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Preface

Relativistic heavy ion collision is a fascinating field of research. In recent years, the
field has seen an unprecedented level of progress. A new state of matter, deconfined
quark—gluon plasma (QGP), was predicted. An accelerator was built to detect this
new state of matter. Experiments were performed and the discovery of the ‘most
perfect fluid” was made. Conclusive identification of the most perfect fluid state
with the deconfined state has yet to be achieved. One of the impediments towards
such identification is the fundamental property of the strong interaction, the ‘color
confinement’, i.e. the constituents of the theory, the ‘colored’ quarks and gluons,
are confined within a hadron. Any information about the deconfined state must be
amassed from the color-neutral hadrons. And yet the process by which colored
building blocks convert into a color singlet state is not properly understood. This
necessitates model building. To young researchers, the field poses a problem in that
it is multi-disciplinary, requiring knowledge of thermodynamics, statistical physics,
kinetic theory, group theory, quantum chromodynamics (QCD), etc. The com-
plexity of heavy ion collisions has necessarily led to a proliferation of models, e.g.
the thermal model, blast wave model hydrodynamic model and models based on
transport equations, etc, the physics of which need to be understood.

The Cyclotron Centre at Kolkata is actively engaged in theoretical and
experimental research in high-energy nuclear physics. As a part of the training
offered to our students, both in theory and experiment, we offer a course on
relativistic heavy ion collisions. While teaching the course, I noted that there was a
need for a book in which students could find the minimum knowledge to pursue a
career in this field. I was then contacted by Dr John Navas of Institute of Physics
Publishing, UK, who had come across our course material (which had been made
publicly available for the benefit of our students) and suggested to me that I
convert it into a book on the subject. I accepted the job. It was not easy; the initial
plan was to write a book of approximately 200 pages. I selected a few topics that I
felt were relevant to be discussed in the book, and ended up with a book that was
closer to 300 pages in length.

The book is divided into nine chapters and an appendix. Each chapter is divided
into sections and subsections. The first chapter is introductory, and discusses the
subject of the deconfined state or QGP. A brief history of nuclear physics is given.
The conceptual basis for the deconfinement of quarks and gluons is also given.

The second chapter deals with relativistic kinematics. Very fundamental concepts
such as the space-time continuum, Lorentz transformation, center-of-mass frame
and phase space are introduced. A short description of Dalitz decay is also included.
I may mention here that there is a very good book on kinematics by Rolf Hagedorn,
and my exposition on kinematics can in no way surpass his work.

The third chapter is entitled “The Glauber model’. The Glauber model is routinely
used in relativistic heavy ion collisions to characterize the collisions as a function of
collision centrality. The fundamentals of the model are discussed briefly. Glauber’s
solution of quantum scattering from composite objects is given. The concepts of

Xii
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collision centrality and measurement by binary collisions, participant numbers,
wounded nucleon numbers and so on are introduced.

I have entitled the fourth chapter ‘Classical theories for macroscopic systems’.
It is divided into three sections: (i) thermodynamics, (ii) statistical physics and
(ii1) kinetic theory. The discussions are not exhaustive. In thermodynamics, after
stating the thermodynamics laws, I introduce the concept of thermodynamic
potential and derive the Maxwell’s equations. The physical meanings of different
thermodynamic potentials, e.g. enthalpy, Gibbs potential, etc, are given. In sta-
tistical physics, after introducing the important concept of ensemble, three types of
ensembles—microcanonical, canonical and grand canonical—are distinguished.
Explicit expressions for various thermodynamic quantities are obtained from the
partition function. The last topic discussed in this chapter is the kinetic theory.
After giving some basic definitions and their relations with physical quantities, I
derive the relativistic kinetic (transport) equation, with and without collision, with
external force, for mixtures. The equilibrium distribution function is obtained from
entropy maximization. Lastly, conservation equations are derived from the
transport equation.

The fifth chapter deals with QCD. QCD is a gauge theory with SU(3) as the gauge
group. It is a complex theory. Following a brief discussion on gauge theory, the
QCD Lagrangian is studied. QCD is renormalizable and the physics of renormali-
zation is given. The perturbative and non-perturbative approaches of QCD are
distinguished. The important ‘factorization theorem’ is stated and concepts such as
parton distribution function and fragmentation function are introduced. In the non-
perturbative QCD, only the lattice QCD is discussed. Gauge and fermion action on
a lattice is derived. The problems associated with fermion action are stated. The
concepts of the Wilson loop, Polyakov loop, Z(3) symmetry, etc, are introduced.
Some selected results of lattice simulations are discussed.

Chapter 6 discusses phenomenological equations of state for the two phases of
QCD matter: QGP, the high temperature, high density phase, and hadronic reso-
nance gas, the low temperature, low density phase. In the phenomenological
approach, following the MIT bag model, a bag pressure is introduced to the QGP
equation of state. To appreciate the bag pressure, a brief description of the MIT bag
model is given. A van der Waals treatment of finite volume correction is also dis-
cussed here. I also discuss the historically important statistical bootstrap model.

Chapter 7 discusses some selected models for heavy ion collisions. The vastly
successful statistical/thermal model, where particles are evaporated from a thermal
source, the blast wave model where the thermal source rapidly explodes to freeze-out,
and the hydrodynamic model where the fireball expands following hydrodynamic
equations, are discussed in detail. The very useful Cooper—Frye prescription for the
invariant particle distribution is also derived in this chapter. The chapter contains
brief discussions on the transport approach based models: BUU/VUU and the
quantum molecular dynamics based UrQMD.

Chapter 8 deals with two-particle correlation. ‘Amplitude interferometry’ and
‘intensity interferometry’ are distinguished. The quantum mechanical reason for
intensity interferometry is discussed. The expression for the two-particle correlation

Xiil
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function is derived. Gaussian parameterization for the correlation function, Bertsch—
Pratt parameterization and Yano-Koonin-Podgoreskii parameterization are given.
Finally, a few experimental results are discussed.

Since quarks and gluons are not observable, identifying QGP in a collision is
non-trivial. Chapter 9 briefly discusses selected probes for QGP detection, J/y
suppression, strangeness enhancement, electromagnetic possibilities (i.e. photons
and dileptons), and jet quenching.

I hope that this book will be useful to students and young researchers in the field
of relativistic heavy ion collisions. I will appreciate any comments and criticism of
the material presented in this publication. Please email them directly to me at either
akc@vecc.gov.in or asiskumarchaudhuri@gmail.com.

I wish to take this opportunity to thank my students and colleagues who have
helped me in writing this book. I would particularly like to mention Dr Partha
Barat, D N Basu, Jane Alam, Victor Roy, Partha Bhaduri and Zuber Ahmed, who
read some portions of the book. I also thank the various authors who have kindly
permitted me to use selected graphics from their publications for illustration pur-
poses in this book. Lastly, I thank my wife, Suparna, and my son, Turja. Their
unstinting support and patience made it possible for me to labor for eight months to
prepare the book.
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Chapter 1

Introduction to the deconfined state

1.1 Introduction

Surprisingly, our diverse Universe consists of a handful of ‘elementary’ or ‘funda-
mental’' particles. In figure 1.1, we have listed the currently known elementary
particles. These elementary particles can be classified as (i) matter particles, the half
integer spin fermions, and (ii) mediator particles, the integral spin bosons. There are
two types of matter particles, called quarks and leptons. As indicated in figure 1.1,
there are only six quarks, named up (u), down (d), strange (s), charm (c), bottom or
beauty (b) and top or truth (t). Likewise, there are six leptons, electron (e), muon (u),
tau (7), and their associated neutrinos, electron neutrino (z,), muon neutrino (¢,) and
tau neutrino (). Note that the matter particles are further classified into three
generations. Each generation contains two quarks and two leptons, i.e. the first
generation matter particles are the two quarks (u, d) and two leptons (e, v.), the
second generation matter particles are the two quarks (c, s) and two leptons (u, v,),
and the third generation matter particles are the two quarks (b, t) and two leptons
(7, v,). The properties of the particles, with the exception of mass, remain unchanged
between the generations. The mass increases over successive generations. For each
of these matter particles, there is an antiparticle, e.g. a positron (€") is the antiparticle
of an electron (¢7). The handful of fundamental particles can interact in only four
definite manners: (i) strong interaction, (ii) electromagnetic (EM) interaction,
(iii) weak interaction and (iv) gravitational interaction. In table 1.1, we have listed
the mediators of the interactions, and also shown the relative strength of the
interactions. All these particles interact gravitationally.

The study of the strong interaction is generally called nuclear physics. Histori-
cally, nuclear physics started with Rutherford’s discovery of the nucleus in his

! By elementary or fundamental particles we mean that they are simple and structureless, not made of anything
smaller.
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Figure 1.1. The three generations of matter particles in the standard model. The mediator particles (gauge
bosons) are also shown.

Table 1.1. The four fundamental forces, their relative strengths and their mediators are listed.

Interaction Theory Mediators  Relative strength  Interaction range (m)
strong QCD gluon 10%® 107"

electromagnetic  QED photon 10%* infinity

weak electroweak W, Z 10% 10"

gravitational general relativity — graviton 1 infinity

celebrated gold foil experiment in 19097, At that time, the prevailing model for
atom was J J Thompson’s plum pudding model. Massive positively charged particles
were assumed to be distributed uniformly over the atomic volume, with electrons
(the plum) dispersed throughout the positive mass (the pudding), to maintain charge
neutrality of the atom. In this model, alpha particles would be expected to pass
through the gold foil, with little deviation in their paths. In Rutherford’s experiment,
quite a few alpha particles were found to be deflected by large angles. The result of
the gold foil experiment was so bizarre at that time that Rutherford said, ‘It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it
came back and hit you’. The experimental result can only be explained if positive
charges are concentrated within a small volume. Rutherford used the term ‘nucleus’
to describe the concentration of positive charges at the centre of the atom. Inci-
dentally, this term was first coined by Robert Brown, the botanist, in 1831, to
describe cell structure (alternatively, by Michael Faraday in 1844), from the Latin
word nux which means ‘nut’. Rutherford also realized the necessity for a third

2To be specific, two of Rutherford’s scholars, Hans Geiger and Ernest Marsden, conducted the experiment
and wrote the paper. The paper was communicated to the Royal Society by Lord Rutherford.

1-2



A Short Course on Relativistic Heavy lon Collisions

atomic particle, the neutron, for the stability of the nucleus. The concept of the
atomic nucleus was completed when James Chadwick, Rutherford’s collaborator,
discovered the neutron in 1932. Indeed, one can say that proper nuclear physics
started in 1932 after the discovery of the neutron.

For a long time the atomic nucleus was assumed to be composed of protons
(a term possibly coined by Rutherford for the hydrogen nucleus) and neutrons and
they were to interact strongly. In the meantime there was much progress in the
understanding of EM interaction. It was recognized that EM interaction arises due
to the exchange of photons between two charged particles. In analogy to EM
interaction, in 1934 Hideki Yukawa put forward the hypothesis that strong inter-
action between nucleons originated from the exchange of mesons. He also predicted
the mass of a meson to be 200 times that of an electron. At that time mesons were
not known. He made this bold conjecture to obtain a theory analogous to EM
interaction. Yukawa was just 27 years old.

In 1937 pions were discovered and in 1949 Yukawa was awarded the Nobel Prize
in Physics. However, in later years, with the advent of particle accelerators,
experimentalists discovered hundreds of particles (mesons and baryons), many of
which can be thought of as mediators of the strong interaction. People then tried to
characterize these particles and study their internal symmetry®. We will not go into
detail, but suffice to say that Murray Gell-Mann and George Zweig (1964) found
that all of these particles, including protons and neutrons, consist of only a few
building blocks which are called quarks. Quarks are fractionally charged particles.
Since fractionally charged particles are not observed experimentally, it was theorized
that they are confined inside the hadrons. Murray Gell-Mann picked the word
‘quark’ from the sentence ‘Three quarks for Muster Mark’ in the James Joyce novel
Finnegans Wake. The simplest version of the quark model faces a problem. Some
baryons, e.g. Q or A™, would then be composed of identical quarks and violate
Pauli’s exclusion principle. To eliminate the contradiction, the concept of color
was introduced. Color is a new quantum number. Only three colors are required to
be hypothesized.

Murray Gell-Mann was born in September 1929. When he postulated quarks,
he was 35 years old. He won the Nobel prize in 1969. One can borrow the words of
G H Hardy (known for discovering Ramanujan, the Indian mathematical wizard)
and say, ‘creative physics is a young man’s game’. Take, for example, Sir Isaac
Newton, who at the age of 23-24 gave us the law of gravitation and discovered
fluxions (calculus), or Albert Einstein, who discovered relativity at the age of 25-26.
Wolfgang Pauli formulated his exclusion principle when he was 25 years old.

Traditionally, nuclear physics is the study of nuclear matter at zero temperature

and at densities of the order of the atomic nuclei, nucleon density p ~ 0.17 fm™ or

energy density € ~ 0.16 GeV fm™. The advent of accelerators has extended the
study to hundreds of MeV in temperature and to energy densities several orders of

3 Internal symmetry refers to the fact that one generally finds a family of particles called multiplets, all with the
same or nearly the same mass. Each multiplet can be considered as a realization of some internal symmetry.
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magnitude higher. At such high density/temperature, individual hadrons lose their
identity and the matter is best described in terms of its constituents, e.g. quarks and
gluons, commonly called quark—gluon plasma (QGP). Historically, T D Lee, in
collaboration with G C Wick, first speculated about an abnormal nuclear state
in which nucleon mass is zero or near zero in an extended volume and non-zero
outside the volume [1, 2]. They also suggested that an effective way to search for
these new objects was through high-energy heavy ion collisions. Around the same
time, Collins and Perry [3] conjectured that super-dense matter, found in neutron
stars, exploding supernovae, the early Universe, etc, consists of quarks rather than of
hadrons. They argued as follows: a neutron has a radius of ~0.5-1.0 fm and a density
of ~8 x 10" gem™. The central density of a neutron star is ~10"°=10" gem™. It is
then expected that the neutrons overlap and their individuality is lost. Collins and
Perry then suggested that the matter at the high densities of a neutron star is a quark
soup. In 1979, Susskind [4] studied quark confinement at finite temperature on a
lattice. He found that confinement is strictly a low-temperature phenomenon.
A transition to a plasma-like phase occurs at high temperatures. In this plasma-like
phase, free gluons Debye screen the quarks. In 1980 Shuryak [5] wrote the first
review paper on quantum chromodynamic (QCD) thermodynamics. In 1983, J D
Bjorken [6] developed the 1+1 dimension hydrodynamic model for the space-time
evolution of matter created in relativistic heavy ion collisions. Incidentally, the
hydrodynamic solution now known as the Bjorken scaling solution was earlier
obtained by Chiu, Sudarshan and Wang [7]. In 1984, the US government sanctioned
plans to build the Relativistic Heavy Ion Collider (RHIC) to expressly search for
QGP. Construction work started in 1991 and the first physics result was published in
2001. To date, the four experimental groups, (i) STAR (Solenoid Tracker At RHIC),
(i)) PHENIX (Pioneering High Energy Nuclear Ion eXperiment) (iii) BRAHMS
(Broad Range HAdron Magnetic Spectrometers) and (iv) PHOBOS®, at RHIC have
published more than 400 scientific papers in peer reviewed journals. Approximately
40% of the papers were published in Physical Review Letters, which is known to
publish only ‘important’ physics results.

In this short course, we will try to discuss some aspects of matter at such high
density and temperature. For a general introduction to the subject, see [§—11]. More
detailed information can be obtained in the white papers published by the four
experimental groups at RHIC [12-15] and also from the proceedings of the Quark
Matter conference series [16].

1.2 Conceptual basis for QGP formation

For composite hadrons, with finite spatial extension, the concept of hadronic matter
appears to lose its meaning at sufficiently high density. Once we have a system of

4 Unlike the other three experiments, PHOBOS is not an acronym. Experimentalists from MIT first proposed
an experiment called MARS (Modular Array for RHIC Spectra) which was rejected for being too expensive. A
much scaled down project was accepted. Professor John Negele suggested that it be called PHOBOS, after the
largest moon of Mars.
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Figure 1.2. The left panel shows a nucleus at normal density. The right panel shows the same at high density.

mutually interpenetrating hadrons, each quark will find in its vicinity a number of
quarks, at a distance less than the hadron radius. The situation is shown schematically
in figure 1.2. At low density, a particular quark in a hadron knows its partner quarks.
However, at high density, when the hadrons start to interpenetrate each other, a par-
ticular quark will not be able to identify the quark which was its partner at lower
density. Indeed, a similar consideration led Collins and Perry [3] to suggest that the
matter in the neutron star will behave as a quark soup. Similar phenomena can happen
at high temperature. Hagedorn [17] studied the thermodynamics of interacting hadron
gas where resonance formation is the basis of interaction. He developed the so-called
‘statistical bootstrap model’. Later, in section 6.6, the model will be discussed in more
detail. It was shown that the density of states increases exponentially with mass
and there is a temperature 7, beyond which the partition function® diverges. The
temperature is known as the Hagedorn temperature and Hagedorn interpreted the
temperature as the limiting temperature beyond which hadronic matter cannot exist.
Cabibbo and Parisi [18] gave an alternative interpretation to the exponentially
increasing mass spectrum. They argued that the exponentially increasing spectrum
is associated with any system that is undergoing second order phase transition.
The Hagedorn temperature is the critical temperature, associated with the transition.
We can visualize it as follows: with increasing temperature, more and more resonances
will be formed from thermal fluctuations. Resonance production will be dominated by
low mass resonances, as the large mass resonance production will be suppressed by the
Boltzmann factor e ™. A large number of resonances will make the system dense
again and hadrons can start to interpenetrate each other.

The system in which hadrons interpenetrate is best considered as quark matter,
rather than being made of hadrons. It is customary to call the quark matter QGP.
We define QGP® as a thermalized, or near thermalized, state of quarks and gluons,
where quarks and gluons are free to move over a nuclear volume rather than a

5The partition function is a concept in statistical physics and describes the properties of a system at equili-
brium. It will be discussed in a later chapter.

®The Oxford English Dictionary defines QGP as a hypothetical, highly energized form of matter that contains
unbound quarks and gluons, believed to have been present ten millionths of a second after the Big Bang.

1-5



A Short Course on Relativistic Heavy lon Collisions

nucleonic volume. Model calculations indicate that beyond a critical energy density
€, ~ 1 GeV fm™, or temperature T, ~ 200 MeV, matter can exist only as QGP.

QGP is the deconfined state of strongly interacting matter. Since at low density or
low temperature quarks are confined within the hadrons, and at high density or high
temperature quarks are deconfined, one can talk about a confinement-deconfinement
phase transition. This will be discussed later, but it turns out that for a baryon-
free matter, the confinement—deconfinement transition is not a phase transition in
the thermodynamic sense’; rather, it is a smooth cross-over, from confinement to
deconfinement or vice versa. The mechanism of deconfinement is provided by the
screening of the color charges [4]. It is analogous to the Mott transition in atomic
physics [19]. In dense matter, the long range Coulomb potential, which binds ions and
electrons into electrically neutral atoms, is partially screened due to the presence of
other charges and the potential become much more short range,

b

2 2
V(r) = S % « exp(—L). (1.1)
r r

Here r is the distance of the probe from the test charge, e,. 1, is the Debye screening
radius and is inversely proportional to density,

ry~n'", (1.2)

At sufficiently high density, 1, can be smaller than the atomic radius. A given
electron can no longer feel the binding force of its ion; alternatively, at such density,
the Coulomb potential can no longer bind the electron and ion into a neutral atom.
The insulating matter becomes a conducting matter. This is the Mott transition. We
expect deconfinement to be the QCD analog of the Mott transition. Due to screening
of the color potential, quarks cannot be bound into a hadron. Now one may wonder
about the very different nature of QCD and quantum electrodynamic (QED) forces.
Interaction potential in QED and QCD can be expressed as

2

QED: V(r) ~ - (1.3)
r

ocD: V) ~ -2 + or. (1.4)
r

In equation (1.4), a = % is the strong coupling constant and the second term or
accounts for the QCD confinement, ¢ being the string constant. While in QED the
potential decreases continuously with increasing distance, in QCD the potential
increases with increasing distance. However, screening is a phenomenon that occurs
at high density, or at short distance. The difference between QED and QCD at large
distances is then of no consequence. Moreover, due to asymptotic freedom (to be

7 In thermodynamic phase transition, free energy or its derivative at some order has singularity at the transition
point.
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Figure 1.3. Schematic representation of string fragmentation. When two quarks are pulled apart, at some stage
the string breaks to produce two pairs of quarks.

discussed later), in QCD the interaction strength decreases at short distances,
thereby enhancing the deconfinement.

It may be noted that in an insulating solid, at 7" > 0, conductivity is not exactly
zero, but it is exponentially small

oy ~ e 2T (1.5)

where AE is the ionization potential. Above the Mott transition temperature, o is
non-zero because Debye screening has globally dissolved Coulomb binding between
the ion and electrons, but below the Mott transition temperature ionization can
produce locally free electrons, making ¢, small but non-zero. A corresponding
phenomenon in QCD is string fragmentation. This is shown schematically in
figure 1.3. Consider a hadron made up of two quarks. The two quarks interact via
exchange of gluons. Now consider pulling the quarks apart. The confining potential
will rise with the distance of separation and a flux tube will grow between the quarks
until it reaches the value m,,, the lowest g7 state. At this point, an additional hadron
will form, whose anti-quark neutralizes the quark we were trying to separate. This is
the mechanism of quark fragmentation.

1.3 Why is it important to study QGP?

QGP must have existed in the very early Universe. In the Big Bang theory®, our
Universe has undergone several stages of evolution since its birth some 14 billion
years ago. In figure 1.4, different stages of the evolution of the Universe, in the Big

Bang model, are shown. They can be broken down as follows.
hG ~

&

5.39 x 107" s. At the Planck time scale, the temperature of the Universe is

(i) The earliest time scale one can talk about is Planck time’, =

8In 1929, Edwin Hubble discovered what is now known as the expanding Universe: that all the galaxies
outside our own Milky Way are moving away from us at a speed proportional to their distance from us. It is
easy to understand that if we go back in time the Universe becomes smaller and smaller. If we continue to
travel backward, we come to a time (now known to be about 14 billion years ago) when the entire Universe
was contained in a single point in space. The Universe must have been born in this single violent event which
came to be known as the ‘Big Bang’.

Planck time is a unique combination of the gravitational constant (G), speed of light (c) and quantum
constant () that produces a constant with the unit of time (see appendix A.2).
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Figure 1.4. Schematic representation of the temporal evolution of the Universe in the Big Bang theory.

(ii)

(iif)

(iv)

v)

of the order of T ~ 10" GeV, which is the Planck scale temperature.
Despite an enormous effort by string theorists, little is understood about
this era. It is believed that at this stage quantum gravity was important and
all the four forces were unified.

As the Universe continues to expand it cools. We have a better under-
standing of the later stage of evolution, when the temperature of the
Universe was, say, around 7 ~ 10'® GeV. This is in the grand unification
scale, where gravity is separated and only the strong, EM and weak
interactions are unified. The Universe at this scale may also be
supersymmetric'”.

As the Universe further expands and cools, the strong and electroweak
interactions are separated. At much lower temperatures of 7'~ 100 GeV,
electroweak symmetry breaking takes place. Baryon asymmetry may be
produced here. The Universe exists as QGP, a deconfined state of quarks
and gluons.

Somewhere around T ~ 100 MeV, deconfinement—confinement transition
occurs, and hadrons are formed. RHIC at Brookhaven National Labora-
tory and the Large Hadron Collider (LHC) at CERN were designed to
study matter around this temperature.

At a temperature of 7'~ 1 MeV, nucleosynthesis starts and light elements
are formed. This temperature range has been well studied in nuclear physics

19 Supersymmetry is a new kind of symmetry, where each particle boson (fermion) has a superpartner fermion
(boson). For perfect supersymmetry, superpartners must have the same mass. It is evident that supersymmetry
is not currently observed in nature. Up to now, experiments have failed to detect any superpartner.
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experiments. For example, nuclear collisions at the Variable Energy
Cyclotron Centre, Kolkata, produce matter around this temperature.

(vi) Ata temperature of 7'~ 1 eV, the Universe changes from being an ionized
gas to a gas of neutral atoms, and structures begin to form.

QGP may also exist at the core of a neutron star. Neutron stars are remnants
of the gravitational collapse of massive stars. They are small objects, with a radius of
~10 km, but very dense, with a central density of ~10 times the normal nuclear matter
density. At such high density, hadrons lose their identity and matter is likely to be in
the form of QGP. One important difference between the QGP in the early Universe
and that in neutron stars is the temperature. While in the early Universe QGP tem-
perature was 7' ~ 100 MeV, at the core of a neutron star the QGP is cold, 7 ~ 0 MeV.
Hot and dense matter with an energy density exceeding 1 GeV fm™ may also occur in
supernova explosions, collisions between neutron stars or between black holes.
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A Short Course on Relativistic Heavy lon Collisions
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Chapter 2

Kinematics of heavy ion collisions

2.1 Introduction

Our knowledge of the Universe is gained through experiments. The horizons of the
human mind and of science are increased by solving puzzles posed by newer and
newer experiments. It is thus appropriate that we start our discussion with relativistic
kinematics for heavy ion collisions. Kinematics is the branch of dynamics that deals
with the motion of bodies, without consideration of the forces acting on the bodies.
It is very relevant for experimentalists. Readers may consult [1-3] for additional
information on kinematics.

Throughout the note, we have used natural units; see appendix A.1 for details of
what this means. We have also used Einstein’s summation convention, by which
repeated indices are summed over (unless otherwise stated). Thus,

9J"=0J" +0J" +0J" + dJ". 2.1

2.2 Space-time continuum

All of us have some notion of space and time. In Galilean mechanics, three-
dimensional space and one-dimensional time are distinctly different entities. Soon
after Einstein’s discovery of relativity, Hermann Minkowski developed a new
scheme for thinking about space and time that emphasized its geometric qualities. In
relativistic mechanics, space and time are mixed mathematically. Minkowski then
reasoned that they are but one entity which he called the space-time continuum.
Continuum because, according to our experience, there is no void in space or in
time. In a public lecture on relativity, he said:

The views of space and time which we wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth, space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.

doi:10.1088/978-0-750-31060-4ch2 2-1 © IOP Publishing Ltd 2014
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The space—time continuum is also called Minkowski space. It is a metric space’.
The metric is

1 0 0 1
0 0 0 -1
It is also written more briefly as
gt = diag(l, -1, -1, 1). (2.3)

For a metric as in equation (2.2), the space-time is flat. Each point in the space—
time continuum can be designated by four real numbers, three for the spatial
directions and one for the time, which together form a four-vector. Two types of
four-vectors are defined. Contravariant four-vector x* is

xt = (xo, x', x?%, x3) =(¢ x, ¥, 2). 24)
Using the metric g"* one also defines a covariant four-vector,
x, =g x = (X =Xp» =Xy, =X3) = (£, =X, =y, —2). (2.5)
The scalar product of two four-vectors is denoted as
a-b=ab =ap, - a'b' —a’h* —a’h’ =aph,—a-b (2.6)

where the bold face quantities denote vectors in three dimensions.
One immediately finds the invariant square of a four-vector,

3

2 _ L oHe L2 i2_ 2 2 2 2

x—x-x—xxﬂ—xo—ZX =t —-x -y -z 2.7
i=1

The distance between two space-time points, x/" = (¢, x;, ), z) and
X3 = (t,, X,, 3, 7,) is calculated as
de* = (t - Zz)z = (x, - x2)2 - (yl - yz)z - (z - 22)2
=dr’ —dx* - dy’ - d7’ (2.8)

which is invariant under the Lorentz transformation. 7 = \/ P —x*=y =z is
called proper time.

In figure 2.1, we have depicted the space-time continuum in two dimensions, ¢
and z. The region of space-time for which 7> > 0 is called the time-like region, while
72 < 0 is called the space-like region. The ¢ =z line is called light-like (only light or

! A metric space is a set X that has the notion of distance d(x, y) between every pair of points x, y € X.

2-2



A Short Course on Relativistic Heavy lon Collisions

% time like @
2. 12 X

*"//’9@\\’/ it s \\\
£ 4
@ e
O'N O N
g.wi z B
n n

time like

(t*>2%)

Figure 2.1. Left panel: schematic diagram of the space-time continuum in two dimensions. The time-like and
space-like regions of the space-time continuum are shown. Also shown are the light-like lines. The blue curve is
a constant proper time curve. Right panel: schematic picture of a forward and backward light cone. In
relativistic heavy ion collisions, nuclei collide at# = x = y = z = (0. Only the forward light cone is accessible to
the various particles that are produced after the collision.

massless particles can travel along this line). The space-like region is inaccessible
to a physical particle, since it needs to travel faster than light. For a massive
particle, with speed v < ¢, the only accessible region is the time-like region. One
understands that in 3+1 dimensions, the light-like surfaces will form a cone as shown
in figure 2.1. Only the forward light-cone region is accessible to physical particles.

2.3 Lorentz transformation

Einstein’s theory of special relativity rests on the equivalence principle: physical
processes are the same in all the inertial® frames.

Measurements made in one inertial frame are related to the measurements in
another inertial frame by a transformation, called the Lorentz transformation. In
relativistic nucleus—nucleus collisions it is convenient to use kinematic variables
which take a simple form under Lorentz transformation. For completeness, we
briefly discuss Lorentz transformation.

If x* is the coordinate in one frame of reference, then in any other frame of
reference the coordinate x” must satisfy

g,dx"dx"” = g dx*dx” (2.9)

or equivalently

H "
dx™ dx _ (2.10)

& dx” dx° &0

2Inertial frames move with constant velocity with respect to each other.
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X X

Figure 2.2. Schematic diagram of two inertial frames S and S’, S” moving with a longitudinal velocity f.

The transformation has the special property that the speed of light is the same in
the two frames of reference: a light wave travels at the speed |dx/d¢| = 1. The
transformation x* — x"* = A/x" + a”, a" being an arbitrary constant, satisfying
equation (2.10), i.e.

g NN =g, (2.11)
is called a Poincaré transformation. Lorentz transformation is the special case of
Poincaré transformation when a” = 0. The matrix A/ forms a group called the
Lorentz group.

A general Lorentz transformation consists of rotation and translation. Lorentz
transformation without rotation is called Lorentz boost. As an example, consider
the Lorenz boost along the z direction by velocity g (see figure 2.2). The transfor-
mation leaves the transverse coordinates x and y unchanged. Only ¢ and z are
changed. The transformation of ¢ and z can be written as

(IZ) - (—;7 _yﬁy)(;) (2.12)

where y = 1 / {1 — p* is the Lorentz factor.

Inverse Lorentz transformation can be easily obtained by changing the direction
of the velocity, f — —f,

(t)- (—(—yﬂ)y _(_yﬂ)y)(i')' @

2.4 Space—time rapidity
In equation (2.12) we replace the velocity # by a new variable 77,

f = tanh(n). (2.14)

It is easy to see that the Lorentz factor is y = cosh(n ). The variable 7, is called
space—time rapidity (the subscript s is to distinguish space-time rapidity from
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pseudo-rapidity of particles, to be defined later). In terms of space—time rapidity, the
Lorentz transformation can be written as

¢\ _ [ cosh(n) —sinh(y)),
(Z,) B (—Sinh(iys) COSh(”/_Y) ](z) (2.15)

Note the similarity of the transformation matrix with the rotation matrix’.
Transformations given by equation (2.15) are called hyperbolic rotation.
Lorentz boost along the z direction can be thought of as a hyperbolic rotation by
rapidity 7.

Rapidity variables have the interesting property that they are additive under
Lorentz boost. Successive Lorentz boost with rapidity 7, and 77, is equivalent to a
boost with rapidity n, + 7,. This can be shown by direct computation,

(,/) _ (cosh(ryﬂ) —sinh(nsz)][ cosh(z,) —sinh(nﬂ)] ( t)

z' —sinh(y,) cosh(n,) )\ —sinh(y,) cosh(y,) J\?

_ [ cosh(y, +n,) —sinh(y, + 'Ll)](z)' (2.16)

—sinh(n, + 1) cosh(y, + 1)

The additive property of rapidity is very useful in transforming quantities from
one frame to another.

We have discussed Lorentz transformation with respect to the space-time co-
ordinates. However, the transformation is generic and any of the four-vector is
transformed similarly. Consider, for example, that in a frame S, a particle has
energy E and three-momentum p = (px, pD ). In four-vector notation, p* =p =

(E,p., p-P ). If observed from a frame S’, moving along the z direction with a
velocity 8, E and p are transformed as

(5)=(2, 7)E)

The inverse transformation is
E y Pr\(E
= ] 2.18
(”:) (ﬂy v ](1%] (2.18)

3 A two-dimensional rotation matrix, where the axes are rotated by an angle 0, has the form,

cos(0) —sin(H))

RO = (sin(G) cos(6)
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The following relation between the Lorentz factor and particle energy is useful,

! £ (2.19)

1
)/: = =
Ji-p J1-wE} M

2.5 Transverse mass, rapidity and pseudo-rapidity

In relativity, the four-momentum of a particle is written as p” = (E, p) =
(E,p., p,P ). However, it is more convenient to use variables, transverse mass m

and rapidity Y. The transverse mass m, and rapidity Y of a particle are defined as

Transverse mass: m; = Jm® + pT2 (2.20)

Rapidity: Y

2.21)

I
o+
o
=]
=
—_—
[
~—
I
—
&
=]
]
=
\./

Unlike the transverse momentum which is a vector quantity, transverse mass
is scalar; consequently, it is invariant under a Lorentz transformation. Rapidity is
not invariant under Lorentz transformation but it has a simple transformation
law under Lorentz transform. The reader may notice the similarity between the
space—time rapidity in equation (2.14) and particle rapidity defined above. As with
spatial rapidity #, particle rapidity is additive under a longitudinal boost. A par-
ticle with rapidity Y in a given inertial frame has rapidity Y + dY in a frame which
moves relative to the first frame with rapidity dY in the —z direction. One can see
this from the addition formula of relativistic velocity f, and f,. The resultant
velocity,

+
p= bt b , (2.22)
1+ Bp,
is also the addition formula for hyperbolic tangents,
tanh(Y, + ;) = tanh(Y)) + tanh(Y,) (2.23)

1 + tanh(¥))tanh(Y,)’

In terms of transverse mass m and rapidity Y, particle four-momentum can be
written as

p=ph = (E ,&,py,p:) = (mT coshY, p.. p,. my sinhY). (2.24)

2-6



A Short Course on Relativistic Heavy lon Collisions
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Figure 2.3. Rapidity Y = %lnif—z is plotted against the velocity f. The dashed line corresponds to Y = f5.

Rapidity is the relativistic analog of non-relativistic velocity. In figure 2.3, rapidity
is plotted against the velocity. For low velocity # < 0.5, Yis identical to . Only with
a large velocity limit is Y substantially different from . This can also be shown
explicitly. Equation (2.21), in the non-relativistic limit p < m, can be written as

1. P +m* +my 1. m+my
Y =—In =—ln—=
2 D> +m* —my, 2 m—my

%[m(l +u)—In(l =)~ (2.25)

Figure 2.3 also demonstrates the utility of rapidity in characterizing a particle.
In relativistic collisions, the particles produced can have a very large velocity g ~ 1.
Near f ~ 1, the rapidity variable is very sensitive to small changes in §.

In high-energy nuclear scattering, there is a natural choice of axis, the collision
axis. Traditionally, it is taken along the z axis, and is usually called the beam axis.
For a particle emitted at an angle @ with respect to the beam axis, the rapidity

variable is
E + m* + p* + pcos6
Y= lln E_ 1ln mrp 2

2 E-p 2 [wl+p’ —pcosd

At very high energy, p > m, the mass can be neglected,

Y = llnp + pcosd
2 p-—pcosé

~In tan6/2 = 1. (2.26)
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n is called pseudo-rapidity. Only the angle € determines the pseudo-rapidity. It is
a convenient parameter for experimentalists when details of the particle, e.g. mass,
momentum, etc, are not known, and only the angle of emission is known (for
example in emulsion experiments).

2.6 Light-cone coordinates

For a particle with four-momentum p(p,, p,, p), forward and backward light-cone
variables are defined as

(2.27)

&~

=p0+

S|

P =p - (2.28)

S|

It is apparent that for a particle traveling along the beam axis, forward light-cone
momentum is higher than for a particle traveling opposite to the beam axis. An
important property of the light cone is that in case of a boost, light-cone momentum
is multiplied by a constant factor. It can be seen as follows, writing the momentum in
terms of the rapidity variable, p* = (m;coshy, p, p, m;sinhy),

y

e”

S oS

mye
my

Under a Lorentz boost by Ay, they will be transformed as,

r__ +Ay) __ Ay
pl=me" =pe

A
p=me V) =pe,

Consider two four-vectors in light-cone coordinates,

P =0 p)=("+p. 000" = 1) (229)

¢"=(a.-4"9¢) ="+ 4" ¢ 4" - 7). (2.30)

The Lorentz invariant scalar product has the form
p-4=pq +pq, —-p4qd-pq. (2.31)

One naturally wonders about the motivation for defining such a coordinate sys-
tem, which depends on the choice of z-axis. One motivation is obviously the nice
transformation property under the Lorentz boost. However, that is not all; there is
another, more compelling reason. In high-energy nuclear scattering, there is a nat-
ural choice of axis, the collision axis. Traditionally, it is taken along the z-axis. When
a vector is highly boosted along the z-axis, in light-cone coordinates, the large and
small components of the momentum are clearly indicated.
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2.7 Invariant distribution

Let us show that % i1s Lorentz invariant. The differential of the Lorentz boost in the
longitudinal direction is

d
dp* = y(dp — pdE) = y(dg - ﬁ%)
_ 4 _d
- Fy(E - pp) = - E* (2.32)

where we have used E* = m” + pT2 + pz2 = EdE = pdp. Then dp /E is Lorentz
invariant. Since p, is Lorentz invariant, d’p/E is also Lorentz invariant.
The Lorentz invariant differential yield is
d&’N d’N d’N
Y T ey T @
p Prap, prdy

(2.33)

where the relation dp /E = dy is used. Sometimes experimental results are given in
terms of pseudo-rapidity. The transformation from (y, p,) to (7, p,) can be obtained
as follows: write the rapidity and pseudo-rapidity variables as

E + Jm +pl+pl +p
! po_ ] L S (2.34)

=—In

E-p 2 ym+p+p’ -p
2 2
+ Py +p +
L 25 Ly NP 70 A (2.35)

=—In

n=-l
2 p-pn 2 pl+p’-p,

Assuming p_ is fixed, the rapidity density can be written as

4V _dNdy

= . 2.36
dp  dy dy (2.39)

A little algebra will show that

dy/d 2
dy _ e _p_ 1_#, (2.37)
dy dn/dp E my cosh”y

and rapidity and pseudo-rapidity densities are related as

2
Wwo_ o m AV (2.38)
dndp, my cosh”y dydp,
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2.8 Luminosity

Let us first understand the concept of the cross section. In most of the experiments, a
beam of projectiles scatters off a target at rest. For a sufficiently thin target, the flux
of projectiles inside the target is constant. The rate of any interaction W, will be
proportional to the flux J of the incoming projectiles times the total number of target
particles,

W, o« NJ. (2.39)

The constant of proportionality is called the cross section for the process. It has
the dimension of area (the dimension of flux J being number per unit area per unit
time). Empirically, the cross section is the effective area presented to the beam by a
target scatterer.

The cross section is a useful concept and it is desirable to use it even in collider
experiments, where unlike the experiments described earlier, two beams of particles
collide. The interaction rate will still be proportional to the cross section and on a
number of machine dependent parameters, e.g. the number of particles per bunch,
their spatial distribution and the frequency of the collision of those bunches. All the
machine dependent parameters are lumped together into a parameter called
luminosity, £, and the interaction rate in a collider is written as

W= Lo. (2.40)

From (2.40), one can read the dimension of luminosity, [L>T™"]. Time integrated
luminosity times the cross section then gives the expected number of counts in any
given process,

Mm=afﬁm 2.41)

Luminosity is a machine dependent parameter and it is necessary to know the
parameters of the collider, e.g. number of bunches, particle density of each bunch
and frequency of revolution. Let the machine collide two beams, each containing
n bunches. Let each bunch contain N, and N, particles respectively. The revolution
frequency is f, and the luminosity can be calculated as

N,
£=fnﬁ—2 (2.42)
A
where A is the cross-sectional area of the beams.

2.9 Center-of-mass and laboratory system

Our knowledge about nature is gained mainly through the collision process, by which
one body is made to collide with another. Traditionally, in laboratory experiments,
one body is kept fixed when the other body hits it. The stationary body is called the
target and the moving body the projectile. The frame of reference of such a system
is called the laboratory frame (or lab frame for short). Theoretical calculations,
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however, are generally simpler in a frame of reference where the center-of-mass (cm) is
at rest, or the total momentum is zero. It is called the centre of mass frame (or cm
frame for short).

Let us consider the collision of two particles of mass 1, and m,, in the lab and cm
frame (see figure 2.4). In the lab frame, m, is at rest and the four-momenta of the two
particles are p = (E, p) and p, = (E,, p,) = (m,, 0). In the cm frame, the total

three-momentum is zero and the four-momenta can be written as pl>l< = (E, p,.)

and pz* = (Ez*, —p,,) (we designate the cm coordinates by a superscript *). Energy
momentum is conserved in the collision. In four-vector notation, the conservation
equation is

p+p,=p"+p" (2.43)
in the cm frame: E. = (pl>l< + p;k)2 = (El* + Ez*)z -(, -p)
= (E*+ Ef) (2.44)
in the lab frame: EJ = (p, +p,)’ = (E, + m2)2 —Ip/’

(E> = Ipl) + m; + 2m,E,

= m +m, + 2m,kE,. (2.45)

Hence, in a collision of a particle of mass m, and energy E, with a particle of mass
m, at rest, the cm energy” is

E . =Js= \/mlz +m; + 2m,E, = \/mlz +m; + 2m,E, (2.46)

rojectile *

The magnitude of the cm momentum p__ can be easily obtained from equation (2.44)

2
s=E2 = (E*+ EF) = [\/mf T ip, P+ mi + |pcm|2] . (2.47)
The equation can be solved to yield the cm momentum,

2
2 2 2 2
(s—ml —mz) — 4m;m,

Ip,|* = e
_ [S = (m + mz)z][s = (m, — mz)z]
B 4s
= 4Ls/1(s, mlz, m22) (2.48)

It is a common practice in high-energy experiments to denote cm energy by /5. Both E,, and /5 are used
here.
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a. Lab frame b. Lab frame
(before collision) (after collision)

(EL, pi)

o : (E5,p3)
(E.p)  (E;.0) \.p
~
c. cm frame d. cm frame /
(before collision) (aﬂercoilision)//(? "
=P
. 3 ¢ . Buu
(E\,p) (E;.,-p)
/.(E;,p')

Figure 2.4. Pictorial diagram of two-body collision, 1 + 2 — 3 + 4, in the laboratory frame (a and b) and in
the cm frame (c and d).

where A(x, ¥, z) = x>+ > + 2" — 2xp — 2yz — 2zx is the Kéllén function (used
frequently in relativistic kinematical relations). The cm momentum, in Lorentz
invariant quantities, is then obtained as

1
Ip, | = ﬁ[ﬂ(s, m,, m,)]"”. (2.49)

We can also express lab momentum in terms of Lorentz invariants. From
¢ 22
equation (2.46), E, = “=".—"2 and

2my
2 2\?
p|> = EZ—m?= [u) —m?
2m,
2 2. .2
s —m —m, 4m;"m, s
= ( 2 =1p, I (2.50)
4m, 5
J5
or p) = Ip,, ) (2.51)
m,
The velocity of the cm in the lab frame is
+
g =nb _ B (2.52)
o E+E E+m,
and the Lorentz factor
y = 1 :E1+m2:E1+m2‘ 2.53)
1 - ﬂ‘z Ecm \/E
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Noting that the Lorentz factor y = cosh(y ), the cm rapidity is then
expressed as

E +m
= cosh‘l(g). 2.54
xm - @54

S

2.9.1 Relation between y and y
From equation (2.18)
E=y(E* + pp’) (2.55)

p = 7(BE* + p*) (2.56)

_ 1 Exn 1 (BT p0) + (PET 4 p)
TN Ey T e ) - (0FT )

L (E*+p§“)(1+/f)_11 E4p’ 1 145

n = n— —
2 (E*-pf)a-p 2 ET-p 2 1-p
Y+ (2.57)

The rapidity of a particle in the lab system is equal to the rapidity of the particle in
the cm system plus the rapidity of the centre of mass.

2.9.2 Transformation of angles

Let, in the cm system, the scattered particle of momenta p make an angle €, with
the longitudinal axis z. The momentum can be decomposed into two parts,

pcml\ = chos(ecm)
lz:ml = ]%m Sin(gcm)'

In the lab frame they will be transformed as

Py = Tl Bt BorBem) = 1o (2, €05(6in) + B, Eo) (2.58)

plab_L = Hsml = pcm Sin(a‘?m)' (259)

Giving the desired relation between the angles in lab and cm frame

sin(g
tan(elab) — plabJ_ — pcm ( cm)

. (2.60)
Py J/Cm([%m cos(f,,) + ﬁcmEcm)
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Py my

Py 1y
Figure 2.5. Pictorial diagram of two-body decay, where a mother particle of mass M and four-momentum
P decays to daughters of mass m,, m,, with four-momentum p, and p,, respectively.

2.10 Decay of particles

In relativistic energy heavy ion collisions, hundreds of particles are produced, many of
which are decay product. It is then very important to understand the kinematics of
particle decay. The decaying particle is generally called the mother particle and the
decay products the daughter particles. Two- and three-particle decay are the pre-
dominant decay modes in heavy ion collisions. Four or more particle decay is also
possible, but such decay modes are negligible in general and are not considered. In the
following some details of the kinematics of two- and three-body decay are presented.

2.10.1 Two-body decay

Two-body decay is the simplest decay process. As depicted in figure 2.5, a mother
particle of mass M at rest decays to two particles of mass m, and m, with four-
momenta p, and p, respectively. The four-momenta of the particles can be chosen as

Mother particle: P=(M,0,0,0), (2.61a)
Daughter particle 1: p, = (E, 0,0, p), (2.61b)
Daughter particle 2: p, = (Ez, 0, 0, —p:). (2.61¢)

From conservation of four-momentum,

M=E +E = m’+p + |m+p. (2.62)

Solving the above equation (see equations (2.47) and (2.48)), one obtains

) \/(MZ —m? - m22)2 _ 4mlm? ) [A(sz m?, mzz)]llz
E= e - oM '

(2.63)

The energy of the daughter particles can also be determined. Note that the four-
vector P (see equation (2.61a)) has the simplest structure and a product involving P will
be simpler than any other product. We re-write the four-momentum conservation
equation as

2
p=mi=(P-p) =P +p —2P-p)
= M’ + m - 2ME,
1

> E = W(MZ +m? —m;). (2.64)
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Similarly we can obtain

1
E,= W(MZ +m; —mp). (2.65)

It may be mentioned here that there is no preferred direction for the daughter
particles; the decay is isotropic. However, if the direction of one particle is chosen,
the other will move in the opposite direction. In the mother particle rest frame,
daughter particles move back-to-back. However, if the mother particle is not at rest,
but decays during a flight, the daughter particles will not be back-to-back. In rela-
tivistic heavy ion experiments, decay in a flight is more important than decay at rest.
For decay in a flight, the four-momenta of the particles can be written as

Mother particle: P=(E 0,0,p),
Daughter particle 1:  p, = (El, P plz),
Daughter particle 2: p, = (Ez, —P; Pz;)'

If viewed from a frame, moving with velocity = p/M, the daughter particles

will be boosted by the Lorentz factor y = 1 / \1 — p*. The Lorentz boosted energy
and momenta of the daughter particles can be written as,

E, = 7/(E1>k + ﬂpli_k)
b, = Y(pf: + ﬁEl*)
pr=py

and similarly for the daughter particle 2. The superscript “*’ indicates the values in
the cm system where the mother particle is at rest.

2.10.2 Three-body decay

In three-body or three-particle decay, the mother particle decays into three
particles. An example of three-particle decay is shown in figure 2.6. A well known
example of three-body decay is f-decay, where a neutron decays into a proton,
an electron and an anti-neutrino, » — p + €  + 7. As is well known, the
experimentally observed continuous g spectrum led Fermi to the prediction of
the existence of the neutrino.

1 M

P

P, 1y
Figure 2.6. Pictorial diagram of three-body decay, where a mother particle of mass M and four-momentum
P decays to daughters of mass m,, m, and m;, with four-momentum p,, p, and p, respectively.
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Analysis of three-body decay is greatly facilitated by what is now known as the
Dalitz plot, after its inventor, Richard Dalitz’. A Dalitz plot is a way of assigning a
point in phase space to every decay product according to its momenta. Let us denote
the four-momentum by P, p, p, and p,. The process involves four-particles and one
can construct 16 invariants of the type, 4, - 4. Since 4, - A, = A4; - A;, only 10 of
the 16 are independent. Four-momentum conservation,

P=p +p +p,, (2.66)

imposes four constraints to restrict the independent invariants to six. However, not
all six are interesting, since there are four trivial invariants 4, - 4, = M;> which do
not give any additional information. There are only two non-trivial invariants in
terms of which the decay process can be specified. Generally one uses two of the
following three invariants,

mzz3 = (P - pl)2 =(p, + p3)2 (2.67a)
2 2 2

mi=(P-p,) =@ +p,) (2.67b)

m,22 = (P —p3)2 = + pz)z. (2.67¢)

The relevance of these invariants can be understood easily if the second parts of
the definitions are considered. For example, m,; = (p, + p3)2, 1.e. my, is the cm
(or the invariant mass) of the subsystem consisting of the daughter particles 2 and 3.
Similarly m,; is the cm (or the invariant mass) of the subsystem consisting of the
daughter particles 1 and 3, and so on.

Let us evaluate m,;. In the rest frame of the mother particle,

mj, = (P —p])2 =P +p’ =2P -p =M +m’—2ME,

For E, > m,, the upper limit of 1, = m223qu = (M — m,)’. To obtain the lower

limit, consider the alternative definition, m1,; = (p, + p3)2. Evaluate it in the rest
frame of 2 and 3. Such a frame is called a Jackson frame and this particular frame
can be designated as S23. In Jackson frame S23,

m = (p, +p,) = (E¥ + EF) (2.68)

5In his obituary article on Richard Dalitz, Frank Close lamented that Dalitz was one of the great unsung
scientists and that the geometrically based diagram he invented led to at least five Nobel prizes, and may lead
to the discovery of Higgs [indeed, discovery of the Higgs boson was announced in July 2012], yet Dalitz himself
was not honored with the prize, the ultimate scientific recognition.

2-16



A Short Course on Relativistic Heavy lon Collisions

where the superscript * denote the value in the frame S23. Since E," > m;, E;* > m,,

the lower limit of m,; is m,; > (m, + m,)’. Similarly, the limits of the other
min
invariants can be obtained,

myy € [(my + my)’, (M — m))’] (2.69a)
mj € [(my + my)*, (M — m,)’] (2.69b)
mp € [(m + my)’, (M — my)*]. (2.69¢)

However, for a given my; € [(m, +my)’, (M —m)’] all of mje€
[(m, + m3)2, (M - mz)z] is not kinematically accessible. The accessible limits can
be obtained as follows.

In the Jackson frame S23, p* = —p and p* = P*.

my = (P - pl)2 = (E* - E,*)2 = (\/M2 +p + \/mlz +p1*2) (2.70)
and solving for pl*,

1
P = —A(my, M, mp). (2.71)

My

Similarly, from m,; = (p, + p3)2, in the Jackson frame S23, one can obtain

1
Pt =pi = Fﬂ(m;}, m’, m3). (2.72)
23

The invariant m} = (p, + pz)2 in the Jackson frame S23 can be calculated as
miy = (p, +p,) =m’ +m; +2E*E - p*pjcos(a)) (2.73)

and for a fixed m223, the dependence is only on a. Noting that cos(a) varies between
+1, the limits of mé are easily obtained,

mp, =m +m; + 2 EFEF + p*pf). (2.74)

1 2

2 2 ®_ 1
2)7123(M —my —mp) and E; =

2my3

One can rewrite E* = M +m — mzz)

and get an explicit expression for m1,3, ,

2 _ 2 2 2 2 2 2 2 2
mp, = m +m; + mz[(M — My, —m, )(m23—m2 +m3)
23

+ /11/2(m223’ M, mlz)ﬂl/z(mzé, m;, mf)]. (2.75)
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§ < . -
Mg ® Mg

Figure 2.7. Pictorial diagram of three-body decay via a resonance formation.

2 2
5 o m, ml2 "
2 1
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= 1
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X Me=M,+M, 7

2 2 2
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Figure 2.8. Pictorial diagram of three-body decay via a resonance formation.

Equation (2.75) defines the boundary of what is known as a Dalitz plot in the
(m223, m123) plane. The main advantage of a Dalitz plot is its ability to identify short-
lived resonances. Many times, the decay proceeds via resonance formation: in the
first step, a mother particle decays to a daughter particle and a resonance M, (see
figure 2.7), which in the second step decays into two more daughter particles. Such a
resonance can be easily identified in a Dalitz plot. This is because the three-body
decay rate, averaged over the spin, can be written as

1 1

=T IM|>dm), dmy, (2.76)

where |[M|? is the Lorentz invariant squared matrix element. If |[M|* is constant
then the phase space will be uniformly populated. Any variation in phase space is
due to a change in [ M|, which will change, for example, if a resonance is formed. If
particles 1 and 2 are from the decay of a short-lived resonance, then the Dalitz plot
will have a band of particles at m,; = My = (m, + m,)*. The width of the bands will
correspond to the resonance decay width. Examples of bands for various resonance
formations (1,2), (2,3) and (1,3) in Dalitz plots are shown in figure 2.8.

In an actual experiment, the phase space will not look as simple as shown in
figure 2.8; rather, it will be filled uniformly/non-uniformly according to the physics
of the decay process. As an example, in figure 2.9, the Dalitz plot for the decay
D' — K*K z" is shown. There can be three possible pairings of the three particles,
(i) (K*K"), (ii) (Kz") and (iii) (K 'z ™).

In figure 2.9, each observed event is represented by a point in the m 1§+1<- -m ,?-ﬂ+
plane. One can see that the distribution of events is not uniform: they are band-like
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mZ- . (GevZ/c*)

mfm(GeVz/c‘t)

Figure 2.9. Dalitz decay of D" — K*K z*. The figure is reproduced with permission from [4].

structures, one horizontal and one vertical. These bands, centered on specific masses,
tell us that the final particles produced in the D decay are not produced equally in all
possible ways, rather they prefer to have particular mass combinations. As was
discussed earlier, the band-like structures are the signature of resonances. In this
particular example, the vertical band centered around m g+, ~ 1.0 GeV” is the ¢

resonance from the (K*K~) combination, with mass m, = 1.02 GeV. The horizontal

band centered around m,- . ~ 0.9 GeV” is the signature of the resonance K™° from
the (K*z") combination with mass 71, =0.892 GeV. From the band widths in the
Dalitz plot, resonance lifetimes can also be obtained. It may be mentioned here that
part of the band width is due to the finite resolution of the detectors.

One also notices that along the band, population is not uniform. For example,
in the horizontal band shown in figure 2.9, two distinct lobes can be seen, one at
My~ ~ 1.7 GeV’ and one at m g+ ~ 3.1 GeV’. The lobes correspond to the spin
of the resonance. Consider the spins of the particles: D°, K* and 7~ have zero spin
angular momentum. The resonance K *°(892), however, is of spin 1. Then the decay
QO — K™K* - (K 7%)K" proceeds through these steps: (i) a spin 0 particle decay
to a spin 0 and spin 1 particle, (ii) the spin 1 decays into two spin 0 particles. The
daughters of the spin 1 particle tend to be aligned or anti-aligned with the first spin 0
particle, giving rise to two lobe structures.

2.11 Mandelstam variables

In figure 2.10, a two-body collision process is shown. Two particles of momenta p,
and p, and masses m, and m, scatter to particles of momenta p, and p, and masses
m, and m,. One can write the cross section for the process in terms of Lorentz
invariant quantities. As was discussed earlier with reference to the three-body decay
process, for a four-particle state, there can be 16 invariant quantities. Out of these 16,
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Py, My Py, My

o7

Figure 2.10. Pictorial diagram of the 4 + B — C + D process.

Py, Py 1y

only six are independent. Of these six independent invariants, only two invariants
are non-trivially independent, since the remaining four correspond to the mass of the
particles and do not give any additional information.

Even though only two invariants suffice for the 1 + 2 — 3 + 4 processes, one
generally defines three Lorentz invariants,

s=(p+p) =@ +p)

= m’ +m; +2EE, — 2p.p, (2.77)
t=(p -p)=0-pn)
= m?’ +mj — 2E.E; + 2p,.p, (2.78)

u=(p -py=(@ -p)
= m’ +m; — 2EE, + 2p,.p,. (2.79)

They are called Lorentz-invariant Mandelstam variables or simply Mandelstam
variables. Obviously, all of the three variables s, ¢ and u are not independent. They
are constrained by the relation

s+t+u=m’+m; +m;+m. (2.80)

From the above identity, one also gets 0 > ¢, u > —s.

Mandelstam variables are used extensively in calculating scattering amplitude,
the complex function which completely defines the scattering process, such that they
are frame independent. There are some specific significances of the variables s, ¢
and u, e.g. s is the square of cm energy in the reaction1 + 2 — 3 + 4, and ¢ is the
square four-momentum transfer in the reaction.

It is pertinent here to mention the crossing symmetry. The scattering amplitude
for any process involving a particle with momentum p in the initial state is equal to
the scattering amplitude for an otherwise identical process but with an antiparticle of
momentum k = —p in the final state.

M(p(p)y(p,)-.) = M(Bp)b,(p,)-.) (2.81)

where ¢ denotes the antiparticle of ¢.
In view of the crossing symmetry, s, t and u can be interpreted as follows:
s: square of cm energy when 1 and 2 (or 3 and 4) are incoming particles.
t: square of cm energy when 1 and 3 (or 2 and 4) are incoming particles.
u: square of cm energy when 1 and 4 (or 2 and 3) are incoming particles.
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The three processes for which s,  and u are the square of cm energy are called the
s-channel, z-channel and u-channel respectively.
Let us consider a specific reaction,
e +e ->ut+pu
MH+@-3)+®
s-channel: e +¢€ — u* +
t-channel: e+ > e +u” (2.83)
u-channel: e +u" - u* +¢.

(2.82)

Thus the two reactions, (i) annihilation €™ + € — u* + = and (ii) scattering
e +pu — e + y, are related by the crossing symmetry.

2.12 Phase space

Theoretical evaluation of the cross section or decay rate for a process contains two
distinct parts. One part is the calculation of the matrix elements, which contains
dynamics of the specific process, while the other part is the calculation of the phase space
integral. For example, the differential decay rate of a particle with four-momentum
P(E,M) into two daughter particles with four-momentum p, and p, is given by

(2ﬂ)

dr = |M|2d6CD(P P D). (2.84)

The two-body phase space d6<I>(P: p,» P,) can be explicitly written as

d3 3p2 54(

CP: 5 1) = G GryaE

-p - D) (2.85)

The total decay rate can be obtained by integrating over the differential decay
rate equation (2.84). For constant amplitude | M|, one needs to evaluate integral

fd6d>(P: D> Py)-
d&p,  dp,
(27)’2E, (27)2E,

I= f dd(P: p, p,) = 5(P-p —p) (286

Let us evaluate it in the rest frame of the mother particle, P =p + p, =
(M, 0,0,0). The delta function in equation (2.86) can be written as,
5% (P - p, —p)= O(E - E - E2)53(p1 +p,) and integration over one of the
momenta is trivial,

I = M E -FE
4(2;;) /EE 2
1 1,
=— [ — Q6(M - E, - E 2.
1oy ] EEPARIQI(M — E - £ (287)
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with E, = ,/plz +m and E, = 1/pl2 + m, . To evaluate the integral, we use the

following identity,

5 = 2.88
[fe)] = 03 (pm) 3(p, = Pyy) (2.88)
where p, is the root of f(p) = 0. Then,
J@) = ym? +p? + Jm+p> - M (2.89)
and fip)=—=m 2B A (2.90)

\/mlz + pl2 \/mzz + p12 E, E,

The root p,, can be easily obtained (see (2.43))

/
Py =D, ﬁz‘ (M2, m?, my) (2.91)
and the desired integral is,
JR— p’d|pldQs(M — E, - E,)
4(2 )’ E,
- [dof= 2.92
4(271)6 / M (292)

2.12.1 n-body phase space

Lorentz invariant n-body phase space is written as

n d n
d¢"@,P1sP2,...g)—H & )2E [p— Zp) ( - ZE] (2.93)

where we have designated the phase space by total momentum p and momenta of
the n-particles. In the cm frame, p = 0 and we rewrite the equation as

n

d¢n(P’ PI,---E,) H (2 )2E 53[21)] ( - ZE)
B d3pn n—1 d%
= 2n2E {H Qx )2E [( ) - Zp]
% 5((E ~E)- ZE)} (2.94)

i=1
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The term under the curly bracket is the phase space factor for (n — 1) particles
with total momentum —p and energy E — E,. Lorentz invariance allows this to be

written as the phase space for a system of (n — 1) particles with total momentum
zero and energy e,

e=J(E-E) —pnz = \/E2 +m} —2E /m} +pn2 . (2.95)

We then obtain a recurrence relation, which can be used to calculate n-body phase
space,

dBRz n—1
X d®" (e, p,...p ). (2.96)

dq)n(P, pl,...pn) = M )1
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Chapter 3
The Glauber model

troduction

A nucleus is an extended object. Accordingly, depending upon the impact parameter’

of the ¢

ollision, several types of collision can be defined, e.g. central collision, when

two nuclei collide head on, or peripheral collision when only glancing interactions
occur between the two nuclei. In high-energy collisions, geometry plays an important
role and in the mid 1970s, a macroscopic model based on simple geometrical, kine-

matical

and statistical assumptions was developed to explain the experimental data

from intermediate energy (200—2000 MeV/nucleon) nuclear collisions. The model is
called the nuclear fireball model or participant-spectator model [1-4]. A schematic
diagram of a collision in the participant—spectator/fireball model is shown in figure
3.1. The model assumptions are briefly discussed here. The fireball model rests on

three m

(M)

(ii)

ain assumptions.

