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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high
level of excitement on the research frontier as newer techniques, such as
numerical and symbolic computer systems, dynamical systems, and chaos,
mix with and reinforce the traditional methods of applied mathematics.
Thus, the purpose of this textbook series is to meet the current and future
needs of these advances and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research level monographs.



Pretace

Symmetry and mechanics have been close partners since the time of the
founding masters: Newton, Euler, Lagrange, Laplace, Poisson, Jacobi, Ha-
milton, Kelvin, Routh, Riemann, Noether, Poincaré, Einstein, Schrodinger,
Cartan, Dirac, and to this day, symmetry has continued to play a strong
role, especially with the modern work of Kolmogorov, Arnold, Moser, Kir-
illov, Kostant, Smale, Souriau, Guillemin, Sternberg, and many others. This
book is about these developments, with an emphasis on concrete applica-
tions that we hope will make it accessible to a wide variety of readers,
especially senior undergraduate and graduate students in science and en-
gineering.

The geometric point of view in mechanics combined with solid analy-
sis has been a phenomenal success in linking various diverse areas, both
within and across standard disciplinary lines. It has provided both insight
into fundamental issues in mechanics (such as variational and Hamiltonian
structures in continuum mechanics, fluid mechanics, and plasma physics)
and provided useful tools in specific models such as new stability and bifur-
cation criteria using the energy-Casimir and energy-momentum methods,
new numerical codes based on geometrically exact update procedures and
variational integrators, and new reorientation techniques in control theory
and robotics.

Symmetry was already widely used in mechanics by the founders of the
subject, and has been developed considerably in recent times in such di-
verse phenomena as reduction, stability, bifurcation and solution symmetry
breaking relative to a given system symmetry group, methods of finding
explicit solutions for integrable systems, and a deeper understanding of spe-
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cial systems, such as the Kowalewski top. We hope this book will provide
a reasonable avenue to, and foundation for, these exciting developments.

Because of the extensive and complex set of possible directions in which
one can develop the theory, we have provided a fairly lengthy introduction.
It is intended to be read lightly ot the beginning and then consulted from
time to time as the text itself is read.

This volume contains much of the basic theory of mechanics and should
prove to be a useful foundation for further, as well as more specialized,
topics. Due to space limitations we warn the reader that many important
topics in mechanics are not treated in this volume. We are preparing a
second volume on general reduction theory and its applications. With luck,
a little support, and yet more hard work, it will be available in the near
future.

Solutions Manual. A solution manual is available for instructors. It

contains complete solutions to many of the exercises, as well as other sup-

plementary comments. For further information, see
http://www.cds.caltech.edu/ “marsden/books/.

Internet Supplements. To keep the size of the book within reason,
we are making some material available (free) on the Internet. These are a
collection of sections whose omission does not interfere with the main flow of
the text. See http://www.cds.caltech.edu/ "marsden/books/. Updates
and information about the book can also be found at this website.

What Is New in the Second Edition? In this second edition, the main
structural changes are the creation of a solutions manual (along with many
more exercises in the text) and the Internet supplements. The Internet
supplements contain, for example, the material on the Maslov index that
was not needed for the main flow of the book. As for the substance of the
text, much of the book was rewritten throughout to improve the flow of
material and to correct inaccuracies. Some examples: The material on the
Hamilton—-Jacobi theory was completely rewritten, a new section on Routh
reduction (§8.9) was added, Chapter 9 on Lie groups was substantially
improved and expanded. The presentation of examples of coadjoint orbits
(Chapter 14) was improved by stressing matrix methods throughout.

Acknowledgments. We thank Rudolf Schmid, Rich Spencer, and Alan
Weinstein for helping with an early set of notes that helped us on our
way. OQur many colleagues, students, and readers, especially Henry Abar-
banel, Vladimir Arnold, Larry Bates, Michael Berry, Tony Bloch, Dong-Eui
Chang, Hans Duistermaat, Marty Golubitsky, Mark Gotay, George Haller,
Aaron Hershman, Darryl Holm, Phil Holmes, Sameer Jalnapurkar, Edgar
Knobloch, P.S. Krishnaprasad, Naomi Leonard, Debra Lewis, Robert Lit-
tlejohn, Richard Montgomery, Phil Morrison, Richard Murray, Peter Olver,
Oliver O’Reilly, Juan-Pablo Ortega, George Patrick, Octavian Popp, Ma-
son Porter, Matthias Reinsch, Shankar Sastry, Tanya Schmah, Juan Simo,
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Hans Troger, Loc Vu-Quoc, and Steve Wiggins, have our deepest gratitude
for their encouragement and suggestions. We also collectively thank all
our students and colleagues who have used these notes and have provided
valuable advice.

We are also indebted to Carol Cook, Anne Kao, Nawoyuki Gregory Kub-
ota, Sue Knapp, Barbara Marsden, Marnie McElhiney, June Meyermann,
Teresa Wild, and Ester Zack for their dedicated and patient work on the
typesetting and artwork for this book. We want to single out with special
thanks Hendra Adiwidjaja, Nawoyuki Gregory Kubota, and Wendy McKay
for their special effort with the typesetting, the scripts for automatic con-
version of references, the macros for indexing, and the figures (including
the cover illustration). We also thank the staff at Springer-Verlag, espe-
cially Achi Dosanjh, Laura Carlson, MaryAnn Cottone, David Kramer,
Ken Dreyhaupt, and Riidiger Gebauer for their skillful editorial work and
production of the book.

JERRY MARSDEN
Pasadena, California

TUDOR RATIU
Santa Cruz, California

December, 1998
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1

Introduction and Overview

1.1 Lagrangian and Hamiltonian Formalisms

Mechanics deals with the dynamics of particles, rigid bodies, continuous
media (fluid, plasma, and elastic materials), and field theories such as elec-
tromagnetism and gravity. This theory plays a crucial role in quantum me-
chanics, control theory, and other areas of physics, engineering, and even
chemistry and biology. Clearly, mechanics is a large subject that plays a
fundamental role in science. Mechanics also played a key part in the devel-
opment of mathematics. Starting with the creation of calculus stimulated
by Newton’s mechanics, it continues today with exciting developments in
group representations, geometry, and topology; these mathematical devel-
opments in turn are being applied to interesting problems in physics and
engineering.

Symmetry plays an important role in mechanics, from fundamental for-
mulations of basic principles to concrete applications, such as stability cri-
teria for rotating structures. The theme of this book is to emphasize the
role of symmetry in various aspects of mechanics.

This introduction treats a collection of topics fairly rapidly. The student
should not expect to understand everything perfectly at this stage. We will
return to many of the topics in subsequent chapters.

Lagrangian and Hamiltonian Mechanics. Mechanics has two main
points of view, Lagrangian mechanics and Hamiltonian mechanics.
In one sense, Lagrangian mechanics is more fundamental, since it is based
on variational principles and it is what generalizes most directly to the gen-
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eral relativistic context. In another sense, Hamiltonian mechanics is more
fundamental, since it is based directly on the energy concept and it is what
is more closely tied to quantum mechanics. Fortunately, in many cases these
branches are equivalent, as we shall see in detail in Chapter 7. Needless to
say, the merger of quantum mechanics and general relativity remains one
of the main outstanding problems of mechanics. In fact, the methods of
mechanics and symmetry are important ingredients in the developments of
string theory, which has attempted this merger.

Lagrangian Mechanics. The Lagrangian formulation of mechanics is
based on the observation that there are variational principles behind the
fundamental laws of force balance as given by Newton’s law F = ma.
One chooses a configuration space @ with coordinates ¢*, i = 1,...,n,
that describe the configuration of the system under study. Then one
introduces the Lagrangian L(q',d%,t), which is shorthand notation for
L(¢*,...,q" 4, ... ,4" t). Usually, L is the kinetic minus the potential
energy of the system, and one takes ¢* = dg‘/dt to be the system velocity.
The variational principle of Hamilton states

b
5/ L(¢%,4",t)dt = 0. (1.1.1)

In this principle, we choose curves ¢*(¢) joining two fixed points in Q over
a fixed time interval [a, b] and calculate the integral regarded as a function
of this curve. Hamilton’s principle states that this function has a critical
point at a solution within the space of curves. If we let d¢* be a variation,
that is, the derivative of a family of curves with respect to a parameter,
then by the chain rule, (1.1.1) is equivalent to

n b
Z/ (ap 5q* + 3%41-) dt=0 (1.1.2)
—J. \0¢ a¢*

for all variations dq*.
Using equality of mixed partials, one finds that

g 4o
5q—dt<5q.

Using this, integrating the second term of (1.1.2) by parts, and employing
the boundary conditions d¢* = 0 at ¢t = a and b, (1.1.2) becomes

1oL d (/8L ,
E _—— = — tdt =0. 1.1.3
izl/a [W dt (c'iq")] b0t =0 (113

Since d¢* is arbitrary (apart from being zero at the endpoints), (1.1.2) is
equivalent to the Euler—Lagrange equations
d oL OL

4oL oL o i1 .n 1.1.4
dtogF  ag PELn (L.14)
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As Hamilton [1834] realized, one can gain valuable information by not im-
posing the fixed endpoint conditions. We will have a deeper look at such
issues in Chapters 7 and 8.

For a system of N particles moving in Euclidean 3-space, we choose the
configuration space to be @ = R3M =R3 x ... x R® (N times), and L often
has the form of kinetic minus potential energy:

N
Las 4ort) = 3 S malladl® - V(a) (1.15)
i=1

where we write points in Q as qq, ..., qn, where q; € R3. In this case the
Euler-Lagrange equations (1.1.4) reduce to Newton’s second law

i(m. 1) = _ov
at idi) = aq'i’

i=1,...,N, (1.1.6)

that is, F = ma for the motion of particles in the potential field V. As we
shall see later, in many examples more general Lagrangians are needed.
Generally, in Lagrangian mechanics, one identifies a configuration space
@ (with coordinates (q!,...,q")) and then forms the velocity phase space
TQ, also called the tangent bundle of ). Coordinates on T'Q) are denoted
by
(ql" “,qn,q.l,. .t ’qn)?

and the Lagrangian is regarded as a function L : TQ — R.

Already at this stage, interesting links with geometry are possible. If
9i;(g) is a given metric tensor or mass matriz (for now, just think of this
as a g-dependent positive definite symmetric n X n matrix) and we consider
the kinetic energy Lagrangian

n

iy L g
L(¢",¢") = 3 E gi(9)d'¢’, (1.1.7)
i,5=1

then the Euler—Lagrange equations are equivalent to the equations of geode-
sic motion, as can be directly verified (see §7.5 for details). Conservation
laws that are a result of symmetry in a mechanical context can then be
applied to yield interesting geometric facts. For instance, theorems about
geodesics on surfaces of revolution can be readily proved this way.

The Lagrangian formalism can be extended to the infinite-dimensional
case. One view (but not the only one) is to replace the ¢* by fields ¢!,... , ™
that are, for example, functions of spatial points z* and time. Then L
is a function of ©!,... 0™, H, ..., ™ and the spatial derivatives of the
fields. We shall deal with various examples of this later, but we emphasize
that properly interpreted, the variational principle and the Euler-Lagrange
equations remain intact. One replaces the partial derivatives in the Euler—
Lagrange equations by functional derivatives defined below.
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Hamiltonian Mechanics. To pass to the Hamiltonian formalism, in-
troduce the conjugate momenta

plza— i:l,... , Ny (118)

g’

make the change of variables (¢¢, ¢*) — (¢, p;), and introduce the Hamil-
tonian

H(q',pi, 1) Zp]q - L(¢',¢",1). (1.1.9)

Remembering the change of variables, we make the following computations
using the chain rule:

i e 3q1 oL o¢ .
6‘pz ;( p;  O¢ sz> ! (1.1.10)

and

2L 9 oL (9qJ oL
il 1.1.11
v L L St

where (1.1.8) has been used twice. Using (1.1.4) and (1.1.8), we see that
(1.1.11) is equivalent to

OH d

Thus, the Fuler-Lagrange equations are equivalent to Hamilton’s equa-
tions

¢ oH
dt — op;’
* 1.1.13
v __oH e
dt  0O¢%’
where i = 1,... ,n. The analogous Hamiltonian partial differential equa-
tions for time-dependent fields !,..., 9™ and their conjugate momenta
Tly-.. , My are
9p® dH
ot~ om,’
or, SH (1.1.14)

R
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where a = 1,...,m, H is a functional of the fields ¢* and 7,, and the
variational, or functional, derivatives are defined by the equation

/ ———5<p d":v—hm—[H<p +edpl %, o™ T, )
—H(eh % o™, )], (1.1.15)

and similarly for §H/8¢?, ... ,6H/ény,. Equations (1.1.13) and (1.1.14) can
be recast in Poisson bracket form:

F={F H}, (1.1.16)

where the brackets in the respective cases are given by

OF 0G  OF G
th6)= E <8q 6p 5Pi gt ) (1.1.17)
and
3 §F 6G  6F &G
F.G) = 0G  oF n N
el g__:l/R" (699“ 0Ty Omg 5(,0“) d"z (1.1.18)
Associated to any configuration space @ (coordinatized by (¢%,...,q"))

is a phase space T* (@ called the cotangent bundle of ), which has coordi-
nates (¢',...,¢",p1,---,pn). On this space, the canonical bracket (1.1.17)
is intrinsically defined in the sense that the value of {F,G} is indepen-
dent of the choice of coordinates. Because the Poisson bracket satisfies
{F,G} = —{G, F} and in particular {H, H} = 0, we see from (1.1.16) that
H = 0; that is, energy is conserved. This is the most elementary of many
deep and beautiful conservation properties of mechanical systems.

There is also a variational principle on the Hamiltonian side. For the
Euler-Lagrange equations, we deal with curves in g-space (configuration
space), whereas for Hamilton’s equations we deal with curves in (g, p)-space
(momentum phase space). The principle is

b n
3 it = H@py)lde =0, (1119)
a =1

as is readily verified; one requires p;6q* = 0 at the endpoints.

This formalism is the basis for the analysis of many important systems
in particle dynamics and field theory, as described in standard texts such
as Whittaker [1927], Goldstein [1980], Arnold [1989], Thirring [1978], and
Abraham and Marsden [1978]. The underlying geometric structures that are
important for this formalism are those of symplectic and Poisson geometry.
How these structures are related to the Euler-Lagrange equations and vari-
ational principles via the Legendre transformation is an essential ingredient
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of the story. Furthermore, in the infinite-dimensional case it is fairly well
understood how to deal rigorously with many of the functional analytic
difficulties that arise; see, for example, Chernoff and Marsden [1974] and
Marsden and Hughes [1983].

Exercises

1.1-1. Show by direct calculation that the classical Poisson bracket sat-
isfles the Jacobi identity. That is, if F' and K are both functions of the
2n variables (¢',¢%,...,q",p1,P2,. - - ,Pn) and we define

" [OF 8K OK OF
{F’K}E(a&a—pz -5 )

then the identity {L,{F,K}} + {K,{L,F}} + {F,{K,L}} = 0 holds.

1.2 The Rigid Body

It was already clear in the last century that certain mechanical systems
resist the canonical formalism outlined in §1.1. For example, to obtain a
Hamiltonian description for fluids, Clebsch [1857, 1859] found it necessary
to introduce certain nonphysical potentials.! We will discuss fluids in §1.4
below.

Euler’s Rigid-Body Equations. In the absence of external forces, the
Euler equations for the rotational dynamics of a rigid body about its cen-
ter of mass are usually written as follows, as we shall derive in detail in
Chapter 15:

LY = (I — I3)Q2,03,
Ly = (I3 — )38, (1.2.1)
Q3 = (I — L),

where Q = (Q1, g, 83) is the body angular velocity vector (the angular
velocity of the rigid body as seen from a frame fixed in the body) and
I,, I, I3 are constants depending on the shape and mass distribution of
the body—the principal moments of inertia of the rigid body.

Are equations (1.2.1) Lagrangian or Hamiltonian in any sense? Since
there is an odd number of equations, they obviously cannot be put in canon-
ical Hamiltonian form in the sense of equations (1.1.13).

1For a geometric account of Clebsch potentials and further references, see Marsden
and Weinstein [1983], Marsden, Ratiu, and Weinstein [1984a, 1984b], Cendra and Mars-
den {1987], and Cendra, Ibort, and Marsden {1987].
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A classical way to see the Lagrangian (or Hamiltonian) structure of the
rigid-body equations is to use a description of the orientation of the body
in terms of three Euler angles denoted by 6, , 1 and their velocities 8, ¢, ¢
(or conjugate momenta pg, p,, Py ), relative to which the equations are in
Euler-Lagrange (or canonical Hamiltonian) form. However, this procedure
requires using siz equations, while many questions are easier to study using
the three equations (1.2.1).

Lagrangian Form. To see the sense in which (1.2.1) are Lagrangian,
introduce the Lagrangian

1
L(Q) = (L9 + L,OF + 1505), (1.2.2)

which, as we will see in detail in Chapter 15, is the (rotational) kinetic
energy of the rigid body. Regarding IQ = (I;Q4, IoQ, I3Q3) as a vector,
write (1.2.1) as

d 0L OL
dto — a0
These equations appear explicitly in Lagrange [1788, Volume 2, p. 212]
and were generalized to arbitrary Lie algebras by Poincaré [1901b]. We will
discuss these general Euler—Poincaré equations in Chapter 13. We can
also write a variational principle for (1.2.3) that is analogous to that for

the Euler-Lagrange equations but is written directly in terms of 2. Namely,
(1.2.3) is equivalent to

x Q. (1.2.3)

b
6/‘Lﬁ=0, (1.2.4)

where variations of {0 are restricted to be of the form
N=+Qx3, (1.2.5)

where ¥ is a curve in R® that vanishes at the endpoints. This may be
proved in the same way as we proved that the variational principle (1.1.1)
is equivalent to the Euler-Lagrange equations (1.1.4); see Exercise 1.2-2.
In fact, later on, in Chapter 13, we shall see how to derive this variational
principle from the more “primitive” one (1.1.1).

Hamiltonian Form. If instead of variational principles we concentrate
on Poisson brackets and drop the requirement that they be in the canon-
ical form (1.1.17), then there is also a simple and beautiful Hamiltonian
structure for the rigid-body equations. To state it, introduce the angular
momenta

i=1,2,3, (1.2.6)
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so that the Euler equations become

_L-1I
II, = ol 113,
s 13 - I1
II; = o 15114, (1.2.7)
- _h—-1I
Ik =
3 1112 H1H21
that is,
II=1II x Q. (1.2.8)
Introduce the rigid-body Poisson bracket on functions of the II’s,
{F,G}{II) = ~II- (VF x VQG), (1.2.9)
and the Hamiltonian
1 /M2 12 112
H=>-(=t4y24 3 2
(1, 1) 120

One checks (Exercise 1.2-3) that Euler’s equations (1.2.7) are equivalent
to?

F ={F, H}. (1.2.11)

For any equation of the form (1.2.11), conservation of total angular mo-
mentum holds regardless of the Hamiltonian; indeed, with

1
C(m) = (15 + 113 + 1),

we have VC(II) = II, and so
dl1

” 2(n§ + 2 + 12) = {C, H}(IT) (1.2.12)
=—II-(VC x VH) (1.2.13)
=—II-(II x VH) =0. (1.2.14)

The same calculation shows that {C, F'} = 0 for any F. Functions such
as these that Poisson commute with every function are called Casimir
functions; they play an important role in the study of stability, as we
shall see later.’

2This simple result is implicit in many works, such as Arnold [1966a, 1969], and is
given explicitly in this form for the rigid body in Sudarshan and Mukunda [1974]. (Some
preliminary versions were given by Pauli [1953], Martin [1959], and Nambu [1973].) On
the other hand, the variational form (1.2.4) appears to be due to Poincaré [1901b] and
Hamel [1904], at least implicitly. It is given explicitly for fluids in Newcomb [1962] and
Bretherton [1970] and in the general case in Marsden and Scheurle [1993a, 1993b)].

3H. B. G. Casimir was a student of P. Ehrenfest and wrote a brilliant thesis on
the quantum mechanics of the rigid body, a problem that has not been adequately
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Exercises

¢ 1.2-1. Show by direct calculation that the rigid-body Poisson bracket
satisfies the Jacobi identity. That is, if F and K are both functions of
(11, I3, I13) and we define

{F,K}(Il) = —-1I1. (VF x VK),
then the identity {L,{F,K}} + {K,{L,F}}+ {F,{K,L}} = 0 holds.
o 1.2-2. Verify directly that the Euler equations for a rigid body are equiv-

alent to
6/Ldt =0

for variations of the form 62 = ¥ + @ x X, where ¥ vanishes at the
endpoints.

¢ 1.2-3. Verify directly that the Euler equations for a rigid body are equiv-
alent to the equations

d

—F={F,H

dt {F,H},

where {, } is the rigid-body Poisson bracket and H is the rigid-body Hamil-

tonian.

o 1.2-4.

(a) Show that the rotation group SO(3) can be identified with the Poin-
caré sphere, that is, the unit circle bundle of the two-sphere 52,
defined to be the set of unit tangent vectors to the two-sphere in R3.

(b) Using the known fact from basic topology that any (continuous) vec-
tor field on S? must vanish somewhere, show that SO(3) cannot be
written as % x S!.

1.3 Lie—Poisson Brackets,
Poisson Manifolds, Momentum Maps

The rigid-body variational principle and the rigid-body Poisson bracket
are special cases of general constructions associated to any Lie algebra

addressed in the detail that would be desirable, even today. Ehrenfest in turn wrote his
thesis under Boltzmann around 1900 on variational principles in fluid dynamics and was
one of the first to study fluids from this point of view in material, rather than Clebsch,
representation. Curiously, Ehrenfest used the Gauss—Hertz principle of least curvature
rather than the more elementary Hamilton principle. This is a seed for many important
ideas in this book.
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g, that is, a vector space together with a bilinear, antisymmetric bracket
[€, 7] satisfying Jacobi’s identity:

(&), <1+ (IS, €], m] + [, €1, €] =0 (1.3.1)

for all £,7,( € g. For example, the Lie algebra associated to the rotation
group is g = R3 with bracket [£,7] = & x 7, the ordinary vector cross
product.

The Euler-Poincaré Equations. The construction of a variational
principle on g replaces

N=2+QxXE by &=n+][n¢.

The resulting general equations on g, which we will study in detail in Chap-
ter 13, are called the Fuler—Poincaré equations. These equations are
valid for either finite- or infinite-dimensional Lie algebras. To state them in
the finite-dimensional case, we use the following notation. Choosing a basis
e1,...,er of g (so dim g = r), the structure constants Cgb are defined
by the equation

[ea, €6] = Z Cyeas (1.3.2)
d=1

where a,b run from 1 to r. If £ is an element of the Lie algebra, its com-
ponents relative to this basis are denoted by £° so that & = Y. _, £%,.
If el,... ,e" is the corresponding dual basis, then the components of the
differential of the Lagrangian L are the partial derivatives L/J¢%. Then
the Euler—Poincaré equations are

T

d 0L , OL
e = > Cadgg,f : (1.3.3)

a,b=1

The coordinate-free version reads
4oL _ .0
dtog "¢ o’
where adg : g — g is the linear map 7 — [¢,7)], and ad; : g* — g* is its
dual. For example, for L : R3 — R, the Euler-Poincaré equations become
d 8L OL
goa~on

which generalize the Euler equations for rigid-body motion. As we men-
tioned earlier, these equations were written down for a fairly general class
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of L by Lagrange [1788, Volume 2, equation A, p. 212], while it was Poincaré
[1901b] who generalized them to any Lie algebra.

The generalization of the rigid-body variational principle states that the
Euler-Poincaré equations are equivalent to

J/Ldt:() (1.3.4)

for all variations of the form 6§ = 7 + [£,7n] for some curve 7 in g that
vanishes at the endpoints.

The Lie-Poisson Equations. We can also generalize the rigid-body
Poisson bracket as follows: Let F,G be defined on the dual space g*. De-
noting elements of g* by p, let the functional derivative of F at i be
the unique element 6 F/u of g defined by

.1 OF
ti 2P+ 2800 = PG = (3 30 ). (135)
for all ou € g*, where (,) denotes the pairing between g* and g. This
definition (1.3.5) is consistent with the definition of §F/¢ given in (1.1.15)
when g and g* are chosen to be appropriate spaces of fields. Define the (&)
Lie—Poisson brackets by

(F.Gali) = (1|5, %J ). (1.36)

Using the coordinate notation introduced above, the () Lie-Poisson brack-
ets become

~ OF 0G
F,G =+ Cohtta— —, 1.3.7
{ b+ (u) m;d:l bld Orta Oty ( )

where 1 = pqe®.

Poisson Manifolds. The Lie-Poisson bracket and the canonical brackets
from the last section have four simple but crucial properties:

PB1 {F,G} is real bilinear in F and G.

PB2 {F,G}=-{G,F}, antisymmetry.
PB3 {F,G},H}+{{H F},G}+{{G,H},F} =0, Jacobi identity.
PB4 {FG,H}=F{G,H}+ {F H}G, Leibniz identity.

A manifold (that is, an n-dimensional “smooth surface”) P together
with a bracket operation on F(P), the space of smooth functions on P,
and satisfying properties PB1-PB4, is called a Poisson manifold. In
particular, g* is a Poisson manifold. In Chapter 10 we will study the general
concept of a Poisson manifold.
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For example, if we choose g = R3 with the bracket taken to be the cross
product [x,y] = x x y, and identify g* with g using the dot product on
R3 (so (IT,x) = II - x is the usual dot product), then the (—) Lie-Poisson
bracket becomes the rigid-body bracket.

Hamiltonian Vector Fields. On a Poisson manifold (P, {-,}), associ-
ated to any function H there is a vector field, denoted by X g, which has
the property that for any smooth function F': P — R we have the identity

(dF,Xy) =dF - Xy = {F,H},

where dF is the differential of F and dF - Xy denotes the derivative of
F in the direction Xy. We say that the vector field Xy is generated by
the function H, or that Xy is the Hamiltonian vector field associated
with H. We also define the associated dynamical system whose points z
in phase space evolve in time by the differential equation

2= Xp(2). (1.3.8)

This definition is consistent with the equations in Poisson bracket form
(1.1.16). The function H may have the interpretation of the energy of the
system, but of course the definition (1.3.8) makes sense for any function.
For canonical systems with the Poisson bracket given by (1.1.17), Xy is
given by the formula

; 0H OH
Xulghp)=|—,—5=1, 1.3.9
u(d',p:) (api 8q,) (1.3.9)
whereas for the rigid-body bracket given on R3 by (1.2.9),
Xp(I) =11 x VH(II). (1.3.10)

The general Lie-Poisson equations, determined by F' = {F, H}, read

or intrinsically,

fr = Fadjy,s, p- (1.3.11)

Reduction. There is an important feature of the rigid-body bracket that
also carries over to more general Lie algebras, namely, Lie-Poisson brackets
arise from canonical brackets on the cotangent bundle (phase space) T*G
associated with a Lie group G that has g as its associated Lie algebra. (The
general theory of Lie groups is presented in Chapter 9.) Specifically, there
is a general construction underlying the association

(0’ ‘Pavagvaapw) Lans (H1>H27H3) (1312)
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defined by
1 . .
1= m[(pw — py cos ) sin ) + pg sin § cos Y],
II; = _s_irll—é[(pw — py cos ) cos i) — pg sin fsin ), (1.3.13)
H3 = Dy-

This rigid-body map takes the canonical bracket in the variables (6, ¢, )
and their conjugate momenta (pg, p,, py) to the (—) Lie-Poisson bracket in
the following sense. If F' and K are functions of I1;, II;, II3, they determine
functions of (8, ¢, %, ps, Py, py) by substituting (1.3.13). Then a (tedious
but straightforward) exercise using the chain rule shows that

{Fv K}(—){Lie~Poisson} = {F, K}canonical- (1314)

We say that the map defined by (1.3.13) is a canonical map or a
Poisson map and that the (—) Lie-Poisson bracket has been obtained
from the canonical bracket by reduction.

For a rigid body free to rotate about is center of mass, G is the (proper)
rotation group SO(3), and the Euler angles and their conjugate momenta
are coordinates for 7*G. The choice of T*G as the primitive phase space is
made according to the classical procedures of mechanics: The configuration
space SO(3) is chosen, since each element A € SO(3) describes the orien-
tation of the rigid body relative to a reference configuration, that is, the
rotation A maps the reference configuration to the current configuration.
For the description using Lagrangian mechanics, one-forms the velocity—
phase space T SO(3) with coordinates (0,<p,¢,9,¢, w) The Hamiltonian
description is obtained as in §1.1 by using the Legendre transform that
maps TG to T*G.

The passage from T*G to the space of II's (body angular momentum
space) given by (1.3.13) turns out to be determined by left translation on
the group. This mapping is an example of a momentum map, that is, a
mapping whose components are the “Noether quantities” associated with
a symmetry group. That the map (1.3.13) is a Poisson (canonical) map
(see equation (1.3.14)) is a general fact about momentum maps proved in
§12.6. To get to space coordinates one would use right translations and the
(+) bracket. This is what is done to get the standard description of fluid
dynamics.

Momentum Maps and Coadjoint Orbits. From the general rigid-
body equations, IT = Il x VH, we see that

d 2
E{HHH =0.

In other words, Lie-Poisson systems on R3 conserve the total angular mo-
menta, that is, they leave the spheres in Il-space invariant. The gener-
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alization of these objects associated to arbitrary Lie algebras are called
coadjoint orbits.

Coadjoint orbits are submanifolds of g* with the property that any Lie-
Poisson system F' = {F, H} leaves them invariant. We shall also see how
these spaces are Poisson manifolds in their own right and are related to the
right (4) or left (—) invariance of the system regarded on T*G, and the
corresponding conserved Noether quantities.

On a general Poisson manifold (P, {-,}), the definition of a momentum
map is as follows. We assume that a Lie group G with Lie algebra g acts on
P by canonical transformations. As we shall review later (see Chapter 9),
the infinitesimal way of specifying the action is to associate to each Lie
algebra element ¢ € g a vector field £p on P. A momentum map is a
map J : P — g* with the property that for every £ € g, the function (J,¢)
(the pairing of the g*-valued function J with the vector £) generates the
vector field £p; that is,

Xae =¢p.

As we shall see later, this definition generalizes the usual notions of linear
and angular momentum. The rigid body shows that the notion has much
wider interest. A fundamental fact about momentum maps is that if the
Hamiltonian H is invariant under the action of the group G, then the
vector-valued function J is a constant of the motion for the dynamics of
the Hamiltonian vector field X g associated to H.

One of the important notions related to momentum maps is that of
infinitesimal equivariance, or the classical commutation relations,
which state that

{<‘]’§>a<‘]an>} = <J’ [&ﬂ]) (1315)

for all Lie algebra elements ¢ and 7. Relations like this are well known
for the angular momentum and can be directly checked using the Lie al-
gebra of the rotation group. Later, in Chapter 12, we shall see that the
relations (1.3.15) hold for a large important class of momentum maps that
are given by computable formulas. Remarkably, it is the condition (1.3.15)
that is exactly what is needed to prove that J is, in fact, a Poisson map.
It is via this route that one gets an intellectually satisfying generalization
of the fact that the map defined by equations (1.3.13) is a Poisson map;
that is, equation (1.3.14) holds.

Some History. The Lie-Poisson bracket was discovered by Sophus Lie
(Lie [1890, Vol. II, p. 237]). However, Lie’s bracket and his related work was
not given much attention until the work of Kirillov, Kostant, and Souriau
(and others) revived it in the mid-1960s. Meanwhile, it was noticed by Pauli
and Martin around 1950 that the rigid-body equations are in Hamiltonian
form using the rigid-body bracket, but they were apparently unaware of the
underlying Lie theory. Meanwhile, the generalization of the Euler equations
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to any Lie algebra g by Poincaré [1901b] (and picked up by Hamel [1904])
proceeded as well, but without much contact with Lie’s work until recently.
The symplectic structure on coadjoint orbits also has a complicated history
and itself goes back to Lie (Lie [1890, Ch. 20]).

The general notion of a Poisson manifold also goes back to Lie. However,
the four defining properties of the Poisson bracket have been isolated by
many authors such as Dirac [1964, p. 10]. The term “Poisson manifold” was
coined by Lichnerowicz [1977]. We shall give more historical information
on Poisson manifolds in §10.3.

The notion of the momentum map (the English translation of the French
words “application moment”) also has roots going back to the work of Lie.*

Momentum maps have found an astounding array of applications be-
yond those already mentioned. For instance, they are used in the study of
the space of all solutions of a relativistic field theory (see Arms, Marsden,
and Moncrief [1982]) and in the study of singularities in algebraic geom-
etry (see Atiyah [1983] and Kirwan [1984]). They also enter into convex
analysis in many interesting ways, such as the Schur-Horn theorem (Schur
[1923], Horn [1954]) and its generalizations (Kostant [1973]) and in the
theory of integrable systems (Bloch, Brockett, and Ratiu [1990, 1992] and
Bloch, Flaschka, and Ratiu {1990, 1993]). It turns out that the image of
the momentum map has remarkable convexity properties: see Atiyah [1982],
Guillemin and Sternberg {1982, 1984], Kirwan {1984], Delzant [1988], and
Lu and Ratiu {1991].

Exercises

¢ 1.3-1. A linear operator D on the space of smooth functions on R” is
called a derivation if it satisfies the Leibniz identity: D(FG) = (DF)G +
F(DG). Accept the fact from the theory of manifolds (see Chapter 4) that
in local coordinates the expression of DF takes the form

. . 8F

DF = * -
(PP@) = Yo' @) 550
for some smooth functions al,... ,a™.

(a) Use the fact just stated to prove that for any bilinear operation {, }
on F(R™) which is a derivation in each of its arguments, we have

" . L, 0F 0G
= i gy I8 Y-
{F,G} E {=*, 5 5

4,j=1

4Many authors use the words “moment map” for what we call the “momentum map.”
In English, unlike French, one does not use the phrases “linear moment” or “angular
moment of a particle,” and correspondingly, we prefer to use “momentum map.” We
shall give some comments on the history of momentum maps in §11.2.
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(b) Show that the Jacobi identity holds for any operation {, } on F(R")
as in (a), if and only if it holds for the coordinate functions.

o 1.3-2. Define, for a fixed function f: R3 — R,
{F,K}; =Vf-(VF x VK).
(a) Show that this is a Poisson bracket.
(b) Locate the bracket in part (a) in Nambu [1973].
o 1.3-3. Verify directly that (1.3.13) defines a Poisson map.
o 1.3-4. Show that a bracket satisfying the Leibniz identity also satisfies

F{K,L}~ {FK,L} = {F,K}L - {F,KL}.

1.4 The Heavy Top

The equations of motion for a rigid body with a fixed point in a gravita-
tional field provide another interesting example of a system that is Hamil-
tonian relative to a Lie-Poisson bracket. See Figure 1.4.1.

M = total mass

g = gravitational
acceleration

Q = body angular
velocity of top

center of mass

[ = distance from fixed
point to center of mass

FIGURE 1.4.1. Heavy top

The underlying Lie algebra consists of the algebra of infinitesimal Eu-
clidean motions in R3. (These do not arise as Euclidean motions of the
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body, since the body has a fixed point.) As we shall see, there is a close
parallel with the Poisson structure for compressible fluids.

The basic phase space we start with is again 7™ SO(3), coordinatized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form; however, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot
be written entirely in terms of the body angular momentum II. One also
needs to keep track of I', the “direction of gravity” as seen from the body.
This is defined by I' = A1k, where k points upward and A is the element
of SO(3) describing the current configuration of the body. The equations
of motion are

I - I3

I, = Ll M0l + Mgl(T?x® — T3x?),
1, = 133}:1 1L + Mgl(T%! — T'?), (14.2)
mzﬁ&fmm+MMWf—W%%
and
I'=TxQ, (1.4.2)

where M is the body’s mass, g is the acceleration of gravity, x is the body
fixed unit vector on the line segment connecting the fixed point with the
body’s center of mass, and [ is the length of this segment. See Figure 1.4.1.

The Lie algebra of the Euclidean group is se(3) = R3 x R? with the Lie
bracket

(€, ), (m,v)] = (§xn,€xv—mxu) (1.4.3)

We identify the dual space with pairs (II, I'); the corresponding (—) Lie-
Poisson bracket, called the heavy top bracket, is

{F,G}(IL,T) = -II- (VpF x VnG)
- (VnF x VrG — VG x VrF). (1.4.4)
The above equations for II, T’ can be checked to be equivalent to
F = {FH}, (1.4.5)
where the heavy top Hamiltonian

1 /1?2 13 112
HILT) = - (L + 224+ 23 ) 4 MgIT' - x (1.4.6)
2\ I; I, I3

is the total energy of the body (Sudarshan and Mukunda [1974]).
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The Lie algebra of the Fuclidean group has a structure that is a special
case of what is called a semidirect product. Here it is the product of the
group of rotations with the translation group. It turns out that semidirect
products occur under rather general circumstances when the symmetry in
T*G is broken. The general theory for semidirect products was developed
by Sudarshan and Mukunda [1974], Ratiu {1980, 1981, 1982, Guillemin
and Sternberg [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer
[1983], Marsden, Ratiu, and Weinstein [1984a, 1984b|, and Holm and Ku-
perschmidt [1983]. The Lagrangian approach to this and related problems
is given in Holm, Marsden, and Ratiu [1998a).

Exercises

1.4-1. Verify that F = {F, H} is equivalent to the heavy top equations
using the heavy top Hamiltonian and bracket.

1.4-2. Work out the Euler-Poincaré equations on se(3). Show that with
1
L(Q,T) = 5 (10} + 105 + [503) - MgiT -,

the Euler-Poincaré equations are not the heavy top equations.

1.5 Incompressible Fluids

Arnold [1966a, 1969] showed that the Euler equations for an incompress-
ible fluid could be given a Lagrangian and Hamiltonian description similar
to that for the rigid body. His approach® has the appealing feature that
one sets things up just the way Lagrange and Hamilton would have done:
One begins with a configuration space ) and forms a Lagrangian L on
the velocity phase space T'Q) and then H on the momentum phase space
T*Q, just as was outlined in §1.1. Thus, one automatically has variational
principles, etc. For ideal fluids, @ = G is the group Diff,(2) of volume-
preserving transformations of the fluid container (a region Q in R? or R3,
or a Riemannian manifold in general, possibly with boundary). Group mul-
tiplication in G is composition.

Kinematics of a Fluid. The reason we select G = Diff, () as the
configuration space is similar to that for the rigid body; namely, each ¢
in G is a mapping of ) to Q that takes a reference point X € §) to a
current point z = ¢(X) € Q; thus, knowing ¢ tells us where each particle

5Arnold’s approach is consistent with what appears in the thesis of Ehrenfest from
around 1904; see Klein [1970]. However, Ehrenfest bases his principles on the more
sophisticated curvature principles of Gauss and Hertz.
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of fluid goes and hence gives us the fluid configuration. We ask that ¢
be a diffeomorphism to exclude discontinuities, cavitation, and fluid inter-
penetration, and we ask that ¢ be volume-preserving to correspond to the
assumption of incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which
we write as £ = ¢(X,t). The material velocity field is defined by

_ Op(X,t)
V(X7 t) - T’
and the spatial velocity field is defined by v(z,t) = V(X,t), where z

and X are related by z = ¢(X,t). If we suppress “t” and write ¢ for V,
note that

v=poypl, e, vi=Viou;?, (1.5.1)

where ¢i(z) = ¢(X,t). See Figure 1.5.1.

traiectorv of fluid particle
trajectory of fluid particle

—
v(x,0)

FIGURE 1.5.1. The trajectory and velocity of a fluid particle.

We can regard (1.5.1) as a map from the space of (¢, ¢) (material or La-
grangian description) to the space of v’s (spatial or Eulerian description).
Like the rigid body, the material to spatial map (1.5.1) takes the canonical
bracket to a Lie-Poisson bracket; one of our goals is to understand this re-
duction. Notice that if we replace ¢ by @ on for a fixed (time-independent)
n € Diffy,1(2), then ¢ o ! is independent of n; this reflects the right
invariance of the Eulerian description (v is invariant under composition of
¢ by 1 on the right). This is also called the particle relabeling symme-
try of fluid dynamics. The spaces TG and T*G represent the Lagrangian
(material) description, and we pass to the Eulerian (spatial) description by
right translations and use the (+) Lie-Poisson bracket. One of the things we
want to do later is to better understand the reason for the switch between
right and left in going from the rigid body to fluids.
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Dynamics of a Fluid. The Euler equations for an ideal, incompress-
ible, homogeneous fluid moving in the region € are

A +(v-V)v=-Vp (1.5.2)
ot

with the constraint div v = 0 and the boundary condition that v is tangent
to the boundary, 99.

The pressure p is determined implicitly by the divergence-free (volume-
preserving) constraint div v = 0. (See Chorin and Marsden [1993] for basic
information on the derivation of Euler’s equations.) The associated Lie al-
gebra. g is the space of all divergence-free vector fields tangent to the bound-
ary. This Lie algebra is endowed with the negative Jacobi-Lie bracket
of vector fields given by

n . ‘
. . Ovt . Quw’
i gV
[v,w]}, = ; (w 507 ¥ 8xj> . (1.5.3)
(The subscript L on [, -] refers to the fact that it is the left Lie algebra

bracket on g. The most common convention for the Jacobi-Lie bracket of
vector fields, also the one we adopt, has the opposite sign.} We identify g
and ¢* using the pairing

(v,w) =/§;v-wd3x. (1.5.4)

Hamiltonian Structure. Introduce the (+) Lie-Poisson bracket, called
the ideal fluid bracket, on functions of v by

OF 6G| 4
Ry = [v- |5 55| (155
where §F/év is defined by
.1 0F\ 5
lim Z[F(v +dv) - F(v)] = /9 (6v - 5_v) &z, (156)
With the energy function chosen to be the kinetic energy,
Hv) = / Iv|2 dz, (1.5.7)
2 Ja

one can verify that the Euler equations (1.5.2) are equivalent to the Poisson
bracket equations

F={F H} (1.5.8)
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for all functions F on g. To see this, it is convenient to use the orthogonal
decomposition w = Pw + Vp of a vector field w into a divergence-free part
Pw in g and a gradient. The Euler equations can be written

ov
5 +P(v-Vv)=0. (1.5.9)

One can express the Hamiltonian structure in terms of the vorticity as a
basic dynamic variable and show that the preservation of coadjoint orbits
amounts to Kelvin’s circulation theorem. Marsden and Weinstein [1983]
show that the Hamiltonian structure in terms of Clebsch potentials fits
naturally into this Lie-Poisson scheme, and that Kirchhoff’s Hamiltonian
description of point vortex dynamics, vortex filaments, and vortex patches
can be derived in a natural way from the Hamiltonian structure described
above.

Lagrangian Structure. The general framework of the Euler-Poincaré
and the Lie-Poisson equations gives other insights as well. For example,
this general theory shows that the Euler equations are derivable from the

“variational principle”
b
5/ /—Hv||2d3x=0,
a JQ 2

which is to hold for all variations dv of the form
dv=1u+[v,ujr

(sometimes called Lin constraints), where u is a vector field (represent-
ing the infinitesimal particle displacement) vanishing at the temporal end-
points.®

There are important functional-analytic differences between working in
material representation (that is, on T*G) and in Eulerian representation
(that is, on g*) that are important for proving existence and unigqueness
theorems, theorems on the limit of zero viscosity, and the convergence of
numerical algorithms (see Ebin and Marsden [1970], Marsden, Ebin, and
Fischer [1972], and Chorin, Hughes, Marsden, and McCracken [1978]). Fi-
nally, we note that for two-dimensional flow, a collection of Casimir func-
tions is given by

C(w)———/ﬂ@(w(x))dza: (1.5.10)

for & : R — R any (smooth) function, where wk = V x v is the vorticity.
For three-dimensional flow, (1.5.10) is no longer a Casimir.

8As mentioned earlier, this form of the variational (strictly speaking, a Lagrange—
d’Alembert type) principle is due to Newcomb [1962]; see also Bretherton [1970]. For
the case of general Lie algebras, it is due to Marsden and Scheurle [1993b]; see also
Cendra and Marsden [1987].
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Exercises

1.5-1. Show that any divergence-free vector field X on R? can be written
globally as a curl of another vector field and, away from equilibrium points,
can locally be written as

X =VfxVg,

where f and g are real-valued functions on R3. Assume that this (so-called
Clebsch—Monge) representation also holds globally. Show that the particles
of fluid, which follow trajectories satisfying © = X (z), are trajectories of a
Hamiltonian system with a bracket in the form of Exercise 1.3-2.

1.6 The Maxwell-Vlasov System

Plasma physics provides another beautiful application area for the tech-
niques discussed in the preceding sections. We shall briefly indicate these
in this section. The period 1970-1980 saw the development of noncanonical
Hamiltonian structures for the Korteweg—de Vries (KdV) equation (due to
Gardner, Kruskal, Miura, and others; see Gardner [1971]) and other soli-
ton equations. This quickly became entangled with the attempts to un-
derstand integrability of Hamiltonian systems and the development of the
algebraic approach; see, for example, Gelfand and Dorfman [1979], Manin
[1979] and references therein. More recently, these approaches have come to-
gether again; see, for instance, Reyman and Semenov-Tian-Shansky [1990],
Moser and Veselov {1991]. KdV type models are usually derived from or
are approximations to more fundamental fluid models, and it seems fair to
say that the reasons for their complete integrability are not yet completely
understood.

Some History. For fluid and plasma systems, some of the key early
works on Poisson bracket structures were Dashen and Sharp [1968], Goldin
[1971], Iwiinski and Turski [1976], Dzyaloshinskii and Volovick [1980}, Mor-
rison and Greene [1980], and Morrison [1980]. In Sudarshan and Mukunda
[1974], Guillemin and Sternberg [1982], and Ratiu {1980, 1982}, a general
theory for Lie-Poisson structures for special kinds of Lie algebras, called
semidirect products, was begun. This was quickly recognized (see, for ex-
ample, Marsden [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer
[1983], Holm and Kuperschmidt [1983], and Marsden, Ratiu, and Weinstein
[1984a, 1984b]) to be relevant to the brackets for compressible flow; see §1.7
below.

Derivation of Poisson Structures. A rational scheme for systemati-
cally deriving brackets is needed since for one thing, a direct verification
of Jacobi’s identity can be inefficient and time-consuming. Here we out-
line a derivation of the Maxwell-Vlasov bracket by Marsden and Weinstein
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[1982]. The method is similar to Arnold’s, namely by performing a reduc-
tion starting with:

(i) canonical brackets in a material representation for the plasma; and
(ii) a potential representation for the electromagnetic field.

One then identifies the symmetry group and carries out reduction by this
group in a manner similar to that we described for Lie-Poisson systems.

For plasmas, the physically correct material description is actually slightly
more complicated; we refer to Cendra, Holm, Hoyle, and Marsden [1998]
for a full account.

Parallel developments can be given for many other brackets, such as the
charged fluid bracket by Spencer and Kaufman [1982]. Another method,
based primarily on Clebsch potentials, was developed in a series of papers
by Holm and Kupershmidt (for example, Holm and Kuperschmidt [1983])
and applied to a number of interesting systems, including superfluids and
superconductors. They also pointed out that semidirect products are ap-
propriate for the MHD bracket of Morrison and Greene [1980].

The Maxwell-Vlasov System. The Maxwell-Vlasov equations for a
collisionless plasma are the fundamental equations in plasma physics.” In
Euclidean space, the basic dynamical variables are

f(x,v,t} : the plasma particle number density per phase space;
volume d3z d3v;
E(x,t) : the electric field;
B(x,t) : the magnetic field.

The equations for a collisionless plasma for the case of a single species
of particles with mass m and charge e are

af | df , e 1 of _
at"‘V'a‘{'E(E“F*C-VXB)-b—V--—O,

T =curlB—%jf, (1.6.1)

The current defined by f is given by

Jr =e/vf(x,v,t)d3v

"See, for example, Clemmow and Dougherty [1959], van Kampen and Felderhof [1967],
Krall and Trivelpiece [1973], Davidson [1972], Ichimaru {1973], and Chen [1974].
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and the charge density by
ps = e/f(x,v,t) dv.

Also, 8f/0x and 0f/0v denote the gradients of f with respect to x and
v, respectively, and c is the speed of light. The evolution equation for f
results from the Lorentz force law and standard transport assumptions.
The remaining equations are the standard Maxwell equations with charge
density ps and current j; produced by the plasma.

Two limiting cases will aid our discussions. First, if the plasma is con-
strained to be static, that is, f is concentrated at v = 0 and ¢-independent,
we get the charge-driven Mazwell equations:

16B

25{ = —curlE,

19E _ curl B, (1.6.2)
c Ot

divE=p, and divB=0.

Second, if we let ¢ — o0, electrodynamics becomes electrostatics, and we
get the Poisson—Vlasov equation

of . 9F _ed¢s Of (1.6.3)

where -V?p; = py. In this context, the name “Poisson-Vlasov” seems
quite appropriate. The equation is, however, formally the same as the earlier
Jeans [1919)] equation of stellar dynamics. Henon [1982] has proposed calling
it the “collisionless Boltzmann equation.”

Maxwell’s Equations. For simplicity, we let m = e = ¢ = 1. As the
basic configuration space we take the space A of vector potentials A on R3
(for the Yang—Mills equations this is generalized to the space of connections
on a principal bundle over space). The corresponding phase space T*A is
identified with the set of pairs (A,Y), where Y is also a vector field on R3.
The canonical Poisson bracket is used on T* A :

_ [ ([SF G SF G\ 4

The electric field is E = —Y, and the magnetic field is B = curl A.
With the Hamiltonian

HAY) = 5 [ (B +BI) &, (165)

Hamilton’s canonical field equations (1.1.14) are checked to give the equa-
tions for OE/8t and A /dt, which imply the vacuum Maxwell’s equations.
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Alternatively, one can begin with T'4 and the Lagrangian
. 1 .
L(A,A) = / ({|A|[2 — IV x A||2) &3z (1.6.6)

and use the Euler-Lagrange equations and variational principles.

It is of interest to incorporate the equation div E = p and, correspond-
ingly, to use directly the field strengths E and B, rather than E and A. To
do this, we introduce the gauge group G, the additive group of real-valued
functions v : R3 — R. Each 1 € G transforms the fields according to the
rule

(A,E) = (A + V3, E). (1.6.7)

Each such transformation leaves the Hamiltonian H invariant and is a
canonical transformation, that is, it leaves Poisson brackets intact. In this
situation, as above, there will be a corresponding conserved quantity, or
momentum map, in the same sense as in §1.3. As mentioned there, some
simple general formulas for computing momentum maps will be studied in
detail in Chapter 12. For the action (1.6.7) of G on T*A, the associated
momentum map is

J(A,Y) = div E, (1.6.8)

so we recover the fact that div E is preserved by Maxwell’s equations (this
is easy to verify directly using the identity div curl = 0). Thus we see that
we can incorporate the equation div E = p by restricting our attention to
the set J=!(p). The theory of reduction is a general process whereby one
reduces the dimension of a phase space by exploiting conserved quantities
and symmetry groups. In the present case, the reduced space is J=1(p)/G,
which is identified with Max,, the space of E’s and B’s satisfying divE = p
and divB = 0.

The space Max,, inherits a Poisson structure as follows. If F' and K are
functions on Max,, we substitute E = —Y and B = V x A to express F
and K as functionals of (A,Y). Then we compute the canonical brackets
on T* A and express the result in terms of E and B. Carrying this out using
the chain rule gives

OF 0K 6K O0F\ 4
{F,K} = / (Eﬁ -curlsﬁ ~5E -curla—B) dz, (1.6.9)

where 6F/0E and 0F/dB are vector fields, with 6F/6B divergence-free.
These are defined in the usual way; for example,

.1 oF 3
;ILI%) E[F(E +¢dE,B) - F(E,B)] = SE -OE d°z. (1.6.10)
This bracket makes Max, into a Poisson manifold and the map (A,Y) —
(=Y,V x A) into a Poisson map. The bracket (1.6.9) was discovered (by
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a different procedure) by Pauli [1933] and Born and Infeld [1935]. We refer
to (1.6.9) as the Pauli—-Born—Infeld bracket or the Mazwell-Poisson
bracket for Maxwell’s equations.

With the energy H given by (1.6.5) regarded as a function of E and B,
Hamilton’s equations in bracket form F' = {F, H} on Max, capture the full
set of Maxwell’s equations (with external charge density p).

The Poisson—Vlasov Equation. The papers Iwiinski and Turski [1976]
and Morrison [1980] showed that the Poisson-Vlasov equations form a
Hamiltonian system with

H(f) = %/HV|I2f(x,V,t)d3xd3v+%/||V<pf||2 3z (1.6.11)

and the Poisson—Vlasov bracket

{F,G} = /f {‘;—? %}xv d*z d3v, (1.6.12)
where {, }xv is the canonical bracket on (x,v)-space. As was observed in
Gibbons [1981] and Marsden and Weinstein [1982], this is the (+) Lie-
Poisson bracket associated with the Lie algebra g of functions of (x,v)
with Lie bracket the canonical Poisson bracket.

According to the general theory, this Lie—Poisson structure is obtained
by reduction from canonical brackets on the cotangent bundle of the group
underlying g, just as was the case for the rigid body and incompressible
fluids. This time, the group G = Diff,, is the group of canonical transfor-
mations of (x, v)-space. The Poisson-Vlasov equations can equally well be
written in canonical form on T*G. This is related to the Lagrangian and
Hamiltonian description of a plasma that goes back to Low [1958], Katz
[1961], and Lundgren [1963). Thus, one can start with the particle descrip-
tion with canonical brackets and, through reduction, derive the brackets
here. See Cendra, Holm, Hoyle, and Marsden [1998] for exactly how this
goes. There are other approaches to the Hamiltonian formulation using ana-
logues of Clebsch potentials; see, for instance, Su [1961], Zakharov [1971],
and Gibbons, Holm, and Kuperschmidt [1982].

The Poisson—Vlaslov to Compressible Flow Map. Before going on
to the Maxwell-Vlasov equations, we point out a remarkable connection be-
tween the Poisson—Vlasov bracket (1.6.12) and the bracket for compressible
flow.

The Euler equations for compressible flow in a region {2 in R3 are

p (QY + (v V)v> =-Vp (1.6.13)
ot
and
8p ..
— +div(pv) =0, (1.6.14)

ot
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with the boundary condition
v tangent to 0.

Here the pressure p is determined from an internal energy function per
unit mass given by p = p?w’(p), where w = w(p) is the constitutive relation.
(We ignore entropy for the present discussion—its inclusion is straightfor-
ward to deal with.) The compressible fluid Hamiltonian is

1
H= —/pHvH2d3w+/pw(p) d3z. (1.6.15)
2 Ja Q

The relevant Poisson bracket is most easily expressed if we use the mo-
mentum density M = pv and density p as our basic variables. The com-
pressible fluid bracket is

_ 6G o6F 6F 0G| 4
{F’G}”/QM [(51\/1 v) M (JM 'V) 6M]d *
0G 0F 6F 0G| ;3
L[58 W) E () o

Notice the similarities in structure between the Poisson bracket (1.6.16)
for compressible flow and (1.4.4). For compressible flow it is the density
that prevents a full Diff(Q) invariance; the Hamiltonian is invariant only
under those diffeomorphisms that preserve the density.

The space of (M, p)’s can be shown to be the dual of a semidirect product
Lie algebra and it can also be shown that the preceding bracket is the as-
sociated (+) Lie-Poisson bracket (see Marsden, Weinstein, Ratiu, Schmid,
and Spencer [1983], Holm and Kuperschmidt [1983], and Marsden, Ratiu,
and Weinstein [1984a, 1984b}).

The relationship with the Poisson—Vlasov bracket is this: Suppressing
the time variable, define the map f — (M, p) by

M(x)z/nvf(x,v)d% and p(x)=/ﬂf(x,v)d3v. (1.6.17)

Remarkably, this plasma to fluid map is a Poisson map taking the Poisson—
Vlasov bracket (1.6.12) to the compressible fluid bracket (1.6.16). In fact,
this map is a momentum map (Marsden, Weinstein, Ratiu, Schmid, and
Spencer [1983]). The Poisson-Vlasov Hamiltonian is not invariant under
the associated group action, however.

The Maxwell-Vlasov Bracket. A bracket for the Maxwell-Vlasov
equations was given by Iwifnski and Turski [1976] and Morrison [1980].
Marsden and Weinstein [1982] used systematic procedures involving reduc-
tion and momentum maps to derive (and correct) the bracket starting with
a canonical bracket.
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The procedure starts with the material description® of the plasma as
the cotangent bundle of the group Diff .., of canonical transformations of
(x, p)-space and the space T*A for Maxwell’s equations. We justify this
by noticing that the motion of a charged particle in a fixed (but possibly
time-dependent) electromagnetic field via the Lorentz force law defines a
(time-dependent) canonical transformation. On T* Diff.,,, xT*A we put
the sum of the two canonical brackets, and then we reduce. First we reduce
by Diff.,,, which acts on 7™ Diff .., by right translation but does not act on
T*A. Thus we end up with densities fyom(X,P,t) on position-momentum
space and with the space T*A used for the Maxwell equations. On this
space we get the (+) Lie-Poisson bracket, plus the canonical bracket on
T*A. Recalling that p is related to v and A by p = v+ A, we let the
gauge group G of electromagnetism act on this space by

(fmom (%, P, 1), A(x,2), Y (x, 1)) =
(fmom (%, P+ Vip(x),8), A(x, ) + Vipo(2), Y (x,1)). (1.6.18)

The momentum map associated with this action is computed to be
J(fnom, AY) = div E - / fmom (X, P) &°p. (1.6.19)

This corresponds to div E — pf if we write f(x,v,t) = frmom(X,p —
A t). This reduced space J~!(0)/G can be identified with the space MV
of triples (f, E, B) satisfying div E = p; and div B = 0. The bracket on
MYV is computed by the same procedure as for Maxwell’s equations. These
computations yield the following Mazwell-Vlasov bracket:

{F,K}(f,E,B)z/f{%—,%} d3z d®v

+/5F“5K5_1g AV
3E 5B ~3E 5B

(S O S OEY (1:6:20
SE dvaf OE ovor)t Y
0 6F 90K\ 5 4
+/fB (a 5F " ov 5f)d zd'
With the Mazwell-Viasov Hamiltonian
HU,EB) = 3 [ IMPfev,) o do
+3 [UBG@OP + B OB P, (620

8 As shown in Cendra, Holm, Hoyle, and Marsden [1998], the correct physical descrip-
tion of the material representation of a plasma is a bit more complicated than simply
Diffcan; however the end result is the same.
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the Maxwell-Vlasov equations take the Hamiltonian form
F={FH} (1.6.22)

on the Poisson manifold MV.

Exercises

1.6-1. Verify that one obtains the Maxwell equations from the Maxwell-
Poisson bracket.

1.6-2. Verify that the action (1.6.7) has the momentum map J(A,Y) =
div E in the sense given in §1.3.

1.7 Nonlinear Stability

There are various meanings that can be given to the word “stability.” In-
tuitively, stability means that small disturbances do not grow large as time
passes. Being more precise about this notion is not just capricious math-
ematical nitpicking; indeed, different interpretations of the word stability
can lead to different stability criteria. Examples like the double spherical
pendulum and stratified shear flows, which are sometimes used to model
oceanographic phenomena show that one can get different criteria if one
uses linearized or nonlinear analyses (see Marsden and Scheurle [1993a] and
Abarbanel, Holm, Marsden, and Ratiu [1986]).

Some History. The history of stability theory in mechanics is very com-
plex, but certainly has its roots in the work of Riemann [1860, 1861],
Routh [1877], Thomson and Tait [1879], Poincaré [1885, 1892], and Lia-
punov [1892, 1897].

