon as this is done, the Riesz representation theorem shows
that there is a measure m with the required properties, such that
1
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(3) Tf= [ tdm (< C.(G)).

1.1.2. If V is a non-empty open subset of G, then m(V) > 0.
For if m(V) = 0 and K is compact, finitely many translates of V'
cover K, and hence m(K) = 0. The regularity of m then implies
that m(E) = 0 for all Borel sets E in G, a contradiction.

1.1.3. We have spoken of the Haar measure of G. This is justi-
fied by the following uniqueness theorem:
If m and m' are two Haar measures on G, then m’ = Im, where 1

is a positive constant.

Proof: Fix ge C.(G) so that fc gdm = 1. Define 1 by
[o&(—z)dm (@) = 2.
For any feC,(G) we then have

[ tdm = [ e@)am@y) [ f@)dm (@)
= [ eWm(y) [ I + y)im' @)
= [ dm' () [ e@)f( + y)am(y)
= [,am' @) [ (s — D) W)am(y)
—J/(ydm(yf (y — x)dm’(x -i.ffdm

Hence m’ = Am. Note that the use of Fubini’'s theorem was legi-
timate in the preceding calculation, since theintegrandsg(y)f(z+y)
and gy — z)f(y) are in C (G X G).

Thus Haar measure is unique, up to a multiplicative positive
constant. If G is compact, it is customary to normalize m so that
m(G) = 1. If G is discrete, any set consisting of a single point is
assigned the measure 1. These requirements are of course contra-
dictory if G is a finite group, but this will cause us no difficulty.

Having established the uniqueness of 7, we shall now change our
notation, and write [ f(z)dz in place of ¢ fdm. Thus dx, dy, . . .
will always denote integration with respect to Haar measure.
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1.1.4. For any Borel set E in G, m(— E) = m(E). For if we
set m'(E) = m(— E), m’ is 2 Haar measure on G, and so there is
a constant 4 such that m(— E) = im(E) for all Borel sets E.
Taking E so that — E = E, we see that 4 = 1.

1.1.5. Translation in L?(G). If Gisa LCA groupand 1 <
< oo, we shall write L?(G) in place of L?(m) (see Appendix E7).
It is clear that the L?-norms are translation invariant, i.e., that

(1) Wall, =1ifll,  (zeG),
where, we recall, f, is the translate of / defined by
(2) ) =fly—z) (yeG).
THEOREM. Suppose 1 < p < o and feL?(G). The map
3) x>,

s a uniformly comtinuous map of G into L?(G).

Proof: Let ¢ > 0 be given. Since C,(G) is dense in L?(G) (Appen-
dix E8) there exists g € C.(G), with compact support K, such that
lle — fll, < ¢/3, and the uniform continuity of g (Appendix B9)
implies that there is a neighborhood V of 0 in G such that

@ llg — galloo <3 m(K)I

for all zeV. Hence ||g — g,ll, < ¢/3, and so

H, - f:c”p -S— “f - g”p + Hg - gz“p + ”gz - fz”v <e

ifzel. Fina‘uy’ f: - fv = (f - fv—z)z: so that H/z - /v“’ <e if
y —z eV, and the proof is complete.

Note that the same theorem (with the same proof) is true with
Co(G) in place of L?(G), but that it is false for L*(G), unless G
is discrete.

1.1.6. Convolutions. For any pair of Borel functions f and g
on the LCA group G we define their convolution f* g by the
formula

() (t* &) (@) = [t — 9)e(y)dy
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provided that

(2) [t — ve@)ldy < oo.
Note that the integral (1) can also be written in the form
(3) [shi@e)dy

so that f * g may be regarded as a limit of linear combinations of
translates of f; this statement may be made precise, but we assign
it only heuristic value at present. (See Theorem 7.1.2.)

THEOREM. (a) If (2) holds for some z e G, then (f*g)(x) =
g* Nz

(b) It f e LN(G) and g € L™(G), then | * g is bounded and uniformly
continuous.

(c) If f and g are in C (G), with compact supports A and B, then
the support of f» g lies in A + B, so that { * g e C (G).

@ Ifl<p<oo,lfp+1lig=1,feL?G), and g e LYG), then
1+ g e Co(G).

(e) If f and g are in LX(G), then (2) holds for almost all z € G,
f* g e L\(G), and the inequality

[1f = glly = HAlallglh
holds.
() If f. g, h are in LY(G), then (fxg)*xh=f* (g*h).
Proof: Replacing y by ¥ + zin (1) and applying 1.1.4, we obtain
(f+ @) = [ H(— n)el+2)dy = [ t@)g(— y+=)dy= (g * N(a).

and (a) is proved.
Under the hypotheses of (b), it is clear that

[+ g) @) = lifilliglle  (z€G)

so that /* g is bounded. For 2z € G, z ¢ G, we have

1+ 9)@) — (7% )@ < [ IHz — 9) — F(z — 9)lle()ldy
g ”f—z ’—f—z”l”g”m
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Theorem 1.1.5 shows that the last expression can be made arbi-
trarily small by restricting 2 — z to lie in a suitably chosen neigh-
borhood of 0 and (b) follows.

If f vanishes outside 4 and g vanishes outside B, then f(z—y)g(y)
=0 unless ye B and = — ye A4, ie., unless x¢ A + B. Thus
/ * g vanishes outside 4 + B, and (c) is proved.

To prove (d), choose sequences {f,} and {g,} in C,(G) such that
I/fa — fll, —~ 0 and ||g, — gl], = 0 as  — co. Hoélder’s inequality
shows that f, * g, — f * g uniformly. By (c), f, * g, € C.(G). Hence
f*geCo(G), and (d) follows.

The proof of (e) will depend on Fubini’s theorem, and we first
have to show that the integrand in (1) is a Borel function on
G X G. Fix an open set V in the plane, put E = f1(V), E' =
E X G,andlet E” = {(z,y) : — y e« E}. Then E’ is a Borel set
in G X G, and since the homeomorphism of G X G onto itself
which carries (z, ) to (x 4 ¥, y) maps E’ onto E”, E” is also a
Borel set. Since f(x — y) e V if and only if (z, y) e E”, we see that
f(x — y) is a Borel function on G X G, and so is the product

He — y)ely)-
By Fubini’'s theorem,

[oJ ot — v)e)ldzdy = IALlgll,-

Setting ¢(z) = [¢ If(x — y)g(y)ldy, it follows that ¢ e L1(G). In
particular, ¢(x) < oo for almost all z, and so (f * g)(z) exists for
almost all . Finally, |(f#* g)(x)| = é(z), and the proof of (e) is
complete.

The proof of (f) is also an application of Fubini’s theorem, justi-
fied by (e) for almost all 2:

(/ * (g h))(x) = fcf(a: —z)(g*h) (z)dz
= u J@& — 2)8(z — y)h(y)dy dz
= [.[te — 2 — yghiy)dy dz

= [,(F*g) & — 9h@)dy = ((f» &) * 4) (2).
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1.1.7. THEOREM. For any LCA group G, L1(G) is a commutative
Banach algebra, if multiplication is defined by convolution. If G 1s
discrete, L1(G) has a unit.

Proof: The first statement follows from parts (e), (f), and (a) of
Theorem 1.1.6, since the distributive law holds: f* (¢ + 4) =

fxg+f*h
If G is discrete and the Haar measure is normalized as indicated

in Section 1.1.3, then
(f* 8)(=) ='§Gf(x - v)ey),

and if ¢(0) = 1 but e(x) = 0 for all z = 0, then e e L'(G) and
f*e={f Thus e is the unit of L}(G).

1.1.8. If G is not discrete, then L1(G) has no unit (see Section
1.7.3), but approxzimate units are always available.

THEOREM. Given f € L1(G) and ¢ > O, there exisis a neighborhood
V of 0 tn G with the following property: if w s a non-negative Borel
function which vanishes outside V, and if [qu(x)dz =1, then

If —Frujl, <e

Proof: By Theorem 1.1.5, we can choose V so that |[f — f,]l; < ¢
for all ye V. If u satisfies the hypotheses, we have

(f = w) (@) — {@) = [ [z — y) — f(@) uly)dy
so that
lif ¢ — fil, < [, lu@)ldy [ 1@ — 9) — Ha)ld=
= [, IIf — Hllw(y)dy < .

1.2. The Dual Group and the Fourier Transform

1.2.1. Characters. A complex function y on a LCA group G is
called a character of G if |y(z)| = 1 for all z € G and if the functional
equation

(1) v+ y) =r@rl (@, yeG)
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is satisfied. The set of all continuous characters of G forms a group
T, the dual group of G, if addition is defined by
(2) (1 + 7)) = 1 (®@)72(2) @ eG; y1,y2e).

Throughout this book, the letter I" will denote the dual group of

the LCA group G.
In view of the duality between G and I" which will be established
in Section 1.7, it is customary to write

(3) (@, )
in place of y(x). With this notation, (1) and (2) become

4 (+y7) =207 and @ 9 + ) = @ n)E 7.
It follows immediately that

(5) (0,y)=(x,0)=1 (xeG,yel)
and
(6) (—z,7)=(z, —y) = (@)= ()

We shall presently endow I' with a topology with respect to
which I' will itself be a LCA group. But first we identify I" with
the maximal ideal space of L1(G) (Appendix D).

1.2.2. THEOREM. If y e I" and if

(1) fo) = [f@ (=2 7)dz  (feL}(G)),

then the map | — f(y) is a complex homomorphism of L\(G), and is
not identically 0. Conversely, every non-zero complex homomorphism
of LY(G) is obtained in this way, and distinct characters induce distinct

homomorphisms.
Proof: Suppose f, g e L1(G), and k = f* g. Then

Bo) = [, x 0 @) (— 2. y)de = [ (— = y)az [ 1z — yew)dy
= [,e®)(~ 9. 7)dy [ fz — 9)(— = + 9, 7)dz = £0)f ().
Thus the map f — f(y) is multiplicative on the Banach algebra
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L1(G), and since it is clearly linear, it is a homomorphism. Since
(—z9) =1, f(») # 0 for some fe LY(G).

For the converse, suppose % is a complex homomorphism of
LY(G), A # 0. Then % is a bounded linear functional of norm 1
(Appendix D4), so that

@) Wp = [tz (f<L}G))

for some ¢ € L®(G) with ||¢||, = 1 (Appendix E10). If f and g are
in LY(G), we have

[ A Dew)d@)dy = HhE) = B+ ) = [+ 8 @)
= [,8W)dy [ fle — y)¢(@)dz = [_ew)h(f)dy,
so that

®3) h(f)dly) = h(t)

for almost all y € G. By Theorem 1.1.5 and the continuity of 4, the
right side of (3) is a continuous function on G, for each f e L}(G).
Choosing f so that &(f) = 0, (3) shows that ¢(y) coincides with a
continuous function almost everywhere, and hence we may assume
that ¢ is continuous, without affecting (2). Then (3) holds for
all yeG.

If we replace y by = + y and then f by fz in (3) we obtain

k(H)$(z + y) = k{fors) = R((f),) = R{f)$(y) = R())d
so that

(4) d(x + y) = $(x)é(y) (z, y e G).

Since [¢(x)| < 1 for all # and since (4) implies that ¢ (—z) = ¢(x)72,
it follows that |#(x)] = 1. Hence ¢ eI

Finally, if f(y,) = f(y,) for all feL(G), (1) implies that
(— =, 1) = (— =z, y,) for almost all z € G, and since y, and y, are
continuous, 1.1.2 shows that the equality holds for all z ¢ G, so
that y, = y,.

1.2.3. The Fourier transform. For all f¢ L}(G), the func-
tion f defined on I’ by
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fo) = fe)(—=z vz  (per)

is called the Fourier transform of f. The set of all functions f SO
obtained will be denoted throughout by A4(I).

By Theorem 1.2.2, f is precisely the Gelfand transform of 7. If
we give I' the weak topology induced by A4 (I') (Appendix Al0),
the basic facts of the Gelfand theory (Appendix D4) show that
A (I') is a separating subalgebra of Cy(I"). We summarize some of
the properties of A (I').

1.2.4. THEOREM. (a) A(I') #s a separating self-adjoint sub-
algebra of Co(I'), so that A(I') is dense in Cy(I'), by the Stone-Weier-
strass theorem.

(b) The Fourier transform of f* g is fg‘

() A(I") is invariant under translation and under multiplication
by (z,v), for any z¢G.

(d) The Fourier transform, considered as a map of L1(G) into
Co(I'), ts norm-decreasing and therefore continuous‘: 1l = 11l

(e) For fe L\G) and y T, (f+7)() = (= »)f(y).

Proof: For fe L'(G), define f by

f@) = f(—=).
The Fourier transform of f is the complex conjugate of £, and (a)
follows; (b) is implicit in Theorem 1.2.2. If y,e I and g(x) =
(z, ¥0)f(x), then g(y) = f(y — 9), so that 4 (') is translation in-
variant. If g = /,, then

£0) = [y — 2)(— v, v)ay
= (—2,9) [}y — 2= — 9, y)dy = (— 2. )f(y)-

This proves (c); (d) and (e) are trivial; (e) allows us to interpret
the Fourier transform as a convolution:

fo) = (O  (FeL'G),yeD).

1.2.5. THEOREM. If G is discrete, I' is compact. If G is compact,
I' is discrete.
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Proof: If G is discrete, then LY(G) has a unit (Theorem 1.1.7)
and its maximal ideal space I'is therefore compact (Appendix D4).

If G is compact and its Haar measure is normalized so that
m(G) = 1, the orthogonality relations

_f1 ify=0
) [ene={ (72

hold. The case y = 0is clear. If y # 0, then (z,, ¥) # 1 for some
xo € G, and

[o@ vz = (70, 9) [ & — %0, Y)Yz = (20, ) [, (. y)dz,

so that (1) is proved. If f(z) = 1 for all z ¢ G, then f ¢ L!(G) since
G is compact, and f(0) = 1, f(y) = 0, if y 3£ 0, by (1). Since fis
continuous, the set consisting of 0 alone is open in I, and so I'is
discrete.

1.2.6. The topology of I'. So far, I' is a group and a locally
compact Hausdorff space. We shall now prove that these two
structures fit together so as to make I'a LCA group. Our proof
depends on an alternative description of the topology of I

THEOREM. (a) (z, y) 7S a continuous function on G X I.
(b) Let K and C be compact subsets of G and I', respectively, let
U, be the set of all complex numbers z with |1 — z| < 7, and put

N(K,r) = {y: (z,y) eU, for all ze K},
N(C,7) = {z: (z,y) €U, for all yeC}.
Then N(K, r) and N (C, r) are open subsets of I" and G, respectively.
(c) The family of all sets N(K, r) and their translates is a base for
the topology of I
(@) I''is @ LCA group.
Proof: Equation (3) of Section 1.2.2, rewritten in the form

(1) fo)e ») =Ff») (®eG, yel)

implies (a), as soon as it is proved that f,(y) is a continuous func-
tion on G x I', for every fe LY(G).
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Fix zy, y,, and £ > 0. There are neighborhoods V of z, and W
of y, such that

(@) fe = folla < & and |f,, () — fo, (o)l <&

for all z eV, Ve W, by Theorem 1.1.5 and the contmmty of fz
Since |f:(}') fz,,(y)l = ”fx - fz ”1’ it follows that lfz(‘y fz.,(‘}’O
<2 ifxeV and ye W, and ( ) is proved.

Choose a compact set K in G, choose » > 0, and fix y, e N (K, 7).
To every z, € K there correspond neighborhoods V of z, and W of
o such that (z, ¥) e U,, if z e V and y ¢ W; this follows from (a).
Since K is compact, finitely many of these sets V cover K, and if
W* is the intersection of the corresponding sets W, then
W* CN(K,r). Since W* is a neighborhood of y,, N(K, 7) is open.

The same proof applies to N(C, r).

To prove (c), assume that V is a neighborhood of y,. We have to
show that y, + N(K,r) CV for some choice of K and ». Take
yo = 0, without loss of generality. The definition of the Gelfand
topology on I" shows that there exist functions f,, . . ., f, ¢ L}(G)
and £ > 0 so that

(3) N & 1f0) —fo < e Cv.
Since C.(G) is dense in L!(G), we may assume that f,,.../,
vanish outside a compact set K in G. If

(4) r < 8/m:=1x 1F:llx
and if y e N(K, ), then

(8) 1i0) —FiO) = [ 1(— 2 9) — UI@)ldz S AlIflL < e

Hence N(K,») CV, and (c) follows.
Given 9, 9" ¢ I' and N(K, r), the obvious relation

(6) ' +N(K,72)] — [y +N(K,7/2)]Cy —y" + N(K,7)

shows, by (b) and (c), that the map (', »"') >y’ — 9" of I'x I'
onto I' is continuous. This completes the theorem.
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1.2.7. ExampLEs. The ‘“‘classical groups” of Fourier analysis
are:

(a) the additive group R of the real numbers, with the natural
topology of the real line;

(b) the additive group of the reals modulo 2z, or, equivalently,
the circle group T, the multiplicative group of all complex numbers
of absolute value 1;

(c) the additive group Z of the integers.

The circle group is of particular importance to us, since charac-
ters are nothing but homomorphisms into 7.

Suppose G = R and fix y ¢ I. Write y(z) instead of (z, ), for
the moment; there exists é > 0 such that

) (@ =a=o0.

The functional equation

@) y+t) =y@E)ly@E) (=.teR)

then implies that

B)  a-r@) =@ [yt = [ v +nat = [y@a.

Since y is continuous, the last expression is differentiable, and so y
has a continuous derivative y’. Differentiate (2) with respect to ¢
and then set ¢ = 0. The result is the differential equation

(4) Y'ie) =Ady@), 4=y(0).
Since y(0) = 1 and since y is bounded, (4) implies that
(5) y(@) = ™

for some y ¢ R. The correspondence y «» y is an isomorphism be-
tween I" and R. Thus: The dual group of R is R.

We still have to check that the natural topology of R is the same
as the Gelfand topology of the dual group. For » > 0 and n» =
1,2,3,... let V(n, 7) be the set of all ¥ such that |1 — ¢*¥| < rif
|z| = n. By Theorem 1.2.6, the sets ¥ (n, ) form a neighborhood
base at 0 with respect to the Gelfand topology. But y e ¥V (n, r) if
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and only if |y| < (2/n) arcsin (r/2). Thus the two topologies
coincide.

If G = T, the same computation as above shows that every
character of T must be of the form (5), but now we also must have
y(x + 2n) = y(x). Hence y must be an integer, and I is identified
as the discrete group Z (compare Theorem 1.2.5).

If G =Z and y e I', then (1, y) = ¢** for some real «, and it
follows that (n, y) = ¢i**. The correspondence y «» ¢** is an iso-
morphism between I" and T, and we conclude that T is the dual
group of Z (the two topologies coincide, as in the case G = R).

The Fourier transforms, in these three cases, have the following
forms:

oo

R:  flo) =" fe)erdz (yeR),

—00

G

G=T: f(n) = % f ’ f(e®)e—in?dp (neZ),

G

zi fen=3 fme (¢ ¢ 7).

n=—00

1.3. Fourier-Stieltjes Transforms

1.3.1. Convolutions of measures. Suppose G is a LCA group,
and u, 4 are members of M (G) (Appendix E1), i.e., bounded regular
complex valued measures on G. Let 4 X 4 be their product meas-
ure on the product space G2 = G X G, and associate with each
Borel set E in G the set

(1) Ey={lz,y) eG*z 4 ye E}.

Then E, is a Borel set in G2 (see the proof of Theorem 1.1.6(d))
and we define u * 4 by

(2) (u* 2)(E) = (4 X 2)(E)-
The set function g * 4 so defined is called the convolution of yu and A.

1.3.2. THEOREM. (a) If pe M(G) and i ¢ M(G), then
uxieM(G).
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(b) Convolution is commutative and associative.
(©) llw* 2l = llell - Al

COROLLARY. M (G) is a commutative Banach algebra with unit,
if multiplication is defined by convolution.

Proof: The Jordan decomposition theorem shows that in the
proof of (a) it is enough to consider non-negative measures only.
Since u X 2 is a measure on G2, it is clear that (u* A)(E) =
> (u* 2)(E,) if E is the union of the disjoint Borel sets E; ( =
1,2,38,...). If Eisa Borel setin G and if ¢ > 0, the regularity of
# X A shows that there is a compact set K C E, such that

(v X AYK) > (u X D)(Eg) — &

If C is the image of K under the map (z,y) >z + y, thenCisa
compact subset of E, K C C,, and hence

(s D)(C) = (1 X D(Ca) Z (u X N(K) > (u* ) (E) —&.

This establishes one half of the requirement that u * 1 be regular.
The other half follows by complementation, and (a) is proved.
(This argument applies to more general situations; see Stromberg
[1.)

Since G is commutative, the condition z -4 y € E is the same as
the condition ¥y + z e E, and hence u* 4 =1 =* 4.

The simplest way to prove associativity is to extend the defini-

tion of convolution to the case of # measures g, .. ., u, ¢ M(G):
with each Borel set E in G associate the set

(1) E,={(x,....2,)eG": 2, + ...+ 2,¢ E},

and put

2)  (a*pe*. 2 p)(E) = (X e X o X ) (Em),

where the measure on the right is the ordinary product measure
on the product space G*. Associativity now follows from Fubini’s
theorem, and (b) is proved.

Let g be the characteristic function of the Borel set E in G.
The definition of (u * A)(E) is equivalent to the equation
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(3) [oredle )= [ [ xz& + y)au@)dry).

Hence if f is a simple function (a finite linear combination of
characteristic functions of Borel sets), we have

4) [ 1l 2 = [ [ 1@+ )du)dry),

and since every bounded Borel function is the uniform limit of a
sequence of simple functions, (4) holds for every bounded Borel
function f. (One could use (4) as the definition of u*4.) If
f@) <1 for all z¢G, then |fq /@ -+ y)du()] < |lul] for all
9 € G, and hence the right side of (4) does not exceed ||| - ||4]|-
This proves’ part (c) of the theorem.

As to the Corollary, it only remains to be shown that M (G) has a
unit. Let §, be the unit mass concentrated at the point z = 0;
ie., 8p(E) = 1if 0 € E and §,(E) = 0 otherwise. Then y * §; = u
for all u e M(G), and the proof is complete.

1.3.3. Fourier-Stieltjes transforms. If u ¢ M(G), the func-
tion z defined on I' by

) A0) = [, (—=v)du@) (el

is called the Fourier-Stieltjes transform of u. The set of all such
functions z will be denoted by B(I').

TueoreM. (a) Each u € B(I') is bounded and uniformly contin-
%OUS.

(b) Ifo=p*A thena=p-3. Hencethe map u— p(y) is, for
each y e I', a comblex homomorphism of M(G).

(c) B(TI') is invariant under translation, under muliiplication by
(, y) for any x € G, and under complex conjugation.

Proof: The definition of ﬁ shows immediately that |z ) = liull
for all y e I. Given 8 > 0, the regularity of |u| shows that there is
a compact set K in G such that |y} (K') < §, where K’ is the com-
plement of K. For any y,, y,¢ I" we have

) — Al < [ 1 — (@ ya — va)ldinl@) = [+ |-
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If y; — y, e N(K, 8), as defined in Theorem 1.2.6, the above inte-
grand is less than 8 for z € K, hence [ does not exceed d||u||. The
second integral is less than 2[u|(K’) < 26. Hence z is uniformly
continuous.

Suppose ¢ = u * . Formula (4) in the proof of Theorem 1.3.2
then implies that

5) = [o(— 2 A1) =fj (— 2 — ¥, 7)du(@)dAy)
= [, (= 2. 9)dp@ [, (— 9. »aE) = 20)10),

and (b) is proved.

The proof of (c) is quite similar to that of the analogous part of
Theorem 1.2.4. If di(z) = (z, y,)du(z), then i(y) = aly — y,)-
If A(E) = u(E — =), then i(y) = =z, »)iely). T 3(E) = u(— E),
then the Fourier-Stieltjes transform of g is the complex conjugate
of 4.

1.3.4. L(G) as a subalgebra of M (G). Every feL'(G) gen-
erates a measure yu, € M(G), defined by

M #(E) = [_f(x)dz

and which is absolutely continuous with respect to the Haar meas-
ure of G. Conversely, the Radon-Nikodym theorem (Appendix
E9) shows that every absolutely continuous u € M(G) is y, for
some f e L1(G). Since we identify functions in L1(G) which differ
only on a set of Haar measure 0, the correspondence between f and
4, is one-to-one, and we may therefore regard L1(G) as a subset of
M(G). 1t is easily seen that f(y) = i, (y) for all y ¢ I'" and that
liflly = lluyll. Hence we may use f in place of u, without causing
confusion. For instance, we may write f* o if feL'(G) and
o e M(G), instead of u, * o.

1.3.5. Let M _(G) and M, (G) denote the sets of all continuous
and discrete members of M(G), respectively (Appendix E6).

THEOREM. (a) LY(G) and M (G) are closed ideals in M (G).
(b) M4(G) is a closed subalgebra of M (G).
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Proof: If we apply the Fubini theorem to the definition of u * 4,
we obtain, for any Borel set E in G,

(1) (u % D) (E) = [ u(E — 9)da(y)-

If u is absolutely continuous and m(E) = 0, then m(E — y) = 0
for all y, hence u(E — y) = 0, and so (u * 4)(E) = 0 for every
4 € M(G). This says that u * 4 is absolutely continuous, and hence
LY(G) is an ideal in M(G). Since [|fl]; = ||u,|| and since L(G) is
complete, L1(G) is closed in M (G). If E is countable, u, e M (G),
and g — p,|| = 0, then

W(E)] = [(# — ) (E)] S | — wa(E) < ||l — pall,

so that u(E) = 0 and u e M.(G). Thus M_(G) is closed, and part
(a) is proved. Part (b) follows from the observation that the con-
volution of two point-measures is a point-measure.

1.3.6. A uniqueness theorem. We shall see later that u de-
termines x, i.e. if ¢ M(G) and z = 0, then u = 0. At present,
we can prove this for the inverse transform:

THEOREM. If ue M(I') and if

fr(x, Y)duly) = 0

for every x € G, then u = 0.
Proof: For every fe LY{G),

f,f(y)du(y) = f,fcf(x)(— z, y)dzdu(y)

= [ f@)z [ (— = y)duly) = 0.
Since A(I') is dense in Cy(I") {(Theorem 1.2.4), it follows that
[rédu = 0 for every ¢ e Co(I'), and hence p = 0.
1.4. Positive-Definite Functions
1.4.1. A function ¢, defined on G, is said to be positive-definite if
the inequality

W 3 cinblEn —z) =0

n, m=l
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holds for every choice of 2,, . . ., zy in G and for every choice of
complex numbers ¢, ..., Cy.
If ¢ is positive-definite, the following three relations hold:

2) $(— z) = $(z);
(3) I6()| < $(0);

(4) [$(z) — (¥)I* = 24(0) Re [$(0) — d(z — ¥)].

We conclude from (3) that ¢(0) = 0 and that ¢ is bounded; (4)
implies that ¢ is uniformly continuous if ¢ is continuous at 0.

To prove these relations, take N =2 in (1); z, = 0, 2, = «;
¢, =1, ¢, =c. This gives

5) {1 + [c3$(0) + ch(@) + 2$(—2) = 0.

Taking ¢ = 1, we see that ¢(z) + ¢(— z) is real; ¢ = 7 shows that
i(¢(x) — #(— z)) is real. Hence (2) holds.

If ¢ is chosen so that cé(z) = —|p(z)|, (5) implies (3). To prove
(4), take N=3in (1); 2, =0, 2, =2, 23=19; ¢; = 1, 4 real,

. _ 8@ — ()
o) —ely)
and ¢; = — ¢,. Then (1) simplifies to

(6) $(0)(1 + 2) + 2 (2) — $(y)| — 22 Re gz — y) = 0.
The discriminant of the quadratic polynomial (6) in A can therefore
not be positive, and this gives (4).

1.4.2. Examples of positive-definite functions. (a) Suppose
feL?(G) and ¢ = f xf. Then $ is positive-definite and continuous

on G.
The convolution of any two functions in L%(G) is continuous

(Theorem 1.1.6(d)) and
3 nCnb @ — Tn) = 3 Cabm | o} En — T — 9) F(— y) dy
=3 ot [ @0 — PEm — vy = [ |5 c0t(@, — y)I%dy 20.
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(b) Every character is positive-definite, hence so is every finite
linear combination of characters if the coefficients are positive.
More generally, if ue M(I"), if u = 0, and if

(1) $@ = [ @) (@<0),

then ¢ is continuous and positive definite.
Indeed, (1) shows that '

ZC,,-C-;¢<Z,, - xm) =f z C,,E,_,:(Zn — T y)d,u(y)

- frl 3 calom 7)) 20,

so that ¢ is positive-definite. Since the sets N(C, ) of Theorem
1.2.6 are open in G, our proof of the continuity of u (Theorem 1.3.3)
shows equally well that ¢ is continuous if ¢ is defined by (1).

1.4.3. The previous example (1.4.2(b)) establishes the trivial
half of the following important characterization of positive-def-
inite functions:

BOCHNER’S THEOREM. A continuous function ¢ on G is positive-
definite if and only if there is a non-negative measure u € M (I') such
that

(1) $@) = | (@ y)duly) (@eG).

For G = Z, this is due to Herglotz [1]; for G = R, to Bochner
{13; for the general case, to Weil {1]. Bochner was the first to rec-
ognize the key role which this result plays in harmonic analysis.
By 1.3.6, the above representation (1) is unique.

Proof: Suppose ¢ is continuous and positive-definite. By 1.4.1(3)
we may assume, without loss of generality, that ¢(0) = 1.

If f € C.(G) and has support K, then f(z)f(y)é (* — y) is uniform-
ly continuous on K X K, and K can be partitioned into disjoint
sets E,, ..., E, such that the sum

@ 3 1@ TE)be — )mEmE,) (@< E)

3,5=1
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differs from the integral
(3) [oJt@F Wb — y)dz dy

by as little as we please. Since ¢ is positive-definite, (2) is always
non-negative, and hence so is (3). Since C,(G) is dense in L1(G), it
follows that (3) 7s mon-negative for every fe L'(G).

Define a functional 7, by

(4) To(f) = [ f@)$@)dz  (f<L3(G))
and put

(5) (18] =To(f*8)  (f.g<L*(G)).
We recall that §(z) = g(— z), so that

() it 61 = [ [ H@eWi¢e — ydzay.

Hence [/, g] is linear in f, [g, f] is the complex conjugate of [f, g],
and [f, f] 2 0. These are just the properties of the Hilbert space
inner product which are needed for the standard proof of the
Schwarz inequality. In our case, the inequality is

(7) I/, g1I* = [, 11lg. g]-

Take for g the characteristic function of a symmetric neighbor-
hood V of 0, divided by m (V). By (6),

6] = Tol) = [ 1e) =55 thle — ) — dlallay do

and
g6 =1 = | [ e —9) —1eay

Since ¢ is uniformly continuous, these expressions can be made
arbitrarily small by taking V small enough, and then (7) yields the
inequality

(8) ITs()2 = U Al =Telf«f)  (f<L}G))
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Put A=f+f and A"=h"1xh (n=2,3,4,...). Since
ll$lle = 1, wehave |[T4l| = 1, and if we apply (8) with &, A%, A%, . ..
in place of f, we obtain

IT4()I2 S Tylh) < (T4} < ... S (T, < |1B1F"

As n — o, the last expression converges to the spectral radius of
k, ie. to ||k|le. (See Appendix D 6 and Theorem 1.2.2.) Hence

9) T, S Wbl = lIFI1Z, or 1Ty flle (F e LHG)).

This means that T, may be regarded as a bounded linear func-
tional on A{I'), with respect to the supremum norm. (We have
not yet proved that f, = f, implies f, = f,, but (9) shows that
fi =f, implies T,(f,) = T4(f,), and this is sufficient.) We can
extend T, to a bounded linear functional on Cy(I"), preserving its
norm, and the Riesz representation theorem then implies that
there is a g e M(I'), with ||g]| =< 1, such that

(10)  To() = [ f(— »)auty) = [ 1@z [ (2 v)au ().

Comparison of (10} and (4) shows that (1) holds for almost all
z € G, hence for all z, since both sides of (1) are continuous.
Finally, taking z = 0 in (1), we have

1=¢(0) = [ duly) = p(I) < llpll = 1;

hence u(I') = ||g||, and this implies that x = 0.

1.5. The Inversion Theorem
1.5.1. We let B(G) be the set of all functions f on G which are

representable in the form

@ He) = [ @ vdue) @eG6).

Bochner’s theorem implies, in combination with the Jordan de-
composition theorem, that B(G) is exactly theset of all finite linear
combinations of continuous positive-definite functions on G.



22 FOURIER ANALYSIS ON GROUPS

THEOREM. (a) If fe LY (G) n B(G), then f e LV(I).
(b) If the Haar measure of G is fized, the Haar measure of I"
can be so normalized that the inversion formula

(2) @) =[.fo)endy (@6

is valid for every fe L}(G) n B(G).

Proof: Let us write B! in place of L}(G) n B(G), and if u is
associated with fasin (1) above, let us write u = y,. (This notation
has nothing to do with our earlier use of the symbol g, in Section
1.3.4.) If fe B! and % ¢ L'(G), we then have

(3) (% 1)(0) = [ h(— 2)f(@)dz = [ h(y)dp(v),
and if g is also in B!, (3) implies that

[ Hgduy = ((h % 8) x1)(0) = ((k x 1) + €)(0) = [ Hfap,.
Since A(I') is dense in Cy(I'), it follows that
(4) gduy = fdp,.  (f, g€ B).

We shall now define a positive linear functional T on C (I).
Suppose K is the support of some y € C.(I"). To every y, ¢ K there
corresponds a function u € C (G) with 4(y,) # 0, since C (G) is
dense in L1(G). The Fourier transform of % * 4 is positive at y,,
and is nowhere negative. Since K is compact, there is a finite num-
ber of such functions, say #,,..., %, such that the function
€=U %% + ...+ u,x%, has § > 0 on K. Since geC (G),
1.4.2(a) shows that ge Bl. Put

(5) Ty = |, (vlé)du,

Note that Ty is well defined: if g were replaced by another
function f in B! whose Fourier transform has no zero on K, the
value of Ty would not be changed, since (4) implies that

(6) | Gl = | e
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It is clear that T is linear. The function g in (5) is positive-def-
inite, hence u, = 0, and it follows that Ty = 0 if vy = 0. There
exists y and u, such that [ pdu, # 0, and if g is as in (5), we have

(7) T(wf) = (. wflé)du, = [ vdu, 0.

Thus T # 0.
Fix p € C.(I') and y, € I". Construct g as above, so that § > O on

K and also on K + y,. Setting f(z) = (— =, yo)g{x), we have

F) =8 + »o) and w,(E) = p,(E — v5). I po(y) = vy — 7o),
then

Tyo = [ ol — 7o) EG)1ame(y) = [ w@)f ()1, () = Ty.
Thus T is translation-invariant, and it follows that
(®) Ty = [ vy  (yeCoD)),

where dy denotes a Haar measure on I
If now fe B! and v e C.(I'), (7) and (8) show that

(9) [ viu, = Twf) = [ vy,
and since (9) holds for every y e C.(I'), we conclude that
(10) fay =du,  (feBY.

Since u, is a finite measure, it follows that fe LY(I"), and substi-
tution of (10) into (1) gives the inversion formula (2).
This completes the proof.

1.5.2. Consequences of the inversion theorem. Let V' be a
neighborhood of 0 in G, choose a compact neighborhood W of 0
such that W — W CV, let f be the characteristic function of W,
divided by m(W)}, and put g = f = f. Then g is continuous, posi-
tive-definite (by 1.4.2(a)), and 0 outside W — W. The inversion
theorem therefore applies to g. Hence § = |f|2 = 0,

() [ &0)dy =g(0) =1,
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and it follows that there is a compact set C in I" such that

(2) fcé(y)dy > ;
If x« N(C, 1/3) (in the notation of Theorem 1.2.6), we write
(3) @) = ([, + [,) &0 @ ndy;

for yeC, |1 — (z, )] < 1/3, hence Re (z, y) > 2/3, and the in-
tegral over C is at least 2/3 [ £ > 4/9. Since |f¢.| < 1/3, we see
that g(x) > 1/9 if z e N(C, 1/3), and our conclusion is: N(C, 1/3)
cvV.

Since the sets N(C, 7) are open in G (Theorem 1.2.6(b)), we now
have the following analogue of 1.2.6(c):

The family of all sets N(C, r) and their translates is a base for the
topology of G.

If 5 € G, 2z, # 0, we can choose V in the preceding paragraph so
that z, ¢V, and we conclude that (z,, y) % 1 for some ye[I.
Hence I' separates points on G: If z, +# x,, then (z, — z,,y) # 1
for some y, and so (z,, y) # (x,, ¥).

Any function of the form

i(@) =§1 4t y)  (@eG)

is called a frigonometric polynomial on G. The set of all trigono-
metric polynomials on G is an algebra over the complex field, with
respect to pointwise multiplication, and is closed under complex
conjugation. Since I" separates points on G, the Stone-Weierstrass
theorem yields the following result:

If G is compact, the trigonometric polynomials on G form a dense
subalgebra of C(G).

It follows that the trigonometric polynomials are also dense in
L?(G),1 £ p < oo, if G is compact (see Appendix ES8).

1.5.3. Normalization of Haar measure. If the Haar measure
of G is given, the inversion theorem singles out a specific Haar
measure of I', adjusted so that the inversion formula holds. In



BAS!C THEOREMS OF FOURIER ANALYSIS 25

Section 1.1.3 we introduced standard normalizations for the Haar
measures of compact and discrete groups. Since I' is compact
[discrete] if G is discrete {compact] (Theorem 1.2.5) the question
arises whether these normalizations are ‘‘correct,” i.e., whether
the inversion formula holds for them.

To prove that this is so, it suffices to consider just one function
{(not identically 0) and its Fourier transform.

If G is compact and m(G) = 1, take f(z) = 1. Then (see 1.2.5)
f(0) =1 and f(y) = 01if y £ 0. If m is the Haar measure of I,
adjusted in accordance with the inversion theorem, then

(1) 1=1(0) = [ fly)dy = mr ({0}),

and so mp assigns measure 1 to each point of I'.
If G is discrete and each point has measure 1, take f(0) = 1,
flz) =0 if z £ 0. Then f(y) =1, and

(@) m(I) = [, fw)dy = 1(0) =1

if the inversion theorem holds.

To consider a non-trivial case, take G = R (see 1.2.7) so that
I' = R, and let adx, fdt be Haar measures on G and I'; here dx
and 4t denote ordinary Lebesgue measure on the real line. Since
e > 0, the easily verified formula

2 et )
(3) P__ f e M et Bt
14 22 oo
shows that (1 4+ 2?)! is positive-definite, and the uniqueness of
the inverse transform, combined with the inversion theorem,
shows that

00 e—izt
(4) M — 2aﬁf_w e dz.

With ¢ = 0, (4) becomes

©  dz
{5) 1= 2aLf3J~ g = 2naf,
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and this is the normalization condition which « and g must satisfy.
Two of the possible choices are frequently used: « = 1/2%, § = 1
or a = f§ == (2r)7112,
From now on, it will allways be tacitly assumed that the Haar
measures of G and I are so adjusted that the inversion theorem holds.

1.6. The Plancherel Theorem

1.6.1. THEOREM. The Fourier transform, restricted to(L'nL2?)(G),
is an tsometry (with respect to the L2-norms) onto a dense linear sub-
space of L*I"). Hence it may be extended, in a unigue manner, to an
isometry of L*(G) onto L23(I).

Proof: If f € (L* n L?)(G) and g = f = f, then g ¢ L!(G), g is con-
tinuous and positive definite, |§] = |f|2, and the inversion theorem
gives

[olt@)rdz = [_f@)f(— 2)dz = g(0) = [ )y = [ 1f )iy,

or {|fila = IIfls- )

Let @ be the set of all fe A(I") with fe (L' n L2)(G). Since
(L* n L2)(G) is translation invariant, @ is invariant under multi-
plication by (z, y), for any z € G. Thus if y ¢ L%(I') and [ ¢pdy
= 0 for all ¢ ¢ @, then also

[ 30090V @ v)dy =0 (3¢, 2¢G).

Since ¢ € L1(I"), the uniqueness theorem 1.3.6 implies that ¢ = 0
almost everywhere, for every ¢ ¢ @. But (L! n L2?)(G) is invariant
under multiplication by (z, y), for any y € I', and so @ is translation
invariant. Hence to every y, there corresponds a ¢ ¢ @ which is
different from 0 in a neighborhood of y,. It follows that » == 0
almost everywhere. Thus 0 is the only element of L#(I") which is
orthogonal to @, and hence @ is dense in L?(I") (see Appendix C12).

1.6.2. The above extension of the Fourier transform to L3(G)
is sometimes referred to as the Plancherel transform; the symbol
f will be used in this context as well. An important part of the
theorem is the assertion that each function in L2(I") is the Plan-
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cherel transform of some f € L2(G). For compact G this is a special
case of the Riesz-Fischer theorem about orthogonal systems of
functions (Zygmund [1], vol. I, p. 127).

If f and g are in L2(G), the identity

48 = If + glt — If — gI* + 5If + gl — 4lf — vgl®,

combined with the isometric character of the Plancherel transform,
yields the Parseval formula

[t @e@dz = [ fn)éway.

1.6.3. THEOREM. A(I") consists precisely of the convolutions
F, = F,, with F, and F, in L%*(I).

Proof: Suppose f, g e L3(G). Replacing g by g, the Parseval
formula assumes the form

(1) | f@e@)dz = [ fw)e(— »)ay,
and if we replace g(z) by (— z, y,)g(x) in (1), we obtain

@) [ 1@)e@) (= = vdz = [ f)elro — »)dy = (F* &) (o).

On the one hand, every 4 e L'(G) is a product & = fg, with
f. g € L3(G), and (2) shows that & = f x g, with f, § € L2(I"), by the
Plancherel theorem. On the other hand, we can start with
f. & ¢ L¥(I"), and see from (2) that fx g e A(I).

1.6.4. THEOREM. If E is a non-empty open set in I', there exists
feA), f #0, such that f(y) = O outside E.

Proof: Let K be a compact subset of E, with m(K) > 0,let V be
a compact neighborhood of 0 such that K + VCE, and set
f=4gxh, where § and % are the characteristic functions of K
and V, respectively. Then f(y) = 0 outside K + V, fe A(I') by
Theorem 1.6.3, and [,f(y)dy = m(K)m(V) > 0, so that f is not
identically 0.

1.7. The Pontryagin Duality Theorem
1.7.1. If G is a LCA group, we have seen (Theorem 1.2.6) that
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its dual I'is also a LCA group. Hence I" has a dual group, say f‘,
and everything we have proved so far for the ordered pair (G, I')
holds equally well for the pair (I, f"). The value of a character
Je T at the point y e I' will be written (y, #). (This notation is
temporary, and will be abandoned as soon as we prove that
I'=6)

By Theorem 1.2.6(a) every z ¢ G may be regarded as a continu-

ous character on I', and thus there is a natural map « of G into f‘
defined by

(1) @ 7) = (v, a(z)) (xeG, yel).

1.7.2. THEOREM. The above map o is an isomorphism and a
homeomorphism of G onto I

Thus I’ may be identified with G, and a more informal statement
of the result would be:

Every LCA group is the dual group of its dual group.

This is the Pontryagin duality theorem.

Proof: For z,yeG and y e I', we have

(rae+y)=(@+yy) = (7
= (7, a(@)){(7, a(y)) = (¥, a(z) + a(¥)).

Hence a(z 4+ y) = a(x) + «(y), and « is a homomorphism. Since
I separates points on G (Section 1.5.2), « is one-to-one, and so «

is an ismorphism of G into I
The rest of the proof may be broken into three steps:

(a) a is a homeomorphism of G into I

(b) a(G) is closed in I

(¢) «(G) is dense in I

Choose a compact set C in I', choose » > 0, and put

1 V={zeG:|1 — (z,y)] <7 for all yeC},
W W= (el |1 — (y,9)| <7 for all yeC}.

By 1.5.2 and 1.2.6{(c), these sets ¥V form a neignborhood base at 0
in G, and the sets W form a neighborhood base at 0 in I The
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definition of « shows that
(2) (V) =W n«(G).

It follows that both « and its inverse are continuous at 0, and since
« is an isomorphism, the same result holds, by translaticn, at any
other point of G or of a(G).

This proves step (a), and so «{G) is locally compact, in the
relative topology which «(G) has as a subset ot ol Suppose $o 1s in
the closure of a(G), and let U be a neighborhood of 'yo whose closure
U is compact. Since a(G) is locally compact, a(G) N U is compact,*
and hence closed in I'. But § 7, is in the closure of «(G) n U, and it
follows that 7, € «(G). Thus a(G) is closed, and step (b) is proved.

If 2(G) is not dense in F there is a function F € 4 (]’) which is 0
at every point of «(G) but is not identically 0 (see Theorem 1.6.4).
For some ¢ € L1(I'), we have

&) F()=[ 0 (—ndy (el
Since F(a(z)) = 0 for all z ¢ G, it follows that

[0) (=2 y)dy = [ $0)—r.a@)dy =0  (z¢G)

and so ¢ = 0, by the uniqueness theorem 1.3.6. Hence F = 0, by
(3), and this contradiction proves step (c) and completes the proof.

1.7.3. Some consequences of the duality theorem. The
symmetry between G and I" which is now established shows that
every theorem proved for the ordered pair (G, I') also holds for
(I', G), and this enables us to complete some of the results which
were previously established in provisional form only.

(a) Every compact abelian group is the dual of a discretc abelian
group, and every discrete abelian group is the dual of a compact abelian
group. This follows from Theorem 1.2.5.

(b) If ue M(G) and pi(y) = O for all y € T, then u = 0. This is
the dual of Theorem 1.3.6.

(¢} M(G) and L*(G) are semi-simple Banach algebras. (Sce Ap-
pendix D5). Since the map u — u (y) i a complex homomorphism

* This statement is corrected on page 285.
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of M (G), for each y e I', the semi-simplicity of M (G) follows from
the uniqueness theorem (b). The same uniqueness theorem evi-
dently holds for L}(G), and so L(G) is semi-simple.

(d) If G s not discrete, then LY(G) has no unit. Hence L}(G) =
M (G) if and only if G is discrete.

For if G is not discrete, then I is not compact, by (a), and since
A(I') CCy(I'), A(I') contains no non-zero constants, hence has no
unit. Since 4 (I') is isomorphic. as an algebra, to L*(G), the proof
is complete. ,

() If ue M(G) and p e L\(I'), there exists fe L}G) such that
du(x) = f(x)dz, and

) o) =[ A0y (@eG).

By hypothesis, u ¢ L1{I") n B(I'); hence if { is defined by (1), the
inversion theorem (applied to the pair (I, G) instead of (G, TI')),
shows that fe L!(G) and

@) A) = [ @) (—zy)de  (yeD)

Since z(y) = Je¢ (— =, y)du(z), the uniqueness theorem now im-
plies that du = fdz, and the proof is complete.

1.8. The Bohr Compactification

1.8.1. Suppose I'is the dual of the LCA group G, I'; is the group
I" with the discrete topology, and @ is the dual of I';. Then G is
a compact abelian group which we call the Bokr compactification
of G (Anzai and Kakutani [1]). Let # be the map of G into G
defined by

1) (@ y) = (r.8&)) (xeG yel)

1.8.2. THEOREM. B is a continuous isomorphism of G onto a dense
subgroup B(G) of G.

This theorem allows us to regard G as a dense subgroup of &, so
that @ is indeed a compactification of G. Note, however, that
B(G) is not a locally compact subset of G and that 8 is not a
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homeomorphism, unless G is compact, in which case G = @ and
Ir="r,.

Proof: Since I separates points on G, § is one-to-one, and it is
easy to verify, as in the beginning of the proof of the Pontryagin
duality theorem, that B is an isomorphism.

Let W be a neighborhood of 0 in @. Since a subset of I, is com-
pact if and only if it is finite, Theorem 1.2.6 shows that there exist
Y1, - - - Yo € I' and 7 > 0, such that W contains the set

FeGl — (., 8| <ri=1...,n}
which is a neighborhood of 0 in G. Let
V={xeG |l - (z,9) <7 i=1,...,n}

Then V is a neighborhood of 0 in G, and x € V implies B(x) e W.
Thus § is continuous at 0, and hence at all points of G, by transla-
tion.

Finally, let H be the closure in G of 8(G). If H # G, then G/H
is a non-trivial compact group, and hence there is a character ¢ on
G/H which is not identically 1. The map % — ¢(£ 4+ H) is then
a continuous character on G, not identically 1, which is 1 if % ¢ H.
Consequently there exists y,el, y, # 0, such that (z, y,) =
(70, B(x)) = 1forallz ¢ G. This last equation implies that y, = 0,
and this contradiction completes the proof.

1.8.3. We may interpret the theorem in the following way: G
and I" are given, G is the group of all continuous characters on I,
@ is the group of all characters on I, and the fact that G (or 8(G)) is
dense in G leads to an approximation theorem (Hewitt and
Zuckerman [1]):

THEOREM. Given y,, ...y, eI, given ¢ > 0, and given any
character ¢ on I, there is a continuous character v on I' such that
(1) lp(:) — ¢l <e  (E=1,...,n)

Proof: ¢ € G, and the set of all y ¢ @ satisfying (1) is open in G,
hence intersects 8(G).
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1.8.4. A function f on a LCA group G is almost periodic if and
only if it is a uniform limit of trigonometric polynomials on G.
(This is not the usual definition, but is equivalent to it). The al-
most periodic functions on G are precisely those which have con-
tinuous extensions to &; in other words, they are the restrictions
to G of the continuous functions on G, and so G may also be ob-
tained as the maximal ideal space of the Banach algebra whose
members are the almost periodic functions on G (Loomis [1]).
These relations between almost periodicity and G are the reason for
associating Bohr’s name with G. We shall not use these relations
and omit their proof.

1.9. A Characterization of B(I')

1.9.1. Werecall that B(I') is the set of all functions z on I" which
are Fourier-Stieltjes transforms of measures x ¢ M (G). We norm

B(T') by defining ||| = ||u|-

We already know one characterization of B(I'): ¢ ¢ B(I') if and
only if ¢ is a finite linear combination of continuous positive-defi-
nite functions. It seems difficult to apply this, however, whereas
the following criterion will be very useful to us. It was proved by
Bochner [2] on the real line; an integral analogue is due to Schoen-
berg [1]; for the general case, see Eberlein [1].

THEOREM. Each of the following two statements about a function ¢,
defined on I', implies the other:

(a) ¢ B(I) and |Il| < A.

(b) ¢ is continuous, and

(1) |3 ccblrl < Al
for every trigomometric polynomial f on G, of the form
(2) fz) = Zlce(x, ¥i)-

Proof: If (a) holds, then ¢ = z, lul}<!4, and
B8)  Iedtr) =3¢ [, (— 2 r)du@ = [ (- 2)du).
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Hence (a) implies (b).
To prove the converse, we pass to the Bohr compactification
G of G. In the notation of Section 1.8, the formula

@) 1) = g o w ) (EeG)

extends each trigonometric polynomial f on G to a trigonometric
polynomial on @, and since G is dense in G, the norm ||f]|, is not
altered by this extension. The linear functional T defined on the
space of all trigonometric polynomials f of the form (4) by

(5) Tf =3 ad(v)
thus satisfies the inequality
(6) ITHl = Allflleos

thus T can be extended to a bounded linear functional on C (@), of
norm not exceeding A4, and the Riesz representation theorem im-
plies that there is a measure u ¢ M (G) such that |ju|] < A and

) S bln) = [ H(— 2)du@)

for all f of the form (4). Taking f(Z) = (y, £), for some y e I, we
obtain

(8) $0) =[5 (—y. D)@ (el

To complete the proof, we have to show that u is concentrated on
G (more precisely, on $(G), in the notation of 1.8).

It follows from the Radon-Nikodym theorem (Appendix E9)
that there is a Borel function g on G, ot absolute value 1, such that
gdu = dlu|, and since C(@) is dense in L(Ju|) (Appendix ES8),
there is a sequence of trigonometric polynomials f, on G such that

(©) lim [, If, — gldlul = .

R~ OO

By (8), the transforms
(10) $.0) = [5 (=7, DI @)Ap@) (el



34 FOURIER ANALYSIS ON GROUPS

are finite linear combinations of translates of ¢ and hence are
continuous on I" (not merely on I!). By (9), {¢,} converges uni-
formly to

(11) Bly) = [¢ (— . BllE) (el

and @ is continuous on I'. The representation (11) shows that &
is positive-definite, and so, by Bochner’s theorem, @ is the Fourier-
Stieltjes transform of a measure ¢ on the dual group G of I". The
uniqueness theorem for Fourier-Stieltjes transforms now implies
that ¢ = ||, hence |u]| is concentrated on G, and so is u.

1.9.2, THEOREM.If ¢, e B(IN) and ||¢, || S Aforn=1,23,...,
if e C(I') and if
1) . $(y) =lim¢,(y) (yel),

n—00

then ¢ e B(I') and ||$]] = A.
This is a corollary ot Theorem 1.9.1.
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CHAPTER 2

The Structure of Loca"y Compact Abelian Groups

This chapter contains those structure theorems which will be
useful later. The proofs make strong use of the duality theorem.
For results which go beyond what is presented here, the books by
Montgomery and Zippin [1], Pontryagin [1], and Weil [1] may be
consulted. Some material on local identities is also included.
Theorems 2.6.1 to 2.6.6 use a device introduced by Helson [1]
and Reiter [1].

2.1. The Duality between Subgroups and Quotient Groups

2.1.1. Suppose H is a closed subgroup of the LCA group G, and
A is the set of all y e I" (the dual group of G) such that (z,y) =1
for all ze H. We call A the annihilator of H.

For any fixed = ¢ H, the continuity of (z, y) shows that the set
of all y with (z, y) = 1 is closed, so that 4 is an intersection of
closed sets. Since A is evidently a group, we conclude that A is a
closed subgroup of I

2.1.2. THEOREM. With the above notation A and I'|A are (iso-
morphically homeomorphic to) the dual groups of G/H and H,
respectively.

Proof: Let h be the natural homomorphism of G onto G/H
(Appendix B2). The equation

(1) (. 7) = (k(z). ¢) (z<G)

defines a one-to-one correspondence between the elements y e 4
and the continuous characters ¢ on G/H, and if y, corresponds to
é; (+ = 1,2), then y, + y, corresponds to ¢, + ¢,, since

@ 71+ v2) = (@ 1) (@, ) = (h(z), $1) (h(z), d) = (B(z), 1+ 2)-

Hence (1) defines an isomorphism 7 between A and the dual
35
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group of G/H. To every compact set C, in G/H there corresponds a
compact set C, in G such that C, = %(C,), since 4 is a continuous
open map. If

N(Cy, 7y ={$: 11 — (h(z), )] < for all h(z) e Cy}
and
N(Cy7) ={y:11 — (z,9) <7 for all zeC,} n 4,

then it is clear that = maps N (C,, 7) onto N(C,, ), and Theorem
1.2.6 shows that 7 is a homeomorphism.

The second part of the theorem (that I'/4 is the dual group of H)
follows from the first part by the Pontryagin duality theorem, as
soon as the following lemma is proved:

2.1.3. LEMMA. If A is the annihilator of H, then H is the anni-
hilator of A.

Proof: If z, € H, the definition of A shows that (z,, y) = 1 for
all y e A. If z, ¢ H, the argument used at the end of the proof of
Theorem 1.8.2 shows that there exists y € A such that (z,, ¥) # 1.

2.1.4. THEOREM. If H is a closed subgroup of G, every continuous
character on H can be extended to a continuous character on G.

Proof: 1f ¢ is a continuous character on H, then ¢ e I'/4, in the
notation used above, and if 4 is the natural homomorphism of I"
onto I'/A and k(y) = ¢, then (z, y) = (z, ¢) for allz ¢ H. Hence
y is an extension of ¢.

2.2. Direct Sums

2.2.1. The notions of direct sum and complete direct sum of LCA
groups are defined in Appendix B7. The direct sum of G, and G,
will be written G, ® G,, and the direct sum of # copies of G will
be denoted by G*. In particular, T" is the n-dimensional torus,
R™ is n-dimensional euclidean space, and Z* is the group of all
lattice points in R*, i.e., the group of all points in R* with integral
coordinates. (Compare Section 1.2.7).