Straight line geometry. The projectile nucleus moves in a straight line even
while interacting with the target nucleus. In this way, an overlap or
interaction zone is defined for each impact parameter b (see figure 3.1).
Nucleons in this zone are called the ‘participants’, while the remaining
nucleons of the target and the projectile are called ‘spectators’. Nucleons in
the spectator region are more or less unaffected by the collision and con-
tinue their motion. Nucleons in the participant region interact and create a
fireball. The baryon number and charge of the fireball are determined by
the collision’s geometry. The mass and velocity of the fireball are then
determined uniquely by kinematics.

Thermalization. It is assumed that enough interactions occur during the
initial formation and subsequent expansion of the fireball that thermal

"Impact parameter b is defined as the transverse distance between the centers of the colliding nuclei.

Remembe

r that it is a vector quantity.
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Figure 3.1. Schematic diagram showing a collision in the participant-spectator model. Participant and
spectator regions are shown in red and blue, respectively.

equilibrium is established among all the hadron constituents, i.e., the total
center-of-mass energy available is converted into random motion, con-
sistent with the conservation laws.

(iii) Decay of the fireball. The fireball decays by statistical emission.

In intermediate energy range collisions, the fireball model could explain the
energy spectra of proton and light nuclei. The model, with appropriate modification,
has also found application in ultra-relativistic energy collisions. The concept that the
nuclei maintain a straight line trajectory even while interacting has been widely used
in ultra-relativistic energy to quantitatively distinguish between different collisions in
terms of collision centrality. Collision centrality has become a key parameter in
relativistic energy heavy ion collisions, because it is related directly to the initial
overlap region of the colliding nuclei; overlap is maximum in central collisions and
minimum in grazing collisions. The system created in a central collision can be
qualitatively different from the system created in a peripheral collision. Different
aspects of reaction dynamics can be understood if heavy ion collisions are studied as
a function of impact parameter or equivalently in terms of the collision centrality.

The impact parameter of a collision cannot be measured experimentally. How-
ever, one can find one-to-one correspondence between the impact parameter of the
collision and some experimental observable, e.g. charged particle multiplicity,
transverse energy (£, = E,El sin 6)), etc. For example, one can safely assume that
multiplicity or transverse energy is a monotonic function of the impact parameter.
High multiplicity or transverse energy events are from central collisions and low
multiplicity or low transverse energy events are from peripheral collisions. One can
then group the collisions according to multiplicity or transverse energy.

This can also be done quantitatively. Define a minimum bias collision where all
possible collisions are allowed. In figure 3.2 a schematic picture of charged particle
multiplicity (V) in @ minimum bias collision is shown. Minimum bias yield can
be cut into successive intervals starting from the maximum value of multiplicity.
The first 10% of the high Ny, events corresponds to the top 10%, or 0-10% col-
lision centrality. Similarly, the first 20% of the high N, corresponds to 0-20%
centrality. The overlap region between 0-10% and 0-20% corresponds to 10-20%
centrality and so on. Similarly, centrality class can be defined by measuring the
transverse energy.
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Figure 3.2. Schematic representation of multiplicity distribution in a minimum bias nucleus—nucleus collision.

Instead of impact parameter, one often defines centrality in terms of number of
participating nucleons (the nucleons that undergo at least one inelastic collision)
or in terms of binary nucleon collision number. These measures have a one-to-one
relationship with impact parameter and can be calculated in a Glauber model.

The Glauber model is a highly successful model of high-energy collisions. In
heavy ion collisions, in general, only a simple variant of the model is used. In order
to appreciate the beauty of the model, we briefly describe the Glauber model of
scattering, as envisaged by Glauber.

3.2 Glauber model of scattering

Nobel laureate Roy Jay Glauber is noted for his contributions to the field of
quantum optics. In the 1950s he used quantum mechanical techniques to solve,
analytically, the scattering problem for composite systems at high energy [5-9]. This
is called the Glauber model or Glauber eikonal model. By high energy we mean the
collisions in which the wavelength associated with the incident particle is much lower
than the interaction range. Under that condition, the incident particle deviates little
from its original path and the quantum mechanical scattering problem can be
solved, allowing for small angle approximations and certain novel assumptions (to
be described later). A simplified version of the model is widely used to classify heavy
ion reactions in terms of collision centrality (to be explained in detail later). Let us
briefly discuss the Glauber model of scattering.

In quantum mechanics, a scattering process is described by the solution of the
Schrodinger equation,

2

l—h—vz + V@, z)]w'(r, 0= —inly 0, (3.1)
2m ot

with the following boundary conditions: (i) the wave function must have an incident

ikr _ jikz - _
plane wave component, " = ¢", with energy £ = -

, moving in the positive z
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Figure 3.3. Schematic diagram of an elastic scattering process. A projectile with momentum k scatters off a
target at rest. The momentum transferred in the process is ¢ = k' — k. The relevant angles are shown.

direction, and (ii) an outgoing spherical wave % For time independent potential,
Vi, t) = V(r), y'(r, t) = e "y (r), the wave function y(r) satisfies
[V + & Jw() = Umy ) (3:2)

with k% = 2’:25 and U(r) = % Dictated by the boundary condition, the wave
function can be written as

ikr

(o), = + £, ¢)67 (3.3)

where f(0, ¢) is called the scattering amplitude. Here 6 is the scattering angle
measured with respect to the direction of the incident beam (assumed to be in the
positive z-axis) and ¢ is the azimuthal scattering angle measured with respect to the
positive x-axis (see figure 3.3). Determination of the scattering amplitude is the main
concern in scattering theory. For the incident plane wave, the initial flux is just the
velocity v. The flux scattered through solid angle dQ is

1
PACH ¢)|27vr2dg (3.4)
so that the differential scattering cross section is

_ flux through dQ
"~ incident flux

do

=176, p)I'dQ. (3.5

By the optical theorem?, the forward (6 = 0) scattering amplitude is related to the
total cross section,

O,

tot — Oel + o

inel T

%Im 16 = 0). (3.6)

2 Optical theorem is a general law of scattering. In quantum theory of scattering it arises as a consequence of
conservation of probability.
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There are standard methods for solving for the scattering amplitude (see any
standard textbook on quantum mechanics, e.g. [10, 11]). In partial wave analysis,
for the azimuthally symmetric potential, the scattering amplitude f(6, ¢) can be
expanded as

I=oo
1 ,
0) = Y — (21 + 1)(e® = 1) B(cos(9)). 3.7
Q) ;M( ) ) B (cos(6)) (3.7

In equation (3.7), 6, is the phase shift. Squaring equation (3.7), integrating over
the angles and using the orthogonality condition for Legendre polynomials, one
obtains for the scattering cross section,

P % D (21 + Dsin’s,. (3.8)
=1

Each partial wave then contributes to the scattering cross section. Low-energy
collisions are dominated by s-wave scattering and one generally defines a scattering
length a = % such that the dominant s-wave contribution is 6,_, = 47a’.

In high-energy collisions, the wavelength associated with the incident particle is
much smaller than the range of the interaction and scattering phase shifts at large /
take on values different from zero. Furthermore, high-energy collisions are domi-
nated by small angle collisions. For small angle and large /, the Legendre poly-

nomials P (cos@) may be approximated as

0

1 e . .0
F(cosb) ~ P f exp{1(2l + 1) sin ) cos(a)} da. (3.9

In high-energy collisions, the summation of / contains many terms and can be
accurately replaced by an integral over /. Now, if we define an impact distance b with
the relation, kb = [ + %, the summation in equation (3.7) can be replaced as

gﬁfomdlakfomdb. (3.10)

Introducing a function y (b) = 25, the scattering amplitude may be rewritten as
k ol ., .0

f(0) = = f / (€7 — 1) exp] 2ikb sin = cos(a) | bdbda.  (3.11)
271 Jo Jo 2

The above equation can be written in a more convenient form in terms of the
momentum transferred q in the collision. In spherical polar coordinates, the incident
and final momenta of the particle can be written as

k = (0, 0, k) and k' = k(sin(8) cos(¢), sin(d) sin(¢), cos(H))

such that the transferred momentum, component-wise is

q=k' —-k= k(sin(é) cos(¢), sin(@) sin(¢), —sinQ(g)). (3.12)
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In high-energy collisions, the scattering angle 6 is small and the transferred
momentum lies predominantly in the transverse plane. Taking the scalar product of
q with the impact parameter vector which makes an angle a with positive x-axis
b = (b cos(a), b sin(a)), and making a small angle approximation,

q-b=kbsin(d)cos(¢p — a) ~ 2kb sin(g) cos(¢p — a), (3.13)

the scattering amplitude can be approximated as
1(0) = % [ e (1 = e )an. (3.14)

In equation (3.14), the integration is over the plane of impact parameter vectors.
The relation between the phase shift function y(b) = 25, and the potential is of
the form

1 0
4(b) = _E/_m V(b, z)d=. (3.15)

The conditions under which the Glauber approximation is valid were studied in
detail. It turns out that the Glauber approximation is valid under the condition

V

i <1 and V;—E < ka < (V/IT)z (3.16)
Sometimes it is useful to use the ‘Profile function’ y(b),
y(b) =1 —¢e¥®, (3.17)
to write the scattering amplitude as
flg) = % [ enydn. (3.18)

One notes that the profile function is the Fourier transform of the scattering
amplitude,

1 —ig'b 42
1) = 5 [F@e ™ ey, (3.19)

Using the optical theorem, from equation (3.14) one can immediately write for
the total cross section,

4 , ,

o = %Im f(k = K)) = 2Re f [1-e*®]d. (3.20)

When the scattering is concentrated in the forward direction, the integration over

the solid angle can be replaced by an integration over the plane, tangent to the
sphere at k|,

&k

dQ =~ (3.21)
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and the integrated elastic scattering cross section can be written as

o= [ dQlk, k)P
1 21 122927 § Lik—k')yb iy (b) —i(k—k")b’ i o) TF
_4—ﬂ2/dkdbdb{e [1-e ]}{e [1-e ]}
- /d2b|1 _ et ®)? (3.22)
where we have used the two-dimensional S-function,
52— b) = 1 [ ket I0) (3.23)
(27)

Finally, the inelastic cross section can be obtained as
60 =0 —0u= [ &b(1=|]). (3.24)

We have developed the Glauber model expression for elastic scattering amplitude
with the assumption of azimuthal symmetry. However the expression is more gen-
eral and also applicable in the case of azimuthally asymmetric potential (see [6]).

3.3 The Glauber model for a composite scatterer

The Glauber model views scattering of a composite projectile-target in terms of the
individual interactions of the constituent nucleons. In figure 3.4, a nucleus—nucleus
collision, as viewed in a Glauber model, is shown. It is assumed that at sufficiently
high energy, nucleons carry enough momentum and are undeflected as the nuclei
pass through each other. It is also assumed that the nucleons move independently in
the nucleus and that the size is large compared to the nucleon—nucleon (NN)
interaction range. The hypothesis of independent linear trajectories of nucleons
makes it possible to obtain a simple analytical expression for nuclear cross section,
number of binary collisions, participant nucleons, etc.

For scattering off a composite system like a nucleus, the major assumption
Glauber made is that the total phase shift function is the sum of the phase
shift function of each individual nucleon, considered separately. For example, in
nucleon—nucleus collisions, if the target nucleus has A4 nucleons, at fixed positions

%
|b-s s

v

Figure 3.4. Nucleus—nucleus collisions as viewed in a Glauber model.

Tb
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Figure 3.5. A schematic diagram of impact parameters b for nucleon—nucleus (left panel) and nucleus—nucleus
(right panel) collisions, in the transverse plane.

I, I,,...r,, with components s, s,,...s, in the plane perpendicular to the incident
beam (see figure 3.5), the total phase shift function can be written as

A
X0 518080 = Y x (b = s), (3.25)

J=1

or equivalently, the total profile function for the composite target is

. A
1—;ot(ba Sy, 52,...SA) =1 - e‘Z-:l)(/-(b—sj)

f[ {1-7(b-s)}. (3.26)

J=1

Before we proceed further, we would like to stress that the assumption that the
phase shift function of individual nucleons adds up (equation (3.25)) is a non-trivial
assumption. We will not go into too much detail, but since the phase shifts produced
by individual target nucleons are added up, not the scattering amplitudes, this is not
a simple superposition; rather, it takes into account the effect of multiple scattering
in all orders. It can be simply seen if the profile function is expanded,

Lo = [1 - 27 + ZW Dy - ] (3.27)

ijk

One can visualize the scattering process as follows: as the incident particle with
momentum Kk scatters off the nucleus to momentum k', simultaneously, the state of
the target nucleus changes from |i) to [f). I} (b, s,, s,...s,) can be regarded as the
operator which induces that change in the target nucleus. Introducing the config-
uration space wave function, the profile function averaged over nuclear volume is

A

Tud, 1)) = [ w_;.k(rl,.-.rA)ll -TI{ -7 0- sj)}]mrl,-.-rA)

J=1

d&nd’r,...dr,. (3.28)

For elastic scattering, initial and final states are the same. If the simplify-
ing assumption is made that the ground-state wave function is a product
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wave function, y, = Hj(]b(sj, z;) with || = %, the profile function can be
written as
A
T 51y =1 = [ IT pwl( -7 -s)e,
J=
g,
—1- (1 - /y(b _s) /’A d%) (3.29)

where in the last line we have dropped the subscript j as the profile function y is the
same for all the nucleons.
The elastic scattering amplitude is then given by

f,(@ = ;ﬁ fdzbeiq'b{l - [1 - /y(b - s)%cﬁr] } (3.30)

If y varies more rapidly than p(r), one obtains

£(q) = % / dzbeiq'b{l - [1 + %%’wa 0) T(b)]A} (3.31)
where we have introduced the thickness function,
T(b) = / p(r)dz = f (b, z)dz (3.32)
and used the identification (see equation (3.18)),
?—ZfNN (0) = /y(b — s)d’s. (3.33)
For large 4, using ¢" = lim,_ (1 + 7)", the elastic scattering amplitude can be
written as
fo@ = % / dzbe“*b{l - exp[%fw ©0) T(b)]}. (3.34)

One can now define an effective phase shift function,
2n
Zg() = 7fNN 0)T'(b), (3.35)

which contains only the geometry of the nucleus and forward scattering amplitude of
NN scattering. In terms of the effective phase shift function, the form of the elastic
scattering amplitude for proton-nucleus (pA) collisions is the same as in proton-
proton (pp) collisions:

f,(@ = % /dzbeiq,b{l _ ei;(crr(b)}_ (3.36)
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Using equations (3.20), (3.22) and (3.24), the total cross section (g,,) and
integrated elastic scattering cross section () for pA collisions can be written as

6w =2Re [ dzb{l - exp(wn (3.37)
o= [ & {1 - exp(wJ} ‘ . (3.38)

The integrated inelastic scattering cross section (o,,) can also be calculated,

6o = [ Ebi1 = exp(=0, b))}

v [ &1 - exp(-o) T (b))}, (3.39)

In obtaining equation (3.39) we have used the optical relation equation (3.6),
ot = ‘Wk(O) and used the fact that in NN collisions o, ~ o)™
We have briefly discussed the Glauber model for elastic scattering of pA collisions.
The model can also be extended for nucleus—nucleus (AA) collisions, although the
equations become more complicated. For example, the profile function 3.15 for pA

collisions to be changed into AB collisions is as follows (see figure 3.5),

A A A B B B
F(b, S;,85,...8%, S, sz,...sB)

1 - f[ﬁ {1 — (b +s/ - sf)}. (3.40)

i j=1

In the above equations, the superscripts 4 and B denote that the nucleons are
from projectile and target nuclei respectively. The nuclear volume averaged over the
profile function can be written as

<F(b, si',si,..s%, 87, sf,...s§)>
A B
=¥ | -TIT1 {1—y(b—sf—sf€)} | ®) (3.41)
=1 j=1

with

Y =

—

¢(e) [T o (7). (3.42)

B
j=1

1

In the end, one can obtain similar relations as in equations (3.37)—(3.39) for total,
elastic and inelastic cross sections but with a modified thickness function,

Tu) = [T Tyb - 9), (3.43)
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and the inelastic cross section can be written as
o = / @ {1 = exp(=ad T, (b)) }. (3.44)

Scattering amplitude for an inelastic process is more complicated and will not be
discussed here. Interested readers may look into the excellent review by Glauber [5].

3.4 Nuclear density

In the Glauber model, the scattering cross section for nucleon—nucleus/nucleus—nucleus
collisions is computed in terms of the nuclear one-body density p(r) or more specifically
the nuclear thickness function 7'(b) and elementary NN inelastic cross section o;,.

A nucleus is made of protons and neutrons and one can define a proton, A, (r), and

neutron’s, p (r), density functions, such that integrated over space they reproduce
the atomic number (Z) and neutron number (V) of the nucleus. The two density
distributions are not identical, especially for large mass nuclei when N > Z. In
high-energy collisions, protons and neutrons are generally not distinguished and for
an atomic mass A nucleus, nuclear density function is defined as

/ p(dr = A. (3.45)

The nuclear one-body density function p (r)d’r then gives the average number of

nucleons within a small volume d’r.

Density distributions can be obtained from self-consistent theories such as the
Hartree—Fock/Hartree—Fock—Bogolyubov theories. For nuclei with 4 > 12, a
convenient parametric form for the density function is

1 + w(r/R)
p(r) = p, (r_)R
1+exp( )

a

(3.46)

where p, is the nucleon density, R the radius and a the skin thickness. w measures the
deviation from a spherical shape. In table 3.1, these parameters are listed for selected
nuclei.

Table 3.1. Parameters R, a and w of a three parameter Fermi distribution
for selected nuclei are given.

Nucleus R (fm) a (fm) w (fm)
%0 2.608 0.513 —0.51
“Cu 42 0.596 0.0
YA 6.38 0.535 0.0
208pp 6.62 0.594 0.0
2y 6.81 0.6 0.0
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For a large number of nuclei the parameters can be approximated as

R=1.124" - 0.8647"(fm) (3.47a)
a = 0.54(fm) (3.47b)
w=0. (3.47¢)

If in equation (3.46), we replace p, — %, p (r) normalized to unity can be inter-
preted as the probability of finding a given nucleon at a position r(= x, y, z). Then,

T,(b) = / dzp, (b, z) (3.48)

is the probability that a given nucleon in the nucleus is at a transverse distance b.

3.5 Binary collision numbers

In equation (3.24), we have obtained the expression for the total inelastic scattering
cross section for NN collisions,

o, = f &1 - [#]). (3.49)

We can introduce a probability function p(b) such that two nucleons at impact
parameter b interact inelastically,

p) = (1= ]e"])a,
= 1(b)o,, (3.50)

where, in the last line, we have introduced the NN thickness function #(b) =
1 — |€“®|*. The thickness function has to be normalized to unity to fulfil the
requirement that / p(b)d’b = o,

Let us now consider pA collision, a schematic picture of which is shown in the left
panel of figure 3.5. Consider a particular nucleon in the target atr, = (s, z,), i.e.
transverse position s,. For an impact parameter b collision, the transverse distance
between the projectile nucleon and the specific nucleon is b —s,. According to
equation (3.50), they will interact inelastically with the probability #(b —s,)o;,.
Considering that the specific nucleon can be any one of the target nucleons, the
probability that the incident nucleon at impact parameter b interacts inelastically
with a target nucleon is

p®) = [ drpw)ib = s, = Tyb)a,, (3.51)
where we have introduced the nucleon-nucleus thickness function,
T,y = [drp@yit-s) = [Esdzpmib-s). (3.52)
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The scale of variation of the NN thickness function (¢ (b)) is much smaller than
the scale of variation of the nuclear density. One can approximate #(b —s,) ~

59 (b — s,) and the nucleon—nucleus thickness function reduces to
T,0) = [ dzyp(, 2) (3.53)
with the normalization condition,

fdszA(b) —1. (3.54)

Similarly, in impact parameter b nucleus—nucleus collisions, one target nucleon
at transverse position s, and one projectile nucleon at transverse position s, will
interact inelastically with probability #(b —s, — sy)o,. The volume averaged
probability that one nucleon from the projectile will interact inelastically with one
target nucleon can be written as

p®) = [ drdnpE)p@)ib =5, — )0, = Tp®la,, (3.5
with

2
in the limit: 7(b) — 52 (b). (3.56)

Tu) = [ESTOT6 -0 = [T (s+ 2755 - 2)

p(b) = T,,(b)o, is the probability that in an impact parameter b collision, a
projectile nucleon interacts once with a target nucleon. The probability that they
did not interact is then (1 — 7, (b)o,,). If the target and projectile nucleus have 4
and B nucleons respectively, the probability of having » interactions is the binomial
distribution,

A-n

P(1.b) = (48) [0, 701 - o, T ® ] (3.57)

Each interaction is a binary collision and the average number of binary collisions
can now be calculated as

(n(b)) = Y nP(n, b) = ABT ;(b)c,,. (3.58)

n=1

3.6 The inelastic cross section

The total probability of an interaction between 4 and B is
do,,
d’p

= Y P b)=1-[1-0nT,m]". (3.59)

n=1
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The total inelastic cross section is

o= [&(1-[1-0,T,m]")

~ f & (1 — exp(ABo, T, (b)). (3.60)

3.7 Participant number

Using the Glauber model, we have calculated the average number of binary colli-
sions. This has one-to-one correspondence with the impact parameter and can be
used to characterize the collision centrality. However, it is preferable to characterize
the collision centrality using the ‘participant number’ or ‘wounded nucleon
number’>. One experimental observation [16] is that in 200-2000 MeV A proton
induced collisions, the ratios of average multiplicities in pA collisions and in
pp collisions are approximately a constant,

}iLA = %[17 + 1], (3.61)

pp

where we have written the constant as %(17 + 1). The result is explained by the
wounded nucleon model, where it is assumed that the particle production is an inco-
herent superposition of particle production from wounded nucleons (those nucleons
which have interacted inelastically at least once). If the incident nucleon is counted as
a wounded nucleon, w = 1 + 7 can be regarded as the total number of wounded
nucleons in pA collisions. It appears that the incident nucleon contribution to the total
multiplicity is the same as the contribution of each wounded nucleon in the target and
equals approximately %ﬁpp. There is no difference whether a nucleon is wounded once or
several times. One may consider the physical process as follows: a soft collision excites
the nucleon and particles are produced from the decay of the excited nucleon. Now if
a nucleon is hit twice, the second hit only changes the excited state of the nucleon,
not leading to any additional decay product. Thus whether a nucleon is wounded once
or n times, the total number of particles from its decay remains the same.

Bialas, Bleszynski and Czyz [17] proposed to extend the above relation to
nucleus—nucleus collisions. Average multiplicity in a collision of two nuclei with the
mass numbers 4 and B is

= 5[17/1 + g, = %WABﬁpp (3.62)
where 7, ;) is the average number of wounded nucleons in the nucleus A(B). The
wounded nucleon model then predicts that 77, , per wounded nucleon is a constant.

The number of wounded nucleons or participant numbers can be calculated using
the Glauber model. As mentioned previously, in 4B collisions, the number of

3There is a subtle difference between number of wounded nucleons and number of participants. Those
nucleons that interact only inelastically are called wounded nucleons. Participant numbers also include those
nucleons interacting elastically.
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wounded nucleons is the sum of the wounded nucleons in 4 and B and it suffices to
calculate for one. Consider an A B collision at impact parameter b. Let us denote the
transverse positions of the nucleons in A as s, s;,..., s} and similarly for the
nucleons in B. Consider a nucleon i in B. The probability that the ith nucleon in B is
wounded, i.e. it has collided with any one of the projectile nuclei, is then

A
p(sf; A; s8], b) =1- H [1 - z(b +s’ - sj‘)am]. (3.63)
j=1
After integrating over different configurations of the nucleons in B,
ﬁ(A; si',...s%, b) = /dszp(sB; A; sf’,...sj)]];(sB)

A

_ /dszTB(b - sB)[l T [ -os" - shaa ]| 6%

j=1

The probability of having w, wounded nucleons is the binomial distribution,

P(WB; B; A4; sf’, ...sj, b) = (WBI;) [ﬁ (A; S1Aa ---Sj)]wg

x[1-p(4:st, ...sj)]B_w”. (3.65)
The average number of wounded nucleons in B is
<WB(B; A sl ..s], b)> =Bp (A; s, .87, b). (3.66)

Now the configuration of nucleons in nucleus 4 needs to be averaged over and we
obtain

g (B: ) = B [ &5!T,(s) [@iT,(s)... [dsiT s
X /dszI]g(b - sB) [1 - [1 — t(sB - s;‘)ain]]
= B/dszJ]g(b - SB) (1 - [1 - ‘/dzsAqu(sA)z(sB - sA)ain]A].

In the limit, #(b) — 8% (b),

(B ) = B [ &T,0 = 9)(1 - [1 = T,9)a,]").

A

Similarly, one can obtain the wounded nucleon numbers in nucleus 4, and the
total number of wounded nucleons in an impact parameter b collision is

) = 4 [ ETE(1-[1-0n0-9T)

+de2sTB(b —s)(1 =1 = 6, T,)]"). (3.67)
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Figure 3.6. An optical Glauber model calculation for the impact parameter dependence of number of parti-
cipant nucleons (N,,,,) and number of binary collisions (N,,;) in a /5y =200 GeV Au+Au collision. The
inelastic NN cross section is oy =42 mb.

Glauber model calculation of the binary collision number or participant number
is energy dependent through the inelastic NN cross section ;. It is common to find
oxn ® 30 mb at the Super Proton Synchrotron (SPS; /s ~ 20 GeV), 40 mb at
the RHIC (/s = 200 GeV) and 70 mb at the LHC (/s = 1000 GeV). For
demonstration purposes, in figure 3.6 we have shown a Glauber model calculation
for N,,,, and N, as a function of impact parameter in a /sy =200 GeV Aut+Au
collision. One can see that there is a one-to-one correspondence between impact
parameter b and participant number or collision number.

3.8 The Monte-Carlo Glauber model

In the Monte-Carlo (MC)-Glauber model, individual nucleons are stochastically
distributed event-by-event and collision properties are calculated by averaging over
many events. The optical Glauber model and the MC-Glauber model give very close
results for average quantities like binary collision number or participant number.
However, in quantities where fluctuations are important, e.g. participant eccen-
tricity, the results are different.
MC-Glauber model calculations proceed as follows.
(i) An impact parameter b for the collision is selected randomly from the
distribution,
dN

— « b, 3.68
b = (3.68)

where N is the number of events.
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(i1)) The nucleons in the colliding nuclei are distributed randomly following the
probability distribution p (r). To be more specific, generate three random
numbers, R,, R, and R;. In spherical polar coordinates, the volume element
is given by r’dr sin(#)dfd¢ = r’drdcos(d)d¢. R, and R, are uniform
random numbers varying between [—1, +1] and [0, 27]. R, is a random
number following probability distribution p (r) and weighted by 7.

(iii) The centers of the two colliding nuclei are shifted to (—b/2, 0, 0) and
(b/2, 0, 0) respectively.

(vi) Assuming the nuclei are moving in a straight line, two nuclei are collided.

(v) If the transverse separation between two colliding nucleons is less than the
‘ball diameter’ D = /oy /7, they are tagged as having interacted, and a
register keeping the coordinates of the colliding nucleons is updated. More
details about the model can be found in [13, 14].

3.9 The two-component model for multiplicity

In ultra-relativistic energy collisions, the final state contains large numbers of
particles. For example, in /s =200 GeV Au+Au collisions, in a central 0-5%
collision, rapidity density, i.e. charged particle multiplicity in central rapidity,
ddL;h ~ 700. Over the whole rapidity range charged particle multiplicity is ~ 4600
=0

[15]?7 The majority, ~ 85%, of the particles are pions. Considering that for every pair
of charged pions there is a neutral pion, in a central /s, =200 GeV Au+Au col-
lision more than 6000 particles are created. Most of the particles are low p, particles,
with a small (less than 5%) contribution from high p_particles.

The modern theory of strong interaction is quantum chromodynamics (QCD).
Later, we shall discuss QCD in some detail. In QCD one distinguishes between two
types of processes: (i) soft processes, involving low momentum transfer of ¢ < 1-2
GeV and (ii) hard processes where the momentum transfer is high, ¢ > 1-2 GeV.
Hard processes, in theory, are calculable from first principles, but the soft processes
are not. The large number of low p_particles in RHIC Au+Au collisions are from
soft QCD processes. One builds models for these particles. As discussed earlier, one
such model is the wounded nucleon model. In the wounded nucleon model, the soft
process contribution to the multiplicity scales with the wounded nucleon or parti-
cipant numbers,

S o N (3.69)
n

In figure 3.7, experimentally measured charged particle multiplicity per partici-
pant pair
1 dN,
0.5N_,, dn

part

B

n=0
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Figure 3.7. Centrality dependence of charged particle multiplicity

dNgp
dy

‘”=0, in the energy range /s = 8.7—

2760 GeV. /sy = 2760 GeV data are from [18]. /s = 8.7-200 GeV data are compiled from PHENIX [19].
The solid lines in the figure are two-component model fits including soft and hard processes.

at various collision energies, is shown against the participant numbers. In the
wounded nucleon model,

L
0.5N,

part

dN,,
dn

n=0

is required to be constant. Deviation from the wounded nucleon prediction is small
in /s =8.7GeV collisions, but in higher-energy collisions the ratio increases
slowly in more central collisions, indicating that multiparticle production in ultra-
relativistic heavy ion collisions is not solely from soft processes. It has non-negligible
contributions from hard processes. In the two-component model, one assumes that
the hard process contribution scales with binary collision numbers. One can quantify
the hard process contribution by parameterizing the rapidity distribution,

gt _ ANy

3.70
ay an (3.70)

[

n=0 n=

Experimental data at RHIC and LHC can be fitted with approximately constant
values for the hard scattering fraction f= 0.13.
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Chapter 4

Classical theories for macroscopic systems

4.1 Introduction

The idea of colliding heavy ions with higher and higher energy is not just to pro-
liferate the number of particles compared to those that are produced in lower-energy
nucleus—nucleus (AA) collisions, but to produce a qualitatively different system. The
qualitative difference is that unlike in lower-energy collisions, a high-energy AA
collision is not just an incoherent superposition of nucleon—nucleon (NN) collisions.
Rather, we expect to produce a macroscopically large collective system.

The basic difference between quarks and gluons inside a hadron and quarks and
gluons in quark—gluon plasma—as existed in the early Universe, and as is found in
the cores of neutron stars or produced in high-energy nuclear collisions—is that as
opposed to the former, the latter can be treated as a macroscopic system. Generally,
one calls a system microscopic if, as the name suggests, it is roughly of atomic
dimensions or smaller, and a system macroscopic when it is large enough to be
visible in the ordinary sense. However, this definition is rather inexact. A more
appropriate definition depends on the number of particles in the system. A system is
macroscopic if the number of particles (V) satisfies

L <1, 4.1)

JN

which means that statistical arguments can be applied with reasonable accuracy.
Let us check the criterion vis d vis a /s,y =200GeV Au+Au collision. In a

Sy =200GeV AutAu collision, approximately N = 10°-10* particles are

created for which 1/4/N =0.03-0.01. It appears that the criterion in equation (4.1)
is largely satisfied.
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Now a macroscopic or many-body system is complex and it is impossible to gain
an exact knowledge of it. For example, in classical mechanics, to completely specify
an N-body system, 6N real numbers are required, as each particle will require three
real numbers to specify its position and three for its momentum. Given the initial
conditions for each of the particles, in principle, Newton’s equations of motion can
be solved for its future development. Now if N is very large (for example, one gram
mole of gas contains N ~ 10> molecules), simultaneous solution of large numbers of
differential equations is an impossible task.

It is also not needed for practical purposes. A macroscopic system can be char-
acterized by a few macroscopic variables, e.g. energy, volume, pressure, temperature,
etc, and the dynamics of the system is then obtained in terms of these macroscopic
variables. The macroscopic variables depend too little on the exact ‘microstate’’ of
the system. One of the fundamental assumptions of many-body physics is that an
isolated many-body system, if left undisturbed for a sufficiently long time, will attain
equilibrium. It is to be remembered that even if the system is in equilibrium, its
constituents remain dynamic, for example, a glass of water left alone will soon reach
equilibrium but the H>O molecules will be in continual motion. By equilibrium, we
understand that the macroscopic variables characterizing the system will be inde-
pendent of time. More specifically, a system is in equilibrium if the probability of
finding the system in a particular macrostate does not change with time. Thermo-
dynamics and statistical physics are concerned with the equilibrium properties of the
many-body system. They do not comment on the process of equilibration; that part
is addressed in kinetic theory. Thermodynamics is a phenomenological theory of
macroscopic systems at equilibrium. Its applicability range is wide. It can be applied
to classical gases and liquids, quantum systems such as superconductors, black holes,
the early Universe, etc. Thermodynamics tries to understand the macroscopic
behavior of the many-body system, irrespective of the microscopic properties of the
constituents and their interactions. Statistical physics on the other hand tries to
understand macroscopic behavior in terms of the microscopic properties of the
constituents and their interactions. Kinetic theory tries to understand the approach
to equilibrium.

Alongside the following few important thermodynamics results, statistical physics
and kinetic theory will be discussed. More insight can be gained from [1-5].

4.2 Brief review of thermodynamics
4.2.1 Thermodynamic laws

Thermodynamics is based on three laws, which are expressions of experimental
findings.

(1) The first law. The first law is essentially an embodiment of James Prescott
Joule’s experimental demonstration of the equivalence of heat and energy. It is a
statement of energy conservation, that energy can neither be created nor destroyed,

! Quantum mechanically, a microstate is a stationary state wave function of the many-body system.
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and can only be changed from one form to another. The law can be formally stated
as follows:

If in a thermodynamic transformation, AQ is the heat absorbed by the system and
AW is the work done by the system, the quantity

AE=AQ — AW 4.2)

is the same for all transformations from one given initial state to a given final state.

The law immediately defines a state function called internal energy E
dE=dQ - PdV, (4.3)

where we have replaced dIW by PdV, the work done by a hydrostatic system with
pressure P and volume V. By the first law, f dE depends only on the limits of the
integration, not on the specific path of the integration and it is an exact differential.

(i1) The second law. The second law was derived from Carnot’s theorem that ‘No
engine operating between two given temperatures is more efficient than a Carnot
engine’. The efficiency of Carnot’s engine, operating between temperature 7' and
T,, T, > T}, is given as

n=1- (4.4)

N

There are several statements for the second law of thermodynamics. The Clausius
statement is as follows.

There exists no thermodynamic transformation whose ‘sole’ effect is to extract a
quantity of heat from a colder reservoir and to deliver it to a hotter reservoir.

A consequence of the second law is the Clausius theorem that in any cyclic
process throughout which temperature is defined, the following inequality holds,

ﬁd?Q <0, (4.5)

a corollary of which is the statement that in a reversible process, the integral f dTQ is
independent of the path. The corollary defines the state variable ‘entropy’ which is
an exact differential,

ds = d—Q (4.6)
T

An alternative statement of the second law is that the entropy of an isolated
system can never decrease.

In statistical physics, there is a more profound definition of entropy related to
microstates (the state where all the parameters of the constituents are specified) of the
system. Entropy is greater when more microstates are available. The law of increase of
entropy states that the system evolves such that the number of microstates increases.
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(ii1) The third law. In 1905 Walther Nernst enunciated the third law of thermo-
dynamics. It can be stated as follows:

Entropy approaches a constant value, which can be taken as zero, as the tem-
perature approaches absolute zero.

The second law defines the difference between the entropy of two states connected
by a reversible transformation. Such reversible transformations may not exist for all
systems. The general statement of the third law, that entropy approaches a constant
value as the temperature approaches absolute zero, irrespective of the system,
uniquely determines the entropy of any system. An alternative statement of the third
law is that absolute zero cannot be reached by any finite amount of processes.

Sometimes the zeroth law of thermodynamics is mentioned. This can be stated as
follows.

If system A is in thermal equilibrium with system C, and system B is in thermal
equilibrium with system C, then system A is in thermal equilibrium with system B.

An alternative statement is that an isolated system, left undisturbed, will reach
equilibrium.

4.2.2 Thermodynamic potentials

A thermodynamic system is characterized by a number of state variables, either
extensive or intensive’. Thermodynamic potentials are extensive state variables of
the dimension of energy. Their purpose is to allow for simple treatment of equili-
brium for systems interacting with the environment. As the name suggests, they also
have exact differentials.

A differential form,

A(xy, Xy, X5, ...)dx; + B(xy, x5, X3, ...)dx, + C(x}, X5, X5, ... )dX;. ., 4.7)

is said to be exact differential if there exists a scalar function ¢ = ¢(x,, X,, X3, ...)
such that

d¢ = (%] dx, + (§—¢) dx, + (%] doxy + . (4.8)

ox, X, 0x,

X2, X300 X[ X350 X, X0, X4

In thermodynamics, several exact differentials can be constructed and can serve as
the thermodynamic potentials. In table 4.1, we have listed the thermodynamic
potentials that are commonly used.

Let us consider the first law of thermodynamics, the mathematical statement for
which can be written as

dE = TdS - PdV. (4.9)

2 Extensive variables are additive, while intensive variables are not. For example, bring two bodies, each of
volume (V') and pressure (P), together. The total volume will add up to 2V but the pressure will remain the
same. Volume is an extensive variable, pressure is an intensive variable.

4-4



A Short Course on Relativistic Heavy lon Collisions

Table 4.1. List of commonly used thermodynamic potentials.

Thermodynamic potential Symbol Differential form Natural variables
Internal energy E T7dS — PdV + udN S, V,N
Helmbholtz free energy G —PdV — SAT + udN T, V, N
Gibbs free energy F —SdT + VdP + udN T, P, N
Enthalpy H TdS + VdP + udN S, P, N
Grand potential Q —PdV — SAT — Ndu V, T, u

It is an exact differential in variables (S,}"), and consequently internal energy
E=E(S,V) can be considered as a thermodynamic potential. One can write

dEz(%) dS+(%) dv, (4.10)
a5 ), V)
and identify
7))
=l =1 4.11
(55). @.11)
and (E) =-—P. (4.12)
V),

Equations (4.11) and (4.12) are called Maxwell’s relations. There are six more
Maxwell’s relations connecting various thermodynamic potentials and macroscopic
variables.

When the energy of the system varies, rather than (S, ") it is more convenient to
use the variables (7,V'). The change can be effected through Legendre transfor-
mation (see appendix A.7),

F(T,V)=E~ TS, (4.13)

which defines the free energy (or more specifically the Helmholtz free energy) F. Free
energy is also a thermodynamic potential as the differential of F is exact,

dF =dE - TdS - SdT

=—PdV — SdT. (4.14)
The differential of F can also be written as
sz(E) dV+(£) dT. (4.15)
V), or),
One can immediately identify that
(ﬂ) __p (4.16)
av),
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and (E)

oT
The physical implication of free energy is also apparent from equation (4.14).
For isothermal processes (d7 = 0), the change in free energy is the negative of the
maximum possible work done by the system. To state it another way: at fixed
temperature and volume, free energy is at a minimum at the equilibrium. At fixed
temperature, free energy is the most important quantity. As will be discussed later,

free energy is directly related to the partition function Z (which will be discussed
shortly),

=-5. 4.17)

Vv

F=-TlogZ. (4.18)
One can also define a Gibbs thermodynamic potential or Gibbs potential G,
G(T,P)=F+ PV. (4.19)
The differential G can be written as
dG=dF + PdV + VdP = -SdT + VdP (4.20)

from which one can obtain the relations

3G

(E)P __g 4.21)
and (ﬁ) =V. (4.22)

oP ),

The physical meaning of the Gibbs potential is apparent from equation (4.20):
if the system is kept at fixed temperature and pressure, the Gibbs potential remains
unchanged. Or to put it another way: at constant temperature and pressure, the
Gibbs potential is a minimum at equilibrium.

One can also define a quantity called enthalpy, H(P, S),

H=E+ PV

dH =TdS + VdP (4.23)
and identify
(ﬁ) _7 (4.24)
oS ),
and (ﬁ) =V. (4.25)
oP ),

From the definition of enthalpy, its physical significance is clear. It is a measure of
total energy (internal as well as the work done by the system).
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The relations equations (4.11), (4.12), (4.16), (4.17), (4.21), (4.22), (4.24) and
(4.25) are called Maxwell’s thermodynamic relations.

The statement of the first law in equation (4.9) assumes that the number of
constituents of the system (molecules, atoms or whatever is appropriate) remains
unchanged. We name the constituents particles. Indeed, the first law is from a pre-
relativistic era when the equivalence of mass and energy was not known. In a
relativistic system, allowing for a change in the particle number », the mathematical
statement for the first law is

dE = TdS — pdV + udN (4.26)

where we have introduced a quantity u called chemical potential. The physical
meaning of chemical potential is also clear. It is the energy cost of adding one more
particle to the system while keeping both S and V fixed. Strictly speaking, in
equation (4.26), udN should be written as Zi%dM , making an allowance for the
production of different types of particles, but for now we will continue with udN.
The results can be generalized as required.

In certain applications it is preferable to define energy density as e = E/V,
entropy density as s=S/V and number density as n= N/V. One then obtains the
well-used thermodynamic identity

e=Ts — P+ un. (4.27)

Equation (4.26) implies that E is a function of (S, V, N). When energy and
number of particles both vary, it is more convenient to use the set of variables
(T, V, u). The change is again effected through a Legendre transformation,

T, V,u)=E— TS — uN (4.28)

where we have introduced the Landau potential or grand potential Q. The differ-
ential dQ can be calculated as

dQ = dE — TdS — ST — udN — Ndu
= —pdV — SAT — Ndu

=) o (2
aV T oT ),

One can identify the partial derivatives as

N = —(@) S = —(@) P= —(@) L (430)
ou oy oT v 114 Ty

It may be noted that when allowance is made for a change in the particle number,
all the thermodynamic potentials discussed earlier should be supplemented by a term
udN without affecting their significance.

a7 + (@) du. (4.29)
a'u T,V

M
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4.3 Brief review of statistical physics

Like thermodynamics, statistical physics also tries to understand the equilibrium
properties of macroscopic systems. However, while thermodynamics makes no
reference to constituent properties, statistical physics tries to understand equilibrium
properties with reference to a system’s constituents and their interactions.

4.3.1 Classical statistical physics

We mentioned earlier that classically, to completely specify a many-body system of
N particles, 6N real numbers are needed. If H is the Hamiltonian of the system, the
dynamics of the system will be completely specified by the equations of motion,

g =04 p) i=1,2,..3N (4.31a)
1 apl
—p = ‘mgﬂ i=1,2,..3N, (4.31b)
q.

1

where (¢, p) = (g, 4,---9,» P,» P, ---P5, )- In principle, given an initial condition for
the system, its future is completely dictated by equation (4.31).

In a 6/N-dimensional phase space (called I'-space), an N-body system can be
represented by a point. As the system evolves with time following the equations of
motion, the representative point will trace out a complex trajectory in I'-space, and
each point of the trajectory will indicate a definite state of the system. The trajectory
will not cross itself as a crossing would indicate a double value for p and ¢, but for a

well behaved Hamiltonian ()H;"*”) and ”H;‘/’p) are single valued. For an isolated sys-
p. q;

P,
tem, the energy is constrained £ = H(p, ¢), and the locus of the representative
point will lie on a constant energy (E) surface in the I'-space. Gibbs, Maxwell and
Boltzmann realized very early that if left for a sufficiently long time, the trajectories
will eventually fill out the entire energy surface. If the system is observed for some
macroscopic observable, its average value can be found to be

(©0) = — / ® odt. (4.32)

Z2 ll 1

It is an experimental observation that for a sufficiently long interval #, — #{, the
average value (O) to a large extent does not depend on the initial and final time. The
observation can be interpreted as the insensitivity of the macroscopic observable O on
the details of the microscopic constituents. For example, if we require that the system of
N particlesin volume V' hasenergy E, a large number of representative points will satisfy
the criterion. Thus even after knowing the values of those quantities, one still does not
know which among those representative points actually corresponds to the system
under consideration. One then invokes the most important statistical assumption.

All possible states are equally likely.

4-8
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Since all possible states are equally likely, instead of following a single macro-
scopic system with time, one can consider the macroscopic system as a collection of
systems, all identical in composition and some ‘macroscopic’ condition, but existing
in different microscopic states. For example, one can throw a dice N times to find
out the probability of throwing a particular number, e.g. six, or alternatively, one
can make N copies of the dice and throw them simultaneously. One understands that
both processes will lead to the same answer.

Thus Gibbs introduced the key concept of ensemble in statistical physics. An
ensemble is a large number of copies of a system, which do not interact with each
other and each of which represents a possible state that the real system might be in.
In T'-space, an ensemble can be represented by a collection of points. One can
introduce a density function p(q, p, t), with (¢,p) an abbreviation for
@, 4,---4,; P> P, ---p,) such that p(q, p, 1)d*pd®™q is the number of representa-
tive points in an infinitesimal volume element d*"pd*¥¢ at time 7. An ensemble is
completely specified by the density function p( p, ¢, ), the subsequent values being
determined by the microscopic dynamics. One can prove Liouville’s theorem,
% = 0, i.e. the distribution of representative points moves like a incompressible
fluid. For a system in equilibrium, the density function will not depend explicitly on
time (note that implicit dependence through the Hamiltonian will continue). Instead
of following the system with time, the average value of the observable O can be
obtained as an ensemble average,

/ Op(p, q)dpdq
f p(p, 4)dpdq

(0) = (4.33)

In kinetic theory, one comes across a one-body distribution function, f(p, q, ).
f(p, q, )dpd’q is the number of particles with a momentum between p and
p + dp and position vectors q and q + dq. It is clear that the state of the many-
body system is not uniquely determined from f. For example, in a system, if two
particles are interchanged, it will not lead to any change in f, but to two distinct points
in I"-space. A given distribution function then corresponds to a volume in the I"-space.
An equilibrium distribution function will correspond to maximal volume in I'-space.

In statistical physics, one generally constructs three types of ensemble.

(1) Microcanonical ensemble: for isolated systems, where total energy and
total number, two macroscopic properties of the system, are constrained to
be fixed.

(i1) Canonical ensemble: for a system in contact with the environment such that
heat or energy can be exchanged. Only the total number of the system is
constrained.

(ii1) Grand canonical ensemble: without any constraint, the system can exchange
energy as well as particles with the environment. For relativistic systems,
grand canonical ensemble is the appropriate choice.

4-9
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For a given ensemble, one can construct the density function p(p, ¢) and
calculate for the macroscopic observables. However, in nature, particles obey
quantum mechanics and classical statistics misses some quantum aspects, most
importantly, the indistinguishability of particles. It also misses the spin structure of
the particles. Then classical statistics leads to some paradoxes, e.g. the Gibbs
paradox, wherein contrary to experiment, on mixing two ideal gases of the same
kind at the same temperature, entropy increases. The Gibbs paradox is resolved
only in quantum statistics. Thus, in the following, we review certain aspects of
quantum statistics.

4.3.2 Quantum statistics

In quantum mechanics, particle trajectories have no meaning (one cannot fix posi-
tion and momentum simultaneously). The system will be specified by the wave
function, which satisfies the Schrédinger equation,

HY = EVY, (4.34)

where H is the Hamiltonian of the many-body system and ¥ is the many-body wave
function,

¥ = linear combination of y (1)y;(2)y(3).... (4.35)

where a, b, c... are the quantum numbers. In a many-body system, a large (prac-
tically infinite) number of microstates (the states where all the parameters of the
constituents are specified) is possible and the wave function can be a very compli-
cated object. Here again, one can define an ensemble as an incoherent superposition
of microstates.

Now, two important features distinguish a many-body quantum system from
a classical one: (i) the density of energy levels is very high and (ii) the many-body
system can exist only in a mixed state. The very high density of energy levels is
understood. For example, a particle in a box of linear dimension L can have an
infinite number of energy levels with the separation ~1/L* between them. The
energy levels of N non-interacting particles are just the sum of the energy levels of N
particles. Taking all possible combinations, one can have a very large number of
energy levels in any appreciable finite part of the energy spectrum. Indeed, one can
show that the separation between the levels for an N-body system is ~10™", which is
a very small number.

The second feature arises from the fact that a truly isolated system does not exist
in nature®. It must have some interaction with the external world. Even a weak
interaction of the system with the external world will cause broadening of energy
which will be large compared to the infinitesimal separation between the energy
levels. There is an even more fundamental reason why a quantum many-body

3 Possibly the Universe in its entirety can be considered a truly isolated system.
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system can only be in a mixed state. A quantum mechanical wave function is a
result of interaction between the system under consideration and an external sys-
tem (e.g. the measurement apparatus) which obeys classical mechanics. One needs
to distinguish between energy E before the interaction and energy E’ after the
interaction. The uncertainties in £ and E’ are related to the duration of the
interaction At,

IAE — AE| ~ (4.36)
At

AE and AE’ are of the same order and one cannot make AE’ arbitrarily small.
Then AE' ~ %. For a state to be stationary, AE’ must be smaller than the
separation between the energy levels. For a many-body system, separation between
the energy levels is very small and it will require a very long interaction time
At ~ h/AE' to bring the system into a stationary state.

Quantum mechanical description of mixed states is effected by means of the
density matrix p (see appendix A.4). The expectation or mean value of any obser-

vable operator O at time ¢ can be calculated as
(0) = Tr[pQ]. (4.37)

In quantum statistics, the density matrix plays a role analogous to the density
function p(p, q) in classical statistics. In classical statistics, p(p, g) gives the
probability distribution of the various values of coordinates and momenta
of the particles of the body. In quantum statistics the diagonal matrix elements of
density matrix p = p give the probability of finding the body in a particular state n.
Determination of the density matrix is the main task in quantum statistics. Let us
obtain the density matrix for the three types of ensemble considered here.

(i) Microcanonical ensemble. Consider a microcanonical ensemble with energy
between £ and £+ AE, AE <« E. It can exist in a large number of
microstates. Since we are ignorant about the microstates, we assign equal
probability to each possible microstate.

p"=;1 E<E,<E+AE

E<E,<E+AE

=0 otherwise. (4.38)

Trp = I'(E) then counts the number of mtextcrostates lying between E
and E + AFE. The connection between the microcanonical ensemble and
other thermodynamic variables is established by calculating entropy as

S(E, V) = k log I (E). (4.39)
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Entropy can also be calculated in terms of probabilities of the
microstates,

S(E, V) =-k Og[F(lE)]

1
_kZF(E) og[F(E)] Zp ogp. (4.40)

The last line is possible since all the terms in the summation are the same
and there are exactly I'(E) terms.
Canonical ensemble. In a canonical ensemble, the system under con-
sideration can exchange energy with the environment at temperature
T= % One assigns a weight factor e”* to the probability to find the
system at energy state E,. The density matrix for the canonical ensemble is
then written as

p, = A, (4.41)

The constant A satisfies the normalization condition, ann = 1, giving

1
One can calculate the entropy,
S = —Z,% logp = —<10g&>
= % —log4 (4.43)

where log 4 = M The mean energy (E) is the energy meant in ther-

modynamics. Notlng that the Gibbs free energy F = E — TS, we obtain
for the Gibbs free energy

F=-Tlog ) e (4.44)

This formula is of fundamental importance in statistical physics. It
facilitates calculations of thermodynamic functions for systems whose
energy spectrum is known. The sum in the logarithm is called the partition
function and is generally denoted by the symbol Z. It is just the trace of the
operator e ", H being the Hamiltonian of the system.

Z =Y el =Tre (4.45)

n
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(ii1) Grand canonical ensemble. In a grand canonical ensemble, both the particle
number and energy can change. One assigns a weight factor e BN 1o
the probability of finding the system of N, particles at energy state E,. The
density matrix for the grand canonical ensemble is then written as

e—ﬁ(En—MNu)

h= Ze—ﬁ(En—uNn) :

n

(4.46)

In equation (4.46), H and N are the energy and number operators.
When they operate on the quantum state, |y ) gives the energy of the state
and the number of particles in the state,

H

v,) = E,

" > (4.47q)

A

Nlw) = N,

v > (4.47b)

such that the grand canonical partition function

Z e_ﬁ(ﬁ_“ﬁ)

Tre ) = 3w, )

Ze—ﬂ(En—lan) . (4.48)

4.3.3 Thermodynamic parameters from the grand canonical ensemble

From the partition function, the observable or expectation value of any operator can
be obtained as

TrOe#H-1¥)

0= Tre”’(ﬁ_”ﬁ) .

(4.49)

In the following, we derive the explicit relations for computing the particle
number, energy, pressure and entropy of a system from the grand canonical parti-
tion function as given in equation (4.48).

If the logarithm of the partition function is differentiated by x we obtain

olnZ 1 —p(H—uN ) —
=T AN (BN ) = B(N). (4.50)

Thus the average number of particles in the system is

Ny = 79102 (4.51)
ou
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The average energy of the system can be obtained by differentiating In Z by the
inverse temperature f3,

0ln Z _ l —/i(f[—,m?) N o _
TR [—(H - ,uN)] = —(E) + u(N), (4.52)
giving the average energy of the system as
olnZ olnZ
(E) = — +u(N)=T" 7+ u(N). (4.53)

The entropy of the system can be obtained from the relation
S=-2npmnp==(ng)
oT nZ

PUE) = p(N) +In Z = ==, (4.54)

Finally, using the thermodynamic relation, E = TS — PV + uN, the pressure P
is obtained as

P= iT In Z. (4.55)
14

In some applications, it is more convenient to use particle density, energy density,
etc. In the following, we rewrite equations (4.51), (4.53), (4.54) and (4.55) in a dif-
ferent form.

. . N 1 TrNe %)
Particle density: n = — = —————
V Vv Treﬂ(H_”N)
_ 170z (4.56)
V. ou
. E 1 TrH e -+¥)
Energy density: ¢ = — = — ———
V V Treﬁ(H_”N)
1 T°0In Z
- = 4.57
o pn (4.57)
Pressure: P = %T InZ (4.58)
. S 10T InZ
Ent density: s = — = — . 4.59
ntropy density: s V=V ar (4.59)

Fluctuations in particle numbers or in energy can also be calculated from the
partition function. For example, by doubly differentiating the partition function,

9 a1;122 %Tre_ﬁ(ﬁ_ﬂﬁ)( /},N)z _ % [Tre—ﬂ(ﬁ—ul\?)(/}]\?)]z

LN = (N)’] (4.60)
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or

(AN)* = (N?) — (N)* = T%]:). (4.61)

Since (N) and In Z are extensive quantities, the relative inaccuracy in particle
number is

AN 1
~ " O(ﬁ) (4.62)

The fluctuations in energy can be obtained as
s (g7 — NV (A A o
In Z ~ Tre [(H ,MN) ] _ Tre A+ )[—(H - ﬂN)]
B z z

2

KE®) = ()] + @[ (N?) = (N)’] = (AEY* + /’(ANY.  (4.63)

In a system with a fixed number of particles,

HE) _ _T20<E> _ _’InZ

, 4.64
ap oT B’ (4-64)
and we obtain the relation for specific heat, C), = %,
2
r°c, = 2 01;22 = (E) — (E)2 (4.65)

4.3.4 Partition function with quantum statistics

As opposed to integral spin bosons, half-integer spin fermions obey the Pauli
exclusion principle, and two fermions cannot occupy the same state. The grand
canonical partition function defined in equation (4.48) did not take into account the
quantum nature of the particles. In the following, we derive the partition function
explicitly accounting for the quantum nature of the particles.

Let us consider a system of N fermions. Let the single-particle energy spectrum be
denoted by {en, n=20,1,2, } In a grand canonical ensemble, a given state can
be populated by an arbitrary number of particles. Let us consider a state |n). It can
be considered as a subsystem with particle number N, and energy N, ¢,. The grand
partition function for this state can be written as

Z, = Yeem - Z[e—ﬂ(en—ﬂ)]jv"

N, N,

n n

=14 e, (4.66)

The last line is obtained by using the fact that for fermions, &V, can be either O or 1.
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The grand partition function for a system of fermions is then obtained as
z=[lz=11 [t +e"™] (4.67)

To show that the partition function does correctly reproduce the observables, let
us calculate the number of fermions,

(N) = TaalinZ = Tzi 1n[1 " e—ﬂ(en—m]
u

B TZ g = Z[;] (4.68)
[1 + e Plen= M)] - ctPlenr) +1 . .

The bracketed quantity is just the occupation probability in Fermi-Dirac
statistics. As expected, the average number is the sum of the occupation probability
in each state.

The grand partition function for a system of bosons can also be obtained simi-
larly. As for fermions, the partition function for the nth eigenstate in a bosonic
system is

z,= Y[ere ] (4.69)
N,

However, unlike the fermions, any number of bosons can occupy a state—thus,
N,=0,1,2,.... 0o and we have a sum of a geometric series. For ¢, — u > 0, the
series converges to

1
Z,= (4.70)

The partition function for the total system can then be obtained as

4.71)

H [ 1 — e P u)]

Here again, we can calculate the average number of particles in the system,

TolnZ 1
(N) = o = Z[W] (4.72)

where the bracketed quantity is just the occupation probability in Bose—Einstein
statistics. It is particularly important to note that in summing up equation (4.69) we
have used the condition ¢, — p > 0. The nth eigenstate can be any state including the
ground state. For the ground state, the energy is taken as zero. Then for bosons, the
chemical potential can only be negative.
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Partition functions facilitate the calculation of the thermodynamic properties of
macroscopic systems. Sometimes it is useful to use the thermodynamic potential Q
which is related to the partition function as

Q=-TlogZ. (4.73)

The thermodynamic potential for a system of fermions or a system of bosons can
thus be written as

Q =—Ty Ylog[ 1 + ne ] (4.74)

with # = +1 for fermions and 7 = —1 for bosons.
In many-body systems, energy levels are approximately continuous and we can
replace the sum by an integration,

|4 o dnlV o
d’n = dp=—— *dp. 4.75
; - / " (271')3 0 P (271')3 0 per ( )

Replacing the sum by an integration, the thermodynamic potential in equation
(4.74) can be written as

Q=

4V r e
o o log[ 1 + e ]p*dp. (4.76)
Integrating by parts,

) —ple(p)—p)
Q=—-TInZ = _,7T47T_V3 / ﬁlye—d_ep_dp
@' Jo 1+ pe ] dp 3

- / p'dp ! . 4.77)

\/p +m [ P+m—# +77:|

From the thermodynamical potential all the relevant thermodynamic quantities
can be calculated.