Since these early references, the literature has become too vast to even
survey roughly. We do mention, however, that a guide to the large Soviet
literature may be found in Mikhailov and Parton [1990].

The basis of the nonlinear stability method discussed below was origi-
nally given by Arnold [1965b, 1966b] and applied to two-dimensional ideal
fluid flow, substantially augmenting the pioneering work of Rayleigh [1880].
Related methods were also found in the plasma physics literature, notably
by Newcomb [1958], Fowler [1963], and Rosenbluth [1964]. However, these
works did not provide a general setting or key convexity estimates needed to
deal with the nonlinear nature of the problem. In retrospect, we may view
other stability results, such as the stability of solitons in the Korteweg—de
Vries (KdV) equation (Benjamin [1972] and Bona [1975]) as being instances
of the same method used by Arnold. A crucial part of the method exploits
the fact that the basic equations of nondissipative fluid and plasma dynam-
ics are Hamiltonian in character. We shall explain below how the Hamilto-
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nian structures discussed in the previous sections are used in the stability
analysis.

Dynamics and Stability. Stability is a dynamical concept. To explain
it, we shall use some fundamental notions from the theory of dynamical
systems (see, for example, Hirsch and Smale [1974] and Guckenheimer and
Holmes [1983]). The laws of dynamics are usually presented as equations
of motion, which we write in the abstract form of a dynamical system:

o= X(u). (1.7.1)

Here, u is a variable describing the state of the system under study, X
is a system-specific function of u, and u = du/dt, where t is time. The
set of all allowed ’s forms the state, or phase space P. We usually view
X as a vector field on P. For a classical mechanical system, u is often a
2n-tuple (¢*,...,q",p1,-.. ,Pn) of positions and momenta, and for fluids,
u is a velocity field in physical space.

As time evolves, the state of the system changes; the state follows a curve
u(t) in P. The trajectory u(t) is assumed to be uniquely determined if its
initial condition ug = u(0) is specified. An equilibrium state is a state u,
such that X (ue) = 0. The unique trajectory starting at u. is u. itself; that
is, u. does not move in time.

The language of dynamics has been an extraordinarily useful tool in the
physical and biological sciences, especially during the last few decades. The
study of systems that develop spontaneous oscillations through a mecha-
nism called the Poincaré—Andronov—-Hopf bifurcation is an example of such
a tool (see Marsden and McCracken [1976], Carr [1981], and Chow and Hale
[1982], for example). More recently, the concept of “chaotic dynamics” has
sparked a resurgence of interest in dynamical systems. This occurs when
dynamical systems possess trajectories that are so complex that they be-
have as if they were, in some sense, random. Some believe that the theory
of turbulence will use such notions in its future development. We are not
concerned with chaos directly, although it plays a role in some of what
follows. In particular, we remark that in the definition of stability below,
stability does not preclude chaos. In other words, the trajectories near a
stable point can still be temporally very complex; stability just prevents
them from moving very far from equilibrium.

To define stability, we choose a measure of nearness in P using a “metric”
d. For two points u; and u, in P, d determines a positive number denoted by
d(uy, ug), the distance from u; to uy. In the course of a stability analysis, it
is necessary to specify, or construct, a metric appropriate for the problem
at hand. In this setting, one says that an equilibrium state u. is stable
when trajectories that start near u. remain near u, for all ¢ > 0. In precise
terms, given any number € > 0, there is § > 0 such that if d(up, u.) < 6,
then d(u(t), ue) < e for allt > 0. Figure 1.7.1 shows examples of stable and
unstable equilibria for dynamical systems whose state space is the plane.



1.7 Nonlinear Stability 31

>) 21N (G
+ .
NG

(a) (® () @

FIGURE 1.7.1. The equilibrium point (a) is unstable because the trajectory wu(t)
does not remain near .. Similarly, (b) is unstable, since most trajectories (even-
tually) move away from u.. The equilibria in (c) and (d) are stable because all
trajectories near u. stay near ue.

Fluids can be stable relative to one distance measure and, simultaneously,
unstable relative to another. This seeming pathology actually reflects im-
portant physical processes; see Wan and Pulvirente [1984].

Rigid-Body Stability. A physical example illustrating the definition of
stability is the motion of a free rigid body. This system can be simulated
by tossing a book, held shut with a rubber band, into the air. It rotates
stably when spun about its longest and shortest axes, but unstably when
spun about the middle axis (Figure 1.7.2). One possible choice of a distance
measure defining stability in this example is a metric in body angular mo-
mentum space. We shall return to this example in detail in Chapter 15
when we study rigid-body stability.

(a) (b) (c)

FIGURE 1.7.2. If you toss a book into the air, you can make it spin stably about
its shortest axis (a), and its longest axis (b), but it is unstable when it rotates
about its middle axis (c).



32 1. Introduction and Overview

Linearized and Spectral Stability. There are two other ways of treat-
ing stability. First of all, one can linearize equation (1.7.1); if du denotes a
variation in v and X'(u.) denotes the linearization of X at u. (the matrix
of partial derivatives in the case of finitely many degrees of freedom), the
linearized equations describe the time evolution of “infinitesimal” distur-
bances of u,:

d /
d—t(éu) = X'(ue) - bu. (1.7.2)

Equation (1.7.1), on the other hand, describes the nonlinear evolution of
finite disturbances Au = u—u,. We say that u. is linearly stable if (1.7.2)
is stable at du = 0, in the sense defined above. Intuitively, this means that
there are no infinitesimal disturbances that are growing in time. If (du)q is
an eigenfunction of X'(u.), that is, if

X' (ue) - (6u)o = M(0u)o (1.7.3)

for a complex number ), then the corresponding solution of (1.7.2) with
initial condition (du)e is

du = et (u)o. (1.7.4)

The right side of this equation is growing when A has positive real part.
This leads us to the third notion of stability: We say that (1.7.1) or (1.7.2)
is spectrally stable if the eigenvalues (more precisely, points in the spec-
trum) all have nonpositive real parts. In finite dimensions and, under ap-
propriate technical conditions in infinite dimensions, one has the following
implications:

(stability) = (spectral stability)
and
(linear stability) => (spectral stability).

If the eigenvalues all lie strictly in the left half-plane, then a classical re-
sult of Liapunov guarantees stability. (See, for instance, Hirsch and Smale
[1974] for the finite-dimensional case and Marsden and McCracken [1976]
or Abraham, Marsden, and Ratiu [1988] for the infinite-dimensional case.)
However, in many systems of interest, the dissipation is very small and are
modeled as being conservative. For such systems the eigenvalues must be
symmetrically distributed under reflection in the real and imaginary axes
(We prove this later in the text). This implies that the only possibility
for spectral stability occurs when the eigenvalues lie exactly on the imagi-
nary axis. Thus, this version of the Liapunov theorem is of no help in the
Hamiltonian case.

Spectral stability need not imply stability; instabilities can be generated
(even in Hamiltonian systems) through, for example, resonance. Thus, to
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obtain general stability results, one must use other techniques to augment
or replace the linearized theory. We give such a technique below.

Here is a planar example of a system that is spectrally stable at the
origin but that is unstable there. In polar coordinates (r, 8), consider the
evolution of u = (r,6) given by

F=r31-7%) and 6=1. (1.7.5)
In (z,y) coordinates this system takes the form

t=x(@®+y>)(1-2>-y%) -y,
y=y(@®+y")1-2" - ) +a.

The eigenvalues of the linearized system at the origin are readily verified
to be +1/—1, so the origin is spectrally stable; however, the phase portrait,
shown in Figure 1.7.3, shows that the origin is unstable. (We include the
factor 1 —r? to give the system an attractive periodic orbit—this is merely
to enrich the example and show how a stable periodic orbit can attract
the orbits expelled by an unstable equilibrium.) This is not, however, a
conservative system; next, we give two examples of Hamiltonian systems
with similar features.

FIGURE 1.7.3. The phase portrait for 7 = r3(1 — r?), § = 1.

Resonance Example. The linear system in R? whose Hamiltonian is
given by

1, 1
H(q,p) = 5:02 + 5(12 +pg

has zero as a double eigenvalue, so it is spectrally stable. On the other
hand,

q(t) = (g +po)t+ g and p(t) = —(go + po)t + po
is the solution of this system with initial condition (go,po), which clearly

leaves any neighborhood of the origin no matter how close to it (go, po) is.
Thus, spectral stability need not imply even linear stability. An even simpler
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example of the same phenomenon is given by the free particle Hamiltonian

H(q,p) = p*/2.
Another higher-dimensional example with resonance in R® is given by
the linear system whose Hamiltonian is

H = q2p1 — q1p2 + Q4P3 — q3P4 + q243.
The general solution with initial condition (¢?,...,p%) is given by

q1(t) = ¢) cost + ) sint,

g2(t) = —¢Y sint + ¢J cost,
g3(t) = q§ cost + gf sint,
qa(t) = —g3sint + ¢f cost,

and
e a4
pi(t) = ——2§-tsint + —;—(tcost —sint) + p? cost + pYsint,

0 0
p2(t) = —q?a(tcost +sint) — %tsint —pYsint + pj cost,

0 0
p3(t) = %tsint - %—(tcost +sint) + p3 cost + plsint,

0 0
pa(t) = %(tcost —sint) + %tsint — pYsint + pJ cost.

One sees that p;(t) leaves any neighborhood of the origin, no matter how
close to the origin the initial conditions (¢?, ... ,p3) are; that is, the system
is linearly unstable. On the other hand, all eigenvalues of this linear system
are %1, each a quadruple eigenvalue. Thus, this linear system is spectrally
stable.

Cherry’s Example (Cherry [1959, 1968]). This example is a Hamil-
tonian system that is spectrally stable and linearly stable but is nonlinearly
unstable. Consider the Hamiltonian on R* given by

1 1
H = (g +93) — (45 +p3) + 5102(;0? -¢}) - 121 (1.7.6)

This system has an equilibrium at the origin, which is linearly stable, since
the linearized system consists of two uncoupled oscillators in the (g2, dp2)
and (8q;,dp; ) variables, respectively, with frequencies in the ratio 2:1 (the
eigenvalues are +i and +2i, so the frequencies are in resonance). A family
of solutions (parametrized by a constant 7) of Hamilton’s equations for
(1.7.6) is given by

ﬁcos(t - 7')’ 4 = cos2(t — 1)

t—T1 t—r

qQ = -

)

(1.7.7)

sin(t — 7) sin 2(t — 7)
= 2-— = -
P1 \/— t -1 ’ D2 t—T
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The solutions (1.7.7) clearly blow up in finite time; however, they start at
time t = 0 at a distance v/3/7 from the origin, so by choosing 7 large,
we can find solutions starting arbitrarily close to the origin, yet going to
infinity in a finite time, so the origin is nonlinearly unstable.

Despite the above situation relating the linear and nonlinear theories,
there has been much effort devoted to the development of spectral stability
methods. When instabilities are present, spectral estimates give important
information on growth rates. As far as stability goes, spectral stability
gives necessary, but not sufficient, conditions for stability. In other words,
for the nonlinear problems spectral instability can predict instability, but
not stability. This is a basic result of Liapunov; see Abraham, Marsden,
and Ratiu [1988], for example. Our immediate purpose is the opposite: to
describe sufficient conditions for stability.

Casimir Functions. Besides the energy, there are other conserved quan-
tities associated with group symmetries such as linear and angular mo-
mentum. Some of these are associated with the group that underlies the
passages from material to spatial or body coordinates. These are called
Casimir functions; such a quantity, denoted by C, is characterized by
the fact that it Poisson commutes with every function, that is,

{C,F}=0 (1.7.8)

for all functions F' on phase space P. We shall study such functions and
their relation with momentum maps in Chapters 10 and 11. For example,
if ® is any function of one variable, the quantity

C(IT) = &(|T1)|*) (1.7.9)

is a Casimir function for the rigid-body bracket, as is seen by using the
chain rule. Likewise,

C(w)=/Q<I>(w)dxdy (1.7.10)

is a Casimir function for the two-dimensional ideal fluid bracket. (This
calculation ignores boundary terms that arise in an integration by parts—
see Lewis, Marsden, Montgomery, and Ratiu [1986] for a treatment of these
boundary terms.)

Casimir functions are conserved by the dynamics associated with any
Hamiltonian H, since C' = {C, H} = 0. Conservation of (1.7.9) corresponds
to conservation of total angular momentum for the rigid body, while con-
servation of (1.7.10) represents Kelvin’s circulation theorem for the Euler
equations. It provides infinitely many independent constants of the motion
that mutually Poisson commute; that is, {Cy,C;} = 0, but this does not
imply that these equations are integrable.
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Lagrange—Dirichlet Criterion. For Hamiltonian systems in canonical
form, an equilibrium point (ge, pe) is a point at which the partial derivatives
of H vanish, that is, it is a critical point of H. If the 2n x 2n matriz 6°H
of second partial derivatives evaluated at (qe,pe) 15 positive or negative
definite (that is, all the eigenvalues of 62 H(qe, pe) have the same sign), then
(ge, pe) is stable. This follows from conservation of energy and the fact from
calculus that the level sets of H near (ge,p.) are approximately ellipsoids.
As mentioned earlier, this condition implies, but is not implied by, spectral
stability. The KAM (Kolmogorov, Arnold, Moser) theorem, which gives
stability of periodic solutions for two-degree-of-freedom systems, and the

Lagrange-Dirichlet theorem are the most basic general stability theorems
for equilibria of Hamiltonian systems.

For example, let us apply the Lagrange-Dirichlet theorem to a classical
mechanical system whose Hamiltonian has the form kinetic plus potential
energy. If (ge, pe) is an equilibrium, it follows that p. is zero. Moreover, the
matrix 02H of second-order partial derivatives of H evaluated at (qe,pe)
block diagonalizes, with one of the blocks being the matrix of the quadratic
form of the kinetic energy, which is always positive definite. Therefore, if
02 H is definite, it must be positive definite, and this in turn happens if and
only if 62V is positive definite at g, where V is the potential energy of the
system. We conclude that for a mechanical system whose Lagrangian is
kinetic minus potential energy, (ge,0) is a stable equilibrium, provided that
the matriz §2V (q.) of second-order partial derivatives of the potential V at
ge is positive definite (or, more generally, q. is a strict local minimum for
V). If 82V at q. has a negative definite direction, then q. is an unstable
equilibrium.

The second statement is seen in the following way. The linearized Hamil-
tonian system at (ge,0) is again a Hamiltonian system whose Hamiltonian
is of the form kinetic plus potential energy, the potential energy being given
by the quadratic form 62V (g.). From a standard theorem in linear algebra,
which states that two quadratic forms, one of which is positive definite, can
be simultaneously diagonalized, we conclude that the linearized Hamilto-
nian system decouples into a family of Hamiltonian systems of the form

7 (0Pk) = —ckdg®, %(&Ik) = %k‘@k,

where 1/my, > 0 are the eigenvalues of the positive definite quadratic form
given by the kinetic energy in the variables dp;, and c are the eigenvalues
of §2V(q.). Thus the eigenvalues of the linearized system are given by
++/—ck/my. Therefore, if some ci is negative, the linearized system has
at least one positive eigenvalue, and thus (g.,0) is spectrally and hence
linearly and nonlinearly unstable. For generalizations of this, see Oh [1987],
Grillakis, Shatah, and Strauss [1987], Chern [1997] and references therein.
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The Energy—Casimir Method. This is a generalization of the classical
Lagrange—Dirichlet method. Given an equilibrium u, for ¢ = Xg(u) on a
Poisson manifold P, it proceeds in the following steps.

To test an equilibrium (satisfying X (z.) = 0) for stability:
Step 1. Find a conserved function C (C will typically be a Casimir

function plus other conserved quantities) such that the first
variation vanishes:

§(H + C)(z) = 0.

Step 2. Calculate the second variation
82(H + C)(ze).

Step 3. If 62(H + C)(z.) is definite (either positive or negative),
then z. is called formally stable.

With regard to Step 3, we point out that an equilibrium solution need
not be a critical point of H alone; in general, dH(z.) # 0. An example
where this occurs is a rigid body spinning about one of its principal axes
of inertia. In this case, a critical point of H alone would have zero angular
velocity; but a critical point of H + C is a (nontrivial) stationary rotation
about one of the principal axes.

The argument used to establish the Lagrange-Dirichlet test formally
works in infinite dimensions too. Unfortunately, for systems with infinitely
many degrees of freedom (like fluids and plasmas), there is a serious techni-
cal snag. The calculus argument used before runs into problems; one might
think that these are just technical and that we just need to be more careful
with the calculus arguments. In fact, there is widespread belief in this “en-
ergy criterion” (see, for instance, the discussion and references in Marsden
and Hughes [1983, Chapter 6], and Potier-Ferry [1982]). However, Ball and
Marsden [1984] have shown using an example from elasticity theory that
the difficulty is genuine: They produce a critical point of H at which 6>H
is positive definite, yet this point is not a local minimum of H. On the
other hand, Potier-Ferry [1982] shows that asymptotic stability is restored
if suitable dissipation is added. Another way to overcome this difficulty is
to modify Step 3 using a convexity argument of Arnold [1966b].

Modified Step 3. Assume that P is a linear space.
(a) Let Au = u — u. denote a finite variation in phase space.
(b) Find quadratic functions Q1 and Q2 such that
Q1(Au) < H(ue + Au) — H(u) — 0H(ue) - Au
and

Q2(Au) < Clue + Au) — C(ue) — 6C(ue) - Au,
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(¢) Require Q1(Au) + Q2(Au) > 0 for all Au # 0.
(d) Introduce the norm ||Aul| by

1Au]? = Q1(Au) + Q2(Au),

so0 |Au|| is a measure of the distance from u to u.; that is, we choose
d(u, ue) = || Aul.

(e) Require
|H (ue + Au) — H(ue)| < C1f|Au®
and
|C(ue + Au) — C(ue)| < Cof|Aul|*
for constants a,C1,Cy > 0 and ||Au|| sufficiently small.

These conditions guarantee stability of u. and provide the distance mea-
sure relative to which stability is defined. The key part of the proof is
simply the observation that if we add the two inequalities in (b), we get

lAu||? < H(ue + Au) + C(ue + Au) — H(ue) — C(ue)

using the fact that 6H (u.) - Au and dC(u.) - Au add up to zero by Step 1.
But H and C are constant in time, so

[(Aw)time=ll* < [H(ue + Au) + C(ue + Au) — H(ue) = C(te)llimeo -

Now employ the inequalities in (e) to get
“(Au)time=t“2 < (Cl + C'2)"(Au)time=0”0[-

This estimate bounds the temporal growth of finite perturbations in
terms of initial perturbations, which is what is needed for stability. For
a survey of this method, additional references, and numerous examples, see
Holm, Marsden, Ratiu, and Weinstein [1985].

There are some situations (such as the stability of elastic rods) in which
the above techniques do not apply. The chief reason is that there may be a
lack of sufficiently many Casimir functions to achieve even the first step. For
this reason a modified (but more sophisticated) method has been developed
called the “energy-momentum method.” The key to the method is to avoid
the use of Casimir functions by applying the method before any reduction
has taken place. This method was developed in a series of papers of Simo,
Posbergh, and Marsden [1990, 1991] and Simo, Lewis, and Marsden [1991].
A discussion and additional references are found later in this section.
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Gyroscopic Systems. The distinctions between “stability by energy
methods,” that is, energetics and “spectral stability” become especially
interesting when one adds dissipation. In fact, building on the classical
work of Kelvin and Chetaev, one can prove that if 62H is indefinite, yet
the spectrum is on the imaginary axis, then adding dissipation necessarily
makes the system linearly unstable. That is, at least one pair of eigenval-
ues of the linearized equations move into the right half-plane. This is a
phenomenon called dissipation-induced instability. This result, along
with related developments, is proved in Bloch, Krishnaprasad, Marsden,
and Ratiu [1991, 1994, 1996]. For example, consider the linear gyroscopic
system

Mg+ Sq+Vqg=0, (1.7.11)

where q € R™, M is a positive definite symmetric n x n matrix, S is skew,
and V is symmetric. This system is Hamiltonian (Exercise 1.7-2). If V' has
negative eigenvalues, then (1.7.11) is formally unstable. However, due to
S, the system can be spectrally stable. However, if R is positive definite
symmetric and € > 0 is small, the system with friction

M+ Sq+eRq+Vq=0 (1.7.12)

is linearly unstable. A specific example is given in Exercise 1.7-4.

Outline of the Energy—Momentum Method. The energy momen-
tum method is an extension of the Arnold (or energy—Casimir) method for
the study of stability of relative equilibria, which was developed for Lie-
Poisson systems on duals of Lie algebras, especially those of fluid dynamical
type. In addition, the method extends and refines the fundamental stability
techniques going back to Routh, Liapunov, and, in more recent times, to
the work of Smale.

The motivation for these extensions is threefold.

First of all, the energy-momentum method can deal with Lie-Poisson
systems for which there are not sufficient Casimir functions available, such
as 3-D ideal flow and certain problems in elasticity. In fact, Abarbanel
and Holm [1987] use what can be recognized retrospectively as the energy—
momentum method to show that 3-D equilibria for ideal flow are generally
formally unstable due to vortex stretching. Other fluid and plasma situ-
ations, such as those considered by Chern and Marsden [1990] for ABC
flows and certain multiple-hump situations in plasma dynamics (see Holm,
Marsden, Ratiu, and Weinstein [1985] and Morrison [1987], for example),
provided additional motivation in the Lie-Poisson setting.

A second motivation is to extend the method to systems that need not be
Lie—Poisson and still make use of the powerful idea of using reduced spaces,
as in the original Arnold method. Examples such as rigid bodies with vi-
brating antennas (Sreenath, Oh, Krishnaprasad, and Marsden [1988], Oh,
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Sreenath, Krishnaprasad, and Marsden [1989], Krishnaprasad and Mars-
den [1987]) and coupled rigid bodies (Patrick [1989]) motivated the need
for such an extension of the theory.

Finally, it gives sharper stability conclusions in material representation
and links with geometric phases.

The Idea of the Energy—Momentum Method. The setting of the
energy-momentum method is that of a mechanical system with symmetry
with a configuration space ¢} and phase space 7% and a symmetry group
G acting, with a standard momentum map J : T*Q — g*, where g* is the
Lie algebra of G. Of course, one gets the Lie-Poisson case when @ = G.

The rough idea for the energy momentum method is first to formulate
the problem directly on the unreduced space. Here, relative equilibria as-
sociated with a Lie algebra element £ are critical points of the augmented
Hamiltonian He := H —(J,£). The idea is now to compute the second vari-
ation of H¢ at a relative equilibrium 2, with momentum value . subject to
the constraint J = p. and on a space transverse to the action of G, the
subgroup of G that leaves . fixed. Although the augmented Hamiltonian
plays the role of H+C in the Arnold method, notice that Casimir functions
are not required to carry out the calculations.

The surprising thing is that the second variation of H; at the relative
equilibrium can be arranged to be block diagonal, using splittings that are
based on the mechanical connection, while at the same time, the symplectic
structure also has a simple block structure, so that the linearized equations
are put into a useful canonical form. Even in the Lie-Poisson setting, this
leads to situations in which one gets much simpler second variations. This
block diagonal structure is what gives the method its computational power.

The general theory for carrying out this procedure was developed in
Simo, Posbergh, and Marsden [1990, 1991] and Simo, Lewis, and Marsden
[1991]. An exposition of the method may be found, along with additional
references, in Marsden [1992]. It is of interest to extend this to the singular
case, which is the subject of ongoing work; see Ortega and Ratiu [1997,
1998] and references therein.

The energy—momentum method may also be usefully formulated in the
Lagrangian setting, which is very convenient for the calculations in many
examples. The general theory for this was developed in Lewis [1992] and
Wang and Krishnaprasad [1992]. This Lagrangian setting is closely related
to the general theory of Lagrangian reduction. In this context one reduces
variational principles rather than symplectic and Poisson structures, and
for the case of reducing the tangent bundle of a Lie group, this leads to the
Euler—Poincaré equations rather than the Lie-Poisson equations.

Effectiveness in Examples. The energy-momentum method has proven
its effectiveness in a number of examples. For instance, Lewis and Simo
[1990] were able to deal with the stability problem for pseudo-rigid bodies,
which was thought up to that time to be analytically intractable.
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The energy-momentum method can sometimes be used in contexts where
the reduced space is singular or at nongeneric points in the dual of the
Lie algebra. This is done at singular points in Lewis, Ratiu, Simo, and
Marsden [1992], who analyze the heavy top in great detail and, in the
Lie-Poisson setting for compact groups at nongeneric points in the dual
of the Lie algebra, in Patrick {1992, 1995]. One of the key things is to
keep track of group drifts, because the isotropy group G, can change for
nearby points, and these are important for the reconstruction process and
for understanding the Hannay-Berry phase in the context of reduction
(see Marsden, Montgomery, and Ratiu [1990] and references therein). For
noncompact groups and an application to the dynamics of rigid bodies in
fluids (underwater vehicles), see Leonard and Marsden [1997]. Additional
work in this area is still needed in the context of singular reduction.

The Benjamin-Bona theorem on stability of solitons for the KdV equa-
tion can be viewed as an instance of the energy momentum method, see
also Maddocks and Sachs [1993], and for example, Oh [1987] and Grillakis,
Shatah, and Strauss [1987], although there are many subtleties in the PDE
context.

Hamiltonian Bifurcations. The energy-momentum method has also
been used in the context of Hamiltonian bifurcation problems. We shall
give some simple examples of this in §1.8. One such context is that of free
boundary problems building on the work of Lewis, Marsden, Montgomery,
and Ratiu [1986], which gives a Hamiltonian structure for dynamic free
boundary problems (surface waves, liquid drops, etc.), generalizing Hamil-
tonian structures found by Zakharov. Along with the Arnold method itself,
this is used for a study of the bifurcations of such problems in Lewis, Mars-
den, and Ratiu [1987], Lewis [1989, 1992], Kruse, Marsden, and Scheurle
[1993], and other references cited therein.

Converse to the Energy—Momentum Method. Because of the block
structure mentioned, it has also been possible to prove, in a sense, a con-
verse of the energy—momentum method. That is, if the second variation
is indefinite, then the system is unstable. One cannot, of course, hope to
do this literally as stated, since there are many systems (e.g., gyroscopic
system mentioned earlier—an explicit example is given in Exercise 1.7-4)
that are formally unstable, and yet their linearizations have eigenvalues
lying on the imaginary axis. Most of these are presumably unstable due
to “Arnold diffusion,” but of course this is a very delicate situation to
prove analytically. Instead, the technique is to show that with the addition
of dissipation, the system is destabilized. This idea of dissipation-induced
instability goes back to Thomson and Tait in the last century. In the con-
text of the energy-momentum method, Bloch, Krishnaprasad, Marsden,
and Ratiu [1994, 1996] show that with the addition of appropriate dissipa-
tion, the indefiniteness of the second variation is sufficient to induce linear
instability in the problem.
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There are related eigenvalue movement formulas (going back to Krein)
that are used to study non-Hamiltonian perturbations of Hamiltonian nor-
mal forms in Kirk, Marsden, and Silber {1996]. There are interesting ana-
logues of this for reversible systems in O’Reilly, Malhotra, and Namam-
chchivaya [1996].

Extension to Nonholonomic Systems. It is possible to partially ex-
tend the energy-momentum method to the case of nonholonomic systems.
Building on the work on nonholonomic systems in Arnold [1988], Bates and
Sniatycki [1993] and Bloch, Krishnaprasad, Marsden, and Murray [1996],
on the example of the Routh problem in Zenkov [1995], and on the large
Russian literature in this area, Zenkov, Bloch, and Marsden [1998] show
that there is a generalization to this setting. The method is effective in the
sense that it applies to a wide variety of interesting examples, such as the
rolling disk, a three-wheeled vehicle known as the the roller racer and the
rattleback.

Exercises

1.7-1.  Work out Cherry’s example of the Hamiltonian system in R* whose
energy function is given by (1.7.6). Show explicitly that the origin is a
linearly and spectrally stable equilibrium but that it is nonlinearly unstable
by proving that (1.7.7) is a solution for every 7 > 0 that can be chosen to
start arbitrarily close to the origin and that goes to infinity for t — 7.

1.7-2. Show that (1.7.11) is Hamiltonian with p = Mg,

1 _ 1
H(q,p) = 5p- M 1p+§q'Vq,

and

OF 0K OKOF  _,0F 0K
~ Oq' dp; Oq' Ip; Op; Op;

1.7-3. Show that (up to an overall factor) the characteristic polynomial
for the linear system (1.7.11) is

p(\) = det[\*M + AS + V]
and that this actually is a polynomial of degree n in 2.

1.7-4. Consider the two-degree-of-freedom system

£—gy+v+ax =0,
J+gt+déy+pPBy=0.

(a) Write it in the form (1.7.12).
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(b) For v = § = 0 show:

(i) it is spectrally stable if o > 0, 8 > 0;
(il) for af < 0, it is spectrally unstable;

(iii) for @ < 0, B < 0, it is formally unstable (that is, the energy
function, which is a quadratic form, is indefinite); and

A. if D := (¢ + a+ B)? — 4a8 < 0, then there are two roots
in the right half-plane and two in the left; the system is
spectrally unstable;

B. if D =0 and ¢g? + a+ 8 > 0, the system is spectrally stable,
but if g2 + o + 3 < 0 then it is spectrally unstable; and

C. if D > 0 and g +a+ 3 > 0, the system is spectrally stable,
but if g2 + a + B < 0, then it is spectrally unstable.

(c) For a polynomial p(A) = A* + p1A3 + p2A? + psA + ps, the Routh-
Hurwitz criterion (see Gantmacher [1959, Volume 2]) says that the
number of right half-plane zeros of p is the number of sign changes
of the sequence

?

— Y 2
{l,m, Prpa = ps pspipz = p3 = pari p4}_
P1 p1P2 — P3

Apply this to the case in which a < 0, <0, g +a+3>0,v>0,
and § > 0 to show that the system is spectrally unstable.

1.8 Bifurcation

When the energy—momentum or energy—Casimir method indicates that
an instability might be possible, techniques of bifurcation theory can be
brought to bear to determine the emerging dynamical complexities such as
the development of multiple equilibria and periodic orbits.

Ball in a Rotating Hoop. For example, consider a particle moving
with no friction in a rotating hoop (Figure 1.8.1).

In §2.8 we derive the equations and study the phase portraits for this
system. One finds that as w increases past 1/g/R, the stable equilibrium at
6 = 0 becomes unstable through a Hamiltonian pitchfork bifurcation and
two new solutions are created. These solutions are symmetric in the vertical
axis, a reflection of the original Zs symmetry of the mechanical system in
Figure 1.8.1. Breaking this symmetry by, for example, putting the rotation
axis slightly off center is an interesting topic that we shall discuss in §2.8.
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g = acceleration
due to gravity

FIGURE 1.8.1. A particle moving in a hoop rotating with angular velocity w.

Rotating Liquid Drop. The system consists of the two-dimensional
Euler equations for an ideal fluid with a free boundary. An equilibrium
solution consists of a rigidly rotating circular drop. The energy—Casimir
method shows stability, provided that

Q< 2,/%. (1.8.1)

In this formula, Q is the angular velocity of the circular drop, R is its
radius, and 7 is the surface tension, a constant. As 2 increases and (1.8.1)
is violated, the stability of the circular solution is lost and is picked up by
elliptical-like solutions with Zs x Zg symmetry. The bifurcation is actually
subcritical relative to the angular velocity 1 (that is, the new solutions
occur below the critical value of 2) and is supercritical (the new solutions
occur above criticality) relative to the angular momentum. This is proved in
Lewis, Marsden, and Ratiu [1987] and Lewis [1989], where other references
may also be found (see Figure 1.8.2).

For the ball in the hoop, the eigenvalue evolution for the linearized equa-
tions is shown in Figure 1.8.3(a). For the rotating liquid drop, the movement
of eigenvalues is the same: They are constrained to stay on the imaginary
axis because of the symmetry of the problem. Without this symmetry,
eigenvalues typically split, as in Figure 1.8.3(b). These are examples of a
general theory of the movement of such eigenvalues given in Golubitsky
and Stewart [1987], Dellnitz, Melbourne, and Marsden [1992], Knobloch,
Mahalov, and Marsden [1994], and Kirk, Marsden, and Silber {1996].
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FIGURE 1.8.2. A circular liquid drop losing its stability and its symmetry.
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FIGURE 1.8.3. The movement of eigenvalues in bifurcation of equilibria.

More Examples. Another example is the heavy top: a rigid body with
one point fixed, moving in a gravitational field. When the top makes the
transition from a fast top to a slow top, the angular velocity w decreases
past the critical value

oo = DT, 152
3

stability is lost, and a resonance bifurcation occurs. Here, when the
bifurcation occurs, the eigenvalues of the equations linearized at the equi-
librium behave as in Figure 1.8.4.

For an extensive study of bifurcations and stability in the dynamics of
a heavy top, see Lewis, Ratiu, Simo, and Marsden [1992]. Behavior of this
sort is sometimes called a Hamiltonian Krein—Hopf bifurcation, or a
gyroscopic instability (see van der Meer [1985, 1990]). Here more com-
plex dynamic behavior ensues, including periodic and chaotic motions (see
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F1GURE 1.8.4. Eigenvalue movement in the Hamiltonian Hopf bifurcation.

Holmes and Marsden [1983]). In some systems with symmetry, the eigen-
values can pass as well as split, as has been shown by Dellnitz, Melbourne,
and Marsden [1992] and references therein.

More sophisticated examples, such as the dynamics of two coupled three-
dimensional rigid bodies, requires a systematic development of the basic
theory of Golubitsky and Schaeffer [1985] and Golubitsky, Stewart, and
Schaeffer [1988]. This theory is begun in, for example, Duistermaat [1983],
Lewis, Marsden, and Ratiu [1987], Lewis [1989], Patrick [1989], Meyer and
Hall [1992], Broer, Chow, Kim, and Vegter [1993], and Golubitsky, Mars-
den, Stewart, and Dellnitz {1994]. For bifurcations in the double spher-
ical pendulum (which includes a Hamiltonian—Krein—-Hopf bifurcation),
see Dellnitz, Marsden, Melbourne, and Scheurle [1992] and Marsden and
Scheurle [1993al.

Exercises

1.8-1. Study the bifurcations (changes in the phase portrait) for the equa-
tion

i4tpr+z=0

as p passes through zero. Use the second derivative test on the potential
energy.

1.8-2. Repeat Exercise 1.8-1 for
Ftur+z*=0

as u passes through zero.
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1.9 The Poincaré—Melnikov Method

The Forced Pendulum. To begin with a simple example, consider the
equation of a forced pendulum:

¢+ sin ¢ = e coswt. (1.9.1)

Here w is a constant angular forcing frequency and € is a small parameter.
Systems of this or a similar nature arise in many interesting situations.
For example, a double planar pendulum and other “executive toys” exhibit
chaotic motion that is analogous to the behavior of this equation; see Burov
[1986] and Shinbrot, Grebogi, Wisdom, and Yorke [1992].

For € = 0 (1.9.1) has the phase portrait of a simple pendulum (the same
as shown later in Figure 2.8.2a). For € small but nonzero, (1.9.1) possesses
no analytic integrals of the motion. In fact, it possesses transversal inter-
secting stable and unstable manifolds (separatrices); that is, the Poincaré
map P, : R?2 — R? defined as the map that advance solutions by one
period T = 27 /w starting at time tq possess transversal homoclinic points.
This type of dynamic behavior has several consequences, besides precluding
the existence of analytic integrals, that lead one to use the term “chaotic.”
For example, (1.9.1) has infinitely many periodic solutions of arbitrarily
high period. Also, using the shadowing lemma, one sees that given any bi-
infinite sequence of zeros and ones (for example, use the binary expansion
of e or 7), there exists a corresponding solution of (1.9.1) that successively
crosses the plane ¢ = 0 (the pendulum’s vertically downward configura-
tion) with ¢ > 0 corresponding to a zero and ¢ < 0 corresponding to a
one. The origin of this chaos on an intuitive level lies in the motion of the
pendulum near its unperturbed homoclinic orbit, the orbit that does one
revolution in infinite time. Near the top of its motion (where ¢ = +7) small
nudges from the forcing term can cause the pendulum to fall to the left or
right in a temporally complex way.

The dynamical systems theory needed to justify the preceding statements
is available in Smale [1967], Moser [1973], Guckenheimer and Holmes [1983],
and Wiggins [1988, 1990]. Some key people responsible for the development
of the basic theory are Poincaré, Birkhoff, Kolmogorov, Melnikov, Arnold,
Smale, and Moser. The idea of transversal intersecting separatrices comes
from Poincaré’s famous paper on the three-body problem (Poincaré [1890]).
His goal, not quite achieved for reasons we shall comment on later, was to
prove the nonintegrability of the restricted three-body problem and that
various series expansions used up to that point diverged (he began the
theory of asymptotic expansions and dynamical systems in the course of
this work). See Diacu and Holmes [1996] for additional information about
Poincaré’s work.
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Although Poincaré had all the essential tools needed to prove that equa-
tions like (1.9.1) are not integrable (in the sense of having no analytic
integrals), his interests lay with harder problems, and he did not develop
the easier basic theory very much. Important contributions were made by
Melnikov {1963] and Arnold [1964] that lead to a simple procedure for
proving that (1.9.1) is not integrable. The Poincaré-Melnikov method was
revived by Chirikov [1979], Holmes [1980b], and Chow, Hale, and Mallet-
Paret [1980]. We shall give the method for Hamiltonian systems. We refer
to Guckenheimer and Holmes [1983] and to Wiggins {1988, 1990] for gen-
eralizations and further references.

The Poincaré-Melnikov Method. This method proceeds as follows:
1. Write the dynamical equation to be studied in the form
z = Xo(z) + eXi(z, 1), (1.9.2)

where z € R?, X; is a Hamiltonian vector field with energy Hy,
X, is periodic with period T and is Hamiltonian with energy a T-
periodic function H;. Assume that X, has a homoclinic orbit Z(t),
so Z(t) — xo, a hyperbolic saddle point, as t — +o0.

2. Compute the Poincaré—Melnikov function defined by
o0
M(to) = / {Ho, Hi1}(Z(t - to), t) dt, (1.9.3)
-0
where {, } denotes the Poisson bracket.

If M(to) has simple zeros as a function of tg, then (1.9.2) has, for
sufficiently small ¢, homoclinic chaos in the sense of transversal in-
tersecting separatrices (in the sense of Poincaré maps as mentioned
above).

We shall prove this result in §2.11. To apply it to equation (1.9.1) one
proceeds as follows. Let z = (¢, @), so we get

dle]l_[ ¢ 0
Zi-t[é]—[—sin¢]+€[coswt]'

The homoclinic orbits for € = 0 are given by (see Exercise 1.9-1)

wo0-[ 3] P50 ]

and one has

Hy(¢,9) = 1¢* —cos¢ and Hi($,¢,t) = pcoswt. (1.9.4)
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Hence (1.9.3) gives

[® (0H,0H, OH,0H,\ _
M) = [ (G5 -5 2 Gate - o)ty

=—/ é(t — to) coswt dt

—o0

o0
= ¢/ [2 sech(t — tp) coswi] dt.

Changing variables and using the fact that sech is even and sin is odd, we
get

—00

o0
M(tp) = F2 (/ sech tcoswt dt) cos(wtp).
The integral is evaluated by residues (see Exercise 1.9-2):
M(tg) = F2m sech (%ﬂ) cos(wtp), (1.9.5)

which clearly has simple zeros. Thus, this equation has chaos for ¢ small
enough.

Exercises
1.9-1. Verify directly that the homoclinic orbits for the simple pendulum
equation ¢ + sin ¢ = 0 are given by ¢(t) = £2tan"!(sinht).

1.9-2. Evaluate the integral ffooo sech tcoswt dt to prove (1.9.5) as fol-
lows. Write sech t = 2/(e' + e~*) and note that there is a simple pole
of

eiwz + e twz

fe) =~

in the complex plane at z = mi/2. Evaluate the residue there and apply
Cauchy’s theorem.®

1.10 Resonances, Geometric Phases, and
Control

The work of Smale [1970] shows that topology plays an important role
in mechanics. Smale’s work employs Morse theory applied to conserved
quantities such as the energy—-momentum map. In this section we point out
other ways in which geometry and topology enter mechanical problems.

9Consult a book on complex variables such as Marsden and Hoffman, Basic Complex
Analysis, Third Edition, Freeman, 1998.
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The One-to-One Resonance. When one considers resonant systems,
one often encounters Hamiltonians of the form

A
(¢} +p}) + 5(q3 + p3) + higher-order terms. (1.10.1)

H =
2

1
2
The quadratic terms describe two oscillators that have the same frequency
when A = 1, which is why one speaks of a one-to-one resonance. To analyze
the dynamics of H, it is important to utilize a good geometric picture for
the critical case

1
Hy = 5(Qf+pf+q§ +p3). (1.10.2)

The energy level Hy = constant is the three-sphere $3 C R%. If we think of
Hy as a function on complex two-space C? by letting

z21=q +ip1 and 2z =q+ipy,

then Hy = (]21]? + |22/%)/2, so Hy is left-invariant by the action of SU(2),
the group of complex 2 x 2 unitary matrices of determinant one. The cor-
responding conserved quantities are

W1 = 2(q1q2 + p1p2),
Ws = 2(g2p1 — q1p2), (1.10.3)
Ws = ¢} +pi — q3 — p3,

which comprise the components of a (momentum) map
J:R* - R3. (1.10.4)

From the readily verified relation 4HZ = W + W2 + W2, one finds that
J restricted to S° gives a map

j: 83— 82 (1.10.5)

The fibers j~!(point) are circles, and the trajectories for the dynamics of
Hy move along these circles. The map j is the Hopf fibration, which
describes S° as a topologically nontrivial circle bundle over S2. The role of
the Hopf fibration in mechanics was known to Reeb [1949].

One also finds that the study of systems like (1.10.1) that are close to
Hy can, to a good approximation, be reduced to dynamics on S2. These
dynamics are in fact Lie-Poisson and S? sits as a coadjoint orbit in so(3)*,
so the evolution is of rigid-body type, just with a different Hamiltonian.
For a computer study of the Hopf fibration in the one-to-one resonance,
see Kocak, Bisshopp, Banchoff, and Laidlaw [1986].
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The Hopf Fibration in Rigid-Body Mechanics. When doing reduc-
tion for the rigid body, one studies the reduced space

I W) /Gy =3 (u)/S%,

which in this case is the sphere S2. As we shall see in Chapter 15, J~!(y)
is topologically the same as the rotation group SO(3), which in turn is the
same as S3/Zy. Thus, the reduction map is a map of SO(3) to S2. Such a
map is given explicitly by taking an orthogonal matrix A and mapping it
to the vector on the sphere given by Ak, where k is the unit vector along
the z-axis. This map, which does the projection, is in fact a restriction of
a momentum map and is, when composed with the map of S® & SU(2) to
SO(3), just the Hopf fibration again. Thus, not only does the Hopf fibration
occur in the one-to-one resonance, it occurs in the rigid body in a natural
way as the reduction map from material to body representation!

Geometric Phases. The history of this concept is complex. We refer
to Berry [1990] for a discussion of the history, going back to Bortolotti in
1926, Vladimirskii and Rytov in 1938 in the study of polarized light, Kato
in 1950, and Longuet-Higgins and others in 1958 in atomic physics. Some
additional historical comments regarding phases in rigid-body mechanics
are given below.

We pick up the story with the classical example of the Foucault pendu-
lum. The Foucault pendulum gives an interesting phase shift (a shift in the
angle of the plane of the pendulum’s swing) when the overall system un-
dergoes a cyclic evolution (the pendulum is carried in a circular motion due
to the Earth’s rotation). This phase shift is geometric in character: If one
parallel transports an orthonormal frame along the same line of latitude,
it returns with a phase shift equaling that of the Foucault pendulum. This
phase shift A§ = 27 cosa (where « is the co-latitude) has the geometric
meaning shown in Figure 1.10.1.

In geometry, when an orthonormal frame returns to its original position
after traversing a closed path but is rotated, the rotation is referred to as
holonomy (or anholonomy). This is a unifying mathematical concept
that underlies many geometric phases in systems such as fiber optics, MRI
(magnetic resonance imaging), amoeba propulsion, molecular dynamics,
and micromotors. These applications represent one reason the subject is of
such current interest.

In the quantum case a seminal paper on geometric phases is Kato [1950].
It was Berry (1984, 1985], Simon {1983], Hannay [1985], and Berry and
Hannay [1988] who realized that holonomy is the crucial geometric unify-
ing thread. On the other hand, Golin, Knauf, and Marmi [1989], Mont-
gomery [1988], and Marsden, Montgomery, and Ratiu [1989, 1990] demon-
strated that averaging connections and reduction of mechanical systems
with symmetry also plays an important role, both classically and quantum-
mechanically. Aharonov and Anandan [1987] have shown that the geomet-
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FIGURE 1.10.1. The geometric interpretation of the Foucault pendulum phase
shift.

ric phase for a closed loop in projectivized complex Hilbert space occurring
in quantum mechanics equals the exponential of the symplectic area of a
two—dimensional manifold whose boundary is the given loop. The symplec-
tic form in question is naturally induced on the projective space from the
canonical symplectic form of complex Hilbert space (minus the imaginary
part of the inner product) via reduction. Marsden, Montgomery, and Ratiu
[1990] show that this formula is the holonomy of the closed loop relative to
a principal S'-connection on the unit ball of complex Hilbert space and is
a particular case of the holonomy formula in principal bundles with abelian
structure group.

Geometric Phases and Locomotion. Geometric phases naturally oc-
cur in families of integrable systems depending on parameters. Consider an
integrable system with action-angle variables

(Il1I2a‘ e ’Inaolvoza o ,Gn)a

assume that the Hamiltonian H([3, I3, ..., I,;m) depends on a parameter
m € M. This just means that we have a Hamiltonian independent of the
angular variables § and we can identify the configuration space with an n-
torus T™. Let ¢ be a loop based at a point mg in M. We want to compare the
angular variables in the torus over mg, while the system is slowly changed
as the parameters traverse the circuit c. Since the dynamics in the fiber vary
as we move along c, even if the actions vary by a negligible amount, there
will be a shift in the angle variables due to the frequencies w* = dH/8I® of
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the integrable system; correspondingly, one defines
1
dynamic phase =/ w* (I, c(t)) dt.
0

Here we assume that the loop is contained in a neighborhood whose stan-
dard action coordinates are defined. In completing the circuit ¢, we return
to the same torus, so a comparison between the angles makes sense. The
actual shift in the angular variables during the circuit is the dynamic
phase plus a correction term called the geometric phase. One of the key
results is that this geometric phase is the holonomy of an appropriately
constructed connection (called the Hannay—-Berry connection) on the
torus bundle over M that is constructed from the action—angle variables.
The corresponding angular shift, computed by Hannay [1985], is called
Hannay’s angles, so the actual phase shift is given by

Af = dynamic phases + Hannay’s angles.

The geometric construction of the Hannay-Berry connection for classical
systems is given in terms of momentum maps and averaging in Golin,
Knauf, and Marmi [1989] and Montgomery [1988]. Weinstein [1990] makes
precise the geometric structures that make possible a definition of the Han-
nay angles for a cycle in the space of Lagrangian submanifolds, even with-
out the presence of an integrable system. Berry’s phase is then seen as a
“primitive” for the Hannay angles. A summary of this work is given in
Woodhouse [1992].

Another class of examples where geometric phases naturally arise in the
dynamics of coupled rigid bodies. The three-dimensional single rigid body
is discussed below. For several coupled rigid bodies, the dynamics can be
quite complex. For instance, even for three coupled bodies in the plane, the
dynamics are known to be chaotic, despite the presence of stable relative
equilibria; see Oh, Sreenath, Krishnaprasad, and Marsden [1989]. Geomet-
ric phase phenomena for this type of example are quite interesting as they
are in some of the work of Wilczek and Shapere on locomotion in microor-
ganisms. (See, for example, Shapere and Wilczek [1987, 1989] and Wilczek
and Shapere [1989].) In this problem, control of the system’s internal or
shape variables can lead to phase changes in the external or group variables.
These choices of variables are related to the variables in the reduced and
the unreduced phase spaces. In this setting one can formulate interesting
questions of optimal control such as “When a falling cat turns itself over
in mid-flight (all the time with zero angular momentum!), does it do so
with optimal efficiency in terms of, say, energy expended?” There are in-
teresting answers to these questions that are related to the dynamics of
Yang-Mills particles moving in the associated gauge field of the problem.
See Montgomery {1984, 1990] and references therein.

We give two simple examples of geometric phases for linked rigid bodies.
Additional details can be found in Marsden, Montgomery, and Ratiu [1990].
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First, consider three uniform coupled bars (or coupled planar rigid bodies)
linked together with pivot (or pin) joints, so the bars are free to rotate
relative to each other. Assume that the bars are moving freely in the plane
with no external forces and that the angular momentum is zero. However,
assume that the joint angles can be controlled with, say, motors in the
joints. Figure 1.10.2 shows how the joints can be manipulated, each one
going through an angle of 27 and yet the overall assemblage rotates through
an angle 7.

-f—

FIGURE 1.10.2. Manipulating the joint angles can lead to an overall rotation of
the system.

Here we assume that the moments of inertia of the two outside bars
(about an axis through their centers of mass and perpendicular to the
page) are each one-half that of the middle bar. The statement is verified
by examining the equation for zero angular momentum (see, for example
Sreenath, Oh, Krishnaprasad, and Marsden [1988] and Oh, Sreenath, Kr-
ishnaprasad, and Marsden [1989]). General formulas for the reconstruction
phase applicable to examples of this type are given in Krishnaprasad [1989].

A second example is the dynamics of linkages. This type of example is
considered in Krishnaprasad [1989], Yang and Krishnaprasad {1990}, includ-
ing comments on the relation with the three-manifold theory of Thurston.
Here one considers a linkage of rods, say four rods linked by pivot joints as
in Figure 1.10.3.

The system is free to rotate without external forces or torques, but there
are assumed to be torques at the joints. When one turns the small “crank”
the whole assemblage turns, even though the angular momentum, as in the
previous example, stays zero.

For an overview of how geometric phases are used in robotic locomotion
problems, see Marsden and Ostrowski [1998]. (This paper is available at
http://www.cds.caltech.edu/ marsden.)

Phases in Rigid-Body Dynamics. As we shall see in Chapter 15, the
motion of a rigid body is a geodesic with respect to a left-invariant Rieman-
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overall phase
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F1GURE 1.10.3. Turning the crank can lead to an overall phase shift.

nian metric (the inertia tensor) on the rotation group SO(3). The corre-
sponding phase space is P = T* SO(3) and the momentum map J : P — R3
for the left SO(3) action is right translation to the identity. We identify
s0(3)* with so0(3) via the standard inner product and identify R with
50(3) via the map v — 9, where O(w) = v X w, X being the standard cross
product. Points in s0(3)* are regarded as the left reduction of T* SO(3) by
G = SO(3) and are the angular momenta as seen from a body-fized frame.

The reduced spaces P, = J~!(u)/G,, are identified with spheres in R3 of
Euclidean radius |ju||, with their symplectic form w,, = —dS/||x||, where dS
is the standard area form on a sphere of radius ||| and where G, consists
of rotations about the p-axis. The trajectories of the reduced dynamics
are obtained by intersecting a family of homothetic ellipsoids (the energy
ellipsoids) with the angular momentum spheres. In particular, all but at
most four of the reduced trajectories are periodic. These four exceptional
trajectories are the well-known homoclinic trajectories; we shall determine
them explicitly in §15.8.

Suppose a reduced trajectory Il(t) is given on P,, with period T'. After
time T, by how much has the rigid body rotated in space? The spatial an-
gular momentum is 7 = p = gIlI, which is the conserved value of J. Here
g € SO(3) is the attitude of the rigid body and IT is the body angular
momentum. If IT(0) = TI(T), then

and so g(T)"'u = g(0)~'p, that is, g(T)g(0)"'u = p, so g(T)g(0)~' is a
rotation about the axis yu. We want to give the angle of this rotation.

To determine this angle, let ¢(t) be the corresponding trajectory in
J~1() C P.Identify T* SO(3) with SO(3) x R3 by left trivialization, so c(t)
gets identified with (g(t),II(¢)). Since the reduced trajectory II(t) closes
after time T, we recover the fact that ¢(T") = gc(0) for some g € G,,. Here,
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g = g(T)g(0)~?! in the preceding notation. Thus, we can write
g = exp[(A0)(], (1.10.6)

where ¢ = p/||p|| identifies g, with R by a{ — a, for a € R. Let D be one
of the two spherical caps on 52 enclosed by the reduced trajectory, let A be
the corresponding oriented solid angle, that is, |A| = (area D)/|ju||?, and
let H,, be the energy of the reduced trajectory. See Figure 1.10.4. All norms
are taken relative to the Euclidean metric of R3. Montgomery (1991a] and
Marsden, Montgomery, and Ratiu [1990] show that modulo 27, we have
the rigid-body phase formula

1 2H,T
A0=—{/w +2HT}=—A+——i‘—. 1.10.7)
el Wp ™" [l (

__~true trajectory

dynamic phase — horizontal lift

geometric phase ~

reduced trajectory

FIGURE 1.10.4. The geometry of the rigid-body phase formula.

More History. The history of the rigid-body phase formula is quite
interesting and seems to have proceeded independently of the other devel-
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opments above.!? The formula has its roots in work of MacCullagh dating
back to 1840 and Thomson and Tait [1867, §§123, 126]. (See Zhuravlev
[1996] and O’Reilly [1997] for a discussion and extensions.) A special case
of formula (1.10.7) is given in Ishlinskii [1952]; see also Ishlinskii [1963].1!
The formula referred to covers a special case in which only the geometric
phase is present. For example, in certain precessional motions in which,
up to a certain order in averaging, one can ignore the dynamic phase, and
only the geometric phase survives. Even though Ishlinskii found only spe-
cial cases of the result, he recognized that it is related to the geometric
concept of parallel transport. A formula like the one above was found by
Goodman and Robinson [1958] in the context of drift in gyroscopes; their
proof is based on the Gauss—Bonnet theorem. Another interesting approach
to formulas of this sort, also based on averaging and solid angles, is given in
Goldreich and Toomre [1969], who applied it to the interesting geophysical
problem of polar wander (see also Poincaré [1910]!).

The special case of the above formula for a symmetric free rigid body
was given by Hannay [1985] and Anandan [1988, formula (20)]. The proof
of the general formula based on the theory of connections and the formula
for holonomy in terms of curvature was given by Montgomery [1991a] and
Marsden, Montgomery, and Ratiu [1990]. The approach using the Gauss—
Bonnet theorem and its relation to the Poinsot construction along with
additional results is taken up by Levi [1993]. For applications to general
resonance problems (such as the three-wave interaction) and nonlinear op-
tics, see Alber, Luther, Marsden and Robbins [1998].

An analogue of the rigid-body phase formula for the heavy top and the
Lagrange top (symmetric heavy top) was given in Marsden, Montgomery,
and Ratiu {1990]. Links with vortex filament configurations were given in
Fukumoto and Miyajima [1996] and Fukumoto [1997].

Satellites with Rotors and Underwater Vehicles. Another example
that naturally gives rise to geometric phases is the rigid body with one or
more internal rotors. Figure 1.10.5 illustrates the system considered. To
specify the position of this system we need an element of the group of rigid
motions of R® to place the center of mass and the attitude of the carrier,
and an angle (element of S*) to position each rotor. Thus the configuration
space is @ = SE(3) x §! x §1 x S1. The equations of motion of this system
are an extension of Euler’s equations of motion for a freely spinning rotor.
Just as holding a spinning bicycle wheel while sitting on a swivel chair can
affect the carrier’s motion, so the spinning rotors can affect the dynamics
of the rigid carrier.

10We thank V. Arnold for valuable help with these comments.
110On page 195 of Ishlinskii [1976], a later book on mechanics, it is stated that “the
formula was found by the author in 1943 and was published in Ishlinskii [1952].”
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rigid carrier

spinning rotors

FIGURE 1.10.5. The rigid body with internal rotors.

In this example, one can analyze equilibria and their stability in much the
same way as one can with the rigid body. However, what one often wants to
do is to forcibly spin, or control, the rotors so that one can achieve attitude
control of the structure in the same spirit that a falling cat has control
of its attitude by manipulating its body parts while falling. For example,
one can attempt to prescribe a relation between the rotor dynamics and
the rigid-body dynamics by means of a feedback law. This has the property
that the total system angular momentum is still preserved and that the
resulting dynamic equations can be expressed entirely in terms of the free
rigid-body variable. (A falling cat has zero angular momentum even though
it is able to turn over!) In some cases the resulting equations are again
Hamiltonian on the invariant momentum sphere. Using this fact, one can
compute the geometric phase for the problem generalizing the free rigid-
body phase formula. (See Bloch, Krishnaprasad, Marsden, and Sanchez de
Alvarez [1992] and Bloch, Leonard, and Marsden {1997, 1998] for details.)
This type of analysis is useful in designing and understanding attitude
control devices.

Another example that combines some features of the satellite and the
heavy top is the underwater vehicle. This is in the realm of the dynamics
of rigid bodies in fluids, a subject going back to Kirchhoff in the late 1800s.
We refer to Leonard and Marsden [1997] and Holmes, Jenkins, and Leonard
[1998] for modern accounts and many references.

Miscellaneous Links. There are many continuum-mechanical examples
to which the techniques of geometric mechanics apply. Some of those are
free boundary problems (Lewis, Marsden, Montgomery, and Ratiu [1986],
Montgomery, Marsden, and Ratiu [1984], Mazer and Ratiu [1989]), space-
craft with flexible attachments (Krishnaprasad and Marsden [1987]), elas-
ticity (Holm and Kuperschmidt [1983], Kuperschmidt and Ratiu [1983],
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Marsden, Ratiu, and Weinstein [1984a, 1984b], Simo, Marsden, and Krish-
naprasad [1988]), and reduced MHD (Morrison and Hazeltine [1984] and
Marsden and Morrison [1984]). We also wish to look at these theories from
both the spatial (Eulerian) and body (convective) points of view as reduc-
tions of the canonical material picture. These two reductions are, in an
appropriate sense, dual to each other.

The geometric-analytic approach to mechanics finds use in a number of
other diverse areas as well. We mention just a few samples.

Integrable systems (Moser (1980], Perelomov [1990], Adams, Harnad, and
Previato [1988], Fomenko and Trofimov [1989], Fomenko [1988a, 1988b],
Reyman and Semenov-Tian-Shansky [1990], and Moser and Veselov [1991]).

Applications of integrable systems to numerical analysis (like the QR algo-
rithm and sorting algorithms); see Deift and Li [1989] and Bloch, Brockett,
and Ratiu {1990, 1992].

Numerical integration (Sanz-Serna and Calvo [1994], Marsden, Patrick, and
Shadwick {1996], Wendlandt and Marsden [1997), Marsden, Patrick, and
Shkoller [1998]).

Hamiltonian chaos (Arnold [1964], Ziglin [1980a, 1980b, 1981], Holmes and
Marsden [1981, 1982a, 1982b, 1983], Wiggins [1988]).

Averaging (Cushman and Rod [1982], Iwai [1982, 1985], Ercolani, Forest,
McLaughlin, and Montgomery [1987]).

Hamiltonian bifurcations (van der Meer [1985], Golubitsky and Schaeffer
[1985], Golubitsky and Stewart [1987], Golubitsky, Stewart, and Schaeffer
[1988], Lewis, Marsden, and Ratiu [1987], Lewis, Ratiu, Simo, and Mars-
den [1992], Montaldi, Roberts, and Stewart [1988], Golubitsky, Marsden,
Stewart, and Dellnitz {1994]).