2.2.2. THEOREM. If G =G, ® G, ® ... © G, and if I'; is the
dual group of G; V Si=n), then '=1I1® ... 0T,
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Proof: It is clearly enough to consider the case #n = 2. If
x = z,; + x, is the unique representation of x ¢ G as a sum of ele-
ments of G, and G,, if y; € Iy, y, € I3, the pair y,, y, determines a
character y e I' by the formula

(1) (@, 7) = (%1, 71) (%2, 72)-

Since every y e I' is determined by its action on the subgroups G,
and G,, (1) shows that I' is algebraically the direct sum of I} and
T,, Since I'y and I, are the annihilators of G, and G,, they are
closed subgroups of I, and since I”is thus algebraically the direct
sum of two of its closed subgroups, the topology of I is identical
with the product topology of Iy X I,.

COROLLARY. R™ 15 its own dual, T™ and Z™ are the duals of each
other.

2.2.3. THEOREM. If G is the complete direct sum of a family {G,}
of compact abelian groups, then I is the direct sum of the correspond-
ing dual groups I,.

Proof: Each z € G may be thought of as a string

(1) z= (.., %g---),
the group operating being componentwise addition. If
(2) y=10( %)

with only finitely many y, 7 0, then y is a continuous character
on G, defined by

(3) (x’ Y) = H (xﬂ’ 7:1)’

since each factor in this product is a continuous character on G and
only finitely many factors are different from 1.

Conversely, for each index «, I', is the dual of the subgroup G, of
G which consists of all elements of the form (.. ., 0,0, 2,, 0,0, .. .).
It follows that every y e I'is of the form (2), and that (z, y) is given
by (3). It remains to be proved that only finitely many y, can be
different from 0 for any .

Suppose infinitely many y, are different from 0 in (2), and let
V be a neighborhood of 0 in G. The definition of the product topo-
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logy shows that V restricts only finitely many of the coordinates
z,. Hence there exists « such that 9, 0 and V D G,. Then

(V, %) D (Ga, ) = (Gas ¥a),

which is a non-trivial subgroup of the circle 7. It follows that
(V, v) is not contained in {z: |1 — 2| < 1}, and since V was chosen
arbitrarily, the continuity of y is contradicted.

2.2.4. Let g be an integer, ¢ = 2, and let I" be the direct sum of
countably many copies of the cyclic group Z, of order ¢. Its dual
G is compact, is the complete sum of countably many copies of
Z,, by Theorem 2.2.3 (since Z, is its own dual), and is homeo-
morphic to the Cantor set. We shall denote this group G by D,.

2.2.5. Another interesting example is the infinite-dimensional
torus 7, the complete direct sum of countably many copies of T.
Its dual is the direct sum Z% of countably many copies of Z.
Functions on 7% may be regarded as periodic functions in
countably many variables. If fe¢ L1(T*), then

forg,m, . )= '[wa(xl,xz, ...)exp {—i 3 m, 7} dz,

where only finitely many of the integers #n, are different from 0,
and the z, are real numbers modulo 2». The inversion formula has
the form

fly, 2, ...) = Ef(nl, s, ...)exp {t 3 n, 2}

T is metrizable, and is, in fact, a universal compact metric
abelian group (we use mefric synonymously with metrizable):

2.2.6. THEOREM. In the class of all compact abelian groups G, the
Jollowing three properties are equivalent:

(a) G s metric.

(b) I' is countable.

(c) G 1s a closed subgroup of T®.

Proof: If G is metric, then C(G) is separable. (Appendix Al6).
If y; %9, (y;€I), then

lly, — 7ells Z [ 1@ 1) — (@, 72)itda = 2,
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and so the presence of uncountably many y would contradict the
separability of C(G). Hence (a) implies (b).

Every countable I' is a quotient group of Z*, and so the implica-
tion (b) — (c) is a consequence of Theorem 2.1.2.

Finally, the dual group of 7 is countable, the trigonometric
polynomials on 7« are dense in C(T*), and hence C(T*) is separ-
able and T is metric (Appendix Al6). Thus (c) implies (a).

2.3. Monothetic Groups

2.3.1. A topological group G is called monothetic if it has a dense
subgroup which is a homomorphic image of Z. In other words, G
is to contain a dense set of points z, (n ¢ Z) such that z, + z,, =
Tpim (B, meZ).

2.3.2. THEOREM. Suppose G is a monothetic LCA group. If G is
not compact, then G = Z.

Proof: If G is discrete, then either G = Z or G is a finite cyclic
group, hence is compact. Thus we have to prove that G is compact
if G is not discrete.

Let V be an open symmetric neighborhood of 0 in G, with com-
pact closure V. If y € G, then y ez, + V for some &, where {z,} is
the dense subset of G described in 2.3.1, and there is a symmetric
neighborhood W of 0 in G such that y — 2, + W CV. Since G is
not discrete, W contains infinitely many of the points z,, and since
W is symmetric, z_, e W if z, ¢ W. Hence there exists 1 < % so
that z;e W. Putting 1 = k& — 4, we have ¢ > 0, and

Y-z, =y — 2+ z,ey—z,+WCV.
This proves that

) 6=U @+

the point is that it suffices to take positive subscripts in (1).
Since V is compact, (1) shows that

@) 7CU @+ V)

i=1
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for some integer N. For y € G, let n = n(y) be the smallest positive
integer such that yex, + V. Then z, — y ez, 4+ V, for some ¢
(1=7=N),by(2),sothatyex, ;+ V. Sinces > 0,n — i < n,
and so # — ¢ £ 0, by our choice of ». Thus n <7 < N for all
y G, and so

N
(3) G={ @+7).
ta]
Being a finite union of compact sets, G is compact, and the proof
is complete.

2.3.3. The compact monothetic groups have a simple charac-
terization in terms of their duals (Halmos and Samelson [1], Anzai
and Kakutani [1]):

THEOREM. A compact abelian group G is monothetic if and only
if its dual I' is a subgroup of T,, the circle group with the discrete
topology.

Proof: If G is monothetic, the continuous characters of G are
evidently determined by their values on the dense homomorphic
image of Z in G. Hence I is a subgroup of the dual T of Z. Since
G is compact, I' must be discrete.

Conversely, if I'is a subgroup of T, then G is a quotlent group
of the dual of T'; (by Theorem 2.1.2), i.e., of the Bohr compactifica-
tion Z of Z. Since Z is obviously monothetic, so is its continuous
homomorphic image G.

2.4. The Principal Structure Theorem

2.4.1. TuEOREM. Every LCA group G has an open subgroup G,
which is the divect sum of a compact group H and a euclidean space
R™ (n = 0).

Note that G, is also closed (Appendix B5), and that G/G, is
discrete, since the natural homomorphism of G onto G/G, maps
the open set G, onto the 0 of G/G,.

We shall begin with some lemmas which are of independent
interest.
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2.4.2. LeMMA. If G is generated by a compact neighborhood V of 0,
then G contains a closed subgroup (isomorphic to) Z*, for somen = 0,
such that G|Z"™ is compact, and such that V n Z™ = {0}.

Proof: Without loss of generality, assume V is symmetric. Put-
tingV, =V, V,,=V,+V,wehave G=JV, (n = 1). Since
V, is compact, there are points x,, ..., z,€G such that V,C
Uk, +V) A =:<p). Let H be the group generated by
..., z,. AssumingthatV,CV 4 H (which is trivial forn =1
and true for # = 2, by our choice of =z,, ..., z,), we have

Vo CV+V+H=V,+HCV+H+H=V + H;
by induction, V,CV + H for all » = 1, and so G=V 4 H.

Let H, be the closure in G of the group H, generated by z;
(1 <i<9p). If each H, is compact, then H is compact, hence
G =V 4 H is compact, and the lemma is true with n = 0. If G
is not compact, it follows that one of the monothetic LCA groups
H, is isomorphic to Z (Theorem 2.3.2). In this case H; = H,,
and we conclude:

If G =V + H, where H is a finitely generated group, and if G is
not compact, then H contains a closed infinite cyclic subgroup of G.

Since H is finitely generated, there is a largest integer # such that
H contains a closed subgroup of G, say H’, which is isomorphic to
Z*. Since H' n V is a finite set, we may also assume (replacing H'
by one of its subgroups of finite index, if necessary) that ' nV =
{0}. Let ¢ be the natural homomorphism of G onto G’ = G/H'.
Then G’ = ¢(V) + ¢(H), our choice of % shows that ¢{H) con-
tains no closed infinite cyclic subgroup of G’, and the preceding
italicized statement, applied to G’ instead of G, implies that G’ is
compact.

2.4.3. LEMMA. Suppose E is a compact open set in G.

(@) There is a symmetric neighborhood W of 0 in G such that
E+ W=E.

(b) If 0 e E, then E contains a compact open subgroup of G.

(¢) E is a finite union of cosets of open subgroups of G.

Proof: Since E is open, to every z € E is associated a symmetric
neighborhood V_ of 0 such that z +V, 4+ V,CE. Since E is
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compact, there are points 2, , . . ., 2, € Esuch that E = |J (z,+V,)
A=si=n)PtW=NV,. lfzeEandwe W, thenzez,+V,,
for some ¢, and so

x—}—wex,-{—Vz‘—}—WCx‘.-{—V,‘+V,{CE.

This proves (a).

To prove (b), choose W as in (a) and let H be the group generat-
ed by W. Then H C E, H is open, hence H is closed, and since E is
compact, H is compact. Finally, (b) shows that E is a union of
cosets of open subgroups of G, and since E is compact, (c) is proved.

2.4.4. CorOLLARY. If G is totally disconnected, then every neigh-
borhood of 0 contains a compact open subgroup of G.

This follows from 2.4.3(b), since the compact open sets form a
base for the topology of G (Appendix A4).

2.4.5. LEMMA. Suppose G is connected, locally isomorphic to R,
for some k = 0, and G contains no infinite compact subgroup. Then
G is R*

Proof: To say that G is locally isomorphic to R* means that there
is a spherical neighborhood Q of 0 in R¥, a neighborhood V of 0
in G, and a homeomorphism ¢ of Q onto V such that é(x + y) =
¢(x) + ¢(y) whenever z,y, and z 4 y are in Q.

For each z ¢ R*, z/n € Q for all sufficiently large positive integers
n. Define ¢(x) = nd(x/n). Since

n(@/n) = nme(jnm) = mep(z/m)

provided z/# and z/m are in Q, ¢ is well defined; ¢ is clearly a con-
tinuous homomorphism of R* into G; and ¢ is one-to-one, for
otherwise G would contain a compact subgroup isomorphic to T.
Finally, ¢ is an open map, hence ¢(R*) is an open subgroup of G.
Since G is connected, G = $(R*), and the proof is complete.

2.4.6. Proof of theorem 2.4.1. Let G, be the component of 0
in G, i.e., G, is the largest connected subset of G which contains 0.
Then G, is closed, and if # € G,, thenx — G, is connected and inter-
sects G,, so that z — G, C G,. Thus G, is a closed subgroup of G;
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the quotient group G/G, is LCA and totally disconnected and so
has' a compact open subgroup K, by 2.4.4. Let ¢ be the natural
homomorphism of G onto G/G, and put G, = ¢~ 1(K). Since K
is open, G, is an open subgroup of G.

Since K is compact, K has no open subgroup of infinite index
(otherwise K would be the union of infinitely many disjoint open
sets), and since every open subgroup of G, contains G,, it follows
that G, has no open subgroup of infinite index.

There is a compact neighborhood V in G, such that ¢(V) = K
(compare Appendix A7). The group H generated by V is an
open subgroup of G, which intersects every coset of G, in G,.
Since these cosets are connected, H = G,. Thus Lemma 2.4.2
implies that G, contains a closed subgroup Z*, for some n = 0,
such that G,/Z" is compact.

If I, is the dual of G,, Theorems 2.1.2 and 2.2.2 now show that
I')|D = T, where D is the discrete dual of G,/Z". Thus I3 is
locally isomorphic to R* and hence Iy, the component of ¢ in I,
is open in Ij. Since G, has no open subgroup of infinite index,
Theorem 2.1.2 implies that I} has no infinite compact subgroup.
Thus Lemma 2.4.5 applies to I'y and shows that I'y = R™.

So far, then, we see that I'} has R" as an open subgroup. If we
can show that I is the direct sum of R" and a discrete group 4,
then G, is the direct sum of R™ and the compact dual of 4 (by
Theorem 2.2.2), and the proof is complete.

Let A be a subgroup of I';, maximal with respect to the property:
A ~ R™ = {0}. Since A has at most one point in each coset of R",
A is discrete. Also, the sum R® + A is direct. Suppose, to reach a
contradiction, that R™ 4+ A £ I';. Then there exists ye Iy,
y ¢ R* + A, and the maximality of A shows that there exists
%o € A such that y, + ky = z, for some integer # % 0 and some
zeR"z #0. Ify =z/kandy, = y —y,thenky, e 4,5, ¢ R"+ A,
and hence there exists y, € 4 such that y, 4+ my, = z for some in-
teger m £ 0 and some ze€ R*, z # 0. This last relation may be
rewritten in the form

ky, + kmy, = kz # 0.
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Since ky, and y, are in A4, ky, + kmy, e A; but kz e R*, which
contradicts the fact that R® 4+ A was a direct sum.
Thus I} = R™ ® A, and the proof is complete.

2.4.7. EXaMPLE. As will be apparent from the proof of Theorem
2.4.1, several choices may be possible for G,, and the question arises
whether G, can always be chosen so that G is the direct sum of G,
and a discrete group. The following example (communicated to
the author orally by Kaplansky) shows that the answer is nega-
tive.

Let G be the set of all sequences z = {£,}, n=1,2,3,.. .,
where &, = 0, 1, 2, 3, only finitely many &, are 1 or 3 for any z,
and the group operation is componentwise addition modulo 4. Let
K be the set of all z € G with 2z = 0 (i.e., £, = 0 or 2); K is the
complete direct sum of countably many groups of order 2. Give
K the corresponding product topology, and declare K to be an
open subgroup of G. Then G is a LCA group, and since & is totally
disconnected, G, must be compact. If G, were a direct summand of
G, then G would contain an infinite closed discrete subgroup, but
this is impossible since every infinite subgroup of G has infinitely
many elements in K: if z <G, then 2z ¢ K.

2.5. The Duality between Compact and Discrete Groups

Since the compact abelian groups are precisely those whose
duals are discrete (Section 1.7.3), purely algebraic properties of
abelian groups give information about topological properties of
compact ones. We begin with some algebraic preliminaries.

2.5.1. An abelian group D is called divisible if to every z e D
and to-every integer z 3 0 there corresponds at least one y ¢ D
such that ny = .

TueoreMm (Kaplansky [2]). (a) Every abelian group G can be
embedded in a divisible group D; if G is countable, D may be chosen
countable.

(b) If ¢ is a homomorphism of a subgroup H of G into a divisible
group D, then ¢ can be extended to a homomorphism of G into D.
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Proof: Every G can be defined by specifying generators and
relations. Thus G = F/H, where F is the direct sum of a certain
number of copies of Z, and H is a subgroup of F which corresponds
to the relations. F can be embedded in a direct sum E of copies
of the additive group of the rational numbers. Since E is divisible,
so is E/H, and it is clear that G is a subgroup of E/H. If G is
countable, then F (hence E) may be chosen countable and (a)
follows.

To prove (b), choose z, e G so that z, ¢ H, and let A’ be the
group generated by H and x,. If nzg¢ H forn =1,2,3, ..., let
¢ (z,) be an arbitrary element of D. In the contrary case, let 2 be
the smallest positive integer such that kx, ¢ H, and choose ¢(x) € D
so that k¢ (x,) = ¢(kx,); since D is divisible, this choice is possible.
In either case, extend ¢ to H' by defining

b + nz)) = $(z) + ndlwy)  @eH, n=0,£1,42,...).

It is easily verified that ¢ is a homomorphism of H’ into D. The
proof is completed by transfinite induction (or Zorn’s lemma),
exactly as in the standard proof of the Hahn-Banach theorem.

2.5.2. THEOREM. Every infinite compact abelian group G contains
an infinite compact metric subgroup.

Proof: A compact subgroup H of G is metric if and only if its
dual is countable (Theorem 2.2.6). By Theorem 2.1.2, the result
to be proved is therefore equivalent to the following algebraic
proposition:

Every infinite abelian group I' can be mapped homomorphically
onto a countably infinite group.

If I is infinite, then I" contains a countably infinite subgroup 4
which may be embedded in a countable divisible group D (Theo-
rem 2.5.1); this embedding is an isomorphism of 4 into D and can
therefore be extended to a homomorphism ¢ of I' into D. Since
A=4¢(A)C¢(I')CD, ¢(I') is countable and infinite, and the
proof is complete.

(If the word ,,abelian’ is omitted from the above proposition,
a false statement results: Schreier and Ulam [1] have shown that
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the group P of all permutations of a countable set has only two
normal subgroups, the finite permutations and the even finite
ones; hence every non-trivial homomorphic image of P has the
power of the continuum.)

2.5.3. THEOREM. If G is compact and not of bounded order, then
G contains a dense set of elements of infinite order.

Proof: Forn =1,2,3,..., let E, be the set of all z ¢ G such
that nz = 0, and assume that one of these sets E, contains a non-
empty open set V. If W=V — V, then nx =0 for all ze¢ W.
The group H generated by W is compact and open, hence G/H
is finite. If G/H has g elements, it follows that gz ¢ H and so
ngx = 0, for every z ¢ G. Hence G is of bounded order.

This contradiction implies that none of the compact sets E,
has an interior, and the Baire theorem implies that the comple-
ment of |J E, is dense in G.

2.5.4. THEOREM. A LCA group G is of bounded order if and only
if tts dual I’ is of bounded order.
Proof: If nx = 0 for all zeG, then

(@, ny) = (x,y)" = (nz,y) = (0,y) =1
for all y ¢ I', so that ny = 0.

2.5.5. We call a LCA group G an I-group if every neighborhood
of 0 in G contains an element of infinite order.

THEOREM. (a) Every I-group contains a closed subgroup which
is a metric I-group.

(b) If G is not discrete and is not an I-group, then G contains D,
as a closed subgroup, for some q > 1.

Proof: (a) Let G be an I-group. If n > 0 in the structure theo-
rem 2.4.1, then G contains R*, a metric I-group. If » = 0, then
the open subgroup G, of G is a compact I-group, and we may as
well assume that G is compact. By Theorem 2.5.3, it is enough to
show that G contains a compact subgroup H which is not of bound-
ed order, and Theorems 2.1.2 and 2.5.4 show that this is equivalent
to the following algebraic proposition:
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Every abelian group I' which is not of bounded order can be mapped
homomorphically onto a countable group which is not of bounded order.

To prove this, note that I" contains a countable group 4 which is
not of bounded order, and proceed as in the proof of Theorem 2.5.2.

(b) If G is not an I-group and is not discrete, Theorems 2.4.1
and 2.5.3 show that G contains an infinite compact subgroup G, of
bounded order, whose dual I is also of bounded order, and hence
(Appendix B8) is the direct sum of infinitely many finite cyclic
groups. Some countable subset ot these has the same order, say g;
their direct sum is a direct summand of I}, hence is a quotient
group of Iy, hence is the dual of a compact subgroup of G, iso-
morphic to D,.

2.5.6. THEOREM. Suppose G is compact.
(a) If every element of I has finite order, then G s totally discon-
nected.

(b) If I contains an element of infinite order, then G contains a
one-parameter subgroup.

(c) G is connected if and only if I' contains no element of finite
order (except y = 0).

A one-parameter subgroup of G is, by definition, a non-trivial
subgroup H of G which is the image of R under a continuous homo-
morphism ¢. For instance, for any real 4, the set of all points
(%, €*%) (— oo < x < ) is a one-parameter subgroup H of the
torus 72; it A is rational, H is compact; if 4 is irrational, H is dense
in T2, and hence is not locally compact.

Note that (b) asserts more than just the converse of (a).

Proof: Let G, be the component ot 0in G; G, is a closed subgroup
of G, and if G, consists of more than one point, then G, has a non-
constant character, which may be extended to a continuous charac-
ter y on G, by Theorem 2.1.4. Since y maps G, onto a connected
subgroup ot T, we see that y maps G, onto T.

If ¥ had order #, then (z, y)* = (z, ny) = (z, 0) = 1 for each
z € G, so that y would map G onto a finite subgroup of 7. This
contradiction shows that ¢ has infinite order, and proves (a).

If I" contains an element of intinite order, then I" contains Z as a
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subgroup. The identity map of Z into R, (the real numbers with
the discrete topology) is an isomorphism which, by Theorem 2.5.1,
can be extended to a homomorphism of I"into R;. Theorem 2.1.2
now shows that G contains a compact subgroup H whose dual is a
non-trivial subgroup of R;, and that H is therefore the continuous
image of the Bohr compactification Rof R, under a homomorphism
¢. Since R is a dense one-parameter subgroup of R, ¢(R) is a
dense one-parameter subgroup of H, and (b) is proved.

To prove (c), assume first that G is not connected. By Lemma
2.4.3, G then contains a proper open subgroup H. The quotient
G/H is finite and its dual is a subgroup of I", by Theorem 2.1.2.
Hence I' contains a non-trivial finite subgroup.

Conversely, if y € I" has finite order and y # 0, then y maps G
onto a non-trivial finite subgroup of T, and since y is continuous,
G cannot be connected.

2.5.7. Examrres. To illustrate the preceding theorem, let G
be the Bohr compactification of the discrete group G. The know-
ledge that G is discrete tells us nothing about the topology of G;
the algebraic structure of G is decisive:

(i) If G is the discrete additive group of the rational numbers,
then G has no subgroup of finite index, hence I" has no element of
finite order, hence G is connected and contains one-parameter sub-
groups.

(i) If G = Z, then I = T'; T has elements of finite and infinite
orders; hence Z is neither connected nor totally disconnected and
contains one-parameter subgroups.

(iii) If G is a discrete group of bounded order, then I" is of
bounded order, hence @ is totally disconnected.

2.6. Local Units in A(I')

In this section we gather some technical results which should be
regarded as tools for our later work.

2.6.1. THEOREM. Suppose C is a compact subset of I, V C I, and
0 < m(V) < oo, where m is the Haar measure of I'. Then there exists
k e LY(G) such that
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(a) B(y) =10nC, E(y) = O outside C +V — V, and 0 < k(y)
<1 for all yel.

(b) llklly < {m(C — V)Im(V)}h.

Proof: Let g and & be the functions in L?(G) whose Plancherel
transforms are the characteristic functions of V and C — V, re-
spectively, and define

@@
1) o) = E@e6)

Then (see Section 1.6.3) £ = m(V)=1(g+h), or

@) B0) = i [, B =7 e,

If yeC, then iy —y’) =1 for all ' eV, hence &(y) =1. If
y¢C +V —V, thenh(y —y’) = Oforally’eV.Since0 S 2 < 1,
(a) follows.

By the Plancherel theorem, ||g||, = m(V)}, |||, = m(C — V)3,
and the Schwarz inequality, applied to (1), shows that
l1&ll; < m (V) YlgilliAll,. This implies (b).

2.6.2. THEOREM. If W is an open set in I' which contains a com-
pact set C, then there exists f e L (G) such thatf = 1 on C and f = 0
outside W.

Proof: Choose an eighborhood V of 0in I'suchthat C+V -V CW,
and apply Theorem 2.6.1.

2.6.3. THEOREM. Swuppose fe L1 (G), voe T, fly,) =0, W is a
neighborhood of y,, and ¢ > 0. There exists k € L\(G), such that
(@) li&ll; <2,
(b) £ =1 in a neighborhood of y, and k = 0 outside W,
() 1If = kil <e.
Proof: Without loss of generality, we assume y, = 0. Put
£

M =TI

There exists a compact set E in G such that the integral of |f| over
the complement E’ of E is less than 6. We can find C and V, as
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in Theorem 2.6.1, subject to these further conditions: (i) 0 is an
interior point of C, (ii) m(C — V) < 2m(V), (i) C+V —VCW,
and (iv} |1 — (z, y)| < 6 whenever ze £ and yeC +V — V.
Define % as in the proof of Theorem 2.6.1. Then (a) and (b) hold,
and since f(0) = 0, we have

@) (FrRE) = [ fO)kE—y) — k@ (@eG),
so that

(3) IF = Rl < [ @)1 - 1k, — Rlldy = [+ .
The integral over E’ is less than
(4) 21k11,6 < 28{m(C — V)im(V)}} < 49,

by (ii), and the integral over E does not exceed
(5) 1]y - sup ||&, — &]l;.
veE
Hence the inequality
(6) by — kll, <40  (yeE)

will complete the proof.
In the notation of Theorem 2.6.1,

(7) m(V)(k, — k) = g(h, — h) + (& — &),

For y ¢ E (iv) implies, by the Plancherel theorem, that
(8) [oles — gt = [ 11 — @, 9%y < #m(V),
so that

(9) llgy — gl < 8{m(V)}t  (y < E).

Similarly, ||h, — hll; < 8{m(C — V)}}, and since |lg|l, = m(V)?
and |}hll, = m(C — V)}, we obtain

(0)  m(V)llk, — kll, < 28{m(V)m(C — V)}} (y € E).
By (ii), (10) implies (6), and the proof is complete.
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2.6.4. THEOREM. Suppose feLY(G), yoe I, f(yo) =0, and
& > 0. Then there exists v e L\(G) such that 3 = 0 in a neighborhood
of yo, Ilvlly < 3, and |1 — f*v]l; <e.

Proof: By Theorem 1.1.8, there exists u e L'(G) such that
flully =1 and |If — f * ull; < &/2. Since (f4)(y,) = 0, Theorem
2.6.3 applies to f * %, and so there exists & ¢ L*(G) such that £ = 1
in a neighborhood of y4, (|||, < 2, and ||7 * » * ||, < ¢/2. Put
v=u—uxk Then =0 when 2= 1, and

W= fxolly = I —Frully + [If 2wkl <e

2.6.5. THEOREM. Suppose f € L1(G), yo € I', W is a netghborhood
of yo, and € > 0. There exists h ¢ L\NG) such that ||hl|l, < & b =0
outside W, and

&) — ki) = fzo)

in some meighborhood of y,.

Proof: Choose g € L1(G) such that §(y) = f(y,) in some neighbor-
hood of ¥,. Theorem 2.6.3 applies to f — g, and so there exists
ke L'(G) such that £ = 1 in a neighborhood of y,, # = 0 outside
W, and ||(f —g) *xklly <e. Put h= (f—g)*k Then h=
f — &)k, and so there is 2 neighborhood of y, in which % = f—&
= f — ftvo).

2.6.6. THEOREM. Suppose fe LM (G) and ¢ > 0. There exists
v e LY (G) such that { has compact support and ||f — f +v|}; < e.

Proof: Let X be the set of all g e L2(G) such that § has compact
support. By the Plancherel theorem, X is dense in L2(G). If
v=gh, with g, h ¢ X, then 7 =g * , hence % has compact support.
Since X is dense in L?(G), the set of all such v is dense in L}(G).

By 1.1.8, there exists # ¢ L1(G) such that ||f — f * ]|, < ¢/2,
and we can choose v € L' (G) such that 7 has compact support and
lle — vll; < ¢/(lifll,). Then

W—rxvlli = llif —frulli+1lf > (0 —2)lh <e

2.6.7. Theorems 2.6.1 to 2.6.6 did not depend on any structure
theorems, but our next result does:
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THEOREM. If C is a compact subset of I' and if ¢ > 0, there exists
a Borel set V in I', with compact closure, such that

m(C —V)< (14 eym(V).

Proof: Let W be a compact neighborhood of 0 in I" which con-
tains C — C in its interior, and let I} be the group generated by
W. Since I is open in I', we may assume, without loss of general-
ity, that Iy =1T.

By Lemma 2.4.2, I" has a closed subgroup Z* which has only 0
in common with W, such that I'/Z* is a compact group, say H. Let
¢ be the natural homomorphism of I" onto H. Our choice of W
and Z* shows that there is an open set X, in I', with compact closure
which contains C and on which ¢ is a homeomorphism. Put
Y, = ¢(X,).

Since H is compact, finitely many translatesof Y,,say Y,,..., Y,
will cover H, and there are open sets X, in I', with compact
closure, such that ¢ maps X; homeomorphically onto Y,. If Y;
is the part of Y;notin Y, u...u Y, if X; =X, n ¢ 1(Y}),
and if E=JX; (1 £7 <), then E is a Borel set in I', ¢ is
one-to-one on E, and ¢(E) = H. In other words, eachx ¢ I"'has a
unique representation z = e + n, with e ¢ E and # ¢ Z*%; we may
visualize I" as being “paved” by the translates E + n of E.

Note also that C C X; = X; C E and that E is compact.

If n=(ny,... n)eZ" set |ln|| = max, |»;]. Since E is com-
pact and Z* is discrete, Z* ~ (E + E — E) is a finite set, and so
there is an integer s such that ||#]| < sforalln e Z*~ (E + E — E).

For N=1,2,3,..., let Vy=U(E+n) (lnl]l =N). If
zeVy+ E thenz =n + ¢, + ¢, = n' + ¢; since ¢, +e6,—e e Z*
we have [[#" — n|| < s; hence [[#'|| S |In]l + s = N + s, and so
Vi + E CVy,,.

Since m(Vy) = (2N + 1)*m(E), we have

mC V) mE V) Ve (2

and the last expression tends to 1 as N — oo.
The theorem follows if we take V' = —Vy, with N large enough.
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ReMARK. The conclusion can be strengthened: There is an open
set V with compact closure for which the desired inequality holds.
We shall not need this stronger result.

2.6.8. THEOREM. Suppose C is a compact set in I', and & > 0.
Then there exists ke L1(G) such that k = 1 on C, k has compact
support, and j|k||, < 1 + e.

Proof: Combine Theorems 2.6.1 and 2.6.7.

2.7. Fourier Transforms on Subgroups and on Quotient
Groups

Throughout this section, H will be a closed subgroup of G, and
A will be the annihilator of H, as in 2.1.1.

2.7.1. THEOREM. A measure pe M(G) is concentrated on H if
and only if i is constant on the cosets of A.
Proof. If u is concentrated on H and y, e A, then

1) (— =, yo)du(x) = du(z),
since (z, ¥,) = 1 on H, and so
@) By +v0) = aly)  (oed, yeI).

Conversely, if (2) holds, then (1) holds by the uniqueness theo-
rem for Fourier-Stieltjes transforms, so that (z, y,) = 1 almost
everywhere with respect to |u|, for all y, € A. This implies that the
support of u lies in H.

2.7.2. THEOREM. The functions belonging to B(A) are presicely
the restrictions to A of the functions belonging to B(I').

Proof: Let ¢ be the natural homomorphism of G onto G/H. If
u e M(G), the map

(1) [ Hb@)du(z)

is a bounded linear functional on Cy(G/H), and hence there is a
unique measure o € M (G/H), with ||o|] < {|u|l, such that

@) [Hb@) ) = [, fdo (1« Co(GIH)).
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We write 0 = nu if (2) holds. In this case (2) alsv holds for all
bounded Borel functions on G/H, and in particular (2) holds for all
continuous characters on G/H, i.e., for all y e A. (Recall that A
plays a double role: it is the dual group of G/H, and it is a subgroup
of I) Hence u(y) = o(y) if ¢ = nu and if y € 4, and the proof of
the theorem will be complete as soon as we show that » maps
M(G) onto M (G/H).

If V is a compact neighborhood of 0 in G/H, then, as in the proof
of Lemma 2.4.2, the group generated by Vis V 4+ D, where D is a
discrete subgroup of G/H. Hence G/H is covered by a collection
{V,} of translates of V, such that every compact subset of G/H is
covered by a finite subcollection of {V,}. To each V, there corre-
sponds a compact set E, C G such that ¢(E,)=V,. Put X =
U E,. Then X is locally compact, ¢(X) = G/H, and ¢ 1(K) n X
is compact for every compact subset K of G/H.

Let S be the subspace of all g e Cy(X) which are constant on the
intersections of X with the cosets of H; S is isometrically isomorph-
ic to Co(G/H). If o0 e M(G/H) and f(z) = g(¢~(z)), the map
g —> [ tdo is a bounded linear functional on S; extending it to
Co(X), we find that there is a measure u ¢ M (X), with [|u|| < |lo]],
such that (2) holds.

This completes the proof.

2.7.3. Suppose mg, my, and mgy are the Haar measures of the
indicated groups, and let & = &(z) be the coset of H (the element
of G/H) which contains z, where z ¢ G. For any fe C.(G), the

integral
(1) [, 1@ + y)ama(y)
is not changed if z is replaced by  + 4, where 5 ¢ H. Hence (1) is

a function of &, which belongs to C,(G/H). The Haar measures
can be adjusted so that

() [ tame = [ dmem@)[, Hz + y)dmg (4)

for every f ¢ C_(G), since the right side of (2) is a positive transla-
tion invariant linear functional on C_(G).
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Suppose that the measures are so adjusted, and denote the inte-
gral (1) by F(¢). The map T defined by F = Tf is a bounded
linear transformation of L!(G) into L}(G/H); it is easy to see that
T is actually onto, and that T is nothing but the restriction of the
map n of Theorem 2.7.2 to L!(G). Hence F(y) = f(y) if y e A.

Summarizing, we obtain the following result:

2.7.4. THEOREM. The functions belonging to A(A) are precisely
the restrictions to A of the functions belonging to A (I'). For f e LA (G),
J vanishes on A if and only if

[ 1 + y)dmy(y) =0

for almost all z € G.

2.7.5. Tueorem (Calderon [2]). If ge LY(G), > 0, and §
vanishes on A, then there exists u e M (G), concentrated on H, such
that ||ul] < 2, |lg = pll < 7, and ﬁ = 1 on an open set conlaining A.

Proof: By Theorem 1.1.8, there exists # € C.(G), such that
W —gll, <n/3if f=g=*u Since

V) [ i@+ ) — 1@ + s)ldmg(s)
< [ le@)ams(y) ln@@ + s — y) — u(@’ + s — y)ldmy(s),

the fact that « e C,(G) shows that to each > 0 there corresponds
a neighborhood V; of 0 in G such that the left side of (1) is less
than 6 if x — 2" e¢V,. Put

(@) a(§) = [l + s)ldmy(s),

where ¢ is the coset of H which containsz. If k2 e L1(H), ||k]], < 2.
and

(3) Bul®) = [ | [ 1@ + I(t — s)dmy (s)|dma (8),

then §, < 2«, and if ' — z e V,;, we have

NCCRAGIE [ [t ets) =1 +5)i1k t—s) dmp (5) dmp ()
= 2JFH{f(x—}—s)—f(:c'+s)|dm,,(s) < 26.
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The proof of Theorem 2.6.3 can be moditied so that it applies to
a finite set of functions f; with f,-(yo) = 0. Considering f(z + s),
for fixed = € G, as a function ¢(s) on H, Theorem 2.7.4. shows that
$(0) =0, since f(y) =0 forally e A. Henceif 6>0and z,,...,z,
are points of G, we can find % ¢ L1(H), so that ||k]|, < 2, £ = 1 in
a neighborhood of 0 in I'/4, and

(5) Be6) <6 (1=7=mn).

Suppose 0 < & < n/6. Since a ¢ L}(G/H), there is a compact
set C in G/H such that the integral of « over the complement of C
is less than &. Choose & > 0 so that 36 - mg5(C) + 26 < 9/3.
There are finitely many £; in C and there is a function % of the
above type, so that to each & in C there corresponds a &, for which
1Be(8) — Bu(&,)] < 26, as in (4), and so that B,(&,) < 6 for all 5.
Then B,(¢) < 36 on C, and our choice of ¢ and 4 shows that

(6) [P E)dmess (8) < 73,

But the integral (6) is just ||f # u|l;, where du = k dmy. Finally,
llg * pily = |if — glhillall + 1 2 plly < 29/3 +7/3 = 7.

2.7.6. THEOREM. Suppose [ is a tunction on the circle T,
0<d<mand f(e??) =0ifn —86 <60 < n + 0. Let g be defined
on the line by

fe=) i el ==
1 =
M) 8() 0 if gl >n
Then f e A(T) if and only if g ¢ A(R). Moreover, there are positive
numbers ¢,, ¢, (depending on 8) such that

2) allgh = 1l = llgll,

the norms being those of A(T) and A(R), respectively.

Proof: Let h be a function on R with two continuous derivatives,
such that A(x) = 1 on [— x4+ 6,7 — 6] and A(z) = 0if x| = 7.
The Fourier transform of 4" is — y%h(y); it follows that

(3) h(y)l < (— o0 <y < o)

a
1+ 92
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for some constant a. The inversion theorem implies that % e 4 (R).
If fe A(T) and F(z) = f(e**) for all real z, then F ¢ B(R),

I|FIl = |Ill, g = #F, and hence g ¢ A(R) and |lgl| < |1k} - }fll
If ge A(R), then g = gh, and so

4) f(n) = -217; Jt_ g(x)e—in*dxy = %zf g(x)h(x)e~i"* dz.

By (3), the inversion formula holds for 4; substitution into (4)
yields

(5) foy = [T ewhtn —y)dy  (ne2).

By (3), there is a constant b such that 3% |i(n — y)| < b for
all y ¢ R. Hence

©) 1= 31761 < 6 [ le@)dy = blei.
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CHAPTER 3

ldempotent Measures

A measure g € M(G) is said to be idempotent if u + y = u. The
set of all idempotents in M (G) will be denoted by J(G). The prob-
lem considered in this chapter is the determination of all members
of J(G).

Apart from its intrinsic interest, the solution of this problem
turns out to be the crucial link in the description of the homo-
morphisms between group algebras (Chapter 4); it yields all
bounded linear projections in L!(G) which commute with transla-
tion (Section 3.8); and it determines the class of all simple functions
on I' (i.e., those whose range is a finite set) which belong to B(I).

3.1. Outline of the Main Result

3.1.1. If pe J(G), then p% =, so that p(y) =1 or 0 for all
y eI’ Define

S ={el:pl)=1 (ne]G)

The problem of finding all u e J(G) is obviously equivalent to the
problem of finding all subsets of I' whose characteristic function
belongs to B(I').

3.1.2. Suppose 4 is an open subgroup of I"and H is its annihila-
tor. Since I'/4 is discrete, H is compact, and if my is the Haar
measure of H, normalized so that my(H) = 1, then my may be
regarded as a measure on G. The orthogonality relations 1.2.5
show that mig(y) = 1 if y e A and #iy(y) = 0 otherwise. Hence
A = S(my).

If E= A4 y,, it follows that E = S(u), where du(z) =
(z, yo)dmy(xz). Thus every open coset in I' is S(u) for some
ueJ(G). (We call a subset E of I' a coset #n I' if E is a coset of

59
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some subgroup of I'; it is frequently of no interest to name the
subgroup.)

If 4 and 1 are in J(G), then so are the measures u * 4 and
uvi=pu+ 4 — u=xl as well as é, — 4, where 4, is the point
measure of norm 1 concentrated at the point 0 in G. Since

S2)=S()nS@), Slvi)=SE)vS@),

and S(d, — u) iIs the complement of S{u), the family Q2 of all sets
S(u) in I'is closed under the formation of finite unions, finite inter-
sections, and complements. In other words, £2 is a ring of sets, and
the preceding remarks show that 2 contains the coset-ring of I';
the latter is defined as the smallest ring of subsets of I" which con-
tains all open cosets in I

The solution of our problem is simply that £ is equal to the coset
Ting:

3.1.3. THEOREM. A subset E of I'is S{u) for some u € J(G) if and
only if E belongs to the coset-ring of I

3.1.4. Theresult may also be stated without reference to Fourier-
Stieltjes transforms:

Call u an elementary idempotent if du(x) = (x, y)dmy (x) where
yo € I' and H is a compact subgroup of G. Then every measure on
G which can be obtained from the elementary idempotents by
finitely many applications of the binary operations * and v (see
Section 3.1.2) and of complementation (§, — u is the ‘‘comple-
ment”’ of u) is idempotent; moreover (and this is the non-trivial
part of the theorem) every u e J(G) is obtained in this manner.

3.1.5. If u e M(G), the support group of u is defined to be the
smallest closed subgroup of G on which u is concentrated. A
closed subgroup K of a compact group H is called a singular sub-
group of H if H[/K is infinite; this is equivalent to the requirement
that my(K) = 0. If |u](K) = 0 for every singular subgroup K of
the support group of u, then we call u trreducible.

The proof of Theorem 3.1.3 proceeds in three major steps:

(A) If ue J(G), then the support group of u is compact.
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(B) If pe J(G), then u = ayu, + ... + a,u,, where the a; are
integers and the p; are irreducible idempotents.

(C) If G s compact, if ue J(G), and if |u|(K) = 0 for every
singular subgroup K of G, then S(u) is a finite subset of I

Once this is done, Theorem 3.1.3 follows easily:

Suppose G is LCA, u € J(G), and H,, ..., H, are the support
groups of the measures y,, . . ., 4, which appear in (B). Their an-
nihilators 4,, . . ., 4, are open subgroups of I', since (A) implies
that the groups H, are compact. By (C), S{u,) is a finite subset of
I'/A,, the dual of H,, since u, € J(H,). Regarding u, as an element
of J(G), S(u;) is thus a finite union of cosets of A,, hence belongs
to the coset-ring of I'. It follows that the set of all y e I"at which
any finite linear combination 3 a,.;),.(y) assumes a given value
belongs to the coset-ring of I", and this completes the proof, by (B).

3.1.6. A subset E of the integer group Z is a coset in Z either if E
consists of a single point or if E is an arithmetic progression, in-
finite in both directions. If S belongs to the coset-ring of Z, if
A,, ..., A, are the arithmetic progressions involved in the forma-
tion of S, and if d is the least common multiple of the differences
d; of the progressions A,, then it is clear that S differs from a set
with period 4 in at most finitely many places. Thus we obtain the
following special case of Theorem 3.1.3:

A sequence {c,} (— © < n < ©) of zeros and ones is the sequence
of Fourier-Stieltjes coefficients of some measure on the unit circle if
and only if {c,} differs from a periodic sequence in at most finitely
many places.

This result is due to Helson [4], [7]. The case G = T™ of
Theorem 3.1.3 was proved by Rudin [13]; steps (A} and (B) of
3.1.5 are also in that paper. P. J. Cohen [2] proved the general
case of Theorem 3.1.3; in particular, the introduction of ‘‘pseudo-
periods,” Lemma 3.5.5, and the combinatorial argument of
Section 3.6 are due to him.

3.2. Some Trivial Cases

3.2.1. Since x is continuous, S (u) is open and closed, for every
u € J(G). Consequently, if I' is connected, there are only two pos-
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sibilities for S(u): S(u) = I" or S(u) is empty. In other words, J,
and 0 are the only members of J(G).

3.2.2. Every compact open subset of I" belongs to the coset ring of
I'. This follows from Lemma 2.4.3.

3.2.3. Suppose ue€ J(G), p 7 0 and x4 = 0. Then y is positive
definite and u(0) = 1. If ¥ and 9 are in S(u), then — y' e S(u),
and the inequality 1.4.1(4) shows that

ky — ) — () < 20(0) Re [u(0) — p(—»)} = 0.

Hence y — 9’ € S(u), and we conclude that S(u) is an open sub-
group of I

3.24. If pe J(G) and u # 0, then [lull = [lu * pl| < [lull% so
that ||u|| = 1. Suppose ||u|] = 1. Setting do(x) = (x, y)du(z),
proper choice of y assures that ¢(0) = 1. Then

1=0(0) = o(G) < |lof| = 1;

hence ¢(G) = |lo}|, ¢ = 0, and the preceding result implies: If
ue J(G) and ||u]] = 1, then S(u) is an open coset in I.

3.3. Reduction to Compact Groups

3.3.1. For technical reasons which will become apparent in the
proof of Theorem 3.4.3, it is convenient to enlarge the class J(G)
somewhat. We let F(G) be the class of all u e M (G) such that u is
an integer-valued function. Since  is a bounded function, gz has
only finitely many distinct values if u € F(G).

3.3.2. THEOREM. If pe F(G), then the support group of u is
compact.

Proof: Let H be the support group of 4. Since 4 may be regarded
as an element of F(H), we may assume that G = H; i.e., that g is
not concentrated on any proper closed subgroup of G. By Theorem
2.7.1 this means that z is not invariant under any non-zero trans-
lation of I. If we define u, by

(1) duy (&) = (z, y)du(x)  (vel),
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it follows that u, # u if y # 0. Since ﬁ, — 4 is an integer-valued
function, we have

) Ny — 12N gty —plle =1 (¥ #0).

There is a compact set C in G, with complement C’, such that
|lu|(C’) < 1/4. Xf V is the set of all y such that

(3) 1 — @< @le)? (zeC),

then V is open in I, and for y ¢ V we have

1 1
(4) lle — mll éfcll — (=, y)ldipi(z) =L +fc' = +5<L

Comparison of (2) and (4) shows that the open set ¥ consists of
0 alone. Hence I' is discrete, G is compact, and the theorem is
proved.

We note that this contains step (A) of Section 3.1.5 as a special
case.

3.4. Decomposition into Irreducible Measures

3.4.1. A homomorphism of M (G). Let H be a singular com-
pact subgroup of the compact group G, let {H,} be the collection
of all cosets of H in G, let u, be the restriction of 4 to H,, for any
ueM(G), and define

(1) Rt = z”a'

At most countably many terms are different from 0 in this sum, so
that nyu is well defined. Also, ¥ |lu,l| < ||ul|. If H were not sin-
gular, ny; would be the identity operator.

THEOREM. ny is a homomorphism of M(G) into M (G).

Proof: It is clear that ny is a bounded linear map of M (G) into
M(G). Let Ry and Ny be the range and null-space, respectively,
of 7.

If u and 4 are concentrated on H, and H,, then u * 4 is concen-
trated on H, 4 H,, which is again a coset of H. It follows that
Ry is a subalgebra of M(G). Also, ngu = u if ue Ry.
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The null-space Ny, on the other hand, is an ideal in M (G).
For if aigu =0, if o =pu* 4, and if ECH,, then y(E — z) =
ngu(E — z) = 0 for all z € G, so that

@) o(E) = [ u(E — z)di(x) = 0,

and so ¢, = 0. Consequently 7z = 0, and o € Ny.

The formula u = nyzu 4 (4 — szu) represents u as a sum of
two measures, one in Ry, the other in Ny. This representation is
unique, for if u = u; + py, with u, € Ry, u, e Ny, then

Tpp = Tglly + Tty = Hy.
Finally, if 4, 1e M (G), then
pxd— (mgp) * (mgd) = p* (A —ngl) + (0 — 7gp) *7yh,
and this lies in Ny, since Ny is an ideal; since Ry is an algebra,

(ngp) * (mgl) € Ry. The uniqueness just established implies now
that

(3) my(p x A) = (mgp) * (7gl),
and the proof is complete.

3.4.2. THEOREM. If H and ny are as above, and if u ¢ F(G), then
ngu € F(G), and rgu ts concentrated on a singular compact subgroup
K of G.

Proof: Define ! = u, u® = u™1 % u, and if P is a polynomial,
P(t) = 3 c,t*, define P(u) = 3 c,u", where u° = §,.

Let a,, .. ., a, be the distinct values of z, where u is our given
measure in F(G), and put P(t) = IT(¢t — a;). Then P(u(y)) =0
for all y eI, and so P(u) = 0. Since ny is a homomorphism,
P(rgu) = nygP(u) = 0, so that the range of the Fourier-Stieltjes
transform of nyu is a subset of the set {a,,..., a,}. Hence
ngu € F(G).

We now change the topology of G by adjoining to the original
collection = of open sets arbitrary unions of sets of the form
(H + z) nV, where z ¢« G and V e 7. The result is an LCA group
Gy, which differs from G only insofar as H is now a compact open
subgroup of Gy; within H the topology is unchanged. We may
regard mgu as a member of M(Gyz). Since P(ngzu) =0,
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nyu € F(Gy), and Theorem 3.3.2 implies that myu is concentrated
on a compact subgroup K of G . Since H is open in G4, K inter-
sects only finitely many cosets of H. Since H is a compact singular
subgroup of G, it follows that K is also a compact singular sub-
group of G, and the proof is complete.

3.4.3. THEOREM. Suppose G is compact and u € F(G). Then there

exist integers a,, . . .. a, and trreducible measures u,, . . ., u e J(G)
such that
() p=ayy + ..+ au,.

Proof: The theorem is trivial if = 0. Suppose the theorem is
true for all G and for all u € F(G) with [[y]| < p — 1, where pisa
positive integer.

Consider a fixed u ¢ F(G) with ||u]| < ¢; without loss of general-
ity, we may assume that G is the support group of u.

If Ayu = O for every singular subgroup H of G, let q,, . . ., a, be
the distinct non-zero values of £, construct polynomials P; such
that P;(0) = P,(a;,) = 0 if ¢ .7 and P;(a;) = 1, and put x4, =
P,(u). Then g,(y) =1if d(y) = a, and 4,(y) = 0 otherwise, so
that u; € J(G), and (1) holds. Since 5y is a homomorphism, we have

wgp; = agPi(u) = Pagn) = P,(0) =0 (1si=n)
for every singular subgroup H of G, and this proves that the meas-
ures u, are irreducible.

If ngu +# 0 for some singular subgroup H of G, then agu is
concentrated on a compact singular subgroup K of G, by Theorem
3.4.2. Since G is the support group of u, it follows that ngu # u,
and so u; = u — mgu # 0. By Theorem 3.4.2, ngu ¢ F(G), and
hence y, € F(G); since both of these measures are different from 0,
their norms are at least 1; since they are concentrated on disjoint
sets, we have

Hegpll + lmll = ilpll = 25
consequently, [|lzgull £p — 1 and |juy|l £ p — 1. By our in-
duction hypothesis, both 7yu and g, are of the form (1), and so is
their sum u.
This completes the proof. Step (B) of Section 3.1.5 follows.
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3.5. Five Lemmas

In this section we shall assume that G is compact and that I'is
countable. This latter assumption is merely a matter of con-
venience. It assures that C(G) is separable, so that the weak*
topology of the unit ball in M (G) is metrizable (Appendix C8), and
hence every infinite subset of this unit ball contains a convergent
sequence. We thus avoid the use of directed sets.

3.5.1. LEMMA. Suppose ue M(G) and {y,} +s a sequence of

distinct elements of I' (n = 1,2,3,...). Define A, by
ad(z) = (z, y,)du(x) n=1273...).

If {4,} converges to o € M (G), in the weak* topology of M (G), then o
is singular. In fact, if u = u, + p, is the Lebesgue decomposition
of u with respect to the Haar measure of G, then |o|(E) < |u,|(E)
for every Borel set E in G.

Since {1,} is a sequence of translates of z, we shall refer to this
as the translation lemma (Helson [5] [7]).

Proof: Since u, is absolutely continuous, pa€A(l), and so
‘;;a(‘y") — 0 as n — oo. Hence
(1) lim [ f(@)@, yadp(z) = 0
for every trigonometric polynomial f on G and since every
f € C(G) is a uniform limit of trigonometric polynomials, (1) holds
for every fe C(G).

It follows that ¢ is the weak* limit of the measures defined by
(z, y,)du,(x). IfV is open in G, if fe C(G), ||fl]lo =1, and f =0
outside V, then

(@) 1 ol = lim | [ () (@ )@ < ) (),

so that [6{(V) = |u,/(V). This inequality also holds for all Borel
sets, by the regularity of the measures |s} and |g,|, and the lemma
is proved.

3.5.2. Suppose u € J(G). We call a set PC I a set of pseudo-
periods of S(u) if to every y ¢ S(u) there corresponds a 9’ € P such
that y + 9" € S{u).
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LeMMA. If S(u) ts infinite and if E is a finite subset of I, then
there exists a finite set P of pseudo-periods of S(u) which does not
intersect E.

Proof: Let ay, ay, ay, . . . be an ordering of the elements of I
which are not in E. If the lemma is false, then for each n > 0
there exists y, € S(u) such that none of the sums y, + a4, ...,
¥a + @, Hes in S(u). If only finitely many y, were obtained in this
way, then for one of them it would be true that y, + «, ¢ S(u)
for i =1,2,3,..., and hence S(u) would be finite. Thus there
are infinitely many distinct y,, and there is a subsequence {y,}
of distinct elements such that the measures 4, defined by

(1) dhy(z) = (— x, y,,)du(z)

converge to a measure o € M (G) in the weak* topology.

Forl < < ny, Lu(a;) = plx; + ¥a,) = 0, so that &(x;) = 0 for
i=1,23,.... Thus ¢ has its support in the finite set E, and
hence ¢ is absolutely continuous. By the translation lemma, g is
singular, and so ¢ = 0. But 4,(0) = 4(y,) = 1, so that 8(0) = 1,
and ¢ 3= 0. This contradiction proves the lemma.

3.5.3. LEMMA. Suppose pe J(G), and suppose that there are
finite subgroups A, of I' (n = 1, 2, 3, . . .) such that A, 1s a proper
subgroup of A, and such that S(u) contains a coset of each A,.
Then |u|(H) > O for some singular subgroup H of G.

Proof: There is a sequence {y,} such that y, + 4, C S(u) and
such that infinitely many of the y, are distinct. A subsequence
{7a,} of these will be such that the measures 4, defined as in the
proof of Lemma 3.5.2, converge to a measure ¢ in the weak*
topology. Since A4, CS(4), S(o) contains the infinite group
A =P 4,, so that ¢ * my == my, where my is the Haar measure
of H, the annihilator of 4. Hence

1 = my(H) = (o % my)(H) = [ o(H — x)dmy(z)
= [ o(H)dmy(z) = o(H).

By the translation lemma, |u|(H) = |o|(H) = ¢(H) = 1. Since
A is infinite its dual G/H is infinite and the lemma is proved.
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3.5.4. LEMMA. Suppose u € J(G) and |u|(H) == 0 for every singu-
lar subgroup H of G. Suppose A is an infinite cyclic subgroup of I,
generated by an element yg € I". Then there is an integer N, depending
on u and A, such that S (u) contains no arithmetic progression of the
form

“/+70»7+270»---,7+N)’o (y e I').

Proof: If the conclusion is false, then there exist infinitely many
distinct y, eI’ (n=1,2,3,...) such that y, + jy,€S(u) for
—n <7 = n. Setting di, (x) = (— =z, y,)du(x), a subsequence of
{A,} converges in the weak* topology to a measure o ¢ J(G) such
that S(o) contains the infinite group 4, and we conclude that
lu[(H) = 1, where H is the annihilator of /4, as in the proof of
Lemma 3.5.3. Since H is a singular subgroup of G, we have a
contradiction.

3.5.5. LEMMA. Suppose P and Q are real numbers such that

1
< < —
1=P<Q=P+10P.

Then there exist positive numbers a and b, depending only on P and
Q. with the following properties: If f, g, h are Borel functions on G,
if ueM(G), and if

@ If)l=1 |g)=1 |h(=)| =1 for all z¢G,
®) [ohdu=[fhdu=P, [ gdu=1. [ fedu=0,
(c) = ah + afh + bg — bfg,
then |p(x)| < 1 for all xeG and [¢ydu = Q.

Proof: Put

Q 9pPz—1 30

“Zepoprr2 T 9Pt 2

Then [¢ydu = 2aP + b = Q. Setting f(z) = ¢***, we have
Iyl < all + f| + 8|1 — f| = 2aicos a| + 2bisin «| < 2(a® + b2)*%.
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But

Q 9P*4+ 17? [10P*4+ 1 9P2 4 It
4(az+b2)=|:'15'9pz-f-2 S|\ 9P T

IA

Hence |y(z)| < 1, and the proof is complete.

3.6. Characterization of Irreducible Idempotents
3.6.1. We are now ready to complete step (C) of Section 3.1.5:

THEOREM. If G is compact, if pe J(G), and if |u|(K) =0 for
every singular subgroup K of G, then S(u) is a finite subset of I.

In other words, there are finitely many distinct characters
Y1, - - - Yo € I' such that

du(@) = [(@.9) + ... + (2, ya) ldz.

If the theorem is false, there exists a compact group G and an
irreducible ¢ € J(G), whose support group is G, such that S(u) is
infinite. Then I has a countable subgroup 4 such that S(u) N A is
infinite. Let H be the annihilator of 4, let ¢ be the natural homo-
morphism of G onto G/H, and define ¢(E) = /4(¢’1(E )) for every
Borel set E in G/H. Then o M(G/H) and o(y) = u(y) if ye A
(see Theorem 2.7.2). Hence ¢ ¢ J(G/H), S(o) is infinite, and since
¢~1(K) is a singular subgroup of G for every singular subgroup X
of G/H, ois irreducible. Hence it is sufficient to prove the theorem
under the additional assumption that I" is countable.