4.3.5 Physical quantities for fermionic/bosonic systems

In the following, some physical quantities, e.g. number density, energy density, etc,
for a system of particles obeying Fermi—Dirac or Bose—FEinstein distribution will be
obtained. Evaluation of the physical quantities of macroscopic systems is facilitated
in terms of the partition function (Z) or equivalently in terms of the thermodynamic
potential (Q). For a system of particles obeying Bose—FEinstein/Fermi—Dirac statis-
tics, the thermodynamic potential is written as

dp 1
Q=-TI z——— P 4.78
n / \/ \/p +m —/4) + n ( )

with # = —1 for the Bose-Einstein distribution and # = +1 for the Fermi-Dirac
distribution. The factor g in equation (4.78) is the degeneracy factor.
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For antiparticles, the expression remains the same, but the sign of the chemical
potential is reversed. The thermodynamic potential for a macroscopic system con-
taining particles and antiparticles is

V P dp | 1
=-ThZ-= g f
n \/ Jp +m —;4) + n * eﬂ(\jp2+mz+/4) + n

(4.79)

Let us evaluate the integral,

® ‘dp 1
I= / P . (4.80)
0 \/p2 + o () + 1

Now the Fermi—Dirac or Bose-Einstein distribution can always be written as an
infinite sum of the Maxwell-Boltzmann distribution. For example, the Fermi—Dirac
distribution can be written as

1 ! oo ) [s9)
= =e l+e ' =e*Ye™=Ye™, 4.81
S0 = [ ] Z D (4.81)

n=1

Similarly, the Bose-Einstein distribution can be written as

f(x) — e\% — e—x[l _ e—x _ e—x Z( l)n —-nx __ Z(_l)n+le—nx. (482)

1 n=0

The results can be combined to write

1
(2 )3 (E- /4)/T+7]

oo

_ &g nt1_ —n(E—p)/T
= (—=n)"e s (4.83)
2y’ ;

J(E) =

with n = —1 for the Bose-Einstein distribution and n = +1 for the Fermi-Dirac
distribution. Obviously, if the expansion is truncated at n =1, it will correspond to
the Maxwell-Boltzmann distribution function.

Using the expansion, the integral / in equation (4.80) can be written as

7 = _p'dp net gt g n) /7
A =2 Z( )

/ p dp Z( n)n+le;4/T —(\/P +m )/T (484)

Pt +n’
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where in the last line we have defined a variable 77 = T/n. Let us introduce the

dimensionless variables, z and z,
2 2
+m
p= M T (4.85q)

z=— (4.85b)
and write
p=T =2 (4.864)
pdp = T"zdxz, (4.86b)
ptdp = T7(z* — 2. (4.86¢)
In terms of the new variables the integral is

I= Y (=ny e f " de(e - 2) e (4.87)

n=1

A closed form expression can be obtained in terms of the modified Bessel function
of the second kind [7],

! B e
K(=2m1 / de(* = 22) e (4.88)
@n)! z" J:
2 ® 2 232 _;
= 322K,(z) = f de(e* - ) e (4.89)
- 1 nm
I=3T"m" Y (-n)""'SK (—) it 4.90
it 2K T f (4.90)
The thermodynamic potential in equation (4.78) is then obtained as
gV o o w1 1 (nm) /T
Q=-TnZ=-=2=T — — — le"™". 491
2ﬂ2mn§(n) K| 7 (4.91)

We remind readers that the thermodynamic potential in equation (4.91) contains
the contribution of the particles only. Antiparticles are not included.
Equation (4.91) can be used to compute various thermodynamic parameters.
(1) Particle density:

_ Zdan
V. ou
Tm® <= (=) km
= g—zﬂz Z( r]lc) KZ(T)ekﬂ/T. (492)
k=1
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(i1) Pressure:

P = T InZ
V
T < (=)™ (2o
= K| —[e"". 4.93
e Z} A (4.93)
Energy density (¢) needs a little algebraic work.
T°90lnZ
£ = — + un
Vv oT

szz ( ’1);1+1 a ( ) .
TK e + un
rs lg W oT T g

22 ® o \ntl
_ ng Z( ’7) [Kz(%) nﬂ/T+ Tenu/TiKz(@)

2t = oT "\ T
nmY o0 ur

+TK,| — |—e""" | + un. 4.94
2(T)aT ] # (4-54)

The derivative of the modified Bessel function can be written as

K
9K _ —K,_(2) - LK (2), (4.95)
oz z
which gives
_iKiﬁﬂ)zﬁgK(Eﬁ)+£Kiﬁﬂ} (4.96)
oT \'T T T) 1T3\T

and equation (4.94) reduces to

T°'m* <« et 1 nm nm nm
e=g 2”2 Z(_rl) +l?|:3K2(7) + (7)[(1(7)

n=1

_ K( )I’l,u nu!/T +,un
T)T

0 n+l
=3P+g Z ( )e”"/ T

=1

ﬂmu (nY“ it
- z (T)/4wn (4.97)

The underlined term is just un. The final expression is as follows.
(iii) Energy density:

n+1 nm .
e=3P + g Zg( ’7) 1(7)6 Wt (4.98)
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For massless particles m =0 the second term is identically zero and one
obtains the well-known relation, P = ég.
(iv) Entropy density:

10T Inz
V.o oT

2 dT[n 1( ’7)”+1 ( T ) W/T]

) e etz

m* ~=(=n)""! nm nm nm\| .,
=83 ; 2 [4TK2(7) + anl(T) - n,uKz(?)]e W (4.99)

It is easy to check that equation (4.99) satisfies the thermodynamic relation,
_P+e—pn

- (4.100)

The expressions for thermodynamic variables are simplified in the massless
(m — 0) limit, when one can use the asymptotic relation for the modified Bessel
function,

lim z"K (z) = 2" '(n — 1)! (4.101)
z—-0
For massless particles, we rewrite the grand partition function as
VT4 (- ;7)”“ nm nmY ,
ThhZ= Z ( ) Kz(T)e w/T (4.102)
4
— 2 Z( " i (4.103)

We immediately obtain:

3 o i+l
Number density: n = Tolnz gl2 Z( 77)3 e™/7 (4.104a)
ou o= n
T'InZ T4 . (_;7)’“‘1 nul T
Pressure: P = % = — ZTe (4.104b)
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Energy density: ¢ = —
&y Y vV oT

oT

.. _loTlnz 1 a1
Entropy density: s = I =83 Z(—’?) [

n=1

4.3.6 Massless bosonic systems

Tzaan_ Z( —n)"*!

ar

e™'T (4.104¢)

4
n

2
- n3] “T - (4.104d)

In the massless limit, the chemical potential for bosons g = 0. Any number of

bosons can occupy a state and for m=0, it does

not cost any energy. The

thermodynamic variables are greatly simplified with the help of the Riemann zeta

function £(s) (see appendix A.6 for more details):

L(s) = Z—

nl

Number density: n = gT2 Z— = g 3 §(3)
z

n= 1

4 o
Pressure: P = gT2 L = g C(4)

n=1

2
Energy density: e = 3P = g;T—OT4

2.7

45

Entropy density: s = g T

4.3.7 Massless fermionic systems with g = 0

(4.105)
3

gl. 202— (4.106a)

g— e (4.106b)

(4.106¢)

(4.106)

In the massless limit, 72 — 0 chemical potential for a fermionic gas can be finite.
Closed form equations for physical variables can be given in the limit g = 0, using

Dirichlet functions #(s),

(- 1)"+1 1o
n(s) = Z = (1-2")¢(s) (4.107)
n=1
3 © _1n+l T3 3 ?
Number density: n = g— 3 =g 2;7(3) (gl 202—) (4.108a)
n=1
4 o n+l1 4
Pressure: P = gT— 14 T 11(4) 7(g%T4] (4.108b)
n
n=1
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2
Energy density: e = 3P = %(g;[—OT4) (4.108¢)
2
Entropy density: s = %(g245” T3). (4.108d)

If we compare equations (4.106) and (4.108), we note that in the limit, the m — 0,
u — 0, pressure, energy density and entropy density of Fermi-Dirac and Bose-
Einstein systems differ by a factor of only %

For m=0, u # 0 physical quantities for fermionic systems cannot be given any
simpler form than in equation (4.104).

4.3.8 Massless fermionic systems of particles and antiparticles

If the system contains antiparticles as well, the partition function for the total system
can be written as

TInZ = VT4 Z( 1)”+1[ /T + e—ﬂll/T]

n+l
= 2 cosh( ””) (4.109)
T
Using the expansion,
2 4
coshx=1+2 +2 4. (4.110)
20 4

2VT4°° L1(uY 11 (unY
e Bl )
"Z; n?2\T) ~ n°24\T

= gzzﬂl 4) + 1> (ﬂ) +n<0)21—4(§)4]

272 4
2V[7” . ] @.111)

890 24 487

For a system of particles and antiparticles obeying the Fermi—Dirac distribution
we can easily compute:

o TolnZ _ ul? i
Net denSItY' n= nparticle - nantiparticle = V () l? + 12”2 (41 1261)
22 4
Pressure: P = T'lnz = 2g ——T4 wT + £ > (4.112b)
V 890 24 487
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. T*0ln Z
Energy density: e = — =3P 4.112¢
gy Y. €= ( )
. 10T InZ 7 2x* w'T
Entropy density: s = ———— =2g| =73 4 £ | 4.112d
e AT gl §45 12 (41124)

In equations (4.112), we have kept factor 2 hanging out in order to indicate that it
also contains contributions of antiparticles. The degeneracy factor g should be appro-
priately calculated, i.e. antiparticles should not be included in the degeneracy factor.

4.4 A brief review of relativistic kinetic theory

The properties of many-body systems depend on: (i) the interaction of the constituent
particles and (ii) external constraints. As mentioned earlier, one characterizes the
system in terms of macroscopic state variables, e.g. particle density, temperature,
etc, and of the characteristic microscopic parameters of the system. One then tries
to understand certain equilibrium/non-equilibrium properties of the macroscopic
system. In kinetic theory this program is realized by means of a statistical description,
in terms of the ‘one-particle distribution function’ and its transport equation. From
the transport equation, on the basis of conservation laws, a hydrodynamic theory of
perfect fluid can be constructed. Supplementing the conservation laws with entropy
law, the hydrodynamics for a dissipative fluid can be constructed.

In the following, we briefly discuss relativistic Boltzmann or the kinetic equation. We
then show that basic equations for hydrodynamics are obtained by coarse graining
Boltzmann transport equations. Most of the discussions are from [1, 2, 5, 6].

4.4.1 Some basic definitions in kinetic theory

Let us first define pu-space. To completely specify a particle, we need six real coor-
dinates, three for the positions and three for the momenta. The six-dimensional
space is called u-space. In u-space, a particle can be represented as a point.

(1) Distribution function f(x, p): in kinetic theory, a macroscopic system is

generally studied in terms of the distribution function, f(x, p). f(x, p)d’xd’p is

defined as the average number of particles in small volume d’x, at time 7, with
momenta between p, p + dp. It is implicitly understood that particle content in the

volume element d’x is large enough to apply concepts of statistical physics, yet d’x is
small in the macroscopic scale.
(2) Particle four-flow N*: is defined as the first moment of the distribution function.

3

N = [ (;—fp"f(x, P. (4.113)

Four-components of particle four-flow can be identified as follows:

Particle density: N°(x) = / Epf (x, p) (4.114)
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Particle flow: N'(x) = fdﬁ)(%)f(x, 1))

=¢/d%u703p) i=1,2,3 (4.115)

where we have introduced the velocity u = p/p’.
(3) Energy-momentum tensor T*" is the second moment of the distribution function.

Hv d3p WU
W = [ S5 p). (4.116)

The components can be identified as follows:

Energy density: 7%(x) = / &Epp’f(x, p) (4.117a)
Energy flow: T%(x) = /d3pp°ui]"(x, P) i=1,2,3 (4.117b)
Momentum density: 7%(x) = /d3ppif'(x, ) i=1,2,3 (4.117¢)

Momentum flow or
pressure tensor: T7(x) = fd3ppiu-ff(x, 12) i=1,2,3. 4.117d)

(4) Entropy four-flow S*:

3
50 == [ s ptog (. p) - 1] (4.118)

f(x, p) is a dimensionful quantity (dimension=fm™ GeV™). Logarithmic
function, however, is only defined for a number, i.e. for a dimensionless quantity. To
make f(x, p) dimensionless, one generally multiplies it by /#° and subtracts unity.
Note that the absolute value of entropy is not measurable, only the change in
entropy is measurable. Then the observables remain unaffected.

(5) Hydrodynamic four-velocity u”: in each space-time point one defines a time-
like vector, which is called hydrodynamic four-velocity u*. It is normalized as

u? = u'(xu,(x) = 1. (4.119)

u* is time-like. At each space-time point x, one can define a proper Lorentz
frame, which is called the local rest frame. In the local rest frame,

uly =(1,0,0,0). (4.120)
With the help of u” one also defines a tensor quantity,

A(x) = g" — u'u". (4.121)
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It is called the projector. One can easily check that
Au, = 0. (4.122)

When contracted with any arbitrary four-vector, the projector A* will annihilate
the part of the four-vector parallel to four-velocity and project out the part per-
pendicular to it.

In the local rest frame,

—_ 4 — 1 _ — _
(A )LR = (&) = diag(0, —1, =1, =1) (4.123)

v

(a7) , = diag(0, 1, 1, 1). (4.124)

The definition of hydrodynamic velocity as in equation (4.119) is very general and
one can construct various hydrodynamic velocities. In the literature, two particular
choices are popular. They are described below:

(a) Eckart’s definition. Hydrodynamic four-velocity is assumed to be propor-
tional to the particle four-flow N,
u" o« N*
= kN*. (4.125)

The proportionality constant x can be found from the normalization
condition, u'y, = 1,

1

K= , 4.126
v (4.126)
and the hydrodynamic four-velocity in Eckart’s definition is
"
u" = N . (4.127)
NN
Equation (4.127) can also be written as
U
u' = N (4.128)
N'u,
or AN, =0. (4.129)

With Eckart’s definition of hydrodynamic velocity, the spatial compo-
nents of the particle four-current vanish in the local rest frame.

(N)LR=O i=1,2,3. (4.130)
(b) Landau and Lifshitz’s definition. u" is proportional to the flow of energy,
u' o« T"u,

™
. (4.131)

Ju, T T, u* '
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An alternative form can be

v
T"u,

po,, "
u,T"u,

(4.132)

u' =

With the help of the projector, the Landau-Lifshitz definition can also be
formulated as

N“T u® = 0. (4.133)

In the local rest frame, u” = (1, 0, 0, 0) and A* = diag(0, —1, —1, —1) and
with Landau’s definition of four-velocity, at the local rest frame, the spatial com-
ponents of energy flow and momentum density vanish,

(T"“)LR = (TO")LR =0 i=1,2,3. (4.134)

It may be emphasized here that the choice of hydrodynamic velocity in no way
affects the results of hydrodynamic calculation. One chooses either Eckart’s velocity
or Landau’s velocity according to the given problem. For example, in the study of
high-energy heavy ion collisions, the central rapidity region is essentially particle-free.
It is difficult to define hydrodynamic four-velocity according to Eckart’s definition.
The Landau-Lifshitz choice of hydrodynamic velocity is preferred as it is related to
energy flow. In other areas, Eckart’s choice may be more appropriate.

4.4.2 Physical quantities of a simple system

We have mentioned earlier that a many-body or macroscopic system is characterized
in terms of certain macroscopic variables, and that the dynamics of the system are
studied in terms of those variables. With the help of hydrodynamic four-velocity
u”(x), one can define the relevant macroscopic quantities, e.g. particle density,
energy density, heat flow, pressure tensor and entropy density, in a covariant
manner. We note that even though in the formulae below we have not shown x
dependence explicitly, it is understood that the macroscopic variables defined below
are a function of space and time.
(1) Particle density. We define the scalar quantity

n= Nu, (4.135)
as the particle density. It is seen that n is the density of particles in the local
rest frame u* = (1, 0, 0, 0): n = N;.

(i1) Energy density. The scalar energy density ¢ is defined as
e=u,T"u, (4.136)

In the local rest frame, e = T}5.
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(iii) Heat flow. Heat flow ¢” is defined as the difference of the energy flow and
flow of enthalpy / carried by the particles,

q" = (u,T* — hN°)A: (4.137)
where enthalpy per particle is defined as
p=trP (4.138)
n

with p the local hydrostatic pressure, to be defined shortly. Heat flow has
the property that it is transverse to the hydrodynamic four-velocity,

q'u, = 0. (4.139)

(iv) Pressure tensor. The pressure tensor is defined as

P = ANTTAL (4.140)

It is symmetric when 7% is symmetric. In the local rest frame, it is purely
spatial,

PR=0 P%=Py=0 PL=T" ij=1,2,3. (4.141)

The pressure tensor has a ‘reversible’ and an ‘irreversible’ part,
P" = NTA = —pA™ + TI™. (4.142)
p is the hydrostatic pressure. The quantity IT* is called the viscous pressure

tensor. Writing equations (4.136), (4.137) and (4.142) in a slightly different
manner, we find

e=uT"u, (4.143a)
q" + hAN, = u, T A, (4.143b)
—pA" + T1" = ALT7AL (4.143¢)

The terms can be collected to obtain the expression for an energy—-momentum

tensor,
™=T,+T¢ (4.144)

rev irr »

with the ‘reversible’ and ‘irreversible’ parts,

TE = eu'u” — pA™ (4.145a)

rev

Ly = [(¢" + hA"N)u" + (¢" + hA"N )u"] + IT™. (4.145b)
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As mentioned earlier, two choices of hydrodynamic velocity are popular. In the
Eckart frame, u" = N* /,/N “N, and AN, = 0. Heat flow is

q" =u,T"A! (4.146)
and the irreversible part of the energy—momentum tensor reduces to

T =[q"u" + q'u"] + T (4.147)

In the Landau-Lifshitz frame, u* = T"u" /,/up T™T u’. Using the property
A"y, = 0, heat flow is

q" = —hA"N,. (4.148)
The irreversible part of the energy—momentum tensor then has the simplified form
T =11"". (4.149)

ur

In the Landau-Lifshitz frame, the energy—-momentum tensor does not contain heat
flow g*. However, as is manifest in equation (4.148), heat flow is not zero. It is man-
ifested in particle flow. Using the projector, A", the particle four-flow can be split into
two parts, in the direction of the four-velocity and in the direction perpendicular to it,

N* = nu" + V* = nu* + A“N. (4.150)

In the Landau-Lifshitz frame,

u
¢ = —hA"N = V' = %, (4.151)

The particle four-flow and energy—momentum tensor in the Landau-Lifshitz
frame and in Eckart’s frame are then as follows.
Landau—Lifshitz frame:

ql‘
N = nu" + {7} (4.152a)
T = [gu”u” — pAm] + {H”b}. (4152b)
Eckart’s frame:
N* = nu" (4.153a)
T = [eu'u” — pN*] + {TI* + [q"u” + q"u"]}. (4.153b)

The terms inside the curly brackets refer to the irreversible parts of the particle-flow
and energy—momentum tensor. Irreversible parts lead to dissipation®. In a realistic

4By dissipation we mean that energy is transferred from collective motion to random motion.
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system, the irreversible parts can be small but never identically zero. However, if this
is ignored, the fluid is called an ideal or inviscid fluid. Otherwise the fluid is called a
dissipative fluid.

4.4.3 The relativistic kinetic (transport) equation

In kinetic theory, a macroscopic system is described in terms of the one-body dis-
tribution function f(x, p, t). The kinetic or transport equation gives the space—time
development of the distribution function. It was originally derived by Boltzmann and
called the Boltzmann equa‘[ion5 . In the following, we derive the relativistic version of
the Boltzmann equation. For more complete exposure to Boltzmann equations see [6].

The transport equation without collisions. We have defined particle four-flow,
d’p
v= [ ~Fpfep) (4.154)

The time component (4 = 0) is the particle density and the space components
(u =1, 2, 3) are the particle flow, both measured with respect to the observer frame
of reference. If dg, is an oriented three-surface element of a plane space-like surface

(i.e. a surface whose tangent vector is time) and Ao is a small segment situated at x,
then we can contract N* with dg, to obtain the scalar quantity.

d&p
AN(x) = /A o/ N"(x) = /A 5 / &', o4 1(x, p). (4.155)
In the Lorentz frame, d3oﬂ = (d’x, 0, 0, 0) is purely time-like and
AN(x) = d&’xd’pf (x, p). 4.156
= [ [axdprcp) (4.156)

From the definition of the distribution function AN(x) is just the number of
particles in a volume element A'x.

In Minkowski space, a particle is represented by a world line. AN (x) in equation
(4.155) then has a simple geometrical interpretation, the average number of world
lines crossing the three-segment A's. Restricting the momentum integration in
equation (4.155) within a narrow range A’p around p, we can define AN (x, p),

AN(x, p) = /

AS

d3
[, Fa gt (4.157)
o P

° Ludwig Eduard Boltzmann (1844-1906) was an Austrian physicist. He made major contributions in statistical
thermodynamics. He was an early proponent of atomic theory, before it had gained ground. During his lifetime,
his works were not appreciated. Famous physicists like Ernest Mach and Wilhelm Ostwald opposed his atomic
view. Rejection of his views made Boltzmann depressed, and in 1906 he committed suicide.
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as the average number of world lines crossing a segment A’'c with momenta in the
range A'p around p. If the particles do not suffer collision, some time later the same
particles will cross a surface element A's’. Then we have the identity

fAz /A % opﬂf(x P)—f f q Op"f(x p=0.  (4158)

Consider the four-volume A'x enclosed by surface A'c and A's’ and the surface
of the tube of the world lines (see figure 4.1). Equation (4.158) can be interpreted
such that no particle world lines cross the tube surface. Thus net flow of particles
through the surface A'x of four-volume A"x vanishes.

fA3 f S, 0zv"f(x p) = (4.159)

Apply the Gauss theorem,
4 d "
f ds EP oo, f(x, p) = (4.160)
Atx A3p
Since A'x and A’ are arbitrary

p'o, f(x,p)=0. (4.161)

This is the Boltzmann transport equation for a collisionless system. In three-
vector notation, it can be written in the more familiar form

[a + p— ]f(x p=[0+v-V]/(x,p)=0 (4.162)

with v = % the three-velocity.

Transport equation with collisions. In the previous section, we established that
when the constituents of the macroscopic body do not suffer interaction, the net flow
of particles through three-surface A’x of four-volume A'x is zero. Net flow will not
be zero if the particles suffer collisions. If the amount of change in the number of

Figure 4.1. World lines crossing a three-surface A>x in Minkowski space. After some time the same world lines
emerge through the surface A%s’. No world lines cross the tube-like three-surface of the four-volume enclosed
by surfaces Ao and A’c’
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particles in the momentum range (p, p + Ap) in a small volume element A'x is
written as

3
8x22 (v, p) (4.163)
p
the equation (4.160) for a collisionless system will be changed to
3 3
/ d4xd—pl’”0 Sfx, p) = A4>€£67(x, p) (4.164)
R P (] »°

where C(x, p) is an invariant function whose form is to be found. Boltzmann makes
the following assumptions to calculate C(x, p).

(a) The system is dilute enough such that only two-particle collisions need to be
considered.

(b) The momenta of the colliding particles are uncorrelated and independent of
position. This is a key assumption of Boltzmann and is called ‘Stosszah-
lansatz’ (collision number hypothesis) or the ‘molecular chaos’ hypothesis.

(c) Distribution function f(x, p) varies slowly in space-time.

(d) The collisions are instantaneous.

By assumption (a), only two-particle collisions are important. Consider a collision
(figure 4.2) in which two particles with initial momenta p” and p" collide to a final

state p” and p"*,
p+pl —>p"+p” (4.165)

initial state final state.

This type of collision in four-volume A'x will reduce the number of particles in
the momentum range p* + Ap”. According to the molecular chaos hypothesis, the
average number AN,  of such collisions is proportional to:

(i) the average number of particles per unit volume with three-momentum
between p and p + Ap,

S (x, p)&p, (4.166)

(a) collision causing (b) collision causing
particle loss particle gain
u

/ e / p
p" p! P "
P;ﬂ/ Plf/

Figure 4.2. Schematic diagram of the two-particle collision considered in Boltzmann transport equation. (a) The
particle with momentum p* is lost through the collision; (b) the particle with momentum p* is gained through the
collision.
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(i1) the average number of particles per unit volume with three-momentum
between p, and p, + Ap,,

f(x, p)&p,, (4.167)

and
(iii) the intervals A'p’, Ap’ and A'x,
r', Ap,

A3p/A3p1’A4x. (4.168)
AN, « f(x, p)&pf(x, p)&p Kp'Kp/ Nx

—(pp1|p ) 1 A3 1 AL
= — =50/ 6 PP (x, p)Ap Kp' Kp/ Nx (4.169)
ppprP,

where we have written the proportionality factor as

w(pn|pp))

p()plOp/Op]/O :

(4.170)

W(pp1 | p/pl/) is called the transition rate. Note that we have neglected difference in
the space-time coordinate in f(x, p;) and f(x, p,). This is due to the assumption
(c) that the distribution function varies slowly. For the same reason the transition
probability also depends only on the four-momenta of the particles, not on the
space—time coordinates.

The average number of particles in the range A'x of Minkowski space and with
momentum in the range (p, p + dp) lost through collisions is then obtained by
integrating the above defined number of collisions,

|, &p dpdpdp
Now= 3800 [ G PG X W(pm |pp). @171)
1 1

The factor% accounts for the fact that the final state (p,*, p,*) is indistinguishable
from the state (p,”, p/*). In a similar manner, the gain term due to restitution
collisions p” + p* — p* + p’ can be calculated,

). (4.172)

0/ (% p) x W(pn

gain

N __A4 A3p/d3/d
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The net change of the number of particles in the interval A'x and Alp is
N_. — N_. and is to be equated with equation (4.163). The invariant collision

gain loss

function in equation (4.163) then has the following form,

o= 4

- f(x, p)f(x, ,,1) x W(pp ') (4173)

and the transport equation with collision can be written as

(f(x P/ (x.p) x W(p'p/|pp)

Pof=3 fdp dp1 dpl [ff w(p'p!|pp) - 15, W (pp, )] (4.174)

where we have used the abbreviations [ = f(x, p), /| =f(x, p), /' = f(x, p’) and
S =7 (x, p'). The transition rate in equation (4.174) is a scalar and, in principle,
can be expressed in terms of any two of the three Mandelstam variables defined
earlier. For example, if one uses

s=p+p) 4.175)

t=p-p) (4.176)

it is easy to see that the following identity, which is called the detailed balance, holds,
w(enlee) = w(pe/|er,). (4.177)

The left hand side of equation (4.174), which is called the collision integral, can be
written as

&
Cx, f) = 2/‘”’ an ’fi,[ff — 11w (ow |

) (4.178)

For a two-body collision p + p, — p’ + p/, the transition rate W (pp,|p'p,') can
be related to the differential cross section,

W (en|p'p) = sots, 005*(p + 5, = = /), (4.179)
and using the detailed balance property, the transport equation can be written as
, 1 opdp
P f= Efp—ol(ffl — ff)Fo (4.180)
1
or in a more familiar form,

1 3 147
(0, +u-V)r=3 [&plrsy —11)vo (4.181)
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where we have defined the Lorentz invariant flux,

F=(p-p)-m’m}, (4.182)

and v is the Meller Velocity,

= (v =W’ = (vx W) (4.183)

V=
»'p’

There are established procedures for solving the Boltzmann transport equation,
e.g. the Chapman-Enskog method or Grad’s 14-moment method. These methods,
however, will not be discussed here.

4.4.4 Boltzmann equation with external force

Let us consider that an external force F*(x) acts on the system. If particle trajec-
tories are not largely affected by the external force, such that two particles still
approach each other on a rectilinear path, the effect of the force can be included in
the Boltzmann equation.

Let

aNep= [ f a —p"f(x » (4.184)

be the average number of world lines crossing a three-surface A'¢ with momenta in the
range [p", p* + Ap"]. In a collisionless plasma, some time later, the same particles
will cross a surface element A's’. However, due to the external force F*, during the
passage from surface A30 to Ao’ the momentum p* will change to p* + F"Az giving

/. /A q 0p"f(xp+FAT) /A/ q, Op"f(xp)—O (4.185)

Taylor expanding f(x, p + FAr) and arranging terms,

[/ N ¢ Op”f(XP) [ [, Op"f(Xp)]

+ f d3aﬂd—fp"F”ArM = 0. (4.186)
8o J 8p p op*

The bracketed term is the same as that obtained in the collisionless plasma. Using
the Gauss theorem the term gives

3
f d dop”af Ax f 9P g, . (4.187)
Ax JAp &Xp D
The proper time Az can be obtained from the identity,
"
Ax=al [ &g (4.188)
m J Ks
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and the unbracketed term yields

3 M 3
/ d_{))(mp_f dsaﬂ)mFy@f(x,P) =A“x/—€mF”M- (4.189)
&p p m J 8o op* D op®

Collecting all the terms, equation (4.185) can be written as
Np
Ax— [p"d + mF" ]f(x p)=0. (4.190)
P’

Since A'x as well as A'p are arbitrary, the Boltzmann equation with external force
for collisionless plasma can be written as

|:p”0 + mP'— ]f(x p) = 4.191)

If collisions are included, the zero on the right hand side is to be replaced by the
collision integral,

[p"() +mF”az ]f(x p) = C(x, p). (4.192)

4.4.5 Boltzmann equation with quantum effects

In the Boltzmann equation derived here, the quantum nature of the particles is not
accounted for. For example, if the particles are fermions and if there is a particle in
the momentum state p™, the collision

Pt +p = p"+p", (4.193)

will be Pauli blocked. The Pauli blocking effect for fermions can be accounted for by
re-writing the collision term as

Cromion(: P) = 3 f I df) dp‘ [f fi(1= w1 = mE)w (P,

- ffl(l - hf’)(l i)W (. p1|p’p1/)] (4.194)

where the term (1 — Af)(1 — h3f] ) in the first term takes account of the reduced
probability of scattering p” + p* — p* + p’. Similarly, the term (1 — 1)

1 - h3f1’) accounts for the reduced probability of scattering p* + p" — p™ + p'*.
In an analogous way, the enhanced probability of scattering for the bosonic
nature of the particles is accounted for as

Cunane =5 [ = pld,o - (1 w1+ )W (o' o)

(R0 R o)) (4.195)
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Writing
7 =(1+enf) (4.196)

where ¢ = —1 for fermions and ¢ = +1 for bosons, the Boltzmann equation with
quantum statistics can be written as

1 dp &’p d’p/
profx,p) == [ —-—5—1
14 2 pl(] p 0 p] 0

~ 1T W (e plp'p))| (4.197)

[f IR W(p/pl’

122 )

Equation (4.197) is also called the Boltzmann—Uehling—Uhlenbeck collision.

4.4.6 Boltzmann equation for mixtures

The Boltzmann transport equation for single species gas can be immediately generalized
for mixtures. Each type of particle can be endowed with the distribution function
J(x, p),i=1.2,...N and the transport equation for the kth species can be written as

N
P9, f,(x, p) = X,Cu(x, p,) (4.198)
=1

3 d3 /d3 ’
G, pk)=(1 . lék,) —ppo’ pl,]é' pl,)é (FGe.p)f (o)) W (o0 i)
! k 1

2
= 5 ) f () % W(pp i), (4.199)

The equations take into account elastic collisions between the constituents. In
relativistic energy inelastic collisions are possible,

k+1— i+ (4.200)

If inelastic collisions are included, the collision term is modified as

1 d}p d3p/ d3p’
Cylx,p)== [ ——+—3 (f(x,g)f x,p ) % W(pp p,.p)
k 2 p/O pl 0 171.0 ( ‘/) k l| i
= 1Gep)f ) X W(pn e ) ) 4201

The H-theorem. The Boltzmann transport equation is manifestly time irreversible.
However, the microscopic interactions are reversible. How does this qualitative
change come about? One of the major assumptions in the transport equation is the
molecular chaos hypothesis: that colliding particles are uncorrelated. This hypothesis
makes a distinction between past and future. The relativistic transport equation
thus describes an irreversible process. This property is manifested most clearly
in the Boltzmann H-theorem. In simple terms, the H-theorem (or second law of
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thermodynamics) states that entropy production at any space-time point is never
negative, 9,5" > 0.

H-theorem also defines the equilibrium state of a macroscopic system. In the
equilibrium state,

3,8" = 0. (4.202)

This condition with the transport equation determines the equilibrium distribu-
tion function: it is called the Jiittner distribution.

4.4.7 Equilibrium distribution function

The Boltzmann equation describes the space—time evolution of the distribution function
for a macroscopic system. One of the fundamental assumptions for a macroscopic
system is that left undisturbed, the system will reach equilibrium. In equilibrium,

Ylep. 1) _ (4.203)
de ' '

It is useful to distinguish between global and local equilibrium. The total system
can be divided into several small yet macroscopic subsystems (see figure 4.3). In
global equilibrium, all the subsystems can be characterized by the same thermo-
dynamic variables, i.e. thermodynamic variables are independent of spatial posi-
tions. In contrast, in local equilibrium, thermodynamic variables are a function of
the spatial position of the subsystem. If the macroscopic system is in local thermal
equilibrium, at each space-time point x we can specify, in addition to hydrodynamic
velocity v(x), a temperature 7(x) and for each particle species a chemical potential
#.(x), which controls the particle density at x. The equilibrium distribution function
can be obtained from kinetic theory under the condition that

9,8" =0, (4.204)

i.e. it is the distribution which extremizes the entropy four-flow. We have defined
entropy current as

S*(x) = — f ‘;—{f “f(x, p)| logh'f (x, p) — 1], (4.205)

(a) global equilibrium  (b) local equilibrium

Figure 4.3. The boxes represent small, yet macroscopic, subsystems of the total macroscopic system. (a) In
global equilibrium the macroscopic variables characterizing the subsystems are independent of space; (b) in
local equilibrium, the macroscopic variables are a function of space. The different colors of the boxes are
representative of different macroscopic variables.
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for which the entropy four-flow is

9,8"(x) = — f i—f[log Kf(x, p)|p" 9,/ (x. p)

- / C;_{)’[mg ’f(x, p)|C(x. f) (4.206)

and in the last line p”d,f(x, p) is replaced by the collision integral C(x, p). Pre-
viously, we have determined the form of the collision integral (see equation (4.178)).
The collision integral is identically zero when

FG.p)f (o) = f G ) (x.5) = 0. (4.207)

Equation (4.207) is then the condition for maximizing entropy four-flow.
Denoting the local equilibrium distribution function by £ (x, p), the relation
equation (4.207) can be written as

log f " (x, p) + I log f¥ (x, p,) = log 'f ¥ (x, p') + log I/ (x, p/)  (4.208)

where we have multiplied /® by Planck’s constant to render it a dimensionless
quantity such that one can take a logarithm.
In a binary collision,

pt+p'=p"+p"*, (4.209)
a function F(x, p) satisfying

F(x,p) + F(x,p) = F(x, p') + F(x, p/) (4.210)

is called the summational invariant. The most general form for a summational
invariant is a linear combination of a constant and the four-momentum p*,

F(x, p) = a(x) + b(x)p". 4.211)

Comparing equation (4.208) and equation (4.210) one concludes that
log i’f”(x, p) is a summational invariant and the local equilibrium distribution
function can be written as

[, p) = %e“““b»«(x”’“. (4.212)

Further insight can be obtained by inserting /' (x, p) into the Boltzmann
equation, p“d,f ©(x, p) = 0. Simple calculations indicate that for any arbitrary p*,
the parameters a(x) and b*(x) must satisfy

proa(x) + p'p“o,b(x) = 0. (4.213)

vou
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The condition can be re-written as
da(x) =0 (4.214a)
9,b(x) + 9,b,(x) = 0. (4.214b)

The second equation is called the Killing’s equation, the general solution for
which can be written as a superposition of translation and rigid rotation,

b(x) = b* + w"x,. (4.215)

If rigid rotation is neglected, both the parameters a and b, are constant and the
equilibrium distribution function can be Written as

fO(p) = e, (4.216)
Writing
H u,
=— b =—— 4.217
=T =TT (4217
the Lorentz-covariant global equilibrium function can be written as
u—u,p"
D) = e 7 4.218
/7 P) Cn)y (4.218)

It is possible to show explicitly that g, T and u* are indeed global chemical
potential, temperature and hydrodynamic four-velocity. The form (4.218) is an
example of the Jiittner distribution function.

A Lorentz-covariant local equilibrium distribution function is obtained when the
parameters 7, u and u” depend on the spatial position,

)=, ("

e T . (4.219)

©)
X, p) =
S (x, p) any
In the rest frame u,p" = E and we can identify the Jiittner distribution equation
(4.218) with the familiar Maxwell-Boltzmann distribution function,

Sos ) = _L 5 (4.220)

(2nh)’

The Boltzmann transport equation without quantum statistics gives the Maxwell-
Boltzmann distribution as the equilibrium distribution function. If quantum effects
are accounted for, the collision integral becomes identically zero (see equation
(4.197)) when,

T = r1rr
7T TT 4.221)
or L =
VAV AN

with £ =1 + eh’f. e = +1(=1) for the boson (fermion).
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Taking logarithm,

— a al a

+ log—- (4.222)

7.7
loghf + log f logh3f/

one can identify log% as the summational invariant whose general form, as before,
can be written as

loghf—f log(ﬁ + e) = a(x) + b(x)p" (4.223)

and the local equilibrium distribution function with quantum statistics is obtained as
1 1

J(x,p) = Fiuwbﬂ(x)pu_ — (4.224)

Identifying a(x) = =%~ (‘) and h(x) =
system boson or ferm1on is obtained as

- ( ), the local equilibrium distribution for a

1 1
J(x.p) = nn)y (4.225)
e T —€
with ¢ = +1 for bosons and € = —1 for fermions.

In the rest frame, p - u = E and one obtains a global equilibrium distribution
function for fermions as

1 1
Maxwell-Boltzmann: f(x, 4.226a
TP = Gy or (4.226a)
Bose—FEinstein: f(x, p) = _ (4.226b)
: 4 (2 h)3 o ” _ .
Fermi: f(x, p) = ! ; (4.226¢)
' ’ (2 h)3 eET” + 1 '

It is instructive to compare the Bose—Einstein and Fermi-Dirac distributions. In
figure 4.4 we have shown the functions as a function of % Bose—Einstein distribution

tends to oo as % — 0. Asymptotically, for large % both Bose—FEinstein and Fermi—
Dirac distributions coincide with the Maxwell-Boltzmann distribution function.

4.4.8 Conservation equations

An important property of the collision term in the Boltzmann equation is that if
multiplied by a summational invariant y/(x) = a(x) + b,(x)p" and integrated over
all possible momentum values, it identically reduces to zero,

3

/i’—fw(x, p)C(x, p) =0. (4.227)
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Figure 4.4. Bose-Einstein and Fermi-Dirac distribution functions as a function of (E — u)/T. For compar-
ison, the Maxwell-Boltzmann distribution function is also shown.

Equation (4.227) can be used to derive conservation equations. For example,
consider the summational invariant y(x, p) = a(x). One obtains
3

d d
0= f p_fa(x)c(x’ p) = / p—fa(X)P”a,,f(x, p)- (4.228)
Since we have defined particle four-current as N* = / %’,’p” f(x, p), the above

equation can be written as the macroscopic conservation law of the total particle
number,

9,N*=0. (4.229)

In a system where the number of particles of each component is conserved
separately, one can write

9N/ =0 K=1,2,...N. (4.230)

For the summational invariant y(x) = b,, (x)p", one obtains
d3 . d3 ,
0= / p_fbﬂ(x)l” Clx, p) = f p—fél(x)P”p 9,/ (x, p). (4.231)

3
The energy-momentum tensor is defined as 7" = / %ﬁp” p'f(x) and the above
equation then gives the energy—-momentum conservation law,

9,7 = 0. (4.232)
For a system with a singly conserved charge, the five equations,

9N"=0, (4.233)

9,T" =0 (4.234)
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govern the motion of the fluid. They are called hydrodynamic equations. Explicit
decomposition of the energy-momentum tensor and particle four-flow were given
earlier, see equations (4.152) and (4.153). They must be supplemented by the
H-theorem or the second law of thermodynamics,

9,5" > 0. (4.235)
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Chapter 5

Quantum chromodynamics

5.1 Introduction

The modern theory of strong interaction is quantum chromodynamics (QCD). QCD is
a rather old theory. In 1964, Murray Gell-Mann [1], and independently George Zweig
[2], postulated the existence of quarks (Zweig called them ‘aces’). Gell-Mann was
awarded the Nobel prize in 1969 for his discovery of quarks. Unfortunately, Zweig’s
contribution was not recognized by the Nobel committee. Color as a three-valued
charge degree of freedom was introduced by Oscar Wallace Greenberg [3] in 1964 and
in 1965 as a gauge symmetry by Moo Young Han and Yoichiro Nambu [4]. A basic
framework for a field theory based on color already existed in 1954, mainly due to Chen
Ning Yang and Robert Mills [5]. Gerard 't Hooft and Martinus Veltman [6] showed
in 1971 that such ‘non-abelian’ gauge theories are renormalizable. In 1973, David
Jonathan Gross, Frank Anthony Wilczek [7] and Hugh David Politzer [8] discovered
asymptotic freedom (interaction between particles gets weaker with increasing energy
or decreasing distance). The discovery led them to receive the Nobel prize in 2004.

Formally, QCD can be defined as a field theoretical scheme for describing strong
interaction. QCD is built on three major concepts: (i) colored quarks, (ii) interaction
between colored quarks resulting from exchange of spin 1 colored gluon fields and
(iii) local gauge symmetry.

(i) Quarks. Quarks are fundamental constituents of matter. They are spin half,
structureless point particles. In table 5.1, the properties of the six members
of the quark family are listed. Quarks have various intrinsic properties,
e.g. electric charge, color charge, spin and mass. They are grouped into
three generations, the lightest pair making the first generation and so on.
Properties, except for the mass, remain unchanged between the gene-
rations. Similarly, three generations are also seen in the lepton family.
The experimental fact that quarks (fractional charges) are not observed
in isolation was accommodated in the theory by postulating ‘color con-
finement’. Quarks combine to form physically observable, ‘color-neutral’,
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Table 5.1. Summary of properties of quarks. Current quark masses are from [9].

Quark Charge Color Constituent Current mass

Generation flavor Symbol Qle charge mass (MeV) (GeV)

I

II

111

~350 0.015-0.003
~350 0.035-0.006

~1800 1 '27+0.07

—=0.11

up 2”0 3
3
3

strange s -1/3 3 ~550 0.10570%
3
3

u
down d -1/3

charm c 2/3

top t 2/3 ~170 x 10° 1712 £ 1.1 £ 1.2
bottom b -1/3 ~4 x 10° 42100

(ii)

(iif)

particles; mesons (pion, kaon, etc) and hadrons (protons, neutrons, etc).
From table 5.1, one can identify protons as composites of (uud) and neu-
trons as composite of (ddu). It may be mentioned here that the mechanism
of color confinement is not properly understood as yet. The QCD
Lagrangian is highly singular at small momentum (large distance limit).
Numerical simulation of QCD on a lattice does indicate confinement.
Some clarification is needed as to quark mass. We have listed two types of
mass, constituent quark mass and current quark mass. Since quarks are not
observed, their mass cannot be measured directly. The mass of a quark is a
parameter of the QCD Lagrangian which describes the interaction of the
quarks. These masses are called current quark mass. It is on the same
footing as other parameters of the Lagrangian, e.g. fields, coupling constant,
etc, and depends on the momentum scale and renormalization scheme. In
the constituent quark model, hadrons are bound states of quasi-particles,
which are valence quarks, dressed up with gluons and quark—antiquark
pairs. Constituent quarks have the same spin, color and flavor as the current
quarks, but their masses are phenomenological parameters to be fitted to
experimental hadron mass spectra. Naturally, the constituent quark masses
are also model dependent.

Gluons. Gluons are the mediators of strong interaction. They are massless
bosons (spin 1), with two polarizations (left handed and right handed).
Indeed, the role of photons in quantum electrodynamics (QED) is played
by gluons in QCD. But unlike photons, which are not self-interacting,
gluons are. There are eight types of gluons. This can be understood if we
note that quarks (anti-quarks) can carry three color charges. They can be
combined in nine different ways: one (singlet) colorless state and eight
(octet) colored states (3 X 3 = 1 + 8). Gluons cannot occur in a singlet
state (color singlet states cannot interact with colored states). Hence there
can only be eight types of gluons.

Gauge theory. QCD is a gauge theory, i.e. the Lagrangian is invariant
under a continuous group of local transformations. The gauge group
corresponding to QCD is SU(3).
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There are several textbooks on QCD and related physics [10-19]. Additionally,
there are a large number of review articles, e.g. [20-28]. The reader can also see [29]
for a comprehensive list of references. In the following, some selected aspects of
QCD will be discussed. To be self-contained, we first discuss briefly the gauge
theory. Some elements of the SU(3) group are discussed in appendix A.5.

5.2 Brief introduction to gauge theory

QCD is based on the principle of local gauge symmetry of color interaction.
Consider a complex scalar field ¢(x), with Lagrangian density,

L(p(x). 0"p(x)) = 0,0" "¢ — V(") (5.1)
The Lagrangian is invariant under a constant phase change,
P(x) = ¢'(x) = Up(x) U=e™ (5.2)

where a is an arbitrary real constant. This transformation is called ‘global’ gauge
transformation. Note U = €™ is a unitary matrix in one dimension, UU" = 1.
The theory is said to be invariant under global gauge transformation under the
unitary group'.

If the complex field is written as

1 .
¢ = f(rﬁl +ig,) (5.3a)

. 1 .
¢* = ﬁ(d’l ~ ig,) (5.3b)

the transformation: ¢ — e ¢, ¢p* — €“¢™ gives

1 . ; .
¢ = f(qf)l' +ig)) = (¢, + i) (5.4a)
o = %(45{ - i(/);) = e“(¢, - i¢2)), (5.4b)
which is equivalent to
¢ ) (cosa sina)l®

(¢*’] - (—sin a cos a)(qﬁz]' (5-5)

' A complex square (n X n) matrix 4 is called unitary when it satisfies the condition 44" = A'4 = I, I being the
unit matrix of dimension n. The group of n X n unitary matrices with group operation of multiplication is
called a unitary group of dimension n and is denoted by U(n). The simplest case, U(1), corresponds to all the
complex numbers of absolute value 1, i.e. unit circle on the complex plane.
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The transformation ¢(x) — e “¢(x) can be thought of as a rotation in some
internal space by an angle a. Thus the U(1) group is isomorphic® to O(2), the group
of rotation in two dimensions.

In a global gauge transformation, ¢(x) must be rotated by the same angle a in all
the space—time points. This is contrary to the spirit of relativity, according to which
signal speed is limited by the velocity of light. Then without violating causality, ¢ in
all the spatial positions cannot be rotated by the same angle at the same time. This
inconsistency is corrected in ‘local’ gauge transformation, where freedom is given to
choose the phase locally, and the phase angle @ becomes space-time dependent,

P(x) = ¢'(x) = UX)p(x) = e " gp(x). (5.6)
Under such a transformation,

0"p(x) = U(x)0"p(x) + $(x)0"U(x) (5.7

and the Lagrangian is not invariant under the gauge transformation. The underlined
term must be compensated. This can be done by introducing a gauge field 4*(x),
which under the local gauge transformation transforms as

A(x) > A () + “0%a(), (5.8)
e

and replacing the partial derivative (aﬂ) with covariant derivative (Q ) defined as
D¥¢p(x) = [6“ + ieA“(x)]qb(x). (5.9)

While the Lagrangian is now invariant under local gauge transformation, it is not
the same Lagrangian as before. A gauge field 4”(x) is now present as an external
field. To obtain a closed system, we need to add a kinetic energy term, to be con-
structed from A, and its derivatives. The only term which is invariant under the
gauge transformation is

F' = 9"4" — 9" A", (5.10)

Thus we arrive at a Lagrangian density for a closed dynamical system, invariant
under local U(1) gauge transformation,

L= —%F"”FM + D¢*D'p — V(pg¥). (5.11)

The Lagrangian in equation (5.11) is essentially for QED, which is a local gauge
theory with U(1) group symmetry. The symmetry group for QCD on the other hand

2In group theory, two groups are called isomorphic when there is one-to-one correspondence between the
group elements. Isomorphic groups have the same properties and need not be distinguished.
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is SU(3). In contrast to U(1), which is an abelian group® (group elements commute),
SU(3) is non-abelian (group elements do not commute). The non-abelian nature of
the SU(3) group introduces additional complications.

5.3 QCD Lagrangian

Quarks are fermions and obey the Dirac equation. Classical Lagrangian density for
free quarks of N, flavors can be written as

Ny
‘Eclassical = 217/[17/”0‘“ - mf:ll//f (512a)
/=1
]\]f
=Y Flid —mly, (5.12b)
/=1

where in the second line, we have used Dirac’s* slashed notation, dy = y* dy. In
equation (5.12), v, is the wave function for the quark of flavor f. In the SU(3) color
space, it can be written as a column matrix,

l//r
w=|Y%| (5.13)
¥,

where each y, i =1, g, b is a four-column Dirac spinor.
Analogously to the scalar fields, if we introduce eight-gluon potential

A*(x) a=1,2,..8 (5.14)

and associated covariant derivatives,

T a)“a
D=0, igd; > (5.15)

the SU(3) gauge invariant Lagrangian can be written as

&
. 1 ra
‘Lclassical = 2 :l/_//[ly”Dﬂ - mf]l//f - ZF;” F;w (516)
f=1

3The abelian group is named after the Norwegian mathematician Niels Henrik Abel. He invented group
theory independently of the French mathematician, Evariste Galois. Apart from group theory, Abel is famous
for his ‘impossibility theorem’, that general algebraic equations of order five or more cannot be solved ana-
lytically. Abel was largely unrecognized during his lifetime. In 1829, he died at the early age of 26 years.
4Richard Feynman invented the notation and it is also known as Feynman’s slashed notation.
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Figure 5.1. A quark interacts with a gluon and changes its color.

where we have included the kinetic energy term %E;WFL for the gluon fields. The
gauge invariance restricts the field tensor to the form
Fo=0A"—0,A" +gflAJAS. (5.17)
One can identify several important aspects of equation (5.16). It contains terms
like, (i) Wf,[iy"dﬂ - mf]l///,. describing free quark fields, (i) 9,4,0"4, describing free
gluon fields and (iii) several terms describing interactions between quark fields and
gluon fields and between gluon—gluon fields. For example, it contains terms like

a

. A
— —joir nZ_
o = 1gy(f.71A v,

L Al

(5.18)

a

or more precisely, = —igW/ 7, A 7”1// >
f; i

describing interactions between quark and gluon fields. It can be understood as
follows: a quark changes its color from i to j by interacting with a gluon of color a
through the SU(3) generator %’ The process is depicted in figure 5.1. The factor g is

the coupling strength between the quark and gluon fields. Equation (5.16) also
contains terms like

Loy = & ApA,(0"4]) (5.19)
Lowee =8 2f¢;bc te Ap A AL AL (5.19h)

These terms represent gluon self-interaction. Equations (5.19a4) and (5.195),
respectively, correspond to three- and four-gluon interaction, a schematic repre-
sentation of which is given in figure 5.2. These terms constitute the major differences
between QCD and QED. Unlike the photons in QED, in QCD, gluons, the mediator
particles, can self-interact. Gluon self-interaction leads to two important properties
of QCD: (i) asymptotic freedom and (ii) infrared slavery.

Equation (5.12) is the classical Lagrangian. It needs to be quantized. We will
not discuss the quantization procedure in detail. Briefly, the quark part of the
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Figure 5.2. Gluon self-interaction. Three-gluon and flour-gluon vertices are shown.

Lagrangian can be quantized in the usual procedure, quantizing spinor fields in
terms of creation and annihilation operators. As in QED, the gauge invariance of
the Lagrangian poses some problems in quantization of the gauge fields. While the
gauge field A4 has four degrees of freedom, physical, massless gluon fields have only
two degrees of freedom. Following QED, two redundant degrees of freedom are
fixed by introducing the gauge fixing term, but unlike in QED, the extra fields
introduced by the gauge fixing terms do not cancel each other, requiring further
introduction of massless, unphysical Faddeev—Popov ghost fields.

5.4 Perturbative QCD

QCD has two distinguishing features: (i) asymptotic freedom and (ii) color con-

finement. The interaction strength a, = j—i between quarks becomes smaller as the
distance between them gets shorter and in the limit » -0, ay— 0. This is the
asymptotic freedom; in the short distance or large momentum scale quarks are
asymptotically free. At large distances however the interaction strength between two
quarks increases such that they cannot be separated, a phenomenon known as color
confinement. Asymptotic freedom allows one to use perturbative techniques to solve
for certain problems in QCD, involving large momentum transfer (or short distance
processes). The cross section for those processes can be expanded in terms of the
coupling constant,

o(p) = Y A,(p)a (5.20)

and smallness of coupling ensures that only a few terms contribute to the cross
section.

5.4.1 Asymptotic freedom and infrared slavery

The QCD coupling constant runs. A running coupling constant is not particular to
QCD, but is in all the quantum field theories, the underlying reason being the
quantum fluctuations. To understand it better, consider the interaction between two
electrons in a vacuum,

aem
F=—= = 2o (5.21)
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2
where we have introduced the QED coupling constant @, = ;-. In a medium with
dielectric constant e, the interaction changes to

F=—2% (5.22)

Interaction in the medium can also be written in the vacuum form (equation

(5.21)) by redefining electron charges as € = %, or by renormalizing the coupling

constant, a,,, = (IT In a quantum theory, a vacuum can be considered as a polar-
izable medium and due to fluctuations, even in a vacuum, one can create virtual
pairs of ¢*e”. The virtual charges can effectively screen a test charge. A probe will
reveal more and more of the charge as it approaches nearer to the test charge,
making the effective coupling constant dependent on the separation, and the
interaction can be written as

F= 2ol (5.23)

2
r

More formally, in quantum field theory, the vacuum is just the lowest energy state
of a field system and not necessarily empty. A QED vacuum can be considered as the
state where the Dirac negative energy sea is filled with electrons. A photon passing
through the vacuum can induce the transition of an electron from a negative to a
positive energy state, virtually creating a pair of electrons and positrons (see I of figure
5.3). The phenomenon is known as vacuum fluctuation or vacuum polarization. In
any electromagnetic process (or more precisely, in any quantum mechanical process),
such loop diagrams contribute. However, they lead to divergences, called ‘ultraviolet
divergency’. The divergences in loop diagrams can be understood as follows: the
electrons in the loop can have arbitrary momentum and upon integrating over the
momentum give infinity.

In order to obtain a finite result, these divergences need to be eliminated. In
renormalization theory, the divergences are absorbed by redefining various para-
meters of the theory, e.g. mass, coupling constant, etc. In other words, we abandon
the idea of using or observing the parameters of the initial Lagrangian, the so-called
‘bare’ quantities and re-express everything in terms of the finite, ‘renormalized’ and
observable parameters. We shall not discuss the renormalization procedure in detail.

Figure 5.3. Diagram showing vacuum fluctuations. In I, a photon (gluon) excites the vacuum by producing a
virtual electron—position (quark—antiquark) pair. Diagram II is possible only in QCD, where the vacuum is
excited by gluon self-interaction.
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It proceeds in two steps. The first step is the regularization: the divergent integrals
are regularized by separating finite results and infinite results. There are several
schemes for regularization, e.g. dimensional regularization or the Pauli-Villar reg-
ularization scheme. In the second step, fields and parameters in the model, e.g. mass,
coupling constant, etc, are redefined to absorb these infinities resulting in a
renormalized Lagrangian.

Dependence of the coupling constant a on distance r or equivalently on the
momentum scale y ~ % is given by the renormalization group equation,

Ja da

”5: 0lnp

= p(a) (5.24)

where the function driving the momentum dependence is called the beta function
and can be written as

pla) = = by + ba + bya’ + -], (5.25)

In leading order, equation (5.24) can be integrated to obtain

a(u,)
= . 5.26
a(u) by a(py) . i (520
1+ 22000y £
2 3z ,uoz

In equation (5.26), py is a reference momentum scale. In QED, the leading order
contribution to the beta function can be calculated as b, = —% and the QED run-
ning coupling constant can be written as

a,,(#y)
(1) = —— (ﬂ‘)) - (5.27)
1 — Zemol '“_2
T H,

QED coupling increases as the momentum scale is increased. It is called the
screening effect. At finite distance, vacuum polarization screens a test charge. The
vacuum effect is lessened at smaller distances and effective charge becomes larger.
The reader may note that the coupling constant diverges at the momentum scale,

3
ALandau = :u()exp( 2(1(” )] (528)
0

It is called the Landau pole. It occurs at very large energy (beyond the Planck

energy) and is of no consequence in practical applications.
The leading order contribution to the beta function in QCD can be calculated as

1 2
by=—|[11-=N,|. 5.29
0 4”( 3 ,) (5:29)
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The second term ——* in equation (5.29) comes from the quark—antiquark pair
effect in the first dlagram of figure 5.3 and produces a screening effect as in QED.
The first term % comes from the second diagram of figure 5.3, vacuum excitation by
gluon self-interaction. The opposite sign indicates that gluon self-coupling has
an opposite or anti-screening effect. For N, < ?, the effect of vacuum polarization
is to anti-screen the QCD interaction. The running coupling in QCD now can be
written as

2 alu,)
aM)=f—= s °2N =
1+ — 0(11 )1n—2

4 3

7T Hy

(5.30)

Equation (5.30) demonstrates the property of asymptotic freedom. If N, < 17,
a,(u) will asymptotically decrease to zero as u — oo, QCD is asymptotically free. On
a short distance scale, quarks behave as free particles. Equation (5.30) also
demonstrates the property of infrared slavery: in a low momentum scale or at large
distance, the coupling constant diverges to infinity. For example, taking (M) =
0.12, and for typical values of Nf—2 3...5, a(u) exceeds unity for x < O (100
MeV...1 GeV). Clearly, this is the region where perturbative expansions in ¢, are not
meaningful. Therefore energy scales below the order of 1 GeV are regarded as the
non-perturbative region where confinement sets in.

Introducing a dimensionful parameter,

2
H 1 2
AéCD = el/bO—(‘)’J(”O) bO = —(11 - 51\/}) (531)

A

Equation (5.30) can be written as

1
—.
L(ll _ ng)ln/;—
4r 3 Agep

Aqcp 18 called the QCD scale parameter. At this momentum scale the QCD
coupling constant diverges to infinity. Technically, this is the minimum momentum
scale, below which QCD is inapplicable. Typically, Aqcp ~ 200 MeV, however, its
value also depends on the renormalization scheme.

alp) = (5.32)

5.4.2 Factorization theorem

Ultraviolet divergences, associated with large momentum or short distance pro-
cesses, are regularized in the renormalization scheme. In QCD there is another type
of divergence called ‘infrared divergence’, associated with low momentum or large
distance processes. The renormalization procedure introduces a renormalization
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scale ¢ and any physical quantity will be a function of three variables of dimension

mass, (i) the kinematical energy scale Q of scattering, (ii) the renormalization scale u

and (iii) the mass. They appear as ratios, £ and £. If u is chosen to be large such that
H m

u

asymptotic freedom is applicable, the ratio £ becomes large. -~ — oo is called

infrared divergence. In a loop diagram, the coupling constant generally appears in
combination a’*(Q) In"~, a=10r2 and perturbative expansion is no longer an
expansion in terms of a small parameter. In summary, a general cross section is a
combination of short and long distance behavior, and is hence not computable
directly in perturbation theory for QCD. We must mention here that there are some
processes, e.g. €'¢” annihilation to hadrons or into jets, which are infrared safe.
Factorization theorem allows us to write the cross section for a QCD process in
terms of a long distance (small momentum) part, which is not directly calculable,
times a short distance (large momentum) part, which is calculable in perturbative
QCD (pQCD). Factorization theorem is best explained in the parton model.

5.4.3 Parton model

In the pre-QCD era, Feynman introduced the parton model to explain the scaling
behavior’. Basic assumptions of the parton model are as follows.
(i) A fast hadron is made up of point-like constituents called partons (later
identified with quarks and gluons).
(i) One can define parton distribution function f, (x) which gives the prob-

ability of finding a parton i with momentum xP,(x < 1) inside the hadron
A with momentum P,.

(iii) The inclusive cross sections are given by the convolution of ‘tree level’
parton cross sections with the distribution functions.

Consider the collision between two hadrons A and B, producing, say, a large
invariant mass lepton pair. For simplicity, consider only one type of parton i. In the
factorization theorem, the differential cross section can be written as

de®"(p,, p,) = (defi/A(xl)defi/B(XZ)) X 6,(xipy5 XD, )- (5.33)

The bracketed term gives the probability of finding one parton in hadron A4 and
one parton in hadron B, respectively with momenta x,p, and x,p,. All the large
distance or small momentum effects are encoded in the parton distribution function,
which cannot be calculated theoretically. The short distance or large momentum
part is encoded in the ‘tree level’ cross section 6,(p, ¢), which is perturbatively
calculable.