Algebraic geometry (Atiyah [1982, 1983], Kirwan {1984, 1985 1998]).
Celestial mechanics (Deprit {1983], Meyer and Hall [1992]).

Vortex dynamics (Ziglin [1980b], Koiller, Soares, and Melo Neto [1985],
Wan and Pulvirente [1984], Wan [1986, 1988a, 1988b, 1988c], Kirwan [1988],
Szeri and Holmes [1988], Newton [1994], Pekarsky and Marsden [1998]).

Solitons (Flaschka, Newell, and Ratiu [1983a, 1983b], Newell [1985], Kovati¢
and Wiggins [1992], Alber and Marsden [1992]).

Multisymplectic geometry, PDEs, and nonlinear waves (Gotay, Isenberg,
and Marsden [1997], Bridges [1994, 1997], Marsden and Shkoller [1997),
and Marsden, Patrick, and Shkoller [1998]).

Relativity and Yang-Mills theory (Fischer and Marsden [1972, 1979], Arms
[1981], Arms, Marsden, and Moncrief [1981, 1982]).
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o Fluid variational principles using Clebsch variables and “Lin constraints”
(Seliger and Whitham [1968], Cendra and Marsden [1987], Cendra, Ibort,
and Marsden [1987], Holm, Marsden, and Ratiu {1998a]).

e Control, stabilization, satellite and underwater vehicle dynamics (Krish-
naprasad [1985], van der Schaft and Crouch [1987], Aeyels and Szafranski
[1988], Bloch, Krishnaprasad, Marsden, and Sanchez de Alvarez {1992],
Wang, Krishnaprasad, and Maddocks [1991], Leonard [1997], Leonard and
Marsden [1997]), Bloch, Leonard, and Marsden [1998], and Holmes, Jenk-
ins, and Leonard [1998]).

¢ Nonholonomic systems (Naimark and Fufaev [1972], Koiller [1992], Bates
and Sniatycki [1993], Bloch, Krishnaprasad, Marsden, and Murray [1996],
Koon and Marsden [1997a, 1997b, 1998], Zenkov, Bloch, and Marsden
[1998]).

Reduction theory for mechanical systems with symmetry is a natural
historical continuation of the works of Liouville (for integrals in involution)
and of Jacobi (for angular momentum) for reducing the phase space dimen-
sion in the presence of first integrals. It is intimately connected with work on
momentum maps, and its forerunners appear already in Jacobi [1866], Lie
[1890], Cartan [1922], and Whittaker [1927]. It was developed later in Kir-
illov [1962], Arnold [1966a], Kostant [1970], Souriau [1970], Smale [1970],
Nekhoroshev [1977], Meyer [1973], and Marsden and Weinstein {1974]. See
also Guillemin and Sternberg {1984] and Marsden and Ratiu [1986] for the
Poisson case and Sjamaar and Lerman [1991] for basic work on the singular
symplectic case.



2

Hamiltonian Systems on Linear
Symplectic Spaces

A natural arena for Hamiltonian mechanics is a symplectic or Poisson mani-
fold. The next few chapters concentrate on the symplectic case, while Chap-
ter 10 introduces the Poisson case. The symplectic context focuses on the
symplectic two-form Y dg' A dp; and its infinite-dimensional analogues,
while the Poisson context looks at the Poisson bracket as the fundamental
object.

To facilitate an understanding of a number of points, we begin this chap-
ter with the theory in linear spaces in which case the symplectic form
becomes a skew-symmetric bilinear form that can be studied by means of
linear-algebraic methods. This linear setting is already adequate for a num-
ber of interesting examples such as the wave equation and Schrédinger’s
equation.

Later, in Chapter 4, we make the transition to manifolds, and we gen-
eralize symplectic structures to manifolds in Chapters 5 and 6. In Chap-
ters 7 and 8 we study the basics of Lagrangian mechanics, which are based
primarily on variational principles rather than on symplectic or Poisson
structures. This apparently very different approach is, however, shown to
be equivalent to the Hamiltonian one under appropriate hypotheses.

2.1 Introduction

To motivate the introduction of symplectic geometry in mechanics, we
briefly recall from §1.1 the classical transition from Newton’s second law to
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the Lagrange and Hamilton equations. Newton’s second law for a parti-
cle moving in Euclidean three-space R3, under the influence of a potential

energy V(q), is
F = ma, (2.1.1)

where q € R3, F(q) = —VV(q) is the force, m is the mass of the particle,
and a = d2q/dt? is the acceleration (assuming that we start in a postulated
privileged coordinate frame called an inertial frame).! The potential en-
ergy V is introduced through the notion of work and the assumption that
the force field is conservative as shown in most books on vector calculus.
The introduction of the kinetic energy

1 dq 2
K=:-m|=2
2m“dt

is through the power, or rate of work, equation

dK o .
—d-t_- - m<qaq> - <q)F>7
where (,) denotes the inner product on R3.

The Lagrangian is defined by

L(d¢) = Fhal’ - V(a), (2.1.2)

and one checks by direct calculation that Newton’s second law is equivalent
to the FEuler—-Lagrange equations

—— - — =0, 2.1.3

dt 8¢t O¢ ( )
which are second-order differential equations in ¢¢; the equations (2.1.3) are
worthy of independent study for a general L, since they are the equations
for stationary values of the action integral

12) o
5[ Ligd)dt =0, (2.14)

31

as will be discussed in detail later. These variational principles play a
fundamental role throughout mechanics—both in particle mechanics and
field theory.

INewton and subsequent workers in mechanics thought of this inertial frame as one
“fixed relative to the distant stars.” While this raises serious questions about what this
could really mean mathematically or physically, it remains a good starting point. Deeper
insight is found in Chapter 8 and in courses in general relativity.
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1t is easily verified that dE/dt = 0, where E is the total energy:

1
E = sml|4l|* +V(a).

Lagrange and Hamilton observed that it is convenient to introduce the
momentum p; = m¢* and rewrite F as a function of p; and ¢* by letting

Hiap) = B4 y(q), (2.15)

for then Newton’s second law is equivalent to Hamilton’s canonical
equations

L _OH . 9H

=22 5= 2.1.6
¢=5p P o7 (2.1.6)

which is a first-order system in (q, p)-space, or phase space.

Matrix Notation. For a deeper understanding of Hamilton’s equations,
we recall some matrix notation (see Abraham, Marsden, and Ratiu [1988,
Section 5.1] for more details). Let E be a real vector space and E* its dual
space. Let ep,... ,e, be a basis of E with the associated dual basis for E*
denoted by el,... ,e™; that is, €' is defined by

(e e5) = €'(ej) = 6,

which equals 1 if i = j and 0 if i # j. Vectors v € E are written v = v'e;
(a sum on ¢ is understood) and covectors a € E* as a = a;e*; v' and oy
are the components of v and «, respectively.

If A: E — F is a linear transformation, its matriz relative to bases
€t,...,en of Eand fi,..., fm of F is denoted by A]i and is defined by

Ale;) = A5 ie, [A@)) = Ahvt (2.1.7)

Thus, the columns of the matrix of A are A(e;),... , A(ey); the upper index
is the row index, and the lower index is the column index. For other linear
transformations, we place the indices in their corresponding places. For
example, if A: E* — F is a linear transformation, its matrix A% satisfies
A(e?) = A f;; that is, [A(a)]' = AYq,.

If B: Ex F — Ris a bilinear form, that is, it is linear separately in each
factor, its matriz B;; is defined by

Bij = B(ei, f;); ie, B(v,w)=v'Buw’. (2.1.8)
Define the associated linear map B’ : E — F* by

B"(v)(w) = B(v,w)
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and observe that B’(e;) = By;f’. Since B°(e;) is the ith column of the
matrix representing the linear map B®, it follows that the matriz of B® in
the bases e, ... ,en, f1,..., f™ is the transpose of B;j; that is,

[B";: = Bi;. (2.1.9)

Let Z denote the vector space of (g,p)’s and write z = (g, p). Let the
coordinates qj,pj be collectively denoted by z/, I = 1,...,2n. One reason
for the notation z is that if one thinks of z as a complex variable z = g+ ip,
then Hamilton’s equations are equivalent to the following complex form of
Hamilton’s equations (see Exercise 2.1-1):

0H

.- _g;0H
z Yo7

(2.1.10)

where 0/9% := (8/dq — 10/9p)/2.

Symplectic and Poisson Structures. We can view Hamilton’s equa-
tions (2.1.6) as follows. Think of the operation

OH O6H OH OH
dH(z) = (3_qi’6_pi> ~ (5&-"@

which forms a vector field Xy, called the Hamiltonian vector field, from
the differential of H, as the composition of the linear map

) =: Xy(z), (2.1.11)

R:2*—2Z
with the differential dH(z) of H. The matrix of R is

[R47] = [ 31 (l) ] =1, (21.12)

where we write J for the specific matrix (2.1.12) sometimes called the sym-
plectic matriz. Here, 0 is the n x n zero matrix and 1 is the n x n identity
matrix. Thus,

Xg(z) = R-dH(2) (2.1.13)
or, if the components of Xy are denoted by X/, I =1,...,2n,
OH
I _ plJ : -
X' =R 52—5, 1.e., XH = .HVH, (2114)

where VH is the naive gradient of H, that is, the row vector dH but
regarded as a column vector.

Let B(a,) = {(a,R(B)) be the bilinear form associated to R, where
(,) denotes the canonical pairing between Z* and Z. One calls either the
bilinear form B or its associated linear map R the Poisson structure. The
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classical Poisson bracket (consistent with what we defined in Chapter 1)
is defined by

{F,G} = B(dF,dG) =dF - JVG. (2.1.15)

The symplectic structure ) is the bilinear form associated to R™! :

Z — Z*, that is, Q(v,w) = (R™1(v),w), or, equivalently, @ = R~1. The
matrix of Q is J in the sense that

Qv,w) = v7 Jw. (2.1.16)

To unify notation we shall sometimes write

Q  for the symplectic form, ZxZ—-R with matrix J,
Q"  for the associated linear map, zZ — Z* with matrix JT,
Q' for the inverse map (*)"! =R, Z*—Z with matrix J,
B for the Poisson form, Z* x Z* - R with matrix J .

Hamilton’s equations may be written

= Xg(z) = Q'dH(2). (2.1.17)
Multiplying both sides by Q°, we get
@ Xy(2) = dH(2). (2.1.18)
In terms of the symplectic form, (2.1.18) reads
QU Xy(z),v) =dH(z) v (2.1.19)

for all z,v € Z.

Problems such as rigid-body dynamics, quantum mechanics as a Hamil-
tonian system, and the motion of a particle in a rotating reference frame
motivate the need to generalize these concepts. We shall do this in sub-
sequent chapters and deal with both symplectic and Poisson structures in
due course.

Exercises

o 2.1-1. Writing z = g+ ip, show that Hamilton’s equations are equivalent
to
z2=-21—.
0z

Give a plausible definition of the right-hand side as part of your answer (or
consult a book on complex variables theory).

¢ 2.1-2. Write the harmonic oscillator mZ + kz = 0 in the form of Euler-
Lagrange equations, as Hamilton’s equations, and finally, in the complex
form (2.1.10).

o 2.1-3. Repeat Exercise 2.1-2 for the nonlinear oscillator m# +kz +ax3 =
0.
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2.2 Symplectic Forms on Vector Spaces

Let Z be a real Banach space, possibly infinite-dimensional, and let Q :
Z x Z — R be a continuous bilinear form on Z. The form 2 is said to
be nondegenerate (or weakly nondegenerate) if Q(z;, z2) = 0 for all
29 € Z implies z; = 0. As in §2.1, the induced continuous linear mapping
O : Z — Z* is defined by

D (21)(z2) = Wz, 22). (2.2.1)

Nondegeneracy of Q is equivalent to injectivity of Q°, that is, to the
condition “Q?(z) = 0 implies z = 0.” The form  is said to be strongly
nondegenerate if )° is an isomorphism, that is, Q° is onto as well as being
injective. The open mapping theorem guarantees that if Z is a Banach space
and Q' is one-to-one and onto, then its inverse is continuous. In most of
the infinite-dimensional examples discussed in this book 2 will be only
(weakly) nondegenerate.

A linear map between finite-dimensional spaces of the same dimension
is one-to-one if and only if it is onto. Hence, when Z is finite-dimensional,
weak nondegeneracy and strong nondegeneracy are equivalent. If Z is finite-
dimensional, the matrix elements of  relative to a basis {er} are defined
by

Q[J = Q(GI, eJ).
If {e’} denotes the basis for Z* that is dual to {e;}, that is, (e’,e,) = 67,
and if we write z = zle; and w = w’ey, then
Qz,w) = 210w’ (sum over I,J).
Since the matrix of Q° relative to the bases {e;} and {e’} equals the
transpose of the matrix of Q relative to {e;}, that is (2°);; = Q;, non-
degeneracy is equivalent to det[Qr;] # 0. In particular, if Q is skew and

nondegenerate, then Z is even-dimensional, since the determinant of a skew-
symmetric matrix with an odd number of rows (and columns) is zero.

Definition 2.2.1. A symplectic form Q on a vector space Z is a non-
degenerate skew-symmetric bilinear form on Z. The pair (Z,) is called a
symplectic vector space. If Q) is strongly nondegenerate, (Z,1) is called
a strong symplectic vector space.

Examples
We now develop some basic examples of symplectic forms.

(a) Canonical Forms. Let W be a vector space, and let Z = W x W*.
Define the canonical symplectic form Q on Z by

Q(wr, 01), (w2, a2)) = az(wr) — ar(wa), (2.2.2)
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where wy,wy € W and a,a; € W*.

More generally, let W and W' be two vector spaces in duality, that is,
there is a weakly nondegenerate pairing (,) : W x W — R. Then on
W x W',

Q((wlaal)a(w2ao‘2)) = (Olz,’ll)l) - <a17w2> (223)
is a weak symplectic form. ¢

(b) The Space of Functions. Let F(R?) be the space of smooth func-
tions ¢ : R® — R, and let Den.(R3) be the space of smooth densities on
R3 with compact support. We write a density m € Den.(R3) as a function
7' € F(R3) with compact support times the volume element d*z on R3
as m = n’' d®z. The spaces F and Den, are in weak nondegenerate dual-
ity by the pairing (p,7) = [ ¢’ d®z. Therefore, from (2.2.3) we get the
symplectic form €2 on the vector space Z = F(R3) x Den.(R3):

Q(e1,m1), (2, m2)) = /IR3 Y17y — /Ra PaTy. (2.2.4)

We choose densities with compact support so that the integrals in this
formula will be finite. Other choices of spaces could be used as well. ¢

(c) Finite-Dimensional Canonical Form. Suppose that W is a real
vector space of dimension n. Let {e;} be a basis of W, and let {e’} be the
dual basis of W*. With Z = W x W* and defining Q: Zx Z — Ras in
(2.2.2), one computes that the matrix of 2 in the basis

{(e1,0),...,(€n,0),(0,€"),...,(0,e™)}

is
J= [ ?1 (1) ] , (2.2.5)

where 1 and 0 are the n x n identity and zero matrices. ¢

(d) Symplectic Form Associated to an Inner Product Space. If
(W, {,)) is a real inner product space, W is in duality with itself, so we
obtain a symplectic form on Z = W x W from (2.2.3):

Q((’LU],’LUQ), (21, 22)) = (ZQ,U)1> - <21,w2> . (226)

As a special case of (2.2.6), let W = R? with the usual inner product

3
(q,v)=q-v= Zq’v’.
i=1
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The corresponding symplectic form on R® is given by

Q((q1,V1), (QZ»V2)) =V2-:q1 —V]-qg, (227)

where q1,qa, V1, vy € R3. This coincides with € defined in Example (c) for
W = R3, provided that R? is identified with (R3)*. ¢

Bringing € to canonical form using elementary linear algebra results
in the following statement. If (Z,9) is a p-dimensional symplectic vector
space, then p is even. Furthermore, Z is, as a vector space, isomorphic to
one of the standard examples, namely W x W*, and there is a basis of W
in which the matriz of Q is J. Such a basis is called canonical, as are the
corresponding coordinates. See Exercise 2.2-3.

(e) Symplectic Form on C". Write elements of complex n-space C"

as n-tuples z = (23,..., 2,) of complex numbers. The Hermitian inner
product is
n n n
(zyw) =) 2 W; = Y _(Tju; +yv;) +4 Y (w595 — v;z;),
j=1 j=1 =1

where z; = z; + iy; and w; = u; + iv;. Thus, Re(z,w) is the real inner
product and —Im (2, w) is the symplectic form if C" is identified with
R™ x R™. ¢

(f) Quantum-Mechanical Symplectic Form. We now discuss an in-
teresting symplectic vector space that arises in quantum mechanics, as we
shall further explain in Chapter 3. Recall that a Hermitian inner prod-
uct (,) : H x H — C on a complex Hilbert space H is linear in its first
argument and antilinear in its second, and (¢;, 19) is the complex conjugate

of (1p2,1), where ¥, 43 € H.
Set

Q1,%2) = —2hIm (1, 92),

where A is Planck’s constant. One checks that §2 is a strong symplectic form
on H.

There is another view of this symplectic form motivated by the preceding
Example (d) that is interesting. Let H be the complexification of a real
Hilbert space H, so the complex Hilbert space H is identified with H x H,
and the Hermitian inner product is given by

((u1,ug), (v1,v2)) = (u1,v1) + (u2,v2) + i({uz,v1) — (u1,v2)).

The imaginary part of this form coincides with that in (2.2.6).
There is yet another view related to the interpretation of a wave function
3 and its conjugate 1 being conjugate variables. Namely, we consider the
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embedding of H into H x H* via 9 — (iy,9). Then one checks that the
restriction of & times the canonical symplectic form (2.2.6) on H x H*,
namely,

((¥1,1), (Y2, p2)) = ARe[(p2,%1) — (p1,%2)],

coincides with €. ¢

Exercises

2.2-1. Verify that the formula for the symplectic form for R?" as a matrix,

namely,
0 1
=[5 o]

coincides with the definition of the symplectic form as the canonical form
on R?" regarded as the product R” x (R™)*.

2.2-2. Let (Z,Q) be a finite-dimensional symplectic vector space and let
V C Z be a linear subspace. Assume that V is symplectic; that is, 0
restricted to V x V is nondegenerate. Let

Ve={2€Z|Q(z,v)=0forallve V}.

Show that V! is symplectic and Z =V @ V<.

2.2-3. Find a canonical basis for a symplectic form Q on Z as follows. Let
e1 € Z, e1 # 0. Find e, € Z with Q(e;, e2) # 0. By rescaling e,, assume
Q(e1,e2) = 1. Let V be the span of e; and e;. Apply Exercise 2.2-2 and
repeat this construction on V<.

2.2-4. Let (Z,Q) be a finite-dimensional symplectic vector space and V C
Z a subspace. Define V! as in Exercise 2.2-2. Show that Z/V< and V* are
isomorphic vector spaces.

2.3 Canonical Transformations, or
Symplectic Maps

To motivate the definition of symplectic maps (synonymous with canonical
transformations), start with Hamilton’s equations

, 0H . bH

=2 =22 2.3.1
¢=5 P o (2.3.1)

and a transformation ¢ : Z — Z of phase space to itself. Write

(G,P) = »(q,p),
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that is,
£ =(z). (2.3.2)
Assume that z(t) = (g(t),p(t)) satisfies Hamilton’s equations, that is,
:(t) = Xn(2(t)) = QVdH(2(t)), (2.3.3)

where Q! : Z* — Z is the linear map with matrix J whose entries we denote
by B/K. By the chain rule, Z = ((z) satisfies

7 =30 = ALY (2.3.4)
(sum on J). Substituting (2.3.3) into (2.3.4), employing coordinate nota-
tion, and using the chain rule, we conclude that

x OH . OH

; = AL,BY 5K = Al BJKAKa = (2.3.5)
Thus, the equations (2.3.5) are Hamiltonian if and only if
AL, BT AL, = BIT (2.3.6)
which in matrix notation reads
AJAT = . (2.3.7)
In terms of composition of linear maps, (2.3.6) means
Ao o AT = F) (2.3.8)

since the matrix of Q! in canonical coordinates is J (see §2.1). A transfor-
mation satisfying (2.3.6) is called a canonical transformation, a sym-
plectic transformation, or a Poisson transformation.?

Taking determinants of (2.3.7) shows that det A = +1 (we will see in
Chapter 9 that det A =1 is the only possibility) and in particular that A
is invertible; taking the inverse of (2.3.8) gives

(AT) o oAl =,
that is,

AToPo A=, (2.3.9)

2In Chapter 10, where Poisson structures can be different from symplectic ones, we
will see that (2.3.8) generalizes to the Poisson context.
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which has the matrix form
ATJA =7, (2.3.10)

since the matrix of Q° in canonical coordinates is —J (see §2.1). Note that
(2.3.7) and (2.3.10) are equivalent (the inverse of one gives the other). As
bilinear forms, (2.3.9) reads

QDy(z) - 21, Dp(2) - 22) = Wz, 22), (2.3.11)

where D¢ is the derivative of ¢ (the Jacobian matrix in finite dimensions).
With (2.3.11) as a guideline, we next write the general condition for a map
to be symplectic.

Definition 2.3.1. If (Z,Q) and (Y,Z) are symplectic vector spaces, a
smooth map f: Z — Y is called symplectic or canonical if it preserves
the symplectic forms, that is, if

E(Df(z) - 21,Df(2) - 22) = Qz1, 22) (2.3.12)

forall z,2z1,20 € Z.

We next introduce some notation that will help us write (2.3.12) in a
compact and efficient way.

Pull-Back Notation
We introduce a convenient notation for these sorts of transformations.

¢*f  pull-back of a function: o*f = fo.
w«g push-forward of a function: p.g=gop L.
@« X  push-forward of a vector field X by ¢:

(e« X)(p(2)) = Dp(2) - X (2);
in components,

op!

I_ J

(X)) = BzJX .

©*Y  pull-back of a vector field Y by ¢: ¢*Y = (p71).Y

¢*Q1 pull-back of a bilinear form € on Z gives a bilinear
form ¢*Q) depending on the point z € Z:

(#"Q)=(21, 22) = UD@(2) - 21, Dp(2) - 22);
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in components,

. 8K L
(" Y)ry = {J%QKU

p«Z  push-forward of a bilinear form = by ¢ equals the
pull-back by the inverse: p.= = (o~ !)*E.

In this pull-back notation, (2.3.12) reads (f*E), = Q,, or f*= = Q for
short.

The Symplectic Group. It is simple to verify that if (Z,Q) is a finite-
dimensional symplectic vector space, the set of all linear symplectic map-
pings T : Z — Z forms a group under composition. It is called the sym-
plectic group and is denoted by Sp(Z,(2). As we have seen, in a canonical
basis, a matrix A is symplectic if and only if

ATJA =], (2.3.13)

where AT is the transpose of A. For Z = W x W* and a canonical basis,
if A has the matrix

A= [ Agg Agp ] , (2.3.14)
then one checks (Exercise 2.3-2) that (2.3.13) is equivalent to either of the
following two conditions:

(1) AqqAL, and Ap, AL are symmetric and AgqAT, — A AT =1;
(2) AL Agq and AT Ay, are symmetric and A], Ay, — AT Apg = 1.

In infinite dimensions Sp(Z,Q) is, by definition, the set of elements of
GL(Z) (the group of invertible bounded linear operators of Z to Z) that
leave ) fixed.

Symplectic Orthogonal Complements. If (Z, () is a (weak) symplec-
tic space and F and F are subspaces of Z, we define

EY={2€Z|Q(z,e)=0forallec E},

called the symplectic orthogonal complement of E. We leave it to the
reader to check that

(i) E* is closed;
(ii) E C F implies F C E%;
(iii) EYNF% = (E+ F)%,
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(iv) if Z is finite-dimensional, then dim E + dim E® = dim Z (to show
this, use the fact that E? = ker(i* o O), where i : E — Z is the in-
clusion and i* : Z* — E* is its dual, i*(@) = aoi, which is surjective;
alternatively, use Exercise 2.2-4);

(v) if Z is finite-dimensional, E*? = E (this is also true in infinite di-
mensions if E is closed); and

(vi) if E and F are closed, then (EN F)® = E? 4+ F (to prove this use
(iii) and (v)).

Exercises

¢ 2.3-1. Show that a transformation ¢ : R?" — R?" is symplectic in the
sense that its derivative matrix A = D¢(2) satisfies the condition ATJA =
J if and only if the condition

Q(Azl, AZZ) = Q(Zl, 22)

holds for all z;, 25 € R?".

¢ 2.3-2. Let Z=W xW*,let A: Z — Z be a linear transformation, and,
using canonical coordinates, write the matrix of A as

A A
A= 99  “igp ] _
[ Apg  App

Show that A being symplectic is equivalent to either of the two following
conditions:

(1) AqqAZ;, and A,,,,qu are symmetric and AqqAZ;p - quA;";q =1

(if) A} Aqq and AT A, are symmetric and AT Ap, — AT Agp = 1. (Here
I denotes the n x n identity.)

¢ 2.3-3. Let f be a given function of q = (q!,¢%,...,q"). Define the map
¢ : R™ — R™ by o(q,p) = (q,p + df(q)). Show that ¢ is a canonical
(symplectic) transformation.

o 2.3-4.
(a) Let A € GL(n,R) be an invertible linear transformation. Show that

the map ¢ : R?" — R?" given by (q,p) — (Aq, (A~!)Tp) is a canon-
ical transformation.

(b) If R is a rotation in R3, show that the map (q,p) — (Rq,Rp) is a
canonical transformation.
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2.3-5. Let (Z,Q) be a finite-dimensional symplectic vector space. A sub-
space E C Z is called isotropic, coisotropic, and Lagrangianif E C E%,
E® C E, and E = E%, respectively. Note that E is Lagrangian if and only
if it is isotropic and coisotropic at the same time. Show that:

(a) An isotropic (coisotropic) subspace E is Lagrangian if and only if
dim E = dim E®. In this case necessarily 2dim E = dim Z.

(b) Every isotropic (coisotropic) subspace is contained in (contains) a
Lagrangian subspace.

(¢) An isotropic (coisotropic) subspace is Lagrangian if and only if it is
a maximal isotropic (minimal coisotropic) subspace.

2.4 The General Hamilton Equations

The concrete form of Hamilton’s equations we have already encountered is
a special case of a construction on symplectic spaces. Here, we discuss this
formulation for systems whose phase space is linear; in subsequent sections
we will generalize the setting to phase spaces that are symplectic manifolds
and in Chapter 10 to spaces where only a Poisson bracket is given. These
generalizations will all be important in our study of specific examples.

Definition 2.4.1. Let (Z,Q) be a symplectic vector space. A vector field
X : Z — Z is called Hamiltonian if

(X (z)) = dH(2), (2.4.1)

for all z € Z, for some C' function H : Z — R. Here dH(z) = DH(z) is
alternative notation for the derivative of H. If such an H ezxists, we write
X = Xy and call H a Hamiltonian function, or energy function, for
the vector field X .

In a number of important examples, especially infinite-dimensional ones,
H need not be defined on all of Z. We shall briefly discuss in §3.3 some of
the technicalities involved.

If Z is finite-dimensional, nondegeneracy of  implies that Q° : Z — Z* is
an isomorphism, which guarantees that Xy exists for any given function H.
However, if Z is infinite-dimensional and (2 is only weakly nondegenerate,
we do not know a priori that Xy exists for a given H. If it does exist, it
is unique, since £ is one-to-one.

The set of Hamiltonian vector fields on Z is denoted by Xpam(Z), or
simply XHam. Thus, Xy € Xgam is the vector field determined by the
condition

Xy (z),02) =dH(z) -6z forall 2,0z € Z. (2.4.2)
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If X is a vector field, the interior product ix$ (also denoted by X 1 Q)
is defined to be the dual vector (also called, a one-form) given at a point
z € Z as follows:

(ixQ). € 2% (ixQ),(v) == WX (2),v),
for all v € Z. Then condition (2.4.1) or (2.4.2) may be written as
ixQ=dH; ie, X1Q=dH. (2.4.3)
To express H in terms of Xy and (), we integrate the identity
dH(tz) 2z = Q(Xg(tz), z)

from t = 0 to t = 1. The fundamental theorem of calculus gives

H(:)-HO) = | dfil(ttz dt = / dH(tz) - 2 dt
=/ Q(Xy(tz), z)dt. (2.4.4)
0

Let us now abstract the calculation we did in arriving at (2.3.7).

Proposition 2.4.2. Let (Z,) and (Y, E) be symplectic vector spaces and
f:Z —Y a diffeomorphism. Then f is a symplectic transformation if and
only if for all Hamiltonian vector fields Xy on'Y', we have fuXpor = Xy,
that is,

Df(z) Xnos(z) = Xu(f(2)). (2.4.5)
Proof. Note that forv € Z,

U XHop(2),v) =d(H o f)(z) v =dH(f(2))-Df(2) -v
= E(Xu(f(2)), Df(2) - ). (24.6)
If f is symplectic, then

E(Df(2) - Xnos(2), Df(2) - v) = U Xnof(2),v),

and thus by nondegeneracy of Z and the fact that D f(2) - v is an arbitrary
element of Y (because f is a diffeomorphism and hence Df(z) is an iso-
morphism), (2.4.5) holds. Conversely, if (2.4.5) holds, then (2.4.6) implies

E(Df(2) - Xros(2), Df(2) - v) = UXpos(2),v)

for any v € Z and any C' map H : Y — R. However, Xpgos(z) equals an
arbitrary element w € Z for a correct choice of the Hamiltonian function
H, namely, (H o f){(z) = Q(w, z). Thus, f is symplectic. |

Definition 2.4.3. Hamilton’s equations for H is the system of differ-
ential equations defined by Xy . Letting c: R — Z be a curve, they are the
equations
de(t)
dt

= Xp(c(t)). (2.4.7)
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The Classical Hamilton Equations. We now relate the abstract form
(2.4.7) to the classical form of Hamilton’s equations. In the following, an
n-tuple (¢*,...,q") will be denoted simply by (g¢).
Proposition 2.4.4. Suppose that (Z,?) is a 2n-dimensional symplectic
vector space, and let (¢*,p;) = (¢*,...,q" p1,-..,Pn) denote canomical
coordinates, with respect to which 0 has matriz J. Then in this coordinate
system, Xy : Z — Z is given by
OH OH
Xg=|7—,—5=)=7J-VH 2.4.8

" (3pi aq’) ! (248)

Thus, Hamilton’s equations in canonical coordinates are

d¢¢ O0H dp;  OH

'E' —_ 8pi’ E e —gq_i. (2-4-9)
More generally, if Z =V xV', (-,-) : VxV’' — R is a weakly nondegenerate
pairing, and Q((e1,a1), (€2, az)) = {az,e1) — (o1, ez), then

Xu(e,a) = (‘5—H —‘S—H) , (2.4.10)

da’ de
where 6H/da € V and H/be € V' are the partial functional deriva-
tives defined by
D:H(e,a)- 8= <ﬁ, (;—5> (2.4.11)
for any B € V' and similarly for §H/be; in (2.4.10) it is assumed that the
functional derivatives exist.
Proof. If (f,8) € V x V/, then
é6H O6H 6H 6H
=DyH(e,a)- B+ DiH(e,a) - f
= (dH(e,a),(f,0)) - n

Proposition 2.4.5 (Conservation of Energy). Let c(t) be an integral cur-
ve of Xg. Then H(c(t)) is constant in t. If ¢, denotes the flow of Xy,
that is, p:(z) is the solution of (2.4.7) with initial conditions z € Z, then
Hoyp,=H.

Proof. By the chain rule,
SHC() = aH((0) - 560) = 2 (Xa(elt), Felt))
= 0 (Xn(e(t)), Xn(e() =0,

where the final equality follows from the skew-symmetry of Q. n



2.5 When Are Equations Hamiltonian? 77

Exercises

o 2.4-1. Let the skew-symmetric bilinear form Q on R?” have the matrix

B 1

-1 0|’
where B = [B,;;] is a skew-symmetric n x n matrix, and 1 is the identity
matrix.

(a) Show that  is nondegenerate and hence a symplectic form on R?"?.

(b) Show that Hamilton’s equations with respect to Q are, in standard
coordinates,
dg' OH dpi _ OH  OH
dt  9p;’ dt  O¢ Y 0p;’

2.5 When Are Equations Hamiltonian?

Having seen how to derive Hamilton’s equations on (Z,Q) given H, it is
natural to consider the converse: When is a given set of equations

dz
i X(2), (2.5.1)

where X : Z — Z is a given vector field, Hamilton’s equations for some H?
If X is linear, the answer is given by the following.

Proposition 2.5.1. Let the vector field A: Z — Z be linear. Then A is
Hamiltonian if and only if A is Q-skew, that is,

QN (Az1, 22) = —Q(z1, Az)
forall 21,22 € Z. Furthermore, in this case one can take H(z) = $Q(Az, z).
Proof. Differentiating the defining relation
QX (z),v) =dH(2) v (2.5.2)
with respect to z in the direction u and using bilinearity of £, one gets
ADXy(2) - u,v) = D?H(2)(v,u). (2.5.3)
From this and the symmetry of the second partial derivatives, we get

QDXg(2)  u,v) = D2 H(2)(u,v) = QDXx(2) - v, u)
= -Q(u,DXg(2) - v). (2.5.4)
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If A = Xy for some H, then DXy(z) = A, and (2.5.4) becomes Q(Au,v) =
—Q(u, Av); hence A is Q-skew.

Conversely, suppose that A is Q-skew. Defining H(z) = %Q(Az, z), we
claim that A = Xy. Indeed,

dH(z) - u = 3Q(Au, 2) + 3Q(Az,u)
= —10(u, A2) + 3Q(Az,u)
Q(Az,u) + 3Q(Az,u) = Q(Az,u). |

1
2

In canonical coordinates, where {0 has matrix J, {2-skewness of A4 is
equivalent to symmetry of the matrix JA; that is, JA + ATJ = 0. The
vector space of all linear transformations of Z satisfying this condition is
denoted by sp(Z,2), and its elements are called infinitesimal symplectic
transformations. In canonical coordinates, if Z =W x W* and if A has
the matrix

A= [ Agg Agp ] , (2.5.5)

Pq APP

then one checks that A is infinitesimally symplectic if and only if Agp and
Apq are both symmetric and AL + Ay, = 0 (see Exercise 2.5-1).

In the complex linear case, we use Example (f) in §2.2 (2A times the
negative imaginary part of a Hermitian inner product (,) is the symplectic
form) to arrive at the following.

Corollary 2.5.2. Let H be a complex Hilbert space with Hermitian inner
product {,) and let Q(¢1,12) = —2h Im (¢1,¢2). Let A : H — H be a
complex linear operator. There exists an H : H — R such that A = Xy if
and only if iA is symmetric or, equivalently, satisfies

(1AY1,%2) = (Y1,1AY2) . (2.5.6)

In this case, H may be taken to be H(y)) = h(iAy,y). We let Hyp =
ihA, and thus Hamilton’s equation ¢ = Ay becomes the Schridinger
equation®

8
méf‘: ot (2.5.7)

Proof. The operator A is §2-skew if and only if the condition

Im (A9, %2) = —Im (Y1, Aba)

3Strictly speaking, equation (2.5.6) is required to hold only on the domain of the
operator A, which need not be all of H. We shall ignore these issues for simplicity. This
example is continued in §2.6 and in §3.2.
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holds for all 11,12 € H. Replacing ¢; by i%; and using the relation
Im(iz) = Re z, this condition is equivalent to Re (A1, ¥2) = — Re (1, A).
Since

(1A%1,102) = —Im (Ath1,2) + i Re (A, 2) (2.5.8)

and

(1,1A%2) = +Im (1, Atpe) — i Re (1, Ata) (2.5.9)
we see that {2-skewness of A is equivalent to iA being symmetric. Finally,
1
h{idy,9) = hRei(Ay,¢) = ~hlm (Ay, ) = 5 QUAY, ),

and the corollary follows from Proposition 2.5.1. |

For nonlinear differential equations, the analogue of Proposition 2.5.1 is
the following.

Proposition 2.5.3. Let X : Z — Z be a (smooth) vector field on a
symplectic vector space (Z,2). Then X = Xy for some H : Z — R if and
only if DX (z) is Q-skew for all 2.

Proof. We have seen the “only if” part in the proof of Proposition 2.5.1.
Conversely, if DX(z) is -skew, define?

H(z) = /O " Q(X(t2), 2) di + constan; (25.10)
we claim that X = Xj. Indeed,
dH(z)-v = /O UDX(t2) - o, 2) + QX (22), ) e
- /0 QDX (t2) - 2,0) + X (t2),0)] b
-Q ( /0 DX(t) 2 4 X(12)] dt,v)
_ (/01 %[tX(tz)] dt,v) — Q(X(2),v). n

An interesting characterization of Hamiltonian vector fields involves the
Cayley transform. Let (Z, 2) be a symplectic vector spaceand A: Z — Z a

4Looking ahead to Chapter 4 on differential forms, one can check that (2.5.10) for H
is reproduced by the proof of the Poincaré lemma applied to the one-form ixQ. That
DX(z) is Q-skew is equivalent to d(ix ) = 0.
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linear transformation such that I — A is invertible. Then A is Hamiltonian if
and only if its Cayley transform C = (I+ A)(I-A)~! is symplectic. See
Exercise 2.5-2. For applications, see Laub and Meyer [1974], Paneitz [1981],
Feng [1986], and Austin and Krishnaprasad [1993]. The Cayley transform
is useful in some Hamiltonian numerical algorithms, as this last reference
and Marsden {1992} show.

Exercises

¢ 2.5-1. Let Z =W x W* and use a canonical basis to write the matrix of
the linear map A: Z — Z as

Ay A
A= qq  “gp } )
[ Apq  App
Show that A is infinitesimally symplectic, that is, JA + ATJ = 0, if and
only if Agp and Ay, are both symmetric and AL + Ap, = 0.

o 2.5-2. Let (Z,Q) be a symplectic vector space. Let A: Z — Z be a linear
map and assume that (I — A) is invertible. Show that A is Hamiltonian if
and only if its Cayley transform

(I+ A)I - A)™1
is symplectic. Give an example of a linear Hamiltonian vector field such
that (I — A) is not invertible.

o 2.5-3. Suppose that (Z, Q) is a finite-dimensional symplectic vector space
and let ¢ : Z — Z be a linear symplectic map with det ¢ = 1 (as mentioned
in the text, this assumption is superfluous, as will be shown later). If A
is an eigenvalue of multiplicity k, then so is 1/A. Prove this using the
characteristic polynomial of ¢.

o 2.5-4. Suppose that (Z, Q) is a finite-dimensional symplectic vector space
and let A: Z — Z be a Hamiltonian vector field.

(a) Show that the generalized kernel of A, defined to be the set
{z € Z | A*z =0 for some integer k > 1},
is a symplectic subspace.

(b) In general, the literal kernel ker A is not a symplectic subspace of
(Z,9Q). Give a counter example.

2.6 Hamiltonian Flows

This subsection discusses flows of Hamiltonian vector fields a little further.
The next subsection gives the abstract definition of the Poisson bracket,
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relates it to the classical definitions, and then shows how it may be used in
describing the dynamics. Later on, Poisson brackets will play an increas-
ingly important role.

Let Xy be a Hamiltonian vector field on a symplectic vector space (Z, )
with Hamiltonian H : Z — R. The flow of Xy is the collection of maps
pt : Z — Z satisfying

d

S°1(2) = X (e(2)) (2.6.1)

for each z € Z and real t and po(z) = 2. Here and in the following, all
statements concerning the map ¢, : Z — Z are to be considered only
for those 2z and t such that ¢:(2) is defined, as determined by differential
equations theory.

Linear Flows. First consider the case in which A is a (bounded) linear

vector field. The flow of A may be written as o; = e4; that is, the solution

of dz/dt = Az with initial condition zq is given by 2(t) = p¢(20) = e*“ 2.

Proposition 2.6.1. The flow ¢; of a linear vector field A: Z — Z con-
sists of (linear) canonical transformations if and only if A is Hamiltonian.

Proof. For all u,v € Z we have

2 (1) (w,v) = S:Apu(w), p1(0)

=0 (Fewe) +9 (e, Fow)
= Q). (o) + V), A ),

Therefore, A is Q2-skew, that is, A is Hamiltonian, if and only if each ¢; is
a linear canonical transformation. |

Nonlinear Flows. For nonlinear flows, there is a corresponding result.

Proposition 2.6.2. The flow ¢, of a (nonlinear) Hamiltonian vector
field Xu consists of canonical transformations. Conversely, if the flow of a
vector field X consists of canonical transformations, then it is Hamiltonian.

Proof. Let ¢, be the flow of a vector field X. By (2.6.1) and the chain
rule,

4 D)1 =D [%satm] ‘v =DX(px(2) - (De(z) -v),

which is called the first variation equation. Using this, we get

2 Q(Dp(2) - u, Die(2) - v) = ADX (u(2)) - [Dpi(2) - u], Der(2) - v)

dt
+ QD (2) - u, DX (p1(2)) - [Dpe(2) - v]).
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If X = Xy, then DXg(p:(2)) is Q-skew by Proposition 2.5.3, so
Q(Dyi(2) - u,Dyi(z) - v) = constant.

At t = 0 this equals Q(u, v), so ¢;Q = Q. Conversely, if ¢ is canonical, this
calculation shows that DX (¢:(2)) is {2-skew, whence by Proposition 2.5.3,
X = Xy for some H. n

Later on, we give another proof of Proposition 2.6.2 using differential
forms.

Example: The Schrodinger Equation

Recall that if H is a complex Hilbert space, a complex linear map U : H —
H is called unitary if it preserves the Hermitian inner product.

Proposition 2.6.3. Let A: H — H be a complez linear map on a com-
plex Hilbert space H. The flow ¢; of A is canonical, that is, consists of
canonical transformations with respect to the symplectic form Q defined in
Ezample (f) of §2.2, if and only if @, is unitary.

Proof. By definition,
Q(wl7¢2) = —2hIm <¢l)¢2> 3

SO
Q@1 peb2) = —2hIm (P31, p11)2)

for ¥1,ve € H. Thus, ¢; is canonical if and only if Im (@91, 01¢2) =
Im (1)1, 12}, and this in turn is equivalent to unitarity by complex linearity

Of Pt since <"/)1’¢2> =—Im <i¢17¢2> +7'Im <¢1,¢2) . .

This shows that the flow of the Schrédinger equation ¥ = Ay is
canonical and unitary and so preserves the probability amplitude of any
wave function that is a solution. In other words, we have

(‘Ptlb, <Pt1/)> = (1/)7'¢)> ’

where ¢, is the flow of A. Later we shall see how this conservation of the
norm also results from a symmetry-induced conservation law.

2.7 Poisson Brackets

Definition 2.7.1. Given a symplectic vector space (Z,Q) and two func-
tions F,G : Z — R, the Poisson bracket {F,G}:Z — R of F and G is
defined by

{F,G}(2) = UXF(2), Xc(2)). (2.7.1)
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Using the definition of a Hamiltonian vector field, we find that equivalent
expressions are

{F,G}(2) =dF(2) - Xg(z) = —dG(z) - XF(2). (2.7.2)
In (2.7.2) we write £x,F = dF - X¢ for the derivative of F' in the
direction Xg.

Lie Derivative Notation. The Lie derivative of f along X, £xf =
df-X,is the directional derivative of f in the direction X. In coordinates
it is given by

£xf= %}X’ (sum on I).

Functions F, G such that {F,G} = 0 are said to be in involution or to
Poisson commute.

Examples

Now we turn to some examples of Poisson brackets.

(a) Canonical Bracket. Suppose that Z is 2n-dimensional. Then in

canonical coordinates (¢',...,¢",p1,... ,pn) We have
oG
OF OF Opi
F,G} = y—=—|J
the) [3% Bq’] _0G
dqt
F
_oroG _ 9oFoc (sum on 7). (2.7.3)

~ 8¢'Op;  Op: Og*
From this we get the fundamental Poisson brackets
{¢$,¢’Y =0, {pi,p;} =0, and {d¢',p;} =4l (2.7.4)

In terms of the Poisson structure, that is, the bilinear form B from §2.1,
the Poisson bracket takes the form

{F,G} = B(dF,dG). (2.7.5)
¢

(b) The Space of Functions. Let (Z, ) be defined as in Example (b)
of §2.2 and let F,G : Z — R. Using equations (2.4.10) and (2.7.1) above,
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we get
6F OF 6G  OG
{F’G} = Q(XF,XG) =Q <(Ea _'(_5'5) ) <'5—7Fv _’E>)
0GOF OdF 4G\ 4
_ /Rs (57% _ EEE) &z, (2.7.6)
This example will be used in the next chapter when we study classical field
theory. ¢

The Jacobi-Lie Bracket. The Jacobi-Lie bracket [X,Y] of two vec-
tor fields X and Y on a vector space Z is defined by demanding that

df - [X,Y]=ddf-Y) - X —-d(df-X)-Y
for all real-valued functions f. In Lie derivative notation, this reads
Lixyf=E€xLyf— Ly Lxf.
One checks that this condition becomes, in vector analysis notation,
(X, Y]=(X-V)Y - (Y V)X,

and in coordinates,

0 o
J_xyI 9 vi_y1 9 yJ
XY} = X' =y -y
Proposition 2.7.2. Let[,] denote the Jacobi-Lie bracket of vector fields,
and let F,G € F(Z). Then
Xray = —Xr, Xal. (2.7.7)

Proof. We calculate as follows:

UX(ry(2),u) = d{F,GHz) - u = d(UXFr(2), X5(2))) - u
= QUDXp(z) u, Xa(z)) + UXr(2),DXc(2) - u)
= QDXp(2) Xg(2),u) — UDXa(z) - Xp(z),u)
= Q(DXp(2) - Xg(2) — DXg(2) - Xp(2),u)
= Q(-[Xr, Xc|(2),u).

Weak nondegeneracy of €2 implies the result. B

Jacobi’s Identity. We are now ready to prove the Jacobi identity in a
fairly general context.
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Proposition 2.7.3. Let (Z,9) be a symplectic vector space. Then the
Poisson bracket {,} : F(Z) x F(Z) — F(Z) makes F(Z) into a Lie
algebra. That is, this bracket is real bilinear, skew-symmetric, and satisfies
Jacobi’s identity, that is,

{F,{G,H}} +{G,{H,F}} +{H,{F,G}}=0.
Proof. To verify Jacobi’s identity note that for F, G, H : Z — R, we have

{F’ {G’H}} = "£XF{GaH} = £XF“£XGH’
{G,{H,F}} = ~£XG{H,F} =-Lx. £xpH,

and
{H,{F,G}} = £xp 6, H,
so that
{FAG H}} +{G,{H,F}} + {H,{F,G}} = £x(p ) H + £1xp x0}H-
The result thus follows by (2.7.7). [ ]

From Proposition 2.7.2 we see that the Jacobi-Lie bracket of two Hamil-
tonian vector fields is again Hamiltonian. Thus, we obtain the following
corollary.

Corollary 2.7.4. The set of Hamiltonian vector fields Xgam(Z) forms a
Lie subalgebra of X(Z).

Next, we characterize symplectic maps in terms of brackets.

Proposition 2.7.5. Let ¢ : Z — Z be a diffeomorphism. Then ¢ is
symplectic if and only if it preserves Poisson brackets, that is,

{¢*F,9*G} = ¢*{F,G} (2.7.8)
forall F,G: Z — R.
Proof. We use the identity

e (£xf) = Lo x (" f),
which follows from the chain rule. Thus,

¢ {F,G} = " LxoF = Ly x6(p"F)
and
{9 F,¢*G} = £x6,(¢"F).

Thus, ¢ preserves Poisson brackets if and only if p*X¢ = Xgo,, for every
G : Z — R, that is, if and only if ¢ is symplectic by Proposition 2.4.2. R
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Proposition 2.7.6. Let Xy be a Hamiltonian vector field on Z, with
Hamiltonian H and flow ¢;. Then for F : Z — R,

S (Fop) = {Fop,H)
= {F,H}oy;. (2.7.9)

Proof. By the chain rule and the definition of Xp,

4 1(Fop)(2)] = dF(pu(2)) - X (pel(2)

dt
= QXr(pi(2)), Xu(pe(2)))
= {F, H}(p:(2)).

By Proposition 2.6.2 and (2.7.8), this equals
{F o, Hop}(2) = {F oy, H}2)
by conservation of energy. [

Corollary 2.7.7. Let F,G: Z — R. Then F is constant along integral
curves of X¢ if and only if G is constant along integral curves of X, and
this is true if and only if {F,G} = 0.

Proposition 2.7.8. Let A, B : Z — Z be linear Hamiltonian vector fields
with corresponding energy functions

Ha(2) = 1Q(Az,z) and Hp(z) = 4Bz, 2).
Letting
[A,Bj]=AoB-BoA
be the operator commutator, we have
{Ha,Hp} = Hja p)- (2.7.10)
Proof. By definition, Xy, = A, and so
{Ha,Hp}(z) = Q(Az, Bz).
Since A and B are {)-skew, we get

{Ha,Hp}(z) = 1Q(ABz,z) — $Q(BAz, z)
= 10([A, Bz, 2) (2.7.11)
= Hiy p|(2). n
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2.8 A Particle in a Rotating Hoop

In this subsection we take a break from the abstract theory to do an ex-
ample the “old-fashioned” way. This and other examples will also serve as
excellent illustrations of the theory we are developing.

Derivation of the Equations. Consider a particle constrained to move
on a circular hoop; for example a bead sliding in a Hula-Hoop. The particle
is assumed to have mass m and to be acted on by gravitational and frictional
forces, as well as constraint forces that keep it on the hoop. The hoop
itself is spun about a vertical axis with constant angular velocity w, as in
Figure 2.8.1.

N

FIGURE 2.8.1. A particle moving in a hoop rotating with angular velocity w.

The position of the particle in space is specified by the angles 6 and
@, as shown in Figure 2.8.1. We can take ¢ = wt, so the position of the
particle becomes determined by 6 alone. Let the orthonormal frame along
the coordinate directions ey, e,, and e, be as shown.

The forces acting on the particle are:

1. Friction, proportional to the velocity of the particle relative to the
hoop: —vRfey, where v > 0 is a constant.?

5This is a “law of friction” that is more like a viscous fluid friction than a sliding
friction in which v is the ratio of the tangential force to the normal force; in any actual
experimental setup (e.g., involving rolling spheres) a realistic modeling of the friction is
not a trivial task; see, for example, Lewis and Murray [1995].
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2. Gravity: —mgk.

3. Constraint forces in the directions e, and e, to keep the particle in
the hoop.

The equations of motion are derived from Newton’s second law F = ma.
To get them, we need to calculate the acceleration a; here a means the
acceleration relative to the fized inertial frame zyz in space; it does not
mean . Relative to this zyz coordinate system, we have

z = Rsin 6 cos p,
y = Rsin@sin p, (2.8.1)
z=—Rcosf.

Calculating the second derivatives using ¢ = wt and the chain rule gives

i = —w?z — 0%z + (R cos f cos )f — 2Rwl cos fsin o,
j = —w?y — 0%y + (Rcosfsin¢)d + 2Rwé cos f cos p, (2.8.2)
%= ~26% + (Rsin6)6.

If i, j, k, denote unit vectors along the z, y, and z axes, respectively, we
have the easily verified relation

eg = (cos @ cos )i + (cos O sin p)j + sin k. (2.8.3)

Now consider the vector equation F = ma, where F is the sum of the
three forces described earlier and

a = i+ §jj + k. (2.8.4)

The e, and e, components of F = ma tell us only what the constraint
forces must be; the equation of motion comes from the ey component:

F.eg =ma-ey. (2.8.5)
Using (2.8.3), the left side of (2.8.5) is
F-ey = —vRO — mgsind, (2.8.6)
while from (2.8.2), (2.8.3), and (2.8.4), the right side of (2.8.5) is

ma - eg = m{Zcosfcosy + fcosfsiny + Zsinf}
= m{cos 8 cos p[—w?z — 6%z + (R cos 8 cos p)§ — 2Rwb cos f sin y]
+ cos sin p[—w?y — 6%y + (R cos §sin )8 + 2Rwé cos § cos ]

+ sin 8[—26 + (Rsin6)d]}.
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Using (2.8.1), this simplifies to
ma - ey = mR{f — w?sinf cos §}. (2.8.7)
Comparing (2.8.5), (2.8.6), and (2.8.7), we get
§=uw?sinfcosd — —6 — Lsing (2.8.8)
m R

as our final equation of motion. Several remarks concerning it are in order:

(i) Ifw =0 and v = 0, (2.8.8) reduces to the pendulum equation
RO + gsinf = 0.

In fact, our system can be viewed just as well as a whirling pendu-
lum.

(ii) For v = 0, (2.8.8) is Hamiltonian. This is readily verified using the
variables ¢ = 6, p = mR?26, the canonical bracket structure

OF 6K 0K OF

FK}= —rnw - ——— 2.8.
and the Hamiltonian
2 2 2
_ 3 mRw* .,
H= pY mgR cos§ sin® 6. (2.8.10)

Derivation as Euler-Lagrange Equations. We now use Lagrangian
methods to derive (2.8.8). In Figure 2.8.1, the velocity is

v = Rfeg + (wRsin fe,,
so the kinetic energy is
T = im|v|?® = im(R?*¢? + [wRsin6]?), (2.8.11)
while the potential energy is
V = —mgRcos#. (2.8.12)
Thus, the Lagrangian is given by

. 2,,2
L=T-V =_-mR**+ T—%—L-u—— sin® 6 + mgR cos ¥, (2.8.13)

and the Euler-Lagrange equations, namely,

doL_oL
dt 50 = 96
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(see §1.1 or §2.1), become
mR2%6 = mR%*w?sinf cos  — mgRsin#,

which are the same equations we derived by hand in (2.8.8) for v = 0. The
Legendre transform gives p = mR?# and the Hamiltonian (2.8.10). Notice
that this Hamiltonian is not the kinetic plus potential energy of the particle.
In fact, if one postulated this, then Hamilton’s equations would give the
incorrect equations. This has to do with deeper covariance properties of the
Lagrangian versus Hamiltonian equations.

Equilibria. The equilibrium solutions are solutions satisfying 6=0,
0 = 0; (2.8.8) gives

Rw?sinfcosf = gsiné. (2.8.14)

Certainly, 8 = 0 and 8 = 7 solve (2.8.14) corresponding to the particle at
the bottom or top of the hoop. If 6§ # 0 or 7, (2.8.14) becomes

Ruw?cosf =g, (2.8.15)

which has two solutions when g/(Rw?) < 1. The value

-./4
we=1/% (2.8.16)

is the critical rotation rate. Notice that w, is the frequency of linearized
oscillations for the simple pendulum, that is, for the equation

R6 + g6 =0.

For w < w, there are only two solutions § = 0, =, while for w > w, there
are four solutions,

9=0 r, +cos (E%ﬁ) . (2.8.17)

We say that a bifurcation (or a Hamiltonian pitchfork bifurcation,
to be accurate) has occurred as w crosses w.. We can see this graphically
in computer-generated solutions of (2.8.8). Set z = 6§, y = 6 and rewrite
(2.8.8) as

T =y,

2.8.18
yz%(acos:c—l)sin:c—ﬂy, ( )

where

a=Rwl/g and B=v/m.
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a=15 =01

FIGURE 2.8.2. Phase portraits of the ball in the rotating hoop.

Taking g = R for illustration, Figure 2.8.2 shows representative orbits in
the phase portraits of (2.8.18) for various «, 3.

This system with v = 0, that is, 8 = 0, is symmetric in the sense that
the Zg-action given by

0 —0 and 60— —0

leaves the phase portrait invariant. If this Z, symmetry is broken, by setting
the rotation axis a little off center, for example, then one side gets preferred,
as in Figure 2.8.3.

FIGURE 2.8.3. A ball in an off-center rotating hoop.

The evolution of the phase portrait for v = 0 is shown in Figure 2.8.4.
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~@>

©@e

FIGURE 2.8.4. The phase portraits for the ball in the off-center hoop as the
angular velocity increases.

Near 6 = 0, the potential function has changed from the symmetric bi-
furcation in Figure 2.8.5(a) to the unsymmetric one in Figure 2.8.5(b). This
is what is known as the cusp catastrophe; see Golubitsky and Schaeffer
[1985] and Arnold [1968, 1984] for more information.

W

(@ €=0

AL\

FIGURE 2.8.5. The evolution of the potential for the ball in the (a) centered and
(b) off-center hoop as the angular velocity increases.

In (2.8.8), imagine that the hoop is subject to small periodic pulses, say
w = wp + pcos(nt). Using the Melnikov method described in the intro-
duction and in the following section, it is presumably true (but a messy
calculation to prove) that the resulting time-periodic system has horseshoe
chaos if € and v are small (where e measures how off-center the hoop is)
but p/v exceeds a critical value. See Exercise 2.8-3 and §2.8.

Exercises

2.8-1. Derive the equations of motion for a particle in a hoop spinning
about a line a distance ¢ off center. What can you say about the equilibria
as functions of € and w?

2.8-2. Derive the formula of Exercise 1.9-1 for the homoclinic orbit (the
orbit tending to the saddle point as t — +00) of a pendulum 1 +siny = 0.
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Do this using conservation of energy, determining the value of the energy
on the homoclinic orbit, solving for ¥, and then integrating.

2.8-3. Using the method of the preceding exercise, derive an integral
formula for the homoclinic orbit of the frictionless particle in a rotating
hoop.

2.8-4. Determine all equilibria of Duffing’s equation
- Pz +axd=0,

where a and [ are positive constants, and study their stability. Derive a
formula for the two homoclinic orbits.

2.8-5. Determine the equations of motion and bifurcations for a ball in
a light rotating hoop, but this time the hoop is not forced to rotate with
constant angular velocity, but rather is free to rotate so that its angular
momentum p is conserved.

2.8-6. Consider the pendulum shown in Figure 2.8.6. It is a planar pen-
dulum whose suspension point is being whirled in a circle with angular
velocity w by means of a vertical shaft, as shown. The plane of the pendu-
lum is orthogonal to the radial arm of length R. Ignore frictional effects.

(i) Using the notation in the figure, find the equations of motion of the
pendulum.

(i) Regarding w as a parameter, show that a supercritical pitchfork bi-
furcation of equilibria occurs as the angular velocity of the shaft is
increased.

! = pendulum length
m = pendulum bob mass
g = gravitational acceleration
R = radius of circle
® = angular velocity of shaft

0 = angle of pendulum from
the downward vertical

FIGURE 2.8.6. A whirling pendulum.
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2.9 The Poincaré—Melnikov Method

Recall from the introduction that in the simplest version of the Poincaré-
Melnikov method we are concerned with dynamical equations that perturb
a planar Hamiltonian system

3= Xo(2) (2.9.1)
to one of the form
z = Xo(2) + €X1(z, ), (2.9.2)

where € is a small parameter, z € R?, X, is a Hamiltonian vector field with
energy Hy, X; is periodic with period T and is Hamiltonian with energy
a T-periodic function H;. We assume that X, has a homoclinic orbit Z(t),
that is, an orbit such that Z(t) — 2g, a hyperbolic saddle point, as t — o0.
Define the Poincaré—Melnikov function by

M(to) = /_ ~ (Ho, Hy}(3(t — to), 1) dt, (2.9.3)

where {, } denotes the Poisson bracket.

There are two convenient ways of visualizing the dynamics of (2.9.2).
Introduce the Poincaré map P? : R? — R2, which is the time T map for
(2.9.2) starting at time s. For € = 0, the point 2y and the homoclinic orbit
are invariant under P§, which is independent of s. The hyperbolic saddle
2o persists as a nearby family of saddles z, for ¢ > 0, small, and we are
interested in whether or not the stable and unstable manifolds of the point
z¢ for the map P? intersect transversally (if this holds for one s, it holds
for all s). If so, we say that (2.9.2) has horseshoes for ¢ > 0.