3.6.2. We now assume that the hypotheses of Theorem 3.6.1 hold,
that I' is countable, and that S(u) is infinite.

Under these (contradictory) assymptions we will be able to
construct, for each non-negative integer g, a finite collection U, of
cosets of finzte subgroups of I' and a finite collection @, of trigono-
metric polynomials ¢ on G, such that {|¢||., < 1, with the following
properties:

1 U,CU,;,, and @, CP,,,.

(2) For every coset KeU;, y + K C S(u) for some y e S(u).

(3) With every y € S(u) there is associated a coset K; ,eU;, a
function ¢; , € @,, and an integer p;,, 0 < p,, <, such that
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(@) v + K, , C Su);

() fo(— =, 7)¢,,,@)dp(x) = 1 + p;,/10||ull;

(c) There is a chain C;, of cosets K, K_,,,..., K, ,, K,
wherep =9, ,. K, =K, ,,K;eU, (p <1 < 1) and the subgroup
of which K, is a coset is a proper subgroup of the one which has
K., as a coset.

The existence of U, and @, for all positive integers 7 leads to an
easy contradiction. By (3)(b), no p, , exceeds 10]|u||2. If ¢ is an
integer larger than 10{|«|{?, then (3)(c) implies that there are ar-
bitrarily long chains which contain a certain K*, e U,, since U, is
finite. Similarly, there exist arbitrarily long chains, as in (3)(c),
which contain K7 and a certain coset K} ;e U,,,. Continuing, we
obtain an infinite chain of cosets K} which have translates in
S (), such that the corresponding subgroups of I' form a strictly
increasing sequence. By Lemma 3.5.3 this is impossible.

We now have to construct U; and @, under the assumptions
3.6.2. We proceed inductively. U, contains only the group con-
sisting of 0 alone, @, contains only the function ¢ = 1. Taking
bo,y = 0 in (3), U, and &P, satisfy the requirements.

Suppose U, and @, are constructed. Let « be an integer larger
than 10||g||2 + 1 times the number of elements of @,, and con-
struct pairwise disjoint finite sets P,, .. ., P, of pseudo-periods of
S(u), with the following additional property: if n # m, if y' ¢ P,
and y"” ¢ P, then y” — 3" does not belong to any of the groups
whose cosets are members of U;. This is possible, by Lemma 3.5.2.

Now fix yeS(u). If 1 £ #n = «, then y + y, € S(u) for some
V. € P,. Our choice of « implies that for some %, 3 5, the same
¢ € @, and the same integer # are associated by (3) with the points
u=‘y+y,,landv=y+'y,,’. Thus

p
@ [ (= g = | = moseane = 1+ 5

where ¢ = ¢, , = ¢;, and p = P, , = P;,-

Put w =y, — y, = —v. Our choice of {P,} shows that
w 7 0. There are two possibilities:

(i) y +rw + K, ,CS(u) for all integers 7;
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(ii) for some 7, y + rw 4 K, , is not a subset of S(u).

In case (i), Lemma 3.5.4 shows that w must generate a finite
cyclic subgroup A of I Put K,,, , =K, ,+ 4, p;11,=2,
$i41,7(@) = (— 2, v, )$(z), and let C,,, , be the chain C, , followed
by K., y- Our choice of {P,} shows that w is not in the subgroup
K of I' of which K, ., is a coset, so that K is properly contained in
K + A. Hence C,,, , has the required properties.

In case (ii), there exists y, € K; , and a smallest non-negative
integer 7, such that

(6) 7+ 7w+ yoeSu) but y + (ro + 1w + v ¢ S(k);
since y + y, € S(u), this follows from Lemma 3.5.4. Put

P p+1
6 P=1 =1 —_
(6) + Q +10”/‘“

10]|ll’
By (3)(b), P < |lull, and s0 Q = P + (10||u})™* < P + (10P).
Choose positive numbers a and &, in accordance with Lemma 3.5.5,
put

(1) [@)=(—2z,v), g@)=(— 2z, 75w +y,), h{z)=(— =, 7,,)$()

and

(8) $s+1,y = ah + afh 4 bg — bfg.
Then (4), (5) and Lemma 3.5.5 imply that ||, ,ll, =< 1 and that
9) [o(—= 2 V)12, @ u@)= Q.

If now K4y =K; oy + ¥, if pi0,, =2+ 1, and if Cyyy , Is
the chain obtained from C;, by replacing K; , by K, ,, it is
easily verified that the conditions (3) hold, with § 4 1 in place of ;.

Define U,,, as the union of U, and the collection of the cosets
K., let @, be the union of @, and the trigonometric polynomi-
als é;,,,,, for all y e S(u). To complete the induction, we must
prove that U,,, and &,,, are finite collections.

We had finitely many sets P,, hence only finitely many possibil-
ities for y, , ¥,,, and w, and hence we defined only finitely many
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cosets K., ,. It is clear that only finitely many ¢,,, , arose i
case (i). In case (ii), Lemma 3.5.4 shows that for each w and for
each y, there were only finitely many choices of 7,, and since U;
was a finite collection of finite cosets, there were only finitely
many possibilities for y,. Hence only finitely many ¢,,, , were
constructed by (8).

This completes the proof.

3.7. Norms of Idempotent Measures

As we saw in Section 3.2.4, an idempotent measure x has norm 1
if and only if S(u) is a coset. A simple combinatorial characteriza-
tion of cosets leads to the curious result that |u|] = 1/5/2 ~ 1.118
if [l > 1.

3.7.1. LemMmA. Aset ECTisacosetin I'ifandonlyif E4+-E—ECE.

Proof: If E is a coset of a group A4, then £ — E = A, and hence
E=E+A=E+ E—E

Conversely,if E + E — ECE,putd =F — Eandfixy,e E.
If yeE, then y — yye A4, and so E = y4 + A, since

ECyo+ A=y, + E—ECE.

Consequently, A — A = (E —y,) — (E —y) = E — E =4,
so that A is a group.
3.7.2. THEOREM. If pe J(G) and ||u|| > 1, then ||u}} = +/5/2.
Proof: Since ||u|] > 1, S(u) is not a coset, and Lemma 3.7.1

shows that there exist y,, y,, y; € S(u) so that y; + y, — y3 ¢ S(u).
Put

f@)=2(— 2, »)[1 + (&, 71 —73)] + (— 2, 9)[1 — (& vs— )]

=2(—2, ) +2(— 2, y3) + (— %, 7)) — (— 2, 7, +y: —¥3)
The second expression for f shows that [ fdu = 5. Setting
(z, ¥1 — y3) = €¥*, the first expression for f shows that

@)l < 211 + €2 4 1 — ¢~2=| = 4|cos af + 2lsin of < 24/5.

Hence
5= [ fan < flullull < 24/5llpll.
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3.7.3. It is not known whether the constant 4/5/2 is the best
possible one in the preceding theorem. However, an example shows
that it cannot be increased beyond (1 + 4/2)/2 ~ 1.207. . ..

Let y be a character on a compact group G, ¥ # 0. If y has in-
finite order, then |[1 + y||, = 4/n. If y has finite order g, then

2
— (g odd)
M+ vl =(_; i Il + e2mife) — gsin ;n/2q)
=1
gtan (z/2g) (¢ even)

For odd ¢, [|1 + ||, decreases therefore to 4/z, as g — oo; for
eveng, ||{1 4 y||, increases to 4/x. The smallest value larger than 1
is obtained when ¢ = 4, and is (1 + 1/2)/2.

3.74. If n, n,, ..., n are distinct integers and
k
) du(z) = 3 e da,
s=1

then u is an idempotent measure on the circle group T, and
| B .

@) loll = 5o [ teme 4 e
2nJ_,

It is an interesting problem to determine the order of magnitude of
m (%), the greatest lower bound of the numbers (2) for all possible

choices of n,, ..., n,. The best result in this direction so far is
that
log 2 /4
3 k A !————}
3) m(k) > log log %

where A4 is an absolute constant (Cohen [2]). If the integers
7y, . . ., n; are in arithmetic progression then (2) is asymptotic to
A log %, and it is conceivable that thisis the true order of magnitude
of m(k).

3.8. A Multiplier Problem

3.8.1. THEOREM (Helson [3)], Edwards [2]). Suppose ¢ ts a
function defined on I such that  f € B(I') for every f € A(I"). Then
¢ e B(I).
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Proof: First we show that the linear map T which takes f to ¢f
is a continuous map of 4 (I') into B(I'). Suppose f, — f in the
norm of A(I') and ¢f, — u in the norm of B(I'). (We define
A1l = [Iftlhif fe A(T), and [|u]| = ||ullif u € B(I').) Forany y e I’
we then have

uly) = lim $()fuly) = $)f ) = (TN ).
Thus Tf = u, and the continuity of T follows from the closed
graph theorem (Appendix C6). Hence there is a constant K such
that

) ligfll < KIIfll (Fed (D).

Given y,, ..., y, e I'and ¢ > 0, Theorem 2.6.8 shows that there
exists f e A (I") with ||f|| < 1 + ¢, such that f(y;) = 1 for 1</<n.
If ¢y, ..., c, are complex numbers and if u = ¢f,

l; ch(y:) =
3 il S Nl - sup I3 e, 7)l SK (1 +2) sup 3 e e, )

Taking f constant on an open set V, it follows that ¢ is continuous
on V, hence ¢ is continuous. Thus Theorem 1.9.1 applies and shows
that ¢ ¢ B(I'), with ||¢|| = K.

3.8.2. CoROLLARY. If ue M(G), the transformation f — f x p of
LY(G) tnto LMG) has norm ||ull.

3.8.3. For a € G, let 7, be the translation operator defined by
Tof = fa, where f,(2) = f(z — a).

THEOREM. Suppose ¥ is a bounded linear transformation of L*(G)
into L1(G) which commutes with all translations; i.e., Y7, = v, ¥ for
all a e G. Then there is a function ¢ on I such that

(1) P = sfy)  (feL}G), yeT),

where S?’f 1s the Fourier transform of Yf. Conversely, if ¥ satisfies
(1), then ¥z, =1, 7.
Proof: Fix b e L™(G). The map f — [ (¥f)b is a bounded linear
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functional on L}(G), and hence there exists 8 ¢ L*(G) such that

@ [ (PHepEEz = (@)pRdz  (fLMG)).

If now f, g e L1(G), we obtain
[((29) &) @)z = [ [ (7, 1) (2)e ()b (@)dydx
= [ eWdy [, (Fr.h) @b @)z = [ e@)dy [ (0.0) (@)B()d
= [, (1 *8) @)B(x)dz.

Since the last expression is unaltered if f and g are interchanged
and since b was an arbitrary member of L®(G), ¥ satisfies the
identity

3) (#h=g=1f(Pg)  (f.ge<L}(G))

Hence ('i’f‘) g=F- (‘:l\”g), and this implies the existence of a
function ¢ on I for which (1) holds.
The converse is trivial, since f,(y) = (— a, y)f(y).

3.8.4. Combining Theorems 3.8.1 and 3.8.3, we see that the
bounded linear transformations of L1(G) tnto L*(G) which commute
with all translations of G are precisely the transformations of the form

Yf=f=*pu
where pe M(G).
Moreover, ||¥|| = ljull, and if ¥ is a projection, i.e., if P2 = ¥,
then u * u = u.



Fourier Analysis on Groups
by Walter Rudin
Copyright © 1962 Wiley-Interscience.

CHAPTER 4

Homomorphisms of Group Algebras
4.1. Outline of the Main Result

4.1.1. Consider two LCA groups G,, G, and their duals I}, I,
and let ¥ be a homomorphism of L1(G,) into M (G,); thatis to say,
¥ is a linear transformation of LY(G,) into M (G,) which is also
multiplicative with respect to convolution:

(1) F(f«g)= (P) = (Wg)  (f,geL}Gy))

Since M (G,) is semi-simple, ¥ is bounded (Appendix D5). To

avoid trivialities, we assume that ¥ is not identically zero.
Associated with ¥ there is a homomorphism ¥ of 4 () into

B(TI',), defined by the requirement that &’f be the Fourier-Stieltjes
transform of Wf, for all fe 4(I7).

For every y € I, the map f— (f’f) (y) is a complex homomor-
phism of L1(G,). Let Y be the set of all y € I, for which this homo-
morphism is not identically 0. If y ¢ Y, Theorem 1.2.2 shows that

there is a character «(y) e I} such that (ﬁ’f‘)(y) = flaly)).
Thus each homomorphism ¥ of L1(G,) into M (G,) induces a map
o of a subset Y of I', into Iy, suck that

fla)) ifyeY,

@  (®H) ={ (feL'Gy). yeTy).

0 if y¢Y.
We shall abbreviate (2) by using the notation
(3) ﬁ’f =foa.

The problem considered and solved in this chapter is the charac-
terization of all homomorphisms of L!(G,) into M (G,). The above
remarks show that this is equivalent to the problem of finding all

77
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maps « of subsets Y of I', into I such that the transformation
f—foa carries 4(I') into B(I}).

4.1.2. Affine and piecewise affine maps. If E is a coset in
I', and if « is a continuous map of E into I'; which satisfies the
identity

Q) aly+9¥ —y")=aly) +al) — ") ¥,y <E),
then « is said to be affine; to justify the definition we refer to
Lemma 3.7.1.

Suppose that

(@) S,, ..., S, are pairwise disjoint sets belonging to the coset-
ring of I;

(b) each S; is contained in an open coset K, in [,;

(c) for each ¢, «; is an affine map of K, into I;

(d) xis the map of Y =S, u...uS, into I} which coincides
on S; with «,.

Then « is said to be a piecewrse affine map of Y into I'y.

4.1.3. We can now state the main result of this chapter, in the
terminology developed in Section 4.1.1:

. THEOREM. If ¥ is a homomorphism of L1(G,) into M (G,), then
Yf = foa, where a is a piecewise affine map of Y into I'y and Y
belongs to the coset-ring of I'y.

Conversely, if Y belongs to the coset-ring of I', and if a is a prece-
wise affine map of Y into I'y, then u o a e B(I,) for every p € B(I).

We add that there are homomorphisms of M (G,) into M (G,)
which are not of the above type. An example is the homomorphism
7ty described in Section 3.4.1 which maps M (G) into M (G), is not
identically 0, but maps L1(G) into 0.

The general case of this theorem was proved by Cohen [2]; the
proof depends on knowing the idempotent measures on G, © G,.
Special cases, obtained earlier by Helson [3], Beurling and Helson
[1], Leibenson {1], Kahane [1], [2], and Rudin [3], [10] are de-
scribed in Section 4.7.

We first prove the second part of the theorem (Theorem 4.2.3).
Then, after some combinatorial preparation, we prove the first
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part for compact G, and G, (Section 4.4); since the dual groups are
now discrete, no topological considerations are involved in the
characterization of «. The general case is deduced by passing to
the Bohr compactifications of G, and G, (Section 4.5).

4.2, The Action of Piecewise Affine Maps

4.2.1. LEMMA. Suppose A is an open subgroup of I'y, « is a con-
tinuous homomorphism of A into I'y, p e B(I}), and ¢ = u o .
Then ¢ e B(I}y), and ||$l] < |lull.

Proof: The annihilator H of A4 is a compact subgroup of G,. Let
P(y) = 37 ¢;(y, y;) be a trigonometric polynomial on G, and put
Q= Pxmy. Then [|Qlle < ||Pllulimull = [|Pll., and Q) =
> c;x(7:) (Y, vs), where x is the characteristic function of A.

Since « is a homomorphism, the map y — (z, a(y)) is a character
on A, for each z € G,, and so ainduces a continuous homomorphism
B of G, into G,/H for which

(1) (@ «(y)) = (B(x),y) (xeGy, yed).
Then
(2) ,.ZA (z a(x)) = Q(Bx)) (@eGy),

and so Theorem 1.9.1 implies that

(3) IZ chlrdl =13 ct(a) = lall - 1@l = 114l - 1Pl

t=1 Yi€A
and hence that ¢ ¢ B(I3) and ||¢|| < [|ull-

4.2.2. LemMa. The conclusion of Lemma 4.2.1 holds also if A is
an open coset in I'y and if « is an affine map of Ainto I'y.

Proof: Fix yoeAd and define «,(y) = a(y + 7o) — afy,), for
yed — y,. Then «, is a continuous homomorphism of the open
subgroup A — y, into I';. Since both B(I}) and B(I}) are in-
variant under translation and since translations leave their norms
invariant, the result follows from 4.2.1.

4.2.3. THEOREM. If Y belongs to the coset-ring of Ty, if a is a
piecewise affine map of Y into I'y, if ue B(I') and if = p o a,
then ¢ € B(I,)
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Proof: We use the symbols S,, K,, «; as in Section 4.1.2. If
$; = ﬁ oa; and if y; is the characteristic function of S;, then
¢ = x:9;. Since S; belongs to the coset-ring of I, y, € B({})
(see Section 3.1.2); since «, is affine on the open coset K, ¢, ¢ B(I),
by Lemma 4.2.2. Since B(l,) is an algebra, it follows that
¢ e B(Iy).

4.2.4. LEMMA. Suppose E is a coset in I', and a is an affine map
of E into I'y. Then « can be extended to an affine map of the
closure £ of E, and «(E) is a closed coset in I.

Proof: Fix y* ¢ E. Since
(1) «() —al") =l* + ¥ —y") —aly*) (¥ <E),
the continuity of « implies that a is uniformly continuous; i.e., to
each neighborhood W of 0in I}, there corresponds a neighborhood

V of 0 in I’y such that a(y’) — «(y"’) e W whenever ' ¢ E, y" ¢ E,
and y' — " eV.

Fix yo € E, and let A be a subset of E, with 4 compact. If W
is a compact neighborhood of 0 in I}, the uniform continuity of «
shows that there is an open neighborhood V of 0 in I, such that
«((y + V)N E)Ca(y) + W, for all ye E. Since ACA+7V,
there exist 7;,... y,€4 such that 4 CJ(y, + V). Hence
a(4) C Uex((y;) + W), and so a(4) has compact closure in Ij.

It follows that the closures Fy of the sets « (E n N) are compact,
where N runs through the compact neighborhoods of y,. Hence
() Fyis not empty. The uniform continuity of « implies then that
the sets Fy have exactly one point in common, and we define
a(y,) to be that point.

It is now a routine matter to verify that «, so extended to E, is
continuous on E. Once this is done, the continuity of the group
operations shows that the extension is affine. Since £ is a coset,
Lemma 3.7.1 shows that «(E) is a coset and the uniform continuity
of « implies that «(E) is closed.

4.3. Graphs in the Coset Ring

4.3.1. Assume that Iy and I, are discrete abelian groups and
that I' = I} @ I, is their direct sum. A set E C I" will be called
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a graph if to every y, e I', there is at most one y, € I'; such that
(n.7) e E.

THEOREM. Suppose Y C I, ais a map of Y into I'y, and E is the
graph of «; i.e., E is the set of all points (x(v,), y,) € I, with ype Y.
If E belongs to the coset-ring of I', then Y belongs to the coset-ring of
Iy and o is piecewise affine.

This will be proved in Section 4.3.4.

4.3.2. If A is an abelian group and E is a coset of a subgroup
A, of A, we define the index of E to be the index of A4, in 4, i.e.,
the number of elements in A4/4,. If E, and E, are cosets in 4, of
the subgroups A, and A,, the index of E, in E, is defined to be the
index of 4, n A, in A,.

4.3.3. LEMMA. An abelian group is not a finite union of cosets of
infinite tndex.

Proof: This can be proved by quite elementary means, but it
may be of interest to use the analytical apparatus which is at our
disposal.

Suppose E,, ..., E, are cosets of infinite index in the discrete
group A whose dual is H. The characteristic function of E, is the
Fourier-Stieltjes transform of a measure x; which is the Haar
measure of an infinite compact subgroup of H, multiplied by a
character of H (see Section 3.1.2) so that u, is continuous. Defin-
ing uv o= u+ o — u*o, the characteristic function of £ = [J E;
is the Fourier-Stieltjes transform of the measure = u, vu,v...vy,,
which is continuous. Hence u # é,, /} is not identically 1 on 4,
and so E # A.

4.3.4. Proof of Theorem 4.3.1. If X is a finite collection of
subgroups of I', let R(X) be the ring generated by the cosets of the
groups belonging to X; i.e., R(ZX) is the smallest family of subsets
of I' which contains all cosets of the groups in X and which is
closed under the formation of finite unions, finite intersections,
and complements.

Suppose now that the graph E of « belongs to the coset-ring of
I'. Then E ¢ R(X), for some finite collection X. We may enlarge
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Z'so that I' e 2 and so that the intersection of any two members of
2 belongs to Z.

We call H a minimal element of Z if H ¢ X and if X contains no
proper subgroup of H which has finite index in H. Remove all
non-minimal elements of 2 and let 2’ be the remaining collection
of groups. Since X' is finite, each H ¢ 2’ belongs to R(Z’). Hence
Ec¢R(Z). If H,e 2’ (1 =1, 2), the index of H, in H, is either 1
or oo.

It follows that E is a finite disjoint union of sets of the form

(1) E,=LaNM, @(=isn),
)

where L, and M, are cosets in I', M :.,. is the complement of M,,,
each M, has infinite index in L,, and there are only finitely many
M,, for each 1.

We claim that each L, is a graph. Without loss of generality,
we may assume that L, is a subgroup of I'=1, & I,. If
(70, 0) € L; and y4 £ 0, and if (y,, y,) € E;, then the element

(2) (70, 0) + (1, 72) = (o + 71, 72)

belongs to at least one M, since E, is a graph. It follows that E,
is covered by the union of the cosets M,; — (y,, 0), and so L, is
covered by a finite union of cosets of infinite index, in contradic-
tion to Lemma 4.3.3.

Let z be the homomorphism (y,, ¥,) = y, of I" onto I, and put
K,==(L,), S, = n(E;). Since L, is a graph, there is a uniquely
defined map «, of K; into Iy such that
(3) (x(y). 7)€L, (yeK,).

This «, is affine. Since S; = K,; n (; N;; where N;; = n(L, n M),
S; is in the coset-ring of I,.

Since Y == |J S, and since a, coincides withaon S; (1 < 7 < #),

the proof is complete.

4.4. Compact Groups

We now assume that G, and G, are compact, that ¥ is a homo-
morphism of L1(G,) into M (G,), and that Y and « are associated
with ¥ as in 4.1.1(2).
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4.4.1. LEMMA. ¥ has a norm preserving extension to a homo-
morphism of M (G,) into M (G,), given by
(1) (PR)) = (o))  (ueM(Gy),yeTy).

Proof: Fix p e M(G,), put ¢ = g o «, and let P(y) = St ey, vi)
be a trigonometric polynomial on G,. Given ¢ > 0, Theorem 2.6.8
shows that there exists % € L1(G,) such that ||%]], < 1 + ¢ and
E(a(y;)) =1 for those y, which lie in Y and which occur in the
definition of P(y). If f = k * u, then fe LY(G,),

& (#H)) = (foa)y) = (ko) ()ply)  (yeli)

so that

(3) 21: cih(y) = Zycik(“(yi))qs(yi) = zlci( Pf) (..
= i€ o

Theorem 1.9.1 now implies that

(4) IZC ¢l = 1P - i Pileo

and hence that ¢ ¢ B(l},), with

(6) Nl =NFA=HEN - IALSNEI ] - AN = Q411 - [pll

Since ¢ was arbitrary, ||¢|| < ||P]] [lxl|, and the proof is complete.
4.4.2. If 6, is the unit mass concentrated at the point v ¢ G,

and if ¥ is extended as in Lemma 4.4.1, put u, = ¥J,. Then
My € M(G2)r H”’z” é HW”, and

- — 2, eY),
) R P s

These are the only properties of the extended homomorphism
that will be used in the proof of the next theorem. It may be of
interest to note that the map 2 — g, is a bounded homomorphism
of G, into M (G,) since u,,, = u, * u,, by (1).

4.4.3. THEOREM. The graph E of a is a member of the coset-ring
of I ®T,.
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Proof: Let G =G, ® G,, I'=1T, ® I,. The graph of « was
defined in Theorem 4.3.1. By Theorem 3.1.3, we have to show that
the characteristic function y of E belongs to B(I').

The letters =, y, z, 3, 9", ¥ will denote points of G,, G,, G, I3,
I,, and T, respectively. If % is a trigonometric polynomial on G,,

(1) kly) = ; «(y")y. "),

define £ as a function on I bzy

(2) k) = k(. y") = a("),

and put

3) ¢z y) = ng a(y”)(z, «(y"))(y, ¥").

Then ¢ is a trigonometric polynomial on G, whose Fourier trans-
form is ky. Defining u, as in 4.4.2, we have

w *Ev) =3 a0 ¥) [o,(= V"))
= fa, T a4") — 47 nnl) = [y — ()
so that
() [ 14 y)idy < (Rl S IHLIPH @Gy,
Integrating (5) with respect to z, we thus have
(6) 181l = J,, [, 1#(e 9)ldzdy < 1R
Now choose y,, . .., ¥, € I, complex numbers ¢,, ..., ¢,, and

e > 0. By Theorem 2.6.8 there exists £ of the form (1) such that
Rl <1+¢ and k(y,)=1 (1<i=<mn). Setting P(z)=
> ci(z, y;), we then have
lg cx(ydl = IE ck(y)aly) = !Z ;)

= I|¢>l M Plle = (1 + E)II‘PI! [P -

Q)
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Hence y € B(I'), by Theorem 1.9.1, and since ¢ was arbitrary, we
also see that |lx|| = ||l

4.4.4. Theorems 4.4.3 and 4.3.1 establish Theorem 4.1.3 for
compact G, and G,.

4.5. The General Case

4.5.1. We now turn to the proof of Theorem 4.1.3 for arbitrary
LCA groups G, and G,; ¥ is a homomorphism of L!(G,) into
M (G,) and « is the induced map of Y into I';. We have to prove
that Y belongs to the coset-ring of I', and that « is piecewise affine.

Let G, and G, be the Bohr compactifications of G, and G,. Their
duals are the discrete groups Iy, and I, ,. Choose u e« M(G,),

£>0, and y,,..., y.e ;. Since G, is dense in G; and since
{71, .. 7a} is a finite set, there is a measure g, e M(G,) with
llsall = llmll, such that

1) wmoa)) — @oa)p)l<e (1=isn)

Replacing u, by % # u,, where k € L1(G,) is as in Theorem 2.6.8,
we see that there exists f e L1(G,) with ||f||; = (1 + ¢€)|{¢l|, such
that (1) holds with f in place of z,.

Setting ¢ = fo «, it follows that ¢ e B(I}),

llgll = (1 + &)llull - NP1,

and

(2) B(r) — Roa)r)l <e (A =i=n)

Since y,, ..., v, and € were arbitrary, these conditions imply, by
Theorem 1.9.1, that u o« e B(I,,) and that

3) Il o all < 1211 - lull.

Thus «, regarded as a map of Y, (the set Y in the discrete topol-
ogy) into Iy, carries B(I,,) into B(l,,). Hence the result of
Section 4.4 applies, and we conclude:

The set Y, belongs to the coset-ring of I'y , and « is a piecewise
affine map of Y, into Iy ,.
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4.5.2. To complete the proof of the theorem, we have to show
that Y and « satisfy the topological requirements. In other words,
we have to show that the conclusion of Section 4.5.1 remains true
if the subscripts 4 are removed.

If yo € Y and if V is an open neighborhood of a(y,) in Iy, there
exists f e A(I';) whose support lies in V, such that f(a(y,)) # O.
If W= {yeTl,: (foa)(y) #0}, then W is openin Iy, y, ¢ W, and
a(W)C V. Hence Y is open, and « is continuous.

Gathering up the information obtained so far, we now have the
following situation:

There are finitely many cosets K; and N, in I',, and there are
finitely many disjoint sets S; of the form

(1) S;=K,n Ny,
i

where N, has infinite index in K; and N}, is the complement of
N,. Theset Y = |J S, is open. To each K, corresponds an affine
map «, of K, into I';, and «, coincides with « on S;,.

By Lemma 4.2.4, each a, can be extended to an affine map of the
closure K, of K;. Suppose this is done. Fix y,¢ P. Then y,¢ S,
for some ¢, and a;(y,) € I';. Choose f € L1(G,) so that f(a,(y,)) # 0.
On S,, (fo a)(y) = f(ai(»)). Since «;, and fo« are continuous,

(f o @) (o) = f(ai(ye)) % 0. Hence yo € Y, and so Y is closed in I}.

Let I be the set of all ¢ such that S, has non-empty interior.
Then U S; (¢ ¢ I) covers Y, since Y is open, and thus is equal to Y,
since Y is closed. If N,; has non-empty interior, then N, is open
and hence does not intersect S;. Hence, for i eI,

(2) S:‘:KinnN:'p
3

the intersection being taken over those N, which are open. Since
K, is open and closed, it follows that S, is open and closed and

belongs to the coset ring of I, Let 8, . . ., 8, be an enumeration of
these open and closed sets, and let E, be the set of all points in §,
which are not in §;v... U8, 1 7= »).

This completes the proof: Y is the disjoint union of the sets E;
which belong to the coset-ring of I';, each E, lies in an open coset
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K., and there are affine maps «; of K, into I'; such that «, coincides
on E; with e.

4.6. Complements to the Main Result

The map « and the set Y will be associated with the homo-
morphism ¥ as in Section 4.1.1.

4.6.1. THEOREM. Let ¥ be a homomorphism of L'(G,) into
M (G,).

(a) There is a norm-preserving extension of ¥ to a homomorphism
of M(G,) into M(G,).

(b) Suppose G, is not discrete. Then ¥ has a unique extension fo
a homomorphism of M (G,) into M (G,) if and only if Y = I,.

If G, is discrete, then M (G,) = L(G,), and the extension prob-
lem does not arise.

Proof: For compact G, and G,, (a) was proved in Lemma 4.4.1.
The same proof applies in the general situation, provided we know
that the function ¢ used in that proof is continuous, so that Theo-
tem 1.9.1 applies. But we know now that « is continuous and that
Y is open and closed, and the continuity of ¢ is then trivial.

To prove (b), suppose ¥ has been extended to M (G,), choose
feLYG,), ue M(G,),and put 6 = ¥f, A = Wu. If g = f x4, then
g €« L1(G,), and hence the Fourier transform of ¥g is 0 outside Y
and is

1) (fu)(a@) = fla@))(a())

on Y. But since Wg = (¥f) * (¥Yu) = o # 4, this transform is also
equal on Y to

(@) () A0) = flak))1 ().

Since (2) holds for all f € L}(G,), we have 1 (y) = a(«(y)) fory ¢ Y.
Thus } is uniquely determined on Y by a, i.e., by the action of
¥ on L'(G,), and hence the extension of ¥ is unique if Y = TI,.
If Y 5« I, let % be a complex homomorphism of M(G,) which
is identically 0 on LY(G,), and for any p e M (G,), let ¥u be the
measure whose transform is
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_(m(x) @eY),
@ #0={ " e

Since L1(G,) is a proper closed ideal in M (G,), there exists such an
& which is not identically 0 on M (G,), and the extension of ¥ so
obtained is different from the one with %2 = 0.

It is also possible to define such an 4 explicitly: let ny be the
homomorphism of M (G,) into itself defined in Section 3.4.1, fix
y eIy, and put h(u) = o(y), where o = myu.

4.6.2. THEOREM. The homomorphism ¥ of LY(G,) into M(G,)
maps L1(G,) into L1(G,) if and only if «=2(C) is compact for every
compact subset C of I.

Proof: If there is a compact set C in I such that «1(C) is not
compact, choose f € L1(G,} such that f = 1 on C. Then the set of
all y e Y at which f(a(y)) = 1 contains the closed set «(C) and
hence is not compact, so that ¥f¢ L(G,).

Conversely, if «2{C) is compact for every compact C and if
f € L1(G,), we can find {, € L1(G,) such that f, has compact support
and such that £, — f in the norm of L1(G,). Each f, o « then has
compact support, so that ¥f, e L1(G,). Since ¥ is continuous,
¥, — ¥f in the norm of M(G,), and since L(G,) is closed in
M(G,), ¥f e L1(Gy).

4.6.3. 1f we examine the proof of Theorem 4.1.3 and pay atten-
tion to the norms, we find:

(@) If |¥]| < 1, then ¥ = 0, by Appendix D5.

(b) 1f }|P)| = 1, then {|x|] = 1 in Lemma 4.4.3, hence the graph
of a is a coset in I} @ I, (Section 3.2.4), and this means that Y is
an open coset in I, and that « is affine on Y. By Lemma 4.2.2,
this last condition in turn implies that ||¥|| = 1.

(c) It follows from (b) and Theorem 3.7.2 that ||¥[| = /5/2
if ||P| > 1.

4.6.4. We recall that an isomorphism is a homomorphism which
is one-to-one.

THEOREM. If ¥ is an isomorphism of M (G,) onto M (G,), then ¥
maps L1(G,) onto L1(G,). Conversely, every isomorphism of L1(G,)
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onto L1(G,) has a unique extension to an isomorphism of M (G,) onto
M(G,).

Proof: If ¥ is an isomorphism of M (G,) onto M (G,), then the
restriction of ¥ to L(G,) is an isomorphism of L*{(G,) into M (G,)
and hence determines « and Y, as before. The proof of Theorem
4.6.1(b) shows that if u e M(G,) and o = ¥y, then

(1) oly) = n(aly)) (reY)
Since the range of ¥ covers M(G,), « must be one-to-one on Y.
Since o is piecewise affine and Y is closed, «(Y) is closed in I7.
If «(Y) s I it follows that there exists f € L1(G,) such that f = 0
on «(Y) but f # 0 at some point of I'}; since f o « = 0, we have
¥Yf = 0, and this contradicts the assumption that ¥ is one-to-one.
If Y £ I,, there exists o e M (G,), o # 0, such that s=0o0nY,
and there exists u ¢ M (G,) such that ¢ = ¥u; by (1), 2 = Oon I},
thus g = 0; but Yu = o # 0, a contradiction.

Summing up, « is a piecewise affine homeomorphism of I', onto
Iy, and by Theorem 4.6.2 the first part of 4.6.4 is proved.

If ¥ is an isomorphism of L(G,) onto L1(G,) then again Y = I,
a(Y) = Iy, and « is one-to-one. The extension of Theorem 4.6.1
is thus an isomorphism of M (G,) onto M(G,).

CoroLLARY. If ¥ is an automorphism of M(G), (i.e., an iso-
morphism of M(G) onto M(G)) then ¥(L'(G)) = L(G).

This means that the ideal of all absolutely continuous measures
in M (G) is algebraically distinguishable from all other ideals in
M(G).

4.6.5. The simplest isomorphisms of L!(G,) onto L(G,) are
obtained by taking for « an affine homeomorphism (not merely
a piecewise affine one) of I, onto I';. Then there exists yqe I
and an isomorphism z of I', onto I'} such that a(y) = z(y — y,).
and t induces an isomorphism $ of G, onto G,:

(1) (z. ) = (Blx), 7) (eGy,yely).
The map
@) f— ). 167 ())ay

Gy’
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is a translation invariant linear functional on C,(G,); hence there
is a positive constant 2 = k(8), such that

@) E[ {6y =], fe)de  (feL}Gy).
If fe L'(G,), the Fourier transform of & - (y, »,) - /((y)) is

@ k[, @B 0))(— v 1)y = [, f@)(Blz), o — y)dz

= [, 1)@ o — 1))dz = f(at).
Thus

6  (PH) = k@ v)f(B7'()  (feL (G, yeGy).
We note that this ¥ is an isometry.

4.6.6. Let us say that ¥ preserves positivity if ¥f = 0 whenever
/= 0. Our next theorem characterizes the maps « such that
¢ o « is positive-definite on I', whenever ¢ is positive-definite on I .

THEOREM. If W preserves positivity, then Y is an open subgroup
of I'y and o« is a continuous homomorphism of Y into I').

Proof: Considering first the case of compact G, and G,, the
extension 4.4.1 of ¥ carries u = 0to ¥u = 0, so that the measures
1, of Section 4.4.2 are non-negative. If ¥ 5 0 then Y is not empty,
hence u, % 0 for all z¢G,, and so 4,(0) = 1. This shows that
0 ¢ Y and that ||g,]| = 1, so that ||x|| = 1 in the proof of Theorem
4.4.3. Hence the graph of « is a coset, Y is a coset, and « is affine.
Since 0 ¢ Y, Y is a subgroup of I';; since ,(0) = 1 forall z € G,,
«(0) = 0, and hence « is a homomorphism.

The general case follows; for if we pass to the Bohr compactifica-
tions, the induced homomorphism of M (G,) into M(G,) also pre-
serves positivity.

4.6.7. CorOLLARY. If ¥ is an isomorphism of LY(G,) onio
LY(G,) which preserves positivity, then ¥V has the form described in
Section 4.6.5, with yy = 0.

4.6.8. THEOREM. If I'is an infinite LCA group, then A(I') is a
proper subset of Co(I').
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Proof: There is a homeomorphism a of I" onto I" which is not
piecewise affine, and so there exists f ¢ 4 (I') such that foa ¢ 4 ().
But foaeCo(I).

A different proof of this theorem was given by Segal [3]; see also
Hewitt [2] and Edwards [1].

4.6.9. This chapter is primarily devoted to a study of the effect
of a map f - fo« on Ll-norms. Similar problems can of course be
posed for other norms. We will prove the analogue of Theorem
4.1.3 for the L*-norm. Section 5.7.8 contains a comment on other
L?-spaces.

THEOREM. Suppose G, and G, are compact,Y C I'y, and a maps Y
into I'y. The following two conditions are equivalent:

(@) Y belongs to the coset-ring of I'y, « is piecewise affine, and
«~Y(yy) is a finite set, for each y, e I;

(b) to every f € C(G,) there corresponds a function g e L=(G,) such
that § = fo o.

Proof: 1f « is a homomorphism of I', onto I, with finite kernel 4,
then Iy = I,/A, and so G, may be regarded as the annihilator of 4,
i.e., as a compact open subgroup of G,, of index #, where # is the
number of elements of A. If fe C(G,) and if § = fo a, it is easily
found (by first considering trigonometric polynomials) that
gly) = nf(y) if y € G, and that g(y) = 0 at all other points of G,.
Arguing as in Section 4.2, it follows from this special case that «
carries C(G,) into C(G,) if (a) holds; we omit the details. Thus (a)
implies (b).

The proof that (b) implies (a) is more interesting. Let ¥ be the
linear transformation of C(G,) into L*(G,) defined by setting
g=Yfif §=Ffoa If y,el and f(z) = (z, y,), then g(y) =1
for all y € «™1(p,), and since £ e Co(I), it follows that a=1(y,) is
finite. Also

(1) PHy) = 2 @.7) (eG).
a(y)=7,
Suppose f,eC(G,) for n=1,2,3,..., |lfa — flle =0, and

|Pf, — glle — O for some g e L®(G,). Then f,(y) — f(y) for all
yeIy and (f,oa)(y) = g(y) for all yeI,. Hence § ==foa, or
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g = ¥f. We conclude from the closed graph theorem that ¥is a
bounded linear transformation.

If F is a trigonometric polynomial on G, & G, and if we write
Fy(z) for F(z,y), then F¥ is a trigonometric polynomial on G,,
for every y ¢ G,, and since «~1(y,) is finite for each p, e I, (1)
shows that WF¥ is a trigonometric polynomial on G,. Setting
é(y) = (PF")(y), it follows that ¢ is a trigonometric polynomial
on G,. Also,

¢l < gl = sup ||FFY|, < ||¥]) - SuPIIF”llm——IIY’II Fleo-

vE€G, veG,
We conclude that there exists o e M (G, ® G,) such that
(2) [eJo, F(— 2 )o@, y) = [ (PF))dy

for every trigonometric polynomial F on G, & G,.

Fix y, eIy, yse I, put F(z,y) = (z, y,)(— ¥, 72). The left
side of (2) is then g (y;, ¥;), and the integrand on the right side is
> (v, y — y,), the sum being extended over all y e I, for which
aly) = 7. Thus 8(yy,y2) =1 if a(y,) = ¥, and is 0 otherwise.
This means that 8 is the characteristic function of the graph of «.
Theorem 3.1.3 shows that this graph belongs to the coset ring of
I'y ® I,, and Theorem 4.3.1 completes the proof.

4.7. Special Cases

4.7.1. THEOREM. If ¥ is an isomorphism of L*(G,) onto L*(G,),
and if ||| £ 1, then G, and G, are isomorphic and ¥ is of the form
4.6.5 (Helson [3]).

Proof: By 4.6.3, ||¥|| = 1 and « is affine; by 4.6.4, « is an affine
homeomorphism of I, onto Iy, and the result follows from 4.6.5.

4.7.2. THEOREM. Suppose I', is connected. If ¥ is an isomorph-
ism of LY(G,) onto LA(G,) then G, and G, are isomorphic and ¥ is
of the form 4.6.5. (Beurling and Helson [1]).

Proof: Since I', is connected, I, is the only non-empty member of
the coset ring of I,. Thus Y = I, « is affine, and the proof is
completed as in 4.7.1.
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4.7.3. THEOREM. Suppose ¢ ¢ B(I'), and suppose there is a
constant C such that

(1) I$N<C  @m=0+1,+2..),
the norm being that of B(I"). Then ¢ is a precewise affine map of I’
tnto the circle group T.

CoroLLaRY (Beurling and Helson ([1]). If, in addition, I" is con-
nected, then there ts a complex number a with |a| = 1, and an element
zeG, such that

(2) () =alz,y) (rel).
Proof: The spectral radius formula shows that
(3) 1#lle < lim ||¢2||1/* < lim CV» = 1.
n—+00 n—+00

The same holds for 1/¢. Hence |¢(y)| = 1 forall y e I'; i.e., ¢ maps
I into T.

Let u € M (G) be the measure such that ¢ = u. Forany f € L}(Z),
define

(4) ¥f= 2 fn)u
Then ¥ is a homomorphism of L{Z) into M (G), since |[{u"|| = C
for all #» € Z. The Fourier-Stieltjes transform of ¥f is

-

(5) S fme0) =e0)  (rel).

f=—00

By Theorem 4.1.3, it follows that ¢ is piecewise affine.

If I' is connected, then ¢ is affine, hence is a continuous homo-
morphism into T (i.e., a character) followed by a translation in T
(i.e., by multiplication by a complex number of absolute value 1).

REMARK. If I' = R, the real line, the preceding result special-
izes to

(6) $(t) = i+ (— 0 <t < ™),

where a and b are real numbers.
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4.7.4. Piecewise affine maps of I"into T can be described quite
explicitly: Let S,, .. ., S, be disjoint sets belonging to the coset-

ring of I', whose union is I'; choose z;, ..., %, ¢ G, and choose
complex numbers ¢,, . . ., ¢, of absolute value 1. Put
0y () = ¢,(=;, 7) (v €S,).

Then ¢ is piecewise affine, and every piecewise affine map of I'into
T is so obtained.
In particular, the affine maps ¢ of T into T are of the form

@ $(e) = com
where |c| =1 and # is an integer.

4.7.5. THEOREM (Leibenson [1], Kahane [1], [2]). Let ¢ be a
map of T into T such that the Fourier series of f($) +s absolutely
convergent whenever the Fourier series of f is absolutely convergent.
Then there is an integer n and a real number a such that

$(e?) = einf+a) (€ eT).

Proof: The map f — f(¢) is a homomorphism ¥ of A (T) into
A(T), or of L}(Z) into LY(Z), and ¢ is nothing but the map a
induced by ¥. Since T is connected, ¢ is affine.

4.7.6. In the preceding special cases, I', was either connected,
in which case its coset-ring was trivial, or ¥ was an isomorphism
of norm 1. In either case, « was affine on I, and so neither coset-
rings nor piecewise affine maps appeared in these results. The role
played by these two concepts in the homomorphism problem
became apparent for the first time after the case I\ = I, =2
had been settled; the problem, and the result, can here be stated
quite concretely:

Suppose Y is a subset of the integer group Z and « maps Y into
Z. For which Y and « is it true that

(1) 2 c(aln))e

ney
is a Fourier series (of a function in L}(T)) whenever the series
(2) 2 c(n)e?

nelZ
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is a Fourier series? Or, in our previous terminology, for which «
does the map f— foa carry A(Z) into A(Z)?

TaEOREM (Rudin [3]). Necessary and sufficient conditions for
this are the existence of a positive integer g and of a map § of Z into Z
with the following properties:

() If A,, ..., A, are the residue classes modulo g, then Y =
Siv...uUS, where each S, is either finite or is contained in some
A, from which it differs by a finite set, and the sets S; are pairwise
disjoint.

(b) x(n) = B(n) for all n € Y, with possibly finitely many excep-
tions, B(n + q) = B(n) for all ne Z, and

3) Bn+q) +B8(n —q) =28(n) (neZ).

Proof: This is just a restatement of Theorem 4.1.3, adapted to the
case I, = Z. We saw in Section 3.1.3 that Y belongs to the coset-
ring of Z if and only if ¥ has the structure described in (a).
A map f§ on 4, is affine if and only if it is of the form

(4) Ba+h)=u+h (—oo<k<w)

hence if and only if (3) holds.

The condition 8(n + g) 7 B(n) assures that « is not constant
on any infinite set (compare Theorem 4.6.2); if this condition is
omitted, the remaining conditions are necessary and sufficient
for « to carry Fourier series to Fourier-Stieltjes series.

4.7.7. Suppose the algebras L!(G,) and L'(G,) are isomorphic.
What can be said about the relation between G, and G,? In par-
ticular, does it follow that G, and G, are isomorphic?

It follows from Theorem 4.1.3 (see also the proof of Theorem
4.6.4) that a necessary and sufficient condition for L1(G,) and
L1(G,) to be isomorphic is the existence of a piecewise affine homeo-
morphism of I'y onto IY.

The following special case is an application of this remark:

TueoreEM (Rudin [10]). LY(G) s tsomorphic to L*(T) if and only
if G=T @ F, where F is a finite abelian group.
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Proof: If G=T & F then I'=27 & F; if F has g elements
hy--f, and if

(1) alng +4) = (mfy) (eZ 1Sk<g)

then « is a piecewise affine map of Z onto I" and « is one-to-one.
Hence L!(G) is isomorphic to LY(T).

Conversely, if « is a piecewise affine map of Z into I" then « has
the structure described in part (b) of Theorem 4.7.6. In particular,
if «(Z) = I, then §(Z) = I', I' is a union of finitely many arith-
metic progressions, hence I' is finitely generated and so is a direct
sum of cyclic groups. Since I' is the union of finifely many arith-
metic progressions, only one of these cyclic groups can be infinite.
Thus I'=Z & F and hence G =T & F, with F finite.
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CHAPTER 5

Measures and Fourier Transforms on Thin Sets

Measures concentrated on sets which are “thin”’ in a certain
arithmetic (or group-theoretic) sense havé some unexpected pathol-
ogical properties. In the present chapter, we study some of these
Phenomena; aba by-product we obtain an easy proof of the asym-
metry of the Banach algebra M(G) for all non-discrete LCA
groups G. We discuss the behavior of the Fourier-Stieltjes trans-
forms of measures concentrated on thin sets, as well as the restric-
tions of Fourier transforms to such sets.

5.1. Independent Sets and Kronecker Sets

5.1.1. A subset E of an abelian group G is said to be independent
if E has the following property: for every choice of distinct points

Z,..., %, of E and integers #,, ..., #n,, either
(1 My = Mgy = ... = M2, =0
or

2) %y + N2y + ...+ 12, # 0.

In other words, no linear combination (2) can be 0 unless every
summand is 0.

5.1.2. A subset E of a LCA group G will be called a Kronecker
set if E has the following property: to every continuous function
/ on E, of absolute value 1, and to every £ > 0, there exists y ¢ I"
such that

(1) sup ifx) — (9 <e

This definition is motivated by the classical theorem of Kro-
necker which asserts, in the present terminolcgy, that every finite

97
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independent subset of the real line is a Kronecker set (see Theorem
5.1.3). Since groups of bounded order contain no non-empty
Kronecker sets, we state a modified definition which is applicable
to that case.

For any integer ¢ = 2, let Z, be the set of all numbers
exp {2nij[q}, 0 < § < ¢ — 1; Z, is the cyclic subgroup of T whose
order is g. A subset E of D, (see Section 2.2.4 for the definition) is
said to be of type K, if E has the following property: every conti-
nuous function on E which maps E into Z, coincides on E with a
continuous character of D,.

5.1.3. For 2 ¢ G, put S(x) = T if = has infinite order; if 2 has
order ¢, put S(z) = Z,.

THEOREM. Suppose E is a finite independent set tn a LCA group
G, f is a function on E such that f(x) e S(x) for allx e E, and ¢ > 0.
Then there exists y € I' such that

() @ 7)) — @I <e (zeE).

Proof: Suppose E = {z,, . . ., z;}. The group H generated by E
consists of all linear combinations Y n.; with integral coefficients
7., and the independence of E shows that each x ¢ H has a unique
representation r = > nz,. It follows that the formula

k

(2) 95(‘21 n,T;) = ‘I_.! [flz)]™
defines a function ¢ on H; also, ¢(z,) = f(z,) (1 =7 = k), and
¢ is a character of H, i.e., a homomorphism of H into T'. Since T
is divisible, Theorem 2.5.1 shows that ¢ can be extended to a
character of G, and by Theorem 1.8.3 there exists y € I" such that
|(z, ¥) — ()] < ¢ for all z e E. This completes the proof.

There are more elaborate approximation theorems which may
be proved by this method with equal ease; see Hewitt and
Zuckerman [1].

COROLLARY. Suppose E is a finite independent set in G.
(a) If every x € E has infinite order; then E is a Kronecker set.
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(b) If G = D, and every x € E has order q, then E is of the type
K,.

Part (a) is evident. Taking ¢ < sin (n/g) in the theorem estab-
lishes (b), since both (z,y) and f(z) are constrained to lie in Z,.

5.1.4. THEOREM. (a) Kronecker sets are independent, and contain
no elements of finite order.

(b) Sets of type K, are independent subsets of D,, and contain only
elements of order q.

Proof: Suppose E is a Kronecker set in G, z,, . . ., 2, are distinct
points of E, n,,... n, are integers and Y nx;, = 0. Then
k k k
(1) H (@, y)™ = ;[_Il (nz;, y) = (IZ n;,y) =1

for every y e I', so that any function f on E which can be vniformly
approximated on E by characters must satisfy the condition

k

(2) H1 [fz)™ = 1.
Since E is a Kronecker set, (2) must hold for arbitrary complex
numbers f(z,) of absolute value 1. Hencen, =n,= ... =0, =0,
and {a) is proved.

If Eis of type K, in D, the same proof applies, except that now
(2) holds for all choices of f(z;) e Z,. Hence n, =0 (modg)
(1 £7 £ %), and this implies (b).

5.2. Existence of Perfect Kronecker Sets

5.2.1. We call a subset E of a topological space perfect if E is
compact and non-empty and if no point of E is an isolated point
of E. We call E a Cantor set if E is homeomorphic to Cantor’s
“‘middle third”’ set on the line. A set is a Cantor set if and only if
it is metric, perfect, and totally disconnected. Our present objec-
tive is the construction of Cantor sets which are Kronecker sets or
sets of type K, respectively, and to show that this can be done in
every non-discrete LCA group. We recall that if a non-discrete
LCA group is not an I-group then it contains D, (for some ¢ = 2)
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as a closed subgroup (Theorem 2.5.5). It will be convenient to
separate these two cases:

5.2.2. THEOREM. (a) Every I-group contains a Cantor set whick
zs a Kronecker set.

(b) The group D, contains a Cantor set which is of type K,.

Our proof will imitate the usual construction of a Cantor set on
the line as the intersection of a decreasing sequence of sets E,,
each of which is the union of 2r disjoint closed intervals.

5.2.3. LEMMA. Suppose V,, ..., V, are disjoint non-empty open
sets in G, and G 1s either an I-group or G = D,. Then there are points
z, eV, (1 1< k) such that

(@) {zy, ...,z is a Kronecker set, if G is an I-group,

(b) {1, ..., 2} s a set of type K,, if G = D,.

Proof: Suppose first that G is an I-group. If y e G and if 2 is an
integer, 2 # 0, then the set E, , of all z ¢ G such that kx =y is
closed and contains no open set; for if it did, then E,, — E,,
would be a neighborhood W of 0; since kx = 0 for all z ¢ W, this
contradicts the definition of an I-group.

By Baire’s theorem, V, is therefore not covered by the union of
sets E, o (#=1,2,3,...), so that ¥, contains an element z, of

infinite order. Suppose z,, . . ., z, are chosen, z; ¢V, (1 S 7 < 7),
and the set {z,, . . ., z;} is independent. Let H be the group gener-
ated by.z,, ..., ;. Since H is countable, Baire's theorem shows

that V,,, is not covered by the union of thesets E, , (k=1,2,3,. .;
y € H); hence there exists z,,, € V,,, such that none of the mul-
tiples &z, ., (¢ # 0) lies in H. In a finite number of steps we thus
obtain an independent set {z,, . . ., z;} each of whose elements has
infinite order, with z; e V,.

If G = D,, define E, , as above. Now E, , contains no open set
if 0 << k < g, since each neighborhood of 0 in D, contains elements
of order ¢. Having chosen independent elements z,, . . ., ;, with
z; e V,, of order g, it follows that V,,, contains a point z,,, such
that kz,,, is not in the finite group generated by z;, ...z,
unless ¢ divides k.

The lemma now follows from the corollary to Theorem 5.1.3.
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5.2.4. Proof of Theorem 5.2.2. Since every I-group has a
closed subgroup which is a metric I-group (Theorem 2.5.5) and
since every Kronecker set in a closed subgroup of G is a Kronecker
set in G, we may assume in part (a) that G is metric.

Let P? be any compact neighborhood in G. Suppose » = 1,
s = 21, and suppose that disjoint compact neighborhoods
(1) popy L, P

s

have been constructed. Let W,,_, and W,, be non-empty disjoint
open sets in P;! (1 <7 <'s). By Lemma 5.2.3, there is a Kron-
ecker set {z], ..., z},} with 2zl e W, (1 <7 < 2s). It follows that
there is a finite set F, C I’ with the following property: to each
choice of real numbers «, there exists at least one y ¢ F, which
satisfies the simultaneous inequalities

(2) le’ — (27, )l <1fr (1Z7<527).

There exist disjoint compact neighborhoods Pjofz] (1 <7 < 27),
such that P; C W;, such that

(3) He,y) — @y <1y (e P}, yeF,),

and such that d(z, z]) < 1/r forall x € p], where d is the metric of G.
This completes the induction. We define

o 2

(4) P=NUP;.
=] jeml

It is evident that P is a Cantor set. Suppose fe C(P), |fl =1,
and ¢ > 0. Since f is uniformly continuous, there exists 7, such
that f maps each of the sets P n P}» (1 <4 < 2") into an arc on
the unit circle (not onto the whole circle), and the Tietze extension
theorem shows that f may be extended to a continuous map of
U P (1 =7 = 2m) into the unit circle; in particular, f(z]) will
be defined if » = 7,. We can choose » > 7,, 7 > 3/¢, and such that

(5) f@) — fE)l <e3  (@eP, 1Sj<2).

3

Our choice of F, shows that there exists y ¢ F, for which
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(6) @) — @<l (1=7=2)
If we add the inequalities (3), (5), and (6), we obtain
() @) — @)l <2/r+e83<e

for all z e |J Pje, hence for all z ¢ P, and part (a) is proved.

If G = D,, we proceed in almost the same fashion. Having con-
structed neighborhoods (1), we choose {W} as before; Lemma 5.2.3
shows that there are points zje W, (1 <7 < 2s) such that
{=1, ... 3} is a set of type K,. Hence there is a finite set F,C I
with the following property: to each choice of numbers z,¢ Z,
there exists at least one y € F, which satisfies the simultaneous
equations

(8) @Gy =2 @Q=sjis?).

Choose disjoint compact neighborhoods Pj of 2] (1 < j < 27) such
that PJCW,, d(z, z}) < 1/r for all ze¢ P}, and

(9) (=, ) = (=% ») l=s7=27);

this is possible, since each y is constant in a neighborhood of zj.

Now define P by (4). If fis a continuous map of P into Z,, then
P=EFE,u...uE, where f is constant on each E,. There are
open-closed sets K; D E; whose union is D,. Extend f so that it is
constant on each K;. Then f is a continuous map of D, into Z,.
Choose 7 so large that f is constant on each of the sets P} (1=<7<2").
Our choice of F, shows that

(10) &) =(2hy) (QSjis2)

for some y € F,, and by (9) this implies that f(z) = (z, y) for all
z ey P}, hence for all z e P.
This completes the proof.

5.2.5. ReEMARK. If y4, is the measure which is concentrated on
the set {z], ..., 23} such that x4 ({z7}) =2 (1 =7 = 27), then
the measures u, have a weak*-limit u e M (P) such that ||y = 1,
£ =0, and g is continuous.