*In deep inelastic lepton—proton scattering processes e + p — e + X, it is expected that the cross section will
depend on both the energy loss v of the lepton and four-momentum transfer ¢* = —Qz., Experimental data

however show dependence only on the scaled variable (called Bjorken’s variable), x = sz'
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In the parton model, partons are interaction-free, which is only approximately
true in QCD. Also the parton model does not include gluons, which are an integral
part of QCD. The parton model equations are then modified. The most important
modification is due to the infrared singularities mentioned above. These infinities are
regularized in the same fashion as for the case of renormalizing QCD. The procedure
introduces a new momentum scale, uz, called the factorization scale. It represents
the scale where the perturbative physics factorizes from the non-perturbative part.
The parton distribution function thus modifies to f(x) — f (x, ,qu). The cross
section for the process 4 + B — X can be obtained as

1
o_AB—»X(pl,pz) = 2 /0 dx,dx,f, | (xl, sz)fj/B (xz, ﬂ;)@;(MPAa x,p,)- (5.34)

i,j=quarks,gluons

A remarkable consequence of factorization is that measuring parton distributions
for one scale uallows their prediction for any other scale 4, as long as both y-and
i, are large enough that both a,(u,) and a,(u,) are small. The equation describing
parton evolution as a function of momentum transfer is called the Dokshitzer—
Gribov-Lipatov—-Altarelli-Parisi (DGLAP) equation [30]. The equation increases
the power of perturbative QCD enormously. The parton distribution function
S (x5 u*) cannot be calculated theoretically, but has to be obtained from experi-
ments. The best source is deep inelastic electron scattering. One generally para-
meterizes the parton distribution function at some reference factorization scale
with a flexible functional form, e.g.

Lu(xop2) = 4x"(1 = 0)°(1 + Ex)” (5.35)

and evolves them by DGLAP equations to the experimental scale [31]. The para-
meters A, B, C and D are then obtained by fitting the experimental data. In
practice, a large number of parameters (20 or more) are used in the fitting function.
In the literature, several parton distribution functions are available, e.g. CTEQ [32],
GRV/GJR [33], MRST [34], etc. For more details about parton distribution func-
tions see [35].

5.4.4 Fragmentation function

The final state of any QCD process is hadrons. QCD deals with partons (quarks
and gluons). The process of the conversion of partons into hadrons is unknown,
but basically, it is a low momentum or non-perturbative process. Physically,
an energetic parton fragments (or showers) into many partons, which on a later
time scale undergo hadronization. In the parton model, the hadronization process
may be parameterized by introducing a fragmentation function D,,(z) that gives
the probability that parton i/ fragments into a hadron /4 with a fraction z of the
parent parton momentum. The fragmentation function essentially encodes the
non-perturbative process of hadronization of quarks. They cannot be calculated
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theoretically, but are obtained only from experiments. The best experimental source
is electron—positron annihilation to a hadron, € + e~ = (y, Z) -» h + X. The
cross section for the process can be obtained as

1de
0, dz

~ Zaop,l/,,(z) (5.36)

where z is the energy fraction, z = E,/E
a parton 1.

In a simple parton model, the fragmentation function is a function of the
momentum fraction z = D,/Ps but QCD correction introduces a scale dependence,

and ¢, is the cross section for producing

beam

D, (z) = D,(z, ,uFZ). Fragmentation functions also obey the DGLAP type of
evolution equation. General procedure [36] is to parameterize the fragmentation
function at some momentum scale ur, with a flexible function, e.g.

Dz, up) = Nz(1 = =), (5.37)

and use the DGLAP equation to evolve it to the experimental scale and obtain the
parameters by fitting the experimental data.

5.5 Non-perturbative QCD

In the high momentum regime, the QCD coupling constant is small, and one can
apply perturbative methods to calculate the physical observables from the QCD
Lagrangian. However, the QCD coupling constant runs and in the low momentum
regime its value exceeds unity and perturbative approaches fail. Running coupling
constants reflect the change in the underlying force law, as the energy/momentum
scale at which physical processes occur varies.

In lattice QCD, the space-time is discretized to reduce the infinite degrees of
freedom of ‘field variables’ to a finite and (numerically) tractable number. One
immediately notices that due to the finite dimensions of the lattice, Lorentz invar-
iance is broken. Gauge invariance, however, is kept explicitly by parallel trans-
portation of the gauge fields between adjacent lattice sites. In the continuum limit,
lattice spacing @ — 0, Lorentz invariance can be restored.

In the following, some selected aspects of lattice QCD will be discussed. For more
informative exposure to lattice QCD, see [37-40]. Also, there is a large number of
reviews on lattice QCD, e.g. [41-47].

Lattice QCD is intimately related to Feynman’s path integral formulation of
quantum mechanics. Below, we briefly sketch the ideas behind the path integral
method. A brief introduction to parallel transport will also be given.

5.5.1 The path integral method

Richard Feynman is one of the most celebrated physicists of the twentieth century.
Apart from the path integral formulation of quantum mechanics, he made
pioneering contributions in quantum electrodynamics, superfluidity and particle
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tO tl t2 - tN

Figure 5.4. Particle trajectories or paths between (x;, #y) and (xy ty) for discrete time steps.

physics. He invented the diagrammatic approach to QED (the Feynman diagrams).
In 1965, Feynman, Julian Schwinger and Sin-Itiro Tomonaga were awarded the
Nobel prize for their contributions to QED.

Consider the propagation of a particle from position x; at time #, to position x;, at

time 7. For a given trajectory, (x, X), the action is

s= [ " drLix, %). (5.38)

1

L(x, X) is the Lagrangian. The path integral method states that the transition
probability from (x;, ;) to (x;, #y) can be expressed as the weighted sum of all the
possible paths or trajectories,

(x(t)lx(t)) ~ Y expiS(x(1), %(1)]. (5.39)

paths(P)

Let us discretize the time interval into N steps, ¢y, — f, = NA¢. In figure 5.4, the
discretized paths are shown. It is clear that for small enough time steps, any con-
tinuous path can be adequately traced. Now one can sum the trajectories at a
particular time step, say 7,:

Z eiS(x(r),X(t)) ~ /oo dx([n)eis(x(’n)’x(fn))‘ (540)

P(t=t,)

The procedure can be repeated for each time step. In the limit N — oo,

(x(1y)

N-1
x(t) ~ N [ TT dxz, o0 (5.41)
n=1

where N is some normalization factor.
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Table 5.2. Relations in Minkowski and Euclidean space are compared.

Minkowski space Euclidean space Relation

Coordinates

(xU, x', X% x3) (t, x, ¥, 2) (r, x, , z) t=—ir
Volume element

d'x dtdxdydz drdxdydz dt = —idr

Metric tensor g, = diag(l, -1, -1, -1) §,=diag(1,1,1,1) —

Line element

ds? g, dx"dx* 5, dx"dx" -

Derivative 9, (0. 9., 9, 0. (9. 0. 9,. 0.) 0, =io,

Gauge field (4,.4,. 4, 4.) (4. A4, 4,, A.) A, =id,

Gamma vy Vor Vas Vos 7y =7

matrices y* {7,4’ yy} = 2g" {J/g, 7/,;} py y = i}/Ej

Action Sy = [didxL, Sp = [ded'x L, iSy = —Sp, Ly = —Ly

It is easy to extend the formalism to fields. Consider a one-dimensional field
¢(x, t). Again, consider the transition amplitude for the field ¢(x, %) to qbf(x, i),

<¢2(x )|, tf)> Ze ARLZA) (5.42)

As before, we discretize the time intervals in N steps. Additionally, we discretize
the space coordinates into N, steps. Note that space is infinite in dimension. Thus,
discretization can only be an approximation of the infinite space.

N, N-1
(0l (. 1,)) ~ N tim [ H [T dg.. « e adtntl) - (5.43)

It is convenient to make a Wick’s rotation, f = —ir, so that the space is Euclidean.
Relations between Euclidean and Minkowski space are noted in table 5.2. In
Euclidean space,

is=i f did’x L = — / ded’x Ly = —S,. (5.44)

This can be explicitly seen by considering the action for a simple scalar field,
S= / didx [ ~o,p0"p — V(qS)] f didx [ (9,00, — V) — V(qs)]
— / d¢d3x[5(—a,¢a,¢ — VVep) - V(¢)]

=i / drd%[%(a,(pa,(p + VpVg) + V(¢)] = iS,. (5.45)
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In terms of the Euclidean action (Sg), the transition probability can be written as

<qg(x, t, f(x, z, ~ N hm f H H dp(xx,, t,)e 5o [#0min) (9sm)})
m=1 n=1
~N / Dple . (5.46)
D[] is the shorthand notation of the integration measure,
N\’ N-1
Digl =[] [] do(x,. 1.)- (5.47)
m=1 n=1

Now in statistical mechanics, the central problem is to compute the partition
function, defined as

Z = Tre™ = Y ()l |p(x)). (5.48)
¢

The summation is over all the possible states |¢(x)). f = 1/T is the inverse tem-
perature. It can be rewritten as

Z = Y {e?p(x)|(x))
¢
= Y {px. t = =iB)|p(x, 1 = 0)). (5.49)
¢

The partition function in statistical mechanics then corresponds to the path
integral formulation for the transition probability.

Z=N / Dgle . (5.50)

This is an important realization. All the tools of statistical mechanics can be
applied to field theory problems. The expectation value of any observable can be
obtained as

(0) = /D SEO. (5.51)
[ o1

5.5.2 Parallel transport

One of the problems in general relativity is the derivative of a vector (or more
generally, a tensor) quantity. In flat space—time, the derivative of a vector can be
computed easily,

Vi) = fimLCE R = V')

h—0 h

(5.52)
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ie ie 0 0+06

Figure 5.5. In a parallel transport, the tangent angle of a vector is changed in curved space-time, but not in flat
space-time.

However, in curved space-time, since the metric tensor g** depends on space,
additional terms arise. This can be understood from figure 5.5. In flat space, with a
vector at x, when transported to x + / the tangent angle remains the same. But in a
curved space, the tangent angle is changed. In general relativity, this is accom-
modated by defining the covariant (or semicolon) derivative,

oV =9V +ThV" (5.53)

where I'” is the Christoffel symbol and is defined as

1 9) 0 0
I, =-g" En 4 Bna _ B | (5.54)
2 ox* ox” ox"

I V* in equation (5.53) accounts for the change in the vector’s coordinate
representation during the transport (I, = 0 is flat space-time).
Covariant derivative

D'(x) = [ 0" + ied"(x) [p(x), (5.55)

defined in equation (5.9), is analogous to parallel transport; ie4”(x) is the change in
the field’s representation during transport from x* to x* + dx*. Then,
(]b(x" + dx”) = ¢(x") + dx"D”qﬁ(x")
= d)(x”) + dx”(aﬂ + ieA”)gb(x”)
= dx"9,¢ + [ 1 + ied,dx") Jp(x"). (5.56)

The first term in equation (5.56) is essentially a translational term. The second
term containing the A" describes the transport of the gauge field between two close
points x and x + dx. For infinitesimal distance, the second term in equation (5.56)
can be written as, ¢“%* ¢h(x*). By repeated application of infinitesimal transport, the
current (gauged) value of the phase of the wave function ¢, at the four-
dimensional space—time point y, is related to its value at some reference point x by
the parallel transport,

p) = &S O (). (5.57)

The integration in the exponent goes along some path C,, that connects x and y. For the
non-abelian gauge group SU(3), a quark can alter its color under parallel transport.
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Figure 5.6. Schematic representation of a lattice, in two dimensions.

Then for SU(3) gauge fields, the exponential or the phase factor is a 3 X 3 unitary
matrix. An extension of the above equation can be written as

$) = P ) 00T () = Ug(x), (5.58)

The symbol P means path ordering. U is the path dependent representation of an
element of the gauge group SU(3). To construct the matrix of parallel transport at
finite distance, one has to subdivide the path C, into small parts and form ordered
product of parallel transport along these small parts:

Y Aq .
U= peie/, 4073 _ H (1 + 1gdC"AW(§)%“). (5.59)
¢

5.5.3 QCD Lagrangian on a lattice

A lattice is a regular set of space-time points. A schematic representation of a lattice
in two dimensions is given in figure 5.6. For our purposes, we define:
(i) site (node): the lattice points, characterized by the coordinate x, generally
in the unit of the lattice spacing,
(i1) link: the shortest distance connecting two sites, characterized by coordi-
nates and direction,
(iii) plaquette: an elementary square bounded by four links, characterized by
coordinates and two directions.
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In general, one also imposes periodic boundary conditions for bosons, x,,, = x,
and anti-periodic boundary condition for fermions, x,,, = —Xx;,.

Lattice QCD simulations are computer intensive. The total number of degrees of
freedom is very large on a lattice. The fermions are defined on the nodes (site), y (i),
where a(=1, 2, 3) is the color index and a(=1, 2, 3, 4) is the Dirac index. They are
complex, requiring 24 real variables per node. One associates the gauge fields with
the links, Ui“_i’j, where i/ and j are the neighboring points and a,b are color indices.
U is a unitary 3 X 3 matrix, a total of nine complex variables times four possible
directions, i.e. 72 real variables per node for the link variables. In total in each node
we have (24N, + 72) variables. For two-flavor QCD, even a small lattice 16* will
deal with 7864320 real variables. Effectively, one has to compute a 7864320-fold
integration.

The relation between the matrices U and the gauge field 4, is the following,

U(x) = exp(ig f /iﬂdx”) A = Z%A;. (5.60)

U,(x) is the SU(3) matrix attached to the lattice link connecting the sites at x and

X + dx, in the direction u. The inverse of the matrix connects the sites in the
opposite direction,

— 7y = 77T
U_(x+dx)=U, (x) = Uj(x). (5.61)
In lattice QCD, one evaluates the partition function,

7= f d[U1d [y]d[ g Je %O+ (5.62)

where the action S(U, y, y') = f d'xL(y, v/, A) and d[y] = I1,dw represents
all the possible paths.

Gauge invariance is explicitly maintained in lattice QCD. As mentioned
earlier, quark fields are placed on the nodes and gauge fields are associated with
the links. One then parallel transports the gauge fields from lattice site n ton + 1,
maintaining gauge invariance. Gauge invariant objects are made from
gauge links between quarks and anti-quarks or products of gauge fields in a
closed loop.

5.5.4 Gauge fields on a lattice

In figure 5.7, the simplest closed loop of the gauge field is shown. It is called a
plaquette, the product of four links connecting four adjacent nodes. It can be shown
that continuum pure gauge action can be effectively discretized by the sum over all
the plaquettes.
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n+v U_“{n+u+v) n+UL+V
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o >
n Uu(n) n+p

Figure 5.7. A plaquette on the lattice. The unit vectors u, v are two generic directions.

Let us write down the product of the link variables associated with the plaquette
in figure 5.7,

B=U_(m+v)U_(n+p+v)Un+uwln), (5.63)
and consider the terms separately. U, (1) connects the site 7 with its nearest neighbor
(one lattice unit away) in the p-direction. For small lattice spacing a, the trapezoidal

B
rule, /A dxf(x) = % [f(A4) + f(B)] can be used to compute it (suppressing the
‘hat’ for clarity, 4 = %A” = A),

n+u

U(n) = exp_ig Aﬂ(x)dx"] = exp[ig%(Aﬂ(n) + A4,(n + ,u))]

exp ig%(A,,(”) + {Ay(n) + aa”A”(n)})]

exp ig§(2A”(n) + aa,,A,,(n))]. (5.64)

U(n + p) links the sitesn + g and n + p + v in the v-direction. We compute it as

_. n+u+v B . a
U(n + p) = exp| ig / . A, (x)dx ] = eXp[lgE(Ay(n +u)+Am+p+ V))]
[ St

=exp ig%({Au(n) + aaﬂAy} + {Ab(n) + ad A,(n) + aduAb(n)})]

— exp ig§(2Ab(n) + 2a0,4,(n) + aayAb(n))]. (5.65)

Link variables U_(n + p + v) and U_,(n + v) can be computed similarly,

n+v

U(m+p+v)

n+u+v

exp[ —ig Aﬂ(x)dx"]

exp[—ig%(2Aﬂ(n) + ad, A, (n) + 2a6DAﬂ(n))] (5.66)
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and

U, (n+v) = exp[—ig /:ry Ab(x)dx”]

exp[—ig%(ZAb(n) + a&bAb(n))]. (5.67)

Using the Baker—Campbell-Hausdorff formula,
elef = eA+B+%[A,B]+.,. (5.68)

we evaluate the product of the operators U(n + u)U(n) and U (n + v)
U (n + u + v). Keeping the terms of the order of a® only,

Un + pu)U(n) = exp[ig§{2Aﬂ(n) +24,(n) + ad,A,(n) + ad,A,(n)

+2ad,4,(n)} — %gzaz[Ay(n), A”(n)]] (5.69)

U (n + ) U (n+p +v)= exp[—ig%{2Ab(n) +24,(n) + ad, A, (n) + ad, A, (n)
+2ad,4,(n)} —%gzaz[Ab(n), Aﬂ(n)]]. (5.70)

The plaquette in equation (5.63) can be calculated as

v
I

a exp[igaz(aﬂAb(n) - ()DAM(n)) - azgz[Ay(n), Aﬂ(n)]]

exp|iga*(9,4,00) = 9,4,(n) = ig 4,0m), 4,00])]

exp[igazfiw] ~1+ igazl*;y - gza FE,F*™. (5.71)

When we take trace of B, the linear term Ew = %F /fu vanishes as the trace of Gell-

Mann matrices is zero. The trace of unity is a unit matrix and is irrelevant for the
action. The trace of the quadratic term can be calculated as

T F, "] = T{%%’?F;jm] = Tr[%&abF:UF””b] = %F;DF"“’. (5.72)

Comparing with pure gauge action in the continuum,

1 a va
S = f d“x[szF" ] (5.73)
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the simplest gauge action (called Wilson action) on the lattice can be written as

So(U) = % 2[1 Lo (B + Pg])] =p), [1 - lReTrPD] (5.74)
g 6 5 3

O

with f = %. The sum over [] in equation (5.74) indicates that the sum extends over

all possible elementary plaquettes in a four-dimensional lattice. For a lattice of size
NN, there will be 6N N, elementary plaquettes.

5.5.5 Fermions on a lattice

Adding quarks to lattice action needs additional effort. Quark fields are defined on
the nodes. Quarks are fermions and obey the Pauli exclusion principle. Thus they
have to be included as anti-commuting Grassmann numbers. See appendix A.9 for
some elementary information on Grassmann numbers.

In continuous Euclidean space-time, a fermion field y(x) has the action,

S, = f A5 () (7" D* + my(x) (5.75)

with covariant derivative, D" = 9" — igA". On lattice w and i are now Grassmann
numbers and naively, the action can be discretized as

Sy = a* ¥ [F o0y DAy(n) — mipnww(n)] (5.76)

Writing,
Py () = 5ty (1 + 10 =y (1 = 0] (5.77a)
y(n) = %[w(n )+ — W), (5.77b)

the first term of equation (5.76) can be written as

POy D yn) = S5 )y [20% ) = 2ig ()]

[W(”"‘H) —w(n—p _igaA”l//(n+u)+l//(n—u)]
a

— 1— H
= zw(n)y ;

= 21—all_/(n)y“[(1 - igaA”)ll'(n + /l) - (1 + igaAM)l,U(l’l _ ﬂ)]

= [ U+ i+ ) = U= pwn =] (579
a
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In the last line, we have used

U, (n+p) me ™ o1 — igad (n) (5.79a)

Ufn — p) m 4 ~ 1 + igad (n). (5.79b)

372

Rescaling, m — m/a, w — w/a’", the fermionic action can be written as

S, . U) = 3 S [ U+ oo+ 0 = G = own = )]
+m Y p(n)y(n)

= Y wm M, (U)yym). (5.80)

The Dirac operator M is a matrix with,

giee X Mogor X Mpirae = 12NN, (5.81)

sites color

rows and columns. For free fermion (U= 1),

1
Mnm = Eyﬂ(ém,nﬂd - 5m,n—,u) + M5mn' (582)

The Sommer scale. In lattice gauge theory, action is written in terms of dimen-
sionless quantities. One needs to fix one dimensionful quantity in order to set the
overall scale. In the pure gauge theory, this is usually done through the string
tension, defined as K = lim,_ _F(r), where F(r) is the force between two static
quarks at distance r. The limiting procedure is not easy to do because the statistical
and systematic errors on the force increase with the distance. R Sommer [4§]
introduced a hadronic scale 5, through the force F(r) between static quarks at

intermediate distances r, F(r,)r; = 1.65, which corresponds to 7, = 0.49 fm in
phenomenologically successful potentials, e.g. the Cornell potential and the
Richardson potential. The scale 7, = 0.49 fm is called the Sommer scale.

Lines of constant physics. While lattice simulations are done with finite lattice
spacing a, physical results are obtained only in the continuum limit a — 0.
The parameters of the action are the fermion masses m, and the coupling g. To
take the continuum limit, these parameters have to be tuned such that on the one
hand the lattice spacing a goes to zero while on the other hand a certain set of user
defined dimensionful physical observables remain constant. These trajectories in
the parameter space of  and m, along which a set of physical observables remains
constant as the limit ¢ — 0 are called lines of constant physics.

5-23



A Short Course on Relativistic Heavy lon Collisions

5.5.6 The fermion problem

Lattice QCD with dynamical quarks has the well known ‘fermion doubling’ pro-
blem: for each physical quark on the lattice one obtains 2=* = 16 quarks. One can
easily compute from equation (5.80) the inverse fermion propagator,

Z 7, sin(p” a)

a

D7) =i + m. (5.83)

The momentum space of the lattice theory is a four-dimensional Brillouin zone
B = [-x/a, n/a]' with anti-periodic boundary conditions. At each corner of the
2* = 16 Brillouin zone, sin( 2, a) = 0 and the propagator has 16 poles instead of the

physical one. The origin of the doubling problem is deeply connected with chiral
symmetry and we should just mention the Nielsen and Ninomiya [49] theorem that a
local, real, free fermion lattice action, having chiral and translational invariance,
necessarily has fermion doubling.

There are many ways to formulate fermion action on a lattice, e.g. Wilson
fermions [50], staggered fermions [51-53], domain wall fermions [54, 55], overlap
fermions [56, 57], etc. However, the current treatment of fermion action on a lattice
is inadequate. Below, without much elaboration, we will briefly discuss two popular
approaches, Wilson’s fermion method and the staggered fermion method, to cir-
cumvent the fermion problem.

Wilson’s fermion method. Wilson [50] introduced an additional term gayaﬂ to the
fermion action,

SY = / d4xz/7(y"Dﬂ +m %aﬂaﬂ)y/. (5.84)

r is called the Wilson parameter. The additional term can be interpreted as a
momentum dependent mass term. In the continuum limit, the effect of the additional
term is to makes the doubler modes infinitely heavy, effectively removing them from
the spectrum. Evidently, Wilson fermions destroy the chiral symmetry.

Staggered fermion method. In the staggered fermion approach [51-53], chiral
symmetry is preserved at the expense of partially reducing the fermion problem. One
uses the naive discretization and diagonalizes the action with respect to the spinor
degrees of freedom. The spinor degrees of freedom are then decoupled and three of
the four degrees can be ignored. Staggered fermions then have a single one-
component pair of Grassmann variables y(n) and (n) per lattice point n. This
procedure effectively decreases the number of doublers from 16 to 4. The remaining
four doublers are regarded as flavors and are called ‘tastes’.
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5.5.7 Partition function on a lattice

The functional integral for the partition function in lattice QCD can be written as

Z= / [AUT] d7 Jidy Je 5o U (5.85)
with,
1
So(U) = /3%}[1 - gReTrPD] (5.86)
(U7, y) Zw(n) M, (U)y(m). (5.87)

Computing numerically with Grassmann variables is non-trivial. Using integra-
tion rules for Grassmann numbers, one can integrate out the fermion fields,

[TawTdyie™ = [ [aw]idule Za@"nr = deMU)L  (5.88)
leaving only the gauge fields, weighted by the determinant of the Dirac matrix M,
7= f [dUTe" 5O det[M(U)). (5.89)

The partition function in equation (5.89) is a many-fold integration. One gen-
erally uses Monte-Carlo (MC) sampling to evaluate the partition function. One

generates gauge field configurations with Boltzmann weight detA(U)e ") and
evaluates the expectation value of an operator as
:ample
(0) = > o(y). (5.90)

N,

sample =1

A simple MC technique however is inadequate to integrate the partition function
efficiently and one requires importance sampling. There are several algorithms for
importance sampling. One such algorithm is by Metropolis.

The Metropolis algorithm. The Metropolis algorithm [58] is based on the principle
of detail balance.
The algorithm proceeds as follows:
(i) start from arbitrary configuration (e.g. randomly distributed),
(i1) look at the value of the field (say ¢) at any given point and change it:
¢ -,
(iii) calculate the variation in action: 6S = S(¢') — S(¢). If 6S is negative, it is
a lower energy state and desirable. One replaces the old value ¢ with the
new value ¢'. If S is positive, one accepts the new value with the prob-
ability exp(—4S).
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The procedure, after many iterations, will produce an equilibrium distribution.
Any physically relevant observable can be computed from the equilibrium partition
function,

[ dwiesrw)

f d[U]e S«

(f(0)) = (5.91)

5.5.8 The Wilson loop

Consider a g7 pair at a distance r. A schematic representation of the evolution of the
pair is shown in figure 5.8(a). In quantum mechanics, the time evolution of the pair is
governed by

w(t) = e Fa'y(t = 0). (5.92)

For confining quark potential (J/(r) =~ kr), as kinetic energy goes as 1/m, for
infinitely heavy quarks, E_ ~ kr. In Euclidean space-time (- - —iz), the time
evolution of the pair is then governed by

e_iEtﬂT’ — e—kr'r — e—kA (593)

where 4 =r X 7 is the area spanned by the ¢gg system during its evolution.

The Wilson loop is defined as the trace of the gauge fields along the world line.
A typical Wilson loop is shown in figure 5.8(b). It is just the product of link variables
along the contour

w(r, T) = trU,U,... U,. (5.94)

In the continuum, the expectation value of the Wilson loop for large T" and r is

(w(r, T)) ~ <e‘i[dx”Au> ~ g A (5.95)

The area law is a manifestation of confinement.

(@)
\
T T
=2
p il -—
-

r

Figure 5.8. (a) Area spanned by the ¢g pair at a relative distance r, as a function of time; (b) a Wilson loop.
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5.5.9 Lattice QCD at finite temperatures

QCD at finite temperatures can also be simulated on a lattice. One reformulates the
partition function as

z=1e = [ d¢exp[—% [ faxe(s, 45)]. (5.96)

From the above equation, one realizes that finite temperature effects can be
accounted for in a lattice which extends to infinity in the three space-like directions,
but only to a finite extent in the temporal direction. Periodic boundary conditions in
time must be imposed on the dynamical variables and the temperature is related to
temporal size,

|
Time Na

Temperature = (5.97)

On a lattice, even the spatial extents are finite. Finite temperature QCD is then
studied on an anisotropic lattice with

N,<N,=N,=N. (5.98)

5.5.10 The Polyakov loop

The central role in QCD at finite temperature is played by the trace of the product
U,, along a line parallel to the time axis (see figure 5.9). The trace is called the
Polyakov loop.

Consider two Polyakov loops separated by the distance d. Gauge invariance is
ensured by periodicity of boundary condition which allows us to ‘close’ the loops.
The points denoted by A(B) are physically the same points due to boundary condi-
tions. The correlation of the two loops as a function of their separation d decreases as

C(d) ~ e Fa Dt ~ e Fa@/T (5.99)

where E (d) is the potential energy of the quark pair. Now imagine that one
separates the two loops more and more such that one of the loops goes out of the

Time
o

A
space

Figure 5.9. Schematic representation of two Polyakov loops separated by a distance d.
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lattice volume. Then one measures £ (d — ), i.e. the energy of a free quark.
Therefore, the expectation value of ‘one’ Polyakov loop behaves as

(L) ~ o~ Faald=o0)T_ (5.100)

In a pure gauge (infinitely heavy quarks) theory the Polyakov loop can be
identified as the order parameter of a confinement—deconfinement phase transition:

confinement: E (d = o) = c0 = (L) =0

101
deconfinement: E _(d = oo) = finite = (L) # 0. (5.101)

5.5.11 Z(3) symmetry

Now whenever there is a phase transition, some internal symmetry is broken. What
is the symmetry that is broken in confinement—deconfinement phase transition? Pure
gauge QCD has a hidden, discrete symmetry called Z(3) symmetry. To understand
the symmetry, let us define:

Z(G): The center of a group G is the set of elements that commutes with every
element of G,

Z(G)=[Z € Glzg = gz, g € G]. (5.102)

For SU(3), the center of group Z(3) has elements, (1, >, ¢***). One under-
stands Z(3) symmetry as the group of discrete rotation around the unit circle in the
complex plane. The Euclidean action is invariant under these groups of rotation, but
the Polyakov loop is not. The issue of confinement—deconfinement is then related to
the breaking of Z(3) symmetry. In the confined phase (trL) =0 and Z(3) symmetry
is preserved. In the deconfined phase, (trL)# 0 and Z(3) symmetry is broken.

With dynamical quarks, the interpretation of the Polyakov loop as an order
parameter is more complex. Not the Polyakov loop, rather the correlator
(L(x)L'(x)) is the order parameter and indicates confinement or deconfinement as
x — oo. However, its absolute value can be related to the quark—antiquark free
energy at infinite separation:

(5.103)

F (r - o
L) = exp[—W(VT)].

The free energy has additive, quadratic divergences. The Polyakov loop is
required to be renormalized to regulate ultraviolet divergences. They can be
removed by subtracting the free energy at 7'=0. This is the usual renormalization
procedure for the free energy or pressure. The renormalized Polyakov loop can be
calculated as

[(Lyen ) = [(LY" T (5.104)

ren
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where V' (r) = F_(T = 0). The scale of V(r) is fixed by the renormalizing condition,
V(r,) =0 (5.105)

where 1, = 0.49 fm is the Sommer scale.

5.5.12 Lattice QCD with finite chemical potential

Lattice QCD with quarks has the fermion problem. At finite chemical potential
K # 0, lattice QCD faces a severe problem called the sign problem. To under-

stand the sign problem, consider the partition function with finite chemical potential
H=p
7 = Tre—ﬂ(H—#N)

- f d[UId[FId [y e /o & xemm. (5.106)

The fermion action in equation (5.75) now includes an extra term,
Se(u) = Spp = 0) + uN
s
_ / de f d3x1/7[y”(6" —igA,) +m+ W‘)]y/ (5.107)
0
where we have introduced the chemical potential as uwy,y. For u = p, + iu,, the
chemical potential effectively changes the gauge potential,

Ay = Ay —ip = (4, +p,) — iy (5.108)

If the quark fields are integrated out, the partition function can be obtained as
Z(u) = f dUdet M(u)e 5o (5.109)
with the fermion determinant,
M(u) =y D, +m + py, (5.110)

The finite chemical potential introduces some severe problems in lattice simula-
tions. Adopting anti-Hermitian D and Hermitian y, it is easy to show that

M) ==y D, + m+ p'y, = , M(—*)y, (5.111)
and then,
[detM(u)]" = detM(p)' = detM(—u*). (5.112)

Thus while for g = 0, the fermion determinant is real, at finite baryon density,
the fermion determinant is complex. It will not be elaborated but the standard
technique of MC importance sampling then fails. This is known as the ‘fermion
sign’ problem. Several techniques have been suggested to circumvent the
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problem: (i) reweighting [64, 65], (ii) analytical continuation of imaginary chemical
potential [66, 67] and (iii)) Taylor expansion [68, 69]. Below, they are discussed
briefly.

Reweighting. In the reweighting method [64, 65], the observable is reweighted with

the oscillating part of the partition function and ensemble averaging is done with a
smooth partition function. For example, for the partition function,

Z() = f dUdet M (u)e ™5 (5.113)
in the reweighting method, the expectation value of an observable is calculated as

(0) = % f dUOdet M (u)e "5

detM (u)
f yo St W) detM(ﬂ) de tM(O)e_ﬂSG < Om> =0

det M (0) =
_ , (5.114)
/dUM etM(0)e™5c detM ()
detM(0) detM(0) /

In the improved reweighting method, the gauge coupling is also used as a parameter
for the reweighting.

Taylor’s expansion. Taylor’s expansion method [68, 69] is based on an expansion
of the partition function or pressure in powers /T around the vanishing quark
chemical potential,

P(T, 1)~ (1)
L E)ch(? (5.115)

with

_1_ (P(T,ﬂ)) (5.116)

Cn - n 4
n o/ Ty\ T

u=0

Due to reflection symmetry, Z(u) = Z(—u), only even powers contribute in the
expansion. The evaluation of higher order derivatives with controlled accuracy is
difficult.

Imaginary chemical potential method. For complex chemical potential, u = iu,,
the fermion determinant is real and the standard importance sampling method works.
In the imaginary chemical potential method [66, 67], one computes the observables
with imaginary chemical potential and analytically continue to real chemical potential
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p — —1iu. For finite chemical potential, QCD has an extended Z, symmetry, which is
realized as Roberge—Weise [70] periodicity of the partition function,

Z(u,) = Z(M, + hTT) (5.117)

The imaginary chemical potential method is then limited to u/7T < 2z/3.

5.6 Chiral phase transition

We have talked about QCD confinement-deconfinement phase transition. However,
QCD has a well-known phase transition called ‘chiral phase transition’. Chirality
means ‘handedness’. Handedness can be understood from the helicity concept. Let
us define the helicity operator,

h=J-p=(@L+s)-p=s-p. (5.118)

h is the projection of spin on the momentum direction. For spin half fermions, the
helicity operator will have two eigenvalues, +1/2 and —1/2. A particle with helicity
+1/2 (—1/2) is called the right (left) handed particle.

In figure 5.10, two particles with helicity +1/2 and —1/2 are shown. It is clear that
for massive particles helicity is not a good quantum number. A massive particle will
move with finite speed v < ¢ and one can go to a frame from where the particle
will move backward and helicity will be reversed. However, massless particles move
with speed ¢ and helicity is a good quantum number for massless particles.

The concept of chirality is more abstract. Consider a Dirac field y for massless
particles. The Lagrangian is

L =gy (5.119)

with 7 = U/Tyo.
Now, consider the following transformation,

Ay — e_iggyj ~ (1 - i%@)w. (5.120)

o is the Pauli matrices and O is the rotation angle. This is the general structure of a
unitary transformation. The conjugate field transforms under A, as

Ay 7 — €12% & (1 + i%@)y_/. (5.121)
right handed (h=1/2) left handed (h=-1/2)
s . S
ﬁ\_ %

Figure 5.10. Two particles with helicity +1/2 and —1/2 are shown.
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The Lagrangian is invariant under the transformation A,,.
. . . . O . O
iwdy — iydy — i0 (171551// - z,T/MEl//) (5.122)

= igdy (5.123)

One can say that the vector current V| = vy, ”7“1// is conserved.
Let us now consider the following transformation,

Ay ow— e 2% ~ (1 - i)@%@)y/ (5.124)
7 — e‘ingew ~ (1 - i;g%@)w (5.125)
where the anti-commutation relation y 7, = —yy, is used. The Lagrangian for the

massless Dirac particle transforms as
. o S O,
hy — igdy — i0|Fidy SV 1/13/5510}' v
= gy (5.1206)
and the second term vanishes due to the anti-commutation relation {;, yﬂ} = 0. The
Lagrangian for the massless Dirac particle is also invariant under the transformation
A, with conserved ‘axial current’, 4, = NAS
Let us introduce the mass term in the free Dirac Lagrangian,

oL = —mygy (5.127)
and see how it transforms under A, and A,.

Ay miy — 2% 2% = mipy (5.128)

A migy — mgy — 2im®(y_/%y5y/). (5.129)

For massive Dirac particles only the vector current is conserved. Thus for
massless fermions, the Dirac Lagrangian is invariant under the transformation, A,
and A, i.e. vector and axial vector currents are conserved. This symmetry is called
chiral symmetry and its group structure is SU(2),, x SU(2) .

Chiral transition is signaled by the quark condensate ({ry ). In a chiral symmetric
phase, (i) = 0. In the chiral symmetry broken phase (Fy) # 0. In QCD, quark
masses are small but non-zero. Chiral symmetry is broken and quark condensate
(wy) # 0. However, at sufficiently high temperatures, quark mass decreases and
condensate (Fy) — 0, and one says that chiral symmetry is restored. Some key
properties of the chiral transition and confinement-deconfinement transition are
listed in table 5.3.
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Table 5.3. Some key properties of chiral and deconfinement transitions in QCD

Chiral phase transition Deconfinement phase transition
Quark mass 0 oo
Symmetry chiral symmetry center group symmetry
Order parameter quark condensate Polyakov loop

5.7 The nature of QCD phase transition

In lattice QCD, one calculates the partition function,

z= [ aue” @ I dei| m(U, m,)] (5.130)

where S is the gauge action, f is related to the gauge coupling, f = 6/g*, M is the
Dirac matrix and m, is the quark mass for flavor ¢. Once the partition function is
known, all the thermodynamic variables can be calculated using the thermodynamic
relations. For example, in the thermodynamic limit,

Pressure: P = lim r In Z. (5.131)

V-

From pressure P(T), one generally calculates the trace anomaly I = ¢ — 3P,
which is just the derivative of the normalized pressure,
I=¢—-3P= Tsi%. (5.132)
orT
The energy density ¢, the entropy density s and the speed of sound ¢, then simply
follow as
e+ P 2= opP
T : de
Several groups worldwide, e.g. the MILC collaboration, HPQCD/UKQCD
collaboration, USQCD collaboration, RBC collaboration, HotQCD collaboration
and Wuppertal-Budapest collaboration, etc, have simulated QCD on a lattice. Most
of the lattice simulations were performed for baryon-free (u, = 3,% =0) QCD

e=1+3P 5 = (5.133)

matter. In recent years there has been considerable progress in simulations with finite
baryon density [71]. A few results of lattice simulations for baryon-free QCD matter
are shown below.

In figure 5.11, Wuppertal-Budapest simulations for energy density (¢) and
pressure (p), entropy density (s) and speed of sound (c,), as a function of tempera-
ture, are shown. The simulations were for baryon-free (/Aq =0) N, =2 + 1 flavor
QCD matter, with approximately physical quark mass. Details of the simulations
can be found in [59-61]. The renormalized thermodynamic variables e/T*, pressure
P/T* and entropy density s/T°, rise sharply over a narrow temperature range

5-33



A Short Course on Relativistic Heavy lon Collisions

r T T | I
- SB— 5
E F 1% &
= B b =
ki r i &
- -15
: 150 200 250 :
e by by e by 1y alff A . ) F
200 400 600 800 1000 200 400 600 800 1000
T(Mev) TiMev)
R e e e e I v o e M S SN B e s m s IO
- SB—1 F SB =
L ] = SR T
E . F 40.3
E 15 0.35 E
& E E o3 _E 0.25
E LE 10 T 025 3
» [ . 02 4 0.2
9 f ] 5 0.|5_: 0.15
F ¢ N=10 I 1 1 A L 1 o1 3
E t 100 150 200 250 7 150 200 250 s0 3 0.1
AN IR T IN NI T T (S S S S T T riA I NSRS W (N SRS S (N SN SN S NS T S B
200 400 600 800 1000 200 400 600 800 1000
T[MeV] T[MeV]

Figure 5.11. Wuppertal-Budapest simulations for temperature dependence of (i) energy density (top left
panel), (i) pressure (top right panel), (iii) entropy density (bottom left panel) and (iv) speed of sound (bottom
right panel). The arrows indicate the Stefan—Boltzmann limit. The figures are reproduced with the authors’
permission from [60].

150-200 MeV. At high temperatures, they saturate. e/T*, p/T* or s/T" are effec-
tively proportional to the degeneracy of the medium. The temperature dependence of
thermodynamic variables thus indicates that effective degrees of freedom rapidly
change across the narrow temperature range 7'=150-200 MeV. In figure 5.11, the
Stefan—Boltzmann limits are indicated. Simulated &/T*, p/T* and s/T°, though
saturates, remain below the Stefan—Boltzmann limit. For example, at the highest
temperature 7= 1000 MeV, lattice simulated P is ~20% below the Stefan—Boltzmann
limit. If we believe that at high temperature QCD matter exists as quark-gluon plasma
(QGP), its constituents are not free, but they are interacting. This is the reason
that QGP is called strongly interacting QGP. In figure 5.11 the variation of the square
of the speed of sound (¢”) with temperature is also shown. At large temperature ¢ is

consistent with the Stefan-Boltzmann value of % As the temperature is lowered,

the speed of sound decreases and shows a dip around temperature 7 = 145(5) MeV.
At still lower temperatures cf again increases. In a first order phase transition, the
speed of sound is zero at the critical temperature. The dip of cf is then indicative of
the phase transition. '

Trace anomaly is an important observable in lattice QCD. Trace anomaly is
identically zero for point particles, (p = %8), and also in a conformal theory (in
conformal field theory, action is invariant under a change of scale). Trace anomaly is
also related to bulk viscosity. In figure 5.12, Wuppertal-Budapest simulations for
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Figure 5.12. Wuppertal-Budapest simulation for trace anomaly I = ¢ — 3P normalized by 7 for various
lattice spacings. In the inset lattice simulations are compared with the HRG model. The figure is reproduced
with the authors’ permission from [60].
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Figure 5.13. Current understanding of the nature of confinement—deconfinement phase transition as a function
of quark mass m,, m, and m,.

the trace anomaly are shown. Trace anomaly is non-zero, except at very high
temperatures. The non-zero value of the trace anomaly indicates that QCD is not a
conformal theory and QCD matter is not an ideal fluid. Wuppertal-Budapest
lattice simulations for the trace anomaly have an inflexion point at temperature
T~ 152(4) MeV. It turns out to be the cross-over temperature for confinement—
deconfinement transition. In the inset, the trace anomaly of hadronic resonance gas
(HRG) is compared with the simulation results. Below the inflexion point, the trace
anomaly of HRG is close to lattice simulations.

In figure 5.13, current understanding [72] of the nature of the confinement—
deconfinement phase transition, in baryon-free matter as a function of quark mass
m,, m, and m,, is shown. The plot is known as a Columbia plot. The results can be
summarized as follows.

(1) In a pure gauge theory (m, — o0), the transition is first order.
(i) For m, — 0, the Lagrangian is chirally symmetric and there is a chiral
symmetry restoration phase transition. It is also first order.
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(iii) For 0 < m, < oo, there is neither a confinement-deconfinement phase
transition nor a chiral symmetry restoring phase transition. The system
undergoes a cross-over transition. The order parameter, e.g. the Polyakov
loop, or the susceptibility shows a sharp temperature dependence and it is
possible to define a pseudo-critical cross-over transition temperature.

That the confinement—deconfinement transition is a cross-over was conclusively
proved in [62]. There, finite size scaling of quark susceptibility

2
= (3}(7)42 glogZ, (5.134)

ud

X

was studied. Quark susceptibility diverges at the critical point, which is manifested
as a pronounced peak around the critical temperature. In finite volume, for real
phase transitions, the singular behavior of susceptibility is reflected on the peak. For
example, for a first-order phase transition the height is proportional to 7 and the
width is proportional to % For a second-order transition the singular behavior is
given by some power of V. However, for analytic cross-over, there will be no sin-
gular behavior and the susceptibility peak and width will be volume independent.
Explicit lattice simulations do not show any volume dependence, even when
the volume is increased by a factor of four or eight. The cross-over nature of the
transition is also shown in figure 5.14, where quark susceptibilities 7*/(m*Ay) are
shown as a function of 1/(7’ V). Expected asymptotic behavior for first-order and
0O(4) (second-order) phase transitions are shown by dotted and dashed lines. For true
phase transitions the infinite volume extrapolation should be consistent with zero.
Lattice simulations for continuum-extrapolated susceptibilities do not show phase-
transition-like volume dependence. The V' — oo extrapolated value is 22(2) which
is 116 away from zero. The results confirm that for baryon-free matter, QCD
confinement—deconfinement transition is not a true phase transition but a cross-over.
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Figure 5.14. Lattice simulations for continuum extrapolated susceptibilities 7°* / (mZA;() as a function of
1 / ( T’ V). The asymptotic behavior for first-order and O(4) (second-order) phase transitions are shown by
dotted and dashed lines. The figure is reproduced with permission from [62].
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5.8 The QCD phase diagram in the p—7 plane

The QCD phase diagram in the u— 7" plane is of interest. Simulation studies suggest
that the curvature parameter « in the expansion,

M)
7;('”13=0) 7;(/413:0)

is small [73]. As an example, in figure 5.15, the QCD phase diagram obtained in the
analytical continuation method [64] (the filled circles) and in the Taylor expansion
[74] (the filled squares) are shown. Both the methods give nearly identical phase
diagrams for u /T(u, = 0) <3GeV, and the curvature parameter is small,
k = 0.006. At larger u,, they differ marginally.

From theoretical considerations, QCD phase transition is expected to be first
order in baryon-dense matter. Since at 1o 0 the deconfinement transition is a cross-

over, one expects a QCD critical end point (CEP) where the first order transition line
ends up at the cross-over. The location of the QCD CEP is of current interest. At the
CEP, the first order transition becomes continuous, resulting in long range corre-
lation and fluctuations at all length scales. Mathematically, it is true thermodynamic
singularity.

The experimental signature of the QCD CEP is tricky. Since at the CEP, fluc-
tuations exist at all length scales, one expects these fluctuations to percolate in the
observables. Event-by-event fluctuations of baryon number or charge number can
possibly signal a QCD CEP.

(5.135)

1.5 T \ T
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ch.freeze-out:arXiv:hep/ph0111092
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0.5
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Figure 5.15. Lattice QCD calculations of the QCD phase diagram in the imaginary chemical potential method
[64] and Taylor expansion method [74] are shown. The red line is the chemical freeze-out curve obtained in a
statistical model [76].
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In figure 5.15, the chemical freeze-out curve [75, 76], obtained in statistical model
analysis of particle ratios, is shown (the red line). Curvature of the chemical freeze-
out curve is a factor of four larger than the curvature in the QCD phase diagram.
The small curvature of the freeze-out curve compared to the chemical freeze-out is
interesting. The experimental signal of the CEP will get diluted as the deconfined
medium produced at the CEP will evolve longer to reach chemical freeze-out. Fluid
will have more time to wash out any signature of CEP.
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Chapter 6

Equation of state for QGP and hadronic
resonance gas

6.1 Introduction

From theoretical considerations, it is expected that in ultra-relativistic heavy ion
collisions, an extended, deconfined medium of quarks and gluons, which is com-
monly termed quark—gluon plasma (QGP), will be produced. For theoretical
treatment, the extended medium is considered as a macroscopic system. A macro-
scopic system is characterized by a few macroscopic or thermodynamic variables.
The relation between the thermodynamic variables is called the equation of state for
the system. For example, if pressure (P), volume (}') and temperature (7°) are used
to characterize the system, the equation

fpV,7)=0 (6.1

is the equation of state. An equation of state effectively reduces the number of
independent thermodynamic variables. In the preceding chapter, we have shown
that if the partition function or the thermodynamic potential for the macroscopic
system is known, all the equilibrium properties of the system can be calculated
thereof. In other words, knowledge of the thermodynamic potential or the partition
function is equivalent to knowledge of the equation of state.

One of the fundamental interests in high-energy nuclear physics is understanding
the equation of state of QGP, the quantum chromodynamic (QCD) matter at high
temperature or density. As discussed earlier, due to the non-abelian nature of QCD
theory, first principles calculation of QCD equations of state is very complex. For
finite baryon systems, only limited progress has been made in lattice QCD. An
approximate equation of state of QGP can be obtained if the simplifying assumption
is made that the quarks and gluons in QGP are interaction-free. In the following, we
write down the equation of state for interaction-free QGP. At high temperatures,
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QCD coupling is weak and to a good approximation, quarks and gluons can be
treated as interaction-free particles. However, lattice QCD calculations do indicate
that even at very high temperatures, QCD equations of state indicate departure from
an ideal, interaction-free nature.

QGP is a transient state. Even if it is formed in heavy ion collisions, ultimately, it
will convert into a system of hadrons, or more accurately, into a hadronic resonance
gas (HRG). HRG is a mixture of non-interacting, all possible hadrons and hadron
resonances. Indeed, QGP and HRG can be considered as two phases of QCD
matter: QGP, the high temperature or high density phase; and HRG, the low
temperature and low density phase. In the following, explicit relations for the
equation of state for QGP matter and HRG will be presented.

6.2 Equation of state for QGP with vanishing quark mass

The thermodynamic potential or the partition function for a system of interaction-
free quarks and gluons can be written as

Quep=-ThzZ= Y Q. (6.2)

i=quark, gluon

Gluons are massless bosons and equations (4.106), derived for massless bosons,
with appropriate degeneracy factors, are applicable. For gluons, there are eight
colors and two helicity states and the degeneracy factor is

g = &yuon = color X spin = 8 X 2 = 16. (6.3)

Quarks come in several flavors. If the masses of N, flavors are assumed to be
same, the degeneracy factor for quarks can be obtained as

Zoparke = (particle + antiparticle) X spin X color X flavor
2X2X3XN,=12XN,. (6.4)

In table 5.1, we have summarized the properties of quarks. Current quark mass is
the relevant mass here, and enters into the QCD Lagrangian. Constituent quark
masses are used in modeling hadrons. In a sense they are dressed current quarks. In
RHIC or LHC energy collisions, QGP is expected to be produced at a temperature of
T ~ 300-500 MeV. As charm, bottom and top quarks are quite heavy (see table 5.1),
their contributions to the QGP equation of state can be neglected. The QGP equa-
tion of state will be dominated by the up and down quarks. The strange quarks,
which are not as heavy as charm or bottom and not as light as up and down, will also
contribute. Equations derived in the preceding chapter for fermions can be used
directly. Equations of state become simpler in the massless limit. Up and down
quarks are approximately of similar mass and are light. For practical purposes, their
mass can be neglected and equations for massless fermions can be applied with the
degeneracy factor gquark = 12 N, X Ny=2. To account for the non-negligible mass of
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strange quarks, yet using the equations for the massless fermion, in several appli-
cations, the number of quark flavors is taken as Ny=2.5.

For completeness, for baryonic chemical potential y 3= 3u,, where y, is the quark
chemical potential, equations of state for a system of non-interacting massless
gluons, quarks and anti-quarks are given below.

T2 3
Net baryon density: n = gquark%[ﬂg c + 32/23 2} (6.5a)
T
7 7’ w,T> oy
Pressure: P = (ggluon + ggquark)9_oT4 + gquark[ ;16 + 32:”2 (65b)
Energy density: ¢ = 3P (6.5¢)
. 7 27* w’T
Entropy density: s = (ggluon + ggquark)E T+ Zouark 1% % (6.5d)

Noting that the thermodynamic quantities of the bosonic and fermionic system
differ by a factor of only % it is convenient to introduce an effective degeneracy factor
for a system of baryon-free quarks and gluons,

21
=16+ 20N, (6.6)

gQGP = gluon + ggquark

At RHIC and LHC energies, the central rapidity region is essentially baryon-free.

Equations of state for a system of baryon-free QGP, in terms of the effective
degeneracy factor, look simple,

Net baryon density: n =0 (6.7a)
2
Pressure: P = gQGP;T—OT4 (6.7b)
77,'2
Energy density: e = Zoar gy T (6.7¢)
. 21, 4
Entropy density: s = gQGPET . (6.7d)

While quarks and gluons in QGP are in a deconfined state, they must satisfy the
asymptotic properties of QCD, that free quarks and gluons are not observed in
isolation. The deconfined quarks and gluons of QGP must be restricted to a certain
spatial volume to prevent them from escaping to infinity. Borrowing the idea of the
MIT bag model, the quarks and gluons of QGP can be confined within a certain
spatial region by introducing bag pressure, which acts inward and balances the
outward pressure of the quarks and gluons. The resulting equation of state is called
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the bag model equation of state and was used extensively in analysis of relativistic
heavy ion collision. To appreciate the bag model equation of state, we briefly discuss
the MIT bag model.

6.2.1 The MIT bag model

The experimental fact that fractional charges or quarks are not observed in isolation
led to the confinement property of QCD that quarks can exist only as a bound state
or inside a hadron. As the confinement property was not properly understood
(a statement that remains true to-date), it was realized very early that some model
was required to confine the quarks inside the hadron. Bogoliubov proposed a simple
model whereby quarks of mass m are placed inside a spherical volume within which
they feel a scalar field, also of strength m. The model confines the quarks by making
them infinitely heavy, m — co. In 1974, a group of physicists at MIT developed a
model for hadron structure, which is a much improved version of the Bogoliubov
model. The model has become very popular and is known as the MIT bag model
[12, 13]. In the model, the quarks are forced by a fixed external pressure to move only
inside a fixed spatial region called a bag. Inside the bag, they are quasi-free.
Appropriate boundary conditions are imposed such that no quark can leave the bag.
The MIT bag model predicts fairly accurate hadron masses. Color confinement is
built in to the model. Now confinement is essentially a non-perturbative phenom-
enon. One can interpret the bag pressure in the MIT bag model as the essential effect
of non-perturbative QCD. The quantum stress from the quarks inside the bag is
counterbalanced by the inward bag pressure. We may note here that chiral sym-
metry is explicitly broken at the bag surface. A remedy was suggested in the cloudy
bag model [14]. In the following, we briefly discuss the bag model.

In the MIT bag model, the Lagrangian density for a massless quark, inside a
three-dimensional volume V with a surface S, is written as

i 1
L= [5(1/73/“ W= 0"y ) - B]eV — ST (6.8)
where 0y is a step function,
0,(x) =1 inside the bag (6.9a)
= 0 outside the bag. (6.90)
Furthermore,

00

a_xI’/‘ = n,d (6.10)

where 7, is the interior unit vector normal to the surface of the volume V" and 65 is
the surface delta function. For a static, spherical case, e.g. the quark is confined in a
spherical cavity of radius R,

0, =R —r) 5 =8(R — 7). (6.11)
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The equation of motion can be obtained from the Euler-Lagrangian equation,

oL -0, oL = (6.12)
o oom)
For the Lagrangian in equation (6.8),
oL i
Fr —J/ W0, — = (6.13a)
0L
0,——— = y o0, — y “ny. (6.13b)
o97)

Inserting equations (6.13a)—(6.13)) into the equation of motion, and separately
equating 6y and &g, we obtain the boundary conditions,

inside the bag: iy*dy =0 (6.14a)
on the surface of the bag: iy"ny = w. (6.14b)

Taking the Hermitian conjugate of equation (6.14b) and multiplying by y° from
the right, the boundary condition on the surface can also be written as

“rnlvr’) = (v'7) (6.15)
~iy'ng = 7. '

Equation (6.14h) can be interpreted as the condition that the quark current
j*=iy"y normal to bag surface is zero.

in, j* = w(iy'ny) = 7y

(W"n,,w)w =~y
- (6.16)

Equation (6.14a) is the free Dirac equation for a massless quark. Inside the bag,
the quarks obey the free Dirac equation. The Dirac equation for massless quarks in a
spherical cavity can be solved easily, see appendix A.§. For a massless quark in
a spherical cavity of radius R, energy eigenvalues satisfy the condition

Jy,(ER) = j (ER). (6.17)

From the tabulated values of the spherical Bessel functions, the ground state
energy can be obtained as

E="—. (6.18)
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To obtain the implication of the bag term B, we consider the energy—-momentum
tensor for the bag model Lagrangian,

oL oL
o) " o)

v i —_— L. Ue—
-g" L+ E(W"a W — y'wo'w)o,

T = —g" L +

v 1— 1 — v Ve
= —g" (—39V - Ewwés) + E(W’”a w = r'wo'w)o,. (6.19)
Conservation condition 9,7 =0 gives
B, + %(Wfa”w — 7T s =0 (6.20a)
%ab(q_/wés) =0. (6.205)

Surface boundary condition equations (6.14b) and (6.15) can be used in equation
(6.20a) to obtain

Bn* = %av(w). (6.21)

We have already found that ywiZ = 0 on the surface (see equation (6.16)). The
derivative of wiy must lie along the normal,

Bn' = %av(w—/) = 2n'P, (6.22)

irac*

Ppirac 18 recognized as the pressure on the surface, in the instantaneous rest frame
of the surface, the momentum flow normal to the surface. Equation (6.22) is nothing
but a pressure balance equation; the pressure exerted by the quark is balanced by the
quantity B, the bag pressure. Since n,n"=—1 (n” being space-like),

B= —%nba”(w—,). (6.23)

6.2.2 Bag model equation of state

As in the bag model, in high temperature QGP quarks are approximately free and
even though it is a deconfined medium, it is confined in a limited region (albeit that
the confinement region is of nuclear size rather than of hadronic size). To keep the
deconfined quarks and gluons within a certain spatial region, one introduces bag
pressure, which acts inward and balances the outward pressure exerted by the quarks
and gluons. The thermodynamic potential or the partition function then modifies to

Qocp = Z Q + Q,, (6.24)

i=quark, gluon
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with Qu,, = BV, B being the ‘external bag pressure’. Note that the introduction of
Qe does not change the particle numbers or entropy density. Only the expressions
for pressure and energy density need to be augmented by the term —B and +B,
respectively. For completeness, the bag model equations of state for interaction-free
massless quarks and gluons are written below.

2

Energy density: € = gQGP;[—O T+ B (6.25a)
”2
Pressure: p = gQGP%T4 - B (6.25b)
. 4n*
Entropy density: s = gQGP%T (6.25¢)
Number density: n ~ gQGP%T3. (6.25d)
V3

Equations (6.254)—(6.25d) constitute the bag model equation of state for QGP.
We note that the bag pressure is still undefined. In the MIT bag model for hadrons,
bag pressure B/* ~ 200 MeV. However, in the QGP equation of state, bag pressure
is obtained by the consideration that QGP is a transient state and below a critical or
pseudo-critical temperature 7T,, QGP transforms into hadronic matter or HRG.
If the transformation is a first order phase transition, the bag constant is obtained
by demanding that at the transition temperature 7, the pressures of the two phases
are equal,

Pacr(T) = P (T)- (6.26)

It was discussed earlier that explicit simulations of QCD on a lattice indicate that for
baryon-free (u g = 0) matter, the transformation of QGP to HRG is not a phase transition
in the thermodynamic sense, but rather is a smooth cross-over. In that case, thermo-
dynamic variables in two phases can be joined smoothly to obtain the bag pressure.

6.3 Hadronic resonance gas

QGP is a transient state. If formed in heavy ion collisions, it will cool back to hadronic
matter at low temperature. It is natural to ask what the composition or constituents of
the hadronic matter are at low temperatures. Let us consider, for example, a system
of non-interacting particles. In the Maxwell-Boltzmann limit, density (n), energy
density (¢) and average energy per particle (w) can easily be obtained as

1

n —2T3 (6.27a)
T

£~ %T“ (6.27h)
T

w="2 3T (6.27¢)
n
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Qualitatively, one understands that at sufficiently low temperatures, the ther-
modynamics of the hadronic matter will be dominated by the pions, the lowest
hadronic state. Equations (6.27) indicate that if the system energy is increased, it will
lead to (i) higher temperatures, (ii) a greater number of particles and (iii) more
energetic particles. Now if we assume that the particles are interacting, and reso-
nance formation is the basic characteristic of the interaction, a fraction of the
available energy can go into exciting resonance states. As the energy increases, more
and more of the heavier resonances will form. For temperature 7> 150 MeV, heavy
states dominate the energy density. However, densities of heavy particles are still

small, p o~ e~ MIT (M,»+M/-)/T’

. Their mutual interaction, being proportional to pp,~ e
is suppressed. One can use virial expansion to obtain an effective interaction. Virial
expansion together with experimental phase shifts was used by Prakash and
Venugopal to study the thermodynamics of low temperature hadronic matter [1]. It
was shown that the interplay of attractive interactions (characterized by positive
phase shifts) and repulsive interactions (characterized by negative phase shifts) is
such that the theory is effectively interaction-free. One can then consider that
interaction-free resonances constitute the hadronic matter at low temperatures. The
interaction-free combination of all possible hadrons and hadronic resonances is
called HRG.

For a non-interacting HRG comprising N hadrons (mesons and baryons),
at temperature 7" and chemical potential y, the thermodynamic potential can be
written as

T, p) = ZQ,.(T, w). (6.28)

The chemical potential u,; of the ith hadron is generalized to include baryonic
chemical potential up, strangeness chemical potential ug and isospin chemical
potential yy,

H. = Buy + Spg + Ly, (6.29)

where B;, S; and [; are the baryon number, the strangeness quantum number and the
third component, the isospin quantum number of the ith hadron. Chemical poten-
tials up, pus and py allow one to satisfy appropriate conservation laws.