The second way to study (2.9.2) is to look directly at the suspended
system on R? x S*, where S? is the circle; (2.9.2) becomes the autonomous

suspended system
2 = Xo(z) + €X1(z,6),

oy (2.9.4)

From this point of view, § gets identified with time, and the curve

Y0(t) = (20,1)

is a periodic orbit for (2.9.4). This orbit has stable manifolds and wun-
stable manifolds, denoted by W§(vo) and W¢'(7o) defined as the sets of
points tending exponentially to 7y as ¢ — oo and t — —o0, respectively.
(See Abraham, Marsden, and Ratiu [1988], Guckenheimer and Holmes
[1983], or Wiggins [1988, 1990, 1992] for more details.) In this example,
they coincide:

W (v0) = Wg'(70)-
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For € > 0 the (hyperbolic) closed orbit ~y perturbs to a nearby (hy-
perbolic) closed orbit that has stable and unstable manifolds W?(v,) and
We(ve). If Wi(v.) and WX(~.) intersect transversally, we again say that
(2.9.2) has horseshoes. These two definitions of admitting horseshoes are
readily seen to be equivalent.

Theorem 2.9.1 (Poincaré-Melnikov Theorem). Let the Poincaré-Melni-
kov function be defined by (2.9.3). Assume that M(to) has simple zeros as a
T'-periodic function of ty. Then for sufficiently small €, equation (2.9.2) has
horseshoes, that is, homoclinic chaos in the sense of transversal intersecting
separatrices.

Idea of the Proof. In the suspended picture, we use the energy function
Hy to measure the first-order movement of W2(v.) at Z(0) at time ty as
e is varied. Note that points of Z(t) are regular points for Hp, since Hy
is constant on Z(t), and Z(0) is not a fixed point. That is, the differential
of Hy does not vanish at Z(0). Thus, the values of Hy give an accurate
measure of the distance from the homoclinic orbit. If (22(¢,20),%) is the
curve on WS (v,) that is an integral curve of the suspended system and has
an condition 27 (tp, to) that is the perturbation of

W3 (7o) N{ the plane t = ¢y }
in the normal direction to the homoclinic orbit, then Hy(2:(to,%0)) mea-
sures the normal distance. But

Ho(22(7+4,t0)) = Ho(22(to, t0)) = / " et at

T4+
:/ {Ho,H0+€H1}(Z€S(t,t0),t) dt.
to
(2.9.5)

From invariant manifold theory one learns that z:(¢,to) converges expo-
nentially to v(t), a periodic orbit for the perturbed system as t — 4o0.
Notice from the right-hand side of the first equality above that if 25(¢, o)
were replaced by the periodic orbit 7.(t), the result would be zero. Since
the convergence is exponential, one concludes that the integral is of order €
for an interval from some large time to infinity. To handle the finite portion
of the integral, we use the fact that z5(t, o) is e-close to Z(t —tg) (uniformly
as t — +o0) and that {Ho, Ho} = 0. Therefore, we see that

{Ho, Hy + €H }(25(t, t0),t) = e{Ho, H1 }(Z(t — 1), t) + O(€?).

Using this over a large but finite interval [tg,t;] and the exponential close-
ness over the remaining interval [t1,00), we see that (2.9.5) becomes

Ho(2{(7+,%0)) — Ho(2{(to, to))
e [T Hy By}~ to), ) dt + O(P), (2.9.6)

to
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where the error is uniformly small as 74 — oo. Similarly,

Ho(2¢ (to, to)) — Ho(z¢ (-, %0))

=€ /to{Ho, H}Z(t —to),t)dt + 0(62). (2.9.7)

Again we use the fact that z3(7y,t9) — 7.(7+) exponentially fast, a
periodic otbit for the perturbed systetn as 7, — +o00. Notice that since the
orbit is homoclinic, the same periodic orbit can be used for negative times
as well. Using this observation, we can choose 74 and 7_ such that

Ho(2{(1+,t0)) — Ho(z{'(T-,t0)) — 0

as 74 — oo and 7~ — —oo. Adding (2.9.6) and (2.9.7), letting 7, — oo
and 7_ — —o0, we get

Ho(z¢ (to, to)) — Ho(2:(to, o))

=e / " (Ho, i} (3(t — to), ) dt + O().  (2.9.8)

The integral in this expression is convergent because the curve Z(t — o)
tends exponentially to the saddle point as ¢ — +oo and because the dif-
ferential of Hy vanishes at this point. Thus, the integrand tends to zero
exponentially fast as t tends to plus and minus infinity.

Since the energy is a “good” measure of the distance between the points
2%(to, to)) and z8(to,to)), it follows that if M(to) has a simple zero at time
to, then z%(tg,to) and 2:(to,to) intersect transversally near the point Z(0)
at time tg. n

If in (2.9.2) only X is Hamiltonian, the same conclusion holds if (2.9.3)
is replaced by

M(ty) = /_oo (Xo x X1)(Z(t — to), t) dt, (2.9.9)

where X x X7 is the (scalar) cross product for planar vector fields. In fact,
Xy need not even be Hamiltonian if an area expansion factor is inserted.

Example A. Equation (2.9.9) applies to the forced damped Duffing equa-
tion

it — Bu + au® = e(y coswt — o1). (2.9.10)

Here the homoclinic orbits are given by (see Exercise 2.8-4)

u(t) = i\/%@ sech(+/Bt), (2.9.11)
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and (2.9.9) becomes, after a residue calculation,

49 3/2
M(tg) = 'yﬂw\/gsech (%) sin(wtg) — —:f&_’ (2.9.12)
so one has simple zeros and hence chaos of the horseshoe type if
v 2v/2B%/2 Tw
= > ———cosh| — 2.9.13
5 Bova "\2vB (29.13)
and ¢ is small. ¢

Example B. Another interesting example, due to Montgomery [1985],
concerns the equations for superfluid 3He. These are the Leggett equations,
and we shall confine ourselves to what is called the A phase for simplicity
(see Montgomery’s paper for additional results). The equations are

2
$= —1 (KQ—) sin 26

2\ 42
and
R 72 1
0= (—;) s—¢ (’yB sinwt + EI’sin 20) . (2.9.14)
Here s is the spin, # an angle (describing the “order parameter”), and
v,X, ... are physical constants. The homoclinic orbits for € = 0 are given
by
_ B T _ Qex20t
Bi = 2tan l(eiﬂt) - 5 and §4 = i21—+—em (2915)
One calculates the Poincaré-Melnikov function to be
mxwB wT 2 x
M. —_ — - = 9.
1(to) = F » sech(zﬂ)coswt 37291“, (2.9.16)
so that (2.9.14) has chaos in the sense of horseshoes if
vB 16 Q W
22 5 22 cosh (—-) 9.
T >37rwco 50 (2.9.17)
and if € is small. ¢

For references and information on higher-dimensional versions of the
method and applications, see Wiggins [1988]. We shall comment on some
aspects of this shortly. There is even a version of the Poincaré-Melnikov
method applicable to PDEs (due to Holmes and Marsden [1981]). One basi-
cally still uses formula (2.9.9) where X x X; is replaced by the symplectic
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pairing between X, and X;. However, there are two new difficulties in ad-
dition to standard technical analytic problems that arise with PDEs. The
first is that there is a serious problem with resonances. This can be dealt
with using the aid of damping. Second, the problem seems to be not re-
ducible to two dimensions: The horseshoe involves all the modes. Indeed,
the higher modes do seem to be involved in the physical buckling processes
for the beam model discussed next.

Example C. A PDE model for a buckled forced beam is
1
w+w" +Tw -k (/ [w']? dz) w” = ¢(f coswt — ), (2.9.18)
0

where w(z,t), 0 < z < 1, describes the deflection of the beam,
=9/dt, '=08/0z,
and I', k,... are physical constants. For this case, one finds that if

(i) n? < T < 4p® (first mode is buckled),

(ii) 72°m%(j%n? —-T) # w?, j = 2,3,... (resonance condition),

a2
(iii) f;— > %\7%—) cosh <2—I‘w——\/—:—_w—2> (transversal zeros for M(ty)),
(iv) 6 >0,

and e is small, then (2.9.18) has horseshoes. Experiments (see Moon [1987])
showing chaos in a forced buckled beam provided the motivation that led
to the study of (2.9.18). ¢

This kind of result can also be used for a study of chaos in a van der Waals
fluid (Slemrod and Marsden {1985]) and for soliton equations (see Birnir
[1986], Ercolani, Forest, and McLaughlin [1990], and Birnir and Grauer
[1994]). For example, in the damped, forced sine-Gordon equation one has
chaotic transitions between breathers and kink-antikink pairs, and in the
Benjamin-Ono equation one can have chaotic transitions between solutions
with different numbers of poles.

More Degrees of Freedom. For Hamiltonian systems with two-degrees-
of-freedom, Holmes and Marsden [1982a] show how the Melnikov method
may be used to prove the existence of horseshoes on energy surfaces in
nearly integrable systems. The class of systems studied have a Hamilto-
nian of the form

H(qvpvg’l) = F(q’p) + G(I) + €H1(Qap7011) + 0(62), (2919)
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where (6

,I) are action-angle coordinates for the oscillator G; we assume
that G(0) =

0, G’ > 0. It is also assumed that F has a homoclinic orbit

z(t) = (3(t), (1))
and that

o0
Mto) = / (F, Hy) dt; (2.9.20)
- 00
the integral taken along (Z(t — to), 2, I) has simple zeros. Then (2.9.19)
has horseshoes on energy surfaces near the surface corresponding to the
homoclinic orbit and small I'; the horseshoes are taken relative to a Poincaré
map strobed to the oscillator G. The paper by Holmes and Marsden [1982a)
also studies the effect of positive and negative damping. These results are
related to those for forced one-degree-of-freedom systems, since one can
often reduce a two-degrees-of-freedom Hamiltonian system to a one-degree-

of-freedom forced system.

For some systems in which the variables do not split as in (2.9.19), such
as a nearly symmetric heavy top, one needs to exploit a symmetry of the
system, and this complicates the situation to some extent. The general
theory for this is given in Holmes and Marsden [1983] and was applied to
show the existence of horseshoes in the nearly symmetric heavy top; see
also some closely related results of Ziglin [1980a].

This theory has been used by Ziglin [1980b] and Koiller [1985] in vor-
tex dynamics, for example, to give a proof of the nonintegrability of the
restricted four-vortex problem. Koiller, Soares, and Melo Neto [1985] give
applications to the dynamics of general relativity showing the existence of
horseshoes in Bianchi IX models. See Oh, Sreenath, Krishnaprasad, and
Marsden [1989] for applications to the dynamics of coupled rigid bodies.

Arnold [1964] extended the Poincaré-Melnikov theory to systems with
several degrees of freedom. In this case the transverse homoclinic manifolds
are based on KAM tori and allow the possibility of chaotic drift from one
torus to another. This drift, sometimes known as Arnold diffusion, is a
much studied topic in Hamiltonian systems, but its theoretical foundations
are still the subject of much study.

Instead of a single Melnikov function, in the multidimensional case one
has a Melnikov vector given schematically by

S {Ho, H1}dt

> {1, H,}dt
ao | et , (2.9.21)

I AL, Hi} dt

where I,..., I, are integrals for the unperturbed (completely integrable)
system and where M depends on ¢ and on angles conjugate to I,... , I,.
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One requires M to have transversal zeros in the vector sense. This result was
given by Arnold for forced systems and was extended to the autonomous
case by Holmes and Marsden [1982b, 1983]; see also Robinson [1988]. These
results apply to systems such as a pendulum coupled to several oscillators
and the many-vortex problems. It has also been used in power systems by
Salam, Marsden, and Varaiya [1983], building on the horseshoe case treated
by Kopell and Washburn [1982]. See also Salam and Sastry [1985]. There
have been a number of other directions of research on these techniques. For
example, Gruendler [1985) developed a multidimensional version applicable
to the spherical pendulum, and Greenspan and Holmes [1983] showed how
the Melnikov method can be used to study subharmonic bifurcations. See
Wiggins [1988] for more information.

Poincaré and Exponentially Small Terms. In his celebrated memoir
on the three-body problem, Poincaré [1890] introduced the mechanism of
transversal intersection of separatrices that obstructs the integrability of
the system of equations for the three-body problem as well as preventing
the convergence of associated series expansions for the solutions. This idea
has been developed by Birkhoff and Smale using the horseshoe construction
to describe the resulting chaotic dynamics. However, in the region of phase
space studied by Poincaré, it has never been proved (except in some generic
sense that is not easy to interpret in specific cases) that the equations
really are nonintegrable. In fact, Poincaré himself traced the difficulty to
the presence of terms in the separatrix splitting that are exponentially
small. A crucial component of the measure of the splitting is given by the
following formula of Poincaré {1890, p. 223):

—8mi

exp (\/"_Tu) + exp (—ﬁLﬁ) ,

J =

which is exponentially small (also said to be beyond all orders) in p.
Poincaré was aware of the difficulties that this exponentially small be-
havior causes; on page 224 of his article, he states, “En d’autres termes,
si on regarde yu comme un infiniment petit du premier ordre, la distance
BB’, sans étre nulle, est un infiniment petit d’ordre infini. C’est ainsi que la
fonction e~ 1/# est un infiniment petit d’ordre infini sans étre nulle ... Dans
Pexample particulier que nous avons traité plus haut, la distance BB’ est du
méme ordre de grandeur que l'integral J, c’est & dire que exp(—7/+/2u).”

This is a serious difficulty that arises when one uses the Melnikov method
near an elliptic fixed point in a Hamiltonian system or in bifurcation prob-
lems giving birth to homoclinic orbits. The difficulty is related to those
described by Poincaré. Near elliptic points, one sees homoclinic orbits in
normal forms, and after a temporal rescaling this leads to a rapidly os-
cillatory perturbation that is modeled by the following variation of the
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pendulum equation:

. t
¢ +sin¢ = ecos (%) . (2.9.22)
If one-formally computes M (ty), one obtains
. W wto
M(to,€) = £2m sech ( e ) cos < p ) . (2.9.23)

While this has simple zeros, the proof of the Poincaré-Melnikov theorem is
no longer valid, since M (to, €) is now of order exp(—/(2¢)), and the error
analysis in the proof gives errors only of order €2. In fact, no expansion in
powers of € can detect exponentially small terms like exp(—m/(2¢)).
Holmes, Marsden, and Scheurle [1988] and Delshams and Seara [1991]
show that (2.9.22) has chaos that is, in a suitable sense, exponentially small
in €. The idea is to expand expressions for the stable and unstable manifolds
in a Perron type series whose terms are of order €* exp(—m/(2¢)). To do so,
the extension of the system to complex time plays a crucial role. One can
hope that since such results for (2.9.22) can be proved, it may be possible
to return to Poincaré’s 1890 work and complete the arguments he left
unfinished. In fact, the existence of these exponentially small phenomena
is one reason that the problem of Arnold diffusion is both hard and delicate.
To illustrate how exponentially small phenomena enter bifurcation prob-
lems, consider the problem of a Hamiltonian saddle node bifurcation

i+tur+a®=0 (2.9.24)
with the addition of higher-order terms and forcing:
&+ px + z% + hot. = §f(t). (2.9.25)

The phase portrait of (2.9.24) is shown in Figure 2.9.1.
The system (2.9.24) is Hamiltonian with

G_loa 1l o, 1,
H(z,2) = 5% + 5 HT + 3% (2.9.26)
Let us first consider the system without higher-order terms:
&+ pz+2° = 0f(t). (2.9.27)
To study it, we rescale to blow up the singularity; let
z(t) = N(7), (2.9.28)
where A = || and 7 = tv/X. Letting ' = d/dr, we get
) T
ogre=to(). weo
sre u2f V-h
+ (%)
" 2
+e+882=—=f—=), > 0. 2.9.29
£ +E+¢ u2f N I ( )
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FIGURE 2.9.1. Phase portraits of & + uz + z° = 0.

The exponentially small estimates of Holmes, Marsden, and Scheurle [1988]
apply to (2.9.29). One gets exponentially small upper and lower estimates
in certain algebraic sectors of the (4, 4) plane that depend on the nature
of f. The estimates for the splitting have the form C(§/u?) exp(—7/ \/|—,u_| ).
Now consider

&+ px + 2 + 23 = 5f(2). (2.9.30)
With 6 = 0, there are equilibria at the three points with & = 0 and

=0, —r, and — %, (2.9.31)

where

po LtVI—du \/21‘4“ , (2.9.32)

which is approximately 1 when u = 0. The phase portrait of (2.9.30) with
§ =0 and = —1/2 is shown in Figure 2.9.2. As y passes through 0, the
small lobe in Figure 2.9.2 undergoes the same bifurcation as in Figure 2.9.1,
with the large lobe changing only slightly.

Again we rescale, to give

5—§+£2~u§3=-55f(\/J~——ﬂ), p <0,

5+£+£2+u£3=%f (ﬁ) ©>0. (2.9.33)

Notice that for § = 0, the phase portrait is u-dependent. The homoclinic
orbit surrounding the small lobe for x4 < 0 is given explicitly in terms of §
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x

=

FIGURE 2.9.2. The phase portrait of & — 1z + 2% + 2° = 0.

L —
-

Y

3

O (2.9.34)

(e +3) - 2u

which is u-dependent. An interesting technicality is that without the cubic
term, we get u-independent double poles at t = *im + log2 — log 3 in the
complex 7-plane, while (2.9.34) has a pair of simple poles that splits these
double poles to the pairs of simple poles at

T = %in + log (-:2,; + z\/5X> , (2.9.35)

where again A = |u|. (There is no particular significance to the real part,
such as log 2 — log 3 in the case of no cubic term; this can always be gotten
rid of by a shift in the base point £(0).)

If a quartic term z* is added, these pairs of simple poles will split into
quartets of branch points, and so on. Thus, while the analysis of higher-
order terms has this interesting y-dependence, it seems that the basic ex-
ponential part of the estimates, namely

exp (——1’—) : (2.9.36)
|ul

remains intact.
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An Introduction to
Infinite-Dimensional Systems

A common choice of configuration space for classical field theory is an
infinite-dimensional vector space of functions or tensor fields on space or
spacetime, the elements of which are called fields. Here we relate our
treatment of infinite-dimensional Hamiltonian systems discussed in §2.1
to classical Lagrangian and Hamiltonian field theory and then give exam-
ples. Classical field theory is a large subject with many aspects not covered
here; we treat only a few topics that are basic to subsequent developments;
see Chapters 6 and 7 for additional information and references.

3.1 Lagrange’s and Hamilton’s Equations
for Field Theory

As with finite-dimensional systems, one can begin with a Lagrangian and
a variational principle, and then pass to the Hamiltonian via the Legendre
transformation. At least formally, all the constructions we did in the finite-
dimensional case go over to the infinite-dimensional one.

For instance, suppose we choose our configuration space @ = F(R3) to
be the space of fields ¢ on R3. Our Lagrangian will be a function L(p, ¢)
from @) x @ to R. The variational principle is

(5/bL(<p,<p) dt =0, (3.1.1)
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which is equivalent to the Euler-Lagrange equations

ddéL L
2= 1.2
dtdp o (31.2)
in the usual way. Here,
oL

is the conjugate momentum, which we regard as a density on R3 as in
Chapter 2. The corresponding Hamiltonian is

H(p,m) = / 76— L, &), (3.1.4)

in accordance with our general theory. We also know that the Hamiltonian
should generate the canonical Hamilton equations. We verify this now.

Proposition 3.1.1. Let Z = F(R®) x Den(R3), with Q defined as in
Ezample (b) of §2.2. Then the Hamiltonian vector field Xy : Z — Z
corresponding to a given energy function H : Z — R is given by

0H OH
= (42,95, 415

Hamilton’s equations on Z are
q

dp O6H Om  O0H
E -_ 5'7;', "6'? _ —%. (3-1.6)

Remarks.

1. The symbols F and Den stand for function spaces included in the space
of all functions and densities, chosen to be appropriate to the functional-
analytic needs of the particular problem. In practice this often means,
among other things, that appropriate conditions at infinity are imposed
to permit integration by parts.

2. The equations of motion for a curve z(t) = (p(t),n(t)) written in the
form Q(dz/dt,éz) = dH(z(t)) - 6z for all 6z € Z with compact support are
called the weak form of the equations of motion. They can still be
valid when there is not enough smoothness or decay at infinity to justify
the literal equality dz/dt = Xy (z); this situation can occur, for example,
if one is considering shock waves. ¢

Proof of Proposition 3.1.1. To derive the partial functional deriva-
tives, we use the natural pairing

(,): F(R®) x Den(R?®) = R, where (p,7)= /<p7r' dz, (3.1.7)
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where we write m = n'd3z € Den. Recalling that §H/d¢p is a density, let

0H 6H
X= (:s?"z;;)-

We need to verify that Q(X (@, ), (8¢, 7)) = dH(p, ) - (d¢, d7). Indeed,
0H 6H
QX (p,m), (b, bm)) =Q ((75?, —%) , (8¢, 57r)>

_ [OH o i / SHY' o
= 67r(67r)d:1:+ 6¢<5¢ d°z

0H 0H
= (aon) (9.5
= DWH(()O’ 7I') om + DCPH((Pa 71’) ' 6‘p
= dH(gO,?T) ’ (6§0a577) =

3.2 Examples: Hamilton’s Equations

(a) The Wave Equation. Consider Z = F(R3) x Den(R?) as above.
Let ¢ denote the configuration variable, that is, the first component in
the phase space F(R3) x Den(R3), and interpret ¢ as a measure of the
displacement from equilibrium of a homogeneous elastic medium. Writing
7' = pdp/dt, where p is the mass density, the kinetic energy is

__1 1 12 33
T—2/;[7r]da:.

For small displacements ¢, one assumes a linear restoring force such as the
one given by the potential energy

k
5 [ Vel .

for an (elastic) constant k.

Because we are considering a homogeneous medium, p and % are con-
stants, so let us work in units in which they are unity. Nonlinear effects can
be modeled in a naive way by introducing a nonlinear term, U(¢y), into the
potential. However, for an elastic medium one really should use constitu-
tive relations based on the principles of continuum mechanics; see Marsden
and Hughes [1983]. For the naive model, the Hamiltonian H : Z — R is
the total energy

Hm= [ [é(w')2+-§-|lwl|2+v<so> P (321)
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Using the definition of the functional derivative, we find that

6H _, 6H

—_ = — (—\72 / 3
5= 5o (=Vep +U'(p))d’. (3.2.2)

Therefore, the equations of motion are

9] on'
5(? = 7!',, E = Vztp - U,((P), (323)
or, in second-order form,
32
5{25 = V2 - U'(p). (3.2.4)

Various choices of U correspond to various physical applications. When
U’ = 0, we get the linear wave equation, with unit propagation velocity.
Another choice, U(p) = (1/2)m2p? + Ap?, occurs in the quantum theory
of self-interacting mesons; the parameter m is related to the meson mass,
and ¢* governs the nonlinear part of the interaction. When A = 0, we get

V2 — 22 = m2p, (3.2.5)

which is called the Klein—Gordon equation.

¢

Technical Aside. For the wave equation, one appropriate choice of func-
tion space is Z = H'(R3) x L%_ (R3), where H!(R3) denotes the H-
functions on R3, that is, functions that, along with their first derivatives are
square integrable, and L% (R®) denotes the space of densities 7 = 7’ d*z,
where the function 7’ on R3 is square integrable. Note that the Hamiltonian
vector field

XH(<P, 7T) = (ﬂ‘l, (v290 - U’((p))d3.’L‘)

is defined only on the dense subspace H%(R3) x H}. (R3) of Z. This is a
common occurrence in the study of Hamiltonian partial differential equa-
tions; we return to this in §3.3. ¢

In the preceding example, {2 was given by the canonical form with the
result that the equations of motion were in the standard form (3.1.5). In
addition, the Hamiltonian function was given by the actual energy of the
system under consideration. We now give examples in which these state-
ments require reinterpretation but that nevertheless fall into the framework
of the general theory developed so far.
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(b) The Schréodinger Equation. Let H be a complex Hilbert space,
for example, the space of complex-valued functions ¥ on R® with the Her-
mitian inner product

(1, ) = / (@) (2) d,

where the overbar denotes complex conjugation. For a self-adjoint complex-
linear operator Hyp : H — H, the Schrodinger equation is

oY

ihs> = Hopl, (3.2.6)

where £ is Planck’s constant. Define

—i
A=_t
K

so that the Schrodinger equation becomes

oY
ot
The symplectic form on H is given by Q(¢1, %) = —2KIm (1, ¢2) . Self-
adjointness of H,p is a condition stronger than symmetry and is essential
for proving well-posedness of the initial-value problem for (3.2.6); for an
exposition, see, for instance, Abraham, Marsden, and Ratiu [1988]. His-
torically, it was Kato [1950] who established self-adjointness for important
problems such as the hydrogen atom.
From §2.5 we know that since H,, is symmetric, A is Hamiltonian. The
Hamiltonian is

Hopv

Ay (3.2.7)

H(y) = h(iAy,¥) = (Hopt),¥) (3.2.8)

which is the expectation value of H,, at 1, defined by (Hop) (¥) =
(Hopt, ). ¢

(c) The Korteweg—de Vries (KdV) Equation. Denote by Z the vec-
tor subspace F(R) consisting of those functions u with [u(z)| decreasing
sufficiently fast as £ — oo that the integrals we will write are defined and
integration by parts is justified. As we shall see later, the Poisson brackets
for the KdV equation are quite simple, and historically they were found
first (see Gardner [1971] and Zakharov [1971, 1974]). To be consistent with
our exposition, we begin with the somewhat more complicated symplec-
tic structure. Pair Z with itself using the L? inner product. Let the KdV
symplectic structure 2 be defined by

s, un) = 3 ([ lis(ohuate) - ta(o)un ()] @), @29
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where @ denotes a primitive of u, that is,

4= /ﬂc u(y) dy.

—00

In §8.5 we shall see a way to construct this form. The form 2 is clearly
skew-symmetric. Note that if u; = dv/0x for some v € Z, then

/ ” (@) (z) de

- / a(2) auali‘”) dz

= w@nE)|_- [ a@ue

_ < /_ Z 5:;_(;) da:) (Zi uy(z) d:v) - /_ Z i1 (2)uz(z) dz
= ( v(z)'(:o) (/00 ug(x) dm) - /00

- . Uy (z)uz(z) dz
_ / =

@1 (z)uz(z) dz.

Thus, if u;(z) = Ov(z)/0z, then Q2 can be written as

Qu,uz) = /00 1 (x)ug(z)dx = /00 v(z)ug(z) dz. (3.2.10)

To prove weak nondegeneracy of 2, we check that if v # 0, there is a w

such that Q(w,v) # 0. Indeed, if v # 0 and we let w = Ov/0z, then w # 0
because v(z) — 0 as |z| — co. Hence by (3.2.10),

Q(w,v) = 0 <g§,v> - /:(v(x)f dz 4 0.

Suppose that a Hamiltonian H : Z — R is given. We claim that the
corresponding Hamiltonian vector field Xp is given by

Xp(u) = a% (%) .

axuw) = [

—oo

(3.2.11)
Indeed, by (3.2.10),

T (2)w(z)dz =dH(v) - w.
It follows from (3.2.11) that the corresponding Hamilton equations are

_ o (on
“=5z\ou )

(3.2.12)
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where, in (3.2.12) and in the following, subscripts denote derivatives with
respect to the subscripted variable. As a special case, consider the function

Hy(u) = —1/ ud dz.
6/
Then
o 61
Oz bu

and so (3.2.12) becomes the one-dimensional transport equation

= —UUg,

Ut + uug = 0. (3.2.13)
Next, let
Hy(u) = /00 (%ui - u3) dz; (3.2.14)
then (3.2.12) becomes
Uz + 6uty + Uggy = 0. (3.2.15)

This is the Korteweg—de Vries (KdV') equation that describes shal-
low water waves. For a concise presentation of its famous complete set of
integrals, see Abraham and Marsden [1978], §6.5, and for more information,
see Newell [1985). The first few of its integrals are given in Exercise 3.3-1.
We will return to this example from time to time in the text, but for now
we will find traveling wave solutions of the KdV equation.

Traveling Waves. If we look for traveling wave solutions of (3.2.15),
that is, u(z,t) = p(x — ct), for a constant ¢ > 0 and a positive function ¢,
we see that u satisfies the KAV equation if and only if ¢ satisfies

e’ — 6oy — " =0. (3.2.16)
Integrating once gives
cp— 3% — " =C, (3.2.17)

where C is a constant. This equation is Hamiltonian in the canonical vari-
ables (¢, ¢') with Hamiltonian function

Cc

2(,02 + ¢* + Cop. (3.2.18)

h(p,¢') = %(w’f

From conservation of energy, h(yp,¢') = D, it follows that

¢ =+ cp? - 203 —2Cp + 2D, (3.2.19)
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or, writing s = = — ct, we get

dp . (3.2.20)
Vew? —2p3 —2Cyp + 2D

We seek solutions that together with their derivatives vanish at +oo. Then
(3.2.17) and (3.2.19) give C=D =0, so

s_/ Ve-2p—4/c
T R v

for some constant K that will be determined below.
For C = D =0, the Hamiltonian (3.2.18) becomes

+K (3.2.21)

1
hip, @) = 5(¥)* = 5<p +¢° (3.2.22)

and thus the two equilibria given by dh/d¢p = 0 and dh/8¢’ = 0 are (0,0)
and (c/3,0). The matrix of the linearized Hamiltonian system at these

equilibria is
0 1
+c 0|’

which shows that (0,0) is a saddle and (c¢/3,0) is spectrally stable. The
second variation criterion on the potential energy (see §1.10) —cp?/2 + 3
at (c/3,0) shows that this equilibrium is stable. Thus, if (¢(s),¢'(s)) is a
homoclinic orbit emanating and ending at (0,0), the value of the Hamil-
tonian function (3.2.22) on it is H(0,0) = 0. From (3.2.22) it follows that
(¢/2,0) is a point on this homoclinic orbit, and thus (3.2.20) for C =D =0
is its expression. Taking the initial condition of this orbit at s = 0 to be
©(0) = ¢/2, ¢'(0) =0, (3.2.21) forces K = 0, and so

VTG - e
NCESTRaV:

Since ¢ > 0 by hypothesis, the expression in the absolute value is negative,
and thus

= eEVes,

Ve—2¢ — \/E — _e:h\/Es
Ve=2¢p+ /e ’
whose solution is
2cetVes c
(p(s) = +./cs)2 = 2 '
(14 exves) 2 cosh*(v/cs/2)

This produces the soliton solution

u(z, t) = Esech2 [—%—_( —ct)} . ¢
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(d) Sine—Gordon Equation. For functions u(z,t), where x and t are
real variables, the sine—Gordon equation is u; = uy; + sinu. Equation
(3.2.4) shows that it is Hamiltonian with the momentum density 7 = u; dz
(and associated function 7' = u;),

H(u) = Ut + 5l + 08U dz, (3.2.23)
—00

and the canonical bracket structure, as in the wave equation. This equation

also has a complete set of integrals; see again Newell [1985]. ¢

(e) Abstract Wave Equation. Let H be a real Hilbert space and B :
‘H — H a linear operator. On ‘H x H put the symplectic structure Q given
by (2.2.6). One can check that:

(i) A= [ _OB é ] is §2-skew if and only if B is a symmetric operator
on H; and

(ii) if B is symmetric, then a Hamiltonian for A is
1
H(z,y) = 5(llyl* + (Bz, ). (3.2.24)

The equations of motion (2.4.10) give the abstract wave equation

r+ Bx=0. ¢

(f) Linear Elastodynamics. On R3 consider the equations

puy = diV(C . Vu),

that is,

PUsyy = % [C ]klﬁ} y (3225)

where p is a positive function and c is a fourth-order tensor field (the
elasticity tensor) on R® with the symmetries ci/*! = ckléd = 7tk
On F(R?;R3) x F(R3;R3) (or, more precisely, on

H'(R%R%) x L*(R*R%)
with suitable decay properties at infinity) define

Q((u,(l),(v,\'r)):/ p(v-u—1i-v)dir. (3.2.26)
RS
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The form  is the canonical symplectic form (2.2.3) for fields u and their
conjugate momenta ® = pu.

On the space of functions u : R — R3, consider the p-weighted L?-inner
product

(u,v), =/ pu-v diz. (3.2.27)
R3

Then the operator Bu = —(1/p) div(c - Vu) is symmetric with respect to
this inner product, and thus by Example (e) above, the operator A(u,u) =
(1, (1/p) div(c - Vu)) is Q-skew.

The equations (3.2.25) of linear elastodynamics are checked to be Hamil-
tonian with respect to Q given by (3.2.26), and with energy

1 1 .
H(u,u) = §/p||i1||2d3x+ §/c”kleijekl d*z, (3.2.28)
where
€ = 1 % + Q’lﬁ .
Yo\l ' Bzt )
Exercises
o 3.2-1.

(a) Let ¢ : R®*1 — R. Show directly that the sine-Gordon equation

2
%g ~V2p +sinp =0
is the Euler-Lagrange equation of a suitable Lagrangian.

(b) Let ¢ : R™*! — C. Write the nonlinear Schrédinger equation

K.
za-f + V20 + Bplel* =0

as a Hamiltonian system.

o 3.2-2. Find a “soliton” solution for the sine-Gordon equation

Py By

W—-—aﬁ+sin<p=0

in one spatial dimension.
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o 3.2-3. Consider the complex nonlinear Schrédinger equation in one spa-
tial dimension:

dp 0%y 2

j—— + — =0 0.

i T 552 T Pelel , B#

(a) Show that the function ¢ : R — C defining the traveling wave so-

lution ¢(z,t) = ¥(z — ct) for ¢ > 0 satisfies a second-order complex

differential equation equivalent to a Hamiltonian system in R* rela-
tive to the noncanonical symplectic form whose matrix is given by

0 c 1 0
—-c 0 01
Je = -1 0 00
0 -1 00

(See Exercise 2.4-1.)

(b) Analyze the equilibria of the resulting Hamiltonian system in R* and
determine their linear stability properties.

(c) Let 9(s) = e®*/2a(s) for a real function a(s) and determine a second-
order equation for a(s). Show that the resulting equation is Hamilto-
nian and has heteroclinic orbits for § < 0. Find them.

(d) Find “soliton” solutions for the complex nonlinear Schrédinger equa-
tion.

3.3 Examples: Poisson Brackets and
Conserved Quantities

Before proceeding with infinite-dimensional examples, it is first useful to
recall some basic facts about angular momentum of particles in R3. (The
reader should supply a corresponding discussion for linear momentum.)
Consider a particle moving in R? under the influence of a potential V. Let
the position coordinate be denoted by q, so that Newton’s second law reads

mg = —VV(q).

Let p = mq be the linear momentum and J = q x p be the angular
momentum. Then

d. . .
I =axptaxp=-axVV(g)

If V is radially symmetric, it is a function of ||q|| alone: assume

V(a) = f(llal?),
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where f is a smooth function (exclude q = 0 if necessary). Then

VV(a) = 2f'(lldl*)q,

so that @ x VV(q) = 0. Thus, in this case, dJ/dt = 0, so J is conserved.
Alternatively, with

H(a,p) = 5 [Pl + V(a),

we can check directly that {H, J;} = 0forl = 1,2,3, where J = (Jy, J2, J3).
This also shows that each component J; is conserved by the Hamiltonian
dynamics determined by H.

Additional insight is gained by looking at the components of J more
closely. For example, consider the scalar function

where w is a constant and k = (0,0, 1). We find that

F(q,p) = w(q'p2 — ;14°).

The Hamiltonian vector field of F is

Xntaw) = (25,00, 0F o ok _or
FAOP) =\ 8p1" 8p " Ops’  0¢"’ 0’ B3
= (_qu,waao, _wp2awp170)'

Note that X is just the vector field corresponding to the flow in the (q!, ¢?)
plane and the (p;, p2) plane given by rotations about the origin with angular
velocity w. More generally, the Hamiltonian vector field associated with the
scalar function defined by J,, := J-w, where w is a vector in R3, has a flow
consisting of rotations about the axis w. As we shall see in Chapters 11
and 12, this is the basis for understanding the link between conservation
laws and symmetry more generally.
Another identity is worth noting. Namely, for two vectors w; and ws,

{le ’ J‘UZ} = le Xw3)

which, as we shall see later, is an important link between the Poisson
bracket structure and the structure of the Lie algebra of the rotation group.

(a) The Schrédinger Bracket. In Example (b) of §3.2, we saw that if
H,, is a self-adjoint complex linear operator on a Hilbert space H, then
A = H,,/(ih) is Hamiltonian, and the corresponding energy function Ha
is the expectation value (H,p) of Hop. Letting Hyp and Kop be two such
operators, and applying the Poisson bracket-commutator correspondence
(2.7.10), or a direct calculation, we get

{<Hop> ’ <K0p>} = ([Ht)pa Kop]> : (3-3-1)
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In other words, the expectation value of the commutator is the Poisson
bracket of the expectation values.

Results like this lead one to statements like “Commutators in quantum
mechanics are not only analogous to Poisson brackets, they are Poisson
brackets.” Even more striking are true statements like this: “Don’t tell me
that quantum mechanics is right and classical mechanics is wrong—after
all, quantum mechanics is a special case of classical mechanics.”

Notice that if we take K,,% = 1, the identity operator, the corresponding
Hamiltonian function is p(¢) = ||¢||%, and from (3.3.1) we see that p is a
conserved quantity for any choice of H,,, a fact that is central to the
probabilistic interpretation of quantum mechanics. Later, we shall see that
p is the conserved quantity associated to the phase symmetry 1 — e,

More generally, if F and G are two functions on H with 6F/8y = VF,
the gradient of F' taken relative to the real inner product Re (,) on H, one
finds that

1
Xrp = 5= VF (33.2)
and
(F,G} = —5% Im (VE,VG). (33.3)

Notice that (3.3.2), (3.3.3), and Im z = — Re(iz) give

dF - Xg = Re (VF, Xg) = — Re (VF, —iVG)

L

2h
1 .

= o Re(iVF, VG)

1
=3 Im(VF,VG)
= {Fa G}
as expected. ¢

(b) KdV Bracket. Using the definition of the bracket (2.7.1), the sym-
plectic structure, and the Hamiltonian vector field formula from Exam-
ple (c) of §3.2, one finds that

{F,G} = / ” ‘;f; (9‘1 ( du)dm (3.3.4)

for functions F, G of u having functional derivatives that vanish at +00. ¢

(c) Linear and Angular Momentum for the Wave Equation. The
wave equation on R? discussed in Example (a) of §3.2 has the Hamiltonian

Hem = [ E(w')z + 29l + U(so)] Pr. (335)
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Define the linear momentum in the z-direction by

)
Py(p,m) = w’a—‘; &z (3.3.6)

By (3.3.6), 0 P, /6m = 8¢/0z, and 6 P /§p = (—0n' /0x) d*x, so we get from
(3.2.2)

0P, 0H O6H P,
{H,P.}(p,m) = /R3 (EE - EW)

'
/ [%ﬁ(—v%p +U(0) + w'-af—] &z
]R3

T

d
/Ra [—vchgf + :% (U(<p) + %(w’)2>] dz

0, (3.3.7)

assuming that the fields and U vanish appropriately at co. (The first term
vanishes because it switches sign under integration by parts.) Thus, Py
is conserved. The conservation of P, is connected with invariance of H
under translations in the z-direction. Deeper insights into this connection
are explored later. Of course, similar conservation laws hold in the y- and
z-directions.

Likewise, the angular momenta J = (J, Jy, J;), where, for example,

_ (.9 9\ 3
J.(p) = /IR K (x 5~ Vg ) P (3.3.8)

are constants of the motion. This is proved in an analogous way. (For precise
function spaces in which these operations can be justified, see Chernoff and
Marsden [1974].) ¢

(d) Linear and Angular Momentum: The Schrédinger Equation.

Linear Momentum. In Example (b) of §3.2, assume that H is the space
of complex-valued L?-functions on R? and that the self-adjoint linear oper-
ator Hop: ' H — H commutes with infinitesimal translations of the argument
by a fixed vector £ € R3, that is, Hop(D9(-) - ) = D(Hopt(+)) - £ for any
1) whose derivative is in H. One checks, using (3.3.1), that

Pe(y) = <%D¢ : s,w> (3.3.9)

Poisson commutes with (Hyp). If £ is the unit vector along the z-axis, the
corresponding conserved quantity is

R = (3500).
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Angular Momentum. Assume that Ho,: H — H commutes with in-
finitesimal rotations by a fixed skew-symmetric 3 X 3 matrix w, that is,

Hop(D(2) - &) = D((Hop)(2)) - (3:3.10)

for every 1) whose derivative is in H, where on the left-hand side, H,j, is
thought of as acting on the function = — D(z) - &x. Then the angular
momentum function

J(©) : 2 — (iDY(z) - &(x)/k, (z)) (3.3.11)

Poisson commutes with H so is a conserved quantity. If we choose w =
(0,0,1); that is,

-1
0
0

E)

i
O O
o OO

this corresponds to an infinitesimal rotation around the z-axis. Explicitly,
the angular momentum around the z'-axis is given by

) .0 0
Ji(Y) = <% (x’a% “Iﬂk%;) ,1/1>,

where (4, k,!) is a cyclic permutation of (1,2,3). ¢

(e) Linear and Angular Momentum for Linear Elastodynamics.
Consider again the equations of linear elastodynamics; see Example (f)
of §3.2. Observe that the Hamiltonian is invariant under translations if
the elasticity tensor ¢ is homogeneous (independent of (z,y, z)); the corre-
sponding conserved linear momentum in the z-direction is

P, :/ Pl - @d%. (3.3.12)
R3 627

Likewise, the Hamiltonian is invariant under rotations if c is isotropic, that
is, invariant under rotations, which is equivalent to ¢ having the form

C'L'jkl — N(éiké‘jl +§il§jk) +)\5ij5kl’

where p and ) are constants (see Marsden and Hughes {1983, Section 4.3]
for the proof). The conserved angular momentum about the z-axis is

In Chapter 11, we will gain a deeper insight into the significance and
construction of these conserved quantities.
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Some Technicalities for Infinite-Dimensional Systems. Ingeneral,
unless the symplectic form on the Banach space Z is strong, the Hamil-
tonian vector field Xy is not defined on the whole of Z but only on a
dense subspace. For example, in the case of the wave equation 0%p/0t? =
V2p — U'(p), a possible choice of phase space is H*(R3) x L%(R®), but
Xy is defined only on the dense subspace H%(R3) x H!(R?). It can also
happen that the Hamiltonian H is not even defined on the whole of Z. For
example, if H,, = V2+V for the Schrédinger equation on L?(R?), then H
could have domain containing H2(R3), that coincides with the domain of
the Hamiltonian vector field ¢H,p. If V is singular, the domain need not be
exactly H2(R3). As a quadratic form, H might be extendable to H!(R3).
See Reed and Simon {1974, Volume II] or Kato [1984] for details.

The problem of existence and even uniqueness of solutions can be quite
delicate. For linear systems one often appeals to Stone’s theorem for the
Schrodinger and wave equations, and to the Hille-Yosida theorem in the
case of more general linear systems. We refer to Marsden and Hughes [1983,
Chapter 6], for the theory and examples. In the case of nonlinear Hamilto-
nian systems, the theorems of Segal [1962], Kato [1975], and Hughes, Kato,
and Marsden [1977] are relevant.

For infinite-dimensional nonlinear Hamiltonian systems, technical differ-
entiability conditions on their flows ; are needed to ensure that each ¢ is
a symplectic map; see Chernoff and Marsden (1974}, and especially Mars-
den and Hughes [1983, Chapter 6]. These technicalities are needed in many
interesting examples. ¢

Exercises

3.3-1. Show that {F;, F;} =0, i,j =0,1,2, 3, where the Poisson bracket
is the KdV bracket and where
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Manifolds, Vector Fields, and
Differential Forms

In preparation for later chapters, it will be necessary for the reader to
learn a little bit about manifold theory. We recall a few basic facts here,
beginning with the finite-dimensional case. (See Abraham, Marsden, and
Ratiu [1988] for a full account.) The reader need not master all of this
material now, but it suffices to read through it for general sense and come
back to it repeatedly as our development of mechanics proceeds.

4.1 Manifolds

Our first goal is to define the notion of a manifold. Manifolds are, roughly
speaking, abstract surfaces that locally look like linear spaces. We shall
assume at first that the linear spaces are R” for a fixed integer n, which
will be the dimension of the manifold.

Coordinate Charts. Given a set M, a chart on M is a subset U of M
together with a bijective map ¢ : U — p(U) C R™. Usually, we denote p(m)
by (z!,...,z") and call the z the coordinates of the point m € U C M.
Two charts (U, ) and (U’, ¢’) such that UNU’ # @ are called compat-
ible if (U NU’) and ¢’ (U’ NU) are open subsets of R™ and the maps

¢ o oUNU): pUNTU") — ' (UNT')
and

po (@) N (UNU): g (UNU") — pUNT')
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are C*°. Here, ¢’ 0@~ o(UNU’) denotes the restriction of the map ¢’ o ~!

to the set (U NU’). See Figure 4.1.1.

@(U)

FIGURE 4.1.1. Overlapping charts on a manifold.

We call M a differentiable n-manifold if the following hold:

M1. The set M is covered by a collection of charts, that is, every point is
represented in at least one chart.

M2. M has an atlas; that is, M can be written as a union of compatible
charts.

If a chart is compatible with a given atlas, then it can be included into
the atlas itself to produce a new, larger, atlas. One wants to allow such
charts, thereby enlarging a given atlas, and so one really wants to define a
differentiable structure as a maximal atlas. We will assume that this
is done and resist the temptation to make this process overly formal.

A simple example will make what we have in mind clear. Suppose one
considers Euclidean three-space R® as a manifold with simply one (iden-
tity) chart. Certainly, we want to allow other charts such as those defined
by spherical coordinates. Allowing all possible charts whose changes of co-
ordinates with the standard Euclidean coordinates are smooth then gives
us a maximal atlas.

A neighborhood of a point m in a manifold M is defined to be the
inverse image of a Euclidean space neighborhood of the point ¢(m) under
a chart map ¢ : U — R". Neighborhoods define open sets, and one checks
that the open sets in M define a topology. Usually, we assume without
explicit mention that the topology is Hausdorff: Two different points m, m'
in M have nonintersecting neighborhoods.
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Tangent Vectors. Two curves t +— c;(t) and t — c2(t) in an n-manifold
M are called equivalent at the point m if

c1(0) =c2(0)=m and (poci)(0)=(poc)(0)

in some chart ¢. Here the prime denotes the differentiation of curves in
Euclidean space. It is easy to check that this definition is chart indepen-
dent and that it defines an equivalence relation. A tangent vector v to a
manifold M at a point m € M is an equivalence class of curves at m.

It is a theorem that the set of tangent vectors to M at m forms a vector
space. It is denoted by T,,M and is called the tangent space to M at
me M.

Given a curve c(t), we denote by c'(s) the tangent vector at c(s) defined
by the equivalence class of t — ¢(s +t) at t = 0. We have set things up
so that tangent vectors to manifolds are thought of intuitively as tangent
vectors to curves in M.

Let ¢ : U € M — R™ be a chart for the manifold M, so that we get as-

sociated coordinates (z!,... ,z™) for points in U. Let v be a tangent vector
to M at m; i.e., v € T,,M, and let ¢ be a curve that is a representative of
the equivalence class v. The components of v are the numbers v!,... ,v"

defined by taking the derivatives of the components, in Euclidean space, of
the curve poc:

. d .
,U’L —_ oc ?
z(#oc) )
where 1 = 1,... ,n and where c is a representative curve for the tangent

vector v. From the definition, the components are independent of the repre-
sentative curve chosen, but they do, of course, depend on the chart chosen.

Tangent Bundles. The tangent bundle of M, denoted by TM, is
the set that is the disjoint union of the tangent spaces to M at the points
m € M, that is,

T™M = |} TnM.
meM
Thus, a point of TM is a vector v that is tangent to M at some point
meM.
If M is an n-manifold, then TM is a 2n-manifold. To define the dif-
ferentiable structure on TM, we need to specify how to construct local

coordinates on TM. To do this, let z*,... ,z" be local coordinates on M
and let v!,... ,v™ be components of a tangent vector in this coordinate
system. Then the 2n numbers z!,...,z", v!,... ,v™ give a local coordi-

nate system on T'M. This is the basic idea one uses to prove that indeed
TM is a 2n-manifold.

The natural projection is the map 7ps : TM — M that takes a tangent
vector v to the point m € M at which the vector v is attached (that is,
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v € T;, M). The inverse image 75, (m) of a point m € M under the natural
projection 7y is the tangent space T,, M. This space is called the fiber of
the tangent bundle over the point m € M.

Differentiable Maps and the Chain Rule. Let f: M — N be a map
of a manifold M to a manifold N. We call f differentiable (resp. C*) if in
local coordinates on M and N, the map f is represented by differentiable
(resp. C*) functions. Here, by “represented” we simply mean that coor-
dinate charts are chosen on both M and N so that in these coordinates
f, suitably restricted, becomes a map between Euclidean spaces. One of
course has to check that this notion of smoothness is independent of the
charts chosen—this follows from the chain rule.

The derivative of a differentiable map f: M — N at a point m € M
is defined to be the linear map

Tmf : TmM s Tf(m)N

constructed in the following way. For v € T,, M, choose a curve ¢ : | —¢, e[ —
M with ¢(0) = m, and associated velocity vector dc/dt |0 = v. Then
T f - v is the velocity vector at ¢t = 0 of the curve foc: R — N, that is,

d

T 0= Z1(el(®)

t=0

The vector Ty, f - v does not depend on the curve ¢ but only on the vector
v, as is seen using the chain rule. If f : M — N is of class C¥, then
Tf:TM — TN is a mapping of class C*~1. Note that

de
dt

= T(]C -1
t=0

If f: M - N and g : N — P are differentiable maps (or maps of class
C¥), then go f : M — P is differentiable (or of class C*), and the chain
rule holds:

T(go f)y=TgoTf.

Diffeomorphisms. A differentiable (or of class C*) map f: M — N is
called a diffeomorphism if it is bijective and its inverse is also differen-
tiable (or of class C*).

If Toof : TwM — Tym)N is an isomorphism, the inverse function
theorem states that f is a local diffeomorphism around m € M, that
is, there are open neighborhoods U of m in M and V of f(m) in N such
that f|JU : U — V is a diffeomorphism. The set of all diffeomorphisms
f : M — M forms a group under composition, and the chain rule shows
that T(f~1) = (Tf)~'.
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Submanifolds and Submersions. A submanifold of M is a subset
S C M with the property that for each s € S there is a chart (U, ¢) in M
with the submanifold property, namely,

SM. ¢:U — R¥ x R** and o(U N S) = p(U) N (R* x {0}).

The number & is called the dimension of the submanifold S.

This latter notion is in agreement with the definition of dimension for a
general manifold, since S is a manifold in its own right all of whose charts
are of the form (U N S,¢{(U N S)) for all charts (U, ) of M having the
submanifold property. Note that any open subset of M is a submanifold
and that a submanifold is necessarily locally closed, that is, every point
s € § admits an open neighborhood U of s in M such that UN S is closed
in U.

There are convenient ways to construct submanifolds using smooth map-
pings. If f: M — N is a smooth map, a point m € M is a regular point
if T, f is surjective; otherwise, m is a critical point of f. If C C M is the
set of critical points of f, then f(C) C N is the set of critical values of
f and N\f(C) is the set of regular values of f.!

The submersion theorem states that if f: M — N is a smooth map
and n is a regular value of f, then f~!(n) is a smooth submanifold of M
of dimension dim M — dim N and

T (f7'(n)) =ker T f.

The local onto theorem states that T, f : T;,, M — Ty(,) N is surjective
if and only if there are charts ¢ : U C M — U’ at m in M and 9 :
VC N — V'at f(m) in N such that ¢ maps into the product space
Rdim M—dim N RdimN. the jmage of U’ correspondingly has the form of a
product U’ = U xV’; the point m gets mapped to the origin p(m) = (0, 0),
as does f(m), namely, ¥(f(m)) = 0; and the local representative of f is a
projection:

(Yo fop )z,y) ==z

In particular, flU : U — V is onto. If T}, f is onto for every m € M, then
f is called a submersion. It follows that submersions are open mappings
(the images of open sets are open).

Immersions and Embeddings. A C* map f: M — N is called an im-
mersion if T,, f is injective for every m € M. The local 1-to-1 theorem
states that T,, f is injective if and only if there are charts ¢ : U C M — U’
atmin Mandy:V C N — V' at f(m) in N such that V' is a product

1Sard’s theorem states that if f : M — N is a C*-map, k > 1, and if M
has the property that every open covering has a countable subcovering, then if & >
max(0,dim M — dim N), the set of regular values of f is residual and hence dense in N.
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V' = U/ x V" c RAmM  Rdim N=dim M. 1,6th 1 and f(m) get sent to zero,
i.e., ¢(m) = 0 and ¥(f(m)) = (0,0); and the local representative of f is
the inclusion

(o fop™)(z)=(,0).

In particular, fiU : U — V is injective. The immersion theorem states
that T,,, f is injective if and only if there is a neighborhood U of m in M such
that f(U) is a submanifold of N and f|U : U — f(U) is a diffeomorphism.
It should be noted that this theorem does not say that f(M) is a sub-
manifold of N. For example, f may not be injective and f(M) may thus
have self-intersections. Even if f is an injective immersion, the image f(M)
may not be a submanifold of N. An example is indicated in Figure 4.1.2.

/‘\

n/i; n 71t/4
r=cos 20

FIGURE 4.1.2. An injective immersion.

The map indicated in the figure (explicitly given by f :|n/4,7n/4[—
R?; 6 — (sin 6 cos 26, cos @ cos 26)) is an injective immersion, but the topol-
ogy induced from R? onto its image does not coincide with the usual topol-
ogy of the open interval: Any neighborhood of the origin in the relative
topology consists, in the domain interval, of the union of an open interval
about m with two open segments |7/4,m/4 + €[, |Tw/4 — €,7n /4[. Thus,
the image of f is not a submanifold of R?, but an injectively immersed
submanifold.

An immersion f : M — N that is a homeomorphism onto f(M) with
the relative topology induced from N is called an embedding. In this case
f(M) is a submanifold of N and f: M — f(M) is a diffeomorphism. For
example, if f : M — N is an injective immersion and if M is compact,
then f is an embedding. Thus, the example given in the preceding figure
is an example of an injective immersion that is not an embedding (and of
course, M is not compact).

Another example of an injective immersion that is not an embedding
is the linear flow on the torus T? = R?/Z? with irrational slope: f(t) =
(t,at) (mod Z2). However, there is a difference between this injective im-
mersion and the “figure eight” example above: In some sense, the second
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example is better behaved; it has some “uniformity” about its lack of being
an embedding.

An injective immersion f : M — N is called regular if the following
property holds: If g : L — M is any map of the manifold L into M, then
gis C* ifand only if fog: L — N is C* for any k > 1. It is easy to see
that all embeddings satisfy this property but that the previous example
also satisfies it, without being an embedding, and that the “figure eight”
example (see Figure 4.1.2) does not satisfy it. Varadarajan [1974] calls such
maps quasi-regular embeddings; they appear below in the Frobenius
theorem and in the study of Lie subgroups.

Vector Fields and Flows. A vector field X on a manifold M is a map
X : M — TM that assigns a vector X (m) at the point m € M; that is,
Trm o X = identity. The real vector space of vector fields on M is denoted
by X(M). An integral curve of X with initial condition mg at ¢t = 0
is a (differentiable) map c : Ja,b[ — M such that ]a,b[ is an open interval
containing 0, ¢(0} = myg, and

c(t) = X(c(t))

for all t € |a, b[. In formal presentations we usually suppress the domain of
definition, even though this is technically important.

The flow of X is the collection of maps ¢; : M — M such that t —
@¢(m) is the integral curve of X with initial condition m. Existence and
uniqueness theorems from ordinary differential equations guarantee that ¢
is smooth in m and ¢ (where defined) if X is. From uniqueness, we get the
flow property

Pt+s = Pt 0 Pg

along with the initial conditions py = identity. The flow property gener-
alizes the situation where M = V is a linear space, X(m) = Am for a
(bounded) linear operator A, and where

pi(m) = e'm
to the nonlinear case.

A time-dependent vector field is a map X : M x R — TM such that
X(m,t) € T, M for each m € M and t € R. An integral curve of X is
a curve c(t) in M such that ¢/(t) = X(c(t),t). In this case, the flow is the
collection of maps

prs: M — M

such that t — ¢ (m) is the integral curve c(t) with initial condition
c(s) = m at t = s. Again, the existence and uniqueness theorem from ODE
theory applies, and in particular, uniqueness gives the time-dependent
flow property

Pt,s © Ps;r = Pt,r-
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If X happens to be time independent, the two notions of flows are related
by 15 = pr—s.

Differentials and Covectors. If f : M — R is a smooth function,
we can differentiate it at any point m € M to obtain a map T, f :
TrnM — TgmyR. Identifying the tangent space of R at any point with
itself (a process we usually do in any vector space), we get a linear map
df(m): T,,M — R. That is, df(m) € T;» M, the dual of the vector space
TmM. We call df the differential of f. For v € T,, M, we call df(m) - v
the directional derivative of f in the direction v. In a coordinate chart or
in linear spaces, this notion coincides with the usual notion of a directional
derivative learned in vector calculus.
Explicitly, in coordinates, the directional derivative is given by

n oo~ .
df(im) - v= Z%ﬁ—)v’,

i=1

where ¢ is a chart at m. We will employ the summation convention
and drop the summation sign when there are repeated indices.

One can show that specifying the directional derivatives completely de-
termines a vector, and so we can identify a basis of T}, M using the operators
d/0z*. We write

0 0
{61,...,671}——{%,...,%}

for this basis, so that v = v¢9/dz".

If we replace each vector space T,,, M with its dual T,y M, we obtain a
new 2n-manifold called the cotangent bundle and denoted by T*M. The
dual basis to 8/0z" is denoted by dz*. Thus, relative to a choice of local
coordinates we get the basic formula

df(z) = g—l—{vda:i

for any smooth function f: M — R.

Exercises
4.1-1. Show that the two-sphere S C R3 is a 2-manifold.

4.1-2. If ¢, : 82 — S? rotates points on S? about a fixed axis through
an angle ¢, show that ¢, is the flow of a certain vector field on S2.

4.1-3. Let f: S? — R be defined by f(z,y, z) = 2. Compute df relative
to spherical coordinates (6, ¢).
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4.2 Differential Forms

We next review some of the basic definitions, properties, and operations
on differential forms, without proofs (see Abraham, Marsden, and Ratiu
[1988] and references therein).

The main idea of differential forms is to provide a generaliza-
tion of the basic operations of vector calculus, div, grad, and
curl, and the integral theorems of Green, Gauss, and Stokes to
manifolds of arbitrary dimension.

Basic Definitions. We have already met one-forms, a term that is used
in two ways—they are either members of a particular cotangent space 7,y M
or else, analogous to a vector field, an assignment of a covector in T, M
to each m € M. A basic example of a one-form is the differential of a
real-valued function.