Hence there exist non-trivial continuous measures on each Can-
tor set.
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5.2.6. THEOREM. Every non-discrete LCA group G contains an
independent Cantor set.

Proof: This is a corollary of Theorem 5.2.2. For if G is not an
I-group, then G contains D, as a closed subgroup (Theorem 2.5.5).
Hence G either contains a Cantor set which is a Kronecker set, or
one which is of type K,, and the theorem follows from Theorem
5.1.4.

In some of our applications (for instance, in Section 5.3) this
result is all that is needed. However, the proof of Theorem 5.2.2
was no harder than a direct proof of Theorem 5.2.6 would have
been.

5.2.7. One might think that compact independent sets have to
be totally disconnected. This is trivially true on the line, and is
true in finite-dimensional groups (Theorem 5.2.9). However, it is
not true in all cases:

THEOREM. The infinite-dimensional torus T* contatns an arc
which is a Kronecker set.

Proof: Each x e T“ is of the form

1) = (&,8&,&,...) (¢; real mod 2x).

Suppose 0 < & < 8 < 1, and let L be the set of all () € T of the
form

@) z(t) = (2nt, 2782, 2a8,...) (xSt B).

Then L is clearly an arc. If fe C(L) and |f| = 1, then there is a
real continuous function %2 on [«,f] such that f(z(f)) =

exp {2nh(t)}. If my, ..., m, are integers and if y is the character
on T¢ defined by

@) (@, 7) = exp {i(mé; + ... + mé)},

then

Hz(0) — (2(t), )| = lexp {221k (1)} — exp {2i z n )]

< 2nlh(t) — in,m =t
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Hence the theorem is a consequence of the following lemma:

5.2.8. LEMMA. If 0 <a < B < 1, then every real continuous
function on [a, B] can be uniformly approximated by polynomzals
>3 mtr with integral coefficients n,.

Proof: Let R be the set of all functions on [«, ] which can be so
approximated. Itis clear that R is closed under addition and mul-
tiplication, and since R contains the identity function, R separates
points on [a«, ]. If we can show that R contains all constants,
then the lemma follows from the Stone-Weierstrass theorem.

So, choose a constant ¢, and define

1) 5,(0) = g{l (-1},

where # is a prime. Applying the binomial theorem to (1 — ¢)?,
we see that S, is a polynomial with integral coefficients. Also
$S,(t) = 1 uniformly on [«, 8], as p — o0. For each p, there is an
integer ¢, such that |c — ¢, /p| < 1/p, and it is clear that
7,5,(¢) = ¢ uniformly on [«, #]. This completes the proof.

A full discussion of approximation by polynomials with integral
coefficients is given by Hewitt and Zuckerman [2].

5.2.9. THEOREM. If G is a metric LCA group, if dim G =
n < o, and if E is a compact independent subset of G, then E is
totally discommected.

Proof: If E is not totally disconnected, then E contains n + 1
disjoint compact connected sets X,,..., X,,,. If X =
Xy X X, x...x X,,,, then dim X =n + 1 (Hurewicz [1]).
Since E is independent, the map

@) o Zaga) =2+ Ty

is a homeomorphism of X into G. Since dim G = »n, we have a
contradiction.

5.3. The Asymmetry of M(G)

5.3.1. A commutative semi-simple Banach algebra 4 is called
symmetric or self-adjoint if, regarded as a function algebra on its
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maximal ideal space, it is closed under complex conjugation.
Without reference to the maximal ideal space, the condition may
be expressed like this: it is required that to each ze¢ A4 there
corresponds an element z* ¢ A such that

1) h(z*) = h(z)
for every complex homomorphism 4 of 4.

In this section we prove the remarkable result (Theorem 5.3.4)
that M (G) is not symmetric, unless G is discrete. (For discrete G
there is no problem: M (G) = L(G), I' is the maximal ideal space
of LY(G), and A(I') is closed under complex conjugation.) For
G = R, this was proved by Sreider [1]; Hewitt [3] extended it to
I-groups, and Williamson [1] completed the theorem; see also
Rudin (113, [14].

The asymmetry of M (G) seems so remarkable for the following
reason: Define 4, for y e I', by

(2) hyw) = k()  (neM(G)).
Then 4, is a complex homomorphism of M(G), and if g is the
measure defined by g(E) = u(— E), then we do have

(3) hy(@) = h,(u)  (vel).

Thus the symmetry requirement is satisfied for the hornomorph-
isms (2); moreover, these homomorphisms determine u, by the
uniqueness theorem for Fourier-Stieltjes transforms, and we are
led to the following conclusion:

If M(G) is symmetric, then pu* = ji.

5.3.2. THEOREM. Suppose G is not discrete, P is an independent
compact set in G, and Q = P v (— P). If u e M(G) 1s a continuous
measure concentrated on Q, then the measures Oy, u, u?, us, . .. are
mutually singular.

We recall that g, is the unit of M (G), and that g™ = " *x pu.

Proof: Replacing p by |u|, we may assume, without loss of
generality, that g = 0. Since u™ is concentrated on Q,, where
0, =0 and ¢, = Q,_; + Q, it is enough to show that
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(1) pQm) =0 (m<mn).

Fix m and n, m <n, and let S be the set of all points
(%, ..., x,) e G® such that

(2) z,eQ,...,2,€0; 4+ ...+ z2,¢0,.
Since p is concentrated on @, we have, by 1.3.2(2),
(3) #"(Qn) = #a(S)

where ug) = §, pim) = # X pn-y; DOte that u, e M(G").
Suppose (z,, . . ., z,) € S. By (2), there are pointsy,, ..., ¥, €@
such that
4) n+...+z, =+ ...+ Yn
The definition of Q shows that z; = ¢,6,, where p, ¢ Pand ¢; =4-1.
If p, # p, whenever 7 5 §, then since » > m, (4) leads to a relation
between elements of P which contradicts the independence of P.
Hence z, 4-z, = 0 for some 7 # 4, and we conclude that S is con-
tained in the union of the sets E;;and Ej; (5,7 = 1,..., %, % %#74)
which are defined by z, + z; = 0, z; — z; = 0. Since u is continuo-
us, the Fubini theorem shows that w)(Ey) = pm(Ey) = 0 if
1 # ; hence y(,, (S) = 0, and the theorem follows from (3).

5.3.3. COROLLARY. Suppose u is a non-negative continuous
measure concentrated on Q) = P u (— P), where P is compact and
independent in G. Then

(a) N2 ae®ll = 2 lagl - |1pll®
k=0 ¥=0
for arbitrary n = 0 and arbitrary complex numbers a,, .. ., a,;
(b) if &i* is defined by
-] k
e‘l‘ —
=3+

then |let#|| = el

Proof. Since the u* are mutually singular (u® = 8,) we have
IS 8l = 3 lal - llull* (Appendix E 2); since u =0, ||uHl| =
Jiull®; (a) follows.
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The series defining ¢# converges in the norm of M (G), so that
(a) implies

n k

letf} = lim |13 75 ] = lim z =l = e,
n—oo n—0c0 0
and the proof is complete.
We note that results analogous to (b) hold of course if the ex-
ponential function is replaced by any entire function.

5.3.4. THEOREM. Suppose G is not discrete. Then

(@) M(G) ts not symmetric,

(b) there exists a real function ¢ € B(I') such that $(y) = 1 for all
yel, but 1/¢ ¢ B(I').

Proof: By Theorem 5.2.6, G contains an independent Cantor set
P and (see 5.2.5) there is a non-negative continuous measure y,,
concentrated on P, with |ju,}| = 1. If

(1) n= 3 + i)

then u = §, u is concentrated on Q = Pu (— P), p = 0, and u
is continuous. Put ¢ = §, — u%. ‘Applying 5.3.3, we obtain

@ =13(;) =3 (;) = =123

so that the spectral norm of ¢, lim {|o"[{!/", is 2 (Appendix D6).
Hence there is a complex homomorphism 4 of M(G) such that
|h{o}] = 2. Since {|u|| = 1 we have |k(u2)| < 1, and so the equa-
tion

3) L — h(u?)] = |h(o)] =2

is possible only if A(u?) = — 1 and k(o) = 2.

Since A(u)? = h(u?), we have h(u)= + 1+ Since u=4ga,
h(i) = h(u). Hence A{i) # h_(/-z_) and the conclusion of Section
5.3.1 shows that M (G} is not symmetric.

To prove (b), put T = d, + u2. Since i = u, u is real on I,
hence — 1 g,’; =1, and thus 1 = #(y) =2 for all yelI. But
h(t) = 1 4 h(u?) = 0, so that r~! does not exist in M(G).
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This proof is due to Williamson [1]. For G = R, (b) was proved
by Wiener and Pitt [1].

5.3.5. COrROLLARY. I 7s not a dense subset of A, the maximal
ideal space of M(G), unless I' is compact (tn which case I' = 4).

5.3.6. The proof of Theorem 5.3.2 can be adapted to show that
independent sets are thin in terms of Haar measure:

THEOREM. If P is a compact independent set in a non-discrete
LCA group G, and if H is the group generated by P, then m(H) = 0,
where m is the Haar mesaure of G.

Proof: If Q =Pu (— P)and @, = Q,_, + @, then H={J @,
(=1, 2,3,...)and it is enough to show that m(Q,) = 0 for all 2.
Suppose m((Q,) > 0 for some fixed &2 If y is the characteristic
function of @, and f = x * g, then fis continuous, f(0) = m(Q,)>0,
hence f(z) > 0 for all = in a neighborhood V of 0. Hence
VCO+ O = Qu.

Let S be the set of all points (p,, . . ., Paxi2) € G**2 with p, ¢ P,
such that 3 ¢p; lies in V for some choice of {¢}, ¢ = 41
(1 =¢ =<2kt + 2). Foreach {¢}, themap (P, ..., Dusa) > D e
is continuous, and thus S is a non-empty open set in G¥**2.

But since V C Q,,, the argument used in the proof of Theorem
5.3.2 shows that S lies in the union of finitely many sets defined by
by p; &+ p; = 0 (¢ # 7). Since G is not discrete, these sets.have no
interior, and we have reached a contradiction.

S5.4. Multiplicative Extension of Certain Linear Functionals

5.4.1. Let M (X) denote the set of all continuous measures
which belong to M (X), where X is a compact Hausdorff space.
It is easy to see that M ,(X) is a closed linear subspace of M (X); if
X is perfect, M (X) is infinite-dimensional. The following theorem,
due to Hewitt and Kakutani [1], is an elaboration of an earlier
result of Sreider [2]:

THEOREM. Every non-discrete LCA group G contains a Cantor set
P such that every linear functional on M (P), of norm < 1, can be
extended to a complex homomorphism of M(G).
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5.4.2. LEMMA. Suppose P is a compact independent set in G,

U1, - - - By A€ MOM-megative comtinuous measures, concenirated on
disjoint subsets E,,.. ,E,  of P, and ||jull=1 (1 i Z7). If
2y, - - - 2, are complex numbers satisfying |z;| =< 1, then there exists a

complex homomorphism h of M(G) such that
) hp) =z (U Sis7)

Proof: Let S(n,,....m,)=mnE,+ ...+ nE,, where nE
denotes the set of all , 4+ ... + z, with z; e E. Consider two
fixed measures

1 A=p™Ms .. e vo= u™ %% u,m

withn, + ...+ #n, =2m, + ...+ m,. They are concentrated on
S(,,...,n,) and S(m,, ..., m,), respectively. Put

2) S=Sn,...n)nSm,,...,m,).
Every z ¢ S has two representations

@+...+F2)+ . @+ 2
=@+ -+t @+ )

where zf ¢ E; and yf ¢ E,.
Fix 7,4, &, § # &, and let D be the set of all points represented
by the left side of (3), with the restriction that 2% = 2. Then

4) AD) = (i X ... X upr)(D')
where D’ is the set of all points

(3)

(5) (=3, ....2h, .., 2k .2

in G™+ -+ such that z§ = z¥; since the measures y, are continuo-
us, Fubini’s theorem shows that the right side of (4) is 0. Hence
A(D) = 0.

Thus, if 2(S) > 0, it follows that for some z ¢ S the =% appearing
on the left side of (3) are all distinct. Since ¥ n, = 3 m,, the
independence of P then implies that 3 n, = > m,, that the yf are
just a permutation of the 2%, and hence that m, = n,for1 < ¢ < 7.
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This proves that 4 and » are mutually singular, unless m, = #,
for 1 <7 < 7. Hence if f is any polynomial in 7 viarables, say

(6) fh, .. t)y=2aln, .. »n)m. ..t
we have
(7) (s, - - oo )l = 3 la(my, - . oy )]
Let us now assume that we have a special case, namely
(8) =1 (<ig7).

We put ¢ = 6 + Zyu, + . . . + Z.u,, express o™ as a polynomial
in u,,..., 4., and apply (7); the result is

(9) ot = (r+1)* (n=1,23,...).

Hence the spectral norm of ¢ is 7 + 1, and it follows that thereis a
complex homomorphism % of M (G) such that

(10) (14 &h(u) + ... + Zh() = 1h(o)] =7 + L
Since |h(u;)} =1 for 1 < ¢ < 7, (10) implies that ZA(u;) = 1, or
(11) hu;) = 2, Q=i

To remove the assumption (8), note that if |z] =<1 then
z; = ¥(z; + z;), with [2;| = [2;| = 1. The continuity of g; shows
that E;, = E; u E;, where u,(E;) = u;(E;{) = % and E;n E{ is
empty. If 4, u; are the restrictions of u, to E;, E;, the special

case applies to the measures 2u;, 24;, . . ., 2u,, 2u, and yields a
homomorphism 4 such that
(12) 2h(u;) = z;, 2h(u;) =2z; (1=ZiZ7).

This is the # whose existence the lemma asserts.

ReEMARK. We could equally well consider measures concen-
trated on P u (— P). The notation would be more complicated
(% 2% in place of 2}, etc.) but the idea of the proof is unchanged.

5.4.3. Proof of Theorem 5.4.1. By Theorem 5.2.6, G contains
an independent Cantor set P. Let L be a linear functional on
M. (P), with |IL|| = 1.
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For u e M (P) and € > 0, let H(u, £) be the set of all complex
homomorphisms 4 of M (G) such that

(1) ) — L{p)l = &

The definition of the Gelfand topology (Appendix D4) shows that
each H(u, ¢) is a compact subset of the maximal ideal space of
M (G). If we can show that the collection of all sets H (, ¢) has the
finite intersection property, it will follow that there is an A, which
belongs to all H(u, ¢); this A, must satisfy the equation

@) ho(p) = L(u)

for every u € M (P) and hence furnishes the desired extension of L.

So, suppose pu;,...,u,e M (P), & >0,...,6>0. Put
o = Y |u,), where, we recall, |u,] is the total variation of #;. By the
Radon-Nikodym theorem (Appendix E9) there are Borel functions
f: such that du; = f,do, and there are simple Borel functions g,
on P such that

(3) [plh—gldo<ej2 (Q=isr)

If dz, = g,do, it follows that ||z, — u,l| < /2.

The set P is the union of finitely many disjoint Borel sets
A,, ..., 4, such that g, is constant (equal to c,) on 4., for
1<:i=<7r 1<k <n Letog, be the restriction of ¢ to 4,. Since
IIL]| £ 1, Lemma 5.4.2 assures the existence of an 4 such that

h(oy) = L(oy), for k= 1,.. ., n. Since 7, = 3, c;0;, we have

(#) h() = Seuhlo) = Seallo) =L(z) (1 Si<0)
k

and since ||L|| =1 and |}A|| = 1, we conclude that

(6) 1h(ps) — L) = 1h(u; — 7))l + IL(z; — p )l < 2llp; — vl <,

The sets H(u,, ¢;), 1 = 7 = 7, thus have non-empty intersection,
and the proof is complete.

5.4.4. As an illustration, suppose P is an independent Cantor
set in D, and u is a real continuous measure on P, with |ul| = 1.
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Then the Fourier-Stieltjes transform of u is real, but the range of the
Gelfand transform of u (4. e., the spectrum of u; see Appendix D6)
consists of the whole closed unit disc.

Since each z € D, has order 2, the characters of D, are homo-
morphisms into Z,, hence have only + 1 as values. Thus z(y) is
real for all y in the dual of D,. But if [z| < 1, there exists a linear
functional L on M (P), such that ||L]] =1 and L(u) = z; by
Theorem 5.4.1, L extends to a complex homomorphism 4 of M (G).
Thus A{u) = z, and since z was arbitrary, the proof is complete.

5.4.5. Theorem 5.4.1 is probably the first known example of an
infinite-dimensional subspace X of a Banach algebra 4 such that
every linear functional on X, of norm not exceeding 1, coincides
on X with a complex homomorphism of 4. However, this pheno-
menon may be fairly common.

For instance, let 4 = L*(Z), the algebra of all bounded func-
tions on the integers. Let « run through an index set which has
the power of the continuum. There exist real numbers 4, 4, such
that the set consisting of all ¢,, all b,, and =, 1s independent. Let
X be the linear space generated by the functions f,, where

1) f.(n) = {exp {ina,}cos nb, (mneZ),

and let L be a linear functional on X, such that ||L]| S L
By Kronecker’s theorem (Section 5.1.2) there corresponds to

each finite set ay, . . ., «; and to each £ > 0 an intege? » such that
(2) o) —Lf )l <& (17 =k).
If H(x,, . . ., o, €) is the set of all complex homomorphisms % of 4

such that |a(f,) — L(f, )] < efor 1 <7 < &, it follows that these
sets have the finite intersection property, and the proof is complet-
ed just as in 5.4.3.

5.5. Transforms of Measures on Kronecker Sets

5.5.1. LEMMA. Swuppose X is a compact Hausdorff space and U
is the set of all f e C(X) with |fl = 1.

(2) If e M(X), then ||ull = sup |[, fdul ~ (f<U).
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() If pwe M (X), the set of all numbers [x fdu, where | ranges
over U, is dense in the disc |z| < ||ul|.

Proof: We first prove (b). Suppose ]|u|| = 1, without loss of
generality, and fix z, |z| = 1, and ¢ > 0. Then z = 2; + z,, where
[2,] == |z,] = %. Since u is continuous, X is the union of disjoint
sets X,, X, such that |u|(X;) = |u|(X.) = }. There is a Borel
function ¢ on X, with |¢| = 1, such that ¢du = d|u|; this follows
from the Radon-Nikodym theorem. It follows that there are Borel
functions g, on X,, 0 < g, = 2x, which satisfy the equations

1 ordy = k=1,2).

(1) fremdn=n  ( )

If g = g, on X, then g is a Borel function on X, 0 < g < 2=, and
@) jx evdy = z.

By Lusin’s theorem (Appendix ES8) there exists he C(X),
0 < h < 27, such that 2 = g in the complement of a set E with
] (E) < ¢/2. Putting f == ¢™, we obtain

3 g fdn —zl=1[, (™ — e")dul < 20ul(E) <,

and (b) follows.
To prove (a), note that ||u|| = [y ¢?du for some Borel function
g, 0 =g < 2n, and apply Lusin’s theorem, as above.

5.5.2. THEOREM. Suppose P is a compact Kronecker set in G.

(@) If ue M(P), then |||l = |iull.

(b) If u e M (P), then u maps I' onto a dense subset of the disc
12| < 1l

Proof: By Lemma 5.5.1(a) there exists f e C(P), with |[f| =1,
such that [ fdu differs from ||u|| by as little as we please. Since P
is a Kronecker set, [f(x) — (%, )| can be made arbitrarily small
for all z ¢ P by proper choice of y. Hence the difference between
| ()] and ||u]] can be made arbitrarily small, and this proves (a).
Part (b) follows similarly from 5.5.1(b).

It is not known whether property (a) characterizes Kronecker
sets.
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5.5.3. THEOREM. Suppose P is a compact set of type K, in D,,
and pe M(P). Then ||ulle = Hlull-

Proof. Assume [|u}| = 1. There exist Borel functions «, g, and
h = e*g on P such that [g| = 1, gdu = d|u|, —=n/q < a(z) < /g,
and %» maps P into Z,. Hence

(1) | [ hdul = | [ ediull = [ cos « diu| = cos (2/q).

There are continuous functions f, on P whose range lies in Z,, such
that [ f,du — [ hdu. Since P is of type K,, each f, is the restric-
tion to P of a continuous character of G, and so

(2) 1]l = cos (z/g).

This proves the theorem for ¢ = 3.

If g = 2 put u = u + zyz (p, real). Since the characters are
now real, i = g, + ipup and g, g, are real. Fix{ (j = 1 or 2) so that
|lasll = 1/2. There is a Borel function ., with values + 1, such
that hdu, = d|u,|; hence j'hd,u, = 1/2. It follows, as above, that
||,u,||°° = 1/2. Since ],u(y)] = |p,(y)|, the proof is complete.

5.6. Helson Sets

5.6.1. We call a compact set P in G a Helson set if every
F e C(P) is the restriction to P of a member of 4(G), i.e, if to
every F ¢ C(P) there corresponds a function f e L}(I') such that

(1) F@) = f@) = [ /o) n)dy  (zeP).

The reason for this terminology is Theorem 5.6.10 (Helson [6]).
Carleson [1] had previously studied sets with a similar property
relative to absolutely convergent power series. See Wik [1].

Note that f, as defined by (1), is really the snverse transform of
/. since we have written (z, y) in (1), and not (— z, y). This choice
is imposed by the inversion theorem.

5.6.2. For any compact set P, let I (P) be the set of all functions
in LY(I') such that f(x) = O for all z ¢ P. It is clear that I(P) is
a closed ideal in LY(I"). For f e L}(I"), let nf be the restriction of f
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to P. Since nf = 0 for all f ¢ I(P), = may be regarded as a linear
transformation of the quotient space LY(I')/I(P) into C(P). The
definition of the quotient norm (Appendix C2) shows that = is a
bounded linear transformation, with ||n|| < 1; & 7s one-to-one on
LY(I")]I(P), and the Stone-Weierstrass theorem shows that the
range of n is dense tn C(P). Thus =z satisfies the hypotheses of the
theorem on adjoints (Appendix Cl1). Let us compute n*.

The dual space of L}(I')/I(P) is the space @(P) which consists
of all ¢ e L(I") such that

(1) [i0$(—ndy =0  (teI(P))

If u e M(P) and ¢ = n*u, then ¢ ¢ P (P), and the definition of the
adjoint of a linear transformation shows that

@ [0y = [ f@)duE) (e D).

The right side of (2) is equal to

@ [ [0 @ ndvine) = [ 1) f,,(x ¥)dp )dy
= [ 0 (— y)ay.

Comparison of (2) and (3) shows that ¢ = z almost everywhere.
Since we identify functions in L*(I") which coincide almost every-
where, we have

(4) u=p  (neM(P)).

By definition, P is a Helson set if and only if the range of =
covers C(P). Theorem 11 of Appendix C therefore yields the
following equivalences:

5.6.3. THEOREM. The following three properties of a compact set P
in a LCA group G are equivalent:

(a) P is a Helson set.

(b) [|ul| and Hﬁllo° are equivalent norms on M (P).

(c) Each ¢ € D(P) is (equal almost everywhere to) the Fourier-
Stieltjes transform of a yue M(P).
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Property (c) is of interest in connection with the problem of
spectral synthesis (see Theorem 7.8.8).

5.6.4. If P is a Helson set, then the transformation =z intro-
duced in 5.6.2 has a continuous inverse (Appendix C6), and the
definition of the quotient norm implies that there is a constant K
with the following property: if F e C(P), there exists fe L}(I')
such that F =f on P and ||fl]; < K||F||-

It is interesting that an apparently much weaker interpolation
property is in fact equivalent to this:

5.6.5. THEOREM. Swuppose P is compact in G, 6 > 0, K < oo,
and suppose that to every F € C(P) with |F| = 1 there corresponds a
function fe L*(I') such that ||f||, = K and such that

1) sup [f@) — Fl)l <1 6.

Then P is a Helson set.
Proof: If F and f satisfy these conditions, and if 4 e M (P), then

@) 1, f@d@| = [, 10)i(— rdyl S IALllllo < K2l

so that

) [ Fdul < [ IF — fldll + | [ fdul < (1 — 8)llul] + K1l o-

The supremum of the left side of (3) is ||u|}, by Lemma 5.5.1.
Hence

@) dlull S Kllille  (me M(P)),
which shows that P has property (b) of Theorem 5.6.3.

5.6.6. The existence of perfect Helson sets in every non-dis-
crete LCA group G is now easily established:

THEOREM. Every compact Kronecker set is a Helson set, and so is
every compact set of type K, in D,.

Proof: This follows immediately from Theorems 5.5.2(a), 5.5.3,
and 5.6.3(b).
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5.6.7. THEOREM. If P is a countable, compact, independent set
in G, then P is a Helson set.

Proof: Let E = {z,, . .., z,} be a finite subset of P, letz,, ..., 2,
be those points of E (if any) whose order is 2, and let 4 be a
measure concentrated on E, with ||u|| = 1. We will show that
there are numbers a; e S(z,), (this notation was introduced in
5.1.3) such that

) @ s} = 3.

Since neither {|u|| nor the left side of (1) are changed if u is
multiplied by a scalar of absolute value 1, we may assume that

@ >: Re ;| = %é b,

where ¢, = u({z;}). For 1=j<7r, put 4,=+1 so that
a;Rep; =0. For r+ 1 =7 =n, choose b,, |b;] =1, so that
b;$; 20, and choose 6,, — =3 <0, < =3, so that a;=
&% b, e S(z;). Then

n

Re E ap; = " a;Rep, + glcos 6,194 = %g It =%,

and (1) is proved.
By Theorem 5.1.3, this means that

(3) Al = $lal

for every measure u concentrated on E. Since every u ¢ M(P)is a
limit, in the norm of M (P), of measures concentrated on finite sub-
sets of P, the inequality (3) persists for all u e M (P). Thus P has
property (b) of Theorem 5.6.3, and the proof is complete.

5.6.8. It is not true that every countable compact subset of a
LCA group is a Helson set. For instance, a Helson set P on the line
cannot contain arbitrarily long arithmetic progressions (Section
6.8); a stronger result (Kahane and Salem [2]) is that no arith-
metic progression of N terms (N = 2) contains more than 4 log N
terms of P, where 4 is a constant depending only on P.
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It does not seem to be known whether the union of two Helson
sets is a Helson set.

5.6.9. We now insert a theorem which concerns the ‘‘mean-
value”’ of a Fourier-Stieltjes transform. Suppose {V,} is a neigh-
borhood base of 0 in G, associate with each V, a continuous posi-
tive-definite function f, whose compact support lies in V,, such
that f,(0) = 1, and define

(1) A(p) = [ L0)Na0)Edy  (neM(G)).

Since f, = 0 and [, f,(y)dy = 1, 4,(u) may be regarded as an
average of |a|2

We say that lim, 4,(u) = A if to every e > 0 there exists a
neighborhood V of 0 in G such that |4,(u) — 4] < ¢ for all
Vv, CV.

THEOREM. For any ue M(G), we have
(2) lim 4,(u) = 2 |u({)P®

Note that at most countably many terms of this sum are different
from 0. For G = T, the theorem is due to Wiener; see Zygmund
[1], vol. I, p. 108.

Proof: Put ¢ = u = i, so that ¢ = [j3|2. If we apply the inversion
formula to f,, (1) becomes

(3) [tal— )alz) = Aulw),

and this shows clearly that lim 4,(s) = ¢({0}). Since ¢(E) =
Je u(x — E)du(z), we have

(4) o((0}) = [ ulENdutz) = 3 lu(re

and (2) follows.

CoRrROLLARIES. (a) If fie Co(I), then u is continuous.

() If gl = 1, then 3 [u({x})|?> = 1 (Helson [3], Glicksberg [1]).

To prove (a), choose ¢ > 0, let K be a compact set in I" such
that || << e in the complement K’ of K, and write (1) in the form
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f& + [g- Since |f,| < mg(V,), the first integral is no larger than
me(V,) - mp(K) - ||#||%, and the second is less than £2. Hence
lim A, (#) = 0and so u({z}) = O forevery z ¢ G.

Part (b) is an immediate consequence of the theorem.

5.6.10. THEOREM. Suppose P is a Helson set in a LCA group G,
ce M(P),and o % 0. Then & is not in Co(I"). That is to say, & does
not vanish at infinity.

Proof: Let M, be the set of all u ¢ M(P) such that g e Co(I).
Since ||u|| and (|4l are equivalent norms on M (P) (Theorem
5.6.3), the map u — fi carries M,(P) onto a closed subspace of
Co(I") and has a continuous inverse. It follows that every T ¢ Mg
(the dual space of M,) is of the form

) Tu=[,pdk  (neMy)

for some Ae M(I'). But [, pdi = [g 1du, so that every T e Mg
is of the form

(2) Tu=[fdp  (neMy),

where f e C(P).

If ¢ is a bounded Borel function on P, then [ ¢du is a bounded
linear functional on M,, and it follows that there exists f ¢ C(P)
such that

&) [(@—han=0 (ueM,)

If du,(xr) = (z, y)du(z), then f, is a translate of g2, hence
f, € Co(I'), and so

4 [, (3@) — /@)@ y)du@) =0  (ueM,, yeD).

The uniqueness theorem for Fourier-Stieltjes transforms thus
implies: fo every bounded Borel function ¢ on P there exists | € C(P)
such that

(5) $du=fiu  (neMy).
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Suppose now that ¢ € My and ¢ # 0. By Theorem 5.6.9, ¢ is
continuous, and its support S is therefore a perfect subset of P.
If S contains two disjoint open sets ¥, and V, (open relative to S?)
which have a common boundary point, and if ¢ is the charac-
teristic function of V,, then the measure ¢do is not equal to fdo
for any f € C(P), since |6|(V) > 0 for every non-empty relatively
open subset of S. This contradicts (5).

The proof will thus be complete if we can show that S contains
two disjoint relatively open sets whose closures intersect; i.e., we
have to show that S is not “‘extremally disconnected” (see Kelley
[13). Since & e Cy(I'), & vanishes outside an open subgroup A of I"
which is generated by a compact neighborhood of 0 in I. The
annihilator H of A is compact, and since ¢ = o * my, it is clear
that ¢(E) = o(E — z) for all Borel sets E in G and all z e H.
Thus S is a union of cosets of H. This implies that H is a Helson
set in G, and hence (Theorem 2.7.4) A(H) = C(H). But then H
is finite (Theorem 4.6.8), A has finite index in I, I is itself generat-
ed by a compact neighborhood of 0, and so every point of G has a
countable neighborhood base (Theorem 1.2.6). If x ¢S, wenow
see that there is a2 simple countable sequence {z,} in S, with z, % z
and z, # =z, if n 5= m, such that lim z, = z, and there exist dis-
joint open neighborhoods E, of z,. Put V,=Sn | E,,_,,
V, =S n | E,,. Since these sets have = as a common boundary
point, the proof is complete.

5.6.11. It is known that there exists an independent Cantor set
on the line which carries a positive continuous measure whose
Fourier-Stieltjes transform vanishes at infinity (Rudin [19]).
Hence there exist independent Cantor sets which are not Helson sets
and, a fortiori, are not Kronecker sets.

5.7. Sidon Sets

5.7.1. So far we have concentrated on compact sets, with parti-
cular emphasis on perfect sets, although the definitions of Kron-
ecker sets and of Helson sets can easily be extended to closed sets
in LCA groups. The new phenomena which are caused by the loss
of compactness are most conveniently studied by considering
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closed discrete sets, and we shall actually restrict ourselves to
subsets of discrete groups.

For the remainder of this chapter, G will therefore be a compact
abelian group and E will be a subset of its dual I A function
f € L}(G) will be called an E-function if f(y) = 0 for all y not in E.
A trigonometric polynomial on G which is an E-function will be
called an E-polynomial.

5.7.2. We say that E is a Stdon set if there is a constant B (de-
pending on E) such that

(1) 2 o) = Bilfile
yer

for every E-polynomial f on G. We shall see that Sidon sets are the
discrete analogues of Helson sets. The results which follow are
generalizations (from the case G = T, I' = Z) of theorems about
lacunary trigonometric series. As references we cite Sidon [1], [2],
Zygmund [1] (vol. I, pp. 208, 215, 247; vol. II, p. 131), Kaczmarz
and Steinhaus [1], Steckin [1], Hewitt and Zuckerman [3], and
Rudin {17].

5.7.3. THEOREM. Each of the following five properties of a set E
in the discrete group I’ implies the others:

(@) E 7s a Sidon set.

(b) Every bounded E-function f has 3 |f(y)] < .

(c) Every continuous E-function f has 3 |f(y)! < o

(d) To every bounded function ¢ on E there corresponds a measure
u € M(G) such that p(y) = ¢(y) for all y e E.

(e) To every ¢ e Co(E) there corresponds a function f ¢ L*(G) such
that f(y) = ¢(y) for all y ¢ E.

Proof: Suppose E is a Sidon set, with constant B, and f is a
bounded E-function. Given ¢ > 0 and 9y, ..., ¥, e I, Theorem
2.6.8 shows that there is a trigonometric polynomial 4 on G such
that |||, <1 + ¢ and &(y,) =1 (1 <4 < #). Since f%k is an
E-polynomial, we have

M g o)l = 3 1) ()] < 3 1)) S Bl + Bl

fa]
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and since [|f * 2|l = lIflleoll®llz, We conclude:

(2) Erlf()’)l = Bllfllo-

Thus (a) implies (b). It is trivial that (b) implies (c).

Let Cx(G) be the set of all continuous E-functions on G; Cg(G) is
a closed subspace of C(G), and if E has property (c), then the map
f — f is an isomorphism of Cg(G) onto L!(E). Since [|f|lo < Iflls
the two norms are equivalent on Cg(G) (Appendix C6) so that E
is a Sidon set.

Having proved the equivalence of (a), (b), (¢), we now show
that these conditions imply (d): If E is a Sidon set and [$(y)] =< 1
for all y € E, then the map
(3) 1= 2)$0)

Y€E
is a bounded linear functional on Cg(G) of norm < B which may
be extended to C(G). by the Hahn-Banach theorem. Hence there
is a measure u € M(G) such that |ju{| < B and

(4) S o)) = [ H—2)duk) (< Cx(G)).

If ye E and f(z) = (2, ¥), (4) shows that ¢(y) = A(y), and so E
has property (d).

Suppose (d) holds and M’ is the space of all u € M (G) such that
fi(y) = 0forall y e E. Then M(G)/M’ is continuously isomorphic
to the space of all bounded functions on E, and the definition of
the quotient norm shows that to each bounded function ¢ on E
there corresponds a measure u € M (G), with 2 = ¢ on E, such that
ll#ll < Bl|¢llos, where B is a constant depending only on E. If
now ¢ € Co(E) and || < 1, let E, be the (finite) subset of E at
which 2" < [$(y)] < 2" (n = 1,2,3,...) and define ¢,(y) =
¢(y)on E,, ¢,.(y) = 0 at all other points of E. There are measures
Un € M(G) such that 4, —= ¢, on E and |{u,]| < 2!7"B, and there
are trigonometric polynomials %, on G such that £,=1on E,
and [|&,ll; = 2. Put

(5) f=3 kot in.

n=1
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Since %, * u, is a trigonometric polynomial whose L!-norm is less
than 22-"B, fe L1(G). Also, if y ¢ E,, then

(6) 1) = k() 2a () = 2aly) = $(»),

sothat f =¢on E; U E,u . ... Atall other points of E, f(y) = 0
= ¢(y). Thus (d) implies (e).

If (e) holds we see, as in the preceding paragraph, that to every
¢ € Co(E) there is an feLl(G) such that f=¢ on E and
IIflli < B||¢|lo- Let g be an E-polynomial, define ¢ so that
$(r)é(y) = 16| if () # 0, and $(y) = Oat all other points of E,
and choose fe L1(G) so that f =¢ on E and ||f]l; < B. Then

(1) 1M =2 f0E() = (f*£)(0) = Iflhllglleo < Bligller

and hence (a) holds.
This completes the proof.

5.7.4. THEOREM. 4 set E in the discrete group I is a Sidon set if
there is a constant & > 0 with the following property: To every func-
tion ¢ on E with $(y) = + 1 there corresponds a measure p e M (G)
such that

(1) sup |A(y) — $()I =1 — .
yeE

In contrast to Theorem 5.6.5, no bound on {|x|| is needed here.
Comparison with property (d) of Theorem 5.7.3 leads to the follow-
ing interesting dichotomy: Either every bounded function on E
coincides on E with a Fourier-Sticltjes transform, or there is a func-
tion ¢ on E, with ¢(y) = £ 1, such that

(2) it:g Ay) — () =1

for every ue M(G).

Proof: Let f be a continuous E-function with f real, and define
é on I, so that ¢ = + 1 and ¢f = |f|. By hypothesis, there is a
measure u e M(G) which satisfies (1); if o = }{u + i), o also
satisfies (1), since & is the real part of &, and we have

(3) ife —1fll =1flle — ¢l < (1 — )il
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Hence, setting g = f * o, we have
(4) g=rezaf.
Corresponding to any choice of y,, .. ., y, e I there is a trigono-

metric polynomial £ on G such that |jk}]; < 2, £ = 0,and &(y,) = 1
(1 =7 < n). Then % =g is a trigonometric polynomial, and

a§ HOAES z Brder) < SHOIE) = R 20)0)

= llAlhiglle = 2/lol] -+ 11/l

Hence 3 |{(y)| < oo.

If fisnot real, put f, = f +f, f, = i(f — f). Then /, and f, are
continuous E-functions, f, and f, are real, and 2f = f, — if,. It
follows that E has property (c) of Theorem 5.7.3.

This completes the proof. We note that the introduction of the
polynomials 2 amounts to applying a summability method to the
Fourier series of g.

5.7.5. We shall now apply the preceding theoremn to exhibit a
large class of infinite Sidon sets in any infinite discrete abelian
group I'. It is clear that E is a Sidon set if and only if every
countable subset of E is a Sidon set. Hence we may restrict our
attention to countable sets E, and therefore also to countable
groups I

If ECT, let v,, 95, ¥s, ... be an enumeration of the elements
of E, and for any y € I' and any positive integer s, let R (E, y) be
the number of representations of y in the form

(1) y=dyn EVa,E- -k, Mm<n<...<n)

THEOREM. Suppose E CI and E satisfies the following condi-
tions:

(@) If ye £ and 2y %~ 0, then — y ¢ E.

(b} There is a constant B and a decomposition of E into a union
of disjoint sets E,, . . ., E, such that

(2) R,(E,;, y) = B* 118 5s=1,23,..)
for all ye E and for y = 0.
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Then E is a Sidon set.

Proof: Without loss of generality we assume that 0 ¢ E. Put
B = (3tB%)!, and let ¢ be an arbitrary function on E such that
$iy) = £ B

Fixj (1 £7=1), let 4, 5, 73 - .. be an enumeration of the
elements of E,, put

(1)@ v) Hé(y) = —y)  if 29,50,
@ e ={, ey if 29, =0,
and define
(4) Py(z) = f;[f,-(x) (xeG; N=1,2,3,...).

Multiplying out, we see that Py(x) equals

N N
() 1+ 3y + 3 dlyvi)x, —v) + ZrcN(y)(x, ¥),
==l ye

fmm]

2y4#0
where

N
(6) len(y) < ZZZ i¢(vn,) - - - Syl
the inner sum extends over all y, , . . ., 7, which satisfy (1) and
hence has at most B*® terms if y ¢ E or if y = 0. Hence

o B2 1

7 =D B = = = 0).
(M |CN(7)‘—22 B =5 = oabs (yeE, y=0)

Since § < 3, Py(x) = 0, and so

(8) IIPnlli=1+cy(0) =1+

=12 N
=z =123..)
by (7); in particular {||{Pyl|;} is bounded, and a subsequence of
{Py} therefore converges, in the weak*-topology of M (G), to a
measure p; € M(G); (5) and (7) imply that

12;(y;) — d(y)| = (6£2B%)! (yi€ Ey),

®) { 18,0)] < (62B)1  (y<E, y ¢ E,).
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We now put ¢ = g, + ... + u,, add the inequalities (9), and
obtain

(10) laly) — )l = (6B*) = B/2 (v E).

Hence E satisfies the hypothesis of Theorem 5.7.4, with 8 = 1/2,
and the proof is complete.

5.7.6. ExaMpLES. (a) Suppose y,, ..., ¥, are chosen, and S, is
the set of all y e I" of the form

Q) y==xp;, .- L, r<te<...<i; 1Z7r=<mn).

Then S, is finite, and we can choose y,,, outside S,. Proceeding,
we obtain an infinite set E = {y,} which satisfies the hypotheses
of Theorem 5.7.5 with ¢t = 1, B = 1. Hence every infinite subset of
a discrete group I' contains an infinite Sidon set.

(b) Similarly, every independent subset of I' is a Sidon set. A
case of special interest is obtained by taking G = D,. Every
x € D, can be expressed in the form

(2) z= (6,6 6,0 (6a=0,1)
the group operation is componentwise addition mod 2. Put
(3) r.(x) = (— 1) (xeD,, n=1,2,3,...).

The functions 7, are continuous characters on D,. They form an
independent subset of the dual group I” (they also generate I'). If
we associate with each x of the form (2), the real number

o0

(4) t = 212"' ns
the map « — ¢ is a measure-preserving map of D, (with its Haar
measure) onto [0, 1] (with Lebesgue measure) which is one-to-one
except for a countable set, and if we identify = and ¢, our functions
7, turn out to be the well-known Rademacher functions (Zyg-
mund [1j).

(c) Aset {n;} of positive integers is called a Hadamard set if there
is a constant 4 > 1 such that



MEASURES AND FOURIER TRANSFORMS ON THIN SETS 127

(5) R >4 (i=1,2,3,...),

in view of Hadamard’s classical theorem concerning the natural
boundary of power series of the form ) a;z".

If E is a Hadamard set with 4 = 3, then R,(n, E) < 1 for every
n e Z. Since every Hadamard set is a finite union of sets with
A = 3, Theorem 5.7.5, implies:

Every finite union of Hadamard sets vs a Sidon set.

The simplest known example of a Sidon set in Z which is not a
finite union of Hadamard sets seems to be the following (Hewitt
and Zuckerman [3]):

For m=0,1,2,... set M = 2™, and let E be the set of all
numbers

(6) 3 43+ (j=0,...M—1;,m=012..).

It is not hard to see that R,(n, E) < 1, so that E is a Sidon set.
On the other hand, the number of elements which E has on the
interval [z, 2z] is an unbounded function of z, and so E is not a
finite union of Hadamard sets.

(d) Suppose I' = Z2; consider Z?2 as the set of all points in the
plane whose coordinates are integers. Choose integers a, b, ¢, 4,
withad — bc = 1and a + d > 2. Let A be the transformation of
Z2 onto Z% which carries each # = (n,, n,) to the point An =
(an, + bny, cny + dn,). The orbit of n is the set of all points
An (— o0 <7 < ).

The transformation 4 has two distinct eigenvectors v,, v, in
the plane; they do not lie in Z%; the corresponding eigenvalues
4), 4, are positive, and 4, > 2. If n e Z2 (n 3= 0), the orbit of n
lies on one branch of the hyperbola

(7) cx? — (a — d)xy — by* = constant.

THEOREM. Each finite union of such orbits is a Sidon set in Z2.

Proof: If n = ayv; + ayv,, then A'n = Aja,v, + Ajayv,; since
2, >2 wehave 4] # £ Ap 4 ...+ Apif 4, .. ., 4, ¢ are distinct
integers. Hence A'n # + Am 4 ... + A%n, and it follows that
each orbit satisfies the hypotheses of Theorem 5.7.5.
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{e) It is not known in general whether the union of two Sidon
sets is a Sidon set.

5.7.7. If E is a Hadamard set, then every E-function on the
circle T belongs to L?(T) for all < oo (Zygmund [1], vol. I,
p.- 215). Our next theorem implies that this property is shared by
all Sidon sets.

THEOREM. If E s a subset of the discrete group I and if

1) - Z1fe) = Biflle

for every E-polynomial f on G, then we also have
) A, = BVpllfll. @2 <p <o),
(3) Al = 2BJIflly

for every E-polynomial f.
Proof: We use the fact that (2) is known for the Rademacher
functions »,: if g(t) = 3 a,7,(f), then

W [leerasmamSianr  m=123 ..

This is usually proved for real a, (Zygmund [1], vol. I, p. 213), but
the proof holds equally well for complex a,. Writing [g|? =
lg|®2)g|4/3, Holder’s inequality shows that

(5) ligllz = llglizPligllE™
Substituting (4) into (5), with m = 2, we obtain
(6) {3 latre < 2 lg@lat.

Suppose now that f is an E-polynomial on G, and define
(1) glx) =g t) = ZTf)r,(B)(zy) (xeG 0=t<1);
Y

instead of writing 7,, 7,, . . ., we use the elements of I' as indices,
The proof that every Sidon set has property (d) of Theorem 5.7.3
shows that we can associate to each ¢ € [0, 1] a measure u, € M (G)
such that [ju)| = B and A,(y) =7,() for all ye E. Hence
=g, *p,, and so
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(8) 1Al < llgdliedl = Bllgldl, (0=¢t=1).
But we also have g, = f % u,, so that

©) lgdh < Bilfll, (@<t ).
With p = 2m (8) becomes
(10) [ @I < B[ le Oimdz 0 st 1),

We integrate this over [0, 1] and apply (4), with coefficients
f&)(x, ¥). The result is

(11) [ f@)1Emdz < Brmmn {3 (7)1

If now 2m — 2 < p < 2m, then m < p, since p = 2, and (11)
implies

(12) IAll, < [1fllem < Bv/mliflla < Bv/3lIfll;.
This proves (2). Similarly, (6) gives
(13) Siepr <[ g nldt (@6,

If we integrate this over G and use (9) we obtain (3).

REMARK. The term /3 in the inequality (2) cannot be replaced
by anything whose order of magnitude is smaller. For if E is any
infinite subset of I'" and if % is a positive integer, there is an E-
polynomial f on G such that

(14 Wit 2 5 VE Il

We refer to Rudin [17] for a proof of this statement, as well as
for a more detailed discussion of problems concerning L*-norms
and lacunarity.

5.7.8. Suppose G is compact. We saw in Chapter 4 that the
only maps of I' into I" which carry L}(G) into L!(G) are the piece-
wise affine ones, and likewise for L®(G). On the other hand, if
1 < < oo, there exist permutations of I' {i.e., one-to-one maps
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of I' onto I') which carry L?(G) onto L?(G) but which are not so
intimately related to the group structure of I

To see this, suppose 1 < p < 2, and let {y,} be an infinite Sidon
set in I. If feL?(G), if h(z) = c;(z, ;) is a trigonometric
polynomial on G, and if 1/p + 1/g = 1, we have

| Sefr)l = [ Hadh(—2)ds
< 11l 41l < B v/3 AL {3 ledH,
by Theorem 5.7.7 (2). Hence

{ élf(w}* < BVZlifll,

for all feL?(G). If « is an arbitrary permutation of {y,}, if
aly) = y for all y ¢ {y,}, if f € L*(G), and if £(y) = (a(y), it fol-
lows that f — g € L%(G), so that g e L?(G). Thus « carries L?(G)
onto L?(G).

Consideration of the adjoint map shows that « also carries L¢(G)
onto LYG).
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CHAPTER 6

Functions of Fourier Transforms

6.1. Introduction

6.1.1. Range transformations. Let £ be a family of func-
tions, defined on some set S, and let F be a function defined on
some set E in the complex plane. If the range of a function ¢ € 2
lies in E, then F(¢) denotes the function whose value at a point
zeS is F($(z)).

We say that F operates in Q if F(p) e 2 for every ¢ ¢ 2 whose
range lies in E. Let (F) denote the map ¢ - F(¢). If F operates
in 2, we call (F) a range transformation on 2. Analogously, the
maps 2 — f o « studied in Chapter 4 could be called domazn trans-
formations.

The topic of the present chapter is the determination of the range
transformations of A (I') and B(I"). The first result in this direction
is due to Wiener [1] and Lévy {1]. A simple proof, based on an idea
of Calderon, is contained in Zygmund [1] (vol. I, pp. 245-246).
This theorem asserts that if f € A (T) where T is the unit circle, and
if F 1s analytic on the range of f, then F(f) e A(T). We shall see
(Section 6.2) that the word ‘‘analytic’’ can be replaced by ‘‘real-
analytic”’, but (and this is one of the main results of this chapter)
that the class of all real-analytic functions cannot be replaced by
a larger one.

Let F be defined on the interval [— 1, 1] of the real axis. The
following three theorems are prototypes of the more general re-
sults proved in Sections 6.6, 6.5, and 6.3.

6.1.2. THEOREM. If F(f) € A(T) whenever fe A(T) and — 1 =
f£ 1, then F is analytic on [— 1,1]. (Katznelson [1].)
6.1.3. THEOREM. If {F(c,)} 7s a sequence of Fourier coefficients
for every sequence {c,} of Fourier coefficients suchthat — 1 < ¢, < 1
131
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(— o < n < ™) (i.e., if F operates tn A(Z)), then F is analytic in
some neighborhood of the origin and F(0) = 0. (Helson and Kahane
(1)

6.1.4. THEOREM. If {F(c,)} 4s a sequence of Fourier-Stieltjes
coefficients for every sequence {c,} of Fourier-Stieltjes coefficients such
that —1=¢, <1 (— o< n< o) (ie., if F operates in B(Z)),
then F can be extended to an entire function in the complex plane.
(Kahane and Rudin [1].)

The conclusions may be stated in terms of power series: in 6.1.4,
F(t) =33 a,t~, and this series converges for all ¢; in 6.1.3, such a
representation of F is valid in some neighborhood of the origin; in
6.1.2, to each {,in [— 1, 1] there corresponds a series >¢° a,, (¢t — £,)
which converges to F(f) in some neighborhood of ¢,.

6.1.5. Throughout this chapter, G and I" will be infinite LCA
groups, to avoid trivialities. The symbols A x(I") and Bg(I") will
denote the subsets of A (I") and B(I"), respectively, which consist
of real-valued functions.

The principal references for this chapter are the paper by Hel-
son, Kahane, Katznelson and Rudin [1] and the thesis of Katznel-
son [3]. Earlier results (besides those already cited) were obtained
by Kahane [1], [2], [4], [5] and Rudin [2], [4].

6.2. Sufficient Conditions
6.2.1. Real-analytic and real-entire functions. A complex-
valued function F, defined on an open set E in the plane, is said to
be real-analytic in E if to every point (s,, %) in E there corresponds
an expansion with complex coefficients

(1) F(S, t) = zoanm(s - so)m(t - to)":
which converges absolutely for all (s, £) in some neighborhood of

(o, %)-

A function F, defined on some plane set E, is real-analytic on E,
by definition, if F is real-analytic in some open set containing E.
If E is a subset of the real axis, then *‘analytic on E” and “real-
analytic on E” mean the same thing.
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If F is defined in the whole plane by a series
(2) F(s,t)= Y a,,s™t"
m, n=0
which converges absolutely for every (s, ¢), then we call F real-
entire. The example
1
T+ +2)
shows that a function may be real-analytic in the whole plane
without being real-entire.

(3) Fls,t) =

6.2.2. THEOREM. Every real-entive function operates in B(I).

Proof: If ¢eB(I') and ¢ = ¢, + i, ($,, ¢, real), then
é1, 6. B(I'). If F(s,t) =D a,,s™I" converges absolutely for all
(s, t), then the series Y a,,, $7'¢5 converges in the norm of B(I'); its
sum is F(gy, ¢) = F ().

6.2.3. THEOREM. If F is real-analytic in a neighborhood of the
origin and if F(0) = O, then F operates in A(I") if I is discrete.

Proof: Suppose F(s,t) = Y a,,s™", a, = 0, and the series
converges absolutely if |s| < 6, |t| < . Suppose also, for simplicity,
that F is defined in the rest of the plane, it does not matter how.
Given f € L1(G), there is a trigonometric polynomial P on G such
that ||f — Pl|, < d. Setting g = f — P, it follows, as in the proof
of Theorem 6.2.2, that F(§) e A(I'). Since F(§(y)) differs from
F(f(y)) for only finitely many y ¢ I', we also have F(f) e A (I).

6.2.4. TuEOREM. If F is real-analytic in an open set E in the
plane, if f e A(I') and if the closure of the range of f lies in E, then
F(f) e A(I). (If I' is not compact, we also require that F(0) = 0.)

This could be proved by an appeal to a theorem concerning the
action of an analytic function of two complex variables on a
Banach algebra (see Arens and Calderdn [1], for instance). How-
ever, we shall present a proof which is essentially that of Wiener
{1] and Lévy [1], since its technique will be useful to us later.

6.2.5. Let I be an ideal in A (I') and let ¢ be a function defined
on I We say that ¢ belongs to I locally at a point y, e I if there is



134 FOURIER ANALYSIS ON GROUPS

a neighborhood V of y, and a function f ¢ I such that ¢(y) = f(»)
for all ye V. If I' is not compact and if there is a compact set
K C I and a function f eI such that ¢(y) = f(y) in the comple-
ment of K, then ¢ is said to belong to I locally at infinity.

At present we shall need the following lemma only for the case
I =A(I).

6.2.6. LEMMA. If ¢ belongs to I locally at every point of I' (includ-
ing the point at infinity if I' is not compact), then ¢ €l.

We note that I is not required to be closed.

Proof: Suppose first that ¢ has compact support C. Then there
exist (i) opensets ¥, . . ., ¥V, and functions f,, . . ., f, € I such that
¢ =Ff,inV,andV,u... UV, coversC, (ii) opensets W,, ..., W,
with compact closures W, C V, such that W, u ... u W, covers
C, and (iii) functions ; € A (I') such that £, = 1 on W, and £, = 0
outside V; (Theorem 2.6.2).

Hence ¢k, = f, %, €I, since I is an ideal, and if

1) p=¢{1 - (1 —k)(1—k)... A1—-£)},

it follows that p e I. The multiplier of ¢ in (1) is 1 whenever one
of the £, is 1, and this happens at every point of C; outside C,
¢ = 0; hence y = ¢, and thus ¢ el.

In the general case, ¢ belongs to I locally at infinity, so that
there is a function ¢ ¢ I which coincides with ¢ outside some com-
pact subset of I. Then ¢ — £ has compact support and belongs to
I locally at every point of I'; by the first case, ¢ — e, and so
del.

6.2.7. Proof of theorem 6.2.4. By the preceding lemma it is
enough to show that F(f) belongs to 4 (I') locally at every point
of I'u {0} (Appendix A5). Fix y, € I' U {0}, put f(vo) = so + o,
and choose 4 > 0 such that the series

(1) F(s,8) = Flsorto) + 3 @mn(s — )™t —1)* (@0 =0)

m, n=0

converges absolutely for [s — s)| <8, |t — 4] < 6.
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There exists a function g e L*(G) such that ||g||; <  and such
that

2) f&) = flye) + ()

in some neighborhood V of y,. If y, € I, this follows from Theorem
2.6.5; if yo = o0, then f(y,) = 0, and we put g = f — f * v, where
v is chosen as in Theorem 2.6.6. Put § = g, + 7§, (§,, £, real).
Then {|g,]l; < 6 and |g,]l; < 6. The series

(3) > @naLre:

m, ne=0

therefore converges, in the norm of L!(G), to a function x ¢ L} (G);

we recall that gf* = g, * g7 2, etc. But if y ¢ V, we have

E(f(r)) = F(so + &.(»), to + &)
4) = F(so. %) + 2 oam,.él(r)’"éz(y)"
= F(so, fo) + h(»).
Thus F(f) belongs to A (I') locally at ¥, and the proof is complete.

6.3. Range Transformations on B(I') for Non-Compact I’

We begin by stating two theorems. The first of these evidently
contains the second. We shall show, conversely, that the first
follows from the second, and will then prove the second.

6.3.1. THEOREM. Suppose F is defined on the interval [— 1, 1],
I’ is a non-compact LCA group, and F operates in B(I'). Then F
can be extended to an entire function in the complex plane.

6.3.2. THEOREM. Suppose F is defined on the real line, F has
period 2n, I' is discrete and countable, and F operates in B(I).
Then F can be extended to an entire function in the complex plane.

6.3.3. Reduction of theorem 6.3.1. to theorem 6.3.2. Sup-
pose the hypotheses of Theorem 6.3.1 are satisfied. The structure
theorem 2.4.1 asserts that I" has an open subgroup Iy which is the
direct sum of a compact group and a euclidean space R?, for some
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p = 0. If Il = I'jT' is infinite, then F operates in the algebra of
all functions in B(I") which are constant on the cosets of Iy, and
this means that F operates in B(I}). It follows (Theorem 2.7.2)
that F operates in B(A) where A is any countable subgroup of I.