The expressions for energy density, pressure, number density and entropy density
for HRG, comprising N hadrons, can be obtained by summing over the same for the
individual components of HRG,

e(T, y) = Zgj(T, u) (6.300)
P(T, y) = ZB(T, ) (6.30b)
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(T, p) = Zni(T, ) (6.30¢)

s(T, p) = Zs,.(T, w). (6.30d)

In equations (4.92), (4.93), (4.98) and (4.99), the expressions for number density,
pressure, energy density and entropy density were developed for massive particles
obeying the Fermi-Dirac/Bose—Finstein distribution. They can be used in the above
equations. However, in deriving those expressions it was implicitly assumed that the
particles are point particles. The expressions need to be corrected to account for
the finite size of hadrons. There is a well-established method called the ‘excluded
volume method’ to account for the finite volume of hadrons. It is also called the van
der Waals excluded volume method. Johannes Diderik van der Waals modified the
ideal gas equation of state to account for the molecular interaction in an approximated
manner. It is a remarkable equation of state as, for a particular class of interaction, it
can be cast into a form devoid of all the details of the system. For completeness,
a short description of the van der Waals equation of state is given below.

6.4 The van der Waals equation of state

van der Waals attempted to modify the ideal gas equation of state,
PV = NkT or PV = nRT, (6.31)

approximately accounting for the molecular interaction. The general form of
molecular interaction is shown in figure 6.1. It has a repulsive part and an attractive
part. van der Waals approximated the repulsive part by an infinite hard sphere
potential. The presence of a hard sphere potential or hard core forbids any molecule
to be within a certain diameter of a test molecule. Thus the volume available to a

Q0

Figure 6.1. The solid line shows the general form of intermolecular interaction. The van der Waals approx-
imation of the potential is shown as the dotted line.
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molecule will be reduced by a constant, b, depending upon the molecular diameter
and number of molecules present,

vV V—b. (6.32)

Qualitatively, the effect of the attractive part of the potential is to reduce pressure.
For sufficiently strong attractive interaction, the molecules will form an N-body
composite requiring no container. The decrease in pressure is proportional to the
square of the density or inversely to the square of the volume. The effect of attractive
interaction is then to change the pressure as

a
P - R(inetic - V2

(6.33)
with a constant, a, characteristic of the system. van der Waals then modified the

ideal gas equation of state as
a
(P - 7)(V— b) = NT. (6.34)

Some isotherms (constant temperature PV curves) corresponding to the van der
Waals equation of state are shown in figure 6.2. At low temperatures, the isotherms
show ‘kinks’ which disappear above a critical temperature 7. The point of inflection C
is called the critical point. The van der Waals equation of state is cubic in V. For a given
pressure P and temperature 7, it has three solutions. The solutions V;, V, and V3,
corresponding to points 1, 2 and 3 on the isotherm for 7'< T, are explicitly shown in
figure 6.2. Two of the roots (V; and V3) correspond to two stable thermodynamic states
for first order transition (the liquid and gas phases). The third root is a thermo-
dynamically unstable solution. One notices that in the vicinity of the root V>,
compressibility k = —ﬁ‘;—}’j is negative, and P increases with V/, a characteristic opposite
to the other two roots. The unphysical behavior of the van der Waals equation of state is
understood. The system is assumed to be homogeneous, with no allowance for a
coexistence of two phases, i.e. a mixed phase. The coexistence of two phases requires

Figure 6.2. van der Waals isotherms in the PV plane.
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that the pressure and temperature of the two phases are equal, which is satisfied by the
roots V1 and V3. In Maxwell’s construction, the unphysical behavior of the van der
Waals equation of state is corrected by eliminating the second root V, altogether and
joining roots V; and V3 by a straight line. The position of the straight line is obtained
from the free energy minimization condition; the system is either in a single homo-
geneous phase or in a mixed phase, depending on the free energy.

Before we end this section, we note that the van der Waals equation of state is a
remarkable one. As noted, for a given P and 7, the equation has three roots. As the
temperature increases, the roots move together and at 7= T, merge into one root V.
at the critical point C. In the neighborhood of the critical point, the van der Waals
equation of state can be written as

(V=7)=0
(6.35)
or V=3VV, + 3V - V) =0.

Equation (6.35) can be compared with van der Waals equation (6.34) at T'= T,
P =P, yielding

NT = 8a (6.36a)

27b

a
P=—— 6.36b
¢ 27h? ( )
V, = 3b. (6.36¢)

If we define reduced variables,
p=F p=r =L (6.37)
F, V. 1.

the van der Waals equation can be cast into a universal form (independent of the
details of the potential),

(ﬁ + 32 )(V — l) 84 (6.38)
4 3

6.5 HRG in the excluded volume method

Let us return to the equation of state for HRG. Several procedures are in vogue to
include the finite volume effect in HRG [2-11]. For example, in [3] the excluded
volume effect is taken into account by reducing all the thermodynamic quantities
including pressure by the reduction factor

-1
[z
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where v; and n1 are, respectively, the proper volume and the point particle density of
the jth hadron In [2], the excluded volume effect is taken into account by reducing
all the thermodynamic quantities including pressure by the reduction factor
r=[1 + &”'/4B], with £”’ being the point particle energy density, and B the bag
constant of the bag model. However those procedures are not thermodynamically
consistent. Several authors have obtained thermodynamically consistent excluded
volume correction to thermodynamic variables. To obtain thermodynamically
consistent excluded volume correction, we follow [4, 5]. We write the grand cano-
nical partition Z”(T', u, V') function for a system of point particles as a sum over
canonical partition functions,

(T, u, V) = Zexp( )Zp’(T N, V). (6.39)

In equation (6.39), Z”(T, N, V') is the canonical partition function for a system
of N point particles. In the van der Waals excluded volume approach, for a fixed
N number of particles, the system volume V is replaced by V' — vN, where v is the
excluded volume per particle or the proper volume of the particles. For hadron
radius ry,, proper volume can be easily calculated. Consider figure 6.3 where the two
small circles represent a pair of hadrons in touching configuration. The outer circle is
of radius d = 2r,. The minimum volume or excluded volume for a pair of hadrons is
then calculated as

4?”613 (6.40)

or excluded volume per particle is

l4—”(2 ny = . (6.41)

Figure 6.3. Schematic diagram for a pair of hadrons in touching configuration.
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Accounting for the finite size of the particles, the grand canonical partition
function in equation (6.39) can be re-written,

ZN(T,u, V)= i exp(%)Z”(T, N, V—vN)J(V — vN). (6.42)

N=0
There is a difficulty in evaluation of the sum over N in equation (6.42) as the

available volume depends upon N. To overcome it, one performs a Laplace
transform,

ZNT, 4, x) = /0 dVe™ Z(T, u, V)

/ dve ™" Ze"N’TZ”’(T N, V= vN)O(V = vN)

N=0

/ dve" ZeﬂN/szt(T N, V)@(V)

N=0

- / T dre (T, 4, V) (6.43)
0

where i =u — xvT, V = ¥V — yN. One understands that the partition function
accounting for the finite particle volume at chemical potential y is equal to the
partition function for point particles with shifted chemical potential g = u — vTx.
To obtain the shifted chemical potential we note the definition of pressure,

P(T, p) = Tth—ln Z(TV’ K V).

(6.44)

Alternatively, in the thermodynamic limit, the partition function Z(T, u, V)
approaches

lmZ(T, o, V) ~ exp(@ V). (6.45)

In the thermodynamic limit, the Laplace transform in equation (6.43) can be
re-written as

27T, . x) = / AVe™'Z(T, pu, V)

/ dVexp[( YD) x)V]. (6.46)
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For x < P(T, w)/T the integration over V diverges at the upper limit. The
extreme right singularity of Z  at some x = x*(T, u) gives the system pressure,

PY(T, p)

P(T, p) = Tx*(Tw) or XNT, p) = T (6.47)
which corresponds to shifted chemical potential,
f=pu—vIX(T, p)=p—vP(T, p). (6.48)

For a single species hadron gas, excluded volume corrected thermodynamic
parameters can be obtained as

Pressure: PY(T, u) = P"(T, i) jg=u—vP(T, (6.49a)

xv pt ~
Number density: n*(T, u) = 2LH) _ 7 (T; ) (6.49b)
ou 1 + vn? (T, @)
Xy pf ~
Entropy density: s*(T, u) = OPUT, 1) = (T,’ ) (6.49¢)
oT 1 + vn?(T, f)
e"(T, i)

Energy density: e"(T, u) = Ts + p + un = (6.49d)

1+ vn? (T, @)

The excluded volume approach can be easily extended to a mixture of several
particle species. If the proper volume of particle species i is v;, when excluded volume
corrected the grand canonical partition function can be written as

h
Z’W(T, Hysee b s V) = H Z}W(T, Hes V)

1

1

o0 h
[Z exp(ﬂiM/T)Zf{T, N, V- ZV,-N,«)]- (6.50)
i=1 | N=0 i=1

==

Laplace transform of the above equation will give the excluded volume corrected
pressure as

T zZ(T, p,..p,) ¢
2 =Y P(T, ), 6.51

PY(T, pyy.p) = T lim %

with shifted chemical potential,

a=pu —vP(T, p...n,) i=1,2,..h (6.52)
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The particle number density of the ith species can be calculated as

(aP*‘"]
oy, .
B R A )

n,”’(T, /Zi)
= . .
1+ ;an]f”’(T, ﬂ/)

The total particle density will be the sum over the partial densities #;. The entropy
density and energy density can also be calculated,

n,’“’(T, Hys-- .,uh)

(6.53)

Entropy density: S”(T, ,ul,...,uh) = —&= (6.54)

Energy density: ex"(T, ,ul,...,uh) = =l ) (6.55)

L Yun(7, )
j=1

According to the bag model, hadrons occupy a finite volume proportional to their
own mass, m/4B. Kapusta and Olive [10] advocated a procedure where the spatial
volume is then replaced by

N
V> V=) el4B. (6.56)
i=1
Details of their method will not be discussed; we will just mention the results.
The finite or excluded volume corrected pressure, energy density, temperature and
entropy densities are
pt * ES
Pressure: P* = P (1,7; ’f )* (6.57a)
| — P (T, u™)
4B
T*
Temperature: T, = T (6.57b)
| - PP(T™, u™)
4B

*

Chemical potential: y = a (6.57¢)

1 _ Ppt(T*, Iu*)
4B
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pt T* k
Energy density: e = ¢ ([” ’f )* (6.57d)
1 + € (T ’ ﬂ )
4B

s"(T*, u*)

pt k *
LT )
4B

Entropy density: s™ (6.57¢)

1

. , n”(T*, y*)
Number density: n™ = . 6.57
umber density: n o (T ) (6.571)

4B

B is the bag pressure, B'* =340 MeV. In practical calculations, one chooses a
T* and u* and using point particle pressure can obtain real temperature T,
chemical potential u,, and all the thermodynamic variables.

6.6 The statistical bootstrap model

In the 1960s, particle physicists were confronted with two challenges: (i) hadronic
collision produces a large number of particles (mostly pions) with exponential
spectra, with a fixed slope 7= 160 MeV, independent of collision energy; and
(i) proliferation of so-called elementary particles, hadrons and hadron resonances.
Rolf Hagedorn met both these challenges with his statistical bootstrap model
[15, 16]. The statistical bootstrap model was introduced in 1965 but several experi-
mental facts and theoretical concepts of the preceding years, which were recounted by
Hagedorn in [17], were important and instrumental for its development. At that time
the concept of the fireball was introduced. In the fireball approach, all the collision
energy is released within a small space-time volume, from which particles are emitted.
Hagedorn took the fireball approach to its limit. His observation that heavier reso-
nances decay into smaller ones led him to the bootstrap model, where a hadronic
resonant state is itself a constituent of a still heavier resonance while also being
composed of lighter ones. Identifying resonant states with fireballs, he describes them
as fireballs going into fireballs living on the fireballs forever, in a self-consistent
manner. The model led to exponentially increasing density of states for hadron
resonances,

p(m) ~ e (6.58)

with =2 < a < =3 and 135MeV < T3, < 185. Hagedorn originally interpreted Ti
as the highest possible temperature of strongly interacting matter; hadronic matter
cannot exist for 7> Ty;. Somewhat later, when the concept of quarks as funda-
mental constituents of matter was firmly established, Cabibbo and Parisi [18] argued
that the exponentially increasing mass spectrum in the statistical bootstrap model

6-16



A Short Course on Relativistic Heavy lon Collisions

did not necessarily indicate a limiting temperature, but rather were generic to a
system undergoing second order phase transition. It is now clear that 7y; defines the
transition from hadronic matter to a QGP. Hadron physics alone can only specify its
inherent limit; to go beyond this limit, we need QCD.

Hagedorn’s original model was refined by several authors. In an elegant
formulation Frautschi [19] gave a phase space formulation for the bootstrap
model. It was also more restrictive than the original model. An analytical solution
of the model was obtained by Nahm [21]. A manifestly Lorentz invariant form was
proposed and solved by Yellin [20].

The Hagedorn bootstrap model was introduced before QCD. Post QCD, its
relevance has been lost to some extent. In recent years, the model has found its use in
constructing equations of state of HRG [11, 22, 23] for use in hydrodynamic evo-
lution. Following [17], we consider the toy model to establish the limiting tem-
perature in HRG. Let p(m)dm be the density of states between mass m and m + dm.
In the limit of vanishing kinetic energy, the bootstrap equation can be written as

p(m) = 8(m — m,) + Z% f 6(m - Zm) Hp(m,.)dm,.. (6.59)

The equation can be understood as follows: a hadronic resonance with mass m is
either the ‘input particle’ with mass m or else it is composed of any number of
resonances /m; such that Y m, = m.

The Laplace transform of equation (6.59) reads

/ p(m)e™dm = e 2% ]:! f p(m)edm,. (6.60)
Define,
2(f) = e G(z) = / p(m)e™dm (6.61)
and equation (6.60) becomes
G(z) = z(B) + 2%[0(2)]" =z(8) + & — 1 — G(2) (6.62)
or
2(f) = 2G(z) — &9 + 1. (6.63)

Equation (6.63) is the bootstrap equation for Laplace transformed mass spectrum
p(m). The equation is universal and not restricted to the toy model considered here
but appears in all realistic statistical bootstrap models without cut off. Moreover, it
is independent of (i) the number of space-time dimensions, (ii) the number of input
particles and (iii) abelian or non-abelian symmetry.
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Figure 6.4. Graphical solution of bootstrap equation (6.63). (a) z as a function of G(z) and (b) G(z) as a
function of z.

Equation (6.63) can be solved for G(z), the Laplace transformed mass spectrum.
It can easily be solved graphically: plot z(G) against G and exchange the axis. In
figure 6.4(a) and (b), the graphical solution is shown. The parabola-like maximum of
z(G) at zg implies that

z=e" <z
L g (6.64)

or —_ .
T m,

The toy model then predicts a limiting temperature for the system of hadrons.
Locations of maxima G(zp) and z, can be found from equation (6.63),

dGl (6.65)
= G(zy) =1In2, z,=2In2-1.

For my = m,, the toy model then predicts the limiting temperature (also called the
Hagedorn temperature) as

m,

0.95

Ty =

~ 145 MeV. (6.66)
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Nahm [21] first noted that the parabola-like maximum of z(G) at z, implies that
there is a square root singularity of G(z) at z, and inverse Laplace transformation of
G(z) leads to an exponentially increasing mass spectrum,

p(m) ~ % exp(%). (6.67)

The bootstrap model prediction for the exponential mass spectrum is supported
experimentally. In [23], for hadrons with masses up to 11.019 GeV, the densities of
states were fitted with the Hagedorn mass spectrum,

p(m) = m exp(%) (6.68)

with ¢=0.16£0.02, a=5/4, m,=0.5GeV and T5=0.174£0.11 GeV. It must be
mentioned here that equivalent fit could be obtained with changed parameter values.

6.7 Extended HRG

The HRG model described in section 6.3 and in section 6.5 can be extended to
include the exponentially increasing hadron mass spectrum. The thermodynamic
potential or the partition function can then be written as

In Z(T, u) = / dmp(m) In Z(T, u, m) (6.69)

where Z(T, u, m) is the partition function for a species of mass m. One generally
recognizes that low mass hadrons have a definitely discrete spectrum. This is
accounted for by decomposing the mass spectrum as

m;<M
= C m
pim) = Y g(m — m) + ————0(m — M) exp(—]. (6.70)
i=1 (m” + my) Ty

The assumed mass spectrum is discrete up to mass M and continuous thereafter.
All the thermodynamic parameters can now be calculated from equation (6.69).
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A K Chaudhuri

Chapter 7

Modeling relativistic heavy ion collisions

7.1 Introduction

Nucleus—nucleus collision is a well established tool to study nuclear matter. With
increasing collision energy, nuclear matter is probed at finer and finer resolution and
several facets of nuclear matter are revealed. Let us consider what happens when the
energy of the colliding system increases.

In very low-energy collisions, the nucleus as a whole interacts. Indications are
obtained from giant dipole resonances', where the compound nucleus® undergoes
dipole oscillation. One can also excite the nucleus and populate various excited states.
As the energy is increased, nucleons in the nucleus start to interact, and one can see
the production of new fragments or new particles, e.g. 7. At still higher energy, the
quarks inside the nucleons will interact. Here also, the production of different particle
species will be observed. However, in contrast to low/medium-energy nuclear reac-
tions, where one can describe pA/AA collisions entirely in terms of nucleon—nucleon
(NN) collisions, in relativistic energy, such a description will fail.

A nucleus—nucleus collision at relativistic energy passes through different stages.
A schematic picture of different stages of the collision is shown in figure 7.1. One can
broadly classify the following stages.

(1) Pre-equilibrium stage. At relativistic energy, the initial collisions are
expected to be at the partonic level. Initial partonic collisions produce a
fireball in a highly excited state. In all possibility, the fireball is not in
equilibrium. Constituents of the fireball collide frequently to establish a

! Giant dipole resonances are collective excitations of a nucleus. An example is the collective oscillations of all
the protons against all the neutrons in a nucleus.

2 Niels Bohr proposed the compound nucleus model for low-energy nuclear reactions. It is a two-stage process.
In the first step, the bombarding particle loses all its energy in the target nucleus and becomes an integral part
of an unstable nucleus called a ‘compound nucleus’. In the second stage, the compound nucleus decays to
reaction products. The decay of the compound nucleus is independent of the reactants.

doi:10.1088/978-0-750-31060-4ch7 7-1 © IOP Publishing Ltd 2014
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‘local’ equilibrium state. The time taken to establish the local equilibrium is
called the ‘thermalization’ or ‘equilibration’ time.

Expansion stage. In the equilibrium or the thermalized state, the constituents
of the fireball, the partons or more specifically, the quarks and gluons, are in
the deconfined state. The system has thermal pressure which acts against the
surrounding vacuum. The fireball then undergoes collective (hydrodynamic)
expansion. Asitexpands, the density (energy density) decreases and the system
cools. If the system supports phase transition, then below a critical tempera-
ture, the deconfined quarks and gluons will hadronize. In the hadronization
stage, over a small temperature interval, the entropy density will decrease very
fast. Since total entropy cannot decrease, it implies that the fireball will expand
rapidly, while temperature remains approximately constant.

Freeze-out. Even after the hadronization, the matter can be in thermal
equilibrium. Constituent hadrons will collide to maintain local equilibrium.
The system will expand and cool. A stage will come when inelastic colli-
sions, in which hadrons change identity, become too small to keep up with
expansion. The stage is called ‘chemical freeze-out’. Hadron abundances
will remain fixed after the chemical freeze-out. However, due to elastic
collisions, local equilibrium can still be maintained and the system will
further expand and cool, with fixed hadron abundances. Eventually a stage
will come when the average distance between the constituents will be larger
than the strong interaction range. Collisions between the constituents will
be so infrequent that ‘local’ thermal equilibrium cannot be maintained. The
hydrodynamic description will break down. The hadrons decouple or freeze
out. This is called ‘kinetic freeze-out’. Hadrons from the kinetic freeze-out
surface will be detected in the detector.

There are several models in vogue for relativistic heavy ion collisions. They can be
categorized into two types: (i) static models and (ii) dynamic models. The static
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models aim to explain experimental outcomes by modeling the freeze-out condition.
They do not try to answer the question of how the freeze-out condition is arrived at.
Dynamical models try to answer that question. Currently two types of dynamical
models are in vogue: (i) models based on the transport approach and (ii) models
based on the hydrodynamic approach. In the transport approach, the evolution of
the system from the pre-equilibrium stage to freeze-out can be modeled within
certain approximations. Hydrodynamics based models, on the other hand, are
limited to expansion to the freeze-out stage only. In the following, short descriptions
of some of the prevailing models are given.

7.2 Statistical or thermal models

In statistical or thermal models, it is assumed that the hadrons are emitted from
regions of thermal equilibrium, called fireballs or clusters. In a single collision event,
there might be several fireballs or clusters with different collective momenta,
different overall charges and volumes. Lorentz-invariant quantities like final
multiplicities depend on the distribution of initial conserved charges (baryon number,
strangeness and electric charge) among the produced clusters but are independent of
cluster momenta. This distribution is determined by the dynamics of the collision,
which is beyond the statistical model. Most of the analyses then assume that a single
fireball is produced. The assumption is reasonable if either one of the two conditions
below is fulfilled.

(1) All clusters are large enough to allow a grand canonical description and all
of them have the same values of relevant intensive parameters, i.e. tem-
perature and chemical potential.

(i1) The clusters are small with the same temperature, allowing for canonical
treatment. The distribution governing fluctuations of charges is the same
as that obtained by splitting one large cluster (equivalent global cluster),
having as its volume the sum of all cluster rest frame volumes, and as its
charge the sum of all cluster charges.

Thermal models are most successful in explaining hadron multiplicities, or more
specifically ratios of hadron multiplicities, with a limited number of parameters.
Hadron multiplicities are frozen at the chemical freeze-out, and provide a snapshot
of fireballs/clusters at that particular stage of the evolution. Thermal models thus
give information about fluid temperature and chemical potential at the chemical
equilibration stage. Resonances play an important role in hadron multiplicities. For
example, at any temperature, a large proportion of pions are from the decay of
resonances 7, p, o, etc. In the thermal model resonances are treated in the spirit of
hadronic resonance gas (HRG; described earlier), i.e. treating them as free. This
amounts to taking into account a considerable number of interactions among the
stable hadrons. It is also possible to include van der Waals type interactions via the
excluded volume correction.

In the statistical or thermal model, the basic quantity required to compute
the thermal composition of hadron yields measured in heavy ion collisions

7-3



A Short Course on Relativistic Heavy lon Collisions

is the thermodynamic potential () or the partition function Z(7,V). The
partition function is discussed in detail in chapter 4. For a single cluster, the
thermodynamic potential or the grand canonical partition function for a hadron
species i is

4
Q ——Tlnz_——f L dp 1 . (7.1)

Average particle number is then calculated as,

_ oz _ 0 ()
Wy =105 =g 2 k(") (12)

where g = (2J; + 1) is the spin degeneracy factor and m; is the mass of the hadron.
V is the fireball volume and = 1/T is the inverse temperature. The factor 5 takes
into account the bosonic/fermionic nature of the particle. # =+1 for fermions and
n=—1 for bosons.

For hadron i of baryon number B;, the third component of the isospin I3;
strangeness S; and charmness C;, the chemical potential is y, = p B + p.L; +
uS; + u.C. The baryon chemical potential up, isospin chemical potential yp,
strangeness chemical potential ug and charm chemical potential uc ensure the
conservation (on average) of the respective quantum numbers:

(i) baryon number: ZNiBi =N, (7.3a)

(ii) isospin: ZN"I“ = I, (7.3b)

(iii) strangeness: ZN,.S,. =0, (7.3¢)

and (iv) charmness: szCz =0. (7.3d)

The (net) baryon number Ny and the total isospin I* of the system are input
values which need to be specified according to the colhdmg nuclei studied. The
degree of stopping of the colliding nuclei is energy dependent and cannot be
precisely determined experimentally. Thus the inputs Ng and I** are uncertain to
some extent. The volume V of the system is also uncertain. In thermal models, one
generally fits the particle ratios, whence the volume gets cancelled and the ratios
remain largely unaffected by the uncertainty in inputs Ny and L. Experimental
data can be largely reproduced with two parameters, the temperature 7" and baryon
chemical potential ug.
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The finite widths of resonances are taken into account in the calculation by an
additional integration, over the particle mass, with a Breit—Wigner distribution as a
weight:

gV 1 e w r; 1
(NS = s [ am [ & r—— (7.4)
(27)’ Ny J 1, 0 r [eﬁ(\/—p ) N n]

2 i
— )+ L
(m — m;) 2

where m; is the nominal mass and I'; is the width of the resonance particle i. M is the
threshold for the dominant decay channel. Npw is the normalization for the Breit—
Wigner distribution. Finally, the overall multiplicity to be compared with the data is
calculated as the sum of primary multiplicity and the contribution from the decay of
resonances,

(N) = <]V'l_P1‘imary> + ZBr(]- N l)(NJR) (7.5)

Br(j — i) is the branching ratio for the resonance j to decay into hadron i. Branching
ratios for resonances are listed in various issues of Review of Particle Physics.

In elementary collisions or in peripheral nucleus—nucleus collisions (as well as for
light nuclei), complete equilibration in the strangeness sector is not expected. To
account for the possible violation of the strangeness equilibrium, in some of
the thermal models an additional parameter, y, < 1, is used and the distribution
function is written as,

! R ! . (7.6)
eﬂ(‘pz””z_”f) +7 ys"le”(“”er"’z_”') +7

ys 1s called the strangeness suppression factor and it is established that ys~1 in
RHIC energy collisions and decreases at lower energy.

The thermal model is simple and various authors have analyzed experimental data
in the model [1-16]. Astonishingly, the simple model does give a very good description
of the ratios of particle yield over a wide range of energy. An example of fit to particle
yield ratios in /s = 200 GeV central Au+Au collision data is shown in figure 7.2.
The agreement between experimental data and thermal model predictions is excellent.
Similarly, a good quality fit is obtained at other collision energies. In figure 7.3, the
energy dependence of hadron yield relative to pion yield is shown over a large energy
range. Here also, the thermal model describes the experimental data rather satisfac-
torily. The differences in energy dependence of various hadrons are qualitatively and
quantitatively understood. The steep decrease of the p/z" ratio is due to the combi-
nation of two effects: (i) decreased proton stopping with energy and (ii) increased pion
yield with energy. The ratio flattens beyond /sy = 100 GeV as a consequence of the
dominance of newly created baryons. The energy dependence of the kaon yield relative
to pion is interesting. The ratio K /z~ monotonically increases followed by saturation
beyond 100 GeV. The K'/z" ratio on the other hand shows a broad maximum around
VS~ 8 GeV. K consist of a u and § quark. The u quark may come from the initial
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Figure 7.2. Thermal model fits to hadron yield ratios in /sy =200 GeV Au+Au collisions. The figure is
reproduced with permission from [13].
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colliding system as well as from newly created partons. K" yield then depends on
two competing mechanisms, an increase in u from newly created partons with energy
and a decrease in initial # with increasing energy. The ‘horn’-like structure in the K*/z~
ratio was predicted to be a signature of quark—gluon plasma (QGP) formation [3]. The
statistical model naturally reproduces the ‘horn’-like structure but the predicted width
is rather broad.

The fit parameters, 7" and up, in the thermal model measure the temperature and
baryonic chemical potential at the chemical freeze-out (particle ratios are fixed at
the chemical freeze-out). They depend strongly on NN center-of-mass (cm) energy
(+/Snn)- The energy dependence however is rather smooth and it is possible to obtain
an ‘empirical’ chemical freeze-out curve in the 7 — p, plane. In [10] the chemical
freeze-out curve was parameterized as

T =0.1675 — 0.1583u,. (7.7)
The energy dependence of y, was obtained as
log/s
py(V5) = 2.06———. (7.8)
(V5xn)

In equations (7.7) and (7.8), the variables /s ., T and up are expressed in GeV.
Fitted parameters and the freeze-out curve are shown in figure 7.4. An alternative
and nearly equivalent parameterization was given in [12],

2 4
T =0.166 — 0.1392 — 0.053", (7.9)
— 200
% [ Au-Au RHIC
= 150l
= [
il & """ g Pb-Pb SPS
[ 9.
140 - -i@,‘
[ §. Au-AuAGS
120 — ‘\‘izl‘
100 5
+  Chemical freeze-out
80 —
60 s 1 1 | 1 1

0 100 200 300 400 500 600 700 800
Hg [MeV ]
Figure 7.4. Chemical freeze-out points in the u,—T plane for central Pb-Pb and Au-Au collisions. The dashed

line shows the parabolic interpolation equation (7.7). The figure is reproduced with the author’s permission
from [10].
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1308 GeV
5) = . 7.10
M3 = 0273 GV v (7.19)

7.2.1 Rapidity spectra in the thermal model

Allowing for the rapidity dependent chemical potential and temperature, the ther-
mal model has been extended to describe the rapidity distribution of the produced
hadrons in ultra-relativistic nuclear collisions [17-21]. It is assumed that the rapidity
axis is populated with fireballs or clusters, moving along the beam axis with
increasing rapidity, ygp. The emitted particles leave these regions (fireballs) at the
freeze-out following a (local) thermal distribution. The resulting rapidity distribution
of any given particle species is then obtained by a superposition of the contributions of
these regions (fireballs) as follows:

dN’ dN/(y = yp)
=4 _— 7.11
5 =4, (7.11)

where y is the particle’s rapidity in the rest frame of the colliding nuclei and A4 is an
overall normalization factor. p();,) is the probability distribution for the fireballs.
A convenient choice is the Gaussian distribution,

POhy) = ———C 20 (7.12)

CL—II][ in equation (7.11) is the thermal distribution of the ith hadron species from
a single fireball and can easily be calculated. The distribution function

1

fx.p) = EaEm

gives the average number of particles of the ith hadron in a small volume element
d®x around x with momenta between p and p + dp. The average number of particles
can be obtained by integrating the distribution function over the phase space,

N f d3Xd3 _ & d'p (7.13)
(27:) [ et +,7] (27) [eﬂ(m-ﬂ,)m]

where g; is the degeneracy factor. The invariant distribution for a hadron species can
be obtained from the above as (omitting the subscript i)

dn, dy, h

N dM _ gV mpCoshy (7.14)
dp dydp,  (2n) [e/’("’T coshy=u) :1]
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1

where we have expressed the energy in terms of the rapidity variable, y = - In hdin

E-p

and transverse mass, m, = \/m’ + pT2 . The equation can be integrated to obtain the
rapidity distribution,

N, _ gV / 2 my cosh y (7.15)

dy = (27[)3 pT I:eﬁ(mT cosh y—p) 4 ’1] .

In the Boltzmann limit, rapidity density in the thermal model can be expressed
analytically

3 2
am _ gV[ 2, 2mT +m2T]e”/T. (7.16)

= +
dy  (2z)*| cosh’y ~ coshy
Equation (7.14) in the Boltzmann limit can be integrated to obtain thermal model

particle spectra as

dy, gV

mpdm,  2x°

mp>T

SomeK(pmy) —— V' Jmpe . (7.17)

The thermal model extended for rapidity density introduces a new, energy
dependent parameter, the Gaussian width o of the fireball distribution. One generally
fixes it by fitting experimental rapidity density for pions. At RHIC energy /sy =
200 GeV, 6=2.18 and it decreases at lower energy. Energy dependence is approxi-
mately given by ¢ = In ﬁ In the analysis one generally assumes universality of

m
the chemical freeze-out concfition, 1.e. the temperature and chemical potential are
related by a freeze-out curve as in equation (7.7) or equation (7.9). If the temperature
varies along the rapidity axis, then the chemical potential will also vary. Thus a
decrease in the temperature of the fireball will be accompanied by an increase in the
baryon chemical potential. Variation of up as a function of energy was studied in [18].

u, =0.025+0.011y7,  at RHIC (7.18)

p, = 0237+ 00112 atSPS. (7.19)

7.3 The blast wave model

If a large amount of energy (F) is released in an infinitesimally small volume of
ambient medium of density p;, a shock wave or blast wave is created’. The spherical
shock front will expand into the ambient medium. Early in the course of expansion,

3 Technically, blast waves and shock waves are distinguished. In a shock wave thermodynamic variables, e.g.
pressure, density, etc, vary discontinuously across the shock front. In a blast wave, there is a peak structure.
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the pressure within the shock, B ~ pu, is much larger than the ambient pressure P,
and any radiated energy is much smaller than the explosion energy E. This regime,
during which the energy E remains constant, is known as the blast wave regime. In
a blast wave, the expansion velocity u (r, t), density p(r, t), pressure P(r, t) and
other properties are determined solely by the two initial parameters of the system,
initial energy E and ambient density p;, and do not depend on the details of
hydrodynamic evolution. This can be seen from dimensional analysis. The dimen-
sions of the principal quantities are

[E]= ML’T™ (7.20a)
[p]=ML> (7.20b)
[t]=T. (7.20¢)

The only quantity of dimension length that can be constructed is

1

2\5

(ET’) o (7.21)
1

and any radius relevant to the problem must depend on these variables through this
combination. At any time, the shock position can be obtained as

R(r) = ns(%z) (7.22)

and shock velocity,

dR0) 2R

=T . (7.23)

V(1) =
The blast wave model has been used by several authors to analyze experimental
data in relativistic energy heavy ion collisions [22-26]. The model assumes that in a
collision a fireball is created, which expands suddenly to the freeze-out condition.
The model thus assumes that all the particles, pions, nucleons and kaons decouple
quite suddenly and for all of them the freeze-out happens at the same time, mea-
sured in a frame that co-moves longitudinally with the fluid element of the
expanding fireball. Most importantly, in the blast wave model the final fluid
parameters do not depend upon the details of the evolution and one can treat them
as parameters. Using the well known Cooper—Frye prescription [27], the invariant
distribution for the particles can be written in terms of those parameters. The
parameters are then fitted from experimental observables such as particle spectra,
flow, etc. Before we continue, we discuss the Cooper—Frye prescription for particle
invariant distribution.
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7.3.1 The Cooper—Frye prescription for particle distribution

Consider a three-dimensional hypersurface X(x) in four-dimensional Minkowski
space—time and count the number of particles crossing the hypersurface. Let do,
be an infinitesimal element perpendicular to X(x) and directed outward. If j*
is the current of particles, then the scalar product dg,j* gives the number of
particles crossing the infinitesimal surface do. The total number crossing the
hyper surface X is

N= [ = [ d,{ o ] s p)] (7.24)

where we have used the kinetic theory definition for the current with f(x, p) as the
one-body distribution function.
Equation (7.24) can be cast into a differential form,

) K T ie) (7.25)
dp dydp, (2r) J=
This is the Cooper—Frye prescription [27] for the invariant distribution of particles.
In general, a three-dimensional hypersurface is parameterized by three locally
orthogonal coordinates ({, #, ®) and the normal vector on the hypersurface is
determined by
dz* dx’ dx’

dZ# = eﬂaﬂl/ dé’ d_dT() C dq) (726)

where €,,4, is the Levi-Civita antisymmetric tensor. €,,3, = —1 for (uafy), an even
permutation of (0123). Different components can be obtained as,

a p Y 1 2
450 = ds, = ¢, 292 92440 = Md@dqd@ (7.27a)
d¢ dy do o, n, @)
a f 4 2 §3 0
ds! = —d5, = —¢,, = 92 I 440 Mdgdndé (7.27b)
"¢ dn do a(¢, n, @)
a f 14 3 30 I
dx? = —d3, = —%mdididz dfdnd® = Mdédr]d‘b (7.27¢)
d¢ dy do a(¢, n, @)
a /] y 0 1
4 = —dz, = —e,, S 9Z I 440 = Mdgd do (7.27d)

Saaz dp de C o A, @)
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where
dx o0x Ox
oa op oy
Ax.y.2) _ | & DY (7.28)
oa, f.y) | da P o
0z 0z Oz
oa op oy

If the freeze-out surface is properly parameterized, the invariant distribution of
particles can be calculated from equation (7.25) if the distribution function f(x, p) is
known. The simplest freeze-out surface can be constructed as

dz* = (d'x, 0, 0, 0) (7.29)

whence the Cooper—Frye invariant distribution and thermal model spectra become
identical.

The Cooper—Frye prescription for a boost invariant system. If we assume boost-
invariance, the freeze-out surface, in

(T=\/Zz—zz,x,y,n=llnz+z)

2 t—z

coordinates, can be characterized by a longitudinal proper time z,(x, y) = 7,(r,),
(. m) = (1 % 3 ) = (5, y) coshn, x, 3, 7,(x, y) sinh ), (7.30)

and from equation (7.26), one readily obtains,

o1, o1, .
d%, =|coshn, ———, ———, —sinh 5 [z,(x, y)dxdydn. (7.31)
" ox  dy

If the particle four-momentum p* is parameterized as,

Pl = (mT coshy, p, p,» My sinh y), (7.32)
it is easy to calculate the volume element p*dX,.

ot o1,
p"dE, =|m; cosh(y —n) — p— — p —|r,dxdydn. (7.33)

. Yox Yoy

For a boost-invariant system, the fluid four-velocity can be parameterized as,
u' = yT(cosh 1, Vs W, sinh ;1), (7.34)
1 1

7, = = , (7.35)
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and one can calculate the scalar product,
pru=pu = yT(mT cosh(y —n) —vwp — vypy). (7.36)

One generally uses the Lorentz-covariant form for the distribution function,

S p) = £ = g ()bl (7.37)
n=1

el?" u-n /T g

where g is the degeneracy of the particle. The plus and minus sign in the denomi-
nator accounts for proper quantum statistics of the particle species, (+) for fermions
and (—) for bosons. The factor p - u in the exponent is the energy of the particle in the
local rest frame (p"u, — p’ = E when u* — (1, 0)).

The Cooper—Frye invariant distribution can now be computed as

or or
_ n+l f _ f
d3 - (2 ) 2( ) / rfdxdydn(mT cosh(y =) =p 5= =R )
—ny, {mT cosh(y —n) —wp, - v,p,}
nu T s X YEy
Xe e 7.38
Xp[ T ] Xp T (7.38)
Using the standard relation for modified Bessel functions,
K(z) = / e eon cosh(ur)dt, (7.39)
0

the integration over the rapidity variable # can be performed analytically,

2 ny.m or or ny.m
— g n+l fodxdy mTKl( 7’[‘ T ) _ p f p _f KO( }/T T )
d (2 ) 4 T 0x 7 oy T
A%l + W,
X exp [HTM] exp T{ T =l } . (7.40)

If the system possesses azimuthal symmetry, then

dxdy = r.dr.dg, (7.41)
WD, + VD, = ViDy cos(¢ - qﬁp), (7.42)
or or ot
A r_ %
Py TR =Py cos(¢ %) (7.43)
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and the integration over ¢ can be formally completed using the relation for the
modified Bessel function,

(=1 f " 60 cos(v0)do, (7.44)
T JOo

dVN & .., ny.my \ . ( My Vrp
e = o B [onamr(P(IE) s

or, ny.m ny.vip. ) [n ]
f T'T T 'TfT Y
- p.—K, A exp| — | 7.46
Pr o, o( T )1( T p T ( )

7.3.2 A blast wave model with cylindrical symmetry and boost invariance

When applied to a blast wave, several simplifications can be made to the Cooper—

Frye prescription for invariant distribution. For example, in the blast wave model, it

is assumed that the freeze-out occurs at a fixed time 7 Then terms involving ai do
f

not contribute. In the blast wave model, the fluid parameters do not depend on the
details of the evolution and they may be assumed to be constant and come out of the
integration. Furthermore, one generally neglects the quantum statistics. When these
simplifications are made, invariant distribution in a boost-invariant, cylindrical
symmetric blast wave model reduces to

v g, Bmy ), (7 VeP u
EE = Z—ﬂZTf.Rf.mTKl( TT )IO( T T ) exp [? ) (7.47)

This is the most widely used form of blast wave model. The variables, 7, Ry, T,
vr and p are treated as parameters. They can be obtained by fitting experimental
data.

7.4 Color glass condensate

Theoretical considerations indicate that prior to QGP, a new form of matter, ‘color
glass condensate’ (CGC) may be formed. We briefly describe here the beautiful
concept behind the CGC. A more elaborate description may be found in [28-32].
According to the theory, CGC controls the high-energy limit of the strong interaction
and should describe (i) high-energy cross sections, (ii) distribution of produced
particles in high-energy collisions, (iii) distribution of small x particles in a hadron and
(iv) initial conditions for heavy ion collisions.

As we know hadrons consist of gluons, quarks and anti-quarks. The constituents of
hadrons, e.g. quarks and gluons, are generically called partons (the parton name was
given by Richard Feynman). At very high energy, the hadron wave function has
contributions from partons, e.g. gluons, quarks and anti-quarks. A convenient
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variable to measure the contribution of constituents to the hadron wave function is
the fraction of the momentum carried by the constituents (Bjorken x variable),

X = Econstituent/Ehadron‘ (748)

The probability G(x) of obtaining a parton with momentum fraction x and x + dx
is generally called the parton distribution function. The parton distribution function
depends weakly on the resolution scale Q. One can write the density of small x
partons as

dN )
o xG(x, Q°). (7.49)

In figure 7.5, the gluon distribution function as measured in the Hadron Electron
Ring Accelerator (HERA) is shown. One observes that gluon density rapidly
increases at small x. It is also an increasing function of the resolution scale (Q?).
Increase in gluon density at small x is commonly referred to as the small x problem.
It means that if we view the proton head-on with increasing energy, gluon density
grows. QCD is an asymptotically free theory, and coupling constant decreases at
short distances. As the density increases, typical separation between the gluons
decreases and the strong coupling constant gets weaker. The higher the density, the
more weakly the gluons interact. However, density cannot be increased indefinitely.
Indefinite increase will then lead to infinite scattering amplitude and violate
the unitary bound*. One then argues that as the gluon density increases, repulsive
gluon interaction becomes important and in the balance, gluon density saturates.
The saturation density will correspond to a saturation momentum scale, Qg

Q2=200 GeV2

Q2=20 GeV2

T T T T T
104 10% 102 10" 100
X

Figure 7.5. Schematic diagram for the gluon density measured in HERA in the three-momentum scale.

4The unitary bound is the constraint on any quantum system the that sum of all possible outcomes of
evolution is unity.
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Qualitatively, one can argue as follows: imagine a proton is being packed with fixed-
size gluons. Then after a certain saturation density or close-pack density, repulsive
interaction will take over and no more gluons can be added to the proton. Naturally,
the saturation density depends on the gluon size; for a smaller sized gluon, the
saturation density will increase. Then there is a characteristic momentum scale Qg
which corresponds to the inverse of the smallest sized gluons which are close packed.
Note that the saturation scale only tells us that gluons of size 1/Q, have stopped
growing. It does not mean that the number of gluons has stopped growing.

It is very reasonable to assume that some effective potential V' describes the
system of gluons. If the phase space density of gluons is denoted by p,

1 dN

=—— 7.50
7R’ dyd2pT (7.50)

p

at low density, the system will want to increase the density and V' ~ —p. On the other
hand, repulsive interaction balances the inclination to condensate, V,gon ~ & P
These contributions balance each other when p ~ l/a,. Density scaling as the
inverse of interaction strength is characteristic of condensate phenomena such as
superconductivity.

Phase space density p = -

———n~ 1 / a, can be integrated to obtain saturation
ZR” dydpy s

momentum scale (Qgay),

——~—0Q°. 7.51
zR* dy ()LQSat (7.51)

The origin of the name ‘color glass condensate’ is now clear. The word color
refers to gluons which are colored. The system is at very high density, hence the word
condensate. The matter is of glassy nature. Glasses are disordered systems, which
behave like liquids on long time scales and like solids on short time scales. The word
‘glass’ arises because the gluons evolve on a longer time scale than their natural one
1/Qg,r. The small x gluons are produced from gluons at larger values of x. The time
scale of the fast gluons is Lorentz diluted and can be approximated as a static field.
This scale is transferred to the small x gluons. The small x gluons can then be
approximated as static classical fields.

CGC acts as an infrared cut off when computing total multiplicity. For momentum
scale p. > Q_ , the particles produced are incoherent and ordinary perturbation
applies. For momentum scale p. < @Q_ , the particles produced are in a coherent
state, which is color neutral on the length scale 1/Q_ .

One may wonder about the quark’s degrees of freedom. At high energy, gluon
density grows faster than quark density and distribution is overwhelmingly gluonic.
Fields associated with CGC can be treated as classical fields. Since they arise from
fast moving partons, they are plane polarized, with mutually orthogonal color
magnetic and electric fields perpendicular to the direction of motion of the hadron.
They are also random in two dimensions (see figure 7.6).
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-
/N

Figure 7.6. CGC representation of a hadron traveling near the speed of light. The hadron is contracted to a
colored sheet with color electric and magnetic fields orthogonal to the direction of motion.

—— —

Figure 7.7. Left panel: collision of two sheets of color glass. Right panel: The longitudinal color electric and
magnetic fields made in hadron collisions as the colored sheets pass each other.

High-energy hadronic or nuclear collisions can be considered as collisions of two
color glass sheets as shown in figure 7.7. They can be viewed as classical fields of one
hadron/nucleus propagating along the forward light cone z = ¢ and that of the other
along the light-cone z = —¢. The initial classical field can be obtained by adding
them until the hadrons/nuclei collide. After the collision, classical Yang—Mills
equations in the forward light cone can be solved to obtain the field configuration.
Explicit solutions indicate that after the hadrons pass through one another, they
develop a surface color charge (both electric and magnetic) density. This charge
density is equal and opposite on each hadron. Because the hadrons have become
charged, longitudinal color electric and color magnetic fields will form between
them. A schematic diagram of this is shown in figure 7.7. The typical scale of

transverse variation of these fields is the inverse saturation momentum r ~ 1/Q_ .
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dN_,/dn W Total multiplicity N, (pp)

14000 GeV | w L

o Dol s syl s aaaaal T LA

W(GeV)

Figure 7.8. Left panel: CGC model predictions for rapidity dependence dN/dy of charged hadron multi-
plicities in proton—proton (antiproton) collisions as a function of the pseudo-rapidity at different energies.
Right panel: Energy dependence of total multiplicity in proton—proton (antiproton) collisions. The vertical
doted line marks the LHC energies for proton—proton collisions (W = 14000 GeV). The figures are reproduced
from [33] with permission.

These fields will evolve classically. Field configurations before and after the colli-
sions are remarkably different. Before the collisions there are only transverse fields,
but after the collision there are, in addition, longitudinal fields. The longitudinal
fields grow on a very short time scale # < 1/Q_ . The new matter formed in the
collision is produced from the CGC, and is called ‘glasma’. It has properties
remarkably different from the CGC. The glasma fields eventually dilute to a dis-
tribution of gluons and later thermalize to form QGP.

There are many successful applications of the CGC model in explaining various
experimental results. For the purpose of completeness, we will show two results
obtained in the CGC model [33]. In figure 7.8, in two panels, the rapidity density of
charged particles in pp collisions and the energy dependence of charge multiplicity
are shown. The solid lines in the figure were obtained in a CGC based model. It is no
small wonder that a CGC based model can explain the data. Such a description of
the data from a first principle, model was not available earlier.

7.5 Hydrodynamic model

One of the most successful ‘dynamical’ models for relativistic energy heavy ion
collision is the hydrodynamic model. In figure 7.1, we have depicted the different
stages of collision. From the expansion stage to freeze-out, the collision process can
be modeled by relativistic hydrodynamic equations. If the macroscopic properties
of the fluid, e.g. local energy density, pressure, fluid velocity, etc, are known at the
initial time 7;, hydrodynamic equations can be solved to obtain the space-time
evolution of the fireball until the freeze-out. At the freeze-out a suitable algorithm
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(e.g. Cooper—Frye [27]) can be used to convert the fluid information at the freeze-out
into a particle’s invariant yield and be compared with experimental data.

Hydrodynamic models are unique in that it is imperative to use an equation of
state, a thermodynamic relation between the energy density, pressure and number
density of the fluid. By explicitly incorporating phase transition into the equation
of state, one can study dynamically the effect of phase transition on the fluid
evolution and associated particle production. Ideal hydrodynamic models have been
largely successful in explaining a variety of experimental data, e.g. transverse
momentum spectra and elliptic flow (to be explained later) of identified particles in
SN =200 GeV Au+tAu collisions [34]. Indeed, the success of ideal fluid dynamics
in explaining several experimental data, together with the string theory motivated
lower limit of shear viscosity over entropy ratio * > [35-37] leads to a paradigm that
in Au+Au collisions, a nearly ‘perfect’ fluid is created.

However, the paradigm of ‘perfect fluid’ produced in Au+Au collisions at RHIC
needs to be clarified. It so happens that the ideal fluid dynamic models do have their
limitations [38, 39]. For example, experimentally, elliptic flow tends to saturate at
large transverse momentum. The ideal fluid dynamics on the other hand predicts a
continually increasing elliptic flow. The transverse momentum spectra of identified
particles also starts to deviate from ideal fluid dynamics predictions beyond pr=
1.5 GeV. Experimentally determined Hanbury Brown-Twiss (HBT) radii (also to be
explained later) are not reproduced in the ideal fluid dynamic models, the famous
‘HBT puzzle’ [40]. Ideal fluid dynamics also works best in central collisions and gets
poorer in more peripheral collisions. The shortcomings of ideal fluid dynamics
possibly indicate the greater importance of dissipative effects in py ranges greater
than 1.5 GeV or in more peripheral collisions. Indeed, ideal fluid is a concept which
is never realized in nature. As suggested in string theory motivated models [35-37],
QGP viscosity could be small, #/s > 1/4z, but nevertheless it is non-zero. Indeed,
much earlier, Daniclewicz and Gyulassy [41], using the uncertainty principle,
estimated the lower bound of the viscosity to entropy ratio, /s > 1/12, a value very
close to the AdS/CFT estimate. It is thus important to study the effect of viscosity,
even if small, on the space-time evolution of QGP fluid and quantify its effect.
Furthermore, QGP fluid has to be characterized by its transport coefficients, e.g.
heat conductivity, bulk and shear viscosity. Theoretically, it is possible to obtain
these transport coefficients in a kinetic theory model. However, in the current status
of the theory, the goal cannot be achieved immediately, even more so for a strongly
interacting QGP (sQGP). Alternatively, one can compare viscous hydrodynamic
simulations to experimental data and obtain a ‘phenomenological’ limit to the
transport coefficients of sQGP.

There is another incentive to study dissipative hydrodynamics. Ideal hydrodynamics
depends on the assumption of local equilibrium. In dissipative hydrodynamics, the
strict assumption of local thermal equilibrium is relaxed to the assumption of ‘near’
local thermal equilibrium, extending the range of validity of hydrodynamic description.
The term ‘near’ in the previous sentence has certain implications. Indeed, theoretical
modeling of a strongly non-equilibrium system has not yet been developed. With
the qualification of ‘near’ equilibrium, dissipative hydrodynamics then explores a time
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earlier that than in ideal hydrodynamics. It may be mentioned here that the success
of hydrodynamical modeling of relativistic heavy ion collisions does not necessarily
imply the realization of local thermodynamic equilibrium, although the inverse is true.
Whether or not local equilibrium is achieved in high-energy nuclear collisions is still
in debate.

A theory of dissipative relativistic fluid was formulated quite early. The original
dissipative relativistic fluid equations were given by Eckart [42] and Landau and
Lifshitz [43]. They are called first order theories. Formally, relativistic dissipative
hydrodynamic equations are obtained from an expansion of entropy four-current, in
terms of the dissipative fluxes. In first order theories, entropy four-current contains
terms linear in dissipative quantities. The first order theory of dissipative hydro-
dynamics suffers from the problem of causality violation and instabilities [44, 45].
Causality violation is unwarranted in any theory, even more so in a relativistic theory.
The problem of causality violation is removed in Israel-Stewart’s second order theory of
dissipative fluid [46, 47]. In second order theory, the expansion of entropy four-current
contains second order terms in dissipative fluxes. However, these lead to complications
that dissipative fluxes are no longer functions of the state variables only. They become
dynamic. The space of thermodynamic variables has to be extended to include the
dissipative fluxes (e.g. heat conductivity, bulk and shear viscosity). In the following
section Israel-Stewart’s phenomenological theory of dissipative hydrodynamics is
briefly discussed. More detailed exposition can be found in [47, 48].

7.5.1 Dissipative fluid dynamics

In a previous chapter, it was shown that hydrodynamic equations follow from the
Boltzmann transport equation. A simple fluid’, in an arbitrary state, is fully specified
by primary variables: particle current (N*), energy—-momentum tensor (7**) and
entropy current (S¥) and a number of additional variables®. Primary variables
satisfy the conservation laws

9N"=0, (7.52a)

9,T" =0, (7.52b)
and the second law of thermodynamics,

9,5" > 0. (7.53)

In relativistic fluid dynamics, one defines a time-like hydrodynamic four-velocity,
u* (normalized as u?=1). One also defines a projector, A" = g" — u"u",

3 A simple fluid is composed of either a single element or molecules involving no more than two types of atoms.
Limitation in microscopic structure allows for more complete determination of the macroscopic dynamics.
®In principle, the additional variables are infinite in number. The fluid condition is determined by the dis-
tribution function f or alternatively by all moments of the distribution function. N* and 7% are only the first
and second moment. All the higher moments are needed to fully specify the fluid.
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orthogonal to the four-velocity (A*u, = 0). In equilibrium, a unique four-velocity
(u*) exists such that the particle density (), energy density (¢) and entropy density (s)
can be obtained from

N = nu” (7.54a)
Tl = eu'u" — pA* (7.54b)
Seq = su”. (7.54c¢)

An equilibrium state is assumed to be fully specified by five-parameters (n, £, u")
or equivalently by the thermal potential « = u/T (u being the chemical potential)
and inverse four-temperature f* = u”/T. Given an equation of state, s = s(&, n),
pressure p can be obtained from the generalized thermodynamic relation,

St =pp" — aNj + T2 (7.55)
Using the Gibbs—Duhem relation,
d(pp*) = Nida — T2#dB, (7.56)

the following relations can be established on the equilibrium hyper-surface

Ze(as 5),

dS! = —adN + AT, (7.57)

In a non-equilibrium system, no four-velocity can be found such that equations
(7.54a), (7.54b) and (7.54¢) remain valid. Tensor decomposition leads to additional
terms,

N*= N+ 6N = nu" + V" (7.58a)
T = T + 6T"

=[eu'u’ — pN“] + TIA™ + 2" + (W"u* + W'u") (7.58b)
S = S+ 85" = su" + D", (7.58¢)

The new terms describe a net flow of charge V* = AN, energy flow W"=
(e + p)/inV* + g" (where ¢* is the heat flow vector), and entropy flow ®*.

M= —%A T" — p is the bulk viscous pressure and z** = [%(A"”AM + AN —

v

%A’”’ A* 7;1] is the shear stress tensor. The hydrodynamic four-velocity can be chosen to
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eliminate either I'* (the Eckart frame u* is parallel to particle flow) or the energy flow W*
(the Landau frame, u” is eigenvector of the energy—-momentum tensor). In relativistic
heavy ion collisions, the central rapidity region is nearly baryon-free and Landau’s
frame is more appropriate than Eckart’s frame. Dissipative flows are transverse to u”
and additionally, the shear stress tensor is traceless. Thus a non-equilibrium state
requires 1 +3 +5 =9 additional quantities, the dissipative flows IT, ¢* (or V*) and z**.
In kinetic theory, N* and T* are the first and second moment of the distribution
function. Unless the function is known a priori, two moments do not furnish enough
information to enumerate the microscopic states required to determine S*, and in an
arbitrary non-equilibrium state, no relation exists between N*, T* and S*. Only in a
state close to equilibrium can such a relation be established. Assuming that the equili-
brium relation equation (7.57) also remains valid in a ‘near equilibrium state’, the
entropy current can be generalized as

S"= Sk +dS" =pp" —aN" + BT" + Q" (7.59)

where Q" is an undetermined quantity in the second order in deviations,
ON" = N"— N} and 6T" = T" — T/'. First order deviations do not contribute

due to the Gibbs-Duhem relation. A detailed form of Q" is constrained by the
second law 0”S” > 0. With the help of conservation laws and the Gibbs-Duhem
relation, the entropy production rate can be written as,

9,8" = —~6N"0,a + 5T"9,B + 9,0". (7.60)

The choice of Q” leads to first order or second order theories of dissipative
hydrodynamics. In first order theories the simplest choice is made, Q" = 0, and the
entropy current contains terms up to the first order in deviations, SN and 6T7**. The
entropy production rate can be written as,

T9,5" =X — ¢"X, + "X, (7.61)
where, X = —V. u; X* = V% — u'du" and X" = V¥u",

The second law, 9,S" > 0, can be satisfied by postulating a linear relation
between the dissipative flows and thermodynamic forces,

1= -0, (7.62)
nT?

q' = -2 VA (u/T), (7.63)
e+p

" = 2pVu® (7.64)

where ¢, A and 5 are the positive transport coefficients, bulk viscosity, heat
conductivity and shear viscosity, respectively.

In first order theories, causality is violated [44, 45]. Causality violation is cor-
rected in second order theories [47]. In second order theories, the entropy current
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contains terms up to second order in the deviations, O* # 0. The most general Q"
containing terms up to second order in deviations can be written as,

— 2 v VA u" aOHq” alﬂ’qu
0" = ~(BIF = fg'q, + hm,m)om = =+ —— (7.65)

where 3, f, and f3, are thermodynamic coefficients for the bulk stress (IT), heat flow
(¢") and shear viscous stress (z"), respectively. @, and @, are thermodynamic
coefficients for the coupling between the heat flow and bulk and shear stress,
respectively. As before, one can cast the entropy production rate (7°9,S*) in the form
of equation (7.61). Neglecting the terms involving dissipative flows with gradients
of equilibrium thermodynamic quantities (both are assumed to be small) and
demanding that a linear relation exists between the dissipative flows and thermo-
dynamic forces, the following relaxation equations for the dissipative flows can be
obtained,

. 1 T .
M1+ 11 = -6 - [EgTaﬂ(C—OTu”)H] + I, V,q", (7.66a)
app.. ) A
T”AMA,//ﬂaﬁ +z, =250, — lnT@A(Z”—Tu )JZW] + I,,qV<M%>, (7.66b)

v . 1. T
T, A + q, = A(VﬂT— Tuﬂ) + [EAT av(ﬁu )qﬂ]

1V, -, V,x,. (7.66¢)
The relaxation times are,
T = &h, 7, = 2np, and 1, = ATB,. (7.67)

I, are coupling coefficients between different dissipative flows, specifically,

I, = Lo L, =A4Ta, L, = 2na 1, = Ta,. (7.68)

Unlike in the first order theories, in second order theories dynamical equations
control the dissipative flows. Even if thermodynamic forces vanish, dissipative flows
do not vanish instantly. It is important to mention that the parameters a = % and
B = % are not connected to the actual state (N*, T*). The pressure p in equation
(7.59) is also not the ‘actual’ thermodynamic pressure, i.e. not the work done in an
isentropic expansion. Chemical potential a and inverse four-temperature f have
meaning only for the equilibrium state. Their meaning need not be extended to non-
equilibrium states also. However, it is possible to fit a fictitious ‘local equilibrium’
state, point by point, such that pressure p in equation (7.59) can be identified with

7-23



A Short Course on Relativistic Heavy lon Collisions

the thermodynamic pressure, at least up to the first order. The conditions of fit fix the
underlying non-equilibrium phase space distribution.

It may be mentioned here that relaxation equations for the dissipative fluxes can
also be derived in kinetic theory [47, 49-52]. In kinetic theory, relaxation equations
as well as explicit expressions for transport coefficients, relaxation times, etc, can
be obtained. There is no unique method to obtain the relaxation equations from
kinetic theory. For example, Israel-Stewart obtained the relaxation equations from
the second moment of the kinetic equation. Betz et al [49], on the other hand,
obtained them from the kinetic equation itself. Both the methods gave identical
relaxation equations. However, while the relaxation equations remain unchanged,
the relaxation time and coupling coefficients do depend on whether the zeroth
moment or the second moment of the kinetic equation is used to derive the
relaxation equations.