A 2-form Q on a manifold M is a function Q(m) : T, M x T, M - R
that assigns to each point m € M a skew-symmetric bilinear form on the
tangent space T, M to M at m. More generally, a k-form a (sometimes
called a differential form of degree k) on a manifold M is a function
a(m) : TpyM x --- x T,, M (there are k factors) — R that assigns to each
point m € M a skew-symmetric k-multilinear map on the tangent space
TmM to M at m. Without the skew-symmetry assumption, a would be
called a (0,k)-tensor. A map a: V x --- x V (there are k factors) — R is
multilinear when it is linear in each of its factors, that is,

a(vy,. .. ,av; +bvj,... ,vg)
= ac(vy,- .. ,j,... ,v) + ba(vy, ... V5, .., Uk)

for all j with 1 < j <k. A k-multilinear map a: V x...xV — R is skew
(or alternating) when it changes sign whenever two of its arguments are

interchanged, that is, for all vy,... ,ux € V,
a1, Uiy, Ujy e, Uk) = —0(V1y oo e Uy e, Uiy e e, Ug).
Let !,... ,z™ denote coordinates on M, let

{e1,...,e,} = {8/0x,...,8/9z"}
be the corresponding basis for T,, M, and let
{e},... ,e"} = {dz},... ,dz"}

be the dual basis for T}, M. Then at each m € M, we can write a 2-form as

- 5 9
(v, w) = Qi(m)v'w’,  where  Qi;(m) = O, (?9}7 _8—:1:—9> ’
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and more generally, a k-form can be written
i i
am(v1,. .., Uk) = a4 g, (M)vyt - vk,

where there is a sum on iq,... ik,

0 0
ail,_,ik(m) = Om 5;{;, ey _8_17’: s
and v; = v}9/dz7, with a sum on j understood.

Tensor and Wedge Products. If a is a (0, k)-tensor on a manifold M
and f is a (0, )-tensor, their tensor product o ® 3 is the (0, k +[)-tensor
on M defined by

(@®B)m(v1, .- s Vktt) = Am(v1y - 5 Uk)Bm (Vk 1, - -+ Vkpt)  (4.2.1)

at each point m € M.
If t is a (0, p)-tensor, define the alternation operator A acting on ¢ by

1
A1, ) == > sgn(mE(Ve(1)ys -+ »Un(p)s (4.2.2)
P nESy
where sgn(n) is the sign of the permutation 7,

+1 if 7 is even ,

sgn(r) ={ ~1if 7 is odd | (423)

and Sy, is the group of all permutations of the set {1,2,... ,p}. The operator
A therefore skew-symmetrizes p-multilinear maps.

If a is a k-form and (3 is an I-form on M, their wedge product a A (3 is
the (k + [)-form on M defined by?

(k +1)!
Kl

For example, if a and (3 are one-forms, then
(a A B) (v, v2) = a(v1)B(v2) — a(v2)B(v1),

while if « is a 2-form and § is a 1-form,

aANf= A(a®f). (4.2.4)

(a A B)(v1,v2,v3) = vy, v2)B(v3) + a(v3, v1)B(va) + a(ve, v3)B(v1)-

We state the following without proof:

2The numerical factor in (4.2.4) agrees with the convention of Abraham and Marsden
[1978], Abraham, Marsden, and Ratiu [1988], and Spivak [1976], but not that of Arnold
[1989], Guillemin and Pollack [1974], or Kobayashi and Nomizu [1963]; it is the Bourbaki
{1971] convention.
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Proposition 4.2.1. The wedge product has the following properties:
(i) a A B is associative: a A (BAY) = (aAB)A7y.
(ii) a A S is bilinear in a, (3 :
(acq +baz) A B = alay AB) + blaz A B),
aA(cBy +dB) = clanB) +dla A Bs).
(iii) aAB is anticommutative: aAS = (~1)*BAa, where a is a k-form
and B is a 1-form.
In terms of the dual basis dz*, any k-form can be written locally as
a=a; i, dz Ao Adz'k,

where the sum is over all 4; satisfying iy < -+ < ig.

Pull-Back and Push-Forward. Let ¢ : M — N be a C* map from
the manifold M to the manifold N and a be a k-form on N. Define the
pull-back ¢*a of a by ¢ to be the k-form on M given by

(" )m(viy- .o 0k) = apm)(Tme - v1, ., T - ). (4.2.5)

If ¢ is a diffeomorphism, the push-forward ¢, is defined by ¢. =
()"
Here is another basic property.

Proposition 4.2.2. The pull-back of a wedge product is the wedge prod-
uct of the pull-backs:

P aAB) = aNps. (4.2.6)

Interior Products and Exterior Derivatives. Let o be a k-form on a
manifold M and X a vector field. The interior product ixo (sometimes
called the contraction of X and o and written, using the “hook” notation,
as X Ja) is defined by

(ixa)m(ve, ... ,vk) = am(X(m),va, ... , k). (4.2.7)

Proposition 4.2.3. Let « be a k-form and 8 a 1-form on a manifold M.
Then

ix(a/\ﬂ) e (ixa)/\ﬂ-{-(—l)ka/\(ixﬂ). (4.2.8)
In the “hook” notation, this proposition reads
X J(anB)=(XJa)AB+ (-1)fa A (X 1B).

The ezterior derivative da of a k-form o on a manifold M is the (k+1)-
form on M determined by the following proposition:
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Proposition 4.2.4. There is a unique mapping d from k-forms on M to
(k + 1)-forms on M such that:

(i) If a is a O-form (k = 0), that is, « = f € F(M), then df is the
one-form that is the differential of f.

(ii) da is linear in a, that is, for all real numbers ¢, and ¢z,

d(c1a1 + 02012) = cpda; + cedas.

(iil) da satisfies the product rule, that is,
d(aAB)=daA B+ (-1)*kandg,
where a is a k-form and 0 is a 1-form.
(iv) d% =0, that is, d(da) = 0 for any k-form c.

(v) d is a local operator, that is, da(m) depends only on a restricted
to any open neighborhood of m; in fact, if U is open in M, then

d(e|U) = (da)|U.

If a is a k-form given in coordinates by
a=a,. ;,dr" A---Adz™  (sumon i) < --- <),
then the coordinate expression for the exterior derivative is

= D s p ggin A A

d
@ oI

(sum on all j and i3 < --- < ik). (4.2.9)

Formula (4.2.9) can be taken as the definition of the exterior derivative,
provided that one shows that (4.2.9) has the above-described properties
and, correspondingly, is independent of the choice of coordinates.

Next is a useful proposition that in essence rests on the chain rule:

Proposition 4.2.5. Exterior differentiation commutes with pull-back, that
18,

d(¢"a) = ¢*(da), (4.2.10)
where a is a k-form on a manifold N and ¢ : M — N is a smooth map

between manifolds.

A k-form « is called closed if da = 0 and exact if there is a (k—1)-form
A such that o = dS. By Proposition 4.2.4(iv) every exact form is closed.
Exercise 4.4-2 gives an example of a closed nonexact one-form.
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Proposition 4.2.6 (Poincaré Lemma). A closed form is locally exact,
that is, if da = 0, there is a neighborhood about each point on which
a=dg.

See Exercise 4.2-5 for the proof.

The definition and properties of vector-valued forms are direct extensions
of those for usual forms on vector spaces and manifolds. One can think of
a vector-valued form as an array of usual forms (see Abraham, Marsden,
and Ratiu [1988]).

Vector Calculus. The table below entitled “Vector Calculus and Dif-
ferential Forms” summarizes how forms are related to the usual operations
of vector calculus. We now elaborate on a few items in this table. In item
4, note that

d o d
df = a_id:c + a_zdy + ’a‘i‘dz = (grad ) = (Vf)",

which is equivalent to Vf = (df)¥.

The Hodge star operator on R® maps k-forms to (3 — k)-forms and
is uniquely determined by linearity and the properties in item 2. (This
operator can be defined on general Riemannian manifolds; see Abraham,
Marsden, and Ratiu [1988].)

In item 5, if we let F = Fie;+ Fyey+ Faes, so F® = Fy de+ F, dy+ F; dz,
then

d(F") = dF, Adz + Fid(dz) + dF; A dy + Fod(dy)
+ dF3 Adz + ng(dl)
(6F1 aFl

0F

0F, OF, OF,
+ ( o dr + —a;dy-% —a-z—dz) Ady
OF; OF;

OF3
3 dr 4+ =3 -3
+<3x z + 8ydy+ 6Zdz>/\dz

oOF, oF, OF, OF,
=——deAdy+ ——dzAdz + == - —
3y T Ady Ep z Adx E dz A dy 3 dy A dz

OF3 O0F3

_[(0Fy OF OFy OF;
_(ax 3y>dz/\dy+<6z Bx)dZAdx

+<Q5—Q€Z)dy/\dz.
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Hence, using item 2,

*(d(F")) = (?._1_7_2_ _ %) dz + (% _ %) dy + (% _ @_2) dz,

oz dy 0z oz dy 0z
0F3; OF: 0F, OF: OF, OF
o= (- a+ (Fr-F) e+ (52 -F) e
=curl F =V x F.

With reference to item 6, let F' = Fye; + Fyeg + Fses, s0
F® = Fy dz + Fydy + Fs dz.
Thus *(F®) = F; dy A dz + Fy(—dz A dz2) + F3 dx A dy, and so

d(x(F®)) =dFy Ady Adz —dFy Adx Adz +dF3 Adz Ady

OF oOF1 oF;
{2l gr+ —lgy 4+ =L
(89: T + By y -+ aZdz)/\dy/\dz

6F2 6F2 an
- (—(%dx + —@dy + —5—z—dz) ANdx Adz

O0F; OF;3 OF;
+ ( e dx+—5y—dy+—£dz Adz A dy

= Q—}jl-da:/\dy/\dz—i-a—FZ
oy

oz
_(OFy A OF,  OF; o
_<8x + o + az)dm/\dy/\dz--(dlvF)d:v/\dy/\dz.

oF,

dz Ady A
T ydz+az

dr ANdy Adz

Therefore, *(d(x(F”))) =div F=V-F.

Vector Calculus and Differential Forms

1. Sharp and Flat (Using standard coordinates in R?)
(a) v* = v'dz + v?dy + v dz, the one-form corresponding to the
vector v = vle; + viey + vies.
(b) al = aje; + azey + azes, the vector corresponding to the one-
form a = ajdr + ay dy + as dz.

2. Hodge Star Operator

(a) ¥l =dz AdyANdz.

(b) xdz = dy A dz, *dy = —dzx A dz, *dz = dz A dy,
*(dy A dz) = dz, x(dz A dz) = —dy, *(dr A dy) = dz.
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(c) *(dzANdyndz)=1.
3. Cross Product and Dot Product

(a) v x w = [x(® Aw)L.
(b) (v-w)dz Ady Adz =" Ax(w).

4. Gradient Vf =grad f = (df)".
5. Curl V x F = curl F = [x(dF*)}*.

. Divergence V.F =div F = xd(xF").

[=]
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Exercises

¢ 4.2-1. Let ¢ : R3 — R? be given by ¢(z,y, z) = (z + 2, zy). For
a=e’dut+udv € Q(R?) and B =uduA dv,

compute a A B, p*a, p*F, and p*a A p*S.
o 4.2-2. Given

a = y?dz A dz + sin(zy) dz A dy + €® dy A dz € Q2(R®)
and
X = 30/0x + cos 20/0y ~ x20/0z € X(R3),

compute da and ixa.

o 4.2-3.

(a) Denote by /\k(R”) the vector space of all skew-symmetric k-linear
maps on R™. Prove that this space has dimension n!/(k! (n — k)!) by
showing that a basis is given by { e’ A---Ae®* | i) < ... <1y }, where
{e1,... ,en} is a basis of R™ and {el,... ,e™} is its dual basis, that

is, €'(e;) = 4%

(b) If u € A"(R") is nonzero, prove that the map v € R" — i,u €

A" (R") is an isomorphism.

(c) If M is a smooth n-manifold and p € Q"(M) is nowhere-vanishing
(in which case it is called a volume form), show that the map X €

X(M) — ixp € Q" 1(M) is an isomorphism.
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4.2-4. Let a = a; dz* be a closed one-form in a ball around the origin in
R™. Show that oo = df for

1
fat,. .. ") =/ otz ..., tz")zd db.
0
4.2-5.

(a) Let U be an open ball around the origin in R” and a € Q¥(U) a
closed form. Verify that a = d3, where

Bzt,...,z")

1
= (/ tk—lajh...ik_l(txl, e ,tz")xj dt) dzt A A dwi"—‘,
0

and where the sum is over i; < -+ < ix_1. Here,
— s J1 A L. Jk
o = aj, . j, dr? A Adalk,

where j; < --- < jir and where a is extended to be skew-symmetric
in its lower indices.

(b) Deduce the Poincaré lemma from (a).

4.2-6 (Construction of a homotopy operator for a retraction). Let M be
a smooth manifold and N C M a smooth submanifold. A family of smooth
maps 1, : M — M, t € [0,1], is called a retraction of M onto N
if |N = identity on N for all t € [0,1], 7 = identity on M, r; is a
diffeomorphism of M with r,(M) for every t # 0, and ro(M) = N. Let X,
be the time-dependent vector field generated by ry, t # 0. Show that the
operator H : QF(M) — QF~1(M) defined by

1
H-= / (rrix,a)dt
0

satisfies
a — (rja) = dHa + Hdo.

(a) Deduce the relative Poincaré lemma from this formula: If o €
Q¥ (M) is closed and a|N = 0, then there is a neighborhood U of N
such that o|U = dg for some 8 € QF~1(U) and 8|N = 0. (Hint: Use
the existence of a tubular neighborhood of N in M.)

(b) Deduce the global Poincaré lemma for contractible manifolds: If
M is contractible, that is, there is a retraction of M to a point, and
if @ € QF(M) is closed, then « is exact.
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4.3 The Lie Derivative

Lie Derivative Theorem. The dynamic definition of the Lie derivative
is as follows. Let a be a k-form and let X be a vector field with flow ;.
The Lie derivative of o along X is given by

d
et R (4.3.1)

1
£Xa-—hm [(‘Pt a)—o] =
This definition together with properties of pull-backs yields the following.

Theorem 4.3.1 (Lie Derivative Theorem).

zﬁcp:a = ¢, £xa. (4.3.2)

This formula holds also for time-dependent vector fields in the sense that

d X
%wt,sa = Lpt,s’CXa?

and in the expression £ x« the vector field X is evaluated at time ¢.
If f is a real-valued function on a manifold M and X is a vector field on
M, the Lie derivative of f along X is the directional derivative

Lxf=X[f] =df - X. (4.3.3)

If M is finite-dimensional, then

of
: 4.3.4
£xf=X"— pyeh (4.3.4)
For this reason one often writes

0
oxt’

X=X

If Y is a vector field on a manifold N and ¢ : M — N is a diffeomorphism,
the pull-back ¢*Y is a vector field on M defined by

(@*Y)(m) = (Tnp ' oY 0 ¢) (m). (4.3.5)
Two vector fields X on M and Y on N are said to be ¢-related if
TpoX =Y oep. (4.3.6)

Clearly, if ¢ : M — N is a diffeomorphism and Y is a vector field on N,
then ¢*Y and Y are @-related. For a diffeomorphism ¢, the push-forward
is defined, as for forms, by . = (¢~ 1)*.
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Jacobi—Lie Brackets. If M is finite-dimensional and C, then the set of
vector fields on M coincides with the set of derivations on F(M). The same
result is true for C* manifolds and vector fields if k£ > 2. This property is
false for infinite-dimensional manifolds; see Abraham, Marsden, and Ratiu
[1988]. If M is C*° and smooth, then the derivation f — X[Y[f]]-Y[X|[f]],
where X[f] = df - X, determines a unique vector field denoted by [X,Y]
and called the Jacobi-Lie bracket of X and Y. Defining £xY = [X,Y]
gives the Lie derivative of Y along X. Then the Lie derivative formula
(4.3.2) holds with « replaced by Y, and the pull-back operation given by
(4.3.5).

If M is infinite-dimensional, then one defines the Lie derivative of Y
along X by

4 orY = £xY, (4.3.7)
dt|,_,

where ¢; is the flow of X. Then formula (4.3.2) with a replaced by Y
holds, and the action of the vector field £xY on a function f is given by
X[Y[f]] - Y[X|f]], which is denoted, as in the finite-dimensional case, by
[X,Y][f]- As before [X,Y] = £xY is also called the Jacobi-Lie bracket of
vector fields.

If M is finite-dimensional, then
,0Y7 ,0X7
azt ozt
and in general, where we identify X,Y with their local representatives, we
have

(£ExY)Y =X =(X V)Y — (Y V)XY, (4.3.8)

X,)Y]=DY-X-DX Y. (4.3.9)
The formula for [X,Y] = £xY can be remembered by writing
;0 . 0 0Y7 9 .0X* 8
% J_— 1 — VI
[X 8xi’Y 89:1] X Ozt OxJ Y 0z Ozt

Algebraic Definition of the Lie Derivative. The algebraic approach
to the Lie derivative on forms or tensors proceeds as follows. Extend the
definition of the Lie derivative from functions and vector fields to differen-
tial forms, by requiring that the Lie derivative be a derivation; for example,
for one-forms «, write

£x{a,Y) = (£xa,Y) + (o, £xY), (4.3.10)
where X, Y are vector fields and (,Y) = a(Y’). More generally,

k

£X(a(Yla"' ,Yk)) = ("EXa)(Yl) 7Yk)+za(yl7"~ a"EX)/iy"' ;Yk)a
i=1

(4.3.11)

where X,Y1,...,Y} are vector fields and « is a k-form.
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Proposition 4.3.2. The dynamic and algebraic definitions of the Lie
derivative of a differential k-form are equivalent.

Cartan’s Magic Formula. A very important formula for the Lie deriva-
tive is given by the following.

Theorem 4.3.3. For X a vector field and a a k-form on a manifold M,
we have

Lya=dixa+ixda, (4.3.12)
or, in the “hook” notation,
£xa=d(X Ja)+ X tda.

This is proved by a lengthy but straightforward calculation.
Another property of the Lie derivative is the following: If ¢ : M — N is
a diffeomorphism, then

e LyB=Loye™B

for Y € X(N) and 3 € QF(M). More generally, if X € ¥(M) and Y € %(N)
are ¢ related, that is, TYo X =Y o4 for ¢y : M — N a smooth map, then
Lx¢*B =p* Ly for all B € QF(N).

There are a number of valuable identities relating the Lie derivative, the
exterior derivative, and the interior product that we record at the end of
this chapter. For example, if © is a one-form and X and Y are vector fields,
identity 6 in the table at the end of §4.4 gives the useful identity

de(X,Y) = X[e(Y)] - Y[O(X)] - (X, Y)). (4.3.13)

Volume Forms and Divergence. An n-manifold M is said to be ori-
entable if there is a nowhere-vanishing n-form p on it; u is called a wvol-
ume form, and it is a basis of Q*(M) over F(M). Two volume forms
p1 and pe on M are said to define the same orientation if there is an
f € F(M) with f > 0 and such that gy = fu;. Connected orientable
manifolds admit precisely two orientations. A basis {v1,...,v,} of T, M
is said to be positively oriented relative to the volume form p on M
if w(m)(v1,...,vn) > 0. Note that the volume forms defining the same
orientation form a convex cone in Q"(M), that is, if @ > 0 and p is a
volume form, then au is again a volume form, and if ¢ € [0,1] and uy, s
are volume forms defining the same orientation, then tu; + (1 — t)uo is
again a volume form defining the same orientation as pj or pe. The first
property is obvious. To prove the second, let m € M and let {v1,... ,v,}
be a positively oriented basis of T,, M relative to the orientation defined
by p1, or equivalently (by hypothesis) by po. Then pi(m)(vy,... ,v,) >0,
pz2(m){v1, ... ,vs) > 0, so that their convex combination is again strictly
positive.
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If 4 € Q™(M) is a volume form, since £ xpu € Q"(M), there is a function,
called the divergence of X relative to 4 and denoted by div,(X) or simply
div(X), such that

Lxp=div,(X)p. (4.3.14)

From the dynamic approach to Lie derivatives it follows that div,(X) =10
if and only if F}*u = p, where F; is the flow of X. This condition says that
F; is volume preserving. If o : M — M, since ¢*p € Q*(M) there is a
function, called the Jacobian of ¢ and denoted by J,,(p) or simply J(p),
such that

" u = Ju(p)p. (4.3.15)

Thus, ¢ is volume preserving if and only if J,(p) = 1. From the inverse
function theorem, we see that ¢ is a local diffeomorphism if and only if
Ju(p) #0 on M.

Frobenius’ Theorem. We also mention a basic result called Frobenius’
theorem. If E C TM is a vector subbundle, it is said to be involutive
if for any two vector fields X,Y on M with values in E, the Jacobi-Lie
bracket [X,Y] is also a vector field with values in E. The subbundle E is
said to be integrable if for each point m € M there is a local submanifold
of M containing m such that its tangent bundle equals F restricted to this
submanifold. If E is integrable, the local integral manifolds can be extended
to get, through each m € M, a connected maximal integral manifold, which
is unique and is a regularly immersed submanifold of M. The collection of
all maximal integral manifolds through all points of M is said to form a
foliation.

The Frobenius theorem states that the involutivity of E is equivalent to
the integrability of E.

Exercises

o 4.3-1. Let M be an n-manifold, u € Q*(M) a volume form, X,Y €
X(M), and f,g : M — R smooth functions such that f(m) # 0 for all m.
Prove the following identities:

(a) divyu(X) = div(X) + X[}/ f:
(b) div,(9X) = g divu(X) + X[g]; and
(¢) div,([X,Y]) = X[div,(Y)] - Y[div,(X)].

¢ 4.3-2. Show that the partial differential equation

Bf_n i1 naf
a—;X(z,...,x )Ba:i
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with initial condition f(z,0) = g(z) has the solution f(z,t) = g(Fi(z)),
where F; is the flow of the vector field (X!,...,X™) in R™ whose flow is
assumed to exist for all time. Show that the solution is unique. Generalize
this exercise to the equation

for X a vector field on a manifold M.

4.3-3. Show that if M and N are orientable manifolds, so is M x N.

4.4 Stokes’ Theorem

The basic idea of the definition of the integral of an n-form g on an oriented
n-manifold M is to pick a covering by coordinate charts and to sum up the
ordinary integrals of f(z!,...,z")dx!-.-dz™, where
p=f(z!,...,z")dzt A+ Adz™
is the local representative of u, being careful not to count overlaps twice.
The change of variables formula guarantees that the result, denoted by
Jas 14, is well-defined.
If one has an oriented manifold with boundary, then the boundary, M,
inherits a compatible orientation. This proceeds in a way that generalizes

the relation between the orientation of a surface and its boundary in the
classical Stokes’ theorem in R3.

Theorem 4.4.1 (Stokes’ Theorem). Suppose that M is a compact, ori-
ented k-dimensional manifold with boundary OM . Let « be a smooth (k—1)-

form on M. Then
/da:/ a. (4.4.1)
M oM

Special cases of Stokes’ theorem are as follows:

The Integral Theorems of Calculus. Stokes’ theorem generalizes and
synthesizes the classical theorems of calculus:

(a) Fundamental Theorem of Calculus.
b
[ r@dz=s)- 1) (442)

(b) Green’s Theorem. For a region Q C R?

// (OLQ - %) dz dy = /dex +Qdy. (4.4.3)



142 4. Manifolds, Vector Fields, and Differential Forms

(c) Divergence Theorem. For a region 2 C R?,

///Qdidevz//mF-ndA. (4.4.4)

(d) Classical Stokes’ Theorem. For a surface S C R?,

JIA G -2 aones

0P OR 0Q OP
+(az ax)d Adz +($'—a—y)dil}/\dy}

://n-curleA= Pdz + Qdy + Rdz, (4.4.5)
s as

where F = (P, Q, R).

Notice that the Poincaré lemma generalizes the vector calculus theorems
in R3, saying that if curl F = 0, then F = Vf, and if div F = 0, then

= V x G. Recall that it states that if o is closed, then locally o is
ezact; that is, if da = 0, then locally o = df for some 3. On contractible
manifolds these statements hold globally.

Cohomology. The failure of closed forms to be globally exact leads to
the study of a very important topological invariant of M, the de Rham
cohomology. The kth de Rham cohomology group, denoted by H*(M), is
defined by

_ ker(d : QF(M) — QF1(M))
" range (d : QF-1(M) — Qk(M))

The de Rham theorem states that these Abelian groups are isomorphic to
the so-called singular cohomology groups of M defined in algebraic topology
in terms of simplices and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided
by integration; the fact that the integration map drops to the preceding
quotient is guaranteed by Stokes’ theorem. A useful particular case of this
theorem is the following: If M is an orientable compact boundaryless n-
manifold, then [, u = 0 if and only if the n-form p is exact. This statement
is equivalent to H"(M) = R for M compact and orientable.

H*(M

Change of Variables. Another basic result in integration theory is the
global change of variables formula.

Theorem 4.4.2 (Change of Variables). Let M and N be oriented n-mani-
folds and let ¢ : M — N be an orientation-preserving diffeomorphism. If
a 1s an n-form on N (with, say, compact support), then

/ go*a:/a.
M N
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Identities for Vector Fields and Forms

. Vector fields on M with the bracket [X,Y] form a Lie algebra; that
is, [X,Y] is real bilinear, skew-symmetric, and Jacobi’s identity
holds:

[(X,Y], 2] + (2, X], Y]+ [[Y, 2], X] = 0.
Locally,
[X,Y]=DY X -DX .Y =(X-V)Y — (Y- V)X,
and on functions,
(X, Y]{f] = X[Y[f]] - Y[X[f]].
. For diffeomorphisms ¢ and ¢,

e[ X, Y] = [ X,0.Y] and (po9).X = puthX.

. The forms on a manifold comprise a real associative algebra with A as
multiplication. Furthermore, a A 8 = (—1)¥ 3 A « for k- and 1-forms
o and [, respectively.

. For maps ¢ and ¥,

P (anB)=¢"ane'B and (po¥)*a=1y¢*p*a.
. d is a real linear map on forms, dda = 0, and
d(aAB)=daA B+ (-1)fands

for o a k-form.

. For a a k-form and Xy, ..., X} vector fields,
k .
(da)(Xo, .., Xk) = ) _(-1)'Xia(Xo,..., Xi, ..., X))
i=0
+ Z (—1)i+ja([Xi,X,-],Xo, . ,Xi, . ,XJ‘, N ,Xk),

0<i<j<k

where X,- means that X; is omitted. Locally,

k
da(z)(vo, ... ,vk) = Y _(—-1)'Da(z) - vi(vo, ... , Bi,... , v).
=0
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10.

11.

12.

13.
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For a map ¢,
¢*da = dy*a.

. Poincaré Lemma. If da = 0, then the k-form « is locally exact;

that is, there is a neighborhood U about each point on which a = dg.
This statement is global on contractible manifolds or more generally
if H*(M) = 0.

. ixa is real bilinear in X, o, and for h: M — R,

inxa = hixa =ixha.
Also, ixixa =0 and
ix(aAB) =ixaAB+ (-1)ranixp
for a a k-form.
For a diffeomorphism ¢,
¢ (ixa) =ipx(p'a), le, ¢"(Xla)=(p"X)d(p"a).
If f: M — N is a mapping and Y is f-related to X, that is,
TfoX=Yof,

then
ixffa= ffiye; ie, XJ(ffa)=f"(Y da).

£ xa is real bilinear in X, o and

Ex(anpf)=LxaNB+an L£xp.

Cartan’s Magic Formula:

£xa=dixa+ixda=d(X ta)+ X Jda.

For a diffeomorphism ¢,
' xa= Lo xp a.
If f: M — N is a mapping and Y is f-related to X, then

Lyfra=f*£xa.
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14. (£Xa)(X1,... ,Xk) = X[(z(Xl, ,Xk)]
-NalXy, .. X, X)Xk
=0

i

Locally,
(£xa)(z)- (v1,...,v) = (Dag - X(z))(v1,... ,Vk)

k
+Zax(v1,... , DX, v,... ,Uk).
=0

15. The following identities hold:

(a) £yxa=ffxa+df Nixa;

(b) £ixyja=£xLya— Ly Lxa;

(¢) ix,yja = £xiya — iy £xo;

(d) £xda=dfxa;

(e) £xixa=ixfxa;

(f) £x(anp)y=Lxanf+an £xp.

16. If M is a finite-dimensional manifold, X = X'9/9z!, and
o= ail__,ikda:il Ao Adzte,

where i; < - - < ik, then the following formulas hold:

da = <%—1> det Adx't A - Adatx,

ox!
ixa= )('lOtliz,__’,;,cd:L‘i2 Ao A dl‘ik,
£xa=X"' (——a“—l“i> dz* A - Adzt
oz

ax! ) . )
+ Oy iy, <5a_cl—1> dz"* Adz? A---Adz** +....

Exercises

¢ 4.4-1. Let Q be a closed bounded region in R%. Use Green’s theorem to
show that the area of 2 equals the line integral

l/ (zdy — ydz).
2 Joa



146 4. Manifolds, Vector Fields, and Differential Forms

¢ 4.4-2. On R?\{(0,0)} consider the one-form

xdy — ydx
o= ——
z? +y?

(a) Show that this form is closed.

(b) Using the angle @ as a variable on S!, compute i*, where i : S! — R?
is the standard embedding.

(c) Show that o is not exact.

¢ 4.4-3 (The Magnetic Monopole). Let B = gr/r? be a vector field on Eu-
clidean three-space minus the origin where r = ||r||. Show that B cannot
be written as the curl of something.
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Hamiltonian Systems on Symplectic
Manifolds

Now we are ready to geometrize Hamiltonian mechanics to the context
of manifolds. First we make phase spaces nonlinear, and then we study
Hamiltonian systems in this context.

5.1 Symplectic Manifolds

Definition 5.1.1. A symplectic manifold is a pair (P,}) where P is
a manifold and Q is a closed (weakly) nondegenerate two-form on P. If Q
is strongly nondegenerate, we speak of a strong symplectic manifold.

As in the linear case, strong nondegeneracy of the two-form {2 means that
at each z € P, the bilinear form 2, : T,P x T,P — R is nondegenerate,
that is, €2, defines an isomorphism

Q" :T,P - T;P.

For a (weak) symplectic form, the induced map Q" : X(P) — X*(P) be-
tween vector fields and one-forms is one-to-one, but in general is not sur-
jective, We will see later that €2 is required to be closed, that is, dQ = 0,
where d is the exterior derivative, so that the induced Poisson bracket sat-
isfies the Jacobi identity and so that the flows of Hamiltonian vector fields
will consist of canonical transformations. In coordinates z! on P in the
finite-dimensional case, if Q = Qr;dz! A dz’ (sum over all I < J), then
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d) = 0 becomes the condition

0y Ogr Ok
0zK 8zY oz

=0. (5.1.1)

Examples

(a) Symplectic Vector Spaces. If (Z,) is a symplectic vector space,
then it is also a symplectic manifold. The requirement d2 = 0 is satisfied
automatically, since (1 is a constant form (that is, Q(z) is independent of
z € 7). ¢

(b) The cylinder S! x R with coordinates (6, p) is a symplectic manifold
with Q = df A dp. ¢

(c) The torus T? with periodic coordinates (6, ¢) is a symplectic manifold
with Q = df A dp. ¢

(d) The two-sphere S? of radius r is symplectic with Q the standard area
element Q = r?sinfdf A dp on the sphere as the symplectic form. ¢

Given a manifold @, we will show in Chapter 6 that the cotangent bun-
dle T*Q has a natural symplectic structure. When @ is the configura-
tion space of a mechanical system, T*() is called the momentum phase
space. This important example generalizes the linear examples with phase
spaces of the form W x W* that we studied in Chapter 2.

Darboux’ Theorem. The next result says that, in principle, every strong
symplectic manifold is, in suitable local coordinates, a symplectic vector
space. (By contrast, a corresponding result for Riemannian manifolds is
not true unless they have zero curvature; that is, are flat.)

Theorem 5.1.2 (Darboux’ Theorem). Let (P,2) be a strong symplectic
manifold. Then in a neighborhood of each z € P, there is a local coordinate
chart in which Q is constant.

Proof. We can assume P = F and z = 0 € E, where E is a Banach
space. Let Q; be the constant form equaling Q(0). Let Q' = Q; — 2 and
Q= Q+tQ, for 0 < t < 1. For each t, the bilinear form Q.(0) = Q(0)
is nondegenerate. Hence by openness of the set of linear isomorphisms of
FE to E* and compactness of [0, 1], there is a neighborhood of 0 on which
Q; is strongly nondegenerate for all 0 < ¢t < 1. We can assume that this
neighborhood is a ball. Thus by the Poincaré lemma, ' = da for some
one-form «. Replacing a by o — a(0), we can suppose a(0) = 0. Define a
smooth time-dependent vector field X, by

ng Qt = —q,
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which is possible, since (), is strongly nondegenerate. Since a(0) = 0, we get
X:(0) = 0, and so from the local existence theory for ordinary differential
equations, there is a ball on which the integral curves of X; are defined for a
time at least one; see Abraham, Marsden, and Ratiu [1988, Section 4.1}, for
the technical theorem. Let F; be the flow of X; starting at Fy = identity.
By the Lie derivative formula for time-dependent vector fields, we have

d,_, . oy
d—t(Ft Q) =F (£x,0) + F ;Eﬂt

=Fdix,Q + F;Q' = Ff(d(~a) + ') = 0.

Thus, FYQ = F§€p = €1, so Fy provides a chart transforming Q to the
constant form ;. m

This proof is due to Moser [1965]. As was noted by Weinstein [1971],
this proof generalizes to the infinite-dimensional strong symplectic case.
Unfortunately, many interesting infinite-dimensional symplectic manifolds
are not strong. In fact, the analogue of Darboux’s theorem is not valid for
weak symplectic forms. For an example, see Exercise 5.1-3, and for con-
ditions under which it is valid, see Marsden [1981], Olver [1988], Bambusi
[1998], and references therein. For an equivariant Darboux theorem and
references, see Dellnitz and Melbourne [1993] and the discussion in Chap-
ter 9.

Corollary 5.1.3. If (P,) is a finite-dimensional symplectic manifold,
then P is even dimensional, and in a neighborhood of z € P there are local
coordinates (¢*, ... ,q",p1,... ,pn) (where dim P = 2n) such that

n
1= qui A dp;. (5.1.2)

i=1

This follows from Darboux’ theorem and the canonical form for linear
symplectic forms. As in the vector space case, coordinates in which € takes
the above form are called canonical coordinates.

Corollary 5.1.4. If (P,Q) is a 2n-dimensional symplectic manifold, then
P is oriented by the Liouville volume form, defined as

_ (_1)n(n—1)/2

A — QA AQ  (n times). (5.1.3)
In canonical coordinates (q,... ,q", p1,... ,Pn), A has the expression
A=dg* A---Adg" Adpy A -~ Adp,. (5.1.4)

Thus, if (P,Q) is a 2n-dimensional symplectic manifold, then (P,A) is
a volume manifold (that is, a manifold with a volume element). The
measure associated to A is called the Liouville measure. The factor
(=1)*(*=1/2/n!l is chosen so that in canonical coordinates, A has the ex-
pression (5.1.4).
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Exercises

5.1-1. Show how to construct (explicitly) canonical coordinates for the
symplectic form Q = fu on 52, where p is the standard area element and
where f : §2 — R is a positive function.

5.1-2 (Moser [1965]). Let uo and u; be two volume elements (nowhere-
vanishing n-forms) on the compact boundaryless n-manifold M giving M
the same orientation. Assume that [, po = [, p1. Show that there is a
diffeomorphism ¢ : M — M such that ¢*p; = po.

5.1-3. (Requires some functional analysis.) Prove that Darboux’ theorem
fails for the following weak symplectic form. Let H be a real Hilbert space
and S : H — H a compact, self-adjoint, and positive operator whose range
is dense in H but not equal to H. Let A, = S + ||z||2 and

gz(e, ) = (Aze, f)-

Let © be the weak symplectic form on H x H associated to g. Show that
there is no coordinate chart about (0,0) € H x H on which  is constant.

5.1-4. Use the method of proof of the Darboux theorem to show the
following. Assume that (g and €; are two symplectic forms on the compact
manifold P such that [Qg], [§%1] are the cohomology classes of Qg and 2y,
respectively, in H2(P;R). If for every t € [0, 1] the form Q; := (1—-¢t)Q+
is nondegenerate, show that there is a diffeomorphism ¢ : P — P such
that ¢*2y = Q.

5.1-5. Prove the following relative Darboux theorem. Let S be a
submanifold of P and assume that {39 and €; are two strong symplectic
forms on P such that Qo|S = €;|S. Then there is an open neighborhood
V of S in P and a diffeomorphism ¢ : V — (V) C P such that ¢|S =
identity on S and ¢*Q; = Q. (Hint: Use Exercise 4.2-6.)

5.2 Symplectic Transformations

Definition 5.2.1. Let (P;,$) and (Ps,§22) be symplectic manifolds. A
C*®-mapping ¢ : P — P, is called symplectic or canonical if

0" = Q. (5.2.1)

Recall that ; = ¢*(2 means that for each z € P, and all v,w € T, Py,
we have the following identity:

le(“a UI) = Q2<p(z)(Tz‘P Ch Tz‘P : ’UJ),

where £, means Q; evaluated at the point z and where T} ¢ is the tangent
(derivative) of ¢ at z.
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If o : (P, Q) — (P2,s) is canonical, the property *(a A 8) = *a A
©* 3 implies that ¢*A = A; that is, ¢ also preserves the Liouville measure.
Thus we get the following:

Proposition 5.2.2. A smooth canonical transformation between symplec-
tic manifolds of the same dimension is volume preserving and is a local
diffeomorphism.

The last statement comes from the inverse function theorem: If ¢ is
volume preserving, its Jacobian determinant is 1, so ¢ is locally invertible.
It is clear that the set of canonical diffeomorphisms of P form a subgroup
of Diff(P), the group of all diffeomorphisms of P. This group, denoted by
Diffcan(P), plays a key role in the study of plasma dynamics.

If ©, and €2, are exact, say {3 = —dO; and Qp = —d©y, then (5.2.1) is
equivalent to

d((p*eg - 91) =0. (522)

Let M C P, be an oriented two-manifold with boundary OM. Then if
(5.2.2) holds, we get

0=/ d(w*ez—el>=/ (¢°02 — ©1),
M oM

that is,

/ 00, = [ 6. (5.2.3)
oM oM

Proposition 5.2.3. The map ¢ : P, — P, is canonical if and only if
(5.2.3) holds for every oriented two-manifold M C Py with boundary OM.

The converse is proved by choosing M to be a small disk in P; and using
the fact that if the integral of a two-form over any small disk vanishes, then
the form is zero. The latter assertion is proved by contradiction, construct-
ing a two-form on a two-disk whose coefficient is a bump function. Equation
(5.2.3) is an example of an integral invariant. For more information, see
Arnold [1989] and Abraham and Marsden [1978].

Exercises

¢ 5.2-1. Let v : R?™ — R?" be a map of the form ¢(q,p) = (g,p + a(q)).
Use the canonical one-form to determine when ¢ is symplectic.

¢ 5.2-2. Let T be the six-torus with symplectic form

Q = df, Adby + dbz A dbs + dbBs A db.
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Show that if ¢ : T® — T® is symplectic and M C T® is a compact oriented
four-manifold with boundary, then

/ sanre)=[ ane,
oM oM

where © = 6, dfy + 03 df4 + 05 dbs.

5.2-3. Show that any canonical map between finite-dimensional symplec-
tic manifolds is an immersion.

5.3 Complex Structures and Kahler
Manifolds

This section develops the relation between complex and symplectic geom-
etry a little further. It may be omitted on a first reading.

Complex Structures. We begin with the case of vector spaces. By a
complex structure on a real vector space Z, we mean a linear map J :
Z — Z such that J? = —Identity. Setting iz = J(z) gives Z the structure
of a complex vector space.

Note that if Z is finite-dimensional, the hypothesis on J implies that
(det J)? = (=1)4mZ 5o dim Z must be an even number, since detJ € R.
The complex dimension of Z is half the real dimension. Conversely, if Z is
a complex vector space, it is also a real vector space by restricting scalar
multiplication to the real numbers. In this case, Jz = iz is the complex
structure on Z. As before, the real dimension of Z is twice the complex
dimension, since the vectors z and iz are linearly independent.

We have already seen that the imaginary part of a complex inner product
is a symplectic form. Conversely, if H is a real Hilbert space and (2 is a
skew-symmetric weakly nondegenerate bilinear form on H, then there is a
complex structure J on H and a real inner product s such that

s(z,w) = —Q(Jz,w). (65.3.1)
The expression
h(z,w) = s(z,w) — iz, w) (56.3.2)

defines a Hermitian inner product, and h or s is complete on H if and only
if Q is strongly nondegenerate. (See Abraham and Marsden [1978, p. 173]
for the proof.) Moreover, given any two of (s,J, ), there is at most one
third structure such that (5.3.1) holds.

If we identify C* with R?" and write

z=(21,-..y20) = (1 + W1, ,Tn +3Yn) = ((T1,91) .-+, (Tny Un)),
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then
—Im{(21,--- y2n), (21, -« y20)) = = Im(21Z] + -+ + 2,Z},)
= —(@191 — T1Y) + - + TpYn — Tnly)-
Thus, the canonical symplectic form on R?® may be written
z,2') = —Im (2,2') = Re (iz, 2}, (5.3.3)

which, by (5.3.1), agrees with the convention that J : R?® — R2?" is multi-
plication by 1.

An almost complex structure J on a manifold M is a smooth tangent
bundle isomorphism J : TM — TM covering the identity map on M such
that for each point 2 € M, J, = J(2) : T,M — T, M is a complex structure
on the vector space T, M. A manifold with an almost complex structure is
called an almost complex manifold.

A manifold M is called a complex manifold if it admits an atlas
{(Ua, o)} whose charts ¢, : Uy, C M — E map to a complex Banach
space E and the transition functions wgoyp ! : o (UaNUp) — ¢5(UsNUp)
are holomorphic maps. The complex structure on £ (multiplication by %)
induces via the chart maps ¢, an almost complex structure on each chart
domain U,. Since the transition functions are biholomorphic diffeomor-
phisms, the almost complex structures on U, N Up induced by ¢, and ¢g
coincide. This shows that a complex manifold is also almost complex. The
converse is not true.

If M is an almost complex manifold, 7, M is endowed with the struc-
ture of a complex vector space. A Hermitian metric on M is a smooth
assignment of a (possibly weak) complex inner product on T, M for each
z € M. As in the case of vector spaces, the imaginary part of the Hermitian
metric defines a nondegenerate (real) two-form on M. The real part of a
Hermitian metric is a Riemannian metric on M. If the complex inner prod-
uct on each tangent space is strongly nondegenerate, the metric is strong;
in this case both the real and imaginary parts of the Hermitian metric are
strongly nondegenerate over R.

Kihler Manifolds. An almost complex manifold M with a Hermitian
metric (, ) is called a Kdhler manifold if M is a complex manifold and
the two-form —Im (, ) is a closed two-form on M. There is an equivalent
definition that is often useful: A Kéhler manifold is a smooth manifold
with a Riemannian metric g and an almost complex structure J such that
J. is g-skew for each z € M and such that J is covariantly constant with
respect to g. (One requires some Riemannian geometry to understand this
definition—it will not be required in what follows.) The important fact
used later on is the following:

Any Kaihler manifold is also symplectic, with symplectic form
given by



154 5. Hamiltonian Systems on Symplectic Manifolds

Qz(vhwz) = <-szz’ wz> . (534)

In this second definition of Kahler manifolds, the condition df2 = 0 follows
from J being covariantly constant. A strong Kdhler manifold is a Kéhler
manifold whose Hermitian inner product is strong.

Projective Spaces. Any complex Hilbert space H is a strong Kéhler
manifold. As an example of a more interesting Kahler manifold, we shall
consider the projectivization PH of a complex Hilbert space H. In particu-
lar, complex projective n-space CP" will result when this construction
is applied to C™. Recall from Example (f) of §2.3 that H is a symplectic
vector space relative to the quantum-mechanical symplectic form

Q(1,2) = —2h Im (1, 2)

where (, ) is the Hermitian inner product on H, A is Planck’s constant,
and 1,19 € H. Recall also that PH is the space of complex lines through
the origin in H. Denote by 7 : H\{0} — PH the canonical projection that
sends a vector 1 € H\{0} to the complex line it spans, denoted by [1] when
thought of as a point in PH and by Ci¢ when interpreted as a subspace of
H. The space PH is a smooth complex manifold, 7 is a smooth map, and
the tangent space Tjy)PH is isomorphic to ‘H/C%. Thus, the map = is a
surjective submersion. (Submersions were discussed in Chapter 4, see also
Abraham, Marsden, and Ratiu [1988, Chapter 3|.) Since the kernel of

Tyn : H — Tiy PH

is Ct, the map Ty,7|(Cy)* is a complex linear isomorphism from (Cy)+
to T, PH that depends on the chosen representative v in [1)].
If U : H — H is a unitary operator, that is, U is invertible and

(Utp1, Utg) = (1, v2)

for all ¥1,13 € H, then the rule [U][¢)] := [Uvy] defines a biholomorphic
diffeomorphism on PH.

Proposition 5.3.1.
(l) If [¢] € PH: H¢“ = 1; and Y1,p2 € (Cw)l) the formula

(Tym(p1), Tym(p2)) = 2k {1, p2) (5.3.5)

gives a well-defined strong Hermitian inner product on Tjy)PH, that
is, the left-hand side does not depend on the choice of ¥ in []. The
dependence on [¢)] is smooth, and so (5.3.5) defines a Hermitian met-
ric on PH called the Fubini—Study metric. This metric is invariant
under the action of the maps [U], for all unitary operators U on 'H.
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(ii) For [¢] € PH, [¢ll =1, and ¢1,¢2 € (C¥)*,

9 (Tym (1), Tym(p2)) = 2hRe (p1, p2) (5.3.6)

defines a strong Riemannian metric on PH invarient under all trans-
formations [U].

(iii) For [¢] € PH, [[9ll = 1, and p1, 92 € (C¥)*,

Quu)(Tym (1), Tym(p2)) = —2hIm (1, 2) (5.3.7)

defines a strong symplectic form on PH invariant under all transfor-
mations [U].

Proof. We first prove (i).! If A € C\{0}, then m(A(¢ +tp)) = m(¢ +ty),

and since

d d
Tum) ) = Srw+09) = e i) = @ymlo)
=0 t=0
we get (Taym)(Ap) = (Tym)(p). Thus, if ||| = ||¥| = 1, it follows that
[A| = 1. We have, by (5.3.5),

(Towm) (A1), (Tagm) (Ap2)) = 2R (A1, Apa) = 2B A {01, 02)
= 2h (g1, p2) = ((Tym) (1), (Tym)(p2)) -

This shows that the definition (5.3.5) of the Hermitian inner product is
independent of the normalized representative ¢ € [¢] chosen in order to
define it. This Hermitian inner product is strong, since it coincides with
the inner product on the complex Hilbert space (Cy)*.

A straightforward computation (see Exercise 5.3-3) shows that for ¢ €
H\{0} and @1, @2 € H arbitrary, the Hermitian metric is given by

(Tym(p1), Tym(w2)) = 2R[[W[|I ™2 ((p1, p2) = [1¥] 72 (1, %) (¥, @2)). (5.3.8)

Since the right-hand side is smooth in ¢ € H\{0} and this formula drops
to PH, it follows that (5.3.5) is smooth in [¢].
If U is a unitary map on H and [U] is the induced map on PH, we have

Ty lU] - Torlo) = TylU]- S0 +t0l| = S0+ 1)

t=0 t=0

= Tu,/)ﬂ'(ULp).

d
= E[U(w + tp))] o

1One can give a conceptually cleaner, but more advanced, approach to this process
using general reduction theory. The proof given here is by a direct argument.
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Therefore, since |Uy|| = ||¢|| = 1 and (Uyp;,Uy) = 0, we get by (5.3.5),

(TiU]- Tym(e1), TyplU] - Tymlp2)) = (Toym(Up1), Toyr(Us2))
= <U(p1,U(P2) = ((,01,<P2)
= (Tym(p1), Tym(p2)),

which proves the invariance of the Hermitian metric under the action of
the transformation [U].

Part (ii) is obvious as the real part of the Hermitian metric (5.3.5).

Finally, we prove (iii). From the invariance of the metric it follows that
the form € is also invariant under the action of unitary maps, that is,
[UT*Q = Q. So, also {U]*dQ = d2. Now consider the unitary map Uy on H
defined by Upy = ¥ and Uy = —Identity on (C)+. Then from [Up]*Q = Q
we have for 1, 2,3 € (Cy)*,

dQ([¥))(Tym (1), Tym(p2), Tym(p3))
= dQ([¥])(Tiy)[Vo] - Ty (1), Ty [Uo] - Tym(w2), Tiyy [Uo] - Tym(3))-

But
Ty [Uo] - Tym(p) = Tym(—¢p) = —Tym(yp),
which implies by trilinearity of d2 that df2 = 0.
The symplectic form €2 is strongly nondegenerate, since on TjyPH it

restricts to the corresponding quantum-mechanical symplectic form on the
Hilbert space (Ci)*. |

The results above prove that PH is an infinite-dimensional Kahler man-
ifold on which the unitary group U(H) acts by isometries. This can be
generalized to Grassmannian manifolds of finite- (or infinite-) dimensional
subspaces of H, and even more, to flag manifolds (see Besse [1987] and
Pressley and Segal [1986]).

Exercises
5.3-1. On C", show that Q = —d®©, where O(2) - w = 3 Im (z, w).

5.3-2. Let P be a manifold that is both symplectic, with symplectic form
Q, and Riemannian, with metric g.

(a) Show that P has an almost complex structure J such that Q(u,v) =
g(Ju,v) if and only if

QUVF,v) = —g(XF,v)
for all F € F(P).

(b) Under the hypothesis of (a), show that a Hamiltonian vector field
Xg is locally a gradient if and only if £y =0.
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¢ 5.3-3. Show that for any vectors @1, s € H and 9 # 0 the Fubini-Study
metric can be written

(Tym (1), Tym(p2)) = 2Rl 72 ({01, 02) — 1Bl 72 (01, %) (¥, 02)).

Conclude that the Riemannian metric and symplectic forms are given by

9w (Tym(e1), Tym(p2)) = ”—Zﬁq Re({p1, pa) 191I% = (01, %) (¥, @2))
and
(T (on), Tym(2)) = -”% tm((p1, 2) [0 ~ {01, %) {6, 02)).

¢ 5.3-4. Prove that d2 = 0 on PH directly without using the invariance
under the maps {U], for U a unitary operator on H.

o 5.3-5. For C™*1, show that in a projective chart of CP™ the symplectic
form € is determined by

Q= (14|2)*)"}do - (14 |2)*)"'o A7),

where d|z|? = 0 +7 (explicitly, 0 = Y7 2,dz;) and 7 : C*\{0} — CP" is
the projection. Use this to show that d2 = 0. Note the similarity between
this formula and the corresponding one in Exercise 5.3-3.

5.4 Hamiltonian Systems

With the geometry of symplectic manifolds now available, we are ready to
study Hamiltonian dynamics in this setting.

Definition 5.4.1. Let (P,Q) be a symplectic manifold. A vector field X
on P is called Hamiltonian if there is a function H : P — R such that

ixQ=dH; (5.4.1)
that is, for all v € T, P, we have the identity
Q(X(2),v) =dH(2) - v.

In this case we write Xy for X. The set of all Hamiltonian vector fields
on P is denoted by Xyam(P). Hamilton’s equations are the evolution
equations

2= Xp(z2).
In finite dimensions, Hamilton’s equations in canonical coordinates are
d 0H dp’ OH

& o @ ag
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Vector Fields and Flows. A vector field X is called locally Hamilto-
nian if ixQ is closed. This is equivalent to £x{2 = 0, where £ x{2 denotes
Lie differentiation of €2 along X, because

£xQ=ixdQ+dixQ =dixQ

If X is locally Hamiltonian, it follows from the Poincaré lemma that there
locally exists a function H such that ix§2 = dH, so locally X = Xy,
and thus the terminology is consistent. In a symplectic vector space, we
have seen in Chapter 2 that the condition that ix2 be closed is equivalent
to DX (z) being Q-skew. Thus, the definition of locally Hamiltonian is an
intrinsic generalization of what we did in the vector space case.

The flow ¢; of a locally Hamiltonian vector field X satisfies ¢;Q = €2,
since

d * *

and thus we have proved the following:

Proposition 5.4.2. The flow ¢, of a vector field X consists of symplectic
transformations (that is, for each t, we have ¢;§) = ) where defined) if
and only if X is locally Hamiltonian.

A constant vector field on the torus T? gives an example of a locally
Hamiltonian vector field that is not Hamiltonian. (See Exercise 5.4-1.)

Using the straightening out theorem (see, for example, Abraham, Mars-
den, and Ratiu [1988, Section 4.1]) it is easy to see that on an even-
dimensional manifold any vector field is locally Hamiltonian near points
where it is nonzero, relative to some symplectic form. However, it is not so
simple to get a general criterion of this sort that is global, covering singular
points as well.

Energy Conservation. If Xy is Hamiltonian with flow ¢;, then by the
chain rule,

2 (Hou(2)) = dH(p(2) - Xn(ou(2))
= Q(Xu(pe(2)), Xu(pe(2))) =0, (5.4.2)

since Q is skew. Thus H o, is constant in ¢. We have proved the following:

Proposition 5.4.3 (Conservation of Energy). If ¢; is the flow of Xy on
the symplectic manifold P, then H o ¢, = H (where defined).

Transformation of Hamiltonian Systems. As in the vector space
case, we have the following results.

Proposition 5.4.4. A diffeomorphism ¢ : P, — P, of symplectic mani-
folds is symplectic if and only if it satisfies

(p*XH = XHOLP (543)
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for all functions H : U — R (such that Xy is defined) where U is any open
subset of Ps.

Proof. The statement (5.4.3) means that for each z € P,

Tozyp " - Xu(p(2)) = Xnop(2),
that is,
Xu(p(2)) = Top - XHop(2)-
In other words,

Q) Xulp(2)), Top - v) = Up(2)) (T2 - XHop(2), Togp - v)
for all v € T, P. If ¢ is symplectic, this becomes
dH(p(2)) - [Top - v] = d(H 0 ¢)(2) - v,

which is true by the chain rule. Thus, if ¢ is symplectic, then (5.4.3) holds.
The converse is proved in the same way. |

The same qualifications on technicalities pertinent to the infinite-dimen-
sional case that were discussed for vector spaces apply to the present con-
text as well. For instance, given H, there is no a priori guarantee that Xy
exists: We usually assume it abstractly and verify it in examples. Also, we
may wish to deal with Xp’s that have dense domains rather than every-
where defined smooth vector fields. These technicalities are important, but
they do not affect many of the main goals of this book. We shall, for sim-
plicity, deal only with everywhere defined vector fields and refer the reader
to Chernoff and Marsden [1974] and Marsden and Hughes [1983] for the
general case. We shall also tacitly restrict our attention to functions that
have Hamiltonian vector fields. Of course, in the finite-dimensional case
these technical problems disappear.

Exercises

5.4-1. Let X be a constant nonzero vector field on the two-torus. Show
that X is locally Hamiltonian but is not globally Hamiltonian.

5.4-2. Show that the bracket of two locally Hamiltonian vector fields on
a symplectic manifold (P, Q) is globally Hamiltonian.

5.4-3. Consider the equations on C? given by
Z1 = —twizy +ipZa + izl(a|21|2 + b|22‘2),
29 = —iwezg + 19Z) + izz(c|z1|2 + d[22|2).

Show that this system is Hamiltonian if and only if p = ¢ and b = ¢ with

1 b d
H = —2~ (UIQIZQIQ + wllzl|2) — P Re(zlzz) —_ %'21]4 - 5'21Z2'2 - 1'2214.
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5.4-4. Let (P, §2) be a symplectic manifold and ¢ : § — P an immersion.
The immersion @ is called a coisotropic immersion if T;p(T,S) is a
coisotropic subspace of Ty,(,) P for every s € S. This means that

[TS‘P(TS S)]Q(s) cT, ‘P(Tss)

for every s € S (see Exercise 2.3-5). If (P,Q) is a strong symplectic man-
ifold, show that ¢ : S — P is a coisotropic immersion if and only if
Xu(p(s)) € Tsp(TsS) for all s € S, all open neighborhoods U of ¢(s) in
P, and all smooth functions H : U — R satisfying H|¢(S)NU = constant.

5.5 Poisson Brackets on Symplectic
Manifolds

Analogous to the vector space treatment, we define the Poisson bracket
of two functions F,G : P — R by

{F,G}z2) = UXF(2), Xo(2))- (5.5.1)

From Proposition 5.4.4 we get (see the proof of Proposition 2.7.5) the
following result.

Proposition 5.5.1. A diffeomorphism ¢ : P, — P, is symplectic if and
only if

{F,G}op={Fop,Goyp} (5.5.2)
for all functions F,G € F(U), where U is an arbitrary open subset of P;.

Using this, Proposition 5.4.2 shows that the following statement holds.

Proposition 5.5.2. If ¢, is the flow of a Hamiltonian vector field Xy
(or a locally Hamiltonian vector field), then

i {F,G} = {pi F,0; G}

for all F,G € F(P) (or restricted to an open set if the flow is not everywhere
defined).

Corollary 5.5.3. The following derivation identity holds:
Xu[{F,G}] = {XulF),G} + {F, XulG]}, (5.5.3)

where we use the notation Xy [F| = £x, F for the derivative of F in the
direction Xg.
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Proof. Differentiate the identity

9 {F,G} = {¢; F, 9; G}

in t at t = 0, where ¢ is the flow of Xg. The left-hand side clearly gives
the left side of (5.5.3). To evaluate the right-hand side, first notice that

d d
b —_ M = — b *
K [dt t=0 X%F(Z)] dt|,—o P Xpir(2)
=4 R )
Tt

I

(dXg[F])(2) = 8 Xx,m(2)).

Thus,
d
d@t|,_, P = Xxulr)
Therefore,
L G FeiGr= L (Xpr(), Xpra(2)
dtl,_, YLy = dt|,_, 2\ AprF\2)s AprGl2
= Q. (Xx 417, X6 (2) + (XF(2), Xx4101(2))
= {Xg[F],G}(2) + {F, X [G]}(2). a

Lie Algebras and Jacobi’s Identity. The above development leads to
important insight into Poisson brackets.

Proposition 5.5.4. The functions F(P) form a Lie algebra under the
Poisson bracket.

Proof. Since {F,G} is obviously real bilinear and skew-symmetric, the
only thing to check is Jacobi’s identity. From

{F,G} = ix,Q(Xg) = dF(X¢) = Xc[F),

we have

{{F’G}’H} = XH[{FvG}]7
and so by Corollary 5.5.3 we get

{{F,G},H} = {XH[F]vG} + {FaXH[G”
= {{F,H},G}+ {F,{G,H}}, (5.5.4)

which is Jacobi’s identity. ]
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This derivation gives us additional insight: Jacobi’s identity is just the
infinitesimal statement of ¢, being canonical.

In the same spirit, one can check that if 1 ¢s a nondegenerate two-form
with the Poisson bracket defined by (5.5.1), then the Poisson bracket satis-
fies the Jacobi identity if and only if Q is closed (see Exercise 5.5-1).

The Poisson bracket-Lie derivative identity

{F,G} = X¢g[F] = —XF[G] (5.5.5)
we derived in this proof will be useful.

Proposition 5.5.5. The set of Hamiltonian vector fields Xgam(P) is a
Lie subalgebra of X(P), and in fact,

(Xr, Xcl = -X(r}- (5.5.6)
Proof. As derivations,

[Xr, Xgl[H] = XpXg[H| - XeXF[H|
= Xr[{H,G}] - Xc[{H, F}]
= {{H’G}’F} - {{H’F}vG}
= _{H’{F’ G}} = -X{F,G}[H]a
by Jacobi’s identity. ]

Proposition 5.5.6. We have

L (Fop) = {FopuH) = [, Hyog, (5:57)

where ; is the flow of Xy and F € F(P).
Proof. By (5.5.5) and the chain rule,

d
7 F o p)(z) = dF(pi(2)) - Xu(pu(2)) = {F, H}(pi(2).
Since ; is symplectic, this becomes

{Fopi, Hop}(z),

which also equals {F o ¢;, H}(z) by conservation of energy. This proves
(6.5.7). [ ]

Equations in Poisson Bracket Form. Equation (5.5.7), often written
more compactly as

F = {F, H}, (5.5.8)

is called the equation of motion in Poisson bracket form. We indi-
cated in Chapter 1 why the formulation (5.5.8) is important.
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Corollary 5.5.7. F € F(P) is a constant of the motion for Xg if and
only if {F,H} =0.