If I} is finite, then p > 0, since I"is not compact, and so I" con-
tains R?, and hence also Z?, as a closed subgroup. It follows
(again by Theorem 2.7.2) that F operates in B(Z?).

We have proved that F operates in B(A), where A is a countable
discrete group. Consider the functions F, and F, defined by

(1) Fy(sy=F(rysins), F,(s)= F(r,sin s) (— oo <s< )

where 0 < 7; <7, < 1. Then F, and F, operate in B(A), and if
Theorem 6.3.2 is true, then F, and F, are entire. The formula

(2) F(s) = Fy(arc sin (s/r,)) (—n<s<mn)

shows that F can be expanded in a power series about the origin,
and that this power series can be analytically continued to a
(possibly multi-valued) function in the finite plane, except for
possible branch points at s = + 7,. Using F, in place of F,, the
same argument shows that s = + 7, are the only possible singular
points of F in the finite plane. Since r, # 7,, the analytic extension
of F is an entire function.
Hence 6.3.1 follows from 6.3.2.

6.3.4. LEMMA. Suppose F is defined on the real line, n >0, I' is
discrete and countable, and F(f) e B(I') whenever fe Ag(I') and
Wy < n. Then F is continuous at the origin.

Proof: Replacing F by F — F(0), we may assume that F(0) =0.
If F is not continuous at 0, there exists a sequence {a,} of real
numbers such that ¥ |a,| < 7 but |[F(a,)] > é for some 6 > 0
(n=1,2,3,...). Choose a sequence {y,} in I" such that

1) YnFE Vit vi— "
if 4,4, R < n, and put

@) fz) = ?a,(x, )  (@eG).
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The hypotheses of the lemma imply that there is a measure
# € M(G) such that a(y,) = F(a,) (n=1,2,3,...)and o(y) =0
for all other y e I Define u, e M(G) by

@) due) = (— 2y )ul)  (n=1,23,...)

and let ¢ be a weak* limit of a subsequence of {u,}. By the trans-
lation lemma 3.5.1, o is singular.

Since |2,(0)] = [2(y,)| = |F(a,)| > 6, we have [3(0)] = 5, and
hence ¢ # 0.

Fixy 5= 0. Since f,(y) = Ay + ¥.), we see that g,(y) # Oonly
if y + y, = y,, for some m. Our choice (1) shows that no y # 0
has more than one representation of the form y =y, — y,.
Hence 4, (y) # 0 for at most one value of . It follows that é(y) =0,
and so o is absolutely continuous.

This contradiction proves the lemma.

6.3.5. CoroLLARY. Under the hypotheses of Theorem 6.3.2, F is
continuous on the whole line.
Proof: Apply the lemma to F(s + s,) in place of F(s).

6.3.6. If F operates in B(I'), we write Fou for the measure
whose Fourier-Stieltjes transform is F(g).

LeMMA. Suppose the hypotheses of Theorem 6.3.2 are satisfied.
(@) If fe Bg(I'), there exists 6 > 0 and C << o0 such that the
inequality

(1) HFo(m+o)l=C

holds for all o e M (G) with & real and ||o]] < 6.

(b) The map (F) carries each compact subset of Br(I') into a
bounded subset of B(I').

Proof: We recall that (F) maps ¢ e Bgr(I') to F(¢) e B(I').
Part (a) asserts that each ¢ € Bi(I') has a neighborhood in Bg(TI')
on which (F) is bounded, and this immediately implies (b).

To prove (a), it is enough to show that for some é > 0 and
C < o the inequality

(2) IFo+AIsC
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holds whenever f is a trigonometric polynomial on G with ||f||, < ¢
and freal. For if this is proved and if ||o|] < 8, there exist trigono-
metric polynomials %, on G, such that £, is real, |}k, * ¢]| < 4, and
E, = 1 on E,, where {E} is an expanding sequence of finite sets
whose union is I'; this follows from Theorem 2.6.8. By (2) we then
have

3) IFo(p+hra|<SC (G=123...).
But
(4) ’1_{{2 F(p(y) + ki(n)e(y)) = F(aly) + 8(y)) (yeD)

since, for each y € I', £,(y) = 1 for all but finitely many values of 5.
By (3) and (4), Theorem 1.9.2 implies that (1) holds.

Thus, if the lemma is false, there is a sequence {f,} of trigono-
metric polynomials on G, with f, real, such that {|f,]|; > 0 but

NE o (u + fa)ll > co.

Take n; = 1. If integers #,,..., »;, and trigonometric poly-
nomials %,, ..., k,_, are chosen, put
(5) M=ptfat oot b

and let %, be a trigonometric polynomial on G, with £, real and
[l&4]; < 2, such that

(6) 1k, = (F o A1l > 3 F o 4,;

this is possible, by Theorems 2.6.8 and 1.9.2. Then let #,,;, be an
integer, so large that

(7) [lfa, th < 277
(8) IF o @+ fo, )l =7 +1
9) I+ (Fody—Fo(+/, N<2? (=i

Observe that (8) can be achieved since ||F o (u + /,)|| = oo and
since 4, differs from £ at only a finite number of points; (9) can be
achieved since f,(y) = 0 as n — o0, and since each £, has finite
support; note that F is continuous.
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Having defined {»,} and {#;} by induction, we put

{10) A=p+ 231,

1
and 1= Fol
We cannot yet assert that r = lim F o 4y in the norm of M (G).
But we do assert that
(11) lim ik, * (z — Fody)ll=0 r=12,3,...)
Nevoo
since #(y) = lim F(Iy(y)) and since %, has finite support. Hence

N-1
(12) ks (t—Fol)=1lm Yk *(Foi,, — Fol),

N=oo jmr

and combined with (9) this implies

(13) Ilk,*(r—FoZ,)l|§§2"§l r=123,...).

Fumy

Finally, (13), (6) and (8) yield the inequalities

2Jell = Ilk, * 7l| Z Il * (F o 4)]] — 1
= HIFohll —12 4 —1

for every positive integer », which is absurd.
The lemma follows.

6.3.7. We are now ready to prove Theorem 6.3.2. Since F is
continuous and periodic, F has a Fourier series

@ F(s) ~ 3 c,e™.

Let P be an independent perfect set in G and let x be a positive
continuous measure concentrated on P u (— P) with g real (i.e.,
such that u = ), as in the proof of Theorem 5.3.4. The set
{u + ady}, 0 < a < 2n, is a continuous image of [0, 2x] and is
therefore compact in M (G), and Lemma 6.3.6(b) shows that there
is a constant C < oo such that

@) HFo(u+ad)ll=C (0 =a=2n);
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we recall that §, is the unit of M (G). Since F is continuous, (1)
shows that

_ 1 [ .
cuexp i)} =3[ F(s + p)e=mds
3) ’
1 ¥ 2nk
=lim= Y F{—— —2mik|N
im 5 S F (S + a60)

foralln e Z and y e I. Since F(A(y) + 2nk/N) is the transform of
F o (u + ad,) with a = 2znk[N, (2), (8) and Theorem 1.9.2 imply
that

(4) leal < lle™#l =C (n=0, £1, £2,...).

The special way in which x was chosen shows, by 5.3.3(b), that
(5) [lesna]] = el (n =0, £1, +2,...).

By (4), the series

o 3epem

therefore converges absolutely in the strip {#| < ||ul|. Since [{ul]
can be taken arbitrarily large, the sum of (6) is an entire function
of s 4 4t which coincides with F on the real axis.

This completes the proof.

6.4. Some Consequences

6.4.1. THEOREM. Suppose G is not discrete and z, s a complex
number. Then there exists a measure u e M(G) whose Fourier-
Stieltjes transform has its range in the interval [— 1, 1] and whose
spectrum contains the point z,.

Proof: 1f this were not so, then g — 2z, 6, would have an inverse
in M(G) provided that — 1 < g(y) = 1 for all y ¢ I. This means
that the function

1

s — z,

(1) F(s) = (—1=s=1)

would operate in B(I'), in contradiction to Theorem 6.3.1.
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6.4.2. We saw earlier (Theorem 5.3.4) that M (G) is not sym-
metric unless G is discrete, i.e., unless I' is compact. In other
words, the function F defined in the complex plane by F(z) = zZ
does not operate in the algebra of all Gelfand transforms of M (G).
This result can now be strengthened:

6.4.3. THEOREM. Suppose G is not discrete. If F is defined in the
complex plane and if F operates in the algebra of all Gelfand trans-
forms of M (G), then F is an entire function.

The hypothesis may be restated without reference to the
Gelfand transform: it is assumed that F associates with each
u € M (G) a measure ¢ ¢ M (G) such that k(s) = F(h(u)) for every
complex homomorphism % of M (G).

Proof: Since the members of B(I') are precisely the restrictions
to I’ of the Gelfand transforms of M (G) (see 5.3.1), F operates in
B(I'), and hence the restriction of F to the real axis operates in
B(I'). By Theorem 6.3.1, there is an entire function F; which
coincides with F on the real axis. Being entire, F; operates in
B(I'), and so does F — F,. Since F — F, = 0 on the real axis,
F — F, associates the zero-measure to each u ¢ M (G) with real g,
by the uniqueness theorem for Fourier-Stieltjes transforms. Thus
F(h(u)) = F,(h(u)) for every u with 2 real and for every complex
homomorphism %, and Theorem 6.4.1 therefore implies that
F(z) = Fy(z) for all z.

6.5. Range Transformations on A(I') for Discrete I

6.5.1. THEOREM. Suppose F is defined on [— 1,1) and I is an
infinite discrete abelian group. If F operates in A (I'), then F(0) = 0
and F is analytic in some meighborhood of the origin.

Since A (I') contains no constant except 9, it is clear that F(0)
= 0. If fe A(I"), then |f(y)| > 1 for only finitely many y; hence
we may extend F from [— 1, 1] to the whole real axis in any way
whatever, and the extension will operate in 4 (I'). We will assume
that F is so extended. Finally, we may assume without loss of
generality that I' is countable, as in Section 6.3.
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6.5.2. LEMMA. If the hypotheses of Theorem 6.5.1 hold, there
exists 6 > 0 and C < oo with the following property: If o e M(G),
lloll < 8, and & is real, then F(¢) e B(I') and ||Fog|| = C.

Proof: If the lemma is false, then, as in the proof of Lemma
6.3.6, there are trigonometric polynomials f, on G, with f, real,
such that [|f,||, = 0 but || F o f,}|; > . By taking a subsequence,
we may also assume that ||/,}], < 2™ (=1, 2,3,...). Choose
trigonometric polynomials %, on G, with £, real, ||&,||, < 2 and
k, = 1 on the support of f,. Then translate the pairs f,, £, so that
the supports of £, and £,, are disjoint if » # m. This changes none
of the norms. Put

(1) ¢ =§1f,.-

Since F(g(y)) = F(f.(y)) if yisinthe support off,,and F(§(y)) =
otherwise, we have

(2) k,*(Fog)=k,x(Fof,)=Fof, r=12,3,...).
Hence ||F o f,ll; = 2||F o g|{, which contradicts the assumption
that {|F o f,|i; = .

6.5.3. Proof of theorem 6.5.1. Suppose — é < s, < d, where
dis asin Lemma 6.5.2, and put F,(s) = F(sy + 5) — F(se). Then
F,(f) e B(I'") for all fe Agx(I') such that ||f|l; < 8 — |sol, so that
F, is continuous at the origin (Lemma 6.3.4); hence F is continu-
ous in (— 4, 8). Define

m F,(s) = F(rsins) (— oo <s< o)

where 7 is fixed, 0 < 7 < d/e.
If A€ Bg(I') and |jg|| =1, then

llsin (2 +- @)l = ICOS al - [Isin uf| + [sin a] - ||cos ul|

® Z e 2+ 3
=< +35

1
2011 < Il
1), )!Il,u I=elH<e

for every real number a, and Lemma 6.5.2 implies that

(3) HFpo (u+ad)ll =C  (— 0 <a< )
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The argument of Section 6.3.7 can now be repeated, with F, in
place of F, and with u restricted so that {|u|| < 1, and leads to the
conclusion that F, can be extended to a function which is analytic
in a horizontal strip of width 2, bisected by the real axis.

Hence F(s) = F,(arcsin (sfr)) is analytic in a neighborhood of
the origin and the proof is complete.

6.5.4. REMARK. The preceding proof actually yields a little
more than Theorem 6.5.1, namely:

THEOREM. If F is defined in [— 1, 1], if I is an infinite discrete
abelian group, and if F(f)e B(I') tor all fe A(I) such that
—~ 1< f<1, then F is analytic in a neighborhood of the origin.

6.6. Range Transformations on A(I'} for Non-Discrete I’

6.6.1. THEOREM. Suppose F is defined on [— 1, 1] and I'is a non-
discrete LCA group. If F operates in A(I"), then F is analytic on
—1,1]. Moreover, F(0) = 0 if I" is not compact.

In Sections 6.3 and 6.5 we used the fact that if I"is not compact
then there exists g e Bg(I') such that

llexp {inu}|l = exp {[n] |lull} ~(»=0,+£1,+%2,...)

and that ||x|| may be taken arbitrarily large. This is not true for
all T, but the following lemma will suffice:

6.6.2. LEMMA. Suppose I is an infinite LCA group, r > 0, and
S, is the set of all u e M(G) with ji real and ||u|| < r. Then

(1) sup [let#|| = ¢'.
HES,

Proof: The left side of (1) cannot exceed the right, since
2)  letl = HOZ Eu)"nlll = ZllullMnt = 370 n! = e
0 [}

it [lull = 7.

To prove the opposite inequality, we pass to the Bohr compacti-
fication G of G. There is a measure o ¢ M (G) such that ||¢]| =7,
é is real on I, and [le??|| =¢". Fix y,,...,y,€I and £ > 0.
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Since G is dense in @ there exists u € M (G) with grealand |ju|| < 7
such that

(3) 2y — el <e (A =7j=mn)

Hence

4) [ ¢; exp {re(v,)}l = Susp [X ¢; exp {iﬂ(?’i)}L
HES,

for arbitrary constants ¢,, ..., ¢,. If f(z) = 3 ¢;(z, ,), the right
side of (4) does not exceed

(5) sup |le#|| - ||}l

KES,
and hence Theorem 1.9.1. implies
() & = [le]| < sup [je|.
BES,

6.6.3. We shall now prove Theorem 6.6.1 under the additional
assumption that I' is compact. We shall also assume, without loss
of generality, that F(0) = 0.

Let us say that (F) is locally bounded at a point y € I if there
exist two positive numbers 7, K and a neighborhood V of ¢ such
that ||F(¢)l| = K for all ¢ € Ap(I") whose support lies in V' and
which satisfy the inequality |{¢|| < 7.

Since the map ¢ — F($) commutes with all translations of I"
and since the norm of A4 (I') is translation-invariant, there are only
two possibilities: either (F) is locally bounded at every point of I,
or at no point of I

Suppose the second alternative occurs. Choose disjoint open
sets V, in I" which contain non-empty open sets W, such that
W,CV,, and choose ¢, ¢ A(I") such that 0 < ¢, <1, ¢, = 1l on
W, ¢é,=0o0utside V, (n=1,2,3,...). Since (F) is not locally
bounded at any point, there is a sequence {f,} in Agx(I') such that
(i) the support of f, is in W,, (ii) |If,]l < #~% and (iii) ||F (f,)il

> nllb,ll.
If f=37f,, then fe A(I'), — 1 < f(y) <1forallyerl, and

(1) $.F(f») =) F(f.(»)) = F(fuly)) (=1,23,...),
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here we have used the properties of ¢,, property (i) of /,, and the
assumption that F(0) = 0. Hence

(2) all - HEDI = g+ FOI = IF{F) > nlidall

so that ||F(f)|| > n for every positive integer », which is absurd.
Thus (F) is locally bounded at every point of I', and the trans-
lation-invariance of the norms shows that the following statement
Is true:
There exists a neighborhood V of 0 in I' and two positive numbers
1, K such that ||\F ($)|| < K for every ¢ € Ag(I") with ||§|| < n whose
support lies in some translate of V.

Now let U and W be neighborhoods of 0 in I' such that
WCUCUCYV, and choose «,feA(I') such that 0 S« <1,
0<pf=l,a=1lonW,a=0o0utside U, =1onU, § = 0out-

side V. A finite union of translates of W, say W, ..., W,, covers
I Lleta,...a,and§g,..., B, be the corresponding translates
of « and B, and put
o,
3 =— 1 <7< m).
(3) e sl )

Since «; + ... 4 a, > 0, Theorem 6.2.4 implies that ¢, e Ax(I');
also, ¢; = 0, and > ¢, = 1. (The functions ¢, form a partition of
unity.)

Suppose f ¢ Ax(I") and [Ifl < 7/lIpll. Then the support of f,f
lies in a translate of ¥V and so ||[F(8,f)|| =< K. Since

4) F() =3 4 Flf) = S 4F @,
we have
5) WE@I éKélM.-H-

Putting 6 = #/||fll| and C =K 3 ||¢;|| we have proved: If
feAgr(I), and ||f]]| <8, then ||F(f)|| =< C. In other words, (F)
maps a certain neighborhood of 0 in Az (I") into a bounded subset
of A(I).
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Now define
(6) Fy(s) = F(rsins) (— o0 <s < o)
where 0 <7 < dfe. It follows, exactly as in Section 6.5.3, that
(7) IFf+allSC  (—w<a< )

for all fe Ap(I") with ||f]] < 1.

Since I' is not discrete, F is continuous on [— 1, 1]; for if
— 1=, = 1and ¢, —¢, there exists f e Ax(I") such that f(y,) =¢,
for some sequence {y,} which has a limit point y € I, and the con-
tinuity of f and F(f) implies that

(8) lim F(t,) = lim F(f(y,)) = F({()) = F(2).
Hence F, is continuous and can be expanded in a Fourier series
(9) Fy(s) ~ X c.e'™.

The argument used in Section 6.3.7, combined with the in-
equality (7), now yields
(10) el ™l =C (=0, %£1,+2,...)

for all f € Ax(I") such that ||f|| = 1. Fix » and take the supremum
of the left side of (10); Lemma 6.6.2 implies that

(11) le,) < C - eIl n=0,+1+2...).

Hence 3 c, e™*+") converges absolutely if |f| < 1, and so F, can
be extended to a function which is analytic in the strip |§] < 1.
By (6), we conclude that F is analytic in a neighborhood of 0.
Translation shows that F is analytic at any interior point of
[—1, 1]. To prove analyticity at the end-points, put

(12) Fols) = F(1 —s?) (—1=<s<1).

Then F, operates in A (I'), and since F, is an even function, we
have, for some &£ > 0,

(13) Faols) = Sast  (—e<s <e).
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Hence
(14) F(l—s)= of: a,s"” 0=s<e),
)

and so F is analytic at the right end-point.
The other end-point can be treated similarly, and the proof is
complete for compact I

6.6.4. The general case of Theorem 6.6.1 follows easily. If I
contains an infinite compact subgroup A4, and if F operates in 4 (I'),
then F also operates in A(A4), by Theorem 2.7.4, and so F is
analytic on [— 1,1].

If every compact subgroup of I' is finite, then, since I' is not
discrete, I" has a closed subgroup which is isomorphic to the real
line R, by the structure theorem 2.4.1. Hence F operates in 4 (R).
But this implies that F operates in A(T), and hence the problem
is again reduced to the compact case:

Choose f € A(T), suchthat — 1 < f(e**) < 1, and put g(z) = f(e™)
(—~ o<z < o). Then ge B(R), and if e 4(R), 0 = ¢ =1,
¢ = 1 on some interval J, then ¢g ¢ A(R), hence F(¢g) e A(R),
hence F(g) belongs to A (R) locally at every point of J. Since J
was arbitrary, F(g) belongs to 4 (R) locally at every point of R,
hence (Theorem 2.7.6) F(f) belongs to A (T') locally at every point
of T, and Lemma 6.2.6 implies that F(f) ¢ A(T).

This completes the proof.

6.7. Comments on the Preceding Theorems

6.7.1. In Theorems 6.3.1, 6.5.1, and 6.6.1, we strongly used the
knowledge that the algebras in question contain real elements f
such that [|e¥|| = /™!, or at least that the equality can be almost
attained. The use of this fact is quite natural. For suppose 4 is a
semi-simple self-adjoint Banach algebra, represented as an algebra
of functions on its maximal ideal space, and suppose there is a
sequence {w,} such that

(l) “ei"f“ éclwn (”= Or :i: l::t2"")
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for every real f € 4, where C, is a constant depending on f. If now
S la,lw, < oo and

(2) Fis) =Sa,e™  (—oo<s<w)

then F operates in A4; unless w, increases exponentially, we thus
have operating functions which cannot be analytically extended
to any open set containing the real axis.

6.7.2. A major step in the preceding theorems was the proof that
the map (F) has some boundedness properties. In the case of B(I"),
with I" not compact, we first proved that (F) is bounded on each
compact set. The conclusion was that F is entire, and hence we have
the stronger result that (F) is bounded on every bounded subset of
Bg(I).

For A(I') the situation is different. We proved again that (F)
must carry some sphere about the origin into a bounded subset of
A(I'). Examination of the proof of Theorem 6.6.1 shows that if
(F) is bounded on every bounded set, then F must be entire. But
there are functions F on {— 1, 1] which operate in A (I") and which
are not entire. Hence it may happen that (F) is unbounded on
some sphere in 4 z(I), although (F) must also be bounded on some
sphere. This sort of behavior is of course impossible for linear
transformations.

Nevertheless, we can show that if F operates in 4 (I'), then (F}
is an analytic transformation, in the following sense:

6.7.3. THEOREM. Suppose I' is a non-discrete LCA group, F is
defined on [— 1,1], and F operates in A(I'). If fe A(l), and
— 1< f<), there exists 6 > O with the following property: if
ge AN, —1=f+4+¢g= l,aml[lgll < 68, then

(1) F(f +g) = Z F""(f)g

Here F'™ denotes the nth derivative of F, and the <“Taylor series” in
(1) converges absolutely in the norm of A(I).
Proof: By Theorem 6.6.1, F can be extended so as to be analytic
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in a simply connected region D which contains [— 1, 1]. Since
F™ is analytic on [— 1, 1], F™ operates in 4 (I'), and the terms
of the series (1) are defined. Let C be a simple closed curve in D
which surrounds [— 1,1]. Then there exist constants ¢ > 0,
K, <1, K, < o, such that

§

* @7

‘We have

‘ n
@ o) = o | IS @ peD)

Approximating this integral by Riemann sums, (2) and Theorem
1.9.2 show that

<K, if [lg]| <&, AeC.

§
=

1
@ |2 Fone| skke s F@) L
|lm! reC
where L is the length of C, so that
1
(5) H—yF(")(f)g" Z<const. K (n=1,23,...).
n!

Since K, < 1, the series (1) converges absolutely in A (I'). Since
the ordinary Taylor formula shows that

6 F(6) +80) =SS F(0)e"0) (el

provided that |[g]| is less than the distance from [— 1, 1] to the
boundary of D, we see that the series (1) converges to F(f + g).

6.7.4. The same result holds for discrete I, if we replace [— 1, 1]
by the interval J on which F.is analytic. Since F can be a perfectly
arbitrary function outside J (F need not be bounded, for instance)
it is clear that this restriction is needed.

6.8. Range Transformations on Some Quotient Algebras

6.8.1. Let E be a compact set in I', and let A (E) be the set of all
functions on E which are restrictions to E of functions belonging
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to A(I'). IfI'istheset of all f € A (I') such that f(y) = Oon E, then
A (E) is the quotient algebra 4 (I')/I. One may ask which functions
operate in A (E). The following result is due to Kahane and Katz-
nelson [1]; see also Katznelson [3].

6.8.2. THEOREM. Suppose E is a compact set in R which contains
arbitrarily long arithmetic progressions. If F is defined on the real
azis and if F operates in A(E), then F is analytic on the real axis.

If m(E) > 0, then our hypothesis is satisfied; for if g is the
characteristic function of E and if

(1) k) = [ glt + x)glt + 22) .. . glt + na)at,

then 4 is continuous, £(0) = m(E) > 0, and so A(zx) > 0 for some
z > 0. For this z there exists ¢ such that each of the points ¢ + =z,
t 4+ 2z, ...t <4 nzx lies in E. (The same argument shows that E
contains an affine image of every finite subset of R.)

Another example, which is perhaps more interesting, is obtained
by taking for F the set of all points 1/n (n = 1, 2, 3, . . .) plus their
limit point 0. This example illustrates the arithmetic nature of the
theorem: there are arbitrarily small displacements of E which
produce an independent compact set E’; since E’ is a Helson set
(Theorem 5.6.7), A(E’) = C(E’), and thus every continuous func-
tion operates in 4 (E’).

No example is known which lies between these two extremes;
i.e., no set E is known such that some non-analytic function opera-
ates in A(E) although A(E) # C(E). (Compare Katznelson [2],
(4].)

6.8.3. To prove the theorem, it is clearly enough to show that F
is analytic at 0, and we may assume that F(0) = 0. The union of
any collection of arbitrarily long arithmetic progressions in E has
a limit point, and from this it follows that there are sets Sy in
E(IN =1,2,3,...) which consist of the points

(1) Yv +7exy (—2N=<7=S2N;ex>0; yyeR),

such that theintervals Iy = [yy — 2N ey, yx + 2N £y] are disjoint.
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Replacing E by one of its subsets, we may assume that E n Iy = Sy,
for N=1,23,....

The norm in 4 (E) is the usual quotient norm: If ¢ ¢ A (E), then
||#ll = inf ||gll,, the infimum being taken over all g ¢ L!(R) such
that § =¢ on E.

6.8.4. LEMMA. Suppose ¢ € A(E), the support of ¢ liesin Sy, and
(1) dlyy +7en) = ay (— 2N =7 = 2N),

where a; = 0 1f |j| > N. Let P be the trigonometric polynomial de-
fined on T by

2) P(e%) = %a, iio (¢ eT).
~N

Then

(3) el = 1P|l < 3lidll.

Proof: Since affine transformations of R do not affect the norm
in A(R), we may assume that yy =0 and ey = 1.

Define £(y) = max (1 — |y|, 0). Since # = % * %, where  is the
characteristic function of the interval [— %, 4], £ is positive-def-
inite, and is therefore the Fourier transform of a non-negative
function % e LY(R).If f(¢**) = 3 k(x 4 27rn) (r € Z), thenf e LY(T)
and

(4) fin) = 2—;—]_ fle=)e—i" dz = %J_ k(z)e-"=dz

1lif n=0
=R =1 4itnso.
Thus f(e*) = 1 for all ze R. If now
N
(5) £ =_2Na1k(y —7) (yeR)

then g e A(R), £ = ¢ on E, and g(z) = P(e*)k(z) (z ¢ R). Hence

©) gl = 5 f P(e)|k(z)dz = f | P(e=)[f(e)dz = || Pll;.



152 FOURIER ANALYSIS ON GROUPS

so that ||| = ||P]l;.

To prove the other inequality in (3), suppose % ¢ L! (R) and
h=¢ on E, and define oy(y) = 2%(y/2N) — k(y/N). Then
Iy e A(R), dy(y) = 1it [y] = N, [loylly =3, and

(M PEn) = 3 dyhi)e™ = 3 (on (o + 20m),
so that

l o0
®) 1P S 5| 1w B)@)dz < 31AlL.

T — o

The lemma follows.

6.8.5. We can now complete the proof of Theorem 6.8.2. Let us
suppose, to get a contradiction, that there is a sequence {P,} of
trigonometric polynomials on T such that P, is real, || P,!l; - 0,
but }|F o P,j|, - o0, where

) (F o P,)(e*) = X F(a)e"’

if P,(e*%) = 2 a;e"°.

If we replace {P,} by a suitable subsequence and apply Lemma
6.8.4, we see that there is a sequence {¢,} in A (E), with the follow-
ing properties: ¢, = 0 except on Sy, [|¢,/| =»°2 and
F($u)ll = 0. If ¢ =37 ¢,, then ¢ e A(E). Setting

(2) an(y) = 6N“((y - yN,‘)/eN.) (y € E; n = 17 2’ 3' . ')»
where 7y is the function used in the proof of Lemma 6.8.4, we obtain

(3) anF(qs) = anF(¢n) = F(¢‘n) (n =123,.. -):
so that

(4) [E($a)ll = leaall - HE @I = 3IIF ()],

contradicting the assumption that ||F(¢,)|| = oo.

Hence ||F o P||, = C for all trigonometric polynomials P on T
with P real and || P||, < &, for some 6 > 0, C < co. This implies
that F operates in 4 (Z), and thus F is analytic in a neighborhood

of the origin, by Theorem 6.5.1.
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6.9. Operating Functions Defined in Plane Regions

6.9.1. Since A(I') and B(I') are algebras of complex-valued
functions, it may seem unnatural and unduly restrictive to have
confined our attention to functions F defined on the real axis, or
even on an interval. However, this was done primarily to simplify
the exposition, and no difficulty is encountered in extending the
results.

Let us suppose that F is defined in an open plane region E which
contains the origin. The analogues of Theorems 6.3.1, 6.5.1, and
6.6.1 are then the precise converses of the sufficient conditions
obtained in Section 6.2.

6.9.2. THEOREM. If F operates in B(I") and I’ is not compact, then
F can be extended to a real-entire function in the plane. If F operates
in A(I') and I is discrete, then F is real-analytic in some neighbor-
hood of the origin; if I' is not discrete, then F is real-analytic in E.

Only one new device is needed in the proof: in place of the
periodic functions F(r sin s) we now use the doubly periodic func-
tions

Fy(s,t) = F(rsins, rsint)

which we expand in Fourier series of the form

o0
i t
z Cam gins+m ),
n, Mmm—00
and we estimate the coefficients c,,, in the same way in which we
previously estimated the coefficients ¢, .

6.9.3. If E is a closed convex set in the plane, if F is defined
on E, and if F operates in 4 (I') for some non-discrete I', then the
full analogue of Theorem 6.6.1 holds (Helson and Kahane [1]):
F isreal-analytic on E (not just in the interior of E).

To prove this, suppose # is a boundary point of E. If v is any
affine transformation of the plane, then F o v operates in A (I'),
and since the class of all real-analytic functions is invariant under
affine transformations, we may assume that p is the origin and
that E contains the set of all (s, ¢) withs = 0,2 = 0,s2 4 2 < 1.
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If now F,(s, ) = F (s, ¢2), then F, operates in 4(I'), F, is defined
in a full neighborhood of the origin, and since F, is an even func-
tion of s and #, Theorem 6.9.2 shows that F(s,?) =2 a,,,s*™ "
in some neighborhood of the origin. Hence there exists é > 0
such that

(1) F(s,t) =3 ap,s™" (s=0,t=0, s+ * < 62).

Finally, two real-analytic functions which coincide in an open set
are identical. and since F is real-analytic in the interior of E, the
equality in (1) holds for all (s, ¢) € E such that s + 2 < 62 Thus
F is real-analytic at (0, 0).

6.9.4. We conclude this chapter with some open problems.

(a) Which functions F operate in the set of all positive-definite
functions on I'? If I' = Z and if F is defined on [— 1, 1], a neces-
sary and sufficient condition is that

(1) F(@) = Ea,,t" (@, =0, Ea,, < ).
n==0 0

The proof (Rudin [15]) extends to any I” which is not of bounded
order. For groups of bounded order the problem is open. Also, the
problem is open for every I' if we assume that F is defined in the
closed unit disc. One may conjecture that F must then be of the
form

=]
2 F@) =3 ant™  (Gun2 0, 3 ap, < ).
m, n=(

(b) For discrete I" {or even for I' = Z), which functions F have
the property that F( f) is the Fourier transform of a function in
L*(G) (or in C(G)) whenever fe L?(G) (or feC(G))? The case
$ = 2 is trivial here; a necessary and sufficient condition is that
| F(2)/2| be bounded in a neighborhood of the origin, and F(0) = 0.
In the other cases, only partial results are known (Rudin [16]).

(c) Define By(I'} = B(I') n Co(I'); i.e., By(I') consists of all
Fourier-Stieltjes transforms on I" which vanish at infinity. Let
My (G) be the set of all u e M(G) with fi € By(I'), and suppose I is
discrete. If F, defined on [— 1, 1], operates in By(I'), must F
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coincide with an entire function in some neighborhood of 0, or is it
enough for I to be analytic in some neighborhood of 0?

The latter condition is necessary since By(I") D A(I'). Since
there is an independent perfect set Pin R which carries a measure
u e My(R), (see 5.6.11) our proof of the asymmetry of M(G) ap-
plies to the algebras M,(R) and My(T). It seems plausible that
My (G) is asymmetric for all non-discrete G, and this may imply
that the entire functions are the only ones which operate in By(I').
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CHAPTER 7

Closed Ideals in L' (G)

7.1. Introduction

7.1.1. In the group context, it is naturally of interest to study
function spaces which are invariant under translation; the rele-
vance of the Fourier transform is illustrated by the fact that it con-
verts translation to multiplication by a character. The closed
translation-invariant subspaces of L1(G) can be very neatly charac-
terized in algebraic terms: they are exactly the closed ideals in
LY(G). This may be regarded as one of the “reasons’’ for the close
connection between Fourier analysis and the theory of Banach
algebras.

Let I be a translation invariant subspace of L!(G), and suppose
¢ € L*(G) annihilates I; that is to say,

(1) [f—nday =0  (fel).
Since I contains every translate of f if f eI, we also have
(2) [fEe— 9@y =0  (fel z<G).

Hence, to say that ¢ annikilates I is the same as to say that f x ¢ = 0
for all fel.

With the aid of this remark, it is easy to prove the equivalence
stated above:

7.1.2. THEOREM. Every closed translation-invariant subspace of
L(G) is an tdeal; conversely, every closed ideal in L1(G) is translation
invariant.

Proof: For f,ge L (G) and ¢ e L°(G) we have

(1) Jo % &) (— 2)d @)z = [_g(— 9)(f * $) (¥)dy,

157
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since each of these expressions is {f * g * ¢)(0).

Suppose I is closed and translation-invariant, ¢ annihilates I,
and fel. Then f * ¢ = 0, the right side of (1) is 0, hence ¢ anni-
hilates f g, for every g e L*(G). Since this is true for every ¢
which annihilates I, the Hahn-Banach theorem implies that
f*gel, and so I is an ideal.

Suppose I is a closed ideal, ¢ annihilates /, and fel. Then
fxgel, the. left side of (1) is 0, hence f* ¢ annihilates every
g € L1(G), and so f*¢ = 0. This says that ¢ annihilates every
translate of f, and if we apply the Hahn-Banach theorem once
more, we see that I contains every translate of f.

7.1.3. For f € L1(G), we define Z(f) to be the set of ally € I"such
that f(y) = 0, and if I is an ideal in L}(G), we define the zero-set
of I by
(1) Z{I) =Nz

rel
Thus y € Z(I) if and only if f(y) = 0 for all fel.

Since f is continuous on I', each Z (f) is closed, hence Z(I) is
closed for every I. Conversely, each closed set E in I'is Z(I) for
some closed ideal I of L(G): simply take for I the set of all f ¢ L}(G)
such that E C Z(f). Since convolution in L!(G) corresponds to
pointwise multiplication in A (I'), I is an ideal; since norm con-
vergence in L1(G) implies uniform (hence pointwise) convergence
in A(IN), I is closed; if y, ¢ E, there exists fe L1(G) such that
ftye) =1, but E C Z(f), and this shows that Z(I)=E.

This ideal is evidently the largest one with the property that
Z(I) = E. We shall denote it by I(E).

7.1.4. We can now state the question to which the present chap-
ter is devoted:

Can there be two distinct closed ideals I, and I, in L1(G) such that
Z{I,) = Z(I,)? Or does Z(I) determine I?

A set EC I such that E = Z(I) for a unique closed ideal I in
LY(G) will be called an S-set. The letter S stands for “‘spectral
synthesis”; this will be discussed in Section 7.8. Our question can
now be rephrased.
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Is every closed set in I" an S-set?

The answer turns out to be affirmative if I' is discrete. If I'is
not discrete, then I contains certain types of sets which are S-sets
and also contains closed sets which are not S-sets. The examples
described in the present chapter are of such diverse nature that the
problem of finding structural conditions which are necessary and
sufficient for a closed set to be an S-set seems hopelessly difficult.

7.1.5. For discrete I, the problem is so simple that it is worth-
while to deal with this case separately, although the result is con-
tained in Theorem 7.2.4. The simplification is due to the fact that
the continuous characters on G belong to L!(G) if G is compact.

THEOREM. Suppose G is compact and I is a closed ideal in L*(G).
If fe LNG) and Z(I) C Z(f), then fel.

Proof: If y, ¢ Z(I), there exists g e I with g(y,) = 1, and hence
g % Yo = 7,, Tegarding y, as a member of L}(G). Since[ is an ideal,
g *yp€l, and so y,el. It follows that I contains every trigono-
metric polynomial on G of the form I a,(z, y), provided that
a, =0 for all ye Z(I). If Z(f) D Z(I), then f x k satisfies this
condition for every trigonometric polynomial 2 on G. Since
IIf — f * k||; can be arbitrarily small (Theorem 2.6.6) and since /
is closed, we conclude that fel.

7.2. Wiener’s Tauberian Theorem

7.2.1. Wiener’s theorem has several equivalent formulations.
One of these asserts that the empty set is an S-set; in other words,
L(G) is the only closed ideal I in L'(G) for which Z(I) is empty.
The proof which follows is, in essence, that of Wiener, in spite of the
fact that the terminology and the details are quite different; it has
evolved through several stages (Wiener [13, Ditkin [1], Mandel-
brojt and Agmon [1], Kaplansky [1], Helson [1], Reiter [1],
Loomis [1]) and now yields a considerably stronger result (Theo-
rem 7.2.4).

In what follows, G is an arbitrary LCA group. If I is an ideal
in L1(G), I denotes the set of all fe A(I") with feI; I is then an
ideal in A(I").
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7.2.2. LEMMA. Suppose fe L\(G), I is.an ideal in L'(G), and
yo € I. Then f belongs to I locally at v, if either of the following con-
ditions is satisfied:

(@) vy, ts not in Z(I);

(b) yo ts in the interior of Z(f).

Proof: If (a) holds, there exists g e I with £(y,) = 1, and Theo-
rem 2.6.5 shows that there exists k € L1(G) such that {|}] < 4 and
h(y) =1 — g(y) in some neighborhood V of y,. The series
S fh* converges, in the norm of A(I'), to a function 7 e 4 (I"),
and f(y) = {1 — R))Y(y)forally e I'. Ify e V, then §(»)i(y) =
f(»); since £ e T and I is an ideal, 47 ¢ I, and so f belongs to I locally
at y,.

If (b) holds, then f = 0 in a neighborhood of y,, and since [
contains the constant 0, f belongs to I locally at y,.

7.2.3. LEMMA. Suppose [ e L1(G), I is a closed ideal in L*(G),
Z(I)C Z(f), and Q is the set of all points of I at which f does not
belong to I locally. Then Q is closed and has mo isolated point.

Proof: It is trivial that the set of all points at which f belongs
to I locally is an open set. Hence Q is closed.

Suppose y, is an isolated point of Q. By Lemma 7.2.2.(a),
vo € Z(I), hence f(y,) = 0. Let W be a compact neighborhood of
7o Which contains no other point of Q, and choose & ¢ L}(G) such
that 2 = 0 outside W and £ = 1 in some neighborhood of y,. By
Theorem 2.6.4 there is a sequence {v,} in L!(G) such that each 7,
is 0 in some neighborhood of y, and such that

lim ||f — f#v,/l, = 0.
n—+0

For each n, f£5, belongs to I locally at every point of I" U {o0}:
at y,, consider 7, ; at other points of W, consider f ; and in the com-
plement of W, £ = 0. Lemma 6.2.6 now implies that &7, I, for
n=1,23,... Sincelisclosedin A(I'), f& ¢I; and since % == 1
in a neighborhood of y,, f belongs to I locally at y,. But this
means that y, ¢ Q, a contradiction.

7.2.4. THEOREM. Suppose fe L(G), I is a closed ideal in L1(G),
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and Z(I) C Z(f). If the intersection of the boundaries of Z(I) and
Z(f) contains no perfect set, then fel.

Proof: The symbol dE will denote the boundary of a set E in I'.
Forn=1,2,3,... putf, = f*u,, whereu, e L1(G) is so selected
that %, has compact support and ||f — f,/l; = 0 (Theorem 2.6.6).
Since Z(I)C Z(f) C Z(f,), we have

(1) Z(I) A 3Z(f,) C ZU) n dZ(f) = 2Z(I) ~ BZ(f).

If yo e I, Lemma 7.2.2 shows that f, belongs to [ locally at y,
unless yo € Z(I) N 0Z(f,); by (1), this set contains no perfect sub-
set, and hence Lemma 7.2.3 shows that f, belongs to [ locally at
every y, € I'. Since f, has compact support, f, belongs to I locally
at infinity. Hence Lemma 6.2.6 implies that f, eI, forzn = 1, 2, 3,

.., and so fel, since I is closed.

7.2.5. Corollaries of theorem 7.2.4. (a) If Z(I) is in the
interior of Z(f), then fel.

Or, if f = 0 in an open set containing Z(I), then f ¢ I. This has
some interesting consequences:

Let E be a closed set in I, and let I,(E) be the closure of the set
of all f e L*(G) such that E is in the interior of Z(f). It follows
from (a) that I (E) is the smallest closed ideal I of L1(G) such that
Z(I) = E. Thus each closed set E in I" has a largest ideal I(E)
(Section 7.1.3) and a smallest closed ideal I,(E) associated with it,
and E is an S-set if and only it J(E) = I,(E). The question
whether E is an S-set can therefore be restated in two ways:

(i) If e L=(G) and f x ¢ = O for every f e I,(E), does it follow
that f+¢ = 0 for every feI(E)?

(i) If f e L*(G) and f = 0 on E, can f be approximaled, in the
norm of L1(G), by functions g € L\(G) such that § = O on an open set
containing E?

(b) If the boundary of a closed set E in I" contains no perfect set,
then E is an S-set.

Note that the hypothesis involves only the fopological structure
of E as a subset of I. No stronger result of this type is known.

-(¢) If I is a closed ideal in LX(G) and if Z(I) is empty, then
I = LY (G).
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This is Wiener’s theorem (note that its proof does not require
Lemma 7.2.3). If I is a closed ideal in L}G) and I # LY(G), it
follows that Z(I) is not empty, and hence I is contained in a closed
ideal J such that Z(J) consists of just one point y4 € I". Since J is
the kernel of the homomorphism f — f (¥e), J is a regular maximal
ideal (Appendix D3), and Wiener’s theorem can bz rephrased in
the following terms:

Every proper closed ideal tn L1(G) ts contained in aregular maximal
ideal.

For discrete groups G, this statement is almost trivial, since
L*(G) then has a unit, and every proper ideal in a commutative
ring with unit is contained in a maximal one (Appendix D2; the
word “regular” is redundant in rings with unit). Keeping Theo-
rem 7.1.5 in mind, we can therefore say that Wiener’s theorem is
most significant if G is neither compact nor discrete; the impor-
tance of the special case G = R thus becomes apparent.

Q) If { € LY(G), the translates of | span L}(G) (i.e., the set of all
finite linear combinations of translates of f is dense in L(G)) if and
only if f has no zero in I.

To see this, let I be the smallest closed ideal of L}(G) which
contains f; by Theorem 7.1.2, I is precisely the space spanned by
the translates of f; since Z(I) = Z(f) and since ] = L*(G) if and
only if Z(I) is empty (by (c)), the proof is complete.

7.2.6. The tauberian character of Wiener’s theorem. A
tauberian theorem is, roughly speaking, one which asserts that if
certain averages of a function have a limit, then the function itself
has a limit. The original form of Wiener’s theorem is of this type,
although the conclusion is not quite so strong.

If € L*(G), the statement ‘“¢(x) — a asz — oo’’ will mean that
to every ¢ > 0O there exists a compact set K in G such that
|¢(x) — a| < & in the complement of K. If f ¢ L1(G), the convolu-
tion (f * ¢)(x) may be regarded as an ‘‘average’ of ¢, obtained by
assigning a weight factor f(x — y) to the value ¢(y); this terminol-
ogy is most appropriate if f(0) = 1. It is easy to prove that
(f * ¢)(z) > af (0) if $(x) — a as & — o0; we omit the proof, since
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we will use this fact only for constant ¢ in which case it is quite
trivial.

THEOREM. Suppose ¢ € L*(G), f e L\(G), f(y) £ 0 for all y T,

and

(1) (f * 4) (@)=> af(0) (x> ).
Then the limit relation
(2) (g *¢)(x) > ag(0)  (z— )

holds for every g ¢ L*(G).

Proof: Replacing ¢ by ¢ — 2, we may assume, without loss of
generality, that ¢ = 0. The set I of all ge L(G) such that
(g * #)(x) > 0 as x - oo is a linear subspace of L}(G) which is
clearly translation-invariant; I is closed, for it [lg, — g|l; — 0, then
llg, * — g * ¢|lec > 0; and f e I. Hencel is a closed ideal in L1(G)
with Z(I) empty, and so I = LY{G).

7.2.7. If we impose slightly stronger conditions on ¢, the con-
clusion of the preceding theorem may be replaced by the stronger
assertion that ¢(z) > a as z —» o0.

Let us call a function ¢ € L=(G) slowly oscillating if ¢(x) — H(y)
— 0asx — oo and z — y — 0. More explicitly, we require that to
each & > 0 there should exist a compact set K in G and a compact
neighborhood V of 0 in G such that |¢(z) — ¢(y)| < cifx —yeV
and z ¢ K. For instance, uniformly continuous bounded functions
are slowly oscillating; but slowly oscillating functions need not be
continuous.

THEOREM (Pitt [1]). Suppose ¢ € L*(G), ¢ 7s slowly oscillating,
feLY(G), f(y) £ 0 for all y e I, and
(1) (f* $) (@) = af(0)  (z— o).
Then ¢$(z) —a as z — .

Proof: Given € > 0, choose K and V as above, and let g be the
characteristic function of V, divided by m(V). Then

@  $@) — (g d)(@) = ﬁ f $@) — $z — y)}dy,
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so that {¢(z) — (g * ¢)(x)] < ein the complement of K. By 7.2.6,
(g * ¢)(x) > a as x — oo, and the desired conclusion follows.

7.2.8. If G = R, we may consider the behavior of ¢(z) or of
(f* ¢)(x) asz - + oo or as z - — co. Theorems 7.2.6 and 7.2.7
remain true (with the same proofs) if we replace “z — 0’ by
“x — 4 0" or “@ - — 0"’ in the hypotheses as well as in the
conclusions. For applications one usually needs the results in this
form (Wiener [1], Pitt [1]).

7.2.9. To illustrate how much easier the L2-theory is, let us
consider the analogue of Theorem 7.2.5(d) in L2(G):

THEOREM. I} f € L%(G), the translates of { span L%(G) if and only
if f(v) % O for almost all yeT.

Proof: Note that f now denotes the Plancherel transform of f and
is defined as an element of L2(I'); as a point function, fis only de-
fined up to sets of Haar measure zero. Hence it is quite natural
to have ‘“almost all”’ in the statement.

If g € L3(G) and [¢ f. & = O for every translate f, of f, the Parseval
formula shows that

(1) [ (=2, p)dy =0 (z¢G).
Since fand g are in L2(I'), their product is in L(I") and the unique-
ness theorem for Fourier transforms implies that f:é- = 0 almost
everywhere on I
If f £ 0 almost everywhere, it follows that g = 0, and hence (by
the Hahn-Banach theorem) that the translates of f span L%(G).
If f=0on a set E in I" with m(E) > 0, there exists g # 0,
g € L3(G), such that § = 0 outside E. Since f& = 0, the Parseval
formula shows, as above, that [¢f.g =0 for every z ¢ G. Hence g
is orthogonal to the span of the translates of f.

7.2.10. Arithmetic conditions can play a role in the problem
of determining whether the translates of a function do or donot
span L1(G).

For example, take G =R, let f(z) =2if 0 <z < 1, f(z) =1
if 1 < 2 < a, where « is a given real number, and f(z) = 0 for all
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other z ¢ R. Then f(y) is a constant multiple of (2—e~"—e="¥)/y,
and hence f(y) = 0if and only if y = 2nx and ay = 2mx, where m,
n are non-zero integers.

We conclude that the translates of f span L!(R) if and only if «
is irrational. They span [2(R) for every « > 1.

7.3. The Example of Schwartz

The first and simplest example of a closed set which is not an
S-set, as defined in Section 7.1.4, is the unit sphere in the euclidean
space R3. We take G = R?, so that I' = R3 (Theorem 2.2.2), and
we let E be the set of all y e I whose distance from the origin is 1.

7.3.1. THEOREM. (Schwartz [1]). E s not an S-set.

Proof: Let Q be the set of all infinitely differentiable complex
functions on R® with compact support. If ¢ € 2 and / is the inverse
transform of ¢,

(1) tHa) = [ b)e=rdy  (weRY)

where z - y =z, ¥, + Z, ¥, -+ %395, then the inverse transform of
0|0y, is — iz, f(z), etc.; since all derivatives of ¢ are in L1(R3), it
follows that |z|?|f(x)| is in L*(R?), for $ =0,1,2,.... Hence
f e L}(R3), and so £2 C A(KR?3), by the inversion theorem 1.7.3 (e).

Let J be the set of all fe L(R?) such that e 2 and f(y) =
forally e E. Let I be the set of all f € J such that f/dy, = Oon E.
Then I and J are translation-invariant linear spaces, and their
Ll-closures I, J have Z(I) = Z(J) = E. We shall show that
I + J by constructing a bounded linear functional in L!(R3) which
annihilates I but not J.

Let x4 be the unit mass, uniformly distributed over E. The in-
verse transform of u is

(2) p@) = [ e=vduly) (@R,

Fix z ¢ R?, and introduce spherical coordinates on E, with pole at
the point z/r, where 7 is the distance from 0 to z. Then

27r
(3) A = d¢f g6 0 sin 0 — S0,
7
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Hence |z,4(z)] =1 for all z ¢ R?, and the expression

(4) Vf = [ f@)p(— z)dz
is a bounded linear functional on L(R3). If fe®, then
z,f(x) € L*(R®), and so

(5) ¥f= J'R‘ 2,/ (x)dz Le-m v du(y) = i(2n) L% dp.

Thus ¥f = 0if f e I. But it is clear that there are functions in J
for which the last integral is not 0.

7.3.2. The analogue of Theorem 7.3.1 holds if R3 is replaced by
R* (n = 3) (Schwartz [1]), but does not hold in R? (Herz (2]), and
evidently not in R (see 7.2.5(b), for instance).

7.4. The Examples of Herz

Cantor’s “middle third” set is an S-set on the real line. This
was proved by Herz [1] and was the first example of a totally dis-
connected perfect set in R which is an S-set. The idea of the proof
was later extended to other cases (Herz [3]). We shall present the
construction for compact I. This simplifies some of the technical
details, and, as we shall see in Section 7.6, the compact case has the
most important features of the general case.

7.4.1. LEMMA. Suppose A is a finite subgroup of the compact
abelian group I'. Then there is a Borel set Y in I’ with the following
properties:

(1) m(Y) = 1/n, where n is the number of elements of A and m
is the Haar measure of I;
(ii) the set V=Y — Y 1is open;

(iti) V n A contains only one point, namely 0.

Proof: Every finite abelian group is a direct sum of cyclic groups.
Thus A is generated by independent elements ¥,, . . ., y,, of order
g1, - - - qe, and n = IIg,. There exist points z,, . . ., 2, in G such
that
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exp {2nifq} if s =7
= =1,...,k).
1) (@) {1 4 S¢'(r,s )
If yed, then y =3 a,y,, where a,, ..., 4 are integers, and

@) (@.7)=II(, v)%= (., y,)*=exp{2nialq} (1=7=k)

=1

Let Y, be the set of all y e I' such that 0 < arg (z,, y) < 2n/g,,
andputY =Y, n...nY,. Thenm(Y,) = 1/q,. Since (1) shows

that {z,, ..., ,} is an independent set, it follows that
k

3) m(Y) =[I m(Y,) = 1/n.
=l

Since V' is the set of all y e I such that
(4) - 2”/% < arg (Z,, 7) < 2”/% (1 g r= k)’
V is open, and (2) implies that V n A = {0}.

7.4.2. We now suppose that {4} is a countable family of finite
subgroups of I" and we associate with each A, two sets Y,, V, as
in Lemma 7.4.1. We also assume that {V} forms a neighborhood
base at 0.

Suppose E is a compact subset of I" such that

1) (E+V,)nA,CE (t=1,2,3...);

in other words, if ¥ € 4, then either y € E or y 4 V, contains no
point of E.

THEOREM. Under these conditions, E 1s an S-set.

To give a class of examples on the circle group T (regarded as the
reals mod 2r), let {$,;} be a sequence of integers greater than 2, put
ni=P1Ps... 0 6=1,2,3,...), let A, = {2aj/n} ((=1,...,n),
Y, = [0, 2n/n,), V= (— 2z/n,, 2n[n,), and take for E the set
of all numbers of the form

(2) z = 2n§ a;n; (@;=0o0r a;=45p;, —1).

=}
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Then E is a Cantor set, and every point of A, which is not in E
is at a distance from E which is at least 2xn/n,.

There are compact groups I"in which this construction cannot be
carried out. For instance, if I'is the dual of the additive group R*
of the rational numbers, then I" has no non-trivial finite subgroup,
since R* has no proper subgroup of finite index.

7.4.3. Proof of theorem 7.4.2. Let g, be the characteristic
function of Y,, and define &; ¢ L1(G) by putting

(1) ﬁi=n3(gi*gi) ¢=123,...)

where #, is the number of elements of A;. Since £, is continuous
and positive-definite, we verify easily that

2) k=0, k0)=1, E(0)=mn, Fky)=0if y¢V,.
For ¢ ¢ L*(G), put

(3) ?D,(y) = 2.%_' @)k (— z)(— =z, ) (yeD)

and

@) be) =1 3 W) (@)
If H, is the subgroup of G which annihilates 4,, we have

1

)= 3 $k(—9) - 3 e—9.7) = 3 $Wk(-9)

i Y€EA; y—z€H;

or

(5) $:i(x) = 3 Sl + y)k(—z —y).

veH,

If now ¢ =1, then @,(y) = £,(—y). Since £, =0 outside V;
and since V; n A; = {0}, (4) shows that in this case ¢, = 1. Hence
(5) implies
(6) S ki—z—y)=1 (xeG;,i1=1,2,3,...).

veH,;
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Returning to a general ¢ ¢ L*(G), (5) and (6) imply that
(7) Idillw = lldlle (F=1,2,3,...),

since k, = 0. Since {V,} is a neighborhood base at 0, the definition
of k; shows that %,(z) — 1 for every z G, as ¢ > co. Hence

(8) im ¥ k(—z—y)=0 (xeG),
=l

by (6), and we conclude from (5) that

(9) lim ¢,(z) = $(z)  (£<G).

Having proved (7) and (9), we choose ¢ e L®(G) so that
g * ¢ = 0 for every g ¢ L'(G) which has § = 0 on an open set con-
taining E. Suppose f ¢ L*(G) and f = 0 on E. We have to prove
that f+x¢ =0 (sec 7.2.5(a) (i)).

Put h,(x) = k;(z)(z, ). Then A, = 0 outside V, + , and so
h, = ¢ = 0 if the closure of V; 4 y does not intersect E. By (3),
this means that @,(y) = 0if y ¢ E 4+ V,. Since &, is continuous,
we have

(10) D;(y) =0 y¢E+V).
By (4)
(11) (f = ,)( — Z‘D M), y) (=123,...).

Our hypothesis about the structure of E, combined with (10) and
the fact that f(y) = 0 on E, now shows that each term in the sum
(11)is 0. Hencef x ¢, = Oforz =1, 2,.... It follows, by (7) and
(9), that fxé = 0, and this completes the proof.

7.5. Polyhedral Sets

7.5.1. Suppose E is a closed subset of I, with the following
property: if f e L}(G), if f = 0 on E, and if ¢ > 0, there exists
g € L'(G) such that |[f — f * g}|; < £ and such that § has compact
support, disjoint from E. Under these conditions, we call E a
C-set in I
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Since f* g e I,(E) (see 7.2.5(a)), it is clear that every C-set is
an S-set. It is not known whether the converse is true.

This definition of C-sets is very similar to one introduced by
Calderon [2] and the theorem which follows is analogous to his.

7.5.2. THEOREM. (a) Every point of I' is a C-set in I.

(b) Finite unions of C-sets in I' are C-sets in I

(¢} If the boundary of E is a C-set in I', so is E.