Among the three dissipative coefficients, shear viscosity appears to be most
important in heavy ion collisions. In a collision, initial momentum is pre-
dominantly longitudinal. Some shear force must act on it to isotropize the
momentum distribution (as required by the assumption of thermal equilibrium).
Most of the dissipative hydrodynamic studies for heavy ion collisions are thus
concerned with the effect of shear viscosity on fluid evolution and subsequent
particle emission. Bulk viscosity in general is an order of magnitude less than shear
viscosity. However, there are indications that in QGP, near the transition point,
bulk viscosity can be large [53, 54]. Recently, the effect of bulk viscosity on particle
production has been investigated [55-60]. There is some uncertainty about the
correct form of the non-equilibrium correction to the equilibrium distribution
function in the presence of bulk viscosity. Grad’s 14-moment method for non-
equilibrium correction appears to give very large correction even for small bulk
viscosity [60]. However, the authors of [59] concluded differently. Using Grad’s
14-moment method in orthogonal basis form [50] along with the bulk viscosity
relaxation time of [52] does not lead to such problems. The conductivity of
QGP fluid is the least studied dissipative coefficient. The central rapidity region in
ultra-relativistic heavy ion collisions is essentially baryon-free and the effect of
conductivity is minimal. However, in future Facility for Antiproton and lIon
Research (FAIR) energy collisions, the effect of conductivity may be important.

7.5.2 Ideal hydrodynamic equations

Ideal hydrodynamic equations are used extensively to model relativistic heavy ion
collisions. In the following, the general procedure followed in hydrodynamic mod-
eling of heavy ion collisions is discussed. The approach can be generalized to the
more complex problem of dissipative fluid.

For simplicity, we assume an ideal fluid with a single conserved charge (e.g.
baryon density). The five conservation equations,

9N" =0, (7.69)
9,T" =0 (7.70)
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govern the motion of the fluid. Given an initial configuration of the fluid and an
equation of state p = p(e, n,), the equations can be solved numerically to obtain the
space—time evolution of the fluid.

In heavy ion collisions, appropriate coordinates for solving hydrodynamic
equations are (z, x, y, ) rather than (¢, x, y, z).

xXt=(t, X, p,2) > x"= (1, x, y,1) (7.71)
t =t coshpy T=At' =2 (7.72)
z =t sinhy n=11n(’”). (1.73)

2 t—z

In the (z, x, y, n7) coordinate system, the metric is
ds* = gmdx”dx” = dr* — dx* — dy* — dZ?
= dr? — dx? — dy* — o’dy? (7.74)
and

g" =diag(1, -1, -1, -1/7°). (7.75)

One notes that the space-time is not flat anymore, it is curved. Accordingly, one
needs ‘affine connections’ or the Christoffel symbols,

Fl-, — _gim mk J! . 776
Jk 2 (axk axl axm ( )
In the (z, x, y, n) coordinate the only non-zero Christoffel symbols are,

r, =1 =1/ (7.77)

The covariant (semicolon) derivative of a contravariant tensor is given by

i aAl i m

Ay= 41,4 (7.78)
ik __ aAik i mk k mi

A, = Py + 0,4 +1,,4". (7.79)

Five conservation equations in the (z, x, y, #) coordinate system can be easily
derived. For ‘ideal fluid’, they are
() N=0= N7+ N+ N+ N
= (O.N*+T5,N") + N+ dN” + (9,N" + T, N")

™m

= ON*+ +O,N* + O N + N + Ly (7.80)
T
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(i) 77 =0 =T7+ T2+ T7 + T
= (0, T + 2, T"™) + 0,T™ + 0,T"

m

+ (0,7 + Iy, T™ + 10, T™)

=0T " +0T"+0T" +0T"+T" + lT” (7.81)
T
(i) 7, =0 = T+ T + T + T
: . . w1
=0T" +0,T" +0,T” + 0T" + —T™ (7.82)
: T
(V) =0 =T+ T7+ T+ T
=0T +0T" +0T" + 091"+ lT”’ (7.83)
: T

o () — T xn n m
(V) T;'M _O_T;T +T;x +7—;y +T211

=0,T"+0T"+9T"+9T" + %T”’. (7.84)

In ideal hydrodynamics, or in first order hydrodynamics with dissipation, the five
partial equations noted above are to be solved simultaneously to obtain the space—
time evolution of the fluid. One widely used algorithm to solve the non-linear
generalized continuity equation of the type which occurs in fluid dynamics is a
smooth and sharp transport algorithm (SHASTA) followed by flux corrected
transport (FCT) [61]. SHASTA-FCT is essentially a three step process. In the first
step, called transport, the velocities of the fluid and the source term are first calculated
at half time steps ¢, ,,,. In the second step, using the new velocity and the new source
term in the nth step, one calculates the quantities at the n + 1th step. The third step is
called the anti-diffusive step and is designed to remove the numerical diffusion
inherent to the transport scheme. This is done by calculating an anti-diffusive flux,
which is subtracted from the time-advanced quantities at the n + 1th step to get the
final result at the n + 1th step. The calculation of the anti-diffusion is carried out by a
method called ‘flux correction’. For details of the method see [61, 62]. In second order
dissipative hydrodynamics, however, ten additional relaxation equations have to be
solved simultaneously.

For illustrative purposes, let us specialize in one-dimensional, Bjorken scaling
flow [63]. Noting that, in high-energy collisions, the rapidity density %’ is flat,
Bjorken hypothesized that physics is rapidity independent, i.e. boost-invariant. If
transverse expansion is neglected, for a boost-invariant system, hydrodynamic four-
velocity can be written as

u" = (L, 0, 0, i) = (cosh 5, 0, 0, sinh 7). (7.85)
T T
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Since the system is boost-invariant, one can also solve the hydrodynamic equations
at rapidity # = 0 and boost to any finite rapidity. At # = 0 hydrodynamic four-velocity
can be written as u” = (1, 0, 0, 0) and relevant energy—momentum components as,

T" =¢ T*=T"=T"=0 T" = p/t’. (7.86)
Inserting the values into equation (7.81) we obtain,

‘ : 1
0=0T"+0T"+0,T"+9T" +T"+ =T"
’ T

1
=¢T"+ﬂW+—J“=gf+g+p. (1.87)
T T T

If the fluid is assumed to be baryon-free, the entropy density will be given as
s = % and equation (7.87) can be recast as,

dzs
— =0. 7.88
I (7.88)

Equation (7.88) can be solved as st =constant. One-dimensional flow is isen-
tropic. In ideal gas, s « 7" and we get the well known 77 law for Bjorken scaling
expansion,

T't = T;Tf, (7.89)

where the subscripts i and f refer to some initial and final state of the fluid. Given
the fluid temperature at initial time 7, its value at a subsequent time is easily
obtained. Similarly, one can also solve for the number conservation equation. For
fluid velocity u* = (1, 0, 0, 0), N* = (n, 0, 0, 0). From equation (7.80) we obtain,

1

0=0N"++dN"+9dN"+9N"+ =N~
T

on + ln. (7.90)

T

The equation can be solved to give,

n = n2L. (7.91)

7

Noting that density is inversely proportional to volume, one finds the scaling law
for volume expansion,

v,=v-L. (7.92)
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7.5.3 Equations of state

Hydrodynamic equations are closed with an equation of state p = p(e, ng). As
mentioned earlier, hydrodynamic models are unique in that the effect of phase
transition can be studied dynamically, by including the phase transition in the
equation of state. Earlier, hydrodynamical simulations of relativistic heavy ion
collisions used the equation of state with first order confinement-deconfinement
phase transition. The simple bag model equation of state was used extensively to
model the equation of state of the QGP phase. The confined phase is generally
modeled as interaction-free hadron resonance gas. At sufficiently low temperatures,
the thermodynamics of strongly interacting matter is dominated by pions. As the
temperature increases, a larger and larger fraction of the available energy goes into
the excitation of more and more, heavier resonances. For temperature 7° > 150
MeV, heavy states dominate the energy density. However, the densities of heavy
particles are still small, p ~ e T There mutual interaction, being proportional to
pp; ~ e (M) / T is suppressed. One can use virial expansion to obtain an effective
interaction. Virial expansion together with experimental phase shifts were used by
Prakash and Venugopal to study the thermodynamics of low temperature hadronic
matter [64]. It was shown that the interplay of attractive interactions (characterized
by positive phase shifts) and repulsive interactions (characterized by negative phase
shifts) is such that effectively, the theory is interaction-free. One can then consider
that interaction-free resonances constitute the hadronic matter at low temperatures.

In recent years, there has been much progress in the lattice simulation of QCD. In
particular, the thermodynamic properties of baryon-free QCD have been studied
accurately and extensively. Currently, there is consensus that the confinement—
deconfinement transition is a cross-over and the cross-over or the pseudo-critical
temperature for the transition is 7, &~ 170 MeV [65-68]. Accurate lattice simulations
also show that at low temperatures, interaction-free hadron resonance gas correctly
reproduces lattice simulation results. Recent hydrodynamical simulations generally
use equations of state where the lattice simulation results for the deconfined phase
are smoothly joined at 7= 7, MeV, with hadronic resonance gas equations of state
[69-71]. At high temperatures the lattice QCD simulations for trace anomalies can
be well-parameterized by the inverse polynomial form,

e=3p d, d, ¢ ¢

™ Tt e

(7.93)

The form can be matched to the HRG model at temperature 7; by requiring that the
trace anomaly as well as its first and second derivatives are continuous. The resulting
equation of state can mimic a cross-over transition. In table 7.1, the parameter values as
obtained in [69] are listed. The HRG result for the trace anomaly can also be para-
meterized by the simple form [69],

e—3p
T4

=a,T+a,T" +a,T* +a,T" (7.94)
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Table 7.1. Fitted values of the parameters for three different fits of the trace anomaly in [69]. The labels s95
and s90 indicate that for the parameterization entropy, density at 7= 800 MeV is below the ideal gas limit by
5% and 10% respectively. The labels p, n and f indicate three different treatments of the peak structure in the
trace anomaly. For details see [69].

dy(GeV’)  d(GeV?) ¢(GeV™) c)(GeV™) n. n,  T(MeV)
s95p  0.2660 2403-107° -2.809-1077  6.073-1072 10 30 1838
s95n  0.2654 6.563-107°  —4.370-107°  5.774-107° 8 9 171.8
$90f 0.2495 1.355-1072 -3.237-1073 1.439-107 5 18 170.0

witha, = 4.654 GeV™', a, = =879 GeV >, a, = 8081 GeV™* and a4 = -7 039 000
GeV™".

In [70], analytic parameterization for the equation of state for the baryon-free
medium was given. The fitting procedure was slightly different from that of [69].

It is called s95p-PCE. For completeness, the parameterization is given below.
1. Pressure:

0.3299[exp(0.4346¢) — 1]; e <e,

1.024 - 1077 - exp(6.041e) + 0.007273 + 0.14578¢; e, < e < e,
0.30195 exp(0.31308¢) — 0.256232; e, <e<e,

ple) = 1 0.332 — 0.3223¢"5%5 _ 0.003 906¢ - exp(—0.056 97¢)
+0.1167¢7"** + 0.1436¢ - exp(—0.9131¢) s e <e<e

| 0.3327¢ — 0.3223¢"#" — 0.003 906¢ - exp(—0.05697¢); e > ¢,

where e, = 0.502856330544 1270 GeV fm™, e, = 1.62 GeV fm™, e, =

1.86 GeV fm™ ande, = 9.987835578 6273545 GeV fm™.
2. Entropy density:

r12.230431‘16849; e<e
11.9279¢"1%%; ¢ < e < e,
0.0580578 + 11.833¢"'*'¥; ¢, < e <e,

18.202¢ — 62.021 814 — 4.85479
se) =49 X exp(—2.724 07 - 10‘“84'54886) 1 65.1272¢0128012

;o ey<e<e
x exp(—0.003 69624 - ¢"'¥7%) — 4,752 53711847

18.202¢ — 63.0218 — 4.85479 exp(—2.724 07 - 10*”e445488")

;o e>e
+65.1272¢7%° exp(-0.003 696 24 - ¢''¥7%) ‘

L

where, ¢, = 0.127076 902 1427449 GeV fm™, e,= 0.446 707 952 467 4040
GeV fm™, e, = 1.9402832534193788 GeV fm™, and ¢, =
3.729247 457097 728 5 GeV fm ™.
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3. Temperature:

T(e) = 0.203054¢™7; e < 0.514393 9846236409 GeV fm™
(e +p)ls; > 0514393984 6236409 GeV fm™.

An alternative procedure to obtain the equation of state with cross-over transition
is to join the entropy density of the two phases as

Socpanaa{T) = 0.5[1 + tanh x]s 4 + 0.5[1 — tanh X]sqgp, (7.95)
where x = %, and to calculate the energy density and pressure from the ther-
modynamical relations,

P(T) = /0 T ATS(T) (7.96a)

e(T) = sT — P. (7.96b)

The parameter AT controls the transition width between the two phases. An
equation of state thus constructed in [71] is shown in figure 7.9. In [71], Wuppertal—-
Budapest simulations for entropy density were parameterized as

S, T-T
QGP c
=a+[f+yT]|1 + tanh . (7.97)

T’ AT

25 T

» s/T3 (Wuppertal-Budapest)

20 [ ©  p/T*(Wuppertal-Budapest)
- [ — — oT4
E ]
215
E ‘
<
té_ |
o 10 ¢
E |

5

0 [E=:5: o2 ol I T

0.0 0.1 0.2 0.3 0.4 0.5 0.6

T (GeV)

Figure 7.9. The filled and open circles are Wuppertal-Budapest lattice simulations [68] for energy density and

entropy density. The lines are parameterized equations of state. For details of the parametric equation of state
see [71].
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The best fitted values are, a=0.64, f=6.93, y=0.55, with fixed 7, =170 MeV,
AT = 0.17,. The calculated pressure from equation (7.96a) reproduces the lattice
simulations nicely.

7.5.4 Initial conditions for hydrodynamic analysis

It is understood that hydrodynamics is an initial value problem. For example, in
Bjorken one-dimensional hydrodynamics, given the density/temperature at some
initial time 7, (the time beyond which hydrodynamics is applicable, itself a para-
meter of the model), density/temperature evolution of the fluid can be obtained.
A kinetic freeze-out condition is also required to define the freeze-out surface such
that the Cooper—Frye prescription can yield the particle’s invariant distribution.
One simple procedure to implement kinetic freeze-out is to assume a fixed freeze-
out temperature 7. Depending on the model, experimental data are fitted with
T, =100-140 MeV.

In a more general system, one has to initialize the (baryon) number density
n(x, y, n), energy density e(x, y, n) and velocity u(x, y, #) = yv(x, y, n) distribu-
tions at the initial time 7.. Indeed, one of the aims of hydrodynamic analysis of heavy
ion collisions in ultra-relativistic collisions is to obtain the initial conditions of the
produced fluid, by comparing hydrodynamic simulations with experimental data. As
discussed earlier, experimental results are given in terms of collision centrality. One
then tries to parameterize the initial condition in terms of impact parameter, such
that once the parameters are fixed at some particular collision centrality, it can
predict for other collision centralities.

In the (z, x, y, #) coordinate, for the initial energy density, a common practice is to
assume a factorized form,

e(x, y, n) = &(x, y)H(n), (7.98)

e(x, y) being the initial energy density in the transverse plane and H (#) in the direction
of (spatial) rapidity. One can use a Gaussian distribution for H (). Transverse energy
distribution £(x, )) can be conveniently parameterized in a Glauber model orina CGC
model. The number density distribution or the velocity distribution at the initial time
can be similarly parameterized. In general, one assumes zero initial fluid velocity at the
initial time, though it is possible that the fluid has non-zero velocity, especially near
the surface. The reasoning is simple. Fluid constituents can have random velocity. In the
interior of the fluid, the random velocities will balance to produce net zero velocity.
However, near the surface random velocities will not be balanced.

Glauber model initial condition. 1In a previous chapter, we have discussed the

Glauber model. Expressions for the number of participant nucleons and number of
binary collisions, in AB collisions at impact parameter b collisions, were obtained.

Na(b) = ABoyy [ ESTBT,0 - 9) (7.99)
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N,.(b) = 4 f dstA(S)(l —[1 — oxn (b - S)]B)

+ de2s7]9(b - s)(l —[1 - o TA(s)]A). (7.100)

From the above equations, a transverse profile of binary collision and participant
numbers in impact parameter b collisions can be easily obtained as

Ny(x, v, b) = ABow T(x + b/2, ) T,(x — b/2, y) (7.101)
N6, ) = AT+ 572, 9)(1 = [1 = o Tyx = 02, )]

+ BT,(x — b/2, y)(l —[1 = o T(x + b2, y)]A). (7.102)

Comparison of hydrodynamic simulations with experimental data indicate that a
combined profile

e(x, y,b) & [(1 = /)N, (x, 3, b) + [N, (x, y, D) ]
= & (1 = /)N,u(x, ») + /N, (x, )] (7.103)

with /= 0.1 — 0.2 best explains the data. Once the proportionality factor ¢, is fixed
in a given collision centrality, the impact parameter dependence of the model allows
one to predict for the energy density distribution at other collision centralities.

CGC initial condition. In a previous section, the CGC model was discussed. CGC
is a highly coherent, extremely high energy density ensemble of gluon states.
Glasma is matter produced in the collision of CGCs of two hadrons. It has prop-
erties very different from those of the CGC and is produced in a very short time
after the collision. It eventually evolves from the CGC initial conditions into a
QGP. CGC models have been used extensively to model the transverse energy
distribution of the initial QGP fluid in hydrodynamic models [72-74]. In the
following, we briefly describe the procedure to obtain the initial condition in high-
energy nuclear collisions in the Kharzeev-Levin—Nardi (KLN) [33, 75] approach
to CGC.
The number of gluons produced in the k, factorization formula is given by,

dn, 477.'2N d? P
g T de
Erdy - NP -1 / J dea

2
X ¢A(x1, pTZ, VT)¢B(x2, (pT - kT) , rT) (7.104)
where p_and Y are the transverse momentum and rapidity of the produced gluon.
X, = ’r eiY is the momentum fraction of colliding gluon ladders at cm energy /s.
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as(kT) is the strong coupling constant at the momentum scale k. The unintegrated
gluon distribution functions ¢, in equation (7.104) are related to the gluon density in
a nucleus at the transverse position r(=x, »),

xG(x, ) = [ ? Pl (v k2 1), (7.105)

In principle, an unintegrated gluon distribution function should be a solution of a
non-linear quantum evolution equation, e.g. the Jalilian-Marian, Iancu, McLearran,
Weigert, Leonidov and Kovner (JIMWLK) equation [76-79]. In the KLN approach
[75] (which captures the essential features of gluon saturation), the unintegrated
gluon distribution functions are taken as [75, 80]

1 On
a(Q.) max(Q.,. ky)

o x, ki) ~ (7.106)

where Q_ is the saturation momentum at the given momentum fraction x and at the
transverse position #;.
In the KLN approach, the saturation scale in AB collision is parameterized as [75, 80]

A(B) 2
(x,rp) =2 GeV{ Ny (VT)] : (0'01) . (7.107)

Qs 1.53 x

The form Q_ (x) ~ x7*, with A = 0.2 — 0.3 is motivated from deep inelastic

scattering (DIS) experiments. J\Qﬁlf ) in the above equation is the transverse density

of participant nucleons, which can be calculated in a Glauber model (e.g. see
equation (7.102))

N2 (1) = AT (x + b2, y)(l —[1 = oxn Ty(x = b2, y)]B). (7.108)

In the CGC model, the transverse energy density should follow equation (7.104).
However, equation (7.104) is valid in the time scale 7, ~ Q] , when the medium may

not be in thermal equilibrium. One assumes that the ‘medium undergoes one-
dimensional Bjorken (longitudinal, isentropic) expansion during the period z, to 7.
The density at the time z, when hydrodynamics become applicable, is easily
obtained as n(z,) = Tfin(rs). The transverse energy density profile at the initial time

7. 1s then
dN 4/3
e(x,y, b) = eo[r dyfiY] (7.109)

with g, a normalizing factor, which is to be fixed from experimental data.
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7.5.5 Collective flow

In relativistic heavy ion collisions, one of the important observables is the azi-
muthal distribution of produced particles. In figure 7.10, the geometry of a collision
at non-zero impact parameter collision is shown. The overlap region of the two
nuclei is the participant region, where most of the collisions occur. The target and
projectile remnants on the periphery act as spectators. It is obvious from figure 7.10
that in non-zero impact parameter collisions, the participant or the reaction zone in
coordinate space do not possess azimuthal symmetry. Multiple collisions among
the constituent particles translate this spatial anisotropy into momentum aniso-
tropy of the produced particles. The observed momentum anisotropy is called
collective flow and has a natural explanation in a hydrodynamic model [34]. In the
following we briefly discuss collective flow phenomena. More detailed expositions
can be found in [81-83].

Momentum anisotropy is best studied by decomposing the invariant distribution
in a Fourier series. For example, the momentum integrated invariant distribution of
a particle can be expanded as,

dN N

@=Ell +2zn:vncos[n(¢—wn)]] n=1,2,3,... (7.110)
¢ 1s the azimuthal angle of the detected particle and y is the plane of the symmetry
of the initial collision zone. For smooth initial matter distribution, the plane of
symmetry of the collision zone coincides with the reaction plane ¥, (the plane

containing the impact parameter and the beam axis). The sine terms are not present
in the expansion due to symmetry with respect to the reaction plane.

Figure 7.10. Schematic picture of a non-zero impact parameter collision.
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Flow coefficients v, are easily obtained,

/d¢(31—N cos(ng — ny)
= (cos(ngp — ny)) = ¢ n=1,2,3,... (7.111)

[a®™
d¢
v, is called (integrated) directed flow, v, (integrated) elliptic flow, v, (integrated)

triangular flow, v, (integrated) hexadecapole flow, etc.
Similar to equation (7.110), one can Fourier expand the invariant distribution:

&N 1 d’N

& 2zpdp dy[1 " ZZV(PTJ) cos[n(¢ - l//)]] n=1,2,3,.. (1112

and differential flow coefficients are obtained as

3

d’N
/d¢m COS(I’l¢ — l’ll[/)

Py ¥) = (cos(ng — my)) = / T n=1,23, ..
dp———

prdp dedy
(7.113)

The second flow coefficient or the elliptic flow has been studied extensively in
RHIC and LHC energy collisions. The finite non-zero value of v, is thought to be a
direct signature of the production of thermalized medium. It is also best understood
in a hydrodynamic model [34]. Elliptic flow measures the momentum anisotropy. In
non-zero impact parameter collisions, the reaction zone is spatially asymmetric.
Spatial asymmetry of the initial reaction zone can be quantified in terms of eccen-
tricity, defined as,

2 2
€= M (7.114)
¥ +x7)

where (...) indicate energy/entropy density weighted averaging. In a non-zero
impact parameter collision, initial eccentricity is non-zero, positive. If a thermalized
medium is produced in the reaction zone, due to thermodynamic pressure, the
medium will expand against the outside vacuum. One can immediately see that the
pressure gradient will be greater along the minor axis than along the major axis. Due
to the differential pressure gradient, as the system evolves with time, eccentricity will
reduce. The momentum distribution of particles is isotropic initially. If momentum
anisotropy is measured as

f dxdy[ 7 = 7]

f dxdy[ T + 7]

(7.115)
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Figure 7.11. Temporal evolution spatial eccentricity (¢,) and momentum anisotropy (g,) with time [34].

initially &, will be zero. However, as the fluid evolves, rescattering of particles will
introduce asymmetry and e, will grow. It is expected to saturate beyond a certain
time, when the reaction zone attains azimuthal symmetry. In that sense, elliptic flow
is a self-quenching phenomenon, and the driving force of the flow (the reaction
zone asymmetry) continuously reduces as the flow grows. In figure 7.11, ideal
hydrodynamic model simulations for temporal evolution of spatial eccentricity and
momentum anisotropy are shown. They follow our expectations.

The second harmonic coefficient or the elliptic flow (v,) has been studied exten-
sively in +/8 y =200 GeV Au+Au collisions at RHIC [84, 85] as well as in /sy =
2.76 TeV Pb+Pb collisions at LHC [87, 86]. Large elliptic flow has provided
compelling evidence that nearly perfect fluid is produced at RHIC and LHC.
Deviation from the ideal fluid behavior is controlled by the shear viscosity to entropy
density ratio (n/s). The effect of shear viscosity is to dampen the flow coefficients.
Elliptic flow has sensitive dependence on #/s. The sensitivity of elliptic flow has been
utilized to obtain phenomenological estimates of /s [73, 88-94]. The results will not
be discussed in detail, but it appears that the QGP viscosity over entropy ratio is close
to /s ~ 1/4x, the value advocated in string theory motivated models.

Flow coefficients measure azimuthal correlations with respect to the reaction
plane. However, there are several other sources for azimuthal correlation, not
connected with the reaction plane, e.g. transverse momentum conservation, which
produces back-to-back correlations, resonance decays such as A — pz, HBT cor-
relations and final state interactions. They are termed as non-flow correlations.
These correlations increase with impact parameter: most of them vary with the
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multiplicity N like 1/N. For accurate measurements of flow or correlations related
to the reaction plane, non-flow effects must be eliminated.

Flow coefficients as defined in equation (7.110) or in equation (7.112) require the
event plane or the reaction plane angle y = y .. The reaction plane is not a directly
experimental observable. Methods have been devised to calculate the reaction plane
angle. Methods for calculating flow not requiring the reaction plane angle have also
been devised. In the following, a brief description of the methods is given.

Event plane method. The event plane method [81, 95] uses the anisotropic flow
itself to determine the event plane. For the nth flow harmonic, a flow vector Q, is
defined,

Q cos(ny) = X, = ZW, cos(ng) (7.116a)

0, sin(my) = ¥, = Y w sin(ng), (7.116b)

and the reaction or the event plane angle, for the nth flow coefficient is determined as

1 2w sin(ng)
tanT S§———

— . 11
n a Z,Wf cos(ng) (7-117)

[//n:

The sums in equation (7.116) are over the M particles used in the event plane
determination and the w; are weights. Weights are used to make the flow vector a
better defined observable and increase the resolution of the event plane. Experi-
mentally elliptic flow increases with the transverse momentum and w; « p_ is a good
choice. In some of the analysis, weight w; is defined as

p sa
W= sTau Pr<pr t
T
=1 pTZp;at, (7.118)

with p*' =2 GeV.

In symmetric collisions, due to reflection symmetry, particle distributions in the
backward hemisphere of the cm should be the same as in the forward hemisphere if
the azimuthal angles of all particles are shifted by . Signs of the weights for the odd
harmonics are reversed in the backward hemisphere while for the even harmonics
the signs of the weights are not reversed.

The cumulant method.  Accurate reconstruction of the reaction plane in the event
plane method requires a large number of particles in the final state. In situations
where the number of final state particles is small (e.g. in peripheral collisions), the
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event plane method has large uncertainty. In the cumulant method [96-98], flow
coefficients are calculated from experimental cumulants and thus eliminate the event
plane reconstruction altogether.

For example, the two-particle azimuthal correlation can be written as

0,{2} = <<eiz(¢1—¢z)>> - <<ei2((‘/’1—‘l’)—(¢z—'ﬂ))>>
= (e emem) 4 5,)

= (' +6,) (7.119)

where the double brackets ({...)) denote an average over all particles within an event,
followed by averaging over all events. The two-particle azimuthal correlation then
consists of reaction plane correlation v, and a non-flow (independent of reaction

plane) correlation §,. It can be shown that in the event v, > 1/ VM, where M is the
number of particles used in the analysis, the non-flow correlation can be neglected
and v, can be obtained from the two-particle azimuthal correlation. The above
analysis can be generalized for the nth flow harmonic,

y12) = <<ei"<¢r¢z)>> . (7.120)

The sensitivity of the method increases with higher order cumulants. For exam-
ple, for a four-particle cumulant,

{4} = <<ei2(¢1+¢2—¢3—¢4)>> _9 < <ei2(¢l—¢2) > > 2
= (0 + 6, + 475, +267) = 2(v + 5))°
= (-n'+3a). (7.121)

The last equality in the above equation follows from the assumption that v, and
5, are uncorrelated and (5;) = (5,)> and (»') = (»)>. & « /M’ and if
4} > 1/M**, the four-particle cumulant will be a good measure of the flow,

i =34}

In practice, cumulants are calculated from the generating function,

G,(z) = <ﬁ [1+me™ + z*ei"@]> (7.122)

J=1

where z is a complex number and z* is its complex conjugate. The nth order
cumulant is given by the coefficient of z" in a series expansion of the logarithm of G,.
The function G, is evaluated in a few points in the complex plane around the origin
z = 0, and by taking the logarithm at each of these points it is possible to interpolate
the next derivatives of In(G,) and obtain the cumulants c,{n}.
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The Lee—Yang zero method. 1In the cumulant method, non-flow effects are better
removed with higher order cumulants. Thus nth order cumulants remove non-flow
effects due to (n — 1)-particle correlation. In the event n — oo we obtain the
Lee—Yang zero method [99-101].

Similarly to the cumulant method, one defines a generating function,

G(r) = <ﬁ [1 +iry; cos(¢, - e)]> (7.123)

j=1

where r is a real positive number and 6 is an angle between 0 and #/n. The product
involves all the particles in each event, and the average is taken over the events. The
behavior of the zeros of the generating function G,f reflects the presence of collective
flow in the system. In particular, the first zero of G’ is related to the magnitude of
anisotropic flow. In practice, for various values of r and @ (typically 4-5), one
calculates

M

g'(r) = H [1 + irw, cos(q?i - 6’)] (7.124)

J=1

and averages over the events to obtain G (r). For each 6, the position 7 of the first

positive minimum of the modulus |G’ (r)| is determined. An estimate of integrated
flow is then given by

) {oo} = 20 (7.125)
To

where j & 2.40483 is the first zero of Bessel function j . Finally, one averages over
0 to estimate flow coefficient v,.

7.5.6 Event-by-event hydrodynamics

In the preceding section, the hydrodynamical simulations discussed used a smooth
initial condition, either the Glauber model or CGC model. In recent years, there has
been much interest in event-by-event hydrodynamics. Unlike in smooth hydro-
dynamics, in event-by-event hydrodynamics, the initial conditions fluctuate event
by event. Event-by-event hydrodynamics takes into account the possibility that
participant positions can fluctuate from event to event. It was also realized in recent
years that the participating nucleons, rather than the reaction plane, determine the
symmetry plane of the initial collision zone [112]. In figure 7.12, a schematic repre-
sentation of participating nucleons in the transverse plane in a Monte-Carlo (MC)
event is shown. The geometric overlap region does not coincide with the participating
nucleons. It is obvious that the symmetry plane of the participating nucleons is tilted
with respect to the reaction plane. In such a situation, the azimuthal angle should
be measured with respect to the participant plane rather than the reaction plane.
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The participant plane can fluctuate, event by event, and give rise to novel phe-
nomena like triangular flow, the third flow harmonic in the Fourier expansion of
aziumthal distribution, which will be absent in smooth initial conditions. Triangular
flow is instrumental in explaining the peculiar structures (known as ridges) seen in
the two-particle correlation in the A¢—Axn plane [113-115]. In figure 7.13 two-
particle correlation in the A¢p—An plane, in d+Au and Au+Au collisions are shown.
One notices the marked differences in the correlation. Unlike in d+Au collisions, in
Au+Au collisions, two particles are correlated over many units of pseudo-rapidity Ax.
Correlation in the azimuth, however, is narrow. The ridge structures in two-particle
correlations have been observed both in the STAR and the PHENIX experiments.
They are also observed in pp collisions [117, 118]. The ridge structure has a most
compelling explanation, provided that the third flow harmonic, the triangular flow v,

Figure 7.12. Schematic picture of MC Glauber model simulation for participating nucleons in the transverse
plane. The overlap region of participating nucleons is tilted with respect to the reaction plane.

d+Au minimum bias Au+Au central
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Figure 7.13. Two-particle correlations in A¢p— Ay in d+Au and Au+Au collisions are shown. The results are
from the STAR experiment [116]. Reproduced with the author’s permission.
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develops in the collisions [119-121]. Specifically, if the initial condition is para-
meterized with quadrapole and triangular moments, the response of the medium to
these anisotropies is reflected in the two-body correlation as a ridge [119, 120].

For example, the azimuthal correlation function can be Fourier decomposed as

deairs 3 Npairs
dAg — 2x

(1 + D2V, cos(nA¢)) (7.126)

where the first component ], is understood to be due to momentum conservation
and directed flow, the second component };, is dominated by the contribution from
elliptic flow and the third component V;, is dominated by the triangular flow. In
figure 7.14, PHOBOS and STAR measurements of long range azimuthal correlation
in 200 GeV Au+Au collisions are shown. In the top panel of figure 7.14, the first
three Fourier components of the azimuthal correlations are shown. The bottom
panels show the residual after these components are taken out. Evidently, experi-
mental data on two-particle correlation are very well described by the three Fourier
components. The analysis indicates that the two-particle correlation in the Ap—A¢
plane is consistent with hydrodynamic models, if triangular flow develops during the
evolution, which is possible only when the initial condition fluctuates. Recently, the
ALICE collaboration has measured triangular flow in /sy =2.76 TeV Pb+Pb
collisions [87]. In most central collisions, the elliptic flow (v,) and triangular flow (v;)
are of similar magnitude. In peripheral collisions however, elliptic flow dominates.
More recently, the PHENIX collaboration [122-124] measured triangular flow in
S =200 GeV Au+Au collisions.

In event-by-event hydrodynamics, one generally uses the MC-Glauber model
or MC-CGC (the KLN version) to obtain the initial conditions, event by event.
Recently, the MC-CGC model was improved by combining the impact parameter
dependent saturation model [136, 137] of the high-energy nucleon or nuclear
wave function with the classical Yang—Mills description of glasma fields [138].

fPHOBOS Au-+Au 200GeV 10-20% rPHOBOS Au+Au 200GeV 10-20%1 1 'Od.STAH Au+Au 200 GeV 10-20% |
- [-4.0<an<-20, 0n™<15, pr>25 ] gl2<an|<d, ml<3 1 e F1.2<jAnj<1.9, Inj<1.5 j
S 102 18 °r { 2 - .
= F = ©
° ® g
5] 5] Q
[&] (&) E g
g 3 o =l
B E )
3 8 2F i T
7] i (5 X bopap u +H ]
@ o ”;it. LA SRR 'o A4 g Dun..nhu.nunun | &
o
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Figure 7.14. Azimuthal correlation functions for mid-central (10-20%) Au+Au collisions at /5, =200 GeV
obtained from projections of two-dimensional A¢— Ay correlation measurements by PHOBOS [19, 25] and
STAR [41]. The residual correlation functions after the first three Fourier components are subtracted are
shown in the bottom panel. The figure is reproduced with the author’s permission from [119].
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The model is called the IP-glasma model [125] for the initial condition. In
addition to fluctuations of nucleon positions, IP-glasma’s description includes
quantum fluctuations of color charges on the length-scale determined by the
inverse nuclear saturation scale Q_ , missed in MC-KLN models [140]. In figure
7.15, the initial energy density distribution in three types of model, MC-Glauber,
MC-KLN and IP-glasma is shown. Color charge fluctuations in the length scale
Qs;tl introduce additional fluctuations and in the IP-glasma model, the initial
density has finer structures than in the MC-KLN model or in the MC-Glauber
model.

xfml 7 4 6

Figure 7.15. Initial energy density (arbitrary units) in the transverse plane in three different heavy ion collision
events: (from top to bottom, IP-glasma) the MC-KLN and MC-Glauber models. The figure is reproduced
with permission from [125].
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Fluid dynamical models require continuous density distribution, however, in
event-by-event hydrodynamics, initial conditions are generated using the MC
algorithm and in general the distribution is not continuous. For example, in the
MC-Glauber model, in an event, participant nucleon positions can be obtained. If a
particular MC event has N, participants, the participants’ positions in the trans-

verse plane can be labeled as (x;, 3), (X5, 1), ---(x, ). The energy density in

the transverse plane can be approximated as,

npart? Jﬁpart

Nparl

e(x, y) « 25()6 - X, Y = ))- (7.127)

i=1

However, the discrete distribution as in equation (7.127) cannot be evolved. To be
used in a hydrodynamic model, the discrete density distribution has to be converted
into a smooth energy density distribution. This can be done by smearing the discrete
participant positions by some smoothing function,

Sx—x,y—y) = glx—x.y -2 0.6, (7.128)

where {; are parameters of the smoothing function g. For the smoothing function,
one generally uses a Gaussian function. Other functions may also be considered. The
effect of smoothing was studied in [139]. MC-Glauber model initial participant
positions were smoothed with a Gaussian function of various widths and a Woods—
Saxon function of various diffuseness. It was shown that the effect of smoothing of
participant positions on elliptic and triangular flow is minimal.

One important aspect of event-by-event hydrodynamics is the characterization of
the asymmetry of the initial collision zone as well as the azimuthal angle of the
participant plane. Each flow harmonics can have their own participant plane. One
can generalize the definition of eccentricity to give a simple ansatz to characterize the
asymmetry of the initial collision zone [132],

[ et prertaxay
W = — n=1,2,3,4,5 (7.129)

o f / e(x, yyr"dxdy

where x = r cos ¢ and y = r sin ¢. Equation (7.129) also determines the participant
plane angle l//fp. Asymmetry measures e, and e3 are called eccentricity and triangu-
larity. ¢4 and €5 essentially measures the square-ness and five-sidedness of the initial
distribution. They may be called rectangularity and pentangularity, respectively.
Fourth flow coefficient v, is generally referred to as hexadecpolar flow and rectangular
flow may be more appropriate. Similarly 1, may be referred to as the pentangular flow.

7.5.7 Some results of hydrodynamic simulations of heavy ion collisions

In recent years, several (ideal and dissipative) hydrodynamics codes have been
developed across the world to simulate relativistic energy heavy ion collisions
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[60, 73, 102-109]. Various authors have successfully analyzed experimental data in
RHIC and LHC energy collisions. More recently, several simulations in event-by-
event hydrodynamics, for Au+Au/Pb+Pb collisions at RHIC/LHC, have been
performed [102, 103, 125-135]. For completeness, in the following a few repre-
sentative results are shown.

In figure 7.16, PHOBOS measurements [110] of charged particle rapidity density
in /sy =200GeV Au+Au collisions in two different collision centralities are
shown. Experimental data are nicely reproduced in hydrodynamic simulations. For
details of hydrodynamic simulations see [111].

In figure 7.17, fits obtained to the identified particle spectra in the STAR and
PHENIX experiments in a hydrodynamic model simulation are shown. Note the
quality of fit. Data in the collision centrality 0—5% to 60-90% are well explained.
The left panel of figure 7.18 shows the fits obtained to the experimental integrated
elliptic flow. While the hydrodynamic predictions fail for integrated flow in
peripheral collisions, in central and mid-central collisions, they agree well with

600 =
e < reliminary

o ¥, PHOBOS data

IC B % _ 0-6% o

\, 35-45% ——
400 .

g5 3001
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Figure 7.16. Charged particle pseudo-rapidity density in /sy = 130 GeV Au+Au collisions. In a central 0-6%
and peripheral 35-45% collision centralities are compared with hydrodynamic simulation with two initial
conditions 4 and B (for details of the initial conditions see [111]). Reproduced with permission from [111].
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Figure 7.17. Experimental transverse momentum spectra in /sy = 130 GeV Au+Au collisions are shown.
The left panel shows the pion and antiproton spectra in a central collision. The middle panel shows charged
pion spectra semi-central to peripheral collisions and the right panel shows the antiproton spectra. The curves
are hydrodynamical calculations. For details see [38]. Reproduced with permission from [38].
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Figure 7.18. Experimental elliptic flow in /5 = 130 GeV Au+Au collisions are shown. The left panel shows
p, integrated flow for the charged particles as a function of multiplicity which is a measure of collision
centrality. The middle panel shows differential elliptic flow in minimum bias collisions. The right panel shows
elliptic flow for charged pions and proton elliptic flow, also in minimum bias collision. For details see [38].
Reproduced with permission from [38].

Table 7.2. Central energy density (g;) and temperature (77;) at the initial time 7. =0.6 fm ¢!, for different
values of viscosity to entropy ratio (g) The bracketed values are estimated central energy density and

temperature in /5, =200 GeV Au+Au collisions [89]. Initial time of the simulations is 7, =0.6 fm.

nls 0 0.08 0.12 0.16

€ 89.2+5.0 78.0+4.0 70.5+3.5 61.7+3.0

((;’e\f) (35.5%5.0) (29.1 £3.6) (25.6 £ 4.0) (20.8+2.7)
m

T 486+ 6 475+5 462+ 6 447+5

(MeV) (377 £ 14) (359 + 12) (348 + 14) (331+11)

experiments. The middle panel of figure 7.18 shows the differential elliptic flow in
minimum bias collisions as a function of p . Here again, agreement with data is
reasonable. Finally, in the right panel of figure 7.18, one of the most impressive
results of hydrodynamic simulations is shown. Experimental flow of identified
particles is mass dependent, with more flow for lighter particles than for heavier
particles. It is called mass splitting of flow. At high p. however, the effect of mass
splitting is reduced. Experimental mass splitting of flow is correctly reproduced in
hydrodynamic simulations. The agreement with experiment is also good. The
representative simulation results shown here are for ideal fluid only. As mentioned
earlier, there are several simulations with viscous fluid. We will not elaborate on the
results of viscous fluid simulations, but will just mention that compared to ideal
fluid, a viscous fluid will require lower initial energy density or temperature. This is
because entropy is generated during viscous evolution. As an example, in table 7.2,
we have noted the central energy density and temperature of the fluid obtained from
fits to experimental data in /s =200 GeV Au+Au and /s =2.76 TeV Pb+Pb
collisions. Note that viscous fluid requires lower energy density or temperature. See
[89, 91] for details of the simulations.
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Figure 7.19. Left panel: charged hadron elliptic flow (v,) for different centralities as a function of transverse
momentum for averaged initial conditions (avg) and event-by-event simulations (e-b-e) using different
viscosity-to-entropy density ratios compared to STAR and PHENIX data. Right panel: same as in the left
panel but for triangular flow. The figures are reproduced with the author’s permission from [102].

In recent years, several authors have simulated Au+Au/Pb+Pb collisions at
RHIC/LHC, in event-by-event hydrodynamics [102, 103, 125-135]. Some of the
simulation results for event-by-event viscous hydrodynamics are briefly discussed
here. Viscous effects on elliptic and triangular flow in event-by-event hydrodynamics
were studied in [102]. The results are shown in figure 7.19. In [102], a (3 +1)-
dimensional hydrodynamical model was used. As it was in smooth hydrodynamics,
the effect of viscosity was to reduce the elliptic flow. The more viscous the fluid, the
lower the elliptic flow, except in very central collisions where event-by-event
hydrodynamics produces less flow than that in smooth hydrodynamics (the curve
labeled as ‘avg’). The increase of v, in central 0-5% collisions is understood. In event-
by-event hydrodynamics, v, is determined in each event. Single events have a larger
anisotropy with respect to the event plane than the average with respect to the
reaction plane and v, is increased. In more peripheral collisions, the effect reduces
and event by event v, becomes smaller than that for the smooth initial condition.
Triangular flow is completely fluctuation driven and depends less strongly on col-
lision centrality than the elliptic flow. Triangular flow also reduces with viscosity. It
also seems that triangular flow is more sensitive to viscosity than elliptic flow. For
example, in 30-40% collisions, at p.~ 1.5 GeV, elliptic flow reduces by ~15% and
30% when n/s is increased from 0 to 0.08 and 0.12, respectively. The reduction in
triangular flow is much larger, respectively, ~30% and 45%. It is to be expected that
experimental data on triangular flow can constrain the viscosity over entropy ratio
much better than the elliptic flow data.
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Figure 7.20. Left panel: ALICE measurements for the transverse momentum spectra of pions, kaons and
protons in 0-5% Pb+Pb collisions at LHC energy are compared with IP-glasma model predictions with
viscosity over entropy ratio /s = 0.08. Right panel: ATLAS measurements for the flow coefficients v, n =2, 3,
4, 5 are compared with IP-glasma model predictions. The figures are reproduced with the author’s permission
from [126].

In the left panel of figure 7.20, event-by-event hydrodynamic simulations with an
IP-glasma initial condition are compared with ALICE measurements for p, spectra
of pions, kaons and protons [102]. The viscosity over entropy ratio was fixed at
n/s =0.2. One finds that simulations with IP-glasma initial conditions explain the
p, spectra of charged particles nicely. The IP-glasma initial condition also explains
the measured flow coefficients well. IP-glasma model simulation for elliptic flow is
shown in the right panel of figure 7.20. They are compared with ATLAS mea-
surements. Charged particle flow coefficients v,, v;, v, and v; appear to agree with the
experimental measurements. However, whether or not a similar fit can be obtained
with other values of viscosity over entropy ratio was not explored in [102].

7.6 Transport approach based models

Currently the models based on the transport approach can be subdivided into two
classes: those which follow the time evolution of the one-body phase space dis-
tribution, and those which are based on N-body molecular dynamics or cascade
schemes.

7.6.1 VUU-type models

In Vlasov—Uehling-Uhlenbec (VUU) or Boltzmann—Uehling—Uhlenbec (BUU)
type models [141-144], one generally solves for the Boltzmann transport equation
with external force. In the non-relativistic limit, the equation is

[% +v-V - (V,U)Vp]f(r, p. 1) =C[f] (7.130)

where f(r, p, ?) is the classical distribution function or rather its quantum analog,
the Wigner phase space distribution. C[ f] is the collision term, including only
binary collisions. The particles move in the mean field potential U(r) which can be
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identified with the real part of the Brueckner G-matrix’. The imaginary part of the
G-matrix can be identified with the collision term. In low-energy collisions, a pop-
ular choice for the potential is the Skyrme parameterization,

14
U=a| 2|+ p| 2 (7.132)
Po P
where density is measured in units of the saturation density p, of cold nuclear matter.
The 1.h.s. of equation (7.130) can be regarded as the transport equation (Vlasov

equation) for a distribution of classical particles whose time evolution is governed
by Hamilton’s equations of motion,

oH
p = — 7.133
P, p» ( a)
i = o" (7.133b)
oap,

The collision term is accounted for as follows: the particles move due to their
own, self-consistently generated mean field. At the point of closest approach of two
particles if the distance,

O,

d<dy= |2 (7.134)
T

al +2 — 1"+ 2/ collision is performed. In equation (7.134), ¢, is the total cross
section. The final state is chosen randomly according to the relative weights of the
different permissible reaction channels. The momenta of the outgoing particles are
‘generated’ randomly according to the known angular distribution and in agreement
with the energy-momentum conservation laws.

One generally solves the transport equation by use of the ‘test’ particle method.
If the projectile and target consist, respectively, of 4, and A, particles, the con-
tinuous one-body distribution function f at =0 is represented by an ensemble of

n(Ap + AT) point-like particles, i.e. an ensemble of n parallel collisions with

Ap + Ay physical particles each. More explicitly, the test particle method corre-
sponds to the replacement of the expectation value of a single particle observable,

(O@)) = fd3pd3rf(r, p, )O(r, p) (7.135)

" The repulsive core of the bare nucleon—nucleon interaction forbids any perturbative approach to nuclear many-
body calculation. The problem is circumvented by introducing a reaction or G-matrix. For a Hamiltonian
H = H,+ V, with Hyy = oy defining a projection operator Q which prevents collisions into occupied states,
the G-matrix is

G=v+—2 ¢ (7.131)
©— OH,0
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by a MC integration,
1 n(Ap+Ar)

O =y 2 On). p) (7.136)

where r(#) and p(¢) are points in phase space which are distributed according to

S, p, 1),
n(Ap+Ar)

> s(r—x(0)-8(p - p0). (7.137)

i=1

1
S = )
A large number of test particles is required to reduce numerical noise. In practice
the number # lies in the range between 15 and 500 and one employs a grid to obtain
a smooth phase space density distribution.
The solution of equation (7.130) requires specification of proper boundary con-
ditions. In heavy ion reactions, the test particles are randomly distributed in a
coordinate space sphere of the radius,

R=rA" 5 =112fm, (7.138)

ensuring the correct density p, ~ 0.17 fm™ for the nucleus. The initial momenta of
the test particles are randomly chosen between 0 and the local Thomas-Fermi
momentum:

B, = (37%) . (7.139)

Once the collision system is initialized with test particles, the latter are then
boosted onto every other with proper relative momentum. All the particles are
propagated according to the equation of motion and are checked for collision. If the
collision criterion is satisfied a collision is performed and the final state is determined
from the ‘known’ angular distribution.

The BUU type model essentially solves for a one-body distribution function and is
suitable for one-body observables, e.g. collective flow, stopping and particle spectra.
The test particles move on their own in the mean field potential U. It is calculated
from the entire distribution, hence the n parallel events are not truly independent and
event-by-event correlations cannot be analyzed within this one-body transport
model. Clusters or fragments in heavy ion collisions can only be constructed in a
statistical way, e.g. with the help of a coalescence model. The reason is that in
transport theory the bound states of many nucleons cannot be described directly. The
deficiencies of the BUU type of model are corrected in quantum molecular dynamic
(QMD) models.

7.6.2 UrQMD: a quantum molecular dynamic model

The QMD model is an N-body theory which simulates heavy ion reactions on
an event-by-event basis [145-147]. Below, a brief description of a particular model,
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ultra-relativistic QMD (UrQMD) is given. For details of UrQMD please see [148,
149]. The UrQMD model is a microscopic transport theory based on the covariant
propagation of all hadrons on classical trajectories in combination with stochastic
binary scatterings, color string formation and resonance decay. It represents a MC
solution of a large set of coupled partial integro-differential equations for the time
evolution of various phase space densities f (x, p) of particle species i= N, A, A, etc,
that non-relativistically assumes the Boltzmann form:

df (x, p)
dz

%M L oxdep) 51?(;: D Sye.p)  (1.140)

ap Jat  ox

where x and p are the position and momentum of the particle, respectively.
Stf.(x, p) denotes the collision term of these particle species, which are connected to
any other particle species f, (x, p).

In relativistic dynamics, each particle is characterized by four position and four
momentum coordinates. Unlike in non-relativistic dynamics in 6N + 1 dimensions,
in relativistic dynamics, the system propagates in 8 N-dimensional phase space, with
6N degrees of freedom representing the classical configuration- and momentum
space. The remaining 2N degrees of freedom contain the eigen time and energy of
each particle. In order to reduce the 8 N-dimensional phase space to the commonly
used 6/ + 1 dimensions, (2N — 1) Lorentz-covariant constraints have to be intro-
duced. This leads to several complications and we will only state that in the UrQMD
model, the constrained dynamics is not properly implemented and there is a
systematic frame dependence on the observables.

Unlike the test particle method for BUU-type models, in UrQMD, as in other
QMD models, each nucleon is represented by a coherent state of the form

3/4 .
42-( .4, P, t) = (ﬂ%) [—%(x - ql_(t)) + %p’_(t)x] (7.141)

which is characterized by six time dependent parameters, q, and p,, respectively. The
parameter L, which is related to the extension of the wave packet in phase space, is
fixed. Neglecting the anti-symmetrization, the total N-body wave function is
assumed to be the direct product of coherent states,

® = H #(x. q,. . 1). (7.142)

The equations of motion of the many-body system are calculated by means of a
generalized variational principle. For a Hamiltonian containing a kinetic term and
mutual interactions V,;

ij>

1
H=ZZ+5;V¥.}, (7.143)

7-50



A Short Course on Relativistic Heavy lon Collisions

and with the coherent state wave function, the Lagrangian can be obtained as [150]
L= <d>[ih% - H]CI>> (7.144)

= Z[_qipi - T - %Z<V’/> - zn-iL] (7.145)

J#i

with (V) = f dxldngbi*qﬁf Vi(x1, X,)¢h¢p. Variation of the action § = / Ldt yields
the Euler—Lagrange equation of motion, for each parameter,

b=-Y%2 V= —% (7.146a)
J#L i
4=+, Z( 1) = agﬁ : (7.146b)

As mentioned before, the interaction can be identified with the real part of the
Brueckner G-matrix. In UrQMD, it is approximated by a non-relativistic density
dependent Skyrme potential, supplemented with Yukawa and Coulomb potentials.
A Pauli potential® may be included optionally.

The UrQMD model consists of three major parts, namely (i) the initialization of
projectile and target, (ii) the propagation of nucleons, resonances and newly pro-
duced particles due to their mutual potential interactions and (iii) the hard collisions
according to the energy dependent cross section for the various channels together
with the Pauli blocking.

(1) Initialization. At the initial time, the projectile and target nucleus are
modeled according to the Fermi-gas ansatz. The wave function of the
nucleus is defined as the product wave function of the single nucleon
Gaussians. Accounting for the finite width of the Gaussian, in configura-
tion space the centroids of the Gaussians (q,) are randomly distributed

within a sphere with radius R,,

1 173 3 173
3
R, = VO[E{A 4 (Am _ 1) }] n = (_4ﬂp ] (7.147)
0

with the constraint: (i) qui = (0, i.e. in configuration space, nucleons are
centered around 0.

Each of the nucleons is also given random momentum p, between 0 and
the local Thomas—Fermi momentum:

= (32%)" (7.148)

8 A Pauli potential is a repulsive potential which mimics the fermionic properties of a nucleon and allows for
the product ansatz (equation (7.142)) for the wave function of the nucleus.
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where p is the local nucleon density. For the coherent state wave function
equation (7.141),

2 % 4 2
o) = () |- -0y | (7.149)

The momenta are also constrained to ) v, = 0, i.e. initially, the nucleus
is at rest. The potential parameters are chosen such that the nuclei have
correct binding energy.

(i1) Propagation. To perform a collision, one chooses an impact parameter
from a quadratic measure,

dW « bdb (7.150)

and places the nuclei appropriately on the collision axis such that the
distance between surfaces of the projectile and the target is equal to 3 fm.
The target and projectile nucleons are longitudinally boosted by @
such that they move in opposite directions and collide. After that the
time propagation starts. The Hamiltonian of the total system is com-
puted and particles are propagated according to the equations of motion
(7.146).

(ii1) Collision. In UrQMD, only binary collisions are considered. A collision
between two hadrons will occur if the transverse distance fulfils the
condition,

O,

<dy= |Ze, (7.151)

T

d

trans

o, being the total cross section. o,., depends on the cm energy /s and on the
species and quantum numbers of the incoming particles. The final state of a
binary collision is randomly chosen according to the relative weights for the
different reaction channels. Initial collisions will be nucleonic only, but in the
ultra-relativistic regime, very soon the phase space will be populated by all
sorts of hadron species, e.g. NN — NA, A - Nz, Naz, KX, etc. The
UrQMD model includes a large number of hadrons, ~50 baryon species and
~45 mesons and their anti-particles and all possible reactions, (i) nucleon—
nucleon, (ii) meson—-meson, (iii) meson—baryon and (iv) baryon-baryon, are
considered. UrQMD uses experimental cross sections where available.
Where experimental information is not available, the additive quark
model” and detailed balance method are used to extrapolate to unknown

°In the additive quark model, the cross section depends only on the quark content of the colliding hadrons. The
model assumes that in any reaction, the forward scattering amplitude is the sum of all possible two-body quark—
quark and quark—antiquark scattering amplitudes. For example in a zP collision the scattering amplitude is

(zP|zP) = {(ud Y(uud)|(ud )uud)) = 2(uuluu) + (udlud) + 2{(duldu) + (dd). (7.152)
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cross sections. UrQMD also allows for subsequent re-scatterings. After
each binary collision or decay, the outgoing particles are checked for further
collisions within the respective time step.

Atlow energy p,, <5 GeV, particle production is dominated by resonance decays.
At high energy p_ >5GeV, the UrQMD model considers string excitation and
fragmentation processes. In UrQMD, string excitation and fragmentation is imple-
mented in the spirit of the Lund model [151]. The Lund model is a widely used model
in high-energy nuclear collisions. Below, a brief description of the model is given.

Lund model. Based on quark confinement, QCD interaction at large distances can
be modeled by a string-like potential, '(r) = xr. The string-like interaction is sup-
ported by lattice QCD simulations. When the separation between two quarks
exceeds a critical value, it may be energetically more favorable to break the string
by producing g7 pairs. The process is analogous to the Schwinger mechanism [152]
of e*e” pair production in strong electric fields. The Lund model is based on the idea
of string breaking or fragmentation. A hadron is considered as a string-like
object. In hadron-hadron interaction, the strings are excited and subsequently
decay, producing new hadrons. A schematic picture of the process is shown in
figure 7.21.

Tounderstand the model, let us consider the classical motion of quark and antiquark
in a stable meson. In the limit of massless quarks, the Hamiltonian H is given by,

H=p +p, +«lx; — x| (7.153)

where p,, p, are the momenta of the particles and x,, x, their positions. The particles
always move with the speed of light and the equation of motion is

dp

ar = +K (7.154a)

where the sign depends on whether the other interacting particle is to the right or to
the left. The motion of the g7 pair is shown in figure 7.22. In the cm frame, the pair
will oscillate. The oscillatory motion is called ‘yo-yo’ motion. If excited, a stable
hadron will execute yo-yo motion. For a g7 system with mass M the maximum
relative distance is L = M/k. The shaded area spanned by the motion of the quarks
in half the time period can be calculated as M*/x>.

[o—o] —[——e]— [e—e2—0]| —[0—8] [e—9]
(a) (b) () (d)
Figure 7.21. Schematic picture of particle production in a string excitation. (a) A ground state meson, a quark—

antiquark pair connected by a string; (b) the excited meson, the string is stretched; (c) the stretched string
breaks by producing a quark—antiquark pair; (d) two quark—antiquark pairs combine to form two mesons.

7-53



A Short Course on Relativistic Heavy lon Collisions

S,

8
, ra
’

> x 7T 8 4
L _
" P P

| %

]
L
2
Figure 7.22. (a) Motion of ¢ and g in the cm frame. The shaded areas are spanned by the string. (b) Variation

of momentum of the pair with time. (c) Motion of the pair in a Lorentz boosted frame.

The constant force is Lorentz invariant: if in the original frame x = +¢ and
E = +p (+ and — signs for particles moving to the right and left, respectively), then a
Lorentz boost § gives

=yt - px)=y(1xp)t (7.155a)
p=y(p-PE)=y( Fp)p (7.155b)

and dp” _dp. (7.155¢)
dr dr

Motion of the g7 pair in a Lorentz boosted frame is shown in figure 7.21(c). In the
boosted frame as well, in half the time period the quarks sweep the same area M*/x”.

Let us now consider hadron production from string fragmentation. Initially,
quark and antiquark are moving in opposite directions. As they move apart, energy
increases and at a certain point it is energetically favorable to break the string
by creating a quark—antiquark pair. Let at (x,, #,) the system break into two parts by
producing a quark pair ¢ g, At a later time (x,, 7,) it may break further by producing
another pair ¢,g,. The process may continue further producing pairs ¢ g at space—
time points (x;, ), (X, £,,), etc. In figure 7.23, a schematic diagram is shown for
fragmentation at (x,, ¢,) and (x,, ,) only. String fragmentation in the Lund model is
generally described in the light-cone coordinates

+

XT=t+Xx. (7.156)

In the light-cone coordinates, as depicted in figure 7.23, massless quarks move along
the forward light cone x* and antiquarks in the backward light-cone x~. The quarks
(antiquarks) can be considered as carriers of forward (backward) light-cone momenta.
Space-time descriptions and energy—momentum descriptions are closely related,

pt=E+p=rxx" (7.157)
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Figure 7.23. Schematic diagram of a string fragmentation. Initial ¢, move with large energy in opposite
directions. After a certain time, quark pairs, ¢4, ¢,q,, are produced in space-time point (x, £,), (X,, 1,).
Hadrons are formed by combining nearby quarks, 7 ¢,.