Proposition 5.5.8. Assume that the functions f, g, and {f, g} are in-
tegrable relative to the Liouville volume A € 22™(P) on a 2n-dimensional
symplectic manifold (P,Q). Then

/P{fag}A=/aning=—/aninA.

Proof. Since £x,Q = 0, it follows that £x,A = 0, so that div(fX,) =
Xglf] = {f,g}. Therefore, by Stokes’ theorem,

fon=[avuxga= [ epn= [dipn= [ i

the second equality following by skew-symmetry of the Poisson bracket. W

Corollary 5.5.9. Assume that f,g,h € F(P) have compact support or
decay fast enough such that they and their Poisson brackets are L? in-
tegrable relative to the Liouville volume on a 2n-dimensional symplectic
manifold (P,). Assume also that at least one of f and g vanish on OP
if OP # @. Then the L2-inner product is bi-invariant on the Lie algebra
(F(P),{,}), that is,

[ o= [ g,

Proof. From {hf,g} = h{f,g} + f{h,g} we get

0= [ (hf.a)a = RS [ fibai.

However, from Proposition 5.5.8, the integral of {hf,g} over P vanishes,
since one of f or g vanishes on @P. The corollary then follows. n

Exercises

5.5-1. Let ) be a nondegenerate two-form on a manifold P. Form Hamil-
tonian vector fields and the Poisson bracket using the same definitions as
in the symplectic case. Show that Jacobi’s identity holds if and only if the
two-form € is closed.

5.5-2. Let P be a compact boundaryless symplectic manifold. Show that
the space of functions Fo(P) = { f € F(P) | [, fA =0} is a Lie subalgebra
of (F(P),{,}) isomorphic to the Lie algebra of Hamiltonian vector fields
on P.
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5.5-3. Using the complex notation z7 = ¢’ +ip;, show that the symplectic
form on C™ may be written as

LR S
Q—Egdz A dz*,

and the Poisson bracket may be written

2~ (OF G  0G OF
(F.61 =73 (G5t ~ guv st

5.5-4. Let J:C? — R be defined by
J = L(al - 2P
- 2 1 2 .

Show that
{H,J} =0,

where H is given in Exercise 5.4-3.
5.5-5. Let (P,Q) be a 2n-dimensional symplectic manifold. Show that
the Poisson bracket may be defined by

{F,G}Q" = vdF AdG A Q™!

for a suitable constant ~.

5.5-6. Let ¢ : S — P be a coisotropic immersion (see Exercise 5.4-4).
Let F,H : P — R be smooth functions such that d(¢*F)(s), (¢*H)(s)
vanish on (Ty¢) " ([Tep(TsS)|*#N)) for all s € S. Show that ¢*{F, H}
depends only on ¢*F and ¢*H.



6
Cotangent Bundles

In many mechanics problems, the phase space is the cotangent bundle 7*Q
of a configuration space Q. There is an “intrinsic” symplectic structure on
T*@Q that can be described in various equivalent ways. Assume first that

@ is n-dimensional, and pick local coordinates (q!,...,¢") on Q. Since
(dq',... ,dg™) is a basis of T;Q, we can write any o € T;Q as a = p; dq".
This procedure defines induced local coordinates (q',... ,q",p1,... ,pn) On

T*@Q. Define the canonical symplectic form on T*Q by
Q= dqi A dpl

This defines a two-form 2, which is clearly closed, and in addition, it can
be checked to be independent of the choice of coordinates (q!,...,q").
Furthermore, observe that €2 is locally constant, that is, the coefficient
multiplying the basis forms dq’ A dp;, namely the number 1, does not ex-
plicitly depend on the coordinates (q!,...,q",pi,... ,pn) of phase space
points. In this section we show how to construct {2 intrinsically, and then
we will study this canonical symplectic structure in some detail.

6.1 The Linear Case

To motivate a coordinate-independent definition of 2, consider the case in
which @ is a vector space W (which could be infinite-dimensional), so that
T*Q = W x W*. We have already described the canonical two-form on
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W x W*:

Q(w,a)((ua ﬂ)’ (’U,’)’)) = <7v u) - (ﬁa v>7 (611)

where (w,a) € W x W* is the base point, u,v € W, and g,y € W*. This
canonical two-form will be constructed from the canonical one-form 0,
defined as follows:

Ow,a)(u, B) = (a,u). (6.1.2)
The next proposition shows that the canonical two-form (6.1.1) is exact:
1=-de. (6.1.3)

We begin with a computation that reconciles these formulas with their
coordinate expressions.

Proposition 6.1.1. In the finite-dimensional case the symplectic form Q
defined by (6.1.1) can be written Q = dq* Adp; in coordinates q*,... ,q" on
W and corresponding dual coordinates py,... ,pn on W*. The associated
canonical one-form is given by © = p; dq, and (6.1.3) holds.

Proof. If (¢%,...,q",p1,-..,Pn) are coordinates on T*W, then

6 9 06 9
B B B B

denotes the induced basis for T(y, o)(T*W), and (dq*, ... ,dg",dp,, ... ,dpy,)
denotes the associated dual basis of T¢, ,(T*W). Write

.0 0
(U,,B) = (uja_qj’ ﬁ]a_pj‘>

and similarly for (v,~). Hence

(dqz A dpi)(w,a)((ua ﬂ)a (va’Y)) = (dqi ® dpi - dpi ® dqi)((ua ﬂ)v (v”Y))
= dq'(u, B)dpi(v,7) — dpi(u, B)dg*(v,7)

= u'y; — fiv’.
Also, Q) (1, 8), (v,7)) = (w) = Bv) = v’ — Biv*. Thus,
Q = dq* A dp;.
Similarly,
(Ps d4°) (w0 (1, B) = i dg(u, B) = o’
and

O(w,a)(u, B) = a(u) = a;u’.
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Comparing, we get © = p; dq. Therefore,
~d0 = ~d(p; dg*) = dg* A dp; = Q. n

To verify (6.1.3) for the infinite-dimensional case, use (6.1.2) and the
second identity in item 6 of the table at the end of §4.4 to give

A6 01 (u1, B1), (12, 82)) = (DO ) - (11, 51)] - (2, 52)
= DOy a) - (u2,B2)] - (w1, B)
= (B1,u2) — (B2, w1),
since DOy o) - (u, 8) = (B,-). But this equals —, o) ((u1, B1), (u2, B2)).
To give an intrinsic interpretation to ©, let us prove that
Ow,a) - (1 B) = (@, Tiw,a)™w (u, B)) , (6.1.4)

where Ty : W x W* — W is the projection. Indeed, (6.1.4) coincides with
(6.1.2), since Ty, oymw : W x W* — W is the projection on the first factor.

Exercises

6.1-1 (Jacobi-Haretu Coordinates). Consider the three-particle configu-
ration space Q = R3 x R® x R? with elements denoted by ry, ry, and r3. Call
the conjugate momenta p,, pz, ps and equip the phase space T*@ with the
canonical symplectic structure Q. Let j = p; + p2 + p3. Let r =ry — 1
and let s =r3 — %(rl + r2). Show that the form 2 pulled back to the level
sets of j has the form Q = dr A dm + ds A do, where the variables 7 and o
are defined by 7 = %(pg —p1) and o0 = p3.

6.2 The Nonlinear Case

Definition 6.2.1. Let Q be a manifold. We define Q = —dO, where ©
is the one-form on T*Q defined analogous to (6.1.4), namely

Op(v) = (6, Tng - v), (6.2.1)
where 8 € T*Q, v € Tp(T*Q), mq : T*Q — Q is the projection, and
Trg: T(T*Q) — TQ is the tangent map of mq.

The computations in Proposition 6.1.1 show that (7*Q,Q = —d©) is a
symplectic manifold; indeed, in local coordinates with (w,a) € U x W*,

where U is open in W, and where (u,3),(v,7) € W x W*, the two-form
Q = —dO is given by

Q(w,cx)((u’ /8)’ (U,’Y)) = ’7(“’) - IB(U) (622)

Darboux’ theorem and its corollary can be interpreted as asserting that any
(strong) symplectic manifold locally looks like W x W* in suitable local
coordinates.
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Hamiltonian Vector Fields. For a function H : T*@ — R, the Hamil-
tonian vector field Xz on the cotangent bundle 7*Q) is given in canonical
cotangent bundle charts U x W*, where U is open in W, by

Xn(w,a) = (‘LH -i’ﬁ).

e (6.2.3)

Indeed, setting X g (w,a) = (w,a,v,7), for any (u,5) € W x W* we have

dHy,a) * (4,8) = DyHya) - U+ DaHy,a) - B

- <§gu> " <6, §§> , (6.2.4)
which, by definition and (6.2.2), equals
Q(w‘a)(XH(wv a): (’U,, IH)) = (/3’ U) - <71 u> : (625)

Comparing (6.2.4) and (6.2.5) gives (6.2.3). In finite dimensions, (6.2.3) is
the familiar right-hand side of Hamilton’s equations.

Poisson Brackets. Formula (6.2.3) and the definition of the Poisson
bracket show that in canonical cotangent bundle charts,

_[9f Sg\_ /8 of
(fadwe) = (5£,30) - (52,30, (6:2:6)
which in finite dimensions becomes
iy~ (99 0f 9
{f,9}(¢",p:) = ; (W 3o o aqi) : (6.2.7)

Pull-Back Characterization. Another characterization of the canoni-
cal one-form that is sometimes useful is the following:

Proposition 6.2.2. O is the unique one-form on T*Q such that
a'®=a (6.2.8)

for any local one-form a on Q, where on the left-hand side, a is regarded
as a map (of some open subset of) Q to T*Q.

Proof. In finite dimensions, if @ = a;(¢’)d¢* and © = p; dq’, then to
calculate a*© means that we substitute p; = a;(¢’) into ©, a process that
clearly gives back «, so a*© = a. The general argument is as follows. If ©
is the canonical one-form on T*Q, and v € T,Q, then

(@"©)q - v=04(q) - Tya(v) = <a(q),Ta(q)7rQ(Tqa(v))>
=(a(q), Ty(mq 0 @) (v)) = a(g) - v,
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since mg o a = identity on Q.

For the converse, assume that © is a one-form on 7*Q satisfying (6.2.8).
We will show that it must then be the canonical one-form (6.2.1). In fi-
nite dimensions this is straightforward: If © = A; dq* + Bdp; for A;, B'
functions of (¢7, pj), then

a*0 = (4;0a) dqi + (Bi oa)do; = (Aj ca+ (Bi Oa)g(;;> dg’,

which equals o = «; dq® if and only if

6ai .
o

Ajoa+(B'oaq) aj.

Since this must hold for all a;, putting a4, ... ,a, constant, it follows that
Aj oo = oy, that is, A; = p;. Therefore, the remaining equation is

8ai

O0qd =0

(B0 q)

for any a;; choosing a;(q?,...,q") =.q6 + (¢* — ¢§)pd (no sum) implies
0 = (B’ oa)(gp,---,q5)p} for all (gj,p9); therefore, B/ = 0 and thus
© =p;dg'.t n

Exercises

6.2-1. Let N be a submanifold of M and denote by ©5 and ©,; the
canonical one-forms on the cotangent bundles 7y : T*N — N and mj; :
T*M — M, respectively. Let 7 : (T*M)|N — T*N be the projection
defined by m(an) = an|T,N, where n € N and a, € TM. Show that
7*ON = 1*Opr, where ¢ : (T*M)|N — T*M is the inclusion.

6.2-2. Let f:Q — Rand X € X(T*Q). Show that
O(X)odf = X[fomg]odf.

'In infinite dimensions, the proof is slightly different. We will show that if (6.2.8)
holds, then O is locally given by (6.1.4), and thus it is the canonical one-form. If U C E
is the chart domain in the Banach space E modeling Q, then for any v € E we have

(a*B)u - (u,v) = B(u, a(u)) - (v, Da(u) - v),
where a is given locally by u — (u, a(u)) for a: U — E*. Thus (6.2.8) is equivalent to
e(u,m(u)) : (’U, Da(u) : U) = (a(u), ’U> ’

which would imply (6.1.4) and hence © being the canonical one-form, provided that we
can show that for prescribed v, § € E*, u € U, and v € E, there is an o : U — E* such
that a(u) = v, and Da(u) - v = 6. Such a mapping is constructed in the following way.
For v = 0 choose a(u) to equal 4 for all u. For v # 0, by the Hahn-Banach theorem one
can find a ¢ € E* such that p(v) = 1. Now set a(z) = v — p(u)d + ¢(z)é.
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6.2-3. Let @ be a given configuration manifold and let the extended

phase space be defined by (T*Q) x R. Given a time-dependent vector

field X on T*Q, extend it to a vector field X on (T*Q) x R by X = (X, 1).
Let H be a (possibly time-dependent) function on (T*@) x R and set

Qp =Q+dH Ndt,

where (Q is the canonical two-form. Show that X is the Hamiltonian vector
field for H if and only if

i Q= 0.

6.2-4. Give an example of a symplectic manifold (P, {2), where Q is exact
but P is not a cotangent bundle.

6.3 Cotangent Lifts

We now describe an important way to create symplectic transformations
on cotangent bundles.

Definition 6.3.1. Given two manifolds Q and S and a diffeomorphism
f:Q — S, the cotangent lift T*f : T*S — T*Q of f is defined by

(T f(as),v) = (as, (Tf - v)) (6.3.1)

where
as €TSS, veT,Q, and s= f(q).

The importance of this construction is that T*f is guaranteed to be
symplectic; it is often called a “point transformation” because it arises
from a diffeomorphism on points in configuration space. Notice that while
Tf covers f, T*f covers f~!. Denote by ng : T*Q — Q and 75 : T*S — S
the canonical cotangent bundle projections.

Proposition 6.3.2. A diffeomorphism ¢ : T*S — T*Q preserves the
canonical one-forms ©¢g and ©s on T*Q and T*S, respectively, if and
only if o is the cotangent lift T* f of some diffeomorphism f:@Q — S.

Proof. First assume that f : @ — S is a diffeomorphism. Then for
arbitrary 3 € T*S and v € Tg(T™*S), we have

(T £)*©q@)s - v = (8Q)r-f(8) - TT" f(v)
=(T"f(B),(Tnq o TT*f) - v)
= (B8, T(fomgoT*f)-v)
= (B,Tns -v) =0BOgz v,
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since forgoT*f =ms.
Conversely, assume that ¢*©g = Og, that is,

(p(8), T(rq o p)(v) = (8, Trs(v)) (6.3.2)

for all § € T*S and v € Tg(T*S). Since ¢ is a diffeomorphism, the range
of Tg(mq 0 ) is Trp(p(8)) @, SO that letting 8 = 0 in (6.3.2) implies that
©(0) = 0. Arguing similarly for ¢~ ! instead of ¢, we conclude that ¢
restricted to the zero section S of TS is a diffeomorphism onto the zero
section @ of T*Q. Define f : @ — S by f = ¢~ }|Q. We will show below
that ¢ is fiber-preserving, or, equivalently, that fomg = 750!, For this
we use the following:

Lemma 6.3.3. Define the flow F2 on T*Q by F2(a) = el and let Vy
be the vector field it generates. Then

<@Q, VQ> = 0, £VQ @Q = @Q, and iVQQQ = -—-@Q. (633)

Proof. Since FtQ is fiber-preserving, Vg will be tangent to the fibers, and
hence T'rg o Vo = 0. This implies by (6.2.1) that (©g, V) = 0. To prove
the second formula, note that 7g o F° = mg. Let a € T;Q, v € T,(T*Q),
and O, denote O¢ evaluated at a.. We have

(F2)*©)av=Opa,  TFA ()
= <FtQ(a), (Trgo TFtQ)(v)>

(¢ T(mg 0 F)(v))
=€ (a,Trg(v)) = 'Oy - v,

I

that is,
(FR)*0q = €'@q.

Taking the derivative relative to t at t = 0 yields the second formula.
Finally, the first two formulas imply

iVQQQ = ——iVQd@Q = ——£VQ@Q -+ diVQ@Q = —@Q. v

Continuing the proof of the proposition, note that by (6.3.3) we have

i1 s = im0 Qg = ™ (v, o)
= —QO*GQ = -—@5 = ivsﬂs,

so that weak nondegeneracy of Qg implies ¢*Vgy = Vs. Thus ¢ commutes
with the flows F® and FS, that is, for any 8 € T*S we have p(e!8) =
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e'p(0). Letting t — —oo in this equality implies (poms)(8) = (7o o ¢)(B),
since e!3 — ms(B) and etp(B) — (mg o )(B) for t —» —oc. Thus

TQop=ypomg, or fomg=mgop .

Finally, we show that T f = ¢. For § € T*S, v € T3(T*S), (6.3.2) gives
(T*f(B), T(mq © ) (v)) = (B, T(f o mq 0 ¢)(v))
= (8, Trs(v)) = (Bs)s - v
=(¢"0q)s - v =(0q)e(s) - Tpp(v)
= (p(8), Ts(nq 0 ) (v)) ,
which shows that T*f = ¢, since the range of Ts(ng o ¢) is the whole

tangent space at (g o ¢)(8) to Q. |

In finite dimensions, the first part of this proposition can be seen in
coordinates as follows. Write (s,...,s") = f(q!,... ,q") and define

Os

pj = a—qui, (6.3.4)

where (q¢!,...,9",p1,... ,pn) are cotangent bundle coordinates on T*Q

and (s!,... 8T, ) on T*S. Since f is a diffeomorphism, it deter-

mines the ¢' in terms of the s7, say ¢* = ¢*(s?,... ,s™), so both ¢' and p,

are functions of (s!,...,s™,ry,...,7,). The map T* f is given by
(st,... .87,y m) = (@b @ D1y D) (6.3.5)

To see that (6.3.5) preserves the canonical one-form, use the chain rule and
(6.3.4):

r;dst = r,-g—sk dq* = pi dq*. (6.3.6)

Note that if f and g are diffeomorphisms of ¢}, then
T*(fog)=T"goT"f, (6.3.7)

that is, the cotangent lift switches the order of composition; in fact, it is
useful to think of T* f as the adjoint of Tf.

Exercises

6.3-1. The Lorentz group L is the group of invertible linear transfor-
mations of R? to itself that preserve the quadratic form z? +y? + 22 — c?t2,
where c is a constant, the speed of light. Describe all elements of this group.
Let Ay denote one of these transformations. Map L to itself by A — AgA.
Calculate the cotangent lift of this map.

6.3-2. We have shown that a transformation of T*@Q is the cotangent lift
of a diffeomorphism of configuration space if and only if it preserves the
canonical one-form. Find this result in Whittaker’s book.
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6.4 Lifts of Actions

A left action of a group G on a manifold M associates to each group
element g € G a diffeomorphism &4 of M such that &, = &4 0 ®5,. Thus,
the collection of ®/’s is a group of transformations of M. If we replace the
condition ®g4, = @40 @), by Yo, = ¥y 0 ¥y, we speak of a right action.
We often write ®4(m) = g-m and ¥4(m) =m - g for m € M.

Definition 6.4.1. Let ® be an action of a group G on a manifold Q. The
right lift ®* of the action ® to the symplectic manifold T*Q is the right
action defined by the rule

®5(a) = (Ty-1.,8,)(0), (6.4.1)
where g € G, a € T;Q, and T*®, is the cotangent lift of the diffeomorphism
P,: Q- Q.

By (6.3.7), we see that
Do =T P =T (R0 ®p) =T "0 0 T"®; = By 0 @, (6.4.2)

so ®* is a right action. To get a left action, denoted by ®, and called the
left lift of ®, one sets

(@2)g = Tpq(@g-1)- (6.4.3)

In either case, these lifted actions are actions by canonical transformations
because of Proposition 6.3.2. We shall return to the study of actions of
groups after we study Lie groups in Chapter 9.

Examples

(a) For a system of N particles in R3, we choose the configuration space
Q = R3N. We write (q;) for an N-tuple of vectors labeled by j = 1,... ,N.
Similarly, elements of the momentum phase space P = T*R3" =~ R6VN =
R3N x R3N are denoted by (qj,p’). Let the additive group G = R3 of
translations act on () according to

®x(q;) = q; +x, wherex € R%. (6.4.4)

Each of the N position vectors q; is translated by the same vector x.
Lifting the diffeomorphism @ : @ — (), we obtain an action ®* of G on
P. We assert that

®5(q), p’) = (95 — x,p). (6.4.5)
To verify (6.4.5), observe that T®x : TQ — TQ is given by
(qi’éb') o (Q’L + X, Qj)7 (646)

so its dual is (qz',Pj) — (q; —x, p’). ¢
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(b) Consider the action of GL(n,R), the group of n x n invertible matri-
ces, or, more properly, the group of invertible linear transformations of R™
to itself, on R™ given by

®4(q) = Aq. (6.4.7)

The group of induced canonical transformations of T*R"™ to itself is given
by

®%(q,p) = (A7'q,ATp), (6.4.8)
which is readily verified. Notice that this reduces to the same transforma-
tion of q and p when A is orthogonal. ¢
Exercises

6.4-1. Let the multiplicative group R\ {0} act on R"™ by ®,(q) = Aq.
Calculate the cotangent lift of this action.

6.5 Generating Functions

Consider a symplectic diffeomorphism ¢ : T*Q; — T*Q2 described by
functions

pi =pi(qj,8j), Ty = Ti(qj,sj), (6.5.1)

where (¢*,p;) and (s, ;) are cotangent coordinates on T*@Q; and on T*Qs,
respectively. In other words, assume that we have a map

I: Ql X Qz i T*Ql X T*Qz (652)

whose image is the graph of ¢. Let ©; be the canonical one-form on T*Q,
and O3 be that on T*@Q,. By definition,

d(61 - <p*€-)2) =0. (653)
This implies, in view of (6.5.1), that
pidq’ — rids* (6.5.4)

is closed. Restated, I'*(©; — ©3) is closed. This condition holds if I'*(©; —
©,) is exact, namely,

I*(0, - 8;) =dS (6.5.5)
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for a function S(g, s). In coordinates, (6.5.5) reads

pidg’ —rids = g—j; dg* + g—g ds’, (6.5.6)
which is equivalent to
0S oS
pi = e P = ~ 5 (6.5.7)

One calls S a generating function for the canonical transformation. With
generating functions of this sort, one may run into singularities even with
the identity map! See Exercise 6.5-1.

Presupposed relations other than (6.5.1) lead to conclusions other than
(6.5.7). Point transformations are generated in this sense; if S(¢*,r;) =
s7(q)r;, then

; S
st = s and Di = —. (658)

(Here one writes p; dg* + s* dr; = dS.)
In general, consider a diffeomorphism ¢ : P — P, of one symplectic
manifold (P, ;) to another (P, Q2) and denote the graph of ¢ by

F((,O)Cpl X Psy.

Let i, : I'(¢) — Py x P, be the inclusion and let Q = 77Qy — 73Q2, where
m; : Py x P, — P; is the projection. One verifies that ¢ is symplectic if and
only if i;,{2 = 0. Indeed, since 7 0%y, is the projection restricted to I'(y)
and 73 04, = @ omy on I'(yp), it follows that

ixQl = (m[T(9)" (U - ¢" ),

and hence 3,2 = 0 if and only if ¢ is symplectic, because (m1|['(¢))* is
injective. In this case, one says that I'(¢) is an isotropic submanifold of
P; x P, (equipped with the symplectic form Q); in fact, since I'(y) has
half the dimension of P; x Ps, it is mazimally isotropic, or a Lagrangian
manifold.

Now suppose one chooses a form © such that @ = —d©. Then i ,Q =
~di3,© = 0, so locally on I'(p) there is a function S : I'(¢) — R such that

i50 = dS. (6.5.9)

This defines the generating function of the canonical transformation .
Since I'(p) is diffeomorphic to P; and also to P,, we can regard S as a
function on Py or P,. If P, = T*Q); and P, = T*(Q2, we can equally well
regard (at least locally) S as defined on @Q; X Q2. In this way, the general
construction of generating functions reduces to the case in equations (6.5.7)
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and (6.5.8) above. By making other choices of @, the reader can construct
other generating functions and reproduce formulas in, for instance, Gold-
stein [1980] or Whittaker [1927]. The approach here is based on Sniatycki
and Tulczyjew [1971].

Generating functions play an important role in Hamilton-Jacobi theory,
in the classical-quantum-mechanical relationship (where S plays the role
of the quantum-mechanical phase), and in numerical integration schemes
for Hamiltonian systems. We shall see a few of these aspects later on.

Exercises
6.5-1. Show that

o 1
S(@',57,0) = o-lla - sl
generates a canonical transformation that is the identity at ¢ = 0.
6.5-2 (A first-order symplectic integrator). Given H, let
S(qi:’r‘ja t) = ‘T‘qu - tH(qi’ rj)'

Show that S generates a canonical transformation that is a first-order ap-
proximation to the flow of Xy for small .

6.6 Fiber Translations and Magnetic Terms

Momentum Shifts. We saw above that cotangent lifts provide a ba-
sic construction of canonical transformations. Fiber translations provide a
second.

Proposition 6.6.1 (Momentum Shifting Lemma). Let A be a one-form

on Q and let ta : T*Q — T*Q be defined by o — a4 + A(g), where
aq € TyQ. Let © be the canonical one-form on T*Q. Then

t40 = 0 + 1o A, (6.6.1)
where 1g : T*Q — Q is the projection. Hence

tad = Q — mpdA, (6.6.2)
where §§ = —dO is the canonical symplectic form. Thus, t4 is a canonical

transformation if and only if dA = 0.

Proof. We prove this using a finite-dimensional coordinate computation.
The reader is asked to supply the coordinate-free and infinite-dimensional
proofs as an exercise. In coordinates, t4 is the map

tald',p;) = (¢',p; + 4j). (6.6.3)
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Thus,

t40 = th(pidg’) = (pi + Ai)dg' = pidg’ + Aidg’, (6.6.4)
which is the coordinate expression for © + m(, A. The remaining assertions
follow directly from this. n

In particular, fiber translation by the differential of a function A = df is
a canonical transformation; in fact, f induces, in the sense of the preceding
section, a generating function (see Exercise 6.6-2). The two basic classes of
canonical transformations, lifts, and fiber translations play an important
part in mechanics.

Magnetic Terms. A symplectic form on T*Q different from the canon-
ical one is obtained in the following way. Let B be a closed two-form on
Q. Then Q — 75, B is a closed two-form on 7@, where {1 is the canonical
two-form. To see that Q—n(, B is (weakly) nondegenerate, use the fact that
in a local chart this form is given at the point (w, ) by

((w, 8), (v,7)) = (v, u) = (B,v) — B(w)(u, v). (6.6.5)
Proposition 6.6.2.

(i) Let 2 be the canonical two-form on T*Q and let mg : T*Q — Q be
the projection. If B is a closed two-form on @, then

Qp = Q- 15B (6.6.6)
is a (weak) symplectic form on T*Q).

(i) Let B and B’ be closed two-forms on @ and assume that B — B' =
dA. Then the mapping ta (fiber translation by A) is a symplectic
diffeomorphism of (T*Q, Q) with (T*Q, Qp).

Proof. Part (i) follows by an argument similar to that in the momentum
shifting lemma. For (ii), use formula (6.6.2) to get

tal=Q-n5dA=Q-n,B+ 1B, (6.6.7)
so that
th(Q - m5B) =Q - 1) B,
since mg otg = Q. |

Symplectic forms of the type Qp arise in the reduction process.? In the
following section, we explain why the extra term 77, B is called a magnetic
term.

2Magnetic terms come up in what is called the cotangent bundle reduction the-
orem; see Smale [1970], Abraham and Marsden {1978], Kummer [1981], Nill {1983],
Montgomery, Marsden, and Ratiu [1984], Gozzi and Thacker [1987], and Marsden [1992].
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Exercises

6.6-1. Provide the intrinsic proof of Proposition 6.6.1.

6.6-2. If A =df, use a coordinate calculation to check that S (¢%,mi) =
r:q" — f(¢*) is a generating function for ¢4.

6.7 A Particle in a Magnetic Field

Let B be a closed two-form on R3 and let B = B,i + Byj + B;k be the
associated divergence-free vector field, that is,

ip(dz Ady Adz) = B,
so that
B =B,dyANdz - Bydz ANdz + B, dz A dy.

Thinking of B as a magnetic field, the equations of motion for a particle
with charge e and mass m are given by the Lorentz force law

dv e
me = VX B, (6.7.1)

where v = (2,9, 2). On R x R3, that is, (x,v)-space, consider the sym-
plectic form

Qp = m(dz A di + dy A dy + dz A dz) — SB, (6.7.2)
that is, (6.6.6). As Hamiltonian, take the kinetic energy
H= —Tg(a':? + 9%+ 22). (6.7.3)
Writing Xy (u,v,w) = (u,v,w, @, 0,w), the condition
dH =ix, Qs (6.7.4)
is the same as
m(&dz + ydy + 2 dz)
=m(udt —udz +vdy — 0dy + wdz — wdz)
- E[BIU dz — Bywdy — Byudz + Bywdz + B,udy — B,vdx],
which is equivalent to u = Z, v = y, and w = 2, together with the equations
mu = E(Bzv — Byw),

my = S(Bzw — B,u),

mab = S(Byu ~ B,v),
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that is, to
mi = E(Bzy — B,3),
my=§wﬁ-3ﬂy (6.7.5)

m = S(Bya‘: — B.y),

which is the same as (6.7.1). Thus the equations of motion for a particle in
a magnetic field are Hamiltonian, with energy equal to the kinetic energy
and with the symplectic form Qp.

If B=dA,thatis, B = VxA, where A” = A, then themap t4 : (x,v) —
(x,p), where p = mv + eA /¢, pulls back the canonical form to Qg by the
momentum shifting lemma. Thus, equations (6.7.1) are also Hamiltonian
relative to the canonical bracket on (x, p}-space with the Hamiltonian

_ 1 € a2
Ha=5-llp--Al" (6.7.6)

Remarks.

1. Not every magnetic field can be written as B = V x A on Euclidean
space. For example, the field of a magnetic monopole of strength
g # 0, namely

BMzgﬁF, (6.7.7)

cannot be written this way, since the flux of B through the unit sphere
is 4rg, yet Stokes’ theorem applied to the two-sphere would give zero; see
Exercise 4.4-3. Thus, one might think that the Hamiltonian formulation
involving only B (that is, using Qp and H) is preferable. However, there is
a way to recover the magnetic potential A by regarding it as a connection
on a nontrivial bundle over R® \ {0}. (This bundle over the sphere S? is
the Hopf fibration S3 — §2.) For a readable account of some aspects of
this situation, see Yang [1985).

2. When one studies the motion of a particle in a Yang-Mills field, one
finds a beautiful generalization of this construction and related ideas using
the theory of principal bundles; see Sternberg [1977], Weinstein [1978a],
and Montgomery [1984].

3. In Chapter 8 we study centrifugal and Coriolis forces and will see some
structures analogous to those here. ¢

Exercises

¢ 6.7-1. Show that particles in constant magnetic fields move in helixes.
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o 6.7-2. Verify “by hand” that Jm||v||? is conserved for a particle moving
in a magnetic field.

¢ 6.7-3. Verify “by hand” that Hamilton’s equations for H 4 are the Lorentz
force law equations (6.7.1).
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Lagrangian Mechanics

Our approach so far has emphasized the Hamiltonian point of view. How-
ever, there is an independent point of view, that of Lagrangian mechanics,
based on variational principles. This alternative viewpoint, computational
convenience, and the fact that the Lagrangian is very useful in covariant
relativistic theories can be used as arguments for the importance of the
Lagrangian formulation. Ironically, it was Hamilton [1834] who discovered
the variational basis of Lagrangian mechanics.

7.1 Hamilton’s Principle of Critical Action

Much of mechanics can be based on variational principles. Indeed, it is
the variational formulation that is the most covariant, being useful for
relativistic systems as well. In the next chapter we shall see the utility of the
Lagrangian approach in the study of rotating frames and moving systems,
and we will also use it as an important way to approach Hamilton-Jacobi
theory.

Consider a configuration manifold Q and the velocity phase space
TQ. We consider a function L : TQ — R called the Lagrangian. Speaking
informally, Hamilton’s principle of critical action states that

5/1: (q %gt—) dt =0, (7.1.1)

where we take variations among paths ¢'(t) in @ with fixed endpoints. (We
will study this process a little more carefully in §8.1.) Taking the variation
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in (7.1.1), the chain rule gives
oL_, OLd._,
—0¢' + =—=—=6¢"| dt 1.
[ (G + g 71
for the left-hand side. Iptegrating the second term by parts and using the
boundary conditions d¢* = 0 at the endpoints of the time interval in ques-

tion, we get
oL d (0L i
[t (D sams  ms
If this is to hold for all such variations dg*(t), then
0L d oL
.—a—q_i ——Zi—tg? '—0, (7-1-4)

which are the Fuler-Lagrange equations.
We set p; = OL/84*, assume that the transformation (¢*,¢’) — (¢*,p;)
is invertible, and define the Hamiltonian by

H(q',p;) = pid* — L(¢', ). (7.1.5)
Note that
4 OH
q = ope
since

oH _ .. op _oLod .
Op; 70p; 047 Bp; 1

from (7.1.5) and the chain rule. Likewise,

from (7.1.4) and
O0H 0¢¢ OL OL 8¢ oL

dg ~ '8¢} B¢ 0§ dg T g
In other words, the Fuler-Lagrange equations are equivalent to Hamilton’s
equations.

Thus, it is reasonable to explore the geometry of the Euler-Lagrange
equations using the canonical form on T pulled back to T'Q using p; =
OL/84¢'. We do this in the next sections.

This is one standard way to approach the geometry of the Euler-Lagrange
equations. Another is to use the variational principle itself . The reader will
notice that the canonical one-form p;dg* appears as the boundary terms
when we take the variations. This can, in fact, be used as a basis for the
introduction of the canonical one-form in Lagrangian mechanics. We shall
develop this approach in Chapter 8. See also Exercise 7.2-2.
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Exercises

o T.1-1. Verify that the Euler-Lagrange and Hamilton equations are equiv-
alent, even if L is time-dependent.

o 7.1-2. Show that the conservation of energy equation results if in Hamil-
ton’s principle, variations corresponding to reparametrizations of the given
curve g(t) are chosen.

7.2 The Legendre Transform

Fiber Derivatives. Given a Lagrangian L : TQ) — R, define a map
FL:TQ — T*Q, called the fiber derivative, by

FL(v) -w= 4 L(v + sw), (7.2.1)
ds|,_o

where v, w € ToQ. Thus, FL(v) - w is the derivative of L at v along the fiber
T,Q in the direction w. Note that FL is fiber-preserving; that is, it maps
the fiber T4 Q to the fiber T3 Q. In a local chart U x E for TQ, where U is
open in the model space FE for ), the fiber derivative is given by

FL(u,e) = (u,DaL(u,€)), (7.2.2)

where Dy L denotes the partial derivative of L with respect to its second
argument. For finite-dimensional manifolds, with (¢*) denoting coordinates
on @ and (g%, ¢*) the induced coordinates on T'Q, the fiber derivative has
the expression

_— . OL
FL(G',§) = ( *) 723
@)= (d" 5z (723)
that is, FL is given by
oL
pi = a_q'l (7.2.4)

The associated energy function is defined by E(v) = FL(v) - v — L(v).
In many examples it is the relationship (7.2.4) that gives physical mean-
ing to the momentum variables. We call FL the Legendre transform.

Lagrangian Forms. Let Q denote the canonical symplectic form on
T*@. Using FL, we obtain a one-form @y and a closed two-form ; on
TQ by setting

O, =(FL)'® and Qp = (FL)*Q. (7.2.5)
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We call © the Lagrangian one-form and {1 the Lagrangian two-
form. Since d commutes with pull-back, we get 2 = —d©[. Using the
local expressions for © and 2, a straightforward pull-back computation
yields the following local formula for ©y and €;: If E is the model space
for @, U is the range in E of a chart on ¢, and U x E is the corresponding
range of the induced chart on T'Q, then for (u,e) € U x E and tangent
vectors (e1, ez), (f1, f2) in E x E, we have

T(u,e)IFL : (ela 62)
= (u,D2L(u,e),e1,D1(D2L(u,€)) - e1 + Da(D2L(u,€)) - e2),

(7.2.6)

so that using the local expression for © and the definition of pull-back,
OL(u,¢€) - (e1,€2) = DaL(u,€) - €1. (7.2.7)

Similarly, one finds that
Qr(u,e) - ((e1,e2), (f1, f2))
=Dy (DsL(u,€)-e;1) - fi — D1(D2L(u,€)- f1)-e1

+D3D2L(u,e) - €1 - fo — D3D2L(u,e) - fi - €2, (7.2.8)
where D; and D, denote the first and second partial derivatives. In finite

dimensions, formulae (7.2.6) and (7.2.7) or a direct pull-back of p;dg* and
dq* A dp; yields

oL
O = Eﬁd (7.2.9)
and
0 —id"/\d“r "L dq’* A d¢’ (7.2.10)

(a sum on all 7, j is understood). As a 2n x 2n skew-symmetric matrix,

B
Qp = . 04'0¢’ | | (7.2.11)
[‘aqiaqf]

where A is the skew-symmetrization of 92L/(8¢* 8¢°). From these expres-
sions, it follows that Qg is (weakly) nondegenerate if and only if the
quadratic form DyDsL(u,e€) is (weakly) nondegenerate. In this case, we
say that L is a regular or nondegenerate Lagrangian. The implicit func-
tion theorem shows that the fiber derivative is locally invertible if and only
if L is regular.
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Exercises
o 7.2-1. Let
. . . m 1\ 2 o\ 2 .3\ 2 . . .
L(g", ¢, ¢% ¢, ¢% ¢®) = 7 ((q‘) +(¢%)" + (¢°) ) +q'¢" + ¢*¢® + ¢*¢>.

Calculate O, €y, and the corresponding Hamiltonian.

o 7.2-2. Forv € T,Q, define its vertical lift v! € T,(TQ) to be the tangent
vector to the curve v + tv at t = 0. Show that © may be defined by

w0y = 1dL,

where w € T,,(T'Q) and where w_1©0, = i,0 is the interior product. Also,
show that the energy is

E(v) =v' JdL - L(v).
¢ 7.2-3 (Abstract Legendre Transform). Let V be a vector bundle over a
manifold S andlet L:V - R. Forv eV, let
oL

w=— €v*

ov

denote the fiber derivative. Assume that the map v — w is a local diffeo-
morphism and let H : V* — R be defined by

H(w) = (w,v) — L(v).
Show that
_OH

’U-—EE.

7.3 Euler—Lagrange Equations

Hyperregular Lagrangians. Given a Lagrangian L, the action of L
is the map A : TQ — R that is defined by A(v) = FL{(v) - v, and as we
defined above, the energy of L is E = A — L. In charts,
A(u,e) = DyL{u,€) - €, (7.3.1)
E(u,e) = DyL(u,e)-e— L(u,e), (7.3.2)

and in finite dimensions, (7.3.1) and (7.3.2) read

i . i oL .3
A(¢',§") = 4" == = pid’, (7.3.3)

5&.‘

0 i OL i <i i
E(q",4")=4q o L(¢*,q") = pi¢* — L(q",¢"). (7.3.4)
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If L is a Lagrangian such that FL : TQ — T*Q is a diffeomorphism, we
say that L is a hyperregular Lagrangian. In this case, set H = Eo(FL)™!.
Then Xy and Xg are FL-related, since FL is, by construction, symplectic.
Thus, hyperregular Lagrangians on T'¢) induce Hamiltonian systems on
T*@. Conversely, one can show that hyperregular Hamiltonians on T*Q
come from Lagrangians on T'Q) (see §7.4 for definitions and details).

Lagrangian Vector Field. More generally, a vector field Z on TQ is
called a Lagrangian vector field or a Lagrangian system for L if the
Lagrangian condition

QL)(Z(v), w) = dE(v) - w (7.3.5)

holds for all v € T,Q and w € T,(TQ). If L is regular, so that Qf, is a
(weak) symplectic form, then there would exist at most one such Z, which
would be the Hamiltonian vector field of E with respect to the (weak)
symplectic form €27. In this case we know that F is conserved on the flow
of Z. In fact, the same result holds, even if L is degenerate:

Proposition 7.3.1. Let Z be a Lagrangian vector field for L and let
v(t) € TQ be an integral curve of Z. Then E(v(t)) is constant in t.

Proof. By the chain rule,

2 Bu() = dB() - 5(t) = dBG() - Z(0(t)
— QL OO)Z0E), Z0(®) =0 (736)
by skew-symmetry of Qf, . ]

We usually assume that {1y is nondegenerate, but the degenerate case
comes up in the Dirac theory of constraints (see Dirac [1950, 1964], Kunzle
[1969], Hanson, Regge, and Teitelboim [1976], Gotay, Nester, and Hinds
[1979), references therein, and §8.5).

Second-Order Equations. The vector field Z often has a special prop-
erty, namely, that Z is a second-order equation.

Definition 7.3.2. A wvector field V on TQ is called o second-order
equation if Ttg oV = identity, where 7g : TQ — Q is the canonical
projection. If c(t) is an integral curve of V, then (g o c)(t) is called the
base integral curve of c(t).

It is easy to see that the condition for V being second-order is equivalent
to the following: For any chart U x E on TQ, we can write V(u,e) =
((u,€), (e, Va(u, €))), for some map V5 : U x E — E. Thus, the dynamics
are determined by @ = e, and é = V5(u,e); that is, & = V,(u, %), a second-
order equation in the standard sense. This local computation also shows
that the base integral curve uniquely determines an integral curve of V
through a given initial condition in T'Q).
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The Euler-Lagrange Equations. From the point of view of Lagrangian
vector fields, the main result concerning the Euler-Lagrange equations is
the following.

Theorem 7.3.3. Let Z be a Lagrangian system for L and suppose Z
is a second-order equation. Then in a chart U x E, an integral curve
(u(t),v(t)) € U x E of Z satisfies the Euler—Lagrange equations; that
is,

D ),
%DzL(u(t), o(t)) - w = Dy L{u(t), v(t)) - w (73.7)

for allw € E. In finite dimensions, the Euler-Lagrange equations take the
form

dg’ _
dt—-q’
d (0L oL .
E(a_q?)*a_q?’ i=1,...,n (7.3.8)

If L is regular, that is, Qp is (weakly) nondegenerate, then Z is auto-
matically second-order, and if it is strongly nondegenerate, then

d?y  dv 1
W = -C-ZZ = [DgDzL(u, 'U)] (DIL(u, U) - D1D2L(u, ’U) . ’U), (739)
or in finite dimensions,
, .. { OL 0’L .
g (0L 0L L ‘ 3
¢ =G (aqi aqjaq,-q), iJj=1,...,n, (7.3.10)

where [G*] is the inverse of the matriz (0°L/0q'0¢"). Thus u(t) and ¢i(t)
are base integral curves of the Lagrangian vector field Z if and only if they
satisfy the Euler-Lagrange equations.

Proof. From the definition of the energy E we have the local expression
DE(u,e) - (e1,e2) = D1(D2L(u,e) - €) - €1 + Da(DaL(u,€) - €) - e2
—DiL(u,e) - e; (7.3.11)
(the term DyL(u, €) - ex has canceled). Locally, we may write
Z(u,e) = (u,e,Y1(u,e), Ya(u,e)).
Using formula (7.2.8) for Q,, the condition (7.3.5) on Z may be written
D:DyL(u,€) - Yi(u,e)) - e; — D1(DyL(u,e) - e1) - Y1(u,e)
+ DyDoL(u,e) - Yi(u,e) - e2 — DaDoL{u,€) - €1 - Ya(u,€)

= Dl(DzL(u, 6) . 6) -ey — DlL(u, e) -e1 + D2D2L(U, 6) ce-eq.
(7.3.12)
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Thus, if 2, is a weak symplectic form, then DyD9L(u,e) is weakly non-
degenerate, so setting e; = 0 we get Y1(u,e) = e; that is, Z is a second-
order equation. In any case, if we assume that Z is second-order, condition
(7.3.12) becomes

D;L(u,e)-e; = D1(DyL(u,€)-e1) - e+ DaDaL(u,e) - €1 - Ya(u,e€)
(7.3.13)

for all e; € E. If (u(t),v(t)) is an integral curve of Z, then (using dots to
denote time differentiation) % = v and i = Y(u, v), so (7.3.13) becomes

DiL(u,d) - ey = D1(D2L(u,u) - €1) - &+ DoDoL(u,4) - ey - i

d
= —DyL(u,u) e (7.3.14)
dt
by the chain rule.
The last statement follows by using the chain rule on the left-hand side
of Lagrange’s equation and using nondegeneracy of L to solve for v, that
is, 7. [ ]

Exercises

7.3-1. Give an explicit example of a degenerate Lagrangian L that has a
second-order Lagrangian system Z.

7.3-2. Check directly that the validity of the expression (7.3.8) is coor-
dinate independent. In other words, verify directly that the form of the
Euler-Lagrange equations does not depend on the local coordinates chosen
to describe them.

7.4 Hyperregular Lagrangians and
Hamiltonians

Above, we said that a smooth Lagrangian L : TQ — R is hyperregular
if FL : TQ — T*Q is a diffeomorphism. From (7.2.8) or (7.2.11) it follows
that the symmetric bilinear form DD L(u,e) is strongly nondegenerate.
As before, let 7o : T*Q — @ and 7¢ : TQ — @ denote the canonical
projections.

Proposition 7.4.1. Let L be a hyperregular Lagrangian on TQ and let
H = Eo (FL)™! € F(T*Q), where E is the energy of L. Then the La-
grangian vector field Z on TQ and the Hamiltonian vector field Xy on
T*Q are FL-related, that is,

(FL)*Xy = Z.
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Furthermore, if c(t) is an integral curve of Z and d(t) an integral curve of
Xu with FL(c(0)) = d(0), then

FL(c(t)) = d(t) and (7qoc)(t) = (mgod)(t).
The curve (1g o ¢)(t) is called the base integral curve of c(t), and simi-
larly, (mg o d)(t) is the base integral curve of d(t).
Proof. For v € TQ and w € T,,(TQ), we have
QFLw)NTLFL(Z(v)), TLFL(w)) = (FL)*Q)(v)(Z(v), w)

= QL (v)(Z(v), w)

=dE(v) - w

=d(HoFL)(v) - w

=dH(FL(v)) - T,FL(w)

= QFL(v))(Xu (FL(v)), TLFL(w)),
so that by weak nondegeneracy of Q and the fact that T, FL is an isomor-
phism, it follows that

T,FL(Z(v)) = Xy(FL(v)).

Thus TFLo Z = Xy oFL, that is, Z = (FL)*Xy.
If ¢; denotes the flow of Z and v, the flow of Xy, the relation Z =
(FL)* Xy is equivalent to FL o ¢; = ¢, o FL. Thus, if c¢(t) = ¢¢(v), then

FL(c(t)) = ¥+(FL(v))

is an integral curve of Xy that at t = 0 passes through FL(v) = FL(c(0)),
whence ¥, (FL(v)) = d(t) by uniqueness of integral curves of smooth vector
fields. Finally, since 7g = mg o FL, we get

(rq 0 ¢)(t) = (mq o FL o c)(t) = (mq 0 d)(?). u

The Action. We claim that the action A of L is related to the Lagrangian
vector field Z of L by

A(w) = (BL(v), Z(v)), veTQ. (7.4.1)

We prove this formula under the assumption that Z is a second-order equa-
tion, even if L is not regular. In fact,

(©L(v), Z(v)) = ((FL)*©)(v), Z(v))
= (O(FL(v)), TLFL(Z(v)))
= (FL(v), Tng - T,FL(Z(v)))
=(FL(v), T, (mq o FL)(Z(v)))
= (FL(v), Ty7q(Z(v))) = (FL(v),v) = A(v),
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by definition of a second-order equation and the definition of the action. If
L is hyperregular and H = E o (FL)™!, then
Ao(FL)™ ' =(0,Xy). (74.2)

Indeed, by (7.4.1), the properties of push-forward, and the previous propo-
sition, we have

Ao (FL)™! = (FL).A = (FL),({8L, Z)) = ((FL).Oy, (FL). Z) = (6, X) .

If H: T*@ — R is a smooth Hamiltonian, the function G : T*Q) — R given
by G = (©,Xp) is called the action of H. Thus, (7.4.2) says that the
push-forward of the action A of L equals the action G of H = Eo (FL)™!.

Hyperregular Hamiltonians. A Hamiltonian H is called hyperregu-
larif FH : T*Q — TQ, defined by

FH(c) 8 = dis _OH(a +58), (7.4.3)

where o, 8 € T;Q, is a diffeomorphism; here we must assume that either
the model space E of Q is reflexive, so that 7;*Q = T,Q for all ¢ € Q, or
what is more reasonable, that FH(a) lies in 7,Q C T;*Q. As in the case
of Lagrangians, hyperregularity of H implies the strong nondegeneracy
of D3DyH (u,a), and the curve s — « + sf appearing in (7.4.3) can be
replaced by an arbitrary smooth curve a(s) in T;Q such that

a(0)=a and o'(0)= 0.

Proposition 7.4.2. (i) Let H € F(T*Q) be a hyperregular Hamilto-
nian and define

E=Ho(FH)™, A=Go(FH)™}, and L=A-Ee€ F(TQ).

Then L is a hyperregular Lagrangian and FL = FH~'. Furthermore,
A is the action of L, and E the energy of L.

(ii) Let L € F(TQ) be a hyperregular Lagrangian and define
H=Eo(FL) .
Then H is a hyperregular Hamiltonian and FH = (FL)™!.
Proof. (i) Locally, G(u,a) = (o, D2H(u, a)), so that
A(u,D2H(u,0)) = (AoFH)(u,a) = G(u,a) = (o, D H(u, a)),
whence

(LoFH)(u,a) = L(u,DyH(u,a)) = (a,D2H(u,a)) — H(u,a).
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Let e = Do(D2H(u,)) - B, and let e(s) = DaH(u,a + sB) be a curve
that at s = 0 passes through e(0) = DyH(u,a) and whose derivative at
s = 0 equals €'(0) = Da(D2H (u,)) - 8 = e. Therefore,

((FLoFH)(u,a),e)
= (FL(u,D2H (u,a)), e)

d d
= d_t o L(uy 6(3)) = a—t o L(U, DQH(u,a—{— sﬂ))
“a (o +sB,D2H(u,a + sf)) — H(u,a + s8)]

s=0

= (a,Dy(D2H(u,a)) - B) = (a,€) .

Since DD H(u, a) is strongly nondegenerate, this implies that e € E is
arbitrary and hence FL o FH = identity. Since FH is a diffeomorphism,
this says that FL = (FH)~! and hence that L is hyperregular.

To see that A is the action of L, note that since FH~! = FL, we have
by definition of G,

A=Go(FH) ! =(©,Xg)oFL,
which by (7.4.2) implies that A is the action of L. Therefore, E = A — L is
the energy of L.
(ii) Locally, since we define H = E o (FL)™!, we have
(HoFL)(u,e) = H(u,D3L(u,e))
= A(u,e) — L(u, €)
=DoL(u,e)-e— L(u,e)
and proceed as before. Let
a =Dqy(DgL{u,e€)) - f,
where f € E and a(s) = DyL(u,e + sf); then
a(0) = DyL(u,e) and o&'(0) =a,
so that
(o, (FH o FL)(u,e)) = (e, FH(u, D2 L(u,€)))
_4d
ds =0
d

ds|,_o

= di [(D2L(u,e+ sf) e+ sf) — L(u,e + sf)]
s s=0

= <D2(D2L(u,€)) . fve> = <Ot,€> ’

H(u,afs))

H(u,DyL(u,e + sf))
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which shows, by strong nondegeneracy of DoDy L, that FH oFL = identity.
Since FL is a diffeomorphism, it follows that FH = (FL)~! and H is
hyperregular. |

The main result is summarized in the following.

Theorem 7.4.3. Hyperregular Lagrangians L € F(TQ) and hyperregu-
lar Hamiltonians H € F(T*Q) correspond in a bijective manner by the
preceding constructions. The following diagram commutes:

TFH

(1@ (TQ)
TFL
R
Xu Xg
G A
FL
T* TQ—R
Q o Q
H E
R

Proof. Let L be a hyperregular Lagrangian and let H be the associated
hyperregular Hamiltonian, that is,

H=FEo(FL)y '=(A-L)o(FL)™'=G-LoFH
by Propositions 7.4.1 and 7.4.2. From H we construct a Lagrangian L’ by

L'=Go(FH)' - Ho(FH)™*
=Go(FH) '~ (G- LoFH)o(FH) ! = L.

Conversely, if H is a given hyperregular Hamiltonian, then the associated
Lagrangian L is hyperregular and is given by

L=Go(FH)™'~Ho(FH) '!=A-HoFL.
Thus, the corresponding hyperregular Hamiltonian induced by L is

H =FEo(FL) ' =(A—-L)o (FL)™!
=Ao(FL) '~ (A— HoFL)o(FL)™* = H.

The commutativity of the two diagrams is now a direct consequence of the
above and Propositions 7.4.1 and 7.4.2. |
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Neighborhood Theorem for Regular Lagrangians. We now prove
an important theorem for regular Lagrangians that concerns the structure
of solutions near a given one.

Definition 7.4.4. Let g(t) be a given solution of the Euler-Lagrange
equations, t; <t <%. Let g, = (1) and g, =7 (f2). We say that g(t) is
a nonconjugate solution if there is a neighborhood U of the curve g(t)
and neighborhoods Uy C U of §; and Us C U of Gy such that for all g1 € Uy
and gz € Uy and t; close to 1, ta close to T, there exists a unique solution
q(t), ty <t < ty, of the Euler-Lagrange equations satisfying the following
conditions: q (t1) = q1, q(t2) = g, and ¢(t) € U. See Figure 7.4.1.

FIGURE 7.4.1. Neighborhood theorem

To determine conditions guaranteeing that a solution is nonconjugate,
we shall use the following observation. Let 7, = § (¢;) and T = § (t2). Let
F; be the flow of the Euler-Lagrange equations on 7'Q. By construction of
Fi(g,v), we have Fi, (§1,71) = (32, 02)-

Next, we attempt to apply the implicit function theorem to the flow map.
We want to solve

(mgo Fy,)(q1,v1) = g2

for v1, where we regard qi,t;,t2 as parameters. To do this, we form the
linearization

wy =Ty, (mq o Fy,) (34,01) - wi.

We require that wy — ws be invertible. The right-hand side of this equation
suggests forming the curve

’U)(t) = TvxﬂQFt(—(jlaEl) * Wi, (744)
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which is the solution of the linearized, or first variation, equation of the
Euler-Lagrange equations satisfied by F(g,,71). Let us work out the equa-
tion satisfied by

UJ(t) = TU17TQFt(-q_1aﬁl) C Wy

in coordinates. Start with a solution ¢(t) of the Euler-Lagrange equations

d 0L 0L

dtdg  dg

Given the curve of initial conditions € — (g1, v; +£w; ), we get correspond-
ing solutions (g.(t), ¢« (t)), whose derivative with respect to € we denoted by
(u(t),u(t)). Differentiation of the Euler-Lagrange equations with respect
to € gives

2 ‘ 2 : 2L , 2L ,
a —Q,—i-uf —?—P—.-w 0L ——2——_-.-11] =0, (7.4.5)
dt \ 0¢*0¢7 0¢t0qI 0qtdqi 0qtd¢
which is a second-order equation for /. This equation evaluated along g(t)
is called the Jacobi equation along g(t). This equation, taken from g(%,)
to g(t2) with initial conditions

u(t1) =0 and u(t1) =w,

defines the desired linear map w; +— wy; that is, wo = u(f).

Theorem 7.4.5. Assume that L is a regular Lagrangian. If the linear
map wy — wy 18 an isomorphism, then G(t) is nonconjugate.

Proof. This follows directly from the implicit function theorem. Under
the hypothesis that w; — ws is invertible, there are neighborhoods U; of
g1, Us of g, and neighborhoods of #; and #, as well as a smooth function
vy = v1(t1,t2,q1,q2) defined on the product of these four neighborhoods
such that

(mQ o Fi,) (¢, v1(t1,t2,q1,42)) = @2 (7.4.6)
is an identity. Then

q(t) = (mq o Ft)(q1,v1(t1, %2, q1,42))
is a solution of the Euler-Lagrange equations with initial conditions

(QI,Ul(tlatm(h,Ch)) att = tl'

Moreover, q(t2) = g2 by (7.4.6). The fact that v; is close to ¥; means that
the geodesic found lies in a neighborhood of the curve g(t); this produces
the neighborhood Y. n
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If ¢; and gy are close and if ty is not much different from t;, then by
continuity, u(t) is approximately constant over [t;, 2], so that

we = U(tg) = (t2 — t1)u(t1) + O(t2 — t1)* = (ta — t1)wy + O(t2 — t1)%
Thus, in these circumstances, the map w; — wy is invertible. Therefore,
we get the following corollary.

Corollary 7.4.6. Let L:TQ xR — R be a given C? regular Lagrangian
and let vg € TQ andty € R. Then the solution of the Euler-Lagrange equa-
tions with initial condition vy at t = t; is nonconjugate for a sufficiently
small time interval [t1, 2]

The term “nonconjugate” comes from the study of geodesics, which are
considered in the next section.

Exercises

7.4-1. Write down the Lagrangian and the equations of motion for a
spherical pendulum with $? as configuration space. Convert the equations
to Hamiltonian form using the Legendre transformation. Find the conser-
vation law corresponding to angular momentum about the axis of gravity
by “bare hands” methods.

7.4-2. Let L(q,4) = 3m(q)¢*> — V(q) on TR, where m(g) > 0 and V(q)
are smooth. Show that any two points g;, g2 € R can be joined by a solution
of the Euler-Lagrange equations. (Hint: Consider the energy equation.)

7.5 (Geodesics

Let @ be a weak pseudo-Riemannian manifold whose metric evaluated at
g € Q is denoted interchangeably by (-,-) or g(g) or g,. Consider on TQ
the Lagrangian given by the kinetic energy of the metric, that is,

L(v) = 5 (v,v),, (7.5.1)
or in finite dimensions
L(v) = g 0. (7.5.2)
The fiber derivative of L is given for v,w € T,Q by
FL(v)-w = (v,w) (7.5.3)
or in finite dimensions by

FL{v) - w= gijviwj, ie, pi=gid. (7.5.4)
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From this equation we see that in any chart U for @,
D2D2L(g,v) - (e1,e2) = {e1, €2),,

where (, ), denotes the inner product on E induced by the chart. Thus,
L is automatically weakly nondegenerate. Note that the action is given by
A=2L so E=L.