(d) Each closed subgroup of I' ©s a C-set in I.

(e) If E is a closed subset of a closed subgroup A of I, if OE is the
boundary of E relative to A, and if OF is a C-set tn I, then E is also
a C-set in I

Before proving this, let us see what the theorem tells us if
I' = R™. Note that (e) holds equally well if A is a coset rather
than a subgroup, since the family of all C-sets is evidently in-
variant under translation.

By (a), (b), and (e), each compact straight-line interval in R" is
a C-set, hence the union of any three of these intervalsis a C-set, by
(b), and if we apply (e} again, we see that each triangle is a C-set.
Continuing in this way, we find that every rectilinear simplex, of
dimension =< #, is a C-set in R*. So are hyperplanes (of all dimen-
sions < # — 1), by (d), and half-spaces, by (e), as well as quad-
rants in the plane (bounded by two closed half-lines), octants in
R®, etc.

We conclude that every polyhedral set in R™ (i.e., any set which
is a finite union of sets built up in the above manner) s a C-set in
R™.

In particular, every polyhedral set is an S-set.

7.5.3. Proof of theorem 7.5.2. (a) If f(y,) = 0 and ¢ > 0,
there exists v ¢ L1(G) such that 4 = 0 in a neighborhood of y, and
iIf — f*vjl; < ¢/2, by Theorem 2.6.4. Also, there exists k ¢ L} (G)
such that £ has compact support and ||lv — v = k]|, < &/2 }|fl].
If g = v % &, then § has compact support, disjoint from y,, and

W —gllh SN —Ffxoly + Ifx (v —v*k)|| <e
(b) Suppose E, and E, are C-sets in I', E = E, U E,, ¢ >0,
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feLY(G), and f = 0 on E. The definition of C-sets shows that
there exist functions g; e L(G), ( = 1, 2) such that g; has com-
pact support, disjoint from E,, and such that ||f — f * g,||; < ¢/2
and |If x gy — f * 8 * golly < &/2. Ifg =g, x¢g,, theng = §, §, has
compact support disjoint from E, and [|f — f*gl|; < e.

Part (c) is a special case of (e) (1 = TI'), and sois (d) (E = 4),
since the empty set is a C-set in I" (Theorem 2.6.6).

(e) Suppose f € L1(G), where f = 0 on E, ¢ > 0, and E satisfies
the hypotheses of (e). Since dE is a C-set in I', there exists
g € L1(G) such that the support K of § is compact and disjoint from
oF, and such that [|f — f % g[|; < ¢/2. Let E’ be the complement
of E, relative to A. Since K n E is compact and disjoint from the
closure of E’, it follows that there exists # € L1(G) such that 5 = 1
on an open set containing K n E and such that 4 = 0 on E’. Hence
fA=0on A.

By Theorem 2.7.5, there exists 4 ¢ M(G) such that A = 1 onan
open set containing A and ||f*g A * u||; < /2. Since § =0
outside K and % = 1 on an open set containing K n E, the function
& — ghp has compact support disjoint from E, and

f—fxg—gxhxpli =N —fxglh +1lfxg*h*pll, <e

This completes the proof.
We conclude Section 7.5 with a few other classes of sets which
are easily seen to be S-sets.

7.5.4. Star-shaped bodies. Let E be a closed set in R® which
has an interior point $, such that each straight line through 2,
intersects the boundary of E in at most 2 points. Such a set is called
star-shaped. For example, every convex body is star-shaped.

THEOREM. Every star-shaped body E in R" is an S-set.

Proof: Without loss of generality, we may assume that ¢, is the
origin of R*. Choose fe L1(R*) such that. f = 0 on E, suppose
0<a<1 af =1, and put g(x) = f(fz), z e R*. Then g(y) =
«"f(ay). Since « < 1, g(y) = 0 on an open set containing E.
Hence g e I,(E). Asf — 1, |lg — fil, = 0, hence f is in the closure
of I,(E) and the theorem follows.
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7.5.5. In particular the closed unit ball in R" is an S-set. The
same proof shows that the closure of the exterior of the unit sphere
is an S-set. The example of Schwartz thus shows that the inter-
section of two S-sets need not be an S-set.

It is not known whether the union of any two S-sets is an S-set.

7.5.6. A class of semigroups. A subset E of a group I'is a
semigroup if E + ECE.

THEOREM. If E is a closed semigroup in I" and if 0 is in the closure
of the interior of E, then E is an S-set.

Proof: Choose y, in the interior of E, and let V be a neighbor-
hood of 0 in I' such that y, + VC E. Then V C E — y,, hence
E+VCE+4 E —y,=E — y, and so E lies in the interior of
E — y,.

Nowiff e L1(G) and f = Oon E, then f(y + v,) = 0ify e E—y,.
Setting g(z) = f(z)(— =, y,), it follows that g e I,(E). Since 0 is
in the closure of the interior of E, ||f — g}|, can be made arbitrarily
small by taking y, sufficiently close to 0. Hence f ¢ [,(E), and the
theorem follows.

7.6. Malliavin’'s Theorem

7.6.1. Theorem 7.1.5 shows that every subset of a discrete
abelian group I' is an S-set in I That this is false in every other
case was proved by Malliavin [1], [2], [3]:

TreoreM. If I' is a non-discrete LCA group, then I' contains a
closed set which is not an S-set.

We divide the proof into two parts (7.6.3 and 7.6.4). The first
part contains the main idea, in a form which is a little stronger than
Malliavin’s statement, although all the necessary ingredients are
contained in his work. The second part consists of a construction
which, though not simple, is merely a matter of technique, and
several possibilities exist. Following Kahane [6] we use a method
based on probability considerations; this simplifies the required
computations and also shows that, in a certain sense, ‘“‘randomly
selected’” compact sets fail to be S-sets.
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But first of all we show that it is enough to consider compact
groups I

7.6.2. LEMMA. (a) If A is a closed subgroup of I and if E is a
closed subset of A which is not an S-set tn A, then E is not an S-set
n I

(b) If the circle group T contains a closed set which is not an S-set,
them so does the real line R.

(c) If the conclusion of Theorem 7.6.1 is true for every infinite
compact I, then it is true for every mon-discrete I.

Proof: (a) follows from Theorem 2.7.4. For if ¢ is the restriction
map of A (I') to A, then ¢ is a homomorphism of 4 (I') onto A(A4);
since A(A) is semi-simple, ¢ is continuous; hence if I, I, are
distinct closed idealsin 4 (A4), ¢~—*(Z,) and ¢~1(I,) are distinct closed
ideals in A(I'); finally, I and ¢-1(I) have the same zero-set.

To prove (b), let E, be a closed subset of the circle T which is
disjoint from an arc E,C T; assume — 1 € E,. Let K, be the set
of all ye (— n,n) such that eve E,. Let K, consist of all
y € (— z, =) such that ¢ ¢ E,, and of all ¥y with |y| = n. Put
E=E,vE,and K=K, UK,.

If fe A(T) and if f = 0 on E, then the set of points at which f
does not belong locally to I, (E) is a perfect subset of the boundary
of E (oris empty), by Lemma 7.2.3. Thus F is an S-set if and only
if E; is an S-set. Similarly, K is an S-set if and only if K| is an
S-set.

Suppose fe A(T), f=0 on E, and define g(y) = f(e'*) for
Iyl = =, g(y) = Ofor lyl > =. If K is an S-set, there is a sequence
gn» € L'(R) such that ||g — g,ll, > 0and §, = O on an openset V,
containing K. By Theorem 2.7.6 it follows that E'is an S-set. The
argument can be reversed, and shows that E is an S-set if and only
if K is an S-set.

We conclude that E, is an S-set if and only if K, is an S-set.

The proof of (c) is now immediate. If I' is not discrete, the
structure theorem 2.4.1 shows that I” either contains an infinite
compact subgroup 4, in which case we appeal to (a), or that I" con-
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tains a closed subgroup isomorphic to R, in which case we appeal
to (b) and (a).

7.6.3. We now assume that I" is compact and infinite. If
f € L\(G), then exp (iuf) ¢ A(I") for every real number ». We de-
fine a,(u), for x ¢ G, by

(1) exp {— wuf(y)} = 3, a:(u)(— =, 7),
and put

1 o
(2) M, = sup ——f la (u)u®|du n=123,...).
zeG 2” -0
We shall see later that there exist real functions f e 4 (I') such
that

(3) M,<o (n=123,...).

TueoreM (Rudin [18]). If f satisfies the above conditions, there
extsts a real number & such that the closed ideals in A (I") which are
generated by (f — )" (n=1,2,3,...) are all distinct.

Since all of these ideals have the same zero-set, Malliavin’s
theorem follows from this as soon as the existence of an appropriate
f is assured.

Proof: The map

@ $ > [ $(F0) @, vy

is, for each z € G, a bounded linear functional (of norm < 1) on the
space C(Y), where Y is the range of f, a compact subset of the
line R. The Riesz representation theorem implies that there are
measures u, € M (R), concentrated on Y, such that

6 [N E Ny =[T $du) (<6

for every continuous function ¢ on R. If we take ¢(¢) = e,
comparison of (4) and (1) shows that a (%) = A.(w). We infer
from (2), (3), and the inversion theorem 1.7.3(e) that du.(¢) =
m,(t)dt, where m, e C* (the class of infinitely differentiable
functions on R), and since
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(6) D m)e) =5 [ Wl dn,

(2) implies that
(1) |(Dm,)() = M, (xeG, teR, n=1,2,3,...).

Here D™ denotes the nth derivative. We now rewrite (5) in the
form

(8) [ (G0 @ vy = [7_sEym. (.
Taking # = 0 in (1), we see that 4,(0) = 1. But g, is the
Fourier transform of m,. It follows that

(9) my(§) # 0,

for some real number §&.
With this &, we define bounded linear functionals T, on A4(I),
forn=1223,...:

(10) T. =32 g(—=x)(D"m,) (&) (g L'(G)).

z€eG

If I, is the closed ideal generated by (f — £)* we shall see that T,
annihilates 7, ., but not f,, and this will complete the proof. We
do this by first obtaining an alternative description of T, ¢ for a
certain class of functions §.

Suppose z € G, ¢(f) € A(I'), and

(11) ) =¢(f()(=v) (reD).
By (8), (11), and (1) the Fourier transform of ¢m, is
[7 gem()erae = [ $(7(v)) exp {— uf(y)} (z, 7)dy
=] £0) 3 a,0)(— v )y
=“26 g(— y)m,(u)
so that
(12) $(t)m,(2) ='§; g(— yym,(t)  (teR).



176 FOURIER ANALYSIS ON GROUPS

(Observe that the right side of (12) is in C®. This means that
¢ € C* on every segment on which one of the functions m, is
different from 0. Hence ¢(f) e A(I") only for very smooth func-
tions ¢. This remark establishes a connection with the problems
treated in Chapter 6, and has been pursued further by Malliavin
[4])

By (7), the series in (12) may be differentiated term by term any
number of times. Putting ¢ = &, comparison with (10) then shows
that

(13) T.é=D"gm)(E) (n=12,3..)

if § is of the form (11).

Taking $(¢) = (¢ — &)™ and §(y) = (f(y) — &) (z, »), it fol-
lows that T, £ is the nth derivative of (¢ — &)"*1m_(¢), evaluated at
t = ¢, and this is 0. Hence T, annihilates f,_,,.

Butif ¢(t) = (¢t — &)" and §(y) = (f(») — &)", (13) implies that
T, is the nth derivative of (¢ — &)"m,(¢), evaluated at ¢ = £, and
this is nlmy(£). Since my(§) # 0, T, # 0.

Hence (f — &)™ is not in I,,,, and the proof is complete.

The set E; which is thus shown not to be an S-set is the set of all
y e I' such that f(y) = £ Since E, and E, are disjoint if § # «,
we conclude that there are uncountably many pairwise disjoint com-
pact sets 1n I' which are not S-sets and whose union ts an open set.

7.6.4. We now have to prove the existence of a real function
f e A(I') which satisfies the hypotheses made in 7.6.3. Put

1 ¢ .
1 t) = —u/2 — t .
(1) w(t) \/(2”)f_me du (— oo <t < o)
Let Q2 be the Cartesian product of countably many copies of the
segment (0, 1); the coordinates of a point w € 2 are w,, w,, w3, . . .,
where 0 < w; < 1. Define

(2) b {w) = d(w,) (wef, 2=1,2,3,...),

where ¢ is the inverse of y: p(é(f)) = ¢t for 0 < ¢ < 1. In the lan-
guage of probability theory, the functions ¢, form an independent
sequence of random variables, with the same Gaussian distribution.
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THEOREM. If I'is compact and infinite, there is a sequence {x,} in
G with the following property: for almost all w € R, the function f
defined on I' by

3) fo) = flvs ) = § k-4, (0) Re (7, 7)

belongs to A(I') and satisfies the hypotheses of 7.6.3.

The measure on £ with respect to which the phrase “‘almost all”
is to be understood is the product measure, characterized as fol-
lows: if E,,..., E, are sets in (0, 1) and E C 2 is the “‘cylinder
set”’ consisting of all w such that w; € E; (1 < 7 < =), the measure
of E is E = [];., m(E,), where m is Lebesgue measure on (0, 1).

Pyoof: By (1) and (2), we have

fgp(¢,,(w))dw - f: F(¢(x))dz = # f: F(t)e*r dt

for any function F for which these integrals exist as Lebesgue
integrals. Taking F(¢) = |f|, it follows that

S k-t (w)ldo < o

2 k=1

by (3), this implies that fe A(I') for almost all w.
If we define ¢ (#) = a,(%; ) as in 7.6.3, then

) [ exptulity +v) = Fo ey = 3 etz )
and if
© Blu) = Bw; w) = 3 la, (s )",

the Parseval formula gives
Blu) < .z N R
w =[ | | exp uii +9) =i
(7) — 1y + ")+ S}y dy dy”

[ [ | Hew [ tutorPstr..v)] dyay ay

I Ik=1
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where
(8) Py(y, 7, v") = Re [(@, 7 + ¥') — (@, ¥")
= @y +¥7) + @77
Let E be the expected value of B:

(9) E() = [, B(w; 0)do

If we integrate (7) over Q, (2) shows that [, may be moved
inside the product sign. Taking F(x) = ¢** in (4), with s real, the
well-known formula

l 00
V(2m)J

et o~ 2 gy — -2
therefore gives

a0y Bw = | [ HMewp{- 1 P07, ) dr v 3y

Fix u, 4| = 1, and let N be the largest integer such that
N2 < |u|. Since no factor in (10) exceeds 1,

(1) E(w) éfr f IT exp {— } Pily, ¥, y")}dy dy" ay".

'Y I k=1

Two facts will be needed for our next estimate of E(«). First,
there is a constant A < 1 such that

(12) J'r-[rfr exp {— P} < 4

whenever z, # 0 (compare (8)); secondly, {x,} can be so chosen in
G that the right side of (11) is less than

N

(13) 2Hfffexp (—3P3  (N=1,23,..).
k=]

Once these are proved, it follows from (11) that

(14) E(u) < 2 exp {— é|u|V/?} (— oo <u<ow)
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for some 6 > 0. If 0 <& <4, (9) and (14) imply that

fg dw J':B(u; w) exp {e|u|*}du

(15) < 2jfwexp {(e — 8)|u|*}du < .

The inner integral on the left side of (15) is therefore finite for
almost all w. For any such w, (6) shows, via Holder’s equality, that

f " e, (w)urldu < f " B(w%iul du

= {f:oB(u) exp {e\/m}du}% . {f:oexp {— % \/M}lul‘”/" du}%,

forn =1,2,3,... and z € G. Thus the hypotheses of Theorem
7.6.3 are satisfied.

We now turn to the proof of (12) and (13). Define P on the
torus 73 by

(17)  P(e', €', %)
= cos (6, + 6,) — cos 8, — cos (0; + 6;) + cosb,,
put Q = exp {— }P%,

(18) ka’: ‘y'v ‘}’") = Q((zk’ 7)’ (xk» 7,)! (xk’ 7”))’
and
(19) Je= f, f, f, Quly, ¥, v")dy dy” dy".

Since Q, =exp{ — 3P%, J, is the integral in (12). If z, has order
n, then

(20) Je=Jn)= is i Q(e275%In, g2miain g2min/m)

7”9, q,r=1

and if z, is of infinite order, we have

(1) J, = J(oo) = (%t)s f:ﬂ f:ﬂ :" Q(e%, &9, £393)df, df, db,.

Since P(e*?, =19, 1) > 0if 0 << 6 < 2x, it follows that forn = 2at
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least one of the summands in (20) is less than 1. Hence J(n) < 1.
Since J(o) < 1 and since lim J(n) = J(o0), we have proved (12).
Choose g, > 0 so that TJ° (1 + &) < 2. Choose z, ¢ G, z, # 0,

and suppose ,, . . ., Zy_, are selected and satisfy the induction
hypothesis
N-1 N-1
e [ [ Todrayay <avTIa +a),
rJIrJr kei k=l

where 4 is as in (12). Put @y, = [IV* Q.- We will choose
zy € G so that

@3) [[[OnaQndyady dy” <[[[@ny-[[[On- (1 +en).
Since P is a trigonometric polynomial, Q € 4(73), and

oo

(24) O ?.7")= I ulzwpr+q +7")

P, @, P00

where the numbers a,,, are the Fourier coefficients of (. Note also
that ®y_, e A (') and that $y_, — O outside G3y_,, where Gy_,
is the subgroup of G generated by z,, . . ., Zy_;. To evaluate the
integral on the left side of (23) we replace @y_, and Qy by their
Fourier series, multiply the series, and integrate term by term.

Case I. If G is of bounded order, then G is a direct sum of in-
finitely many cyclic groups, Gy_, is finite, and we can find zy # 0
so that the group generated by zy has only 0 in common with
Gn_,. Then (23) holds with ¢y = 0, and the two sides are actually
equal.

CaseIl. If G is not of bounded order but contains no element of
infinite order, then Gy._, is again finite, and to every positive inte-
ger s there corresponds an element zy € G such that azy ¢ Gy,
fora=1,2,...,s. (Otherwise no xz ¢ G would have order greater
than s times the number of elements of Gy_,, a contradiction.)
Given > 0, we can choose s so that Y |a,,.| < %, the summation
being extended over all (p,¢,7) with [p| > s or [g| > s or
lr] > s. By (24), we then have
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(25) [ 0w — amd| <.

Our choice of zy shows that

s 1195005 =]

+ 3 tper [ [ [ B2n. 7)g20, ¥') 20 ¥ )P,

where [p] > s, lg] > s, and Jr} > s in >'. This sum is less than 7,
since @y_; < 1. Comparison of (25) and (26) shows that (23) holds
if % is small enough.

Case III. If G has an element z, of infinite order, and if > 0,
then Gy._, has a finite subset H such that 3 |@y_,(z, 2, 2”')] < 7,
the sum being extended over all points (z, z’, ") with at least one
coordinate outside H. Let zy be a multiple of z,, so that azy ¢ H
unless 2 = 0. Then [ [ { Qy = agyo and

(27) [f]®x-10n < aoan [ [ [@rs + 2

Taking # small enough, we. again obtain (23).
The proof is complete.

7.7. Closed Ideals Which Are Not Self-Adjoint

7.7.1. The work of Section 7.6 can be modified so as to yield the
following result:

THEOREM. If I' is not discrete, then A(I") contains a closed ideal
which is not self-adjoint (i.e., which is not closed under complex
conjugation).

Proof: By an argument quite analogous to that used in Lemma
7.6.2 we see that it is enough to prove the theorem for compact
infinite I

Pick {¢,} as in 7.6.4 (2), put

AB) = 3 #%(w) Re (@.7), f2() = I k% (0) Re (. 7).

k even

define a,(u, v) for u, v real and z ¢ G by
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exp {— i(ufy(y) + 1H0)} = 3 a.(4,v)(— =z, ),

z€G
put
B(u,v) = B(u,v; ) = 3 |a,(u, v)|*
zeG
and

E(u,v) = [_ B(u, v; w)do.
As in 7.6.4(10), we obtain

=[] Iow |- ) o (- o e v

kodd k even

and the final argument in 7.6.4 shows that {z;} can be so chosen in
G that

E(u,v) < 2 exp {— 8(jul* + [v]*)}.
A weak consequence of this is a condition analogous to 7.6.3(2):

sup J‘_ f e (u, )] (w® + v2)% dudv = M < oo.

ze€G

We now define f = f, + #f, and find, as in 7.6.3(8) that

[roGoN @ vy = [T [T $(s. tyme(s,)ds @t (z<G),

for every continuous function ¢ in the plane; the functions m, have
compact support, and satisfy the inequalities

om,,

<=M,
os |

{Om,,
Al =M.
a l

Since m, is not identically 0, we may, by adding a constant to f,
assume that #2,(0, 0) £ 0. We now define a bounded linear func-
tional 7 on A4 (I'):
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where
o 10 .0 .
5;:5(-&—15) (Z=$+1t).
If §(y) = ¢(f(»)) (. y), with ¢(f) e A(I') and z € G, we see, as
in 7.6.3 (13), that

. 0
Tg = - ($m.)(0, 0).
Taking ¢(z) = z, = = 0, this gives
, 0
Tf = P (2m) (0, 0) = m4(0, 0) #~ 0.

But if ¢(z) = Z and z € G, we get

2 om
5 = — {Z 0 = Z z = .
Y o (z2m,) (0, 0) z % | o 0

Thus T annihilates the ideal generated by?without annihilating
f. The theorem follows.

7.7.2. One can produce other examples of this sort, based on
other differential operators. However, the following result of
Helson [2] shows that this does not exhaust all possibilities:

TueoREM. If I, and I, are distinct closed ideals in L*(G), if
I,C1I,, and if Z(I,) = Z(I,), then there exists a closed tdeal I such
that I #£1,, I #1,, and I, CICI,.

7.8. Spectral Synthesis of Bounded Functions

7.8.1. It often happens that a problem in a Banach space X
can be replaced by an equivalent one in the dual space X*. For
example, we shall see that the study of the closed ideals of L}(G)
is equivalent to the study of the translation-invariant subspaces of
L*(G) which are closed in the weak*-topology. This approach
was suggested by Beurling [2], [3], and various aspects of it have
been discussed by Segal [2], Godement [1], Pollard [1], and
Herz [3].
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If I is a closed ideal in L1(G) and if @ is a translation-invariant
weak*-closed subspace of L*(G), define

@) a(I) = {peL®(G): fxd =0 for all fel},
(@) B(®) = {feL'(G): f#¢ =0 for all $eB}.

The letters I, @, a, 8 will have these meanings throughout the
remainder of this chapter.

The spectrum of @, written o(®), is defined as the set of all
continuous characters of G which belong to @; if ¢ € L*(G), its
spectrum o(¢) is defined to be o(®(¢)), where P(¢) is the smallest
@ which contains ¢. The problem of spectral synthesis in L*(G) is
the question whether each ¢ ¢ @ can be “‘synthesized” from ¢ (®).
More precisely: Is every @ identical with the weak*-closed subspace
D, of L=(G) which is generated by the continuous characters in P?
Or can distinct @’s have the same spectrum? (It is clear that
P, C P, that o(P,) == o(P), and that @, is the smallest weak*-
closed subspace of L*(G) with this spectrum.)

1f a set E C I'is the spectrum of a unique @, we say that spectral
synthests holds for E, or that E is an S-set. The equivalence of
this definition with the one adopted in Section 7.1.4 is a conse-
quence of part (e) of the theorem which follows.

7.8.2. THEOREM. (a) Each «(I) is a D, each B(P) is an I.

(b) a(B(®)) = & and p(a(l)) = 1.

(c) If @ = a(l) then o(P) = Z(I).

(d) o(P) is always closed, and every closed set E C I is o(®P) for
some D.

(e) A closed set ECT is o(®D) for a unique @ if and only if
E =Z() for a unique I.

Proof: Part (a) follows from Theorem 7.1.2 and from the defini-
tion of the weak*-topology.

The inclusions

(1) a(8(®)) D& and f(a(l)) DI

are obvious from the definitions of « and . The Hahn-Banach
theorem implies that «(I,) = a(l,) if and only if I, = I,; its dual-
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space analogue (Appendix C9) shows similarly that §(®,) = 5(®,)
if and only if @, = @,. The first of the relations (1) shows that

(2) B(«(8(®))) C (),

and if we put I = §(®) in the second, we obtain the reverse of (2).
Hence B(«(8(®))) = B(P), and this implies that «(f(P)) = . The
second part of (b) is proved the same way.

If @ = «(I), then y e o(P) if and only if fxy = 0 for all fel.
But (f * y)(x) = (z, »)f(), and this is 0 for all z ¢ G and all f €]
if and only if y € Z(I). This proves (c).

By (a) and (b), every @ is a(I) for some I; hence (d) follows
immediately from (c).

Since o(®) = Z(B(P)), by (c), and since B(P,) = B(P,) if and
only if @, = @,, we see that (e) is true.

7.8.3. We can now rephrase some of our earlier results.

(a) If V is an open set containing o(P) and if D, is the weak*-
closed subspace generated by the characters in V (not just those in
o(®P)!) then &,D &.

For if I = p(®P) and I, = §(P,), then Z(I) is in the interior of
Z(1,), and so I, CI, by 7.2.5(a). Hence @, = o(l;) Da(l) = &.

(b) If f e LY(G) and f = O on an open set containing o(¢), then
fxg=0.

This is a special case of (a).

(c) If D contains a non-zero function, then o(®P) is not empty.

Since we identify functions L*(G) which differ only on sets of
measure zero, the hypothesis means that @ contains a function
which differs from zero on a set of positive measure. Then §(®)
LY(G), and so Z(B(P)) is not empty, by Wiener’s theorem. But
Z(B(D)) = o(P), by Theorem 7.8.2.

(Q) If ¢ € L®(G) and ¢ #~ 0, then at least one continuous character
of G can be approximated, in the weak*-topology, by linear combina-
tions of translates of ¢.

This follows from (c).

(€) If o(D) = {y1, ..., ¥n}, @ finite set, then every ¢ e P is a
trigonometric polynomial of the form
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(1) $(@) =3 ez v.).

i=1

This is so since every finite set in I" is an S-set and since the
space of all polynomials (1) has {y,, ..., y,} as its spectrum.

7.8.4. Although a space @ may not be determined by the con-
tinuous characters which it contains, @ is determined by the uni-
formly continuous members of .

For if ¢ ¢ P and g € L}(G), then g * ¢ is bounded and uniformly
continuous (Theorem 1.1.6(b)) and (a) gx$eP (b) ¢ is in the
weak*-closure of the set of all g+ ¢ (ge L}(G)).

To prove (a), take f € B(P). Since §(P) is an ideal, f * g € §(P),
hence f* (g *¢) = 0, and so g * ¢ e a(B(P)) = P. To prove (b),
suppose f e L1(G) and f* g * ¢ = O for all g e L1(G). Taking {g,}
so that ||f — f * g,li; = 0, we see that f ¢ = 0, and (b) follows
from Appendix C9.

7.8.5. Let us say that a function ¢ ¢ L®(G) admits spectral
synthesis if ¢ is in the weak*-closed subspace of L*(G) generated
by o(¢); in other words, if ¢ is in the weak*-closure of the set of all
trigonometric polynomials f ot the form

(1) fx) = X cil=, 7)) (xeG, y,ea(d)).

f=]l

THEOREM. If ue M(I') and if

(2) $@) = [ @ rduly) (zeG),

then o(d) is the support of u, and ¢ admits spectral synthesis.
(For any ¢ ¢ L*=(G), o(¢) may thus be regarded, heuristically, as
the support of the ‘‘Fourier transform” of ¢, although we have not
defined any such transform on L*(G).)
Proof: Let @ be the smallest weak*-closed translation-invariant
subspace of L*(G) which contains ¢, and put I = g(®). If
fe LY(G), (2) implies

(3) (F+ $) @) = [ @ »i)du®),
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and hence f € I if and only if f = 0 on the support E of x. In other
words, I is the largest ideal in L'(G) which has Z(I) = E. By
Theorem 7.8.2, o(¢) = o(®P) = Z(I), and so o(¢) = E.

Since @ = «(I), it also follows that @ is the smallest subspace of
L*(G) with o(®) = E, and the proof is complete.

CoroLLARY. I} G is discrete, and if ¢ e L2(G), then ¢ admits
spectral synthesis. (Note that L%(G) C L*(G).)

For if ¢ € L3(G), ¢ is the Plancherel transform of a function in
L¥(I"), and L¥(I") CLY(I") CM(I") since I' is compact.

7.8.6. With ¢ > 2 in place of 2, the preceding corollary is false.

THEOREM. If G is discrete and infinite and if ¢ > 2, there exists
¢ € L9(G) which does not admit spectral synthesis.

Proof: We shall use the results, notation, and terminology of
Sections 7.6.3 and 7.6.4.

Let I, be the ideals defined after 7.6.3(10), put @, = «(Z,), and
$.(x) = (D™m,) (&), for n=1,2,3,... and zeG. We saw in
7.6.3 that ¢, is in @,,, but not in @, . Since ¢, € D,,,, and since
6(®,11) = Z(Insn), 6($a) C Z(Ip) = Z(I,). Hence every ¢ in
the weak*-closed space generated by o(¢,) belongs to a(f,) = @,,
and it follows that none of the functions ¢, admit spectral syn-
thesis.

In the notation of 7.6.4, we had

(1) 2 la (@)l = Bu), X la(u)*=1,

z€G z€G

and Holder’s inequality therefore gives

(@) 2 la,(W)|* < Bu)e22 (2<g<4)

zeG

By 7.6.3(6), we have

b= e (ol

(|7 @+ woia o an™

— 00
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where 1/p + 1/g = 1, and it follows from (2) that

(3) S Igr(@)i* < const. [* (1 + u2)eB(w) -2 du.

z€G -
Since [oB(#; w)@22dw < E(u)9-2/2, 7.6.14 shows that the
integral in (3) is finite for almost all w. For any such o,
¢, € LYG) for every g > 2, and the proof is complete.

7.8.7. Similarly, Theorem 7.2.9 becomes false if the exponent 2 is
replaced by any p < 2 (Segal [1]).

This can also be deduced from Sections 7.6.3 and 7.6.4. The
remark at the end of 7.6.3 shows that for some £ the set /~1(£) has
measure 0 and the various powers (f — &)* generate distinct closed
ideals in A(I'). Put § = (f — £)2. Then g € L1(G), and since G is
discrete, g e L*(G) for all p = 1.

We saw in 7.8.6 that the construction used in the proof of Mal-
liavin’s theorem yields a function ¢,(¢, (x) = m’,(¢)) which belongs
to L(G) for every ¢ > 2. The conclusion of 7.6.3 shows that ¢,
annihilates the ideal in A(I') generated by §£; in other words

(1) “ZGg(x — 94 =0 (zeG)

Since ¢, does not annihilate f — £, ¢, 0. Hence (1) implies that
the set of all finite linear combinations of translates of g is not dense
in L?(G) if $ < 2, although Z(g) has measure 0.

7.8.8. We end this chapter with the construction of another
class of S-sets; for I'=T, this class was discovered by Kahane and
Salem [1].

THEOREM. Every infinite compact abelian group I' contains a
perfect set E with the following property: if ¢ € L=(G) and if o(¢)CE,
then ¢ € B(G).

By Theorem 7.8.5, these sets are S-sets. They are also Helson
sets, as may be seen by restating the theorem: if ¢ e L™(G) and if
[xéd =0 for all f eI (E), then ¢ ¢ B(G); in particular, ¢ ¢ B(G)
under the stronger hypothesis that f « ¢ = 0 for all feJ(E), and
hence E is a Helson set, by Theorem 5.6.3(c). It is not known
whether every Helson set is an S-set.
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It is also not known whether every Kronecker set is an S-set, but
it seems quite possible that the Fourier-Stieltjes transforms on G
are the only bounded functions whose spectrum can lie in a Kron-
ecker set in I. In any case, the construction by which we will prove
the theorem shows that the sets obtained have no ‘‘arithmetic
cohesion’ at all, and thus differ radically from the S-sets con-
structed by Herz whose arithmetic structure is quite rigid.

Proof: Suppose A is a closed subgroup of I', H is the annihilator
of A, $e L®(G), and o($p)CA. If yeH, f(0) =1, {{y)=—1,
and f = 0 at all other points of G, then f = 0 on A, and since 4 is
an S-set (Theorem 7.5.2) we have

$(z) — ¢ —y)=(f+4){z) =0

for all z € G. Thus ¢ is constant on the cosets of H, and ¢ may
therefore be regarded as a member of L*(G/H).

We conclude that if the theorem is true for some closed subgroup
of I' it is also true for I. As in Section 5.2, the problem therefore
reduces to two cases: (a) compact metric I-groups, and (b) groups
D,, with ¢ = 2.

Suppose I' is a compact metric J-group. Since G is then count-
able (Theorem 2.2.8) we may arrange the elements of G in a
sequence ,,%;,%3,.... Fix 7 =1, and suppose that disjoint
compact neighborhoods Ej™' have been chosen (1 <j < 2,
whose union is E,_ ;. By Lemma 5.2.3, there is a Kronecker set
K., consisting of 27 points, which has 2 points in the interior of
each set E;‘l, and since K, is a Kronecker set, there is an integer
N, > r with the following property: If |a(y)] = 1 for all y ¢ K,,
the inequality

(1) inf Re [a(y) (2., ¥)] = %

veK,

holds for some z, with 1 =< »n < N,. If xis a measure concentrated
on K,, then du = ad|u| with |«| = 1, and it follows that

(2) sup |a(z,) = Hixll,
1SngEN,
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where

®) p@) = [ (z.)duly)  (2<G).

By Theorem 2.6.1, we can associate a function f; ¢ L!(G) with
each point y, of K, so that ||£,||, < 2, so that f', (y) = 1in a compact
neighborhood V, of y, and so that the supports of the functions f;
are disjoint and lie in the interior of E,_,.

By Theorem 2.6.5, there are functions g, ¢ L}(G),for1 < #n <N,,
such that £,(y) = (,, y,) in a compact neighborhood W, ,, of each
point ;€ K,, and such that

(4) lgn(_ xn) - ll + ;ez ]gn(— Z)l < 3
Now put
N, or
(5) Ei=V,n(W,,. E =L E;]
n=1 =1

(It should be borne in mind that the functions f,, g, and the sets
V,, W, , also depend on 7.) The set E, is in the interior of E,_,,
and E = (7 E, is the desired set.

Suppose ¢ € L®(G), |ldllo = 1, and a(¢) C E. Fix 7, let f; be as
above, define

(6) P = (f;* ¢)(0) l=s7=2),
and let x4, be the measure, concentrated on K,, such that
/l,-({}’,}) = ?7" Then

(7) Hedl = 2701l hldlle = 2742
and
(8) ps=[fdu, = (1, 8)0) (1 =j=2).

Since each of functions f; and £, is constant on each of the sets
Ej, g, coincides on E, with a linear combination of the functions
f;» and since E, contains E and K, in its interior, our assumption
that ¢(¢$) C E, together with (6) and (8), implies that (g, = }(0) =
0, where vy = ¢ — £,. Thus
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(9) - w(xn) = [gn(_ xn) - 1]'/’(%) + z gﬂ(— x)‘P(I)’

z#z,
and (4), (7), and (9) imply
(10) lp(@.)l =37Iylle =37(1+2%) (1=ns=N,).
It follows that
(1) #(z) = lim 4,(x) (x € G).

r-+0

Since |4, =1 + |y, (10) and (2) imply
(12) gl = 2{1 + 3-7(1 4 27+1)} (r=1,23,..))

so that {]|x,||} is bounded. Hence ¢ ¢ B(G), by (11) and Theorem
1.9.2.

This completes the proof in case (a). In case (b), we use sets of
type K, in place of Kronecker sets. The argument is then so similar
that we omit the details; the modifications are like those used in
Sections 5.2 and 5.5.
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CHAPTER 8

Fourier Analysis on Ordered Groups

The theory of analytic functions in the unit disc of the complex
plane can be extended in several ways. In one type of extension,
the unit disc is replaced by other plane domains (the Riemann
mapping theorem plays an important role here), by domains on
Riemann surfaces, and by domains in spaces of several complex
variables. Another type of extension is based on the observation
that every power series >¢° 4,2", when restricted to the unit circle,
is a trigonometric series Y% a,e*® whose coefficients are O if
n < 0. This suggests that one might replace the circle T byany
LCA group G whose dual I'is ordered (the definition is given below;
Z is the simplest example of an ordered group) and study those
functions on G whose Fourier transforms vanish on the negative
half of I

The present chapter is devoted to extensions of the second type.
G will play the role of the boundary T of the unit disc. Although
it is possible to define an analogue of the interior of the disc when-
ever the dual of G is ordered (Arens [1], [2], Arens and Singer [1],
Hoffman (1], Hoffman and Singer [1]), we shall restrict ourselves
to problems which can be discussed and solved on the group itself.
In the classical case (G = T') this amounts to proving theorems
about functions analytic in the unit disc by studying only the
boundary values of these functions; in some cases, the proofs so
obtained are distinctly different from the more familiar ones.
Sections 8.2 to 8.5 are to a large extent based on the work of
Helson and Lowdenslager [1].

8.1. Ordered Groups

8.1.1. Suppose P is a semigroup in a LCA group G (this méans
simply that P 4 P C P) which is closed and has two additional
193
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properties:
(1) Pn(—P)={0}, Pu(— P)=0GC.

Under these conditions, P induces an order in G. For if we define
z = y to mean that x — y ¢ P (it is understood that x, y, . . . are
elements of G), the axioms for a linear order are satisfied: if
z—y=0andy — 2z = 0, thenz — z = 0 since P is a semigroup,
so that the relation = is transitive, and (1) shows that each pair
z, y satisfies one and only one of the relationsz > y, 2 = y, y > =.
Also, if z >y, then 2z + 2>y + 2.

The choice of a semigroup P with the above properties (i.e., the
choice of an order in & which is compatible with the group opera-
tions) makes G into an ordered group. A given group G may have
many different orders.

An order is said to be archimedean if it has the following property:
to every pair of elements z, ¥ of G such that z > 0 and y > 0,
there corresponds a positive integer # such that nz > y.

8.1.2. THEOREM. Lef G be a discrete abelian group.

(a) G can be ordered if and only if G has no element of finite order.

(b) If G has no element of finite order and if the cardinality of G
does mot exceed the power of the continuum, then G can be given an
archimedean order.

(c) It G has an archimedean order, then there is an order-preserv-
ing tsomorphism of G onmto a subgroup of R.

Proof: We begin with the observation that if G is the direct sum
of ordered groups G,, where « runs through an index set 4, then
G can be ordered. For we can well-order 4; then every z¢G
has the form

T= (2,25, ..., Ly, --.) (%, € G,),

and if 2 # y and y € G, there is a first « € A for which z, % y,.
Define z < y if and only if z, < y, for this «. (This is usually
called a lexicographic order).

It is clear that no finite cyclic group can be ordered. Since every
subgroup of an ordered group is ordered, it follows that an ordered
group contains no element of finite order. Conversely, if G has no



FOURIER ANALYSIS ON ORDERED GROUPS 195

element of finite order, G can be embedded in a divisible group D
of the same cardinality as G (Theorem 2.5.1) which has no element
of finite order. Since D is a direct sum of copies of the rationals
[Kaplansky [2]), D can be ordered, and the same is true of its sub-
group G. This proves (a).

Under the assumptions of (b), the above group D is the direct
sum of at most ¢ copies of the rationals (where ¢ is the power of the
continuum) and since R is the direct sum of ¢ copies of the ration-
als, G is isomorphic to a subgroup of R, and hence has an archi-
medean order.

To prove (c), suppose G has an archimedean order, fix z, ¢ G,
zo > 0,and if x € G, x > 0, let E(z) be the set of all rational num-
bers m/n (m, n positive integers) such that nx > mz,. If ¢(z) is
the least upper bound of E(x), and if ¢(— z) = — ¢(x), it is a
simple exercise to verify that ¢ is an isomorphism of G into R and
that ¢ preserves the order of G.

8.1.3. Let us say that P is a maximal semigroup in G if G is the
only semigroup in G which contains P as a proper subset.

THEOREM. (a)If P induces an archimedean order in G, then Pisa
mazximal semigroup in G. (b) Conversely, if P is a closed maximal
semigroup in G, if P % {0} and if P n (— P) = {0}, then P defines
an archimedean order in G.

Proof: Fix z ¢ P, x # 0, and let S be the semigroup generated
by P and — z. If the order induced by P is archimedean, then to
every y € P there corresponds #» > 0 such that nz — y ¢ P. Hence
—yeS, and so S = G. This proves (a).

To prove that P induces an order in G, under the assumptions of
(b), we have to show that G = P u (— P). If this is false, there
exists ye G such that y¢ P and y¢ — P. Fix 2" ¢ P, ' # 0.
Since P is maximal, the semigroup generated by P and y is G.
Hence — z" = 2" + ny, wherea” ¢ P, n > 0, and ny # 0, so that
nye — P. Since — P is also a2 maximal semigroup, the same
argument shows that there is a positive integer  such that ry % 0
andry ¢ P. Thennry e P n (— P),hencenry = 0. Now —ry e— P,
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and — ry = (» — l)ry e P, contradicting the assumption that
Pn (— P)= {0}.

Suppose now that a € P, b € P, b 5« 0. The semigroup generated
by P and — b is G, and so — a = p — nb for some p ¢ P and
n > 0. This says that b — a € P, and hence the order induced by
P is archimedean.

8.1.4. THEOREM. No nom-trivial compact abelian group G can
be ordered.

Proof: Suppose G is compact and P is a closed semigroup in G
which induces an order in G. Let S be the intersection of the sets
P + z, where z ranges over P. These sets are compact and have
the finite intersection property, so that S is not empty. Fix z, e S
and ze P. Since zge P + z, x5 — z ¢ P; since z,¢ P, we also
havezy, + ze P. Thuszy + GC P,orG = P. Hence G n (— G)
= {0}. But — G =G, and so G = {0}.

8.1.5. THEOREM. If G is an ordered LCA group, and if G is not
discrete, then G = R @ D, where D is a discrete ordered group.

Proof: Since every subgroup of an ordered group is ordered,
Theorem 8.1.4 shows that G has no non-trivial compact subgroups.
Thus G has R"™ as an open subgroup, for some # > 0, by the struc-
ture theorem 2.4.1, and R" is ordered. In any ordered group, the
set of all negative elements is open, and since the mapz - — x
is a homeomorphism, so is the set of all positive elements; it follows
that removal of 0 disconnects an ordered group; but R™ is dis-
connected by the removal of a point if and only if » = 1. Hence R
is an open subgroup of G. The conclusion of the proof of Theorem
2.4.1 shows that R is then a direct summand of G, and this com-
pletes the proof.

8.1.6. THEOREM. If G is an archimedean ordered LCA group,
then G = R o? G 1s a discrete subgroup of R.

Proof: If G is discrete, we refer to Theorem 8.1.2(c). If G is not
discrete, then G = R @ D, as in Theorem 8.1.5. Suppose D is not
trivial. Let P be the semigroup which induces the order of G.
Since P is closed and since removal of 0 from P leaves an open set,
it follows that P contains all cosets of R (except R itself) which it
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intersects. Hence there are cosets of R which are not intersected
by P. It follows that P u R is a semigroup between P and G,
which contradicts Theorem 8.1.8. Hence D is trivial and G = R.

8.1.7. ExaMpPLES. The group Z%, the dual of the torus T3, is
simple enough to be easily visualized (regard it as the set of all
points in the plane whose coordinates are integers) and yet it offers
enough diversity to be interesting.

If « and 8 are real numbers and if /g is irrational, let P be the
set of all (m, n) € Z% such that

a) am + pn = 0.

The map (m, n) — am + fn is an isomorphism of Z2 into R which
preserves the order induces by P. Hence P induces an archimedean
order in Z2.

If «/B is rational, the map (m, #) — am + fn is no longer one-to-
one. Suppose « 7% 0, and let (m, n) e P either if am 4 fn > 0 or
if am + fn = O0andn = 0. This order is not archimedean, and P
is not a maximal semigroup: the set of all (m, n) witham + fin = 0
is a larger one.

The case o« = 1, f = 0 gives a simple lexicographic order;

(mn)> m,n')ifm>m or f m=m' and n > n".

8.1.8. Suppose now that G is a compact abelian group. By
Theorems 8.1.2(a) and 2.5.6(c), I" can be ordered if and only if G
is connected. Suppose this is so, and suppose that a certain order
has been chosen for I

In this situation, we shall say that a function fe L}(G) is of
analytic type if f(y) = 0 for all y < 0; this terminology is suggested
by the opening remarks of the present chapter. Similarly, if
u e M(G) and if A(y) = 0 for all y < 0, we shall say that x is a
measure of analytic type. The set of all functions of analytic type
which belong to L?(G) will be denoted by H?(G) (1 < p = o).
The continuous functions of analytic type will also be of interest
to us, as will the trigonometric polynomials of analytic type.

It should be realized that this nomenclature is not quite com-
plete. The class H?(G), for instance, does not depend on G alone,
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but depends also on the particular order which is imposed on I.
Since we will usually work with one fixed order, this will cause no
difficulty.

8.2. The Theorem of F. and M. Riesz
8.2.1. TREOREM. If u is a measure on the unit circle such that

(1) f:”emo du) =0 (n=1,23,...)

then u 1s absolutely comtinuous with respect to Lebesgue measure.

In other words, if u e M(T) and if u is of analytic type, then
du(0) = g(e?)d0, for some g ¢ L}(T). Setting dA(0) = e® du(0), the
hypothesis of the theorem is equivalent to the assumption that

(2) [ te)aa) = 0

for every f which is continuous on the closed unit disc and which is
analytic in the interior of the disc. It is thus not surprising that
the theorem was originally proved by complex variable methods
(F. and M. Riesz [1], Zygmund [1], vol. I, p. 285), particularly
since its first applications lay in that direction. If the hypothesisis
formulated as in (2), the theorem extends to multiply connected
plane regions (Rudin [1]) and to regions on Riemann surfaces
(Wermer [3]).

Helson and Lowdenslager [1] discovered a different proof in
which the integers can be replaced by any discrete ordered group
(although the statement of the theorem must be slightly altered
if there is no smallest positive element). This proof is based on a
minimizing process in a certain Hilbert space which we now de-
scribe and which will be used in other situations as well.

8.2.2. Suppose G is compact and connected, and an order has
been selected for I". Suppose 6e¢ M(G), ¢ = 0, and

(1) do = do, + wdx

where g, is singular with respect to the Haar measure of G and
w e L1(G) (Appendix E3).
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Let 2 be the set of all trigonometric polynomials Q on G, of the
form

(2) Q) = X aly)(=. 7).

>0

let K be the set of all functions 1 4+ Q(Q € 2), and let K be the
closure of K in the Hilbert space L2(s). Since K is convex, there is
a unique ¢ € K such that

(3) lIgl] = inf |]1 + QIf;
Qe

the norms in (3) are taken in L2%(g). As a point function on G, ¢
is determined almost everywhere with respect to o.

LeMMA. In the above situation, ¢ has the following properties:

(1) ¢ = O almost everywhere with respect to o,.

(1) dw e L2G) and |p|2w = c? almost everywhere (with respect to
Haar measure), where ¢ = ||}].

(iii) If {|¢]l > O and if h = 1], then h ¢ HX(G) and h(0) = 1.

Proof: If g € L?(0) and if ¢ 4+ «g € K for all scalars a, then ¢ and
g are orthogonal, by the minimum property of ||¢||. This condition
is satisfied, for y > 0, if g(x) = (z, ) and if g(z) = ¢é(x)(=, ).
Hence

(5) [#@) (@ )o@ =0 (y>0)
and
(6) [ol#@)1@ y)do@) =0 (y>0).

Since |$[2 is real, (6) is also true for all y < 0. If di = |$|®do, this
says that A(y) = 0 for y % 0, and 1(0) = ¢2. Hence

(M |$|3do = cdzx.

This implies that the singular part of |$|2d¢ is 0 and (i) follows.
Hence |¢|2de = |$|*wdz, and so |$|%w = c? almost everywhere; since
[¢w|? = c&w and w e L1(G), it follows that ¢w ¢ L3(G).

If ¢ > 0, then |A|2 = |¢|2 = c~2w, so that he L*(G). Fory eI,
we have
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8) [ (@) (2, y)dz = c2[_$(@)w(z) (z,7)dz = =2 [ _§(=) (z, y)do(2).
By (5), the last integral is 0 if y > 0. Hence &(y) = 0if y < 0,
and & e H*(G). With y = 0, (8) and (5) imply

(@) h(0)=[ do=[ (1 +0)8dc (r=123..),

where @, €2 and 1 4 Q, > ¢ in the norm of L%(s). Letting
n — o0, (9) becomes

(10) c#h(0) = [ I8l = |I$l12 = 2,
and the proof is complete.

8.2.3. We now come to the generalized version of the F. and M.
Riesz theorem; we refer to Section 8.1.8 for the terminology used.

THEOREM. Suppose G is compact and comnected, I' is ordered,
ueM(G), and u is of analytic type. If
(1) dp = du, + fdz
where u, is singular and [ e L'(G), then

(a) both u, and f are of amnalytic type, and

(b) 4,(0)=0.

Proof: We may add any multiple of the Haar measure of G to u

without affecting either the hypothesis or the conclusion of the
theorem. Hence we may assume, without loss of generality, that

2 inf | |1 *do > 0,
(2) Q‘f,,fa’ + Ql*do >

where ¢ = [u| and 2 is as in 8.2.2. Choose ¢ as in 8.2.2. Since
¢ == lim (1 4- Q,) in the norm of L2(g), for some sequence {Q,}
in £, the hypothesis that A2(y) = 0 if y < 0 implies

3 [,(1+0@)é@)(=z y)auE) =0  (Qe2,y>0).

Since g, = |u,|, part (i) of Lemma 8.2.2 shows that (3) is the same as

@ [,0+0@)4@) (= MfEdz =0 (Qely>0)
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By part (iii) of the lemma there is a sequence {Q,} in 2 such that
1 4+ Q, — k& in the norm of L%(G). Since ¢f ¢ L%(G), by part (ii) of
the lemma, since (4) holds with @, in place of @, andsince¢h =1,
it follows that f(y) = 0 if y < 0. Hence we also have fg,(y) =
Ay) — fly) = 0 if y < 0, and (a) is proved.

To prove (b), we again apply Lemma 8.2.2, but this time with
o = |p,|. Then o = o, and part (i) of the lemma implies that

(5) 1imfG,1 + Q,)|*do = 0
for a certain sequence {Q,} in Q. By the Schwarz inequality, it
follows that

(6) lim [ (1 + Qu)du, = o.

n— 0
But [ Qdu, = 0 for every Q € 2, since f,(y) = 0 if y < 0. Hence
fdu, =0, and the proof is complete.

8.2.4. We can now prove Theorem 8.2.1. For if x e M(T) and
fA(n) = 0 for all » < 0, Theorem 8.2.3 implies that g,(n) = 0 if
n = 0. If u, 5~ 0, there is a first positive integer n, such that
f,(ne) # 0. Set A(n) = a,(n, + #). Then 2 is singular, i(n) = 0
for » < 0, and 1(0) = A,(n,) # 0, in contradiction to Theorem
8.2.3. Hence u, = 0, and the proof is complete.

In the general case, the following observation can be extracted
from the preceding argument:

If pe M(G), of u ts singular, and if fi(y) = O for all y < 0, then
there cannot be a first element yy e I' at which fi(y,) # 0.

The word “first”’ is of course to be interpreted with respect to
the given order of I

8.2.5. To give another application of Theorem 8.2.3, take
G = T%; the dual group Z%is the set of all lattice points in the plane
(see Section 8.1.6).

THEOREM (Bochner [4]). Suppose Y is a closed sector in the plane,
whose opening is less than n radians. If ue M(T?) and if f =0
outside Y, then u is absolutely continuous.
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Proof: Y is contained in a sector of the same opening whose
vertex is a lattice point, and by translation we may therefore
assume that the vertex of Y is at (0, 0).

The proof will involve three distinct orders of Z2. There are two
distinct closed half-planes I1,, IT,, bounded by lines of irrational
slope, which contain Y. By Theorem 8.2.3, g, has its support in
I7, and also in IT,, hence in IT; n II,. Let IT be a closed half-plane,
bounded by a line of irrational slope through (0, 0), which con-
tains II) n IT, in its interior (except for (0, 0)). It is clear geo-
metrically that IT, n II, n Z? is well-ordered with respect to the
order induced by /7. Hence the remark made in 8.2.4 shows that
#, = 0.

8.2.6. In general, however, the conclusion of Theorem 8.2.3
cannot be strengthened to “‘u, = 0”’. For example, let I"be a dense
subgroup of R, with the natural order, and give I' the discrete
topology. The function y(y) = max (1 — {y|, 0) is positive-de-
finite on R (compare the proof of Lemma 6.8.4); if ¢ is the re-
striction of y to I, it follows that ¢ is positive-definite on I', and
hence ¢ € B(I'). Since ¢(y) > } at infinitely many points of I', and
since I' is discrete, ¢ ¢ A(I"). If y4 e I'" and y, > 1, the function
é(y — y,) is in B(I'), vanishes for all y < 0, but is not in 4 ().

8.2.7. Since T is a quotient group of R, we can transfer Theorem
8.2.1 from T to R:

THEOREM. If ue M(R) and if
(1) fj‘; e dy(z) = 0

for all y < 0, then u is absolutely conitnuous.

Proof: The change of variable 2 — cx, where ¢ is a constant, does
not affect the absolute continuity of any u e M (R). Hence, if the
theorem is false it is false for some measure u such that

(2) el ([— =, 7]) > $lll-
Define 0 e M(T) (as in the proof of Theorem 2.7.2) by
3) o(E) = p({z : ¢ ¢ E}).
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Since (2) holds, ¢ has a non-zero singular component. But
é(n) = fi(n) foralln ¢ Z. Hence ¢(n) = 0if n < 0, and so o must
be absolutely continuous, by Theorem 8.2.1. This contradiction
establishes the theorem.

8.3. Geometric Means

8.3.1. Suppose w € L1(G) and w = 0. The geometric mean of w is
defined by

(1) A(w) = exp fclog w(zx)dz.
If the integral in (1) is — o0, A(w) = 0.

LEMMA. Suppose G is a compact abelian group, w e LY(G), and
w=0. Then

(2) exp fclog w(x)dx = inf J.Ge"”w(x)dx,

the infimum being taken over all real trigonometric polynomials f on
G such that f(0) = 0.

Proof: If f(0) = 0, then 4(w) = A(¢’w), and the familiar in-
equality between the arithmetic and geometric means shows that

(3) Aw) < J'Gem)w(x)dx

for all real fe L}(G) with f(0) = 0.

Suppose, temporarily, that [log wdz > — co. Division of »
by a positive constant does not affect (2). We may therefore as-
sume that

(4) Jclog w(z)dx = 0

and we decompose log w into its positive and negative parts:
logw =u —v,u =0,v =2 0, uv = 0. Since [ u = [ v, there exist
monotonically increasing sequences {u,}, {v,} of bounded non-
negative Borel functions on G such that u,(x) - % (), v,{z) > v(x)
forallzeG,and fu, = [v,. Putg, = v, — u,. Theng,(0) =0,
and
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u—u, <logw if w=1,

! =
g + log {—v+v,,§0 if w <.

Hence exp {g, -+ log w} < max (w, 1). Since g, + logw, —> 0
almost everywhere, Lebesgue’s dominated convergence theorem
yields, in conjunction with (4),

(5) lim [ w(z) exp {ga(e)}dz = 1 = A(w).

Fix n. By Lusin’s theorem (Appendix E8) there is a uniformly
bounded sequence of real continuous functions 4; on G such that
lim h;(z) = g,(x) for almost all x € G. Since £,(0) = 0, we have
%, (0) > 0 as i > co. If k, = h; — ,(0), then k, is continuous,
£,(0) = 0, k(z) > g.(x) for almost all zeG as i— oo, and
{l|k,||} is bounded. The functions %, can be uniformly approxi-
mated by real trigonometric polynomials f; with f,(0) = 0, and
we have

©  lim [ o) exp {f@)de = [ w@) exp {g.(2)dz.

If we combine (3), (5), and (6), we see that we have proved (2),
provided that [ log w(x)dz is finite.

In the general case, we replace w by w 4 ¢, where ¢ > 0. What
we have just proved shows that

) A + &) = inf [ ¢ (0 + &)dz = inf [ e"w da,

where f ranges over all real trigonometric polynomials with f(0) = 0.
Letting € — 0 in (7), comparison with (3) gives (2).