In the Lund model, nearby quark-—antiquark (¢q,,) pairs combine to form a
hadron. The point of the first crossing of partons is defined as the hadron formation
time. The momentum of the hadron formed by combining the quark—antiquark is
related to the space—time coordinates of its constituents. For example, the ith meson
formed by combining ¢ | momentum is

E =x(x_,—x) (7.1584a)
p =KX —x_)) (7.158b)
which in light-cone variables are
pr=r(xt = x") (7.159a)
po=—k(x = x"). (7.159b)
In the Lund model, string breakings are treated stochastically. It is assumed that
at each breaking,

string| — string, + hadron (7.160)

there is a universal method of partitioning of energy between string, and string;. Let

LT T (PP (7.161)

P st_ringo

be the longitudinal momentum fraction transferred to the newly formed hadron.
In the Lund model, a fragmentation function f(z) is introduced which gives the
probability distribution for hadrons with the longitudinal momentum fraction z
from the fragmenting string.
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UrQMD implementation of the Lund model. In UrQMD hadron-hadron
inelastic collisions with string fragmentation are treated as follows. From the
probability distribution,

f(p,) il o =1.6GeV (7.162)

one of the hadrons is given a momentum p, (the other gets the same, but in the
opposite direction). The momentum transfer excites the strings (between quark and
antiquark in the case of mesons and between quark and diquark in the case of
baryons). The excitation is assumed to have the continuous mass distribution
f(M) « 1/M?, limited by the total collision energy, s < M, + M,. The rest of the
s is equally distributed between the longitudinal momenta of two produced strings:

P, = P, The energy of the strings is calculated as
E'=pl+p +M i=1,2 (7.163a)
E +E=1s. (7.163b)

The excited strings are then allowed to fragment. A quark—antiquark pair is
created and placed between the constituent quark—antiquark (quark—diquark) pair.
Heavy flavors are suppressed. Suppression factors are,

u:d:s:diquark =1:1:0.35:0.1. (7.164)

UrQMD uses the Field-Feynman [153] fragmentation procedure where strings
can fragment from both ends. A hadron is formed randomly on one of the end points
of the string. Examples of fragmentation of meson and baryon strings are given
below,

meson string: p* (¢7q7) = z'p* (¢7) + (0" — z'p") (q7) (7.165a)

string meson string

baryon string: p~ (qqqqq) =z p~ (qqq) + (p~ —zp )(qq).  (7.165b)

string baryon string

The quark content of the hadron determines its charge and species. In the string
frame, the produced hadron has zero transverse momentum. From the distribution
equation (7.162), a transverse momentum is assigned to it stochastically. The frag-
mentation function is then used to determine the fraction of longitudinal momentum
transfer from the string to the hadron. The remaining string is then checked for
further fragmentation.
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Chapter 8

Two-particle correlation

8.1 Introduction

In relativistic heavy ion collisions, the final state contains a large number of particles
and one- and two-particle invariant distributions are routinely measured in
experiments. A one-particle or one-body distribution given by

dTN (8.1)
d’p

essentially measures the probability of emission of a particle with momentum p.
Likewise, two-particle or two-body distribution,

dN
EE,——, 8.2
1 2d3pld3p2 ( )

measures the emission probability that a particle with momentum p, is emitted
simultaneously with a particle with momentum p;. One can see that if the particle
emission processes are independent of each other, two-particle invariant distribution
will be the product of two single-particle distributions,

dN dN dN
g g |V g V| 8.3)
1 2(131”1 P, [ 1d3p1 ]( 2d3p2]

Any deviation from the above relation will indicate that the emission probability
of the second particle is affected by the emission probability of the first particle, i.e.
the particle emission process is not independent but is correlated. Now there are
some trivial reasons for such correlations, e.g. energy—-momentum conservation.
Thus once a particle is detected with momentum p;, energy—-momentum conserva-
tion imposes certain restrictions on the second particle momentum. Similarly, if the

doi:10.1088/978-0-750-31060-4ch8 8-1 © IOP Publishing Ltd 2014


http://dx.doi.org/10.1088/978-0-750-31060-4ch8

A Short Course on Relativistic Heavy lon Collisions

particles are from decay of a resonance, they will exhibit a certain correlation.
However, apart from those ‘trivial’ correlations, the quantum nature of the particles
introduces certain correlations. For example, if the particles are bosons, then given
that one particle is detected with momentum p;, the probability of detecting the
second particle at a nearby momentum p, is enhanced. In contrast, for fermions, the
probability of detecting the second particle at a nearby momentum p, is reduced.
The study of such correlations is an integral part of heavy ion reactions as one can
obtain some information about the physical size of the particle emitting source.

The study of Bose—FEinstein or Fermi—Dirac correlations is generally called intensity
interferometry or femtoscopy when applied to sub-atomic systems. Acknowledging
the two scientists, Robert Hanbury Brown and Richard Twiss, who invented the
methodology [1, 2], it is also called Hanbury Brown-Twiss (HBT) interferometry.

In the 1950s, Hanbury Brown was measuring the spatial extent of astronomical
objects. The prevailing method was to use a Michelson interferometer, where
the amplitude interference of light rays from astronomical objects causes a fringe
(interference) pattern. Study of fringe structures can give an idea of the angular
size of the astronomical objects. In amplitude interference, a fringe pattern is caused
due to the difference in path lengths of the light rays. Since for distant objects
atmospheric disturbances affect the light paths, accurate measurements of angular
size are not possible. Hanbury Brown and Twiss showed that one could make
accurate measurements of the angular sizes of the astronomical objects from the
correlations of signal intensities in independent detectors. The two physicists
developed the theory for intensity interferometry, built the required apparatus, made
measurements, analyzed and published the results. Initially, their results were faced
with criticism. A large community of physicists declined to accept that two photons
can interfere. The reason is Dirac’s apparent simple statement in his classic book,
The Principles of Quantum Mechanics: ‘Interference between two different photons
can never occur’.

It took quite some time to realize that the statement is applicable only for coherent
photons. Astronomical sources produce incoherent photons and HBT correlation,
which is essentially due to the quantum nature of the photons, can be observed.

Around the same time, Goldhaber, Goldhaber, Lee and Pais [3], in pjp=
1.05 GeV/cpp collisions, observed that the angular distribution of like-charge pions
and unlike-charge pions differ. The observed difference could not be accommodated
in the then prevailing theory, Fermi’s statistical model. They could reproduce the
experimental data by a detailed multi-pion phase space calculation with symme-
trized wave function for like-charge pions. They concluded that the effect is due to
the Bose—Einstein nature of pions. Goldhaber, Goldhaber, Lee and Pais were
unaware of the HBT experiment. Unknowingly, they had discovered the counterpart
of the HBT effect in high-energy collisions.

While in heavy ion collisions we are interested in intensity interferometry, for
completeness, in the following, amplitude interferometry will be briefly discussed.
It will be followed by a brief discussion on intensity interferometry. There are a few
good reviews on HBT interferometry [4—12]. Interested readers can look into these
for more detailed discussions.
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8.2 Amplitude interferometry

In optics, we have studied interference phenomena. The famous Young’s double slit
experiment is shown in figure 8.1. Whenslit 1 is illuminated with a monochromatic light
source, an interference pattern or fringe structure is seen on the screen behind the
double slit. The interference is called amplitude interference. When two waves from slits
S1 and S, superimpose at point P (see figure 8.1), the intensity at point P is proportional
to the time averaged square of the sum of the amplitudes of the waves from S; and S,

o (|4, + 4,]%). (8.4)

For simplicity, we represent the amplitudes by sine functions,
A, = A, sin(wt) (8.5a)
A4, = A, sin(wt + ¢), (8.5b)

where we have added a phase ¢ to the wave from slit S, acknowledging that it has to
traverse an extra path § to reach P. The extra path or path difference between the
two waves can be calculated from geometrical considerations. For d << L, i.e. when
the slit separation d is much smaller than the screen distance L

6 =dsiné. (8.6)

We also understand that when the path difference is equal to the multiple of the
wavelength A, the wave will acquire an extra phase 2x. Thus,

S_¢
=5 (8.7)

For the sine waves, the sum of the amplitudes at P can be written as

A=A+ A4, =24, sin(a)t + %) cos(%), (8.8)
single double screen
slit slit
P
D
5y

B4

(&

©
ulaped aousiapaul

Figure 8.1. Young’s double slit experiment. A monochromatic light source in front of the single slit produces
two monochromatic, coherent point sources at the double slit at S; and S,. Waves from the two coherent
sources result in an interference pattern on the screen.
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and the intensity at P is

I 44, sinz(wz + Q) cosz(ﬂ)
2 2
=247 cos’ LANPYE cos’ zdsin6 ) (8.9)
0 2 ‘ A

As expected, equation (8.9) shows an interference pattern. One can also conclude
that constructive interference occurs when

dsin®, = ni n=1,23,.. (8.10)

where 6, is the angle of the nth order maximum. The equation is generally used to
measure the wavelength of a monochromatic light source. However, given a
monochromatic light source of known wavelength, equation (8.10) can also be used
to obtain unknown slit separation (‘source size’) by measuring 6,,.

Michelson stellar interferometry is based on the principle of amplitude inter-
ferometry. In figure 8.2, a schematic diagram of a Michelson interferometer is
shown. Light from a stellar object is received by two small mirrors, M; and M,. The
separation between the two mirrors can be adjusted as desired. Two fixed mirrors
M5 and M, reflect the light from M, and M, into a telescope in which the two beams
are brought to a focus at O. In effect, the image of the star at O consists of two
superimposed images seen through the two mirrors M; and M,. When the separa-
tion of the two mirrors M, M, is suitably adjusted, the image of the star is seen to be
crossed by alternate light and dark bands which are called interference fringes. One
can define a Michelson’s fringe visibility parameter [13],

P - P
— Imax min (811)
Pmax + Pmin

where P, and P, are, respectively, maximum and minimum power (or equivalently
intensity) with respect to the mean power (or intensity). Fringe visibility essentially

— light from stellar object ~

0]

Figure 8.2. Schematic diagram of a Michelson interferometer for stellar objects.
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measures the coherence length' of the source and is a function of the distance between
the two mirrors M; and M, and the angular diameter of the star. By varying the
separation between the mirrors, one can obtain the angular size of the star.

Just as in Young’s double slit experiment, in Michelson’s interferometer the
fringe or interference pattern is due to the phase difference between the two light rays
(the distance between the mirrors is adjusted to introduce a delay between the
light rays). For astronomical objects, the relative phase of two paths is not just
the physical path difference but also contains uncontrollable contributions from
atmospheric distortions. Uncertainty in the measurements cannot be controlled.

8.3 Intensity interferometry

Hanbury Brown and Twiss overcame the difficulties associated with amplitude
interferometry and developed intensity interferometry for astronomical objects. In
intensity interferometry, one measures two photons in coincidence as a function of
their relative momentum, and measures the correlation function, defined as

_ (ny,)
C(kl, kz) = —(n1><n2) (8.12)

where (n7,) is the probability of detecting two coincident photons of momentum k;
and k, in detectors 1 and 2. (n;) and (n,) are, respectively, the probability of
detecting a photon of momentum k; in detector 1 and momentum k, in detector 2.
From the correlation function, one can obtain information about the (angular) size
of the distant object.

The physical basis of HBT interferometry can be understood from the following
simple example. As depicted in figure 8.3, light waves emitting from point sources A
and B can both be received by detector D; as well as by detector D,. The amplitude
at detector D; can be written as

1 ikry (i ikry p+i
A = z(aek‘“ b 4 ﬂel‘lB"'d’B)’ (8.13)

where r14 and r,p are the distance to detector D; from source 4 and source B,
respectively. Total intensity at detector D, is obtained by squaring the amplitude,

1 , o . .
11 (IaIZ + |ﬁ|2 + a*ﬂelk(rlA—IIB)-I-l((ﬁB—(ﬁA) + aﬂ*e—lk(llA—VIB)—1(¢B—¢A))‘ (814)

A
Similarly, we can write for intensity I, at detector D,,
1 — (L i il
12 — P(|a|2 + |/)7|2 + a*ﬂelk(rZA V23)+1(¢B ¢A) + aﬁ*e ik(ry4=rap) 1(‘/JB dA)) (815)
! Coherence length is the propagation distance from a coherent source to a point where an electromagnetic

wave maintains a specified degree of coherence. The significance is that interference will be strong within a
coherence length of the source, but not beyond it.
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The last two terms in equations (8.14) and (8.15) contain information about the
source distance to the detector. If the phases are random, i.e. a chaotic source, then
when averaged over the detection time, those terms will vanish and

(1) = (1) = —{1al’ + 197, (8.16)

and one obtains
1 2
() = (L)L) = F('“'Z + 181, (8.17)
which is independent of the separation between the two sources.
The same is not true for the time averaged coincidence rate. The time averaged
coincidence rate is obtained by multiplying the two intensities and then averaging,

(1) = —(lal* + 1B + 20l + lal?pe L nna -l

1
L
+la} ﬁ|2e—ik[<rlA—rIB>—<r2A—rzg>])

2
U)L) + F|0‘|2|/}|2 cos k(r, = g — Iy, + Iy). (8.18)

Two-photon intensity correlation is then defined as
1)
) (L)
2|al’|pI?
2
(lal” + 18°)
For large separation between the detectors and sources, the argument of the
cosine function can be written as
k(hy—Tip = by + hy) = k(r, —1p) - (f'z - f'l) =R- (kz - kl) (8.20)

C(R, d) =

=1+ cosk(n, — iy — 1+ hy). (8.19)

where kj(ky) =f, , is the wave vector of the light seen in detector 1(2). For large
separation between the detectors and sources, a ~ § and the two particle correlation
function can be written as

1
CR,d)=1+ cos{R - (k, - k;)}. (8.21)

The cosine function in the correlation function oscillates and two photons largely
separated in momentum or space can apparently be strongly correlated. However,
this unrealistic result is due to the assumption of ‘only’ two point sources. In real life
there will be a continuum of sources. Defining a source distribution p(r), the cor-
relation function can be written as

Clku ko) = 1+ 1 /d3r,0(r) Cos{r - (k, - k1)} |
’ / &’rp(r)

(8.22)
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For photons largely separated in momentum or space, the correlation function
dies down. Equation (8.22) also indicates that the two-photon correlation function
essentially measures the Fourier transform of the source distribution.

8.3.1 A quantum mechanical reason for HBT interferometry

In quantum mechanics, two-photon correlation, as was observed in HBT inter-

ferometry, is due to the bosonic nature of the photons, the light quanta. Quantum

mechanics requires that the wave function of a bosonic many-body system is sym-

metric under exchange of one particle. Quantum mechanical reasoning for HBT

correlation can be ascertained if figure 8.3 is analyzed properly. Figure 8.3 essen-
tially depicts four different possibilities (see figure 8.4):

(i) light source at 4 emits two photons, one detected by D, the other by D,;

(i1) light source at B emits two photons, one detected by D, the other by Dy;

(iii) light source A emits a photon which is detected by D; and light source B

emits a photon which is detected by D»;

L

Figure 8.3. Schematic diagram of Bose-Einstein correlation. Light emitted from point sources 4 and B is
detected by detectors D, and D,.

A D, Ae D,
Be B
D D,
(i (i)
Ao——”/D Pr A D D
B
(

ii) (iv)

Figure 8.4. Analysis of figure 8.3. Four independent photon production and detection processes are included in
figure 8.3. Only processes (iii) and (iv) are responsible for HBT correlation.
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Figure 8.5. Schematic diagram of two-particle correlation.

(iv) light source 4 emits a photon which is detected by D, and light source B
emits a photon which is detected by D;.

The first two processes correspond to photon emission from either source 1 or
source 2. They are distinguishable and do not produce interference phenomena.
Interference occurs only from processes (iii) and (iv) and one can see that the process
(iv) is just the exchange process for (iii). Quantum mechanically, the HBT effect is a
consequence of the one-boson exchange effect, or symmetrization of the two-boson
wave function. It is well-known that for a pair of bose particles in orthogonal states
¢, and ¢y, the two-particle state is symmetric under exchange of one particle and can
be written as

#1.2) = 4040 + 49 0] (8.23)

On the other hand, for a fermionic system, the wave function is antisymmetric
under exchange of one particle. The two-particle wave function can be written as

#1.2) = [ 404 - 490] (8.24)

8.3.2 Two-particle correlation function

In stellar astronomy, source sizes are static. But in heavy ion collisions, the particle
emitting source evolves in space-time. The two-photon correlation function equa-
tion (8.22) can be easily generalized to treat such sources. As before, consider two
point sources 1 and 2, respectively at positions x,* and x,, separated by a distance R,
emitting particles (see figure 8.5). Approximating the wave functions by a plane
wave, the amplitude for the process that a particle of momentum A* emitted from
either of the sources is detected at the detector 4 at xj is

A (k) — L[e_ikﬂ(xg_xlﬂ)eiqsl + e_ikﬂ(xg_xzu)eid’z:l (8 25)

(k) = + , .

Ng)
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where the (£) sign is for bosons and fermions, respectively. Squaring it we obtain
|A4,(k)|? = %[2 £ (el 4 e—W—we-“l“”l))]. (8.26)

The probability of detecting one particle at the detector at xJ is obtained by
averaging |4,(k)|* over many events,

P(k) = (|4,(k)]>) = %[2 + (eikﬂ(x{‘—xf‘)<ei(¢1—¢z)> + e—iku(x{‘—x{)(e—i(¢1—¢z)>)]_ (8.27)

For incoherent or chaotic sources,
(enn)y = 0 (8.28)
and we obtain
P(k) = (|4(k)%) = 1. (8.29)
The quantum mechanical amplitude for the process that two detectors at x} and
x, simultaneously detect two particles with momenta k£ and k, can be written as
Ak, k) = L[e—iklﬂ(xz—xf‘)ewle—ikzy(xg—x;‘)ewz 4 e—ikly(xz‘—x;')eifﬁze—ikzy(xé‘—xl")eirm], (8.30)

NG

Squaring the amplitude, we can obtain for the probability of detecting two par-
ticles with momenta k; and k»,

Plk, k) = (lak, k)

%[2 + ( ei(hﬂ—bp)(x{‘—x{) + e—i(hﬂ—bp)(x{‘—x{))

=1+ cos(qﬂR“) (8.31)

with ¢, =k, — ks, and R" = x/ — x;'. The correlation function depends on the
relative momenta of the two particles and on the spatial separation of the two
sources. Two-particle correlation can be obtained as

_ (n,) _ P(kl’ kz)
C<k1’ kZ) - (n,y)(n,) B P(kl)P(k2)

The cosine function oscillates and two particles, largely separated in momentum
or space, can be strongly correlated. This unrealistic situation arises due to the
assumption of ‘only’ two point sources. In real life there will be a continuum of
sources. Defining a source distribution p(x) normalized to unity, the probability,

=1+ cos(qﬂR"). (8.32)

Pk, k) = %[2 = ( [ dxipeyest [dixpe)e s
+ [dnpeaet [ d“xzp(xz)eiqﬂx;)]

L+ |5 (8.33)
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where
p@) = [dxesp(), (8.34)

is the Fourier transform of the source distribution p(x).
The two-body correlation function,

P(k,, k,)

C(kl’ kZ) - W

=1+ |p(g)I’, (8.35)

then measures the Fourier transform of the source distribution. If the source dis-
tribution is approximated by a Gaussian function,

plx) = e/, (8.36)
the Fourier transform is also a Gaussian,
~ —¢’R%2
plg)=e""", (8.37)
and the correlation function can be written as
Clky, ky) = C(K, ) = 1 £ 7", (8.38)
The typical correlation function for bosons and fermions, as a function of
momentum difference ¢, is shown in figure 8.6. Given that a boson of certain

momentum is emitted, the probability of emitting a second boson with
adjacent momentum is enhanced. In contrast, for fermions, the probability is

25

—— Boson
—— Fermion

2.0

1.5

C(a)

1.0

0.5

00 1 1 1 1
00 05 10 15 20 25 3.0

q

Figure 8.6. Two-particle correlation for an extended source. The black line is for bosons and the red line is for
fermions.
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diminished. One also notes that for a Gaussian source, the size of the source can be
deduced from the correlation function. This is the important realization that coin-
cidence measurements of two particles can give information about the source size.
There are several ways one can define an effective source size. One standard pro-
cedure is to use the inverse of the full width at half maximum (FWHM), which for
equation (8.38) is

_ Nv21In2

Ry = (8.39)
q

8.3.3 Two-particle correlation in heavy ion collisions

In heavy ion collisions, the source emits many particles. The two-particle state is a
subset of the many-particle state and is a mixed state. Quantum mechanically mixed
states are described by density matrices. For example, the single-particle density
matrix for pions of a given charge at equal time is given by

<7TJ(X1, Nry(x/, l)> = /dxzdx3...de‘{‘*(x1, Xyseee Xy, DP(X], X550y, 1) (8.40)

where 71'; and m, are creation and annihilation operators. The single-particle density

matrix (z'(x,, £)z(x/, t)) is the amplitude for the process where, at time #, a pion
with momentum p is annihilated at space-time x’, and created at x;. Similarly, the
two-particle density matrix,

<71';2(x2, t)ﬂ;l(xl, t);rpz(xl’, t)ﬂp](x{, t)>

:fdx3...de‘P*(x1, Xy X35 e Xys t)‘P(xl/, Xy, Xgy Xy, Z), (8.41)

is the amplitude for the process where, at time ¢, a pion is annihilated at space—time
X, a second pion is annihilated at x, followed by creation of a pion at x, and then at
x1. With the density matrix, the one- and two-particle invariant distribution can be
written as

dN
Ep, =E (z)7,) (8.42)
dN i s
K, d3pl d3p2 = E|E2<ﬂplzﬂ'pl pzﬂpl>
= E1E2[ <7r;1ﬂpl><ﬂljzirp2> + <77.';17tp2> <77.';27Tp1>:|. (8.43)
Defining a covariant quantity,
$(v, p) = EE, (z), ). (8.44)
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the two-particle correlation function can be written as,

1S(p,. p,)I”

Cp,p)=1+ = = . (8.45)
b S(p> p)S(p,. P,
It is possible to show that S is a Fourier transform of a Wigner function,
S, p) = S@. K) = [d'xe™S(x, K), (8.46)

where the off-shell four-vector K = %(p1 + p,) is the average of two on-shell

(pl,0 = F) four-momenta and g =p, — p, is the off-shell difference of two momenta
so that the scalar product vanishes, K "qﬂ = (. Only for a special case is p; =p>=p, K
on-shell, K=p and

S(p, p) = S0, p) = / d*xS(x, p). (8.47)

The two-particle correlation function can now be evaluated as

2

’ / d*xe™~S(x, K)

fd4xS(x, K+ %) /d4xS(x, K — %)

For small momentum transfers, dependence of the emission function on ¢ is weak
and one can make the smoothness approximation

Cp,p)=Clq K)=1+ (8.48)

S(x, K+ %) ~ S(x, K- %) ~ S(x, K) (8.49)

and write the correlation function as

2

‘ / d*xe " S(x, K)
‘fd“xS(x, K)|?

Cg,K)=1+ =1+ (e )NK)|? (8.50)

where the angular bracket (...) indicates space-time averaging over the emission
function.

One generally models the emission function S(x, K). Noting that the Wigner
function is the quantum analog of the classical distribution function, one simple
model is to use the classical phase space distribution function. In hydrodynamical
models, the phase space distribution function is the local equilibrium Bose—Einstein
distribution, localized on a three-dimensional freeze-out hyper surface X(x).
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f(x, p) = =2 ! . (8.51)
TG exp (o) - )]} - 1

The emission function can be modeled as
S(x, K) = f K'da,(x)f(x', K)8(x — X). (8.52)

The denominator and numerator of equation (8.50) can be written as
f d*xS(x, K) = / K*da(x)f (x, K) (8.53)

and
2

|[ave s, g = (f Krdg costg-0s(x, K))2

+ ( f K*dg(x) sin(g-x)/(x, K))2. (8.54)

8.4 Gaussian parameterization of the correlation function

The two-particle correlation function is usually parameterized by a Gaussian
function. Using a generic Gaussian function,

el (V) (8.55)
where the variances are written as
(FF) =A(x = )'N(x - X)), (8.56)
the two-particle correlation function in equation (8.50) can also be written as
C(g, K) = 1+ [(")}K)I”
=14 e %t 0, (8.57)

where the angular bracket (...) indicates space-time averaging over the emission
function. In practical applications, one generally uses the on-mass-shell condition.
For a two-pion correlation function,

¢ =E -E,= \/m,[2 +p12 — \/m,,z +p22 (8.58)

_E+E
2

the on-mass-shell condition yields the relation

K" _ %(sz R R (8.59)

g K= %(p1 -p) (B +p) = %(pf =p)=5(mi=m?)=0.  (8.60)
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The condition can be used to eliminate one component of ¢, namely,

K. q
¢’ = 20 =p-q, (8.61)

where f is the velocity of the pair.
With the on-mass-shell condition,

S qq[p (1) + (£5) - 257 (75) |(K)

ij=1

q,9, (X" )(K)

D qq| B D) + (FF) = pI(Ex) = p1(IR) |(K)

ij=1

3
= Y qq{(% = pT)& - FT)K). (8.62)
ij=1
Defining Gaussian width parameters R;; as
RK) = <(x,. - 7)(%, - ﬁjf)>(K), (8.63)
the two-particle correlation function can be written as
C(g, K) = 1 + e R ij=1,2,3. (8.64)

8.4.1 Bertsch—Pratt parameterization

Gaussian source (8.64) is characterized by six independent variances, Ry, i, j=1, 2, 3.
In Cartesian or Bertsch—Pratt parameterization [14-16], the Z-axis is along the beam
direction defining the longitudinal direction. In the transverse plane, one of the axes
(the x-axis in figure 8.6) is chosen parallel to the pair momentum K defining the out
direction. The remaining axis (the y-axis in figure 8.7) then defines the side direction.
In this coordinate system one can write

K= (K0, K,) (8.65)
K
B=—=(8.0.5). (8.66)
K
g K=(K,0,K,)
o
< 4=(dx,9::9,)

Figure 8.7. The out-side longitudinal coordinate system used to determine HBT radii Rgige, Rout and Rjong.
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The six components of the variances are

RA(K) = R2,(K) = <(>z _ ﬂTf)2>(K), (8.67a)
R (K) = R} (K) = (7°)(K), (8.67h)
RA(K) = R2,(K) = (2 - ,7) ) (K, (8.67¢)
RAK) = R (K) = (% = 4,7)7) (K, (8.67d)
RAK) = R} i0n (K) = (¥ = 4,7)(2 = 4,7) ) (K), (8.67¢)
R(K) = Rie_i00 (K) = (7(2 = 4,7) ) (K). (8.67/)

It is evident that HBT parameters R;; mix the spatial and temporal information
on the source in a non-trivial way. They depend on the pair momentum K and their
interpretation will depend on the frame of reference for K. In general, identification
of HBT widths with physical source size is not correct. The size parameters from
HBT correlation can be interpreted as the region of homogeneity, the region from
which particle pairs with momentum K are most likely to be emitted. The space—time
variances (¥"X") coincide with total source extensions only in the special case that
the emission function shows no position—-momentum correlations and factorizes
S(x,K) = flx)g(K).

If the system has additional symmetries, they will impose further restrictions on
the variances. For example, for azimuthally symmetric source functions, there will
be reflection symmetry with respect to the y-axis and (J) =0. Consequently, two
variances, R, and R,3, which are linear in j vanish identically (note that R,,, which
is a quadratic function of j, does not vanish). The correlation function can then be
parameterized in terms of four Gaussians,

- R}

out Loyt 51de 5,de

Clqg,K)y=1+ exp[ —RZ - R2.q longq]ong Rozul longqoutqlong]. (8.68)

If the system possesses the additional symmetry of boost-invariance, then
Rj; = R,y _jon, 8180 vanishes (the linear term in Z in Ry3 vanishes, additionally, one

can choose f = 0). The correlation function can then be parameterized in terms of
three Gaussians,

Clg, K) =1+ exp| ~R%,q2, = Riudp, — Rl | (8.69)
This is the most common form for the parameterized correlation function. It is

common to associate Rq. With the transverse size of the system (or more accurately,
to the transverse homogeneity length). The width R, measures a combination of

8-15



A Short Course on Relativistic Heavy lon Collisions

transverse size and duration of emission. Similarly, R, measures a combination of
longitudinal size and duration of emission. The difference

Ry = Ry = BT) = 28,(ix) + ((F) = (7)) (8.70)

gives a measure of the emission duration At = 4/(¢*) — (¢#)* if the last two terms in
the above equation are comparatively smaller than the first term. However, it is
difficult to ensure smallness of the last two terms and any extraction of emission
duration from the difference R, — R, is model dependent. We do note that the

emission time Atz should not be confused with the physical emission time, the time
between nuclear collision and freeze-out.

8.4.2 Yano—Koonin—-Podgoreskii parameterization

An alternative Gaussian parameterization is Yano-Koonin-Podgoreskii (YKP)
parameterization [17]. It uses the on-mass-shell condition equation (8.60) with

2 2 0 :
qtrans = Vqside + qout’ qlong and q to write

2
C(q’ K) =1+ eXpl:_Rtfans Lfans - Rl(z)ng(qung - (qo) ) - (Rozut + Rl(z)ng)(q : U)2:|
8.71)

The parameterization has three radius parameters, Rirans, Riong and Roy, and a
velocity parameter U, which is assumed to be longitudinal only,

1
N

YKP parameterization has the advantage that the radius parameters Rirans, Riong
and R, do not depend on the longitudinal velocity of the measurement frame,
while the fourth fit parameter v(K) is simply boosted by that velocity. The frame in
which v(K) =0 is called the Yano—Koonin (YK) frame where Ry ans, Riong and Rou
can be interpreted as the transverse, longitudinal and temporal homogeneity lengths
of the source.

U(K) = y(K)(1, 0, 0, v(K)), y(K) = (8.72)

8.4.3 The incoherence factor

The correlation function is written for completely chaotic or incoherent sources. The
possibility that the emission of particles is neither perfectly chaotic nor completely
coherent can be taken into account by adding the parameter A to the correlation
function, which, in general, depends on k7.

C(g, K) =1 + Je /R0 ij=1,23. (8.73)

For a fully chaotic source the parameter A=1 and A< 1 for a partially chaotic
source. A is called the incoherence parameter. In spite of its name, it also includes
several other effects as well as incoherence. For example, in experiments, the
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momenta of the particles are binned. Due to finite bin width, for projection of
the correlation function in, say, the transverse momentum direction, the smallest
longitudinal momentum is no longer zero as required. Effects like particle mis-
identification, resonance decay contributions, final state Coulomb interactions, etc,
also contribute to the incoherence parameter.

Of particular interest is the Coulomb interaction. Repulsive Coulomb interaction
between like-charge pairs causes a reduction in the number of real pairs at low gq.
The experimental correlation function at low ¢ is then reduced. For correct
estimation of the source size, the correlation function needs to be corrected for the
final state Coulomb interaction. See [7, 8, 15] for details of Coulomb correction.
Traditionally, the Bose—Einstein correlation function with Coulomb correction is
expressed as

C(q’ K) = KCoul(qinv)[l + le—qfq/Ri/g(K)] (874)

where K, ,(qg, ) is the square of the Coulomb wave function, integrated over the
whole source. The standard procedure assumes that all the pairs are primary pairs
and Coulomb correction is applied to all of them. The procedure generally over-
corrects the Coulomb reduction. One then dilutes the Coulomb correction requiring
that only a fraction f of the pairs are primary pairs requiring Coulomb correction.
The correlation function, with ‘diluted” Coulomb correction is

C(q, K) = Kéulg, )| 1 + 27| (8.75)

with
Kéoulq,,) = (1 = 1) + K. .(q,,) (8.76)

A reasonable assumption is to take f= 1 assuming that A is the fraction of primary
pairs requiring the correction. In a further improvement [18, 19], called the Bowler—
Sinyukov procedure, only the Bose-Einstein correlated pairs are corrected for the
Coulomb interaction,

C(g, K) = (1 = 2) + Keoyg,, e, (8.77)

mv

8.5 Experimental results

In relativistic heavy ion collisions, the two-pion correlation function has been
measured at the Alternating Gradient Synchrotron (AGS) [20], SPS [22], RHIC
[21, 22] and more recently in LHC energy collisions [23]. In the following, a few
experimental results on two-pion correlation measurements at RHIC energy will be
discussed briefly. In relativistic energy heavy ion collisions, one generally records the
data event-wise. An event corresponds to one collision. Experimentally, two-particle
correlation functions are constructed as the ratio of actual pairs and mixed or
reference pairs. When two particles are selected from the same event, they are called
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actual pairs. The reference or mixed pairs are selected randomly from different
events. The correlation function is then constructed as

D,(Aq, AK
C(ag. AK) = 2144 AK) (8.784)
Dr(4q, AK)
D,(4q, AK) = number of actual pa1rs. in .bm Agq, AK (8.785)
number of actual pairs in sample
De(Aq, AK) = number of reference pairs in bin Ag, AK. (8.78¢)

number of actual pairs in sample

In figure 8.8, STAR measurements [23] for the two-pion correlation function in a
0-5% Au+Au collision at RHIC are shown. The shape of the correlation function is
generic, i.e. a qualitatively similar function is obtained at different collision cen-
trality and energy. The Bose—FEinstein enhancement at low pr is manifested. The
figure also manifests the effect of Coulomb interaction. The repulsive Coulomb
interaction among the like-charged pairs causes a reduction in the number of real
pairs at low ¢ and the experimental correlation function is reduced. When Coulomb
interactions among all the pairs are included (see [23] for details of the Coulomb
correction), as manifest in the data, the correlation at low ¢ is increased.

The main aim of correlation measurements is to determine the HBT radii. The
experimental correlation functions are fitted with a parameterized form of correla-
tion function to determine various HBT radii. The fitted values of A, Ry, Rsige and

1.3

(&) ]
p Qy; 0s,9,< 30 MeV/c ] + RawC

120 5 ] » Standard CCC
—————— Standard fit

—— Bowler-Sinyukov fit

O
Q;; 9,0 < 30 MeV/c
1.2
114
YV - Y VOUTUT oh :1
0 0.05 0.1 0 005 01 015
g (GeV/c) q (GeV/c)

Figure 8.8. STAR measurements of the two-pion correlation function in /5y =200 GeV, 0-5% Au+Au
collisions. Projections of the three-dimensional z”z~ correlation function on ‘out’, ‘side’ and ‘long’ directions,
for K =[150,250] MeV. The filled symbols are data without Coulomb correction. The open symbols include
Coulomb interaction among all pairs. Reproduced with permission from [23].
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Riong, for 7'z and =z correlations, in 0-5% Au+Au collisions are shown in
figure 8.9. For details of the fitting procedure see [23]. The HBT parameters for 7" 7"
and =z are in excellent agreement with each other. The momentum dependence of
the HBT parameters indicates that while the incoherence parameter A increases with
my, the HBT radii Roy, Rsige and Ryone decrease with my. The results can be qua-
litatively understood. The effects of long-lived resonances are included in the
incoherence parameter. The greater the resonance contribution, the greater 1. At
larger my, resonance contributions are reduced, and A is increased. Any collective
expansion, longitudinal or radial, reduces the region of homogeneity and HBT radii
decrease. The decrease in HBT radii with m7- can be associated with the development
of collective flow. Collective flow increases with m.

In HBT measurements, the ratio Rgu/Rsiqe 1 of particular interest. Under certain
approximations, the ratio is a measure of emission duration (see equation (8.70)).
The ratio is expected to be greater than unity if the emission duration is large. For
example, if there is a first order quark—gluon plasma (QGP) phase transition with a
finite transition width, system expansion will be delayed which will manifest as R/
Rgqe > 1 [25, 27]. In figure 8.9 m+ dependence of the ratio R,u/Rsige 1S also shown.
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Figure 8.9. STAR measurements for HBT parameters for z*z* and z7z~ correlation functions in 0-5%
Au+Au collisions at RHIC (/s =200GeV), as a function of the transverse mass of the pion pairs.
Reproduced with permission from [23].
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The ratio Royu/Rsige ~ 1. Approximately constant R,/ R4 1S inconsistent with time-
delayed expansion.

HBT radii measure the homogeneity region rather than the source size. In figure 8.10
the centrality dependence of the HBT radius parameters in /s,y =200GeV
Au+tAu collisions are shown. Centrality dependence is shown as a function of the cube

root of the Glauber model participant number N, .. HBT radii parameters Rou, Rside

and Ry,ne approximately increase linearly with Ngﬁt. The more central the collisions,
the greater the homogeneity region for correlated pion emission. The ratio Ryu¢/Riqe
does not show appreciable dependence on the collision centrality and is approximately
constant. From geometrical considerations, the pion emitting source is expected to be
larger in central collisions than in peripheral collisions. Figure 8.10 then indicates
that the physical source size and homogeneity region of correlated pion emission are
related, though the exact relation is obscure.

The product of the three HBT radii R, R 4. Ry, can be considered as the
‘homogeneity’ volume. In figure 8.11, the product is shown as a function of multi-
plicity. The collision energies are noted in the figure. It increases approximately
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Figure 8.10. PHENIX measurements for the centrality dependence of HBT radii in /5 =200 GeV Au+Au
collisions. The open circles and filled triangles correspond to two types of Coulomb correction, (i) full
Coulomb correction and (ii) core-halo structure (see [22] for details). Reproduced with permission from [22].
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Figure 8.11. Multiplicity dependence of the ‘homogeneity volume’ R, R4 Rioe in AGS, SPS, RHIC and

LHC energy collisions. The homogeneity volume increases approximately linearly with multiplicity. Repro-
duced with permission from [26].

linearly with multiplicity. From RHIC to LHC, the homogeneity volume is
increased approximately by a factor of 2. Considering that from RHIC to LHC,
center-of-mass energy is increased by a factor of 14, the increase in ‘homogeneity’
volume is not large.

Initially, it was envisaged that two-pion correlation measurements would provide
a direct measure for the size of the medium produced in heavy ion collisions.
However, it was soon realized that rather than the physical size, HBT radii deter-
mine the size of the homogeneity region (the region from where correlated particles
are emitted). Even though HBT radii are not directly related to the system size,
nevertheless they are important as the momentum space information extracted
from the single particle spectra can be supplemented with the coordinate space
information. HBT measurements also provide for a stringent test for dynamical
models for heavy ion collisions.

In heavy ion collisions, the dynamical models in use are: (i) transport models
based on Boltzmann equations, (ii) hydrodynamical models and (iii) a combination
of Boltzmann and hydrodynamic models. One of the widely used transport models is
the ultra-relativistic quantum molecular dynamics model (UrQMD) [28, 29]. The
UrQMD model employs only hadronic and string degrees of freedom. Any possi-
bility of QGP formation is neglected. The model partially explains the experimental
HBT data in /s =200 GeV Au+Au collisions [30]. The calculated transverse
momentum, centrality and system size dependence of the Pratt-HBT radii Rjone and
R, are reasonably well reproduced. The model, however, over-predicts R, in

central collisions. The corresponding quantity \ R>, — Ry,
source is also larger than experimental estimates.

Hydrodynamical models which are quite successful in explaining many features of
ultra-relativistic heavy ion collisions, however, fail to reproduce HBT measurements
[31-33]. The HBT radii are largely over-predicted. The fact that hydrodynamic
models over-predict HBT radii came to be known as the ‘HBT puzzle’. Indeed, it

side

of the pion emission
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appeared that models with phase transition or soft equations of state give worse
descriptions of the HBT data than models without phase transition or with stiff
equations of state. However, it is now understood that HBT correlations are parti-
cularly sensitive to the freeze-out condition. In most of the early hydrodynamic
models, freeze-out was treated somewhat unrealistically. Also, early hydrodynamic
calculations neglected the effect of viscosity. With realistic freeze-out, viscosity and
HBT data can be reasonably reproduced in present-day hydrodynamic model
calculations [34].

In hybrid models, hydrodynamic evolution is followed by a hadronic cascade
[35-37]. The model has the advantage of more realistic treatment of freeze-out
conditions than in a purely hydrodynamic model. Model calculations where the
ideal hydrodynamic evolution of QGP fluid is supplemented by a hadronic cascade
however do not fare well with respect to HBT measurements. HBT radii are over-
predicted by a factor of ~2.
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Chapter 9

Signals of quark—gluon plasma

9.1 Introduction

In ultra-relativistic heavy ion collisions, a deconfined state of quarks and gluons
(quark—gluon plasma; QGP) is expected to be produced. However, detection of
QGP is not simple. One may ask what the observables that will signal formation of
QGP are. Unlike in other phase transitions, in confinement-deconfinement phase
transition (or cross-over), the constituents of the high temperature phase (QGP) do
not exist freely. They are confined within the hadrons. QGP is a transient state; it
expands, cools, hadronizes and cools further until interactions between the hadrons
become too weak to continue the evolution. Any information about the QGP
phase, if produced in high-energy nuclear collisions, has to be obtained from the
observed hadrons only. Hadronization is a non-perturbative process. Currently it is
not properly understood. Whether or not the hadronization process erases any
memory of the constituent quarks is uncertain. If the hadronization process erases
the memory, one cannot comment on the initial QGP phase from the observed
hadrons. The current search for QGP at RHIC/LHC is on the premise that the
hadronization process does not erase the memory and from the observed hadrons,
one can comment on the possible existence of QGP. Signals of QGP are a very
important subject in the study of QGP. In the following, some important signals of
QGP are discussed.

9.2 Jhy suppression

Quarkonium is the bound state of heavy (¢ or b) quarks and anti-quarks. One
generally does not consider the bound state of top and anti-top quarks. Top quarks
are very heavy, mass (m, ~ 175 GeV) and they can decay by electroweak interaction,
with a short lifetime of 0.5 x 1072* sec. The top quark will decay before a bound
state ¢f is formed. Unlike that of a light hadron (e.g. pion, kaon or nucleon)
quarkonium mass arises mostly from the current quark masses. Charmonium is the
bound state of c¢¢ quarks. In figure 9.1, some of the low lying charmonium states
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Figure 9.1. Low lying states of charmonium. The DD threshold is also shown.

are shown. It has hydrogen-atom-like spectra. Note that the charmonium ground
state is #7.. Similar spectra are obtained for bottonium, the bound state of b5 quarks.
The production and decay of heavy quarkonia is the ideal testing ground for
quantum chromodynamics (QCD). It has also been suggested [1] that they are ideal
probes for confinement—-deconfinement transition. Due to their heavy mass, they are
produced in initial collisions (thermal production is suppressed by e ¢’7), in a short
time scale 7~ 1/m. In the following, the idea behind the suggestion will be briefly
described. For many facets of quarkonia physics, the reader can consult [2, 3].

9.2.1 Production mechanism

Even though the Jiy meson was discovered some 40 years ago, there is large uncer-
tainty about theoretical modeling of the production process. Quarkonium production
is assumed to be a two step process (shown schematically in figure 9.2 for Jiy). In the
first step a heavy quark pair QQ is produced in a hard partonic collision. This step is
accurately calculable in perturbative QCD (pQCD) in an expansion in powers of the
strong coupling constant a,. In the second step, the Q0 pair evolves into a quarko-
nium state (H). The second step is essentially non-perturbative and needs to be
modeled. The two step process implicitly assumes that the short distance or pertur-
bative effects can be separated from the long distance or non-perturbative effects.

An inclusive cross section for production of a quarkonium state H in collisions of
two hadrons /4 and /3, in leading order in a,, can be written as

Opere =K Y, [ d5 [ dxidsf (e, mf 1 Cess 1) X 8,6(5 = %335)Fogr_n(5)
ij

(9.1)
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Figure 9.2. Schematic diagram of J/y production in elementary collisions. Note that most of the ¢¢ quarks go
to the open charm channel.

where ij=qq or gg. s is the square of the partonic center-of-mass energy, and g, is
the sub-process ij = QQ cross section. The factor K takes into account the effect of
higher order processes. The factor F,;_ H(f) is the transition probability that the
QQ pairs transform into a quarkonium state H. It has to be modeled. Different
treatments of this non-perturbative transition probability F,;_ H(f) have led to
various theoretical models, e.g. the color singlet model (CSM), the color evaporation
model (CEM), the non-relativistic QCD (NRQCD) factorization approach and the
fragmentation function approach, brief discussions of which are given below.

Color singlet model. In the CSM [4-8] the QQ pair that evolves into a quarko-
nium state H is in a color-singlet state and has the same spin and angular momentum
quantum numbers as those of H. Experiments indicate that J/y production is
dominated by gluon fusion. However, fusing two gluons with the spin and angular
momentum of J/y has a problem. The quantum number of Jhy is J*“=1"", i.e. the
total Jhy spin is 1, and is odd parity. The charge conjugation is also odd. Now
consider the decay, Jiy — gg. Now J/y is C-odd but gg is C-even, the decay is for-
bidden so is gg — Jiw. The three-gluon fusion will not have a sufficient rate. It
appears that there is no direct mechanism to fuse two gluons to produce a J/y.
One possibility is to fuse two gluons to produce the higher state y.. It is shown in
figure 9.1 that y. are C-even. In the CSM, two gluons fuse to produce a y. which
then decays to J/w. As one can observe from figure 9.1, the decay of y. to y is
kinematically forbidden m,, > m,.. All the y have to be produced from decay of
B-mesons. Experimental data do not support the CSM.

Color evaporation model. Two gluons can fuse in a color octet state,
8®8=198R8® 10 ® 10. 9.2)

In the CEM [9-13] initial partonic collisions produce QQ pairs in the octet state
which then radiate a gluon to become colorless,
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gg —' P — g + S(H). 9.3)

The radiated gluon is soft and the color shedding process is non-perturbative. In
CEM, it is assumed that every produced QQ pair, with invariant mass less than
the threshold for producing a pair of open-flavor heavy mesons, evolves into a
quarkonium state H. It is further assumed that the transition probability for the
QQ pair to evolve into a quarkonium state is an energy-momentum and process
independent constant which can be fixed by comparison with the measured total
cross section.

NRQCD factorization approach. NRQCD is an effective field theory that
describes the behavior of the bound states of a heavy quark (Q) and a heavy anti-
quark (Q) when the velocity v of the quarks in the quarkonia QQ rest frame is
non-relativistic (v < ¢). In NRQCD factorization, the probability of a Q0 pair
evolving into a quarkonium state is expressed in terms of the matrix elements of
four-fermion NRQCD operators [14, 15]. The inclusive cross section for the direct
production of a quarkonium state H is written as a sum of the products of these
NRQCD matrix elements with the corresponding QQ production cross sections:

o(H) = Y 0,(A)(0]0" (1)]0). 9.4)

Here A is the ultraviolet cut off of the effective theory and the o, are cross sections
to produce a QQ pair in the color, spin and orbital angular momentum state n. They
are convolutions of parton level cross sections at the scale u with parton distribution
and can be organized as an expansion in powers of a;. The NRQCD long-distance
matrix elements are vacuum expectation values of the four-fermion operator,

0N () = 1"k, (M) ahay Jy'c [y (M) (9.5)

where a,; is the creation operator for state H, y' and y are two-component (Pauli)
fields of a heavy quark and a heavy antiquark. «,, and «, are direct products of color
and spin matrices. A key feature of NRQCD factorization is that the production can
occur through color octet, as well as color singlet channels. The NRQCD matrix

element for the color singlet state <O( 3511)> can be determined from electromagnetic

decay rates. The color octet matrix elements must be determined through comparisons
of theoretical predictions with measurements. Equation (9.4) contains an infinite
number of ‘unknown’ NRQCD matrix elements. One generally organizes the sum in
equation (9.4) as an expansion in powers of v. Thus the NRQCD factorization
formula is a double expansion in powers of v and powers of a.

The fragmentation function approach. Earlier, we discussed the perturbative
QCD (pQCD) factorization for the production of hard hadrons. In the fragmen-
tation function approach [16-18] the quarkonium production cross section is written
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in terms of convolutions of heavy Q0O production cross sections with light-cone
fragmentation functions. In leading order,

doyg_ ey (pp) = Zd6A3—>1+X(pT/23 /4) ® D_y(z, p). 9.6)

It describes the process in which initial partonic collisions @ + b — i + X produce a
parton i which fragments into the quarkonium state H via the fragmentation
function D;_, ;. The symbol ® represents convolution with parton distributions of
the colliding hadrons. In the next to leading order, processes in which initial colli-
sions produce a quark paira + b — [QQ ] + X can be included and the quark pair

fragmentation function D[QQ—]% 5 can be used to produce the quarkonium state H.

9.2.2 A mechanism for quarkonia suppression

Let us now discuss Matsui and Satz’s idea of using charmonium suppression as a
signal of QGP formation. Quarkonium is the bound state of heavy quarks (mcparm ~
1.15-1.35GeV, mpoom ¥4.0-4.4GeV) and the non-relativistic Schrodinger
equation,

1
{2m[, - —V + V(r)}qg. = M(r), (9.7)
m,
is expected to describe the bound state properties, with the inter-quark potential
V(r). Indeed, charmonium and bottonium spectra are well explained by the
phenomenological ‘Cornell potential’,

V(r) = or - ar—'* (9.8)

where r is the inter-quark separation, ¢~ 0.192 GeV? is the string constant and
Oy = %as(r) ~ 0.471. Charmonium mass, radius and formation time can be
obtained from solution of the non-relativistic Schrédinger equation and are given in
table 9.1. Now in QGP at high temperature, the ‘color’ interaction potential will be
screened,

__O () _ Keft —u(Tyr
V(r,T)—”(T)(l e ) re“ . 9.9)

Table 9.1. J/y mass, radii and formation time from solution
of the Schrodinger equation.

Jhy W Xe
M (GeV) 3.07 3.698 3.5
R (rm) 0.453 0.875 0.696
7 (fm) 0.89 1.5 2.0
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Figure 9.3. Quark potential as a function of screening mass (or temperature).
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Figure 9.4. Sequential suppression of charmonium states in QGP. As the temperature increases, more and
more tightly bound states get dissociated.

u(T) is the screening mass, the inverse of the Debye screening radius r.. For y — 0,
equation (9.8) is recovered. For u # 0, the screened potential satisfies

LiIgl[rV(r, )] ~ —a, (9.10)
the 1/r behavior in the short-distance limit. For large r,
LimL 1n[L — V(@ T)] —u(T) (9.11)
o r | u(T) ’ '

indicating that the range of the binding force decreases exponentially with screening
mass. When the screening radius r. falls below the binding radius of a given char-
monium state, ¢ and ¢ no longer ‘see’ each other and a binding for that state is not
possible. Screening mass y is an increasing function of temperature 7. From lattice
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Table 9.2. Indicative melting or dissociation temperature 7y in unit of critical temperature 7.
for various charmonium and bottonium states from lattice calculations.

state  J(1S)  x(1P)  y'(2S)  Y(AS)  p(1P)  Y(2S) x(2P)  Y(25)
T4/ T, L5 1.1 1.1 4.0 1.8 1.60 1.2 1.1

simulations, - ~ 4% In figure 9.3, inter-quark potential (equation 9.9) as a function

of screening mass (or equivalently temperature) is shown. At high u or T, the
potential barrier decreases. A state which is bound in 7'=0 potential may become
unbound in finite T potential. An example is shown in figure 9.3. The bound state in
T =0 potential shown as the red line is no longer a bound state in the y=0.2 GeV
potential.

In 1986, Matsui and Satz [1] suggested that if QGP is formed in nuclear collisions,
Jhy, the bound state of ¢¢ will be suppressed, with respect to pp collisions. The idea is
simple. In the presence of QGP, J/y production will be inhibited due to color
screening of the potential. A ¢¢ pair, which otherwise could transform into a Jhy, is
now unable to do so. It will be melted, eventually forming a pair of open charm
mesons. Now only ~60% of experimentally observed J/y are directly produced, the
rest are from the decay for excited states, ~30% are from decay of y. and ~10% from
decay of y. Higher states are less tightly bound and in a QGP environment, it is
expected that the dissociation temperature for the excited states will be less than that
for Jhy and there will be a hierarchy of melting or dissociation temperature (7y),
7:1” > T > T There are large uncertainties about the melting temperatures. In

table 9. 2 1nd1cat1ve values as obtained from lattice studies are shown. The hier-
archical dissociation or melting temperature of the charmonium states suggests that
it can be used as a QGP thermometer. For example, consider a hypothetical
experiment where a beam of Jhy, y. and y pass through a QGP medium at tem-
perature 7 and the outcome is analyzed (see figure 9.4). At low temperatures, all the
charmonium states will pass through. As the temperature of the medium is
increased, the state y’ will fail to pass through, and they will be dissociated in the
medium. At still higher temperatures the state y., and at yet higher temperature Jiy,
will melt. In checking the temperature at which v/, y. and Jiy melt, we have a way of
specifying the temperature of the QGP medium. Sequential melting of charmonium
states will have a characteristic imprint on J/y survival probability. If we plot the
Jhy cross section as a function of energy, a step-function-like behavior, as shown in
figure 9.5, is expected.

Over the years, several groups have measured the J/y yield in heavy ion collisions.
For a review of the data prior to RHIC energy collisions, and their interpretations,
see [19, 20]. In brief, experimental data do show suppression. However, dissociation
in QGP is not the only source of J/y suppression. There are various reasons due to
which JAy production can be suppressed in nuclear collisions. Indeed, in experi-
ments, J/y are suppressed in pA collisions as well, where one does not expect QGP
formation. J/y suppression unrelated to dissociation in QGP is termed the cold
nuclear matter (CNM) effect. It is discussed below. Prior to the NAS50 measurements
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Figure 9.5. Expected J/y suppression pattern as a function of energy if charmonium states undergo sequential
melting.

[21] of JAy suppression in 158 AGeV Pb+Pb collisions, all the experimental data
were explained in terms of the CNM effect. The NAS50 collaboration first observed
anomalous suppression which goes beyond the CNM effect. In recent years, Jhy
suppression has been observed by the PHENIX collaboration in /8y =200 GeV
Au+Au collisions at RHIC [25, 26] and also by the ALICE collaboration in v/ =
2.76 TeV Pb+Pb collisions at LHC [24]. PHENIX made systematic measurements
of Jhy production in nuclear collisions. They have measured J/y yield in p+p col-
lisions at RHIC to obtain the basic ‘reference’ invariant yield [22, 23]. Measurements
of Jhy production in d+Au collisions [23] give a reference for ‘CNM effects’. Cold
and hot nuclear matter effects are studied in Au+Au and Cu+Cu collisions, where
yields are measured as a function of collision centrality [25, 26]. In figure 9.6, the
PHENIX measurements for nuclear modification factor,

AA=JlIyX
1 o7

R =—
A4 JlhpX
pr—=J .
Ny o

(9.12)

in /sy =200 GeV Au+Au collisions are shown. The data show suppression. The
CNM effect alone cannot explain the data. If J/y are suppressed in the QGP, the
data are explained.

There have been arguments that rather than being suppressed, charmonium will
be enhanced in very high-energy collisions [27, 28]. The reasoning is simple. Due to
large initial energy, a large number of ¢¢ pairs will be produced in initial hard
scatterings. Recombination of ¢¢ can occur enhancing charmonium production.
Apparently, PHENIX data on J/y production in Au+Au are not consistent with
models which predict Jiw enhancement. More recently, the ALICE collaboration
[24] at LHC has measured J/y suppression in /sy =2.76 TeV Pb+Pb collisions.
They took measurements at forward rapidity. Interestingly, compared to /sy =
200 GeV Au+Au collisions, Jhy are less suppressed in /sy =2.76 TeV Pb+Pb
collisions. One possible interpretation could be the regeneration effect. Compared to
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RHIC, at LHC, due to much higher collision energy, initially heavy quarks are
produced in large numbers. In both RHIC and LHC energy collisions, the medium
is produced at very high temperatures. If regeneration effects are not included, in
central collisions, J/y suppression will be similar at both RHIC and at LHC. If the
regeneration effect is included, its effect will be more on J/y yield at LHC than at
RHIC (the initial number of heavy quarks is comparatively smaller at RHIC than at
LHC). The enhanced regeneration effect at LHC will be manifested as one J/y
suppression at LHC than at RHIC.

9.2.3 CNM effect on Jhy suppression

As discussed, Jhy suppression in pA or AA collisions, unrelated to QGP formation,
is termed the CNM effect. There are several sources for the CNM effect which are
broadly classified as (i) the initial state effect and (ii) the final state effect. A major
initial state effect is the modification of parton distribution in nuclei. QQ pairs are
produced in initial hard scattering which evolve into the quarkonium state. The
production cross section of Q0 depends on the parton density. Experimental data in
deep inelastic collisions indicate that the parton distribution is significantly modified
inside a nucleus. These nuclear modifications depend on the fraction of the total
hadron momentum carried by the parton, x, on the momentum scale, 0%, and on the

é L N PR A O LV L R .7 B R S5 B O T L B TR S 7 IR LY
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Figure 9.6. Nuclear modification factor R 44 for Jly in /5 =200 GeV Au+Au collisions and in /5, =2.76
TeV Pb+Pb collisions. The figure is reproduced with the author’s permission from [26].
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Figure 9.7. Nuclear modification of parton distribution functions. The ratio of parton distribution in Au and in
protons are shown. If there is no parton modification the ratio will be unity.

mass number of the nucleus, 4. While the mechanisms governing these modifi-
cations are not yet well understood, several groups have parameterized the
modification in terms of the ratio

/(% 07)

=L =7 9.13
5 (x. ) o

R(4, x, 0%

where f[_A (x, QZ) and f” (x, Qz) are parton distributions in a nucleus and nucleon,
respectively. One such parameterization is shown in figure 9.7. One observes that at
low x, the ratio R;< 1, they are called the shadowing region. There are also anti-
shadowing R;> 1. In nuclear collisions, Jiy yield will be enhanced due to the
anti-shadowing effect and suppressed due to the shadowing effect. The overall effect
is suppression. The other initial state effect is parton energy loss. A parton traversing
the nucleus before the hard scattering can suffer energy loss leading to a reduction in
quarkonium yield. Another CNM effect is absorption (i.e. destruction) of the
quarkonium state as it passes through the nucleus. Since the latter occurs after the
QQ pair has been produced and while it is traversing the nuclear medium, this
absorption is typically referred to as a final state effect.

The CNM effect due to nuclear absorption can be calculated in a Glauber type
model. For example, in a Glauber model, in a pA collision at impact parameter b,
the J/y production cross section can be written as

6pA—>J/1// = 6pp—>J/x// X n(b) (914)
where 7,(b) = /_ ” dzp(b, z) is the nuclear thickness function, p(b,z) being the

nuclear density distribution. Now if J/y interact inelastically with the target

nucleons with cross section ¢#", the thickness function can be modified as,

) = 75" = [ dzptb, 2) exp( —oi ["azpth, z')) 9.15)
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For finite JiwN inelastic cross sections, the thickness function is reduced, effec-
tively reducing the J/y production cross section in pA collisions, in comparison to pp
collisions. The equation can be easily generalized to nucleus—nucleus (AB) collisions,

Crtesty = Gty X ETTOTSb = ). 9.16)

Experimental data prior to the NAS50 experiment [21] on J/y production in 158 A
GeV Pb+Pb collisions were consistent with the Glauber model of the nuclear
absorption cross section o,y =4—5mb. NAS50 data showed suppression beyond
the Glauber model of nuclear absorption. If in addition there exists an anomalous
suppression such as suppression in a deconfined medium, the NAS50 data are
explained.

9.3 Strangeness enhancement

For a long time, strangeness enhancement has been considered a signature of QGP
formation [29, 30] in ultra-relativistic collisions. In QGP, strangeness can be pro-
duced in reactions,

quark annihilation: ¢ + § — s + § (9.17a)

gluon fusion: g+ g —> s+ 5. (9.17b)

Gluon fusion dominates the strangeness production process. Consider QGP in
equilibrium. Strange quark density (with degeneracy 2(spin) X 3(color), can be
obtained as (see equation (4.92)),

3 T 2
no=n.=3x 2/ Ip _-lrm?/7 _ 3#Kz(ms/T). (9.18)
(2x) 7

The density of non-strange anti-quarks 7 (7 stands for i7 or d), in the limit of
small mass, is

3
n;=3x2 f —(31’) e P Te/T = e-*‘q/T%T* (9.19)
T Y

where p, is the quark chemical potential, one third of the baryonic chemical
potential up. The ratio of strange quarks to non-strange quarks is

2
n-
q

For pug>0, the ratio is greater than one. Strange quarks will be produced in
more abundance than the non-strange quarks. During hadronization, numerous
strange quarks can be bound with available non-strange quarks and strange hadron
production will enhance. Qualitatively, Z—q > 1 can be understood as follows: the
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medium produced in the collision is rich in light quarks u and d, inherited from the
colliding nuclei. In such an environment the Pauli exclusion principle prohibits
further production of uit, dd light quark pairs. s5 production however is not Pauli
blocked. If strange quark mass is not too heavy, s§ can easily be produced.

The above estimate assumes that the strange quarks are equilibrated. It also
neglects that QGP is an evolving medium. Approaches to equilibration can be
studied by solving the master equation for the change in density of strange quarks.
For the reaction mentioned above, one can write the master equation for strange
quark density,

dos _ 1 - s a7
5 = 2 D0 ETT 4+ (0, (D00) 7 = p(Dp (Do) 7704 (921)

where (ov), is the momentum averaged cross section for the processes indicated,

./ d3pl d3p2_]§(p1 )(p,)ov
JE

(9.22)

(ov)r =

When the loss term in the master equation balances the gain terms, the (chemical)
equilibrium of strangeness is achieved. Explicit calculations indicate that strange
quarks achieve near complete equilibrium [30, 31]. The onset of transverse expan-
sion however impedes the equilibration process [32]

QGP matter ultimately evolves into a hadron gas. Strangeness can also be pro-
duced in hadronic reactions,

7+ N->Y+K 7+ N ->Y+K
T+ Y- E+K n+Y >E+K (9.23)
T+E2->Q+ K T+2->Q+ K

g+n—->K+K

where Y represents a hyperon, A(uds), " (uus), Z°(uds), £~ (dds). K represents a kaon,
K*(us), K O(ds‘ ), K™ (its). The common feature of all the processes listed in equation
(9.23) is the reaction gg — s5 (see figure 9.8). The produced strangeness can be
redistributed among various hadrons in exchange reactions, e.g. A+7— N+ K,

P =] =
Figure 9.8. Left panel: direct production of strangeness in (non-strange) meson—baryon reactions. Right panel:
exchange of strangeness in (strange) meson—baryon reactions.