The Lagrangian vector field Z in this case is denoted by S : TQ — T2Q
and is called the Christoffel map or geodesic spray of the metric (,) .
Thus, S is a second-order equation and hence has a local expression of the
form

5(g,v) = ((g,v), (v:7(q, v))) (7.5.5)

in a chart on (). To determine the map v : U x E — E from Lagrange’s
equations, note that

D;L(g,v) -w = 3Dg(v,v),-w and DzL(g,v) w=(v,w),, (7.5.6)
so that the Euler-Lagrange equations (7.3.7) are

q=v, (7.5.7)

%((v, w),) = 3Dg (v,), - w. (7.5.8)

Keeping w fixed and expanding the left-hand side of (7.5.8) yields
Dy (v,w), - ¢+ (v, w), . (7.5.9)
Taking into account ¢ = v, we get
(G, w), = 3D (v,v),-w ~Dg (v,w), - v. (7.5.10)
Hence v : U x E — E is defined by the equality
(v(g,v),w), = 3D, (v,v), - w—=Dg (v,w), - v; (7.5.11)

note that y(g,v) is a quadratic form in v. If @ is finite-dimensional, we
define the Christoffel symbols I';; by putting

v (q,v) = —Ti(@v’v* (7.5.12)

and demanding that I, = T'};. With this notation, the relation (7.5.11) is
equivalent to

—galivivful = 2%%;“ vivkw! — gzﬂvjw vk, (7.5.13)
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Taking into account the symmetry of F;. ks this gives

w1 (095  Ogu  Ogjk
ij = §g (5&? + W - 6—ql‘) . (7514)
In infinite dimensions, since the metric (,) is only weakly nondegenerate,
(7.5.11) guarantees the uniqueness of -y but not its existence. It exists when-
ever the Lagrangian vector field S exists.

The integral curves of S projected to @ are called geodesics of the metric
g. By (7.5.5), their basic governing equation has the local expression

G =(g,9), (7.5.15)

which in finite dimensions reads
i +Tid’d" =0, (7.5.16)
where ¢,j,k = 1,... ,n and, as usual, there is a sum on j and k. Note that

the definition of v makes sense in both the finite- and infinite-dimensional
cases, whereas the Christoffel symbols F;k are literally defined only for
finite-dimensional manifolds. Working intrinsically with g provides a way to
deal with geodesics of weak Riemannian (and pseudo-Riemannian) metrics
on infinite-dimensional manifolds.

Taking the Lagrangian approach as basic, we see that the I’;k live as
geometric objects in T(T'Q). This is because they encode the principal
part of the Lagrangian vector field Z. If one writes down the transformation
properties of Z on T(T'Q)) in natural charts, the classical transformation
rule for the I'}, results:

o _ 00", 03" 07 9%

"= g o@ "oq " o¢ b7 07

where (¢',...,¢"),(@",... ,g") are two different coordinate systems on an
open set of (). We leave this calculation to the reader.

The Lagrangian approach leads naturally to invariant manifolds for the
geodesic flow. For example, for each real e > 0, let

Te={veTQ||vll =€}

be the pseudo-sphere bundle of radius \/e in TQ. Then X, is a smooth
submanifold of T'Q) invariant under the geodesic flow. Indeed, if we show
that X, is a smooth submanifold, its invariance under the geodesic flow,
that is, under the flow of Z, follows by conservation of energy. To show
that ¥, is a smooth submanifold we prove that e is a regular value of L for
e > 0. This is done locally by (7.5.6):

DL(u,v) - (wy,ws) = D1L(u,v) - wy + DaL(u,v) - ws
= 3D, (v, ), - w1 + (v, wa),
= (v, w2),, (7.5.18)

(7.5.17)



198 7. Lagrangian Mechanics

since (v,v) = 2e = constant. By weak nondegeneracy of the pseudo-metric
(,), this shows that DL(u,v) : E x E — R is a surjective linear map, that
is, e is a regular value of L.

Convex Neighborhoods and Conjugate Points. We proved in the
last section that short arcs of solutions of the Euler-Lagrange equations
are nonconjugate. In the special case of geodesics one can do somewhat
better by exploiting the fact, evident from the quadratic nature of (7.5.16),
that if ¢(t) is a solution and o > 0, then so is g(at), so one can “rescale”
solutions simply by changing the size of the initial velocity. One finds that
locally there are convez neighborhoods, that is, neighborhoods U such that
for any q1,q2 € U there is a unique geodesic (up to a scaling) joining ¢,
g2 and lying in U. In Riemannian geometry there is another important
result, the Hopf-Rinow theorem, stating that any two points (in the
same connected component) can be joined by some geodesic.

As one follows a geodesic from a given point, there is a first point after
which nearby geodesics fail to be unique. These are conjugate points.
They are the zeros of the Jacobi equation discussed earlier. For example,
on a great circle on a sphere, pairs of antipodal points are conjugate.

In certain circumstances one can “reduce” the Euler-Lagrange problem
to one of geodesics: See the discussion of the Jacobi metric in §7.7.

Covariant derivatives. We now reconcile the above approach to geode-
sics via Lagrangian systems to a common approach in differential geometry.
Define the covariant derivative

V:XQ) x Q) — X(Q), (X,Y)— VxY
locally by
(VxY)(u) = =v(u)(X(u),Y (uv)) + DY (u) - X(u), (7.5.19)

where X, Y are the local representatives of X and Y, and y(u) : EXE — E
denotes the symmetric bilinear form defined by the polarization of y(u,v),
which is a quadratic form in v. In local coordinates, the preceding equation
becomes

, .0 gY* 0
V¥ = XV g+ X0 5 g

It is straightforward to check that this definition is chart independent and
that V satisfies the following conditions:

(i) V is R-bilinear;
(ii) for f: Q - R,
VixY = fVxY and VxfY = fVxY + X[f]Y;

(7.5.20)

and
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(iil) for vector fields X and Y,
(VxY = VyX)(u) =DY(u) - X(u) - DX (u) - Y(u)
= [X,Y](u). (7.5.21)

In fact, these three properties characterize covariant derivative operators.
The particular covariant derivative determined by (7.5.14) is called the
Levi-Civita covariant derivative. If c(t) is a curve in ¢ and X € X(Q),
the covariant derivative of X along c is defined by

DX
YA _ 5.22
5 = VuX, (7.5.22)

where u is a vector field coinciding with ¢(t) at ¢(t). This is possible, since by
(7.5.19) or (7.5.20), VxY depends only on the point values of X. Explicitly,

in a local chart, we have
DI e(t)) = e (ule®), X(eO) + T X(®),  (15.23)

which shows that DX/Dt depends only on é(t) and not on how ¢(t) is
extended to a vector field. In finite dimensions,

(%) = Tji(e(t)& () X" (c(®)) + %X He(t))- (7.5.24)

The vector field X is called autoparallel or parallel transported along
¢ if DX/Dt = 0. Thus ¢ is autoparallel along c if and only if

&(t) — (8)(e(d), ¢(8)) = 0,
that is, c(t) is a geodesic. In finite dimensions, this reads

&+ T =0.

Exercises

7.5-1. Consider the Lagrangian

. 1, . .
Le(xays z,i,y,z) = 5 (1:2 + y2 + Zz)
for a particle in R3. Let 7.(t) be the curve in R? obtained by solving the
Euler-Lagrange equations for L. with the initial conditions xg, vg = .(0).
Show that

1
_Z[l_(muyu:ﬂ)]?

lim 7 (2)

e—0
is a great circle on the two-sphere S?, provided that xg has length one and
that xp - vop = 0.

7.5-2. Write out the geodesic equations in terms of ¢* and p; and check
directly that Hamilton’s equations are satisfied.



200 7. Lagrangian Mechanics

7.6 The Kaluza—Klein Approach to Charged
Particles

In §6.7 we studied the motion of a charged particle in a magnetic field as
a Hamiltonian system. Here we show that this description is the reduction
of a larger and, in some sense, simpler system called the Kaluza—Klein
system.!

Physically, we are motivated as follows: Since charge is a basic conserved
quantity, we would like to introduce a new cyclic variable whose conjugate
momentum is the charge.? For a charged particle, the resultant system is
in fact geodesic motion!

Recall from §6.7 that if B = V x A is a given magnetic field on R3, then
with respect to canonical variables (q, p), the Hamiltonian is

H(q,p) = 5-1”—1 ”p - §A||2. (7.6.1)

First we claim that we can obtain (7.6.1) via the Legendre transform if we
choose

. 1 . e .
L(q,9) = ;mllal’ + -A -4 (7.6.2)
Indeed, in this case,
oL e
=_——=mq+-A .6.
P 54 mq + p (7.6.3)

and
H(q,p)=p-q- L(q,9)
. € o1 o2 e .
= (mq+ EA) q-omldl” - -A-q
1 .12 1 € 2
= gmlal® = 5-|p- Al (7.6.4
Thus, the Euler-Lagrange equations for (7.6.2) reproduce the equations for

a particle in a magnetic field.3
Let the configuration space be

Qx =R*x & (7.6.5)

1After learning reduction theory (see Abraham and Marsden [1978] or Marsden
[1992]), the reader can revisit this construction, but here all the constructions are done
directly.

2This process is applicable to other situations as well; for example, in fluid dynam-
ics one can profitably introduce a variable conjugate to the conserved mass density or
entropy; see Marsden, Ratiu, and Weinstein [1984a, 1984b).

31f an electric field E = —V is also present, one simply subtracts ey from L, treating
e as a potential energy, as in the next section.
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with variables (q,8). Define A = A, a one-form on R3, and consider the
one-form

w=A+df (7.6.6)

on Qi called the connection one-form. Let the Kaluza—-Klein La-
grangian be defined by

Lk(a,8,6,6) = 5mlal + 3 [{w, (a.4,6,0)|
= Smlldl? + 5 (A4 +0)” (76.7)
The corresponding momenta are
p=mq+(A-q+6A (7.6.8)
and
p=A-q+6. (7.6.9)

Since L is quadratic and positive definite in q and 6, the Euler-Lagrange
equations are the geodesic equations on R3 x S' for the metric for which
L is the kinetic energy. Since p is constant in time, as can be seen from the
Euler-Lagrange equation for (8, 6), we can define the charge e by setting

e
= 6.1
p=; (7.6.10)

then (7.6.8) coincides with (7.6.3). The corresponding Hamiltonian on T* Qg
endowed with the canonical symplectic form is

Hicap.0,) = 5-lIp ~ pAI + 577 (76.11)
With (7.6.10), (7.6.11) differs from (7.6.1) by the constant p?/2.

These constructions generalize to the case of a particle in a Yang-Mills
field, where w becomes the connection of a Yang-Mills field and its
curvature measures the field strength that, for an electromagnetic field,
reproduces the relation B = V x A. Also, the possibility of putting the in-
teraction in the Hamiltonian, or via a momentum shift, into the symplectic
structure, also generalizes. We refer to Wong [1970], Sternberg [1977], We-
instein [1978a), and Montgomery [1984] for details and further references.
Finally, we remark that the relativistic context is the most natural in which
to introduce the full electromagnetic field. In that setting the construction
we have given for the magnetic field will include both electric and mag-
netic effects. Consult Misner, Thorne, and Wheeler [1973] for additional
information.
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Exercises

7.6-1. The bob on a spherical pendulum has a charge e, mass m, and
moves under the influence of a constant gravitational field with acceler-
ation g, and a magnetic field B. Write down the Lagrangian, the Euler-
Lagrange equations, and the variational principle for this system. Trans-
form the system to Hamiltonian form. Find a conserved quantity if the field
B is symmetric about the axis of gravity.

7.7 Motion in a Potential Field

We now generalize geodesic motion to include potentials V :  — R. Recall
that the gradient of V is the vector field grad V = VV defined by the
equality

(grad V(g),v), = dV(q) - v, (7.7.1)

for all v € T,Q. In finite dimensions, this definition becomes

8V
T 1]
(gradV)* =g ER (7.7.2)
Define the (weakly nondegenerate) Lagrangian L(v) = % (v,v) . — Vi)

A computation similar to the one in §7.5 shows that the Euler-Lagrange
equations are

4 = (q,q) — grad V(g), (7.7.3)

or in finite dimensions,
; L %
o ik 1 _
¢ +T5d'd" + 4" o 0. (7.7.4)
The action of L is given by
Av) = (v,v),, (7.7.5)
so that the energy is
E(v) = A(v) - L(v) = 3 {v,v), + V(9. (7.7.6)
The equations (7.7.3) written as
d=v, 0=1(qv)—gradV(g) (7.7.7)

are thus Hamiltonian with Hamiltonian function E with respect to the
symplectic form .
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Invariant Form. There are several ways to write equations (7.7.7) in
invariant form. Perhaps the simplest is to use the language of covariant
derivatives from the last section and to write

D¢
— =-VV 7.7.8
or, what is perhaps better,
Deé
b
— = —-dV, 7.7.9
9 5 : (7.7.9)

where ¢° : TQ — T*Q is the map associated to the Riemannian metric.
This last equation is the geometric way of writing ma = F.
Another method uses the following terminology:

Definition 7.7.1. Letv,w € T,Q. The vertical lift of w with respect to
v is defined by

ver(w,v) = % . (v+tw) € T,(TQ).
t=

The horizontal part of a vector U € T,(TQ) is T,mq(U) € T,Q. A vector
field is called vertical if its horizontal part is zero.

In charts, if v = (u,€e), w = (u, f), and U = ((u, €), (€1, €2)), this defini-
tion says that

ver(w,v) = ((u,€),(0, f)) and T,7o(U) = (u,e1).

Thus, U is vertical iff e; = 0. Thus, any vertical vector U € T,(TQ) is the
vertical lift of some vector w (which in a natural local chart is (u,eq)) with
respect to v.

If S denotes the geodesic spray of the metric (, ) on 7'Q, equations (7.7.7)
say that the Lagrangian vector field Z defined by L(v) = & (v, v) .~ Vi),
where v € T, @, is given by

Z =8 —ver(VV), (7.7.10)
that is,
Z(v) = S(v) — ver((VV)(q),v). (7.7.11)

Remarks. In general, there is no canonical way to take the vertical part
of a vector U € T, (T'Q) without extra structure. Having such a structure is
what one means by a connection. In case Q is pseudo-Riemannian, such a
projection can be constructed in the following manner. Suppose, in natural
charts, that U = ((u, e), (e, e2)). Define

Uver = ((u,€), (0,7(u)(e1,e2) + e2))

where y(u) is the bilinear symmetric form associated to the quadratic form
¥(u, €) in e. ¢
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We conclude with some miscellaneous remarks connecting motion in a
potential field with geodesic motion. We confine ourselves to the finite-
dimensional case for simplicity.

Definition 7.7.2. Let g = (,) be a pseudo-Riemannian metric on Q
and let V : Q@ — R be bounded above. If e > V(q) for all q € Q, define the
Jacobi metric g. by g. = (e — V)g, that is,

ge(v7 ’LU) = (6 - V(q)) ('U, w)
for all v,w € T,Q.

Theorem 7.7.3. Let Q be finite-dimensional. The base integral curves
of the Lagrangian L(v) = % (v,v) — V(q) with energy e are the same as
geodesics of the Jacobi metric with energy 1, up to a reparametrization.

The proof is based on the following proposition of separate interest.
Proposition 7.7.4. Let (P,§) be a (finite-dimensional) symplectic man-
ifold, H,K € F(P), and assume that & = H~'(h) = K~1(k) for b,k € R
regular values of H and K, respectively. Then the integral curves of Xy

and Xk on the invariant submanifold ¥ of both Xy and Xk coincide up
to a reparametrization.

Proof. From Q(Xg(z),v) = dH(z) - v, we see that
Xu(z) € (kerdH(2))" = (T.T),

the symplectic orthogonal complement of T, 3. Since
dim P = dim T, % + dim(T, %)%

(see §2.3) and since T, X has codimension one, (7,X)% has dimension one.
Thus, the nonzero vectors Xy (z) and Xk (z) are multiples of each other at
every point z € X, that is, there is a smooth nowhere-vanishing function
A : Y — R such that Xg(z) = AM2)Xg(2) for all z € 3. Let ¢(t) be the
integral curve of X with initial condition ¢(0) = z; € . The function

H‘P dt
27 )y Do

is a smooth monotone function and therefore has an inverse ¢ — ¢(t) . If
d(t) = (co p)(t), then d(0) = 2z and

d'(t) = ¢'(t)c(p(t) = ?,%XK(C(‘P(”)) = (Ao c)(p) Xk (d())

= Md(t)) Xk (d(t)) = Xu(d(t)),

that is, the integral curve of Xy through z; is obtained by reparametrizing
the integral curve of Xg through 2. ]
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Proof of Theorem 7.7.3. Let H be the Hamiltonian for L, namely

1
H(g,p) = 5lpl* + V(a),

and let H, be that for the Jacobi metric:

He(a,p) = (e~ V(@) ol

The factor (e — V(g)) ™! occurs because the inverse metric is used for the
momenta. Clearly, H = e defines the same set as H, = 1, so the result
follows from Proposition 7.7.4 if we show that e is a regular value of H and
1 is a regular value of H,. Note that if (g,p) € H~1(e), then p # 0, since
e > V(q) for all ¢ € Q. Therefore, FH(q,p) # 0 for any (g,p) € H™(e),
and hence dH(q,p) # 0, that is, e is a regular value of H. Since

FH.(q,p) = (e — V(q))"'FH(q,p),

| =

this also shows that
FH.(q,p) #0 forall (q,p) € H '(e) = H; (1),

and thus 1 is a regular value of H,. |

7.8 The Lagrange—d’Alembert Principle

In this section we study a generalization of Lagrange’s equations for me-
chanical systems with exterior forces. A special class of such forces is dis-
sipative forces, which will be studied at the end of this section.

Force Fields. Let L : TQ — R be a Lagrangian function, let Z be
the Lagrangian vector field associated to L, assumed to be a second-order
equation, and denote by 7 : TQ — @ the canonical projection. Recall
that a vector field Y on T'Q is called vertical if TTg oY = 0. Such a vector
field Y defines a one-form AY on T'Q by contraction with Q:

AY = —-iyQr, =Y 1Qy.

Proposition 7.8.1. If Y is vertical, then AY is a horizontal one-
form, that is, AY(U) = 0 for any vertical vector field U on TQ. Con-
versely, given a horizontal one-form A on TQ, and assuming that L is
regular, the vector field Y on T'Q, defined by A = —iyQyp, is vertical.

Proof. This follows from a straightforward calculation in local coordi-
nates. We use the fact that a vector field Y(u,e) = (Yi(u,e),Y2(u,e)) is
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vertical if and only if the first component Y; is zero, and the local formula
for €y, derived earlier:

QL(ua 6)(Y1, Y2)7 (Ul’ U2))
=D,(DsL(u,e) - Y1) - Uy — D1(D3L(u,e)-Uy) - Y3
+DyDyL(ue) Yy Uy — DoDyL(u,e) - Uy - Ya.  (7.8.1)

This shows that (iyQy)(U) = 0 for all vertical U is equivalent to
DQDQL(’U., 6)(U2,Y'1) =0.

If Y is vertical, this is clearly true. Conversely, if L is regular and the last
displayed equation is true, then Y3 =0, so Y is vertical. |

Proposition 7.8.2. Any fiber-preserving map F : TQ — T*Q over the
identity induces a horizontal one-form F on TQ by

F(U) V= <F(U)aTvTQ(Vv)>7 (7.8.2)

where v € TQ and V, € T,(TQ). Conversely, formula (7.8.2) defines, for
any horizontal one-form F, a fiber-preserving map F over the identity. Any
such F is called a force field, and thus, in the regular case, any vertical
vector field Y is induced by a force field.

Proof. Given F, formula (7.8.2) clearly defines a smooth one-form F on
TQ. If V, is vertical, then the right-hand side of formula (7.8.2) vanishes,
and so F is a horizontal one-form. Conversely, given a horizontal one-form
F on TQ and given v, w € T,Q, let V, € T,(TQ) be such that T,7(V,) = w.
Then define F by formula (7.8.2); that is, (F(v),w) = F(v) - V,. Since F is
horizontal, we see that F is well-defined, and its expression in charts shows
that it is smooth. ]

Treating AY as the exterior force one-form acting on a mechanical system
with a Lagrangian L, we now will write the governing equations of motion.

The Lagrange—d’Alembert Principle. First, we recall the definition
from Vershik and Faddeev [1981] and Wang and Krishnaprasad {1992].

Definition 7.8.3. The Lagrangian force associated with a Lagrangian
L and a given second-order vector field (the ultimate equations of motion)
X is the horizontal one-form on TQ defined by

&L(X)=ix —dE. (7.8.3)

Given a horizontal one-form w (referred to as the exterior force one-
form), the local Lagrange—d’Alembert principle associated with the
second-order vector field X on TQ) states that

®L(X)+w=0. (7.8.4)
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It is easy to check that ®(X) is indeed horizontal if X is second-order.
Conversely, if L is regular and if ®;(X) is horizontal, then X is second-
order.

One can also formulate an equivalent principle in terms of variational
principles.

Definition 7.8.4. Given a Lagrangian L and a force field F, as defined
in Proposition 7.8.2, the integral Lagrange—d’Alembert principle for
a curve g(t) in Q is

b
/ L(q(t), d(8)) dt + / F(q(t), 4(t)) - Sqdt = 0, (7.8.5)

where the variation is given by the usual expression

5/:L(q(t),q(t))dt=/a (g—ﬁ-a + gL ;téq)dt

b
L d oL\ .,
= [l <5§; - aa—(f’) 6(] dt (786)

for a given variation dq (vanishing at the endpoints).

The two forms of the Lagrange-d’Alembert principle are in fact equiva-
lent. This will follow from the fact that both give the Euler-Lagrange equa-
tions with forcing in local coordinates (provided that Z is second-order).
We shall see this in the following development.

Proposition 7.8.5. Let the exterior force one-form w be associated to a
vertical vector field Y, that is, let w = AY = —iyQ. Then X = Z+Y
satisfies the local Lagrange—d’Alembert principle. Conversely, if, in addi-
tion, L is regular, the only second-order vector field X satisfying the local
Lagrange-d’Alembert principle is X =Z + Y.

Proof. For the first part, the equality @1,(X)+w = 0 is a simple verifica-
tion. For the converse, we already know that X is a solution, and uniqueness
is guaranteed by regularity. n

To develop the differential equations associated to X = Z + Y, we take
w = —iyQy and note that in a coordinate chart, Y (q,v) = (0,Y2(q,v)),
since Y is vertical, that is, Y; = 0. From the local formula for Qp, we get

w(g,v) - (u,w) = DaD2L(g,v) - Ya(g,v) - u. (7.8.7)
Letting X (q,v) = (v, X2(g,v)), one finds that
<I)L()()(q’ 'l)) ’ (u,w)

= (-D1(D2L(g,v)") - v — D2D2L(g,v) - Xa(g,v) + D1L(g,v)) - u
(7.8.8)
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Thus, the local Lagrange—-d’Alembert principle becomes
(=D1(D2L(g,v) ) - v — D2D3L(g,v) - Xa(g,v) +D1L(g,v)
+ DDy L(g,v) - Ya(q,v)) =0. (7.8.9)
Setting v = dq/dt and X3(q,v) = dv/dt, the preceding relation and the

chain rule give

d
EDZL((L U) - DlL(q7 ’U) = D2D2L(Qa U) ) Y'Z(qa 'U), (7810)

which in finite dimensions reads

d (0L oL o’L .
~ =) 2= J(k sk
7 (aqi) oF ~ 3 quY (¢%,4%). (7.8.11)
The force one-form AY is therefore given by
2L
AY (k. i) = 22 _vi(gk k) ddt 8.
(¢%4") = grga ¥ (@4 dd, (7.8.12)
and the corresponding force field is
. 9% )
Y _ ) ik sk
F <q ¥ 6c1jY Y ))- (7.8.13)

Thus, the condition for an integral curve takes the form of the standard
Euler-Lagrange equations with forces:

4 (LY 0L _ i
7 (57) ~ 5 = Y@, (78.14)

Since the integral Lagrange—d’Alembert principle gives the same equations,
it follows that the two principies are equivalent. From now on, we will refer
to either one as simply the Lagrange—d’Alembert principle.

We summarize the results obtained so far in the following:

Theorem 7.8.6. Given a regular Lagrangian and a force field F : TQ —
T*Q, for a curve q(t) in Q the following are equivalent:

(a) q(t) satisfies the local Lagrange-d’Alembert principle;
(b) q(t) satisfies the integral Lagrange-d’Alembert principle; and

(c) q(t) is the base integral curve of the second-order equation Z +Y,
where Y is the vertical vector field on TQ inducing the force field F
by (7.8.13), and Z is the Lagrangian vector field on L.

The Lagrange-d’Alembert principle plays a crucial role in nonholo-
nomic mechanics, such as mechanical systems with rolling constraints.
See, for example, Bloch, Krishnaprasad, Marsden, and Murray [1996] and
references therein.
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Dissipative Forces. Let E denote the energy defined by L, that is,
E = A~ L, where A(v) = (FL(v), v) is the action of L.

Definition 7.8.7. A vertical vector field Y on TQ is called weakly dis-
sipative if (dE,Y) < 0 at all points of TQ. If the inequality is strict off
the zero section of TQ, then Y is called dissipative. A dissipative La-
grangian system on T'Q is a vector field Z+Y, for Z a Lagrangian vector
field and Y a dissipative vector field.

Corollary 7.8.8. A wvertical vector field Y on TQ is dissipative if and
only if the force field FY that it induces satisfies <Fy(v),'v> < 0 for all
nonzero v € TQ (< 0 for the weakly dissipative case).

Proof. Let Y be a vertical vector field. By Proposition 7.8.1, Y induces
a horizontal one-form AY = —iy§;, on TQ, and by Proposition 7.8.2 ,AY
in turn induces a force field F¥ given by

(FY (v),w) = AY (v) - V,, = =QL(v)(Y (v), V&), (7.8.15)

where T1g(Vy) = w and V, € T,(TQ). If Z denotes the Lagrangian system
defined by L, we get

(dE-Y)(v) = (izQL)(Y)(v) = QL(Z,Y)(v)
= =QL(v)(Y(v), Z(v))
= (FY (v), T,7(Z(v)))
= (F¥(v),v),

since Z is a second-order equation. Thus, dE - Y < 0 if and only if
(FY (v),v) <0 for all v € TQ. |

Definition 7.8.9. Given a dissipative vector field Y on TQ, let FY :
TQ — T*Q be the induced force field. If there is a function R : TQ — R
such that FY is the fiber derivative of —R, then R is called a Rayleigh
dissipation function.

Note that in this case, Dy R(g,v) - v > 0 for the dissipativity of Y. Thus,
if R is linear in the fiber variable, the Rayleigh dissipation function takes
on the classical form (R(q)v,v), where R(q) : TQ — T*Q is a bundle map
over the identity that defines a symmetric positive definite form on each
fiber of TQ.

Finally, if the force field is given by a Rayleigh dissipation function R,
then the Euler-Lagrange equations with forcing become

d (6L) 0L  OR (7.8.16)

d\oi) b¢ 8
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Combining Corollary 7.8.8 with the fact that the differential of E along
Z is zero, we find that under the flow of the Euler-Lagrange equations with
forcing of Rayleigh dissipation type, we have

—E(q,v) = F(v) -v=-FR(q,v)-v <0. (7.8.17)

Exercises

7.8-1. What is the power or rate of work equation (see §2.1) for a system
with forces on a Riemannian manifold?

7.8-2. Write the equations for a ball in a rotating hoop, including friction,
in the language of this section (see §2.8). Compute the Rayleigh dissipation
function.

7.8-3. Consider a Riemannian manifold @) and a potential function V :
Q@ — R. Let K denote the kinetic energy function and let w = —dV. Show
that the Lagrange-d’Alembert principle for K with external forces given
by the one-form w produces the same dynamics as the standard kinetic
minus potential Lagrangian.

7.9 The Hamilton—Jacobi Equation

In §6.5 we studied generating functions of canonical transformations. Here
we link them with the flow of a Hamiltonian system via the Hamilton-
Jacobi equation. In this section we approach Hamilton—Jacobi theory from
the point of view of extended phase space. In the next chapter we will have
another look at Hamilton—Jacobi theory from the variational point of view,
as it was originally developed by Jacobi [1866]. In particular, we will show
in that section, roughly speaking, that the integral of the Lagrangian along
solutions of the Euler-Lagrange equations, but thought of as a function of
the endpoints, satisfies the Hamilton—Jacobi equation.

Canonical Transformations and Generating Functions. We con-
sider a symplectic manifold P and form the extended phase space P xR.
For our purposes in this section, we will use the following definition. A
time-dependent canonical transformation is a diffeomorphism

p:PxR—-PxR
of the form
p(z,t) = (pe(2), 1),

where for each t € R, p; : P — P is a symplectic diffeomorphism.
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In this section we will specialize to the case of cotangent bundles, so
assume that P = T*Q for a configuration manifold Q. For each fixed ¢, let
St : @ xQ — R be the generating function for a time-dependent symplectic
map, as described in §6.5. Thus, we get a function S : @ x QxR — R defined
by S(q1,42,t) = Si(q1,g2). As explained in §6.5, one has to be aware that in
general, generating functions are defined only locally, and indeed, the global
theory of generating functions and the associated global Hamilton-Jacobi
theory is more sophisticated. We will give a brief (optional) introduction
to this general theory at the end of this section. See also Abraham and
Marsden (1978, Section 5.3] for more information and references. Since our
goal in the first part of this section is to give an introductory presentation
of the theory, we will do many of the calculations in coordinates.

Recall that in local coordinates, the conditions for a generating function
are written as follows. If the transformation v has the local expression

w : (qiap’ht) = (ai,ﬁi,t),
with inverse denoted by
¢ : (qiaﬁi,t) — (qiap’ivt)’

and if S(¢%,q',t) is a generating function for 1, we have the relations

_ oS s
p; = = and p; = o (7.9.1)
From (7.9.1) it follows that
;  0S oS
pidg' = p; dq Tt 55 -dg’ = -dg’
=p;dg" — %—f—dt +dS, (7.9.2)

where dS is the differential of S as a function on Q@ x @ x R:

s 8S _, 08
ds = —dg +aj¢r + 5 dt.

Let K : T*Q x R — R be an arbitrary function. From (7.9.2) we get the
following basic relationship:

pidg' — K(¢',pi, t) dt = p; dg’ = K(§',B;,t) dt +dS(¢',7',t), (7.9.3)
where K(q,5;,t) = K(q¢*,p;i, t) + 0S(q*, G, t)/0t. If we define
Ok = p;dg' — K dt, (7.9.4)
then (7.9.3) is equivalent to
Ok = Y*Ox +9¥*dS, (7.9.5)
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where ¥ : T*Q xR — @ x @ x R is the map
(@, pist) = (¢, T (¢, pj, 1), B).
By taking the exterior derivative of (7.9.3) (or (7.9.5)), it follows that
dg* Adp; + dK A dt = dg* A dp; + dK A dt. (7.9.6)
This may be written as
kg =v* O, (7.9.7)

where Qg = —dOg = dqg* A dp; + dK A dt.

Recall from Exercise 6.2-3 that given a time-dependent function K and
associated time-dependent vector field Xx on T*@, the vector field X =
(XK,1) on T*Q x R is uniquely determined (among all vector fields with a
1 in the second component) by the equation i i Qx = 0. From this relation
and (7.9.7), we get

0= iz, ) =1y, () ¥l =1y, (50007

Since 9 is the identity in the second component, that is, it preserves time,
the vector field ¥.(X k) has a 1 in the second component, and therefore by
uniqueness of such vector fields we get the identity

Ve(Xg) = X5 (7.9.8)
The Hamilton—Jacobi Equation. The data we shall need are a Hamil-
tonian H and a generating function S, as above.

Definition 7.9.1. Given a time-dependent Hamiltonian H and a trans-
formation ¥ with generating function S as above, we say that the Hamilton—
Jacobi equation holds if

oS as oS, . _.
1 n el %) —
H(q,---,q ’—aql""’_“aqn’t)J“at(q’q’t) 0, (7.9.9)

in which 0S/0q" are evaluated at (¢*,q',t) and in which the §' are regarded
as constants.

The Hamilton-Jacobi equation may be regarded as a nonlinear partial
differential equation for the function S relative to the variables (q!,... ,q",t)
depending parametrically on (g!,... ,q").

Definition 7.9.2. We say that the map ¢ transforms a vector field
X to equilibrium if

v.X =(0,1). (7.9.10)
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If ¢ transforms X to equilibrium, then the integral curves of X with
initial conditions (g}, p?,to) are given by

(qi(t)»pi(t), t) = w-l(ai(qéap?a tO)aﬁi(‘IéaP?: tO)a t+ to), (7911)

since the integral curves of the constant vector field (0,1) are just straight
lines in the t-direction and since i maps integral curves of X to those of
(0,1). In other words, if a map transforms a vector field X to equilibrium,
the integral curves of X are represented by straight lines in the image space,
and so the vector field has been “integrated.”

Notice that if ¢ is the inverse of 1, then ¢; is the flow of the vector field
X in the usual sense.

Theorem 7.9.3 (Hamilton—Jacobi).

(i) Suppose that S satisfies the Hamilton-Jacobi equation for a given
time-dependent Hamiltonian H and that S generates a time-dependent
canonical transformation . Then 1 transforms Xg to equilibrium.
Thus, as explained above, the solution of Hamilton’s equations for H
are given in terms of ¥ by (7.9.11).

(it) Conversely, if ¥ is a time-dependent canonical transformation with
generating fuqction S that transforms Xy to equilibrium, then there
18 a function S, which differs from S only by a function of t that also
generates v, and satisfies the Hamilton-Jacobi equation for H.

Proof. To prove (i), assume that S satisfies s the Hamilton-Jacobi equa-
tion. As we explained above, this means that H = 0. From (7.9.8) we get

b X = Xz = (0,1).

This proves the first statement.
To prove the converse (ii), assume that

'Q/)*XH = (O’ l)a
and so, again by (7.9.8),
Xg=Xo=(0,1),

which means that H is a constant relative to the variables (¢°,5;) (its
Hamiltonian vector field at each instant of time is zero) and thus H = f(t),
a function of time only. We can then modify S to § = S — F, where
Fit) = [ t f(8)ds. This function, differing from S by a function of time
alone, generates the same map . Since

0=H~ f(t)= H + 8S/0t — dF/dt = H + 85 /t,

and 8S/8q* = 8S/q", we see that S satisfies the Hamilton—Jacobi equation
for H. ]
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Remarks.

1. In general, the function S develops singularities, or caustics, as time
increases, so it must be used with care. This process is, however, fundamen-
tal in geometric optics and in quantization. Moreover, one has to be careful
with the sense in which S generates the identity at ¢t = 0, as it might have
singular behavior in ¢.

2. Here is another link between the Lagrangian and Hamiltonian view of
the Hamilton-Jacobi theory. Define S for t close to a fixed time ¢ by the
action integral

S(¢dt) = / L(g(s), d'(s), ) ds,

to

where ¢(s) is the solution of the Euler-Lagrange equation equaling g at
time to and equaling ¢* at time ¢t. We will show in §8.2 that S satisfies the
Hamilton-Jacobi equation. See Arnold [1989, Section 4.6] and Abraham
and Marsden [1978, Section 5.2] for more information.

3. If H is time-independent and W satisfies the time-independent Ham-
ilton-Jacobi equation
, OW
H : —_— = E,
(q I aql )

then S(q¢%, @, t) = W(¢, ') — tE satisfies the time-dependent Hamilton—-
Jacobi equation, as is easily checked. When using this remark, it is impor-
tant to remember that E is not really a “constant,” but it equals H(g,p),
the energy evaluated at (g,p), which will eventually be the initial condi-
tions. We emphasize that one must generate the time t-map using S rather
than W.

4. The Hamilton-Jacobi equation is fundamental in the study of the
quantum-—classical relationship is described in the Internet supplement for
Chapter 7.

5. The action function S is a key tool used in the proof of the Liouville—
Arnold theorem, which gives the existence of action angle coordinates for
systems with integrals in involution; see Arnold {1989] and Abraham and
Marsden [1978] for details.

6. The Hamilton-Jacobi equation plays an important role in the develop-
ment of numerical integrators that preserve the symplectic structure (see de
Vogelaére [1956], Channell [1983], Feng [1986], Channell and Scovel [1990],
Ge and Marsden [1988], Marsden [1992], and Wendlandt and Marsden
[1997]).
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7. The method of separation of variables. It is sometimes possible
to simplify and even solve the Hamilton—Jacobi equation by what is often
called the method of separation of variables. Assume that in the Hamilton-
Jacobi equation the coordinate ¢* and the term 8S/0q* appear jointly in
some expression f(q!,35/8¢") that does not involve ¢, ... ,q",t. That is,
we can write H in the form

H(qlqu"" ,qn,php?"" 7Pn) = H(f(q17pl)7q2a"' aqn,st"' >pn)

for some smooth functions f and H. Then one seeks a solution of the
Hamilton-Jacobi equation in the form

S(¢',d',t) = Si1(¢", 7)) + S(¢% ... ,q" T, ... ,T").

We then note that if S; solves
as
1 1 —1
— ) =C

for an arbitrary function C(g') and if S solves
- 88 85\ 08
H|C@@),¢%...." —,...,— |+ — =0,
(C(q g5 g g Bq") + 5

then S solves the original Hamilton—Jacobi equation. In this way, one of
the variables is eliminated, and one tries to repeat the procedure.

A closely related situation occurs when H is independent of time and
one seeks a solution of the form

S(¢",7,t) = W(g',7") + Si(¢).

The resulting equation for S; has the solution S;(t) = —Ft, and the re-
maining equation for W is the time-independent Hamilton—Jacobi equation
as in Remark 3.

If ¢! is a cyclic variable, that is, if H does not depend explicitly on
q', then we can choose f(g',p;) = p1, and correspondingly, we can choose
S1(¢*) = C(g*)q*. In general, if there are k cyclic coordinates g1, ¢2, . .. , ¢,
we seek a solution to the Hamilton-Jacobi equation of the form

k
S(qi’ai’t) = ZCj(sz)q] + S(qk+17- e ,qn,qk+l’ v ,qn7t)’
=1

with p; = Ci(g*), i = 1,... ,k, being the momenta conjugate to the cyclic
variables. ¢
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The Geometry of Hamilton—Jacobi Theory (Optional). Now we
describe briefly and informally some additional geometry connected with
the Hamilton—Jacobi equation (7.9.9). For each z = (¢',t) € Q = Q x
R, dS(z) is an element of the cotangent bundle T*Q. We suppress the
dependence of S on qj for the moment, since it does not play an immediate
role. As z varies in Q, the set {dS(x) | z € Q} defines a submanifold of
T*Q that in terms of coordinates is given by p; = 05/8¢’ and p = 8S/dt;
here the variables conjugate to ¢* are denoted by p; and that conjugate to ¢
is denoted by p. We will write §; =p; for i =1,2,... ,n and £,4+1 =p. We
call this submanifold the range, or graph, of dS (either term is appropriate,
depending on whether one thinks of dS as a mapping or as a section of a
bundle) and denote it by graph dS C T*Q. The restriction of the canonical
symplectic form on T*Q to graphdS is zero, since

n+1 n+1 n+1 . 2
> dai ndg; = de] Adﬁ =Y da’ nazk 25

iOrk
Tj AT O0xI Oz

Moreover, the dimension of the submanifold graph dS is half of the di-
mension of the symplectic manifold T*Q. Such a submanifold is called
Lagrangian, as we already mentioned in connection with generating func-
tions (§6.5). What is important here is that the projection from graph dS
to Q is a diffeomorphism, and even more, the converse holds: If A C T*Q is
a Lagrangian submanifold of T*Q such that the projection on @ is a diffeo-
morphism in a neighborhood of a point A € A, then in some neighborhood
of A we can write A = graph dyp for some function ¢. To show this, notice
that because the projection is a diffeomorphism, A is given (around ) as a
submanifold of the form (27, p;(x)). The condition for A to be Lagrangian
requires that on A,

n+1

> da? Adg; =0,
Jj=1
that is,
n+1
; . Op;  Opk
z:dxJ Ndpij(z) =0, ie., 8—.:7“ ~ B 0;

thus, there is a ¢ such that p; = 8¢/8z7, which is the same as A =
graph dy. The conclusion of these remarks is that Lagrangian submanifolds
of T*Q are natural generalizations of graphs of differentials of functions on
Q. Note that Lagrangian submanifolds are defined even if the projection
to Q is not a diffeomorphism. For more information on Lagrangian mani-
folds and generating functions, see Abraham and Marsden [1978], Weinstein
[1977], and Guillemin and Sternberg {1977].
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From the point of view of Lagrangian submanifolds, the graph of the
differential of a solution of the Hamilton-Jacobi equation is a Lagrangian
submanifold of T*Q that is contained in the surface Hy C T*Q defined
by the equation H:=p+ H(q%,p;,t) = 0. Here, as above, p = £, is the
momentum conjugate to t. This point of view allows one to include solutions
that are singular in the usual context. This is not the only benefit: We also
get more insight in the content of the Hamilton-Jacobi Theorem 7.9.3.
The tangent space to Hy has dimension 1 less than the dimension of the
symplectic manifold T*Q, and it is given by the set of vectors X such
that (dp + dH)(X) = 0. If a vector Y is in the symplectic orthogonal of
T(z,é)(ﬁo), that is,

n+1

Y (da? Adg;)(X,Y) =0

j=1
for all X € T(x,g)(ffo), then Y is a multiple of the vector field

0 OHO
Xa= 5~ 5 (9p+XH
evaluated at (z, ). Moreover, the integral curves of X projected to (¢*, p;)
are the solutions of Hamilton’s equations for H.

The key observation that links Hamilton’s equations and the Hamilton-
Jacobi equation is that the vector field X, which is obviously tangent to
Hy, is, moreover, tangent to any Lagrangian submanifold contained in Hy
(the reason for this is a very simple algebraic fact given in Exercise 7.9-
3). This is the same as saying that a solution of Hamilton’s equations for
H is either disjoint from a Lagrangian submanifold contained in Hp or
completely contained in it. This gives a way to construct a solution of
the Hamilton-Jacobi equation starting from an initial condition at ¢ = ¢;.
Namely, take a Lagrangian submanifold Ag in 7*Q and embed it in T*Q
at ¢t = {p using

(qi’pi) = (qivt = thpi’p = _H(qiapiytO))'

The result is an isotropic submanifold Ao C T*Q, that is, a submanifold
on which the canonical form vanishes. Now take all integral curves of X
whose initial conditions lie in Ag . The collection of these curves spans a
manifold A whose dimension is one higher than Ag . It is obtained by flowing
Ao along Xg; that is, A = UtAt, where A; = <I>t(A0) and ®; is the flow of
Xj. Since X is tangent to Hy and Ag C Hy, we get Ay C Hy and hence
A C Hy. Since the flow ®; of X 7 is a canonical map, it leaves the symplectic
form of T*Q invariant and therefore takes an isotropic submanifold into an
isotropic one; in particular, A; is an isotropic submanifold of T*Q. The
tangent space of A at some X\ € A; is a direct sum of the tangent space of
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A and the subspace generated by X ;. Since the first subspace is contained
in Ty Hy and the second is symplectically orthogonal to Tx Hy, we see that
A is also an isotropic submanifold of T*Q. But its dimension is half that of
T*Q, and therefore A is a Lagrangian submanifold contained in Hy, that
is, it is a solution of the Hamilton-Jacobi equation with initial condition
Ao at t = t().

Using the above point of view it is easy to understand the singularities
of a solution of the Hamilton—Jacobi equation. They correspond to those
points of the Lagrangian manifold solution where the projection to Q is not
a local diffeomorphism. These singularities might be present in the initial
condition (that is, Ag might not locally project diffeomorphically to @), or
they might appear at later times by folding the submanifolds A; as ¢ varies.
The projection of such a singular point to ¢} is called a caustic point of the
solution. Caustic points are of fundamental importance in geometric optics
and the semiclassical approximation of quantum mechanics. We refer to
Abraham and Marsden [1978, Section 5.3] and Guillemin and Sternberg
[1984] for further information.

Exercises

7.9-1. Solve the Hamilton-Jacobi equation for the harmonic oscillator.
Check directly the validity of the Hamilton—Jacobi theorem (connecting the
solution of the Hamilton—Jacobi equation and the flow of the Hamiltonian
vector field) for this case.

7.9-2. Verify by direct calculation the following. Let W(q,q) and

2

H(g,p) = 2+ V()

be given, where ¢,p € R. Show that for p # 0,

1

— (WP +V =

2m( ) +V=F

and ¢ = p/m if and only if (g, W,(q,7)) satisfies Hamilton’s equation with

energy E.

7.9-3. Let (V,12) be a symplectic vector space and W C V be a linear

subspace. Recall from §2.4 that
W={veV|Quw)=0foralweW}

denotes the symplectic orthogonal of W. A subspace L C V is called La-
grangian if L = L. Show that if L C W is a Lagrangian subspace, then
wecL.

7.9-4. Solve the Hamilton-Jacobi equation for a central force field. Check
directly the validity of the Hamilton—Jacobi theorem.
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Variational Principles, Constraints,
and Rotating Systems

This chapter deals with two related topics: constrained Lagrangian (and
Hamiltonian) systems and rotating systems. Constrained systems are illus-
trated by a particle constrained to move on a sphere. Such constraints that
involve conditions on the configuration variables are called “holonomic.”?
For rotating systems, one needs to distinguish systems that are viewed
from rotating coordinate systems (passively rotating systems) and systems
that themselves are rotated (actively rotating systems—such as a Foucault
pendulum and weather systems rotating with the Earth). We begin with a
more detailed look at variational principles, and then we turn to a version
of the Lagrange multiplier theorem that will be useful for our analysis of
constraints.

8.1 A Return to Variational Principles

In this section we take a closer look at variational principles. Technicalities
involving infinite-dimensional manifolds prevent us from presenting the full
story from that point of view. For these, we refer to, for example, Smale
[1964], Palais [1968], and Klingenberg {1978]. For the classical geometric
theory without the infinite-dimensional framework, the reader may consult,

'In this volume we shall not discuss “nonholonomic” constraints such as rolling con-
straints. We refer to Bloch, Krishnaprasad, Marsden, and Murray [1996], Koon and
Marsden [1997b], and Zenkov, Bloch, and Marsden [1998] for a discussion of nonholo-
nomic systems and further references.
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for example, Bolza [1973], Whittaker {1927], Gelfand and Fomin [1963], or
Hermann [1968].

Hamilton’s Principle. We begin by setting up the space of paths join-
ing two points.

Definition 8.1.1. Let @@ be a manifold and let L : TQQ — R be a regular
Lagrangian. Fiz two points ¢1 and ¢z in Q and an interval [a,b], and define
the path space from q; to g2 by

g1, 92, [a, b))
={c:[a,] = Q|cisaC? curve, ca) =q, c(b) =gz} (8.1.1)

and the map G : Q(q1, g2, [a,b]) = R by

b
S(c) = / L(e(t), é(t)) dt.

What we shall not prove is that Q(q1, g2, [a, b]) is a smooth infinite-dimen-
sional manifold. This is a special case of a general result in the topic of
manifolds of mappings, wherein spaces of maps from one manifold to an-
other are shown to be smooth infinite-dimensional manifolds. Accepting
this, we can prove the following.

Proposition 8.1.2. The tangent space T.2(q1, g2, [a,b]) to the manifold
Q(q1,92,[a,b]) at a point, that is, a curve ¢ € Q(q1, ¢z, [a,b]), is the set of
C? maps v : [a,b] — TQ such that Tgov = c and v(a) = 0, v(b) = 0, where
70 : TQ — Q denotes the canonical projection.

Proof. The tangent space to a manifold consists of tangents to smooth
curves in the manifold. The tangent vector to a curve ¢y € Q(q1, g2, [a, b])
with ¢g = c is

d

V= ——C)

- (8.1.2)

A=0
However, c)(t), for each fixed ¢, is a curve through co(t) = c(t). Hence

d
PN (t)

A=0

is a tangent vector to @ based at c(t). Hence v(t) € Ty(;)@; that is, Tgov = c.
The restrictions cy(a) = g1 and cx(b) = ¢z lead to v(a) = 0 and v(b) =0,
but otherwise v is an arbitrary C? function. ]

One refers to v as an infinitesimal variation of the curve c subject to
fixed endpoints, and we use the notation v = §c. See Figure 8.1.1.

Now we can state and sketch the proof of a main result in the calculus
of variations in a form due to Hamilton [1834].
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q(1) a‘il“)

FI1GURE 8.1.1. The variation dq(t) of a curve g(t) is a field of vectors tangent to
the configuration manifold along that curve.

Theorem 8.1.3 (Variational Principle of Hamilton). Let L be a Lagrang-
tan on TQ. A curve ¢o : [a,b] — Q joining g1 = co(a) to g2 = co{b) satisfies
the Euler-Lagrange equations

d (8L oL
= (5(?) = 5% (8.1.3)
if and only if co is a critical point of the function & : Q(q1, g2, [a,b]) — R,

that is, dS(co) = 0. If L is regular, either condition is equivalent to co
being a base integral curve of Xg.

As in §7.1, the condition d&(cp) = 0 is denoted by

b
5 / L(co(t), éo(t)) dt = 0; (8.1.4)

that is, the integral is stationary when it is differentiated with c regarded
as the independent variable.

Proof. We work out d&(c) - v just as in §7.1. Write v as the tangent to
the curve ¢y in Q(q1, g2, [a,b]) as in (8.1.2). By the chain rule,

b
d6(0) - v= 16| =2 / L(ca(t), éx(2)) dt (8.1.5)

dx oo dMJ,

- A=0
Differentiating (8.1.5) under the integral sign, and using local coordinates,?
we get
b
oL ., OL

dG(C) V= L (-a?'vl + a—q,—z.’lﬂ) dt. (816)

21f the curve co(t) does not lie in a single coordinate chart, divide the curve c(t) into
a finite partition each of whose elements lies in a chart and apply the argument below.
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Since v vanishes at both ends, the second term in (8.1.6) can be integrated

by parts to give
b
6L d oL\ ;
dG(C) V= /a <6_q’ - Ez'ﬁ) v dt. (817)

Now, d&(c) = 0 means that d&(c)-v = 0 for all v € TcQ(q1, g2, [a, b]). This
holds if and only if

oL d (0L

o @t (8_(;’) =0, (8.1.8)
since the integrand is continuous and v is arbitrary, except for v = 0 at the
ends. (This last assertion was proved in Theorem 7.3.3.) ||

The reader can check that Hamilton’s principle proceeds virtually un-
changed for time-dependent Lagrangians. We shall use this remark below.

The Principle of Critical Action. Next we discuss variational prin-
ciples with the constraint of constant energy imposed. To compensate for
this constraint, we let the interval [a, b] be variable.

Definition 8.1.4. Let L be a regular Lagrangian and let 3, be a regular
energy surface for the energy E of L, that is, e is a reqular value of E
and £, = E~(e). Let q1,q2 € Q and let [a,b] be a given interval. Define
a1, 9z, [a, ], ) to be the set of pairs (t,c), where T : [a,b] — R is C?,
satisfies T > 0, and where ¢ : [T(a), T(b)] — Q is a C? curve with

c(t(a)) = q1, c(7(b)) = ga,

and
E(c(7(t)),¢(r(t)) = e, for allt € [a,b].

Arguing as in Proposition 8.1.2, computation of the derivatives of curves
(Ta, €2) in (g1, g2, [a, b), €) shows that the tangent space to Q(g1, g2, [e, ], €)
at (7,c) consists of the space of pairs of C? maps

a:fa,b) =R and wv:([r(a),7(b)] - TQ
such that v(t) € T @,

&(r(a))a(a) + v(7(a))
&(7(6))a(b) + v(7 (b)) =

Il

0,
8.1.9
0 .19)

)

and

dE[c(r(t)), é(m(1)] - [e(m(t))ex(t) + v(7(8), &(r(8))é(t) + 0(7(t))] = 0.
(8.1.10)
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Theorem 8.1.5 (Principle of Critical Action). Let co(t) be a solution of
the Fuler-Lagrange equations and let g1 = co(a) and gz = co(b). Let e be
the energy of co(t) and assume that it is a regular value of E. Define the
map A : Q(q1,q2,[a,b],e) = R by

A(r,¢) = " Ale(t), é(t)) dt, (8.1.11)
T(a)

where A is the action of L. Then
dA(Id, cp) =0, (8.1.12)

where Id is the identity map. Conversely, if (Id,co) is a critical point of
A and co has energy e, a regular value of E, then cy is a solution of the
Euler-Lagrange equations.

In coordinates, (8.1.11) reads

r®) oI, HONE
A(r,c) = / z=¢'dt = / p; dg’, (8.1.13)
7(a) aq 7{a)

the integral of the canonical one-form along the curve y = (c, ¢). Being the
line integral of a one-form, A(7,c) is independent of the parametrization
7. Thus, one may think of A as defined on the space of (unparametrized)
curves joining ¢ and ¢s.

Proof. If the curve ¢ has energy e, then
7(b) o
Ao = [l d) + et
7(a)
Differentiating A with respect to 7 and ¢ by the method of Theorem 8.1.3
gives
dA(1d, co) - (e, v)
= a(b) [L(co(b), ¢o(b)) + €] — (a) [L(co(a), ¢o(a)) + €]

b
+ /a (g—;(c()(t),éo(t))v"(tﬂ %(co(t),éo(t))bi(t)> dt. (8.1.14)

Integrating by parts gives

dA(Id, cp) - (o, v)
b
- [a(t) Lo, a(t) + €] + TEcu(t), @(t»vi(t)]

a

b /6L . d 8L . ;
+ / (a—q;(co(t),c()(t))— a;9-(?(co(t),co(t)))u (t)dt. (8.1.15)
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Using the boundary conditions v = —¢a, noted in the description of the tan-
gent space T(1d,¢)2(q1, g2, (a, b], €) and the energy constraint (0L/9¢*)¢* —
L = e, the boundary terms cancel, leaving

b (OL L\ .
dA( ) - (@) = | (g—q - %gq—) ot

However, we can choose v arbitrarily; notice that the presence of « in the
linearized energy constraint means that no restrictions are placed on the
variations v* on the open set where ¢ # 0. The result therefore follows. W

(8.1.16)

If L = K-V, where K is the kinetic energy of a Riemannian metric, then
Theorem 8.1.5 states that a curve ¢y is a solution of the Euler-Lagrange
equations if and only if

b
5. / 9K (co, o) dt = 0, (8.1.17)

where 4, indicates a variation holding the energy and endpoints but not the
parametrization fixed; this is symbolic notation for the precise statement
in Theorem 8.1.5. Using the fact that K > 0, a calculation of the Euler—
Lagrange equations (Exercise 8.1-3) shows that (8.1.17) is the same as

b
Je / V2K (cq, ép) dt =0, (8.1.18)
a

that is, arc length is extremized (subject to constant energy). This is Ja-
cobi’s form of the principle of “least action” and represents a key to
linking mechanics and geometric optics, which was one of Hamilton’s orig-
inal motivations. In particular, geodesics are characterized as extremals of
arc length. Using the Jacobi metric (see §7.7) one gets yet another varia-
tional principle.3

Phase Space Form of the Variational Principle. The above vari-
ational principles for Lagrangian systems carry over to some extent to
Hamiltonian systems.

Theorem 8.1.6 (Hamilton’s Principle in Phase Space). Consider a Ha-
miltonian H on a given cotangent bundle T*Q. A curve (¢'(t),pi(t)) in
T*Q satisfies Hamilton’s equations iff

b . .
5/ [pig* — H(q",ps)]dt =0 (8.1.19)

for variations over curves (g*(t),p;(t)) in phase space, where ¢* = dq*/dt
and where ¢* are fized at the endpoints.

3Qther interesting variational principles are those of Gauss, Hertz, Gibbs, and Appell.
A modern account, along with references, is Lewis [1996].
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Proof. Computing as in (8.1.6), we find that

b : b g 4 OH OH
é / lpig" — H(q",ps)] dt = f [(5pi)q‘+m(5ql) Ba zéq —%MJ dt.

Since g'(t) are fixed at the two ends, we have p;6¢* = 0 at the two ends,
and hence the second term of (8.1.20) can be integrated by parts to give

0 0H

Haq - —5pl] dt, (8.1.21)

/ab [ “(0pi) — pi(8q") - 5

which vanishes for all p;, dq* exactly when Hamilton’s equations hold. W

Hamilton’s principle in phase space (8.1.19) on an exact symplectic man-
ifold (P, = —dO) reads

5/b(e — Hdt) =0, (8.1.22)

again with suitable boundary conditions. Likewise, if we impose the con-
straint H = constant, the principle of least action reads

~(b)
§ 0 =0. (8.1.23)
()

In Cendra and Marsden [1987], Cendra, Ibort, and Marsden [1987], Mars-
den and Scheurle [1993a, 1993b], and Holm, Marsden, and Ratiu [1998a],
it is shown how to form variational principles on certain symplectic and
Poisson manifolds even when (2 is not exact, but does arise by a reduction
process. The variational principle for the Euler-Poincaré equations that
was described in the introduction and that we shall encounter again in
Chapter 13 is a special instance of this.

The one-form Of := © — Hdt in (8.1.22), regarded as a one-form on
P x R, is an example of a contact form and plays an important role in
time-dependent and relativistic mechanics. Let

Qup=—-dOy =Q+dH A dt
and observe tha:s the vector field X is characterized by the statement that
its suspension Xy = (Xp,1), a vector field on P x R, lies in the kernel of

QH:

ig, 2 =0.
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Exercises

8.1-1. In Hamilton’s principle, show that the boundary conditions of
fixed q(a) and ¢q(b) can be changed to p(b) - dq(b) = p(a) - dg(a). What
is the corresponding statement for Hamilton’s principle in phase space?

8.1-2. Show that the equations for a particle in a magnetic field B and
a potential V can be written as

6/(K—V)dt=—§/6q-(va)dt.

8.1-3. Do the calculation showing that

b
56/ 2K(C(),C'0) dt =0

and s
66/ vV2K({cg,ép)dt =0
a

are equivalent.

8.2 The Geometry of Variational Principles

In Chapter 7 we derived the “geometry” of Lagrangian systems on T'Q)
by pulling back the geometry from the Hamiltonian side on T*Q. Now we
show how all of this basic geometry of Lagrangian systems can be derived
directly from Hamilton’s principle. The exposition below follows Marsden,
Patrick, and Shkoller [1998].

A Brief Review. Recall that given a Lagrangian function L : TQ — R,
we construct the corresponding action functional G on C? curves g(t),
a < t < b, by (using coordinate notation)

{1

&(q() = /abL (qi(t),‘fi—qt(t)) dt. (82.1)

Hamilton’s principle (Theorem 8.1.3) seeks the curves ¢(t) for which the
functional & is stationary under variations of ¢*(t) with fized endpoints at
fized times. Recall that this calculation gives

b
. (0L d 0L oL _,
) - dq(r) = : - — —— —d¢"
as(at))-5a0) = [ 64" (g~ 50 ) e+ 50
The last term in (8.2.2) vanishes, since dg(a) = dq(b) = 0, so that the

requirement that g(t) be stationary for & yields the Euler-Lagrange equa-
tions

b
(8.2.2)

a

oL doL
—_— =T = U 8 .
o¢t  dt d¢ 0 (8:2.3)
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Recall that L is called regular when the matrix [8%L/04*0¢’] is everywhere
nonsingular, and in this case the Euler-Lagrange equations are second-
order ordinary differential equations for the required curves.

Since the action (8.2.1) is independent of the choice of coordinates,
the Euler-Lagrange equations are coordinate-independent as well. Conse-
quently, it is natural that the Euler-Lagrange equations may be intrinsically
expressed using the language of differential geometry.

Recall that one defines the canonical 1-form © on the 2n-dimensional
cotangent bundle T*Q of Q by

O(ay) - Wa, = (aq’Taq”Q(waq»’

where ag € T5Q, wa, € To,T*Q, and ng : T*Q — @ is the projection.
The Lagrangian L defines a fiber-preserving bundle map FL : T'Q — T*Q,
the Legendre transformation, by fiber differentiation:

d
FL(vg) - wg = = L(vq + ewg).
e=0

One normally defines the Lagrange 1-form on TQ by pull-back,
0, =FL*0,

and the Lagrange 2-form by Qp = —d© . We then seek a vector field
Xg (called the Lagrange vector field) on TQ such that Xg 1Q; = dF,
where the energy F is defined by

E(vg) = (FL(vq),vq) = L(vg) = OL(XE)(vq) — L(vg).