8.3.2. We now come to a theorem of Szegd [1], generalized by
Helson and Lowdenslager [1]:

THEOREM. Suppose G is compact and connected, I' is ordered,
ceM(G), =0, and

1) do = do, + wdz,

where o, is singular and we LY (G). Then
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@) exp [ log w(x)dz = inf [t + 0@)1Ho(),
where Q2 is the set of all trigonometric polynomials Q on G of the form
@) Q) = Zoa ) (=, ).

>

Proof: Since every real trigonometric polynomial f on G with
F(0) = 0 is of the form f=Q + @ = 2 Re Q, for some Q¢ Q,
Lemma 8.3.1 asserts that

(4) Aw) =inf [ |92y da.
Qe JG

Note that ¢ — 1 = Q + Q?/2! + .. .. This series converges uni-
formly on G, and each of its partial sums belongs to 2, if Q ¢ Q.
Hence (4) implies
(5) Aw) Z inf [ |1 + Qwdz.

Qe
This inequality holds for all non-negative w ¢ L*'(G), and the op-
posite inequality can be deduced from it. Put w = |1 + Pj? for
some Pef2. Then (5) gives

(6)  A(1+ PP) Zinf [ Il + P+ Q+ PQItdz 2 1;
Qe G

the last inequality follows from the Parseval formula, since PQ ¢ Q
for every Q ¢ 2. Hence

(1) A@) < A@)A(|1 + PJ*) = A(11 + Plw) < [ 11 + Plrwdz

for every P € £, since the arithmetic mean is never less than the
geometric mean.

Thus equality holds in (5). Finally, part (i) of Lemma 8.2.2
shows that the right side of (5) is equal to the right side of (2).
This completes the proof.

8.4. Factorization Theorems in H\(G) and in H*G)

In this section, G is a compact connected abelian group, I' is an
ordered group, and the spaces H?(G) are defined with respect to
this order.
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8.4.1. THEOREM. If fe HY(G), then

(1) F O < exp [ log If(@)idz;
in particular, log |f| e L\(G) if f(0) % 0.

CoroOLLARY. Let E, = {& € G: f(x) = a}. If f e H'(G), then there
is at most one number o for which E, has positive Haar measure.

Proof: Put f, = f % k,, where {k,} is a sequence of trigonometric
polynomials on G with £,(0) = 1, so that ||f, — f|l; = 0. Since
each f, is a trigonometric polynomial of analytic type, the Parseval
formula implies

(2) 7)1 = 17,00 < [,1(1 + Qa2 da

for every Q € 2. By Theorem 8.3.2, the greatest lower bound of the
last expression in (2) is 4(|f,|2). Hence {f(0)] < 4(|f,]). For any
e > 0, it follows that

(3) log [7(0)] < [, log (If.l + &)dz.
Since
(4) Nog (If] + &) — log (Ifl + &) < &e!if, — I

the integral of the left side of (4) tends to 0 as n — co. Hence (3)
implies that

(5) log If(0)] < [ log (Ifl + e)d,
and (1) follows from (5) as ¢ - 0, by the monotone convergence

theorem.

8.4.2. If f(0) = O but if there is a first y, > 0 at which f(y,)#0,
then we can still conclude that flog |f| > — co; the argument is
quite similar to that used in 8.2.4. In particular, we obtain the
classical theorem that

(1) [T 10g 17(e0)1d6 > — oo

for every f e H(T), except when f is identically 0’
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However, the assumption f(0) # 0 cannot be dropped altogether
from the second statement in Theorem 8.4.1. This is very easily
seen if the order of I'is not archimedean. In that case I' contains
an element y, and a non-trivial subgroup A such that y < y, for all
y € A, and there is a function ge 4(G), not identically 0, of the
form

g(x) = z c*/(x» ¥)
reAa
which vanishes on a non-empty open subset V of G. If f(z) =
(z, yo)g(z), then f=0 on V, hence [slog|f| = — oo, although
f is of analytic type.

The problem is more delicate if the order of I' is archimedean.
In this situation Arens [2] has proved that [;log |f| > — oo if
f is a continuous function of analytic type on G which does not
vanish identically. Helson and Lowdenslager, on the other hand,
have recently discovered that the word ‘‘continuous’’ cannot be
replaced by ‘“bounded” in Arens’ theorem (the example is un-
published at the time of this writing). This difference between
bounded functions and continuous functions is curious and quite
unexpected.

8.4.3. THEOREM. Suppose w e L'(G) and w = 0. Then w = |f|?
for some f e H2(G) with f(0) # 0 if and only if

1) J.Glog w(z)dr > — oo.

Proof: 1f w = |f|® and f e H3(G), we obtain, as in the proof of
Theorem 8.4.1, that

@) Aw) = A0fP) = int [ 10 + Q)fi*dz Z [ O)F

Hence (1) holds if f(0) ;é 0.
Conversely, suppose (1) holds, and define ¢ by

3) c2=inff 1+ QPwdr, c¢=0.
QeQ ¢

By Theorem 8.3.2, ¢ > 0, and Lemma 8.2.2 (with do = wdx)
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therefore implies that there is a function % € H2(G) with %4(0) = 1
and |ck|? = w. To complete the proof, put f = ch.

8.4.4. THEOREM. Suppose f e HX(G) and f(0) £ 0. Then there are
functions « and Bin H*(G) such that f = aff and ||| = [|1B8]13 = ||fll;

Proof: By Theorem 8.4.1, log |f| e L(G). We put dv = !f|dz,
apply Lemma 8.2.2, and conclude, as in the proof of Theorem 8.4.3,
that there is a function % ¢ H3(G) such that [f| = |ck|?, where
¢ > 0. Moreover, 4 = 1/¢, and

(1) lim [ 16 — (1 + Q,)[*fldz = 0

for a certain sequence {Q,} in Q.

Define a« = ¢k, § == fla. Then f = af, |«|2 = |Bi? = If|, and it
remains to be proved that § € H2(G). By (1), the Schwarz inequal-
ity implies that

2) lim [_|f — (1 + Q.)fldz = 0.

Since (1 + Q,)f e H(G) and since H*(G) is a closed subspace of
L1(G), it follows that ¢f e H(G). But ¢f = f/h = c¢f/a = cB. Thus
B € H(G); since |B|2 = |f|, B eL%(G); hence B e H%(G), and the
proof is complete.

This proof may be of interest even in the classical case, i.e., in
the case G = T. There the theorem is usually proved by first
factoring out a suitable Blaschke product; the remaining factor has
no zero in the unit disc and hence has an analytic square root
(Zygmund [1] vol. I, p. 275).

8.4.5. If G = T, Theorem 8.4.3 has an analogue for trigonome-
tric polynomials, due to Fejér {1] and F. Riesz. It is interesting
that this analogue, unlike the preceding theorems, does not even
extend to the case G = T2

THEOREM. (a) If p 1s a non-negative trigonometric polynomial on
T, then p = |f|2, where f 1s of the form

) fe?) = z_ 4y 0.
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b Ifo<d<14andif w =1+ 6(e* + e + &% + ¢¥), then
w 15 positive on T2, but w is not a product of two trigonometric poly-
nomials on T2, unless one is a constant multiple of a character.

Note that Z2 can be made into an ordered group in many ways,
as was shown in 8.1.7. If H2(T?) is defined with respect to any of
these orderings, Theorem 8.4.3 implies that w = |f|? for some
f € H3(T?); it follows from (b) that this f cannot be a trigonometric
polynomial.

Proof: Write p(e%) = 3", ¢, e™*%. Since p is real, c_, = ¢,, and
we may therefore choose # so that ¢, 0. Put F(z) =3 ¢, 2~
Then F is a rational function, F(z) = 0 if |{z] = 1, and the reflec-
tion principle implies that F(1/d) = 0 if F(a) = 0. Since z"F (2)
is a polynomial of degree 2#, it has 2xn zeros; any zeros on T have
even order; hence

n
(2) Fiz)=c]] (z— )z —2),

j=1
where ¢ is a positive constant. Since z=! = Z when |z| = 1, (2)
shows that

n

II (6% — z,) ’

j=1

(3) ple?) = F(e®) = ¢

and (a) follows.

To prove (b), assume that w = f, f,, where f, and f, are trigono-
metric polynomials on T2. Let E, be the set of all # € Z2 at which
f.(») # 0. Each E, is finite and not empty. Similarly, let E be the
set of all n € Z% at which @ (n) # 0; E consists of the points (0, 0),
(1,0), (0, 1), (—1,0), (0, — 1).

Regarding Z2 as the set of all lattice points in the plane, let
a;(b;] be the highest [lowest] point among those points of E; which
are farthest to the right. Then the point a, 4 a, has no other rep-
resentation as a sum of an element of E, and an element of E,.
It follows that a; + a, € E, and hence ¢; + a, = (1, 0). Similarly,
b, + b, = (1,0). Thus a, = b,, a, = b,, and each of the sets E,
has only one point which is farthest to the right. The same is true
of the other three directions.
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Let p, p;, p, denote the horizontal widths of E, E,, E,. Then
prt+pe=p=2 1If p,=2, then p, = 0, so that E, lies on a
vertical line; the preceding paragraph then implies that E, con-
sists of a single point, hence f, is a character on T2, and this is what
(b) asserts. If (b) is false, we must therefore have p, = p, = 1,
and the same must be true of the vertical widths. Combined with
the preceding paragraph, this implies that each E; consists of 2
points. Since £ C E, + E, and E has 5 points, we have a contra-
diction.

8.5. Invariant Subspaces of H*(G).

8.5.1. We return to the general situation (I" discrete and order-
ed). For any y e I, we define the multiplication operator M, on
H3(G) by

(1) (M, (=) = (z, y)} (=)

A linear subspace of H%(G) is said to be invariant if
(2) M, XCX

for all y > 0.

Adapting a definition of Beurling [4], we call a function
Jo € HX(G) an tnner function if |f,] = 1 (almost everywhere on G); a
function f, € H%(G) is an oufer function if

(3) [ Slog 1 @)ldz = log| [ f(@)dal.

In other words, £, is outer if the geometric mean of |f,] is equal to
If1(0)]. We recall that the left side of (3) is never less than the
right side, by Theorem 8.4.1.

For any f e H%(G), we let X, denote the smallest closed invariant
subspace of H%(G) which contains f.

8.5.2. THEOREM. (Beurling [4], Helson and Lowdenslager [1]).
Suppose f e H2(G) and

(1) jalog f(2)ldz > — .

Then f = fofy, where |, is an inner function and f, is an outer func-
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tion. This factorization is unique, except for multiplication by con-
stants of absolute value 1. Furthermore,

(2) Xy = fo - H*(G).

The last assertion states, explicitly, that ge X, if and only if
g = foh for some ke H*(G), and also that X, =X, .

Proof: Let K, be the closure (in H%(G)) of the set of all functions
(X + Q)f, where Q ranges over £. Since K, is convex, it has a

unique element  whose norm is a minimum. By Lemma 8.2.2
(taking do = |f|?dx), we see that [y| = ¢, where

® ¢ =inf JI(1+ Q)fi2dz = exp [ log If2dz > 0.

Here we used (1) and Theorem 8.3.2. Setting f, = p/c, it is evident
that f, is inner, and since K, C X,, we have fye X,. If f; = f/f,,
part (iii) of Lemma 8.2.2 shows that f, ¢ H*(G) and f,(0) = c.
Since |f,| = |f|, we therefore conclude from (3) that £,(0) = 4(|f,]),
and so f, is outer.

Let us consider the case of an outer function f which satisfies (1).
The preceding construction then yields

(4) 0 < £1(0) = A(If)) = A(fl) = IF(9)]-
Approximating f, and f, by trigonometric polynomials in H3(G}),
the equatxon f="fofy is seen to imply that f(0) = f,(0)/,(0), so
that |fo(0)] = 1, by (4). Since |fy| = 1, the Parseval equation there-
fore shows that f,(y) = 0 for all y % 0, and so f, is a constant of
absolute value 1. Since f, € X,, it follows that X, = H2(G).

Returning to the general case, we thus have X, = H?(G). Since
{fol = 1, multiplication by f, is an isometry in H%*(G), and so
X, =fy- X, This proves (2).

Finally, we prove the uniqueness of the factorization. Suppose
| = gh with g inner and % outer. Since |k| = |f|, A({%]) > 0, and
hence X, = H?(G), by the preceding argument. As above,
X, =g-X,, since [g| =1. Thus f,- H}G) = g - H*G). This
shows that both fo/g and its complex conjugate g/f, belong to
H?*(G), and therefore f,/g must be constant.

This completes the proof.
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COROLLARY. If f € H*(G), then X, = H?(G) if and only if { is an
outer function and the geometric mean of |f| is positive.

If A(lf|) > 0, this follows from the preceding theorem. If
A(f]) = 0, then f(0) = 0, by Theorem 8.4.1, and so £(0) = 0 for
every g € X,; thus X, # H*(G).

8.5.3. The proof of the next theorem is due to Helson and
Lowdenslager and is unpublished at the time of this writing; it
extends a theorem of Beurling [4] (whose proof used Nevanlinna’s
representation of analytic functions of bounded characteristic by
means of Poisson-Stieltjes integrals), and its idea has been used by
Wermer [5] in a study of function algebras.

THEOREM. If X is an invariant closed subspace of H®(G) which
contains a function g with §(0) 5% O, then there is an inner function f,
such that X = X, .

Proof: Since §(0) # 0, the constant function 1 is not orthogonal
to X in H?%(G). Let y be the orthogonal projection of 1 into X.
Then p # 0. Since X is invariant and since 1 — y is orthogonal to
X, we have

(1) [ —v@PpE@ENE=0 (=0
But J y(z)(z, y)dx = 0 for all y > 0, since p ¢ H%(G). Hence
(2) [p@P@ =0 (>0,

and so [yp| = ¢, a constant. Put f, = yfc. Then X, = X,.
Since y € X, it is clear that X, C X. Let 4 ¢ X be orthogonal to
X,. Then

(3) [A@v@) @)z =0 (yz0).
Since 1 — y is orthogonal to X, we also have

(4) [0 —vE@ME) @y =0 (20
and hence

(5) [#@h@) @ )z =0 (> o0).
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By (3) and (5), p» = 0, and so A = 0, since || = c 3£ 0. Thus
X, =X, and the proof is complete.

8.5.4. The conclusion of Theorem 8.5.3 holds for every invariant
closed subspace X of H2(T) (except for X = {0}) since there is
always a first # = 0 such that f(n) # 0 for some f ¢ X (the argu-
ment is as in 8.2.4). However, if I" contains no smallest positive
element and if X is the set of all f e H2(G) with f(0) = 0, then X is
an invariant closed subspace for which the conclusion of Theorem
8.5.3 is false.

Other results involving inner and outer functions may be found
in Lax [1], de Leeuw and Rudin (1], and Rudin [7]. These papers
are based on complex variable methods.

8.6. A Gap Theorem of Paley

We suppose again that G is compact and connected, so that I"
can be given an order which is compatible with its group structure.
We fix such an order and define H*(G) with respect to this order.
For each y = 0, put

Y L={y=y =2},

and if E is a set of positive elements of I', let N (E,y) be the number
of terms of E in L,.

THEOREM. The following properties of E are equivalent:
(a) N(E,y) vs a bounded function of y.
(b) If f e HY(G), then 3 |f(»)I* < co.

ye¢E

(c) If ue M(G) and p(y) = O for y < 0, then Z‘glﬁ(y)l2 < ©0.
ye

For G = T, Paley [2] proved that (a) implies (b); for the con-
verse, see Rudin [8]. The theorem of F. and M. Riesz shows that
(b) and (c) are identical statements if G = T, but in general (c)
asserts more; this follows from the example in 8.2.6.

Let (b’) be the statement (b) with L1(G) in place of H*(G). Then
(b’) is false for every infinite set E. For if (b’) were true for some
infinite E, it would also be true for every subset of E, hence for an
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infinite Sidon set (see Example 5.7.6(a)) but this contradicts
Theorem 5.7.3(e).

Proof: We first show that (a) implies (b). Fix fe H*(G) and
assume, without loss of generality, that f(0) % 0. By Theorem
8.4.4, we then have f = af, with «, 8 ¢ H2(G) and [|«||2 = ||8lj2 =

Ifle- X9y, 2, ¥, - - - is an enumeration of those elements of E at
which f# 0, we have
(2) frd= 3 alvi—»Bly) (=123...).

0SY=Y:

Let S, ={y:y;eL}. f0 =<y <y,andy¢S,, theny, > 2y, and
so y; — ¥ € S;. The sum in (2) can therefore be split in two; in one
sum y € §;, and in the other y; — ¥ € S,. The Schwarz inequality,
applied to each of these sums, yields

@ o) sl 3 1B6) |2}’+ 18l { 3 120 12}

7€S; 7€S;

and the inequality (¢ 4 6)% < 242 4 2b% transforms (3) into
@ HEdE=s2fi X (Be)E+ el G=123,...).

7€S;
Since (a) holds and since y, € L, if and only if y € S,, there is a
constant K such that no y is contained in more than K of the sets
S;. If we add the inequalities (4) we therefore obtain

i

(5) > 1f()IE < 4KIIfI.
y€E

Thus (a) implies (b).

Next, let X be the set of all f e H(G) such that f(y) = 0 for all
y e E. If $isafunctionon Eand Y |¢(y)|2 < oo (i.e.,if ¢ € L2(E)),
then there is an f € H2(G) such that f = ¢ on E, f = 0 outside E,
and {{fll; = Iiflls = |I¢ll- Hence the norm (in HY(G)/X) of the
coset Y4 of X which contains f does not exceed ||¢|];. This says
that the map ¢ — Y, of L2(E) into H'(G)/X is continuous; it is
clearly one-to-one.

If now (b) holds, this map is onto, and hence has a continuous
inverse (Appendix C6). Thus there is a constant K such that (5)
holds for every f e H(G). Fix pe M(G) with 2(y) =0if y < 0,



FOURIER ANALYSIS ON ORDERED GROUPS 215
and choose y,, ..., 7, in E. Given & > 0, there exists g e L}(G)
such that £(y;) = ... =£(y,) = 1 and |jg{|; <1 + ¢ (Theorem
2.6.8). If f=g=*pu, then fe H(G), and so

(6) z A = z o) < 4K < 4K(L + e)2ull®

Since {y,, ..., 7.} was an arbitrary finite subset of E and since ¢
was arbitrary, (6) implies
(7) 2 182 = 4K||pll2

y¢E

Thus (b) implies (c).

Suppose now that (c) holds. Then (b) holds, and the preceding
proof shows that the inequality (7) holds for some K and for all
p € M(G) which are of analytic type. Fix an integer $ > 16K.
If E does not satisfy (a), then there exists y, such that L, con-
tains more than p elements of E. Define

So = {y = 0: ny < y, for every positive integer #},
S, = {y = 0: my, > y for some positive integer m},

and let A,, 4, be the groups generated by S, S,. We may think of
S, as the set ot all y = 0 which are “‘infinitely small” relative to
Yo similarly, S, is the set of all y = 0 which are not “‘infinitely
large” relative to y,. Itis easy to see that A, = S, u (- S,) and
A4, =S,u (— Sy

If A is the natural homomorphism of 4, onto 4 = 4,/4,, then
% induces an order in A (A(y) > 0 means: y > 0 and y ¢ 4,), and
this order of A is archimedean. We may therefore regard 4 as an
order-preserving homomorphism of A, into R (i.e., A(y) == 01f and
only if y = 0) such that A(y,) = 1.

Define w(t) = max (2 — |t — 2|, 0); for te R. Then w is a
translate of a positive-definite function on R, and if p(y) =
w(h(y)), then p is a translate of a positive-definite function on 4,.
Extend y to I' by setting p(y) = 0 outside A,. Then y = 2 for
some peM(G), and we see that A(y) =0 if y < 0 and that
Jlull = 2. Since w({t) = 1 on [1, 2], it follows that g(y) = 1 on
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L,,,and since L, contains more than p elements of E, the sum in
(7) exceeds . Hence p < 4K||u||? = 16K, which contradicts our
choice of .

8.7. Conjugate Functions

8.7.1. We again assume that G is compact and connected so
that I' can be ordered. With respect to any fixed order of I', one
can define a notion of conjugacy. We first do this for trigonometric
polynomials. If

(v u@) =23 cfy) (2eG)

is a trigonometric polynomial on G, the conjugate function of %
is the trigonometric polynomial

() v(@E)= —iYc,@y)+iZc,ry) (ze6)

>0 7<0
We also define
(3) w(z) = u(z) + w(z) =, + 2 Zocy(x. )
¥>
and
(4) F(z) =X ¢, (z, 7).
a0

Then w and F are trigonometric polynomials of analytic type;
we call F the analytic contraction of u, since it is obtained from #
by simply suppressing the coefficients ¢, with y < 0. If  is real,
so is its conjugate v, and w is the unique trigonometric polynomial
of analytic type which has « for its real part and which satisfies
the condition #(0) = #(0). The equations

(5) ®u = F, Yu=w

define linear operators on the space of all trigonometric polynom-
ials on G.

In general, if » € L1(G), and if 4y ¢ A ('), where x(y) =1 for
y =0, 2(y) = 0 for y < 0, then the function F defined by the
equation F' = dy will be called the analytic contraction of %, and
we will write F = ®u.
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We shall prove an extension of a classical theorem of M. Riesz
(Zygmund [1], vol. I, p. 253; see Bochner {3], [5] for generaliza-
tions) which asserts that @ and ¥ are bounded linear operators on
L?(G) if 1 < p < 0. Since v = w — u, it follows that the map
% — v is also bounded in L?(G).

8.7.2. THEOREM. Suppose 1 < p < 0. There exist constants
A, and B, (they do mot depend on G) such that the inegqualities

(1) l1Pull, = A,llull,,  11Pull, = B,llull,

hold for every trigonometric polynomial w on G. Hence @ and ¥ can
be extended to bounded linear operators on L*(G).

The operator D is a projection (i.e., P2 = D) which maps L?(G)
onto H?(G).

Since 20u = 4(0) + Yu, it is enough to prove one of the in-
equalities (1). In fact, |B, — 24,] < 1.

We postpone the proof of the theorem to Section 8.7.4.

8.7.3. Let C4(G) be the uniform closure of the set of all trigono-
metric polynomials on G which are of analytic type, i.e., which
have the form

(1) @) =2 a(y)(=, »).

720
It is clear that C ,(G) is a Banach algebra, with respect to pointwise
multiplication.

For our present purpose, the following fact is not needed, but it
is of interest for its own sake: C4(G) consists of all | € C(G) which
are of analytic type. For if e M(G) and if [ f(— z)du(z) = 0 for
all fe C4(G), then A(y) = 0 for all y = 0; hence, if g e C(G) and
&(y) = 0 for all y < 0, we have g2 = 0 and so g * u = 0; by the
Hahn-Banach theorem, ge C,(G).

Helson [8] observed that some simple facts about C ,(G) extend
the classical proof of the M. Riesz theorem to our present context:

If f=f,f,, where f, and f, are of the form (1), then clearly
7(0) = ,(0)f5(0). It follows that the map h, defined by

(2) ho(f) = 1(0)
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is a complex homomorphism of C4(G).

We next claim that ¢f f e C4(G) and if Re f(x) > O for all x € G,
then Re h(f) > O for every homomorphism h of C4(G) onto the com-
plex field.

Since % has norm 1 as a linear functional (Appendix D4), % can
be extended to a linear functional on C(G) with the same norm, and
therefore there exists u e M(G) with ||u|| = 1, such that A(f) =
fefdu for all f e C4(G). But A(1) = 1, and so [¢ du = ||u|[. This
implies that # = 0. Hence

Re h(f) = Re [_fdu = [, (Re du > 0.

Finally, suppose f e C,(G), Re f(z) > 0 for all x € G, p is a real
number, and g(x) = [f(x)]® (we take that branch of the $th power
which is positive on the positive real axis). Then g e C4(G) and

(3) £(0) = [f(0)1>.

Indeed, our preceding assertion shows that the function a(z) = z*
is analytic on the spectrum of f (Appendix D6). Each z¢G
determines a homomorphism f — f(z) of C,(G); this shows that
C4(G) is semi-simple. Since g = «(f), it follows that ge C4(G)
(Appendix D7) and that 2(g) = «(k(f)) for every complex homo-
morphism % of C 4(G). Taking & = k,, as defined by (2), we obtain
3)-

8.7.4. We turn to the proof of Theorem 8.7.2. Assume first that
1 <p =2 Fix p in this range, choose é = J, such that
0 < 6 < =xn/2 <P, and put
(1) o« =a,= (cosps), B =B, = (cos 6)~7(1 + [a}).

Then « < 0, and we claim that
(2) 1 =< o cos p8 + B (cos 6)? (16] < =n/2).

Indeed, if 6 < (6] < =/2, the right side of (2) is not less than
« cos pf > a cos pé = 1, and if |6] < 6, it exceeds B (cos §)?—|«|
= 1. The idea of using an equality of this type is due to Calderon
[11.
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Suppose now that « is a positive trigonometric polynomial on
G, and put w = Wu. Then # = |w| cos 8, where |0] < =/2, and (2)
implies that

(3) [lwl* < «flw|®cos p + B[ lw*(cos 6)” = & Re [w? + § [w>.

Since #(0) = 4(0), the final assertion in 8.7.3 shows that

@ Jur = (faf = (Ju)" >0

and since « < 0, (3) and (4) imply [ |@|® < f [ #*. In other words,
we have proved that

(5) 1Pull, < B*|luil,
and hence that
(6) [1Pull, < 3(1 + BY?)]lu|l,

for all positive trigonometric polynomials % on G.

If « = 0 and u € L*(G), some sequence {%,} of positive trigono-
metric polynomials converges to # in the norm of L?(G). By (6),
the functions @«, form a bounded set in L?(G), and a subsequence
of them converges weakly to a function w € L?(G). The weak con-
vergence also implies that w is the analytic contraction of «, since
the map f — f(y) is a continuous linear functional on L?(G), for
every y e I. Hence (6) holds for every non-negative u ¢ L*(G).

If u is real and % ¢ L?(G), then v = %, — u,, where %, =0,
%y = 0, and #, 4, = 0. Put w = Pu, — Pu,. Then w is the ana-
lytic contraction @« of %, and since |%,| = ||, [#,] < |#|, and (6)
holds for #, and u,, we obtain

(7) Pull, = [P, + [[Pusll, = (1 + BY7)|jull,

Finally, (7) applies to the real and imaginary parts of every
# e L?(G), so that

(8) 1 Pull, = 4,llull,  (ueL?(G)),

where A, is twice as large as the constant in (7).
To complete the theorem, suppose 2 < ¢ << co. If % and f are
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trigonometric polynomials on G, then f * ®u = u = @f. Letting f
range over all trigonometric polynomials with ||f||, =< 1, where
1/p + 1/g = 1, we therefore obtain

Bully = sup | [1(z) (@) (— 2)de| = sup | u(z) (@) (— =)d
< [full, - 19All, < 4,1

Hence the theorem holds for ¢, and 4, = 4,.
If we take the smallest admissible values for 4, and 4,, the last
computation can be reversed, and shows that 4, = 4,.

8.7.5. Theorem 8.7.2 becomes false if $ = 1 (hence also if

= 00, by the last computation in 8.7.4) for every non-trivial
compact connected G. For if it were true, and if y(y) =1 for
y =0, x(y) = 0 for y < 0, then y would be in B(I'), by Theorem
3.8.1. If Z denotes any infinite cyclic subgroup of I', it follows that
the characteristic function of the set E of all non-negative integers
belongs to B(Z). But this is false, since E is not a member of the
coset ring of Z. (More direct proofs are also available.)

However, a weaker form of Theorem 8.7.2 still holds:

8.7.6. THEOREM. Swuppose 0 < p < 1. There exist constants A,
and B, (they do not depend on G) such that the inequalities

1) Pull, = Allully,  [1Pull, = B,llull

hold for every trigonometric polynomial u on G.
Proof, (Helson [8]): We again assume first that « > 0. Putting
w = Wu, we have u = |w| cos 6, with {§] < =/2. By 8.7.3,

it = (Jo) = (Jo) = for = e w7 = e cos

so that

—1/p
@ 12, < (cosZ) "l

If now u is a real trigonometric polynomial on G, then % = %' —u"’
where #’, 4’ are non-negative continuous functions on G such that

r, .17

'’ = 0, and there are positive trigonometric polynomials #,,
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u, such that u, -« and w, — %" uniformly. The inequality

3) [it+er<[ite+ flr <)

which, for $ < 1, takes the place of the triangle in equality, gives,
setting u, = u, — u, ,

-1
@) [remie = (cosZ5) ™ matt + 12,

since Yu, = Yu, — Pu, . As n—> o, |lunlly = ||1#]ly < ||%]l;,
and similarly for %, . Since ¥ is a bounded operator on L2(G),
Yu,, — Puin the norm of L2(G), hence also in L?(G) for any p < 2.
This gives

(5) [1Pull, = K,llull,

for every real trigonometric polynomial % on &, and if we apply (5)

to the real and imaginary parts of any trigonometric polynomial,
we obtain the second inequality asserted by the theorem. Since

2|Pu| = |Pu + 4(0)] = |Pu| + [lull;,
the first inequality in (1) also holds, by (3).
8.7.7. The inequality
[iol < 4 + B [iu)log* 1w,

where 4 and B are absolute constants, can also be proved by the
preceding methods in the present context. The main point to con-
sider is that if w = « + sv and if # > 0, then z log z is analytic on
the spectrum of w, and hence

I'w log w = hy(w) log hy(w) = ©(0) log ©(0) = #%(0) log #%(0).

The rest of the proof is as in Zygmund [1], vol. I, p. 254; see also
Helson [9].

8.7.8. Theorem 8.7.6 leads to a simple proof of a theorem which,
for the case G = T, was proved by Paley [1]. Helson 8] extended
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it to the case G = T™, by a somewhat different method. We refer
to 8.7.3 for the definition of C,(G). As before, G is an arbitrary
compact connected abelian group, and C,(G) is defined with re-
spect to some given ordering of I.

THEOREM. Suppose w(y) =0 for all y = 0, and suppose that

(1) 7gllf()')lw(}') < ©

for all feCL(G). Then

2) 2 wi(y) < .
20

The intuitive content of the theorem is that one cannot say any-
thing stronger about the order of magnitude of the Fourier coeffi-
cients f(y) of a function in C,(G) than that ¥ |f(y)]* < .

Proof: For1=1,2,3, ..., let X, be the set of all fe C,(G) for
which the left side of (1) does not exceed ¢. Since the map
f — |f(¥)| is a continuous function on the Banach space C,(G), for
each y e I', the sets X are closed. Baire’s theorem implies that one
of the sets X, has non-empty interior, and it follows from the
linearity of the map f — fw that there is a constant K (depending
on the function ) such that

(3) golf(‘.v)lw(r) SKlflle  (feCalG))
7
Fix non-negative elements y,,...,y, €T, let r;, ..., 7, be the

first » Rademacher functions, put

(4) g:(x) =‘_Zl wy)r(t)x. 7))  (2eG, 0<t<1)
and let P be a trigonometric polynomial on G, with ||P}|; < 2 and
By)=1for1 <i<n

By (3), the maps f — I f(y,)w(y:)7:() are bounded linear func-
tionals on C4(G) whose norm does not exceed K, for all £. Hence
there are measures u, e M(G), with ||;¢,J| < K, such that

©) Zfdutin® = [ fi= Ddm@  (1<Cal6). 0 <t <1).
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Taking a character for f, (5) shows that A,(y,) = w(y,)7:(t)
(1 1 < n), and that 2,(y) = 0 for all other y = 0. Hence g, is
the analytic contraction of P * u,, and by Theorem 8.7.6 there is an
absolute constant B such that

(6) ”.G[g:(x)ly’dxr =|lgl, S Bl|P*ul, <2BK (0<t<]1).

We take square-roots in (6), integrate the resulting inequality
with respect to ¢, interchange the order of the two integrations,
and conclude that

(7) [Je(mo#at < (2BK)%

for some z, ¢ G. Writing A(t) = g,(x,), Holder’s inequality, com-
bined with inequality (6) of 5.7.7, gives

(8) WA} < 1Ay, - 1163 < 2BK - 4{[A|]2,
and so
(9) [IF]le < 2]|%]|, =< 16BK.

By Parseval’s formula, (9) implies that

n

307 = 3 lo(r) 5, vl = 16} < 2565,

jm=]

and (2) follows, since v, ..., y, were arbitrary.

CoroLLARY. Ify, 20 (i =1,2,3,...) and if € > 0, there exists
f€Ca(G) such that 3 |f(y )** = co.

8.7.9. In the preceding theorem, the support of f was assumed
to be in the positive half of I'. If the support of f is more severely
restricted, the theorem and its corollary may become false. The
following interesting example is due to Bohr [1] (p. 468).

Consider the infinite-dimensional torus 7 and its dual Z* (see
Section 2.2.5). The elements n of Z* are of the form = =
(ny, ngy, ng, .. .) where the n,; are integers, and only finitely many
n, are different from 0 for any n. Let Y be the set of all n e Z®
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with #, =0 for ¢ =1,2,3,...; Y is an analogue of the first
quadrant in the set of all lattice points in the plane.

Let E be the set of all # e Y with 3 n, = 1. That is to say, E
consists of all # € Z* with one coordinate equal to 1 and all other
coordinates equal to 0.

THEOREM. If f e L®(T*) and if f(n) = 0 for all n not in Y, then
(1) 2= [flle.

Proof: Let A be the subgroup of Z* consisting of all #» with
> n,=0. Then E =Y n A,, where A, is a coset of A. Thereisa
measure u € M(7%) such that fi is the characteristic function of
A, ; clearly ||u|| =1 (see Section 3.1.2). If f satisfies the hypoth-
eses of theorem and if g = f = u, it follows that g is an E-function,
in the terminology of 5.7.1, and |iglle < flleo-

Every E-polynomial is of the form P(z) = 3 c,e'™, and the
supremum of this, as z ranges over 7%, is 3 |¢,|. Thus FE is a Sidon
set in Z%, with constant 1. This implies that 3 {§(n)| < ||gllco-
Since fi(n) =1 on E, (1) follows.

Bohr’s theorem was stated for Dirichlet series: If

oo

(2) $(s) = 2 cufk’

k=1

and if |p(s)] = 1 for all s whose real part is positive, then
(3) 2lel=1,
»

the last sum being extended over all primes.

The connecting link between these two statements is Bohr’s
observation that every Dirichlet series (2) can be regarded as a
trigonometric series on 7% whose coefficients vanish outside Y.
For if $,, $,. P53, ... is the sequence of the primes, then each
positive integer 2 has a unique factorization

(4) k= ﬁ M

J=1
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and if we replace each % by the corresponding sequence {n;} of
exponents, the series (2) takes the form

(5) Sc(ng, n,,. ..)exp{—- sy n logp,.}.

neY =1
Writing z, = $;*, (5) becomes a power series in infinitely many
variables, namely
(6) Sc(ny,my, .. )21z,

ney

and if |z,) = 1, i.e. if s is pure imaginary, (8) is a trigonometric
series on T*.

8.7.10. A closed subset S of the euclidean space R* will be called
a half-space in R if the boundary of S is a (¢ — 1)-dimensional
hyperplane II. The intersection of S with the set Z* of all lattice
points in R* will be called a half-space in Z*. If IT contains 0 but
no other point of Z*, then S defines an (archimedean) order in Z%,
and the corresponding analytic contraction is a linear operator ®g
on L?(T*), for 1 < p < o0, whose norm does not exceed the con-
stant A, of Theorem 8.7.2.

Explicitly, if yg is the characteristic function of S andif fe L?(T*),
then ysf is the Fourier transform of a function ®gf on T%, and the
inequality

(1) |1Psfll, = 4,1,

holds. The same inequality holds if S is replaced by the half-space
S + n, for any n ¢ Z%.

Suppose now that S,,..., Sy are half-spaces in Z*, that
E=S5,n...n 8y, and that F is finite. Since E is finite, the
boundaries I7; of the half-spaces S; can be so moved, if necessary,
that (1) holds for each of the sets S;, and so that E is not affected.
Then if @gf is the trigonometric polynomial whose Fourier trans-
form is the product of f with the characteristic function of E, we
have

(2) Pefil, < 451, (feL?(G), 1 <p < ).
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This enables us to prove a theorem about the convergence of the
partial sums @gf of the Fourier series of f:

THEOREM. Let N be an integer. Suppose E\, E,, E,, ... is a
sequence of finite subsets of Z* such that each E; is the intersection of N
half-spaces in Z*, and such that each n ¢ Z* lies in all but finitely many
of the sets E;. If 1 < p < oo and if fe LP(T*), then

(3) lim [[f — g fll, = 0.

Proof: Given ¢ > 0, there is a trigonometric polynomial g on T*
such that ||[f — g||, < e. For all large enough 7, we have ®gg =g,
and (2) implies therefore that

If — Pefll, < 1If — gl + 11§g,(e — DI, < (1 + 4])e.
The theorem follows.

8.7.11. We conclude this chapter with an extension of Theorem
8.7.2 to Fourier transforms on R
Suppose 1 <p =2 If feC.(R*), then |ifil, <IIfl, and

[iflla = lIfll;- The convexity theorem of M. Riesz and Thorin
(see Zygmund [1], vol. II, pp. 95, 254) therefore shows that

(1) Il < 1flly

where 1/p + 1/g = 1. Since C.(R*) is dense in L?(R*), (1) allows
us to extend the Fourier transform to a linear map of L?(R*) into
L(R*), with preservation of (1).

THEOREM. Suppose 1 << p < 2. Let y be the characteristic func-
tion of a half-space in R*. If fe L?(R*), then yf is the Fourier-
transform of a function ®f such that

(2) HPAl, = Al

where A, is as in Theorem 8.7.2.

Proof: Since L?(R*) is invariant under rigid motions of R¥, so is
the set of its Fourier transforms, and we may therefore assume,
without loss of generality, that the boundary I7 of our half-space
contains 0 but no other point of Z*.
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We introduce an auxiliary function

) ) =TImax (1 —|gl0) (y= (.- %)

i=l
Each factor in (3) is positive-definite. Hence j is positive-definite,
and since § has compact support, 7 is the Fourier-transform of a
non-negative continuous function 7 e L1(R*). Identify T* with the
cube in R* defined by the inequalities —ax Sz, <7 (1 =1+ < &).
The Fourier coefficients of the periodic function

J&) =3 ile + 2am)

are, for n e Z%,

(;;)kfrk](x)e—""’ dx = (%z)kfkj(x)e"'"" dx = j(n) =

Thus
4) S j(x 4+ 2am) =1 (x € R¥).

me Zk

By (3), [ =1, so that j(0) = 1, and hence (4) shows that
7(2nm) = 0 if m ¢ Z*¥ and m % 0. A computation quite analogous
to the preceding one therefore yields
(3) 2 fy—m)=1 (yeR*.

nezk

Now let / be an infinitely differentiable function on R* with
compact support. Define (U,f)(x) =7r*(rz), »r=1,2,3,....
Take 7 so large that the support of U, lies in the above-mentioned
cube. Then U,f may be regarded as a function on 7%, and Theorem
8.7.2 shows that there exists g ¢ L?(T*) (depending on 7) such that

(6) £(n) = f(n/r)x(n) = (xf)(n/r) (n € Z%)
and

/e 1.1
(7 lgll, < 41U fll, = 4 7%l (?_,_q 1).
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Regard g as a function on R*, with period 2» in each of the
variables z,, ..., z,, and define
(8) h(z) = rég(p)ial)  (zeRY).
By (4), 1 =1, and

[ (@) do=rra=n [ lg(@)i@)l® dz < 0-» [ lg(@)/7(x)dz
= 70 [ le@)lP (e)dz = =2 [ g (z)|” da.

Thus (7) implies
9 HEdl, < r~*llgll, < ALlifll,

By (6), our choice of f shows that the series

g(z) = 3 £(n)e' =

neZ

converges absolutely; inserting it into

h(y) = @n)* [ e@)i@e=rdz  (yeRY)
we obtain

(10) he(y) = GEZI‘ (f)miryj(ry — n)  (ye RY).

In particular, %,(nfr) = (3f)(nfr) for all n ¢ Z*.

By (5) and (10), %,(y) is a convex combination of the values of
«f at the vertices of a cube of edge 1/r which contains y. Since yf
is continuous, except possibly on the hyperplane IT which bounds
our half-space, we see that

(11) lim A.(y) = (xf)(¥)

r—00

uniformly on every compact subset of R* which does not intersect I7.

By (9), {#,} has a subsequence {k,} which converges weakly in
L?(R*) to a function 4 which also satisfies (9). For any w ¢ L?(R¥),
(1) implies that f h, & — [ hib. Since [ hb = [ hw, it follows that

(12) lim | A (g)wly)dy = f hywedy  (weL(RY).
RE R*

=00
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But (11), (9), and (1) imply that [ %, w — [ yfw for all w  L?(R¥),
and comparison with (12) gives: % = yf.

The inequality (2) is thus established for all infinitely differen-
tiable f with compact support. The set of these f is dense in
L?(R*), and the theorem follows.
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CHAPTER 9

Closed Subalgebras of L'(G)

For non-compact LCA groups G, the ideal structure of L}(G) is
so complicated (see Chapter 7) that the larger problem of classify-
ing or describing all closed subalgebras of L!(G) seems far beyond
our reach. Even for compact G, where all closed ideals in L!(G) are
explicitly known (Theorem 7.1.5), our present information about
closed subalgebras is very meager; it is contained in Section 9.1.
Two types of maximal subalgebras are described in Section 9.2,
and Section 9.3 deals with a problem suggested by the Stone-Weier-
strass theorem.

9.1. Compact Groups

Suppose G is compact and A4 is a closed subalgebra of L1(G).
Write y, ~ v, if and only if f(y,) = f(y,) forall f e A. The relation
~ is an equivalence relation R, in I', induced by 4. One dis-
tinguished equivalence class. is the set E, which consists of all
y € I" at which f(y) = 0 for all f e A; E, may be infinite. The other
equivalence classes, denoted by E,, where a runs through a suitable
index set, must be finite, since f € C4(I') for each f e A and since I
is discrete.

The question arises whether the closed subalgebras ot L!(G) are
characterized by the equivalence relations which they induce in I'.
The answer is unknown even for G = T. To obtain a counter
example, one has to construct two distinct closed subalgebras of
LY(G) which induce the same equivalence relation in I

We can prove the following, however: If 4 is as above, there
exists a closed subalgebra 4, of L!(G) such that R, = R, and
such that 4, C B for every closed subalgebra B of L!(G) for which
Ry = R,. This minimal algebra 4, is the one which is generated
by the trigonometric polynomials P, whose transforms £, are the.
characteristic functions of the sets E, (x # 0):

231
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THEOREM. Each of the trigonometric polynomials P, belongs to A.
Our question can therefore be rephrased as an approximation
problem: If f e L1(G) and if f is constant on certain sets E,, can
f be approximated in the norm of L!(G) by trigonometric poly-
nomials P such that P is constant on each of the sets E,?
Proof: Fix «. By definition, there exists f e 4 with f(E,) # 0.
Let «,, ..., «, be the other indices for which f(E )- f(E.)-
There can be.only f1n1tely many of these. Since f(E,) is an isolated
point of f(I') and since f(I') has nc limit point except possibly 0,
there is a polynomial ¢ such that ¢(0) = 0, (f(E,)) = 1, and
|¢| < % on the rest of f(I'). If § = ¢(f), then g € A, and if P is the
characteristic function of E, U E, u...U E, , then || — By
< }. Since (§ — P)» =g — P, the spectral radius formula im-
plies that [|§* — P|| < 2" for all large enough #. Hence P ¢ 4.
There exist functions k; e A with s, = 1 on E, and %, = 0 on
E, (1 =7 =<mn), and the preceding construction yields trigono-
metric polynomials P, e A such that P,(E,) = 1, Pi(E,‘) =0
Since P, = P- P,-...- P,, P,e A, and the theorem is proved.

CorOLLARY. If G is compact and if A is a closed subalgebra of
LY(G) such that the Fourier transforms of members of A separate
points on I, then either A = LV(G) or A is a maximal ideal in L' (G).

Proof: Each equivalence class now consists of exactly one point.
If E, is empty, the theorem shows that A contains every character
on G, hence every trigonometric polynomial on G, and so 4 =
LYG). If E, = {yo}. then A consists of all 1 ¢ L'(G) for which

f(?o) = 0.

ne

9.2. Maximal Subalgebras

9.2.1. Suppose B is a closed subalgebra of a Banach algebra 4,
B s A, and the inclusions B C B, C A (where B, is a closed sub-
algebra of 4) imply that either B, = B or B, = A. Under these
conditions B is called a maximal subalgebra of A.

For any Borel set S in a LCA group G let L!(S) be the set of all
f € LY(G) which vanish (almost everywhere) on the complement
S’ of S. Thus L(S) consists of those f € L}(G) for which [, [f| = 0.
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It follows that L(S) is a closed linear subspace of L1(G). If Sisa
semi-group and if f,geL'(S), then (f*g)(z) =0 unless
2eS + SCS; hence f=geL'(S).

Thus L}(S) ts a closed subalgebra of L1(S) if S is a semi-group
n G.

Wermer [2], {4] has shown that L1(S) is a maximal subalgebra of
LY(G) if G has an archimedean order and if S is the set of all non-
negative elements of G (Theorems 9.2.2, 9.2.3) and Simon [1], [2]
showed that these are essentially the only two situations in which
L1(S) is maximal (Theorem 9.2.5).

9.2.2. THEOREM. Suppose G is a discrete subgroup of R, suppose
that A is a semi-simple commutative Banach algebra whose maximal
ideal space is I (so that A is an algebra of functions on I'), and sup-
pose that the trigonometric polynomials on I' are dense in A. If A+
is the set of all ¢ € A such that

(1) [0 @ y)dy =0

for all positive x e G, then A+ is a maximal subalgebra of A.

Special cases of this are of interest. Taking 4 = C(I'), we see
that the algebra C 4 (I') (Section 8.7.3) is maximal in C(I") (Wermer
(1], Hoffman and Singer [1], [2]; the latter paper contains an
account of our present knowledge of maximal subalgebras of
C(X)). Taking A = A(I'), we see that L1(G*) is a maximal sub-
algebra of L1(G), where G+ is the set of all non-negative elements
of GC R (Wermer [2]).

Proof: The letters s, ¢, » will stand for elements of G (i.e., for real
numbers) and it will be convenient to write the continuous charac-
ters on I' in the form y,; i.e., x,(y) = (s,y), for se G and y e I.

Suppose A+ C BC A, B #* A, and B is a closed subalgebra of A.
Since BD A+, y, e Bforallt = 0. Since B % A, there existss > 0
such that y_, ¢ B. Thus y, has no inverse in B, and it follows
(Appendix D4(c)) that k(y,) = O for some homomorphism % of B
onto the complex field. From now on, % will be so fixed.

If £ > 0, there is a positive integer # such that n¢ > s, and if
u=mnt —s, x,e€ B and
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h(ra)" = hltne) = hxs - 1) = 2(2)h(2.) = 0.
Hence
@) Ax) =0 (> 0).
The norm of any ¢ € B is the same whether we regard ¢ as an

element of B or as an element of A. The spectral radius formula
therefore shows that

3) [h($)l = lim ||$m|]/" = sup ¢} ($eB),

n-00 yer

and so A(¢) = [ $du, where u e M(G) and ||u|| = 1. By (2),
(4) [ft.v)au) =0 (>0

Since {lul| £ 1 = k(1) = [ du, u must be non-negative, and so
(4) also holds for all £ < 0. Hence u is the Haar measure of I', and

(5) K$) = [ $)dy  ($¢B).
If ¢ B and ¢ > 0, then ¢ -y, ¢ B, and
(6) [0 v)dy = hig - 1) = h($)h(x,) = 0

by (5) and (2). Since (6) holdsforall? > 0,¢ € A+, andso B =4+
This completes the proof.

9.2.3. THEOREM. Let R+ be the set of all non-negative real num-
bers. Then LI(R*) is a maximal subalgebra of L1(R).

Proof: Wermer [4] showed that this can be reduced to Theorem
9.2.2. We shall given an independent proof.

Define a(xr) = 2¢™= for x =2 0, a(x) = 0 for < 0, and put
B@) = «(—=z). Then a(y) = 2(1 + iy)™, Bly) = 2(1 — i)™,
and so

(1) a4+ pf=a=*f

The derivatives of 4 are constant multiples of powers of &. Hence,
writing «! = a« and «® = «"! * o, we have
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2) a(z) = c,x" 1 a(zx) r=123,...),

the constants ¢, being different from 0.
Suppose ¢ € L*(R), ¢(z) =0 for z < 0, and [a"p =0 for
n=1,213,.... The function

3) F(w) = [ e $(@)da

is then analytic in the right half-plane, and since

- o]

Fo(l) = (— 1)ﬂf0 2" e $(z)dx

(4)

(=1"r" . - -
- = L H(z)p)iz =0 (n=0,12...)

n

F is identically 0. In particular, this is so for F(1 4 y), the
Fourier transform of e~*¢(x). Hence ¢ = 0, and we conclude:

The algebra generated by o is demse in L'(R+).

It follows that the algebra generated by a and § is dense in L!(R).

Suppose now that B is a closed subalgebra of L1(R), B % L}(R),
and B D L}(R+). If the spectrum of «, regarded as an element of
B, did not contain the point 1, then the function (z — 1) would
be analytic on the spectrum of «, and equation (1) would imply
that 8 € B (Appendix D7). Since the algebra generated by « and
is dense in L1(R), this contradicts the assumption that B # L!(R).

Hence there is a complex homomorphism 4 of B such that
h(x) = 1. The algebra generated by « is dense in L}(R*), and so
the action of 4 on L!(R+) is determined by the value of 2(«x). Since
8(— 1) =1, it follows that

(5) ) =F(—d) = [ e=t@)dz  (feL'(R¥)).

On the other hand, [A(f)| < lim ||f*|[V" = ||fl|, for all fe B,
and so k(f) = [ fdu, where u e M(R) and |[|u|| = 1. Comparison
with (5) shows that the Fourier-Stieltjes transform of u coincides
with e=* on R*+. Since {|u|| < 1 and 2{0) = 1, we see that x = 0;
and so g(z) = ¢~'#l. Hence
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(6) hp) = [ f@edz  (feB).
The equation i(f x g) = h(f)h(g) leads to the relation

1) [T 7 @) et — ct-Mldzdt =0 (f,geB).
Suppose f e B. Since (7) holds for all g ¢ L}(R*), it follows that

(8) fj"w f(z){e"’”’" — e"'"—‘} dr=0 (t>0)

If we multiply (8) by ¢' and consider the two possibilities for the
sign of [z 4 ¢|, (8) becomes

—t —00 00

(9) e j_w f@)e= dx + j_‘ f(x)e— do = f_w fla)e-1#dz
and if we differentiate (9) with respect to ¢ we obtain
(10) 20 (7 fw)erdz =0 (>0

Hence f(z) = 0 almost everywhere on (— o0, 0).
This implies that B = L!(R+) and completes the proof.

9.2.4. The next lemma (due to Simon [2]) shows, for instance,
why L!(S) is not a maximal subalgebra of L!(R?) if S is the set of
all (z, y) in R* with 2 = 0, in spite of the fact that S is a maximal
semi-group in R2.

LeEMMA. If S is a Borel semi-group in G and if L1(S) is a mazximal
subalgebra of L}(G), then S n (— S) contains at most one point,
namely O.

Proof: To get a contradiction, suppose there exists t¢ S, ¢ # 0,
such that —¢eS. Then if z ¢ G, the semi-group property of S
shows that z ¢ S if and only if z 4 € S. Since the complement
S’ of S has positive measure, there exist disjoint sets E and E + ¢
in S’, of positive but finite measure. Define g(z) =1 on E,
g(x) = — 1on E + ¢, and g(x) = 0 at all other points of G, and
let % be the characteristic function of S’. For any y ¢ G we then
have

(1) fcg(z—y)u(x)dx=m(5’ N(E+y))—m(S n(E+y+1)).
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Since z ¢ S if and only if £ + £ ¢ S, the two sets whose measures
appearin (1) are translates of each other, and so the integralin (1) is
0 for all yeG. It follows that [ (f * g)(z)u(z)dz = 0 for every
[ e L1(G). Since u evidently annihilates L!(S), we see that u
annihilates the algebra B generated by L!(S) and g, and so B is not
dense in L1(G). But B islarger than L1(S), and this contradicts the
maximality of L!(S).

9.2.5. THEOREM. (Simon [2]). Swuppose S is a Borel semi-group
in G and LY(S) s a maximal subalgebra of L1(G). Then S is con-
tatned in a closed semi-group P of G which induces an archimedean
order in G.

Since L1(S) is maximal, it follows that L!(S) = L{P). Hence
the structure theorem 8.1.6 shows that Theorems 9.2.2 and 9.2.3
describe the only situations (up to isomorphisms) in which L(S)
is maximal.

Proof: Suppose, without loss of generality, that 0 €S. (If not,
add 0 to S.) Since L1(S) contains a non-zero element of L}(G), S
contains a set E with 0 < m(E) < oo. If y is the characteristic
function of E, then y * y e C(G), x *x = 0 outside S + SCS,
and | y * y = m(E)? > 0. It follows that the interior of S is not
empty.

The same is true of — S, and Lemma 9.2.4 implies that there is
a non-empty open set V in — S which does not intersect S.

Consider the family F of all semigroups of G which contain S and
do not intersect V, partially order F by set inclusion and apply
Zorn’s lemma. We conclude that F contains a maximal element P;
since V is open and since the closure of a semigroup is a semigroup,
P is closed.

Since L}(S) is maximal, we must have L!{P) = L}(S). Lemma
9.2.4 shows that P n (— P) = {0}. By Theorem 8.1.3, our proof
will be complete as soon as we show that Pu (— P) = G and
that P is a maximal semi-group in G.

Suppose there exists z € G such that neither  nor — z are in P.
Our choice of P shows that there exist positive integers #, and
elements p,e P (f=1,2) such that nx+ p, =v,¢V and
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— nyx + Py = v, € V. Multiply the first of these equations by #,,
the second by #,, and add. The result is

(1) napy + Mps + ny(— vy) + My (— vp) = 0.
Each of these 4 summands is in P, and since P n (— P) = {0},
their sum can be 0 only if every summand is 0. Also, P contains
no elements of finite order. Since v, (and v,) are different from 0,
we have a contradiction, and we have proved that P u (— P) = G.
Finally, fix ¢ in the complement of P, and let Q be the semigroup
generated by P and ¢; being a countable union of translates of P,
Q is a Borel set. Since Pu(— P)=G, —te PCQ. Thus ¢
contains both ¢ and — ¢, and since L'(Q) D L*(P), Lemma 9.2.4
implies that L}(Q) = L'(G). Hence Q is dense in G, and since the
interior of Q is not empty (see the first paragraph in this proof), it
follows that Q = G. Hence P is a maximal semigroup in G, and
the proof is complete.

9.2.6. Theorems 9.2.2 and 9.2.3 exhibit ‘‘natural”’ examples of
maximal subalgebras of L}(G). We shall now describe a class of
pathological examples.

Suppose G is not compact. Then I" is not discrete, and so I'
contains a Cantor set E which is also a Helson set (Theorem 5.6.6).
That is to say, there is a constant K such that to every ¢ ¢ C(E)
there corresponds an fe L}(G) such that f(y) = ¢(y) on E and
such that ||f|l; = Kl|¢l]e-

It is known (Rudin [5]) that C(E) has a maximal subalgebra 4
which contains the constants and which separates points on E.

Let B be the set of all f ¢ L1(G) such that f coincides on E with
a member of A. If f, — f in the norm of L}(G) then f, — f uni-
formly, and since 4 is uniformly closed, it follows that Bis a closed
subalgebra of L1(G). Also, the transforms of the members of B
separate points on I. We shall prove that B is a maximal subalgebra
of L'(G).

Suppose B, D B, B, # B, and B, is a closed subalgebra of
L1(G). Choose feL'(G) and ¢ > 0. The restrictions to E of the
transforms of the members of B, are dense in C(E), by the maxi-
mality of 4. Hence there exists g ¢ B, such that



CLOSED SUBALGEBRAS OF LY(G) 239

(1) €(y) —f(»)l <elK (v E).

Our choice of E shows that there exists 4 e L}(G) such that

h(y) = £(y) — f(v) on E and such that ||4|]; <e. Sincef + % — ¢

=0onE,f + % — ge B,andsinceg ¢ B, it follows that f+% ¢ B,.

Since ||4|l; < ¢, and since B, is closed, f ¢ B,, and so B, = L(G).
Thus B is a maximal subalgebra of L}(G).