9-12



A Short Course on Relativistic Heavy lon Collisions

schematically shown in the right panel of figure 9.8. The strangeness producing
reactions are OZI-rule' suppressed. Compared to gluon fusion, hadronic reactions
are slow and there is also a threshold effect. A master equation can be set up for the
study of strangeness equilibration in hadronic reactions [31]. The equilibration
process is much slower than in QGP. It is then argued that strangeness phase space is
saturated during the QGP phase of the evolution.

To measure the enhancement experimentally, one defines a strangeness enhance-
ment factor (E),

1 dN*™

N, dy
_ part
E= ——Ei?ifﬁﬁr—n

2 dy

(9.24)

In figure 9.9, experimental data [35, 36] in /s =200 GeV Au+Au collisions for
strangeness enhancement are shown. The data do show enhancement. ¢ meson
(which is a hidden strange meson) production is also enhanced [37]. However, it is
uncertain whether or not the enhancement is due to increased production in QGP or
due to less strangeness production in pp collisions. One useful way of looking for
strangeness enhancement is the Wroblewski parameter [33]. It is defined as the ratio
of newly created strange quarks to light quarks,

.= Lt (9.25)
(uit) + (dd)

The factor has been studied in model calculations. Statistical hadronization
models indicate that from elementary pp collisions to heavy ion collisions, the
Wroblewski parameter increases from ~0.2 to ~0.5 [34]. The canonical suppres-
sion (less strangeness in pp collisions than in heavy ion collisions) arises from
the need to conserve strangeness within a small, local volume, which limits the
strangeness production in pp collisions relative to AA collisions [38-40]. In
the language of statistical mechanics, while canonical ensemble is applicable in pp
collisions, in AA collisions, the grand canonical ensemble is applicable. For
example, consider K K~ production in a pionic thermal system of volume V at
temperature 7. For large T kaons are abundantly produced and density reaches
the grand canonical value,

Ms = [ﬁm 2, TKZ( i s )] (9.26)

T

'The OZI rule was proposed independently by Susumu Okubo, George Zweig and Jugoro lizuka in the 1960s.
It states that hadronic reactions, where quark lines in the Feynman diagram cannot be connected continuously
from initial hadrons to final state hadrons, are suppressed.
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Figure 9.9. STAR measurements for enhancement factor in /s =200 GeV Cu+Cu and Au+Au collisions,
for various multi-strange particles. The figure is reproduced with permission from [36].

In the limit of low temperature, K*, K~ are rarely produced. In order to satisfy
the strangeness neutrality condition, the kaon pair must appear in the near vicinity.
The density of K™ then reaches the canonical ensemble value,

Nys = [ﬁm 2z, TKZ( mTK )] X [V;#m o TKz( mTK )] 9.27)

The first term coincides with the grand canonical value. The second term
describes the phase space suppression since with each K™ a K~ has to appear in the
vicinity to conserve strangeness. The parameter V is the correlation volume where
K" and K~ should be created to preserve strangeness conservation. In heavy ion
collisions, V& Np, and in proton induced collisions, Vo~ Vproton. The canonical
suppression then arises due to the fact that (i) particles are produced in pairs that
restrict the available momentum phase space and (ii) they appear in near vicinity in
space to fulfil locality of conservation laws.
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9.4 Electromagnetic probes

Photons and dileptons are considered to be important probes for QGP diagnostics.
They are called electromagnetic probes as they only interact electromagnetically.
Unlike the hadrons, which are emitted only from the freeze-out surface, photons
and dileptons have a large mean free path and are emitted from the entire volume.
Total production is then obtained by convoluting their production rate over the
four-volume.

9.4.1 Photons

For QGP diagnostic purposes, one is interested only in ‘direct photons’, i.e. pho-
tons produced as a result of some collision process. However, one of the problems
with the photon as a probe is the large background. The transient QGP state
ultimately transforms into hadrons. A large number of hadrons decay into pho-
tons, e.g. 7" — 2y. Decay photons constitute the background and need to be
eliminated to get the direct photon signal. Several methods have been devised
experimentally to eliminate the decay photons, e.g. invariant mass analysis, mixed
event analysis, etc. However, due to the overwhelmingly large number of back-
ground photons, the elimination could not be exact and experimental data on
‘direct’” photon production could not be obtained very accurately. There is
definitely scope for further improvement.
In a nucleus—nucleus collision, there are various sources of direct photons. They
are discussed briefly below.
(i) Prompt photons. Initial hard collision produce prompt photons. Prompt
photon production in a nucleon—nucleon reaction a+b—y+ X can be
calculated in leading order pQCD,

=K Z fdxl.dxjfl_/a(xi, ), ©7)

=4.9.8

X 5(§ + 7+ a)id—f(ij Sy +X) (9.28)
7T

where fi/, 5(x, 0?) is the parton distribution function and 3—” is the elementary
partonic cross section. The above equation scaled by the binary collision
number gives the prompt photon production in nucleus—nucleus collisions.

(i1) Fragmentation photons. Initial hard scattered partons may fragment into
photons (¢ — g +y). For example, in partonic collisions, i+j— k + [, the
scattered parton k may fragment into photons. The invariant cross section
for the process can be written as

— =K Z fdx dx (X,-, Q2)f/-/b('xj’ Qz)

I/k 4.9.8

X ;E(ij > k+ D35+ 17+ ﬁ)Dy/k(z, Qz). (9.29)

F
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In equation (9.29), D, is the fragmentation function. As before, the
above equation should be scaled by the binary collision number to obtain
the fragmentation photons in nucleus—nucleus collisions.

(ii1) Pre-equilibrium photons. In nucleus—nucleus collisions, an extended QCD
medium is produced. Before achieving local thermal equilibrium the med-
ium is in the pre-equilibrium stage. Photons will also be emitted in the pre-
equilibrium stage. However, it is difficult to distinguish pre-equilibrium
photons from thermal photons. Simulations with the parton cascade model
[41] indicate that pre-equilibrium photon production equals the thermal
photon at pr =2 GeV. Low pt photons are predominantly thermal.

(iv) Thermal photons. Photons emitted from the (locally) equilibrated QGP and
hadronic matter are called thermal photons. For QGP diagnostic purposes,
these photons are most important. In the following, we will briefly discuss
thermal photons. For more detailed information, see [42-44].

Thermal photons from the QGP phase. Inthe QGP phase, the important reactions
for direct photons (schematically shown in figure 9.10) are; (i) annihilation:
q+q—>g+vy @+ g — yisforbidden due to energy momentum conservation),
(i1) the Compton process: g + g — ¢ +y and (iii) bremsstrahlung: g+ ¢ —>¢g+qg+y.

The thermal emission rate of photons with energy £ and momentum p is related
to the photon self-energy by the relation

dR 2 1
& o ImIT T (9.30)

where ImIT), is the imaginary part of the retarded photon self-energy at temperature 7.
The relation is valid perturbatively as well as non-perturbatively, in all orders in
strong interaction, but in order ¢ in electromagnetic interactions (scattering of
emerging photons was neglected). Equation (9.30) is formally equivalent to kinetic
theory if the photon self-energy is approximated by loop diagrams of some finite
order.

The photon production rate due to annihilation and Compton scattering was first
calculated in [45-47]. The procedure will be discussed briefly. In kinetic theory, the

(a) (b)

Figure 9.10. Leading order Feynman diagrams contributing to direct photon production in QGP.
(a) Compton and annihilation process, (b) bremsstrahlung process.
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photon production rate (per unit time per unit volume) from the 1+2->3+y
process can be written as

d3l71 d3l72 . . 44 " I
R, = N/ 2E1(271')3 2E2(271')3f] (El)fz(E2)(27z) g ( +p P TP )

dzp d3p
x IM,|? 3 1+ f(E 9.31

IMi 2E,(2x)? 2E(2ﬂ)3[ A(E)] ©:31)
where M, is the amplitude for one of the basic processes, and f{E) are the Fermi—
Dirac or Bose distributions, as appropriate. The * in the last term corresponds to
Bose enhancement or Pauli blocking. Using Mandelstam’s variable, s, ¢, u, the
differential rate can be written,

dR,
- (2 TieE / dsde| M (s, 1) f dEdE,f(E\)f,(E,)

x[1 £ /,(E +E — E)|0(E, + E, - E)JaE} + bE,+ ¢ (9.32)

where

—(s + 1)

2s + 1)(Es — Eyt) (9.33)
st(s + 1) — (Es + Ezz)z.

b

¢

For massless particles, amplitude M is related to the differential cross section as
do M’
At l16zs”

For Compton and annihilation processes, the differential cross sections are

(9.34)

annihilation 2 2
do _ Sﬂazts u +t 9.35)
dr 9s ut
Compton _ 2 2
do _ Tmoa U+ s . (9.36)

dt 357 us

N = 20 for the annihilation process when summing over u and d quarks and
N = ? for the Compton process. The cross sections have poles at ¢t and/or u =0.
The divergences can be screened following the Braaten, Pisarski formalism [48].
Here is the final result obtained in [45], where quantum statistics was neglected,

g9R _Saa . exp(—?) ln( 2912 E) (9.37)

&p 9247 g T

Initially it was thought that Compton and annihilation processes would dominate
the photon production mechanism. In the lowest order, the 2 — 2 rates are O( ge’

The 2 — 3 bremsstrahlung rates O(g4e2) should be negligible. However, it was
realized later that bremsstrahlung processes can contribute at the same order as
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Compton/annihilation processes. Bremsstrahlung processes can have collinear
singularity (the emitted photon is collinear with quarks) when they contribute to the
same order O(g2e2). The importance of the bremsstrahlung process was first con-
sidered in [49-51], however, the Landau-Pomeranchuk—Migdal (LPM) effect
(when photon emission is suppressed due to multiple collisions) was neglected. Arnold,
Moore and Yaffe [52] made a complete calculation in leading order. The calculations
are quite involved and beyond the scope of this book. They also provided a simple
parameterized form for easy use in hydrodynamics. The results are listed below.
Leading order photon emission rate from QGP:

dRr
B = AR In(T fm) + Coi(k/T)] (9.38)
with
Co = % InQk/T) + C,_,(k/T) + Cp ., (k/T) + C,,,1, (k/T). (9.39)
The leading log coefficient A(k) is given by
mOO
A(k) = ZaldF Z qi2:|7nf(k) (9.40)

where n.(k) = [exp(k/T) + 177" is the Fermi distribution function, and dj is the
dimension of the quark representation (drp= N.=3 for QCD). ¢;= 2/3 for up quarks
and —1/3 for down quarks. m_ = gs2 T? / 3 is the thermal quark mass in the leading

order, g, being the strong coupling constant (a, = gs2 / 4r). For two-flavor QCD,

40;;T2a n, (k)

A(k) = o (9.41)

The strong coupling a, = i—i is defined at a scale of order of the temperature (7).
Co _»(kIT), Corem(kIT) and Conpnin(k/T) all involve multidimensional integrations,
which can only be solved numerically. Numerical results for QCD plasmas are
reproduced quite accurately by the approximate phenomenological fits [52],

Cy_»(x) = 0.041x7" = 0.3615 + 1.01¢7", (9.42)
N; 0.548 log (12.28 + 1/x
Crrem(X) + Cppn(x) = \/@ g( 2 )
X
0.133x

(9.43)

—_
V1 + x/16.27

Thermal photons from the hadronic phase. Photons are also emitted from the
hadronic phase. For example, as shown in figure 9.11, a 7" meson can annihilate a 7~
meson to produce a photon and a p° meson. Photons are emitted in several reactions
in the hadronic phase. J Kapusta, P Lichard and D Seibert [45, 46] evaluated photon
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Figure 9.11. Feynman diagrams for photon production in hadron gas from z*z~ annihilation.

production rates from hadronic channels: (i) #+z—p+y, (i) z+p—onty,
(iii)) z+zx—>n+y, (iv) z+yn—->n+y and (v) w - z+y. The role of 4, resonance
in photon production was investigated in [53]. Later, in a more comprehensive
analysis [54], hadronic photon production rate in a meson gas consisting of light
pseudo-scalar, vector and axial vector mesons (7, K, p, K*, A;) was obtained.
A parameterized form was also provided. Below, we reproduce the parameterized
reaction rates.
Photon emission rate from the hadronic phase:

2.3094
EIRest s oy rn o —(1.4617%"" + 0.727)
3 - p 0.86
&’k (2TE)
1.4094 E
+ (056674 — 0.9957)—]
T
pIReep _ FHE)- x exp[ ~(9.31477% — 5.328)2TE)""™
d’k T° ' ‘
0.721 E
+(0.31897°7 — 0.8998)7]
1.26
pBs _ pip Lo (354597 +18.827) o E
REA T2 (2TE)(—1A44T0']42+0A9996) T
dR, -
E—Z2 28 = FYE)T x exp —LSIOS +(2.3894700 — 3.222)E
&k (2TE)" r
anK—»K*y 4 1 —0.6864 0.07 E
E— = FUE) 5 X exp[—(5.4018T — 1L51)QTE)" - 091?]
dR 0.93867"" + 0.634
Pf—’K}’ — F4(E)T3.5 X exp _( — )
&’k (2TE)
0.5397 E
+(0.5687°% — 1.164)—]
T
1.889
L (=6.0967"* + 1.0299) 0.06E
&k (2TE)(—1613T]2'162+04975) Ul
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In the above equations, the £ and T are in GeV and the rates are in units of
GeV 2 fm 2 The dipole form factor F(E) is

XY
F(E)=|—— A =1GeV. 9.44
(E) ( e E) (9.44)

The photon production rate from the QGP phase and the hadronic phase has to
be convoluted over the four-volume to obtain total photon production during the
evolution of the fireball,

dNT o (AR dr
EW = fd X(Ed3k) = /rdrdxdydn(Ed3k). (9.45)

There are several simulations for direct photon production in relativistic heavy
ion collisions. For demonstration purposes, we will show a few results. In the left
panel of figure 9.12, transverse momentum dependence of the invariant cross section
in /sy =200 GeV p+p collisions and invariant yield in </sy =200 GeV Au+Au
collisions are shown. The p+p data are from [55]. The Au+Au data are from [56, 57].
The three curves on the p+p data represent NLO pQCD calculations. For pr> 2
GeV, the pQCD calculation is consistent with the p+p data within the theoretical
uncertainties. The dashed curves for the Au+Au data are obtained by scaling the
photon yield in p+p collisions by the nuclear overlap function 74 4. At low p7r<2.5
GeV, experimental Au+Au data are under-predicted. At low p7, photon production
increases faster than the binary NN collision scaled p+p cross section. The solid lines
in figure 9.12 are fits with an exponential plus binary collision scaled p+p data.
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Figure 9.12. Left panel: invariant cross section (p+p) and invariant yield (Au+Au) of direct photons as a
function of p7. See the text for details. The figure is reproduced with the author’s permission from [56]. Right
panel: thermal photon production in 0-10% Au+Au collisions at /5 =200 GeV in different hydrodynamical
models [58-62] are compared with experimental data. Reproduced from [62] with permission.
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In the right panel of figure 9.12 experimental data on direct photon production in
0-10% Au+Au collisions are compared with different hydrodynamical model cal-
culations. All the hydrodynamical simulations are comparable to the experimental
data and with each other within a factor of 2. The results confirm the dominance of
thermal radiation in the direct photon spectrum in the low and intermediate pr
range.

9.4.2 Dileptons

Similar to photons, dileptons are also emitted at every stage of heavy ion collisions.
In the QGP phase, a ¢7 can interact to form a virtual photon, which subsequently
decays into a lepton pair or dileptons, g + 7 — y* = [* + [ (I=e or p). In the
hadronic phase, dileptons are produced from interactions of charged hadrons with
their anti-particles, e.g. 7 + 7~ — p— I + [~ from hadronic decays, e.g. z° — /" +
T +y,p=I"+1, 0—=1"+1",¢—1"+1, etc. Dileptons are also produced in the
Drell-Yan process (in the Drell-Yan process, a valence quark from the projectile
hadron interacts with a sea anti-quark from the target hadron to form a virtual
photon, which then decays into a lepton pair). Depending on the dilepton invariant
mass (M), dilepton emission can be classified into three distinct regimes. In figure 9.13,
invariant mass (M) dependence of dilepton production in high-energy nuclear
collisions is shown schematically. One can distinguish three distinct regions, (i) M <
M 4(=1.024 GeV) where the dominating source of dilepton production is vector meson
decays, (i) My< M < My, (=3.1 GeV) where the dominant source is the thermal
production from QGP and (iii) M > M, which is dominated by primordial emission,
decay of charmoniums, etc.

In the following, we briefly discuss the dilepton emission rate in QGP and in
hadronic resonance gas. As for photons, emission rates are to be convoluted over the
space-time volume to obtain production yield in nucleus—nucleus collisions. For
more details see [42].

7%, Dalitz-decay
P

dN,./dydm

MMy Mo<M<M,yi  M2M,py

invariant mass

Figure 9.13. A schematic presentation of invariant mass dependence of dilepton production in high-energy
nuclear collisions.
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The dilepton production rate from a thermal system at temperature 7, in
a reaction, a* + a — "+ [, where a is either a quark or a pion, was obtained
in [63, 64]. From quantum electrodynamics (QED), one can calculate the cross
section for e" +e” = u" +u",

dr o’ 2m/? 4m? -

where M is the invariant mass of the u* = pair, a is the fine structure constant
(a=1/137) and my, is the mass of u. For ¢7 annihilation, the above is multiplied by
the color factor N.=3, and a factor reflecting the fractional charges of quarks.
The modified cross section is

o(M) = E&(M) (9.47)

F,=N@2s+ 17 )¢/, (9.48)
S

where s is the spin of quarks, eis the fractional charge and the sum is over the quark
flavors. In the hadronic phase, in the vector meson dominance mode, dilepton
production goes via the reaction, z* +z — p—["+/". The quantum electro-
dynamics (QED) cross section is then multiplied by the Breit-Wigner form factor,

4

m
E(M) = ; 2”2 -~ M, ~ 770 MeV [, ~ 150 MeV. (9.49)

(mﬂ -M ) +m

The dilepton cross section from z* z~ annihilation then becomes

1/2
4 2
6, (M) = 5<M)5<M)[1 - ] . (9.50)
Kinetic theory gives the reaction rate (number of reactions per unit time per unit
volume),
3

dp dp, o
(2ﬂ)3mf(pl)f(p2) x o(ata” = ')y, (9.51)

R(a+a_ - l+l_) =

where f{(p) is the occupation probability at momentum p and energy E = | M* + ma2 .
Relative velocity v, can be computed as,
[ p)* = m!]
V., =
rel l;1 E2

172

(9.52)

Approximating f(p) = exp(—E/T), and integrating over five of the six variables,
T >
Raa = 1) =—— [ (22 - 422)K,(2)d 9.53
(ata” — I'T") o ). o- (2% - 427K (2)dz (9.53)

with z=MIT, z,=m,/T and K, is the modified Bessel function of the first kind.
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Apart from the total number of lepton pairs emitted per unit space—time volume,
R = div , one is interested in several differential rates. They can be obtained from
equation (9.51) by an appropriate change of variables. The rate for producing lepton

pairs with invariant mass M is
dN  o(M)
d'xdM*  2(2n)*

M TK, (M/T)[ 4]‘”; ] (9.54)

The production rate of lepton pairs with invariant mass M, momentum p and

energy E (E = /Jp* + M?) can be written as

dN c(M) _ , 4m?
E = o) E/T)| 1 - . 9.55
Tddldy — aany ! P )[ e ©-53)

We will not discuss any hydrodynamic simulation for dilepton production here.
Dileptons have been measured in SPS energy (/s = 17.4 GeV). Hydrodynamical
simulations under-predict low invariant mass dilepton yield. In the low invariant
mass region, dilepton emission is largely mediated by the p meson. Now, properties
of a hadron can change in a medium. Due to medium effect, the p meson mass may
drop, or its width increase. These two effects are considered as a likely cause of
underestimation of low mass dilepton yield in hydrodynamic simulations. Currently,
experimental data do not distinguish between these two effects. For a more detailed
account, please see [42]. We may mention here that dileptons are possibly better
suited to probe QGP than direct photons. In contrast to photons which are
characterized by the transverse momentum, dileptons are characterized by two
parameters, the transverse momentum and invariant mass. For differential diagnosis,
an increased degree of freedom may be useful.

9.5 Jet quenching

Jets are clusters of hadrons, all moving approximately in the same direction. In
hadron-hadron or e"e  collisions, one generally observes two-jet structures
with back-to-back momenta. In the left panel of figure 9.14, an experimental
reconstruction of the final state particle trajectories is shown. The two-jet structure is
clearly evident in p+p collisions. In nucleus—nucleus collisions, the jet structure is not
obvious due to the large number of particles (see the right panel of figure 9.14).
However, jets are there and one can use a ‘jet algorithm’ to find them.

Jet structure in hadron—hadron collisions can be understood qualitatively in
pQCD. The jet properties depend, in general, on two scales: the energy of the jet and
its virtuality, specified by the largest possible transverse momentum of one of its sub-
jets. The basic two-body reaction 1 +2 — 3 +4 is in the partonic (quark or gluon)
level. The scattered partons are highly virtual (squared four-momentum transfer is
large) and reduce their virtuality by radiating gluons or by splitting into quark—
antiquark pairs. Such parton branching is governed by Dokshitzer—Gribov—
Lipatov—Altarelli-Parisi equation. Finally the partons fragment into hadrons. The
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Figure 9.14. Left panel: an experimental reconstruction of an event in pp collision. The two-jet structure is
clearly seen. Right panel: the same for an event in Au+Au collisions. Notice that due to the large number of
particles in the final state, the jet structure is obscured. The figures are reproduced with permission from the
STAR group’s website (www.star.bnl.gov).

/

|

Figure 9.15. Qualitative understanding of jet quenching. Left panel: two scattered quarks fragment into two
jets in a vacuum. Right panel: in a medium, one of the scattered quarks loses energy inside the medium and
gets suppressed.

characteristic collimated hadrons from fragmentation of outgoing partons are called
jets (see figure 9.15). Naturally, the most common structure seen is the two-jet event.
Three-jet events are also seen and result from reactions such as g7 — ¢g7g. From
theoretical considerations, Xin-Nian Wang and Miklos Gyulassy predicted the jet
quenching phenomenon [65]. They argued that a partonic jet, if traveling through a
medium, will lose its energy by gluon emission. A schematic representation is given
in figure 9.15. The energy degraded parton will ultimately fragment into a lower
number of particles than it would have in the absence of the medium.

After the prediction of the jet quenching phenomenon, both the PHENIX and
STAR collaborations discovered the phenomenon in Au+Au collisions at the RHIC
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Figure 9.16. Left panel: STAR experimental results on two-particle correlation in the azimuthal plane, in
VS yn =200 GeV, p+p, d+Au and Au+Au collisions. Note the two-peak structure in p+p and d+Au collisions.
In Au+Au collisions, however, the away side peak has vanished. The figure is reproduced with permission
from [69]. Right panel: STAR measurements for the nuclear modification factor in central Au+Au and
minimum bias d+Au collisions at the RHIC energy /s =200 GeV. The figure is reproduced from [69] with
permission.

[66—69]. In the left panel of figure 9.16, di-hadron correlation in the azimuthal plane,
in p+p, d+Au and Au+Au collisions, is shown. The data are obtained in the fol-
lowing manner. A high pr trigger particle is fixed and in coincidence with the trigger
particle, associated particles are measured as a function of the azimuthal angle.
A 4 = Passociate ~ Purigger 18 the difference of the azimuthal angle between the trigger
and associated particles. In p+p and d+Au collisions, di-hadron correlations show a
double peak structure, which can be understood in terms of two-jet events. The peak
at A¢ =0 is called the near side peak (nearer to the trigger particle) and the peak at
A¢ =r is called the away side peak (away from the trigger particle). In Au+Au
collisions, however, the away side peak is strongly suppressed. Strong suppression of
the away side peak is the experimental evidence of jet quenching. The understanding
is as follows (see figure 9.15): a di-jet is produced near the surface of the medium.
One of the jets escapes into the vacuum and fragments. The other enters the medium
and loses its energy in the medium before fragmentation.

Another manifestation of jet quenching is the high p; suppression, i.e. smaller
number of high pr particles in A+A collisions than in p+p collisions, scaled by the
collision number. High pt suppression is usually expressed in terms of the nuclear
modification factor (R, ),

dn* / dydzpT
T, de” [dydp,

(9.56)

where T,, in equation (9.56) is the nuclear thickness function, calculable in a
Glauber model. If AA collision is a superposition of pp collisions, the expected ratio
is unity. In the right panel of figure 9.16 STAR measurements for R, 4, for charged
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hadrons, in </ =200 GeV central Au+Au collisions and in minimum bias d+Au
collisions are shown. In Au+Au collisions, hadrons are largely suppressed at high
pr. Ind+Au collisions, on the other hand, hadrons are not suppressed. Rather, in the
intermediate pt range, they are enhanced. Enhancement in d+Au collision is
understood as the ‘Cronin effect’ [70]. The Cronin effect was discovered in proton—
nucleus collisions in the 1970s [70]. It was observed that in proton—nucleus collisions,
at intermediate pt range, the transverse momentum spectrum is hardened compared
to proton—proton collisions. The hardening disappears at very large pr. A corre-
sponding depletion was seen at low transverse momenta, accompanied by a soft-
ening of the spectrum. The effect can be understood in terms of multiple scatterings
of partons from the proton off partons from the nucleus. As a result of such
scatterings, the partons acquire a transverse momentum kick, shifting their
momenta from lower to higher values, causing the observed enhancement at high pt
and depletion at low pt. At very high pt, due to a higher twist effect, multiple
scatterings are suppressed by powers of pt. While charged particles do show high pr
suppression in Au+Au collisions, photons are not suppressed. This provides strong
evidence that high pt suppression is not an initial state effect, but a final state effect.
A high density colored medium is created in the collision and causes the suppression.

Qualitative and quantitative understanding of jet quenching can be obtained
in QCD. In leading order pQCD, the production cross section for the hadron /4 in
A+ B — h+ X reactions can be written as

E— =K Z fdx /dth/A Xy )b/B(xb’ QZ)

p h ab—cd

X 8(s + 1 + u)id—"(ab = cd)D,,(z. 1). 9.57)
nz, dt

C

In equation (9.57), fora(x,0%) is the structure function of the parton « in the
hadron A, f;/5(x, O°) is the structure function of the parton b in the hadron B. The
Q7 is the factorization scale 1s the partonic cross section for the reaction a + b —

ct+d. Dh/(7( Z, W1 ) is the fragmentatlon function for the parton c¢ into hadron 4, u*

being the fragmentation scale. z, = i—’ is the fraction of the partonic energy carried
by the hadron 4. K in equation (9.575 takes into account higher order effects. They
can be partially included by generalizing the parton distribution to account for the
intrinsic kr smearing,

—kf(kr)?

) _e
L3 ke, @) 2 (%, ©7)g(Ky) g(kT)——ﬂkT)Q (9.58)

where the width (k) of the Gaussian is related to initial state vacuum radiation.
Parton energy loss in the medium effectively modifies the ‘vacuum’ fragmentation
function. In the first approximation, this effect can be taken into account by
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replacing the vacuum fragmentation functions by effective ‘in medium’ fragmen-
tation functions,

Z('Dh,/L'(Zc’ luz) = Z('ID/l/c(Zc,’ /’tz) + ZgD/l/g(Zga ”2) (959)
/ b, D,
= — =——. 9.60
B Y R

The first term is the fragmentation function of the parton ¢ after losing energy AE
(P, ¢) due to medium induced gluon radiation. The second term is the feedback due
to the fragmentation from the radiated gluons. The fragmentation function D,,(z) is
a rapidly falling function of z and increase in z will lead to reduced production for
the hadron 4. Parton energy loss AE is important in quantifying the high p7 sup-
pression. AE can be decomposed into collisional and radiative contributions. While
the former originate from the energy transfer from the moving parton to the medium
particles, the latter are caused by radiation from the moving particle.

9.5.1 Collisional energy loss

Consider the propagation of a test parton Q through a partonic medium. It suffers
energy loss in elastic collisions with the constituents (quarks and gluons) of the
medium. The energy loss per unit length can be obtained by integrating the differ-
ential cross section, weighted by the energy loss @ = Ej, — Eqyy,

dGQP—’QP

dE
b)) /d%pp(k)/duw - (9.61)

P=49.8

where p, and p, are the quark and gluon density of the medium, J is the flux factor
and ¢ is the usual Mandelstam variable. For < s,

de?=r 2ra’
~ C : 9.62
dt g ©62)
with C, = NzT_Zl, C,=1. In the limit of massless quarks, several approximations can

be made. The cross section is singular and Bjorken [71] first evaluated collisional
energy loss with two reasonable upper and lower limits,

N
_9E 8 1+ 2 | tog L (9.63)
dz 3 ° 6 q.:

Bjorken’s estimates for the upper and lower limits were, ¢ = V4TE and
dmin=A=0.5—1.0GeV. The arbitrary lower limit can be eliminated if the plasma
screening effect is accounted for [72]. The first field theoretic treatment of collisional
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energy loss was given by Braaten and Thoma [73, 74]. For a quark of mass M,
average energy loss per interaction was defined as

dr'(E, E')

o (9.64)

AE =~ / dE'(E - E')

where % is the differential interaction rate. Average distance between interac-

. . o . ) .
tions being Az = , energy loss per unit length can be obtained as

f dE'(E - E)dr(EE) (9.65)

The interaction rate I' is related to self-energy. Introducing a separation scale g*
between soft and hard scattering, they calculated collisional energy loss for heavy
quarks. For ¢ < ¢* screening is included by using the effective perturbation theory
for high temperature QCD (hard thermal loop) developed by Braaten and Pisarski
[48]. Tree level diagrams are sufficient for ¢ > ¢*. The method was used by Thoma
[75] to calculate energy loss for light quarks. When the two contributions are added,
the arbitrary cut off ¢* drops out, leaving only the undetermined upper limit of
momentum transfer ¢ = §. The result is [75]

N, JGT
_d_Ezg 2T2(1+ 6)1og[2Nf/2<6+Nf>0920 ] (9.66)

dx m,

where ¢ is the upper cut off for the momentum transfer. m, is the effective gluon
mass defined as m, = pu/3, with Debye screening mass u = /1 + N, /6 gT.

9.5.2 Radiative energy loss

Gluon radiation is the dominating mechanism for parton energy loss in a dense
medium. A hard parton passing through the medium interacts with various scat-
tering centers and splits into an outgoing parton and a gluon (figure 9.17).

-LH-\L Eparton

AE

Wk,

X X X X X

Figure 9.17. A typical diagram showing gluon radiation from a parton passing through a medium. X repre-
sents the scattering centers.
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Discussions on energy loss in the medium are generally characterized by the fol-
lowing variables: (i) the mean free path 1= 1/(po), p the medium density and o the
particle medium cross section, (ii) the opacity N = L/A or the number of scattering
centers in a medium of thickness L, (iii) the Debye mass mp(T) ~gT, g the coupling
parameter, (iv) the transport coefficient § = m /A, which controls the radiative
energy loss and (v) the diffusion constant D = u,., T characterizing the dynamics of
heavy, non-relativistic particles, umo, being the mobility of the particles, i.e. the ratio
of drift velocity and applied force.

One generally calculates the radiation spectrum a)j—:) or
energy loss as

dr7

s and obtains the
wd K

E ek dl Eodr

The calculation procedure for radiative energy loss is rather complex. Several
methods have been proposed, e.g. the BDMPS [76, 77], GLV [78, 79], Arnold,
Moore and Yaffe [83-85] and higher twist [86, 87] methods. In the following, some
qualitative results for parton energy loss will be discussed. More detailed informa-
tion may be found in [88-92].

Energy loss of a charged particle in a medium is a well-studied process in QED. If
A is the mean free path of the charged particle, depending upon the thickness of the
medium (L), one can distinguish two regimes: (i) the Bethe—Heitler regime (L < 1),
when scattering centers act independently, and (ii) the LPM regime (L > 1), when
multiple scattering centers act coherently and radiation is suppressed compared to
the Bethe—Heitler regime.

Discussions on radiative energy loss are facilitated by considering the formation
time or length. The formation time/length can be interpreted as the length at which a
photon/gluon of energy w emitted at angle 6 acquires a phase of order 1 in the frame
moving with the particle. It can be obtained as

=0t =kl =10 - o? = 06%) ~ lop® (9.68)
giving
Ioom— =2 ky = wé. (9.69)
o T

The important point is that even if the particle scatters several times before tra-
veling the distance /qp,, it can emit only one photon/gluon of energy @ with transverse

momentum k7. It is then possible to distinguish between three regimes.
(i) The Bethe—Heitler regime. For I, << 4, each scattering center acts as an

independent source of radiation. The induced gluon spectrum is thus
proportional to the (Bethe—Heitler) gluon spectrum induced by a single
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scattering. In this regime, radiation spectrum per unit length, in the limit
E — oo (neglecting logarithmic factors), behaves as

d/

w
dwdz

(9.70)

BH

The energy loss per unit distance d—f can be obtained by integrating the
gluon spectrum over 0 < w < E. In the Bethe—Heitler regime,
dE 1

Ll A EN-E (9.71)
dz - T A

The LPM regime. For A < ljorm << L a group of scattering centers acts as a
single scattering source. Let /., be the coherence length associated with the
formation time of a gluon radiated by a group of scattering centers acting
coherently to produce the radiation,

w
lcoh e w— (972)
</€]g > lcoh
with
) e o 9.73)

coh A coh

with p the typical momentum transfer in a single scattering and N, the
number of coherent scatterers. One can estimate

A %) %)
lon® |05 Nypyr |— = | 9.74)
" /‘2 : /1/42 E by

where the LPM energy scale Ep py = Au? is introduced. Radiation spectrum
per unit length can be obtained as

B U O e T S L B 2
dodz|,, Ng dodz|, 7 A\ o r Nlo’ '

Compared to the Bethe-Heitler regime, radiation is reduced by the
factor \/ E| /@ due to the coherence effect. The energy loss per unit length
is easily obtained,

_dE
dz

2
. N,
4N % = ﬂfq/ELPME. (9.76)
T

T

LPM
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(iii) The factorization regime. For l..,>> L, when a)>a)fact=L2/42//1, all the
scattering centers in the medium act coherently as a source of radiation.
Neon can be estimated as /4 and the radiation spectrum as

P U L B e (9.77)
dodz|,, N, dodzl, = "L

Energy loss in this regime can be estimated as

dE

. : k]
~ ab ]VC H a)fam — as M( T>
/s A 7 A

L. (9.78)

z fact
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Appendix A

A.1 Natural units

Throughout this book, we have used natural units. In relativistic quantum
mechanics, algebraic equations are considerably simplified by natural units. In
natural units, universal constants,

speed of light in vacuum: ¢ = 2.99792458 x 10*ms™, (A.la)

reduced Planck constant: # = Zi = 1.054571596 x 107 Js, (A.1b)

T
gravitational constant: G = 6.673 x 107" m’kg™' s, (A.1lc)
Boltzmann constant: k = 1.3806503 x 107 JK™', (A.1d)
=8.617352 x 107 eVK™ (A.le)

are set to unity,
c=h=k=G=1. (A2)
All the observables can then have only one dimension, say that of energy.
[Energy] = [Mass] = [Temperature] = [Length]™" = [Time]™

In relativistic quantum mechanics, equations generally contain a multitude of #
and ¢. Algebraic equations are considerably simplified in natural units. The equations
can be restored to normal units by inserting appropriate powers of the fundamental
constants. As an example, consider the energy—momentum relation in natural units,

E*=p*+ M. (A.3)
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It should be calculated as,
E* = pc® + M*c*. (A.4)
It is useful to remember the conversion factors,

hc = 197.33 MeV-fm (A.5)

IK = 0.0862 MeV (A.6)

A.2 Planck units

In 1906 Max Planck introduced three units for mass, length and time, now famous
as Planck units. The important point is that they are constructed with the funda-
mental constants, speed of light in vacuum (c¢), reduced Planck constant (%) and
Newton’s gravitational constant (G). The three fundamental constants are related to
three very basic aspects of our Universe: # signifies the quantum aspect, ¢ the
relativity and G the gravitational phenomena. Planck units thus embody the three
very basic aspects of the Universe.

nG

Planck Length: L, = ,|— = 1.6 X 107 cm (A7)
c
Planck Mass: M, = /% = 1.3 x 10" GeV (A.8)
. hG —44
Planck Time: 7, = |— =54 x107"s (A9)
¢

The explicit form of the Planck length, mass, or time can be obtained from
dimensional analysis. For example, for the Planck length, we can write

L, = c"Grm (A.10)
= [Lr ] [m~L T2 [ 7" (A.11)
— Lnl+3n2+2r13T—n1—2n3—n3M—"z+”3. (A12)

For L, to have the dimension of length, it is then required that

n+ 3n, + 2ny; =1 (A.13)
—ny—2n, —ny=0 (A.14)
-n, +n,;=0. (A.15)
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One easily obtains for the Planck length, L, = |26

3
C
One can also write down the expression for Planck temperature.
(,‘2
Planck temperature: M’T =1.42x 107 K.

A.3 Wick’s theorem

In quantum mechanics, one essentially calculates the vacuum expectation value of
an operator A. The expectation value of any operator can be written as the product
of creation and annihilation operators. Wick’s theorem gives a simple prescription
for the evaluation of a product of any number of creation and annihilation opera-
tors. Proof of Wick’s theorem can be found in any standard textbook on quantum
electrodynamics. Here, we simply state the theorem. Wick’s theorem can be stated as
follows.

(1) The vacuum expectation value of the product of any number of creation
and annihilation operators is equal to the sum of the products of all
possible expectation values of these operators taken in pairs (contraction).
In each pair, the factors must be placed in the same order as in the original
product, which may require interchanging of the operators. For fermions,
each interchange of operators will bring one negative sign.

(ii) The vacuum expectation value of 4'a’, aa is zero.

If /i,. is either a creation (a") or annihilation (a) operator for bosons, Wick’s
theorem can be stated more formally as

<AAIAAZ‘ . 'AAm—lAAm> = Z(AAIAA2><AA3AA4> . '<AAm—1AAm> (A16)
P

where the sum runs over all distinct permutations of m-indices. The above equations
can also be written as

~ ~ A A

(44,... 4, \A,) = (4 4,)(44,..A,) + (4 4;)(4,4,..4,)
+ ... (AA,)(A,A4,. .A,_), (A.17)

and then applying this relation recursively to all of the multiple operator averages
until only pairs of operators remain. If the number of operators is odd, Wick’s
theorem gives the simple result,

</11/12---/12m1‘izm+1> =0. (A.18)

Wick’s theorem is augmented by the commutation relations for creation and
annihilation operators, which for bosonic systems are

[af, a_;] =[a,a]=0 (A.19a)

la. a] =06, (A.19b)
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For fermions, the commutators should be changed to anticommutators',
{af, aj} ={a,a} =0 (A.20a)

{a, a/} = 0. (A.20b)

i Y

For illustrative purposes, we evaluate the product of four-operators. For bosons,
it can be evaluated as

~

<1‘11/12/13A4> = </i|/iz></i3/i4> + </i|/i3></12/i4> + </i|/i4></12/13> (A.21)
or for fermions, it can be evaluated as
</11/12/13"i4> = <AAIA\2><"‘13A4> - </11/i3></12"i4> + </11/i4></12"13>- (A.22)

Note that the sign of the second term is changed. For the second term, we have to
interchange: 1234 — (—)1324. The third term requires two consecutive changes,
1234 - (—-)1243 — (—)(—)1423.

Let us consider a specific example where,

A =al  Ay=a] A =a A, =a,. (A.23)

pz p]
The product, <an1 agzapzapl> can be interpreted as destruction of a particle of

momentum p,, destruction of another particle of momentum p, followed by creation
of a particle of momentum p,, followed by creation of another particle of momen-
tum p,. Using Wick’s theorem, the expectation value can be written as

<a;1a;2ap2ap1> = <a;1a;2><ap2apl> + <a;1ap2><a;2apl> + <a;1apl><a;2ap2> (A.24)

= i(a;la[,2> <a;2ap1> + <a;1ap1><a;2ap2>. (A.29)

The = signs are, respectively, for bosonic and fermionic systems.

A.4 The density matrix

Consider a quantum system with Hamiltonian H. Let the eigenfunctions be ¢,

Hig) =¢,|8). (A.26)

'The commutator of two operators A and B is defined as

[4, Bl = AB — BA.

The anticommutator of two operators A and B is defined as

{4, B} = AB + BA.

A4
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One defines a pure state |y) as the linear superposition of the eigenstates,

) = Ycle) (A27)

n

Pure states can be represented by a ‘ray’ in Hilbert® space. The expectation value
of an operator 4 in the state y is evaluated as

(A) = (wlAly) = Yc,cx (e |4]a,). (A.28)
If we define a matrix, p, as
f,, = e, (A.29)
the expectation value can be written as
(4y=Yp A, =TrpA] (A.30)

where TrA is the summation of the diagonal elements of the matrix 4. p is called the
density matrix of the system in state . It can be equivalently expressed as

p =yl (A.31)

The definition of a density matrix can easily be extended to non-pure or mixed
states. In a mixed state, the wave function is an incoherent superposition of a
number of pure states [y ') with a statistical weight factor p® such that ka(k) =1

In each pure state y/, the operator 4 has an expectation value (4), = () Alyp™).

The expectation value in the mixed state is then obtained as

(A=Y (w4ly®) = Yp YePei® = Y, X eler® (g |4l )
k k m,n k m,n
=2 {a|48) X pcPei®. (A.32)
m,n k
If we define the density matrix p as
EDY A (A.33)
k
or equivalently,
Pon = 200" (A34)
k
the expectation value in the mixed state is again evaluated as
()= YoA,p,, = Trldp). (A.35)

m,n

2 Hilbert space is a generalization of Euclidean space in finite or infinite dimensions. It is defined as a real or
complex vector space with a definition of inner product.
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Evaluating expectation value is the same for pure or mixed states. The only
difference is the way in which the elements of the density matrix p are obtained.
A density matrix has the following properties.
(i) The condition that (A4) is real for every Hermitian operator 4, requires p to
be Hermitian,

n, =0 (A.36)

mn nm "

(i1) The condition that the unit operator J has the mean value 1, requires trace
of p to be unity,

(I) = Tr[pI] = Trp = 1. (A.37)

(iii) p is positive definite, i.e. every diagonal element of p in any matrix repre-
sentation must be nonnegative,

P 2 0. (A.38)

(iv) The Hermitian matrix p can be reduced to diagonal form by a unitarity
transformation,

PO =D Tt T (A39)

m,n

Denoting the diagonal density matrix by p,, we have

2
Zp,f < (Zpk] = (Trp)* =1 (A.40)
k k
or
Trp* < 1. (A.41)

Trp® = 1 only for pure states. For a pure state, all but one diagonal element of P,
is zero. The non-zero element has a value of 1. In a pure state, the density matrix is
idempotent operator p> = p. For a mixed state, diagonal elements give the prob-
ability of occupying a quantum state |k). The off-diagonal elements p ., n # m are
called coherence. Since p is Hermitian and can be diagonalized, it is always possible
to choose a basis where coherences are zero.

The time evolution of the density matrix can be easily obtained from the time
dependent Schrodinger equation,

oy) _ i ol

W~ = Hpy)

i
= +XwlH A42
ot 7 ot i (A42)
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dp _ 0 dy) (vl
. - 7 + 7
py atIl//><l//| py wl + ly) o

i i i
=~ Hw) Wl + —lw)wiH = ——{Hp — pH]

i
= ~{H.p]. (A.43)

The above equation is called the von-Neumann equation.

Formally, the density matrix is an alternative representation of the state of a
quantum system where wave function is not directly used to calculate the expecta-
tion values. Indeed, one prefers equation (A.35) to be the definition of the density
matrix rather than equation (A.34). It represents a minimum set of input data which
serves to calculate the mean value of any operator 4 for a system prepared according
to given specifications. The information from which this set of data is derived is
equivalent to a knowledge of the mean values of as many independent operators A4,
as there are independent parameters in the matrix p . In fact the initial information

on the state of the system is often conveniently expressed as a set of (4’) from which
the p —are determined by solving a system of equation (A.35), one for each (4").
Equation (A.35), which gives ((A4)) for a generic A in terms of the matrix p, may be
looked upon as a device to calculate a generic ((4)) from advance knowledge of a
special set of ((4')).

A.5 The SU(N) group

A group G is a set of elements {a,b,c,d...} for which a ‘multiplication’ operation is
defined with the following properties:

(1) Closure: ifa, b€ G thena -b € G.

(i1) Identity: G contains an ‘identity’ element [/ € G such that a - I =

I-a=a.

(iii) Inverse: For every a € G there is an inverse element ¢~' € G such that
a-a'=a'-a=1.

(iv) Associativity: the multiplication operation is associative, i.e. a - (b - ¢) =
(a-b)-c.

Groups can be finite (group elements in finite number), infinite (infinite number of
group elements), discrete or continuous (group elements vary continuously). Sym-
metry transformations such as parity operations form a finite, discrete group, with
two elements, P and I, with P? = I. Groups of all integers with addition as the
‘group multiplication’, and zero as the identity element is a discrete group, with an
infinite number of elements. A group is called continuous when group elements are
defined in terms of parameters that take continuous values. Rotation about different
axes forms a continuous group.
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The abelian and non-abelian groups. When a multiplication operation is commutative,
a-b=b-a (A.44)

the group is called an abelian group®, otherwise the group is non-abelian.

The Lie group. The Lie group is named after the Norwegian mathematician
Marius Sophus Lie. He invented the theory of continuous symmetry. A continuous
group where group elements are analytic functions of the parameters is called a Lie
group. The Lie group has a special structure: all group elements can be written as

g =¢exp (ZiRiZ] (A.45)

where 7T, are Hermitian matrices and R, are real numbers. The 7] are called the
generators of the Lie group.

Special unitary group SU(N) is a Lie group, isomorphic to that of all N X N
special unitary matrices,

detU = 1 (A.46a)

U'U=1. (A.46b)

In general N x N complex matrices have 2N” arbitrary real parameters. The
condition U'U = 1 imposes N> conditions and detU = 1 an additional one. Hence
SU(N) has N* — 1 arbitrary parameters. Correspondingly SU(N) has N> — 1 gen-
erators, T, obeying,

y=

N
[7.5,]=1Xr,T. (A.47)

r=1

/ 5 are the ‘antisymmetric’ structure constants (change sign for interchange of
consecutive indices, [ 5 =—f, 5= fy aﬁ). One immediately notes that SU(N) is non-
abelian, and generators or group elements do not commute (in an abelian group,
structure constants are zero and generator and group elements commute).
Representation of group. An abstract group G may be represented by a set of
matrices D(G). The set D(G) itself constitutes a group such that the correspondence
in the multiplication property is preserved: D(a - b) = D(a) - D(b) € D(G). If the
mapping G — D(G) is one-to-one, then the mapping is isomorphic and ‘faithful’,
otherwise it is ‘homomorphic’. If D(G) is a set of M X M matrices, the dimension
of the representation is M. If the matrices can be reduced to block diagonal form

3 The abelian group is named after the Norwegian mathematician Niels Henrik Abel. He, independently of the
French mathematician, Evariste Galois, invented group theory. Apart from group theory, Abel is famous for
his ‘impossibility theorem’, that general algebraic equations of order five or more cannot be solved analytically.
Abel was largely unrecognized during his lifetime. In 1829, he died at the early age of 26 years.
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(with at least two blocks), the representation is ‘reducible’, otherwise it is an ‘irre-
ducible’ representation. SU(N) has two irreducible representations:

Fundamental representation of SU(N ). If group elements are represented by N X
N matrices, the representation is called a fundamental representation.

Adjoint representation of SU(N). This is the representation of the generators.
Adjoint representation of SU(N) is generated by the structure constants f . They

can be used to define (N> — 1) x (N* — 1) matrices,

Foo=fp (A.48)

Matrices F, also satisfy the Lie algebra, [F, F] =if, F

abe ¢’

The Casimir operator. Casimir operators commute with all the group generators.
The SU(N) group has N — 1 Casimir operators. In the fundamental representation,
the Casimir operator is
N’ -1

C.=
F 2N

1, (A.49)

1,, being the N X N unit matrix. In the adjoint representation, the Casimir operator is

C,=Nly._,. (A.50)

a

Gell-Mann matrices, and act on the (color) basis states
X
x=|x] (A.51)

For the sake of completeness, we have noted the structure constants for SU(3) in
table A.1. The eight Gell-Mann matrices are also listed,

Naturally SU(3) has eight generators, 7, = %la, (a=1,2,.28). 4, are (3x3)

010 0 -i 0
/11:100 /1221009

000 000

1 0 0 001
=10 -10 Ay =10 0 0},

1

0 0 O 00 (A.52)

00 —i 000
As=100 0 A =10 0 11,

i 00 010

00 0 1 0 0
=100 —i ﬂg=%01 0 |

07 O 00 =2
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Table A.1. Structure constant for SU(3).

ijk 123 147 156 246 257 345 367 458 678

. 1 1 1 1 1 1 J3 J3

Jiik 1 - - - - - - - —
2 2 2 2 2 2 2 2

One does note that Gell-Mann matrices are generalizations of Pauli matrices:

01=((1) (1)) 62=(? _oi) a3=((1) _01). (A.53)

Mathematically, quark fields transform as the fundamental representation. A
generic SU(3) matrix can be written as

S = e 2, (A.54)
An infinitesimal element of the group is represented by the transformation,

x'=Sx (A.55a)

S=e x| — %a)a/la (A.55b)

where @ (a = 1, 2,...8) are arbitrary infinitesimal real numbers.

A.6 The Riemann zeta function

The Riemann zeta function is an extremely important special function of mathe-
matics and is frequently encountered in physics. It is a function of complex variable
s = (x + iy) and is expressed as the infinite series

« | 1 1 1 1
;n P23 4

The function is intimately related to prime numbers and can also be written as

s\l
(o =J[ (1-r) (A.57)
p
where H,, is the product over all primes p.

The Riemann zeta function or, more precisely, the Riemann hypothesis played
and continues to play an important part in the development of mathematical theory.
Riemann zeta functions have trivial and non-trivial zeros. They have zeros at the
negative even integers. The Riemann hypothesis states that non-trivial zeros of the
zeta function have a real part %, i.e. non-trivial zeros lie on the line % + it¢, t being a
real number. The hypothesis is one of the most challenging problems in mathe-
matics, and has not been proved so far. Once, Hilbert was asked what would be on
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his mind if he were resurrected in 1000 years. He answered that he would inquire
whether the Riemann hypothesis had been proved.
One can compute

20y =—1/2
{(1) =00

£(2) = 7%/6 =~ 1.645
£(3) =1.202

£(4) = 7*/90 = 1.0823.

£(0) = —% can be obtained from a globally convergent series for the Riemann
zeta function (which provides the analytic continuation of the entire complex plane
except at s=1) and is given by

L(s) = 21 . sz Z( 1 ( )(k+ D s#1. (A.58)
The series gives
0= 15 X5 i(n() ¥l
1 =2 211+l n=02 1 nO
I
= (A.59)

One also notes an important relation between the Riemann zeta function and the
Dirichlet eta function,

n(s) = Z(_;Zn_ = (1= 2"7)5(), (A.60)
giving
n(0) = (=1)¢(0) = 1/2
n(1) = 1n2
@=Lty = 12
N=5 26
3 3
n3) = 25(3) Z
7 7zt
n4) = §5(4) g%

A.7 The Legendre transformation
Let f= f(x, {) be a function of two variables, x and {. Let

_9
=—. (A.61)
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We want to obtain a function g(p, {) which is uniquely defined by the function
f(x, £). The function is the Legendre transformation of f,

gp. O =f(x, ) - px. (A.62)

The transformation can be easily generalized to more than two variables. For
example, if

f(xl, Xpyeens X, é’) (A.63)
with
pA=i i=1,2,...n, (A.64)
toox

then the Legendre transformation of f'is

g(plo pza”'ﬂ 121: C) =f(x19 xz,...,x,,) - Zpix,.. (A65)

The most well-known Legendre transformation is between the Lagrangian
L(q, ¢) and Hamiltonian H(p, ¢). The Hamiltonian is the Legendre transforma-
tion of the Lagrangian,

H(p, q)=L(q, 9 —p-q (A.66)
with
_0L(q, 9)
P (A.67)

A.8 The Dirac equation in a spherical cavity

By late 1960, it was firmly established that all the known hadrons can be built from
three building blocks, the colored quarks. Non-observation of free quarks necessi-
tated some kind of model to confine quarks within a hadron. Towards this end,
Bogolioubov proposed a model of hadrons where quarks are confined by a scalar
potential of infinite depth. Later, the model has developed as the MIT bag model. In
the following, we briefly sketch the Bogolioubov model.

The Dirac equation for a particle of mass m under the influence of scalar potential
U(x) can be written as

[ir"9, — (m + UG) Jy(x) = 0 (A.68)

where y is a four-component vector, the Dirac spinor. For completeness, the usual
forms of 4 X 4 y matrices are given below,

Y’ = (é _01) y = (_06 _60) (A.69)



A Short Course on Relativistic Heavy lon Collisions

where 7 is a 2 X 2 unit matrix and ¢ are the Pauli matrices,

01 0 —i 1 0
= = = ) A.70
o=(Vo)  e=(03) e=(6 ) (A-70)
One also defines a y, matrix,
2012 3 0o I

K=1 =iy :(—1 _0). (A1)

y matrices obey the anticommutation relations,
{r' v} =2¢" {r'.r’} =0. (A.72)

Writing w(x) = yw(x)e™', the Dirac equation becomes.

[y - p + (m + UGy (x) = Er'w(x). (A.73)

Writing the wave function w(x) = (;/;*), the Dirac equation can be decomposed

into two coupled equations,
6 -py, —[m+ UX)]y = Ey (A.74a)
6 py +[m+ UX)]y = Ey,. (A.74b)

Unlike the non-relativistic case, even for a central potential, orbital angular
momentum is not a good quantum number. The conserved quantities are energy E,
Jj2, J;and K = y°(Z -1+ 1) where,

. 1 ¢ 0
=1+ =X r= . A.75
=1+ (59 (A75)
The eigenvalue equations can be written as
Fw=jG+ Dy (A.76a)
Ly =my (A.76b)
Ky = —xy. (A.76¢)
From equation (A.76¢) it follows that,
(6-1+ Dy, = —xy, (A.77a)
(o -1+ Dy = +xy. (A.77b)
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It can be shown that xk = i( j+ %) and the Dirac wave function y can be labeled
by the quantum numbers, m and k. Let us write the Dirac spinor as

1/4) g(r)y”
W= =]1. e (A.78)
(w_ (lf(r))(_K
Consider the term (¢ - p)y, in equation (A.74a). Using the identity
G-r
c-p="""6 n-p

[r-p+ic-(rxp) (A.79)

(6 )
r
it can be written as

m

ELi(e - p) +io gy,
—l[i—+( +1)g(r)]( E)y”

[3 +x+ DED )] (A.80)

6 - pg(r)y,”

In the last line, we have used the relation
(G . i'))(Km =—x". (A.81)

The relation can be proven exactly. We just note that the relation makes sense
since (6-f)° =1 and (o - f) is a pseudo-scalar. Inserting equation (A.80) into
equation (A.74a) we obtain,

j—g s U= EF (A.824)

.

and similarly, ‘jil + 1=K m+ UG = —Eg. (A.82b)
r r

Equations (A.82a) and (A.82b) are the Dirac equations for an m mass fermion in
a scalar potential U(r). The coupled equations can be solved with appropriate
boundary conditions. Solutions are particularly simple for a massless quark, in a
spherical cavity of radius R, when

Ur)=0 r<R (A.83q)

Ur)=c  r3>R. (A.83b)
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In the ground state k = —1 and inside the cavity, equations (A.82a) and (A.82b)
can be rewritten as

dg
d(Er)

=f (A.84q)

df .
) Ef (A.84b)

Using z = Er and inserting equation (A.84a) in equation (A.84b), one obtains

d’¢ 2dg zd g dg
+ 2z—= + 0. A.85
d* ' zdz p g e (A.85)
Now the solution of the differential equation,

ZZ(;W + 2z (cil_ + [z —n(n + 1)]w = (A.86)
z

is a spherical Bessel function of the first kind,

J(2) = \F ). (A.87)

One can immediately write the solution of equation (A.85),

. sin Er
g(r) = Nj,(Er) =

(A.88)

with some normalization constant N. Similarly, inserting equation (A.84b) in to
equation (A.84a) one obtains

zdzf +2:Y (z2-2)r=0, (A.89)

dz? dz

and may write the solution as

S = Nj(Er) =

sin Er cos Er]' (A.90)

(Ery  (Er)

The confinement condition that iy = 0 at the surface gives

7l = [HER] - [{ER] =0 (A91)
or  j(ER) = j(ER).

From the tabulated values of the spherical Bessel functions, the equation is
satisfied for

E=2" (A.92)
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A.9 Grassmann numbers

Grassmann numbers are mathematical constructions such that they are anti-
commuting. A collection of Grassmann variables 6, are independent elements of an
algebra which contains real numbers that anticommute with each other, but
commute with ordinary numbers x,

6,6, = —06,0, (A.93)
0.x = x0i (A.94)
6> =0. (A.95)

One also notes that the operations of integration and differentiation are identical
in Grassmann algebra,

f 1d6 = 0 (A.96)

f 0d6 = 1. (A.97)

Grassmann numbers can always be represented as matrices. In general, a
Grassmann algebra on 7 generators can be represented by 2" x 2" square matrices.
Let us consider the integral

/= f dn’ f dne"a (A.98)
where «a is an ordinary number. The exponential can be expanded as

e =1 — ylay (A.99)

and the integral can be evaluated as

= f dn' f dnl - a / dy' / dnn'n (A.100)
—a /dn*(/dnn)n* —a /drf;f —a=e" (A.101)

For two Grassmann variables,

fd”1+ fdﬂle—ﬂﬁalﬂlfdn; /dnze—ﬂgazriz =aa, = elnulaz' (A102)

The quantity a,a, is the determinant of the diagonal matrix with @, and a, on the
diagonal. In a general basis then we write in matrix notation

1 f dn’ f di e M = detA = exp[Tr In 4], (A.103)
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A.10 The Wigner function

In classical statistical mechanics, we have encountered the distribution function
f(x, p) which gives the probability of finding particles with momenta p at the
position x. The Wigner function is the quantum analog of the classical distribution
function. In classical mechanics, one deals with trajectories, while quantum
mechanics, on the other hand, inherently deals with probability. Connections
between the two (if any) can be obtained by comparing ensembles of trajectories in
phase space for the classical case and density distributions, e.g. Wigner functions for
the quantum case.

In quantum mechanics, given a wave function y, the expectation value of an
operator A is given as

(A) = ylAly). (A.104)

Let us first consider Weyl transformation for A4,

2

A(x, p) = fdye‘i”’<x + Z‘A 5

x - Z> (A.105)

where the operator has been expressed in the coordinate basis. If the operator is
expressed in the momentum basis, Weyl transformation is obtained as

Alx, p) = fdue-“"<p + %‘A’p - g> (A.106)

The Weyl transformation converts an operator into a function of x and p. An
important property of Weyl transformation is,

THAB] = % f f ABdxdp. (A.107)

In appendix A.4 we introduced the notion of the density matrix. In terms of the
density matrix, the expectation value of an operator is

(4) = Tr[pA]. (A.108)
It can now be written as
() = Ti pd] = 1 /ﬁ/]dxdp. (A.109)
h
The Wigner function is defined as
W(x, p) = g = % e"”’<x + y‘p X - §>dy
= l =ipy pd *( - X)
= h/e w(x+2)y/ X 5 dy (A.110)
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In terms of the Wigner function, the expectation value of the operator A4 is
(A) = f ACx, p)W(x, p)dxdp. (A111)

The expression closely resembles the expression for the average value in classical
mechanics in terms of the distribution function f(x, p),

4y = [ AGx, pif(x, pydxdp. (A112)
It is easy to prove that the Wigner function, when integrated over p, gives the

probability distribution for x, and when integrated over x, gives the probability
distribution for p.
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