If FL is a local diffeomorphism, which is equivalent to L being regular,
then Xg exists and is unique, and its integral curves solve the Euler—
Lagrange equations. The Euler-Lagrange equations are second-order equa-
tions in T'Q). In addition, the flow F; of Xg is symplectic, that is, preserves
Qp: FQp = Q. These facts were proved using differential forms and Lie
derivatives in the last three chapters.

The Variational Approach. Besides being more faithful to history,
sometimes there are advantages to staying on the “Lagrangian side.” Many
examples can be given, but the theory of Lagrangian reduction (the Euler-
Poincaré equations being an instance) is one example. Other examples are
the direct variational approach to questions in black-hole dynamics given
by Wald [1993] and the development of variational asymptotics (see Holm
[1996], Holm, Marsden, and Ratiu [1998b], and references therein). In such
studies, it is the variational principle that is the center of attention.

The development begins by removing the endpoint condition dq(a) =
dq(b) = 0 from (8.2.2) but still keeping the time interval fixed. Equa-
tion (8.2.2) becomes
b
5qt

. (8.24)

a

b
(0L d oL oL
d6(q()) - dq() = / dq (571; - quj) dt + i
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but now the left side operates on more general dq, and correspondingly,
the last term on the right side need not vanish. That last term of (8.2.4)
is a linear pairing of the function &L/d¢*, a function of ¢* and ¢*, with the
tangent vector d¢'. Thus, one may consider it a 1-form on TQ, namely, the
Lagrange 1-form (8L/04¢")dq".

Theorem 8.2.1. Given a C* Lagrangian L, k > 2, there exists a unique
C*=2 mapping DL L : Q — T*Q, defined on the second-order subman-
ifold

q is a C? curve in Q}

G= {f,;( ) € T(1Q)

of T(TQ), and a unique C*~1 1-form ©r on TQ, such that for all C?
variations g.(t) (on a fized t-interval) of q(t), where go(t) = q(t), we have

a6 (q() - 8a() = / Des (‘;;) sqdr+ 0 (5F) 4o

where

. (8.2.5)

qe(t)a (SAq(t) = =
=0 e=0

The 1-form so defined is a called the Lagrange 1-form.

Indeed, uniqueness and local existence follow from the calculation (8.2.2).
The coordinate independence of the action implies the global existence of
Dgp and the 1-form Oy,

Thus, using the variational principle, the Lagrange 1-form ©p is the
“boundary part” of the functional derivative of the action when the bound-
ary is varied. The analogue of the symplectic form is the negative exterior
derivative of ©y; that is, 1 = —-dO.

Lagrangian Flows Are Symplectic. One of Lagrange’s basic discov-
eries was that the solutions of the Euler-Lagrange equations give rise to a
symplectic map. It is a curious twist of history that he did this without the
machinery of differential forms, the Hamiltonian formalism, or Hamilton’s
principle itself.

Assuming that L is regular, the variational principle gives coordinate-
independent second-order ordinary differential equations. We temporarily
denote the vector field on T'Q so obtained by X, and its flow by F;. Now con-
sider the restriction of & to the subspace Cy, of solutions of the variational
principle. The space C; may be identified with the initial conditions for the
flow; to v, € TQ we associate the integral curve s — Fy(v,), s € [0,t]. The
value of G on the base integral curve g(s) = mg(Fs(vg)) is denoted by &;,
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that is,

Gtz/o L(Fs(vq)) ds, (8.2.6)

which is again called the action. We regard &, as a real-valued function
on TQ. Note that by (8.2.6), dS;/dt = L(F;(vq)). The fundamental equa-
tion (8.2.5) becomes

d6;(vg) - wy, = OL(Fi(vy)) - 4

o Fi(vg + ewy,) — OL(vg) - woy,,

=0

where € — v, + €w,, symbolically represents a curve at v, in T'Q with
derivative w,,. Note that the first term on the right-hand side of (8.2.5)
vanishes, since we have restricted & to solutions. The second term becomes
the one stated, remembering that now &, is regarded as a function on T'Q.
We have thus derived the equation

d6, = F;0, - 0y, (8.2.7)

Taking the exterior derivative of (8.2.7) yields the fundamental fact that
the flow of X is symplectic:

0=dd&; = d(Ft*@L — @L) = —F:QL +Qz,

which is equivalent to F;*Qy = Q. Thus, using the variational principle,
the analogue that the evolution is symplectic is the equation d? = 0, applied
to the action restricted to the space of solutions of the variational principle.
Equation (8.2.7) also provides the differential-geometric equations for X.
Indeed, taking one time-derivative of (8.2.7) gives dL = £x O, so that

X_JQL=—XJd@L:—,C)(@L-}—d(XJ@L)”—:d(XJ@L—L)=dE,

where we define E = X ) ©p — L. Thus, quite naturally, we find that
X =Xg.

The Hamilton—-Jacobi Equation. Next, we give a derivation of the
Hamilton-Jacobi equation from variational principles. Allowing L to be
time-dependent, Jacobi [1866] showed that the action integral defined by

t
S(67.0) = [ o)) 9)ds,
to

where ¢'(s) is the solution of the Euler-Lagrange equation subject to the
conditions ¢'(tp) = §* and ¢'(t) = ¢', satisfies the Hamilton-Jacobi equa-
tion. There are several implicit assumptions in Jacobi’s argument: L is
regular and the time |t — ¢o] is assumed to be small, so that by the con-
vex neighborhood theorem, S is a well-defined function of the endpoints.
We can allow |t — #g| to be large as long as the solution g(t) is near a
nonconjugate solution.
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Theorem 8.2.2 (Hamilton-Jacobi). With the above assumptions, the
function S(q,q,t) satisfies the Hamilton-Jacobi equation:

oS5 o5
% (0 5.0) <o

Proof. In this equation, g is held fixed. Define v, a tangent vector at g,
implicitly by

1qoFi(v) =g, (8.2.8)

where F; : TQ — TQ is the flow of the Euler-Lagrange equations, as
in Theorem 7.4.5. As before, identifying the space of solutions C;, of the
Euler-Lagrange equations with the set of initial conditions, which is T'Q,
we regard

i(vq) = S(¢,3,t) = /0 L(Fy(vg),s) ds (8.2.9)

as a real-valued function on T'Q). Thus, by the chain rule and our previous
calculations for &; (see (8.2.7)), equation (8.2.9) gives

aS _ 06, B

o = o 9%
— L(E),8) + (Fron) () —e, (& (8.2.10)
= S tOL\ 5t L\ 3t -

where Jv/0t is computed by keeping § and ¢ fixed and only changing ¢.
Notice that in (8.2.10), g and @ are held fixed on both sides of the equation;
0S5/0t is a partial and not a total time-derivative.

Implicitly differentiating the defining condition (8.2.8) with respect to ¢
gives

Tng - Xp(Fy(v))+Tng - TF; - g: 0.

Thus, since Trg - Xg(u) = u by the second-order equation property, we

get 5
v
TF, . — = —g

where (g, ¢) = Fi(v) € T,Q. Thus,

ov oL
(Fy®r) (at) = 3

Also, since the base point of v does not change with ¢, T'rqg - (0v/0t) =0
so ©,(dv/dt) = 0. Thus, (8.2.10) becomes

oS

oL .
5 = L(q,4,t) - —Cf;qfq——H(q,p,t),
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where p = 0L/0q as usual.
It remains only to show that 85/dq = p. To do this, we differentiate
(8.2.8) implicitly with respect to g to give

Trg - TF(v) (Tqv-u) = u. (8.2.11)
Then, from (8.2.9) and (8.2.7),

qu(qaqa t) U= det(v) : (Tq’U : u)
= (F}OL) (Tyv-u) — OL(Tyv - u).

As in (8.2.10), the last term vanishes, since the base point g of v is fixed.
Then, letting p = FL(F;(v)), we get, from the definition of ©; and pull-
back,

(F£OL) (Tqv-u) = (p, Tmq - TF,(v) - (Tyv - v)) = (p,w)
in view of (8.2.11). [ ]

The fact that 85/0g = p also follows from the definition of S and the
fundamental formula (8.2.4). Just as we derived p = 0S5/8q, we can derive
08/0q = —p; in other words, S is the generating function for the canonical
transformation (q,p) — (g, D).

Some History of the Euler—Lagrange Equations. In the follow-
ing paragraphs we make a few historical remarks concerning the Euler—
Lagrange equations.* Naturally, much of the story focuses on Lagrange.
Section V of Lagrange’s Mécanique Analytique [1788] contains the equations
of motion in Euler-Lagrange form (8.1.3). Lagrange writes Z =T — V for
what we would call the Lagrangian today. In the previous section Lagrange
came to these equations by asking for a coordinate-invariant expression for
mass times acceleration. His conclusion is that it is given (in abbreviated
notation) by (d/dt)(0T/dv) — 0T/dq, which transforms under arbitrary
substitutions of position variables as a one-form. Lagrange does not recog-
nize the equations of motion as being equivalent to the variational principle

6/Ldt=0.

This was observed only a few decades later by Hamilton [1834]. The peculiar
fact about this is that Lagrange did know the general form of the differential
equations for variational problems, and he actually had commented on

4Many of these interesting historical points were conveyed to us by Hans Duistermaat,
to whom we are very grateful. The reader can also profitably consult some of the standard
texts such as those of Whittaker {1927], Wintner [1941], and Lanczos [1949] for additional
interesting historical information.
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Euler’s proof of this—his early work on this in 1759 was admired very
much by Euler. He immediately applied it to give a proof of the Maupertuis
principle of least action, as a consequence of Newton’s equations of motion.
This principle, apparently having its roots in the early work of Leibnitz, is a
less natural principle in the sense that the curves are varied only over those
that have a constant energy. It is also Hamilton’s principle that applies in
the time-dependent case, when H is not conserved and that also generalizes
to allow for certain external forces as well.

This discussion in the Mécanique Analytique precedes the equations of
motion in general coordinates, and so is written in the case that the kinetic
energy is of the form Y, m;vZ, where the m; are positive constants. Wintner
[1941] is also amazed by the fact that the more complicated Maupertuis
principle precedes Hamilton’s principle. One possible explanation is that
Lagrange did not consider L as an interesting physical quantity—for him it
was only a convenient function for writing down the equations of motion in a
coordinate-invariant fashion. The time span between his work on variational
calculus and the Mécanique Analytique (1788, 1808) could also be part of
the explanation—he may not have been thinking of the variational calculus
when he addressed the question of a coordinate-invariant formulation of the
equations of motion.

Section V starts by discussing the evident fact that the position and
velocity at time ¢ depend on the initial position and velocity, which can be
chosen freely. We might write this as (suppressing the coordinate indices
for simplicity) ¢ = ¢(t, go, vo), v = v(t, g0, Vo), and in modern terminology
we would talk about the flow in z = (g, v)-space. One problem in reading
Lagrange is that he does not explicitly write the variables on which his
quantities depend. In any case, he then makes an infinitesimal variation in
the initial condition and looks at the corresponding variations of position
and velocity at time t. In our notation, dz = (8z/0z0)(t, zo)dxo. We would
say that he considers the tangent mapping of the flow on the tangent bundle
of X = TQ. Now comes the first interesting result. He makes two such
variations, one denoted by dz and the other by Az, and he writes down a
bilinear form w(dz, Az), in which we recognize w as the pull-back of the
canonical symplectic form on the cotangent bundle of @), by means of the
fiber derivative FL. What he then shows is that this symplectic product is
constant as a function of ¢. This is nothing other than the invariance of the
symplectic form w under the flow in TQ.

It is striking that Lagrange obtains the invariance of the symplectic form
in TQ and not in T*Q just as we do in the text where this is derived
from Hamilton’s principle. In fact, Lagrange does not look at the equations
of motion in the cotangent bundle via the transformation FL; again it is
Hamilton who observes that these take the canonical Hamiltonian form.
This is retrospectively puzzling, since later on in Section V, Lagrange states
very explicitly that it is useful to pass to the (g, p)-coordinates by means
of the coordinate transformation FL, and one even sees written down a
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system of ordinary differential equations in Hamiltonian form, but with the
total energy function H replaced by some other mysterious function —2.
Lagrange does use the letter H for the constant value of energy, apparently
in honor of Huygens. He also knew about the conservation of momentum
as a result of translational symmetry.

The part where he does this deals with the case in which he perturbs
the system by perturbing the potential from V' (q) to V(q) — Q(q), leaving
the kinetic energy unchanged. To this perturbation problem he applies his
famous method of variation of constants, which is presented here in a truly
nonlinear framework! In our notation, he keeps ¢t — z(t, zo) as the solution
of the unperturbed system, and then looks at the differential equations for
zo(t) that make ¢t — x(t,zo(t)) a solution of the perturbed system. The
result is that if V' is the vector field of the unperturbed system and V + W
is the vector field of the perturbed system, then

dr 0

0 — () W) o).

In words, xo(t) is the solution of the time-dependent system, the vector
field of which is obtained by pulling back W by means of the flow of V
after time t. In the case that Lagrange considers, the dq/dt-component of
the perturbation is equal to zero, and the dp/dt-component is equal to
0€1/9q. Thus, it is obviously in a Hamiltonian form; here one does not use
anything about Legendre transformations (which Lagrange does not seem
to know). But Lagrange knows already that the flow of the unperturbed
system preserves the symplectic form, and he shows that the pull-back of
his W under such a transformation is a vector field in Hamiltonian form.
Actually, this is a time-dependent vector field, defined by the function

G(t7 QO,pO) = _Q(q(t’ q07p0))'

A potential point of confusion is that Lagrange denotes this by —{) and
writes down expressions like d€}/dp, and one might first think that these
are zero because (2 was assumed to depend only on g. Lagrange presumably

means that
dip _0G  dm _ _0G
dt  Opo’ dt ~ Ogqo’

Most classical textbooks on mechanics, for example Routh [1877, 1884],
correctly point out that Lagrange has the invariance of the symplectic
form in (g, v) coordinates (rather than in the canonical (g, p) coordinates).
Less attention is usually paid to the variation of constants equation in
Hamiltonian form, but it must have been generally known that Lagrange
derived these—see, for example, Weinstein [1981]. In fact, we should point
out that the whole question of linearizing the Euler-Lagrange and Hamilton
equations and retaining the mechanical structure is remarkably subtle (see
Marsden, Ratiu, and Raugel [1991], for example).
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Lagrange continues by introducing the Poisson brackets for arbitrary
functions, arguing that these are useful in writing the time-derivative of
arbitrary functions of arbitrary variables, along solutions of systems in
Hamiltonian form. He also continues by saying that if € is small, then
zo(t) in zero-order approximation is a constant, and he obtains the next-
order approximation by an integration over ¢; here Lagrange introduces the
first steps of the so-called method of averaging. When Lagrange discovered
(in 1808) the invariance of the symplectic form, the variations-of-constants
equations in Hamiltonian form, and the Poisson brackets, he was already
73 years old. It is quite probable that Lagrange generously gave some of
these bracket ideas to Poisson at this time. In any case, it is clear that
Lagrange had a surprisingly large part of the symplectic picture of classical
mechanics.

Exercises

8.2-1. Derive the Hamilton-Jacobi equation starting with the phase space
version of Hamilton’s principle.

8.3 Constrained Systems

We begin this section with the Lagrange multiplier theorem for purposes
of studying constrained dynamics.

The Lagrange Multiplier Theorem. We state the theorem with a
sketch of the proof, referring to Abraham, Marsden, and Ratiu [1988] for
details. We shall not be absolutely precise about the technicalities (such as
how to interpret dual spaces).

First, consider the case of functions defined on linear spaces. Let V and
A be Banach spaces and let ¢ : V — A be a smooth map. Suppose 0 is a
regular value of ¢, so that C := ¢~!(0) is a submanifold. Let A : V — R
be a smooth function and define h: V' x A* — R by

h(z,A) = h(z) — (A, o(z)) . (8.3.1)

Theorem 8.3.1 (Lagrange Multiplier Theorem for Linear Spaces). The
following are equivalent conditions on xo € C':

(i) xg is a critical point of h|C; and
(i) there is a Ag € A* such that (zq, \o) is a critical point of h.
Sketch of Proof. Since

Dh(zo, M) - (2, A) = Dh(zo) - = — (Ao, D(0) - 7) — (X, (20))
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and ¢(xg) = 0, the condition Dh(zg, Ao) - (z,A) = 0 is equivalent to
Dh(zg) - z = (Ao, Dp(p) - z) (8.3.2)

for all z € V and A € A*. The tangent space to C at zq is ker Dp(zg), so
(8.3.2) implies that h|C has a critical point at z.

Conversely, if h|C has a critical point at zp, then Dh(zg) - x = 0 for all
z satisfying Dy(zg) - * = 0. By the implicit function theorem, there is a
smooth coordinate change that straightens out C; that is, it allows us to
assume that V = W @ A, 2o = 0, C is (in a neighborhood of 0) equal to
W, and ¢ (in a neighborhood of the origin) is the projection to A. With
these simplifications, condition (i) means that the first partial derivative
of h vanishes. We choose Ag to be D2h(xg) regarded as an element of A*;
then (8.3.2) clearly holds. ]

The Lagrange multiplier theorem is a convenient test for constrained
critical points, as we know from calculus. It also leads to a convenient test
for constrained maxima and minima. For instance, to test for a minimum,
let @ > 0 be a constant, let (g, Ag) be a critical point of k, and consider

ha(z, ) = h(z) = (A, o(2)) + @A = Ao|l?, (8.3.3)

which also has a critical point at (zg, Ag). Clearly, if h, has a minimum at
(0, Xo0), then h|C has a minimum at z¢. This observation is convenient,
since one can use the unconstrained second derivative test on h,, which
leads to the theory of bordered Hessians. (For an elementary discussion,
see Marsden and Tromba [1996, p. 220ff].)

A second remark concerns the generalization of the Lagrange multiplier
theorem to the case where V is a manifold but A is still real-valued. Such a
context is as follows. Let M be a manifold and let N C M be a submanifold.
Suppose 7 : £ — M is a vector bundle over M and ¢ is a section of E that
is transverse to fibers. Assume N = »~1(0).

Theorem 8.3.2 (Lagrange Multiplier Theorem for Manifolds). The fol-
lowing are equivalent for xg € N and h: M — R smooth:

(i) zo is a critical point of h|N; and

(ii) there is a section Ao of the dual bundle E* such that Mo(xo) is a
critical point of h: E* — R defined by

h(Az) = h(z) ~ (s, p(2)) - (8.3.4)

In (8.3.4), A; denotes an arbitrary element of E}. We leave it to the
reader to adapt the proof of the previous theorem to this situation.
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Holonomic Constraints. Many mechanical systems are obtained from
higher-dimensional ones by adding constraints. Rigidity in rigid-body me-
chanics and incompressibility in fluid mechanics are two such examples,
while constraining a free particle to move on a sphere is another.

Typically, constraints are of two types. Holonomic constraints are those
imposed on the configuration space of a system, such as those mentioned
in the preceding paragraph. Others, such as rolling constraints, involve the
conditions on the velocities and are termed nonholonomic.

A holonomic constraint can be defined for our purposes as the specifi-
cation of a submanifold N C Q of a given configuration manifold Q. (More
generally, a holonomic constraint is an integrable subbundle of T'Q).) Since
we have the natural inclusion TN C T'Q, a given Lagrangian L : TQ — R
can be restricted to TN to give a Lagrangian Ly. We now have two La-
grangian systems, namely those associated to L and to Ly, assuming that
both are regular. We now relate the associated variational principles and
the Hamiltonian vector fields.

Suppose that N = ¢~1(0) for a section ¢ : Q — E*, the dual of a vector
bundle E over (). The variational principle for Ly can be phrased as

5 / Lu(g,d)dt =0, (8.3.5)

where the variation is over curves with fixed endpoints and subject to
the constraint ¢(q(t)) = 0. By the Lagrange multiplier theorem, (8.3.5) is
equivalent to

5/ £),4()) — (Aa(t), 1), w(a(t))] dt =0 (8.3.6)

for some function A(g,t) taking values in the bundle E and where the
variation is over curves q in @ and curves X in E.® In coordinates, (8.3.6)
reads

5 / (g, &) — A*(¢", )palg’)] dt = 0. (83.7)

The corresponding Euler-Lagrange equations in the variables ¢*, A* are

ddL OL 0,
95 =8¢ N og (8.3.8)

and
@a = 0. (8.3.9)
5This conclusion assumes some regularity in t on the Lagrange multiplier A\. One

can check (after the fact) that this assumption is justified by relating A to the forces of
constraint, as in the next theorem.
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They are viewed as equations in the unknowns ¢*(¢) and A%(g*,t); if E is a
trivial bundle, we can take A to be a function only of ¢.6
We summarize these findings as follows.

Theorem 8.3.3. The Euler-Lagrange equations for Ly on the manifold
N C Q are equivalent to the equations (8.3.8) together with the constraints
w=0.

We interpret the term —\%0¢p,/0q" as the force of constraint, since it is
the force that is added to the Euler-Lagrange operator (see §7.8) in the
unconstrained space in order to maintain the constraints. In the next section
we will develop the geometric interpretation of these forces of constraint.

Notice that £ = L — A%p, as a Lagrangian in ¢, and A is degenerate
in A; that is, the time-derivative of A does not appear, so its conjugate
momentum 7, is constrained to be zero. Regarding £ as defined on TFE,
the corresponding Hamiltonian on T* F is formally

H(q,p, A, m) = H(g,p) + A¢a, (8.3.10)

where H is the Hamiltonian corresponding to L.

One has to be a little careful in interpreting Hamilton’s equations, be-
cause L is degenerate; the general theory appropriate for this situation is
the Dirac theory of constraints, which we discuss in §8.5. However, in the
present context this theory is quite simple and proceeds as follows. One
calls C C T*F defined by 7, = 0 the primary constraint set; it is the
image of the Legendre transform, provided that the original L was regular.
The canonical form  is pulled back to C to give a presymplectic form (a
closed but possibly degenerate two-form) Q¢, and one seeks X3, such that

ix, Qc = dH. (8.3.11)

In this case, the degeneracy of Q¢ gives no equation for A; that is, the evolu-
tion of A is indeterminate. The other Hamiltonian equations are equivalent
to (8.3.8) and (8.3.9), so in this sense the Lagrangian and Hamiltonian
pictures are still equivalent.

Exercises

8.3-1. Write out the second derivative of h, at (zg, Ao) and relate your
answer to the bordered Hessian.

8.3-2. Derive the equations for a simple pendulum using the Lagrange
multiplier method and compare them with those obtained using generalized
coordinates.

SThe combination £ = L — A%y, is related to the Routhian construction for a La-
grangian with cyclic variables; see §8.9.
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o 8.3-3 (Neumann [1859]).

(a) Derive the equations of motion of a particle of unit mass on the sphere
S™~1 under the influence of a quadratic potential Aq - q, q € R,
where A is a fixed real diagonal matrix.

(b) Form the matrices X = (¢'¢?), P = (¢’¢’ — ¢’¢’). Show that the
system in (a) is equivalent to X = [P, X], P = [X, A]. (This was
observed first by K. Uhlenbeck.) Equivalently, show that

(=X + PX+ AN?) = [-X + PA\+ AX%,—P — A)].
(c) Verify that
E(X,P)= ——i trace(P?) + -;—trace(AX)

is the total energy of this system.

(d) Verify that for k=1,...,n—1,

k
fe(X,P) = trace| — Y AXAF 4+ )" APAIPA Y,
i=0

itjHl=k—1
i,5,120

1
2k +1)

are conserved on the flow of the C. Neumann problem (Ratiu [1981b]).

8.4 Constrained Motion in a Potential Field

We saw in the preceding section how to write the equations for a constrained
system in terms of variables on the containing space. We continue this line
of investigation here by specializing to the case of motion in a potential
field. In fact, we shall determine by geometric methods the extra terms
that need to be added to the Euler-Lagrange equations, that is, the forces
of constraint, to ensure that the constraints are maintained.

Let @ be a (weak) Riemannian manifold and let N C @ be a submanifold.
Let

P: (TQ)|N —» TN (8.4.1)

be the orthogonal projection of TQ) to TN defined pointwise on N.
Consider a Lagrangian L : TQ) — R of the form L = K — V o7g, that is,

kinetic minus potential energy. The Riemannian metric associated to the

kinetic energy is denoted by ((,)). The restriction Ly = L|T'N is also of
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the form kinetic minus potential, using the metric induced on N and the
potential Vy = V|N. We know from §7.7 that if Ey is the energy of Ly,
then

XE'N = SN - ver(VVN), (8.4.2)

where Sy is the spray of the metric on N and ver( ) denotes vertical lift.
Recall that integral curves of (8.4.2) are solutions of the Euler-Lagrange
equations. Let S be the geodesic spray on Q.

First notice that VVy and VV are related in a very simple way: For
g€ N,

VVn(g) =P-[VV(q)].
Thus, the main complication is in the geodesic spray.

Proposition 8.4.1. Sy =TPo S at points of TN.

Proof. For the purpose of this proof we can ignore the potential and let
L=K.Let R=TQ|N, so that P: R — TN and therefore

TP:TR—-T(TN), S:R-T(TQ), and TrgoS = identity,
since 9 is second-order. But
TR={weT(TQ)|Tro(w) e TN},

so S(T'N) C TR, and hence TP o S makes sense at points of TN.
If veTQand w € T,(TQ), then O, (v) - w = (v, Ty7g(w))). Letting
i: R — TQ be the inclusion, we claim that

P*Oyry =i*O1. (8.4.3)
Indeed, for v € R and w € T, R, the definition of pull-back gives
P*Orrn(v) - w = {(Pv, (T'1g o TP)(w))) = (Pv,T(1q o P)(w))). (8.4.4)
Since on R, g oP = 7, P* =P, and w € T, R, (8.4.4) becomes
P*OLirn(v) - w = (Pv, Tro(w)) = (v, PTro(w)) = (v, Tro(w))
=0r(v) - w=(i"0L)(v) - w.
Taking the exterior derivative of (8.4.3) gives
P*Qpiry =4"QL. (8.4.5)

In particular, for v € TN, w € T,R, and z € T,(T'N), the definition of
pull-back and (8.4.5) give

O (v)(w, 2) = ("0 ) (v)(w, 2) = (B*Qpyrw ) (v) (w, 2)
= Quirn (Po)(TP(w), TP(2))
= QL|TN(’U)(TP(’UJ),Z). (846)
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But
dE(v) - z = Qr(v)(S(v), 2) = Qpyrn (v)(Sn (v), 2),

since S and Sy are Hamiltonian vector fields for E and E|T N, respectively.
From (8.4.6),

Qi (V) (TP(S(v)), 2) = QL(v)(S(v), 2) = Qrirn (v)(Sn(v), 2),
so by weak nondegeneracy of {17 we get the desired relation

Sy =TPo S. n

Corollary 8.4.2. Forve T N:
(i) (S — Sn)(v) is the vertical lift of a vector Z(v) € T,Q relative to v;
(i) Z(v) LT,N; and

(iii) Z(v) = =Vyv + P(V,v) is minus the normal component of V,v,
where in Vv, v is extended to a vector field on Q@ tangent to N.

Proof. (i) Since T'7q(S(v)) = v = T'ro(Sn(v)), we have
T7o(S - Sn)(v) =0,

that is, (S — Sn)(v) is vertical. The statement now follows from the com-
ments following Definition 7.7.1.

(ii) For u € T,Q, we have TP - ver(u,v) = ver(Pu, v), since

d d
ver(Pu,v) = — (v + tPu) = —P(v + tu)
dt =0 Gt =0
= TP - ver(u, v). (8.4.7)

By Part (i), S(v) — Sn(v) = ver(Z(v),v) for some Z(v) € T,Q, so that
using the previous theorem, (8.4.7), and Po P = P, we get

ver(PZ(v),v) = TP - ver(Z(v),v)
=TP(S(v) - Sn(v))
=TP(S(v) — TPo S(v)) = 0.

Therefore, PZ(v) = 0, that is, Z(v) L TyN.

(iii) Let v(t) be a curve of tangents to N;v(t) = é(t), where ¢(t) € N. Then
in a chart,

S(c(t), v(t) = (c(t), v(2), v(t), Yery (v(t), (1))
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by (7.5.5). Extending v(t) to a vector field v on Q) tangent to N we get, in
a standard chart,

Vaw = 7e0,0) 4 Du(e) -v = ~ev,) + o

by (7.5.19), so on T'N,

S(v) = % — ver(V,v,v).

Since dv/dt € TN, (8.4.7) and the previous proposition give

Sn(v) = T]P’% - ver(P(V,v),v) = % — ver(P(V,v),v).

Thus, by part (i),

ver(Z(v),v) = S(v) — Sn(v) = ver(~V,v + PV, v,v). n

The map Z : TN — TQ is called the force of constraint. We shall
prove below that if the codimension of N in @ is one, then

Z(w) = =V +P(Vy) = —(Vyu,n)n,

where n is the unit normal vector field to N in @, equals the negative of
the quadratic form associated to the second fundamental form of N in @}, a
result due to Gauss. (We shall define the second fundamental form, which
measures how “curved” N is within @, shortly.) It is not obvious at first
that the expression P(V,v) — V,v depends only on the pointwise values of
v, but this follows from its identification with Z(v).

To prove the above statement, we recall that the Levi-Civita covariant
derivative has the property that for vector fields u, v, w € X(Q) the follow-
ing identity is satisfied:

w((u, v)] = (Vyu,v) + (u, Vyv), (8.4.8)

as may be easily checked. Assume now that u and v are vector fields tangent
to N and n is the unit normal vector field to N in Q. The identity (8.4.8)
yields

(Vyu,n) + (u, Vyn) = 0. (8.4.9)

The second fundamental form in Riemannian geometry is defined to
be the map

(u,v) = —(Vun,v) (8410)



242 8. Variational Principles, Constraints, & Rotating Systems

with u, v, n as above. It is a classical result that this bilinear form is sym-
metric and hence is uniquely determined by polarization from its quadratic
form —(V,n,v). In view of equation (8.4.9), this quadratic from has the
alternative expression (V,v,n), which, after multiplication by n, equals
—Z(v), thereby proving the claim above.

As indicated, this discussion of the second fundamental form is under
the assumption that the codimension of N in () is one—keep in mind that
our discussion of forces of constraint requires no such restriction.

As before, interpret Z(v) as the constraining force needed to keep par-
ticles in N. Notice that N is totally geodesic (that is, geodesics in N are
geodesics in Q) iff Z =0.

Some interesting studies in the problem of showing convergence of solu-
tions in the limit of strong constraining forces are Rubin and Ungar [1957],
Ebin {1982], and van Kampen and Lodder [1984].

Exercises

8.4-1. Compute the force of constraint Z and the second fundamental
form for the sphere of radius R in R3.

8.4-2. Assume that L is a regular Lagrangian on 7Q) and N C @. Let
i : TN — TQ be the embedding obtained from N C @Q and let 2, be
the Lagrange two-form on T'Q). Show that i*Qy, is the Lagrange two-form
Qrry on TN. Assuming that L is hyperregular, show that the Legendre
transform defines a symplectic embedding T*N C T*Q.

8.4-3. In R3, let

H(a,p) = 5~ Il - (0~ @)?] +mod’,

where q = (¢*, 4%, ¢%). Show that Hamilton’s equations in R® automat-
ically preserve T*S? and give the equations for the spherical pendulum
when restricted to this invariant (symplectic) submanifold. (Hint: Use the
formulation of Lagrange’s equations with constraints in §8.3.)

8.4-4. Redo the C. Neumann problem in Exercise 8.3-3 using Corol-
lary 8.4.2 and the interpretation of the constraining force in terms of the
second fundamental form.

8.5 Dirac Constraints

If (P,Q) is a symplectic manifold, a submanifold S C P is called a sym-
plectic submanifold when w := i*(2 is a symplectic formon S, i: S — P
being the inclusion. Thus, S inherits a Poisson bracket structure; its rela-
tionship to the bracket structure on P is given by a formula of Dirac [1950]
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that will be derived in this section. Dirac’s work was motivated by the
study of constrained systems, especially relativistic ones, where one thinks
of S as a constraint subspace of phase space (see Gotay, Isenberg, and
Marsden [1997] and references therein for more information). Let us work
in the finite-dimensional case; the reader is invited to study the intrinsic
infinite-dimensional version using Remark 1 below.

Dirac’s Formula. Let dim P = 2n and dim S = 2k. In a neighborhood

of a point zp of S, choose coordinates z',... , 22" on P such that S is given
by

226l =0, ... 22" =0,
and so z!,. 2k provide local coordinates for S.

Consider the matrix whose entries are
C(z) = {2}, 29}, 4,j=2k+1,...,2n.

Assume that the coordinates are chosen such that C* is an invertible ma-
trix at 29 and hence in a neighborhood of zp. (Such coordinates always
exist, as is easy to see.) Let the inverse of C*/ be denoted by [C;;(z)]. Let
F be a smooth function on P and F|S its restriction to S. We are mterested
in relating Xps and Xr as well as the brackets {F, G}{S and {F|S, G|S}.

Proposition 8.5.1 (Dirac’s Bracket Formula). In a coordinate neighbor-
hood as described above, and for z € S, we have

2n

Xpis(z) =Xp(2) = Y {F2'}Ci;(2)X.s(2) (8.5.1)
i,j=2k+1

and

{F|S,G|S}(z) = {F,G}(z) - Z (F,2'}Ci;;(2){#7,G}.  (85.2)

1,j=2k+1

Proof. To verify (8.5.1), we show that the right-hand side satisfies the
condition required for X p|g(2), namely that it be a vector field on S and
that

wz(Xp|s(z),v) = d(F|S); v (8.5.3)
for v € T, S. Since S is symplectic,
T.SN(T.5)% = {0},
where (7,5)% denotes the Q-orthogonal complement. Since

dim(T, S) + dim(T,S) = 2n,
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we get
T.P =T,S @ (T,S)". (8.5.4)

Ifr,: T,P — T,S is the associated projection operator, one can verify
that

Xpis(z) =m, - Xp(2), (8.5.5)
so in fact, (8.5.1) is a formula for 7, in coordinates; equivalently,

2n

(d-m.)Xr(2) = Y {F,2'}Cij(2)X.s(2) (8.5.6)
i,j=2k+1

gives the projection to (T,S). To verify (8.5.6), we need to check that the
right-hand side

(i) is an element of (T,5)%;
(ii) equals Xr(z) if Xp(2) € (T.S)%; and
(iii) equals 0 if Xp(2) € T, S.
To prove (i), observe that Xk(z) € (T,S) means
UXk(z),v)=0 for all v € T, S;

that is,
dK(z)-v=0  forallveT,S.

But for K =27, j =2k+1,...,2n, K =0 on S, and hence dK(z) - v = 0.
Thus, X,;(2) € (T,S)%, so (i) holds.
For (i), if Xp(2) € (T.S)%, then

dF(z)-v=0 forallveT,S

and, in particular, for v = 8/82%, i = 1,... ,2k. Therefore, for z € S, we
can write

2n
dF(z) = Z a; d?’ (8.5.7)
j=2k+1
and hence
2n
Xp(2)= Y a;X.(2). (8.5.8)
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The a; are determined by pairing (8.5.8) with dz*, i = 2k+1,...,2n, to
give

2n 2n
—(de', Xp(2)) ={F,2'} = ) aj{d,2'}= ) a;C%,
J=2k+1 j=2k+1
or
2n '
a; = Z {szl}c’iﬁ (859)
1=2k+1

which proves (ii). Finally, for (iii), Xp(2) € T.S = ((T>S)*)* means that
Xp(z) is Q orthogonal to each X,;, j = 2k+1,...,2n. Thus, {F,2'} =0,
so the right-hand side of (8.5.6) vanishes.

Formula (8.5.6) is therefore proved, and so, equivalently, (8.5.1) holds.
Formula (8.5.2) follows by writing {F|S,G|S} = w(Xps, Xg|s) and sub-
stituting (8.5.1). In doing this, the last two terms cancel. |

In (8.5.2) notice that {F|S,G|S}(z) is intrinsic to F|S, G|S, and S.
The bracket does not depend on how F|S and G|S are extended off S to
functions F, G on P. This is not true for just {F, G}(z), which does depend
on the extensions, but the extra term in (8.5.2) cancels this dependence.

Remarks.

1. A coordinate-free way to write (8.5.2) is as follows. Write S = ¢ ~1(my),
where ¢ : P — M is a submersion on S. For z € § and m = 9(z), let

Con : TyMxTyM—R (8.5.10)
be given by
Con(dFm, dGr) = {F 09, G o 9} (2) (8.5.11)
for F,G € F(M). Assume that C,, is invertible, with “inverse”
Cl:TM x T,,M — R.
Then

{FIS,G|S}(2) = {F,G}2) ~ CLH Ty - Xr(2), T:¥ - Xa(2)).  (8.5.12)
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2.  There is another way to derive and write Dirac’s formula, using com-
plex structures. Suppose {{, ), is an inner product on T, P and

J,:T,P—->T,P
is an orthogonal transformation satisfying J2 = — Identity and, as in §5.3,
Q(u,v) = (Ju,v) (8.5.13)

for all u,v € T, P. With the inclusion ¢ : S — P as before, we get corre-
sponding structures induced on S; let

w = i*Q. (8.5.14)

If w is nondegenerate, then (8.5.14) and the induced metric define an as-
sociated complex structure K on S. At a point z € S, suppose one has
arranged to choose J, to map TS to itself, and that K, is the restriction
of J, to T,S. At z, we then get

(T:8)* = (T.5)",

and thus symplectic projection coincides with orthogonal projection. From
(8.5.5), and using coordinates as described earlier, but for which the X ;(z)
are also orthogonal, we get

2n
Xpis(2) = Xp(2) = D (Xr(2), X.1(2)) X2 (2)
j=2k+1
2n
=Xr(2)+ > UXp(2),7' X.5(2) X (8.5.15)
j=2k+1

This is equivalent to (8.5.1) and so also gives (8.5.2); to see this, one shows
that

2n
I Xu(2)=— ) Xu(2)Cij(2)- (8.5.16)
i=2k+1

Indeed, the symplectic pairing of each side with X,» gives 5;.’.

3. For a relationship between Poisson reduction and Dirac’s formula,
see Marsden and Ratiu [1986].

Examples

(a) Holonomic Constraints. To treat holonomic constraints by the
Dirac formula, proceed as follows. Let N C @ be as in §8.4, so that
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TN C TQ; with i : N — @ the inclusion, one obtains (T%)*© = Op,
by considering the following commutative diagram:

TN I TQIN

FLy l l]FL

T*N T*QIN
projection

This realizes TN as a symplectic submanifold of T'Q, and so Dirac’s
formula can be applied, reproducing (8.4.2). See Exercise 8.4-2. ¢

(b) KdV Equation. Suppose’ one starts with a Lagrangian of the form

L(vg) = (a(g), ) — h(q), (8.5.17)

where « is a one-form on ), and h is a function on Q. In coordinates,
(8.5.17) reads

L(¢',4") = ai(q)d" — h(q"). (8.5.18)
The corresponding momenta are

oL

D = 5q7 = Qy, i'e'7 p= a(Q)v (8519)

while the Euler-Lagrange equations are

d ; 0L Qo .. Oh
—_— (g’ = — = 747 —
dt (a’b (q )) aq.L 3q’ q 3q’ 4

that is,

80!i .5 aaj . Bh
- — —¢) = -,
g oq’ dg*

(8.5.20)

In other words, with v* = ¢,
i,da = —dh. (8.5.21)

If da is nondegenerate on @, then (8.5.21) defines Hamilton’s equations
for a vector field v on @ with Hamiltonian h and symplectic form Q, =
—~da.

This collapse, or reduction, from TQ to @ is another instance of the
Dirac theory and how it deals with degenerate Lagrangians in attempting

"We thank P. Morrison and M. Gotay for the following comment on how to view the
KdV equation using constraints; see Gotay [1988).
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to form the corresponding Hamiltonian system. Here the primary constraint
manifold is the graph of o. Note that if we form the Hamiltonian on the
primaries, then

H =p§" - L = ai§’ — oug’ + h(q) = h(q), (8.5.22)

that is, H = h, as expected from (8.5.21).

To put the KdV equation u¢ +6uu, + Uz, = 0 in this context, let u = 9f;
that is, ¥ is an indefinite integral for u. Observe that the KdV equation is
the Euler-Lagrange equation for

Ly, ) = / [3p4hs + 43 — L(vhas)?] da, (8.5.23)

that is, § [ Ldt = 0 gives Yzt + 6Ys¥eqs + Yozze = 0, which is the KdV
equation for u. Here a is given by

(a(¥), ¢ / Yz d, (8.5.24)
and so by formula 6 in the table in §4.4,
~da(¥)(n,vs) = § [ (Wrvas — vavhs) da, (8.5.25)

which equals the KdV symplectic structure (3.2.9). Moreover, (8.5.22) gives
the Hamiltonian

H= / [3(¥oz)? — 93] dz = / [3(ue)? — u?] de, (8.5.26)
also coinciding with Example (c) of §3.2. ¢
Exercises

8.5-1. Derive formula (8.4.2) from (8.5.1).

8.5-2. Work out Dirac’s formula for
(a) T*S* C T*R?; and
(b) T*S? c T*R3.

In each case, note that the embedding makes use of the metric. Reconcile
your analysis with what you found in Exercise 8.4-2.

8.6 Centrifugal and Coriolis Forces

In this section we discuss, in an elementary way, the basic ideas of centrifu-
gal and Coriolis forces. This section takes the view of rotating observers,
while the next sections take the view of rotating systems.
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Rotating Frames. Let V be a three-dimensional oriented inner product
space that we regard as “inertial space.” Let 1; be a curve in SO(V'), the
group of orientation-preserving orthogonal linear transformations of V to
V, and let X; be the (possibly time-dependent) vector field generating ;
that is,

X)) = S, (8:6.1)
or, equivalently,
Xi(v) = (e 09, )(v). (8.6.2)

Differentiation of the orthogonality condition 1; - ¥ = Id shows that X;
is skew-symmetric.

A vector w in three-space defines a skew-symmetric 3 x 3 linear transfor-
mation w using the cross product; specifically, it is defined by the equation

wV)=wxwv.

Conversely, any skew matrix can be so represented in a unique way. As we

shall see later (see §9.2, especially equation (9.2.4)), this is a fundamental

link between the Lie algebra of the rotation group and the cross product.

This relation also will play a crucial role in the dynamics of a rigid body.
In particular, we can represent the skew matrix X; this way:

Xi(v) =w(t) x v, (8.6.3)

which defines w(t), the instantaneous rotation vector.

Let {ei,eq,e3} be a fixed (inertial) orthonormal frame in V and let
{&; =1r(ei) | i = 1,2,3} be the corresponding rotating frame. Given a
point v € V, let q = (¢*, g%, ¢®) denote the vector in R? defined by v = ¢’e;
and let qr € R3 be the corresponding coordinate vector representing the
components of the same vector v in the rotating frame, so v = ¢,L¢&,. Let
A; = A(t) be the matriz of 9, relative to the basis e;, that is, §; = A{ej;
then

q=Aqgr, ie, ¢ = quiR, (8.6.4)
and (8.6.2) in matrix notation becomes
w=A AL (8.6.5)

Newton’s Law in a Rotating Frame. Assume that the point v(t)
moves in V according to Newton’s second law with a potential energy
U(v). Using U(q) for the corresponding function induced on R3, Newton’s
law reads

m{ = ~VU(q), (8.6.6)
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which are the Euler-Lagrange equations for

L(g,4) = 7 (4,4 - U@) (8.6.7)

or Hamilton’s equations for

H(q,p) = 515 (p,p) +U(q). (8.6.8)

To find the equation satisfied by qg, differentiate (8.6.4) with respect to
time,

4= Aqr + Avldr = A AT q + A, (8.6.9)
that is,
q=w(t) x q+ A¢qQr, (8.6.10)

where, by abuse of notation, w is also used for the representation of w in
the inertial frame e;. Differentiating (8.6.10),

Q=w X q+wxq+ Aaqr + Adr
=w X q+wx (wxq+ Adr) + A A7 Adr + Adr,

that is,
d=wXq+wx (wxq)+2wx Aqr) + Adr. (8.6.11)
The angular velocity in the rotating frame is (see (8.6.4))
WR = A[lw, ie, w=Awg. (8.6.12)
Differentiating (8.6.12) with respect to time gives
w= Awpr + Awr = A AT W + Apor = Ayr, (8.6.13)
since A;A;'w = w x w = 0. Multiplying (8.6.11) by A; ' gives
A7'd=wr X qr+wr X (Wr X qr) +2(wr X qr) +dr.  (8.6.14)
Since mq = —VU(q), we have
mA;'q = —VUg(qg), (8.6.15)

where the rotated potential Up is the time-dependent potential defined
by

Ur(ar,t) = U(Aqr) = U(q), (8.6.16)
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so that VU(q) = A;VURr(qg). Therefore, by (8.6.15), Newton’s equations
(8.6.6) become

mAR + 2(wr X mM4r) + Mwpr X (Wg X qgr) + MWR X qr

= —VUr(qg, 1),
that is,
mdr = — VUr(qr,t) — mwr x (Wg X qr)
- 2m(wR X qR) - md)R X QR, (8617)

which expresses the equations of motion entirely in terms of rotated quan-
tities.

Ficticious Forces. There are three types of “fictitious forces” that sug-
gest themselves if we try to identify (8.6.17) with ma = F:

(i) Centrifugal force mwp X (qr X Wg);
(ii) Coriolis force 2mQr X wg; and
(ili) Fuler force mgpr X WR.

Note that the Coriolis force 2mwpg X qg is orthogonal to wg and mqg,
while the centrifugal force

mwpg X (wr X qr) = m{(wr - qr)wr — |wr|*qr]

is in the plane of wg and qg. Also note that the Euler force is due to the
nonuniformity of the rotation rate.

Lagrangian Form. It is of interest to ask the sense in which (8.6.17)
is Lagrangian or Hamiltonian. To answer this, it is useful to begin with
the Lagrangian approach, which, we will see, is simpler. Substitute (8.6.10)
into (8.6.7) to express the Lagrangian in terms of rotated quantities:

m . .
L= 0 (wxq+ Aqr,w x q+ Aqr) - U(q)
m . .
=3 (wr X qr + 4R, wWR X qr + qr) — Ur(qr, 1), (8.6.18)

which defines a new (time-dependent!) Lagrangian Lr(qgr, qr,t). Remark-
ably, (8.6.17) are precisely the Euler-Lagrange equations for Lg; that is,
(8.6.17) are equivalent to

d0Lp _OLg
& 6y ~ o,

as is readily verified. If one thinks about performing a time-dependent
transformation in the variational principle, then in fact, one sees that this
is reasonable.
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Hamiltonian Form. To find the sense in which (8.6.17) is Hamiltonian,
perform a Legendre transformation on Lg. The conjugate momentum is

oL .
= B’—R =m(wgr X qr +q4g), (8.6.19)
qRr

and so the Hamiltonian has the expression

PR

Hgr(qr,Pr) = (PR,4R) — LR

1
= (PR, PR — MWR X qR) — 2m (PR, PR) + Ur(qg,t)
1
=5 (Pr,PR) + Ur(4r,t) — (Pr,wr X qr).  (8.6.20)

Thus, (8.6.17) are equivalent to Hamilton’s canonical equations with Hamil-
tonian (8.6.20) and with the canonical symplectic form. In general, Hg is
time-dependent. Alternatively, if we perform the momentum shift

PR = PR — MWR X qr = MR, (8.6.21)
then we get
Hg(qr,pr) := Hr(qr, PR)
1 m
=3 (pr,pR) + Ur(qr) — EHWR x qrll?, (8.6.22)

which is in the usual form of kinetic plus potential energy, but now the
potential is amended by the centrifugal potential m||wg x qg||?/2, and the
canonical symplectic structure

Qcan = daj A d(PR);
gets transformed, by the momentum shifting lemma, or directly, to
dap A d(Pr)i = dgi A d(pR)i + €ijrwhddy A dak,
where ¢;;; is the alternating tensor. Note that
Qr = Qcan + *wr, (8.6.23)

where xwp means the two-form associated to the vector wg, and that
(8.6.23) has the same form as the corresponding expression for a particle
in a magnetic field (§6.7).

In general, the momentum shift (8.6.21) is time-dependent, so care is
needed in interpreting the sense in which the equations for pr and qg are
Hamiltonian. In fact, the equations should be computed as follows. Let Xy
be a Hamiltonian vector field on P and let (; : P — P be a time-dependent
map with generator Y;:

d
a(t(z) = Y3(Ce(2)). (8.6.24)
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Assume that (; is symplectic for each t. If 2(t) = Xpu(z(t)) and we let
w(t) = ((2(t)), then w satisfies

=TG- Xu(2(t)) + Ye(Ce(2(t)), (8.6.25)
that is,
w = Xg(w) + Yi(w) (8.6.26)

where K = Ho(; !. The extra term Y; in (8.6.26) is, in the example under
consideration, the Euler force.

So far we have been considering a fixed system as seen from different
rotating observers. Analogously, one can consider systems that themselves
are subjected to a superimposed rotation, an example being the Foucault
pendulum. It is clear that the physical behavior in the two cases can be
different—in fact, the Foucault pendulum and the example in the next
section show that one can get a real physical effect from rotating a system—
obviously, rotating observers can cause nontrivial changes in the description
of a system but cannot make any physical difference. Nevertheless, the
strategy for the analysis of rotating systems is analogous to the above. The
easiest approach, as we have seen, is to transform the Lagrangian. The
reader may wish to reread §2.10 for an easy and specific instance of this.

Exercises

8.6-1. Generalize the discussion of Newton’s law seen in a rotating frame
to that of a particle moving in a magnetic field as seen from a rotating
observer. Do so first directly and then by Lagrangian methods.

8.7 The Geometric Phase for a Particle in
a Hoop

This discussion follows Berry [1985] with some small modifications (due to
Marsden, Montgomery, and Ratiu [1990]) necessary for a geometric inter-
pretation of the results. Figure 8.7.1, shows a planar hoop (not necessarily
circular) in which a bead slides without friction.

As the bead is sliding, the hoop is rotated in its plane through an angle
6(t) with angular velocity w(t) = 8(t)k. Let s denote the arc length along
the hoop, measured from a reference point on the hoop, and let q(s) be
the vector from the origin to the corresponding point on the hoop; thus the
shape of the hoop is determined by this function g(s). The unit tangent
vector is q(s), and the position of the reference point q(s(t)) relative to
an inertial frame in space is Rg(;)q(s(t)), where Ry is the rotation in the
plane of the hoop through an angle 8. Note that

RgRo_lqzw xq and Ryw = w.



254 8. Variational Principles, Constraints, & Rotating Systems
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Rpq(s)

FIGURE 8.7.1. A particle sliding in a rotating hoop.

The Equations of Motion. The configuration space is a fixed closed
curve (the hoop) in the plane with length ¢. The Lagrangian L(s, $,t) is
simply the kinetic energy of the particle. Since

2 Rotoa(s(t)) = Roco (s(0)3t) + Raco w(t) x als(0)),
the Lagrangian is
L(s,4,t) = %m”q’(s)s’ +wx g2 (8.7.1)
Note that the momentum conjugate to s is p = OL/95; that is,
p=mq - [d'$+w x q] = mv, (8.7.2)

where v is the component of the velocity with respect to the inertial frame
tangent to the curve. The Euler-Lagrange equations

doL_o
dt s = Os

become

d . .
dt[q (détwxq)=(ds+wxq) (q"s+wxq).

Using ||q'||2 = 1, its consequence ¢’ - q" = 0, and simplifying, we get
§+q - (wxqg)—(wxq) (wxq)=0. (8.7.3)

The second and third terms in (8.7.3) are the Euler and centrifugal forces,
respectively. Since w = 6k, we can rewrite (8.7.3) as

§=6%q-q —lgsing, (8.7.4)

where « is as in Figure 8.7.1 and ¢ = ||q.
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Averaging. From (8.7.4) and Taylor’s formula with remainder, we get

t
(t) = so + ot + /0 (t — ){B(r)2q(s(r)) - o (s(7))
— 6(7)q(s(7)) sin a(s(7))} dr. (8.7.5)

The angular velocity 6 and acceleration § are assumed small with respect
to the particle’s velocity, so by the averaging theorem (see, for example,
Hale [1963]), the s-dependent quantities in (8.7.5) can be replaced by their
averages around the hoop:

t ) 1 r¢
s(t)zso+éot+/ (t-1) {G(T)ZE/ q-q'ds
0 0

Tﬁfgwmm@@}m.(mm
0

Technical Aside. The essence of averaging in this case can be seen as
follows. Suppose g(t) is a rapidly varying function whose oscillations are
bounded in magnitude by a constant C and f(t) is slowly varying on an
interval [a, b]. Over one period of g, say |, 3], we have

8 I¢]
/ f(t)gt)dt ~ g / £(t)dt, (8.7.7)
where
_ 1 [P
7=5 [ s

is the average of g. The assumption that the oscillations of g are bounded
by C' means that

lg(t) —gl < C forallte [, g

The error in (8.7.7) is [ f f(t)(g(t) —9) dt, whose absolute value is bounded
as follows. Let M be the maximum value of f on [a,f] and m be the
minimum. Then

/f )g(t) —gldt| = /f(t) m)|g(t) — g]dt

<(B-a)(M-m)C

< (8-a)’DC
where D is the maximum of |f'(t)| for @ < t < 3. Now these errors over
each period are added up over [a, b]. Since the error estimate has the square
of # — a as a factor, one still gets something small as the period of g tends
to 0.

In (8.7.5) we change variables from t to s, do the averaging, and then
change back.
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The Phase Formula. The first inner integral in (8.7.6) over s vanishes
(since the integrand is (d/ds)||q(s)||?), and the second is 24, where A is
the area enclosed by the hoop. Integrating by parts,

T .~ N T . .
/ (T —7)8(r)dr = -T6(0) + / 0(r)dr = —-T9(0) + 27,  (8.7.8)
0 0

assuming that the hoop makes one complete revolution in time T'. Substi-
tuting (8.7.8) in (8.7.6) gives

24 4 A
s(T) ~ s0 + 0T + =0T ~ —% (8.7.9)
where g = 6(0). The initial velocity of the bead relative to the hoop is o,
while its component along the curve relative to the inertial frame is (see
(8.7.2))

vo = q'(0) - [q'(0)s0 + wo X q(0)] = do + wog(so)sina(se).  (8.7.10)

Now we replace $ in (8.7.9) by its expression in terms of vy from (8.7.10)
and average over all initial conditions to get

(5(T) ~ 50~ wT) = ~ 72, (87.11)
which means that on average, the shift in position is by 47 A/¢ between the
rotated and nonrotated hoop. Note that if §y = 0 (the situation assumed
by Berry [1985]), then averaging over initial conditions is not necessary.
This extra length 47w A/¢ is sometimes called the geometric phase or the
Berry—Hannay phase. This example is related to a number of interest-
ing effects, both classically and quantum-mechanically, such as the Foucault
pendulum and the Aharonov-Bohm effect. The effect is known as holonomy
and can be viewed as an instance of reconstruction in the context of symme-
try and reduction. For further information and additional references, see
Aharonov and Anandan [1987], Montgomery [1988], Montgomery [1990],
and Marsden, Montgomery, and Ratiu {1989, 1990]. For related ideas in

soliton dynamics, see Alber and Marsden {1992].

Exercises

8.7-1. Consider the dynamics of a ball in a slowly rotating planar hoop,
as in the text. However, this time, consider rotating the hoop about an axis
that is not perpendicular to the plane of the hoop, but makes an angle 6
with the normal. Compute the geometric phase for this problem.

8.7-2. Study the geometric phase for a particle in a general spatial hoop
that is moved through a closed curve in SO(3).
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o 8.7-3. Consider the dynamics of a ball in a slowly rotating planar hoop,
as in the text. However, this time, consider a charged particle with charge e
and a fixed magnetic field B = V x A in the vicinity of the hoop. Compute
the geometric phase for this problem.

8.8 Moving Systems

The particle in the rotating hoop is an example of a rotated or, more
generally, a moving system. Other examples are a pendulum on a merry-
go-round (Exercise 8.8-4) and a fluid on a rotating sphere (like the Earth’s
ocean and atmosphere). As we have emphasized, systems of this type are
not to be confused with rotating observers! Actually rotating a system
causes real physical effects, such as the trade winds and hurricanes.

This section develops a general context for such systems. Our purpose is
to show how to systematically derive Lagrangians and the resulting equa-
tions of motion for moving systems, like the bead in the hoop of the last
section. This will also prepare the reader who wants to pursue the question
of how moving systems fit in the context of phases (Marsden, Montgomery,
and Ratiu [1990]).

The Lagrangian. Consider a Riemannian manifold S, a submanifold Q,
and a space M of embeddings of @ into S. Let m; € M be a given curve. If
a particle in () is following a curve ¢(t), and if @ moves by superposing the
motion my, then the path of the particle in S is given by m;(q(t)). Thus,
its velocity in S is given by

where Z;(m;(q)) = (d/dt)m:(q). Consider a Lagrangian on TQ of the usual
form of kinetic minus potential energy:

Lmi(,0) = 3 Toome v + Zelme@)IP - V(@) - Ulme(e)),  (832)

where V' is a given potential on @, and U is a given potential on S.

The Hamiltonian. We now compute the Hamiltonian associated to this
Lagrangian by taking the associated Legendre transform. If we take the
derivative of (8.8.2) with respect to v in the direction of w, we obtain

0L,

T
o w=p-w= <Tq(t)’mt v+ 2y (ma(g(t))) » Tgyma - w>

me(q(t))
(8.8.3)

where p-w means the natural pairing between the covector p € T;(t)Q and
the vector w € Ty(,@, while (, ), (q()) denotes the metric inner product
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on S at the point m;(g(t)) and T denotes the orthogonal projection to the
tangent space T'm;(Q) using the metric of S at m;(g(t)). We endow Q with
the (possibly time-dependent) metric induced by the mapping m;. In other
words, we choose the metric on @ that makes m; into an isometry for each
t. Using this definition, (8.8.3) gives

prw= <U + (Tq(t)mt)_l L (mt(Q(t)))T’w>q(t) !

that is,

p=(v+ (Tom) - [2 mula)7]) (88.4)

where b is the index-lowering operation at ¢(t) using the metric on Q.

Physically, if S is R3, then p is the inertial momentum (see the hoop
example in the preceding section). This extra term Z;(m;(q))7 is associated
with a connection called the Cartan connection on the bundle @ x M —
M, with horizontal lift defined to be Z(m) +— (Tm~1-Z(m)T, Z(m)). (See,
for example, Marsden and Hughes [1983] for an account of some aspects of
Cartan’s contributions.)

The corresponding Hamiltonian (given by the standard prescription H =
pv — L) picks up a cross term and takes the form

1 1
Hm,(9,p) = §||1>H2 - P(Z) - EIIZ"}lH2 +V(g) +U(mi(q)),  (88.5)
where the time-dependent vector field Z; on @ is defined by
-1
Zy(q) = (Tyyme) ™ - [Ze(me(g)]”

and where P(Z;(¢))(g,p) = (p,Z:(q)) and Z;* denotes the component
perpendicular to m;(Q). The Hamiltonian vector field of this cross term,
namely Xp(z,), represents the noninertial forces and also has the natural
interpretation as a horizontal lift of the vector field 2; relative to a cer-
tain connection on the bundle T*@Q x M — M, naturally derived from the
Cartan connection.

Remarks on Averaging. Let G be a Lie group that acts on 7*Q in a
Hamiltonian fashion and leaves Hy (defined by setting Z =0 and U =0 in
(8.8.5)) invariant. (Lie groups are discussed in the next chapter, so t