9.3. The Stone-Weierstrass Property

9.3.1. Suppose 4 is a serni-simple commutative Banach algebra;
we regard 4 as an algebra of functions on its maximal ideal space
A(A). A subalgebra B of A4 is said to be self-adjoint if the complex
conjugate of each member of B belongs to B.

We say that 4 is a Stone-Weierstrass algebra (or simply an
S-W algebra) if the following is true: every self-adjoint subalgebra
B of A which separates points on A(A) and whose members do not
all vanish at any one point of A(A) is dense in A.

The origin of our terminology is clear: the Stone-Weierstrass
Theorem says that C,(X) is an S-W algebra for every locally
compact Hausdorff space X.

We shall consider the question whether 4 (I') (or, equivalently,
L'(G)) is an S-W algebra. We find (Theorems 9.3.3 and 9.3.5) that
this is so if and only if I' is totally disconnected (Katznelson and
Rudin [1]). For discrete I" we already know this from Section 9.1.

9.3.2. THEOREM. Every semi-simple commutative Banach algebra
A which is spanned by its set of idempotents is a Stone-Weierstrass
algebra.

An element § € A is idempotent if §> = 4, and our hypothesis as-
serts that the set of all finite linear combinations of the idempotents
of A is dense in A. Note that it is not assumed that A4 is self-
adjoint; there are examples (Coddington [1], Katznelson and
Rudin [1]) which show that it need not be.

Proof: We regard 4 as an algebra of functions on 4(4). Let B
be the closure of a separating self-adjoint subalgebra B, of 4
whose members do not all vanish at any point of A(4). Associate
with each complex homomorphism of 4 its restriction to B. This
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allows us to consider 4(4) as a subset of 4(B); moreover, 4(4)
is closed in 4(B) (Loomis [1], p. 76).

The norm of any f € B is the same whether we regard f as an
element of B or as an element of 4. Hence the two spectral radii of
f (relative to A and to B) are the same, so that
(1) sup |f(z)| = sup |f(z)]  (feB).

z€4(B) z€4(4)

Suppose fe B and f is real on 4(A). For real ¢, put F,={
exp {—itf}. Then F,eB, |F,|=|flexp {¢Imf}, and on 4(4) we
have |F,| = |f|. Hence (1) implies that
(2) f(ze)l exp (4 1m flzo)} S SUBIf@)]  (204(B))
Since (2) holds for all real ¢, we conclude that Im f(z,) = 0.

Now take g e B,. There exists & € B, such that # = § on 4(4).
Since g + A is real on 4(A4), what we have just proved shows that
g + hisreal on all of A(B). Thus B, is self-adjoint as an algebra
of functions on A4(B).

Since B, is dense in B, B, separates points on A(B), and the
Stone-Weierstrass theorem implies that every function in Cy(4(B))
can be uniformly approximated on A4(B) by members of B,.
Hence (1) holds for every f e Co(4(B)), and so 4(4) is dense in
4(B). But A(4) is closed in 4(B), so that A(B) = 4(4).

Let 4 be an idempotent of A. Then j(z) = 0 or 1 on 4(4), and
the Stone-Weierstrass theorem shows that there exists f € B, such
that |f(z) — j(z)| < 1/3, for all z € 4(A4). The function ¢ defined
by é(z) = 0 if |z2] < 1/3, ¢(z) = 1 if |1 — 2] < 1/3 is therefore
analytic on the spectrum of f (relative to B, since 4(B) = 4(4)),
and hence ¢(f) ¢ B (Appendix D7). But ¢(f) = j. We have shown
that B contains every idempotent element of A; the theorem
follows.

9.3.3. THEOREM. If I' is a totally disconmected LCA group, then
A(T) is a Stone-Weierstrass algebra.

Proof: By Lemma 2.4.3, I" has a compact open subgroup I.
Its annihilator G, is a compact open subgroup of G. Since G/G, is
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the dual of I'y and since I, is totally disconnected, G/G, has no
element of infinite order. Since every compact subset X of G is
contained in the union of finitely many cosets of G,, it follows
that K is contained in a compact open subgroup of G.

Hence every fe L'(G) can be approximated, in the norm of
L1(G), by a sequence {f,}, where each f, has its support in a com-
pact open subgroup H, of G, and the restriction of f, to H, is a
trigonometric polynomial on H,.

If ¢ is a function on G whose support lies in H, and whose
restriction to H, is a continuous character of H,, then ¢ is a con-
stant multiple of an idempotent in L!(G); the constant depends on
the measure of H,. Hence each of the above functions f, isa linear
combination of idempotents in L!(G).

It follows that A(I') is spanned by its set of idempotents, and
Theorem 9.3.2 completes the proof.

(If we also assume that I' is compact, the preceding proof col-
lapses to a triviality.)

9.3.4. LEMMA. There exists a bounded function § on R, which is
positive on a set of positive measure, whose support is a totally dis-
connected compact set P, such that \yB(y)l < 1 for all y e R.

Wenormalize the Haar measures sothat g (y) = (2x)~1[ B (z)e~"**dx.

Proof: Let Q be the set of all functions in 4 (R) whose derivative
also belongs to A(R). It is clear that Q is a subalgebra of 4 (R)
and that @ consists of the Fourier transforms of all f ¢ L}(R) for
which [ |zf(z)ldx < co.

Choose «, € Q so that «; > 01in (0, 1), «; = 0 outside (0, 1), and
lyé,(y)| < 4 forally e R. Choosed, > 0 (n=1,2,3,...)sothat
>é,=1/4

Suppose «, is constructed so that 0 < «, < a,, «, €@, and
lya,(y)) <1 — 2" for all ye R. If ¢,€¢Q and y, = «,¢,, then
o = &, *$,, so that

i) = [ (v — 08aly — 8.0t + [7_a.ly — (01,
or

(1) 198 0)] < (il - [ J90n(0)ldy + [ auly)idy - sup 15, (0)
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Let % be an odd function in Q) whose support is [—2, —1]u[1, 2],
which is positive in (— 2, — 1) and whose integral over (— 2, — 1)
is 1. Put . (z) = ru(rz). Then 4, (y) = %(y/r). Since 4(0) =0,
|ldll < 1, % is continuous, and #(y) — 0 as |y| — oo, it follows
that there is a sequence of positive integers »; which increases so
rapidly that

@) @+ .. -+d. @<l (yeR k=123,...).

Let z, be the midpoint of the largest interval on which «,, is positive.
If

@ @ =g 6 w6

then ¢,¢Q, 0 =¢, <1, the support of ¢, lies in [z,—2/r;,
z, + 2/r;),and ¢,(x) = lin [z, — 1/r,, x, + 1/r,]. It follows that
Hullw < 2/(nr,) and jtd,(t)] < 1/k, by (2), and hence we can take
7, and % so large that the support of ¢, lies in [z, — 6,, z, + 4,]
and so that |y$,(y)| < 2-"-! for all y e R, by (1).

Now define a,,, = a, {1 — ¢,). Then

Y81 (¥)] = 192 ()] + lyPa(y)) <1 — 27"+ 27" =1 — 27",

and our induction hypothesis holds, with # 4 1 in place of x.

The sequence {«,} converges monotonically to a non-negative
bounded function 8 which vanishes outside (0, 1). Since f(y) =
lim g,(y), we have |yg(y)| =1 for all y e R.

Our construction of {¢,} shows that g(z) = 0 on each of the
intervals [z, — 1/7,, z, + 1/7,], hence §(z) = 0 on a dense open
subset of R, and its support P is totally disconnected. Finally,
B(z) = a,(z) > 0 at those points on (0, 1) at which ¢,(z) = 0 for
n=123,...1ie, at those points which are not in the union of
the intervals [z, — d,, 2, + 8,]. The measure of this union does
not exceed 23 6, = 4. Hence f(z) > 0 on a set of measure }
and the proof is complete.

9.3.5. THEOREM. Suppose I" is a LCA group which is not totally
disconnected. Then A(I') is not a Stone-Weierstrass algebra.
Proof: If I'; is a closed subgroup of I and if 4 (I'y) is not an S-W
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algebra, then it is clear that the same is true of A (I"). If I" does not
contain a closed subgroup which is isomorphic to R, then I" con-
tains a compact connected subgroup which contains a one-para-
meter subgroup (Theorems 2.4.1, 2.5.6). Hence it is enough to
prove the theorem in the following two cases:

Case (a). ' = R. Take § and P as in Lemma 9.3.4, and let
B[ P] be the algebra of all functions belonging to Q (see the proof
of Lemma 9.3.4) whose derivative vanishes on P. Then B[P]isa
self-adjoint subalgebra of 4 (R) which separates points on R since
P is totally disconnected. Since |yB(y)| =< 1, the equation

(1) = [ fy)yBly)dy

defines a bounded linear functional ¥ on A4 (R); since g is not
identically 0, ¥ is not the zero functional. For f e (, (1) may be
written in the form

- 1 o0 )
@ ¥ = | p@s| s an

The inner integral in (2} is a constant multiple of the derivative of
fat . Hence Wf = 0 for all f e B[P]. This proves that B[P] is
not dense in A(R), and so 4 (R) is not an S-W algebra.

Case (b). T is compact and has 3 dense one-parameter subgroup
J. The proof of Theorem 2.5.6(b) shows that the dual group G of I
is then an infinite subgroup of R,; we may assume, without loss of
generality, that G contains the integers. There is a continuous
homomorphism ¢ of R onto J, with the following properties: if
feA(I') and if f* = f(¢), then

3) f* (=) =“§c; ce'”, 2lel<oo  (zeR);

moreover, all series of the form (3) are obtained in this way.

If I' £ T, then ¢ is one-to-one. If I' = T, then G consists of the
integers alone, and ¢ is one-to-one on {0, 2z). In any case, ¢ is
one-to-one on P, the set constructed in Lemma 9.3.4. We also note
that g(n) does not vanish for all integers #, since the support of 8
is in [0, 1]; hence B(f) # O for some ¢ € G.
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Let B be the set of all f € A(I") such that 3 jtc,| < oo and such
that the derivative of f* is 0 at all points of P, i.e., such that
> tcei® = O for all z € P. Then B is a self-adjoint separating sub-
algebra of A (I') which contains the constants. Define

4) Wf:tgc,-tﬁ(—— t) (fe A(I)).

Then ¥ is a non-zero bounded linear functional on A(I"). Forfe B,

1
Y= ———f Bx) I tc,e*t dx = 0,
27 P teG
so that B is not dense in 4 (I).
This completes the proof.

9.3.6. Suppose f € L}(R) and [f] denotes the smallest closed sub-
algebra of L'(R) which contains /. Under what conditions will [f]
be a maximal subalgebra of L1{R)? This can happen; an example
is furnished by the function « which we used in the proof of Theo-
rem 9.2.3; we saw there that [«] = L1(R+).

Suppose [f] is maximal. Put S = f(R) u {0}. If S does not
separate the plane, then f must identify infinitely many pairs of
points of R which contradicts the maximality of [f]. Hence S
separates the plane, Z cannot be uniformly approximated on S by
polynomials in z, and so f¢ [f]. This implies:

(@) It [f] is a maximal subalgebra of L'(R), then the algebra
generated by f and f is dense in L1(R).

If the complement of S has two bounded components, let z, be
a point in one of these. The set of all polynomials in z and z/(z—z,)
is not dense in C(S). It follows that the algebra generated by f and
(f — 284)" * f is not dense in L}(R), so that [f] was not maximal.
We conclude:

(b) If [f] is @ maximal subalgebra of L'(R), then | is one-to-one on
R and f(y) # O for all y ¢ R.

The converse of (b) is not true, even if very strong smoothness
conditions are imposed on f. For example, let P be the totally dis-
connected compact set constructed in Lemma 9.3.4, and let ¢ be
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an infinitely differentiable function on R such that ¢ = 0 on P,
¢ > 0 in the complement of P, ¢(x) = ¢~ for all sufficiently
large [u|, and [ ¢(u)du = 2x. Put

fw)=1—exp s [ sin) (<R

Then f and all its derivatives belong to L!(R), and so fe A(R).
Also, f is a one-to-one map of R onto the set of all z ¢ 0 such that
[1 — z| = 1. The derivative of f is 0 at every point of P, and the
proof of Theorem 9.3.5 therefore shows that the algebra generated
by f and fis not dense in L!(R). By (a), [f] is therefore not maxi-
mal.
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Appendices

The appendices are short descriptions of those parts of topology,
group theory, and functional analysis which are used in this book.
They are intended to provide an easily available reference and to
convince the reader that an acquaintance with only the more
elementary parts of these subjects will give him the necessary
prerequisites. They also contain a record of the exact forms in
which certain concepts are used; this is significant in those cases in
which the terminology is not standardized.

Since most of this material is quite familiar, it seemed super-
fluous to document each theorem with a reference to a specific
source. Every item may be found in at least one of the following
well-known texts: Dunford and Schwartz [1], Halmos [1], Hille
and Phillips [1], Kaplansky [2], Kelley [1], Loomis [1], Mont-
gomery and Zippin [1], Pontryagin [1].

A. Topology

Al. A family 7 ol subsets of a set S is called a fopology on S if
{a) S and the empty set belong to 7, (b) 7 is closed under the forma-
tion of finite intersections and arbitrary unions. If a topology 7 is
defined on S, then S is called a fopological space (it would be more
accurate to reserve this name for the ordered pair (S, z), but we
shall ignore this distinction, as well as similar ones that occur later)
and the members of t are called open sefs; their complements are
closed. The largest open set contained in a set A C S is the interior
of A. The smallest closed set containing A is the closure 4 of A.
If B is the complement of 4, then 4 n B is the boundary of A.
If A= S, A is dense in S. If some countable set is dense in S,
S is separable. 1f p is an interior point of A, then A4 is a neighbor-
hood of . The set whose only element is p is written {p}. If {} is
open, then  is an isolated point of S. 1f {p} is open for every p ¢ S,
then S is a discrete space.

247
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A2. A family 2 of open subsets of a topological space S is a base
if every open subset of S is a union of sets belonging to 2. A family
£2, of neighborhoods of a point p € S is a neighborhood base at  if
every neighborhood of  contains a member of 2,. If to every pair
b1, P, of distinct points of S there exist neighborhoods N,, N, of
$1, P, which are disjoint (i.e., whose intersection is empty), then S
is called a Hausdorff space.

A3. Any subset X of a topological space S is itself a topological
space if the open sets of X are defined to be the intersections of the
open sets of S with X. This topology is the relative topology induced
in X by S.

A4. A subset 4 of S (the case 4 = S is not excluded) is called
compact if every family of open sets whose union contains 4 has a
finite subfamily whose union contains A. If every point of S has
a compact neighborhood, then S is locally compact.

Every closed subset of a compact space is compact. Every com-
pact subset of a Hausdorff space is closed. In a locally compact
Hausdorft space, every point has a neighborhood base which con-
sists of compact sets.

If Q is a family of compact sets with the finite intersection
property (i.e., every finite subfamily of 2 has non-empty inter-
section), then the intersection of all members of 2 is non-empty.

A5. If Sis a topological space, let co denote a point not in S, put
Seo = S U {c0}, and call a subset 4 of S, open either if 4 is an
open subset of S or if the complement of 4 is a compact subset of S.
Then S, is a compact space, and is called the one-point compactifi-
cation of S. If S is compact, {0} is an isolated point of S,. If S
is a locally compact Hausdorff space, then S, is a compact Haus-
dorff space.

A6. A map f of a topological space X into a topological space Y
is called continuous if {2 (E) is open in X for every openset EinY;
here f~1(E) denotes the set of all p € X such that f(p)e E. If K
is compact, K C X, and f is continuous, then f(K) is compact.

If /(E) is an open subset of Y whenever E is an open set in X,
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then f is called an open map. If f is one-to-one, if {(X) = Y, and
if both f and f-? are continuous, then { is a homeomorphism of X
onto Y.

A7. If fis a continuous open map of a locally compact Hausdorff
space X onto a Hausdorff space Y, and if K is a compact subset of
Y, then there is a compact subset C of X such that K = {(C).

It follows from the hypotheses that there are finitely many
points ¢,, ..., $, in X with compact neighborhoods N,, ..., N,
such that KCf(N))vu...uf(N,). Put C=/YK)nU]IN,.
Since f~(K) is closed and | N, is compact, C is compact.

AS8. A set A in a topological space S is connected if it is not the
union of two disjoint non-empty sets which are open in the relative
topology induced in 4 by S. The component of a point p € S is the
union of all connected subsets of S which contain . Since the
closure of a connected set is connected, components are closed sets.
If no component of S contains more than one point, S is called
totally disconmected.

A9. In a locally compact totally disconnected Hausdorff space, the
compact open sets form a base.

A10. If v and 1, are two topologies on a set S and if  C 7,, then
7 is said to be weaker than 7,. This terminology does not exclude
the case 7T = 1.

If F is a family of maps of S into a topological space Y, the col-
lection of all finite intersections of sets of the form f-1(V) (fe F,
V open in Y) forms a base for a topology rpon S. Each fe F is
evidently continuous with respect to tp, and v is the weakest
topology on S with this property; tr is called the weak topology
tnduced in S by F. Of particular importance is the case in which F
is a collection of complex-valued functions (i.e., Y is the complex
plane).

F is said to separate points (or to be separating) on S if to every
pair of distinct points 9,, p, in S there corresponds an f e F such
that f(p,) # f(p.). If F separates points and if Y is a Hausdorff
space, then the weak topology induced by F on S is also 2 Haus-
dorff topology.
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All. If S is a topological space, C(S) denotes the set of all
bounded continuous complex-valued functions on S. The support
of a complex function f on S is the closure of the set of all points p
at which f(p) # 0. The set of all f € C(S) whose support is compact
is denoted by C.(S).

If, for each ¢ > 0, the inequality |f(#)| < € holds for all $ in the
complement of some compact set, then fis said to vanish at infinity.
The set of all f € C(S) which vanish at infinity is denoted by C,(S).
Each f € Cy(S) may be extended to a continuous function on S by
setting f(oo) = 0. If S is compact, then C(S) = Cy(S) = C(S).

A12. The spaces C(S), Co(S), C.(S) are closed under pointwise
addition, multiplication, and scalar multiplication: (f 4 g)(p) =
F(b) + 8(p); (fe) (8) = f(B)e(d); (&) ($) = of (p). Since the usual
commutative, associative, and distributive laws hold, these spaces
are algebras (over the complex field). If we introduce a norm in
C(S) by setting

Wl = sup it (f<C(S)),

the metric ||f — glle turns C(S) and Co(S) into complete metric
spaces, since they are also closed under the formation of limits of
uniformly convergent sequences. In fact, C(S) and Cy(S) are simple
examples of Banach algebras (Appendix D).

If S is a locally compact Hausdorff space, then C.(S) is dense in
Co(S).

A13. Tietze’'s Extension theorem. This theorem is usually
stated for real-valued functions, but the following equivalent for-
mulation is better suited to our purpose; we recall that an arcis a
homeomorphic image of a compact interval of the real line:

Suppose K is a compact subset of the locally compact Hausdorff
space S, and | is a continuous map of K into an arc L. Then there
exists a continuous map g of S into L such that g(p) = f(p) for all
pekK.

Al4. The Stone-Weierstrass theorem. Let S be a locally
compact Hausdorff space and let A be a subalgebra of Co(S) which
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separates points on S, which 1s self-adjoint (i.e., f € A implies fe A,
where fis the complex conjugate of f) and which contains, for each
Do €S, a function f such that f(p,) # 0. Then A is dense in Cy(S).

A15. Suppose 4 is an index set, and S, is a set, for each a € 4.
The cartesian product S = [[,4 S, is the set of all $ which are
functions on A such that p(a) e S,, for all a € 4; p(e) may be
regarded as the ath coordinate of the point p. If A is finite, say
A=1{1,2,...,n}, the notation S =S5, X S, X ... x S, is also
used for S, and the points of S may be regarded as z-tuples
ﬁ = (pl' R ] ?n) WIth pa ‘Sa'

Suppose now that each S, is a topological space. For any finite
choice of indices, say «,, .. ., «,, and for any choice of open sets
Vo, CSe, (1 =i <m), let V be the set of all peS such that
p(x;) eV, (1 =7 < n), and declare a subset E of S to be open if
and only if it is a union of such sets V. Then S satisfies the axioms
for a topological space, and is called the fopological product of the
spaces S,.

Each « € 4 can be regarded as a function on S whose value at a
point peS is p(a). If this is done, it becomes evident that the
topology of S is exactly the weak topology induced on S by A.

If each S, is a Hausdorff space, it is trivial that S is also a
Hausdorff space. The analogous statement for compact spaces lies
deeper:

THE TycHONOFF THEOREM. The topological product of any
collection of compact spaces is compact.

Al6. A topological space is metrizable if its topology is induced
by a metric. For a compact Hausdorff space S, the following three
properties are equivalent:

(@) S is metrizable;

(b) S has a countable base;

(c) C(S) s separable.

Al7. If S is a locally compact Hausdorff space, or if S is a
complete metric space, the Baire theorem holds: S is not the union
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of countably many closed sets, unless one of them comtains a non-
empty open sel.

B. Topological Groups

Although many of the statements which follow apply to non-
commutative groups as well as to commutative (abelian) ones, we
shall confine our attention to the latter class.

B1l. An abelian group is a set G in which a binary operation, -}-,
is defined, with the following properties:

(a) x+y=y+=zforall z,yeG;
b)z+W+z)=(x+y)+2foral z,y,2¢G;
(c) G contains an element 0 such that x 4+ 0 = z for all z € G;

(d) to each z e G corresponds an element — z € G such that
x —x = 0. (We write  — z in place of z + (— z).)

If A and B are subsets of G, A 4+ B denotes the set of all
elements of the form a + b, with a€¢ 4, b ¢ B. Similarly, — 4 is
the set of all elements — @, where a ranges over 4,and A — B =
A + (— B). If z€G, it is customary to write 4 + z instead of
A + {x}. We call A + z the translate of A by =z.

A subset H of G which is itself a group, with respect to the same
group operation, is a subgroup of G. For this it is necessary and
sufficient that H — H C H. If H # G, then H is a proper subgroup
of G. If H = {0}, then H is the #rivial group.

B2. A homomorphism of a group G into a group G, is a map ¢
of G into G, such that

$zt+y) =9¢@) +4(y) (xyeG).

A homomorphism which is one-to-one is an isomorphism. If there
is an isomorphism of G onto G,, then G and G, are isomorphic
groups, and for many purposes one need not distinguish between
them.

The kernel of a homomorphism ¢ is the set $~1(0); the kernel is
always a subgroup.
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If H is a subgroup of G, the sets H 4+ x (x € G) are the cosets
of H. Two cosets H + z and H + y are identical if and only if
x — y € H; otherwise, H + z and H + y are disjoint. The set of
all cosets of H is denoted by G/H, and G/H becomes an abelian
group (the gquotient group of G modulo H) if we define

H+z)+ (H+y)=H+z+y (x,yeG).

The map - H + z is 2 homomorphism of G onto G/H, with
kernel H. It is called the natural homomorphism of G onto G/H.
Conversely, if ¢ is any homomorphism of G, the group ¢(G) may
be regarded as a quotient group of G: ¢(G) = G/¢-1(0).
The #ndex of a subgroup H of G is the number of elements of
G/H; it is either a positive integer, or infinite.

B3. If zeG and # is a positive integer, nx is the element
z+2z+ ...+ z (n summands). If nzx = 0 for some #, the
smallest positive integer with this property is the order of z; if
nx # 0 for all » > 0, then x has infintte order. If there is an
integer ¢ such that gz = 0 for all z ¢ G, then G is said to be of
bounded order.

If E C G and if no proper subgroup of G contains E, we say that
G is generated by E, or that E is a set of gemerators. A group
generated by one of its elements is cyclzic.

B4. A topological abelian group is a Hausdorff space G which is
also an abelian group, provided the map (z,y) >z —y is a
continuous map of the product space G X G onto G. If, in addition,
the topology of G is locally compact, then G is a locally compact
abelian (LCA) group.

(The proof of Theorem B6 (with H = {0}) shows that the
Hausdorff separation axiom can be replaced by the weaker re-
quirement that every point be a closed set, without changing the
class of groups so defined. But this is not important for our
present purpose.)

It follows that the translation map ¢, defined by £,(y) = =z + ¥,
is a homeomorphism of G onto G, for each z € G, and so is the map
z—> —z. If Ais an open set of G and BCG, then 4 + Bisa
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union of translates of 4 and is therefore open. If A and B are
compact, then 4 + B is compact, being the image of the compact
set A X B under the continuous map (z,y) >z + y.

A set ECG is symmetric if E = — E. Since En (— E) is
symmetric, it follows that in every LCA group G there is a neigh-
borhood base at 0 which consists of compact symmetric sets. Moreover,
the continuity of addition shows that to every neighborhood W of
0 in G there corresponds a neighborhood V of 0 (which may be
taken compact and symmetric) such that V + VCW.

B5. The closure of any subgroup of G is again a subgroup of G.
Every closed subgroup of a LCA group is LCA. Every open sub-
group is closed; this is so since every coset of an open subgroup H
is open, and since H is the complement of the union of all but one
of its cosets.

B6. THEOREM. Suppose G 1s LCA, ¢ is the natural homomorphism
of G onto G|H, where H is a closed subgroup of G, and a subset of
G/[H is declared open if and only if it is the image under ¢ of an open
subset of G. Then G/H is a LCA group.

Proof: By definition, ¢ is continuous and open, and hence G/H
is locally compact. If 2, y € G and z — y ¢ H, there is a neighbor-
hood W of 0 such that z + W does not intersect y + H, since
¥ + H is closed. There exists a symmetric compact neighborhood
V of 0 such that V 4+ V C W, and for this V thesetsx 4+ H 4+ V
andy + H 4 V donot intersect. Inother words, the pointsz + H
and y 4+ H of G/H have disjoint neighborhoods, and so G/H is a
Hausdorff space. The continuity of the group operation in G/H is
easily verified.

B7. If {G,} is a collection of abelian groups, their complete direct
sum is the group G defined as follows: G, as a set, is the cartesian
product of the sets G,, and addition is performed coordinatewise:
ifx e Gand y € G, x + yis the element of G whose ath coordinate is
z(«) + y(«), in the notation of Appendix Al5.

The direct sum of the groups G, is the subgroup of their complete
direct sum which consists of all z which have z(x) % 0 for only
finitely many «.
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If we now introduce the product topologies, the following facts
emerge, via the Tychonoff theorem:

The direct sum of any finite collection of LCA groups is a LCA
group. The complete direct sum of any collection of compact abelian
groups is a compact abelian group.

If G = H, + H,, where H, and H, are subgroups of G, then G
is (isomorphic to) the direct sum H, @ H, of these two subgroups
if and only if H, n H, = {0}.

B8. THEOREM. If G is an abelian group of bounded order, then G
is a direct sum of cyclic groups.

Proof: Each prime p has a largest power $°¢ (a = 0) which divides
the order of some z ¢ G. Hence G contains elements z, of order $°.
If z* = 3 =z, , the sum being taken over the distinct primes p; for
which @, > 0, then z* has order [] #%:. Thus G contains an ele-
ment x* whose order is a multiple of the order of every z ¢ G.

Suppose H is a proper subgroup of G and
(a) H is a direct sum of cyclic groups;

(b) if » is an integer and if nx ¢ H for some z € G, then nx e H
for some z, ¢ H.

The preceding paragraph, applied to G/H, shows that there
exists y* € G and an integer m such that mxz e H for all z ¢ G and
such that »y*¢H if 0 <7 <m. By (b), my* = my for some
ye H, and if z = y* — y then z has order m and the group K
generated by H and z has property (a) and is larger than H.

Suppose nx = y + 2z, where z ¢ G, y € H, and =, ¢ are integers.
Let d be the greatest common divisor of m and ». Then
(mn/d)x ¢ H, hence (mt/d)z ¢ H, hence m divides mt/d, and so 4
divides ¢. The congruence #s = ¢ (mod m) is therefore solvable for
s. Put 2 =sz. Then nk — tz = (ns — t) z= 0. Hence n{zx — k)
= y == ny,, for some y, € H, since (b) holds for H. We conclude:
n*® = n(y, + sz). Thus (b) also holds for K.

By Zorn’s lemma, there is an H which is maximal with respect
to (a) and (b), and the above argument shows that then H = G.
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B9. Since the topology of a topological abelian group G is
translation invariant, it is easy to introduce the notion of uniform
continwuity: A map f from a subset E of G into a metric space with
metric 4 is uniformly continuous on E if to every ¢ > 0 there exists
a neighborhood V of 0 in G such that d(f(z), f(y)) < e whenever
zeE , yeE,andy —zeV.

THEOREM. If f is a continuous map of the compact set E in G into
a metric space, then f is uniformly continuous on E.

Proof: Given ¢ > 0, there corresponds to each z ¢ E a neighbor-
hood W, of 0 such that d(f(z), f(y)) <¢2if ye En (z + W,),
and there are symmetric open neighborhoods ¥V, of 0 such that
V.+ V,.CW,. Since E is compact, there is a finite set of points
Z,, - - ., %, in E such that the union of the sets z; + V,, covers E.
If V is the intersection of these V, ,andy —z eV, z¢ E, yeE,
then zex, +V, for some ¢, and yex + VCz +V, +
VCaz + W,. Hence

A(Hx), F(y)) < d(f(z), f=)) + df (=), fy)) <e

B10. One proves similarly that every f € Cy(G) is uniformly con-
tinuous on G if G is LCA.

C. Banach Spaces

C1. A normed linear space X is a vector space over the complex
field (i.e., an abelian group in which multiplication by complex
numbers is also defined and satisfies the usual distributive laws)
in which a non-negative real number ||z||, the norm of z, is associat-
ed to each z ¢ X, with the following properties:

(a) |lz|]] = 0 if and only if z = 0;
(®) llz + il = ll=l| + |iyll for all 2,y e X;

(c) fle=x|| = le] - |]x]| for all z e X and all complex numbers «.

If X is complete with respect to the metric defined by d(z, y)
= |l — ||, i.e., if every Cauchy sequence in X converges, then X
is called a Banach space.
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The topology induced by the above metric is the norm topology
of X. The set of all x ¢ X with ||z]] < 1 is the unit ball of X.

C2. If M is a closed linear subspace of a normed linear space X,
the quotient space X/M (see Appendix B2) becomes a normed
linear space if we introduce the guofient norm

Hx+MII=iﬂf’Hx+yH (z e X).
VE
If X is a Banach space, so is X/M.

C3. A map T of a normed linear space X into a normed linear
space Y is a linear transformation if T(x + y) = Tz + Ty and
T(ex) = a - Tz for all z, y ¢ X and all complex numbers «; in
other words, linear transformations are vector-space homo-
morphisms. The kernel of a linear transformation 7 is a linear
subspace. T is said to be bounded if there is a real number C such
that ||Tz|| < C||z|| for all z € X; the smallest C with this property
is the norm {|T|| of T. Note that |{|T|| = sup ||T=||/}|=]|.

z#0

A linear transformation T is bounded if and only if it is con-
tinuous. The set L(X, Y) of all bounded linear transformations
of X into Y is itself a normed linear space. and if Y is a Banach
space, so is L(X, Y).

I T eL(X,, Y), where X, is a dense linear subspace of a normed
linear space X and Y is a Banach space, then T has a unique ex-
tension to an element of L(X, Y), with the same norm. Thisis a
special case of the general metric space theorem which states that
any uniformly continuous map into a complete space has a con-
tinuous extension to the completion of its domain.

C4. The complex field K, normed by the absolute value, is a
Banach space. A bounded linear transformation of X into K is
called a bounded linear functional on X, and L(X, K} is the dual
space of X, written X*.

C5. THE HauN-BaNacH THEOREM. If M is a linear subspace
(mot necessarily closed) of the normed linear space X, and if S is a
bounded linear functional on M, then there exists T € X* such that
Tx = Sz for all x e M, and such that ||T|| = ||S]].
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COROLLARY. If zy e X and x, is not in the closure of M, then there
exists T ¢ X* such that Tx = 0 for all x ¢ M but Tz, 5~ 0.

Cé6. The next theorem depends in an essential manner on the
completeness of the spaces involved and is a consequence of the
Baire theorem (Appendix Al7):

THEOREM. Suppose X,Y are Banach spaces, Te L(X,Y), T is
one-to-one, and TX =Y. Then T e L(Y, X).

CoROLLARY. If a vector space X is a Banach space with respect to
two morms, say || - || and || - ||, and if there is a constant C such that
llell” = Cllz|| for all x € X, then there is a constant C' suck that
x|l < C'||x|)’ for all z € X.

If these two inequalities hold, the two norms are called eguiv-
alent. A further consequence is

THE CLOSED GRAPH THEOREM. If X and Y are Banach spaces,
if T is a linear transformation of X into Y, and if the relations
lim,_ ||z, — || =0 and lim,_ , {|Tz, —yll =0 imply that
y = Tz, then T is bounded.

We need only apply the preceding corollary to the map
z — (z, Tz) of X onto the graph of T which is a Banach space
with norm ||z]| + ||T=||.

C7. Each z ¢ X may be regarded as a function on X* whose
value at a point T ¢ X* is T2. Then X is a separating family of
functions on X*. The weak topology induced in X* by X (Appen-
dix A10) is called the weak* topology of X*.

THEOREM. For any normed linear space X, the unit ball S* of X*
is a compact Hausdorff space in the weak* topology of X*.

Proof: Let D, be the set of all complex numbers z with |2| =< |jz]],
where z ¢ X. With X as index set, S* is then a subset of the topo-
logical product D of the discs D, (Appendix A15). By the Tychonoff
theorem, D is a compact Hausdorff space, and since limits of linear
functions are linear, S* is a closed subset of D.

C8. If X is separable, then a countable subset of X separates
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points on X*. It follows that the weak* topology of X* has a
countable base. We conclude (see Appendix Al6):

If X is separable, then the weak* topology of the unit ball S* of
X* is metrizable.

C9. The following analogue of the corollary to the Hahn-Banach
theorem is a direct consequence of the definition of the weak*
topology:

If M is a weak*-closed linear subspace of X* and if T ¢ M, then
there exists x € X such that Tox #0 but Tx= 0 for all T e M.

C10. Suppose X and Y are Banach spaces, X* and Y* are their
duals, and T e L(X, Y). For any y* ¢ Y*, the map 2 - y*(Tx)
is a bounded linear functional on X; hence there is an element of
X*, which we write T*y*, such that (T*y*)(z) = y*(T=z) for all
x € X. The map T* of Y* into X* so defined is called the adjoint
of T. It is easy to see that T* ¢ L(Y*, X*).

C11. THEOREM. Suppose X,Y are Banach spaces, T e L(X,Y),
T is one-to-one, and TX is dense in Y. Then each of the following
three properties implies the other two:

(d) TX =Y.
(b) There exists & > O such that ||T*y*|] = 6||y*|| for all y* e Y*.
(c) T*Y* = X*.

Proof: Let S, = {z € X: ||z|| = r}. If (a) holds, C6 shows T'(S,)
contains all y ¢ Y with |ly|| =< 4. Hence
HT*y*|| = sup [(T*y*)(x)| = sup |y*(Tz)| = dly*iI
z€S, z€S,
for all y* € Y*, and (b) holds. If (c) holds, one proves in the same
way that ||Tz|| < «f|z|| for some « > 0 and all z ¢ X; this implies
that 77X is norm-closed, and so (a) holds. It remains to show that
(b) implies (c).

If (b) holds, then I" = T*Y* is norm-closed in Y*. Moreover,
T*-1(E) is bounded for every bounded set E in I', and this implies,
via C7, that the intersection of I" with every closed ball in X* is
weak*-compact.
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Suppose I' = X*. Then there exists z,* ¢ X* whose distance
from I' exceeds 1. Put I', = {&* e I': ||z* — z*|| < n}, and if F
is any finite subset of X, let F° be the set of all * ¢ X* such that
[(z* — zo*)(x)] = 1 for all z¢ F.

We claim that there exist finite sets F, C S, such that
(1) FenFyn...F5_ ,nT,is empty n=12173,...).
Since I} is empty, F, may be chosen arbitrarily. Suppose (1)
holdsforsomen =1, W, =Fgn...nFy_;,and F°nW, T,
is not empty, no matter what f1mte set F C S,;, we take. Since
W, n I, is weak*-compact and since the collection of all sets
F°n W, nT,,, has the finite intersection property, there exists
z*e W,nT,,, such that |[(z* — z*)(z)| £ 1 for all zeSy,.
But then ||a* — z*|]| = n, or z*eI,, which contradicts (1).
Hence F, exists, and the induction is complete.

Arrange the elements of |J F, in a sequence {z;}. Then
llz;]] = 0, and

(2) sup |(z* — @*) (@) > 1 (@*eT).

The map ¥ : z* — {x*(z,)} is a bounded linear transformation of
X* into the space of all sequences which converge to 0, and (2)
shows that the distance from ¥(z,*) to ¥W(I') is positive. Hence
there exists {a} with > |a| < o0, so that setting z = 3 o,
we have z,*(x) = 3 o, 2o* (z;) = 1 but 2*(z) = 3 a,2*(z,) = 0 if
x*eI. The latter condition implies that y* (Tx) (T*y*)(z) = 0
for all y* ¢ Y*, so that Tx = 0 and hence z = 0, which is im-
possible if z,*(z) = 1. This contradiction proves that I' = X*,
so that (c) holds.

C12. Suppose H is a vector space over the complex field, and
suppose that to each ordered pair z, y € H there is associated a
complex number (z, ), called the inner product of x and y, with
the following properties: (a) (z, + %, ¥) = (%, ¥) + (%, ¥);
®) (zy) =«zy) (© @)=y @ @220
(¢) (z, ) = 0 only if x = 0. Setting |[z|| = (z, x)%, H then be-
comes a normed linear space. If H is complete in this norm. H is
called a Hilbert space.
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The Schwarz inequality |(z, y)| < ||z|| - |ly]] is a consequence of
properties (a) to (d) of the inner product. It shows that the map
x — (z,y) is, for each y € H, an element of H*. Conversely, to
each T ¢ H* there corresponds a unique y ¢ H such that Tz =
(z, ¥). Thus H is its own dual.

A set K in H is convex if ax 4+ (1 — a)y e K whenever z e K,
yeXK,and 0 < a < 1. Each closed convex set K in a Hilbert space
H has a unique element 2z, of minimal norm. If z, + M CK for
some linear subspace M of H, then (x,,y) = 0 for all y ¢ M; in
other words, z, is orthogonal to M. If 0 is the only element in H
which is orthogonal to a linear subspace M, then M is dense in H,
by the Hahn-Banach theorem and the above characterization of
H*.

D. Banach Algebras

D1. A vector space A over the complex field is a commutative
algebra if a multiplication is defined in 4 which satisfies the usual
commutative, associative and distributive laws. If a norm is
defined in a commutative algebra 4 which makes 4 into a Banach
space, and if the inequality ||zy|| < ||z|| - ||y|] holds for allz, ye 4,
then A is a commutative Banach algebra.

In this appendix, the symbol A will always denote a commuta-
tive Banach algebra.

There may or may not be a unitin 4, i.e., an element e such that
xe = xforallz ¢ A. If A has a unit, the norm of 4 can be replaced
by an equivalent one (see Appendix C6) such that [le}| = 1. The
element z € A is invertible if it has a multiplicative inverse, i.e., if
there is an element 2-1¢ A such that z—z = e.

D2. Asubalgebral of 4 is an ¢/deal in A if zy e I wheneverz € 4
andyel. IfI 5= A,Iis a proper ideal. Mazximal ideals are proper
ideals which are not contained in any larger proper ideals.

THEOREM. If A has a unit, then every proper ideal in A is con-
tained in a maximal ideal, and every maximal ideal is closed.

This is an easy consequence of Zorn’s lemma and the following
three facts: (a) proper ideals contain no invertible elements, (b) the
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set of all invertible elements is open, and (c) the closure of an ideal
is an ideal.

D3. If I'is an ideal in A4, a multiplication may be defined in the
quotient space A/l by setting

(+Dy+I)=ay+1I (z,yed);

this makes 4/I into an algebra, the so-called quotient algebra of 4
modulo 1.

If I 4s closed and if A[I 1is given the quotient norm (see Appendiz
C2), then A[I is a Banach algebra.

An ideal I in A is said to be regular if A[I has a unit (if 4 hasa
unit, every ideal is regular). Theorem D2 has the following replace-
ment if 4 has no unit:

Every proper regular ideal in A is contained in a regular maximal
ideal, and every regular maximal ideal is closed.

D4. A complex homomorphism h of A is a linear functional on 4
which is also multiplicative: A(xy) = h(x)A(y). Let 4 be the set of
all complex homomorphisms of 4 which are not identically 0.
The following statements contain the core of the theory of commu-
tative Banach algebras, as developed by Gelfand [1]:

(a) IfIisaregular maximalidealin 4, then A/I is (isometrically
isomorphic to) the complex field, and so the canonical homo-
morphism of 4 onto A/I belongs to 4.

(b) Conversely, if 4 e 4, the kernel of 4 is a regular maximal
ideal in A4.

(c) If A has a unit, thenz ¢ 4 isinvertible if and only if A (x) 5= 0
for all e A. In any case, the equation 2y = x + y is solvable in
A if and only if A(z) 5= 1 for all 2 4.

(d) Each % e 4 is a bounded linear functional on A4, of norm 1.
Thus 4 is a subset of the unit ball S* in the dual space 4* of the
Banach space A.

(e) Each z € A defines a function £ on 4, given by

i(h) = hiz) (hed).
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The weak topology induced in 4 by the collection of all these func-
tions £ is called the Gelfand topology of A. It coincides with the
relative topology which 4 has as a subset of 4* if A* is given the
weak* topology. Since 4 C S*, since S* is weak*-compact (Ap-
pendix C7) and since 4 U {0} is easily seen to be a closed subset of
S*, it follows that A4 is a locally compact Hausdorff space (usually
called the maximal ideal space of A) and that each £ is a member of
Co(4) (Appendix All).

(f) The map z — £ is 2 homomorphism of 4 onto a subalgebra 4
of Cy(4), since

(£9) () = h(zy) = h(x)h(y) = 2(h)G(h) (z.yed; hed),

and similarly for addition and scalar multiplication. Since ||4|| <1
the important inequality

N8l = el
holds. We call £ the Gelfand transform of x.

(g) If A has a unit e, then 4 is compact, since é(h) = Ae) = 1
and 1 e Cy(4) only if 4 is compact.

D5. If the Gelfand transformation is an isomorphism, i.e., if
z # 0 implies £ £ 0 (or, A(z) % O for some ke A4), then A is said
to be semi-stmple.

THEOREM. If A and B are commutative Banach algebras, if B is
semi-simple, and if ¥ is a homomorphism of A into B, then ¥ is con-
tinuous (i.e., WeL(A, B)). If ¥ #0, then ||¥]| = 1.

Proof: Suppose z, - z, in A and ¥z, - y, in B, for some se-
quence {z,} in A. For each % € 4, the maximal ideal space of B, the
map x — A(¥z) is a complex homomorphism « on 4. By D4(d),
h and « are continuous, so that

h(Wz,) = a(z,) = lim a(z,) = lim A(¥Yz,) = 2(y,)-

Since B is semi-simple, we conclude that y, = ¥=z,, and the con-
tinuity of ¥ follows from the closed graph theorem.
If ¥ £ 0, the semi-simplicity of B implies that 4(¥z) # 0 for
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some z€ B, hed, and so « # 0. By D4(d), [|¥|] = |4l - | PI|
2 [la]| = 1.

D6. The spectrum of an element z € 4 is defined to be the range
of the function £ (with 0 adjoined if A has no unit, so that the
spectrum is always a compact subset of the complex plane). The
number ||£}|,, is the spectral norm or the spectral radius of z. The
equation
(1) Lim g = |1l (eed)
is known as the spectral radius formula. For Fourier transforms, it
was discovered by Beurling [1]. The general case is due to Gelfand
(1].

Let « and # be the upper and lower limits of {|[z"||¥"}. Since
h(z}|® = |k(z™)] < ||x™|| for all & € 4, we have ||£]]l, < 5. If A is
not in the spectrum of z, D4(c) shows that there existsy = y(1) e 4
such that — 1y 4+ zy = z; also, y(4) is an analytic function of 1,
outside the spectrum of z. If |A} = C > ||z||, then y() =
— >T(=/2)", so that
(2) Tt = — i A*ly(A)da n=123,...).

27t Jjaj=c
If {|£]| <7< R, the path of integration in (2) can be shrunk to
the circle || =  without changing the integral. Hence ||2*/R"|| >0,
e < R, and so « < ||£]|,. This proves (1).

D7. A similar application of the Cauchy formula shows that
analytic functions operate in Banach algebras:

Suppose A is a commutative-semi-simple Banach algebra, x € A,
and F is an analytic function defined on an open set which contains
the spectrum of z; if A has no unit, we require that F(0) = 0. Then
there exists a unique y € A such that §(h) = F(£(h)) for all he A.

E. Measure Theory

E1l. Our discussion will be confined to measures and integrals
on locally compact Hausdorff spaces X. Let B be the smallest
family of subsets of X which (a) contains all closed subsets of X,
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(b) is closed under the formation of countable unions, and (c) is
closed under complementation. Then B is also closed under the
formation of countable intersections. The members of B are called
the Borel sets of X.

A measure on X is a set function u, defined for all Borel sets of
X, which is countably additive (i.e., u(E) = 3 u(E,) if E is the
union of the countable family {E,} of pairwise disjoint Borel sets
of X), and for which u(E) is finite if the closure of E is compact.

With each measure g on X there is associated a set function |u/,
the ftotal variation of u, defined by

(1) [ul(E) = sup 3 |u(EJ)!,

the supremum being taken over all finite collections of pairwise
disjoint Borel sets E, whose union is E. Then |4} is also a measure
on X (Hewitt [1]). If

@) |l (E) = sup |u|(K) = inf [u|(V),

for every Borel set E, where K ranges over all compact subsets of E
and V ranges over all open supersets of E, then u is called regular.
We put

(3) 1] = |ul(X)

and define M (X) to be the set of all complex-valued regular measures
on X for which ||u]| s finste.

It is clear that M (X) is a normed linear space if addition and
scalar multiplication are defined by

4) (w1 + ) (E) = i (E) + po(E),  (ap)(E) = a - u(E)

for every Borel set E and every complex number a.
We shall also consider non-negative regular measures on X ; for
these, + oo is an admissible value.

E2. If uis a measure on X and 4 is a Borel set, the restriction u 4
of u to A is the measure defined by

1) v4(E) = p(A n E).
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If 4 = p4, then u is said to be concentrated on A. 1f two measures
#, and u, are concentrated on disjoint sets, the pair (u,, u,) is said
to be mutually singular; in that case

@ e + ol = lleall + laall-

If p e M(X), then u is concentrated on a g-compact subset of X
(i.e., on a set which is a countable union of compact sets) and
among all closed subsets of X there is a smallest one, the support
of u, on which u is concentrated.

Every ue M(X) has a unique decomposition of the form

3) B= phy — pg -t Ty — iy

tn which u; =2 0, u; e M(X), and the pairs (uy, pus) and (us, py) are
mutually singular. This is the Jordan decomposition theorem.

E3. A measure u € M (X) is called discrete if it is concentrated
on a countable set; u is continuous if u(E) = 0 for every countable
set E. Every u e M (X) has a unique decomposition u = g,; + 4.,
where y, is discrete and g, is continuous.

If u e M(X), if m is a non-negative measure on X, and if u(E)
= 0 whenever m(E) = 0, then u is said to be absolutely continuous
with respect to m.

THE LEBESGUE DECOMPOSITION THEOREM. If pe M(X) and
m = 0, then p has a unigque decomposition u = u, + u,, where u,
is absolutely continuous with respect to m and u, is singular with
respect to m.

E4. If ueM(X), the map f— [xfdu is a bounded linear
functional on the Banach space Cy(X) (see Appendix All). The
converse of this statement is

THE RieEsz REPRESENTATION THEOREM. To each bounded linear
functional T on Cy(X) there corresponds a unique u ¢ M (X) such that

(1) Tf= [ fdp  (feColX)).
In this generality, the theorem was first proved by Kakutani [1].
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Its history is discussed in Dunford and Schwartz [1], pp. 373, 380.
Since (Hewitt [1])

(2) sup |Tf] = llull  (feCo(X), liflle = 1),

if T and u are related by (1), we see that (1) establishes an iso-
metric isomorphism between M (X) and the dual of Cy(X). In
particular, M(X) is a Banach space.

E5. Another useful version of the Riesz representation theorem
is as follows (Halmos [1]):

To each linear functional T on C (X) such that Tf = 0if f = O,
there corresponds a unique regular non-negative measure m on X such
that

Tt = J'x fam  (feCy (X))

Eé6. A complex function f defined on X is called a Borel function
if /71(V) is a Borel set for every open set V in the complex plane.
If ueM(X), all bounded Borel functions on X are integrable
with respect to u, and the inequality

| 10| <l - sup 1)
holds.

E7. If m is a non-negative measure on X and if 0 < p < oo,
L?(m) denotes the set of all Borel functions f on X for which the
norm

(1) WAl = ([ if1e dm)""”

is finite. If we identify functions which differ only on a set E with
m(E) = 0, L*(m) becomes a Banach space, normed by (1), if
1Zp< oo L%m) is a Hilbert space, with inner product
(t.¢) = [ fgam.

L>(m) is the space of all bounded Borel functions on X, normed
by

(2) e = ess sup 7 (=)1;
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the essential supremum of |f| is, by definition, the smallest number
A such that m({z: f(x) > 4}) = 0. Again we identify any two
members ¢, g of L®(G) for which ||f — glle, = O-

E8. If m is regular, then C (X) is dense tn L1(m). The set func-
tion u defined by u(E) = [g ||dm belongs to M (X). Hence, given
& > 0, there is a compact set E such that u(E’) < ¢, where E’ is
the complement of E. It follows that there is a bounded Borel
function g, with compact support E, such that ||f —g]|; <e

A theorem of Lusin (Saks [1]) asserts that for every é > 0 there
exists & e C,(X) such that h(x) = g(x) except possibly on a set S
with m(S) < 8. We may also take % so that ||4}] = |lg|le. Thus
llg — All; < 28]|g]le, and hence ||f — A]|; < e if 8 is small enough.

Essentially the same proof holds for L?(m), if 1 < $ < .

E9. If fe L'(m), the measure defined by u(E) = [g fdm be-
longs to M(X) and is absolutely continuous with respect to m.
The converse of this proposition is

THE RADON-N1KODYM THEOREM. If ue M(X), if m is a non-
negative measure on X, and if u is absolutely continuous with respect
to m, then there exists f € L\(m) such that

w(E) = [ fam

for all Borel sets E in X.
Also, {lull = [x Ifldm = |Ifll,.

E10. Suppose m =0, 1 <p < oo, and 1/p + 1/g= 1. The
bounded linear functionals 7 on L?(m) are in one-to-one correspond-
ence with the members g of L¢(m): each T e (L?)* is of the form

Tt=[fedm  (feL>(m)).

and ||T|}| = llglle. Thus L2 = (L?)*.

If X is the union of a disjoint family of o-compact sets X, such
that each o-compact subset of X is contained in the union of a
countable subfamily of {X,}, then we also have L™ = (L)*. This
condition is satisfied by every LCA group G. For if V is a compact
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symmetric neighborhood 0of 0in G, V, = Vand V,, =V, + V,
then each ¥V, is compact, and H = 2, V, is a g-compact open
subgroup of G. The cosets of H have the properties required of
the sets X, in the preceding paragraph.

El1. Suppose x4 and A are regular measures on locally compact
Hausdorff spaces X and Y. Foranyset 4 X Bin X X Y, where
A and B are Borel sets in X and Y, respectively, define

(4 X 1)(4 X B) = u(4)A(B).

The set function p X 4 so defined on ‘‘rectangles” has a unique
extension to a regular measure 4 X 4 on the product space X X Y.

FuBINI'S THEOREM. If u =0, 1 = 0, f ts a Borel function on
X XY, and f =0, then

[ gl x ) = [ [, He y)dr(y)due)
= [, [ 1z y)du@)i(y).
If ue M(X), 2e M(Y), f ¢s a Borel function X X Y, and if

[, e ldA@duE) < o,
then (1) also holds.

(1)
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Adjoint, 259

Affine maps, 78

Almost periodic, 32
Analytic type, 197
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Archimedean order, 194
Asymmetry, 104

Baire theorem, 251

Base, 248

Bochner’s theorem, 19
Bohr compactification, 30
Borel function, 267
Borel set, 265

Bounded order, 255

Cantor set, 99

Cartesian product, 251
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Closed graph theorem, 258
Compact, 248
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Complex homomorphism, 262
Component, 249

Conjugate function, 216
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Continuous map, 248
Continuous measure, 266
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Direct sum theorem, 255
Discrete measure, 266
Discrete topology, 247
Divisible group, 44
Domain transformation, 131
Dual group, 7

Dual space, 257

E-function, 121
Equivalent norms, 253

Finite intersection property, 248
Fubini’s theorem, 269

Gelfand topology, 263
Gelfand transform, 263
Generators, 253
Geometric mean, 203
Graph, 81

Hadamard set, 126
Hahn-Banach theorem, 257
Half space, 225

Hausdorff space, 248
Helson set, 114

Hilbert space, 260
Homeomorphism, 249
Homomorphism, 252, 262

Ideal, 261

I-group, 46
Independent sets, 97
Index, 253

Inner function, 210
Inner product, 260
Inversion theorem, 22
Invertible, 261
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Irreducible indempotent, 60
Isomorphism, 252

Jordan decomposition, 266

Kernel, 252
Kronecker set, 97

LCA, 1

Lebesgue decomposition, 66, 198,
266

Lexicographic order, 194

Locally compact, 248

Lusin’s theorem, 268

Maximal ideal, 201
Maximal ideal space, 263
Maximal semigroup, 195
Mean value, 118
Monothetic group, 39

Natural homomorphism, 253
Neighborhood base, 248
Norm, 257

Norm topology, 257
Normalized Haar measure, 24
Normed linear space, 256

One-parameter subgroup, 47
Open map, 249

Order, 194, 253

Ordered group, 194
Orthogonal, 261
Orthogonality relations, 10
Outer function, 210

Parseval formula, 27
Perfect set, 99
Piecewise affine map, 78
Plancherel transform, 26
Pontryagin duality, 28
Positive-definite, 17
Product measure, 269

Product space, 251
Pseudo-periods, 66

Quotient algebra, 262
Quotient group, 253
Quotient norm, 257
Quotient space, 257

Radon-Nikodym theorem, 268

Range transformation, 131

Real-analytic, 132

Regular ideal, 262

Regular measure, 265

Relative topology, 248

Restriction of a measure, 256

Riesz representation theorem, 266,
267

Ring of sets, 60

Schwarz inequality, 261
Self-adjoint, 104
Semigroup, 193
Semi-simple, 263
Separating, 249

Sidon sets, 120
Singular measure, 266
Singular subgroup, 60
Slowly oscillating, 163
Spectral norm, 264

"Spectral radius, 264

Spectrum, 184, 264

S-set, 158

Stone-Weierstrass algebra, 239
Stone-Weierstrass theorem, 250
Support, 250

Support group, 60

Symmetric set, 254

Tietze’s extension theorem, 250
Topological product, 251
Topological space, 247
Topology, 247

Total variation, 265
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Totally disconnected, 249 Uniform continuity, 256
Translate, 3 Unit, 261
Translation-invariant, 1 Unit ball, 257
Translation lemma, 66

Trigonometric polynomial, 24 Weak topology, 249
Tychonoff theorem, 251 Weak* topology, 258

A Correction

The proof of part (b) of the Pontryagin duality theorem (i.c., of the fact
that a(G) is closed in I') is incomplete, because the local compactness of
o(G) does not by itself guarantee that o(G) N U is compact, as was asserted
on p. 29. The following theorem bridges the gap:

THeoREM. If H is a subgroup of a topological group G, and H is
locally compact (in the topology induced by G), then H is closed in G.

LEMMA. If X is a Hausdorff space, and Y is a dense subset of X which
is locally compact (in the topology induced by X), then Y is open in X.

Proof: To say that Y is locally compact means that every point of Y
lies in an open set V such that the Y-closure of V N Y is compact. In
other words, the set K = Y N (V N Y) is compact, and is therefore closed
in X.

Let W be the set of all points of V that are not in K. The inclusions
WNYC VNYC K show that W N Y is empty. Since W is open and
Y is dense in X, it follows that W is empty. Thus VC K, hence VC Y,
and therefore Y is open.

To prove the theorem, let Y = H, X = H. The lemma shows that H is
an open subgroup of H. Since open subgroups are closed (Appendix B5),
H=H.



